gdb::{unique_ptr,move} -> std::{unique_ptr,move}
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "location.h"
71 #include "thread-fsm.h"
72 #include "tid-parse.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83 #include <algorithm>
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (const char *,
106 void (*) (struct breakpoint *,
107 void *),
108 void *);
109
110 static void ignore_command (char *, int);
111
112 static int breakpoint_re_set_one (void *);
113
114 static void breakpoint_re_set_default (struct breakpoint *);
115
116 static void
117 create_sals_from_location_default (const struct event_location *location,
118 struct linespec_result *canonical,
119 enum bptype type_wanted);
120
121 static void create_breakpoints_sal_default (struct gdbarch *,
122 struct linespec_result *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_location_default (struct breakpoint *b,
130 const struct event_location *location,
131 struct program_space *search_pspace,
132 struct symtabs_and_lines *sals);
133
134 static void clear_command (char *, int);
135
136 static void catch_command (char *, int);
137
138 static int can_use_hardware_watchpoint (struct value *);
139
140 static void break_command_1 (char *, int, int);
141
142 static void mention (struct breakpoint *);
143
144 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
145 enum bptype,
146 const struct breakpoint_ops *);
147 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
148 const struct symtab_and_line *);
149
150 /* This function is used in gdbtk sources and thus can not be made
151 static. */
152 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
153 struct symtab_and_line,
154 enum bptype,
155 const struct breakpoint_ops *);
156
157 static struct breakpoint *
158 momentary_breakpoint_from_master (struct breakpoint *orig,
159 enum bptype type,
160 const struct breakpoint_ops *ops,
161 int loc_enabled);
162
163 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
164
165 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
166 CORE_ADDR bpaddr,
167 enum bptype bptype);
168
169 static void describe_other_breakpoints (struct gdbarch *,
170 struct program_space *, CORE_ADDR,
171 struct obj_section *, int);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static int breakpoint_location_address_range_overlap (struct bp_location *,
181 struct address_space *,
182 CORE_ADDR, int);
183
184 static void breakpoints_info (char *, int);
185
186 static void watchpoints_info (char *, int);
187
188 static int breakpoint_1 (char *, int,
189 int (*) (const struct breakpoint *));
190
191 static int breakpoint_cond_eval (void *);
192
193 static void cleanup_executing_breakpoints (void *);
194
195 static void commands_command (char *, int);
196
197 static void condition_command (char *, int);
198
199 static int remove_breakpoint (struct bp_location *);
200 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
201
202 static enum print_stop_action print_bp_stop_message (bpstat bs);
203
204 static int watchpoint_check (void *);
205
206 static void maintenance_info_breakpoints (char *, int);
207
208 static int hw_breakpoint_used_count (void);
209
210 static int hw_watchpoint_use_count (struct breakpoint *);
211
212 static int hw_watchpoint_used_count_others (struct breakpoint *except,
213 enum bptype type,
214 int *other_type_used);
215
216 static void hbreak_command (char *, int);
217
218 static void thbreak_command (char *, int);
219
220 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
221 int count);
222
223 static void stop_command (char *arg, int from_tty);
224
225 static void stopin_command (char *arg, int from_tty);
226
227 static void stopat_command (char *arg, int from_tty);
228
229 static void tcatch_command (char *arg, int from_tty);
230
231 static void free_bp_location (struct bp_location *loc);
232 static void incref_bp_location (struct bp_location *loc);
233 static void decref_bp_location (struct bp_location **loc);
234
235 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
236
237 /* update_global_location_list's modes of operation wrt to whether to
238 insert locations now. */
239 enum ugll_insert_mode
240 {
241 /* Don't insert any breakpoint locations into the inferior, only
242 remove already-inserted locations that no longer should be
243 inserted. Functions that delete a breakpoint or breakpoints
244 should specify this mode, so that deleting a breakpoint doesn't
245 have the side effect of inserting the locations of other
246 breakpoints that are marked not-inserted, but should_be_inserted
247 returns true on them.
248
249 This behavior is useful is situations close to tear-down -- e.g.,
250 after an exec, while the target still has execution, but
251 breakpoint shadows of the previous executable image should *NOT*
252 be restored to the new image; or before detaching, where the
253 target still has execution and wants to delete breakpoints from
254 GDB's lists, and all breakpoints had already been removed from
255 the inferior. */
256 UGLL_DONT_INSERT,
257
258 /* May insert breakpoints iff breakpoints_should_be_inserted_now
259 claims breakpoints should be inserted now. */
260 UGLL_MAY_INSERT,
261
262 /* Insert locations now, irrespective of
263 breakpoints_should_be_inserted_now. E.g., say all threads are
264 stopped right now, and the user did "continue". We need to
265 insert breakpoints _before_ resuming the target, but
266 UGLL_MAY_INSERT wouldn't insert them, because
267 breakpoints_should_be_inserted_now returns false at that point,
268 as no thread is running yet. */
269 UGLL_INSERT
270 };
271
272 static void update_global_location_list (enum ugll_insert_mode);
273
274 static void update_global_location_list_nothrow (enum ugll_insert_mode);
275
276 static int is_hardware_watchpoint (const struct breakpoint *bpt);
277
278 static void insert_breakpoint_locations (void);
279
280 static void tracepoints_info (char *, int);
281
282 static void delete_trace_command (char *, int);
283
284 static void enable_trace_command (char *, int);
285
286 static void disable_trace_command (char *, int);
287
288 static void trace_pass_command (char *, int);
289
290 static void set_tracepoint_count (int num);
291
292 static int is_masked_watchpoint (const struct breakpoint *b);
293
294 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
295
296 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
297 otherwise. */
298
299 static int strace_marker_p (struct breakpoint *b);
300
301 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
302 that are implemented on top of software or hardware breakpoints
303 (user breakpoints, internal and momentary breakpoints, etc.). */
304 static struct breakpoint_ops bkpt_base_breakpoint_ops;
305
306 /* Internal breakpoints class type. */
307 static struct breakpoint_ops internal_breakpoint_ops;
308
309 /* Momentary breakpoints class type. */
310 static struct breakpoint_ops momentary_breakpoint_ops;
311
312 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
313 static struct breakpoint_ops longjmp_breakpoint_ops;
314
315 /* The breakpoint_ops structure to be used in regular user created
316 breakpoints. */
317 struct breakpoint_ops bkpt_breakpoint_ops;
318
319 /* Breakpoints set on probes. */
320 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
321
322 /* Dynamic printf class type. */
323 struct breakpoint_ops dprintf_breakpoint_ops;
324
325 /* The style in which to perform a dynamic printf. This is a user
326 option because different output options have different tradeoffs;
327 if GDB does the printing, there is better error handling if there
328 is a problem with any of the arguments, but using an inferior
329 function lets you have special-purpose printers and sending of
330 output to the same place as compiled-in print functions. */
331
332 static const char dprintf_style_gdb[] = "gdb";
333 static const char dprintf_style_call[] = "call";
334 static const char dprintf_style_agent[] = "agent";
335 static const char *const dprintf_style_enums[] = {
336 dprintf_style_gdb,
337 dprintf_style_call,
338 dprintf_style_agent,
339 NULL
340 };
341 static const char *dprintf_style = dprintf_style_gdb;
342
343 /* The function to use for dynamic printf if the preferred style is to
344 call into the inferior. The value is simply a string that is
345 copied into the command, so it can be anything that GDB can
346 evaluate to a callable address, not necessarily a function name. */
347
348 static char *dprintf_function = "";
349
350 /* The channel to use for dynamic printf if the preferred style is to
351 call into the inferior; if a nonempty string, it will be passed to
352 the call as the first argument, with the format string as the
353 second. As with the dprintf function, this can be anything that
354 GDB knows how to evaluate, so in addition to common choices like
355 "stderr", this could be an app-specific expression like
356 "mystreams[curlogger]". */
357
358 static char *dprintf_channel = "";
359
360 /* True if dprintf commands should continue to operate even if GDB
361 has disconnected. */
362 static int disconnected_dprintf = 1;
363
364 /* A reference-counted struct command_line. This lets multiple
365 breakpoints share a single command list. */
366 struct counted_command_line
367 {
368 /* The reference count. */
369 int refc;
370
371 /* The command list. */
372 struct command_line *commands;
373 };
374
375 struct command_line *
376 breakpoint_commands (struct breakpoint *b)
377 {
378 return b->commands ? b->commands->commands : NULL;
379 }
380
381 /* Flag indicating that a command has proceeded the inferior past the
382 current breakpoint. */
383
384 static int breakpoint_proceeded;
385
386 const char *
387 bpdisp_text (enum bpdisp disp)
388 {
389 /* NOTE: the following values are a part of MI protocol and
390 represent values of 'disp' field returned when inferior stops at
391 a breakpoint. */
392 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
393
394 return bpdisps[(int) disp];
395 }
396
397 /* Prototypes for exported functions. */
398 /* If FALSE, gdb will not use hardware support for watchpoints, even
399 if such is available. */
400 static int can_use_hw_watchpoints;
401
402 static void
403 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
404 struct cmd_list_element *c,
405 const char *value)
406 {
407 fprintf_filtered (file,
408 _("Debugger's willingness to use "
409 "watchpoint hardware is %s.\n"),
410 value);
411 }
412
413 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
414 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
415 for unrecognized breakpoint locations.
416 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
417 static enum auto_boolean pending_break_support;
418 static void
419 show_pending_break_support (struct ui_file *file, int from_tty,
420 struct cmd_list_element *c,
421 const char *value)
422 {
423 fprintf_filtered (file,
424 _("Debugger's behavior regarding "
425 "pending breakpoints is %s.\n"),
426 value);
427 }
428
429 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
430 set with "break" but falling in read-only memory.
431 If 0, gdb will warn about such breakpoints, but won't automatically
432 use hardware breakpoints. */
433 static int automatic_hardware_breakpoints;
434 static void
435 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
436 struct cmd_list_element *c,
437 const char *value)
438 {
439 fprintf_filtered (file,
440 _("Automatic usage of hardware breakpoints is %s.\n"),
441 value);
442 }
443
444 /* If on, GDB keeps breakpoints inserted even if the inferior is
445 stopped, and immediately inserts any new breakpoints as soon as
446 they're created. If off (default), GDB keeps breakpoints off of
447 the target as long as possible. That is, it delays inserting
448 breakpoints until the next resume, and removes them again when the
449 target fully stops. This is a bit safer in case GDB crashes while
450 processing user input. */
451 static int always_inserted_mode = 0;
452
453 static void
454 show_always_inserted_mode (struct ui_file *file, int from_tty,
455 struct cmd_list_element *c, const char *value)
456 {
457 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
458 value);
459 }
460
461 /* See breakpoint.h. */
462
463 int
464 breakpoints_should_be_inserted_now (void)
465 {
466 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
467 {
468 /* If breakpoints are global, they should be inserted even if no
469 thread under gdb's control is running, or even if there are
470 no threads under GDB's control yet. */
471 return 1;
472 }
473 else if (target_has_execution)
474 {
475 struct thread_info *tp;
476
477 if (always_inserted_mode)
478 {
479 /* The user wants breakpoints inserted even if all threads
480 are stopped. */
481 return 1;
482 }
483
484 if (threads_are_executing ())
485 return 1;
486
487 /* Don't remove breakpoints yet if, even though all threads are
488 stopped, we still have events to process. */
489 ALL_NON_EXITED_THREADS (tp)
490 if (tp->resumed
491 && tp->suspend.waitstatus_pending_p)
492 return 1;
493 }
494 return 0;
495 }
496
497 static const char condition_evaluation_both[] = "host or target";
498
499 /* Modes for breakpoint condition evaluation. */
500 static const char condition_evaluation_auto[] = "auto";
501 static const char condition_evaluation_host[] = "host";
502 static const char condition_evaluation_target[] = "target";
503 static const char *const condition_evaluation_enums[] = {
504 condition_evaluation_auto,
505 condition_evaluation_host,
506 condition_evaluation_target,
507 NULL
508 };
509
510 /* Global that holds the current mode for breakpoint condition evaluation. */
511 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
512
513 /* Global that we use to display information to the user (gets its value from
514 condition_evaluation_mode_1. */
515 static const char *condition_evaluation_mode = condition_evaluation_auto;
516
517 /* Translate a condition evaluation mode MODE into either "host"
518 or "target". This is used mostly to translate from "auto" to the
519 real setting that is being used. It returns the translated
520 evaluation mode. */
521
522 static const char *
523 translate_condition_evaluation_mode (const char *mode)
524 {
525 if (mode == condition_evaluation_auto)
526 {
527 if (target_supports_evaluation_of_breakpoint_conditions ())
528 return condition_evaluation_target;
529 else
530 return condition_evaluation_host;
531 }
532 else
533 return mode;
534 }
535
536 /* Discovers what condition_evaluation_auto translates to. */
537
538 static const char *
539 breakpoint_condition_evaluation_mode (void)
540 {
541 return translate_condition_evaluation_mode (condition_evaluation_mode);
542 }
543
544 /* Return true if GDB should evaluate breakpoint conditions or false
545 otherwise. */
546
547 static int
548 gdb_evaluates_breakpoint_condition_p (void)
549 {
550 const char *mode = breakpoint_condition_evaluation_mode ();
551
552 return (mode == condition_evaluation_host);
553 }
554
555 void _initialize_breakpoint (void);
556
557 /* Are we executing breakpoint commands? */
558 static int executing_breakpoint_commands;
559
560 /* Are overlay event breakpoints enabled? */
561 static int overlay_events_enabled;
562
563 /* See description in breakpoint.h. */
564 int target_exact_watchpoints = 0;
565
566 /* Walk the following statement or block through all breakpoints.
567 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
568 current breakpoint. */
569
570 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
571
572 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
573 for (B = breakpoint_chain; \
574 B ? (TMP=B->next, 1): 0; \
575 B = TMP)
576
577 /* Similar iterator for the low-level breakpoints. SAFE variant is
578 not provided so update_global_location_list must not be called
579 while executing the block of ALL_BP_LOCATIONS. */
580
581 #define ALL_BP_LOCATIONS(B,BP_TMP) \
582 for (BP_TMP = bp_location; \
583 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
584 BP_TMP++)
585
586 /* Iterates through locations with address ADDRESS for the currently selected
587 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
588 to where the loop should start from.
589 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
590 appropriate location to start with. */
591
592 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
593 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
594 BP_LOCP_TMP = BP_LOCP_START; \
595 BP_LOCP_START \
596 && (BP_LOCP_TMP < bp_location + bp_location_count \
597 && (*BP_LOCP_TMP)->address == ADDRESS); \
598 BP_LOCP_TMP++)
599
600 /* Iterator for tracepoints only. */
601
602 #define ALL_TRACEPOINTS(B) \
603 for (B = breakpoint_chain; B; B = B->next) \
604 if (is_tracepoint (B))
605
606 /* Chains of all breakpoints defined. */
607
608 struct breakpoint *breakpoint_chain;
609
610 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
611
612 static struct bp_location **bp_location;
613
614 /* Number of elements of BP_LOCATION. */
615
616 static unsigned bp_location_count;
617
618 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
619 ADDRESS for the current elements of BP_LOCATION which get a valid
620 result from bp_location_has_shadow. You can use it for roughly
621 limiting the subrange of BP_LOCATION to scan for shadow bytes for
622 an address you need to read. */
623
624 static CORE_ADDR bp_location_placed_address_before_address_max;
625
626 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
627 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
628 BP_LOCATION which get a valid result from bp_location_has_shadow.
629 You can use it for roughly limiting the subrange of BP_LOCATION to
630 scan for shadow bytes for an address you need to read. */
631
632 static CORE_ADDR bp_location_shadow_len_after_address_max;
633
634 /* The locations that no longer correspond to any breakpoint, unlinked
635 from bp_location array, but for which a hit may still be reported
636 by a target. */
637 VEC(bp_location_p) *moribund_locations = NULL;
638
639 /* Number of last breakpoint made. */
640
641 static int breakpoint_count;
642
643 /* The value of `breakpoint_count' before the last command that
644 created breakpoints. If the last (break-like) command created more
645 than one breakpoint, then the difference between BREAKPOINT_COUNT
646 and PREV_BREAKPOINT_COUNT is more than one. */
647 static int prev_breakpoint_count;
648
649 /* Number of last tracepoint made. */
650
651 static int tracepoint_count;
652
653 static struct cmd_list_element *breakpoint_set_cmdlist;
654 static struct cmd_list_element *breakpoint_show_cmdlist;
655 struct cmd_list_element *save_cmdlist;
656
657 /* See declaration at breakpoint.h. */
658
659 struct breakpoint *
660 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
661 void *user_data)
662 {
663 struct breakpoint *b = NULL;
664
665 ALL_BREAKPOINTS (b)
666 {
667 if (func (b, user_data) != 0)
668 break;
669 }
670
671 return b;
672 }
673
674 /* Return whether a breakpoint is an active enabled breakpoint. */
675 static int
676 breakpoint_enabled (struct breakpoint *b)
677 {
678 return (b->enable_state == bp_enabled);
679 }
680
681 /* Set breakpoint count to NUM. */
682
683 static void
684 set_breakpoint_count (int num)
685 {
686 prev_breakpoint_count = breakpoint_count;
687 breakpoint_count = num;
688 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
689 }
690
691 /* Used by `start_rbreak_breakpoints' below, to record the current
692 breakpoint count before "rbreak" creates any breakpoint. */
693 static int rbreak_start_breakpoint_count;
694
695 /* Called at the start an "rbreak" command to record the first
696 breakpoint made. */
697
698 void
699 start_rbreak_breakpoints (void)
700 {
701 rbreak_start_breakpoint_count = breakpoint_count;
702 }
703
704 /* Called at the end of an "rbreak" command to record the last
705 breakpoint made. */
706
707 void
708 end_rbreak_breakpoints (void)
709 {
710 prev_breakpoint_count = rbreak_start_breakpoint_count;
711 }
712
713 /* Used in run_command to zero the hit count when a new run starts. */
714
715 void
716 clear_breakpoint_hit_counts (void)
717 {
718 struct breakpoint *b;
719
720 ALL_BREAKPOINTS (b)
721 b->hit_count = 0;
722 }
723
724 /* Allocate a new counted_command_line with reference count of 1.
725 The new structure owns COMMANDS. */
726
727 static struct counted_command_line *
728 alloc_counted_command_line (struct command_line *commands)
729 {
730 struct counted_command_line *result = XNEW (struct counted_command_line);
731
732 result->refc = 1;
733 result->commands = commands;
734
735 return result;
736 }
737
738 /* Increment reference count. This does nothing if CMD is NULL. */
739
740 static void
741 incref_counted_command_line (struct counted_command_line *cmd)
742 {
743 if (cmd)
744 ++cmd->refc;
745 }
746
747 /* Decrement reference count. If the reference count reaches 0,
748 destroy the counted_command_line. Sets *CMDP to NULL. This does
749 nothing if *CMDP is NULL. */
750
751 static void
752 decref_counted_command_line (struct counted_command_line **cmdp)
753 {
754 if (*cmdp)
755 {
756 if (--(*cmdp)->refc == 0)
757 {
758 free_command_lines (&(*cmdp)->commands);
759 xfree (*cmdp);
760 }
761 *cmdp = NULL;
762 }
763 }
764
765 /* A cleanup function that calls decref_counted_command_line. */
766
767 static void
768 do_cleanup_counted_command_line (void *arg)
769 {
770 decref_counted_command_line ((struct counted_command_line **) arg);
771 }
772
773 /* Create a cleanup that calls decref_counted_command_line on the
774 argument. */
775
776 static struct cleanup *
777 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
778 {
779 return make_cleanup (do_cleanup_counted_command_line, cmdp);
780 }
781
782 \f
783 /* Return the breakpoint with the specified number, or NULL
784 if the number does not refer to an existing breakpoint. */
785
786 struct breakpoint *
787 get_breakpoint (int num)
788 {
789 struct breakpoint *b;
790
791 ALL_BREAKPOINTS (b)
792 if (b->number == num)
793 return b;
794
795 return NULL;
796 }
797
798 \f
799
800 /* Mark locations as "conditions have changed" in case the target supports
801 evaluating conditions on its side. */
802
803 static void
804 mark_breakpoint_modified (struct breakpoint *b)
805 {
806 struct bp_location *loc;
807
808 /* This is only meaningful if the target is
809 evaluating conditions and if the user has
810 opted for condition evaluation on the target's
811 side. */
812 if (gdb_evaluates_breakpoint_condition_p ()
813 || !target_supports_evaluation_of_breakpoint_conditions ())
814 return;
815
816 if (!is_breakpoint (b))
817 return;
818
819 for (loc = b->loc; loc; loc = loc->next)
820 loc->condition_changed = condition_modified;
821 }
822
823 /* Mark location as "conditions have changed" in case the target supports
824 evaluating conditions on its side. */
825
826 static void
827 mark_breakpoint_location_modified (struct bp_location *loc)
828 {
829 /* This is only meaningful if the target is
830 evaluating conditions and if the user has
831 opted for condition evaluation on the target's
832 side. */
833 if (gdb_evaluates_breakpoint_condition_p ()
834 || !target_supports_evaluation_of_breakpoint_conditions ())
835
836 return;
837
838 if (!is_breakpoint (loc->owner))
839 return;
840
841 loc->condition_changed = condition_modified;
842 }
843
844 /* Sets the condition-evaluation mode using the static global
845 condition_evaluation_mode. */
846
847 static void
848 set_condition_evaluation_mode (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 const char *old_mode, *new_mode;
852
853 if ((condition_evaluation_mode_1 == condition_evaluation_target)
854 && !target_supports_evaluation_of_breakpoint_conditions ())
855 {
856 condition_evaluation_mode_1 = condition_evaluation_mode;
857 warning (_("Target does not support breakpoint condition evaluation.\n"
858 "Using host evaluation mode instead."));
859 return;
860 }
861
862 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
863 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
864
865 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
866 settings was "auto". */
867 condition_evaluation_mode = condition_evaluation_mode_1;
868
869 /* Only update the mode if the user picked a different one. */
870 if (new_mode != old_mode)
871 {
872 struct bp_location *loc, **loc_tmp;
873 /* If the user switched to a different evaluation mode, we
874 need to synch the changes with the target as follows:
875
876 "host" -> "target": Send all (valid) conditions to the target.
877 "target" -> "host": Remove all the conditions from the target.
878 */
879
880 if (new_mode == condition_evaluation_target)
881 {
882 /* Mark everything modified and synch conditions with the
883 target. */
884 ALL_BP_LOCATIONS (loc, loc_tmp)
885 mark_breakpoint_location_modified (loc);
886 }
887 else
888 {
889 /* Manually mark non-duplicate locations to synch conditions
890 with the target. We do this to remove all the conditions the
891 target knows about. */
892 ALL_BP_LOCATIONS (loc, loc_tmp)
893 if (is_breakpoint (loc->owner) && loc->inserted)
894 loc->needs_update = 1;
895 }
896
897 /* Do the update. */
898 update_global_location_list (UGLL_MAY_INSERT);
899 }
900
901 return;
902 }
903
904 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
905 what "auto" is translating to. */
906
907 static void
908 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
909 struct cmd_list_element *c, const char *value)
910 {
911 if (condition_evaluation_mode == condition_evaluation_auto)
912 fprintf_filtered (file,
913 _("Breakpoint condition evaluation "
914 "mode is %s (currently %s).\n"),
915 value,
916 breakpoint_condition_evaluation_mode ());
917 else
918 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
919 value);
920 }
921
922 /* A comparison function for bp_location AP and BP that is used by
923 bsearch. This comparison function only cares about addresses, unlike
924 the more general bp_location_compare function. */
925
926 static int
927 bp_location_compare_addrs (const void *ap, const void *bp)
928 {
929 const struct bp_location *a = *(const struct bp_location **) ap;
930 const struct bp_location *b = *(const struct bp_location **) bp;
931
932 if (a->address == b->address)
933 return 0;
934 else
935 return ((a->address > b->address) - (a->address < b->address));
936 }
937
938 /* Helper function to skip all bp_locations with addresses
939 less than ADDRESS. It returns the first bp_location that
940 is greater than or equal to ADDRESS. If none is found, just
941 return NULL. */
942
943 static struct bp_location **
944 get_first_locp_gte_addr (CORE_ADDR address)
945 {
946 struct bp_location dummy_loc;
947 struct bp_location *dummy_locp = &dummy_loc;
948 struct bp_location **locp_found = NULL;
949
950 /* Initialize the dummy location's address field. */
951 memset (&dummy_loc, 0, sizeof (struct bp_location));
952 dummy_loc.address = address;
953
954 /* Find a close match to the first location at ADDRESS. */
955 locp_found = ((struct bp_location **)
956 bsearch (&dummy_locp, bp_location, bp_location_count,
957 sizeof (struct bp_location **),
958 bp_location_compare_addrs));
959
960 /* Nothing was found, nothing left to do. */
961 if (locp_found == NULL)
962 return NULL;
963
964 /* We may have found a location that is at ADDRESS but is not the first in the
965 location's list. Go backwards (if possible) and locate the first one. */
966 while ((locp_found - 1) >= bp_location
967 && (*(locp_found - 1))->address == address)
968 locp_found--;
969
970 return locp_found;
971 }
972
973 void
974 set_breakpoint_condition (struct breakpoint *b, const char *exp,
975 int from_tty)
976 {
977 xfree (b->cond_string);
978 b->cond_string = NULL;
979
980 if (is_watchpoint (b))
981 {
982 struct watchpoint *w = (struct watchpoint *) b;
983
984 w->cond_exp.reset ();
985 }
986 else
987 {
988 struct bp_location *loc;
989
990 for (loc = b->loc; loc; loc = loc->next)
991 {
992 loc->cond.reset ();
993
994 /* No need to free the condition agent expression
995 bytecode (if we have one). We will handle this
996 when we go through update_global_location_list. */
997 }
998 }
999
1000 if (*exp == 0)
1001 {
1002 if (from_tty)
1003 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1004 }
1005 else
1006 {
1007 const char *arg = exp;
1008
1009 /* I don't know if it matters whether this is the string the user
1010 typed in or the decompiled expression. */
1011 b->cond_string = xstrdup (arg);
1012 b->condition_not_parsed = 0;
1013
1014 if (is_watchpoint (b))
1015 {
1016 struct watchpoint *w = (struct watchpoint *) b;
1017
1018 innermost_block = NULL;
1019 arg = exp;
1020 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1021 if (*arg)
1022 error (_("Junk at end of expression"));
1023 w->cond_exp_valid_block = innermost_block;
1024 }
1025 else
1026 {
1027 struct bp_location *loc;
1028
1029 for (loc = b->loc; loc; loc = loc->next)
1030 {
1031 arg = exp;
1032 loc->cond =
1033 parse_exp_1 (&arg, loc->address,
1034 block_for_pc (loc->address), 0);
1035 if (*arg)
1036 error (_("Junk at end of expression"));
1037 }
1038 }
1039 }
1040 mark_breakpoint_modified (b);
1041
1042 observer_notify_breakpoint_modified (b);
1043 }
1044
1045 /* Completion for the "condition" command. */
1046
1047 static VEC (char_ptr) *
1048 condition_completer (struct cmd_list_element *cmd,
1049 const char *text, const char *word)
1050 {
1051 const char *space;
1052
1053 text = skip_spaces_const (text);
1054 space = skip_to_space_const (text);
1055 if (*space == '\0')
1056 {
1057 int len;
1058 struct breakpoint *b;
1059 VEC (char_ptr) *result = NULL;
1060
1061 if (text[0] == '$')
1062 {
1063 /* We don't support completion of history indices. */
1064 if (isdigit (text[1]))
1065 return NULL;
1066 return complete_internalvar (&text[1]);
1067 }
1068
1069 /* We're completing the breakpoint number. */
1070 len = strlen (text);
1071
1072 ALL_BREAKPOINTS (b)
1073 {
1074 char number[50];
1075
1076 xsnprintf (number, sizeof (number), "%d", b->number);
1077
1078 if (strncmp (number, text, len) == 0)
1079 VEC_safe_push (char_ptr, result, xstrdup (number));
1080 }
1081
1082 return result;
1083 }
1084
1085 /* We're completing the expression part. */
1086 text = skip_spaces_const (space);
1087 return expression_completer (cmd, text, word);
1088 }
1089
1090 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1091
1092 static void
1093 condition_command (char *arg, int from_tty)
1094 {
1095 struct breakpoint *b;
1096 char *p;
1097 int bnum;
1098
1099 if (arg == 0)
1100 error_no_arg (_("breakpoint number"));
1101
1102 p = arg;
1103 bnum = get_number (&p);
1104 if (bnum == 0)
1105 error (_("Bad breakpoint argument: '%s'"), arg);
1106
1107 ALL_BREAKPOINTS (b)
1108 if (b->number == bnum)
1109 {
1110 /* Check if this breakpoint has a "stop" method implemented in an
1111 extension language. This method and conditions entered into GDB
1112 from the CLI are mutually exclusive. */
1113 const struct extension_language_defn *extlang
1114 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1115
1116 if (extlang != NULL)
1117 {
1118 error (_("Only one stop condition allowed. There is currently"
1119 " a %s stop condition defined for this breakpoint."),
1120 ext_lang_capitalized_name (extlang));
1121 }
1122 set_breakpoint_condition (b, p, from_tty);
1123
1124 if (is_breakpoint (b))
1125 update_global_location_list (UGLL_MAY_INSERT);
1126
1127 return;
1128 }
1129
1130 error (_("No breakpoint number %d."), bnum);
1131 }
1132
1133 /* Check that COMMAND do not contain commands that are suitable
1134 only for tracepoints and not suitable for ordinary breakpoints.
1135 Throw if any such commands is found. */
1136
1137 static void
1138 check_no_tracepoint_commands (struct command_line *commands)
1139 {
1140 struct command_line *c;
1141
1142 for (c = commands; c; c = c->next)
1143 {
1144 int i;
1145
1146 if (c->control_type == while_stepping_control)
1147 error (_("The 'while-stepping' command can "
1148 "only be used for tracepoints"));
1149
1150 for (i = 0; i < c->body_count; ++i)
1151 check_no_tracepoint_commands ((c->body_list)[i]);
1152
1153 /* Not that command parsing removes leading whitespace and comment
1154 lines and also empty lines. So, we only need to check for
1155 command directly. */
1156 if (strstr (c->line, "collect ") == c->line)
1157 error (_("The 'collect' command can only be used for tracepoints"));
1158
1159 if (strstr (c->line, "teval ") == c->line)
1160 error (_("The 'teval' command can only be used for tracepoints"));
1161 }
1162 }
1163
1164 /* Encapsulate tests for different types of tracepoints. */
1165
1166 static int
1167 is_tracepoint_type (enum bptype type)
1168 {
1169 return (type == bp_tracepoint
1170 || type == bp_fast_tracepoint
1171 || type == bp_static_tracepoint);
1172 }
1173
1174 int
1175 is_tracepoint (const struct breakpoint *b)
1176 {
1177 return is_tracepoint_type (b->type);
1178 }
1179
1180 /* A helper function that validates that COMMANDS are valid for a
1181 breakpoint. This function will throw an exception if a problem is
1182 found. */
1183
1184 static void
1185 validate_commands_for_breakpoint (struct breakpoint *b,
1186 struct command_line *commands)
1187 {
1188 if (is_tracepoint (b))
1189 {
1190 struct tracepoint *t = (struct tracepoint *) b;
1191 struct command_line *c;
1192 struct command_line *while_stepping = 0;
1193
1194 /* Reset the while-stepping step count. The previous commands
1195 might have included a while-stepping action, while the new
1196 ones might not. */
1197 t->step_count = 0;
1198
1199 /* We need to verify that each top-level element of commands is
1200 valid for tracepoints, that there's at most one
1201 while-stepping element, and that the while-stepping's body
1202 has valid tracing commands excluding nested while-stepping.
1203 We also need to validate the tracepoint action line in the
1204 context of the tracepoint --- validate_actionline actually
1205 has side effects, like setting the tracepoint's
1206 while-stepping STEP_COUNT, in addition to checking if the
1207 collect/teval actions parse and make sense in the
1208 tracepoint's context. */
1209 for (c = commands; c; c = c->next)
1210 {
1211 if (c->control_type == while_stepping_control)
1212 {
1213 if (b->type == bp_fast_tracepoint)
1214 error (_("The 'while-stepping' command "
1215 "cannot be used for fast tracepoint"));
1216 else if (b->type == bp_static_tracepoint)
1217 error (_("The 'while-stepping' command "
1218 "cannot be used for static tracepoint"));
1219
1220 if (while_stepping)
1221 error (_("The 'while-stepping' command "
1222 "can be used only once"));
1223 else
1224 while_stepping = c;
1225 }
1226
1227 validate_actionline (c->line, b);
1228 }
1229 if (while_stepping)
1230 {
1231 struct command_line *c2;
1232
1233 gdb_assert (while_stepping->body_count == 1);
1234 c2 = while_stepping->body_list[0];
1235 for (; c2; c2 = c2->next)
1236 {
1237 if (c2->control_type == while_stepping_control)
1238 error (_("The 'while-stepping' command cannot be nested"));
1239 }
1240 }
1241 }
1242 else
1243 {
1244 check_no_tracepoint_commands (commands);
1245 }
1246 }
1247
1248 /* Return a vector of all the static tracepoints set at ADDR. The
1249 caller is responsible for releasing the vector. */
1250
1251 VEC(breakpoint_p) *
1252 static_tracepoints_here (CORE_ADDR addr)
1253 {
1254 struct breakpoint *b;
1255 VEC(breakpoint_p) *found = 0;
1256 struct bp_location *loc;
1257
1258 ALL_BREAKPOINTS (b)
1259 if (b->type == bp_static_tracepoint)
1260 {
1261 for (loc = b->loc; loc; loc = loc->next)
1262 if (loc->address == addr)
1263 VEC_safe_push(breakpoint_p, found, b);
1264 }
1265
1266 return found;
1267 }
1268
1269 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1270 validate that only allowed commands are included. */
1271
1272 void
1273 breakpoint_set_commands (struct breakpoint *b,
1274 struct command_line *commands)
1275 {
1276 validate_commands_for_breakpoint (b, commands);
1277
1278 decref_counted_command_line (&b->commands);
1279 b->commands = alloc_counted_command_line (commands);
1280 observer_notify_breakpoint_modified (b);
1281 }
1282
1283 /* Set the internal `silent' flag on the breakpoint. Note that this
1284 is not the same as the "silent" that may appear in the breakpoint's
1285 commands. */
1286
1287 void
1288 breakpoint_set_silent (struct breakpoint *b, int silent)
1289 {
1290 int old_silent = b->silent;
1291
1292 b->silent = silent;
1293 if (old_silent != silent)
1294 observer_notify_breakpoint_modified (b);
1295 }
1296
1297 /* Set the thread for this breakpoint. If THREAD is -1, make the
1298 breakpoint work for any thread. */
1299
1300 void
1301 breakpoint_set_thread (struct breakpoint *b, int thread)
1302 {
1303 int old_thread = b->thread;
1304
1305 b->thread = thread;
1306 if (old_thread != thread)
1307 observer_notify_breakpoint_modified (b);
1308 }
1309
1310 /* Set the task for this breakpoint. If TASK is 0, make the
1311 breakpoint work for any task. */
1312
1313 void
1314 breakpoint_set_task (struct breakpoint *b, int task)
1315 {
1316 int old_task = b->task;
1317
1318 b->task = task;
1319 if (old_task != task)
1320 observer_notify_breakpoint_modified (b);
1321 }
1322
1323 void
1324 check_tracepoint_command (char *line, void *closure)
1325 {
1326 struct breakpoint *b = (struct breakpoint *) closure;
1327
1328 validate_actionline (line, b);
1329 }
1330
1331 /* A structure used to pass information through
1332 map_breakpoint_numbers. */
1333
1334 struct commands_info
1335 {
1336 /* True if the command was typed at a tty. */
1337 int from_tty;
1338
1339 /* The breakpoint range spec. */
1340 const char *arg;
1341
1342 /* Non-NULL if the body of the commands are being read from this
1343 already-parsed command. */
1344 struct command_line *control;
1345
1346 /* The command lines read from the user, or NULL if they have not
1347 yet been read. */
1348 struct counted_command_line *cmd;
1349 };
1350
1351 /* A callback for map_breakpoint_numbers that sets the commands for
1352 commands_command. */
1353
1354 static void
1355 do_map_commands_command (struct breakpoint *b, void *data)
1356 {
1357 struct commands_info *info = (struct commands_info *) data;
1358
1359 if (info->cmd == NULL)
1360 {
1361 struct command_line *l;
1362
1363 if (info->control != NULL)
1364 l = copy_command_lines (info->control->body_list[0]);
1365 else
1366 {
1367 struct cleanup *old_chain;
1368 char *str;
1369
1370 str = xstrprintf (_("Type commands for breakpoint(s) "
1371 "%s, one per line."),
1372 info->arg);
1373
1374 old_chain = make_cleanup (xfree, str);
1375
1376 l = read_command_lines (str,
1377 info->from_tty, 1,
1378 (is_tracepoint (b)
1379 ? check_tracepoint_command : 0),
1380 b);
1381
1382 do_cleanups (old_chain);
1383 }
1384
1385 info->cmd = alloc_counted_command_line (l);
1386 }
1387
1388 /* If a breakpoint was on the list more than once, we don't need to
1389 do anything. */
1390 if (b->commands != info->cmd)
1391 {
1392 validate_commands_for_breakpoint (b, info->cmd->commands);
1393 incref_counted_command_line (info->cmd);
1394 decref_counted_command_line (&b->commands);
1395 b->commands = info->cmd;
1396 observer_notify_breakpoint_modified (b);
1397 }
1398 }
1399
1400 static void
1401 commands_command_1 (const char *arg, int from_tty,
1402 struct command_line *control)
1403 {
1404 struct cleanup *cleanups;
1405 struct commands_info info;
1406
1407 info.from_tty = from_tty;
1408 info.control = control;
1409 info.cmd = NULL;
1410 /* If we read command lines from the user, then `info' will hold an
1411 extra reference to the commands that we must clean up. */
1412 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1413
1414 std::string new_arg;
1415
1416 if (arg == NULL || !*arg)
1417 {
1418 if (breakpoint_count - prev_breakpoint_count > 1)
1419 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1420 breakpoint_count);
1421 else if (breakpoint_count > 0)
1422 new_arg = string_printf ("%d", breakpoint_count);
1423 }
1424 else
1425 new_arg = arg;
1426
1427 info.arg = new_arg.c_str ();
1428
1429 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1430
1431 if (info.cmd == NULL)
1432 error (_("No breakpoints specified."));
1433
1434 do_cleanups (cleanups);
1435 }
1436
1437 static void
1438 commands_command (char *arg, int from_tty)
1439 {
1440 commands_command_1 (arg, from_tty, NULL);
1441 }
1442
1443 /* Like commands_command, but instead of reading the commands from
1444 input stream, takes them from an already parsed command structure.
1445
1446 This is used by cli-script.c to DTRT with breakpoint commands
1447 that are part of if and while bodies. */
1448 enum command_control_type
1449 commands_from_control_command (const char *arg, struct command_line *cmd)
1450 {
1451 commands_command_1 (arg, 0, cmd);
1452 return simple_control;
1453 }
1454
1455 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1456
1457 static int
1458 bp_location_has_shadow (struct bp_location *bl)
1459 {
1460 if (bl->loc_type != bp_loc_software_breakpoint)
1461 return 0;
1462 if (!bl->inserted)
1463 return 0;
1464 if (bl->target_info.shadow_len == 0)
1465 /* BL isn't valid, or doesn't shadow memory. */
1466 return 0;
1467 return 1;
1468 }
1469
1470 /* Update BUF, which is LEN bytes read from the target address
1471 MEMADDR, by replacing a memory breakpoint with its shadowed
1472 contents.
1473
1474 If READBUF is not NULL, this buffer must not overlap with the of
1475 the breakpoint location's shadow_contents buffer. Otherwise, a
1476 failed assertion internal error will be raised. */
1477
1478 static void
1479 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1480 const gdb_byte *writebuf_org,
1481 ULONGEST memaddr, LONGEST len,
1482 struct bp_target_info *target_info,
1483 struct gdbarch *gdbarch)
1484 {
1485 /* Now do full processing of the found relevant range of elements. */
1486 CORE_ADDR bp_addr = 0;
1487 int bp_size = 0;
1488 int bptoffset = 0;
1489
1490 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1491 current_program_space->aspace, 0))
1492 {
1493 /* The breakpoint is inserted in a different address space. */
1494 return;
1495 }
1496
1497 /* Addresses and length of the part of the breakpoint that
1498 we need to copy. */
1499 bp_addr = target_info->placed_address;
1500 bp_size = target_info->shadow_len;
1501
1502 if (bp_addr + bp_size <= memaddr)
1503 {
1504 /* The breakpoint is entirely before the chunk of memory we are
1505 reading. */
1506 return;
1507 }
1508
1509 if (bp_addr >= memaddr + len)
1510 {
1511 /* The breakpoint is entirely after the chunk of memory we are
1512 reading. */
1513 return;
1514 }
1515
1516 /* Offset within shadow_contents. */
1517 if (bp_addr < memaddr)
1518 {
1519 /* Only copy the second part of the breakpoint. */
1520 bp_size -= memaddr - bp_addr;
1521 bptoffset = memaddr - bp_addr;
1522 bp_addr = memaddr;
1523 }
1524
1525 if (bp_addr + bp_size > memaddr + len)
1526 {
1527 /* Only copy the first part of the breakpoint. */
1528 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1529 }
1530
1531 if (readbuf != NULL)
1532 {
1533 /* Verify that the readbuf buffer does not overlap with the
1534 shadow_contents buffer. */
1535 gdb_assert (target_info->shadow_contents >= readbuf + len
1536 || readbuf >= (target_info->shadow_contents
1537 + target_info->shadow_len));
1538
1539 /* Update the read buffer with this inserted breakpoint's
1540 shadow. */
1541 memcpy (readbuf + bp_addr - memaddr,
1542 target_info->shadow_contents + bptoffset, bp_size);
1543 }
1544 else
1545 {
1546 const unsigned char *bp;
1547 CORE_ADDR addr = target_info->reqstd_address;
1548 int placed_size;
1549
1550 /* Update the shadow with what we want to write to memory. */
1551 memcpy (target_info->shadow_contents + bptoffset,
1552 writebuf_org + bp_addr - memaddr, bp_size);
1553
1554 /* Determine appropriate breakpoint contents and size for this
1555 address. */
1556 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1557
1558 /* Update the final write buffer with this inserted
1559 breakpoint's INSN. */
1560 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1561 }
1562 }
1563
1564 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1565 by replacing any memory breakpoints with their shadowed contents.
1566
1567 If READBUF is not NULL, this buffer must not overlap with any of
1568 the breakpoint location's shadow_contents buffers. Otherwise,
1569 a failed assertion internal error will be raised.
1570
1571 The range of shadowed area by each bp_location is:
1572 bl->address - bp_location_placed_address_before_address_max
1573 up to bl->address + bp_location_shadow_len_after_address_max
1574 The range we were requested to resolve shadows for is:
1575 memaddr ... memaddr + len
1576 Thus the safe cutoff boundaries for performance optimization are
1577 memaddr + len <= (bl->address
1578 - bp_location_placed_address_before_address_max)
1579 and:
1580 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1581
1582 void
1583 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1584 const gdb_byte *writebuf_org,
1585 ULONGEST memaddr, LONGEST len)
1586 {
1587 /* Left boundary, right boundary and median element of our binary
1588 search. */
1589 unsigned bc_l, bc_r, bc;
1590
1591 /* Find BC_L which is a leftmost element which may affect BUF
1592 content. It is safe to report lower value but a failure to
1593 report higher one. */
1594
1595 bc_l = 0;
1596 bc_r = bp_location_count;
1597 while (bc_l + 1 < bc_r)
1598 {
1599 struct bp_location *bl;
1600
1601 bc = (bc_l + bc_r) / 2;
1602 bl = bp_location[bc];
1603
1604 /* Check first BL->ADDRESS will not overflow due to the added
1605 constant. Then advance the left boundary only if we are sure
1606 the BC element can in no way affect the BUF content (MEMADDR
1607 to MEMADDR + LEN range).
1608
1609 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1610 offset so that we cannot miss a breakpoint with its shadow
1611 range tail still reaching MEMADDR. */
1612
1613 if ((bl->address + bp_location_shadow_len_after_address_max
1614 >= bl->address)
1615 && (bl->address + bp_location_shadow_len_after_address_max
1616 <= memaddr))
1617 bc_l = bc;
1618 else
1619 bc_r = bc;
1620 }
1621
1622 /* Due to the binary search above, we need to make sure we pick the
1623 first location that's at BC_L's address. E.g., if there are
1624 multiple locations at the same address, BC_L may end up pointing
1625 at a duplicate location, and miss the "master"/"inserted"
1626 location. Say, given locations L1, L2 and L3 at addresses A and
1627 B:
1628
1629 L1@A, L2@A, L3@B, ...
1630
1631 BC_L could end up pointing at location L2, while the "master"
1632 location could be L1. Since the `loc->inserted' flag is only set
1633 on "master" locations, we'd forget to restore the shadow of L1
1634 and L2. */
1635 while (bc_l > 0
1636 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1637 bc_l--;
1638
1639 /* Now do full processing of the found relevant range of elements. */
1640
1641 for (bc = bc_l; bc < bp_location_count; bc++)
1642 {
1643 struct bp_location *bl = bp_location[bc];
1644
1645 /* bp_location array has BL->OWNER always non-NULL. */
1646 if (bl->owner->type == bp_none)
1647 warning (_("reading through apparently deleted breakpoint #%d?"),
1648 bl->owner->number);
1649
1650 /* Performance optimization: any further element can no longer affect BUF
1651 content. */
1652
1653 if (bl->address >= bp_location_placed_address_before_address_max
1654 && memaddr + len <= (bl->address
1655 - bp_location_placed_address_before_address_max))
1656 break;
1657
1658 if (!bp_location_has_shadow (bl))
1659 continue;
1660
1661 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1662 memaddr, len, &bl->target_info, bl->gdbarch);
1663 }
1664 }
1665
1666 \f
1667
1668 /* Return true if BPT is either a software breakpoint or a hardware
1669 breakpoint. */
1670
1671 int
1672 is_breakpoint (const struct breakpoint *bpt)
1673 {
1674 return (bpt->type == bp_breakpoint
1675 || bpt->type == bp_hardware_breakpoint
1676 || bpt->type == bp_dprintf);
1677 }
1678
1679 /* Return true if BPT is of any hardware watchpoint kind. */
1680
1681 static int
1682 is_hardware_watchpoint (const struct breakpoint *bpt)
1683 {
1684 return (bpt->type == bp_hardware_watchpoint
1685 || bpt->type == bp_read_watchpoint
1686 || bpt->type == bp_access_watchpoint);
1687 }
1688
1689 /* Return true if BPT is of any watchpoint kind, hardware or
1690 software. */
1691
1692 int
1693 is_watchpoint (const struct breakpoint *bpt)
1694 {
1695 return (is_hardware_watchpoint (bpt)
1696 || bpt->type == bp_watchpoint);
1697 }
1698
1699 /* Returns true if the current thread and its running state are safe
1700 to evaluate or update watchpoint B. Watchpoints on local
1701 expressions need to be evaluated in the context of the thread that
1702 was current when the watchpoint was created, and, that thread needs
1703 to be stopped to be able to select the correct frame context.
1704 Watchpoints on global expressions can be evaluated on any thread,
1705 and in any state. It is presently left to the target allowing
1706 memory accesses when threads are running. */
1707
1708 static int
1709 watchpoint_in_thread_scope (struct watchpoint *b)
1710 {
1711 return (b->base.pspace == current_program_space
1712 && (ptid_equal (b->watchpoint_thread, null_ptid)
1713 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1714 && !is_executing (inferior_ptid))));
1715 }
1716
1717 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1718 associated bp_watchpoint_scope breakpoint. */
1719
1720 static void
1721 watchpoint_del_at_next_stop (struct watchpoint *w)
1722 {
1723 struct breakpoint *b = &w->base;
1724
1725 if (b->related_breakpoint != b)
1726 {
1727 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1728 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1729 b->related_breakpoint->disposition = disp_del_at_next_stop;
1730 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1731 b->related_breakpoint = b;
1732 }
1733 b->disposition = disp_del_at_next_stop;
1734 }
1735
1736 /* Extract a bitfield value from value VAL using the bit parameters contained in
1737 watchpoint W. */
1738
1739 static struct value *
1740 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1741 {
1742 struct value *bit_val;
1743
1744 if (val == NULL)
1745 return NULL;
1746
1747 bit_val = allocate_value (value_type (val));
1748
1749 unpack_value_bitfield (bit_val,
1750 w->val_bitpos,
1751 w->val_bitsize,
1752 value_contents_for_printing (val),
1753 value_offset (val),
1754 val);
1755
1756 return bit_val;
1757 }
1758
1759 /* Allocate a dummy location and add it to B, which must be a software
1760 watchpoint. This is required because even if a software watchpoint
1761 is not watching any memory, bpstat_stop_status requires a location
1762 to be able to report stops. */
1763
1764 static void
1765 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1766 struct program_space *pspace)
1767 {
1768 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1769
1770 b->loc = allocate_bp_location (b);
1771 b->loc->pspace = pspace;
1772 b->loc->address = -1;
1773 b->loc->length = -1;
1774 }
1775
1776 /* Returns true if B is a software watchpoint that is not watching any
1777 memory (e.g., "watch $pc"). */
1778
1779 static int
1780 is_no_memory_software_watchpoint (struct breakpoint *b)
1781 {
1782 return (b->type == bp_watchpoint
1783 && b->loc != NULL
1784 && b->loc->next == NULL
1785 && b->loc->address == -1
1786 && b->loc->length == -1);
1787 }
1788
1789 /* Assuming that B is a watchpoint:
1790 - Reparse watchpoint expression, if REPARSE is non-zero
1791 - Evaluate expression and store the result in B->val
1792 - Evaluate the condition if there is one, and store the result
1793 in b->loc->cond.
1794 - Update the list of values that must be watched in B->loc.
1795
1796 If the watchpoint disposition is disp_del_at_next_stop, then do
1797 nothing. If this is local watchpoint that is out of scope, delete
1798 it.
1799
1800 Even with `set breakpoint always-inserted on' the watchpoints are
1801 removed + inserted on each stop here. Normal breakpoints must
1802 never be removed because they might be missed by a running thread
1803 when debugging in non-stop mode. On the other hand, hardware
1804 watchpoints (is_hardware_watchpoint; processed here) are specific
1805 to each LWP since they are stored in each LWP's hardware debug
1806 registers. Therefore, such LWP must be stopped first in order to
1807 be able to modify its hardware watchpoints.
1808
1809 Hardware watchpoints must be reset exactly once after being
1810 presented to the user. It cannot be done sooner, because it would
1811 reset the data used to present the watchpoint hit to the user. And
1812 it must not be done later because it could display the same single
1813 watchpoint hit during multiple GDB stops. Note that the latter is
1814 relevant only to the hardware watchpoint types bp_read_watchpoint
1815 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1816 not user-visible - its hit is suppressed if the memory content has
1817 not changed.
1818
1819 The following constraints influence the location where we can reset
1820 hardware watchpoints:
1821
1822 * target_stopped_by_watchpoint and target_stopped_data_address are
1823 called several times when GDB stops.
1824
1825 [linux]
1826 * Multiple hardware watchpoints can be hit at the same time,
1827 causing GDB to stop. GDB only presents one hardware watchpoint
1828 hit at a time as the reason for stopping, and all the other hits
1829 are presented later, one after the other, each time the user
1830 requests the execution to be resumed. Execution is not resumed
1831 for the threads still having pending hit event stored in
1832 LWP_INFO->STATUS. While the watchpoint is already removed from
1833 the inferior on the first stop the thread hit event is kept being
1834 reported from its cached value by linux_nat_stopped_data_address
1835 until the real thread resume happens after the watchpoint gets
1836 presented and thus its LWP_INFO->STATUS gets reset.
1837
1838 Therefore the hardware watchpoint hit can get safely reset on the
1839 watchpoint removal from inferior. */
1840
1841 static void
1842 update_watchpoint (struct watchpoint *b, int reparse)
1843 {
1844 int within_current_scope;
1845 struct frame_id saved_frame_id;
1846 int frame_saved;
1847
1848 /* If this is a local watchpoint, we only want to check if the
1849 watchpoint frame is in scope if the current thread is the thread
1850 that was used to create the watchpoint. */
1851 if (!watchpoint_in_thread_scope (b))
1852 return;
1853
1854 if (b->base.disposition == disp_del_at_next_stop)
1855 return;
1856
1857 frame_saved = 0;
1858
1859 /* Determine if the watchpoint is within scope. */
1860 if (b->exp_valid_block == NULL)
1861 within_current_scope = 1;
1862 else
1863 {
1864 struct frame_info *fi = get_current_frame ();
1865 struct gdbarch *frame_arch = get_frame_arch (fi);
1866 CORE_ADDR frame_pc = get_frame_pc (fi);
1867
1868 /* If we're at a point where the stack has been destroyed
1869 (e.g. in a function epilogue), unwinding may not work
1870 properly. Do not attempt to recreate locations at this
1871 point. See similar comments in watchpoint_check. */
1872 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1873 return;
1874
1875 /* Save the current frame's ID so we can restore it after
1876 evaluating the watchpoint expression on its own frame. */
1877 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1878 took a frame parameter, so that we didn't have to change the
1879 selected frame. */
1880 frame_saved = 1;
1881 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1882
1883 fi = frame_find_by_id (b->watchpoint_frame);
1884 within_current_scope = (fi != NULL);
1885 if (within_current_scope)
1886 select_frame (fi);
1887 }
1888
1889 /* We don't free locations. They are stored in the bp_location array
1890 and update_global_location_list will eventually delete them and
1891 remove breakpoints if needed. */
1892 b->base.loc = NULL;
1893
1894 if (within_current_scope && reparse)
1895 {
1896 const char *s;
1897
1898 b->exp.reset ();
1899 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1900 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1901 /* If the meaning of expression itself changed, the old value is
1902 no longer relevant. We don't want to report a watchpoint hit
1903 to the user when the old value and the new value may actually
1904 be completely different objects. */
1905 value_free (b->val);
1906 b->val = NULL;
1907 b->val_valid = 0;
1908
1909 /* Note that unlike with breakpoints, the watchpoint's condition
1910 expression is stored in the breakpoint object, not in the
1911 locations (re)created below. */
1912 if (b->base.cond_string != NULL)
1913 {
1914 b->cond_exp.reset ();
1915
1916 s = b->base.cond_string;
1917 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1918 }
1919 }
1920
1921 /* If we failed to parse the expression, for example because
1922 it refers to a global variable in a not-yet-loaded shared library,
1923 don't try to insert watchpoint. We don't automatically delete
1924 such watchpoint, though, since failure to parse expression
1925 is different from out-of-scope watchpoint. */
1926 if (!target_has_execution)
1927 {
1928 /* Without execution, memory can't change. No use to try and
1929 set watchpoint locations. The watchpoint will be reset when
1930 the target gains execution, through breakpoint_re_set. */
1931 if (!can_use_hw_watchpoints)
1932 {
1933 if (b->base.ops->works_in_software_mode (&b->base))
1934 b->base.type = bp_watchpoint;
1935 else
1936 error (_("Can't set read/access watchpoint when "
1937 "hardware watchpoints are disabled."));
1938 }
1939 }
1940 else if (within_current_scope && b->exp)
1941 {
1942 int pc = 0;
1943 struct value *val_chain, *v, *result, *next;
1944 struct program_space *frame_pspace;
1945
1946 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1947
1948 /* Avoid setting b->val if it's already set. The meaning of
1949 b->val is 'the last value' user saw, and we should update
1950 it only if we reported that last value to user. As it
1951 happens, the code that reports it updates b->val directly.
1952 We don't keep track of the memory value for masked
1953 watchpoints. */
1954 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1955 {
1956 if (b->val_bitsize != 0)
1957 {
1958 v = extract_bitfield_from_watchpoint_value (b, v);
1959 if (v != NULL)
1960 release_value (v);
1961 }
1962 b->val = v;
1963 b->val_valid = 1;
1964 }
1965
1966 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1967
1968 /* Look at each value on the value chain. */
1969 for (v = val_chain; v; v = value_next (v))
1970 {
1971 /* If it's a memory location, and GDB actually needed
1972 its contents to evaluate the expression, then we
1973 must watch it. If the first value returned is
1974 still lazy, that means an error occurred reading it;
1975 watch it anyway in case it becomes readable. */
1976 if (VALUE_LVAL (v) == lval_memory
1977 && (v == val_chain || ! value_lazy (v)))
1978 {
1979 struct type *vtype = check_typedef (value_type (v));
1980
1981 /* We only watch structs and arrays if user asked
1982 for it explicitly, never if they just happen to
1983 appear in the middle of some value chain. */
1984 if (v == result
1985 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1986 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1987 {
1988 CORE_ADDR addr;
1989 enum target_hw_bp_type type;
1990 struct bp_location *loc, **tmp;
1991 int bitpos = 0, bitsize = 0;
1992
1993 if (value_bitsize (v) != 0)
1994 {
1995 /* Extract the bit parameters out from the bitfield
1996 sub-expression. */
1997 bitpos = value_bitpos (v);
1998 bitsize = value_bitsize (v);
1999 }
2000 else if (v == result && b->val_bitsize != 0)
2001 {
2002 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2003 lvalue whose bit parameters are saved in the fields
2004 VAL_BITPOS and VAL_BITSIZE. */
2005 bitpos = b->val_bitpos;
2006 bitsize = b->val_bitsize;
2007 }
2008
2009 addr = value_address (v);
2010 if (bitsize != 0)
2011 {
2012 /* Skip the bytes that don't contain the bitfield. */
2013 addr += bitpos / 8;
2014 }
2015
2016 type = hw_write;
2017 if (b->base.type == bp_read_watchpoint)
2018 type = hw_read;
2019 else if (b->base.type == bp_access_watchpoint)
2020 type = hw_access;
2021
2022 loc = allocate_bp_location (&b->base);
2023 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2024 ;
2025 *tmp = loc;
2026 loc->gdbarch = get_type_arch (value_type (v));
2027
2028 loc->pspace = frame_pspace;
2029 loc->address = addr;
2030
2031 if (bitsize != 0)
2032 {
2033 /* Just cover the bytes that make up the bitfield. */
2034 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2035 }
2036 else
2037 loc->length = TYPE_LENGTH (value_type (v));
2038
2039 loc->watchpoint_type = type;
2040 }
2041 }
2042 }
2043
2044 /* Change the type of breakpoint between hardware assisted or
2045 an ordinary watchpoint depending on the hardware support
2046 and free hardware slots. REPARSE is set when the inferior
2047 is started. */
2048 if (reparse)
2049 {
2050 int reg_cnt;
2051 enum bp_loc_type loc_type;
2052 struct bp_location *bl;
2053
2054 reg_cnt = can_use_hardware_watchpoint (val_chain);
2055
2056 if (reg_cnt)
2057 {
2058 int i, target_resources_ok, other_type_used;
2059 enum bptype type;
2060
2061 /* Use an exact watchpoint when there's only one memory region to be
2062 watched, and only one debug register is needed to watch it. */
2063 b->exact = target_exact_watchpoints && reg_cnt == 1;
2064
2065 /* We need to determine how many resources are already
2066 used for all other hardware watchpoints plus this one
2067 to see if we still have enough resources to also fit
2068 this watchpoint in as well. */
2069
2070 /* If this is a software watchpoint, we try to turn it
2071 to a hardware one -- count resources as if B was of
2072 hardware watchpoint type. */
2073 type = b->base.type;
2074 if (type == bp_watchpoint)
2075 type = bp_hardware_watchpoint;
2076
2077 /* This watchpoint may or may not have been placed on
2078 the list yet at this point (it won't be in the list
2079 if we're trying to create it for the first time,
2080 through watch_command), so always account for it
2081 manually. */
2082
2083 /* Count resources used by all watchpoints except B. */
2084 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2085
2086 /* Add in the resources needed for B. */
2087 i += hw_watchpoint_use_count (&b->base);
2088
2089 target_resources_ok
2090 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2091 if (target_resources_ok <= 0)
2092 {
2093 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2094
2095 if (target_resources_ok == 0 && !sw_mode)
2096 error (_("Target does not support this type of "
2097 "hardware watchpoint."));
2098 else if (target_resources_ok < 0 && !sw_mode)
2099 error (_("There are not enough available hardware "
2100 "resources for this watchpoint."));
2101
2102 /* Downgrade to software watchpoint. */
2103 b->base.type = bp_watchpoint;
2104 }
2105 else
2106 {
2107 /* If this was a software watchpoint, we've just
2108 found we have enough resources to turn it to a
2109 hardware watchpoint. Otherwise, this is a
2110 nop. */
2111 b->base.type = type;
2112 }
2113 }
2114 else if (!b->base.ops->works_in_software_mode (&b->base))
2115 {
2116 if (!can_use_hw_watchpoints)
2117 error (_("Can't set read/access watchpoint when "
2118 "hardware watchpoints are disabled."));
2119 else
2120 error (_("Expression cannot be implemented with "
2121 "read/access watchpoint."));
2122 }
2123 else
2124 b->base.type = bp_watchpoint;
2125
2126 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2127 : bp_loc_hardware_watchpoint);
2128 for (bl = b->base.loc; bl; bl = bl->next)
2129 bl->loc_type = loc_type;
2130 }
2131
2132 for (v = val_chain; v; v = next)
2133 {
2134 next = value_next (v);
2135 if (v != b->val)
2136 value_free (v);
2137 }
2138
2139 /* If a software watchpoint is not watching any memory, then the
2140 above left it without any location set up. But,
2141 bpstat_stop_status requires a location to be able to report
2142 stops, so make sure there's at least a dummy one. */
2143 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2144 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2145 }
2146 else if (!within_current_scope)
2147 {
2148 printf_filtered (_("\
2149 Watchpoint %d deleted because the program has left the block\n\
2150 in which its expression is valid.\n"),
2151 b->base.number);
2152 watchpoint_del_at_next_stop (b);
2153 }
2154
2155 /* Restore the selected frame. */
2156 if (frame_saved)
2157 select_frame (frame_find_by_id (saved_frame_id));
2158 }
2159
2160
2161 /* Returns 1 iff breakpoint location should be
2162 inserted in the inferior. We don't differentiate the type of BL's owner
2163 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2164 breakpoint_ops is not defined, because in insert_bp_location,
2165 tracepoint's insert_location will not be called. */
2166 static int
2167 should_be_inserted (struct bp_location *bl)
2168 {
2169 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2170 return 0;
2171
2172 if (bl->owner->disposition == disp_del_at_next_stop)
2173 return 0;
2174
2175 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2176 return 0;
2177
2178 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2179 return 0;
2180
2181 /* This is set for example, when we're attached to the parent of a
2182 vfork, and have detached from the child. The child is running
2183 free, and we expect it to do an exec or exit, at which point the
2184 OS makes the parent schedulable again (and the target reports
2185 that the vfork is done). Until the child is done with the shared
2186 memory region, do not insert breakpoints in the parent, otherwise
2187 the child could still trip on the parent's breakpoints. Since
2188 the parent is blocked anyway, it won't miss any breakpoint. */
2189 if (bl->pspace->breakpoints_not_allowed)
2190 return 0;
2191
2192 /* Don't insert a breakpoint if we're trying to step past its
2193 location, except if the breakpoint is a single-step breakpoint,
2194 and the breakpoint's thread is the thread which is stepping past
2195 a breakpoint. */
2196 if ((bl->loc_type == bp_loc_software_breakpoint
2197 || bl->loc_type == bp_loc_hardware_breakpoint)
2198 && stepping_past_instruction_at (bl->pspace->aspace,
2199 bl->address)
2200 /* The single-step breakpoint may be inserted at the location
2201 we're trying to step if the instruction branches to itself.
2202 However, the instruction won't be executed at all and it may
2203 break the semantics of the instruction, for example, the
2204 instruction is a conditional branch or updates some flags.
