C++-ify struct thread_fsm
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "common/format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71 #include "cli/cli-style.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83 #include "progspace-and-thread.h"
84 #include "common/array-view.h"
85 #include "common/gdb_optional.h"
86
87 /* Enums for exception-handling support. */
88 enum exception_event_kind
89 {
90 EX_EVENT_THROW,
91 EX_EVENT_RETHROW,
92 EX_EVENT_CATCH
93 };
94
95 /* Prototypes for local functions. */
96
97 static void map_breakpoint_numbers (const char *,
98 gdb::function_view<void (breakpoint *)>);
99
100 static void breakpoint_re_set_default (struct breakpoint *);
101
102 static void
103 create_sals_from_location_default (const struct event_location *location,
104 struct linespec_result *canonical,
105 enum bptype type_wanted);
106
107 static void create_breakpoints_sal_default (struct gdbarch *,
108 struct linespec_result *,
109 gdb::unique_xmalloc_ptr<char>,
110 gdb::unique_xmalloc_ptr<char>,
111 enum bptype,
112 enum bpdisp, int, int,
113 int,
114 const struct breakpoint_ops *,
115 int, int, int, unsigned);
116
117 static std::vector<symtab_and_line> decode_location_default
118 (struct breakpoint *b, const struct event_location *location,
119 struct program_space *search_pspace);
120
121 static int can_use_hardware_watchpoint
122 (const std::vector<value_ref_ptr> &vals);
123
124 static void mention (struct breakpoint *);
125
126 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
127 enum bptype,
128 const struct breakpoint_ops *);
129 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
130 const struct symtab_and_line *);
131
132 /* This function is used in gdbtk sources and thus can not be made
133 static. */
134 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
135 struct symtab_and_line,
136 enum bptype,
137 const struct breakpoint_ops *);
138
139 static struct breakpoint *
140 momentary_breakpoint_from_master (struct breakpoint *orig,
141 enum bptype type,
142 const struct breakpoint_ops *ops,
143 int loc_enabled);
144
145 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
146
147 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
148 CORE_ADDR bpaddr,
149 enum bptype bptype);
150
151 static void describe_other_breakpoints (struct gdbarch *,
152 struct program_space *, CORE_ADDR,
153 struct obj_section *, int);
154
155 static int watchpoint_locations_match (struct bp_location *loc1,
156 struct bp_location *loc2);
157
158 static int breakpoint_location_address_match (struct bp_location *bl,
159 const struct address_space *aspace,
160 CORE_ADDR addr);
161
162 static int breakpoint_location_address_range_overlap (struct bp_location *,
163 const address_space *,
164 CORE_ADDR, int);
165
166 static int remove_breakpoint (struct bp_location *);
167 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
168
169 static enum print_stop_action print_bp_stop_message (bpstat bs);
170
171 static int hw_breakpoint_used_count (void);
172
173 static int hw_watchpoint_use_count (struct breakpoint *);
174
175 static int hw_watchpoint_used_count_others (struct breakpoint *except,
176 enum bptype type,
177 int *other_type_used);
178
179 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
180 int count);
181
182 static void free_bp_location (struct bp_location *loc);
183 static void incref_bp_location (struct bp_location *loc);
184 static void decref_bp_location (struct bp_location **loc);
185
186 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
187
188 /* update_global_location_list's modes of operation wrt to whether to
189 insert locations now. */
190 enum ugll_insert_mode
191 {
192 /* Don't insert any breakpoint locations into the inferior, only
193 remove already-inserted locations that no longer should be
194 inserted. Functions that delete a breakpoint or breakpoints
195 should specify this mode, so that deleting a breakpoint doesn't
196 have the side effect of inserting the locations of other
197 breakpoints that are marked not-inserted, but should_be_inserted
198 returns true on them.
199
200 This behavior is useful is situations close to tear-down -- e.g.,
201 after an exec, while the target still has execution, but
202 breakpoint shadows of the previous executable image should *NOT*
203 be restored to the new image; or before detaching, where the
204 target still has execution and wants to delete breakpoints from
205 GDB's lists, and all breakpoints had already been removed from
206 the inferior. */
207 UGLL_DONT_INSERT,
208
209 /* May insert breakpoints iff breakpoints_should_be_inserted_now
210 claims breakpoints should be inserted now. */
211 UGLL_MAY_INSERT,
212
213 /* Insert locations now, irrespective of
214 breakpoints_should_be_inserted_now. E.g., say all threads are
215 stopped right now, and the user did "continue". We need to
216 insert breakpoints _before_ resuming the target, but
217 UGLL_MAY_INSERT wouldn't insert them, because
218 breakpoints_should_be_inserted_now returns false at that point,
219 as no thread is running yet. */
220 UGLL_INSERT
221 };
222
223 static void update_global_location_list (enum ugll_insert_mode);
224
225 static void update_global_location_list_nothrow (enum ugll_insert_mode);
226
227 static int is_hardware_watchpoint (const struct breakpoint *bpt);
228
229 static void insert_breakpoint_locations (void);
230
231 static void trace_pass_command (const char *, int);
232
233 static void set_tracepoint_count (int num);
234
235 static int is_masked_watchpoint (const struct breakpoint *b);
236
237 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
238
239 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
240 otherwise. */
241
242 static int strace_marker_p (struct breakpoint *b);
243
244 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
245 that are implemented on top of software or hardware breakpoints
246 (user breakpoints, internal and momentary breakpoints, etc.). */
247 static struct breakpoint_ops bkpt_base_breakpoint_ops;
248
249 /* Internal breakpoints class type. */
250 static struct breakpoint_ops internal_breakpoint_ops;
251
252 /* Momentary breakpoints class type. */
253 static struct breakpoint_ops momentary_breakpoint_ops;
254
255 /* The breakpoint_ops structure to be used in regular user created
256 breakpoints. */
257 struct breakpoint_ops bkpt_breakpoint_ops;
258
259 /* Breakpoints set on probes. */
260 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
261
262 /* Dynamic printf class type. */
263 struct breakpoint_ops dprintf_breakpoint_ops;
264
265 /* The style in which to perform a dynamic printf. This is a user
266 option because different output options have different tradeoffs;
267 if GDB does the printing, there is better error handling if there
268 is a problem with any of the arguments, but using an inferior
269 function lets you have special-purpose printers and sending of
270 output to the same place as compiled-in print functions. */
271
272 static const char dprintf_style_gdb[] = "gdb";
273 static const char dprintf_style_call[] = "call";
274 static const char dprintf_style_agent[] = "agent";
275 static const char *const dprintf_style_enums[] = {
276 dprintf_style_gdb,
277 dprintf_style_call,
278 dprintf_style_agent,
279 NULL
280 };
281 static const char *dprintf_style = dprintf_style_gdb;
282
283 /* The function to use for dynamic printf if the preferred style is to
284 call into the inferior. The value is simply a string that is
285 copied into the command, so it can be anything that GDB can
286 evaluate to a callable address, not necessarily a function name. */
287
288 static char *dprintf_function;
289
290 /* The channel to use for dynamic printf if the preferred style is to
291 call into the inferior; if a nonempty string, it will be passed to
292 the call as the first argument, with the format string as the
293 second. As with the dprintf function, this can be anything that
294 GDB knows how to evaluate, so in addition to common choices like
295 "stderr", this could be an app-specific expression like
296 "mystreams[curlogger]". */
297
298 static char *dprintf_channel;
299
300 /* True if dprintf commands should continue to operate even if GDB
301 has disconnected. */
302 static int disconnected_dprintf = 1;
303
304 struct command_line *
305 breakpoint_commands (struct breakpoint *b)
306 {
307 return b->commands ? b->commands.get () : NULL;
308 }
309
310 /* Flag indicating that a command has proceeded the inferior past the
311 current breakpoint. */
312
313 static int breakpoint_proceeded;
314
315 const char *
316 bpdisp_text (enum bpdisp disp)
317 {
318 /* NOTE: the following values are a part of MI protocol and
319 represent values of 'disp' field returned when inferior stops at
320 a breakpoint. */
321 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
322
323 return bpdisps[(int) disp];
324 }
325
326 /* Prototypes for exported functions. */
327 /* If FALSE, gdb will not use hardware support for watchpoints, even
328 if such is available. */
329 static int can_use_hw_watchpoints;
330
331 static void
332 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
333 struct cmd_list_element *c,
334 const char *value)
335 {
336 fprintf_filtered (file,
337 _("Debugger's willingness to use "
338 "watchpoint hardware is %s.\n"),
339 value);
340 }
341
342 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
343 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
344 for unrecognized breakpoint locations.
345 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
346 static enum auto_boolean pending_break_support;
347 static void
348 show_pending_break_support (struct ui_file *file, int from_tty,
349 struct cmd_list_element *c,
350 const char *value)
351 {
352 fprintf_filtered (file,
353 _("Debugger's behavior regarding "
354 "pending breakpoints is %s.\n"),
355 value);
356 }
357
358 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
359 set with "break" but falling in read-only memory.
360 If 0, gdb will warn about such breakpoints, but won't automatically
361 use hardware breakpoints. */
362 static int automatic_hardware_breakpoints;
363 static void
364 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c,
366 const char *value)
367 {
368 fprintf_filtered (file,
369 _("Automatic usage of hardware breakpoints is %s.\n"),
370 value);
371 }
372
373 /* If on, GDB keeps breakpoints inserted even if the inferior is
374 stopped, and immediately inserts any new breakpoints as soon as
375 they're created. If off (default), GDB keeps breakpoints off of
376 the target as long as possible. That is, it delays inserting
377 breakpoints until the next resume, and removes them again when the
378 target fully stops. This is a bit safer in case GDB crashes while
379 processing user input. */
380 static int always_inserted_mode = 0;
381
382 static void
383 show_always_inserted_mode (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
387 value);
388 }
389
390 /* See breakpoint.h. */
391
392 int
393 breakpoints_should_be_inserted_now (void)
394 {
395 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
396 {
397 /* If breakpoints are global, they should be inserted even if no
398 thread under gdb's control is running, or even if there are
399 no threads under GDB's control yet. */
400 return 1;
401 }
402 else if (target_has_execution)
403 {
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 for (thread_info *tp : all_non_exited_threads ())
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 static std::vector<bp_location *> moribund_locations;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 int
1051 is_tracepoint (const struct breakpoint *b)
1052 {
1053 return is_tracepoint_type (b->type);
1054 }
1055
1056 /* Factory function to create an appropriate instance of breakpoint given
1057 TYPE. */
1058
1059 static std::unique_ptr<breakpoint>
1060 new_breakpoint_from_type (bptype type)
1061 {
1062 breakpoint *b;
1063
1064 if (is_tracepoint_type (type))
1065 b = new tracepoint ();
1066 else if (is_longjmp_type (type))
1067 b = new longjmp_breakpoint ();
1068 else
1069 b = new breakpoint ();
1070
1071 return std::unique_ptr<breakpoint> (b);
1072 }
1073
1074 /* A helper function that validates that COMMANDS are valid for a
1075 breakpoint. This function will throw an exception if a problem is
1076 found. */
1077
1078 static void
1079 validate_commands_for_breakpoint (struct breakpoint *b,
1080 struct command_line *commands)
1081 {
1082 if (is_tracepoint (b))
1083 {
1084 struct tracepoint *t = (struct tracepoint *) b;
1085 struct command_line *c;
1086 struct command_line *while_stepping = 0;
1087
1088 /* Reset the while-stepping step count. The previous commands
1089 might have included a while-stepping action, while the new
1090 ones might not. */
1091 t->step_count = 0;
1092
1093 /* We need to verify that each top-level element of commands is
1094 valid for tracepoints, that there's at most one
1095 while-stepping element, and that the while-stepping's body
1096 has valid tracing commands excluding nested while-stepping.
1097 We also need to validate the tracepoint action line in the
1098 context of the tracepoint --- validate_actionline actually
1099 has side effects, like setting the tracepoint's
1100 while-stepping STEP_COUNT, in addition to checking if the
1101 collect/teval actions parse and make sense in the
1102 tracepoint's context. */
1103 for (c = commands; c; c = c->next)
1104 {
1105 if (c->control_type == while_stepping_control)
1106 {
1107 if (b->type == bp_fast_tracepoint)
1108 error (_("The 'while-stepping' command "
1109 "cannot be used for fast tracepoint"));
1110 else if (b->type == bp_static_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for static tracepoint"));
1113
1114 if (while_stepping)
1115 error (_("The 'while-stepping' command "
1116 "can be used only once"));
1117 else
1118 while_stepping = c;
1119 }
1120
1121 validate_actionline (c->line, b);
1122 }
1123 if (while_stepping)
1124 {
1125 struct command_line *c2;
1126
1127 gdb_assert (while_stepping->body_list_1 == nullptr);
1128 c2 = while_stepping->body_list_0.get ();
1129 for (; c2; c2 = c2->next)
1130 {
1131 if (c2->control_type == while_stepping_control)
1132 error (_("The 'while-stepping' command cannot be nested"));
1133 }
1134 }
1135 }
1136 else
1137 {
1138 check_no_tracepoint_commands (commands);
1139 }
1140 }
1141
1142 /* Return a vector of all the static tracepoints set at ADDR. The
1143 caller is responsible for releasing the vector. */
1144
1145 std::vector<breakpoint *>
1146 static_tracepoints_here (CORE_ADDR addr)
1147 {
1148 struct breakpoint *b;
1149 std::vector<breakpoint *> found;
1150 struct bp_location *loc;
1151
1152 ALL_BREAKPOINTS (b)
1153 if (b->type == bp_static_tracepoint)
1154 {
1155 for (loc = b->loc; loc; loc = loc->next)
1156 if (loc->address == addr)
1157 found.push_back (b);
1158 }
1159
1160 return found;
1161 }
1162
1163 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1164 validate that only allowed commands are included. */
1165
1166 void
1167 breakpoint_set_commands (struct breakpoint *b,
1168 counted_command_line &&commands)
1169 {
1170 validate_commands_for_breakpoint (b, commands.get ());
1171
1172 b->commands = std::move (commands);
1173 gdb::observers::breakpoint_modified.notify (b);
1174 }
1175
1176 /* Set the internal `silent' flag on the breakpoint. Note that this
1177 is not the same as the "silent" that may appear in the breakpoint's
1178 commands. */
1179
1180 void
1181 breakpoint_set_silent (struct breakpoint *b, int silent)
1182 {
1183 int old_silent = b->silent;
1184
1185 b->silent = silent;
1186 if (old_silent != silent)
1187 gdb::observers::breakpoint_modified.notify (b);
1188 }
1189
1190 /* Set the thread for this breakpoint. If THREAD is -1, make the
1191 breakpoint work for any thread. */
1192
1193 void
1194 breakpoint_set_thread (struct breakpoint *b, int thread)
1195 {
1196 int old_thread = b->thread;
1197
1198 b->thread = thread;
1199 if (old_thread != thread)
1200 gdb::observers::breakpoint_modified.notify (b);
1201 }
1202
1203 /* Set the task for this breakpoint. If TASK is 0, make the
1204 breakpoint work for any task. */
1205
1206 void
1207 breakpoint_set_task (struct breakpoint *b, int task)
1208 {
1209 int old_task = b->task;
1210
1211 b->task = task;
1212 if (old_task != task)
1213 gdb::observers::breakpoint_modified.notify (b);
1214 }
1215
1216 static void
1217 commands_command_1 (const char *arg, int from_tty,
1218 struct command_line *control)
1219 {
1220 counted_command_line cmd;
1221 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1222 NULL after the call to read_command_lines if the user provides an empty
1223 list of command by just typing "end". */
1224 bool cmd_read = false;
1225
1226 std::string new_arg;
1227
1228 if (arg == NULL || !*arg)
1229 {
1230 if (breakpoint_count - prev_breakpoint_count > 1)
1231 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1232 breakpoint_count);
1233 else if (breakpoint_count > 0)
1234 new_arg = string_printf ("%d", breakpoint_count);
1235 arg = new_arg.c_str ();
1236 }
1237
1238 map_breakpoint_numbers
1239 (arg, [&] (breakpoint *b)
1240 {
1241 if (!cmd_read)
1242 {
1243 gdb_assert (cmd == NULL);
1244 if (control != NULL)
1245 cmd = control->body_list_0;
1246 else
1247 {
1248 std::string str
1249 = string_printf (_("Type commands for breakpoint(s) "
1250 "%s, one per line."),
1251 arg);
1252
1253 auto do_validate = [=] (const char *line)
1254 {
1255 validate_actionline (line, b);
1256 };
1257 gdb::function_view<void (const char *)> validator;
1258 if (is_tracepoint (b))
1259 validator = do_validate;
1260
1261 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1262 }
1263 cmd_read = true;
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (b->watchpoint_thread == null_ptid
1553 || (inferior_ptid == b->watchpoint_thread
1554 && !inferior_thread ()->executing)));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 b->val = NULL;
1744 b->val_valid = 0;
1745
1746 /* Note that unlike with breakpoints, the watchpoint's condition
1747 expression is stored in the breakpoint object, not in the
1748 locations (re)created below. */
1749 if (b->cond_string != NULL)
1750 {
1751 b->cond_exp.reset ();
1752
1753 s = b->cond_string;
1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1755 }
1756 }
1757
1758 /* If we failed to parse the expression, for example because
1759 it refers to a global variable in a not-yet-loaded shared library,
1760 don't try to insert watchpoint. We don't automatically delete
1761 such watchpoint, though, since failure to parse expression
1762 is different from out-of-scope watchpoint. */
1763 if (!target_has_execution)
1764 {
1765 /* Without execution, memory can't change. No use to try and
1766 set watchpoint locations. The watchpoint will be reset when
1767 the target gains execution, through breakpoint_re_set. */
1768 if (!can_use_hw_watchpoints)
1769 {
1770 if (b->ops->works_in_software_mode (b))
1771 b->type = bp_watchpoint;
1772 else
1773 error (_("Can't set read/access watchpoint when "
1774 "hardware watchpoints are disabled."));
1775 }
1776 }
1777 else if (within_current_scope && b->exp)
1778 {
1779 int pc = 0;
1780 std::vector<value_ref_ptr> val_chain;
1781 struct value *v, *result;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 v = extract_bitfield_from_watchpoint_value (b, v);
1796 b->val = release_value (v);
1797 b->val_valid = 1;
1798 }
1799
1800 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1801
1802 /* Look at each value on the value chain. */
1803 gdb_assert (!val_chain.empty ());
1804 for (const value_ref_ptr &iter : val_chain)
1805 {
1806 v = iter.get ();
1807
1808 /* If it's a memory location, and GDB actually needed
1809 its contents to evaluate the expression, then we
1810 must watch it. If the first value returned is
1811 still lazy, that means an error occurred reading it;
1812 watch it anyway in case it becomes readable. */
1813 if (VALUE_LVAL (v) == lval_memory
1814 && (v == val_chain[0] || ! value_lazy (v)))
1815 {
1816 struct type *vtype = check_typedef (value_type (v));
1817
1818 /* We only watch structs and arrays if user asked
1819 for it explicitly, never if they just happen to
1820 appear in the middle of some value chain. */
1821 if (v == result
1822 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1823 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1824 {
1825 CORE_ADDR addr;
1826 enum target_hw_bp_type type;
1827 struct bp_location *loc, **tmp;
1828 int bitpos = 0, bitsize = 0;
1829
1830 if (value_bitsize (v) != 0)
1831 {
1832 /* Extract the bit parameters out from the bitfield
1833 sub-expression. */
1834 bitpos = value_bitpos (v);
1835 bitsize = value_bitsize (v);
1836 }
1837 else if (v == result && b->val_bitsize != 0)
1838 {
1839 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1840 lvalue whose bit parameters are saved in the fields
1841 VAL_BITPOS and VAL_BITSIZE. */
1842 bitpos = b->val_bitpos;
1843 bitsize = b->val_bitsize;
1844 }
1845
1846 addr = value_address (v);
1847 if (bitsize != 0)
1848 {
1849 /* Skip the bytes that don't contain the bitfield. */
1850 addr += bitpos / 8;
1851 }
1852
1853 type = hw_write;
1854 if (b->type == bp_read_watchpoint)
1855 type = hw_read;
1856 else if (b->type == bp_access_watchpoint)
1857 type = hw_access;
1858
1859 loc = allocate_bp_location (b);
1860 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1861 ;
1862 *tmp = loc;
1863 loc->gdbarch = get_type_arch (value_type (v));
1864
1865 loc->pspace = frame_pspace;
1866 loc->address = address_significant (loc->gdbarch, addr);
1867
1868 if (bitsize != 0)
1869 {
1870 /* Just cover the bytes that make up the bitfield. */
1871 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1872 }
1873 else
1874 loc->length = TYPE_LENGTH (value_type (v));
1875
1876 loc->watchpoint_type = type;
1877 }
1878 }
1879 }
1880
1881 /* Change the type of breakpoint between hardware assisted or
1882 an ordinary watchpoint depending on the hardware support
1883 and free hardware slots. REPARSE is set when the inferior
1884 is started. */
1885 if (reparse)
1886 {
1887 int reg_cnt;
1888 enum bp_loc_type loc_type;
1889 struct bp_location *bl;
1890
1891 reg_cnt = can_use_hardware_watchpoint (val_chain);
1892
1893 if (reg_cnt)
1894 {
1895 int i, target_resources_ok, other_type_used;
1896 enum bptype type;
1897
1898 /* Use an exact watchpoint when there's only one memory region to be
1899 watched, and only one debug register is needed to watch it. */
1900 b->exact = target_exact_watchpoints && reg_cnt == 1;
1901
1902 /* We need to determine how many resources are already
1903 used for all other hardware watchpoints plus this one
1904 to see if we still have enough resources to also fit
1905 this watchpoint in as well. */
1906
1907 /* If this is a software watchpoint, we try to turn it
1908 to a hardware one -- count resources as if B was of
1909 hardware watchpoint type. */
1910 type = b->type;
1911 if (type == bp_watchpoint)
1912 type = bp_hardware_watchpoint;
1913
1914 /* This watchpoint may or may not have been placed on
1915 the list yet at this point (it won't be in the list
1916 if we're trying to create it for the first time,
1917 through watch_command), so always account for it
1918 manually. */
1919
1920 /* Count resources used by all watchpoints except B. */
1921 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1922
1923 /* Add in the resources needed for B. */
1924 i += hw_watchpoint_use_count (b);
1925
1926 target_resources_ok
1927 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1928 if (target_resources_ok <= 0)
1929 {
1930 int sw_mode = b->ops->works_in_software_mode (b);
1931
1932 if (target_resources_ok == 0 && !sw_mode)
1933 error (_("Target does not support this type of "
1934 "hardware watchpoint."));
1935 else if (target_resources_ok < 0 && !sw_mode)
1936 error (_("There are not enough available hardware "
1937 "resources for this watchpoint."));
1938
1939 /* Downgrade to software watchpoint. */
1940 b->type = bp_watchpoint;
1941 }
1942 else
1943 {
1944 /* If this was a software watchpoint, we've just
1945 found we have enough resources to turn it to a
1946 hardware watchpoint. Otherwise, this is a
1947 nop. */
1948 b->type = type;
1949 }
1950 }
1951 else if (!b->ops->works_in_software_mode (b))
1952 {
1953 if (!can_use_hw_watchpoints)
1954 error (_("Can't set read/access watchpoint when "
1955 "hardware watchpoints are disabled."));
1956 else
1957 error (_("Expression cannot be implemented with "
1958 "read/access watchpoint."));
1959 }
1960 else
1961 b->type = bp_watchpoint;
1962
1963 loc_type = (b->type == bp_watchpoint? bp_loc_other
1964 : bp_loc_hardware_watchpoint);
1965 for (bl = b->loc; bl; bl = bl->next)
1966 bl->loc_type = loc_type;
1967 }
1968
1969 /* If a software watchpoint is not watching any memory, then the
1970 above left it without any location set up. But,
1971 bpstat_stop_status requires a location to be able to report
1972 stops, so make sure there's at least a dummy one. */
1973 if (b->type == bp_watchpoint && b->loc == NULL)
1974 software_watchpoint_add_no_memory_location (b, frame_pspace);
1975 }
1976 else if (!within_current_scope)
1977 {
1978 printf_filtered (_("\
1979 Watchpoint %d deleted because the program has left the block\n\
1980 in which its expression is valid.\n"),
1981 b->number);
1982 watchpoint_del_at_next_stop (b);
1983 }
1984
1985 /* Restore the selected frame. */
1986 if (frame_saved)
1987 select_frame (frame_find_by_id (saved_frame_id));
1988 }
1989
1990
1991 /* Returns 1 iff breakpoint location should be
1992 inserted in the inferior. We don't differentiate the type of BL's owner
1993 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1994 breakpoint_ops is not defined, because in insert_bp_location,
1995 tracepoint's insert_location will not be called. */
1996 static int
1997 should_be_inserted (struct bp_location *bl)
1998 {
1999 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2000 return 0;
2001
2002 if (bl->owner->disposition == disp_del_at_next_stop)
2003 return 0;
2004
2005 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2006 return 0;
2007
2008 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2009 return 0;
2010
2011 /* This is set for example, when we're attached to the parent of a
2012 vfork, and have detached from the child. The child is running
2013 free, and we expect it to do an exec or exit, at which point the
2014 OS makes the parent schedulable again (and the target reports
2015 that the vfork is done). Until the child is done with the shared
2016 memory region, do not insert breakpoints in the parent, otherwise
2017 the child could still trip on the parent's breakpoints. Since
2018 the parent is blocked anyway, it won't miss any breakpoint. */
2019 if (bl->pspace->breakpoints_not_allowed)
2020 return 0;
2021
2022 /* Don't insert a breakpoint if we're trying to step past its
2023 location, except if the breakpoint is a single-step breakpoint,
2024 and the breakpoint's thread is the thread which is stepping past
2025 a breakpoint. */
2026 if ((bl->loc_type == bp_loc_software_breakpoint
2027 || bl->loc_type == bp_loc_hardware_breakpoint)
2028 && stepping_past_instruction_at (bl->pspace->aspace,
2029 bl->address)
2030 /* The single-step breakpoint may be inserted at the location
2031 we're trying to step if the instruction branches to itself.
2032 However, the instruction won't be executed at all and it may
2033 break the semantics of the instruction, for example, the
2034 instruction is a conditional branch or updates some flags.
2035 We can't fix it unless GDB is able to emulate the instruction
2036 or switch to displaced stepping. */
2037 && !(bl->owner->type == bp_single_step
2038 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2039 {
2040 if (debug_infrun)
2041 {
2042 fprintf_unfiltered (gdb_stdlog,
2043 "infrun: skipping breakpoint: "
2044 "stepping past insn at: %s\n",
2045 paddress (bl->gdbarch, bl->address));
2046 }
2047 return 0;
2048 }
2049
2050 /* Don't insert watchpoints if we're trying to step past the
2051 instruction that triggered one. */
2052 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2053 && stepping_past_nonsteppable_watchpoint ())
2054 {
2055 if (debug_infrun)
2056 {
2057 fprintf_unfiltered (gdb_stdlog,
2058 "infrun: stepping past non-steppable watchpoint. "
2059 "skipping watchpoint at %s:%d\n",
2060 paddress (bl->gdbarch, bl->address),
2061 bl->length);
2062 }
2063 return 0;
2064 }
2065
2066 return 1;
2067 }
2068
2069 /* Same as should_be_inserted but does the check assuming
2070 that the location is not duplicated. */
2071
2072 static int
2073 unduplicated_should_be_inserted (struct bp_location *bl)
2074 {
2075 int result;
2076 const int save_duplicate = bl->duplicate;
2077
2078 bl->duplicate = 0;
2079 result = should_be_inserted (bl);
2080 bl->duplicate = save_duplicate;
2081 return result;
2082 }
2083
2084 /* Parses a conditional described by an expression COND into an
2085 agent expression bytecode suitable for evaluation
2086 by the bytecode interpreter. Return NULL if there was
2087 any error during parsing. */
2088
2089 static agent_expr_up
2090 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2091 {
2092 if (cond == NULL)
2093 return NULL;
2094
2095 agent_expr_up aexpr;
2096
2097 /* We don't want to stop processing, so catch any errors
2098 that may show up. */
2099 TRY
2100 {
2101 aexpr = gen_eval_for_expr (scope, cond);
2102 }
2103
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 /* If we got here, it means the condition could not be parsed to a valid
2107 bytecode expression and thus can't be evaluated on the target's side.
2108 It's no use iterating through the conditions. */
2109 }
2110 END_CATCH
2111
2112 /* We have a valid agent expression. */
2113 return aexpr;
2114 }
2115
2116 /* Based on location BL, create a list of breakpoint conditions to be
2117 passed on to the target. If we have duplicated locations with different
2118 conditions, we will add such conditions to the list. The idea is that the
2119 target will evaluate the list of conditions and will only notify GDB when
2120 one of them is true. */
2121
2122 static void
2123 build_target_condition_list (struct bp_location *bl)
2124 {
2125 struct bp_location **locp = NULL, **loc2p;
2126 int null_condition_or_parse_error = 0;
2127 int modified = bl->needs_update;
2128 struct bp_location *loc;
2129
2130 /* Release conditions left over from a previous insert. */
2131 bl->target_info.conditions.clear ();
2132
2133 /* This is only meaningful if the target is
2134 evaluating conditions and if the user has
2135 opted for condition evaluation on the target's
2136 side. */
2137 if (gdb_evaluates_breakpoint_condition_p ()
2138 || !target_supports_evaluation_of_breakpoint_conditions ())
2139 return;
2140
2141 /* Do a first pass to check for locations with no assigned
2142 conditions or conditions that fail to parse to a valid agent expression
2143 bytecode. If any of these happen, then it's no use to send conditions
2144 to the target since this location will always trigger and generate a
2145 response back to GDB. */
2146 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2147 {
2148 loc = (*loc2p);
2149 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2150 {
2151 if (modified)
2152 {
2153 /* Re-parse the conditions since something changed. In that
2154 case we already freed the condition bytecodes (see
2155 force_breakpoint_reinsertion). We just
2156 need to parse the condition to bytecodes again. */
2157 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2158 loc->cond.get ());
2159 }
2160
2161 /* If we have a NULL bytecode expression, it means something
2162 went wrong or we have a null condition expression. */
2163 if (!loc->cond_bytecode)
2164 {
2165 null_condition_or_parse_error = 1;
2166 break;
2167 }
2168 }
2169 }
2170
2171 /* If any of these happened, it means we will have to evaluate the conditions
2172 for the location's address on gdb's side. It is no use keeping bytecodes
2173 for all the other duplicate locations, thus we free all of them here.
2174
2175 This is so we have a finer control over which locations' conditions are
2176 being evaluated by GDB or the remote stub. */
2177 if (null_condition_or_parse_error)
2178 {
2179 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2180 {
2181 loc = (*loc2p);
2182 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2183 {
2184 /* Only go as far as the first NULL bytecode is
2185 located. */
2186 if (!loc->cond_bytecode)
2187 return;
2188
2189 loc->cond_bytecode.reset ();
2190 }
2191 }
2192 }
2193
2194 /* No NULL conditions or failed bytecode generation. Build a condition list
2195 for this location's address. */
2196 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2197 {
2198 loc = (*loc2p);
2199 if (loc->cond
2200 && is_breakpoint (loc->owner)
2201 && loc->pspace->num == bl->pspace->num
2202 && loc->owner->enable_state == bp_enabled
2203 && loc->enabled)
2204 {
2205 /* Add the condition to the vector. This will be used later
2206 to send the conditions to the target. */
2207 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2208 }
2209 }
2210
2211 return;
2212 }
2213
2214 /* Parses a command described by string CMD into an agent expression
2215 bytecode suitable for evaluation by the bytecode interpreter.
2216 Return NULL if there was any error during parsing. */
2217
2218 static agent_expr_up
2219 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2220 {
2221 const char *cmdrest;
2222 const char *format_start, *format_end;
2223 struct gdbarch *gdbarch = get_current_arch ();
2224
2225 if (cmd == NULL)
2226 return NULL;
2227
2228 cmdrest = cmd;
2229
2230 if (*cmdrest == ',')
2231 ++cmdrest;
2232 cmdrest = skip_spaces (cmdrest);
2233
2234 if (*cmdrest++ != '"')
2235 error (_("No format string following the location"));
2236
2237 format_start = cmdrest;
2238
2239 format_pieces fpieces (&cmdrest);
2240
2241 format_end = cmdrest;
2242
2243 if (*cmdrest++ != '"')
2244 error (_("Bad format string, non-terminated '\"'."));
2245
2246 cmdrest = skip_spaces (cmdrest);
2247
2248 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2249 error (_("Invalid argument syntax"));
2250
2251 if (*cmdrest == ',')
2252 cmdrest++;
2253 cmdrest = skip_spaces (cmdrest);
2254
2255 /* For each argument, make an expression. */
2256
2257 std::vector<struct expression *> argvec;
2258 while (*cmdrest != '\0')
2259 {
2260 const char *cmd1;
2261
2262 cmd1 = cmdrest;
2263 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2264 argvec.push_back (expr.release ());
2265 cmdrest = cmd1;
2266 if (*cmdrest == ',')
2267 ++cmdrest;
2268 }
2269
2270 agent_expr_up aexpr;
2271
2272 /* We don't want to stop processing, so catch any errors
2273 that may show up. */
2274 TRY
2275 {
2276 aexpr = gen_printf (scope, gdbarch, 0, 0,
2277 format_start, format_end - format_start,
2278 argvec.size (), argvec.data ());
2279 }
2280 CATCH (ex, RETURN_MASK_ERROR)
2281 {
2282 /* If we got here, it means the command could not be parsed to a valid
2283 bytecode expression and thus can't be evaluated on the target's side.
2284 It's no use iterating through the other commands. */
2285 }
2286 END_CATCH
2287
2288 /* We have a valid agent expression, return it. */
2289 return aexpr;
2290 }
2291
2292 /* Based on location BL, create a list of breakpoint commands to be
2293 passed on to the target. If we have duplicated locations with
2294 different commands, we will add any such to the list. */
2295
2296 static void
2297 build_target_command_list (struct bp_location *bl)
2298 {
2299 struct bp_location **locp = NULL, **loc2p;
2300 int null_command_or_parse_error = 0;
2301 int modified = bl->needs_update;
2302 struct bp_location *loc;
2303
2304 /* Clear commands left over from a previous insert. */
2305 bl->target_info.tcommands.clear ();
2306
2307 if (!target_can_run_breakpoint_commands ())
2308 return;
2309
2310 /* For now, limit to agent-style dprintf breakpoints. */
2311 if (dprintf_style != dprintf_style_agent)
2312 return;
2313
2314 /* For now, if we have any duplicate location that isn't a dprintf,
2315 don't install the target-side commands, as that would make the
2316 breakpoint not be reported to the core, and we'd lose
2317 control. */
2318 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2319 {
2320 loc = (*loc2p);
2321 if (is_breakpoint (loc->owner)
2322 && loc->pspace->num == bl->pspace->num
2323 && loc->owner->type != bp_dprintf)
2324 return;
2325 }
2326
2327 /* Do a first pass to check for locations with no assigned
2328 conditions or conditions that fail to parse to a valid agent expression
2329 bytecode. If any of these happen, then it's no use to send conditions
2330 to the target since this location will always trigger and generate a
2331 response back to GDB. */
2332 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2333 {
2334 loc = (*loc2p);
2335 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2336 {
2337 if (modified)
2338 {
2339 /* Re-parse the commands since something changed. In that
2340 case we already freed the command bytecodes (see
2341 force_breakpoint_reinsertion). We just
2342 need to parse the command to bytecodes again. */
2343 loc->cmd_bytecode
2344 = parse_cmd_to_aexpr (bl->address,
2345 loc->owner->extra_string);
2346 }
2347
2348 /* If we have a NULL bytecode expression, it means something
2349 went wrong or we have a null command expression. */
2350 if (!loc->cmd_bytecode)
2351 {
2352 null_command_or_parse_error = 1;
2353 break;
2354 }
2355 }
2356 }
2357
2358 /* If anything failed, then we're not doing target-side commands,
2359 and so clean up. */
2360 if (null_command_or_parse_error)
2361 {
2362 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2363 {
2364 loc = (*loc2p);
2365 if (is_breakpoint (loc->owner)
2366 && loc->pspace->num == bl->pspace->num)
2367 {
2368 /* Only go as far as the first NULL bytecode is
2369 located. */
2370 if (loc->cmd_bytecode == NULL)
2371 return;
2372
2373 loc->cmd_bytecode.reset ();
2374 }
2375 }
2376 }
2377
2378 /* No NULL commands or failed bytecode generation. Build a command list
2379 for this location's address. */
2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2381 {
2382 loc = (*loc2p);
2383 if (loc->owner->extra_string
2384 && is_breakpoint (loc->owner)
2385 && loc->pspace->num == bl->pspace->num
2386 && loc->owner->enable_state == bp_enabled
2387 && loc->enabled)
2388 {
2389 /* Add the command to the vector. This will be used later
2390 to send the commands to the target. */
2391 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2392 }
2393 }
2394
2395 bl->target_info.persist = 0;
2396 /* Maybe flag this location as persistent. */
2397 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2398 bl->target_info.persist = 1;
2399 }
2400
2401 /* Return the kind of breakpoint on address *ADDR. Get the kind
2402 of breakpoint according to ADDR except single-step breakpoint.
2403 Get the kind of single-step breakpoint according to the current
2404 registers state. */
2405
2406 static int
2407 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2408 {
2409 if (bl->owner->type == bp_single_step)
2410 {
2411 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2412 struct regcache *regcache;
2413
2414 regcache = get_thread_regcache (thr);
2415
2416 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2417 regcache, addr);
2418 }
2419 else
2420 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2421 }
2422
2423 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2424 location. Any error messages are printed to TMP_ERROR_STREAM; and
2425 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2426 Returns 0 for success, 1 if the bp_location type is not supported or
2427 -1 for failure.
2428
2429 NOTE drow/2003-09-09: This routine could be broken down to an
2430 object-style method for each breakpoint or catchpoint type. */
2431 static int
2432 insert_bp_location (struct bp_location *bl,
2433 struct ui_file *tmp_error_stream,
2434 int *disabled_breaks,
2435 int *hw_breakpoint_error,
2436 int *hw_bp_error_explained_already)
2437 {
2438 gdb_exception bp_excpt = exception_none;
2439
2440 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2441 return 0;
2442
2443 /* Note we don't initialize bl->target_info, as that wipes out
2444 the breakpoint location's shadow_contents if the breakpoint
2445 is still inserted at that location. This in turn breaks
2446 target_read_memory which depends on these buffers when
2447 a memory read is requested at the breakpoint location:
2448 Once the target_info has been wiped, we fail to see that
2449 we have a breakpoint inserted at that address and thus
2450 read the breakpoint instead of returning the data saved in
2451 the breakpoint location's shadow contents. */
2452 bl->target_info.reqstd_address = bl->address;
2453 bl->target_info.placed_address_space = bl->pspace->aspace;
2454 bl->target_info.length = bl->length;
2455
2456 /* When working with target-side conditions, we must pass all the conditions
2457 for the same breakpoint address down to the target since GDB will not
2458 insert those locations. With a list of breakpoint conditions, the target
2459 can decide when to stop and notify GDB. */
2460
2461 if (is_breakpoint (bl->owner))
2462 {
2463 build_target_condition_list (bl);
2464 build_target_command_list (bl);
2465 /* Reset the modification marker. */
2466 bl->needs_update = 0;
2467 }
2468
2469 if (bl->loc_type == bp_loc_software_breakpoint
2470 || bl->loc_type == bp_loc_hardware_breakpoint)
2471 {
2472 if (bl->owner->type != bp_hardware_breakpoint)
2473 {
2474 /* If the explicitly specified breakpoint type
2475 is not hardware breakpoint, check the memory map to see
2476 if the breakpoint address is in read only memory or not.
2477
2478 Two important cases are:
2479 - location type is not hardware breakpoint, memory
2480 is readonly. We change the type of the location to
2481 hardware breakpoint.
2482 - location type is hardware breakpoint, memory is
2483 read-write. This means we've previously made the
2484 location hardware one, but then the memory map changed,
2485 so we undo.
2486
2487 When breakpoints are removed, remove_breakpoints will use
2488 location types we've just set here, the only possible
2489 problem is that memory map has changed during running
2490 program, but it's not going to work anyway with current
2491 gdb. */
2492 struct mem_region *mr
2493 = lookup_mem_region (bl->target_info.reqstd_address);
2494
2495 if (mr)
2496 {
2497 if (automatic_hardware_breakpoints)
2498 {
2499 enum bp_loc_type new_type;
2500
2501 if (mr->attrib.mode != MEM_RW)
2502 new_type = bp_loc_hardware_breakpoint;
2503 else
2504 new_type = bp_loc_software_breakpoint;
2505
2506 if (new_type != bl->loc_type)
2507 {
2508 static int said = 0;
2509
2510 bl->loc_type = new_type;
2511 if (!said)
2512 {
2513 fprintf_filtered (gdb_stdout,
2514 _("Note: automatically using "
2515 "hardware breakpoints for "
2516 "read-only addresses.\n"));
2517 said = 1;
2518 }
2519 }
2520 }
2521 else if (bl->loc_type == bp_loc_software_breakpoint
2522 && mr->attrib.mode != MEM_RW)
2523 {
2524 fprintf_unfiltered (tmp_error_stream,
2525 _("Cannot insert breakpoint %d.\n"
2526 "Cannot set software breakpoint "
2527 "at read-only address %s\n"),
2528 bl->owner->number,
2529 paddress (bl->gdbarch, bl->address));
2530 return 1;
2531 }
2532 }
2533 }
2534
2535 /* First check to see if we have to handle an overlay. */
2536 if (overlay_debugging == ovly_off
2537 || bl->section == NULL
2538 || !(section_is_overlay (bl->section)))
2539 {
2540 /* No overlay handling: just set the breakpoint. */
2541 TRY
2542 {
2543 int val;
2544
2545 val = bl->owner->ops->insert_location (bl);
2546 if (val)
2547 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2548 }
2549 CATCH (e, RETURN_MASK_ALL)
2550 {
2551 bp_excpt = e;
2552 }
2553 END_CATCH
2554 }
2555 else
2556 {
2557 /* This breakpoint is in an overlay section.
2558 Shall we set a breakpoint at the LMA? */
2559 if (!overlay_events_enabled)
2560 {
2561 /* Yes -- overlay event support is not active,
2562 so we must try to set a breakpoint at the LMA.
2563 This will not work for a hardware breakpoint. */
2564 if (bl->loc_type == bp_loc_hardware_breakpoint)
2565 warning (_("hardware breakpoint %d not supported in overlay!"),
2566 bl->owner->number);
2567 else
2568 {
2569 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2570 bl->section);
2571 /* Set a software (trap) breakpoint at the LMA. */
2572 bl->overlay_target_info = bl->target_info;
2573 bl->overlay_target_info.reqstd_address = addr;
2574
2575 /* No overlay handling: just set the breakpoint. */
2576 TRY
2577 {
2578 int val;
2579
2580 bl->overlay_target_info.kind
2581 = breakpoint_kind (bl, &addr);
2582 bl->overlay_target_info.placed_address = addr;
2583 val = target_insert_breakpoint (bl->gdbarch,
2584 &bl->overlay_target_info);
2585 if (val)
2586 bp_excpt
2587 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2588 }
2589 CATCH (e, RETURN_MASK_ALL)
2590 {
2591 bp_excpt = e;
2592 }
2593 END_CATCH
2594
2595 if (bp_excpt.reason != 0)
2596 fprintf_unfiltered (tmp_error_stream,
2597 "Overlay breakpoint %d "
2598 "failed: in ROM?\n",
2599 bl->owner->number);
2600 }
2601 }
2602 /* Shall we set a breakpoint at the VMA? */
2603 if (section_is_mapped (bl->section))
2604 {
2605 /* Yes. This overlay section is mapped into memory. */
2606 TRY
2607 {
2608 int val;
2609
2610 val = bl->owner->ops->insert_location (bl);
2611 if (val)
2612 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2613 }
2614 CATCH (e, RETURN_MASK_ALL)
2615 {
2616 bp_excpt = e;
2617 }
2618 END_CATCH
2619 }
2620 else
2621 {
2622 /* No. This breakpoint will not be inserted.
2623 No error, but do not mark the bp as 'inserted'. */
2624 return 0;
2625 }
2626 }
2627
2628 if (bp_excpt.reason != 0)
2629 {
2630 /* Can't set the breakpoint. */
2631
2632 /* In some cases, we might not be able to insert a
2633 breakpoint in a shared library that has already been
2634 removed, but we have not yet processed the shlib unload
2635 event. Unfortunately, some targets that implement
2636 breakpoint insertion themselves can't tell why the
2637 breakpoint insertion failed (e.g., the remote target
2638 doesn't define error codes), so we must treat generic
2639 errors as memory errors. */
2640 if (bp_excpt.reason == RETURN_ERROR
2641 && (bp_excpt.error == GENERIC_ERROR
2642 || bp_excpt.error == MEMORY_ERROR)
2643 && bl->loc_type == bp_loc_software_breakpoint
2644 && (solib_name_from_address (bl->pspace, bl->address)
2645 || shared_objfile_contains_address_p (bl->pspace,
2646 bl->address)))
2647 {
2648 /* See also: disable_breakpoints_in_shlibs. */
2649 bl->shlib_disabled = 1;
2650 gdb::observers::breakpoint_modified.notify (bl->owner);
2651 if (!*disabled_breaks)
2652 {
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Cannot insert breakpoint %d.\n",
2655 bl->owner->number);
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Temporarily disabling shared "
2658 "library breakpoints:\n");
2659 }
2660 *disabled_breaks = 1;
2661 fprintf_unfiltered (tmp_error_stream,
2662 "breakpoint #%d\n", bl->owner->number);
2663 return 0;
2664 }
2665 else
2666 {
2667 if (bl->loc_type == bp_loc_hardware_breakpoint)
2668 {
2669 *hw_breakpoint_error = 1;
2670 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2671 fprintf_unfiltered (tmp_error_stream,
2672 "Cannot insert hardware breakpoint %d%s",
2673 bl->owner->number,
2674 bp_excpt.message ? ":" : ".\n");
2675 if (bp_excpt.message != NULL)
2676 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2677 bp_excpt.message);
2678 }
2679 else
2680 {
2681 if (bp_excpt.message == NULL)
2682 {
2683 std::string message
2684 = memory_error_message (TARGET_XFER_E_IO,
2685 bl->gdbarch, bl->address);
2686
2687 fprintf_unfiltered (tmp_error_stream,
2688 "Cannot insert breakpoint %d.\n"
2689 "%s\n",
2690 bl->owner->number, message.c_str ());
2691 }
2692 else
2693 {
2694 fprintf_unfiltered (tmp_error_stream,
2695 "Cannot insert breakpoint %d: %s\n",
2696 bl->owner->number,
2697 bp_excpt.message);
2698 }
2699 }
2700 return 1;
2701
2702 }
2703 }
2704 else
2705 bl->inserted = 1;
2706
2707 return 0;
2708 }
2709
2710 else if (bl->loc_type == bp_loc_hardware_watchpoint
2711 /* NOTE drow/2003-09-08: This state only exists for removing
2712 watchpoints. It's not clear that it's necessary... */
2713 && bl->owner->disposition != disp_del_at_next_stop)
2714 {
2715 int val;
2716
2717 gdb_assert (bl->owner->ops != NULL
2718 && bl->owner->ops->insert_location != NULL);
2719
2720 val = bl->owner->ops->insert_location (bl);
2721
2722 /* If trying to set a read-watchpoint, and it turns out it's not
2723 supported, try emulating one with an access watchpoint. */
2724 if (val == 1 && bl->watchpoint_type == hw_read)
2725 {
2726 struct bp_location *loc, **loc_temp;
2727
2728 /* But don't try to insert it, if there's already another
2729 hw_access location that would be considered a duplicate
2730 of this one. */
2731 ALL_BP_LOCATIONS (loc, loc_temp)
2732 if (loc != bl
2733 && loc->watchpoint_type == hw_access
2734 && watchpoint_locations_match (bl, loc))
2735 {
2736 bl->duplicate = 1;
2737 bl->inserted = 1;
2738 bl->target_info = loc->target_info;
2739 bl->watchpoint_type = hw_access;
2740 val = 0;
2741 break;
2742 }
2743
2744 if (val == 1)
2745 {
2746 bl->watchpoint_type = hw_access;
2747 val = bl->owner->ops->insert_location (bl);
2748
2749 if (val)
2750 /* Back to the original value. */
2751 bl->watchpoint_type = hw_read;
2752 }
2753 }
2754
2755 bl->inserted = (val == 0);
2756 }
2757
2758 else if (bl->owner->type == bp_catchpoint)
2759 {
2760 int val;
2761
2762 gdb_assert (bl->owner->ops != NULL
2763 && bl->owner->ops->insert_location != NULL);
2764
2765 val = bl->owner->ops->insert_location (bl);
2766 if (val)
2767 {
2768 bl->owner->enable_state = bp_disabled;
2769
2770 if (val == 1)
2771 warning (_("\
2772 Error inserting catchpoint %d: Your system does not support this type\n\
2773 of catchpoint."), bl->owner->number);
2774 else
2775 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2776 }
2777
2778 bl->inserted = (val == 0);
2779
2780 /* We've already printed an error message if there was a problem
2781 inserting this catchpoint, and we've disabled the catchpoint,
2782 so just return success. */
2783 return 0;
2784 }
2785
2786 return 0;
2787 }
2788
2789 /* This function is called when program space PSPACE is about to be
2790 deleted. It takes care of updating breakpoints to not reference
2791 PSPACE anymore. */
2792
2793 void
2794 breakpoint_program_space_exit (struct program_space *pspace)
2795 {
2796 struct breakpoint *b, *b_temp;
2797 struct bp_location *loc, **loc_temp;
2798
2799 /* Remove any breakpoint that was set through this program space. */
2800 ALL_BREAKPOINTS_SAFE (b, b_temp)
2801 {
2802 if (b->pspace == pspace)
2803 delete_breakpoint (b);
2804 }
2805
2806 /* Breakpoints set through other program spaces could have locations
2807 bound to PSPACE as well. Remove those. */
2808 ALL_BP_LOCATIONS (loc, loc_temp)
2809 {
2810 struct bp_location *tmp;
2811
2812 if (loc->pspace == pspace)
2813 {
2814 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2815 if (loc->owner->loc == loc)
2816 loc->owner->loc = loc->next;
2817 else
2818 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2819 if (tmp->next == loc)
2820 {
2821 tmp->next = loc->next;
2822 break;
2823 }
2824 }
2825 }
2826
2827 /* Now update the global location list to permanently delete the
2828 removed locations above. */
2829 update_global_location_list (UGLL_DONT_INSERT);
2830 }
2831
2832 /* Make sure all breakpoints are inserted in inferior.
2833 Throws exception on any error.
2834 A breakpoint that is already inserted won't be inserted
2835 again, so calling this function twice is safe. */
2836 void
2837 insert_breakpoints (void)
2838 {
2839 struct breakpoint *bpt;
2840
2841 ALL_BREAKPOINTS (bpt)
2842 if (is_hardware_watchpoint (bpt))
2843 {
2844 struct watchpoint *w = (struct watchpoint *) bpt;
2845
2846 update_watchpoint (w, 0 /* don't reparse. */);
2847 }
2848
2849 /* Updating watchpoints creates new locations, so update the global
2850 location list. Explicitly tell ugll to insert locations and
2851 ignore breakpoints_always_inserted_mode. */
2852 update_global_location_list (UGLL_INSERT);
2853 }
2854
2855 /* Invoke CALLBACK for each of bp_location. */
2856
2857 void
2858 iterate_over_bp_locations (walk_bp_location_callback callback)
2859 {
2860 struct bp_location *loc, **loc_tmp;
2861
2862 ALL_BP_LOCATIONS (loc, loc_tmp)
2863 {
2864 callback (loc, NULL);
2865 }
2866 }
2867
2868 /* This is used when we need to synch breakpoint conditions between GDB and the
2869 target. It is the case with deleting and disabling of breakpoints when using
2870 always-inserted mode. */
2871
2872 static void
2873 update_inserted_breakpoint_locations (void)
2874 {
2875 struct bp_location *bl, **blp_tmp;
2876 int error_flag = 0;
2877 int val = 0;
2878 int disabled_breaks = 0;
2879 int hw_breakpoint_error = 0;
2880 int hw_bp_details_reported = 0;
2881
2882 string_file tmp_error_stream;
2883
2884 /* Explicitly mark the warning -- this will only be printed if
2885 there was an error. */
2886 tmp_error_stream.puts ("Warning:\n");
2887
2888 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2889
2890 ALL_BP_LOCATIONS (bl, blp_tmp)
2891 {
2892 /* We only want to update software breakpoints and hardware
2893 breakpoints. */
2894 if (!is_breakpoint (bl->owner))
2895 continue;
2896
2897 /* We only want to update locations that are already inserted
2898 and need updating. This is to avoid unwanted insertion during
2899 deletion of breakpoints. */
2900 if (!bl->inserted || !bl->needs_update)
2901 continue;
2902
2903 switch_to_program_space_and_thread (bl->pspace);
2904
2905 /* For targets that support global breakpoints, there's no need
2906 to select an inferior to insert breakpoint to. In fact, even
2907 if we aren't attached to any process yet, we should still
2908 insert breakpoints. */
2909 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2910 && inferior_ptid == null_ptid)
2911 continue;
2912
2913 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2914 &hw_breakpoint_error, &hw_bp_details_reported);
2915 if (val)
2916 error_flag = val;
2917 }
2918
2919 if (error_flag)
2920 {
2921 target_terminal::ours_for_output ();
2922 error_stream (tmp_error_stream);
2923 }
2924 }
2925
2926 /* Used when starting or continuing the program. */
2927
2928 static void
2929 insert_breakpoint_locations (void)
2930 {
2931 struct breakpoint *bpt;
2932 struct bp_location *bl, **blp_tmp;
2933 int error_flag = 0;
2934 int val = 0;
2935 int disabled_breaks = 0;
2936 int hw_breakpoint_error = 0;
2937 int hw_bp_error_explained_already = 0;
2938
2939 string_file tmp_error_stream;
2940
2941 /* Explicitly mark the warning -- this will only be printed if
2942 there was an error. */
2943 tmp_error_stream.puts ("Warning:\n");
2944
2945 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2946
2947 ALL_BP_LOCATIONS (bl, blp_tmp)
2948 {
2949 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2950 continue;
2951
2952 /* There is no point inserting thread-specific breakpoints if
2953 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2954 has BL->OWNER always non-NULL. */
2955 if (bl->owner->thread != -1
2956 && !valid_global_thread_id (bl->owner->thread))
2957 continue;
2958
2959 switch_to_program_space_and_thread (bl->pspace);
2960
2961 /* For targets that support global breakpoints, there's no need
2962 to select an inferior to insert breakpoint to. In fact, even
2963 if we aren't attached to any process yet, we should still
2964 insert breakpoints. */
2965 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2966 && inferior_ptid == null_ptid)
2967 continue;
2968
2969 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2970 &hw_breakpoint_error, &hw_bp_error_explained_already);
2971 if (val)
2972 error_flag = val;
2973 }
2974
2975 /* If we failed to insert all locations of a watchpoint, remove
2976 them, as half-inserted watchpoint is of limited use. */
2977 ALL_BREAKPOINTS (bpt)
2978 {
2979 int some_failed = 0;
2980 struct bp_location *loc;
2981
2982 if (!is_hardware_watchpoint (bpt))
2983 continue;
2984
2985 if (!breakpoint_enabled (bpt))
2986 continue;
2987
2988 if (bpt->disposition == disp_del_at_next_stop)
2989 continue;
2990
2991 for (loc = bpt->loc; loc; loc = loc->next)
2992 if (!loc->inserted && should_be_inserted (loc))
2993 {
2994 some_failed = 1;
2995 break;
2996 }
2997 if (some_failed)
2998 {
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (loc->inserted)
3001 remove_breakpoint (loc);
3002
3003 hw_breakpoint_error = 1;
3004 tmp_error_stream.printf ("Could not insert "
3005 "hardware watchpoint %d.\n",
3006 bpt->number);
3007 error_flag = -1;
3008 }
3009 }
3010
3011 if (error_flag)
3012 {
3013 /* If a hardware breakpoint or watchpoint was inserted, add a
3014 message about possibly exhausted resources. */
3015 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3016 {
3017 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3018 You may have requested too many hardware breakpoints/watchpoints.\n");
3019 }
3020 target_terminal::ours_for_output ();
3021 error_stream (tmp_error_stream);
3022 }
3023 }
3024
3025 /* Used when the program stops.
