core_xfer_shared_libraries and core_xfer_shared_libraries_aix returns ULONGEST
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int breakpoint_address_match (struct address_space *aspace1,
169 CORE_ADDR addr1,
170 struct address_space *aspace2,
171 CORE_ADDR addr2);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static void breakpoints_info (char *, int);
181
182 static void watchpoints_info (char *, int);
183
184 static int breakpoint_1 (char *, int,
185 int (*) (const struct breakpoint *));
186
187 static int breakpoint_cond_eval (void *);
188
189 static void cleanup_executing_breakpoints (void *);
190
191 static void commands_command (char *, int);
192
193 static void condition_command (char *, int);
194
195 typedef enum
196 {
197 mark_inserted,
198 mark_uninserted
199 }
200 insertion_state_t;
201
202 static int remove_breakpoint (struct bp_location *, insertion_state_t);
203 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
204
205 static enum print_stop_action print_bp_stop_message (bpstat bs);
206
207 static int watchpoint_check (void *);
208
209 static void maintenance_info_breakpoints (char *, int);
210
211 static int hw_breakpoint_used_count (void);
212
213 static int hw_watchpoint_use_count (struct breakpoint *);
214
215 static int hw_watchpoint_used_count_others (struct breakpoint *except,
216 enum bptype type,
217 int *other_type_used);
218
219 static void hbreak_command (char *, int);
220
221 static void thbreak_command (char *, int);
222
223 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
224 int count);
225
226 static void stop_command (char *arg, int from_tty);
227
228 static void stopin_command (char *arg, int from_tty);
229
230 static void stopat_command (char *arg, int from_tty);
231
232 static void tcatch_command (char *arg, int from_tty);
233
234 static void detach_single_step_breakpoints (void);
235
236 static int single_step_breakpoint_inserted_here_p (struct address_space *,
237 CORE_ADDR pc);
238
239 static void free_bp_location (struct bp_location *loc);
240 static void incref_bp_location (struct bp_location *loc);
241 static void decref_bp_location (struct bp_location **loc);
242
243 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
244
245 static void update_global_location_list (int);
246
247 static void update_global_location_list_nothrow (int);
248
249 static int is_hardware_watchpoint (const struct breakpoint *bpt);
250
251 static void insert_breakpoint_locations (void);
252
253 static int syscall_catchpoint_p (struct breakpoint *b);
254
255 static void tracepoints_info (char *, int);
256
257 static void delete_trace_command (char *, int);
258
259 static void enable_trace_command (char *, int);
260
261 static void disable_trace_command (char *, int);
262
263 static void trace_pass_command (char *, int);
264
265 static void set_tracepoint_count (int num);
266
267 static int is_masked_watchpoint (const struct breakpoint *b);
268
269 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
270
271 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
272 otherwise. */
273
274 static int strace_marker_p (struct breakpoint *b);
275
276 /* The abstract base class all breakpoint_ops structures inherit
277 from. */
278 struct breakpoint_ops base_breakpoint_ops;
279
280 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
281 that are implemented on top of software or hardware breakpoints
282 (user breakpoints, internal and momentary breakpoints, etc.). */
283 static struct breakpoint_ops bkpt_base_breakpoint_ops;
284
285 /* Internal breakpoints class type. */
286 static struct breakpoint_ops internal_breakpoint_ops;
287
288 /* Momentary breakpoints class type. */
289 static struct breakpoint_ops momentary_breakpoint_ops;
290
291 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
292 static struct breakpoint_ops longjmp_breakpoint_ops;
293
294 /* The breakpoint_ops structure to be used in regular user created
295 breakpoints. */
296 struct breakpoint_ops bkpt_breakpoint_ops;
297
298 /* Breakpoints set on probes. */
299 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
300
301 /* Dynamic printf class type. */
302 struct breakpoint_ops dprintf_breakpoint_ops;
303
304 /* The style in which to perform a dynamic printf. This is a user
305 option because different output options have different tradeoffs;
306 if GDB does the printing, there is better error handling if there
307 is a problem with any of the arguments, but using an inferior
308 function lets you have special-purpose printers and sending of
309 output to the same place as compiled-in print functions. */
310
311 static const char dprintf_style_gdb[] = "gdb";
312 static const char dprintf_style_call[] = "call";
313 static const char dprintf_style_agent[] = "agent";
314 static const char *const dprintf_style_enums[] = {
315 dprintf_style_gdb,
316 dprintf_style_call,
317 dprintf_style_agent,
318 NULL
319 };
320 static const char *dprintf_style = dprintf_style_gdb;
321
322 /* The function to use for dynamic printf if the preferred style is to
323 call into the inferior. The value is simply a string that is
324 copied into the command, so it can be anything that GDB can
325 evaluate to a callable address, not necessarily a function name. */
326
327 static char *dprintf_function = "";
328
329 /* The channel to use for dynamic printf if the preferred style is to
330 call into the inferior; if a nonempty string, it will be passed to
331 the call as the first argument, with the format string as the
332 second. As with the dprintf function, this can be anything that
333 GDB knows how to evaluate, so in addition to common choices like
334 "stderr", this could be an app-specific expression like
335 "mystreams[curlogger]". */
336
337 static char *dprintf_channel = "";
338
339 /* True if dprintf commands should continue to operate even if GDB
340 has disconnected. */
341 static int disconnected_dprintf = 1;
342
343 /* A reference-counted struct command_line. This lets multiple
344 breakpoints share a single command list. */
345 struct counted_command_line
346 {
347 /* The reference count. */
348 int refc;
349
350 /* The command list. */
351 struct command_line *commands;
352 };
353
354 struct command_line *
355 breakpoint_commands (struct breakpoint *b)
356 {
357 return b->commands ? b->commands->commands : NULL;
358 }
359
360 /* Flag indicating that a command has proceeded the inferior past the
361 current breakpoint. */
362
363 static int breakpoint_proceeded;
364
365 const char *
366 bpdisp_text (enum bpdisp disp)
367 {
368 /* NOTE: the following values are a part of MI protocol and
369 represent values of 'disp' field returned when inferior stops at
370 a breakpoint. */
371 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
372
373 return bpdisps[(int) disp];
374 }
375
376 /* Prototypes for exported functions. */
377 /* If FALSE, gdb will not use hardware support for watchpoints, even
378 if such is available. */
379 static int can_use_hw_watchpoints;
380
381 static void
382 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c,
384 const char *value)
385 {
386 fprintf_filtered (file,
387 _("Debugger's willingness to use "
388 "watchpoint hardware is %s.\n"),
389 value);
390 }
391
392 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
393 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
394 for unrecognized breakpoint locations.
395 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
396 static enum auto_boolean pending_break_support;
397 static void
398 show_pending_break_support (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c,
400 const char *value)
401 {
402 fprintf_filtered (file,
403 _("Debugger's behavior regarding "
404 "pending breakpoints is %s.\n"),
405 value);
406 }
407
408 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
409 set with "break" but falling in read-only memory.
410 If 0, gdb will warn about such breakpoints, but won't automatically
411 use hardware breakpoints. */
412 static int automatic_hardware_breakpoints;
413 static void
414 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c,
416 const char *value)
417 {
418 fprintf_filtered (file,
419 _("Automatic usage of hardware breakpoints is %s.\n"),
420 value);
421 }
422
423 /* If on, gdb will keep breakpoints inserted even as inferior is
424 stopped, and immediately insert any new breakpoints. If off, gdb
425 will insert breakpoints into inferior only when resuming it, and
426 will remove breakpoints upon stop. If auto, GDB will behave as ON
427 if in non-stop mode, and as OFF if all-stop mode.*/
428
429 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
430
431 static void
432 show_always_inserted_mode (struct ui_file *file, int from_tty,
433 struct cmd_list_element *c, const char *value)
434 {
435 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
436 fprintf_filtered (file,
437 _("Always inserted breakpoint "
438 "mode is %s (currently %s).\n"),
439 value,
440 breakpoints_always_inserted_mode () ? "on" : "off");
441 else
442 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
443 value);
444 }
445
446 int
447 breakpoints_always_inserted_mode (void)
448 {
449 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
450 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
451 }
452
453 static const char condition_evaluation_both[] = "host or target";
454
455 /* Modes for breakpoint condition evaluation. */
456 static const char condition_evaluation_auto[] = "auto";
457 static const char condition_evaluation_host[] = "host";
458 static const char condition_evaluation_target[] = "target";
459 static const char *const condition_evaluation_enums[] = {
460 condition_evaluation_auto,
461 condition_evaluation_host,
462 condition_evaluation_target,
463 NULL
464 };
465
466 /* Global that holds the current mode for breakpoint condition evaluation. */
467 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
468
469 /* Global that we use to display information to the user (gets its value from
470 condition_evaluation_mode_1. */
471 static const char *condition_evaluation_mode = condition_evaluation_auto;
472
473 /* Translate a condition evaluation mode MODE into either "host"
474 or "target". This is used mostly to translate from "auto" to the
475 real setting that is being used. It returns the translated
476 evaluation mode. */
477
478 static const char *
479 translate_condition_evaluation_mode (const char *mode)
480 {
481 if (mode == condition_evaluation_auto)
482 {
483 if (target_supports_evaluation_of_breakpoint_conditions ())
484 return condition_evaluation_target;
485 else
486 return condition_evaluation_host;
487 }
488 else
489 return mode;
490 }
491
492 /* Discovers what condition_evaluation_auto translates to. */
493
494 static const char *
495 breakpoint_condition_evaluation_mode (void)
496 {
497 return translate_condition_evaluation_mode (condition_evaluation_mode);
498 }
499
500 /* Return true if GDB should evaluate breakpoint conditions or false
501 otherwise. */
502
503 static int
504 gdb_evaluates_breakpoint_condition_p (void)
505 {
506 const char *mode = breakpoint_condition_evaluation_mode ();
507
508 return (mode == condition_evaluation_host);
509 }
510
511 void _initialize_breakpoint (void);
512
513 /* Are we executing breakpoint commands? */
514 static int executing_breakpoint_commands;
515
516 /* Are overlay event breakpoints enabled? */
517 static int overlay_events_enabled;
518
519 /* See description in breakpoint.h. */
520 int target_exact_watchpoints = 0;
521
522 /* Walk the following statement or block through all breakpoints.
523 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
524 current breakpoint. */
525
526 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
527
528 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
529 for (B = breakpoint_chain; \
530 B ? (TMP=B->next, 1): 0; \
531 B = TMP)
532
533 /* Similar iterator for the low-level breakpoints. SAFE variant is
534 not provided so update_global_location_list must not be called
535 while executing the block of ALL_BP_LOCATIONS. */
536
537 #define ALL_BP_LOCATIONS(B,BP_TMP) \
538 for (BP_TMP = bp_location; \
539 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
540 BP_TMP++)
541
542 /* Iterates through locations with address ADDRESS for the currently selected
543 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
544 to where the loop should start from.
545 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
546 appropriate location to start with. */
547
548 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
549 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
550 BP_LOCP_TMP = BP_LOCP_START; \
551 BP_LOCP_START \
552 && (BP_LOCP_TMP < bp_location + bp_location_count \
553 && (*BP_LOCP_TMP)->address == ADDRESS); \
554 BP_LOCP_TMP++)
555
556 /* Iterator for tracepoints only. */
557
558 #define ALL_TRACEPOINTS(B) \
559 for (B = breakpoint_chain; B; B = B->next) \
560 if (is_tracepoint (B))
561
562 /* Chains of all breakpoints defined. */
563
564 struct breakpoint *breakpoint_chain;
565
566 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
567
568 static struct bp_location **bp_location;
569
570 /* Number of elements of BP_LOCATION. */
571
572 static unsigned bp_location_count;
573
574 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
575 ADDRESS for the current elements of BP_LOCATION which get a valid
576 result from bp_location_has_shadow. You can use it for roughly
577 limiting the subrange of BP_LOCATION to scan for shadow bytes for
578 an address you need to read. */
579
580 static CORE_ADDR bp_location_placed_address_before_address_max;
581
582 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
583 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
584 BP_LOCATION which get a valid result from bp_location_has_shadow.
585 You can use it for roughly limiting the subrange of BP_LOCATION to
586 scan for shadow bytes for an address you need to read. */
587
588 static CORE_ADDR bp_location_shadow_len_after_address_max;
589
590 /* The locations that no longer correspond to any breakpoint, unlinked
591 from bp_location array, but for which a hit may still be reported
592 by a target. */
593 VEC(bp_location_p) *moribund_locations = NULL;
594
595 /* Number of last breakpoint made. */
596
597 static int breakpoint_count;
598
599 /* The value of `breakpoint_count' before the last command that
600 created breakpoints. If the last (break-like) command created more
601 than one breakpoint, then the difference between BREAKPOINT_COUNT
602 and PREV_BREAKPOINT_COUNT is more than one. */
603 static int prev_breakpoint_count;
604
605 /* Number of last tracepoint made. */
606
607 static int tracepoint_count;
608
609 static struct cmd_list_element *breakpoint_set_cmdlist;
610 static struct cmd_list_element *breakpoint_show_cmdlist;
611 struct cmd_list_element *save_cmdlist;
612
613 /* Return whether a breakpoint is an active enabled breakpoint. */
614 static int
615 breakpoint_enabled (struct breakpoint *b)
616 {
617 return (b->enable_state == bp_enabled);
618 }
619
620 /* Set breakpoint count to NUM. */
621
622 static void
623 set_breakpoint_count (int num)
624 {
625 prev_breakpoint_count = breakpoint_count;
626 breakpoint_count = num;
627 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
628 }
629
630 /* Used by `start_rbreak_breakpoints' below, to record the current
631 breakpoint count before "rbreak" creates any breakpoint. */
632 static int rbreak_start_breakpoint_count;
633
634 /* Called at the start an "rbreak" command to record the first
635 breakpoint made. */
636
637 void
638 start_rbreak_breakpoints (void)
639 {
640 rbreak_start_breakpoint_count = breakpoint_count;
641 }
642
643 /* Called at the end of an "rbreak" command to record the last
644 breakpoint made. */
645
646 void
647 end_rbreak_breakpoints (void)
648 {
649 prev_breakpoint_count = rbreak_start_breakpoint_count;
650 }
651
652 /* Used in run_command to zero the hit count when a new run starts. */
653
654 void
655 clear_breakpoint_hit_counts (void)
656 {
657 struct breakpoint *b;
658
659 ALL_BREAKPOINTS (b)
660 b->hit_count = 0;
661 }
662
663 /* Allocate a new counted_command_line with reference count of 1.
664 The new structure owns COMMANDS. */
665
666 static struct counted_command_line *
667 alloc_counted_command_line (struct command_line *commands)
668 {
669 struct counted_command_line *result
670 = xmalloc (sizeof (struct counted_command_line));
671
672 result->refc = 1;
673 result->commands = commands;
674 return result;
675 }
676
677 /* Increment reference count. This does nothing if CMD is NULL. */
678
679 static void
680 incref_counted_command_line (struct counted_command_line *cmd)
681 {
682 if (cmd)
683 ++cmd->refc;
684 }
685
686 /* Decrement reference count. If the reference count reaches 0,
687 destroy the counted_command_line. Sets *CMDP to NULL. This does
688 nothing if *CMDP is NULL. */
689
690 static void
691 decref_counted_command_line (struct counted_command_line **cmdp)
692 {
693 if (*cmdp)
694 {
695 if (--(*cmdp)->refc == 0)
696 {
697 free_command_lines (&(*cmdp)->commands);
698 xfree (*cmdp);
699 }
700 *cmdp = NULL;
701 }
702 }
703
704 /* A cleanup function that calls decref_counted_command_line. */
705
706 static void
707 do_cleanup_counted_command_line (void *arg)
708 {
709 decref_counted_command_line (arg);
710 }
711
712 /* Create a cleanup that calls decref_counted_command_line on the
713 argument. */
714
715 static struct cleanup *
716 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
717 {
718 return make_cleanup (do_cleanup_counted_command_line, cmdp);
719 }
720
721 \f
722 /* Return the breakpoint with the specified number, or NULL
723 if the number does not refer to an existing breakpoint. */
724
725 struct breakpoint *
726 get_breakpoint (int num)
727 {
728 struct breakpoint *b;
729
730 ALL_BREAKPOINTS (b)
731 if (b->number == num)
732 return b;
733
734 return NULL;
735 }
736
737 \f
738
739 /* Mark locations as "conditions have changed" in case the target supports
740 evaluating conditions on its side. */
741
742 static void
743 mark_breakpoint_modified (struct breakpoint *b)
744 {
745 struct bp_location *loc;
746
747 /* This is only meaningful if the target is
748 evaluating conditions and if the user has
749 opted for condition evaluation on the target's
750 side. */
751 if (gdb_evaluates_breakpoint_condition_p ()
752 || !target_supports_evaluation_of_breakpoint_conditions ())
753 return;
754
755 if (!is_breakpoint (b))
756 return;
757
758 for (loc = b->loc; loc; loc = loc->next)
759 loc->condition_changed = condition_modified;
760 }
761
762 /* Mark location as "conditions have changed" in case the target supports
763 evaluating conditions on its side. */
764
765 static void
766 mark_breakpoint_location_modified (struct bp_location *loc)
767 {
768 /* This is only meaningful if the target is
769 evaluating conditions and if the user has
770 opted for condition evaluation on the target's
771 side. */
772 if (gdb_evaluates_breakpoint_condition_p ()
773 || !target_supports_evaluation_of_breakpoint_conditions ())
774
775 return;
776
777 if (!is_breakpoint (loc->owner))
778 return;
779
780 loc->condition_changed = condition_modified;
781 }
782
783 /* Sets the condition-evaluation mode using the static global
784 condition_evaluation_mode. */
785
786 static void
787 set_condition_evaluation_mode (char *args, int from_tty,
788 struct cmd_list_element *c)
789 {
790 const char *old_mode, *new_mode;
791
792 if ((condition_evaluation_mode_1 == condition_evaluation_target)
793 && !target_supports_evaluation_of_breakpoint_conditions ())
794 {
795 condition_evaluation_mode_1 = condition_evaluation_mode;
796 warning (_("Target does not support breakpoint condition evaluation.\n"
797 "Using host evaluation mode instead."));
798 return;
799 }
800
801 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
802 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
803
804 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
805 settings was "auto". */
806 condition_evaluation_mode = condition_evaluation_mode_1;
807
808 /* Only update the mode if the user picked a different one. */
809 if (new_mode != old_mode)
810 {
811 struct bp_location *loc, **loc_tmp;
812 /* If the user switched to a different evaluation mode, we
813 need to synch the changes with the target as follows:
814
815 "host" -> "target": Send all (valid) conditions to the target.
816 "target" -> "host": Remove all the conditions from the target.
817 */
818
819 if (new_mode == condition_evaluation_target)
820 {
821 /* Mark everything modified and synch conditions with the
822 target. */
823 ALL_BP_LOCATIONS (loc, loc_tmp)
824 mark_breakpoint_location_modified (loc);
825 }
826 else
827 {
828 /* Manually mark non-duplicate locations to synch conditions
829 with the target. We do this to remove all the conditions the
830 target knows about. */
831 ALL_BP_LOCATIONS (loc, loc_tmp)
832 if (is_breakpoint (loc->owner) && loc->inserted)
833 loc->needs_update = 1;
834 }
835
836 /* Do the update. */
837 update_global_location_list (1);
838 }
839
840 return;
841 }
842
843 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
844 what "auto" is translating to. */
845
846 static void
847 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
848 struct cmd_list_element *c, const char *value)
849 {
850 if (condition_evaluation_mode == condition_evaluation_auto)
851 fprintf_filtered (file,
852 _("Breakpoint condition evaluation "
853 "mode is %s (currently %s).\n"),
854 value,
855 breakpoint_condition_evaluation_mode ());
856 else
857 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
858 value);
859 }
860
861 /* A comparison function for bp_location AP and BP that is used by
862 bsearch. This comparison function only cares about addresses, unlike
863 the more general bp_location_compare function. */
864
865 static int
866 bp_location_compare_addrs (const void *ap, const void *bp)
867 {
868 struct bp_location *a = *(void **) ap;
869 struct bp_location *b = *(void **) bp;
870
871 if (a->address == b->address)
872 return 0;
873 else
874 return ((a->address > b->address) - (a->address < b->address));
875 }
876
877 /* Helper function to skip all bp_locations with addresses
878 less than ADDRESS. It returns the first bp_location that
879 is greater than or equal to ADDRESS. If none is found, just
880 return NULL. */
881
882 static struct bp_location **
883 get_first_locp_gte_addr (CORE_ADDR address)
884 {
885 struct bp_location dummy_loc;
886 struct bp_location *dummy_locp = &dummy_loc;
887 struct bp_location **locp_found = NULL;
888
889 /* Initialize the dummy location's address field. */
890 memset (&dummy_loc, 0, sizeof (struct bp_location));
891 dummy_loc.address = address;
892
893 /* Find a close match to the first location at ADDRESS. */
894 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
895 sizeof (struct bp_location **),
896 bp_location_compare_addrs);
897
898 /* Nothing was found, nothing left to do. */
899 if (locp_found == NULL)
900 return NULL;
901
902 /* We may have found a location that is at ADDRESS but is not the first in the
903 location's list. Go backwards (if possible) and locate the first one. */
904 while ((locp_found - 1) >= bp_location
905 && (*(locp_found - 1))->address == address)
906 locp_found--;
907
908 return locp_found;
909 }
910
911 void
912 set_breakpoint_condition (struct breakpoint *b, char *exp,
913 int from_tty)
914 {
915 xfree (b->cond_string);
916 b->cond_string = NULL;
917
918 if (is_watchpoint (b))
919 {
920 struct watchpoint *w = (struct watchpoint *) b;
921
922 xfree (w->cond_exp);
923 w->cond_exp = NULL;
924 }
925 else
926 {
927 struct bp_location *loc;
928
929 for (loc = b->loc; loc; loc = loc->next)
930 {
931 xfree (loc->cond);
932 loc->cond = NULL;
933
934 /* No need to free the condition agent expression
935 bytecode (if we have one). We will handle this
936 when we go through update_global_location_list. */
937 }
938 }
939
940 if (*exp == 0)
941 {
942 if (from_tty)
943 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
944 }
945 else
946 {
947 const char *arg = exp;
948
949 /* I don't know if it matters whether this is the string the user
950 typed in or the decompiled expression. */
951 b->cond_string = xstrdup (arg);
952 b->condition_not_parsed = 0;
953
954 if (is_watchpoint (b))
955 {
956 struct watchpoint *w = (struct watchpoint *) b;
957
958 innermost_block = NULL;
959 arg = exp;
960 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
961 if (*arg)
962 error (_("Junk at end of expression"));
963 w->cond_exp_valid_block = innermost_block;
964 }
965 else
966 {
967 struct bp_location *loc;
968
969 for (loc = b->loc; loc; loc = loc->next)
970 {
971 arg = exp;
972 loc->cond =
973 parse_exp_1 (&arg, loc->address,
974 block_for_pc (loc->address), 0);
975 if (*arg)
976 error (_("Junk at end of expression"));
977 }
978 }
979 }
980 mark_breakpoint_modified (b);
981
982 observer_notify_breakpoint_modified (b);
983 }
984
985 /* Completion for the "condition" command. */
986
987 static VEC (char_ptr) *
988 condition_completer (struct cmd_list_element *cmd,
989 const char *text, const char *word)
990 {
991 const char *space;
992
993 text = skip_spaces_const (text);
994 space = skip_to_space_const (text);
995 if (*space == '\0')
996 {
997 int len;
998 struct breakpoint *b;
999 VEC (char_ptr) *result = NULL;
1000
1001 if (text[0] == '$')
1002 {
1003 /* We don't support completion of history indices. */
1004 if (isdigit (text[1]))
1005 return NULL;
1006 return complete_internalvar (&text[1]);
1007 }
1008
1009 /* We're completing the breakpoint number. */
1010 len = strlen (text);
1011
1012 ALL_BREAKPOINTS (b)
1013 {
1014 char number[50];
1015
1016 xsnprintf (number, sizeof (number), "%d", b->number);
1017
1018 if (strncmp (number, text, len) == 0)
1019 VEC_safe_push (char_ptr, result, xstrdup (number));
1020 }
1021
1022 return result;
1023 }
1024
1025 /* We're completing the expression part. */
1026 text = skip_spaces_const (space);
1027 return expression_completer (cmd, text, word);
1028 }
1029
1030 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1031
1032 static void
1033 condition_command (char *arg, int from_tty)
1034 {
1035 struct breakpoint *b;
1036 char *p;
1037 int bnum;
1038
1039 if (arg == 0)
1040 error_no_arg (_("breakpoint number"));
1041
1042 p = arg;
1043 bnum = get_number (&p);
1044 if (bnum == 0)
1045 error (_("Bad breakpoint argument: '%s'"), arg);
1046
1047 ALL_BREAKPOINTS (b)
1048 if (b->number == bnum)
1049 {
1050 /* Check if this breakpoint has a "stop" method implemented in an
1051 extension language. This method and conditions entered into GDB
1052 from the CLI are mutually exclusive. */
1053 const struct extension_language_defn *extlang
1054 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1055
1056 if (extlang != NULL)
1057 {
1058 error (_("Only one stop condition allowed. There is currently"
1059 " a %s stop condition defined for this breakpoint."),
1060 ext_lang_capitalized_name (extlang));
1061 }
1062 set_breakpoint_condition (b, p, from_tty);
1063
1064 if (is_breakpoint (b))
1065 update_global_location_list (1);
1066
1067 return;
1068 }
1069
1070 error (_("No breakpoint number %d."), bnum);
1071 }
1072
1073 /* Check that COMMAND do not contain commands that are suitable
1074 only for tracepoints and not suitable for ordinary breakpoints.
1075 Throw if any such commands is found. */
1076
1077 static void
1078 check_no_tracepoint_commands (struct command_line *commands)
1079 {
1080 struct command_line *c;
1081
1082 for (c = commands; c; c = c->next)
1083 {
1084 int i;
1085
1086 if (c->control_type == while_stepping_control)
1087 error (_("The 'while-stepping' command can "
1088 "only be used for tracepoints"));
1089
1090 for (i = 0; i < c->body_count; ++i)
1091 check_no_tracepoint_commands ((c->body_list)[i]);
1092
1093 /* Not that command parsing removes leading whitespace and comment
1094 lines and also empty lines. So, we only need to check for
1095 command directly. */
1096 if (strstr (c->line, "collect ") == c->line)
1097 error (_("The 'collect' command can only be used for tracepoints"));
1098
1099 if (strstr (c->line, "teval ") == c->line)
1100 error (_("The 'teval' command can only be used for tracepoints"));
1101 }
1102 }
1103
1104 /* Encapsulate tests for different types of tracepoints. */
1105
1106 static int
1107 is_tracepoint_type (enum bptype type)
1108 {
1109 return (type == bp_tracepoint
1110 || type == bp_fast_tracepoint
1111 || type == bp_static_tracepoint);
1112 }
1113
1114 int
1115 is_tracepoint (const struct breakpoint *b)
1116 {
1117 return is_tracepoint_type (b->type);
1118 }
1119
1120 /* A helper function that validates that COMMANDS are valid for a
1121 breakpoint. This function will throw an exception if a problem is
1122 found. */
1123
1124 static void
1125 validate_commands_for_breakpoint (struct breakpoint *b,
1126 struct command_line *commands)
1127 {
1128 if (is_tracepoint (b))
1129 {
1130 struct tracepoint *t = (struct tracepoint *) b;
1131 struct command_line *c;
1132 struct command_line *while_stepping = 0;
1133
1134 /* Reset the while-stepping step count. The previous commands
1135 might have included a while-stepping action, while the new
1136 ones might not. */
1137 t->step_count = 0;
1138
1139 /* We need to verify that each top-level element of commands is
1140 valid for tracepoints, that there's at most one
1141 while-stepping element, and that the while-stepping's body
1142 has valid tracing commands excluding nested while-stepping.
1143 We also need to validate the tracepoint action line in the
1144 context of the tracepoint --- validate_actionline actually
1145 has side effects, like setting the tracepoint's
1146 while-stepping STEP_COUNT, in addition to checking if the
1147 collect/teval actions parse and make sense in the
1148 tracepoint's context. */
1149 for (c = commands; c; c = c->next)
1150 {
1151 if (c->control_type == while_stepping_control)
1152 {
1153 if (b->type == bp_fast_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for fast tracepoint"));
1156 else if (b->type == bp_static_tracepoint)
1157 error (_("The 'while-stepping' command "
1158 "cannot be used for static tracepoint"));
1159
1160 if (while_stepping)
1161 error (_("The 'while-stepping' command "
1162 "can be used only once"));
1163 else
1164 while_stepping = c;
1165 }
1166
1167 validate_actionline (c->line, b);
1168 }
1169 if (while_stepping)
1170 {
1171 struct command_line *c2;
1172
1173 gdb_assert (while_stepping->body_count == 1);
1174 c2 = while_stepping->body_list[0];
1175 for (; c2; c2 = c2->next)
1176 {
1177 if (c2->control_type == while_stepping_control)
1178 error (_("The 'while-stepping' command cannot be nested"));
1179 }
1180 }
1181 }
1182 else
1183 {
1184 check_no_tracepoint_commands (commands);
1185 }
1186 }
1187
1188 /* Return a vector of all the static tracepoints set at ADDR. The
1189 caller is responsible for releasing the vector. */
1190
1191 VEC(breakpoint_p) *
1192 static_tracepoints_here (CORE_ADDR addr)
1193 {
1194 struct breakpoint *b;
1195 VEC(breakpoint_p) *found = 0;
1196 struct bp_location *loc;
1197
1198 ALL_BREAKPOINTS (b)
1199 if (b->type == bp_static_tracepoint)
1200 {
1201 for (loc = b->loc; loc; loc = loc->next)
1202 if (loc->address == addr)
1203 VEC_safe_push(breakpoint_p, found, b);
1204 }
1205
1206 return found;
1207 }
1208
1209 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1210 validate that only allowed commands are included. */
1211
1212 void
1213 breakpoint_set_commands (struct breakpoint *b,
1214 struct command_line *commands)
1215 {
1216 validate_commands_for_breakpoint (b, commands);
1217
1218 decref_counted_command_line (&b->commands);
1219 b->commands = alloc_counted_command_line (commands);
1220 observer_notify_breakpoint_modified (b);
1221 }
1222
1223 /* Set the internal `silent' flag on the breakpoint. Note that this
1224 is not the same as the "silent" that may appear in the breakpoint's
1225 commands. */
1226
1227 void
1228 breakpoint_set_silent (struct breakpoint *b, int silent)
1229 {
1230 int old_silent = b->silent;
1231
1232 b->silent = silent;
1233 if (old_silent != silent)
1234 observer_notify_breakpoint_modified (b);
1235 }
1236
1237 /* Set the thread for this breakpoint. If THREAD is -1, make the
1238 breakpoint work for any thread. */
1239
1240 void
1241 breakpoint_set_thread (struct breakpoint *b, int thread)
1242 {
1243 int old_thread = b->thread;
1244
1245 b->thread = thread;
1246 if (old_thread != thread)
1247 observer_notify_breakpoint_modified (b);
1248 }
1249
1250 /* Set the task for this breakpoint. If TASK is 0, make the
1251 breakpoint work for any task. */
1252
1253 void
1254 breakpoint_set_task (struct breakpoint *b, int task)
1255 {
1256 int old_task = b->task;
1257
1258 b->task = task;
1259 if (old_task != task)
1260 observer_notify_breakpoint_modified (b);
1261 }
1262
1263 void
1264 check_tracepoint_command (char *line, void *closure)
1265 {
1266 struct breakpoint *b = closure;
1267
1268 validate_actionline (line, b);
1269 }
1270
1271 /* A structure used to pass information through
1272 map_breakpoint_numbers. */
1273
1274 struct commands_info
1275 {
1276 /* True if the command was typed at a tty. */
1277 int from_tty;
1278
1279 /* The breakpoint range spec. */
1280 char *arg;
1281
1282 /* Non-NULL if the body of the commands are being read from this
1283 already-parsed command. */
1284 struct command_line *control;
1285
1286 /* The command lines read from the user, or NULL if they have not
1287 yet been read. */
1288 struct counted_command_line *cmd;
1289 };
1290
1291 /* A callback for map_breakpoint_numbers that sets the commands for
1292 commands_command. */
1293
1294 static void
1295 do_map_commands_command (struct breakpoint *b, void *data)
1296 {
1297 struct commands_info *info = data;
1298
1299 if (info->cmd == NULL)
1300 {
1301 struct command_line *l;
1302
1303 if (info->control != NULL)
1304 l = copy_command_lines (info->control->body_list[0]);
1305 else
1306 {
1307 struct cleanup *old_chain;
1308 char *str;
1309
1310 str = xstrprintf (_("Type commands for breakpoint(s) "
1311 "%s, one per line."),
1312 info->arg);
1313
1314 old_chain = make_cleanup (xfree, str);
1315
1316 l = read_command_lines (str,
1317 info->from_tty, 1,
1318 (is_tracepoint (b)
1319 ? check_tracepoint_command : 0),
1320 b);
1321
1322 do_cleanups (old_chain);
1323 }
1324
1325 info->cmd = alloc_counted_command_line (l);
1326 }
1327
1328 /* If a breakpoint was on the list more than once, we don't need to
1329 do anything. */
1330 if (b->commands != info->cmd)
1331 {
1332 validate_commands_for_breakpoint (b, info->cmd->commands);
1333 incref_counted_command_line (info->cmd);
1334 decref_counted_command_line (&b->commands);
1335 b->commands = info->cmd;
1336 observer_notify_breakpoint_modified (b);
1337 }
1338 }
1339
1340 static void
1341 commands_command_1 (char *arg, int from_tty,
1342 struct command_line *control)
1343 {
1344 struct cleanup *cleanups;
1345 struct commands_info info;
1346
1347 info.from_tty = from_tty;
1348 info.control = control;
1349 info.cmd = NULL;
1350 /* If we read command lines from the user, then `info' will hold an
1351 extra reference to the commands that we must clean up. */
1352 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1353
1354 if (arg == NULL || !*arg)
1355 {
1356 if (breakpoint_count - prev_breakpoint_count > 1)
1357 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1358 breakpoint_count);
1359 else if (breakpoint_count > 0)
1360 arg = xstrprintf ("%d", breakpoint_count);
1361 else
1362 {
1363 /* So that we don't try to free the incoming non-NULL
1364 argument in the cleanup below. Mapping breakpoint
1365 numbers will fail in this case. */
1366 arg = NULL;
1367 }
1368 }
1369 else
1370 /* The command loop has some static state, so we need to preserve
1371 our argument. */
1372 arg = xstrdup (arg);
1373
1374 if (arg != NULL)
1375 make_cleanup (xfree, arg);
1376
1377 info.arg = arg;
1378
1379 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1380
1381 if (info.cmd == NULL)
1382 error (_("No breakpoints specified."));
1383
1384 do_cleanups (cleanups);
1385 }
1386
1387 static void
1388 commands_command (char *arg, int from_tty)
1389 {
1390 commands_command_1 (arg, from_tty, NULL);
1391 }
1392
1393 /* Like commands_command, but instead of reading the commands from
1394 input stream, takes them from an already parsed command structure.
1395
1396 This is used by cli-script.c to DTRT with breakpoint commands
1397 that are part of if and while bodies. */
1398 enum command_control_type
1399 commands_from_control_command (char *arg, struct command_line *cmd)
1400 {
1401 commands_command_1 (arg, 0, cmd);
1402 return simple_control;
1403 }
1404
1405 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1406
1407 static int
1408 bp_location_has_shadow (struct bp_location *bl)
1409 {
1410 if (bl->loc_type != bp_loc_software_breakpoint)
1411 return 0;
1412 if (!bl->inserted)
1413 return 0;
1414 if (bl->target_info.shadow_len == 0)
1415 /* BL isn't valid, or doesn't shadow memory. */
1416 return 0;
1417 return 1;
1418 }
1419
1420 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1421 by replacing any memory breakpoints with their shadowed contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with any of
1424 the breakpoint location's shadow_contents buffers. Otherwise,
1425 a failed assertion internal error will be raised.
1426
1427 The range of shadowed area by each bp_location is:
1428 bl->address - bp_location_placed_address_before_address_max
1429 up to bl->address + bp_location_shadow_len_after_address_max
1430 The range we were requested to resolve shadows for is:
1431 memaddr ... memaddr + len
1432 Thus the safe cutoff boundaries for performance optimization are
1433 memaddr + len <= (bl->address
1434 - bp_location_placed_address_before_address_max)
1435 and:
1436 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1437
1438 void
1439 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1440 const gdb_byte *writebuf_org,
1441 ULONGEST memaddr, LONGEST len)
1442 {
1443 /* Left boundary, right boundary and median element of our binary
1444 search. */
1445 unsigned bc_l, bc_r, bc;
1446
1447 /* Find BC_L which is a leftmost element which may affect BUF
1448 content. It is safe to report lower value but a failure to
1449 report higher one. */
1450
1451 bc_l = 0;
1452 bc_r = bp_location_count;
1453 while (bc_l + 1 < bc_r)
1454 {
1455 struct bp_location *bl;
1456
1457 bc = (bc_l + bc_r) / 2;
1458 bl = bp_location[bc];
1459
1460 /* Check first BL->ADDRESS will not overflow due to the added
1461 constant. Then advance the left boundary only if we are sure
1462 the BC element can in no way affect the BUF content (MEMADDR
1463 to MEMADDR + LEN range).
1464
1465 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1466 offset so that we cannot miss a breakpoint with its shadow
1467 range tail still reaching MEMADDR. */
1468
1469 if ((bl->address + bp_location_shadow_len_after_address_max
1470 >= bl->address)
1471 && (bl->address + bp_location_shadow_len_after_address_max
1472 <= memaddr))
1473 bc_l = bc;
1474 else
1475 bc_r = bc;
1476 }
1477
1478 /* Due to the binary search above, we need to make sure we pick the
1479 first location that's at BC_L's address. E.g., if there are
1480 multiple locations at the same address, BC_L may end up pointing
1481 at a duplicate location, and miss the "master"/"inserted"
1482 location. Say, given locations L1, L2 and L3 at addresses A and
1483 B:
1484
1485 L1@A, L2@A, L3@B, ...
1486
1487 BC_L could end up pointing at location L2, while the "master"
1488 location could be L1. Since the `loc->inserted' flag is only set
1489 on "master" locations, we'd forget to restore the shadow of L1
1490 and L2. */
1491 while (bc_l > 0
1492 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1493 bc_l--;
1494
1495 /* Now do full processing of the found relevant range of elements. */
1496
1497 for (bc = bc_l; bc < bp_location_count; bc++)
1498 {
1499 struct bp_location *bl = bp_location[bc];
1500 CORE_ADDR bp_addr = 0;
1501 int bp_size = 0;
1502 int bptoffset = 0;
1503
1504 /* bp_location array has BL->OWNER always non-NULL. */
1505 if (bl->owner->type == bp_none)
1506 warning (_("reading through apparently deleted breakpoint #%d?"),
1507 bl->owner->number);
1508
1509 /* Performance optimization: any further element can no longer affect BUF
1510 content. */
1511
1512 if (bl->address >= bp_location_placed_address_before_address_max
1513 && memaddr + len <= (bl->address
1514 - bp_location_placed_address_before_address_max))
1515 break;
1516
1517 if (!bp_location_has_shadow (bl))
1518 continue;
1519 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1520 current_program_space->aspace, 0))
1521 continue;
1522
1523 /* Addresses and length of the part of the breakpoint that
1524 we need to copy. */
1525 bp_addr = bl->target_info.placed_address;
1526 bp_size = bl->target_info.shadow_len;
1527
1528 if (bp_addr + bp_size <= memaddr)
1529 /* The breakpoint is entirely before the chunk of memory we
1530 are reading. */
1531 continue;
1532
1533 if (bp_addr >= memaddr + len)
1534 /* The breakpoint is entirely after the chunk of memory we are
1535 reading. */
1536 continue;
1537
1538 /* Offset within shadow_contents. */
1539 if (bp_addr < memaddr)
1540 {
1541 /* Only copy the second part of the breakpoint. */
1542 bp_size -= memaddr - bp_addr;
1543 bptoffset = memaddr - bp_addr;
1544 bp_addr = memaddr;
1545 }
1546
1547 if (bp_addr + bp_size > memaddr + len)
1548 {
1549 /* Only copy the first part of the breakpoint. */
1550 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1551 }
1552
1553 if (readbuf != NULL)
1554 {
1555 /* Verify that the readbuf buffer does not overlap with
1556 the shadow_contents buffer. */
1557 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1558 || readbuf >= (bl->target_info.shadow_contents
1559 + bl->target_info.shadow_len));
1560
1561 /* Update the read buffer with this inserted breakpoint's
1562 shadow. */
1563 memcpy (readbuf + bp_addr - memaddr,
1564 bl->target_info.shadow_contents + bptoffset, bp_size);
1565 }
1566 else
1567 {
1568 struct gdbarch *gdbarch = bl->gdbarch;
1569 const unsigned char *bp;
1570 CORE_ADDR placed_address = bl->target_info.placed_address;
1571 int placed_size = bl->target_info.placed_size;
1572
1573 /* Update the shadow with what we want to write to memory. */
1574 memcpy (bl->target_info.shadow_contents + bptoffset,
1575 writebuf_org + bp_addr - memaddr, bp_size);
1576
1577 /* Determine appropriate breakpoint contents and size for this
1578 address. */
1579 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1580
1581 /* Update the final write buffer with this inserted
1582 breakpoint's INSN. */
1583 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1584 }
1585 }
1586 }
1587 \f
1588
1589 /* Return true if BPT is either a software breakpoint or a hardware
1590 breakpoint. */
1591
1592 int
1593 is_breakpoint (const struct breakpoint *bpt)
1594 {
1595 return (bpt->type == bp_breakpoint
1596 || bpt->type == bp_hardware_breakpoint
1597 || bpt->type == bp_dprintf);
1598 }
1599
1600 /* Return true if BPT is of any hardware watchpoint kind. */
1601
1602 static int
1603 is_hardware_watchpoint (const struct breakpoint *bpt)
1604 {
1605 return (bpt->type == bp_hardware_watchpoint
1606 || bpt->type == bp_read_watchpoint
1607 || bpt->type == bp_access_watchpoint);
1608 }
1609
1610 /* Return true if BPT is of any watchpoint kind, hardware or
1611 software. */
1612
1613 int
1614 is_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (is_hardware_watchpoint (bpt)
1617 || bpt->type == bp_watchpoint);
1618 }
1619
1620 /* Returns true if the current thread and its running state are safe
1621 to evaluate or update watchpoint B. Watchpoints on local
1622 expressions need to be evaluated in the context of the thread that
1623 was current when the watchpoint was created, and, that thread needs
1624 to be stopped to be able to select the correct frame context.
1625 Watchpoints on global expressions can be evaluated on any thread,
1626 and in any state. It is presently left to the target allowing
1627 memory accesses when threads are running. */
1628
1629 static int
1630 watchpoint_in_thread_scope (struct watchpoint *b)
1631 {
1632 return (b->base.pspace == current_program_space
1633 && (ptid_equal (b->watchpoint_thread, null_ptid)
1634 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1635 && !is_executing (inferior_ptid))));
1636 }
1637
1638 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1639 associated bp_watchpoint_scope breakpoint. */
1640
1641 static void
1642 watchpoint_del_at_next_stop (struct watchpoint *w)
1643 {
1644 struct breakpoint *b = &w->base;
1645
1646 if (b->related_breakpoint != b)
1647 {
1648 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1649 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1650 b->related_breakpoint->disposition = disp_del_at_next_stop;
1651 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1652 b->related_breakpoint = b;
1653 }
1654 b->disposition = disp_del_at_next_stop;
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->base.disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're in a function epilogue, unwinding may not work
1737 properly, so do not attempt to recreate locations at this
1738 point. See similar comments in watchpoint_check. */
1739 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1740 return;
1741
1742 /* Save the current frame's ID so we can restore it after
1743 evaluating the watchpoint expression on its own frame. */
1744 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1745 took a frame parameter, so that we didn't have to change the
1746 selected frame. */
1747 frame_saved = 1;
1748 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1749
1750 fi = frame_find_by_id (b->watchpoint_frame);
1751 within_current_scope = (fi != NULL);
1752 if (within_current_scope)
1753 select_frame (fi);
1754 }
1755
1756 /* We don't free locations. They are stored in the bp_location array
1757 and update_global_location_list will eventually delete them and
1758 remove breakpoints if needed. */
1759 b->base.loc = NULL;
1760
1761 if (within_current_scope && reparse)
1762 {
1763 const char *s;
1764
1765 if (b->exp)
1766 {
1767 xfree (b->exp);
1768 b->exp = NULL;
1769 }
1770 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1771 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1772 /* If the meaning of expression itself changed, the old value is
1773 no longer relevant. We don't want to report a watchpoint hit
1774 to the user when the old value and the new value may actually
1775 be completely different objects. */
1776 value_free (b->val);
1777 b->val = NULL;
1778 b->val_valid = 0;
1779
1780 /* Note that unlike with breakpoints, the watchpoint's condition
1781 expression is stored in the breakpoint object, not in the
1782 locations (re)created below. */
1783 if (b->base.cond_string != NULL)
1784 {
1785 if (b->cond_exp != NULL)
1786 {
1787 xfree (b->cond_exp);
1788 b->cond_exp = NULL;
1789 }
1790
1791 s = b->base.cond_string;
1792 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1793 }
1794 }
1795
1796 /* If we failed to parse the expression, for example because
1797 it refers to a global variable in a not-yet-loaded shared library,
1798 don't try to insert watchpoint. We don't automatically delete
1799 such watchpoint, though, since failure to parse expression
1800 is different from out-of-scope watchpoint. */
1801 if (!target_has_execution)
1802 {
1803 /* Without execution, memory can't change. No use to try and
1804 set watchpoint locations. The watchpoint will be reset when
1805 the target gains execution, through breakpoint_re_set. */
1806 if (!can_use_hw_watchpoints)
1807 {
1808 if (b->base.ops->works_in_software_mode (&b->base))
1809 b->base.type = bp_watchpoint;
1810 else
1811 error (_("Can't set read/access watchpoint when "
1812 "hardware watchpoints are disabled."));
1813 }
1814 }
1815 else if (within_current_scope && b->exp)
1816 {
1817 int pc = 0;
1818 struct value *val_chain, *v, *result, *next;
1819 struct program_space *frame_pspace;
1820
1821 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1822
1823 /* Avoid setting b->val if it's already set. The meaning of
1824 b->val is 'the last value' user saw, and we should update
1825 it only if we reported that last value to user. As it
1826 happens, the code that reports it updates b->val directly.
1827 We don't keep track of the memory value for masked
1828 watchpoints. */
1829 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1830 {
1831 b->val = v;
1832 b->val_valid = 1;
1833 }
1834
1835 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1836
1837 /* Look at each value on the value chain. */
1838 for (v = val_chain; v; v = value_next (v))
1839 {
1840 /* If it's a memory location, and GDB actually needed
1841 its contents to evaluate the expression, then we
1842 must watch it. If the first value returned is
1843 still lazy, that means an error occurred reading it;
1844 watch it anyway in case it becomes readable. */
1845 if (VALUE_LVAL (v) == lval_memory
1846 && (v == val_chain || ! value_lazy (v)))
1847 {
1848 struct type *vtype = check_typedef (value_type (v));
1849
1850 /* We only watch structs and arrays if user asked
1851 for it explicitly, never if they just happen to
1852 appear in the middle of some value chain. */
1853 if (v == result
1854 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1855 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1856 {
1857 CORE_ADDR addr;
1858 int type;
1859 struct bp_location *loc, **tmp;
1860
1861 addr = value_address (v);
1862 type = hw_write;
1863 if (b->base.type == bp_read_watchpoint)
1864 type = hw_read;
1865 else if (b->base.type == bp_access_watchpoint)
1866 type = hw_access;
1867
1868 loc = allocate_bp_location (&b->base);
1869 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1870 ;
1871 *tmp = loc;
1872 loc->gdbarch = get_type_arch (value_type (v));
1873
1874 loc->pspace = frame_pspace;
1875 loc->address = addr;
1876 loc->length = TYPE_LENGTH (value_type (v));
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->base.type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (&b->base);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->base.type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->base.type = type;
1950 }
1951 }
1952 else if (!b->base.ops->works_in_software_mode (&b->base))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->base.type = bp_watchpoint;
1963
1964 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->base.loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_free (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1982 {
1983 struct breakpoint *base = &b->base;
1984 base->loc = allocate_bp_location (base);
1985 base->loc->pspace = frame_pspace;
1986 base->loc->address = -1;
1987 base->loc->length = -1;
1988 base->loc->watchpoint_type = -1;
1989 }
1990 }
1991 else if (!within_current_scope)
1992 {
1993 printf_filtered (_("\
1994 Watchpoint %d deleted because the program has left the block\n\
1995 in which its expression is valid.\n"),
1996 b->base.number);
1997 watchpoint_del_at_next_stop (b);
1998 }
1999
2000 /* Restore the selected frame. */
2001 if (frame_saved)
2002 select_frame (frame_find_by_id (saved_frame_id));
2003 }
2004
2005
2006 /* Returns 1 iff breakpoint location should be
2007 inserted in the inferior. We don't differentiate the type of BL's owner
2008 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2009 breakpoint_ops is not defined, because in insert_bp_location,
2010 tracepoint's insert_location will not be called. */
2011 static int
2012 should_be_inserted (struct bp_location *bl)
2013 {
2014 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2015 return 0;
2016
2017 if (bl->owner->disposition == disp_del_at_next_stop)
2018 return 0;
2019
2020 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2021 return 0;
2022
2023 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2024 return 0;
2025
2026 /* This is set for example, when we're attached to the parent of a
2027 vfork, and have detached from the child. The child is running
2028 free, and we expect it to do an exec or exit, at which point the
2029 OS makes the parent schedulable again (and the target reports
2030 that the vfork is done). Until the child is done with the shared
2031 memory region, do not insert breakpoints in the parent, otherwise
2032 the child could still trip on the parent's breakpoints. Since
2033 the parent is blocked anyway, it won't miss any breakpoint. */
2034 if (bl->pspace->breakpoints_not_allowed)
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 /* Same as should_be_inserted but does the check assuming
2041 that the location is not duplicated. */
2042
2043 static int
2044 unduplicated_should_be_inserted (struct bp_location *bl)
2045 {
2046 int result;
2047 const int save_duplicate = bl->duplicate;
2048
2049 bl->duplicate = 0;
2050 result = should_be_inserted (bl);
2051 bl->duplicate = save_duplicate;
2052 return result;
2053 }
2054
2055 /* Parses a conditional described by an expression COND into an
2056 agent expression bytecode suitable for evaluation
2057 by the bytecode interpreter. Return NULL if there was
2058 any error during parsing. */
2059
2060 static struct agent_expr *
2061 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2062 {
2063 struct agent_expr *aexpr = NULL;
2064 volatile struct gdb_exception ex;
2065
2066 if (!cond)
2067 return NULL;
2068
2069 /* We don't want to stop processing, so catch any errors
2070 that may show up. */
2071 TRY_CATCH (ex, RETURN_MASK_ERROR)
2072 {
2073 aexpr = gen_eval_for_expr (scope, cond);
2074 }
2075
2076 if (ex.reason < 0)
2077 {
2078 /* If we got here, it means the condition could not be parsed to a valid
2079 bytecode expression and thus can't be evaluated on the target's side.
2080 It's no use iterating through the conditions. */
2081 return NULL;
2082 }
2083
2084 /* We have a valid agent expression. */
2085 return aexpr;
2086 }
2087
2088 /* Based on location BL, create a list of breakpoint conditions to be
2089 passed on to the target. If we have duplicated locations with different
2090 conditions, we will add such conditions to the list. The idea is that the
2091 target will evaluate the list of conditions and will only notify GDB when
2092 one of them is true. */
2093
2094 static void
2095 build_target_condition_list (struct bp_location *bl)
2096 {
2097 struct bp_location **locp = NULL, **loc2p;
2098 int null_condition_or_parse_error = 0;
2099 int modified = bl->needs_update;
2100 struct bp_location *loc;
2101
2102 /* Release conditions left over from a previous insert. */
2103 VEC_free (agent_expr_p, bl->target_info.conditions);
2104
2105 /* This is only meaningful if the target is
2106 evaluating conditions and if the user has
2107 opted for condition evaluation on the target's
2108 side. */
2109 if (gdb_evaluates_breakpoint_condition_p ()
2110 || !target_supports_evaluation_of_breakpoint_conditions ())
2111 return;
2112
2113 /* Do a first pass to check for locations with no assigned
2114 conditions or conditions that fail to parse to a valid agent expression
2115 bytecode. If any of these happen, then it's no use to send conditions
2116 to the target since this location will always trigger and generate a
2117 response back to GDB. */
2118 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2119 {
2120 loc = (*loc2p);
2121 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2122 {
2123 if (modified)
2124 {
2125 struct agent_expr *aexpr;
2126
2127 /* Re-parse the conditions since something changed. In that
2128 case we already freed the condition bytecodes (see
2129 force_breakpoint_reinsertion). We just
2130 need to parse the condition to bytecodes again. */
2131 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2132 loc->cond_bytecode = aexpr;
2133
2134 /* Check if we managed to parse the conditional expression
2135 correctly. If not, we will not send this condition
2136 to the target. */
2137 if (aexpr)
2138 continue;
2139 }
2140
2141 /* If we have a NULL bytecode expression, it means something
2142 went wrong or we have a null condition expression. */
2143 if (!loc->cond_bytecode)
2144 {
2145 null_condition_or_parse_error = 1;
2146 break;
2147 }
2148 }
2149 }
2150
2151 /* If any of these happened, it means we will have to evaluate the conditions
2152 for the location's address on gdb's side. It is no use keeping bytecodes
2153 for all the other duplicate locations, thus we free all of them here.
2154
2155 This is so we have a finer control over which locations' conditions are
2156 being evaluated by GDB or the remote stub. */
2157 if (null_condition_or_parse_error)
2158 {
2159 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2160 {
2161 loc = (*loc2p);
2162 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2163 {
2164 /* Only go as far as the first NULL bytecode is
2165 located. */
2166 if (!loc->cond_bytecode)
2167 return;
2168
2169 free_agent_expr (loc->cond_bytecode);
2170 loc->cond_bytecode = NULL;
2171 }
2172 }
2173 }
2174
2175 /* No NULL conditions or failed bytecode generation. Build a condition list
2176 for this location's address. */
2177 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2178 {
2179 loc = (*loc2p);
2180 if (loc->cond
2181 && is_breakpoint (loc->owner)
2182 && loc->pspace->num == bl->pspace->num
2183 && loc->owner->enable_state == bp_enabled
2184 && loc->enabled)
2185 /* Add the condition to the vector. This will be used later to send the
2186 conditions to the target. */
2187 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2188 loc->cond_bytecode);
2189 }
2190
2191 return;
2192 }
2193
2194 /* Parses a command described by string CMD into an agent expression
2195 bytecode suitable for evaluation by the bytecode interpreter.
2196 Return NULL if there was any error during parsing. */
2197
2198 static struct agent_expr *
2199 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2200 {
2201 struct cleanup *old_cleanups = 0;
2202 struct expression *expr, **argvec;
2203 struct agent_expr *aexpr = NULL;
2204 volatile struct gdb_exception ex;
2205 const char *cmdrest;
2206 const char *format_start, *format_end;
2207 struct format_piece *fpieces;
2208 int nargs;
2209 struct gdbarch *gdbarch = get_current_arch ();
2210
2211 if (!cmd)
2212 return NULL;
2213
2214 cmdrest = cmd;
2215
2216 if (*cmdrest == ',')
2217 ++cmdrest;
2218 cmdrest = skip_spaces_const (cmdrest);
2219
2220 if (*cmdrest++ != '"')
2221 error (_("No format string following the location"));
2222
2223 format_start = cmdrest;
2224
2225 fpieces = parse_format_string (&cmdrest);
2226
2227 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2228
2229 format_end = cmdrest;
2230
2231 if (*cmdrest++ != '"')
2232 error (_("Bad format string, non-terminated '\"'."));
2233
2234 cmdrest = skip_spaces_const (cmdrest);
2235
2236 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2237 error (_("Invalid argument syntax"));
2238
2239 if (*cmdrest == ',')
2240 cmdrest++;
2241 cmdrest = skip_spaces_const (cmdrest);
2242
2243 /* For each argument, make an expression. */
2244
2245 argvec = (struct expression **) alloca (strlen (cmd)
2246 * sizeof (struct expression *));
2247
2248 nargs = 0;
2249 while (*cmdrest != '\0')
2250 {
2251 const char *cmd1;
2252
2253 cmd1 = cmdrest;
2254 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2255 argvec[nargs++] = expr;
2256 cmdrest = cmd1;
2257 if (*cmdrest == ',')
2258 ++cmdrest;
2259 }
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 TRY_CATCH (ex, RETURN_MASK_ERROR)
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 fpieces, nargs, argvec);
2268 }
2269
2270 do_cleanups (old_cleanups);
2271
2272 if (ex.reason < 0)
2273 {
2274 /* If we got here, it means the command could not be parsed to a valid
2275 bytecode expression and thus can't be evaluated on the target's side.
2276 It's no use iterating through the other commands. */
2277 return NULL;
2278 }
2279
2280 /* We have a valid agent expression, return it. */
2281 return aexpr;
2282 }
2283
2284 /* Based on location BL, create a list of breakpoint commands to be
2285 passed on to the target. If we have duplicated locations with
2286 different commands, we will add any such to the list. */
2287
2288 static void
2289 build_target_command_list (struct bp_location *bl)
2290 {
2291 struct bp_location **locp = NULL, **loc2p;
2292 int null_command_or_parse_error = 0;
2293 int modified = bl->needs_update;
2294 struct bp_location *loc;
2295
2296 /* Release commands left over from a previous insert. */
2297 VEC_free (agent_expr_p, bl->target_info.tcommands);
2298
2299 /* For now, limit to agent-style dprintf breakpoints. */
2300 if (bl->owner->type != bp_dprintf
2301 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2302 return;
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* Do a first pass to check for locations with no assigned
2308 conditions or conditions that fail to parse to a valid agent expression
2309 bytecode. If any of these happen, then it's no use to send conditions
2310 to the target since this location will always trigger and generate a
2311 response back to GDB. */
2312 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2313 {
2314 loc = (*loc2p);
2315 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2316 {
2317 if (modified)
2318 {
2319 struct agent_expr *aexpr;
2320
2321 /* Re-parse the commands since something changed. In that
2322 case we already freed the command bytecodes (see
2323 force_breakpoint_reinsertion). We just
2324 need to parse the command to bytecodes again. */
2325 aexpr = parse_cmd_to_aexpr (bl->address,
2326 loc->owner->extra_string);
2327 loc->cmd_bytecode = aexpr;
2328
2329 if (!aexpr)
2330 continue;
2331 }
2332
2333 /* If we have a NULL bytecode expression, it means something
2334 went wrong or we have a null command expression. */
2335 if (!loc->cmd_bytecode)
2336 {
2337 null_command_or_parse_error = 1;
2338 break;
2339 }
2340 }
2341 }
2342
2343 /* If anything failed, then we're not doing target-side commands,
2344 and so clean up. */
2345 if (null_command_or_parse_error)
2346 {
2347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2348 {
2349 loc = (*loc2p);
2350 if (is_breakpoint (loc->owner)
2351 && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (loc->cmd_bytecode == NULL)
2356 return;
2357
2358 free_agent_expr (loc->cmd_bytecode);
2359 loc->cmd_bytecode = NULL;
2360 }
2361 }
2362 }
2363
2364 /* No NULL commands or failed bytecode generation. Build a command list
2365 for this location's address. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (loc->owner->extra_string
2370 && is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->enable_state == bp_enabled
2373 && loc->enabled)
2374 /* Add the command to the vector. This will be used later
2375 to send the commands to the target. */
2376 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2377 loc->cmd_bytecode);
2378 }
2379
2380 bl->target_info.persist = 0;
2381 /* Maybe flag this location as persistent. */
2382 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2383 bl->target_info.persist = 1;
2384 }
2385
2386 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2387 location. Any error messages are printed to TMP_ERROR_STREAM; and
2388 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2389 Returns 0 for success, 1 if the bp_location type is not supported or
2390 -1 for failure.
2391
2392 NOTE drow/2003-09-09: This routine could be broken down to an
2393 object-style method for each breakpoint or catchpoint type. */
2394 static int
2395 insert_bp_location (struct bp_location *bl,
2396 struct ui_file *tmp_error_stream,
2397 int *disabled_breaks,
2398 int *hw_breakpoint_error,
2399 int *hw_bp_error_explained_already)
2400 {
2401 enum errors bp_err = GDB_NO_ERROR;
2402 const char *bp_err_message = NULL;
2403 volatile struct gdb_exception e;
2404
2405 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2406 return 0;
2407
2408 /* Note we don't initialize bl->target_info, as that wipes out
2409 the breakpoint location's shadow_contents if the breakpoint
2410 is still inserted at that location. This in turn breaks
2411 target_read_memory which depends on these buffers when
2412 a memory read is requested at the breakpoint location:
2413 Once the target_info has been wiped, we fail to see that
2414 we have a breakpoint inserted at that address and thus
2415 read the breakpoint instead of returning the data saved in
2416 the breakpoint location's shadow contents. */
2417 bl->target_info.placed_address = bl->address;
2418 bl->target_info.placed_address_space = bl->pspace->aspace;
2419 bl->target_info.length = bl->length;
2420
2421 /* When working with target-side conditions, we must pass all the conditions
2422 for the same breakpoint address down to the target since GDB will not
2423 insert those locations. With a list of breakpoint conditions, the target
2424 can decide when to stop and notify GDB. */
2425
2426 if (is_breakpoint (bl->owner))
2427 {
2428 build_target_condition_list (bl);
2429 build_target_command_list (bl);
2430 /* Reset the modification marker. */
2431 bl->needs_update = 0;
2432 }
2433
2434 if (bl->loc_type == bp_loc_software_breakpoint
2435 || bl->loc_type == bp_loc_hardware_breakpoint)
2436 {
2437 if (bl->owner->type != bp_hardware_breakpoint)
2438 {
2439 /* If the explicitly specified breakpoint type
2440 is not hardware breakpoint, check the memory map to see
2441 if the breakpoint address is in read only memory or not.
2442
2443 Two important cases are:
2444 - location type is not hardware breakpoint, memory
2445 is readonly. We change the type of the location to
2446 hardware breakpoint.
2447 - location type is hardware breakpoint, memory is
2448 read-write. This means we've previously made the
2449 location hardware one, but then the memory map changed,
2450 so we undo.