2205 We can't fix it unless GDB is able to emulate the instruction
2206 or switch to displaced stepping. */
2207 && !(bl->owner->type == bp_single_step
2208 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2209 {
2210 if (debug_infrun)
2211 {
2212 fprintf_unfiltered (gdb_stdlog,
2213 "infrun: skipping breakpoint: "
2214 "stepping past insn at: %s\n",
2215 paddress (bl->gdbarch, bl->address));
2216 }
2217 return 0;
2218 }
2219
2220 /* Don't insert watchpoints if we're trying to step past the
2221 instruction that triggered one. */
2222 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2223 && stepping_past_nonsteppable_watchpoint ())
2224 {
2225 if (debug_infrun)
2226 {
2227 fprintf_unfiltered (gdb_stdlog,
2228 "infrun: stepping past non-steppable watchpoint. "
2229 "skipping watchpoint at %s:%d\n",
2230 paddress (bl->gdbarch, bl->address),
2231 bl->length);
2232 }
2233 return 0;
2234 }
2235
2236 return 1;
2237 }
2238
2239 /* Same as should_be_inserted but does the check assuming
2240 that the location is not duplicated. */
2241
2242 static int
2243 unduplicated_should_be_inserted (struct bp_location *bl)
2244 {
2245 int result;
2246 const int save_duplicate = bl->duplicate;
2247
2248 bl->duplicate = 0;
2249 result = should_be_inserted (bl);
2250 bl->duplicate = save_duplicate;
2251 return result;
2252 }
2253
2254 /* Parses a conditional described by an expression COND into an
2255 agent expression bytecode suitable for evaluation
2256 by the bytecode interpreter. Return NULL if there was
2257 any error during parsing. */
2258
2259 static agent_expr_up
2260 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2261 {
2262 if (cond == NULL)
2263 return NULL;
2264
2265 agent_expr_up aexpr;
2266
2267 /* We don't want to stop processing, so catch any errors
2268 that may show up. */
2269 TRY
2270 {
2271 aexpr = std::move (gen_eval_for_expr (scope, cond));
2272 }
2273
2274 CATCH (ex, RETURN_MASK_ERROR)
2275 {
2276 /* If we got here, it means the condition could not be parsed to a valid
2277 bytecode expression and thus can't be evaluated on the target's side.
2278 It's no use iterating through the conditions. */
2279 }
2280 END_CATCH
2281
2282 /* We have a valid agent expression. */
2283 return aexpr;
2284 }
2285
2286 /* Based on location BL, create a list of breakpoint conditions to be
2287 passed on to the target. If we have duplicated locations with different
2288 conditions, we will add such conditions to the list. The idea is that the
2289 target will evaluate the list of conditions and will only notify GDB when
2290 one of them is true. */
2291
2292 static void
2293 build_target_condition_list (struct bp_location *bl)
2294 {
2295 struct bp_location **locp = NULL, **loc2p;
2296 int null_condition_or_parse_error = 0;
2297 int modified = bl->needs_update;
2298 struct bp_location *loc;
2299
2300 /* Release conditions left over from a previous insert. */
2301 bl->target_info.conditions.clear ();
2302
2303 /* This is only meaningful if the target is
2304 evaluating conditions and if the user has
2305 opted for condition evaluation on the target's
2306 side. */
2307 if (gdb_evaluates_breakpoint_condition_p ()
2308 || !target_supports_evaluation_of_breakpoint_conditions ())
2309 return;
2310
2311 /* Do a first pass to check for locations with no assigned
2312 conditions or conditions that fail to parse to a valid agent expression
2313 bytecode. If any of these happen, then it's no use to send conditions
2314 to the target since this location will always trigger and generate a
2315 response back to GDB. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2320 {
2321 if (modified)
2322 {
2323 /* Re-parse the conditions since something changed. In that
2324 case we already freed the condition bytecodes (see
2325 force_breakpoint_reinsertion). We just
2326 need to parse the condition to bytecodes again. */
2327 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2328 loc->cond.get ());
2329 }
2330
2331 /* If we have a NULL bytecode expression, it means something
2332 went wrong or we have a null condition expression. */
2333 if (!loc->cond_bytecode)
2334 {
2335 null_condition_or_parse_error = 1;
2336 break;
2337 }
2338 }
2339 }
2340
2341 /* If any of these happened, it means we will have to evaluate the conditions
2342 for the location's address on gdb's side. It is no use keeping bytecodes
2343 for all the other duplicate locations, thus we free all of them here.
2344
2345 This is so we have a finer control over which locations' conditions are
2346 being evaluated by GDB or the remote stub. */
2347 if (null_condition_or_parse_error)
2348 {
2349 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2350 {
2351 loc = (*loc2p);
2352 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2353 {
2354 /* Only go as far as the first NULL bytecode is
2355 located. */
2356 if (!loc->cond_bytecode)
2357 return;
2358
2359 loc->cond_bytecode.reset ();
2360 }
2361 }
2362 }
2363
2364 /* No NULL conditions or failed bytecode generation. Build a condition list
2365 for this location's address. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (loc->cond
2370 && is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->enable_state == bp_enabled
2373 && loc->enabled)
2374 {
2375 /* Add the condition to the vector. This will be used later
2376 to send the conditions to the target. */
2377 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2378 }
2379 }
2380
2381 return;
2382 }
2383
2384 /* Parses a command described by string CMD into an agent expression
2385 bytecode suitable for evaluation by the bytecode interpreter.
2386 Return NULL if there was any error during parsing. */
2387
2388 static agent_expr_up
2389 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2390 {
2391 struct cleanup *old_cleanups = 0;
2392 struct expression **argvec;
2393 const char *cmdrest;
2394 const char *format_start, *format_end;
2395 struct format_piece *fpieces;
2396 int nargs;
2397 struct gdbarch *gdbarch = get_current_arch ();
2398
2399 if (cmd == NULL)
2400 return NULL;
2401
2402 cmdrest = cmd;
2403
2404 if (*cmdrest == ',')
2405 ++cmdrest;
2406 cmdrest = skip_spaces_const (cmdrest);
2407
2408 if (*cmdrest++ != '"')
2409 error (_("No format string following the location"));
2410
2411 format_start = cmdrest;
2412
2413 fpieces = parse_format_string (&cmdrest);
2414
2415 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2416
2417 format_end = cmdrest;
2418
2419 if (*cmdrest++ != '"')
2420 error (_("Bad format string, non-terminated '\"'."));
2421
2422 cmdrest = skip_spaces_const (cmdrest);
2423
2424 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2425 error (_("Invalid argument syntax"));
2426
2427 if (*cmdrest == ',')
2428 cmdrest++;
2429 cmdrest = skip_spaces_const (cmdrest);
2430
2431 /* For each argument, make an expression. */
2432
2433 argvec = (struct expression **) alloca (strlen (cmd)
2434 * sizeof (struct expression *));
2435
2436 nargs = 0;
2437 while (*cmdrest != '\0')
2438 {
2439 const char *cmd1;
2440
2441 cmd1 = cmdrest;
2442 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2443 argvec[nargs++] = expr.release ();
2444 cmdrest = cmd1;
2445 if (*cmdrest == ',')
2446 ++cmdrest;
2447 }
2448
2449 agent_expr_up aexpr;
2450
2451 /* We don't want to stop processing, so catch any errors
2452 that may show up. */
2453 TRY
2454 {
2455 aexpr = std::move (gen_printf (scope, gdbarch, 0, 0,
2456 format_start, format_end - format_start,
2457 fpieces, nargs, argvec));
2458 }
2459 CATCH (ex, RETURN_MASK_ERROR)
2460 {
2461 /* If we got here, it means the command could not be parsed to a valid
2462 bytecode expression and thus can't be evaluated on the target's side.
2463 It's no use iterating through the other commands. */
2464 }
2465 END_CATCH
2466
2467 do_cleanups (old_cleanups);
2468
2469 /* We have a valid agent expression, return it. */
2470 return aexpr;
2471 }
2472
2473 /* Based on location BL, create a list of breakpoint commands to be
2474 passed on to the target. If we have duplicated locations with
2475 different commands, we will add any such to the list. */
2476
2477 static void
2478 build_target_command_list (struct bp_location *bl)
2479 {
2480 struct bp_location **locp = NULL, **loc2p;
2481 int null_command_or_parse_error = 0;
2482 int modified = bl->needs_update;
2483 struct bp_location *loc;
2484
2485 /* Clear commands left over from a previous insert. */
2486 bl->target_info.tcommands.clear ();
2487
2488 if (!target_can_run_breakpoint_commands ())
2489 return;
2490
2491 /* For now, limit to agent-style dprintf breakpoints. */
2492 if (dprintf_style != dprintf_style_agent)
2493 return;
2494
2495 /* For now, if we have any duplicate location that isn't a dprintf,
2496 don't install the target-side commands, as that would make the
2497 breakpoint not be reported to the core, and we'd lose
2498 control. */
2499 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2500 {
2501 loc = (*loc2p);
2502 if (is_breakpoint (loc->owner)
2503 && loc->pspace->num == bl->pspace->num
2504 && loc->owner->type != bp_dprintf)
2505 return;
2506 }
2507
2508 /* Do a first pass to check for locations with no assigned
2509 conditions or conditions that fail to parse to a valid agent expression
2510 bytecode. If any of these happen, then it's no use to send conditions
2511 to the target since this location will always trigger and generate a
2512 response back to GDB. */
2513 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2514 {
2515 loc = (*loc2p);
2516 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2517 {
2518 if (modified)
2519 {
2520 /* Re-parse the commands since something changed. In that
2521 case we already freed the command bytecodes (see
2522 force_breakpoint_reinsertion). We just
2523 need to parse the command to bytecodes again. */
2524 loc->cmd_bytecode
2525 = parse_cmd_to_aexpr (bl->address,
2526 loc->owner->extra_string);
2527 }
2528
2529 /* If we have a NULL bytecode expression, it means something
2530 went wrong or we have a null command expression. */
2531 if (!loc->cmd_bytecode)
2532 {
2533 null_command_or_parse_error = 1;
2534 break;
2535 }
2536 }
2537 }
2538
2539 /* If anything failed, then we're not doing target-side commands,
2540 and so clean up. */
2541 if (null_command_or_parse_error)
2542 {
2543 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2544 {
2545 loc = (*loc2p);
2546 if (is_breakpoint (loc->owner)
2547 && loc->pspace->num == bl->pspace->num)
2548 {
2549 /* Only go as far as the first NULL bytecode is
2550 located. */
2551 if (loc->cmd_bytecode == NULL)
2552 return;
2553
2554 loc->cmd_bytecode.reset ();
2555 }
2556 }
2557 }
2558
2559 /* No NULL commands or failed bytecode generation. Build a command list
2560 for this location's address. */
2561 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2562 {
2563 loc = (*loc2p);
2564 if (loc->owner->extra_string
2565 && is_breakpoint (loc->owner)
2566 && loc->pspace->num == bl->pspace->num
2567 && loc->owner->enable_state == bp_enabled
2568 && loc->enabled)
2569 {
2570 /* Add the command to the vector. This will be used later
2571 to send the commands to the target. */
2572 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2573 }
2574 }
2575
2576 bl->target_info.persist = 0;
2577 /* Maybe flag this location as persistent. */
2578 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2579 bl->target_info.persist = 1;
2580 }
2581
2582 /* Return the kind of breakpoint on address *ADDR. Get the kind
2583 of breakpoint according to ADDR except single-step breakpoint.
2584 Get the kind of single-step breakpoint according to the current
2585 registers state. */
2586
2587 static int
2588 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2589 {
2590 if (bl->owner->type == bp_single_step)
2591 {
2592 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2593 struct regcache *regcache;
2594
2595 regcache = get_thread_regcache (thr->ptid);
2596
2597 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2598 regcache, addr);
2599 }
2600 else
2601 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2602 }
2603
2604 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2605 location. Any error messages are printed to TMP_ERROR_STREAM; and
2606 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2607 Returns 0 for success, 1 if the bp_location type is not supported or
2608 -1 for failure.
2609
2610 NOTE drow/2003-09-09: This routine could be broken down to an
2611 object-style method for each breakpoint or catchpoint type. */
2612 static int
2613 insert_bp_location (struct bp_location *bl,
2614 struct ui_file *tmp_error_stream,
2615 int *disabled_breaks,
2616 int *hw_breakpoint_error,
2617 int *hw_bp_error_explained_already)
2618 {
2619 enum errors bp_err = GDB_NO_ERROR;
2620 const char *bp_err_message = NULL;
2621
2622 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2623 return 0;
2624
2625 /* Note we don't initialize bl->target_info, as that wipes out
2626 the breakpoint location's shadow_contents if the breakpoint
2627 is still inserted at that location. This in turn breaks
2628 target_read_memory which depends on these buffers when
2629 a memory read is requested at the breakpoint location:
2630 Once the target_info has been wiped, we fail to see that
2631 we have a breakpoint inserted at that address and thus
2632 read the breakpoint instead of returning the data saved in
2633 the breakpoint location's shadow contents. */
2634 bl->target_info.reqstd_address = bl->address;
2635 bl->target_info.placed_address_space = bl->pspace->aspace;
2636 bl->target_info.length = bl->length;
2637
2638 /* When working with target-side conditions, we must pass all the conditions
2639 for the same breakpoint address down to the target since GDB will not
2640 insert those locations. With a list of breakpoint conditions, the target
2641 can decide when to stop and notify GDB. */
2642
2643 if (is_breakpoint (bl->owner))
2644 {
2645 build_target_condition_list (bl);
2646 build_target_command_list (bl);
2647 /* Reset the modification marker. */
2648 bl->needs_update = 0;
2649 }
2650
2651 if (bl->loc_type == bp_loc_software_breakpoint
2652 || bl->loc_type == bp_loc_hardware_breakpoint)
2653 {
2654 if (bl->owner->type != bp_hardware_breakpoint)
2655 {
2656 /* If the explicitly specified breakpoint type
2657 is not hardware breakpoint, check the memory map to see
2658 if the breakpoint address is in read only memory or not.
2659
2660 Two important cases are:
2661 - location type is not hardware breakpoint, memory
2662 is readonly. We change the type of the location to
2663 hardware breakpoint.
2664 - location type is hardware breakpoint, memory is
2665 read-write. This means we've previously made the
2666 location hardware one, but then the memory map changed,
2667 so we undo.
2668
2669 When breakpoints are removed, remove_breakpoints will use
2670 location types we've just set here, the only possible
2671 problem is that memory map has changed during running
2672 program, but it's not going to work anyway with current
2673 gdb. */
2674 struct mem_region *mr
2675 = lookup_mem_region (bl->target_info.reqstd_address);
2676
2677 if (mr)
2678 {
2679 if (automatic_hardware_breakpoints)
2680 {
2681 enum bp_loc_type new_type;
2682
2683 if (mr->attrib.mode != MEM_RW)
2684 new_type = bp_loc_hardware_breakpoint;
2685 else
2686 new_type = bp_loc_software_breakpoint;
2687
2688 if (new_type != bl->loc_type)
2689 {
2690 static int said = 0;
2691
2692 bl->loc_type = new_type;
2693 if (!said)
2694 {
2695 fprintf_filtered (gdb_stdout,
2696 _("Note: automatically using "
2697 "hardware breakpoints for "
2698 "read-only addresses.\n"));
2699 said = 1;
2700 }
2701 }
2702 }
2703 else if (bl->loc_type == bp_loc_software_breakpoint
2704 && mr->attrib.mode != MEM_RW)
2705 {
2706 fprintf_unfiltered (tmp_error_stream,
2707 _("Cannot insert breakpoint %d.\n"
2708 "Cannot set software breakpoint "
2709 "at read-only address %s\n"),
2710 bl->owner->number,
2711 paddress (bl->gdbarch, bl->address));
2712 return 1;
2713 }
2714 }
2715 }
2716
2717 /* First check to see if we have to handle an overlay. */
2718 if (overlay_debugging == ovly_off
2719 || bl->section == NULL
2720 || !(section_is_overlay (bl->section)))
2721 {
2722 /* No overlay handling: just set the breakpoint. */
2723 TRY
2724 {
2725 int val;
2726
2727 val = bl->owner->ops->insert_location (bl);
2728 if (val)
2729 bp_err = GENERIC_ERROR;
2730 }
2731 CATCH (e, RETURN_MASK_ALL)
2732 {
2733 bp_err = e.error;
2734 bp_err_message = e.message;
2735 }
2736 END_CATCH
2737 }
2738 else
2739 {
2740 /* This breakpoint is in an overlay section.
2741 Shall we set a breakpoint at the LMA? */
2742 if (!overlay_events_enabled)
2743 {
2744 /* Yes -- overlay event support is not active,
2745 so we must try to set a breakpoint at the LMA.
2746 This will not work for a hardware breakpoint. */
2747 if (bl->loc_type == bp_loc_hardware_breakpoint)
2748 warning (_("hardware breakpoint %d not supported in overlay!"),
2749 bl->owner->number);
2750 else
2751 {
2752 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2753 bl->section);
2754 /* Set a software (trap) breakpoint at the LMA. */
2755 bl->overlay_target_info = bl->target_info;
2756 bl->overlay_target_info.reqstd_address = addr;
2757
2758 /* No overlay handling: just set the breakpoint. */
2759 TRY
2760 {
2761 int val;
2762
2763 bl->overlay_target_info.kind
2764 = breakpoint_kind (bl, &addr);
2765 bl->overlay_target_info.placed_address = addr;
2766 val = target_insert_breakpoint (bl->gdbarch,
2767 &bl->overlay_target_info);
2768 if (val)
2769 bp_err = GENERIC_ERROR;
2770 }
2771 CATCH (e, RETURN_MASK_ALL)
2772 {
2773 bp_err = e.error;
2774 bp_err_message = e.message;
2775 }
2776 END_CATCH
2777
2778 if (bp_err != GDB_NO_ERROR)
2779 fprintf_unfiltered (tmp_error_stream,
2780 "Overlay breakpoint %d "
2781 "failed: in ROM?\n",
2782 bl->owner->number);
2783 }
2784 }
2785 /* Shall we set a breakpoint at the VMA? */
2786 if (section_is_mapped (bl->section))
2787 {
2788 /* Yes. This overlay section is mapped into memory. */
2789 TRY
2790 {
2791 int val;
2792
2793 val = bl->owner->ops->insert_location (bl);
2794 if (val)
2795 bp_err = GENERIC_ERROR;
2796 }
2797 CATCH (e, RETURN_MASK_ALL)
2798 {
2799 bp_err = e.error;
2800 bp_err_message = e.message;
2801 }
2802 END_CATCH
2803 }
2804 else
2805 {
2806 /* No. This breakpoint will not be inserted.
2807 No error, but do not mark the bp as 'inserted'. */
2808 return 0;
2809 }
2810 }
2811
2812 if (bp_err != GDB_NO_ERROR)
2813 {
2814 /* Can't set the breakpoint. */
2815
2816 /* In some cases, we might not be able to insert a
2817 breakpoint in a shared library that has already been
2818 removed, but we have not yet processed the shlib unload
2819 event. Unfortunately, some targets that implement
2820 breakpoint insertion themselves can't tell why the
2821 breakpoint insertion failed (e.g., the remote target
2822 doesn't define error codes), so we must treat generic
2823 errors as memory errors. */
2824 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2825 && bl->loc_type == bp_loc_software_breakpoint
2826 && (solib_name_from_address (bl->pspace, bl->address)
2827 || shared_objfile_contains_address_p (bl->pspace,
2828 bl->address)))
2829 {
2830 /* See also: disable_breakpoints_in_shlibs. */
2831 bl->shlib_disabled = 1;
2832 observer_notify_breakpoint_modified (bl->owner);
2833 if (!*disabled_breaks)
2834 {
2835 fprintf_unfiltered (tmp_error_stream,
2836 "Cannot insert breakpoint %d.\n",
2837 bl->owner->number);
2838 fprintf_unfiltered (tmp_error_stream,
2839 "Temporarily disabling shared "
2840 "library breakpoints:\n");
2841 }
2842 *disabled_breaks = 1;
2843 fprintf_unfiltered (tmp_error_stream,
2844 "breakpoint #%d\n", bl->owner->number);
2845 return 0;
2846 }
2847 else
2848 {
2849 if (bl->loc_type == bp_loc_hardware_breakpoint)
2850 {
2851 *hw_breakpoint_error = 1;
2852 *hw_bp_error_explained_already = bp_err_message != NULL;
2853 fprintf_unfiltered (tmp_error_stream,
2854 "Cannot insert hardware breakpoint %d%s",
2855 bl->owner->number, bp_err_message ? ":" : ".\n");
2856 if (bp_err_message != NULL)
2857 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2858 }
2859 else
2860 {
2861 if (bp_err_message == NULL)
2862 {
2863 char *message
2864 = memory_error_message (TARGET_XFER_E_IO,
2865 bl->gdbarch, bl->address);
2866 struct cleanup *old_chain = make_cleanup (xfree, message);
2867
2868 fprintf_unfiltered (tmp_error_stream,
2869 "Cannot insert breakpoint %d.\n"
2870 "%s\n",
2871 bl->owner->number, message);
2872 do_cleanups (old_chain);
2873 }
2874 else
2875 {
2876 fprintf_unfiltered (tmp_error_stream,
2877 "Cannot insert breakpoint %d: %s\n",
2878 bl->owner->number,
2879 bp_err_message);
2880 }
2881 }
2882 return 1;
2883
2884 }
2885 }
2886 else
2887 bl->inserted = 1;
2888
2889 return 0;
2890 }
2891
2892 else if (bl->loc_type == bp_loc_hardware_watchpoint
2893 /* NOTE drow/2003-09-08: This state only exists for removing
2894 watchpoints. It's not clear that it's necessary... */
2895 && bl->owner->disposition != disp_del_at_next_stop)
2896 {
2897 int val;
2898
2899 gdb_assert (bl->owner->ops != NULL
2900 && bl->owner->ops->insert_location != NULL);
2901
2902 val = bl->owner->ops->insert_location (bl);
2903
2904 /* If trying to set a read-watchpoint, and it turns out it's not
2905 supported, try emulating one with an access watchpoint. */
2906 if (val == 1 && bl->watchpoint_type == hw_read)
2907 {
2908 struct bp_location *loc, **loc_temp;
2909
2910 /* But don't try to insert it, if there's already another
2911 hw_access location that would be considered a duplicate
2912 of this one. */
2913 ALL_BP_LOCATIONS (loc, loc_temp)
2914 if (loc != bl
2915 && loc->watchpoint_type == hw_access
2916 && watchpoint_locations_match (bl, loc))
2917 {
2918 bl->duplicate = 1;
2919 bl->inserted = 1;
2920 bl->target_info = loc->target_info;
2921 bl->watchpoint_type = hw_access;
2922 val = 0;
2923 break;
2924 }
2925
2926 if (val == 1)
2927 {
2928 bl->watchpoint_type = hw_access;
2929 val = bl->owner->ops->insert_location (bl);
2930
2931 if (val)
2932 /* Back to the original value. */
2933 bl->watchpoint_type = hw_read;
2934 }
2935 }
2936
2937 bl->inserted = (val == 0);
2938 }
2939
2940 else if (bl->owner->type == bp_catchpoint)
2941 {
2942 int val;
2943
2944 gdb_assert (bl->owner->ops != NULL
2945 && bl->owner->ops->insert_location != NULL);
2946
2947 val = bl->owner->ops->insert_location (bl);
2948 if (val)
2949 {
2950 bl->owner->enable_state = bp_disabled;
2951
2952 if (val == 1)
2953 warning (_("\
2954 Error inserting catchpoint %d: Your system does not support this type\n\
2955 of catchpoint."), bl->owner->number);
2956 else
2957 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2958 }
2959
2960 bl->inserted = (val == 0);
2961
2962 /* We've already printed an error message if there was a problem
2963 inserting this catchpoint, and we've disabled the catchpoint,
2964 so just return success. */
2965 return 0;
2966 }
2967
2968 return 0;
2969 }
2970
2971 /* This function is called when program space PSPACE is about to be
2972 deleted. It takes care of updating breakpoints to not reference
2973 PSPACE anymore. */
2974
2975 void
2976 breakpoint_program_space_exit (struct program_space *pspace)
2977 {
2978 struct breakpoint *b, *b_temp;
2979 struct bp_location *loc, **loc_temp;
2980
2981 /* Remove any breakpoint that was set through this program space. */
2982 ALL_BREAKPOINTS_SAFE (b, b_temp)
2983 {
2984 if (b->pspace == pspace)
2985 delete_breakpoint (b);
2986 }
2987
2988 /* Breakpoints set through other program spaces could have locations
2989 bound to PSPACE as well. Remove those. */
2990 ALL_BP_LOCATIONS (loc, loc_temp)
2991 {
2992 struct bp_location *tmp;
2993
2994 if (loc->pspace == pspace)
2995 {
2996 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2997 if (loc->owner->loc == loc)
2998 loc->owner->loc = loc->next;
2999 else
3000 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3001 if (tmp->next == loc)
3002 {
3003 tmp->next = loc->next;
3004 break;
3005 }
3006 }
3007 }
3008
3009 /* Now update the global location list to permanently delete the
3010 removed locations above. */
3011 update_global_location_list (UGLL_DONT_INSERT);
3012 }
3013
3014 /* Make sure all breakpoints are inserted in inferior.
3015 Throws exception on any error.
3016 A breakpoint that is already inserted won't be inserted
3017 again, so calling this function twice is safe. */
3018 void
3019 insert_breakpoints (void)
3020 {
3021 struct breakpoint *bpt;
3022
3023 ALL_BREAKPOINTS (bpt)
3024 if (is_hardware_watchpoint (bpt))
3025 {
3026 struct watchpoint *w = (struct watchpoint *) bpt;
3027
3028 update_watchpoint (w, 0 /* don't reparse. */);
3029 }
3030
3031 /* Updating watchpoints creates new locations, so update the global
3032 location list. Explicitly tell ugll to insert locations and
3033 ignore breakpoints_always_inserted_mode. */
3034 update_global_location_list (UGLL_INSERT);
3035 }
3036
3037 /* Invoke CALLBACK for each of bp_location. */
3038
3039 void
3040 iterate_over_bp_locations (walk_bp_location_callback callback)
3041 {
3042 struct bp_location *loc, **loc_tmp;
3043
3044 ALL_BP_LOCATIONS (loc, loc_tmp)
3045 {
3046 callback (loc, NULL);
3047 }
3048 }
3049
3050 /* This is used when we need to synch breakpoint conditions between GDB and the
3051 target. It is the case with deleting and disabling of breakpoints when using
3052 always-inserted mode. */
3053
3054 static void
3055 update_inserted_breakpoint_locations (void)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 int error_flag = 0;
3059 int val = 0;
3060 int disabled_breaks = 0;
3061 int hw_breakpoint_error = 0;
3062 int hw_bp_details_reported = 0;
3063
3064 struct ui_file *tmp_error_stream = mem_fileopen ();
3065 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3066
3067 /* Explicitly mark the warning -- this will only be printed if
3068 there was an error. */
3069 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3070
3071 save_current_space_and_thread ();
3072
3073 ALL_BP_LOCATIONS (bl, blp_tmp)
3074 {
3075 /* We only want to update software breakpoints and hardware
3076 breakpoints. */
3077 if (!is_breakpoint (bl->owner))
3078 continue;
3079
3080 /* We only want to update locations that are already inserted
3081 and need updating. This is to avoid unwanted insertion during
3082 deletion of breakpoints. */
3083 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3084 continue;
3085
3086 switch_to_program_space_and_thread (bl->pspace);
3087
3088 /* For targets that support global breakpoints, there's no need
3089 to select an inferior to insert breakpoint to. In fact, even
3090 if we aren't attached to any process yet, we should still
3091 insert breakpoints. */
3092 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3093 && ptid_equal (inferior_ptid, null_ptid))
3094 continue;
3095
3096 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3097 &hw_breakpoint_error, &hw_bp_details_reported);
3098 if (val)
3099 error_flag = val;
3100 }
3101
3102 if (error_flag)
3103 {
3104 target_terminal_ours_for_output ();
3105 error_stream (tmp_error_stream);
3106 }
3107
3108 do_cleanups (cleanups);
3109 }
3110
3111 /* Used when starting or continuing the program. */
3112
3113 static void
3114 insert_breakpoint_locations (void)
3115 {
3116 struct breakpoint *bpt;
3117 struct bp_location *bl, **blp_tmp;
3118 int error_flag = 0;
3119 int val = 0;
3120 int disabled_breaks = 0;
3121 int hw_breakpoint_error = 0;
3122 int hw_bp_error_explained_already = 0;
3123
3124 struct ui_file *tmp_error_stream = mem_fileopen ();
3125 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3126
3127 /* Explicitly mark the warning -- this will only be printed if
3128 there was an error. */
3129 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3130
3131 save_current_space_and_thread ();
3132
3133 ALL_BP_LOCATIONS (bl, blp_tmp)
3134 {
3135 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3136 continue;
3137
3138 /* There is no point inserting thread-specific breakpoints if
3139 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3140 has BL->OWNER always non-NULL. */
3141 if (bl->owner->thread != -1
3142 && !valid_global_thread_id (bl->owner->thread))
3143 continue;
3144
3145 switch_to_program_space_and_thread (bl->pspace);
3146
3147 /* For targets that support global breakpoints, there's no need
3148 to select an inferior to insert breakpoint to. In fact, even
3149 if we aren't attached to any process yet, we should still
3150 insert breakpoints. */
3151 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3152 && ptid_equal (inferior_ptid, null_ptid))
3153 continue;
3154
3155 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3156 &hw_breakpoint_error, &hw_bp_error_explained_already);
3157 if (val)
3158 error_flag = val;
3159 }
3160
3161 /* If we failed to insert all locations of a watchpoint, remove
3162 them, as half-inserted watchpoint is of limited use. */
3163 ALL_BREAKPOINTS (bpt)
3164 {
3165 int some_failed = 0;
3166 struct bp_location *loc;
3167
3168 if (!is_hardware_watchpoint (bpt))
3169 continue;
3170
3171 if (!breakpoint_enabled (bpt))
3172 continue;
3173
3174 if (bpt->disposition == disp_del_at_next_stop)
3175 continue;
3176
3177 for (loc = bpt->loc; loc; loc = loc->next)
3178 if (!loc->inserted && should_be_inserted (loc))
3179 {
3180 some_failed = 1;
3181 break;
3182 }
3183 if (some_failed)
3184 {
3185 for (loc = bpt->loc; loc; loc = loc->next)
3186 if (loc->inserted)
3187 remove_breakpoint (loc);
3188
3189 hw_breakpoint_error = 1;
3190 fprintf_unfiltered (tmp_error_stream,
3191 "Could not insert hardware watchpoint %d.\n",
3192 bpt->number);
3193 error_flag = -1;
3194 }
3195 }
3196
3197 if (error_flag)
3198 {
3199 /* If a hardware breakpoint or watchpoint was inserted, add a
3200 message about possibly exhausted resources. */
3201 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3202 {
3203 fprintf_unfiltered (tmp_error_stream,
3204 "Could not insert hardware breakpoints:\n\
3205 You may have requested too many hardware breakpoints/watchpoints.\n");
3206 }
3207 target_terminal_ours_for_output ();
3208 error_stream (tmp_error_stream);
3209 }
3210
3211 do_cleanups (cleanups);
3212 }
3213
3214 /* Used when the program stops.
3215 Returns zero if successful, or non-zero if there was a problem
3216 removing a breakpoint location. */
3217
3218 int
3219 remove_breakpoints (void)
3220 {
3221 struct bp_location *bl, **blp_tmp;
3222 int val = 0;
3223
3224 ALL_BP_LOCATIONS (bl, blp_tmp)
3225 {
3226 if (bl->inserted && !is_tracepoint (bl->owner))
3227 val |= remove_breakpoint (bl);
3228 }
3229 return val;
3230 }
3231
3232 /* When a thread exits, remove breakpoints that are related to
3233 that thread. */
3234
3235 static void
3236 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3237 {
3238 struct breakpoint *b, *b_tmp;
3239
3240 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3241 {
3242 if (b->thread == tp->global_num && user_breakpoint_p (b))
3243 {
3244 b->disposition = disp_del_at_next_stop;
3245
3246 printf_filtered (_("\
3247 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3248 b->number, print_thread_id (tp));
3249
3250 /* Hide it from the user. */
3251 b->number = 0;
3252 }
3253 }
3254 }
3255
3256 /* Remove breakpoints of process PID. */
3257
3258 int
3259 remove_breakpoints_pid (int pid)
3260 {
3261 struct bp_location *bl, **blp_tmp;
3262 int val;
3263 struct inferior *inf = find_inferior_pid (pid);
3264
3265 ALL_BP_LOCATIONS (bl, blp_tmp)
3266 {
3267 if (bl->pspace != inf->pspace)
3268 continue;
3269
3270 if (bl->inserted && !bl->target_info.persist)
3271 {
3272 val = remove_breakpoint (bl);
3273 if (val != 0)
3274 return val;
3275 }
3276 }
3277 return 0;
3278 }
3279
3280 int
3281 reattach_breakpoints (int pid)
3282 {
3283 struct cleanup *old_chain;
3284 struct bp_location *bl, **blp_tmp;
3285 int val;
3286 struct ui_file *tmp_error_stream;
3287 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3288 struct inferior *inf;
3289 struct thread_info *tp;
3290
3291 tp = any_live_thread_of_process (pid);
3292 if (tp == NULL)
3293 return 1;
3294
3295 inf = find_inferior_pid (pid);
3296 old_chain = save_inferior_ptid ();
3297
3298 inferior_ptid = tp->ptid;
3299
3300 tmp_error_stream = mem_fileopen ();
3301 make_cleanup_ui_file_delete (tmp_error_stream);
3302
3303 ALL_BP_LOCATIONS (bl, blp_tmp)
3304 {
3305 if (bl->pspace != inf->pspace)
3306 continue;
3307
3308 if (bl->inserted)
3309 {
3310 bl->inserted = 0;
3311 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3312 if (val != 0)
3313 {
3314 do_cleanups (old_chain);
3315 return val;
3316 }
3317 }
3318 }
3319 do_cleanups (old_chain);
3320 return 0;
3321 }
3322
3323 static int internal_breakpoint_number = -1;
3324
3325 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3326 If INTERNAL is non-zero, the breakpoint number will be populated
3327 from internal_breakpoint_number and that variable decremented.
3328 Otherwise the breakpoint number will be populated from
3329 breakpoint_count and that value incremented. Internal breakpoints
3330 do not set the internal var bpnum. */
3331 static void
3332 set_breakpoint_number (int internal, struct breakpoint *b)
3333 {
3334 if (internal)
3335 b->number = internal_breakpoint_number--;
3336 else
3337 {
3338 set_breakpoint_count (breakpoint_count + 1);
3339 b->number = breakpoint_count;
3340 }
3341 }
3342
3343 static struct breakpoint *
3344 create_internal_breakpoint (struct gdbarch *gdbarch,
3345 CORE_ADDR address, enum bptype type,
3346 const struct breakpoint_ops *ops)
3347 {
3348 struct symtab_and_line sal;
3349 struct breakpoint *b;
3350
3351 init_sal (&sal); /* Initialize to zeroes. */
3352
3353 sal.pc = address;
3354 sal.section = find_pc_overlay (sal.pc);
3355 sal.pspace = current_program_space;
3356
3357 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3358 b->number = internal_breakpoint_number--;
3359 b->disposition = disp_donttouch;
3360
3361 return b;
3362 }
3363
3364 static const char *const longjmp_names[] =
3365 {
3366 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3367 };
3368 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3369
3370 /* Per-objfile data private to breakpoint.c. */
3371 struct breakpoint_objfile_data
3372 {
3373 /* Minimal symbol for "_ovly_debug_event" (if any). */
3374 struct bound_minimal_symbol overlay_msym;
3375
3376 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3377 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3378
3379 /* True if we have looked for longjmp probes. */
3380 int longjmp_searched;
3381
3382 /* SystemTap probe points for longjmp (if any). */
3383 VEC (probe_p) *longjmp_probes;
3384
3385 /* Minimal symbol for "std::terminate()" (if any). */
3386 struct bound_minimal_symbol terminate_msym;
3387
3388 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3389 struct bound_minimal_symbol exception_msym;
3390
3391 /* True if we have looked for exception probes. */
3392 int exception_searched;
3393
3394 /* SystemTap probe points for unwinding (if any). */
3395 VEC (probe_p) *exception_probes;
3396 };
3397
3398 static const struct objfile_data *breakpoint_objfile_key;
3399
3400 /* Minimal symbol not found sentinel. */
3401 static struct minimal_symbol msym_not_found;
3402
3403 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3404
3405 static int
3406 msym_not_found_p (const struct minimal_symbol *msym)
3407 {
3408 return msym == &msym_not_found;
3409 }
3410
3411 /* Return per-objfile data needed by breakpoint.c.
3412 Allocate the data if necessary. */
3413
3414 static struct breakpoint_objfile_data *
3415 get_breakpoint_objfile_data (struct objfile *objfile)
3416 {
3417 struct breakpoint_objfile_data *bp_objfile_data;
3418
3419 bp_objfile_data = ((struct breakpoint_objfile_data *)
3420 objfile_data (objfile, breakpoint_objfile_key));
3421 if (bp_objfile_data == NULL)
3422 {
3423 bp_objfile_data =
3424 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3425
3426 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3427 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3428 }
3429 return bp_objfile_data;
3430 }
3431
3432 static void
3433 free_breakpoint_probes (struct objfile *obj, void *data)
3434 {
3435 struct breakpoint_objfile_data *bp_objfile_data
3436 = (struct breakpoint_objfile_data *) data;
3437
3438 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3439 VEC_free (probe_p, bp_objfile_data->exception_probes);
3440 }
3441
3442 static void
3443 create_overlay_event_breakpoint (void)
3444 {
3445 struct objfile *objfile;
3446 const char *const func_name = "_ovly_debug_event";
3447
3448 ALL_OBJFILES (objfile)
3449 {
3450 struct breakpoint *b;
3451 struct breakpoint_objfile_data *bp_objfile_data;
3452 CORE_ADDR addr;
3453 struct explicit_location explicit_loc;
3454
3455 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3456
3457 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3458 continue;
3459
3460 if (bp_objfile_data->overlay_msym.minsym == NULL)
3461 {
3462 struct bound_minimal_symbol m;
3463
3464 m = lookup_minimal_symbol_text (func_name, objfile);
3465 if (m.minsym == NULL)
3466 {
3467 /* Avoid future lookups in this objfile. */
3468 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3469 continue;
3470 }
3471 bp_objfile_data->overlay_msym = m;
3472 }
3473
3474 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3475 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3476 bp_overlay_event,
3477 &internal_breakpoint_ops);
3478 initialize_explicit_location (&explicit_loc);
3479 explicit_loc.function_name = ASTRDUP (func_name);
3480 b->location = new_explicit_location (&explicit_loc);
3481
3482 if (overlay_debugging == ovly_auto)
3483 {
3484 b->enable_state = bp_enabled;
3485 overlay_events_enabled = 1;
3486 }
3487 else
3488 {
3489 b->enable_state = bp_disabled;
3490 overlay_events_enabled = 0;
3491 }
3492 }
3493 }
3494
3495 static void
3496 create_longjmp_master_breakpoint (void)
3497 {
3498 struct program_space *pspace;
3499 struct cleanup *old_chain;
3500
3501 old_chain = save_current_program_space ();
3502
3503 ALL_PSPACES (pspace)
3504 {
3505 struct objfile *objfile;
3506
3507 set_current_program_space (pspace);
3508
3509 ALL_OBJFILES (objfile)
3510 {
3511 int i;
3512 struct gdbarch *gdbarch;
3513 struct breakpoint_objfile_data *bp_objfile_data;
3514
3515 gdbarch = get_objfile_arch (objfile);
3516
3517 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3518
3519 if (!bp_objfile_data->longjmp_searched)
3520 {
3521 VEC (probe_p) *ret;
3522
3523 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3524 if (ret != NULL)
3525 {
3526 /* We are only interested in checking one element. */
3527 struct probe *p = VEC_index (probe_p, ret, 0);
3528
3529 if (!can_evaluate_probe_arguments (p))
3530 {
3531 /* We cannot use the probe interface here, because it does
3532 not know how to evaluate arguments. */
3533 VEC_free (probe_p, ret);
3534 ret = NULL;
3535 }
3536 }
3537 bp_objfile_data->longjmp_probes = ret;
3538 bp_objfile_data->longjmp_searched = 1;
3539 }
3540
3541 if (bp_objfile_data->longjmp_probes != NULL)
3542 {
3543 int i;
3544 struct probe *probe;
3545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3546
3547 for (i = 0;
3548 VEC_iterate (probe_p,
3549 bp_objfile_data->longjmp_probes,
3550 i, probe);
3551 ++i)
3552 {
3553 struct breakpoint *b;
3554
3555 b = create_internal_breakpoint (gdbarch,
3556 get_probe_address (probe,
3557 objfile),
3558 bp_longjmp_master,
3559 &internal_breakpoint_ops);
3560 b->location
3561 = new_probe_location ("-probe-stap libc:longjmp");
3562 b->enable_state = bp_disabled;
3563 }
3564
3565 continue;
3566 }
3567
3568 if (!gdbarch_get_longjmp_target_p (gdbarch))
3569 continue;
3570
3571 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3572 {
3573 struct breakpoint *b;
3574 const char *func_name;
3575 CORE_ADDR addr;
3576 struct explicit_location explicit_loc;
3577
3578 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3579 continue;
3580
3581 func_name = longjmp_names[i];
3582 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3583 {
3584 struct bound_minimal_symbol m;
3585
3586 m = lookup_minimal_symbol_text (func_name, objfile);
3587 if (m.minsym == NULL)
3588 {
3589 /* Prevent future lookups in this objfile. */
3590 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3591 continue;
3592 }
3593 bp_objfile_data->longjmp_msym[i] = m;
3594 }
3595
3596 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3597 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3598 &internal_breakpoint_ops);
3599 initialize_explicit_location (&explicit_loc);
3600 explicit_loc.function_name = ASTRDUP (func_name);
3601 b->location = new_explicit_location (&explicit_loc);
3602 b->enable_state = bp_disabled;
3603 }
3604 }
3605 }
3606
3607 do_cleanups (old_chain);
3608 }
3609
3610 /* Create a master std::terminate breakpoint. */
3611 static void
3612 create_std_terminate_master_breakpoint (void)
3613 {
3614 struct program_space *pspace;
3615 struct cleanup *old_chain;
3616 const char *const func_name = "std::terminate()";
3617
3618 old_chain = save_current_program_space ();
3619
3620 ALL_PSPACES (pspace)
3621 {
3622 struct objfile *objfile;
3623 CORE_ADDR addr;
3624
3625 set_current_program_space (pspace);
3626
3627 ALL_OBJFILES (objfile)
3628 {
3629 struct breakpoint *b;
3630 struct breakpoint_objfile_data *bp_objfile_data;
3631 struct explicit_location explicit_loc;
3632
3633 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3634
3635 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3636 continue;
3637
3638 if (bp_objfile_data->terminate_msym.minsym == NULL)
3639 {
3640 struct bound_minimal_symbol m;
3641
3642 m = lookup_minimal_symbol (func_name, NULL, objfile);
3643 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3644 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3645 {
3646 /* Prevent future lookups in this objfile. */
3647 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3648 continue;
3649 }
3650 bp_objfile_data->terminate_msym = m;
3651 }
3652
3653 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3654 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3655 bp_std_terminate_master,
3656 &internal_breakpoint_ops);
3657 initialize_explicit_location (&explicit_loc);
3658 explicit_loc.function_name = ASTRDUP (func_name);
3659 b->location = new_explicit_location (&explicit_loc);
3660 b->enable_state = bp_disabled;
3661 }
3662 }
3663
3664 do_cleanups (old_chain);
3665 }
3666
3667 /* Install a master breakpoint on the unwinder's debug hook. */
3668
3669 static void
3670 create_exception_master_breakpoint (void)
3671 {
3672 struct objfile *objfile;
3673 const char *const func_name = "_Unwind_DebugHook";
3674
3675 ALL_OBJFILES (objfile)
3676 {
3677 struct breakpoint *b;
3678 struct gdbarch *gdbarch;
3679 struct breakpoint_objfile_data *bp_objfile_data;
3680 CORE_ADDR addr;
3681 struct explicit_location explicit_loc;
3682
3683 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3684
3685 /* We prefer the SystemTap probe point if it exists. */
3686 if (!bp_objfile_data->exception_searched)
3687 {
3688 VEC (probe_p) *ret;
3689
3690 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3691
3692 if (ret != NULL)
3693 {
3694 /* We are only interested in checking one element. */
3695 struct probe *p = VEC_index (probe_p, ret, 0);
3696
3697 if (!can_evaluate_probe_arguments (p))
3698 {
3699 /* We cannot use the probe interface here, because it does
3700 not know how to evaluate arguments. */
3701 VEC_free (probe_p, ret);
3702 ret = NULL;
3703 }
3704 }
3705 bp_objfile_data->exception_probes = ret;
3706 bp_objfile_data->exception_searched = 1;
3707 }
3708
3709 if (bp_objfile_data->exception_probes != NULL)
3710 {
3711 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3712 int i;
3713 struct probe *probe;
3714
3715 for (i = 0;
3716 VEC_iterate (probe_p,
3717 bp_objfile_data->exception_probes,
3718 i, probe);
3719 ++i)
3720 {
3721 struct breakpoint *b;
3722
3723 b = create_internal_breakpoint (gdbarch,
3724 get_probe_address (probe,
3725 objfile),
3726 bp_exception_master,
3727 &internal_breakpoint_ops);
3728 b->location
3729 = new_probe_location ("-probe-stap libgcc:unwind");
3730 b->enable_state = bp_disabled;
3731 }
3732
3733 continue;
3734 }
3735
3736 /* Otherwise, try the hook function. */
3737
3738 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3739 continue;
3740
3741 gdbarch = get_objfile_arch (objfile);
3742
3743 if (bp_objfile_data->exception_msym.minsym == NULL)
3744 {
3745 struct bound_minimal_symbol debug_hook;
3746
3747 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3748 if (debug_hook.minsym == NULL)
3749 {
3750 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3751 continue;
3752 }
3753
3754 bp_objfile_data->exception_msym = debug_hook;
3755 }
3756
3757 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3758 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3759 &current_target);
3760 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3761 &internal_breakpoint_ops);
3762 initialize_explicit_location (&explicit_loc);
3763 explicit_loc.function_name = ASTRDUP (func_name);
3764 b->location = new_explicit_location (&explicit_loc);
3765 b->enable_state = bp_disabled;
3766 }
3767 }
3768
3769 /* Does B have a location spec? */
3770
3771 static int
3772 breakpoint_event_location_empty_p (const struct breakpoint *b)
3773 {
3774 return b->location != NULL && event_location_empty_p (b->location);
3775 }
3776
3777 void
3778 update_breakpoints_after_exec (void)
3779 {
3780 struct breakpoint *b, *b_tmp;
3781 struct bp_location *bploc, **bplocp_tmp;
3782
3783 /* We're about to delete breakpoints from GDB's lists. If the
3784 INSERTED flag is true, GDB will try to lift the breakpoints by
3785 writing the breakpoints' "shadow contents" back into memory. The
3786 "shadow contents" are NOT valid after an exec, so GDB should not
3787 do that. Instead, the target is responsible from marking
3788 breakpoints out as soon as it detects an exec. We don't do that
3789 here instead, because there may be other attempts to delete
3790 breakpoints after detecting an exec and before reaching here. */
3791 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3792 if (bploc->pspace == current_program_space)
3793 gdb_assert (!bploc->inserted);
3794
3795 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3796 {
3797 if (b->pspace != current_program_space)
3798 continue;
3799
3800 /* Solib breakpoints must be explicitly reset after an exec(). */
3801 if (b->type == bp_shlib_event)
3802 {
3803 delete_breakpoint (b);
3804 continue;
3805 }
3806
3807 /* JIT breakpoints must be explicitly reset after an exec(). */
3808 if (b->type == bp_jit_event)
3809 {
3810 delete_breakpoint (b);
3811 continue;
3812 }
3813
3814 /* Thread event breakpoints must be set anew after an exec(),
3815 as must overlay event and longjmp master breakpoints. */
3816 if (b->type == bp_thread_event || b->type == bp_overlay_event
3817 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3818 || b->type == bp_exception_master)
3819 {
3820 delete_breakpoint (b);
3821 continue;
3822 }
3823
3824 /* Step-resume breakpoints are meaningless after an exec(). */
3825 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3826 {
3827 delete_breakpoint (b);
3828 continue;
3829 }
3830
3831 /* Just like single-step breakpoints. */
3832 if (b->type == bp_single_step)
3833 {
3834 delete_breakpoint (b);
3835 continue;
3836 }
3837
3838 /* Longjmp and longjmp-resume breakpoints are also meaningless
3839 after an exec. */
3840 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3841 || b->type == bp_longjmp_call_dummy
3842 || b->type == bp_exception || b->type == bp_exception_resume)
3843 {
3844 delete_breakpoint (b);
3845 continue;
3846 }
3847
3848 if (b->type == bp_catchpoint)
3849 {
3850 /* For now, none of the bp_catchpoint breakpoints need to
3851 do anything at this point. In the future, if some of
3852 the catchpoints need to something, we will need to add
3853 a new method, and call this method from here. */
3854 continue;
3855 }
3856
3857 /* bp_finish is a special case. The only way we ought to be able
3858 to see one of these when an exec() has happened, is if the user
3859 caught a vfork, and then said "finish". Ordinarily a finish just
3860 carries them to the call-site of the current callee, by setting
3861 a temporary bp there and resuming. But in this case, the finish
3862 will carry them entirely through the vfork & exec.
3863
3864 We don't want to allow a bp_finish to remain inserted now. But
3865 we can't safely delete it, 'cause finish_command has a handle to
3866 the bp on a bpstat, and will later want to delete it. There's a
3867 chance (and I've seen it happen) that if we delete the bp_finish
3868 here, that its storage will get reused by the time finish_command
3869 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3870 We really must allow finish_command to delete a bp_finish.
3871
3872 In the absence of a general solution for the "how do we know
3873 it's safe to delete something others may have handles to?"
3874 problem, what we'll do here is just uninsert the bp_finish, and
3875 let finish_command delete it.
3876
3877 (We know the bp_finish is "doomed" in the sense that it's
3878 momentary, and will be deleted as soon as finish_command sees
3879 the inferior stopped. So it doesn't matter that the bp's
3880 address is probably bogus in the new a.out, unlike e.g., the
3881 solib breakpoints.) */
3882
3883 if (b->type == bp_finish)
3884 {
3885 continue;
3886 }
3887
3888 /* Without a symbolic address, we have little hope of the
3889 pre-exec() address meaning the same thing in the post-exec()
3890 a.out. */
3891 if (breakpoint_event_location_empty_p (b))
3892 {
3893 delete_breakpoint (b);
3894 continue;
3895 }
3896 }
3897 }
3898
3899 int
3900 detach_breakpoints (ptid_t ptid)
3901 {
3902 struct bp_location *bl, **blp_tmp;
3903 int val = 0;
3904 struct cleanup *old_chain = save_inferior_ptid ();
3905 struct inferior *inf = current_inferior ();
3906
3907 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3908 error (_("Cannot detach breakpoints of inferior_ptid"));
3909
3910 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3911 inferior_ptid = ptid;
3912 ALL_BP_LOCATIONS (bl, blp_tmp)
3913 {
3914 if (bl->pspace != inf->pspace)
3915 continue;
3916
3917 /* This function must physically remove breakpoints locations
3918 from the specified ptid, without modifying the breakpoint
3919 package's state. Locations of type bp_loc_other are only
3920 maintained at GDB side. So, there is no need to remove
3921 these bp_loc_other locations. Moreover, removing these
3922 would modify the breakpoint package's state. */
3923 if (bl->loc_type == bp_loc_other)
3924 continue;
3925
3926 if (bl->inserted)
3927 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3928 }
3929
3930 do_cleanups (old_chain);
3931 return val;
3932 }
3933
3934 /* Remove the breakpoint location BL from the current address space.
3935 Note that this is used to detach breakpoints from a child fork.
3936 When we get here, the child isn't in the inferior list, and neither
3937 do we have objects to represent its address space --- we should
3938 *not* look at bl->pspace->aspace here. */
3939
3940 static int
3941 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3942 {
3943 int val;
3944
3945 /* BL is never in moribund_locations by our callers. */
3946 gdb_assert (bl->owner != NULL);
3947
3948 /* The type of none suggests that owner is actually deleted.
3949 This should not ever happen. */
3950 gdb_assert (bl->owner->type != bp_none);
3951
3952 if (bl->loc_type == bp_loc_software_breakpoint
3953 || bl->loc_type == bp_loc_hardware_breakpoint)
3954 {
3955 /* "Normal" instruction breakpoint: either the standard
3956 trap-instruction bp (bp_breakpoint), or a
3957 bp_hardware_breakpoint. */
3958
3959 /* First check to see if we have to handle an overlay. */
3960 if (overlay_debugging == ovly_off
3961 || bl->section == NULL
3962 || !(section_is_overlay (bl->section)))
3963 {
3964 /* No overlay handling: just remove the breakpoint. */
3965
3966 /* If we're trying to uninsert a memory breakpoint that we
3967 know is set in a dynamic object that is marked
3968 shlib_disabled, then either the dynamic object was
3969 removed with "remove-symbol-file" or with
3970 "nosharedlibrary". In the former case, we don't know
3971 whether another dynamic object might have loaded over the
3972 breakpoint's address -- the user might well let us know
3973 about it next with add-symbol-file (the whole point of
3974 add-symbol-file is letting the user manually maintain a
3975 list of dynamically loaded objects). If we have the
3976 breakpoint's shadow memory, that is, this is a software
3977 breakpoint managed by GDB, check whether the breakpoint
3978 is still inserted in memory, to avoid overwriting wrong
3979 code with stale saved shadow contents. Note that HW
3980 breakpoints don't have shadow memory, as they're
3981 implemented using a mechanism that is not dependent on
3982 being able to modify the target's memory, and as such
3983 they should always be removed. */
3984 if (bl->shlib_disabled
3985 && bl->target_info.shadow_len != 0
3986 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3987 val = 0;
3988 else
3989 val = bl->owner->ops->remove_location (bl, reason);
3990 }
3991 else
3992 {
3993 /* This breakpoint is in an overlay section.
3994 Did we set a breakpoint at the LMA? */
3995 if (!overlay_events_enabled)
3996 {
3997 /* Yes -- overlay event support is not active, so we
3998 should have set a breakpoint at the LMA. Remove it.
3999 */
4000 /* Ignore any failures: if the LMA is in ROM, we will
4001 have already warned when we failed to insert it. */
4002 if (bl->loc_type == bp_loc_hardware_breakpoint)
4003 target_remove_hw_breakpoint (bl->gdbarch,
4004 &bl->overlay_target_info);
4005 else
4006 target_remove_breakpoint (bl->gdbarch,
4007 &bl->overlay_target_info,
4008 reason);
4009 }
4010 /* Did we set a breakpoint at the VMA?
4011 If so, we will have marked the breakpoint 'inserted'. */
4012 if (bl->inserted)
4013 {
4014 /* Yes -- remove it. Previously we did not bother to
4015 remove the breakpoint if the section had been
4016 unmapped, but let's not rely on that being safe. We
4017 don't know what the overlay manager might do. */
4018
4019 /* However, we should remove *software* breakpoints only
4020 if the section is still mapped, or else we overwrite
4021 wrong code with the saved shadow contents. */
4022 if (bl->loc_type == bp_loc_hardware_breakpoint
4023 || section_is_mapped (bl->section))
4024 val = bl->owner->ops->remove_location (bl, reason);
4025 else
4026 val = 0;
4027 }
4028 else
4029 {
4030 /* No -- not inserted, so no need to remove. No error. */
4031 val = 0;
4032 }
4033 }
4034
4035 /* In some cases, we might not be able to remove a breakpoint in
4036 a shared library that has already been removed, but we have
4037 not yet processed the shlib unload event. Similarly for an
4038 unloaded add-symbol-file object - the user might not yet have
4039 had the chance to remove-symbol-file it. shlib_disabled will
4040 be set if the library/object has already been removed, but
4041 the breakpoint hasn't been uninserted yet, e.g., after
4042 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4043 always-inserted mode. */
4044 if (val
4045 && (bl->loc_type == bp_loc_software_breakpoint
4046 && (bl->shlib_disabled
4047 || solib_name_from_address (bl->pspace, bl->address)
4048 || shared_objfile_contains_address_p (bl->pspace,
4049 bl->address))))
4050 val = 0;
4051
4052 if (val)
4053 return val;
4054 bl->inserted = (reason == DETACH_BREAKPOINT);
4055 }
4056 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4057 {
4058 gdb_assert (bl->owner->ops != NULL
4059 && bl->owner->ops->remove_location != NULL);
4060
4061 bl->inserted = (reason == DETACH_BREAKPOINT);
4062 bl->owner->ops->remove_location (bl, reason);
4063
4064 /* Failure to remove any of the hardware watchpoints comes here. */
4065 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4066 warning (_("Could not remove hardware watchpoint %d."),
4067 bl->owner->number);
4068 }
4069 else if (bl->owner->type == bp_catchpoint
4070 && breakpoint_enabled (bl->owner)
4071 && !bl->duplicate)
4072 {
4073 gdb_assert (bl->owner->ops != NULL
4074 && bl->owner->ops->remove_location != NULL);
4075
4076 val = bl->owner->ops->remove_location (bl, reason);
4077 if (val)
4078 return val;
4079
4080 bl->inserted = (reason == DETACH_BREAKPOINT);
4081 }
4082
4083 return 0;
4084 }
4085
4086 static int
4087 remove_breakpoint (struct bp_location *bl)
4088 {
4089 int ret;
4090 struct cleanup *old_chain;
4091
4092 /* BL is never in moribund_locations by our callers. */
4093 gdb_assert (bl->owner != NULL);
4094
4095 /* The type of none suggests that owner is actually deleted.
4096 This should not ever happen. */
4097 gdb_assert (bl->owner->type != bp_none);
4098
4099 old_chain = save_current_space_and_thread ();
4100
4101 switch_to_program_space_and_thread (bl->pspace);
4102
4103 ret = remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4104
4105 do_cleanups (old_chain);
4106 return ret;
4107 }
4108
4109 /* Clear the "inserted" flag in all breakpoints. */
4110
4111 void
4112 mark_breakpoints_out (void)
4113 {
4114 struct bp_location *bl, **blp_tmp;
4115
4116 ALL_BP_LOCATIONS (bl, blp_tmp)
4117 if (bl->pspace == current_program_space)
4118 bl->inserted = 0;
4119 }
4120
4121 /* Clear the "inserted" flag in all breakpoints and delete any
4122 breakpoints which should go away between runs of the program.
4123
4124 Plus other such housekeeping that has to be done for breakpoints
4125 between runs.
4126
4127 Note: this function gets called at the end of a run (by
4128 generic_mourn_inferior) and when a run begins (by
4129 init_wait_for_inferior). */
4130
4131
4132
4133 void
4134 breakpoint_init_inferior (enum inf_context context)
4135 {
4136 struct breakpoint *b, *b_tmp;
4137 struct bp_location *bl;
4138 int ix;
4139 struct program_space *pspace = current_program_space;
4140
4141 /* If breakpoint locations are shared across processes, then there's
4142 nothing to do. */
4143 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4144 return;
4145
4146 mark_breakpoints_out ();
4147
4148 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4149 {
4150 if (b->loc && b->loc->pspace != pspace)
4151 continue;
4152
4153 switch (b->type)
4154 {
4155 case bp_call_dummy:
4156 case bp_longjmp_call_dummy:
4157
4158 /* If the call dummy breakpoint is at the entry point it will
4159 cause problems when the inferior is rerun, so we better get
4160 rid of it. */
4161
4162 case bp_watchpoint_scope:
4163
4164 /* Also get rid of scope breakpoints. */
4165
4166 case bp_shlib_event:
4167
4168 /* Also remove solib event breakpoints. Their addresses may
4169 have changed since the last time we ran the program.
4170 Actually we may now be debugging against different target;
4171 and so the solib backend that installed this breakpoint may
4172 not be used in by the target. E.g.,
4173
4174 (gdb) file prog-linux
4175 (gdb) run # native linux target
4176 ...
4177 (gdb) kill
4178 (gdb) file prog-win.exe
4179 (gdb) tar rem :9999 # remote Windows gdbserver.
4180 */
4181
4182 case bp_step_resume:
4183
4184 /* Also remove step-resume breakpoints. */
4185
4186 case bp_single_step:
4187
4188 /* Also remove single-step breakpoints. */
4189
4190 delete_breakpoint (b);
4191 break;
4192
4193 case bp_watchpoint:
4194 case bp_hardware_watchpoint:
4195 case bp_read_watchpoint:
4196 case bp_access_watchpoint:
4197 {
4198 struct watchpoint *w = (struct watchpoint *) b;
4199
4200 /* Likewise for watchpoints on local expressions. */
4201 if (w->exp_valid_block != NULL)
4202 delete_breakpoint (b);
4203 else
4204 {
4205 /* Get rid of existing locations, which are no longer
4206 valid. New ones will be created in
4207 update_watchpoint, when the inferior is restarted.
4208 The next update_global_location_list call will
4209 garbage collect them. */
4210 b->loc = NULL;
4211
4212 if (context == inf_starting)
4213 {
4214 /* Reset val field to force reread of starting value in
4215 insert_breakpoints. */
4216 if (w->val)
4217 value_free (w->val);
4218 w->val = NULL;
4219 w->val_valid = 0;
4220 }
4221 }
4222 }
4223 break;
4224 default:
4225 break;
4226 }
4227 }
4228
4229 /* Get rid of the moribund locations. */
4230 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4231 decref_bp_location (&bl);
4232 VEC_free (bp_location_p, moribund_locations);
4233 }
4234
4235 /* These functions concern about actual breakpoints inserted in the
4236 target --- to e.g. check if we need to do decr_pc adjustment or if
4237 we need to hop over the bkpt --- so we check for address space
4238 match, not program space. */
4239
4240 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4241 exists at PC. It returns ordinary_breakpoint_here if it's an
4242 ordinary breakpoint, or permanent_breakpoint_here if it's a
4243 permanent breakpoint.
4244 - When continuing from a location with an ordinary breakpoint, we
4245 actually single step once before calling insert_breakpoints.