3026 Returns zero if successful, or non-zero if there was a problem
3027 removing a breakpoint location. */
3028
3029 int
3030 remove_breakpoints (void)
3031 {
3032 struct bp_location *bl, **blp_tmp;
3033 int val = 0;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (bl->inserted && !is_tracepoint (bl->owner))
3038 val |= remove_breakpoint (bl);
3039 }
3040 return val;
3041 }
3042
3043 /* When a thread exits, remove breakpoints that are related to
3044 that thread. */
3045
3046 static void
3047 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3048 {
3049 struct breakpoint *b, *b_tmp;
3050
3051 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3052 {
3053 if (b->thread == tp->global_num && user_breakpoint_p (b))
3054 {
3055 b->disposition = disp_del_at_next_stop;
3056
3057 printf_filtered (_("\
3058 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3059 b->number, print_thread_id (tp));
3060
3061 /* Hide it from the user. */
3062 b->number = 0;
3063 }
3064 }
3065 }
3066
3067 /* Remove breakpoints of inferior INF. */
3068
3069 int
3070 remove_breakpoints_inf (inferior *inf)
3071 {
3072 struct bp_location *bl, **blp_tmp;
3073 int val;
3074
3075 ALL_BP_LOCATIONS (bl, blp_tmp)
3076 {
3077 if (bl->pspace != inf->pspace)
3078 continue;
3079
3080 if (bl->inserted && !bl->target_info.persist)
3081 {
3082 val = remove_breakpoint (bl);
3083 if (val != 0)
3084 return val;
3085 }
3086 }
3087 return 0;
3088 }
3089
3090 static int internal_breakpoint_number = -1;
3091
3092 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3093 If INTERNAL is non-zero, the breakpoint number will be populated
3094 from internal_breakpoint_number and that variable decremented.
3095 Otherwise the breakpoint number will be populated from
3096 breakpoint_count and that value incremented. Internal breakpoints
3097 do not set the internal var bpnum. */
3098 static void
3099 set_breakpoint_number (int internal, struct breakpoint *b)
3100 {
3101 if (internal)
3102 b->number = internal_breakpoint_number--;
3103 else
3104 {
3105 set_breakpoint_count (breakpoint_count + 1);
3106 b->number = breakpoint_count;
3107 }
3108 }
3109
3110 static struct breakpoint *
3111 create_internal_breakpoint (struct gdbarch *gdbarch,
3112 CORE_ADDR address, enum bptype type,
3113 const struct breakpoint_ops *ops)
3114 {
3115 symtab_and_line sal;
3116 sal.pc = address;
3117 sal.section = find_pc_overlay (sal.pc);
3118 sal.pspace = current_program_space;
3119
3120 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3121 b->number = internal_breakpoint_number--;
3122 b->disposition = disp_donttouch;
3123
3124 return b;
3125 }
3126
3127 static const char *const longjmp_names[] =
3128 {
3129 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3130 };
3131 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3132
3133 /* Per-objfile data private to breakpoint.c. */
3134 struct breakpoint_objfile_data
3135 {
3136 /* Minimal symbol for "_ovly_debug_event" (if any). */
3137 struct bound_minimal_symbol overlay_msym {};
3138
3139 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3140 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3141
3142 /* True if we have looked for longjmp probes. */
3143 int longjmp_searched = 0;
3144
3145 /* SystemTap probe points for longjmp (if any). These are non-owning
3146 references. */
3147 std::vector<probe *> longjmp_probes;
3148
3149 /* Minimal symbol for "std::terminate()" (if any). */
3150 struct bound_minimal_symbol terminate_msym {};
3151
3152 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3153 struct bound_minimal_symbol exception_msym {};
3154
3155 /* True if we have looked for exception probes. */
3156 int exception_searched = 0;
3157
3158 /* SystemTap probe points for unwinding (if any). These are non-owning
3159 references. */
3160 std::vector<probe *> exception_probes;
3161 };
3162
3163 static const struct objfile_data *breakpoint_objfile_key;
3164
3165 /* Minimal symbol not found sentinel. */
3166 static struct minimal_symbol msym_not_found;
3167
3168 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3169
3170 static int
3171 msym_not_found_p (const struct minimal_symbol *msym)
3172 {
3173 return msym == &msym_not_found;
3174 }
3175
3176 /* Return per-objfile data needed by breakpoint.c.
3177 Allocate the data if necessary. */
3178
3179 static struct breakpoint_objfile_data *
3180 get_breakpoint_objfile_data (struct objfile *objfile)
3181 {
3182 struct breakpoint_objfile_data *bp_objfile_data;
3183
3184 bp_objfile_data = ((struct breakpoint_objfile_data *)
3185 objfile_data (objfile, breakpoint_objfile_key));
3186 if (bp_objfile_data == NULL)
3187 {
3188 bp_objfile_data = new breakpoint_objfile_data ();
3189 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3190 }
3191 return bp_objfile_data;
3192 }
3193
3194 static void
3195 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3196 {
3197 struct breakpoint_objfile_data *bp_objfile_data
3198 = (struct breakpoint_objfile_data *) data;
3199
3200 delete bp_objfile_data;
3201 }
3202
3203 static void
3204 create_overlay_event_breakpoint (void)
3205 {
3206 const char *const func_name = "_ovly_debug_event";
3207
3208 for (objfile *objfile : current_program_space->objfiles ())
3209 {
3210 struct breakpoint *b;
3211 struct breakpoint_objfile_data *bp_objfile_data;
3212 CORE_ADDR addr;
3213 struct explicit_location explicit_loc;
3214
3215 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3216
3217 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3218 continue;
3219
3220 if (bp_objfile_data->overlay_msym.minsym == NULL)
3221 {
3222 struct bound_minimal_symbol m;
3223
3224 m = lookup_minimal_symbol_text (func_name, objfile);
3225 if (m.minsym == NULL)
3226 {
3227 /* Avoid future lookups in this objfile. */
3228 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3229 continue;
3230 }
3231 bp_objfile_data->overlay_msym = m;
3232 }
3233
3234 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3235 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3236 bp_overlay_event,
3237 &internal_breakpoint_ops);
3238 initialize_explicit_location (&explicit_loc);
3239 explicit_loc.function_name = ASTRDUP (func_name);
3240 b->location = new_explicit_location (&explicit_loc);
3241
3242 if (overlay_debugging == ovly_auto)
3243 {
3244 b->enable_state = bp_enabled;
3245 overlay_events_enabled = 1;
3246 }
3247 else
3248 {
3249 b->enable_state = bp_disabled;
3250 overlay_events_enabled = 0;
3251 }
3252 }
3253 }
3254
3255 static void
3256 create_longjmp_master_breakpoint (void)
3257 {
3258 struct program_space *pspace;
3259
3260 scoped_restore_current_program_space restore_pspace;
3261
3262 ALL_PSPACES (pspace)
3263 {
3264 set_current_program_space (pspace);
3265
3266 for (objfile *objfile : current_program_space->objfiles ())
3267 {
3268 int i;
3269 struct gdbarch *gdbarch;
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 gdbarch = get_objfile_arch (objfile);
3273
3274 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3275
3276 if (!bp_objfile_data->longjmp_searched)
3277 {
3278 std::vector<probe *> ret
3279 = find_probes_in_objfile (objfile, "libc", "longjmp");
3280
3281 if (!ret.empty ())
3282 {
3283 /* We are only interested in checking one element. */
3284 probe *p = ret[0];
3285
3286 if (!p->can_evaluate_arguments ())
3287 {
3288 /* We cannot use the probe interface here, because it does
3289 not know how to evaluate arguments. */
3290 ret.clear ();
3291 }
3292 }
3293 bp_objfile_data->longjmp_probes = ret;
3294 bp_objfile_data->longjmp_searched = 1;
3295 }
3296
3297 if (!bp_objfile_data->longjmp_probes.empty ())
3298 {
3299 for (probe *p : bp_objfile_data->longjmp_probes)
3300 {
3301 struct breakpoint *b;
3302
3303 b = create_internal_breakpoint (gdbarch,
3304 p->get_relocated_address (objfile),
3305 bp_longjmp_master,
3306 &internal_breakpoint_ops);
3307 b->location = new_probe_location ("-probe-stap libc:longjmp");
3308 b->enable_state = bp_disabled;
3309 }
3310
3311 continue;
3312 }
3313
3314 if (!gdbarch_get_longjmp_target_p (gdbarch))
3315 continue;
3316
3317 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3318 {
3319 struct breakpoint *b;
3320 const char *func_name;
3321 CORE_ADDR addr;
3322 struct explicit_location explicit_loc;
3323
3324 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3325 continue;
3326
3327 func_name = longjmp_names[i];
3328 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3329 {
3330 struct bound_minimal_symbol m;
3331
3332 m = lookup_minimal_symbol_text (func_name, objfile);
3333 if (m.minsym == NULL)
3334 {
3335 /* Prevent future lookups in this objfile. */
3336 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3337 continue;
3338 }
3339 bp_objfile_data->longjmp_msym[i] = m;
3340 }
3341
3342 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3343 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3344 &internal_breakpoint_ops);
3345 initialize_explicit_location (&explicit_loc);
3346 explicit_loc.function_name = ASTRDUP (func_name);
3347 b->location = new_explicit_location (&explicit_loc);
3348 b->enable_state = bp_disabled;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* Create a master std::terminate breakpoint. */
3355 static void
3356 create_std_terminate_master_breakpoint (void)
3357 {
3358 struct program_space *pspace;
3359 const char *const func_name = "std::terminate()";
3360
3361 scoped_restore_current_program_space restore_pspace;
3362
3363 ALL_PSPACES (pspace)
3364 {
3365 CORE_ADDR addr;
3366
3367 set_current_program_space (pspace);
3368
3369 for (objfile *objfile : current_program_space->objfiles ())
3370 {
3371 struct breakpoint *b;
3372 struct breakpoint_objfile_data *bp_objfile_data;
3373 struct explicit_location explicit_loc;
3374
3375 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3376
3377 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3378 continue;
3379
3380 if (bp_objfile_data->terminate_msym.minsym == NULL)
3381 {
3382 struct bound_minimal_symbol m;
3383
3384 m = lookup_minimal_symbol (func_name, NULL, objfile);
3385 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3386 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3387 {
3388 /* Prevent future lookups in this objfile. */
3389 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3390 continue;
3391 }
3392 bp_objfile_data->terminate_msym = m;
3393 }
3394
3395 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3396 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3397 bp_std_terminate_master,
3398 &internal_breakpoint_ops);
3399 initialize_explicit_location (&explicit_loc);
3400 explicit_loc.function_name = ASTRDUP (func_name);
3401 b->location = new_explicit_location (&explicit_loc);
3402 b->enable_state = bp_disabled;
3403 }
3404 }
3405 }
3406
3407 /* Install a master breakpoint on the unwinder's debug hook. */
3408
3409 static void
3410 create_exception_master_breakpoint (void)
3411 {
3412 const char *const func_name = "_Unwind_DebugHook";
3413
3414 for (objfile *objfile : current_program_space->objfiles ())
3415 {
3416 struct breakpoint *b;
3417 struct gdbarch *gdbarch;
3418 struct breakpoint_objfile_data *bp_objfile_data;
3419 CORE_ADDR addr;
3420 struct explicit_location explicit_loc;
3421
3422 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3423
3424 /* We prefer the SystemTap probe point if it exists. */
3425 if (!bp_objfile_data->exception_searched)
3426 {
3427 std::vector<probe *> ret
3428 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3429
3430 if (!ret.empty ())
3431 {
3432 /* We are only interested in checking one element. */
3433 probe *p = ret[0];
3434
3435 if (!p->can_evaluate_arguments ())
3436 {
3437 /* We cannot use the probe interface here, because it does
3438 not know how to evaluate arguments. */
3439 ret.clear ();
3440 }
3441 }
3442 bp_objfile_data->exception_probes = ret;
3443 bp_objfile_data->exception_searched = 1;
3444 }
3445
3446 if (!bp_objfile_data->exception_probes.empty ())
3447 {
3448 gdbarch = get_objfile_arch (objfile);
3449
3450 for (probe *p : bp_objfile_data->exception_probes)
3451 {
3452 b = create_internal_breakpoint (gdbarch,
3453 p->get_relocated_address (objfile),
3454 bp_exception_master,
3455 &internal_breakpoint_ops);
3456 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3457 b->enable_state = bp_disabled;
3458 }
3459
3460 continue;
3461 }
3462
3463 /* Otherwise, try the hook function. */
3464
3465 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3466 continue;
3467
3468 gdbarch = get_objfile_arch (objfile);
3469
3470 if (bp_objfile_data->exception_msym.minsym == NULL)
3471 {
3472 struct bound_minimal_symbol debug_hook;
3473
3474 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3475 if (debug_hook.minsym == NULL)
3476 {
3477 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3478 continue;
3479 }
3480
3481 bp_objfile_data->exception_msym = debug_hook;
3482 }
3483
3484 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3485 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3486 current_top_target ());
3487 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3488 &internal_breakpoint_ops);
3489 initialize_explicit_location (&explicit_loc);
3490 explicit_loc.function_name = ASTRDUP (func_name);
3491 b->location = new_explicit_location (&explicit_loc);
3492 b->enable_state = bp_disabled;
3493 }
3494 }
3495
3496 /* Does B have a location spec? */
3497
3498 static int
3499 breakpoint_event_location_empty_p (const struct breakpoint *b)
3500 {
3501 return b->location != NULL && event_location_empty_p (b->location.get ());
3502 }
3503
3504 void
3505 update_breakpoints_after_exec (void)
3506 {
3507 struct breakpoint *b, *b_tmp;
3508 struct bp_location *bploc, **bplocp_tmp;
3509
3510 /* We're about to delete breakpoints from GDB's lists. If the
3511 INSERTED flag is true, GDB will try to lift the breakpoints by
3512 writing the breakpoints' "shadow contents" back into memory. The
3513 "shadow contents" are NOT valid after an exec, so GDB should not
3514 do that. Instead, the target is responsible from marking
3515 breakpoints out as soon as it detects an exec. We don't do that
3516 here instead, because there may be other attempts to delete
3517 breakpoints after detecting an exec and before reaching here. */
3518 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3519 if (bploc->pspace == current_program_space)
3520 gdb_assert (!bploc->inserted);
3521
3522 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3523 {
3524 if (b->pspace != current_program_space)
3525 continue;
3526
3527 /* Solib breakpoints must be explicitly reset after an exec(). */
3528 if (b->type == bp_shlib_event)
3529 {
3530 delete_breakpoint (b);
3531 continue;
3532 }
3533
3534 /* JIT breakpoints must be explicitly reset after an exec(). */
3535 if (b->type == bp_jit_event)
3536 {
3537 delete_breakpoint (b);
3538 continue;
3539 }
3540
3541 /* Thread event breakpoints must be set anew after an exec(),
3542 as must overlay event and longjmp master breakpoints. */
3543 if (b->type == bp_thread_event || b->type == bp_overlay_event
3544 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3545 || b->type == bp_exception_master)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Step-resume breakpoints are meaningless after an exec(). */
3552 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3553 {
3554 delete_breakpoint (b);
3555 continue;
3556 }
3557
3558 /* Just like single-step breakpoints. */
3559 if (b->type == bp_single_step)
3560 {
3561 delete_breakpoint (b);
3562 continue;
3563 }
3564
3565 /* Longjmp and longjmp-resume breakpoints are also meaningless
3566 after an exec. */
3567 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3568 || b->type == bp_longjmp_call_dummy
3569 || b->type == bp_exception || b->type == bp_exception_resume)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 if (b->type == bp_catchpoint)
3576 {
3577 /* For now, none of the bp_catchpoint breakpoints need to
3578 do anything at this point. In the future, if some of
3579 the catchpoints need to something, we will need to add
3580 a new method, and call this method from here. */
3581 continue;
3582 }
3583
3584 /* bp_finish is a special case. The only way we ought to be able
3585 to see one of these when an exec() has happened, is if the user
3586 caught a vfork, and then said "finish". Ordinarily a finish just
3587 carries them to the call-site of the current callee, by setting
3588 a temporary bp there and resuming. But in this case, the finish
3589 will carry them entirely through the vfork & exec.
3590
3591 We don't want to allow a bp_finish to remain inserted now. But
3592 we can't safely delete it, 'cause finish_command has a handle to
3593 the bp on a bpstat, and will later want to delete it. There's a
3594 chance (and I've seen it happen) that if we delete the bp_finish
3595 here, that its storage will get reused by the time finish_command
3596 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3597 We really must allow finish_command to delete a bp_finish.
3598
3599 In the absence of a general solution for the "how do we know
3600 it's safe to delete something others may have handles to?"
3601 problem, what we'll do here is just uninsert the bp_finish, and
3602 let finish_command delete it.
3603
3604 (We know the bp_finish is "doomed" in the sense that it's
3605 momentary, and will be deleted as soon as finish_command sees
3606 the inferior stopped. So it doesn't matter that the bp's
3607 address is probably bogus in the new a.out, unlike e.g., the
3608 solib breakpoints.) */
3609
3610 if (b->type == bp_finish)
3611 {
3612 continue;
3613 }
3614
3615 /* Without a symbolic address, we have little hope of the
3616 pre-exec() address meaning the same thing in the post-exec()
3617 a.out. */
3618 if (breakpoint_event_location_empty_p (b))
3619 {
3620 delete_breakpoint (b);
3621 continue;
3622 }
3623 }
3624 }
3625
3626 int
3627 detach_breakpoints (ptid_t ptid)
3628 {
3629 struct bp_location *bl, **blp_tmp;
3630 int val = 0;
3631 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3632 struct inferior *inf = current_inferior ();
3633
3634 if (ptid.pid () == inferior_ptid.pid ())
3635 error (_("Cannot detach breakpoints of inferior_ptid"));
3636
3637 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3638 inferior_ptid = ptid;
3639 ALL_BP_LOCATIONS (bl, blp_tmp)
3640 {
3641 if (bl->pspace != inf->pspace)
3642 continue;
3643
3644 /* This function must physically remove breakpoints locations
3645 from the specified ptid, without modifying the breakpoint
3646 package's state. Locations of type bp_loc_other are only
3647 maintained at GDB side. So, there is no need to remove
3648 these bp_loc_other locations. Moreover, removing these
3649 would modify the breakpoint package's state. */
3650 if (bl->loc_type == bp_loc_other)
3651 continue;
3652
3653 if (bl->inserted)
3654 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3655 }
3656
3657 return val;
3658 }
3659
3660 /* Remove the breakpoint location BL from the current address space.
3661 Note that this is used to detach breakpoints from a child fork.
3662 When we get here, the child isn't in the inferior list, and neither
3663 do we have objects to represent its address space --- we should
3664 *not* look at bl->pspace->aspace here. */
3665
3666 static int
3667 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3668 {
3669 int val;
3670
3671 /* BL is never in moribund_locations by our callers. */
3672 gdb_assert (bl->owner != NULL);
3673
3674 /* The type of none suggests that owner is actually deleted.
3675 This should not ever happen. */
3676 gdb_assert (bl->owner->type != bp_none);
3677
3678 if (bl->loc_type == bp_loc_software_breakpoint
3679 || bl->loc_type == bp_loc_hardware_breakpoint)
3680 {
3681 /* "Normal" instruction breakpoint: either the standard
3682 trap-instruction bp (bp_breakpoint), or a
3683 bp_hardware_breakpoint. */
3684
3685 /* First check to see if we have to handle an overlay. */
3686 if (overlay_debugging == ovly_off
3687 || bl->section == NULL
3688 || !(section_is_overlay (bl->section)))
3689 {
3690 /* No overlay handling: just remove the breakpoint. */
3691
3692 /* If we're trying to uninsert a memory breakpoint that we
3693 know is set in a dynamic object that is marked
3694 shlib_disabled, then either the dynamic object was
3695 removed with "remove-symbol-file" or with
3696 "nosharedlibrary". In the former case, we don't know
3697 whether another dynamic object might have loaded over the
3698 breakpoint's address -- the user might well let us know
3699 about it next with add-symbol-file (the whole point of
3700 add-symbol-file is letting the user manually maintain a
3701 list of dynamically loaded objects). If we have the
3702 breakpoint's shadow memory, that is, this is a software
3703 breakpoint managed by GDB, check whether the breakpoint
3704 is still inserted in memory, to avoid overwriting wrong
3705 code with stale saved shadow contents. Note that HW
3706 breakpoints don't have shadow memory, as they're
3707 implemented using a mechanism that is not dependent on
3708 being able to modify the target's memory, and as such
3709 they should always be removed. */
3710 if (bl->shlib_disabled
3711 && bl->target_info.shadow_len != 0
3712 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3713 val = 0;
3714 else
3715 val = bl->owner->ops->remove_location (bl, reason);
3716 }
3717 else
3718 {
3719 /* This breakpoint is in an overlay section.
3720 Did we set a breakpoint at the LMA? */
3721 if (!overlay_events_enabled)
3722 {
3723 /* Yes -- overlay event support is not active, so we
3724 should have set a breakpoint at the LMA. Remove it.
3725 */
3726 /* Ignore any failures: if the LMA is in ROM, we will
3727 have already warned when we failed to insert it. */
3728 if (bl->loc_type == bp_loc_hardware_breakpoint)
3729 target_remove_hw_breakpoint (bl->gdbarch,
3730 &bl->overlay_target_info);
3731 else
3732 target_remove_breakpoint (bl->gdbarch,
3733 &bl->overlay_target_info,
3734 reason);
3735 }
3736 /* Did we set a breakpoint at the VMA?
3737 If so, we will have marked the breakpoint 'inserted'. */
3738 if (bl->inserted)
3739 {
3740 /* Yes -- remove it. Previously we did not bother to
3741 remove the breakpoint if the section had been
3742 unmapped, but let's not rely on that being safe. We
3743 don't know what the overlay manager might do. */
3744
3745 /* However, we should remove *software* breakpoints only
3746 if the section is still mapped, or else we overwrite
3747 wrong code with the saved shadow contents. */
3748 if (bl->loc_type == bp_loc_hardware_breakpoint
3749 || section_is_mapped (bl->section))
3750 val = bl->owner->ops->remove_location (bl, reason);
3751 else
3752 val = 0;
3753 }
3754 else
3755 {
3756 /* No -- not inserted, so no need to remove. No error. */
3757 val = 0;
3758 }
3759 }
3760
3761 /* In some cases, we might not be able to remove a breakpoint in
3762 a shared library that has already been removed, but we have
3763 not yet processed the shlib unload event. Similarly for an
3764 unloaded add-symbol-file object - the user might not yet have
3765 had the chance to remove-symbol-file it. shlib_disabled will
3766 be set if the library/object has already been removed, but
3767 the breakpoint hasn't been uninserted yet, e.g., after
3768 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3769 always-inserted mode. */
3770 if (val
3771 && (bl->loc_type == bp_loc_software_breakpoint
3772 && (bl->shlib_disabled
3773 || solib_name_from_address (bl->pspace, bl->address)
3774 || shared_objfile_contains_address_p (bl->pspace,
3775 bl->address))))
3776 val = 0;
3777
3778 if (val)
3779 return val;
3780 bl->inserted = (reason == DETACH_BREAKPOINT);
3781 }
3782 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3783 {
3784 gdb_assert (bl->owner->ops != NULL
3785 && bl->owner->ops->remove_location != NULL);
3786
3787 bl->inserted = (reason == DETACH_BREAKPOINT);
3788 bl->owner->ops->remove_location (bl, reason);
3789
3790 /* Failure to remove any of the hardware watchpoints comes here. */
3791 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3792 warning (_("Could not remove hardware watchpoint %d."),
3793 bl->owner->number);
3794 }
3795 else if (bl->owner->type == bp_catchpoint
3796 && breakpoint_enabled (bl->owner)
3797 && !bl->duplicate)
3798 {
3799 gdb_assert (bl->owner->ops != NULL
3800 && bl->owner->ops->remove_location != NULL);
3801
3802 val = bl->owner->ops->remove_location (bl, reason);
3803 if (val)
3804 return val;
3805
3806 bl->inserted = (reason == DETACH_BREAKPOINT);
3807 }
3808
3809 return 0;
3810 }
3811
3812 static int
3813 remove_breakpoint (struct bp_location *bl)
3814 {
3815 /* BL is never in moribund_locations by our callers. */
3816 gdb_assert (bl->owner != NULL);
3817
3818 /* The type of none suggests that owner is actually deleted.
3819 This should not ever happen. */
3820 gdb_assert (bl->owner->type != bp_none);
3821
3822 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3823
3824 switch_to_program_space_and_thread (bl->pspace);
3825
3826 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3827 }
3828
3829 /* Clear the "inserted" flag in all breakpoints. */
3830
3831 void
3832 mark_breakpoints_out (void)
3833 {
3834 struct bp_location *bl, **blp_tmp;
3835
3836 ALL_BP_LOCATIONS (bl, blp_tmp)
3837 if (bl->pspace == current_program_space)
3838 bl->inserted = 0;
3839 }
3840
3841 /* Clear the "inserted" flag in all breakpoints and delete any
3842 breakpoints which should go away between runs of the program.
3843
3844 Plus other such housekeeping that has to be done for breakpoints
3845 between runs.
3846
3847 Note: this function gets called at the end of a run (by
3848 generic_mourn_inferior) and when a run begins (by
3849 init_wait_for_inferior). */
3850
3851
3852
3853 void
3854 breakpoint_init_inferior (enum inf_context context)
3855 {
3856 struct breakpoint *b, *b_tmp;
3857 struct program_space *pspace = current_program_space;
3858
3859 /* If breakpoint locations are shared across processes, then there's
3860 nothing to do. */
3861 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3862 return;
3863
3864 mark_breakpoints_out ();
3865
3866 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3867 {
3868 if (b->loc && b->loc->pspace != pspace)
3869 continue;
3870
3871 switch (b->type)
3872 {
3873 case bp_call_dummy:
3874 case bp_longjmp_call_dummy:
3875
3876 /* If the call dummy breakpoint is at the entry point it will
3877 cause problems when the inferior is rerun, so we better get
3878 rid of it. */
3879
3880 case bp_watchpoint_scope:
3881
3882 /* Also get rid of scope breakpoints. */
3883
3884 case bp_shlib_event:
3885
3886 /* Also remove solib event breakpoints. Their addresses may
3887 have changed since the last time we ran the program.
3888 Actually we may now be debugging against different target;
3889 and so the solib backend that installed this breakpoint may
3890 not be used in by the target. E.g.,
3891
3892 (gdb) file prog-linux
3893 (gdb) run # native linux target
3894 ...
3895 (gdb) kill
3896 (gdb) file prog-win.exe
3897 (gdb) tar rem :9999 # remote Windows gdbserver.
3898 */
3899
3900 case bp_step_resume:
3901
3902 /* Also remove step-resume breakpoints. */
3903
3904 case bp_single_step:
3905
3906 /* Also remove single-step breakpoints. */
3907
3908 delete_breakpoint (b);
3909 break;
3910
3911 case bp_watchpoint:
3912 case bp_hardware_watchpoint:
3913 case bp_read_watchpoint:
3914 case bp_access_watchpoint:
3915 {
3916 struct watchpoint *w = (struct watchpoint *) b;
3917
3918 /* Likewise for watchpoints on local expressions. */
3919 if (w->exp_valid_block != NULL)
3920 delete_breakpoint (b);
3921 else
3922 {
3923 /* Get rid of existing locations, which are no longer
3924 valid. New ones will be created in
3925 update_watchpoint, when the inferior is restarted.
3926 The next update_global_location_list call will
3927 garbage collect them. */
3928 b->loc = NULL;
3929
3930 if (context == inf_starting)
3931 {
3932 /* Reset val field to force reread of starting value in
3933 insert_breakpoints. */
3934 w->val.reset (nullptr);
3935 w->val_valid = 0;
3936 }
3937 }
3938 }
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3945 /* Get rid of the moribund locations. */
3946 for (bp_location *bl : moribund_locations)
3947 decref_bp_location (&bl);
3948 moribund_locations.clear ();
3949 }
3950
3951 /* These functions concern about actual breakpoints inserted in the
3952 target --- to e.g. check if we need to do decr_pc adjustment or if
3953 we need to hop over the bkpt --- so we check for address space
3954 match, not program space. */
3955
3956 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3957 exists at PC. It returns ordinary_breakpoint_here if it's an
3958 ordinary breakpoint, or permanent_breakpoint_here if it's a
3959 permanent breakpoint.
3960 - When continuing from a location with an ordinary breakpoint, we
3961 actually single step once before calling insert_breakpoints.
3962 - When continuing from a location with a permanent breakpoint, we
3963 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3964 the target, to advance the PC past the breakpoint. */
3965
3966 enum breakpoint_here
3967 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3968 {
3969 struct bp_location *bl, **blp_tmp;
3970 int any_breakpoint_here = 0;
3971
3972 ALL_BP_LOCATIONS (bl, blp_tmp)
3973 {
3974 if (bl->loc_type != bp_loc_software_breakpoint
3975 && bl->loc_type != bp_loc_hardware_breakpoint)
3976 continue;
3977
3978 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3979 if ((breakpoint_enabled (bl->owner)
3980 || bl->permanent)
3981 && breakpoint_location_address_match (bl, aspace, pc))
3982 {
3983 if (overlay_debugging
3984 && section_is_overlay (bl->section)
3985 && !section_is_mapped (bl->section))
3986 continue; /* unmapped overlay -- can't be a match */
3987 else if (bl->permanent)
3988 return permanent_breakpoint_here;
3989 else
3990 any_breakpoint_here = 1;
3991 }
3992 }
3993
3994 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3995 }
3996
3997 /* See breakpoint.h. */
3998
3999 int
4000 breakpoint_in_range_p (const address_space *aspace,
4001 CORE_ADDR addr, ULONGEST len)
4002 {
4003 struct bp_location *bl, **blp_tmp;
4004
4005 ALL_BP_LOCATIONS (bl, blp_tmp)
4006 {
4007 if (bl->loc_type != bp_loc_software_breakpoint
4008 && bl->loc_type != bp_loc_hardware_breakpoint)
4009 continue;
4010
4011 if ((breakpoint_enabled (bl->owner)
4012 || bl->permanent)
4013 && breakpoint_location_address_range_overlap (bl, aspace,
4014 addr, len))
4015 {
4016 if (overlay_debugging
4017 && section_is_overlay (bl->section)
4018 && !section_is_mapped (bl->section))
4019 {
4020 /* Unmapped overlay -- can't be a match. */
4021 continue;
4022 }
4023
4024 return 1;
4025 }
4026 }
4027
4028 return 0;
4029 }
4030
4031 /* Return true if there's a moribund breakpoint at PC. */
4032
4033 int
4034 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4035 {
4036 for (bp_location *loc : moribund_locations)
4037 if (breakpoint_location_address_match (loc, aspace, pc))
4038 return 1;
4039
4040 return 0;
4041 }
4042
4043 /* Returns non-zero iff BL is inserted at PC, in address space
4044 ASPACE. */
4045
4046 static int
4047 bp_location_inserted_here_p (struct bp_location *bl,
4048 const address_space *aspace, CORE_ADDR pc)
4049 {
4050 if (bl->inserted
4051 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4052 aspace, pc))
4053 {
4054 if (overlay_debugging
4055 && section_is_overlay (bl->section)
4056 && !section_is_mapped (bl->section))
4057 return 0; /* unmapped overlay -- can't be a match */
4058 else
4059 return 1;
4060 }
4061 return 0;
4062 }
4063
4064 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4065
4066 int
4067 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4068 {
4069 struct bp_location **blp, **blp_tmp = NULL;
4070
4071 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4072 {
4073 struct bp_location *bl = *blp;
4074
4075 if (bl->loc_type != bp_loc_software_breakpoint
4076 && bl->loc_type != bp_loc_hardware_breakpoint)
4077 continue;
4078
4079 if (bp_location_inserted_here_p (bl, aspace, pc))
4080 return 1;
4081 }
4082 return 0;
4083 }
4084
4085 /* This function returns non-zero iff there is a software breakpoint
4086 inserted at PC. */
4087
4088 int
4089 software_breakpoint_inserted_here_p (const address_space *aspace,
4090 CORE_ADDR pc)
4091 {
4092 struct bp_location **blp, **blp_tmp = NULL;
4093
4094 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4095 {
4096 struct bp_location *bl = *blp;
4097
4098 if (bl->loc_type != bp_loc_software_breakpoint)
4099 continue;
4100
4101 if (bp_location_inserted_here_p (bl, aspace, pc))
4102 return 1;
4103 }
4104
4105 return 0;
4106 }
4107
4108 /* See breakpoint.h. */
4109
4110 int
4111 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4112 CORE_ADDR pc)
4113 {
4114 struct bp_location **blp, **blp_tmp = NULL;
4115
4116 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4117 {
4118 struct bp_location *bl = *blp;
4119
4120 if (bl->loc_type != bp_loc_hardware_breakpoint)
4121 continue;
4122
4123 if (bp_location_inserted_here_p (bl, aspace, pc))
4124 return 1;
4125 }
4126
4127 return 0;
4128 }
4129
4130 int
4131 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4132 CORE_ADDR addr, ULONGEST len)
4133 {
4134 struct breakpoint *bpt;
4135
4136 ALL_BREAKPOINTS (bpt)
4137 {
4138 struct bp_location *loc;
4139
4140 if (bpt->type != bp_hardware_watchpoint
4141 && bpt->type != bp_access_watchpoint)
4142 continue;
4143
4144 if (!breakpoint_enabled (bpt))
4145 continue;
4146
4147 for (loc = bpt->loc; loc; loc = loc->next)
4148 if (loc->pspace->aspace == aspace && loc->inserted)
4149 {
4150 CORE_ADDR l, h;
4151
4152 /* Check for intersection. */
4153 l = std::max<CORE_ADDR> (loc->address, addr);
4154 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4155 if (l < h)
4156 return 1;
4157 }
4158 }
4159 return 0;
4160 }
4161 \f
4162
4163 /* bpstat stuff. External routines' interfaces are documented
4164 in breakpoint.h. */
4165
4166 int
4167 is_catchpoint (struct breakpoint *ep)
4168 {
4169 return (ep->type == bp_catchpoint);
4170 }
4171
4172 /* Frees any storage that is part of a bpstat. Does not walk the
4173 'next' chain. */
4174
4175 bpstats::~bpstats ()
4176 {
4177 if (bp_location_at != NULL)
4178 decref_bp_location (&bp_location_at);
4179 }
4180
4181 /* Clear a bpstat so that it says we are not at any breakpoint.
4182 Also free any storage that is part of a bpstat. */
4183
4184 void
4185 bpstat_clear (bpstat *bsp)
4186 {
4187 bpstat p;
4188 bpstat q;
4189
4190 if (bsp == 0)
4191 return;
4192 p = *bsp;
4193 while (p != NULL)
4194 {
4195 q = p->next;
4196 delete p;
4197 p = q;
4198 }
4199 *bsp = NULL;
4200 }
4201
4202 bpstats::bpstats (const bpstats &other)
4203 : next (NULL),
4204 bp_location_at (other.bp_location_at),
4205 breakpoint_at (other.breakpoint_at),
4206 commands (other.commands),
4207 print (other.print),
4208 stop (other.stop),
4209 print_it (other.print_it)
4210 {
4211 if (other.old_val != NULL)
4212 old_val = release_value (value_copy (other.old_val.get ()));
4213 incref_bp_location (bp_location_at);
4214 }
4215
4216 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4217 is part of the bpstat is copied as well. */
4218
4219 bpstat
4220 bpstat_copy (bpstat bs)
4221 {
4222 bpstat p = NULL;
4223 bpstat tmp;
4224 bpstat retval = NULL;
4225
4226 if (bs == NULL)
4227 return bs;
4228
4229 for (; bs != NULL; bs = bs->next)
4230 {
4231 tmp = new bpstats (*bs);
4232
4233 if (p == NULL)
4234 /* This is the first thing in the chain. */
4235 retval = tmp;
4236 else
4237 p->next = tmp;
4238 p = tmp;
4239 }
4240 p->next = NULL;
4241 return retval;
4242 }
4243
4244 /* Find the bpstat associated with this breakpoint. */
4245
4246 bpstat
4247 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4248 {
4249 if (bsp == NULL)
4250 return NULL;
4251
4252 for (; bsp != NULL; bsp = bsp->next)
4253 {
4254 if (bsp->breakpoint_at == breakpoint)
4255 return bsp;
4256 }
4257 return NULL;
4258 }
4259
4260 /* See breakpoint.h. */
4261
4262 int
4263 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4264 {
4265 for (; bsp != NULL; bsp = bsp->next)
4266 {
4267 if (bsp->breakpoint_at == NULL)
4268 {
4269 /* A moribund location can never explain a signal other than
4270 GDB_SIGNAL_TRAP. */
4271 if (sig == GDB_SIGNAL_TRAP)
4272 return 1;
4273 }
4274 else
4275 {
4276 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4277 sig))
4278 return 1;
4279 }
4280 }
4281
4282 return 0;
4283 }
4284
4285 /* Put in *NUM the breakpoint number of the first breakpoint we are
4286 stopped at. *BSP upon return is a bpstat which points to the
4287 remaining breakpoints stopped at (but which is not guaranteed to be
4288 good for anything but further calls to bpstat_num).
4289
4290 Return 0 if passed a bpstat which does not indicate any breakpoints.
4291 Return -1 if stopped at a breakpoint that has been deleted since
4292 we set it.
4293 Return 1 otherwise. */
4294
4295 int
4296 bpstat_num (bpstat *bsp, int *num)
4297 {
4298 struct breakpoint *b;
4299
4300 if ((*bsp) == NULL)
4301 return 0; /* No more breakpoint values */
4302
4303 /* We assume we'll never have several bpstats that correspond to a
4304 single breakpoint -- otherwise, this function might return the
4305 same number more than once and this will look ugly. */
4306 b = (*bsp)->breakpoint_at;
4307 *bsp = (*bsp)->next;
4308 if (b == NULL)
4309 return -1; /* breakpoint that's been deleted since */
4310
4311 *num = b->number; /* We have its number */
4312 return 1;
4313 }
4314
4315 /* See breakpoint.h. */
4316
4317 void
4318 bpstat_clear_actions (void)
4319 {
4320 bpstat bs;
4321
4322 if (inferior_ptid == null_ptid)
4323 return;
4324
4325 thread_info *tp = inferior_thread ();
4326 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4327 {
4328 bs->commands = NULL;
4329 bs->old_val.reset (nullptr);
4330 }
4331 }
4332
4333 /* Called when a command is about to proceed the inferior. */
4334
4335 static void
4336 breakpoint_about_to_proceed (void)
4337 {
4338 if (inferior_ptid != null_ptid)
4339 {
4340 struct thread_info *tp = inferior_thread ();
4341
4342 /* Allow inferior function calls in breakpoint commands to not
4343 interrupt the command list. When the call finishes
4344 successfully, the inferior will be standing at the same
4345 breakpoint as if nothing happened. */
4346 if (tp->control.in_infcall)
4347 return;
4348 }
4349
4350 breakpoint_proceeded = 1;
4351 }
4352
4353 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4354 or its equivalent. */
4355
4356 static int
4357 command_line_is_silent (struct command_line *cmd)
4358 {
4359 return cmd && (strcmp ("silent", cmd->line) == 0);
4360 }
4361
4362 /* Execute all the commands associated with all the breakpoints at
4363 this location. Any of these commands could cause the process to
4364 proceed beyond this point, etc. We look out for such changes by
4365 checking the global "breakpoint_proceeded" after each command.
4366
4367 Returns true if a breakpoint command resumed the inferior. In that
4368 case, it is the caller's responsibility to recall it again with the
4369 bpstat of the current thread. */
4370
4371 static int
4372 bpstat_do_actions_1 (bpstat *bsp)
4373 {
4374 bpstat bs;
4375 int again = 0;
4376
4377 /* Avoid endless recursion if a `source' command is contained
4378 in bs->commands. */
4379 if (executing_breakpoint_commands)
4380 return 0;
4381
4382 scoped_restore save_executing
4383 = make_scoped_restore (&executing_breakpoint_commands, 1);
4384
4385 scoped_restore preventer = prevent_dont_repeat ();
4386
4387 /* This pointer will iterate over the list of bpstat's. */
4388 bs = *bsp;
4389
4390 breakpoint_proceeded = 0;
4391 for (; bs != NULL; bs = bs->next)
4392 {
4393 struct command_line *cmd = NULL;
4394
4395 /* Take ownership of the BSP's command tree, if it has one.
4396
4397 The command tree could legitimately contain commands like
4398 'step' and 'next', which call clear_proceed_status, which
4399 frees stop_bpstat's command tree. To make sure this doesn't
4400 free the tree we're executing out from under us, we need to
4401 take ownership of the tree ourselves. Since a given bpstat's
4402 commands are only executed once, we don't need to copy it; we
4403 can clear the pointer in the bpstat, and make sure we free
4404 the tree when we're done. */
4405 counted_command_line ccmd = bs->commands;
4406 bs->commands = NULL;
4407 if (ccmd != NULL)
4408 cmd = ccmd.get ();
4409 if (command_line_is_silent (cmd))
4410 {
4411 /* The action has been already done by bpstat_stop_status. */
4412 cmd = cmd->next;
4413 }
4414
4415 while (cmd != NULL)
4416 {
4417 execute_control_command (cmd);
4418
4419 if (breakpoint_proceeded)
4420 break;
4421 else
4422 cmd = cmd->next;
4423 }
4424
4425 if (breakpoint_proceeded)
4426 {
4427 if (current_ui->async)
4428 /* If we are in async mode, then the target might be still
4429 running, not stopped at any breakpoint, so nothing for
4430 us to do here -- just return to the event loop. */
4431 ;
4432 else
4433 /* In sync mode, when execute_control_command returns
4434 we're already standing on the next breakpoint.
4435 Breakpoint commands for that stop were not run, since
4436 execute_command does not run breakpoint commands --
4437 only command_line_handler does, but that one is not
4438 involved in execution of breakpoint commands. So, we
4439 can now execute breakpoint commands. It should be
4440 noted that making execute_command do bpstat actions is
4441 not an option -- in this case we'll have recursive
4442 invocation of bpstat for each breakpoint with a
4443 command, and can easily blow up GDB stack. Instead, we
4444 return true, which will trigger the caller to recall us
4445 with the new stop_bpstat. */
4446 again = 1;
4447 break;
4448 }
4449 }
4450 return again;
4451 }
4452
4453 /* Helper for bpstat_do_actions. Get the current thread, if there's
4454 one, is alive and has execution. Return NULL otherwise. */
4455
4456 static thread_info *
4457 get_bpstat_thread ()
4458 {
4459 if (inferior_ptid == null_ptid || !target_has_execution)
4460 return NULL;
4461
4462 thread_info *tp = inferior_thread ();
4463 if (tp->state == THREAD_EXITED || tp->executing)
4464 return NULL;
4465 return tp;
4466 }
4467
4468 void
4469 bpstat_do_actions (void)
4470 {
4471 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4472 thread_info *tp;
4473
4474 /* Do any commands attached to breakpoint we are stopped at. */
4475 while ((tp = get_bpstat_thread ()) != NULL)
4476 {
4477 /* Since in sync mode, bpstat_do_actions may resume the
4478 inferior, and only return when it is stopped at the next
4479 breakpoint, we keep doing breakpoint actions until it returns
4480 false to indicate the inferior was not resumed. */
4481 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4482 break;
4483 }
4484
4485 cleanup_if_error.release ();
4486 }
4487
4488 /* Print out the (old or new) value associated with a watchpoint. */
4489
4490 static void
4491 watchpoint_value_print (struct value *val, struct ui_file *stream)
4492 {
4493 if (val == NULL)
4494 fprintf_unfiltered (stream, _("<unreadable>"));
4495 else
4496 {
4497 struct value_print_options opts;
4498 get_user_print_options (&opts);
4499 value_print (val, stream, &opts);
4500 }
4501 }
4502
4503 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4504 debugging multiple threads. */
4505
4506 void
4507 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4508 {
4509 if (uiout->is_mi_like_p ())
4510 return;
4511
4512 uiout->text ("\n");
4513
4514 if (show_thread_that_caused_stop ())
4515 {
4516 const char *name;
4517 struct thread_info *thr = inferior_thread ();
4518
4519 uiout->text ("Thread ");
4520 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4521
4522 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4523 if (name != NULL)
4524 {
4525 uiout->text (" \"");
4526 uiout->field_fmt ("name", "%s", name);
4527 uiout->text ("\"");
4528 }
4529
4530 uiout->text (" hit ");
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4583 bool any_added = !current_program_space->added_solibs.empty ();
4584
4585 if (!is_catchpoint)
4586 {
4587 if (any_added || any_deleted)
4588 current_uiout->text (_("Stopped due to shared library event:\n"));
4589 else
4590 current_uiout->text (_("Stopped due to shared library event (no "
4591 "libraries added or removed)\n"));
4592 }
4593
4594 if (current_uiout->is_mi_like_p ())
4595 current_uiout->field_string ("reason",
4596 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4597
4598 if (any_deleted)
4599 {
4600 current_uiout->text (_(" Inferior unloaded "));
4601 ui_out_emit_list list_emitter (current_uiout, "removed");
4602 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4603 {
4604 const std::string &name = current_program_space->deleted_solibs[ix];
4605
4606 if (ix > 0)
4607 current_uiout->text (" ");
4608 current_uiout->field_string ("library", name);
4609 current_uiout->text ("\n");
4610 }
4611 }
4612
4613 if (any_added)
4614 {
4615 current_uiout->text (_(" Inferior loaded "));
4616 ui_out_emit_list list_emitter (current_uiout, "added");
4617 bool first = true;
4618 for (so_list *iter : current_program_space->added_solibs)
4619 {
4620 if (!first)
4621 current_uiout->text (" ");
4622 first = false;
4623 current_uiout->field_string ("library", iter->so_name);
4624 current_uiout->text ("\n");
4625 }
4626 }
4627 }
4628
4629 /* Print a message indicating what happened. This is called from
4630 normal_stop(). The input to this routine is the head of the bpstat
4631 list - a list of the eventpoints that caused this stop. KIND is
4632 the target_waitkind for the stopping event. This
4633 routine calls the generic print routine for printing a message
4634 about reasons for stopping. This will print (for example) the
4635 "Breakpoint n," part of the output. The return value of this
4636 routine is one of:
4637
4638 PRINT_UNKNOWN: Means we printed nothing.
4639 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4640 code to print the location. An example is
4641 "Breakpoint 1, " which should be followed by
4642 the location.
4643 PRINT_SRC_ONLY: Means we printed something, but there is no need
4644 to also print the location part of the message.
4645 An example is the catch/throw messages, which
4646 don't require a location appended to the end.
4647 PRINT_NOTHING: We have done some printing and we don't need any
4648 further info to be printed. */
4649
4650 enum print_stop_action
4651 bpstat_print (bpstat bs, int kind)
4652 {
4653 enum print_stop_action val;
4654
4655 /* Maybe another breakpoint in the chain caused us to stop.
4656 (Currently all watchpoints go on the bpstat whether hit or not.
4657 That probably could (should) be changed, provided care is taken
4658 with respect to bpstat_explains_signal). */
4659 for (; bs; bs = bs->next)
4660 {
4661 val = print_bp_stop_message (bs);
4662 if (val == PRINT_SRC_ONLY
4663 || val == PRINT_SRC_AND_LOC
4664 || val == PRINT_NOTHING)
4665 return val;
4666 }
4667
4668 /* If we had hit a shared library event breakpoint,
4669 print_bp_stop_message would print out this message. If we hit an
4670 OS-level shared library event, do the same thing. */
4671 if (kind == TARGET_WAITKIND_LOADED)
4672 {
4673 print_solib_event (0);
4674 return PRINT_NOTHING;
4675 }
4676
4677 /* We reached the end of the chain, or we got a null BS to start
4678 with and nothing was printed. */
4679 return PRINT_UNKNOWN;
4680 }
4681
4682 /* Evaluate the boolean expression EXP and return the result. */
4683
4684 static bool
4685 breakpoint_cond_eval (expression *exp)
4686 {
4687 struct value *mark = value_mark ();
4688 bool res = value_true (evaluate_expression (exp));
4689
4690 value_free_to_mark (mark);
4691 return res;
4692 }
4693
4694 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4695
4696 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4697 : next (NULL),
4698 bp_location_at (bl),
4699 breakpoint_at (bl->owner),
4700 commands (NULL),
4701 print (0),
4702 stop (0),
4703 print_it (print_it_normal)
4704 {
4705 incref_bp_location (bl);
4706 **bs_link_pointer = this;
4707 *bs_link_pointer = &next;
4708 }
4709
4710 bpstats::bpstats ()
4711 : next (NULL),
4712 bp_location_at (NULL),
4713 breakpoint_at (NULL),
4714 commands (NULL),
4715 print (0),
4716 stop (0),
4717 print_it (print_it_normal)
4718 {
4719 }
4720 \f
4721 /* The target has stopped with waitstatus WS. Check if any hardware
4722 watchpoints have triggered, according to the target. */
4723
4724 int
4725 watchpoints_triggered (struct target_waitstatus *ws)
4726 {
4727 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4728 CORE_ADDR addr;
4729 struct breakpoint *b;
4730
4731 if (!stopped_by_watchpoint)
4732 {
4733 /* We were not stopped by a watchpoint. Mark all watchpoints
4734 as not triggered. */
4735 ALL_BREAKPOINTS (b)
4736 if (is_hardware_watchpoint (b))
4737 {
4738 struct watchpoint *w = (struct watchpoint *) b;
4739
4740 w->watchpoint_triggered = watch_triggered_no;
4741 }
4742
4743 return 0;
4744 }
4745
4746 if (!target_stopped_data_address (current_top_target (), &addr))
4747 {
4748 /* We were stopped by a watchpoint, but we don't know where.
4749 Mark all watchpoints as unknown. */
4750 ALL_BREAKPOINTS (b)
4751 if (is_hardware_watchpoint (b))
4752 {
4753 struct watchpoint *w = (struct watchpoint *) b;
4754
4755 w->watchpoint_triggered = watch_triggered_unknown;
4756 }
4757
4758 return 1;
4759 }
4760
4761 /* The target could report the data address. Mark watchpoints
4762 affected by this data address as triggered, and all others as not
4763 triggered. */
4764
4765 ALL_BREAKPOINTS (b)
4766 if (is_hardware_watchpoint (b))
4767 {
4768 struct watchpoint *w = (struct watchpoint *) b;
4769 struct bp_location *loc;
4770
4771 w->watchpoint_triggered = watch_triggered_no;
4772 for (loc = b->loc; loc; loc = loc->next)
4773 {
4774 if (is_masked_watchpoint (b))
4775 {
4776 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4777 CORE_ADDR start = loc->address & w->hw_wp_mask;
4778
4779 if (newaddr == start)
4780 {
4781 w->watchpoint_triggered = watch_triggered_yes;
4782 break;
4783 }
4784 }
4785 /* Exact match not required. Within range is sufficient. */
4786 else if (target_watchpoint_addr_within_range (current_top_target (),
4787 addr, loc->address,
4788 loc->length))
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Possible return values for watchpoint_check. */
4800 enum wp_check_result
4801 {
4802 /* The watchpoint has been deleted. */
4803 WP_DELETED = 1,
4804
4805 /* The value has changed. */
4806 WP_VALUE_CHANGED = 2,
4807
4808 /* The value has not changed. */
4809 WP_VALUE_NOT_CHANGED = 3,
4810
4811 /* Ignore this watchpoint, no matter if the value changed or not. */
4812 WP_IGNORE = 4,
4813 };
4814
4815 #define BP_TEMPFLAG 1
4816 #define BP_HARDWAREFLAG 2
4817
4818 /* Evaluate watchpoint condition expression and check if its value
4819 changed. */
4820
4821 static wp_check_result
4822 watchpoint_check (bpstat bs)
4823 {
4824 struct watchpoint *b;
4825 struct frame_info *fr;
4826 int within_current_scope;
4827
4828 /* BS is built from an existing struct breakpoint. */
4829 gdb_assert (bs->breakpoint_at != NULL);
4830 b = (struct watchpoint *) bs->breakpoint_at;
4831
4832 /* If this is a local watchpoint, we only want to check if the
4833 watchpoint frame is in scope if the current thread is the thread
4834 that was used to create the watchpoint. */
4835 if (!watchpoint_in_thread_scope (b))
4836 return WP_IGNORE;
4837
4838 if (b->exp_valid_block == NULL)
4839 within_current_scope = 1;
4840 else
4841 {
4842 struct frame_info *frame = get_current_frame ();
4843 struct gdbarch *frame_arch = get_frame_arch (frame);
4844 CORE_ADDR frame_pc = get_frame_pc (frame);
4845
4846 /* stack_frame_destroyed_p() returns a non-zero value if we're
4847 still in the function but the stack frame has already been
4848 invalidated. Since we can't rely on the values of local
4849 variables after the stack has been destroyed, we are treating
4850 the watchpoint in that state as `not changed' without further
4851 checking. Don't mark watchpoints as changed if the current
4852 frame is in an epilogue - even if they are in some other
4853 frame, our view of the stack is likely to be wrong and
4854 frame_find_by_id could error out. */
4855 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4856 return WP_IGNORE;
4857
4858 fr = frame_find_by_id (b->watchpoint_frame);
4859 within_current_scope = (fr != NULL);
4860
4861 /* If we've gotten confused in the unwinder, we might have
4862 returned a frame that can't describe this variable. */
4863 if (within_current_scope)
4864 {
4865 struct symbol *function;
4866
4867 function = get_frame_function (fr);
4868 if (function == NULL
4869 || !contained_in (b->exp_valid_block,
4870 SYMBOL_BLOCK_VALUE (function)))
4871 within_current_scope = 0;
4872 }
4873
4874 if (within_current_scope)
4875 /* If we end up stopping, the current frame will get selected
4876 in normal_stop. So this call to select_frame won't affect
4877 the user. */
4878 select_frame (fr);
4879 }
4880
4881 if (within_current_scope)
4882 {
4883 /* We use value_{,free_to_}mark because it could be a *long*
4884 time before we return to the command level and call
4885 free_all_values. We can't call free_all_values because we
4886 might be in the middle of evaluating a function call. */
4887
4888 int pc = 0;
4889 struct value *mark;
4890 struct value *new_val;
4891
4892 if (is_masked_watchpoint (b))
4893 /* Since we don't know the exact trigger address (from
4894 stopped_data_address), just tell the user we've triggered
4895 a mask watchpoint. */
4896 return WP_VALUE_CHANGED;
4897
4898 mark = value_mark ();
4899 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4900
4901 if (b->val_bitsize != 0)
4902 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4903
4904 /* We use value_equal_contents instead of value_equal because
4905 the latter coerces an array to a pointer, thus comparing just
4906 the address of the array instead of its contents. This is
4907 not what we want. */
4908 if ((b->val != NULL) != (new_val != NULL)
4909 || (b->val != NULL && !value_equal_contents (b->val.get (),
4910 new_val)))
4911 {
4912 bs->old_val = b->val;
4913 b->val = release_value (new_val);
4914 b->val_valid = 1;
4915 if (new_val != NULL)
4916 value_free_to_mark (mark);
4917 return WP_VALUE_CHANGED;
4918 }
4919 else
4920 {
4921 /* Nothing changed. */
4922 value_free_to_mark (mark);
4923 return WP_VALUE_NOT_CHANGED;
4924 }
4925 }
4926 else
4927 {
4928 /* This seems like the only logical thing to do because
4929 if we temporarily ignored the watchpoint, then when
4930 we reenter the block in which it is valid it contains
4931 garbage (in the case of a function, it may have two
4932 garbage values, one before and one after the prologue).
4933 So we can't even detect the first assignment to it and
4934 watch after that (since the garbage may or may not equal
4935 the first value assigned). */
4936 /* We print all the stop information in
4937 breakpoint_ops->print_it, but in this case, by the time we
4938 call breakpoint_ops->print_it this bp will be deleted
4939 already. So we have no choice but print the information
4940 here. */
4941
4942 SWITCH_THRU_ALL_UIS ()
4943 {
4944 struct ui_out *uiout = current_uiout;
4945
4946 if (uiout->is_mi_like_p ())
4947 uiout->field_string
4948 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4949 uiout->text ("\nWatchpoint ");
4950 uiout->field_int ("wpnum", b->number);
4951 uiout->text (" deleted because the program has left the block in\n"
4952 "which its expression is valid.\n");
4953 }
4954
4955 /* Make sure the watchpoint's commands aren't executed. */
4956 b->commands = NULL;
4957 watchpoint_del_at_next_stop (b);
4958
4959 return WP_DELETED;
4960 }
4961 }
4962
4963 /* Return true if it looks like target has stopped due to hitting
4964 breakpoint location BL. This function does not check if we should
4965 stop, only if BL explains the stop. */
4966
4967 static int
4968 bpstat_check_location (const struct bp_location *bl,
4969 const address_space *aspace, CORE_ADDR bp_addr,
4970 const struct target_waitstatus *ws)
4971 {
4972 struct breakpoint *b = bl->owner;
4973
4974 /* BL is from an existing breakpoint. */
4975 gdb_assert (b != NULL);
4976
4977 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4978 }
4979
4980 /* Determine if the watched values have actually changed, and we
4981 should stop. If not, set BS->stop to 0. */
4982
4983 static void
4984 bpstat_check_watchpoint (bpstat bs)
4985 {
4986 const struct bp_location *bl;
4987 struct watchpoint *b;
4988
4989 /* BS is built for existing struct breakpoint. */
4990 bl = bs->bp_location_at;
4991 gdb_assert (bl != NULL);
4992 b = (struct watchpoint *) bs->breakpoint_at;
4993 gdb_assert (b != NULL);
4994
4995 {
4996 int must_check_value = 0;
4997
4998 if (b->type == bp_watchpoint)
4999 /* For a software watchpoint, we must always check the
5000 watched value. */
5001 must_check_value = 1;
5002 else if (b->watchpoint_triggered == watch_triggered_yes)
5003 /* We have a hardware watchpoint (read, write, or access)
5004 and the target earlier reported an address watched by
5005 this watchpoint. */
5006 must_check_value = 1;
5007 else if (b->watchpoint_triggered == watch_triggered_unknown
5008 && b->type == bp_hardware_watchpoint)
5009 /* We were stopped by a hardware watchpoint, but the target could
5010 not report the data address. We must check the watchpoint's
5011 value. Access and read watchpoints are out of luck; without
5012 a data address, we can't figure it out. */
5013 must_check_value = 1;
5014
5015 if (must_check_value)
5016 {
5017 wp_check_result e;
5018
5019 TRY
5020 {
5021 e = watchpoint_check (bs);
5022 }
5023 CATCH (ex, RETURN_MASK_ALL)
5024 {
5025 exception_fprintf (gdb_stderr, ex,
5026 "Error evaluating expression "
5027 "for watchpoint %d\n",
5028 b->number);
5029
5030 SWITCH_THRU_ALL_UIS ()
5031 {
5032 printf_filtered (_("Watchpoint %d deleted.\n"),
5033 b->number);
5034 }
5035 watchpoint_del_at_next_stop (b);
5036 e = WP_DELETED;
5037 }
5038 END_CATCH
5039
5040 switch (e)
5041 {
5042 case WP_DELETED:
5043 /* We've already printed what needs to be printed. */
5044 bs->print_it = print_it_done;
5045 /* Stop. */
5046 break;
5047 case WP_IGNORE:
5048 bs->print_it = print_it_noop;
5049 bs->stop = 0;
5050 break;
5051 case WP_VALUE_CHANGED:
5052 if (b->type == bp_read_watchpoint)
5053 {
5054 /* There are two cases to consider here:
5055
5056 1. We're watching the triggered memory for reads.
