const-fy function parameter struct address_space *aspace
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void ignore_command (char *, int);
100
101 static void breakpoint_re_set_default (struct breakpoint *);
102
103 static void
104 create_sals_from_location_default (const struct event_location *location,
105 struct linespec_result *canonical,
106 enum bptype type_wanted);
107
108 static void create_breakpoints_sal_default (struct gdbarch *,
109 struct linespec_result *,
110 gdb::unique_xmalloc_ptr<char>,
111 gdb::unique_xmalloc_ptr<char>,
112 enum bptype,
113 enum bpdisp, int, int,
114 int,
115 const struct breakpoint_ops *,
116 int, int, int, unsigned);
117
118 static std::vector<symtab_and_line> decode_location_default
119 (struct breakpoint *b, const struct event_location *location,
120 struct program_space *search_pspace);
121
122 static void clear_command (char *, int);
123
124 static int can_use_hardware_watchpoint (struct value *);
125
126 static void mention (struct breakpoint *);
127
128 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
129 enum bptype,
130 const struct breakpoint_ops *);
131 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
132 const struct symtab_and_line *);
133
134 /* This function is used in gdbtk sources and thus can not be made
135 static. */
136 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
137 struct symtab_and_line,
138 enum bptype,
139 const struct breakpoint_ops *);
140
141 static struct breakpoint *
142 momentary_breakpoint_from_master (struct breakpoint *orig,
143 enum bptype type,
144 const struct breakpoint_ops *ops,
145 int loc_enabled);
146
147 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
148
149 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
150 CORE_ADDR bpaddr,
151 enum bptype bptype);
152
153 static void describe_other_breakpoints (struct gdbarch *,
154 struct program_space *, CORE_ADDR,
155 struct obj_section *, int);
156
157 static int watchpoint_locations_match (struct bp_location *loc1,
158 struct bp_location *loc2);
159
160 static int breakpoint_location_address_match (struct bp_location *bl,
161 const struct address_space *aspace,
162 CORE_ADDR addr);
163
164 static int breakpoint_location_address_range_overlap (struct bp_location *,
165 const address_space *,
166 CORE_ADDR, int);
167
168 static void info_breakpoints_command (char *, int);
169
170 static void info_watchpoints_command (char *, int);
171
172 static void commands_command (char *, int);
173
174 static void condition_command (char *, int);
175
176 static int remove_breakpoint (struct bp_location *);
177 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
178
179 static enum print_stop_action print_bp_stop_message (bpstat bs);
180
181 static int hw_breakpoint_used_count (void);
182
183 static int hw_watchpoint_use_count (struct breakpoint *);
184
185 static int hw_watchpoint_used_count_others (struct breakpoint *except,
186 enum bptype type,
187 int *other_type_used);
188
189 static void hbreak_command (char *, int);
190
191 static void thbreak_command (char *, int);
192
193 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
194 int count);
195
196 static void stop_command (char *arg, int from_tty);
197
198 static void free_bp_location (struct bp_location *loc);
199 static void incref_bp_location (struct bp_location *loc);
200 static void decref_bp_location (struct bp_location **loc);
201
202 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
203
204 /* update_global_location_list's modes of operation wrt to whether to
205 insert locations now. */
206 enum ugll_insert_mode
207 {
208 /* Don't insert any breakpoint locations into the inferior, only
209 remove already-inserted locations that no longer should be
210 inserted. Functions that delete a breakpoint or breakpoints
211 should specify this mode, so that deleting a breakpoint doesn't
212 have the side effect of inserting the locations of other
213 breakpoints that are marked not-inserted, but should_be_inserted
214 returns true on them.
215
216 This behavior is useful is situations close to tear-down -- e.g.,
217 after an exec, while the target still has execution, but
218 breakpoint shadows of the previous executable image should *NOT*
219 be restored to the new image; or before detaching, where the
220 target still has execution and wants to delete breakpoints from
221 GDB's lists, and all breakpoints had already been removed from
222 the inferior. */
223 UGLL_DONT_INSERT,
224
225 /* May insert breakpoints iff breakpoints_should_be_inserted_now
226 claims breakpoints should be inserted now. */
227 UGLL_MAY_INSERT,
228
229 /* Insert locations now, irrespective of
230 breakpoints_should_be_inserted_now. E.g., say all threads are
231 stopped right now, and the user did "continue". We need to
232 insert breakpoints _before_ resuming the target, but
233 UGLL_MAY_INSERT wouldn't insert them, because
234 breakpoints_should_be_inserted_now returns false at that point,
235 as no thread is running yet. */
236 UGLL_INSERT
237 };
238
239 static void update_global_location_list (enum ugll_insert_mode);
240
241 static void update_global_location_list_nothrow (enum ugll_insert_mode);
242
243 static int is_hardware_watchpoint (const struct breakpoint *bpt);
244
245 static void insert_breakpoint_locations (void);
246
247 static void info_tracepoints_command (char *, int);
248
249 static void enable_trace_command (char *, int);
250
251 static void disable_trace_command (char *, int);
252
253 static void trace_pass_command (char *, int);
254
255 static void set_tracepoint_count (int num);
256
257 static int is_masked_watchpoint (const struct breakpoint *b);
258
259 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
260
261 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
262 otherwise. */
263
264 static int strace_marker_p (struct breakpoint *b);
265
266 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
267 that are implemented on top of software or hardware breakpoints
268 (user breakpoints, internal and momentary breakpoints, etc.). */
269 static struct breakpoint_ops bkpt_base_breakpoint_ops;
270
271 /* Internal breakpoints class type. */
272 static struct breakpoint_ops internal_breakpoint_ops;
273
274 /* Momentary breakpoints class type. */
275 static struct breakpoint_ops momentary_breakpoint_ops;
276
277 /* The breakpoint_ops structure to be used in regular user created
278 breakpoints. */
279 struct breakpoint_ops bkpt_breakpoint_ops;
280
281 /* Breakpoints set on probes. */
282 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
283
284 /* Dynamic printf class type. */
285 struct breakpoint_ops dprintf_breakpoint_ops;
286
287 /* The style in which to perform a dynamic printf. This is a user
288 option because different output options have different tradeoffs;
289 if GDB does the printing, there is better error handling if there
290 is a problem with any of the arguments, but using an inferior
291 function lets you have special-purpose printers and sending of
292 output to the same place as compiled-in print functions. */
293
294 static const char dprintf_style_gdb[] = "gdb";
295 static const char dprintf_style_call[] = "call";
296 static const char dprintf_style_agent[] = "agent";
297 static const char *const dprintf_style_enums[] = {
298 dprintf_style_gdb,
299 dprintf_style_call,
300 dprintf_style_agent,
301 NULL
302 };
303 static const char *dprintf_style = dprintf_style_gdb;
304
305 /* The function to use for dynamic printf if the preferred style is to
306 call into the inferior. The value is simply a string that is
307 copied into the command, so it can be anything that GDB can
308 evaluate to a callable address, not necessarily a function name. */
309
310 static char *dprintf_function;
311
312 /* The channel to use for dynamic printf if the preferred style is to
313 call into the inferior; if a nonempty string, it will be passed to
314 the call as the first argument, with the format string as the
315 second. As with the dprintf function, this can be anything that
316 GDB knows how to evaluate, so in addition to common choices like
317 "stderr", this could be an app-specific expression like
318 "mystreams[curlogger]". */
319
320 static char *dprintf_channel;
321
322 /* True if dprintf commands should continue to operate even if GDB
323 has disconnected. */
324 static int disconnected_dprintf = 1;
325
326 struct command_line *
327 breakpoint_commands (struct breakpoint *b)
328 {
329 return b->commands ? b->commands.get () : NULL;
330 }
331
332 /* Flag indicating that a command has proceeded the inferior past the
333 current breakpoint. */
334
335 static int breakpoint_proceeded;
336
337 const char *
338 bpdisp_text (enum bpdisp disp)
339 {
340 /* NOTE: the following values are a part of MI protocol and
341 represent values of 'disp' field returned when inferior stops at
342 a breakpoint. */
343 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
344
345 return bpdisps[(int) disp];
346 }
347
348 /* Prototypes for exported functions. */
349 /* If FALSE, gdb will not use hardware support for watchpoints, even
350 if such is available. */
351 static int can_use_hw_watchpoints;
352
353 static void
354 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c,
356 const char *value)
357 {
358 fprintf_filtered (file,
359 _("Debugger's willingness to use "
360 "watchpoint hardware is %s.\n"),
361 value);
362 }
363
364 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
365 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
366 for unrecognized breakpoint locations.
367 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
368 static enum auto_boolean pending_break_support;
369 static void
370 show_pending_break_support (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c,
372 const char *value)
373 {
374 fprintf_filtered (file,
375 _("Debugger's behavior regarding "
376 "pending breakpoints is %s.\n"),
377 value);
378 }
379
380 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
381 set with "break" but falling in read-only memory.
382 If 0, gdb will warn about such breakpoints, but won't automatically
383 use hardware breakpoints. */
384 static int automatic_hardware_breakpoints;
385 static void
386 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
387 struct cmd_list_element *c,
388 const char *value)
389 {
390 fprintf_filtered (file,
391 _("Automatic usage of hardware breakpoints is %s.\n"),
392 value);
393 }
394
395 /* If on, GDB keeps breakpoints inserted even if the inferior is
396 stopped, and immediately inserts any new breakpoints as soon as
397 they're created. If off (default), GDB keeps breakpoints off of
398 the target as long as possible. That is, it delays inserting
399 breakpoints until the next resume, and removes them again when the
400 target fully stops. This is a bit safer in case GDB crashes while
401 processing user input. */
402 static int always_inserted_mode = 0;
403
404 static void
405 show_always_inserted_mode (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
409 value);
410 }
411
412 /* See breakpoint.h. */
413
414 int
415 breakpoints_should_be_inserted_now (void)
416 {
417 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
418 {
419 /* If breakpoints are global, they should be inserted even if no
420 thread under gdb's control is running, or even if there are
421 no threads under GDB's control yet. */
422 return 1;
423 }
424 else if (target_has_execution)
425 {
426 struct thread_info *tp;
427
428 if (always_inserted_mode)
429 {
430 /* The user wants breakpoints inserted even if all threads
431 are stopped. */
432 return 1;
433 }
434
435 if (threads_are_executing ())
436 return 1;
437
438 /* Don't remove breakpoints yet if, even though all threads are
439 stopped, we still have events to process. */
440 ALL_NON_EXITED_THREADS (tp)
441 if (tp->resumed
442 && tp->suspend.waitstatus_pending_p)
443 return 1;
444 }
445 return 0;
446 }
447
448 static const char condition_evaluation_both[] = "host or target";
449
450 /* Modes for breakpoint condition evaluation. */
451 static const char condition_evaluation_auto[] = "auto";
452 static const char condition_evaluation_host[] = "host";
453 static const char condition_evaluation_target[] = "target";
454 static const char *const condition_evaluation_enums[] = {
455 condition_evaluation_auto,
456 condition_evaluation_host,
457 condition_evaluation_target,
458 NULL
459 };
460
461 /* Global that holds the current mode for breakpoint condition evaluation. */
462 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
463
464 /* Global that we use to display information to the user (gets its value from
465 condition_evaluation_mode_1. */
466 static const char *condition_evaluation_mode = condition_evaluation_auto;
467
468 /* Translate a condition evaluation mode MODE into either "host"
469 or "target". This is used mostly to translate from "auto" to the
470 real setting that is being used. It returns the translated
471 evaluation mode. */
472
473 static const char *
474 translate_condition_evaluation_mode (const char *mode)
475 {
476 if (mode == condition_evaluation_auto)
477 {
478 if (target_supports_evaluation_of_breakpoint_conditions ())
479 return condition_evaluation_target;
480 else
481 return condition_evaluation_host;
482 }
483 else
484 return mode;
485 }
486
487 /* Discovers what condition_evaluation_auto translates to. */
488
489 static const char *
490 breakpoint_condition_evaluation_mode (void)
491 {
492 return translate_condition_evaluation_mode (condition_evaluation_mode);
493 }
494
495 /* Return true if GDB should evaluate breakpoint conditions or false
496 otherwise. */
497
498 static int
499 gdb_evaluates_breakpoint_condition_p (void)
500 {
501 const char *mode = breakpoint_condition_evaluation_mode ();
502
503 return (mode == condition_evaluation_host);
504 }
505
506 /* Are we executing breakpoint commands? */
507 static int executing_breakpoint_commands;
508
509 /* Are overlay event breakpoints enabled? */
510 static int overlay_events_enabled;
511
512 /* See description in breakpoint.h. */
513 int target_exact_watchpoints = 0;
514
515 /* Walk the following statement or block through all breakpoints.
516 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
517 current breakpoint. */
518
519 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
520
521 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
522 for (B = breakpoint_chain; \
523 B ? (TMP=B->next, 1): 0; \
524 B = TMP)
525
526 /* Similar iterator for the low-level breakpoints. SAFE variant is
527 not provided so update_global_location_list must not be called
528 while executing the block of ALL_BP_LOCATIONS. */
529
530 #define ALL_BP_LOCATIONS(B,BP_TMP) \
531 for (BP_TMP = bp_locations; \
532 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
533 BP_TMP++)
534
535 /* Iterates through locations with address ADDRESS for the currently selected
536 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
537 to where the loop should start from.
538 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
539 appropriate location to start with. */
540
541 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
542 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
543 BP_LOCP_TMP = BP_LOCP_START; \
544 BP_LOCP_START \
545 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
546 && (*BP_LOCP_TMP)->address == ADDRESS); \
547 BP_LOCP_TMP++)
548
549 /* Iterator for tracepoints only. */
550
551 #define ALL_TRACEPOINTS(B) \
552 for (B = breakpoint_chain; B; B = B->next) \
553 if (is_tracepoint (B))
554
555 /* Chains of all breakpoints defined. */
556
557 struct breakpoint *breakpoint_chain;
558
559 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
560
561 static struct bp_location **bp_locations;
562
563 /* Number of elements of BP_LOCATIONS. */
564
565 static unsigned bp_locations_count;
566
567 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
568 ADDRESS for the current elements of BP_LOCATIONS which get a valid
569 result from bp_location_has_shadow. You can use it for roughly
570 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
571 an address you need to read. */
572
573 static CORE_ADDR bp_locations_placed_address_before_address_max;
574
575 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
576 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
577 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
578 You can use it for roughly limiting the subrange of BP_LOCATIONS to
579 scan for shadow bytes for an address you need to read. */
580
581 static CORE_ADDR bp_locations_shadow_len_after_address_max;
582
583 /* The locations that no longer correspond to any breakpoint, unlinked
584 from the bp_locations array, but for which a hit may still be
585 reported by a target. */
586 VEC(bp_location_p) *moribund_locations = NULL;
587
588 /* Number of last breakpoint made. */
589
590 static int breakpoint_count;
591
592 /* The value of `breakpoint_count' before the last command that
593 created breakpoints. If the last (break-like) command created more
594 than one breakpoint, then the difference between BREAKPOINT_COUNT
595 and PREV_BREAKPOINT_COUNT is more than one. */
596 static int prev_breakpoint_count;
597
598 /* Number of last tracepoint made. */
599
600 static int tracepoint_count;
601
602 static struct cmd_list_element *breakpoint_set_cmdlist;
603 static struct cmd_list_element *breakpoint_show_cmdlist;
604 struct cmd_list_element *save_cmdlist;
605
606 /* See declaration at breakpoint.h. */
607
608 struct breakpoint *
609 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
610 void *user_data)
611 {
612 struct breakpoint *b = NULL;
613
614 ALL_BREAKPOINTS (b)
615 {
616 if (func (b, user_data) != 0)
617 break;
618 }
619
620 return b;
621 }
622
623 /* Return whether a breakpoint is an active enabled breakpoint. */
624 static int
625 breakpoint_enabled (struct breakpoint *b)
626 {
627 return (b->enable_state == bp_enabled);
628 }
629
630 /* Set breakpoint count to NUM. */
631
632 static void
633 set_breakpoint_count (int num)
634 {
635 prev_breakpoint_count = breakpoint_count;
636 breakpoint_count = num;
637 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
638 }
639
640 /* Used by `start_rbreak_breakpoints' below, to record the current
641 breakpoint count before "rbreak" creates any breakpoint. */
642 static int rbreak_start_breakpoint_count;
643
644 /* Called at the start an "rbreak" command to record the first
645 breakpoint made. */
646
647 void
648 start_rbreak_breakpoints (void)
649 {
650 rbreak_start_breakpoint_count = breakpoint_count;
651 }
652
653 /* Called at the end of an "rbreak" command to record the last
654 breakpoint made. */
655
656 void
657 end_rbreak_breakpoints (void)
658 {
659 prev_breakpoint_count = rbreak_start_breakpoint_count;
660 }
661
662 /* Used in run_command to zero the hit count when a new run starts. */
663
664 void
665 clear_breakpoint_hit_counts (void)
666 {
667 struct breakpoint *b;
668
669 ALL_BREAKPOINTS (b)
670 b->hit_count = 0;
671 }
672
673 \f
674 /* Return the breakpoint with the specified number, or NULL
675 if the number does not refer to an existing breakpoint. */
676
677 struct breakpoint *
678 get_breakpoint (int num)
679 {
680 struct breakpoint *b;
681
682 ALL_BREAKPOINTS (b)
683 if (b->number == num)
684 return b;
685
686 return NULL;
687 }
688
689 \f
690
691 /* Mark locations as "conditions have changed" in case the target supports
692 evaluating conditions on its side. */
693
694 static void
695 mark_breakpoint_modified (struct breakpoint *b)
696 {
697 struct bp_location *loc;
698
699 /* This is only meaningful if the target is
700 evaluating conditions and if the user has
701 opted for condition evaluation on the target's
702 side. */
703 if (gdb_evaluates_breakpoint_condition_p ()
704 || !target_supports_evaluation_of_breakpoint_conditions ())
705 return;
706
707 if (!is_breakpoint (b))
708 return;
709
710 for (loc = b->loc; loc; loc = loc->next)
711 loc->condition_changed = condition_modified;
712 }
713
714 /* Mark location as "conditions have changed" in case the target supports
715 evaluating conditions on its side. */
716
717 static void
718 mark_breakpoint_location_modified (struct bp_location *loc)
719 {
720 /* This is only meaningful if the target is
721 evaluating conditions and if the user has
722 opted for condition evaluation on the target's
723 side. */
724 if (gdb_evaluates_breakpoint_condition_p ()
725 || !target_supports_evaluation_of_breakpoint_conditions ())
726
727 return;
728
729 if (!is_breakpoint (loc->owner))
730 return;
731
732 loc->condition_changed = condition_modified;
733 }
734
735 /* Sets the condition-evaluation mode using the static global
736 condition_evaluation_mode. */
737
738 static void
739 set_condition_evaluation_mode (char *args, int from_tty,
740 struct cmd_list_element *c)
741 {
742 const char *old_mode, *new_mode;
743
744 if ((condition_evaluation_mode_1 == condition_evaluation_target)
745 && !target_supports_evaluation_of_breakpoint_conditions ())
746 {
747 condition_evaluation_mode_1 = condition_evaluation_mode;
748 warning (_("Target does not support breakpoint condition evaluation.\n"
749 "Using host evaluation mode instead."));
750 return;
751 }
752
753 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
754 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
755
756 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
757 settings was "auto". */
758 condition_evaluation_mode = condition_evaluation_mode_1;
759
760 /* Only update the mode if the user picked a different one. */
761 if (new_mode != old_mode)
762 {
763 struct bp_location *loc, **loc_tmp;
764 /* If the user switched to a different evaluation mode, we
765 need to synch the changes with the target as follows:
766
767 "host" -> "target": Send all (valid) conditions to the target.
768 "target" -> "host": Remove all the conditions from the target.
769 */
770
771 if (new_mode == condition_evaluation_target)
772 {
773 /* Mark everything modified and synch conditions with the
774 target. */
775 ALL_BP_LOCATIONS (loc, loc_tmp)
776 mark_breakpoint_location_modified (loc);
777 }
778 else
779 {
780 /* Manually mark non-duplicate locations to synch conditions
781 with the target. We do this to remove all the conditions the
782 target knows about. */
783 ALL_BP_LOCATIONS (loc, loc_tmp)
784 if (is_breakpoint (loc->owner) && loc->inserted)
785 loc->needs_update = 1;
786 }
787
788 /* Do the update. */
789 update_global_location_list (UGLL_MAY_INSERT);
790 }
791
792 return;
793 }
794
795 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
796 what "auto" is translating to. */
797
798 static void
799 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
800 struct cmd_list_element *c, const char *value)
801 {
802 if (condition_evaluation_mode == condition_evaluation_auto)
803 fprintf_filtered (file,
804 _("Breakpoint condition evaluation "
805 "mode is %s (currently %s).\n"),
806 value,
807 breakpoint_condition_evaluation_mode ());
808 else
809 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
810 value);
811 }
812
813 /* A comparison function for bp_location AP and BP that is used by
814 bsearch. This comparison function only cares about addresses, unlike
815 the more general bp_locations_compare function. */
816
817 static int
818 bp_locations_compare_addrs (const void *ap, const void *bp)
819 {
820 const struct bp_location *a = *(const struct bp_location **) ap;
821 const struct bp_location *b = *(const struct bp_location **) bp;
822
823 if (a->address == b->address)
824 return 0;
825 else
826 return ((a->address > b->address) - (a->address < b->address));
827 }
828
829 /* Helper function to skip all bp_locations with addresses
830 less than ADDRESS. It returns the first bp_location that
831 is greater than or equal to ADDRESS. If none is found, just
832 return NULL. */
833
834 static struct bp_location **
835 get_first_locp_gte_addr (CORE_ADDR address)
836 {
837 struct bp_location dummy_loc;
838 struct bp_location *dummy_locp = &dummy_loc;
839 struct bp_location **locp_found = NULL;
840
841 /* Initialize the dummy location's address field. */
842 dummy_loc.address = address;
843
844 /* Find a close match to the first location at ADDRESS. */
845 locp_found = ((struct bp_location **)
846 bsearch (&dummy_locp, bp_locations, bp_locations_count,
847 sizeof (struct bp_location **),
848 bp_locations_compare_addrs));
849
850 /* Nothing was found, nothing left to do. */
851 if (locp_found == NULL)
852 return NULL;
853
854 /* We may have found a location that is at ADDRESS but is not the first in the
855 location's list. Go backwards (if possible) and locate the first one. */
856 while ((locp_found - 1) >= bp_locations
857 && (*(locp_found - 1))->address == address)
858 locp_found--;
859
860 return locp_found;
861 }
862
863 void
864 set_breakpoint_condition (struct breakpoint *b, const char *exp,
865 int from_tty)
866 {
867 xfree (b->cond_string);
868 b->cond_string = NULL;
869
870 if (is_watchpoint (b))
871 {
872 struct watchpoint *w = (struct watchpoint *) b;
873
874 w->cond_exp.reset ();
875 }
876 else
877 {
878 struct bp_location *loc;
879
880 for (loc = b->loc; loc; loc = loc->next)
881 {
882 loc->cond.reset ();
883
884 /* No need to free the condition agent expression
885 bytecode (if we have one). We will handle this
886 when we go through update_global_location_list. */
887 }
888 }
889
890 if (*exp == 0)
891 {
892 if (from_tty)
893 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
894 }
895 else
896 {
897 const char *arg = exp;
898
899 /* I don't know if it matters whether this is the string the user
900 typed in or the decompiled expression. */
901 b->cond_string = xstrdup (arg);
902 b->condition_not_parsed = 0;
903
904 if (is_watchpoint (b))
905 {
906 struct watchpoint *w = (struct watchpoint *) b;
907
908 innermost_block = NULL;
909 arg = exp;
910 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
911 if (*arg)
912 error (_("Junk at end of expression"));
913 w->cond_exp_valid_block = innermost_block;
914 }
915 else
916 {
917 struct bp_location *loc;
918
919 for (loc = b->loc; loc; loc = loc->next)
920 {
921 arg = exp;
922 loc->cond =
923 parse_exp_1 (&arg, loc->address,
924 block_for_pc (loc->address), 0);
925 if (*arg)
926 error (_("Junk at end of expression"));
927 }
928 }
929 }
930 mark_breakpoint_modified (b);
931
932 observer_notify_breakpoint_modified (b);
933 }
934
935 /* Completion for the "condition" command. */
936
937 static void
938 condition_completer (struct cmd_list_element *cmd,
939 completion_tracker &tracker,
940 const char *text, const char *word)
941 {
942 const char *space;
943
944 text = skip_spaces (text);
945 space = skip_to_space (text);
946 if (*space == '\0')
947 {
948 int len;
949 struct breakpoint *b;
950 VEC (char_ptr) *result = NULL;
951
952 if (text[0] == '$')
953 {
954 /* We don't support completion of history indices. */
955 if (!isdigit (text[1]))
956 complete_internalvar (tracker, &text[1]);
957 return;
958 }
959
960 /* We're completing the breakpoint number. */
961 len = strlen (text);
962
963 ALL_BREAKPOINTS (b)
964 {
965 char number[50];
966
967 xsnprintf (number, sizeof (number), "%d", b->number);
968
969 if (strncmp (number, text, len) == 0)
970 {
971 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
972 tracker.add_completion (std::move (copy));
973 }
974 }
975
976 return;
977 }
978
979 /* We're completing the expression part. */
980 text = skip_spaces (space);
981 expression_completer (cmd, tracker, text, word);
982 }
983
984 /* condition N EXP -- set break condition of breakpoint N to EXP. */
985
986 static void
987 condition_command (char *arg, int from_tty)
988 {
989 struct breakpoint *b;
990 char *p;
991 int bnum;
992
993 if (arg == 0)
994 error_no_arg (_("breakpoint number"));
995
996 p = arg;
997 bnum = get_number (&p);
998 if (bnum == 0)
999 error (_("Bad breakpoint argument: '%s'"), arg);
1000
1001 ALL_BREAKPOINTS (b)
1002 if (b->number == bnum)
1003 {
1004 /* Check if this breakpoint has a "stop" method implemented in an
1005 extension language. This method and conditions entered into GDB
1006 from the CLI are mutually exclusive. */
1007 const struct extension_language_defn *extlang
1008 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1009
1010 if (extlang != NULL)
1011 {
1012 error (_("Only one stop condition allowed. There is currently"
1013 " a %s stop condition defined for this breakpoint."),
1014 ext_lang_capitalized_name (extlang));
1015 }
1016 set_breakpoint_condition (b, p, from_tty);
1017
1018 if (is_breakpoint (b))
1019 update_global_location_list (UGLL_MAY_INSERT);
1020
1021 return;
1022 }
1023
1024 error (_("No breakpoint number %d."), bnum);
1025 }
1026
1027 /* Check that COMMAND do not contain commands that are suitable
1028 only for tracepoints and not suitable for ordinary breakpoints.
1029 Throw if any such commands is found. */
1030
1031 static void
1032 check_no_tracepoint_commands (struct command_line *commands)
1033 {
1034 struct command_line *c;
1035
1036 for (c = commands; c; c = c->next)
1037 {
1038 int i;
1039
1040 if (c->control_type == while_stepping_control)
1041 error (_("The 'while-stepping' command can "
1042 "only be used for tracepoints"));
1043
1044 for (i = 0; i < c->body_count; ++i)
1045 check_no_tracepoint_commands ((c->body_list)[i]);
1046
1047 /* Not that command parsing removes leading whitespace and comment
1048 lines and also empty lines. So, we only need to check for
1049 command directly. */
1050 if (strstr (c->line, "collect ") == c->line)
1051 error (_("The 'collect' command can only be used for tracepoints"));
1052
1053 if (strstr (c->line, "teval ") == c->line)
1054 error (_("The 'teval' command can only be used for tracepoints"));
1055 }
1056 }
1057
1058 struct longjmp_breakpoint : public breakpoint
1059 {
1060 ~longjmp_breakpoint () override;
1061 };
1062
1063 /* Encapsulate tests for different types of tracepoints. */
1064
1065 static bool
1066 is_tracepoint_type (bptype type)
1067 {
1068 return (type == bp_tracepoint
1069 || type == bp_fast_tracepoint
1070 || type == bp_static_tracepoint);
1071 }
1072
1073 static bool
1074 is_longjmp_type (bptype type)
1075 {
1076 return type == bp_longjmp || type == bp_exception;
1077 }
1078
1079 int
1080 is_tracepoint (const struct breakpoint *b)
1081 {
1082 return is_tracepoint_type (b->type);
1083 }
1084
1085 /* Factory function to create an appropriate instance of breakpoint given
1086 TYPE. */
1087
1088 static std::unique_ptr<breakpoint>
1089 new_breakpoint_from_type (bptype type)
1090 {
1091 breakpoint *b;
1092
1093 if (is_tracepoint_type (type))
1094 b = new tracepoint ();
1095 else if (is_longjmp_type (type))
1096 b = new longjmp_breakpoint ();
1097 else
1098 b = new breakpoint ();
1099
1100 return std::unique_ptr<breakpoint> (b);
1101 }
1102
1103 /* A helper function that validates that COMMANDS are valid for a
1104 breakpoint. This function will throw an exception if a problem is
1105 found. */
1106
1107 static void
1108 validate_commands_for_breakpoint (struct breakpoint *b,
1109 struct command_line *commands)
1110 {
1111 if (is_tracepoint (b))
1112 {
1113 struct tracepoint *t = (struct tracepoint *) b;
1114 struct command_line *c;
1115 struct command_line *while_stepping = 0;
1116
1117 /* Reset the while-stepping step count. The previous commands
1118 might have included a while-stepping action, while the new
1119 ones might not. */
1120 t->step_count = 0;
1121
1122 /* We need to verify that each top-level element of commands is
1123 valid for tracepoints, that there's at most one
1124 while-stepping element, and that the while-stepping's body
1125 has valid tracing commands excluding nested while-stepping.
1126 We also need to validate the tracepoint action line in the
1127 context of the tracepoint --- validate_actionline actually
1128 has side effects, like setting the tracepoint's
1129 while-stepping STEP_COUNT, in addition to checking if the
1130 collect/teval actions parse and make sense in the
1131 tracepoint's context. */
1132 for (c = commands; c; c = c->next)
1133 {
1134 if (c->control_type == while_stepping_control)
1135 {
1136 if (b->type == bp_fast_tracepoint)
1137 error (_("The 'while-stepping' command "
1138 "cannot be used for fast tracepoint"));
1139 else if (b->type == bp_static_tracepoint)
1140 error (_("The 'while-stepping' command "
1141 "cannot be used for static tracepoint"));
1142
1143 if (while_stepping)
1144 error (_("The 'while-stepping' command "
1145 "can be used only once"));
1146 else
1147 while_stepping = c;
1148 }
1149
1150 validate_actionline (c->line, b);
1151 }
1152 if (while_stepping)
1153 {
1154 struct command_line *c2;
1155
1156 gdb_assert (while_stepping->body_count == 1);
1157 c2 = while_stepping->body_list[0];
1158 for (; c2; c2 = c2->next)
1159 {
1160 if (c2->control_type == while_stepping_control)
1161 error (_("The 'while-stepping' command cannot be nested"));
1162 }
1163 }
1164 }
1165 else
1166 {
1167 check_no_tracepoint_commands (commands);
1168 }
1169 }
1170
1171 /* Return a vector of all the static tracepoints set at ADDR. The
1172 caller is responsible for releasing the vector. */
1173
1174 VEC(breakpoint_p) *
1175 static_tracepoints_here (CORE_ADDR addr)
1176 {
1177 struct breakpoint *b;
1178 VEC(breakpoint_p) *found = 0;
1179 struct bp_location *loc;
1180
1181 ALL_BREAKPOINTS (b)
1182 if (b->type == bp_static_tracepoint)
1183 {
1184 for (loc = b->loc; loc; loc = loc->next)
1185 if (loc->address == addr)
1186 VEC_safe_push(breakpoint_p, found, b);
1187 }
1188
1189 return found;
1190 }
1191
1192 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1193 validate that only allowed commands are included. */
1194
1195 void
1196 breakpoint_set_commands (struct breakpoint *b,
1197 command_line_up &&commands)
1198 {
1199 validate_commands_for_breakpoint (b, commands.get ());
1200
1201 b->commands = std::move (commands);
1202 observer_notify_breakpoint_modified (b);
1203 }
1204
1205 /* Set the internal `silent' flag on the breakpoint. Note that this
1206 is not the same as the "silent" that may appear in the breakpoint's
1207 commands. */
1208
1209 void
1210 breakpoint_set_silent (struct breakpoint *b, int silent)
1211 {
1212 int old_silent = b->silent;
1213
1214 b->silent = silent;
1215 if (old_silent != silent)
1216 observer_notify_breakpoint_modified (b);
1217 }
1218
1219 /* Set the thread for this breakpoint. If THREAD is -1, make the
1220 breakpoint work for any thread. */
1221
1222 void
1223 breakpoint_set_thread (struct breakpoint *b, int thread)
1224 {
1225 int old_thread = b->thread;
1226
1227 b->thread = thread;
1228 if (old_thread != thread)
1229 observer_notify_breakpoint_modified (b);
1230 }
1231
1232 /* Set the task for this breakpoint. If TASK is 0, make the
1233 breakpoint work for any task. */
1234
1235 void
1236 breakpoint_set_task (struct breakpoint *b, int task)
1237 {
1238 int old_task = b->task;
1239
1240 b->task = task;
1241 if (old_task != task)
1242 observer_notify_breakpoint_modified (b);
1243 }
1244
1245 void
1246 check_tracepoint_command (char *line, void *closure)
1247 {
1248 struct breakpoint *b = (struct breakpoint *) closure;
1249
1250 validate_actionline (line, b);
1251 }
1252
1253 static void
1254 commands_command_1 (const char *arg, int from_tty,
1255 struct command_line *control)
1256 {
1257 counted_command_line cmd;
1258
1259 std::string new_arg;
1260
1261 if (arg == NULL || !*arg)
1262 {
1263 if (breakpoint_count - prev_breakpoint_count > 1)
1264 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1265 breakpoint_count);
1266 else if (breakpoint_count > 0)
1267 new_arg = string_printf ("%d", breakpoint_count);
1268 arg = new_arg.c_str ();
1269 }
1270
1271 map_breakpoint_numbers
1272 (arg, [&] (breakpoint *b)
1273 {
1274 if (cmd == NULL)
1275 {
1276 if (control != NULL)
1277 cmd = copy_command_lines (control->body_list[0]);
1278 else
1279 {
1280 std::string str
1281 = string_printf (_("Type commands for breakpoint(s) "
1282 "%s, one per line."),
1283 arg);
1284
1285 cmd = read_command_lines (&str[0],
1286 from_tty, 1,
1287 (is_tracepoint (b)
1288 ? check_tracepoint_command : 0),
1289 b);
1290 }
1291 }
1292
1293 /* If a breakpoint was on the list more than once, we don't need to
1294 do anything. */
1295 if (b->commands != cmd)
1296 {
1297 validate_commands_for_breakpoint (b, cmd.get ());
1298 b->commands = cmd;
1299 observer_notify_breakpoint_modified (b);
1300 }
1301 });
1302
1303 if (cmd == NULL)
1304 error (_("No breakpoints specified."));
1305 }
1306
1307 static void
1308 commands_command (char *arg, int from_tty)
1309 {
1310 commands_command_1 (arg, from_tty, NULL);
1311 }
1312
1313 /* Like commands_command, but instead of reading the commands from
1314 input stream, takes them from an already parsed command structure.
1315
1316 This is used by cli-script.c to DTRT with breakpoint commands
1317 that are part of if and while bodies. */
1318 enum command_control_type
1319 commands_from_control_command (const char *arg, struct command_line *cmd)
1320 {
1321 commands_command_1 (arg, 0, cmd);
1322 return simple_control;
1323 }
1324
1325 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1326
1327 static int
1328 bp_location_has_shadow (struct bp_location *bl)
1329 {
1330 if (bl->loc_type != bp_loc_software_breakpoint)
1331 return 0;
1332 if (!bl->inserted)
1333 return 0;
1334 if (bl->target_info.shadow_len == 0)
1335 /* BL isn't valid, or doesn't shadow memory. */
1336 return 0;
1337 return 1;
1338 }
1339
1340 /* Update BUF, which is LEN bytes read from the target address
1341 MEMADDR, by replacing a memory breakpoint with its shadowed
1342 contents.
1343
1344 If READBUF is not NULL, this buffer must not overlap with the of
1345 the breakpoint location's shadow_contents buffer. Otherwise, a
1346 failed assertion internal error will be raised. */
1347
1348 static void
1349 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1350 const gdb_byte *writebuf_org,
1351 ULONGEST memaddr, LONGEST len,
1352 struct bp_target_info *target_info,
1353 struct gdbarch *gdbarch)
1354 {
1355 /* Now do full processing of the found relevant range of elements. */
1356 CORE_ADDR bp_addr = 0;
1357 int bp_size = 0;
1358 int bptoffset = 0;
1359
1360 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1361 current_program_space->aspace, 0))
1362 {
1363 /* The breakpoint is inserted in a different address space. */
1364 return;
1365 }
1366
1367 /* Addresses and length of the part of the breakpoint that
1368 we need to copy. */
1369 bp_addr = target_info->placed_address;
1370 bp_size = target_info->shadow_len;
1371
1372 if (bp_addr + bp_size <= memaddr)
1373 {
1374 /* The breakpoint is entirely before the chunk of memory we are
1375 reading. */
1376 return;
1377 }
1378
1379 if (bp_addr >= memaddr + len)
1380 {
1381 /* The breakpoint is entirely after the chunk of memory we are
1382 reading. */
1383 return;
1384 }
1385
1386 /* Offset within shadow_contents. */
1387 if (bp_addr < memaddr)
1388 {
1389 /* Only copy the second part of the breakpoint. */
1390 bp_size -= memaddr - bp_addr;
1391 bptoffset = memaddr - bp_addr;
1392 bp_addr = memaddr;
1393 }
1394
1395 if (bp_addr + bp_size > memaddr + len)
1396 {
1397 /* Only copy the first part of the breakpoint. */
1398 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1399 }
1400
1401 if (readbuf != NULL)
1402 {
1403 /* Verify that the readbuf buffer does not overlap with the
1404 shadow_contents buffer. */
1405 gdb_assert (target_info->shadow_contents >= readbuf + len
1406 || readbuf >= (target_info->shadow_contents
1407 + target_info->shadow_len));
1408
1409 /* Update the read buffer with this inserted breakpoint's
1410 shadow. */
1411 memcpy (readbuf + bp_addr - memaddr,
1412 target_info->shadow_contents + bptoffset, bp_size);
1413 }
1414 else
1415 {
1416 const unsigned char *bp;
1417 CORE_ADDR addr = target_info->reqstd_address;
1418 int placed_size;
1419
1420 /* Update the shadow with what we want to write to memory. */
1421 memcpy (target_info->shadow_contents + bptoffset,
1422 writebuf_org + bp_addr - memaddr, bp_size);
1423
1424 /* Determine appropriate breakpoint contents and size for this
1425 address. */
1426 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1427
1428 /* Update the final write buffer with this inserted
1429 breakpoint's INSN. */
1430 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1431 }
1432 }
1433
1434 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1435 by replacing any memory breakpoints with their shadowed contents.
1436
1437 If READBUF is not NULL, this buffer must not overlap with any of
1438 the breakpoint location's shadow_contents buffers. Otherwise,
1439 a failed assertion internal error will be raised.
1440
1441 The range of shadowed area by each bp_location is:
1442 bl->address - bp_locations_placed_address_before_address_max
1443 up to bl->address + bp_locations_shadow_len_after_address_max
1444 The range we were requested to resolve shadows for is:
1445 memaddr ... memaddr + len
1446 Thus the safe cutoff boundaries for performance optimization are
1447 memaddr + len <= (bl->address
1448 - bp_locations_placed_address_before_address_max)
1449 and:
1450 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1451
1452 void
1453 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1454 const gdb_byte *writebuf_org,
1455 ULONGEST memaddr, LONGEST len)
1456 {
1457 /* Left boundary, right boundary and median element of our binary
1458 search. */
1459 unsigned bc_l, bc_r, bc;
1460
1461 /* Find BC_L which is a leftmost element which may affect BUF
1462 content. It is safe to report lower value but a failure to
1463 report higher one. */
1464
1465 bc_l = 0;
1466 bc_r = bp_locations_count;
1467 while (bc_l + 1 < bc_r)
1468 {
1469 struct bp_location *bl;
1470
1471 bc = (bc_l + bc_r) / 2;
1472 bl = bp_locations[bc];
1473
1474 /* Check first BL->ADDRESS will not overflow due to the added
1475 constant. Then advance the left boundary only if we are sure
1476 the BC element can in no way affect the BUF content (MEMADDR
1477 to MEMADDR + LEN range).