4246 - When continuing from a location with a permanent breakpoint, we
4247 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4248 the target, to advance the PC past the breakpoint. */
4249
4250 enum breakpoint_here
4251 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4252 {
4253 struct bp_location *bl, **blp_tmp;
4254 int any_breakpoint_here = 0;
4255
4256 ALL_BP_LOCATIONS (bl, blp_tmp)
4257 {
4258 if (bl->loc_type != bp_loc_software_breakpoint
4259 && bl->loc_type != bp_loc_hardware_breakpoint)
4260 continue;
4261
4262 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4263 if ((breakpoint_enabled (bl->owner)
4264 || bl->permanent)
4265 && breakpoint_location_address_match (bl, aspace, pc))
4266 {
4267 if (overlay_debugging
4268 && section_is_overlay (bl->section)
4269 && !section_is_mapped (bl->section))
4270 continue; /* unmapped overlay -- can't be a match */
4271 else if (bl->permanent)
4272 return permanent_breakpoint_here;
4273 else
4274 any_breakpoint_here = 1;
4275 }
4276 }
4277
4278 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4279 }
4280
4281 /* See breakpoint.h. */
4282
4283 int
4284 breakpoint_in_range_p (struct address_space *aspace,
4285 CORE_ADDR addr, ULONGEST len)
4286 {
4287 struct bp_location *bl, **blp_tmp;
4288
4289 ALL_BP_LOCATIONS (bl, blp_tmp)
4290 {
4291 if (bl->loc_type != bp_loc_software_breakpoint
4292 && bl->loc_type != bp_loc_hardware_breakpoint)
4293 continue;
4294
4295 if ((breakpoint_enabled (bl->owner)
4296 || bl->permanent)
4297 && breakpoint_location_address_range_overlap (bl, aspace,
4298 addr, len))
4299 {
4300 if (overlay_debugging
4301 && section_is_overlay (bl->section)
4302 && !section_is_mapped (bl->section))
4303 {
4304 /* Unmapped overlay -- can't be a match. */
4305 continue;
4306 }
4307
4308 return 1;
4309 }
4310 }
4311
4312 return 0;
4313 }
4314
4315 /* Return true if there's a moribund breakpoint at PC. */
4316
4317 int
4318 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4319 {
4320 struct bp_location *loc;
4321 int ix;
4322
4323 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4324 if (breakpoint_location_address_match (loc, aspace, pc))
4325 return 1;
4326
4327 return 0;
4328 }
4329
4330 /* Returns non-zero iff BL is inserted at PC, in address space
4331 ASPACE. */
4332
4333 static int
4334 bp_location_inserted_here_p (struct bp_location *bl,
4335 struct address_space *aspace, CORE_ADDR pc)
4336 {
4337 if (bl->inserted
4338 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4339 aspace, pc))
4340 {
4341 if (overlay_debugging
4342 && section_is_overlay (bl->section)
4343 && !section_is_mapped (bl->section))
4344 return 0; /* unmapped overlay -- can't be a match */
4345 else
4346 return 1;
4347 }
4348 return 0;
4349 }
4350
4351 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4352
4353 int
4354 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4355 {
4356 struct bp_location **blp, **blp_tmp = NULL;
4357
4358 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4359 {
4360 struct bp_location *bl = *blp;
4361
4362 if (bl->loc_type != bp_loc_software_breakpoint
4363 && bl->loc_type != bp_loc_hardware_breakpoint)
4364 continue;
4365
4366 if (bp_location_inserted_here_p (bl, aspace, pc))
4367 return 1;
4368 }
4369 return 0;
4370 }
4371
4372 /* This function returns non-zero iff there is a software breakpoint
4373 inserted at PC. */
4374
4375 int
4376 software_breakpoint_inserted_here_p (struct address_space *aspace,
4377 CORE_ADDR pc)
4378 {
4379 struct bp_location **blp, **blp_tmp = NULL;
4380
4381 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4382 {
4383 struct bp_location *bl = *blp;
4384
4385 if (bl->loc_type != bp_loc_software_breakpoint)
4386 continue;
4387
4388 if (bp_location_inserted_here_p (bl, aspace, pc))
4389 return 1;
4390 }
4391
4392 return 0;
4393 }
4394
4395 /* See breakpoint.h. */
4396
4397 int
4398 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4399 CORE_ADDR pc)
4400 {
4401 struct bp_location **blp, **blp_tmp = NULL;
4402
4403 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4404 {
4405 struct bp_location *bl = *blp;
4406
4407 if (bl->loc_type != bp_loc_hardware_breakpoint)
4408 continue;
4409
4410 if (bp_location_inserted_here_p (bl, aspace, pc))
4411 return 1;
4412 }
4413
4414 return 0;
4415 }
4416
4417 int
4418 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4419 CORE_ADDR addr, ULONGEST len)
4420 {
4421 struct breakpoint *bpt;
4422
4423 ALL_BREAKPOINTS (bpt)
4424 {
4425 struct bp_location *loc;
4426
4427 if (bpt->type != bp_hardware_watchpoint
4428 && bpt->type != bp_access_watchpoint)
4429 continue;
4430
4431 if (!breakpoint_enabled (bpt))
4432 continue;
4433
4434 for (loc = bpt->loc; loc; loc = loc->next)
4435 if (loc->pspace->aspace == aspace && loc->inserted)
4436 {
4437 CORE_ADDR l, h;
4438
4439 /* Check for intersection. */
4440 l = std::max<CORE_ADDR> (loc->address, addr);
4441 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4442 if (l < h)
4443 return 1;
4444 }
4445 }
4446 return 0;
4447 }
4448 \f
4449
4450 /* bpstat stuff. External routines' interfaces are documented
4451 in breakpoint.h. */
4452
4453 int
4454 is_catchpoint (struct breakpoint *ep)
4455 {
4456 return (ep->type == bp_catchpoint);
4457 }
4458
4459 /* Frees any storage that is part of a bpstat. Does not walk the
4460 'next' chain. */
4461
4462 static void
4463 bpstat_free (bpstat bs)
4464 {
4465 if (bs->old_val != NULL)
4466 value_free (bs->old_val);
4467 decref_counted_command_line (&bs->commands);
4468 decref_bp_location (&bs->bp_location_at);
4469 xfree (bs);
4470 }
4471
4472 /* Clear a bpstat so that it says we are not at any breakpoint.
4473 Also free any storage that is part of a bpstat. */
4474
4475 void
4476 bpstat_clear (bpstat *bsp)
4477 {
4478 bpstat p;
4479 bpstat q;
4480
4481 if (bsp == 0)
4482 return;
4483 p = *bsp;
4484 while (p != NULL)
4485 {
4486 q = p->next;
4487 bpstat_free (p);
4488 p = q;
4489 }
4490 *bsp = NULL;
4491 }
4492
4493 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4494 is part of the bpstat is copied as well. */
4495
4496 bpstat
4497 bpstat_copy (bpstat bs)
4498 {
4499 bpstat p = NULL;
4500 bpstat tmp;
4501 bpstat retval = NULL;
4502
4503 if (bs == NULL)
4504 return bs;
4505
4506 for (; bs != NULL; bs = bs->next)
4507 {
4508 tmp = (bpstat) xmalloc (sizeof (*tmp));
4509 memcpy (tmp, bs, sizeof (*tmp));
4510 incref_counted_command_line (tmp->commands);
4511 incref_bp_location (tmp->bp_location_at);
4512 if (bs->old_val != NULL)
4513 {
4514 tmp->old_val = value_copy (bs->old_val);
4515 release_value (tmp->old_val);
4516 }
4517
4518 if (p == NULL)
4519 /* This is the first thing in the chain. */
4520 retval = tmp;
4521 else
4522 p->next = tmp;
4523 p = tmp;
4524 }
4525 p->next = NULL;
4526 return retval;
4527 }
4528
4529 /* Find the bpstat associated with this breakpoint. */
4530
4531 bpstat
4532 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4533 {
4534 if (bsp == NULL)
4535 return NULL;
4536
4537 for (; bsp != NULL; bsp = bsp->next)
4538 {
4539 if (bsp->breakpoint_at == breakpoint)
4540 return bsp;
4541 }
4542 return NULL;
4543 }
4544
4545 /* See breakpoint.h. */
4546
4547 int
4548 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4549 {
4550 for (; bsp != NULL; bsp = bsp->next)
4551 {
4552 if (bsp->breakpoint_at == NULL)
4553 {
4554 /* A moribund location can never explain a signal other than
4555 GDB_SIGNAL_TRAP. */
4556 if (sig == GDB_SIGNAL_TRAP)
4557 return 1;
4558 }
4559 else
4560 {
4561 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4562 sig))
4563 return 1;
4564 }
4565 }
4566
4567 return 0;
4568 }
4569
4570 /* Put in *NUM the breakpoint number of the first breakpoint we are
4571 stopped at. *BSP upon return is a bpstat which points to the
4572 remaining breakpoints stopped at (but which is not guaranteed to be
4573 good for anything but further calls to bpstat_num).
4574
4575 Return 0 if passed a bpstat which does not indicate any breakpoints.
4576 Return -1 if stopped at a breakpoint that has been deleted since
4577 we set it.
4578 Return 1 otherwise. */
4579
4580 int
4581 bpstat_num (bpstat *bsp, int *num)
4582 {
4583 struct breakpoint *b;
4584
4585 if ((*bsp) == NULL)
4586 return 0; /* No more breakpoint values */
4587
4588 /* We assume we'll never have several bpstats that correspond to a
4589 single breakpoint -- otherwise, this function might return the
4590 same number more than once and this will look ugly. */
4591 b = (*bsp)->breakpoint_at;
4592 *bsp = (*bsp)->next;
4593 if (b == NULL)
4594 return -1; /* breakpoint that's been deleted since */
4595
4596 *num = b->number; /* We have its number */
4597 return 1;
4598 }
4599
4600 /* See breakpoint.h. */
4601
4602 void
4603 bpstat_clear_actions (void)
4604 {
4605 struct thread_info *tp;
4606 bpstat bs;
4607
4608 if (ptid_equal (inferior_ptid, null_ptid))
4609 return;
4610
4611 tp = find_thread_ptid (inferior_ptid);
4612 if (tp == NULL)
4613 return;
4614
4615 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4616 {
4617 decref_counted_command_line (&bs->commands);
4618
4619 if (bs->old_val != NULL)
4620 {
4621 value_free (bs->old_val);
4622 bs->old_val = NULL;
4623 }
4624 }
4625 }
4626
4627 /* Called when a command is about to proceed the inferior. */
4628
4629 static void
4630 breakpoint_about_to_proceed (void)
4631 {
4632 if (!ptid_equal (inferior_ptid, null_ptid))
4633 {
4634 struct thread_info *tp = inferior_thread ();
4635
4636 /* Allow inferior function calls in breakpoint commands to not
4637 interrupt the command list. When the call finishes
4638 successfully, the inferior will be standing at the same
4639 breakpoint as if nothing happened. */
4640 if (tp->control.in_infcall)
4641 return;
4642 }
4643
4644 breakpoint_proceeded = 1;
4645 }
4646
4647 /* Stub for cleaning up our state if we error-out of a breakpoint
4648 command. */
4649 static void
4650 cleanup_executing_breakpoints (void *ignore)
4651 {
4652 executing_breakpoint_commands = 0;
4653 }
4654
4655 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4656 or its equivalent. */
4657
4658 static int
4659 command_line_is_silent (struct command_line *cmd)
4660 {
4661 return cmd && (strcmp ("silent", cmd->line) == 0);
4662 }
4663
4664 /* Execute all the commands associated with all the breakpoints at
4665 this location. Any of these commands could cause the process to
4666 proceed beyond this point, etc. We look out for such changes by
4667 checking the global "breakpoint_proceeded" after each command.
4668
4669 Returns true if a breakpoint command resumed the inferior. In that
4670 case, it is the caller's responsibility to recall it again with the
4671 bpstat of the current thread. */
4672
4673 static int
4674 bpstat_do_actions_1 (bpstat *bsp)
4675 {
4676 bpstat bs;
4677 struct cleanup *old_chain;
4678 int again = 0;
4679
4680 /* Avoid endless recursion if a `source' command is contained
4681 in bs->commands. */
4682 if (executing_breakpoint_commands)
4683 return 0;
4684
4685 executing_breakpoint_commands = 1;
4686 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4687
4688 prevent_dont_repeat ();
4689
4690 /* This pointer will iterate over the list of bpstat's. */
4691 bs = *bsp;
4692
4693 breakpoint_proceeded = 0;
4694 for (; bs != NULL; bs = bs->next)
4695 {
4696 struct counted_command_line *ccmd;
4697 struct command_line *cmd;
4698 struct cleanup *this_cmd_tree_chain;
4699
4700 /* Take ownership of the BSP's command tree, if it has one.
4701
4702 The command tree could legitimately contain commands like
4703 'step' and 'next', which call clear_proceed_status, which
4704 frees stop_bpstat's command tree. To make sure this doesn't
4705 free the tree we're executing out from under us, we need to
4706 take ownership of the tree ourselves. Since a given bpstat's
4707 commands are only executed once, we don't need to copy it; we
4708 can clear the pointer in the bpstat, and make sure we free
4709 the tree when we're done. */
4710 ccmd = bs->commands;
4711 bs->commands = NULL;
4712 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4713 cmd = ccmd ? ccmd->commands : NULL;
4714 if (command_line_is_silent (cmd))
4715 {
4716 /* The action has been already done by bpstat_stop_status. */
4717 cmd = cmd->next;
4718 }
4719
4720 while (cmd != NULL)
4721 {
4722 execute_control_command (cmd);
4723
4724 if (breakpoint_proceeded)
4725 break;
4726 else
4727 cmd = cmd->next;
4728 }
4729
4730 /* We can free this command tree now. */
4731 do_cleanups (this_cmd_tree_chain);
4732
4733 if (breakpoint_proceeded)
4734 {
4735 if (current_ui->async)
4736 /* If we are in async mode, then the target might be still
4737 running, not stopped at any breakpoint, so nothing for
4738 us to do here -- just return to the event loop. */
4739 ;
4740 else
4741 /* In sync mode, when execute_control_command returns
4742 we're already standing on the next breakpoint.
4743 Breakpoint commands for that stop were not run, since
4744 execute_command does not run breakpoint commands --
4745 only command_line_handler does, but that one is not
4746 involved in execution of breakpoint commands. So, we
4747 can now execute breakpoint commands. It should be
4748 noted that making execute_command do bpstat actions is
4749 not an option -- in this case we'll have recursive
4750 invocation of bpstat for each breakpoint with a
4751 command, and can easily blow up GDB stack. Instead, we
4752 return true, which will trigger the caller to recall us
4753 with the new stop_bpstat. */
4754 again = 1;
4755 break;
4756 }
4757 }
4758 do_cleanups (old_chain);
4759 return again;
4760 }
4761
4762 void
4763 bpstat_do_actions (void)
4764 {
4765 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4766
4767 /* Do any commands attached to breakpoint we are stopped at. */
4768 while (!ptid_equal (inferior_ptid, null_ptid)
4769 && target_has_execution
4770 && !is_exited (inferior_ptid)
4771 && !is_executing (inferior_ptid))
4772 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4773 and only return when it is stopped at the next breakpoint, we
4774 keep doing breakpoint actions until it returns false to
4775 indicate the inferior was not resumed. */
4776 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4777 break;
4778
4779 discard_cleanups (cleanup_if_error);
4780 }
4781
4782 /* Print out the (old or new) value associated with a watchpoint. */
4783
4784 static void
4785 watchpoint_value_print (struct value *val, struct ui_file *stream)
4786 {
4787 if (val == NULL)
4788 fprintf_unfiltered (stream, _("<unreadable>"));
4789 else
4790 {
4791 struct value_print_options opts;
4792 get_user_print_options (&opts);
4793 value_print (val, stream, &opts);
4794 }
4795 }
4796
4797 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4798 debugging multiple threads. */
4799
4800 void
4801 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4802 {
4803 if (ui_out_is_mi_like_p (uiout))
4804 return;
4805
4806 ui_out_text (uiout, "\n");
4807
4808 if (show_thread_that_caused_stop ())
4809 {
4810 const char *name;
4811 struct thread_info *thr = inferior_thread ();
4812
4813 ui_out_text (uiout, "Thread ");
4814 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
4815
4816 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4817 if (name != NULL)
4818 {
4819 ui_out_text (uiout, " \"");
4820 ui_out_field_fmt (uiout, "name", "%s", name);
4821 ui_out_text (uiout, "\"");
4822 }
4823
4824 ui_out_text (uiout, " hit ");
4825 }
4826 }
4827
4828 /* Generic routine for printing messages indicating why we
4829 stopped. The behavior of this function depends on the value
4830 'print_it' in the bpstat structure. Under some circumstances we
4831 may decide not to print anything here and delegate the task to
4832 normal_stop(). */
4833
4834 static enum print_stop_action
4835 print_bp_stop_message (bpstat bs)
4836 {
4837 switch (bs->print_it)
4838 {
4839 case print_it_noop:
4840 /* Nothing should be printed for this bpstat entry. */
4841 return PRINT_UNKNOWN;
4842 break;
4843
4844 case print_it_done:
4845 /* We still want to print the frame, but we already printed the
4846 relevant messages. */
4847 return PRINT_SRC_AND_LOC;
4848 break;
4849
4850 case print_it_normal:
4851 {
4852 struct breakpoint *b = bs->breakpoint_at;
4853
4854 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4855 which has since been deleted. */
4856 if (b == NULL)
4857 return PRINT_UNKNOWN;
4858
4859 /* Normal case. Call the breakpoint's print_it method. */
4860 return b->ops->print_it (bs);
4861 }
4862 break;
4863
4864 default:
4865 internal_error (__FILE__, __LINE__,
4866 _("print_bp_stop_message: unrecognized enum value"));
4867 break;
4868 }
4869 }
4870
4871 /* A helper function that prints a shared library stopped event. */
4872
4873 static void
4874 print_solib_event (int is_catchpoint)
4875 {
4876 int any_deleted
4877 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4878 int any_added
4879 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4880
4881 if (!is_catchpoint)
4882 {
4883 if (any_added || any_deleted)
4884 ui_out_text (current_uiout,
4885 _("Stopped due to shared library event:\n"));
4886 else
4887 ui_out_text (current_uiout,
4888 _("Stopped due to shared library event (no "
4889 "libraries added or removed)\n"));
4890 }
4891
4892 if (ui_out_is_mi_like_p (current_uiout))
4893 ui_out_field_string (current_uiout, "reason",
4894 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4895
4896 if (any_deleted)
4897 {
4898 struct cleanup *cleanup;
4899 char *name;
4900 int ix;
4901
4902 ui_out_text (current_uiout, _(" Inferior unloaded "));
4903 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4904 "removed");
4905 for (ix = 0;
4906 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4907 ix, name);
4908 ++ix)
4909 {
4910 if (ix > 0)
4911 ui_out_text (current_uiout, " ");
4912 ui_out_field_string (current_uiout, "library", name);
4913 ui_out_text (current_uiout, "\n");
4914 }
4915
4916 do_cleanups (cleanup);
4917 }
4918
4919 if (any_added)
4920 {
4921 struct so_list *iter;
4922 int ix;
4923 struct cleanup *cleanup;
4924
4925 ui_out_text (current_uiout, _(" Inferior loaded "));
4926 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4927 "added");
4928 for (ix = 0;
4929 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4930 ix, iter);
4931 ++ix)
4932 {
4933 if (ix > 0)
4934 ui_out_text (current_uiout, " ");
4935 ui_out_field_string (current_uiout, "library", iter->so_name);
4936 ui_out_text (current_uiout, "\n");
4937 }
4938
4939 do_cleanups (cleanup);
4940 }
4941 }
4942
4943 /* Print a message indicating what happened. This is called from
4944 normal_stop(). The input to this routine is the head of the bpstat
4945 list - a list of the eventpoints that caused this stop. KIND is
4946 the target_waitkind for the stopping event. This
4947 routine calls the generic print routine for printing a message
4948 about reasons for stopping. This will print (for example) the
4949 "Breakpoint n," part of the output. The return value of this
4950 routine is one of:
4951
4952 PRINT_UNKNOWN: Means we printed nothing.
4953 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4954 code to print the location. An example is
4955 "Breakpoint 1, " which should be followed by
4956 the location.
4957 PRINT_SRC_ONLY: Means we printed something, but there is no need
4958 to also print the location part of the message.
4959 An example is the catch/throw messages, which
4960 don't require a location appended to the end.
4961 PRINT_NOTHING: We have done some printing and we don't need any
4962 further info to be printed. */
4963
4964 enum print_stop_action
4965 bpstat_print (bpstat bs, int kind)
4966 {
4967 enum print_stop_action val;
4968
4969 /* Maybe another breakpoint in the chain caused us to stop.
4970 (Currently all watchpoints go on the bpstat whether hit or not.
4971 That probably could (should) be changed, provided care is taken
4972 with respect to bpstat_explains_signal). */
4973 for (; bs; bs = bs->next)
4974 {
4975 val = print_bp_stop_message (bs);
4976 if (val == PRINT_SRC_ONLY
4977 || val == PRINT_SRC_AND_LOC
4978 || val == PRINT_NOTHING)
4979 return val;
4980 }
4981
4982 /* If we had hit a shared library event breakpoint,
4983 print_bp_stop_message would print out this message. If we hit an
4984 OS-level shared library event, do the same thing. */
4985 if (kind == TARGET_WAITKIND_LOADED)
4986 {
4987 print_solib_event (0);
4988 return PRINT_NOTHING;
4989 }
4990
4991 /* We reached the end of the chain, or we got a null BS to start
4992 with and nothing was printed. */
4993 return PRINT_UNKNOWN;
4994 }
4995
4996 /* Evaluate the expression EXP and return 1 if value is zero.
4997 This returns the inverse of the condition because it is called
4998 from catch_errors which returns 0 if an exception happened, and if an
4999 exception happens we want execution to stop.
5000 The argument is a "struct expression *" that has been cast to a
5001 "void *" to make it pass through catch_errors. */
5002
5003 static int
5004 breakpoint_cond_eval (void *exp)
5005 {
5006 struct value *mark = value_mark ();
5007 int i = !value_true (evaluate_expression ((struct expression *) exp));
5008
5009 value_free_to_mark (mark);
5010 return i;
5011 }
5012
5013 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5014
5015 static bpstat
5016 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5017 {
5018 bpstat bs;
5019
5020 bs = (bpstat) xmalloc (sizeof (*bs));
5021 bs->next = NULL;
5022 **bs_link_pointer = bs;
5023 *bs_link_pointer = &bs->next;
5024 bs->breakpoint_at = bl->owner;
5025 bs->bp_location_at = bl;
5026 incref_bp_location (bl);
5027 /* If the condition is false, etc., don't do the commands. */
5028 bs->commands = NULL;
5029 bs->old_val = NULL;
5030 bs->print_it = print_it_normal;
5031 return bs;
5032 }
5033 \f
5034 /* The target has stopped with waitstatus WS. Check if any hardware
5035 watchpoints have triggered, according to the target. */
5036
5037 int
5038 watchpoints_triggered (struct target_waitstatus *ws)
5039 {
5040 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5041 CORE_ADDR addr;
5042 struct breakpoint *b;
5043
5044 if (!stopped_by_watchpoint)
5045 {
5046 /* We were not stopped by a watchpoint. Mark all watchpoints
5047 as not triggered. */
5048 ALL_BREAKPOINTS (b)
5049 if (is_hardware_watchpoint (b))
5050 {
5051 struct watchpoint *w = (struct watchpoint *) b;
5052
5053 w->watchpoint_triggered = watch_triggered_no;
5054 }
5055
5056 return 0;
5057 }
5058
5059 if (!target_stopped_data_address (&current_target, &addr))
5060 {
5061 /* We were stopped by a watchpoint, but we don't know where.
5062 Mark all watchpoints as unknown. */
5063 ALL_BREAKPOINTS (b)
5064 if (is_hardware_watchpoint (b))
5065 {
5066 struct watchpoint *w = (struct watchpoint *) b;
5067
5068 w->watchpoint_triggered = watch_triggered_unknown;
5069 }
5070
5071 return 1;
5072 }
5073
5074 /* The target could report the data address. Mark watchpoints
5075 affected by this data address as triggered, and all others as not
5076 triggered. */
5077
5078 ALL_BREAKPOINTS (b)
5079 if (is_hardware_watchpoint (b))
5080 {
5081 struct watchpoint *w = (struct watchpoint *) b;
5082 struct bp_location *loc;
5083
5084 w->watchpoint_triggered = watch_triggered_no;
5085 for (loc = b->loc; loc; loc = loc->next)
5086 {
5087 if (is_masked_watchpoint (b))
5088 {
5089 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5090 CORE_ADDR start = loc->address & w->hw_wp_mask;
5091
5092 if (newaddr == start)
5093 {
5094 w->watchpoint_triggered = watch_triggered_yes;
5095 break;
5096 }
5097 }
5098 /* Exact match not required. Within range is sufficient. */
5099 else if (target_watchpoint_addr_within_range (&current_target,
5100 addr, loc->address,
5101 loc->length))
5102 {
5103 w->watchpoint_triggered = watch_triggered_yes;
5104 break;
5105 }
5106 }
5107 }
5108
5109 return 1;
5110 }
5111
5112 /* Possible return values for watchpoint_check (this can't be an enum
5113 because of check_errors). */
5114 /* The watchpoint has been deleted. */
5115 #define WP_DELETED 1
5116 /* The value has changed. */
5117 #define WP_VALUE_CHANGED 2
5118 /* The value has not changed. */
5119 #define WP_VALUE_NOT_CHANGED 3
5120 /* Ignore this watchpoint, no matter if the value changed or not. */
5121 #define WP_IGNORE 4
5122
5123 #define BP_TEMPFLAG 1
5124 #define BP_HARDWAREFLAG 2
5125
5126 /* Evaluate watchpoint condition expression and check if its value
5127 changed.
5128
5129 P should be a pointer to struct bpstat, but is defined as a void *
5130 in order for this function to be usable with catch_errors. */
5131
5132 static int
5133 watchpoint_check (void *p)
5134 {
5135 bpstat bs = (bpstat) p;
5136 struct watchpoint *b;
5137 struct frame_info *fr;
5138 int within_current_scope;
5139
5140 /* BS is built from an existing struct breakpoint. */
5141 gdb_assert (bs->breakpoint_at != NULL);
5142 b = (struct watchpoint *) bs->breakpoint_at;
5143
5144 /* If this is a local watchpoint, we only want to check if the
5145 watchpoint frame is in scope if the current thread is the thread
5146 that was used to create the watchpoint. */
5147 if (!watchpoint_in_thread_scope (b))
5148 return WP_IGNORE;
5149
5150 if (b->exp_valid_block == NULL)
5151 within_current_scope = 1;
5152 else
5153 {
5154 struct frame_info *frame = get_current_frame ();
5155 struct gdbarch *frame_arch = get_frame_arch (frame);
5156 CORE_ADDR frame_pc = get_frame_pc (frame);
5157
5158 /* stack_frame_destroyed_p() returns a non-zero value if we're
5159 still in the function but the stack frame has already been
5160 invalidated. Since we can't rely on the values of local
5161 variables after the stack has been destroyed, we are treating
5162 the watchpoint in that state as `not changed' without further
5163 checking. Don't mark watchpoints as changed if the current
5164 frame is in an epilogue - even if they are in some other
5165 frame, our view of the stack is likely to be wrong and
5166 frame_find_by_id could error out. */
5167 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5168 return WP_IGNORE;
5169
5170 fr = frame_find_by_id (b->watchpoint_frame);
5171 within_current_scope = (fr != NULL);
5172
5173 /* If we've gotten confused in the unwinder, we might have
5174 returned a frame that can't describe this variable. */
5175 if (within_current_scope)
5176 {
5177 struct symbol *function;
5178
5179 function = get_frame_function (fr);
5180 if (function == NULL
5181 || !contained_in (b->exp_valid_block,
5182 SYMBOL_BLOCK_VALUE (function)))
5183 within_current_scope = 0;
5184 }
5185
5186 if (within_current_scope)
5187 /* If we end up stopping, the current frame will get selected
5188 in normal_stop. So this call to select_frame won't affect
5189 the user. */
5190 select_frame (fr);
5191 }
5192
5193 if (within_current_scope)
5194 {
5195 /* We use value_{,free_to_}mark because it could be a *long*
5196 time before we return to the command level and call
5197 free_all_values. We can't call free_all_values because we
5198 might be in the middle of evaluating a function call. */
5199
5200 int pc = 0;
5201 struct value *mark;
5202 struct value *new_val;
5203
5204 if (is_masked_watchpoint (&b->base))
5205 /* Since we don't know the exact trigger address (from
5206 stopped_data_address), just tell the user we've triggered
5207 a mask watchpoint. */
5208 return WP_VALUE_CHANGED;
5209
5210 mark = value_mark ();
5211 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5212
5213 if (b->val_bitsize != 0)
5214 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5215
5216 /* We use value_equal_contents instead of value_equal because
5217 the latter coerces an array to a pointer, thus comparing just
5218 the address of the array instead of its contents. This is
5219 not what we want. */
5220 if ((b->val != NULL) != (new_val != NULL)
5221 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5222 {
5223 if (new_val != NULL)
5224 {
5225 release_value (new_val);
5226 value_free_to_mark (mark);
5227 }
5228 bs->old_val = b->val;
5229 b->val = new_val;
5230 b->val_valid = 1;
5231 return WP_VALUE_CHANGED;
5232 }
5233 else
5234 {
5235 /* Nothing changed. */
5236 value_free_to_mark (mark);
5237 return WP_VALUE_NOT_CHANGED;
5238 }
5239 }
5240 else
5241 {
5242 /* This seems like the only logical thing to do because
5243 if we temporarily ignored the watchpoint, then when
5244 we reenter the block in which it is valid it contains
5245 garbage (in the case of a function, it may have two
5246 garbage values, one before and one after the prologue).
5247 So we can't even detect the first assignment to it and
5248 watch after that (since the garbage may or may not equal
5249 the first value assigned). */
5250 /* We print all the stop information in
5251 breakpoint_ops->print_it, but in this case, by the time we
5252 call breakpoint_ops->print_it this bp will be deleted
5253 already. So we have no choice but print the information
5254 here. */
5255
5256 SWITCH_THRU_ALL_UIS ()
5257 {
5258 struct ui_out *uiout = current_uiout;
5259
5260 if (ui_out_is_mi_like_p (uiout))
5261 ui_out_field_string
5262 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5263 ui_out_text (uiout, "\nWatchpoint ");
5264 ui_out_field_int (uiout, "wpnum", b->base.number);
5265 ui_out_text (uiout,
5266 " deleted because the program has left the block in\n"
5267 "which its expression is valid.\n");
5268 }
5269
5270 /* Make sure the watchpoint's commands aren't executed. */
5271 decref_counted_command_line (&b->base.commands);
5272 watchpoint_del_at_next_stop (b);
5273
5274 return WP_DELETED;
5275 }
5276 }
5277
5278 /* Return true if it looks like target has stopped due to hitting
5279 breakpoint location BL. This function does not check if we should
5280 stop, only if BL explains the stop. */
5281
5282 static int
5283 bpstat_check_location (const struct bp_location *bl,
5284 struct address_space *aspace, CORE_ADDR bp_addr,
5285 const struct target_waitstatus *ws)
5286 {
5287 struct breakpoint *b = bl->owner;
5288
5289 /* BL is from an existing breakpoint. */
5290 gdb_assert (b != NULL);
5291
5292 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5293 }
5294
5295 /* Determine if the watched values have actually changed, and we
5296 should stop. If not, set BS->stop to 0. */
5297
5298 static void
5299 bpstat_check_watchpoint (bpstat bs)
5300 {
5301 const struct bp_location *bl;
5302 struct watchpoint *b;
5303
5304 /* BS is built for existing struct breakpoint. */
5305 bl = bs->bp_location_at;
5306 gdb_assert (bl != NULL);
5307 b = (struct watchpoint *) bs->breakpoint_at;
5308 gdb_assert (b != NULL);
5309
5310 {
5311 int must_check_value = 0;
5312
5313 if (b->base.type == bp_watchpoint)
5314 /* For a software watchpoint, we must always check the
5315 watched value. */
5316 must_check_value = 1;
5317 else if (b->watchpoint_triggered == watch_triggered_yes)
5318 /* We have a hardware watchpoint (read, write, or access)
5319 and the target earlier reported an address watched by
5320 this watchpoint. */
5321 must_check_value = 1;
5322 else if (b->watchpoint_triggered == watch_triggered_unknown
5323 && b->base.type == bp_hardware_watchpoint)
5324 /* We were stopped by a hardware watchpoint, but the target could
5325 not report the data address. We must check the watchpoint's
5326 value. Access and read watchpoints are out of luck; without
5327 a data address, we can't figure it out. */
5328 must_check_value = 1;
5329
5330 if (must_check_value)
5331 {
5332 char *message
5333 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5334 b->base.number);
5335 struct cleanup *cleanups = make_cleanup (xfree, message);
5336 int e = catch_errors (watchpoint_check, bs, message,
5337 RETURN_MASK_ALL);
5338 do_cleanups (cleanups);
5339 switch (e)
5340 {
5341 case WP_DELETED:
5342 /* We've already printed what needs to be printed. */
5343 bs->print_it = print_it_done;
5344 /* Stop. */
5345 break;
5346 case WP_IGNORE:
5347 bs->print_it = print_it_noop;
5348 bs->stop = 0;
5349 break;
5350 case WP_VALUE_CHANGED:
5351 if (b->base.type == bp_read_watchpoint)
5352 {
5353 /* There are two cases to consider here:
5354
5355 1. We're watching the triggered memory for reads.
5356 In that case, trust the target, and always report
5357 the watchpoint hit to the user. Even though
5358 reads don't cause value changes, the value may
5359 have changed since the last time it was read, and
5360 since we're not trapping writes, we will not see
5361 those, and as such we should ignore our notion of
5362 old value.
5363
5364 2. We're watching the triggered memory for both
5365 reads and writes. There are two ways this may
5366 happen:
5367
5368 2.1. This is a target that can't break on data
5369 reads only, but can break on accesses (reads or
5370 writes), such as e.g., x86. We detect this case
5371 at the time we try to insert read watchpoints.
5372
5373 2.2. Otherwise, the target supports read
5374 watchpoints, but, the user set an access or write
5375 watchpoint watching the same memory as this read
5376 watchpoint.
5377
5378 If we're watching memory writes as well as reads,
5379 ignore watchpoint hits when we find that the
5380 value hasn't changed, as reads don't cause
5381 changes. This still gives false positives when
5382 the program writes the same value to memory as
5383 what there was already in memory (we will confuse
5384 it for a read), but it's much better than
5385 nothing. */
5386
5387 int other_write_watchpoint = 0;
5388
5389 if (bl->watchpoint_type == hw_read)
5390 {
5391 struct breakpoint *other_b;
5392
5393 ALL_BREAKPOINTS (other_b)
5394 if (other_b->type == bp_hardware_watchpoint
5395 || other_b->type == bp_access_watchpoint)
5396 {
5397 struct watchpoint *other_w =
5398 (struct watchpoint *) other_b;
5399
5400 if (other_w->watchpoint_triggered
5401 == watch_triggered_yes)
5402 {
5403 other_write_watchpoint = 1;
5404 break;
5405 }
5406 }
5407 }
5408
5409 if (other_write_watchpoint
5410 || bl->watchpoint_type == hw_access)
5411 {
5412 /* We're watching the same memory for writes,
5413 and the value changed since the last time we
5414 updated it, so this trap must be for a write.
5415 Ignore it. */
5416 bs->print_it = print_it_noop;
5417 bs->stop = 0;
5418 }
5419 }
5420 break;
5421 case WP_VALUE_NOT_CHANGED:
5422 if (b->base.type == bp_hardware_watchpoint
5423 || b->base.type == bp_watchpoint)
5424 {
5425 /* Don't stop: write watchpoints shouldn't fire if
5426 the value hasn't changed. */
5427 bs->print_it = print_it_noop;
5428 bs->stop = 0;
5429 }
5430 /* Stop. */
5431 break;
5432 default:
5433 /* Can't happen. */
5434 case 0:
5435 /* Error from catch_errors. */
5436 {
5437 SWITCH_THRU_ALL_UIS ()
5438 {
5439 printf_filtered (_("Watchpoint %d deleted.\n"),
5440 b->base.number);
5441 }
5442 watchpoint_del_at_next_stop (b);
5443 /* We've already printed what needs to be printed. */
5444 bs->print_it = print_it_done;
5445 }
5446 break;
5447 }
5448 }
5449 else /* must_check_value == 0 */
5450 {
5451 /* This is a case where some watchpoint(s) triggered, but
5452 not at the address of this watchpoint, or else no
5453 watchpoint triggered after all. So don't print
5454 anything for this watchpoint. */
5455 bs->print_it = print_it_noop;
5456 bs->stop = 0;
5457 }
5458 }
5459 }
5460
5461 /* For breakpoints that are currently marked as telling gdb to stop,
5462 check conditions (condition proper, frame, thread and ignore count)
5463 of breakpoint referred to by BS. If we should not stop for this
5464 breakpoint, set BS->stop to 0. */
5465
5466 static void
5467 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5468 {
5469 const struct bp_location *bl;
5470 struct breakpoint *b;
5471 int value_is_zero = 0;
5472 struct expression *cond;
5473
5474 gdb_assert (bs->stop);
5475
5476 /* BS is built for existing struct breakpoint. */
5477 bl = bs->bp_location_at;
5478 gdb_assert (bl != NULL);
5479 b = bs->breakpoint_at;
5480 gdb_assert (b != NULL);
5481
5482 /* Even if the target evaluated the condition on its end and notified GDB, we
5483 need to do so again since GDB does not know if we stopped due to a
5484 breakpoint or a single step breakpoint. */
5485
5486 if (frame_id_p (b->frame_id)
5487 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5488 {
5489 bs->stop = 0;
5490 return;
5491 }
5492
5493 /* If this is a thread/task-specific breakpoint, don't waste cpu
5494 evaluating the condition if this isn't the specified
5495 thread/task. */
5496 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5497 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5498
5499 {
5500 bs->stop = 0;
5501 return;
5502 }
5503
5504 /* Evaluate extension language breakpoints that have a "stop" method
5505 implemented. */
5506 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5507
5508 if (is_watchpoint (b))
5509 {
5510 struct watchpoint *w = (struct watchpoint *) b;
5511
5512 cond = w->cond_exp.get ();
5513 }
5514 else
5515 cond = bl->cond.get ();
5516
5517 if (cond && b->disposition != disp_del_at_next_stop)
5518 {
5519 int within_current_scope = 1;
5520 struct watchpoint * w;
5521
5522 /* We use value_mark and value_free_to_mark because it could
5523 be a long time before we return to the command level and
5524 call free_all_values. We can't call free_all_values
5525 because we might be in the middle of evaluating a
5526 function call. */
5527 struct value *mark = value_mark ();
5528
5529 if (is_watchpoint (b))
5530 w = (struct watchpoint *) b;
5531 else
5532 w = NULL;
5533
5534 /* Need to select the frame, with all that implies so that
5535 the conditions will have the right context. Because we
5536 use the frame, we will not see an inlined function's
5537 variables when we arrive at a breakpoint at the start
5538 of the inlined function; the current frame will be the
5539 call site. */
5540 if (w == NULL || w->cond_exp_valid_block == NULL)
5541 select_frame (get_current_frame ());
5542 else
5543 {
5544 struct frame_info *frame;
5545
5546 /* For local watchpoint expressions, which particular
5547 instance of a local is being watched matters, so we
5548 keep track of the frame to evaluate the expression
5549 in. To evaluate the condition however, it doesn't
5550 really matter which instantiation of the function
5551 where the condition makes sense triggers the
5552 watchpoint. This allows an expression like "watch
5553 global if q > 10" set in `func', catch writes to
5554 global on all threads that call `func', or catch
5555 writes on all recursive calls of `func' by a single
5556 thread. We simply always evaluate the condition in
5557 the innermost frame that's executing where it makes
5558 sense to evaluate the condition. It seems
5559 intuitive. */
5560 frame = block_innermost_frame (w->cond_exp_valid_block);
5561 if (frame != NULL)
5562 select_frame (frame);
5563 else
5564 within_current_scope = 0;
5565 }
5566 if (within_current_scope)
5567 value_is_zero
5568 = catch_errors (breakpoint_cond_eval, cond,
5569 "Error in testing breakpoint condition:\n",
5570 RETURN_MASK_ALL);
5571 else
5572 {
5573 warning (_("Watchpoint condition cannot be tested "
5574 "in the current scope"));
5575 /* If we failed to set the right context for this
5576 watchpoint, unconditionally report it. */
5577 value_is_zero = 0;
5578 }
5579 /* FIXME-someday, should give breakpoint #. */
5580 value_free_to_mark (mark);
5581 }
5582
5583 if (cond && value_is_zero)
5584 {
5585 bs->stop = 0;
5586 }
5587 else if (b->ignore_count > 0)
5588 {
5589 b->ignore_count--;
5590 bs->stop = 0;
5591 /* Increase the hit count even though we don't stop. */
5592 ++(b->hit_count);
5593 observer_notify_breakpoint_modified (b);
5594 }
5595 }
5596
5597 /* Returns true if we need to track moribund locations of LOC's type
5598 on the current target. */
5599
5600 static int
5601 need_moribund_for_location_type (struct bp_location *loc)
5602 {
5603 return ((loc->loc_type == bp_loc_software_breakpoint
5604 && !target_supports_stopped_by_sw_breakpoint ())
5605 || (loc->loc_type == bp_loc_hardware_breakpoint
5606 && !target_supports_stopped_by_hw_breakpoint ()));
5607 }
5608
5609
5610 /* Get a bpstat associated with having just stopped at address
5611 BP_ADDR in thread PTID.
5612
5613 Determine whether we stopped at a breakpoint, etc, or whether we
5614 don't understand this stop. Result is a chain of bpstat's such
5615 that:
5616
5617 if we don't understand the stop, the result is a null pointer.
5618
5619 if we understand why we stopped, the result is not null.
5620
5621 Each element of the chain refers to a particular breakpoint or
5622 watchpoint at which we have stopped. (We may have stopped for
5623 several reasons concurrently.)
5624
5625 Each element of the chain has valid next, breakpoint_at,
5626 commands, FIXME??? fields. */
5627
5628 bpstat
5629 bpstat_stop_status (struct address_space *aspace,
5630 CORE_ADDR bp_addr, ptid_t ptid,
5631 const struct target_waitstatus *ws)
5632 {
5633 struct breakpoint *b = NULL;
5634 struct bp_location *bl;
5635 struct bp_location *loc;
5636 /* First item of allocated bpstat's. */
5637 bpstat bs_head = NULL, *bs_link = &bs_head;
5638 /* Pointer to the last thing in the chain currently. */
5639 bpstat bs;
5640 int ix;
5641 int need_remove_insert;
5642 int removed_any;
5643
5644 /* First, build the bpstat chain with locations that explain a
5645 target stop, while being careful to not set the target running,
5646 as that may invalidate locations (in particular watchpoint
5647 locations are recreated). Resuming will happen here with
5648 breakpoint conditions or watchpoint expressions that include
5649 inferior function calls. */
5650
5651 ALL_BREAKPOINTS (b)
5652 {
5653 if (!breakpoint_enabled (b))
5654 continue;
5655
5656 for (bl = b->loc; bl != NULL; bl = bl->next)
5657 {
5658 /* For hardware watchpoints, we look only at the first
5659 location. The watchpoint_check function will work on the
5660 entire expression, not the individual locations. For
5661 read watchpoints, the watchpoints_triggered function has
5662 checked all locations already. */
5663 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5664 break;
5665
5666 if (!bl->enabled || bl->shlib_disabled)
5667 continue;
5668
5669 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5670 continue;
5671
5672 /* Come here if it's a watchpoint, or if the break address
5673 matches. */
5674
5675 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5676 explain stop. */
5677
5678 /* Assume we stop. Should we find a watchpoint that is not
5679 actually triggered, or if the condition of the breakpoint
5680 evaluates as false, we'll reset 'stop' to 0. */
5681 bs->stop = 1;
5682 bs->print = 1;
5683
5684 /* If this is a scope breakpoint, mark the associated
5685 watchpoint as triggered so that we will handle the
5686 out-of-scope event. We'll get to the watchpoint next
5687 iteration. */
5688 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5689 {
5690 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5691
5692 w->watchpoint_triggered = watch_triggered_yes;
5693 }
5694 }
5695 }
5696
5697 /* Check if a moribund breakpoint explains the stop. */
5698 if (!target_supports_stopped_by_sw_breakpoint ()
5699 || !target_supports_stopped_by_hw_breakpoint ())
5700 {
5701 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5702 {
5703 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5704 && need_moribund_for_location_type (loc))
5705 {
5706 bs = bpstat_alloc (loc, &bs_link);
5707 /* For hits of moribund locations, we should just proceed. */
5708 bs->stop = 0;
5709 bs->print = 0;
5710 bs->print_it = print_it_noop;
5711 }
5712 }
5713 }
5714
5715 /* A bit of special processing for shlib breakpoints. We need to
5716 process solib loading here, so that the lists of loaded and
5717 unloaded libraries are correct before we handle "catch load" and
5718 "catch unload". */
5719 for (bs = bs_head; bs != NULL; bs = bs->next)
5720 {
5721 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5722 {
5723 handle_solib_event ();
5724 break;
5725 }
5726 }
5727
5728 /* Now go through the locations that caused the target to stop, and
5729 check whether we're interested in reporting this stop to higher
5730 layers, or whether we should resume the target transparently. */
5731
5732 removed_any = 0;
5733
5734 for (bs = bs_head; bs != NULL; bs = bs->next)
5735 {
5736 if (!bs->stop)
5737 continue;
5738
5739 b = bs->breakpoint_at;
5740 b->ops->check_status (bs);
5741 if (bs->stop)
5742 {
5743 bpstat_check_breakpoint_conditions (bs, ptid);
5744
5745 if (bs->stop)
5746 {
5747 ++(b->hit_count);
5748 observer_notify_breakpoint_modified (b);
5749
5750 /* We will stop here. */
5751 if (b->disposition == disp_disable)
5752 {
5753 --(b->enable_count);
5754 if (b->enable_count <= 0)
5755 b->enable_state = bp_disabled;
5756 removed_any = 1;
5757 }
5758 if (b->silent)
5759 bs->print = 0;
5760 bs->commands = b->commands;
5761 incref_counted_command_line (bs->commands);
5762 if (command_line_is_silent (bs->commands
5763 ? bs->commands->commands : NULL))
5764 bs->print = 0;
5765
5766 b->ops->after_condition_true (bs);
5767 }
5768
5769 }
5770
5771 /* Print nothing for this entry if we don't stop or don't
5772 print. */
5773 if (!bs->stop || !bs->print)
5774 bs->print_it = print_it_noop;
5775 }
5776
5777 /* If we aren't stopping, the value of some hardware watchpoint may
5778 not have changed, but the intermediate memory locations we are
5779 watching may have. Don't bother if we're stopping; this will get
5780 done later. */
5781 need_remove_insert = 0;
5782 if (! bpstat_causes_stop (bs_head))
5783 for (bs = bs_head; bs != NULL; bs = bs->next)
5784 if (!bs->stop
5785 && bs->breakpoint_at
5786 && is_hardware_watchpoint (bs->breakpoint_at))
5787 {
5788 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5789
5790 update_watchpoint (w, 0 /* don't reparse. */);
5791 need_remove_insert = 1;
5792 }
5793
5794 if (need_remove_insert)
5795 update_global_location_list (UGLL_MAY_INSERT);
5796 else if (removed_any)
5797 update_global_location_list (UGLL_DONT_INSERT);
5798
5799 return bs_head;
5800 }
5801
5802 static void
5803 handle_jit_event (void)
5804 {
5805 struct frame_info *frame;
5806 struct gdbarch *gdbarch;
5807
5808 if (debug_infrun)
5809 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5810
5811 /* Switch terminal for any messages produced by
5812 breakpoint_re_set. */
5813 target_terminal_ours_for_output ();
5814
5815 frame = get_current_frame ();
5816 gdbarch = get_frame_arch (frame);
5817
5818 jit_event_handler (gdbarch);
5819
5820 target_terminal_inferior ();
5821 }
5822
5823 /* Prepare WHAT final decision for infrun. */
5824
5825 /* Decide what infrun needs to do with this bpstat. */
5826
5827 struct bpstat_what
5828 bpstat_what (bpstat bs_head)
5829 {
5830 struct bpstat_what retval;
5831 bpstat bs;
5832
5833 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5834 retval.call_dummy = STOP_NONE;
5835 retval.is_longjmp = 0;
5836
5837 for (bs = bs_head; bs != NULL; bs = bs->next)
5838 {
5839 /* Extract this BS's action. After processing each BS, we check
5840 if its action overrides all we've seem so far. */
5841 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5842 enum bptype bptype;
5843
5844 if (bs->breakpoint_at == NULL)
5845 {
5846 /* I suspect this can happen if it was a momentary
5847 breakpoint which has since been deleted. */
5848 bptype = bp_none;
5849 }
5850 else
5851 bptype = bs->breakpoint_at->type;
5852
5853 switch (bptype)
5854 {
5855 case bp_none:
5856 break;
5857 case bp_breakpoint:
5858 case bp_hardware_breakpoint:
5859 case bp_single_step:
5860 case bp_until:
5861 case bp_finish:
5862 case bp_shlib_event:
5863 if (bs->stop)
5864 {
5865 if (bs->print)
5866 this_action = BPSTAT_WHAT_STOP_NOISY;
5867 else
5868 this_action = BPSTAT_WHAT_STOP_SILENT;
5869 }
5870 else
5871 this_action = BPSTAT_WHAT_SINGLE;
5872 break;
5873 case bp_watchpoint:
5874 case bp_hardware_watchpoint:
5875 case bp_read_watchpoint:
5876 case bp_access_watchpoint:
5877 if (bs->stop)
5878 {
5879 if (bs->print)
5880 this_action = BPSTAT_WHAT_STOP_NOISY;
5881 else
5882 this_action = BPSTAT_WHAT_STOP_SILENT;
5883 }
5884 else
5885 {
5886 /* There was a watchpoint, but we're not stopping.
5887 This requires no further action. */
5888 }
5889 break;
5890 case bp_longjmp:
5891 case bp_longjmp_call_dummy:
5892 case bp_exception:
5893 if (bs->stop)
5894 {
5895 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5896 retval.is_longjmp = bptype != bp_exception;
5897 }
5898 else
5899 this_action = BPSTAT_WHAT_SINGLE;
5900 break;
5901 case bp_longjmp_resume:
5902 case bp_exception_resume:
5903 if (bs->stop)
5904 {
5905 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5906 retval.is_longjmp = bptype == bp_longjmp_resume;
5907 }
5908 else
5909 this_action = BPSTAT_WHAT_SINGLE;
5910 break;
5911 case bp_step_resume:
5912 if (bs->stop)
5913 this_action = BPSTAT_WHAT_STEP_RESUME;
5914 else
5915 {
5916 /* It is for the wrong frame. */
5917 this_action = BPSTAT_WHAT_SINGLE;
5918 }
5919 break;
5920 case bp_hp_step_resume:
5921 if (bs->stop)
5922 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5923 else
5924 {
5925 /* It is for the wrong frame. */
5926 this_action = BPSTAT_WHAT_SINGLE;
5927 }
5928 break;
5929 case bp_watchpoint_scope:
5930 case bp_thread_event:
5931 case bp_overlay_event:
5932 case bp_longjmp_master:
5933 case bp_std_terminate_master:
5934 case bp_exception_master:
5935 this_action = BPSTAT_WHAT_SINGLE;
5936 break;
5937 case bp_catchpoint:
5938 if (bs->stop)
5939 {
5940 if (bs->print)
5941 this_action = BPSTAT_WHAT_STOP_NOISY;
5942 else
5943 this_action = BPSTAT_WHAT_STOP_SILENT;
5944 }
5945 else
5946 {
5947 /* There was a catchpoint, but we're not stopping.
5948 This requires no further action. */
5949 }
5950 break;
5951 case bp_jit_event:
5952 this_action = BPSTAT_WHAT_SINGLE;
5953 break;
5954 case bp_call_dummy:
5955 /* Make sure the action is stop (silent or noisy),
5956 so infrun.c pops the dummy frame. */
5957 retval.call_dummy = STOP_STACK_DUMMY;
5958 this_action = BPSTAT_WHAT_STOP_SILENT;
5959 break;
5960 case bp_std_terminate:
5961 /* Make sure the action is stop (silent or noisy),
5962 so infrun.c pops the dummy frame. */
5963 retval.call_dummy = STOP_STD_TERMINATE;
5964 this_action = BPSTAT_WHAT_STOP_SILENT;
5965 break;
5966 case bp_tracepoint:
5967 case bp_fast_tracepoint:
5968 case bp_static_tracepoint:
5969 /* Tracepoint hits should not be reported back to GDB, and
5970 if one got through somehow, it should have been filtered
5971 out already. */
5972 internal_error (__FILE__, __LINE__,
5973 _("bpstat_what: tracepoint encountered"));
5974 break;
5975 case bp_gnu_ifunc_resolver:
5976 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5977 this_action = BPSTAT_WHAT_SINGLE;
5978 break;
5979 case bp_gnu_ifunc_resolver_return:
5980 /* The breakpoint will be removed, execution will restart from the
5981 PC of the former breakpoint. */
5982 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5983 break;
5984
5985 case bp_dprintf:
5986 if (bs->stop)
5987 this_action = BPSTAT_WHAT_STOP_SILENT;
5988 else
5989 this_action = BPSTAT_WHAT_SINGLE;
5990 break;
5991
5992 default:
5993 internal_error (__FILE__, __LINE__,
5994 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5995 }
5996
5997 retval.main_action = std::max (retval.main_action, this_action);
5998 }
5999
6000 return retval;
6001 }
6002
6003 void
6004 bpstat_run_callbacks (bpstat bs_head)
6005 {
6006 bpstat bs;
6007
6008 for (bs = bs_head; bs != NULL; bs = bs->next)
6009 {
6010 struct breakpoint *b = bs->breakpoint_at;
6011
6012 if (b == NULL)
6013 continue;
6014 switch (b->type)
6015 {
6016 case bp_jit_event:
6017 handle_jit_event ();
6018 break;
6019 case bp_gnu_ifunc_resolver:
6020 gnu_ifunc_resolver_stop (b);
6021 break;
6022 case bp_gnu_ifunc_resolver_return:
6023 gnu_ifunc_resolver_return_stop (b);
6024 break;
6025 }
6026 }
6027 }
6028
6029 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6030 without hardware support). This isn't related to a specific bpstat,
6031 just to things like whether watchpoints are set. */
6032
6033 int
6034 bpstat_should_step (void)
6035 {
6036 struct breakpoint *b;
6037
6038 ALL_BREAKPOINTS (b)
6039 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6040 return 1;
6041 return 0;
6042 }
6043
6044 int
6045 bpstat_causes_stop (bpstat bs)
6046 {
6047 for (; bs != NULL; bs = bs->next)
6048 if (bs->stop)
6049 return 1;
6050
6051 return 0;
6052 }
6053
6054 \f
6055
6056 /* Compute a string of spaces suitable to indent the next line
6057 so it starts at the position corresponding to the table column
6058 named COL_NAME in the currently active table of UIOUT. */
6059
6060 static char *
6061 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6062 {
6063 static char wrap_indent[80];
6064 int i, total_width, width, align;
6065 char *text;
6066
6067 total_width = 0;
6068 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
6069 {
6070 if (strcmp (text, col_name) == 0)
6071 {
6072 gdb_assert (total_width < sizeof wrap_indent);
6073 memset (wrap_indent, ' ', total_width);
6074 wrap_indent[total_width] = 0;
6075
6076 return wrap_indent;
6077 }
6078
6079 total_width += width + 1;
6080 }
6081
6082 return NULL;
6083 }
6084
6085 /* Determine if the locations of this breakpoint will have their conditions
6086 evaluated by the target, host or a mix of both. Returns the following:
6087
6088 "host": Host evals condition.
6089 "host or target": Host or Target evals condition.
6090 "target": Target evals condition.
6091 */
6092
6093 static const char *
6094 bp_condition_evaluator (struct breakpoint *b)
6095 {
6096 struct bp_location *bl;
6097 char host_evals = 0;
6098 char target_evals = 0;
6099
6100 if (!b)
6101 return NULL;
6102
6103 if (!is_breakpoint (b))
6104 return NULL;
6105
6106 if (gdb_evaluates_breakpoint_condition_p ()
6107 || !target_supports_evaluation_of_breakpoint_conditions ())
6108 return condition_evaluation_host;
6109
6110 for (bl = b->loc; bl; bl = bl->next)
6111 {
6112 if (bl->cond_bytecode)
6113 target_evals++;
6114 else
6115 host_evals++;
6116 }
6117
6118 if (host_evals && target_evals)
6119 return condition_evaluation_both;
6120 else if (target_evals)
6121 return condition_evaluation_target;
6122 else
6123 return condition_evaluation_host;
6124 }
6125
6126 /* Determine the breakpoint location's condition evaluator. This is
6127 similar to bp_condition_evaluator, but for locations. */
6128
6129 static const char *
6130 bp_location_condition_evaluator (struct bp_location *bl)
6131 {
6132 if (bl && !is_breakpoint (bl->owner))
6133 return NULL;
6134
6135 if (gdb_evaluates_breakpoint_condition_p ()
6136 || !target_supports_evaluation_of_breakpoint_conditions ())
6137 return condition_evaluation_host;
6138
6139 if (bl && bl->cond_bytecode)
6140 return condition_evaluation_target;
6141 else
6142 return condition_evaluation_host;
6143 }
6144
6145 /* Print the LOC location out of the list of B->LOC locations. */
6146
6147 static void
6148 print_breakpoint_location (struct breakpoint *b,
6149 struct bp_location *loc)
6150 {
6151 struct ui_out *uiout = current_uiout;
6152 struct cleanup *old_chain = save_current_program_space ();
6153
6154 if (loc != NULL && loc->shlib_disabled)
6155 loc = NULL;
6156
6157 if (loc != NULL)
6158 set_current_program_space (loc->pspace);
6159
6160 if (b->display_canonical)
6161 ui_out_field_string (uiout, "what",
6162 event_location_to_string (b->location));
6163 else if (loc && loc->symtab)
6164 {
6165 struct symbol *sym
6166 = find_pc_sect_function (loc->address, loc->section);
6167 if (sym)
6168 {
6169 ui_out_text (uiout, "in ");
6170 ui_out_field_string (uiout, "func",
6171 SYMBOL_PRINT_NAME (sym));
6172 ui_out_text (uiout, " ");
6173 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6174 ui_out_text (uiout, "at ");
6175 }
6176 ui_out_field_string (uiout, "file",
6177 symtab_to_filename_for_display (loc->symtab));
6178 ui_out_text (uiout, ":");
6179
6180 if (ui_out_is_mi_like_p (uiout))
6181 ui_out_field_string (uiout, "fullname",
6182 symtab_to_fullname (loc->symtab));
6183
6184 ui_out_field_int (uiout, "line", loc->line_number);
6185 }
6186 else if (loc)
6187 {
6188 struct ui_file *stb = mem_fileopen ();
6189 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6190
6191 print_address_symbolic (loc->gdbarch, loc->address, stb,
6192 demangle, "");
6193 ui_out_field_stream (uiout, "at", stb);
6194
6195 do_cleanups (stb_chain);
6196 }
6197 else
6198 {
6199 ui_out_field_string (uiout, "pending",
6200 event_location_to_string (b->location));
6201 /* If extra_string is available, it could be holding a condition
6202 or dprintf arguments. In either case, make sure it is printed,
6203 too, but only for non-MI streams. */
6204 if (!ui_out_is_mi_like_p (uiout) && b->extra_string != NULL)
6205 {
6206 if (b->type == bp_dprintf)
6207 ui_out_text (uiout, ",");
6208 else
6209 ui_out_text (uiout, " ");
6210 ui_out_text (uiout, b->extra_string);
6211 }
6212 }
6213
6214 if (loc && is_breakpoint (b)
6215 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6216 && bp_condition_evaluator (b) == condition_evaluation_both)
6217 {
6218 ui_out_text (uiout, " (");
6219 ui_out_field_string (uiout, "evaluated-by",
6220 bp_location_condition_evaluator (loc));
6221 ui_out_text (uiout, ")");
6222 }
6223
6224 do_cleanups (old_chain);
6225 }
6226
6227 static const char *
6228 bptype_string (enum bptype type)
6229 {
6230 struct ep_type_description
6231 {
6232 enum bptype type;
6233 char *description;
6234 };
6235 static struct ep_type_description bptypes[] =
6236 {
6237 {bp_none, "?deleted?"},
6238 {bp_breakpoint, "breakpoint"},
6239 {bp_hardware_breakpoint, "hw breakpoint"},
6240 {bp_single_step, "sw single-step"},
6241 {bp_until, "until"},
6242 {bp_finish, "finish"},
6243 {bp_watchpoint, "watchpoint"},
6244 {bp_hardware_watchpoint, "hw watchpoint"},
6245 {bp_read_watchpoint, "read watchpoint"},
6246 {bp_access_watchpoint, "acc watchpoint"},
6247 {bp_longjmp, "longjmp"},
6248 {bp_longjmp_resume, "longjmp resume"},
6249 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6250 {bp_exception, "exception"},
6251 {bp_exception_resume, "exception resume"},
6252 {bp_step_resume, "step resume"},
6253 {bp_hp_step_resume, "high-priority step resume"},
6254 {bp_watchpoint_scope, "watchpoint scope"},
6255 {bp_call_dummy, "call dummy"},
6256 {bp_std_terminate, "std::terminate"},
6257 {bp_shlib_event, "shlib events"},
6258 {bp_thread_event, "thread events"},
6259 {bp_overlay_event, "overlay events"},
6260 {bp_longjmp_master, "longjmp master"},
6261 {bp_std_terminate_master, "std::terminate master"},
6262 {bp_exception_master, "exception master"},
6263 {bp_catchpoint, "catchpoint"},
6264 {bp_tracepoint, "tracepoint"},
6265 {bp_fast_tracepoint, "fast tracepoint"},
6266 {bp_static_tracepoint, "static tracepoint"},
6267 {bp_dprintf, "dprintf"},
6268 {bp_jit_event, "jit events"},
6269 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6270 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6271 };
6272
6273 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6274 || ((int) type != bptypes[(int) type].type))
6275 internal_error (__FILE__, __LINE__,
6276 _("bptypes table does not describe type #%d."),
6277 (int) type);
6278
6279 return bptypes[(int) type].description;
6280 }
6281
6282 /* For MI, output a field named 'thread-groups' with a list as the value.