2451
2452 When breakpoints are removed, remove_breakpoints will use
2453 location types we've just set here, the only possible
2454 problem is that memory map has changed during running
2455 program, but it's not going to work anyway with current
2456 gdb. */
2457 struct mem_region *mr
2458 = lookup_mem_region (bl->target_info.placed_address);
2459
2460 if (mr)
2461 {
2462 if (automatic_hardware_breakpoints)
2463 {
2464 enum bp_loc_type new_type;
2465
2466 if (mr->attrib.mode != MEM_RW)
2467 new_type = bp_loc_hardware_breakpoint;
2468 else
2469 new_type = bp_loc_software_breakpoint;
2470
2471 if (new_type != bl->loc_type)
2472 {
2473 static int said = 0;
2474
2475 bl->loc_type = new_type;
2476 if (!said)
2477 {
2478 fprintf_filtered (gdb_stdout,
2479 _("Note: automatically using "
2480 "hardware breakpoints for "
2481 "read-only addresses.\n"));
2482 said = 1;
2483 }
2484 }
2485 }
2486 else if (bl->loc_type == bp_loc_software_breakpoint
2487 && mr->attrib.mode != MEM_RW)
2488 warning (_("cannot set software breakpoint "
2489 "at readonly address %s"),
2490 paddress (bl->gdbarch, bl->address));
2491 }
2492 }
2493
2494 /* First check to see if we have to handle an overlay. */
2495 if (overlay_debugging == ovly_off
2496 || bl->section == NULL
2497 || !(section_is_overlay (bl->section)))
2498 {
2499 /* No overlay handling: just set the breakpoint. */
2500 TRY_CATCH (e, RETURN_MASK_ALL)
2501 {
2502 int val;
2503
2504 val = bl->owner->ops->insert_location (bl);
2505 if (val)
2506 bp_err = GENERIC_ERROR;
2507 }
2508 if (e.reason < 0)
2509 {
2510 bp_err = e.error;
2511 bp_err_message = e.message;
2512 }
2513 }
2514 else
2515 {
2516 /* This breakpoint is in an overlay section.
2517 Shall we set a breakpoint at the LMA? */
2518 if (!overlay_events_enabled)
2519 {
2520 /* Yes -- overlay event support is not active,
2521 so we must try to set a breakpoint at the LMA.
2522 This will not work for a hardware breakpoint. */
2523 if (bl->loc_type == bp_loc_hardware_breakpoint)
2524 warning (_("hardware breakpoint %d not supported in overlay!"),
2525 bl->owner->number);
2526 else
2527 {
2528 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2529 bl->section);
2530 /* Set a software (trap) breakpoint at the LMA. */
2531 bl->overlay_target_info = bl->target_info;
2532 bl->overlay_target_info.placed_address = addr;
2533
2534 /* No overlay handling: just set the breakpoint. */
2535 TRY_CATCH (e, RETURN_MASK_ALL)
2536 {
2537 int val;
2538
2539 val = target_insert_breakpoint (bl->gdbarch,
2540 &bl->overlay_target_info);
2541 if (val)
2542 bp_err = GENERIC_ERROR;
2543 }
2544 if (e.reason < 0)
2545 {
2546 bp_err = e.error;
2547 bp_err_message = e.message;
2548 }
2549
2550 if (bp_err != GDB_NO_ERROR)
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Overlay breakpoint %d "
2553 "failed: in ROM?\n",
2554 bl->owner->number);
2555 }
2556 }
2557 /* Shall we set a breakpoint at the VMA? */
2558 if (section_is_mapped (bl->section))
2559 {
2560 /* Yes. This overlay section is mapped into memory. */
2561 TRY_CATCH (e, RETURN_MASK_ALL)
2562 {
2563 int val;
2564
2565 val = bl->owner->ops->insert_location (bl);
2566 if (val)
2567 bp_err = GENERIC_ERROR;
2568 }
2569 if (e.reason < 0)
2570 {
2571 bp_err = e.error;
2572 bp_err_message = e.message;
2573 }
2574 }
2575 else
2576 {
2577 /* No. This breakpoint will not be inserted.
2578 No error, but do not mark the bp as 'inserted'. */
2579 return 0;
2580 }
2581 }
2582
2583 if (bp_err != GDB_NO_ERROR)
2584 {
2585 /* Can't set the breakpoint. */
2586
2587 /* In some cases, we might not be able to insert a
2588 breakpoint in a shared library that has already been
2589 removed, but we have not yet processed the shlib unload
2590 event. Unfortunately, some targets that implement
2591 breakpoint insertion themselves (necessary if this is a
2592 HW breakpoint, but SW breakpoints likewise) can't tell
2593 why the breakpoint insertion failed (e.g., the remote
2594 target doesn't define error codes), so we must treat
2595 generic errors as memory errors. */
2596 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2597 && solib_name_from_address (bl->pspace, bl->address))
2598 {
2599 /* See also: disable_breakpoints_in_shlibs. */
2600 bl->shlib_disabled = 1;
2601 observer_notify_breakpoint_modified (bl->owner);
2602 if (!*disabled_breaks)
2603 {
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Cannot insert breakpoint %d.\n",
2606 bl->owner->number);
2607 fprintf_unfiltered (tmp_error_stream,
2608 "Temporarily disabling shared "
2609 "library breakpoints:\n");
2610 }
2611 *disabled_breaks = 1;
2612 fprintf_unfiltered (tmp_error_stream,
2613 "breakpoint #%d\n", bl->owner->number);
2614 return 0;
2615 }
2616 else
2617 {
2618 if (bl->loc_type == bp_loc_hardware_breakpoint)
2619 {
2620 *hw_breakpoint_error = 1;
2621 *hw_bp_error_explained_already = bp_err_message != NULL;
2622 fprintf_unfiltered (tmp_error_stream,
2623 "Cannot insert hardware breakpoint %d%s",
2624 bl->owner->number, bp_err_message ? ":" : ".\n");
2625 if (bp_err_message != NULL)
2626 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2627 }
2628 else
2629 {
2630 if (bp_err_message == NULL)
2631 {
2632 char *message
2633 = memory_error_message (TARGET_XFER_E_IO,
2634 bl->gdbarch, bl->address);
2635 struct cleanup *old_chain = make_cleanup (xfree, message);
2636
2637 fprintf_unfiltered (tmp_error_stream,
2638 "Cannot insert breakpoint %d.\n"
2639 "%s\n",
2640 bl->owner->number, message);
2641 do_cleanups (old_chain);
2642 }
2643 else
2644 {
2645 fprintf_unfiltered (tmp_error_stream,
2646 "Cannot insert breakpoint %d: %s\n",
2647 bl->owner->number,
2648 bp_err_message);
2649 }
2650 }
2651 return 1;
2652
2653 }
2654 }
2655 else
2656 bl->inserted = 1;
2657
2658 return 0;
2659 }
2660
2661 else if (bl->loc_type == bp_loc_hardware_watchpoint
2662 /* NOTE drow/2003-09-08: This state only exists for removing
2663 watchpoints. It's not clear that it's necessary... */
2664 && bl->owner->disposition != disp_del_at_next_stop)
2665 {
2666 int val;
2667
2668 gdb_assert (bl->owner->ops != NULL
2669 && bl->owner->ops->insert_location != NULL);
2670
2671 val = bl->owner->ops->insert_location (bl);
2672
2673 /* If trying to set a read-watchpoint, and it turns out it's not
2674 supported, try emulating one with an access watchpoint. */
2675 if (val == 1 && bl->watchpoint_type == hw_read)
2676 {
2677 struct bp_location *loc, **loc_temp;
2678
2679 /* But don't try to insert it, if there's already another
2680 hw_access location that would be considered a duplicate
2681 of this one. */
2682 ALL_BP_LOCATIONS (loc, loc_temp)
2683 if (loc != bl
2684 && loc->watchpoint_type == hw_access
2685 && watchpoint_locations_match (bl, loc))
2686 {
2687 bl->duplicate = 1;
2688 bl->inserted = 1;
2689 bl->target_info = loc->target_info;
2690 bl->watchpoint_type = hw_access;
2691 val = 0;
2692 break;
2693 }
2694
2695 if (val == 1)
2696 {
2697 bl->watchpoint_type = hw_access;
2698 val = bl->owner->ops->insert_location (bl);
2699
2700 if (val)
2701 /* Back to the original value. */
2702 bl->watchpoint_type = hw_read;
2703 }
2704 }
2705
2706 bl->inserted = (val == 0);
2707 }
2708
2709 else if (bl->owner->type == bp_catchpoint)
2710 {
2711 int val;
2712
2713 gdb_assert (bl->owner->ops != NULL
2714 && bl->owner->ops->insert_location != NULL);
2715
2716 val = bl->owner->ops->insert_location (bl);
2717 if (val)
2718 {
2719 bl->owner->enable_state = bp_disabled;
2720
2721 if (val == 1)
2722 warning (_("\
2723 Error inserting catchpoint %d: Your system does not support this type\n\
2724 of catchpoint."), bl->owner->number);
2725 else
2726 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2727 }
2728
2729 bl->inserted = (val == 0);
2730
2731 /* We've already printed an error message if there was a problem
2732 inserting this catchpoint, and we've disabled the catchpoint,
2733 so just return success. */
2734 return 0;
2735 }
2736
2737 return 0;
2738 }
2739
2740 /* This function is called when program space PSPACE is about to be
2741 deleted. It takes care of updating breakpoints to not reference
2742 PSPACE anymore. */
2743
2744 void
2745 breakpoint_program_space_exit (struct program_space *pspace)
2746 {
2747 struct breakpoint *b, *b_temp;
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* Remove any breakpoint that was set through this program space. */
2751 ALL_BREAKPOINTS_SAFE (b, b_temp)
2752 {
2753 if (b->pspace == pspace)
2754 delete_breakpoint (b);
2755 }
2756
2757 /* Breakpoints set through other program spaces could have locations
2758 bound to PSPACE as well. Remove those. */
2759 ALL_BP_LOCATIONS (loc, loc_temp)
2760 {
2761 struct bp_location *tmp;
2762
2763 if (loc->pspace == pspace)
2764 {
2765 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2766 if (loc->owner->loc == loc)
2767 loc->owner->loc = loc->next;
2768 else
2769 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2770 if (tmp->next == loc)
2771 {
2772 tmp->next = loc->next;
2773 break;
2774 }
2775 }
2776 }
2777
2778 /* Now update the global location list to permanently delete the
2779 removed locations above. */
2780 update_global_location_list (0);
2781 }
2782
2783 /* Make sure all breakpoints are inserted in inferior.
2784 Throws exception on any error.
2785 A breakpoint that is already inserted won't be inserted
2786 again, so calling this function twice is safe. */
2787 void
2788 insert_breakpoints (void)
2789 {
2790 struct breakpoint *bpt;
2791
2792 ALL_BREAKPOINTS (bpt)
2793 if (is_hardware_watchpoint (bpt))
2794 {
2795 struct watchpoint *w = (struct watchpoint *) bpt;
2796
2797 update_watchpoint (w, 0 /* don't reparse. */);
2798 }
2799
2800 update_global_location_list (1);
2801
2802 /* update_global_location_list does not insert breakpoints when
2803 always_inserted_mode is not enabled. Explicitly insert them
2804 now. */
2805 if (!breakpoints_always_inserted_mode ())
2806 insert_breakpoint_locations ();
2807 }
2808
2809 /* Invoke CALLBACK for each of bp_location. */
2810
2811 void
2812 iterate_over_bp_locations (walk_bp_location_callback callback)
2813 {
2814 struct bp_location *loc, **loc_tmp;
2815
2816 ALL_BP_LOCATIONS (loc, loc_tmp)
2817 {
2818 callback (loc, NULL);
2819 }
2820 }
2821
2822 /* This is used when we need to synch breakpoint conditions between GDB and the
2823 target. It is the case with deleting and disabling of breakpoints when using
2824 always-inserted mode. */
2825
2826 static void
2827 update_inserted_breakpoint_locations (void)
2828 {
2829 struct bp_location *bl, **blp_tmp;
2830 int error_flag = 0;
2831 int val = 0;
2832 int disabled_breaks = 0;
2833 int hw_breakpoint_error = 0;
2834 int hw_bp_details_reported = 0;
2835
2836 struct ui_file *tmp_error_stream = mem_fileopen ();
2837 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2838
2839 /* Explicitly mark the warning -- this will only be printed if
2840 there was an error. */
2841 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2842
2843 save_current_space_and_thread ();
2844
2845 ALL_BP_LOCATIONS (bl, blp_tmp)
2846 {
2847 /* We only want to update software breakpoints and hardware
2848 breakpoints. */
2849 if (!is_breakpoint (bl->owner))
2850 continue;
2851
2852 /* We only want to update locations that are already inserted
2853 and need updating. This is to avoid unwanted insertion during
2854 deletion of breakpoints. */
2855 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_details_reported);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 if (error_flag)
2875 {
2876 target_terminal_ours_for_output ();
2877 error_stream (tmp_error_stream);
2878 }
2879
2880 do_cleanups (cleanups);
2881 }
2882
2883 /* Used when starting or continuing the program. */
2884
2885 static void
2886 insert_breakpoint_locations (void)
2887 {
2888 struct breakpoint *bpt;
2889 struct bp_location *bl, **blp_tmp;
2890 int error_flag = 0;
2891 int val = 0;
2892 int disabled_breaks = 0;
2893 int hw_breakpoint_error = 0;
2894 int hw_bp_error_explained_already = 0;
2895
2896 struct ui_file *tmp_error_stream = mem_fileopen ();
2897 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2898
2899 /* Explicitly mark the warning -- this will only be printed if
2900 there was an error. */
2901 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2902
2903 save_current_space_and_thread ();
2904
2905 ALL_BP_LOCATIONS (bl, blp_tmp)
2906 {
2907 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2908 continue;
2909
2910 /* There is no point inserting thread-specific breakpoints if
2911 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2912 has BL->OWNER always non-NULL. */
2913 if (bl->owner->thread != -1
2914 && !valid_thread_id (bl->owner->thread))
2915 continue;
2916
2917 switch_to_program_space_and_thread (bl->pspace);
2918
2919 /* For targets that support global breakpoints, there's no need
2920 to select an inferior to insert breakpoint to. In fact, even
2921 if we aren't attached to any process yet, we should still
2922 insert breakpoints. */
2923 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2924 && ptid_equal (inferior_ptid, null_ptid))
2925 continue;
2926
2927 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2928 &hw_breakpoint_error, &hw_bp_error_explained_already);
2929 if (val)
2930 error_flag = val;
2931 }
2932
2933 /* If we failed to insert all locations of a watchpoint, remove
2934 them, as half-inserted watchpoint is of limited use. */
2935 ALL_BREAKPOINTS (bpt)
2936 {
2937 int some_failed = 0;
2938 struct bp_location *loc;
2939
2940 if (!is_hardware_watchpoint (bpt))
2941 continue;
2942
2943 if (!breakpoint_enabled (bpt))
2944 continue;
2945
2946 if (bpt->disposition == disp_del_at_next_stop)
2947 continue;
2948
2949 for (loc = bpt->loc; loc; loc = loc->next)
2950 if (!loc->inserted && should_be_inserted (loc))
2951 {
2952 some_failed = 1;
2953 break;
2954 }
2955 if (some_failed)
2956 {
2957 for (loc = bpt->loc; loc; loc = loc->next)
2958 if (loc->inserted)
2959 remove_breakpoint (loc, mark_uninserted);
2960
2961 hw_breakpoint_error = 1;
2962 fprintf_unfiltered (tmp_error_stream,
2963 "Could not insert hardware watchpoint %d.\n",
2964 bpt->number);
2965 error_flag = -1;
2966 }
2967 }
2968
2969 if (error_flag)
2970 {
2971 /* If a hardware breakpoint or watchpoint was inserted, add a
2972 message about possibly exhausted resources. */
2973 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2974 {
2975 fprintf_unfiltered (tmp_error_stream,
2976 "Could not insert hardware breakpoints:\n\
2977 You may have requested too many hardware breakpoints/watchpoints.\n");
2978 }
2979 target_terminal_ours_for_output ();
2980 error_stream (tmp_error_stream);
2981 }
2982
2983 do_cleanups (cleanups);
2984 }
2985
2986 /* Used when the program stops.
2987 Returns zero if successful, or non-zero if there was a problem
2988 removing a breakpoint location. */
2989
2990 int
2991 remove_breakpoints (void)
2992 {
2993 struct bp_location *bl, **blp_tmp;
2994 int val = 0;
2995
2996 ALL_BP_LOCATIONS (bl, blp_tmp)
2997 {
2998 if (bl->inserted && !is_tracepoint (bl->owner))
2999 val |= remove_breakpoint (bl, mark_uninserted);
3000 }
3001 return val;
3002 }
3003
3004 /* When a thread exits, remove breakpoints that are related to
3005 that thread. */
3006
3007 static void
3008 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3009 {
3010 struct breakpoint *b, *b_tmp;
3011
3012 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3013 {
3014 if (b->thread == tp->num && user_breakpoint_p (b))
3015 {
3016 b->disposition = disp_del_at_next_stop;
3017
3018 printf_filtered (_("\
3019 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3020 b->number, tp->num);
3021
3022 /* Hide it from the user. */
3023 b->number = 0;
3024 }
3025 }
3026 }
3027
3028 /* Remove breakpoints of process PID. */
3029
3030 int
3031 remove_breakpoints_pid (int pid)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val;
3035 struct inferior *inf = find_inferior_pid (pid);
3036
3037 ALL_BP_LOCATIONS (bl, blp_tmp)
3038 {
3039 if (bl->pspace != inf->pspace)
3040 continue;
3041
3042 if (bl->owner->type == bp_dprintf)
3043 continue;
3044
3045 if (bl->inserted)
3046 {
3047 val = remove_breakpoint (bl, mark_uninserted);
3048 if (val != 0)
3049 return val;
3050 }
3051 }
3052 return 0;
3053 }
3054
3055 int
3056 reattach_breakpoints (int pid)
3057 {
3058 struct cleanup *old_chain;
3059 struct bp_location *bl, **blp_tmp;
3060 int val;
3061 struct ui_file *tmp_error_stream;
3062 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3063 struct inferior *inf;
3064 struct thread_info *tp;
3065
3066 tp = any_live_thread_of_process (pid);
3067 if (tp == NULL)
3068 return 1;
3069
3070 inf = find_inferior_pid (pid);
3071 old_chain = save_inferior_ptid ();
3072
3073 inferior_ptid = tp->ptid;
3074
3075 tmp_error_stream = mem_fileopen ();
3076 make_cleanup_ui_file_delete (tmp_error_stream);
3077
3078 ALL_BP_LOCATIONS (bl, blp_tmp)
3079 {
3080 if (bl->pspace != inf->pspace)
3081 continue;
3082
3083 if (bl->inserted)
3084 {
3085 bl->inserted = 0;
3086 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3087 if (val != 0)
3088 {
3089 do_cleanups (old_chain);
3090 return val;
3091 }
3092 }
3093 }
3094 do_cleanups (old_chain);
3095 return 0;
3096 }
3097
3098 static int internal_breakpoint_number = -1;
3099
3100 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3101 If INTERNAL is non-zero, the breakpoint number will be populated
3102 from internal_breakpoint_number and that variable decremented.
3103 Otherwise the breakpoint number will be populated from
3104 breakpoint_count and that value incremented. Internal breakpoints
3105 do not set the internal var bpnum. */
3106 static void
3107 set_breakpoint_number (int internal, struct breakpoint *b)
3108 {
3109 if (internal)
3110 b->number = internal_breakpoint_number--;
3111 else
3112 {
3113 set_breakpoint_count (breakpoint_count + 1);
3114 b->number = breakpoint_count;
3115 }
3116 }
3117
3118 static struct breakpoint *
3119 create_internal_breakpoint (struct gdbarch *gdbarch,
3120 CORE_ADDR address, enum bptype type,
3121 const struct breakpoint_ops *ops)
3122 {
3123 struct symtab_and_line sal;
3124 struct breakpoint *b;
3125
3126 init_sal (&sal); /* Initialize to zeroes. */
3127
3128 sal.pc = address;
3129 sal.section = find_pc_overlay (sal.pc);
3130 sal.pspace = current_program_space;
3131
3132 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3133 b->number = internal_breakpoint_number--;
3134 b->disposition = disp_donttouch;
3135
3136 return b;
3137 }
3138
3139 static const char *const longjmp_names[] =
3140 {
3141 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3142 };
3143 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3144
3145 /* Per-objfile data private to breakpoint.c. */
3146 struct breakpoint_objfile_data
3147 {
3148 /* Minimal symbol for "_ovly_debug_event" (if any). */
3149 struct minimal_symbol *overlay_msym;
3150
3151 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3152 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3153
3154 /* True if we have looked for longjmp probes. */
3155 int longjmp_searched;
3156
3157 /* SystemTap probe points for longjmp (if any). */
3158 VEC (probe_p) *longjmp_probes;
3159
3160 /* Minimal symbol for "std::terminate()" (if any). */
3161 struct minimal_symbol *terminate_msym;
3162
3163 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3164 struct minimal_symbol *exception_msym;
3165
3166 /* True if we have looked for exception probes. */
3167 int exception_searched;
3168
3169 /* SystemTap probe points for unwinding (if any). */
3170 VEC (probe_p) *exception_probes;
3171 };
3172
3173 static const struct objfile_data *breakpoint_objfile_key;
3174
3175 /* Minimal symbol not found sentinel. */
3176 static struct minimal_symbol msym_not_found;
3177
3178 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3179
3180 static int
3181 msym_not_found_p (const struct minimal_symbol *msym)
3182 {
3183 return msym == &msym_not_found;
3184 }
3185
3186 /* Return per-objfile data needed by breakpoint.c.
3187 Allocate the data if necessary. */
3188
3189 static struct breakpoint_objfile_data *
3190 get_breakpoint_objfile_data (struct objfile *objfile)
3191 {
3192 struct breakpoint_objfile_data *bp_objfile_data;
3193
3194 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3198 sizeof (*bp_objfile_data));
3199
3200 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3201 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3202 }
3203 return bp_objfile_data;
3204 }
3205
3206 static void
3207 free_breakpoint_probes (struct objfile *obj, void *data)
3208 {
3209 struct breakpoint_objfile_data *bp_objfile_data = data;
3210
3211 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3212 VEC_free (probe_p, bp_objfile_data->exception_probes);
3213 }
3214
3215 static void
3216 create_overlay_event_breakpoint (void)
3217 {
3218 struct objfile *objfile;
3219 const char *const func_name = "_ovly_debug_event";
3220
3221 ALL_OBJFILES (objfile)
3222 {
3223 struct breakpoint *b;
3224 struct breakpoint_objfile_data *bp_objfile_data;
3225 CORE_ADDR addr;
3226
3227 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3228
3229 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3230 continue;
3231
3232 if (bp_objfile_data->overlay_msym == NULL)
3233 {
3234 struct minimal_symbol *m;
3235
3236 m = lookup_minimal_symbol_text (func_name, objfile);
3237 if (m == NULL)
3238 {
3239 /* Avoid future lookups in this objfile. */
3240 bp_objfile_data->overlay_msym = &msym_not_found;
3241 continue;
3242 }
3243 bp_objfile_data->overlay_msym = m;
3244 }
3245
3246 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3247 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3248 bp_overlay_event,
3249 &internal_breakpoint_ops);
3250 b->addr_string = xstrdup (func_name);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 update_global_location_list (1);
3264 }
3265
3266 static void
3267 create_longjmp_master_breakpoint (void)
3268 {
3269 struct program_space *pspace;
3270 struct cleanup *old_chain;
3271
3272 old_chain = save_current_program_space ();
3273
3274 ALL_PSPACES (pspace)
3275 {
3276 struct objfile *objfile;
3277
3278 set_current_program_space (pspace);
3279
3280 ALL_OBJFILES (objfile)
3281 {
3282 int i;
3283 struct gdbarch *gdbarch;
3284 struct breakpoint_objfile_data *bp_objfile_data;
3285
3286 gdbarch = get_objfile_arch (objfile);
3287
3288 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3289
3290 if (!bp_objfile_data->longjmp_searched)
3291 {
3292 VEC (probe_p) *ret;
3293
3294 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3295 if (ret != NULL)
3296 {
3297 /* We are only interested in checking one element. */
3298 struct probe *p = VEC_index (probe_p, ret, 0);
3299
3300 if (!can_evaluate_probe_arguments (p))
3301 {
3302 /* We cannot use the probe interface here, because it does
3303 not know how to evaluate arguments. */
3304 VEC_free (probe_p, ret);
3305 ret = NULL;
3306 }
3307 }
3308 bp_objfile_data->longjmp_probes = ret;
3309 bp_objfile_data->longjmp_searched = 1;
3310 }
3311
3312 if (bp_objfile_data->longjmp_probes != NULL)
3313 {
3314 int i;
3315 struct probe *probe;
3316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3317
3318 for (i = 0;
3319 VEC_iterate (probe_p,
3320 bp_objfile_data->longjmp_probes,
3321 i, probe);
3322 ++i)
3323 {
3324 struct breakpoint *b;
3325
3326 b = create_internal_breakpoint (gdbarch, probe->address,
3327 bp_longjmp_master,
3328 &internal_breakpoint_ops);
3329 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3330 b->enable_state = bp_disabled;
3331 }
3332
3333 continue;
3334 }
3335
3336 if (!gdbarch_get_longjmp_target_p (gdbarch))
3337 continue;
3338
3339 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3340 {
3341 struct breakpoint *b;
3342 const char *func_name;
3343 CORE_ADDR addr;
3344
3345 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3346 continue;
3347
3348 func_name = longjmp_names[i];
3349 if (bp_objfile_data->longjmp_msym[i] == NULL)
3350 {
3351 struct minimal_symbol *m;
3352
3353 m = lookup_minimal_symbol_text (func_name, objfile);
3354 if (m == NULL)
3355 {
3356 /* Prevent future lookups in this objfile. */
3357 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3358 continue;
3359 }
3360 bp_objfile_data->longjmp_msym[i] = m;
3361 }
3362
3363 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3364 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3365 &internal_breakpoint_ops);
3366 b->addr_string = xstrdup (func_name);
3367 b->enable_state = bp_disabled;
3368 }
3369 }
3370 }
3371 update_global_location_list (1);
3372
3373 do_cleanups (old_chain);
3374 }
3375
3376 /* Create a master std::terminate breakpoint. */
3377 static void
3378 create_std_terminate_master_breakpoint (void)
3379 {
3380 struct program_space *pspace;
3381 struct cleanup *old_chain;
3382 const char *const func_name = "std::terminate()";
3383
3384 old_chain = save_current_program_space ();
3385
3386 ALL_PSPACES (pspace)
3387 {
3388 struct objfile *objfile;
3389 CORE_ADDR addr;
3390
3391 set_current_program_space (pspace);
3392
3393 ALL_OBJFILES (objfile)
3394 {
3395 struct breakpoint *b;
3396 struct breakpoint_objfile_data *bp_objfile_data;
3397
3398 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3399
3400 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3401 continue;
3402
3403 if (bp_objfile_data->terminate_msym == NULL)
3404 {
3405 struct minimal_symbol *m;
3406
3407 m = lookup_minimal_symbol (func_name, NULL, objfile);
3408 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3409 && MSYMBOL_TYPE (m) != mst_file_text))
3410 {
3411 /* Prevent future lookups in this objfile. */
3412 bp_objfile_data->terminate_msym = &msym_not_found;
3413 continue;
3414 }
3415 bp_objfile_data->terminate_msym = m;
3416 }
3417
3418 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3419 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3420 bp_std_terminate_master,
3421 &internal_breakpoint_ops);
3422 b->addr_string = xstrdup (func_name);
3423 b->enable_state = bp_disabled;
3424 }
3425 }
3426
3427 update_global_location_list (1);
3428
3429 do_cleanups (old_chain);
3430 }
3431
3432 /* Install a master breakpoint on the unwinder's debug hook. */
3433
3434 static void
3435 create_exception_master_breakpoint (void)
3436 {
3437 struct objfile *objfile;
3438 const char *const func_name = "_Unwind_DebugHook";
3439
3440 ALL_OBJFILES (objfile)
3441 {
3442 struct breakpoint *b;
3443 struct gdbarch *gdbarch;
3444 struct breakpoint_objfile_data *bp_objfile_data;
3445 CORE_ADDR addr;
3446
3447 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3448
3449 /* We prefer the SystemTap probe point if it exists. */
3450 if (!bp_objfile_data->exception_searched)
3451 {
3452 VEC (probe_p) *ret;
3453
3454 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3455
3456 if (ret != NULL)
3457 {
3458 /* We are only interested in checking one element. */
3459 struct probe *p = VEC_index (probe_p, ret, 0);
3460
3461 if (!can_evaluate_probe_arguments (p))
3462 {
3463 /* We cannot use the probe interface here, because it does
3464 not know how to evaluate arguments. */
3465 VEC_free (probe_p, ret);
3466 ret = NULL;
3467 }
3468 }
3469 bp_objfile_data->exception_probes = ret;
3470 bp_objfile_data->exception_searched = 1;
3471 }
3472
3473 if (bp_objfile_data->exception_probes != NULL)
3474 {
3475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3476 int i;
3477 struct probe *probe;
3478
3479 for (i = 0;
3480 VEC_iterate (probe_p,
3481 bp_objfile_data->exception_probes,
3482 i, probe);
3483 ++i)
3484 {
3485 struct breakpoint *b;
3486
3487 b = create_internal_breakpoint (gdbarch, probe->address,
3488 bp_exception_master,
3489 &internal_breakpoint_ops);
3490 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3491 b->enable_state = bp_disabled;
3492 }
3493
3494 continue;
3495 }
3496
3497 /* Otherwise, try the hook function. */
3498
3499 if (msym_not_found_p (bp_objfile_data->exception_msym))
3500 continue;
3501
3502 gdbarch = get_objfile_arch (objfile);
3503
3504 if (bp_objfile_data->exception_msym == NULL)
3505 {
3506 struct minimal_symbol *debug_hook;
3507
3508 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3509 if (debug_hook == NULL)
3510 {
3511 bp_objfile_data->exception_msym = &msym_not_found;
3512 continue;
3513 }
3514
3515 bp_objfile_data->exception_msym = debug_hook;
3516 }
3517
3518 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3519 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3520 &current_target);
3521 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3522 &internal_breakpoint_ops);
3523 b->addr_string = xstrdup (func_name);
3524 b->enable_state = bp_disabled;
3525 }
3526
3527 update_global_location_list (1);
3528 }
3529
3530 void
3531 update_breakpoints_after_exec (void)
3532 {
3533 struct breakpoint *b, *b_tmp;
3534 struct bp_location *bploc, **bplocp_tmp;
3535
3536 /* We're about to delete breakpoints from GDB's lists. If the
3537 INSERTED flag is true, GDB will try to lift the breakpoints by
3538 writing the breakpoints' "shadow contents" back into memory. The
3539 "shadow contents" are NOT valid after an exec, so GDB should not
3540 do that. Instead, the target is responsible from marking
3541 breakpoints out as soon as it detects an exec. We don't do that
3542 here instead, because there may be other attempts to delete
3543 breakpoints after detecting an exec and before reaching here. */
3544 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3545 if (bploc->pspace == current_program_space)
3546 gdb_assert (!bploc->inserted);
3547
3548 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3549 {
3550 if (b->pspace != current_program_space)
3551 continue;
3552
3553 /* Solib breakpoints must be explicitly reset after an exec(). */
3554 if (b->type == bp_shlib_event)
3555 {
3556 delete_breakpoint (b);
3557 continue;
3558 }
3559
3560 /* JIT breakpoints must be explicitly reset after an exec(). */
3561 if (b->type == bp_jit_event)
3562 {
3563 delete_breakpoint (b);
3564 continue;
3565 }
3566
3567 /* Thread event breakpoints must be set anew after an exec(),
3568 as must overlay event and longjmp master breakpoints. */
3569 if (b->type == bp_thread_event || b->type == bp_overlay_event
3570 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3571 || b->type == bp_exception_master)
3572 {
3573 delete_breakpoint (b);
3574 continue;
3575 }
3576
3577 /* Step-resume breakpoints are meaningless after an exec(). */
3578 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3579 {
3580 delete_breakpoint (b);
3581 continue;
3582 }
3583
3584 /* Longjmp and longjmp-resume breakpoints are also meaningless
3585 after an exec. */
3586 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3587 || b->type == bp_longjmp_call_dummy
3588 || b->type == bp_exception || b->type == bp_exception_resume)
3589 {
3590 delete_breakpoint (b);
3591 continue;
3592 }
3593
3594 if (b->type == bp_catchpoint)
3595 {
3596 /* For now, none of the bp_catchpoint breakpoints need to
3597 do anything at this point. In the future, if some of
3598 the catchpoints need to something, we will need to add
3599 a new method, and call this method from here. */
3600 continue;
3601 }
3602
3603 /* bp_finish is a special case. The only way we ought to be able
3604 to see one of these when an exec() has happened, is if the user
3605 caught a vfork, and then said "finish". Ordinarily a finish just
3606 carries them to the call-site of the current callee, by setting
3607 a temporary bp there and resuming. But in this case, the finish
3608 will carry them entirely through the vfork & exec.
3609
3610 We don't want to allow a bp_finish to remain inserted now. But
3611 we can't safely delete it, 'cause finish_command has a handle to
3612 the bp on a bpstat, and will later want to delete it. There's a
3613 chance (and I've seen it happen) that if we delete the bp_finish
3614 here, that its storage will get reused by the time finish_command
3615 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3616 We really must allow finish_command to delete a bp_finish.
3617
3618 In the absence of a general solution for the "how do we know
3619 it's safe to delete something others may have handles to?"
3620 problem, what we'll do here is just uninsert the bp_finish, and
3621 let finish_command delete it.
3622
3623 (We know the bp_finish is "doomed" in the sense that it's
3624 momentary, and will be deleted as soon as finish_command sees
3625 the inferior stopped. So it doesn't matter that the bp's
3626 address is probably bogus in the new a.out, unlike e.g., the
3627 solib breakpoints.) */
3628
3629 if (b->type == bp_finish)
3630 {
3631 continue;
3632 }
3633
3634 /* Without a symbolic address, we have little hope of the
3635 pre-exec() address meaning the same thing in the post-exec()
3636 a.out. */
3637 if (b->addr_string == NULL)
3638 {
3639 delete_breakpoint (b);
3640 continue;
3641 }
3642 }
3643 /* FIXME what about longjmp breakpoints? Re-create them here? */
3644 create_overlay_event_breakpoint ();
3645 create_longjmp_master_breakpoint ();
3646 create_std_terminate_master_breakpoint ();
3647 create_exception_master_breakpoint ();
3648 }
3649
3650 int
3651 detach_breakpoints (ptid_t ptid)
3652 {
3653 struct bp_location *bl, **blp_tmp;
3654 int val = 0;
3655 struct cleanup *old_chain = save_inferior_ptid ();
3656 struct inferior *inf = current_inferior ();
3657
3658 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3659 error (_("Cannot detach breakpoints of inferior_ptid"));
3660
3661 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3662 inferior_ptid = ptid;
3663 ALL_BP_LOCATIONS (bl, blp_tmp)
3664 {
3665 if (bl->pspace != inf->pspace)
3666 continue;
3667
3668 /* This function must physically remove breakpoints locations
3669 from the specified ptid, without modifying the breakpoint
3670 package's state. Locations of type bp_loc_other are only
3671 maintained at GDB side. So, there is no need to remove
3672 these bp_loc_other locations. Moreover, removing these
3673 would modify the breakpoint package's state. */
3674 if (bl->loc_type == bp_loc_other)
3675 continue;
3676
3677 if (bl->inserted)
3678 val |= remove_breakpoint_1 (bl, mark_inserted);
3679 }
3680
3681 /* Detach single-step breakpoints as well. */
3682 detach_single_step_breakpoints ();
3683
3684 do_cleanups (old_chain);
3685 return val;
3686 }
3687
3688 /* Remove the breakpoint location BL from the current address space.
3689 Note that this is used to detach breakpoints from a child fork.
3690 When we get here, the child isn't in the inferior list, and neither
3691 do we have objects to represent its address space --- we should
3692 *not* look at bl->pspace->aspace here. */
3693
3694 static int
3695 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3696 {
3697 int val;
3698
3699 /* BL is never in moribund_locations by our callers. */
3700 gdb_assert (bl->owner != NULL);
3701
3702 if (bl->owner->enable_state == bp_permanent)
3703 /* Permanent breakpoints cannot be inserted or removed. */
3704 return 0;
3705
3706 /* The type of none suggests that owner is actually deleted.
3707 This should not ever happen. */
3708 gdb_assert (bl->owner->type != bp_none);
3709
3710 if (bl->loc_type == bp_loc_software_breakpoint
3711 || bl->loc_type == bp_loc_hardware_breakpoint)
3712 {
3713 /* "Normal" instruction breakpoint: either the standard
3714 trap-instruction bp (bp_breakpoint), or a
3715 bp_hardware_breakpoint. */
3716
3717 /* First check to see if we have to handle an overlay. */
3718 if (overlay_debugging == ovly_off
3719 || bl->section == NULL
3720 || !(section_is_overlay (bl->section)))
3721 {
3722 /* No overlay handling: just remove the breakpoint. */
3723 val = bl->owner->ops->remove_location (bl);
3724 }
3725 else
3726 {
3727 /* This breakpoint is in an overlay section.
3728 Did we set a breakpoint at the LMA? */
3729 if (!overlay_events_enabled)
3730 {
3731 /* Yes -- overlay event support is not active, so we
3732 should have set a breakpoint at the LMA. Remove it.
3733 */
3734 /* Ignore any failures: if the LMA is in ROM, we will
3735 have already warned when we failed to insert it. */
3736 if (bl->loc_type == bp_loc_hardware_breakpoint)
3737 target_remove_hw_breakpoint (bl->gdbarch,
3738 &bl->overlay_target_info);
3739 else
3740 target_remove_breakpoint (bl->gdbarch,
3741 &bl->overlay_target_info);
3742 }
3743 /* Did we set a breakpoint at the VMA?
3744 If so, we will have marked the breakpoint 'inserted'. */
3745 if (bl->inserted)
3746 {
3747 /* Yes -- remove it. Previously we did not bother to
3748 remove the breakpoint if the section had been
3749 unmapped, but let's not rely on that being safe. We
3750 don't know what the overlay manager might do. */
3751
3752 /* However, we should remove *software* breakpoints only
3753 if the section is still mapped, or else we overwrite
3754 wrong code with the saved shadow contents. */
3755 if (bl->loc_type == bp_loc_hardware_breakpoint
3756 || section_is_mapped (bl->section))
3757 val = bl->owner->ops->remove_location (bl);
3758 else
3759 val = 0;
3760 }
3761 else
3762 {
3763 /* No -- not inserted, so no need to remove. No error. */
3764 val = 0;
3765 }
3766 }
3767
3768 /* In some cases, we might not be able to remove a breakpoint
3769 in a shared library that has already been removed, but we
3770 have not yet processed the shlib unload event. */
3771 if (val && solib_name_from_address (bl->pspace, bl->address))
3772 val = 0;
3773
3774 if (val)
3775 return val;
3776 bl->inserted = (is == mark_inserted);
3777 }
3778 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3779 {
3780 gdb_assert (bl->owner->ops != NULL
3781 && bl->owner->ops->remove_location != NULL);
3782
3783 bl->inserted = (is == mark_inserted);
3784 bl->owner->ops->remove_location (bl);
3785
3786 /* Failure to remove any of the hardware watchpoints comes here. */
3787 if ((is == mark_uninserted) && (bl->inserted))
3788 warning (_("Could not remove hardware watchpoint %d."),
3789 bl->owner->number);
3790 }
3791 else if (bl->owner->type == bp_catchpoint
3792 && breakpoint_enabled (bl->owner)
3793 && !bl->duplicate)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 val = bl->owner->ops->remove_location (bl);
3799 if (val)
3800 return val;
3801
3802 bl->inserted = (is == mark_inserted);
3803 }
3804
3805 return 0;
3806 }
3807
3808 static int
3809 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3810 {
3811 int ret;
3812 struct cleanup *old_chain;
3813
3814 /* BL is never in moribund_locations by our callers. */
3815 gdb_assert (bl->owner != NULL);
3816
3817 if (bl->owner->enable_state == bp_permanent)
3818 /* Permanent breakpoints cannot be inserted or removed. */
3819 return 0;
3820
3821 /* The type of none suggests that owner is actually deleted.
3822 This should not ever happen. */
3823 gdb_assert (bl->owner->type != bp_none);
3824
3825 old_chain = save_current_space_and_thread ();
3826
3827 switch_to_program_space_and_thread (bl->pspace);
3828
3829 ret = remove_breakpoint_1 (bl, is);
3830
3831 do_cleanups (old_chain);
3832 return ret;
3833 }
3834
3835 /* Clear the "inserted" flag in all breakpoints. */
3836
3837 void
3838 mark_breakpoints_out (void)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841
3842 ALL_BP_LOCATIONS (bl, blp_tmp)
3843 if (bl->pspace == current_program_space)
3844 bl->inserted = 0;
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints and delete any
3848 breakpoints which should go away between runs of the program.
3849
3850 Plus other such housekeeping that has to be done for breakpoints
3851 between runs.
3852
3853 Note: this function gets called at the end of a run (by
3854 generic_mourn_inferior) and when a run begins (by
3855 init_wait_for_inferior). */
3856
3857
3858
3859 void
3860 breakpoint_init_inferior (enum inf_context context)
3861 {
3862 struct breakpoint *b, *b_tmp;
3863 struct bp_location *bl, **blp_tmp;
3864 int ix;
3865 struct program_space *pspace = current_program_space;
3866
3867 /* If breakpoint locations are shared across processes, then there's
3868 nothing to do. */
3869 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3870 return;
3871
3872 ALL_BP_LOCATIONS (bl, blp_tmp)
3873 {
3874 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3875 if (bl->pspace == pspace
3876 && bl->owner->enable_state != bp_permanent)
3877 bl->inserted = 0;
3878 }
3879
3880 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3881 {
3882 if (b->loc && b->loc->pspace != pspace)
3883 continue;
3884
3885 switch (b->type)
3886 {
3887 case bp_call_dummy:
3888 case bp_longjmp_call_dummy:
3889
3890 /* If the call dummy breakpoint is at the entry point it will
3891 cause problems when the inferior is rerun, so we better get
3892 rid of it. */
3893
3894 case bp_watchpoint_scope:
3895
3896 /* Also get rid of scope breakpoints. */
3897
3898 case bp_shlib_event:
3899
3900 /* Also remove solib event breakpoints. Their addresses may
3901 have changed since the last time we ran the program.
3902 Actually we may now be debugging against different target;
3903 and so the solib backend that installed this breakpoint may
3904 not be used in by the target. E.g.,
3905
3906 (gdb) file prog-linux
3907 (gdb) run # native linux target
3908 ...
3909 (gdb) kill
3910 (gdb) file prog-win.exe
3911 (gdb) tar rem :9999 # remote Windows gdbserver.
3912 */
3913
3914 case bp_step_resume:
3915
3916 /* Also remove step-resume breakpoints. */
3917
3918 delete_breakpoint (b);
3919 break;
3920
3921 case bp_watchpoint:
3922 case bp_hardware_watchpoint:
3923 case bp_read_watchpoint:
3924 case bp_access_watchpoint:
3925 {
3926 struct watchpoint *w = (struct watchpoint *) b;
3927
3928 /* Likewise for watchpoints on local expressions. */
3929 if (w->exp_valid_block != NULL)
3930 delete_breakpoint (b);
3931 else if (context == inf_starting)
3932 {
3933 /* Reset val field to force reread of starting value in
3934 insert_breakpoints. */
3935 if (w->val)
3936 value_free (w->val);
3937 w->val = NULL;
3938 w->val_valid = 0;
3939 }
3940 }
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3947 /* Get rid of the moribund locations. */
3948 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3949 decref_bp_location (&bl);
3950 VEC_free (bp_location_p, moribund_locations);
3951 }
3952
3953 /* These functions concern about actual breakpoints inserted in the
3954 target --- to e.g. check if we need to do decr_pc adjustment or if
3955 we need to hop over the bkpt --- so we check for address space
3956 match, not program space. */
3957
3958 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3959 exists at PC. It returns ordinary_breakpoint_here if it's an
3960 ordinary breakpoint, or permanent_breakpoint_here if it's a
3961 permanent breakpoint.
3962 - When continuing from a location with an ordinary breakpoint, we
3963 actually single step once before calling insert_breakpoints.
3964 - When continuing from a location with a permanent breakpoint, we
3965 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3966 the target, to advance the PC past the breakpoint. */
3967
3968 enum breakpoint_here
3969 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3970 {
3971 struct bp_location *bl, **blp_tmp;
3972 int any_breakpoint_here = 0;
3973
3974 ALL_BP_LOCATIONS (bl, blp_tmp)
3975 {
3976 if (bl->loc_type != bp_loc_software_breakpoint
3977 && bl->loc_type != bp_loc_hardware_breakpoint)
3978 continue;
3979
3980 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3981 if ((breakpoint_enabled (bl->owner)
3982 || bl->owner->enable_state == bp_permanent)
3983 && breakpoint_location_address_match (bl, aspace, pc))
3984 {
3985 if (overlay_debugging
3986 && section_is_overlay (bl->section)
3987 && !section_is_mapped (bl->section))
3988 continue; /* unmapped overlay -- can't be a match */
3989 else if (bl->owner->enable_state == bp_permanent)
3990 return permanent_breakpoint_here;
3991 else
3992 any_breakpoint_here = 1;
3993 }
3994 }
3995
3996 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3997 }
3998
3999 /* Return true if there's a moribund breakpoint at PC. */
4000
4001 int
4002 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4003 {
4004 struct bp_location *loc;
4005 int ix;
4006
4007 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4008 if (breakpoint_location_address_match (loc, aspace, pc))
4009 return 1;
4010
4011 return 0;
4012 }
4013
4014 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4015 inserted using regular breakpoint_chain / bp_location array
4016 mechanism. This does not check for single-step breakpoints, which
4017 are inserted and removed using direct target manipulation. */
4018
4019 int
4020 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4021 CORE_ADDR pc)
4022 {
4023 struct bp_location *bl, **blp_tmp;
4024
4025 ALL_BP_LOCATIONS (bl, blp_tmp)
4026 {
4027 if (bl->loc_type != bp_loc_software_breakpoint
4028 && bl->loc_type != bp_loc_hardware_breakpoint)
4029 continue;
4030
4031 if (bl->inserted
4032 && breakpoint_location_address_match (bl, aspace, pc))
4033 {
4034 if (overlay_debugging
4035 && section_is_overlay (bl->section)
4036 && !section_is_mapped (bl->section))
4037 continue; /* unmapped overlay -- can't be a match */
4038 else
4039 return 1;
4040 }
4041 }
4042 return 0;
4043 }
4044
4045 /* Returns non-zero iff there's either regular breakpoint
4046 or a single step breakpoint inserted at PC. */
4047
4048 int
4049 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4050 {
4051 if (regular_breakpoint_inserted_here_p (aspace, pc))
4052 return 1;
4053
4054 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4055 return 1;
4056
4057 return 0;
4058 }
4059
4060 /* This function returns non-zero iff there is a software breakpoint
4061 inserted at PC. */
4062
4063 int
4064 software_breakpoint_inserted_here_p (struct address_space *aspace,
4065 CORE_ADDR pc)
4066 {
4067 struct bp_location *bl, **blp_tmp;
4068
4069 ALL_BP_LOCATIONS (bl, blp_tmp)
4070 {
4071 if (bl->loc_type != bp_loc_software_breakpoint)
4072 continue;
4073
4074 if (bl->inserted
4075 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4076 aspace, pc))
4077 {
4078 if (overlay_debugging
4079 && section_is_overlay (bl->section)
4080 && !section_is_mapped (bl->section))
4081 continue; /* unmapped overlay -- can't be a match */
4082 else
4083 return 1;
4084 }
4085 }
4086
4087 /* Also check for software single-step breakpoints. */
4088 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4089 return 1;
4090
4091 return 0;
4092 }
4093
4094 int
4095 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4096 CORE_ADDR addr, ULONGEST len)
4097 {
4098 struct breakpoint *bpt;
4099
4100 ALL_BREAKPOINTS (bpt)
4101 {
4102 struct bp_location *loc;
4103
4104 if (bpt->type != bp_hardware_watchpoint
4105 && bpt->type != bp_access_watchpoint)
4106 continue;
4107
4108 if (!breakpoint_enabled (bpt))
4109 continue;
4110
4111 for (loc = bpt->loc; loc; loc = loc->next)
4112 if (loc->pspace->aspace == aspace && loc->inserted)
4113 {
4114 CORE_ADDR l, h;
4115
4116 /* Check for intersection. */
4117 l = max (loc->address, addr);
4118 h = min (loc->address + loc->length, addr + len);
4119 if (l < h)
4120 return 1;
4121 }
4122 }
4123 return 0;
4124 }
4125
4126 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4127 PC is valid for process/thread PTID. */
4128
4129 int
4130 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4131 ptid_t ptid)
4132 {
4133 struct bp_location *bl, **blp_tmp;
4134 /* The thread and task IDs associated to PTID, computed lazily. */
4135 int thread = -1;
4136 int task = 0;
4137
4138 ALL_BP_LOCATIONS (bl, blp_tmp)
4139 {
4140 if (bl->loc_type != bp_loc_software_breakpoint
4141 && bl->loc_type != bp_loc_hardware_breakpoint)
4142 continue;
4143
4144 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4145 if (!breakpoint_enabled (bl->owner)
4146 && bl->owner->enable_state != bp_permanent)
4147 continue;
4148
4149 if (!breakpoint_location_address_match (bl, aspace, pc))
4150 continue;
4151
4152 if (bl->owner->thread != -1)
4153 {
4154 /* This is a thread-specific breakpoint. Check that ptid
4155 matches that thread. If thread hasn't been computed yet,
4156 it is now time to do so. */
4157 if (thread == -1)
4158 thread = pid_to_thread_id (ptid);
4159 if (bl->owner->thread != thread)
4160 continue;
4161 }
4162
4163 if (bl->owner->task != 0)
4164 {
4165 /* This is a task-specific breakpoint. Check that ptid
4166 matches that task. If task hasn't been computed yet,
4167 it is now time to do so. */
4168 if (task == 0)
4169 task = ada_get_task_number (ptid);
4170 if (bl->owner->task != task)
4171 continue;
4172 }
4173
4174 if (overlay_debugging
4175 && section_is_overlay (bl->section)
4176 && !section_is_mapped (bl->section))
4177 continue; /* unmapped overlay -- can't be a match */
4178
4179 return 1;
4180 }
4181
4182 return 0;
4183 }
4184 \f
4185
4186 /* bpstat stuff. External routines' interfaces are documented
4187 in breakpoint.h. */
4188
4189 int
4190 is_catchpoint (struct breakpoint *ep)
4191 {
4192 return (ep->type == bp_catchpoint);
4193 }
4194
4195 /* Frees any storage that is part of a bpstat. Does not walk the
4196 'next' chain. */
4197
4198 static void
4199 bpstat_free (bpstat bs)
4200 {
4201 if (bs->old_val != NULL)
4202 value_free (bs->old_val);
4203 decref_counted_command_line (&bs->commands);
4204 decref_bp_location (&bs->bp_location_at);
4205 xfree (bs);
4206 }
4207
4208 /* Clear a bpstat so that it says we are not at any breakpoint.
4209 Also free any storage that is part of a bpstat. */
4210
4211 void
4212 bpstat_clear (bpstat *bsp)
4213 {
4214 bpstat p;
4215 bpstat q;
4216
4217 if (bsp == 0)
4218 return;
4219 p = *bsp;
4220 while (p != NULL)
4221 {
4222 q = p->next;
4223 bpstat_free (p);
4224 p = q;
4225 }
4226 *bsp = NULL;
4227 }
4228
4229 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4230 is part of the bpstat is copied as well. */
4231
4232 bpstat
4233 bpstat_copy (bpstat bs)
4234 {
4235 bpstat p = NULL;
4236 bpstat tmp;
4237 bpstat retval = NULL;
4238
4239 if (bs == NULL)
4240 return bs;
4241
4242 for (; bs != NULL; bs = bs->next)
4243 {
4244 tmp = (bpstat) xmalloc (sizeof (*tmp));
4245 memcpy (tmp, bs, sizeof (*tmp));
4246 incref_counted_command_line (tmp->commands);
4247 incref_bp_location (tmp->bp_location_at);
4248 if (bs->old_val != NULL)
4249 {
4250 tmp->old_val = value_copy (bs->old_val);
4251 release_value (tmp->old_val);
4252 }
4253
4254 if (p == NULL)
4255 /* This is the first thing in the chain. */
4256 retval = tmp;
4257 else
4258 p->next = tmp;
4259 p = tmp;
4260 }
4261 p->next = NULL;
4262 return retval;
4263 }
4264
4265 /* Find the bpstat associated with this breakpoint. */
4266
4267 bpstat
4268 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4269 {
4270 if (bsp == NULL)
4271 return NULL;
4272
4273 for (; bsp != NULL; bsp = bsp->next)
4274 {
4275 if (bsp->breakpoint_at == breakpoint)
4276 return bsp;
4277 }
4278 return NULL;
4279 }
4280
4281 /* See breakpoint.h. */
4282
4283 int
4284 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4285 {
4286 for (; bsp != NULL; bsp = bsp->next)
4287 {
4288 if (bsp->breakpoint_at == NULL)
4289 {
4290 /* A moribund location can never explain a signal other than
4291 GDB_SIGNAL_TRAP. */
4292 if (sig == GDB_SIGNAL_TRAP)
4293 return 1;
4294 }
4295 else
4296 {
4297 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4298 sig))
4299 return 1;
4300 }
4301 }
4302
4303 return 0;
4304 }
4305
4306 /* Put in *NUM the breakpoint number of the first breakpoint we are
4307 stopped at. *BSP upon return is a bpstat which points to the
4308 remaining breakpoints stopped at (but which is not guaranteed to be
4309 good for anything but further calls to bpstat_num).
4310
4311 Return 0 if passed a bpstat which does not indicate any breakpoints.
4312 Return -1 if stopped at a breakpoint that has been deleted since
4313 we set it.
4314 Return 1 otherwise. */
4315
4316 int
4317 bpstat_num (bpstat *bsp, int *num)
4318 {
4319 struct breakpoint *b;
4320
4321 if ((*bsp) == NULL)
4322 return 0; /* No more breakpoint values */
4323
4324 /* We assume we'll never have several bpstats that correspond to a
4325 single breakpoint -- otherwise, this function might return the
4326 same number more than once and this will look ugly. */
4327 b = (*bsp)->breakpoint_at;
4328 *bsp = (*bsp)->next;
4329 if (b == NULL)
4330 return -1; /* breakpoint that's been deleted since */
4331
4332 *num = b->number; /* We have its number */
4333 return 1;
4334 }
4335
4336 /* See breakpoint.h. */
4337
4338 void
4339 bpstat_clear_actions (void)
4340 {
4341 struct thread_info *tp;
4342 bpstat bs;
4343
4344 if (ptid_equal (inferior_ptid, null_ptid))
4345 return;
4346
4347 tp = find_thread_ptid (inferior_ptid);
4348 if (tp == NULL)
4349 return;
4350
4351 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4352 {
4353 decref_counted_command_line (&bs->commands);
4354
4355 if (bs->old_val != NULL)
4356 {
4357 value_free (bs->old_val);
4358 bs->old_val = NULL;
4359 }
4360 }
4361 }
4362
4363 /* Called when a command is about to proceed the inferior. */
4364
4365 static void
4366 breakpoint_about_to_proceed (void)
4367 {
4368 if (!ptid_equal (inferior_ptid, null_ptid))
4369 {
4370 struct thread_info *tp = inferior_thread ();
4371
4372 /* Allow inferior function calls in breakpoint commands to not
4373 interrupt the command list. When the call finishes
4374 successfully, the inferior will be standing at the same
4375 breakpoint as if nothing happened. */
4376 if (tp->control.in_infcall)
4377 return;
4378 }
4379
4380 breakpoint_proceeded = 1;
4381 }
4382
4383 /* Stub for cleaning up our state if we error-out of a breakpoint
4384 command. */
4385 static void
4386 cleanup_executing_breakpoints (void *ignore)
4387 {
4388 executing_breakpoint_commands = 0;
4389 }
4390
4391 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4392 or its equivalent. */
4393
4394 static int
4395 command_line_is_silent (struct command_line *cmd)
4396 {
4397 return cmd && (strcmp ("silent", cmd->line) == 0
4398 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4399 }
4400
4401 /* Execute all the commands associated with all the breakpoints at
4402 this location. Any of these commands could cause the process to
4403 proceed beyond this point, etc. We look out for such changes by
4404 checking the global "breakpoint_proceeded" after each command.
4405
4406 Returns true if a breakpoint command resumed the inferior. In that
4407 case, it is the caller's responsibility to recall it again with the
4408 bpstat of the current thread. */
4409
4410 static int
4411 bpstat_do_actions_1 (bpstat *bsp)
4412 {
4413 bpstat bs;
4414 struct cleanup *old_chain;
4415 int again = 0;
4416
4417 /* Avoid endless recursion if a `source' command is contained
4418 in bs->commands. */
4419 if (executing_breakpoint_commands)
4420 return 0;
4421
4422 executing_breakpoint_commands = 1;
4423 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4424
4425 prevent_dont_repeat ();
4426
4427 /* This pointer will iterate over the list of bpstat's. */
4428 bs = *bsp;
4429
4430 breakpoint_proceeded = 0;
4431 for (; bs != NULL; bs = bs->next)
4432 {
4433 struct counted_command_line *ccmd;
4434 struct command_line *cmd;
4435 struct cleanup *this_cmd_tree_chain;
4436
4437 /* Take ownership of the BSP's command tree, if it has one.
4438
4439 The command tree could legitimately contain commands like
4440 'step' and 'next', which call clear_proceed_status, which
4441 frees stop_bpstat's command tree. To make sure this doesn't
4442 free the tree we're executing out from under us, we need to
4443 take ownership of the tree ourselves. Since a given bpstat's
4444 commands are only executed once, we don't need to copy it; we
4445 can clear the pointer in the bpstat, and make sure we free
4446 the tree when we're done. */
4447 ccmd = bs->commands;
4448 bs->commands = NULL;
4449 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4450 cmd = ccmd ? ccmd->commands : NULL;
4451 if (command_line_is_silent (cmd))
4452 {
4453 /* The action has been already done by bpstat_stop_status. */
4454 cmd = cmd->next;
4455 }
4456
4457 while (cmd != NULL)
4458 {
4459 execute_control_command (cmd);
4460
4461 if (breakpoint_proceeded)
4462 break;
4463 else
4464 cmd = cmd->next;
4465 }
4466
4467 /* We can free this command tree now. */
4468 do_cleanups (this_cmd_tree_chain);
4469
4470 if (breakpoint_proceeded)
4471 {
4472 if (target_can_async_p ())
4473 /* If we are in async mode, then the target might be still
4474 running, not stopped at any breakpoint, so nothing for
4475 us to do here -- just return to the event loop. */
4476 ;
4477 else
4478 /* In sync mode, when execute_control_command returns
4479 we're already standing on the next breakpoint.
4480 Breakpoint commands for that stop were not run, since
4481 execute_command does not run breakpoint commands --
4482 only command_line_handler does, but that one is not
4483 involved in execution of breakpoint commands. So, we
4484 can now execute breakpoint commands. It should be
4485 noted that making execute_command do bpstat actions is
4486 not an option -- in this case we'll have recursive
4487 invocation of bpstat for each breakpoint with a
4488 command, and can easily blow up GDB stack. Instead, we
4489 return true, which will trigger the caller to recall us
4490 with the new stop_bpstat. */
4491 again = 1;
4492 break;
4493 }
4494 }
4495 do_cleanups (old_chain);
4496 return again;
4497 }
4498
4499 void
4500 bpstat_do_actions (void)
4501 {
4502 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4503
4504 /* Do any commands attached to breakpoint we are stopped at. */
4505 while (!ptid_equal (inferior_ptid, null_ptid)
4506 && target_has_execution
4507 && !is_exited (inferior_ptid)
4508 && !is_executing (inferior_ptid))
4509 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4510 and only return when it is stopped at the next breakpoint, we
4511 keep doing breakpoint actions until it returns false to
4512 indicate the inferior was not resumed. */
4513 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4514 break;
4515
4516 discard_cleanups (cleanup_if_error);
4517 }
4518
4519 /* Print out the (old or new) value associated with a watchpoint. */
4520
4521 static void
4522 watchpoint_value_print (struct value *val, struct ui_file *stream)
4523 {
4524 if (val == NULL)
4525 fprintf_unfiltered (stream, _("<unreadable>"));
4526 else
4527 {
4528 struct value_print_options opts;
4529 get_user_print_options (&opts);
4530 value_print (val, stream, &opts);
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 int any_deleted
4583 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4584 int any_added
4585 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4586
4587 if (!is_catchpoint)
4588 {
4589 if (any_added || any_deleted)
4590 ui_out_text (current_uiout,
4591 _("Stopped due to shared library event:\n"));
4592 else
4593 ui_out_text (current_uiout,
4594 _("Stopped due to shared library event (no "
4595 "libraries added or removed)\n"));
4596 }
4597
4598 if (ui_out_is_mi_like_p (current_uiout))
4599 ui_out_field_string (current_uiout, "reason",
4600 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4601
4602 if (any_deleted)
4603 {
4604 struct cleanup *cleanup;
4605 char *name;
4606 int ix;
4607
4608 ui_out_text (current_uiout, _(" Inferior unloaded "));
4609 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4610 "removed");
4611 for (ix = 0;
4612 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4613 ix, name);
4614 ++ix)
4615 {
4616 if (ix > 0)
4617 ui_out_text (current_uiout, " ");
4618 ui_out_field_string (current_uiout, "library", name);
4619 ui_out_text (current_uiout, "\n");
4620 }
4621
4622 do_cleanups (cleanup);
4623 }
4624
4625 if (any_added)
4626 {
4627 struct so_list *iter;
4628 int ix;
4629 struct cleanup *cleanup;
4630
4631 ui_out_text (current_uiout, _(" Inferior loaded "));
4632 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4633 "added");
4634 for (ix = 0;
4635 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4636 ix, iter);
4637 ++ix)
4638 {
4639 if (ix > 0)
4640 ui_out_text (current_uiout, " ");
4641 ui_out_field_string (current_uiout, "library", iter->so_name);
4642 ui_out_text (current_uiout, "\n");
4643 }
4644
4645 do_cleanups (cleanup);
4646 }
4647 }
4648
4649 /* Print a message indicating what happened. This is called from
4650 normal_stop(). The input to this routine is the head of the bpstat
4651 list - a list of the eventpoints that caused this stop. KIND is
4652 the target_waitkind for the stopping event. This
4653 routine calls the generic print routine for printing a message
4654 about reasons for stopping. This will print (for example) the
4655 "Breakpoint n," part of the output. The return value of this
4656 routine is one of:
4657
4658 PRINT_UNKNOWN: Means we printed nothing.
4659 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4660 code to print the location. An example is
4661 "Breakpoint 1, " which should be followed by
4662 the location.