5057 In that case, trust the target, and always report
5058 the watchpoint hit to the user. Even though
5059 reads don't cause value changes, the value may
5060 have changed since the last time it was read, and
5061 since we're not trapping writes, we will not see
5062 those, and as such we should ignore our notion of
5063 old value.
5064
5065 2. We're watching the triggered memory for both
5066 reads and writes. There are two ways this may
5067 happen:
5068
5069 2.1. This is a target that can't break on data
5070 reads only, but can break on accesses (reads or
5071 writes), such as e.g., x86. We detect this case
5072 at the time we try to insert read watchpoints.
5073
5074 2.2. Otherwise, the target supports read
5075 watchpoints, but, the user set an access or write
5076 watchpoint watching the same memory as this read
5077 watchpoint.
5078
5079 If we're watching memory writes as well as reads,
5080 ignore watchpoint hits when we find that the
5081 value hasn't changed, as reads don't cause
5082 changes. This still gives false positives when
5083 the program writes the same value to memory as
5084 what there was already in memory (we will confuse
5085 it for a read), but it's much better than
5086 nothing. */
5087
5088 int other_write_watchpoint = 0;
5089
5090 if (bl->watchpoint_type == hw_read)
5091 {
5092 struct breakpoint *other_b;
5093
5094 ALL_BREAKPOINTS (other_b)
5095 if (other_b->type == bp_hardware_watchpoint
5096 || other_b->type == bp_access_watchpoint)
5097 {
5098 struct watchpoint *other_w =
5099 (struct watchpoint *) other_b;
5100
5101 if (other_w->watchpoint_triggered
5102 == watch_triggered_yes)
5103 {
5104 other_write_watchpoint = 1;
5105 break;
5106 }
5107 }
5108 }
5109
5110 if (other_write_watchpoint
5111 || bl->watchpoint_type == hw_access)
5112 {
5113 /* We're watching the same memory for writes,
5114 and the value changed since the last time we
5115 updated it, so this trap must be for a write.
5116 Ignore it. */
5117 bs->print_it = print_it_noop;
5118 bs->stop = 0;
5119 }
5120 }
5121 break;
5122 case WP_VALUE_NOT_CHANGED:
5123 if (b->type == bp_hardware_watchpoint
5124 || b->type == bp_watchpoint)
5125 {
5126 /* Don't stop: write watchpoints shouldn't fire if
5127 the value hasn't changed. */
5128 bs->print_it = print_it_noop;
5129 bs->stop = 0;
5130 }
5131 /* Stop. */
5132 break;
5133 default:
5134 /* Can't happen. */
5135 break;
5136 }
5137 }
5138 else /* must_check_value == 0 */
5139 {
5140 /* This is a case where some watchpoint(s) triggered, but
5141 not at the address of this watchpoint, or else no
5142 watchpoint triggered after all. So don't print
5143 anything for this watchpoint. */
5144 bs->print_it = print_it_noop;
5145 bs->stop = 0;
5146 }
5147 }
5148 }
5149
5150 /* For breakpoints that are currently marked as telling gdb to stop,
5151 check conditions (condition proper, frame, thread and ignore count)
5152 of breakpoint referred to by BS. If we should not stop for this
5153 breakpoint, set BS->stop to 0. */
5154
5155 static void
5156 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5157 {
5158 const struct bp_location *bl;
5159 struct breakpoint *b;
5160 /* Assume stop. */
5161 bool condition_result = true;
5162 struct expression *cond;
5163
5164 gdb_assert (bs->stop);
5165
5166 /* BS is built for existing struct breakpoint. */
5167 bl = bs->bp_location_at;
5168 gdb_assert (bl != NULL);
5169 b = bs->breakpoint_at;
5170 gdb_assert (b != NULL);
5171
5172 /* Even if the target evaluated the condition on its end and notified GDB, we
5173 need to do so again since GDB does not know if we stopped due to a
5174 breakpoint or a single step breakpoint. */
5175
5176 if (frame_id_p (b->frame_id)
5177 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5178 {
5179 bs->stop = 0;
5180 return;
5181 }
5182
5183 /* If this is a thread/task-specific breakpoint, don't waste cpu
5184 evaluating the condition if this isn't the specified
5185 thread/task. */
5186 if ((b->thread != -1 && b->thread != thread->global_num)
5187 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* Evaluate extension language breakpoints that have a "stop" method
5194 implemented. */
5195 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5196
5197 if (is_watchpoint (b))
5198 {
5199 struct watchpoint *w = (struct watchpoint *) b;
5200
5201 cond = w->cond_exp.get ();
5202 }
5203 else
5204 cond = bl->cond.get ();
5205
5206 if (cond && b->disposition != disp_del_at_next_stop)
5207 {
5208 int within_current_scope = 1;
5209 struct watchpoint * w;
5210
5211 /* We use value_mark and value_free_to_mark because it could
5212 be a long time before we return to the command level and
5213 call free_all_values. We can't call free_all_values
5214 because we might be in the middle of evaluating a
5215 function call. */
5216 struct value *mark = value_mark ();
5217
5218 if (is_watchpoint (b))
5219 w = (struct watchpoint *) b;
5220 else
5221 w = NULL;
5222
5223 /* Need to select the frame, with all that implies so that
5224 the conditions will have the right context. Because we
5225 use the frame, we will not see an inlined function's
5226 variables when we arrive at a breakpoint at the start
5227 of the inlined function; the current frame will be the
5228 call site. */
5229 if (w == NULL || w->cond_exp_valid_block == NULL)
5230 select_frame (get_current_frame ());
5231 else
5232 {
5233 struct frame_info *frame;
5234
5235 /* For local watchpoint expressions, which particular
5236 instance of a local is being watched matters, so we
5237 keep track of the frame to evaluate the expression
5238 in. To evaluate the condition however, it doesn't
5239 really matter which instantiation of the function
5240 where the condition makes sense triggers the
5241 watchpoint. This allows an expression like "watch
5242 global if q > 10" set in `func', catch writes to
5243 global on all threads that call `func', or catch
5244 writes on all recursive calls of `func' by a single
5245 thread. We simply always evaluate the condition in
5246 the innermost frame that's executing where it makes
5247 sense to evaluate the condition. It seems
5248 intuitive. */
5249 frame = block_innermost_frame (w->cond_exp_valid_block);
5250 if (frame != NULL)
5251 select_frame (frame);
5252 else
5253 within_current_scope = 0;
5254 }
5255 if (within_current_scope)
5256 {
5257 TRY
5258 {
5259 condition_result = breakpoint_cond_eval (cond);
5260 }
5261 CATCH (ex, RETURN_MASK_ALL)
5262 {
5263 exception_fprintf (gdb_stderr, ex,
5264 "Error in testing breakpoint condition:\n");
5265 }
5266 END_CATCH
5267 }
5268 else
5269 {
5270 warning (_("Watchpoint condition cannot be tested "
5271 "in the current scope"));
5272 /* If we failed to set the right context for this
5273 watchpoint, unconditionally report it. */
5274 }
5275 /* FIXME-someday, should give breakpoint #. */
5276 value_free_to_mark (mark);
5277 }
5278
5279 if (cond && !condition_result)
5280 {
5281 bs->stop = 0;
5282 }
5283 else if (b->ignore_count > 0)
5284 {
5285 b->ignore_count--;
5286 bs->stop = 0;
5287 /* Increase the hit count even though we don't stop. */
5288 ++(b->hit_count);
5289 gdb::observers::breakpoint_modified.notify (b);
5290 }
5291 }
5292
5293 /* Returns true if we need to track moribund locations of LOC's type
5294 on the current target. */
5295
5296 static int
5297 need_moribund_for_location_type (struct bp_location *loc)
5298 {
5299 return ((loc->loc_type == bp_loc_software_breakpoint
5300 && !target_supports_stopped_by_sw_breakpoint ())
5301 || (loc->loc_type == bp_loc_hardware_breakpoint
5302 && !target_supports_stopped_by_hw_breakpoint ()));
5303 }
5304
5305 /* See breakpoint.h. */
5306
5307 bpstat
5308 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5309 const struct target_waitstatus *ws)
5310 {
5311 struct breakpoint *b;
5312 bpstat bs_head = NULL, *bs_link = &bs_head;
5313
5314 ALL_BREAKPOINTS (b)
5315 {
5316 if (!breakpoint_enabled (b))
5317 continue;
5318
5319 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5320 {
5321 /* For hardware watchpoints, we look only at the first
5322 location. The watchpoint_check function will work on the
5323 entire expression, not the individual locations. For
5324 read watchpoints, the watchpoints_triggered function has
5325 checked all locations already. */
5326 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5327 break;
5328
5329 if (!bl->enabled || bl->shlib_disabled)
5330 continue;
5331
5332 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5333 continue;
5334
5335 /* Come here if it's a watchpoint, or if the break address
5336 matches. */
5337
5338 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5339 explain stop. */
5340
5341 /* Assume we stop. Should we find a watchpoint that is not
5342 actually triggered, or if the condition of the breakpoint
5343 evaluates as false, we'll reset 'stop' to 0. */
5344 bs->stop = 1;
5345 bs->print = 1;
5346
5347 /* If this is a scope breakpoint, mark the associated
5348 watchpoint as triggered so that we will handle the
5349 out-of-scope event. We'll get to the watchpoint next
5350 iteration. */
5351 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5352 {
5353 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5354
5355 w->watchpoint_triggered = watch_triggered_yes;
5356 }
5357 }
5358 }
5359
5360 /* Check if a moribund breakpoint explains the stop. */
5361 if (!target_supports_stopped_by_sw_breakpoint ()
5362 || !target_supports_stopped_by_hw_breakpoint ())
5363 {
5364 for (bp_location *loc : moribund_locations)
5365 {
5366 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5367 && need_moribund_for_location_type (loc))
5368 {
5369 bpstat bs = new bpstats (loc, &bs_link);
5370 /* For hits of moribund locations, we should just proceed. */
5371 bs->stop = 0;
5372 bs->print = 0;
5373 bs->print_it = print_it_noop;
5374 }
5375 }
5376 }
5377
5378 return bs_head;
5379 }
5380
5381 /* See breakpoint.h. */
5382
5383 bpstat
5384 bpstat_stop_status (const address_space *aspace,
5385 CORE_ADDR bp_addr, thread_info *thread,
5386 const struct target_waitstatus *ws,
5387 bpstat stop_chain)
5388 {
5389 struct breakpoint *b = NULL;
5390 /* First item of allocated bpstat's. */
5391 bpstat bs_head = stop_chain;
5392 bpstat bs;
5393 int need_remove_insert;
5394 int removed_any;
5395
5396 /* First, build the bpstat chain with locations that explain a
5397 target stop, while being careful to not set the target running,
5398 as that may invalidate locations (in particular watchpoint
5399 locations are recreated). Resuming will happen here with
5400 breakpoint conditions or watchpoint expressions that include
5401 inferior function calls. */
5402 if (bs_head == NULL)
5403 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5404
5405 /* A bit of special processing for shlib breakpoints. We need to
5406 process solib loading here, so that the lists of loaded and
5407 unloaded libraries are correct before we handle "catch load" and
5408 "catch unload". */
5409 for (bs = bs_head; bs != NULL; bs = bs->next)
5410 {
5411 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5412 {
5413 handle_solib_event ();
5414 break;
5415 }
5416 }
5417
5418 /* Now go through the locations that caused the target to stop, and
5419 check whether we're interested in reporting this stop to higher
5420 layers, or whether we should resume the target transparently. */
5421
5422 removed_any = 0;
5423
5424 for (bs = bs_head; bs != NULL; bs = bs->next)
5425 {
5426 if (!bs->stop)
5427 continue;
5428
5429 b = bs->breakpoint_at;
5430 b->ops->check_status (bs);
5431 if (bs->stop)
5432 {
5433 bpstat_check_breakpoint_conditions (bs, thread);
5434
5435 if (bs->stop)
5436 {
5437 ++(b->hit_count);
5438 gdb::observers::breakpoint_modified.notify (b);
5439
5440 /* We will stop here. */
5441 if (b->disposition == disp_disable)
5442 {
5443 --(b->enable_count);
5444 if (b->enable_count <= 0)
5445 b->enable_state = bp_disabled;
5446 removed_any = 1;
5447 }
5448 if (b->silent)
5449 bs->print = 0;
5450 bs->commands = b->commands;
5451 if (command_line_is_silent (bs->commands
5452 ? bs->commands.get () : NULL))
5453 bs->print = 0;
5454
5455 b->ops->after_condition_true (bs);
5456 }
5457
5458 }
5459
5460 /* Print nothing for this entry if we don't stop or don't
5461 print. */
5462 if (!bs->stop || !bs->print)
5463 bs->print_it = print_it_noop;
5464 }
5465
5466 /* If we aren't stopping, the value of some hardware watchpoint may
5467 not have changed, but the intermediate memory locations we are
5468 watching may have. Don't bother if we're stopping; this will get
5469 done later. */
5470 need_remove_insert = 0;
5471 if (! bpstat_causes_stop (bs_head))
5472 for (bs = bs_head; bs != NULL; bs = bs->next)
5473 if (!bs->stop
5474 && bs->breakpoint_at
5475 && is_hardware_watchpoint (bs->breakpoint_at))
5476 {
5477 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5478
5479 update_watchpoint (w, 0 /* don't reparse. */);
5480 need_remove_insert = 1;
5481 }
5482
5483 if (need_remove_insert)
5484 update_global_location_list (UGLL_MAY_INSERT);
5485 else if (removed_any)
5486 update_global_location_list (UGLL_DONT_INSERT);
5487
5488 return bs_head;
5489 }
5490
5491 static void
5492 handle_jit_event (void)
5493 {
5494 struct frame_info *frame;
5495 struct gdbarch *gdbarch;
5496
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5499
5500 /* Switch terminal for any messages produced by
5501 breakpoint_re_set. */
5502 target_terminal::ours_for_output ();
5503
5504 frame = get_current_frame ();
5505 gdbarch = get_frame_arch (frame);
5506
5507 jit_event_handler (gdbarch);
5508
5509 target_terminal::inferior ();
5510 }
5511
5512 /* Prepare WHAT final decision for infrun. */
5513
5514 /* Decide what infrun needs to do with this bpstat. */
5515
5516 struct bpstat_what
5517 bpstat_what (bpstat bs_head)
5518 {
5519 struct bpstat_what retval;
5520 bpstat bs;
5521
5522 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5523 retval.call_dummy = STOP_NONE;
5524 retval.is_longjmp = 0;
5525
5526 for (bs = bs_head; bs != NULL; bs = bs->next)
5527 {
5528 /* Extract this BS's action. After processing each BS, we check
5529 if its action overrides all we've seem so far. */
5530 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5531 enum bptype bptype;
5532
5533 if (bs->breakpoint_at == NULL)
5534 {
5535 /* I suspect this can happen if it was a momentary
5536 breakpoint which has since been deleted. */
5537 bptype = bp_none;
5538 }
5539 else
5540 bptype = bs->breakpoint_at->type;
5541
5542 switch (bptype)
5543 {
5544 case bp_none:
5545 break;
5546 case bp_breakpoint:
5547 case bp_hardware_breakpoint:
5548 case bp_single_step:
5549 case bp_until:
5550 case bp_finish:
5551 case bp_shlib_event:
5552 if (bs->stop)
5553 {
5554 if (bs->print)
5555 this_action = BPSTAT_WHAT_STOP_NOISY;
5556 else
5557 this_action = BPSTAT_WHAT_STOP_SILENT;
5558 }
5559 else
5560 this_action = BPSTAT_WHAT_SINGLE;
5561 break;
5562 case bp_watchpoint:
5563 case bp_hardware_watchpoint:
5564 case bp_read_watchpoint:
5565 case bp_access_watchpoint:
5566 if (bs->stop)
5567 {
5568 if (bs->print)
5569 this_action = BPSTAT_WHAT_STOP_NOISY;
5570 else
5571 this_action = BPSTAT_WHAT_STOP_SILENT;
5572 }
5573 else
5574 {
5575 /* There was a watchpoint, but we're not stopping.
5576 This requires no further action. */
5577 }
5578 break;
5579 case bp_longjmp:
5580 case bp_longjmp_call_dummy:
5581 case bp_exception:
5582 if (bs->stop)
5583 {
5584 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5585 retval.is_longjmp = bptype != bp_exception;
5586 }
5587 else
5588 this_action = BPSTAT_WHAT_SINGLE;
5589 break;
5590 case bp_longjmp_resume:
5591 case bp_exception_resume:
5592 if (bs->stop)
5593 {
5594 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5595 retval.is_longjmp = bptype == bp_longjmp_resume;
5596 }
5597 else
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_step_resume:
5601 if (bs->stop)
5602 this_action = BPSTAT_WHAT_STEP_RESUME;
5603 else
5604 {
5605 /* It is for the wrong frame. */
5606 this_action = BPSTAT_WHAT_SINGLE;
5607 }
5608 break;
5609 case bp_hp_step_resume:
5610 if (bs->stop)
5611 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5612 else
5613 {
5614 /* It is for the wrong frame. */
5615 this_action = BPSTAT_WHAT_SINGLE;
5616 }
5617 break;
5618 case bp_watchpoint_scope:
5619 case bp_thread_event:
5620 case bp_overlay_event:
5621 case bp_longjmp_master:
5622 case bp_std_terminate_master:
5623 case bp_exception_master:
5624 this_action = BPSTAT_WHAT_SINGLE;
5625 break;
5626 case bp_catchpoint:
5627 if (bs->stop)
5628 {
5629 if (bs->print)
5630 this_action = BPSTAT_WHAT_STOP_NOISY;
5631 else
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 }
5634 else
5635 {
5636 /* There was a catchpoint, but we're not stopping.
5637 This requires no further action. */
5638 }
5639 break;
5640 case bp_jit_event:
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_call_dummy:
5644 /* Make sure the action is stop (silent or noisy),
5645 so infrun.c pops the dummy frame. */
5646 retval.call_dummy = STOP_STACK_DUMMY;
5647 this_action = BPSTAT_WHAT_STOP_SILENT;
5648 break;
5649 case bp_std_terminate:
5650 /* Make sure the action is stop (silent or noisy),
5651 so infrun.c pops the dummy frame. */
5652 retval.call_dummy = STOP_STD_TERMINATE;
5653 this_action = BPSTAT_WHAT_STOP_SILENT;
5654 break;
5655 case bp_tracepoint:
5656 case bp_fast_tracepoint:
5657 case bp_static_tracepoint:
5658 /* Tracepoint hits should not be reported back to GDB, and
5659 if one got through somehow, it should have been filtered
5660 out already. */
5661 internal_error (__FILE__, __LINE__,
5662 _("bpstat_what: tracepoint encountered"));
5663 break;
5664 case bp_gnu_ifunc_resolver:
5665 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 break;
5668 case bp_gnu_ifunc_resolver_return:
5669 /* The breakpoint will be removed, execution will restart from the
5670 PC of the former breakpoint. */
5671 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5672 break;
5673
5674 case bp_dprintf:
5675 if (bs->stop)
5676 this_action = BPSTAT_WHAT_STOP_SILENT;
5677 else
5678 this_action = BPSTAT_WHAT_SINGLE;
5679 break;
5680
5681 default:
5682 internal_error (__FILE__, __LINE__,
5683 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5684 }
5685
5686 retval.main_action = std::max (retval.main_action, this_action);
5687 }
5688
5689 return retval;
5690 }
5691
5692 void
5693 bpstat_run_callbacks (bpstat bs_head)
5694 {
5695 bpstat bs;
5696
5697 for (bs = bs_head; bs != NULL; bs = bs->next)
5698 {
5699 struct breakpoint *b = bs->breakpoint_at;
5700
5701 if (b == NULL)
5702 continue;
5703 switch (b->type)
5704 {
5705 case bp_jit_event:
5706 handle_jit_event ();
5707 break;
5708 case bp_gnu_ifunc_resolver:
5709 gnu_ifunc_resolver_stop (b);
5710 break;
5711 case bp_gnu_ifunc_resolver_return:
5712 gnu_ifunc_resolver_return_stop (b);
5713 break;
5714 }
5715 }
5716 }
5717
5718 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5719 without hardware support). This isn't related to a specific bpstat,
5720 just to things like whether watchpoints are set. */
5721
5722 int
5723 bpstat_should_step (void)
5724 {
5725 struct breakpoint *b;
5726
5727 ALL_BREAKPOINTS (b)
5728 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5729 return 1;
5730 return 0;
5731 }
5732
5733 int
5734 bpstat_causes_stop (bpstat bs)
5735 {
5736 for (; bs != NULL; bs = bs->next)
5737 if (bs->stop)
5738 return 1;
5739
5740 return 0;
5741 }
5742
5743 \f
5744
5745 /* Compute a string of spaces suitable to indent the next line
5746 so it starts at the position corresponding to the table column
5747 named COL_NAME in the currently active table of UIOUT. */
5748
5749 static char *
5750 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5751 {
5752 static char wrap_indent[80];
5753 int i, total_width, width, align;
5754 const char *text;
5755
5756 total_width = 0;
5757 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5758 {
5759 if (strcmp (text, col_name) == 0)
5760 {
5761 gdb_assert (total_width < sizeof wrap_indent);
5762 memset (wrap_indent, ' ', total_width);
5763 wrap_indent[total_width] = 0;
5764
5765 return wrap_indent;
5766 }
5767
5768 total_width += width + 1;
5769 }
5770
5771 return NULL;
5772 }
5773
5774 /* Determine if the locations of this breakpoint will have their conditions
5775 evaluated by the target, host or a mix of both. Returns the following:
5776
5777 "host": Host evals condition.
5778 "host or target": Host or Target evals condition.
5779 "target": Target evals condition.
5780 */
5781
5782 static const char *
5783 bp_condition_evaluator (struct breakpoint *b)
5784 {
5785 struct bp_location *bl;
5786 char host_evals = 0;
5787 char target_evals = 0;
5788
5789 if (!b)
5790 return NULL;
5791
5792 if (!is_breakpoint (b))
5793 return NULL;
5794
5795 if (gdb_evaluates_breakpoint_condition_p ()
5796 || !target_supports_evaluation_of_breakpoint_conditions ())
5797 return condition_evaluation_host;
5798
5799 for (bl = b->loc; bl; bl = bl->next)
5800 {
5801 if (bl->cond_bytecode)
5802 target_evals++;
5803 else
5804 host_evals++;
5805 }
5806
5807 if (host_evals && target_evals)
5808 return condition_evaluation_both;
5809 else if (target_evals)
5810 return condition_evaluation_target;
5811 else
5812 return condition_evaluation_host;
5813 }
5814
5815 /* Determine the breakpoint location's condition evaluator. This is
5816 similar to bp_condition_evaluator, but for locations. */
5817
5818 static const char *
5819 bp_location_condition_evaluator (struct bp_location *bl)
5820 {
5821 if (bl && !is_breakpoint (bl->owner))
5822 return NULL;
5823
5824 if (gdb_evaluates_breakpoint_condition_p ()
5825 || !target_supports_evaluation_of_breakpoint_conditions ())
5826 return condition_evaluation_host;
5827
5828 if (bl && bl->cond_bytecode)
5829 return condition_evaluation_target;
5830 else
5831 return condition_evaluation_host;
5832 }
5833
5834 /* Print the LOC location out of the list of B->LOC locations. */
5835
5836 static void
5837 print_breakpoint_location (struct breakpoint *b,
5838 struct bp_location *loc)
5839 {
5840 struct ui_out *uiout = current_uiout;
5841
5842 scoped_restore_current_program_space restore_pspace;
5843
5844 if (loc != NULL && loc->shlib_disabled)
5845 loc = NULL;
5846
5847 if (loc != NULL)
5848 set_current_program_space (loc->pspace);
5849
5850 if (b->display_canonical)
5851 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5852 else if (loc && loc->symtab)
5853 {
5854 const struct symbol *sym = loc->symbol;
5855
5856 if (sym)
5857 {
5858 uiout->text ("in ");
5859 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
5860 ui_out_style_kind::FUNCTION);
5861 uiout->text (" ");
5862 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5863 uiout->text ("at ");
5864 }
5865 uiout->field_string ("file",
5866 symtab_to_filename_for_display (loc->symtab),
5867 ui_out_style_kind::FILE);
5868 uiout->text (":");
5869
5870 if (uiout->is_mi_like_p ())
5871 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5872
5873 uiout->field_int ("line", loc->line_number);
5874 }
5875 else if (loc)
5876 {
5877 string_file stb;
5878
5879 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5880 demangle, "");
5881 uiout->field_stream ("at", stb);
5882 }
5883 else
5884 {
5885 uiout->field_string ("pending",
5886 event_location_to_string (b->location.get ()));
5887 /* If extra_string is available, it could be holding a condition
5888 or dprintf arguments. In either case, make sure it is printed,
5889 too, but only for non-MI streams. */
5890 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5891 {
5892 if (b->type == bp_dprintf)
5893 uiout->text (",");
5894 else
5895 uiout->text (" ");
5896 uiout->text (b->extra_string);
5897 }
5898 }
5899
5900 if (loc && is_breakpoint (b)
5901 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5902 && bp_condition_evaluator (b) == condition_evaluation_both)
5903 {
5904 uiout->text (" (");
5905 uiout->field_string ("evaluated-by",
5906 bp_location_condition_evaluator (loc));
5907 uiout->text (")");
5908 }
5909 }
5910
5911 static const char *
5912 bptype_string (enum bptype type)
5913 {
5914 struct ep_type_description
5915 {
5916 enum bptype type;
5917 const char *description;
5918 };
5919 static struct ep_type_description bptypes[] =
5920 {
5921 {bp_none, "?deleted?"},
5922 {bp_breakpoint, "breakpoint"},
5923 {bp_hardware_breakpoint, "hw breakpoint"},
5924 {bp_single_step, "sw single-step"},
5925 {bp_until, "until"},
5926 {bp_finish, "finish"},
5927 {bp_watchpoint, "watchpoint"},
5928 {bp_hardware_watchpoint, "hw watchpoint"},
5929 {bp_read_watchpoint, "read watchpoint"},
5930 {bp_access_watchpoint, "acc watchpoint"},
5931 {bp_longjmp, "longjmp"},
5932 {bp_longjmp_resume, "longjmp resume"},
5933 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5934 {bp_exception, "exception"},
5935 {bp_exception_resume, "exception resume"},
5936 {bp_step_resume, "step resume"},
5937 {bp_hp_step_resume, "high-priority step resume"},
5938 {bp_watchpoint_scope, "watchpoint scope"},
5939 {bp_call_dummy, "call dummy"},
5940 {bp_std_terminate, "std::terminate"},
5941 {bp_shlib_event, "shlib events"},
5942 {bp_thread_event, "thread events"},
5943 {bp_overlay_event, "overlay events"},
5944 {bp_longjmp_master, "longjmp master"},
5945 {bp_std_terminate_master, "std::terminate master"},
5946 {bp_exception_master, "exception master"},
5947 {bp_catchpoint, "catchpoint"},
5948 {bp_tracepoint, "tracepoint"},
5949 {bp_fast_tracepoint, "fast tracepoint"},
5950 {bp_static_tracepoint, "static tracepoint"},
5951 {bp_dprintf, "dprintf"},
5952 {bp_jit_event, "jit events"},
5953 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5954 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5955 };
5956
5957 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5958 || ((int) type != bptypes[(int) type].type))
5959 internal_error (__FILE__, __LINE__,
5960 _("bptypes table does not describe type #%d."),
5961 (int) type);
5962
5963 return bptypes[(int) type].description;
5964 }
5965
5966 /* For MI, output a field named 'thread-groups' with a list as the value.
5967 For CLI, prefix the list with the string 'inf'. */
5968
5969 static void
5970 output_thread_groups (struct ui_out *uiout,
5971 const char *field_name,
5972 const std::vector<int> &inf_nums,
5973 int mi_only)
5974 {
5975 int is_mi = uiout->is_mi_like_p ();
5976
5977 /* For backward compatibility, don't display inferiors in CLI unless
5978 there are several. Always display them for MI. */
5979 if (!is_mi && mi_only)
5980 return;
5981
5982 ui_out_emit_list list_emitter (uiout, field_name);
5983
5984 for (size_t i = 0; i < inf_nums.size (); i++)
5985 {
5986 if (is_mi)
5987 {
5988 char mi_group[10];
5989
5990 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5991 uiout->field_string (NULL, mi_group);
5992 }
5993 else
5994 {
5995 if (i == 0)
5996 uiout->text (" inf ");
5997 else
5998 uiout->text (", ");
5999
6000 uiout->text (plongest (inf_nums[i]));
6001 }
6002 }
6003 }
6004
6005 /* Print B to gdb_stdout. */
6006
6007 static void
6008 print_one_breakpoint_location (struct breakpoint *b,
6009 struct bp_location *loc,
6010 int loc_number,
6011 struct bp_location **last_loc,
6012 int allflag)
6013 {
6014 struct command_line *l;
6015 static char bpenables[] = "nynny";
6016
6017 struct ui_out *uiout = current_uiout;
6018 int header_of_multiple = 0;
6019 int part_of_multiple = (loc != NULL);
6020 struct value_print_options opts;
6021
6022 get_user_print_options (&opts);
6023
6024 gdb_assert (!loc || loc_number != 0);
6025 /* See comment in print_one_breakpoint concerning treatment of
6026 breakpoints with single disabled location. */
6027 if (loc == NULL
6028 && (b->loc != NULL
6029 && (b->loc->next != NULL || !b->loc->enabled)))
6030 header_of_multiple = 1;
6031 if (loc == NULL)
6032 loc = b->loc;
6033
6034 annotate_record ();
6035
6036 /* 1 */
6037 annotate_field (0);
6038 if (part_of_multiple)
6039 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6040 else
6041 uiout->field_int ("number", b->number);
6042
6043 /* 2 */
6044 annotate_field (1);
6045 if (part_of_multiple)
6046 uiout->field_skip ("type");
6047 else
6048 uiout->field_string ("type", bptype_string (b->type));
6049
6050 /* 3 */
6051 annotate_field (2);
6052 if (part_of_multiple)
6053 uiout->field_skip ("disp");
6054 else
6055 uiout->field_string ("disp", bpdisp_text (b->disposition));
6056
6057 /* 4 */
6058 annotate_field (3);
6059 if (part_of_multiple)
6060 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6061 else
6062 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6063
6064 /* 5 and 6 */
6065 if (b->ops != NULL && b->ops->print_one != NULL)
6066 {
6067 /* Although the print_one can possibly print all locations,
6068 calling it here is not likely to get any nice result. So,
6069 make sure there's just one location. */
6070 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6071 b->ops->print_one (b, last_loc);
6072 }
6073 else
6074 switch (b->type)
6075 {
6076 case bp_none:
6077 internal_error (__FILE__, __LINE__,
6078 _("print_one_breakpoint: bp_none encountered\n"));
6079 break;
6080
6081 case bp_watchpoint:
6082 case bp_hardware_watchpoint:
6083 case bp_read_watchpoint:
6084 case bp_access_watchpoint:
6085 {
6086 struct watchpoint *w = (struct watchpoint *) b;
6087
6088 /* Field 4, the address, is omitted (which makes the columns
6089 not line up too nicely with the headers, but the effect
6090 is relatively readable). */
6091 if (opts.addressprint)
6092 uiout->field_skip ("addr");
6093 annotate_field (5);
6094 uiout->field_string ("what", w->exp_string);
6095 }
6096 break;
6097
6098 case bp_breakpoint:
6099 case bp_hardware_breakpoint:
6100 case bp_single_step:
6101 case bp_until:
6102 case bp_finish:
6103 case bp_longjmp:
6104 case bp_longjmp_resume:
6105 case bp_longjmp_call_dummy:
6106 case bp_exception:
6107 case bp_exception_resume:
6108 case bp_step_resume:
6109 case bp_hp_step_resume:
6110 case bp_watchpoint_scope:
6111 case bp_call_dummy:
6112 case bp_std_terminate:
6113 case bp_shlib_event:
6114 case bp_thread_event:
6115 case bp_overlay_event:
6116 case bp_longjmp_master:
6117 case bp_std_terminate_master:
6118 case bp_exception_master:
6119 case bp_tracepoint:
6120 case bp_fast_tracepoint:
6121 case bp_static_tracepoint:
6122 case bp_dprintf:
6123 case bp_jit_event:
6124 case bp_gnu_ifunc_resolver:
6125 case bp_gnu_ifunc_resolver_return:
6126 if (opts.addressprint)
6127 {
6128 annotate_field (4);
6129 if (header_of_multiple)
6130 uiout->field_string ("addr", "<MULTIPLE>");
6131 else if (b->loc == NULL || loc->shlib_disabled)
6132 uiout->field_string ("addr", "<PENDING>");
6133 else
6134 uiout->field_core_addr ("addr",
6135 loc->gdbarch, loc->address);
6136 }
6137 annotate_field (5);
6138 if (!header_of_multiple)
6139 print_breakpoint_location (b, loc);
6140 if (b->loc)
6141 *last_loc = b->loc;
6142 break;
6143 }
6144
6145
6146 if (loc != NULL && !header_of_multiple)
6147 {
6148 std::vector<int> inf_nums;
6149 int mi_only = 1;
6150
6151 for (inferior *inf : all_inferiors ())
6152 {
6153 if (inf->pspace == loc->pspace)
6154 inf_nums.push_back (inf->num);
6155 }
6156
6157 /* For backward compatibility, don't display inferiors in CLI unless
6158 there are several. Always display for MI. */
6159 if (allflag
6160 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6161 && (number_of_program_spaces () > 1
6162 || number_of_inferiors () > 1)
6163 /* LOC is for existing B, it cannot be in
6164 moribund_locations and thus having NULL OWNER. */
6165 && loc->owner->type != bp_catchpoint))
6166 mi_only = 0;
6167 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6168 }
6169
6170 if (!part_of_multiple)
6171 {
6172 if (b->thread != -1)
6173 {
6174 /* FIXME: This seems to be redundant and lost here; see the
6175 "stop only in" line a little further down. */
6176 uiout->text (" thread ");
6177 uiout->field_int ("thread", b->thread);
6178 }
6179 else if (b->task != 0)
6180 {
6181 uiout->text (" task ");
6182 uiout->field_int ("task", b->task);
6183 }
6184 }
6185
6186 uiout->text ("\n");
6187
6188 if (!part_of_multiple)
6189 b->ops->print_one_detail (b, uiout);
6190
6191 if (part_of_multiple && frame_id_p (b->frame_id))
6192 {
6193 annotate_field (6);
6194 uiout->text ("\tstop only in stack frame at ");
6195 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6196 the frame ID. */
6197 uiout->field_core_addr ("frame",
6198 b->gdbarch, b->frame_id.stack_addr);
6199 uiout->text ("\n");
6200 }
6201
6202 if (!part_of_multiple && b->cond_string)
6203 {
6204 annotate_field (7);
6205 if (is_tracepoint (b))
6206 uiout->text ("\ttrace only if ");
6207 else
6208 uiout->text ("\tstop only if ");
6209 uiout->field_string ("cond", b->cond_string);
6210
6211 /* Print whether the target is doing the breakpoint's condition
6212 evaluation. If GDB is doing the evaluation, don't print anything. */
6213 if (is_breakpoint (b)
6214 && breakpoint_condition_evaluation_mode ()
6215 == condition_evaluation_target)
6216 {
6217 uiout->text (" (");
6218 uiout->field_string ("evaluated-by",
6219 bp_condition_evaluator (b));
6220 uiout->text (" evals)");
6221 }
6222 uiout->text ("\n");
6223 }
6224
6225 if (!part_of_multiple && b->thread != -1)
6226 {
6227 /* FIXME should make an annotation for this. */
6228 uiout->text ("\tstop only in thread ");
6229 if (uiout->is_mi_like_p ())
6230 uiout->field_int ("thread", b->thread);
6231 else
6232 {
6233 struct thread_info *thr = find_thread_global_id (b->thread);
6234
6235 uiout->field_string ("thread", print_thread_id (thr));
6236 }
6237 uiout->text ("\n");
6238 }
6239
6240 if (!part_of_multiple)
6241 {
6242 if (b->hit_count)
6243 {
6244 /* FIXME should make an annotation for this. */
6245 if (is_catchpoint (b))
6246 uiout->text ("\tcatchpoint");
6247 else if (is_tracepoint (b))
6248 uiout->text ("\ttracepoint");
6249 else
6250 uiout->text ("\tbreakpoint");
6251 uiout->text (" already hit ");
6252 uiout->field_int ("times", b->hit_count);
6253 if (b->hit_count == 1)
6254 uiout->text (" time\n");
6255 else
6256 uiout->text (" times\n");
6257 }
6258 else
6259 {
6260 /* Output the count also if it is zero, but only if this is mi. */
6261 if (uiout->is_mi_like_p ())
6262 uiout->field_int ("times", b->hit_count);
6263 }
6264 }
6265
6266 if (!part_of_multiple && b->ignore_count)
6267 {
6268 annotate_field (8);
6269 uiout->text ("\tignore next ");
6270 uiout->field_int ("ignore", b->ignore_count);
6271 uiout->text (" hits\n");
6272 }
6273
6274 /* Note that an enable count of 1 corresponds to "enable once"
6275 behavior, which is reported by the combination of enablement and
6276 disposition, so we don't need to mention it here. */
6277 if (!part_of_multiple && b->enable_count > 1)
6278 {
6279 annotate_field (8);
6280 uiout->text ("\tdisable after ");
6281 /* Tweak the wording to clarify that ignore and enable counts
6282 are distinct, and have additive effect. */
6283 if (b->ignore_count)
6284 uiout->text ("additional ");
6285 else
6286 uiout->text ("next ");
6287 uiout->field_int ("enable", b->enable_count);
6288 uiout->text (" hits\n");
6289 }
6290
6291 if (!part_of_multiple && is_tracepoint (b))
6292 {
6293 struct tracepoint *tp = (struct tracepoint *) b;
6294
6295 if (tp->traceframe_usage)
6296 {
6297 uiout->text ("\ttrace buffer usage ");
6298 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6299 uiout->text (" bytes\n");
6300 }
6301 }
6302
6303 l = b->commands ? b->commands.get () : NULL;
6304 if (!part_of_multiple && l)
6305 {
6306 annotate_field (9);
6307 ui_out_emit_tuple tuple_emitter (uiout, "script");
6308 print_command_lines (uiout, l, 4);
6309 }
6310
6311 if (is_tracepoint (b))
6312 {
6313 struct tracepoint *t = (struct tracepoint *) b;
6314
6315 if (!part_of_multiple && t->pass_count)
6316 {
6317 annotate_field (10);
6318 uiout->text ("\tpass count ");
6319 uiout->field_int ("pass", t->pass_count);
6320 uiout->text (" \n");
6321 }
6322
6323 /* Don't display it when tracepoint or tracepoint location is
6324 pending. */
6325 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6326 {
6327 annotate_field (11);
6328
6329 if (uiout->is_mi_like_p ())
6330 uiout->field_string ("installed",
6331 loc->inserted ? "y" : "n");
6332 else
6333 {
6334 if (loc->inserted)
6335 uiout->text ("\t");
6336 else
6337 uiout->text ("\tnot ");
6338 uiout->text ("installed on target\n");
6339 }
6340 }
6341 }
6342
6343 if (uiout->is_mi_like_p () && !part_of_multiple)
6344 {
6345 if (is_watchpoint (b))
6346 {
6347 struct watchpoint *w = (struct watchpoint *) b;
6348
6349 uiout->field_string ("original-location", w->exp_string);
6350 }
6351 else if (b->location != NULL
6352 && event_location_to_string (b->location.get ()) != NULL)
6353 uiout->field_string ("original-location",
6354 event_location_to_string (b->location.get ()));
6355 }
6356 }
6357
6358 static void
6359 print_one_breakpoint (struct breakpoint *b,
6360 struct bp_location **last_loc,
6361 int allflag)
6362 {
6363 struct ui_out *uiout = current_uiout;
6364
6365 {
6366 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6367
6368 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6369 }
6370
6371 /* If this breakpoint has custom print function,
6372 it's already printed. Otherwise, print individual
6373 locations, if any. */
6374 if (b->ops == NULL || b->ops->print_one == NULL)
6375 {
6376 /* If breakpoint has a single location that is disabled, we
6377 print it as if it had several locations, since otherwise it's
6378 hard to represent "breakpoint enabled, location disabled"
6379 situation.
6380
6381 Note that while hardware watchpoints have several locations
6382 internally, that's not a property exposed to user. */
6383 if (b->loc
6384 && !is_hardware_watchpoint (b)
6385 && (b->loc->next || !b->loc->enabled))
6386 {
6387 struct bp_location *loc;
6388 int n = 1;
6389
6390 for (loc = b->loc; loc; loc = loc->next, ++n)
6391 {
6392 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6393 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6394 }
6395 }
6396 }
6397 }
6398
6399 static int
6400 breakpoint_address_bits (struct breakpoint *b)
6401 {
6402 int print_address_bits = 0;
6403 struct bp_location *loc;
6404
6405 /* Software watchpoints that aren't watching memory don't have an
6406 address to print. */
6407 if (is_no_memory_software_watchpoint (b))
6408 return 0;
6409
6410 for (loc = b->loc; loc; loc = loc->next)
6411 {
6412 int addr_bit;
6413
6414 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6415 if (addr_bit > print_address_bits)
6416 print_address_bits = addr_bit;
6417 }
6418
6419 return print_address_bits;
6420 }
6421
6422 /* See breakpoint.h. */
6423
6424 void
6425 print_breakpoint (breakpoint *b)
6426 {
6427 struct bp_location *dummy_loc = NULL;
6428 print_one_breakpoint (b, &dummy_loc, 0);
6429 }
6430
6431 /* Return true if this breakpoint was set by the user, false if it is
6432 internal or momentary. */
6433
6434 int
6435 user_breakpoint_p (struct breakpoint *b)
6436 {
6437 return b->number > 0;
6438 }
6439
6440 /* See breakpoint.h. */
6441
6442 int
6443 pending_breakpoint_p (struct breakpoint *b)
6444 {
6445 return b->loc == NULL;
6446 }
6447
6448 /* Print information on user settable breakpoint (watchpoint, etc)
6449 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6450 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6451 FILTER is non-NULL, call it on each breakpoint and only include the
6452 ones for which it returns non-zero. Return the total number of
6453 breakpoints listed. */
6454
6455 static int
6456 breakpoint_1 (const char *args, int allflag,
6457 int (*filter) (const struct breakpoint *))
6458 {
6459 struct breakpoint *b;
6460 struct bp_location *last_loc = NULL;
6461 int nr_printable_breakpoints;
6462 struct value_print_options opts;
6463 int print_address_bits = 0;
6464 int print_type_col_width = 14;
6465 struct ui_out *uiout = current_uiout;
6466
6467 get_user_print_options (&opts);
6468
6469 /* Compute the number of rows in the table, as well as the size
6470 required for address fields. */
6471 nr_printable_breakpoints = 0;
6472 ALL_BREAKPOINTS (b)
6473 {
6474 /* If we have a filter, only list the breakpoints it accepts. */
6475 if (filter && !filter (b))
6476 continue;
6477
6478 /* If we have an "args" string, it is a list of breakpoints to
6479 accept. Skip the others. */
6480 if (args != NULL && *args != '\0')
6481 {
6482 if (allflag && parse_and_eval_long (args) != b->number)
6483 continue;
6484 if (!allflag && !number_is_in_list (args, b->number))
6485 continue;
6486 }
6487
6488 if (allflag || user_breakpoint_p (b))
6489 {
6490 int addr_bit, type_len;
6491
6492 addr_bit = breakpoint_address_bits (b);
6493 if (addr_bit > print_address_bits)
6494 print_address_bits = addr_bit;
6495
6496 type_len = strlen (bptype_string (b->type));
6497 if (type_len > print_type_col_width)
6498 print_type_col_width = type_len;
6499
6500 nr_printable_breakpoints++;
6501 }
6502 }
6503
6504 {
6505 ui_out_emit_table table_emitter (uiout,
6506 opts.addressprint ? 6 : 5,
6507 nr_printable_breakpoints,
6508 "BreakpointTable");
6509
6510 if (nr_printable_breakpoints > 0)
6511 annotate_breakpoints_headers ();
6512 if (nr_printable_breakpoints > 0)
6513 annotate_field (0);
6514 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6515 if (nr_printable_breakpoints > 0)
6516 annotate_field (1);
6517 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6518 if (nr_printable_breakpoints > 0)
6519 annotate_field (2);
6520 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6521 if (nr_printable_breakpoints > 0)
6522 annotate_field (3);
6523 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6524 if (opts.addressprint)
6525 {
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (4);
6528 if (print_address_bits <= 32)
6529 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6530 else
6531 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6532 }
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (5);
6535 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6536 uiout->table_body ();
6537 if (nr_printable_breakpoints > 0)
6538 annotate_breakpoints_table ();
6539
6540 ALL_BREAKPOINTS (b)
6541 {
6542 QUIT;
6543 /* If we have a filter, only list the breakpoints it accepts. */
6544 if (filter && !filter (b))
6545 continue;
6546
6547 /* If we have an "args" string, it is a list of breakpoints to
6548 accept. Skip the others. */
6549
6550 if (args != NULL && *args != '\0')
6551 {
6552 if (allflag) /* maintenance info breakpoint */
6553 {
6554 if (parse_and_eval_long (args) != b->number)
6555 continue;
6556 }
6557 else /* all others */
6558 {
6559 if (!number_is_in_list (args, b->number))
6560 continue;
6561 }
6562 }
6563 /* We only print out user settable breakpoints unless the
6564 allflag is set. */
6565 if (allflag || user_breakpoint_p (b))
6566 print_one_breakpoint (b, &last_loc, allflag);
6567 }
6568 }
6569
6570 if (nr_printable_breakpoints == 0)
6571 {
6572 /* If there's a filter, let the caller decide how to report
6573 empty list. */
6574 if (!filter)
6575 {
6576 if (args == NULL || *args == '\0')
6577 uiout->message ("No breakpoints or watchpoints.\n");
6578 else
6579 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6580 args);
6581 }
6582 }
6583 else
6584 {
6585 if (last_loc && !server_command)
6586 set_next_address (last_loc->gdbarch, last_loc->address);
6587 }
6588
6589 /* FIXME? Should this be moved up so that it is only called when
6590 there have been breakpoints? */
6591 annotate_breakpoints_table_end ();
6592
6593 return nr_printable_breakpoints;
6594 }
6595
6596 /* Display the value of default-collect in a way that is generally
6597 compatible with the breakpoint list. */
6598
6599 static void
6600 default_collect_info (void)
6601 {
6602 struct ui_out *uiout = current_uiout;
6603
6604 /* If it has no value (which is frequently the case), say nothing; a
6605 message like "No default-collect." gets in user's face when it's
6606 not wanted. */
6607 if (!*default_collect)
6608 return;
6609
6610 /* The following phrase lines up nicely with per-tracepoint collect
6611 actions. */
6612 uiout->text ("default collect ");
6613 uiout->field_string ("default-collect", default_collect);
6614 uiout->text (" \n");
6615 }
6616
6617 static void
6618 info_breakpoints_command (const char *args, int from_tty)
6619 {
6620 breakpoint_1 (args, 0, NULL);
6621
6622 default_collect_info ();
6623 }
6624
6625 static void
6626 info_watchpoints_command (const char *args, int from_tty)
6627 {
6628 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6629 struct ui_out *uiout = current_uiout;
6630
6631 if (num_printed == 0)
6632 {
6633 if (args == NULL || *args == '\0')
6634 uiout->message ("No watchpoints.\n");
6635 else
6636 uiout->message ("No watchpoint matching '%s'.\n", args);
6637 }
6638 }
6639
6640 static void
6641 maintenance_info_breakpoints (const char *args, int from_tty)
6642 {
6643 breakpoint_1 (args, 1, NULL);
6644
6645 default_collect_info ();
6646 }
6647
6648 static int
6649 breakpoint_has_pc (struct breakpoint *b,
6650 struct program_space *pspace,
6651 CORE_ADDR pc, struct obj_section *section)
6652 {
6653 struct bp_location *bl = b->loc;
6654
6655 for (; bl; bl = bl->next)
6656 {
6657 if (bl->pspace == pspace
6658 && bl->address == pc
6659 && (!overlay_debugging || bl->section == section))
6660 return 1;
6661 }
6662 return 0;
6663 }
6664
6665 /* Print a message describing any user-breakpoints set at PC. This
6666 concerns with logical breakpoints, so we match program spaces, not
6667 address spaces. */
6668
6669 static void
6670 describe_other_breakpoints (struct gdbarch *gdbarch,
6671 struct program_space *pspace, CORE_ADDR pc,
6672 struct obj_section *section, int thread)
6673 {
6674 int others = 0;
6675 struct breakpoint *b;
6676
6677 ALL_BREAKPOINTS (b)
6678 others += (user_breakpoint_p (b)
6679 && breakpoint_has_pc (b, pspace, pc, section));
6680 if (others > 0)
6681 {
6682 if (others == 1)
6683 printf_filtered (_("Note: breakpoint "));
6684 else /* if (others == ???) */
6685 printf_filtered (_("Note: breakpoints "));
6686 ALL_BREAKPOINTS (b)
6687 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6688 {
6689 others--;
6690 printf_filtered ("%d", b->number);
6691 if (b->thread == -1 && thread != -1)
6692 printf_filtered (" (all threads)");
6693 else if (b->thread != -1)
6694 printf_filtered (" (thread %d)", b->thread);
6695 printf_filtered ("%s%s ",
6696 ((b->enable_state == bp_disabled
6697 || b->enable_state == bp_call_disabled)
6698 ? " (disabled)"
6699 : ""),
6700 (others > 1) ? ","
6701 : ((others == 1) ? " and" : ""));
6702 }
6703 printf_filtered (_("also set at pc "));
6704 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6705 printf_filtered (".\n");
6706 }
6707 }
6708 \f
6709
6710 /* Return true iff it is meaningful to use the address member of
6711 BPT locations. For some breakpoint types, the locations' address members
6712 are irrelevant and it makes no sense to attempt to compare them to other
6713 addresses (or use them for any other purpose either).
6714
6715 More specifically, each of the following breakpoint types will
6716 always have a zero valued location address and we don't want to mark
6717 breakpoints of any of these types to be a duplicate of an actual
6718 breakpoint location at address zero:
6719
6720 bp_watchpoint
6721 bp_catchpoint
6722
6723 */
6724
6725 static int
6726 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6727 {
6728 enum bptype type = bpt->type;
6729
6730 return (type != bp_watchpoint && type != bp_catchpoint);
6731 }
6732
6733 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6734 true if LOC1 and LOC2 represent the same watchpoint location. */
6735
6736 static int
6737 watchpoint_locations_match (struct bp_location *loc1,
6738 struct bp_location *loc2)
6739 {
6740 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6741 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6742
6743 /* Both of them must exist. */
6744 gdb_assert (w1 != NULL);
6745 gdb_assert (w2 != NULL);
6746
6747 /* If the target can evaluate the condition expression in hardware,
6748 then we we need to insert both watchpoints even if they are at
6749 the same place. Otherwise the watchpoint will only trigger when
6750 the condition of whichever watchpoint was inserted evaluates to
6751 true, not giving a chance for GDB to check the condition of the
6752 other watchpoint. */
6753 if ((w1->cond_exp
6754 && target_can_accel_watchpoint_condition (loc1->address,
6755 loc1->length,
6756 loc1->watchpoint_type,
6757 w1->cond_exp.get ()))
6758 || (w2->cond_exp
6759 && target_can_accel_watchpoint_condition (loc2->address,
6760 loc2->length,
6761 loc2->watchpoint_type,
6762 w2->cond_exp.get ())))
6763 return 0;
6764
6765 /* Note that this checks the owner's type, not the location's. In
6766 case the target does not support read watchpoints, but does
6767 support access watchpoints, we'll have bp_read_watchpoint
6768 watchpoints with hw_access locations. Those should be considered
6769 duplicates of hw_read locations. The hw_read locations will
6770 become hw_access locations later. */
6771 return (loc1->owner->type == loc2->owner->type
6772 && loc1->pspace->aspace == loc2->pspace->aspace
6773 && loc1->address == loc2->address
6774 && loc1->length == loc2->length);
6775 }
6776
6777 /* See breakpoint.h. */
6778
6779 int
6780 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6781 const address_space *aspace2, CORE_ADDR addr2)
6782 {
6783 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6784 || aspace1 == aspace2)
6785 && addr1 == addr2);
6786 }
6787
6788 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6789 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6790 matches ASPACE2. On targets that have global breakpoints, the address
6791 space doesn't really matter. */
6792
6793 static int
6794 breakpoint_address_match_range (const address_space *aspace1,
6795 CORE_ADDR addr1,
6796 int len1, const address_space *aspace2,
6797 CORE_ADDR addr2)
6798 {
6799 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6800 || aspace1 == aspace2)
6801 && addr2 >= addr1 && addr2 < addr1 + len1);
6802 }
6803
6804 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6805 a ranged breakpoint. In most targets, a match happens only if ASPACE
6806 matches the breakpoint's address space. On targets that have global
6807 breakpoints, the address space doesn't really matter. */
6808
6809 static int
6810 breakpoint_location_address_match (struct bp_location *bl,
6811 const address_space *aspace,
6812 CORE_ADDR addr)
6813 {
6814 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6815 aspace, addr)
6816 || (bl->length
6817 && breakpoint_address_match_range (bl->pspace->aspace,
6818 bl->address, bl->length,
6819 aspace, addr)));
6820 }
6821
6822 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6823 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6824 match happens only if ASPACE matches the breakpoint's address
6825 space. On targets that have global breakpoints, the address space
6826 doesn't really matter. */
6827
6828 static int
6829 breakpoint_location_address_range_overlap (struct bp_location *bl,
6830 const address_space *aspace,
6831 CORE_ADDR addr, int len)
6832 {
6833 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6834 || bl->pspace->aspace == aspace)
6835 {
6836 int bl_len = bl->length != 0 ? bl->length : 1;
6837
6838 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6839 return 1;
6840 }
6841 return 0;
6842 }
6843
6844 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6845 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6846 true, otherwise returns false. */
6847
6848 static int
6849 tracepoint_locations_match (struct bp_location *loc1,
6850 struct bp_location *loc2)
6851 {
6852 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6853 /* Since tracepoint locations are never duplicated with others', tracepoint
6854 locations at the same address of different tracepoints are regarded as
6855 different locations. */
6856 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6857 else
6858 return 0;
6859 }
6860
6861 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6862 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6863 represent the same location. */
6864
6865 static int
6866 breakpoint_locations_match (struct bp_location *loc1,
6867 struct bp_location *loc2)
6868 {
6869 int hw_point1, hw_point2;
6870
6871 /* Both of them must not be in moribund_locations. */
6872 gdb_assert (loc1->owner != NULL);
6873 gdb_assert (loc2->owner != NULL);
6874
6875 hw_point1 = is_hardware_watchpoint (loc1->owner);
6876 hw_point2 = is_hardware_watchpoint (loc2->owner);
6877
6878 if (hw_point1 != hw_point2)
6879 return 0;
6880 else if (hw_point1)
6881 return watchpoint_locations_match (loc1, loc2);
6882 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6883 return tracepoint_locations_match (loc1, loc2);
6884 else
6885 /* We compare bp_location.length in order to cover ranged breakpoints. */
6886 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6887 loc2->pspace->aspace, loc2->address)
6888 && loc1->length == loc2->length);
6889 }
6890
6891 static void
6892 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6893 int bnum, int have_bnum)
6894 {
6895 /* The longest string possibly returned by hex_string_custom
6896 is 50 chars. These must be at least that big for safety. */
6897 char astr1[64];
6898 char astr2[64];
6899
6900 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6901 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6902 if (have_bnum)
6903 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6904 bnum, astr1, astr2);
6905 else
6906 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6907 }
6908
6909 /* Adjust a breakpoint's address to account for architectural
6910 constraints on breakpoint placement. Return the adjusted address.