1478
1479 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1480 offset so that we cannot miss a breakpoint with its shadow
1481 range tail still reaching MEMADDR. */
1482
1483 if ((bl->address + bp_locations_shadow_len_after_address_max
1484 >= bl->address)
1485 && (bl->address + bp_locations_shadow_len_after_address_max
1486 <= memaddr))
1487 bc_l = bc;
1488 else
1489 bc_r = bc;
1490 }
1491
1492 /* Due to the binary search above, we need to make sure we pick the
1493 first location that's at BC_L's address. E.g., if there are
1494 multiple locations at the same address, BC_L may end up pointing
1495 at a duplicate location, and miss the "master"/"inserted"
1496 location. Say, given locations L1, L2 and L3 at addresses A and
1497 B:
1498
1499 L1@A, L2@A, L3@B, ...
1500
1501 BC_L could end up pointing at location L2, while the "master"
1502 location could be L1. Since the `loc->inserted' flag is only set
1503 on "master" locations, we'd forget to restore the shadow of L1
1504 and L2. */
1505 while (bc_l > 0
1506 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1507 bc_l--;
1508
1509 /* Now do full processing of the found relevant range of elements. */
1510
1511 for (bc = bc_l; bc < bp_locations_count; bc++)
1512 {
1513 struct bp_location *bl = bp_locations[bc];
1514
1515 /* bp_location array has BL->OWNER always non-NULL. */
1516 if (bl->owner->type == bp_none)
1517 warning (_("reading through apparently deleted breakpoint #%d?"),
1518 bl->owner->number);
1519
1520 /* Performance optimization: any further element can no longer affect BUF
1521 content. */
1522
1523 if (bl->address >= bp_locations_placed_address_before_address_max
1524 && memaddr + len <= (bl->address
1525 - bp_locations_placed_address_before_address_max))
1526 break;
1527
1528 if (!bp_location_has_shadow (bl))
1529 continue;
1530
1531 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1532 memaddr, len, &bl->target_info, bl->gdbarch);
1533 }
1534 }
1535
1536 \f
1537
1538 /* Return true if BPT is either a software breakpoint or a hardware
1539 breakpoint. */
1540
1541 int
1542 is_breakpoint (const struct breakpoint *bpt)
1543 {
1544 return (bpt->type == bp_breakpoint
1545 || bpt->type == bp_hardware_breakpoint
1546 || bpt->type == bp_dprintf);
1547 }
1548
1549 /* Return true if BPT is of any hardware watchpoint kind. */
1550
1551 static int
1552 is_hardware_watchpoint (const struct breakpoint *bpt)
1553 {
1554 return (bpt->type == bp_hardware_watchpoint
1555 || bpt->type == bp_read_watchpoint
1556 || bpt->type == bp_access_watchpoint);
1557 }
1558
1559 /* Return true if BPT is of any watchpoint kind, hardware or
1560 software. */
1561
1562 int
1563 is_watchpoint (const struct breakpoint *bpt)
1564 {
1565 return (is_hardware_watchpoint (bpt)
1566 || bpt->type == bp_watchpoint);
1567 }
1568
1569 /* Returns true if the current thread and its running state are safe
1570 to evaluate or update watchpoint B. Watchpoints on local
1571 expressions need to be evaluated in the context of the thread that
1572 was current when the watchpoint was created, and, that thread needs
1573 to be stopped to be able to select the correct frame context.
1574 Watchpoints on global expressions can be evaluated on any thread,
1575 and in any state. It is presently left to the target allowing
1576 memory accesses when threads are running. */
1577
1578 static int
1579 watchpoint_in_thread_scope (struct watchpoint *b)
1580 {
1581 return (b->pspace == current_program_space
1582 && (ptid_equal (b->watchpoint_thread, null_ptid)
1583 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1584 && !is_executing (inferior_ptid))));
1585 }
1586
1587 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1588 associated bp_watchpoint_scope breakpoint. */
1589
1590 static void
1591 watchpoint_del_at_next_stop (struct watchpoint *w)
1592 {
1593 if (w->related_breakpoint != w)
1594 {
1595 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1596 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1597 w->related_breakpoint->disposition = disp_del_at_next_stop;
1598 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1599 w->related_breakpoint = w;
1600 }
1601 w->disposition = disp_del_at_next_stop;
1602 }
1603
1604 /* Extract a bitfield value from value VAL using the bit parameters contained in
1605 watchpoint W. */
1606
1607 static struct value *
1608 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1609 {
1610 struct value *bit_val;
1611
1612 if (val == NULL)
1613 return NULL;
1614
1615 bit_val = allocate_value (value_type (val));
1616
1617 unpack_value_bitfield (bit_val,
1618 w->val_bitpos,
1619 w->val_bitsize,
1620 value_contents_for_printing (val),
1621 value_offset (val),
1622 val);
1623
1624 return bit_val;
1625 }
1626
1627 /* Allocate a dummy location and add it to B, which must be a software
1628 watchpoint. This is required because even if a software watchpoint
1629 is not watching any memory, bpstat_stop_status requires a location
1630 to be able to report stops. */
1631
1632 static void
1633 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1634 struct program_space *pspace)
1635 {
1636 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1637
1638 b->loc = allocate_bp_location (b);
1639 b->loc->pspace = pspace;
1640 b->loc->address = -1;
1641 b->loc->length = -1;
1642 }
1643
1644 /* Returns true if B is a software watchpoint that is not watching any
1645 memory (e.g., "watch $pc"). */
1646
1647 static int
1648 is_no_memory_software_watchpoint (struct breakpoint *b)
1649 {
1650 return (b->type == bp_watchpoint
1651 && b->loc != NULL
1652 && b->loc->next == NULL
1653 && b->loc->address == -1
1654 && b->loc->length == -1);
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're at a point where the stack has been destroyed
1737 (e.g. in a function epilogue), unwinding may not work
1738 properly. Do not attempt to recreate locations at this
1739 point. See similar comments in watchpoint_check. */
1740 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1741 return;
1742
1743 /* Save the current frame's ID so we can restore it after
1744 evaluating the watchpoint expression on its own frame. */
1745 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1746 took a frame parameter, so that we didn't have to change the
1747 selected frame. */
1748 frame_saved = 1;
1749 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1750
1751 fi = frame_find_by_id (b->watchpoint_frame);
1752 within_current_scope = (fi != NULL);
1753 if (within_current_scope)
1754 select_frame (fi);
1755 }
1756
1757 /* We don't free locations. They are stored in the bp_location array
1758 and update_global_location_list will eventually delete them and
1759 remove breakpoints if needed. */
1760 b->loc = NULL;
1761
1762 if (within_current_scope && reparse)
1763 {
1764 const char *s;
1765
1766 b->exp.reset ();
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->cond_string != NULL)
1781 {
1782 b->cond_exp.reset ();
1783
1784 s = b->cond_string;
1785 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1786 }
1787 }
1788
1789 /* If we failed to parse the expression, for example because
1790 it refers to a global variable in a not-yet-loaded shared library,
1791 don't try to insert watchpoint. We don't automatically delete
1792 such watchpoint, though, since failure to parse expression
1793 is different from out-of-scope watchpoint. */
1794 if (!target_has_execution)
1795 {
1796 /* Without execution, memory can't change. No use to try and
1797 set watchpoint locations. The watchpoint will be reset when
1798 the target gains execution, through breakpoint_re_set. */
1799 if (!can_use_hw_watchpoints)
1800 {
1801 if (b->ops->works_in_software_mode (b))
1802 b->type = bp_watchpoint;
1803 else
1804 error (_("Can't set read/access watchpoint when "
1805 "hardware watchpoints are disabled."));
1806 }
1807 }
1808 else if (within_current_scope && b->exp)
1809 {
1810 int pc = 0;
1811 struct value *val_chain, *v, *result, *next;
1812 struct program_space *frame_pspace;
1813
1814 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1815
1816 /* Avoid setting b->val if it's already set. The meaning of
1817 b->val is 'the last value' user saw, and we should update
1818 it only if we reported that last value to user. As it
1819 happens, the code that reports it updates b->val directly.
1820 We don't keep track of the memory value for masked
1821 watchpoints. */
1822 if (!b->val_valid && !is_masked_watchpoint (b))
1823 {
1824 if (b->val_bitsize != 0)
1825 {
1826 v = extract_bitfield_from_watchpoint_value (b, v);
1827 if (v != NULL)
1828 release_value (v);
1829 }
1830 b->val = v;
1831 b->val_valid = 1;
1832 }
1833
1834 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1835
1836 /* Look at each value on the value chain. */
1837 for (v = val_chain; v; v = value_next (v))
1838 {
1839 /* If it's a memory location, and GDB actually needed
1840 its contents to evaluate the expression, then we
1841 must watch it. If the first value returned is
1842 still lazy, that means an error occurred reading it;
1843 watch it anyway in case it becomes readable. */
1844 if (VALUE_LVAL (v) == lval_memory
1845 && (v == val_chain || ! value_lazy (v)))
1846 {
1847 struct type *vtype = check_typedef (value_type (v));
1848
1849 /* We only watch structs and arrays if user asked
1850 for it explicitly, never if they just happen to
1851 appear in the middle of some value chain. */
1852 if (v == result
1853 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1854 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1855 {
1856 CORE_ADDR addr;
1857 enum target_hw_bp_type type;
1858 struct bp_location *loc, **tmp;
1859 int bitpos = 0, bitsize = 0;
1860
1861 if (value_bitsize (v) != 0)
1862 {
1863 /* Extract the bit parameters out from the bitfield
1864 sub-expression. */
1865 bitpos = value_bitpos (v);
1866 bitsize = value_bitsize (v);
1867 }
1868 else if (v == result && b->val_bitsize != 0)
1869 {
1870 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1871 lvalue whose bit parameters are saved in the fields
1872 VAL_BITPOS and VAL_BITSIZE. */
1873 bitpos = b->val_bitpos;
1874 bitsize = b->val_bitsize;
1875 }
1876
1877 addr = value_address (v);
1878 if (bitsize != 0)
1879 {
1880 /* Skip the bytes that don't contain the bitfield. */
1881 addr += bitpos / 8;
1882 }
1883
1884 type = hw_write;
1885 if (b->type == bp_read_watchpoint)
1886 type = hw_read;
1887 else if (b->type == bp_access_watchpoint)
1888 type = hw_access;
1889
1890 loc = allocate_bp_location (b);
1891 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1892 ;
1893 *tmp = loc;
1894 loc->gdbarch = get_type_arch (value_type (v));
1895
1896 loc->pspace = frame_pspace;
1897 loc->address = addr;
1898
1899 if (bitsize != 0)
1900 {
1901 /* Just cover the bytes that make up the bitfield. */
1902 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1903 }
1904 else
1905 loc->length = TYPE_LENGTH (value_type (v));
1906
1907 loc->watchpoint_type = type;
1908 }
1909 }
1910 }
1911
1912 /* Change the type of breakpoint between hardware assisted or
1913 an ordinary watchpoint depending on the hardware support
1914 and free hardware slots. REPARSE is set when the inferior
1915 is started. */
1916 if (reparse)
1917 {
1918 int reg_cnt;
1919 enum bp_loc_type loc_type;
1920 struct bp_location *bl;
1921
1922 reg_cnt = can_use_hardware_watchpoint (val_chain);
1923
1924 if (reg_cnt)
1925 {
1926 int i, target_resources_ok, other_type_used;
1927 enum bptype type;
1928
1929 /* Use an exact watchpoint when there's only one memory region to be
1930 watched, and only one debug register is needed to watch it. */
1931 b->exact = target_exact_watchpoints && reg_cnt == 1;
1932
1933 /* We need to determine how many resources are already
1934 used for all other hardware watchpoints plus this one
1935 to see if we still have enough resources to also fit
1936 this watchpoint in as well. */
1937
1938 /* If this is a software watchpoint, we try to turn it
1939 to a hardware one -- count resources as if B was of
1940 hardware watchpoint type. */
1941 type = b->type;
1942 if (type == bp_watchpoint)
1943 type = bp_hardware_watchpoint;
1944
1945 /* This watchpoint may or may not have been placed on
1946 the list yet at this point (it won't be in the list
1947 if we're trying to create it for the first time,
1948 through watch_command), so always account for it
1949 manually. */
1950
1951 /* Count resources used by all watchpoints except B. */
1952 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1953
1954 /* Add in the resources needed for B. */
1955 i += hw_watchpoint_use_count (b);
1956
1957 target_resources_ok
1958 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1959 if (target_resources_ok <= 0)
1960 {
1961 int sw_mode = b->ops->works_in_software_mode (b);
1962
1963 if (target_resources_ok == 0 && !sw_mode)
1964 error (_("Target does not support this type of "
1965 "hardware watchpoint."));
1966 else if (target_resources_ok < 0 && !sw_mode)
1967 error (_("There are not enough available hardware "
1968 "resources for this watchpoint."));
1969
1970 /* Downgrade to software watchpoint. */
1971 b->type = bp_watchpoint;
1972 }
1973 else
1974 {
1975 /* If this was a software watchpoint, we've just
1976 found we have enough resources to turn it to a
1977 hardware watchpoint. Otherwise, this is a
1978 nop. */
1979 b->type = type;
1980 }
1981 }
1982 else if (!b->ops->works_in_software_mode (b))
1983 {
1984 if (!can_use_hw_watchpoints)
1985 error (_("Can't set read/access watchpoint when "
1986 "hardware watchpoints are disabled."));
1987 else
1988 error (_("Expression cannot be implemented with "
1989 "read/access watchpoint."));
1990 }
1991 else
1992 b->type = bp_watchpoint;
1993
1994 loc_type = (b->type == bp_watchpoint? bp_loc_other
1995 : bp_loc_hardware_watchpoint);
1996 for (bl = b->loc; bl; bl = bl->next)
1997 bl->loc_type = loc_type;
1998 }
1999
2000 for (v = val_chain; v; v = next)
2001 {
2002 next = value_next (v);
2003 if (v != b->val)
2004 value_free (v);
2005 }
2006
2007 /* If a software watchpoint is not watching any memory, then the
2008 above left it without any location set up. But,
2009 bpstat_stop_status requires a location to be able to report
2010 stops, so make sure there's at least a dummy one. */
2011 if (b->type == bp_watchpoint && b->loc == NULL)
2012 software_watchpoint_add_no_memory_location (b, frame_pspace);
2013 }
2014 else if (!within_current_scope)
2015 {
2016 printf_filtered (_("\
2017 Watchpoint %d deleted because the program has left the block\n\
2018 in which its expression is valid.\n"),
2019 b->number);
2020 watchpoint_del_at_next_stop (b);
2021 }
2022
2023 /* Restore the selected frame. */
2024 if (frame_saved)
2025 select_frame (frame_find_by_id (saved_frame_id));
2026 }
2027
2028
2029 /* Returns 1 iff breakpoint location should be
2030 inserted in the inferior. We don't differentiate the type of BL's owner
2031 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2032 breakpoint_ops is not defined, because in insert_bp_location,
2033 tracepoint's insert_location will not be called. */
2034 static int
2035 should_be_inserted (struct bp_location *bl)
2036 {
2037 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2038 return 0;
2039
2040 if (bl->owner->disposition == disp_del_at_next_stop)
2041 return 0;
2042
2043 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2044 return 0;
2045
2046 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2047 return 0;
2048
2049 /* This is set for example, when we're attached to the parent of a
2050 vfork, and have detached from the child. The child is running
2051 free, and we expect it to do an exec or exit, at which point the
2052 OS makes the parent schedulable again (and the target reports
2053 that the vfork is done). Until the child is done with the shared
2054 memory region, do not insert breakpoints in the parent, otherwise
2055 the child could still trip on the parent's breakpoints. Since
2056 the parent is blocked anyway, it won't miss any breakpoint. */
2057 if (bl->pspace->breakpoints_not_allowed)
2058 return 0;
2059
2060 /* Don't insert a breakpoint if we're trying to step past its
2061 location, except if the breakpoint is a single-step breakpoint,
2062 and the breakpoint's thread is the thread which is stepping past
2063 a breakpoint. */
2064 if ((bl->loc_type == bp_loc_software_breakpoint
2065 || bl->loc_type == bp_loc_hardware_breakpoint)
2066 && stepping_past_instruction_at (bl->pspace->aspace,
2067 bl->address)
2068 /* The single-step breakpoint may be inserted at the location
2069 we're trying to step if the instruction branches to itself.
2070 However, the instruction won't be executed at all and it may
2071 break the semantics of the instruction, for example, the
2072 instruction is a conditional branch or updates some flags.
2073 We can't fix it unless GDB is able to emulate the instruction
2074 or switch to displaced stepping. */
2075 && !(bl->owner->type == bp_single_step
2076 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2077 {
2078 if (debug_infrun)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "infrun: skipping breakpoint: "
2082 "stepping past insn at: %s\n",
2083 paddress (bl->gdbarch, bl->address));
2084 }
2085 return 0;
2086 }
2087
2088 /* Don't insert watchpoints if we're trying to step past the
2089 instruction that triggered one. */
2090 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2091 && stepping_past_nonsteppable_watchpoint ())
2092 {
2093 if (debug_infrun)
2094 {
2095 fprintf_unfiltered (gdb_stdlog,
2096 "infrun: stepping past non-steppable watchpoint. "
2097 "skipping watchpoint at %s:%d\n",
2098 paddress (bl->gdbarch, bl->address),
2099 bl->length);
2100 }
2101 return 0;
2102 }
2103
2104 return 1;
2105 }
2106
2107 /* Same as should_be_inserted but does the check assuming
2108 that the location is not duplicated. */
2109
2110 static int
2111 unduplicated_should_be_inserted (struct bp_location *bl)
2112 {
2113 int result;
2114 const int save_duplicate = bl->duplicate;
2115
2116 bl->duplicate = 0;
2117 result = should_be_inserted (bl);
2118 bl->duplicate = save_duplicate;
2119 return result;
2120 }
2121
2122 /* Parses a conditional described by an expression COND into an
2123 agent expression bytecode suitable for evaluation
2124 by the bytecode interpreter. Return NULL if there was
2125 any error during parsing. */
2126
2127 static agent_expr_up
2128 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2129 {
2130 if (cond == NULL)
2131 return NULL;
2132
2133 agent_expr_up aexpr;
2134
2135 /* We don't want to stop processing, so catch any errors
2136 that may show up. */
2137 TRY
2138 {
2139 aexpr = gen_eval_for_expr (scope, cond);
2140 }
2141
2142 CATCH (ex, RETURN_MASK_ERROR)
2143 {
2144 /* If we got here, it means the condition could not be parsed to a valid
2145 bytecode expression and thus can't be evaluated on the target's side.
2146 It's no use iterating through the conditions. */
2147 }
2148 END_CATCH
2149
2150 /* We have a valid agent expression. */
2151 return aexpr;
2152 }
2153
2154 /* Based on location BL, create a list of breakpoint conditions to be
2155 passed on to the target. If we have duplicated locations with different
2156 conditions, we will add such conditions to the list. The idea is that the
2157 target will evaluate the list of conditions and will only notify GDB when
2158 one of them is true. */
2159
2160 static void
2161 build_target_condition_list (struct bp_location *bl)
2162 {
2163 struct bp_location **locp = NULL, **loc2p;
2164 int null_condition_or_parse_error = 0;
2165 int modified = bl->needs_update;
2166 struct bp_location *loc;
2167
2168 /* Release conditions left over from a previous insert. */
2169 bl->target_info.conditions.clear ();
2170
2171 /* This is only meaningful if the target is
2172 evaluating conditions and if the user has
2173 opted for condition evaluation on the target's
2174 side. */
2175 if (gdb_evaluates_breakpoint_condition_p ()
2176 || !target_supports_evaluation_of_breakpoint_conditions ())
2177 return;
2178
2179 /* Do a first pass to check for locations with no assigned
2180 conditions or conditions that fail to parse to a valid agent expression
2181 bytecode. If any of these happen, then it's no use to send conditions
2182 to the target since this location will always trigger and generate a
2183 response back to GDB. */
2184 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2185 {
2186 loc = (*loc2p);
2187 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2188 {
2189 if (modified)
2190 {
2191 /* Re-parse the conditions since something changed. In that
2192 case we already freed the condition bytecodes (see
2193 force_breakpoint_reinsertion). We just
2194 need to parse the condition to bytecodes again. */
2195 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2196 loc->cond.get ());
2197 }
2198
2199 /* If we have a NULL bytecode expression, it means something
2200 went wrong or we have a null condition expression. */
2201 if (!loc->cond_bytecode)
2202 {
2203 null_condition_or_parse_error = 1;
2204 break;
2205 }
2206 }
2207 }
2208
2209 /* If any of these happened, it means we will have to evaluate the conditions
2210 for the location's address on gdb's side. It is no use keeping bytecodes
2211 for all the other duplicate locations, thus we free all of them here.
2212
2213 This is so we have a finer control over which locations' conditions are
2214 being evaluated by GDB or the remote stub. */
2215 if (null_condition_or_parse_error)
2216 {
2217 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2218 {
2219 loc = (*loc2p);
2220 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2221 {
2222 /* Only go as far as the first NULL bytecode is
2223 located. */
2224 if (!loc->cond_bytecode)
2225 return;
2226
2227 loc->cond_bytecode.reset ();
2228 }
2229 }
2230 }
2231
2232 /* No NULL conditions or failed bytecode generation. Build a condition list
2233 for this location's address. */
2234 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2235 {
2236 loc = (*loc2p);
2237 if (loc->cond
2238 && is_breakpoint (loc->owner)
2239 && loc->pspace->num == bl->pspace->num
2240 && loc->owner->enable_state == bp_enabled
2241 && loc->enabled)
2242 {
2243 /* Add the condition to the vector. This will be used later
2244 to send the conditions to the target. */
2245 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2246 }
2247 }
2248
2249 return;
2250 }
2251
2252 /* Parses a command described by string CMD into an agent expression
2253 bytecode suitable for evaluation by the bytecode interpreter.
2254 Return NULL if there was any error during parsing. */
2255
2256 static agent_expr_up
2257 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2258 {
2259 struct cleanup *old_cleanups = 0;
2260 struct expression **argvec;
2261 const char *cmdrest;
2262 const char *format_start, *format_end;
2263 struct format_piece *fpieces;
2264 int nargs;
2265 struct gdbarch *gdbarch = get_current_arch ();
2266
2267 if (cmd == NULL)
2268 return NULL;
2269
2270 cmdrest = cmd;
2271
2272 if (*cmdrest == ',')
2273 ++cmdrest;
2274 cmdrest = skip_spaces (cmdrest);
2275
2276 if (*cmdrest++ != '"')
2277 error (_("No format string following the location"));
2278
2279 format_start = cmdrest;
2280
2281 fpieces = parse_format_string (&cmdrest);
2282
2283 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2284
2285 format_end = cmdrest;
2286
2287 if (*cmdrest++ != '"')
2288 error (_("Bad format string, non-terminated '\"'."));
2289
2290 cmdrest = skip_spaces (cmdrest);
2291
2292 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2293 error (_("Invalid argument syntax"));
2294
2295 if (*cmdrest == ',')
2296 cmdrest++;
2297 cmdrest = skip_spaces (cmdrest);
2298
2299 /* For each argument, make an expression. */
2300
2301 argvec = (struct expression **) alloca (strlen (cmd)
2302 * sizeof (struct expression *));
2303
2304 nargs = 0;
2305 while (*cmdrest != '\0')
2306 {
2307 const char *cmd1;
2308
2309 cmd1 = cmdrest;
2310 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2311 argvec[nargs++] = expr.release ();
2312 cmdrest = cmd1;
2313 if (*cmdrest == ',')
2314 ++cmdrest;
2315 }
2316
2317 agent_expr_up aexpr;
2318
2319 /* We don't want to stop processing, so catch any errors
2320 that may show up. */
2321 TRY
2322 {
2323 aexpr = gen_printf (scope, gdbarch, 0, 0,
2324 format_start, format_end - format_start,
2325 fpieces, nargs, argvec);
2326 }
2327 CATCH (ex, RETURN_MASK_ERROR)
2328 {
2329 /* If we got here, it means the command could not be parsed to a valid
2330 bytecode expression and thus can't be evaluated on the target's side.
2331 It's no use iterating through the other commands. */
2332 }
2333 END_CATCH
2334
2335 do_cleanups (old_cleanups);
2336
2337 /* We have a valid agent expression, return it. */
2338 return aexpr;
2339 }
2340
2341 /* Based on location BL, create a list of breakpoint commands to be
2342 passed on to the target. If we have duplicated locations with
2343 different commands, we will add any such to the list. */
2344
2345 static void
2346 build_target_command_list (struct bp_location *bl)
2347 {
2348 struct bp_location **locp = NULL, **loc2p;
2349 int null_command_or_parse_error = 0;
2350 int modified = bl->needs_update;
2351 struct bp_location *loc;
2352
2353 /* Clear commands left over from a previous insert. */
2354 bl->target_info.tcommands.clear ();
2355
2356 if (!target_can_run_breakpoint_commands ())
2357 return;
2358
2359 /* For now, limit to agent-style dprintf breakpoints. */
2360 if (dprintf_style != dprintf_style_agent)
2361 return;
2362
2363 /* For now, if we have any duplicate location that isn't a dprintf,
2364 don't install the target-side commands, as that would make the
2365 breakpoint not be reported to the core, and we'd lose
2366 control. */
2367 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2368 {
2369 loc = (*loc2p);
2370 if (is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->type != bp_dprintf)
2373 return;
2374 }
2375
2376 /* Do a first pass to check for locations with no assigned
2377 conditions or conditions that fail to parse to a valid agent expression
2378 bytecode. If any of these happen, then it's no use to send conditions
2379 to the target since this location will always trigger and generate a
2380 response back to GDB. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2385 {
2386 if (modified)
2387 {
2388 /* Re-parse the commands since something changed. In that
2389 case we already freed the command bytecodes (see
2390 force_breakpoint_reinsertion). We just
2391 need to parse the command to bytecodes again. */
2392 loc->cmd_bytecode
2393 = parse_cmd_to_aexpr (bl->address,
2394 loc->owner->extra_string);
2395 }
2396
2397 /* If we have a NULL bytecode expression, it means something
2398 went wrong or we have a null command expression. */
2399 if (!loc->cmd_bytecode)
2400 {
2401 null_command_or_parse_error = 1;
2402 break;
2403 }
2404 }
2405 }
2406
2407 /* If anything failed, then we're not doing target-side commands,
2408 and so clean up. */
2409 if (null_command_or_parse_error)
2410 {
2411 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2412 {
2413 loc = (*loc2p);
2414 if (is_breakpoint (loc->owner)
2415 && loc->pspace->num == bl->pspace->num)
2416 {
2417 /* Only go as far as the first NULL bytecode is
2418 located. */
2419 if (loc->cmd_bytecode == NULL)
2420 return;
2421
2422 loc->cmd_bytecode.reset ();
2423 }
2424 }
2425 }
2426
2427 /* No NULL commands or failed bytecode generation. Build a command list
2428 for this location's address. */
2429 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2430 {
2431 loc = (*loc2p);
2432 if (loc->owner->extra_string
2433 && is_breakpoint (loc->owner)
2434 && loc->pspace->num == bl->pspace->num
2435 && loc->owner->enable_state == bp_enabled
2436 && loc->enabled)
2437 {
2438 /* Add the command to the vector. This will be used later
2439 to send the commands to the target. */
2440 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2441 }
2442 }
2443
2444 bl->target_info.persist = 0;
2445 /* Maybe flag this location as persistent. */
2446 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2447 bl->target_info.persist = 1;
2448 }
2449
2450 /* Return the kind of breakpoint on address *ADDR. Get the kind
2451 of breakpoint according to ADDR except single-step breakpoint.
2452 Get the kind of single-step breakpoint according to the current
2453 registers state. */
2454
2455 static int
2456 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2457 {
2458 if (bl->owner->type == bp_single_step)
2459 {
2460 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2461 struct regcache *regcache;
2462
2463 regcache = get_thread_regcache (thr->ptid);
2464
2465 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2466 regcache, addr);
2467 }
2468 else
2469 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2470 }
2471
2472 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2473 location. Any error messages are printed to TMP_ERROR_STREAM; and
2474 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2475 Returns 0 for success, 1 if the bp_location type is not supported or
2476 -1 for failure.
2477
2478 NOTE drow/2003-09-09: This routine could be broken down to an
2479 object-style method for each breakpoint or catchpoint type. */
2480 static int
2481 insert_bp_location (struct bp_location *bl,
2482 struct ui_file *tmp_error_stream,
2483 int *disabled_breaks,
2484 int *hw_breakpoint_error,
2485 int *hw_bp_error_explained_already)
2486 {
2487 enum errors bp_err = GDB_NO_ERROR;
2488 const char *bp_err_message = NULL;
2489
2490 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2491 return 0;
2492
2493 /* Note we don't initialize bl->target_info, as that wipes out
2494 the breakpoint location's shadow_contents if the breakpoint
2495 is still inserted at that location. This in turn breaks
2496 target_read_memory which depends on these buffers when
2497 a memory read is requested at the breakpoint location:
2498 Once the target_info has been wiped, we fail to see that
2499 we have a breakpoint inserted at that address and thus
2500 read the breakpoint instead of returning the data saved in
2501 the breakpoint location's shadow contents. */
2502 bl->target_info.reqstd_address = bl->address;
2503 bl->target_info.placed_address_space = bl->pspace->aspace;
2504 bl->target_info.length = bl->length;
2505
2506 /* When working with target-side conditions, we must pass all the conditions
2507 for the same breakpoint address down to the target since GDB will not
2508 insert those locations. With a list of breakpoint conditions, the target
2509 can decide when to stop and notify GDB. */
2510
2511 if (is_breakpoint (bl->owner))
2512 {
2513 build_target_condition_list (bl);
2514 build_target_command_list (bl);
2515 /* Reset the modification marker. */
2516 bl->needs_update = 0;
2517 }
2518
2519 if (bl->loc_type == bp_loc_software_breakpoint
2520 || bl->loc_type == bp_loc_hardware_breakpoint)
2521 {
2522 if (bl->owner->type != bp_hardware_breakpoint)
2523 {
2524 /* If the explicitly specified breakpoint type
2525 is not hardware breakpoint, check the memory map to see
2526 if the breakpoint address is in read only memory or not.
2527
2528 Two important cases are:
2529 - location type is not hardware breakpoint, memory
2530 is readonly. We change the type of the location to
2531 hardware breakpoint.
2532 - location type is hardware breakpoint, memory is
2533 read-write. This means we've previously made the
2534 location hardware one, but then the memory map changed,
2535 so we undo.
2536
2537 When breakpoints are removed, remove_breakpoints will use
2538 location types we've just set here, the only possible
2539 problem is that memory map has changed during running
2540 program, but it's not going to work anyway with current
2541 gdb. */
2542 struct mem_region *mr
2543 = lookup_mem_region (bl->target_info.reqstd_address);
2544
2545 if (mr)
2546 {
2547 if (automatic_hardware_breakpoints)
2548 {
2549 enum bp_loc_type new_type;
2550
2551 if (mr->attrib.mode != MEM_RW)
2552 new_type = bp_loc_hardware_breakpoint;
2553 else
2554 new_type = bp_loc_software_breakpoint;
2555
2556 if (new_type != bl->loc_type)
2557 {
2558 static int said = 0;
2559
2560 bl->loc_type = new_type;
2561 if (!said)
2562 {
2563 fprintf_filtered (gdb_stdout,
2564 _("Note: automatically using "
2565 "hardware breakpoints for "
2566 "read-only addresses.\n"));
2567 said = 1;
2568 }
2569 }
2570 }
2571 else if (bl->loc_type == bp_loc_software_breakpoint
2572 && mr->attrib.mode != MEM_RW)
2573 {
2574 fprintf_unfiltered (tmp_error_stream,
2575 _("Cannot insert breakpoint %d.\n"
2576 "Cannot set software breakpoint "
2577 "at read-only address %s\n"),
2578 bl->owner->number,
2579 paddress (bl->gdbarch, bl->address));
2580 return 1;
2581 }
2582 }
2583 }
2584
2585 /* First check to see if we have to handle an overlay. */
2586 if (overlay_debugging == ovly_off
2587 || bl->section == NULL
2588 || !(section_is_overlay (bl->section)))
2589 {
2590 /* No overlay handling: just set the breakpoint. */
2591 TRY
2592 {
2593 int val;
2594
2595 val = bl->owner->ops->insert_location (bl);
2596 if (val)
2597 bp_err = GENERIC_ERROR;
2598 }
2599 CATCH (e, RETURN_MASK_ALL)
2600 {
2601 bp_err = e.error;
2602 bp_err_message = e.message;
2603 }
2604 END_CATCH
2605 }
2606 else
2607 {
2608 /* This breakpoint is in an overlay section.
2609 Shall we set a breakpoint at the LMA? */
2610 if (!overlay_events_enabled)
2611 {
2612 /* Yes -- overlay event support is not active,
2613 so we must try to set a breakpoint at the LMA.
2614 This will not work for a hardware breakpoint. */
2615 if (bl->loc_type == bp_loc_hardware_breakpoint)
2616 warning (_("hardware breakpoint %d not supported in overlay!"),
2617 bl->owner->number);
2618 else
2619 {
2620 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2621 bl->section);
2622 /* Set a software (trap) breakpoint at the LMA. */
2623 bl->overlay_target_info = bl->target_info;
2624 bl->overlay_target_info.reqstd_address = addr;
2625
2626 /* No overlay handling: just set the breakpoint. */
2627 TRY
2628 {
2629 int val;
2630
2631 bl->overlay_target_info.kind
2632 = breakpoint_kind (bl, &addr);
2633 bl->overlay_target_info.placed_address = addr;
2634 val = target_insert_breakpoint (bl->gdbarch,
2635 &bl->overlay_target_info);
2636 if (val)
2637 bp_err = GENERIC_ERROR;
2638 }
2639 CATCH (e, RETURN_MASK_ALL)
2640 {
2641 bp_err = e.error;
2642 bp_err_message = e.message;
2643 }
2644 END_CATCH
2645
2646 if (bp_err != GDB_NO_ERROR)
2647 fprintf_unfiltered (tmp_error_stream,
2648 "Overlay breakpoint %d "
2649 "failed: in ROM?\n",
2650 bl->owner->number);
2651 }
2652 }
2653 /* Shall we set a breakpoint at the VMA? */
2654 if (section_is_mapped (bl->section))
2655 {
2656 /* Yes. This overlay section is mapped into memory. */
2657 TRY
2658 {
2659 int val;
2660
2661 val = bl->owner->ops->insert_location (bl);
2662 if (val)
2663 bp_err = GENERIC_ERROR;
2664 }
2665 CATCH (e, RETURN_MASK_ALL)
2666 {
2667 bp_err = e.error;
2668 bp_err_message = e.message;
2669 }
2670 END_CATCH
2671 }
2672 else
2673 {
2674 /* No. This breakpoint will not be inserted.
2675 No error, but do not mark the bp as 'inserted'. */
2676 return 0;
2677 }
2678 }
2679
2680 if (bp_err != GDB_NO_ERROR)
2681 {
2682 /* Can't set the breakpoint. */
2683
2684 /* In some cases, we might not be able to insert a
2685 breakpoint in a shared library that has already been
2686 removed, but we have not yet processed the shlib unload
2687 event. Unfortunately, some targets that implement
2688 breakpoint insertion themselves can't tell why the
2689 breakpoint insertion failed (e.g., the remote target
2690 doesn't define error codes), so we must treat generic
2691 errors as memory errors. */
2692 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2693 && bl->loc_type == bp_loc_software_breakpoint
2694 && (solib_name_from_address (bl->pspace, bl->address)
2695 || shared_objfile_contains_address_p (bl->pspace,
2696 bl->address)))
2697 {
2698 /* See also: disable_breakpoints_in_shlibs. */
2699 bl->shlib_disabled = 1;
2700 observer_notify_breakpoint_modified (bl->owner);
2701 if (!*disabled_breaks)
2702 {
2703 fprintf_unfiltered (tmp_error_stream,
2704 "Cannot insert breakpoint %d.\n",
2705 bl->owner->number);
2706 fprintf_unfiltered (tmp_error_stream,
2707 "Temporarily disabling shared "
2708 "library breakpoints:\n");
2709 }
2710 *disabled_breaks = 1;
2711 fprintf_unfiltered (tmp_error_stream,
2712 "breakpoint #%d\n", bl->owner->number);
2713 return 0;
2714 }
2715 else
2716 {
2717 if (bl->loc_type == bp_loc_hardware_breakpoint)
2718 {
2719 *hw_breakpoint_error = 1;
2720 *hw_bp_error_explained_already = bp_err_message != NULL;
2721 fprintf_unfiltered (tmp_error_stream,
2722 "Cannot insert hardware breakpoint %d%s",
2723 bl->owner->number, bp_err_message ? ":" : ".\n");
2724 if (bp_err_message != NULL)
2725 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2726 }
2727 else
2728 {
2729 if (bp_err_message == NULL)
2730 {
2731 std::string message
2732 = memory_error_message (TARGET_XFER_E_IO,
2733 bl->gdbarch, bl->address);
2734
2735 fprintf_unfiltered (tmp_error_stream,
2736 "Cannot insert breakpoint %d.\n"
2737 "%s\n",
2738 bl->owner->number, message.c_str ());
2739 }
2740 else
2741 {
2742 fprintf_unfiltered (tmp_error_stream,
2743 "Cannot insert breakpoint %d: %s\n",
2744 bl->owner->number,
2745 bp_err_message);
2746 }
2747 }
2748 return 1;
2749
2750 }
2751 }
2752 else
2753 bl->inserted = 1;
2754
2755 return 0;
2756 }
2757
2758 else if (bl->loc_type == bp_loc_hardware_watchpoint
2759 /* NOTE drow/2003-09-08: This state only exists for removing
2760 watchpoints. It's not clear that it's necessary... */
2761 && bl->owner->disposition != disp_del_at_next_stop)
2762 {
2763 int val;
2764
2765 gdb_assert (bl->owner->ops != NULL
2766 && bl->owner->ops->insert_location != NULL);
2767
2768 val = bl->owner->ops->insert_location (bl);
2769
2770 /* If trying to set a read-watchpoint, and it turns out it's not
2771 supported, try emulating one with an access watchpoint. */
2772 if (val == 1 && bl->watchpoint_type == hw_read)
2773 {
2774 struct bp_location *loc, **loc_temp;
2775
2776 /* But don't try to insert it, if there's already another
2777 hw_access location that would be considered a duplicate
2778 of this one. */
2779 ALL_BP_LOCATIONS (loc, loc_temp)
2780 if (loc != bl
2781 && loc->watchpoint_type == hw_access
2782 && watchpoint_locations_match (bl, loc))
2783 {
2784 bl->duplicate = 1;
2785 bl->inserted = 1;
2786 bl->target_info = loc->target_info;
2787 bl->watchpoint_type = hw_access;
2788 val = 0;
2789 break;
2790 }
2791
2792 if (val == 1)
2793 {
2794 bl->watchpoint_type = hw_access;
2795 val = bl->owner->ops->insert_location (bl);
2796
2797 if (val)
2798 /* Back to the original value. */
2799 bl->watchpoint_type = hw_read;
2800 }
2801 }
2802
2803 bl->inserted = (val == 0);
2804 }
2805
2806 else if (bl->owner->type == bp_catchpoint)
2807 {
2808 int val;
2809
2810 gdb_assert (bl->owner->ops != NULL
2811 && bl->owner->ops->insert_location != NULL);
2812
2813 val = bl->owner->ops->insert_location (bl);
2814 if (val)
2815 {
2816 bl->owner->enable_state = bp_disabled;
2817
2818 if (val == 1)
2819 warning (_("\
2820 Error inserting catchpoint %d: Your system does not support this type\n\
2821 of catchpoint."), bl->owner->number);
2822 else
2823 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2824 }
2825
2826 bl->inserted = (val == 0);
2827
2828 /* We've already printed an error message if there was a problem
2829 inserting this catchpoint, and we've disabled the catchpoint,
2830 so just return success. */
2831 return 0;
2832 }
2833
2834 return 0;
2835 }
2836
2837 /* This function is called when program space PSPACE is about to be
2838 deleted. It takes care of updating breakpoints to not reference
2839 PSPACE anymore. */
2840
2841 void
2842 breakpoint_program_space_exit (struct program_space *pspace)
2843 {
2844 struct breakpoint *b, *b_temp;
2845 struct bp_location *loc, **loc_temp;
2846
2847 /* Remove any breakpoint that was set through this program space. */
2848 ALL_BREAKPOINTS_SAFE (b, b_temp)
2849 {
2850 if (b->pspace == pspace)
2851 delete_breakpoint (b);
2852 }
2853
2854 /* Breakpoints set through other program spaces could have locations
2855 bound to PSPACE as well. Remove those. */
2856 ALL_BP_LOCATIONS (loc, loc_temp)
2857 {
2858 struct bp_location *tmp;
2859
2860 if (loc->pspace == pspace)
2861 {
2862 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2863 if (loc->owner->loc == loc)
2864 loc->owner->loc = loc->next;
2865 else
2866 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2867 if (tmp->next == loc)
2868 {
2869 tmp->next = loc->next;
2870 break;
2871 }
2872 }
2873 }
2874
2875 /* Now update the global location list to permanently delete the
2876 removed locations above. */
2877 update_global_location_list (UGLL_DONT_INSERT);
2878 }
2879
2880 /* Make sure all breakpoints are inserted in inferior.