6283 For CLI, prefix the list with the string 'inf'. */
6284
6285 static void
6286 output_thread_groups (struct ui_out *uiout,
6287 const char *field_name,
6288 VEC(int) *inf_num,
6289 int mi_only)
6290 {
6291 struct cleanup *back_to;
6292 int is_mi = ui_out_is_mi_like_p (uiout);
6293 int inf;
6294 int i;
6295
6296 /* For backward compatibility, don't display inferiors in CLI unless
6297 there are several. Always display them for MI. */
6298 if (!is_mi && mi_only)
6299 return;
6300
6301 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6302
6303 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6304 {
6305 if (is_mi)
6306 {
6307 char mi_group[10];
6308
6309 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6310 ui_out_field_string (uiout, NULL, mi_group);
6311 }
6312 else
6313 {
6314 if (i == 0)
6315 ui_out_text (uiout, " inf ");
6316 else
6317 ui_out_text (uiout, ", ");
6318
6319 ui_out_text (uiout, plongest (inf));
6320 }
6321 }
6322
6323 do_cleanups (back_to);
6324 }
6325
6326 /* Print B to gdb_stdout. */
6327
6328 static void
6329 print_one_breakpoint_location (struct breakpoint *b,
6330 struct bp_location *loc,
6331 int loc_number,
6332 struct bp_location **last_loc,
6333 int allflag)
6334 {
6335 struct command_line *l;
6336 static char bpenables[] = "nynny";
6337
6338 struct ui_out *uiout = current_uiout;
6339 int header_of_multiple = 0;
6340 int part_of_multiple = (loc != NULL);
6341 struct value_print_options opts;
6342
6343 get_user_print_options (&opts);
6344
6345 gdb_assert (!loc || loc_number != 0);
6346 /* See comment in print_one_breakpoint concerning treatment of
6347 breakpoints with single disabled location. */
6348 if (loc == NULL
6349 && (b->loc != NULL
6350 && (b->loc->next != NULL || !b->loc->enabled)))
6351 header_of_multiple = 1;
6352 if (loc == NULL)
6353 loc = b->loc;
6354
6355 annotate_record ();
6356
6357 /* 1 */
6358 annotate_field (0);
6359 if (part_of_multiple)
6360 {
6361 char *formatted;
6362 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6363 ui_out_field_string (uiout, "number", formatted);
6364 xfree (formatted);
6365 }
6366 else
6367 {
6368 ui_out_field_int (uiout, "number", b->number);
6369 }
6370
6371 /* 2 */
6372 annotate_field (1);
6373 if (part_of_multiple)
6374 ui_out_field_skip (uiout, "type");
6375 else
6376 ui_out_field_string (uiout, "type", bptype_string (b->type));
6377
6378 /* 3 */
6379 annotate_field (2);
6380 if (part_of_multiple)
6381 ui_out_field_skip (uiout, "disp");
6382 else
6383 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6384
6385
6386 /* 4 */
6387 annotate_field (3);
6388 if (part_of_multiple)
6389 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6390 else
6391 ui_out_field_fmt (uiout, "enabled", "%c",
6392 bpenables[(int) b->enable_state]);
6393 ui_out_spaces (uiout, 2);
6394
6395
6396 /* 5 and 6 */
6397 if (b->ops != NULL && b->ops->print_one != NULL)
6398 {
6399 /* Although the print_one can possibly print all locations,
6400 calling it here is not likely to get any nice result. So,
6401 make sure there's just one location. */
6402 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6403 b->ops->print_one (b, last_loc);
6404 }
6405 else
6406 switch (b->type)
6407 {
6408 case bp_none:
6409 internal_error (__FILE__, __LINE__,
6410 _("print_one_breakpoint: bp_none encountered\n"));
6411 break;
6412
6413 case bp_watchpoint:
6414 case bp_hardware_watchpoint:
6415 case bp_read_watchpoint:
6416 case bp_access_watchpoint:
6417 {
6418 struct watchpoint *w = (struct watchpoint *) b;
6419
6420 /* Field 4, the address, is omitted (which makes the columns
6421 not line up too nicely with the headers, but the effect
6422 is relatively readable). */
6423 if (opts.addressprint)
6424 ui_out_field_skip (uiout, "addr");
6425 annotate_field (5);
6426 ui_out_field_string (uiout, "what", w->exp_string);
6427 }
6428 break;
6429
6430 case bp_breakpoint:
6431 case bp_hardware_breakpoint:
6432 case bp_single_step:
6433 case bp_until:
6434 case bp_finish:
6435 case bp_longjmp:
6436 case bp_longjmp_resume:
6437 case bp_longjmp_call_dummy:
6438 case bp_exception:
6439 case bp_exception_resume:
6440 case bp_step_resume:
6441 case bp_hp_step_resume:
6442 case bp_watchpoint_scope:
6443 case bp_call_dummy:
6444 case bp_std_terminate:
6445 case bp_shlib_event:
6446 case bp_thread_event:
6447 case bp_overlay_event:
6448 case bp_longjmp_master:
6449 case bp_std_terminate_master:
6450 case bp_exception_master:
6451 case bp_tracepoint:
6452 case bp_fast_tracepoint:
6453 case bp_static_tracepoint:
6454 case bp_dprintf:
6455 case bp_jit_event:
6456 case bp_gnu_ifunc_resolver:
6457 case bp_gnu_ifunc_resolver_return:
6458 if (opts.addressprint)
6459 {
6460 annotate_field (4);
6461 if (header_of_multiple)
6462 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6463 else if (b->loc == NULL || loc->shlib_disabled)
6464 ui_out_field_string (uiout, "addr", "<PENDING>");
6465 else
6466 ui_out_field_core_addr (uiout, "addr",
6467 loc->gdbarch, loc->address);
6468 }
6469 annotate_field (5);
6470 if (!header_of_multiple)
6471 print_breakpoint_location (b, loc);
6472 if (b->loc)
6473 *last_loc = b->loc;
6474 break;
6475 }
6476
6477
6478 if (loc != NULL && !header_of_multiple)
6479 {
6480 struct inferior *inf;
6481 VEC(int) *inf_num = NULL;
6482 int mi_only = 1;
6483
6484 ALL_INFERIORS (inf)
6485 {
6486 if (inf->pspace == loc->pspace)
6487 VEC_safe_push (int, inf_num, inf->num);
6488 }
6489
6490 /* For backward compatibility, don't display inferiors in CLI unless
6491 there are several. Always display for MI. */
6492 if (allflag
6493 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6494 && (number_of_program_spaces () > 1
6495 || number_of_inferiors () > 1)
6496 /* LOC is for existing B, it cannot be in
6497 moribund_locations and thus having NULL OWNER. */
6498 && loc->owner->type != bp_catchpoint))
6499 mi_only = 0;
6500 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6501 VEC_free (int, inf_num);
6502 }
6503
6504 if (!part_of_multiple)
6505 {
6506 if (b->thread != -1)
6507 {
6508 /* FIXME: This seems to be redundant and lost here; see the
6509 "stop only in" line a little further down. */
6510 ui_out_text (uiout, " thread ");
6511 ui_out_field_int (uiout, "thread", b->thread);
6512 }
6513 else if (b->task != 0)
6514 {
6515 ui_out_text (uiout, " task ");
6516 ui_out_field_int (uiout, "task", b->task);
6517 }
6518 }
6519
6520 ui_out_text (uiout, "\n");
6521
6522 if (!part_of_multiple)
6523 b->ops->print_one_detail (b, uiout);
6524
6525 if (part_of_multiple && frame_id_p (b->frame_id))
6526 {
6527 annotate_field (6);
6528 ui_out_text (uiout, "\tstop only in stack frame at ");
6529 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6530 the frame ID. */
6531 ui_out_field_core_addr (uiout, "frame",
6532 b->gdbarch, b->frame_id.stack_addr);
6533 ui_out_text (uiout, "\n");
6534 }
6535
6536 if (!part_of_multiple && b->cond_string)
6537 {
6538 annotate_field (7);
6539 if (is_tracepoint (b))
6540 ui_out_text (uiout, "\ttrace only if ");
6541 else
6542 ui_out_text (uiout, "\tstop only if ");
6543 ui_out_field_string (uiout, "cond", b->cond_string);
6544
6545 /* Print whether the target is doing the breakpoint's condition
6546 evaluation. If GDB is doing the evaluation, don't print anything. */
6547 if (is_breakpoint (b)
6548 && breakpoint_condition_evaluation_mode ()
6549 == condition_evaluation_target)
6550 {
6551 ui_out_text (uiout, " (");
6552 ui_out_field_string (uiout, "evaluated-by",
6553 bp_condition_evaluator (b));
6554 ui_out_text (uiout, " evals)");
6555 }
6556 ui_out_text (uiout, "\n");
6557 }
6558
6559 if (!part_of_multiple && b->thread != -1)
6560 {
6561 /* FIXME should make an annotation for this. */
6562 ui_out_text (uiout, "\tstop only in thread ");
6563 if (ui_out_is_mi_like_p (uiout))
6564 ui_out_field_int (uiout, "thread", b->thread);
6565 else
6566 {
6567 struct thread_info *thr = find_thread_global_id (b->thread);
6568
6569 ui_out_field_string (uiout, "thread", print_thread_id (thr));
6570 }
6571 ui_out_text (uiout, "\n");
6572 }
6573
6574 if (!part_of_multiple)
6575 {
6576 if (b->hit_count)
6577 {
6578 /* FIXME should make an annotation for this. */
6579 if (is_catchpoint (b))
6580 ui_out_text (uiout, "\tcatchpoint");
6581 else if (is_tracepoint (b))
6582 ui_out_text (uiout, "\ttracepoint");
6583 else
6584 ui_out_text (uiout, "\tbreakpoint");
6585 ui_out_text (uiout, " already hit ");
6586 ui_out_field_int (uiout, "times", b->hit_count);
6587 if (b->hit_count == 1)
6588 ui_out_text (uiout, " time\n");
6589 else
6590 ui_out_text (uiout, " times\n");
6591 }
6592 else
6593 {
6594 /* Output the count also if it is zero, but only if this is mi. */
6595 if (ui_out_is_mi_like_p (uiout))
6596 ui_out_field_int (uiout, "times", b->hit_count);
6597 }
6598 }
6599
6600 if (!part_of_multiple && b->ignore_count)
6601 {
6602 annotate_field (8);
6603 ui_out_text (uiout, "\tignore next ");
6604 ui_out_field_int (uiout, "ignore", b->ignore_count);
6605 ui_out_text (uiout, " hits\n");
6606 }
6607
6608 /* Note that an enable count of 1 corresponds to "enable once"
6609 behavior, which is reported by the combination of enablement and
6610 disposition, so we don't need to mention it here. */
6611 if (!part_of_multiple && b->enable_count > 1)
6612 {
6613 annotate_field (8);
6614 ui_out_text (uiout, "\tdisable after ");
6615 /* Tweak the wording to clarify that ignore and enable counts
6616 are distinct, and have additive effect. */
6617 if (b->ignore_count)
6618 ui_out_text (uiout, "additional ");
6619 else
6620 ui_out_text (uiout, "next ");
6621 ui_out_field_int (uiout, "enable", b->enable_count);
6622 ui_out_text (uiout, " hits\n");
6623 }
6624
6625 if (!part_of_multiple && is_tracepoint (b))
6626 {
6627 struct tracepoint *tp = (struct tracepoint *) b;
6628
6629 if (tp->traceframe_usage)
6630 {
6631 ui_out_text (uiout, "\ttrace buffer usage ");
6632 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6633 ui_out_text (uiout, " bytes\n");
6634 }
6635 }
6636
6637 l = b->commands ? b->commands->commands : NULL;
6638 if (!part_of_multiple && l)
6639 {
6640 struct cleanup *script_chain;
6641
6642 annotate_field (9);
6643 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6644 print_command_lines (uiout, l, 4);
6645 do_cleanups (script_chain);
6646 }
6647
6648 if (is_tracepoint (b))
6649 {
6650 struct tracepoint *t = (struct tracepoint *) b;
6651
6652 if (!part_of_multiple && t->pass_count)
6653 {
6654 annotate_field (10);
6655 ui_out_text (uiout, "\tpass count ");
6656 ui_out_field_int (uiout, "pass", t->pass_count);
6657 ui_out_text (uiout, " \n");
6658 }
6659
6660 /* Don't display it when tracepoint or tracepoint location is
6661 pending. */
6662 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6663 {
6664 annotate_field (11);
6665
6666 if (ui_out_is_mi_like_p (uiout))
6667 ui_out_field_string (uiout, "installed",
6668 loc->inserted ? "y" : "n");
6669 else
6670 {
6671 if (loc->inserted)
6672 ui_out_text (uiout, "\t");
6673 else
6674 ui_out_text (uiout, "\tnot ");
6675 ui_out_text (uiout, "installed on target\n");
6676 }
6677 }
6678 }
6679
6680 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6681 {
6682 if (is_watchpoint (b))
6683 {
6684 struct watchpoint *w = (struct watchpoint *) b;
6685
6686 ui_out_field_string (uiout, "original-location", w->exp_string);
6687 }
6688 else if (b->location != NULL
6689 && event_location_to_string (b->location) != NULL)
6690 ui_out_field_string (uiout, "original-location",
6691 event_location_to_string (b->location));
6692 }
6693 }
6694
6695 static void
6696 print_one_breakpoint (struct breakpoint *b,
6697 struct bp_location **last_loc,
6698 int allflag)
6699 {
6700 struct cleanup *bkpt_chain;
6701 struct ui_out *uiout = current_uiout;
6702
6703 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6704
6705 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6706 do_cleanups (bkpt_chain);
6707
6708 /* If this breakpoint has custom print function,
6709 it's already printed. Otherwise, print individual
6710 locations, if any. */
6711 if (b->ops == NULL || b->ops->print_one == NULL)
6712 {
6713 /* If breakpoint has a single location that is disabled, we
6714 print it as if it had several locations, since otherwise it's
6715 hard to represent "breakpoint enabled, location disabled"
6716 situation.
6717
6718 Note that while hardware watchpoints have several locations
6719 internally, that's not a property exposed to user. */
6720 if (b->loc
6721 && !is_hardware_watchpoint (b)
6722 && (b->loc->next || !b->loc->enabled))
6723 {
6724 struct bp_location *loc;
6725 int n = 1;
6726
6727 for (loc = b->loc; loc; loc = loc->next, ++n)
6728 {
6729 struct cleanup *inner2 =
6730 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6731 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6732 do_cleanups (inner2);
6733 }
6734 }
6735 }
6736 }
6737
6738 static int
6739 breakpoint_address_bits (struct breakpoint *b)
6740 {
6741 int print_address_bits = 0;
6742 struct bp_location *loc;
6743
6744 /* Software watchpoints that aren't watching memory don't have an
6745 address to print. */
6746 if (is_no_memory_software_watchpoint (b))
6747 return 0;
6748
6749 for (loc = b->loc; loc; loc = loc->next)
6750 {
6751 int addr_bit;
6752
6753 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6754 if (addr_bit > print_address_bits)
6755 print_address_bits = addr_bit;
6756 }
6757
6758 return print_address_bits;
6759 }
6760
6761 struct captured_breakpoint_query_args
6762 {
6763 int bnum;
6764 };
6765
6766 static int
6767 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6768 {
6769 struct captured_breakpoint_query_args *args
6770 = (struct captured_breakpoint_query_args *) data;
6771 struct breakpoint *b;
6772 struct bp_location *dummy_loc = NULL;
6773
6774 ALL_BREAKPOINTS (b)
6775 {
6776 if (args->bnum == b->number)
6777 {
6778 print_one_breakpoint (b, &dummy_loc, 0);
6779 return GDB_RC_OK;
6780 }
6781 }
6782 return GDB_RC_NONE;
6783 }
6784
6785 enum gdb_rc
6786 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6787 char **error_message)
6788 {
6789 struct captured_breakpoint_query_args args;
6790
6791 args.bnum = bnum;
6792 /* For the moment we don't trust print_one_breakpoint() to not throw
6793 an error. */
6794 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6795 error_message, RETURN_MASK_ALL) < 0)
6796 return GDB_RC_FAIL;
6797 else
6798 return GDB_RC_OK;
6799 }
6800
6801 /* Return true if this breakpoint was set by the user, false if it is
6802 internal or momentary. */
6803
6804 int
6805 user_breakpoint_p (struct breakpoint *b)
6806 {
6807 return b->number > 0;
6808 }
6809
6810 /* See breakpoint.h. */
6811
6812 int
6813 pending_breakpoint_p (struct breakpoint *b)
6814 {
6815 return b->loc == NULL;
6816 }
6817
6818 /* Print information on user settable breakpoint (watchpoint, etc)
6819 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6820 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6821 FILTER is non-NULL, call it on each breakpoint and only include the
6822 ones for which it returns non-zero. Return the total number of
6823 breakpoints listed. */
6824
6825 static int
6826 breakpoint_1 (char *args, int allflag,
6827 int (*filter) (const struct breakpoint *))
6828 {
6829 struct breakpoint *b;
6830 struct bp_location *last_loc = NULL;
6831 int nr_printable_breakpoints;
6832 struct cleanup *bkpttbl_chain;
6833 struct value_print_options opts;
6834 int print_address_bits = 0;
6835 int print_type_col_width = 14;
6836 struct ui_out *uiout = current_uiout;
6837
6838 get_user_print_options (&opts);
6839
6840 /* Compute the number of rows in the table, as well as the size
6841 required for address fields. */
6842 nr_printable_breakpoints = 0;
6843 ALL_BREAKPOINTS (b)
6844 {
6845 /* If we have a filter, only list the breakpoints it accepts. */
6846 if (filter && !filter (b))
6847 continue;
6848
6849 /* If we have an "args" string, it is a list of breakpoints to
6850 accept. Skip the others. */
6851 if (args != NULL && *args != '\0')
6852 {
6853 if (allflag && parse_and_eval_long (args) != b->number)
6854 continue;
6855 if (!allflag && !number_is_in_list (args, b->number))
6856 continue;
6857 }
6858
6859 if (allflag || user_breakpoint_p (b))
6860 {
6861 int addr_bit, type_len;
6862
6863 addr_bit = breakpoint_address_bits (b);
6864 if (addr_bit > print_address_bits)
6865 print_address_bits = addr_bit;
6866
6867 type_len = strlen (bptype_string (b->type));
6868 if (type_len > print_type_col_width)
6869 print_type_col_width = type_len;
6870
6871 nr_printable_breakpoints++;
6872 }
6873 }
6874
6875 if (opts.addressprint)
6876 bkpttbl_chain
6877 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6878 nr_printable_breakpoints,
6879 "BreakpointTable");
6880 else
6881 bkpttbl_chain
6882 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6883 nr_printable_breakpoints,
6884 "BreakpointTable");
6885
6886 if (nr_printable_breakpoints > 0)
6887 annotate_breakpoints_headers ();
6888 if (nr_printable_breakpoints > 0)
6889 annotate_field (0);
6890 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6891 if (nr_printable_breakpoints > 0)
6892 annotate_field (1);
6893 ui_out_table_header (uiout, print_type_col_width, ui_left,
6894 "type", "Type"); /* 2 */
6895 if (nr_printable_breakpoints > 0)
6896 annotate_field (2);
6897 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6898 if (nr_printable_breakpoints > 0)
6899 annotate_field (3);
6900 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6901 if (opts.addressprint)
6902 {
6903 if (nr_printable_breakpoints > 0)
6904 annotate_field (4);
6905 if (print_address_bits <= 32)
6906 ui_out_table_header (uiout, 10, ui_left,
6907 "addr", "Address"); /* 5 */
6908 else
6909 ui_out_table_header (uiout, 18, ui_left,
6910 "addr", "Address"); /* 5 */
6911 }
6912 if (nr_printable_breakpoints > 0)
6913 annotate_field (5);
6914 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6915 ui_out_table_body (uiout);
6916 if (nr_printable_breakpoints > 0)
6917 annotate_breakpoints_table ();
6918
6919 ALL_BREAKPOINTS (b)
6920 {
6921 QUIT;
6922 /* If we have a filter, only list the breakpoints it accepts. */
6923 if (filter && !filter (b))
6924 continue;
6925
6926 /* If we have an "args" string, it is a list of breakpoints to
6927 accept. Skip the others. */
6928
6929 if (args != NULL && *args != '\0')
6930 {
6931 if (allflag) /* maintenance info breakpoint */
6932 {
6933 if (parse_and_eval_long (args) != b->number)
6934 continue;
6935 }
6936 else /* all others */
6937 {
6938 if (!number_is_in_list (args, b->number))
6939 continue;
6940 }
6941 }
6942 /* We only print out user settable breakpoints unless the
6943 allflag is set. */
6944 if (allflag || user_breakpoint_p (b))
6945 print_one_breakpoint (b, &last_loc, allflag);
6946 }
6947
6948 do_cleanups (bkpttbl_chain);
6949
6950 if (nr_printable_breakpoints == 0)
6951 {
6952 /* If there's a filter, let the caller decide how to report
6953 empty list. */
6954 if (!filter)
6955 {
6956 if (args == NULL || *args == '\0')
6957 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6958 else
6959 ui_out_message (uiout, 0,
6960 "No breakpoint or watchpoint matching '%s'.\n",
6961 args);
6962 }
6963 }
6964 else
6965 {
6966 if (last_loc && !server_command)
6967 set_next_address (last_loc->gdbarch, last_loc->address);
6968 }
6969
6970 /* FIXME? Should this be moved up so that it is only called when
6971 there have been breakpoints? */
6972 annotate_breakpoints_table_end ();
6973
6974 return nr_printable_breakpoints;
6975 }
6976
6977 /* Display the value of default-collect in a way that is generally
6978 compatible with the breakpoint list. */
6979
6980 static void
6981 default_collect_info (void)
6982 {
6983 struct ui_out *uiout = current_uiout;
6984
6985 /* If it has no value (which is frequently the case), say nothing; a
6986 message like "No default-collect." gets in user's face when it's
6987 not wanted. */
6988 if (!*default_collect)
6989 return;
6990
6991 /* The following phrase lines up nicely with per-tracepoint collect
6992 actions. */
6993 ui_out_text (uiout, "default collect ");
6994 ui_out_field_string (uiout, "default-collect", default_collect);
6995 ui_out_text (uiout, " \n");
6996 }
6997
6998 static void
6999 breakpoints_info (char *args, int from_tty)
7000 {
7001 breakpoint_1 (args, 0, NULL);
7002
7003 default_collect_info ();
7004 }
7005
7006 static void
7007 watchpoints_info (char *args, int from_tty)
7008 {
7009 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
7010 struct ui_out *uiout = current_uiout;
7011
7012 if (num_printed == 0)
7013 {
7014 if (args == NULL || *args == '\0')
7015 ui_out_message (uiout, 0, "No watchpoints.\n");
7016 else
7017 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
7018 }
7019 }
7020
7021 static void
7022 maintenance_info_breakpoints (char *args, int from_tty)
7023 {
7024 breakpoint_1 (args, 1, NULL);
7025
7026 default_collect_info ();
7027 }
7028
7029 static int
7030 breakpoint_has_pc (struct breakpoint *b,
7031 struct program_space *pspace,
7032 CORE_ADDR pc, struct obj_section *section)
7033 {
7034 struct bp_location *bl = b->loc;
7035
7036 for (; bl; bl = bl->next)
7037 {
7038 if (bl->pspace == pspace
7039 && bl->address == pc
7040 && (!overlay_debugging || bl->section == section))
7041 return 1;
7042 }
7043 return 0;
7044 }
7045
7046 /* Print a message describing any user-breakpoints set at PC. This
7047 concerns with logical breakpoints, so we match program spaces, not
7048 address spaces. */
7049
7050 static void
7051 describe_other_breakpoints (struct gdbarch *gdbarch,
7052 struct program_space *pspace, CORE_ADDR pc,
7053 struct obj_section *section, int thread)
7054 {
7055 int others = 0;
7056 struct breakpoint *b;
7057
7058 ALL_BREAKPOINTS (b)
7059 others += (user_breakpoint_p (b)
7060 && breakpoint_has_pc (b, pspace, pc, section));
7061 if (others > 0)
7062 {
7063 if (others == 1)
7064 printf_filtered (_("Note: breakpoint "));
7065 else /* if (others == ???) */
7066 printf_filtered (_("Note: breakpoints "));
7067 ALL_BREAKPOINTS (b)
7068 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7069 {
7070 others--;
7071 printf_filtered ("%d", b->number);
7072 if (b->thread == -1 && thread != -1)
7073 printf_filtered (" (all threads)");
7074 else if (b->thread != -1)
7075 printf_filtered (" (thread %d)", b->thread);
7076 printf_filtered ("%s%s ",
7077 ((b->enable_state == bp_disabled
7078 || b->enable_state == bp_call_disabled)
7079 ? " (disabled)"
7080 : ""),
7081 (others > 1) ? ","
7082 : ((others == 1) ? " and" : ""));
7083 }
7084 printf_filtered (_("also set at pc "));
7085 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7086 printf_filtered (".\n");
7087 }
7088 }
7089 \f
7090
7091 /* Return true iff it is meaningful to use the address member of
7092 BPT locations. For some breakpoint types, the locations' address members
7093 are irrelevant and it makes no sense to attempt to compare them to other
7094 addresses (or use them for any other purpose either).
7095
7096 More specifically, each of the following breakpoint types will
7097 always have a zero valued location address and we don't want to mark
7098 breakpoints of any of these types to be a duplicate of an actual
7099 breakpoint location at address zero:
7100
7101 bp_watchpoint
7102 bp_catchpoint
7103
7104 */
7105
7106 static int
7107 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7108 {
7109 enum bptype type = bpt->type;
7110
7111 return (type != bp_watchpoint && type != bp_catchpoint);
7112 }
7113
7114 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7115 true if LOC1 and LOC2 represent the same watchpoint location. */
7116
7117 static int
7118 watchpoint_locations_match (struct bp_location *loc1,
7119 struct bp_location *loc2)
7120 {
7121 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7122 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7123
7124 /* Both of them must exist. */
7125 gdb_assert (w1 != NULL);
7126 gdb_assert (w2 != NULL);
7127
7128 /* If the target can evaluate the condition expression in hardware,
7129 then we we need to insert both watchpoints even if they are at
7130 the same place. Otherwise the watchpoint will only trigger when
7131 the condition of whichever watchpoint was inserted evaluates to
7132 true, not giving a chance for GDB to check the condition of the
7133 other watchpoint. */
7134 if ((w1->cond_exp
7135 && target_can_accel_watchpoint_condition (loc1->address,
7136 loc1->length,
7137 loc1->watchpoint_type,
7138 w1->cond_exp.get ()))
7139 || (w2->cond_exp
7140 && target_can_accel_watchpoint_condition (loc2->address,
7141 loc2->length,
7142 loc2->watchpoint_type,
7143 w2->cond_exp.get ())))
7144 return 0;
7145
7146 /* Note that this checks the owner's type, not the location's. In
7147 case the target does not support read watchpoints, but does
7148 support access watchpoints, we'll have bp_read_watchpoint
7149 watchpoints with hw_access locations. Those should be considered
7150 duplicates of hw_read locations. The hw_read locations will
7151 become hw_access locations later. */
7152 return (loc1->owner->type == loc2->owner->type
7153 && loc1->pspace->aspace == loc2->pspace->aspace
7154 && loc1->address == loc2->address
7155 && loc1->length == loc2->length);
7156 }
7157
7158 /* See breakpoint.h. */
7159
7160 int
7161 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7162 struct address_space *aspace2, CORE_ADDR addr2)
7163 {
7164 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7165 || aspace1 == aspace2)
7166 && addr1 == addr2);
7167 }
7168
7169 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7170 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7171 matches ASPACE2. On targets that have global breakpoints, the address
7172 space doesn't really matter. */
7173
7174 static int
7175 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7176 int len1, struct address_space *aspace2,
7177 CORE_ADDR addr2)
7178 {
7179 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7180 || aspace1 == aspace2)
7181 && addr2 >= addr1 && addr2 < addr1 + len1);
7182 }
7183
7184 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7185 a ranged breakpoint. In most targets, a match happens only if ASPACE
7186 matches the breakpoint's address space. On targets that have global
7187 breakpoints, the address space doesn't really matter. */
7188
7189 static int
7190 breakpoint_location_address_match (struct bp_location *bl,
7191 struct address_space *aspace,
7192 CORE_ADDR addr)
7193 {
7194 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7195 aspace, addr)
7196 || (bl->length
7197 && breakpoint_address_match_range (bl->pspace->aspace,
7198 bl->address, bl->length,
7199 aspace, addr)));
7200 }
7201
7202 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7203 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7204 match happens only if ASPACE matches the breakpoint's address
7205 space. On targets that have global breakpoints, the address space
7206 doesn't really matter. */
7207
7208 static int
7209 breakpoint_location_address_range_overlap (struct bp_location *bl,
7210 struct address_space *aspace,
7211 CORE_ADDR addr, int len)
7212 {
7213 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7214 || bl->pspace->aspace == aspace)
7215 {
7216 int bl_len = bl->length != 0 ? bl->length : 1;
7217
7218 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7219 return 1;
7220 }
7221 return 0;
7222 }
7223
7224 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7225 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7226 true, otherwise returns false. */
7227
7228 static int
7229 tracepoint_locations_match (struct bp_location *loc1,
7230 struct bp_location *loc2)
7231 {
7232 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7233 /* Since tracepoint locations are never duplicated with others', tracepoint
7234 locations at the same address of different tracepoints are regarded as
7235 different locations. */
7236 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7237 else
7238 return 0;
7239 }
7240
7241 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7242 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7243 represent the same location. */
7244
7245 static int
7246 breakpoint_locations_match (struct bp_location *loc1,
7247 struct bp_location *loc2)
7248 {
7249 int hw_point1, hw_point2;
7250
7251 /* Both of them must not be in moribund_locations. */
7252 gdb_assert (loc1->owner != NULL);
7253 gdb_assert (loc2->owner != NULL);
7254
7255 hw_point1 = is_hardware_watchpoint (loc1->owner);
7256 hw_point2 = is_hardware_watchpoint (loc2->owner);
7257
7258 if (hw_point1 != hw_point2)
7259 return 0;
7260 else if (hw_point1)
7261 return watchpoint_locations_match (loc1, loc2);
7262 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7263 return tracepoint_locations_match (loc1, loc2);
7264 else
7265 /* We compare bp_location.length in order to cover ranged breakpoints. */
7266 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7267 loc2->pspace->aspace, loc2->address)
7268 && loc1->length == loc2->length);
7269 }
7270
7271 static void
7272 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7273 int bnum, int have_bnum)
7274 {
7275 /* The longest string possibly returned by hex_string_custom
7276 is 50 chars. These must be at least that big for safety. */
7277 char astr1[64];
7278 char astr2[64];
7279
7280 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7281 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7282 if (have_bnum)
7283 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7284 bnum, astr1, astr2);
7285 else
7286 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7287 }
7288
7289 /* Adjust a breakpoint's address to account for architectural
7290 constraints on breakpoint placement. Return the adjusted address.
7291 Note: Very few targets require this kind of adjustment. For most
7292 targets, this function is simply the identity function. */
7293
7294 static CORE_ADDR
7295 adjust_breakpoint_address (struct gdbarch *gdbarch,
7296 CORE_ADDR bpaddr, enum bptype bptype)
7297 {
7298 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7299 {
7300 /* Very few targets need any kind of breakpoint adjustment. */
7301 return bpaddr;
7302 }
7303 else if (bptype == bp_watchpoint
7304 || bptype == bp_hardware_watchpoint
7305 || bptype == bp_read_watchpoint
7306 || bptype == bp_access_watchpoint
7307 || bptype == bp_catchpoint)
7308 {
7309 /* Watchpoints and the various bp_catch_* eventpoints should not
7310 have their addresses modified. */
7311 return bpaddr;
7312 }
7313 else if (bptype == bp_single_step)
7314 {
7315 /* Single-step breakpoints should not have their addresses
7316 modified. If there's any architectural constrain that
7317 applies to this address, then it should have already been
7318 taken into account when the breakpoint was created in the
7319 first place. If we didn't do this, stepping through e.g.,
7320 Thumb-2 IT blocks would break. */
7321 return bpaddr;
7322 }
7323 else
7324 {
7325 CORE_ADDR adjusted_bpaddr;
7326
7327 /* Some targets have architectural constraints on the placement
7328 of breakpoint instructions. Obtain the adjusted address. */
7329 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7330
7331 /* An adjusted breakpoint address can significantly alter
7332 a user's expectations. Print a warning if an adjustment
7333 is required. */
7334 if (adjusted_bpaddr != bpaddr)
7335 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7336
7337 return adjusted_bpaddr;
7338 }
7339 }
7340
7341 void
7342 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7343 struct breakpoint *owner)
7344 {
7345 memset (loc, 0, sizeof (*loc));
7346
7347 gdb_assert (ops != NULL);
7348
7349 loc->ops = ops;
7350 loc->owner = owner;
7351 loc->cond_bytecode = NULL;
7352 loc->shlib_disabled = 0;
7353 loc->enabled = 1;
7354
7355 switch (owner->type)
7356 {
7357 case bp_breakpoint:
7358 case bp_single_step:
7359 case bp_until:
7360 case bp_finish:
7361 case bp_longjmp:
7362 case bp_longjmp_resume:
7363 case bp_longjmp_call_dummy:
7364 case bp_exception:
7365 case bp_exception_resume:
7366 case bp_step_resume:
7367 case bp_hp_step_resume:
7368 case bp_watchpoint_scope:
7369 case bp_call_dummy:
7370 case bp_std_terminate:
7371 case bp_shlib_event:
7372 case bp_thread_event:
7373 case bp_overlay_event:
7374 case bp_jit_event:
7375 case bp_longjmp_master:
7376 case bp_std_terminate_master:
7377 case bp_exception_master:
7378 case bp_gnu_ifunc_resolver:
7379 case bp_gnu_ifunc_resolver_return:
7380 case bp_dprintf:
7381 loc->loc_type = bp_loc_software_breakpoint;
7382 mark_breakpoint_location_modified (loc);
7383 break;
7384 case bp_hardware_breakpoint:
7385 loc->loc_type = bp_loc_hardware_breakpoint;
7386 mark_breakpoint_location_modified (loc);
7387 break;
7388 case bp_hardware_watchpoint:
7389 case bp_read_watchpoint:
7390 case bp_access_watchpoint:
7391 loc->loc_type = bp_loc_hardware_watchpoint;
7392 break;
7393 case bp_watchpoint:
7394 case bp_catchpoint:
7395 case bp_tracepoint:
7396 case bp_fast_tracepoint:
7397 case bp_static_tracepoint:
7398 loc->loc_type = bp_loc_other;
7399 break;
7400 default:
7401 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7402 }
7403
7404 loc->refc = 1;
7405 }
7406
7407 /* Allocate a struct bp_location. */
7408
7409 static struct bp_location *
7410 allocate_bp_location (struct breakpoint *bpt)
7411 {
7412 return bpt->ops->allocate_location (bpt);
7413 }
7414
7415 static void
7416 free_bp_location (struct bp_location *loc)
7417 {
7418 loc->ops->dtor (loc);
7419 delete loc;
7420 }
7421
7422 /* Increment reference count. */
7423
7424 static void
7425 incref_bp_location (struct bp_location *bl)
7426 {
7427 ++bl->refc;
7428 }
7429
7430 /* Decrement reference count. If the reference count reaches 0,
7431 destroy the bp_location. Sets *BLP to NULL. */
7432
7433 static void
7434 decref_bp_location (struct bp_location **blp)
7435 {
7436 gdb_assert ((*blp)->refc > 0);
7437
7438 if (--(*blp)->refc == 0)
7439 free_bp_location (*blp);
7440 *blp = NULL;
7441 }
7442
7443 /* Add breakpoint B at the end of the global breakpoint chain. */
7444
7445 static void
7446 add_to_breakpoint_chain (struct breakpoint *b)
7447 {
7448 struct breakpoint *b1;
7449
7450 /* Add this breakpoint to the end of the chain so that a list of
7451 breakpoints will come out in order of increasing numbers. */
7452
7453 b1 = breakpoint_chain;
7454 if (b1 == 0)
7455 breakpoint_chain = b;
7456 else
7457 {
7458 while (b1->next)
7459 b1 = b1->next;
7460 b1->next = b;
7461 }
7462 }
7463
7464 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7465
7466 static void
7467 init_raw_breakpoint_without_location (struct breakpoint *b,
7468 struct gdbarch *gdbarch,
7469 enum bptype bptype,
7470 const struct breakpoint_ops *ops)
7471 {
7472 memset (b, 0, sizeof (*b));
7473
7474 gdb_assert (ops != NULL);
7475
7476 b->ops = ops;
7477 b->type = bptype;
7478 b->gdbarch = gdbarch;
7479 b->language = current_language->la_language;
7480 b->input_radix = input_radix;
7481 b->thread = -1;
7482 b->enable_state = bp_enabled;
7483 b->next = 0;
7484 b->silent = 0;
7485 b->ignore_count = 0;
7486 b->commands = NULL;
7487 b->frame_id = null_frame_id;
7488 b->condition_not_parsed = 0;
7489 b->py_bp_object = NULL;
7490 b->related_breakpoint = b;
7491 b->location = NULL;
7492 }
7493
7494 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7495 that has type BPTYPE and has no locations as yet. */
7496
7497 static struct breakpoint *
7498 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7499 enum bptype bptype,
7500 const struct breakpoint_ops *ops)
7501 {
7502 struct breakpoint *b = new breakpoint ();
7503
7504 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7505 add_to_breakpoint_chain (b);
7506 return b;
7507 }
7508
7509 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7510 resolutions should be made as the user specified the location explicitly
7511 enough. */
7512
7513 static void
7514 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7515 {
7516 gdb_assert (loc->owner != NULL);
7517
7518 if (loc->owner->type == bp_breakpoint
7519 || loc->owner->type == bp_hardware_breakpoint
7520 || is_tracepoint (loc->owner))
7521 {
7522 int is_gnu_ifunc;
7523 const char *function_name;
7524 CORE_ADDR func_addr;
7525
7526 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7527 &func_addr, NULL, &is_gnu_ifunc);
7528
7529 if (is_gnu_ifunc && !explicit_loc)
7530 {
7531 struct breakpoint *b = loc->owner;
7532
7533 gdb_assert (loc->pspace == current_program_space);
7534 if (gnu_ifunc_resolve_name (function_name,
7535 &loc->requested_address))
7536 {
7537 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7538 loc->address = adjust_breakpoint_address (loc->gdbarch,
7539 loc->requested_address,
7540 b->type);
7541 }
7542 else if (b->type == bp_breakpoint && b->loc == loc
7543 && loc->next == NULL && b->related_breakpoint == b)
7544 {
7545 /* Create only the whole new breakpoint of this type but do not
7546 mess more complicated breakpoints with multiple locations. */
7547 b->type = bp_gnu_ifunc_resolver;
7548 /* Remember the resolver's address for use by the return
7549 breakpoint. */
7550 loc->related_address = func_addr;
7551 }
7552 }
7553
7554 if (function_name)
7555 loc->function_name = xstrdup (function_name);
7556 }
7557 }
7558
7559 /* Attempt to determine architecture of location identified by SAL. */
7560 struct gdbarch *
7561 get_sal_arch (struct symtab_and_line sal)
7562 {
7563 if (sal.section)
7564 return get_objfile_arch (sal.section->objfile);
7565 if (sal.symtab)
7566 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7567
7568 return NULL;
7569 }
7570
7571 /* Low level routine for partially initializing a breakpoint of type
7572 BPTYPE. The newly created breakpoint's address, section, source
7573 file name, and line number are provided by SAL.
7574
7575 It is expected that the caller will complete the initialization of
7576 the newly created breakpoint struct as well as output any status
7577 information regarding the creation of a new breakpoint. */
7578
7579 static void
7580 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7581 struct symtab_and_line sal, enum bptype bptype,
7582 const struct breakpoint_ops *ops)
7583 {
7584 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7585
7586 add_location_to_breakpoint (b, &sal);
7587
7588 if (bptype != bp_catchpoint)
7589 gdb_assert (sal.pspace != NULL);
7590
7591 /* Store the program space that was used to set the breakpoint,
7592 except for ordinary breakpoints, which are independent of the
7593 program space. */
7594 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7595 b->pspace = sal.pspace;
7596 }
7597
7598 /* set_raw_breakpoint is a low level routine for allocating and
7599 partially initializing a breakpoint of type BPTYPE. The newly
7600 created breakpoint's address, section, source file name, and line
7601 number are provided by SAL. The newly created and partially
7602 initialized breakpoint is added to the breakpoint chain and
7603 is also returned as the value of this function.
7604
7605 It is expected that the caller will complete the initialization of
7606 the newly created breakpoint struct as well as output any status
7607 information regarding the creation of a new breakpoint. In
7608 particular, set_raw_breakpoint does NOT set the breakpoint
7609 number! Care should be taken to not allow an error to occur
7610 prior to completing the initialization of the breakpoint. If this
7611 should happen, a bogus breakpoint will be left on the chain. */
7612
7613 struct breakpoint *
7614 set_raw_breakpoint (struct gdbarch *gdbarch,
7615 struct symtab_and_line sal, enum bptype bptype,
7616 const struct breakpoint_ops *ops)
7617 {
7618 struct breakpoint *b = new breakpoint ();
7619
7620 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7621 add_to_breakpoint_chain (b);
7622 return b;
7623 }
7624
7625 /* Call this routine when stepping and nexting to enable a breakpoint
7626 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7627 initiated the operation. */
7628
7629 void
7630 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7631 {
7632 struct breakpoint *b, *b_tmp;
7633 int thread = tp->global_num;
7634
7635 /* To avoid having to rescan all objfile symbols at every step,
7636 we maintain a list of continually-inserted but always disabled
7637 longjmp "master" breakpoints. Here, we simply create momentary
7638 clones of those and enable them for the requested thread. */
7639 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7640 if (b->pspace == current_program_space
7641 && (b->type == bp_longjmp_master
7642 || b->type == bp_exception_master))
7643 {
7644 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7645 struct breakpoint *clone;
7646
7647 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7648 after their removal. */
7649 clone = momentary_breakpoint_from_master (b, type,
7650 &longjmp_breakpoint_ops, 1);
7651 clone->thread = thread;
7652 }
7653
7654 tp->initiating_frame = frame;
7655 }
7656
7657 /* Delete all longjmp breakpoints from THREAD. */
7658 void
7659 delete_longjmp_breakpoint (int thread)
7660 {
7661 struct breakpoint *b, *b_tmp;
7662
7663 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7664 if (b->type == bp_longjmp || b->type == bp_exception)
7665 {
7666 if (b->thread == thread)
7667 delete_breakpoint (b);
7668 }
7669 }
7670
7671 void
7672 delete_longjmp_breakpoint_at_next_stop (int thread)
7673 {
7674 struct breakpoint *b, *b_tmp;
7675
7676 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7677 if (b->type == bp_longjmp || b->type == bp_exception)
7678 {
7679 if (b->thread == thread)
7680 b->disposition = disp_del_at_next_stop;
7681 }
7682 }
7683
7684 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7685 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7686 pointer to any of them. Return NULL if this system cannot place longjmp
7687 breakpoints. */
7688
7689 struct breakpoint *
7690 set_longjmp_breakpoint_for_call_dummy (void)
7691 {
7692 struct breakpoint *b, *retval = NULL;
7693
7694 ALL_BREAKPOINTS (b)
7695 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7696 {
7697 struct breakpoint *new_b;
7698
7699 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7700 &momentary_breakpoint_ops,
7701 1);
7702 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7703
7704 /* Link NEW_B into the chain of RETVAL breakpoints. */
7705
7706 gdb_assert (new_b->related_breakpoint == new_b);
7707 if (retval == NULL)
7708 retval = new_b;
7709 new_b->related_breakpoint = retval;
7710 while (retval->related_breakpoint != new_b->related_breakpoint)
7711 retval = retval->related_breakpoint;
7712 retval->related_breakpoint = new_b;
7713 }
7714
7715 return retval;
7716 }
7717
7718 /* Verify all existing dummy frames and their associated breakpoints for
7719 TP. Remove those which can no longer be found in the current frame
7720 stack.
7721
7722 You should call this function only at places where it is safe to currently
7723 unwind the whole stack. Failed stack unwind would discard live dummy
7724 frames. */
7725
7726 void
7727 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7728 {
7729 struct breakpoint *b, *b_tmp;
7730
7731 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7732 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7733 {
7734 struct breakpoint *dummy_b = b->related_breakpoint;
7735
7736 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7737 dummy_b = dummy_b->related_breakpoint;
7738 if (dummy_b->type != bp_call_dummy
7739 || frame_find_by_id (dummy_b->frame_id) != NULL)
7740 continue;
7741
7742 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7743
7744 while (b->related_breakpoint != b)
7745 {
7746 if (b_tmp == b->related_breakpoint)
7747 b_tmp = b->related_breakpoint->next;
7748 delete_breakpoint (b->related_breakpoint);
7749 }
7750 delete_breakpoint (b);
7751 }
7752 }
7753
7754 void
7755 enable_overlay_breakpoints (void)
7756 {
7757 struct breakpoint *b;
7758
7759 ALL_BREAKPOINTS (b)
7760 if (b->type == bp_overlay_event)
7761 {
7762 b->enable_state = bp_enabled;
7763 update_global_location_list (UGLL_MAY_INSERT);
7764 overlay_events_enabled = 1;
7765 }
7766 }
7767
7768 void
7769 disable_overlay_breakpoints (void)
7770 {
7771 struct breakpoint *b;
7772
7773 ALL_BREAKPOINTS (b)
7774 if (b->type == bp_overlay_event)
7775 {
7776 b->enable_state = bp_disabled;
7777 update_global_location_list (UGLL_DONT_INSERT);
7778 overlay_events_enabled = 0;
7779 }
7780 }
7781
7782 /* Set an active std::terminate breakpoint for each std::terminate
7783 master breakpoint. */
7784 void
7785 set_std_terminate_breakpoint (void)
7786 {
7787 struct breakpoint *b, *b_tmp;
7788
7789 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7790 if (b->pspace == current_program_space
7791 && b->type == bp_std_terminate_master)
7792 {
7793 momentary_breakpoint_from_master (b, bp_std_terminate,
7794 &momentary_breakpoint_ops, 1);
7795 }
7796 }
7797
7798 /* Delete all the std::terminate breakpoints. */
7799 void
7800 delete_std_terminate_breakpoint (void)
7801 {
7802 struct breakpoint *b, *b_tmp;
7803
7804 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7805 if (b->type == bp_std_terminate)
7806 delete_breakpoint (b);
7807 }
7808
7809 struct breakpoint *
7810 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7811 {
7812 struct breakpoint *b;
7813
7814 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7815 &internal_breakpoint_ops);
7816
7817 b->enable_state = bp_enabled;
7818 /* location has to be used or breakpoint_re_set will delete me. */
7819 b->location = new_address_location (b->loc->address, NULL, 0);
7820
7821 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7822
7823 return b;
7824 }
7825
7826 struct lang_and_radix
7827 {
7828 enum language lang;
7829 int radix;
7830 };
7831
7832 /* Create a breakpoint for JIT code registration and unregistration. */
7833
7834 struct breakpoint *
7835 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7836 {
7837 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7838 &internal_breakpoint_ops);
7839 }
7840
7841 /* Remove JIT code registration and unregistration breakpoint(s). */
7842
7843 void
7844 remove_jit_event_breakpoints (void)
7845 {
7846 struct breakpoint *b, *b_tmp;
7847
7848 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7849 if (b->type == bp_jit_event
7850 && b->loc->pspace == current_program_space)
7851 delete_breakpoint (b);
7852 }
7853
7854 void
7855 remove_solib_event_breakpoints (void)
7856 {
7857 struct breakpoint *b, *b_tmp;
7858
7859 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7860 if (b->type == bp_shlib_event
7861 && b->loc->pspace == current_program_space)
7862 delete_breakpoint (b);
7863 }
7864
7865 /* See breakpoint.h. */
7866
7867 void
7868 remove_solib_event_breakpoints_at_next_stop (void)
7869 {
7870 struct breakpoint *b, *b_tmp;
7871
7872 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7873 if (b->type == bp_shlib_event
7874 && b->loc->pspace == current_program_space)
7875 b->disposition = disp_del_at_next_stop;
7876 }
7877
7878 /* Helper for create_solib_event_breakpoint /
7879 create_and_insert_solib_event_breakpoint. Allows specifying which
7880 INSERT_MODE to pass through to update_global_location_list. */
7881
7882 static struct breakpoint *
7883 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7884 enum ugll_insert_mode insert_mode)
7885 {
7886 struct breakpoint *b;
7887
7888 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7889 &internal_breakpoint_ops);
7890 update_global_location_list_nothrow (insert_mode);
7891 return b;
7892 }
7893
7894 struct breakpoint *
7895 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7896 {
7897 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7898 }
7899
7900 /* See breakpoint.h. */
7901
7902 struct breakpoint *
7903 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7904 {
7905 struct breakpoint *b;
7906
7907 /* Explicitly tell update_global_location_list to insert
7908 locations. */
7909 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7910 if (!b->loc->inserted)
7911 {
7912 delete_breakpoint (b);
7913 return NULL;
7914 }
7915 return b;
7916 }
7917
7918 /* Disable any breakpoints that are on code in shared libraries. Only
7919 apply to enabled breakpoints, disabled ones can just stay disabled. */
7920
7921 void
7922 disable_breakpoints_in_shlibs (void)
7923 {
7924 struct bp_location *loc, **locp_tmp;
7925
7926 ALL_BP_LOCATIONS (loc, locp_tmp)
7927 {
7928 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7929 struct breakpoint *b = loc->owner;
7930
7931 /* We apply the check to all breakpoints, including disabled for
7932 those with loc->duplicate set. This is so that when breakpoint
7933 becomes enabled, or the duplicate is removed, gdb will try to
7934 insert all breakpoints. If we don't set shlib_disabled here,
7935 we'll try to insert those breakpoints and fail. */
7936 if (((b->type == bp_breakpoint)
7937 || (b->type == bp_jit_event)
7938 || (b->type == bp_hardware_breakpoint)
7939 || (is_tracepoint (b)))
7940 && loc->pspace == current_program_space
7941 && !loc->shlib_disabled
7942 && solib_name_from_address (loc->pspace, loc->address)
7943 )
7944 {
7945 loc->shlib_disabled = 1;
7946 }
7947 }
7948 }
7949
7950 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7951 notification of unloaded_shlib. Only apply to enabled breakpoints,
7952 disabled ones can just stay disabled. */
7953
7954 static void
7955 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7956 {
7957 struct bp_location *loc, **locp_tmp;
7958 int disabled_shlib_breaks = 0;
7959
7960 /* SunOS a.out shared libraries are always mapped, so do not
7961 disable breakpoints; they will only be reported as unloaded
7962 through clear_solib when GDB discards its shared library
7963 list. See clear_solib for more information. */
7964 if (exec_bfd != NULL
7965 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7966 return;
7967
7968 ALL_BP_LOCATIONS (loc, locp_tmp)
7969 {
7970 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7971 struct breakpoint *b = loc->owner;
7972
7973 if (solib->pspace == loc->pspace
7974 && !loc->shlib_disabled
7975 && (((b->type == bp_breakpoint
7976 || b->type == bp_jit_event
7977 || b->type == bp_hardware_breakpoint)
7978 && (loc->loc_type == bp_loc_hardware_breakpoint
7979 || loc->loc_type == bp_loc_software_breakpoint))
7980 || is_tracepoint (b))
7981 && solib_contains_address_p (solib, loc->address))
7982 {
7983 loc->shlib_disabled = 1;
7984 /* At this point, we cannot rely on remove_breakpoint
7985 succeeding so we must mark the breakpoint as not inserted
7986 to prevent future errors occurring in remove_breakpoints. */
7987 loc->inserted = 0;
7988
7989 /* This may cause duplicate notifications for the same breakpoint. */
7990 observer_notify_breakpoint_modified (b);
7991
7992 if (!disabled_shlib_breaks)
7993 {
7994 target_terminal_ours_for_output ();
7995 warning (_("Temporarily disabling breakpoints "
7996 "for unloaded shared library \"%s\""),
7997 solib->so_name);
7998 }
7999 disabled_shlib_breaks = 1;
8000 }
8001 }
8002 }
8003
8004 /* Disable any breakpoints and tracepoints in OBJFILE upon
8005 notification of free_objfile. Only apply to enabled breakpoints,
8006 disabled ones can just stay disabled. */
8007
8008 static void
8009 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
8010 {
8011 struct breakpoint *b;
8012
8013 if (objfile == NULL)
8014 return;
8015
8016 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
8017 managed by the user with add-symbol-file/remove-symbol-file.
8018 Similarly to how breakpoints in shared libraries are handled in
8019 response to "nosharedlibrary", mark breakpoints in such modules
8020 shlib_disabled so they end up uninserted on the next global
8021 location list update. Shared libraries not loaded by the user
8022 aren't handled here -- they're already handled in
8023 disable_breakpoints_in_unloaded_shlib, called by solib.c's
8024 solib_unloaded observer. We skip objfiles that are not
8025 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
8026 main objfile). */
8027 if ((objfile->flags & OBJF_SHARED) == 0
8028 || (objfile->flags & OBJF_USERLOADED) == 0)
8029 return;
8030
8031 ALL_BREAKPOINTS (b)
8032 {
8033 struct bp_location *loc;
8034 int bp_modified = 0;
8035
8036 if (!is_breakpoint (b) && !is_tracepoint (b))
8037 continue;
8038
8039 for (loc = b->loc; loc != NULL; loc = loc->next)
8040 {
8041 CORE_ADDR loc_addr = loc->address;
8042
8043 if (loc->loc_type != bp_loc_hardware_breakpoint
8044 && loc->loc_type != bp_loc_software_breakpoint)
8045 continue;
8046
8047 if (loc->shlib_disabled != 0)
8048 continue;
8049
8050 if (objfile->pspace != loc->pspace)
8051 continue;
8052
8053 if (loc->loc_type != bp_loc_hardware_breakpoint
8054 && loc->loc_type != bp_loc_software_breakpoint)
8055 continue;
8056
8057 if (is_addr_in_objfile (loc_addr, objfile))
8058 {
8059 loc->shlib_disabled = 1;
8060 /* At this point, we don't know whether the object was
8061 unmapped from the inferior or not, so leave the
8062 inserted flag alone. We'll handle failure to
8063 uninsert quietly, in case the object was indeed
8064 unmapped. */
8065
8066 mark_breakpoint_location_modified (loc);
8067
8068 bp_modified = 1;
8069 }
8070 }
8071
8072 if (bp_modified)
8073 observer_notify_breakpoint_modified (b);
8074 }
8075 }
8076
8077 /* FORK & VFORK catchpoints. */
8078
8079 /* An instance of this type is used to represent a fork or vfork
8080 catchpoint. It includes a "struct breakpoint" as a kind of base
8081 class; users downcast to "struct breakpoint *" when needed. A
8082 breakpoint is really of this type iff its ops pointer points to
8083 CATCH_FORK_BREAKPOINT_OPS. */
8084
8085 struct fork_catchpoint
8086 {
8087 /* The base class. */
8088 struct breakpoint base;
8089
8090 /* Process id of a child process whose forking triggered this
8091 catchpoint. This field is only valid immediately after this
8092 catchpoint has triggered. */
8093 ptid_t forked_inferior_pid;
8094 };
8095
8096 /* Implement the "insert" breakpoint_ops method for fork
8097 catchpoints. */
8098
8099 static int
8100 insert_catch_fork (struct bp_location *bl)
8101 {
8102 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8103 }
8104
8105 /* Implement the "remove" breakpoint_ops method for fork
8106 catchpoints. */
8107
8108 static int
8109 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8110 {
8111 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8112 }
8113
8114 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8115 catchpoints. */
8116
8117 static int
8118 breakpoint_hit_catch_fork (const struct bp_location *bl,
8119 struct address_space *aspace, CORE_ADDR bp_addr,
8120 const struct target_waitstatus *ws)
8121 {
8122 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8123
8124 if (ws->kind != TARGET_WAITKIND_FORKED)
8125 return 0;
8126
8127 c->forked_inferior_pid = ws->value.related_pid;
8128 return 1;
8129 }
8130
8131 /* Implement the "print_it" breakpoint_ops method for fork
8132 catchpoints. */
8133
8134 static enum print_stop_action
8135 print_it_catch_fork (bpstat bs)
8136 {
8137 struct ui_out *uiout = current_uiout;
8138 struct breakpoint *b = bs->breakpoint_at;
8139 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8140
8141 annotate_catchpoint (b->number);
8142 maybe_print_thread_hit_breakpoint (uiout);
8143 if (b->disposition == disp_del)
8144 ui_out_text (uiout, "Temporary catchpoint ");
8145 else
8146 ui_out_text (uiout, "Catchpoint ");
8147 if (ui_out_is_mi_like_p (uiout))
8148 {
8149 ui_out_field_string (uiout, "reason",
8150 async_reason_lookup (EXEC_ASYNC_FORK));
8151 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8152 }
8153 ui_out_field_int (uiout, "bkptno", b->number);
8154 ui_out_text (uiout, " (forked process ");
8155 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8156 ui_out_text (uiout, "), ");
8157 return PRINT_SRC_AND_LOC;
8158 }
8159
8160 /* Implement the "print_one" breakpoint_ops method for fork
8161 catchpoints. */
8162
8163 static void
8164 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8165 {
8166 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8167 struct value_print_options opts;
8168 struct ui_out *uiout = current_uiout;
8169
8170 get_user_print_options (&opts);
8171
8172 /* Field 4, the address, is omitted (which makes the columns not
8173 line up too nicely with the headers, but the effect is relatively
8174 readable). */
8175 if (opts.addressprint)
8176 ui_out_field_skip (uiout, "addr");
8177 annotate_field (5);
8178 ui_out_text (uiout, "fork");
8179 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8180 {
8181 ui_out_text (uiout, ", process ");
8182 ui_out_field_int (uiout, "what",
8183 ptid_get_pid (c->forked_inferior_pid));
8184 ui_out_spaces (uiout, 1);
8185 }
8186
8187 if (ui_out_is_mi_like_p (uiout))
8188 ui_out_field_string (uiout, "catch-type", "fork");
8189 }
8190
8191 /* Implement the "print_mention" breakpoint_ops method for fork
8192 catchpoints. */
8193
8194 static void
8195 print_mention_catch_fork (struct breakpoint *b)
8196 {
8197 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8198 }
8199
8200 /* Implement the "print_recreate" breakpoint_ops method for fork
8201 catchpoints. */
8202
8203 static void
8204 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8205 {
8206 fprintf_unfiltered (fp, "catch fork");
8207 print_recreate_thread (b, fp);
8208 }
8209
8210 /* The breakpoint_ops structure to be used in fork catchpoints. */
8211
8212 static struct breakpoint_ops catch_fork_breakpoint_ops;
8213
8214 /* Implement the "insert" breakpoint_ops method for vfork
8215 catchpoints. */
8216
8217 static int
8218 insert_catch_vfork (struct bp_location *bl)
8219 {
8220 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8221 }
8222
8223 /* Implement the "remove" breakpoint_ops method for vfork
8224 catchpoints. */
8225
8226 static int
8227 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8228 {
8229 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8230 }
8231
8232 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8233 catchpoints. */
8234
8235 static int
8236 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8237 struct address_space *aspace, CORE_ADDR bp_addr,
8238 const struct target_waitstatus *ws)
8239 {
8240 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8241
8242 if (ws->kind != TARGET_WAITKIND_VFORKED)
8243 return 0;
8244
8245 c->forked_inferior_pid = ws->value.related_pid;
8246 return 1;
8247 }
8248
8249 /* Implement the "print_it" breakpoint_ops method for vfork
8250 catchpoints. */
8251
8252 static enum print_stop_action
8253 print_it_catch_vfork (bpstat bs)
8254 {
8255 struct ui_out *uiout = current_uiout;
8256 struct breakpoint *b = bs->breakpoint_at;
8257 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8258
8259 annotate_catchpoint (b->number);
8260 maybe_print_thread_hit_breakpoint (uiout);
8261 if (b->disposition == disp_del)
8262 ui_out_text (uiout, "Temporary catchpoint ");
8263 else
8264 ui_out_text (uiout, "Catchpoint ");
8265 if (ui_out_is_mi_like_p (uiout))
8266 {
8267 ui_out_field_string (uiout, "reason",
8268 async_reason_lookup (EXEC_ASYNC_VFORK));
8269 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8270 }
8271 ui_out_field_int (uiout, "bkptno", b->number);
8272 ui_out_text (uiout, " (vforked process ");
8273 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8274 ui_out_text (uiout, "), ");
8275 return PRINT_SRC_AND_LOC;
8276 }
8277
8278 /* Implement the "print_one" breakpoint_ops method for vfork
8279 catchpoints. */
8280
8281 static void
8282 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8283 {
8284 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8285 struct value_print_options opts;
8286 struct ui_out *uiout = current_uiout;
8287
8288 get_user_print_options (&opts);
8289 /* Field 4, the address, is omitted (which makes the columns not
8290 line up too nicely with the headers, but the effect is relatively
8291 readable). */
8292 if (opts.addressprint)
8293 ui_out_field_skip (uiout, "addr");
8294 annotate_field (5);
8295 ui_out_text (uiout, "vfork");
8296 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8297 {
8298 ui_out_text (uiout, ", process ");
8299 ui_out_field_int (uiout, "what",
8300 ptid_get_pid (c->forked_inferior_pid));
8301 ui_out_spaces (uiout, 1);
8302 }
8303
8304 if (ui_out_is_mi_like_p (uiout))
8305 ui_out_field_string (uiout, "catch-type", "vfork");
8306 }
8307
8308 /* Implement the "print_mention" breakpoint_ops method for vfork
8309 catchpoints. */
8310
8311 static void
8312 print_mention_catch_vfork (struct breakpoint *b)
8313 {
8314 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8315 }
8316
8317 /* Implement the "print_recreate" breakpoint_ops method for vfork
8318 catchpoints. */
8319
8320 static void
8321 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8322 {
8323 fprintf_unfiltered (fp, "catch vfork");
8324 print_recreate_thread (b, fp);
8325 }
8326
8327 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8328
8329 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8330
8331 /* An instance of this type is used to represent an solib catchpoint.
8332 It includes a "struct breakpoint" as a kind of base class; users
8333 downcast to "struct breakpoint *" when needed. A breakpoint is
8334 really of this type iff its ops pointer points to
8335 CATCH_SOLIB_BREAKPOINT_OPS. */
8336
8337 struct solib_catchpoint
8338 {
8339 /* The base class. */
8340 struct breakpoint base;
8341
8342 /* True for "catch load", false for "catch unload". */
8343 unsigned char is_load;
8344
8345 /* Regular expression to match, if any. COMPILED is only valid when
8346 REGEX is non-NULL. */
8347 char *regex;
8348 regex_t compiled;
8349 };
8350
8351 static void
8352 dtor_catch_solib (struct breakpoint *b)
8353 {
8354 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8355
8356 if (self->regex)
8357 regfree (&self->compiled);
8358 xfree (self->regex);
8359
8360 base_breakpoint_ops.dtor (b);
8361 }
8362
8363 static int
8364 insert_catch_solib (struct bp_location *ignore)
8365 {
8366 return 0;
8367 }
8368
8369 static int
8370 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8371 {
8372 return 0;
8373 }
8374
8375 static int
8376 breakpoint_hit_catch_solib (const struct bp_location *bl,
8377 struct address_space *aspace,
8378 CORE_ADDR bp_addr,
8379 const struct target_waitstatus *ws)
8380 {
8381 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8382 struct breakpoint *other;
8383
8384 if (ws->kind == TARGET_WAITKIND_LOADED)
8385 return 1;
8386
8387 ALL_BREAKPOINTS (other)
8388 {
8389 struct bp_location *other_bl;
8390
8391 if (other == bl->owner)
8392 continue;
8393
8394 if (other->type != bp_shlib_event)
8395 continue;
8396
8397 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8398 continue;
8399
8400 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8401 {
8402 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8403 return 1;
8404 }
8405 }
8406
8407 return 0;
8408 }
8409
8410 static void
8411 check_status_catch_solib (struct bpstats *bs)
8412 {
8413 struct solib_catchpoint *self
8414 = (struct solib_catchpoint *) bs->breakpoint_at;
8415 int ix;
8416
8417 if (self->is_load)
8418 {
8419 struct so_list *iter;
8420
8421 for (ix = 0;
8422 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8423 ix, iter);
8424 ++ix)
8425 {
8426 if (!self->regex
8427 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8428 return;
8429 }
8430 }
8431 else
8432 {
8433 char *iter;
8434
8435 for (ix = 0;
8436 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8437 ix, iter);
8438 ++ix)
8439 {
8440 if (!self->regex
8441 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8442 return;
8443 }
8444 }
8445
8446 bs->stop = 0;
8447 bs->print_it = print_it_noop;
8448 }
8449
8450 static enum print_stop_action
8451 print_it_catch_solib (bpstat bs)
8452 {
8453 struct breakpoint *b = bs->breakpoint_at;
8454 struct ui_out *uiout = current_uiout;
8455
8456 annotate_catchpoint (b->number);
8457 maybe_print_thread_hit_breakpoint (uiout);
8458 if (b->disposition == disp_del)
8459 ui_out_text (uiout, "Temporary catchpoint ");
8460 else
8461 ui_out_text (uiout, "Catchpoint ");
8462 ui_out_field_int (uiout, "bkptno", b->number);
8463 ui_out_text (uiout, "\n");
8464 if (ui_out_is_mi_like_p (uiout))
8465 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8466 print_solib_event (1);
8467 return PRINT_SRC_AND_LOC;
8468 }
8469
8470 static void
8471 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8472 {
8473 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8474 struct value_print_options opts;
8475 struct ui_out *uiout = current_uiout;
8476 char *msg;
8477
8478 get_user_print_options (&opts);
8479 /* Field 4, the address, is omitted (which makes the columns not
8480 line up too nicely with the headers, but the effect is relatively
8481 readable). */
8482 if (opts.addressprint)
8483 {
8484 annotate_field (4);
8485 ui_out_field_skip (uiout, "addr");
8486 }
8487
8488 annotate_field (5);
8489 if (self->is_load)
8490 {
8491 if (self->regex)
8492 msg = xstrprintf (_("load of library matching %s"), self->regex);
8493 else
8494 msg = xstrdup (_("load of library"));
8495 }
8496 else
8497 {
8498 if (self->regex)
8499 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8500 else
8501 msg = xstrdup (_("unload of library"));
8502 }
8503 ui_out_field_string (uiout, "what", msg);
8504 xfree (msg);
8505
8506 if (ui_out_is_mi_like_p (uiout))
8507 ui_out_field_string (uiout, "catch-type",
8508 self->is_load ? "load" : "unload");
8509 }
8510
8511 static void
8512 print_mention_catch_solib (struct breakpoint *b)
8513 {
8514 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8515
8516 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8517 self->is_load ? "load" : "unload");
8518 }
8519
8520 static void
8521 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8522 {
8523 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8524
8525 fprintf_unfiltered (fp, "%s %s",
8526 b->disposition == disp_del ? "tcatch" : "catch",
8527 self->is_load ? "load" : "unload");
8528 if (self->regex)
8529 fprintf_unfiltered (fp, " %s", self->regex);
8530 fprintf_unfiltered (fp, "\n");
8531 }
8532
8533 static struct breakpoint_ops catch_solib_breakpoint_ops;
8534
8535 /* Shared helper function (MI and CLI) for creating and installing
8536 a shared object event catchpoint. If IS_LOAD is non-zero then
8537 the events to be caught are load events, otherwise they are
8538 unload events. If IS_TEMP is non-zero the catchpoint is a
8539 temporary one. If ENABLED is non-zero the catchpoint is
8540 created in an enabled state. */
8541
8542 void
8543 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8544 {
8545 struct solib_catchpoint *c;
8546 struct gdbarch *gdbarch = get_current_arch ();
8547 struct cleanup *cleanup;
8548
8549 if (!arg)
8550 arg = "";
8551 arg = skip_spaces (arg);
8552
8553 c = new solib_catchpoint ();
8554 cleanup = make_cleanup (xfree, c);
8555
8556 if (*arg != '\0')
8557 {
8558 int errcode;
8559
8560 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8561 if (errcode != 0)
8562 {
8563 char *err = get_regcomp_error (errcode, &c->compiled);
8564
8565 make_cleanup (xfree, err);
8566 error (_("Invalid regexp (%s): %s"), err, arg);
8567 }
8568 c->regex = xstrdup (arg);
8569 }
8570
8571 c->is_load = is_load;
8572 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8573 &catch_solib_breakpoint_ops);
8574
8575 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8576
8577 discard_cleanups (cleanup);
8578 install_breakpoint (0, &c->base, 1);
8579 }
8580
8581 /* A helper function that does all the work for "catch load" and
8582 "catch unload". */
8583
8584 static void
8585 catch_load_or_unload (char *arg, int from_tty, int is_load,
8586 struct cmd_list_element *command)
8587 {
8588 int tempflag;
8589 const int enabled = 1;
8590
8591 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8592
8593 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8594 }
8595
8596 static void
8597 catch_load_command_1 (char *arg, int from_tty,
8598 struct cmd_list_element *command)
8599 {
8600 catch_load_or_unload (arg, from_tty, 1, command);
8601 }
8602
8603 static void
8604 catch_unload_command_1 (char *arg, int from_tty,
8605 struct cmd_list_element *command)
8606 {
8607 catch_load_or_unload (arg, from_tty, 0, command);
8608 }
8609
8610 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8611 is non-zero, then make the breakpoint temporary. If COND_STRING is
8612 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8613 the breakpoint_ops structure associated to the catchpoint. */
8614
8615 void
8616 init_catchpoint (struct breakpoint *b,
8617 struct gdbarch *gdbarch, int tempflag,
8618 char *cond_string,
8619 const struct breakpoint_ops *ops)
8620 {
8621 struct symtab_and_line sal;
8622
8623 init_sal (&sal);
8624 sal.pspace = current_program_space;
8625
8626 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8627
8628 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8629 b->disposition = tempflag ? disp_del : disp_donttouch;
8630 }
8631
8632 void
8633 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8634 {
8635 add_to_breakpoint_chain (b);
8636 set_breakpoint_number (internal, b);
8637 if (is_tracepoint (b))
8638 set_tracepoint_count (breakpoint_count);
8639 if (!internal)
8640 mention (b);
8641 observer_notify_breakpoint_created (b);
8642
8643 if (update_gll)
8644 update_global_location_list (UGLL_MAY_INSERT);
8645 }
8646
8647 static void
8648 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8649 int tempflag, char *cond_string,
8650 const struct breakpoint_ops *ops)
8651 {
8652 struct fork_catchpoint *c = new fork_catchpoint ();
8653
8654 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8655
8656 c->forked_inferior_pid = null_ptid;
8657
8658 install_breakpoint (0, &c->base, 1);
8659 }
8660
8661 /* Exec catchpoints. */
8662
8663 /* An instance of this type is used to represent an exec catchpoint.