4663 PRINT_SRC_ONLY: Means we printed something, but there is no need
4664 to also print the location part of the message.
4665 An example is the catch/throw messages, which
4666 don't require a location appended to the end.
4667 PRINT_NOTHING: We have done some printing and we don't need any
4668 further info to be printed. */
4669
4670 enum print_stop_action
4671 bpstat_print (bpstat bs, int kind)
4672 {
4673 int val;
4674
4675 /* Maybe another breakpoint in the chain caused us to stop.
4676 (Currently all watchpoints go on the bpstat whether hit or not.
4677 That probably could (should) be changed, provided care is taken
4678 with respect to bpstat_explains_signal). */
4679 for (; bs; bs = bs->next)
4680 {
4681 val = print_bp_stop_message (bs);
4682 if (val == PRINT_SRC_ONLY
4683 || val == PRINT_SRC_AND_LOC
4684 || val == PRINT_NOTHING)
4685 return val;
4686 }
4687
4688 /* If we had hit a shared library event breakpoint,
4689 print_bp_stop_message would print out this message. If we hit an
4690 OS-level shared library event, do the same thing. */
4691 if (kind == TARGET_WAITKIND_LOADED)
4692 {
4693 print_solib_event (0);
4694 return PRINT_NOTHING;
4695 }
4696
4697 /* We reached the end of the chain, or we got a null BS to start
4698 with and nothing was printed. */
4699 return PRINT_UNKNOWN;
4700 }
4701
4702 /* Evaluate the expression EXP and return 1 if value is zero.
4703 This returns the inverse of the condition because it is called
4704 from catch_errors which returns 0 if an exception happened, and if an
4705 exception happens we want execution to stop.
4706 The argument is a "struct expression *" that has been cast to a
4707 "void *" to make it pass through catch_errors. */
4708
4709 static int
4710 breakpoint_cond_eval (void *exp)
4711 {
4712 struct value *mark = value_mark ();
4713 int i = !value_true (evaluate_expression ((struct expression *) exp));
4714
4715 value_free_to_mark (mark);
4716 return i;
4717 }
4718
4719 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4720
4721 static bpstat
4722 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4723 {
4724 bpstat bs;
4725
4726 bs = (bpstat) xmalloc (sizeof (*bs));
4727 bs->next = NULL;
4728 **bs_link_pointer = bs;
4729 *bs_link_pointer = &bs->next;
4730 bs->breakpoint_at = bl->owner;
4731 bs->bp_location_at = bl;
4732 incref_bp_location (bl);
4733 /* If the condition is false, etc., don't do the commands. */
4734 bs->commands = NULL;
4735 bs->old_val = NULL;
4736 bs->print_it = print_it_normal;
4737 return bs;
4738 }
4739 \f
4740 /* The target has stopped with waitstatus WS. Check if any hardware
4741 watchpoints have triggered, according to the target. */
4742
4743 int
4744 watchpoints_triggered (struct target_waitstatus *ws)
4745 {
4746 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4747 CORE_ADDR addr;
4748 struct breakpoint *b;
4749
4750 if (!stopped_by_watchpoint)
4751 {
4752 /* We were not stopped by a watchpoint. Mark all watchpoints
4753 as not triggered. */
4754 ALL_BREAKPOINTS (b)
4755 if (is_hardware_watchpoint (b))
4756 {
4757 struct watchpoint *w = (struct watchpoint *) b;
4758
4759 w->watchpoint_triggered = watch_triggered_no;
4760 }
4761
4762 return 0;
4763 }
4764
4765 if (!target_stopped_data_address (&current_target, &addr))
4766 {
4767 /* We were stopped by a watchpoint, but we don't know where.
4768 Mark all watchpoints as unknown. */
4769 ALL_BREAKPOINTS (b)
4770 if (is_hardware_watchpoint (b))
4771 {
4772 struct watchpoint *w = (struct watchpoint *) b;
4773
4774 w->watchpoint_triggered = watch_triggered_unknown;
4775 }
4776
4777 return 1;
4778 }
4779
4780 /* The target could report the data address. Mark watchpoints
4781 affected by this data address as triggered, and all others as not
4782 triggered. */
4783
4784 ALL_BREAKPOINTS (b)
4785 if (is_hardware_watchpoint (b))
4786 {
4787 struct watchpoint *w = (struct watchpoint *) b;
4788 struct bp_location *loc;
4789
4790 w->watchpoint_triggered = watch_triggered_no;
4791 for (loc = b->loc; loc; loc = loc->next)
4792 {
4793 if (is_masked_watchpoint (b))
4794 {
4795 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4796 CORE_ADDR start = loc->address & w->hw_wp_mask;
4797
4798 if (newaddr == start)
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 /* Exact match not required. Within range is sufficient. */
4805 else if (target_watchpoint_addr_within_range (&current_target,
4806 addr, loc->address,
4807 loc->length))
4808 {
4809 w->watchpoint_triggered = watch_triggered_yes;
4810 break;
4811 }
4812 }
4813 }
4814
4815 return 1;
4816 }
4817
4818 /* Possible return values for watchpoint_check (this can't be an enum
4819 because of check_errors). */
4820 /* The watchpoint has been deleted. */
4821 #define WP_DELETED 1
4822 /* The value has changed. */
4823 #define WP_VALUE_CHANGED 2
4824 /* The value has not changed. */
4825 #define WP_VALUE_NOT_CHANGED 3
4826 /* Ignore this watchpoint, no matter if the value changed or not. */
4827 #define WP_IGNORE 4
4828
4829 #define BP_TEMPFLAG 1
4830 #define BP_HARDWAREFLAG 2
4831
4832 /* Evaluate watchpoint condition expression and check if its value
4833 changed.
4834
4835 P should be a pointer to struct bpstat, but is defined as a void *
4836 in order for this function to be usable with catch_errors. */
4837
4838 static int
4839 watchpoint_check (void *p)
4840 {
4841 bpstat bs = (bpstat) p;
4842 struct watchpoint *b;
4843 struct frame_info *fr;
4844 int within_current_scope;
4845
4846 /* BS is built from an existing struct breakpoint. */
4847 gdb_assert (bs->breakpoint_at != NULL);
4848 b = (struct watchpoint *) bs->breakpoint_at;
4849
4850 /* If this is a local watchpoint, we only want to check if the
4851 watchpoint frame is in scope if the current thread is the thread
4852 that was used to create the watchpoint. */
4853 if (!watchpoint_in_thread_scope (b))
4854 return WP_IGNORE;
4855
4856 if (b->exp_valid_block == NULL)
4857 within_current_scope = 1;
4858 else
4859 {
4860 struct frame_info *frame = get_current_frame ();
4861 struct gdbarch *frame_arch = get_frame_arch (frame);
4862 CORE_ADDR frame_pc = get_frame_pc (frame);
4863
4864 /* in_function_epilogue_p() returns a non-zero value if we're
4865 still in the function but the stack frame has already been
4866 invalidated. Since we can't rely on the values of local
4867 variables after the stack has been destroyed, we are treating
4868 the watchpoint in that state as `not changed' without further
4869 checking. Don't mark watchpoints as changed if the current
4870 frame is in an epilogue - even if they are in some other
4871 frame, our view of the stack is likely to be wrong and
4872 frame_find_by_id could error out. */
4873 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4874 return WP_IGNORE;
4875
4876 fr = frame_find_by_id (b->watchpoint_frame);
4877 within_current_scope = (fr != NULL);
4878
4879 /* If we've gotten confused in the unwinder, we might have
4880 returned a frame that can't describe this variable. */
4881 if (within_current_scope)
4882 {
4883 struct symbol *function;
4884
4885 function = get_frame_function (fr);
4886 if (function == NULL
4887 || !contained_in (b->exp_valid_block,
4888 SYMBOL_BLOCK_VALUE (function)))
4889 within_current_scope = 0;
4890 }
4891
4892 if (within_current_scope)
4893 /* If we end up stopping, the current frame will get selected
4894 in normal_stop. So this call to select_frame won't affect
4895 the user. */
4896 select_frame (fr);
4897 }
4898
4899 if (within_current_scope)
4900 {
4901 /* We use value_{,free_to_}mark because it could be a *long*
4902 time before we return to the command level and call
4903 free_all_values. We can't call free_all_values because we
4904 might be in the middle of evaluating a function call. */
4905
4906 int pc = 0;
4907 struct value *mark;
4908 struct value *new_val;
4909
4910 if (is_masked_watchpoint (&b->base))
4911 /* Since we don't know the exact trigger address (from
4912 stopped_data_address), just tell the user we've triggered
4913 a mask watchpoint. */
4914 return WP_VALUE_CHANGED;
4915
4916 mark = value_mark ();
4917 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4918
4919 /* We use value_equal_contents instead of value_equal because
4920 the latter coerces an array to a pointer, thus comparing just
4921 the address of the array instead of its contents. This is
4922 not what we want. */
4923 if ((b->val != NULL) != (new_val != NULL)
4924 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4925 {
4926 if (new_val != NULL)
4927 {
4928 release_value (new_val);
4929 value_free_to_mark (mark);
4930 }
4931 bs->old_val = b->val;
4932 b->val = new_val;
4933 b->val_valid = 1;
4934 return WP_VALUE_CHANGED;
4935 }
4936 else
4937 {
4938 /* Nothing changed. */
4939 value_free_to_mark (mark);
4940 return WP_VALUE_NOT_CHANGED;
4941 }
4942 }
4943 else
4944 {
4945 struct ui_out *uiout = current_uiout;
4946
4947 /* This seems like the only logical thing to do because
4948 if we temporarily ignored the watchpoint, then when
4949 we reenter the block in which it is valid it contains
4950 garbage (in the case of a function, it may have two
4951 garbage values, one before and one after the prologue).
4952 So we can't even detect the first assignment to it and
4953 watch after that (since the garbage may or may not equal
4954 the first value assigned). */
4955 /* We print all the stop information in
4956 breakpoint_ops->print_it, but in this case, by the time we
4957 call breakpoint_ops->print_it this bp will be deleted
4958 already. So we have no choice but print the information
4959 here. */
4960 if (ui_out_is_mi_like_p (uiout))
4961 ui_out_field_string
4962 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4963 ui_out_text (uiout, "\nWatchpoint ");
4964 ui_out_field_int (uiout, "wpnum", b->base.number);
4965 ui_out_text (uiout,
4966 " deleted because the program has left the block in\n\
4967 which its expression is valid.\n");
4968
4969 /* Make sure the watchpoint's commands aren't executed. */
4970 decref_counted_command_line (&b->base.commands);
4971 watchpoint_del_at_next_stop (b);
4972
4973 return WP_DELETED;
4974 }
4975 }
4976
4977 /* Return true if it looks like target has stopped due to hitting
4978 breakpoint location BL. This function does not check if we should
4979 stop, only if BL explains the stop. */
4980
4981 static int
4982 bpstat_check_location (const struct bp_location *bl,
4983 struct address_space *aspace, CORE_ADDR bp_addr,
4984 const struct target_waitstatus *ws)
4985 {
4986 struct breakpoint *b = bl->owner;
4987
4988 /* BL is from an existing breakpoint. */
4989 gdb_assert (b != NULL);
4990
4991 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4992 }
4993
4994 /* Determine if the watched values have actually changed, and we
4995 should stop. If not, set BS->stop to 0. */
4996
4997 static void
4998 bpstat_check_watchpoint (bpstat bs)
4999 {
5000 const struct bp_location *bl;
5001 struct watchpoint *b;
5002
5003 /* BS is built for existing struct breakpoint. */
5004 bl = bs->bp_location_at;
5005 gdb_assert (bl != NULL);
5006 b = (struct watchpoint *) bs->breakpoint_at;
5007 gdb_assert (b != NULL);
5008
5009 {
5010 int must_check_value = 0;
5011
5012 if (b->base.type == bp_watchpoint)
5013 /* For a software watchpoint, we must always check the
5014 watched value. */
5015 must_check_value = 1;
5016 else if (b->watchpoint_triggered == watch_triggered_yes)
5017 /* We have a hardware watchpoint (read, write, or access)
5018 and the target earlier reported an address watched by
5019 this watchpoint. */
5020 must_check_value = 1;
5021 else if (b->watchpoint_triggered == watch_triggered_unknown
5022 && b->base.type == bp_hardware_watchpoint)
5023 /* We were stopped by a hardware watchpoint, but the target could
5024 not report the data address. We must check the watchpoint's
5025 value. Access and read watchpoints are out of luck; without
5026 a data address, we can't figure it out. */
5027 must_check_value = 1;
5028
5029 if (must_check_value)
5030 {
5031 char *message
5032 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5033 b->base.number);
5034 struct cleanup *cleanups = make_cleanup (xfree, message);
5035 int e = catch_errors (watchpoint_check, bs, message,
5036 RETURN_MASK_ALL);
5037 do_cleanups (cleanups);
5038 switch (e)
5039 {
5040 case WP_DELETED:
5041 /* We've already printed what needs to be printed. */
5042 bs->print_it = print_it_done;
5043 /* Stop. */
5044 break;
5045 case WP_IGNORE:
5046 bs->print_it = print_it_noop;
5047 bs->stop = 0;
5048 break;
5049 case WP_VALUE_CHANGED:
5050 if (b->base.type == bp_read_watchpoint)
5051 {
5052 /* There are two cases to consider here:
5053
5054 1. We're watching the triggered memory for reads.
5055 In that case, trust the target, and always report
5056 the watchpoint hit to the user. Even though
5057 reads don't cause value changes, the value may
5058 have changed since the last time it was read, and
5059 since we're not trapping writes, we will not see
5060 those, and as such we should ignore our notion of
5061 old value.
5062
5063 2. We're watching the triggered memory for both
5064 reads and writes. There are two ways this may
5065 happen:
5066
5067 2.1. This is a target that can't break on data
5068 reads only, but can break on accesses (reads or
5069 writes), such as e.g., x86. We detect this case
5070 at the time we try to insert read watchpoints.
5071
5072 2.2. Otherwise, the target supports read
5073 watchpoints, but, the user set an access or write
5074 watchpoint watching the same memory as this read
5075 watchpoint.
5076
5077 If we're watching memory writes as well as reads,
5078 ignore watchpoint hits when we find that the
5079 value hasn't changed, as reads don't cause
5080 changes. This still gives false positives when
5081 the program writes the same value to memory as
5082 what there was already in memory (we will confuse
5083 it for a read), but it's much better than
5084 nothing. */
5085
5086 int other_write_watchpoint = 0;
5087
5088 if (bl->watchpoint_type == hw_read)
5089 {
5090 struct breakpoint *other_b;
5091
5092 ALL_BREAKPOINTS (other_b)
5093 if (other_b->type == bp_hardware_watchpoint
5094 || other_b->type == bp_access_watchpoint)
5095 {
5096 struct watchpoint *other_w =
5097 (struct watchpoint *) other_b;
5098
5099 if (other_w->watchpoint_triggered
5100 == watch_triggered_yes)
5101 {
5102 other_write_watchpoint = 1;
5103 break;
5104 }
5105 }
5106 }
5107
5108 if (other_write_watchpoint
5109 || bl->watchpoint_type == hw_access)
5110 {
5111 /* We're watching the same memory for writes,
5112 and the value changed since the last time we
5113 updated it, so this trap must be for a write.
5114 Ignore it. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 break;
5120 case WP_VALUE_NOT_CHANGED:
5121 if (b->base.type == bp_hardware_watchpoint
5122 || b->base.type == bp_watchpoint)
5123 {
5124 /* Don't stop: write watchpoints shouldn't fire if
5125 the value hasn't changed. */
5126 bs->print_it = print_it_noop;
5127 bs->stop = 0;
5128 }
5129 /* Stop. */
5130 break;
5131 default:
5132 /* Can't happen. */
5133 case 0:
5134 /* Error from catch_errors. */
5135 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5136 watchpoint_del_at_next_stop (b);
5137 /* We've already printed what needs to be printed. */
5138 bs->print_it = print_it_done;
5139 break;
5140 }
5141 }
5142 else /* must_check_value == 0 */
5143 {
5144 /* This is a case where some watchpoint(s) triggered, but
5145 not at the address of this watchpoint, or else no
5146 watchpoint triggered after all. So don't print
5147 anything for this watchpoint. */
5148 bs->print_it = print_it_noop;
5149 bs->stop = 0;
5150 }
5151 }
5152 }
5153
5154 /* For breakpoints that are currently marked as telling gdb to stop,
5155 check conditions (condition proper, frame, thread and ignore count)
5156 of breakpoint referred to by BS. If we should not stop for this
5157 breakpoint, set BS->stop to 0. */
5158
5159 static void
5160 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5161 {
5162 int thread_id = pid_to_thread_id (ptid);
5163 const struct bp_location *bl;
5164 struct breakpoint *b;
5165 int value_is_zero = 0;
5166 struct expression *cond;
5167
5168 gdb_assert (bs->stop);
5169
5170 /* BS is built for existing struct breakpoint. */
5171 bl = bs->bp_location_at;
5172 gdb_assert (bl != NULL);
5173 b = bs->breakpoint_at;
5174 gdb_assert (b != NULL);
5175
5176 /* Even if the target evaluated the condition on its end and notified GDB, we
5177 need to do so again since GDB does not know if we stopped due to a
5178 breakpoint or a single step breakpoint. */
5179
5180 if (frame_id_p (b->frame_id)
5181 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5182 {
5183 bs->stop = 0;
5184 return;
5185 }
5186
5187 /* If this is a thread-specific breakpoint, don't waste cpu evaluating the
5188 condition if this isn't the specified thread. */
5189 if (b->thread != -1 && b->thread != thread_id)
5190 {
5191 bs->stop = 0;
5192 return;
5193 }
5194
5195 /* Evaluate extension language breakpoints that have a "stop" method
5196 implemented. */
5197 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5198
5199 if (is_watchpoint (b))
5200 {
5201 struct watchpoint *w = (struct watchpoint *) b;
5202
5203 cond = w->cond_exp;
5204 }
5205 else
5206 cond = bl->cond;
5207
5208 if (cond && b->disposition != disp_del_at_next_stop)
5209 {
5210 int within_current_scope = 1;
5211 struct watchpoint * w;
5212
5213 /* We use value_mark and value_free_to_mark because it could
5214 be a long time before we return to the command level and
5215 call free_all_values. We can't call free_all_values
5216 because we might be in the middle of evaluating a
5217 function call. */
5218 struct value *mark = value_mark ();
5219
5220 if (is_watchpoint (b))
5221 w = (struct watchpoint *) b;
5222 else
5223 w = NULL;
5224
5225 /* Need to select the frame, with all that implies so that
5226 the conditions will have the right context. Because we
5227 use the frame, we will not see an inlined function's
5228 variables when we arrive at a breakpoint at the start
5229 of the inlined function; the current frame will be the
5230 call site. */
5231 if (w == NULL || w->cond_exp_valid_block == NULL)
5232 select_frame (get_current_frame ());
5233 else
5234 {
5235 struct frame_info *frame;
5236
5237 /* For local watchpoint expressions, which particular
5238 instance of a local is being watched matters, so we
5239 keep track of the frame to evaluate the expression
5240 in. To evaluate the condition however, it doesn't
5241 really matter which instantiation of the function
5242 where the condition makes sense triggers the
5243 watchpoint. This allows an expression like "watch
5244 global if q > 10" set in `func', catch writes to
5245 global on all threads that call `func', or catch
5246 writes on all recursive calls of `func' by a single
5247 thread. We simply always evaluate the condition in
5248 the innermost frame that's executing where it makes
5249 sense to evaluate the condition. It seems
5250 intuitive. */
5251 frame = block_innermost_frame (w->cond_exp_valid_block);
5252 if (frame != NULL)
5253 select_frame (frame);
5254 else
5255 within_current_scope = 0;
5256 }
5257 if (within_current_scope)
5258 value_is_zero
5259 = catch_errors (breakpoint_cond_eval, cond,
5260 "Error in testing breakpoint condition:\n",
5261 RETURN_MASK_ALL);
5262 else
5263 {
5264 warning (_("Watchpoint condition cannot be tested "
5265 "in the current scope"));
5266 /* If we failed to set the right context for this
5267 watchpoint, unconditionally report it. */
5268 value_is_zero = 0;
5269 }
5270 /* FIXME-someday, should give breakpoint #. */
5271 value_free_to_mark (mark);
5272 }
5273
5274 if (cond && value_is_zero)
5275 {
5276 bs->stop = 0;
5277 }
5278 else if (b->ignore_count > 0)
5279 {
5280 b->ignore_count--;
5281 bs->stop = 0;
5282 /* Increase the hit count even though we don't stop. */
5283 ++(b->hit_count);
5284 observer_notify_breakpoint_modified (b);
5285 }
5286 }
5287
5288
5289 /* Get a bpstat associated with having just stopped at address
5290 BP_ADDR in thread PTID.
5291
5292 Determine whether we stopped at a breakpoint, etc, or whether we
5293 don't understand this stop. Result is a chain of bpstat's such
5294 that:
5295
5296 if we don't understand the stop, the result is a null pointer.
5297
5298 if we understand why we stopped, the result is not null.
5299
5300 Each element of the chain refers to a particular breakpoint or
5301 watchpoint at which we have stopped. (We may have stopped for
5302 several reasons concurrently.)
5303
5304 Each element of the chain has valid next, breakpoint_at,
5305 commands, FIXME??? fields. */
5306
5307 bpstat
5308 bpstat_stop_status (struct address_space *aspace,
5309 CORE_ADDR bp_addr, ptid_t ptid,
5310 const struct target_waitstatus *ws)
5311 {
5312 struct breakpoint *b = NULL;
5313 struct bp_location *bl;
5314 struct bp_location *loc;
5315 /* First item of allocated bpstat's. */
5316 bpstat bs_head = NULL, *bs_link = &bs_head;
5317 /* Pointer to the last thing in the chain currently. */
5318 bpstat bs;
5319 int ix;
5320 int need_remove_insert;
5321 int removed_any;
5322
5323 /* First, build the bpstat chain with locations that explain a
5324 target stop, while being careful to not set the target running,
5325 as that may invalidate locations (in particular watchpoint
5326 locations are recreated). Resuming will happen here with
5327 breakpoint conditions or watchpoint expressions that include
5328 inferior function calls. */
5329
5330 ALL_BREAKPOINTS (b)
5331 {
5332 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5333 continue;
5334
5335 for (bl = b->loc; bl != NULL; bl = bl->next)
5336 {
5337 /* For hardware watchpoints, we look only at the first
5338 location. The watchpoint_check function will work on the
5339 entire expression, not the individual locations. For
5340 read watchpoints, the watchpoints_triggered function has
5341 checked all locations already. */
5342 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5343 break;
5344
5345 if (!bl->enabled || bl->shlib_disabled)
5346 continue;
5347
5348 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5349 continue;
5350
5351 /* Come here if it's a watchpoint, or if the break address
5352 matches. */
5353
5354 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5355 explain stop. */
5356
5357 /* Assume we stop. Should we find a watchpoint that is not
5358 actually triggered, or if the condition of the breakpoint
5359 evaluates as false, we'll reset 'stop' to 0. */
5360 bs->stop = 1;
5361 bs->print = 1;
5362
5363 /* If this is a scope breakpoint, mark the associated
5364 watchpoint as triggered so that we will handle the
5365 out-of-scope event. We'll get to the watchpoint next
5366 iteration. */
5367 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5368 {
5369 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5370
5371 w->watchpoint_triggered = watch_triggered_yes;
5372 }
5373 }
5374 }
5375
5376 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5377 {
5378 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5379 {
5380 bs = bpstat_alloc (loc, &bs_link);
5381 /* For hits of moribund locations, we should just proceed. */
5382 bs->stop = 0;
5383 bs->print = 0;
5384 bs->print_it = print_it_noop;
5385 }
5386 }
5387
5388 /* A bit of special processing for shlib breakpoints. We need to
5389 process solib loading here, so that the lists of loaded and
5390 unloaded libraries are correct before we handle "catch load" and
5391 "catch unload". */
5392 for (bs = bs_head; bs != NULL; bs = bs->next)
5393 {
5394 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5395 {
5396 handle_solib_event ();
5397 break;
5398 }
5399 }
5400
5401 /* Now go through the locations that caused the target to stop, and
5402 check whether we're interested in reporting this stop to higher
5403 layers, or whether we should resume the target transparently. */
5404
5405 removed_any = 0;
5406
5407 for (bs = bs_head; bs != NULL; bs = bs->next)
5408 {
5409 if (!bs->stop)
5410 continue;
5411
5412 b = bs->breakpoint_at;
5413 b->ops->check_status (bs);
5414 if (bs->stop)
5415 {
5416 bpstat_check_breakpoint_conditions (bs, ptid);
5417
5418 if (bs->stop)
5419 {
5420 ++(b->hit_count);
5421 observer_notify_breakpoint_modified (b);
5422
5423 /* We will stop here. */
5424 if (b->disposition == disp_disable)
5425 {
5426 --(b->enable_count);
5427 if (b->enable_count <= 0
5428 && b->enable_state != bp_permanent)
5429 b->enable_state = bp_disabled;
5430 removed_any = 1;
5431 }
5432 if (b->silent)
5433 bs->print = 0;
5434 bs->commands = b->commands;
5435 incref_counted_command_line (bs->commands);
5436 if (command_line_is_silent (bs->commands
5437 ? bs->commands->commands : NULL))
5438 bs->print = 0;
5439
5440 b->ops->after_condition_true (bs);
5441 }
5442
5443 }
5444
5445 /* Print nothing for this entry if we don't stop or don't
5446 print. */
5447 if (!bs->stop || !bs->print)
5448 bs->print_it = print_it_noop;
5449 }
5450
5451 /* If we aren't stopping, the value of some hardware watchpoint may
5452 not have changed, but the intermediate memory locations we are
5453 watching may have. Don't bother if we're stopping; this will get
5454 done later. */
5455 need_remove_insert = 0;
5456 if (! bpstat_causes_stop (bs_head))
5457 for (bs = bs_head; bs != NULL; bs = bs->next)
5458 if (!bs->stop
5459 && bs->breakpoint_at
5460 && is_hardware_watchpoint (bs->breakpoint_at))
5461 {
5462 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5463
5464 update_watchpoint (w, 0 /* don't reparse. */);
5465 need_remove_insert = 1;
5466 }
5467
5468 if (need_remove_insert)
5469 update_global_location_list (1);
5470 else if (removed_any)
5471 update_global_location_list (0);
5472
5473 return bs_head;
5474 }
5475
5476 static void
5477 handle_jit_event (void)
5478 {
5479 struct frame_info *frame;
5480 struct gdbarch *gdbarch;
5481
5482 /* Switch terminal for any messages produced by
5483 breakpoint_re_set. */
5484 target_terminal_ours_for_output ();
5485
5486 frame = get_current_frame ();
5487 gdbarch = get_frame_arch (frame);
5488
5489 jit_event_handler (gdbarch);
5490
5491 target_terminal_inferior ();
5492 }
5493
5494 /* Prepare WHAT final decision for infrun. */
5495
5496 /* Decide what infrun needs to do with this bpstat. */
5497
5498 struct bpstat_what
5499 bpstat_what (bpstat bs_head)
5500 {
5501 struct bpstat_what retval;
5502 int jit_event = 0;
5503 bpstat bs;
5504
5505 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5506 retval.call_dummy = STOP_NONE;
5507 retval.is_longjmp = 0;
5508
5509 for (bs = bs_head; bs != NULL; bs = bs->next)
5510 {
5511 /* Extract this BS's action. After processing each BS, we check
5512 if its action overrides all we've seem so far. */
5513 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5514 enum bptype bptype;
5515
5516 if (bs->breakpoint_at == NULL)
5517 {
5518 /* I suspect this can happen if it was a momentary
5519 breakpoint which has since been deleted. */
5520 bptype = bp_none;
5521 }
5522 else
5523 bptype = bs->breakpoint_at->type;
5524
5525 switch (bptype)
5526 {
5527 case bp_none:
5528 break;
5529 case bp_breakpoint:
5530 case bp_hardware_breakpoint:
5531 case bp_until:
5532 case bp_finish:
5533 case bp_shlib_event:
5534 if (bs->stop)
5535 {
5536 if (bs->print)
5537 this_action = BPSTAT_WHAT_STOP_NOISY;
5538 else
5539 this_action = BPSTAT_WHAT_STOP_SILENT;
5540 }
5541 else
5542 this_action = BPSTAT_WHAT_SINGLE;
5543 break;
5544 case bp_watchpoint:
5545 case bp_hardware_watchpoint:
5546 case bp_read_watchpoint:
5547 case bp_access_watchpoint:
5548 if (bs->stop)
5549 {
5550 if (bs->print)
5551 this_action = BPSTAT_WHAT_STOP_NOISY;
5552 else
5553 this_action = BPSTAT_WHAT_STOP_SILENT;
5554 }
5555 else
5556 {
5557 /* There was a watchpoint, but we're not stopping.
5558 This requires no further action. */
5559 }
5560 break;
5561 case bp_longjmp:
5562 case bp_longjmp_call_dummy:
5563 case bp_exception:
5564 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5565 retval.is_longjmp = bptype != bp_exception;
5566 break;
5567 case bp_longjmp_resume:
5568 case bp_exception_resume:
5569 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5570 retval.is_longjmp = bptype == bp_longjmp_resume;
5571 break;
5572 case bp_step_resume:
5573 if (bs->stop)
5574 this_action = BPSTAT_WHAT_STEP_RESUME;
5575 else
5576 {
5577 /* It is for the wrong frame. */
5578 this_action = BPSTAT_WHAT_SINGLE;
5579 }
5580 break;
5581 case bp_hp_step_resume:
5582 if (bs->stop)
5583 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5584 else
5585 {
5586 /* It is for the wrong frame. */
5587 this_action = BPSTAT_WHAT_SINGLE;
5588 }
5589 break;
5590 case bp_watchpoint_scope:
5591 case bp_thread_event:
5592 case bp_overlay_event:
5593 case bp_longjmp_master:
5594 case bp_std_terminate_master:
5595 case bp_exception_master:
5596 this_action = BPSTAT_WHAT_SINGLE;
5597 break;
5598 case bp_catchpoint:
5599 if (bs->stop)
5600 {
5601 if (bs->print)
5602 this_action = BPSTAT_WHAT_STOP_NOISY;
5603 else
5604 this_action = BPSTAT_WHAT_STOP_SILENT;
5605 }
5606 else
5607 {
5608 /* There was a catchpoint, but we're not stopping.
5609 This requires no further action. */
5610 }
5611 break;
5612 case bp_jit_event:
5613 jit_event = 1;
5614 this_action = BPSTAT_WHAT_SINGLE;
5615 break;
5616 case bp_call_dummy:
5617 /* Make sure the action is stop (silent or noisy),
5618 so infrun.c pops the dummy frame. */
5619 retval.call_dummy = STOP_STACK_DUMMY;
5620 this_action = BPSTAT_WHAT_STOP_SILENT;
5621 break;
5622 case bp_std_terminate:
5623 /* Make sure the action is stop (silent or noisy),
5624 so infrun.c pops the dummy frame. */
5625 retval.call_dummy = STOP_STD_TERMINATE;
5626 this_action = BPSTAT_WHAT_STOP_SILENT;
5627 break;
5628 case bp_tracepoint:
5629 case bp_fast_tracepoint:
5630 case bp_static_tracepoint:
5631 /* Tracepoint hits should not be reported back to GDB, and
5632 if one got through somehow, it should have been filtered
5633 out already. */
5634 internal_error (__FILE__, __LINE__,
5635 _("bpstat_what: tracepoint encountered"));
5636 break;
5637 case bp_gnu_ifunc_resolver:
5638 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5639 this_action = BPSTAT_WHAT_SINGLE;
5640 break;
5641 case bp_gnu_ifunc_resolver_return:
5642 /* The breakpoint will be removed, execution will restart from the
5643 PC of the former breakpoint. */
5644 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5645 break;
5646
5647 case bp_dprintf:
5648 if (bs->stop)
5649 this_action = BPSTAT_WHAT_STOP_SILENT;
5650 else
5651 this_action = BPSTAT_WHAT_SINGLE;
5652 break;
5653
5654 default:
5655 internal_error (__FILE__, __LINE__,
5656 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5657 }
5658
5659 retval.main_action = max (retval.main_action, this_action);
5660 }
5661
5662 /* These operations may affect the bs->breakpoint_at state so they are
5663 delayed after MAIN_ACTION is decided above. */
5664
5665 if (jit_event)
5666 {
5667 if (debug_infrun)
5668 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5669
5670 handle_jit_event ();
5671 }
5672
5673 for (bs = bs_head; bs != NULL; bs = bs->next)
5674 {
5675 struct breakpoint *b = bs->breakpoint_at;
5676
5677 if (b == NULL)
5678 continue;
5679 switch (b->type)
5680 {
5681 case bp_gnu_ifunc_resolver:
5682 gnu_ifunc_resolver_stop (b);
5683 break;
5684 case bp_gnu_ifunc_resolver_return:
5685 gnu_ifunc_resolver_return_stop (b);
5686 break;
5687 }
5688 }
5689
5690 return retval;
5691 }
5692
5693 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5694 without hardware support). This isn't related to a specific bpstat,
5695 just to things like whether watchpoints are set. */
5696
5697 int
5698 bpstat_should_step (void)
5699 {
5700 struct breakpoint *b;
5701
5702 ALL_BREAKPOINTS (b)
5703 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5704 return 1;
5705 return 0;
5706 }
5707
5708 int
5709 bpstat_causes_stop (bpstat bs)
5710 {
5711 for (; bs != NULL; bs = bs->next)
5712 if (bs->stop)
5713 return 1;
5714
5715 return 0;
5716 }
5717
5718 \f
5719
5720 /* Compute a string of spaces suitable to indent the next line
5721 so it starts at the position corresponding to the table column
5722 named COL_NAME in the currently active table of UIOUT. */
5723
5724 static char *
5725 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5726 {
5727 static char wrap_indent[80];
5728 int i, total_width, width, align;
5729 char *text;
5730
5731 total_width = 0;
5732 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5733 {
5734 if (strcmp (text, col_name) == 0)
5735 {
5736 gdb_assert (total_width < sizeof wrap_indent);
5737 memset (wrap_indent, ' ', total_width);
5738 wrap_indent[total_width] = 0;
5739
5740 return wrap_indent;
5741 }
5742
5743 total_width += width + 1;
5744 }
5745
5746 return NULL;
5747 }
5748
5749 /* Determine if the locations of this breakpoint will have their conditions
5750 evaluated by the target, host or a mix of both. Returns the following:
5751
5752 "host": Host evals condition.
5753 "host or target": Host or Target evals condition.
5754 "target": Target evals condition.
5755 */
5756
5757 static const char *
5758 bp_condition_evaluator (struct breakpoint *b)
5759 {
5760 struct bp_location *bl;
5761 char host_evals = 0;
5762 char target_evals = 0;
5763
5764 if (!b)
5765 return NULL;
5766
5767 if (!is_breakpoint (b))
5768 return NULL;
5769
5770 if (gdb_evaluates_breakpoint_condition_p ()
5771 || !target_supports_evaluation_of_breakpoint_conditions ())
5772 return condition_evaluation_host;
5773
5774 for (bl = b->loc; bl; bl = bl->next)
5775 {
5776 if (bl->cond_bytecode)
5777 target_evals++;
5778 else
5779 host_evals++;
5780 }
5781
5782 if (host_evals && target_evals)
5783 return condition_evaluation_both;
5784 else if (target_evals)
5785 return condition_evaluation_target;
5786 else
5787 return condition_evaluation_host;
5788 }
5789
5790 /* Determine the breakpoint location's condition evaluator. This is
5791 similar to bp_condition_evaluator, but for locations. */
5792
5793 static const char *
5794 bp_location_condition_evaluator (struct bp_location *bl)
5795 {
5796 if (bl && !is_breakpoint (bl->owner))
5797 return NULL;
5798
5799 if (gdb_evaluates_breakpoint_condition_p ()
5800 || !target_supports_evaluation_of_breakpoint_conditions ())
5801 return condition_evaluation_host;
5802
5803 if (bl && bl->cond_bytecode)
5804 return condition_evaluation_target;
5805 else
5806 return condition_evaluation_host;
5807 }
5808
5809 /* Print the LOC location out of the list of B->LOC locations. */
5810
5811 static void
5812 print_breakpoint_location (struct breakpoint *b,
5813 struct bp_location *loc)
5814 {
5815 struct ui_out *uiout = current_uiout;
5816 struct cleanup *old_chain = save_current_program_space ();
5817
5818 if (loc != NULL && loc->shlib_disabled)
5819 loc = NULL;
5820
5821 if (loc != NULL)
5822 set_current_program_space (loc->pspace);
5823
5824 if (b->display_canonical)
5825 ui_out_field_string (uiout, "what", b->addr_string);
5826 else if (loc && loc->symtab)
5827 {
5828 struct symbol *sym
5829 = find_pc_sect_function (loc->address, loc->section);
5830 if (sym)
5831 {
5832 ui_out_text (uiout, "in ");
5833 ui_out_field_string (uiout, "func",
5834 SYMBOL_PRINT_NAME (sym));
5835 ui_out_text (uiout, " ");
5836 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5837 ui_out_text (uiout, "at ");
5838 }
5839 ui_out_field_string (uiout, "file",
5840 symtab_to_filename_for_display (loc->symtab));
5841 ui_out_text (uiout, ":");
5842
5843 if (ui_out_is_mi_like_p (uiout))
5844 ui_out_field_string (uiout, "fullname",
5845 symtab_to_fullname (loc->symtab));
5846
5847 ui_out_field_int (uiout, "line", loc->line_number);
5848 }
5849 else if (loc)
5850 {
5851 struct ui_file *stb = mem_fileopen ();
5852 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5853
5854 print_address_symbolic (loc->gdbarch, loc->address, stb,
5855 demangle, "");
5856 ui_out_field_stream (uiout, "at", stb);
5857
5858 do_cleanups (stb_chain);
5859 }
5860 else
5861 ui_out_field_string (uiout, "pending", b->addr_string);
5862
5863 if (loc && is_breakpoint (b)
5864 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5865 && bp_condition_evaluator (b) == condition_evaluation_both)
5866 {
5867 ui_out_text (uiout, " (");
5868 ui_out_field_string (uiout, "evaluated-by",
5869 bp_location_condition_evaluator (loc));
5870 ui_out_text (uiout, ")");
5871 }
5872
5873 do_cleanups (old_chain);
5874 }
5875
5876 static const char *
5877 bptype_string (enum bptype type)
5878 {
5879 struct ep_type_description
5880 {
5881 enum bptype type;
5882 char *description;
5883 };
5884 static struct ep_type_description bptypes[] =
5885 {
5886 {bp_none, "?deleted?"},
5887 {bp_breakpoint, "breakpoint"},
5888 {bp_hardware_breakpoint, "hw breakpoint"},
5889 {bp_until, "until"},
5890 {bp_finish, "finish"},
5891 {bp_watchpoint, "watchpoint"},
5892 {bp_hardware_watchpoint, "hw watchpoint"},
5893 {bp_read_watchpoint, "read watchpoint"},
5894 {bp_access_watchpoint, "acc watchpoint"},
5895 {bp_longjmp, "longjmp"},
5896 {bp_longjmp_resume, "longjmp resume"},
5897 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5898 {bp_exception, "exception"},
5899 {bp_exception_resume, "exception resume"},
5900 {bp_step_resume, "step resume"},
5901 {bp_hp_step_resume, "high-priority step resume"},
5902 {bp_watchpoint_scope, "watchpoint scope"},
5903 {bp_call_dummy, "call dummy"},
5904 {bp_std_terminate, "std::terminate"},
5905 {bp_shlib_event, "shlib events"},
5906 {bp_thread_event, "thread events"},
5907 {bp_overlay_event, "overlay events"},
5908 {bp_longjmp_master, "longjmp master"},
5909 {bp_std_terminate_master, "std::terminate master"},
5910 {bp_exception_master, "exception master"},
5911 {bp_catchpoint, "catchpoint"},
5912 {bp_tracepoint, "tracepoint"},
5913 {bp_fast_tracepoint, "fast tracepoint"},
5914 {bp_static_tracepoint, "static tracepoint"},
5915 {bp_dprintf, "dprintf"},
5916 {bp_jit_event, "jit events"},
5917 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5918 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5919 };
5920
5921 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5922 || ((int) type != bptypes[(int) type].type))
5923 internal_error (__FILE__, __LINE__,
5924 _("bptypes table does not describe type #%d."),
5925 (int) type);
5926
5927 return bptypes[(int) type].description;
5928 }
5929
5930 /* For MI, output a field named 'thread-groups' with a list as the value.
5931 For CLI, prefix the list with the string 'inf'. */
5932
5933 static void
5934 output_thread_groups (struct ui_out *uiout,
5935 const char *field_name,
5936 VEC(int) *inf_num,
5937 int mi_only)
5938 {
5939 struct cleanup *back_to;
5940 int is_mi = ui_out_is_mi_like_p (uiout);
5941 int inf;
5942 int i;
5943
5944 /* For backward compatibility, don't display inferiors in CLI unless
5945 there are several. Always display them for MI. */
5946 if (!is_mi && mi_only)
5947 return;
5948
5949 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5950
5951 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5952 {
5953 if (is_mi)
5954 {
5955 char mi_group[10];
5956
5957 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5958 ui_out_field_string (uiout, NULL, mi_group);
5959 }
5960 else
5961 {
5962 if (i == 0)
5963 ui_out_text (uiout, " inf ");
5964 else
5965 ui_out_text (uiout, ", ");
5966
5967 ui_out_text (uiout, plongest (inf));
5968 }
5969 }
5970
5971 do_cleanups (back_to);
5972 }
5973
5974 /* Print B to gdb_stdout. */
5975
5976 static void
5977 print_one_breakpoint_location (struct breakpoint *b,
5978 struct bp_location *loc,
5979 int loc_number,
5980 struct bp_location **last_loc,
5981 int allflag)
5982 {
5983 struct command_line *l;
5984 static char bpenables[] = "nynny";
5985
5986 struct ui_out *uiout = current_uiout;
5987 int header_of_multiple = 0;
5988 int part_of_multiple = (loc != NULL);
5989 struct value_print_options opts;
5990
5991 get_user_print_options (&opts);
5992
5993 gdb_assert (!loc || loc_number != 0);
5994 /* See comment in print_one_breakpoint concerning treatment of
5995 breakpoints with single disabled location. */
5996 if (loc == NULL
5997 && (b->loc != NULL
5998 && (b->loc->next != NULL || !b->loc->enabled)))
5999 header_of_multiple = 1;
6000 if (loc == NULL)
6001 loc = b->loc;
6002
6003 annotate_record ();
6004
6005 /* 1 */
6006 annotate_field (0);
6007 if (part_of_multiple)
6008 {
6009 char *formatted;
6010 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6011 ui_out_field_string (uiout, "number", formatted);
6012 xfree (formatted);
6013 }
6014 else
6015 {
6016 ui_out_field_int (uiout, "number", b->number);
6017 }
6018
6019 /* 2 */
6020 annotate_field (1);
6021 if (part_of_multiple)
6022 ui_out_field_skip (uiout, "type");
6023 else
6024 ui_out_field_string (uiout, "type", bptype_string (b->type));
6025
6026 /* 3 */
6027 annotate_field (2);
6028 if (part_of_multiple)
6029 ui_out_field_skip (uiout, "disp");
6030 else
6031 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6032
6033
6034 /* 4 */
6035 annotate_field (3);
6036 if (part_of_multiple)
6037 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6038 else
6039 ui_out_field_fmt (uiout, "enabled", "%c",
6040 bpenables[(int) b->enable_state]);
6041 ui_out_spaces (uiout, 2);
6042
6043
6044 /* 5 and 6 */
6045 if (b->ops != NULL && b->ops->print_one != NULL)
6046 {
6047 /* Although the print_one can possibly print all locations,
6048 calling it here is not likely to get any nice result. So,
6049 make sure there's just one location. */
6050 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6051 b->ops->print_one (b, last_loc);
6052 }
6053 else
6054 switch (b->type)
6055 {
6056 case bp_none:
6057 internal_error (__FILE__, __LINE__,
6058 _("print_one_breakpoint: bp_none encountered\n"));
6059 break;
6060
6061 case bp_watchpoint:
6062 case bp_hardware_watchpoint:
6063 case bp_read_watchpoint:
6064 case bp_access_watchpoint:
6065 {
6066 struct watchpoint *w = (struct watchpoint *) b;
6067
6068 /* Field 4, the address, is omitted (which makes the columns
6069 not line up too nicely with the headers, but the effect
6070 is relatively readable). */
6071 if (opts.addressprint)
6072 ui_out_field_skip (uiout, "addr");
6073 annotate_field (5);
6074 ui_out_field_string (uiout, "what", w->exp_string);
6075 }
6076 break;
6077
6078 case bp_breakpoint:
6079 case bp_hardware_breakpoint:
6080 case bp_until:
6081 case bp_finish:
6082 case bp_longjmp:
6083 case bp_longjmp_resume:
6084 case bp_longjmp_call_dummy:
6085 case bp_exception:
6086 case bp_exception_resume:
6087 case bp_step_resume:
6088 case bp_hp_step_resume:
6089 case bp_watchpoint_scope:
6090 case bp_call_dummy:
6091 case bp_std_terminate:
6092 case bp_shlib_event:
6093 case bp_thread_event:
6094 case bp_overlay_event:
6095 case bp_longjmp_master:
6096 case bp_std_terminate_master:
6097 case bp_exception_master:
6098 case bp_tracepoint:
6099 case bp_fast_tracepoint:
6100 case bp_static_tracepoint:
6101 case bp_dprintf:
6102 case bp_jit_event:
6103 case bp_gnu_ifunc_resolver:
6104 case bp_gnu_ifunc_resolver_return:
6105 if (opts.addressprint)
6106 {
6107 annotate_field (4);
6108 if (header_of_multiple)
6109 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6110 else if (b->loc == NULL || loc->shlib_disabled)
6111 ui_out_field_string (uiout, "addr", "<PENDING>");
6112 else
6113 ui_out_field_core_addr (uiout, "addr",
6114 loc->gdbarch, loc->address);
6115 }
6116 annotate_field (5);
6117 if (!header_of_multiple)
6118 print_breakpoint_location (b, loc);
6119 if (b->loc)
6120 *last_loc = b->loc;
6121 break;
6122 }
6123
6124
6125 if (loc != NULL && !header_of_multiple)
6126 {
6127 struct inferior *inf;
6128 VEC(int) *inf_num = NULL;
6129 int mi_only = 1;
6130
6131 ALL_INFERIORS (inf)
6132 {
6133 if (inf->pspace == loc->pspace)
6134 VEC_safe_push (int, inf_num, inf->num);
6135 }
6136
6137 /* For backward compatibility, don't display inferiors in CLI unless
6138 there are several. Always display for MI. */
6139 if (allflag
6140 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6141 && (number_of_program_spaces () > 1
6142 || number_of_inferiors () > 1)
6143 /* LOC is for existing B, it cannot be in
6144 moribund_locations and thus having NULL OWNER. */
6145 && loc->owner->type != bp_catchpoint))
6146 mi_only = 0;
6147 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6148 VEC_free (int, inf_num);
6149 }
6150
6151 if (!part_of_multiple)
6152 {
6153 if (b->thread != -1)
6154 {
6155 /* FIXME: This seems to be redundant and lost here; see the
6156 "stop only in" line a little further down. */
6157 ui_out_text (uiout, " thread ");
6158 ui_out_field_int (uiout, "thread", b->thread);
6159 }
6160 else if (b->task != 0)
6161 {
6162 ui_out_text (uiout, " task ");
6163 ui_out_field_int (uiout, "task", b->task);
6164 }
6165 }
6166
6167 ui_out_text (uiout, "\n");
6168
6169 if (!part_of_multiple)
6170 b->ops->print_one_detail (b, uiout);
6171
6172 if (part_of_multiple && frame_id_p (b->frame_id))
6173 {
6174 annotate_field (6);
6175 ui_out_text (uiout, "\tstop only in stack frame at ");
6176 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6177 the frame ID. */
6178 ui_out_field_core_addr (uiout, "frame",
6179 b->gdbarch, b->frame_id.stack_addr);
6180 ui_out_text (uiout, "\n");
6181 }
6182
6183 if (!part_of_multiple && b->cond_string)
6184 {
6185 annotate_field (7);
6186 if (is_tracepoint (b))
6187 ui_out_text (uiout, "\ttrace only if ");
6188 else
6189 ui_out_text (uiout, "\tstop only if ");
6190 ui_out_field_string (uiout, "cond", b->cond_string);
6191
6192 /* Print whether the target is doing the breakpoint's condition
6193 evaluation. If GDB is doing the evaluation, don't print anything. */
6194 if (is_breakpoint (b)
6195 && breakpoint_condition_evaluation_mode ()
6196 == condition_evaluation_target)
6197 {
6198 ui_out_text (uiout, " (");
6199 ui_out_field_string (uiout, "evaluated-by",
6200 bp_condition_evaluator (b));
6201 ui_out_text (uiout, " evals)");
6202 }
6203 ui_out_text (uiout, "\n");
6204 }
6205
6206 if (!part_of_multiple && b->thread != -1)
6207 {
6208 /* FIXME should make an annotation for this. */
6209 ui_out_text (uiout, "\tstop only in thread ");
6210 ui_out_field_int (uiout, "thread", b->thread);
6211 ui_out_text (uiout, "\n");
6212 }
6213
6214 if (!part_of_multiple)
6215 {
6216 if (b->hit_count)
6217 {
6218 /* FIXME should make an annotation for this. */
6219 if (is_catchpoint (b))
6220 ui_out_text (uiout, "\tcatchpoint");
6221 else if (is_tracepoint (b))
6222 ui_out_text (uiout, "\ttracepoint");
6223 else
6224 ui_out_text (uiout, "\tbreakpoint");
6225 ui_out_text (uiout, " already hit ");
6226 ui_out_field_int (uiout, "times", b->hit_count);
6227 if (b->hit_count == 1)
6228 ui_out_text (uiout, " time\n");
6229 else
6230 ui_out_text (uiout, " times\n");
6231 }
6232 else
6233 {
6234 /* Output the count also if it is zero, but only if this is mi. */
6235 if (ui_out_is_mi_like_p (uiout))
6236 ui_out_field_int (uiout, "times", b->hit_count);
6237 }
6238 }
6239
6240 if (!part_of_multiple && b->ignore_count)
6241 {
6242 annotate_field (8);
6243 ui_out_text (uiout, "\tignore next ");
6244 ui_out_field_int (uiout, "ignore", b->ignore_count);
6245 ui_out_text (uiout, " hits\n");
6246 }
6247
6248 /* Note that an enable count of 1 corresponds to "enable once"
6249 behavior, which is reported by the combination of enablement and
6250 disposition, so we don't need to mention it here. */
6251 if (!part_of_multiple && b->enable_count > 1)
6252 {
6253 annotate_field (8);
6254 ui_out_text (uiout, "\tdisable after ");
6255 /* Tweak the wording to clarify that ignore and enable counts
6256 are distinct, and have additive effect. */
6257 if (b->ignore_count)
6258 ui_out_text (uiout, "additional ");
6259 else
6260 ui_out_text (uiout, "next ");
6261 ui_out_field_int (uiout, "enable", b->enable_count);
6262 ui_out_text (uiout, " hits\n");
6263 }
6264
6265 if (!part_of_multiple && is_tracepoint (b))
6266 {
6267 struct tracepoint *tp = (struct tracepoint *) b;
6268
6269 if (tp->traceframe_usage)
6270 {
6271 ui_out_text (uiout, "\ttrace buffer usage ");
6272 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6273 ui_out_text (uiout, " bytes\n");
6274 }
6275 }
6276
6277 l = b->commands ? b->commands->commands : NULL;
6278 if (!part_of_multiple && l)
6279 {
6280 struct cleanup *script_chain;
6281
6282 annotate_field (9);
6283 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6284 print_command_lines (uiout, l, 4);
6285 do_cleanups (script_chain);
6286 }
6287
6288 if (is_tracepoint (b))
6289 {
6290 struct tracepoint *t = (struct tracepoint *) b;
6291
6292 if (!part_of_multiple && t->pass_count)
6293 {
6294 annotate_field (10);
6295 ui_out_text (uiout, "\tpass count ");
6296 ui_out_field_int (uiout, "pass", t->pass_count);
6297 ui_out_text (uiout, " \n");
6298 }
6299
6300 /* Don't display it when tracepoint or tracepoint location is
6301 pending. */
6302 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6303 {
6304 annotate_field (11);
6305
6306 if (ui_out_is_mi_like_p (uiout))
6307 ui_out_field_string (uiout, "installed",
6308 loc->inserted ? "y" : "n");
6309 else
6310 {
6311 if (loc->inserted)
6312 ui_out_text (uiout, "\t");
6313 else
6314 ui_out_text (uiout, "\tnot ");
6315 ui_out_text (uiout, "installed on target\n");
6316 }
6317 }
6318 }
6319
6320 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6321 {
6322 if (is_watchpoint (b))
6323 {
6324 struct watchpoint *w = (struct watchpoint *) b;
6325
6326 ui_out_field_string (uiout, "original-location", w->exp_string);
6327 }
6328 else if (b->addr_string)
6329 ui_out_field_string (uiout, "original-location", b->addr_string);
6330 }
6331 }
6332
6333 static void
6334 print_one_breakpoint (struct breakpoint *b,
6335 struct bp_location **last_loc,
6336 int allflag)
6337 {
6338 struct cleanup *bkpt_chain;
6339 struct ui_out *uiout = current_uiout;
6340
6341 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6342
6343 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6344 do_cleanups (bkpt_chain);
6345
6346 /* If this breakpoint has custom print function,
6347 it's already printed. Otherwise, print individual
6348 locations, if any. */
6349 if (b->ops == NULL || b->ops->print_one == NULL)
6350 {
6351 /* If breakpoint has a single location that is disabled, we
6352 print it as if it had several locations, since otherwise it's
6353 hard to represent "breakpoint enabled, location disabled"
6354 situation.
6355
6356 Note that while hardware watchpoints have several locations
6357 internally, that's not a property exposed to user. */
6358 if (b->loc
6359 && !is_hardware_watchpoint (b)
6360 && (b->loc->next || !b->loc->enabled))
6361 {
6362 struct bp_location *loc;
6363 int n = 1;
6364
6365 for (loc = b->loc; loc; loc = loc->next, ++n)
6366 {
6367 struct cleanup *inner2 =
6368 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6369 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6370 do_cleanups (inner2);
6371 }
6372 }
6373 }
6374 }
6375
6376 static int
6377 breakpoint_address_bits (struct breakpoint *b)
6378 {
6379 int print_address_bits = 0;
6380 struct bp_location *loc;
6381
6382 for (loc = b->loc; loc; loc = loc->next)
6383 {
6384 int addr_bit;
6385
6386 /* Software watchpoints that aren't watching memory don't have
6387 an address to print. */
6388 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6389 continue;
6390
6391 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6392 if (addr_bit > print_address_bits)
6393 print_address_bits = addr_bit;
6394 }
6395
6396 return print_address_bits;
6397 }
6398
6399 struct captured_breakpoint_query_args
6400 {
6401 int bnum;
6402 };
6403
6404 static int
6405 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6406 {
6407 struct captured_breakpoint_query_args *args = data;
6408 struct breakpoint *b;
6409 struct bp_location *dummy_loc = NULL;
6410
6411 ALL_BREAKPOINTS (b)
6412 {
6413 if (args->bnum == b->number)
6414 {
6415 print_one_breakpoint (b, &dummy_loc, 0);
6416 return GDB_RC_OK;
6417 }
6418 }
6419 return GDB_RC_NONE;
6420 }
6421
6422 enum gdb_rc
6423 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6424 char **error_message)
6425 {
6426 struct captured_breakpoint_query_args args;
6427
6428 args.bnum = bnum;
6429 /* For the moment we don't trust print_one_breakpoint() to not throw
6430 an error. */
6431 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6432 error_message, RETURN_MASK_ALL) < 0)
6433 return GDB_RC_FAIL;
6434 else
6435 return GDB_RC_OK;
6436 }
6437
6438 /* Return true if this breakpoint was set by the user, false if it is
6439 internal or momentary. */
6440
6441 int
6442 user_breakpoint_p (struct breakpoint *b)
6443 {
6444 return b->number > 0;
6445 }
6446
6447 /* Print information on user settable breakpoint (watchpoint, etc)
6448 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6449 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6450 FILTER is non-NULL, call it on each breakpoint and only include the
6451 ones for which it returns non-zero. Return the total number of
6452 breakpoints listed. */
6453
6454 static int
6455 breakpoint_1 (char *args, int allflag,
6456 int (*filter) (const struct breakpoint *))
6457 {
6458 struct breakpoint *b;
6459 struct bp_location *last_loc = NULL;
6460 int nr_printable_breakpoints;
6461 struct cleanup *bkpttbl_chain;
6462 struct value_print_options opts;
6463 int print_address_bits = 0;
6464 int print_type_col_width = 14;
6465 struct ui_out *uiout = current_uiout;
6466
6467 get_user_print_options (&opts);
6468
6469 /* Compute the number of rows in the table, as well as the size
6470 required for address fields. */
6471 nr_printable_breakpoints = 0;
6472 ALL_BREAKPOINTS (b)
6473 {
6474 /* If we have a filter, only list the breakpoints it accepts. */
6475 if (filter && !filter (b))
6476 continue;
6477
6478 /* If we have an "args" string, it is a list of breakpoints to
6479 accept. Skip the others. */
6480 if (args != NULL && *args != '\0')
6481 {
6482 if (allflag && parse_and_eval_long (args) != b->number)
6483 continue;
6484 if (!allflag && !number_is_in_list (args, b->number))
6485 continue;
6486 }
6487
6488 if (allflag || user_breakpoint_p (b))
6489 {
6490 int addr_bit, type_len;
6491
6492 addr_bit = breakpoint_address_bits (b);
6493 if (addr_bit > print_address_bits)
6494 print_address_bits = addr_bit;
6495
6496 type_len = strlen (bptype_string (b->type));
6497 if (type_len > print_type_col_width)
6498 print_type_col_width = type_len;
6499
6500 nr_printable_breakpoints++;
6501 }
6502 }
6503
6504 if (opts.addressprint)
6505 bkpttbl_chain
6506 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6507 nr_printable_breakpoints,
6508 "BreakpointTable");
6509 else
6510 bkpttbl_chain
6511 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6512 nr_printable_breakpoints,
6513 "BreakpointTable");
6514
6515 if (nr_printable_breakpoints > 0)
6516 annotate_breakpoints_headers ();
6517 if (nr_printable_breakpoints > 0)
6518 annotate_field (0);
6519 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6520 if (nr_printable_breakpoints > 0)
6521 annotate_field (1);
6522 ui_out_table_header (uiout, print_type_col_width, ui_left,
6523 "type", "Type"); /* 2 */
6524 if (nr_printable_breakpoints > 0)
6525 annotate_field (2);
6526 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6527 if (nr_printable_breakpoints > 0)
6528 annotate_field (3);
6529 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6530 if (opts.addressprint)
6531 {
6532 if (nr_printable_breakpoints > 0)
6533 annotate_field (4);
6534 if (print_address_bits <= 32)
6535 ui_out_table_header (uiout, 10, ui_left,
6536 "addr", "Address"); /* 5 */
6537 else
6538 ui_out_table_header (uiout, 18, ui_left,
6539 "addr", "Address"); /* 5 */
6540 }
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (5);
6543 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6544 ui_out_table_body (uiout);
6545 if (nr_printable_breakpoints > 0)
6546 annotate_breakpoints_table ();
6547
6548 ALL_BREAKPOINTS (b)
6549 {
6550 QUIT;
6551 /* If we have a filter, only list the breakpoints it accepts. */
6552 if (filter && !filter (b))
6553 continue;
6554
6555 /* If we have an "args" string, it is a list of breakpoints to
6556 accept. Skip the others. */
6557
6558 if (args != NULL && *args != '\0')
6559 {
6560 if (allflag) /* maintenance info breakpoint */
6561 {
6562 if (parse_and_eval_long (args) != b->number)
6563 continue;
6564 }
6565 else /* all others */
6566 {
6567 if (!number_is_in_list (args, b->number))
6568 continue;
6569 }
6570 }
6571 /* We only print out user settable breakpoints unless the
6572 allflag is set. */
6573 if (allflag || user_breakpoint_p (b))
6574 print_one_breakpoint (b, &last_loc, allflag);
6575 }
6576
6577 do_cleanups (bkpttbl_chain);
6578
6579 if (nr_printable_breakpoints == 0)
6580 {
6581 /* If there's a filter, let the caller decide how to report
6582 empty list. */
6583 if (!filter)
6584 {
6585 if (args == NULL || *args == '\0')
6586 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6587 else
6588 ui_out_message (uiout, 0,
6589 "No breakpoint or watchpoint matching '%s'.\n",
6590 args);
6591 }
6592 }
6593 else
6594 {
6595 if (last_loc && !server_command)
6596 set_next_address (last_loc->gdbarch, last_loc->address);
6597 }
6598
6599 /* FIXME? Should this be moved up so that it is only called when
6600 there have been breakpoints? */
6601 annotate_breakpoints_table_end ();
6602
6603 return nr_printable_breakpoints;
6604 }
6605
6606 /* Display the value of default-collect in a way that is generally
6607 compatible with the breakpoint list. */
6608
6609 static void
6610 default_collect_info (void)
6611 {
6612 struct ui_out *uiout = current_uiout;
6613
6614 /* If it has no value (which is frequently the case), say nothing; a
6615 message like "No default-collect." gets in user's face when it's
6616 not wanted. */
6617 if (!*default_collect)
6618 return;
6619
6620 /* The following phrase lines up nicely with per-tracepoint collect
6621 actions. */
6622 ui_out_text (uiout, "default collect ");
6623 ui_out_field_string (uiout, "default-collect", default_collect);
6624 ui_out_text (uiout, " \n");
6625 }
6626
6627 static void
6628 breakpoints_info (char *args, int from_tty)
6629 {
6630 breakpoint_1 (args, 0, NULL);
6631
6632 default_collect_info ();
6633 }
6634
6635 static void
6636 watchpoints_info (char *args, int from_tty)
6637 {
6638 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6639 struct ui_out *uiout = current_uiout;
6640
6641 if (num_printed == 0)
6642 {
6643 if (args == NULL || *args == '\0')
6644 ui_out_message (uiout, 0, "No watchpoints.\n");
6645 else
6646 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6647 }
6648 }
6649
6650 static void
6651 maintenance_info_breakpoints (char *args, int from_tty)
6652 {
6653 breakpoint_1 (args, 1, NULL);
6654
6655 default_collect_info ();
6656 }
6657
6658 static int
6659 breakpoint_has_pc (struct breakpoint *b,
6660 struct program_space *pspace,
6661 CORE_ADDR pc, struct obj_section *section)
6662 {
6663 struct bp_location *bl = b->loc;
6664
6665 for (; bl; bl = bl->next)
6666 {
6667 if (bl->pspace == pspace
6668 && bl->address == pc
6669 && (!overlay_debugging || bl->section == section))
6670 return 1;
6671 }
6672 return 0;
6673 }
6674
6675 /* Print a message describing any user-breakpoints set at PC. This
6676 concerns with logical breakpoints, so we match program spaces, not
6677 address spaces. */
6678
6679 static void
6680 describe_other_breakpoints (struct gdbarch *gdbarch,
6681 struct program_space *pspace, CORE_ADDR pc,
6682 struct obj_section *section, int thread)
6683 {
6684 int others = 0;
6685 struct breakpoint *b;
6686
6687 ALL_BREAKPOINTS (b)
6688 others += (user_breakpoint_p (b)
6689 && breakpoint_has_pc (b, pspace, pc, section));
6690 if (others > 0)
6691 {
6692 if (others == 1)
6693 printf_filtered (_("Note: breakpoint "));
6694 else /* if (others == ???) */
6695 printf_filtered (_("Note: breakpoints "));
6696 ALL_BREAKPOINTS (b)
6697 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6698 {
6699 others--;
6700 printf_filtered ("%d", b->number);
6701 if (b->thread == -1 && thread != -1)
6702 printf_filtered (" (all threads)");
6703 else if (b->thread != -1)
6704 printf_filtered (" (thread %d)", b->thread);
6705 printf_filtered ("%s%s ",
6706 ((b->enable_state == bp_disabled
6707 || b->enable_state == bp_call_disabled)
6708 ? " (disabled)"
6709 : b->enable_state == bp_permanent
6710 ? " (permanent)"
6711 : ""),
6712 (others > 1) ? ","
6713 : ((others == 1) ? " and" : ""));
6714 }
6715 printf_filtered (_("also set at pc "));
6716 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6717 printf_filtered (".\n");
6718 }
6719 }
6720 \f
6721
6722 /* Return true iff it is meaningful to use the address member of
6723 BPT. For some breakpoint types, the address member is irrelevant
6724 and it makes no sense to attempt to compare it to other addresses
6725 (or use it for any other purpose either).