2881 Throws exception on any error.
2882 A breakpoint that is already inserted won't be inserted
2883 again, so calling this function twice is safe. */
2884 void
2885 insert_breakpoints (void)
2886 {
2887 struct breakpoint *bpt;
2888
2889 ALL_BREAKPOINTS (bpt)
2890 if (is_hardware_watchpoint (bpt))
2891 {
2892 struct watchpoint *w = (struct watchpoint *) bpt;
2893
2894 update_watchpoint (w, 0 /* don't reparse. */);
2895 }
2896
2897 /* Updating watchpoints creates new locations, so update the global
2898 location list. Explicitly tell ugll to insert locations and
2899 ignore breakpoints_always_inserted_mode. */
2900 update_global_location_list (UGLL_INSERT);
2901 }
2902
2903 /* Invoke CALLBACK for each of bp_location. */
2904
2905 void
2906 iterate_over_bp_locations (walk_bp_location_callback callback)
2907 {
2908 struct bp_location *loc, **loc_tmp;
2909
2910 ALL_BP_LOCATIONS (loc, loc_tmp)
2911 {
2912 callback (loc, NULL);
2913 }
2914 }
2915
2916 /* This is used when we need to synch breakpoint conditions between GDB and the
2917 target. It is the case with deleting and disabling of breakpoints when using
2918 always-inserted mode. */
2919
2920 static void
2921 update_inserted_breakpoint_locations (void)
2922 {
2923 struct bp_location *bl, **blp_tmp;
2924 int error_flag = 0;
2925 int val = 0;
2926 int disabled_breaks = 0;
2927 int hw_breakpoint_error = 0;
2928 int hw_bp_details_reported = 0;
2929
2930 string_file tmp_error_stream;
2931
2932 /* Explicitly mark the warning -- this will only be printed if
2933 there was an error. */
2934 tmp_error_stream.puts ("Warning:\n");
2935
2936 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2937
2938 ALL_BP_LOCATIONS (bl, blp_tmp)
2939 {
2940 /* We only want to update software breakpoints and hardware
2941 breakpoints. */
2942 if (!is_breakpoint (bl->owner))
2943 continue;
2944
2945 /* We only want to update locations that are already inserted
2946 and need updating. This is to avoid unwanted insertion during
2947 deletion of breakpoints. */
2948 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2949 continue;
2950
2951 switch_to_program_space_and_thread (bl->pspace);
2952
2953 /* For targets that support global breakpoints, there's no need
2954 to select an inferior to insert breakpoint to. In fact, even
2955 if we aren't attached to any process yet, we should still
2956 insert breakpoints. */
2957 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2958 && ptid_equal (inferior_ptid, null_ptid))
2959 continue;
2960
2961 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2962 &hw_breakpoint_error, &hw_bp_details_reported);
2963 if (val)
2964 error_flag = val;
2965 }
2966
2967 if (error_flag)
2968 {
2969 target_terminal::ours_for_output ();
2970 error_stream (tmp_error_stream);
2971 }
2972 }
2973
2974 /* Used when starting or continuing the program. */
2975
2976 static void
2977 insert_breakpoint_locations (void)
2978 {
2979 struct breakpoint *bpt;
2980 struct bp_location *bl, **blp_tmp;
2981 int error_flag = 0;
2982 int val = 0;
2983 int disabled_breaks = 0;
2984 int hw_breakpoint_error = 0;
2985 int hw_bp_error_explained_already = 0;
2986
2987 string_file tmp_error_stream;
2988
2989 /* Explicitly mark the warning -- this will only be printed if
2990 there was an error. */
2991 tmp_error_stream.puts ("Warning:\n");
2992
2993 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2994
2995 ALL_BP_LOCATIONS (bl, blp_tmp)
2996 {
2997 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2998 continue;
2999
3000 /* There is no point inserting thread-specific breakpoints if
3001 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3002 has BL->OWNER always non-NULL. */
3003 if (bl->owner->thread != -1
3004 && !valid_global_thread_id (bl->owner->thread))
3005 continue;
3006
3007 switch_to_program_space_and_thread (bl->pspace);
3008
3009 /* For targets that support global breakpoints, there's no need
3010 to select an inferior to insert breakpoint to. In fact, even
3011 if we aren't attached to any process yet, we should still
3012 insert breakpoints. */
3013 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3014 && ptid_equal (inferior_ptid, null_ptid))
3015 continue;
3016
3017 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3018 &hw_breakpoint_error, &hw_bp_error_explained_already);
3019 if (val)
3020 error_flag = val;
3021 }
3022
3023 /* If we failed to insert all locations of a watchpoint, remove
3024 them, as half-inserted watchpoint is of limited use. */
3025 ALL_BREAKPOINTS (bpt)
3026 {
3027 int some_failed = 0;
3028 struct bp_location *loc;
3029
3030 if (!is_hardware_watchpoint (bpt))
3031 continue;
3032
3033 if (!breakpoint_enabled (bpt))
3034 continue;
3035
3036 if (bpt->disposition == disp_del_at_next_stop)
3037 continue;
3038
3039 for (loc = bpt->loc; loc; loc = loc->next)
3040 if (!loc->inserted && should_be_inserted (loc))
3041 {
3042 some_failed = 1;
3043 break;
3044 }
3045 if (some_failed)
3046 {
3047 for (loc = bpt->loc; loc; loc = loc->next)
3048 if (loc->inserted)
3049 remove_breakpoint (loc);
3050
3051 hw_breakpoint_error = 1;
3052 tmp_error_stream.printf ("Could not insert "
3053 "hardware watchpoint %d.\n",
3054 bpt->number);
3055 error_flag = -1;
3056 }
3057 }
3058
3059 if (error_flag)
3060 {
3061 /* If a hardware breakpoint or watchpoint was inserted, add a
3062 message about possibly exhausted resources. */
3063 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3064 {
3065 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3066 You may have requested too many hardware breakpoints/watchpoints.\n");
3067 }
3068 target_terminal::ours_for_output ();
3069 error_stream (tmp_error_stream);
3070 }
3071 }
3072
3073 /* Used when the program stops.
3074 Returns zero if successful, or non-zero if there was a problem
3075 removing a breakpoint location. */
3076
3077 int
3078 remove_breakpoints (void)
3079 {
3080 struct bp_location *bl, **blp_tmp;
3081 int val = 0;
3082
3083 ALL_BP_LOCATIONS (bl, blp_tmp)
3084 {
3085 if (bl->inserted && !is_tracepoint (bl->owner))
3086 val |= remove_breakpoint (bl);
3087 }
3088 return val;
3089 }
3090
3091 /* When a thread exits, remove breakpoints that are related to
3092 that thread. */
3093
3094 static void
3095 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3096 {
3097 struct breakpoint *b, *b_tmp;
3098
3099 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3100 {
3101 if (b->thread == tp->global_num && user_breakpoint_p (b))
3102 {
3103 b->disposition = disp_del_at_next_stop;
3104
3105 printf_filtered (_("\
3106 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3107 b->number, print_thread_id (tp));
3108
3109 /* Hide it from the user. */
3110 b->number = 0;
3111 }
3112 }
3113 }
3114
3115 /* Remove breakpoints of process PID. */
3116
3117 int
3118 remove_breakpoints_pid (int pid)
3119 {
3120 struct bp_location *bl, **blp_tmp;
3121 int val;
3122 struct inferior *inf = find_inferior_pid (pid);
3123
3124 ALL_BP_LOCATIONS (bl, blp_tmp)
3125 {
3126 if (bl->pspace != inf->pspace)
3127 continue;
3128
3129 if (bl->inserted && !bl->target_info.persist)
3130 {
3131 val = remove_breakpoint (bl);
3132 if (val != 0)
3133 return val;
3134 }
3135 }
3136 return 0;
3137 }
3138
3139 static int internal_breakpoint_number = -1;
3140
3141 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3142 If INTERNAL is non-zero, the breakpoint number will be populated
3143 from internal_breakpoint_number and that variable decremented.
3144 Otherwise the breakpoint number will be populated from
3145 breakpoint_count and that value incremented. Internal breakpoints
3146 do not set the internal var bpnum. */
3147 static void
3148 set_breakpoint_number (int internal, struct breakpoint *b)
3149 {
3150 if (internal)
3151 b->number = internal_breakpoint_number--;
3152 else
3153 {
3154 set_breakpoint_count (breakpoint_count + 1);
3155 b->number = breakpoint_count;
3156 }
3157 }
3158
3159 static struct breakpoint *
3160 create_internal_breakpoint (struct gdbarch *gdbarch,
3161 CORE_ADDR address, enum bptype type,
3162 const struct breakpoint_ops *ops)
3163 {
3164 symtab_and_line sal;
3165 sal.pc = address;
3166 sal.section = find_pc_overlay (sal.pc);
3167 sal.pspace = current_program_space;
3168
3169 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3170 b->number = internal_breakpoint_number--;
3171 b->disposition = disp_donttouch;
3172
3173 return b;
3174 }
3175
3176 static const char *const longjmp_names[] =
3177 {
3178 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3179 };
3180 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3181
3182 /* Per-objfile data private to breakpoint.c. */
3183 struct breakpoint_objfile_data
3184 {
3185 /* Minimal symbol for "_ovly_debug_event" (if any). */
3186 struct bound_minimal_symbol overlay_msym;
3187
3188 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3189 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3190
3191 /* True if we have looked for longjmp probes. */
3192 int longjmp_searched;
3193
3194 /* SystemTap probe points for longjmp (if any). */
3195 VEC (probe_p) *longjmp_probes;
3196
3197 /* Minimal symbol for "std::terminate()" (if any). */
3198 struct bound_minimal_symbol terminate_msym;
3199
3200 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3201 struct bound_minimal_symbol exception_msym;
3202
3203 /* True if we have looked for exception probes. */
3204 int exception_searched;
3205
3206 /* SystemTap probe points for unwinding (if any). */
3207 VEC (probe_p) *exception_probes;
3208 };
3209
3210 static const struct objfile_data *breakpoint_objfile_key;
3211
3212 /* Minimal symbol not found sentinel. */
3213 static struct minimal_symbol msym_not_found;
3214
3215 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3216
3217 static int
3218 msym_not_found_p (const struct minimal_symbol *msym)
3219 {
3220 return msym == &msym_not_found;
3221 }
3222
3223 /* Return per-objfile data needed by breakpoint.c.
3224 Allocate the data if necessary. */
3225
3226 static struct breakpoint_objfile_data *
3227 get_breakpoint_objfile_data (struct objfile *objfile)
3228 {
3229 struct breakpoint_objfile_data *bp_objfile_data;
3230
3231 bp_objfile_data = ((struct breakpoint_objfile_data *)
3232 objfile_data (objfile, breakpoint_objfile_key));
3233 if (bp_objfile_data == NULL)
3234 {
3235 bp_objfile_data =
3236 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3237
3238 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3239 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3240 }
3241 return bp_objfile_data;
3242 }
3243
3244 static void
3245 free_breakpoint_probes (struct objfile *obj, void *data)
3246 {
3247 struct breakpoint_objfile_data *bp_objfile_data
3248 = (struct breakpoint_objfile_data *) data;
3249
3250 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3251 VEC_free (probe_p, bp_objfile_data->exception_probes);
3252 }
3253
3254 static void
3255 create_overlay_event_breakpoint (void)
3256 {
3257 struct objfile *objfile;
3258 const char *const func_name = "_ovly_debug_event";
3259
3260 ALL_OBJFILES (objfile)
3261 {
3262 struct breakpoint *b;
3263 struct breakpoint_objfile_data *bp_objfile_data;
3264 CORE_ADDR addr;
3265 struct explicit_location explicit_loc;
3266
3267 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3268
3269 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3270 continue;
3271
3272 if (bp_objfile_data->overlay_msym.minsym == NULL)
3273 {
3274 struct bound_minimal_symbol m;
3275
3276 m = lookup_minimal_symbol_text (func_name, objfile);
3277 if (m.minsym == NULL)
3278 {
3279 /* Avoid future lookups in this objfile. */
3280 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3281 continue;
3282 }
3283 bp_objfile_data->overlay_msym = m;
3284 }
3285
3286 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3287 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3288 bp_overlay_event,
3289 &internal_breakpoint_ops);
3290 initialize_explicit_location (&explicit_loc);
3291 explicit_loc.function_name = ASTRDUP (func_name);
3292 b->location = new_explicit_location (&explicit_loc);
3293
3294 if (overlay_debugging == ovly_auto)
3295 {
3296 b->enable_state = bp_enabled;
3297 overlay_events_enabled = 1;
3298 }
3299 else
3300 {
3301 b->enable_state = bp_disabled;
3302 overlay_events_enabled = 0;
3303 }
3304 }
3305 }
3306
3307 static void
3308 create_longjmp_master_breakpoint (void)
3309 {
3310 struct program_space *pspace;
3311
3312 scoped_restore_current_program_space restore_pspace;
3313
3314 ALL_PSPACES (pspace)
3315 {
3316 struct objfile *objfile;
3317
3318 set_current_program_space (pspace);
3319
3320 ALL_OBJFILES (objfile)
3321 {
3322 int i;
3323 struct gdbarch *gdbarch;
3324 struct breakpoint_objfile_data *bp_objfile_data;
3325
3326 gdbarch = get_objfile_arch (objfile);
3327
3328 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3329
3330 if (!bp_objfile_data->longjmp_searched)
3331 {
3332 VEC (probe_p) *ret;
3333
3334 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3335 if (ret != NULL)
3336 {
3337 /* We are only interested in checking one element. */
3338 struct probe *p = VEC_index (probe_p, ret, 0);
3339
3340 if (!can_evaluate_probe_arguments (p))
3341 {
3342 /* We cannot use the probe interface here, because it does
3343 not know how to evaluate arguments. */
3344 VEC_free (probe_p, ret);
3345 ret = NULL;
3346 }
3347 }
3348 bp_objfile_data->longjmp_probes = ret;
3349 bp_objfile_data->longjmp_searched = 1;
3350 }
3351
3352 if (bp_objfile_data->longjmp_probes != NULL)
3353 {
3354 int i;
3355 struct probe *probe;
3356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3357
3358 for (i = 0;
3359 VEC_iterate (probe_p,
3360 bp_objfile_data->longjmp_probes,
3361 i, probe);
3362 ++i)
3363 {
3364 struct breakpoint *b;
3365
3366 b = create_internal_breakpoint (gdbarch,
3367 get_probe_address (probe,
3368 objfile),
3369 bp_longjmp_master,
3370 &internal_breakpoint_ops);
3371 b->location = new_probe_location ("-probe-stap libc:longjmp");
3372 b->enable_state = bp_disabled;
3373 }
3374
3375 continue;
3376 }
3377
3378 if (!gdbarch_get_longjmp_target_p (gdbarch))
3379 continue;
3380
3381 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3382 {
3383 struct breakpoint *b;
3384 const char *func_name;
3385 CORE_ADDR addr;
3386 struct explicit_location explicit_loc;
3387
3388 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3389 continue;
3390
3391 func_name = longjmp_names[i];
3392 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3393 {
3394 struct bound_minimal_symbol m;
3395
3396 m = lookup_minimal_symbol_text (func_name, objfile);
3397 if (m.minsym == NULL)
3398 {
3399 /* Prevent future lookups in this objfile. */
3400 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3401 continue;
3402 }
3403 bp_objfile_data->longjmp_msym[i] = m;
3404 }
3405
3406 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3407 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3408 &internal_breakpoint_ops);
3409 initialize_explicit_location (&explicit_loc);
3410 explicit_loc.function_name = ASTRDUP (func_name);
3411 b->location = new_explicit_location (&explicit_loc);
3412 b->enable_state = bp_disabled;
3413 }
3414 }
3415 }
3416 }
3417
3418 /* Create a master std::terminate breakpoint. */
3419 static void
3420 create_std_terminate_master_breakpoint (void)
3421 {
3422 struct program_space *pspace;
3423 const char *const func_name = "std::terminate()";
3424
3425 scoped_restore_current_program_space restore_pspace;
3426
3427 ALL_PSPACES (pspace)
3428 {
3429 struct objfile *objfile;
3430 CORE_ADDR addr;
3431
3432 set_current_program_space (pspace);
3433
3434 ALL_OBJFILES (objfile)
3435 {
3436 struct breakpoint *b;
3437 struct breakpoint_objfile_data *bp_objfile_data;
3438 struct explicit_location explicit_loc;
3439
3440 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3441
3442 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3443 continue;
3444
3445 if (bp_objfile_data->terminate_msym.minsym == NULL)
3446 {
3447 struct bound_minimal_symbol m;
3448
3449 m = lookup_minimal_symbol (func_name, NULL, objfile);
3450 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3451 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3452 {
3453 /* Prevent future lookups in this objfile. */
3454 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3455 continue;
3456 }
3457 bp_objfile_data->terminate_msym = m;
3458 }
3459
3460 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3461 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3462 bp_std_terminate_master,
3463 &internal_breakpoint_ops);
3464 initialize_explicit_location (&explicit_loc);
3465 explicit_loc.function_name = ASTRDUP (func_name);
3466 b->location = new_explicit_location (&explicit_loc);
3467 b->enable_state = bp_disabled;
3468 }
3469 }
3470 }
3471
3472 /* Install a master breakpoint on the unwinder's debug hook. */
3473
3474 static void
3475 create_exception_master_breakpoint (void)
3476 {
3477 struct objfile *objfile;
3478 const char *const func_name = "_Unwind_DebugHook";
3479
3480 ALL_OBJFILES (objfile)
3481 {
3482 struct breakpoint *b;
3483 struct gdbarch *gdbarch;
3484 struct breakpoint_objfile_data *bp_objfile_data;
3485 CORE_ADDR addr;
3486 struct explicit_location explicit_loc;
3487
3488 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3489
3490 /* We prefer the SystemTap probe point if it exists. */
3491 if (!bp_objfile_data->exception_searched)
3492 {
3493 VEC (probe_p) *ret;
3494
3495 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3496
3497 if (ret != NULL)
3498 {
3499 /* We are only interested in checking one element. */
3500 struct probe *p = VEC_index (probe_p, ret, 0);
3501
3502 if (!can_evaluate_probe_arguments (p))
3503 {
3504 /* We cannot use the probe interface here, because it does
3505 not know how to evaluate arguments. */
3506 VEC_free (probe_p, ret);
3507 ret = NULL;
3508 }
3509 }
3510 bp_objfile_data->exception_probes = ret;
3511 bp_objfile_data->exception_searched = 1;
3512 }
3513
3514 if (bp_objfile_data->exception_probes != NULL)
3515 {
3516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3517 int i;
3518 struct probe *probe;
3519
3520 for (i = 0;
3521 VEC_iterate (probe_p,
3522 bp_objfile_data->exception_probes,
3523 i, probe);
3524 ++i)
3525 {
3526 struct breakpoint *b;
3527
3528 b = create_internal_breakpoint (gdbarch,
3529 get_probe_address (probe,
3530 objfile),
3531 bp_exception_master,
3532 &internal_breakpoint_ops);
3533 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3534 b->enable_state = bp_disabled;
3535 }
3536
3537 continue;
3538 }
3539
3540 /* Otherwise, try the hook function. */
3541
3542 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3543 continue;
3544
3545 gdbarch = get_objfile_arch (objfile);
3546
3547 if (bp_objfile_data->exception_msym.minsym == NULL)
3548 {
3549 struct bound_minimal_symbol debug_hook;
3550
3551 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3552 if (debug_hook.minsym == NULL)
3553 {
3554 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3555 continue;
3556 }
3557
3558 bp_objfile_data->exception_msym = debug_hook;
3559 }
3560
3561 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3562 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3563 &current_target);
3564 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3565 &internal_breakpoint_ops);
3566 initialize_explicit_location (&explicit_loc);
3567 explicit_loc.function_name = ASTRDUP (func_name);
3568 b->location = new_explicit_location (&explicit_loc);
3569 b->enable_state = bp_disabled;
3570 }
3571 }
3572
3573 /* Does B have a location spec? */
3574
3575 static int
3576 breakpoint_event_location_empty_p (const struct breakpoint *b)
3577 {
3578 return b->location != NULL && event_location_empty_p (b->location.get ());
3579 }
3580
3581 void
3582 update_breakpoints_after_exec (void)
3583 {
3584 struct breakpoint *b, *b_tmp;
3585 struct bp_location *bploc, **bplocp_tmp;
3586
3587 /* We're about to delete breakpoints from GDB's lists. If the
3588 INSERTED flag is true, GDB will try to lift the breakpoints by
3589 writing the breakpoints' "shadow contents" back into memory. The
3590 "shadow contents" are NOT valid after an exec, so GDB should not
3591 do that. Instead, the target is responsible from marking
3592 breakpoints out as soon as it detects an exec. We don't do that
3593 here instead, because there may be other attempts to delete
3594 breakpoints after detecting an exec and before reaching here. */
3595 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3596 if (bploc->pspace == current_program_space)
3597 gdb_assert (!bploc->inserted);
3598
3599 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3600 {
3601 if (b->pspace != current_program_space)
3602 continue;
3603
3604 /* Solib breakpoints must be explicitly reset after an exec(). */
3605 if (b->type == bp_shlib_event)
3606 {
3607 delete_breakpoint (b);
3608 continue;
3609 }
3610
3611 /* JIT breakpoints must be explicitly reset after an exec(). */
3612 if (b->type == bp_jit_event)
3613 {
3614 delete_breakpoint (b);
3615 continue;
3616 }
3617
3618 /* Thread event breakpoints must be set anew after an exec(),
3619 as must overlay event and longjmp master breakpoints. */
3620 if (b->type == bp_thread_event || b->type == bp_overlay_event
3621 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3622 || b->type == bp_exception_master)
3623 {
3624 delete_breakpoint (b);
3625 continue;
3626 }
3627
3628 /* Step-resume breakpoints are meaningless after an exec(). */
3629 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634
3635 /* Just like single-step breakpoints. */
3636 if (b->type == bp_single_step)
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641
3642 /* Longjmp and longjmp-resume breakpoints are also meaningless
3643 after an exec. */
3644 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3645 || b->type == bp_longjmp_call_dummy
3646 || b->type == bp_exception || b->type == bp_exception_resume)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 if (b->type == bp_catchpoint)
3653 {
3654 /* For now, none of the bp_catchpoint breakpoints need to
3655 do anything at this point. In the future, if some of
3656 the catchpoints need to something, we will need to add
3657 a new method, and call this method from here. */
3658 continue;
3659 }
3660
3661 /* bp_finish is a special case. The only way we ought to be able
3662 to see one of these when an exec() has happened, is if the user
3663 caught a vfork, and then said "finish". Ordinarily a finish just
3664 carries them to the call-site of the current callee, by setting
3665 a temporary bp there and resuming. But in this case, the finish
3666 will carry them entirely through the vfork & exec.
3667
3668 We don't want to allow a bp_finish to remain inserted now. But
3669 we can't safely delete it, 'cause finish_command has a handle to
3670 the bp on a bpstat, and will later want to delete it. There's a
3671 chance (and I've seen it happen) that if we delete the bp_finish
3672 here, that its storage will get reused by the time finish_command
3673 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3674 We really must allow finish_command to delete a bp_finish.
3675
3676 In the absence of a general solution for the "how do we know
3677 it's safe to delete something others may have handles to?"
3678 problem, what we'll do here is just uninsert the bp_finish, and
3679 let finish_command delete it.
3680
3681 (We know the bp_finish is "doomed" in the sense that it's
3682 momentary, and will be deleted as soon as finish_command sees
3683 the inferior stopped. So it doesn't matter that the bp's
3684 address is probably bogus in the new a.out, unlike e.g., the
3685 solib breakpoints.) */
3686
3687 if (b->type == bp_finish)
3688 {
3689 continue;
3690 }
3691
3692 /* Without a symbolic address, we have little hope of the
3693 pre-exec() address meaning the same thing in the post-exec()
3694 a.out. */
3695 if (breakpoint_event_location_empty_p (b))
3696 {
3697 delete_breakpoint (b);
3698 continue;
3699 }
3700 }
3701 }
3702
3703 int
3704 detach_breakpoints (ptid_t ptid)
3705 {
3706 struct bp_location *bl, **blp_tmp;
3707 int val = 0;
3708 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3709 struct inferior *inf = current_inferior ();
3710
3711 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3712 error (_("Cannot detach breakpoints of inferior_ptid"));
3713
3714 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3715 inferior_ptid = ptid;
3716 ALL_BP_LOCATIONS (bl, blp_tmp)
3717 {
3718 if (bl->pspace != inf->pspace)
3719 continue;
3720
3721 /* This function must physically remove breakpoints locations
3722 from the specified ptid, without modifying the breakpoint
3723 package's state. Locations of type bp_loc_other are only
3724 maintained at GDB side. So, there is no need to remove
3725 these bp_loc_other locations. Moreover, removing these
3726 would modify the breakpoint package's state. */
3727 if (bl->loc_type == bp_loc_other)
3728 continue;
3729
3730 if (bl->inserted)
3731 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3732 }
3733
3734 return val;
3735 }
3736
3737 /* Remove the breakpoint location BL from the current address space.
3738 Note that this is used to detach breakpoints from a child fork.
3739 When we get here, the child isn't in the inferior list, and neither
3740 do we have objects to represent its address space --- we should
3741 *not* look at bl->pspace->aspace here. */
3742
3743 static int
3744 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3745 {
3746 int val;
3747
3748 /* BL is never in moribund_locations by our callers. */
3749 gdb_assert (bl->owner != NULL);
3750
3751 /* The type of none suggests that owner is actually deleted.
3752 This should not ever happen. */
3753 gdb_assert (bl->owner->type != bp_none);
3754
3755 if (bl->loc_type == bp_loc_software_breakpoint
3756 || bl->loc_type == bp_loc_hardware_breakpoint)
3757 {
3758 /* "Normal" instruction breakpoint: either the standard
3759 trap-instruction bp (bp_breakpoint), or a
3760 bp_hardware_breakpoint. */
3761
3762 /* First check to see if we have to handle an overlay. */
3763 if (overlay_debugging == ovly_off
3764 || bl->section == NULL
3765 || !(section_is_overlay (bl->section)))
3766 {
3767 /* No overlay handling: just remove the breakpoint. */
3768
3769 /* If we're trying to uninsert a memory breakpoint that we
3770 know is set in a dynamic object that is marked
3771 shlib_disabled, then either the dynamic object was
3772 removed with "remove-symbol-file" or with
3773 "nosharedlibrary". In the former case, we don't know
3774 whether another dynamic object might have loaded over the
3775 breakpoint's address -- the user might well let us know
3776 about it next with add-symbol-file (the whole point of
3777 add-symbol-file is letting the user manually maintain a
3778 list of dynamically loaded objects). If we have the
3779 breakpoint's shadow memory, that is, this is a software
3780 breakpoint managed by GDB, check whether the breakpoint
3781 is still inserted in memory, to avoid overwriting wrong
3782 code with stale saved shadow contents. Note that HW
3783 breakpoints don't have shadow memory, as they're
3784 implemented using a mechanism that is not dependent on
3785 being able to modify the target's memory, and as such
3786 they should always be removed. */
3787 if (bl->shlib_disabled
3788 && bl->target_info.shadow_len != 0
3789 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3790 val = 0;
3791 else
3792 val = bl->owner->ops->remove_location (bl, reason);
3793 }
3794 else
3795 {
3796 /* This breakpoint is in an overlay section.
3797 Did we set a breakpoint at the LMA? */
3798 if (!overlay_events_enabled)
3799 {
3800 /* Yes -- overlay event support is not active, so we
3801 should have set a breakpoint at the LMA. Remove it.
3802 */
3803 /* Ignore any failures: if the LMA is in ROM, we will
3804 have already warned when we failed to insert it. */
3805 if (bl->loc_type == bp_loc_hardware_breakpoint)
3806 target_remove_hw_breakpoint (bl->gdbarch,
3807 &bl->overlay_target_info);
3808 else
3809 target_remove_breakpoint (bl->gdbarch,
3810 &bl->overlay_target_info,
3811 reason);
3812 }
3813 /* Did we set a breakpoint at the VMA?
3814 If so, we will have marked the breakpoint 'inserted'. */
3815 if (bl->inserted)
3816 {
3817 /* Yes -- remove it. Previously we did not bother to
3818 remove the breakpoint if the section had been
3819 unmapped, but let's not rely on that being safe. We
3820 don't know what the overlay manager might do. */
3821
3822 /* However, we should remove *software* breakpoints only
3823 if the section is still mapped, or else we overwrite
3824 wrong code with the saved shadow contents. */
3825 if (bl->loc_type == bp_loc_hardware_breakpoint
3826 || section_is_mapped (bl->section))
3827 val = bl->owner->ops->remove_location (bl, reason);
3828 else
3829 val = 0;
3830 }
3831 else
3832 {
3833 /* No -- not inserted, so no need to remove. No error. */
3834 val = 0;
3835 }
3836 }
3837
3838 /* In some cases, we might not be able to remove a breakpoint in
3839 a shared library that has already been removed, but we have
3840 not yet processed the shlib unload event. Similarly for an
3841 unloaded add-symbol-file object - the user might not yet have
3842 had the chance to remove-symbol-file it. shlib_disabled will
3843 be set if the library/object has already been removed, but
3844 the breakpoint hasn't been uninserted yet, e.g., after
3845 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3846 always-inserted mode. */
3847 if (val
3848 && (bl->loc_type == bp_loc_software_breakpoint
3849 && (bl->shlib_disabled
3850 || solib_name_from_address (bl->pspace, bl->address)
3851 || shared_objfile_contains_address_p (bl->pspace,
3852 bl->address))))
3853 val = 0;
3854
3855 if (val)
3856 return val;
3857 bl->inserted = (reason == DETACH_BREAKPOINT);
3858 }
3859 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3860 {
3861 gdb_assert (bl->owner->ops != NULL
3862 && bl->owner->ops->remove_location != NULL);
3863
3864 bl->inserted = (reason == DETACH_BREAKPOINT);
3865 bl->owner->ops->remove_location (bl, reason);
3866
3867 /* Failure to remove any of the hardware watchpoints comes here. */
3868 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3869 warning (_("Could not remove hardware watchpoint %d."),
3870 bl->owner->number);
3871 }
3872 else if (bl->owner->type == bp_catchpoint
3873 && breakpoint_enabled (bl->owner)
3874 && !bl->duplicate)
3875 {
3876 gdb_assert (bl->owner->ops != NULL
3877 && bl->owner->ops->remove_location != NULL);
3878
3879 val = bl->owner->ops->remove_location (bl, reason);
3880 if (val)
3881 return val;
3882
3883 bl->inserted = (reason == DETACH_BREAKPOINT);
3884 }
3885
3886 return 0;
3887 }
3888
3889 static int
3890 remove_breakpoint (struct bp_location *bl)
3891 {
3892 /* BL is never in moribund_locations by our callers. */
3893 gdb_assert (bl->owner != NULL);
3894
3895 /* The type of none suggests that owner is actually deleted.
3896 This should not ever happen. */
3897 gdb_assert (bl->owner->type != bp_none);
3898
3899 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3900
3901 switch_to_program_space_and_thread (bl->pspace);
3902
3903 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3904 }
3905
3906 /* Clear the "inserted" flag in all breakpoints. */
3907
3908 void
3909 mark_breakpoints_out (void)
3910 {
3911 struct bp_location *bl, **blp_tmp;
3912
3913 ALL_BP_LOCATIONS (bl, blp_tmp)
3914 if (bl->pspace == current_program_space)
3915 bl->inserted = 0;
3916 }
3917
3918 /* Clear the "inserted" flag in all breakpoints and delete any
3919 breakpoints which should go away between runs of the program.
3920
3921 Plus other such housekeeping that has to be done for breakpoints
3922 between runs.
3923
3924 Note: this function gets called at the end of a run (by
3925 generic_mourn_inferior) and when a run begins (by
3926 init_wait_for_inferior). */
3927
3928
3929
3930 void
3931 breakpoint_init_inferior (enum inf_context context)
3932 {
3933 struct breakpoint *b, *b_tmp;
3934 struct bp_location *bl;
3935 int ix;
3936 struct program_space *pspace = current_program_space;
3937
3938 /* If breakpoint locations are shared across processes, then there's
3939 nothing to do. */
3940 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3941 return;
3942
3943 mark_breakpoints_out ();
3944
3945 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3946 {
3947 if (b->loc && b->loc->pspace != pspace)
3948 continue;
3949
3950 switch (b->type)
3951 {
3952 case bp_call_dummy:
3953 case bp_longjmp_call_dummy:
3954
3955 /* If the call dummy breakpoint is at the entry point it will
3956 cause problems when the inferior is rerun, so we better get
3957 rid of it. */
3958
3959 case bp_watchpoint_scope:
3960
3961 /* Also get rid of scope breakpoints. */
3962
3963 case bp_shlib_event:
3964
3965 /* Also remove solib event breakpoints. Their addresses may
3966 have changed since the last time we ran the program.
3967 Actually we may now be debugging against different target;
3968 and so the solib backend that installed this breakpoint may
3969 not be used in by the target. E.g.,
3970
3971 (gdb) file prog-linux
3972 (gdb) run # native linux target
3973 ...
3974 (gdb) kill
3975 (gdb) file prog-win.exe
3976 (gdb) tar rem :9999 # remote Windows gdbserver.
3977 */
3978
3979 case bp_step_resume:
3980
3981 /* Also remove step-resume breakpoints. */
3982
3983 case bp_single_step:
3984
3985 /* Also remove single-step breakpoints. */
3986
3987 delete_breakpoint (b);
3988 break;
3989
3990 case bp_watchpoint:
3991 case bp_hardware_watchpoint:
3992 case bp_read_watchpoint:
3993 case bp_access_watchpoint:
3994 {
3995 struct watchpoint *w = (struct watchpoint *) b;
3996
3997 /* Likewise for watchpoints on local expressions. */
3998 if (w->exp_valid_block != NULL)
3999 delete_breakpoint (b);
4000 else
4001 {
4002 /* Get rid of existing locations, which are no longer
4003 valid. New ones will be created in
4004 update_watchpoint, when the inferior is restarted.
4005 The next update_global_location_list call will
4006 garbage collect them. */
4007 b->loc = NULL;
4008
4009 if (context == inf_starting)
4010 {
4011 /* Reset val field to force reread of starting value in
4012 insert_breakpoints. */
4013 if (w->val)
4014 value_free (w->val);
4015 w->val = NULL;
4016 w->val_valid = 0;
4017 }
4018 }
4019 }
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Get rid of the moribund locations. */
4027 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4028 decref_bp_location (&bl);
4029 VEC_free (bp_location_p, moribund_locations);
4030 }
4031
4032 /* These functions concern about actual breakpoints inserted in the
4033 target --- to e.g. check if we need to do decr_pc adjustment or if
4034 we need to hop over the bkpt --- so we check for address space
4035 match, not program space. */
4036
4037 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4038 exists at PC. It returns ordinary_breakpoint_here if it's an
4039 ordinary breakpoint, or permanent_breakpoint_here if it's a
4040 permanent breakpoint.
4041 - When continuing from a location with an ordinary breakpoint, we
4042 actually single step once before calling insert_breakpoints.
4043 - When continuing from a location with a permanent breakpoint, we
4044 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4045 the target, to advance the PC past the breakpoint. */
4046
4047 enum breakpoint_here
4048 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4049 {
4050 struct bp_location *bl, **blp_tmp;
4051 int any_breakpoint_here = 0;
4052
4053 ALL_BP_LOCATIONS (bl, blp_tmp)
4054 {
4055 if (bl->loc_type != bp_loc_software_breakpoint
4056 && bl->loc_type != bp_loc_hardware_breakpoint)
4057 continue;
4058
4059 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4060 if ((breakpoint_enabled (bl->owner)
4061 || bl->permanent)
4062 && breakpoint_location_address_match (bl, aspace, pc))
4063 {
4064 if (overlay_debugging
4065 && section_is_overlay (bl->section)
4066 && !section_is_mapped (bl->section))
4067 continue; /* unmapped overlay -- can't be a match */
4068 else if (bl->permanent)
4069 return permanent_breakpoint_here;
4070 else
4071 any_breakpoint_here = 1;
4072 }
4073 }
4074
4075 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4076 }
4077
4078 /* See breakpoint.h. */
4079
4080 int
4081 breakpoint_in_range_p (const address_space *aspace,
4082 CORE_ADDR addr, ULONGEST len)
4083 {
4084 struct bp_location *bl, **blp_tmp;
4085
4086 ALL_BP_LOCATIONS (bl, blp_tmp)
4087 {
4088 if (bl->loc_type != bp_loc_software_breakpoint
4089 && bl->loc_type != bp_loc_hardware_breakpoint)
4090 continue;
4091
4092 if ((breakpoint_enabled (bl->owner)
4093 || bl->permanent)
4094 && breakpoint_location_address_range_overlap (bl, aspace,
4095 addr, len))
4096 {
4097 if (overlay_debugging
4098 && section_is_overlay (bl->section)
4099 && !section_is_mapped (bl->section))
4100 {
4101 /* Unmapped overlay -- can't be a match. */
4102 continue;
4103 }
4104
4105 return 1;
4106 }
4107 }
4108
4109 return 0;
4110 }
4111
4112 /* Return true if there's a moribund breakpoint at PC. */
4113
4114 int
4115 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4116 {
4117 struct bp_location *loc;
4118 int ix;
4119
4120 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4121 if (breakpoint_location_address_match (loc, aspace, pc))
4122 return 1;
4123
4124 return 0;
4125 }
4126
4127 /* Returns non-zero iff BL is inserted at PC, in address space
4128 ASPACE. */
4129
4130 static int
4131 bp_location_inserted_here_p (struct bp_location *bl,
4132 const address_space *aspace, CORE_ADDR pc)
4133 {
4134 if (bl->inserted
4135 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4136 aspace, pc))
4137 {
4138 if (overlay_debugging
4139 && section_is_overlay (bl->section)
4140 && !section_is_mapped (bl->section))
4141 return 0; /* unmapped overlay -- can't be a match */
4142 else
4143 return 1;
4144 }
4145 return 0;
4146 }
4147
4148 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4149
4150 int
4151 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4152 {
4153 struct bp_location **blp, **blp_tmp = NULL;
4154
4155 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4156 {
4157 struct bp_location *bl = *blp;
4158
4159 if (bl->loc_type != bp_loc_software_breakpoint
4160 && bl->loc_type != bp_loc_hardware_breakpoint)
4161 continue;
4162
4163 if (bp_location_inserted_here_p (bl, aspace, pc))
4164 return 1;
4165 }
4166 return 0;
4167 }
4168
4169 /* This function returns non-zero iff there is a software breakpoint
4170 inserted at PC. */
4171
4172 int
4173 software_breakpoint_inserted_here_p (const address_space *aspace,
4174 CORE_ADDR pc)
4175 {
4176 struct bp_location **blp, **blp_tmp = NULL;
4177
4178 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4179 {
4180 struct bp_location *bl = *blp;
4181
4182 if (bl->loc_type != bp_loc_software_breakpoint)
4183 continue;
4184
4185 if (bp_location_inserted_here_p (bl, aspace, pc))
4186 return 1;
4187 }
4188
4189 return 0;
4190 }
4191
4192 /* See breakpoint.h. */
4193
4194 int
4195 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4196 CORE_ADDR pc)
4197 {
4198 struct bp_location **blp, **blp_tmp = NULL;
4199
4200 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4201 {
4202 struct bp_location *bl = *blp;
4203
4204 if (bl->loc_type != bp_loc_hardware_breakpoint)
4205 continue;
4206
4207 if (bp_location_inserted_here_p (bl, aspace, pc))
4208 return 1;
4209 }
4210
4211 return 0;
4212 }
4213
4214 int
4215 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4216 CORE_ADDR addr, ULONGEST len)
4217 {
4218 struct breakpoint *bpt;
4219
4220 ALL_BREAKPOINTS (bpt)
4221 {
4222 struct bp_location *loc;
4223
4224 if (bpt->type != bp_hardware_watchpoint
4225 && bpt->type != bp_access_watchpoint)
4226 continue;
4227
4228 if (!breakpoint_enabled (bpt))
4229 continue;
4230
4231 for (loc = bpt->loc; loc; loc = loc->next)
4232 if (loc->pspace->aspace == aspace && loc->inserted)
4233 {
4234 CORE_ADDR l, h;
4235
4236 /* Check for intersection. */
4237 l = std::max<CORE_ADDR> (loc->address, addr);
4238 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4239 if (l < h)
4240 return 1;
4241 }
4242 }
4243 return 0;
4244 }
4245 \f
4246
4247 /* bpstat stuff. External routines' interfaces are documented
4248 in breakpoint.h. */
4249
4250 int
4251 is_catchpoint (struct breakpoint *ep)
4252 {
4253 return (ep->type == bp_catchpoint);
4254 }
4255
4256 /* Frees any storage that is part of a bpstat. Does not walk the
4257 'next' chain. */
4258
4259 bpstats::~bpstats ()
4260 {
4261 if (old_val != NULL)
4262 value_free (old_val);
4263 if (bp_location_at != NULL)
4264 decref_bp_location (&bp_location_at);
4265 }
4266
4267 /* Clear a bpstat so that it says we are not at any breakpoint.