6911 Note: Very few targets require this kind of adjustment. For most
6912 targets, this function is simply the identity function. */
6913
6914 static CORE_ADDR
6915 adjust_breakpoint_address (struct gdbarch *gdbarch,
6916 CORE_ADDR bpaddr, enum bptype bptype)
6917 {
6918 if (bptype == bp_watchpoint
6919 || bptype == bp_hardware_watchpoint
6920 || bptype == bp_read_watchpoint
6921 || bptype == bp_access_watchpoint
6922 || bptype == bp_catchpoint)
6923 {
6924 /* Watchpoints and the various bp_catch_* eventpoints should not
6925 have their addresses modified. */
6926 return bpaddr;
6927 }
6928 else if (bptype == bp_single_step)
6929 {
6930 /* Single-step breakpoints should not have their addresses
6931 modified. If there's any architectural constrain that
6932 applies to this address, then it should have already been
6933 taken into account when the breakpoint was created in the
6934 first place. If we didn't do this, stepping through e.g.,
6935 Thumb-2 IT blocks would break. */
6936 return bpaddr;
6937 }
6938 else
6939 {
6940 CORE_ADDR adjusted_bpaddr = bpaddr;
6941
6942 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6943 {
6944 /* Some targets have architectural constraints on the placement
6945 of breakpoint instructions. Obtain the adjusted address. */
6946 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6947 }
6948
6949 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6950
6951 /* An adjusted breakpoint address can significantly alter
6952 a user's expectations. Print a warning if an adjustment
6953 is required. */
6954 if (adjusted_bpaddr != bpaddr)
6955 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6956
6957 return adjusted_bpaddr;
6958 }
6959 }
6960
6961 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6962 {
6963 bp_location *loc = this;
6964
6965 gdb_assert (ops != NULL);
6966
6967 loc->ops = ops;
6968 loc->owner = owner;
6969 loc->cond_bytecode = NULL;
6970 loc->shlib_disabled = 0;
6971 loc->enabled = 1;
6972
6973 switch (owner->type)
6974 {
6975 case bp_breakpoint:
6976 case bp_single_step:
6977 case bp_until:
6978 case bp_finish:
6979 case bp_longjmp:
6980 case bp_longjmp_resume:
6981 case bp_longjmp_call_dummy:
6982 case bp_exception:
6983 case bp_exception_resume:
6984 case bp_step_resume:
6985 case bp_hp_step_resume:
6986 case bp_watchpoint_scope:
6987 case bp_call_dummy:
6988 case bp_std_terminate:
6989 case bp_shlib_event:
6990 case bp_thread_event:
6991 case bp_overlay_event:
6992 case bp_jit_event:
6993 case bp_longjmp_master:
6994 case bp_std_terminate_master:
6995 case bp_exception_master:
6996 case bp_gnu_ifunc_resolver:
6997 case bp_gnu_ifunc_resolver_return:
6998 case bp_dprintf:
6999 loc->loc_type = bp_loc_software_breakpoint;
7000 mark_breakpoint_location_modified (loc);
7001 break;
7002 case bp_hardware_breakpoint:
7003 loc->loc_type = bp_loc_hardware_breakpoint;
7004 mark_breakpoint_location_modified (loc);
7005 break;
7006 case bp_hardware_watchpoint:
7007 case bp_read_watchpoint:
7008 case bp_access_watchpoint:
7009 loc->loc_type = bp_loc_hardware_watchpoint;
7010 break;
7011 case bp_watchpoint:
7012 case bp_catchpoint:
7013 case bp_tracepoint:
7014 case bp_fast_tracepoint:
7015 case bp_static_tracepoint:
7016 loc->loc_type = bp_loc_other;
7017 break;
7018 default:
7019 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7020 }
7021
7022 loc->refc = 1;
7023 }
7024
7025 /* Allocate a struct bp_location. */
7026
7027 static struct bp_location *
7028 allocate_bp_location (struct breakpoint *bpt)
7029 {
7030 return bpt->ops->allocate_location (bpt);
7031 }
7032
7033 static void
7034 free_bp_location (struct bp_location *loc)
7035 {
7036 loc->ops->dtor (loc);
7037 delete loc;
7038 }
7039
7040 /* Increment reference count. */
7041
7042 static void
7043 incref_bp_location (struct bp_location *bl)
7044 {
7045 ++bl->refc;
7046 }
7047
7048 /* Decrement reference count. If the reference count reaches 0,
7049 destroy the bp_location. Sets *BLP to NULL. */
7050
7051 static void
7052 decref_bp_location (struct bp_location **blp)
7053 {
7054 gdb_assert ((*blp)->refc > 0);
7055
7056 if (--(*blp)->refc == 0)
7057 free_bp_location (*blp);
7058 *blp = NULL;
7059 }
7060
7061 /* Add breakpoint B at the end of the global breakpoint chain. */
7062
7063 static breakpoint *
7064 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7065 {
7066 struct breakpoint *b1;
7067 struct breakpoint *result = b.get ();
7068
7069 /* Add this breakpoint to the end of the chain so that a list of
7070 breakpoints will come out in order of increasing numbers. */
7071
7072 b1 = breakpoint_chain;
7073 if (b1 == 0)
7074 breakpoint_chain = b.release ();
7075 else
7076 {
7077 while (b1->next)
7078 b1 = b1->next;
7079 b1->next = b.release ();
7080 }
7081
7082 return result;
7083 }
7084
7085 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7086
7087 static void
7088 init_raw_breakpoint_without_location (struct breakpoint *b,
7089 struct gdbarch *gdbarch,
7090 enum bptype bptype,
7091 const struct breakpoint_ops *ops)
7092 {
7093 gdb_assert (ops != NULL);
7094
7095 b->ops = ops;
7096 b->type = bptype;
7097 b->gdbarch = gdbarch;
7098 b->language = current_language->la_language;
7099 b->input_radix = input_radix;
7100 b->related_breakpoint = b;
7101 }
7102
7103 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7104 that has type BPTYPE and has no locations as yet. */
7105
7106 static struct breakpoint *
7107 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7108 enum bptype bptype,
7109 const struct breakpoint_ops *ops)
7110 {
7111 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7112
7113 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7114 return add_to_breakpoint_chain (std::move (b));
7115 }
7116
7117 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7118 resolutions should be made as the user specified the location explicitly
7119 enough. */
7120
7121 static void
7122 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7123 {
7124 gdb_assert (loc->owner != NULL);
7125
7126 if (loc->owner->type == bp_breakpoint
7127 || loc->owner->type == bp_hardware_breakpoint
7128 || is_tracepoint (loc->owner))
7129 {
7130 const char *function_name;
7131
7132 if (loc->msymbol != NULL
7133 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7134 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7135 && !explicit_loc)
7136 {
7137 struct breakpoint *b = loc->owner;
7138
7139 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7140
7141 if (b->type == bp_breakpoint && b->loc == loc
7142 && loc->next == NULL && b->related_breakpoint == b)
7143 {
7144 /* Create only the whole new breakpoint of this type but do not
7145 mess more complicated breakpoints with multiple locations. */
7146 b->type = bp_gnu_ifunc_resolver;
7147 /* Remember the resolver's address for use by the return
7148 breakpoint. */
7149 loc->related_address = loc->address;
7150 }
7151 }
7152 else
7153 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7154
7155 if (function_name)
7156 loc->function_name = xstrdup (function_name);
7157 }
7158 }
7159
7160 /* Attempt to determine architecture of location identified by SAL. */
7161 struct gdbarch *
7162 get_sal_arch (struct symtab_and_line sal)
7163 {
7164 if (sal.section)
7165 return get_objfile_arch (sal.section->objfile);
7166 if (sal.symtab)
7167 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7168
7169 return NULL;
7170 }
7171
7172 /* Low level routine for partially initializing a breakpoint of type
7173 BPTYPE. The newly created breakpoint's address, section, source
7174 file name, and line number are provided by SAL.
7175
7176 It is expected that the caller will complete the initialization of
7177 the newly created breakpoint struct as well as output any status
7178 information regarding the creation of a new breakpoint. */
7179
7180 static void
7181 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7182 struct symtab_and_line sal, enum bptype bptype,
7183 const struct breakpoint_ops *ops)
7184 {
7185 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7186
7187 add_location_to_breakpoint (b, &sal);
7188
7189 if (bptype != bp_catchpoint)
7190 gdb_assert (sal.pspace != NULL);
7191
7192 /* Store the program space that was used to set the breakpoint,
7193 except for ordinary breakpoints, which are independent of the
7194 program space. */
7195 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7196 b->pspace = sal.pspace;
7197 }
7198
7199 /* set_raw_breakpoint is a low level routine for allocating and
7200 partially initializing a breakpoint of type BPTYPE. The newly
7201 created breakpoint's address, section, source file name, and line
7202 number are provided by SAL. The newly created and partially
7203 initialized breakpoint is added to the breakpoint chain and
7204 is also returned as the value of this function.
7205
7206 It is expected that the caller will complete the initialization of
7207 the newly created breakpoint struct as well as output any status
7208 information regarding the creation of a new breakpoint. In
7209 particular, set_raw_breakpoint does NOT set the breakpoint
7210 number! Care should be taken to not allow an error to occur
7211 prior to completing the initialization of the breakpoint. If this
7212 should happen, a bogus breakpoint will be left on the chain. */
7213
7214 struct breakpoint *
7215 set_raw_breakpoint (struct gdbarch *gdbarch,
7216 struct symtab_and_line sal, enum bptype bptype,
7217 const struct breakpoint_ops *ops)
7218 {
7219 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7220
7221 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7222 return add_to_breakpoint_chain (std::move (b));
7223 }
7224
7225 /* Call this routine when stepping and nexting to enable a breakpoint
7226 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7227 initiated the operation. */
7228
7229 void
7230 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7231 {
7232 struct breakpoint *b, *b_tmp;
7233 int thread = tp->global_num;
7234
7235 /* To avoid having to rescan all objfile symbols at every step,
7236 we maintain a list of continually-inserted but always disabled
7237 longjmp "master" breakpoints. Here, we simply create momentary
7238 clones of those and enable them for the requested thread. */
7239 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7240 if (b->pspace == current_program_space
7241 && (b->type == bp_longjmp_master
7242 || b->type == bp_exception_master))
7243 {
7244 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7245 struct breakpoint *clone;
7246
7247 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7248 after their removal. */
7249 clone = momentary_breakpoint_from_master (b, type,
7250 &momentary_breakpoint_ops, 1);
7251 clone->thread = thread;
7252 }
7253
7254 tp->initiating_frame = frame;
7255 }
7256
7257 /* Delete all longjmp breakpoints from THREAD. */
7258 void
7259 delete_longjmp_breakpoint (int thread)
7260 {
7261 struct breakpoint *b, *b_tmp;
7262
7263 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7264 if (b->type == bp_longjmp || b->type == bp_exception)
7265 {
7266 if (b->thread == thread)
7267 delete_breakpoint (b);
7268 }
7269 }
7270
7271 void
7272 delete_longjmp_breakpoint_at_next_stop (int thread)
7273 {
7274 struct breakpoint *b, *b_tmp;
7275
7276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7277 if (b->type == bp_longjmp || b->type == bp_exception)
7278 {
7279 if (b->thread == thread)
7280 b->disposition = disp_del_at_next_stop;
7281 }
7282 }
7283
7284 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7285 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7286 pointer to any of them. Return NULL if this system cannot place longjmp
7287 breakpoints. */
7288
7289 struct breakpoint *
7290 set_longjmp_breakpoint_for_call_dummy (void)
7291 {
7292 struct breakpoint *b, *retval = NULL;
7293
7294 ALL_BREAKPOINTS (b)
7295 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7296 {
7297 struct breakpoint *new_b;
7298
7299 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7300 &momentary_breakpoint_ops,
7301 1);
7302 new_b->thread = inferior_thread ()->global_num;
7303
7304 /* Link NEW_B into the chain of RETVAL breakpoints. */
7305
7306 gdb_assert (new_b->related_breakpoint == new_b);
7307 if (retval == NULL)
7308 retval = new_b;
7309 new_b->related_breakpoint = retval;
7310 while (retval->related_breakpoint != new_b->related_breakpoint)
7311 retval = retval->related_breakpoint;
7312 retval->related_breakpoint = new_b;
7313 }
7314
7315 return retval;
7316 }
7317
7318 /* Verify all existing dummy frames and their associated breakpoints for
7319 TP. Remove those which can no longer be found in the current frame
7320 stack.
7321
7322 You should call this function only at places where it is safe to currently
7323 unwind the whole stack. Failed stack unwind would discard live dummy
7324 frames. */
7325
7326 void
7327 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7328 {
7329 struct breakpoint *b, *b_tmp;
7330
7331 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7332 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7333 {
7334 struct breakpoint *dummy_b = b->related_breakpoint;
7335
7336 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7337 dummy_b = dummy_b->related_breakpoint;
7338 if (dummy_b->type != bp_call_dummy
7339 || frame_find_by_id (dummy_b->frame_id) != NULL)
7340 continue;
7341
7342 dummy_frame_discard (dummy_b->frame_id, tp);
7343
7344 while (b->related_breakpoint != b)
7345 {
7346 if (b_tmp == b->related_breakpoint)
7347 b_tmp = b->related_breakpoint->next;
7348 delete_breakpoint (b->related_breakpoint);
7349 }
7350 delete_breakpoint (b);
7351 }
7352 }
7353
7354 void
7355 enable_overlay_breakpoints (void)
7356 {
7357 struct breakpoint *b;
7358
7359 ALL_BREAKPOINTS (b)
7360 if (b->type == bp_overlay_event)
7361 {
7362 b->enable_state = bp_enabled;
7363 update_global_location_list (UGLL_MAY_INSERT);
7364 overlay_events_enabled = 1;
7365 }
7366 }
7367
7368 void
7369 disable_overlay_breakpoints (void)
7370 {
7371 struct breakpoint *b;
7372
7373 ALL_BREAKPOINTS (b)
7374 if (b->type == bp_overlay_event)
7375 {
7376 b->enable_state = bp_disabled;
7377 update_global_location_list (UGLL_DONT_INSERT);
7378 overlay_events_enabled = 0;
7379 }
7380 }
7381
7382 /* Set an active std::terminate breakpoint for each std::terminate
7383 master breakpoint. */
7384 void
7385 set_std_terminate_breakpoint (void)
7386 {
7387 struct breakpoint *b, *b_tmp;
7388
7389 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7390 if (b->pspace == current_program_space
7391 && b->type == bp_std_terminate_master)
7392 {
7393 momentary_breakpoint_from_master (b, bp_std_terminate,
7394 &momentary_breakpoint_ops, 1);
7395 }
7396 }
7397
7398 /* Delete all the std::terminate breakpoints. */
7399 void
7400 delete_std_terminate_breakpoint (void)
7401 {
7402 struct breakpoint *b, *b_tmp;
7403
7404 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7405 if (b->type == bp_std_terminate)
7406 delete_breakpoint (b);
7407 }
7408
7409 struct breakpoint *
7410 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7411 {
7412 struct breakpoint *b;
7413
7414 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7415 &internal_breakpoint_ops);
7416
7417 b->enable_state = bp_enabled;
7418 /* location has to be used or breakpoint_re_set will delete me. */
7419 b->location = new_address_location (b->loc->address, NULL, 0);
7420
7421 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7422
7423 return b;
7424 }
7425
7426 struct lang_and_radix
7427 {
7428 enum language lang;
7429 int radix;
7430 };
7431
7432 /* Create a breakpoint for JIT code registration and unregistration. */
7433
7434 struct breakpoint *
7435 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7436 {
7437 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7438 &internal_breakpoint_ops);
7439 }
7440
7441 /* Remove JIT code registration and unregistration breakpoint(s). */
7442
7443 void
7444 remove_jit_event_breakpoints (void)
7445 {
7446 struct breakpoint *b, *b_tmp;
7447
7448 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7449 if (b->type == bp_jit_event
7450 && b->loc->pspace == current_program_space)
7451 delete_breakpoint (b);
7452 }
7453
7454 void
7455 remove_solib_event_breakpoints (void)
7456 {
7457 struct breakpoint *b, *b_tmp;
7458
7459 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7460 if (b->type == bp_shlib_event
7461 && b->loc->pspace == current_program_space)
7462 delete_breakpoint (b);
7463 }
7464
7465 /* See breakpoint.h. */
7466
7467 void
7468 remove_solib_event_breakpoints_at_next_stop (void)
7469 {
7470 struct breakpoint *b, *b_tmp;
7471
7472 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7473 if (b->type == bp_shlib_event
7474 && b->loc->pspace == current_program_space)
7475 b->disposition = disp_del_at_next_stop;
7476 }
7477
7478 /* Helper for create_solib_event_breakpoint /
7479 create_and_insert_solib_event_breakpoint. Allows specifying which
7480 INSERT_MODE to pass through to update_global_location_list. */
7481
7482 static struct breakpoint *
7483 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7484 enum ugll_insert_mode insert_mode)
7485 {
7486 struct breakpoint *b;
7487
7488 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7489 &internal_breakpoint_ops);
7490 update_global_location_list_nothrow (insert_mode);
7491 return b;
7492 }
7493
7494 struct breakpoint *
7495 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7496 {
7497 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7498 }
7499
7500 /* See breakpoint.h. */
7501
7502 struct breakpoint *
7503 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7504 {
7505 struct breakpoint *b;
7506
7507 /* Explicitly tell update_global_location_list to insert
7508 locations. */
7509 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7510 if (!b->loc->inserted)
7511 {
7512 delete_breakpoint (b);
7513 return NULL;
7514 }
7515 return b;
7516 }
7517
7518 /* Disable any breakpoints that are on code in shared libraries. Only
7519 apply to enabled breakpoints, disabled ones can just stay disabled. */
7520
7521 void
7522 disable_breakpoints_in_shlibs (void)
7523 {
7524 struct bp_location *loc, **locp_tmp;
7525
7526 ALL_BP_LOCATIONS (loc, locp_tmp)
7527 {
7528 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7529 struct breakpoint *b = loc->owner;
7530
7531 /* We apply the check to all breakpoints, including disabled for
7532 those with loc->duplicate set. This is so that when breakpoint
7533 becomes enabled, or the duplicate is removed, gdb will try to
7534 insert all breakpoints. If we don't set shlib_disabled here,
7535 we'll try to insert those breakpoints and fail. */
7536 if (((b->type == bp_breakpoint)
7537 || (b->type == bp_jit_event)
7538 || (b->type == bp_hardware_breakpoint)
7539 || (is_tracepoint (b)))
7540 && loc->pspace == current_program_space
7541 && !loc->shlib_disabled
7542 && solib_name_from_address (loc->pspace, loc->address)
7543 )
7544 {
7545 loc->shlib_disabled = 1;
7546 }
7547 }
7548 }
7549
7550 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7551 notification of unloaded_shlib. Only apply to enabled breakpoints,
7552 disabled ones can just stay disabled. */
7553
7554 static void
7555 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7556 {
7557 struct bp_location *loc, **locp_tmp;
7558 int disabled_shlib_breaks = 0;
7559
7560 ALL_BP_LOCATIONS (loc, locp_tmp)
7561 {
7562 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7563 struct breakpoint *b = loc->owner;
7564
7565 if (solib->pspace == loc->pspace
7566 && !loc->shlib_disabled
7567 && (((b->type == bp_breakpoint
7568 || b->type == bp_jit_event
7569 || b->type == bp_hardware_breakpoint)
7570 && (loc->loc_type == bp_loc_hardware_breakpoint
7571 || loc->loc_type == bp_loc_software_breakpoint))
7572 || is_tracepoint (b))
7573 && solib_contains_address_p (solib, loc->address))
7574 {
7575 loc->shlib_disabled = 1;
7576 /* At this point, we cannot rely on remove_breakpoint
7577 succeeding so we must mark the breakpoint as not inserted
7578 to prevent future errors occurring in remove_breakpoints. */
7579 loc->inserted = 0;
7580
7581 /* This may cause duplicate notifications for the same breakpoint. */
7582 gdb::observers::breakpoint_modified.notify (b);
7583
7584 if (!disabled_shlib_breaks)
7585 {
7586 target_terminal::ours_for_output ();
7587 warning (_("Temporarily disabling breakpoints "
7588 "for unloaded shared library \"%s\""),
7589 solib->so_name);
7590 }
7591 disabled_shlib_breaks = 1;
7592 }
7593 }
7594 }
7595
7596 /* Disable any breakpoints and tracepoints in OBJFILE upon
7597 notification of free_objfile. Only apply to enabled breakpoints,
7598 disabled ones can just stay disabled. */
7599
7600 static void
7601 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7602 {
7603 struct breakpoint *b;
7604
7605 if (objfile == NULL)
7606 return;
7607
7608 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7609 managed by the user with add-symbol-file/remove-symbol-file.
7610 Similarly to how breakpoints in shared libraries are handled in
7611 response to "nosharedlibrary", mark breakpoints in such modules
7612 shlib_disabled so they end up uninserted on the next global
7613 location list update. Shared libraries not loaded by the user
7614 aren't handled here -- they're already handled in
7615 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7616 solib_unloaded observer. We skip objfiles that are not
7617 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7618 main objfile). */
7619 if ((objfile->flags & OBJF_SHARED) == 0
7620 || (objfile->flags & OBJF_USERLOADED) == 0)
7621 return;
7622
7623 ALL_BREAKPOINTS (b)
7624 {
7625 struct bp_location *loc;
7626 int bp_modified = 0;
7627
7628 if (!is_breakpoint (b) && !is_tracepoint (b))
7629 continue;
7630
7631 for (loc = b->loc; loc != NULL; loc = loc->next)
7632 {
7633 CORE_ADDR loc_addr = loc->address;
7634
7635 if (loc->loc_type != bp_loc_hardware_breakpoint
7636 && loc->loc_type != bp_loc_software_breakpoint)
7637 continue;
7638
7639 if (loc->shlib_disabled != 0)
7640 continue;
7641
7642 if (objfile->pspace != loc->pspace)
7643 continue;
7644
7645 if (loc->loc_type != bp_loc_hardware_breakpoint
7646 && loc->loc_type != bp_loc_software_breakpoint)
7647 continue;
7648
7649 if (is_addr_in_objfile (loc_addr, objfile))
7650 {
7651 loc->shlib_disabled = 1;
7652 /* At this point, we don't know whether the object was
7653 unmapped from the inferior or not, so leave the
7654 inserted flag alone. We'll handle failure to
7655 uninsert quietly, in case the object was indeed
7656 unmapped. */
7657
7658 mark_breakpoint_location_modified (loc);
7659
7660 bp_modified = 1;
7661 }
7662 }
7663
7664 if (bp_modified)
7665 gdb::observers::breakpoint_modified.notify (b);
7666 }
7667 }
7668
7669 /* FORK & VFORK catchpoints. */
7670
7671 /* An instance of this type is used to represent a fork or vfork
7672 catchpoint. A breakpoint is really of this type iff its ops pointer points
7673 to CATCH_FORK_BREAKPOINT_OPS. */
7674
7675 struct fork_catchpoint : public breakpoint
7676 {
7677 /* Process id of a child process whose forking triggered this
7678 catchpoint. This field is only valid immediately after this
7679 catchpoint has triggered. */
7680 ptid_t forked_inferior_pid;
7681 };
7682
7683 /* Implement the "insert" breakpoint_ops method for fork
7684 catchpoints. */
7685
7686 static int
7687 insert_catch_fork (struct bp_location *bl)
7688 {
7689 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7690 }
7691
7692 /* Implement the "remove" breakpoint_ops method for fork
7693 catchpoints. */
7694
7695 static int
7696 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7697 {
7698 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7699 }
7700
7701 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7702 catchpoints. */
7703
7704 static int
7705 breakpoint_hit_catch_fork (const struct bp_location *bl,
7706 const address_space *aspace, CORE_ADDR bp_addr,
7707 const struct target_waitstatus *ws)
7708 {
7709 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7710
7711 if (ws->kind != TARGET_WAITKIND_FORKED)
7712 return 0;
7713
7714 c->forked_inferior_pid = ws->value.related_pid;
7715 return 1;
7716 }
7717
7718 /* Implement the "print_it" breakpoint_ops method for fork
7719 catchpoints. */
7720
7721 static enum print_stop_action
7722 print_it_catch_fork (bpstat bs)
7723 {
7724 struct ui_out *uiout = current_uiout;
7725 struct breakpoint *b = bs->breakpoint_at;
7726 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7727
7728 annotate_catchpoint (b->number);
7729 maybe_print_thread_hit_breakpoint (uiout);
7730 if (b->disposition == disp_del)
7731 uiout->text ("Temporary catchpoint ");
7732 else
7733 uiout->text ("Catchpoint ");
7734 if (uiout->is_mi_like_p ())
7735 {
7736 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7737 uiout->field_string ("disp", bpdisp_text (b->disposition));
7738 }
7739 uiout->field_int ("bkptno", b->number);
7740 uiout->text (" (forked process ");
7741 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7742 uiout->text ("), ");
7743 return PRINT_SRC_AND_LOC;
7744 }
7745
7746 /* Implement the "print_one" breakpoint_ops method for fork
7747 catchpoints. */
7748
7749 static void
7750 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7751 {
7752 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7753 struct value_print_options opts;
7754 struct ui_out *uiout = current_uiout;
7755
7756 get_user_print_options (&opts);
7757
7758 /* Field 4, the address, is omitted (which makes the columns not
7759 line up too nicely with the headers, but the effect is relatively
7760 readable). */
7761 if (opts.addressprint)
7762 uiout->field_skip ("addr");
7763 annotate_field (5);
7764 uiout->text ("fork");
7765 if (c->forked_inferior_pid != null_ptid)
7766 {
7767 uiout->text (", process ");
7768 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7769 uiout->spaces (1);
7770 }
7771
7772 if (uiout->is_mi_like_p ())
7773 uiout->field_string ("catch-type", "fork");
7774 }
7775
7776 /* Implement the "print_mention" breakpoint_ops method for fork
7777 catchpoints. */
7778
7779 static void
7780 print_mention_catch_fork (struct breakpoint *b)
7781 {
7782 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7783 }
7784
7785 /* Implement the "print_recreate" breakpoint_ops method for fork
7786 catchpoints. */
7787
7788 static void
7789 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7790 {
7791 fprintf_unfiltered (fp, "catch fork");
7792 print_recreate_thread (b, fp);
7793 }
7794
7795 /* The breakpoint_ops structure to be used in fork catchpoints. */
7796
7797 static struct breakpoint_ops catch_fork_breakpoint_ops;
7798
7799 /* Implement the "insert" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802 static int
7803 insert_catch_vfork (struct bp_location *bl)
7804 {
7805 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7806 }
7807
7808 /* Implement the "remove" breakpoint_ops method for vfork
7809 catchpoints. */
7810
7811 static int
7812 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7813 {
7814 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7815 }
7816
7817 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7818 catchpoints. */
7819
7820 static int
7821 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7822 const address_space *aspace, CORE_ADDR bp_addr,
7823 const struct target_waitstatus *ws)
7824 {
7825 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7826
7827 if (ws->kind != TARGET_WAITKIND_VFORKED)
7828 return 0;
7829
7830 c->forked_inferior_pid = ws->value.related_pid;
7831 return 1;
7832 }
7833
7834 /* Implement the "print_it" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static enum print_stop_action
7838 print_it_catch_vfork (bpstat bs)
7839 {
7840 struct ui_out *uiout = current_uiout;
7841 struct breakpoint *b = bs->breakpoint_at;
7842 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7843
7844 annotate_catchpoint (b->number);
7845 maybe_print_thread_hit_breakpoint (uiout);
7846 if (b->disposition == disp_del)
7847 uiout->text ("Temporary catchpoint ");
7848 else
7849 uiout->text ("Catchpoint ");
7850 if (uiout->is_mi_like_p ())
7851 {
7852 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7853 uiout->field_string ("disp", bpdisp_text (b->disposition));
7854 }
7855 uiout->field_int ("bkptno", b->number);
7856 uiout->text (" (vforked process ");
7857 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7858 uiout->text ("), ");
7859 return PRINT_SRC_AND_LOC;
7860 }
7861
7862 /* Implement the "print_one" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static void
7866 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7867 {
7868 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7869 struct value_print_options opts;
7870 struct ui_out *uiout = current_uiout;
7871
7872 get_user_print_options (&opts);
7873 /* Field 4, the address, is omitted (which makes the columns not
7874 line up too nicely with the headers, but the effect is relatively
7875 readable). */
7876 if (opts.addressprint)
7877 uiout->field_skip ("addr");
7878 annotate_field (5);
7879 uiout->text ("vfork");
7880 if (c->forked_inferior_pid != null_ptid)
7881 {
7882 uiout->text (", process ");
7883 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7884 uiout->spaces (1);
7885 }
7886
7887 if (uiout->is_mi_like_p ())
7888 uiout->field_string ("catch-type", "vfork");
7889 }
7890
7891 /* Implement the "print_mention" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static void
7895 print_mention_catch_vfork (struct breakpoint *b)
7896 {
7897 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7898 }
7899
7900 /* Implement the "print_recreate" breakpoint_ops method for vfork
7901 catchpoints. */
7902
7903 static void
7904 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7905 {
7906 fprintf_unfiltered (fp, "catch vfork");
7907 print_recreate_thread (b, fp);
7908 }
7909
7910 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7911
7912 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7913
7914 /* An instance of this type is used to represent an solib catchpoint.
7915 A breakpoint is really of this type iff its ops pointer points to
7916 CATCH_SOLIB_BREAKPOINT_OPS. */
7917
7918 struct solib_catchpoint : public breakpoint
7919 {
7920 ~solib_catchpoint () override;
7921
7922 /* True for "catch load", false for "catch unload". */
7923 unsigned char is_load;
7924
7925 /* Regular expression to match, if any. COMPILED is only valid when
7926 REGEX is non-NULL. */
7927 char *regex;
7928 std::unique_ptr<compiled_regex> compiled;
7929 };
7930
7931 solib_catchpoint::~solib_catchpoint ()
7932 {
7933 xfree (this->regex);
7934 }
7935
7936 static int
7937 insert_catch_solib (struct bp_location *ignore)
7938 {
7939 return 0;
7940 }
7941
7942 static int
7943 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7944 {
7945 return 0;
7946 }
7947
7948 static int
7949 breakpoint_hit_catch_solib (const struct bp_location *bl,
7950 const address_space *aspace,
7951 CORE_ADDR bp_addr,
7952 const struct target_waitstatus *ws)
7953 {
7954 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7955 struct breakpoint *other;
7956
7957 if (ws->kind == TARGET_WAITKIND_LOADED)
7958 return 1;
7959
7960 ALL_BREAKPOINTS (other)
7961 {
7962 struct bp_location *other_bl;
7963
7964 if (other == bl->owner)
7965 continue;
7966
7967 if (other->type != bp_shlib_event)
7968 continue;
7969
7970 if (self->pspace != NULL && other->pspace != self->pspace)
7971 continue;
7972
7973 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7974 {
7975 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7976 return 1;
7977 }
7978 }
7979
7980 return 0;
7981 }
7982
7983 static void
7984 check_status_catch_solib (struct bpstats *bs)
7985 {
7986 struct solib_catchpoint *self
7987 = (struct solib_catchpoint *) bs->breakpoint_at;
7988
7989 if (self->is_load)
7990 {
7991 for (so_list *iter : current_program_space->added_solibs)
7992 {
7993 if (!self->regex
7994 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7995 return;
7996 }
7997 }
7998 else
7999 {
8000 for (const std::string &iter : current_program_space->deleted_solibs)
8001 {
8002 if (!self->regex
8003 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8004 return;
8005 }
8006 }
8007
8008 bs->stop = 0;
8009 bs->print_it = print_it_noop;
8010 }
8011
8012 static enum print_stop_action
8013 print_it_catch_solib (bpstat bs)
8014 {
8015 struct breakpoint *b = bs->breakpoint_at;
8016 struct ui_out *uiout = current_uiout;
8017
8018 annotate_catchpoint (b->number);
8019 maybe_print_thread_hit_breakpoint (uiout);
8020 if (b->disposition == disp_del)
8021 uiout->text ("Temporary catchpoint ");
8022 else
8023 uiout->text ("Catchpoint ");
8024 uiout->field_int ("bkptno", b->number);
8025 uiout->text ("\n");
8026 if (uiout->is_mi_like_p ())
8027 uiout->field_string ("disp", bpdisp_text (b->disposition));
8028 print_solib_event (1);
8029 return PRINT_SRC_AND_LOC;
8030 }
8031
8032 static void
8033 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8034 {
8035 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8036 struct value_print_options opts;
8037 struct ui_out *uiout = current_uiout;
8038
8039 get_user_print_options (&opts);
8040 /* Field 4, the address, is omitted (which makes the columns not
8041 line up too nicely with the headers, but the effect is relatively
8042 readable). */
8043 if (opts.addressprint)
8044 {
8045 annotate_field (4);
8046 uiout->field_skip ("addr");
8047 }
8048
8049 std::string msg;
8050 annotate_field (5);
8051 if (self->is_load)
8052 {
8053 if (self->regex)
8054 msg = string_printf (_("load of library matching %s"), self->regex);
8055 else
8056 msg = _("load of library");
8057 }
8058 else
8059 {
8060 if (self->regex)
8061 msg = string_printf (_("unload of library matching %s"), self->regex);
8062 else
8063 msg = _("unload of library");
8064 }
8065 uiout->field_string ("what", msg);
8066
8067 if (uiout->is_mi_like_p ())
8068 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8069 }
8070
8071 static void
8072 print_mention_catch_solib (struct breakpoint *b)
8073 {
8074 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8075
8076 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8077 self->is_load ? "load" : "unload");
8078 }
8079
8080 static void
8081 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8082 {
8083 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8084
8085 fprintf_unfiltered (fp, "%s %s",
8086 b->disposition == disp_del ? "tcatch" : "catch",
8087 self->is_load ? "load" : "unload");
8088 if (self->regex)
8089 fprintf_unfiltered (fp, " %s", self->regex);
8090 fprintf_unfiltered (fp, "\n");
8091 }
8092
8093 static struct breakpoint_ops catch_solib_breakpoint_ops;
8094
8095 /* Shared helper function (MI and CLI) for creating and installing
8096 a shared object event catchpoint. If IS_LOAD is non-zero then
8097 the events to be caught are load events, otherwise they are
8098 unload events. If IS_TEMP is non-zero the catchpoint is a
8099 temporary one. If ENABLED is non-zero the catchpoint is
8100 created in an enabled state. */
8101
8102 void
8103 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8104 {
8105 struct gdbarch *gdbarch = get_current_arch ();
8106
8107 if (!arg)
8108 arg = "";
8109 arg = skip_spaces (arg);
8110
8111 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8112
8113 if (*arg != '\0')
8114 {
8115 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8116 _("Invalid regexp")));
8117 c->regex = xstrdup (arg);
8118 }
8119
8120 c->is_load = is_load;
8121 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8122 &catch_solib_breakpoint_ops);
8123
8124 c->enable_state = enabled ? bp_enabled : bp_disabled;
8125
8126 install_breakpoint (0, std::move (c), 1);
8127 }
8128
8129 /* A helper function that does all the work for "catch load" and
8130 "catch unload". */
8131
8132 static void
8133 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8134 struct cmd_list_element *command)
8135 {
8136 int tempflag;
8137 const int enabled = 1;
8138
8139 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8140
8141 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8142 }
8143
8144 static void
8145 catch_load_command_1 (const char *arg, int from_tty,
8146 struct cmd_list_element *command)
8147 {
8148 catch_load_or_unload (arg, from_tty, 1, command);
8149 }
8150
8151 static void
8152 catch_unload_command_1 (const char *arg, int from_tty,
8153 struct cmd_list_element *command)
8154 {
8155 catch_load_or_unload (arg, from_tty, 0, command);
8156 }
8157
8158 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8159 is non-zero, then make the breakpoint temporary. If COND_STRING is
8160 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8161 the breakpoint_ops structure associated to the catchpoint. */
8162
8163 void
8164 init_catchpoint (struct breakpoint *b,
8165 struct gdbarch *gdbarch, int tempflag,
8166 const char *cond_string,
8167 const struct breakpoint_ops *ops)
8168 {
8169 symtab_and_line sal;
8170 sal.pspace = current_program_space;
8171
8172 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8173
8174 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8175 b->disposition = tempflag ? disp_del : disp_donttouch;
8176 }
8177
8178 void
8179 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8180 {
8181 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8182 set_breakpoint_number (internal, b);
8183 if (is_tracepoint (b))
8184 set_tracepoint_count (breakpoint_count);
8185 if (!internal)
8186 mention (b);
8187 gdb::observers::breakpoint_created.notify (b);
8188
8189 if (update_gll)
8190 update_global_location_list (UGLL_MAY_INSERT);
8191 }
8192
8193 static void
8194 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8195 int tempflag, const char *cond_string,
8196 const struct breakpoint_ops *ops)
8197 {
8198 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8199
8200 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8201
8202 c->forked_inferior_pid = null_ptid;
8203
8204 install_breakpoint (0, std::move (c), 1);
8205 }
8206
8207 /* Exec catchpoints. */
8208
8209 /* An instance of this type is used to represent an exec catchpoint.
8210 A breakpoint is really of this type iff its ops pointer points to
8211 CATCH_EXEC_BREAKPOINT_OPS. */
8212
8213 struct exec_catchpoint : public breakpoint
8214 {
8215 ~exec_catchpoint () override;
8216
8217 /* Filename of a program whose exec triggered this catchpoint.
8218 This field is only valid immediately after this catchpoint has
8219 triggered. */
8220 char *exec_pathname;
8221 };
8222
8223 /* Exec catchpoint destructor. */
8224
8225 exec_catchpoint::~exec_catchpoint ()
8226 {
8227 xfree (this->exec_pathname);
8228 }
8229
8230 static int
8231 insert_catch_exec (struct bp_location *bl)
8232 {
8233 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8234 }
8235
8236 static int
8237 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8238 {
8239 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8240 }
8241
8242 static int
8243 breakpoint_hit_catch_exec (const struct bp_location *bl,
8244 const address_space *aspace, CORE_ADDR bp_addr,
8245 const struct target_waitstatus *ws)
8246 {
8247 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8248
8249 if (ws->kind != TARGET_WAITKIND_EXECD)
8250 return 0;
8251
8252 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8253 return 1;
8254 }
8255
8256 static enum print_stop_action
8257 print_it_catch_exec (bpstat bs)
8258 {
8259 struct ui_out *uiout = current_uiout;
8260 struct breakpoint *b = bs->breakpoint_at;
8261 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8262
8263 annotate_catchpoint (b->number);
8264 maybe_print_thread_hit_breakpoint (uiout);
8265 if (b->disposition == disp_del)
8266 uiout->text ("Temporary catchpoint ");
8267 else
8268 uiout->text ("Catchpoint ");
8269 if (uiout->is_mi_like_p ())
8270 {
8271 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8272 uiout->field_string ("disp", bpdisp_text (b->disposition));
8273 }
8274 uiout->field_int ("bkptno", b->number);
8275 uiout->text (" (exec'd ");
8276 uiout->field_string ("new-exec", c->exec_pathname);
8277 uiout->text ("), ");
8278
8279 return PRINT_SRC_AND_LOC;
8280 }
8281
8282 static void
8283 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8284 {
8285 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8286 struct value_print_options opts;
8287 struct ui_out *uiout = current_uiout;
8288
8289 get_user_print_options (&opts);
8290
8291 /* Field 4, the address, is omitted (which makes the columns
8292 not line up too nicely with the headers, but the effect
8293 is relatively readable). */
8294 if (opts.addressprint)
8295 uiout->field_skip ("addr");
8296 annotate_field (5);
8297 uiout->text ("exec");
8298 if (c->exec_pathname != NULL)
8299 {
8300 uiout->text (", program \"");
8301 uiout->field_string ("what", c->exec_pathname);
8302 uiout->text ("\" ");
8303 }
8304
8305 if (uiout->is_mi_like_p ())
8306 uiout->field_string ("catch-type", "exec");
8307 }
8308
8309 static void
8310 print_mention_catch_exec (struct breakpoint *b)
8311 {
8312 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8313 }
8314
8315 /* Implement the "print_recreate" breakpoint_ops method for exec
8316 catchpoints. */
8317
8318 static void
8319 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8320 {
8321 fprintf_unfiltered (fp, "catch exec");
8322 print_recreate_thread (b, fp);
8323 }
8324
8325 static struct breakpoint_ops catch_exec_breakpoint_ops;
8326
8327 static int
8328 hw_breakpoint_used_count (void)
8329 {
8330 int i = 0;
8331 struct breakpoint *b;
8332 struct bp_location *bl;
8333
8334 ALL_BREAKPOINTS (b)
8335 {
8336 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8337 for (bl = b->loc; bl; bl = bl->next)
8338 {
8339 /* Special types of hardware breakpoints may use more than
8340 one register. */
8341 i += b->ops->resources_needed (bl);
8342 }
8343 }
8344
8345 return i;
8346 }
8347
8348 /* Returns the resources B would use if it were a hardware
8349 watchpoint. */
8350
8351 static int
8352 hw_watchpoint_use_count (struct breakpoint *b)
8353 {
8354 int i = 0;
8355 struct bp_location *bl;
8356
8357 if (!breakpoint_enabled (b))
8358 return 0;
8359
8360 for (bl = b->loc; bl; bl = bl->next)
8361 {
8362 /* Special types of hardware watchpoints may use more than
8363 one register. */
8364 i += b->ops->resources_needed (bl);
8365 }
8366
8367 return i;
8368 }
8369
8370 /* Returns the sum the used resources of all hardware watchpoints of
8371 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8372 the sum of the used resources of all hardware watchpoints of other
8373 types _not_ TYPE. */
8374
8375 static int
8376 hw_watchpoint_used_count_others (struct breakpoint *except,
8377 enum bptype type, int *other_type_used)
8378 {
8379 int i = 0;
8380 struct breakpoint *b;
8381
8382 *other_type_used = 0;
8383 ALL_BREAKPOINTS (b)
8384 {
8385 if (b == except)
8386 continue;
8387 if (!breakpoint_enabled (b))
8388 continue;
8389
8390 if (b->type == type)
8391 i += hw_watchpoint_use_count (b);
8392 else if (is_hardware_watchpoint (b))
8393 *other_type_used = 1;
8394 }
8395
8396 return i;
8397 }
8398
8399 void
8400 disable_watchpoints_before_interactive_call_start (void)
8401 {
8402 struct breakpoint *b;
8403
8404 ALL_BREAKPOINTS (b)
8405 {
8406 if (is_watchpoint (b) && breakpoint_enabled (b))
8407 {
8408 b->enable_state = bp_call_disabled;
8409 update_global_location_list (UGLL_DONT_INSERT);
8410 }
8411 }
8412 }
8413
8414 void
8415 enable_watchpoints_after_interactive_call_stop (void)
8416 {
8417 struct breakpoint *b;
8418
8419 ALL_BREAKPOINTS (b)
8420 {
8421 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8422 {
8423 b->enable_state = bp_enabled;
8424 update_global_location_list (UGLL_MAY_INSERT);
8425 }
8426 }
8427 }
8428
8429 void
8430 disable_breakpoints_before_startup (void)
8431 {
8432 current_program_space->executing_startup = 1;
8433 update_global_location_list (UGLL_DONT_INSERT);
8434 }
8435
8436 void
8437 enable_breakpoints_after_startup (void)
8438 {
8439 current_program_space->executing_startup = 0;
8440 breakpoint_re_set ();
8441 }
8442
8443 /* Create a new single-step breakpoint for thread THREAD, with no
8444 locations. */
8445
8446 static struct breakpoint *
8447 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8448 {
8449 std::unique_ptr<breakpoint> b (new breakpoint ());
8450
8451 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8452 &momentary_breakpoint_ops);
8453
8454 b->disposition = disp_donttouch;
8455 b->frame_id = null_frame_id;
8456
8457 b->thread = thread;
8458 gdb_assert (b->thread != 0);
8459
8460 return add_to_breakpoint_chain (std::move (b));
8461 }
8462
8463 /* Set a momentary breakpoint of type TYPE at address specified by
8464 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8465 frame. */
8466
8467 breakpoint_up
8468 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8469 struct frame_id frame_id, enum bptype type)
8470 {
8471 struct breakpoint *b;
8472
8473 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8474 tail-called one. */
8475 gdb_assert (!frame_id_artificial_p (frame_id));
8476
8477 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8478 b->enable_state = bp_enabled;
8479 b->disposition = disp_donttouch;
8480 b->frame_id = frame_id;
8481
8482 b->thread = inferior_thread ()->global_num;
8483
8484 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8485
8486 return breakpoint_up (b);
8487 }
8488
8489 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8490 The new breakpoint will have type TYPE, use OPS as its
8491 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8492
8493 static struct breakpoint *
8494 momentary_breakpoint_from_master (struct breakpoint *orig,
8495 enum bptype type,
8496 const struct breakpoint_ops *ops,
8497 int loc_enabled)
8498 {
8499 struct breakpoint *copy;
8500
8501 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8502 copy->loc = allocate_bp_location (copy);
8503 set_breakpoint_location_function (copy->loc, 1);
8504
8505 copy->loc->gdbarch = orig->loc->gdbarch;
8506 copy->loc->requested_address = orig->loc->requested_address;
8507 copy->loc->address = orig->loc->address;
8508 copy->loc->section = orig->loc->section;
8509 copy->loc->pspace = orig->loc->pspace;
8510 copy->loc->probe = orig->loc->probe;
8511 copy->loc->line_number = orig->loc->line_number;
8512 copy->loc->symtab = orig->loc->symtab;
8513 copy->loc->enabled = loc_enabled;
8514 copy->frame_id = orig->frame_id;
8515 copy->thread = orig->thread;
8516 copy->pspace = orig->pspace;
8517
8518 copy->enable_state = bp_enabled;
8519 copy->disposition = disp_donttouch;
8520 copy->number = internal_breakpoint_number--;
8521
8522 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8523 return copy;
8524 }
8525
8526 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8527 ORIG is NULL. */
8528
8529 struct breakpoint *
8530 clone_momentary_breakpoint (struct breakpoint *orig)
8531 {
8532 /* If there's nothing to clone, then return nothing. */
8533 if (orig == NULL)
8534 return NULL;
8535
8536 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8537 }
8538
8539 breakpoint_up
8540 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8541 enum bptype type)
8542 {
8543 struct symtab_and_line sal;
8544
8545 sal = find_pc_line (pc, 0);
8546 sal.pc = pc;
8547 sal.section = find_pc_overlay (pc);
8548 sal.explicit_pc = 1;
8549
8550 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8551 }
8552 \f
8553
8554 /* Tell the user we have just set a breakpoint B. */
8555
8556 static void
8557 mention (struct breakpoint *b)
8558 {
8559 b->ops->print_mention (b);
8560 current_uiout->text ("\n");
8561 }
8562 \f
8563
8564 static int bp_loc_is_permanent (struct bp_location *loc);
8565
8566 static struct bp_location *
8567 add_location_to_breakpoint (struct breakpoint *b,
8568 const struct symtab_and_line *sal)
8569 {
8570 struct bp_location *loc, **tmp;
8571 CORE_ADDR adjusted_address;
8572 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8573
8574 if (loc_gdbarch == NULL)
8575 loc_gdbarch = b->gdbarch;
8576
8577 /* Adjust the breakpoint's address prior to allocating a location.
8578 Once we call allocate_bp_location(), that mostly uninitialized
8579 location will be placed on the location chain. Adjustment of the
8580 breakpoint may cause target_read_memory() to be called and we do
8581 not want its scan of the location chain to find a breakpoint and
8582 location that's only been partially initialized. */
8583 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8584 sal->pc, b->type);
8585
8586 /* Sort the locations by their ADDRESS. */
8587 loc = allocate_bp_location (b);
8588 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8589 tmp = &((*tmp)->next))
8590 ;
8591 loc->next = *tmp;
8592 *tmp = loc;
8593
8594 loc->requested_address = sal->pc;
8595 loc->address = adjusted_address;
8596 loc->pspace = sal->pspace;
8597 loc->probe.prob = sal->prob;
8598 loc->probe.objfile = sal->objfile;
8599 gdb_assert (loc->pspace != NULL);
8600 loc->section = sal->section;
8601 loc->gdbarch = loc_gdbarch;
8602 loc->line_number = sal->line;
8603 loc->symtab = sal->symtab;
8604 loc->symbol = sal->symbol;
8605 loc->msymbol = sal->msymbol;
8606 loc->objfile = sal->objfile;
8607
8608 set_breakpoint_location_function (loc,
8609 sal->explicit_pc || sal->explicit_line);
8610
8611 /* While by definition, permanent breakpoints are already present in the
8612 code, we don't mark the location as inserted. Normally one would expect
8613 that GDB could rely on that breakpoint instruction to stop the program,
8614 thus removing the need to insert its own breakpoint, except that executing
8615 the breakpoint instruction can kill the target instead of reporting a
8616 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8617 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8618 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8619 breakpoint be inserted normally results in QEMU knowing about the GDB
8620 breakpoint, and thus trap before the breakpoint instruction is executed.
8621 (If GDB later needs to continue execution past the permanent breakpoint,
8622 it manually increments the PC, thus avoiding executing the breakpoint
8623 instruction.) */
8624 if (bp_loc_is_permanent (loc))
8625 loc->permanent = 1;
8626
8627 return loc;
8628 }
8629 \f
8630
8631 /* See breakpoint.h. */
8632
8633 int
8634 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8635 {
8636 int len;
8637 CORE_ADDR addr;
8638 const gdb_byte *bpoint;
8639 gdb_byte *target_mem;
8640
8641 addr = address;
8642 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8643
8644 /* Software breakpoints unsupported? */
8645 if (bpoint == NULL)
8646 return 0;
8647
8648 target_mem = (gdb_byte *) alloca (len);
8649
8650 /* Enable the automatic memory restoration from breakpoints while
8651 we read the memory. Otherwise we could say about our temporary
8652 breakpoints they are permanent. */
8653 scoped_restore restore_memory
8654 = make_scoped_restore_show_memory_breakpoints (0);
8655
8656 if (target_read_memory (address, target_mem, len) == 0
8657 && memcmp (target_mem, bpoint, len) == 0)
8658 return 1;
8659
8660 return 0;
8661 }
8662
8663 /* Return 1 if LOC is pointing to a permanent breakpoint,
8664 return 0 otherwise. */
8665
8666 static int
8667 bp_loc_is_permanent (struct bp_location *loc)
8668 {
8669 gdb_assert (loc != NULL);
8670
8671 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8672 attempt to read from the addresses the locations of these breakpoint types
8673 point to. program_breakpoint_here_p, below, will attempt to read
8674 memory. */
8675 if (!breakpoint_address_is_meaningful (loc->owner))
8676 return 0;
8677
8678 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8679 switch_to_program_space_and_thread (loc->pspace);
8680 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8681 }
8682
8683 /* Build a command list for the dprintf corresponding to the current
8684 settings of the dprintf style options. */
8685
8686 static void
8687 update_dprintf_command_list (struct breakpoint *b)
8688 {
8689 char *dprintf_args = b->extra_string;
8690 char *printf_line = NULL;
8691
8692 if (!dprintf_args)
8693 return;
8694
8695 dprintf_args = skip_spaces (dprintf_args);
8696
8697 /* Allow a comma, as it may have terminated a location, but don't
8698 insist on it. */
8699 if (*dprintf_args == ',')
8700 ++dprintf_args;
8701 dprintf_args = skip_spaces (dprintf_args);
8702
8703 if (*dprintf_args != '"')
8704 error (_("Bad format string, missing '\"'."));
8705
8706 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8707 printf_line = xstrprintf ("printf %s", dprintf_args);
8708 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8709 {
8710 if (!dprintf_function)
8711 error (_("No function supplied for dprintf call"));
8712
8713 if (dprintf_channel && strlen (dprintf_channel) > 0)
8714 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8715 dprintf_function,
8716 dprintf_channel,
8717 dprintf_args);
8718 else
8719 printf_line = xstrprintf ("call (void) %s (%s)",
8720 dprintf_function,
8721 dprintf_args);
8722 }
8723 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8724 {
8725 if (target_can_run_breakpoint_commands ())
8726 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8727 else
8728 {
8729 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8730 printf_line = xstrprintf ("printf %s", dprintf_args);
8731 }
8732 }
8733 else
8734 internal_error (__FILE__, __LINE__,
8735 _("Invalid dprintf style."));
8736
8737 gdb_assert (printf_line != NULL);
8738
8739 /* Manufacture a printf sequence. */
8740 struct command_line *printf_cmd_line
8741 = new struct command_line (simple_control, printf_line);
8742 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8743 command_lines_deleter ()));
8744 }
8745
8746 /* Update all dprintf commands, making their command lists reflect
8747 current style settings. */
8748
8749 static void
8750 update_dprintf_commands (const char *args, int from_tty,
8751 struct cmd_list_element *c)
8752 {
8753 struct breakpoint *b;
8754
8755 ALL_BREAKPOINTS (b)
8756 {
8757 if (b->type == bp_dprintf)
8758 update_dprintf_command_list (b);
8759 }
8760 }
8761
8762 /* Create a breakpoint with SAL as location. Use LOCATION
8763 as a description of the location, and COND_STRING
8764 as condition expression. If LOCATION is NULL then create an
8765 "address location" from the address in the SAL. */
8766
8767 static void
8768 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8769 gdb::array_view<const symtab_and_line> sals,
8770 event_location_up &&location,
8771 gdb::unique_xmalloc_ptr<char> filter,
8772 gdb::unique_xmalloc_ptr<char> cond_string,
8773 gdb::unique_xmalloc_ptr<char> extra_string,
8774 enum bptype type, enum bpdisp disposition,
8775 int thread, int task, int ignore_count,
8776 const struct breakpoint_ops *ops, int from_tty,
8777 int enabled, int internal, unsigned flags,
8778 int display_canonical)
8779 {
8780 int i;
8781
8782 if (type == bp_hardware_breakpoint)
8783 {
8784 int target_resources_ok;
8785
8786 i = hw_breakpoint_used_count ();
8787 target_resources_ok =
8788 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8789 i + 1, 0);
8790 if (target_resources_ok == 0)
8791 error (_("No hardware breakpoint support in the target."));
8792 else if (target_resources_ok < 0)
8793 error (_("Hardware breakpoints used exceeds limit."));
8794 }
8795
8796 gdb_assert (!sals.empty ());
8797
8798 for (const auto &sal : sals)
8799 {
8800 struct bp_location *loc;
8801
8802 if (from_tty)
8803 {
8804 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8805 if (!loc_gdbarch)
8806 loc_gdbarch = gdbarch;
8807
8808 describe_other_breakpoints (loc_gdbarch,
8809 sal.pspace, sal.pc, sal.section, thread);
8810 }
8811
8812 if (&sal == &sals[0])
8813 {
8814 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8815 b->thread = thread;
8816 b->task = task;
8817
8818 b->cond_string = cond_string.release ();
8819 b->extra_string = extra_string.release ();
8820 b->ignore_count = ignore_count;
8821 b->enable_state = enabled ? bp_enabled : bp_disabled;
8822 b->disposition = disposition;
8823
8824 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8825 b->loc->inserted = 1;
8826
8827 if (type == bp_static_tracepoint)
8828 {
8829 struct tracepoint *t = (struct tracepoint *) b;
8830 struct static_tracepoint_marker marker;
8831
8832 if (strace_marker_p (b))
8833 {
8834 /* We already know the marker exists, otherwise, we
8835 wouldn't see a sal for it. */
8836 const char *p
8837 = &event_location_to_string (b->location.get ())[3];
8838 const char *endp;
8839
8840 p = skip_spaces (p);
8841
8842 endp = skip_to_space (p);
8843
8844 t->static_trace_marker_id.assign (p, endp - p);
8845
8846 printf_filtered (_("Probed static tracepoint "
8847 "marker \"%s\"\n"),
8848 t->static_trace_marker_id.c_str ());
8849 }
8850 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8851 {
8852 t->static_trace_marker_id = std::move (marker.str_id);
8853
8854 printf_filtered (_("Probed static tracepoint "
8855 "marker \"%s\"\n"),
8856 t->static_trace_marker_id.c_str ());
8857 }
8858 else
8859 warning (_("Couldn't determine the static "
8860 "tracepoint marker to probe"));
8861 }
8862
8863 loc = b->loc;
8864 }
8865 else
8866 {
8867 loc = add_location_to_breakpoint (b, &sal);
8868 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8869 loc->inserted = 1;
8870 }
8871
8872 if (b->cond_string)
8873 {
8874 const char *arg = b->cond_string;
8875
8876 loc->cond = parse_exp_1 (&arg, loc->address,
8877 block_for_pc (loc->address), 0);
8878 if (*arg)
8879 error (_("Garbage '%s' follows condition"), arg);
8880 }
8881
8882 /* Dynamic printf requires and uses additional arguments on the
8883 command line, otherwise it's an error. */
8884 if (type == bp_dprintf)
8885 {
8886 if (b->extra_string)
8887 update_dprintf_command_list (b);
8888 else
8889 error (_("Format string required"));
8890 }
8891 else if (b->extra_string)
8892 error (_("Garbage '%s' at end of command"), b->extra_string);
8893 }
8894
8895 b->display_canonical = display_canonical;
8896 if (location != NULL)
8897 b->location = std::move (location);
8898 else
8899 b->location = new_address_location (b->loc->address, NULL, 0);
8900 b->filter = filter.release ();
8901 }
8902
8903 static void
8904 create_breakpoint_sal (struct gdbarch *gdbarch,
8905 gdb::array_view<const symtab_and_line> sals,
8906 event_location_up &&location,
8907 gdb::unique_xmalloc_ptr<char> filter,
8908 gdb::unique_xmalloc_ptr<char> cond_string,
8909 gdb::unique_xmalloc_ptr<char> extra_string,
8910 enum bptype type, enum bpdisp disposition,
8911 int thread, int task, int ignore_count,
8912 const struct breakpoint_ops *ops, int from_tty,
8913 int enabled, int internal, unsigned flags,
8914 int display_canonical)
8915 {
8916 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8917
8918 init_breakpoint_sal (b.get (), gdbarch,
8919 sals, std::move (location),
8920 std::move (filter),
8921 std::move (cond_string),
8922 std::move (extra_string),
8923 type, disposition,
8924 thread, task, ignore_count,
8925 ops, from_tty,
8926 enabled, internal, flags,
8927 display_canonical);
8928
8929 install_breakpoint (internal, std::move (b), 0);
8930 }
8931
8932 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8933 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8934 value. COND_STRING, if not NULL, specified the condition to be
8935 used for all breakpoints. Essentially the only case where
8936 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8937 function. In that case, it's still not possible to specify
8938 separate conditions for different overloaded functions, so
8939 we take just a single condition string.