8664 It includes a "struct breakpoint" as a kind of base class; users
8665 downcast to "struct breakpoint *" when needed. A breakpoint is
8666 really of this type iff its ops pointer points to
8667 CATCH_EXEC_BREAKPOINT_OPS. */
8668
8669 struct exec_catchpoint
8670 {
8671 /* The base class. */
8672 struct breakpoint base;
8673
8674 /* Filename of a program whose exec triggered this catchpoint.
8675 This field is only valid immediately after this catchpoint has
8676 triggered. */
8677 char *exec_pathname;
8678 };
8679
8680 /* Implement the "dtor" breakpoint_ops method for exec
8681 catchpoints. */
8682
8683 static void
8684 dtor_catch_exec (struct breakpoint *b)
8685 {
8686 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8687
8688 xfree (c->exec_pathname);
8689
8690 base_breakpoint_ops.dtor (b);
8691 }
8692
8693 static int
8694 insert_catch_exec (struct bp_location *bl)
8695 {
8696 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8697 }
8698
8699 static int
8700 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8701 {
8702 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8703 }
8704
8705 static int
8706 breakpoint_hit_catch_exec (const struct bp_location *bl,
8707 struct address_space *aspace, CORE_ADDR bp_addr,
8708 const struct target_waitstatus *ws)
8709 {
8710 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8711
8712 if (ws->kind != TARGET_WAITKIND_EXECD)
8713 return 0;
8714
8715 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8716 return 1;
8717 }
8718
8719 static enum print_stop_action
8720 print_it_catch_exec (bpstat bs)
8721 {
8722 struct ui_out *uiout = current_uiout;
8723 struct breakpoint *b = bs->breakpoint_at;
8724 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8725
8726 annotate_catchpoint (b->number);
8727 maybe_print_thread_hit_breakpoint (uiout);
8728 if (b->disposition == disp_del)
8729 ui_out_text (uiout, "Temporary catchpoint ");
8730 else
8731 ui_out_text (uiout, "Catchpoint ");
8732 if (ui_out_is_mi_like_p (uiout))
8733 {
8734 ui_out_field_string (uiout, "reason",
8735 async_reason_lookup (EXEC_ASYNC_EXEC));
8736 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8737 }
8738 ui_out_field_int (uiout, "bkptno", b->number);
8739 ui_out_text (uiout, " (exec'd ");
8740 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8741 ui_out_text (uiout, "), ");
8742
8743 return PRINT_SRC_AND_LOC;
8744 }
8745
8746 static void
8747 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8748 {
8749 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8750 struct value_print_options opts;
8751 struct ui_out *uiout = current_uiout;
8752
8753 get_user_print_options (&opts);
8754
8755 /* Field 4, the address, is omitted (which makes the columns
8756 not line up too nicely with the headers, but the effect
8757 is relatively readable). */
8758 if (opts.addressprint)
8759 ui_out_field_skip (uiout, "addr");
8760 annotate_field (5);
8761 ui_out_text (uiout, "exec");
8762 if (c->exec_pathname != NULL)
8763 {
8764 ui_out_text (uiout, ", program \"");
8765 ui_out_field_string (uiout, "what", c->exec_pathname);
8766 ui_out_text (uiout, "\" ");
8767 }
8768
8769 if (ui_out_is_mi_like_p (uiout))
8770 ui_out_field_string (uiout, "catch-type", "exec");
8771 }
8772
8773 static void
8774 print_mention_catch_exec (struct breakpoint *b)
8775 {
8776 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8777 }
8778
8779 /* Implement the "print_recreate" breakpoint_ops method for exec
8780 catchpoints. */
8781
8782 static void
8783 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8784 {
8785 fprintf_unfiltered (fp, "catch exec");
8786 print_recreate_thread (b, fp);
8787 }
8788
8789 static struct breakpoint_ops catch_exec_breakpoint_ops;
8790
8791 static int
8792 hw_breakpoint_used_count (void)
8793 {
8794 int i = 0;
8795 struct breakpoint *b;
8796 struct bp_location *bl;
8797
8798 ALL_BREAKPOINTS (b)
8799 {
8800 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8801 for (bl = b->loc; bl; bl = bl->next)
8802 {
8803 /* Special types of hardware breakpoints may use more than
8804 one register. */
8805 i += b->ops->resources_needed (bl);
8806 }
8807 }
8808
8809 return i;
8810 }
8811
8812 /* Returns the resources B would use if it were a hardware
8813 watchpoint. */
8814
8815 static int
8816 hw_watchpoint_use_count (struct breakpoint *b)
8817 {
8818 int i = 0;
8819 struct bp_location *bl;
8820
8821 if (!breakpoint_enabled (b))
8822 return 0;
8823
8824 for (bl = b->loc; bl; bl = bl->next)
8825 {
8826 /* Special types of hardware watchpoints may use more than
8827 one register. */
8828 i += b->ops->resources_needed (bl);
8829 }
8830
8831 return i;
8832 }
8833
8834 /* Returns the sum the used resources of all hardware watchpoints of
8835 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8836 the sum of the used resources of all hardware watchpoints of other
8837 types _not_ TYPE. */
8838
8839 static int
8840 hw_watchpoint_used_count_others (struct breakpoint *except,
8841 enum bptype type, int *other_type_used)
8842 {
8843 int i = 0;
8844 struct breakpoint *b;
8845
8846 *other_type_used = 0;
8847 ALL_BREAKPOINTS (b)
8848 {
8849 if (b == except)
8850 continue;
8851 if (!breakpoint_enabled (b))
8852 continue;
8853
8854 if (b->type == type)
8855 i += hw_watchpoint_use_count (b);
8856 else if (is_hardware_watchpoint (b))
8857 *other_type_used = 1;
8858 }
8859
8860 return i;
8861 }
8862
8863 void
8864 disable_watchpoints_before_interactive_call_start (void)
8865 {
8866 struct breakpoint *b;
8867
8868 ALL_BREAKPOINTS (b)
8869 {
8870 if (is_watchpoint (b) && breakpoint_enabled (b))
8871 {
8872 b->enable_state = bp_call_disabled;
8873 update_global_location_list (UGLL_DONT_INSERT);
8874 }
8875 }
8876 }
8877
8878 void
8879 enable_watchpoints_after_interactive_call_stop (void)
8880 {
8881 struct breakpoint *b;
8882
8883 ALL_BREAKPOINTS (b)
8884 {
8885 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8886 {
8887 b->enable_state = bp_enabled;
8888 update_global_location_list (UGLL_MAY_INSERT);
8889 }
8890 }
8891 }
8892
8893 void
8894 disable_breakpoints_before_startup (void)
8895 {
8896 current_program_space->executing_startup = 1;
8897 update_global_location_list (UGLL_DONT_INSERT);
8898 }
8899
8900 void
8901 enable_breakpoints_after_startup (void)
8902 {
8903 current_program_space->executing_startup = 0;
8904 breakpoint_re_set ();
8905 }
8906
8907 /* Create a new single-step breakpoint for thread THREAD, with no
8908 locations. */
8909
8910 static struct breakpoint *
8911 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8912 {
8913 struct breakpoint *b = new breakpoint ();
8914
8915 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8916 &momentary_breakpoint_ops);
8917
8918 b->disposition = disp_donttouch;
8919 b->frame_id = null_frame_id;
8920
8921 b->thread = thread;
8922 gdb_assert (b->thread != 0);
8923
8924 add_to_breakpoint_chain (b);
8925
8926 return b;
8927 }
8928
8929 /* Set a momentary breakpoint of type TYPE at address specified by
8930 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8931 frame. */
8932
8933 struct breakpoint *
8934 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8935 struct frame_id frame_id, enum bptype type)
8936 {
8937 struct breakpoint *b;
8938
8939 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8940 tail-called one. */
8941 gdb_assert (!frame_id_artificial_p (frame_id));
8942
8943 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8944 b->enable_state = bp_enabled;
8945 b->disposition = disp_donttouch;
8946 b->frame_id = frame_id;
8947
8948 /* If we're debugging a multi-threaded program, then we want
8949 momentary breakpoints to be active in only a single thread of
8950 control. */
8951 if (in_thread_list (inferior_ptid))
8952 b->thread = ptid_to_global_thread_id (inferior_ptid);
8953
8954 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8955
8956 return b;
8957 }
8958
8959 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8960 The new breakpoint will have type TYPE, use OPS as its
8961 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8962
8963 static struct breakpoint *
8964 momentary_breakpoint_from_master (struct breakpoint *orig,
8965 enum bptype type,
8966 const struct breakpoint_ops *ops,
8967 int loc_enabled)
8968 {
8969 struct breakpoint *copy;
8970
8971 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8972 copy->loc = allocate_bp_location (copy);
8973 set_breakpoint_location_function (copy->loc, 1);
8974
8975 copy->loc->gdbarch = orig->loc->gdbarch;
8976 copy->loc->requested_address = orig->loc->requested_address;
8977 copy->loc->address = orig->loc->address;
8978 copy->loc->section = orig->loc->section;
8979 copy->loc->pspace = orig->loc->pspace;
8980 copy->loc->probe = orig->loc->probe;
8981 copy->loc->line_number = orig->loc->line_number;
8982 copy->loc->symtab = orig->loc->symtab;
8983 copy->loc->enabled = loc_enabled;
8984 copy->frame_id = orig->frame_id;
8985 copy->thread = orig->thread;
8986 copy->pspace = orig->pspace;
8987
8988 copy->enable_state = bp_enabled;
8989 copy->disposition = disp_donttouch;
8990 copy->number = internal_breakpoint_number--;
8991
8992 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8993 return copy;
8994 }
8995
8996 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8997 ORIG is NULL. */
8998
8999 struct breakpoint *
9000 clone_momentary_breakpoint (struct breakpoint *orig)
9001 {
9002 /* If there's nothing to clone, then return nothing. */
9003 if (orig == NULL)
9004 return NULL;
9005
9006 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
9007 }
9008
9009 struct breakpoint *
9010 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9011 enum bptype type)
9012 {
9013 struct symtab_and_line sal;
9014
9015 sal = find_pc_line (pc, 0);
9016 sal.pc = pc;
9017 sal.section = find_pc_overlay (pc);
9018 sal.explicit_pc = 1;
9019
9020 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9021 }
9022 \f
9023
9024 /* Tell the user we have just set a breakpoint B. */
9025
9026 static void
9027 mention (struct breakpoint *b)
9028 {
9029 b->ops->print_mention (b);
9030 if (ui_out_is_mi_like_p (current_uiout))
9031 return;
9032 printf_filtered ("\n");
9033 }
9034 \f
9035
9036 static int bp_loc_is_permanent (struct bp_location *loc);
9037
9038 static struct bp_location *
9039 add_location_to_breakpoint (struct breakpoint *b,
9040 const struct symtab_and_line *sal)
9041 {
9042 struct bp_location *loc, **tmp;
9043 CORE_ADDR adjusted_address;
9044 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9045
9046 if (loc_gdbarch == NULL)
9047 loc_gdbarch = b->gdbarch;
9048
9049 /* Adjust the breakpoint's address prior to allocating a location.
9050 Once we call allocate_bp_location(), that mostly uninitialized
9051 location will be placed on the location chain. Adjustment of the
9052 breakpoint may cause target_read_memory() to be called and we do
9053 not want its scan of the location chain to find a breakpoint and
9054 location that's only been partially initialized. */
9055 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9056 sal->pc, b->type);
9057
9058 /* Sort the locations by their ADDRESS. */
9059 loc = allocate_bp_location (b);
9060 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9061 tmp = &((*tmp)->next))
9062 ;
9063 loc->next = *tmp;
9064 *tmp = loc;
9065
9066 loc->requested_address = sal->pc;
9067 loc->address = adjusted_address;
9068 loc->pspace = sal->pspace;
9069 loc->probe.probe = sal->probe;
9070 loc->probe.objfile = sal->objfile;
9071 gdb_assert (loc->pspace != NULL);
9072 loc->section = sal->section;
9073 loc->gdbarch = loc_gdbarch;
9074 loc->line_number = sal->line;
9075 loc->symtab = sal->symtab;
9076
9077 set_breakpoint_location_function (loc,
9078 sal->explicit_pc || sal->explicit_line);
9079
9080 /* While by definition, permanent breakpoints are already present in the
9081 code, we don't mark the location as inserted. Normally one would expect
9082 that GDB could rely on that breakpoint instruction to stop the program,
9083 thus removing the need to insert its own breakpoint, except that executing
9084 the breakpoint instruction can kill the target instead of reporting a
9085 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9086 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9087 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9088 breakpoint be inserted normally results in QEMU knowing about the GDB
9089 breakpoint, and thus trap before the breakpoint instruction is executed.
9090 (If GDB later needs to continue execution past the permanent breakpoint,
9091 it manually increments the PC, thus avoiding executing the breakpoint
9092 instruction.) */
9093 if (bp_loc_is_permanent (loc))
9094 loc->permanent = 1;
9095
9096 return loc;
9097 }
9098 \f
9099
9100 /* See breakpoint.h. */
9101
9102 int
9103 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9104 {
9105 int len;
9106 CORE_ADDR addr;
9107 const gdb_byte *bpoint;
9108 gdb_byte *target_mem;
9109 struct cleanup *cleanup;
9110 int retval = 0;
9111
9112 addr = address;
9113 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9114
9115 /* Software breakpoints unsupported? */
9116 if (bpoint == NULL)
9117 return 0;
9118
9119 target_mem = (gdb_byte *) alloca (len);
9120
9121 /* Enable the automatic memory restoration from breakpoints while
9122 we read the memory. Otherwise we could say about our temporary
9123 breakpoints they are permanent. */
9124 cleanup = make_show_memory_breakpoints_cleanup (0);
9125
9126 if (target_read_memory (address, target_mem, len) == 0
9127 && memcmp (target_mem, bpoint, len) == 0)
9128 retval = 1;
9129
9130 do_cleanups (cleanup);
9131
9132 return retval;
9133 }
9134
9135 /* Return 1 if LOC is pointing to a permanent breakpoint,
9136 return 0 otherwise. */
9137
9138 static int
9139 bp_loc_is_permanent (struct bp_location *loc)
9140 {
9141 struct cleanup *cleanup;
9142 int retval;
9143
9144 gdb_assert (loc != NULL);
9145
9146 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9147 attempt to read from the addresses the locations of these breakpoint types
9148 point to. program_breakpoint_here_p, below, will attempt to read
9149 memory. */
9150 if (!breakpoint_address_is_meaningful (loc->owner))
9151 return 0;
9152
9153 cleanup = save_current_space_and_thread ();
9154 switch_to_program_space_and_thread (loc->pspace);
9155
9156 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9157
9158 do_cleanups (cleanup);
9159
9160 return retval;
9161 }
9162
9163 /* Build a command list for the dprintf corresponding to the current
9164 settings of the dprintf style options. */
9165
9166 static void
9167 update_dprintf_command_list (struct breakpoint *b)
9168 {
9169 char *dprintf_args = b->extra_string;
9170 char *printf_line = NULL;
9171
9172 if (!dprintf_args)
9173 return;
9174
9175 dprintf_args = skip_spaces (dprintf_args);
9176
9177 /* Allow a comma, as it may have terminated a location, but don't
9178 insist on it. */
9179 if (*dprintf_args == ',')
9180 ++dprintf_args;
9181 dprintf_args = skip_spaces (dprintf_args);
9182
9183 if (*dprintf_args != '"')
9184 error (_("Bad format string, missing '\"'."));
9185
9186 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9187 printf_line = xstrprintf ("printf %s", dprintf_args);
9188 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9189 {
9190 if (!dprintf_function)
9191 error (_("No function supplied for dprintf call"));
9192
9193 if (dprintf_channel && strlen (dprintf_channel) > 0)
9194 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9195 dprintf_function,
9196 dprintf_channel,
9197 dprintf_args);
9198 else
9199 printf_line = xstrprintf ("call (void) %s (%s)",
9200 dprintf_function,
9201 dprintf_args);
9202 }
9203 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9204 {
9205 if (target_can_run_breakpoint_commands ())
9206 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9207 else
9208 {
9209 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9210 printf_line = xstrprintf ("printf %s", dprintf_args);
9211 }
9212 }
9213 else
9214 internal_error (__FILE__, __LINE__,
9215 _("Invalid dprintf style."));
9216
9217 gdb_assert (printf_line != NULL);
9218 /* Manufacture a printf sequence. */
9219 {
9220 struct command_line *printf_cmd_line = XNEW (struct command_line);
9221
9222 printf_cmd_line->control_type = simple_control;
9223 printf_cmd_line->body_count = 0;
9224 printf_cmd_line->body_list = NULL;
9225 printf_cmd_line->next = NULL;
9226 printf_cmd_line->line = printf_line;
9227
9228 breakpoint_set_commands (b, printf_cmd_line);
9229 }
9230 }
9231
9232 /* Update all dprintf commands, making their command lists reflect
9233 current style settings. */
9234
9235 static void
9236 update_dprintf_commands (char *args, int from_tty,
9237 struct cmd_list_element *c)
9238 {
9239 struct breakpoint *b;
9240
9241 ALL_BREAKPOINTS (b)
9242 {
9243 if (b->type == bp_dprintf)
9244 update_dprintf_command_list (b);
9245 }
9246 }
9247
9248 /* Create a breakpoint with SAL as location. Use LOCATION
9249 as a description of the location, and COND_STRING
9250 as condition expression. If LOCATION is NULL then create an
9251 "address location" from the address in the SAL. */
9252
9253 static void
9254 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9255 struct symtabs_and_lines sals,
9256 struct event_location *location,
9257 char *filter, char *cond_string,
9258 char *extra_string,
9259 enum bptype type, enum bpdisp disposition,
9260 int thread, int task, int ignore_count,
9261 const struct breakpoint_ops *ops, int from_tty,
9262 int enabled, int internal, unsigned flags,
9263 int display_canonical)
9264 {
9265 int i;
9266
9267 if (type == bp_hardware_breakpoint)
9268 {
9269 int target_resources_ok;
9270
9271 i = hw_breakpoint_used_count ();
9272 target_resources_ok =
9273 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9274 i + 1, 0);
9275 if (target_resources_ok == 0)
9276 error (_("No hardware breakpoint support in the target."));
9277 else if (target_resources_ok < 0)
9278 error (_("Hardware breakpoints used exceeds limit."));
9279 }
9280
9281 gdb_assert (sals.nelts > 0);
9282
9283 for (i = 0; i < sals.nelts; ++i)
9284 {
9285 struct symtab_and_line sal = sals.sals[i];
9286 struct bp_location *loc;
9287
9288 if (from_tty)
9289 {
9290 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9291 if (!loc_gdbarch)
9292 loc_gdbarch = gdbarch;
9293
9294 describe_other_breakpoints (loc_gdbarch,
9295 sal.pspace, sal.pc, sal.section, thread);
9296 }
9297
9298 if (i == 0)
9299 {
9300 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9301 b->thread = thread;
9302 b->task = task;
9303
9304 b->cond_string = cond_string;
9305 b->extra_string = extra_string;
9306 b->ignore_count = ignore_count;
9307 b->enable_state = enabled ? bp_enabled : bp_disabled;
9308 b->disposition = disposition;
9309
9310 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9311 b->loc->inserted = 1;
9312
9313 if (type == bp_static_tracepoint)
9314 {
9315 struct tracepoint *t = (struct tracepoint *) b;
9316 struct static_tracepoint_marker marker;
9317
9318 if (strace_marker_p (b))
9319 {
9320 /* We already know the marker exists, otherwise, we
9321 wouldn't see a sal for it. */
9322 const char *p = &event_location_to_string (b->location)[3];
9323 const char *endp;
9324 char *marker_str;
9325
9326 p = skip_spaces_const (p);
9327
9328 endp = skip_to_space_const (p);
9329
9330 marker_str = savestring (p, endp - p);
9331 t->static_trace_marker_id = marker_str;
9332
9333 printf_filtered (_("Probed static tracepoint "
9334 "marker \"%s\"\n"),
9335 t->static_trace_marker_id);
9336 }
9337 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9338 {
9339 t->static_trace_marker_id = xstrdup (marker.str_id);
9340 release_static_tracepoint_marker (&marker);
9341
9342 printf_filtered (_("Probed static tracepoint "
9343 "marker \"%s\"\n"),
9344 t->static_trace_marker_id);
9345 }
9346 else
9347 warning (_("Couldn't determine the static "
9348 "tracepoint marker to probe"));
9349 }
9350
9351 loc = b->loc;
9352 }
9353 else
9354 {
9355 loc = add_location_to_breakpoint (b, &sal);
9356 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9357 loc->inserted = 1;
9358 }
9359
9360 if (b->cond_string)
9361 {
9362 const char *arg = b->cond_string;
9363
9364 loc->cond = parse_exp_1 (&arg, loc->address,
9365 block_for_pc (loc->address), 0);
9366 if (*arg)
9367 error (_("Garbage '%s' follows condition"), arg);
9368 }
9369
9370 /* Dynamic printf requires and uses additional arguments on the
9371 command line, otherwise it's an error. */
9372 if (type == bp_dprintf)
9373 {
9374 if (b->extra_string)
9375 update_dprintf_command_list (b);
9376 else
9377 error (_("Format string required"));
9378 }
9379 else if (b->extra_string)
9380 error (_("Garbage '%s' at end of command"), b->extra_string);
9381 }
9382
9383 b->display_canonical = display_canonical;
9384 if (location != NULL)
9385 b->location = location;
9386 else
9387 {
9388 const char *addr_string = NULL;
9389 int addr_string_len = 0;
9390
9391 if (location != NULL)
9392 addr_string = event_location_to_string (location);
9393 if (addr_string != NULL)
9394 addr_string_len = strlen (addr_string);
9395
9396 b->location = new_address_location (b->loc->address,
9397 addr_string, addr_string_len);
9398 }
9399 b->filter = filter;
9400 }
9401
9402 static void
9403 create_breakpoint_sal (struct gdbarch *gdbarch,
9404 struct symtabs_and_lines sals,
9405 struct event_location *location,
9406 char *filter, char *cond_string,
9407 char *extra_string,
9408 enum bptype type, enum bpdisp disposition,
9409 int thread, int task, int ignore_count,
9410 const struct breakpoint_ops *ops, int from_tty,
9411 int enabled, int internal, unsigned flags,
9412 int display_canonical)
9413 {
9414 struct breakpoint *b;
9415 struct cleanup *old_chain;
9416
9417 if (is_tracepoint_type (type))
9418 {
9419 struct tracepoint *t;
9420
9421 t = new tracepoint ();
9422 b = &t->base;
9423 }
9424 else
9425 b = new breakpoint ();
9426
9427 old_chain = make_cleanup (xfree, b);
9428
9429 init_breakpoint_sal (b, gdbarch,
9430 sals, location,
9431 filter, cond_string, extra_string,
9432 type, disposition,
9433 thread, task, ignore_count,
9434 ops, from_tty,
9435 enabled, internal, flags,
9436 display_canonical);
9437 discard_cleanups (old_chain);
9438
9439 install_breakpoint (internal, b, 0);
9440 }
9441
9442 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9443 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9444 value. COND_STRING, if not NULL, specified the condition to be
9445 used for all breakpoints. Essentially the only case where
9446 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9447 function. In that case, it's still not possible to specify
9448 separate conditions for different overloaded functions, so
9449 we take just a single condition string.
9450
9451 NOTE: If the function succeeds, the caller is expected to cleanup
9452 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9453 array contents). If the function fails (error() is called), the
9454 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9455 COND and SALS arrays and each of those arrays contents. */
9456
9457 static void
9458 create_breakpoints_sal (struct gdbarch *gdbarch,
9459 struct linespec_result *canonical,
9460 char *cond_string, char *extra_string,
9461 enum bptype type, enum bpdisp disposition,
9462 int thread, int task, int ignore_count,
9463 const struct breakpoint_ops *ops, int from_tty,
9464 int enabled, int internal, unsigned flags)
9465 {
9466 int i;
9467 struct linespec_sals *lsal;
9468
9469 if (canonical->pre_expanded)
9470 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9471
9472 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9473 {
9474 /* Note that 'location' can be NULL in the case of a plain
9475 'break', without arguments. */
9476 struct event_location *location
9477 = (canonical->location != NULL
9478 ? copy_event_location (canonical->location) : NULL);
9479 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9480 struct cleanup *inner = make_cleanup_delete_event_location (location);
9481
9482 make_cleanup (xfree, filter_string);
9483 create_breakpoint_sal (gdbarch, lsal->sals,
9484 location,
9485 filter_string,
9486 cond_string, extra_string,
9487 type, disposition,
9488 thread, task, ignore_count, ops,
9489 from_tty, enabled, internal, flags,
9490 canonical->special_display);
9491 discard_cleanups (inner);
9492 }
9493 }
9494
9495 /* Parse LOCATION which is assumed to be a SAL specification possibly
9496 followed by conditionals. On return, SALS contains an array of SAL
9497 addresses found. LOCATION points to the end of the SAL (for
9498 linespec locations).
9499
9500 The array and the line spec strings are allocated on the heap, it is
9501 the caller's responsibility to free them. */
9502
9503 static void
9504 parse_breakpoint_sals (const struct event_location *location,
9505 struct linespec_result *canonical)
9506 {
9507 struct symtab_and_line cursal;
9508
9509 if (event_location_type (location) == LINESPEC_LOCATION)
9510 {
9511 const char *address = get_linespec_location (location);
9512
9513 if (address == NULL)
9514 {
9515 /* The last displayed codepoint, if it's valid, is our default
9516 breakpoint address. */
9517 if (last_displayed_sal_is_valid ())
9518 {
9519 struct linespec_sals lsal;
9520 struct symtab_and_line sal;
9521 CORE_ADDR pc;
9522
9523 init_sal (&sal); /* Initialize to zeroes. */
9524 lsal.sals.sals = XNEW (struct symtab_and_line);
9525
9526 /* Set sal's pspace, pc, symtab, and line to the values
9527 corresponding to the last call to print_frame_info.
9528 Be sure to reinitialize LINE with NOTCURRENT == 0
9529 as the breakpoint line number is inappropriate otherwise.
9530 find_pc_line would adjust PC, re-set it back. */
9531 get_last_displayed_sal (&sal);
9532 pc = sal.pc;
9533 sal = find_pc_line (pc, 0);
9534
9535 /* "break" without arguments is equivalent to "break *PC"
9536 where PC is the last displayed codepoint's address. So
9537 make sure to set sal.explicit_pc to prevent GDB from
9538 trying to expand the list of sals to include all other
9539 instances with the same symtab and line. */
9540 sal.pc = pc;
9541 sal.explicit_pc = 1;
9542
9543 lsal.sals.sals[0] = sal;
9544 lsal.sals.nelts = 1;
9545 lsal.canonical = NULL;
9546
9547 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9548 return;
9549 }
9550 else
9551 error (_("No default breakpoint address now."));
9552 }
9553 }
9554
9555 /* Force almost all breakpoints to be in terms of the
9556 current_source_symtab (which is decode_line_1's default).
9557 This should produce the results we want almost all of the
9558 time while leaving default_breakpoint_* alone.
9559
9560 ObjC: However, don't match an Objective-C method name which
9561 may have a '+' or '-' succeeded by a '['. */
9562 cursal = get_current_source_symtab_and_line ();
9563 if (last_displayed_sal_is_valid ())
9564 {
9565 const char *address = NULL;
9566
9567 if (event_location_type (location) == LINESPEC_LOCATION)
9568 address = get_linespec_location (location);
9569
9570 if (!cursal.symtab
9571 || (address != NULL
9572 && strchr ("+-", address[0]) != NULL
9573 && address[1] != '['))
9574 {
9575 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9576 get_last_displayed_symtab (),
9577 get_last_displayed_line (),
9578 canonical, NULL, NULL);
9579 return;
9580 }
9581 }
9582
9583 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9584 cursal.symtab, cursal.line, canonical, NULL, NULL);
9585 }
9586
9587
9588 /* Convert each SAL into a real PC. Verify that the PC can be
9589 inserted as a breakpoint. If it can't throw an error. */
9590
9591 static void
9592 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9593 {
9594 int i;
9595
9596 for (i = 0; i < sals->nelts; i++)
9597 resolve_sal_pc (&sals->sals[i]);
9598 }
9599
9600 /* Fast tracepoints may have restrictions on valid locations. For
9601 instance, a fast tracepoint using a jump instead of a trap will
9602 likely have to overwrite more bytes than a trap would, and so can
9603 only be placed where the instruction is longer than the jump, or a
9604 multi-instruction sequence does not have a jump into the middle of
9605 it, etc. */
9606
9607 static void
9608 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9609 struct symtabs_and_lines *sals)
9610 {
9611 int i, rslt;
9612 struct symtab_and_line *sal;
9613 char *msg;
9614 struct cleanup *old_chain;
9615
9616 for (i = 0; i < sals->nelts; i++)
9617 {
9618 struct gdbarch *sarch;
9619
9620 sal = &sals->sals[i];
9621
9622 sarch = get_sal_arch (*sal);
9623 /* We fall back to GDBARCH if there is no architecture
9624 associated with SAL. */
9625 if (sarch == NULL)
9626 sarch = gdbarch;
9627 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9628 old_chain = make_cleanup (xfree, msg);
9629
9630 if (!rslt)
9631 error (_("May not have a fast tracepoint at %s%s"),
9632 paddress (sarch, sal->pc), (msg ? msg : ""));
9633
9634 do_cleanups (old_chain);
9635 }
9636 }
9637
9638 /* Given TOK, a string specification of condition and thread, as
9639 accepted by the 'break' command, extract the condition
9640 string and thread number and set *COND_STRING and *THREAD.
9641 PC identifies the context at which the condition should be parsed.
9642 If no condition is found, *COND_STRING is set to NULL.
9643 If no thread is found, *THREAD is set to -1. */
9644
9645 static void
9646 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9647 char **cond_string, int *thread, int *task,
9648 char **rest)
9649 {
9650 *cond_string = NULL;
9651 *thread = -1;
9652 *task = 0;
9653 *rest = NULL;
9654
9655 while (tok && *tok)
9656 {
9657 const char *end_tok;
9658 int toklen;
9659 const char *cond_start = NULL;
9660 const char *cond_end = NULL;
9661
9662 tok = skip_spaces_const (tok);
9663
9664 if ((*tok == '"' || *tok == ',') && rest)
9665 {
9666 *rest = savestring (tok, strlen (tok));
9667 return;
9668 }
9669
9670 end_tok = skip_to_space_const (tok);
9671
9672 toklen = end_tok - tok;
9673
9674 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9675 {
9676 tok = cond_start = end_tok + 1;
9677 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9678 cond_end = tok;
9679 *cond_string = savestring (cond_start, cond_end - cond_start);
9680 }
9681 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9682 {
9683 const char *tmptok;
9684 struct thread_info *thr;
9685
9686 tok = end_tok + 1;
9687 thr = parse_thread_id (tok, &tmptok);
9688 if (tok == tmptok)
9689 error (_("Junk after thread keyword."));
9690 *thread = thr->global_num;
9691 tok = tmptok;
9692 }
9693 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9694 {
9695 char *tmptok;
9696
9697 tok = end_tok + 1;
9698 *task = strtol (tok, &tmptok, 0);
9699 if (tok == tmptok)
9700 error (_("Junk after task keyword."));
9701 if (!valid_task_id (*task))
9702 error (_("Unknown task %d."), *task);
9703 tok = tmptok;
9704 }
9705 else if (rest)
9706 {
9707 *rest = savestring (tok, strlen (tok));
9708 return;
9709 }
9710 else
9711 error (_("Junk at end of arguments."));
9712 }
9713 }
9714
9715 /* Decode a static tracepoint marker spec. */
9716
9717 static struct symtabs_and_lines
9718 decode_static_tracepoint_spec (const char **arg_p)
9719 {
9720 VEC(static_tracepoint_marker_p) *markers = NULL;
9721 struct symtabs_and_lines sals;
9722 struct cleanup *old_chain;
9723 const char *p = &(*arg_p)[3];
9724 const char *endp;
9725 char *marker_str;
9726 int i;
9727
9728 p = skip_spaces_const (p);
9729
9730 endp = skip_to_space_const (p);
9731
9732 marker_str = savestring (p, endp - p);
9733 old_chain = make_cleanup (xfree, marker_str);
9734
9735 markers = target_static_tracepoint_markers_by_strid (marker_str);
9736 if (VEC_empty(static_tracepoint_marker_p, markers))
9737 error (_("No known static tracepoint marker named %s"), marker_str);
9738
9739 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9740 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9741
9742 for (i = 0; i < sals.nelts; i++)
9743 {
9744 struct static_tracepoint_marker *marker;
9745
9746 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9747
9748 init_sal (&sals.sals[i]);
9749
9750 sals.sals[i] = find_pc_line (marker->address, 0);
9751 sals.sals[i].pc = marker->address;
9752
9753 release_static_tracepoint_marker (marker);
9754 }
9755
9756 do_cleanups (old_chain);
9757
9758 *arg_p = endp;
9759 return sals;
9760 }
9761
9762 /* See breakpoint.h. */
9763
9764 int
9765 create_breakpoint (struct gdbarch *gdbarch,
9766 const struct event_location *location, char *cond_string,
9767 int thread, char *extra_string,
9768 int parse_extra,
9769 int tempflag, enum bptype type_wanted,
9770 int ignore_count,
9771 enum auto_boolean pending_break_support,
9772 const struct breakpoint_ops *ops,
9773 int from_tty, int enabled, int internal,
9774 unsigned flags)
9775 {
9776 struct linespec_result canonical;
9777 struct cleanup *old_chain;
9778 struct cleanup *bkpt_chain = NULL;
9779 int pending = 0;
9780 int task = 0;
9781 int prev_bkpt_count = breakpoint_count;
9782
9783 gdb_assert (ops != NULL);
9784
9785 /* If extra_string isn't useful, set it to NULL. */
9786 if (extra_string != NULL && *extra_string == '\0')
9787 extra_string = NULL;
9788
9789 init_linespec_result (&canonical);
9790
9791 TRY
9792 {
9793 ops->create_sals_from_location (location, &canonical, type_wanted);
9794 }
9795 CATCH (e, RETURN_MASK_ERROR)
9796 {
9797 /* If caller is interested in rc value from parse, set
9798 value. */
9799 if (e.error == NOT_FOUND_ERROR)
9800 {
9801 /* If pending breakpoint support is turned off, throw
9802 error. */
9803
9804 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9805 throw_exception (e);
9806
9807 exception_print (gdb_stderr, e);
9808
9809 /* If pending breakpoint support is auto query and the user
9810 selects no, then simply return the error code. */
9811 if (pending_break_support == AUTO_BOOLEAN_AUTO
9812 && !nquery (_("Make %s pending on future shared library load? "),
9813 bptype_string (type_wanted)))
9814 return 0;
9815
9816 /* At this point, either the user was queried about setting
9817 a pending breakpoint and selected yes, or pending
9818 breakpoint behavior is on and thus a pending breakpoint
9819 is defaulted on behalf of the user. */
9820 pending = 1;
9821 }
9822 else
9823 throw_exception (e);
9824 }
9825 END_CATCH
9826
9827 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9828 return 0;
9829
9830 /* Create a chain of things that always need to be cleaned up. */
9831 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9832
9833 /* ----------------------------- SNIP -----------------------------
9834 Anything added to the cleanup chain beyond this point is assumed
9835 to be part of a breakpoint. If the breakpoint create succeeds
9836 then the memory is not reclaimed. */
9837 bkpt_chain = make_cleanup (null_cleanup, 0);
9838
9839 /* Resolve all line numbers to PC's and verify that the addresses
9840 are ok for the target. */
9841 if (!pending)
9842 {
9843 int ix;
9844 struct linespec_sals *iter;
9845
9846 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9847 breakpoint_sals_to_pc (&iter->sals);
9848 }
9849
9850 /* Fast tracepoints may have additional restrictions on location. */
9851 if (!pending && type_wanted == bp_fast_tracepoint)
9852 {
9853 int ix;
9854 struct linespec_sals *iter;
9855
9856 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9857 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9858 }
9859
9860 /* Verify that condition can be parsed, before setting any
9861 breakpoints. Allocate a separate condition expression for each
9862 breakpoint. */
9863 if (!pending)
9864 {
9865 if (parse_extra)
9866 {
9867 char *rest;
9868 struct linespec_sals *lsal;
9869
9870 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9871
9872 /* Here we only parse 'arg' to separate condition
9873 from thread number, so parsing in context of first
9874 sal is OK. When setting the breakpoint we'll
9875 re-parse it in context of each sal. */
9876
9877 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9878 &cond_string, &thread, &task, &rest);
9879 if (cond_string)
9880 make_cleanup (xfree, cond_string);
9881 if (rest)
9882 make_cleanup (xfree, rest);
9883 if (rest)
9884 extra_string = rest;
9885 else
9886 extra_string = NULL;
9887 }
9888 else
9889 {
9890 if (type_wanted != bp_dprintf
9891 && extra_string != NULL && *extra_string != '\0')
9892 error (_("Garbage '%s' at end of location"), extra_string);
9893
9894 /* Create a private copy of condition string. */
9895 if (cond_string)
9896 {
9897 cond_string = xstrdup (cond_string);
9898 make_cleanup (xfree, cond_string);
9899 }
9900 /* Create a private copy of any extra string. */
9901 if (extra_string)
9902 {
9903 extra_string = xstrdup (extra_string);
9904 make_cleanup (xfree, extra_string);
9905 }
9906 }
9907
9908 ops->create_breakpoints_sal (gdbarch, &canonical,
9909 cond_string, extra_string, type_wanted,
9910 tempflag ? disp_del : disp_donttouch,
9911 thread, task, ignore_count, ops,
9912 from_tty, enabled, internal, flags);
9913 }
9914 else
9915 {
9916 struct breakpoint *b;
9917
9918 if (is_tracepoint_type (type_wanted))
9919 {
9920 struct tracepoint *t;
9921
9922 t = new tracepoint ();
9923 b = &t->base;
9924 }
9925 else
9926 b = new breakpoint ();
9927
9928 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9929 b->location = copy_event_location (location);
9930
9931 if (parse_extra)
9932 b->cond_string = NULL;
9933 else
9934 {
9935 /* Create a private copy of condition string. */
9936 if (cond_string)
9937 {
9938 cond_string = xstrdup (cond_string);
9939 make_cleanup (xfree, cond_string);
9940 }
9941 b->cond_string = cond_string;
9942 b->thread = thread;
9943 }
9944
9945 /* Create a private copy of any extra string. */
9946 if (extra_string != NULL)
9947 {
9948 extra_string = xstrdup (extra_string);
9949 make_cleanup (xfree, extra_string);
9950 }
9951 b->extra_string = extra_string;
9952 b->ignore_count = ignore_count;
9953 b->disposition = tempflag ? disp_del : disp_donttouch;
9954 b->condition_not_parsed = 1;
9955 b->enable_state = enabled ? bp_enabled : bp_disabled;
9956 if ((type_wanted != bp_breakpoint
9957 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9958 b->pspace = current_program_space;
9959
9960 install_breakpoint (internal, b, 0);
9961 }
9962
9963 if (VEC_length (linespec_sals, canonical.sals) > 1)
9964 {
9965 warning (_("Multiple breakpoints were set.\nUse the "
9966 "\"delete\" command to delete unwanted breakpoints."));
9967 prev_breakpoint_count = prev_bkpt_count;
9968 }
9969
9970 /* That's it. Discard the cleanups for data inserted into the
9971 breakpoint. */
9972 discard_cleanups (bkpt_chain);
9973 /* But cleanup everything else. */
9974 do_cleanups (old_chain);
9975
9976 /* error call may happen here - have BKPT_CHAIN already discarded. */
9977 update_global_location_list (UGLL_MAY_INSERT);
9978
9979 return 1;
9980 }
9981
9982 /* Set a breakpoint.
9983 ARG is a string describing breakpoint address,
9984 condition, and thread.
9985 FLAG specifies if a breakpoint is hardware on,
9986 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9987 and BP_TEMPFLAG. */
9988
9989 static void
9990 break_command_1 (char *arg, int flag, int from_tty)
9991 {
9992 int tempflag = flag & BP_TEMPFLAG;
9993 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9994 ? bp_hardware_breakpoint
9995 : bp_breakpoint);
9996 struct breakpoint_ops *ops;
9997 struct event_location *location;
9998 struct cleanup *cleanup;
9999
10000 location = string_to_event_location (&arg, current_language);
10001 cleanup = make_cleanup_delete_event_location (location);
10002
10003 /* Matching breakpoints on probes. */
10004 if (location != NULL
10005 && event_location_type (location) == PROBE_LOCATION)
10006 ops = &bkpt_probe_breakpoint_ops;
10007 else
10008 ops = &bkpt_breakpoint_ops;
10009
10010 create_breakpoint (get_current_arch (),
10011 location,
10012 NULL, 0, arg, 1 /* parse arg */,
10013 tempflag, type_wanted,
10014 0 /* Ignore count */,
10015 pending_break_support,
10016 ops,
10017 from_tty,
10018 1 /* enabled */,
10019 0 /* internal */,
10020 0);
10021 do_cleanups (cleanup);
10022 }
10023
10024 /* Helper function for break_command_1 and disassemble_command. */
10025
10026 void
10027 resolve_sal_pc (struct symtab_and_line *sal)
10028 {
10029 CORE_ADDR pc;
10030
10031 if (sal->pc == 0 && sal->symtab != NULL)
10032 {
10033 if (!find_line_pc (sal->symtab, sal->line, &pc))
10034 error (_("No line %d in file \"%s\"."),
10035 sal->line, symtab_to_filename_for_display (sal->symtab));
10036 sal->pc = pc;
10037
10038 /* If this SAL corresponds to a breakpoint inserted using a line
10039 number, then skip the function prologue if necessary. */
10040 if (sal->explicit_line)
10041 skip_prologue_sal (sal);
10042 }
10043
10044 if (sal->section == 0 && sal->symtab != NULL)
10045 {
10046 const struct blockvector *bv;
10047 const struct block *b;
10048 struct symbol *sym;
10049
10050 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
10051 SYMTAB_COMPUNIT (sal->symtab));
10052 if (bv != NULL)
10053 {
10054 sym = block_linkage_function (b);
10055 if (sym != NULL)
10056 {
10057 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
10058 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
10059 sym);
10060 }
10061 else
10062 {
10063 /* It really is worthwhile to have the section, so we'll
10064 just have to look harder. This case can be executed
10065 if we have line numbers but no functions (as can
10066 happen in assembly source). */
10067
10068 struct bound_minimal_symbol msym;
10069 struct cleanup *old_chain = save_current_space_and_thread ();
10070
10071 switch_to_program_space_and_thread (sal->pspace);
10072
10073 msym = lookup_minimal_symbol_by_pc (sal->pc);
10074 if (msym.minsym)
10075 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10076
10077 do_cleanups (old_chain);
10078 }
10079 }
10080 }
10081 }
10082
10083 void
10084 break_command (char *arg, int from_tty)
10085 {
10086 break_command_1 (arg, 0, from_tty);
10087 }
10088
10089 void
10090 tbreak_command (char *arg, int from_tty)
10091 {
10092 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10093 }
10094
10095 static void
10096 hbreak_command (char *arg, int from_tty)
10097 {
10098 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10099 }
10100
10101 static void
10102 thbreak_command (char *arg, int from_tty)
10103 {
10104 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10105 }
10106
10107 static void
10108 stop_command (char *arg, int from_tty)
10109 {
10110 printf_filtered (_("Specify the type of breakpoint to set.\n\
10111 Usage: stop in <function | address>\n\
10112 stop at <line>\n"));
10113 }
10114
10115 static void
10116 stopin_command (char *arg, int from_tty)
10117 {
10118 int badInput = 0;
10119
10120 if (arg == (char *) NULL)
10121 badInput = 1;
10122 else if (*arg != '*')
10123 {
10124 char *argptr = arg;
10125 int hasColon = 0;
10126
10127 /* Look for a ':'. If this is a line number specification, then
10128 say it is bad, otherwise, it should be an address or
10129 function/method name. */
10130 while (*argptr && !hasColon)
10131 {
10132 hasColon = (*argptr == ':');
10133 argptr++;
10134 }
10135
10136 if (hasColon)
10137 badInput = (*argptr != ':'); /* Not a class::method */
10138 else
10139 badInput = isdigit (*arg); /* a simple line number */
10140 }
10141
10142 if (badInput)
10143 printf_filtered (_("Usage: stop in <function | address>\n"));
10144 else
10145 break_command_1 (arg, 0, from_tty);
10146 }
10147
10148 static void
10149 stopat_command (char *arg, int from_tty)
10150 {
10151 int badInput = 0;
10152
10153 if (arg == (char *) NULL || *arg == '*') /* no line number */
10154 badInput = 1;
10155 else
10156 {
10157 char *argptr = arg;
10158 int hasColon = 0;
10159
10160 /* Look for a ':'. If there is a '::' then get out, otherwise
10161 it is probably a line number. */
10162 while (*argptr && !hasColon)
10163 {
10164 hasColon = (*argptr == ':');
10165 argptr++;
10166 }
10167
10168 if (hasColon)
10169 badInput = (*argptr == ':'); /* we have class::method */
10170 else
10171 badInput = !isdigit (*arg); /* not a line number */
10172 }
10173
10174 if (badInput)
10175 printf_filtered (_("Usage: stop at <line>\n"));
10176 else
10177 break_command_1 (arg, 0, from_tty);
10178 }
10179
10180 /* The dynamic printf command is mostly like a regular breakpoint, but
10181 with a prewired command list consisting of a single output command,
10182 built from extra arguments supplied on the dprintf command
10183 line. */
10184
10185 static void
10186 dprintf_command (char *arg, int from_tty)
10187 {
10188 struct event_location *location;
10189 struct cleanup *cleanup;
10190
10191 location = string_to_event_location (&arg, current_language);
10192 cleanup = make_cleanup_delete_event_location (location);
10193
10194 /* If non-NULL, ARG should have been advanced past the location;
10195 the next character must be ','. */
10196 if (arg != NULL)
10197 {
10198 if (arg[0] != ',' || arg[1] == '\0')
10199 error (_("Format string required"));
10200 else
10201 {
10202 /* Skip the comma. */
10203 ++arg;
10204 }
10205 }
10206
10207 create_breakpoint (get_current_arch (),
10208 location,
10209 NULL, 0, arg, 1 /* parse arg */,
10210 0, bp_dprintf,
10211 0 /* Ignore count */,
10212 pending_break_support,
10213 &dprintf_breakpoint_ops,
10214 from_tty,
10215 1 /* enabled */,
10216 0 /* internal */,
10217 0);
10218 do_cleanups (cleanup);
10219 }
10220
10221 static void
10222 agent_printf_command (char *arg, int from_tty)
10223 {
10224 error (_("May only run agent-printf on the target"));
10225 }
10226
10227 /* Implement the "breakpoint_hit" breakpoint_ops method for
10228 ranged breakpoints. */
10229
10230 static int
10231 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10232 struct address_space *aspace,
10233 CORE_ADDR bp_addr,
10234 const struct target_waitstatus *ws)
10235 {
10236 if (ws->kind != TARGET_WAITKIND_STOPPED
10237 || ws->value.sig != GDB_SIGNAL_TRAP)
10238 return 0;
10239
10240 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10241 bl->length, aspace, bp_addr);
10242 }
10243
10244 /* Implement the "resources_needed" breakpoint_ops method for
10245 ranged breakpoints. */
10246
10247 static int
10248 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10249 {
10250 return target_ranged_break_num_registers ();
10251 }
10252
10253 /* Implement the "print_it" breakpoint_ops method for
10254 ranged breakpoints. */
10255
10256 static enum print_stop_action
10257 print_it_ranged_breakpoint (bpstat bs)
10258 {
10259 struct breakpoint *b = bs->breakpoint_at;
10260 struct bp_location *bl = b->loc;
10261 struct ui_out *uiout = current_uiout;
10262
10263 gdb_assert (b->type == bp_hardware_breakpoint);
10264
10265 /* Ranged breakpoints have only one location. */
10266 gdb_assert (bl && bl->next == NULL);
10267
10268 annotate_breakpoint (b->number);
10269
10270 maybe_print_thread_hit_breakpoint (uiout);
10271
10272 if (b->disposition == disp_del)
10273 ui_out_text (uiout, "Temporary ranged breakpoint ");
10274 else
10275 ui_out_text (uiout, "Ranged breakpoint ");
10276 if (ui_out_is_mi_like_p (uiout))
10277 {
10278 ui_out_field_string (uiout, "reason",
10279 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10280 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10281 }
10282 ui_out_field_int (uiout, "bkptno", b->number);
10283 ui_out_text (uiout, ", ");
10284
10285 return PRINT_SRC_AND_LOC;
10286 }
10287
10288 /* Implement the "print_one" breakpoint_ops method for
10289 ranged breakpoints. */
10290
10291 static void
10292 print_one_ranged_breakpoint (struct breakpoint *b,
10293 struct bp_location **last_loc)
10294 {
10295 struct bp_location *bl = b->loc;
10296 struct value_print_options opts;
10297 struct ui_out *uiout = current_uiout;
10298
10299 /* Ranged breakpoints have only one location. */
10300 gdb_assert (bl && bl->next == NULL);
10301
10302 get_user_print_options (&opts);
10303
10304 if (opts.addressprint)
10305 /* We don't print the address range here, it will be printed later
10306 by print_one_detail_ranged_breakpoint. */
10307 ui_out_field_skip (uiout, "addr");
10308 annotate_field (5);
10309 print_breakpoint_location (b, bl);
10310 *last_loc = bl;
10311 }
10312
10313 /* Implement the "print_one_detail" breakpoint_ops method for
10314 ranged breakpoints. */
10315
10316 static void
10317 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10318 struct ui_out *uiout)
10319 {
10320 CORE_ADDR address_start, address_end;
10321 struct bp_location *bl = b->loc;
10322 struct ui_file *stb = mem_fileopen ();
10323 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10324
10325 gdb_assert (bl);
10326
10327 address_start = bl->address;
10328 address_end = address_start + bl->length - 1;
10329
10330 ui_out_text (uiout, "\taddress range: ");
10331 fprintf_unfiltered (stb, "[%s, %s]",
10332 print_core_address (bl->gdbarch, address_start),
10333 print_core_address (bl->gdbarch, address_end));
10334 ui_out_field_stream (uiout, "addr", stb);
10335 ui_out_text (uiout, "\n");
10336
10337 do_cleanups (cleanup);
10338 }
10339
10340 /* Implement the "print_mention" breakpoint_ops method for
10341 ranged breakpoints. */
10342
10343 static void
10344 print_mention_ranged_breakpoint (struct breakpoint *b)
10345 {
10346 struct bp_location *bl = b->loc;
10347 struct ui_out *uiout = current_uiout;
10348
10349 gdb_assert (bl);
10350 gdb_assert (b->type == bp_hardware_breakpoint);
10351
10352 if (ui_out_is_mi_like_p (uiout))
10353 return;
10354
10355 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10356 b->number, paddress (bl->gdbarch, bl->address),
10357 paddress (bl->gdbarch, bl->address + bl->length - 1));
10358 }
10359
10360 /* Implement the "print_recreate" breakpoint_ops method for
10361 ranged breakpoints. */
10362
10363 static void
10364 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10365 {
10366 fprintf_unfiltered (fp, "break-range %s, %s",
10367 event_location_to_string (b->location),
10368 event_location_to_string (b->location_range_end));
10369 print_recreate_thread (b, fp);
10370 }
10371
10372 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10373
10374 static struct breakpoint_ops ranged_breakpoint_ops;
10375
10376 /* Find the address where the end of the breakpoint range should be
10377 placed, given the SAL of the end of the range. This is so that if
10378 the user provides a line number, the end of the range is set to the
10379 last instruction of the given line. */
10380
10381 static CORE_ADDR
10382 find_breakpoint_range_end (struct symtab_and_line sal)
10383 {
10384 CORE_ADDR end;
10385
10386 /* If the user provided a PC value, use it. Otherwise,
10387 find the address of the end of the given location. */
10388 if (sal.explicit_pc)
10389 end = sal.pc;
10390 else
10391 {
10392 int ret;
10393 CORE_ADDR start;
10394
10395 ret = find_line_pc_range (sal, &start, &end);
10396 if (!ret)
10397 error (_("Could not find location of the end of the range."));
10398
10399 /* find_line_pc_range returns the start of the next line. */
10400 end--;
10401 }
10402
10403 return end;
10404 }
10405
10406 /* Implement the "break-range" CLI command. */
10407
10408 static void
10409 break_range_command (char *arg, int from_tty)
10410 {
10411 char *arg_start, *addr_string_start;
10412 struct linespec_result canonical_start, canonical_end;
10413 int bp_count, can_use_bp, length;
10414 CORE_ADDR end;
10415 struct breakpoint *b;
10416 struct symtab_and_line sal_start, sal_end;
10417 struct cleanup *cleanup_bkpt;
10418 struct linespec_sals *lsal_start, *lsal_end;
10419 struct event_location *start_location, *end_location;
10420
10421 /* We don't support software ranged breakpoints. */
10422 if (target_ranged_break_num_registers () < 0)
10423 error (_("This target does not support hardware ranged breakpoints."));
10424
10425 bp_count = hw_breakpoint_used_count ();
10426 bp_count += target_ranged_break_num_registers ();
10427 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10428 bp_count, 0);
10429 if (can_use_bp < 0)
10430 error (_("Hardware breakpoints used exceeds limit."));
10431
10432 arg = skip_spaces (arg);
10433 if (arg == NULL || arg[0] == '\0')
10434 error(_("No address range specified."));
10435
10436 init_linespec_result (&canonical_start);
10437
10438 arg_start = arg;
10439 start_location = string_to_event_location (&arg, current_language);
10440 cleanup_bkpt = make_cleanup_delete_event_location (start_location);
10441 parse_breakpoint_sals (start_location, &canonical_start);
10442 make_cleanup_destroy_linespec_result (&canonical_start);
10443
10444 if (arg[0] != ',')
10445 error (_("Too few arguments."));
10446 else if (VEC_empty (linespec_sals, canonical_start.sals))
10447 error (_("Could not find location of the beginning of the range."));
10448
10449 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10450
10451 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10452 || lsal_start->sals.nelts != 1)
10453 error (_("Cannot create a ranged breakpoint with multiple locations."));
10454
10455 sal_start = lsal_start->sals.sals[0];
10456 addr_string_start = savestring (arg_start, arg - arg_start);
10457 make_cleanup (xfree, addr_string_start);
10458
10459 arg++; /* Skip the comma. */
10460 arg = skip_spaces (arg);
10461
10462 /* Parse the end location. */
10463
10464 init_linespec_result (&canonical_end);
10465 arg_start = arg;
10466
10467 /* We call decode_line_full directly here instead of using
10468 parse_breakpoint_sals because we need to specify the start location's
10469 symtab and line as the default symtab and line for the end of the
10470 range. This makes it possible to have ranges like "foo.c:27, +14",
10471 where +14 means 14 lines from the start location. */
10472 end_location = string_to_event_location (&arg, current_language);
10473 make_cleanup_delete_event_location (end_location);
10474 decode_line_full (end_location, DECODE_LINE_FUNFIRSTLINE, NULL,
10475 sal_start.symtab, sal_start.line,
10476 &canonical_end, NULL, NULL);
10477
10478 make_cleanup_destroy_linespec_result (&canonical_end);
10479
10480 if (VEC_empty (linespec_sals, canonical_end.sals))
10481 error (_("Could not find location of the end of the range."));
10482
10483 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10484 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10485 || lsal_end->sals.nelts != 1)
10486 error (_("Cannot create a ranged breakpoint with multiple locations."));
10487
10488 sal_end = lsal_end->sals.sals[0];
10489
10490 end = find_breakpoint_range_end (sal_end);
10491 if (sal_start.pc > end)
10492 error (_("Invalid address range, end precedes start."));
10493
10494 length = end - sal_start.pc + 1;
10495 if (length < 0)
10496 /* Length overflowed. */
10497 error (_("Address range too large."));
10498 else if (length == 1)
10499 {
10500 /* This range is simple enough to be handled by
10501 the `hbreak' command. */
10502 hbreak_command (addr_string_start, 1);
10503
10504 do_cleanups (cleanup_bkpt);
10505
10506 return;
10507 }
10508
10509 /* Now set up the breakpoint. */
10510 b = set_raw_breakpoint (get_current_arch (), sal_start,
10511 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10512 set_breakpoint_count (breakpoint_count + 1);
10513 b->number = breakpoint_count;
10514 b->disposition = disp_donttouch;
10515 b->location = copy_event_location (start_location);
10516 b->location_range_end = copy_event_location (end_location);
10517 b->loc->length = length;
10518
10519 do_cleanups (cleanup_bkpt);
10520
10521 mention (b);
10522 observer_notify_breakpoint_created (b);
10523 update_global_location_list (UGLL_MAY_INSERT);
10524 }
10525
10526 /* Return non-zero if EXP is verified as constant. Returned zero
10527 means EXP is variable. Also the constant detection may fail for
10528 some constant expressions and in such case still falsely return
10529 zero. */
10530
10531 static int
10532 watchpoint_exp_is_const (const struct expression *exp)
10533 {
10534 int i = exp->nelts;
10535
10536 while (i > 0)
10537 {
10538 int oplenp, argsp;
10539
10540 /* We are only interested in the descriptor of each element. */
10541 operator_length (exp, i, &oplenp, &argsp);
10542 i -= oplenp;
10543
10544 switch (exp->elts[i].opcode)
10545 {
10546 case BINOP_ADD:
10547 case BINOP_SUB:
10548 case BINOP_MUL:
10549 case BINOP_DIV:
10550 case BINOP_REM:
10551 case BINOP_MOD:
10552 case BINOP_LSH:
10553 case BINOP_RSH:
10554 case BINOP_LOGICAL_AND:
10555 case BINOP_LOGICAL_OR:
10556 case BINOP_BITWISE_AND:
10557 case BINOP_BITWISE_IOR:
10558 case BINOP_BITWISE_XOR:
10559 case BINOP_EQUAL:
10560 case BINOP_NOTEQUAL:
10561 case BINOP_LESS:
10562 case BINOP_GTR:
10563 case BINOP_LEQ:
10564 case BINOP_GEQ:
10565 case BINOP_REPEAT:
10566 case BINOP_COMMA:
10567 case BINOP_EXP:
10568 case BINOP_MIN:
10569 case BINOP_MAX:
10570 case BINOP_INTDIV:
10571 case BINOP_CONCAT:
10572 case TERNOP_COND:
10573 case TERNOP_SLICE:
10574
10575 case OP_LONG:
10576 case OP_DOUBLE:
10577 case OP_DECFLOAT:
10578 case OP_LAST:
10579 case OP_COMPLEX:
10580 case OP_STRING:
10581 case OP_ARRAY:
10582 case OP_TYPE:
10583 case OP_TYPEOF:
10584 case OP_DECLTYPE:
10585 case OP_TYPEID:
10586 case OP_NAME:
10587 case OP_OBJC_NSSTRING:
10588
10589 case UNOP_NEG:
10590 case UNOP_LOGICAL_NOT:
10591 case UNOP_COMPLEMENT:
10592 case UNOP_ADDR:
10593 case UNOP_HIGH:
10594 case UNOP_CAST:
10595
10596 case UNOP_CAST_TYPE:
10597 case UNOP_REINTERPRET_CAST:
10598 case UNOP_DYNAMIC_CAST:
10599 /* Unary, binary and ternary operators: We have to check
10600 their operands. If they are constant, then so is the
10601 result of that operation. For instance, if A and B are
10602 determined to be constants, then so is "A + B".
10603
10604 UNOP_IND is one exception to the rule above, because the
10605 value of *ADDR is not necessarily a constant, even when
10606 ADDR is. */
10607 break;
10608
10609 case OP_VAR_VALUE:
10610 /* Check whether the associated symbol is a constant.
10611
10612 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10613 possible that a buggy compiler could mark a variable as
10614 constant even when it is not, and TYPE_CONST would return
10615 true in this case, while SYMBOL_CLASS wouldn't.
10616
10617 We also have to check for function symbols because they
10618 are always constant. */
10619 {
10620 struct symbol *s = exp->elts[i + 2].symbol;
10621
10622 if (SYMBOL_CLASS (s) != LOC_BLOCK
10623 && SYMBOL_CLASS (s) != LOC_CONST
10624 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10625 return 0;
10626 break;
10627 }
10628
10629 /* The default action is to return 0 because we are using
10630 the optimistic approach here: If we don't know something,
10631 then it is not a constant. */
10632 default:
10633 return 0;
10634 }
10635 }
10636
10637 return 1;
10638 }
10639
10640 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10641
10642 static void
10643 dtor_watchpoint (struct breakpoint *self)
10644 {
10645 struct watchpoint *w = (struct watchpoint *) self;
10646
10647 xfree (w->exp_string);
10648 xfree (w->exp_string_reparse);
10649 value_free (w->val);
10650
10651 base_breakpoint_ops.dtor (self);
10652 }
10653
10654 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10655
10656 static void
10657 re_set_watchpoint (struct breakpoint *b)
10658 {
10659 struct watchpoint *w = (struct watchpoint *) b;
10660
10661 /* Watchpoint can be either on expression using entirely global
10662 variables, or it can be on local variables.
10663
10664 Watchpoints of the first kind are never auto-deleted, and even
10665 persist across program restarts. Since they can use variables
10666 from shared libraries, we need to reparse expression as libraries
10667 are loaded and unloaded.