4268 Also free any storage that is part of a bpstat. */
4269
4270 void
4271 bpstat_clear (bpstat *bsp)
4272 {
4273 bpstat p;
4274 bpstat q;
4275
4276 if (bsp == 0)
4277 return;
4278 p = *bsp;
4279 while (p != NULL)
4280 {
4281 q = p->next;
4282 delete p;
4283 p = q;
4284 }
4285 *bsp = NULL;
4286 }
4287
4288 bpstats::bpstats (const bpstats &other)
4289 : next (NULL),
4290 bp_location_at (other.bp_location_at),
4291 breakpoint_at (other.breakpoint_at),
4292 commands (other.commands),
4293 old_val (other.old_val),
4294 print (other.print),
4295 stop (other.stop),
4296 print_it (other.print_it)
4297 {
4298 if (old_val != NULL)
4299 {
4300 old_val = value_copy (old_val);
4301 release_value (old_val);
4302 }
4303 incref_bp_location (bp_location_at);
4304 }
4305
4306 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4307 is part of the bpstat is copied as well. */
4308
4309 bpstat
4310 bpstat_copy (bpstat bs)
4311 {
4312 bpstat p = NULL;
4313 bpstat tmp;
4314 bpstat retval = NULL;
4315
4316 if (bs == NULL)
4317 return bs;
4318
4319 for (; bs != NULL; bs = bs->next)
4320 {
4321 tmp = new bpstats (*bs);
4322
4323 if (p == NULL)
4324 /* This is the first thing in the chain. */
4325 retval = tmp;
4326 else
4327 p->next = tmp;
4328 p = tmp;
4329 }
4330 p->next = NULL;
4331 return retval;
4332 }
4333
4334 /* Find the bpstat associated with this breakpoint. */
4335
4336 bpstat
4337 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4338 {
4339 if (bsp == NULL)
4340 return NULL;
4341
4342 for (; bsp != NULL; bsp = bsp->next)
4343 {
4344 if (bsp->breakpoint_at == breakpoint)
4345 return bsp;
4346 }
4347 return NULL;
4348 }
4349
4350 /* See breakpoint.h. */
4351
4352 int
4353 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4354 {
4355 for (; bsp != NULL; bsp = bsp->next)
4356 {
4357 if (bsp->breakpoint_at == NULL)
4358 {
4359 /* A moribund location can never explain a signal other than
4360 GDB_SIGNAL_TRAP. */
4361 if (sig == GDB_SIGNAL_TRAP)
4362 return 1;
4363 }
4364 else
4365 {
4366 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4367 sig))
4368 return 1;
4369 }
4370 }
4371
4372 return 0;
4373 }
4374
4375 /* Put in *NUM the breakpoint number of the first breakpoint we are
4376 stopped at. *BSP upon return is a bpstat which points to the
4377 remaining breakpoints stopped at (but which is not guaranteed to be
4378 good for anything but further calls to bpstat_num).
4379
4380 Return 0 if passed a bpstat which does not indicate any breakpoints.
4381 Return -1 if stopped at a breakpoint that has been deleted since
4382 we set it.
4383 Return 1 otherwise. */
4384
4385 int
4386 bpstat_num (bpstat *bsp, int *num)
4387 {
4388 struct breakpoint *b;
4389
4390 if ((*bsp) == NULL)
4391 return 0; /* No more breakpoint values */
4392
4393 /* We assume we'll never have several bpstats that correspond to a
4394 single breakpoint -- otherwise, this function might return the
4395 same number more than once and this will look ugly. */
4396 b = (*bsp)->breakpoint_at;
4397 *bsp = (*bsp)->next;
4398 if (b == NULL)
4399 return -1; /* breakpoint that's been deleted since */
4400
4401 *num = b->number; /* We have its number */
4402 return 1;
4403 }
4404
4405 /* See breakpoint.h. */
4406
4407 void
4408 bpstat_clear_actions (void)
4409 {
4410 struct thread_info *tp;
4411 bpstat bs;
4412
4413 if (ptid_equal (inferior_ptid, null_ptid))
4414 return;
4415
4416 tp = find_thread_ptid (inferior_ptid);
4417 if (tp == NULL)
4418 return;
4419
4420 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4421 {
4422 bs->commands = NULL;
4423
4424 if (bs->old_val != NULL)
4425 {
4426 value_free (bs->old_val);
4427 bs->old_val = NULL;
4428 }
4429 }
4430 }
4431
4432 /* Called when a command is about to proceed the inferior. */
4433
4434 static void
4435 breakpoint_about_to_proceed (void)
4436 {
4437 if (!ptid_equal (inferior_ptid, null_ptid))
4438 {
4439 struct thread_info *tp = inferior_thread ();
4440
4441 /* Allow inferior function calls in breakpoint commands to not
4442 interrupt the command list. When the call finishes
4443 successfully, the inferior will be standing at the same
4444 breakpoint as if nothing happened. */
4445 if (tp->control.in_infcall)
4446 return;
4447 }
4448
4449 breakpoint_proceeded = 1;
4450 }
4451
4452 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4453 or its equivalent. */
4454
4455 static int
4456 command_line_is_silent (struct command_line *cmd)
4457 {
4458 return cmd && (strcmp ("silent", cmd->line) == 0);
4459 }
4460
4461 /* Execute all the commands associated with all the breakpoints at
4462 this location. Any of these commands could cause the process to
4463 proceed beyond this point, etc. We look out for such changes by
4464 checking the global "breakpoint_proceeded" after each command.
4465
4466 Returns true if a breakpoint command resumed the inferior. In that
4467 case, it is the caller's responsibility to recall it again with the
4468 bpstat of the current thread. */
4469
4470 static int
4471 bpstat_do_actions_1 (bpstat *bsp)
4472 {
4473 bpstat bs;
4474 int again = 0;
4475
4476 /* Avoid endless recursion if a `source' command is contained
4477 in bs->commands. */
4478 if (executing_breakpoint_commands)
4479 return 0;
4480
4481 scoped_restore save_executing
4482 = make_scoped_restore (&executing_breakpoint_commands, 1);
4483
4484 scoped_restore preventer = prevent_dont_repeat ();
4485
4486 /* This pointer will iterate over the list of bpstat's. */
4487 bs = *bsp;
4488
4489 breakpoint_proceeded = 0;
4490 for (; bs != NULL; bs = bs->next)
4491 {
4492 struct command_line *cmd = NULL;
4493
4494 /* Take ownership of the BSP's command tree, if it has one.
4495
4496 The command tree could legitimately contain commands like
4497 'step' and 'next', which call clear_proceed_status, which
4498 frees stop_bpstat's command tree. To make sure this doesn't
4499 free the tree we're executing out from under us, we need to
4500 take ownership of the tree ourselves. Since a given bpstat's
4501 commands are only executed once, we don't need to copy it; we
4502 can clear the pointer in the bpstat, and make sure we free
4503 the tree when we're done. */
4504 counted_command_line ccmd = bs->commands;
4505 bs->commands = NULL;
4506 if (ccmd != NULL)
4507 cmd = ccmd.get ();
4508 if (command_line_is_silent (cmd))
4509 {
4510 /* The action has been already done by bpstat_stop_status. */
4511 cmd = cmd->next;
4512 }
4513
4514 while (cmd != NULL)
4515 {
4516 execute_control_command (cmd);
4517
4518 if (breakpoint_proceeded)
4519 break;
4520 else
4521 cmd = cmd->next;
4522 }
4523
4524 if (breakpoint_proceeded)
4525 {
4526 if (current_ui->async)
4527 /* If we are in async mode, then the target might be still
4528 running, not stopped at any breakpoint, so nothing for
4529 us to do here -- just return to the event loop. */
4530 ;
4531 else
4532 /* In sync mode, when execute_control_command returns
4533 we're already standing on the next breakpoint.
4534 Breakpoint commands for that stop were not run, since
4535 execute_command does not run breakpoint commands --
4536 only command_line_handler does, but that one is not
4537 involved in execution of breakpoint commands. So, we
4538 can now execute breakpoint commands. It should be
4539 noted that making execute_command do bpstat actions is
4540 not an option -- in this case we'll have recursive
4541 invocation of bpstat for each breakpoint with a
4542 command, and can easily blow up GDB stack. Instead, we
4543 return true, which will trigger the caller to recall us
4544 with the new stop_bpstat. */
4545 again = 1;
4546 break;
4547 }
4548 }
4549 return again;
4550 }
4551
4552 void
4553 bpstat_do_actions (void)
4554 {
4555 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4556
4557 /* Do any commands attached to breakpoint we are stopped at. */
4558 while (!ptid_equal (inferior_ptid, null_ptid)
4559 && target_has_execution
4560 && !is_exited (inferior_ptid)
4561 && !is_executing (inferior_ptid))
4562 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4563 and only return when it is stopped at the next breakpoint, we
4564 keep doing breakpoint actions until it returns false to
4565 indicate the inferior was not resumed. */
4566 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4567 break;
4568
4569 discard_cleanups (cleanup_if_error);
4570 }
4571
4572 /* Print out the (old or new) value associated with a watchpoint. */
4573
4574 static void
4575 watchpoint_value_print (struct value *val, struct ui_file *stream)
4576 {
4577 if (val == NULL)
4578 fprintf_unfiltered (stream, _("<unreadable>"));
4579 else
4580 {
4581 struct value_print_options opts;
4582 get_user_print_options (&opts);
4583 value_print (val, stream, &opts);
4584 }
4585 }
4586
4587 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4588 debugging multiple threads. */
4589
4590 void
4591 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4592 {
4593 if (uiout->is_mi_like_p ())
4594 return;
4595
4596 uiout->text ("\n");
4597
4598 if (show_thread_that_caused_stop ())
4599 {
4600 const char *name;
4601 struct thread_info *thr = inferior_thread ();
4602
4603 uiout->text ("Thread ");
4604 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4605
4606 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4607 if (name != NULL)
4608 {
4609 uiout->text (" \"");
4610 uiout->field_fmt ("name", "%s", name);
4611 uiout->text ("\"");
4612 }
4613
4614 uiout->text (" hit ");
4615 }
4616 }
4617
4618 /* Generic routine for printing messages indicating why we
4619 stopped. The behavior of this function depends on the value
4620 'print_it' in the bpstat structure. Under some circumstances we
4621 may decide not to print anything here and delegate the task to
4622 normal_stop(). */
4623
4624 static enum print_stop_action
4625 print_bp_stop_message (bpstat bs)
4626 {
4627 switch (bs->print_it)
4628 {
4629 case print_it_noop:
4630 /* Nothing should be printed for this bpstat entry. */
4631 return PRINT_UNKNOWN;
4632 break;
4633
4634 case print_it_done:
4635 /* We still want to print the frame, but we already printed the
4636 relevant messages. */
4637 return PRINT_SRC_AND_LOC;
4638 break;
4639
4640 case print_it_normal:
4641 {
4642 struct breakpoint *b = bs->breakpoint_at;
4643
4644 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4645 which has since been deleted. */
4646 if (b == NULL)
4647 return PRINT_UNKNOWN;
4648
4649 /* Normal case. Call the breakpoint's print_it method. */
4650 return b->ops->print_it (bs);
4651 }
4652 break;
4653
4654 default:
4655 internal_error (__FILE__, __LINE__,
4656 _("print_bp_stop_message: unrecognized enum value"));
4657 break;
4658 }
4659 }
4660
4661 /* A helper function that prints a shared library stopped event. */
4662
4663 static void
4664 print_solib_event (int is_catchpoint)
4665 {
4666 int any_deleted
4667 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4668 int any_added
4669 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4670
4671 if (!is_catchpoint)
4672 {
4673 if (any_added || any_deleted)
4674 current_uiout->text (_("Stopped due to shared library event:\n"));
4675 else
4676 current_uiout->text (_("Stopped due to shared library event (no "
4677 "libraries added or removed)\n"));
4678 }
4679
4680 if (current_uiout->is_mi_like_p ())
4681 current_uiout->field_string ("reason",
4682 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4683
4684 if (any_deleted)
4685 {
4686 char *name;
4687 int ix;
4688
4689 current_uiout->text (_(" Inferior unloaded "));
4690 ui_out_emit_list list_emitter (current_uiout, "removed");
4691 for (ix = 0;
4692 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4693 ix, name);
4694 ++ix)
4695 {
4696 if (ix > 0)
4697 current_uiout->text (" ");
4698 current_uiout->field_string ("library", name);
4699 current_uiout->text ("\n");
4700 }
4701 }
4702
4703 if (any_added)
4704 {
4705 struct so_list *iter;
4706 int ix;
4707
4708 current_uiout->text (_(" Inferior loaded "));
4709 ui_out_emit_list list_emitter (current_uiout, "added");
4710 for (ix = 0;
4711 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4712 ix, iter);
4713 ++ix)
4714 {
4715 if (ix > 0)
4716 current_uiout->text (" ");
4717 current_uiout->field_string ("library", iter->so_name);
4718 current_uiout->text ("\n");
4719 }
4720 }
4721 }
4722
4723 /* Print a message indicating what happened. This is called from
4724 normal_stop(). The input to this routine is the head of the bpstat
4725 list - a list of the eventpoints that caused this stop. KIND is
4726 the target_waitkind for the stopping event. This
4727 routine calls the generic print routine for printing a message
4728 about reasons for stopping. This will print (for example) the
4729 "Breakpoint n," part of the output. The return value of this
4730 routine is one of:
4731
4732 PRINT_UNKNOWN: Means we printed nothing.
4733 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4734 code to print the location. An example is
4735 "Breakpoint 1, " which should be followed by
4736 the location.
4737 PRINT_SRC_ONLY: Means we printed something, but there is no need
4738 to also print the location part of the message.
4739 An example is the catch/throw messages, which
4740 don't require a location appended to the end.
4741 PRINT_NOTHING: We have done some printing and we don't need any
4742 further info to be printed. */
4743
4744 enum print_stop_action
4745 bpstat_print (bpstat bs, int kind)
4746 {
4747 enum print_stop_action val;
4748
4749 /* Maybe another breakpoint in the chain caused us to stop.
4750 (Currently all watchpoints go on the bpstat whether hit or not.
4751 That probably could (should) be changed, provided care is taken
4752 with respect to bpstat_explains_signal). */
4753 for (; bs; bs = bs->next)
4754 {
4755 val = print_bp_stop_message (bs);
4756 if (val == PRINT_SRC_ONLY
4757 || val == PRINT_SRC_AND_LOC
4758 || val == PRINT_NOTHING)
4759 return val;
4760 }
4761
4762 /* If we had hit a shared library event breakpoint,
4763 print_bp_stop_message would print out this message. If we hit an
4764 OS-level shared library event, do the same thing. */
4765 if (kind == TARGET_WAITKIND_LOADED)
4766 {
4767 print_solib_event (0);
4768 return PRINT_NOTHING;
4769 }
4770
4771 /* We reached the end of the chain, or we got a null BS to start
4772 with and nothing was printed. */
4773 return PRINT_UNKNOWN;
4774 }
4775
4776 /* Evaluate the boolean expression EXP and return the result. */
4777
4778 static bool
4779 breakpoint_cond_eval (expression *exp)
4780 {
4781 struct value *mark = value_mark ();
4782 bool res = value_true (evaluate_expression (exp));
4783
4784 value_free_to_mark (mark);
4785 return res;
4786 }
4787
4788 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4789
4790 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4791 : next (NULL),
4792 bp_location_at (bl),
4793 breakpoint_at (bl->owner),
4794 commands (NULL),
4795 old_val (NULL),
4796 print (0),
4797 stop (0),
4798 print_it (print_it_normal)
4799 {
4800 incref_bp_location (bl);
4801 **bs_link_pointer = this;
4802 *bs_link_pointer = &next;
4803 }
4804
4805 bpstats::bpstats ()
4806 : next (NULL),
4807 bp_location_at (NULL),
4808 breakpoint_at (NULL),
4809 commands (NULL),
4810 old_val (NULL),
4811 print (0),
4812 stop (0),
4813 print_it (print_it_normal)
4814 {
4815 }
4816 \f
4817 /* The target has stopped with waitstatus WS. Check if any hardware
4818 watchpoints have triggered, according to the target. */
4819
4820 int
4821 watchpoints_triggered (struct target_waitstatus *ws)
4822 {
4823 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4824 CORE_ADDR addr;
4825 struct breakpoint *b;
4826
4827 if (!stopped_by_watchpoint)
4828 {
4829 /* We were not stopped by a watchpoint. Mark all watchpoints
4830 as not triggered. */
4831 ALL_BREAKPOINTS (b)
4832 if (is_hardware_watchpoint (b))
4833 {
4834 struct watchpoint *w = (struct watchpoint *) b;
4835
4836 w->watchpoint_triggered = watch_triggered_no;
4837 }
4838
4839 return 0;
4840 }
4841
4842 if (!target_stopped_data_address (&current_target, &addr))
4843 {
4844 /* We were stopped by a watchpoint, but we don't know where.
4845 Mark all watchpoints as unknown. */
4846 ALL_BREAKPOINTS (b)
4847 if (is_hardware_watchpoint (b))
4848 {
4849 struct watchpoint *w = (struct watchpoint *) b;
4850
4851 w->watchpoint_triggered = watch_triggered_unknown;
4852 }
4853
4854 return 1;
4855 }
4856
4857 /* The target could report the data address. Mark watchpoints
4858 affected by this data address as triggered, and all others as not
4859 triggered. */
4860
4861 ALL_BREAKPOINTS (b)
4862 if (is_hardware_watchpoint (b))
4863 {
4864 struct watchpoint *w = (struct watchpoint *) b;
4865 struct bp_location *loc;
4866
4867 w->watchpoint_triggered = watch_triggered_no;
4868 for (loc = b->loc; loc; loc = loc->next)
4869 {
4870 if (is_masked_watchpoint (b))
4871 {
4872 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4873 CORE_ADDR start = loc->address & w->hw_wp_mask;
4874
4875 if (newaddr == start)
4876 {
4877 w->watchpoint_triggered = watch_triggered_yes;
4878 break;
4879 }
4880 }
4881 /* Exact match not required. Within range is sufficient. */
4882 else if (target_watchpoint_addr_within_range (&current_target,
4883 addr, loc->address,
4884 loc->length))
4885 {
4886 w->watchpoint_triggered = watch_triggered_yes;
4887 break;
4888 }
4889 }
4890 }
4891
4892 return 1;
4893 }
4894
4895 /* Possible return values for watchpoint_check. */
4896 enum wp_check_result
4897 {
4898 /* The watchpoint has been deleted. */
4899 WP_DELETED = 1,
4900
4901 /* The value has changed. */
4902 WP_VALUE_CHANGED = 2,
4903
4904 /* The value has not changed. */
4905 WP_VALUE_NOT_CHANGED = 3,
4906
4907 /* Ignore this watchpoint, no matter if the value changed or not. */
4908 WP_IGNORE = 4,
4909 };
4910
4911 #define BP_TEMPFLAG 1
4912 #define BP_HARDWAREFLAG 2
4913
4914 /* Evaluate watchpoint condition expression and check if its value
4915 changed. */
4916
4917 static wp_check_result
4918 watchpoint_check (bpstat bs)
4919 {
4920 struct watchpoint *b;
4921 struct frame_info *fr;
4922 int within_current_scope;
4923
4924 /* BS is built from an existing struct breakpoint. */
4925 gdb_assert (bs->breakpoint_at != NULL);
4926 b = (struct watchpoint *) bs->breakpoint_at;
4927
4928 /* If this is a local watchpoint, we only want to check if the
4929 watchpoint frame is in scope if the current thread is the thread
4930 that was used to create the watchpoint. */
4931 if (!watchpoint_in_thread_scope (b))
4932 return WP_IGNORE;
4933
4934 if (b->exp_valid_block == NULL)
4935 within_current_scope = 1;
4936 else
4937 {
4938 struct frame_info *frame = get_current_frame ();
4939 struct gdbarch *frame_arch = get_frame_arch (frame);
4940 CORE_ADDR frame_pc = get_frame_pc (frame);
4941
4942 /* stack_frame_destroyed_p() returns a non-zero value if we're
4943 still in the function but the stack frame has already been
4944 invalidated. Since we can't rely on the values of local
4945 variables after the stack has been destroyed, we are treating
4946 the watchpoint in that state as `not changed' without further
4947 checking. Don't mark watchpoints as changed if the current
4948 frame is in an epilogue - even if they are in some other
4949 frame, our view of the stack is likely to be wrong and
4950 frame_find_by_id could error out. */
4951 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4952 return WP_IGNORE;
4953
4954 fr = frame_find_by_id (b->watchpoint_frame);
4955 within_current_scope = (fr != NULL);
4956
4957 /* If we've gotten confused in the unwinder, we might have
4958 returned a frame that can't describe this variable. */
4959 if (within_current_scope)
4960 {
4961 struct symbol *function;
4962
4963 function = get_frame_function (fr);
4964 if (function == NULL
4965 || !contained_in (b->exp_valid_block,
4966 SYMBOL_BLOCK_VALUE (function)))
4967 within_current_scope = 0;
4968 }
4969
4970 if (within_current_scope)
4971 /* If we end up stopping, the current frame will get selected
4972 in normal_stop. So this call to select_frame won't affect
4973 the user. */
4974 select_frame (fr);
4975 }
4976
4977 if (within_current_scope)
4978 {
4979 /* We use value_{,free_to_}mark because it could be a *long*
4980 time before we return to the command level and call
4981 free_all_values. We can't call free_all_values because we
4982 might be in the middle of evaluating a function call. */
4983
4984 int pc = 0;
4985 struct value *mark;
4986 struct value *new_val;
4987
4988 if (is_masked_watchpoint (b))
4989 /* Since we don't know the exact trigger address (from
4990 stopped_data_address), just tell the user we've triggered
4991 a mask watchpoint. */
4992 return WP_VALUE_CHANGED;
4993
4994 mark = value_mark ();
4995 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4996
4997 if (b->val_bitsize != 0)
4998 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4999
5000 /* We use value_equal_contents instead of value_equal because
5001 the latter coerces an array to a pointer, thus comparing just
5002 the address of the array instead of its contents. This is
5003 not what we want. */
5004 if ((b->val != NULL) != (new_val != NULL)
5005 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5006 {
5007 if (new_val != NULL)
5008 {
5009 release_value (new_val);
5010 value_free_to_mark (mark);
5011 }
5012 bs->old_val = b->val;
5013 b->val = new_val;
5014 b->val_valid = 1;
5015 return WP_VALUE_CHANGED;
5016 }
5017 else
5018 {
5019 /* Nothing changed. */
5020 value_free_to_mark (mark);
5021 return WP_VALUE_NOT_CHANGED;
5022 }
5023 }
5024 else
5025 {
5026 /* This seems like the only logical thing to do because
5027 if we temporarily ignored the watchpoint, then when
5028 we reenter the block in which it is valid it contains
5029 garbage (in the case of a function, it may have two
5030 garbage values, one before and one after the prologue).
5031 So we can't even detect the first assignment to it and
5032 watch after that (since the garbage may or may not equal
5033 the first value assigned). */
5034 /* We print all the stop information in
5035 breakpoint_ops->print_it, but in this case, by the time we
5036 call breakpoint_ops->print_it this bp will be deleted
5037 already. So we have no choice but print the information
5038 here. */
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 struct ui_out *uiout = current_uiout;
5043
5044 if (uiout->is_mi_like_p ())
5045 uiout->field_string
5046 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5047 uiout->text ("\nWatchpoint ");
5048 uiout->field_int ("wpnum", b->number);
5049 uiout->text (" deleted because the program has left the block in\n"
5050 "which its expression is valid.\n");
5051 }
5052
5053 /* Make sure the watchpoint's commands aren't executed. */
5054 b->commands = NULL;
5055 watchpoint_del_at_next_stop (b);
5056
5057 return WP_DELETED;
5058 }
5059 }
5060
5061 /* Return true if it looks like target has stopped due to hitting
5062 breakpoint location BL. This function does not check if we should
5063 stop, only if BL explains the stop. */
5064
5065 static int
5066 bpstat_check_location (const struct bp_location *bl,
5067 const address_space *aspace, CORE_ADDR bp_addr,
5068 const struct target_waitstatus *ws)
5069 {
5070 struct breakpoint *b = bl->owner;
5071
5072 /* BL is from an existing breakpoint. */
5073 gdb_assert (b != NULL);
5074
5075 return b->ops->breakpoint_hit (bl, const_cast<address_space *> (aspace),
5076 bp_addr, ws);
5077 }
5078
5079 /* Determine if the watched values have actually changed, and we
5080 should stop. If not, set BS->stop to 0. */
5081
5082 static void
5083 bpstat_check_watchpoint (bpstat bs)
5084 {
5085 const struct bp_location *bl;
5086 struct watchpoint *b;
5087
5088 /* BS is built for existing struct breakpoint. */
5089 bl = bs->bp_location_at;
5090 gdb_assert (bl != NULL);
5091 b = (struct watchpoint *) bs->breakpoint_at;
5092 gdb_assert (b != NULL);
5093
5094 {
5095 int must_check_value = 0;
5096
5097 if (b->type == bp_watchpoint)
5098 /* For a software watchpoint, we must always check the
5099 watched value. */
5100 must_check_value = 1;
5101 else if (b->watchpoint_triggered == watch_triggered_yes)
5102 /* We have a hardware watchpoint (read, write, or access)
5103 and the target earlier reported an address watched by
5104 this watchpoint. */
5105 must_check_value = 1;
5106 else if (b->watchpoint_triggered == watch_triggered_unknown
5107 && b->type == bp_hardware_watchpoint)
5108 /* We were stopped by a hardware watchpoint, but the target could
5109 not report the data address. We must check the watchpoint's
5110 value. Access and read watchpoints are out of luck; without
5111 a data address, we can't figure it out. */
5112 must_check_value = 1;
5113
5114 if (must_check_value)
5115 {
5116 wp_check_result e;
5117
5118 TRY
5119 {
5120 e = watchpoint_check (bs);
5121 }
5122 CATCH (ex, RETURN_MASK_ALL)
5123 {
5124 exception_fprintf (gdb_stderr, ex,
5125 "Error evaluating expression "
5126 "for watchpoint %d\n",
5127 b->number);
5128
5129 SWITCH_THRU_ALL_UIS ()
5130 {
5131 printf_filtered (_("Watchpoint %d deleted.\n"),
5132 b->number);
5133 }
5134 watchpoint_del_at_next_stop (b);
5135 e = WP_DELETED;
5136 }
5137 END_CATCH
5138
5139 switch (e)
5140 {
5141 case WP_DELETED:
5142 /* We've already printed what needs to be printed. */
5143 bs->print_it = print_it_done;
5144 /* Stop. */
5145 break;
5146 case WP_IGNORE:
5147 bs->print_it = print_it_noop;
5148 bs->stop = 0;
5149 break;
5150 case WP_VALUE_CHANGED:
5151 if (b->type == bp_read_watchpoint)
5152 {
5153 /* There are two cases to consider here:
5154
5155 1. We're watching the triggered memory for reads.
5156 In that case, trust the target, and always report
5157 the watchpoint hit to the user. Even though
5158 reads don't cause value changes, the value may
5159 have changed since the last time it was read, and
5160 since we're not trapping writes, we will not see
5161 those, and as such we should ignore our notion of
5162 old value.
5163
5164 2. We're watching the triggered memory for both
5165 reads and writes. There are two ways this may
5166 happen:
5167
5168 2.1. This is a target that can't break on data
5169 reads only, but can break on accesses (reads or
5170 writes), such as e.g., x86. We detect this case
5171 at the time we try to insert read watchpoints.
5172
5173 2.2. Otherwise, the target supports read
5174 watchpoints, but, the user set an access or write
5175 watchpoint watching the same memory as this read
5176 watchpoint.
5177
5178 If we're watching memory writes as well as reads,
5179 ignore watchpoint hits when we find that the
5180 value hasn't changed, as reads don't cause
5181 changes. This still gives false positives when
5182 the program writes the same value to memory as
5183 what there was already in memory (we will confuse
5184 it for a read), but it's much better than
5185 nothing. */
5186
5187 int other_write_watchpoint = 0;
5188
5189 if (bl->watchpoint_type == hw_read)
5190 {
5191 struct breakpoint *other_b;
5192
5193 ALL_BREAKPOINTS (other_b)
5194 if (other_b->type == bp_hardware_watchpoint
5195 || other_b->type == bp_access_watchpoint)
5196 {
5197 struct watchpoint *other_w =
5198 (struct watchpoint *) other_b;
5199
5200 if (other_w->watchpoint_triggered
5201 == watch_triggered_yes)
5202 {
5203 other_write_watchpoint = 1;
5204 break;
5205 }
5206 }
5207 }
5208
5209 if (other_write_watchpoint
5210 || bl->watchpoint_type == hw_access)
5211 {
5212 /* We're watching the same memory for writes,
5213 and the value changed since the last time we
5214 updated it, so this trap must be for a write.
5215 Ignore it. */
5216 bs->print_it = print_it_noop;
5217 bs->stop = 0;
5218 }
5219 }
5220 break;
5221 case WP_VALUE_NOT_CHANGED:
5222 if (b->type == bp_hardware_watchpoint
5223 || b->type == bp_watchpoint)
5224 {
5225 /* Don't stop: write watchpoints shouldn't fire if
5226 the value hasn't changed. */
5227 bs->print_it = print_it_noop;
5228 bs->stop = 0;
5229 }
5230 /* Stop. */
5231 break;
5232 default:
5233 /* Can't happen. */
5234 break;
5235 }
5236 }
5237 else /* must_check_value == 0 */
5238 {
5239 /* This is a case where some watchpoint(s) triggered, but
5240 not at the address of this watchpoint, or else no
5241 watchpoint triggered after all. So don't print
5242 anything for this watchpoint. */
5243 bs->print_it = print_it_noop;
5244 bs->stop = 0;
5245 }
5246 }
5247 }
5248
5249 /* For breakpoints that are currently marked as telling gdb to stop,
5250 check conditions (condition proper, frame, thread and ignore count)
5251 of breakpoint referred to by BS. If we should not stop for this
5252 breakpoint, set BS->stop to 0. */
5253
5254 static void
5255 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5256 {
5257 const struct bp_location *bl;
5258 struct breakpoint *b;
5259 /* Assume stop. */
5260 bool condition_result = true;
5261 struct expression *cond;
5262
5263 gdb_assert (bs->stop);
5264
5265 /* BS is built for existing struct breakpoint. */
5266 bl = bs->bp_location_at;
5267 gdb_assert (bl != NULL);
5268 b = bs->breakpoint_at;
5269 gdb_assert (b != NULL);
5270
5271 /* Even if the target evaluated the condition on its end and notified GDB, we
5272 need to do so again since GDB does not know if we stopped due to a
5273 breakpoint or a single step breakpoint. */
5274
5275 if (frame_id_p (b->frame_id)
5276 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5277 {
5278 bs->stop = 0;
5279 return;
5280 }
5281
5282 /* If this is a thread/task-specific breakpoint, don't waste cpu
5283 evaluating the condition if this isn't the specified
5284 thread/task. */
5285 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5286 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5287
5288 {
5289 bs->stop = 0;
5290 return;
5291 }
5292
5293 /* Evaluate extension language breakpoints that have a "stop" method
5294 implemented. */
5295 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5296
5297 if (is_watchpoint (b))
5298 {
5299 struct watchpoint *w = (struct watchpoint *) b;
5300
5301 cond = w->cond_exp.get ();
5302 }
5303 else
5304 cond = bl->cond.get ();
5305
5306 if (cond && b->disposition != disp_del_at_next_stop)
5307 {
5308 int within_current_scope = 1;
5309 struct watchpoint * w;
5310
5311 /* We use value_mark and value_free_to_mark because it could
5312 be a long time before we return to the command level and
5313 call free_all_values. We can't call free_all_values
5314 because we might be in the middle of evaluating a
5315 function call. */
5316 struct value *mark = value_mark ();
5317
5318 if (is_watchpoint (b))
5319 w = (struct watchpoint *) b;
5320 else
5321 w = NULL;
5322
5323 /* Need to select the frame, with all that implies so that
5324 the conditions will have the right context. Because we
5325 use the frame, we will not see an inlined function's
5326 variables when we arrive at a breakpoint at the start
5327 of the inlined function; the current frame will be the
5328 call site. */
5329 if (w == NULL || w->cond_exp_valid_block == NULL)
5330 select_frame (get_current_frame ());
5331 else
5332 {
5333 struct frame_info *frame;
5334
5335 /* For local watchpoint expressions, which particular
5336 instance of a local is being watched matters, so we
5337 keep track of the frame to evaluate the expression
5338 in. To evaluate the condition however, it doesn't
5339 really matter which instantiation of the function
5340 where the condition makes sense triggers the
5341 watchpoint. This allows an expression like "watch
5342 global if q > 10" set in `func', catch writes to
5343 global on all threads that call `func', or catch
5344 writes on all recursive calls of `func' by a single
5345 thread. We simply always evaluate the condition in
5346 the innermost frame that's executing where it makes
5347 sense to evaluate the condition. It seems
5348 intuitive. */
5349 frame = block_innermost_frame (w->cond_exp_valid_block);
5350 if (frame != NULL)
5351 select_frame (frame);
5352 else
5353 within_current_scope = 0;
5354 }
5355 if (within_current_scope)
5356 {
5357 TRY
5358 {
5359 condition_result = breakpoint_cond_eval (cond);
5360 }
5361 CATCH (ex, RETURN_MASK_ALL)
5362 {
5363 exception_fprintf (gdb_stderr, ex,
5364 "Error in testing breakpoint condition:\n");
5365 }
5366 END_CATCH
5367 }
5368 else
5369 {
5370 warning (_("Watchpoint condition cannot be tested "
5371 "in the current scope"));
5372 /* If we failed to set the right context for this
5373 watchpoint, unconditionally report it. */
5374 }
5375 /* FIXME-someday, should give breakpoint #. */
5376 value_free_to_mark (mark);
5377 }
5378
5379 if (cond && !condition_result)
5380 {
5381 bs->stop = 0;
5382 }
5383 else if (b->ignore_count > 0)
5384 {
5385 b->ignore_count--;
5386 bs->stop = 0;
5387 /* Increase the hit count even though we don't stop. */
5388 ++(b->hit_count);
5389 observer_notify_breakpoint_modified (b);
5390 }
5391 }
5392
5393 /* Returns true if we need to track moribund locations of LOC's type
5394 on the current target. */
5395
5396 static int
5397 need_moribund_for_location_type (struct bp_location *loc)
5398 {
5399 return ((loc->loc_type == bp_loc_software_breakpoint
5400 && !target_supports_stopped_by_sw_breakpoint ())
5401 || (loc->loc_type == bp_loc_hardware_breakpoint
5402 && !target_supports_stopped_by_hw_breakpoint ()));
5403 }
5404
5405
5406 /* Get a bpstat associated with having just stopped at address
5407 BP_ADDR in thread PTID.
5408
5409 Determine whether we stopped at a breakpoint, etc, or whether we
5410 don't understand this stop. Result is a chain of bpstat's such
5411 that:
5412
5413 if we don't understand the stop, the result is a null pointer.
5414
5415 if we understand why we stopped, the result is not null.
5416
5417 Each element of the chain refers to a particular breakpoint or
5418 watchpoint at which we have stopped. (We may have stopped for
5419 several reasons concurrently.)