8940
8941 NOTE: If the function succeeds, the caller is expected to cleanup
8942 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8943 array contents). If the function fails (error() is called), the
8944 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8945 COND and SALS arrays and each of those arrays contents. */
8946
8947 static void
8948 create_breakpoints_sal (struct gdbarch *gdbarch,
8949 struct linespec_result *canonical,
8950 gdb::unique_xmalloc_ptr<char> cond_string,
8951 gdb::unique_xmalloc_ptr<char> extra_string,
8952 enum bptype type, enum bpdisp disposition,
8953 int thread, int task, int ignore_count,
8954 const struct breakpoint_ops *ops, int from_tty,
8955 int enabled, int internal, unsigned flags)
8956 {
8957 if (canonical->pre_expanded)
8958 gdb_assert (canonical->lsals.size () == 1);
8959
8960 for (const auto &lsal : canonical->lsals)
8961 {
8962 /* Note that 'location' can be NULL in the case of a plain
8963 'break', without arguments. */
8964 event_location_up location
8965 = (canonical->location != NULL
8966 ? copy_event_location (canonical->location.get ()) : NULL);
8967 gdb::unique_xmalloc_ptr<char> filter_string
8968 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8969
8970 create_breakpoint_sal (gdbarch, lsal.sals,
8971 std::move (location),
8972 std::move (filter_string),
8973 std::move (cond_string),
8974 std::move (extra_string),
8975 type, disposition,
8976 thread, task, ignore_count, ops,
8977 from_tty, enabled, internal, flags,
8978 canonical->special_display);
8979 }
8980 }
8981
8982 /* Parse LOCATION which is assumed to be a SAL specification possibly
8983 followed by conditionals. On return, SALS contains an array of SAL
8984 addresses found. LOCATION points to the end of the SAL (for
8985 linespec locations).
8986
8987 The array and the line spec strings are allocated on the heap, it is
8988 the caller's responsibility to free them. */
8989
8990 static void
8991 parse_breakpoint_sals (const struct event_location *location,
8992 struct linespec_result *canonical)
8993 {
8994 struct symtab_and_line cursal;
8995
8996 if (event_location_type (location) == LINESPEC_LOCATION)
8997 {
8998 const char *spec = get_linespec_location (location)->spec_string;
8999
9000 if (spec == NULL)
9001 {
9002 /* The last displayed codepoint, if it's valid, is our default
9003 breakpoint address. */
9004 if (last_displayed_sal_is_valid ())
9005 {
9006 /* Set sal's pspace, pc, symtab, and line to the values
9007 corresponding to the last call to print_frame_info.
9008 Be sure to reinitialize LINE with NOTCURRENT == 0
9009 as the breakpoint line number is inappropriate otherwise.
9010 find_pc_line would adjust PC, re-set it back. */
9011 symtab_and_line sal = get_last_displayed_sal ();
9012 CORE_ADDR pc = sal.pc;
9013
9014 sal = find_pc_line (pc, 0);
9015
9016 /* "break" without arguments is equivalent to "break *PC"
9017 where PC is the last displayed codepoint's address. So
9018 make sure to set sal.explicit_pc to prevent GDB from
9019 trying to expand the list of sals to include all other
9020 instances with the same symtab and line. */
9021 sal.pc = pc;
9022 sal.explicit_pc = 1;
9023
9024 struct linespec_sals lsal;
9025 lsal.sals = {sal};
9026 lsal.canonical = NULL;
9027
9028 canonical->lsals.push_back (std::move (lsal));
9029 return;
9030 }
9031 else
9032 error (_("No default breakpoint address now."));
9033 }
9034 }
9035
9036 /* Force almost all breakpoints to be in terms of the
9037 current_source_symtab (which is decode_line_1's default).
9038 This should produce the results we want almost all of the
9039 time while leaving default_breakpoint_* alone.
9040
9041 ObjC: However, don't match an Objective-C method name which
9042 may have a '+' or '-' succeeded by a '['. */
9043 cursal = get_current_source_symtab_and_line ();
9044 if (last_displayed_sal_is_valid ())
9045 {
9046 const char *spec = NULL;
9047
9048 if (event_location_type (location) == LINESPEC_LOCATION)
9049 spec = get_linespec_location (location)->spec_string;
9050
9051 if (!cursal.symtab
9052 || (spec != NULL
9053 && strchr ("+-", spec[0]) != NULL
9054 && spec[1] != '['))
9055 {
9056 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9057 get_last_displayed_symtab (),
9058 get_last_displayed_line (),
9059 canonical, NULL, NULL);
9060 return;
9061 }
9062 }
9063
9064 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9065 cursal.symtab, cursal.line, canonical, NULL, NULL);
9066 }
9067
9068
9069 /* Convert each SAL into a real PC. Verify that the PC can be
9070 inserted as a breakpoint. If it can't throw an error. */
9071
9072 static void
9073 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9074 {
9075 for (auto &sal : sals)
9076 resolve_sal_pc (&sal);
9077 }
9078
9079 /* Fast tracepoints may have restrictions on valid locations. For
9080 instance, a fast tracepoint using a jump instead of a trap will
9081 likely have to overwrite more bytes than a trap would, and so can
9082 only be placed where the instruction is longer than the jump, or a
9083 multi-instruction sequence does not have a jump into the middle of
9084 it, etc. */
9085
9086 static void
9087 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9088 gdb::array_view<const symtab_and_line> sals)
9089 {
9090 for (const auto &sal : sals)
9091 {
9092 struct gdbarch *sarch;
9093
9094 sarch = get_sal_arch (sal);
9095 /* We fall back to GDBARCH if there is no architecture
9096 associated with SAL. */
9097 if (sarch == NULL)
9098 sarch = gdbarch;
9099 std::string msg;
9100 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9101 error (_("May not have a fast tracepoint at %s%s"),
9102 paddress (sarch, sal.pc), msg.c_str ());
9103 }
9104 }
9105
9106 /* Given TOK, a string specification of condition and thread, as
9107 accepted by the 'break' command, extract the condition
9108 string and thread number and set *COND_STRING and *THREAD.
9109 PC identifies the context at which the condition should be parsed.
9110 If no condition is found, *COND_STRING is set to NULL.
9111 If no thread is found, *THREAD is set to -1. */
9112
9113 static void
9114 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9115 char **cond_string, int *thread, int *task,
9116 char **rest)
9117 {
9118 *cond_string = NULL;
9119 *thread = -1;
9120 *task = 0;
9121 *rest = NULL;
9122
9123 while (tok && *tok)
9124 {
9125 const char *end_tok;
9126 int toklen;
9127 const char *cond_start = NULL;
9128 const char *cond_end = NULL;
9129
9130 tok = skip_spaces (tok);
9131
9132 if ((*tok == '"' || *tok == ',') && rest)
9133 {
9134 *rest = savestring (tok, strlen (tok));
9135 return;
9136 }
9137
9138 end_tok = skip_to_space (tok);
9139
9140 toklen = end_tok - tok;
9141
9142 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9143 {
9144 tok = cond_start = end_tok + 1;
9145 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9146 cond_end = tok;
9147 *cond_string = savestring (cond_start, cond_end - cond_start);
9148 }
9149 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9150 {
9151 const char *tmptok;
9152 struct thread_info *thr;
9153
9154 tok = end_tok + 1;
9155 thr = parse_thread_id (tok, &tmptok);
9156 if (tok == tmptok)
9157 error (_("Junk after thread keyword."));
9158 *thread = thr->global_num;
9159 tok = tmptok;
9160 }
9161 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9162 {
9163 char *tmptok;
9164
9165 tok = end_tok + 1;
9166 *task = strtol (tok, &tmptok, 0);
9167 if (tok == tmptok)
9168 error (_("Junk after task keyword."));
9169 if (!valid_task_id (*task))
9170 error (_("Unknown task %d."), *task);
9171 tok = tmptok;
9172 }
9173 else if (rest)
9174 {
9175 *rest = savestring (tok, strlen (tok));
9176 return;
9177 }
9178 else
9179 error (_("Junk at end of arguments."));
9180 }
9181 }
9182
9183 /* Decode a static tracepoint marker spec. */
9184
9185 static std::vector<symtab_and_line>
9186 decode_static_tracepoint_spec (const char **arg_p)
9187 {
9188 const char *p = &(*arg_p)[3];
9189 const char *endp;
9190
9191 p = skip_spaces (p);
9192
9193 endp = skip_to_space (p);
9194
9195 std::string marker_str (p, endp - p);
9196
9197 std::vector<static_tracepoint_marker> markers
9198 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9199 if (markers.empty ())
9200 error (_("No known static tracepoint marker named %s"),
9201 marker_str.c_str ());
9202
9203 std::vector<symtab_and_line> sals;
9204 sals.reserve (markers.size ());
9205
9206 for (const static_tracepoint_marker &marker : markers)
9207 {
9208 symtab_and_line sal = find_pc_line (marker.address, 0);
9209 sal.pc = marker.address;
9210 sals.push_back (sal);
9211 }
9212
9213 *arg_p = endp;
9214 return sals;
9215 }
9216
9217 /* See breakpoint.h. */
9218
9219 int
9220 create_breakpoint (struct gdbarch *gdbarch,
9221 const struct event_location *location,
9222 const char *cond_string,
9223 int thread, const char *extra_string,
9224 int parse_extra,
9225 int tempflag, enum bptype type_wanted,
9226 int ignore_count,
9227 enum auto_boolean pending_break_support,
9228 const struct breakpoint_ops *ops,
9229 int from_tty, int enabled, int internal,
9230 unsigned flags)
9231 {
9232 struct linespec_result canonical;
9233 int pending = 0;
9234 int task = 0;
9235 int prev_bkpt_count = breakpoint_count;
9236
9237 gdb_assert (ops != NULL);
9238
9239 /* If extra_string isn't useful, set it to NULL. */
9240 if (extra_string != NULL && *extra_string == '\0')
9241 extra_string = NULL;
9242
9243 TRY
9244 {
9245 ops->create_sals_from_location (location, &canonical, type_wanted);
9246 }
9247 CATCH (e, RETURN_MASK_ERROR)
9248 {
9249 /* If caller is interested in rc value from parse, set
9250 value. */
9251 if (e.error == NOT_FOUND_ERROR)
9252 {
9253 /* If pending breakpoint support is turned off, throw
9254 error. */
9255
9256 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9257 throw_exception (e);
9258
9259 exception_print (gdb_stderr, e);
9260
9261 /* If pending breakpoint support is auto query and the user
9262 selects no, then simply return the error code. */
9263 if (pending_break_support == AUTO_BOOLEAN_AUTO
9264 && !nquery (_("Make %s pending on future shared library load? "),
9265 bptype_string (type_wanted)))
9266 return 0;
9267
9268 /* At this point, either the user was queried about setting
9269 a pending breakpoint and selected yes, or pending
9270 breakpoint behavior is on and thus a pending breakpoint
9271 is defaulted on behalf of the user. */
9272 pending = 1;
9273 }
9274 else
9275 throw_exception (e);
9276 }
9277 END_CATCH
9278
9279 if (!pending && canonical.lsals.empty ())
9280 return 0;
9281
9282 /* Resolve all line numbers to PC's and verify that the addresses
9283 are ok for the target. */
9284 if (!pending)
9285 {
9286 for (auto &lsal : canonical.lsals)
9287 breakpoint_sals_to_pc (lsal.sals);
9288 }
9289
9290 /* Fast tracepoints may have additional restrictions on location. */
9291 if (!pending && type_wanted == bp_fast_tracepoint)
9292 {
9293 for (const auto &lsal : canonical.lsals)
9294 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9295 }
9296
9297 /* Verify that condition can be parsed, before setting any
9298 breakpoints. Allocate a separate condition expression for each
9299 breakpoint. */
9300 if (!pending)
9301 {
9302 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9303 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9304
9305 if (parse_extra)
9306 {
9307 char *rest;
9308 char *cond;
9309
9310 const linespec_sals &lsal = canonical.lsals[0];
9311
9312 /* Here we only parse 'arg' to separate condition
9313 from thread number, so parsing in context of first
9314 sal is OK. When setting the breakpoint we'll
9315 re-parse it in context of each sal. */
9316
9317 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9318 &cond, &thread, &task, &rest);
9319 cond_string_copy.reset (cond);
9320 extra_string_copy.reset (rest);
9321 }
9322 else
9323 {
9324 if (type_wanted != bp_dprintf
9325 && extra_string != NULL && *extra_string != '\0')
9326 error (_("Garbage '%s' at end of location"), extra_string);
9327
9328 /* Create a private copy of condition string. */
9329 if (cond_string)
9330 cond_string_copy.reset (xstrdup (cond_string));
9331 /* Create a private copy of any extra string. */
9332 if (extra_string)
9333 extra_string_copy.reset (xstrdup (extra_string));
9334 }
9335
9336 ops->create_breakpoints_sal (gdbarch, &canonical,
9337 std::move (cond_string_copy),
9338 std::move (extra_string_copy),
9339 type_wanted,
9340 tempflag ? disp_del : disp_donttouch,
9341 thread, task, ignore_count, ops,
9342 from_tty, enabled, internal, flags);
9343 }
9344 else
9345 {
9346 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9347
9348 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9349 b->location = copy_event_location (location);
9350
9351 if (parse_extra)
9352 b->cond_string = NULL;
9353 else
9354 {
9355 /* Create a private copy of condition string. */
9356 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9357 b->thread = thread;
9358 }
9359
9360 /* Create a private copy of any extra string. */
9361 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9362 b->ignore_count = ignore_count;
9363 b->disposition = tempflag ? disp_del : disp_donttouch;
9364 b->condition_not_parsed = 1;
9365 b->enable_state = enabled ? bp_enabled : bp_disabled;
9366 if ((type_wanted != bp_breakpoint
9367 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9368 b->pspace = current_program_space;
9369
9370 install_breakpoint (internal, std::move (b), 0);
9371 }
9372
9373 if (canonical.lsals.size () > 1)
9374 {
9375 warning (_("Multiple breakpoints were set.\nUse the "
9376 "\"delete\" command to delete unwanted breakpoints."));
9377 prev_breakpoint_count = prev_bkpt_count;
9378 }
9379
9380 update_global_location_list (UGLL_MAY_INSERT);
9381
9382 return 1;
9383 }
9384
9385 /* Set a breakpoint.
9386 ARG is a string describing breakpoint address,
9387 condition, and thread.
9388 FLAG specifies if a breakpoint is hardware on,
9389 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9390 and BP_TEMPFLAG. */
9391
9392 static void
9393 break_command_1 (const char *arg, int flag, int from_tty)
9394 {
9395 int tempflag = flag & BP_TEMPFLAG;
9396 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9397 ? bp_hardware_breakpoint
9398 : bp_breakpoint);
9399 struct breakpoint_ops *ops;
9400
9401 event_location_up location = string_to_event_location (&arg, current_language);
9402
9403 /* Matching breakpoints on probes. */
9404 if (location != NULL
9405 && event_location_type (location.get ()) == PROBE_LOCATION)
9406 ops = &bkpt_probe_breakpoint_ops;
9407 else
9408 ops = &bkpt_breakpoint_ops;
9409
9410 create_breakpoint (get_current_arch (),
9411 location.get (),
9412 NULL, 0, arg, 1 /* parse arg */,
9413 tempflag, type_wanted,
9414 0 /* Ignore count */,
9415 pending_break_support,
9416 ops,
9417 from_tty,
9418 1 /* enabled */,
9419 0 /* internal */,
9420 0);
9421 }
9422
9423 /* Helper function for break_command_1 and disassemble_command. */
9424
9425 void
9426 resolve_sal_pc (struct symtab_and_line *sal)
9427 {
9428 CORE_ADDR pc;
9429
9430 if (sal->pc == 0 && sal->symtab != NULL)
9431 {
9432 if (!find_line_pc (sal->symtab, sal->line, &pc))
9433 error (_("No line %d in file \"%s\"."),
9434 sal->line, symtab_to_filename_for_display (sal->symtab));
9435 sal->pc = pc;
9436
9437 /* If this SAL corresponds to a breakpoint inserted using a line
9438 number, then skip the function prologue if necessary. */
9439 if (sal->explicit_line)
9440 skip_prologue_sal (sal);
9441 }
9442
9443 if (sal->section == 0 && sal->symtab != NULL)
9444 {
9445 const struct blockvector *bv;
9446 const struct block *b;
9447 struct symbol *sym;
9448
9449 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9450 SYMTAB_COMPUNIT (sal->symtab));
9451 if (bv != NULL)
9452 {
9453 sym = block_linkage_function (b);
9454 if (sym != NULL)
9455 {
9456 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9457 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9458 sym);
9459 }
9460 else
9461 {
9462 /* It really is worthwhile to have the section, so we'll
9463 just have to look harder. This case can be executed
9464 if we have line numbers but no functions (as can
9465 happen in assembly source). */
9466
9467 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9468 switch_to_program_space_and_thread (sal->pspace);
9469
9470 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9471 if (msym.minsym)
9472 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9473 }
9474 }
9475 }
9476 }
9477
9478 void
9479 break_command (const char *arg, int from_tty)
9480 {
9481 break_command_1 (arg, 0, from_tty);
9482 }
9483
9484 void
9485 tbreak_command (const char *arg, int from_tty)
9486 {
9487 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9488 }
9489
9490 static void
9491 hbreak_command (const char *arg, int from_tty)
9492 {
9493 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9494 }
9495
9496 static void
9497 thbreak_command (const char *arg, int from_tty)
9498 {
9499 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9500 }
9501
9502 static void
9503 stop_command (const char *arg, int from_tty)
9504 {
9505 printf_filtered (_("Specify the type of breakpoint to set.\n\
9506 Usage: stop in <function | address>\n\
9507 stop at <line>\n"));
9508 }
9509
9510 static void
9511 stopin_command (const char *arg, int from_tty)
9512 {
9513 int badInput = 0;
9514
9515 if (arg == (char *) NULL)
9516 badInput = 1;
9517 else if (*arg != '*')
9518 {
9519 const char *argptr = arg;
9520 int hasColon = 0;
9521
9522 /* Look for a ':'. If this is a line number specification, then
9523 say it is bad, otherwise, it should be an address or
9524 function/method name. */
9525 while (*argptr && !hasColon)
9526 {
9527 hasColon = (*argptr == ':');
9528 argptr++;
9529 }
9530
9531 if (hasColon)
9532 badInput = (*argptr != ':'); /* Not a class::method */
9533 else
9534 badInput = isdigit (*arg); /* a simple line number */
9535 }
9536
9537 if (badInput)
9538 printf_filtered (_("Usage: stop in <function | address>\n"));
9539 else
9540 break_command_1 (arg, 0, from_tty);
9541 }
9542
9543 static void
9544 stopat_command (const char *arg, int from_tty)
9545 {
9546 int badInput = 0;
9547
9548 if (arg == (char *) NULL || *arg == '*') /* no line number */
9549 badInput = 1;
9550 else
9551 {
9552 const char *argptr = arg;
9553 int hasColon = 0;
9554
9555 /* Look for a ':'. If there is a '::' then get out, otherwise
9556 it is probably a line number. */
9557 while (*argptr && !hasColon)
9558 {
9559 hasColon = (*argptr == ':');
9560 argptr++;
9561 }
9562
9563 if (hasColon)
9564 badInput = (*argptr == ':'); /* we have class::method */
9565 else
9566 badInput = !isdigit (*arg); /* not a line number */
9567 }
9568
9569 if (badInput)
9570 printf_filtered (_("Usage: stop at LINE\n"));
9571 else
9572 break_command_1 (arg, 0, from_tty);
9573 }
9574
9575 /* The dynamic printf command is mostly like a regular breakpoint, but
9576 with a prewired command list consisting of a single output command,
9577 built from extra arguments supplied on the dprintf command
9578 line. */
9579
9580 static void
9581 dprintf_command (const char *arg, int from_tty)
9582 {
9583 event_location_up location = string_to_event_location (&arg, current_language);
9584
9585 /* If non-NULL, ARG should have been advanced past the location;
9586 the next character must be ','. */
9587 if (arg != NULL)
9588 {
9589 if (arg[0] != ',' || arg[1] == '\0')
9590 error (_("Format string required"));
9591 else
9592 {
9593 /* Skip the comma. */
9594 ++arg;
9595 }
9596 }
9597
9598 create_breakpoint (get_current_arch (),
9599 location.get (),
9600 NULL, 0, arg, 1 /* parse arg */,
9601 0, bp_dprintf,
9602 0 /* Ignore count */,
9603 pending_break_support,
9604 &dprintf_breakpoint_ops,
9605 from_tty,
9606 1 /* enabled */,
9607 0 /* internal */,
9608 0);
9609 }
9610
9611 static void
9612 agent_printf_command (const char *arg, int from_tty)
9613 {
9614 error (_("May only run agent-printf on the target"));
9615 }
9616
9617 /* Implement the "breakpoint_hit" breakpoint_ops method for
9618 ranged breakpoints. */
9619
9620 static int
9621 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9622 const address_space *aspace,
9623 CORE_ADDR bp_addr,
9624 const struct target_waitstatus *ws)
9625 {
9626 if (ws->kind != TARGET_WAITKIND_STOPPED
9627 || ws->value.sig != GDB_SIGNAL_TRAP)
9628 return 0;
9629
9630 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9631 bl->length, aspace, bp_addr);
9632 }
9633
9634 /* Implement the "resources_needed" breakpoint_ops method for
9635 ranged breakpoints. */
9636
9637 static int
9638 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9639 {
9640 return target_ranged_break_num_registers ();
9641 }
9642
9643 /* Implement the "print_it" breakpoint_ops method for
9644 ranged breakpoints. */
9645
9646 static enum print_stop_action
9647 print_it_ranged_breakpoint (bpstat bs)
9648 {
9649 struct breakpoint *b = bs->breakpoint_at;
9650 struct bp_location *bl = b->loc;
9651 struct ui_out *uiout = current_uiout;
9652
9653 gdb_assert (b->type == bp_hardware_breakpoint);
9654
9655 /* Ranged breakpoints have only one location. */
9656 gdb_assert (bl && bl->next == NULL);
9657
9658 annotate_breakpoint (b->number);
9659
9660 maybe_print_thread_hit_breakpoint (uiout);
9661
9662 if (b->disposition == disp_del)
9663 uiout->text ("Temporary ranged breakpoint ");
9664 else
9665 uiout->text ("Ranged breakpoint ");
9666 if (uiout->is_mi_like_p ())
9667 {
9668 uiout->field_string ("reason",
9669 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9670 uiout->field_string ("disp", bpdisp_text (b->disposition));
9671 }
9672 uiout->field_int ("bkptno", b->number);
9673 uiout->text (", ");
9674
9675 return PRINT_SRC_AND_LOC;
9676 }
9677
9678 /* Implement the "print_one" breakpoint_ops method for
9679 ranged breakpoints. */
9680
9681 static void
9682 print_one_ranged_breakpoint (struct breakpoint *b,
9683 struct bp_location **last_loc)
9684 {
9685 struct bp_location *bl = b->loc;
9686 struct value_print_options opts;
9687 struct ui_out *uiout = current_uiout;
9688
9689 /* Ranged breakpoints have only one location. */
9690 gdb_assert (bl && bl->next == NULL);
9691
9692 get_user_print_options (&opts);
9693
9694 if (opts.addressprint)
9695 /* We don't print the address range here, it will be printed later
9696 by print_one_detail_ranged_breakpoint. */
9697 uiout->field_skip ("addr");
9698 annotate_field (5);
9699 print_breakpoint_location (b, bl);
9700 *last_loc = bl;
9701 }
9702
9703 /* Implement the "print_one_detail" breakpoint_ops method for
9704 ranged breakpoints. */
9705
9706 static void
9707 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9708 struct ui_out *uiout)
9709 {
9710 CORE_ADDR address_start, address_end;
9711 struct bp_location *bl = b->loc;
9712 string_file stb;
9713
9714 gdb_assert (bl);
9715
9716 address_start = bl->address;
9717 address_end = address_start + bl->length - 1;
9718
9719 uiout->text ("\taddress range: ");
9720 stb.printf ("[%s, %s]",
9721 print_core_address (bl->gdbarch, address_start),
9722 print_core_address (bl->gdbarch, address_end));
9723 uiout->field_stream ("addr", stb);
9724 uiout->text ("\n");
9725 }
9726
9727 /* Implement the "print_mention" breakpoint_ops method for
9728 ranged breakpoints. */
9729
9730 static void
9731 print_mention_ranged_breakpoint (struct breakpoint *b)
9732 {
9733 struct bp_location *bl = b->loc;
9734 struct ui_out *uiout = current_uiout;
9735
9736 gdb_assert (bl);
9737 gdb_assert (b->type == bp_hardware_breakpoint);
9738
9739 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9740 b->number, paddress (bl->gdbarch, bl->address),
9741 paddress (bl->gdbarch, bl->address + bl->length - 1));
9742 }
9743
9744 /* Implement the "print_recreate" breakpoint_ops method for
9745 ranged breakpoints. */
9746
9747 static void
9748 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9749 {
9750 fprintf_unfiltered (fp, "break-range %s, %s",
9751 event_location_to_string (b->location.get ()),
9752 event_location_to_string (b->location_range_end.get ()));
9753 print_recreate_thread (b, fp);
9754 }
9755
9756 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9757
9758 static struct breakpoint_ops ranged_breakpoint_ops;
9759
9760 /* Find the address where the end of the breakpoint range should be
9761 placed, given the SAL of the end of the range. This is so that if
9762 the user provides a line number, the end of the range is set to the
9763 last instruction of the given line. */
9764
9765 static CORE_ADDR
9766 find_breakpoint_range_end (struct symtab_and_line sal)
9767 {
9768 CORE_ADDR end;
9769
9770 /* If the user provided a PC value, use it. Otherwise,
9771 find the address of the end of the given location. */
9772 if (sal.explicit_pc)
9773 end = sal.pc;
9774 else
9775 {
9776 int ret;
9777 CORE_ADDR start;
9778
9779 ret = find_line_pc_range (sal, &start, &end);
9780 if (!ret)
9781 error (_("Could not find location of the end of the range."));
9782
9783 /* find_line_pc_range returns the start of the next line. */
9784 end--;
9785 }
9786
9787 return end;
9788 }
9789
9790 /* Implement the "break-range" CLI command. */
9791
9792 static void
9793 break_range_command (const char *arg, int from_tty)
9794 {
9795 const char *arg_start;
9796 struct linespec_result canonical_start, canonical_end;
9797 int bp_count, can_use_bp, length;
9798 CORE_ADDR end;
9799 struct breakpoint *b;
9800
9801 /* We don't support software ranged breakpoints. */
9802 if (target_ranged_break_num_registers () < 0)
9803 error (_("This target does not support hardware ranged breakpoints."));
9804
9805 bp_count = hw_breakpoint_used_count ();
9806 bp_count += target_ranged_break_num_registers ();
9807 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9808 bp_count, 0);
9809 if (can_use_bp < 0)
9810 error (_("Hardware breakpoints used exceeds limit."));
9811
9812 arg = skip_spaces (arg);
9813 if (arg == NULL || arg[0] == '\0')
9814 error(_("No address range specified."));
9815
9816 arg_start = arg;
9817 event_location_up start_location = string_to_event_location (&arg,
9818 current_language);
9819 parse_breakpoint_sals (start_location.get (), &canonical_start);
9820
9821 if (arg[0] != ',')
9822 error (_("Too few arguments."));
9823 else if (canonical_start.lsals.empty ())
9824 error (_("Could not find location of the beginning of the range."));
9825
9826 const linespec_sals &lsal_start = canonical_start.lsals[0];
9827
9828 if (canonical_start.lsals.size () > 1
9829 || lsal_start.sals.size () != 1)
9830 error (_("Cannot create a ranged breakpoint with multiple locations."));
9831
9832 const symtab_and_line &sal_start = lsal_start.sals[0];
9833 std::string addr_string_start (arg_start, arg - arg_start);
9834
9835 arg++; /* Skip the comma. */
9836 arg = skip_spaces (arg);
9837
9838 /* Parse the end location. */
9839
9840 arg_start = arg;
9841
9842 /* We call decode_line_full directly here instead of using
9843 parse_breakpoint_sals because we need to specify the start location's
9844 symtab and line as the default symtab and line for the end of the
9845 range. This makes it possible to have ranges like "foo.c:27, +14",
9846 where +14 means 14 lines from the start location. */
9847 event_location_up end_location = string_to_event_location (&arg,
9848 current_language);
9849 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9850 sal_start.symtab, sal_start.line,
9851 &canonical_end, NULL, NULL);
9852
9853 if (canonical_end.lsals.empty ())
9854 error (_("Could not find location of the end of the range."));
9855
9856 const linespec_sals &lsal_end = canonical_end.lsals[0];
9857 if (canonical_end.lsals.size () > 1
9858 || lsal_end.sals.size () != 1)
9859 error (_("Cannot create a ranged breakpoint with multiple locations."));
9860
9861 const symtab_and_line &sal_end = lsal_end.sals[0];
9862
9863 end = find_breakpoint_range_end (sal_end);
9864 if (sal_start.pc > end)
9865 error (_("Invalid address range, end precedes start."));
9866
9867 length = end - sal_start.pc + 1;
9868 if (length < 0)
9869 /* Length overflowed. */
9870 error (_("Address range too large."));
9871 else if (length == 1)
9872 {
9873 /* This range is simple enough to be handled by
9874 the `hbreak' command. */
9875 hbreak_command (&addr_string_start[0], 1);
9876
9877 return;
9878 }
9879
9880 /* Now set up the breakpoint. */
9881 b = set_raw_breakpoint (get_current_arch (), sal_start,
9882 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9883 set_breakpoint_count (breakpoint_count + 1);
9884 b->number = breakpoint_count;
9885 b->disposition = disp_donttouch;
9886 b->location = std::move (start_location);
9887 b->location_range_end = std::move (end_location);
9888 b->loc->length = length;
9889
9890 mention (b);
9891 gdb::observers::breakpoint_created.notify (b);
9892 update_global_location_list (UGLL_MAY_INSERT);
9893 }
9894
9895 /* Return non-zero if EXP is verified as constant. Returned zero
9896 means EXP is variable. Also the constant detection may fail for
9897 some constant expressions and in such case still falsely return
9898 zero. */
9899
9900 static int
9901 watchpoint_exp_is_const (const struct expression *exp)
9902 {
9903 int i = exp->nelts;
9904
9905 while (i > 0)
9906 {
9907 int oplenp, argsp;
9908
9909 /* We are only interested in the descriptor of each element. */
9910 operator_length (exp, i, &oplenp, &argsp);
9911 i -= oplenp;
9912
9913 switch (exp->elts[i].opcode)
9914 {
9915 case BINOP_ADD:
9916 case BINOP_SUB:
9917 case BINOP_MUL:
9918 case BINOP_DIV:
9919 case BINOP_REM:
9920 case BINOP_MOD:
9921 case BINOP_LSH:
9922 case BINOP_RSH:
9923 case BINOP_LOGICAL_AND:
9924 case BINOP_LOGICAL_OR:
9925 case BINOP_BITWISE_AND:
9926 case BINOP_BITWISE_IOR:
9927 case BINOP_BITWISE_XOR:
9928 case BINOP_EQUAL:
9929 case BINOP_NOTEQUAL:
9930 case BINOP_LESS:
9931 case BINOP_GTR:
9932 case BINOP_LEQ:
9933 case BINOP_GEQ:
9934 case BINOP_REPEAT:
9935 case BINOP_COMMA:
9936 case BINOP_EXP:
9937 case BINOP_MIN:
9938 case BINOP_MAX:
9939 case BINOP_INTDIV:
9940 case BINOP_CONCAT:
9941 case TERNOP_COND:
9942 case TERNOP_SLICE:
9943
9944 case OP_LONG:
9945 case OP_FLOAT:
9946 case OP_LAST:
9947 case OP_COMPLEX:
9948 case OP_STRING:
9949 case OP_ARRAY:
9950 case OP_TYPE:
9951 case OP_TYPEOF:
9952 case OP_DECLTYPE:
9953 case OP_TYPEID:
9954 case OP_NAME:
9955 case OP_OBJC_NSSTRING:
9956
9957 case UNOP_NEG:
9958 case UNOP_LOGICAL_NOT:
9959 case UNOP_COMPLEMENT:
9960 case UNOP_ADDR:
9961 case UNOP_HIGH:
9962 case UNOP_CAST:
9963
9964 case UNOP_CAST_TYPE:
9965 case UNOP_REINTERPRET_CAST:
9966 case UNOP_DYNAMIC_CAST:
9967 /* Unary, binary and ternary operators: We have to check
9968 their operands. If they are constant, then so is the
9969 result of that operation. For instance, if A and B are
9970 determined to be constants, then so is "A + B".
9971
9972 UNOP_IND is one exception to the rule above, because the
9973 value of *ADDR is not necessarily a constant, even when
9974 ADDR is. */
9975 break;
9976
9977 case OP_VAR_VALUE:
9978 /* Check whether the associated symbol is a constant.
9979
9980 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9981 possible that a buggy compiler could mark a variable as
9982 constant even when it is not, and TYPE_CONST would return
9983 true in this case, while SYMBOL_CLASS wouldn't.
9984
9985 We also have to check for function symbols because they
9986 are always constant. */
9987 {
9988 struct symbol *s = exp->elts[i + 2].symbol;
9989
9990 if (SYMBOL_CLASS (s) != LOC_BLOCK
9991 && SYMBOL_CLASS (s) != LOC_CONST
9992 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9993 return 0;
9994 break;
9995 }
9996
9997 /* The default action is to return 0 because we are using
9998 the optimistic approach here: If we don't know something,
9999 then it is not a constant. */
10000 default:
10001 return 0;
10002 }
10003 }
10004
10005 return 1;
10006 }
10007
10008 /* Watchpoint destructor. */
10009
10010 watchpoint::~watchpoint ()
10011 {
10012 xfree (this->exp_string);
10013 xfree (this->exp_string_reparse);
10014 }
10015
10016 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10017
10018 static void
10019 re_set_watchpoint (struct breakpoint *b)
10020 {
10021 struct watchpoint *w = (struct watchpoint *) b;
10022
10023 /* Watchpoint can be either on expression using entirely global
10024 variables, or it can be on local variables.
10025
10026 Watchpoints of the first kind are never auto-deleted, and even
10027 persist across program restarts. Since they can use variables
10028 from shared libraries, we need to reparse expression as libraries
10029 are loaded and unloaded.
10030
10031 Watchpoints on local variables can also change meaning as result
10032 of solib event. For example, if a watchpoint uses both a local
10033 and a global variables in expression, it's a local watchpoint,
10034 but unloading of a shared library will make the expression
10035 invalid. This is not a very common use case, but we still
10036 re-evaluate expression, to avoid surprises to the user.
10037
10038 Note that for local watchpoints, we re-evaluate it only if
10039 watchpoints frame id is still valid. If it's not, it means the
10040 watchpoint is out of scope and will be deleted soon. In fact,
10041 I'm not sure we'll ever be called in this case.
10042
10043 If a local watchpoint's frame id is still valid, then
10044 w->exp_valid_block is likewise valid, and we can safely use it.
10045
10046 Don't do anything about disabled watchpoints, since they will be
10047 reevaluated again when enabled. */
10048 update_watchpoint (w, 1 /* reparse */);
10049 }
10050
10051 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10052
10053 static int
10054 insert_watchpoint (struct bp_location *bl)
10055 {
10056 struct watchpoint *w = (struct watchpoint *) bl->owner;
10057 int length = w->exact ? 1 : bl->length;
10058
10059 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10060 w->cond_exp.get ());
10061 }
10062
10063 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10064
10065 static int
10066 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10067 {
10068 struct watchpoint *w = (struct watchpoint *) bl->owner;
10069 int length = w->exact ? 1 : bl->length;
10070
10071 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10072 w->cond_exp.get ());
10073 }
10074
10075 static int
10076 breakpoint_hit_watchpoint (const struct bp_location *bl,
10077 const address_space *aspace, CORE_ADDR bp_addr,
10078 const struct target_waitstatus *ws)
10079 {
10080 struct breakpoint *b = bl->owner;
10081 struct watchpoint *w = (struct watchpoint *) b;
10082
10083 /* Continuable hardware watchpoints are treated as non-existent if the
10084 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10085 some data address). Otherwise gdb won't stop on a break instruction
10086 in the code (not from a breakpoint) when a hardware watchpoint has
10087 been defined. Also skip watchpoints which we know did not trigger
10088 (did not match the data address). */
10089 if (is_hardware_watchpoint (b)
10090 && w->watchpoint_triggered == watch_triggered_no)
10091 return 0;
10092
10093 return 1;
10094 }
10095
10096 static void
10097 check_status_watchpoint (bpstat bs)
10098 {
10099 gdb_assert (is_watchpoint (bs->breakpoint_at));
10100
10101 bpstat_check_watchpoint (bs);
10102 }
10103
10104 /* Implement the "resources_needed" breakpoint_ops method for
10105 hardware watchpoints. */
10106
10107 static int
10108 resources_needed_watchpoint (const struct bp_location *bl)
10109 {
10110 struct watchpoint *w = (struct watchpoint *) bl->owner;
10111 int length = w->exact? 1 : bl->length;
10112
10113 return target_region_ok_for_hw_watchpoint (bl->address, length);
10114 }
10115
10116 /* Implement the "works_in_software_mode" breakpoint_ops method for
10117 hardware watchpoints. */
10118
10119 static int
10120 works_in_software_mode_watchpoint (const struct breakpoint *b)
10121 {
10122 /* Read and access watchpoints only work with hardware support. */
10123 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10124 }
10125
10126 static enum print_stop_action
10127 print_it_watchpoint (bpstat bs)
10128 {
10129 struct breakpoint *b;
10130 enum print_stop_action result;
10131 struct watchpoint *w;
10132 struct ui_out *uiout = current_uiout;
10133
10134 gdb_assert (bs->bp_location_at != NULL);
10135
10136 b = bs->breakpoint_at;
10137 w = (struct watchpoint *) b;
10138
10139 annotate_watchpoint (b->number);
10140 maybe_print_thread_hit_breakpoint (uiout);
10141
10142 string_file stb;
10143
10144 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10145 switch (b->type)
10146 {
10147 case bp_watchpoint:
10148 case bp_hardware_watchpoint:
10149 if (uiout->is_mi_like_p ())
10150 uiout->field_string
10151 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10152 mention (b);
10153 tuple_emitter.emplace (uiout, "value");
10154 uiout->text ("\nOld value = ");
10155 watchpoint_value_print (bs->old_val.get (), &stb);
10156 uiout->field_stream ("old", stb);
10157 uiout->text ("\nNew value = ");
10158 watchpoint_value_print (w->val.get (), &stb);
10159 uiout->field_stream ("new", stb);
10160 uiout->text ("\n");
10161 /* More than one watchpoint may have been triggered. */
10162 result = PRINT_UNKNOWN;
10163 break;
10164
10165 case bp_read_watchpoint:
10166 if (uiout->is_mi_like_p ())
10167 uiout->field_string
10168 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10169 mention (b);
10170 tuple_emitter.emplace (uiout, "value");
10171 uiout->text ("\nValue = ");
10172 watchpoint_value_print (w->val.get (), &stb);
10173 uiout->field_stream ("value", stb);
10174 uiout->text ("\n");
10175 result = PRINT_UNKNOWN;
10176 break;
10177
10178 case bp_access_watchpoint:
10179 if (bs->old_val != NULL)
10180 {
10181 if (uiout->is_mi_like_p ())
10182 uiout->field_string
10183 ("reason",
10184 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10185 mention (b);
10186 tuple_emitter.emplace (uiout, "value");
10187 uiout->text ("\nOld value = ");
10188 watchpoint_value_print (bs->old_val.get (), &stb);
10189 uiout->field_stream ("old", stb);
10190 uiout->text ("\nNew value = ");
10191 }
10192 else
10193 {
10194 mention (b);
10195 if (uiout->is_mi_like_p ())
10196 uiout->field_string
10197 ("reason",
10198 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10199 tuple_emitter.emplace (uiout, "value");
10200 uiout->text ("\nValue = ");
10201 }
10202 watchpoint_value_print (w->val.get (), &stb);
10203 uiout->field_stream ("new", stb);
10204 uiout->text ("\n");
10205 result = PRINT_UNKNOWN;
10206 break;
10207 default:
10208 result = PRINT_UNKNOWN;
10209 }
10210
10211 return result;
10212 }
10213
10214 /* Implement the "print_mention" breakpoint_ops method for hardware
10215 watchpoints. */
10216
10217 static void
10218 print_mention_watchpoint (struct breakpoint *b)
10219 {
10220 struct watchpoint *w = (struct watchpoint *) b;
10221 struct ui_out *uiout = current_uiout;
10222 const char *tuple_name;
10223
10224 switch (b->type)
10225 {
10226 case bp_watchpoint:
10227 uiout->text ("Watchpoint ");
10228 tuple_name = "wpt";
10229 break;
10230 case bp_hardware_watchpoint:
10231 uiout->text ("Hardware watchpoint ");
10232 tuple_name = "wpt";
10233 break;
10234 case bp_read_watchpoint:
10235 uiout->text ("Hardware read watchpoint ");
10236 tuple_name = "hw-rwpt";
10237 break;
10238 case bp_access_watchpoint:
10239 uiout->text ("Hardware access (read/write) watchpoint ");
10240 tuple_name = "hw-awpt";
10241 break;
10242 default:
10243 internal_error (__FILE__, __LINE__,
10244 _("Invalid hardware watchpoint type."));
10245 }
10246
10247 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10248 uiout->field_int ("number", b->number);
10249 uiout->text (": ");
10250 uiout->field_string ("exp", w->exp_string);
10251 }
10252
10253 /* Implement the "print_recreate" breakpoint_ops method for
10254 watchpoints. */
10255
10256 static void
10257 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10258 {
10259 struct watchpoint *w = (struct watchpoint *) b;
10260
10261 switch (b->type)
10262 {
10263 case bp_watchpoint:
10264 case bp_hardware_watchpoint:
10265 fprintf_unfiltered (fp, "watch");
10266 break;
10267 case bp_read_watchpoint:
10268 fprintf_unfiltered (fp, "rwatch");
10269 break;
10270 case bp_access_watchpoint:
10271 fprintf_unfiltered (fp, "awatch");
10272 break;
10273 default:
10274 internal_error (__FILE__, __LINE__,
10275 _("Invalid watchpoint type."));
10276 }
10277
10278 fprintf_unfiltered (fp, " %s", w->exp_string);
10279 print_recreate_thread (b, fp);
10280 }
10281
10282 /* Implement the "explains_signal" breakpoint_ops method for
10283 watchpoints. */
10284
10285 static int
10286 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10287 {
10288 /* A software watchpoint cannot cause a signal other than
10289 GDB_SIGNAL_TRAP. */
10290 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10291 return 0;
10292
10293 return 1;
10294 }
10295
10296 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10297
10298 static struct breakpoint_ops watchpoint_breakpoint_ops;
10299
10300 /* Implement the "insert" breakpoint_ops method for
10301 masked hardware watchpoints. */
10302
10303 static int
10304 insert_masked_watchpoint (struct bp_location *bl)
10305 {
10306 struct watchpoint *w = (struct watchpoint *) bl->owner;
10307
10308 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10309 bl->watchpoint_type);
10310 }
10311
10312 /* Implement the "remove" breakpoint_ops method for
10313 masked hardware watchpoints. */
10314
10315 static int
10316 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10317 {
10318 struct watchpoint *w = (struct watchpoint *) bl->owner;
10319
10320 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10321 bl->watchpoint_type);
10322 }
10323
10324 /* Implement the "resources_needed" breakpoint_ops method for
10325 masked hardware watchpoints. */
10326
10327 static int
10328 resources_needed_masked_watchpoint (const struct bp_location *bl)
10329 {
10330 struct watchpoint *w = (struct watchpoint *) bl->owner;
10331
10332 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10333 }
10334
10335 /* Implement the "works_in_software_mode" breakpoint_ops method for
10336 masked hardware watchpoints. */
10337
10338 static int
10339 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10340 {
10341 return 0;
10342 }
10343
10344 /* Implement the "print_it" breakpoint_ops method for
10345 masked hardware watchpoints. */
10346
10347 static enum print_stop_action
10348 print_it_masked_watchpoint (bpstat bs)
10349 {
10350 struct breakpoint *b = bs->breakpoint_at;
10351 struct ui_out *uiout = current_uiout;
10352
10353 /* Masked watchpoints have only one location. */
10354 gdb_assert (b->loc && b->loc->next == NULL);
10355
10356 annotate_watchpoint (b->number);
10357 maybe_print_thread_hit_breakpoint (uiout);
10358
10359 switch (b->type)
10360 {
10361 case bp_hardware_watchpoint:
10362 if (uiout->is_mi_like_p ())
10363 uiout->field_string
10364 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10365 break;
10366
10367 case bp_read_watchpoint:
10368 if (uiout->is_mi_like_p ())
10369 uiout->field_string
10370 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10371 break;
10372
10373 case bp_access_watchpoint:
10374 if (uiout->is_mi_like_p ())
10375 uiout->field_string
10376 ("reason",
10377 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10378 break;
10379 default:
10380 internal_error (__FILE__, __LINE__,
10381 _("Invalid hardware watchpoint type."));
10382 }
10383
10384 mention (b);
10385 uiout->text (_("\n\
10386 Check the underlying instruction at PC for the memory\n\
10387 address and value which triggered this watchpoint.\n"));
10388 uiout->text ("\n");
10389
10390 /* More than one watchpoint may have been triggered. */
10391 return PRINT_UNKNOWN;
10392 }
10393
10394 /* Implement the "print_one_detail" breakpoint_ops method for
10395 masked hardware watchpoints. */
10396
10397 static void
10398 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10399 struct ui_out *uiout)
10400 {
10401 struct watchpoint *w = (struct watchpoint *) b;
10402
10403 /* Masked watchpoints have only one location. */
10404 gdb_assert (b->loc && b->loc->next == NULL);
10405
10406 uiout->text ("\tmask ");
10407 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10408 uiout->text ("\n");
10409 }
10410
10411 /* Implement the "print_mention" breakpoint_ops method for
10412 masked hardware watchpoints. */
10413
10414 static void
10415 print_mention_masked_watchpoint (struct breakpoint *b)
10416 {
10417 struct watchpoint *w = (struct watchpoint *) b;
10418 struct ui_out *uiout = current_uiout;
10419 const char *tuple_name;
10420
10421 switch (b->type)
10422 {
10423 case bp_hardware_watchpoint:
10424 uiout->text ("Masked hardware watchpoint ");
10425 tuple_name = "wpt";
10426 break;
10427 case bp_read_watchpoint:
10428 uiout->text ("Masked hardware read watchpoint ");
10429 tuple_name = "hw-rwpt";
10430 break;
10431 case bp_access_watchpoint:
10432 uiout->text ("Masked hardware access (read/write) watchpoint ");
10433 tuple_name = "hw-awpt";
10434 break;
10435 default:
10436 internal_error (__FILE__, __LINE__,
10437 _("Invalid hardware watchpoint type."));
10438 }
10439
10440 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10441 uiout->field_int ("number", b->number);
10442 uiout->text (": ");
10443 uiout->field_string ("exp", w->exp_string);
10444 }
10445
10446 /* Implement the "print_recreate" breakpoint_ops method for
10447 masked hardware watchpoints. */
10448
10449 static void
10450 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10451 {
10452 struct watchpoint *w = (struct watchpoint *) b;
10453 char tmp[40];
10454
10455 switch (b->type)
10456 {
10457 case bp_hardware_watchpoint:
10458 fprintf_unfiltered (fp, "watch");
10459 break;
10460 case bp_read_watchpoint:
10461 fprintf_unfiltered (fp, "rwatch");
10462 break;
10463 case bp_access_watchpoint:
10464 fprintf_unfiltered (fp, "awatch");
10465 break;
10466 default:
10467 internal_error (__FILE__, __LINE__,
10468 _("Invalid hardware watchpoint type."));
10469 }
10470
10471 sprintf_vma (tmp, w->hw_wp_mask);
10472 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10473 print_recreate_thread (b, fp);
10474 }
10475
10476 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10477
10478 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10479
10480 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10481
10482 static int
10483 is_masked_watchpoint (const struct breakpoint *b)
10484 {
10485 return b->ops == &masked_watchpoint_breakpoint_ops;
10486 }
10487
10488 /* accessflag: hw_write: watch write,
10489 hw_read: watch read,
10490 hw_access: watch access (read or write) */
10491 static void
10492 watch_command_1 (const char *arg, int accessflag, int from_tty,
10493 int just_location, int internal)
10494 {
10495 struct breakpoint *scope_breakpoint = NULL;
10496 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10497 struct value *result;
10498 int saved_bitpos = 0, saved_bitsize = 0;
10499 const char *exp_start = NULL;
10500 const char *exp_end = NULL;
10501 const char *tok, *end_tok;
10502 int toklen = -1;
10503 const char *cond_start = NULL;
10504 const char *cond_end = NULL;
10505 enum bptype bp_type;
10506 int thread = -1;
10507 int pc = 0;
10508 /* Flag to indicate whether we are going to use masks for
10509 the hardware watchpoint. */
10510 int use_mask = 0;
10511 CORE_ADDR mask = 0;
10512
10513 /* Make sure that we actually have parameters to parse. */
10514 if (arg != NULL && arg[0] != '\0')
10515 {
10516 const char *value_start;
10517
10518 exp_end = arg + strlen (arg);
10519
10520 /* Look for "parameter value" pairs at the end
10521 of the arguments string. */
10522 for (tok = exp_end - 1; tok > arg; tok--)
10523 {
10524 /* Skip whitespace at the end of the argument list. */
10525 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10526 tok--;
10527
10528 /* Find the beginning of the last token.
10529 This is the value of the parameter. */
10530 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10531 tok--;
10532 value_start = tok + 1;
10533
10534 /* Skip whitespace. */
10535 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10536 tok--;
10537
10538 end_tok = tok;
10539
10540 /* Find the beginning of the second to last token.
10541 This is the parameter itself. */
10542 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10543 tok--;
10544 tok++;
10545 toklen = end_tok - tok + 1;
10546
10547 if (toklen == 6 && startswith (tok, "thread"))
10548 {
10549 struct thread_info *thr;
10550 /* At this point we've found a "thread" token, which means
10551 the user is trying to set a watchpoint that triggers
10552 only in a specific thread. */
10553 const char *endp;
10554
10555 if (thread != -1)
10556 error(_("You can specify only one thread."));
10557
10558 /* Extract the thread ID from the next token. */
10559 thr = parse_thread_id (value_start, &endp);
10560
10561 /* Check if the user provided a valid thread ID. */
10562 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10563 invalid_thread_id_error (value_start);
10564
10565 thread = thr->global_num;
10566 }
10567 else if (toklen == 4 && startswith (tok, "mask"))
10568 {
10569 /* We've found a "mask" token, which means the user wants to
10570 create a hardware watchpoint that is going to have the mask
10571 facility. */
10572 struct value *mask_value, *mark;
10573
10574 if (use_mask)
10575 error(_("You can specify only one mask."));
10576
10577 use_mask = just_location = 1;
10578
10579 mark = value_mark ();
10580 mask_value = parse_to_comma_and_eval (&value_start);
10581 mask = value_as_address (mask_value);
10582 value_free_to_mark (mark);
10583 }
10584 else
10585 /* We didn't recognize what we found. We should stop here. */
10586 break;
10587
10588 /* Truncate the string and get rid of the "parameter value" pair before
10589 the arguments string is parsed by the parse_exp_1 function. */
10590 exp_end = tok;
10591 }
10592 }
10593 else
10594 exp_end = arg;
10595
10596 /* Parse the rest of the arguments. From here on out, everything
10597 is in terms of a newly allocated string instead of the original
10598 ARG. */
10599 innermost_block.reset ();
10600 std::string expression (arg, exp_end - arg);
10601 exp_start = arg = expression.c_str ();
10602 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10603 exp_end = arg;
10604 /* Remove trailing whitespace from the expression before saving it.