10668
10669 Watchpoints on local variables can also change meaning as result
10670 of solib event. For example, if a watchpoint uses both a local
10671 and a global variables in expression, it's a local watchpoint,
10672 but unloading of a shared library will make the expression
10673 invalid. This is not a very common use case, but we still
10674 re-evaluate expression, to avoid surprises to the user.
10675
10676 Note that for local watchpoints, we re-evaluate it only if
10677 watchpoints frame id is still valid. If it's not, it means the
10678 watchpoint is out of scope and will be deleted soon. In fact,
10679 I'm not sure we'll ever be called in this case.
10680
10681 If a local watchpoint's frame id is still valid, then
10682 w->exp_valid_block is likewise valid, and we can safely use it.
10683
10684 Don't do anything about disabled watchpoints, since they will be
10685 reevaluated again when enabled. */
10686 update_watchpoint (w, 1 /* reparse */);
10687 }
10688
10689 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10690
10691 static int
10692 insert_watchpoint (struct bp_location *bl)
10693 {
10694 struct watchpoint *w = (struct watchpoint *) bl->owner;
10695 int length = w->exact ? 1 : bl->length;
10696
10697 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10698 w->cond_exp.get ());
10699 }
10700
10701 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10702
10703 static int
10704 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10705 {
10706 struct watchpoint *w = (struct watchpoint *) bl->owner;
10707 int length = w->exact ? 1 : bl->length;
10708
10709 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10710 w->cond_exp.get ());
10711 }
10712
10713 static int
10714 breakpoint_hit_watchpoint (const struct bp_location *bl,
10715 struct address_space *aspace, CORE_ADDR bp_addr,
10716 const struct target_waitstatus *ws)
10717 {
10718 struct breakpoint *b = bl->owner;
10719 struct watchpoint *w = (struct watchpoint *) b;
10720
10721 /* Continuable hardware watchpoints are treated as non-existent if the
10722 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10723 some data address). Otherwise gdb won't stop on a break instruction
10724 in the code (not from a breakpoint) when a hardware watchpoint has
10725 been defined. Also skip watchpoints which we know did not trigger
10726 (did not match the data address). */
10727 if (is_hardware_watchpoint (b)
10728 && w->watchpoint_triggered == watch_triggered_no)
10729 return 0;
10730
10731 return 1;
10732 }
10733
10734 static void
10735 check_status_watchpoint (bpstat bs)
10736 {
10737 gdb_assert (is_watchpoint (bs->breakpoint_at));
10738
10739 bpstat_check_watchpoint (bs);
10740 }
10741
10742 /* Implement the "resources_needed" breakpoint_ops method for
10743 hardware watchpoints. */
10744
10745 static int
10746 resources_needed_watchpoint (const struct bp_location *bl)
10747 {
10748 struct watchpoint *w = (struct watchpoint *) bl->owner;
10749 int length = w->exact? 1 : bl->length;
10750
10751 return target_region_ok_for_hw_watchpoint (bl->address, length);
10752 }
10753
10754 /* Implement the "works_in_software_mode" breakpoint_ops method for
10755 hardware watchpoints. */
10756
10757 static int
10758 works_in_software_mode_watchpoint (const struct breakpoint *b)
10759 {
10760 /* Read and access watchpoints only work with hardware support. */
10761 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10762 }
10763
10764 static enum print_stop_action
10765 print_it_watchpoint (bpstat bs)
10766 {
10767 struct cleanup *old_chain;
10768 struct breakpoint *b;
10769 struct ui_file *stb;
10770 enum print_stop_action result;
10771 struct watchpoint *w;
10772 struct ui_out *uiout = current_uiout;
10773
10774 gdb_assert (bs->bp_location_at != NULL);
10775
10776 b = bs->breakpoint_at;
10777 w = (struct watchpoint *) b;
10778
10779 stb = mem_fileopen ();
10780 old_chain = make_cleanup_ui_file_delete (stb);
10781
10782 annotate_watchpoint (b->number);
10783 maybe_print_thread_hit_breakpoint (uiout);
10784
10785 switch (b->type)
10786 {
10787 case bp_watchpoint:
10788 case bp_hardware_watchpoint:
10789 if (ui_out_is_mi_like_p (uiout))
10790 ui_out_field_string
10791 (uiout, "reason",
10792 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10793 mention (b);
10794 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10795 ui_out_text (uiout, "\nOld value = ");
10796 watchpoint_value_print (bs->old_val, stb);
10797 ui_out_field_stream (uiout, "old", stb);
10798 ui_out_text (uiout, "\nNew value = ");
10799 watchpoint_value_print (w->val, stb);
10800 ui_out_field_stream (uiout, "new", stb);
10801 ui_out_text (uiout, "\n");
10802 /* More than one watchpoint may have been triggered. */
10803 result = PRINT_UNKNOWN;
10804 break;
10805
10806 case bp_read_watchpoint:
10807 if (ui_out_is_mi_like_p (uiout))
10808 ui_out_field_string
10809 (uiout, "reason",
10810 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10811 mention (b);
10812 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10813 ui_out_text (uiout, "\nValue = ");
10814 watchpoint_value_print (w->val, stb);
10815 ui_out_field_stream (uiout, "value", stb);
10816 ui_out_text (uiout, "\n");
10817 result = PRINT_UNKNOWN;
10818 break;
10819
10820 case bp_access_watchpoint:
10821 if (bs->old_val != NULL)
10822 {
10823 if (ui_out_is_mi_like_p (uiout))
10824 ui_out_field_string
10825 (uiout, "reason",
10826 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10827 mention (b);
10828 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10829 ui_out_text (uiout, "\nOld value = ");
10830 watchpoint_value_print (bs->old_val, stb);
10831 ui_out_field_stream (uiout, "old", stb);
10832 ui_out_text (uiout, "\nNew value = ");
10833 }
10834 else
10835 {
10836 mention (b);
10837 if (ui_out_is_mi_like_p (uiout))
10838 ui_out_field_string
10839 (uiout, "reason",
10840 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10841 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10842 ui_out_text (uiout, "\nValue = ");
10843 }
10844 watchpoint_value_print (w->val, stb);
10845 ui_out_field_stream (uiout, "new", stb);
10846 ui_out_text (uiout, "\n");
10847 result = PRINT_UNKNOWN;
10848 break;
10849 default:
10850 result = PRINT_UNKNOWN;
10851 }
10852
10853 do_cleanups (old_chain);
10854 return result;
10855 }
10856
10857 /* Implement the "print_mention" breakpoint_ops method for hardware
10858 watchpoints. */
10859
10860 static void
10861 print_mention_watchpoint (struct breakpoint *b)
10862 {
10863 struct cleanup *ui_out_chain;
10864 struct watchpoint *w = (struct watchpoint *) b;
10865 struct ui_out *uiout = current_uiout;
10866
10867 switch (b->type)
10868 {
10869 case bp_watchpoint:
10870 ui_out_text (uiout, "Watchpoint ");
10871 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10872 break;
10873 case bp_hardware_watchpoint:
10874 ui_out_text (uiout, "Hardware watchpoint ");
10875 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10876 break;
10877 case bp_read_watchpoint:
10878 ui_out_text (uiout, "Hardware read watchpoint ");
10879 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10880 break;
10881 case bp_access_watchpoint:
10882 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10883 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10884 break;
10885 default:
10886 internal_error (__FILE__, __LINE__,
10887 _("Invalid hardware watchpoint type."));
10888 }
10889
10890 ui_out_field_int (uiout, "number", b->number);
10891 ui_out_text (uiout, ": ");
10892 ui_out_field_string (uiout, "exp", w->exp_string);
10893 do_cleanups (ui_out_chain);
10894 }
10895
10896 /* Implement the "print_recreate" breakpoint_ops method for
10897 watchpoints. */
10898
10899 static void
10900 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10901 {
10902 struct watchpoint *w = (struct watchpoint *) b;
10903
10904 switch (b->type)
10905 {
10906 case bp_watchpoint:
10907 case bp_hardware_watchpoint:
10908 fprintf_unfiltered (fp, "watch");
10909 break;
10910 case bp_read_watchpoint:
10911 fprintf_unfiltered (fp, "rwatch");
10912 break;
10913 case bp_access_watchpoint:
10914 fprintf_unfiltered (fp, "awatch");
10915 break;
10916 default:
10917 internal_error (__FILE__, __LINE__,
10918 _("Invalid watchpoint type."));
10919 }
10920
10921 fprintf_unfiltered (fp, " %s", w->exp_string);
10922 print_recreate_thread (b, fp);
10923 }
10924
10925 /* Implement the "explains_signal" breakpoint_ops method for
10926 watchpoints. */
10927
10928 static int
10929 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10930 {
10931 /* A software watchpoint cannot cause a signal other than
10932 GDB_SIGNAL_TRAP. */
10933 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10934 return 0;
10935
10936 return 1;
10937 }
10938
10939 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10940
10941 static struct breakpoint_ops watchpoint_breakpoint_ops;
10942
10943 /* Implement the "insert" breakpoint_ops method for
10944 masked hardware watchpoints. */
10945
10946 static int
10947 insert_masked_watchpoint (struct bp_location *bl)
10948 {
10949 struct watchpoint *w = (struct watchpoint *) bl->owner;
10950
10951 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10952 bl->watchpoint_type);
10953 }
10954
10955 /* Implement the "remove" breakpoint_ops method for
10956 masked hardware watchpoints. */
10957
10958 static int
10959 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10960 {
10961 struct watchpoint *w = (struct watchpoint *) bl->owner;
10962
10963 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10964 bl->watchpoint_type);
10965 }
10966
10967 /* Implement the "resources_needed" breakpoint_ops method for
10968 masked hardware watchpoints. */
10969
10970 static int
10971 resources_needed_masked_watchpoint (const struct bp_location *bl)
10972 {
10973 struct watchpoint *w = (struct watchpoint *) bl->owner;
10974
10975 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10976 }
10977
10978 /* Implement the "works_in_software_mode" breakpoint_ops method for
10979 masked hardware watchpoints. */
10980
10981 static int
10982 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10983 {
10984 return 0;
10985 }
10986
10987 /* Implement the "print_it" breakpoint_ops method for
10988 masked hardware watchpoints. */
10989
10990 static enum print_stop_action
10991 print_it_masked_watchpoint (bpstat bs)
10992 {
10993 struct breakpoint *b = bs->breakpoint_at;
10994 struct ui_out *uiout = current_uiout;
10995
10996 /* Masked watchpoints have only one location. */
10997 gdb_assert (b->loc && b->loc->next == NULL);
10998
10999 annotate_watchpoint (b->number);
11000 maybe_print_thread_hit_breakpoint (uiout);
11001
11002 switch (b->type)
11003 {
11004 case bp_hardware_watchpoint:
11005 if (ui_out_is_mi_like_p (uiout))
11006 ui_out_field_string
11007 (uiout, "reason",
11008 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11009 break;
11010
11011 case bp_read_watchpoint:
11012 if (ui_out_is_mi_like_p (uiout))
11013 ui_out_field_string
11014 (uiout, "reason",
11015 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11016 break;
11017
11018 case bp_access_watchpoint:
11019 if (ui_out_is_mi_like_p (uiout))
11020 ui_out_field_string
11021 (uiout, "reason",
11022 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11023 break;
11024 default:
11025 internal_error (__FILE__, __LINE__,
11026 _("Invalid hardware watchpoint type."));
11027 }
11028
11029 mention (b);
11030 ui_out_text (uiout, _("\n\
11031 Check the underlying instruction at PC for the memory\n\
11032 address and value which triggered this watchpoint.\n"));
11033 ui_out_text (uiout, "\n");
11034
11035 /* More than one watchpoint may have been triggered. */
11036 return PRINT_UNKNOWN;
11037 }
11038
11039 /* Implement the "print_one_detail" breakpoint_ops method for
11040 masked hardware watchpoints. */
11041
11042 static void
11043 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11044 struct ui_out *uiout)
11045 {
11046 struct watchpoint *w = (struct watchpoint *) b;
11047
11048 /* Masked watchpoints have only one location. */
11049 gdb_assert (b->loc && b->loc->next == NULL);
11050
11051 ui_out_text (uiout, "\tmask ");
11052 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11053 ui_out_text (uiout, "\n");
11054 }
11055
11056 /* Implement the "print_mention" breakpoint_ops method for
11057 masked hardware watchpoints. */
11058
11059 static void
11060 print_mention_masked_watchpoint (struct breakpoint *b)
11061 {
11062 struct watchpoint *w = (struct watchpoint *) b;
11063 struct ui_out *uiout = current_uiout;
11064 struct cleanup *ui_out_chain;
11065
11066 switch (b->type)
11067 {
11068 case bp_hardware_watchpoint:
11069 ui_out_text (uiout, "Masked hardware watchpoint ");
11070 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11071 break;
11072 case bp_read_watchpoint:
11073 ui_out_text (uiout, "Masked hardware read watchpoint ");
11074 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11075 break;
11076 case bp_access_watchpoint:
11077 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11078 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11079 break;
11080 default:
11081 internal_error (__FILE__, __LINE__,
11082 _("Invalid hardware watchpoint type."));
11083 }
11084
11085 ui_out_field_int (uiout, "number", b->number);
11086 ui_out_text (uiout, ": ");
11087 ui_out_field_string (uiout, "exp", w->exp_string);
11088 do_cleanups (ui_out_chain);
11089 }
11090
11091 /* Implement the "print_recreate" breakpoint_ops method for
11092 masked hardware watchpoints. */
11093
11094 static void
11095 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11096 {
11097 struct watchpoint *w = (struct watchpoint *) b;
11098 char tmp[40];
11099
11100 switch (b->type)
11101 {
11102 case bp_hardware_watchpoint:
11103 fprintf_unfiltered (fp, "watch");
11104 break;
11105 case bp_read_watchpoint:
11106 fprintf_unfiltered (fp, "rwatch");
11107 break;
11108 case bp_access_watchpoint:
11109 fprintf_unfiltered (fp, "awatch");
11110 break;
11111 default:
11112 internal_error (__FILE__, __LINE__,
11113 _("Invalid hardware watchpoint type."));
11114 }
11115
11116 sprintf_vma (tmp, w->hw_wp_mask);
11117 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11118 print_recreate_thread (b, fp);
11119 }
11120
11121 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11122
11123 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11124
11125 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11126
11127 static int
11128 is_masked_watchpoint (const struct breakpoint *b)
11129 {
11130 return b->ops == &masked_watchpoint_breakpoint_ops;
11131 }
11132
11133 /* accessflag: hw_write: watch write,
11134 hw_read: watch read,
11135 hw_access: watch access (read or write) */
11136 static void
11137 watch_command_1 (const char *arg, int accessflag, int from_tty,
11138 int just_location, int internal)
11139 {
11140 struct breakpoint *b, *scope_breakpoint = NULL;
11141 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11142 struct value *val, *mark, *result;
11143 int saved_bitpos = 0, saved_bitsize = 0;
11144 struct frame_info *frame;
11145 const char *exp_start = NULL;
11146 const char *exp_end = NULL;
11147 const char *tok, *end_tok;
11148 int toklen = -1;
11149 const char *cond_start = NULL;
11150 const char *cond_end = NULL;
11151 enum bptype bp_type;
11152 int thread = -1;
11153 int pc = 0;
11154 /* Flag to indicate whether we are going to use masks for
11155 the hardware watchpoint. */
11156 int use_mask = 0;
11157 CORE_ADDR mask = 0;
11158 struct watchpoint *w;
11159 char *expression;
11160 struct cleanup *back_to;
11161
11162 /* Make sure that we actually have parameters to parse. */
11163 if (arg != NULL && arg[0] != '\0')
11164 {
11165 const char *value_start;
11166
11167 exp_end = arg + strlen (arg);
11168
11169 /* Look for "parameter value" pairs at the end
11170 of the arguments string. */
11171 for (tok = exp_end - 1; tok > arg; tok--)
11172 {
11173 /* Skip whitespace at the end of the argument list. */
11174 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11175 tok--;
11176
11177 /* Find the beginning of the last token.
11178 This is the value of the parameter. */
11179 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11180 tok--;
11181 value_start = tok + 1;
11182
11183 /* Skip whitespace. */
11184 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11185 tok--;
11186
11187 end_tok = tok;
11188
11189 /* Find the beginning of the second to last token.
11190 This is the parameter itself. */
11191 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11192 tok--;
11193 tok++;
11194 toklen = end_tok - tok + 1;
11195
11196 if (toklen == 6 && startswith (tok, "thread"))
11197 {
11198 struct thread_info *thr;
11199 /* At this point we've found a "thread" token, which means
11200 the user is trying to set a watchpoint that triggers
11201 only in a specific thread. */
11202 const char *endp;
11203
11204 if (thread != -1)
11205 error(_("You can specify only one thread."));
11206
11207 /* Extract the thread ID from the next token. */
11208 thr = parse_thread_id (value_start, &endp);
11209
11210 /* Check if the user provided a valid thread ID. */
11211 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11212 invalid_thread_id_error (value_start);
11213
11214 thread = thr->global_num;
11215 }
11216 else if (toklen == 4 && startswith (tok, "mask"))
11217 {
11218 /* We've found a "mask" token, which means the user wants to
11219 create a hardware watchpoint that is going to have the mask
11220 facility. */
11221 struct value *mask_value, *mark;
11222
11223 if (use_mask)
11224 error(_("You can specify only one mask."));
11225
11226 use_mask = just_location = 1;
11227
11228 mark = value_mark ();
11229 mask_value = parse_to_comma_and_eval (&value_start);
11230 mask = value_as_address (mask_value);
11231 value_free_to_mark (mark);
11232 }
11233 else
11234 /* We didn't recognize what we found. We should stop here. */
11235 break;
11236
11237 /* Truncate the string and get rid of the "parameter value" pair before
11238 the arguments string is parsed by the parse_exp_1 function. */
11239 exp_end = tok;
11240 }
11241 }
11242 else
11243 exp_end = arg;
11244
11245 /* Parse the rest of the arguments. From here on out, everything
11246 is in terms of a newly allocated string instead of the original
11247 ARG. */
11248 innermost_block = NULL;
11249 expression = savestring (arg, exp_end - arg);
11250 back_to = make_cleanup (xfree, expression);
11251 exp_start = arg = expression;
11252 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11253 exp_end = arg;
11254 /* Remove trailing whitespace from the expression before saving it.
11255 This makes the eventual display of the expression string a bit
11256 prettier. */
11257 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11258 --exp_end;
11259
11260 /* Checking if the expression is not constant. */
11261 if (watchpoint_exp_is_const (exp.get ()))
11262 {
11263 int len;
11264
11265 len = exp_end - exp_start;
11266 while (len > 0 && isspace (exp_start[len - 1]))
11267 len--;
11268 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11269 }
11270
11271 exp_valid_block = innermost_block;
11272 mark = value_mark ();
11273 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11274
11275 if (val != NULL && just_location)
11276 {
11277 saved_bitpos = value_bitpos (val);
11278 saved_bitsize = value_bitsize (val);
11279 }
11280
11281 if (just_location)
11282 {
11283 int ret;
11284
11285 exp_valid_block = NULL;
11286 val = value_addr (result);
11287 release_value (val);
11288 value_free_to_mark (mark);
11289
11290 if (use_mask)
11291 {
11292 ret = target_masked_watch_num_registers (value_as_address (val),
11293 mask);
11294 if (ret == -1)
11295 error (_("This target does not support masked watchpoints."));
11296 else if (ret == -2)
11297 error (_("Invalid mask or memory region."));
11298 }
11299 }
11300 else if (val != NULL)
11301 release_value (val);
11302
11303 tok = skip_spaces_const (arg);
11304 end_tok = skip_to_space_const (tok);
11305
11306 toklen = end_tok - tok;
11307 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11308 {
11309 innermost_block = NULL;
11310 tok = cond_start = end_tok + 1;
11311 parse_exp_1 (&tok, 0, 0, 0);
11312
11313 /* The watchpoint expression may not be local, but the condition
11314 may still be. E.g.: `watch global if local > 0'. */
11315 cond_exp_valid_block = innermost_block;
11316
11317 cond_end = tok;
11318 }
11319 if (*tok)
11320 error (_("Junk at end of command."));
11321
11322 frame = block_innermost_frame (exp_valid_block);
11323
11324 /* If the expression is "local", then set up a "watchpoint scope"
11325 breakpoint at the point where we've left the scope of the watchpoint
11326 expression. Create the scope breakpoint before the watchpoint, so
11327 that we will encounter it first in bpstat_stop_status. */
11328 if (exp_valid_block && frame)
11329 {
11330 if (frame_id_p (frame_unwind_caller_id (frame)))
11331 {
11332 scope_breakpoint
11333 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11334 frame_unwind_caller_pc (frame),
11335 bp_watchpoint_scope,
11336 &momentary_breakpoint_ops);
11337
11338 scope_breakpoint->enable_state = bp_enabled;
11339
11340 /* Automatically delete the breakpoint when it hits. */
11341 scope_breakpoint->disposition = disp_del;
11342
11343 /* Only break in the proper frame (help with recursion). */
11344 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11345
11346 /* Set the address at which we will stop. */
11347 scope_breakpoint->loc->gdbarch
11348 = frame_unwind_caller_arch (frame);
11349 scope_breakpoint->loc->requested_address
11350 = frame_unwind_caller_pc (frame);
11351 scope_breakpoint->loc->address
11352 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11353 scope_breakpoint->loc->requested_address,
11354 scope_breakpoint->type);
11355 }
11356 }
11357
11358 /* Now set up the breakpoint. We create all watchpoints as hardware
11359 watchpoints here even if hardware watchpoints are turned off, a call
11360 to update_watchpoint later in this function will cause the type to
11361 drop back to bp_watchpoint (software watchpoint) if required. */
11362
11363 if (accessflag == hw_read)
11364 bp_type = bp_read_watchpoint;
11365 else if (accessflag == hw_access)
11366 bp_type = bp_access_watchpoint;
11367 else
11368 bp_type = bp_hardware_watchpoint;
11369
11370 w = new watchpoint ();
11371 b = &w->base;
11372 if (use_mask)
11373 init_raw_breakpoint_without_location (b, NULL, bp_type,
11374 &masked_watchpoint_breakpoint_ops);
11375 else
11376 init_raw_breakpoint_without_location (b, NULL, bp_type,
11377 &watchpoint_breakpoint_ops);
11378 b->thread = thread;
11379 b->disposition = disp_donttouch;
11380 b->pspace = current_program_space;
11381 w->exp = std::move (exp);
11382 w->exp_valid_block = exp_valid_block;
11383 w->cond_exp_valid_block = cond_exp_valid_block;
11384 if (just_location)
11385 {
11386 struct type *t = value_type (val);
11387 CORE_ADDR addr = value_as_address (val);
11388
11389 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11390
11391 std::string name = type_to_string (t);
11392
11393 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name.c_str (),
11394 core_addr_to_string (addr));
11395
11396 w->exp_string = xstrprintf ("-location %.*s",
11397 (int) (exp_end - exp_start), exp_start);
11398
11399 /* The above expression is in C. */
11400 b->language = language_c;
11401 }
11402 else
11403 w->exp_string = savestring (exp_start, exp_end - exp_start);
11404
11405 if (use_mask)
11406 {
11407 w->hw_wp_mask = mask;
11408 }
11409 else
11410 {
11411 w->val = val;
11412 w->val_bitpos = saved_bitpos;
11413 w->val_bitsize = saved_bitsize;
11414 w->val_valid = 1;
11415 }
11416
11417 if (cond_start)
11418 b->cond_string = savestring (cond_start, cond_end - cond_start);
11419 else
11420 b->cond_string = 0;
11421
11422 if (frame)
11423 {
11424 w->watchpoint_frame = get_frame_id (frame);
11425 w->watchpoint_thread = inferior_ptid;
11426 }
11427 else
11428 {
11429 w->watchpoint_frame = null_frame_id;
11430 w->watchpoint_thread = null_ptid;
11431 }
11432
11433 if (scope_breakpoint != NULL)
11434 {
11435 /* The scope breakpoint is related to the watchpoint. We will
11436 need to act on them together. */
11437 b->related_breakpoint = scope_breakpoint;
11438 scope_breakpoint->related_breakpoint = b;
11439 }
11440
11441 if (!just_location)
11442 value_free_to_mark (mark);
11443
11444 TRY
11445 {
11446 /* Finally update the new watchpoint. This creates the locations
11447 that should be inserted. */
11448 update_watchpoint (w, 1);
11449 }
11450 CATCH (e, RETURN_MASK_ALL)
11451 {
11452 delete_breakpoint (b);
11453 throw_exception (e);
11454 }
11455 END_CATCH
11456
11457 install_breakpoint (internal, b, 1);
11458 do_cleanups (back_to);
11459 }
11460
11461 /* Return count of debug registers needed to watch the given expression.
11462 If the watchpoint cannot be handled in hardware return zero. */
11463
11464 static int
11465 can_use_hardware_watchpoint (struct value *v)
11466 {
11467 int found_memory_cnt = 0;
11468 struct value *head = v;
11469
11470 /* Did the user specifically forbid us to use hardware watchpoints? */
11471 if (!can_use_hw_watchpoints)
11472 return 0;
11473
11474 /* Make sure that the value of the expression depends only upon
11475 memory contents, and values computed from them within GDB. If we
11476 find any register references or function calls, we can't use a
11477 hardware watchpoint.
11478
11479 The idea here is that evaluating an expression generates a series
11480 of values, one holding the value of every subexpression. (The
11481 expression a*b+c has five subexpressions: a, b, a*b, c, and
11482 a*b+c.) GDB's values hold almost enough information to establish
11483 the criteria given above --- they identify memory lvalues,
11484 register lvalues, computed values, etcetera. So we can evaluate
11485 the expression, and then scan the chain of values that leaves
11486 behind to decide whether we can detect any possible change to the
11487 expression's final value using only hardware watchpoints.
11488
11489 However, I don't think that the values returned by inferior
11490 function calls are special in any way. So this function may not
11491 notice that an expression involving an inferior function call
11492 can't be watched with hardware watchpoints. FIXME. */
11493 for (; v; v = value_next (v))
11494 {
11495 if (VALUE_LVAL (v) == lval_memory)
11496 {
11497 if (v != head && value_lazy (v))
11498 /* A lazy memory lvalue in the chain is one that GDB never
11499 needed to fetch; we either just used its address (e.g.,
11500 `a' in `a.b') or we never needed it at all (e.g., `a'
11501 in `a,b'). This doesn't apply to HEAD; if that is
11502 lazy then it was not readable, but watch it anyway. */
11503 ;
11504 else
11505 {
11506 /* Ahh, memory we actually used! Check if we can cover
11507 it with hardware watchpoints. */
11508 struct type *vtype = check_typedef (value_type (v));
11509
11510 /* We only watch structs and arrays if user asked for it
11511 explicitly, never if they just happen to appear in a
11512 middle of some value chain. */
11513 if (v == head
11514 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11515 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11516 {
11517 CORE_ADDR vaddr = value_address (v);
11518 int len;
11519 int num_regs;
11520
11521 len = (target_exact_watchpoints
11522 && is_scalar_type_recursive (vtype))?
11523 1 : TYPE_LENGTH (value_type (v));
11524
11525 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11526 if (!num_regs)
11527 return 0;
11528 else
11529 found_memory_cnt += num_regs;
11530 }
11531 }
11532 }
11533 else if (VALUE_LVAL (v) != not_lval
11534 && deprecated_value_modifiable (v) == 0)
11535 return 0; /* These are values from the history (e.g., $1). */
11536 else if (VALUE_LVAL (v) == lval_register)
11537 return 0; /* Cannot watch a register with a HW watchpoint. */
11538 }
11539
11540 /* The expression itself looks suitable for using a hardware
11541 watchpoint, but give the target machine a chance to reject it. */
11542 return found_memory_cnt;
11543 }
11544
11545 void
11546 watch_command_wrapper (char *arg, int from_tty, int internal)
11547 {
11548 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11549 }
11550
11551 /* A helper function that looks for the "-location" argument and then
11552 calls watch_command_1. */
11553
11554 static void
11555 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11556 {
11557 int just_location = 0;
11558
11559 if (arg
11560 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11561 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11562 {
11563 arg = skip_spaces (arg);
11564 just_location = 1;
11565 }
11566
11567 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11568 }
11569
11570 static void
11571 watch_command (char *arg, int from_tty)
11572 {
11573 watch_maybe_just_location (arg, hw_write, from_tty);
11574 }
11575
11576 void
11577 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11578 {
11579 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11580 }
11581
11582 static void
11583 rwatch_command (char *arg, int from_tty)
11584 {
11585 watch_maybe_just_location (arg, hw_read, from_tty);
11586 }
11587
11588 void
11589 awatch_command_wrapper (char *arg, int from_tty, int internal)
11590 {
11591 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11592 }
11593
11594 static void
11595 awatch_command (char *arg, int from_tty)
11596 {
11597 watch_maybe_just_location (arg, hw_access, from_tty);
11598 }
11599 \f
11600
11601 /* Data for the FSM that manages the until(location)/advance commands
11602 in infcmd.c. Here because it uses the mechanisms of
11603 breakpoints. */
11604
11605 struct until_break_fsm
11606 {
11607 /* The base class. */
11608 struct thread_fsm thread_fsm;
11609
11610 /* The thread that as current when the command was executed. */
11611 int thread;
11612
11613 /* The breakpoint set at the destination location. */
11614 struct breakpoint *location_breakpoint;
11615
11616 /* Breakpoint set at the return address in the caller frame. May be
11617 NULL. */
11618 struct breakpoint *caller_breakpoint;
11619 };
11620
11621 static void until_break_fsm_clean_up (struct thread_fsm *self,
11622 struct thread_info *thread);
11623 static int until_break_fsm_should_stop (struct thread_fsm *self,
11624 struct thread_info *thread);
11625 static enum async_reply_reason
11626 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11627
11628 /* until_break_fsm's vtable. */
11629
11630 static struct thread_fsm_ops until_break_fsm_ops =
11631 {
11632 NULL, /* dtor */
11633 until_break_fsm_clean_up,
11634 until_break_fsm_should_stop,
11635 NULL, /* return_value */
11636 until_break_fsm_async_reply_reason,
11637 };
11638
11639 /* Allocate a new until_break_command_fsm. */
11640
11641 static struct until_break_fsm *
11642 new_until_break_fsm (struct interp *cmd_interp, int thread,
11643 struct breakpoint *location_breakpoint,
11644 struct breakpoint *caller_breakpoint)
11645 {
11646 struct until_break_fsm *sm;
11647
11648 sm = XCNEW (struct until_break_fsm);
11649 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11650
11651 sm->thread = thread;
11652 sm->location_breakpoint = location_breakpoint;
11653 sm->caller_breakpoint = caller_breakpoint;
11654
11655 return sm;
11656 }
11657
11658 /* Implementation of the 'should_stop' FSM method for the
11659 until(location)/advance commands. */
11660
11661 static int
11662 until_break_fsm_should_stop (struct thread_fsm *self,
11663 struct thread_info *tp)
11664 {
11665 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11666
11667 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11668 sm->location_breakpoint) != NULL
11669 || (sm->caller_breakpoint != NULL
11670 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11671 sm->caller_breakpoint) != NULL))
11672 thread_fsm_set_finished (self);
11673
11674 return 1;
11675 }
11676
11677 /* Implementation of the 'clean_up' FSM method for the
11678 until(location)/advance commands. */
11679
11680 static void
11681 until_break_fsm_clean_up (struct thread_fsm *self,
11682 struct thread_info *thread)
11683 {
11684 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11685
11686 /* Clean up our temporary breakpoints. */
11687 if (sm->location_breakpoint != NULL)
11688 {
11689 delete_breakpoint (sm->location_breakpoint);
11690 sm->location_breakpoint = NULL;
11691 }
11692 if (sm->caller_breakpoint != NULL)
11693 {
11694 delete_breakpoint (sm->caller_breakpoint);
11695 sm->caller_breakpoint = NULL;
11696 }
11697 delete_longjmp_breakpoint (sm->thread);
11698 }
11699
11700 /* Implementation of the 'async_reply_reason' FSM method for the
11701 until(location)/advance commands. */
11702
11703 static enum async_reply_reason
11704 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11705 {
11706 return EXEC_ASYNC_LOCATION_REACHED;
11707 }
11708
11709 void
11710 until_break_command (char *arg, int from_tty, int anywhere)
11711 {
11712 struct symtabs_and_lines sals;
11713 struct symtab_and_line sal;
11714 struct frame_info *frame;
11715 struct gdbarch *frame_gdbarch;
11716 struct frame_id stack_frame_id;
11717 struct frame_id caller_frame_id;
11718 struct breakpoint *location_breakpoint;
11719 struct breakpoint *caller_breakpoint = NULL;
11720 struct cleanup *old_chain, *cleanup;
11721 int thread;
11722 struct thread_info *tp;
11723 struct event_location *location;
11724 struct until_break_fsm *sm;
11725
11726 clear_proceed_status (0);
11727
11728 /* Set a breakpoint where the user wants it and at return from
11729 this function. */
11730
11731 location = string_to_event_location (&arg, current_language);
11732 cleanup = make_cleanup_delete_event_location (location);
11733
11734 if (last_displayed_sal_is_valid ())
11735 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE, NULL,
11736 get_last_displayed_symtab (),
11737 get_last_displayed_line ());
11738 else
11739 sals = decode_line_1 (location, DECODE_LINE_FUNFIRSTLINE,
11740 NULL, (struct symtab *) NULL, 0);
11741
11742 if (sals.nelts != 1)
11743 error (_("Couldn't get information on specified line."));
11744
11745 sal = sals.sals[0];
11746 xfree (sals.sals); /* malloc'd, so freed. */
11747
11748 if (*arg)
11749 error (_("Junk at end of arguments."));
11750
11751 resolve_sal_pc (&sal);
11752
11753 tp = inferior_thread ();
11754 thread = tp->global_num;
11755
11756 old_chain = make_cleanup (null_cleanup, NULL);
11757
11758 /* Note linespec handling above invalidates the frame chain.
11759 Installing a breakpoint also invalidates the frame chain (as it
11760 may need to switch threads), so do any frame handling before
11761 that. */
11762
11763 frame = get_selected_frame (NULL);
11764 frame_gdbarch = get_frame_arch (frame);
11765 stack_frame_id = get_stack_frame_id (frame);
11766 caller_frame_id = frame_unwind_caller_id (frame);
11767
11768 /* Keep within the current frame, or in frames called by the current
11769 one. */
11770
11771 if (frame_id_p (caller_frame_id))
11772 {
11773 struct symtab_and_line sal2;
11774 struct gdbarch *caller_gdbarch;
11775
11776 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11777 sal2.pc = frame_unwind_caller_pc (frame);
11778 caller_gdbarch = frame_unwind_caller_arch (frame);
11779 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11780 sal2,
11781 caller_frame_id,
11782 bp_until);
11783 make_cleanup_delete_breakpoint (caller_breakpoint);
11784
11785 set_longjmp_breakpoint (tp, caller_frame_id);
11786 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11787 }
11788
11789 /* set_momentary_breakpoint could invalidate FRAME. */
11790 frame = NULL;
11791
11792 if (anywhere)
11793 /* If the user told us to continue until a specified location,
11794 we don't specify a frame at which we need to stop. */
11795 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11796 null_frame_id, bp_until);
11797 else
11798 /* Otherwise, specify the selected frame, because we want to stop
11799 only at the very same frame. */
11800 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11801 stack_frame_id, bp_until);
11802 make_cleanup_delete_breakpoint (location_breakpoint);
11803
11804 sm = new_until_break_fsm (command_interp (), tp->global_num,
11805 location_breakpoint, caller_breakpoint);
11806 tp->thread_fsm = &sm->thread_fsm;
11807
11808 discard_cleanups (old_chain);
11809
11810 proceed (-1, GDB_SIGNAL_DEFAULT);
11811
11812 do_cleanups (cleanup);
11813 }
11814
11815 /* This function attempts to parse an optional "if <cond>" clause
11816 from the arg string. If one is not found, it returns NULL.
11817
11818 Else, it returns a pointer to the condition string. (It does not
11819 attempt to evaluate the string against a particular block.) And,
11820 it updates arg to point to the first character following the parsed
11821 if clause in the arg string. */
11822
11823 char *
11824 ep_parse_optional_if_clause (char **arg)
11825 {
11826 char *cond_string;
11827
11828 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11829 return NULL;
11830
11831 /* Skip the "if" keyword. */
11832 (*arg) += 2;
11833
11834 /* Skip any extra leading whitespace, and record the start of the
11835 condition string. */
11836 *arg = skip_spaces (*arg);
11837 cond_string = *arg;
11838
11839 /* Assume that the condition occupies the remainder of the arg
11840 string. */
11841 (*arg) += strlen (cond_string);
11842
11843 return cond_string;
11844 }
11845
11846 /* Commands to deal with catching events, such as signals, exceptions,
11847 process start/exit, etc. */
11848
11849 typedef enum
11850 {
11851 catch_fork_temporary, catch_vfork_temporary,
11852 catch_fork_permanent, catch_vfork_permanent
11853 }
11854 catch_fork_kind;
11855
11856 static void
11857 catch_fork_command_1 (char *arg, int from_tty,
11858 struct cmd_list_element *command)
11859 {
11860 struct gdbarch *gdbarch = get_current_arch ();
11861 char *cond_string = NULL;
11862 catch_fork_kind fork_kind;
11863 int tempflag;
11864
11865 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11866 tempflag = (fork_kind == catch_fork_temporary
11867 || fork_kind == catch_vfork_temporary);
11868
11869 if (!arg)
11870 arg = "";
11871 arg = skip_spaces (arg);
11872
11873 /* The allowed syntax is:
11874 catch [v]fork
11875 catch [v]fork if <cond>
11876
11877 First, check if there's an if clause. */
11878 cond_string = ep_parse_optional_if_clause (&arg);
11879
11880 if ((*arg != '\0') && !isspace (*arg))
11881 error (_("Junk at end of arguments."));
11882
11883 /* If this target supports it, create a fork or vfork catchpoint
11884 and enable reporting of such events. */
11885 switch (fork_kind)
11886 {
11887 case catch_fork_temporary:
11888 case catch_fork_permanent:
11889 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11890 &catch_fork_breakpoint_ops);
11891 break;
11892 case catch_vfork_temporary:
11893 case catch_vfork_permanent:
11894 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11895 &catch_vfork_breakpoint_ops);
11896 break;
11897 default:
11898 error (_("unsupported or unknown fork kind; cannot catch it"));
11899 break;
11900 }
11901 }
11902
11903 static void
11904 catch_exec_command_1 (char *arg, int from_tty,
11905 struct cmd_list_element *command)
11906 {
11907 struct exec_catchpoint *c;
11908 struct gdbarch *gdbarch = get_current_arch ();
11909 int tempflag;
11910 char *cond_string = NULL;
11911
11912 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11913
11914 if (!arg)
11915 arg = "";
11916 arg = skip_spaces (arg);
11917
11918 /* The allowed syntax is:
11919 catch exec
11920 catch exec if <cond>
11921
11922 First, check if there's an if clause. */
11923 cond_string = ep_parse_optional_if_clause (&arg);
11924
11925 if ((*arg != '\0') && !isspace (*arg))
11926 error (_("Junk at end of arguments."));
11927
11928 c = new exec_catchpoint ();
11929 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11930 &catch_exec_breakpoint_ops);
11931 c->exec_pathname = NULL;
11932
11933 install_breakpoint (0, &c->base, 1);
11934 }
11935
11936 void
11937 init_ada_exception_breakpoint (struct breakpoint *b,
11938 struct gdbarch *gdbarch,
11939 struct symtab_and_line sal,
11940 char *addr_string,
11941 const struct breakpoint_ops *ops,
11942 int tempflag,
11943 int enabled,
11944 int from_tty)
11945 {
11946 if (from_tty)
11947 {
11948 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11949 if (!loc_gdbarch)
11950 loc_gdbarch = gdbarch;
11951
11952 describe_other_breakpoints (loc_gdbarch,
11953 sal.pspace, sal.pc, sal.section, -1);
11954 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11955 version for exception catchpoints, because two catchpoints
11956 used for different exception names will use the same address.
11957 In this case, a "breakpoint ... also set at..." warning is
11958 unproductive. Besides, the warning phrasing is also a bit
11959 inappropriate, we should use the word catchpoint, and tell
11960 the user what type of catchpoint it is. The above is good
11961 enough for now, though. */
11962 }
11963
11964 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11965
11966 b->enable_state = enabled ? bp_enabled : bp_disabled;
11967 b->disposition = tempflag ? disp_del : disp_donttouch;
11968 b->location = string_to_event_location (&addr_string,
11969 language_def (language_ada));
11970 b->language = language_ada;
11971 }
11972
11973 static void
11974 catch_command (char *arg, int from_tty)
11975 {
11976 error (_("Catch requires an event name."));
11977 }
11978 \f
11979
11980 static void
11981 tcatch_command (char *arg, int from_tty)
11982 {
11983 error (_("Catch requires an event name."));
11984 }
11985
11986 /* A qsort comparison function that sorts breakpoints in order. */
11987
11988 static int
11989 compare_breakpoints (const void *a, const void *b)
11990 {
11991 const breakpoint_p *ba = (const breakpoint_p *) a;
11992 uintptr_t ua = (uintptr_t) *ba;
11993 const breakpoint_p *bb = (const breakpoint_p *) b;
11994 uintptr_t ub = (uintptr_t) *bb;
11995
11996 if ((*ba)->number < (*bb)->number)
11997 return -1;
11998 else if ((*ba)->number > (*bb)->number)
11999 return 1;
12000
12001 /* Now sort by address, in case we see, e..g, two breakpoints with
12002 the number 0. */
12003 if (ua < ub)
12004 return -1;
12005 return ua > ub ? 1 : 0;
12006 }
12007
12008 /* Delete breakpoints by address or line. */
12009
12010 static void
12011 clear_command (char *arg, int from_tty)
12012 {
12013 struct breakpoint *b, *prev;
12014 VEC(breakpoint_p) *found = 0;
12015 int ix;
12016 int default_match;
12017 struct symtabs_and_lines sals;
12018 struct symtab_and_line sal;
12019 int i;
12020 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12021
12022 if (arg)
12023 {
12024 sals = decode_line_with_current_source (arg,
12025 (DECODE_LINE_FUNFIRSTLINE
12026 | DECODE_LINE_LIST_MODE));
12027 make_cleanup (xfree, sals.sals);
12028 default_match = 0;
12029 }
12030 else
12031 {
12032 sals.sals = XNEW (struct symtab_and_line);
12033 make_cleanup (xfree, sals.sals);
12034 init_sal (&sal); /* Initialize to zeroes. */
12035
12036 /* Set sal's line, symtab, pc, and pspace to the values
12037 corresponding to the last call to print_frame_info. If the
12038 codepoint is not valid, this will set all the fields to 0. */
12039 get_last_displayed_sal (&sal);
12040 if (sal.symtab == 0)
12041 error (_("No source file specified."));
12042
12043 sals.sals[0] = sal;
12044 sals.nelts = 1;
12045
12046 default_match = 1;
12047 }
12048
12049 /* We don't call resolve_sal_pc here. That's not as bad as it
12050 seems, because all existing breakpoints typically have both
12051 file/line and pc set. So, if clear is given file/line, we can
12052 match this to existing breakpoint without obtaining pc at all.
12053
12054 We only support clearing given the address explicitly
12055 present in breakpoint table. Say, we've set breakpoint
12056 at file:line. There were several PC values for that file:line,
12057 due to optimization, all in one block.
12058
12059 We've picked one PC value. If "clear" is issued with another
12060 PC corresponding to the same file:line, the breakpoint won't
12061 be cleared. We probably can still clear the breakpoint, but
12062 since the other PC value is never presented to user, user
12063 can only find it by guessing, and it does not seem important
12064 to support that. */
12065
12066 /* For each line spec given, delete bps which correspond to it. Do
12067 it in two passes, solely to preserve the current behavior that
12068 from_tty is forced true if we delete more than one
12069 breakpoint. */
12070
12071 found = NULL;
12072 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12073 for (i = 0; i < sals.nelts; i++)
12074 {
12075 const char *sal_fullname;
12076
12077 /* If exact pc given, clear bpts at that pc.
12078 If line given (pc == 0), clear all bpts on specified line.
12079 If defaulting, clear all bpts on default line
12080 or at default pc.
12081
12082 defaulting sal.pc != 0 tests to do
12083
12084 0 1 pc
12085 1 1 pc _and_ line
12086 0 0 line
12087 1 0 <can't happen> */
12088
12089 sal = sals.sals[i];
12090 sal_fullname = (sal.symtab == NULL
12091 ? NULL : symtab_to_fullname (sal.symtab));
12092
12093 /* Find all matching breakpoints and add them to 'found'. */
12094 ALL_BREAKPOINTS (b)
12095 {
12096 int match = 0;
12097 /* Are we going to delete b? */
12098 if (b->type != bp_none && !is_watchpoint (b))
12099 {
12100 struct bp_location *loc = b->loc;
12101 for (; loc; loc = loc->next)
12102 {
12103 /* If the user specified file:line, don't allow a PC
12104 match. This matches historical gdb behavior. */
12105 int pc_match = (!sal.explicit_line
12106 && sal.pc
12107 && (loc->pspace == sal.pspace)
12108 && (loc->address == sal.pc)
12109 && (!section_is_overlay (loc->section)
12110 || loc->section == sal.section));
12111 int line_match = 0;
12112
12113 if ((default_match || sal.explicit_line)
12114 && loc->symtab != NULL
12115 && sal_fullname != NULL
12116 && sal.pspace == loc->pspace
12117 && loc->line_number == sal.line
12118 && filename_cmp (symtab_to_fullname (loc->symtab),
12119 sal_fullname) == 0)
12120 line_match = 1;
12121
12122 if (pc_match || line_match)
12123 {
12124 match = 1;
12125 break;
12126 }
12127 }
12128 }
12129
12130 if (match)
12131 VEC_safe_push(breakpoint_p, found, b);
12132 }
12133 }
12134
12135 /* Now go thru the 'found' chain and delete them. */
12136 if (VEC_empty(breakpoint_p, found))
12137 {
12138 if (arg)
12139 error (_("No breakpoint at %s."), arg);
12140 else
12141 error (_("No breakpoint at this line."));
12142 }
12143
12144 /* Remove duplicates from the vec. */
12145 qsort (VEC_address (breakpoint_p, found),
12146 VEC_length (breakpoint_p, found),
12147 sizeof (breakpoint_p),
12148 compare_breakpoints);
12149 prev = VEC_index (breakpoint_p, found, 0);
12150 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12151 {
12152 if (b == prev)
12153 {
12154 VEC_ordered_remove (breakpoint_p, found, ix);
12155 --ix;
12156 }
12157 }
12158
12159 if (VEC_length(breakpoint_p, found) > 1)
12160 from_tty = 1; /* Always report if deleted more than one. */
12161 if (from_tty)
12162 {
12163 if (VEC_length(breakpoint_p, found) == 1)
12164 printf_unfiltered (_("Deleted breakpoint "));
12165 else
12166 printf_unfiltered (_("Deleted breakpoints "));
12167 }
12168
12169 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12170 {
12171 if (from_tty)
12172 printf_unfiltered ("%d ", b->number);
12173 delete_breakpoint (b);
12174 }
12175 if (from_tty)
12176 putchar_unfiltered ('\n');
12177
12178 do_cleanups (cleanups);
12179 }
12180 \f
12181 /* Delete breakpoint in BS if they are `delete' breakpoints and
12182 all breakpoints that are marked for deletion, whether hit or not.
12183 This is called after any breakpoint is hit, or after errors. */
12184
12185 void
12186 breakpoint_auto_delete (bpstat bs)
12187 {
12188 struct breakpoint *b, *b_tmp;
12189
12190 for (; bs; bs = bs->next)
12191 if (bs->breakpoint_at
12192 && bs->breakpoint_at->disposition == disp_del
12193 && bs->stop)
12194 delete_breakpoint (bs->breakpoint_at);
12195
12196 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12197 {
12198 if (b->disposition == disp_del_at_next_stop)
12199 delete_breakpoint (b);
12200 }
12201 }
12202
12203 /* A comparison function for bp_location AP and BP being interfaced to
12204 qsort. Sort elements primarily by their ADDRESS (no matter what
12205 does breakpoint_address_is_meaningful say for its OWNER),
12206 secondarily by ordering first permanent elements and
12207 terciarily just ensuring the array is sorted stable way despite
12208 qsort being an unstable algorithm. */
12209
12210 static int
12211 bp_location_compare (const void *ap, const void *bp)
12212 {
12213 const struct bp_location *a = *(const struct bp_location **) ap;
12214 const struct bp_location *b = *(const struct bp_location **) bp;
12215
12216 if (a->address != b->address)
12217 return (a->address > b->address) - (a->address < b->address);
12218
12219 /* Sort locations at the same address by their pspace number, keeping
12220 locations of the same inferior (in a multi-inferior environment)
12221 grouped. */
12222
12223 if (a->pspace->num != b->pspace->num)
12224 return ((a->pspace->num > b->pspace->num)
12225 - (a->pspace->num < b->pspace->num));
12226
12227 /* Sort permanent breakpoints first. */
12228 if (a->permanent != b->permanent)
12229 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12230
12231 /* Make the internal GDB representation stable across GDB runs
12232 where A and B memory inside GDB can differ. Breakpoint locations of
12233 the same type at the same address can be sorted in arbitrary order. */
12234
12235 if (a->owner->number != b->owner->number)
12236 return ((a->owner->number > b->owner->number)
12237 - (a->owner->number < b->owner->number));
12238
12239 return (a > b) - (a < b);
12240 }
12241
12242 /* Set bp_location_placed_address_before_address_max and
12243 bp_location_shadow_len_after_address_max according to the current
12244 content of the bp_location array. */
12245
12246 static void
12247 bp_location_target_extensions_update (void)
12248 {
12249 struct bp_location *bl, **blp_tmp;
12250
12251 bp_location_placed_address_before_address_max = 0;
12252 bp_location_shadow_len_after_address_max = 0;
12253
12254 ALL_BP_LOCATIONS (bl, blp_tmp)
12255 {
12256 CORE_ADDR start, end, addr;
12257
12258 if (!bp_location_has_shadow (bl))
12259 continue;
12260
12261 start = bl->target_info.placed_address;
12262 end = start + bl->target_info.shadow_len;
12263
12264 gdb_assert (bl->address >= start);
12265 addr = bl->address - start;
12266 if (addr > bp_location_placed_address_before_address_max)
12267 bp_location_placed_address_before_address_max = addr;
12268
12269 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12270
12271 gdb_assert (bl->address < end);
12272 addr = end - bl->address;
12273 if (addr > bp_location_shadow_len_after_address_max)
12274 bp_location_shadow_len_after_address_max = addr;
12275 }
12276 }
12277
12278 /* Download tracepoint locations if they haven't been. */
12279
12280 static void
12281 download_tracepoint_locations (void)
12282 {
12283 struct breakpoint *b;
12284 struct cleanup *old_chain;
12285 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12286
12287 old_chain = save_current_space_and_thread ();
12288
12289 ALL_TRACEPOINTS (b)
12290 {
12291 struct bp_location *bl;
12292 struct tracepoint *t;
12293 int bp_location_downloaded = 0;
12294
12295 if ((b->type == bp_fast_tracepoint
12296 ? !may_insert_fast_tracepoints
12297 : !may_insert_tracepoints))
12298 continue;
12299
12300 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12301 {
12302 if (target_can_download_tracepoint ())
12303 can_download_tracepoint = TRIBOOL_TRUE;
12304 else
12305 can_download_tracepoint = TRIBOOL_FALSE;
12306 }
12307
12308 if (can_download_tracepoint == TRIBOOL_FALSE)
12309 break;
12310
12311 for (bl = b->loc; bl; bl = bl->next)
12312 {
12313 /* In tracepoint, locations are _never_ duplicated, so
12314 should_be_inserted is equivalent to
12315 unduplicated_should_be_inserted. */
12316 if (!should_be_inserted (bl) || bl->inserted)
12317 continue;
12318
12319 switch_to_program_space_and_thread (bl->pspace);
12320
12321 target_download_tracepoint (bl);
12322
12323 bl->inserted = 1;
12324 bp_location_downloaded = 1;
12325 }
12326 t = (struct tracepoint *) b;
12327 t->number_on_target = b->number;
12328 if (bp_location_downloaded)
12329 observer_notify_breakpoint_modified (b);
12330 }
12331
12332 do_cleanups (old_chain);
12333 }
12334
12335 /* Swap the insertion/duplication state between two locations. */
12336
12337 static void
12338 swap_insertion (struct bp_location *left, struct bp_location *right)
12339 {
12340 const int left_inserted = left->inserted;
12341 const int left_duplicate = left->duplicate;
12342 const int left_needs_update = left->needs_update;
12343 const struct bp_target_info left_target_info = left->target_info;
12344
12345 /* Locations of tracepoints can never be duplicated. */
12346 if (is_tracepoint (left->owner))
12347 gdb_assert (!left->duplicate);
12348 if (is_tracepoint (right->owner))
12349 gdb_assert (!right->duplicate);
12350
12351 left->inserted = right->inserted;
12352 left->duplicate = right->duplicate;
12353 left->needs_update = right->needs_update;
12354 left->target_info = right->target_info;
12355 right->inserted = left_inserted;
12356 right->duplicate = left_duplicate;
12357 right->needs_update = left_needs_update;
12358 right->target_info = left_target_info;
12359 }
12360
12361 /* Force the re-insertion of the locations at ADDRESS. This is called
12362 once a new/deleted/modified duplicate location is found and we are evaluating
12363 conditions on the target's side. Such conditions need to be updated on
12364 the target. */
12365
12366 static void
12367 force_breakpoint_reinsertion (struct bp_location *bl)
12368 {
12369 struct bp_location **locp = NULL, **loc2p;
12370 struct bp_location *loc;
12371 CORE_ADDR address = 0;
12372 int pspace_num;
12373
12374 address = bl->address;
12375 pspace_num = bl->pspace->num;
12376
12377 /* This is only meaningful if the target is
12378 evaluating conditions and if the user has
12379 opted for condition evaluation on the target's
12380 side. */
12381 if (gdb_evaluates_breakpoint_condition_p ()
12382 || !target_supports_evaluation_of_breakpoint_conditions ())
12383 return;
12384
12385 /* Flag all breakpoint locations with this address and
12386 the same program space as the location
12387 as "its condition has changed". We need to
12388 update the conditions on the target's side. */
12389 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12390 {
12391 loc = *loc2p;
12392
12393 if (!is_breakpoint (loc->owner)
12394 || pspace_num != loc->pspace->num)
12395 continue;
12396
12397 /* Flag the location appropriately. We use a different state to
12398 let everyone know that we already updated the set of locations
12399 with addr bl->address and program space bl->pspace. This is so
12400 we don't have to keep calling these functions just to mark locations
12401 that have already been marked. */
12402 loc->condition_changed = condition_updated;
12403
12404 /* Free the agent expression bytecode as well. We will compute
12405 it later on. */
12406 loc->cond_bytecode.reset ();
12407 }
12408 }
12409 /* Called whether new breakpoints are created, or existing breakpoints
12410 deleted, to update the global location list and recompute which
12411 locations are duplicate of which.
12412
12413 The INSERT_MODE flag determines whether locations may not, may, or
12414 shall be inserted now. See 'enum ugll_insert_mode' for more
12415 info. */
12416
12417 static void
12418 update_global_location_list (enum ugll_insert_mode insert_mode)
12419 {
12420 struct breakpoint *b;
12421 struct bp_location **locp, *loc;
12422 struct cleanup *cleanups;
12423 /* Last breakpoint location address that was marked for update. */
12424 CORE_ADDR last_addr = 0;
12425 /* Last breakpoint location program space that was marked for update. */
12426 int last_pspace_num = -1;
12427
12428 /* Used in the duplicates detection below. When iterating over all
12429 bp_locations, points to the first bp_location of a given address.
12430 Breakpoints and watchpoints of different types are never
12431 duplicates of each other. Keep one pointer for each type of
12432 breakpoint/watchpoint, so we only need to loop over all locations
12433 once. */
12434 struct bp_location *bp_loc_first; /* breakpoint */
12435 struct bp_location *wp_loc_first; /* hardware watchpoint */
12436 struct bp_location *awp_loc_first; /* access watchpoint */
12437 struct bp_location *rwp_loc_first; /* read watchpoint */
12438
12439 /* Saved former bp_location array which we compare against the newly
12440 built bp_location from the current state of ALL_BREAKPOINTS. */
12441 struct bp_location **old_location, **old_locp;
12442 unsigned old_location_count;
12443
12444 old_location = bp_location;
12445 old_location_count = bp_location_count;
12446 bp_location = NULL;
12447 bp_location_count = 0;
12448 cleanups = make_cleanup (xfree, old_location);
12449
12450 ALL_BREAKPOINTS (b)
12451 for (loc = b->loc; loc; loc = loc->next)
12452 bp_location_count++;
12453
12454 bp_location = XNEWVEC (struct bp_location *, bp_location_count);
12455 locp = bp_location;
12456 ALL_BREAKPOINTS (b)
12457 for (loc = b->loc; loc; loc = loc->next)
12458 *locp++ = loc;
12459 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12460 bp_location_compare);
12461
12462 bp_location_target_extensions_update ();
12463
12464 /* Identify bp_location instances that are no longer present in the
12465 new list, and therefore should be freed. Note that it's not
12466 necessary that those locations should be removed from inferior --
12467 if there's another location at the same address (previously
12468 marked as duplicate), we don't need to remove/insert the
12469 location.
12470
12471 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12472 and former bp_location array state respectively. */
12473
12474 locp = bp_location;
12475 for (old_locp = old_location; old_locp < old_location + old_location_count;
12476 old_locp++)
12477 {
12478 struct bp_location *old_loc = *old_locp;
12479 struct bp_location **loc2p;
12480
12481 /* Tells if 'old_loc' is found among the new locations. If
12482 not, we have to free it. */
12483 int found_object = 0;
12484 /* Tells if the location should remain inserted in the target. */
12485 int keep_in_target = 0;
12486 int removed = 0;
12487
12488 /* Skip LOCP entries which will definitely never be needed.
12489 Stop either at or being the one matching OLD_LOC. */
12490 while (locp < bp_location + bp_location_count
12491 && (*locp)->address < old_loc->address)
12492 locp++;
12493
12494 for (loc2p = locp;
12495 (loc2p < bp_location + bp_location_count
12496 && (*loc2p)->address == old_loc->address);
12497 loc2p++)
12498 {
12499 /* Check if this is a new/duplicated location or a duplicated
12500 location that had its condition modified. If so, we want to send
12501 its condition to the target if evaluation of conditions is taking
12502 place there. */
12503 if ((*loc2p)->condition_changed == condition_modified
12504 && (last_addr != old_loc->address
12505 || last_pspace_num != old_loc->pspace->num))
12506 {
12507 force_breakpoint_reinsertion (*loc2p);
12508 last_pspace_num = old_loc->pspace->num;
12509 }
12510
12511 if (*loc2p == old_loc)
12512 found_object = 1;
12513 }
12514
12515 /* We have already handled this address, update it so that we don't
12516 have to go through updates again. */
12517 last_addr = old_loc->address;
12518
12519 /* Target-side condition evaluation: Handle deleted locations. */
12520 if (!found_object)
12521 force_breakpoint_reinsertion (old_loc);
12522
12523 /* If this location is no longer present, and inserted, look if
12524 there's maybe a new location at the same address. If so,
12525 mark that one inserted, and don't remove this one. This is
12526 needed so that we don't have a time window where a breakpoint
12527 at certain location is not inserted. */
12528
12529 if (old_loc->inserted)
12530 {
12531 /* If the location is inserted now, we might have to remove
12532 it. */
12533
12534 if (found_object && should_be_inserted (old_loc))
12535 {
12536 /* The location is still present in the location list,
12537 and still should be inserted. Don't do anything. */
12538 keep_in_target = 1;
12539 }
12540 else
12541 {
12542 /* This location still exists, but it won't be kept in the
12543 target since it may have been disabled. We proceed to
12544 remove its target-side condition. */
12545
12546 /* The location is either no longer present, or got
12547 disabled. See if there's another location at the
12548 same address, in which case we don't need to remove
12549 this one from the target. */
12550
12551 /* OLD_LOC comes from existing struct breakpoint. */
12552 if (breakpoint_address_is_meaningful (old_loc->owner))
12553 {
12554 for (loc2p = locp;
12555 (loc2p < bp_location + bp_location_count
12556 && (*loc2p)->address == old_loc->address);
12557 loc2p++)
12558 {
12559 struct bp_location *loc2 = *loc2p;
12560
12561 if (breakpoint_locations_match (loc2, old_loc))
12562 {
12563 /* Read watchpoint locations are switched to
12564 access watchpoints, if the former are not
12565 supported, but the latter are. */
12566 if (is_hardware_watchpoint (old_loc->owner))
12567 {
12568 gdb_assert (is_hardware_watchpoint (loc2->owner));
12569 loc2->watchpoint_type = old_loc->watchpoint_type;
12570 }
12571
12572 /* loc2 is a duplicated location. We need to check
12573 if it should be inserted in case it will be
12574 unduplicated. */
12575 if (loc2 != old_loc
12576 && unduplicated_should_be_inserted (loc2))
12577 {
12578 swap_insertion (old_loc, loc2);
12579 keep_in_target = 1;
12580 break;
12581 }
12582 }
12583 }
12584 }
12585 }
12586
12587 if (!keep_in_target)
12588 {
12589 if (remove_breakpoint (old_loc))
12590 {
12591 /* This is just about all we can do. We could keep
12592 this location on the global list, and try to
12593 remove it next time, but there's no particular
12594 reason why we will succeed next time.
12595
12596 Note that at this point, old_loc->owner is still
12597 valid, as delete_breakpoint frees the breakpoint
12598 only after calling us. */
12599 printf_filtered (_("warning: Error removing "
12600 "breakpoint %d\n"),
12601 old_loc->owner->number);
12602 }
12603 removed = 1;
12604 }
12605 }
12606
12607 if (!found_object)
12608 {
12609 if (removed && target_is_non_stop_p ()
12610 && need_moribund_for_location_type (old_loc))
12611 {
12612 /* This location was removed from the target. In
12613 non-stop mode, a race condition is possible where
12614 we've removed a breakpoint, but stop events for that
12615 breakpoint are already queued and will arrive later.
12616 We apply an heuristic to be able to distinguish such
12617 SIGTRAPs from other random SIGTRAPs: we keep this
12618 breakpoint location for a bit, and will retire it
12619 after we see some number of events. The theory here
12620 is that reporting of events should, "on the average",
12621 be fair, so after a while we'll see events from all
12622 threads that have anything of interest, and no longer
12623 need to keep this breakpoint location around. We
12624 don't hold locations forever so to reduce chances of
12625 mistaking a non-breakpoint SIGTRAP for a breakpoint
12626 SIGTRAP.
12627
12628 The heuristic failing can be disastrous on
12629 decr_pc_after_break targets.
12630
12631 On decr_pc_after_break targets, like e.g., x86-linux,
12632 if we fail to recognize a late breakpoint SIGTRAP,
12633 because events_till_retirement has reached 0 too
12634 soon, we'll fail to do the PC adjustment, and report
12635 a random SIGTRAP to the user. When the user resumes
12636 the inferior, it will most likely immediately crash
12637 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12638 corrupted, because of being resumed e.g., in the
12639 middle of a multi-byte instruction, or skipped a
12640 one-byte instruction. This was actually seen happen
12641 on native x86-linux, and should be less rare on
12642 targets that do not support new thread events, like
12643 remote, due to the heuristic depending on
12644 thread_count.
12645
12646 Mistaking a random SIGTRAP for a breakpoint trap
12647 causes similar symptoms (PC adjustment applied when
12648 it shouldn't), but then again, playing with SIGTRAPs
12649 behind the debugger's back is asking for trouble.