5420
5421 Each element of the chain has valid next, breakpoint_at,
5422 commands, FIXME??? fields. */
5423
5424 bpstat
5425 bpstat_stop_status (const address_space *aspace,
5426 CORE_ADDR bp_addr, ptid_t ptid,
5427 const struct target_waitstatus *ws)
5428 {
5429 struct breakpoint *b = NULL;
5430 struct bp_location *bl;
5431 struct bp_location *loc;
5432 /* First item of allocated bpstat's. */
5433 bpstat bs_head = NULL, *bs_link = &bs_head;
5434 /* Pointer to the last thing in the chain currently. */
5435 bpstat bs;
5436 int ix;
5437 int need_remove_insert;
5438 int removed_any;
5439
5440 /* First, build the bpstat chain with locations that explain a
5441 target stop, while being careful to not set the target running,
5442 as that may invalidate locations (in particular watchpoint
5443 locations are recreated). Resuming will happen here with
5444 breakpoint conditions or watchpoint expressions that include
5445 inferior function calls. */
5446
5447 ALL_BREAKPOINTS (b)
5448 {
5449 if (!breakpoint_enabled (b))
5450 continue;
5451
5452 for (bl = b->loc; bl != NULL; bl = bl->next)
5453 {
5454 /* For hardware watchpoints, we look only at the first
5455 location. The watchpoint_check function will work on the
5456 entire expression, not the individual locations. For
5457 read watchpoints, the watchpoints_triggered function has
5458 checked all locations already. */
5459 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5460 break;
5461
5462 if (!bl->enabled || bl->shlib_disabled)
5463 continue;
5464
5465 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5466 continue;
5467
5468 /* Come here if it's a watchpoint, or if the break address
5469 matches. */
5470
5471 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5472 explain stop. */
5473
5474 /* Assume we stop. Should we find a watchpoint that is not
5475 actually triggered, or if the condition of the breakpoint
5476 evaluates as false, we'll reset 'stop' to 0. */
5477 bs->stop = 1;
5478 bs->print = 1;
5479
5480 /* If this is a scope breakpoint, mark the associated
5481 watchpoint as triggered so that we will handle the
5482 out-of-scope event. We'll get to the watchpoint next
5483 iteration. */
5484 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5485 {
5486 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5487
5488 w->watchpoint_triggered = watch_triggered_yes;
5489 }
5490 }
5491 }
5492
5493 /* Check if a moribund breakpoint explains the stop. */
5494 if (!target_supports_stopped_by_sw_breakpoint ()
5495 || !target_supports_stopped_by_hw_breakpoint ())
5496 {
5497 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5498 {
5499 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5500 && need_moribund_for_location_type (loc))
5501 {
5502 bs = new bpstats (loc, &bs_link);
5503 /* For hits of moribund locations, we should just proceed. */
5504 bs->stop = 0;
5505 bs->print = 0;
5506 bs->print_it = print_it_noop;
5507 }
5508 }
5509 }
5510
5511 /* A bit of special processing for shlib breakpoints. We need to
5512 process solib loading here, so that the lists of loaded and
5513 unloaded libraries are correct before we handle "catch load" and
5514 "catch unload". */
5515 for (bs = bs_head; bs != NULL; bs = bs->next)
5516 {
5517 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5518 {
5519 handle_solib_event ();
5520 break;
5521 }
5522 }
5523
5524 /* Now go through the locations that caused the target to stop, and
5525 check whether we're interested in reporting this stop to higher
5526 layers, or whether we should resume the target transparently. */
5527
5528 removed_any = 0;
5529
5530 for (bs = bs_head; bs != NULL; bs = bs->next)
5531 {
5532 if (!bs->stop)
5533 continue;
5534
5535 b = bs->breakpoint_at;
5536 b->ops->check_status (bs);
5537 if (bs->stop)
5538 {
5539 bpstat_check_breakpoint_conditions (bs, ptid);
5540
5541 if (bs->stop)
5542 {
5543 ++(b->hit_count);
5544 observer_notify_breakpoint_modified (b);
5545
5546 /* We will stop here. */
5547 if (b->disposition == disp_disable)
5548 {
5549 --(b->enable_count);
5550 if (b->enable_count <= 0)
5551 b->enable_state = bp_disabled;
5552 removed_any = 1;
5553 }
5554 if (b->silent)
5555 bs->print = 0;
5556 bs->commands = b->commands;
5557 if (command_line_is_silent (bs->commands
5558 ? bs->commands.get () : NULL))
5559 bs->print = 0;
5560
5561 b->ops->after_condition_true (bs);
5562 }
5563
5564 }
5565
5566 /* Print nothing for this entry if we don't stop or don't
5567 print. */
5568 if (!bs->stop || !bs->print)
5569 bs->print_it = print_it_noop;
5570 }
5571
5572 /* If we aren't stopping, the value of some hardware watchpoint may
5573 not have changed, but the intermediate memory locations we are
5574 watching may have. Don't bother if we're stopping; this will get
5575 done later. */
5576 need_remove_insert = 0;
5577 if (! bpstat_causes_stop (bs_head))
5578 for (bs = bs_head; bs != NULL; bs = bs->next)
5579 if (!bs->stop
5580 && bs->breakpoint_at
5581 && is_hardware_watchpoint (bs->breakpoint_at))
5582 {
5583 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5584
5585 update_watchpoint (w, 0 /* don't reparse. */);
5586 need_remove_insert = 1;
5587 }
5588
5589 if (need_remove_insert)
5590 update_global_location_list (UGLL_MAY_INSERT);
5591 else if (removed_any)
5592 update_global_location_list (UGLL_DONT_INSERT);
5593
5594 return bs_head;
5595 }
5596
5597 static void
5598 handle_jit_event (void)
5599 {
5600 struct frame_info *frame;
5601 struct gdbarch *gdbarch;
5602
5603 if (debug_infrun)
5604 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5605
5606 /* Switch terminal for any messages produced by
5607 breakpoint_re_set. */
5608 target_terminal::ours_for_output ();
5609
5610 frame = get_current_frame ();
5611 gdbarch = get_frame_arch (frame);
5612
5613 jit_event_handler (gdbarch);
5614
5615 target_terminal::inferior ();
5616 }
5617
5618 /* Prepare WHAT final decision for infrun. */
5619
5620 /* Decide what infrun needs to do with this bpstat. */
5621
5622 struct bpstat_what
5623 bpstat_what (bpstat bs_head)
5624 {
5625 struct bpstat_what retval;
5626 bpstat bs;
5627
5628 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5629 retval.call_dummy = STOP_NONE;
5630 retval.is_longjmp = 0;
5631
5632 for (bs = bs_head; bs != NULL; bs = bs->next)
5633 {
5634 /* Extract this BS's action. After processing each BS, we check
5635 if its action overrides all we've seem so far. */
5636 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5637 enum bptype bptype;
5638
5639 if (bs->breakpoint_at == NULL)
5640 {
5641 /* I suspect this can happen if it was a momentary
5642 breakpoint which has since been deleted. */
5643 bptype = bp_none;
5644 }
5645 else
5646 bptype = bs->breakpoint_at->type;
5647
5648 switch (bptype)
5649 {
5650 case bp_none:
5651 break;
5652 case bp_breakpoint:
5653 case bp_hardware_breakpoint:
5654 case bp_single_step:
5655 case bp_until:
5656 case bp_finish:
5657 case bp_shlib_event:
5658 if (bs->stop)
5659 {
5660 if (bs->print)
5661 this_action = BPSTAT_WHAT_STOP_NOISY;
5662 else
5663 this_action = BPSTAT_WHAT_STOP_SILENT;
5664 }
5665 else
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 break;
5668 case bp_watchpoint:
5669 case bp_hardware_watchpoint:
5670 case bp_read_watchpoint:
5671 case bp_access_watchpoint:
5672 if (bs->stop)
5673 {
5674 if (bs->print)
5675 this_action = BPSTAT_WHAT_STOP_NOISY;
5676 else
5677 this_action = BPSTAT_WHAT_STOP_SILENT;
5678 }
5679 else
5680 {
5681 /* There was a watchpoint, but we're not stopping.
5682 This requires no further action. */
5683 }
5684 break;
5685 case bp_longjmp:
5686 case bp_longjmp_call_dummy:
5687 case bp_exception:
5688 if (bs->stop)
5689 {
5690 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5691 retval.is_longjmp = bptype != bp_exception;
5692 }
5693 else
5694 this_action = BPSTAT_WHAT_SINGLE;
5695 break;
5696 case bp_longjmp_resume:
5697 case bp_exception_resume:
5698 if (bs->stop)
5699 {
5700 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5701 retval.is_longjmp = bptype == bp_longjmp_resume;
5702 }
5703 else
5704 this_action = BPSTAT_WHAT_SINGLE;
5705 break;
5706 case bp_step_resume:
5707 if (bs->stop)
5708 this_action = BPSTAT_WHAT_STEP_RESUME;
5709 else
5710 {
5711 /* It is for the wrong frame. */
5712 this_action = BPSTAT_WHAT_SINGLE;
5713 }
5714 break;
5715 case bp_hp_step_resume:
5716 if (bs->stop)
5717 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5718 else
5719 {
5720 /* It is for the wrong frame. */
5721 this_action = BPSTAT_WHAT_SINGLE;
5722 }
5723 break;
5724 case bp_watchpoint_scope:
5725 case bp_thread_event:
5726 case bp_overlay_event:
5727 case bp_longjmp_master:
5728 case bp_std_terminate_master:
5729 case bp_exception_master:
5730 this_action = BPSTAT_WHAT_SINGLE;
5731 break;
5732 case bp_catchpoint:
5733 if (bs->stop)
5734 {
5735 if (bs->print)
5736 this_action = BPSTAT_WHAT_STOP_NOISY;
5737 else
5738 this_action = BPSTAT_WHAT_STOP_SILENT;
5739 }
5740 else
5741 {
5742 /* There was a catchpoint, but we're not stopping.
5743 This requires no further action. */
5744 }
5745 break;
5746 case bp_jit_event:
5747 this_action = BPSTAT_WHAT_SINGLE;
5748 break;
5749 case bp_call_dummy:
5750 /* Make sure the action is stop (silent or noisy),
5751 so infrun.c pops the dummy frame. */
5752 retval.call_dummy = STOP_STACK_DUMMY;
5753 this_action = BPSTAT_WHAT_STOP_SILENT;
5754 break;
5755 case bp_std_terminate:
5756 /* Make sure the action is stop (silent or noisy),
5757 so infrun.c pops the dummy frame. */
5758 retval.call_dummy = STOP_STD_TERMINATE;
5759 this_action = BPSTAT_WHAT_STOP_SILENT;
5760 break;
5761 case bp_tracepoint:
5762 case bp_fast_tracepoint:
5763 case bp_static_tracepoint:
5764 /* Tracepoint hits should not be reported back to GDB, and
5765 if one got through somehow, it should have been filtered
5766 out already. */
5767 internal_error (__FILE__, __LINE__,
5768 _("bpstat_what: tracepoint encountered"));
5769 break;
5770 case bp_gnu_ifunc_resolver:
5771 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5772 this_action = BPSTAT_WHAT_SINGLE;
5773 break;
5774 case bp_gnu_ifunc_resolver_return:
5775 /* The breakpoint will be removed, execution will restart from the
5776 PC of the former breakpoint. */
5777 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5778 break;
5779
5780 case bp_dprintf:
5781 if (bs->stop)
5782 this_action = BPSTAT_WHAT_STOP_SILENT;
5783 else
5784 this_action = BPSTAT_WHAT_SINGLE;
5785 break;
5786
5787 default:
5788 internal_error (__FILE__, __LINE__,
5789 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5790 }
5791
5792 retval.main_action = std::max (retval.main_action, this_action);
5793 }
5794
5795 return retval;
5796 }
5797
5798 void
5799 bpstat_run_callbacks (bpstat bs_head)
5800 {
5801 bpstat bs;
5802
5803 for (bs = bs_head; bs != NULL; bs = bs->next)
5804 {
5805 struct breakpoint *b = bs->breakpoint_at;
5806
5807 if (b == NULL)
5808 continue;
5809 switch (b->type)
5810 {
5811 case bp_jit_event:
5812 handle_jit_event ();
5813 break;
5814 case bp_gnu_ifunc_resolver:
5815 gnu_ifunc_resolver_stop (b);
5816 break;
5817 case bp_gnu_ifunc_resolver_return:
5818 gnu_ifunc_resolver_return_stop (b);
5819 break;
5820 }
5821 }
5822 }
5823
5824 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5825 without hardware support). This isn't related to a specific bpstat,
5826 just to things like whether watchpoints are set. */
5827
5828 int
5829 bpstat_should_step (void)
5830 {
5831 struct breakpoint *b;
5832
5833 ALL_BREAKPOINTS (b)
5834 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5835 return 1;
5836 return 0;
5837 }
5838
5839 int
5840 bpstat_causes_stop (bpstat bs)
5841 {
5842 for (; bs != NULL; bs = bs->next)
5843 if (bs->stop)
5844 return 1;
5845
5846 return 0;
5847 }
5848
5849 \f
5850
5851 /* Compute a string of spaces suitable to indent the next line
5852 so it starts at the position corresponding to the table column
5853 named COL_NAME in the currently active table of UIOUT. */
5854
5855 static char *
5856 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5857 {
5858 static char wrap_indent[80];
5859 int i, total_width, width, align;
5860 const char *text;
5861
5862 total_width = 0;
5863 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5864 {
5865 if (strcmp (text, col_name) == 0)
5866 {
5867 gdb_assert (total_width < sizeof wrap_indent);
5868 memset (wrap_indent, ' ', total_width);
5869 wrap_indent[total_width] = 0;
5870
5871 return wrap_indent;
5872 }
5873
5874 total_width += width + 1;
5875 }
5876
5877 return NULL;
5878 }
5879
5880 /* Determine if the locations of this breakpoint will have their conditions
5881 evaluated by the target, host or a mix of both. Returns the following:
5882
5883 "host": Host evals condition.
5884 "host or target": Host or Target evals condition.
5885 "target": Target evals condition.
5886 */
5887
5888 static const char *
5889 bp_condition_evaluator (struct breakpoint *b)
5890 {
5891 struct bp_location *bl;
5892 char host_evals = 0;
5893 char target_evals = 0;
5894
5895 if (!b)
5896 return NULL;
5897
5898 if (!is_breakpoint (b))
5899 return NULL;
5900
5901 if (gdb_evaluates_breakpoint_condition_p ()
5902 || !target_supports_evaluation_of_breakpoint_conditions ())
5903 return condition_evaluation_host;
5904
5905 for (bl = b->loc; bl; bl = bl->next)
5906 {
5907 if (bl->cond_bytecode)
5908 target_evals++;
5909 else
5910 host_evals++;
5911 }
5912
5913 if (host_evals && target_evals)
5914 return condition_evaluation_both;
5915 else if (target_evals)
5916 return condition_evaluation_target;
5917 else
5918 return condition_evaluation_host;
5919 }
5920
5921 /* Determine the breakpoint location's condition evaluator. This is
5922 similar to bp_condition_evaluator, but for locations. */
5923
5924 static const char *
5925 bp_location_condition_evaluator (struct bp_location *bl)
5926 {
5927 if (bl && !is_breakpoint (bl->owner))
5928 return NULL;
5929
5930 if (gdb_evaluates_breakpoint_condition_p ()
5931 || !target_supports_evaluation_of_breakpoint_conditions ())
5932 return condition_evaluation_host;
5933
5934 if (bl && bl->cond_bytecode)
5935 return condition_evaluation_target;
5936 else
5937 return condition_evaluation_host;
5938 }
5939
5940 /* Print the LOC location out of the list of B->LOC locations. */
5941
5942 static void
5943 print_breakpoint_location (struct breakpoint *b,
5944 struct bp_location *loc)
5945 {
5946 struct ui_out *uiout = current_uiout;
5947
5948 scoped_restore_current_program_space restore_pspace;
5949
5950 if (loc != NULL && loc->shlib_disabled)
5951 loc = NULL;
5952
5953 if (loc != NULL)
5954 set_current_program_space (loc->pspace);
5955
5956 if (b->display_canonical)
5957 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5958 else if (loc && loc->symtab)
5959 {
5960 struct symbol *sym
5961 = find_pc_sect_function (loc->address, loc->section);
5962 if (sym)
5963 {
5964 uiout->text ("in ");
5965 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5966 uiout->text (" ");
5967 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5968 uiout->text ("at ");
5969 }
5970 uiout->field_string ("file",
5971 symtab_to_filename_for_display (loc->symtab));
5972 uiout->text (":");
5973
5974 if (uiout->is_mi_like_p ())
5975 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5976
5977 uiout->field_int ("line", loc->line_number);
5978 }
5979 else if (loc)
5980 {
5981 string_file stb;
5982
5983 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5984 demangle, "");
5985 uiout->field_stream ("at", stb);
5986 }
5987 else
5988 {
5989 uiout->field_string ("pending",
5990 event_location_to_string (b->location.get ()));
5991 /* If extra_string is available, it could be holding a condition
5992 or dprintf arguments. In either case, make sure it is printed,
5993 too, but only for non-MI streams. */
5994 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5995 {
5996 if (b->type == bp_dprintf)
5997 uiout->text (",");
5998 else
5999 uiout->text (" ");
6000 uiout->text (b->extra_string);
6001 }
6002 }
6003
6004 if (loc && is_breakpoint (b)
6005 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6006 && bp_condition_evaluator (b) == condition_evaluation_both)
6007 {
6008 uiout->text (" (");
6009 uiout->field_string ("evaluated-by",
6010 bp_location_condition_evaluator (loc));
6011 uiout->text (")");
6012 }
6013 }
6014
6015 static const char *
6016 bptype_string (enum bptype type)
6017 {
6018 struct ep_type_description
6019 {
6020 enum bptype type;
6021 const char *description;
6022 };
6023 static struct ep_type_description bptypes[] =
6024 {
6025 {bp_none, "?deleted?"},
6026 {bp_breakpoint, "breakpoint"},
6027 {bp_hardware_breakpoint, "hw breakpoint"},
6028 {bp_single_step, "sw single-step"},
6029 {bp_until, "until"},
6030 {bp_finish, "finish"},
6031 {bp_watchpoint, "watchpoint"},
6032 {bp_hardware_watchpoint, "hw watchpoint"},
6033 {bp_read_watchpoint, "read watchpoint"},
6034 {bp_access_watchpoint, "acc watchpoint"},
6035 {bp_longjmp, "longjmp"},
6036 {bp_longjmp_resume, "longjmp resume"},
6037 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6038 {bp_exception, "exception"},
6039 {bp_exception_resume, "exception resume"},
6040 {bp_step_resume, "step resume"},
6041 {bp_hp_step_resume, "high-priority step resume"},
6042 {bp_watchpoint_scope, "watchpoint scope"},
6043 {bp_call_dummy, "call dummy"},
6044 {bp_std_terminate, "std::terminate"},
6045 {bp_shlib_event, "shlib events"},
6046 {bp_thread_event, "thread events"},
6047 {bp_overlay_event, "overlay events"},
6048 {bp_longjmp_master, "longjmp master"},
6049 {bp_std_terminate_master, "std::terminate master"},
6050 {bp_exception_master, "exception master"},
6051 {bp_catchpoint, "catchpoint"},
6052 {bp_tracepoint, "tracepoint"},
6053 {bp_fast_tracepoint, "fast tracepoint"},
6054 {bp_static_tracepoint, "static tracepoint"},
6055 {bp_dprintf, "dprintf"},
6056 {bp_jit_event, "jit events"},
6057 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6058 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6059 };
6060
6061 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6062 || ((int) type != bptypes[(int) type].type))
6063 internal_error (__FILE__, __LINE__,
6064 _("bptypes table does not describe type #%d."),
6065 (int) type);
6066
6067 return bptypes[(int) type].description;
6068 }
6069
6070 /* For MI, output a field named 'thread-groups' with a list as the value.
6071 For CLI, prefix the list with the string 'inf'. */
6072
6073 static void
6074 output_thread_groups (struct ui_out *uiout,
6075 const char *field_name,
6076 VEC(int) *inf_num,
6077 int mi_only)
6078 {
6079 int is_mi = uiout->is_mi_like_p ();
6080 int inf;
6081 int i;
6082
6083 /* For backward compatibility, don't display inferiors in CLI unless
6084 there are several. Always display them for MI. */
6085 if (!is_mi && mi_only)
6086 return;
6087
6088 ui_out_emit_list list_emitter (uiout, field_name);
6089
6090 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6091 {
6092 if (is_mi)
6093 {
6094 char mi_group[10];
6095
6096 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6097 uiout->field_string (NULL, mi_group);
6098 }
6099 else
6100 {
6101 if (i == 0)
6102 uiout->text (" inf ");
6103 else
6104 uiout->text (", ");
6105
6106 uiout->text (plongest (inf));
6107 }
6108 }
6109 }
6110
6111 /* Print B to gdb_stdout. */
6112
6113 static void
6114 print_one_breakpoint_location (struct breakpoint *b,
6115 struct bp_location *loc,
6116 int loc_number,
6117 struct bp_location **last_loc,
6118 int allflag)
6119 {
6120 struct command_line *l;
6121 static char bpenables[] = "nynny";
6122
6123 struct ui_out *uiout = current_uiout;
6124 int header_of_multiple = 0;
6125 int part_of_multiple = (loc != NULL);
6126 struct value_print_options opts;
6127
6128 get_user_print_options (&opts);
6129
6130 gdb_assert (!loc || loc_number != 0);
6131 /* See comment in print_one_breakpoint concerning treatment of
6132 breakpoints with single disabled location. */
6133 if (loc == NULL
6134 && (b->loc != NULL
6135 && (b->loc->next != NULL || !b->loc->enabled)))
6136 header_of_multiple = 1;
6137 if (loc == NULL)
6138 loc = b->loc;
6139
6140 annotate_record ();
6141
6142 /* 1 */
6143 annotate_field (0);
6144 if (part_of_multiple)
6145 {
6146 char *formatted;
6147 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6148 uiout->field_string ("number", formatted);
6149 xfree (formatted);
6150 }
6151 else
6152 {
6153 uiout->field_int ("number", b->number);
6154 }
6155
6156 /* 2 */
6157 annotate_field (1);
6158 if (part_of_multiple)
6159 uiout->field_skip ("type");
6160 else
6161 uiout->field_string ("type", bptype_string (b->type));
6162
6163 /* 3 */
6164 annotate_field (2);
6165 if (part_of_multiple)
6166 uiout->field_skip ("disp");
6167 else
6168 uiout->field_string ("disp", bpdisp_text (b->disposition));
6169
6170
6171 /* 4 */
6172 annotate_field (3);
6173 if (part_of_multiple)
6174 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6175 else
6176 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6177 uiout->spaces (2);
6178
6179
6180 /* 5 and 6 */
6181 if (b->ops != NULL && b->ops->print_one != NULL)
6182 {
6183 /* Although the print_one can possibly print all locations,
6184 calling it here is not likely to get any nice result. So,
6185 make sure there's just one location. */
6186 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6187 b->ops->print_one (b, last_loc);
6188 }
6189 else
6190 switch (b->type)
6191 {
6192 case bp_none:
6193 internal_error (__FILE__, __LINE__,
6194 _("print_one_breakpoint: bp_none encountered\n"));
6195 break;
6196
6197 case bp_watchpoint:
6198 case bp_hardware_watchpoint:
6199 case bp_read_watchpoint:
6200 case bp_access_watchpoint:
6201 {
6202 struct watchpoint *w = (struct watchpoint *) b;
6203
6204 /* Field 4, the address, is omitted (which makes the columns
6205 not line up too nicely with the headers, but the effect
6206 is relatively readable). */
6207 if (opts.addressprint)
6208 uiout->field_skip ("addr");
6209 annotate_field (5);
6210 uiout->field_string ("what", w->exp_string);
6211 }
6212 break;
6213
6214 case bp_breakpoint:
6215 case bp_hardware_breakpoint:
6216 case bp_single_step:
6217 case bp_until:
6218 case bp_finish:
6219 case bp_longjmp:
6220 case bp_longjmp_resume:
6221 case bp_longjmp_call_dummy:
6222 case bp_exception:
6223 case bp_exception_resume:
6224 case bp_step_resume:
6225 case bp_hp_step_resume:
6226 case bp_watchpoint_scope:
6227 case bp_call_dummy:
6228 case bp_std_terminate:
6229 case bp_shlib_event:
6230 case bp_thread_event:
6231 case bp_overlay_event:
6232 case bp_longjmp_master:
6233 case bp_std_terminate_master:
6234 case bp_exception_master:
6235 case bp_tracepoint:
6236 case bp_fast_tracepoint:
6237 case bp_static_tracepoint:
6238 case bp_dprintf:
6239 case bp_jit_event:
6240 case bp_gnu_ifunc_resolver:
6241 case bp_gnu_ifunc_resolver_return:
6242 if (opts.addressprint)
6243 {
6244 annotate_field (4);
6245 if (header_of_multiple)
6246 uiout->field_string ("addr", "<MULTIPLE>");
6247 else if (b->loc == NULL || loc->shlib_disabled)
6248 uiout->field_string ("addr", "<PENDING>");
6249 else
6250 uiout->field_core_addr ("addr",
6251 loc->gdbarch, loc->address);
6252 }
6253 annotate_field (5);
6254 if (!header_of_multiple)
6255 print_breakpoint_location (b, loc);
6256 if (b->loc)
6257 *last_loc = b->loc;
6258 break;
6259 }
6260
6261
6262 if (loc != NULL && !header_of_multiple)
6263 {
6264 struct inferior *inf;
6265 VEC(int) *inf_num = NULL;
6266 int mi_only = 1;
6267
6268 ALL_INFERIORS (inf)
6269 {
6270 if (inf->pspace == loc->pspace)
6271 VEC_safe_push (int, inf_num, inf->num);
6272 }
6273
6274 /* For backward compatibility, don't display inferiors in CLI unless
6275 there are several. Always display for MI. */
6276 if (allflag
6277 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6278 && (number_of_program_spaces () > 1
6279 || number_of_inferiors () > 1)
6280 /* LOC is for existing B, it cannot be in
6281 moribund_locations and thus having NULL OWNER. */
6282 && loc->owner->type != bp_catchpoint))
6283 mi_only = 0;
6284 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6285 VEC_free (int, inf_num);
6286 }
6287
6288 if (!part_of_multiple)
6289 {
6290 if (b->thread != -1)
6291 {
6292 /* FIXME: This seems to be redundant and lost here; see the
6293 "stop only in" line a little further down. */
6294 uiout->text (" thread ");
6295 uiout->field_int ("thread", b->thread);
6296 }
6297 else if (b->task != 0)
6298 {
6299 uiout->text (" task ");
6300 uiout->field_int ("task", b->task);
6301 }
6302 }
6303
6304 uiout->text ("\n");
6305
6306 if (!part_of_multiple)
6307 b->ops->print_one_detail (b, uiout);
6308
6309 if (part_of_multiple && frame_id_p (b->frame_id))
6310 {
6311 annotate_field (6);
6312 uiout->text ("\tstop only in stack frame at ");
6313 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6314 the frame ID. */
6315 uiout->field_core_addr ("frame",
6316 b->gdbarch, b->frame_id.stack_addr);
6317 uiout->text ("\n");
6318 }
6319
6320 if (!part_of_multiple && b->cond_string)
6321 {
6322 annotate_field (7);
6323 if (is_tracepoint (b))
6324 uiout->text ("\ttrace only if ");
6325 else
6326 uiout->text ("\tstop only if ");
6327 uiout->field_string ("cond", b->cond_string);
6328
6329 /* Print whether the target is doing the breakpoint's condition
6330 evaluation. If GDB is doing the evaluation, don't print anything. */
6331 if (is_breakpoint (b)
6332 && breakpoint_condition_evaluation_mode ()
6333 == condition_evaluation_target)
6334 {
6335 uiout->text (" (");
6336 uiout->field_string ("evaluated-by",
6337 bp_condition_evaluator (b));
6338 uiout->text (" evals)");
6339 }
6340 uiout->text ("\n");
6341 }
6342
6343 if (!part_of_multiple && b->thread != -1)
6344 {
6345 /* FIXME should make an annotation for this. */
6346 uiout->text ("\tstop only in thread ");
6347 if (uiout->is_mi_like_p ())
6348 uiout->field_int ("thread", b->thread);
6349 else
6350 {
6351 struct thread_info *thr = find_thread_global_id (b->thread);
6352
6353 uiout->field_string ("thread", print_thread_id (thr));
6354 }
6355 uiout->text ("\n");
6356 }
6357
6358 if (!part_of_multiple)
6359 {
6360 if (b->hit_count)
6361 {
6362 /* FIXME should make an annotation for this. */
6363 if (is_catchpoint (b))
6364 uiout->text ("\tcatchpoint");
6365 else if (is_tracepoint (b))
6366 uiout->text ("\ttracepoint");
6367 else
6368 uiout->text ("\tbreakpoint");
6369 uiout->text (" already hit ");
6370 uiout->field_int ("times", b->hit_count);
6371 if (b->hit_count == 1)
6372 uiout->text (" time\n");
6373 else
6374 uiout->text (" times\n");
6375 }
6376 else
6377 {
6378 /* Output the count also if it is zero, but only if this is mi. */
6379 if (uiout->is_mi_like_p ())
6380 uiout->field_int ("times", b->hit_count);
6381 }
6382 }
6383
6384 if (!part_of_multiple && b->ignore_count)
6385 {
6386 annotate_field (8);
6387 uiout->text ("\tignore next ");
6388 uiout->field_int ("ignore", b->ignore_count);
6389 uiout->text (" hits\n");
6390 }
6391
6392 /* Note that an enable count of 1 corresponds to "enable once"
6393 behavior, which is reported by the combination of enablement and
6394 disposition, so we don't need to mention it here. */
6395 if (!part_of_multiple && b->enable_count > 1)
6396 {
6397 annotate_field (8);
6398 uiout->text ("\tdisable after ");
6399 /* Tweak the wording to clarify that ignore and enable counts
6400 are distinct, and have additive effect. */
6401 if (b->ignore_count)
6402 uiout->text ("additional ");
6403 else
6404 uiout->text ("next ");
6405 uiout->field_int ("enable", b->enable_count);
6406 uiout->text (" hits\n");
6407 }
6408
6409 if (!part_of_multiple && is_tracepoint (b))
6410 {
6411 struct tracepoint *tp = (struct tracepoint *) b;
6412
6413 if (tp->traceframe_usage)
6414 {
6415 uiout->text ("\ttrace buffer usage ");
6416 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6417 uiout->text (" bytes\n");
6418 }
6419 }
6420
6421 l = b->commands ? b->commands.get () : NULL;
6422 if (!part_of_multiple && l)
6423 {
6424 annotate_field (9);
6425 ui_out_emit_tuple tuple_emitter (uiout, "script");
6426 print_command_lines (uiout, l, 4);
6427 }
6428
6429 if (is_tracepoint (b))
6430 {
6431 struct tracepoint *t = (struct tracepoint *) b;
6432
6433 if (!part_of_multiple && t->pass_count)
6434 {
6435 annotate_field (10);
6436 uiout->text ("\tpass count ");
6437 uiout->field_int ("pass", t->pass_count);
6438 uiout->text (" \n");
6439 }
6440
6441 /* Don't display it when tracepoint or tracepoint location is
6442 pending. */
6443 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6444 {
6445 annotate_field (11);
6446
6447 if (uiout->is_mi_like_p ())
6448 uiout->field_string ("installed",
6449 loc->inserted ? "y" : "n");
6450 else
6451 {
6452 if (loc->inserted)
6453 uiout->text ("\t");
6454 else
6455 uiout->text ("\tnot ");
6456 uiout->text ("installed on target\n");
6457 }
6458 }
6459 }
6460
6461 if (uiout->is_mi_like_p () && !part_of_multiple)
6462 {
6463 if (is_watchpoint (b))
6464 {
6465 struct watchpoint *w = (struct watchpoint *) b;
6466
6467 uiout->field_string ("original-location", w->exp_string);
6468 }
6469 else if (b->location != NULL
6470 && event_location_to_string (b->location.get ()) != NULL)
6471 uiout->field_string ("original-location",
6472 event_location_to_string (b->location.get ()));
6473 }
6474 }
6475
6476 static void
6477 print_one_breakpoint (struct breakpoint *b,
6478 struct bp_location **last_loc,
6479 int allflag)
6480 {
6481 struct ui_out *uiout = current_uiout;
6482
6483 {
6484 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6485
6486 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6487 }
6488
6489 /* If this breakpoint has custom print function,
6490 it's already printed. Otherwise, print individual
6491 locations, if any. */
6492 if (b->ops == NULL || b->ops->print_one == NULL)
6493 {
6494 /* If breakpoint has a single location that is disabled, we
6495 print it as if it had several locations, since otherwise it's
6496 hard to represent "breakpoint enabled, location disabled"
6497 situation.
6498
6499 Note that while hardware watchpoints have several locations
6500 internally, that's not a property exposed to user. */
6501 if (b->loc
6502 && !is_hardware_watchpoint (b)
6503 && (b->loc->next || !b->loc->enabled))
6504 {
6505 struct bp_location *loc;
6506 int n = 1;
6507
6508 for (loc = b->loc; loc; loc = loc->next, ++n)
6509 {
6510 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6511 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6512 }
6513 }
6514 }
6515 }
6516
6517 static int
6518 breakpoint_address_bits (struct breakpoint *b)
6519 {
6520 int print_address_bits = 0;
6521 struct bp_location *loc;
6522
6523 /* Software watchpoints that aren't watching memory don't have an
6524 address to print. */
6525 if (is_no_memory_software_watchpoint (b))
6526 return 0;
6527
6528 for (loc = b->loc; loc; loc = loc->next)
6529 {
6530 int addr_bit;
6531
6532 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6533 if (addr_bit > print_address_bits)
6534 print_address_bits = addr_bit;
6535 }
6536
6537 return print_address_bits;
6538 }
6539
6540 /* See breakpoint.h. */
6541
6542 void
6543 print_breakpoint (breakpoint *b)
6544 {
6545 struct bp_location *dummy_loc = NULL;
6546 print_one_breakpoint (b, &dummy_loc, 0);
6547 }
6548
6549 /* Return true if this breakpoint was set by the user, false if it is
6550 internal or momentary. */
6551
6552 int
6553 user_breakpoint_p (struct breakpoint *b)
6554 {
6555 return b->number > 0;
6556 }
6557
6558 /* See breakpoint.h. */
6559
6560 int
6561 pending_breakpoint_p (struct breakpoint *b)
6562 {
6563 return b->loc == NULL;
6564 }
6565
6566 /* Print information on user settable breakpoint (watchpoint, etc)
6567 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6568 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6569 FILTER is non-NULL, call it on each breakpoint and only include the
6570 ones for which it returns non-zero. Return the total number of
6571 breakpoints listed. */
6572
6573 static int
6574 breakpoint_1 (const char *args, int allflag,
6575 int (*filter) (const struct breakpoint *))
6576 {
6577 struct breakpoint *b;
6578 struct bp_location *last_loc = NULL;
6579 int nr_printable_breakpoints;
6580 struct value_print_options opts;
6581 int print_address_bits = 0;
6582 int print_type_col_width = 14;
6583 struct ui_out *uiout = current_uiout;
6584
6585 get_user_print_options (&opts);
6586
6587 /* Compute the number of rows in the table, as well as the size
6588 required for address fields. */
6589 nr_printable_breakpoints = 0;
6590 ALL_BREAKPOINTS (b)
6591 {
6592 /* If we have a filter, only list the breakpoints it accepts. */
6593 if (filter && !filter (b))
6594 continue;
6595
6596 /* If we have an "args" string, it is a list of breakpoints to
6597 accept. Skip the others. */
6598 if (args != NULL && *args != '\0')
6599 {
6600 if (allflag && parse_and_eval_long (args) != b->number)
6601 continue;
6602 if (!allflag && !number_is_in_list (args, b->number))
6603 continue;
6604 }
6605
6606 if (allflag || user_breakpoint_p (b))
6607 {
6608 int addr_bit, type_len;
6609
6610 addr_bit = breakpoint_address_bits (b);
6611 if (addr_bit > print_address_bits)
6612 print_address_bits = addr_bit;
6613
6614 type_len = strlen (bptype_string (b->type));
6615 if (type_len > print_type_col_width)
6616 print_type_col_width = type_len;
6617
6618 nr_printable_breakpoints++;
6619 }
6620 }
6621
6622 {
6623 ui_out_emit_table table_emitter (uiout,
6624 opts.addressprint ? 6 : 5,
6625 nr_printable_breakpoints,
6626 "BreakpointTable");
6627
6628 if (nr_printable_breakpoints > 0)
6629 annotate_breakpoints_headers ();
6630 if (nr_printable_breakpoints > 0)
6631 annotate_field (0);
6632 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6633 if (nr_printable_breakpoints > 0)
6634 annotate_field (1);
6635 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6636 if (nr_printable_breakpoints > 0)
6637 annotate_field (2);
6638 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6639 if (nr_printable_breakpoints > 0)
6640 annotate_field (3);
6641 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6642 if (opts.addressprint)
6643 {
6644 if (nr_printable_breakpoints > 0)
6645 annotate_field (4);
6646 if (print_address_bits <= 32)
6647 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6648 else
6649 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6650 }
6651 if (nr_printable_breakpoints > 0)
6652 annotate_field (5);
6653 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6654 uiout->table_body ();
6655 if (nr_printable_breakpoints > 0)
6656 annotate_breakpoints_table ();
6657
6658 ALL_BREAKPOINTS (b)
6659 {
6660 QUIT;
6661 /* If we have a filter, only list the breakpoints it accepts. */
6662 if (filter && !filter (b))
6663 continue;
6664
6665 /* If we have an "args" string, it is a list of breakpoints to
6666 accept. Skip the others. */
6667
6668 if (args != NULL && *args != '\0')
6669 {
6670 if (allflag) /* maintenance info breakpoint */
6671 {
6672 if (parse_and_eval_long (args) != b->number)
6673 continue;
6674 }
6675 else /* all others */
6676 {
6677 if (!number_is_in_list (args, b->number))
6678 continue;
6679 }
6680 }
6681 /* We only print out user settable breakpoints unless the
6682 allflag is set. */
6683 if (allflag || user_breakpoint_p (b))
6684 print_one_breakpoint (b, &last_loc, allflag);
6685 }
6686 }
6687
6688 if (nr_printable_breakpoints == 0)
6689 {
6690 /* If there's a filter, let the caller decide how to report
6691 empty list. */
6692 if (!filter)
6693 {
6694 if (args == NULL || *args == '\0')
6695 uiout->message ("No breakpoints or watchpoints.\n");
6696 else
6697 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6698 args);
6699 }
6700 }
6701 else
6702 {
6703 if (last_loc && !server_command)
6704 set_next_address (last_loc->gdbarch, last_loc->address);
6705 }
6706
6707 /* FIXME? Should this be moved up so that it is only called when
6708 there have been breakpoints? */
6709 annotate_breakpoints_table_end ();
6710
6711 return nr_printable_breakpoints;
6712 }
6713
6714 /* Display the value of default-collect in a way that is generally
6715 compatible with the breakpoint list. */
6716
6717 static void
6718 default_collect_info (void)
6719 {
6720 struct ui_out *uiout = current_uiout;
6721
6722 /* If it has no value (which is frequently the case), say nothing; a
6723 message like "No default-collect." gets in user's face when it's
6724 not wanted. */
6725 if (!*default_collect)
6726 return;
6727
6728 /* The following phrase lines up nicely with per-tracepoint collect
6729 actions. */
6730 uiout->text ("default collect ");
6731 uiout->field_string ("default-collect", default_collect);
6732 uiout->text (" \n");
6733 }
6734
6735 static void
6736 info_breakpoints_command (char *args, int from_tty)
6737 {
6738 breakpoint_1 (args, 0, NULL);
6739
6740 default_collect_info ();
6741 }
6742
6743 static void
6744 info_watchpoints_command (char *args, int from_tty)
6745 {
6746 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6747 struct ui_out *uiout = current_uiout;
6748
6749 if (num_printed == 0)
6750 {
6751 if (args == NULL || *args == '\0')
6752 uiout->message ("No watchpoints.\n");
6753 else
6754 uiout->message ("No watchpoint matching '%s'.\n", args);
6755 }
6756 }
6757
6758 static void
6759 maintenance_info_breakpoints (const char *args, int from_tty)
6760 {
6761 breakpoint_1 (args, 1, NULL);
6762
6763 default_collect_info ();
6764 }
6765
6766 static int
6767 breakpoint_has_pc (struct breakpoint *b,
6768 struct program_space *pspace,
6769 CORE_ADDR pc, struct obj_section *section)
6770 {
6771 struct bp_location *bl = b->loc;
6772
6773 for (; bl; bl = bl->next)
6774 {
6775 if (bl->pspace == pspace
6776 && bl->address == pc
6777 && (!overlay_debugging || bl->section == section))
6778 return 1;
6779 }
6780 return 0;
6781 }
6782
6783 /* Print a message describing any user-breakpoints set at PC. This
6784 concerns with logical breakpoints, so we match program spaces, not
6785 address spaces. */
6786
6787 static void
6788 describe_other_breakpoints (struct gdbarch *gdbarch,
6789 struct program_space *pspace, CORE_ADDR pc,
6790 struct obj_section *section, int thread)
6791 {
6792 int others = 0;
6793 struct breakpoint *b;
6794
6795 ALL_BREAKPOINTS (b)
6796 others += (user_breakpoint_p (b)
6797 && breakpoint_has_pc (b, pspace, pc, section));
6798 if (others > 0)
6799 {
6800 if (others == 1)
6801 printf_filtered (_("Note: breakpoint "));
6802 else /* if (others == ???) */
6803 printf_filtered (_("Note: breakpoints "));
6804 ALL_BREAKPOINTS (b)
6805 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6806 {
6807 others--;
6808 printf_filtered ("%d", b->number);
6809 if (b->thread == -1 && thread != -1)
6810 printf_filtered (" (all threads)");
6811 else if (b->thread != -1)
6812 printf_filtered (" (thread %d)", b->thread);
6813 printf_filtered ("%s%s ",
6814 ((b->enable_state == bp_disabled
6815 || b->enable_state == bp_call_disabled)
6816 ? " (disabled)"
6817 : ""),
6818 (others > 1) ? ","
6819 : ((others == 1) ? " and" : ""));
6820 }
6821 printf_filtered (_("also set at pc "));
6822 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6823 printf_filtered (".\n");
6824 }
6825 }
6826 \f
6827
6828 /* Return true iff it is meaningful to use the address member of
6829 BPT locations. For some breakpoint types, the locations' address members
6830 are irrelevant and it makes no sense to attempt to compare them to other
6831 addresses (or use them for any other purpose either).