10605 This makes the eventual display of the expression string a bit
10606 prettier. */
10607 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10608 --exp_end;
10609
10610 /* Checking if the expression is not constant. */
10611 if (watchpoint_exp_is_const (exp.get ()))
10612 {
10613 int len;
10614
10615 len = exp_end - exp_start;
10616 while (len > 0 && isspace (exp_start[len - 1]))
10617 len--;
10618 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10619 }
10620
10621 exp_valid_block = innermost_block.block ();
10622 struct value *mark = value_mark ();
10623 struct value *val_as_value = nullptr;
10624 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10625 just_location);
10626
10627 if (val_as_value != NULL && just_location)
10628 {
10629 saved_bitpos = value_bitpos (val_as_value);
10630 saved_bitsize = value_bitsize (val_as_value);
10631 }
10632
10633 value_ref_ptr val;
10634 if (just_location)
10635 {
10636 int ret;
10637
10638 exp_valid_block = NULL;
10639 val = release_value (value_addr (result));
10640 value_free_to_mark (mark);
10641
10642 if (use_mask)
10643 {
10644 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10645 mask);
10646 if (ret == -1)
10647 error (_("This target does not support masked watchpoints."));
10648 else if (ret == -2)
10649 error (_("Invalid mask or memory region."));
10650 }
10651 }
10652 else if (val_as_value != NULL)
10653 val = release_value (val_as_value);
10654
10655 tok = skip_spaces (arg);
10656 end_tok = skip_to_space (tok);
10657
10658 toklen = end_tok - tok;
10659 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10660 {
10661 innermost_block.reset ();
10662 tok = cond_start = end_tok + 1;
10663 parse_exp_1 (&tok, 0, 0, 0);
10664
10665 /* The watchpoint expression may not be local, but the condition
10666 may still be. E.g.: `watch global if local > 0'. */
10667 cond_exp_valid_block = innermost_block.block ();
10668
10669 cond_end = tok;
10670 }
10671 if (*tok)
10672 error (_("Junk at end of command."));
10673
10674 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10675
10676 /* Save this because create_internal_breakpoint below invalidates
10677 'wp_frame'. */
10678 frame_id watchpoint_frame = get_frame_id (wp_frame);
10679
10680 /* If the expression is "local", then set up a "watchpoint scope"
10681 breakpoint at the point where we've left the scope of the watchpoint
10682 expression. Create the scope breakpoint before the watchpoint, so
10683 that we will encounter it first in bpstat_stop_status. */
10684 if (exp_valid_block != NULL && wp_frame != NULL)
10685 {
10686 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10687
10688 if (frame_id_p (caller_frame_id))
10689 {
10690 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10691 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10692
10693 scope_breakpoint
10694 = create_internal_breakpoint (caller_arch, caller_pc,
10695 bp_watchpoint_scope,
10696 &momentary_breakpoint_ops);
10697
10698 /* create_internal_breakpoint could invalidate WP_FRAME. */
10699 wp_frame = NULL;
10700
10701 scope_breakpoint->enable_state = bp_enabled;
10702
10703 /* Automatically delete the breakpoint when it hits. */
10704 scope_breakpoint->disposition = disp_del;
10705
10706 /* Only break in the proper frame (help with recursion). */
10707 scope_breakpoint->frame_id = caller_frame_id;
10708
10709 /* Set the address at which we will stop. */
10710 scope_breakpoint->loc->gdbarch = caller_arch;
10711 scope_breakpoint->loc->requested_address = caller_pc;
10712 scope_breakpoint->loc->address
10713 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10714 scope_breakpoint->loc->requested_address,
10715 scope_breakpoint->type);
10716 }
10717 }
10718
10719 /* Now set up the breakpoint. We create all watchpoints as hardware
10720 watchpoints here even if hardware watchpoints are turned off, a call
10721 to update_watchpoint later in this function will cause the type to
10722 drop back to bp_watchpoint (software watchpoint) if required. */
10723
10724 if (accessflag == hw_read)
10725 bp_type = bp_read_watchpoint;
10726 else if (accessflag == hw_access)
10727 bp_type = bp_access_watchpoint;
10728 else
10729 bp_type = bp_hardware_watchpoint;
10730
10731 std::unique_ptr<watchpoint> w (new watchpoint ());
10732
10733 if (use_mask)
10734 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10735 &masked_watchpoint_breakpoint_ops);
10736 else
10737 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10738 &watchpoint_breakpoint_ops);
10739 w->thread = thread;
10740 w->disposition = disp_donttouch;
10741 w->pspace = current_program_space;
10742 w->exp = std::move (exp);
10743 w->exp_valid_block = exp_valid_block;
10744 w->cond_exp_valid_block = cond_exp_valid_block;
10745 if (just_location)
10746 {
10747 struct type *t = value_type (val.get ());
10748 CORE_ADDR addr = value_as_address (val.get ());
10749
10750 w->exp_string_reparse
10751 = current_language->la_watch_location_expression (t, addr).release ();
10752
10753 w->exp_string = xstrprintf ("-location %.*s",
10754 (int) (exp_end - exp_start), exp_start);
10755 }
10756 else
10757 w->exp_string = savestring (exp_start, exp_end - exp_start);
10758
10759 if (use_mask)
10760 {
10761 w->hw_wp_mask = mask;
10762 }
10763 else
10764 {
10765 w->val = val;
10766 w->val_bitpos = saved_bitpos;
10767 w->val_bitsize = saved_bitsize;
10768 w->val_valid = 1;
10769 }
10770
10771 if (cond_start)
10772 w->cond_string = savestring (cond_start, cond_end - cond_start);
10773 else
10774 w->cond_string = 0;
10775
10776 if (frame_id_p (watchpoint_frame))
10777 {
10778 w->watchpoint_frame = watchpoint_frame;
10779 w->watchpoint_thread = inferior_ptid;
10780 }
10781 else
10782 {
10783 w->watchpoint_frame = null_frame_id;
10784 w->watchpoint_thread = null_ptid;
10785 }
10786
10787 if (scope_breakpoint != NULL)
10788 {
10789 /* The scope breakpoint is related to the watchpoint. We will
10790 need to act on them together. */
10791 w->related_breakpoint = scope_breakpoint;
10792 scope_breakpoint->related_breakpoint = w.get ();
10793 }
10794
10795 if (!just_location)
10796 value_free_to_mark (mark);
10797
10798 /* Finally update the new watchpoint. This creates the locations
10799 that should be inserted. */
10800 update_watchpoint (w.get (), 1);
10801
10802 install_breakpoint (internal, std::move (w), 1);
10803 }
10804
10805 /* Return count of debug registers needed to watch the given expression.
10806 If the watchpoint cannot be handled in hardware return zero. */
10807
10808 static int
10809 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10810 {
10811 int found_memory_cnt = 0;
10812
10813 /* Did the user specifically forbid us to use hardware watchpoints? */
10814 if (!can_use_hw_watchpoints)
10815 return 0;
10816
10817 gdb_assert (!vals.empty ());
10818 struct value *head = vals[0].get ();
10819
10820 /* Make sure that the value of the expression depends only upon
10821 memory contents, and values computed from them within GDB. If we
10822 find any register references or function calls, we can't use a
10823 hardware watchpoint.
10824
10825 The idea here is that evaluating an expression generates a series
10826 of values, one holding the value of every subexpression. (The
10827 expression a*b+c has five subexpressions: a, b, a*b, c, and
10828 a*b+c.) GDB's values hold almost enough information to establish
10829 the criteria given above --- they identify memory lvalues,
10830 register lvalues, computed values, etcetera. So we can evaluate
10831 the expression, and then scan the chain of values that leaves
10832 behind to decide whether we can detect any possible change to the
10833 expression's final value using only hardware watchpoints.
10834
10835 However, I don't think that the values returned by inferior
10836 function calls are special in any way. So this function may not
10837 notice that an expression involving an inferior function call
10838 can't be watched with hardware watchpoints. FIXME. */
10839 for (const value_ref_ptr &iter : vals)
10840 {
10841 struct value *v = iter.get ();
10842
10843 if (VALUE_LVAL (v) == lval_memory)
10844 {
10845 if (v != head && value_lazy (v))
10846 /* A lazy memory lvalue in the chain is one that GDB never
10847 needed to fetch; we either just used its address (e.g.,
10848 `a' in `a.b') or we never needed it at all (e.g., `a'
10849 in `a,b'). This doesn't apply to HEAD; if that is
10850 lazy then it was not readable, but watch it anyway. */
10851 ;
10852 else
10853 {
10854 /* Ahh, memory we actually used! Check if we can cover
10855 it with hardware watchpoints. */
10856 struct type *vtype = check_typedef (value_type (v));
10857
10858 /* We only watch structs and arrays if user asked for it
10859 explicitly, never if they just happen to appear in a
10860 middle of some value chain. */
10861 if (v == head
10862 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10863 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10864 {
10865 CORE_ADDR vaddr = value_address (v);
10866 int len;
10867 int num_regs;
10868
10869 len = (target_exact_watchpoints
10870 && is_scalar_type_recursive (vtype))?
10871 1 : TYPE_LENGTH (value_type (v));
10872
10873 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10874 if (!num_regs)
10875 return 0;
10876 else
10877 found_memory_cnt += num_regs;
10878 }
10879 }
10880 }
10881 else if (VALUE_LVAL (v) != not_lval
10882 && deprecated_value_modifiable (v) == 0)
10883 return 0; /* These are values from the history (e.g., $1). */
10884 else if (VALUE_LVAL (v) == lval_register)
10885 return 0; /* Cannot watch a register with a HW watchpoint. */
10886 }
10887
10888 /* The expression itself looks suitable for using a hardware
10889 watchpoint, but give the target machine a chance to reject it. */
10890 return found_memory_cnt;
10891 }
10892
10893 void
10894 watch_command_wrapper (const char *arg, int from_tty, int internal)
10895 {
10896 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10897 }
10898
10899 /* A helper function that looks for the "-location" argument and then
10900 calls watch_command_1. */
10901
10902 static void
10903 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10904 {
10905 int just_location = 0;
10906
10907 if (arg
10908 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10909 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10910 {
10911 arg = skip_spaces (arg);
10912 just_location = 1;
10913 }
10914
10915 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10916 }
10917
10918 static void
10919 watch_command (const char *arg, int from_tty)
10920 {
10921 watch_maybe_just_location (arg, hw_write, from_tty);
10922 }
10923
10924 void
10925 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10926 {
10927 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10928 }
10929
10930 static void
10931 rwatch_command (const char *arg, int from_tty)
10932 {
10933 watch_maybe_just_location (arg, hw_read, from_tty);
10934 }
10935
10936 void
10937 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10938 {
10939 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10940 }
10941
10942 static void
10943 awatch_command (const char *arg, int from_tty)
10944 {
10945 watch_maybe_just_location (arg, hw_access, from_tty);
10946 }
10947 \f
10948
10949 /* Data for the FSM that manages the until(location)/advance commands
10950 in infcmd.c. Here because it uses the mechanisms of
10951 breakpoints. */
10952
10953 struct until_break_fsm : public thread_fsm
10954 {
10955 /* The thread that was current when the command was executed. */
10956 int thread;
10957
10958 /* The breakpoint set at the destination location. */
10959 breakpoint_up location_breakpoint;
10960
10961 /* Breakpoint set at the return address in the caller frame. May be
10962 NULL. */
10963 breakpoint_up caller_breakpoint;
10964
10965 until_break_fsm (struct interp *cmd_interp, int thread,
10966 breakpoint_up &&location_breakpoint,
10967 breakpoint_up &&caller_breakpoint)
10968 : thread_fsm (cmd_interp),
10969 thread (thread),
10970 location_breakpoint (std::move (location_breakpoint)),
10971 caller_breakpoint (std::move (caller_breakpoint))
10972 {
10973 }
10974
10975 void clean_up (struct thread_info *thread) override;
10976 bool should_stop (struct thread_info *thread) override;
10977 enum async_reply_reason do_async_reply_reason () override;
10978 };
10979
10980 /* Implementation of the 'should_stop' FSM method for the
10981 until(location)/advance commands. */
10982
10983 bool
10984 until_break_fsm::should_stop (struct thread_info *tp)
10985 {
10986 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10987 location_breakpoint.get ()) != NULL
10988 || (caller_breakpoint != NULL
10989 && bpstat_find_breakpoint (tp->control.stop_bpstat,
10990 caller_breakpoint.get ()) != NULL))
10991 set_finished ();
10992
10993 return true;
10994 }
10995
10996 /* Implementation of the 'clean_up' FSM method for the
10997 until(location)/advance commands. */
10998
10999 void
11000 until_break_fsm::clean_up (struct thread_info *)
11001 {
11002 /* Clean up our temporary breakpoints. */
11003 location_breakpoint.reset ();
11004 caller_breakpoint.reset ();
11005 delete_longjmp_breakpoint (thread);
11006 }
11007
11008 /* Implementation of the 'async_reply_reason' FSM method for the
11009 until(location)/advance commands. */
11010
11011 enum async_reply_reason
11012 until_break_fsm::do_async_reply_reason ()
11013 {
11014 return EXEC_ASYNC_LOCATION_REACHED;
11015 }
11016
11017 void
11018 until_break_command (const char *arg, int from_tty, int anywhere)
11019 {
11020 struct frame_info *frame;
11021 struct gdbarch *frame_gdbarch;
11022 struct frame_id stack_frame_id;
11023 struct frame_id caller_frame_id;
11024 int thread;
11025 struct thread_info *tp;
11026
11027 clear_proceed_status (0);
11028
11029 /* Set a breakpoint where the user wants it and at return from
11030 this function. */
11031
11032 event_location_up location = string_to_event_location (&arg, current_language);
11033
11034 std::vector<symtab_and_line> sals
11035 = (last_displayed_sal_is_valid ()
11036 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11037 get_last_displayed_symtab (),
11038 get_last_displayed_line ())
11039 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11040 NULL, (struct symtab *) NULL, 0));
11041
11042 if (sals.size () != 1)
11043 error (_("Couldn't get information on specified line."));
11044
11045 symtab_and_line &sal = sals[0];
11046
11047 if (*arg)
11048 error (_("Junk at end of arguments."));
11049
11050 resolve_sal_pc (&sal);
11051
11052 tp = inferior_thread ();
11053 thread = tp->global_num;
11054
11055 /* Note linespec handling above invalidates the frame chain.
11056 Installing a breakpoint also invalidates the frame chain (as it
11057 may need to switch threads), so do any frame handling before
11058 that. */
11059
11060 frame = get_selected_frame (NULL);
11061 frame_gdbarch = get_frame_arch (frame);
11062 stack_frame_id = get_stack_frame_id (frame);
11063 caller_frame_id = frame_unwind_caller_id (frame);
11064
11065 /* Keep within the current frame, or in frames called by the current
11066 one. */
11067
11068 breakpoint_up caller_breakpoint;
11069
11070 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11071
11072 if (frame_id_p (caller_frame_id))
11073 {
11074 struct symtab_and_line sal2;
11075 struct gdbarch *caller_gdbarch;
11076
11077 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11078 sal2.pc = frame_unwind_caller_pc (frame);
11079 caller_gdbarch = frame_unwind_caller_arch (frame);
11080 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11081 sal2,
11082 caller_frame_id,
11083 bp_until);
11084
11085 set_longjmp_breakpoint (tp, caller_frame_id);
11086 lj_deleter.emplace (thread);
11087 }
11088
11089 /* set_momentary_breakpoint could invalidate FRAME. */
11090 frame = NULL;
11091
11092 breakpoint_up location_breakpoint;
11093 if (anywhere)
11094 /* If the user told us to continue until a specified location,
11095 we don't specify a frame at which we need to stop. */
11096 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11097 null_frame_id, bp_until);
11098 else
11099 /* Otherwise, specify the selected frame, because we want to stop
11100 only at the very same frame. */
11101 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11102 stack_frame_id, bp_until);
11103
11104 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11105 std::move (location_breakpoint),
11106 std::move (caller_breakpoint));
11107
11108 if (lj_deleter)
11109 lj_deleter->release ();
11110
11111 proceed (-1, GDB_SIGNAL_DEFAULT);
11112 }
11113
11114 /* This function attempts to parse an optional "if <cond>" clause
11115 from the arg string. If one is not found, it returns NULL.
11116
11117 Else, it returns a pointer to the condition string. (It does not
11118 attempt to evaluate the string against a particular block.) And,
11119 it updates arg to point to the first character following the parsed
11120 if clause in the arg string. */
11121
11122 const char *
11123 ep_parse_optional_if_clause (const char **arg)
11124 {
11125 const char *cond_string;
11126
11127 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11128 return NULL;
11129
11130 /* Skip the "if" keyword. */
11131 (*arg) += 2;
11132
11133 /* Skip any extra leading whitespace, and record the start of the
11134 condition string. */
11135 *arg = skip_spaces (*arg);
11136 cond_string = *arg;
11137
11138 /* Assume that the condition occupies the remainder of the arg
11139 string. */
11140 (*arg) += strlen (cond_string);
11141
11142 return cond_string;
11143 }
11144
11145 /* Commands to deal with catching events, such as signals, exceptions,
11146 process start/exit, etc. */
11147
11148 typedef enum
11149 {
11150 catch_fork_temporary, catch_vfork_temporary,
11151 catch_fork_permanent, catch_vfork_permanent
11152 }
11153 catch_fork_kind;
11154
11155 static void
11156 catch_fork_command_1 (const char *arg, int from_tty,
11157 struct cmd_list_element *command)
11158 {
11159 struct gdbarch *gdbarch = get_current_arch ();
11160 const char *cond_string = NULL;
11161 catch_fork_kind fork_kind;
11162 int tempflag;
11163
11164 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11165 tempflag = (fork_kind == catch_fork_temporary
11166 || fork_kind == catch_vfork_temporary);
11167
11168 if (!arg)
11169 arg = "";
11170 arg = skip_spaces (arg);
11171
11172 /* The allowed syntax is:
11173 catch [v]fork
11174 catch [v]fork if <cond>
11175
11176 First, check if there's an if clause. */
11177 cond_string = ep_parse_optional_if_clause (&arg);
11178
11179 if ((*arg != '\0') && !isspace (*arg))
11180 error (_("Junk at end of arguments."));
11181
11182 /* If this target supports it, create a fork or vfork catchpoint
11183 and enable reporting of such events. */
11184 switch (fork_kind)
11185 {
11186 case catch_fork_temporary:
11187 case catch_fork_permanent:
11188 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11189 &catch_fork_breakpoint_ops);
11190 break;
11191 case catch_vfork_temporary:
11192 case catch_vfork_permanent:
11193 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11194 &catch_vfork_breakpoint_ops);
11195 break;
11196 default:
11197 error (_("unsupported or unknown fork kind; cannot catch it"));
11198 break;
11199 }
11200 }
11201
11202 static void
11203 catch_exec_command_1 (const char *arg, int from_tty,
11204 struct cmd_list_element *command)
11205 {
11206 struct gdbarch *gdbarch = get_current_arch ();
11207 int tempflag;
11208 const char *cond_string = NULL;
11209
11210 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11211
11212 if (!arg)
11213 arg = "";
11214 arg = skip_spaces (arg);
11215
11216 /* The allowed syntax is:
11217 catch exec
11218 catch exec if <cond>
11219
11220 First, check if there's an if clause. */
11221 cond_string = ep_parse_optional_if_clause (&arg);
11222
11223 if ((*arg != '\0') && !isspace (*arg))
11224 error (_("Junk at end of arguments."));
11225
11226 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11227 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11228 &catch_exec_breakpoint_ops);
11229 c->exec_pathname = NULL;
11230
11231 install_breakpoint (0, std::move (c), 1);
11232 }
11233
11234 void
11235 init_ada_exception_breakpoint (struct breakpoint *b,
11236 struct gdbarch *gdbarch,
11237 struct symtab_and_line sal,
11238 const char *addr_string,
11239 const struct breakpoint_ops *ops,
11240 int tempflag,
11241 int enabled,
11242 int from_tty)
11243 {
11244 if (from_tty)
11245 {
11246 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11247 if (!loc_gdbarch)
11248 loc_gdbarch = gdbarch;
11249
11250 describe_other_breakpoints (loc_gdbarch,
11251 sal.pspace, sal.pc, sal.section, -1);
11252 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11253 version for exception catchpoints, because two catchpoints
11254 used for different exception names will use the same address.
11255 In this case, a "breakpoint ... also set at..." warning is
11256 unproductive. Besides, the warning phrasing is also a bit
11257 inappropriate, we should use the word catchpoint, and tell
11258 the user what type of catchpoint it is. The above is good
11259 enough for now, though. */
11260 }
11261
11262 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11263
11264 b->enable_state = enabled ? bp_enabled : bp_disabled;
11265 b->disposition = tempflag ? disp_del : disp_donttouch;
11266 b->location = string_to_event_location (&addr_string,
11267 language_def (language_ada));
11268 b->language = language_ada;
11269 }
11270
11271 static void
11272 catch_command (const char *arg, int from_tty)
11273 {
11274 error (_("Catch requires an event name."));
11275 }
11276 \f
11277
11278 static void
11279 tcatch_command (const char *arg, int from_tty)
11280 {
11281 error (_("Catch requires an event name."));
11282 }
11283
11284 /* Compare two breakpoints and return a strcmp-like result. */
11285
11286 static int
11287 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11288 {
11289 uintptr_t ua = (uintptr_t) a;
11290 uintptr_t ub = (uintptr_t) b;
11291
11292 if (a->number < b->number)
11293 return -1;
11294 else if (a->number > b->number)
11295 return 1;
11296
11297 /* Now sort by address, in case we see, e..g, two breakpoints with
11298 the number 0. */
11299 if (ua < ub)
11300 return -1;
11301 return ua > ub ? 1 : 0;
11302 }
11303
11304 /* Delete breakpoints by address or line. */
11305
11306 static void
11307 clear_command (const char *arg, int from_tty)
11308 {
11309 struct breakpoint *b;
11310 int default_match;
11311
11312 std::vector<symtab_and_line> decoded_sals;
11313 symtab_and_line last_sal;
11314 gdb::array_view<symtab_and_line> sals;
11315 if (arg)
11316 {
11317 decoded_sals
11318 = decode_line_with_current_source (arg,
11319 (DECODE_LINE_FUNFIRSTLINE
11320 | DECODE_LINE_LIST_MODE));
11321 default_match = 0;
11322 sals = decoded_sals;
11323 }
11324 else
11325 {
11326 /* Set sal's line, symtab, pc, and pspace to the values
11327 corresponding to the last call to print_frame_info. If the
11328 codepoint is not valid, this will set all the fields to 0. */
11329 last_sal = get_last_displayed_sal ();
11330 if (last_sal.symtab == 0)
11331 error (_("No source file specified."));
11332
11333 default_match = 1;
11334 sals = last_sal;
11335 }
11336
11337 /* We don't call resolve_sal_pc here. That's not as bad as it
11338 seems, because all existing breakpoints typically have both
11339 file/line and pc set. So, if clear is given file/line, we can
11340 match this to existing breakpoint without obtaining pc at all.
11341
11342 We only support clearing given the address explicitly
11343 present in breakpoint table. Say, we've set breakpoint
11344 at file:line. There were several PC values for that file:line,
11345 due to optimization, all in one block.
11346
11347 We've picked one PC value. If "clear" is issued with another
11348 PC corresponding to the same file:line, the breakpoint won't
11349 be cleared. We probably can still clear the breakpoint, but
11350 since the other PC value is never presented to user, user
11351 can only find it by guessing, and it does not seem important
11352 to support that. */
11353
11354 /* For each line spec given, delete bps which correspond to it. Do
11355 it in two passes, solely to preserve the current behavior that
11356 from_tty is forced true if we delete more than one
11357 breakpoint. */
11358
11359 std::vector<struct breakpoint *> found;
11360 for (const auto &sal : sals)
11361 {
11362 const char *sal_fullname;
11363
11364 /* If exact pc given, clear bpts at that pc.
11365 If line given (pc == 0), clear all bpts on specified line.
11366 If defaulting, clear all bpts on default line
11367 or at default pc.
11368
11369 defaulting sal.pc != 0 tests to do
11370
11371 0 1 pc
11372 1 1 pc _and_ line
11373 0 0 line
11374 1 0 <can't happen> */
11375
11376 sal_fullname = (sal.symtab == NULL
11377 ? NULL : symtab_to_fullname (sal.symtab));
11378
11379 /* Find all matching breakpoints and add them to 'found'. */
11380 ALL_BREAKPOINTS (b)
11381 {
11382 int match = 0;
11383 /* Are we going to delete b? */
11384 if (b->type != bp_none && !is_watchpoint (b))
11385 {
11386 struct bp_location *loc = b->loc;
11387 for (; loc; loc = loc->next)
11388 {
11389 /* If the user specified file:line, don't allow a PC
11390 match. This matches historical gdb behavior. */
11391 int pc_match = (!sal.explicit_line
11392 && sal.pc
11393 && (loc->pspace == sal.pspace)
11394 && (loc->address == sal.pc)
11395 && (!section_is_overlay (loc->section)
11396 || loc->section == sal.section));
11397 int line_match = 0;
11398
11399 if ((default_match || sal.explicit_line)
11400 && loc->symtab != NULL
11401 && sal_fullname != NULL
11402 && sal.pspace == loc->pspace
11403 && loc->line_number == sal.line
11404 && filename_cmp (symtab_to_fullname (loc->symtab),
11405 sal_fullname) == 0)
11406 line_match = 1;
11407
11408 if (pc_match || line_match)
11409 {
11410 match = 1;
11411 break;
11412 }
11413 }
11414 }
11415
11416 if (match)
11417 found.push_back (b);
11418 }
11419 }
11420
11421 /* Now go thru the 'found' chain and delete them. */
11422 if (found.empty ())
11423 {
11424 if (arg)
11425 error (_("No breakpoint at %s."), arg);
11426 else
11427 error (_("No breakpoint at this line."));
11428 }
11429
11430 /* Remove duplicates from the vec. */
11431 std::sort (found.begin (), found.end (),
11432 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11433 {
11434 return compare_breakpoints (bp_a, bp_b) < 0;
11435 });
11436 found.erase (std::unique (found.begin (), found.end (),
11437 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11438 {
11439 return compare_breakpoints (bp_a, bp_b) == 0;
11440 }),
11441 found.end ());
11442
11443 if (found.size () > 1)
11444 from_tty = 1; /* Always report if deleted more than one. */
11445 if (from_tty)
11446 {
11447 if (found.size () == 1)
11448 printf_unfiltered (_("Deleted breakpoint "));
11449 else
11450 printf_unfiltered (_("Deleted breakpoints "));
11451 }
11452
11453 for (breakpoint *iter : found)
11454 {
11455 if (from_tty)
11456 printf_unfiltered ("%d ", iter->number);
11457 delete_breakpoint (iter);
11458 }
11459 if (from_tty)
11460 putchar_unfiltered ('\n');
11461 }
11462 \f
11463 /* Delete breakpoint in BS if they are `delete' breakpoints and
11464 all breakpoints that are marked for deletion, whether hit or not.
11465 This is called after any breakpoint is hit, or after errors. */
11466
11467 void
11468 breakpoint_auto_delete (bpstat bs)
11469 {
11470 struct breakpoint *b, *b_tmp;
11471
11472 for (; bs; bs = bs->next)
11473 if (bs->breakpoint_at
11474 && bs->breakpoint_at->disposition == disp_del
11475 && bs->stop)
11476 delete_breakpoint (bs->breakpoint_at);
11477
11478 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11479 {
11480 if (b->disposition == disp_del_at_next_stop)
11481 delete_breakpoint (b);
11482 }
11483 }
11484
11485 /* A comparison function for bp_location AP and BP being interfaced to
11486 qsort. Sort elements primarily by their ADDRESS (no matter what
11487 does breakpoint_address_is_meaningful say for its OWNER),
11488 secondarily by ordering first permanent elements and
11489 terciarily just ensuring the array is sorted stable way despite
11490 qsort being an unstable algorithm. */
11491
11492 static int
11493 bp_locations_compare (const void *ap, const void *bp)
11494 {
11495 const struct bp_location *a = *(const struct bp_location **) ap;
11496 const struct bp_location *b = *(const struct bp_location **) bp;
11497
11498 if (a->address != b->address)
11499 return (a->address > b->address) - (a->address < b->address);
11500
11501 /* Sort locations at the same address by their pspace number, keeping
11502 locations of the same inferior (in a multi-inferior environment)
11503 grouped. */
11504
11505 if (a->pspace->num != b->pspace->num)
11506 return ((a->pspace->num > b->pspace->num)
11507 - (a->pspace->num < b->pspace->num));
11508
11509 /* Sort permanent breakpoints first. */
11510 if (a->permanent != b->permanent)
11511 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11512
11513 /* Make the internal GDB representation stable across GDB runs
11514 where A and B memory inside GDB can differ. Breakpoint locations of
11515 the same type at the same address can be sorted in arbitrary order. */
11516
11517 if (a->owner->number != b->owner->number)
11518 return ((a->owner->number > b->owner->number)
11519 - (a->owner->number < b->owner->number));
11520
11521 return (a > b) - (a < b);
11522 }
11523
11524 /* Set bp_locations_placed_address_before_address_max and
11525 bp_locations_shadow_len_after_address_max according to the current
11526 content of the bp_locations array. */
11527
11528 static void
11529 bp_locations_target_extensions_update (void)
11530 {
11531 struct bp_location *bl, **blp_tmp;
11532
11533 bp_locations_placed_address_before_address_max = 0;
11534 bp_locations_shadow_len_after_address_max = 0;
11535
11536 ALL_BP_LOCATIONS (bl, blp_tmp)
11537 {
11538 CORE_ADDR start, end, addr;
11539
11540 if (!bp_location_has_shadow (bl))
11541 continue;
11542
11543 start = bl->target_info.placed_address;
11544 end = start + bl->target_info.shadow_len;
11545
11546 gdb_assert (bl->address >= start);
11547 addr = bl->address - start;
11548 if (addr > bp_locations_placed_address_before_address_max)
11549 bp_locations_placed_address_before_address_max = addr;
11550
11551 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11552
11553 gdb_assert (bl->address < end);
11554 addr = end - bl->address;
11555 if (addr > bp_locations_shadow_len_after_address_max)
11556 bp_locations_shadow_len_after_address_max = addr;
11557 }
11558 }
11559
11560 /* Download tracepoint locations if they haven't been. */
11561
11562 static void
11563 download_tracepoint_locations (void)
11564 {
11565 struct breakpoint *b;
11566 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11567
11568 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11569
11570 ALL_TRACEPOINTS (b)
11571 {
11572 struct bp_location *bl;
11573 struct tracepoint *t;
11574 int bp_location_downloaded = 0;
11575
11576 if ((b->type == bp_fast_tracepoint
11577 ? !may_insert_fast_tracepoints
11578 : !may_insert_tracepoints))
11579 continue;
11580
11581 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11582 {
11583 if (target_can_download_tracepoint ())
11584 can_download_tracepoint = TRIBOOL_TRUE;
11585 else
11586 can_download_tracepoint = TRIBOOL_FALSE;
11587 }
11588
11589 if (can_download_tracepoint == TRIBOOL_FALSE)
11590 break;
11591
11592 for (bl = b->loc; bl; bl = bl->next)
11593 {
11594 /* In tracepoint, locations are _never_ duplicated, so
11595 should_be_inserted is equivalent to
11596 unduplicated_should_be_inserted. */
11597 if (!should_be_inserted (bl) || bl->inserted)
11598 continue;
11599
11600 switch_to_program_space_and_thread (bl->pspace);
11601
11602 target_download_tracepoint (bl);
11603
11604 bl->inserted = 1;
11605 bp_location_downloaded = 1;
11606 }
11607 t = (struct tracepoint *) b;
11608 t->number_on_target = b->number;
11609 if (bp_location_downloaded)
11610 gdb::observers::breakpoint_modified.notify (b);
11611 }
11612 }
11613
11614 /* Swap the insertion/duplication state between two locations. */
11615
11616 static void
11617 swap_insertion (struct bp_location *left, struct bp_location *right)
11618 {
11619 const int left_inserted = left->inserted;
11620 const int left_duplicate = left->duplicate;
11621 const int left_needs_update = left->needs_update;
11622 const struct bp_target_info left_target_info = left->target_info;
11623
11624 /* Locations of tracepoints can never be duplicated. */
11625 if (is_tracepoint (left->owner))
11626 gdb_assert (!left->duplicate);
11627 if (is_tracepoint (right->owner))
11628 gdb_assert (!right->duplicate);
11629
11630 left->inserted = right->inserted;
11631 left->duplicate = right->duplicate;
11632 left->needs_update = right->needs_update;
11633 left->target_info = right->target_info;
11634 right->inserted = left_inserted;
11635 right->duplicate = left_duplicate;
11636 right->needs_update = left_needs_update;
11637 right->target_info = left_target_info;
11638 }
11639
11640 /* Force the re-insertion of the locations at ADDRESS. This is called
11641 once a new/deleted/modified duplicate location is found and we are evaluating
11642 conditions on the target's side. Such conditions need to be updated on
11643 the target. */
11644
11645 static void
11646 force_breakpoint_reinsertion (struct bp_location *bl)
11647 {
11648 struct bp_location **locp = NULL, **loc2p;
11649 struct bp_location *loc;
11650 CORE_ADDR address = 0;
11651 int pspace_num;
11652
11653 address = bl->address;
11654 pspace_num = bl->pspace->num;
11655
11656 /* This is only meaningful if the target is
11657 evaluating conditions and if the user has
11658 opted for condition evaluation on the target's
11659 side. */
11660 if (gdb_evaluates_breakpoint_condition_p ()
11661 || !target_supports_evaluation_of_breakpoint_conditions ())
11662 return;
11663
11664 /* Flag all breakpoint locations with this address and
11665 the same program space as the location
11666 as "its condition has changed". We need to
11667 update the conditions on the target's side. */
11668 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11669 {
11670 loc = *loc2p;
11671
11672 if (!is_breakpoint (loc->owner)
11673 || pspace_num != loc->pspace->num)
11674 continue;
11675
11676 /* Flag the location appropriately. We use a different state to
11677 let everyone know that we already updated the set of locations
11678 with addr bl->address and program space bl->pspace. This is so
11679 we don't have to keep calling these functions just to mark locations
11680 that have already been marked. */
11681 loc->condition_changed = condition_updated;
11682
11683 /* Free the agent expression bytecode as well. We will compute
11684 it later on. */
11685 loc->cond_bytecode.reset ();
11686 }
11687 }
11688 /* Called whether new breakpoints are created, or existing breakpoints
11689 deleted, to update the global location list and recompute which
11690 locations are duplicate of which.
11691
11692 The INSERT_MODE flag determines whether locations may not, may, or
11693 shall be inserted now. See 'enum ugll_insert_mode' for more
11694 info. */
11695
11696 static void
11697 update_global_location_list (enum ugll_insert_mode insert_mode)
11698 {
11699 struct breakpoint *b;
11700 struct bp_location **locp, *loc;
11701 /* Last breakpoint location address that was marked for update. */
11702 CORE_ADDR last_addr = 0;
11703 /* Last breakpoint location program space that was marked for update. */
11704 int last_pspace_num = -1;
11705
11706 /* Used in the duplicates detection below. When iterating over all
11707 bp_locations, points to the first bp_location of a given address.
11708 Breakpoints and watchpoints of different types are never
11709 duplicates of each other. Keep one pointer for each type of
11710 breakpoint/watchpoint, so we only need to loop over all locations
11711 once. */
11712 struct bp_location *bp_loc_first; /* breakpoint */
11713 struct bp_location *wp_loc_first; /* hardware watchpoint */
11714 struct bp_location *awp_loc_first; /* access watchpoint */
11715 struct bp_location *rwp_loc_first; /* read watchpoint */
11716
11717 /* Saved former bp_locations array which we compare against the newly
11718 built bp_locations from the current state of ALL_BREAKPOINTS. */
11719 struct bp_location **old_locp;
11720 unsigned old_locations_count;
11721 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11722
11723 old_locations_count = bp_locations_count;
11724 bp_locations = NULL;
11725 bp_locations_count = 0;
11726
11727 ALL_BREAKPOINTS (b)
11728 for (loc = b->loc; loc; loc = loc->next)
11729 bp_locations_count++;
11730
11731 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11732 locp = bp_locations;
11733 ALL_BREAKPOINTS (b)
11734 for (loc = b->loc; loc; loc = loc->next)
11735 *locp++ = loc;
11736 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11737 bp_locations_compare);
11738
11739 bp_locations_target_extensions_update ();
11740
11741 /* Identify bp_location instances that are no longer present in the
11742 new list, and therefore should be freed. Note that it's not
11743 necessary that those locations should be removed from inferior --
11744 if there's another location at the same address (previously
11745 marked as duplicate), we don't need to remove/insert the
11746 location.
11747
11748 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11749 and former bp_location array state respectively. */
11750
11751 locp = bp_locations;
11752 for (old_locp = old_locations.get ();
11753 old_locp < old_locations.get () + old_locations_count;
11754 old_locp++)
11755 {
11756 struct bp_location *old_loc = *old_locp;
11757 struct bp_location **loc2p;
11758
11759 /* Tells if 'old_loc' is found among the new locations. If
11760 not, we have to free it. */
11761 int found_object = 0;
11762 /* Tells if the location should remain inserted in the target. */
11763 int keep_in_target = 0;
11764 int removed = 0;
11765
11766 /* Skip LOCP entries which will definitely never be needed.
11767 Stop either at or being the one matching OLD_LOC. */
11768 while (locp < bp_locations + bp_locations_count
11769 && (*locp)->address < old_loc->address)
11770 locp++;
11771
11772 for (loc2p = locp;
11773 (loc2p < bp_locations + bp_locations_count
11774 && (*loc2p)->address == old_loc->address);
11775 loc2p++)
11776 {
11777 /* Check if this is a new/duplicated location or a duplicated
11778 location that had its condition modified. If so, we want to send
11779 its condition to the target if evaluation of conditions is taking
11780 place there. */
11781 if ((*loc2p)->condition_changed == condition_modified
11782 && (last_addr != old_loc->address
11783 || last_pspace_num != old_loc->pspace->num))
11784 {
11785 force_breakpoint_reinsertion (*loc2p);
11786 last_pspace_num = old_loc->pspace->num;
11787 }
11788
11789 if (*loc2p == old_loc)
11790 found_object = 1;
11791 }
11792
11793 /* We have already handled this address, update it so that we don't
11794 have to go through updates again. */
11795 last_addr = old_loc->address;
11796
11797 /* Target-side condition evaluation: Handle deleted locations. */
11798 if (!found_object)
11799 force_breakpoint_reinsertion (old_loc);
11800
11801 /* If this location is no longer present, and inserted, look if
11802 there's maybe a new location at the same address. If so,
11803 mark that one inserted, and don't remove this one. This is
11804 needed so that we don't have a time window where a breakpoint
11805 at certain location is not inserted. */
11806
11807 if (old_loc->inserted)
11808 {
11809 /* If the location is inserted now, we might have to remove
11810 it. */
11811
11812 if (found_object && should_be_inserted (old_loc))
11813 {
11814 /* The location is still present in the location list,
11815 and still should be inserted. Don't do anything. */
11816 keep_in_target = 1;
11817 }
11818 else
11819 {
11820 /* This location still exists, but it won't be kept in the
11821 target since it may have been disabled. We proceed to
11822 remove its target-side condition. */
11823
11824 /* The location is either no longer present, or got
11825 disabled. See if there's another location at the
11826 same address, in which case we don't need to remove
11827 this one from the target. */
11828
11829 /* OLD_LOC comes from existing struct breakpoint. */
11830 if (breakpoint_address_is_meaningful (old_loc->owner))
11831 {
11832 for (loc2p = locp;
11833 (loc2p < bp_locations + bp_locations_count
11834 && (*loc2p)->address == old_loc->address);
11835 loc2p++)
11836 {
11837 struct bp_location *loc2 = *loc2p;
11838
11839 if (breakpoint_locations_match (loc2, old_loc))
11840 {
11841 /* Read watchpoint locations are switched to
11842 access watchpoints, if the former are not
11843 supported, but the latter are. */
11844 if (is_hardware_watchpoint (old_loc->owner))
11845 {
11846 gdb_assert (is_hardware_watchpoint (loc2->owner));
11847 loc2->watchpoint_type = old_loc->watchpoint_type;
11848 }
11849
11850 /* loc2 is a duplicated location. We need to check
11851 if it should be inserted in case it will be
11852 unduplicated. */
11853 if (loc2 != old_loc
11854 && unduplicated_should_be_inserted (loc2))
11855 {
11856 swap_insertion (old_loc, loc2);
11857 keep_in_target = 1;
11858 break;
11859 }
11860 }
11861 }
11862 }
11863 }
11864
11865 if (!keep_in_target)
11866 {
11867 if (remove_breakpoint (old_loc))
11868 {
11869 /* This is just about all we can do. We could keep
11870 this location on the global list, and try to
11871 remove it next time, but there's no particular
11872 reason why we will succeed next time.
11873
11874 Note that at this point, old_loc->owner is still
11875 valid, as delete_breakpoint frees the breakpoint
11876 only after calling us. */
11877 printf_filtered (_("warning: Error removing "
11878 "breakpoint %d\n"),
11879 old_loc->owner->number);
11880 }
11881 removed = 1;
11882 }
11883 }
11884
11885 if (!found_object)
11886 {
11887 if (removed && target_is_non_stop_p ()
11888 && need_moribund_for_location_type (old_loc))
11889 {
11890 /* This location was removed from the target. In
11891 non-stop mode, a race condition is possible where
11892 we've removed a breakpoint, but stop events for that
11893 breakpoint are already queued and will arrive later.
11894 We apply an heuristic to be able to distinguish such
11895 SIGTRAPs from other random SIGTRAPs: we keep this
11896 breakpoint location for a bit, and will retire it
11897 after we see some number of events. The theory here
11898 is that reporting of events should, "on the average",
11899 be fair, so after a while we'll see events from all
11900 threads that have anything of interest, and no longer
11901 need to keep this breakpoint location around. We
11902 don't hold locations forever so to reduce chances of
11903 mistaking a non-breakpoint SIGTRAP for a breakpoint
11904 SIGTRAP.
11905
11906 The heuristic failing can be disastrous on
11907 decr_pc_after_break targets.
11908
11909 On decr_pc_after_break targets, like e.g., x86-linux,
11910 if we fail to recognize a late breakpoint SIGTRAP,
11911 because events_till_retirement has reached 0 too
11912 soon, we'll fail to do the PC adjustment, and report
11913 a random SIGTRAP to the user. When the user resumes
11914 the inferior, it will most likely immediately crash
11915 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11916 corrupted, because of being resumed e.g., in the
11917 middle of a multi-byte instruction, or skipped a
11918 one-byte instruction. This was actually seen happen
11919 on native x86-linux, and should be less rare on
11920 targets that do not support new thread events, like
11921 remote, due to the heuristic depending on
11922 thread_count.
11923
11924 Mistaking a random SIGTRAP for a breakpoint trap
11925 causes similar symptoms (PC adjustment applied when
11926 it shouldn't), but then again, playing with SIGTRAPs
11927 behind the debugger's back is asking for trouble.
11928
11929 Since hardware watchpoint traps are always
11930 distinguishable from other traps, so we don't need to
11931 apply keep hardware watchpoint moribund locations
11932 around. We simply always ignore hardware watchpoint
11933 traps we can no longer explain. */
11934
11935 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11936 old_loc->owner = NULL;
11937
11938 moribund_locations.push_back (old_loc);
11939 }
11940 else
11941 {
11942 old_loc->owner = NULL;
11943 decref_bp_location (&old_loc);
11944 }
11945 }
11946 }
11947
11948 /* Rescan breakpoints at the same address and section, marking the
11949 first one as "first" and any others as "duplicates". This is so
11950 that the bpt instruction is only inserted once. If we have a
11951 permanent breakpoint at the same place as BPT, make that one the
11952 official one, and the rest as duplicates. Permanent breakpoints
11953 are sorted first for the same address.
11954
11955 Do the same for hardware watchpoints, but also considering the
11956 watchpoint's type (regular/access/read) and length. */
11957
11958 bp_loc_first = NULL;
11959 wp_loc_first = NULL;
11960 awp_loc_first = NULL;
11961 rwp_loc_first = NULL;
11962 ALL_BP_LOCATIONS (loc, locp)
11963 {
11964 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11965 non-NULL. */
11966 struct bp_location **loc_first_p;
11967 b = loc->owner;
11968
11969 if (!unduplicated_should_be_inserted (loc)
11970 || !breakpoint_address_is_meaningful (b)
11971 /* Don't detect duplicate for tracepoint locations because they are
11972 never duplicated. See the comments in field `duplicate' of
11973 `struct bp_location'. */
11974 || is_tracepoint (b))
11975 {
11976 /* Clear the condition modification flag. */
11977 loc->condition_changed = condition_unchanged;
11978 continue;
11979 }
11980
11981 if (b->type == bp_hardware_watchpoint)
11982 loc_first_p = &wp_loc_first;
11983 else if (b->type == bp_read_watchpoint)
11984 loc_first_p = &rwp_loc_first;
11985 else if (b->type == bp_access_watchpoint)
11986 loc_first_p = &awp_loc_first;
11987 else
11988 loc_first_p = &bp_loc_first;
11989
11990 if (*loc_first_p == NULL
11991 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11992 || !breakpoint_locations_match (loc, *loc_first_p))
11993 {
11994 *loc_first_p = loc;
11995 loc->duplicate = 0;
11996
11997 if (is_breakpoint (loc->owner) && loc->condition_changed)
11998 {
11999 loc->needs_update = 1;
12000 /* Clear the condition modification flag. */
12001 loc->condition_changed = condition_unchanged;
12002 }
12003 continue;
12004 }
12005
12006
12007 /* This and the above ensure the invariant that the first location
12008 is not duplicated, and is the inserted one.
12009 All following are marked as duplicated, and are not inserted. */
12010 if (loc->inserted)
12011 swap_insertion (loc, *loc_first_p);
12012 loc->duplicate = 1;
12013
12014 /* Clear the condition modification flag. */
12015 loc->condition_changed = condition_unchanged;
12016 }
12017
12018 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12019 {
12020 if (insert_mode != UGLL_DONT_INSERT)
12021 insert_breakpoint_locations ();
12022 else
12023 {
12024 /* Even though the caller told us to not insert new
12025 locations, we may still need to update conditions on the
12026 target's side of breakpoints that were already inserted
12027 if the target is evaluating breakpoint conditions. We
12028 only update conditions for locations that are marked
12029 "needs_update". */
12030 update_inserted_breakpoint_locations ();
12031 }
12032 }
12033
12034 if (insert_mode != UGLL_DONT_INSERT)
12035 download_tracepoint_locations ();
12036 }
12037
12038 void
12039 breakpoint_retire_moribund (void)
12040 {
12041 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12042 {
12043 struct bp_location *loc = moribund_locations[ix];
12044 if (--(loc->events_till_retirement) == 0)
12045 {
12046 decref_bp_location (&loc);
12047 unordered_remove (moribund_locations, ix);
12048 --ix;
12049 }
12050 }
12051 }
12052
12053 static void
12054 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12055 {
12056
12057 TRY
12058 {
12059 update_global_location_list (insert_mode);
12060 }
12061 CATCH (e, RETURN_MASK_ERROR)
12062 {
12063 }
12064 END_CATCH
12065 }
12066
12067 /* Clear BKP from a BPS. */
12068
12069 static void
12070 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12071 {
12072 bpstat bs;
12073
12074 for (bs = bps; bs; bs = bs->next)
12075 if (bs->breakpoint_at == bpt)
12076 {
12077 bs->breakpoint_at = NULL;
12078 bs->old_val = NULL;
12079 /* bs->commands will be freed later. */
12080 }
12081 }
12082
12083 /* Callback for iterate_over_threads. */
12084 static int
12085 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12086 {
12087 struct breakpoint *bpt = (struct breakpoint *) data;
12088
12089 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12090 return 0;
12091 }
12092
12093 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12094 callbacks. */
12095
12096 static void
12097 say_where (struct breakpoint *b)
12098 {
12099 struct value_print_options opts;
12100
12101 get_user_print_options (&opts);
12102
12103 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12104 single string. */
12105 if (b->loc == NULL)
12106 {
12107 /* For pending locations, the output differs slightly based
12108 on b->extra_string. If this is non-NULL, it contains either
12109 a condition or dprintf arguments. */
12110 if (b->extra_string == NULL)
12111 {
12112 printf_filtered (_(" (%s) pending."),
12113 event_location_to_string (b->location.get ()));
12114 }
12115 else if (b->type == bp_dprintf)
12116 {
12117 printf_filtered (_(" (%s,%s) pending."),
12118 event_location_to_string (b->location.get ()),
12119 b->extra_string);
12120 }
12121 else
12122 {
12123 printf_filtered (_(" (%s %s) pending."),
12124 event_location_to_string (b->location.get ()),
12125 b->extra_string);
12126 }
12127 }
12128 else
12129 {
12130 if (opts.addressprint || b->loc->symtab == NULL)
12131 {
12132 printf_filtered (" at ");
12133 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12134 gdb_stdout);
12135 }
12136 if (b->loc->symtab != NULL)
12137 {
12138 /* If there is a single location, we can print the location
12139 more nicely. */
12140 if (b->loc->next == NULL)
12141 {
12142 puts_filtered (": file ");
12143 fputs_styled (symtab_to_filename_for_display (b->loc->symtab),
12144 file_name_style.style (),
12145 gdb_stdout);
12146 printf_filtered (", line %d.",
12147 b->loc->line_number);
12148 }
12149 else
12150 /* This is not ideal, but each location may have a
12151 different file name, and this at least reflects the
12152 real situation somewhat. */
12153 printf_filtered (": %s.",
12154 event_location_to_string (b->location.get ()));
12155 }
12156
12157 if (b->loc->next)
12158 {
12159 struct bp_location *loc = b->loc;
12160 int n = 0;
12161 for (; loc; loc = loc->next)
12162 ++n;
12163 printf_filtered (" (%d locations)", n);
12164 }
12165 }
12166 }
12167
12168 /* Default bp_location_ops methods. */
12169
12170 static void
12171 bp_location_dtor (struct bp_location *self)
12172 {
12173 xfree (self->function_name);
12174 }
12175
12176 static const struct bp_location_ops bp_location_ops =
12177 {
12178 bp_location_dtor
12179 };
12180
12181 /* Destructor for the breakpoint base class. */
12182
12183 breakpoint::~breakpoint ()
12184 {
12185 xfree (this->cond_string);
12186 xfree (this->extra_string);
12187 xfree (this->filter);
12188 }
12189
12190 static struct bp_location *
12191 base_breakpoint_allocate_location (struct breakpoint *self)
12192 {
12193 return new bp_location (&bp_location_ops, self);
12194 }
12195
12196 static void
12197 base_breakpoint_re_set (struct breakpoint *b)
12198 {
12199 /* Nothing to re-set. */
12200 }
12201
12202 #define internal_error_pure_virtual_called() \
12203 gdb_assert_not_reached ("pure virtual function called")
12204
12205 static int
12206 base_breakpoint_insert_location (struct bp_location *bl)
12207 {
12208 internal_error_pure_virtual_called ();
12209 }
12210
12211 static int
12212 base_breakpoint_remove_location (struct bp_location *bl,
12213 enum remove_bp_reason reason)
12214 {
12215 internal_error_pure_virtual_called ();
12216 }
12217
12218 static int
12219 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12220 const address_space *aspace,
12221 CORE_ADDR bp_addr,
12222 const struct target_waitstatus *ws)
12223 {
12224 internal_error_pure_virtual_called ();
12225 }
12226
12227 static void
12228 base_breakpoint_check_status (bpstat bs)
12229 {
12230 /* Always stop. */
12231 }
12232
12233 /* A "works_in_software_mode" breakpoint_ops method that just internal
12234 errors. */
12235
12236 static int
12237 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12238 {
12239 internal_error_pure_virtual_called ();
12240 }
12241
12242 /* A "resources_needed" breakpoint_ops method that just internal
12243 errors. */
12244
12245 static int
12246 base_breakpoint_resources_needed (const struct bp_location *bl)
12247 {
12248 internal_error_pure_virtual_called ();
12249 }
12250
12251 static enum print_stop_action
12252 base_breakpoint_print_it (bpstat bs)
12253 {
12254 internal_error_pure_virtual_called ();
12255 }
12256
12257 static void
12258 base_breakpoint_print_one_detail (const struct breakpoint *self,
12259 struct ui_out *uiout)
12260 {
12261 /* nothing */
12262 }
12263
12264 static void
12265 base_breakpoint_print_mention (struct breakpoint *b)
12266 {
12267 internal_error_pure_virtual_called ();
12268 }
12269
12270 static void
12271 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12272 {
12273 internal_error_pure_virtual_called ();
12274 }
12275
12276 static void
12277 base_breakpoint_create_sals_from_location
12278 (const struct event_location *location,
12279 struct linespec_result *canonical,
12280 enum bptype type_wanted)
12281 {
12282 internal_error_pure_virtual_called ();
12283 }
12284
12285 static void
12286 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12287 struct linespec_result *c,
12288 gdb::unique_xmalloc_ptr<char> cond_string,
12289 gdb::unique_xmalloc_ptr<char> extra_string,
12290 enum bptype type_wanted,
12291 enum bpdisp disposition,
12292 int thread,
12293 int task, int ignore_count,
12294 const struct breakpoint_ops *o,
12295 int from_tty, int enabled,
12296 int internal, unsigned flags)
12297 {
12298 internal_error_pure_virtual_called ();
12299 }
12300
12301 static std::vector<symtab_and_line>
12302 base_breakpoint_decode_location (struct breakpoint *b,
12303 const struct event_location *location,
12304 struct program_space *search_pspace)
12305 {
12306 internal_error_pure_virtual_called ();
12307 }
12308
12309 /* The default 'explains_signal' method. */
12310
12311 static int
12312 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12313 {
12314 return 1;
12315 }
12316
12317 /* The default "after_condition_true" method. */
12318
12319 static void
12320 base_breakpoint_after_condition_true (struct bpstats *bs)
12321 {
12322 /* Nothing to do. */
12323 }
12324
12325 struct breakpoint_ops base_breakpoint_ops =
12326 {
12327 base_breakpoint_allocate_location,
12328 base_breakpoint_re_set,
12329 base_breakpoint_insert_location,
12330 base_breakpoint_remove_location,
12331 base_breakpoint_breakpoint_hit,
12332 base_breakpoint_check_status,
12333 base_breakpoint_resources_needed,
12334 base_breakpoint_works_in_software_mode,
12335 base_breakpoint_print_it,
12336 NULL,
12337 base_breakpoint_print_one_detail,
12338 base_breakpoint_print_mention,
12339 base_breakpoint_print_recreate,
12340 base_breakpoint_create_sals_from_location,
12341 base_breakpoint_create_breakpoints_sal,
12342 base_breakpoint_decode_location,
12343 base_breakpoint_explains_signal,
12344 base_breakpoint_after_condition_true,
12345 };
12346
12347 /* Default breakpoint_ops methods. */
12348
12349 static void
12350 bkpt_re_set (struct breakpoint *b)
12351 {
12352 /* FIXME: is this still reachable? */
12353 if (breakpoint_event_location_empty_p (b))
12354 {
12355 /* Anything without a location can't be re-set. */
12356 delete_breakpoint (b);
12357 return;
12358 }
12359
12360 breakpoint_re_set_default (b);
12361 }
12362
12363 static int
12364 bkpt_insert_location (struct bp_location *bl)
12365 {
12366 CORE_ADDR addr = bl->target_info.reqstd_address;
12367
12368 bl->target_info.kind = breakpoint_kind (bl, &addr);
12369 bl->target_info.placed_address = addr;
12370
12371 if (bl->loc_type == bp_loc_hardware_breakpoint)
12372 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12373 else
12374 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12375 }
12376
12377 static int
12378 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12379 {
12380 if (bl->loc_type == bp_loc_hardware_breakpoint)
12381 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12382 else
12383 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12384 }
12385
12386 static int
12387 bkpt_breakpoint_hit (const struct bp_location *bl,
12388 const address_space *aspace, CORE_ADDR bp_addr,
12389 const struct target_waitstatus *ws)
12390 {
12391 if (ws->kind != TARGET_WAITKIND_STOPPED
12392 || ws->value.sig != GDB_SIGNAL_TRAP)
12393 return 0;
12394
12395 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12396 aspace, bp_addr))
12397 return 0;
12398
12399 if (overlay_debugging /* unmapped overlay section */
12400 && section_is_overlay (bl->section)
12401 && !section_is_mapped (bl->section))
12402 return 0;
12403
12404 return 1;
12405 }
12406
12407 static int
12408 dprintf_breakpoint_hit (const struct bp_location *bl,
12409 const address_space *aspace, CORE_ADDR bp_addr,
12410 const struct target_waitstatus *ws)
12411 {
12412 if (dprintf_style == dprintf_style_agent
12413 && target_can_run_breakpoint_commands ())
12414 {
12415 /* An agent-style dprintf never causes a stop. If we see a trap
12416 for this address it must be for a breakpoint that happens to
12417 be set at the same address. */
12418 return 0;
12419 }
12420
12421 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12422 }
12423
12424 static int
12425 bkpt_resources_needed (const struct bp_location *bl)
12426 {
12427 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12428
12429 return 1;
12430 }
12431
12432 static enum print_stop_action
12433 bkpt_print_it (bpstat bs)
12434 {
12435 struct breakpoint *b;
12436 const struct bp_location *bl;
12437 int bp_temp;
12438 struct ui_out *uiout = current_uiout;
12439
12440 gdb_assert (bs->bp_location_at != NULL);
12441
12442 bl = bs->bp_location_at;
12443 b = bs->breakpoint_at;
12444
12445 bp_temp = b->disposition == disp_del;
12446 if (bl->address != bl->requested_address)
12447 breakpoint_adjustment_warning (bl->requested_address,
12448 bl->address,
12449 b->number, 1);
12450 annotate_breakpoint (b->number);
12451 maybe_print_thread_hit_breakpoint (uiout);
12452
12453 if (bp_temp)
12454 uiout->text ("Temporary breakpoint ");
12455 else
12456 uiout->text ("Breakpoint ");
12457 if (uiout->is_mi_like_p ())
12458 {
12459 uiout->field_string ("reason",
12460 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12461 uiout->field_string ("disp", bpdisp_text (b->disposition));
12462 }
12463 uiout->field_int ("bkptno", b->number);
12464 uiout->text (", ");
12465
12466 return PRINT_SRC_AND_LOC;
12467 }
12468
12469 static void
12470 bkpt_print_mention (struct breakpoint *b)
12471 {
12472 if (current_uiout->is_mi_like_p ())
12473 return;
12474
12475 switch (b->type)
12476 {
12477 case bp_breakpoint:
12478 case bp_gnu_ifunc_resolver:
12479 if (b->disposition == disp_del)
12480 printf_filtered (_("Temporary breakpoint"));
12481 else
12482 printf_filtered (_("Breakpoint"));
12483 printf_filtered (_(" %d"), b->number);
12484 if (b->type == bp_gnu_ifunc_resolver)
12485 printf_filtered (_(" at gnu-indirect-function resolver"));
12486 break;
12487 case bp_hardware_breakpoint:
12488 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12489 break;
12490 case bp_dprintf:
12491 printf_filtered (_("Dprintf %d"), b->number);
12492 break;
12493 }
12494
12495 say_where (b);
12496 }
12497
12498 static void
12499 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12500 {
12501 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12502 fprintf_unfiltered (fp, "tbreak");
12503 else if (tp->type == bp_breakpoint)
12504 fprintf_unfiltered (fp, "break");
12505 else if (tp->type == bp_hardware_breakpoint
12506 && tp->disposition == disp_del)
12507 fprintf_unfiltered (fp, "thbreak");
12508 else if (tp->type == bp_hardware_breakpoint)
12509 fprintf_unfiltered (fp, "hbreak");
12510 else
12511 internal_error (__FILE__, __LINE__,
12512 _("unhandled breakpoint type %d"), (int) tp->type);
12513
12514 fprintf_unfiltered (fp, " %s",
12515 event_location_to_string (tp->location.get ()));
12516
12517 /* Print out extra_string if this breakpoint is pending. It might
12518 contain, for example, conditions that were set by the user. */
12519 if (tp->loc == NULL && tp->extra_string != NULL)
12520 fprintf_unfiltered (fp, " %s", tp->extra_string);
12521
12522 print_recreate_thread (tp, fp);
12523 }
12524
12525 static void
12526 bkpt_create_sals_from_location (const struct event_location *location,
12527 struct linespec_result *canonical,
12528 enum bptype type_wanted)
12529 {
12530 create_sals_from_location_default (location, canonical, type_wanted);
12531 }
12532
12533 static void
12534 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12535 struct linespec_result *canonical,
12536 gdb::unique_xmalloc_ptr<char> cond_string,
12537 gdb::unique_xmalloc_ptr<char> extra_string,
12538 enum bptype type_wanted,
12539 enum bpdisp disposition,
12540 int thread,
12541 int task, int ignore_count,
12542 const struct breakpoint_ops *ops,
12543 int from_tty, int enabled,
12544 int internal, unsigned flags)
12545 {
12546 create_breakpoints_sal_default (gdbarch, canonical,
12547 std::move (cond_string),
12548 std::move (extra_string),
12549 type_wanted,
12550 disposition, thread, task,
12551 ignore_count, ops, from_tty,
12552 enabled, internal, flags);
12553 }
12554
12555 static std::vector<symtab_and_line>
12556 bkpt_decode_location (struct breakpoint *b,
12557 const struct event_location *location,
12558 struct program_space *search_pspace)
12559 {
12560 return decode_location_default (b, location, search_pspace);
12561 }
12562
12563 /* Virtual table for internal breakpoints. */
12564
12565 static void
12566 internal_bkpt_re_set (struct breakpoint *b)
12567 {
12568 switch (b->type)
12569 {
12570 /* Delete overlay event and longjmp master breakpoints; they
12571 will be reset later by breakpoint_re_set. */
12572 case bp_overlay_event:
12573 case bp_longjmp_master:
12574 case bp_std_terminate_master:
12575 case bp_exception_master:
12576 delete_breakpoint (b);
12577 break;
12578
12579 /* This breakpoint is special, it's set up when the inferior
12580 starts and we really don't want to touch it. */
12581 case bp_shlib_event:
12582
12583 /* Like bp_shlib_event, this breakpoint type is special. Once
12584 it is set up, we do not want to touch it. */
12585 case bp_thread_event:
12586 break;
12587 }
12588 }
12589
12590 static void
12591 internal_bkpt_check_status (bpstat bs)
12592 {
12593 if (bs->breakpoint_at->type == bp_shlib_event)
12594 {
12595 /* If requested, stop when the dynamic linker notifies GDB of
12596 events. This allows the user to get control and place
12597 breakpoints in initializer routines for dynamically loaded
12598 objects (among other things). */
12599 bs->stop = stop_on_solib_events;
12600 bs->print = stop_on_solib_events;
12601 }
12602 else
12603 bs->stop = 0;
12604 }
12605
12606 static enum print_stop_action
12607 internal_bkpt_print_it (bpstat bs)
12608 {
12609 struct breakpoint *b;
12610
12611 b = bs->breakpoint_at;
12612
12613 switch (b->type)
12614 {
12615 case bp_shlib_event:
12616 /* Did we stop because the user set the stop_on_solib_events
12617 variable? (If so, we report this as a generic, "Stopped due
12618 to shlib event" message.) */
12619 print_solib_event (0);
12620 break;
12621
12622 case bp_thread_event:
12623 /* Not sure how we will get here.