6726
6727 More specifically, each of the following breakpoint types will
6728 always have a zero valued address and we don't want to mark
6729 breakpoints of any of these types to be a duplicate of an actual
6730 breakpoint at address zero:
6731
6732 bp_watchpoint
6733 bp_catchpoint
6734
6735 */
6736
6737 static int
6738 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6739 {
6740 enum bptype type = bpt->type;
6741
6742 return (type != bp_watchpoint && type != bp_catchpoint);
6743 }
6744
6745 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6746 true if LOC1 and LOC2 represent the same watchpoint location. */
6747
6748 static int
6749 watchpoint_locations_match (struct bp_location *loc1,
6750 struct bp_location *loc2)
6751 {
6752 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6753 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6754
6755 /* Both of them must exist. */
6756 gdb_assert (w1 != NULL);
6757 gdb_assert (w2 != NULL);
6758
6759 /* If the target can evaluate the condition expression in hardware,
6760 then we we need to insert both watchpoints even if they are at
6761 the same place. Otherwise the watchpoint will only trigger when
6762 the condition of whichever watchpoint was inserted evaluates to
6763 true, not giving a chance for GDB to check the condition of the
6764 other watchpoint. */
6765 if ((w1->cond_exp
6766 && target_can_accel_watchpoint_condition (loc1->address,
6767 loc1->length,
6768 loc1->watchpoint_type,
6769 w1->cond_exp))
6770 || (w2->cond_exp
6771 && target_can_accel_watchpoint_condition (loc2->address,
6772 loc2->length,
6773 loc2->watchpoint_type,
6774 w2->cond_exp)))
6775 return 0;
6776
6777 /* Note that this checks the owner's type, not the location's. In
6778 case the target does not support read watchpoints, but does
6779 support access watchpoints, we'll have bp_read_watchpoint
6780 watchpoints with hw_access locations. Those should be considered
6781 duplicates of hw_read locations. The hw_read locations will
6782 become hw_access locations later. */
6783 return (loc1->owner->type == loc2->owner->type
6784 && loc1->pspace->aspace == loc2->pspace->aspace
6785 && loc1->address == loc2->address
6786 && loc1->length == loc2->length);
6787 }
6788
6789 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6790 same breakpoint location. In most targets, this can only be true
6791 if ASPACE1 matches ASPACE2. On targets that have global
6792 breakpoints, the address space doesn't really matter. */
6793
6794 static int
6795 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6796 struct address_space *aspace2, CORE_ADDR addr2)
6797 {
6798 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6799 || aspace1 == aspace2)
6800 && addr1 == addr2);
6801 }
6802
6803 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6804 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6805 matches ASPACE2. On targets that have global breakpoints, the address
6806 space doesn't really matter. */
6807
6808 static int
6809 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6810 int len1, struct address_space *aspace2,
6811 CORE_ADDR addr2)
6812 {
6813 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6814 || aspace1 == aspace2)
6815 && addr2 >= addr1 && addr2 < addr1 + len1);
6816 }
6817
6818 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6819 a ranged breakpoint. In most targets, a match happens only if ASPACE
6820 matches the breakpoint's address space. On targets that have global
6821 breakpoints, the address space doesn't really matter. */
6822
6823 static int
6824 breakpoint_location_address_match (struct bp_location *bl,
6825 struct address_space *aspace,
6826 CORE_ADDR addr)
6827 {
6828 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6829 aspace, addr)
6830 || (bl->length
6831 && breakpoint_address_match_range (bl->pspace->aspace,
6832 bl->address, bl->length,
6833 aspace, addr)));
6834 }
6835
6836 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6837 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6838 true, otherwise returns false. */
6839
6840 static int
6841 tracepoint_locations_match (struct bp_location *loc1,
6842 struct bp_location *loc2)
6843 {
6844 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6845 /* Since tracepoint locations are never duplicated with others', tracepoint
6846 locations at the same address of different tracepoints are regarded as
6847 different locations. */
6848 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6849 else
6850 return 0;
6851 }
6852
6853 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6854 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6855 represent the same location. */
6856
6857 static int
6858 breakpoint_locations_match (struct bp_location *loc1,
6859 struct bp_location *loc2)
6860 {
6861 int hw_point1, hw_point2;
6862
6863 /* Both of them must not be in moribund_locations. */
6864 gdb_assert (loc1->owner != NULL);
6865 gdb_assert (loc2->owner != NULL);
6866
6867 hw_point1 = is_hardware_watchpoint (loc1->owner);
6868 hw_point2 = is_hardware_watchpoint (loc2->owner);
6869
6870 if (hw_point1 != hw_point2)
6871 return 0;
6872 else if (hw_point1)
6873 return watchpoint_locations_match (loc1, loc2);
6874 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6875 return tracepoint_locations_match (loc1, loc2);
6876 else
6877 /* We compare bp_location.length in order to cover ranged breakpoints. */
6878 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6879 loc2->pspace->aspace, loc2->address)
6880 && loc1->length == loc2->length);
6881 }
6882
6883 static void
6884 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6885 int bnum, int have_bnum)
6886 {
6887 /* The longest string possibly returned by hex_string_custom
6888 is 50 chars. These must be at least that big for safety. */
6889 char astr1[64];
6890 char astr2[64];
6891
6892 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6893 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6894 if (have_bnum)
6895 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6896 bnum, astr1, astr2);
6897 else
6898 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6899 }
6900
6901 /* Adjust a breakpoint's address to account for architectural
6902 constraints on breakpoint placement. Return the adjusted address.
6903 Note: Very few targets require this kind of adjustment. For most
6904 targets, this function is simply the identity function. */
6905
6906 static CORE_ADDR
6907 adjust_breakpoint_address (struct gdbarch *gdbarch,
6908 CORE_ADDR bpaddr, enum bptype bptype)
6909 {
6910 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6911 {
6912 /* Very few targets need any kind of breakpoint adjustment. */
6913 return bpaddr;
6914 }
6915 else if (bptype == bp_watchpoint
6916 || bptype == bp_hardware_watchpoint
6917 || bptype == bp_read_watchpoint
6918 || bptype == bp_access_watchpoint
6919 || bptype == bp_catchpoint)
6920 {
6921 /* Watchpoints and the various bp_catch_* eventpoints should not
6922 have their addresses modified. */
6923 return bpaddr;
6924 }
6925 else
6926 {
6927 CORE_ADDR adjusted_bpaddr;
6928
6929 /* Some targets have architectural constraints on the placement
6930 of breakpoint instructions. Obtain the adjusted address. */
6931 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6932
6933 /* An adjusted breakpoint address can significantly alter
6934 a user's expectations. Print a warning if an adjustment
6935 is required. */
6936 if (adjusted_bpaddr != bpaddr)
6937 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6938
6939 return adjusted_bpaddr;
6940 }
6941 }
6942
6943 void
6944 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6945 struct breakpoint *owner)
6946 {
6947 memset (loc, 0, sizeof (*loc));
6948
6949 gdb_assert (ops != NULL);
6950
6951 loc->ops = ops;
6952 loc->owner = owner;
6953 loc->cond = NULL;
6954 loc->cond_bytecode = NULL;
6955 loc->shlib_disabled = 0;
6956 loc->enabled = 1;
6957
6958 switch (owner->type)
6959 {
6960 case bp_breakpoint:
6961 case bp_until:
6962 case bp_finish:
6963 case bp_longjmp:
6964 case bp_longjmp_resume:
6965 case bp_longjmp_call_dummy:
6966 case bp_exception:
6967 case bp_exception_resume:
6968 case bp_step_resume:
6969 case bp_hp_step_resume:
6970 case bp_watchpoint_scope:
6971 case bp_call_dummy:
6972 case bp_std_terminate:
6973 case bp_shlib_event:
6974 case bp_thread_event:
6975 case bp_overlay_event:
6976 case bp_jit_event:
6977 case bp_longjmp_master:
6978 case bp_std_terminate_master:
6979 case bp_exception_master:
6980 case bp_gnu_ifunc_resolver:
6981 case bp_gnu_ifunc_resolver_return:
6982 case bp_dprintf:
6983 loc->loc_type = bp_loc_software_breakpoint;
6984 mark_breakpoint_location_modified (loc);
6985 break;
6986 case bp_hardware_breakpoint:
6987 loc->loc_type = bp_loc_hardware_breakpoint;
6988 mark_breakpoint_location_modified (loc);
6989 break;
6990 case bp_hardware_watchpoint:
6991 case bp_read_watchpoint:
6992 case bp_access_watchpoint:
6993 loc->loc_type = bp_loc_hardware_watchpoint;
6994 break;
6995 case bp_watchpoint:
6996 case bp_catchpoint:
6997 case bp_tracepoint:
6998 case bp_fast_tracepoint:
6999 case bp_static_tracepoint:
7000 loc->loc_type = bp_loc_other;
7001 break;
7002 default:
7003 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7004 }
7005
7006 loc->refc = 1;
7007 }
7008
7009 /* Allocate a struct bp_location. */
7010
7011 static struct bp_location *
7012 allocate_bp_location (struct breakpoint *bpt)
7013 {
7014 return bpt->ops->allocate_location (bpt);
7015 }
7016
7017 static void
7018 free_bp_location (struct bp_location *loc)
7019 {
7020 loc->ops->dtor (loc);
7021 xfree (loc);
7022 }
7023
7024 /* Increment reference count. */
7025
7026 static void
7027 incref_bp_location (struct bp_location *bl)
7028 {
7029 ++bl->refc;
7030 }
7031
7032 /* Decrement reference count. If the reference count reaches 0,
7033 destroy the bp_location. Sets *BLP to NULL. */
7034
7035 static void
7036 decref_bp_location (struct bp_location **blp)
7037 {
7038 gdb_assert ((*blp)->refc > 0);
7039
7040 if (--(*blp)->refc == 0)
7041 free_bp_location (*blp);
7042 *blp = NULL;
7043 }
7044
7045 /* Add breakpoint B at the end of the global breakpoint chain. */
7046
7047 static void
7048 add_to_breakpoint_chain (struct breakpoint *b)
7049 {
7050 struct breakpoint *b1;
7051
7052 /* Add this breakpoint to the end of the chain so that a list of
7053 breakpoints will come out in order of increasing numbers. */
7054
7055 b1 = breakpoint_chain;
7056 if (b1 == 0)
7057 breakpoint_chain = b;
7058 else
7059 {
7060 while (b1->next)
7061 b1 = b1->next;
7062 b1->next = b;
7063 }
7064 }
7065
7066 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7067
7068 static void
7069 init_raw_breakpoint_without_location (struct breakpoint *b,
7070 struct gdbarch *gdbarch,
7071 enum bptype bptype,
7072 const struct breakpoint_ops *ops)
7073 {
7074 memset (b, 0, sizeof (*b));
7075
7076 gdb_assert (ops != NULL);
7077
7078 b->ops = ops;
7079 b->type = bptype;
7080 b->gdbarch = gdbarch;
7081 b->language = current_language->la_language;
7082 b->input_radix = input_radix;
7083 b->thread = -1;
7084 b->enable_state = bp_enabled;
7085 b->next = 0;
7086 b->silent = 0;
7087 b->ignore_count = 0;
7088 b->commands = NULL;
7089 b->frame_id = null_frame_id;
7090 b->condition_not_parsed = 0;
7091 b->py_bp_object = NULL;
7092 b->related_breakpoint = b;
7093 }
7094
7095 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7096 that has type BPTYPE and has no locations as yet. */
7097
7098 static struct breakpoint *
7099 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7100 enum bptype bptype,
7101 const struct breakpoint_ops *ops)
7102 {
7103 struct breakpoint *b = XNEW (struct breakpoint);
7104
7105 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7106 add_to_breakpoint_chain (b);
7107 return b;
7108 }
7109
7110 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7111 resolutions should be made as the user specified the location explicitly
7112 enough. */
7113
7114 static void
7115 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7116 {
7117 gdb_assert (loc->owner != NULL);
7118
7119 if (loc->owner->type == bp_breakpoint
7120 || loc->owner->type == bp_hardware_breakpoint
7121 || is_tracepoint (loc->owner))
7122 {
7123 int is_gnu_ifunc;
7124 const char *function_name;
7125 CORE_ADDR func_addr;
7126
7127 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7128 &func_addr, NULL, &is_gnu_ifunc);
7129
7130 if (is_gnu_ifunc && !explicit_loc)
7131 {
7132 struct breakpoint *b = loc->owner;
7133
7134 gdb_assert (loc->pspace == current_program_space);
7135 if (gnu_ifunc_resolve_name (function_name,
7136 &loc->requested_address))
7137 {
7138 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7139 loc->address = adjust_breakpoint_address (loc->gdbarch,
7140 loc->requested_address,
7141 b->type);
7142 }
7143 else if (b->type == bp_breakpoint && b->loc == loc
7144 && loc->next == NULL && b->related_breakpoint == b)
7145 {
7146 /* Create only the whole new breakpoint of this type but do not
7147 mess more complicated breakpoints with multiple locations. */
7148 b->type = bp_gnu_ifunc_resolver;
7149 /* Remember the resolver's address for use by the return
7150 breakpoint. */
7151 loc->related_address = func_addr;
7152 }
7153 }
7154
7155 if (function_name)
7156 loc->function_name = xstrdup (function_name);
7157 }
7158 }
7159
7160 /* Attempt to determine architecture of location identified by SAL. */
7161 struct gdbarch *
7162 get_sal_arch (struct symtab_and_line sal)
7163 {
7164 if (sal.section)
7165 return get_objfile_arch (sal.section->objfile);
7166 if (sal.symtab)
7167 return get_objfile_arch (sal.symtab->objfile);
7168
7169 return NULL;
7170 }
7171
7172 /* Low level routine for partially initializing a breakpoint of type
7173 BPTYPE. The newly created breakpoint's address, section, source
7174 file name, and line number are provided by SAL.
7175
7176 It is expected that the caller will complete the initialization of
7177 the newly created breakpoint struct as well as output any status
7178 information regarding the creation of a new breakpoint. */
7179
7180 static void
7181 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7182 struct symtab_and_line sal, enum bptype bptype,
7183 const struct breakpoint_ops *ops)
7184 {
7185 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7186
7187 add_location_to_breakpoint (b, &sal);
7188
7189 if (bptype != bp_catchpoint)
7190 gdb_assert (sal.pspace != NULL);
7191
7192 /* Store the program space that was used to set the breakpoint,
7193 except for ordinary breakpoints, which are independent of the
7194 program space. */
7195 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7196 b->pspace = sal.pspace;
7197 }
7198
7199 /* set_raw_breakpoint is a low level routine for allocating and
7200 partially initializing a breakpoint of type BPTYPE. The newly
7201 created breakpoint's address, section, source file name, and line
7202 number are provided by SAL. The newly created and partially
7203 initialized breakpoint is added to the breakpoint chain and
7204 is also returned as the value of this function.
7205
7206 It is expected that the caller will complete the initialization of
7207 the newly created breakpoint struct as well as output any status
7208 information regarding the creation of a new breakpoint. In
7209 particular, set_raw_breakpoint does NOT set the breakpoint
7210 number! Care should be taken to not allow an error to occur
7211 prior to completing the initialization of the breakpoint. If this
7212 should happen, a bogus breakpoint will be left on the chain. */
7213
7214 struct breakpoint *
7215 set_raw_breakpoint (struct gdbarch *gdbarch,
7216 struct symtab_and_line sal, enum bptype bptype,
7217 const struct breakpoint_ops *ops)
7218 {
7219 struct breakpoint *b = XNEW (struct breakpoint);
7220
7221 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7222 add_to_breakpoint_chain (b);
7223 return b;
7224 }
7225
7226
7227 /* Note that the breakpoint object B describes a permanent breakpoint
7228 instruction, hard-wired into the inferior's code. */
7229 void
7230 make_breakpoint_permanent (struct breakpoint *b)
7231 {
7232 struct bp_location *bl;
7233
7234 b->enable_state = bp_permanent;
7235
7236 /* By definition, permanent breakpoints are already present in the
7237 code. Mark all locations as inserted. For now,
7238 make_breakpoint_permanent is called in just one place, so it's
7239 hard to say if it's reasonable to have permanent breakpoint with
7240 multiple locations or not, but it's easy to implement. */
7241 for (bl = b->loc; bl; bl = bl->next)
7242 bl->inserted = 1;
7243 }
7244
7245 /* Call this routine when stepping and nexting to enable a breakpoint
7246 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7247 initiated the operation. */
7248
7249 void
7250 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7251 {
7252 struct breakpoint *b, *b_tmp;
7253 int thread = tp->num;
7254
7255 /* To avoid having to rescan all objfile symbols at every step,
7256 we maintain a list of continually-inserted but always disabled
7257 longjmp "master" breakpoints. Here, we simply create momentary
7258 clones of those and enable them for the requested thread. */
7259 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7260 if (b->pspace == current_program_space
7261 && (b->type == bp_longjmp_master
7262 || b->type == bp_exception_master))
7263 {
7264 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7265 struct breakpoint *clone;
7266
7267 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7268 after their removal. */
7269 clone = momentary_breakpoint_from_master (b, type,
7270 &longjmp_breakpoint_ops);
7271 clone->thread = thread;
7272 }
7273
7274 tp->initiating_frame = frame;
7275 }
7276
7277 /* Delete all longjmp breakpoints from THREAD. */
7278 void
7279 delete_longjmp_breakpoint (int thread)
7280 {
7281 struct breakpoint *b, *b_tmp;
7282
7283 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7284 if (b->type == bp_longjmp || b->type == bp_exception)
7285 {
7286 if (b->thread == thread)
7287 delete_breakpoint (b);
7288 }
7289 }
7290
7291 void
7292 delete_longjmp_breakpoint_at_next_stop (int thread)
7293 {
7294 struct breakpoint *b, *b_tmp;
7295
7296 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7297 if (b->type == bp_longjmp || b->type == bp_exception)
7298 {
7299 if (b->thread == thread)
7300 b->disposition = disp_del_at_next_stop;
7301 }
7302 }
7303
7304 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7305 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7306 pointer to any of them. Return NULL if this system cannot place longjmp
7307 breakpoints. */
7308
7309 struct breakpoint *
7310 set_longjmp_breakpoint_for_call_dummy (void)
7311 {
7312 struct breakpoint *b, *retval = NULL;
7313
7314 ALL_BREAKPOINTS (b)
7315 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7316 {
7317 struct breakpoint *new_b;
7318
7319 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7320 &momentary_breakpoint_ops);
7321 new_b->thread = pid_to_thread_id (inferior_ptid);
7322
7323 /* Link NEW_B into the chain of RETVAL breakpoints. */
7324
7325 gdb_assert (new_b->related_breakpoint == new_b);
7326 if (retval == NULL)
7327 retval = new_b;
7328 new_b->related_breakpoint = retval;
7329 while (retval->related_breakpoint != new_b->related_breakpoint)
7330 retval = retval->related_breakpoint;
7331 retval->related_breakpoint = new_b;
7332 }
7333
7334 return retval;
7335 }
7336
7337 /* Verify all existing dummy frames and their associated breakpoints for
7338 THREAD. Remove those which can no longer be found in the current frame
7339 stack.
7340
7341 You should call this function only at places where it is safe to currently
7342 unwind the whole stack. Failed stack unwind would discard live dummy
7343 frames. */
7344
7345 void
7346 check_longjmp_breakpoint_for_call_dummy (int thread)
7347 {
7348 struct breakpoint *b, *b_tmp;
7349
7350 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7351 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7352 {
7353 struct breakpoint *dummy_b = b->related_breakpoint;
7354
7355 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7356 dummy_b = dummy_b->related_breakpoint;
7357 if (dummy_b->type != bp_call_dummy
7358 || frame_find_by_id (dummy_b->frame_id) != NULL)
7359 continue;
7360
7361 dummy_frame_discard (dummy_b->frame_id);
7362
7363 while (b->related_breakpoint != b)
7364 {
7365 if (b_tmp == b->related_breakpoint)
7366 b_tmp = b->related_breakpoint->next;
7367 delete_breakpoint (b->related_breakpoint);
7368 }
7369 delete_breakpoint (b);
7370 }
7371 }
7372
7373 void
7374 enable_overlay_breakpoints (void)
7375 {
7376 struct breakpoint *b;
7377
7378 ALL_BREAKPOINTS (b)
7379 if (b->type == bp_overlay_event)
7380 {
7381 b->enable_state = bp_enabled;
7382 update_global_location_list (1);
7383 overlay_events_enabled = 1;
7384 }
7385 }
7386
7387 void
7388 disable_overlay_breakpoints (void)
7389 {
7390 struct breakpoint *b;
7391
7392 ALL_BREAKPOINTS (b)
7393 if (b->type == bp_overlay_event)
7394 {
7395 b->enable_state = bp_disabled;
7396 update_global_location_list (0);
7397 overlay_events_enabled = 0;
7398 }
7399 }
7400
7401 /* Set an active std::terminate breakpoint for each std::terminate
7402 master breakpoint. */
7403 void
7404 set_std_terminate_breakpoint (void)
7405 {
7406 struct breakpoint *b, *b_tmp;
7407
7408 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7409 if (b->pspace == current_program_space
7410 && b->type == bp_std_terminate_master)
7411 {
7412 momentary_breakpoint_from_master (b, bp_std_terminate,
7413 &momentary_breakpoint_ops);
7414 }
7415 }
7416
7417 /* Delete all the std::terminate breakpoints. */
7418 void
7419 delete_std_terminate_breakpoint (void)
7420 {
7421 struct breakpoint *b, *b_tmp;
7422
7423 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7424 if (b->type == bp_std_terminate)
7425 delete_breakpoint (b);
7426 }
7427
7428 struct breakpoint *
7429 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7430 {
7431 struct breakpoint *b;
7432
7433 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7434 &internal_breakpoint_ops);
7435
7436 b->enable_state = bp_enabled;
7437 /* addr_string has to be used or breakpoint_re_set will delete me. */
7438 b->addr_string
7439 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7440
7441 update_global_location_list_nothrow (1);
7442
7443 return b;
7444 }
7445
7446 void
7447 remove_thread_event_breakpoints (void)
7448 {
7449 struct breakpoint *b, *b_tmp;
7450
7451 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7452 if (b->type == bp_thread_event
7453 && b->loc->pspace == current_program_space)
7454 delete_breakpoint (b);
7455 }
7456
7457 struct lang_and_radix
7458 {
7459 enum language lang;
7460 int radix;
7461 };
7462
7463 /* Create a breakpoint for JIT code registration and unregistration. */
7464
7465 struct breakpoint *
7466 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7467 {
7468 struct breakpoint *b;
7469
7470 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7471 &internal_breakpoint_ops);
7472 update_global_location_list_nothrow (1);
7473 return b;
7474 }
7475
7476 /* Remove JIT code registration and unregistration breakpoint(s). */
7477
7478 void
7479 remove_jit_event_breakpoints (void)
7480 {
7481 struct breakpoint *b, *b_tmp;
7482
7483 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7484 if (b->type == bp_jit_event
7485 && b->loc->pspace == current_program_space)
7486 delete_breakpoint (b);
7487 }
7488
7489 void
7490 remove_solib_event_breakpoints (void)
7491 {
7492 struct breakpoint *b, *b_tmp;
7493
7494 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7495 if (b->type == bp_shlib_event
7496 && b->loc->pspace == current_program_space)
7497 delete_breakpoint (b);
7498 }
7499
7500 struct breakpoint *
7501 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7502 {
7503 struct breakpoint *b;
7504
7505 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7506 &internal_breakpoint_ops);
7507 update_global_location_list_nothrow (1);
7508 return b;
7509 }
7510
7511 /* Disable any breakpoints that are on code in shared libraries. Only
7512 apply to enabled breakpoints, disabled ones can just stay disabled. */
7513
7514 void
7515 disable_breakpoints_in_shlibs (void)
7516 {
7517 struct bp_location *loc, **locp_tmp;
7518
7519 ALL_BP_LOCATIONS (loc, locp_tmp)
7520 {
7521 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7522 struct breakpoint *b = loc->owner;
7523
7524 /* We apply the check to all breakpoints, including disabled for
7525 those with loc->duplicate set. This is so that when breakpoint
7526 becomes enabled, or the duplicate is removed, gdb will try to
7527 insert all breakpoints. If we don't set shlib_disabled here,
7528 we'll try to insert those breakpoints and fail. */
7529 if (((b->type == bp_breakpoint)
7530 || (b->type == bp_jit_event)
7531 || (b->type == bp_hardware_breakpoint)
7532 || (is_tracepoint (b)))
7533 && loc->pspace == current_program_space
7534 && !loc->shlib_disabled
7535 && solib_name_from_address (loc->pspace, loc->address)
7536 )
7537 {
7538 loc->shlib_disabled = 1;
7539 }
7540 }
7541 }
7542
7543 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7544 notification of unloaded_shlib. Only apply to enabled breakpoints,
7545 disabled ones can just stay disabled. */
7546
7547 static void
7548 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7549 {
7550 struct bp_location *loc, **locp_tmp;
7551 int disabled_shlib_breaks = 0;
7552
7553 /* SunOS a.out shared libraries are always mapped, so do not
7554 disable breakpoints; they will only be reported as unloaded
7555 through clear_solib when GDB discards its shared library
7556 list. See clear_solib for more information. */
7557 if (exec_bfd != NULL
7558 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7559 return;
7560
7561 ALL_BP_LOCATIONS (loc, locp_tmp)
7562 {
7563 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7564 struct breakpoint *b = loc->owner;
7565
7566 if (solib->pspace == loc->pspace
7567 && !loc->shlib_disabled
7568 && (((b->type == bp_breakpoint
7569 || b->type == bp_jit_event
7570 || b->type == bp_hardware_breakpoint)
7571 && (loc->loc_type == bp_loc_hardware_breakpoint
7572 || loc->loc_type == bp_loc_software_breakpoint))
7573 || is_tracepoint (b))
7574 && solib_contains_address_p (solib, loc->address))
7575 {
7576 loc->shlib_disabled = 1;
7577 /* At this point, we cannot rely on remove_breakpoint
7578 succeeding so we must mark the breakpoint as not inserted
7579 to prevent future errors occurring in remove_breakpoints. */
7580 loc->inserted = 0;
7581
7582 /* This may cause duplicate notifications for the same breakpoint. */
7583 observer_notify_breakpoint_modified (b);
7584
7585 if (!disabled_shlib_breaks)
7586 {
7587 target_terminal_ours_for_output ();
7588 warning (_("Temporarily disabling breakpoints "
7589 "for unloaded shared library \"%s\""),
7590 solib->so_name);
7591 }
7592 disabled_shlib_breaks = 1;
7593 }
7594 }
7595 }
7596
7597 /* Disable any breakpoints and tracepoints in OBJFILE upon
7598 notification of free_objfile. Only apply to enabled breakpoints,
7599 disabled ones can just stay disabled. */
7600
7601 static void
7602 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7603 {
7604 struct breakpoint *b;
7605
7606 if (objfile == NULL)
7607 return;
7608
7609 /* If the file is a shared library not loaded by the user then
7610 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7611 was called. In that case there is no need to take action again. */
7612 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7613 return;
7614
7615 ALL_BREAKPOINTS (b)
7616 {
7617 struct bp_location *loc;
7618 int bp_modified = 0;
7619
7620 if (!is_breakpoint (b) && !is_tracepoint (b))
7621 continue;
7622
7623 for (loc = b->loc; loc != NULL; loc = loc->next)
7624 {
7625 CORE_ADDR loc_addr = loc->address;
7626
7627 if (loc->loc_type != bp_loc_hardware_breakpoint
7628 && loc->loc_type != bp_loc_software_breakpoint)
7629 continue;
7630
7631 if (loc->shlib_disabled != 0)
7632 continue;
7633
7634 if (objfile->pspace != loc->pspace)
7635 continue;
7636
7637 if (loc->loc_type != bp_loc_hardware_breakpoint
7638 && loc->loc_type != bp_loc_software_breakpoint)
7639 continue;
7640
7641 if (is_addr_in_objfile (loc_addr, objfile))
7642 {
7643 loc->shlib_disabled = 1;
7644 loc->inserted = 0;
7645
7646 mark_breakpoint_location_modified (loc);
7647
7648 bp_modified = 1;
7649 }
7650 }
7651
7652 if (bp_modified)
7653 observer_notify_breakpoint_modified (b);
7654 }
7655 }
7656
7657 /* FORK & VFORK catchpoints. */
7658
7659 /* An instance of this type is used to represent a fork or vfork
7660 catchpoint. It includes a "struct breakpoint" as a kind of base
7661 class; users downcast to "struct breakpoint *" when needed. A
7662 breakpoint is really of this type iff its ops pointer points to
7663 CATCH_FORK_BREAKPOINT_OPS. */
7664
7665 struct fork_catchpoint
7666 {
7667 /* The base class. */
7668 struct breakpoint base;
7669
7670 /* Process id of a child process whose forking triggered this
7671 catchpoint. This field is only valid immediately after this
7672 catchpoint has triggered. */
7673 ptid_t forked_inferior_pid;
7674 };
7675
7676 /* Implement the "insert" breakpoint_ops method for fork
7677 catchpoints. */
7678
7679 static int
7680 insert_catch_fork (struct bp_location *bl)
7681 {
7682 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7683 }
7684
7685 /* Implement the "remove" breakpoint_ops method for fork
7686 catchpoints. */
7687
7688 static int
7689 remove_catch_fork (struct bp_location *bl)
7690 {
7691 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7692 }
7693
7694 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7695 catchpoints. */
7696
7697 static int
7698 breakpoint_hit_catch_fork (const struct bp_location *bl,
7699 struct address_space *aspace, CORE_ADDR bp_addr,
7700 const struct target_waitstatus *ws)
7701 {
7702 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7703
7704 if (ws->kind != TARGET_WAITKIND_FORKED)
7705 return 0;
7706
7707 c->forked_inferior_pid = ws->value.related_pid;
7708 return 1;
7709 }
7710
7711 /* Implement the "print_it" breakpoint_ops method for fork
7712 catchpoints. */
7713
7714 static enum print_stop_action
7715 print_it_catch_fork (bpstat bs)
7716 {
7717 struct ui_out *uiout = current_uiout;
7718 struct breakpoint *b = bs->breakpoint_at;
7719 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7720
7721 annotate_catchpoint (b->number);
7722 if (b->disposition == disp_del)
7723 ui_out_text (uiout, "\nTemporary catchpoint ");
7724 else
7725 ui_out_text (uiout, "\nCatchpoint ");
7726 if (ui_out_is_mi_like_p (uiout))
7727 {
7728 ui_out_field_string (uiout, "reason",
7729 async_reason_lookup (EXEC_ASYNC_FORK));
7730 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7731 }
7732 ui_out_field_int (uiout, "bkptno", b->number);
7733 ui_out_text (uiout, " (forked process ");
7734 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7735 ui_out_text (uiout, "), ");
7736 return PRINT_SRC_AND_LOC;
7737 }
7738
7739 /* Implement the "print_one" breakpoint_ops method for fork
7740 catchpoints. */
7741
7742 static void
7743 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7744 {
7745 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7746 struct value_print_options opts;
7747 struct ui_out *uiout = current_uiout;
7748
7749 get_user_print_options (&opts);
7750
7751 /* Field 4, the address, is omitted (which makes the columns not
7752 line up too nicely with the headers, but the effect is relatively
7753 readable). */
7754 if (opts.addressprint)
7755 ui_out_field_skip (uiout, "addr");
7756 annotate_field (5);
7757 ui_out_text (uiout, "fork");
7758 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7759 {
7760 ui_out_text (uiout, ", process ");
7761 ui_out_field_int (uiout, "what",
7762 ptid_get_pid (c->forked_inferior_pid));
7763 ui_out_spaces (uiout, 1);
7764 }
7765
7766 if (ui_out_is_mi_like_p (uiout))
7767 ui_out_field_string (uiout, "catch-type", "fork");
7768 }
7769
7770 /* Implement the "print_mention" breakpoint_ops method for fork
7771 catchpoints. */
7772
7773 static void
7774 print_mention_catch_fork (struct breakpoint *b)
7775 {
7776 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7777 }
7778
7779 /* Implement the "print_recreate" breakpoint_ops method for fork
7780 catchpoints. */
7781
7782 static void
7783 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7784 {
7785 fprintf_unfiltered (fp, "catch fork");
7786 print_recreate_thread (b, fp);
7787 }
7788
7789 /* The breakpoint_ops structure to be used in fork catchpoints. */
7790
7791 static struct breakpoint_ops catch_fork_breakpoint_ops;
7792
7793 /* Implement the "insert" breakpoint_ops method for vfork
7794 catchpoints. */
7795
7796 static int
7797 insert_catch_vfork (struct bp_location *bl)
7798 {
7799 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7800 }
7801
7802 /* Implement the "remove" breakpoint_ops method for vfork
7803 catchpoints. */
7804
7805 static int
7806 remove_catch_vfork (struct bp_location *bl)
7807 {
7808 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7809 }
7810
7811 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7812 catchpoints. */
7813
7814 static int
7815 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7816 struct address_space *aspace, CORE_ADDR bp_addr,
7817 const struct target_waitstatus *ws)
7818 {
7819 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7820
7821 if (ws->kind != TARGET_WAITKIND_VFORKED)
7822 return 0;
7823
7824 c->forked_inferior_pid = ws->value.related_pid;
7825 return 1;
7826 }
7827
7828 /* Implement the "print_it" breakpoint_ops method for vfork
7829 catchpoints. */
7830
7831 static enum print_stop_action
7832 print_it_catch_vfork (bpstat bs)
7833 {
7834 struct ui_out *uiout = current_uiout;
7835 struct breakpoint *b = bs->breakpoint_at;
7836 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7837
7838 annotate_catchpoint (b->number);
7839 if (b->disposition == disp_del)
7840 ui_out_text (uiout, "\nTemporary catchpoint ");
7841 else
7842 ui_out_text (uiout, "\nCatchpoint ");
7843 if (ui_out_is_mi_like_p (uiout))
7844 {
7845 ui_out_field_string (uiout, "reason",
7846 async_reason_lookup (EXEC_ASYNC_VFORK));
7847 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7848 }
7849 ui_out_field_int (uiout, "bkptno", b->number);
7850 ui_out_text (uiout, " (vforked process ");
7851 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7852 ui_out_text (uiout, "), ");
7853 return PRINT_SRC_AND_LOC;
7854 }
7855
7856 /* Implement the "print_one" breakpoint_ops method for vfork
7857 catchpoints. */
7858
7859 static void
7860 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7861 {
7862 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7863 struct value_print_options opts;
7864 struct ui_out *uiout = current_uiout;
7865
7866 get_user_print_options (&opts);
7867 /* Field 4, the address, is omitted (which makes the columns not
7868 line up too nicely with the headers, but the effect is relatively
7869 readable). */
7870 if (opts.addressprint)
7871 ui_out_field_skip (uiout, "addr");
7872 annotate_field (5);
7873 ui_out_text (uiout, "vfork");
7874 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7875 {
7876 ui_out_text (uiout, ", process ");
7877 ui_out_field_int (uiout, "what",
7878 ptid_get_pid (c->forked_inferior_pid));
7879 ui_out_spaces (uiout, 1);
7880 }
7881
7882 if (ui_out_is_mi_like_p (uiout))
7883 ui_out_field_string (uiout, "catch-type", "vfork");
7884 }
7885
7886 /* Implement the "print_mention" breakpoint_ops method for vfork
7887 catchpoints. */
7888
7889 static void
7890 print_mention_catch_vfork (struct breakpoint *b)
7891 {
7892 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7893 }
7894
7895 /* Implement the "print_recreate" breakpoint_ops method for vfork
7896 catchpoints. */
7897
7898 static void
7899 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7900 {
7901 fprintf_unfiltered (fp, "catch vfork");
7902 print_recreate_thread (b, fp);
7903 }
7904
7905 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7906
7907 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7908
7909 /* An instance of this type is used to represent an solib catchpoint.
7910 It includes a "struct breakpoint" as a kind of base class; users
7911 downcast to "struct breakpoint *" when needed. A breakpoint is
7912 really of this type iff its ops pointer points to
7913 CATCH_SOLIB_BREAKPOINT_OPS. */
7914
7915 struct solib_catchpoint
7916 {
7917 /* The base class. */
7918 struct breakpoint base;
7919
7920 /* True for "catch load", false for "catch unload". */
7921 unsigned char is_load;
7922
7923 /* Regular expression to match, if any. COMPILED is only valid when
7924 REGEX is non-NULL. */
7925 char *regex;
7926 regex_t compiled;
7927 };
7928
7929 static void
7930 dtor_catch_solib (struct breakpoint *b)
7931 {
7932 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7933
7934 if (self->regex)
7935 regfree (&self->compiled);
7936 xfree (self->regex);
7937
7938 base_breakpoint_ops.dtor (b);
7939 }
7940
7941 static int
7942 insert_catch_solib (struct bp_location *ignore)
7943 {
7944 return 0;
7945 }
7946
7947 static int
7948 remove_catch_solib (struct bp_location *ignore)
7949 {
7950 return 0;
7951 }
7952
7953 static int
7954 breakpoint_hit_catch_solib (const struct bp_location *bl,
7955 struct address_space *aspace,
7956 CORE_ADDR bp_addr,
7957 const struct target_waitstatus *ws)
7958 {
7959 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7960 struct breakpoint *other;
7961
7962 if (ws->kind == TARGET_WAITKIND_LOADED)
7963 return 1;
7964
7965 ALL_BREAKPOINTS (other)
7966 {
7967 struct bp_location *other_bl;
7968
7969 if (other == bl->owner)
7970 continue;
7971
7972 if (other->type != bp_shlib_event)
7973 continue;
7974
7975 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7976 continue;
7977
7978 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7979 {
7980 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7981 return 1;
7982 }
7983 }
7984
7985 return 0;
7986 }
7987
7988 static void
7989 check_status_catch_solib (struct bpstats *bs)
7990 {
7991 struct solib_catchpoint *self
7992 = (struct solib_catchpoint *) bs->breakpoint_at;
7993 int ix;
7994
7995 if (self->is_load)
7996 {
7997 struct so_list *iter;
7998
7999 for (ix = 0;
8000 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8001 ix, iter);
8002 ++ix)
8003 {
8004 if (!self->regex
8005 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8006 return;
8007 }
8008 }
8009 else
8010 {
8011 char *iter;
8012
8013 for (ix = 0;
8014 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8015 ix, iter);
8016 ++ix)
8017 {
8018 if (!self->regex
8019 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8020 return;
8021 }
8022 }
8023
8024 bs->stop = 0;
8025 bs->print_it = print_it_noop;
8026 }
8027
8028 static enum print_stop_action
8029 print_it_catch_solib (bpstat bs)
8030 {
8031 struct breakpoint *b = bs->breakpoint_at;
8032 struct ui_out *uiout = current_uiout;
8033
8034 annotate_catchpoint (b->number);
8035 if (b->disposition == disp_del)
8036 ui_out_text (uiout, "\nTemporary catchpoint ");
8037 else
8038 ui_out_text (uiout, "\nCatchpoint ");
8039 ui_out_field_int (uiout, "bkptno", b->number);
8040 ui_out_text (uiout, "\n");
8041 if (ui_out_is_mi_like_p (uiout))
8042 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8043 print_solib_event (1);
8044 return PRINT_SRC_AND_LOC;
8045 }
8046
8047 static void
8048 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8049 {
8050 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8051 struct value_print_options opts;
8052 struct ui_out *uiout = current_uiout;
8053 char *msg;
8054
8055 get_user_print_options (&opts);
8056 /* Field 4, the address, is omitted (which makes the columns not
8057 line up too nicely with the headers, but the effect is relatively
8058 readable). */
8059 if (opts.addressprint)
8060 {
8061 annotate_field (4);
8062 ui_out_field_skip (uiout, "addr");
8063 }
8064
8065 annotate_field (5);
8066 if (self->is_load)
8067 {
8068 if (self->regex)
8069 msg = xstrprintf (_("load of library matching %s"), self->regex);
8070 else
8071 msg = xstrdup (_("load of library"));
8072 }
8073 else
8074 {
8075 if (self->regex)
8076 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8077 else
8078 msg = xstrdup (_("unload of library"));
8079 }
8080 ui_out_field_string (uiout, "what", msg);
8081 xfree (msg);
8082
8083 if (ui_out_is_mi_like_p (uiout))
8084 ui_out_field_string (uiout, "catch-type",
8085 self->is_load ? "load" : "unload");
8086 }
8087
8088 static void
8089 print_mention_catch_solib (struct breakpoint *b)
8090 {
8091 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8092
8093 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8094 self->is_load ? "load" : "unload");
8095 }
8096
8097 static void
8098 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8099 {
8100 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8101
8102 fprintf_unfiltered (fp, "%s %s",
8103 b->disposition == disp_del ? "tcatch" : "catch",
8104 self->is_load ? "load" : "unload");
8105 if (self->regex)
8106 fprintf_unfiltered (fp, " %s", self->regex);
8107 fprintf_unfiltered (fp, "\n");
8108 }
8109
8110 static struct breakpoint_ops catch_solib_breakpoint_ops;
8111
8112 /* Shared helper function (MI and CLI) for creating and installing
8113 a shared object event catchpoint. If IS_LOAD is non-zero then
8114 the events to be caught are load events, otherwise they are
8115 unload events. If IS_TEMP is non-zero the catchpoint is a
8116 temporary one. If ENABLED is non-zero the catchpoint is
8117 created in an enabled state. */
8118
8119 void
8120 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8121 {
8122 struct solib_catchpoint *c;
8123 struct gdbarch *gdbarch = get_current_arch ();
8124 struct cleanup *cleanup;
8125
8126 if (!arg)
8127 arg = "";
8128 arg = skip_spaces (arg);
8129
8130 c = XCNEW (struct solib_catchpoint);
8131 cleanup = make_cleanup (xfree, c);
8132
8133 if (*arg != '\0')
8134 {
8135 int errcode;
8136
8137 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8138 if (errcode != 0)
8139 {
8140 char *err = get_regcomp_error (errcode, &c->compiled);
8141
8142 make_cleanup (xfree, err);
8143 error (_("Invalid regexp (%s): %s"), err, arg);
8144 }
8145 c->regex = xstrdup (arg);
8146 }
8147
8148 c->is_load = is_load;
8149 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8150 &catch_solib_breakpoint_ops);
8151
8152 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8153
8154 discard_cleanups (cleanup);
8155 install_breakpoint (0, &c->base, 1);
8156 }
8157
8158 /* A helper function that does all the work for "catch load" and
8159 "catch unload". */
8160
8161 static void
8162 catch_load_or_unload (char *arg, int from_tty, int is_load,
8163 struct cmd_list_element *command)
8164 {
8165 int tempflag;
8166 const int enabled = 1;
8167
8168 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8169
8170 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8171 }
8172
8173 static void
8174 catch_load_command_1 (char *arg, int from_tty,
8175 struct cmd_list_element *command)
8176 {
8177 catch_load_or_unload (arg, from_tty, 1, command);
8178 }
8179
8180 static void
8181 catch_unload_command_1 (char *arg, int from_tty,
8182 struct cmd_list_element *command)
8183 {
8184 catch_load_or_unload (arg, from_tty, 0, command);
8185 }
8186
8187 /* An instance of this type is used to represent a syscall catchpoint.
8188 It includes a "struct breakpoint" as a kind of base class; users
8189 downcast to "struct breakpoint *" when needed. A breakpoint is
8190 really of this type iff its ops pointer points to
8191 CATCH_SYSCALL_BREAKPOINT_OPS. */
8192
8193 struct syscall_catchpoint
8194 {
8195 /* The base class. */
8196 struct breakpoint base;
8197
8198 /* Syscall numbers used for the 'catch syscall' feature. If no
8199 syscall has been specified for filtering, its value is NULL.
8200 Otherwise, it holds a list of all syscalls to be caught. The
8201 list elements are allocated with xmalloc. */
8202 VEC(int) *syscalls_to_be_caught;
8203 };
8204
8205 /* Implement the "dtor" breakpoint_ops method for syscall
8206 catchpoints. */
8207
8208 static void
8209 dtor_catch_syscall (struct breakpoint *b)
8210 {
8211 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8212
8213 VEC_free (int, c->syscalls_to_be_caught);
8214
8215 base_breakpoint_ops.dtor (b);
8216 }
8217
8218 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8219
8220 struct catch_syscall_inferior_data
8221 {
8222 /* We keep a count of the number of times the user has requested a
8223 particular syscall to be tracked, and pass this information to the
8224 target. This lets capable targets implement filtering directly. */
8225
8226 /* Number of times that "any" syscall is requested. */
8227 int any_syscall_count;
8228
8229 /* Count of each system call. */
8230 VEC(int) *syscalls_counts;
8231
8232 /* This counts all syscall catch requests, so we can readily determine
8233 if any catching is necessary. */
8234 int total_syscalls_count;
8235 };
8236
8237 static struct catch_syscall_inferior_data*
8238 get_catch_syscall_inferior_data (struct inferior *inf)
8239 {
8240 struct catch_syscall_inferior_data *inf_data;
8241
8242 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8243 if (inf_data == NULL)
8244 {
8245 inf_data = XCNEW (struct catch_syscall_inferior_data);
8246 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8247 }
8248
8249 return inf_data;
8250 }
8251
8252 static void
8253 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8254 {
8255 xfree (arg);
8256 }
8257
8258
8259 /* Implement the "insert" breakpoint_ops method for syscall
8260 catchpoints. */
8261
8262 static int
8263 insert_catch_syscall (struct bp_location *bl)
8264 {
8265 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8266 struct inferior *inf = current_inferior ();
8267 struct catch_syscall_inferior_data *inf_data
8268 = get_catch_syscall_inferior_data (inf);
8269
8270 ++inf_data->total_syscalls_count;
8271 if (!c->syscalls_to_be_caught)
8272 ++inf_data->any_syscall_count;
8273 else
8274 {
8275 int i, iter;
8276
8277 for (i = 0;
8278 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8279 i++)
8280 {
8281 int elem;
8282
8283 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8284 {
8285 int old_size = VEC_length (int, inf_data->syscalls_counts);
8286 uintptr_t vec_addr_offset
8287 = old_size * ((uintptr_t) sizeof (int));
8288 uintptr_t vec_addr;
8289 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8290 vec_addr = ((uintptr_t) VEC_address (int,
8291 inf_data->syscalls_counts)
8292 + vec_addr_offset);
8293 memset ((void *) vec_addr, 0,
8294 (iter + 1 - old_size) * sizeof (int));
8295 }
8296 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8297 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8298 }
8299 }
8300
8301 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8302 inf_data->total_syscalls_count != 0,
8303 inf_data->any_syscall_count,
8304 VEC_length (int,
8305 inf_data->syscalls_counts),
8306 VEC_address (int,
8307 inf_data->syscalls_counts));
8308 }
8309
8310 /* Implement the "remove" breakpoint_ops method for syscall
8311 catchpoints. */
8312
8313 static int
8314 remove_catch_syscall (struct bp_location *bl)
8315 {
8316 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8317 struct inferior *inf = current_inferior ();
8318 struct catch_syscall_inferior_data *inf_data
8319 = get_catch_syscall_inferior_data (inf);
8320
8321 --inf_data->total_syscalls_count;
8322 if (!c->syscalls_to_be_caught)
8323 --inf_data->any_syscall_count;
8324 else
8325 {
8326 int i, iter;
8327
8328 for (i = 0;
8329 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8330 i++)
8331 {
8332 int elem;
8333 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8334 /* Shouldn't happen. */
8335 continue;
8336 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8337 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8338 }
8339 }
8340
8341 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8342 inf_data->total_syscalls_count != 0,
8343 inf_data->any_syscall_count,
8344 VEC_length (int,
8345 inf_data->syscalls_counts),
8346 VEC_address (int,
8347 inf_data->syscalls_counts));
8348 }
8349
8350 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8351 catchpoints. */
8352
8353 static int
8354 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8355 struct address_space *aspace, CORE_ADDR bp_addr,
8356 const struct target_waitstatus *ws)
8357 {
8358 /* We must check if we are catching specific syscalls in this
8359 breakpoint. If we are, then we must guarantee that the called
8360 syscall is the same syscall we are catching. */
8361 int syscall_number = 0;
8362 const struct syscall_catchpoint *c
8363 = (const struct syscall_catchpoint *) bl->owner;
8364
8365 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8366 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8367 return 0;
8368
8369 syscall_number = ws->value.syscall_number;
8370
8371 /* Now, checking if the syscall is the same. */
8372 if (c->syscalls_to_be_caught)
8373 {
8374 int i, iter;
8375
8376 for (i = 0;
8377 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8378 i++)
8379 if (syscall_number == iter)
8380 return 1;
8381
8382 return 0;
8383 }
8384
8385 return 1;
8386 }
8387
8388 /* Implement the "print_it" breakpoint_ops method for syscall
8389 catchpoints. */
8390
8391 static enum print_stop_action
8392 print_it_catch_syscall (bpstat bs)
8393 {
8394 struct ui_out *uiout = current_uiout;
8395 struct breakpoint *b = bs->breakpoint_at;
8396 /* These are needed because we want to know in which state a
8397 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8398 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8399 must print "called syscall" or "returned from syscall". */
8400 ptid_t ptid;
8401 struct target_waitstatus last;
8402 struct syscall s;
8403
8404 get_last_target_status (&ptid, &last);
8405
8406 get_syscall_by_number (last.value.syscall_number, &s);
8407
8408 annotate_catchpoint (b->number);
8409
8410 if (b->disposition == disp_del)
8411 ui_out_text (uiout, "\nTemporary catchpoint ");
8412 else
8413 ui_out_text (uiout, "\nCatchpoint ");
8414 if (ui_out_is_mi_like_p (uiout))
8415 {
8416 ui_out_field_string (uiout, "reason",
8417 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8418 ? EXEC_ASYNC_SYSCALL_ENTRY
8419 : EXEC_ASYNC_SYSCALL_RETURN));
8420 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8421 }
8422 ui_out_field_int (uiout, "bkptno", b->number);
8423
8424 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8425 ui_out_text (uiout, " (call to syscall ");
8426 else
8427 ui_out_text (uiout, " (returned from syscall ");
8428
8429 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8430 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8431 if (s.name != NULL)
8432 ui_out_field_string (uiout, "syscall-name", s.name);
8433
8434 ui_out_text (uiout, "), ");
8435
8436 return PRINT_SRC_AND_LOC;
8437 }
8438
8439 /* Implement the "print_one" breakpoint_ops method for syscall
8440 catchpoints. */
8441
8442 static void
8443 print_one_catch_syscall (struct breakpoint *b,
8444 struct bp_location **last_loc)
8445 {
8446 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8447 struct value_print_options opts;
8448 struct ui_out *uiout = current_uiout;
8449
8450 get_user_print_options (&opts);
8451 /* Field 4, the address, is omitted (which makes the columns not
8452 line up too nicely with the headers, but the effect is relatively
8453 readable). */
8454 if (opts.addressprint)
8455 ui_out_field_skip (uiout, "addr");
8456 annotate_field (5);
8457
8458 if (c->syscalls_to_be_caught
8459 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8460 ui_out_text (uiout, "syscalls \"");
8461 else
8462 ui_out_text (uiout, "syscall \"");
8463
8464 if (c->syscalls_to_be_caught)
8465 {
8466 int i, iter;
8467 char *text = xstrprintf ("%s", "");
8468
8469 for (i = 0;
8470 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8471 i++)
8472 {
8473 char *x = text;
8474 struct syscall s;
8475 get_syscall_by_number (iter, &s);
8476
8477 if (s.name != NULL)
8478 text = xstrprintf ("%s%s, ", text, s.name);
8479 else
8480 text = xstrprintf ("%s%d, ", text, iter);
8481
8482 /* We have to xfree the last 'text' (now stored at 'x')
8483 because xstrprintf dynamically allocates new space for it
8484 on every call. */
8485 xfree (x);
8486 }
8487 /* Remove the last comma. */
8488 text[strlen (text) - 2] = '\0';
8489 ui_out_field_string (uiout, "what", text);
8490 }
8491 else
8492 ui_out_field_string (uiout, "what", "<any syscall>");
8493 ui_out_text (uiout, "\" ");
8494
8495 if (ui_out_is_mi_like_p (uiout))
8496 ui_out_field_string (uiout, "catch-type", "syscall");
8497 }
8498
8499 /* Implement the "print_mention" breakpoint_ops method for syscall
8500 catchpoints. */
8501
8502 static void
8503 print_mention_catch_syscall (struct breakpoint *b)
8504 {
8505 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8506
8507 if (c->syscalls_to_be_caught)
8508 {
8509 int i, iter;
8510
8511 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8512 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8513 else
8514 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8515
8516 for (i = 0;
8517 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8518 i++)
8519 {
8520 struct syscall s;
8521 get_syscall_by_number (iter, &s);
8522
8523 if (s.name)
8524 printf_filtered (" '%s' [%d]", s.name, s.number);
8525 else
8526 printf_filtered (" %d", s.number);
8527 }
8528 printf_filtered (")");
8529 }
8530 else
8531 printf_filtered (_("Catchpoint %d (any syscall)"),
8532 b->number);
8533 }
8534
8535 /* Implement the "print_recreate" breakpoint_ops method for syscall
8536 catchpoints. */
8537
8538 static void
8539 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8540 {
8541 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8542
8543 fprintf_unfiltered (fp, "catch syscall");
8544
8545 if (c->syscalls_to_be_caught)
8546 {
8547 int i, iter;
8548
8549 for (i = 0;
8550 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8551 i++)
8552 {
8553 struct syscall s;
8554
8555 get_syscall_by_number (iter, &s);
8556 if (s.name)
8557 fprintf_unfiltered (fp, " %s", s.name);
8558 else
8559 fprintf_unfiltered (fp, " %d", s.number);
8560 }
8561 }
8562 print_recreate_thread (b, fp);
8563 }
8564
8565 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8566
8567 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8568
8569 /* Returns non-zero if 'b' is a syscall catchpoint. */
8570
8571 static int
8572 syscall_catchpoint_p (struct breakpoint *b)
8573 {
8574 return (b->ops == &catch_syscall_breakpoint_ops);
8575 }
8576
8577 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8578 is non-zero, then make the breakpoint temporary. If COND_STRING is
8579 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8580 the breakpoint_ops structure associated to the catchpoint. */
8581
8582 void
8583 init_catchpoint (struct breakpoint *b,
8584 struct gdbarch *gdbarch, int tempflag,
8585 char *cond_string,
8586 const struct breakpoint_ops *ops)
8587 {
8588 struct symtab_and_line sal;
8589
8590 init_sal (&sal);
8591 sal.pspace = current_program_space;
8592
8593 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8594
8595 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8596 b->disposition = tempflag ? disp_del : disp_donttouch;
8597 }
8598
8599 void
8600 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8601 {
8602 add_to_breakpoint_chain (b);
8603 set_breakpoint_number (internal, b);
8604 if (is_tracepoint (b))
8605 set_tracepoint_count (breakpoint_count);
8606 if (!internal)
8607 mention (b);
8608 observer_notify_breakpoint_created (b);
8609
8610 if (update_gll)
8611 update_global_location_list (1);
8612 }
8613
8614 static void
8615 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8616 int tempflag, char *cond_string,
8617 const struct breakpoint_ops *ops)
8618 {
8619 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8620
8621 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8622
8623 c->forked_inferior_pid = null_ptid;
8624
8625 install_breakpoint (0, &c->base, 1);
8626 }
8627
8628 /* Exec catchpoints. */
8629
8630 /* An instance of this type is used to represent an exec catchpoint.
8631 It includes a "struct breakpoint" as a kind of base class; users
8632 downcast to "struct breakpoint *" when needed. A breakpoint is
8633 really of this type iff its ops pointer points to
8634 CATCH_EXEC_BREAKPOINT_OPS. */
8635
8636 struct exec_catchpoint
8637 {
8638 /* The base class. */
8639 struct breakpoint base;
8640
8641 /* Filename of a program whose exec triggered this catchpoint.
8642 This field is only valid immediately after this catchpoint has
8643 triggered. */
8644 char *exec_pathname;
8645 };
8646
8647 /* Implement the "dtor" breakpoint_ops method for exec
8648 catchpoints. */
8649
8650 static void
8651 dtor_catch_exec (struct breakpoint *b)
8652 {
8653 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8654
8655 xfree (c->exec_pathname);
8656
8657 base_breakpoint_ops.dtor (b);
8658 }
8659
8660 static int
8661 insert_catch_exec (struct bp_location *bl)
8662 {
8663 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8664 }
8665
8666 static int
8667 remove_catch_exec (struct bp_location *bl)
8668 {
8669 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8670 }
8671
8672 static int
8673 breakpoint_hit_catch_exec (const struct bp_location *bl,
8674 struct address_space *aspace, CORE_ADDR bp_addr,
8675 const struct target_waitstatus *ws)
8676 {
8677 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8678
8679 if (ws->kind != TARGET_WAITKIND_EXECD)
8680 return 0;
8681
8682 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8683 return 1;
8684 }
8685
8686 static enum print_stop_action
8687 print_it_catch_exec (bpstat bs)
8688 {
8689 struct ui_out *uiout = current_uiout;
8690 struct breakpoint *b = bs->breakpoint_at;
8691 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8692
8693 annotate_catchpoint (b->number);
8694 if (b->disposition == disp_del)
8695 ui_out_text (uiout, "\nTemporary catchpoint ");
8696 else
8697 ui_out_text (uiout, "\nCatchpoint ");
8698 if (ui_out_is_mi_like_p (uiout))
8699 {
8700 ui_out_field_string (uiout, "reason",
8701 async_reason_lookup (EXEC_ASYNC_EXEC));
8702 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8703 }
8704 ui_out_field_int (uiout, "bkptno", b->number);
8705 ui_out_text (uiout, " (exec'd ");
8706 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8707 ui_out_text (uiout, "), ");
8708
8709 return PRINT_SRC_AND_LOC;
8710 }
8711
8712 static void
8713 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8714 {
8715 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8716 struct value_print_options opts;
8717 struct ui_out *uiout = current_uiout;
8718
8719 get_user_print_options (&opts);
8720
8721 /* Field 4, the address, is omitted (which makes the columns
8722 not line up too nicely with the headers, but the effect
8723 is relatively readable). */
8724 if (opts.addressprint)
8725 ui_out_field_skip (uiout, "addr");
8726 annotate_field (5);
8727 ui_out_text (uiout, "exec");
8728 if (c->exec_pathname != NULL)
8729 {
8730 ui_out_text (uiout, ", program \"");
8731 ui_out_field_string (uiout, "what", c->exec_pathname);
8732 ui_out_text (uiout, "\" ");
8733 }
8734
8735 if (ui_out_is_mi_like_p (uiout))
8736 ui_out_field_string (uiout, "catch-type", "exec");
8737 }
8738
8739 static void
8740 print_mention_catch_exec (struct breakpoint *b)
8741 {
8742 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8743 }
8744
8745 /* Implement the "print_recreate" breakpoint_ops method for exec
8746 catchpoints. */
8747
8748 static void
8749 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8750 {
8751 fprintf_unfiltered (fp, "catch exec");
8752 print_recreate_thread (b, fp);
8753 }
8754
8755 static struct breakpoint_ops catch_exec_breakpoint_ops;
8756
8757 static void
8758 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8759 const struct breakpoint_ops *ops)
8760 {
8761 struct syscall_catchpoint *c;
8762 struct gdbarch *gdbarch = get_current_arch ();
8763
8764 c = XNEW (struct syscall_catchpoint);
8765 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8766 c->syscalls_to_be_caught = filter;
8767
8768 install_breakpoint (0, &c->base, 1);
8769 }
8770
8771 static int
8772 hw_breakpoint_used_count (void)
8773 {
8774 int i = 0;
8775 struct breakpoint *b;
8776 struct bp_location *bl;
8777
8778 ALL_BREAKPOINTS (b)
8779 {
8780 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8781 for (bl = b->loc; bl; bl = bl->next)
8782 {
8783 /* Special types of hardware breakpoints may use more than
8784 one register. */
8785 i += b->ops->resources_needed (bl);
8786 }
8787 }
8788
8789 return i;
8790 }
8791
8792 /* Returns the resources B would use if it were a hardware
8793 watchpoint. */
8794
8795 static int
8796 hw_watchpoint_use_count (struct breakpoint *b)
8797 {
8798 int i = 0;
8799 struct bp_location *bl;
8800
8801 if (!breakpoint_enabled (b))
8802 return 0;
8803
8804 for (bl = b->loc; bl; bl = bl->next)
8805 {
8806 /* Special types of hardware watchpoints may use more than
8807 one register. */
8808 i += b->ops->resources_needed (bl);
8809 }
8810
8811 return i;
8812 }
8813
8814 /* Returns the sum the used resources of all hardware watchpoints of
8815 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8816 the sum of the used resources of all hardware watchpoints of other
8817 types _not_ TYPE. */
8818
8819 static int
8820 hw_watchpoint_used_count_others (struct breakpoint *except,
8821 enum bptype type, int *other_type_used)
8822 {
8823 int i = 0;
8824 struct breakpoint *b;
8825
8826 *other_type_used = 0;
8827 ALL_BREAKPOINTS (b)
8828 {
8829 if (b == except)
8830 continue;
8831 if (!breakpoint_enabled (b))
8832 continue;
8833
8834 if (b->type == type)
8835 i += hw_watchpoint_use_count (b);
8836 else if (is_hardware_watchpoint (b))
8837 *other_type_used = 1;
8838 }
8839
8840 return i;
8841 }
8842
8843 void
8844 disable_watchpoints_before_interactive_call_start (void)
8845 {
8846 struct breakpoint *b;
8847
8848 ALL_BREAKPOINTS (b)
8849 {
8850 if (is_watchpoint (b) && breakpoint_enabled (b))
8851 {
8852 b->enable_state = bp_call_disabled;
8853 update_global_location_list (0);
8854 }
8855 }
8856 }
8857
8858 void
8859 enable_watchpoints_after_interactive_call_stop (void)
8860 {
8861 struct breakpoint *b;
8862
8863 ALL_BREAKPOINTS (b)
8864 {
8865 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8866 {
8867 b->enable_state = bp_enabled;
8868 update_global_location_list (1);
8869 }
8870 }
8871 }
8872
8873 void
8874 disable_breakpoints_before_startup (void)
8875 {
8876 current_program_space->executing_startup = 1;
8877 update_global_location_list (0);
8878 }
8879
8880 void
8881 enable_breakpoints_after_startup (void)
8882 {
8883 current_program_space->executing_startup = 0;
8884 breakpoint_re_set ();
8885 }
8886
8887
8888 /* Set a breakpoint that will evaporate an end of command
8889 at address specified by SAL.