6832
6833 More specifically, each of the following breakpoint types will
6834 always have a zero valued location address and we don't want to mark
6835 breakpoints of any of these types to be a duplicate of an actual
6836 breakpoint location at address zero:
6837
6838 bp_watchpoint
6839 bp_catchpoint
6840
6841 */
6842
6843 static int
6844 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6845 {
6846 enum bptype type = bpt->type;
6847
6848 return (type != bp_watchpoint && type != bp_catchpoint);
6849 }
6850
6851 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6852 true if LOC1 and LOC2 represent the same watchpoint location. */
6853
6854 static int
6855 watchpoint_locations_match (struct bp_location *loc1,
6856 struct bp_location *loc2)
6857 {
6858 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6859 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6860
6861 /* Both of them must exist. */
6862 gdb_assert (w1 != NULL);
6863 gdb_assert (w2 != NULL);
6864
6865 /* If the target can evaluate the condition expression in hardware,
6866 then we we need to insert both watchpoints even if they are at
6867 the same place. Otherwise the watchpoint will only trigger when
6868 the condition of whichever watchpoint was inserted evaluates to
6869 true, not giving a chance for GDB to check the condition of the
6870 other watchpoint. */
6871 if ((w1->cond_exp
6872 && target_can_accel_watchpoint_condition (loc1->address,
6873 loc1->length,
6874 loc1->watchpoint_type,
6875 w1->cond_exp.get ()))
6876 || (w2->cond_exp
6877 && target_can_accel_watchpoint_condition (loc2->address,
6878 loc2->length,
6879 loc2->watchpoint_type,
6880 w2->cond_exp.get ())))
6881 return 0;
6882
6883 /* Note that this checks the owner's type, not the location's. In
6884 case the target does not support read watchpoints, but does
6885 support access watchpoints, we'll have bp_read_watchpoint
6886 watchpoints with hw_access locations. Those should be considered
6887 duplicates of hw_read locations. The hw_read locations will
6888 become hw_access locations later. */
6889 return (loc1->owner->type == loc2->owner->type
6890 && loc1->pspace->aspace == loc2->pspace->aspace
6891 && loc1->address == loc2->address
6892 && loc1->length == loc2->length);
6893 }
6894
6895 /* See breakpoint.h. */
6896
6897 int
6898 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6899 const address_space *aspace2, CORE_ADDR addr2)
6900 {
6901 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6902 || aspace1 == aspace2)
6903 && addr1 == addr2);
6904 }
6905
6906 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6907 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6908 matches ASPACE2. On targets that have global breakpoints, the address
6909 space doesn't really matter. */
6910
6911 static int
6912 breakpoint_address_match_range (const address_space *aspace1,
6913 CORE_ADDR addr1,
6914 int len1, const address_space *aspace2,
6915 CORE_ADDR addr2)
6916 {
6917 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6918 || aspace1 == aspace2)
6919 && addr2 >= addr1 && addr2 < addr1 + len1);
6920 }
6921
6922 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6923 a ranged breakpoint. In most targets, a match happens only if ASPACE
6924 matches the breakpoint's address space. On targets that have global
6925 breakpoints, the address space doesn't really matter. */
6926
6927 static int
6928 breakpoint_location_address_match (struct bp_location *bl,
6929 const address_space *aspace,
6930 CORE_ADDR addr)
6931 {
6932 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6933 aspace, addr)
6934 || (bl->length
6935 && breakpoint_address_match_range (bl->pspace->aspace,
6936 bl->address, bl->length,
6937 aspace, addr)));
6938 }
6939
6940 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6941 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6942 match happens only if ASPACE matches the breakpoint's address
6943 space. On targets that have global breakpoints, the address space
6944 doesn't really matter. */
6945
6946 static int
6947 breakpoint_location_address_range_overlap (struct bp_location *bl,
6948 const address_space *aspace,
6949 CORE_ADDR addr, int len)
6950 {
6951 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6952 || bl->pspace->aspace == aspace)
6953 {
6954 int bl_len = bl->length != 0 ? bl->length : 1;
6955
6956 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6957 return 1;
6958 }
6959 return 0;
6960 }
6961
6962 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6963 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6964 true, otherwise returns false. */
6965
6966 static int
6967 tracepoint_locations_match (struct bp_location *loc1,
6968 struct bp_location *loc2)
6969 {
6970 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6971 /* Since tracepoint locations are never duplicated with others', tracepoint
6972 locations at the same address of different tracepoints are regarded as
6973 different locations. */
6974 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6975 else
6976 return 0;
6977 }
6978
6979 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6980 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6981 represent the same location. */
6982
6983 static int
6984 breakpoint_locations_match (struct bp_location *loc1,
6985 struct bp_location *loc2)
6986 {
6987 int hw_point1, hw_point2;
6988
6989 /* Both of them must not be in moribund_locations. */
6990 gdb_assert (loc1->owner != NULL);
6991 gdb_assert (loc2->owner != NULL);
6992
6993 hw_point1 = is_hardware_watchpoint (loc1->owner);
6994 hw_point2 = is_hardware_watchpoint (loc2->owner);
6995
6996 if (hw_point1 != hw_point2)
6997 return 0;
6998 else if (hw_point1)
6999 return watchpoint_locations_match (loc1, loc2);
7000 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7001 return tracepoint_locations_match (loc1, loc2);
7002 else
7003 /* We compare bp_location.length in order to cover ranged breakpoints. */
7004 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7005 loc2->pspace->aspace, loc2->address)
7006 && loc1->length == loc2->length);
7007 }
7008
7009 static void
7010 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7011 int bnum, int have_bnum)
7012 {
7013 /* The longest string possibly returned by hex_string_custom
7014 is 50 chars. These must be at least that big for safety. */
7015 char astr1[64];
7016 char astr2[64];
7017
7018 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7019 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7020 if (have_bnum)
7021 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7022 bnum, astr1, astr2);
7023 else
7024 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7025 }
7026
7027 /* Adjust a breakpoint's address to account for architectural
7028 constraints on breakpoint placement. Return the adjusted address.
7029 Note: Very few targets require this kind of adjustment. For most
7030 targets, this function is simply the identity function. */
7031
7032 static CORE_ADDR
7033 adjust_breakpoint_address (struct gdbarch *gdbarch,
7034 CORE_ADDR bpaddr, enum bptype bptype)
7035 {
7036 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7037 {
7038 /* Very few targets need any kind of breakpoint adjustment. */
7039 return bpaddr;
7040 }
7041 else if (bptype == bp_watchpoint
7042 || bptype == bp_hardware_watchpoint
7043 || bptype == bp_read_watchpoint
7044 || bptype == bp_access_watchpoint
7045 || bptype == bp_catchpoint)
7046 {
7047 /* Watchpoints and the various bp_catch_* eventpoints should not
7048 have their addresses modified. */
7049 return bpaddr;
7050 }
7051 else if (bptype == bp_single_step)
7052 {
7053 /* Single-step breakpoints should not have their addresses
7054 modified. If there's any architectural constrain that
7055 applies to this address, then it should have already been
7056 taken into account when the breakpoint was created in the
7057 first place. If we didn't do this, stepping through e.g.,
7058 Thumb-2 IT blocks would break. */
7059 return bpaddr;
7060 }
7061 else
7062 {
7063 CORE_ADDR adjusted_bpaddr;
7064
7065 /* Some targets have architectural constraints on the placement
7066 of breakpoint instructions. Obtain the adjusted address. */
7067 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7068
7069 /* An adjusted breakpoint address can significantly alter
7070 a user's expectations. Print a warning if an adjustment
7071 is required. */
7072 if (adjusted_bpaddr != bpaddr)
7073 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7074
7075 return adjusted_bpaddr;
7076 }
7077 }
7078
7079 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7080 {
7081 bp_location *loc = this;
7082
7083 gdb_assert (ops != NULL);
7084
7085 loc->ops = ops;
7086 loc->owner = owner;
7087 loc->cond_bytecode = NULL;
7088 loc->shlib_disabled = 0;
7089 loc->enabled = 1;
7090
7091 switch (owner->type)
7092 {
7093 case bp_breakpoint:
7094 case bp_single_step:
7095 case bp_until:
7096 case bp_finish:
7097 case bp_longjmp:
7098 case bp_longjmp_resume:
7099 case bp_longjmp_call_dummy:
7100 case bp_exception:
7101 case bp_exception_resume:
7102 case bp_step_resume:
7103 case bp_hp_step_resume:
7104 case bp_watchpoint_scope:
7105 case bp_call_dummy:
7106 case bp_std_terminate:
7107 case bp_shlib_event:
7108 case bp_thread_event:
7109 case bp_overlay_event:
7110 case bp_jit_event:
7111 case bp_longjmp_master:
7112 case bp_std_terminate_master:
7113 case bp_exception_master:
7114 case bp_gnu_ifunc_resolver:
7115 case bp_gnu_ifunc_resolver_return:
7116 case bp_dprintf:
7117 loc->loc_type = bp_loc_software_breakpoint;
7118 mark_breakpoint_location_modified (loc);
7119 break;
7120 case bp_hardware_breakpoint:
7121 loc->loc_type = bp_loc_hardware_breakpoint;
7122 mark_breakpoint_location_modified (loc);
7123 break;
7124 case bp_hardware_watchpoint:
7125 case bp_read_watchpoint:
7126 case bp_access_watchpoint:
7127 loc->loc_type = bp_loc_hardware_watchpoint;
7128 break;
7129 case bp_watchpoint:
7130 case bp_catchpoint:
7131 case bp_tracepoint:
7132 case bp_fast_tracepoint:
7133 case bp_static_tracepoint:
7134 loc->loc_type = bp_loc_other;
7135 break;
7136 default:
7137 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7138 }
7139
7140 loc->refc = 1;
7141 }
7142
7143 /* Allocate a struct bp_location. */
7144
7145 static struct bp_location *
7146 allocate_bp_location (struct breakpoint *bpt)
7147 {
7148 return bpt->ops->allocate_location (bpt);
7149 }
7150
7151 static void
7152 free_bp_location (struct bp_location *loc)
7153 {
7154 loc->ops->dtor (loc);
7155 delete loc;
7156 }
7157
7158 /* Increment reference count. */
7159
7160 static void
7161 incref_bp_location (struct bp_location *bl)
7162 {
7163 ++bl->refc;
7164 }
7165
7166 /* Decrement reference count. If the reference count reaches 0,
7167 destroy the bp_location. Sets *BLP to NULL. */
7168
7169 static void
7170 decref_bp_location (struct bp_location **blp)
7171 {
7172 gdb_assert ((*blp)->refc > 0);
7173
7174 if (--(*blp)->refc == 0)
7175 free_bp_location (*blp);
7176 *blp = NULL;
7177 }
7178
7179 /* Add breakpoint B at the end of the global breakpoint chain. */
7180
7181 static breakpoint *
7182 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7183 {
7184 struct breakpoint *b1;
7185 struct breakpoint *result = b.get ();
7186
7187 /* Add this breakpoint to the end of the chain so that a list of
7188 breakpoints will come out in order of increasing numbers. */
7189
7190 b1 = breakpoint_chain;
7191 if (b1 == 0)
7192 breakpoint_chain = b.release ();
7193 else
7194 {
7195 while (b1->next)
7196 b1 = b1->next;
7197 b1->next = b.release ();
7198 }
7199
7200 return result;
7201 }
7202
7203 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7204
7205 static void
7206 init_raw_breakpoint_without_location (struct breakpoint *b,
7207 struct gdbarch *gdbarch,
7208 enum bptype bptype,
7209 const struct breakpoint_ops *ops)
7210 {
7211 gdb_assert (ops != NULL);
7212
7213 b->ops = ops;
7214 b->type = bptype;
7215 b->gdbarch = gdbarch;
7216 b->language = current_language->la_language;
7217 b->input_radix = input_radix;
7218 b->related_breakpoint = b;
7219 }
7220
7221 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7222 that has type BPTYPE and has no locations as yet. */
7223
7224 static struct breakpoint *
7225 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7226 enum bptype bptype,
7227 const struct breakpoint_ops *ops)
7228 {
7229 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7230
7231 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7232 return add_to_breakpoint_chain (std::move (b));
7233 }
7234
7235 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7236 resolutions should be made as the user specified the location explicitly
7237 enough. */
7238
7239 static void
7240 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7241 {
7242 gdb_assert (loc->owner != NULL);
7243
7244 if (loc->owner->type == bp_breakpoint
7245 || loc->owner->type == bp_hardware_breakpoint
7246 || is_tracepoint (loc->owner))
7247 {
7248 int is_gnu_ifunc;
7249 const char *function_name;
7250 CORE_ADDR func_addr;
7251
7252 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7253 &func_addr, NULL, &is_gnu_ifunc);
7254
7255 if (is_gnu_ifunc && !explicit_loc)
7256 {
7257 struct breakpoint *b = loc->owner;
7258
7259 gdb_assert (loc->pspace == current_program_space);
7260 if (gnu_ifunc_resolve_name (function_name,
7261 &loc->requested_address))
7262 {
7263 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7264 loc->address = adjust_breakpoint_address (loc->gdbarch,
7265 loc->requested_address,
7266 b->type);
7267 }
7268 else if (b->type == bp_breakpoint && b->loc == loc
7269 && loc->next == NULL && b->related_breakpoint == b)
7270 {
7271 /* Create only the whole new breakpoint of this type but do not
7272 mess more complicated breakpoints with multiple locations. */
7273 b->type = bp_gnu_ifunc_resolver;
7274 /* Remember the resolver's address for use by the return
7275 breakpoint. */
7276 loc->related_address = func_addr;
7277 }
7278 }
7279
7280 if (function_name)
7281 loc->function_name = xstrdup (function_name);
7282 }
7283 }
7284
7285 /* Attempt to determine architecture of location identified by SAL. */
7286 struct gdbarch *
7287 get_sal_arch (struct symtab_and_line sal)
7288 {
7289 if (sal.section)
7290 return get_objfile_arch (sal.section->objfile);
7291 if (sal.symtab)
7292 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7293
7294 return NULL;
7295 }
7296
7297 /* Low level routine for partially initializing a breakpoint of type
7298 BPTYPE. The newly created breakpoint's address, section, source
7299 file name, and line number are provided by SAL.
7300
7301 It is expected that the caller will complete the initialization of
7302 the newly created breakpoint struct as well as output any status
7303 information regarding the creation of a new breakpoint. */
7304
7305 static void
7306 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7307 struct symtab_and_line sal, enum bptype bptype,
7308 const struct breakpoint_ops *ops)
7309 {
7310 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7311
7312 add_location_to_breakpoint (b, &sal);
7313
7314 if (bptype != bp_catchpoint)
7315 gdb_assert (sal.pspace != NULL);
7316
7317 /* Store the program space that was used to set the breakpoint,
7318 except for ordinary breakpoints, which are independent of the
7319 program space. */
7320 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7321 b->pspace = sal.pspace;
7322 }
7323
7324 /* set_raw_breakpoint is a low level routine for allocating and
7325 partially initializing a breakpoint of type BPTYPE. The newly
7326 created breakpoint's address, section, source file name, and line
7327 number are provided by SAL. The newly created and partially
7328 initialized breakpoint is added to the breakpoint chain and
7329 is also returned as the value of this function.
7330
7331 It is expected that the caller will complete the initialization of
7332 the newly created breakpoint struct as well as output any status
7333 information regarding the creation of a new breakpoint. In
7334 particular, set_raw_breakpoint does NOT set the breakpoint
7335 number! Care should be taken to not allow an error to occur
7336 prior to completing the initialization of the breakpoint. If this
7337 should happen, a bogus breakpoint will be left on the chain. */
7338
7339 struct breakpoint *
7340 set_raw_breakpoint (struct gdbarch *gdbarch,
7341 struct symtab_and_line sal, enum bptype bptype,
7342 const struct breakpoint_ops *ops)
7343 {
7344 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7345
7346 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7347 return add_to_breakpoint_chain (std::move (b));
7348 }
7349
7350 /* Call this routine when stepping and nexting to enable a breakpoint
7351 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7352 initiated the operation. */
7353
7354 void
7355 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7356 {
7357 struct breakpoint *b, *b_tmp;
7358 int thread = tp->global_num;
7359
7360 /* To avoid having to rescan all objfile symbols at every step,
7361 we maintain a list of continually-inserted but always disabled
7362 longjmp "master" breakpoints. Here, we simply create momentary
7363 clones of those and enable them for the requested thread. */
7364 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7365 if (b->pspace == current_program_space
7366 && (b->type == bp_longjmp_master
7367 || b->type == bp_exception_master))
7368 {
7369 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7370 struct breakpoint *clone;
7371
7372 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7373 after their removal. */
7374 clone = momentary_breakpoint_from_master (b, type,
7375 &momentary_breakpoint_ops, 1);
7376 clone->thread = thread;
7377 }
7378
7379 tp->initiating_frame = frame;
7380 }
7381
7382 /* Delete all longjmp breakpoints from THREAD. */
7383 void
7384 delete_longjmp_breakpoint (int thread)
7385 {
7386 struct breakpoint *b, *b_tmp;
7387
7388 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7389 if (b->type == bp_longjmp || b->type == bp_exception)
7390 {
7391 if (b->thread == thread)
7392 delete_breakpoint (b);
7393 }
7394 }
7395
7396 void
7397 delete_longjmp_breakpoint_at_next_stop (int thread)
7398 {
7399 struct breakpoint *b, *b_tmp;
7400
7401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7402 if (b->type == bp_longjmp || b->type == bp_exception)
7403 {
7404 if (b->thread == thread)
7405 b->disposition = disp_del_at_next_stop;
7406 }
7407 }
7408
7409 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7410 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7411 pointer to any of them. Return NULL if this system cannot place longjmp
7412 breakpoints. */
7413
7414 struct breakpoint *
7415 set_longjmp_breakpoint_for_call_dummy (void)
7416 {
7417 struct breakpoint *b, *retval = NULL;
7418
7419 ALL_BREAKPOINTS (b)
7420 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7421 {
7422 struct breakpoint *new_b;
7423
7424 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7425 &momentary_breakpoint_ops,
7426 1);
7427 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7428
7429 /* Link NEW_B into the chain of RETVAL breakpoints. */
7430
7431 gdb_assert (new_b->related_breakpoint == new_b);
7432 if (retval == NULL)
7433 retval = new_b;
7434 new_b->related_breakpoint = retval;
7435 while (retval->related_breakpoint != new_b->related_breakpoint)
7436 retval = retval->related_breakpoint;
7437 retval->related_breakpoint = new_b;
7438 }
7439
7440 return retval;
7441 }
7442
7443 /* Verify all existing dummy frames and their associated breakpoints for
7444 TP. Remove those which can no longer be found in the current frame
7445 stack.
7446
7447 You should call this function only at places where it is safe to currently
7448 unwind the whole stack. Failed stack unwind would discard live dummy
7449 frames. */
7450
7451 void
7452 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7453 {
7454 struct breakpoint *b, *b_tmp;
7455
7456 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7457 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7458 {
7459 struct breakpoint *dummy_b = b->related_breakpoint;
7460
7461 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7462 dummy_b = dummy_b->related_breakpoint;
7463 if (dummy_b->type != bp_call_dummy
7464 || frame_find_by_id (dummy_b->frame_id) != NULL)
7465 continue;
7466
7467 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7468
7469 while (b->related_breakpoint != b)
7470 {
7471 if (b_tmp == b->related_breakpoint)
7472 b_tmp = b->related_breakpoint->next;
7473 delete_breakpoint (b->related_breakpoint);
7474 }
7475 delete_breakpoint (b);
7476 }
7477 }
7478
7479 void
7480 enable_overlay_breakpoints (void)
7481 {
7482 struct breakpoint *b;
7483
7484 ALL_BREAKPOINTS (b)
7485 if (b->type == bp_overlay_event)
7486 {
7487 b->enable_state = bp_enabled;
7488 update_global_location_list (UGLL_MAY_INSERT);
7489 overlay_events_enabled = 1;
7490 }
7491 }
7492
7493 void
7494 disable_overlay_breakpoints (void)
7495 {
7496 struct breakpoint *b;
7497
7498 ALL_BREAKPOINTS (b)
7499 if (b->type == bp_overlay_event)
7500 {
7501 b->enable_state = bp_disabled;
7502 update_global_location_list (UGLL_DONT_INSERT);
7503 overlay_events_enabled = 0;
7504 }
7505 }
7506
7507 /* Set an active std::terminate breakpoint for each std::terminate
7508 master breakpoint. */
7509 void
7510 set_std_terminate_breakpoint (void)
7511 {
7512 struct breakpoint *b, *b_tmp;
7513
7514 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7515 if (b->pspace == current_program_space
7516 && b->type == bp_std_terminate_master)
7517 {
7518 momentary_breakpoint_from_master (b, bp_std_terminate,
7519 &momentary_breakpoint_ops, 1);
7520 }
7521 }
7522
7523 /* Delete all the std::terminate breakpoints. */
7524 void
7525 delete_std_terminate_breakpoint (void)
7526 {
7527 struct breakpoint *b, *b_tmp;
7528
7529 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7530 if (b->type == bp_std_terminate)
7531 delete_breakpoint (b);
7532 }
7533
7534 struct breakpoint *
7535 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7536 {
7537 struct breakpoint *b;
7538
7539 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7540 &internal_breakpoint_ops);
7541
7542 b->enable_state = bp_enabled;
7543 /* location has to be used or breakpoint_re_set will delete me. */
7544 b->location = new_address_location (b->loc->address, NULL, 0);
7545
7546 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7547
7548 return b;
7549 }
7550
7551 struct lang_and_radix
7552 {
7553 enum language lang;
7554 int radix;
7555 };
7556
7557 /* Create a breakpoint for JIT code registration and unregistration. */
7558
7559 struct breakpoint *
7560 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7561 {
7562 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7563 &internal_breakpoint_ops);
7564 }
7565
7566 /* Remove JIT code registration and unregistration breakpoint(s). */
7567
7568 void
7569 remove_jit_event_breakpoints (void)
7570 {
7571 struct breakpoint *b, *b_tmp;
7572
7573 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7574 if (b->type == bp_jit_event
7575 && b->loc->pspace == current_program_space)
7576 delete_breakpoint (b);
7577 }
7578
7579 void
7580 remove_solib_event_breakpoints (void)
7581 {
7582 struct breakpoint *b, *b_tmp;
7583
7584 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7585 if (b->type == bp_shlib_event
7586 && b->loc->pspace == current_program_space)
7587 delete_breakpoint (b);
7588 }
7589
7590 /* See breakpoint.h. */
7591
7592 void
7593 remove_solib_event_breakpoints_at_next_stop (void)
7594 {
7595 struct breakpoint *b, *b_tmp;
7596
7597 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7598 if (b->type == bp_shlib_event
7599 && b->loc->pspace == current_program_space)
7600 b->disposition = disp_del_at_next_stop;
7601 }
7602
7603 /* Helper for create_solib_event_breakpoint /
7604 create_and_insert_solib_event_breakpoint. Allows specifying which
7605 INSERT_MODE to pass through to update_global_location_list. */
7606
7607 static struct breakpoint *
7608 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7609 enum ugll_insert_mode insert_mode)
7610 {
7611 struct breakpoint *b;
7612
7613 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7614 &internal_breakpoint_ops);
7615 update_global_location_list_nothrow (insert_mode);
7616 return b;
7617 }
7618
7619 struct breakpoint *
7620 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7621 {
7622 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7623 }
7624
7625 /* See breakpoint.h. */
7626
7627 struct breakpoint *
7628 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7629 {
7630 struct breakpoint *b;
7631
7632 /* Explicitly tell update_global_location_list to insert
7633 locations. */
7634 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7635 if (!b->loc->inserted)
7636 {
7637 delete_breakpoint (b);
7638 return NULL;
7639 }
7640 return b;
7641 }
7642
7643 /* Disable any breakpoints that are on code in shared libraries. Only
7644 apply to enabled breakpoints, disabled ones can just stay disabled. */
7645
7646 void
7647 disable_breakpoints_in_shlibs (void)
7648 {
7649 struct bp_location *loc, **locp_tmp;
7650
7651 ALL_BP_LOCATIONS (loc, locp_tmp)
7652 {
7653 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7654 struct breakpoint *b = loc->owner;
7655
7656 /* We apply the check to all breakpoints, including disabled for
7657 those with loc->duplicate set. This is so that when breakpoint
7658 becomes enabled, or the duplicate is removed, gdb will try to
7659 insert all breakpoints. If we don't set shlib_disabled here,
7660 we'll try to insert those breakpoints and fail. */
7661 if (((b->type == bp_breakpoint)
7662 || (b->type == bp_jit_event)
7663 || (b->type == bp_hardware_breakpoint)
7664 || (is_tracepoint (b)))
7665 && loc->pspace == current_program_space
7666 && !loc->shlib_disabled
7667 && solib_name_from_address (loc->pspace, loc->address)
7668 )
7669 {
7670 loc->shlib_disabled = 1;
7671 }
7672 }
7673 }
7674
7675 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7676 notification of unloaded_shlib. Only apply to enabled breakpoints,
7677 disabled ones can just stay disabled. */
7678
7679 static void
7680 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7681 {
7682 struct bp_location *loc, **locp_tmp;
7683 int disabled_shlib_breaks = 0;
7684
7685 ALL_BP_LOCATIONS (loc, locp_tmp)
7686 {
7687 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7688 struct breakpoint *b = loc->owner;
7689
7690 if (solib->pspace == loc->pspace
7691 && !loc->shlib_disabled
7692 && (((b->type == bp_breakpoint
7693 || b->type == bp_jit_event
7694 || b->type == bp_hardware_breakpoint)
7695 && (loc->loc_type == bp_loc_hardware_breakpoint
7696 || loc->loc_type == bp_loc_software_breakpoint))
7697 || is_tracepoint (b))
7698 && solib_contains_address_p (solib, loc->address))
7699 {
7700 loc->shlib_disabled = 1;
7701 /* At this point, we cannot rely on remove_breakpoint
7702 succeeding so we must mark the breakpoint as not inserted
7703 to prevent future errors occurring in remove_breakpoints. */
7704 loc->inserted = 0;
7705
7706 /* This may cause duplicate notifications for the same breakpoint. */
7707 observer_notify_breakpoint_modified (b);
7708
7709 if (!disabled_shlib_breaks)
7710 {
7711 target_terminal::ours_for_output ();
7712 warning (_("Temporarily disabling breakpoints "
7713 "for unloaded shared library \"%s\""),
7714 solib->so_name);
7715 }
7716 disabled_shlib_breaks = 1;
7717 }
7718 }
7719 }
7720
7721 /* Disable any breakpoints and tracepoints in OBJFILE upon
7722 notification of free_objfile. Only apply to enabled breakpoints,
7723 disabled ones can just stay disabled. */
7724
7725 static void
7726 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7727 {
7728 struct breakpoint *b;
7729
7730 if (objfile == NULL)
7731 return;
7732
7733 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7734 managed by the user with add-symbol-file/remove-symbol-file.
7735 Similarly to how breakpoints in shared libraries are handled in
7736 response to "nosharedlibrary", mark breakpoints in such modules
7737 shlib_disabled so they end up uninserted on the next global
7738 location list update. Shared libraries not loaded by the user
7739 aren't handled here -- they're already handled in
7740 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7741 solib_unloaded observer. We skip objfiles that are not
7742 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7743 main objfile). */
7744 if ((objfile->flags & OBJF_SHARED) == 0
7745 || (objfile->flags & OBJF_USERLOADED) == 0)
7746 return;
7747
7748 ALL_BREAKPOINTS (b)
7749 {
7750 struct bp_location *loc;
7751 int bp_modified = 0;
7752
7753 if (!is_breakpoint (b) && !is_tracepoint (b))
7754 continue;
7755
7756 for (loc = b->loc; loc != NULL; loc = loc->next)
7757 {
7758 CORE_ADDR loc_addr = loc->address;
7759
7760 if (loc->loc_type != bp_loc_hardware_breakpoint
7761 && loc->loc_type != bp_loc_software_breakpoint)
7762 continue;
7763
7764 if (loc->shlib_disabled != 0)
7765 continue;
7766
7767 if (objfile->pspace != loc->pspace)
7768 continue;
7769
7770 if (loc->loc_type != bp_loc_hardware_breakpoint
7771 && loc->loc_type != bp_loc_software_breakpoint)
7772 continue;
7773
7774 if (is_addr_in_objfile (loc_addr, objfile))
7775 {
7776 loc->shlib_disabled = 1;
7777 /* At this point, we don't know whether the object was
7778 unmapped from the inferior or not, so leave the
7779 inserted flag alone. We'll handle failure to
7780 uninsert quietly, in case the object was indeed
7781 unmapped. */
7782
7783 mark_breakpoint_location_modified (loc);
7784
7785 bp_modified = 1;
7786 }
7787 }
7788
7789 if (bp_modified)
7790 observer_notify_breakpoint_modified (b);
7791 }
7792 }
7793
7794 /* FORK & VFORK catchpoints. */
7795
7796 /* An instance of this type is used to represent a fork or vfork
7797 catchpoint. A breakpoint is really of this type iff its ops pointer points
7798 to CATCH_FORK_BREAKPOINT_OPS. */
7799
7800 struct fork_catchpoint : public breakpoint
7801 {
7802 /* Process id of a child process whose forking triggered this
7803 catchpoint. This field is only valid immediately after this
7804 catchpoint has triggered. */
7805 ptid_t forked_inferior_pid;
7806 };
7807
7808 /* Implement the "insert" breakpoint_ops method for fork
7809 catchpoints. */
7810
7811 static int
7812 insert_catch_fork (struct bp_location *bl)
7813 {
7814 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7815 }
7816
7817 /* Implement the "remove" breakpoint_ops method for fork
7818 catchpoints. */
7819
7820 static int
7821 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7822 {
7823 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7824 }
7825
7826 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7827 catchpoints. */
7828
7829 static int
7830 breakpoint_hit_catch_fork (const struct bp_location *bl,
7831 struct address_space *aspace, CORE_ADDR bp_addr,
7832 const struct target_waitstatus *ws)
7833 {
7834 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7835
7836 if (ws->kind != TARGET_WAITKIND_FORKED)
7837 return 0;
7838
7839 c->forked_inferior_pid = ws->value.related_pid;
7840 return 1;
7841 }
7842
7843 /* Implement the "print_it" breakpoint_ops method for fork
7844 catchpoints. */
7845
7846 static enum print_stop_action
7847 print_it_catch_fork (bpstat bs)
7848 {
7849 struct ui_out *uiout = current_uiout;
7850 struct breakpoint *b = bs->breakpoint_at;
7851 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7852
7853 annotate_catchpoint (b->number);
7854 maybe_print_thread_hit_breakpoint (uiout);
7855 if (b->disposition == disp_del)
7856 uiout->text ("Temporary catchpoint ");
7857 else
7858 uiout->text ("Catchpoint ");
7859 if (uiout->is_mi_like_p ())
7860 {
7861 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7862 uiout->field_string ("disp", bpdisp_text (b->disposition));
7863 }
7864 uiout->field_int ("bkptno", b->number);
7865 uiout->text (" (forked process ");
7866 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7867 uiout->text ("), ");
7868 return PRINT_SRC_AND_LOC;
7869 }
7870
7871 /* Implement the "print_one" breakpoint_ops method for fork
7872 catchpoints. */
7873
7874 static void
7875 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7876 {
7877 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7878 struct value_print_options opts;
7879 struct ui_out *uiout = current_uiout;
7880
7881 get_user_print_options (&opts);
7882
7883 /* Field 4, the address, is omitted (which makes the columns not
7884 line up too nicely with the headers, but the effect is relatively
7885 readable). */
7886 if (opts.addressprint)
7887 uiout->field_skip ("addr");
7888 annotate_field (5);
7889 uiout->text ("fork");
7890 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7891 {
7892 uiout->text (", process ");
7893 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7894 uiout->spaces (1);
7895 }
7896
7897 if (uiout->is_mi_like_p ())
7898 uiout->field_string ("catch-type", "fork");
7899 }
7900
7901 /* Implement the "print_mention" breakpoint_ops method for fork
7902 catchpoints. */
7903
7904 static void
7905 print_mention_catch_fork (struct breakpoint *b)
7906 {
7907 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7908 }
7909
7910 /* Implement the "print_recreate" breakpoint_ops method for fork
7911 catchpoints. */
7912
7913 static void
7914 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7915 {
7916 fprintf_unfiltered (fp, "catch fork");
7917 print_recreate_thread (b, fp);
7918 }
7919
7920 /* The breakpoint_ops structure to be used in fork catchpoints. */
7921
7922 static struct breakpoint_ops catch_fork_breakpoint_ops;
7923
7924 /* Implement the "insert" breakpoint_ops method for vfork
7925 catchpoints. */
7926
7927 static int
7928 insert_catch_vfork (struct bp_location *bl)
7929 {
7930 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7931 }
7932
7933 /* Implement the "remove" breakpoint_ops method for vfork
7934 catchpoints. */
7935
7936 static int
7937 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7938 {
7939 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7940 }
7941
7942 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7943 catchpoints. */
7944
7945 static int
7946 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7947 struct address_space *aspace, CORE_ADDR bp_addr,
7948 const struct target_waitstatus *ws)
7949 {
7950 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7951
7952 if (ws->kind != TARGET_WAITKIND_VFORKED)
7953 return 0;
7954
7955 c->forked_inferior_pid = ws->value.related_pid;
7956 return 1;
7957 }
7958
7959 /* Implement the "print_it" breakpoint_ops method for vfork
7960 catchpoints. */
7961
7962 static enum print_stop_action
7963 print_it_catch_vfork (bpstat bs)
7964 {
7965 struct ui_out *uiout = current_uiout;
7966 struct breakpoint *b = bs->breakpoint_at;
7967 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7968
7969 annotate_catchpoint (b->number);
7970 maybe_print_thread_hit_breakpoint (uiout);
7971 if (b->disposition == disp_del)
7972 uiout->text ("Temporary catchpoint ");
7973 else
7974 uiout->text ("Catchpoint ");
7975 if (uiout->is_mi_like_p ())
7976 {
7977 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7978 uiout->field_string ("disp", bpdisp_text (b->disposition));
7979 }
7980 uiout->field_int ("bkptno", b->number);
7981 uiout->text (" (vforked process ");
7982 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7983 uiout->text ("), ");
7984 return PRINT_SRC_AND_LOC;
7985 }
7986
7987 /* Implement the "print_one" breakpoint_ops method for vfork
7988 catchpoints. */
7989
7990 static void
7991 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7992 {
7993 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7994 struct value_print_options opts;
7995 struct ui_out *uiout = current_uiout;
7996
7997 get_user_print_options (&opts);
7998 /* Field 4, the address, is omitted (which makes the columns not
7999 line up too nicely with the headers, but the effect is relatively
8000 readable). */
8001 if (opts.addressprint)
8002 uiout->field_skip ("addr");
8003 annotate_field (5);
8004 uiout->text ("vfork");
8005 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8006 {
8007 uiout->text (", process ");
8008 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8009 uiout->spaces (1);
8010 }
8011
8012 if (uiout->is_mi_like_p ())
8013 uiout->field_string ("catch-type", "vfork");
8014 }
8015
8016 /* Implement the "print_mention" breakpoint_ops method for vfork
8017 catchpoints. */
8018
8019 static void
8020 print_mention_catch_vfork (struct breakpoint *b)
8021 {
8022 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8023 }
8024
8025 /* Implement the "print_recreate" breakpoint_ops method for vfork
8026 catchpoints. */
8027
8028 static void
8029 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8030 {
8031 fprintf_unfiltered (fp, "catch vfork");
8032 print_recreate_thread (b, fp);
8033 }
8034
8035 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8036
8037 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8038
8039 /* An instance of this type is used to represent an solib catchpoint.
8040 A breakpoint is really of this type iff its ops pointer points to
8041 CATCH_SOLIB_BREAKPOINT_OPS. */
8042
8043 struct solib_catchpoint : public breakpoint
8044 {
8045 ~solib_catchpoint () override;
8046
8047 /* True for "catch load", false for "catch unload". */
8048 unsigned char is_load;
8049
8050 /* Regular expression to match, if any. COMPILED is only valid when
8051 REGEX is non-NULL. */
8052 char *regex;
8053 std::unique_ptr<compiled_regex> compiled;
8054 };
8055
8056 solib_catchpoint::~solib_catchpoint ()
8057 {
8058 xfree (this->regex);
8059 }
8060
8061 static int
8062 insert_catch_solib (struct bp_location *ignore)
8063 {
8064 return 0;
8065 }
8066
8067 static int
8068 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8069 {
8070 return 0;
8071 }
8072
8073 static int
8074 breakpoint_hit_catch_solib (const struct bp_location *bl,
8075 struct address_space *aspace,
8076 CORE_ADDR bp_addr,
8077 const struct target_waitstatus *ws)
8078 {
8079 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8080 struct breakpoint *other;
8081
8082 if (ws->kind == TARGET_WAITKIND_LOADED)
8083 return 1;
8084
8085 ALL_BREAKPOINTS (other)
8086 {
8087 struct bp_location *other_bl;
8088
8089 if (other == bl->owner)
8090 continue;
8091
8092 if (other->type != bp_shlib_event)
8093 continue;
8094
8095 if (self->pspace != NULL && other->pspace != self->pspace)
8096 continue;
8097
8098 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8099 {
8100 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8101 return 1;
8102 }
8103 }
8104
8105 return 0;
8106 }
8107
8108 static void
8109 check_status_catch_solib (struct bpstats *bs)
8110 {
8111 struct solib_catchpoint *self
8112 = (struct solib_catchpoint *) bs->breakpoint_at;
8113 int ix;
8114
8115 if (self->is_load)
8116 {
8117 struct so_list *iter;
8118
8119 for (ix = 0;
8120 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8121 ix, iter);
8122 ++ix)
8123 {
8124 if (!self->regex
8125 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8126 return;
8127 }
8128 }
8129 else
8130 {
8131 char *iter;
8132
8133 for (ix = 0;
8134 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8135 ix, iter);
8136 ++ix)
8137 {
8138 if (!self->regex
8139 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8140 return;
8141 }
8142 }
8143
8144 bs->stop = 0;
8145 bs->print_it = print_it_noop;
8146 }
8147
8148 static enum print_stop_action
8149 print_it_catch_solib (bpstat bs)
8150 {
8151 struct breakpoint *b = bs->breakpoint_at;
8152 struct ui_out *uiout = current_uiout;
8153
8154 annotate_catchpoint (b->number);
8155 maybe_print_thread_hit_breakpoint (uiout);
8156 if (b->disposition == disp_del)
8157 uiout->text ("Temporary catchpoint ");
8158 else
8159 uiout->text ("Catchpoint ");
8160 uiout->field_int ("bkptno", b->number);
8161 uiout->text ("\n");
8162 if (uiout->is_mi_like_p ())
8163 uiout->field_string ("disp", bpdisp_text (b->disposition));
8164 print_solib_event (1);
8165 return PRINT_SRC_AND_LOC;
8166 }
8167
8168 static void
8169 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8170 {
8171 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8172 struct value_print_options opts;
8173 struct ui_out *uiout = current_uiout;
8174 char *msg;
8175
8176 get_user_print_options (&opts);
8177 /* Field 4, the address, is omitted (which makes the columns not
8178 line up too nicely with the headers, but the effect is relatively
8179 readable). */
8180 if (opts.addressprint)
8181 {
8182 annotate_field (4);
8183 uiout->field_skip ("addr");
8184 }
8185
8186 annotate_field (5);
8187 if (self->is_load)
8188 {
8189 if (self->regex)
8190 msg = xstrprintf (_("load of library matching %s"), self->regex);
8191 else
8192 msg = xstrdup (_("load of library"));
8193 }
8194 else
8195 {
8196 if (self->regex)
8197 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8198 else
8199 msg = xstrdup (_("unload of library"));
8200 }
8201 uiout->field_string ("what", msg);
8202 xfree (msg);
8203
8204 if (uiout->is_mi_like_p ())
8205 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8206 }
8207
8208 static void
8209 print_mention_catch_solib (struct breakpoint *b)
8210 {
8211 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8212
8213 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8214 self->is_load ? "load" : "unload");
8215 }
8216
8217 static void
8218 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8219 {
8220 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8221
8222 fprintf_unfiltered (fp, "%s %s",
8223 b->disposition == disp_del ? "tcatch" : "catch",
8224 self->is_load ? "load" : "unload");
8225 if (self->regex)
8226 fprintf_unfiltered (fp, " %s", self->regex);
8227 fprintf_unfiltered (fp, "\n");
8228 }
8229
8230 static struct breakpoint_ops catch_solib_breakpoint_ops;
8231
8232 /* Shared helper function (MI and CLI) for creating and installing
8233 a shared object event catchpoint. If IS_LOAD is non-zero then
8234 the events to be caught are load events, otherwise they are
8235 unload events. If IS_TEMP is non-zero the catchpoint is a
8236 temporary one. If ENABLED is non-zero the catchpoint is
8237 created in an enabled state. */
8238
8239 void
8240 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8241 {
8242 struct gdbarch *gdbarch = get_current_arch ();
8243
8244 if (!arg)
8245 arg = "";
8246 arg = skip_spaces (arg);
8247
8248 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8249
8250 if (*arg != '\0')
8251 {
8252 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8253 _("Invalid regexp")));
8254 c->regex = xstrdup (arg);
8255 }
8256
8257 c->is_load = is_load;
8258 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8259 &catch_solib_breakpoint_ops);
8260
8261 c->enable_state = enabled ? bp_enabled : bp_disabled;
8262
8263 install_breakpoint (0, std::move (c), 1);
8264 }
8265
8266 /* A helper function that does all the work for "catch load" and
8267 "catch unload". */
8268
8269 static void
8270 catch_load_or_unload (char *arg, int from_tty, int is_load,
8271 struct cmd_list_element *command)
8272 {
8273 int tempflag;
8274 const int enabled = 1;
8275
8276 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8277
8278 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8279 }
8280
8281 static void
8282 catch_load_command_1 (char *arg, int from_tty,
8283 struct cmd_list_element *command)
8284 {
8285 catch_load_or_unload (arg, from_tty, 1, command);
8286 }
8287
8288 static void
8289 catch_unload_command_1 (char *arg, int from_tty,
8290 struct cmd_list_element *command)
8291 {
8292 catch_load_or_unload (arg, from_tty, 0, command);
8293 }
8294
8295 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8296 is non-zero, then make the breakpoint temporary. If COND_STRING is
8297 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8298 the breakpoint_ops structure associated to the catchpoint. */
8299
8300 void
8301 init_catchpoint (struct breakpoint *b,
8302 struct gdbarch *gdbarch, int tempflag,
8303 const char *cond_string,
8304 const struct breakpoint_ops *ops)
8305 {
8306 symtab_and_line sal;
8307 sal.pspace = current_program_space;
8308
8309 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8310
8311 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8312 b->disposition = tempflag ? disp_del : disp_donttouch;
8313 }
8314
8315 void
8316 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8317 {
8318 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8319 set_breakpoint_number (internal, b);
8320 if (is_tracepoint (b))
8321 set_tracepoint_count (breakpoint_count);
8322 if (!internal)
8323 mention (b);
8324 observer_notify_breakpoint_created (b);
8325
8326 if (update_gll)
8327 update_global_location_list (UGLL_MAY_INSERT);
8328 }
8329
8330 static void
8331 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8332 int tempflag, const char *cond_string,
8333 const struct breakpoint_ops *ops)
8334 {
8335 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8336
8337 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8338
8339 c->forked_inferior_pid = null_ptid;
8340
8341 install_breakpoint (0, std::move (c), 1);
8342 }
8343
8344 /* Exec catchpoints. */
8345
8346 /* An instance of this type is used to represent an exec catchpoint.