12650
12651 Since hardware watchpoint traps are always
12652 distinguishable from other traps, so we don't need to
12653 apply keep hardware watchpoint moribund locations
12654 around. We simply always ignore hardware watchpoint
12655 traps we can no longer explain. */
12656
12657 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12658 old_loc->owner = NULL;
12659
12660 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12661 }
12662 else
12663 {
12664 old_loc->owner = NULL;
12665 decref_bp_location (&old_loc);
12666 }
12667 }
12668 }
12669
12670 /* Rescan breakpoints at the same address and section, marking the
12671 first one as "first" and any others as "duplicates". This is so
12672 that the bpt instruction is only inserted once. If we have a
12673 permanent breakpoint at the same place as BPT, make that one the
12674 official one, and the rest as duplicates. Permanent breakpoints
12675 are sorted first for the same address.
12676
12677 Do the same for hardware watchpoints, but also considering the
12678 watchpoint's type (regular/access/read) and length. */
12679
12680 bp_loc_first = NULL;
12681 wp_loc_first = NULL;
12682 awp_loc_first = NULL;
12683 rwp_loc_first = NULL;
12684 ALL_BP_LOCATIONS (loc, locp)
12685 {
12686 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12687 non-NULL. */
12688 struct bp_location **loc_first_p;
12689 b = loc->owner;
12690
12691 if (!unduplicated_should_be_inserted (loc)
12692 || !breakpoint_address_is_meaningful (b)
12693 /* Don't detect duplicate for tracepoint locations because they are
12694 never duplicated. See the comments in field `duplicate' of
12695 `struct bp_location'. */
12696 || is_tracepoint (b))
12697 {
12698 /* Clear the condition modification flag. */
12699 loc->condition_changed = condition_unchanged;
12700 continue;
12701 }
12702
12703 if (b->type == bp_hardware_watchpoint)
12704 loc_first_p = &wp_loc_first;
12705 else if (b->type == bp_read_watchpoint)
12706 loc_first_p = &rwp_loc_first;
12707 else if (b->type == bp_access_watchpoint)
12708 loc_first_p = &awp_loc_first;
12709 else
12710 loc_first_p = &bp_loc_first;
12711
12712 if (*loc_first_p == NULL
12713 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12714 || !breakpoint_locations_match (loc, *loc_first_p))
12715 {
12716 *loc_first_p = loc;
12717 loc->duplicate = 0;
12718
12719 if (is_breakpoint (loc->owner) && loc->condition_changed)
12720 {
12721 loc->needs_update = 1;
12722 /* Clear the condition modification flag. */
12723 loc->condition_changed = condition_unchanged;
12724 }
12725 continue;
12726 }
12727
12728
12729 /* This and the above ensure the invariant that the first location
12730 is not duplicated, and is the inserted one.
12731 All following are marked as duplicated, and are not inserted. */
12732 if (loc->inserted)
12733 swap_insertion (loc, *loc_first_p);
12734 loc->duplicate = 1;
12735
12736 /* Clear the condition modification flag. */
12737 loc->condition_changed = condition_unchanged;
12738 }
12739
12740 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12741 {
12742 if (insert_mode != UGLL_DONT_INSERT)
12743 insert_breakpoint_locations ();
12744 else
12745 {
12746 /* Even though the caller told us to not insert new
12747 locations, we may still need to update conditions on the
12748 target's side of breakpoints that were already inserted
12749 if the target is evaluating breakpoint conditions. We
12750 only update conditions for locations that are marked
12751 "needs_update". */
12752 update_inserted_breakpoint_locations ();
12753 }
12754 }
12755
12756 if (insert_mode != UGLL_DONT_INSERT)
12757 download_tracepoint_locations ();
12758
12759 do_cleanups (cleanups);
12760 }
12761
12762 void
12763 breakpoint_retire_moribund (void)
12764 {
12765 struct bp_location *loc;
12766 int ix;
12767
12768 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12769 if (--(loc->events_till_retirement) == 0)
12770 {
12771 decref_bp_location (&loc);
12772 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12773 --ix;
12774 }
12775 }
12776
12777 static void
12778 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12779 {
12780
12781 TRY
12782 {
12783 update_global_location_list (insert_mode);
12784 }
12785 CATCH (e, RETURN_MASK_ERROR)
12786 {
12787 }
12788 END_CATCH
12789 }
12790
12791 /* Clear BKP from a BPS. */
12792
12793 static void
12794 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12795 {
12796 bpstat bs;
12797
12798 for (bs = bps; bs; bs = bs->next)
12799 if (bs->breakpoint_at == bpt)
12800 {
12801 bs->breakpoint_at = NULL;
12802 bs->old_val = NULL;
12803 /* bs->commands will be freed later. */
12804 }
12805 }
12806
12807 /* Callback for iterate_over_threads. */
12808 static int
12809 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12810 {
12811 struct breakpoint *bpt = (struct breakpoint *) data;
12812
12813 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12814 return 0;
12815 }
12816
12817 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12818 callbacks. */
12819
12820 static void
12821 say_where (struct breakpoint *b)
12822 {
12823 struct value_print_options opts;
12824
12825 get_user_print_options (&opts);
12826
12827 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12828 single string. */
12829 if (b->loc == NULL)
12830 {
12831 /* For pending locations, the output differs slightly based
12832 on b->extra_string. If this is non-NULL, it contains either
12833 a condition or dprintf arguments. */
12834 if (b->extra_string == NULL)
12835 {
12836 printf_filtered (_(" (%s) pending."),
12837 event_location_to_string (b->location));
12838 }
12839 else if (b->type == bp_dprintf)
12840 {
12841 printf_filtered (_(" (%s,%s) pending."),
12842 event_location_to_string (b->location),
12843 b->extra_string);
12844 }
12845 else
12846 {
12847 printf_filtered (_(" (%s %s) pending."),
12848 event_location_to_string (b->location),
12849 b->extra_string);
12850 }
12851 }
12852 else
12853 {
12854 if (opts.addressprint || b->loc->symtab == NULL)
12855 {
12856 printf_filtered (" at ");
12857 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12858 gdb_stdout);
12859 }
12860 if (b->loc->symtab != NULL)
12861 {
12862 /* If there is a single location, we can print the location
12863 more nicely. */
12864 if (b->loc->next == NULL)
12865 printf_filtered (": file %s, line %d.",
12866 symtab_to_filename_for_display (b->loc->symtab),
12867 b->loc->line_number);
12868 else
12869 /* This is not ideal, but each location may have a
12870 different file name, and this at least reflects the
12871 real situation somewhat. */
12872 printf_filtered (": %s.",
12873 event_location_to_string (b->location));
12874 }
12875
12876 if (b->loc->next)
12877 {
12878 struct bp_location *loc = b->loc;
12879 int n = 0;
12880 for (; loc; loc = loc->next)
12881 ++n;
12882 printf_filtered (" (%d locations)", n);
12883 }
12884 }
12885 }
12886
12887 /* Default bp_location_ops methods. */
12888
12889 static void
12890 bp_location_dtor (struct bp_location *self)
12891 {
12892 xfree (self->function_name);
12893 }
12894
12895 static const struct bp_location_ops bp_location_ops =
12896 {
12897 bp_location_dtor
12898 };
12899
12900 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12901 inherit from. */
12902
12903 static void
12904 base_breakpoint_dtor (struct breakpoint *self)
12905 {
12906 decref_counted_command_line (&self->commands);
12907 xfree (self->cond_string);
12908 xfree (self->extra_string);
12909 xfree (self->filter);
12910 delete_event_location (self->location);
12911 delete_event_location (self->location_range_end);
12912 }
12913
12914 static struct bp_location *
12915 base_breakpoint_allocate_location (struct breakpoint *self)
12916 {
12917 struct bp_location *loc;
12918
12919 loc = new struct bp_location ();
12920 init_bp_location (loc, &bp_location_ops, self);
12921 return loc;
12922 }
12923
12924 static void
12925 base_breakpoint_re_set (struct breakpoint *b)
12926 {
12927 /* Nothing to re-set. */
12928 }
12929
12930 #define internal_error_pure_virtual_called() \
12931 gdb_assert_not_reached ("pure virtual function called")
12932
12933 static int
12934 base_breakpoint_insert_location (struct bp_location *bl)
12935 {
12936 internal_error_pure_virtual_called ();
12937 }
12938
12939 static int
12940 base_breakpoint_remove_location (struct bp_location *bl,
12941 enum remove_bp_reason reason)
12942 {
12943 internal_error_pure_virtual_called ();
12944 }
12945
12946 static int
12947 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12948 struct address_space *aspace,
12949 CORE_ADDR bp_addr,
12950 const struct target_waitstatus *ws)
12951 {
12952 internal_error_pure_virtual_called ();
12953 }
12954
12955 static void
12956 base_breakpoint_check_status (bpstat bs)
12957 {
12958 /* Always stop. */
12959 }
12960
12961 /* A "works_in_software_mode" breakpoint_ops method that just internal
12962 errors. */
12963
12964 static int
12965 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12966 {
12967 internal_error_pure_virtual_called ();
12968 }
12969
12970 /* A "resources_needed" breakpoint_ops method that just internal
12971 errors. */
12972
12973 static int
12974 base_breakpoint_resources_needed (const struct bp_location *bl)
12975 {
12976 internal_error_pure_virtual_called ();
12977 }
12978
12979 static enum print_stop_action
12980 base_breakpoint_print_it (bpstat bs)
12981 {
12982 internal_error_pure_virtual_called ();
12983 }
12984
12985 static void
12986 base_breakpoint_print_one_detail (const struct breakpoint *self,
12987 struct ui_out *uiout)
12988 {
12989 /* nothing */
12990 }
12991
12992 static void
12993 base_breakpoint_print_mention (struct breakpoint *b)
12994 {
12995 internal_error_pure_virtual_called ();
12996 }
12997
12998 static void
12999 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13000 {
13001 internal_error_pure_virtual_called ();
13002 }
13003
13004 static void
13005 base_breakpoint_create_sals_from_location
13006 (const struct event_location *location,
13007 struct linespec_result *canonical,
13008 enum bptype type_wanted)
13009 {
13010 internal_error_pure_virtual_called ();
13011 }
13012
13013 static void
13014 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13015 struct linespec_result *c,
13016 char *cond_string,
13017 char *extra_string,
13018 enum bptype type_wanted,
13019 enum bpdisp disposition,
13020 int thread,
13021 int task, int ignore_count,
13022 const struct breakpoint_ops *o,
13023 int from_tty, int enabled,
13024 int internal, unsigned flags)
13025 {
13026 internal_error_pure_virtual_called ();
13027 }
13028
13029 static void
13030 base_breakpoint_decode_location (struct breakpoint *b,
13031 const struct event_location *location,
13032 struct program_space *search_pspace,
13033 struct symtabs_and_lines *sals)
13034 {
13035 internal_error_pure_virtual_called ();
13036 }
13037
13038 /* The default 'explains_signal' method. */
13039
13040 static int
13041 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13042 {
13043 return 1;
13044 }
13045
13046 /* The default "after_condition_true" method. */
13047
13048 static void
13049 base_breakpoint_after_condition_true (struct bpstats *bs)
13050 {
13051 /* Nothing to do. */
13052 }
13053
13054 struct breakpoint_ops base_breakpoint_ops =
13055 {
13056 base_breakpoint_dtor,
13057 base_breakpoint_allocate_location,
13058 base_breakpoint_re_set,
13059 base_breakpoint_insert_location,
13060 base_breakpoint_remove_location,
13061 base_breakpoint_breakpoint_hit,
13062 base_breakpoint_check_status,
13063 base_breakpoint_resources_needed,
13064 base_breakpoint_works_in_software_mode,
13065 base_breakpoint_print_it,
13066 NULL,
13067 base_breakpoint_print_one_detail,
13068 base_breakpoint_print_mention,
13069 base_breakpoint_print_recreate,
13070 base_breakpoint_create_sals_from_location,
13071 base_breakpoint_create_breakpoints_sal,
13072 base_breakpoint_decode_location,
13073 base_breakpoint_explains_signal,
13074 base_breakpoint_after_condition_true,
13075 };
13076
13077 /* Default breakpoint_ops methods. */
13078
13079 static void
13080 bkpt_re_set (struct breakpoint *b)
13081 {
13082 /* FIXME: is this still reachable? */
13083 if (breakpoint_event_location_empty_p (b))
13084 {
13085 /* Anything without a location can't be re-set. */
13086 delete_breakpoint (b);
13087 return;
13088 }
13089
13090 breakpoint_re_set_default (b);
13091 }
13092
13093 static int
13094 bkpt_insert_location (struct bp_location *bl)
13095 {
13096 CORE_ADDR addr = bl->target_info.reqstd_address;
13097
13098 bl->target_info.kind = breakpoint_kind (bl, &addr);
13099 bl->target_info.placed_address = addr;
13100
13101 if (bl->loc_type == bp_loc_hardware_breakpoint)
13102 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13103 else
13104 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13105 }
13106
13107 static int
13108 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
13109 {
13110 if (bl->loc_type == bp_loc_hardware_breakpoint)
13111 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13112 else
13113 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
13114 }
13115
13116 static int
13117 bkpt_breakpoint_hit (const struct bp_location *bl,
13118 struct address_space *aspace, CORE_ADDR bp_addr,
13119 const struct target_waitstatus *ws)
13120 {
13121 if (ws->kind != TARGET_WAITKIND_STOPPED
13122 || ws->value.sig != GDB_SIGNAL_TRAP)
13123 return 0;
13124
13125 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13126 aspace, bp_addr))
13127 return 0;
13128
13129 if (overlay_debugging /* unmapped overlay section */
13130 && section_is_overlay (bl->section)
13131 && !section_is_mapped (bl->section))
13132 return 0;
13133
13134 return 1;
13135 }
13136
13137 static int
13138 dprintf_breakpoint_hit (const struct bp_location *bl,
13139 struct address_space *aspace, CORE_ADDR bp_addr,
13140 const struct target_waitstatus *ws)
13141 {
13142 if (dprintf_style == dprintf_style_agent
13143 && target_can_run_breakpoint_commands ())
13144 {
13145 /* An agent-style dprintf never causes a stop. If we see a trap
13146 for this address it must be for a breakpoint that happens to
13147 be set at the same address. */
13148 return 0;
13149 }
13150
13151 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13152 }
13153
13154 static int
13155 bkpt_resources_needed (const struct bp_location *bl)
13156 {
13157 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13158
13159 return 1;
13160 }
13161
13162 static enum print_stop_action
13163 bkpt_print_it (bpstat bs)
13164 {
13165 struct breakpoint *b;
13166 const struct bp_location *bl;
13167 int bp_temp;
13168 struct ui_out *uiout = current_uiout;
13169
13170 gdb_assert (bs->bp_location_at != NULL);
13171
13172 bl = bs->bp_location_at;
13173 b = bs->breakpoint_at;
13174
13175 bp_temp = b->disposition == disp_del;
13176 if (bl->address != bl->requested_address)
13177 breakpoint_adjustment_warning (bl->requested_address,
13178 bl->address,
13179 b->number, 1);
13180 annotate_breakpoint (b->number);
13181 maybe_print_thread_hit_breakpoint (uiout);
13182
13183 if (bp_temp)
13184 ui_out_text (uiout, "Temporary breakpoint ");
13185 else
13186 ui_out_text (uiout, "Breakpoint ");
13187 if (ui_out_is_mi_like_p (uiout))
13188 {
13189 ui_out_field_string (uiout, "reason",
13190 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13191 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13192 }
13193 ui_out_field_int (uiout, "bkptno", b->number);
13194 ui_out_text (uiout, ", ");
13195
13196 return PRINT_SRC_AND_LOC;
13197 }
13198
13199 static void
13200 bkpt_print_mention (struct breakpoint *b)
13201 {
13202 if (ui_out_is_mi_like_p (current_uiout))
13203 return;
13204
13205 switch (b->type)
13206 {
13207 case bp_breakpoint:
13208 case bp_gnu_ifunc_resolver:
13209 if (b->disposition == disp_del)
13210 printf_filtered (_("Temporary breakpoint"));
13211 else
13212 printf_filtered (_("Breakpoint"));
13213 printf_filtered (_(" %d"), b->number);
13214 if (b->type == bp_gnu_ifunc_resolver)
13215 printf_filtered (_(" at gnu-indirect-function resolver"));
13216 break;
13217 case bp_hardware_breakpoint:
13218 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13219 break;
13220 case bp_dprintf:
13221 printf_filtered (_("Dprintf %d"), b->number);
13222 break;
13223 }
13224
13225 say_where (b);
13226 }
13227
13228 static void
13229 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13230 {
13231 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13232 fprintf_unfiltered (fp, "tbreak");
13233 else if (tp->type == bp_breakpoint)
13234 fprintf_unfiltered (fp, "break");
13235 else if (tp->type == bp_hardware_breakpoint
13236 && tp->disposition == disp_del)
13237 fprintf_unfiltered (fp, "thbreak");
13238 else if (tp->type == bp_hardware_breakpoint)
13239 fprintf_unfiltered (fp, "hbreak");
13240 else
13241 internal_error (__FILE__, __LINE__,
13242 _("unhandled breakpoint type %d"), (int) tp->type);
13243
13244 fprintf_unfiltered (fp, " %s",
13245 event_location_to_string (tp->location));
13246
13247 /* Print out extra_string if this breakpoint is pending. It might
13248 contain, for example, conditions that were set by the user. */
13249 if (tp->loc == NULL && tp->extra_string != NULL)
13250 fprintf_unfiltered (fp, " %s", tp->extra_string);
13251
13252 print_recreate_thread (tp, fp);
13253 }
13254
13255 static void
13256 bkpt_create_sals_from_location (const struct event_location *location,
13257 struct linespec_result *canonical,
13258 enum bptype type_wanted)
13259 {
13260 create_sals_from_location_default (location, canonical, type_wanted);
13261 }
13262
13263 static void
13264 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13265 struct linespec_result *canonical,
13266 char *cond_string,
13267 char *extra_string,
13268 enum bptype type_wanted,
13269 enum bpdisp disposition,
13270 int thread,
13271 int task, int ignore_count,
13272 const struct breakpoint_ops *ops,
13273 int from_tty, int enabled,
13274 int internal, unsigned flags)
13275 {
13276 create_breakpoints_sal_default (gdbarch, canonical,
13277 cond_string, extra_string,
13278 type_wanted,
13279 disposition, thread, task,
13280 ignore_count, ops, from_tty,
13281 enabled, internal, flags);
13282 }
13283
13284 static void
13285 bkpt_decode_location (struct breakpoint *b,
13286 const struct event_location *location,
13287 struct program_space *search_pspace,
13288 struct symtabs_and_lines *sals)
13289 {
13290 decode_location_default (b, location, search_pspace, sals);
13291 }
13292
13293 /* Virtual table for internal breakpoints. */
13294
13295 static void
13296 internal_bkpt_re_set (struct breakpoint *b)
13297 {
13298 switch (b->type)
13299 {
13300 /* Delete overlay event and longjmp master breakpoints; they
13301 will be reset later by breakpoint_re_set. */
13302 case bp_overlay_event:
13303 case bp_longjmp_master:
13304 case bp_std_terminate_master:
13305 case bp_exception_master:
13306 delete_breakpoint (b);
13307 break;
13308
13309 /* This breakpoint is special, it's set up when the inferior
13310 starts and we really don't want to touch it. */
13311 case bp_shlib_event:
13312
13313 /* Like bp_shlib_event, this breakpoint type is special. Once
13314 it is set up, we do not want to touch it. */
13315 case bp_thread_event:
13316 break;
13317 }
13318 }
13319
13320 static void
13321 internal_bkpt_check_status (bpstat bs)
13322 {
13323 if (bs->breakpoint_at->type == bp_shlib_event)
13324 {
13325 /* If requested, stop when the dynamic linker notifies GDB of
13326 events. This allows the user to get control and place
13327 breakpoints in initializer routines for dynamically loaded
13328 objects (among other things). */
13329 bs->stop = stop_on_solib_events;
13330 bs->print = stop_on_solib_events;
13331 }
13332 else
13333 bs->stop = 0;
13334 }
13335
13336 static enum print_stop_action
13337 internal_bkpt_print_it (bpstat bs)
13338 {
13339 struct breakpoint *b;
13340
13341 b = bs->breakpoint_at;
13342
13343 switch (b->type)
13344 {
13345 case bp_shlib_event:
13346 /* Did we stop because the user set the stop_on_solib_events
13347 variable? (If so, we report this as a generic, "Stopped due
13348 to shlib event" message.) */
13349 print_solib_event (0);
13350 break;
13351
13352 case bp_thread_event:
13353 /* Not sure how we will get here.
13354 GDB should not stop for these breakpoints. */
13355 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13356 break;
13357
13358 case bp_overlay_event:
13359 /* By analogy with the thread event, GDB should not stop for these. */
13360 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13361 break;
13362
13363 case bp_longjmp_master:
13364 /* These should never be enabled. */
13365 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13366 break;
13367
13368 case bp_std_terminate_master:
13369 /* These should never be enabled. */
13370 printf_filtered (_("std::terminate Master Breakpoint: "
13371 "gdb should not stop!\n"));
13372 break;
13373
13374 case bp_exception_master:
13375 /* These should never be enabled. */
13376 printf_filtered (_("Exception Master Breakpoint: "
13377 "gdb should not stop!\n"));
13378 break;
13379 }
13380
13381 return PRINT_NOTHING;
13382 }
13383
13384 static void
13385 internal_bkpt_print_mention (struct breakpoint *b)
13386 {
13387 /* Nothing to mention. These breakpoints are internal. */
13388 }
13389
13390 /* Virtual table for momentary breakpoints */
13391
13392 static void
13393 momentary_bkpt_re_set (struct breakpoint *b)
13394 {
13395 /* Keep temporary breakpoints, which can be encountered when we step
13396 over a dlopen call and solib_add is resetting the breakpoints.
13397 Otherwise these should have been blown away via the cleanup chain
13398 or by breakpoint_init_inferior when we rerun the executable. */
13399 }
13400
13401 static void
13402 momentary_bkpt_check_status (bpstat bs)
13403 {
13404 /* Nothing. The point of these breakpoints is causing a stop. */
13405 }
13406
13407 static enum print_stop_action
13408 momentary_bkpt_print_it (bpstat bs)
13409 {
13410 return PRINT_UNKNOWN;
13411 }
13412
13413 static void
13414 momentary_bkpt_print_mention (struct breakpoint *b)
13415 {
13416 /* Nothing to mention. These breakpoints are internal. */
13417 }
13418
13419 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13420
13421 It gets cleared already on the removal of the first one of such placed
13422 breakpoints. This is OK as they get all removed altogether. */
13423
13424 static void
13425 longjmp_bkpt_dtor (struct breakpoint *self)
13426 {
13427 struct thread_info *tp = find_thread_global_id (self->thread);
13428
13429 if (tp)
13430 tp->initiating_frame = null_frame_id;
13431
13432 momentary_breakpoint_ops.dtor (self);
13433 }
13434
13435 /* Specific methods for probe breakpoints. */
13436
13437 static int
13438 bkpt_probe_insert_location (struct bp_location *bl)
13439 {
13440 int v = bkpt_insert_location (bl);
13441
13442 if (v == 0)
13443 {
13444 /* The insertion was successful, now let's set the probe's semaphore
13445 if needed. */
13446 if (bl->probe.probe->pops->set_semaphore != NULL)
13447 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13448 bl->probe.objfile,
13449 bl->gdbarch);
13450 }
13451
13452 return v;
13453 }
13454
13455 static int
13456 bkpt_probe_remove_location (struct bp_location *bl,
13457 enum remove_bp_reason reason)
13458 {
13459 /* Let's clear the semaphore before removing the location. */
13460 if (bl->probe.probe->pops->clear_semaphore != NULL)
13461 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13462 bl->probe.objfile,
13463 bl->gdbarch);
13464
13465 return bkpt_remove_location (bl, reason);
13466 }
13467
13468 static void
13469 bkpt_probe_create_sals_from_location (const struct event_location *location,
13470 struct linespec_result *canonical,
13471 enum bptype type_wanted)
13472 {
13473 struct linespec_sals lsal;
13474
13475 lsal.sals = parse_probes (location, NULL, canonical);
13476 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13477 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13478 }
13479
13480 static void
13481 bkpt_probe_decode_location (struct breakpoint *b,
13482 const struct event_location *location,
13483 struct program_space *search_pspace,
13484 struct symtabs_and_lines *sals)
13485 {
13486 *sals = parse_probes (location, search_pspace, NULL);
13487 if (!sals->sals)
13488 error (_("probe not found"));
13489 }
13490
13491 /* The breakpoint_ops structure to be used in tracepoints. */
13492
13493 static void
13494 tracepoint_re_set (struct breakpoint *b)
13495 {
13496 breakpoint_re_set_default (b);
13497 }
13498
13499 static int
13500 tracepoint_breakpoint_hit (const struct bp_location *bl,
13501 struct address_space *aspace, CORE_ADDR bp_addr,
13502 const struct target_waitstatus *ws)
13503 {
13504 /* By definition, the inferior does not report stops at
13505 tracepoints. */
13506 return 0;
13507 }
13508
13509 static void
13510 tracepoint_print_one_detail (const struct breakpoint *self,
13511 struct ui_out *uiout)
13512 {
13513 struct tracepoint *tp = (struct tracepoint *) self;
13514 if (tp->static_trace_marker_id)
13515 {
13516 gdb_assert (self->type == bp_static_tracepoint);
13517
13518 ui_out_text (uiout, "\tmarker id is ");
13519 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13520 tp->static_trace_marker_id);
13521 ui_out_text (uiout, "\n");
13522 }
13523 }
13524
13525 static void
13526 tracepoint_print_mention (struct breakpoint *b)
13527 {
13528 if (ui_out_is_mi_like_p (current_uiout))
13529 return;
13530
13531 switch (b->type)
13532 {
13533 case bp_tracepoint:
13534 printf_filtered (_("Tracepoint"));
13535 printf_filtered (_(" %d"), b->number);
13536 break;
13537 case bp_fast_tracepoint:
13538 printf_filtered (_("Fast tracepoint"));
13539 printf_filtered (_(" %d"), b->number);
13540 break;
13541 case bp_static_tracepoint:
13542 printf_filtered (_("Static tracepoint"));
13543 printf_filtered (_(" %d"), b->number);
13544 break;
13545 default:
13546 internal_error (__FILE__, __LINE__,
13547 _("unhandled tracepoint type %d"), (int) b->type);
13548 }
13549
13550 say_where (b);
13551 }
13552
13553 static void
13554 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13555 {
13556 struct tracepoint *tp = (struct tracepoint *) self;
13557
13558 if (self->type == bp_fast_tracepoint)
13559 fprintf_unfiltered (fp, "ftrace");
13560 else if (self->type == bp_static_tracepoint)
13561 fprintf_unfiltered (fp, "strace");
13562 else if (self->type == bp_tracepoint)
13563 fprintf_unfiltered (fp, "trace");
13564 else
13565 internal_error (__FILE__, __LINE__,
13566 _("unhandled tracepoint type %d"), (int) self->type);
13567
13568 fprintf_unfiltered (fp, " %s",
13569 event_location_to_string (self->location));
13570 print_recreate_thread (self, fp);
13571
13572 if (tp->pass_count)
13573 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13574 }
13575
13576 static void
13577 tracepoint_create_sals_from_location (const struct event_location *location,
13578 struct linespec_result *canonical,
13579 enum bptype type_wanted)
13580 {
13581 create_sals_from_location_default (location, canonical, type_wanted);
13582 }
13583
13584 static void
13585 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13586 struct linespec_result *canonical,
13587 char *cond_string,
13588 char *extra_string,
13589 enum bptype type_wanted,
13590 enum bpdisp disposition,
13591 int thread,
13592 int task, int ignore_count,
13593 const struct breakpoint_ops *ops,
13594 int from_tty, int enabled,
13595 int internal, unsigned flags)
13596 {
13597 create_breakpoints_sal_default (gdbarch, canonical,
13598 cond_string, extra_string,
13599 type_wanted,
13600 disposition, thread, task,
13601 ignore_count, ops, from_tty,
13602 enabled, internal, flags);
13603 }
13604
13605 static void
13606 tracepoint_decode_location (struct breakpoint *b,
13607 const struct event_location *location,
13608 struct program_space *search_pspace,
13609 struct symtabs_and_lines *sals)
13610 {
13611 decode_location_default (b, location, search_pspace, sals);
13612 }
13613
13614 struct breakpoint_ops tracepoint_breakpoint_ops;
13615
13616 /* The breakpoint_ops structure to be use on tracepoints placed in a
13617 static probe. */
13618
13619 static void
13620 tracepoint_probe_create_sals_from_location
13621 (const struct event_location *location,
13622 struct linespec_result *canonical,
13623 enum bptype type_wanted)
13624 {
13625 /* We use the same method for breakpoint on probes. */
13626 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13627 }
13628
13629 static void
13630 tracepoint_probe_decode_location (struct breakpoint *b,
13631 const struct event_location *location,
13632 struct program_space *search_pspace,
13633 struct symtabs_and_lines *sals)
13634 {
13635 /* We use the same method for breakpoint on probes. */
13636 bkpt_probe_decode_location (b, location, search_pspace, sals);
13637 }
13638
13639 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13640
13641 /* Dprintf breakpoint_ops methods. */
13642
13643 static void
13644 dprintf_re_set (struct breakpoint *b)
13645 {
13646 breakpoint_re_set_default (b);
13647
13648 /* extra_string should never be non-NULL for dprintf. */
13649 gdb_assert (b->extra_string != NULL);
13650
13651 /* 1 - connect to target 1, that can run breakpoint commands.
13652 2 - create a dprintf, which resolves fine.
13653 3 - disconnect from target 1
13654 4 - connect to target 2, that can NOT run breakpoint commands.
13655
13656 After steps #3/#4, you'll want the dprintf command list to
13657 be updated, because target 1 and 2 may well return different
13658 answers for target_can_run_breakpoint_commands().
13659 Given absence of finer grained resetting, we get to do
13660 it all the time. */
13661 if (b->extra_string != NULL)
13662 update_dprintf_command_list (b);
13663 }
13664
13665 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13666
13667 static void
13668 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13669 {
13670 fprintf_unfiltered (fp, "dprintf %s,%s",
13671 event_location_to_string (tp->location),
13672 tp->extra_string);
13673 print_recreate_thread (tp, fp);
13674 }
13675
13676 /* Implement the "after_condition_true" breakpoint_ops method for
13677 dprintf.
13678
13679 dprintf's are implemented with regular commands in their command
13680 list, but we run the commands here instead of before presenting the
13681 stop to the user, as dprintf's don't actually cause a stop. This
13682 also makes it so that the commands of multiple dprintfs at the same
13683 address are all handled. */
13684
13685 static void
13686 dprintf_after_condition_true (struct bpstats *bs)
13687 {
13688 struct cleanup *old_chain;
13689 struct bpstats tmp_bs = { NULL };
13690 struct bpstats *tmp_bs_p = &tmp_bs;
13691
13692 /* dprintf's never cause a stop. This wasn't set in the
13693 check_status hook instead because that would make the dprintf's
13694 condition not be evaluated. */
13695 bs->stop = 0;
13696
13697 /* Run the command list here. Take ownership of it instead of
13698 copying. We never want these commands to run later in
13699 bpstat_do_actions, if a breakpoint that causes a stop happens to
13700 be set at same address as this dprintf, or even if running the
13701 commands here throws. */
13702 tmp_bs.commands = bs->commands;
13703 bs->commands = NULL;
13704 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13705
13706 bpstat_do_actions_1 (&tmp_bs_p);
13707
13708 /* 'tmp_bs.commands' will usually be NULL by now, but
13709 bpstat_do_actions_1 may return early without processing the whole
13710 list. */
13711 do_cleanups (old_chain);
13712 }
13713
13714 /* The breakpoint_ops structure to be used on static tracepoints with
13715 markers (`-m'). */
13716
13717 static void
13718 strace_marker_create_sals_from_location (const struct event_location *location,
13719 struct linespec_result *canonical,
13720 enum bptype type_wanted)
13721 {
13722 struct linespec_sals lsal;
13723 const char *arg_start, *arg;
13724 char *str;
13725 struct cleanup *cleanup;
13726
13727 arg = arg_start = get_linespec_location (location);
13728 lsal.sals = decode_static_tracepoint_spec (&arg);
13729
13730 str = savestring (arg_start, arg - arg_start);
13731 cleanup = make_cleanup (xfree, str);
13732 canonical->location = new_linespec_location (&str);
13733 do_cleanups (cleanup);
13734
13735 lsal.canonical = xstrdup (event_location_to_string (canonical->location));
13736 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13737 }
13738
13739 static void
13740 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13741 struct linespec_result *canonical,
13742 char *cond_string,
13743 char *extra_string,
13744 enum bptype type_wanted,
13745 enum bpdisp disposition,
13746 int thread,
13747 int task, int ignore_count,
13748 const struct breakpoint_ops *ops,
13749 int from_tty, int enabled,
13750 int internal, unsigned flags)
13751 {
13752 int i;
13753 struct linespec_sals *lsal = VEC_index (linespec_sals,
13754 canonical->sals, 0);
13755
13756 /* If the user is creating a static tracepoint by marker id
13757 (strace -m MARKER_ID), then store the sals index, so that
13758 breakpoint_re_set can try to match up which of the newly
13759 found markers corresponds to this one, and, don't try to
13760 expand multiple locations for each sal, given than SALS
13761 already should contain all sals for MARKER_ID. */
13762
13763 for (i = 0; i < lsal->sals.nelts; ++i)
13764 {
13765 struct symtabs_and_lines expanded;
13766 struct tracepoint *tp;
13767 struct cleanup *old_chain;
13768 struct event_location *location;
13769
13770 expanded.nelts = 1;
13771 expanded.sals = &lsal->sals.sals[i];
13772
13773 location = copy_event_location (canonical->location);
13774 old_chain = make_cleanup_delete_event_location (location);
13775
13776 tp = new tracepoint ();
13777 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13778 location, NULL,
13779 cond_string, extra_string,
13780 type_wanted, disposition,
13781 thread, task, ignore_count, ops,
13782 from_tty, enabled, internal, flags,
13783 canonical->special_display);
13784 /* Given that its possible to have multiple markers with
13785 the same string id, if the user is creating a static
13786 tracepoint by marker id ("strace -m MARKER_ID"), then
13787 store the sals index, so that breakpoint_re_set can
13788 try to match up which of the newly found markers
13789 corresponds to this one */
13790 tp->static_trace_marker_id_idx = i;
13791
13792 install_breakpoint (internal, &tp->base, 0);
13793
13794 discard_cleanups (old_chain);
13795 }
13796 }
13797
13798 static void
13799 strace_marker_decode_location (struct breakpoint *b,
13800 const struct event_location *location,
13801 struct program_space *search_pspace,
13802 struct symtabs_and_lines *sals)
13803 {
13804 struct tracepoint *tp = (struct tracepoint *) b;
13805 const char *s = get_linespec_location (location);
13806
13807 *sals = decode_static_tracepoint_spec (&s);
13808 if (sals->nelts > tp->static_trace_marker_id_idx)
13809 {
13810 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13811 sals->nelts = 1;
13812 }
13813 else
13814 error (_("marker %s not found"), tp->static_trace_marker_id);
13815 }
13816
13817 static struct breakpoint_ops strace_marker_breakpoint_ops;
13818
13819 static int
13820 strace_marker_p (struct breakpoint *b)
13821 {
13822 return b->ops == &strace_marker_breakpoint_ops;
13823 }
13824
13825 /* Delete a breakpoint and clean up all traces of it in the data
13826 structures. */
13827
13828 void
13829 delete_breakpoint (struct breakpoint *bpt)
13830 {
13831 struct breakpoint *b;
13832
13833 gdb_assert (bpt != NULL);
13834
13835 /* Has this bp already been deleted? This can happen because
13836 multiple lists can hold pointers to bp's. bpstat lists are
13837 especial culprits.
13838
13839 One example of this happening is a watchpoint's scope bp. When
13840 the scope bp triggers, we notice that the watchpoint is out of
13841 scope, and delete it. We also delete its scope bp. But the
13842 scope bp is marked "auto-deleting", and is already on a bpstat.
13843 That bpstat is then checked for auto-deleting bp's, which are
13844 deleted.
13845
13846 A real solution to this problem might involve reference counts in
13847 bp's, and/or giving them pointers back to their referencing
13848 bpstat's, and teaching delete_breakpoint to only free a bp's
13849 storage when no more references were extent. A cheaper bandaid
13850 was chosen. */
13851 if (bpt->type == bp_none)
13852 return;
13853
13854 /* At least avoid this stale reference until the reference counting
13855 of breakpoints gets resolved. */
13856 if (bpt->related_breakpoint != bpt)
13857 {
13858 struct breakpoint *related;
13859 struct watchpoint *w;
13860
13861 if (bpt->type == bp_watchpoint_scope)
13862 w = (struct watchpoint *) bpt->related_breakpoint;
13863 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13864 w = (struct watchpoint *) bpt;
13865 else
13866 w = NULL;
13867 if (w != NULL)
13868 watchpoint_del_at_next_stop (w);
13869
13870 /* Unlink bpt from the bpt->related_breakpoint ring. */
13871 for (related = bpt; related->related_breakpoint != bpt;
13872 related = related->related_breakpoint);
13873 related->related_breakpoint = bpt->related_breakpoint;
13874 bpt->related_breakpoint = bpt;
13875 }
13876
13877 /* watch_command_1 creates a watchpoint but only sets its number if
13878 update_watchpoint succeeds in creating its bp_locations. If there's
13879 a problem in that process, we'll be asked to delete the half-created
13880 watchpoint. In that case, don't announce the deletion. */
13881 if (bpt->number)
13882 observer_notify_breakpoint_deleted (bpt);
13883
13884 if (breakpoint_chain == bpt)
13885 breakpoint_chain = bpt->next;
13886
13887 ALL_BREAKPOINTS (b)
13888 if (b->next == bpt)
13889 {
13890 b->next = bpt->next;
13891 break;
13892 }
13893
13894 /* Be sure no bpstat's are pointing at the breakpoint after it's
13895 been freed. */
13896 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13897 in all threads for now. Note that we cannot just remove bpstats
13898 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13899 commands are associated with the bpstat; if we remove it here,
13900 then the later call to bpstat_do_actions (&stop_bpstat); in
13901 event-top.c won't do anything, and temporary breakpoints with
13902 commands won't work. */
13903
13904 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13905
13906 /* Now that breakpoint is removed from breakpoint list, update the
13907 global location list. This will remove locations that used to
13908 belong to this breakpoint. Do this before freeing the breakpoint
13909 itself, since remove_breakpoint looks at location's owner. It
13910 might be better design to have location completely
13911 self-contained, but it's not the case now. */
13912 update_global_location_list (UGLL_DONT_INSERT);
13913
13914 bpt->ops->dtor (bpt);
13915 /* On the chance that someone will soon try again to delete this
13916 same bp, we mark it as deleted before freeing its storage. */
13917 bpt->type = bp_none;
13918 delete bpt;
13919 }
13920
13921 static void
13922 do_delete_breakpoint_cleanup (void *b)
13923 {
13924 delete_breakpoint ((struct breakpoint *) b);
13925 }
13926
13927 struct cleanup *
13928 make_cleanup_delete_breakpoint (struct breakpoint *b)
13929 {
13930 return make_cleanup (do_delete_breakpoint_cleanup, b);
13931 }
13932
13933 /* Iterator function to call a user-provided callback function once
13934 for each of B and its related breakpoints. */
13935
13936 static void
13937 iterate_over_related_breakpoints (struct breakpoint *b,
13938 void (*function) (struct breakpoint *,
13939 void *),
13940 void *data)
13941 {
13942 struct breakpoint *related;
13943
13944 related = b;
13945 do
13946 {
13947 struct breakpoint *next;
13948
13949 /* FUNCTION may delete RELATED. */
13950 next = related->related_breakpoint;
13951
13952 if (next == related)
13953 {
13954 /* RELATED is the last ring entry. */
13955 function (related, data);
13956
13957 /* FUNCTION may have deleted it, so we'd never reach back to
13958 B. There's nothing left to do anyway, so just break
13959 out. */
13960 break;
13961 }
13962 else
13963 function (related, data);
13964
13965 related = next;
13966 }
13967 while (related != b);
13968 }
13969
13970 static void
13971 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13972 {
13973 delete_breakpoint (b);
13974 }
13975
13976 /* A callback for map_breakpoint_numbers that calls
13977 delete_breakpoint. */
13978
13979 static void
13980 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13981 {
13982 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13983 }
13984
13985 void
13986 delete_command (char *arg, int from_tty)
13987 {
13988 struct breakpoint *b, *b_tmp;
13989
13990 dont_repeat ();
13991
13992 if (arg == 0)
13993 {
13994 int breaks_to_delete = 0;
13995
13996 /* Delete all breakpoints if no argument. Do not delete
13997 internal breakpoints, these have to be deleted with an
13998 explicit breakpoint number argument. */
13999 ALL_BREAKPOINTS (b)
14000 if (user_breakpoint_p (b))
14001 {
14002 breaks_to_delete = 1;
14003 break;
14004 }
14005
14006 /* Ask user only if there are some breakpoints to delete. */
14007 if (!from_tty
14008 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14009 {
14010 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14011 if (user_breakpoint_p (b))
14012 delete_breakpoint (b);
14013 }
14014 }
14015 else
14016 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14017 }
14018
14019 /* Return true if all locations of B bound to PSPACE are pending. If
14020 PSPACE is NULL, all locations of all program spaces are
14021 considered. */
14022
14023 static int
14024 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
14025 {
14026 struct bp_location *loc;
14027
14028 for (loc = b->loc; loc != NULL; loc = loc->next)
14029 if ((pspace == NULL
14030 || loc->pspace == pspace)
14031 && !loc->shlib_disabled
14032 && !loc->pspace->executing_startup)
14033 return 0;
14034 return 1;
14035 }
14036
14037 /* Subroutine of update_breakpoint_locations to simplify it.
14038 Return non-zero if multiple fns in list LOC have the same name.
14039 Null names are ignored. */
14040
14041 static int
14042 ambiguous_names_p (struct bp_location *loc)
14043 {
14044 struct bp_location *l;
14045 htab_t htab = htab_create_alloc (13, htab_hash_string,
14046 (int (*) (const void *,
14047 const void *)) streq,
14048 NULL, xcalloc, xfree);
14049
14050 for (l = loc; l != NULL; l = l->next)
14051 {
14052 const char **slot;
14053 const char *name = l->function_name;
14054
14055 /* Allow for some names to be NULL, ignore them. */
14056 if (name == NULL)
14057 continue;
14058
14059 slot = (const char **) htab_find_slot (htab, (const void *) name,
14060 INSERT);
14061 /* NOTE: We can assume slot != NULL here because xcalloc never
14062 returns NULL. */
14063 if (*slot != NULL)
14064 {
14065 htab_delete (htab);
14066 return 1;
14067 }
14068 *slot = name;
14069 }
14070
14071 htab_delete (htab);
14072 return 0;
14073 }
14074
14075 /* When symbols change, it probably means the sources changed as well,
14076 and it might mean the static tracepoint markers are no longer at
14077 the same address or line numbers they used to be at last we
14078 checked. Losing your static tracepoints whenever you rebuild is
14079 undesirable. This function tries to resync/rematch gdb static
14080 tracepoints with the markers on the target, for static tracepoints
14081 that have not been set by marker id. Static tracepoint that have
14082 been set by marker id are reset by marker id in breakpoint_re_set.
14083 The heuristic is:
14084
14085 1) For a tracepoint set at a specific address, look for a marker at
14086 the old PC. If one is found there, assume to be the same marker.
14087 If the name / string id of the marker found is different from the
14088 previous known name, assume that means the user renamed the marker
14089 in the sources, and output a warning.
14090
14091 2) For a tracepoint set at a given line number, look for a marker
14092 at the new address of the old line number. If one is found there,
14093 assume to be the same marker. If the name / string id of the
14094 marker found is different from the previous known name, assume that
14095 means the user renamed the marker in the sources, and output a
14096 warning.
14097
14098 3) If a marker is no longer found at the same address or line, it
14099 may mean the marker no longer exists. But it may also just mean
14100 the code changed a bit. Maybe the user added a few lines of code
14101 that made the marker move up or down (in line number terms). Ask
14102 the target for info about the marker with the string id as we knew
14103 it. If found, update line number and address in the matching
14104 static tracepoint. This will get confused if there's more than one
14105 marker with the same ID (possible in UST, although unadvised
14106 precisely because it confuses tools). */
14107
14108 static struct symtab_and_line
14109 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14110 {
14111 struct tracepoint *tp = (struct tracepoint *) b;
14112 struct static_tracepoint_marker marker;
14113 CORE_ADDR pc;
14114
14115 pc = sal.pc;
14116 if (sal.line)
14117 find_line_pc (sal.symtab, sal.line, &pc);
14118
14119 if (target_static_tracepoint_marker_at (pc, &marker))
14120 {
14121 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14122 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14123 b->number,
14124 tp->static_trace_marker_id, marker.str_id);
14125
14126 xfree (tp->static_trace_marker_id);
14127 tp->static_trace_marker_id = xstrdup (marker.str_id);
14128 release_static_tracepoint_marker (&marker);
14129
14130 return sal;
14131 }
14132
14133 /* Old marker wasn't found on target at lineno. Try looking it up
14134 by string ID. */
14135 if (!sal.explicit_pc
14136 && sal.line != 0
14137 && sal.symtab != NULL
14138 && tp->static_trace_marker_id != NULL)
14139 {
14140 VEC(static_tracepoint_marker_p) *markers;
14141
14142 markers
14143 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14144
14145 if (!VEC_empty(static_tracepoint_marker_p, markers))
14146 {
14147 struct symtab_and_line sal2;
14148 struct symbol *sym;
14149 struct static_tracepoint_marker *tpmarker;
14150 struct ui_out *uiout = current_uiout;
14151 struct explicit_location explicit_loc;
14152
14153 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14154
14155 xfree (tp->static_trace_marker_id);
14156 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14157
14158 warning (_("marker for static tracepoint %d (%s) not "
14159 "found at previous line number"),
14160 b->number, tp->static_trace_marker_id);
14161
14162 init_sal (&sal2);
14163
14164 sal2.pc = tpmarker->address;
14165
14166 sal2 = find_pc_line (tpmarker->address, 0);
14167 sym = find_pc_sect_function (tpmarker->address, NULL);
14168 ui_out_text (uiout, "Now in ");
14169 if (sym)
14170 {
14171 ui_out_field_string (uiout, "func",
14172 SYMBOL_PRINT_NAME (sym));
14173 ui_out_text (uiout, " at ");
14174 }
14175 ui_out_field_string (uiout, "file",
14176 symtab_to_filename_for_display (sal2.symtab));
14177 ui_out_text (uiout, ":");
14178
14179 if (ui_out_is_mi_like_p (uiout))
14180 {
14181 const char *fullname = symtab_to_fullname (sal2.symtab);
14182
14183 ui_out_field_string (uiout, "fullname", fullname);
14184 }
14185
14186 ui_out_field_int (uiout, "line", sal2.line);
14187 ui_out_text (uiout, "\n");
14188
14189 b->loc->line_number = sal2.line;
14190 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14191
14192 delete_event_location (b->location);
14193 initialize_explicit_location (&explicit_loc);
14194 explicit_loc.source_filename
14195 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14196 explicit_loc.line_offset.offset = b->loc->line_number;
14197 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14198 b->location = new_explicit_location (&explicit_loc);
14199
14200 /* Might be nice to check if function changed, and warn if
14201 so. */
14202
14203 release_static_tracepoint_marker (tpmarker);
14204 }
14205 }
14206 return sal;
14207 }
14208
14209 /* Returns 1 iff locations A and B are sufficiently same that
14210 we don't need to report breakpoint as changed. */
14211
14212 static int
14213 locations_are_equal (struct bp_location *a, struct bp_location *b)
14214 {
14215 while (a && b)
14216 {
14217 if (a->address != b->address)
14218 return 0;
14219
14220 if (a->shlib_disabled != b->shlib_disabled)
14221 return 0;
14222
14223 if (a->enabled != b->enabled)
14224 return 0;
14225
14226 a = a->next;
14227 b = b->next;
14228 }
14229
14230 if ((a == NULL) != (b == NULL))
14231 return 0;
14232
14233 return 1;
14234 }
14235
14236 /* Split all locations of B that are bound to PSPACE out of B's
14237 location list to a separate list and return that list's head. If
14238 PSPACE is NULL, hoist out all locations of B. */
14239
14240 static struct bp_location *
14241 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14242 {
14243 struct bp_location head;
14244 struct bp_location *i = b->loc;
14245 struct bp_location **i_link = &b->loc;
14246 struct bp_location *hoisted = &head;
14247
14248 if (pspace == NULL)
14249 {
14250 i = b->loc;
14251 b->loc = NULL;
14252 return i;
14253 }
14254
14255 head.next = NULL;
14256
14257 while (i != NULL)
14258 {
14259 if (i->pspace == pspace)
14260 {
14261 *i_link = i->next;
14262 i->next = NULL;
14263 hoisted->next = i;
14264 hoisted = i;
14265 }
14266 else
14267 i_link = &i->next;
14268 i = *i_link;
14269 }
14270
14271 return head.next;
14272 }
14273
14274 /* Create new breakpoint locations for B (a hardware or software
14275 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14276 zero, then B is a ranged breakpoint. Only recreates locations for
14277 FILTER_PSPACE. Locations of other program spaces are left
14278 untouched. */
14279
14280 void
14281 update_breakpoint_locations (struct breakpoint *b,
14282 struct program_space *filter_pspace,
14283 struct symtabs_and_lines sals,
14284 struct symtabs_and_lines sals_end)
14285 {
14286 int i;
14287 struct bp_location *existing_locations;
14288
14289 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14290 {
14291 /* Ranged breakpoints have only one start location and one end
14292 location. */
14293 b->enable_state = bp_disabled;
14294 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14295 "multiple locations found\n"),
14296 b->number);
14297 return;
14298 }
14299
14300 /* If there's no new locations, and all existing locations are
14301 pending, don't do anything. This optimizes the common case where
14302 all locations are in the same shared library, that was unloaded.
14303 We'd like to retain the location, so that when the library is
14304 loaded again, we don't loose the enabled/disabled status of the
14305 individual locations. */
14306 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14307 return;
14308
14309 existing_locations = hoist_existing_locations (b, filter_pspace);
14310
14311 for (i = 0; i < sals.nelts; ++i)
14312 {
14313 struct bp_location *new_loc;
14314
14315 switch_to_program_space_and_thread (sals.sals[i].pspace);
14316
14317 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14318
14319 /* Reparse conditions, they might contain references to the
14320 old symtab. */
14321 if (b->cond_string != NULL)
14322 {
14323 const char *s;
14324
14325 s = b->cond_string;
14326 TRY
14327 {
14328 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14329 block_for_pc (sals.sals[i].pc),
14330 0);
14331 }
14332 CATCH (e, RETURN_MASK_ERROR)
14333 {
14334 warning (_("failed to reevaluate condition "
14335 "for breakpoint %d: %s"),
14336 b->number, e.message);
14337 new_loc->enabled = 0;
14338 }
14339 END_CATCH
14340 }
14341
14342 if (sals_end.nelts)
14343 {
14344 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14345
14346 new_loc->length = end - sals.sals[0].pc + 1;
14347 }
14348 }
14349
14350 /* If possible, carry over 'disable' status from existing
14351 breakpoints. */
14352 {
14353 struct bp_location *e = existing_locations;
14354 /* If there are multiple breakpoints with the same function name,
14355 e.g. for inline functions, comparing function names won't work.
14356 Instead compare pc addresses; this is just a heuristic as things
14357 may have moved, but in practice it gives the correct answer
14358 often enough until a better solution is found. */
14359 int have_ambiguous_names = ambiguous_names_p (b->loc);
14360
14361 for (; e; e = e->next)
14362 {
14363 if (!e->enabled && e->function_name)
14364 {
14365 struct bp_location *l = b->loc;
14366 if (have_ambiguous_names)
14367 {
14368 for (; l; l = l->next)
14369 if (breakpoint_locations_match (e, l))
14370 {
14371 l->enabled = 0;
14372 break;
14373 }
14374 }
14375 else
14376 {
14377 for (; l; l = l->next)
14378 if (l->function_name
14379 && strcmp (e->function_name, l->function_name) == 0)
14380 {
14381 l->enabled = 0;
14382 break;
14383 }
14384 }
14385 }
14386 }
14387 }
14388
14389 if (!locations_are_equal (existing_locations, b->loc))
14390 observer_notify_breakpoint_modified (b);
14391 }
14392
14393 /* Find the SaL locations corresponding to the given LOCATION.
14394 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14395
14396 static struct symtabs_and_lines
14397 location_to_sals (struct breakpoint *b, struct event_location *location,
14398 struct program_space *search_pspace, int *found)
14399 {
14400 struct symtabs_and_lines sals = {0};
14401 struct gdb_exception exception = exception_none;
14402
14403 gdb_assert (b->ops != NULL);
14404
14405 TRY
14406 {
14407 b->ops->decode_location (b, location, search_pspace, &sals);
14408 }
14409 CATCH (e, RETURN_MASK_ERROR)
14410 {
14411 int not_found_and_ok = 0;
14412
14413 exception = e;
14414
14415 /* For pending breakpoints, it's expected that parsing will
14416 fail until the right shared library is loaded. User has
14417 already told to create pending breakpoints and don't need
14418 extra messages. If breakpoint is in bp_shlib_disabled
14419 state, then user already saw the message about that
14420 breakpoint being disabled, and don't want to see more
14421 errors. */
14422 if (e.error == NOT_FOUND_ERROR
14423 && (b->condition_not_parsed
14424 || (b->loc != NULL
14425 && search_pspace != NULL
14426 && b->loc->pspace != search_pspace)
14427 || (b->loc && b->loc->shlib_disabled)
14428 || (b->loc && b->loc->pspace->executing_startup)
14429 || b->enable_state == bp_disabled))
14430 not_found_and_ok = 1;
14431
14432 if (!not_found_and_ok)
14433 {
14434 /* We surely don't want to warn about the same breakpoint
14435 10 times. One solution, implemented here, is disable
14436 the breakpoint on error. Another solution would be to
14437 have separate 'warning emitted' flag. Since this
14438 happens only when a binary has changed, I don't know
14439 which approach is better. */
14440 b->enable_state = bp_disabled;
14441 throw_exception (e);
14442 }
14443 }
14444 END_CATCH
14445
14446 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14447 {
14448 int i;
14449
14450 for (i = 0; i < sals.nelts; ++i)
14451 resolve_sal_pc (&sals.sals[i]);
14452 if (b->condition_not_parsed && b->extra_string != NULL)
14453 {
14454 char *cond_string, *extra_string;
14455 int thread, task;
14456
14457 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14458 &cond_string, &thread, &task,
14459 &extra_string);
14460 gdb_assert (b->cond_string == NULL);
14461 if (cond_string)
14462 b->cond_string = cond_string;
14463 b->thread = thread;
14464 b->task = task;
14465 if (extra_string)
14466 {
14467 xfree (b->extra_string);
14468 b->extra_string = extra_string;
14469 }
14470 b->condition_not_parsed = 0;
14471 }
14472
14473 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14474 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14475
14476 *found = 1;
14477 }
14478 else
14479 *found = 0;
14480
14481 return sals;
14482 }
14483
14484 /* The default re_set method, for typical hardware or software
14485 breakpoints. Reevaluate the breakpoint and recreate its
14486 locations. */
14487
14488 static void
14489 breakpoint_re_set_default (struct breakpoint *b)
14490 {
14491 int found;
14492 struct symtabs_and_lines sals, sals_end;
14493 struct symtabs_and_lines expanded = {0};
14494 struct symtabs_and_lines expanded_end = {0};
14495 struct program_space *filter_pspace = current_program_space;
14496
14497 sals = location_to_sals (b, b->location, filter_pspace, &found);
14498 if (found)
14499 {
14500 make_cleanup (xfree, sals.sals);
14501 expanded = sals;
14502 }
14503
14504 if (b->location_range_end != NULL)
14505 {
14506 sals_end = location_to_sals (b, b->location_range_end,
14507 filter_pspace, &found);
14508 if (found)
14509 {
14510 make_cleanup (xfree, sals_end.sals);
14511 expanded_end = sals_end;
14512 }
14513 }
14514
14515 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14516 }
14517
14518 /* Default method for creating SALs from an address string. It basically
14519 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14520
14521 static void
14522 create_sals_from_location_default (const struct event_location *location,
14523 struct linespec_result *canonical,
14524 enum bptype type_wanted)
14525 {
14526 parse_breakpoint_sals (location, canonical);
14527 }
14528
14529 /* Call create_breakpoints_sal for the given arguments. This is the default
14530 function for the `create_breakpoints_sal' method of
14531 breakpoint_ops. */
14532
14533 static void
14534 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14535 struct linespec_result *canonical,
14536 char *cond_string,
14537 char *extra_string,
14538 enum bptype type_wanted,
14539 enum bpdisp disposition,
14540 int thread,
14541 int task, int ignore_count,
14542 const struct breakpoint_ops *ops,
14543 int from_tty, int enabled,
14544 int internal, unsigned flags)
14545 {
14546 create_breakpoints_sal (gdbarch, canonical, cond_string,
14547 extra_string,
14548 type_wanted, disposition,
14549 thread, task, ignore_count, ops, from_tty,
14550 enabled, internal, flags);
14551 }
14552
14553 /* Decode the line represented by S by calling decode_line_full. This is the
14554 default function for the `decode_location' method of breakpoint_ops. */
14555
14556 static void
14557 decode_location_default (struct breakpoint *b,
14558 const struct event_location *location,
14559 struct program_space *search_pspace,
14560 struct symtabs_and_lines *sals)
14561 {
14562 struct linespec_result canonical;
14563
14564 init_linespec_result (&canonical);
14565 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14566 (struct symtab *) NULL, 0,
14567 &canonical, multiple_symbols_all,
14568 b->filter);
14569
14570 /* We should get 0 or 1 resulting SALs. */
14571 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14572
14573 if (VEC_length (linespec_sals, canonical.sals) > 0)
14574 {
14575 struct linespec_sals *lsal;
14576
14577 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14578 *sals = lsal->sals;
14579 /* Arrange it so the destructor does not free the
14580 contents. */
14581 lsal->sals.sals = NULL;
14582 }
14583
14584 destroy_linespec_result (&canonical);
14585 }
14586
14587 /* Prepare the global context for a re-set of breakpoint B. */
14588
14589 static struct cleanup *
14590 prepare_re_set_context (struct breakpoint *b)
14591 {
14592 input_radix = b->input_radix;
14593 set_language (b->language);
14594
14595 return make_cleanup (null_cleanup, NULL);
14596 }
14597
14598 /* Reset a breakpoint given it's struct breakpoint * BINT.
14599 The value we return ends up being the return value from catch_errors.
14600 Unused in this case. */
14601
14602 static int
14603 breakpoint_re_set_one (void *bint)
14604 {
14605 /* Get past catch_errs. */
14606 struct breakpoint *b = (struct breakpoint *) bint;
14607 struct cleanup *cleanups;
14608
14609 cleanups = prepare_re_set_context (b);
14610 b->ops->re_set (b);
14611 do_cleanups (cleanups);
14612 return 0;
14613 }
14614
14615 /* Re-set breakpoint locations for the current program space.
14616 Locations bound to other program spaces are left untouched. */
14617
14618 void
14619 breakpoint_re_set (void)
14620 {
14621 struct breakpoint *b, *b_tmp;
14622 enum language save_language;
14623 int save_input_radix;
14624 struct cleanup *old_chain;
14625
14626 save_language = current_language->la_language;
14627 save_input_radix = input_radix;
14628 old_chain = save_current_space_and_thread ();
14629
14630 /* Note: we must not try to insert locations until after all
14631 breakpoints have been re-set. Otherwise, e.g., when re-setting
14632 breakpoint 1, we'd insert the locations of breakpoint 2, which
14633 hadn't been re-set yet, and thus may have stale locations. */
14634
14635 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14636 {
14637 /* Format possible error msg. */
14638 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14639 b->number);
14640 struct cleanup *cleanups = make_cleanup (xfree, message);
14641 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14642 do_cleanups (cleanups);
14643 }
14644 set_language (save_language);
14645 input_radix = save_input_radix;
14646
14647 jit_breakpoint_re_set ();
14648
14649 do_cleanups (old_chain);
14650
14651 create_overlay_event_breakpoint ();
14652 create_longjmp_master_breakpoint ();
14653 create_std_terminate_master_breakpoint ();
14654 create_exception_master_breakpoint ();
14655
14656 /* Now we can insert. */
14657 update_global_location_list (UGLL_MAY_INSERT);
14658 }
14659 \f
14660 /* Reset the thread number of this breakpoint:
14661
14662 - If the breakpoint is for all threads, leave it as-is.
14663 - Else, reset it to the current thread for inferior_ptid. */
14664 void
14665 breakpoint_re_set_thread (struct breakpoint *b)
14666 {
14667 if (b->thread != -1)
14668 {
14669 if (in_thread_list (inferior_ptid))
14670 b->thread = ptid_to_global_thread_id (inferior_ptid);
14671
14672 /* We're being called after following a fork. The new fork is
14673 selected as current, and unless this was a vfork will have a
14674 different program space from the original thread. Reset that
14675 as well. */
14676 b->loc->pspace = current_program_space;
14677 }
14678 }
14679
14680 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14681 If from_tty is nonzero, it prints a message to that effect,
14682 which ends with a period (no newline). */
14683
14684 void
14685 set_ignore_count (int bptnum, int count, int from_tty)
14686 {
14687 struct breakpoint *b;
14688
14689 if (count < 0)
14690 count = 0;
14691
14692 ALL_BREAKPOINTS (b)
14693 if (b->number == bptnum)
14694 {
14695 if (is_tracepoint (b))
14696 {
14697 if (from_tty && count != 0)
14698 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14699 bptnum);
14700 return;
14701 }
14702
14703 b->ignore_count = count;
14704 if (from_tty)
14705 {
14706 if (count == 0)
14707 printf_filtered (_("Will stop next time "
14708 "breakpoint %d is reached."),
14709 bptnum);
14710 else if (count == 1)
14711 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14712 bptnum);
14713 else
14714 printf_filtered (_("Will ignore next %d "
14715 "crossings of breakpoint %d."),
14716 count, bptnum);
14717 }
14718 observer_notify_breakpoint_modified (b);
14719 return;
14720 }
14721
14722 error (_("No breakpoint number %d."), bptnum);
14723 }
14724
14725 /* Command to set ignore-count of breakpoint N to COUNT. */
14726
14727 static void
14728 ignore_command (char *args, int from_tty)
14729 {
14730 char *p = args;
14731 int num;
14732
14733 if (p == 0)
14734 error_no_arg (_("a breakpoint number"));
14735
14736 num = get_number (&p);
14737 if (num == 0)
14738 error (_("bad breakpoint number: '%s'"), args);
14739 if (*p == 0)
14740 error (_("Second argument (specified ignore-count) is missing."));
14741
14742 set_ignore_count (num,
14743 longest_to_int (value_as_long (parse_and_eval (p))),
14744 from_tty);
14745 if (from_tty)
14746 printf_filtered ("\n");
14747 }
14748 \f
14749 /* Call FUNCTION on each of the breakpoints
14750 whose numbers are given in ARGS. */
14751
14752 static void
14753 map_breakpoint_numbers (const char *args,
14754 void (*function) (struct breakpoint *,
14755 void *),
14756 void *data)
14757 {
14758 int num;
14759 struct breakpoint *b, *tmp;
14760
14761 if (args == 0 || *args == '\0')
14762 error_no_arg (_("one or more breakpoint numbers"));
14763
14764 number_or_range_parser parser (args);
14765
14766 while (!parser.finished ())
14767 {
14768 const char *p = parser.cur_tok ();
14769 bool match = false;
14770
14771 num = parser.get_number ();
14772 if (num == 0)
14773 {
14774 warning (_("bad breakpoint number at or near '%s'"), p);
14775 }
14776 else
14777 {
14778 ALL_BREAKPOINTS_SAFE (b, tmp)
14779 if (b->number == num)
14780 {
14781 match = true;
14782 function (b, data);
14783 break;
14784 }
14785 if (!match)
14786 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14787 }
14788 }
14789 }
14790
14791 static struct bp_location *
14792 find_location_by_number (char *number)
14793 {
14794 char *dot = strchr (number, '.');
14795 char *p1;
14796 int bp_num;
14797 int loc_num;
14798 struct breakpoint *b;
14799 struct bp_location *loc;
14800
14801 *dot = '\0';
14802
14803 p1 = number;
14804 bp_num = get_number (&p1);
14805 if (bp_num == 0)
14806 error (_("Bad breakpoint number '%s'"), number);
14807
14808 ALL_BREAKPOINTS (b)
14809 if (b->number == bp_num)
14810 {
14811 break;
14812 }
14813
14814 if (!b || b->number != bp_num)
14815 error (_("Bad breakpoint number '%s'"), number);
14816
14817 p1 = dot+1;
14818 loc_num = get_number (&p1);
14819 if (loc_num == 0)
14820 error (_("Bad breakpoint location number '%s'"), number);
14821
14822 --loc_num;
14823 loc = b->loc;
14824 for (;loc_num && loc; --loc_num, loc = loc->next)
14825 ;
14826 if (!loc)
14827 error (_("Bad breakpoint location number '%s'"), dot+1);
14828
14829 return loc;
14830 }
14831
14832
14833 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14834 If from_tty is nonzero, it prints a message to that effect,
14835 which ends with a period (no newline). */
14836
14837 void
14838 disable_breakpoint (struct breakpoint *bpt)
14839 {
14840 /* Never disable a watchpoint scope breakpoint; we want to
14841 hit them when we leave scope so we can delete both the
14842 watchpoint and its scope breakpoint at that time. */
14843 if (bpt->type == bp_watchpoint_scope)
14844 return;
14845
14846 bpt->enable_state = bp_disabled;
14847
14848 /* Mark breakpoint locations modified. */
14849 mark_breakpoint_modified (bpt);
14850
14851 if (target_supports_enable_disable_tracepoint ()
14852 && current_trace_status ()->running && is_tracepoint (bpt))
14853 {
14854 struct bp_location *location;
14855
14856 for (location = bpt->loc; location; location = location->next)
14857 target_disable_tracepoint (location);
14858 }
14859
14860 update_global_location_list (UGLL_DONT_INSERT);
14861
14862 observer_notify_breakpoint_modified (bpt);
14863 }
14864
14865 /* A callback for iterate_over_related_breakpoints. */
14866
14867 static void
14868 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14869 {
14870 disable_breakpoint (b);
14871 }
14872
14873 /* A callback for map_breakpoint_numbers that calls
14874 disable_breakpoint. */
14875
14876 static void
14877 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14878 {
14879 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14880 }
14881
14882 static void
14883 disable_command (char *args, int from_tty)
14884 {
14885 if (args == 0)
14886 {
14887 struct breakpoint *bpt;
14888
14889 ALL_BREAKPOINTS (bpt)
14890 if (user_breakpoint_p (bpt))
14891 disable_breakpoint (bpt);
14892 }
14893 else
14894 {
14895 char *num = extract_arg (&args);
14896
14897 while (num)
14898 {
14899 if (strchr (num, '.'))