8890 Restrict it to frame FRAME if FRAME is nonzero. */
8891
8892 struct breakpoint *
8893 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8894 struct frame_id frame_id, enum bptype type)
8895 {
8896 struct breakpoint *b;
8897
8898 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8899 tail-called one. */
8900 gdb_assert (!frame_id_artificial_p (frame_id));
8901
8902 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8903 b->enable_state = bp_enabled;
8904 b->disposition = disp_donttouch;
8905 b->frame_id = frame_id;
8906
8907 /* If we're debugging a multi-threaded program, then we want
8908 momentary breakpoints to be active in only a single thread of
8909 control. */
8910 if (in_thread_list (inferior_ptid))
8911 b->thread = pid_to_thread_id (inferior_ptid);
8912
8913 update_global_location_list_nothrow (1);
8914
8915 return b;
8916 }
8917
8918 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8919 The new breakpoint will have type TYPE, and use OPS as it
8920 breakpoint_ops. */
8921
8922 static struct breakpoint *
8923 momentary_breakpoint_from_master (struct breakpoint *orig,
8924 enum bptype type,
8925 const struct breakpoint_ops *ops)
8926 {
8927 struct breakpoint *copy;
8928
8929 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8930 copy->loc = allocate_bp_location (copy);
8931 set_breakpoint_location_function (copy->loc, 1);
8932
8933 copy->loc->gdbarch = orig->loc->gdbarch;
8934 copy->loc->requested_address = orig->loc->requested_address;
8935 copy->loc->address = orig->loc->address;
8936 copy->loc->section = orig->loc->section;
8937 copy->loc->pspace = orig->loc->pspace;
8938 copy->loc->probe = orig->loc->probe;
8939 copy->loc->line_number = orig->loc->line_number;
8940 copy->loc->symtab = orig->loc->symtab;
8941 copy->frame_id = orig->frame_id;
8942 copy->thread = orig->thread;
8943 copy->pspace = orig->pspace;
8944
8945 copy->enable_state = bp_enabled;
8946 copy->disposition = disp_donttouch;
8947 copy->number = internal_breakpoint_number--;
8948
8949 update_global_location_list_nothrow (0);
8950 return copy;
8951 }
8952
8953 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8954 ORIG is NULL. */
8955
8956 struct breakpoint *
8957 clone_momentary_breakpoint (struct breakpoint *orig)
8958 {
8959 /* If there's nothing to clone, then return nothing. */
8960 if (orig == NULL)
8961 return NULL;
8962
8963 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8964 }
8965
8966 struct breakpoint *
8967 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8968 enum bptype type)
8969 {
8970 struct symtab_and_line sal;
8971
8972 sal = find_pc_line (pc, 0);
8973 sal.pc = pc;
8974 sal.section = find_pc_overlay (pc);
8975 sal.explicit_pc = 1;
8976
8977 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8978 }
8979 \f
8980
8981 /* Tell the user we have just set a breakpoint B. */
8982
8983 static void
8984 mention (struct breakpoint *b)
8985 {
8986 b->ops->print_mention (b);
8987 if (ui_out_is_mi_like_p (current_uiout))
8988 return;
8989 printf_filtered ("\n");
8990 }
8991 \f
8992
8993 static struct bp_location *
8994 add_location_to_breakpoint (struct breakpoint *b,
8995 const struct symtab_and_line *sal)
8996 {
8997 struct bp_location *loc, **tmp;
8998 CORE_ADDR adjusted_address;
8999 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9000
9001 if (loc_gdbarch == NULL)
9002 loc_gdbarch = b->gdbarch;
9003
9004 /* Adjust the breakpoint's address prior to allocating a location.
9005 Once we call allocate_bp_location(), that mostly uninitialized
9006 location will be placed on the location chain. Adjustment of the
9007 breakpoint may cause target_read_memory() to be called and we do
9008 not want its scan of the location chain to find a breakpoint and
9009 location that's only been partially initialized. */
9010 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9011 sal->pc, b->type);
9012
9013 /* Sort the locations by their ADDRESS. */
9014 loc = allocate_bp_location (b);
9015 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9016 tmp = &((*tmp)->next))
9017 ;
9018 loc->next = *tmp;
9019 *tmp = loc;
9020
9021 loc->requested_address = sal->pc;
9022 loc->address = adjusted_address;
9023 loc->pspace = sal->pspace;
9024 loc->probe = sal->probe;
9025 gdb_assert (loc->pspace != NULL);
9026 loc->section = sal->section;
9027 loc->gdbarch = loc_gdbarch;
9028 loc->line_number = sal->line;
9029 loc->symtab = sal->symtab;
9030
9031 set_breakpoint_location_function (loc,
9032 sal->explicit_pc || sal->explicit_line);
9033 return loc;
9034 }
9035 \f
9036
9037 /* Return 1 if LOC is pointing to a permanent breakpoint,
9038 return 0 otherwise. */
9039
9040 static int
9041 bp_loc_is_permanent (struct bp_location *loc)
9042 {
9043 int len;
9044 CORE_ADDR addr;
9045 const gdb_byte *bpoint;
9046 gdb_byte *target_mem;
9047 struct cleanup *cleanup;
9048 int retval = 0;
9049
9050 gdb_assert (loc != NULL);
9051
9052 addr = loc->address;
9053 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9054
9055 /* Software breakpoints unsupported? */
9056 if (bpoint == NULL)
9057 return 0;
9058
9059 target_mem = alloca (len);
9060
9061 /* Enable the automatic memory restoration from breakpoints while
9062 we read the memory. Otherwise we could say about our temporary
9063 breakpoints they are permanent. */
9064 cleanup = save_current_space_and_thread ();
9065
9066 switch_to_program_space_and_thread (loc->pspace);
9067 make_show_memory_breakpoints_cleanup (0);
9068
9069 if (target_read_memory (loc->address, target_mem, len) == 0
9070 && memcmp (target_mem, bpoint, len) == 0)
9071 retval = 1;
9072
9073 do_cleanups (cleanup);
9074
9075 return retval;
9076 }
9077
9078 /* Build a command list for the dprintf corresponding to the current
9079 settings of the dprintf style options. */
9080
9081 static void
9082 update_dprintf_command_list (struct breakpoint *b)
9083 {
9084 char *dprintf_args = b->extra_string;
9085 char *printf_line = NULL;
9086
9087 if (!dprintf_args)
9088 return;
9089
9090 dprintf_args = skip_spaces (dprintf_args);
9091
9092 /* Allow a comma, as it may have terminated a location, but don't
9093 insist on it. */
9094 if (*dprintf_args == ',')
9095 ++dprintf_args;
9096 dprintf_args = skip_spaces (dprintf_args);
9097
9098 if (*dprintf_args != '"')
9099 error (_("Bad format string, missing '\"'."));
9100
9101 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9102 printf_line = xstrprintf ("printf %s", dprintf_args);
9103 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9104 {
9105 if (!dprintf_function)
9106 error (_("No function supplied for dprintf call"));
9107
9108 if (dprintf_channel && strlen (dprintf_channel) > 0)
9109 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9110 dprintf_function,
9111 dprintf_channel,
9112 dprintf_args);
9113 else
9114 printf_line = xstrprintf ("call (void) %s (%s)",
9115 dprintf_function,
9116 dprintf_args);
9117 }
9118 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9119 {
9120 if (target_can_run_breakpoint_commands ())
9121 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9122 else
9123 {
9124 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9125 printf_line = xstrprintf ("printf %s", dprintf_args);
9126 }
9127 }
9128 else
9129 internal_error (__FILE__, __LINE__,
9130 _("Invalid dprintf style."));
9131
9132 gdb_assert (printf_line != NULL);
9133 /* Manufacture a printf sequence. */
9134 {
9135 struct command_line *printf_cmd_line
9136 = xmalloc (sizeof (struct command_line));
9137
9138 printf_cmd_line = xmalloc (sizeof (struct command_line));
9139 printf_cmd_line->control_type = simple_control;
9140 printf_cmd_line->body_count = 0;
9141 printf_cmd_line->body_list = NULL;
9142 printf_cmd_line->next = NULL;
9143 printf_cmd_line->line = printf_line;
9144
9145 breakpoint_set_commands (b, printf_cmd_line);
9146 }
9147 }
9148
9149 /* Update all dprintf commands, making their command lists reflect
9150 current style settings. */
9151
9152 static void
9153 update_dprintf_commands (char *args, int from_tty,
9154 struct cmd_list_element *c)
9155 {
9156 struct breakpoint *b;
9157
9158 ALL_BREAKPOINTS (b)
9159 {
9160 if (b->type == bp_dprintf)
9161 update_dprintf_command_list (b);
9162 }
9163 }
9164
9165 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9166 as textual description of the location, and COND_STRING
9167 as condition expression. */
9168
9169 static void
9170 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9171 struct symtabs_and_lines sals, char *addr_string,
9172 char *filter, char *cond_string,
9173 char *extra_string,
9174 enum bptype type, enum bpdisp disposition,
9175 int thread, int task, int ignore_count,
9176 const struct breakpoint_ops *ops, int from_tty,
9177 int enabled, int internal, unsigned flags,
9178 int display_canonical)
9179 {
9180 int i;
9181
9182 if (type == bp_hardware_breakpoint)
9183 {
9184 int target_resources_ok;
9185
9186 i = hw_breakpoint_used_count ();
9187 target_resources_ok =
9188 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9189 i + 1, 0);
9190 if (target_resources_ok == 0)
9191 error (_("No hardware breakpoint support in the target."));
9192 else if (target_resources_ok < 0)
9193 error (_("Hardware breakpoints used exceeds limit."));
9194 }
9195
9196 gdb_assert (sals.nelts > 0);
9197
9198 for (i = 0; i < sals.nelts; ++i)
9199 {
9200 struct symtab_and_line sal = sals.sals[i];
9201 struct bp_location *loc;
9202
9203 if (from_tty)
9204 {
9205 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9206 if (!loc_gdbarch)
9207 loc_gdbarch = gdbarch;
9208
9209 describe_other_breakpoints (loc_gdbarch,
9210 sal.pspace, sal.pc, sal.section, thread);
9211 }
9212
9213 if (i == 0)
9214 {
9215 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9216 b->thread = thread;
9217 b->task = task;
9218
9219 b->cond_string = cond_string;
9220 b->extra_string = extra_string;
9221 b->ignore_count = ignore_count;
9222 b->enable_state = enabled ? bp_enabled : bp_disabled;
9223 b->disposition = disposition;
9224
9225 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9226 b->loc->inserted = 1;
9227
9228 if (type == bp_static_tracepoint)
9229 {
9230 struct tracepoint *t = (struct tracepoint *) b;
9231 struct static_tracepoint_marker marker;
9232
9233 if (strace_marker_p (b))
9234 {
9235 /* We already know the marker exists, otherwise, we
9236 wouldn't see a sal for it. */
9237 char *p = &addr_string[3];
9238 char *endp;
9239 char *marker_str;
9240
9241 p = skip_spaces (p);
9242
9243 endp = skip_to_space (p);
9244
9245 marker_str = savestring (p, endp - p);
9246 t->static_trace_marker_id = marker_str;
9247
9248 printf_filtered (_("Probed static tracepoint "
9249 "marker \"%s\"\n"),
9250 t->static_trace_marker_id);
9251 }
9252 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9253 {
9254 t->static_trace_marker_id = xstrdup (marker.str_id);
9255 release_static_tracepoint_marker (&marker);
9256
9257 printf_filtered (_("Probed static tracepoint "
9258 "marker \"%s\"\n"),
9259 t->static_trace_marker_id);
9260 }
9261 else
9262 warning (_("Couldn't determine the static "
9263 "tracepoint marker to probe"));
9264 }
9265
9266 loc = b->loc;
9267 }
9268 else
9269 {
9270 loc = add_location_to_breakpoint (b, &sal);
9271 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9272 loc->inserted = 1;
9273 }
9274
9275 if (bp_loc_is_permanent (loc))
9276 make_breakpoint_permanent (b);
9277
9278 if (b->cond_string)
9279 {
9280 const char *arg = b->cond_string;
9281
9282 loc->cond = parse_exp_1 (&arg, loc->address,
9283 block_for_pc (loc->address), 0);
9284 if (*arg)
9285 error (_("Garbage '%s' follows condition"), arg);
9286 }
9287
9288 /* Dynamic printf requires and uses additional arguments on the
9289 command line, otherwise it's an error. */
9290 if (type == bp_dprintf)
9291 {
9292 if (b->extra_string)
9293 update_dprintf_command_list (b);
9294 else
9295 error (_("Format string required"));
9296 }
9297 else if (b->extra_string)
9298 error (_("Garbage '%s' at end of command"), b->extra_string);
9299 }
9300
9301 b->display_canonical = display_canonical;
9302 if (addr_string)
9303 b->addr_string = addr_string;
9304 else
9305 /* addr_string has to be used or breakpoint_re_set will delete
9306 me. */
9307 b->addr_string
9308 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9309 b->filter = filter;
9310 }
9311
9312 static void
9313 create_breakpoint_sal (struct gdbarch *gdbarch,
9314 struct symtabs_and_lines sals, char *addr_string,
9315 char *filter, char *cond_string,
9316 char *extra_string,
9317 enum bptype type, enum bpdisp disposition,
9318 int thread, int task, int ignore_count,
9319 const struct breakpoint_ops *ops, int from_tty,
9320 int enabled, int internal, unsigned flags,
9321 int display_canonical)
9322 {
9323 struct breakpoint *b;
9324 struct cleanup *old_chain;
9325
9326 if (is_tracepoint_type (type))
9327 {
9328 struct tracepoint *t;
9329
9330 t = XCNEW (struct tracepoint);
9331 b = &t->base;
9332 }
9333 else
9334 b = XNEW (struct breakpoint);
9335
9336 old_chain = make_cleanup (xfree, b);
9337
9338 init_breakpoint_sal (b, gdbarch,
9339 sals, addr_string,
9340 filter, cond_string, extra_string,
9341 type, disposition,
9342 thread, task, ignore_count,
9343 ops, from_tty,
9344 enabled, internal, flags,
9345 display_canonical);
9346 discard_cleanups (old_chain);
9347
9348 install_breakpoint (internal, b, 0);
9349 }
9350
9351 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9352 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9353 value. COND_STRING, if not NULL, specified the condition to be
9354 used for all breakpoints. Essentially the only case where
9355 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9356 function. In that case, it's still not possible to specify
9357 separate conditions for different overloaded functions, so
9358 we take just a single condition string.
9359
9360 NOTE: If the function succeeds, the caller is expected to cleanup
9361 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9362 array contents). If the function fails (error() is called), the
9363 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9364 COND and SALS arrays and each of those arrays contents. */
9365
9366 static void
9367 create_breakpoints_sal (struct gdbarch *gdbarch,
9368 struct linespec_result *canonical,
9369 char *cond_string, char *extra_string,
9370 enum bptype type, enum bpdisp disposition,
9371 int thread, int task, int ignore_count,
9372 const struct breakpoint_ops *ops, int from_tty,
9373 int enabled, int internal, unsigned flags)
9374 {
9375 int i;
9376 struct linespec_sals *lsal;
9377
9378 if (canonical->pre_expanded)
9379 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9380
9381 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9382 {
9383 /* Note that 'addr_string' can be NULL in the case of a plain
9384 'break', without arguments. */
9385 char *addr_string = (canonical->addr_string
9386 ? xstrdup (canonical->addr_string)
9387 : NULL);
9388 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9389 struct cleanup *inner = make_cleanup (xfree, addr_string);
9390
9391 make_cleanup (xfree, filter_string);
9392 create_breakpoint_sal (gdbarch, lsal->sals,
9393 addr_string,
9394 filter_string,
9395 cond_string, extra_string,
9396 type, disposition,
9397 thread, task, ignore_count, ops,
9398 from_tty, enabled, internal, flags,
9399 canonical->special_display);
9400 discard_cleanups (inner);
9401 }
9402 }
9403
9404 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9405 followed by conditionals. On return, SALS contains an array of SAL
9406 addresses found. ADDR_STRING contains a vector of (canonical)
9407 address strings. ADDRESS points to the end of the SAL.
9408
9409 The array and the line spec strings are allocated on the heap, it is
9410 the caller's responsibility to free them. */
9411
9412 static void
9413 parse_breakpoint_sals (char **address,
9414 struct linespec_result *canonical)
9415 {
9416 /* If no arg given, or if first arg is 'if ', use the default
9417 breakpoint. */
9418 if ((*address) == NULL
9419 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9420 {
9421 /* The last displayed codepoint, if it's valid, is our default breakpoint
9422 address. */
9423 if (last_displayed_sal_is_valid ())
9424 {
9425 struct linespec_sals lsal;
9426 struct symtab_and_line sal;
9427 CORE_ADDR pc;
9428
9429 init_sal (&sal); /* Initialize to zeroes. */
9430 lsal.sals.sals = (struct symtab_and_line *)
9431 xmalloc (sizeof (struct symtab_and_line));
9432
9433 /* Set sal's pspace, pc, symtab, and line to the values
9434 corresponding to the last call to print_frame_info.
9435 Be sure to reinitialize LINE with NOTCURRENT == 0
9436 as the breakpoint line number is inappropriate otherwise.
9437 find_pc_line would adjust PC, re-set it back. */
9438 get_last_displayed_sal (&sal);
9439 pc = sal.pc;
9440 sal = find_pc_line (pc, 0);
9441
9442 /* "break" without arguments is equivalent to "break *PC"
9443 where PC is the last displayed codepoint's address. So
9444 make sure to set sal.explicit_pc to prevent GDB from
9445 trying to expand the list of sals to include all other
9446 instances with the same symtab and line. */
9447 sal.pc = pc;
9448 sal.explicit_pc = 1;
9449
9450 lsal.sals.sals[0] = sal;
9451 lsal.sals.nelts = 1;
9452 lsal.canonical = NULL;
9453
9454 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9455 }
9456 else
9457 error (_("No default breakpoint address now."));
9458 }
9459 else
9460 {
9461 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9462
9463 /* Force almost all breakpoints to be in terms of the
9464 current_source_symtab (which is decode_line_1's default).
9465 This should produce the results we want almost all of the
9466 time while leaving default_breakpoint_* alone.
9467
9468 ObjC: However, don't match an Objective-C method name which
9469 may have a '+' or '-' succeeded by a '['. */
9470 if (last_displayed_sal_is_valid ()
9471 && (!cursal.symtab
9472 || ((strchr ("+-", (*address)[0]) != NULL)
9473 && ((*address)[1] != '['))))
9474 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9475 get_last_displayed_symtab (),
9476 get_last_displayed_line (),
9477 canonical, NULL, NULL);
9478 else
9479 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9480 cursal.symtab, cursal.line, canonical, NULL, NULL);
9481 }
9482 }
9483
9484
9485 /* Convert each SAL into a real PC. Verify that the PC can be
9486 inserted as a breakpoint. If it can't throw an error. */
9487
9488 static void
9489 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9490 {
9491 int i;
9492
9493 for (i = 0; i < sals->nelts; i++)
9494 resolve_sal_pc (&sals->sals[i]);
9495 }
9496
9497 /* Fast tracepoints may have restrictions on valid locations. For
9498 instance, a fast tracepoint using a jump instead of a trap will
9499 likely have to overwrite more bytes than a trap would, and so can
9500 only be placed where the instruction is longer than the jump, or a
9501 multi-instruction sequence does not have a jump into the middle of
9502 it, etc. */
9503
9504 static void
9505 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9506 struct symtabs_and_lines *sals)
9507 {
9508 int i, rslt;
9509 struct symtab_and_line *sal;
9510 char *msg;
9511 struct cleanup *old_chain;
9512
9513 for (i = 0; i < sals->nelts; i++)
9514 {
9515 struct gdbarch *sarch;
9516
9517 sal = &sals->sals[i];
9518
9519 sarch = get_sal_arch (*sal);
9520 /* We fall back to GDBARCH if there is no architecture
9521 associated with SAL. */
9522 if (sarch == NULL)
9523 sarch = gdbarch;
9524 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9525 NULL, &msg);
9526 old_chain = make_cleanup (xfree, msg);
9527
9528 if (!rslt)
9529 error (_("May not have a fast tracepoint at 0x%s%s"),
9530 paddress (sarch, sal->pc), (msg ? msg : ""));
9531
9532 do_cleanups (old_chain);
9533 }
9534 }
9535
9536 /* Issue an invalid thread ID error. */
9537
9538 static void ATTRIBUTE_NORETURN
9539 invalid_thread_id_error (int id)
9540 {
9541 error (_("Unknown thread %d."), id);
9542 }
9543
9544 /* Given TOK, a string specification of condition and thread, as
9545 accepted by the 'break' command, extract the condition
9546 string and thread number and set *COND_STRING and *THREAD.
9547 PC identifies the context at which the condition should be parsed.
9548 If no condition is found, *COND_STRING is set to NULL.
9549 If no thread is found, *THREAD is set to -1. */
9550
9551 static void
9552 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9553 char **cond_string, int *thread, int *task,
9554 char **rest)
9555 {
9556 *cond_string = NULL;
9557 *thread = -1;
9558 *task = 0;
9559 *rest = NULL;
9560
9561 while (tok && *tok)
9562 {
9563 const char *end_tok;
9564 int toklen;
9565 const char *cond_start = NULL;
9566 const char *cond_end = NULL;
9567
9568 tok = skip_spaces_const (tok);
9569
9570 if ((*tok == '"' || *tok == ',') && rest)
9571 {
9572 *rest = savestring (tok, strlen (tok));
9573 return;
9574 }
9575
9576 end_tok = skip_to_space_const (tok);
9577
9578 toklen = end_tok - tok;
9579
9580 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9581 {
9582 struct expression *expr;
9583
9584 tok = cond_start = end_tok + 1;
9585 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9586 xfree (expr);
9587 cond_end = tok;
9588 *cond_string = savestring (cond_start, cond_end - cond_start);
9589 }
9590 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9591 {
9592 char *tmptok;
9593
9594 tok = end_tok + 1;
9595 *thread = strtol (tok, &tmptok, 0);
9596 if (tok == tmptok)
9597 error (_("Junk after thread keyword."));
9598 if (!valid_thread_id (*thread))
9599 invalid_thread_id_error (*thread);
9600 tok = tmptok;
9601 }
9602 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9603 {
9604 char *tmptok;
9605
9606 tok = end_tok + 1;
9607 *task = strtol (tok, &tmptok, 0);
9608 if (tok == tmptok)
9609 error (_("Junk after task keyword."));
9610 if (!valid_task_id (*task))
9611 error (_("Unknown task %d."), *task);
9612 tok = tmptok;
9613 }
9614 else if (rest)
9615 {
9616 *rest = savestring (tok, strlen (tok));
9617 return;
9618 }
9619 else
9620 error (_("Junk at end of arguments."));
9621 }
9622 }
9623
9624 /* Decode a static tracepoint marker spec. */
9625
9626 static struct symtabs_and_lines
9627 decode_static_tracepoint_spec (char **arg_p)
9628 {
9629 VEC(static_tracepoint_marker_p) *markers = NULL;
9630 struct symtabs_and_lines sals;
9631 struct cleanup *old_chain;
9632 char *p = &(*arg_p)[3];
9633 char *endp;
9634 char *marker_str;
9635 int i;
9636
9637 p = skip_spaces (p);
9638
9639 endp = skip_to_space (p);
9640
9641 marker_str = savestring (p, endp - p);
9642 old_chain = make_cleanup (xfree, marker_str);
9643
9644 markers = target_static_tracepoint_markers_by_strid (marker_str);
9645 if (VEC_empty(static_tracepoint_marker_p, markers))
9646 error (_("No known static tracepoint marker named %s"), marker_str);
9647
9648 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9649 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9650
9651 for (i = 0; i < sals.nelts; i++)
9652 {
9653 struct static_tracepoint_marker *marker;
9654
9655 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9656
9657 init_sal (&sals.sals[i]);
9658
9659 sals.sals[i] = find_pc_line (marker->address, 0);
9660 sals.sals[i].pc = marker->address;
9661
9662 release_static_tracepoint_marker (marker);
9663 }
9664
9665 do_cleanups (old_chain);
9666
9667 *arg_p = endp;
9668 return sals;
9669 }
9670
9671 /* Set a breakpoint. This function is shared between CLI and MI
9672 functions for setting a breakpoint. This function has two major
9673 modes of operations, selected by the PARSE_ARG parameter. If
9674 non-zero, the function will parse ARG, extracting location,
9675 condition, thread and extra string. Otherwise, ARG is just the
9676 breakpoint's location, with condition, thread, and extra string
9677 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9678 If INTERNAL is non-zero, the breakpoint number will be allocated
9679 from the internal breakpoint count. Returns true if any breakpoint
9680 was created; false otherwise. */
9681
9682 int
9683 create_breakpoint (struct gdbarch *gdbarch,
9684 char *arg, char *cond_string,
9685 int thread, char *extra_string,
9686 int parse_arg,
9687 int tempflag, enum bptype type_wanted,
9688 int ignore_count,
9689 enum auto_boolean pending_break_support,
9690 const struct breakpoint_ops *ops,
9691 int from_tty, int enabled, int internal,
9692 unsigned flags)
9693 {
9694 volatile struct gdb_exception e;
9695 char *copy_arg = NULL;
9696 char *addr_start = arg;
9697 struct linespec_result canonical;
9698 struct cleanup *old_chain;
9699 struct cleanup *bkpt_chain = NULL;
9700 int pending = 0;
9701 int task = 0;
9702 int prev_bkpt_count = breakpoint_count;
9703
9704 gdb_assert (ops != NULL);
9705
9706 init_linespec_result (&canonical);
9707
9708 TRY_CATCH (e, RETURN_MASK_ALL)
9709 {
9710 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9711 addr_start, &copy_arg);
9712 }
9713
9714 /* If caller is interested in rc value from parse, set value. */
9715 switch (e.reason)
9716 {
9717 case GDB_NO_ERROR:
9718 if (VEC_empty (linespec_sals, canonical.sals))
9719 return 0;
9720 break;
9721 case RETURN_ERROR:
9722 switch (e.error)
9723 {
9724 case NOT_FOUND_ERROR:
9725
9726 /* If pending breakpoint support is turned off, throw
9727 error. */
9728
9729 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9730 throw_exception (e);
9731
9732 exception_print (gdb_stderr, e);
9733
9734 /* If pending breakpoint support is auto query and the user
9735 selects no, then simply return the error code. */
9736 if (pending_break_support == AUTO_BOOLEAN_AUTO
9737 && !nquery (_("Make %s pending on future shared library load? "),
9738 bptype_string (type_wanted)))
9739 return 0;
9740
9741 /* At this point, either the user was queried about setting
9742 a pending breakpoint and selected yes, or pending
9743 breakpoint behavior is on and thus a pending breakpoint
9744 is defaulted on behalf of the user. */
9745 {
9746 struct linespec_sals lsal;
9747
9748 copy_arg = xstrdup (addr_start);
9749 lsal.canonical = xstrdup (copy_arg);
9750 lsal.sals.nelts = 1;
9751 lsal.sals.sals = XNEW (struct symtab_and_line);
9752 init_sal (&lsal.sals.sals[0]);
9753 pending = 1;
9754 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9755 }
9756 break;
9757 default:
9758 throw_exception (e);
9759 }
9760 break;
9761 default:
9762 throw_exception (e);
9763 }
9764
9765 /* Create a chain of things that always need to be cleaned up. */
9766 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9767
9768 /* ----------------------------- SNIP -----------------------------
9769 Anything added to the cleanup chain beyond this point is assumed
9770 to be part of a breakpoint. If the breakpoint create succeeds
9771 then the memory is not reclaimed. */
9772 bkpt_chain = make_cleanup (null_cleanup, 0);
9773
9774 /* Resolve all line numbers to PC's and verify that the addresses
9775 are ok for the target. */
9776 if (!pending)
9777 {
9778 int ix;
9779 struct linespec_sals *iter;
9780
9781 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9782 breakpoint_sals_to_pc (&iter->sals);
9783 }
9784
9785 /* Fast tracepoints may have additional restrictions on location. */
9786 if (!pending && type_wanted == bp_fast_tracepoint)
9787 {
9788 int ix;
9789 struct linespec_sals *iter;
9790
9791 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9792 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9793 }
9794
9795 /* Verify that condition can be parsed, before setting any
9796 breakpoints. Allocate a separate condition expression for each
9797 breakpoint. */
9798 if (!pending)
9799 {
9800 if (parse_arg)
9801 {
9802 char *rest;
9803 struct linespec_sals *lsal;
9804
9805 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9806
9807 /* Here we only parse 'arg' to separate condition
9808 from thread number, so parsing in context of first
9809 sal is OK. When setting the breakpoint we'll
9810 re-parse it in context of each sal. */
9811
9812 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9813 &thread, &task, &rest);
9814 if (cond_string)
9815 make_cleanup (xfree, cond_string);
9816 if (rest)
9817 make_cleanup (xfree, rest);
9818 if (rest)
9819 extra_string = rest;
9820 }
9821 else
9822 {
9823 if (*arg != '\0')
9824 error (_("Garbage '%s' at end of location"), arg);
9825
9826 /* Create a private copy of condition string. */
9827 if (cond_string)
9828 {
9829 cond_string = xstrdup (cond_string);
9830 make_cleanup (xfree, cond_string);
9831 }
9832 /* Create a private copy of any extra string. */
9833 if (extra_string)
9834 {
9835 extra_string = xstrdup (extra_string);
9836 make_cleanup (xfree, extra_string);
9837 }
9838 }
9839
9840 ops->create_breakpoints_sal (gdbarch, &canonical,
9841 cond_string, extra_string, type_wanted,
9842 tempflag ? disp_del : disp_donttouch,
9843 thread, task, ignore_count, ops,
9844 from_tty, enabled, internal, flags);
9845 }
9846 else
9847 {
9848 struct breakpoint *b;
9849
9850 make_cleanup (xfree, copy_arg);
9851
9852 if (is_tracepoint_type (type_wanted))
9853 {
9854 struct tracepoint *t;
9855
9856 t = XCNEW (struct tracepoint);
9857 b = &t->base;
9858 }
9859 else
9860 b = XNEW (struct breakpoint);
9861
9862 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9863
9864 b->addr_string = copy_arg;
9865 if (parse_arg)
9866 b->cond_string = NULL;
9867 else
9868 {
9869 /* Create a private copy of condition string. */
9870 if (cond_string)
9871 {
9872 cond_string = xstrdup (cond_string);
9873 make_cleanup (xfree, cond_string);
9874 }
9875 b->cond_string = cond_string;
9876 }
9877 b->extra_string = NULL;
9878 b->ignore_count = ignore_count;
9879 b->disposition = tempflag ? disp_del : disp_donttouch;
9880 b->condition_not_parsed = 1;
9881 b->enable_state = enabled ? bp_enabled : bp_disabled;
9882 if ((type_wanted != bp_breakpoint
9883 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9884 b->pspace = current_program_space;
9885
9886 install_breakpoint (internal, b, 0);
9887 }
9888
9889 if (VEC_length (linespec_sals, canonical.sals) > 1)
9890 {
9891 warning (_("Multiple breakpoints were set.\nUse the "
9892 "\"delete\" command to delete unwanted breakpoints."));
9893 prev_breakpoint_count = prev_bkpt_count;
9894 }
9895
9896 /* That's it. Discard the cleanups for data inserted into the
9897 breakpoint. */
9898 discard_cleanups (bkpt_chain);
9899 /* But cleanup everything else. */
9900 do_cleanups (old_chain);
9901
9902 /* error call may happen here - have BKPT_CHAIN already discarded. */
9903 update_global_location_list (1);
9904
9905 return 1;
9906 }
9907
9908 /* Set a breakpoint.
9909 ARG is a string describing breakpoint address,
9910 condition, and thread.
9911 FLAG specifies if a breakpoint is hardware on,
9912 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9913 and BP_TEMPFLAG. */
9914
9915 static void
9916 break_command_1 (char *arg, int flag, int from_tty)
9917 {
9918 int tempflag = flag & BP_TEMPFLAG;
9919 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9920 ? bp_hardware_breakpoint
9921 : bp_breakpoint);
9922 struct breakpoint_ops *ops;
9923 const char *arg_cp = arg;
9924
9925 /* Matching breakpoints on probes. */
9926 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9927 ops = &bkpt_probe_breakpoint_ops;
9928 else
9929 ops = &bkpt_breakpoint_ops;
9930
9931 create_breakpoint (get_current_arch (),
9932 arg,
9933 NULL, 0, NULL, 1 /* parse arg */,
9934 tempflag, type_wanted,
9935 0 /* Ignore count */,
9936 pending_break_support,
9937 ops,
9938 from_tty,
9939 1 /* enabled */,
9940 0 /* internal */,
9941 0);
9942 }
9943
9944 /* Helper function for break_command_1 and disassemble_command. */
9945
9946 void
9947 resolve_sal_pc (struct symtab_and_line *sal)
9948 {
9949 CORE_ADDR pc;
9950
9951 if (sal->pc == 0 && sal->symtab != NULL)
9952 {
9953 if (!find_line_pc (sal->symtab, sal->line, &pc))
9954 error (_("No line %d in file \"%s\"."),
9955 sal->line, symtab_to_filename_for_display (sal->symtab));
9956 sal->pc = pc;
9957
9958 /* If this SAL corresponds to a breakpoint inserted using a line
9959 number, then skip the function prologue if necessary. */
9960 if (sal->explicit_line)
9961 skip_prologue_sal (sal);
9962 }
9963
9964 if (sal->section == 0 && sal->symtab != NULL)
9965 {
9966 struct blockvector *bv;
9967 struct block *b;
9968 struct symbol *sym;
9969
9970 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9971 if (bv != NULL)
9972 {
9973 sym = block_linkage_function (b);
9974 if (sym != NULL)
9975 {
9976 fixup_symbol_section (sym, sal->symtab->objfile);
9977 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9978 }
9979 else
9980 {
9981 /* It really is worthwhile to have the section, so we'll
9982 just have to look harder. This case can be executed
9983 if we have line numbers but no functions (as can
9984 happen in assembly source). */
9985
9986 struct bound_minimal_symbol msym;
9987 struct cleanup *old_chain = save_current_space_and_thread ();
9988
9989 switch_to_program_space_and_thread (sal->pspace);
9990
9991 msym = lookup_minimal_symbol_by_pc (sal->pc);
9992 if (msym.minsym)
9993 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9994
9995 do_cleanups (old_chain);
9996 }
9997 }
9998 }
9999 }
10000
10001 void
10002 break_command (char *arg, int from_tty)
10003 {
10004 break_command_1 (arg, 0, from_tty);
10005 }
10006
10007 void
10008 tbreak_command (char *arg, int from_tty)
10009 {
10010 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10011 }
10012
10013 static void
10014 hbreak_command (char *arg, int from_tty)
10015 {
10016 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10017 }
10018
10019 static void
10020 thbreak_command (char *arg, int from_tty)
10021 {
10022 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10023 }
10024
10025 static void
10026 stop_command (char *arg, int from_tty)
10027 {
10028 printf_filtered (_("Specify the type of breakpoint to set.\n\
10029 Usage: stop in <function | address>\n\
10030 stop at <line>\n"));
10031 }
10032
10033 static void
10034 stopin_command (char *arg, int from_tty)
10035 {
10036 int badInput = 0;
10037
10038 if (arg == (char *) NULL)
10039 badInput = 1;
10040 else if (*arg != '*')
10041 {
10042 char *argptr = arg;
10043 int hasColon = 0;
10044
10045 /* Look for a ':'. If this is a line number specification, then
10046 say it is bad, otherwise, it should be an address or
10047 function/method name. */
10048 while (*argptr && !hasColon)
10049 {
10050 hasColon = (*argptr == ':');
10051 argptr++;
10052 }
10053
10054 if (hasColon)
10055 badInput = (*argptr != ':'); /* Not a class::method */
10056 else
10057 badInput = isdigit (*arg); /* a simple line number */
10058 }
10059
10060 if (badInput)
10061 printf_filtered (_("Usage: stop in <function | address>\n"));
10062 else
10063 break_command_1 (arg, 0, from_tty);
10064 }
10065
10066 static void
10067 stopat_command (char *arg, int from_tty)
10068 {
10069 int badInput = 0;
10070
10071 if (arg == (char *) NULL || *arg == '*') /* no line number */
10072 badInput = 1;
10073 else
10074 {
10075 char *argptr = arg;
10076 int hasColon = 0;
10077
10078 /* Look for a ':'. If there is a '::' then get out, otherwise
10079 it is probably a line number. */
10080 while (*argptr && !hasColon)
10081 {
10082 hasColon = (*argptr == ':');
10083 argptr++;
10084 }
10085
10086 if (hasColon)
10087 badInput = (*argptr == ':'); /* we have class::method */
10088 else
10089 badInput = !isdigit (*arg); /* not a line number */
10090 }
10091
10092 if (badInput)
10093 printf_filtered (_("Usage: stop at <line>\n"));
10094 else
10095 break_command_1 (arg, 0, from_tty);
10096 }
10097
10098 /* The dynamic printf command is mostly like a regular breakpoint, but
10099 with a prewired command list consisting of a single output command,
10100 built from extra arguments supplied on the dprintf command
10101 line. */
10102
10103 static void
10104 dprintf_command (char *arg, int from_tty)
10105 {
10106 create_breakpoint (get_current_arch (),
10107 arg,
10108 NULL, 0, NULL, 1 /* parse arg */,
10109 0, bp_dprintf,
10110 0 /* Ignore count */,
10111 pending_break_support,
10112 &dprintf_breakpoint_ops,
10113 from_tty,
10114 1 /* enabled */,
10115 0 /* internal */,
10116 0);
10117 }
10118
10119 static void
10120 agent_printf_command (char *arg, int from_tty)
10121 {
10122 error (_("May only run agent-printf on the target"));
10123 }
10124
10125 /* Implement the "breakpoint_hit" breakpoint_ops method for
10126 ranged breakpoints. */
10127
10128 static int
10129 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10130 struct address_space *aspace,
10131 CORE_ADDR bp_addr,
10132 const struct target_waitstatus *ws)
10133 {
10134 if (ws->kind != TARGET_WAITKIND_STOPPED
10135 || ws->value.sig != GDB_SIGNAL_TRAP)
10136 return 0;
10137
10138 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10139 bl->length, aspace, bp_addr);
10140 }
10141
10142 /* Implement the "resources_needed" breakpoint_ops method for
10143 ranged breakpoints. */
10144
10145 static int
10146 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10147 {
10148 return target_ranged_break_num_registers ();
10149 }
10150
10151 /* Implement the "print_it" breakpoint_ops method for
10152 ranged breakpoints. */
10153
10154 static enum print_stop_action
10155 print_it_ranged_breakpoint (bpstat bs)
10156 {
10157 struct breakpoint *b = bs->breakpoint_at;
10158 struct bp_location *bl = b->loc;
10159 struct ui_out *uiout = current_uiout;
10160
10161 gdb_assert (b->type == bp_hardware_breakpoint);
10162
10163 /* Ranged breakpoints have only one location. */
10164 gdb_assert (bl && bl->next == NULL);
10165
10166 annotate_breakpoint (b->number);
10167 if (b->disposition == disp_del)
10168 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10169 else
10170 ui_out_text (uiout, "\nRanged breakpoint ");
10171 if (ui_out_is_mi_like_p (uiout))
10172 {
10173 ui_out_field_string (uiout, "reason",
10174 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10175 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10176 }
10177 ui_out_field_int (uiout, "bkptno", b->number);
10178 ui_out_text (uiout, ", ");
10179
10180 return PRINT_SRC_AND_LOC;
10181 }
10182
10183 /* Implement the "print_one" breakpoint_ops method for
10184 ranged breakpoints. */
10185
10186 static void
10187 print_one_ranged_breakpoint (struct breakpoint *b,
10188 struct bp_location **last_loc)
10189 {
10190 struct bp_location *bl = b->loc;
10191 struct value_print_options opts;
10192 struct ui_out *uiout = current_uiout;
10193
10194 /* Ranged breakpoints have only one location. */
10195 gdb_assert (bl && bl->next == NULL);
10196
10197 get_user_print_options (&opts);
10198
10199 if (opts.addressprint)
10200 /* We don't print the address range here, it will be printed later
10201 by print_one_detail_ranged_breakpoint. */
10202 ui_out_field_skip (uiout, "addr");
10203 annotate_field (5);
10204 print_breakpoint_location (b, bl);
10205 *last_loc = bl;
10206 }
10207
10208 /* Implement the "print_one_detail" breakpoint_ops method for
10209 ranged breakpoints. */
10210
10211 static void
10212 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10213 struct ui_out *uiout)
10214 {
10215 CORE_ADDR address_start, address_end;
10216 struct bp_location *bl = b->loc;
10217 struct ui_file *stb = mem_fileopen ();
10218 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10219
10220 gdb_assert (bl);
10221
10222 address_start = bl->address;
10223 address_end = address_start + bl->length - 1;
10224
10225 ui_out_text (uiout, "\taddress range: ");
10226 fprintf_unfiltered (stb, "[%s, %s]",
10227 print_core_address (bl->gdbarch, address_start),
10228 print_core_address (bl->gdbarch, address_end));
10229 ui_out_field_stream (uiout, "addr", stb);
10230 ui_out_text (uiout, "\n");
10231
10232 do_cleanups (cleanup);
10233 }
10234
10235 /* Implement the "print_mention" breakpoint_ops method for
10236 ranged breakpoints. */
10237
10238 static void
10239 print_mention_ranged_breakpoint (struct breakpoint *b)
10240 {
10241 struct bp_location *bl = b->loc;
10242 struct ui_out *uiout = current_uiout;
10243
10244 gdb_assert (bl);
10245 gdb_assert (b->type == bp_hardware_breakpoint);
10246
10247 if (ui_out_is_mi_like_p (uiout))
10248 return;
10249
10250 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10251 b->number, paddress (bl->gdbarch, bl->address),
10252 paddress (bl->gdbarch, bl->address + bl->length - 1));
10253 }
10254
10255 /* Implement the "print_recreate" breakpoint_ops method for
10256 ranged breakpoints. */
10257
10258 static void
10259 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10260 {
10261 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10262 b->addr_string_range_end);
10263 print_recreate_thread (b, fp);
10264 }
10265
10266 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10267
10268 static struct breakpoint_ops ranged_breakpoint_ops;
10269
10270 /* Find the address where the end of the breakpoint range should be
10271 placed, given the SAL of the end of the range. This is so that if
10272 the user provides a line number, the end of the range is set to the
10273 last instruction of the given line. */
10274
10275 static CORE_ADDR
10276 find_breakpoint_range_end (struct symtab_and_line sal)
10277 {
10278 CORE_ADDR end;
10279
10280 /* If the user provided a PC value, use it. Otherwise,
10281 find the address of the end of the given location. */
10282 if (sal.explicit_pc)
10283 end = sal.pc;
10284 else
10285 {
10286 int ret;
10287 CORE_ADDR start;
10288
10289 ret = find_line_pc_range (sal, &start, &end);
10290 if (!ret)
10291 error (_("Could not find location of the end of the range."));
10292
10293 /* find_line_pc_range returns the start of the next line. */
10294 end--;
10295 }
10296
10297 return end;
10298 }
10299
10300 /* Implement the "break-range" CLI command. */
10301
10302 static void
10303 break_range_command (char *arg, int from_tty)
10304 {
10305 char *arg_start, *addr_string_start, *addr_string_end;
10306 struct linespec_result canonical_start, canonical_end;
10307 int bp_count, can_use_bp, length;
10308 CORE_ADDR end;
10309 struct breakpoint *b;
10310 struct symtab_and_line sal_start, sal_end;
10311 struct cleanup *cleanup_bkpt;
10312 struct linespec_sals *lsal_start, *lsal_end;
10313
10314 /* We don't support software ranged breakpoints. */
10315 if (target_ranged_break_num_registers () < 0)
10316 error (_("This target does not support hardware ranged breakpoints."));
10317
10318 bp_count = hw_breakpoint_used_count ();
10319 bp_count += target_ranged_break_num_registers ();
10320 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10321 bp_count, 0);
10322 if (can_use_bp < 0)
10323 error (_("Hardware breakpoints used exceeds limit."));
10324
10325 arg = skip_spaces (arg);
10326 if (arg == NULL || arg[0] == '\0')
10327 error(_("No address range specified."));
10328
10329 init_linespec_result (&canonical_start);
10330
10331 arg_start = arg;
10332 parse_breakpoint_sals (&arg, &canonical_start);
10333
10334 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10335
10336 if (arg[0] != ',')
10337 error (_("Too few arguments."));
10338 else if (VEC_empty (linespec_sals, canonical_start.sals))
10339 error (_("Could not find location of the beginning of the range."));
10340
10341 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10342
10343 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10344 || lsal_start->sals.nelts != 1)
10345 error (_("Cannot create a ranged breakpoint with multiple locations."));
10346
10347 sal_start = lsal_start->sals.sals[0];
10348 addr_string_start = savestring (arg_start, arg - arg_start);
10349 make_cleanup (xfree, addr_string_start);
10350
10351 arg++; /* Skip the comma. */
10352 arg = skip_spaces (arg);
10353
10354 /* Parse the end location. */
10355
10356 init_linespec_result (&canonical_end);
10357 arg_start = arg;
10358
10359 /* We call decode_line_full directly here instead of using
10360 parse_breakpoint_sals because we need to specify the start location's
10361 symtab and line as the default symtab and line for the end of the
10362 range. This makes it possible to have ranges like "foo.c:27, +14",
10363 where +14 means 14 lines from the start location. */
10364 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10365 sal_start.symtab, sal_start.line,
10366 &canonical_end, NULL, NULL);
10367
10368 make_cleanup_destroy_linespec_result (&canonical_end);
10369
10370 if (VEC_empty (linespec_sals, canonical_end.sals))
10371 error (_("Could not find location of the end of the range."));
10372
10373 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10374 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10375 || lsal_end->sals.nelts != 1)
10376 error (_("Cannot create a ranged breakpoint with multiple locations."));
10377
10378 sal_end = lsal_end->sals.sals[0];
10379 addr_string_end = savestring (arg_start, arg - arg_start);
10380 make_cleanup (xfree, addr_string_end);
10381
10382 end = find_breakpoint_range_end (sal_end);
10383 if (sal_start.pc > end)
10384 error (_("Invalid address range, end precedes start."));
10385
10386 length = end - sal_start.pc + 1;
10387 if (length < 0)
10388 /* Length overflowed. */
10389 error (_("Address range too large."));
10390 else if (length == 1)
10391 {
10392 /* This range is simple enough to be handled by
10393 the `hbreak' command. */
10394 hbreak_command (addr_string_start, 1);
10395
10396 do_cleanups (cleanup_bkpt);
10397
10398 return;
10399 }
10400
10401 /* Now set up the breakpoint. */
10402 b = set_raw_breakpoint (get_current_arch (), sal_start,
10403 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10404 set_breakpoint_count (breakpoint_count + 1);
10405 b->number = breakpoint_count;
10406 b->disposition = disp_donttouch;
10407 b->addr_string = xstrdup (addr_string_start);
10408 b->addr_string_range_end = xstrdup (addr_string_end);
10409 b->loc->length = length;
10410
10411 do_cleanups (cleanup_bkpt);
10412
10413 mention (b);
10414 observer_notify_breakpoint_created (b);
10415 update_global_location_list (1);
10416 }
10417
10418 /* Return non-zero if EXP is verified as constant. Returned zero
10419 means EXP is variable. Also the constant detection may fail for
10420 some constant expressions and in such case still falsely return
10421 zero. */
10422
10423 static int
10424 watchpoint_exp_is_const (const struct expression *exp)
10425 {
10426 int i = exp->nelts;
10427
10428 while (i > 0)
10429 {
10430 int oplenp, argsp;
10431
10432 /* We are only interested in the descriptor of each element. */
10433 operator_length (exp, i, &oplenp, &argsp);
10434 i -= oplenp;
10435
10436 switch (exp->elts[i].opcode)
10437 {
10438 case BINOP_ADD:
10439 case BINOP_SUB:
10440 case BINOP_MUL:
10441 case BINOP_DIV:
10442 case BINOP_REM:
10443 case BINOP_MOD:
10444 case BINOP_LSH:
10445 case BINOP_RSH:
10446 case BINOP_LOGICAL_AND:
10447 case BINOP_LOGICAL_OR:
10448 case BINOP_BITWISE_AND:
10449 case BINOP_BITWISE_IOR:
10450 case BINOP_BITWISE_XOR:
10451 case BINOP_EQUAL:
10452 case BINOP_NOTEQUAL:
10453 case BINOP_LESS:
10454 case BINOP_GTR:
10455 case BINOP_LEQ:
10456 case BINOP_GEQ:
10457 case BINOP_REPEAT:
10458 case BINOP_COMMA:
10459 case BINOP_EXP:
10460 case BINOP_MIN:
10461 case BINOP_MAX:
10462 case BINOP_INTDIV:
10463 case BINOP_CONCAT:
10464 case BINOP_IN:
10465 case BINOP_RANGE:
10466 case TERNOP_COND:
10467 case TERNOP_SLICE:
10468
10469 case OP_LONG:
10470 case OP_DOUBLE:
10471 case OP_DECFLOAT:
10472 case OP_LAST:
10473 case OP_COMPLEX:
10474 case OP_STRING:
10475 case OP_ARRAY:
10476 case OP_TYPE:
10477 case OP_TYPEOF:
10478 case OP_DECLTYPE:
10479 case OP_TYPEID:
10480 case OP_NAME:
10481 case OP_OBJC_NSSTRING:
10482
10483 case UNOP_NEG:
10484 case UNOP_LOGICAL_NOT:
10485 case UNOP_COMPLEMENT:
10486 case UNOP_ADDR:
10487 case UNOP_HIGH:
10488 case UNOP_CAST:
10489
10490 case UNOP_CAST_TYPE:
10491 case UNOP_REINTERPRET_CAST:
10492 case UNOP_DYNAMIC_CAST:
10493 /* Unary, binary and ternary operators: We have to check
10494 their operands. If they are constant, then so is the
10495 result of that operation. For instance, if A and B are
10496 determined to be constants, then so is "A + B".
10497
10498 UNOP_IND is one exception to the rule above, because the
10499 value of *ADDR is not necessarily a constant, even when
10500 ADDR is. */
10501 break;
10502
10503 case OP_VAR_VALUE:
10504 /* Check whether the associated symbol is a constant.
10505
10506 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10507 possible that a buggy compiler could mark a variable as
10508 constant even when it is not, and TYPE_CONST would return
10509 true in this case, while SYMBOL_CLASS wouldn't.
10510
10511 We also have to check for function symbols because they
10512 are always constant. */
10513 {
10514 struct symbol *s = exp->elts[i + 2].symbol;
10515
10516 if (SYMBOL_CLASS (s) != LOC_BLOCK
10517 && SYMBOL_CLASS (s) != LOC_CONST
10518 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10519 return 0;
10520 break;
10521 }
10522
10523 /* The default action is to return 0 because we are using
10524 the optimistic approach here: If we don't know something,
10525 then it is not a constant. */
10526 default:
10527 return 0;
10528 }
10529 }
10530
10531 return 1;
10532 }
10533
10534 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10535
10536 static void
10537 dtor_watchpoint (struct breakpoint *self)
10538 {
10539 struct watchpoint *w = (struct watchpoint *) self;
10540
10541 xfree (w->cond_exp);
10542 xfree (w->exp);
10543 xfree (w->exp_string);
10544 xfree (w->exp_string_reparse);
10545 value_free (w->val);
10546
10547 base_breakpoint_ops.dtor (self);
10548 }
10549
10550 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10551
10552 static void
10553 re_set_watchpoint (struct breakpoint *b)
10554 {
10555 struct watchpoint *w = (struct watchpoint *) b;
10556
10557 /* Watchpoint can be either on expression using entirely global
10558 variables, or it can be on local variables.
10559
10560 Watchpoints of the first kind are never auto-deleted, and even
10561 persist across program restarts. Since they can use variables
10562 from shared libraries, we need to reparse expression as libraries
10563 are loaded and unloaded.
10564
10565 Watchpoints on local variables can also change meaning as result
10566 of solib event. For example, if a watchpoint uses both a local
10567 and a global variables in expression, it's a local watchpoint,
10568 but unloading of a shared library will make the expression
10569 invalid. This is not a very common use case, but we still
10570 re-evaluate expression, to avoid surprises to the user.
10571
10572 Note that for local watchpoints, we re-evaluate it only if
10573 watchpoints frame id is still valid. If it's not, it means the
10574 watchpoint is out of scope and will be deleted soon. In fact,
10575 I'm not sure we'll ever be called in this case.
10576
10577 If a local watchpoint's frame id is still valid, then
10578 w->exp_valid_block is likewise valid, and we can safely use it.