12624 GDB should not stop for these breakpoints. */
12625 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12626 break;
12627
12628 case bp_overlay_event:
12629 /* By analogy with the thread event, GDB should not stop for these. */
12630 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12631 break;
12632
12633 case bp_longjmp_master:
12634 /* These should never be enabled. */
12635 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12636 break;
12637
12638 case bp_std_terminate_master:
12639 /* These should never be enabled. */
12640 printf_filtered (_("std::terminate Master Breakpoint: "
12641 "gdb should not stop!\n"));
12642 break;
12643
12644 case bp_exception_master:
12645 /* These should never be enabled. */
12646 printf_filtered (_("Exception Master Breakpoint: "
12647 "gdb should not stop!\n"));
12648 break;
12649 }
12650
12651 return PRINT_NOTHING;
12652 }
12653
12654 static void
12655 internal_bkpt_print_mention (struct breakpoint *b)
12656 {
12657 /* Nothing to mention. These breakpoints are internal. */
12658 }
12659
12660 /* Virtual table for momentary breakpoints */
12661
12662 static void
12663 momentary_bkpt_re_set (struct breakpoint *b)
12664 {
12665 /* Keep temporary breakpoints, which can be encountered when we step
12666 over a dlopen call and solib_add is resetting the breakpoints.
12667 Otherwise these should have been blown away via the cleanup chain
12668 or by breakpoint_init_inferior when we rerun the executable. */
12669 }
12670
12671 static void
12672 momentary_bkpt_check_status (bpstat bs)
12673 {
12674 /* Nothing. The point of these breakpoints is causing a stop. */
12675 }
12676
12677 static enum print_stop_action
12678 momentary_bkpt_print_it (bpstat bs)
12679 {
12680 return PRINT_UNKNOWN;
12681 }
12682
12683 static void
12684 momentary_bkpt_print_mention (struct breakpoint *b)
12685 {
12686 /* Nothing to mention. These breakpoints are internal. */
12687 }
12688
12689 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12690
12691 It gets cleared already on the removal of the first one of such placed
12692 breakpoints. This is OK as they get all removed altogether. */
12693
12694 longjmp_breakpoint::~longjmp_breakpoint ()
12695 {
12696 thread_info *tp = find_thread_global_id (this->thread);
12697
12698 if (tp != NULL)
12699 tp->initiating_frame = null_frame_id;
12700 }
12701
12702 /* Specific methods for probe breakpoints. */
12703
12704 static int
12705 bkpt_probe_insert_location (struct bp_location *bl)
12706 {
12707 int v = bkpt_insert_location (bl);
12708
12709 if (v == 0)
12710 {
12711 /* The insertion was successful, now let's set the probe's semaphore
12712 if needed. */
12713 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12714 }
12715
12716 return v;
12717 }
12718
12719 static int
12720 bkpt_probe_remove_location (struct bp_location *bl,
12721 enum remove_bp_reason reason)
12722 {
12723 /* Let's clear the semaphore before removing the location. */
12724 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12725
12726 return bkpt_remove_location (bl, reason);
12727 }
12728
12729 static void
12730 bkpt_probe_create_sals_from_location (const struct event_location *location,
12731 struct linespec_result *canonical,
12732 enum bptype type_wanted)
12733 {
12734 struct linespec_sals lsal;
12735
12736 lsal.sals = parse_probes (location, NULL, canonical);
12737 lsal.canonical
12738 = xstrdup (event_location_to_string (canonical->location.get ()));
12739 canonical->lsals.push_back (std::move (lsal));
12740 }
12741
12742 static std::vector<symtab_and_line>
12743 bkpt_probe_decode_location (struct breakpoint *b,
12744 const struct event_location *location,
12745 struct program_space *search_pspace)
12746 {
12747 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12748 if (sals.empty ())
12749 error (_("probe not found"));
12750 return sals;
12751 }
12752
12753 /* The breakpoint_ops structure to be used in tracepoints. */
12754
12755 static void
12756 tracepoint_re_set (struct breakpoint *b)
12757 {
12758 breakpoint_re_set_default (b);
12759 }
12760
12761 static int
12762 tracepoint_breakpoint_hit (const struct bp_location *bl,
12763 const address_space *aspace, CORE_ADDR bp_addr,
12764 const struct target_waitstatus *ws)
12765 {
12766 /* By definition, the inferior does not report stops at
12767 tracepoints. */
12768 return 0;
12769 }
12770
12771 static void
12772 tracepoint_print_one_detail (const struct breakpoint *self,
12773 struct ui_out *uiout)
12774 {
12775 struct tracepoint *tp = (struct tracepoint *) self;
12776 if (!tp->static_trace_marker_id.empty ())
12777 {
12778 gdb_assert (self->type == bp_static_tracepoint);
12779
12780 uiout->text ("\tmarker id is ");
12781 uiout->field_string ("static-tracepoint-marker-string-id",
12782 tp->static_trace_marker_id);
12783 uiout->text ("\n");
12784 }
12785 }
12786
12787 static void
12788 tracepoint_print_mention (struct breakpoint *b)
12789 {
12790 if (current_uiout->is_mi_like_p ())
12791 return;
12792
12793 switch (b->type)
12794 {
12795 case bp_tracepoint:
12796 printf_filtered (_("Tracepoint"));
12797 printf_filtered (_(" %d"), b->number);
12798 break;
12799 case bp_fast_tracepoint:
12800 printf_filtered (_("Fast tracepoint"));
12801 printf_filtered (_(" %d"), b->number);
12802 break;
12803 case bp_static_tracepoint:
12804 printf_filtered (_("Static tracepoint"));
12805 printf_filtered (_(" %d"), b->number);
12806 break;
12807 default:
12808 internal_error (__FILE__, __LINE__,
12809 _("unhandled tracepoint type %d"), (int) b->type);
12810 }
12811
12812 say_where (b);
12813 }
12814
12815 static void
12816 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12817 {
12818 struct tracepoint *tp = (struct tracepoint *) self;
12819
12820 if (self->type == bp_fast_tracepoint)
12821 fprintf_unfiltered (fp, "ftrace");
12822 else if (self->type == bp_static_tracepoint)
12823 fprintf_unfiltered (fp, "strace");
12824 else if (self->type == bp_tracepoint)
12825 fprintf_unfiltered (fp, "trace");
12826 else
12827 internal_error (__FILE__, __LINE__,
12828 _("unhandled tracepoint type %d"), (int) self->type);
12829
12830 fprintf_unfiltered (fp, " %s",
12831 event_location_to_string (self->location.get ()));
12832 print_recreate_thread (self, fp);
12833
12834 if (tp->pass_count)
12835 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12836 }
12837
12838 static void
12839 tracepoint_create_sals_from_location (const struct event_location *location,
12840 struct linespec_result *canonical,
12841 enum bptype type_wanted)
12842 {
12843 create_sals_from_location_default (location, canonical, type_wanted);
12844 }
12845
12846 static void
12847 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12848 struct linespec_result *canonical,
12849 gdb::unique_xmalloc_ptr<char> cond_string,
12850 gdb::unique_xmalloc_ptr<char> extra_string,
12851 enum bptype type_wanted,
12852 enum bpdisp disposition,
12853 int thread,
12854 int task, int ignore_count,
12855 const struct breakpoint_ops *ops,
12856 int from_tty, int enabled,
12857 int internal, unsigned flags)
12858 {
12859 create_breakpoints_sal_default (gdbarch, canonical,
12860 std::move (cond_string),
12861 std::move (extra_string),
12862 type_wanted,
12863 disposition, thread, task,
12864 ignore_count, ops, from_tty,
12865 enabled, internal, flags);
12866 }
12867
12868 static std::vector<symtab_and_line>
12869 tracepoint_decode_location (struct breakpoint *b,
12870 const struct event_location *location,
12871 struct program_space *search_pspace)
12872 {
12873 return decode_location_default (b, location, search_pspace);
12874 }
12875
12876 struct breakpoint_ops tracepoint_breakpoint_ops;
12877
12878 /* The breakpoint_ops structure to be use on tracepoints placed in a
12879 static probe. */
12880
12881 static void
12882 tracepoint_probe_create_sals_from_location
12883 (const struct event_location *location,
12884 struct linespec_result *canonical,
12885 enum bptype type_wanted)
12886 {
12887 /* We use the same method for breakpoint on probes. */
12888 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12889 }
12890
12891 static std::vector<symtab_and_line>
12892 tracepoint_probe_decode_location (struct breakpoint *b,
12893 const struct event_location *location,
12894 struct program_space *search_pspace)
12895 {
12896 /* We use the same method for breakpoint on probes. */
12897 return bkpt_probe_decode_location (b, location, search_pspace);
12898 }
12899
12900 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12901
12902 /* Dprintf breakpoint_ops methods. */
12903
12904 static void
12905 dprintf_re_set (struct breakpoint *b)
12906 {
12907 breakpoint_re_set_default (b);
12908
12909 /* extra_string should never be non-NULL for dprintf. */
12910 gdb_assert (b->extra_string != NULL);
12911
12912 /* 1 - connect to target 1, that can run breakpoint commands.
12913 2 - create a dprintf, which resolves fine.
12914 3 - disconnect from target 1
12915 4 - connect to target 2, that can NOT run breakpoint commands.
12916
12917 After steps #3/#4, you'll want the dprintf command list to
12918 be updated, because target 1 and 2 may well return different
12919 answers for target_can_run_breakpoint_commands().
12920 Given absence of finer grained resetting, we get to do
12921 it all the time. */
12922 if (b->extra_string != NULL)
12923 update_dprintf_command_list (b);
12924 }
12925
12926 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12927
12928 static void
12929 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12930 {
12931 fprintf_unfiltered (fp, "dprintf %s,%s",
12932 event_location_to_string (tp->location.get ()),
12933 tp->extra_string);
12934 print_recreate_thread (tp, fp);
12935 }
12936
12937 /* Implement the "after_condition_true" breakpoint_ops method for
12938 dprintf.
12939
12940 dprintf's are implemented with regular commands in their command
12941 list, but we run the commands here instead of before presenting the
12942 stop to the user, as dprintf's don't actually cause a stop. This
12943 also makes it so that the commands of multiple dprintfs at the same
12944 address are all handled. */
12945
12946 static void
12947 dprintf_after_condition_true (struct bpstats *bs)
12948 {
12949 struct bpstats tmp_bs;
12950 struct bpstats *tmp_bs_p = &tmp_bs;
12951
12952 /* dprintf's never cause a stop. This wasn't set in the
12953 check_status hook instead because that would make the dprintf's
12954 condition not be evaluated. */
12955 bs->stop = 0;
12956
12957 /* Run the command list here. Take ownership of it instead of
12958 copying. We never want these commands to run later in
12959 bpstat_do_actions, if a breakpoint that causes a stop happens to
12960 be set at same address as this dprintf, or even if running the
12961 commands here throws. */
12962 tmp_bs.commands = bs->commands;
12963 bs->commands = NULL;
12964
12965 bpstat_do_actions_1 (&tmp_bs_p);
12966
12967 /* 'tmp_bs.commands' will usually be NULL by now, but
12968 bpstat_do_actions_1 may return early without processing the whole
12969 list. */
12970 }
12971
12972 /* The breakpoint_ops structure to be used on static tracepoints with
12973 markers (`-m'). */
12974
12975 static void
12976 strace_marker_create_sals_from_location (const struct event_location *location,
12977 struct linespec_result *canonical,
12978 enum bptype type_wanted)
12979 {
12980 struct linespec_sals lsal;
12981 const char *arg_start, *arg;
12982
12983 arg = arg_start = get_linespec_location (location)->spec_string;
12984 lsal.sals = decode_static_tracepoint_spec (&arg);
12985
12986 std::string str (arg_start, arg - arg_start);
12987 const char *ptr = str.c_str ();
12988 canonical->location
12989 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12990
12991 lsal.canonical
12992 = xstrdup (event_location_to_string (canonical->location.get ()));
12993 canonical->lsals.push_back (std::move (lsal));
12994 }
12995
12996 static void
12997 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12998 struct linespec_result *canonical,
12999 gdb::unique_xmalloc_ptr<char> cond_string,
13000 gdb::unique_xmalloc_ptr<char> extra_string,
13001 enum bptype type_wanted,
13002 enum bpdisp disposition,
13003 int thread,
13004 int task, int ignore_count,
13005 const struct breakpoint_ops *ops,
13006 int from_tty, int enabled,
13007 int internal, unsigned flags)
13008 {
13009 const linespec_sals &lsal = canonical->lsals[0];
13010
13011 /* If the user is creating a static tracepoint by marker id
13012 (strace -m MARKER_ID), then store the sals index, so that
13013 breakpoint_re_set can try to match up which of the newly
13014 found markers corresponds to this one, and, don't try to
13015 expand multiple locations for each sal, given than SALS
13016 already should contain all sals for MARKER_ID. */
13017
13018 for (size_t i = 0; i < lsal.sals.size (); i++)
13019 {
13020 event_location_up location
13021 = copy_event_location (canonical->location.get ());
13022
13023 std::unique_ptr<tracepoint> tp (new tracepoint ());
13024 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13025 std::move (location), NULL,
13026 std::move (cond_string),
13027 std::move (extra_string),
13028 type_wanted, disposition,
13029 thread, task, ignore_count, ops,
13030 from_tty, enabled, internal, flags,
13031 canonical->special_display);
13032 /* Given that its possible to have multiple markers with
13033 the same string id, if the user is creating a static
13034 tracepoint by marker id ("strace -m MARKER_ID"), then
13035 store the sals index, so that breakpoint_re_set can
13036 try to match up which of the newly found markers
13037 corresponds to this one */
13038 tp->static_trace_marker_id_idx = i;
13039
13040 install_breakpoint (internal, std::move (tp), 0);
13041 }
13042 }
13043
13044 static std::vector<symtab_and_line>
13045 strace_marker_decode_location (struct breakpoint *b,
13046 const struct event_location *location,
13047 struct program_space *search_pspace)
13048 {
13049 struct tracepoint *tp = (struct tracepoint *) b;
13050 const char *s = get_linespec_location (location)->spec_string;
13051
13052 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13053 if (sals.size () > tp->static_trace_marker_id_idx)
13054 {
13055 sals[0] = sals[tp->static_trace_marker_id_idx];
13056 sals.resize (1);
13057 return sals;
13058 }
13059 else
13060 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13061 }
13062
13063 static struct breakpoint_ops strace_marker_breakpoint_ops;
13064
13065 static int
13066 strace_marker_p (struct breakpoint *b)
13067 {
13068 return b->ops == &strace_marker_breakpoint_ops;
13069 }
13070
13071 /* Delete a breakpoint and clean up all traces of it in the data
13072 structures. */
13073
13074 void
13075 delete_breakpoint (struct breakpoint *bpt)
13076 {
13077 struct breakpoint *b;
13078
13079 gdb_assert (bpt != NULL);
13080
13081 /* Has this bp already been deleted? This can happen because
13082 multiple lists can hold pointers to bp's. bpstat lists are
13083 especial culprits.
13084
13085 One example of this happening is a watchpoint's scope bp. When
13086 the scope bp triggers, we notice that the watchpoint is out of
13087 scope, and delete it. We also delete its scope bp. But the
13088 scope bp is marked "auto-deleting", and is already on a bpstat.
13089 That bpstat is then checked for auto-deleting bp's, which are
13090 deleted.
13091
13092 A real solution to this problem might involve reference counts in
13093 bp's, and/or giving them pointers back to their referencing
13094 bpstat's, and teaching delete_breakpoint to only free a bp's
13095 storage when no more references were extent. A cheaper bandaid
13096 was chosen. */
13097 if (bpt->type == bp_none)
13098 return;
13099
13100 /* At least avoid this stale reference until the reference counting
13101 of breakpoints gets resolved. */
13102 if (bpt->related_breakpoint != bpt)
13103 {
13104 struct breakpoint *related;
13105 struct watchpoint *w;
13106
13107 if (bpt->type == bp_watchpoint_scope)
13108 w = (struct watchpoint *) bpt->related_breakpoint;
13109 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13110 w = (struct watchpoint *) bpt;
13111 else
13112 w = NULL;
13113 if (w != NULL)
13114 watchpoint_del_at_next_stop (w);
13115
13116 /* Unlink bpt from the bpt->related_breakpoint ring. */
13117 for (related = bpt; related->related_breakpoint != bpt;
13118 related = related->related_breakpoint);
13119 related->related_breakpoint = bpt->related_breakpoint;
13120 bpt->related_breakpoint = bpt;
13121 }
13122
13123 /* watch_command_1 creates a watchpoint but only sets its number if
13124 update_watchpoint succeeds in creating its bp_locations. If there's
13125 a problem in that process, we'll be asked to delete the half-created
13126 watchpoint. In that case, don't announce the deletion. */
13127 if (bpt->number)
13128 gdb::observers::breakpoint_deleted.notify (bpt);
13129
13130 if (breakpoint_chain == bpt)
13131 breakpoint_chain = bpt->next;
13132
13133 ALL_BREAKPOINTS (b)
13134 if (b->next == bpt)
13135 {
13136 b->next = bpt->next;
13137 break;
13138 }
13139
13140 /* Be sure no bpstat's are pointing at the breakpoint after it's
13141 been freed. */
13142 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13143 in all threads for now. Note that we cannot just remove bpstats
13144 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13145 commands are associated with the bpstat; if we remove it here,
13146 then the later call to bpstat_do_actions (&stop_bpstat); in
13147 event-top.c won't do anything, and temporary breakpoints with
13148 commands won't work. */
13149
13150 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13151
13152 /* Now that breakpoint is removed from breakpoint list, update the
13153 global location list. This will remove locations that used to
13154 belong to this breakpoint. Do this before freeing the breakpoint
13155 itself, since remove_breakpoint looks at location's owner. It
13156 might be better design to have location completely
13157 self-contained, but it's not the case now. */
13158 update_global_location_list (UGLL_DONT_INSERT);
13159
13160 /* On the chance that someone will soon try again to delete this
13161 same bp, we mark it as deleted before freeing its storage. */
13162 bpt->type = bp_none;
13163 delete bpt;
13164 }
13165
13166 /* Iterator function to call a user-provided callback function once
13167 for each of B and its related breakpoints. */
13168
13169 static void
13170 iterate_over_related_breakpoints (struct breakpoint *b,
13171 gdb::function_view<void (breakpoint *)> function)
13172 {
13173 struct breakpoint *related;
13174
13175 related = b;
13176 do
13177 {
13178 struct breakpoint *next;
13179
13180 /* FUNCTION may delete RELATED. */
13181 next = related->related_breakpoint;
13182
13183 if (next == related)
13184 {
13185 /* RELATED is the last ring entry. */
13186 function (related);
13187
13188 /* FUNCTION may have deleted it, so we'd never reach back to
13189 B. There's nothing left to do anyway, so just break
13190 out. */
13191 break;
13192 }
13193 else
13194 function (related);
13195
13196 related = next;
13197 }
13198 while (related != b);
13199 }
13200
13201 static void
13202 delete_command (const char *arg, int from_tty)
13203 {
13204 struct breakpoint *b, *b_tmp;
13205
13206 dont_repeat ();
13207
13208 if (arg == 0)
13209 {
13210 int breaks_to_delete = 0;
13211
13212 /* Delete all breakpoints if no argument. Do not delete
13213 internal breakpoints, these have to be deleted with an
13214 explicit breakpoint number argument. */
13215 ALL_BREAKPOINTS (b)
13216 if (user_breakpoint_p (b))
13217 {
13218 breaks_to_delete = 1;
13219 break;
13220 }
13221
13222 /* Ask user only if there are some breakpoints to delete. */
13223 if (!from_tty
13224 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13225 {
13226 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13227 if (user_breakpoint_p (b))
13228 delete_breakpoint (b);
13229 }
13230 }
13231 else
13232 map_breakpoint_numbers
13233 (arg, [&] (breakpoint *br)
13234 {
13235 iterate_over_related_breakpoints (br, delete_breakpoint);
13236 });
13237 }
13238
13239 /* Return true if all locations of B bound to PSPACE are pending. If
13240 PSPACE is NULL, all locations of all program spaces are
13241 considered. */
13242
13243 static int
13244 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13245 {
13246 struct bp_location *loc;
13247
13248 for (loc = b->loc; loc != NULL; loc = loc->next)
13249 if ((pspace == NULL
13250 || loc->pspace == pspace)
13251 && !loc->shlib_disabled
13252 && !loc->pspace->executing_startup)
13253 return 0;
13254 return 1;
13255 }
13256
13257 /* Subroutine of update_breakpoint_locations to simplify it.
13258 Return non-zero if multiple fns in list LOC have the same name.
13259 Null names are ignored. */
13260
13261 static int
13262 ambiguous_names_p (struct bp_location *loc)
13263 {
13264 struct bp_location *l;
13265 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13266 xcalloc, xfree);
13267
13268 for (l = loc; l != NULL; l = l->next)
13269 {
13270 const char **slot;
13271 const char *name = l->function_name;
13272
13273 /* Allow for some names to be NULL, ignore them. */
13274 if (name == NULL)
13275 continue;
13276
13277 slot = (const char **) htab_find_slot (htab, (const void *) name,
13278 INSERT);
13279 /* NOTE: We can assume slot != NULL here because xcalloc never
13280 returns NULL. */
13281 if (*slot != NULL)
13282 {
13283 htab_delete (htab);
13284 return 1;
13285 }
13286 *slot = name;
13287 }
13288
13289 htab_delete (htab);
13290 return 0;
13291 }
13292
13293 /* When symbols change, it probably means the sources changed as well,
13294 and it might mean the static tracepoint markers are no longer at
13295 the same address or line numbers they used to be at last we
13296 checked. Losing your static tracepoints whenever you rebuild is
13297 undesirable. This function tries to resync/rematch gdb static
13298 tracepoints with the markers on the target, for static tracepoints
13299 that have not been set by marker id. Static tracepoint that have
13300 been set by marker id are reset by marker id in breakpoint_re_set.
13301 The heuristic is:
13302
13303 1) For a tracepoint set at a specific address, look for a marker at
13304 the old PC. If one is found there, assume to be the same marker.
13305 If the name / string id of the marker found is different from the
13306 previous known name, assume that means the user renamed the marker
13307 in the sources, and output a warning.
13308
13309 2) For a tracepoint set at a given line number, look for a marker
13310 at the new address of the old line number. If one is found there,
13311 assume to be the same marker. If the name / string id of the
13312 marker found is different from the previous known name, assume that
13313 means the user renamed the marker in the sources, and output a
13314 warning.
13315
13316 3) If a marker is no longer found at the same address or line, it
13317 may mean the marker no longer exists. But it may also just mean
13318 the code changed a bit. Maybe the user added a few lines of code
13319 that made the marker move up or down (in line number terms). Ask
13320 the target for info about the marker with the string id as we knew
13321 it. If found, update line number and address in the matching
13322 static tracepoint. This will get confused if there's more than one
13323 marker with the same ID (possible in UST, although unadvised
13324 precisely because it confuses tools). */
13325
13326 static struct symtab_and_line
13327 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13328 {
13329 struct tracepoint *tp = (struct tracepoint *) b;
13330 struct static_tracepoint_marker marker;
13331 CORE_ADDR pc;
13332
13333 pc = sal.pc;
13334 if (sal.line)
13335 find_line_pc (sal.symtab, sal.line, &pc);
13336
13337 if (target_static_tracepoint_marker_at (pc, &marker))
13338 {
13339 if (tp->static_trace_marker_id != marker.str_id)
13340 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13341 b->number, tp->static_trace_marker_id.c_str (),
13342 marker.str_id.c_str ());
13343
13344 tp->static_trace_marker_id = std::move (marker.str_id);
13345
13346 return sal;
13347 }
13348
13349 /* Old marker wasn't found on target at lineno. Try looking it up
13350 by string ID. */
13351 if (!sal.explicit_pc
13352 && sal.line != 0
13353 && sal.symtab != NULL
13354 && !tp->static_trace_marker_id.empty ())
13355 {
13356 std::vector<static_tracepoint_marker> markers
13357 = target_static_tracepoint_markers_by_strid
13358 (tp->static_trace_marker_id.c_str ());
13359
13360 if (!markers.empty ())
13361 {
13362 struct symbol *sym;
13363 struct static_tracepoint_marker *tpmarker;
13364 struct ui_out *uiout = current_uiout;
13365 struct explicit_location explicit_loc;
13366
13367 tpmarker = &markers[0];
13368
13369 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13370
13371 warning (_("marker for static tracepoint %d (%s) not "
13372 "found at previous line number"),
13373 b->number, tp->static_trace_marker_id.c_str ());
13374
13375 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13376 sym = find_pc_sect_function (tpmarker->address, NULL);
13377 uiout->text ("Now in ");
13378 if (sym)
13379 {
13380 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym),
13381 ui_out_style_kind::FUNCTION);
13382 uiout->text (" at ");
13383 }
13384 uiout->field_string ("file",
13385 symtab_to_filename_for_display (sal2.symtab),
13386 ui_out_style_kind::FILE);
13387 uiout->text (":");
13388
13389 if (uiout->is_mi_like_p ())
13390 {
13391 const char *fullname = symtab_to_fullname (sal2.symtab);
13392
13393 uiout->field_string ("fullname", fullname);
13394 }
13395
13396 uiout->field_int ("line", sal2.line);
13397 uiout->text ("\n");
13398
13399 b->loc->line_number = sal2.line;
13400 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13401
13402 b->location.reset (NULL);
13403 initialize_explicit_location (&explicit_loc);
13404 explicit_loc.source_filename
13405 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13406 explicit_loc.line_offset.offset = b->loc->line_number;
13407 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13408 b->location = new_explicit_location (&explicit_loc);
13409
13410 /* Might be nice to check if function changed, and warn if
13411 so. */
13412 }
13413 }
13414 return sal;
13415 }
13416
13417 /* Returns 1 iff locations A and B are sufficiently same that
13418 we don't need to report breakpoint as changed. */
13419
13420 static int
13421 locations_are_equal (struct bp_location *a, struct bp_location *b)
13422 {
13423 while (a && b)
13424 {
13425 if (a->address != b->address)
13426 return 0;
13427
13428 if (a->shlib_disabled != b->shlib_disabled)
13429 return 0;
13430
13431 if (a->enabled != b->enabled)
13432 return 0;
13433
13434 a = a->next;
13435 b = b->next;
13436 }
13437
13438 if ((a == NULL) != (b == NULL))
13439 return 0;
13440
13441 return 1;
13442 }
13443
13444 /* Split all locations of B that are bound to PSPACE out of B's
13445 location list to a separate list and return that list's head. If
13446 PSPACE is NULL, hoist out all locations of B. */
13447
13448 static struct bp_location *
13449 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13450 {
13451 struct bp_location head;
13452 struct bp_location *i = b->loc;
13453 struct bp_location **i_link = &b->loc;
13454 struct bp_location *hoisted = &head;
13455
13456 if (pspace == NULL)
13457 {
13458 i = b->loc;
13459 b->loc = NULL;
13460 return i;
13461 }
13462
13463 head.next = NULL;
13464
13465 while (i != NULL)
13466 {
13467 if (i->pspace == pspace)
13468 {
13469 *i_link = i->next;
13470 i->next = NULL;
13471 hoisted->next = i;
13472 hoisted = i;
13473 }
13474 else
13475 i_link = &i->next;
13476 i = *i_link;
13477 }
13478
13479 return head.next;
13480 }
13481
13482 /* Create new breakpoint locations for B (a hardware or software
13483 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13484 zero, then B is a ranged breakpoint. Only recreates locations for
13485 FILTER_PSPACE. Locations of other program spaces are left
13486 untouched. */
13487
13488 void
13489 update_breakpoint_locations (struct breakpoint *b,
13490 struct program_space *filter_pspace,
13491 gdb::array_view<const symtab_and_line> sals,
13492 gdb::array_view<const symtab_and_line> sals_end)
13493 {
13494 struct bp_location *existing_locations;
13495
13496 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13497 {
13498 /* Ranged breakpoints have only one start location and one end
13499 location. */
13500 b->enable_state = bp_disabled;
13501 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13502 "multiple locations found\n"),
13503 b->number);
13504 return;
13505 }
13506
13507 /* If there's no new locations, and all existing locations are
13508 pending, don't do anything. This optimizes the common case where
13509 all locations are in the same shared library, that was unloaded.
13510 We'd like to retain the location, so that when the library is
13511 loaded again, we don't loose the enabled/disabled status of the
13512 individual locations. */
13513 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13514 return;
13515
13516 existing_locations = hoist_existing_locations (b, filter_pspace);
13517
13518 for (const auto &sal : sals)
13519 {
13520 struct bp_location *new_loc;
13521
13522 switch_to_program_space_and_thread (sal.pspace);
13523
13524 new_loc = add_location_to_breakpoint (b, &sal);
13525
13526 /* Reparse conditions, they might contain references to the
13527 old symtab. */
13528 if (b->cond_string != NULL)
13529 {
13530 const char *s;
13531
13532 s = b->cond_string;
13533 TRY
13534 {
13535 new_loc->cond = parse_exp_1 (&s, sal.pc,
13536 block_for_pc (sal.pc),
13537 0);
13538 }
13539 CATCH (e, RETURN_MASK_ERROR)
13540 {
13541 warning (_("failed to reevaluate condition "
13542 "for breakpoint %d: %s"),
13543 b->number, e.message);
13544 new_loc->enabled = 0;
13545 }
13546 END_CATCH
13547 }
13548
13549 if (!sals_end.empty ())
13550 {
13551 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13552
13553 new_loc->length = end - sals[0].pc + 1;
13554 }
13555 }
13556
13557 /* If possible, carry over 'disable' status from existing
13558 breakpoints. */
13559 {
13560 struct bp_location *e = existing_locations;
13561 /* If there are multiple breakpoints with the same function name,
13562 e.g. for inline functions, comparing function names won't work.
13563 Instead compare pc addresses; this is just a heuristic as things
13564 may have moved, but in practice it gives the correct answer
13565 often enough until a better solution is found. */
13566 int have_ambiguous_names = ambiguous_names_p (b->loc);
13567
13568 for (; e; e = e->next)
13569 {
13570 if (!e->enabled && e->function_name)
13571 {
13572 struct bp_location *l = b->loc;
13573 if (have_ambiguous_names)
13574 {
13575 for (; l; l = l->next)
13576 if (breakpoint_locations_match (e, l))
13577 {
13578 l->enabled = 0;
13579 break;
13580 }
13581 }
13582 else
13583 {
13584 for (; l; l = l->next)
13585 if (l->function_name
13586 && strcmp (e->function_name, l->function_name) == 0)
13587 {
13588 l->enabled = 0;
13589 break;
13590 }
13591 }
13592 }
13593 }
13594 }
13595
13596 if (!locations_are_equal (existing_locations, b->loc))
13597 gdb::observers::breakpoint_modified.notify (b);
13598 }
13599
13600 /* Find the SaL locations corresponding to the given LOCATION.
13601 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13602
13603 static std::vector<symtab_and_line>
13604 location_to_sals (struct breakpoint *b, struct event_location *location,
13605 struct program_space *search_pspace, int *found)
13606 {
13607 struct gdb_exception exception = exception_none;
13608
13609 gdb_assert (b->ops != NULL);
13610
13611 std::vector<symtab_and_line> sals;
13612
13613 TRY
13614 {
13615 sals = b->ops->decode_location (b, location, search_pspace);
13616 }
13617 CATCH (e, RETURN_MASK_ERROR)
13618 {
13619 int not_found_and_ok = 0;
13620
13621 exception = e;
13622
13623 /* For pending breakpoints, it's expected that parsing will
13624 fail until the right shared library is loaded. User has
13625 already told to create pending breakpoints and don't need
13626 extra messages. If breakpoint is in bp_shlib_disabled
13627 state, then user already saw the message about that
13628 breakpoint being disabled, and don't want to see more
13629 errors. */
13630 if (e.error == NOT_FOUND_ERROR
13631 && (b->condition_not_parsed
13632 || (b->loc != NULL
13633 && search_pspace != NULL
13634 && b->loc->pspace != search_pspace)
13635 || (b->loc && b->loc->shlib_disabled)
13636 || (b->loc && b->loc->pspace->executing_startup)
13637 || b->enable_state == bp_disabled))
13638 not_found_and_ok = 1;
13639
13640 if (!not_found_and_ok)
13641 {
13642 /* We surely don't want to warn about the same breakpoint
13643 10 times. One solution, implemented here, is disable
13644 the breakpoint on error. Another solution would be to
13645 have separate 'warning emitted' flag. Since this
13646 happens only when a binary has changed, I don't know
13647 which approach is better. */
13648 b->enable_state = bp_disabled;
13649 throw_exception (e);
13650 }
13651 }
13652 END_CATCH
13653
13654 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13655 {
13656 for (auto &sal : sals)
13657 resolve_sal_pc (&sal);
13658 if (b->condition_not_parsed && b->extra_string != NULL)
13659 {
13660 char *cond_string, *extra_string;
13661 int thread, task;
13662
13663 find_condition_and_thread (b->extra_string, sals[0].pc,
13664 &cond_string, &thread, &task,
13665 &extra_string);
13666 gdb_assert (b->cond_string == NULL);
13667 if (cond_string)
13668 b->cond_string = cond_string;
13669 b->thread = thread;
13670 b->task = task;
13671 if (extra_string)
13672 {
13673 xfree (b->extra_string);
13674 b->extra_string = extra_string;
13675 }
13676 b->condition_not_parsed = 0;
13677 }
13678
13679 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13680 sals[0] = update_static_tracepoint (b, sals[0]);
13681
13682 *found = 1;
13683 }
13684 else
13685 *found = 0;
13686
13687 return sals;
13688 }
13689
13690 /* The default re_set method, for typical hardware or software
13691 breakpoints. Reevaluate the breakpoint and recreate its
13692 locations. */
13693
13694 static void
13695 breakpoint_re_set_default (struct breakpoint *b)
13696 {
13697 struct program_space *filter_pspace = current_program_space;
13698 std::vector<symtab_and_line> expanded, expanded_end;
13699
13700 int found;
13701 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13702 filter_pspace, &found);
13703 if (found)
13704 expanded = std::move (sals);
13705
13706 if (b->location_range_end != NULL)
13707 {
13708 std::vector<symtab_and_line> sals_end
13709 = location_to_sals (b, b->location_range_end.get (),
13710 filter_pspace, &found);
13711 if (found)
13712 expanded_end = std::move (sals_end);
13713 }
13714
13715 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13716 }
13717
13718 /* Default method for creating SALs from an address string. It basically
13719 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13720
13721 static void
13722 create_sals_from_location_default (const struct event_location *location,
13723 struct linespec_result *canonical,
13724 enum bptype type_wanted)
13725 {
13726 parse_breakpoint_sals (location, canonical);
13727 }
13728
13729 /* Call create_breakpoints_sal for the given arguments. This is the default
13730 function for the `create_breakpoints_sal' method of
13731 breakpoint_ops. */
13732
13733 static void
13734 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13735 struct linespec_result *canonical,
13736 gdb::unique_xmalloc_ptr<char> cond_string,
13737 gdb::unique_xmalloc_ptr<char> extra_string,
13738 enum bptype type_wanted,
13739 enum bpdisp disposition,
13740 int thread,
13741 int task, int ignore_count,
13742 const struct breakpoint_ops *ops,
13743 int from_tty, int enabled,
13744 int internal, unsigned flags)
13745 {
13746 create_breakpoints_sal (gdbarch, canonical,
13747 std::move (cond_string),
13748 std::move (extra_string),
13749 type_wanted, disposition,
13750 thread, task, ignore_count, ops, from_tty,
13751 enabled, internal, flags);
13752 }
13753
13754 /* Decode the line represented by S by calling decode_line_full. This is the
13755 default function for the `decode_location' method of breakpoint_ops. */
13756
13757 static std::vector<symtab_and_line>
13758 decode_location_default (struct breakpoint *b,
13759 const struct event_location *location,
13760 struct program_space *search_pspace)
13761 {
13762 struct linespec_result canonical;
13763
13764 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13765 (struct symtab *) NULL, 0,
13766 &canonical, multiple_symbols_all,
13767 b->filter);
13768
13769 /* We should get 0 or 1 resulting SALs. */
13770 gdb_assert (canonical.lsals.size () < 2);
13771
13772 if (!canonical.lsals.empty ())
13773 {
13774 const linespec_sals &lsal = canonical.lsals[0];
13775 return std::move (lsal.sals);
13776 }
13777 return {};
13778 }
13779
13780 /* Reset a breakpoint. */
13781
13782 static void
13783 breakpoint_re_set_one (breakpoint *b)
13784 {
13785 input_radix = b->input_radix;
13786 set_language (b->language);
13787
13788 b->ops->re_set (b);
13789 }
13790
13791 /* Re-set breakpoint locations for the current program space.
13792 Locations bound to other program spaces are left untouched. */
13793
13794 void
13795 breakpoint_re_set (void)
13796 {
13797 struct breakpoint *b, *b_tmp;
13798
13799 {
13800 scoped_restore_current_language save_language;
13801 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13802 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13803
13804 /* breakpoint_re_set_one sets the current_language to the language
13805 of the breakpoint it is resetting (see prepare_re_set_context)
13806 before re-evaluating the breakpoint's location. This change can
13807 unfortunately get undone by accident if the language_mode is set
13808 to auto, and we either switch frames, or more likely in this context,
13809 we select the current frame.
13810
13811 We prevent this by temporarily turning the language_mode to
13812 language_mode_manual. We restore it once all breakpoints
13813 have been reset. */
13814 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13815 language_mode = language_mode_manual;
13816
13817 /* Note: we must not try to insert locations until after all
13818 breakpoints have been re-set. Otherwise, e.g., when re-setting
13819 breakpoint 1, we'd insert the locations of breakpoint 2, which
13820 hadn't been re-set yet, and thus may have stale locations. */
13821
13822 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13823 {
13824 TRY
13825 {
13826 breakpoint_re_set_one (b);
13827 }
13828 CATCH (ex, RETURN_MASK_ALL)
13829 {
13830 exception_fprintf (gdb_stderr, ex,
13831 "Error in re-setting breakpoint %d: ",
13832 b->number);
13833 }
13834 END_CATCH
13835 }
13836
13837 jit_breakpoint_re_set ();
13838 }
13839
13840 create_overlay_event_breakpoint ();
13841 create_longjmp_master_breakpoint ();
13842 create_std_terminate_master_breakpoint ();
13843 create_exception_master_breakpoint ();
13844
13845 /* Now we can insert. */
13846 update_global_location_list (UGLL_MAY_INSERT);
13847 }
13848 \f
13849 /* Reset the thread number of this breakpoint:
13850
13851 - If the breakpoint is for all threads, leave it as-is.
13852 - Else, reset it to the current thread for inferior_ptid. */
13853 void
13854 breakpoint_re_set_thread (struct breakpoint *b)
13855 {
13856 if (b->thread != -1)
13857 {
13858 b->thread = inferior_thread ()->global_num;
13859
13860 /* We're being called after following a fork. The new fork is
13861 selected as current, and unless this was a vfork will have a
13862 different program space from the original thread. Reset that
13863 as well. */
13864 b->loc->pspace = current_program_space;
13865 }
13866 }
13867
13868 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13869 If from_tty is nonzero, it prints a message to that effect,
13870 which ends with a period (no newline). */
13871
13872 void
13873 set_ignore_count (int bptnum, int count, int from_tty)
13874 {
13875 struct breakpoint *b;
13876
13877 if (count < 0)
13878 count = 0;
13879
13880 ALL_BREAKPOINTS (b)
13881 if (b->number == bptnum)
13882 {
13883 if (is_tracepoint (b))
13884 {
13885 if (from_tty && count != 0)
13886 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13887 bptnum);
13888 return;
13889 }
13890
13891 b->ignore_count = count;
13892 if (from_tty)
13893 {
13894 if (count == 0)
13895 printf_filtered (_("Will stop next time "
13896 "breakpoint %d is reached."),
13897 bptnum);
13898 else if (count == 1)
13899 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13900 bptnum);
13901 else
13902 printf_filtered (_("Will ignore next %d "
13903 "crossings of breakpoint %d."),
13904 count, bptnum);
13905 }
13906 gdb::observers::breakpoint_modified.notify (b);
13907 return;
13908 }
13909
13910 error (_("No breakpoint number %d."), bptnum);
13911 }
13912
13913 /* Command to set ignore-count of breakpoint N to COUNT. */
13914
13915 static void
13916 ignore_command (const char *args, int from_tty)
13917 {
13918 const char *p = args;
13919 int num;
13920
13921 if (p == 0)
13922 error_no_arg (_("a breakpoint number"));
13923
13924 num = get_number (&p);
13925 if (num == 0)
13926 error (_("bad breakpoint number: '%s'"), args);
13927 if (*p == 0)
13928 error (_("Second argument (specified ignore-count) is missing."));
13929
13930 set_ignore_count (num,
13931 longest_to_int (value_as_long (parse_and_eval (p))),
13932 from_tty);
13933 if (from_tty)
13934 printf_filtered ("\n");
13935 }
13936 \f
13937
13938 /* Call FUNCTION on each of the breakpoints with numbers in the range
13939 defined by BP_NUM_RANGE (an inclusive range). */
13940
13941 static void
13942 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13943 gdb::function_view<void (breakpoint *)> function)
13944 {
13945 if (bp_num_range.first == 0)
13946 {
13947 warning (_("bad breakpoint number at or near '%d'"),
13948 bp_num_range.first);
13949 }
13950 else
13951 {
13952 struct breakpoint *b, *tmp;
13953
13954 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13955 {
13956 bool match = false;
13957
13958 ALL_BREAKPOINTS_SAFE (b, tmp)
13959 if (b->number == i)
13960 {
13961 match = true;
13962 function (b);
13963 break;
13964 }
13965 if (!match)
13966 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13967 }
13968 }
13969 }
13970
13971 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13972 ARGS. */
13973
13974 static void
13975 map_breakpoint_numbers (const char *args,
13976 gdb::function_view<void (breakpoint *)> function)
13977 {
13978 if (args == NULL || *args == '\0')
13979 error_no_arg (_("one or more breakpoint numbers"));
13980
13981 number_or_range_parser parser (args);
13982
13983 while (!parser.finished ())
13984 {
13985 int num = parser.get_number ();
13986 map_breakpoint_number_range (std::make_pair (num, num), function);
13987 }
13988 }
13989
13990 /* Return the breakpoint location structure corresponding to the
13991 BP_NUM and LOC_NUM values. */
13992
13993 static struct bp_location *
13994 find_location_by_number (int bp_num, int loc_num)
13995 {
13996 struct breakpoint *b;
13997
13998 ALL_BREAKPOINTS (b)
13999 if (b->number == bp_num)
14000 {
14001 break;
14002 }
14003
14004 if (!b || b->number != bp_num)
14005 error (_("Bad breakpoint number '%d'"), bp_num);
14006
14007 if (loc_num == 0)
14008 error (_("Bad breakpoint location number '%d'"), loc_num);
14009
14010 int n = 0;
14011 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14012 if (++n == loc_num)
14013 return loc;
14014
14015 error (_("Bad breakpoint location number '%d'"), loc_num);
14016 }
14017
14018 /* Modes of operation for extract_bp_num. */
14019 enum class extract_bp_kind
14020 {
14021 /* Extracting a breakpoint number. */
14022 bp,
14023
14024 /* Extracting a location number. */
14025 loc,
14026 };
14027
14028 /* Extract a breakpoint or location number (as determined by KIND)
14029 from the string starting at START. TRAILER is a character which
14030 can be found after the number. If you don't want a trailer, use
14031 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14032 string. This always returns a positive integer. */
14033
14034 static int
14035 extract_bp_num (extract_bp_kind kind, const char *start,
14036 int trailer, const char **end_out = NULL)
14037 {
14038 const char *end = start;
14039 int num = get_number_trailer (&end, trailer);
14040 if (num < 0)
14041 error (kind == extract_bp_kind::bp
14042 ? _("Negative breakpoint number '%.*s'")
14043 : _("Negative breakpoint location number '%.*s'"),
14044 int (end - start), start);
14045 if (num == 0)
14046 error (kind == extract_bp_kind::bp
14047 ? _("Bad breakpoint number '%.*s'")
14048 : _("Bad breakpoint location number '%.*s'"),
14049 int (end - start), start);
14050
14051 if (end_out != NULL)
14052 *end_out = end;
14053 return num;
14054 }
14055
14056 /* Extract a breakpoint or location range (as determined by KIND) in
14057 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14058 representing the (inclusive) range. The returned pair's elements
14059 are always positive integers. */
14060
14061 static std::pair<int, int>
14062 extract_bp_or_bp_range (extract_bp_kind kind,
14063 const std::string &arg,
14064 std::string::size_type arg_offset)
14065 {
14066 std::pair<int, int> range;
14067 const char *bp_loc = &arg[arg_offset];
14068 std::string::size_type dash = arg.find ('-', arg_offset);
14069 if (dash != std::string::npos)
14070 {
14071 /* bp_loc is a range (x-z). */
14072 if (arg.length () == dash + 1)
14073 error (kind == extract_bp_kind::bp
14074 ? _("Bad breakpoint number at or near: '%s'")
14075 : _("Bad breakpoint location number at or near: '%s'"),
14076 bp_loc);
14077
14078 const char *end;
14079 const char *start_first = bp_loc;
14080 const char *start_second = &arg[dash + 1];
14081 range.first = extract_bp_num (kind, start_first, '-');
14082 range.second = extract_bp_num (kind, start_second, '\0', &end);
14083
14084 if (range.first > range.second)
14085 error (kind == extract_bp_kind::bp
14086 ? _("Inverted breakpoint range at '%.*s'")
14087 : _("Inverted breakpoint location range at '%.*s'"),
14088 int (end - start_first), start_first);
14089 }
14090 else
14091 {
14092 /* bp_loc is a single value. */
14093 range.first = extract_bp_num (kind, bp_loc, '\0');
14094 range.second = range.first;
14095 }
14096 return range;
14097 }
14098
14099 /* Extract the breakpoint/location range specified by ARG. Returns
14100 the breakpoint range in BP_NUM_RANGE, and the location range in
14101 BP_LOC_RANGE.
14102
14103 ARG may be in any of the following forms:
14104
14105 x where 'x' is a breakpoint number.
14106 x-y where 'x' and 'y' specify a breakpoint numbers range.
14107 x.y where 'x' is a breakpoint number and 'y' a location number.
14108 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14109 location number range.