14900 {
14901 struct bp_location *loc = find_location_by_number (num);
14902
14903 if (loc)
14904 {
14905 if (loc->enabled)
14906 {
14907 loc->enabled = 0;
14908 mark_breakpoint_location_modified (loc);
14909 }
14910 if (target_supports_enable_disable_tracepoint ()
14911 && current_trace_status ()->running && loc->owner
14912 && is_tracepoint (loc->owner))
14913 target_disable_tracepoint (loc);
14914 }
14915 update_global_location_list (UGLL_DONT_INSERT);
14916 }
14917 else
14918 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14919 num = extract_arg (&args);
14920 }
14921 }
14922 }
14923
14924 static void
14925 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14926 int count)
14927 {
14928 int target_resources_ok;
14929
14930 if (bpt->type == bp_hardware_breakpoint)
14931 {
14932 int i;
14933 i = hw_breakpoint_used_count ();
14934 target_resources_ok =
14935 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14936 i + 1, 0);
14937 if (target_resources_ok == 0)
14938 error (_("No hardware breakpoint support in the target."));
14939 else if (target_resources_ok < 0)
14940 error (_("Hardware breakpoints used exceeds limit."));
14941 }
14942
14943 if (is_watchpoint (bpt))
14944 {
14945 /* Initialize it just to avoid a GCC false warning. */
14946 enum enable_state orig_enable_state = bp_disabled;
14947
14948 TRY
14949 {
14950 struct watchpoint *w = (struct watchpoint *) bpt;
14951
14952 orig_enable_state = bpt->enable_state;
14953 bpt->enable_state = bp_enabled;
14954 update_watchpoint (w, 1 /* reparse */);
14955 }
14956 CATCH (e, RETURN_MASK_ALL)
14957 {
14958 bpt->enable_state = orig_enable_state;
14959 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14960 bpt->number);
14961 return;
14962 }
14963 END_CATCH
14964 }
14965
14966 bpt->enable_state = bp_enabled;
14967
14968 /* Mark breakpoint locations modified. */
14969 mark_breakpoint_modified (bpt);
14970
14971 if (target_supports_enable_disable_tracepoint ()
14972 && current_trace_status ()->running && is_tracepoint (bpt))
14973 {
14974 struct bp_location *location;
14975
14976 for (location = bpt->loc; location; location = location->next)
14977 target_enable_tracepoint (location);
14978 }
14979
14980 bpt->disposition = disposition;
14981 bpt->enable_count = count;
14982 update_global_location_list (UGLL_MAY_INSERT);
14983
14984 observer_notify_breakpoint_modified (bpt);
14985 }
14986
14987
14988 void
14989 enable_breakpoint (struct breakpoint *bpt)
14990 {
14991 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14992 }
14993
14994 static void
14995 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14996 {
14997 enable_breakpoint (bpt);
14998 }
14999
15000 /* A callback for map_breakpoint_numbers that calls
15001 enable_breakpoint. */
15002
15003 static void
15004 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15005 {
15006 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15007 }
15008
15009 /* The enable command enables the specified breakpoints (or all defined
15010 breakpoints) so they once again become (or continue to be) effective
15011 in stopping the inferior. */
15012
15013 static void
15014 enable_command (char *args, int from_tty)
15015 {
15016 if (args == 0)
15017 {
15018 struct breakpoint *bpt;
15019
15020 ALL_BREAKPOINTS (bpt)
15021 if (user_breakpoint_p (bpt))
15022 enable_breakpoint (bpt);
15023 }
15024 else
15025 {
15026 char *num = extract_arg (&args);
15027
15028 while (num)
15029 {
15030 if (strchr (num, '.'))
15031 {
15032 struct bp_location *loc = find_location_by_number (num);
15033
15034 if (loc)
15035 {
15036 if (!loc->enabled)
15037 {
15038 loc->enabled = 1;
15039 mark_breakpoint_location_modified (loc);
15040 }
15041 if (target_supports_enable_disable_tracepoint ()
15042 && current_trace_status ()->running && loc->owner
15043 && is_tracepoint (loc->owner))
15044 target_enable_tracepoint (loc);
15045 }
15046 update_global_location_list (UGLL_MAY_INSERT);
15047 }
15048 else
15049 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15050 num = extract_arg (&args);
15051 }
15052 }
15053 }
15054
15055 /* This struct packages up disposition data for application to multiple
15056 breakpoints. */
15057
15058 struct disp_data
15059 {
15060 enum bpdisp disp;
15061 int count;
15062 };
15063
15064 static void
15065 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15066 {
15067 struct disp_data disp_data = *(struct disp_data *) arg;
15068
15069 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15070 }
15071
15072 static void
15073 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15074 {
15075 struct disp_data disp = { disp_disable, 1 };
15076
15077 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15078 }
15079
15080 static void
15081 enable_once_command (char *args, int from_tty)
15082 {
15083 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15084 }
15085
15086 static void
15087 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15088 {
15089 struct disp_data disp = { disp_disable, *(int *) countptr };
15090
15091 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15092 }
15093
15094 static void
15095 enable_count_command (char *args, int from_tty)
15096 {
15097 int count;
15098
15099 if (args == NULL)
15100 error_no_arg (_("hit count"));
15101
15102 count = get_number (&args);
15103
15104 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15105 }
15106
15107 static void
15108 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15109 {
15110 struct disp_data disp = { disp_del, 1 };
15111
15112 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15113 }
15114
15115 static void
15116 enable_delete_command (char *args, int from_tty)
15117 {
15118 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15119 }
15120 \f
15121 static void
15122 set_breakpoint_cmd (char *args, int from_tty)
15123 {
15124 }
15125
15126 static void
15127 show_breakpoint_cmd (char *args, int from_tty)
15128 {
15129 }
15130
15131 /* Invalidate last known value of any hardware watchpoint if
15132 the memory which that value represents has been written to by
15133 GDB itself. */
15134
15135 static void
15136 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15137 CORE_ADDR addr, ssize_t len,
15138 const bfd_byte *data)
15139 {
15140 struct breakpoint *bp;
15141
15142 ALL_BREAKPOINTS (bp)
15143 if (bp->enable_state == bp_enabled
15144 && bp->type == bp_hardware_watchpoint)
15145 {
15146 struct watchpoint *wp = (struct watchpoint *) bp;
15147
15148 if (wp->val_valid && wp->val)
15149 {
15150 struct bp_location *loc;
15151
15152 for (loc = bp->loc; loc != NULL; loc = loc->next)
15153 if (loc->loc_type == bp_loc_hardware_watchpoint
15154 && loc->address + loc->length > addr
15155 && addr + len > loc->address)
15156 {
15157 value_free (wp->val);
15158 wp->val = NULL;
15159 wp->val_valid = 0;
15160 }
15161 }
15162 }
15163 }
15164
15165 /* Create and insert a breakpoint for software single step. */
15166
15167 void
15168 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15169 struct address_space *aspace,
15170 CORE_ADDR next_pc)
15171 {
15172 struct thread_info *tp = inferior_thread ();
15173 struct symtab_and_line sal;
15174 CORE_ADDR pc = next_pc;
15175
15176 if (tp->control.single_step_breakpoints == NULL)
15177 {
15178 tp->control.single_step_breakpoints
15179 = new_single_step_breakpoint (tp->global_num, gdbarch);
15180 }
15181
15182 sal = find_pc_line (pc, 0);
15183 sal.pc = pc;
15184 sal.section = find_pc_overlay (pc);
15185 sal.explicit_pc = 1;
15186 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15187
15188 update_global_location_list (UGLL_INSERT);
15189 }
15190
15191 /* Insert single step breakpoints according to the current state. */
15192
15193 int
15194 insert_single_step_breakpoints (struct gdbarch *gdbarch)
15195 {
15196 struct frame_info *frame = get_current_frame ();
15197 VEC (CORE_ADDR) * next_pcs;
15198
15199 next_pcs = gdbarch_software_single_step (gdbarch, frame);
15200
15201 if (next_pcs != NULL)
15202 {
15203 int i;
15204 CORE_ADDR pc;
15205 struct address_space *aspace = get_frame_address_space (frame);
15206
15207 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
15208 insert_single_step_breakpoint (gdbarch, aspace, pc);
15209
15210 VEC_free (CORE_ADDR, next_pcs);
15211
15212 return 1;
15213 }
15214 else
15215 return 0;
15216 }
15217
15218 /* See breakpoint.h. */
15219
15220 int
15221 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15222 struct address_space *aspace,
15223 CORE_ADDR pc)
15224 {
15225 struct bp_location *loc;
15226
15227 for (loc = bp->loc; loc != NULL; loc = loc->next)
15228 if (loc->inserted
15229 && breakpoint_location_address_match (loc, aspace, pc))
15230 return 1;
15231
15232 return 0;
15233 }
15234
15235 /* Check whether a software single-step breakpoint is inserted at
15236 PC. */
15237
15238 int
15239 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15240 CORE_ADDR pc)
15241 {
15242 struct breakpoint *bpt;
15243
15244 ALL_BREAKPOINTS (bpt)
15245 {
15246 if (bpt->type == bp_single_step
15247 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15248 return 1;
15249 }
15250 return 0;
15251 }
15252
15253 /* Tracepoint-specific operations. */
15254
15255 /* Set tracepoint count to NUM. */
15256 static void
15257 set_tracepoint_count (int num)
15258 {
15259 tracepoint_count = num;
15260 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15261 }
15262
15263 static void
15264 trace_command (char *arg, int from_tty)
15265 {
15266 struct breakpoint_ops *ops;
15267 struct event_location *location;
15268 struct cleanup *back_to;
15269
15270 location = string_to_event_location (&arg, current_language);
15271 back_to = make_cleanup_delete_event_location (location);
15272 if (location != NULL
15273 && event_location_type (location) == PROBE_LOCATION)
15274 ops = &tracepoint_probe_breakpoint_ops;
15275 else
15276 ops = &tracepoint_breakpoint_ops;
15277
15278 create_breakpoint (get_current_arch (),
15279 location,
15280 NULL, 0, arg, 1 /* parse arg */,
15281 0 /* tempflag */,
15282 bp_tracepoint /* type_wanted */,
15283 0 /* Ignore count */,
15284 pending_break_support,
15285 ops,
15286 from_tty,
15287 1 /* enabled */,
15288 0 /* internal */, 0);
15289 do_cleanups (back_to);
15290 }
15291
15292 static void
15293 ftrace_command (char *arg, int from_tty)
15294 {
15295 struct event_location *location;
15296 struct cleanup *back_to;
15297
15298 location = string_to_event_location (&arg, current_language);
15299 back_to = make_cleanup_delete_event_location (location);
15300 create_breakpoint (get_current_arch (),
15301 location,
15302 NULL, 0, arg, 1 /* parse arg */,
15303 0 /* tempflag */,
15304 bp_fast_tracepoint /* type_wanted */,
15305 0 /* Ignore count */,
15306 pending_break_support,
15307 &tracepoint_breakpoint_ops,
15308 from_tty,
15309 1 /* enabled */,
15310 0 /* internal */, 0);
15311 do_cleanups (back_to);
15312 }
15313
15314 /* strace command implementation. Creates a static tracepoint. */
15315
15316 static void
15317 strace_command (char *arg, int from_tty)
15318 {
15319 struct breakpoint_ops *ops;
15320 struct event_location *location;
15321 struct cleanup *back_to;
15322
15323 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15324 or with a normal static tracepoint. */
15325 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15326 {
15327 ops = &strace_marker_breakpoint_ops;
15328 location = new_linespec_location (&arg);
15329 }
15330 else
15331 {
15332 ops = &tracepoint_breakpoint_ops;
15333 location = string_to_event_location (&arg, current_language);
15334 }
15335
15336 back_to = make_cleanup_delete_event_location (location);
15337 create_breakpoint (get_current_arch (),
15338 location,
15339 NULL, 0, arg, 1 /* parse arg */,
15340 0 /* tempflag */,
15341 bp_static_tracepoint /* type_wanted */,
15342 0 /* Ignore count */,
15343 pending_break_support,
15344 ops,
15345 from_tty,
15346 1 /* enabled */,
15347 0 /* internal */, 0);
15348 do_cleanups (back_to);
15349 }
15350
15351 /* Set up a fake reader function that gets command lines from a linked
15352 list that was acquired during tracepoint uploading. */
15353
15354 static struct uploaded_tp *this_utp;
15355 static int next_cmd;
15356
15357 static char *
15358 read_uploaded_action (void)
15359 {
15360 char *rslt;
15361
15362 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15363
15364 next_cmd++;
15365
15366 return rslt;
15367 }
15368
15369 /* Given information about a tracepoint as recorded on a target (which
15370 can be either a live system or a trace file), attempt to create an
15371 equivalent GDB tracepoint. This is not a reliable process, since
15372 the target does not necessarily have all the information used when
15373 the tracepoint was originally defined. */
15374
15375 struct tracepoint *
15376 create_tracepoint_from_upload (struct uploaded_tp *utp)
15377 {
15378 char *addr_str, small_buf[100];
15379 struct tracepoint *tp;
15380 struct event_location *location;
15381 struct cleanup *cleanup;
15382
15383 if (utp->at_string)
15384 addr_str = utp->at_string;
15385 else
15386 {
15387 /* In the absence of a source location, fall back to raw
15388 address. Since there is no way to confirm that the address
15389 means the same thing as when the trace was started, warn the
15390 user. */
15391 warning (_("Uploaded tracepoint %d has no "
15392 "source location, using raw address"),
15393 utp->number);
15394 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15395 addr_str = small_buf;
15396 }
15397
15398 /* There's not much we can do with a sequence of bytecodes. */
15399 if (utp->cond && !utp->cond_string)
15400 warning (_("Uploaded tracepoint %d condition "
15401 "has no source form, ignoring it"),
15402 utp->number);
15403
15404 location = string_to_event_location (&addr_str, current_language);
15405 cleanup = make_cleanup_delete_event_location (location);
15406 if (!create_breakpoint (get_current_arch (),
15407 location,
15408 utp->cond_string, -1, addr_str,
15409 0 /* parse cond/thread */,
15410 0 /* tempflag */,
15411 utp->type /* type_wanted */,
15412 0 /* Ignore count */,
15413 pending_break_support,
15414 &tracepoint_breakpoint_ops,
15415 0 /* from_tty */,
15416 utp->enabled /* enabled */,
15417 0 /* internal */,
15418 CREATE_BREAKPOINT_FLAGS_INSERTED))
15419 {
15420 do_cleanups (cleanup);
15421 return NULL;
15422 }
15423
15424 do_cleanups (cleanup);
15425
15426 /* Get the tracepoint we just created. */
15427 tp = get_tracepoint (tracepoint_count);
15428 gdb_assert (tp != NULL);
15429
15430 if (utp->pass > 0)
15431 {
15432 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15433 tp->base.number);
15434
15435 trace_pass_command (small_buf, 0);
15436 }
15437
15438 /* If we have uploaded versions of the original commands, set up a
15439 special-purpose "reader" function and call the usual command line
15440 reader, then pass the result to the breakpoint command-setting
15441 function. */
15442 if (!VEC_empty (char_ptr, utp->cmd_strings))
15443 {
15444 struct command_line *cmd_list;
15445
15446 this_utp = utp;
15447 next_cmd = 0;
15448
15449 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15450
15451 breakpoint_set_commands (&tp->base, cmd_list);
15452 }
15453 else if (!VEC_empty (char_ptr, utp->actions)
15454 || !VEC_empty (char_ptr, utp->step_actions))
15455 warning (_("Uploaded tracepoint %d actions "
15456 "have no source form, ignoring them"),
15457 utp->number);
15458
15459 /* Copy any status information that might be available. */
15460 tp->base.hit_count = utp->hit_count;
15461 tp->traceframe_usage = utp->traceframe_usage;
15462
15463 return tp;
15464 }
15465
15466 /* Print information on tracepoint number TPNUM_EXP, or all if
15467 omitted. */
15468
15469 static void
15470 tracepoints_info (char *args, int from_tty)
15471 {
15472 struct ui_out *uiout = current_uiout;
15473 int num_printed;
15474
15475 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15476
15477 if (num_printed == 0)
15478 {
15479 if (args == NULL || *args == '\0')
15480 ui_out_message (uiout, 0, "No tracepoints.\n");
15481 else
15482 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15483 }
15484
15485 default_collect_info ();
15486 }
15487
15488 /* The 'enable trace' command enables tracepoints.
15489 Not supported by all targets. */
15490 static void
15491 enable_trace_command (char *args, int from_tty)
15492 {
15493 enable_command (args, from_tty);
15494 }
15495
15496 /* The 'disable trace' command disables tracepoints.
15497 Not supported by all targets. */
15498 static void
15499 disable_trace_command (char *args, int from_tty)
15500 {
15501 disable_command (args, from_tty);
15502 }
15503
15504 /* Remove a tracepoint (or all if no argument). */
15505 static void
15506 delete_trace_command (char *arg, int from_tty)
15507 {
15508 struct breakpoint *b, *b_tmp;
15509
15510 dont_repeat ();
15511
15512 if (arg == 0)
15513 {
15514 int breaks_to_delete = 0;
15515
15516 /* Delete all breakpoints if no argument.
15517 Do not delete internal or call-dummy breakpoints, these
15518 have to be deleted with an explicit breakpoint number
15519 argument. */
15520 ALL_TRACEPOINTS (b)
15521 if (is_tracepoint (b) && user_breakpoint_p (b))
15522 {
15523 breaks_to_delete = 1;
15524 break;
15525 }
15526
15527 /* Ask user only if there are some breakpoints to delete. */
15528 if (!from_tty
15529 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15530 {
15531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15532 if (is_tracepoint (b) && user_breakpoint_p (b))
15533 delete_breakpoint (b);
15534 }
15535 }
15536 else
15537 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15538 }
15539
15540 /* Helper function for trace_pass_command. */
15541
15542 static void
15543 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15544 {
15545 tp->pass_count = count;
15546 observer_notify_breakpoint_modified (&tp->base);
15547 if (from_tty)
15548 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15549 tp->base.number, count);
15550 }
15551
15552 /* Set passcount for tracepoint.
15553
15554 First command argument is passcount, second is tracepoint number.
15555 If tracepoint number omitted, apply to most recently defined.
15556 Also accepts special argument "all". */
15557
15558 static void
15559 trace_pass_command (char *args, int from_tty)
15560 {
15561 struct tracepoint *t1;
15562 unsigned int count;
15563
15564 if (args == 0 || *args == 0)
15565 error (_("passcount command requires an "
15566 "argument (count + optional TP num)"));
15567
15568 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15569
15570 args = skip_spaces (args);
15571 if (*args && strncasecmp (args, "all", 3) == 0)
15572 {
15573 struct breakpoint *b;
15574
15575 args += 3; /* Skip special argument "all". */
15576 if (*args)
15577 error (_("Junk at end of arguments."));
15578
15579 ALL_TRACEPOINTS (b)
15580 {
15581 t1 = (struct tracepoint *) b;
15582 trace_pass_set_count (t1, count, from_tty);
15583 }
15584 }
15585 else if (*args == '\0')
15586 {
15587 t1 = get_tracepoint_by_number (&args, NULL);
15588 if (t1)
15589 trace_pass_set_count (t1, count, from_tty);
15590 }
15591 else
15592 {
15593 number_or_range_parser parser (args);
15594 while (!parser.finished ())
15595 {
15596 t1 = get_tracepoint_by_number (&args, &parser);
15597 if (t1)
15598 trace_pass_set_count (t1, count, from_tty);
15599 }
15600 }
15601 }
15602
15603 struct tracepoint *
15604 get_tracepoint (int num)
15605 {
15606 struct breakpoint *t;
15607
15608 ALL_TRACEPOINTS (t)
15609 if (t->number == num)
15610 return (struct tracepoint *) t;
15611
15612 return NULL;
15613 }
15614
15615 /* Find the tracepoint with the given target-side number (which may be
15616 different from the tracepoint number after disconnecting and
15617 reconnecting). */
15618
15619 struct tracepoint *
15620 get_tracepoint_by_number_on_target (int num)
15621 {
15622 struct breakpoint *b;
15623
15624 ALL_TRACEPOINTS (b)
15625 {
15626 struct tracepoint *t = (struct tracepoint *) b;
15627
15628 if (t->number_on_target == num)
15629 return t;
15630 }
15631
15632 return NULL;
15633 }
15634
15635 /* Utility: parse a tracepoint number and look it up in the list.
15636 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15637 If the argument is missing, the most recent tracepoint
15638 (tracepoint_count) is returned. */
15639
15640 struct tracepoint *
15641 get_tracepoint_by_number (char **arg,
15642 number_or_range_parser *parser)
15643 {
15644 struct breakpoint *t;
15645 int tpnum;
15646 char *instring = arg == NULL ? NULL : *arg;
15647
15648 if (parser != NULL)
15649 {
15650 gdb_assert (!parser->finished ());
15651 tpnum = parser->get_number ();
15652 }
15653 else if (arg == NULL || *arg == NULL || ! **arg)
15654 tpnum = tracepoint_count;
15655 else
15656 tpnum = get_number (arg);
15657
15658 if (tpnum <= 0)
15659 {
15660 if (instring && *instring)
15661 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15662 instring);
15663 else
15664 printf_filtered (_("No previous tracepoint\n"));
15665 return NULL;
15666 }
15667
15668 ALL_TRACEPOINTS (t)
15669 if (t->number == tpnum)
15670 {
15671 return (struct tracepoint *) t;
15672 }
15673
15674 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15675 return NULL;
15676 }
15677
15678 void
15679 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15680 {
15681 if (b->thread != -1)
15682 fprintf_unfiltered (fp, " thread %d", b->thread);
15683
15684 if (b->task != 0)
15685 fprintf_unfiltered (fp, " task %d", b->task);
15686
15687 fprintf_unfiltered (fp, "\n");
15688 }
15689
15690 /* Save information on user settable breakpoints (watchpoints, etc) to
15691 a new script file named FILENAME. If FILTER is non-NULL, call it
15692 on each breakpoint and only include the ones for which it returns
15693 non-zero. */
15694
15695 static void
15696 save_breakpoints (char *filename, int from_tty,
15697 int (*filter) (const struct breakpoint *))
15698 {
15699 struct breakpoint *tp;
15700 int any = 0;
15701 struct cleanup *cleanup;
15702 struct ui_file *fp;
15703 int extra_trace_bits = 0;
15704
15705 if (filename == 0 || *filename == 0)
15706 error (_("Argument required (file name in which to save)"));
15707
15708 /* See if we have anything to save. */
15709 ALL_BREAKPOINTS (tp)
15710 {
15711 /* Skip internal and momentary breakpoints. */
15712 if (!user_breakpoint_p (tp))
15713 continue;
15714
15715 /* If we have a filter, only save the breakpoints it accepts. */
15716 if (filter && !filter (tp))
15717 continue;
15718
15719 any = 1;
15720
15721 if (is_tracepoint (tp))
15722 {
15723 extra_trace_bits = 1;
15724
15725 /* We can stop searching. */
15726 break;
15727 }
15728 }
15729
15730 if (!any)
15731 {
15732 warning (_("Nothing to save."));
15733 return;
15734 }
15735
15736 filename = tilde_expand (filename);
15737 cleanup = make_cleanup (xfree, filename);
15738 fp = gdb_fopen (filename, "w");
15739 if (!fp)
15740 error (_("Unable to open file '%s' for saving (%s)"),
15741 filename, safe_strerror (errno));
15742 make_cleanup_ui_file_delete (fp);
15743
15744 if (extra_trace_bits)
15745 save_trace_state_variables (fp);
15746
15747 ALL_BREAKPOINTS (tp)
15748 {
15749 /* Skip internal and momentary breakpoints. */
15750 if (!user_breakpoint_p (tp))
15751 continue;
15752
15753 /* If we have a filter, only save the breakpoints it accepts. */
15754 if (filter && !filter (tp))
15755 continue;
15756
15757 tp->ops->print_recreate (tp, fp);
15758
15759 /* Note, we can't rely on tp->number for anything, as we can't
15760 assume the recreated breakpoint numbers will match. Use $bpnum
15761 instead. */
15762
15763 if (tp->cond_string)
15764 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15765
15766 if (tp->ignore_count)
15767 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15768
15769 if (tp->type != bp_dprintf && tp->commands)
15770 {
15771 fprintf_unfiltered (fp, " commands\n");
15772
15773 ui_out_redirect (current_uiout, fp);
15774 TRY
15775 {
15776 print_command_lines (current_uiout, tp->commands->commands, 2);
15777 }
15778 CATCH (ex, RETURN_MASK_ALL)
15779 {
15780 ui_out_redirect (current_uiout, NULL);
15781 throw_exception (ex);
15782 }
15783 END_CATCH
15784
15785 ui_out_redirect (current_uiout, NULL);
15786 fprintf_unfiltered (fp, " end\n");
15787 }
15788
15789 if (tp->enable_state == bp_disabled)
15790 fprintf_unfiltered (fp, "disable $bpnum\n");
15791
15792 /* If this is a multi-location breakpoint, check if the locations
15793 should be individually disabled. Watchpoint locations are
15794 special, and not user visible. */
15795 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15796 {
15797 struct bp_location *loc;
15798 int n = 1;
15799
15800 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15801 if (!loc->enabled)
15802 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15803 }
15804 }
15805
15806 if (extra_trace_bits && *default_collect)
15807 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15808
15809 if (from_tty)
15810 printf_filtered (_("Saved to file '%s'.\n"), filename);
15811 do_cleanups (cleanup);
15812 }
15813
15814 /* The `save breakpoints' command. */
15815
15816 static void
15817 save_breakpoints_command (char *args, int from_tty)
15818 {
15819 save_breakpoints (args, from_tty, NULL);
15820 }
15821
15822 /* The `save tracepoints' command. */
15823
15824 static void
15825 save_tracepoints_command (char *args, int from_tty)
15826 {
15827 save_breakpoints (args, from_tty, is_tracepoint);
15828 }
15829
15830 /* Create a vector of all tracepoints. */
15831
15832 VEC(breakpoint_p) *
15833 all_tracepoints (void)
15834 {
15835 VEC(breakpoint_p) *tp_vec = 0;
15836 struct breakpoint *tp;
15837
15838 ALL_TRACEPOINTS (tp)
15839 {
15840 VEC_safe_push (breakpoint_p, tp_vec, tp);
15841 }
15842
15843 return tp_vec;
15844 }
15845
15846 \f
15847 /* This help string is used to consolidate all the help string for specifying
15848 locations used by several commands. */
15849
15850 #define LOCATION_HELP_STRING \
15851 "Linespecs are colon-separated lists of location parameters, such as\n\
15852 source filename, function name, label name, and line number.\n\
15853 Example: To specify the start of a label named \"the_top\" in the\n\
15854 function \"fact\" in the file \"factorial.c\", use\n\
15855 \"factorial.c:fact:the_top\".\n\
15856 \n\
15857 Address locations begin with \"*\" and specify an exact address in the\n\
15858 program. Example: To specify the fourth byte past the start function\n\
15859 \"main\", use \"*main + 4\".\n\
15860 \n\
15861 Explicit locations are similar to linespecs but use an option/argument\n\
15862 syntax to specify location parameters.\n\
15863 Example: To specify the start of the label named \"the_top\" in the\n\
15864 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15865 -function fact -label the_top\".\n"
15866
15867 /* This help string is used for the break, hbreak, tbreak and thbreak
15868 commands. It is defined as a macro to prevent duplication.
15869 COMMAND should be a string constant containing the name of the
15870 command. */
15871
15872 #define BREAK_ARGS_HELP(command) \
15873 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15874 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15875 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15876 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15877 `-probe-dtrace' (for a DTrace probe).\n\
15878 LOCATION may be a linespec, address, or explicit location as described\n\
15879 below.\n\
15880 \n\
15881 With no LOCATION, uses current execution address of the selected\n\
15882 stack frame. This is useful for breaking on return to a stack frame.\n\
15883 \n\
15884 THREADNUM is the number from \"info threads\".\n\
15885 CONDITION is a boolean expression.\n\
15886 \n" LOCATION_HELP_STRING "\n\
15887 Multiple breakpoints at one place are permitted, and useful if their\n\
15888 conditions are different.\n\
15889 \n\
15890 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15891
15892 /* List of subcommands for "catch". */
15893 static struct cmd_list_element *catch_cmdlist;
15894
15895 /* List of subcommands for "tcatch". */
15896 static struct cmd_list_element *tcatch_cmdlist;
15897
15898 void
15899 add_catch_command (char *name, char *docstring,
15900 cmd_sfunc_ftype *sfunc,
15901 completer_ftype *completer,
15902 void *user_data_catch,
15903 void *user_data_tcatch)
15904 {
15905 struct cmd_list_element *command;
15906
15907 command = add_cmd (name, class_breakpoint, NULL, docstring,
15908 &catch_cmdlist);
15909 set_cmd_sfunc (command, sfunc);
15910 set_cmd_context (command, user_data_catch);
15911 set_cmd_completer (command, completer);
15912
15913 command = add_cmd (name, class_breakpoint, NULL, docstring,
15914 &tcatch_cmdlist);
15915 set_cmd_sfunc (command, sfunc);
15916 set_cmd_context (command, user_data_tcatch);
15917 set_cmd_completer (command, completer);
15918 }
15919
15920 static void
15921 save_command (char *arg, int from_tty)
15922 {
15923 printf_unfiltered (_("\"save\" must be followed by "
15924 "the name of a save subcommand.\n"));
15925 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15926 }
15927
15928 struct breakpoint *
15929 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15930 void *data)
15931 {
15932 struct breakpoint *b, *b_tmp;
15933
15934 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15935 {
15936 if ((*callback) (b, data))
15937 return b;
15938 }
15939
15940 return NULL;
15941 }
15942
15943 /* Zero if any of the breakpoint's locations could be a location where
15944 functions have been inlined, nonzero otherwise. */
15945
15946 static int
15947 is_non_inline_function (struct breakpoint *b)
15948 {
15949 /* The shared library event breakpoint is set on the address of a
15950 non-inline function. */
15951 if (b->type == bp_shlib_event)
15952 return 1;
15953
15954 return 0;
15955 }
15956
15957 /* Nonzero if the specified PC cannot be a location where functions
15958 have been inlined. */
15959
15960 int
15961 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15962 const struct target_waitstatus *ws)
15963 {
15964 struct breakpoint *b;
15965 struct bp_location *bl;
15966
15967 ALL_BREAKPOINTS (b)
15968 {
15969 if (!is_non_inline_function (b))
15970 continue;
15971
15972 for (bl = b->loc; bl != NULL; bl = bl->next)
15973 {
15974 if (!bl->shlib_disabled
15975 && bpstat_check_location (bl, aspace, pc, ws))
15976 return 1;
15977 }
15978 }
15979
15980 return 0;
15981 }
15982
15983 /* Remove any references to OBJFILE which is going to be freed. */
15984
15985 void
15986 breakpoint_free_objfile (struct objfile *objfile)
15987 {
15988 struct bp_location **locp, *loc;
15989
15990 ALL_BP_LOCATIONS (loc, locp)
15991 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15992 loc->symtab = NULL;
15993 }
15994
15995 void
15996 initialize_breakpoint_ops (void)
15997 {
15998 static int initialized = 0;
15999
16000 struct breakpoint_ops *ops;
16001
16002 if (initialized)
16003 return;
16004 initialized = 1;
16005
16006 /* The breakpoint_ops structure to be inherit by all kinds of
16007 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16008 internal and momentary breakpoints, etc.). */
16009 ops = &bkpt_base_breakpoint_ops;
16010 *ops = base_breakpoint_ops;
16011 ops->re_set = bkpt_re_set;
16012 ops->insert_location = bkpt_insert_location;
16013 ops->remove_location = bkpt_remove_location;
16014 ops->breakpoint_hit = bkpt_breakpoint_hit;
16015 ops->create_sals_from_location = bkpt_create_sals_from_location;
16016 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16017 ops->decode_location = bkpt_decode_location;
16018
16019 /* The breakpoint_ops structure to be used in regular breakpoints. */
16020 ops = &bkpt_breakpoint_ops;
16021 *ops = bkpt_base_breakpoint_ops;
16022 ops->re_set = bkpt_re_set;
16023 ops->resources_needed = bkpt_resources_needed;
16024 ops->print_it = bkpt_print_it;
16025 ops->print_mention = bkpt_print_mention;
16026 ops->print_recreate = bkpt_print_recreate;
16027
16028 /* Ranged breakpoints. */
16029 ops = &ranged_breakpoint_ops;
16030 *ops = bkpt_breakpoint_ops;
16031 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16032 ops->resources_needed = resources_needed_ranged_breakpoint;
16033 ops->print_it = print_it_ranged_breakpoint;
16034 ops->print_one = print_one_ranged_breakpoint;
16035 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16036 ops->print_mention = print_mention_ranged_breakpoint;
16037 ops->print_recreate = print_recreate_ranged_breakpoint;
16038
16039 /* Internal breakpoints. */
16040 ops = &internal_breakpoint_ops;
16041 *ops = bkpt_base_breakpoint_ops;
16042 ops->re_set = internal_bkpt_re_set;
16043 ops->check_status = internal_bkpt_check_status;
16044 ops->print_it = internal_bkpt_print_it;
16045 ops->print_mention = internal_bkpt_print_mention;
16046
16047 /* Momentary breakpoints. */
16048 ops = &momentary_breakpoint_ops;
16049 *ops = bkpt_base_breakpoint_ops;
16050 ops->re_set = momentary_bkpt_re_set;
16051 ops->check_status = momentary_bkpt_check_status;
16052 ops->print_it = momentary_bkpt_print_it;
16053 ops->print_mention = momentary_bkpt_print_mention;
16054
16055 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16056 ops = &longjmp_breakpoint_ops;
16057 *ops = momentary_breakpoint_ops;
16058 ops->dtor = longjmp_bkpt_dtor;
16059
16060 /* Probe breakpoints. */
16061 ops = &bkpt_probe_breakpoint_ops;
16062 *ops = bkpt_breakpoint_ops;
16063 ops->insert_location = bkpt_probe_insert_location;
16064 ops->remove_location = bkpt_probe_remove_location;
16065 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
16066 ops->decode_location = bkpt_probe_decode_location;
16067
16068 /* Watchpoints. */
16069 ops = &watchpoint_breakpoint_ops;
16070 *ops = base_breakpoint_ops;
16071 ops->dtor = dtor_watchpoint;
16072 ops->re_set = re_set_watchpoint;
16073 ops->insert_location = insert_watchpoint;
16074 ops->remove_location = remove_watchpoint;
16075 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16076 ops->check_status = check_status_watchpoint;
16077 ops->resources_needed = resources_needed_watchpoint;
16078 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16079 ops->print_it = print_it_watchpoint;
16080 ops->print_mention = print_mention_watchpoint;
16081 ops->print_recreate = print_recreate_watchpoint;
16082 ops->explains_signal = explains_signal_watchpoint;
16083
16084 /* Masked watchpoints. */
16085 ops = &masked_watchpoint_breakpoint_ops;
16086 *ops = watchpoint_breakpoint_ops;
16087 ops->insert_location = insert_masked_watchpoint;
16088 ops->remove_location = remove_masked_watchpoint;
16089 ops->resources_needed = resources_needed_masked_watchpoint;
16090 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16091 ops->print_it = print_it_masked_watchpoint;
16092 ops->print_one_detail = print_one_detail_masked_watchpoint;
16093 ops->print_mention = print_mention_masked_watchpoint;
16094 ops->print_recreate = print_recreate_masked_watchpoint;
16095
16096 /* Tracepoints. */
16097 ops = &tracepoint_breakpoint_ops;
16098 *ops = base_breakpoint_ops;
16099 ops->re_set = tracepoint_re_set;
16100 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16101 ops->print_one_detail = tracepoint_print_one_detail;
16102 ops->print_mention = tracepoint_print_mention;
16103 ops->print_recreate = tracepoint_print_recreate;
16104 ops->create_sals_from_location = tracepoint_create_sals_from_location;
16105 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16106 ops->decode_location = tracepoint_decode_location;
16107
16108 /* Probe tracepoints. */
16109 ops = &tracepoint_probe_breakpoint_ops;
16110 *ops = tracepoint_breakpoint_ops;
16111 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
16112 ops->decode_location = tracepoint_probe_decode_location;
16113
16114 /* Static tracepoints with marker (`-m'). */
16115 ops = &strace_marker_breakpoint_ops;
16116 *ops = tracepoint_breakpoint_ops;
16117 ops->create_sals_from_location = strace_marker_create_sals_from_location;
16118 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16119 ops->decode_location = strace_marker_decode_location;
16120
16121 /* Fork catchpoints. */
16122 ops = &catch_fork_breakpoint_ops;
16123 *ops = base_breakpoint_ops;
16124 ops->insert_location = insert_catch_fork;
16125 ops->remove_location = remove_catch_fork;
16126 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16127 ops->print_it = print_it_catch_fork;
16128 ops->print_one = print_one_catch_fork;
16129 ops->print_mention = print_mention_catch_fork;
16130 ops->print_recreate = print_recreate_catch_fork;
16131
16132 /* Vfork catchpoints. */
16133 ops = &catch_vfork_breakpoint_ops;
16134 *ops = base_breakpoint_ops;
16135 ops->insert_location = insert_catch_vfork;
16136 ops->remove_location = remove_catch_vfork;
16137 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16138 ops->print_it = print_it_catch_vfork;
16139 ops->print_one = print_one_catch_vfork;
16140 ops->print_mention = print_mention_catch_vfork;
16141 ops->print_recreate = print_recreate_catch_vfork;
16142
16143 /* Exec catchpoints. */
16144 ops = &catch_exec_breakpoint_ops;
16145 *ops = base_breakpoint_ops;
16146 ops->dtor = dtor_catch_exec;
16147 ops->insert_location = insert_catch_exec;
16148 ops->remove_location = remove_catch_exec;
16149 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16150 ops->print_it = print_it_catch_exec;
16151 ops->print_one = print_one_catch_exec;
16152 ops->print_mention = print_mention_catch_exec;
16153 ops->print_recreate = print_recreate_catch_exec;
16154
16155 /* Solib-related catchpoints. */
16156 ops = &catch_solib_breakpoint_ops;
16157 *ops = base_breakpoint_ops;
16158 ops->dtor = dtor_catch_solib;
16159 ops->insert_location = insert_catch_solib;
16160 ops->remove_location = remove_catch_solib;
16161 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16162 ops->check_status = check_status_catch_solib;
16163 ops->print_it = print_it_catch_solib;
16164 ops->print_one = print_one_catch_solib;
16165 ops->print_mention = print_mention_catch_solib;
16166 ops->print_recreate = print_recreate_catch_solib;
16167
16168 ops = &dprintf_breakpoint_ops;
16169 *ops = bkpt_base_breakpoint_ops;
16170 ops->re_set = dprintf_re_set;
16171 ops->resources_needed = bkpt_resources_needed;
16172 ops->print_it = bkpt_print_it;
16173 ops->print_mention = bkpt_print_mention;
16174 ops->print_recreate = dprintf_print_recreate;
16175 ops->after_condition_true = dprintf_after_condition_true;
16176 ops->breakpoint_hit = dprintf_breakpoint_hit;
16177 }
16178
16179 /* Chain containing all defined "enable breakpoint" subcommands. */
16180
16181 static struct cmd_list_element *enablebreaklist = NULL;
16182
16183 void
16184 _initialize_breakpoint (void)
16185 {
16186 struct cmd_list_element *c;
16187
16188 initialize_breakpoint_ops ();
16189
16190 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16191 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16192 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16193
16194 breakpoint_objfile_key
16195 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16196
16197 breakpoint_chain = 0;
16198 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16199 before a breakpoint is set. */
16200 breakpoint_count = 0;
16201
16202 tracepoint_count = 0;
16203
16204 add_com ("ignore", class_breakpoint, ignore_command, _("\
16205 Set ignore-count of breakpoint number N to COUNT.\n\
16206 Usage is `ignore N COUNT'."));
16207
16208 add_com ("commands", class_breakpoint, commands_command, _("\
16209 Set commands to be executed when a breakpoint is hit.\n\
16210 Give breakpoint number as argument after \"commands\".\n\
16211 With no argument, the targeted breakpoint is the last one set.\n\
16212 The commands themselves follow starting on the next line.\n\
16213 Type a line containing \"end\" to indicate the end of them.\n\
16214 Give \"silent\" as the first line to make the breakpoint silent;\n\
16215 then no output is printed when it is hit, except what the commands print."));
16216
16217 c = add_com ("condition", class_breakpoint, condition_command, _("\
16218 Specify breakpoint number N to break only if COND is true.\n\
16219 Usage is `condition N COND', where N is an integer and COND is an\n\
16220 expression to be evaluated whenever breakpoint N is reached."));
16221 set_cmd_completer (c, condition_completer);
16222
16223 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16224 Set a temporary breakpoint.\n\
16225 Like \"break\" except the breakpoint is only temporary,\n\
16226 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16227 by using \"enable delete\" on the breakpoint number.\n\
16228 \n"
16229 BREAK_ARGS_HELP ("tbreak")));
16230 set_cmd_completer (c, location_completer);
16231
16232 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16233 Set a hardware assisted breakpoint.\n\
16234 Like \"break\" except the breakpoint requires hardware support,\n\
16235 some target hardware may not have this support.\n\
16236 \n"
16237 BREAK_ARGS_HELP ("hbreak")));
16238 set_cmd_completer (c, location_completer);
16239
16240 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16241 Set a temporary hardware assisted breakpoint.\n\
16242 Like \"hbreak\" except the breakpoint is only temporary,\n\
16243 so it will be deleted when hit.\n\
16244 \n"
16245 BREAK_ARGS_HELP ("thbreak")));
16246 set_cmd_completer (c, location_completer);
16247
16248 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16249 Enable some breakpoints.\n\
16250 Give breakpoint numbers (separated by spaces) as arguments.\n\
16251 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16252 This is used to cancel the effect of the \"disable\" command.\n\
16253 With a subcommand you can enable temporarily."),
16254 &enablelist, "enable ", 1, &cmdlist);
16255
16256 add_com_alias ("en", "enable", class_breakpoint, 1);
16257
16258 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16259 Enable some breakpoints.\n\
16260 Give breakpoint numbers (separated by spaces) as arguments.\n\
16261 This is used to cancel the effect of the \"disable\" command.\n\
16262 May be abbreviated to simply \"enable\".\n"),
16263 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16264
16265 add_cmd ("once", no_class, enable_once_command, _("\
16266 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16267 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16268 &enablebreaklist);
16269
16270 add_cmd ("delete", no_class, enable_delete_command, _("\
16271 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16272 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16273 &enablebreaklist);
16274
16275 add_cmd ("count", no_class, enable_count_command, _("\
16276 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16277 If a breakpoint is hit while enabled in this fashion,\n\
16278 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16279 &enablebreaklist);
16280
16281 add_cmd ("delete", no_class, enable_delete_command, _("\
16282 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16283 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16284 &enablelist);
16285
16286 add_cmd ("once", no_class, enable_once_command, _("\
16287 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16288 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16289 &enablelist);
16290
16291 add_cmd ("count", no_class, enable_count_command, _("\
16292 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16293 If a breakpoint is hit while enabled in this fashion,\n\
16294 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16295 &enablelist);
16296
16297 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16298 Disable some breakpoints.\n\
16299 Arguments are breakpoint numbers with spaces in between.\n\
16300 To disable all breakpoints, give no argument.\n\
16301 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16302 &disablelist, "disable ", 1, &cmdlist);
16303 add_com_alias ("dis", "disable", class_breakpoint, 1);
16304 add_com_alias ("disa", "disable", class_breakpoint, 1);
16305
16306 add_cmd ("breakpoints", class_alias, disable_command, _("\
16307 Disable some breakpoints.\n\
16308 Arguments are breakpoint numbers with spaces in between.\n\
16309 To disable all breakpoints, give no argument.\n\
16310 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16311 This command may be abbreviated \"disable\"."),
16312 &disablelist);
16313
16314 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16315 Delete some breakpoints or auto-display expressions.\n\
16316 Arguments are breakpoint numbers with spaces in between.\n\
16317 To delete all breakpoints, give no argument.\n\
16318 \n\
16319 Also a prefix command for deletion of other GDB objects.\n\
16320 The \"unset\" command is also an alias for \"delete\"."),
16321 &deletelist, "delete ", 1, &cmdlist);
16322 add_com_alias ("d", "delete", class_breakpoint, 1);
16323 add_com_alias ("del", "delete", class_breakpoint, 1);
16324
16325 add_cmd ("breakpoints", class_alias, delete_command, _("\
16326 Delete some breakpoints or auto-display expressions.\n\
16327 Arguments are breakpoint numbers with spaces in between.\n\
16328 To delete all breakpoints, give no argument.\n\
16329 This command may be abbreviated \"delete\"."),
16330 &deletelist);
16331
16332 add_com ("clear", class_breakpoint, clear_command, _("\
16333 Clear breakpoint at specified location.\n\
16334 Argument may be a linespec, explicit, or address location as described below.\n\
16335 \n\
16336 With no argument, clears all breakpoints in the line that the selected frame\n\
16337 is executing in.\n"
16338 "\n" LOCATION_HELP_STRING "\n\
16339 See also the \"delete\" command which clears breakpoints by number."));
16340 add_com_alias ("cl", "clear", class_breakpoint, 1);
16341
16342 c = add_com ("break", class_breakpoint, break_command, _("\
16343 Set breakpoint at specified location.\n"
16344 BREAK_ARGS_HELP ("break")));
16345 set_cmd_completer (c, location_completer);
16346
16347 add_com_alias ("b", "break", class_run, 1);
16348 add_com_alias ("br", "break", class_run, 1);
16349 add_com_alias ("bre", "break", class_run, 1);
16350 add_com_alias ("brea", "break", class_run, 1);
16351
16352 if (dbx_commands)
16353 {
16354 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16355 Break in function/address or break at a line in the current file."),
16356 &stoplist, "stop ", 1, &cmdlist);
16357 add_cmd ("in", class_breakpoint, stopin_command,
16358 _("Break in function or address."), &stoplist);
16359 add_cmd ("at", class_breakpoint, stopat_command,
16360 _("Break at a line in the current file."), &stoplist);
16361 add_com ("status", class_info, breakpoints_info, _("\
16362 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16363 The \"Type\" column indicates one of:\n\
16364 \tbreakpoint - normal breakpoint\n\
16365 \twatchpoint - watchpoint\n\
16366 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16367 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16368 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16369 address and file/line number respectively.\n\
16370 \n\
16371 Convenience variable \"$_\" and default examine address for \"x\"\n\
16372 are set to the address of the last breakpoint listed unless the command\n\
16373 is prefixed with \"server \".\n\n\
16374 Convenience variable \"$bpnum\" contains the number of the last\n\
16375 breakpoint set."));
16376 }
16377
16378 add_info ("breakpoints", breakpoints_info, _("\
16379 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16380 The \"Type\" column indicates one of:\n\
16381 \tbreakpoint - normal breakpoint\n\
16382 \twatchpoint - watchpoint\n\
16383 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16384 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16385 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16386 address and file/line number respectively.\n\
16387 \n\
16388 Convenience variable \"$_\" and default examine address for \"x\"\n\
16389 are set to the address of the last breakpoint listed unless the command\n\
16390 is prefixed with \"server \".\n\n\
16391 Convenience variable \"$bpnum\" contains the number of the last\n\
16392 breakpoint set."));
16393
16394 add_info_alias ("b", "breakpoints", 1);
16395
16396 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16397 Status of all breakpoints, or breakpoint number NUMBER.\n\
16398 The \"Type\" column indicates one of:\n\
16399 \tbreakpoint - normal breakpoint\n\
16400 \twatchpoint - watchpoint\n\
16401 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16402 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16403 \tuntil - internal breakpoint used by the \"until\" command\n\
16404 \tfinish - internal breakpoint used by the \"finish\" command\n\
16405 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16406 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16407 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16408 address and file/line number respectively.\n\
16409 \n\
16410 Convenience variable \"$_\" and default examine address for \"x\"\n\
16411 are set to the address of the last breakpoint listed unless the command\n\
16412 is prefixed with \"server \".\n\n\
16413 Convenience variable \"$bpnum\" contains the number of the last\n\
16414 breakpoint set."),
16415 &maintenanceinfolist);
16416
16417 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16418 Set catchpoints to catch events."),
16419 &catch_cmdlist, "catch ",
16420 0/*allow-unknown*/, &cmdlist);
16421
16422 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16423 Set temporary catchpoints to catch events."),
16424 &tcatch_cmdlist, "tcatch ",
16425 0/*allow-unknown*/, &cmdlist);
16426
16427 add_catch_command ("fork", _("Catch calls to fork."),
16428 catch_fork_command_1,
16429 NULL,
16430 (void *) (uintptr_t) catch_fork_permanent,
16431 (void *) (uintptr_t) catch_fork_temporary);
16432 add_catch_command ("vfork", _("Catch calls to vfork."),
16433 catch_fork_command_1,
16434 NULL,
16435 (void *) (uintptr_t) catch_vfork_permanent,
16436 (void *) (uintptr_t) catch_vfork_temporary);
16437 add_catch_command ("exec", _("Catch calls to exec."),
16438 catch_exec_command_1,
16439 NULL,
16440 CATCH_PERMANENT,
16441 CATCH_TEMPORARY);
16442 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16443 Usage: catch load [REGEX]\n\
16444 If REGEX is given, only stop for libraries matching the regular expression."),
16445 catch_load_command_1,
16446 NULL,
16447 CATCH_PERMANENT,
16448 CATCH_TEMPORARY);
16449 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16450 Usage: catch unload [REGEX]\n\
16451 If REGEX is given, only stop for libraries matching the regular expression."),
16452 catch_unload_command_1,
16453 NULL,
16454 CATCH_PERMANENT,
16455 CATCH_TEMPORARY);
16456
16457 c = add_com ("watch", class_breakpoint, watch_command, _("\
16458 Set a watchpoint for an expression.\n\
16459 Usage: watch [-l|-location] EXPRESSION\n\
16460 A watchpoint stops execution of your program whenever the value of\n\
16461 an expression changes.\n\
16462 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16463 the memory to which it refers."));
16464 set_cmd_completer (c, expression_completer);
16465
16466 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16467 Set a read watchpoint for an expression.\n\
16468 Usage: rwatch [-l|-location] EXPRESSION\n\
16469 A watchpoint stops execution of your program whenever the value of\n\
16470 an expression is read.\n\
16471 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16472 the memory to which it refers."));
16473 set_cmd_completer (c, expression_completer);
16474
16475 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16476 Set a watchpoint for an expression.\n\
16477 Usage: awatch [-l|-location] EXPRESSION\n\
16478 A watchpoint stops execution of your program whenever the value of\n\
16479 an expression is either read or written.\n\
16480 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16481 the memory to which it refers."));
16482 set_cmd_completer (c, expression_completer);
16483
16484 add_info ("watchpoints", watchpoints_info, _("\
16485 Status of specified watchpoints (all watchpoints if no argument)."));
16486
16487 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16488 respond to changes - contrary to the description. */
16489 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16490 &can_use_hw_watchpoints, _("\
16491 Set debugger's willingness to use watchpoint hardware."), _("\
16492 Show debugger's willingness to use watchpoint hardware."), _("\
16493 If zero, gdb will not use hardware for new watchpoints, even if\n\
16494 such is available. (However, any hardware watchpoints that were\n\
16495 created before setting this to nonzero, will continue to use watchpoint\n\
16496 hardware.)"),
16497 NULL,
16498 show_can_use_hw_watchpoints,
16499 &setlist, &showlist);
16500
16501 can_use_hw_watchpoints = 1;
16502
16503 /* Tracepoint manipulation commands. */
16504
16505 c = add_com ("trace", class_breakpoint, trace_command, _("\
16506 Set a tracepoint at specified location.\n\
16507 \n"
16508 BREAK_ARGS_HELP ("trace") "\n\
16509 Do \"help tracepoints\" for info on other tracepoint commands."));
16510 set_cmd_completer (c, location_completer);
16511
16512 add_com_alias ("tp", "trace", class_alias, 0);
16513 add_com_alias ("tr", "trace", class_alias, 1);
16514 add_com_alias ("tra", "trace", class_alias, 1);
16515 add_com_alias ("trac", "trace", class_alias, 1);
16516
16517 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16518 Set a fast tracepoint at specified location.\n\
16519 \n"
16520 BREAK_ARGS_HELP ("ftrace") "\n\
16521 Do \"help tracepoints\" for info on other tracepoint commands."));
16522 set_cmd_completer (c, location_completer);
16523
16524 c = add_com ("strace", class_breakpoint, strace_command, _("\
16525 Set a static tracepoint at location or marker.\n\
16526 \n\
16527 strace [LOCATION] [if CONDITION]\n\
16528 LOCATION may be a linespec, explicit, or address location (described below) \n\
16529 or -m MARKER_ID.\n\n\
16530 If a marker id is specified, probe the marker with that name. With\n\
16531 no LOCATION, uses current execution address of the selected stack frame.\n\
16532 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16533 This collects arbitrary user data passed in the probe point call to the\n\
16534 tracing library. You can inspect it when analyzing the trace buffer,\n\
16535 by printing the $_sdata variable like any other convenience variable.\n\
16536 \n\
16537 CONDITION is a boolean expression.\n\
16538 \n" LOCATION_HELP_STRING "\n\
16539 Multiple tracepoints at one place are permitted, and useful if their\n\
16540 conditions are different.\n\
16541 \n\
16542 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16543 Do \"help tracepoints\" for info on other tracepoint commands."));
16544 set_cmd_completer (c, location_completer);
16545
16546 add_info ("tracepoints", tracepoints_info, _("\
16547 Status of specified tracepoints (all tracepoints if no argument).\n\
16548 Convenience variable \"$tpnum\" contains the number of the\n\
16549 last tracepoint set."));
16550
16551 add_info_alias ("tp", "tracepoints", 1);
16552
16553 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16554 Delete specified tracepoints.\n\
16555 Arguments are tracepoint numbers, separated by spaces.\n\
16556 No argument means delete all tracepoints."),
16557 &deletelist);
16558 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16559
16560 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16561 Disable specified tracepoints.\n\
16562 Arguments are tracepoint numbers, separated by spaces.\n\
16563 No argument means disable all tracepoints."),
16564 &disablelist);
16565 deprecate_cmd (c, "disable");
16566
16567 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16568 Enable specified tracepoints.\n\
16569 Arguments are tracepoint numbers, separated by spaces.\n\
16570 No argument means enable all tracepoints."),
16571 &enablelist);
16572 deprecate_cmd (c, "enable");
16573
16574 add_com ("passcount", class_trace, trace_pass_command, _("\
16575 Set the passcount for a tracepoint.\n\
16576 The trace will end when the tracepoint has been passed 'count' times.\n\
16577 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16578 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16579
16580 add_prefix_cmd ("save", class_breakpoint, save_command,
16581 _("Save breakpoint definitions as a script."),
16582 &save_cmdlist, "save ",
16583 0/*allow-unknown*/, &cmdlist);
16584
16585 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16586 Save current breakpoint definitions as a script.\n\
16587 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16588 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16589 session to restore them."),
16590 &save_cmdlist);
16591 set_cmd_completer (c, filename_completer);
16592
16593 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16594 Save current tracepoint definitions as a script.\n\
16595 Use the 'source' command in another debug session to restore them."),
16596 &save_cmdlist);
16597 set_cmd_completer (c, filename_completer);
16598
16599 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16600 deprecate_cmd (c, "save tracepoints");
16601
16602 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16603 Breakpoint specific settings\n\
16604 Configure various breakpoint-specific variables such as\n\
16605 pending breakpoint behavior"),
16606 &breakpoint_set_cmdlist, "set breakpoint ",
16607 0/*allow-unknown*/, &setlist);
16608 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16609 Breakpoint specific settings\n\
16610 Configure various breakpoint-specific variables such as\n\
16611 pending breakpoint behavior"),
16612 &breakpoint_show_cmdlist, "show breakpoint ",
16613 0/*allow-unknown*/, &showlist);
16614
16615 add_setshow_auto_boolean_cmd ("pending", no_class,
16616 &pending_break_support, _("\
16617 Set debugger's behavior regarding pending breakpoints."), _("\
16618 Show debugger's behavior regarding pending breakpoints."), _("\
16619 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16620 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16621 an error. If auto, an unrecognized breakpoint location results in a\n\
16622 user-query to see if a pending breakpoint should be created."),
16623 NULL,
16624 show_pending_break_support,
16625 &breakpoint_set_cmdlist,
16626 &breakpoint_show_cmdlist);
16627
16628 pending_break_support = AUTO_BOOLEAN_AUTO;
16629
16630 add_setshow_boolean_cmd ("auto-hw", no_class,
16631 &automatic_hardware_breakpoints, _("\
16632 Set automatic usage of hardware breakpoints."), _("\
16633 Show automatic usage of hardware breakpoints."), _("\
16634 If set, the debugger will automatically use hardware breakpoints for\n\
16635 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16636 a warning will be emitted for such breakpoints."),
16637 NULL,
16638 show_automatic_hardware_breakpoints,
16639 &breakpoint_set_cmdlist,
16640 &breakpoint_show_cmdlist);
16641
16642 add_setshow_boolean_cmd ("always-inserted", class_support,
16643 &always_inserted_mode, _("\
16644 Set mode for inserting breakpoints."), _("\
16645 Show mode for inserting breakpoints."), _("\
16646 When this mode is on, breakpoints are inserted immediately as soon as\n\
16647 they're created, kept inserted even when execution stops, and removed\n\
16648 only when the user deletes them. When this mode is off (the default),\n\
16649 breakpoints are inserted only when execution continues, and removed\n\
16650 when execution stops."),
16651 NULL,
16652 &show_always_inserted_mode,
16653 &breakpoint_set_cmdlist,
16654 &breakpoint_show_cmdlist);
16655
16656 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16657 condition_evaluation_enums,
16658 &condition_evaluation_mode_1, _("\
16659 Set mode of breakpoint condition evaluation."), _("\
16660 Show mode of breakpoint condition evaluation."), _("\
16661 When this is set to \"host\", breakpoint conditions will be\n\
16662 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16663 breakpoint conditions will be downloaded to the target (if the target\n\
16664 supports such feature) and conditions will be evaluated on the target's side.\n\
16665 If this is set to \"auto\" (default), this will be automatically set to\n\
16666 \"target\" if it supports condition evaluation, otherwise it will\n\
16667 be set to \"gdb\""),
16668 &set_condition_evaluation_mode,
16669 &show_condition_evaluation_mode,
16670 &breakpoint_set_cmdlist,
16671 &breakpoint_show_cmdlist);
16672
16673 add_com ("break-range", class_breakpoint, break_range_command, _("\
16674 Set a breakpoint for an address range.\n\
16675 break-range START-LOCATION, END-LOCATION\n\
16676 where START-LOCATION and END-LOCATION can be one of the following:\n\
16677 LINENUM, for that line in the current file,\n\
16678 FILE:LINENUM, for that line in that file,\n\
16679 +OFFSET, for that number of lines after the current line\n\
16680 or the start of the range\n\
16681 FUNCTION, for the first line in that function,\n\
16682 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16683 *ADDRESS, for the instruction at that address.\n\
16684 \n\
16685 The breakpoint will stop execution of the inferior whenever it executes\n\
16686 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16687 range (including START-LOCATION and END-LOCATION)."));
16688
16689 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16690 Set a dynamic printf at specified location.\n\
16691 dprintf location,format string,arg1,arg2,...\n\
16692 location may be a linespec, explicit, or address location.\n"
16693 "\n" LOCATION_HELP_STRING));
16694 set_cmd_completer (c, location_completer);
16695
16696 add_setshow_enum_cmd ("dprintf-style", class_support,
16697 dprintf_style_enums, &dprintf_style, _("\
16698 Set the style of usage for dynamic printf."), _("\
16699 Show the style of usage for dynamic printf."), _("\
16700 This setting chooses how GDB will do a dynamic printf.\n\
16701 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16702 console, as with the \"printf\" command.\n\
16703 If the value is \"call\", the print is done by calling a function in your\n\
16704 program; by default printf(), but you can choose a different function or\n\
16705 output stream by setting dprintf-function and dprintf-channel."),
16706 update_dprintf_commands, NULL,
16707 &setlist, &showlist);
16708
16709 dprintf_function = xstrdup ("printf");
16710 add_setshow_string_cmd ("dprintf-function", class_support,
16711 &dprintf_function, _("\
16712 Set the function to use for dynamic printf"), _("\
16713 Show the function to use for dynamic printf"), NULL,
16714 update_dprintf_commands, NULL,
16715 &setlist, &showlist);
16716
16717 dprintf_channel = xstrdup ("");
16718 add_setshow_string_cmd ("dprintf-channel", class_support,
16719 &dprintf_channel, _("\
16720 Set the channel to use for dynamic printf"), _("\
16721 Show the channel to use for dynamic printf"), NULL,
16722 update_dprintf_commands, NULL,
16723 &setlist, &showlist);
16724
16725 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16726 &disconnected_dprintf, _("\
16727 Set whether dprintf continues after GDB disconnects."), _("\
16728 Show whether dprintf continues after GDB disconnects."), _("\
16729 Use this to let dprintf commands continue to hit and produce output\n\
16730 even if GDB disconnects or detaches from the target."),
16731 NULL,
16732 NULL,
16733 &setlist, &showlist);
16734
16735 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16736 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16737 (target agent only) This is useful for formatted output in user-defined commands."));
16738
16739 automatic_hardware_breakpoints = 1;
16740
16741 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16742 observer_attach_thread_exit (remove_threaded_breakpoints);
16743 }
This page took 0.537342 seconds and 4 git commands to generate.