10579
10580 Don't do anything about disabled watchpoints, since they will be
10581 reevaluated again when enabled. */
10582 update_watchpoint (w, 1 /* reparse */);
10583 }
10584
10585 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10586
10587 static int
10588 insert_watchpoint (struct bp_location *bl)
10589 {
10590 struct watchpoint *w = (struct watchpoint *) bl->owner;
10591 int length = w->exact ? 1 : bl->length;
10592
10593 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10594 w->cond_exp);
10595 }
10596
10597 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10598
10599 static int
10600 remove_watchpoint (struct bp_location *bl)
10601 {
10602 struct watchpoint *w = (struct watchpoint *) bl->owner;
10603 int length = w->exact ? 1 : bl->length;
10604
10605 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10606 w->cond_exp);
10607 }
10608
10609 static int
10610 breakpoint_hit_watchpoint (const struct bp_location *bl,
10611 struct address_space *aspace, CORE_ADDR bp_addr,
10612 const struct target_waitstatus *ws)
10613 {
10614 struct breakpoint *b = bl->owner;
10615 struct watchpoint *w = (struct watchpoint *) b;
10616
10617 /* Continuable hardware watchpoints are treated as non-existent if the
10618 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10619 some data address). Otherwise gdb won't stop on a break instruction
10620 in the code (not from a breakpoint) when a hardware watchpoint has
10621 been defined. Also skip watchpoints which we know did not trigger
10622 (did not match the data address). */
10623 if (is_hardware_watchpoint (b)
10624 && w->watchpoint_triggered == watch_triggered_no)
10625 return 0;
10626
10627 return 1;
10628 }
10629
10630 static void
10631 check_status_watchpoint (bpstat bs)
10632 {
10633 gdb_assert (is_watchpoint (bs->breakpoint_at));
10634
10635 bpstat_check_watchpoint (bs);
10636 }
10637
10638 /* Implement the "resources_needed" breakpoint_ops method for
10639 hardware watchpoints. */
10640
10641 static int
10642 resources_needed_watchpoint (const struct bp_location *bl)
10643 {
10644 struct watchpoint *w = (struct watchpoint *) bl->owner;
10645 int length = w->exact? 1 : bl->length;
10646
10647 return target_region_ok_for_hw_watchpoint (bl->address, length);
10648 }
10649
10650 /* Implement the "works_in_software_mode" breakpoint_ops method for
10651 hardware watchpoints. */
10652
10653 static int
10654 works_in_software_mode_watchpoint (const struct breakpoint *b)
10655 {
10656 /* Read and access watchpoints only work with hardware support. */
10657 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10658 }
10659
10660 static enum print_stop_action
10661 print_it_watchpoint (bpstat bs)
10662 {
10663 struct cleanup *old_chain;
10664 struct breakpoint *b;
10665 struct ui_file *stb;
10666 enum print_stop_action result;
10667 struct watchpoint *w;
10668 struct ui_out *uiout = current_uiout;
10669
10670 gdb_assert (bs->bp_location_at != NULL);
10671
10672 b = bs->breakpoint_at;
10673 w = (struct watchpoint *) b;
10674
10675 stb = mem_fileopen ();
10676 old_chain = make_cleanup_ui_file_delete (stb);
10677
10678 switch (b->type)
10679 {
10680 case bp_watchpoint:
10681 case bp_hardware_watchpoint:
10682 annotate_watchpoint (b->number);
10683 if (ui_out_is_mi_like_p (uiout))
10684 ui_out_field_string
10685 (uiout, "reason",
10686 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10687 mention (b);
10688 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10689 ui_out_text (uiout, "\nOld value = ");
10690 watchpoint_value_print (bs->old_val, stb);
10691 ui_out_field_stream (uiout, "old", stb);
10692 ui_out_text (uiout, "\nNew value = ");
10693 watchpoint_value_print (w->val, stb);
10694 ui_out_field_stream (uiout, "new", stb);
10695 ui_out_text (uiout, "\n");
10696 /* More than one watchpoint may have been triggered. */
10697 result = PRINT_UNKNOWN;
10698 break;
10699
10700 case bp_read_watchpoint:
10701 if (ui_out_is_mi_like_p (uiout))
10702 ui_out_field_string
10703 (uiout, "reason",
10704 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10705 mention (b);
10706 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10707 ui_out_text (uiout, "\nValue = ");
10708 watchpoint_value_print (w->val, stb);
10709 ui_out_field_stream (uiout, "value", stb);
10710 ui_out_text (uiout, "\n");
10711 result = PRINT_UNKNOWN;
10712 break;
10713
10714 case bp_access_watchpoint:
10715 if (bs->old_val != NULL)
10716 {
10717 annotate_watchpoint (b->number);
10718 if (ui_out_is_mi_like_p (uiout))
10719 ui_out_field_string
10720 (uiout, "reason",
10721 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10722 mention (b);
10723 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10724 ui_out_text (uiout, "\nOld value = ");
10725 watchpoint_value_print (bs->old_val, stb);
10726 ui_out_field_stream (uiout, "old", stb);
10727 ui_out_text (uiout, "\nNew value = ");
10728 }
10729 else
10730 {
10731 mention (b);
10732 if (ui_out_is_mi_like_p (uiout))
10733 ui_out_field_string
10734 (uiout, "reason",
10735 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10736 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10737 ui_out_text (uiout, "\nValue = ");
10738 }
10739 watchpoint_value_print (w->val, stb);
10740 ui_out_field_stream (uiout, "new", stb);
10741 ui_out_text (uiout, "\n");
10742 result = PRINT_UNKNOWN;
10743 break;
10744 default:
10745 result = PRINT_UNKNOWN;
10746 }
10747
10748 do_cleanups (old_chain);
10749 return result;
10750 }
10751
10752 /* Implement the "print_mention" breakpoint_ops method for hardware
10753 watchpoints. */
10754
10755 static void
10756 print_mention_watchpoint (struct breakpoint *b)
10757 {
10758 struct cleanup *ui_out_chain;
10759 struct watchpoint *w = (struct watchpoint *) b;
10760 struct ui_out *uiout = current_uiout;
10761
10762 switch (b->type)
10763 {
10764 case bp_watchpoint:
10765 ui_out_text (uiout, "Watchpoint ");
10766 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10767 break;
10768 case bp_hardware_watchpoint:
10769 ui_out_text (uiout, "Hardware watchpoint ");
10770 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10771 break;
10772 case bp_read_watchpoint:
10773 ui_out_text (uiout, "Hardware read watchpoint ");
10774 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10775 break;
10776 case bp_access_watchpoint:
10777 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10778 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10779 break;
10780 default:
10781 internal_error (__FILE__, __LINE__,
10782 _("Invalid hardware watchpoint type."));
10783 }
10784
10785 ui_out_field_int (uiout, "number", b->number);
10786 ui_out_text (uiout, ": ");
10787 ui_out_field_string (uiout, "exp", w->exp_string);
10788 do_cleanups (ui_out_chain);
10789 }
10790
10791 /* Implement the "print_recreate" breakpoint_ops method for
10792 watchpoints. */
10793
10794 static void
10795 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10796 {
10797 struct watchpoint *w = (struct watchpoint *) b;
10798
10799 switch (b->type)
10800 {
10801 case bp_watchpoint:
10802 case bp_hardware_watchpoint:
10803 fprintf_unfiltered (fp, "watch");
10804 break;
10805 case bp_read_watchpoint:
10806 fprintf_unfiltered (fp, "rwatch");
10807 break;
10808 case bp_access_watchpoint:
10809 fprintf_unfiltered (fp, "awatch");
10810 break;
10811 default:
10812 internal_error (__FILE__, __LINE__,
10813 _("Invalid watchpoint type."));
10814 }
10815
10816 fprintf_unfiltered (fp, " %s", w->exp_string);
10817 print_recreate_thread (b, fp);
10818 }
10819
10820 /* Implement the "explains_signal" breakpoint_ops method for
10821 watchpoints. */
10822
10823 static int
10824 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10825 {
10826 /* A software watchpoint cannot cause a signal other than
10827 GDB_SIGNAL_TRAP. */
10828 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10829 return 0;
10830
10831 return 1;
10832 }
10833
10834 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10835
10836 static struct breakpoint_ops watchpoint_breakpoint_ops;
10837
10838 /* Implement the "insert" breakpoint_ops method for
10839 masked hardware watchpoints. */
10840
10841 static int
10842 insert_masked_watchpoint (struct bp_location *bl)
10843 {
10844 struct watchpoint *w = (struct watchpoint *) bl->owner;
10845
10846 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10847 bl->watchpoint_type);
10848 }
10849
10850 /* Implement the "remove" breakpoint_ops method for
10851 masked hardware watchpoints. */
10852
10853 static int
10854 remove_masked_watchpoint (struct bp_location *bl)
10855 {
10856 struct watchpoint *w = (struct watchpoint *) bl->owner;
10857
10858 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10859 bl->watchpoint_type);
10860 }
10861
10862 /* Implement the "resources_needed" breakpoint_ops method for
10863 masked hardware watchpoints. */
10864
10865 static int
10866 resources_needed_masked_watchpoint (const struct bp_location *bl)
10867 {
10868 struct watchpoint *w = (struct watchpoint *) bl->owner;
10869
10870 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10871 }
10872
10873 /* Implement the "works_in_software_mode" breakpoint_ops method for
10874 masked hardware watchpoints. */
10875
10876 static int
10877 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10878 {
10879 return 0;
10880 }
10881
10882 /* Implement the "print_it" breakpoint_ops method for
10883 masked hardware watchpoints. */
10884
10885 static enum print_stop_action
10886 print_it_masked_watchpoint (bpstat bs)
10887 {
10888 struct breakpoint *b = bs->breakpoint_at;
10889 struct ui_out *uiout = current_uiout;
10890
10891 /* Masked watchpoints have only one location. */
10892 gdb_assert (b->loc && b->loc->next == NULL);
10893
10894 switch (b->type)
10895 {
10896 case bp_hardware_watchpoint:
10897 annotate_watchpoint (b->number);
10898 if (ui_out_is_mi_like_p (uiout))
10899 ui_out_field_string
10900 (uiout, "reason",
10901 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10902 break;
10903
10904 case bp_read_watchpoint:
10905 if (ui_out_is_mi_like_p (uiout))
10906 ui_out_field_string
10907 (uiout, "reason",
10908 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10909 break;
10910
10911 case bp_access_watchpoint:
10912 if (ui_out_is_mi_like_p (uiout))
10913 ui_out_field_string
10914 (uiout, "reason",
10915 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10916 break;
10917 default:
10918 internal_error (__FILE__, __LINE__,
10919 _("Invalid hardware watchpoint type."));
10920 }
10921
10922 mention (b);
10923 ui_out_text (uiout, _("\n\
10924 Check the underlying instruction at PC for the memory\n\
10925 address and value which triggered this watchpoint.\n"));
10926 ui_out_text (uiout, "\n");
10927
10928 /* More than one watchpoint may have been triggered. */
10929 return PRINT_UNKNOWN;
10930 }
10931
10932 /* Implement the "print_one_detail" breakpoint_ops method for
10933 masked hardware watchpoints. */
10934
10935 static void
10936 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10937 struct ui_out *uiout)
10938 {
10939 struct watchpoint *w = (struct watchpoint *) b;
10940
10941 /* Masked watchpoints have only one location. */
10942 gdb_assert (b->loc && b->loc->next == NULL);
10943
10944 ui_out_text (uiout, "\tmask ");
10945 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10946 ui_out_text (uiout, "\n");
10947 }
10948
10949 /* Implement the "print_mention" breakpoint_ops method for
10950 masked hardware watchpoints. */
10951
10952 static void
10953 print_mention_masked_watchpoint (struct breakpoint *b)
10954 {
10955 struct watchpoint *w = (struct watchpoint *) b;
10956 struct ui_out *uiout = current_uiout;
10957 struct cleanup *ui_out_chain;
10958
10959 switch (b->type)
10960 {
10961 case bp_hardware_watchpoint:
10962 ui_out_text (uiout, "Masked hardware watchpoint ");
10963 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10964 break;
10965 case bp_read_watchpoint:
10966 ui_out_text (uiout, "Masked hardware read watchpoint ");
10967 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10968 break;
10969 case bp_access_watchpoint:
10970 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10971 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10972 break;
10973 default:
10974 internal_error (__FILE__, __LINE__,
10975 _("Invalid hardware watchpoint type."));
10976 }
10977
10978 ui_out_field_int (uiout, "number", b->number);
10979 ui_out_text (uiout, ": ");
10980 ui_out_field_string (uiout, "exp", w->exp_string);
10981 do_cleanups (ui_out_chain);
10982 }
10983
10984 /* Implement the "print_recreate" breakpoint_ops method for
10985 masked hardware watchpoints. */
10986
10987 static void
10988 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10989 {
10990 struct watchpoint *w = (struct watchpoint *) b;
10991 char tmp[40];
10992
10993 switch (b->type)
10994 {
10995 case bp_hardware_watchpoint:
10996 fprintf_unfiltered (fp, "watch");
10997 break;
10998 case bp_read_watchpoint:
10999 fprintf_unfiltered (fp, "rwatch");
11000 break;
11001 case bp_access_watchpoint:
11002 fprintf_unfiltered (fp, "awatch");
11003 break;
11004 default:
11005 internal_error (__FILE__, __LINE__,
11006 _("Invalid hardware watchpoint type."));
11007 }
11008
11009 sprintf_vma (tmp, w->hw_wp_mask);
11010 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11011 print_recreate_thread (b, fp);
11012 }
11013
11014 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11015
11016 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11017
11018 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11019
11020 static int
11021 is_masked_watchpoint (const struct breakpoint *b)
11022 {
11023 return b->ops == &masked_watchpoint_breakpoint_ops;
11024 }
11025
11026 /* accessflag: hw_write: watch write,
11027 hw_read: watch read,
11028 hw_access: watch access (read or write) */
11029 static void
11030 watch_command_1 (const char *arg, int accessflag, int from_tty,
11031 int just_location, int internal)
11032 {
11033 volatile struct gdb_exception e;
11034 struct breakpoint *b, *scope_breakpoint = NULL;
11035 struct expression *exp;
11036 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11037 struct value *val, *mark, *result;
11038 struct frame_info *frame;
11039 const char *exp_start = NULL;
11040 const char *exp_end = NULL;
11041 const char *tok, *end_tok;
11042 int toklen = -1;
11043 const char *cond_start = NULL;
11044 const char *cond_end = NULL;
11045 enum bptype bp_type;
11046 int thread = -1;
11047 int pc = 0;
11048 /* Flag to indicate whether we are going to use masks for
11049 the hardware watchpoint. */
11050 int use_mask = 0;
11051 CORE_ADDR mask = 0;
11052 struct watchpoint *w;
11053 char *expression;
11054 struct cleanup *back_to;
11055
11056 /* Make sure that we actually have parameters to parse. */
11057 if (arg != NULL && arg[0] != '\0')
11058 {
11059 const char *value_start;
11060
11061 exp_end = arg + strlen (arg);
11062
11063 /* Look for "parameter value" pairs at the end
11064 of the arguments string. */
11065 for (tok = exp_end - 1; tok > arg; tok--)
11066 {
11067 /* Skip whitespace at the end of the argument list. */
11068 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11069 tok--;
11070
11071 /* Find the beginning of the last token.
11072 This is the value of the parameter. */
11073 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11074 tok--;
11075 value_start = tok + 1;
11076
11077 /* Skip whitespace. */
11078 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11079 tok--;
11080
11081 end_tok = tok;
11082
11083 /* Find the beginning of the second to last token.
11084 This is the parameter itself. */
11085 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11086 tok--;
11087 tok++;
11088 toklen = end_tok - tok + 1;
11089
11090 if (toklen == 6 && !strncmp (tok, "thread", 6))
11091 {
11092 /* At this point we've found a "thread" token, which means
11093 the user is trying to set a watchpoint that triggers
11094 only in a specific thread. */
11095 char *endp;
11096
11097 if (thread != -1)
11098 error(_("You can specify only one thread."));
11099
11100 /* Extract the thread ID from the next token. */
11101 thread = strtol (value_start, &endp, 0);
11102
11103 /* Check if the user provided a valid numeric value for the
11104 thread ID. */
11105 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11106 error (_("Invalid thread ID specification %s."), value_start);
11107
11108 /* Check if the thread actually exists. */
11109 if (!valid_thread_id (thread))
11110 invalid_thread_id_error (thread);
11111 }
11112 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11113 {
11114 /* We've found a "mask" token, which means the user wants to
11115 create a hardware watchpoint that is going to have the mask
11116 facility. */
11117 struct value *mask_value, *mark;
11118
11119 if (use_mask)
11120 error(_("You can specify only one mask."));
11121
11122 use_mask = just_location = 1;
11123
11124 mark = value_mark ();
11125 mask_value = parse_to_comma_and_eval (&value_start);
11126 mask = value_as_address (mask_value);
11127 value_free_to_mark (mark);
11128 }
11129 else
11130 /* We didn't recognize what we found. We should stop here. */
11131 break;
11132
11133 /* Truncate the string and get rid of the "parameter value" pair before
11134 the arguments string is parsed by the parse_exp_1 function. */
11135 exp_end = tok;
11136 }
11137 }
11138 else
11139 exp_end = arg;
11140
11141 /* Parse the rest of the arguments. From here on out, everything
11142 is in terms of a newly allocated string instead of the original
11143 ARG. */
11144 innermost_block = NULL;
11145 expression = savestring (arg, exp_end - arg);
11146 back_to = make_cleanup (xfree, expression);
11147 exp_start = arg = expression;
11148 exp = parse_exp_1 (&arg, 0, 0, 0);
11149 exp_end = arg;
11150 /* Remove trailing whitespace from the expression before saving it.
11151 This makes the eventual display of the expression string a bit
11152 prettier. */
11153 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11154 --exp_end;
11155
11156 /* Checking if the expression is not constant. */
11157 if (watchpoint_exp_is_const (exp))
11158 {
11159 int len;
11160
11161 len = exp_end - exp_start;
11162 while (len > 0 && isspace (exp_start[len - 1]))
11163 len--;
11164 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11165 }
11166
11167 exp_valid_block = innermost_block;
11168 mark = value_mark ();
11169 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11170
11171 if (just_location)
11172 {
11173 int ret;
11174
11175 exp_valid_block = NULL;
11176 val = value_addr (result);
11177 release_value (val);
11178 value_free_to_mark (mark);
11179
11180 if (use_mask)
11181 {
11182 ret = target_masked_watch_num_registers (value_as_address (val),
11183 mask);
11184 if (ret == -1)
11185 error (_("This target does not support masked watchpoints."));
11186 else if (ret == -2)
11187 error (_("Invalid mask or memory region."));
11188 }
11189 }
11190 else if (val != NULL)
11191 release_value (val);
11192
11193 tok = skip_spaces_const (arg);
11194 end_tok = skip_to_space_const (tok);
11195
11196 toklen = end_tok - tok;
11197 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11198 {
11199 struct expression *cond;
11200
11201 innermost_block = NULL;
11202 tok = cond_start = end_tok + 1;
11203 cond = parse_exp_1 (&tok, 0, 0, 0);
11204
11205 /* The watchpoint expression may not be local, but the condition
11206 may still be. E.g.: `watch global if local > 0'. */
11207 cond_exp_valid_block = innermost_block;
11208
11209 xfree (cond);
11210 cond_end = tok;
11211 }
11212 if (*tok)
11213 error (_("Junk at end of command."));
11214
11215 frame = block_innermost_frame (exp_valid_block);
11216
11217 /* If the expression is "local", then set up a "watchpoint scope"
11218 breakpoint at the point where we've left the scope of the watchpoint
11219 expression. Create the scope breakpoint before the watchpoint, so
11220 that we will encounter it first in bpstat_stop_status. */
11221 if (exp_valid_block && frame)
11222 {
11223 if (frame_id_p (frame_unwind_caller_id (frame)))
11224 {
11225 scope_breakpoint
11226 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11227 frame_unwind_caller_pc (frame),
11228 bp_watchpoint_scope,
11229 &momentary_breakpoint_ops);
11230
11231 scope_breakpoint->enable_state = bp_enabled;
11232
11233 /* Automatically delete the breakpoint when it hits. */
11234 scope_breakpoint->disposition = disp_del;
11235
11236 /* Only break in the proper frame (help with recursion). */
11237 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11238
11239 /* Set the address at which we will stop. */
11240 scope_breakpoint->loc->gdbarch
11241 = frame_unwind_caller_arch (frame);
11242 scope_breakpoint->loc->requested_address
11243 = frame_unwind_caller_pc (frame);
11244 scope_breakpoint->loc->address
11245 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11246 scope_breakpoint->loc->requested_address,
11247 scope_breakpoint->type);
11248 }
11249 }
11250
11251 /* Now set up the breakpoint. We create all watchpoints as hardware
11252 watchpoints here even if hardware watchpoints are turned off, a call
11253 to update_watchpoint later in this function will cause the type to
11254 drop back to bp_watchpoint (software watchpoint) if required. */
11255
11256 if (accessflag == hw_read)
11257 bp_type = bp_read_watchpoint;
11258 else if (accessflag == hw_access)
11259 bp_type = bp_access_watchpoint;
11260 else
11261 bp_type = bp_hardware_watchpoint;
11262
11263 w = XCNEW (struct watchpoint);
11264 b = &w->base;
11265 if (use_mask)
11266 init_raw_breakpoint_without_location (b, NULL, bp_type,
11267 &masked_watchpoint_breakpoint_ops);
11268 else
11269 init_raw_breakpoint_without_location (b, NULL, bp_type,
11270 &watchpoint_breakpoint_ops);
11271 b->thread = thread;
11272 b->disposition = disp_donttouch;
11273 b->pspace = current_program_space;
11274 w->exp = exp;
11275 w->exp_valid_block = exp_valid_block;
11276 w->cond_exp_valid_block = cond_exp_valid_block;
11277 if (just_location)
11278 {
11279 struct type *t = value_type (val);
11280 CORE_ADDR addr = value_as_address (val);
11281 char *name;
11282
11283 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11284 name = type_to_string (t);
11285
11286 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11287 core_addr_to_string (addr));
11288 xfree (name);
11289
11290 w->exp_string = xstrprintf ("-location %.*s",
11291 (int) (exp_end - exp_start), exp_start);
11292
11293 /* The above expression is in C. */
11294 b->language = language_c;
11295 }
11296 else
11297 w->exp_string = savestring (exp_start, exp_end - exp_start);
11298
11299 if (use_mask)
11300 {
11301 w->hw_wp_mask = mask;
11302 }
11303 else
11304 {
11305 w->val = val;
11306 w->val_valid = 1;
11307 }
11308
11309 if (cond_start)
11310 b->cond_string = savestring (cond_start, cond_end - cond_start);
11311 else
11312 b->cond_string = 0;
11313
11314 if (frame)
11315 {
11316 w->watchpoint_frame = get_frame_id (frame);
11317 w->watchpoint_thread = inferior_ptid;
11318 }
11319 else
11320 {
11321 w->watchpoint_frame = null_frame_id;
11322 w->watchpoint_thread = null_ptid;
11323 }
11324
11325 if (scope_breakpoint != NULL)
11326 {
11327 /* The scope breakpoint is related to the watchpoint. We will
11328 need to act on them together. */
11329 b->related_breakpoint = scope_breakpoint;
11330 scope_breakpoint->related_breakpoint = b;
11331 }
11332
11333 if (!just_location)
11334 value_free_to_mark (mark);
11335
11336 TRY_CATCH (e, RETURN_MASK_ALL)
11337 {
11338 /* Finally update the new watchpoint. This creates the locations
11339 that should be inserted. */
11340 update_watchpoint (w, 1);
11341 }
11342 if (e.reason < 0)
11343 {
11344 delete_breakpoint (b);
11345 throw_exception (e);
11346 }
11347
11348 install_breakpoint (internal, b, 1);
11349 do_cleanups (back_to);
11350 }
11351
11352 /* Return count of debug registers needed to watch the given expression.
11353 If the watchpoint cannot be handled in hardware return zero. */
11354
11355 static int
11356 can_use_hardware_watchpoint (struct value *v)
11357 {
11358 int found_memory_cnt = 0;
11359 struct value *head = v;
11360
11361 /* Did the user specifically forbid us to use hardware watchpoints? */
11362 if (!can_use_hw_watchpoints)
11363 return 0;
11364
11365 /* Make sure that the value of the expression depends only upon
11366 memory contents, and values computed from them within GDB. If we
11367 find any register references or function calls, we can't use a
11368 hardware watchpoint.
11369
11370 The idea here is that evaluating an expression generates a series
11371 of values, one holding the value of every subexpression. (The
11372 expression a*b+c has five subexpressions: a, b, a*b, c, and
11373 a*b+c.) GDB's values hold almost enough information to establish
11374 the criteria given above --- they identify memory lvalues,
11375 register lvalues, computed values, etcetera. So we can evaluate
11376 the expression, and then scan the chain of values that leaves
11377 behind to decide whether we can detect any possible change to the
11378 expression's final value using only hardware watchpoints.
11379
11380 However, I don't think that the values returned by inferior
11381 function calls are special in any way. So this function may not
11382 notice that an expression involving an inferior function call
11383 can't be watched with hardware watchpoints. FIXME. */
11384 for (; v; v = value_next (v))
11385 {
11386 if (VALUE_LVAL (v) == lval_memory)
11387 {
11388 if (v != head && value_lazy (v))
11389 /* A lazy memory lvalue in the chain is one that GDB never
11390 needed to fetch; we either just used its address (e.g.,
11391 `a' in `a.b') or we never needed it at all (e.g., `a'
11392 in `a,b'). This doesn't apply to HEAD; if that is
11393 lazy then it was not readable, but watch it anyway. */
11394 ;
11395 else
11396 {
11397 /* Ahh, memory we actually used! Check if we can cover
11398 it with hardware watchpoints. */
11399 struct type *vtype = check_typedef (value_type (v));
11400
11401 /* We only watch structs and arrays if user asked for it
11402 explicitly, never if they just happen to appear in a
11403 middle of some value chain. */
11404 if (v == head
11405 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11406 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11407 {
11408 CORE_ADDR vaddr = value_address (v);
11409 int len;
11410 int num_regs;
11411
11412 len = (target_exact_watchpoints
11413 && is_scalar_type_recursive (vtype))?
11414 1 : TYPE_LENGTH (value_type (v));
11415
11416 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11417 if (!num_regs)
11418 return 0;
11419 else
11420 found_memory_cnt += num_regs;
11421 }
11422 }
11423 }
11424 else if (VALUE_LVAL (v) != not_lval
11425 && deprecated_value_modifiable (v) == 0)
11426 return 0; /* These are values from the history (e.g., $1). */
11427 else if (VALUE_LVAL (v) == lval_register)
11428 return 0; /* Cannot watch a register with a HW watchpoint. */
11429 }
11430
11431 /* The expression itself looks suitable for using a hardware
11432 watchpoint, but give the target machine a chance to reject it. */
11433 return found_memory_cnt;
11434 }
11435
11436 void
11437 watch_command_wrapper (char *arg, int from_tty, int internal)
11438 {
11439 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11440 }
11441
11442 /* A helper function that looks for the "-location" argument and then
11443 calls watch_command_1. */
11444
11445 static void
11446 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11447 {
11448 int just_location = 0;
11449
11450 if (arg
11451 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11452 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11453 {
11454 arg = skip_spaces (arg);
11455 just_location = 1;
11456 }
11457
11458 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11459 }
11460
11461 static void
11462 watch_command (char *arg, int from_tty)
11463 {
11464 watch_maybe_just_location (arg, hw_write, from_tty);
11465 }
11466
11467 void
11468 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11469 {
11470 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11471 }
11472
11473 static void
11474 rwatch_command (char *arg, int from_tty)
11475 {
11476 watch_maybe_just_location (arg, hw_read, from_tty);
11477 }
11478
11479 void
11480 awatch_command_wrapper (char *arg, int from_tty, int internal)
11481 {
11482 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11483 }
11484
11485 static void
11486 awatch_command (char *arg, int from_tty)
11487 {
11488 watch_maybe_just_location (arg, hw_access, from_tty);
11489 }
11490 \f
11491
11492 /* Helper routines for the until_command routine in infcmd.c. Here
11493 because it uses the mechanisms of breakpoints. */
11494
11495 struct until_break_command_continuation_args
11496 {
11497 struct breakpoint *breakpoint;
11498 struct breakpoint *breakpoint2;
11499 int thread_num;
11500 };
11501
11502 /* This function is called by fetch_inferior_event via the
11503 cmd_continuation pointer, to complete the until command. It takes
11504 care of cleaning up the temporary breakpoints set up by the until
11505 command. */
11506 static void
11507 until_break_command_continuation (void *arg, int err)
11508 {
11509 struct until_break_command_continuation_args *a = arg;
11510
11511 delete_breakpoint (a->breakpoint);
11512 if (a->breakpoint2)
11513 delete_breakpoint (a->breakpoint2);
11514 delete_longjmp_breakpoint (a->thread_num);
11515 }
11516
11517 void
11518 until_break_command (char *arg, int from_tty, int anywhere)
11519 {
11520 struct symtabs_and_lines sals;
11521 struct symtab_and_line sal;
11522 struct frame_info *frame;
11523 struct gdbarch *frame_gdbarch;
11524 struct frame_id stack_frame_id;
11525 struct frame_id caller_frame_id;
11526 struct breakpoint *breakpoint;
11527 struct breakpoint *breakpoint2 = NULL;
11528 struct cleanup *old_chain;
11529 int thread;
11530 struct thread_info *tp;
11531
11532 clear_proceed_status ();
11533
11534 /* Set a breakpoint where the user wants it and at return from
11535 this function. */
11536
11537 if (last_displayed_sal_is_valid ())
11538 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11539 get_last_displayed_symtab (),
11540 get_last_displayed_line ());
11541 else
11542 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11543 (struct symtab *) NULL, 0);
11544
11545 if (sals.nelts != 1)
11546 error (_("Couldn't get information on specified line."));
11547
11548 sal = sals.sals[0];
11549 xfree (sals.sals); /* malloc'd, so freed. */
11550
11551 if (*arg)
11552 error (_("Junk at end of arguments."));
11553
11554 resolve_sal_pc (&sal);
11555
11556 tp = inferior_thread ();
11557 thread = tp->num;
11558
11559 old_chain = make_cleanup (null_cleanup, NULL);
11560
11561 /* Note linespec handling above invalidates the frame chain.
11562 Installing a breakpoint also invalidates the frame chain (as it
11563 may need to switch threads), so do any frame handling before
11564 that. */
11565
11566 frame = get_selected_frame (NULL);
11567 frame_gdbarch = get_frame_arch (frame);
11568 stack_frame_id = get_stack_frame_id (frame);
11569 caller_frame_id = frame_unwind_caller_id (frame);
11570
11571 /* Keep within the current frame, or in frames called by the current
11572 one. */
11573
11574 if (frame_id_p (caller_frame_id))
11575 {
11576 struct symtab_and_line sal2;
11577
11578 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11579 sal2.pc = frame_unwind_caller_pc (frame);
11580 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11581 sal2,
11582 caller_frame_id,
11583 bp_until);
11584 make_cleanup_delete_breakpoint (breakpoint2);
11585
11586 set_longjmp_breakpoint (tp, caller_frame_id);
11587 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11588 }
11589
11590 /* set_momentary_breakpoint could invalidate FRAME. */
11591 frame = NULL;
11592
11593 if (anywhere)
11594 /* If the user told us to continue until a specified location,
11595 we don't specify a frame at which we need to stop. */
11596 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11597 null_frame_id, bp_until);
11598 else
11599 /* Otherwise, specify the selected frame, because we want to stop
11600 only at the very same frame. */
11601 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11602 stack_frame_id, bp_until);
11603 make_cleanup_delete_breakpoint (breakpoint);
11604
11605 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11606
11607 /* If we are running asynchronously, and proceed call above has
11608 actually managed to start the target, arrange for breakpoints to
11609 be deleted when the target stops. Otherwise, we're already
11610 stopped and delete breakpoints via cleanup chain. */
11611
11612 if (target_can_async_p () && is_running (inferior_ptid))
11613 {
11614 struct until_break_command_continuation_args *args;
11615 args = xmalloc (sizeof (*args));
11616
11617 args->breakpoint = breakpoint;
11618 args->breakpoint2 = breakpoint2;
11619 args->thread_num = thread;
11620
11621 discard_cleanups (old_chain);
11622 add_continuation (inferior_thread (),
11623 until_break_command_continuation, args,
11624 xfree);
11625 }
11626 else
11627 do_cleanups (old_chain);
11628 }
11629
11630 /* This function attempts to parse an optional "if <cond>" clause
11631 from the arg string. If one is not found, it returns NULL.
11632
11633 Else, it returns a pointer to the condition string. (It does not
11634 attempt to evaluate the string against a particular block.) And,
11635 it updates arg to point to the first character following the parsed
11636 if clause in the arg string. */
11637
11638 char *
11639 ep_parse_optional_if_clause (char **arg)
11640 {
11641 char *cond_string;
11642
11643 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11644 return NULL;
11645
11646 /* Skip the "if" keyword. */
11647 (*arg) += 2;
11648
11649 /* Skip any extra leading whitespace, and record the start of the
11650 condition string. */
11651 *arg = skip_spaces (*arg);
11652 cond_string = *arg;
11653
11654 /* Assume that the condition occupies the remainder of the arg
11655 string. */
11656 (*arg) += strlen (cond_string);
11657
11658 return cond_string;
11659 }
11660
11661 /* Commands to deal with catching events, such as signals, exceptions,
11662 process start/exit, etc. */
11663
11664 typedef enum
11665 {
11666 catch_fork_temporary, catch_vfork_temporary,
11667 catch_fork_permanent, catch_vfork_permanent
11668 }
11669 catch_fork_kind;
11670
11671 static void
11672 catch_fork_command_1 (char *arg, int from_tty,
11673 struct cmd_list_element *command)
11674 {
11675 struct gdbarch *gdbarch = get_current_arch ();
11676 char *cond_string = NULL;
11677 catch_fork_kind fork_kind;
11678 int tempflag;
11679
11680 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11681 tempflag = (fork_kind == catch_fork_temporary
11682 || fork_kind == catch_vfork_temporary);
11683
11684 if (!arg)
11685 arg = "";
11686 arg = skip_spaces (arg);
11687
11688 /* The allowed syntax is:
11689 catch [v]fork
11690 catch [v]fork if <cond>
11691
11692 First, check if there's an if clause. */
11693 cond_string = ep_parse_optional_if_clause (&arg);
11694
11695 if ((*arg != '\0') && !isspace (*arg))
11696 error (_("Junk at end of arguments."));
11697
11698 /* If this target supports it, create a fork or vfork catchpoint
11699 and enable reporting of such events. */
11700 switch (fork_kind)
11701 {
11702 case catch_fork_temporary:
11703 case catch_fork_permanent:
11704 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11705 &catch_fork_breakpoint_ops);
11706 break;
11707 case catch_vfork_temporary:
11708 case catch_vfork_permanent:
11709 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11710 &catch_vfork_breakpoint_ops);
11711 break;
11712 default:
11713 error (_("unsupported or unknown fork kind; cannot catch it"));
11714 break;
11715 }
11716 }
11717
11718 static void
11719 catch_exec_command_1 (char *arg, int from_tty,
11720 struct cmd_list_element *command)
11721 {
11722 struct exec_catchpoint *c;
11723 struct gdbarch *gdbarch = get_current_arch ();
11724 int tempflag;
11725 char *cond_string = NULL;
11726
11727 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11728
11729 if (!arg)
11730 arg = "";
11731 arg = skip_spaces (arg);
11732
11733 /* The allowed syntax is:
11734 catch exec
11735 catch exec if <cond>
11736
11737 First, check if there's an if clause. */
11738 cond_string = ep_parse_optional_if_clause (&arg);
11739
11740 if ((*arg != '\0') && !isspace (*arg))
11741 error (_("Junk at end of arguments."));
11742
11743 c = XNEW (struct exec_catchpoint);
11744 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11745 &catch_exec_breakpoint_ops);
11746 c->exec_pathname = NULL;
11747
11748 install_breakpoint (0, &c->base, 1);
11749 }
11750
11751 void
11752 init_ada_exception_breakpoint (struct breakpoint *b,
11753 struct gdbarch *gdbarch,
11754 struct symtab_and_line sal,
11755 char *addr_string,
11756 const struct breakpoint_ops *ops,
11757 int tempflag,
11758 int enabled,
11759 int from_tty)
11760 {
11761 if (from_tty)
11762 {
11763 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11764 if (!loc_gdbarch)
11765 loc_gdbarch = gdbarch;
11766
11767 describe_other_breakpoints (loc_gdbarch,
11768 sal.pspace, sal.pc, sal.section, -1);
11769 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11770 version for exception catchpoints, because two catchpoints
11771 used for different exception names will use the same address.
11772 In this case, a "breakpoint ... also set at..." warning is
11773 unproductive. Besides, the warning phrasing is also a bit
11774 inappropriate, we should use the word catchpoint, and tell
11775 the user what type of catchpoint it is. The above is good
11776 enough for now, though. */
11777 }
11778
11779 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11780
11781 b->enable_state = enabled ? bp_enabled : bp_disabled;
11782 b->disposition = tempflag ? disp_del : disp_donttouch;
11783 b->addr_string = addr_string;
11784 b->language = language_ada;
11785 }
11786
11787 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11788 filter list, or NULL if no filtering is required. */
11789 static VEC(int) *
11790 catch_syscall_split_args (char *arg)
11791 {
11792 VEC(int) *result = NULL;
11793 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11794
11795 while (*arg != '\0')
11796 {
11797 int i, syscall_number;
11798 char *endptr;
11799 char cur_name[128];
11800 struct syscall s;
11801
11802 /* Skip whitespace. */
11803 arg = skip_spaces (arg);
11804
11805 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11806 cur_name[i] = arg[i];
11807 cur_name[i] = '\0';
11808 arg += i;
11809
11810 /* Check if the user provided a syscall name or a number. */
11811 syscall_number = (int) strtol (cur_name, &endptr, 0);
11812 if (*endptr == '\0')
11813 get_syscall_by_number (syscall_number, &s);
11814 else
11815 {
11816 /* We have a name. Let's check if it's valid and convert it
11817 to a number. */
11818 get_syscall_by_name (cur_name, &s);
11819
11820 if (s.number == UNKNOWN_SYSCALL)
11821 /* Here we have to issue an error instead of a warning,
11822 because GDB cannot do anything useful if there's no
11823 syscall number to be caught. */
11824 error (_("Unknown syscall name '%s'."), cur_name);
11825 }
11826
11827 /* Ok, it's valid. */
11828 VEC_safe_push (int, result, s.number);
11829 }
11830
11831 discard_cleanups (cleanup);
11832 return result;
11833 }
11834
11835 /* Implement the "catch syscall" command. */
11836
11837 static void
11838 catch_syscall_command_1 (char *arg, int from_tty,
11839 struct cmd_list_element *command)
11840 {
11841 int tempflag;
11842 VEC(int) *filter;
11843 struct syscall s;
11844 struct gdbarch *gdbarch = get_current_arch ();
11845
11846 /* Checking if the feature if supported. */
11847 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11848 error (_("The feature 'catch syscall' is not supported on \
11849 this architecture yet."));
11850
11851 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11852
11853 arg = skip_spaces (arg);
11854
11855 /* We need to do this first "dummy" translation in order
11856 to get the syscall XML file loaded or, most important,
11857 to display a warning to the user if there's no XML file
11858 for his/her architecture. */
11859 get_syscall_by_number (0, &s);
11860
11861 /* The allowed syntax is:
11862 catch syscall
11863 catch syscall <name | number> [<name | number> ... <name | number>]
11864
11865 Let's check if there's a syscall name. */
11866
11867 if (arg != NULL)
11868 filter = catch_syscall_split_args (arg);
11869 else
11870 filter = NULL;
11871
11872 create_syscall_event_catchpoint (tempflag, filter,
11873 &catch_syscall_breakpoint_ops);
11874 }
11875
11876 static void
11877 catch_command (char *arg, int from_tty)
11878 {
11879 error (_("Catch requires an event name."));
11880 }
11881 \f
11882
11883 static void
11884 tcatch_command (char *arg, int from_tty)
11885 {
11886 error (_("Catch requires an event name."));
11887 }
11888
11889 /* A qsort comparison function that sorts breakpoints in order. */
11890
11891 static int
11892 compare_breakpoints (const void *a, const void *b)
11893 {
11894 const breakpoint_p *ba = a;
11895 uintptr_t ua = (uintptr_t) *ba;
11896 const breakpoint_p *bb = b;
11897 uintptr_t ub = (uintptr_t) *bb;
11898
11899 if ((*ba)->number < (*bb)->number)
11900 return -1;
11901 else if ((*ba)->number > (*bb)->number)
11902 return 1;
11903
11904 /* Now sort by address, in case we see, e..g, two breakpoints with
11905 the number 0. */
11906 if (ua < ub)
11907 return -1;
11908 return ua > ub ? 1 : 0;
11909 }
11910
11911 /* Delete breakpoints by address or line. */
11912
11913 static void
11914 clear_command (char *arg, int from_tty)
11915 {
11916 struct breakpoint *b, *prev;
11917 VEC(breakpoint_p) *found = 0;
11918 int ix;
11919 int default_match;
11920 struct symtabs_and_lines sals;
11921 struct symtab_and_line sal;
11922 int i;
11923 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11924
11925 if (arg)
11926 {
11927 sals = decode_line_with_current_source (arg,
11928 (DECODE_LINE_FUNFIRSTLINE
11929 | DECODE_LINE_LIST_MODE));
11930 make_cleanup (xfree, sals.sals);
11931 default_match = 0;
11932 }
11933 else
11934 {
11935 sals.sals = (struct symtab_and_line *)
11936 xmalloc (sizeof (struct symtab_and_line));
11937 make_cleanup (xfree, sals.sals);
11938 init_sal (&sal); /* Initialize to zeroes. */
11939
11940 /* Set sal's line, symtab, pc, and pspace to the values
11941 corresponding to the last call to print_frame_info. If the
11942 codepoint is not valid, this will set all the fields to 0. */
11943 get_last_displayed_sal (&sal);
11944 if (sal.symtab == 0)
11945 error (_("No source file specified."));
11946
11947 sals.sals[0] = sal;
11948 sals.nelts = 1;
11949
11950 default_match = 1;
11951 }
11952
11953 /* We don't call resolve_sal_pc here. That's not as bad as it
11954 seems, because all existing breakpoints typically have both
11955 file/line and pc set. So, if clear is given file/line, we can
11956 match this to existing breakpoint without obtaining pc at all.
11957
11958 We only support clearing given the address explicitly
11959 present in breakpoint table. Say, we've set breakpoint
11960 at file:line. There were several PC values for that file:line,
11961 due to optimization, all in one block.
11962
11963 We've picked one PC value. If "clear" is issued with another
11964 PC corresponding to the same file:line, the breakpoint won't
11965 be cleared. We probably can still clear the breakpoint, but
11966 since the other PC value is never presented to user, user
11967 can only find it by guessing, and it does not seem important
11968 to support that. */
11969
11970 /* For each line spec given, delete bps which correspond to it. Do
11971 it in two passes, solely to preserve the current behavior that
11972 from_tty is forced true if we delete more than one
11973 breakpoint. */
11974
11975 found = NULL;
11976 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11977 for (i = 0; i < sals.nelts; i++)
11978 {
11979 const char *sal_fullname;
11980
11981 /* If exact pc given, clear bpts at that pc.
11982 If line given (pc == 0), clear all bpts on specified line.
11983 If defaulting, clear all bpts on default line
11984 or at default pc.
11985
11986 defaulting sal.pc != 0 tests to do
11987
11988 0 1 pc
11989 1 1 pc _and_ line
11990 0 0 line
11991 1 0 <can't happen> */
11992
11993 sal = sals.sals[i];
11994 sal_fullname = (sal.symtab == NULL
11995 ? NULL : symtab_to_fullname (sal.symtab));
11996
11997 /* Find all matching breakpoints and add them to 'found'. */
11998 ALL_BREAKPOINTS (b)
11999 {
12000 int match = 0;
12001 /* Are we going to delete b? */
12002 if (b->type != bp_none && !is_watchpoint (b))
12003 {
12004 struct bp_location *loc = b->loc;
12005 for (; loc; loc = loc->next)
12006 {
12007 /* If the user specified file:line, don't allow a PC
12008 match. This matches historical gdb behavior. */
12009 int pc_match = (!sal.explicit_line
12010 && sal.pc
12011 && (loc->pspace == sal.pspace)
12012 && (loc->address == sal.pc)
12013 && (!section_is_overlay (loc->section)
12014 || loc->section == sal.section));
12015 int line_match = 0;
12016
12017 if ((default_match || sal.explicit_line)
12018 && loc->symtab != NULL
12019 && sal_fullname != NULL
12020 && sal.pspace == loc->pspace
12021 && loc->line_number == sal.line
12022 && filename_cmp (symtab_to_fullname (loc->symtab),
12023 sal_fullname) == 0)
12024 line_match = 1;
12025
12026 if (pc_match || line_match)
12027 {
12028 match = 1;
12029 break;
12030 }
12031 }
12032 }
12033
12034 if (match)
12035 VEC_safe_push(breakpoint_p, found, b);
12036 }
12037 }
12038
12039 /* Now go thru the 'found' chain and delete them. */
12040 if (VEC_empty(breakpoint_p, found))
12041 {
12042 if (arg)
12043 error (_("No breakpoint at %s."), arg);
12044 else
12045 error (_("No breakpoint at this line."));
12046 }
12047
12048 /* Remove duplicates from the vec. */
12049 qsort (VEC_address (breakpoint_p, found),
12050 VEC_length (breakpoint_p, found),
12051 sizeof (breakpoint_p),
12052 compare_breakpoints);
12053 prev = VEC_index (breakpoint_p, found, 0);
12054 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12055 {
12056 if (b == prev)
12057 {
12058 VEC_ordered_remove (breakpoint_p, found, ix);
12059 --ix;
12060 }
12061 }
12062
12063 if (VEC_length(breakpoint_p, found) > 1)
12064 from_tty = 1; /* Always report if deleted more than one. */
12065 if (from_tty)
12066 {
12067 if (VEC_length(breakpoint_p, found) == 1)
12068 printf_unfiltered (_("Deleted breakpoint "));
12069 else
12070 printf_unfiltered (_("Deleted breakpoints "));
12071 }
12072
12073 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12074 {
12075 if (from_tty)
12076 printf_unfiltered ("%d ", b->number);
12077 delete_breakpoint (b);
12078 }
12079 if (from_tty)
12080 putchar_unfiltered ('\n');
12081
12082 do_cleanups (cleanups);
12083 }
12084 \f
12085 /* Delete breakpoint in BS if they are `delete' breakpoints and
12086 all breakpoints that are marked for deletion, whether hit or not.
12087 This is called after any breakpoint is hit, or after errors. */
12088
12089 void
12090 breakpoint_auto_delete (bpstat bs)
12091 {
12092 struct breakpoint *b, *b_tmp;
12093
12094 for (; bs; bs = bs->next)
12095 if (bs->breakpoint_at
12096 && bs->breakpoint_at->disposition == disp_del
12097 && bs->stop)
12098 delete_breakpoint (bs->breakpoint_at);
12099
12100 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12101 {
12102 if (b->disposition == disp_del_at_next_stop)
12103 delete_breakpoint (b);
12104 }
12105 }
12106
12107 /* A comparison function for bp_location AP and BP being interfaced to
12108 qsort. Sort elements primarily by their ADDRESS (no matter what
12109 does breakpoint_address_is_meaningful say for its OWNER),
12110 secondarily by ordering first bp_permanent OWNERed elements and
12111 terciarily just ensuring the array is sorted stable way despite
12112 qsort being an unstable algorithm. */
12113
12114 static int
12115 bp_location_compare (const void *ap, const void *bp)
12116 {
12117 struct bp_location *a = *(void **) ap;
12118 struct bp_location *b = *(void **) bp;
12119 /* A and B come from existing breakpoints having non-NULL OWNER. */
12120 int a_perm = a->owner->enable_state == bp_permanent;
12121 int b_perm = b->owner->enable_state == bp_permanent;
12122
12123 if (a->address != b->address)
12124 return (a->address > b->address) - (a->address < b->address);
12125
12126 /* Sort locations at the same address by their pspace number, keeping
12127 locations of the same inferior (in a multi-inferior environment)
12128 grouped. */
12129
12130 if (a->pspace->num != b->pspace->num)
12131 return ((a->pspace->num > b->pspace->num)
12132 - (a->pspace->num < b->pspace->num));
12133
12134 /* Sort permanent breakpoints first. */
12135 if (a_perm != b_perm)
12136 return (a_perm < b_perm) - (a_perm > b_perm);
12137
12138 /* Make the internal GDB representation stable across GDB runs
12139 where A and B memory inside GDB can differ. Breakpoint locations of
12140 the same type at the same address can be sorted in arbitrary order. */
12141
12142 if (a->owner->number != b->owner->number)
12143 return ((a->owner->number > b->owner->number)
12144 - (a->owner->number < b->owner->number));
12145
12146 return (a > b) - (a < b);
12147 }
12148
12149 /* Set bp_location_placed_address_before_address_max and
12150 bp_location_shadow_len_after_address_max according to the current
12151 content of the bp_location array. */
12152
12153 static void
12154 bp_location_target_extensions_update (void)
12155 {
12156 struct bp_location *bl, **blp_tmp;
12157
12158 bp_location_placed_address_before_address_max = 0;
12159 bp_location_shadow_len_after_address_max = 0;
12160
12161 ALL_BP_LOCATIONS (bl, blp_tmp)
12162 {
12163 CORE_ADDR start, end, addr;
12164
12165 if (!bp_location_has_shadow (bl))
12166 continue;
12167
12168 start = bl->target_info.placed_address;
12169 end = start + bl->target_info.shadow_len;
12170
12171 gdb_assert (bl->address >= start);
12172 addr = bl->address - start;
12173 if (addr > bp_location_placed_address_before_address_max)
12174 bp_location_placed_address_before_address_max = addr;
12175
12176 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12177
12178 gdb_assert (bl->address < end);
12179 addr = end - bl->address;
12180 if (addr > bp_location_shadow_len_after_address_max)
12181 bp_location_shadow_len_after_address_max = addr;
12182 }
12183 }
12184
12185 /* Download tracepoint locations if they haven't been. */
12186
12187 static void
12188 download_tracepoint_locations (void)
12189 {
12190 struct breakpoint *b;
12191 struct cleanup *old_chain;
12192
12193 if (!target_can_download_tracepoint ())
12194 return;
12195
12196 old_chain = save_current_space_and_thread ();
12197
12198 ALL_TRACEPOINTS (b)
12199 {
12200 struct bp_location *bl;
12201 struct tracepoint *t;
12202 int bp_location_downloaded = 0;
12203
12204 if ((b->type == bp_fast_tracepoint
12205 ? !may_insert_fast_tracepoints
12206 : !may_insert_tracepoints))
12207 continue;
12208
12209 for (bl = b->loc; bl; bl = bl->next)
12210 {
12211 /* In tracepoint, locations are _never_ duplicated, so
12212 should_be_inserted is equivalent to
12213 unduplicated_should_be_inserted. */
12214 if (!should_be_inserted (bl) || bl->inserted)
12215 continue;
12216
12217 switch_to_program_space_and_thread (bl->pspace);
12218
12219 target_download_tracepoint (bl);
12220
12221 bl->inserted = 1;
12222 bp_location_downloaded = 1;
12223 }
12224 t = (struct tracepoint *) b;
12225 t->number_on_target = b->number;
12226 if (bp_location_downloaded)
12227 observer_notify_breakpoint_modified (b);
12228 }
12229
12230 do_cleanups (old_chain);
12231 }
12232
12233 /* Swap the insertion/duplication state between two locations. */
12234
12235 static void
12236 swap_insertion (struct bp_location *left, struct bp_location *right)
12237 {
12238 const int left_inserted = left->inserted;
12239 const int left_duplicate = left->duplicate;
12240 const int left_needs_update = left->needs_update;
12241 const struct bp_target_info left_target_info = left->target_info;
12242
12243 /* Locations of tracepoints can never be duplicated. */
12244 if (is_tracepoint (left->owner))
12245 gdb_assert (!left->duplicate);
12246 if (is_tracepoint (right->owner))
12247 gdb_assert (!right->duplicate);
12248
12249 left->inserted = right->inserted;
12250 left->duplicate = right->duplicate;
12251 left->needs_update = right->needs_update;
12252 left->target_info = right->target_info;
12253 right->inserted = left_inserted;
12254 right->duplicate = left_duplicate;
12255 right->needs_update = left_needs_update;
12256 right->target_info = left_target_info;
12257 }
12258
12259 /* Force the re-insertion of the locations at ADDRESS. This is called
12260 once a new/deleted/modified duplicate location is found and we are evaluating
12261 conditions on the target's side. Such conditions need to be updated on
12262 the target. */
12263
12264 static void
12265 force_breakpoint_reinsertion (struct bp_location *bl)
12266 {
12267 struct bp_location **locp = NULL, **loc2p;
12268 struct bp_location *loc;
12269 CORE_ADDR address = 0;
12270 int pspace_num;
12271
12272 address = bl->address;
12273 pspace_num = bl->pspace->num;
12274
12275 /* This is only meaningful if the target is
12276 evaluating conditions and if the user has
12277 opted for condition evaluation on the target's
12278 side. */
12279 if (gdb_evaluates_breakpoint_condition_p ()
12280 || !target_supports_evaluation_of_breakpoint_conditions ())
12281 return;
12282
12283 /* Flag all breakpoint locations with this address and
12284 the same program space as the location
12285 as "its condition has changed". We need to
12286 update the conditions on the target's side. */
12287 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12288 {
12289 loc = *loc2p;
12290
12291 if (!is_breakpoint (loc->owner)
12292 || pspace_num != loc->pspace->num)
12293 continue;
12294
12295 /* Flag the location appropriately. We use a different state to
12296 let everyone know that we already updated the set of locations
12297 with addr bl->address and program space bl->pspace. This is so
12298 we don't have to keep calling these functions just to mark locations
12299 that have already been marked. */
12300 loc->condition_changed = condition_updated;
12301
12302 /* Free the agent expression bytecode as well. We will compute
12303 it later on. */
12304 if (loc->cond_bytecode)
12305 {
12306 free_agent_expr (loc->cond_bytecode);
12307 loc->cond_bytecode = NULL;
12308 }
12309 }
12310 }
12311
12312 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12313 into the inferior, only remove already-inserted locations that no
12314 longer should be inserted. Functions that delete a breakpoint or
12315 breakpoints should pass false, so that deleting a breakpoint
12316 doesn't have the side effect of inserting the locations of other
12317 breakpoints that are marked not-inserted, but should_be_inserted
12318 returns true on them.
12319
12320 This behaviour is useful is situations close to tear-down -- e.g.,
12321 after an exec, while the target still has execution, but breakpoint
12322 shadows of the previous executable image should *NOT* be restored
12323 to the new image; or before detaching, where the target still has
12324 execution and wants to delete breakpoints from GDB's lists, and all
12325 breakpoints had already been removed from the inferior. */
12326
12327 static void
12328 update_global_location_list (int should_insert)
12329 {
12330 struct breakpoint *b;
12331 struct bp_location **locp, *loc;
12332 struct cleanup *cleanups;
12333 /* Last breakpoint location address that was marked for update. */
12334 CORE_ADDR last_addr = 0;
12335 /* Last breakpoint location program space that was marked for update. */
12336 int last_pspace_num = -1;
12337
12338 /* Used in the duplicates detection below. When iterating over all
12339 bp_locations, points to the first bp_location of a given address.
12340 Breakpoints and watchpoints of different types are never
12341 duplicates of each other. Keep one pointer for each type of
12342 breakpoint/watchpoint, so we only need to loop over all locations
12343 once. */
12344 struct bp_location *bp_loc_first; /* breakpoint */
12345 struct bp_location *wp_loc_first; /* hardware watchpoint */
12346 struct bp_location *awp_loc_first; /* access watchpoint */
12347 struct bp_location *rwp_loc_first; /* read watchpoint */
12348
12349 /* Saved former bp_location array which we compare against the newly
12350 built bp_location from the current state of ALL_BREAKPOINTS. */
12351 struct bp_location **old_location, **old_locp;
12352 unsigned old_location_count;
12353
12354 old_location = bp_location;
12355 old_location_count = bp_location_count;
12356 bp_location = NULL;
12357 bp_location_count = 0;
12358 cleanups = make_cleanup (xfree, old_location);
12359
12360 ALL_BREAKPOINTS (b)
12361 for (loc = b->loc; loc; loc = loc->next)
12362 bp_location_count++;
12363
12364 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12365 locp = bp_location;
12366 ALL_BREAKPOINTS (b)
12367 for (loc = b->loc; loc; loc = loc->next)
12368 *locp++ = loc;
12369 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12370 bp_location_compare);
12371
12372 bp_location_target_extensions_update ();
12373
12374 /* Identify bp_location instances that are no longer present in the
12375 new list, and therefore should be freed. Note that it's not
12376 necessary that those locations should be removed from inferior --
12377 if there's another location at the same address (previously
12378 marked as duplicate), we don't need to remove/insert the
12379 location.
12380
12381 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12382 and former bp_location array state respectively. */
12383
12384 locp = bp_location;
12385 for (old_locp = old_location; old_locp < old_location + old_location_count;
12386 old_locp++)
12387 {
12388 struct bp_location *old_loc = *old_locp;
12389 struct bp_location **loc2p;
12390
12391 /* Tells if 'old_loc' is found among the new locations. If
12392 not, we have to free it. */
12393 int found_object = 0;
12394 /* Tells if the location should remain inserted in the target. */
12395 int keep_in_target = 0;
12396 int removed = 0;
12397
12398 /* Skip LOCP entries which will definitely never be needed.
12399 Stop either at or being the one matching OLD_LOC. */
12400 while (locp < bp_location + bp_location_count
12401 && (*locp)->address < old_loc->address)
12402 locp++;
12403
12404 for (loc2p = locp;
12405 (loc2p < bp_location + bp_location_count
12406 && (*loc2p)->address == old_loc->address);
12407 loc2p++)
12408 {
12409 /* Check if this is a new/duplicated location or a duplicated
12410 location that had its condition modified. If so, we want to send
12411 its condition to the target if evaluation of conditions is taking
12412 place there. */
12413 if ((*loc2p)->condition_changed == condition_modified
12414 && (last_addr != old_loc->address
12415 || last_pspace_num != old_loc->pspace->num))
12416 {
12417 force_breakpoint_reinsertion (*loc2p);
12418 last_pspace_num = old_loc->pspace->num;
12419 }
12420
12421 if (*loc2p == old_loc)
12422 found_object = 1;
12423 }
12424
12425 /* We have already handled this address, update it so that we don't
12426 have to go through updates again. */
12427 last_addr = old_loc->address;
12428
12429 /* Target-side condition evaluation: Handle deleted locations. */
12430 if (!found_object)
12431 force_breakpoint_reinsertion (old_loc);
12432
12433 /* If this location is no longer present, and inserted, look if
12434 there's maybe a new location at the same address. If so,
12435 mark that one inserted, and don't remove this one. This is
12436 needed so that we don't have a time window where a breakpoint
12437 at certain location is not inserted. */
12438
12439 if (old_loc->inserted)
12440 {
12441 /* If the location is inserted now, we might have to remove
12442 it. */
12443
12444 if (found_object && should_be_inserted (old_loc))
12445 {
12446 /* The location is still present in the location list,
12447 and still should be inserted. Don't do anything. */
12448 keep_in_target = 1;
12449 }
12450 else
12451 {
12452 /* This location still exists, but it won't be kept in the
12453 target since it may have been disabled. We proceed to
12454 remove its target-side condition. */
12455
12456 /* The location is either no longer present, or got
12457 disabled. See if there's another location at the
12458 same address, in which case we don't need to remove
12459 this one from the target. */
12460
12461 /* OLD_LOC comes from existing struct breakpoint. */
12462 if (breakpoint_address_is_meaningful (old_loc->owner))
12463 {
12464 for (loc2p = locp;
12465 (loc2p < bp_location + bp_location_count
12466 && (*loc2p)->address == old_loc->address);
12467 loc2p++)
12468 {
12469 struct bp_location *loc2 = *loc2p;
12470
12471 if (breakpoint_locations_match (loc2, old_loc))
12472 {
12473 /* Read watchpoint locations are switched to
12474 access watchpoints, if the former are not
12475 supported, but the latter are. */
12476 if (is_hardware_watchpoint (old_loc->owner))
12477 {
12478 gdb_assert (is_hardware_watchpoint (loc2->owner));
12479 loc2->watchpoint_type = old_loc->watchpoint_type;
12480 }
12481
12482 /* loc2 is a duplicated location. We need to check
12483 if it should be inserted in case it will be
12484 unduplicated. */
12485 if (loc2 != old_loc
12486 && unduplicated_should_be_inserted (loc2))
12487 {
12488 swap_insertion (old_loc, loc2);
12489 keep_in_target = 1;
12490 break;
12491 }
12492 }
12493 }
12494 }
12495 }
12496
12497 if (!keep_in_target)
12498 {
12499 if (remove_breakpoint (old_loc, mark_uninserted))
12500 {
12501 /* This is just about all we can do. We could keep
12502 this location on the global list, and try to
12503 remove it next time, but there's no particular
12504 reason why we will succeed next time.
12505
12506 Note that at this point, old_loc->owner is still
12507 valid, as delete_breakpoint frees the breakpoint
12508 only after calling us. */
12509 printf_filtered (_("warning: Error removing "
12510 "breakpoint %d\n"),
12511 old_loc->owner->number);
12512 }
12513 removed = 1;
12514 }
12515 }
12516
12517 if (!found_object)
12518 {
12519 if (removed && non_stop
12520 && breakpoint_address_is_meaningful (old_loc->owner)
12521 && !is_hardware_watchpoint (old_loc->owner))
12522 {
12523 /* This location was removed from the target. In
12524 non-stop mode, a race condition is possible where
12525 we've removed a breakpoint, but stop events for that
12526 breakpoint are already queued and will arrive later.
12527 We apply an heuristic to be able to distinguish such
12528 SIGTRAPs from other random SIGTRAPs: we keep this
12529 breakpoint location for a bit, and will retire it
12530 after we see some number of events. The theory here
12531 is that reporting of events should, "on the average",
12532 be fair, so after a while we'll see events from all
12533 threads that have anything of interest, and no longer
12534 need to keep this breakpoint location around. We
12535 don't hold locations forever so to reduce chances of
12536 mistaking a non-breakpoint SIGTRAP for a breakpoint
12537 SIGTRAP.
12538
12539 The heuristic failing can be disastrous on
12540 decr_pc_after_break targets.
12541
12542 On decr_pc_after_break targets, like e.g., x86-linux,
12543 if we fail to recognize a late breakpoint SIGTRAP,
12544 because events_till_retirement has reached 0 too
12545 soon, we'll fail to do the PC adjustment, and report
12546 a random SIGTRAP to the user. When the user resumes
12547 the inferior, it will most likely immediately crash
12548 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12549 corrupted, because of being resumed e.g., in the
12550 middle of a multi-byte instruction, or skipped a
12551 one-byte instruction. This was actually seen happen
12552 on native x86-linux, and should be less rare on
12553 targets that do not support new thread events, like
12554 remote, due to the heuristic depending on
12555 thread_count.
12556
12557 Mistaking a random SIGTRAP for a breakpoint trap
12558 causes similar symptoms (PC adjustment applied when
12559 it shouldn't), but then again, playing with SIGTRAPs
12560 behind the debugger's back is asking for trouble.
12561
12562 Since hardware watchpoint traps are always
12563 distinguishable from other traps, so we don't need to
12564 apply keep hardware watchpoint moribund locations
12565 around. We simply always ignore hardware watchpoint
12566 traps we can no longer explain. */
12567
12568 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12569 old_loc->owner = NULL;
12570
12571 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12572 }
12573 else
12574 {
12575 old_loc->owner = NULL;
12576 decref_bp_location (&old_loc);
12577 }
12578 }
12579 }
12580
12581 /* Rescan breakpoints at the same address and section, marking the
12582 first one as "first" and any others as "duplicates". This is so
12583 that the bpt instruction is only inserted once. If we have a
12584 permanent breakpoint at the same place as BPT, make that one the
12585 official one, and the rest as duplicates. Permanent breakpoints
12586 are sorted first for the same address.
12587
12588 Do the same for hardware watchpoints, but also considering the
12589 watchpoint's type (regular/access/read) and length. */
12590
12591 bp_loc_first = NULL;
12592 wp_loc_first = NULL;
12593 awp_loc_first = NULL;
12594 rwp_loc_first = NULL;
12595 ALL_BP_LOCATIONS (loc, locp)
12596 {
12597 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12598 non-NULL. */
12599 struct bp_location **loc_first_p;
12600 b = loc->owner;
12601
12602 if (!unduplicated_should_be_inserted (loc)
12603 || !breakpoint_address_is_meaningful (b)
12604 /* Don't detect duplicate for tracepoint locations because they are
12605 never duplicated. See the comments in field `duplicate' of
12606 `struct bp_location'. */
12607 || is_tracepoint (b))
12608 {
12609 /* Clear the condition modification flag. */
12610 loc->condition_changed = condition_unchanged;
12611 continue;
12612 }
12613
12614 /* Permanent breakpoint should always be inserted. */
12615 if (b->enable_state == bp_permanent && ! loc->inserted)
12616 internal_error (__FILE__, __LINE__,
12617 _("allegedly permanent breakpoint is not "
12618 "actually inserted"));
12619
12620 if (b->type == bp_hardware_watchpoint)
12621 loc_first_p = &wp_loc_first;
12622 else if (b->type == bp_read_watchpoint)
12623 loc_first_p = &rwp_loc_first;
12624 else if (b->type == bp_access_watchpoint)
12625 loc_first_p = &awp_loc_first;
12626 else
12627 loc_first_p = &bp_loc_first;
12628
12629 if (*loc_first_p == NULL
12630 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12631 || !breakpoint_locations_match (loc, *loc_first_p))
12632 {
12633 *loc_first_p = loc;
12634 loc->duplicate = 0;
12635
12636 if (is_breakpoint (loc->owner) && loc->condition_changed)
12637 {
12638 loc->needs_update = 1;
12639 /* Clear the condition modification flag. */
12640 loc->condition_changed = condition_unchanged;
12641 }
12642 continue;
12643 }
12644
12645
12646 /* This and the above ensure the invariant that the first location
12647 is not duplicated, and is the inserted one.