8347 A breakpoint is really of this type iff its ops pointer points to
8348 CATCH_EXEC_BREAKPOINT_OPS. */
8349
8350 struct exec_catchpoint : public breakpoint
8351 {
8352 ~exec_catchpoint () override;
8353
8354 /* Filename of a program whose exec triggered this catchpoint.
8355 This field is only valid immediately after this catchpoint has
8356 triggered. */
8357 char *exec_pathname;
8358 };
8359
8360 /* Exec catchpoint destructor. */
8361
8362 exec_catchpoint::~exec_catchpoint ()
8363 {
8364 xfree (this->exec_pathname);
8365 }
8366
8367 static int
8368 insert_catch_exec (struct bp_location *bl)
8369 {
8370 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8371 }
8372
8373 static int
8374 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8375 {
8376 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8377 }
8378
8379 static int
8380 breakpoint_hit_catch_exec (const struct bp_location *bl,
8381 struct address_space *aspace, CORE_ADDR bp_addr,
8382 const struct target_waitstatus *ws)
8383 {
8384 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8385
8386 if (ws->kind != TARGET_WAITKIND_EXECD)
8387 return 0;
8388
8389 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8390 return 1;
8391 }
8392
8393 static enum print_stop_action
8394 print_it_catch_exec (bpstat bs)
8395 {
8396 struct ui_out *uiout = current_uiout;
8397 struct breakpoint *b = bs->breakpoint_at;
8398 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8399
8400 annotate_catchpoint (b->number);
8401 maybe_print_thread_hit_breakpoint (uiout);
8402 if (b->disposition == disp_del)
8403 uiout->text ("Temporary catchpoint ");
8404 else
8405 uiout->text ("Catchpoint ");
8406 if (uiout->is_mi_like_p ())
8407 {
8408 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8409 uiout->field_string ("disp", bpdisp_text (b->disposition));
8410 }
8411 uiout->field_int ("bkptno", b->number);
8412 uiout->text (" (exec'd ");
8413 uiout->field_string ("new-exec", c->exec_pathname);
8414 uiout->text ("), ");
8415
8416 return PRINT_SRC_AND_LOC;
8417 }
8418
8419 static void
8420 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8421 {
8422 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8423 struct value_print_options opts;
8424 struct ui_out *uiout = current_uiout;
8425
8426 get_user_print_options (&opts);
8427
8428 /* Field 4, the address, is omitted (which makes the columns
8429 not line up too nicely with the headers, but the effect
8430 is relatively readable). */
8431 if (opts.addressprint)
8432 uiout->field_skip ("addr");
8433 annotate_field (5);
8434 uiout->text ("exec");
8435 if (c->exec_pathname != NULL)
8436 {
8437 uiout->text (", program \"");
8438 uiout->field_string ("what", c->exec_pathname);
8439 uiout->text ("\" ");
8440 }
8441
8442 if (uiout->is_mi_like_p ())
8443 uiout->field_string ("catch-type", "exec");
8444 }
8445
8446 static void
8447 print_mention_catch_exec (struct breakpoint *b)
8448 {
8449 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8450 }
8451
8452 /* Implement the "print_recreate" breakpoint_ops method for exec
8453 catchpoints. */
8454
8455 static void
8456 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8457 {
8458 fprintf_unfiltered (fp, "catch exec");
8459 print_recreate_thread (b, fp);
8460 }
8461
8462 static struct breakpoint_ops catch_exec_breakpoint_ops;
8463
8464 static int
8465 hw_breakpoint_used_count (void)
8466 {
8467 int i = 0;
8468 struct breakpoint *b;
8469 struct bp_location *bl;
8470
8471 ALL_BREAKPOINTS (b)
8472 {
8473 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8474 for (bl = b->loc; bl; bl = bl->next)
8475 {
8476 /* Special types of hardware breakpoints may use more than
8477 one register. */
8478 i += b->ops->resources_needed (bl);
8479 }
8480 }
8481
8482 return i;
8483 }
8484
8485 /* Returns the resources B would use if it were a hardware
8486 watchpoint. */
8487
8488 static int
8489 hw_watchpoint_use_count (struct breakpoint *b)
8490 {
8491 int i = 0;
8492 struct bp_location *bl;
8493
8494 if (!breakpoint_enabled (b))
8495 return 0;
8496
8497 for (bl = b->loc; bl; bl = bl->next)
8498 {
8499 /* Special types of hardware watchpoints may use more than
8500 one register. */
8501 i += b->ops->resources_needed (bl);
8502 }
8503
8504 return i;
8505 }
8506
8507 /* Returns the sum the used resources of all hardware watchpoints of
8508 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8509 the sum of the used resources of all hardware watchpoints of other
8510 types _not_ TYPE. */
8511
8512 static int
8513 hw_watchpoint_used_count_others (struct breakpoint *except,
8514 enum bptype type, int *other_type_used)
8515 {
8516 int i = 0;
8517 struct breakpoint *b;
8518
8519 *other_type_used = 0;
8520 ALL_BREAKPOINTS (b)
8521 {
8522 if (b == except)
8523 continue;
8524 if (!breakpoint_enabled (b))
8525 continue;
8526
8527 if (b->type == type)
8528 i += hw_watchpoint_use_count (b);
8529 else if (is_hardware_watchpoint (b))
8530 *other_type_used = 1;
8531 }
8532
8533 return i;
8534 }
8535
8536 void
8537 disable_watchpoints_before_interactive_call_start (void)
8538 {
8539 struct breakpoint *b;
8540
8541 ALL_BREAKPOINTS (b)
8542 {
8543 if (is_watchpoint (b) && breakpoint_enabled (b))
8544 {
8545 b->enable_state = bp_call_disabled;
8546 update_global_location_list (UGLL_DONT_INSERT);
8547 }
8548 }
8549 }
8550
8551 void
8552 enable_watchpoints_after_interactive_call_stop (void)
8553 {
8554 struct breakpoint *b;
8555
8556 ALL_BREAKPOINTS (b)
8557 {
8558 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8559 {
8560 b->enable_state = bp_enabled;
8561 update_global_location_list (UGLL_MAY_INSERT);
8562 }
8563 }
8564 }
8565
8566 void
8567 disable_breakpoints_before_startup (void)
8568 {
8569 current_program_space->executing_startup = 1;
8570 update_global_location_list (UGLL_DONT_INSERT);
8571 }
8572
8573 void
8574 enable_breakpoints_after_startup (void)
8575 {
8576 current_program_space->executing_startup = 0;
8577 breakpoint_re_set ();
8578 }
8579
8580 /* Create a new single-step breakpoint for thread THREAD, with no
8581 locations. */
8582
8583 static struct breakpoint *
8584 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8585 {
8586 std::unique_ptr<breakpoint> b (new breakpoint ());
8587
8588 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8589 &momentary_breakpoint_ops);
8590
8591 b->disposition = disp_donttouch;
8592 b->frame_id = null_frame_id;
8593
8594 b->thread = thread;
8595 gdb_assert (b->thread != 0);
8596
8597 return add_to_breakpoint_chain (std::move (b));
8598 }
8599
8600 /* Set a momentary breakpoint of type TYPE at address specified by
8601 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8602 frame. */
8603
8604 struct breakpoint *
8605 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8606 struct frame_id frame_id, enum bptype type)
8607 {
8608 struct breakpoint *b;
8609
8610 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8611 tail-called one. */
8612 gdb_assert (!frame_id_artificial_p (frame_id));
8613
8614 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8615 b->enable_state = bp_enabled;
8616 b->disposition = disp_donttouch;
8617 b->frame_id = frame_id;
8618
8619 /* If we're debugging a multi-threaded program, then we want
8620 momentary breakpoints to be active in only a single thread of
8621 control. */
8622 if (in_thread_list (inferior_ptid))
8623 b->thread = ptid_to_global_thread_id (inferior_ptid);
8624
8625 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8626
8627 return b;
8628 }
8629
8630 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8631 The new breakpoint will have type TYPE, use OPS as its
8632 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8633
8634 static struct breakpoint *
8635 momentary_breakpoint_from_master (struct breakpoint *orig,
8636 enum bptype type,
8637 const struct breakpoint_ops *ops,
8638 int loc_enabled)
8639 {
8640 struct breakpoint *copy;
8641
8642 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8643 copy->loc = allocate_bp_location (copy);
8644 set_breakpoint_location_function (copy->loc, 1);
8645
8646 copy->loc->gdbarch = orig->loc->gdbarch;
8647 copy->loc->requested_address = orig->loc->requested_address;
8648 copy->loc->address = orig->loc->address;
8649 copy->loc->section = orig->loc->section;
8650 copy->loc->pspace = orig->loc->pspace;
8651 copy->loc->probe = orig->loc->probe;
8652 copy->loc->line_number = orig->loc->line_number;
8653 copy->loc->symtab = orig->loc->symtab;
8654 copy->loc->enabled = loc_enabled;
8655 copy->frame_id = orig->frame_id;
8656 copy->thread = orig->thread;
8657 copy->pspace = orig->pspace;
8658
8659 copy->enable_state = bp_enabled;
8660 copy->disposition = disp_donttouch;
8661 copy->number = internal_breakpoint_number--;
8662
8663 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8664 return copy;
8665 }
8666
8667 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8668 ORIG is NULL. */
8669
8670 struct breakpoint *
8671 clone_momentary_breakpoint (struct breakpoint *orig)
8672 {
8673 /* If there's nothing to clone, then return nothing. */
8674 if (orig == NULL)
8675 return NULL;
8676
8677 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8678 }
8679
8680 struct breakpoint *
8681 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8682 enum bptype type)
8683 {
8684 struct symtab_and_line sal;
8685
8686 sal = find_pc_line (pc, 0);
8687 sal.pc = pc;
8688 sal.section = find_pc_overlay (pc);
8689 sal.explicit_pc = 1;
8690
8691 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8692 }
8693 \f
8694
8695 /* Tell the user we have just set a breakpoint B. */
8696
8697 static void
8698 mention (struct breakpoint *b)
8699 {
8700 b->ops->print_mention (b);
8701 if (current_uiout->is_mi_like_p ())
8702 return;
8703 printf_filtered ("\n");
8704 }
8705 \f
8706
8707 static int bp_loc_is_permanent (struct bp_location *loc);
8708
8709 static struct bp_location *
8710 add_location_to_breakpoint (struct breakpoint *b,
8711 const struct symtab_and_line *sal)
8712 {
8713 struct bp_location *loc, **tmp;
8714 CORE_ADDR adjusted_address;
8715 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8716
8717 if (loc_gdbarch == NULL)
8718 loc_gdbarch = b->gdbarch;
8719
8720 /* Adjust the breakpoint's address prior to allocating a location.
8721 Once we call allocate_bp_location(), that mostly uninitialized
8722 location will be placed on the location chain. Adjustment of the
8723 breakpoint may cause target_read_memory() to be called and we do
8724 not want its scan of the location chain to find a breakpoint and
8725 location that's only been partially initialized. */
8726 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8727 sal->pc, b->type);
8728
8729 /* Sort the locations by their ADDRESS. */
8730 loc = allocate_bp_location (b);
8731 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8732 tmp = &((*tmp)->next))
8733 ;
8734 loc->next = *tmp;
8735 *tmp = loc;
8736
8737 loc->requested_address = sal->pc;
8738 loc->address = adjusted_address;
8739 loc->pspace = sal->pspace;
8740 loc->probe.probe = sal->probe;
8741 loc->probe.objfile = sal->objfile;
8742 gdb_assert (loc->pspace != NULL);
8743 loc->section = sal->section;
8744 loc->gdbarch = loc_gdbarch;
8745 loc->line_number = sal->line;
8746 loc->symtab = sal->symtab;
8747
8748 set_breakpoint_location_function (loc,
8749 sal->explicit_pc || sal->explicit_line);
8750
8751 /* While by definition, permanent breakpoints are already present in the
8752 code, we don't mark the location as inserted. Normally one would expect
8753 that GDB could rely on that breakpoint instruction to stop the program,
8754 thus removing the need to insert its own breakpoint, except that executing
8755 the breakpoint instruction can kill the target instead of reporting a
8756 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8757 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8758 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8759 breakpoint be inserted normally results in QEMU knowing about the GDB
8760 breakpoint, and thus trap before the breakpoint instruction is executed.
8761 (If GDB later needs to continue execution past the permanent breakpoint,
8762 it manually increments the PC, thus avoiding executing the breakpoint
8763 instruction.) */
8764 if (bp_loc_is_permanent (loc))
8765 loc->permanent = 1;
8766
8767 return loc;
8768 }
8769 \f
8770
8771 /* See breakpoint.h. */
8772
8773 int
8774 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8775 {
8776 int len;
8777 CORE_ADDR addr;
8778 const gdb_byte *bpoint;
8779 gdb_byte *target_mem;
8780
8781 addr = address;
8782 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8783
8784 /* Software breakpoints unsupported? */
8785 if (bpoint == NULL)
8786 return 0;
8787
8788 target_mem = (gdb_byte *) alloca (len);
8789
8790 /* Enable the automatic memory restoration from breakpoints while
8791 we read the memory. Otherwise we could say about our temporary
8792 breakpoints they are permanent. */
8793 scoped_restore restore_memory
8794 = make_scoped_restore_show_memory_breakpoints (0);
8795
8796 if (target_read_memory (address, target_mem, len) == 0
8797 && memcmp (target_mem, bpoint, len) == 0)
8798 return 1;
8799
8800 return 0;
8801 }
8802
8803 /* Return 1 if LOC is pointing to a permanent breakpoint,
8804 return 0 otherwise. */
8805
8806 static int
8807 bp_loc_is_permanent (struct bp_location *loc)
8808 {
8809 gdb_assert (loc != NULL);
8810
8811 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8812 attempt to read from the addresses the locations of these breakpoint types
8813 point to. program_breakpoint_here_p, below, will attempt to read
8814 memory. */
8815 if (!breakpoint_address_is_meaningful (loc->owner))
8816 return 0;
8817
8818 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8819 switch_to_program_space_and_thread (loc->pspace);
8820 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8821 }
8822
8823 /* Build a command list for the dprintf corresponding to the current
8824 settings of the dprintf style options. */
8825
8826 static void
8827 update_dprintf_command_list (struct breakpoint *b)
8828 {
8829 char *dprintf_args = b->extra_string;
8830 char *printf_line = NULL;
8831
8832 if (!dprintf_args)
8833 return;
8834
8835 dprintf_args = skip_spaces (dprintf_args);
8836
8837 /* Allow a comma, as it may have terminated a location, but don't
8838 insist on it. */
8839 if (*dprintf_args == ',')
8840 ++dprintf_args;
8841 dprintf_args = skip_spaces (dprintf_args);
8842
8843 if (*dprintf_args != '"')
8844 error (_("Bad format string, missing '\"'."));
8845
8846 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8847 printf_line = xstrprintf ("printf %s", dprintf_args);
8848 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8849 {
8850 if (!dprintf_function)
8851 error (_("No function supplied for dprintf call"));
8852
8853 if (dprintf_channel && strlen (dprintf_channel) > 0)
8854 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8855 dprintf_function,
8856 dprintf_channel,
8857 dprintf_args);
8858 else
8859 printf_line = xstrprintf ("call (void) %s (%s)",
8860 dprintf_function,
8861 dprintf_args);
8862 }
8863 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8864 {
8865 if (target_can_run_breakpoint_commands ())
8866 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8867 else
8868 {
8869 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8870 printf_line = xstrprintf ("printf %s", dprintf_args);
8871 }
8872 }
8873 else
8874 internal_error (__FILE__, __LINE__,
8875 _("Invalid dprintf style."));
8876
8877 gdb_assert (printf_line != NULL);
8878 /* Manufacture a printf sequence. */
8879 {
8880 struct command_line *printf_cmd_line = XNEW (struct command_line);
8881
8882 printf_cmd_line->control_type = simple_control;
8883 printf_cmd_line->body_count = 0;
8884 printf_cmd_line->body_list = NULL;
8885 printf_cmd_line->next = NULL;
8886 printf_cmd_line->line = printf_line;
8887
8888 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8889 }
8890 }
8891
8892 /* Update all dprintf commands, making their command lists reflect
8893 current style settings. */
8894
8895 static void
8896 update_dprintf_commands (char *args, int from_tty,
8897 struct cmd_list_element *c)
8898 {
8899 struct breakpoint *b;
8900
8901 ALL_BREAKPOINTS (b)
8902 {
8903 if (b->type == bp_dprintf)
8904 update_dprintf_command_list (b);
8905 }
8906 }
8907
8908 /* Create a breakpoint with SAL as location. Use LOCATION
8909 as a description of the location, and COND_STRING
8910 as condition expression. If LOCATION is NULL then create an
8911 "address location" from the address in the SAL. */
8912
8913 static void
8914 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8915 gdb::array_view<const symtab_and_line> sals,
8916 event_location_up &&location,
8917 gdb::unique_xmalloc_ptr<char> filter,
8918 gdb::unique_xmalloc_ptr<char> cond_string,
8919 gdb::unique_xmalloc_ptr<char> extra_string,
8920 enum bptype type, enum bpdisp disposition,
8921 int thread, int task, int ignore_count,
8922 const struct breakpoint_ops *ops, int from_tty,
8923 int enabled, int internal, unsigned flags,
8924 int display_canonical)
8925 {
8926 int i;
8927
8928 if (type == bp_hardware_breakpoint)
8929 {
8930 int target_resources_ok;
8931
8932 i = hw_breakpoint_used_count ();
8933 target_resources_ok =
8934 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8935 i + 1, 0);
8936 if (target_resources_ok == 0)
8937 error (_("No hardware breakpoint support in the target."));
8938 else if (target_resources_ok < 0)
8939 error (_("Hardware breakpoints used exceeds limit."));
8940 }
8941
8942 gdb_assert (!sals.empty ());
8943
8944 for (const auto &sal : sals)
8945 {
8946 struct bp_location *loc;
8947
8948 if (from_tty)
8949 {
8950 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8951 if (!loc_gdbarch)
8952 loc_gdbarch = gdbarch;
8953
8954 describe_other_breakpoints (loc_gdbarch,
8955 sal.pspace, sal.pc, sal.section, thread);
8956 }
8957
8958 if (&sal == &sals[0])
8959 {
8960 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8961 b->thread = thread;
8962 b->task = task;
8963
8964 b->cond_string = cond_string.release ();
8965 b->extra_string = extra_string.release ();
8966 b->ignore_count = ignore_count;
8967 b->enable_state = enabled ? bp_enabled : bp_disabled;
8968 b->disposition = disposition;
8969
8970 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8971 b->loc->inserted = 1;
8972
8973 if (type == bp_static_tracepoint)
8974 {
8975 struct tracepoint *t = (struct tracepoint *) b;
8976 struct static_tracepoint_marker marker;
8977
8978 if (strace_marker_p (b))
8979 {
8980 /* We already know the marker exists, otherwise, we
8981 wouldn't see a sal for it. */
8982 const char *p
8983 = &event_location_to_string (b->location.get ())[3];
8984 const char *endp;
8985 char *marker_str;
8986
8987 p = skip_spaces (p);
8988
8989 endp = skip_to_space (p);
8990
8991 marker_str = savestring (p, endp - p);
8992 t->static_trace_marker_id = marker_str;
8993
8994 printf_filtered (_("Probed static tracepoint "
8995 "marker \"%s\"\n"),
8996 t->static_trace_marker_id);
8997 }
8998 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8999 {
9000 t->static_trace_marker_id = xstrdup (marker.str_id);
9001 release_static_tracepoint_marker (&marker);
9002
9003 printf_filtered (_("Probed static tracepoint "
9004 "marker \"%s\"\n"),
9005 t->static_trace_marker_id);
9006 }
9007 else
9008 warning (_("Couldn't determine the static "
9009 "tracepoint marker to probe"));
9010 }
9011
9012 loc = b->loc;
9013 }
9014 else
9015 {
9016 loc = add_location_to_breakpoint (b, &sal);
9017 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9018 loc->inserted = 1;
9019 }
9020
9021 if (b->cond_string)
9022 {
9023 const char *arg = b->cond_string;
9024
9025 loc->cond = parse_exp_1 (&arg, loc->address,
9026 block_for_pc (loc->address), 0);
9027 if (*arg)
9028 error (_("Garbage '%s' follows condition"), arg);
9029 }
9030
9031 /* Dynamic printf requires and uses additional arguments on the
9032 command line, otherwise it's an error. */
9033 if (type == bp_dprintf)
9034 {
9035 if (b->extra_string)
9036 update_dprintf_command_list (b);
9037 else
9038 error (_("Format string required"));
9039 }
9040 else if (b->extra_string)
9041 error (_("Garbage '%s' at end of command"), b->extra_string);
9042 }
9043
9044 b->display_canonical = display_canonical;
9045 if (location != NULL)
9046 b->location = std::move (location);
9047 else
9048 b->location = new_address_location (b->loc->address, NULL, 0);
9049 b->filter = filter.release ();
9050 }
9051
9052 static void
9053 create_breakpoint_sal (struct gdbarch *gdbarch,
9054 gdb::array_view<const symtab_and_line> sals,
9055 event_location_up &&location,
9056 gdb::unique_xmalloc_ptr<char> filter,
9057 gdb::unique_xmalloc_ptr<char> cond_string,
9058 gdb::unique_xmalloc_ptr<char> extra_string,
9059 enum bptype type, enum bpdisp disposition,
9060 int thread, int task, int ignore_count,
9061 const struct breakpoint_ops *ops, int from_tty,
9062 int enabled, int internal, unsigned flags,
9063 int display_canonical)
9064 {
9065 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9066
9067 init_breakpoint_sal (b.get (), gdbarch,
9068 sals, std::move (location),
9069 std::move (filter),
9070 std::move (cond_string),
9071 std::move (extra_string),
9072 type, disposition,
9073 thread, task, ignore_count,
9074 ops, from_tty,
9075 enabled, internal, flags,
9076 display_canonical);
9077
9078 install_breakpoint (internal, std::move (b), 0);
9079 }
9080
9081 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9082 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9083 value. COND_STRING, if not NULL, specified the condition to be
9084 used for all breakpoints. Essentially the only case where
9085 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9086 function. In that case, it's still not possible to specify
9087 separate conditions for different overloaded functions, so
9088 we take just a single condition string.
9089
9090 NOTE: If the function succeeds, the caller is expected to cleanup
9091 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9092 array contents). If the function fails (error() is called), the
9093 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9094 COND and SALS arrays and each of those arrays contents. */
9095
9096 static void
9097 create_breakpoints_sal (struct gdbarch *gdbarch,
9098 struct linespec_result *canonical,
9099 gdb::unique_xmalloc_ptr<char> cond_string,
9100 gdb::unique_xmalloc_ptr<char> extra_string,
9101 enum bptype type, enum bpdisp disposition,
9102 int thread, int task, int ignore_count,
9103 const struct breakpoint_ops *ops, int from_tty,
9104 int enabled, int internal, unsigned flags)
9105 {
9106 if (canonical->pre_expanded)
9107 gdb_assert (canonical->lsals.size () == 1);
9108
9109 for (const auto &lsal : canonical->lsals)
9110 {
9111 /* Note that 'location' can be NULL in the case of a plain
9112 'break', without arguments. */
9113 event_location_up location
9114 = (canonical->location != NULL
9115 ? copy_event_location (canonical->location.get ()) : NULL);
9116 gdb::unique_xmalloc_ptr<char> filter_string
9117 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9118
9119 create_breakpoint_sal (gdbarch, lsal.sals,
9120 std::move (location),
9121 std::move (filter_string),
9122 std::move (cond_string),
9123 std::move (extra_string),
9124 type, disposition,
9125 thread, task, ignore_count, ops,
9126 from_tty, enabled, internal, flags,
9127 canonical->special_display);
9128 }
9129 }
9130
9131 /* Parse LOCATION which is assumed to be a SAL specification possibly
9132 followed by conditionals. On return, SALS contains an array of SAL
9133 addresses found. LOCATION points to the end of the SAL (for
9134 linespec locations).
9135
9136 The array and the line spec strings are allocated on the heap, it is
9137 the caller's responsibility to free them. */
9138
9139 static void
9140 parse_breakpoint_sals (const struct event_location *location,
9141 struct linespec_result *canonical)
9142 {
9143 struct symtab_and_line cursal;
9144
9145 if (event_location_type (location) == LINESPEC_LOCATION)
9146 {
9147 const char *address = get_linespec_location (location);
9148
9149 if (address == NULL)
9150 {
9151 /* The last displayed codepoint, if it's valid, is our default
9152 breakpoint address. */
9153 if (last_displayed_sal_is_valid ())
9154 {
9155 /* Set sal's pspace, pc, symtab, and line to the values
9156 corresponding to the last call to print_frame_info.
9157 Be sure to reinitialize LINE with NOTCURRENT == 0
9158 as the breakpoint line number is inappropriate otherwise.
9159 find_pc_line would adjust PC, re-set it back. */
9160 symtab_and_line sal = get_last_displayed_sal ();
9161 CORE_ADDR pc = sal.pc;
9162
9163 sal = find_pc_line (pc, 0);
9164
9165 /* "break" without arguments is equivalent to "break *PC"
9166 where PC is the last displayed codepoint's address. So
9167 make sure to set sal.explicit_pc to prevent GDB from
9168 trying to expand the list of sals to include all other
9169 instances with the same symtab and line. */
9170 sal.pc = pc;
9171 sal.explicit_pc = 1;
9172
9173 struct linespec_sals lsal;
9174 lsal.sals = {sal};
9175 lsal.canonical = NULL;
9176
9177 canonical->lsals.push_back (std::move (lsal));
9178 return;
9179 }
9180 else
9181 error (_("No default breakpoint address now."));
9182 }
9183 }
9184
9185 /* Force almost all breakpoints to be in terms of the
9186 current_source_symtab (which is decode_line_1's default).
9187 This should produce the results we want almost all of the
9188 time while leaving default_breakpoint_* alone.
9189
9190 ObjC: However, don't match an Objective-C method name which
9191 may have a '+' or '-' succeeded by a '['. */
9192 cursal = get_current_source_symtab_and_line ();
9193 if (last_displayed_sal_is_valid ())
9194 {
9195 const char *address = NULL;
9196
9197 if (event_location_type (location) == LINESPEC_LOCATION)
9198 address = get_linespec_location (location);
9199
9200 if (!cursal.symtab
9201 || (address != NULL
9202 && strchr ("+-", address[0]) != NULL
9203 && address[1] != '['))
9204 {
9205 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9206 get_last_displayed_symtab (),
9207 get_last_displayed_line (),
9208 canonical, NULL, NULL);
9209 return;
9210 }
9211 }
9212
9213 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9214 cursal.symtab, cursal.line, canonical, NULL, NULL);
9215 }
9216
9217
9218 /* Convert each SAL into a real PC. Verify that the PC can be
9219 inserted as a breakpoint. If it can't throw an error. */
9220
9221 static void
9222 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9223 {
9224 for (auto &sal : sals)
9225 resolve_sal_pc (&sal);
9226 }
9227
9228 /* Fast tracepoints may have restrictions on valid locations. For
9229 instance, a fast tracepoint using a jump instead of a trap will
9230 likely have to overwrite more bytes than a trap would, and so can
9231 only be placed where the instruction is longer than the jump, or a
9232 multi-instruction sequence does not have a jump into the middle of
9233 it, etc. */
9234
9235 static void
9236 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9237 gdb::array_view<const symtab_and_line> sals)
9238 {
9239 int rslt;
9240 char *msg;
9241 struct cleanup *old_chain;
9242
9243 for (const auto &sal : sals)
9244 {
9245 struct gdbarch *sarch;
9246
9247 sarch = get_sal_arch (sal);
9248 /* We fall back to GDBARCH if there is no architecture
9249 associated with SAL. */
9250 if (sarch == NULL)
9251 sarch = gdbarch;
9252 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9253 old_chain = make_cleanup (xfree, msg);
9254
9255 if (!rslt)
9256 error (_("May not have a fast tracepoint at %s%s"),
9257 paddress (sarch, sal.pc), (msg ? msg : ""));
9258
9259 do_cleanups (old_chain);
9260 }
9261 }
9262
9263 /* Given TOK, a string specification of condition and thread, as
9264 accepted by the 'break' command, extract the condition
9265 string and thread number and set *COND_STRING and *THREAD.
9266 PC identifies the context at which the condition should be parsed.
9267 If no condition is found, *COND_STRING is set to NULL.
9268 If no thread is found, *THREAD is set to -1. */
9269
9270 static void
9271 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9272 char **cond_string, int *thread, int *task,
9273 char **rest)
9274 {
9275 *cond_string = NULL;
9276 *thread = -1;
9277 *task = 0;
9278 *rest = NULL;
9279
9280 while (tok && *tok)
9281 {
9282 const char *end_tok;
9283 int toklen;
9284 const char *cond_start = NULL;
9285 const char *cond_end = NULL;
9286
9287 tok = skip_spaces (tok);
9288
9289 if ((*tok == '"' || *tok == ',') && rest)
9290 {
9291 *rest = savestring (tok, strlen (tok));
9292 return;
9293 }
9294
9295 end_tok = skip_to_space (tok);
9296
9297 toklen = end_tok - tok;
9298
9299 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9300 {
9301 tok = cond_start = end_tok + 1;
9302 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9303 cond_end = tok;
9304 *cond_string = savestring (cond_start, cond_end - cond_start);
9305 }
9306 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9307 {
9308 const char *tmptok;
9309 struct thread_info *thr;
9310
9311 tok = end_tok + 1;
9312 thr = parse_thread_id (tok, &tmptok);
9313 if (tok == tmptok)
9314 error (_("Junk after thread keyword."));
9315 *thread = thr->global_num;
9316 tok = tmptok;
9317 }
9318 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9319 {
9320 char *tmptok;
9321
9322 tok = end_tok + 1;
9323 *task = strtol (tok, &tmptok, 0);
9324 if (tok == tmptok)
9325 error (_("Junk after task keyword."));
9326 if (!valid_task_id (*task))
9327 error (_("Unknown task %d."), *task);
9328 tok = tmptok;
9329 }
9330 else if (rest)
9331 {
9332 *rest = savestring (tok, strlen (tok));
9333 return;
9334 }
9335 else
9336 error (_("Junk at end of arguments."));
9337 }
9338 }
9339
9340 /* Decode a static tracepoint marker spec. */
9341
9342 static std::vector<symtab_and_line>
9343 decode_static_tracepoint_spec (const char **arg_p)
9344 {
9345 VEC(static_tracepoint_marker_p) *markers = NULL;
9346 const char *p = &(*arg_p)[3];
9347 const char *endp;
9348 int i;
9349
9350 p = skip_spaces (p);
9351
9352 endp = skip_to_space (p);
9353
9354 std::string marker_str (p, endp - p);
9355
9356 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9357 if (VEC_empty(static_tracepoint_marker_p, markers))
9358 error (_("No known static tracepoint marker named %s"),
9359 marker_str.c_str ());
9360
9361 std::vector<symtab_and_line> sals;
9362 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9363
9364 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9365 {
9366 struct static_tracepoint_marker *marker;
9367
9368 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9369
9370 symtab_and_line sal = find_pc_line (marker->address, 0);
9371 sal.pc = marker->address;
9372 sals.push_back (sal);
9373
9374 release_static_tracepoint_marker (marker);
9375 }
9376
9377 *arg_p = endp;
9378 return sals;
9379 }
9380
9381 /* See breakpoint.h. */
9382
9383 int
9384 create_breakpoint (struct gdbarch *gdbarch,
9385 const struct event_location *location,
9386 const char *cond_string,
9387 int thread, const char *extra_string,
9388 int parse_extra,
9389 int tempflag, enum bptype type_wanted,
9390 int ignore_count,
9391 enum auto_boolean pending_break_support,
9392 const struct breakpoint_ops *ops,
9393 int from_tty, int enabled, int internal,
9394 unsigned flags)
9395 {
9396 struct linespec_result canonical;
9397 struct cleanup *bkpt_chain = NULL;
9398 int pending = 0;
9399 int task = 0;
9400 int prev_bkpt_count = breakpoint_count;
9401
9402 gdb_assert (ops != NULL);
9403
9404 /* If extra_string isn't useful, set it to NULL. */
9405 if (extra_string != NULL && *extra_string == '\0')
9406 extra_string = NULL;
9407
9408 TRY
9409 {
9410 ops->create_sals_from_location (location, &canonical, type_wanted);
9411 }
9412 CATCH (e, RETURN_MASK_ERROR)
9413 {
9414 /* If caller is interested in rc value from parse, set
9415 value. */
9416 if (e.error == NOT_FOUND_ERROR)
9417 {
9418 /* If pending breakpoint support is turned off, throw
9419 error. */
9420
9421 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9422 throw_exception (e);
9423
9424 exception_print (gdb_stderr, e);
9425
9426 /* If pending breakpoint support is auto query and the user
9427 selects no, then simply return the error code. */
9428 if (pending_break_support == AUTO_BOOLEAN_AUTO
9429 && !nquery (_("Make %s pending on future shared library load? "),
9430 bptype_string (type_wanted)))
9431 return 0;
9432
9433 /* At this point, either the user was queried about setting
9434 a pending breakpoint and selected yes, or pending
9435 breakpoint behavior is on and thus a pending breakpoint
9436 is defaulted on behalf of the user. */
9437 pending = 1;
9438 }
9439 else
9440 throw_exception (e);
9441 }
9442 END_CATCH
9443
9444 if (!pending && canonical.lsals.empty ())
9445 return 0;
9446
9447 /* ----------------------------- SNIP -----------------------------
9448 Anything added to the cleanup chain beyond this point is assumed
9449 to be part of a breakpoint. If the breakpoint create succeeds
9450 then the memory is not reclaimed. */
9451 bkpt_chain = make_cleanup (null_cleanup, 0);
9452
9453 /* Resolve all line numbers to PC's and verify that the addresses
9454 are ok for the target. */
9455 if (!pending)
9456 {
9457 for (auto &lsal : canonical.lsals)
9458 breakpoint_sals_to_pc (lsal.sals);
9459 }
9460
9461 /* Fast tracepoints may have additional restrictions on location. */
9462 if (!pending && type_wanted == bp_fast_tracepoint)
9463 {
9464 for (const auto &lsal : canonical.lsals)
9465 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9466 }
9467
9468 /* Verify that condition can be parsed, before setting any
9469 breakpoints. Allocate a separate condition expression for each
9470 breakpoint. */
9471 if (!pending)
9472 {
9473 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9474 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9475
9476 if (parse_extra)
9477 {
9478 char *rest;
9479 char *cond;
9480
9481 const linespec_sals &lsal = canonical.lsals[0];
9482
9483 /* Here we only parse 'arg' to separate condition
9484 from thread number, so parsing in context of first
9485 sal is OK. When setting the breakpoint we'll
9486 re-parse it in context of each sal. */
9487
9488 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9489 &cond, &thread, &task, &rest);
9490 cond_string_copy.reset (cond);
9491 extra_string_copy.reset (rest);
9492 }
9493 else
9494 {
9495 if (type_wanted != bp_dprintf
9496 && extra_string != NULL && *extra_string != '\0')
9497 error (_("Garbage '%s' at end of location"), extra_string);
9498
9499 /* Create a private copy of condition string. */
9500 if (cond_string)
9501 cond_string_copy.reset (xstrdup (cond_string));
9502 /* Create a private copy of any extra string. */
9503 if (extra_string)
9504 extra_string_copy.reset (xstrdup (extra_string));
9505 }
9506
9507 ops->create_breakpoints_sal (gdbarch, &canonical,
9508 std::move (cond_string_copy),
9509 std::move (extra_string_copy),
9510 type_wanted,
9511 tempflag ? disp_del : disp_donttouch,
9512 thread, task, ignore_count, ops,
9513 from_tty, enabled, internal, flags);
9514 }
9515 else
9516 {
9517 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9518
9519 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9520 b->location = copy_event_location (location);
9521
9522 if (parse_extra)
9523 b->cond_string = NULL;
9524 else
9525 {
9526 /* Create a private copy of condition string. */
9527 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9528 b->thread = thread;
9529 }
9530
9531 /* Create a private copy of any extra string. */
9532 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9533 b->ignore_count = ignore_count;
9534 b->disposition = tempflag ? disp_del : disp_donttouch;
9535 b->condition_not_parsed = 1;
9536 b->enable_state = enabled ? bp_enabled : bp_disabled;
9537 if ((type_wanted != bp_breakpoint
9538 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9539 b->pspace = current_program_space;
9540
9541 install_breakpoint (internal, std::move (b), 0);
9542 }
9543
9544 if (canonical.lsals.size () > 1)
9545 {
9546 warning (_("Multiple breakpoints were set.\nUse the "
9547 "\"delete\" command to delete unwanted breakpoints."));
9548 prev_breakpoint_count = prev_bkpt_count;
9549 }
9550
9551 /* That's it. Discard the cleanups for data inserted into the
9552 breakpoint. */
9553 discard_cleanups (bkpt_chain);
9554
9555 /* error call may happen here - have BKPT_CHAIN already discarded. */
9556 update_global_location_list (UGLL_MAY_INSERT);
9557
9558 return 1;
9559 }
9560
9561 /* Set a breakpoint.
9562 ARG is a string describing breakpoint address,
9563 condition, and thread.