14110 */
14111
14112 static void
14113 extract_bp_number_and_location (const std::string &arg,
14114 std::pair<int, int> &bp_num_range,
14115 std::pair<int, int> &bp_loc_range)
14116 {
14117 std::string::size_type dot = arg.find ('.');
14118
14119 if (dot != std::string::npos)
14120 {
14121 /* Handle 'x.y' and 'x.y-z' cases. */
14122
14123 if (arg.length () == dot + 1 || dot == 0)
14124 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14125
14126 bp_num_range.first
14127 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14128 bp_num_range.second = bp_num_range.first;
14129
14130 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14131 arg, dot + 1);
14132 }
14133 else
14134 {
14135 /* Handle x and x-y cases. */
14136
14137 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14138 bp_loc_range.first = 0;
14139 bp_loc_range.second = 0;
14140 }
14141 }
14142
14143 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14144 specifies whether to enable or disable. */
14145
14146 static void
14147 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14148 {
14149 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14150 if (loc != NULL)
14151 {
14152 if (loc->enabled != enable)
14153 {
14154 loc->enabled = enable;
14155 mark_breakpoint_location_modified (loc);
14156 }
14157 if (target_supports_enable_disable_tracepoint ()
14158 && current_trace_status ()->running && loc->owner
14159 && is_tracepoint (loc->owner))
14160 target_disable_tracepoint (loc);
14161 }
14162 update_global_location_list (UGLL_DONT_INSERT);
14163
14164 gdb::observers::breakpoint_modified.notify (loc->owner);
14165 }
14166
14167 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14168 number of the breakpoint, and BP_LOC_RANGE specifies the
14169 (inclusive) range of location numbers of that breakpoint to
14170 enable/disable. ENABLE specifies whether to enable or disable the
14171 location. */
14172
14173 static void
14174 enable_disable_breakpoint_location_range (int bp_num,
14175 std::pair<int, int> &bp_loc_range,
14176 bool enable)
14177 {
14178 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14179 enable_disable_bp_num_loc (bp_num, i, enable);
14180 }
14181
14182 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14183 If from_tty is nonzero, it prints a message to that effect,
14184 which ends with a period (no newline). */
14185
14186 void
14187 disable_breakpoint (struct breakpoint *bpt)
14188 {
14189 /* Never disable a watchpoint scope breakpoint; we want to
14190 hit them when we leave scope so we can delete both the
14191 watchpoint and its scope breakpoint at that time. */
14192 if (bpt->type == bp_watchpoint_scope)
14193 return;
14194
14195 bpt->enable_state = bp_disabled;
14196
14197 /* Mark breakpoint locations modified. */
14198 mark_breakpoint_modified (bpt);
14199
14200 if (target_supports_enable_disable_tracepoint ()
14201 && current_trace_status ()->running && is_tracepoint (bpt))
14202 {
14203 struct bp_location *location;
14204
14205 for (location = bpt->loc; location; location = location->next)
14206 target_disable_tracepoint (location);
14207 }
14208
14209 update_global_location_list (UGLL_DONT_INSERT);
14210
14211 gdb::observers::breakpoint_modified.notify (bpt);
14212 }
14213
14214 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14215 specified in ARGS. ARGS may be in any of the formats handled by
14216 extract_bp_number_and_location. ENABLE specifies whether to enable
14217 or disable the breakpoints/locations. */
14218
14219 static void
14220 enable_disable_command (const char *args, int from_tty, bool enable)
14221 {
14222 if (args == 0)
14223 {
14224 struct breakpoint *bpt;
14225
14226 ALL_BREAKPOINTS (bpt)
14227 if (user_breakpoint_p (bpt))
14228 {
14229 if (enable)
14230 enable_breakpoint (bpt);
14231 else
14232 disable_breakpoint (bpt);
14233 }
14234 }
14235 else
14236 {
14237 std::string num = extract_arg (&args);
14238
14239 while (!num.empty ())
14240 {
14241 std::pair<int, int> bp_num_range, bp_loc_range;
14242
14243 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14244
14245 if (bp_loc_range.first == bp_loc_range.second
14246 && bp_loc_range.first == 0)
14247 {
14248 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14249 map_breakpoint_number_range (bp_num_range,
14250 enable
14251 ? enable_breakpoint
14252 : disable_breakpoint);
14253 }
14254 else
14255 {
14256 /* Handle breakpoint ids with formats 'x.y' or
14257 'x.y-z'. */
14258 enable_disable_breakpoint_location_range
14259 (bp_num_range.first, bp_loc_range, enable);
14260 }
14261 num = extract_arg (&args);
14262 }
14263 }
14264 }
14265
14266 /* The disable command disables the specified breakpoints/locations
14267 (or all defined breakpoints) so they're no longer effective in
14268 stopping the inferior. ARGS may be in any of the forms defined in
14269 extract_bp_number_and_location. */
14270
14271 static void
14272 disable_command (const char *args, int from_tty)
14273 {
14274 enable_disable_command (args, from_tty, false);
14275 }
14276
14277 static void
14278 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14279 int count)
14280 {
14281 int target_resources_ok;
14282
14283 if (bpt->type == bp_hardware_breakpoint)
14284 {
14285 int i;
14286 i = hw_breakpoint_used_count ();
14287 target_resources_ok =
14288 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14289 i + 1, 0);
14290 if (target_resources_ok == 0)
14291 error (_("No hardware breakpoint support in the target."));
14292 else if (target_resources_ok < 0)
14293 error (_("Hardware breakpoints used exceeds limit."));
14294 }
14295
14296 if (is_watchpoint (bpt))
14297 {
14298 /* Initialize it just to avoid a GCC false warning. */
14299 enum enable_state orig_enable_state = bp_disabled;
14300
14301 TRY
14302 {
14303 struct watchpoint *w = (struct watchpoint *) bpt;
14304
14305 orig_enable_state = bpt->enable_state;
14306 bpt->enable_state = bp_enabled;
14307 update_watchpoint (w, 1 /* reparse */);
14308 }
14309 CATCH (e, RETURN_MASK_ALL)
14310 {
14311 bpt->enable_state = orig_enable_state;
14312 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14313 bpt->number);
14314 return;
14315 }
14316 END_CATCH
14317 }
14318
14319 bpt->enable_state = bp_enabled;
14320
14321 /* Mark breakpoint locations modified. */
14322 mark_breakpoint_modified (bpt);
14323
14324 if (target_supports_enable_disable_tracepoint ()
14325 && current_trace_status ()->running && is_tracepoint (bpt))
14326 {
14327 struct bp_location *location;
14328
14329 for (location = bpt->loc; location; location = location->next)
14330 target_enable_tracepoint (location);
14331 }
14332
14333 bpt->disposition = disposition;
14334 bpt->enable_count = count;
14335 update_global_location_list (UGLL_MAY_INSERT);
14336
14337 gdb::observers::breakpoint_modified.notify (bpt);
14338 }
14339
14340
14341 void
14342 enable_breakpoint (struct breakpoint *bpt)
14343 {
14344 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14345 }
14346
14347 /* The enable command enables the specified breakpoints/locations (or
14348 all defined breakpoints) so they once again become (or continue to
14349 be) effective in stopping the inferior. ARGS may be in any of the
14350 forms defined in extract_bp_number_and_location. */
14351
14352 static void
14353 enable_command (const char *args, int from_tty)
14354 {
14355 enable_disable_command (args, from_tty, true);
14356 }
14357
14358 static void
14359 enable_once_command (const char *args, int from_tty)
14360 {
14361 map_breakpoint_numbers
14362 (args, [&] (breakpoint *b)
14363 {
14364 iterate_over_related_breakpoints
14365 (b, [&] (breakpoint *bpt)
14366 {
14367 enable_breakpoint_disp (bpt, disp_disable, 1);
14368 });
14369 });
14370 }
14371
14372 static void
14373 enable_count_command (const char *args, int from_tty)
14374 {
14375 int count;
14376
14377 if (args == NULL)
14378 error_no_arg (_("hit count"));
14379
14380 count = get_number (&args);
14381
14382 map_breakpoint_numbers
14383 (args, [&] (breakpoint *b)
14384 {
14385 iterate_over_related_breakpoints
14386 (b, [&] (breakpoint *bpt)
14387 {
14388 enable_breakpoint_disp (bpt, disp_disable, count);
14389 });
14390 });
14391 }
14392
14393 static void
14394 enable_delete_command (const char *args, int from_tty)
14395 {
14396 map_breakpoint_numbers
14397 (args, [&] (breakpoint *b)
14398 {
14399 iterate_over_related_breakpoints
14400 (b, [&] (breakpoint *bpt)
14401 {
14402 enable_breakpoint_disp (bpt, disp_del, 1);
14403 });
14404 });
14405 }
14406 \f
14407 static void
14408 set_breakpoint_cmd (const char *args, int from_tty)
14409 {
14410 }
14411
14412 static void
14413 show_breakpoint_cmd (const char *args, int from_tty)
14414 {
14415 }
14416
14417 /* Invalidate last known value of any hardware watchpoint if
14418 the memory which that value represents has been written to by
14419 GDB itself. */
14420
14421 static void
14422 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14423 CORE_ADDR addr, ssize_t len,
14424 const bfd_byte *data)
14425 {
14426 struct breakpoint *bp;
14427
14428 ALL_BREAKPOINTS (bp)
14429 if (bp->enable_state == bp_enabled
14430 && bp->type == bp_hardware_watchpoint)
14431 {
14432 struct watchpoint *wp = (struct watchpoint *) bp;
14433
14434 if (wp->val_valid && wp->val != nullptr)
14435 {
14436 struct bp_location *loc;
14437
14438 for (loc = bp->loc; loc != NULL; loc = loc->next)
14439 if (loc->loc_type == bp_loc_hardware_watchpoint
14440 && loc->address + loc->length > addr
14441 && addr + len > loc->address)
14442 {
14443 wp->val = NULL;
14444 wp->val_valid = 0;
14445 }
14446 }
14447 }
14448 }
14449
14450 /* Create and insert a breakpoint for software single step. */
14451
14452 void
14453 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14454 const address_space *aspace,
14455 CORE_ADDR next_pc)
14456 {
14457 struct thread_info *tp = inferior_thread ();
14458 struct symtab_and_line sal;
14459 CORE_ADDR pc = next_pc;
14460
14461 if (tp->control.single_step_breakpoints == NULL)
14462 {
14463 tp->control.single_step_breakpoints
14464 = new_single_step_breakpoint (tp->global_num, gdbarch);
14465 }
14466
14467 sal = find_pc_line (pc, 0);
14468 sal.pc = pc;
14469 sal.section = find_pc_overlay (pc);
14470 sal.explicit_pc = 1;
14471 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14472
14473 update_global_location_list (UGLL_INSERT);
14474 }
14475
14476 /* Insert single step breakpoints according to the current state. */
14477
14478 int
14479 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14480 {
14481 struct regcache *regcache = get_current_regcache ();
14482 std::vector<CORE_ADDR> next_pcs;
14483
14484 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14485
14486 if (!next_pcs.empty ())
14487 {
14488 struct frame_info *frame = get_current_frame ();
14489 const address_space *aspace = get_frame_address_space (frame);
14490
14491 for (CORE_ADDR pc : next_pcs)
14492 insert_single_step_breakpoint (gdbarch, aspace, pc);
14493
14494 return 1;
14495 }
14496 else
14497 return 0;
14498 }
14499
14500 /* See breakpoint.h. */
14501
14502 int
14503 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14504 const address_space *aspace,
14505 CORE_ADDR pc)
14506 {
14507 struct bp_location *loc;
14508
14509 for (loc = bp->loc; loc != NULL; loc = loc->next)
14510 if (loc->inserted
14511 && breakpoint_location_address_match (loc, aspace, pc))
14512 return 1;
14513
14514 return 0;
14515 }
14516
14517 /* Check whether a software single-step breakpoint is inserted at
14518 PC. */
14519
14520 int
14521 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14522 CORE_ADDR pc)
14523 {
14524 struct breakpoint *bpt;
14525
14526 ALL_BREAKPOINTS (bpt)
14527 {
14528 if (bpt->type == bp_single_step
14529 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14530 return 1;
14531 }
14532 return 0;
14533 }
14534
14535 /* Tracepoint-specific operations. */
14536
14537 /* Set tracepoint count to NUM. */
14538 static void
14539 set_tracepoint_count (int num)
14540 {
14541 tracepoint_count = num;
14542 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14543 }
14544
14545 static void
14546 trace_command (const char *arg, int from_tty)
14547 {
14548 struct breakpoint_ops *ops;
14549
14550 event_location_up location = string_to_event_location (&arg,
14551 current_language);
14552 if (location != NULL
14553 && event_location_type (location.get ()) == PROBE_LOCATION)
14554 ops = &tracepoint_probe_breakpoint_ops;
14555 else
14556 ops = &tracepoint_breakpoint_ops;
14557
14558 create_breakpoint (get_current_arch (),
14559 location.get (),
14560 NULL, 0, arg, 1 /* parse arg */,
14561 0 /* tempflag */,
14562 bp_tracepoint /* type_wanted */,
14563 0 /* Ignore count */,
14564 pending_break_support,
14565 ops,
14566 from_tty,
14567 1 /* enabled */,
14568 0 /* internal */, 0);
14569 }
14570
14571 static void
14572 ftrace_command (const char *arg, int from_tty)
14573 {
14574 event_location_up location = string_to_event_location (&arg,
14575 current_language);
14576 create_breakpoint (get_current_arch (),
14577 location.get (),
14578 NULL, 0, arg, 1 /* parse arg */,
14579 0 /* tempflag */,
14580 bp_fast_tracepoint /* type_wanted */,
14581 0 /* Ignore count */,
14582 pending_break_support,
14583 &tracepoint_breakpoint_ops,
14584 from_tty,
14585 1 /* enabled */,
14586 0 /* internal */, 0);
14587 }
14588
14589 /* strace command implementation. Creates a static tracepoint. */
14590
14591 static void
14592 strace_command (const char *arg, int from_tty)
14593 {
14594 struct breakpoint_ops *ops;
14595 event_location_up location;
14596
14597 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14598 or with a normal static tracepoint. */
14599 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14600 {
14601 ops = &strace_marker_breakpoint_ops;
14602 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14603 }
14604 else
14605 {
14606 ops = &tracepoint_breakpoint_ops;
14607 location = string_to_event_location (&arg, current_language);
14608 }
14609
14610 create_breakpoint (get_current_arch (),
14611 location.get (),
14612 NULL, 0, arg, 1 /* parse arg */,
14613 0 /* tempflag */,
14614 bp_static_tracepoint /* type_wanted */,
14615 0 /* Ignore count */,
14616 pending_break_support,
14617 ops,
14618 from_tty,
14619 1 /* enabled */,
14620 0 /* internal */, 0);
14621 }
14622
14623 /* Set up a fake reader function that gets command lines from a linked
14624 list that was acquired during tracepoint uploading. */
14625
14626 static struct uploaded_tp *this_utp;
14627 static int next_cmd;
14628
14629 static char *
14630 read_uploaded_action (void)
14631 {
14632 char *rslt = nullptr;
14633
14634 if (next_cmd < this_utp->cmd_strings.size ())
14635 {
14636 rslt = this_utp->cmd_strings[next_cmd].get ();
14637 next_cmd++;
14638 }
14639
14640 return rslt;
14641 }
14642
14643 /* Given information about a tracepoint as recorded on a target (which
14644 can be either a live system or a trace file), attempt to create an
14645 equivalent GDB tracepoint. This is not a reliable process, since
14646 the target does not necessarily have all the information used when
14647 the tracepoint was originally defined. */
14648
14649 struct tracepoint *
14650 create_tracepoint_from_upload (struct uploaded_tp *utp)
14651 {
14652 const char *addr_str;
14653 char small_buf[100];
14654 struct tracepoint *tp;
14655
14656 if (utp->at_string)
14657 addr_str = utp->at_string.get ();
14658 else
14659 {
14660 /* In the absence of a source location, fall back to raw
14661 address. Since there is no way to confirm that the address
14662 means the same thing as when the trace was started, warn the
14663 user. */
14664 warning (_("Uploaded tracepoint %d has no "
14665 "source location, using raw address"),
14666 utp->number);
14667 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14668 addr_str = small_buf;
14669 }
14670
14671 /* There's not much we can do with a sequence of bytecodes. */
14672 if (utp->cond && !utp->cond_string)
14673 warning (_("Uploaded tracepoint %d condition "
14674 "has no source form, ignoring it"),
14675 utp->number);
14676
14677 event_location_up location = string_to_event_location (&addr_str,
14678 current_language);
14679 if (!create_breakpoint (get_current_arch (),
14680 location.get (),
14681 utp->cond_string.get (), -1, addr_str,
14682 0 /* parse cond/thread */,
14683 0 /* tempflag */,
14684 utp->type /* type_wanted */,
14685 0 /* Ignore count */,
14686 pending_break_support,
14687 &tracepoint_breakpoint_ops,
14688 0 /* from_tty */,
14689 utp->enabled /* enabled */,
14690 0 /* internal */,
14691 CREATE_BREAKPOINT_FLAGS_INSERTED))
14692 return NULL;
14693
14694 /* Get the tracepoint we just created. */
14695 tp = get_tracepoint (tracepoint_count);
14696 gdb_assert (tp != NULL);
14697
14698 if (utp->pass > 0)
14699 {
14700 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14701 tp->number);
14702
14703 trace_pass_command (small_buf, 0);
14704 }
14705
14706 /* If we have uploaded versions of the original commands, set up a
14707 special-purpose "reader" function and call the usual command line
14708 reader, then pass the result to the breakpoint command-setting
14709 function. */
14710 if (!utp->cmd_strings.empty ())
14711 {
14712 counted_command_line cmd_list;
14713
14714 this_utp = utp;
14715 next_cmd = 0;
14716
14717 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14718
14719 breakpoint_set_commands (tp, std::move (cmd_list));
14720 }
14721 else if (!utp->actions.empty ()
14722 || !utp->step_actions.empty ())
14723 warning (_("Uploaded tracepoint %d actions "
14724 "have no source form, ignoring them"),
14725 utp->number);
14726
14727 /* Copy any status information that might be available. */
14728 tp->hit_count = utp->hit_count;
14729 tp->traceframe_usage = utp->traceframe_usage;
14730
14731 return tp;
14732 }
14733
14734 /* Print information on tracepoint number TPNUM_EXP, or all if
14735 omitted. */
14736
14737 static void
14738 info_tracepoints_command (const char *args, int from_tty)
14739 {
14740 struct ui_out *uiout = current_uiout;
14741 int num_printed;
14742
14743 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14744
14745 if (num_printed == 0)
14746 {
14747 if (args == NULL || *args == '\0')
14748 uiout->message ("No tracepoints.\n");
14749 else
14750 uiout->message ("No tracepoint matching '%s'.\n", args);
14751 }
14752
14753 default_collect_info ();
14754 }
14755
14756 /* The 'enable trace' command enables tracepoints.
14757 Not supported by all targets. */
14758 static void
14759 enable_trace_command (const char *args, int from_tty)
14760 {
14761 enable_command (args, from_tty);
14762 }
14763
14764 /* The 'disable trace' command disables tracepoints.
14765 Not supported by all targets. */
14766 static void
14767 disable_trace_command (const char *args, int from_tty)
14768 {
14769 disable_command (args, from_tty);
14770 }
14771
14772 /* Remove a tracepoint (or all if no argument). */
14773 static void
14774 delete_trace_command (const char *arg, int from_tty)
14775 {
14776 struct breakpoint *b, *b_tmp;
14777
14778 dont_repeat ();
14779
14780 if (arg == 0)
14781 {
14782 int breaks_to_delete = 0;
14783
14784 /* Delete all breakpoints if no argument.
14785 Do not delete internal or call-dummy breakpoints, these
14786 have to be deleted with an explicit breakpoint number
14787 argument. */
14788 ALL_TRACEPOINTS (b)
14789 if (is_tracepoint (b) && user_breakpoint_p (b))
14790 {
14791 breaks_to_delete = 1;
14792 break;
14793 }
14794
14795 /* Ask user only if there are some breakpoints to delete. */
14796 if (!from_tty
14797 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14798 {
14799 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14800 if (is_tracepoint (b) && user_breakpoint_p (b))
14801 delete_breakpoint (b);
14802 }
14803 }
14804 else
14805 map_breakpoint_numbers
14806 (arg, [&] (breakpoint *br)
14807 {
14808 iterate_over_related_breakpoints (br, delete_breakpoint);
14809 });
14810 }
14811
14812 /* Helper function for trace_pass_command. */
14813
14814 static void
14815 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14816 {
14817 tp->pass_count = count;
14818 gdb::observers::breakpoint_modified.notify (tp);
14819 if (from_tty)
14820 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14821 tp->number, count);
14822 }
14823
14824 /* Set passcount for tracepoint.
14825
14826 First command argument is passcount, second is tracepoint number.
14827 If tracepoint number omitted, apply to most recently defined.
14828 Also accepts special argument "all". */
14829
14830 static void
14831 trace_pass_command (const char *args, int from_tty)
14832 {
14833 struct tracepoint *t1;
14834 ULONGEST count;
14835
14836 if (args == 0 || *args == 0)
14837 error (_("passcount command requires an "
14838 "argument (count + optional TP num)"));
14839
14840 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14841
14842 args = skip_spaces (args);
14843 if (*args && strncasecmp (args, "all", 3) == 0)
14844 {
14845 struct breakpoint *b;
14846
14847 args += 3; /* Skip special argument "all". */
14848 if (*args)
14849 error (_("Junk at end of arguments."));
14850
14851 ALL_TRACEPOINTS (b)
14852 {
14853 t1 = (struct tracepoint *) b;
14854 trace_pass_set_count (t1, count, from_tty);
14855 }
14856 }
14857 else if (*args == '\0')
14858 {
14859 t1 = get_tracepoint_by_number (&args, NULL);
14860 if (t1)
14861 trace_pass_set_count (t1, count, from_tty);
14862 }
14863 else
14864 {
14865 number_or_range_parser parser (args);
14866 while (!parser.finished ())
14867 {
14868 t1 = get_tracepoint_by_number (&args, &parser);
14869 if (t1)
14870 trace_pass_set_count (t1, count, from_tty);
14871 }
14872 }
14873 }
14874
14875 struct tracepoint *
14876 get_tracepoint (int num)
14877 {
14878 struct breakpoint *t;
14879
14880 ALL_TRACEPOINTS (t)
14881 if (t->number == num)
14882 return (struct tracepoint *) t;
14883
14884 return NULL;
14885 }
14886
14887 /* Find the tracepoint with the given target-side number (which may be
14888 different from the tracepoint number after disconnecting and
14889 reconnecting). */
14890
14891 struct tracepoint *
14892 get_tracepoint_by_number_on_target (int num)
14893 {
14894 struct breakpoint *b;
14895
14896 ALL_TRACEPOINTS (b)
14897 {
14898 struct tracepoint *t = (struct tracepoint *) b;
14899
14900 if (t->number_on_target == num)
14901 return t;
14902 }
14903
14904 return NULL;
14905 }
14906
14907 /* Utility: parse a tracepoint number and look it up in the list.
14908 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14909 If the argument is missing, the most recent tracepoint
14910 (tracepoint_count) is returned. */
14911
14912 struct tracepoint *
14913 get_tracepoint_by_number (const char **arg,
14914 number_or_range_parser *parser)
14915 {
14916 struct breakpoint *t;
14917 int tpnum;
14918 const char *instring = arg == NULL ? NULL : *arg;
14919
14920 if (parser != NULL)
14921 {
14922 gdb_assert (!parser->finished ());
14923 tpnum = parser->get_number ();
14924 }
14925 else if (arg == NULL || *arg == NULL || ! **arg)
14926 tpnum = tracepoint_count;
14927 else
14928 tpnum = get_number (arg);
14929
14930 if (tpnum <= 0)
14931 {
14932 if (instring && *instring)
14933 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14934 instring);
14935 else
14936 printf_filtered (_("No previous tracepoint\n"));
14937 return NULL;
14938 }
14939
14940 ALL_TRACEPOINTS (t)
14941 if (t->number == tpnum)
14942 {
14943 return (struct tracepoint *) t;
14944 }
14945
14946 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14947 return NULL;
14948 }
14949
14950 void
14951 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14952 {
14953 if (b->thread != -1)
14954 fprintf_unfiltered (fp, " thread %d", b->thread);
14955
14956 if (b->task != 0)
14957 fprintf_unfiltered (fp, " task %d", b->task);
14958
14959 fprintf_unfiltered (fp, "\n");
14960 }
14961
14962 /* Save information on user settable breakpoints (watchpoints, etc) to
14963 a new script file named FILENAME. If FILTER is non-NULL, call it
14964 on each breakpoint and only include the ones for which it returns
14965 non-zero. */
14966
14967 static void
14968 save_breakpoints (const char *filename, int from_tty,
14969 int (*filter) (const struct breakpoint *))
14970 {
14971 struct breakpoint *tp;
14972 int any = 0;
14973 int extra_trace_bits = 0;
14974
14975 if (filename == 0 || *filename == 0)
14976 error (_("Argument required (file name in which to save)"));
14977
14978 /* See if we have anything to save. */
14979 ALL_BREAKPOINTS (tp)
14980 {
14981 /* Skip internal and momentary breakpoints. */
14982 if (!user_breakpoint_p (tp))
14983 continue;
14984
14985 /* If we have a filter, only save the breakpoints it accepts. */
14986 if (filter && !filter (tp))
14987 continue;
14988
14989 any = 1;
14990
14991 if (is_tracepoint (tp))
14992 {
14993 extra_trace_bits = 1;
14994
14995 /* We can stop searching. */
14996 break;
14997 }
14998 }
14999
15000 if (!any)
15001 {
15002 warning (_("Nothing to save."));
15003 return;
15004 }
15005
15006 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15007
15008 stdio_file fp;
15009
15010 if (!fp.open (expanded_filename.get (), "w"))
15011 error (_("Unable to open file '%s' for saving (%s)"),
15012 expanded_filename.get (), safe_strerror (errno));
15013
15014 if (extra_trace_bits)
15015 save_trace_state_variables (&fp);
15016
15017 ALL_BREAKPOINTS (tp)
15018 {
15019 /* Skip internal and momentary breakpoints. */
15020 if (!user_breakpoint_p (tp))
15021 continue;
15022
15023 /* If we have a filter, only save the breakpoints it accepts. */
15024 if (filter && !filter (tp))
15025 continue;
15026
15027 tp->ops->print_recreate (tp, &fp);
15028
15029 /* Note, we can't rely on tp->number for anything, as we can't
15030 assume the recreated breakpoint numbers will match. Use $bpnum
15031 instead. */
15032
15033 if (tp->cond_string)
15034 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15035
15036 if (tp->ignore_count)
15037 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15038
15039 if (tp->type != bp_dprintf && tp->commands)
15040 {
15041 fp.puts (" commands\n");
15042
15043 current_uiout->redirect (&fp);
15044 TRY
15045 {
15046 print_command_lines (current_uiout, tp->commands.get (), 2);
15047 }
15048 CATCH (ex, RETURN_MASK_ALL)
15049 {
15050 current_uiout->redirect (NULL);
15051 throw_exception (ex);
15052 }
15053 END_CATCH
15054
15055 current_uiout->redirect (NULL);
15056 fp.puts (" end\n");
15057 }
15058
15059 if (tp->enable_state == bp_disabled)
15060 fp.puts ("disable $bpnum\n");
15061
15062 /* If this is a multi-location breakpoint, check if the locations
15063 should be individually disabled. Watchpoint locations are
15064 special, and not user visible. */
15065 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15066 {
15067 struct bp_location *loc;
15068 int n = 1;
15069
15070 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15071 if (!loc->enabled)
15072 fp.printf ("disable $bpnum.%d\n", n);
15073 }
15074 }
15075
15076 if (extra_trace_bits && *default_collect)
15077 fp.printf ("set default-collect %s\n", default_collect);
15078
15079 if (from_tty)
15080 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15081 }
15082
15083 /* The `save breakpoints' command. */
15084
15085 static void
15086 save_breakpoints_command (const char *args, int from_tty)
15087 {
15088 save_breakpoints (args, from_tty, NULL);
15089 }
15090
15091 /* The `save tracepoints' command. */
15092
15093 static void
15094 save_tracepoints_command (const char *args, int from_tty)
15095 {
15096 save_breakpoints (args, from_tty, is_tracepoint);
15097 }
15098
15099 /* Create a vector of all tracepoints. */
15100
15101 std::vector<breakpoint *>
15102 all_tracepoints (void)
15103 {
15104 std::vector<breakpoint *> tp_vec;
15105 struct breakpoint *tp;
15106
15107 ALL_TRACEPOINTS (tp)
15108 {
15109 tp_vec.push_back (tp);
15110 }
15111
15112 return tp_vec;
15113 }
15114
15115 \f
15116 /* This help string is used to consolidate all the help string for specifying
15117 locations used by several commands. */
15118
15119 #define LOCATION_HELP_STRING \
15120 "Linespecs are colon-separated lists of location parameters, such as\n\
15121 source filename, function name, label name, and line number.\n\
15122 Example: To specify the start of a label named \"the_top\" in the\n\
15123 function \"fact\" in the file \"factorial.c\", use\n\
15124 \"factorial.c:fact:the_top\".\n\
15125 \n\
15126 Address locations begin with \"*\" and specify an exact address in the\n\
15127 program. Example: To specify the fourth byte past the start function\n\
15128 \"main\", use \"*main + 4\".\n\
15129 \n\
15130 Explicit locations are similar to linespecs but use an option/argument\n\
15131 syntax to specify location parameters.\n\
15132 Example: To specify the start of the label named \"the_top\" in the\n\
15133 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15134 -function fact -label the_top\".\n\
15135 \n\
15136 By default, a specified function is matched against the program's\n\
15137 functions in all scopes. For C++, this means in all namespaces and\n\
15138 classes. For Ada, this means in all packages. E.g., in C++,\n\
15139 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15140 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15141 specified name as a complete fully-qualified name instead.\n"
15142
15143 /* This help string is used for the break, hbreak, tbreak and thbreak
15144 commands. It is defined as a macro to prevent duplication.
15145 COMMAND should be a string constant containing the name of the
15146 command. */
15147
15148 #define BREAK_ARGS_HELP(command) \
15149 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15150 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15151 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15152 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15153 `-probe-dtrace' (for a DTrace probe).\n\
15154 LOCATION may be a linespec, address, or explicit location as described\n\
15155 below.\n\
15156 \n\
15157 With no LOCATION, uses current execution address of the selected\n\
15158 stack frame. This is useful for breaking on return to a stack frame.\n\
15159 \n\
15160 THREADNUM is the number from \"info threads\".\n\
15161 CONDITION is a boolean expression.\n\
15162 \n" LOCATION_HELP_STRING "\n\
15163 Multiple breakpoints at one place are permitted, and useful if their\n\
15164 conditions are different.\n\
15165 \n\
15166 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15167
15168 /* List of subcommands for "catch". */
15169 static struct cmd_list_element *catch_cmdlist;
15170
15171 /* List of subcommands for "tcatch". */
15172 static struct cmd_list_element *tcatch_cmdlist;
15173
15174 void
15175 add_catch_command (const char *name, const char *docstring,
15176 cmd_const_sfunc_ftype *sfunc,
15177 completer_ftype *completer,
15178 void *user_data_catch,
15179 void *user_data_tcatch)
15180 {
15181 struct cmd_list_element *command;
15182
15183 command = add_cmd (name, class_breakpoint, docstring,
15184 &catch_cmdlist);
15185 set_cmd_sfunc (command, sfunc);
15186 set_cmd_context (command, user_data_catch);
15187 set_cmd_completer (command, completer);
15188
15189 command = add_cmd (name, class_breakpoint, docstring,
15190 &tcatch_cmdlist);
15191 set_cmd_sfunc (command, sfunc);
15192 set_cmd_context (command, user_data_tcatch);
15193 set_cmd_completer (command, completer);
15194 }
15195
15196 static void
15197 save_command (const char *arg, int from_tty)
15198 {
15199 printf_unfiltered (_("\"save\" must be followed by "
15200 "the name of a save subcommand.\n"));
15201 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15202 }
15203
15204 struct breakpoint *
15205 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15206 void *data)
15207 {
15208 struct breakpoint *b, *b_tmp;
15209
15210 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15211 {
15212 if ((*callback) (b, data))
15213 return b;
15214 }
15215
15216 return NULL;
15217 }
15218
15219 /* Zero if any of the breakpoint's locations could be a location where
15220 functions have been inlined, nonzero otherwise. */
15221
15222 static int
15223 is_non_inline_function (struct breakpoint *b)
15224 {
15225 /* The shared library event breakpoint is set on the address of a
15226 non-inline function. */
15227 if (b->type == bp_shlib_event)
15228 return 1;
15229
15230 return 0;
15231 }
15232
15233 /* Nonzero if the specified PC cannot be a location where functions
15234 have been inlined. */
15235
15236 int
15237 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15238 const struct target_waitstatus *ws)
15239 {
15240 struct breakpoint *b;
15241 struct bp_location *bl;
15242
15243 ALL_BREAKPOINTS (b)
15244 {
15245 if (!is_non_inline_function (b))
15246 continue;
15247
15248 for (bl = b->loc; bl != NULL; bl = bl->next)
15249 {
15250 if (!bl->shlib_disabled
15251 && bpstat_check_location (bl, aspace, pc, ws))
15252 return 1;
15253 }
15254 }
15255
15256 return 0;
15257 }
15258
15259 /* Remove any references to OBJFILE which is going to be freed. */
15260
15261 void
15262 breakpoint_free_objfile (struct objfile *objfile)
15263 {
15264 struct bp_location **locp, *loc;
15265
15266 ALL_BP_LOCATIONS (loc, locp)
15267 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15268 loc->symtab = NULL;
15269 }
15270
15271 void
15272 initialize_breakpoint_ops (void)
15273 {
15274 static int initialized = 0;
15275
15276 struct breakpoint_ops *ops;
15277
15278 if (initialized)
15279 return;
15280 initialized = 1;
15281
15282 /* The breakpoint_ops structure to be inherit by all kinds of
15283 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15284 internal and momentary breakpoints, etc.). */
15285 ops = &bkpt_base_breakpoint_ops;
15286 *ops = base_breakpoint_ops;
15287 ops->re_set = bkpt_re_set;
15288 ops->insert_location = bkpt_insert_location;
15289 ops->remove_location = bkpt_remove_location;
15290 ops->breakpoint_hit = bkpt_breakpoint_hit;
15291 ops->create_sals_from_location = bkpt_create_sals_from_location;
15292 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15293 ops->decode_location = bkpt_decode_location;
15294
15295 /* The breakpoint_ops structure to be used in regular breakpoints. */
15296 ops = &bkpt_breakpoint_ops;
15297 *ops = bkpt_base_breakpoint_ops;
15298 ops->re_set = bkpt_re_set;
15299 ops->resources_needed = bkpt_resources_needed;
15300 ops->print_it = bkpt_print_it;
15301 ops->print_mention = bkpt_print_mention;
15302 ops->print_recreate = bkpt_print_recreate;
15303
15304 /* Ranged breakpoints. */
15305 ops = &ranged_breakpoint_ops;
15306 *ops = bkpt_breakpoint_ops;
15307 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15308 ops->resources_needed = resources_needed_ranged_breakpoint;
15309 ops->print_it = print_it_ranged_breakpoint;
15310 ops->print_one = print_one_ranged_breakpoint;
15311 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15312 ops->print_mention = print_mention_ranged_breakpoint;
15313 ops->print_recreate = print_recreate_ranged_breakpoint;
15314
15315 /* Internal breakpoints. */
15316 ops = &internal_breakpoint_ops;
15317 *ops = bkpt_base_breakpoint_ops;
15318 ops->re_set = internal_bkpt_re_set;
15319 ops->check_status = internal_bkpt_check_status;
15320 ops->print_it = internal_bkpt_print_it;
15321 ops->print_mention = internal_bkpt_print_mention;
15322
15323 /* Momentary breakpoints. */
15324 ops = &momentary_breakpoint_ops;
15325 *ops = bkpt_base_breakpoint_ops;
15326 ops->re_set = momentary_bkpt_re_set;
15327 ops->check_status = momentary_bkpt_check_status;
15328 ops->print_it = momentary_bkpt_print_it;
15329 ops->print_mention = momentary_bkpt_print_mention;
15330
15331 /* Probe breakpoints. */
15332 ops = &bkpt_probe_breakpoint_ops;
15333 *ops = bkpt_breakpoint_ops;
15334 ops->insert_location = bkpt_probe_insert_location;
15335 ops->remove_location = bkpt_probe_remove_location;
15336 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15337 ops->decode_location = bkpt_probe_decode_location;
15338
15339 /* Watchpoints. */
15340 ops = &watchpoint_breakpoint_ops;
15341 *ops = base_breakpoint_ops;
15342 ops->re_set = re_set_watchpoint;
15343 ops->insert_location = insert_watchpoint;
15344 ops->remove_location = remove_watchpoint;
15345 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15346 ops->check_status = check_status_watchpoint;
15347 ops->resources_needed = resources_needed_watchpoint;
15348 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15349 ops->print_it = print_it_watchpoint;
15350 ops->print_mention = print_mention_watchpoint;
15351 ops->print_recreate = print_recreate_watchpoint;
15352 ops->explains_signal = explains_signal_watchpoint;
15353
15354 /* Masked watchpoints. */
15355 ops = &masked_watchpoint_breakpoint_ops;
15356 *ops = watchpoint_breakpoint_ops;
15357 ops->insert_location = insert_masked_watchpoint;
15358 ops->remove_location = remove_masked_watchpoint;
15359 ops->resources_needed = resources_needed_masked_watchpoint;
15360 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15361 ops->print_it = print_it_masked_watchpoint;
15362 ops->print_one_detail = print_one_detail_masked_watchpoint;
15363 ops->print_mention = print_mention_masked_watchpoint;
15364 ops->print_recreate = print_recreate_masked_watchpoint;
15365
15366 /* Tracepoints. */
15367 ops = &tracepoint_breakpoint_ops;
15368 *ops = base_breakpoint_ops;
15369 ops->re_set = tracepoint_re_set;
15370 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15371 ops->print_one_detail = tracepoint_print_one_detail;
15372 ops->print_mention = tracepoint_print_mention;
15373 ops->print_recreate = tracepoint_print_recreate;
15374 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15375 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15376 ops->decode_location = tracepoint_decode_location;
15377
15378 /* Probe tracepoints. */
15379 ops = &tracepoint_probe_breakpoint_ops;
15380 *ops = tracepoint_breakpoint_ops;
15381 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15382 ops->decode_location = tracepoint_probe_decode_location;
15383
15384 /* Static tracepoints with marker (`-m'). */
15385 ops = &strace_marker_breakpoint_ops;
15386 *ops = tracepoint_breakpoint_ops;
15387 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15388 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15389 ops->decode_location = strace_marker_decode_location;
15390
15391 /* Fork catchpoints. */
15392 ops = &catch_fork_breakpoint_ops;
15393 *ops = base_breakpoint_ops;
15394 ops->insert_location = insert_catch_fork;
15395 ops->remove_location = remove_catch_fork;
15396 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15397 ops->print_it = print_it_catch_fork;
15398 ops->print_one = print_one_catch_fork;
15399 ops->print_mention = print_mention_catch_fork;
15400 ops->print_recreate = print_recreate_catch_fork;
15401
15402 /* Vfork catchpoints. */
15403 ops = &catch_vfork_breakpoint_ops;
15404 *ops = base_breakpoint_ops;
15405 ops->insert_location = insert_catch_vfork;
15406 ops->remove_location = remove_catch_vfork;
15407 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15408 ops->print_it = print_it_catch_vfork;
15409 ops->print_one = print_one_catch_vfork;
15410 ops->print_mention = print_mention_catch_vfork;
15411 ops->print_recreate = print_recreate_catch_vfork;
15412
15413 /* Exec catchpoints. */
15414 ops = &catch_exec_breakpoint_ops;
15415 *ops = base_breakpoint_ops;
15416 ops->insert_location = insert_catch_exec;
15417 ops->remove_location = remove_catch_exec;
15418 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15419 ops->print_it = print_it_catch_exec;
15420 ops->print_one = print_one_catch_exec;
15421 ops->print_mention = print_mention_catch_exec;
15422 ops->print_recreate = print_recreate_catch_exec;
15423
15424 /* Solib-related catchpoints. */
15425 ops = &catch_solib_breakpoint_ops;
15426 *ops = base_breakpoint_ops;
15427 ops->insert_location = insert_catch_solib;
15428 ops->remove_location = remove_catch_solib;
15429 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15430 ops->check_status = check_status_catch_solib;
15431 ops->print_it = print_it_catch_solib;
15432 ops->print_one = print_one_catch_solib;
15433 ops->print_mention = print_mention_catch_solib;
15434 ops->print_recreate = print_recreate_catch_solib;
15435
15436 ops = &dprintf_breakpoint_ops;
15437 *ops = bkpt_base_breakpoint_ops;
15438 ops->re_set = dprintf_re_set;
15439 ops->resources_needed = bkpt_resources_needed;
15440 ops->print_it = bkpt_print_it;
15441 ops->print_mention = bkpt_print_mention;
15442 ops->print_recreate = dprintf_print_recreate;
15443 ops->after_condition_true = dprintf_after_condition_true;
15444 ops->breakpoint_hit = dprintf_breakpoint_hit;
15445 }
15446
15447 /* Chain containing all defined "enable breakpoint" subcommands. */
15448
15449 static struct cmd_list_element *enablebreaklist = NULL;
15450
15451 /* See breakpoint.h. */
15452
15453 cmd_list_element *commands_cmd_element = nullptr;
15454
15455 void
15456 _initialize_breakpoint (void)
15457 {
15458 struct cmd_list_element *c;
15459
15460 initialize_breakpoint_ops ();
15461
15462 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15463 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15464 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15465
15466 breakpoint_objfile_key
15467 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15468
15469 breakpoint_chain = 0;
15470 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15471 before a breakpoint is set. */
15472 breakpoint_count = 0;
15473
15474 tracepoint_count = 0;
15475
15476 add_com ("ignore", class_breakpoint, ignore_command, _("\
15477 Set ignore-count of breakpoint number N to COUNT.\n\
15478 Usage is `ignore N COUNT'."));
15479
15480 commands_cmd_element = add_com ("commands", class_breakpoint,
15481 commands_command, _("\
15482 Set commands to be executed when the given breakpoints are hit.\n\
15483 Give a space-separated breakpoint list as argument after \"commands\".\n\
15484 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15485 (e.g. `5-7').\n\
15486 With no argument, the targeted breakpoint is the last one set.\n\
15487 The commands themselves follow starting on the next line.\n\
15488 Type a line containing \"end\" to indicate the end of them.\n\
15489 Give \"silent\" as the first line to make the breakpoint silent;\n\
15490 then no output is printed when it is hit, except what the commands print."));
15491
15492 c = add_com ("condition", class_breakpoint, condition_command, _("\
15493 Specify breakpoint number N to break only if COND is true.\n\
15494 Usage is `condition N COND', where N is an integer and COND is an\n\
15495 expression to be evaluated whenever breakpoint N is reached."));
15496 set_cmd_completer (c, condition_completer);
15497
15498 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15499 Set a temporary breakpoint.\n\
15500 Like \"break\" except the breakpoint is only temporary,\n\
15501 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15502 by using \"enable delete\" on the breakpoint number.\n\
15503 \n"
15504 BREAK_ARGS_HELP ("tbreak")));
15505 set_cmd_completer (c, location_completer);
15506
15507 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15508 Set a hardware assisted breakpoint.\n\
15509 Like \"break\" except the breakpoint requires hardware support,\n\
15510 some target hardware may not have this support.\n\
15511 \n"
15512 BREAK_ARGS_HELP ("hbreak")));
15513 set_cmd_completer (c, location_completer);
15514
15515 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15516 Set a temporary hardware assisted breakpoint.\n\
15517 Like \"hbreak\" except the breakpoint is only temporary,\n\
15518 so it will be deleted when hit.\n\
15519 \n"
15520 BREAK_ARGS_HELP ("thbreak")));
15521 set_cmd_completer (c, location_completer);
15522
15523 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15524 Enable some breakpoints.\n\
15525 Give breakpoint numbers (separated by spaces) as arguments.\n\
15526 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15527 This is used to cancel the effect of the \"disable\" command.\n\
15528 With a subcommand you can enable temporarily."),
15529 &enablelist, "enable ", 1, &cmdlist);
15530
15531 add_com_alias ("en", "enable", class_breakpoint, 1);
15532
15533 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15534 Enable some breakpoints.\n\
15535 Give breakpoint numbers (separated by spaces) as arguments.\n\
15536 This is used to cancel the effect of the \"disable\" command.\n\
15537 May be abbreviated to simply \"enable\".\n"),
15538 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15539
15540 add_cmd ("once", no_class, enable_once_command, _("\
15541 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15542 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15543 &enablebreaklist);
15544
15545 add_cmd ("delete", no_class, enable_delete_command, _("\
15546 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15547 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15548 &enablebreaklist);
15549
15550 add_cmd ("count", no_class, enable_count_command, _("\
15551 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15552 If a breakpoint is hit while enabled in this fashion,\n\
15553 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15554 &enablebreaklist);
15555
15556 add_cmd ("delete", no_class, enable_delete_command, _("\
15557 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15558 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15559 &enablelist);
15560
15561 add_cmd ("once", no_class, enable_once_command, _("\
15562 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15563 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15564 &enablelist);
15565
15566 add_cmd ("count", no_class, enable_count_command, _("\
15567 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15568 If a breakpoint is hit while enabled in this fashion,\n\
15569 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15570 &enablelist);
15571
15572 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15573 Disable some breakpoints.\n\
15574 Arguments are breakpoint numbers with spaces in between.\n\
15575 To disable all breakpoints, give no argument.\n\
15576 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15577 &disablelist, "disable ", 1, &cmdlist);
15578 add_com_alias ("dis", "disable", class_breakpoint, 1);
15579 add_com_alias ("disa", "disable", class_breakpoint, 1);
15580
15581 add_cmd ("breakpoints", class_alias, disable_command, _("\
15582 Disable some breakpoints.\n\
15583 Arguments are breakpoint numbers with spaces in between.\n\
15584 To disable all breakpoints, give no argument.\n\
15585 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15586 This command may be abbreviated \"disable\"."),
15587 &disablelist);
15588
15589 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15590 Delete some breakpoints or auto-display expressions.\n\
15591 Arguments are breakpoint numbers with spaces in between.\n\
15592 To delete all breakpoints, give no argument.\n\
15593 \n\
15594 Also a prefix command for deletion of other GDB objects.\n\
15595 The \"unset\" command is also an alias for \"delete\"."),
15596 &deletelist, "delete ", 1, &cmdlist);
15597 add_com_alias ("d", "delete", class_breakpoint, 1);
15598 add_com_alias ("del", "delete", class_breakpoint, 1);
15599
15600 add_cmd ("breakpoints", class_alias, delete_command, _("\
15601 Delete some breakpoints or auto-display expressions.\n\
15602 Arguments are breakpoint numbers with spaces in between.\n\
15603 To delete all breakpoints, give no argument.\n\
15604 This command may be abbreviated \"delete\"."),
15605 &deletelist);
15606
15607 add_com ("clear", class_breakpoint, clear_command, _("\
15608 Clear breakpoint at specified location.\n\
15609 Argument may be a linespec, explicit, or address location as described below.\n\
15610 \n\
15611 With no argument, clears all breakpoints in the line that the selected frame\n\
15612 is executing in.\n"
15613 "\n" LOCATION_HELP_STRING "\n\
15614 See also the \"delete\" command which clears breakpoints by number."));
15615 add_com_alias ("cl", "clear", class_breakpoint, 1);
15616
15617 c = add_com ("break", class_breakpoint, break_command, _("\
15618 Set breakpoint at specified location.\n"
15619 BREAK_ARGS_HELP ("break")));
15620 set_cmd_completer (c, location_completer);
15621
15622 add_com_alias ("b", "break", class_run, 1);
15623 add_com_alias ("br", "break", class_run, 1);
15624 add_com_alias ("bre", "break", class_run, 1);
15625 add_com_alias ("brea", "break", class_run, 1);
15626
15627 if (dbx_commands)
15628 {
15629 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15630 Break in function/address or break at a line in the current file."),
15631 &stoplist, "stop ", 1, &cmdlist);
15632 add_cmd ("in", class_breakpoint, stopin_command,
15633 _("Break in function or address."), &stoplist);
15634 add_cmd ("at", class_breakpoint, stopat_command,
15635 _("Break at a line in the current file."), &stoplist);
15636 add_com ("status", class_info, info_breakpoints_command, _("\
15637 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15638 The \"Type\" column indicates one of:\n\
15639 \tbreakpoint - normal breakpoint\n\
15640 \twatchpoint - watchpoint\n\
15641 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15642 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15643 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15644 address and file/line number respectively.\n\
15645 \n\
15646 Convenience variable \"$_\" and default examine address for \"x\"\n\
15647 are set to the address of the last breakpoint listed unless the command\n\
15648 is prefixed with \"server \".\n\n\
15649 Convenience variable \"$bpnum\" contains the number of the last\n\
15650 breakpoint set."));
15651 }
15652
15653 add_info ("breakpoints", info_breakpoints_command, _("\
15654 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15655 The \"Type\" column indicates one of:\n\
15656 \tbreakpoint - normal breakpoint\n\
15657 \twatchpoint - watchpoint\n\
15658 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15659 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15660 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15661 address and file/line number respectively.\n\
15662 \n\
15663 Convenience variable \"$_\" and default examine address for \"x\"\n\
15664 are set to the address of the last breakpoint listed unless the command\n\
15665 is prefixed with \"server \".\n\n\
15666 Convenience variable \"$bpnum\" contains the number of the last\n\
15667 breakpoint set."));
15668
15669 add_info_alias ("b", "breakpoints", 1);
15670
15671 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15672 Status of all breakpoints, or breakpoint number NUMBER.\n\
15673 The \"Type\" column indicates one of:\n\
15674 \tbreakpoint - normal breakpoint\n\
15675 \twatchpoint - watchpoint\n\
15676 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15677 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15678 \tuntil - internal breakpoint used by the \"until\" command\n\
15679 \tfinish - internal breakpoint used by the \"finish\" command\n\
15680 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15681 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15682 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15683 address and file/line number respectively.\n\
15684 \n\
15685 Convenience variable \"$_\" and default examine address for \"x\"\n\
15686 are set to the address of the last breakpoint listed unless the command\n\
15687 is prefixed with \"server \".\n\n\
15688 Convenience variable \"$bpnum\" contains the number of the last\n\
15689 breakpoint set."),
15690 &maintenanceinfolist);
15691
15692 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15693 Set catchpoints to catch events."),
15694 &catch_cmdlist, "catch ",
15695 0/*allow-unknown*/, &cmdlist);
15696
15697 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15698 Set temporary catchpoints to catch events."),
15699 &tcatch_cmdlist, "tcatch ",
15700 0/*allow-unknown*/, &cmdlist);
15701
15702 add_catch_command ("fork", _("Catch calls to fork."),
15703 catch_fork_command_1,
15704 NULL,
15705 (void *) (uintptr_t) catch_fork_permanent,
15706 (void *) (uintptr_t) catch_fork_temporary);
15707 add_catch_command ("vfork", _("Catch calls to vfork."),
15708 catch_fork_command_1,
15709 NULL,
15710 (void *) (uintptr_t) catch_vfork_permanent,
15711 (void *) (uintptr_t) catch_vfork_temporary);
15712 add_catch_command ("exec", _("Catch calls to exec."),
15713 catch_exec_command_1,
15714 NULL,
15715 CATCH_PERMANENT,
15716 CATCH_TEMPORARY);
15717 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15718 Usage: catch load [REGEX]\n\
15719 If REGEX is given, only stop for libraries matching the regular expression."),
15720 catch_load_command_1,
15721 NULL,
15722 CATCH_PERMANENT,
15723 CATCH_TEMPORARY);
15724 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15725 Usage: catch unload [REGEX]\n\
15726 If REGEX is given, only stop for libraries matching the regular expression."),
15727 catch_unload_command_1,
15728 NULL,
15729 CATCH_PERMANENT,
15730 CATCH_TEMPORARY);
15731
15732 c = add_com ("watch", class_breakpoint, watch_command, _("\
15733 Set a watchpoint for an expression.\n\
15734 Usage: watch [-l|-location] EXPRESSION\n\
15735 A watchpoint stops execution of your program whenever the value of\n\
15736 an expression changes.\n\
15737 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15738 the memory to which it refers."));
15739 set_cmd_completer (c, expression_completer);
15740
15741 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15742 Set a read watchpoint for an expression.\n\
15743 Usage: rwatch [-l|-location] EXPRESSION\n\
15744 A watchpoint stops execution of your program whenever the value of\n\
15745 an expression is read.\n\
15746 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15747 the memory to which it refers."));
15748 set_cmd_completer (c, expression_completer);
15749
15750 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15751 Set a watchpoint for an expression.\n\
15752 Usage: awatch [-l|-location] EXPRESSION\n\
15753 A watchpoint stops execution of your program whenever the value of\n\
15754 an expression is either read or written.\n\
15755 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15756 the memory to which it refers."));
15757 set_cmd_completer (c, expression_completer);
15758
15759 add_info ("watchpoints", info_watchpoints_command, _("\
15760 Status of specified watchpoints (all watchpoints if no argument)."));
15761
15762 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15763 respond to changes - contrary to the description. */
15764 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15765 &can_use_hw_watchpoints, _("\
15766 Set debugger's willingness to use watchpoint hardware."), _("\
15767 Show debugger's willingness to use watchpoint hardware."), _("\
15768 If zero, gdb will not use hardware for new watchpoints, even if\n\
15769 such is available. (However, any hardware watchpoints that were\n\
15770 created before setting this to nonzero, will continue to use watchpoint\n\
15771 hardware.)"),
15772 NULL,
15773 show_can_use_hw_watchpoints,
15774 &setlist, &showlist);
15775
15776 can_use_hw_watchpoints = 1;
15777
15778 /* Tracepoint manipulation commands. */
15779
15780 c = add_com ("trace", class_breakpoint, trace_command, _("\
15781 Set a tracepoint at specified location.\n\
15782 \n"
15783 BREAK_ARGS_HELP ("trace") "\n\
15784 Do \"help tracepoints\" for info on other tracepoint commands."));
15785 set_cmd_completer (c, location_completer);
15786
15787 add_com_alias ("tp", "trace", class_alias, 0);
15788 add_com_alias ("tr", "trace", class_alias, 1);
15789 add_com_alias ("tra", "trace", class_alias, 1);
15790 add_com_alias ("trac", "trace", class_alias, 1);
15791
15792 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15793 Set a fast tracepoint at specified location.\n\
15794 \n"
15795 BREAK_ARGS_HELP ("ftrace") "\n\
15796 Do \"help tracepoints\" for info on other tracepoint commands."));
15797 set_cmd_completer (c, location_completer);
15798
15799 c = add_com ("strace", class_breakpoint, strace_command, _("\
15800 Set a static tracepoint at location or marker.\n\
15801 \n\
15802 strace [LOCATION] [if CONDITION]\n\
15803 LOCATION may be a linespec, explicit, or address location (described below) \n\
15804 or -m MARKER_ID.\n\n\
15805 If a marker id is specified, probe the marker with that name. With\n\
15806 no LOCATION, uses current execution address of the selected stack frame.\n\
15807 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15808 This collects arbitrary user data passed in the probe point call to the\n\
15809 tracing library. You can inspect it when analyzing the trace buffer,\n\
15810 by printing the $_sdata variable like any other convenience variable.\n\
15811 \n\
15812 CONDITION is a boolean expression.\n\
15813 \n" LOCATION_HELP_STRING "\n\
15814 Multiple tracepoints at one place are permitted, and useful if their\n\
15815 conditions are different.\n\
15816 \n\
15817 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15818 Do \"help tracepoints\" for info on other tracepoint commands."));
15819 set_cmd_completer (c, location_completer);
15820
15821 add_info ("tracepoints", info_tracepoints_command, _("\
15822 Status of specified tracepoints (all tracepoints if no argument).\n\
15823 Convenience variable \"$tpnum\" contains the number of the\n\
15824 last tracepoint set."));
15825
15826 add_info_alias ("tp", "tracepoints", 1);
15827
15828 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15829 Delete specified tracepoints.\n\
15830 Arguments are tracepoint numbers, separated by spaces.\n\
15831 No argument means delete all tracepoints."),
15832 &deletelist);
15833 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15834
15835 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15836 Disable specified tracepoints.\n\
15837 Arguments are tracepoint numbers, separated by spaces.\n\
15838 No argument means disable all tracepoints."),
15839 &disablelist);
15840 deprecate_cmd (c, "disable");
15841
15842 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15843 Enable specified tracepoints.\n\
15844 Arguments are tracepoint numbers, separated by spaces.\n\
15845 No argument means enable all tracepoints."),
15846 &enablelist);
15847 deprecate_cmd (c, "enable");
15848
15849 add_com ("passcount", class_trace, trace_pass_command, _("\
15850 Set the passcount for a tracepoint.\n\
15851 The trace will end when the tracepoint has been passed 'count' times.\n\
15852 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15853 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15854
15855 add_prefix_cmd ("save", class_breakpoint, save_command,
15856 _("Save breakpoint definitions as a script."),
15857 &save_cmdlist, "save ",
15858 0/*allow-unknown*/, &cmdlist);
15859
15860 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15861 Save current breakpoint definitions as a script.\n\
15862 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15863 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15864 session to restore them."),
15865 &save_cmdlist);
15866 set_cmd_completer (c, filename_completer);
15867
15868 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15869 Save current tracepoint definitions as a script.\n\
15870 Use the 'source' command in another debug session to restore them."),
15871 &save_cmdlist);
15872 set_cmd_completer (c, filename_completer);
15873
15874 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15875 deprecate_cmd (c, "save tracepoints");
15876
15877 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15878 Breakpoint specific settings\n\
15879 Configure various breakpoint-specific variables such as\n\
15880 pending breakpoint behavior"),
15881 &breakpoint_set_cmdlist, "set breakpoint ",
15882 0/*allow-unknown*/, &setlist);
15883 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15884 Breakpoint specific settings\n\
15885 Configure various breakpoint-specific variables such as\n\
15886 pending breakpoint behavior"),
15887 &breakpoint_show_cmdlist, "show breakpoint ",
15888 0/*allow-unknown*/, &showlist);
15889
15890 add_setshow_auto_boolean_cmd ("pending", no_class,
15891 &pending_break_support, _("\
15892 Set debugger's behavior regarding pending breakpoints."), _("\
15893 Show debugger's behavior regarding pending breakpoints."), _("\
15894 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15895 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15896 an error. If auto, an unrecognized breakpoint location results in a\n\
15897 user-query to see if a pending breakpoint should be created."),
15898 NULL,
15899 show_pending_break_support,
15900 &breakpoint_set_cmdlist,
15901 &breakpoint_show_cmdlist);
15902
15903 pending_break_support = AUTO_BOOLEAN_AUTO;
15904
15905 add_setshow_boolean_cmd ("auto-hw", no_class,
15906 &automatic_hardware_breakpoints, _("\
15907 Set automatic usage of hardware breakpoints."), _("\
15908 Show automatic usage of hardware breakpoints."), _("\
15909 If set, the debugger will automatically use hardware breakpoints for\n\
15910 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15911 a warning will be emitted for such breakpoints."),
15912 NULL,
15913 show_automatic_hardware_breakpoints,
15914 &breakpoint_set_cmdlist,
15915 &breakpoint_show_cmdlist);
15916
15917 add_setshow_boolean_cmd ("always-inserted", class_support,
15918 &always_inserted_mode, _("\
15919 Set mode for inserting breakpoints."), _("\
15920 Show mode for inserting breakpoints."), _("\
15921 When this mode is on, breakpoints are inserted immediately as soon as\n\
15922 they're created, kept inserted even when execution stops, and removed\n\
15923 only when the user deletes them. When this mode is off (the default),\n\
15924 breakpoints are inserted only when execution continues, and removed\n\
15925 when execution stops."),
15926 NULL,
15927 &show_always_inserted_mode,
15928 &breakpoint_set_cmdlist,
15929 &breakpoint_show_cmdlist);
15930
15931 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15932 condition_evaluation_enums,
15933 &condition_evaluation_mode_1, _("\
15934 Set mode of breakpoint condition evaluation."), _("\
15935 Show mode of breakpoint condition evaluation."), _("\
15936 When this is set to \"host\", breakpoint conditions will be\n\
15937 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15938 breakpoint conditions will be downloaded to the target (if the target\n\
15939 supports such feature) and conditions will be evaluated on the target's side.\n\
15940 If this is set to \"auto\" (default), this will be automatically set to\n\
15941 \"target\" if it supports condition evaluation, otherwise it will\n\
15942 be set to \"gdb\""),
15943 &set_condition_evaluation_mode,
15944 &show_condition_evaluation_mode,
15945 &breakpoint_set_cmdlist,
15946 &breakpoint_show_cmdlist);
15947
15948 add_com ("break-range", class_breakpoint, break_range_command, _("\
15949 Set a breakpoint for an address range.\n\
15950 break-range START-LOCATION, END-LOCATION\n\
15951 where START-LOCATION and END-LOCATION can be one of the following:\n\
15952 LINENUM, for that line in the current file,\n\
15953 FILE:LINENUM, for that line in that file,\n\
15954 +OFFSET, for that number of lines after the current line\n\
15955 or the start of the range\n\
15956 FUNCTION, for the first line in that function,\n\
15957 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15958 *ADDRESS, for the instruction at that address.\n\
15959 \n\
15960 The breakpoint will stop execution of the inferior whenever it executes\n\
15961 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15962 range (including START-LOCATION and END-LOCATION)."));
15963
15964 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15965 Set a dynamic printf at specified location.\n\
15966 dprintf location,format string,arg1,arg2,...\n\
15967 location may be a linespec, explicit, or address location.\n"
15968 "\n" LOCATION_HELP_STRING));
15969 set_cmd_completer (c, location_completer);
15970
15971 add_setshow_enum_cmd ("dprintf-style", class_support,
15972 dprintf_style_enums, &dprintf_style, _("\
15973 Set the style of usage for dynamic printf."), _("\
15974 Show the style of usage for dynamic printf."), _("\
15975 This setting chooses how GDB will do a dynamic printf.\n\
15976 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15977 console, as with the \"printf\" command.\n\
15978 If the value is \"call\", the print is done by calling a function in your\n\
15979 program; by default printf(), but you can choose a different function or\n\
15980 output stream by setting dprintf-function and dprintf-channel."),
15981 update_dprintf_commands, NULL,
15982 &setlist, &showlist);
15983
15984 dprintf_function = xstrdup ("printf");
15985 add_setshow_string_cmd ("dprintf-function", class_support,
15986 &dprintf_function, _("\
15987 Set the function to use for dynamic printf"), _("\
15988 Show the function to use for dynamic printf"), NULL,
15989 update_dprintf_commands, NULL,
15990 &setlist, &showlist);
15991
15992 dprintf_channel = xstrdup ("");
15993 add_setshow_string_cmd ("dprintf-channel", class_support,
15994 &dprintf_channel, _("\
15995 Set the channel to use for dynamic printf"), _("\
15996 Show the channel to use for dynamic printf"), NULL,
15997 update_dprintf_commands, NULL,
15998 &setlist, &showlist);
15999
16000 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16001 &disconnected_dprintf, _("\
16002 Set whether dprintf continues after GDB disconnects."), _("\
16003 Show whether dprintf continues after GDB disconnects."), _("\
16004 Use this to let dprintf commands continue to hit and produce output\n\
16005 even if GDB disconnects or detaches from the target."),
16006 NULL,
16007 NULL,
16008 &setlist, &showlist);
16009
16010 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16011 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16012 (target agent only) This is useful for formatted output in user-defined commands."));
16013
16014 automatic_hardware_breakpoints = 1;
16015
16016 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16017 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16018 }
This page took 0.361429 seconds and 4 git commands to generate.