12648 All following are marked as duplicated, and are not inserted. */
12649 if (loc->inserted)
12650 swap_insertion (loc, *loc_first_p);
12651 loc->duplicate = 1;
12652
12653 /* Clear the condition modification flag. */
12654 loc->condition_changed = condition_unchanged;
12655
12656 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12657 && b->enable_state != bp_permanent)
12658 internal_error (__FILE__, __LINE__,
12659 _("another breakpoint was inserted on top of "
12660 "a permanent breakpoint"));
12661 }
12662
12663 if (breakpoints_always_inserted_mode ()
12664 && (have_live_inferiors ()
12665 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12666 {
12667 if (should_insert)
12668 insert_breakpoint_locations ();
12669 else
12670 {
12671 /* Though should_insert is false, we may need to update conditions
12672 on the target's side if it is evaluating such conditions. We
12673 only update conditions for locations that are marked
12674 "needs_update". */
12675 update_inserted_breakpoint_locations ();
12676 }
12677 }
12678
12679 if (should_insert)
12680 download_tracepoint_locations ();
12681
12682 do_cleanups (cleanups);
12683 }
12684
12685 void
12686 breakpoint_retire_moribund (void)
12687 {
12688 struct bp_location *loc;
12689 int ix;
12690
12691 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12692 if (--(loc->events_till_retirement) == 0)
12693 {
12694 decref_bp_location (&loc);
12695 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12696 --ix;
12697 }
12698 }
12699
12700 static void
12701 update_global_location_list_nothrow (int inserting)
12702 {
12703 volatile struct gdb_exception e;
12704
12705 TRY_CATCH (e, RETURN_MASK_ERROR)
12706 update_global_location_list (inserting);
12707 }
12708
12709 /* Clear BKP from a BPS. */
12710
12711 static void
12712 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12713 {
12714 bpstat bs;
12715
12716 for (bs = bps; bs; bs = bs->next)
12717 if (bs->breakpoint_at == bpt)
12718 {
12719 bs->breakpoint_at = NULL;
12720 bs->old_val = NULL;
12721 /* bs->commands will be freed later. */
12722 }
12723 }
12724
12725 /* Callback for iterate_over_threads. */
12726 static int
12727 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12728 {
12729 struct breakpoint *bpt = data;
12730
12731 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12732 return 0;
12733 }
12734
12735 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12736 callbacks. */
12737
12738 static void
12739 say_where (struct breakpoint *b)
12740 {
12741 struct value_print_options opts;
12742
12743 get_user_print_options (&opts);
12744
12745 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12746 single string. */
12747 if (b->loc == NULL)
12748 {
12749 printf_filtered (_(" (%s) pending."), b->addr_string);
12750 }
12751 else
12752 {
12753 if (opts.addressprint || b->loc->symtab == NULL)
12754 {
12755 printf_filtered (" at ");
12756 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12757 gdb_stdout);
12758 }
12759 if (b->loc->symtab != NULL)
12760 {
12761 /* If there is a single location, we can print the location
12762 more nicely. */
12763 if (b->loc->next == NULL)
12764 printf_filtered (": file %s, line %d.",
12765 symtab_to_filename_for_display (b->loc->symtab),
12766 b->loc->line_number);
12767 else
12768 /* This is not ideal, but each location may have a
12769 different file name, and this at least reflects the
12770 real situation somewhat. */
12771 printf_filtered (": %s.", b->addr_string);
12772 }
12773
12774 if (b->loc->next)
12775 {
12776 struct bp_location *loc = b->loc;
12777 int n = 0;
12778 for (; loc; loc = loc->next)
12779 ++n;
12780 printf_filtered (" (%d locations)", n);
12781 }
12782 }
12783 }
12784
12785 /* Default bp_location_ops methods. */
12786
12787 static void
12788 bp_location_dtor (struct bp_location *self)
12789 {
12790 xfree (self->cond);
12791 if (self->cond_bytecode)
12792 free_agent_expr (self->cond_bytecode);
12793 xfree (self->function_name);
12794
12795 VEC_free (agent_expr_p, self->target_info.conditions);
12796 VEC_free (agent_expr_p, self->target_info.tcommands);
12797 }
12798
12799 static const struct bp_location_ops bp_location_ops =
12800 {
12801 bp_location_dtor
12802 };
12803
12804 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12805 inherit from. */
12806
12807 static void
12808 base_breakpoint_dtor (struct breakpoint *self)
12809 {
12810 decref_counted_command_line (&self->commands);
12811 xfree (self->cond_string);
12812 xfree (self->extra_string);
12813 xfree (self->addr_string);
12814 xfree (self->filter);
12815 xfree (self->addr_string_range_end);
12816 }
12817
12818 static struct bp_location *
12819 base_breakpoint_allocate_location (struct breakpoint *self)
12820 {
12821 struct bp_location *loc;
12822
12823 loc = XNEW (struct bp_location);
12824 init_bp_location (loc, &bp_location_ops, self);
12825 return loc;
12826 }
12827
12828 static void
12829 base_breakpoint_re_set (struct breakpoint *b)
12830 {
12831 /* Nothing to re-set. */
12832 }
12833
12834 #define internal_error_pure_virtual_called() \
12835 gdb_assert_not_reached ("pure virtual function called")
12836
12837 static int
12838 base_breakpoint_insert_location (struct bp_location *bl)
12839 {
12840 internal_error_pure_virtual_called ();
12841 }
12842
12843 static int
12844 base_breakpoint_remove_location (struct bp_location *bl)
12845 {
12846 internal_error_pure_virtual_called ();
12847 }
12848
12849 static int
12850 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12851 struct address_space *aspace,
12852 CORE_ADDR bp_addr,
12853 const struct target_waitstatus *ws)
12854 {
12855 internal_error_pure_virtual_called ();
12856 }
12857
12858 static void
12859 base_breakpoint_check_status (bpstat bs)
12860 {
12861 /* Always stop. */
12862 }
12863
12864 /* A "works_in_software_mode" breakpoint_ops method that just internal
12865 errors. */
12866
12867 static int
12868 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12869 {
12870 internal_error_pure_virtual_called ();
12871 }
12872
12873 /* A "resources_needed" breakpoint_ops method that just internal
12874 errors. */
12875
12876 static int
12877 base_breakpoint_resources_needed (const struct bp_location *bl)
12878 {
12879 internal_error_pure_virtual_called ();
12880 }
12881
12882 static enum print_stop_action
12883 base_breakpoint_print_it (bpstat bs)
12884 {
12885 internal_error_pure_virtual_called ();
12886 }
12887
12888 static void
12889 base_breakpoint_print_one_detail (const struct breakpoint *self,
12890 struct ui_out *uiout)
12891 {
12892 /* nothing */
12893 }
12894
12895 static void
12896 base_breakpoint_print_mention (struct breakpoint *b)
12897 {
12898 internal_error_pure_virtual_called ();
12899 }
12900
12901 static void
12902 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12903 {
12904 internal_error_pure_virtual_called ();
12905 }
12906
12907 static void
12908 base_breakpoint_create_sals_from_address (char **arg,
12909 struct linespec_result *canonical,
12910 enum bptype type_wanted,
12911 char *addr_start,
12912 char **copy_arg)
12913 {
12914 internal_error_pure_virtual_called ();
12915 }
12916
12917 static void
12918 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12919 struct linespec_result *c,
12920 char *cond_string,
12921 char *extra_string,
12922 enum bptype type_wanted,
12923 enum bpdisp disposition,
12924 int thread,
12925 int task, int ignore_count,
12926 const struct breakpoint_ops *o,
12927 int from_tty, int enabled,
12928 int internal, unsigned flags)
12929 {
12930 internal_error_pure_virtual_called ();
12931 }
12932
12933 static void
12934 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12935 struct symtabs_and_lines *sals)
12936 {
12937 internal_error_pure_virtual_called ();
12938 }
12939
12940 /* The default 'explains_signal' method. */
12941
12942 static int
12943 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12944 {
12945 return 1;
12946 }
12947
12948 /* The default "after_condition_true" method. */
12949
12950 static void
12951 base_breakpoint_after_condition_true (struct bpstats *bs)
12952 {
12953 /* Nothing to do. */
12954 }
12955
12956 struct breakpoint_ops base_breakpoint_ops =
12957 {
12958 base_breakpoint_dtor,
12959 base_breakpoint_allocate_location,
12960 base_breakpoint_re_set,
12961 base_breakpoint_insert_location,
12962 base_breakpoint_remove_location,
12963 base_breakpoint_breakpoint_hit,
12964 base_breakpoint_check_status,
12965 base_breakpoint_resources_needed,
12966 base_breakpoint_works_in_software_mode,
12967 base_breakpoint_print_it,
12968 NULL,
12969 base_breakpoint_print_one_detail,
12970 base_breakpoint_print_mention,
12971 base_breakpoint_print_recreate,
12972 base_breakpoint_create_sals_from_address,
12973 base_breakpoint_create_breakpoints_sal,
12974 base_breakpoint_decode_linespec,
12975 base_breakpoint_explains_signal,
12976 base_breakpoint_after_condition_true,
12977 };
12978
12979 /* Default breakpoint_ops methods. */
12980
12981 static void
12982 bkpt_re_set (struct breakpoint *b)
12983 {
12984 /* FIXME: is this still reachable? */
12985 if (b->addr_string == NULL)
12986 {
12987 /* Anything without a string can't be re-set. */
12988 delete_breakpoint (b);
12989 return;
12990 }
12991
12992 breakpoint_re_set_default (b);
12993 }
12994
12995 static int
12996 bkpt_insert_location (struct bp_location *bl)
12997 {
12998 if (bl->loc_type == bp_loc_hardware_breakpoint)
12999 return target_insert_hw_breakpoint (bl->gdbarch,
13000 &bl->target_info);
13001 else
13002 return target_insert_breakpoint (bl->gdbarch,
13003 &bl->target_info);
13004 }
13005
13006 static int
13007 bkpt_remove_location (struct bp_location *bl)
13008 {
13009 if (bl->loc_type == bp_loc_hardware_breakpoint)
13010 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13011 else
13012 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13013 }
13014
13015 static int
13016 bkpt_breakpoint_hit (const struct bp_location *bl,
13017 struct address_space *aspace, CORE_ADDR bp_addr,
13018 const struct target_waitstatus *ws)
13019 {
13020 if (ws->kind != TARGET_WAITKIND_STOPPED
13021 || ws->value.sig != GDB_SIGNAL_TRAP)
13022 return 0;
13023
13024 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13025 aspace, bp_addr))
13026 return 0;
13027
13028 if (overlay_debugging /* unmapped overlay section */
13029 && section_is_overlay (bl->section)
13030 && !section_is_mapped (bl->section))
13031 return 0;
13032
13033 return 1;
13034 }
13035
13036 static int
13037 bkpt_resources_needed (const struct bp_location *bl)
13038 {
13039 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13040
13041 return 1;
13042 }
13043
13044 static enum print_stop_action
13045 bkpt_print_it (bpstat bs)
13046 {
13047 struct breakpoint *b;
13048 const struct bp_location *bl;
13049 int bp_temp;
13050 struct ui_out *uiout = current_uiout;
13051
13052 gdb_assert (bs->bp_location_at != NULL);
13053
13054 bl = bs->bp_location_at;
13055 b = bs->breakpoint_at;
13056
13057 bp_temp = b->disposition == disp_del;
13058 if (bl->address != bl->requested_address)
13059 breakpoint_adjustment_warning (bl->requested_address,
13060 bl->address,
13061 b->number, 1);
13062 annotate_breakpoint (b->number);
13063 if (bp_temp)
13064 ui_out_text (uiout, "\nTemporary breakpoint ");
13065 else
13066 ui_out_text (uiout, "\nBreakpoint ");
13067 if (ui_out_is_mi_like_p (uiout))
13068 {
13069 ui_out_field_string (uiout, "reason",
13070 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13071 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13072 }
13073 ui_out_field_int (uiout, "bkptno", b->number);
13074 ui_out_text (uiout, ", ");
13075
13076 return PRINT_SRC_AND_LOC;
13077 }
13078
13079 static void
13080 bkpt_print_mention (struct breakpoint *b)
13081 {
13082 if (ui_out_is_mi_like_p (current_uiout))
13083 return;
13084
13085 switch (b->type)
13086 {
13087 case bp_breakpoint:
13088 case bp_gnu_ifunc_resolver:
13089 if (b->disposition == disp_del)
13090 printf_filtered (_("Temporary breakpoint"));
13091 else
13092 printf_filtered (_("Breakpoint"));
13093 printf_filtered (_(" %d"), b->number);
13094 if (b->type == bp_gnu_ifunc_resolver)
13095 printf_filtered (_(" at gnu-indirect-function resolver"));
13096 break;
13097 case bp_hardware_breakpoint:
13098 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13099 break;
13100 case bp_dprintf:
13101 printf_filtered (_("Dprintf %d"), b->number);
13102 break;
13103 }
13104
13105 say_where (b);
13106 }
13107
13108 static void
13109 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13110 {
13111 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13112 fprintf_unfiltered (fp, "tbreak");
13113 else if (tp->type == bp_breakpoint)
13114 fprintf_unfiltered (fp, "break");
13115 else if (tp->type == bp_hardware_breakpoint
13116 && tp->disposition == disp_del)
13117 fprintf_unfiltered (fp, "thbreak");
13118 else if (tp->type == bp_hardware_breakpoint)
13119 fprintf_unfiltered (fp, "hbreak");
13120 else
13121 internal_error (__FILE__, __LINE__,
13122 _("unhandled breakpoint type %d"), (int) tp->type);
13123
13124 fprintf_unfiltered (fp, " %s", tp->addr_string);
13125 print_recreate_thread (tp, fp);
13126 }
13127
13128 static void
13129 bkpt_create_sals_from_address (char **arg,
13130 struct linespec_result *canonical,
13131 enum bptype type_wanted,
13132 char *addr_start, char **copy_arg)
13133 {
13134 create_sals_from_address_default (arg, canonical, type_wanted,
13135 addr_start, copy_arg);
13136 }
13137
13138 static void
13139 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13140 struct linespec_result *canonical,
13141 char *cond_string,
13142 char *extra_string,
13143 enum bptype type_wanted,
13144 enum bpdisp disposition,
13145 int thread,
13146 int task, int ignore_count,
13147 const struct breakpoint_ops *ops,
13148 int from_tty, int enabled,
13149 int internal, unsigned flags)
13150 {
13151 create_breakpoints_sal_default (gdbarch, canonical,
13152 cond_string, extra_string,
13153 type_wanted,
13154 disposition, thread, task,
13155 ignore_count, ops, from_tty,
13156 enabled, internal, flags);
13157 }
13158
13159 static void
13160 bkpt_decode_linespec (struct breakpoint *b, char **s,
13161 struct symtabs_and_lines *sals)
13162 {
13163 decode_linespec_default (b, s, sals);
13164 }
13165
13166 /* Virtual table for internal breakpoints. */
13167
13168 static void
13169 internal_bkpt_re_set (struct breakpoint *b)
13170 {
13171 switch (b->type)
13172 {
13173 /* Delete overlay event and longjmp master breakpoints; they
13174 will be reset later by breakpoint_re_set. */
13175 case bp_overlay_event:
13176 case bp_longjmp_master:
13177 case bp_std_terminate_master:
13178 case bp_exception_master:
13179 delete_breakpoint (b);
13180 break;
13181
13182 /* This breakpoint is special, it's set up when the inferior
13183 starts and we really don't want to touch it. */
13184 case bp_shlib_event:
13185
13186 /* Like bp_shlib_event, this breakpoint type is special. Once
13187 it is set up, we do not want to touch it. */
13188 case bp_thread_event:
13189 break;
13190 }
13191 }
13192
13193 static void
13194 internal_bkpt_check_status (bpstat bs)
13195 {
13196 if (bs->breakpoint_at->type == bp_shlib_event)
13197 {
13198 /* If requested, stop when the dynamic linker notifies GDB of
13199 events. This allows the user to get control and place
13200 breakpoints in initializer routines for dynamically loaded
13201 objects (among other things). */
13202 bs->stop = stop_on_solib_events;
13203 bs->print = stop_on_solib_events;
13204 }
13205 else
13206 bs->stop = 0;
13207 }
13208
13209 static enum print_stop_action
13210 internal_bkpt_print_it (bpstat bs)
13211 {
13212 struct breakpoint *b;
13213
13214 b = bs->breakpoint_at;
13215
13216 switch (b->type)
13217 {
13218 case bp_shlib_event:
13219 /* Did we stop because the user set the stop_on_solib_events
13220 variable? (If so, we report this as a generic, "Stopped due
13221 to shlib event" message.) */
13222 print_solib_event (0);
13223 break;
13224
13225 case bp_thread_event:
13226 /* Not sure how we will get here.
13227 GDB should not stop for these breakpoints. */
13228 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13229 break;
13230
13231 case bp_overlay_event:
13232 /* By analogy with the thread event, GDB should not stop for these. */
13233 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13234 break;
13235
13236 case bp_longjmp_master:
13237 /* These should never be enabled. */
13238 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13239 break;
13240
13241 case bp_std_terminate_master:
13242 /* These should never be enabled. */
13243 printf_filtered (_("std::terminate Master Breakpoint: "
13244 "gdb should not stop!\n"));
13245 break;
13246
13247 case bp_exception_master:
13248 /* These should never be enabled. */
13249 printf_filtered (_("Exception Master Breakpoint: "
13250 "gdb should not stop!\n"));
13251 break;
13252 }
13253
13254 return PRINT_NOTHING;
13255 }
13256
13257 static void
13258 internal_bkpt_print_mention (struct breakpoint *b)
13259 {
13260 /* Nothing to mention. These breakpoints are internal. */
13261 }
13262
13263 /* Virtual table for momentary breakpoints */
13264
13265 static void
13266 momentary_bkpt_re_set (struct breakpoint *b)
13267 {
13268 /* Keep temporary breakpoints, which can be encountered when we step
13269 over a dlopen call and solib_add is resetting the breakpoints.
13270 Otherwise these should have been blown away via the cleanup chain
13271 or by breakpoint_init_inferior when we rerun the executable. */
13272 }
13273
13274 static void
13275 momentary_bkpt_check_status (bpstat bs)
13276 {
13277 /* Nothing. The point of these breakpoints is causing a stop. */
13278 }
13279
13280 static enum print_stop_action
13281 momentary_bkpt_print_it (bpstat bs)
13282 {
13283 struct ui_out *uiout = current_uiout;
13284
13285 if (ui_out_is_mi_like_p (uiout))
13286 {
13287 struct breakpoint *b = bs->breakpoint_at;
13288
13289 switch (b->type)
13290 {
13291 case bp_finish:
13292 ui_out_field_string
13293 (uiout, "reason",
13294 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13295 break;
13296
13297 case bp_until:
13298 ui_out_field_string
13299 (uiout, "reason",
13300 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13301 break;
13302 }
13303 }
13304
13305 return PRINT_UNKNOWN;
13306 }
13307
13308 static void
13309 momentary_bkpt_print_mention (struct breakpoint *b)
13310 {
13311 /* Nothing to mention. These breakpoints are internal. */
13312 }
13313
13314 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13315
13316 It gets cleared already on the removal of the first one of such placed
13317 breakpoints. This is OK as they get all removed altogether. */
13318
13319 static void
13320 longjmp_bkpt_dtor (struct breakpoint *self)
13321 {
13322 struct thread_info *tp = find_thread_id (self->thread);
13323
13324 if (tp)
13325 tp->initiating_frame = null_frame_id;
13326
13327 momentary_breakpoint_ops.dtor (self);
13328 }
13329
13330 /* Specific methods for probe breakpoints. */
13331
13332 static int
13333 bkpt_probe_insert_location (struct bp_location *bl)
13334 {
13335 int v = bkpt_insert_location (bl);
13336
13337 if (v == 0)
13338 {
13339 /* The insertion was successful, now let's set the probe's semaphore
13340 if needed. */
13341 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13342 }
13343
13344 return v;
13345 }
13346
13347 static int
13348 bkpt_probe_remove_location (struct bp_location *bl)
13349 {
13350 /* Let's clear the semaphore before removing the location. */
13351 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13352
13353 return bkpt_remove_location (bl);
13354 }
13355
13356 static void
13357 bkpt_probe_create_sals_from_address (char **arg,
13358 struct linespec_result *canonical,
13359 enum bptype type_wanted,
13360 char *addr_start, char **copy_arg)
13361 {
13362 struct linespec_sals lsal;
13363
13364 lsal.sals = parse_probes (arg, canonical);
13365
13366 *copy_arg = xstrdup (canonical->addr_string);
13367 lsal.canonical = xstrdup (*copy_arg);
13368
13369 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13370 }
13371
13372 static void
13373 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13374 struct symtabs_and_lines *sals)
13375 {
13376 *sals = parse_probes (s, NULL);
13377 if (!sals->sals)
13378 error (_("probe not found"));
13379 }
13380
13381 /* The breakpoint_ops structure to be used in tracepoints. */
13382
13383 static void
13384 tracepoint_re_set (struct breakpoint *b)
13385 {
13386 breakpoint_re_set_default (b);
13387 }
13388
13389 static int
13390 tracepoint_breakpoint_hit (const struct bp_location *bl,
13391 struct address_space *aspace, CORE_ADDR bp_addr,
13392 const struct target_waitstatus *ws)
13393 {
13394 /* By definition, the inferior does not report stops at
13395 tracepoints. */
13396 return 0;
13397 }
13398
13399 static void
13400 tracepoint_print_one_detail (const struct breakpoint *self,
13401 struct ui_out *uiout)
13402 {
13403 struct tracepoint *tp = (struct tracepoint *) self;
13404 if (tp->static_trace_marker_id)
13405 {
13406 gdb_assert (self->type == bp_static_tracepoint);
13407
13408 ui_out_text (uiout, "\tmarker id is ");
13409 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13410 tp->static_trace_marker_id);
13411 ui_out_text (uiout, "\n");
13412 }
13413 }
13414
13415 static void
13416 tracepoint_print_mention (struct breakpoint *b)
13417 {
13418 if (ui_out_is_mi_like_p (current_uiout))
13419 return;
13420
13421 switch (b->type)
13422 {
13423 case bp_tracepoint:
13424 printf_filtered (_("Tracepoint"));
13425 printf_filtered (_(" %d"), b->number);
13426 break;
13427 case bp_fast_tracepoint:
13428 printf_filtered (_("Fast tracepoint"));
13429 printf_filtered (_(" %d"), b->number);
13430 break;
13431 case bp_static_tracepoint:
13432 printf_filtered (_("Static tracepoint"));
13433 printf_filtered (_(" %d"), b->number);
13434 break;
13435 default:
13436 internal_error (__FILE__, __LINE__,
13437 _("unhandled tracepoint type %d"), (int) b->type);
13438 }
13439
13440 say_where (b);
13441 }
13442
13443 static void
13444 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13445 {
13446 struct tracepoint *tp = (struct tracepoint *) self;
13447
13448 if (self->type == bp_fast_tracepoint)
13449 fprintf_unfiltered (fp, "ftrace");
13450 if (self->type == bp_static_tracepoint)
13451 fprintf_unfiltered (fp, "strace");
13452 else if (self->type == bp_tracepoint)
13453 fprintf_unfiltered (fp, "trace");
13454 else
13455 internal_error (__FILE__, __LINE__,
13456 _("unhandled tracepoint type %d"), (int) self->type);
13457
13458 fprintf_unfiltered (fp, " %s", self->addr_string);
13459 print_recreate_thread (self, fp);
13460
13461 if (tp->pass_count)
13462 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13463 }
13464
13465 static void
13466 tracepoint_create_sals_from_address (char **arg,
13467 struct linespec_result *canonical,
13468 enum bptype type_wanted,
13469 char *addr_start, char **copy_arg)
13470 {
13471 create_sals_from_address_default (arg, canonical, type_wanted,
13472 addr_start, copy_arg);
13473 }
13474
13475 static void
13476 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13477 struct linespec_result *canonical,
13478 char *cond_string,
13479 char *extra_string,
13480 enum bptype type_wanted,
13481 enum bpdisp disposition,
13482 int thread,
13483 int task, int ignore_count,
13484 const struct breakpoint_ops *ops,
13485 int from_tty, int enabled,
13486 int internal, unsigned flags)
13487 {
13488 create_breakpoints_sal_default (gdbarch, canonical,
13489 cond_string, extra_string,
13490 type_wanted,
13491 disposition, thread, task,
13492 ignore_count, ops, from_tty,
13493 enabled, internal, flags);
13494 }
13495
13496 static void
13497 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13498 struct symtabs_and_lines *sals)
13499 {
13500 decode_linespec_default (b, s, sals);
13501 }
13502
13503 struct breakpoint_ops tracepoint_breakpoint_ops;
13504
13505 /* The breakpoint_ops structure to be use on tracepoints placed in a
13506 static probe. */
13507
13508 static void
13509 tracepoint_probe_create_sals_from_address (char **arg,
13510 struct linespec_result *canonical,
13511 enum bptype type_wanted,
13512 char *addr_start, char **copy_arg)
13513 {
13514 /* We use the same method for breakpoint on probes. */
13515 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13516 addr_start, copy_arg);
13517 }
13518
13519 static void
13520 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13521 struct symtabs_and_lines *sals)
13522 {
13523 /* We use the same method for breakpoint on probes. */
13524 bkpt_probe_decode_linespec (b, s, sals);
13525 }
13526
13527 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13528
13529 /* Dprintf breakpoint_ops methods. */
13530
13531 static void
13532 dprintf_re_set (struct breakpoint *b)
13533 {
13534 breakpoint_re_set_default (b);
13535
13536 /* This breakpoint could have been pending, and be resolved now, and
13537 if so, we should now have the extra string. If we don't, the
13538 dprintf was malformed when created, but we couldn't tell because
13539 we can't extract the extra string until the location is
13540 resolved. */
13541 if (b->loc != NULL && b->extra_string == NULL)
13542 error (_("Format string required"));
13543
13544 /* 1 - connect to target 1, that can run breakpoint commands.
13545 2 - create a dprintf, which resolves fine.
13546 3 - disconnect from target 1
13547 4 - connect to target 2, that can NOT run breakpoint commands.
13548
13549 After steps #3/#4, you'll want the dprintf command list to
13550 be updated, because target 1 and 2 may well return different
13551 answers for target_can_run_breakpoint_commands().
13552 Given absence of finer grained resetting, we get to do
13553 it all the time. */
13554 if (b->extra_string != NULL)
13555 update_dprintf_command_list (b);
13556 }
13557
13558 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13559
13560 static void
13561 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13562 {
13563 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13564 tp->extra_string);
13565 print_recreate_thread (tp, fp);
13566 }
13567
13568 /* Implement the "after_condition_true" breakpoint_ops method for
13569 dprintf.
13570
13571 dprintf's are implemented with regular commands in their command
13572 list, but we run the commands here instead of before presenting the
13573 stop to the user, as dprintf's don't actually cause a stop. This
13574 also makes it so that the commands of multiple dprintfs at the same
13575 address are all handled. */
13576
13577 static void
13578 dprintf_after_condition_true (struct bpstats *bs)
13579 {
13580 struct cleanup *old_chain;
13581 struct bpstats tmp_bs = { NULL };
13582 struct bpstats *tmp_bs_p = &tmp_bs;
13583
13584 /* dprintf's never cause a stop. This wasn't set in the
13585 check_status hook instead because that would make the dprintf's
13586 condition not be evaluated. */
13587 bs->stop = 0;
13588
13589 /* Run the command list here. Take ownership of it instead of
13590 copying. We never want these commands to run later in
13591 bpstat_do_actions, if a breakpoint that causes a stop happens to
13592 be set at same address as this dprintf, or even if running the
13593 commands here throws. */
13594 tmp_bs.commands = bs->commands;
13595 bs->commands = NULL;
13596 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13597
13598 bpstat_do_actions_1 (&tmp_bs_p);
13599
13600 /* 'tmp_bs.commands' will usually be NULL by now, but
13601 bpstat_do_actions_1 may return early without processing the whole
13602 list. */
13603 do_cleanups (old_chain);
13604 }
13605
13606 /* The breakpoint_ops structure to be used on static tracepoints with
13607 markers (`-m'). */
13608
13609 static void
13610 strace_marker_create_sals_from_address (char **arg,
13611 struct linespec_result *canonical,
13612 enum bptype type_wanted,
13613 char *addr_start, char **copy_arg)
13614 {
13615 struct linespec_sals lsal;
13616
13617 lsal.sals = decode_static_tracepoint_spec (arg);
13618
13619 *copy_arg = savestring (addr_start, *arg - addr_start);
13620
13621 canonical->addr_string = xstrdup (*copy_arg);
13622 lsal.canonical = xstrdup (*copy_arg);
13623 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13624 }
13625
13626 static void
13627 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13628 struct linespec_result *canonical,
13629 char *cond_string,
13630 char *extra_string,
13631 enum bptype type_wanted,
13632 enum bpdisp disposition,
13633 int thread,
13634 int task, int ignore_count,
13635 const struct breakpoint_ops *ops,
13636 int from_tty, int enabled,
13637 int internal, unsigned flags)
13638 {
13639 int i;
13640 struct linespec_sals *lsal = VEC_index (linespec_sals,
13641 canonical->sals, 0);
13642
13643 /* If the user is creating a static tracepoint by marker id
13644 (strace -m MARKER_ID), then store the sals index, so that
13645 breakpoint_re_set can try to match up which of the newly
13646 found markers corresponds to this one, and, don't try to
13647 expand multiple locations for each sal, given than SALS
13648 already should contain all sals for MARKER_ID. */
13649
13650 for (i = 0; i < lsal->sals.nelts; ++i)
13651 {
13652 struct symtabs_and_lines expanded;
13653 struct tracepoint *tp;
13654 struct cleanup *old_chain;
13655 char *addr_string;
13656
13657 expanded.nelts = 1;
13658 expanded.sals = &lsal->sals.sals[i];
13659
13660 addr_string = xstrdup (canonical->addr_string);
13661 old_chain = make_cleanup (xfree, addr_string);
13662
13663 tp = XCNEW (struct tracepoint);
13664 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13665 addr_string, NULL,
13666 cond_string, extra_string,
13667 type_wanted, disposition,
13668 thread, task, ignore_count, ops,
13669 from_tty, enabled, internal, flags,
13670 canonical->special_display);
13671 /* Given that its possible to have multiple markers with
13672 the same string id, if the user is creating a static
13673 tracepoint by marker id ("strace -m MARKER_ID"), then
13674 store the sals index, so that breakpoint_re_set can
13675 try to match up which of the newly found markers
13676 corresponds to this one */
13677 tp->static_trace_marker_id_idx = i;
13678
13679 install_breakpoint (internal, &tp->base, 0);
13680
13681 discard_cleanups (old_chain);
13682 }
13683 }
13684
13685 static void
13686 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13687 struct symtabs_and_lines *sals)
13688 {
13689 struct tracepoint *tp = (struct tracepoint *) b;
13690
13691 *sals = decode_static_tracepoint_spec (s);
13692 if (sals->nelts > tp->static_trace_marker_id_idx)
13693 {
13694 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13695 sals->nelts = 1;
13696 }
13697 else
13698 error (_("marker %s not found"), tp->static_trace_marker_id);
13699 }
13700
13701 static struct breakpoint_ops strace_marker_breakpoint_ops;
13702
13703 static int
13704 strace_marker_p (struct breakpoint *b)
13705 {
13706 return b->ops == &strace_marker_breakpoint_ops;
13707 }
13708
13709 /* Delete a breakpoint and clean up all traces of it in the data
13710 structures. */
13711
13712 void
13713 delete_breakpoint (struct breakpoint *bpt)
13714 {
13715 struct breakpoint *b;
13716
13717 gdb_assert (bpt != NULL);
13718
13719 /* Has this bp already been deleted? This can happen because
13720 multiple lists can hold pointers to bp's. bpstat lists are
13721 especial culprits.
13722
13723 One example of this happening is a watchpoint's scope bp. When
13724 the scope bp triggers, we notice that the watchpoint is out of
13725 scope, and delete it. We also delete its scope bp. But the
13726 scope bp is marked "auto-deleting", and is already on a bpstat.
13727 That bpstat is then checked for auto-deleting bp's, which are
13728 deleted.
13729
13730 A real solution to this problem might involve reference counts in
13731 bp's, and/or giving them pointers back to their referencing
13732 bpstat's, and teaching delete_breakpoint to only free a bp's
13733 storage when no more references were extent. A cheaper bandaid
13734 was chosen. */
13735 if (bpt->type == bp_none)
13736 return;
13737
13738 /* At least avoid this stale reference until the reference counting
13739 of breakpoints gets resolved. */
13740 if (bpt->related_breakpoint != bpt)
13741 {
13742 struct breakpoint *related;
13743 struct watchpoint *w;
13744
13745 if (bpt->type == bp_watchpoint_scope)
13746 w = (struct watchpoint *) bpt->related_breakpoint;
13747 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13748 w = (struct watchpoint *) bpt;
13749 else
13750 w = NULL;
13751 if (w != NULL)
13752 watchpoint_del_at_next_stop (w);
13753
13754 /* Unlink bpt from the bpt->related_breakpoint ring. */
13755 for (related = bpt; related->related_breakpoint != bpt;
13756 related = related->related_breakpoint);
13757 related->related_breakpoint = bpt->related_breakpoint;
13758 bpt->related_breakpoint = bpt;
13759 }
13760
13761 /* watch_command_1 creates a watchpoint but only sets its number if
13762 update_watchpoint succeeds in creating its bp_locations. If there's
13763 a problem in that process, we'll be asked to delete the half-created
13764 watchpoint. In that case, don't announce the deletion. */
13765 if (bpt->number)
13766 observer_notify_breakpoint_deleted (bpt);
13767
13768 if (breakpoint_chain == bpt)
13769 breakpoint_chain = bpt->next;
13770
13771 ALL_BREAKPOINTS (b)
13772 if (b->next == bpt)
13773 {
13774 b->next = bpt->next;
13775 break;
13776 }
13777
13778 /* Be sure no bpstat's are pointing at the breakpoint after it's
13779 been freed. */
13780 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13781 in all threads for now. Note that we cannot just remove bpstats
13782 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13783 commands are associated with the bpstat; if we remove it here,
13784 then the later call to bpstat_do_actions (&stop_bpstat); in
13785 event-top.c won't do anything, and temporary breakpoints with
13786 commands won't work. */
13787
13788 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13789
13790 /* Now that breakpoint is removed from breakpoint list, update the
13791 global location list. This will remove locations that used to
13792 belong to this breakpoint. Do this before freeing the breakpoint
13793 itself, since remove_breakpoint looks at location's owner. It
13794 might be better design to have location completely
13795 self-contained, but it's not the case now. */
13796 update_global_location_list (0);
13797
13798 bpt->ops->dtor (bpt);
13799 /* On the chance that someone will soon try again to delete this
13800 same bp, we mark it as deleted before freeing its storage. */
13801 bpt->type = bp_none;
13802 xfree (bpt);
13803 }
13804
13805 static void
13806 do_delete_breakpoint_cleanup (void *b)
13807 {
13808 delete_breakpoint (b);
13809 }
13810
13811 struct cleanup *
13812 make_cleanup_delete_breakpoint (struct breakpoint *b)
13813 {
13814 return make_cleanup (do_delete_breakpoint_cleanup, b);
13815 }
13816
13817 /* Iterator function to call a user-provided callback function once
13818 for each of B and its related breakpoints. */
13819
13820 static void
13821 iterate_over_related_breakpoints (struct breakpoint *b,
13822 void (*function) (struct breakpoint *,
13823 void *),
13824 void *data)
13825 {
13826 struct breakpoint *related;
13827
13828 related = b;
13829 do
13830 {
13831 struct breakpoint *next;
13832
13833 /* FUNCTION may delete RELATED. */
13834 next = related->related_breakpoint;
13835
13836 if (next == related)
13837 {
13838 /* RELATED is the last ring entry. */
13839 function (related, data);
13840
13841 /* FUNCTION may have deleted it, so we'd never reach back to
13842 B. There's nothing left to do anyway, so just break
13843 out. */
13844 break;
13845 }
13846 else
13847 function (related, data);
13848
13849 related = next;
13850 }
13851 while (related != b);
13852 }
13853
13854 static void
13855 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13856 {
13857 delete_breakpoint (b);
13858 }
13859
13860 /* A callback for map_breakpoint_numbers that calls
13861 delete_breakpoint. */
13862
13863 static void
13864 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13865 {
13866 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13867 }
13868
13869 void
13870 delete_command (char *arg, int from_tty)
13871 {
13872 struct breakpoint *b, *b_tmp;
13873
13874 dont_repeat ();
13875
13876 if (arg == 0)
13877 {
13878 int breaks_to_delete = 0;
13879
13880 /* Delete all breakpoints if no argument. Do not delete
13881 internal breakpoints, these have to be deleted with an
13882 explicit breakpoint number argument. */
13883 ALL_BREAKPOINTS (b)
13884 if (user_breakpoint_p (b))
13885 {
13886 breaks_to_delete = 1;
13887 break;
13888 }
13889
13890 /* Ask user only if there are some breakpoints to delete. */
13891 if (!from_tty
13892 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13893 {
13894 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13895 if (user_breakpoint_p (b))
13896 delete_breakpoint (b);
13897 }
13898 }
13899 else
13900 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13901 }
13902
13903 static int
13904 all_locations_are_pending (struct bp_location *loc)
13905 {
13906 for (; loc; loc = loc->next)
13907 if (!loc->shlib_disabled
13908 && !loc->pspace->executing_startup)
13909 return 0;
13910 return 1;
13911 }
13912
13913 /* Subroutine of update_breakpoint_locations to simplify it.
13914 Return non-zero if multiple fns in list LOC have the same name.
13915 Null names are ignored. */
13916
13917 static int
13918 ambiguous_names_p (struct bp_location *loc)
13919 {
13920 struct bp_location *l;
13921 htab_t htab = htab_create_alloc (13, htab_hash_string,
13922 (int (*) (const void *,
13923 const void *)) streq,
13924 NULL, xcalloc, xfree);
13925
13926 for (l = loc; l != NULL; l = l->next)
13927 {
13928 const char **slot;
13929 const char *name = l->function_name;
13930
13931 /* Allow for some names to be NULL, ignore them. */
13932 if (name == NULL)
13933 continue;
13934
13935 slot = (const char **) htab_find_slot (htab, (const void *) name,
13936 INSERT);
13937 /* NOTE: We can assume slot != NULL here because xcalloc never
13938 returns NULL. */
13939 if (*slot != NULL)
13940 {
13941 htab_delete (htab);
13942 return 1;
13943 }
13944 *slot = name;
13945 }
13946
13947 htab_delete (htab);
13948 return 0;
13949 }
13950
13951 /* When symbols change, it probably means the sources changed as well,
13952 and it might mean the static tracepoint markers are no longer at
13953 the same address or line numbers they used to be at last we
13954 checked. Losing your static tracepoints whenever you rebuild is
13955 undesirable. This function tries to resync/rematch gdb static
13956 tracepoints with the markers on the target, for static tracepoints
13957 that have not been set by marker id. Static tracepoint that have
13958 been set by marker id are reset by marker id in breakpoint_re_set.
13959 The heuristic is:
13960
13961 1) For a tracepoint set at a specific address, look for a marker at
13962 the old PC. If one is found there, assume to be the same marker.
13963 If the name / string id of the marker found is different from the
13964 previous known name, assume that means the user renamed the marker
13965 in the sources, and output a warning.
13966
13967 2) For a tracepoint set at a given line number, look for a marker
13968 at the new address of the old line number. If one is found there,
13969 assume to be the same marker. If the name / string id of the
13970 marker found is different from the previous known name, assume that
13971 means the user renamed the marker in the sources, and output a
13972 warning.
13973
13974 3) If a marker is no longer found at the same address or line, it
13975 may mean the marker no longer exists. But it may also just mean
13976 the code changed a bit. Maybe the user added a few lines of code
13977 that made the marker move up or down (in line number terms). Ask
13978 the target for info about the marker with the string id as we knew
13979 it. If found, update line number and address in the matching
13980 static tracepoint. This will get confused if there's more than one
13981 marker with the same ID (possible in UST, although unadvised
13982 precisely because it confuses tools). */
13983
13984 static struct symtab_and_line
13985 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13986 {
13987 struct tracepoint *tp = (struct tracepoint *) b;
13988 struct static_tracepoint_marker marker;
13989 CORE_ADDR pc;
13990
13991 pc = sal.pc;
13992 if (sal.line)
13993 find_line_pc (sal.symtab, sal.line, &pc);
13994
13995 if (target_static_tracepoint_marker_at (pc, &marker))
13996 {
13997 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13998 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13999 b->number,
14000 tp->static_trace_marker_id, marker.str_id);
14001
14002 xfree (tp->static_trace_marker_id);
14003 tp->static_trace_marker_id = xstrdup (marker.str_id);
14004 release_static_tracepoint_marker (&marker);
14005
14006 return sal;
14007 }
14008
14009 /* Old marker wasn't found on target at lineno. Try looking it up
14010 by string ID. */
14011 if (!sal.explicit_pc
14012 && sal.line != 0
14013 && sal.symtab != NULL
14014 && tp->static_trace_marker_id != NULL)
14015 {
14016 VEC(static_tracepoint_marker_p) *markers;
14017
14018 markers
14019 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14020
14021 if (!VEC_empty(static_tracepoint_marker_p, markers))
14022 {
14023 struct symtab_and_line sal2;
14024 struct symbol *sym;
14025 struct static_tracepoint_marker *tpmarker;
14026 struct ui_out *uiout = current_uiout;
14027
14028 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14029
14030 xfree (tp->static_trace_marker_id);
14031 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14032
14033 warning (_("marker for static tracepoint %d (%s) not "
14034 "found at previous line number"),
14035 b->number, tp->static_trace_marker_id);
14036
14037 init_sal (&sal2);
14038
14039 sal2.pc = tpmarker->address;
14040
14041 sal2 = find_pc_line (tpmarker->address, 0);
14042 sym = find_pc_sect_function (tpmarker->address, NULL);
14043 ui_out_text (uiout, "Now in ");
14044 if (sym)
14045 {
14046 ui_out_field_string (uiout, "func",
14047 SYMBOL_PRINT_NAME (sym));
14048 ui_out_text (uiout, " at ");
14049 }
14050 ui_out_field_string (uiout, "file",
14051 symtab_to_filename_for_display (sal2.symtab));
14052 ui_out_text (uiout, ":");
14053
14054 if (ui_out_is_mi_like_p (uiout))
14055 {
14056 const char *fullname = symtab_to_fullname (sal2.symtab);
14057
14058 ui_out_field_string (uiout, "fullname", fullname);
14059 }
14060
14061 ui_out_field_int (uiout, "line", sal2.line);
14062 ui_out_text (uiout, "\n");
14063
14064 b->loc->line_number = sal2.line;
14065 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14066
14067 xfree (b->addr_string);
14068 b->addr_string = xstrprintf ("%s:%d",
14069 symtab_to_filename_for_display (sal2.symtab),
14070 b->loc->line_number);
14071
14072 /* Might be nice to check if function changed, and warn if
14073 so. */
14074
14075 release_static_tracepoint_marker (tpmarker);
14076 }
14077 }
14078 return sal;
14079 }
14080
14081 /* Returns 1 iff locations A and B are sufficiently same that
14082 we don't need to report breakpoint as changed. */
14083
14084 static int
14085 locations_are_equal (struct bp_location *a, struct bp_location *b)
14086 {
14087 while (a && b)
14088 {
14089 if (a->address != b->address)
14090 return 0;
14091
14092 if (a->shlib_disabled != b->shlib_disabled)
14093 return 0;
14094
14095 if (a->enabled != b->enabled)
14096 return 0;
14097
14098 a = a->next;
14099 b = b->next;
14100 }
14101
14102 if ((a == NULL) != (b == NULL))
14103 return 0;
14104
14105 return 1;
14106 }
14107
14108 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14109 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14110 a ranged breakpoint. */
14111
14112 void
14113 update_breakpoint_locations (struct breakpoint *b,
14114 struct symtabs_and_lines sals,
14115 struct symtabs_and_lines sals_end)
14116 {
14117 int i;
14118 struct bp_location *existing_locations = b->loc;
14119
14120 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14121 {
14122 /* Ranged breakpoints have only one start location and one end
14123 location. */
14124 b->enable_state = bp_disabled;
14125 update_global_location_list (1);
14126 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14127 "multiple locations found\n"),
14128 b->number);
14129 return;
14130 }
14131
14132 /* If there's no new locations, and all existing locations are
14133 pending, don't do anything. This optimizes the common case where
14134 all locations are in the same shared library, that was unloaded.
14135 We'd like to retain the location, so that when the library is
14136 loaded again, we don't loose the enabled/disabled status of the
14137 individual locations. */
14138 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14139 return;
14140
14141 b->loc = NULL;
14142
14143 for (i = 0; i < sals.nelts; ++i)
14144 {
14145 struct bp_location *new_loc;
14146
14147 switch_to_program_space_and_thread (sals.sals[i].pspace);
14148
14149 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14150
14151 /* Reparse conditions, they might contain references to the
14152 old symtab. */
14153 if (b->cond_string != NULL)
14154 {
14155 const char *s;
14156 volatile struct gdb_exception e;
14157
14158 s = b->cond_string;
14159 TRY_CATCH (e, RETURN_MASK_ERROR)
14160 {
14161 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14162 block_for_pc (sals.sals[i].pc),
14163 0);
14164 }
14165 if (e.reason < 0)
14166 {
14167 warning (_("failed to reevaluate condition "
14168 "for breakpoint %d: %s"),
14169 b->number, e.message);
14170 new_loc->enabled = 0;
14171 }
14172 }
14173
14174 if (sals_end.nelts)
14175 {
14176 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14177
14178 new_loc->length = end - sals.sals[0].pc + 1;
14179 }
14180 }
14181
14182 /* Update locations of permanent breakpoints. */
14183 if (b->enable_state == bp_permanent)
14184 make_breakpoint_permanent (b);
14185
14186 /* If possible, carry over 'disable' status from existing
14187 breakpoints. */
14188 {
14189 struct bp_location *e = existing_locations;
14190 /* If there are multiple breakpoints with the same function name,
14191 e.g. for inline functions, comparing function names won't work.
14192 Instead compare pc addresses; this is just a heuristic as things
14193 may have moved, but in practice it gives the correct answer
14194 often enough until a better solution is found. */
14195 int have_ambiguous_names = ambiguous_names_p (b->loc);
14196
14197 for (; e; e = e->next)
14198 {
14199 if (!e->enabled && e->function_name)
14200 {
14201 struct bp_location *l = b->loc;
14202 if (have_ambiguous_names)
14203 {
14204 for (; l; l = l->next)
14205 if (breakpoint_locations_match (e, l))
14206 {
14207 l->enabled = 0;
14208 break;
14209 }
14210 }
14211 else
14212 {
14213 for (; l; l = l->next)
14214 if (l->function_name
14215 && strcmp (e->function_name, l->function_name) == 0)
14216 {
14217 l->enabled = 0;
14218 break;
14219 }
14220 }
14221 }
14222 }
14223 }
14224
14225 if (!locations_are_equal (existing_locations, b->loc))
14226 observer_notify_breakpoint_modified (b);
14227
14228 update_global_location_list (1);
14229 }
14230
14231 /* Find the SaL locations corresponding to the given ADDR_STRING.
14232 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14233
14234 static struct symtabs_and_lines
14235 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14236 {
14237 char *s;
14238 struct symtabs_and_lines sals = {0};
14239 volatile struct gdb_exception e;
14240
14241 gdb_assert (b->ops != NULL);
14242 s = addr_string;
14243
14244 TRY_CATCH (e, RETURN_MASK_ERROR)
14245 {
14246 b->ops->decode_linespec (b, &s, &sals);
14247 }
14248 if (e.reason < 0)
14249 {
14250 int not_found_and_ok = 0;
14251 /* For pending breakpoints, it's expected that parsing will
14252 fail until the right shared library is loaded. User has
14253 already told to create pending breakpoints and don't need
14254 extra messages. If breakpoint is in bp_shlib_disabled
14255 state, then user already saw the message about that
14256 breakpoint being disabled, and don't want to see more
14257 errors. */
14258 if (e.error == NOT_FOUND_ERROR
14259 && (b->condition_not_parsed
14260 || (b->loc && b->loc->shlib_disabled)
14261 || (b->loc && b->loc->pspace->executing_startup)
14262 || b->enable_state == bp_disabled))
14263 not_found_and_ok = 1;
14264
14265 if (!not_found_and_ok)
14266 {
14267 /* We surely don't want to warn about the same breakpoint
14268 10 times. One solution, implemented here, is disable
14269 the breakpoint on error. Another solution would be to
14270 have separate 'warning emitted' flag. Since this
14271 happens only when a binary has changed, I don't know
14272 which approach is better. */
14273 b->enable_state = bp_disabled;
14274 throw_exception (e);
14275 }
14276 }
14277
14278 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14279 {
14280 int i;
14281
14282 for (i = 0; i < sals.nelts; ++i)
14283 resolve_sal_pc (&sals.sals[i]);
14284 if (b->condition_not_parsed && s && s[0])
14285 {
14286 char *cond_string, *extra_string;
14287 int thread, task;
14288
14289 find_condition_and_thread (s, sals.sals[0].pc,
14290 &cond_string, &thread, &task,
14291 &extra_string);
14292 if (cond_string)
14293 b->cond_string = cond_string;
14294 b->thread = thread;
14295 b->task = task;
14296 if (extra_string)
14297 b->extra_string = extra_string;
14298 b->condition_not_parsed = 0;
14299 }
14300
14301 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14302 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14303
14304 *found = 1;
14305 }
14306 else
14307 *found = 0;
14308
14309 return sals;
14310 }
14311
14312 /* The default re_set method, for typical hardware or software
14313 breakpoints. Reevaluate the breakpoint and recreate its
14314 locations. */
14315
14316 static void
14317 breakpoint_re_set_default (struct breakpoint *b)
14318 {
14319 int found;
14320 struct symtabs_and_lines sals, sals_end;
14321 struct symtabs_and_lines expanded = {0};
14322 struct symtabs_and_lines expanded_end = {0};
14323
14324 sals = addr_string_to_sals (b, b->addr_string, &found);
14325 if (found)
14326 {
14327 make_cleanup (xfree, sals.sals);
14328 expanded = sals;
14329 }
14330
14331 if (b->addr_string_range_end)
14332 {
14333 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14334 if (found)
14335 {
14336 make_cleanup (xfree, sals_end.sals);
14337 expanded_end = sals_end;
14338 }
14339 }
14340
14341 update_breakpoint_locations (b, expanded, expanded_end);
14342 }
14343
14344 /* Default method for creating SALs from an address string. It basically
14345 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14346
14347 static void
14348 create_sals_from_address_default (char **arg,
14349 struct linespec_result *canonical,
14350 enum bptype type_wanted,
14351 char *addr_start, char **copy_arg)
14352 {
14353 parse_breakpoint_sals (arg, canonical);
14354 }
14355
14356 /* Call create_breakpoints_sal for the given arguments. This is the default
14357 function for the `create_breakpoints_sal' method of
14358 breakpoint_ops. */
14359
14360 static void
14361 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14362 struct linespec_result *canonical,
14363 char *cond_string,
14364 char *extra_string,
14365 enum bptype type_wanted,
14366 enum bpdisp disposition,
14367 int thread,
14368 int task, int ignore_count,
14369 const struct breakpoint_ops *ops,
14370 int from_tty, int enabled,
14371 int internal, unsigned flags)
14372 {
14373 create_breakpoints_sal (gdbarch, canonical, cond_string,
14374 extra_string,
14375 type_wanted, disposition,
14376 thread, task, ignore_count, ops, from_tty,
14377 enabled, internal, flags);
14378 }
14379
14380 /* Decode the line represented by S by calling decode_line_full. This is the
14381 default function for the `decode_linespec' method of breakpoint_ops. */
14382
14383 static void
14384 decode_linespec_default (struct breakpoint *b, char **s,
14385 struct symtabs_and_lines *sals)
14386 {
14387 struct linespec_result canonical;
14388
14389 init_linespec_result (&canonical);
14390 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14391 (struct symtab *) NULL, 0,
14392 &canonical, multiple_symbols_all,
14393 b->filter);
14394
14395 /* We should get 0 or 1 resulting SALs. */
14396 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14397
14398 if (VEC_length (linespec_sals, canonical.sals) > 0)
14399 {
14400 struct linespec_sals *lsal;
14401
14402 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14403 *sals = lsal->sals;
14404 /* Arrange it so the destructor does not free the
14405 contents. */
14406 lsal->sals.sals = NULL;
14407 }
14408
14409 destroy_linespec_result (&canonical);
14410 }
14411
14412 /* Prepare the global context for a re-set of breakpoint B. */
14413
14414 static struct cleanup *
14415 prepare_re_set_context (struct breakpoint *b)
14416 {
14417 struct cleanup *cleanups;
14418
14419 input_radix = b->input_radix;
14420 cleanups = save_current_space_and_thread ();
14421 if (b->pspace != NULL)
14422 switch_to_program_space_and_thread (b->pspace);
14423 set_language (b->language);
14424
14425 return cleanups;
14426 }
14427
14428 /* Reset a breakpoint given it's struct breakpoint * BINT.
14429 The value we return ends up being the return value from catch_errors.
14430 Unused in this case. */
14431
14432 static int
14433 breakpoint_re_set_one (void *bint)
14434 {
14435 /* Get past catch_errs. */
14436 struct breakpoint *b = (struct breakpoint *) bint;
14437 struct cleanup *cleanups;
14438
14439 cleanups = prepare_re_set_context (b);
14440 b->ops->re_set (b);
14441 do_cleanups (cleanups);
14442 return 0;
14443 }
14444
14445 /* Re-set all breakpoints after symbols have been re-loaded. */
14446 void
14447 breakpoint_re_set (void)
14448 {
14449 struct breakpoint *b, *b_tmp;
14450 enum language save_language;
14451 int save_input_radix;
14452 struct cleanup *old_chain;
14453
14454 save_language = current_language->la_language;
14455 save_input_radix = input_radix;
14456 old_chain = save_current_program_space ();
14457
14458 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14459 {
14460 /* Format possible error msg. */
14461 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14462 b->number);
14463 struct cleanup *cleanups = make_cleanup (xfree, message);
14464 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14465 do_cleanups (cleanups);
14466 }
14467 set_language (save_language);
14468 input_radix = save_input_radix;
14469
14470 jit_breakpoint_re_set ();
14471
14472 do_cleanups (old_chain);
14473
14474 create_overlay_event_breakpoint ();
14475 create_longjmp_master_breakpoint ();
14476 create_std_terminate_master_breakpoint ();
14477 create_exception_master_breakpoint ();
14478 }
14479 \f
14480 /* Reset the thread number of this breakpoint:
14481
14482 - If the breakpoint is for all threads, leave it as-is.
14483 - Else, reset it to the current thread for inferior_ptid. */
14484 void
14485 breakpoint_re_set_thread (struct breakpoint *b)
14486 {
14487 if (b->thread != -1)
14488 {
14489 if (in_thread_list (inferior_ptid))
14490 b->thread = pid_to_thread_id (inferior_ptid);
14491
14492 /* We're being called after following a fork. The new fork is
14493 selected as current, and unless this was a vfork will have a
14494 different program space from the original thread. Reset that
14495 as well. */
14496 b->loc->pspace = current_program_space;
14497 }
14498 }
14499
14500 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14501 If from_tty is nonzero, it prints a message to that effect,
14502 which ends with a period (no newline). */
14503
14504 void
14505 set_ignore_count (int bptnum, int count, int from_tty)
14506 {
14507 struct breakpoint *b;
14508
14509 if (count < 0)
14510 count = 0;
14511
14512 ALL_BREAKPOINTS (b)
14513 if (b->number == bptnum)
14514 {
14515 if (is_tracepoint (b))
14516 {
14517 if (from_tty && count != 0)
14518 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14519 bptnum);
14520 return;
14521 }
14522
14523 b->ignore_count = count;
14524 if (from_tty)
14525 {
14526 if (count == 0)
14527 printf_filtered (_("Will stop next time "
14528 "breakpoint %d is reached."),
14529 bptnum);
14530 else if (count == 1)
14531 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14532 bptnum);
14533 else
14534 printf_filtered (_("Will ignore next %d "
14535 "crossings of breakpoint %d."),
14536 count, bptnum);
14537 }
14538 observer_notify_breakpoint_modified (b);
14539 return;
14540 }
14541
14542 error (_("No breakpoint number %d."), bptnum);
14543 }
14544
14545 /* Command to set ignore-count of breakpoint N to COUNT. */
14546
14547 static void
14548 ignore_command (char *args, int from_tty)
14549 {
14550 char *p = args;
14551 int num;
14552
14553 if (p == 0)
14554 error_no_arg (_("a breakpoint number"));
14555
14556 num = get_number (&p);
14557 if (num == 0)
14558 error (_("bad breakpoint number: '%s'"), args);
14559 if (*p == 0)
14560 error (_("Second argument (specified ignore-count) is missing."));
14561
14562 set_ignore_count (num,
14563 longest_to_int (value_as_long (parse_and_eval (p))),
14564 from_tty);
14565 if (from_tty)
14566 printf_filtered ("\n");
14567 }
14568 \f
14569 /* Call FUNCTION on each of the breakpoints
14570 whose numbers are given in ARGS. */
14571
14572 static void
14573 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14574 void *),
14575 void *data)
14576 {
14577 int num;
14578 struct breakpoint *b, *tmp;
14579 int match;
14580 struct get_number_or_range_state state;
14581
14582 if (args == 0)
14583 error_no_arg (_("one or more breakpoint numbers"));
14584
14585 init_number_or_range (&state, args);
14586
14587 while (!state.finished)
14588 {
14589 char *p = state.string;
14590
14591 match = 0;
14592
14593 num = get_number_or_range (&state);
14594 if (num == 0)
14595 {
14596 warning (_("bad breakpoint number at or near '%s'"), p);
14597 }
14598 else
14599 {
14600 ALL_BREAKPOINTS_SAFE (b, tmp)
14601 if (b->number == num)
14602 {
14603 match = 1;
14604 function (b, data);
14605 break;
14606 }
14607 if (match == 0)
14608 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14609 }
14610 }
14611 }
14612
14613 static struct bp_location *
14614 find_location_by_number (char *number)
14615 {
14616 char *dot = strchr (number, '.');
14617 char *p1;
14618 int bp_num;
14619 int loc_num;
14620 struct breakpoint *b;
14621 struct bp_location *loc;
14622
14623 *dot = '\0';
14624
14625 p1 = number;
14626 bp_num = get_number (&p1);
14627 if (bp_num == 0)
14628 error (_("Bad breakpoint number '%s'"), number);
14629
14630 ALL_BREAKPOINTS (b)
14631 if (b->number == bp_num)
14632 {
14633 break;
14634 }
14635
14636 if (!b || b->number != bp_num)
14637 error (_("Bad breakpoint number '%s'"), number);
14638
14639 p1 = dot+1;
14640 loc_num = get_number (&p1);
14641 if (loc_num == 0)
14642 error (_("Bad breakpoint location number '%s'"), number);
14643
14644 --loc_num;
14645 loc = b->loc;
14646 for (;loc_num && loc; --loc_num, loc = loc->next)
14647 ;
14648 if (!loc)
14649 error (_("Bad breakpoint location number '%s'"), dot+1);
14650
14651 return loc;
14652 }
14653
14654
14655 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14656 If from_tty is nonzero, it prints a message to that effect,
14657 which ends with a period (no newline). */
14658
14659 void
14660 disable_breakpoint (struct breakpoint *bpt)
14661 {
14662 /* Never disable a watchpoint scope breakpoint; we want to
14663 hit them when we leave scope so we can delete both the
14664 watchpoint and its scope breakpoint at that time. */
14665 if (bpt->type == bp_watchpoint_scope)
14666 return;
14667
14668 /* You can't disable permanent breakpoints. */
14669 if (bpt->enable_state == bp_permanent)
14670 return;
14671
14672 bpt->enable_state = bp_disabled;
14673
14674 /* Mark breakpoint locations modified. */
14675 mark_breakpoint_modified (bpt);
14676
14677 if (target_supports_enable_disable_tracepoint ()
14678 && current_trace_status ()->running && is_tracepoint (bpt))
14679 {
14680 struct bp_location *location;
14681
14682 for (location = bpt->loc; location; location = location->next)
14683 target_disable_tracepoint (location);
14684 }
14685
14686 update_global_location_list (0);
14687
14688 observer_notify_breakpoint_modified (bpt);
14689 }
14690
14691 /* A callback for iterate_over_related_breakpoints. */
14692
14693 static void
14694 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14695 {
14696 disable_breakpoint (b);
14697 }
14698
14699 /* A callback for map_breakpoint_numbers that calls
14700 disable_breakpoint. */
14701
14702 static void
14703 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14704 {
14705 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14706 }
14707
14708 static void
14709 disable_command (char *args, int from_tty)
14710 {
14711 if (args == 0)
14712 {
14713 struct breakpoint *bpt;
14714
14715 ALL_BREAKPOINTS (bpt)
14716 if (user_breakpoint_p (bpt))
14717 disable_breakpoint (bpt);
14718 }
14719 else
14720 {
14721 char *num = extract_arg (&args);
14722
14723 while (num)
14724 {
14725 if (strchr (num, '.'))
14726 {
14727 struct bp_location *loc = find_location_by_number (num);
14728
14729 if (loc)
14730 {
14731 if (loc->enabled)
14732 {
14733 loc->enabled = 0;
14734 mark_breakpoint_location_modified (loc);
14735 }
14736 if (target_supports_enable_disable_tracepoint ()
14737 && current_trace_status ()->running && loc->owner
14738 && is_tracepoint (loc->owner))
14739 target_disable_tracepoint (loc);
14740 }
14741 update_global_location_list (0);
14742 }
14743 else
14744 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14745 num = extract_arg (&args);
14746 }
14747 }
14748 }
14749
14750 static void
14751 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14752 int count)
14753 {
14754 int target_resources_ok;
14755
14756 if (bpt->type == bp_hardware_breakpoint)
14757 {
14758 int i;
14759 i = hw_breakpoint_used_count ();
14760 target_resources_ok =
14761 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14762 i + 1, 0);
14763 if (target_resources_ok == 0)
14764 error (_("No hardware breakpoint support in the target."));
14765 else if (target_resources_ok < 0)
14766 error (_("Hardware breakpoints used exceeds limit."));
14767 }
14768
14769 if (is_watchpoint (bpt))
14770 {
14771 /* Initialize it just to avoid a GCC false warning. */
14772 enum enable_state orig_enable_state = 0;
14773 volatile struct gdb_exception e;
14774
14775 TRY_CATCH (e, RETURN_MASK_ALL)
14776 {
14777 struct watchpoint *w = (struct watchpoint *) bpt;
14778
14779 orig_enable_state = bpt->enable_state;
14780 bpt->enable_state = bp_enabled;
14781 update_watchpoint (w, 1 /* reparse */);
14782 }
14783 if (e.reason < 0)
14784 {
14785 bpt->enable_state = orig_enable_state;
14786 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14787 bpt->number);
14788 return;
14789 }
14790 }
14791
14792 if (bpt->enable_state != bp_permanent)
14793 bpt->enable_state = bp_enabled;
14794
14795 bpt->enable_state = bp_enabled;
14796
14797 /* Mark breakpoint locations modified. */
14798 mark_breakpoint_modified (bpt);
14799
14800 if (target_supports_enable_disable_tracepoint ()
14801 && current_trace_status ()->running && is_tracepoint (bpt))
14802 {
14803 struct bp_location *location;
14804
14805 for (location = bpt->loc; location; location = location->next)
14806 target_enable_tracepoint (location);
14807 }
14808
14809 bpt->disposition = disposition;
14810 bpt->enable_count = count;
14811 update_global_location_list (1);
14812
14813 observer_notify_breakpoint_modified (bpt);
14814 }
14815
14816
14817 void
14818 enable_breakpoint (struct breakpoint *bpt)
14819 {
14820 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14821 }
14822
14823 static void
14824 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14825 {
14826 enable_breakpoint (bpt);
14827 }
14828
14829 /* A callback for map_breakpoint_numbers that calls
14830 enable_breakpoint. */
14831
14832 static void
14833 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14834 {
14835 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14836 }
14837
14838 /* The enable command enables the specified breakpoints (or all defined
14839 breakpoints) so they once again become (or continue to be) effective
14840 in stopping the inferior. */
14841
14842 static void
14843 enable_command (char *args, int from_tty)
14844 {
14845 if (args == 0)
14846 {
14847 struct breakpoint *bpt;
14848
14849 ALL_BREAKPOINTS (bpt)
14850 if (user_breakpoint_p (bpt))
14851 enable_breakpoint (bpt);
14852 }
14853 else
14854 {
14855 char *num = extract_arg (&args);
14856
14857 while (num)
14858 {
14859 if (strchr (num, '.'))
14860 {
14861 struct bp_location *loc = find_location_by_number (num);
14862
14863 if (loc)
14864 {
14865 if (!loc->enabled)
14866 {
14867 loc->enabled = 1;
14868 mark_breakpoint_location_modified (loc);
14869 }
14870 if (target_supports_enable_disable_tracepoint ()
14871 && current_trace_status ()->running && loc->owner
14872 && is_tracepoint (loc->owner))
14873 target_enable_tracepoint (loc);
14874 }
14875 update_global_location_list (1);
14876 }
14877 else
14878 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14879 num = extract_arg (&args);
14880 }
14881 }
14882 }
14883
14884 /* This struct packages up disposition data for application to multiple
14885 breakpoints. */
14886
14887 struct disp_data
14888 {
14889 enum bpdisp disp;
14890 int count;
14891 };
14892
14893 static void
14894 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14895 {
14896 struct disp_data disp_data = *(struct disp_data *) arg;
14897
14898 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14899 }
14900
14901 static void
14902 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14903 {
14904 struct disp_data disp = { disp_disable, 1 };
14905
14906 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14907 }
14908
14909 static void
14910 enable_once_command (char *args, int from_tty)
14911 {
14912 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14913 }
14914
14915 static void
14916 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14917 {
14918 struct disp_data disp = { disp_disable, *(int *) countptr };
14919
14920 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14921 }
14922
14923 static void
14924 enable_count_command (char *args, int from_tty)
14925 {
14926 int count = get_number (&args);
14927
14928 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14929 }
14930
14931 static void
14932 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14933 {
14934 struct disp_data disp = { disp_del, 1 };
14935
14936 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14937 }
14938
14939 static void
14940 enable_delete_command (char *args, int from_tty)
14941 {
14942 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14943 }
14944 \f
14945 static void
14946 set_breakpoint_cmd (char *args, int from_tty)
14947 {
14948 }
14949
14950 static void
14951 show_breakpoint_cmd (char *args, int from_tty)
14952 {
14953 }
14954
14955 /* Invalidate last known value of any hardware watchpoint if
14956 the memory which that value represents has been written to by
14957 GDB itself. */
14958
14959 static void
14960 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14961 CORE_ADDR addr, ssize_t len,
14962 const bfd_byte *data)
14963 {
14964 struct breakpoint *bp;
14965
14966 ALL_BREAKPOINTS (bp)
14967 if (bp->enable_state == bp_enabled
14968 && bp->type == bp_hardware_watchpoint)
14969 {
14970 struct watchpoint *wp = (struct watchpoint *) bp;
14971
14972 if (wp->val_valid && wp->val)
14973 {
14974 struct bp_location *loc;
14975
14976 for (loc = bp->loc; loc != NULL; loc = loc->next)
14977 if (loc->loc_type == bp_loc_hardware_watchpoint
14978 && loc->address + loc->length > addr
14979 && addr + len > loc->address)
14980 {
14981 value_free (wp->val);
14982 wp->val = NULL;
14983 wp->val_valid = 0;
14984 }
14985 }
14986 }
14987 }
14988
14989 /* Create and insert a raw software breakpoint at PC. Return an
14990 identifier, which should be used to remove the breakpoint later.
14991 In general, places which call this should be using something on the
14992 breakpoint chain instead; this function should be eliminated
14993 someday. */
14994
14995 void *
14996 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14997 struct address_space *aspace, CORE_ADDR pc)
14998 {
14999 struct bp_target_info *bp_tgt;
15000
15001 bp_tgt = XCNEW (struct bp_target_info);
15002
15003 bp_tgt->placed_address_space = aspace;
15004 bp_tgt->placed_address = pc;
15005
15006 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15007 {
15008 /* Could not insert the breakpoint. */
15009 xfree (bp_tgt);
15010 return NULL;
15011 }
15012
15013 return bp_tgt;
15014 }
15015
15016 /* Remove a breakpoint BP inserted by
15017 deprecated_insert_raw_breakpoint. */
15018
15019 int
15020 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15021 {
15022 struct bp_target_info *bp_tgt = bp;
15023 int ret;
15024
15025 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15026 xfree (bp_tgt);
15027
15028 return ret;
15029 }
15030
15031 /* One (or perhaps two) breakpoints used for software single
15032 stepping. */
15033
15034 static void *single_step_breakpoints[2];
15035 static struct gdbarch *single_step_gdbarch[2];
15036
15037 /* Create and insert a breakpoint for software single step. */
15038
15039 void
15040 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15041 struct address_space *aspace,
15042 CORE_ADDR next_pc)
15043 {
15044 void **bpt_p;
15045
15046 if (single_step_breakpoints[0] == NULL)
15047 {
15048 bpt_p = &single_step_breakpoints[0];
15049 single_step_gdbarch[0] = gdbarch;
15050 }
15051 else
15052 {
15053 gdb_assert (single_step_breakpoints[1] == NULL);
15054 bpt_p = &single_step_breakpoints[1];
15055 single_step_gdbarch[1] = gdbarch;
15056 }
15057
15058 /* NOTE drow/2006-04-11: A future improvement to this function would
15059 be to only create the breakpoints once, and actually put them on
15060 the breakpoint chain. That would let us use set_raw_breakpoint.
15061 We could adjust the addresses each time they were needed. Doing
15062 this requires corresponding changes elsewhere where single step
15063 breakpoints are handled, however. So, for now, we use this. */
15064
15065 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15066 if (*bpt_p == NULL)
15067 error (_("Could not insert single-step breakpoint at %s"),
15068 paddress (gdbarch, next_pc));
15069 }
15070
15071 /* Check if the breakpoints used for software single stepping
15072 were inserted or not. */
15073
15074 int
15075 single_step_breakpoints_inserted (void)
15076 {
15077 return (single_step_breakpoints[0] != NULL
15078 || single_step_breakpoints[1] != NULL);
15079 }
15080
15081 /* Remove and delete any breakpoints used for software single step. */
15082
15083 void
15084 remove_single_step_breakpoints (void)
15085 {
15086 gdb_assert (single_step_breakpoints[0] != NULL);
15087
15088 /* See insert_single_step_breakpoint for more about this deprecated
15089 call. */
15090 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15091 single_step_breakpoints[0]);
15092 single_step_gdbarch[0] = NULL;
15093 single_step_breakpoints[0] = NULL;
15094
15095 if (single_step_breakpoints[1] != NULL)
15096 {
15097 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15098 single_step_breakpoints[1]);
15099 single_step_gdbarch[1] = NULL;
15100 single_step_breakpoints[1] = NULL;
15101 }
15102 }
15103
15104 /* Delete software single step breakpoints without removing them from
15105 the inferior. This is intended to be used if the inferior's address
15106 space where they were inserted is already gone, e.g. after exit or
15107 exec. */
15108
15109 void
15110 cancel_single_step_breakpoints (void)
15111 {
15112 int i;
15113
15114 for (i = 0; i < 2; i++)
15115 if (single_step_breakpoints[i])
15116 {
15117 xfree (single_step_breakpoints[i]);
15118 single_step_breakpoints[i] = NULL;
15119 single_step_gdbarch[i] = NULL;
15120 }
15121 }
15122
15123 /* Detach software single-step breakpoints from INFERIOR_PTID without
15124 removing them. */
15125
15126 static void
15127 detach_single_step_breakpoints (void)
15128 {
15129 int i;
15130
15131 for (i = 0; i < 2; i++)
15132 if (single_step_breakpoints[i])
15133 target_remove_breakpoint (single_step_gdbarch[i],
15134 single_step_breakpoints[i]);
15135 }
15136
15137 /* Check whether a software single-step breakpoint is inserted at
15138 PC. */
15139
15140 static int
15141 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15142 CORE_ADDR pc)
15143 {
15144 int i;
15145
15146 for (i = 0; i < 2; i++)
15147 {
15148 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15149 if (bp_tgt
15150 && breakpoint_address_match (bp_tgt->placed_address_space,
15151 bp_tgt->placed_address,
15152 aspace, pc))
15153 return 1;
15154 }
15155
15156 return 0;
15157 }
15158
15159 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15160 non-zero otherwise. */
15161 static int
15162 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15163 {
15164 if (syscall_catchpoint_p (bp)
15165 && bp->enable_state != bp_disabled
15166 && bp->enable_state != bp_call_disabled)
15167 return 1;
15168 else
15169 return 0;
15170 }
15171
15172 int
15173 catch_syscall_enabled (void)
15174 {
15175 struct catch_syscall_inferior_data *inf_data
15176 = get_catch_syscall_inferior_data (current_inferior ());
15177
15178 return inf_data->total_syscalls_count != 0;
15179 }
15180
15181 int
15182 catching_syscall_number (int syscall_number)
15183 {
15184 struct breakpoint *bp;
15185
15186 ALL_BREAKPOINTS (bp)
15187 if (is_syscall_catchpoint_enabled (bp))
15188 {
15189 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15190
15191 if (c->syscalls_to_be_caught)
15192 {
15193 int i, iter;
15194 for (i = 0;
15195 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15196 i++)
15197 if (syscall_number == iter)
15198 return 1;
15199 }
15200 else
15201 return 1;
15202 }
15203
15204 return 0;
15205 }
15206
15207 /* Complete syscall names. Used by "catch syscall". */
15208 static VEC (char_ptr) *
15209 catch_syscall_completer (struct cmd_list_element *cmd,
15210 const char *text, const char *word)
15211 {
15212 const char **list = get_syscall_names ();
15213 VEC (char_ptr) *retlist
15214 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15215
15216 xfree (list);
15217 return retlist;
15218 }
15219
15220 /* Tracepoint-specific operations. */
15221
15222 /* Set tracepoint count to NUM. */
15223 static void
15224 set_tracepoint_count (int num)
15225 {
15226 tracepoint_count = num;
15227 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15228 }
15229
15230 static void
15231 trace_command (char *arg, int from_tty)
15232 {
15233 struct breakpoint_ops *ops;
15234 const char *arg_cp = arg;
15235
15236 if (arg && probe_linespec_to_ops (&arg_cp))
15237 ops = &tracepoint_probe_breakpoint_ops;
15238 else
15239 ops = &tracepoint_breakpoint_ops;
15240
15241 create_breakpoint (get_current_arch (),
15242 arg,
15243 NULL, 0, NULL, 1 /* parse arg */,
15244 0 /* tempflag */,
15245 bp_tracepoint /* type_wanted */,
15246 0 /* Ignore count */,
15247 pending_break_support,
15248 ops,
15249 from_tty,
15250 1 /* enabled */,
15251 0 /* internal */, 0);
15252 }
15253
15254 static void
15255 ftrace_command (char *arg, int from_tty)
15256 {
15257 create_breakpoint (get_current_arch (),
15258 arg,
15259 NULL, 0, NULL, 1 /* parse arg */,
15260 0 /* tempflag */,
15261 bp_fast_tracepoint /* type_wanted */,
15262 0 /* Ignore count */,
15263 pending_break_support,
15264 &tracepoint_breakpoint_ops,
15265 from_tty,
15266 1 /* enabled */,
15267 0 /* internal */, 0);
15268 }
15269
15270 /* strace command implementation. Creates a static tracepoint. */
15271
15272 static void
15273 strace_command (char *arg, int from_tty)
15274 {
15275 struct breakpoint_ops *ops;
15276
15277 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15278 or with a normal static tracepoint. */
15279 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15280 ops = &strace_marker_breakpoint_ops;
15281 else
15282 ops = &tracepoint_breakpoint_ops;
15283
15284 create_breakpoint (get_current_arch (),
15285 arg,
15286 NULL, 0, NULL, 1 /* parse arg */,
15287 0 /* tempflag */,
15288 bp_static_tracepoint /* type_wanted */,
15289 0 /* Ignore count */,
15290 pending_break_support,
15291 ops,
15292 from_tty,
15293 1 /* enabled */,
15294 0 /* internal */, 0);
15295 }
15296
15297 /* Set up a fake reader function that gets command lines from a linked
15298 list that was acquired during tracepoint uploading. */
15299
15300 static struct uploaded_tp *this_utp;
15301 static int next_cmd;
15302
15303 static char *
15304 read_uploaded_action (void)
15305 {
15306 char *rslt;
15307
15308 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15309
15310 next_cmd++;
15311
15312 return rslt;
15313 }
15314
15315 /* Given information about a tracepoint as recorded on a target (which
15316 can be either a live system or a trace file), attempt to create an
15317 equivalent GDB tracepoint. This is not a reliable process, since
15318 the target does not necessarily have all the information used when
15319 the tracepoint was originally defined. */
15320
15321 struct tracepoint *
15322 create_tracepoint_from_upload (struct uploaded_tp *utp)
15323 {
15324 char *addr_str, small_buf[100];
15325 struct tracepoint *tp;
15326
15327 if (utp->at_string)
15328 addr_str = utp->at_string;
15329 else
15330 {
15331 /* In the absence of a source location, fall back to raw
15332 address. Since there is no way to confirm that the address
15333 means the same thing as when the trace was started, warn the
15334 user. */
15335 warning (_("Uploaded tracepoint %d has no "
15336 "source location, using raw address"),
15337 utp->number);
15338 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15339 addr_str = small_buf;
15340 }
15341
15342 /* There's not much we can do with a sequence of bytecodes. */
15343 if (utp->cond && !utp->cond_string)
15344 warning (_("Uploaded tracepoint %d condition "
15345 "has no source form, ignoring it"),
15346 utp->number);
15347
15348 if (!create_breakpoint (get_current_arch (),
15349 addr_str,
15350 utp->cond_string, -1, NULL,
15351 0 /* parse cond/thread */,
15352 0 /* tempflag */,
15353 utp->type /* type_wanted */,
15354 0 /* Ignore count */,
15355 pending_break_support,
15356 &tracepoint_breakpoint_ops,
15357 0 /* from_tty */,
15358 utp->enabled /* enabled */,
15359 0 /* internal */,
15360 CREATE_BREAKPOINT_FLAGS_INSERTED))
15361 return NULL;
15362
15363 /* Get the tracepoint we just created. */
15364 tp = get_tracepoint (tracepoint_count);
15365 gdb_assert (tp != NULL);
15366
15367 if (utp->pass > 0)
15368 {
15369 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15370 tp->base.number);
15371
15372 trace_pass_command (small_buf, 0);
15373 }
15374
15375 /* If we have uploaded versions of the original commands, set up a
15376 special-purpose "reader" function and call the usual command line
15377 reader, then pass the result to the breakpoint command-setting
15378 function. */
15379 if (!VEC_empty (char_ptr, utp->cmd_strings))
15380 {
15381 struct command_line *cmd_list;
15382
15383 this_utp = utp;
15384 next_cmd = 0;
15385
15386 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15387
15388 breakpoint_set_commands (&tp->base, cmd_list);
15389 }
15390 else if (!VEC_empty (char_ptr, utp->actions)
15391 || !VEC_empty (char_ptr, utp->step_actions))
15392 warning (_("Uploaded tracepoint %d actions "
15393 "have no source form, ignoring them"),
15394 utp->number);
15395
15396 /* Copy any status information that might be available. */
15397 tp->base.hit_count = utp->hit_count;
15398 tp->traceframe_usage = utp->traceframe_usage;
15399
15400 return tp;
15401 }
15402
15403 /* Print information on tracepoint number TPNUM_EXP, or all if
15404 omitted. */
15405
15406 static void
15407 tracepoints_info (char *args, int from_tty)
15408 {
15409 struct ui_out *uiout = current_uiout;
15410 int num_printed;
15411
15412 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15413
15414 if (num_printed == 0)
15415 {
15416 if (args == NULL || *args == '\0')
15417 ui_out_message (uiout, 0, "No tracepoints.\n");
15418 else
15419 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15420 }
15421
15422 default_collect_info ();
15423 }
15424
15425 /* The 'enable trace' command enables tracepoints.
15426 Not supported by all targets. */
15427 static void
15428 enable_trace_command (char *args, int from_tty)
15429 {
15430 enable_command (args, from_tty);
15431 }
15432
15433 /* The 'disable trace' command disables tracepoints.
15434 Not supported by all targets. */
15435 static void
15436 disable_trace_command (char *args, int from_tty)
15437 {
15438 disable_command (args, from_tty);
15439 }
15440
15441 /* Remove a tracepoint (or all if no argument). */
15442 static void
15443 delete_trace_command (char *arg, int from_tty)
15444 {
15445 struct breakpoint *b, *b_tmp;
15446
15447 dont_repeat ();
15448
15449 if (arg == 0)
15450 {
15451 int breaks_to_delete = 0;
15452
15453 /* Delete all breakpoints if no argument.
15454 Do not delete internal or call-dummy breakpoints, these
15455 have to be deleted with an explicit breakpoint number
15456 argument. */
15457 ALL_TRACEPOINTS (b)
15458 if (is_tracepoint (b) && user_breakpoint_p (b))
15459 {
15460 breaks_to_delete = 1;
15461 break;
15462 }
15463
15464 /* Ask user only if there are some breakpoints to delete. */
15465 if (!from_tty
15466 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15467 {
15468 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15469 if (is_tracepoint (b) && user_breakpoint_p (b))
15470 delete_breakpoint (b);
15471 }
15472 }
15473 else
15474 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15475 }
15476
15477 /* Helper function for trace_pass_command. */
15478
15479 static void
15480 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15481 {
15482 tp->pass_count = count;
15483 observer_notify_breakpoint_modified (&tp->base);
15484 if (from_tty)
15485 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15486 tp->base.number, count);
15487 }
15488
15489 /* Set passcount for tracepoint.
15490
15491 First command argument is passcount, second is tracepoint number.
15492 If tracepoint number omitted, apply to most recently defined.
15493 Also accepts special argument "all". */
15494
15495 static void
15496 trace_pass_command (char *args, int from_tty)
15497 {
15498 struct tracepoint *t1;
15499 unsigned int count;
15500
15501 if (args == 0 || *args == 0)
15502 error (_("passcount command requires an "
15503 "argument (count + optional TP num)"));
15504
15505 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15506
15507 args = skip_spaces (args);
15508 if (*args && strncasecmp (args, "all", 3) == 0)
15509 {
15510 struct breakpoint *b;
15511
15512 args += 3; /* Skip special argument "all". */
15513 if (*args)
15514 error (_("Junk at end of arguments."));
15515
15516 ALL_TRACEPOINTS (b)
15517 {
15518 t1 = (struct tracepoint *) b;
15519 trace_pass_set_count (t1, count, from_tty);
15520 }
15521 }
15522 else if (*args == '\0')
15523 {
15524 t1 = get_tracepoint_by_number (&args, NULL, 1);
15525 if (t1)
15526 trace_pass_set_count (t1, count, from_tty);
15527 }
15528 else
15529 {
15530 struct get_number_or_range_state state;
15531
15532 init_number_or_range (&state, args);
15533 while (!state.finished)
15534 {
15535 t1 = get_tracepoint_by_number (&args, &state, 1);
15536 if (t1)
15537 trace_pass_set_count (t1, count, from_tty);
15538 }
15539 }
15540 }
15541
15542 struct tracepoint *
15543 get_tracepoint (int num)
15544 {
15545 struct breakpoint *t;
15546
15547 ALL_TRACEPOINTS (t)
15548 if (t->number == num)
15549 return (struct tracepoint *) t;
15550
15551 return NULL;
15552 }
15553
15554 /* Find the tracepoint with the given target-side number (which may be
15555 different from the tracepoint number after disconnecting and
15556 reconnecting). */
15557
15558 struct tracepoint *
15559 get_tracepoint_by_number_on_target (int num)
15560 {
15561 struct breakpoint *b;
15562
15563 ALL_TRACEPOINTS (b)
15564 {
15565 struct tracepoint *t = (struct tracepoint *) b;
15566
15567 if (t->number_on_target == num)
15568 return t;
15569 }
15570
15571 return NULL;
15572 }
15573
15574 /* Utility: parse a tracepoint number and look it up in the list.
15575 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15576 If OPTIONAL_P is true, then if the argument is missing, the most
15577 recent tracepoint (tracepoint_count) is returned. */
15578 struct tracepoint *
15579 get_tracepoint_by_number (char **arg,
15580 struct get_number_or_range_state *state,
15581 int optional_p)
15582 {
15583 struct breakpoint *t;
15584 int tpnum;
15585 char *instring = arg == NULL ? NULL : *arg;
15586
15587 if (state)
15588 {
15589 gdb_assert (!state->finished);
15590 tpnum = get_number_or_range (state);
15591 }
15592 else if (arg == NULL || *arg == NULL || ! **arg)
15593 {
15594 if (optional_p)
15595 tpnum = tracepoint_count;
15596 else
15597 error_no_arg (_("tracepoint number"));
15598 }
15599 else
15600 tpnum = get_number (arg);
15601
15602 if (tpnum <= 0)
15603 {
15604 if (instring && *instring)
15605 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15606 instring);
15607 else
15608 printf_filtered (_("Tracepoint argument missing "
15609 "and no previous tracepoint\n"));
15610 return NULL;
15611 }
15612
15613 ALL_TRACEPOINTS (t)
15614 if (t->number == tpnum)
15615 {
15616 return (struct tracepoint *) t;
15617 }
15618
15619 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15620 return NULL;
15621 }
15622
15623 void
15624 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15625 {
15626 if (b->thread != -1)
15627 fprintf_unfiltered (fp, " thread %d", b->thread);
15628
15629 if (b->task != 0)
15630 fprintf_unfiltered (fp, " task %d", b->task);
15631
15632 fprintf_unfiltered (fp, "\n");
15633 }
15634
15635 /* Save information on user settable breakpoints (watchpoints, etc) to
15636 a new script file named FILENAME. If FILTER is non-NULL, call it
15637 on each breakpoint and only include the ones for which it returns
15638 non-zero. */
15639
15640 static void
15641 save_breakpoints (char *filename, int from_tty,
15642 int (*filter) (const struct breakpoint *))
15643 {
15644 struct breakpoint *tp;
15645 int any = 0;
15646 struct cleanup *cleanup;
15647 struct ui_file *fp;
15648 int extra_trace_bits = 0;
15649
15650 if (filename == 0 || *filename == 0)
15651 error (_("Argument required (file name in which to save)"));
15652
15653 /* See if we have anything to save. */
15654 ALL_BREAKPOINTS (tp)
15655 {
15656 /* Skip internal and momentary breakpoints. */
15657 if (!user_breakpoint_p (tp))
15658 continue;
15659
15660 /* If we have a filter, only save the breakpoints it accepts. */
15661 if (filter && !filter (tp))
15662 continue;
15663
15664 any = 1;
15665
15666 if (is_tracepoint (tp))
15667 {
15668 extra_trace_bits = 1;
15669
15670 /* We can stop searching. */
15671 break;
15672 }
15673 }
15674
15675 if (!any)
15676 {
15677 warning (_("Nothing to save."));
15678 return;
15679 }
15680
15681 filename = tilde_expand (filename);
15682 cleanup = make_cleanup (xfree, filename);
15683 fp = gdb_fopen (filename, "w");
15684 if (!fp)
15685 error (_("Unable to open file '%s' for saving (%s)"),
15686 filename, safe_strerror (errno));
15687 make_cleanup_ui_file_delete (fp);
15688
15689 if (extra_trace_bits)
15690 save_trace_state_variables (fp);
15691
15692 ALL_BREAKPOINTS (tp)
15693 {
15694 /* Skip internal and momentary breakpoints. */
15695 if (!user_breakpoint_p (tp))
15696 continue;
15697
15698 /* If we have a filter, only save the breakpoints it accepts. */
15699 if (filter && !filter (tp))
15700 continue;
15701
15702 tp->ops->print_recreate (tp, fp);
15703
15704 /* Note, we can't rely on tp->number for anything, as we can't
15705 assume the recreated breakpoint numbers will match. Use $bpnum
15706 instead. */
15707
15708 if (tp->cond_string)
15709 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15710
15711 if (tp->ignore_count)
15712 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15713
15714 if (tp->type != bp_dprintf && tp->commands)
15715 {
15716 volatile struct gdb_exception ex;
15717
15718 fprintf_unfiltered (fp, " commands\n");
15719
15720 ui_out_redirect (current_uiout, fp);
15721 TRY_CATCH (ex, RETURN_MASK_ALL)
15722 {
15723 print_command_lines (current_uiout, tp->commands->commands, 2);
15724 }
15725 ui_out_redirect (current_uiout, NULL);
15726
15727 if (ex.reason < 0)
15728 throw_exception (ex);
15729
15730 fprintf_unfiltered (fp, " end\n");
15731 }
15732
15733 if (tp->enable_state == bp_disabled)
15734 fprintf_unfiltered (fp, "disable\n");
15735
15736 /* If this is a multi-location breakpoint, check if the locations
15737 should be individually disabled. Watchpoint locations are
15738 special, and not user visible. */
15739 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15740 {
15741 struct bp_location *loc;
15742 int n = 1;
15743
15744 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15745 if (!loc->enabled)
15746 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15747 }
15748 }
15749
15750 if (extra_trace_bits && *default_collect)
15751 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15752
15753 if (from_tty)
15754 printf_filtered (_("Saved to file '%s'.\n"), filename);
15755 do_cleanups (cleanup);
15756 }
15757
15758 /* The `save breakpoints' command. */
15759
15760 static void
15761 save_breakpoints_command (char *args, int from_tty)
15762 {
15763 save_breakpoints (args, from_tty, NULL);
15764 }
15765
15766 /* The `save tracepoints' command. */
15767
15768 static void
15769 save_tracepoints_command (char *args, int from_tty)
15770 {
15771 save_breakpoints (args, from_tty, is_tracepoint);
15772 }
15773
15774 /* Create a vector of all tracepoints. */
15775
15776 VEC(breakpoint_p) *
15777 all_tracepoints (void)
15778 {
15779 VEC(breakpoint_p) *tp_vec = 0;
15780 struct breakpoint *tp;
15781
15782 ALL_TRACEPOINTS (tp)
15783 {
15784 VEC_safe_push (breakpoint_p, tp_vec, tp);
15785 }
15786
15787 return tp_vec;
15788 }
15789
15790 \f
15791 /* This help string is used for the break, hbreak, tbreak and thbreak
15792 commands. It is defined as a macro to prevent duplication.
15793 COMMAND should be a string constant containing the name of the
15794 command. */
15795 #define BREAK_ARGS_HELP(command) \
15796 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15797 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15798 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15799 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15800 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15801 If a line number is specified, break at start of code for that line.\n\
15802 If a function is specified, break at start of code for that function.\n\
15803 If an address is specified, break at that exact address.\n\
15804 With no LOCATION, uses current execution address of the selected\n\
15805 stack frame. This is useful for breaking on return to a stack frame.\n\
15806 \n\
15807 THREADNUM is the number from \"info threads\".\n\
15808 CONDITION is a boolean expression.\n\
15809 \n\
15810 Multiple breakpoints at one place are permitted, and useful if their\n\
15811 conditions are different.\n\
15812 \n\
15813 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15814
15815 /* List of subcommands for "catch". */
15816 static struct cmd_list_element *catch_cmdlist;
15817
15818 /* List of subcommands for "tcatch". */
15819 static struct cmd_list_element *tcatch_cmdlist;
15820
15821 void
15822 add_catch_command (char *name, char *docstring,
15823 void (*sfunc) (char *args, int from_tty,
15824 struct cmd_list_element *command),
15825 completer_ftype *completer,
15826 void *user_data_catch,
15827 void *user_data_tcatch)
15828 {
15829 struct cmd_list_element *command;
15830
15831 command = add_cmd (name, class_breakpoint, NULL, docstring,
15832 &catch_cmdlist);
15833 set_cmd_sfunc (command, sfunc);
15834 set_cmd_context (command, user_data_catch);
15835 set_cmd_completer (command, completer);
15836
15837 command = add_cmd (name, class_breakpoint, NULL, docstring,
15838 &tcatch_cmdlist);
15839 set_cmd_sfunc (command, sfunc);
15840 set_cmd_context (command, user_data_tcatch);
15841 set_cmd_completer (command, completer);
15842 }
15843
15844 static void
15845 clear_syscall_counts (struct inferior *inf)
15846 {
15847 struct catch_syscall_inferior_data *inf_data
15848 = get_catch_syscall_inferior_data (inf);
15849
15850 inf_data->total_syscalls_count = 0;
15851 inf_data->any_syscall_count = 0;
15852 VEC_free (int, inf_data->syscalls_counts);
15853 }
15854
15855 static void
15856 save_command (char *arg, int from_tty)
15857 {
15858 printf_unfiltered (_("\"save\" must be followed by "
15859 "the name of a save subcommand.\n"));
15860 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15861 }
15862
15863 struct breakpoint *
15864 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15865 void *data)
15866 {
15867 struct breakpoint *b, *b_tmp;
15868
15869 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15870 {
15871 if ((*callback) (b, data))
15872 return b;
15873 }
15874
15875 return NULL;
15876 }
15877
15878 /* Zero if any of the breakpoint's locations could be a location where
15879 functions have been inlined, nonzero otherwise. */
15880
15881 static int
15882 is_non_inline_function (struct breakpoint *b)
15883 {
15884 /* The shared library event breakpoint is set on the address of a
15885 non-inline function. */
15886 if (b->type == bp_shlib_event)
15887 return 1;
15888
15889 return 0;
15890 }
15891
15892 /* Nonzero if the specified PC cannot be a location where functions
15893 have been inlined. */
15894
15895 int
15896 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15897 const struct target_waitstatus *ws)
15898 {
15899 struct breakpoint *b;
15900 struct bp_location *bl;
15901
15902 ALL_BREAKPOINTS (b)
15903 {
15904 if (!is_non_inline_function (b))
15905 continue;
15906
15907 for (bl = b->loc; bl != NULL; bl = bl->next)
15908 {
15909 if (!bl->shlib_disabled
15910 && bpstat_check_location (bl, aspace, pc, ws))
15911 return 1;
15912 }
15913 }
15914
15915 return 0;
15916 }
15917
15918 /* Remove any references to OBJFILE which is going to be freed. */
15919
15920 void
15921 breakpoint_free_objfile (struct objfile *objfile)
15922 {
15923 struct bp_location **locp, *loc;
15924
15925 ALL_BP_LOCATIONS (loc, locp)
15926 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15927 loc->symtab = NULL;
15928 }
15929
15930 void
15931 initialize_breakpoint_ops (void)
15932 {
15933 static int initialized = 0;
15934
15935 struct breakpoint_ops *ops;
15936
15937 if (initialized)
15938 return;
15939 initialized = 1;
15940
15941 /* The breakpoint_ops structure to be inherit by all kinds of
15942 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15943 internal and momentary breakpoints, etc.). */
15944 ops = &bkpt_base_breakpoint_ops;
15945 *ops = base_breakpoint_ops;
15946 ops->re_set = bkpt_re_set;
15947 ops->insert_location = bkpt_insert_location;
15948 ops->remove_location = bkpt_remove_location;
15949 ops->breakpoint_hit = bkpt_breakpoint_hit;
15950 ops->create_sals_from_address = bkpt_create_sals_from_address;
15951 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15952 ops->decode_linespec = bkpt_decode_linespec;
15953
15954 /* The breakpoint_ops structure to be used in regular breakpoints. */
15955 ops = &bkpt_breakpoint_ops;
15956 *ops = bkpt_base_breakpoint_ops;
15957 ops->re_set = bkpt_re_set;
15958 ops->resources_needed = bkpt_resources_needed;
15959 ops->print_it = bkpt_print_it;
15960 ops->print_mention = bkpt_print_mention;
15961 ops->print_recreate = bkpt_print_recreate;
15962
15963 /* Ranged breakpoints. */
15964 ops = &ranged_breakpoint_ops;
15965 *ops = bkpt_breakpoint_ops;
15966 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15967 ops->resources_needed = resources_needed_ranged_breakpoint;
15968 ops->print_it = print_it_ranged_breakpoint;
15969 ops->print_one = print_one_ranged_breakpoint;
15970 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15971 ops->print_mention = print_mention_ranged_breakpoint;
15972 ops->print_recreate = print_recreate_ranged_breakpoint;
15973
15974 /* Internal breakpoints. */
15975 ops = &internal_breakpoint_ops;
15976 *ops = bkpt_base_breakpoint_ops;
15977 ops->re_set = internal_bkpt_re_set;
15978 ops->check_status = internal_bkpt_check_status;
15979 ops->print_it = internal_bkpt_print_it;
15980 ops->print_mention = internal_bkpt_print_mention;
15981
15982 /* Momentary breakpoints. */
15983 ops = &momentary_breakpoint_ops;
15984 *ops = bkpt_base_breakpoint_ops;
15985 ops->re_set = momentary_bkpt_re_set;
15986 ops->check_status = momentary_bkpt_check_status;
15987 ops->print_it = momentary_bkpt_print_it;
15988 ops->print_mention = momentary_bkpt_print_mention;
15989
15990 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15991 ops = &longjmp_breakpoint_ops;
15992 *ops = momentary_breakpoint_ops;
15993 ops->dtor = longjmp_bkpt_dtor;
15994
15995 /* Probe breakpoints. */
15996 ops = &bkpt_probe_breakpoint_ops;
15997 *ops = bkpt_breakpoint_ops;
15998 ops->insert_location = bkpt_probe_insert_location;
15999 ops->remove_location = bkpt_probe_remove_location;
16000 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16001 ops->decode_linespec = bkpt_probe_decode_linespec;
16002
16003 /* Watchpoints. */
16004 ops = &watchpoint_breakpoint_ops;
16005 *ops = base_breakpoint_ops;
16006 ops->dtor = dtor_watchpoint;
16007 ops->re_set = re_set_watchpoint;
16008 ops->insert_location = insert_watchpoint;
16009 ops->remove_location = remove_watchpoint;
16010 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16011 ops->check_status = check_status_watchpoint;
16012 ops->resources_needed = resources_needed_watchpoint;
16013 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16014 ops->print_it = print_it_watchpoint;
16015 ops->print_mention = print_mention_watchpoint;
16016 ops->print_recreate = print_recreate_watchpoint;
16017 ops->explains_signal = explains_signal_watchpoint;
16018
16019 /* Masked watchpoints. */
16020 ops = &masked_watchpoint_breakpoint_ops;
16021 *ops = watchpoint_breakpoint_ops;
16022 ops->insert_location = insert_masked_watchpoint;
16023 ops->remove_location = remove_masked_watchpoint;
16024 ops->resources_needed = resources_needed_masked_watchpoint;
16025 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16026 ops->print_it = print_it_masked_watchpoint;
16027 ops->print_one_detail = print_one_detail_masked_watchpoint;
16028 ops->print_mention = print_mention_masked_watchpoint;
16029 ops->print_recreate = print_recreate_masked_watchpoint;
16030
16031 /* Tracepoints. */
16032 ops = &tracepoint_breakpoint_ops;
16033 *ops = base_breakpoint_ops;
16034 ops->re_set = tracepoint_re_set;
16035 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16036 ops->print_one_detail = tracepoint_print_one_detail;
16037 ops->print_mention = tracepoint_print_mention;
16038 ops->print_recreate = tracepoint_print_recreate;
16039 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16040 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16041 ops->decode_linespec = tracepoint_decode_linespec;
16042
16043 /* Probe tracepoints. */
16044 ops = &tracepoint_probe_breakpoint_ops;
16045 *ops = tracepoint_breakpoint_ops;
16046 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16047 ops->decode_linespec = tracepoint_probe_decode_linespec;
16048
16049 /* Static tracepoints with marker (`-m'). */
16050 ops = &strace_marker_breakpoint_ops;
16051 *ops = tracepoint_breakpoint_ops;
16052 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16053 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16054 ops->decode_linespec = strace_marker_decode_linespec;
16055
16056 /* Fork catchpoints. */
16057 ops = &catch_fork_breakpoint_ops;
16058 *ops = base_breakpoint_ops;
16059 ops->insert_location = insert_catch_fork;
16060 ops->remove_location = remove_catch_fork;
16061 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16062 ops->print_it = print_it_catch_fork;
16063 ops->print_one = print_one_catch_fork;
16064 ops->print_mention = print_mention_catch_fork;
16065 ops->print_recreate = print_recreate_catch_fork;
16066
16067 /* Vfork catchpoints. */
16068 ops = &catch_vfork_breakpoint_ops;
16069 *ops = base_breakpoint_ops;
16070 ops->insert_location = insert_catch_vfork;
16071 ops->remove_location = remove_catch_vfork;
16072 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16073 ops->print_it = print_it_catch_vfork;
16074 ops->print_one = print_one_catch_vfork;
16075 ops->print_mention = print_mention_catch_vfork;
16076 ops->print_recreate = print_recreate_catch_vfork;
16077
16078 /* Exec catchpoints. */
16079 ops = &catch_exec_breakpoint_ops;
16080 *ops = base_breakpoint_ops;
16081 ops->dtor = dtor_catch_exec;
16082 ops->insert_location = insert_catch_exec;
16083 ops->remove_location = remove_catch_exec;
16084 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16085 ops->print_it = print_it_catch_exec;
16086 ops->print_one = print_one_catch_exec;
16087 ops->print_mention = print_mention_catch_exec;
16088 ops->print_recreate = print_recreate_catch_exec;
16089
16090 /* Syscall catchpoints. */
16091 ops = &catch_syscall_breakpoint_ops;
16092 *ops = base_breakpoint_ops;
16093 ops->dtor = dtor_catch_syscall;
16094 ops->insert_location = insert_catch_syscall;
16095 ops->remove_location = remove_catch_syscall;
16096 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16097 ops->print_it = print_it_catch_syscall;
16098 ops->print_one = print_one_catch_syscall;
16099 ops->print_mention = print_mention_catch_syscall;
16100 ops->print_recreate = print_recreate_catch_syscall;
16101
16102 /* Solib-related catchpoints. */
16103 ops = &catch_solib_breakpoint_ops;
16104 *ops = base_breakpoint_ops;
16105 ops->dtor = dtor_catch_solib;
16106 ops->insert_location = insert_catch_solib;
16107 ops->remove_location = remove_catch_solib;
16108 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16109 ops->check_status = check_status_catch_solib;
16110 ops->print_it = print_it_catch_solib;
16111 ops->print_one = print_one_catch_solib;
16112 ops->print_mention = print_mention_catch_solib;
16113 ops->print_recreate = print_recreate_catch_solib;
16114
16115 ops = &dprintf_breakpoint_ops;
16116 *ops = bkpt_base_breakpoint_ops;
16117 ops->re_set = dprintf_re_set;
16118 ops->resources_needed = bkpt_resources_needed;
16119 ops->print_it = bkpt_print_it;
16120 ops->print_mention = bkpt_print_mention;
16121 ops->print_recreate = dprintf_print_recreate;
16122 ops->after_condition_true = dprintf_after_condition_true;
16123 }
16124
16125 /* Chain containing all defined "enable breakpoint" subcommands. */
16126
16127 static struct cmd_list_element *enablebreaklist = NULL;
16128
16129 void
16130 _initialize_breakpoint (void)
16131 {
16132 struct cmd_list_element *c;
16133
16134 initialize_breakpoint_ops ();
16135
16136 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16137 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16138 observer_attach_inferior_exit (clear_syscall_counts);
16139 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16140
16141 breakpoint_objfile_key
16142 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16143
16144 catch_syscall_inferior_data
16145 = register_inferior_data_with_cleanup (NULL,
16146 catch_syscall_inferior_data_cleanup);
16147
16148 breakpoint_chain = 0;
16149 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16150 before a breakpoint is set. */
16151 breakpoint_count = 0;
16152
16153 tracepoint_count = 0;
16154
16155 add_com ("ignore", class_breakpoint, ignore_command, _("\
16156 Set ignore-count of breakpoint number N to COUNT.\n\
16157 Usage is `ignore N COUNT'."));
16158 if (xdb_commands)
16159 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16160
16161 add_com ("commands", class_breakpoint, commands_command, _("\
16162 Set commands to be executed when a breakpoint is hit.\n\
16163 Give breakpoint number as argument after \"commands\".\n\
16164 With no argument, the targeted breakpoint is the last one set.\n\
16165 The commands themselves follow starting on the next line.\n\
16166 Type a line containing \"end\" to indicate the end of them.\n\
16167 Give \"silent\" as the first line to make the breakpoint silent;\n\
16168 then no output is printed when it is hit, except what the commands print."));
16169
16170 c = add_com ("condition", class_breakpoint, condition_command, _("\
16171 Specify breakpoint number N to break only if COND is true.\n\
16172 Usage is `condition N COND', where N is an integer and COND is an\n\
16173 expression to be evaluated whenever breakpoint N is reached."));
16174 set_cmd_completer (c, condition_completer);
16175
16176 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16177 Set a temporary breakpoint.\n\
16178 Like \"break\" except the breakpoint is only temporary,\n\
16179 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16180 by using \"enable delete\" on the breakpoint number.\n\
16181 \n"
16182 BREAK_ARGS_HELP ("tbreak")));
16183 set_cmd_completer (c, location_completer);
16184
16185 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16186 Set a hardware assisted breakpoint.\n\
16187 Like \"break\" except the breakpoint requires hardware support,\n\
16188 some target hardware may not have this support.\n\
16189 \n"
16190 BREAK_ARGS_HELP ("hbreak")));
16191 set_cmd_completer (c, location_completer);
16192
16193 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16194 Set a temporary hardware assisted breakpoint.\n\
16195 Like \"hbreak\" except the breakpoint is only temporary,\n\
16196 so it will be deleted when hit.\n\
16197 \n"
16198 BREAK_ARGS_HELP ("thbreak")));
16199 set_cmd_completer (c, location_completer);
16200
16201 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16202 Enable some breakpoints.\n\
16203 Give breakpoint numbers (separated by spaces) as arguments.\n\
16204 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16205 This is used to cancel the effect of the \"disable\" command.\n\
16206 With a subcommand you can enable temporarily."),
16207 &enablelist, "enable ", 1, &cmdlist);
16208 if (xdb_commands)
16209 add_com ("ab", class_breakpoint, enable_command, _("\
16210 Enable some breakpoints.\n\
16211 Give breakpoint numbers (separated by spaces) as arguments.\n\
16212 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16213 This is used to cancel the effect of the \"disable\" command.\n\
16214 With a subcommand you can enable temporarily."));
16215
16216 add_com_alias ("en", "enable", class_breakpoint, 1);
16217
16218 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16219 Enable some breakpoints.\n\
16220 Give breakpoint numbers (separated by spaces) as arguments.\n\
16221 This is used to cancel the effect of the \"disable\" command.\n\
16222 May be abbreviated to simply \"enable\".\n"),
16223 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16224
16225 add_cmd ("once", no_class, enable_once_command, _("\
16226 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16227 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16228 &enablebreaklist);
16229
16230 add_cmd ("delete", no_class, enable_delete_command, _("\
16231 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16232 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16233 &enablebreaklist);
16234
16235 add_cmd ("count", no_class, enable_count_command, _("\
16236 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16237 If a breakpoint is hit while enabled in this fashion,\n\
16238 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16239 &enablebreaklist);
16240
16241 add_cmd ("delete", no_class, enable_delete_command, _("\
16242 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16243 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16244 &enablelist);
16245
16246 add_cmd ("once", no_class, enable_once_command, _("\
16247 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16248 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16249 &enablelist);
16250
16251 add_cmd ("count", no_class, enable_count_command, _("\
16252 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16253 If a breakpoint is hit while enabled in this fashion,\n\
16254 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16255 &enablelist);
16256
16257 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16258 Disable some breakpoints.\n\
16259 Arguments are breakpoint numbers with spaces in between.\n\
16260 To disable all breakpoints, give no argument.\n\
16261 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16262 &disablelist, "disable ", 1, &cmdlist);
16263 add_com_alias ("dis", "disable", class_breakpoint, 1);
16264 add_com_alias ("disa", "disable", class_breakpoint, 1);
16265 if (xdb_commands)
16266 add_com ("sb", class_breakpoint, disable_command, _("\
16267 Disable some breakpoints.\n\
16268 Arguments are breakpoint numbers with spaces in between.\n\
16269 To disable all breakpoints, give no argument.\n\
16270 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16271
16272 add_cmd ("breakpoints", class_alias, disable_command, _("\
16273 Disable some breakpoints.\n\
16274 Arguments are breakpoint numbers with spaces in between.\n\
16275 To disable all breakpoints, give no argument.\n\
16276 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16277 This command may be abbreviated \"disable\"."),
16278 &disablelist);
16279
16280 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16281 Delete some breakpoints or auto-display expressions.\n\
16282 Arguments are breakpoint numbers with spaces in between.\n\
16283 To delete all breakpoints, give no argument.\n\
16284 \n\
16285 Also a prefix command for deletion of other GDB objects.\n\
16286 The \"unset\" command is also an alias for \"delete\"."),
16287 &deletelist, "delete ", 1, &cmdlist);
16288 add_com_alias ("d", "delete", class_breakpoint, 1);
16289 add_com_alias ("del", "delete", class_breakpoint, 1);
16290 if (xdb_commands)
16291 add_com ("db", class_breakpoint, delete_command, _("\
16292 Delete some breakpoints.\n\
16293 Arguments are breakpoint numbers with spaces in between.\n\
16294 To delete all breakpoints, give no argument.\n"));
16295
16296 add_cmd ("breakpoints", class_alias, delete_command, _("\
16297 Delete some breakpoints or auto-display expressions.\n\
16298 Arguments are breakpoint numbers with spaces in between.\n\
16299 To delete all breakpoints, give no argument.\n\
16300 This command may be abbreviated \"delete\"."),
16301 &deletelist);
16302
16303 add_com ("clear", class_breakpoint, clear_command, _("\
16304 Clear breakpoint at specified line or function.\n\
16305 Argument may be line number, function name, or \"*\" and an address.\n\
16306 If line number is specified, all breakpoints in that line are cleared.\n\
16307 If function is specified, breakpoints at beginning of function are cleared.\n\
16308 If an address is specified, breakpoints at that address are cleared.\n\
16309 \n\
16310 With no argument, clears all breakpoints in the line that the selected frame\n\
16311 is executing in.\n\
16312 \n\
16313 See also the \"delete\" command which clears breakpoints by number."));
16314 add_com_alias ("cl", "clear", class_breakpoint, 1);
16315
16316 c = add_com ("break", class_breakpoint, break_command, _("\
16317 Set breakpoint at specified line or function.\n"
16318 BREAK_ARGS_HELP ("break")));
16319 set_cmd_completer (c, location_completer);
16320
16321 add_com_alias ("b", "break", class_run, 1);
16322 add_com_alias ("br", "break", class_run, 1);
16323 add_com_alias ("bre", "break", class_run, 1);
16324 add_com_alias ("brea", "break", class_run, 1);
16325
16326 if (xdb_commands)
16327 add_com_alias ("ba", "break", class_breakpoint, 1);
16328
16329 if (dbx_commands)
16330 {
16331 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16332 Break in function/address or break at a line in the current file."),
16333 &stoplist, "stop ", 1, &cmdlist);
16334 add_cmd ("in", class_breakpoint, stopin_command,
16335 _("Break in function or address."), &stoplist);
16336 add_cmd ("at", class_breakpoint, stopat_command,
16337 _("Break at a line in the current file."), &stoplist);
16338 add_com ("status", class_info, breakpoints_info, _("\
16339 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16340 The \"Type\" column indicates one of:\n\
16341 \tbreakpoint - normal breakpoint\n\
16342 \twatchpoint - watchpoint\n\
16343 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16344 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16345 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16346 address and file/line number respectively.\n\
16347 \n\
16348 Convenience variable \"$_\" and default examine address for \"x\"\n\
16349 are set to the address of the last breakpoint listed unless the command\n\
16350 is prefixed with \"server \".\n\n\
16351 Convenience variable \"$bpnum\" contains the number of the last\n\
16352 breakpoint set."));
16353 }
16354
16355 add_info ("breakpoints", breakpoints_info, _("\
16356 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16357 The \"Type\" column indicates one of:\n\
16358 \tbreakpoint - normal breakpoint\n\
16359 \twatchpoint - watchpoint\n\
16360 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16361 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16362 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16363 address and file/line number respectively.\n\
16364 \n\
16365 Convenience variable \"$_\" and default examine address for \"x\"\n\
16366 are set to the address of the last breakpoint listed unless the command\n\
16367 is prefixed with \"server \".\n\n\
16368 Convenience variable \"$bpnum\" contains the number of the last\n\
16369 breakpoint set."));
16370
16371 add_info_alias ("b", "breakpoints", 1);
16372
16373 if (xdb_commands)
16374 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16375 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16376 The \"Type\" column indicates one of:\n\
16377 \tbreakpoint - normal breakpoint\n\
16378 \twatchpoint - watchpoint\n\
16379 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16380 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16381 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16382 address and file/line number respectively.\n\
16383 \n\
16384 Convenience variable \"$_\" and default examine address for \"x\"\n\
16385 are set to the address of the last breakpoint listed unless the command\n\
16386 is prefixed with \"server \".\n\n\
16387 Convenience variable \"$bpnum\" contains the number of the last\n\
16388 breakpoint set."));
16389
16390 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16391 Status of all breakpoints, or breakpoint number NUMBER.\n\
16392 The \"Type\" column indicates one of:\n\
16393 \tbreakpoint - normal breakpoint\n\
16394 \twatchpoint - watchpoint\n\
16395 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16396 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16397 \tuntil - internal breakpoint used by the \"until\" command\n\
16398 \tfinish - internal breakpoint used by the \"finish\" command\n\
16399 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16400 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16401 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16402 address and file/line number respectively.\n\
16403 \n\
16404 Convenience variable \"$_\" and default examine address for \"x\"\n\
16405 are set to the address of the last breakpoint listed unless the command\n\
16406 is prefixed with \"server \".\n\n\
16407 Convenience variable \"$bpnum\" contains the number of the last\n\
16408 breakpoint set."),
16409 &maintenanceinfolist);
16410
16411 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16412 Set catchpoints to catch events."),
16413 &catch_cmdlist, "catch ",
16414 0/*allow-unknown*/, &cmdlist);
16415
16416 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16417 Set temporary catchpoints to catch events."),
16418 &tcatch_cmdlist, "tcatch ",
16419 0/*allow-unknown*/, &cmdlist);
16420
16421 add_catch_command ("fork", _("Catch calls to fork."),
16422 catch_fork_command_1,
16423 NULL,
16424 (void *) (uintptr_t) catch_fork_permanent,
16425 (void *) (uintptr_t) catch_fork_temporary);
16426 add_catch_command ("vfork", _("Catch calls to vfork."),
16427 catch_fork_command_1,
16428 NULL,
16429 (void *) (uintptr_t) catch_vfork_permanent,
16430 (void *) (uintptr_t) catch_vfork_temporary);
16431 add_catch_command ("exec", _("Catch calls to exec."),
16432 catch_exec_command_1,
16433 NULL,
16434 CATCH_PERMANENT,
16435 CATCH_TEMPORARY);
16436 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16437 Usage: catch load [REGEX]\n\
16438 If REGEX is given, only stop for libraries matching the regular expression."),
16439 catch_load_command_1,
16440 NULL,
16441 CATCH_PERMANENT,
16442 CATCH_TEMPORARY);
16443 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16444 Usage: catch unload [REGEX]\n\
16445 If REGEX is given, only stop for libraries matching the regular expression."),
16446 catch_unload_command_1,
16447 NULL,
16448 CATCH_PERMANENT,
16449 CATCH_TEMPORARY);
16450 add_catch_command ("syscall", _("\
16451 Catch system calls by their names and/or numbers.\n\
16452 Arguments say which system calls to catch. If no arguments\n\
16453 are given, every system call will be caught.\n\
16454 Arguments, if given, should be one or more system call names\n\
16455 (if your system supports that), or system call numbers."),
16456 catch_syscall_command_1,
16457 catch_syscall_completer,
16458 CATCH_PERMANENT,
16459 CATCH_TEMPORARY);
16460
16461 c = add_com ("watch", class_breakpoint, watch_command, _("\
16462 Set a watchpoint for an expression.\n\
16463 Usage: watch [-l|-location] EXPRESSION\n\
16464 A watchpoint stops execution of your program whenever the value of\n\
16465 an expression changes.\n\
16466 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16467 the memory to which it refers."));
16468 set_cmd_completer (c, expression_completer);
16469
16470 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16471 Set a read watchpoint for an expression.\n\
16472 Usage: rwatch [-l|-location] EXPRESSION\n\
16473 A watchpoint stops execution of your program whenever the value of\n\
16474 an expression is read.\n\
16475 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16476 the memory to which it refers."));
16477 set_cmd_completer (c, expression_completer);
16478
16479 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16480 Set a watchpoint for an expression.\n\
16481 Usage: awatch [-l|-location] EXPRESSION\n\
16482 A watchpoint stops execution of your program whenever the value of\n\
16483 an expression is either read or written.\n\
16484 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16485 the memory to which it refers."));
16486 set_cmd_completer (c, expression_completer);
16487
16488 add_info ("watchpoints", watchpoints_info, _("\
16489 Status of specified watchpoints (all watchpoints if no argument)."));
16490
16491 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16492 respond to changes - contrary to the description. */
16493 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16494 &can_use_hw_watchpoints, _("\
16495 Set debugger's willingness to use watchpoint hardware."), _("\
16496 Show debugger's willingness to use watchpoint hardware."), _("\
16497 If zero, gdb will not use hardware for new watchpoints, even if\n\
16498 such is available. (However, any hardware watchpoints that were\n\
16499 created before setting this to nonzero, will continue to use watchpoint\n\
16500 hardware.)"),
16501 NULL,
16502 show_can_use_hw_watchpoints,
16503 &setlist, &showlist);
16504
16505 can_use_hw_watchpoints = 1;
16506
16507 /* Tracepoint manipulation commands. */
16508
16509 c = add_com ("trace", class_breakpoint, trace_command, _("\
16510 Set a tracepoint at specified line or function.\n\
16511 \n"
16512 BREAK_ARGS_HELP ("trace") "\n\
16513 Do \"help tracepoints\" for info on other tracepoint commands."));
16514 set_cmd_completer (c, location_completer);
16515
16516 add_com_alias ("tp", "trace", class_alias, 0);
16517 add_com_alias ("tr", "trace", class_alias, 1);
16518 add_com_alias ("tra", "trace", class_alias, 1);
16519 add_com_alias ("trac", "trace", class_alias, 1);
16520
16521 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16522 Set a fast tracepoint at specified line or function.\n\
16523 \n"
16524 BREAK_ARGS_HELP ("ftrace") "\n\
16525 Do \"help tracepoints\" for info on other tracepoint commands."));
16526 set_cmd_completer (c, location_completer);
16527
16528 c = add_com ("strace", class_breakpoint, strace_command, _("\
16529 Set a static tracepoint at specified line, function or marker.\n\
16530 \n\
16531 strace [LOCATION] [if CONDITION]\n\
16532 LOCATION may be a line number, function name, \"*\" and an address,\n\
16533 or -m MARKER_ID.\n\
16534 If a line number is specified, probe the marker at start of code\n\
16535 for that line. If a function is specified, probe the marker at start\n\
16536 of code for that function. If an address is specified, probe the marker\n\
16537 at that exact address. If a marker id is specified, probe the marker\n\
16538 with that name. With no LOCATION, uses current execution address of\n\
16539 the selected stack frame.\n\
16540 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16541 This collects arbitrary user data passed in the probe point call to the\n\
16542 tracing library. You can inspect it when analyzing the trace buffer,\n\
16543 by printing the $_sdata variable like any other convenience variable.\n\
16544 \n\
16545 CONDITION is a boolean expression.\n\
16546 \n\
16547 Multiple tracepoints at one place are permitted, and useful if their\n\
16548 conditions are different.\n\
16549 \n\
16550 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16551 Do \"help tracepoints\" for info on other tracepoint commands."));
16552 set_cmd_completer (c, location_completer);
16553
16554 add_info ("tracepoints", tracepoints_info, _("\
16555 Status of specified tracepoints (all tracepoints if no argument).\n\
16556 Convenience variable \"$tpnum\" contains the number of the\n\
16557 last tracepoint set."));
16558
16559 add_info_alias ("tp", "tracepoints", 1);
16560
16561 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16562 Delete specified tracepoints.\n\
16563 Arguments are tracepoint numbers, separated by spaces.\n\
16564 No argument means delete all tracepoints."),
16565 &deletelist);
16566 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16567
16568 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16569 Disable specified tracepoints.\n\
16570 Arguments are tracepoint numbers, separated by spaces.\n\
16571 No argument means disable all tracepoints."),
16572 &disablelist);
16573 deprecate_cmd (c, "disable");
16574
16575 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16576 Enable specified tracepoints.\n\
16577 Arguments are tracepoint numbers, separated by spaces.\n\
16578 No argument means enable all tracepoints."),
16579 &enablelist);
16580 deprecate_cmd (c, "enable");
16581
16582 add_com ("passcount", class_trace, trace_pass_command, _("\
16583 Set the passcount for a tracepoint.\n\
16584 The trace will end when the tracepoint has been passed 'count' times.\n\
16585 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16586 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16587
16588 add_prefix_cmd ("save", class_breakpoint, save_command,
16589 _("Save breakpoint definitions as a script."),
16590 &save_cmdlist, "save ",
16591 0/*allow-unknown*/, &cmdlist);
16592
16593 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16594 Save current breakpoint definitions as a script.\n\
16595 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16596 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16597 session to restore them."),
16598 &save_cmdlist);
16599 set_cmd_completer (c, filename_completer);
16600
16601 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16602 Save current tracepoint definitions as a script.\n\
16603 Use the 'source' command in another debug session to restore them."),
16604 &save_cmdlist);
16605 set_cmd_completer (c, filename_completer);
16606
16607 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16608 deprecate_cmd (c, "save tracepoints");
16609
16610 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16611 Breakpoint specific settings\n\
16612 Configure various breakpoint-specific variables such as\n\
16613 pending breakpoint behavior"),
16614 &breakpoint_set_cmdlist, "set breakpoint ",
16615 0/*allow-unknown*/, &setlist);
16616 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16617 Breakpoint specific settings\n\
16618 Configure various breakpoint-specific variables such as\n\
16619 pending breakpoint behavior"),
16620 &breakpoint_show_cmdlist, "show breakpoint ",
16621 0/*allow-unknown*/, &showlist);
16622
16623 add_setshow_auto_boolean_cmd ("pending", no_class,
16624 &pending_break_support, _("\
16625 Set debugger's behavior regarding pending breakpoints."), _("\
16626 Show debugger's behavior regarding pending breakpoints."), _("\
16627 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16628 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16629 an error. If auto, an unrecognized breakpoint location results in a\n\
16630 user-query to see if a pending breakpoint should be created."),
16631 NULL,
16632 show_pending_break_support,
16633 &breakpoint_set_cmdlist,
16634 &breakpoint_show_cmdlist);
16635
16636 pending_break_support = AUTO_BOOLEAN_AUTO;
16637
16638 add_setshow_boolean_cmd ("auto-hw", no_class,
16639 &automatic_hardware_breakpoints, _("\
16640 Set automatic usage of hardware breakpoints."), _("\
16641 Show automatic usage of hardware breakpoints."), _("\
16642 If set, the debugger will automatically use hardware breakpoints for\n\
16643 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16644 a warning will be emitted for such breakpoints."),
16645 NULL,
16646 show_automatic_hardware_breakpoints,
16647 &breakpoint_set_cmdlist,
16648 &breakpoint_show_cmdlist);
16649
16650 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16651 &always_inserted_mode, _("\
16652 Set mode for inserting breakpoints."), _("\
16653 Show mode for inserting breakpoints."), _("\
16654 When this mode is off, breakpoints are inserted in inferior when it is\n\
16655 resumed, and removed when execution stops. When this mode is on,\n\
16656 breakpoints are inserted immediately and removed only when the user\n\
16657 deletes the breakpoint. When this mode is auto (which is the default),\n\
16658 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16659 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16660 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16661 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16662 NULL,
16663 &show_always_inserted_mode,
16664 &breakpoint_set_cmdlist,
16665 &breakpoint_show_cmdlist);
16666
16667 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16668 condition_evaluation_enums,
16669 &condition_evaluation_mode_1, _("\
16670 Set mode of breakpoint condition evaluation."), _("\
16671 Show mode of breakpoint condition evaluation."), _("\
16672 When this is set to \"host\", breakpoint conditions will be\n\
16673 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16674 breakpoint conditions will be downloaded to the target (if the target\n\
16675 supports such feature) and conditions will be evaluated on the target's side.\n\
16676 If this is set to \"auto\" (default), this will be automatically set to\n\
16677 \"target\" if it supports condition evaluation, otherwise it will\n\
16678 be set to \"gdb\""),
16679 &set_condition_evaluation_mode,
16680 &show_condition_evaluation_mode,
16681 &breakpoint_set_cmdlist,
16682 &breakpoint_show_cmdlist);
16683
16684 add_com ("break-range", class_breakpoint, break_range_command, _("\
16685 Set a breakpoint for an address range.\n\
16686 break-range START-LOCATION, END-LOCATION\n\
16687 where START-LOCATION and END-LOCATION can be one of the following:\n\
16688 LINENUM, for that line in the current file,\n\
16689 FILE:LINENUM, for that line in that file,\n\
16690 +OFFSET, for that number of lines after the current line\n\
16691 or the start of the range\n\
16692 FUNCTION, for the first line in that function,\n\
16693 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16694 *ADDRESS, for the instruction at that address.\n\
16695 \n\
16696 The breakpoint will stop execution of the inferior whenever it executes\n\
16697 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16698 range (including START-LOCATION and END-LOCATION)."));
16699
16700 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16701 Set a dynamic printf at specified line or function.\n\
16702 dprintf location,format string,arg1,arg2,...\n\
16703 location may be a line number, function name, or \"*\" and an address.\n\
16704 If a line number is specified, break at start of code for that line.\n\
16705 If a function is specified, break at start of code for that function."));
16706 set_cmd_completer (c, location_completer);
16707
16708 add_setshow_enum_cmd ("dprintf-style", class_support,
16709 dprintf_style_enums, &dprintf_style, _("\
16710 Set the style of usage for dynamic printf."), _("\
16711 Show the style of usage for dynamic printf."), _("\
16712 This setting chooses how GDB will do a dynamic printf.\n\
16713 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16714 console, as with the \"printf\" command.\n\
16715 If the value is \"call\", the print is done by calling a function in your\n\
16716 program; by default printf(), but you can choose a different function or\n\
16717 output stream by setting dprintf-function and dprintf-channel."),
16718 update_dprintf_commands, NULL,
16719 &setlist, &showlist);
16720
16721 dprintf_function = xstrdup ("printf");
16722 add_setshow_string_cmd ("dprintf-function", class_support,
16723 &dprintf_function, _("\
16724 Set the function to use for dynamic printf"), _("\
16725 Show the function to use for dynamic printf"), NULL,
16726 update_dprintf_commands, NULL,
16727 &setlist, &showlist);
16728
16729 dprintf_channel = xstrdup ("");
16730 add_setshow_string_cmd ("dprintf-channel", class_support,
16731 &dprintf_channel, _("\
16732 Set the channel to use for dynamic printf"), _("\
16733 Show the channel to use for dynamic printf"), NULL,
16734 update_dprintf_commands, NULL,
16735 &setlist, &showlist);
16736
16737 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16738 &disconnected_dprintf, _("\
16739 Set whether dprintf continues after GDB disconnects."), _("\
16740 Show whether dprintf continues after GDB disconnects."), _("\
16741 Use this to let dprintf commands continue to hit and produce output\n\
16742 even if GDB disconnects or detaches from the target."),
16743 NULL,
16744 NULL,
16745 &setlist, &showlist);
16746
16747 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16748 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16749 (target agent only) This is useful for formatted output in user-defined commands."));
16750
16751 automatic_hardware_breakpoints = 1;
16752
16753 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16754 observer_attach_thread_exit (remove_threaded_breakpoints);
16755 }
This page took 0.407307 seconds and 4 git commands to generate.