9564 FLAG specifies if a breakpoint is hardware on,
9565 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9566 and BP_TEMPFLAG. */
9567
9568 static void
9569 break_command_1 (const char *arg, int flag, int from_tty)
9570 {
9571 int tempflag = flag & BP_TEMPFLAG;
9572 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9573 ? bp_hardware_breakpoint
9574 : bp_breakpoint);
9575 struct breakpoint_ops *ops;
9576
9577 event_location_up location = string_to_event_location (&arg, current_language);
9578
9579 /* Matching breakpoints on probes. */
9580 if (location != NULL
9581 && event_location_type (location.get ()) == PROBE_LOCATION)
9582 ops = &bkpt_probe_breakpoint_ops;
9583 else
9584 ops = &bkpt_breakpoint_ops;
9585
9586 create_breakpoint (get_current_arch (),
9587 location.get (),
9588 NULL, 0, arg, 1 /* parse arg */,
9589 tempflag, type_wanted,
9590 0 /* Ignore count */,
9591 pending_break_support,
9592 ops,
9593 from_tty,
9594 1 /* enabled */,
9595 0 /* internal */,
9596 0);
9597 }
9598
9599 /* Helper function for break_command_1 and disassemble_command. */
9600
9601 void
9602 resolve_sal_pc (struct symtab_and_line *sal)
9603 {
9604 CORE_ADDR pc;
9605
9606 if (sal->pc == 0 && sal->symtab != NULL)
9607 {
9608 if (!find_line_pc (sal->symtab, sal->line, &pc))
9609 error (_("No line %d in file \"%s\"."),
9610 sal->line, symtab_to_filename_for_display (sal->symtab));
9611 sal->pc = pc;
9612
9613 /* If this SAL corresponds to a breakpoint inserted using a line
9614 number, then skip the function prologue if necessary. */
9615 if (sal->explicit_line)
9616 skip_prologue_sal (sal);
9617 }
9618
9619 if (sal->section == 0 && sal->symtab != NULL)
9620 {
9621 const struct blockvector *bv;
9622 const struct block *b;
9623 struct symbol *sym;
9624
9625 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9626 SYMTAB_COMPUNIT (sal->symtab));
9627 if (bv != NULL)
9628 {
9629 sym = block_linkage_function (b);
9630 if (sym != NULL)
9631 {
9632 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9633 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9634 sym);
9635 }
9636 else
9637 {
9638 /* It really is worthwhile to have the section, so we'll
9639 just have to look harder. This case can be executed
9640 if we have line numbers but no functions (as can
9641 happen in assembly source). */
9642
9643 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9644 switch_to_program_space_and_thread (sal->pspace);
9645
9646 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9647 if (msym.minsym)
9648 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9649 }
9650 }
9651 }
9652 }
9653
9654 void
9655 break_command (char *arg, int from_tty)
9656 {
9657 break_command_1 (arg, 0, from_tty);
9658 }
9659
9660 void
9661 tbreak_command (char *arg, int from_tty)
9662 {
9663 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9664 }
9665
9666 static void
9667 hbreak_command (char *arg, int from_tty)
9668 {
9669 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9670 }
9671
9672 static void
9673 thbreak_command (char *arg, int from_tty)
9674 {
9675 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9676 }
9677
9678 static void
9679 stop_command (char *arg, int from_tty)
9680 {
9681 printf_filtered (_("Specify the type of breakpoint to set.\n\
9682 Usage: stop in <function | address>\n\
9683 stop at <line>\n"));
9684 }
9685
9686 static void
9687 stopin_command (const char *arg, int from_tty)
9688 {
9689 int badInput = 0;
9690
9691 if (arg == (char *) NULL)
9692 badInput = 1;
9693 else if (*arg != '*')
9694 {
9695 const char *argptr = arg;
9696 int hasColon = 0;
9697
9698 /* Look for a ':'. If this is a line number specification, then
9699 say it is bad, otherwise, it should be an address or
9700 function/method name. */
9701 while (*argptr && !hasColon)
9702 {
9703 hasColon = (*argptr == ':');
9704 argptr++;
9705 }
9706
9707 if (hasColon)
9708 badInput = (*argptr != ':'); /* Not a class::method */
9709 else
9710 badInput = isdigit (*arg); /* a simple line number */
9711 }
9712
9713 if (badInput)
9714 printf_filtered (_("Usage: stop in <function | address>\n"));
9715 else
9716 break_command_1 (arg, 0, from_tty);
9717 }
9718
9719 static void
9720 stopat_command (const char *arg, int from_tty)
9721 {
9722 int badInput = 0;
9723
9724 if (arg == (char *) NULL || *arg == '*') /* no line number */
9725 badInput = 1;
9726 else
9727 {
9728 const char *argptr = arg;
9729 int hasColon = 0;
9730
9731 /* Look for a ':'. If there is a '::' then get out, otherwise
9732 it is probably a line number. */
9733 while (*argptr && !hasColon)
9734 {
9735 hasColon = (*argptr == ':');
9736 argptr++;
9737 }
9738
9739 if (hasColon)
9740 badInput = (*argptr == ':'); /* we have class::method */
9741 else
9742 badInput = !isdigit (*arg); /* not a line number */
9743 }
9744
9745 if (badInput)
9746 printf_filtered (_("Usage: stop at <line>\n"));
9747 else
9748 break_command_1 (arg, 0, from_tty);
9749 }
9750
9751 /* The dynamic printf command is mostly like a regular breakpoint, but
9752 with a prewired command list consisting of a single output command,
9753 built from extra arguments supplied on the dprintf command
9754 line. */
9755
9756 static void
9757 dprintf_command (char *arg_in, int from_tty)
9758 {
9759 const char *arg = arg_in;
9760 event_location_up location = string_to_event_location (&arg, current_language);
9761
9762 /* If non-NULL, ARG should have been advanced past the location;
9763 the next character must be ','. */
9764 if (arg != NULL)
9765 {
9766 if (arg[0] != ',' || arg[1] == '\0')
9767 error (_("Format string required"));
9768 else
9769 {
9770 /* Skip the comma. */
9771 ++arg;
9772 }
9773 }
9774
9775 create_breakpoint (get_current_arch (),
9776 location.get (),
9777 NULL, 0, arg, 1 /* parse arg */,
9778 0, bp_dprintf,
9779 0 /* Ignore count */,
9780 pending_break_support,
9781 &dprintf_breakpoint_ops,
9782 from_tty,
9783 1 /* enabled */,
9784 0 /* internal */,
9785 0);
9786 }
9787
9788 static void
9789 agent_printf_command (char *arg, int from_tty)
9790 {
9791 error (_("May only run agent-printf on the target"));
9792 }
9793
9794 /* Implement the "breakpoint_hit" breakpoint_ops method for
9795 ranged breakpoints. */
9796
9797 static int
9798 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9799 struct address_space *aspace,
9800 CORE_ADDR bp_addr,
9801 const struct target_waitstatus *ws)
9802 {
9803 if (ws->kind != TARGET_WAITKIND_STOPPED
9804 || ws->value.sig != GDB_SIGNAL_TRAP)
9805 return 0;
9806
9807 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9808 bl->length, aspace, bp_addr);
9809 }
9810
9811 /* Implement the "resources_needed" breakpoint_ops method for
9812 ranged breakpoints. */
9813
9814 static int
9815 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9816 {
9817 return target_ranged_break_num_registers ();
9818 }
9819
9820 /* Implement the "print_it" breakpoint_ops method for
9821 ranged breakpoints. */
9822
9823 static enum print_stop_action
9824 print_it_ranged_breakpoint (bpstat bs)
9825 {
9826 struct breakpoint *b = bs->breakpoint_at;
9827 struct bp_location *bl = b->loc;
9828 struct ui_out *uiout = current_uiout;
9829
9830 gdb_assert (b->type == bp_hardware_breakpoint);
9831
9832 /* Ranged breakpoints have only one location. */
9833 gdb_assert (bl && bl->next == NULL);
9834
9835 annotate_breakpoint (b->number);
9836
9837 maybe_print_thread_hit_breakpoint (uiout);
9838
9839 if (b->disposition == disp_del)
9840 uiout->text ("Temporary ranged breakpoint ");
9841 else
9842 uiout->text ("Ranged breakpoint ");
9843 if (uiout->is_mi_like_p ())
9844 {
9845 uiout->field_string ("reason",
9846 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9847 uiout->field_string ("disp", bpdisp_text (b->disposition));
9848 }
9849 uiout->field_int ("bkptno", b->number);
9850 uiout->text (", ");
9851
9852 return PRINT_SRC_AND_LOC;
9853 }
9854
9855 /* Implement the "print_one" breakpoint_ops method for
9856 ranged breakpoints. */
9857
9858 static void
9859 print_one_ranged_breakpoint (struct breakpoint *b,
9860 struct bp_location **last_loc)
9861 {
9862 struct bp_location *bl = b->loc;
9863 struct value_print_options opts;
9864 struct ui_out *uiout = current_uiout;
9865
9866 /* Ranged breakpoints have only one location. */
9867 gdb_assert (bl && bl->next == NULL);
9868
9869 get_user_print_options (&opts);
9870
9871 if (opts.addressprint)
9872 /* We don't print the address range here, it will be printed later
9873 by print_one_detail_ranged_breakpoint. */
9874 uiout->field_skip ("addr");
9875 annotate_field (5);
9876 print_breakpoint_location (b, bl);
9877 *last_loc = bl;
9878 }
9879
9880 /* Implement the "print_one_detail" breakpoint_ops method for
9881 ranged breakpoints. */
9882
9883 static void
9884 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9885 struct ui_out *uiout)
9886 {
9887 CORE_ADDR address_start, address_end;
9888 struct bp_location *bl = b->loc;
9889 string_file stb;
9890
9891 gdb_assert (bl);
9892
9893 address_start = bl->address;
9894 address_end = address_start + bl->length - 1;
9895
9896 uiout->text ("\taddress range: ");
9897 stb.printf ("[%s, %s]",
9898 print_core_address (bl->gdbarch, address_start),
9899 print_core_address (bl->gdbarch, address_end));
9900 uiout->field_stream ("addr", stb);
9901 uiout->text ("\n");
9902 }
9903
9904 /* Implement the "print_mention" breakpoint_ops method for
9905 ranged breakpoints. */
9906
9907 static void
9908 print_mention_ranged_breakpoint (struct breakpoint *b)
9909 {
9910 struct bp_location *bl = b->loc;
9911 struct ui_out *uiout = current_uiout;
9912
9913 gdb_assert (bl);
9914 gdb_assert (b->type == bp_hardware_breakpoint);
9915
9916 if (uiout->is_mi_like_p ())
9917 return;
9918
9919 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9920 b->number, paddress (bl->gdbarch, bl->address),
9921 paddress (bl->gdbarch, bl->address + bl->length - 1));
9922 }
9923
9924 /* Implement the "print_recreate" breakpoint_ops method for
9925 ranged breakpoints. */
9926
9927 static void
9928 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9929 {
9930 fprintf_unfiltered (fp, "break-range %s, %s",
9931 event_location_to_string (b->location.get ()),
9932 event_location_to_string (b->location_range_end.get ()));
9933 print_recreate_thread (b, fp);
9934 }
9935
9936 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9937
9938 static struct breakpoint_ops ranged_breakpoint_ops;
9939
9940 /* Find the address where the end of the breakpoint range should be
9941 placed, given the SAL of the end of the range. This is so that if
9942 the user provides a line number, the end of the range is set to the
9943 last instruction of the given line. */
9944
9945 static CORE_ADDR
9946 find_breakpoint_range_end (struct symtab_and_line sal)
9947 {
9948 CORE_ADDR end;
9949
9950 /* If the user provided a PC value, use it. Otherwise,
9951 find the address of the end of the given location. */
9952 if (sal.explicit_pc)
9953 end = sal.pc;
9954 else
9955 {
9956 int ret;
9957 CORE_ADDR start;
9958
9959 ret = find_line_pc_range (sal, &start, &end);
9960 if (!ret)
9961 error (_("Could not find location of the end of the range."));
9962
9963 /* find_line_pc_range returns the start of the next line. */
9964 end--;
9965 }
9966
9967 return end;
9968 }
9969
9970 /* Implement the "break-range" CLI command. */
9971
9972 static void
9973 break_range_command (char *arg_in, int from_tty)
9974 {
9975 const char *arg = arg_in;
9976 const char *arg_start;
9977 struct linespec_result canonical_start, canonical_end;
9978 int bp_count, can_use_bp, length;
9979 CORE_ADDR end;
9980 struct breakpoint *b;
9981
9982 /* We don't support software ranged breakpoints. */
9983 if (target_ranged_break_num_registers () < 0)
9984 error (_("This target does not support hardware ranged breakpoints."));
9985
9986 bp_count = hw_breakpoint_used_count ();
9987 bp_count += target_ranged_break_num_registers ();
9988 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9989 bp_count, 0);
9990 if (can_use_bp < 0)
9991 error (_("Hardware breakpoints used exceeds limit."));
9992
9993 arg = skip_spaces (arg);
9994 if (arg == NULL || arg[0] == '\0')
9995 error(_("No address range specified."));
9996
9997 arg_start = arg;
9998 event_location_up start_location = string_to_event_location (&arg,
9999 current_language);
10000 parse_breakpoint_sals (start_location.get (), &canonical_start);
10001
10002 if (arg[0] != ',')
10003 error (_("Too few arguments."));
10004 else if (canonical_start.lsals.empty ())
10005 error (_("Could not find location of the beginning of the range."));
10006
10007 const linespec_sals &lsal_start = canonical_start.lsals[0];
10008
10009 if (canonical_start.lsals.size () > 1
10010 || lsal_start.sals.size () != 1)
10011 error (_("Cannot create a ranged breakpoint with multiple locations."));
10012
10013 const symtab_and_line &sal_start = lsal_start.sals[0];
10014 std::string addr_string_start (arg_start, arg - arg_start);
10015
10016 arg++; /* Skip the comma. */
10017 arg = skip_spaces (arg);
10018
10019 /* Parse the end location. */
10020
10021 arg_start = arg;
10022
10023 /* We call decode_line_full directly here instead of using
10024 parse_breakpoint_sals because we need to specify the start location's
10025 symtab and line as the default symtab and line for the end of the
10026 range. This makes it possible to have ranges like "foo.c:27, +14",
10027 where +14 means 14 lines from the start location. */
10028 event_location_up end_location = string_to_event_location (&arg,
10029 current_language);
10030 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10031 sal_start.symtab, sal_start.line,
10032 &canonical_end, NULL, NULL);
10033
10034 if (canonical_end.lsals.empty ())
10035 error (_("Could not find location of the end of the range."));
10036
10037 const linespec_sals &lsal_end = canonical_end.lsals[0];
10038 if (canonical_end.lsals.size () > 1
10039 || lsal_end.sals.size () != 1)
10040 error (_("Cannot create a ranged breakpoint with multiple locations."));
10041
10042 const symtab_and_line &sal_end = lsal_end.sals[0];
10043
10044 end = find_breakpoint_range_end (sal_end);
10045 if (sal_start.pc > end)
10046 error (_("Invalid address range, end precedes start."));
10047
10048 length = end - sal_start.pc + 1;
10049 if (length < 0)
10050 /* Length overflowed. */
10051 error (_("Address range too large."));
10052 else if (length == 1)
10053 {
10054 /* This range is simple enough to be handled by
10055 the `hbreak' command. */
10056 hbreak_command (&addr_string_start[0], 1);
10057
10058 return;
10059 }
10060
10061 /* Now set up the breakpoint. */
10062 b = set_raw_breakpoint (get_current_arch (), sal_start,
10063 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10064 set_breakpoint_count (breakpoint_count + 1);
10065 b->number = breakpoint_count;
10066 b->disposition = disp_donttouch;
10067 b->location = std::move (start_location);
10068 b->location_range_end = std::move (end_location);
10069 b->loc->length = length;
10070
10071 mention (b);
10072 observer_notify_breakpoint_created (b);
10073 update_global_location_list (UGLL_MAY_INSERT);
10074 }
10075
10076 /* Return non-zero if EXP is verified as constant. Returned zero
10077 means EXP is variable. Also the constant detection may fail for
10078 some constant expressions and in such case still falsely return
10079 zero. */
10080
10081 static int
10082 watchpoint_exp_is_const (const struct expression *exp)
10083 {
10084 int i = exp->nelts;
10085
10086 while (i > 0)
10087 {
10088 int oplenp, argsp;
10089
10090 /* We are only interested in the descriptor of each element. */
10091 operator_length (exp, i, &oplenp, &argsp);
10092 i -= oplenp;
10093
10094 switch (exp->elts[i].opcode)
10095 {
10096 case BINOP_ADD:
10097 case BINOP_SUB:
10098 case BINOP_MUL:
10099 case BINOP_DIV:
10100 case BINOP_REM:
10101 case BINOP_MOD:
10102 case BINOP_LSH:
10103 case BINOP_RSH:
10104 case BINOP_LOGICAL_AND:
10105 case BINOP_LOGICAL_OR:
10106 case BINOP_BITWISE_AND:
10107 case BINOP_BITWISE_IOR:
10108 case BINOP_BITWISE_XOR:
10109 case BINOP_EQUAL:
10110 case BINOP_NOTEQUAL:
10111 case BINOP_LESS:
10112 case BINOP_GTR:
10113 case BINOP_LEQ:
10114 case BINOP_GEQ:
10115 case BINOP_REPEAT:
10116 case BINOP_COMMA:
10117 case BINOP_EXP:
10118 case BINOP_MIN:
10119 case BINOP_MAX:
10120 case BINOP_INTDIV:
10121 case BINOP_CONCAT:
10122 case TERNOP_COND:
10123 case TERNOP_SLICE:
10124
10125 case OP_LONG:
10126 case OP_FLOAT:
10127 case OP_LAST:
10128 case OP_COMPLEX:
10129 case OP_STRING:
10130 case OP_ARRAY:
10131 case OP_TYPE:
10132 case OP_TYPEOF:
10133 case OP_DECLTYPE:
10134 case OP_TYPEID:
10135 case OP_NAME:
10136 case OP_OBJC_NSSTRING:
10137
10138 case UNOP_NEG:
10139 case UNOP_LOGICAL_NOT:
10140 case UNOP_COMPLEMENT:
10141 case UNOP_ADDR:
10142 case UNOP_HIGH:
10143 case UNOP_CAST:
10144
10145 case UNOP_CAST_TYPE:
10146 case UNOP_REINTERPRET_CAST:
10147 case UNOP_DYNAMIC_CAST:
10148 /* Unary, binary and ternary operators: We have to check
10149 their operands. If they are constant, then so is the
10150 result of that operation. For instance, if A and B are
10151 determined to be constants, then so is "A + B".
10152
10153 UNOP_IND is one exception to the rule above, because the
10154 value of *ADDR is not necessarily a constant, even when
10155 ADDR is. */
10156 break;
10157
10158 case OP_VAR_VALUE:
10159 /* Check whether the associated symbol is a constant.
10160
10161 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10162 possible that a buggy compiler could mark a variable as
10163 constant even when it is not, and TYPE_CONST would return
10164 true in this case, while SYMBOL_CLASS wouldn't.
10165
10166 We also have to check for function symbols because they
10167 are always constant. */
10168 {
10169 struct symbol *s = exp->elts[i + 2].symbol;
10170
10171 if (SYMBOL_CLASS (s) != LOC_BLOCK
10172 && SYMBOL_CLASS (s) != LOC_CONST
10173 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10174 return 0;
10175 break;
10176 }
10177
10178 /* The default action is to return 0 because we are using
10179 the optimistic approach here: If we don't know something,
10180 then it is not a constant. */
10181 default:
10182 return 0;
10183 }
10184 }
10185
10186 return 1;
10187 }
10188
10189 /* Watchpoint destructor. */
10190
10191 watchpoint::~watchpoint ()
10192 {
10193 xfree (this->exp_string);
10194 xfree (this->exp_string_reparse);
10195 value_free (this->val);
10196 }
10197
10198 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10199
10200 static void
10201 re_set_watchpoint (struct breakpoint *b)
10202 {
10203 struct watchpoint *w = (struct watchpoint *) b;
10204
10205 /* Watchpoint can be either on expression using entirely global
10206 variables, or it can be on local variables.
10207
10208 Watchpoints of the first kind are never auto-deleted, and even
10209 persist across program restarts. Since they can use variables
10210 from shared libraries, we need to reparse expression as libraries
10211 are loaded and unloaded.
10212
10213 Watchpoints on local variables can also change meaning as result
10214 of solib event. For example, if a watchpoint uses both a local
10215 and a global variables in expression, it's a local watchpoint,
10216 but unloading of a shared library will make the expression
10217 invalid. This is not a very common use case, but we still
10218 re-evaluate expression, to avoid surprises to the user.
10219
10220 Note that for local watchpoints, we re-evaluate it only if
10221 watchpoints frame id is still valid. If it's not, it means the
10222 watchpoint is out of scope and will be deleted soon. In fact,
10223 I'm not sure we'll ever be called in this case.
10224
10225 If a local watchpoint's frame id is still valid, then
10226 w->exp_valid_block is likewise valid, and we can safely use it.
10227
10228 Don't do anything about disabled watchpoints, since they will be
10229 reevaluated again when enabled. */
10230 update_watchpoint (w, 1 /* reparse */);
10231 }
10232
10233 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10234
10235 static int
10236 insert_watchpoint (struct bp_location *bl)
10237 {
10238 struct watchpoint *w = (struct watchpoint *) bl->owner;
10239 int length = w->exact ? 1 : bl->length;
10240
10241 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10242 w->cond_exp.get ());
10243 }
10244
10245 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10246
10247 static int
10248 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10249 {
10250 struct watchpoint *w = (struct watchpoint *) bl->owner;
10251 int length = w->exact ? 1 : bl->length;
10252
10253 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10254 w->cond_exp.get ());
10255 }
10256
10257 static int
10258 breakpoint_hit_watchpoint (const struct bp_location *bl,
10259 struct address_space *aspace, CORE_ADDR bp_addr,
10260 const struct target_waitstatus *ws)
10261 {
10262 struct breakpoint *b = bl->owner;
10263 struct watchpoint *w = (struct watchpoint *) b;
10264
10265 /* Continuable hardware watchpoints are treated as non-existent if the
10266 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10267 some data address). Otherwise gdb won't stop on a break instruction
10268 in the code (not from a breakpoint) when a hardware watchpoint has
10269 been defined. Also skip watchpoints which we know did not trigger
10270 (did not match the data address). */
10271 if (is_hardware_watchpoint (b)
10272 && w->watchpoint_triggered == watch_triggered_no)
10273 return 0;
10274
10275 return 1;
10276 }
10277
10278 static void
10279 check_status_watchpoint (bpstat bs)
10280 {
10281 gdb_assert (is_watchpoint (bs->breakpoint_at));
10282
10283 bpstat_check_watchpoint (bs);
10284 }
10285
10286 /* Implement the "resources_needed" breakpoint_ops method for
10287 hardware watchpoints. */
10288
10289 static int
10290 resources_needed_watchpoint (const struct bp_location *bl)
10291 {
10292 struct watchpoint *w = (struct watchpoint *) bl->owner;
10293 int length = w->exact? 1 : bl->length;
10294
10295 return target_region_ok_for_hw_watchpoint (bl->address, length);
10296 }
10297
10298 /* Implement the "works_in_software_mode" breakpoint_ops method for
10299 hardware watchpoints. */
10300
10301 static int
10302 works_in_software_mode_watchpoint (const struct breakpoint *b)
10303 {
10304 /* Read and access watchpoints only work with hardware support. */
10305 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10306 }
10307
10308 static enum print_stop_action
10309 print_it_watchpoint (bpstat bs)
10310 {
10311 struct breakpoint *b;
10312 enum print_stop_action result;
10313 struct watchpoint *w;
10314 struct ui_out *uiout = current_uiout;
10315
10316 gdb_assert (bs->bp_location_at != NULL);
10317
10318 b = bs->breakpoint_at;
10319 w = (struct watchpoint *) b;
10320
10321 annotate_watchpoint (b->number);
10322 maybe_print_thread_hit_breakpoint (uiout);
10323
10324 string_file stb;
10325
10326 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10327 switch (b->type)
10328 {
10329 case bp_watchpoint:
10330 case bp_hardware_watchpoint:
10331 if (uiout->is_mi_like_p ())
10332 uiout->field_string
10333 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10334 mention (b);
10335 tuple_emitter.emplace (uiout, "value");
10336 uiout->text ("\nOld value = ");
10337 watchpoint_value_print (bs->old_val, &stb);
10338 uiout->field_stream ("old", stb);
10339 uiout->text ("\nNew value = ");
10340 watchpoint_value_print (w->val, &stb);
10341 uiout->field_stream ("new", stb);
10342 uiout->text ("\n");
10343 /* More than one watchpoint may have been triggered. */
10344 result = PRINT_UNKNOWN;
10345 break;
10346
10347 case bp_read_watchpoint:
10348 if (uiout->is_mi_like_p ())
10349 uiout->field_string
10350 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10351 mention (b);
10352 tuple_emitter.emplace (uiout, "value");
10353 uiout->text ("\nValue = ");
10354 watchpoint_value_print (w->val, &stb);
10355 uiout->field_stream ("value", stb);
10356 uiout->text ("\n");
10357 result = PRINT_UNKNOWN;
10358 break;
10359
10360 case bp_access_watchpoint:
10361 if (bs->old_val != NULL)
10362 {
10363 if (uiout->is_mi_like_p ())
10364 uiout->field_string
10365 ("reason",
10366 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10367 mention (b);
10368 tuple_emitter.emplace (uiout, "value");
10369 uiout->text ("\nOld value = ");
10370 watchpoint_value_print (bs->old_val, &stb);
10371 uiout->field_stream ("old", stb);
10372 uiout->text ("\nNew value = ");
10373 }
10374 else
10375 {
10376 mention (b);
10377 if (uiout->is_mi_like_p ())
10378 uiout->field_string
10379 ("reason",
10380 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10381 tuple_emitter.emplace (uiout, "value");
10382 uiout->text ("\nValue = ");
10383 }
10384 watchpoint_value_print (w->val, &stb);
10385 uiout->field_stream ("new", stb);
10386 uiout->text ("\n");
10387 result = PRINT_UNKNOWN;
10388 break;
10389 default:
10390 result = PRINT_UNKNOWN;
10391 }
10392
10393 return result;
10394 }
10395
10396 /* Implement the "print_mention" breakpoint_ops method for hardware
10397 watchpoints. */
10398
10399 static void
10400 print_mention_watchpoint (struct breakpoint *b)
10401 {
10402 struct watchpoint *w = (struct watchpoint *) b;
10403 struct ui_out *uiout = current_uiout;
10404 const char *tuple_name;
10405
10406 switch (b->type)
10407 {
10408 case bp_watchpoint:
10409 uiout->text ("Watchpoint ");
10410 tuple_name = "wpt";
10411 break;
10412 case bp_hardware_watchpoint:
10413 uiout->text ("Hardware watchpoint ");
10414 tuple_name = "wpt";
10415 break;
10416 case bp_read_watchpoint:
10417 uiout->text ("Hardware read watchpoint ");
10418 tuple_name = "hw-rwpt";
10419 break;
10420 case bp_access_watchpoint:
10421 uiout->text ("Hardware access (read/write) watchpoint ");
10422 tuple_name = "hw-awpt";
10423 break;
10424 default:
10425 internal_error (__FILE__, __LINE__,
10426 _("Invalid hardware watchpoint type."));
10427 }
10428
10429 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10430 uiout->field_int ("number", b->number);
10431 uiout->text (": ");
10432 uiout->field_string ("exp", w->exp_string);
10433 }
10434
10435 /* Implement the "print_recreate" breakpoint_ops method for
10436 watchpoints. */
10437
10438 static void
10439 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10440 {
10441 struct watchpoint *w = (struct watchpoint *) b;
10442
10443 switch (b->type)
10444 {
10445 case bp_watchpoint:
10446 case bp_hardware_watchpoint:
10447 fprintf_unfiltered (fp, "watch");
10448 break;
10449 case bp_read_watchpoint:
10450 fprintf_unfiltered (fp, "rwatch");
10451 break;
10452 case bp_access_watchpoint:
10453 fprintf_unfiltered (fp, "awatch");
10454 break;
10455 default:
10456 internal_error (__FILE__, __LINE__,
10457 _("Invalid watchpoint type."));
10458 }
10459
10460 fprintf_unfiltered (fp, " %s", w->exp_string);
10461 print_recreate_thread (b, fp);
10462 }
10463
10464 /* Implement the "explains_signal" breakpoint_ops method for
10465 watchpoints. */
10466
10467 static int
10468 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10469 {
10470 /* A software watchpoint cannot cause a signal other than
10471 GDB_SIGNAL_TRAP. */
10472 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10473 return 0;
10474
10475 return 1;
10476 }
10477
10478 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10479
10480 static struct breakpoint_ops watchpoint_breakpoint_ops;
10481
10482 /* Implement the "insert" breakpoint_ops method for
10483 masked hardware watchpoints. */
10484
10485 static int
10486 insert_masked_watchpoint (struct bp_location *bl)
10487 {
10488 struct watchpoint *w = (struct watchpoint *) bl->owner;
10489
10490 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10491 bl->watchpoint_type);
10492 }
10493
10494 /* Implement the "remove" breakpoint_ops method for
10495 masked hardware watchpoints. */
10496
10497 static int
10498 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10499 {
10500 struct watchpoint *w = (struct watchpoint *) bl->owner;
10501
10502 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10503 bl->watchpoint_type);
10504 }
10505
10506 /* Implement the "resources_needed" breakpoint_ops method for
10507 masked hardware watchpoints. */
10508
10509 static int
10510 resources_needed_masked_watchpoint (const struct bp_location *bl)
10511 {
10512 struct watchpoint *w = (struct watchpoint *) bl->owner;
10513
10514 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10515 }
10516
10517 /* Implement the "works_in_software_mode" breakpoint_ops method for
10518 masked hardware watchpoints. */
10519
10520 static int
10521 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10522 {
10523 return 0;
10524 }
10525
10526 /* Implement the "print_it" breakpoint_ops method for
10527 masked hardware watchpoints. */
10528
10529 static enum print_stop_action
10530 print_it_masked_watchpoint (bpstat bs)
10531 {
10532 struct breakpoint *b = bs->breakpoint_at;
10533 struct ui_out *uiout = current_uiout;
10534
10535 /* Masked watchpoints have only one location. */
10536 gdb_assert (b->loc && b->loc->next == NULL);
10537
10538 annotate_watchpoint (b->number);
10539 maybe_print_thread_hit_breakpoint (uiout);
10540
10541 switch (b->type)
10542 {
10543 case bp_hardware_watchpoint:
10544 if (uiout->is_mi_like_p ())
10545 uiout->field_string
10546 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10547 break;
10548
10549 case bp_read_watchpoint:
10550 if (uiout->is_mi_like_p ())
10551 uiout->field_string
10552 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10553 break;
10554
10555 case bp_access_watchpoint:
10556 if (uiout->is_mi_like_p ())
10557 uiout->field_string
10558 ("reason",
10559 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10560 break;
10561 default:
10562 internal_error (__FILE__, __LINE__,
10563 _("Invalid hardware watchpoint type."));
10564 }
10565
10566 mention (b);
10567 uiout->text (_("\n\
10568 Check the underlying instruction at PC for the memory\n\
10569 address and value which triggered this watchpoint.\n"));
10570 uiout->text ("\n");
10571
10572 /* More than one watchpoint may have been triggered. */
10573 return PRINT_UNKNOWN;
10574 }
10575
10576 /* Implement the "print_one_detail" breakpoint_ops method for
10577 masked hardware watchpoints. */
10578
10579 static void
10580 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10581 struct ui_out *uiout)
10582 {
10583 struct watchpoint *w = (struct watchpoint *) b;
10584
10585 /* Masked watchpoints have only one location. */
10586 gdb_assert (b->loc && b->loc->next == NULL);
10587
10588 uiout->text ("\tmask ");
10589 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10590 uiout->text ("\n");
10591 }
10592
10593 /* Implement the "print_mention" breakpoint_ops method for
10594 masked hardware watchpoints. */
10595
10596 static void
10597 print_mention_masked_watchpoint (struct breakpoint *b)
10598 {
10599 struct watchpoint *w = (struct watchpoint *) b;
10600 struct ui_out *uiout = current_uiout;
10601 const char *tuple_name;
10602
10603 switch (b->type)
10604 {
10605 case bp_hardware_watchpoint:
10606 uiout->text ("Masked hardware watchpoint ");
10607 tuple_name = "wpt";
10608 break;
10609 case bp_read_watchpoint:
10610 uiout->text ("Masked hardware read watchpoint ");
10611 tuple_name = "hw-rwpt";
10612 break;
10613 case bp_access_watchpoint:
10614 uiout->text ("Masked hardware access (read/write) watchpoint ");
10615 tuple_name = "hw-awpt";
10616 break;
10617 default:
10618 internal_error (__FILE__, __LINE__,
10619 _("Invalid hardware watchpoint type."));
10620 }
10621
10622 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10623 uiout->field_int ("number", b->number);
10624 uiout->text (": ");
10625 uiout->field_string ("exp", w->exp_string);
10626 }
10627
10628 /* Implement the "print_recreate" breakpoint_ops method for
10629 masked hardware watchpoints. */
10630
10631 static void
10632 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10633 {
10634 struct watchpoint *w = (struct watchpoint *) b;
10635 char tmp[40];
10636
10637 switch (b->type)
10638 {
10639 case bp_hardware_watchpoint:
10640 fprintf_unfiltered (fp, "watch");
10641 break;
10642 case bp_read_watchpoint:
10643 fprintf_unfiltered (fp, "rwatch");
10644 break;
10645 case bp_access_watchpoint:
10646 fprintf_unfiltered (fp, "awatch");
10647 break;
10648 default:
10649 internal_error (__FILE__, __LINE__,
10650 _("Invalid hardware watchpoint type."));
10651 }
10652
10653 sprintf_vma (tmp, w->hw_wp_mask);
10654 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10655 print_recreate_thread (b, fp);
10656 }
10657
10658 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10659
10660 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10661
10662 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10663
10664 static int
10665 is_masked_watchpoint (const struct breakpoint *b)
10666 {
10667 return b->ops == &masked_watchpoint_breakpoint_ops;
10668 }
10669
10670 /* accessflag: hw_write: watch write,
10671 hw_read: watch read,
10672 hw_access: watch access (read or write) */
10673 static void
10674 watch_command_1 (const char *arg, int accessflag, int from_tty,
10675 int just_location, int internal)
10676 {
10677 struct breakpoint *scope_breakpoint = NULL;
10678 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10679 struct value *val, *mark, *result;
10680 int saved_bitpos = 0, saved_bitsize = 0;
10681 const char *exp_start = NULL;
10682 const char *exp_end = NULL;
10683 const char *tok, *end_tok;
10684 int toklen = -1;
10685 const char *cond_start = NULL;
10686 const char *cond_end = NULL;
10687 enum bptype bp_type;
10688 int thread = -1;
10689 int pc = 0;
10690 /* Flag to indicate whether we are going to use masks for
10691 the hardware watchpoint. */
10692 int use_mask = 0;
10693 CORE_ADDR mask = 0;
10694
10695 /* Make sure that we actually have parameters to parse. */
10696 if (arg != NULL && arg[0] != '\0')
10697 {
10698 const char *value_start;
10699
10700 exp_end = arg + strlen (arg);
10701
10702 /* Look for "parameter value" pairs at the end
10703 of the arguments string. */
10704 for (tok = exp_end - 1; tok > arg; tok--)
10705 {
10706 /* Skip whitespace at the end of the argument list. */
10707 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10708 tok--;
10709
10710 /* Find the beginning of the last token.
10711 This is the value of the parameter. */
10712 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10713 tok--;
10714 value_start = tok + 1;
10715
10716 /* Skip whitespace. */
10717 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10718 tok--;
10719
10720 end_tok = tok;
10721
10722 /* Find the beginning of the second to last token.
10723 This is the parameter itself. */
10724 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10725 tok--;
10726 tok++;
10727 toklen = end_tok - tok + 1;
10728
10729 if (toklen == 6 && startswith (tok, "thread"))
10730 {
10731 struct thread_info *thr;
10732 /* At this point we've found a "thread" token, which means
10733 the user is trying to set a watchpoint that triggers
10734 only in a specific thread. */
10735 const char *endp;
10736
10737 if (thread != -1)
10738 error(_("You can specify only one thread."));
10739
10740 /* Extract the thread ID from the next token. */
10741 thr = parse_thread_id (value_start, &endp);
10742
10743 /* Check if the user provided a valid thread ID. */
10744 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10745 invalid_thread_id_error (value_start);
10746
10747 thread = thr->global_num;
10748 }
10749 else if (toklen == 4 && startswith (tok, "mask"))
10750 {
10751 /* We've found a "mask" token, which means the user wants to
10752 create a hardware watchpoint that is going to have the mask
10753 facility. */
10754 struct value *mask_value, *mark;
10755
10756 if (use_mask)
10757 error(_("You can specify only one mask."));
10758
10759 use_mask = just_location = 1;
10760
10761 mark = value_mark ();
10762 mask_value = parse_to_comma_and_eval (&value_start);
10763 mask = value_as_address (mask_value);
10764 value_free_to_mark (mark);
10765 }
10766 else
10767 /* We didn't recognize what we found. We should stop here. */
10768 break;
10769
10770 /* Truncate the string and get rid of the "parameter value" pair before
10771 the arguments string is parsed by the parse_exp_1 function. */
10772 exp_end = tok;
10773 }
10774 }
10775 else
10776 exp_end = arg;
10777
10778 /* Parse the rest of the arguments. From here on out, everything
10779 is in terms of a newly allocated string instead of the original
10780 ARG. */
10781 innermost_block = NULL;
10782 std::string expression (arg, exp_end - arg);
10783 exp_start = arg = expression.c_str ();
10784 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10785 exp_end = arg;
10786 /* Remove trailing whitespace from the expression before saving it.
10787 This makes the eventual display of the expression string a bit
10788 prettier. */
10789 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10790 --exp_end;
10791
10792 /* Checking if the expression is not constant. */
10793 if (watchpoint_exp_is_const (exp.get ()))
10794 {
10795 int len;
10796
10797 len = exp_end - exp_start;
10798 while (len > 0 && isspace (exp_start[len - 1]))
10799 len--;
10800 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10801 }
10802
10803 exp_valid_block = innermost_block;
10804 mark = value_mark ();
10805 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10806
10807 if (val != NULL && just_location)
10808 {
10809 saved_bitpos = value_bitpos (val);
10810 saved_bitsize = value_bitsize (val);
10811 }
10812
10813 if (just_location)
10814 {
10815 int ret;
10816
10817 exp_valid_block = NULL;
10818 val = value_addr (result);
10819 release_value (val);
10820 value_free_to_mark (mark);
10821
10822 if (use_mask)
10823 {
10824 ret = target_masked_watch_num_registers (value_as_address (val),
10825 mask);
10826 if (ret == -1)
10827 error (_("This target does not support masked watchpoints."));
10828 else if (ret == -2)
10829 error (_("Invalid mask or memory region."));
10830 }
10831 }
10832 else if (val != NULL)
10833 release_value (val);
10834
10835 tok = skip_spaces (arg);
10836 end_tok = skip_to_space (tok);
10837
10838 toklen = end_tok - tok;
10839 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10840 {
10841 innermost_block = NULL;
10842 tok = cond_start = end_tok + 1;
10843 parse_exp_1 (&tok, 0, 0, 0);
10844
10845 /* The watchpoint expression may not be local, but the condition
10846 may still be. E.g.: `watch global if local > 0'. */
10847 cond_exp_valid_block = innermost_block;
10848
10849 cond_end = tok;
10850 }
10851 if (*tok)
10852 error (_("Junk at end of command."));
10853
10854 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10855
10856 /* Save this because create_internal_breakpoint below invalidates
10857 'wp_frame'. */
10858 frame_id watchpoint_frame = get_frame_id (wp_frame);
10859
10860 /* If the expression is "local", then set up a "watchpoint scope"
10861 breakpoint at the point where we've left the scope of the watchpoint
10862 expression. Create the scope breakpoint before the watchpoint, so
10863 that we will encounter it first in bpstat_stop_status. */
10864 if (exp_valid_block != NULL && wp_frame != NULL)
10865 {
10866 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10867
10868 if (frame_id_p (caller_frame_id))
10869 {
10870 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10871 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10872
10873 scope_breakpoint
10874 = create_internal_breakpoint (caller_arch, caller_pc,
10875 bp_watchpoint_scope,
10876 &momentary_breakpoint_ops);
10877
10878 /* create_internal_breakpoint could invalidate WP_FRAME. */
10879 wp_frame = NULL;
10880
10881 scope_breakpoint->enable_state = bp_enabled;
10882
10883 /* Automatically delete the breakpoint when it hits. */
10884 scope_breakpoint->disposition = disp_del;
10885
10886 /* Only break in the proper frame (help with recursion). */
10887 scope_breakpoint->frame_id = caller_frame_id;
10888
10889 /* Set the address at which we will stop. */
10890 scope_breakpoint->loc->gdbarch = caller_arch;
10891 scope_breakpoint->loc->requested_address = caller_pc;
10892 scope_breakpoint->loc->address
10893 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10894 scope_breakpoint->loc->requested_address,
10895 scope_breakpoint->type);
10896 }
10897 }
10898
10899 /* Now set up the breakpoint. We create all watchpoints as hardware
10900 watchpoints here even if hardware watchpoints are turned off, a call
10901 to update_watchpoint later in this function will cause the type to
10902 drop back to bp_watchpoint (software watchpoint) if required. */
10903
10904 if (accessflag == hw_read)
10905 bp_type = bp_read_watchpoint;
10906 else if (accessflag == hw_access)
10907 bp_type = bp_access_watchpoint;
10908 else
10909 bp_type = bp_hardware_watchpoint;
10910
10911 std::unique_ptr<watchpoint> w (new watchpoint ());
10912
10913 if (use_mask)
10914 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10915 &masked_watchpoint_breakpoint_ops);
10916 else
10917 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10918 &watchpoint_breakpoint_ops);
10919 w->thread = thread;
10920 w->disposition = disp_donttouch;
10921 w->pspace = current_program_space;
10922 w->exp = std::move (exp);
10923 w->exp_valid_block = exp_valid_block;
10924 w->cond_exp_valid_block = cond_exp_valid_block;
10925 if (just_location)
10926 {
10927 struct type *t = value_type (val);
10928 CORE_ADDR addr = value_as_address (val);
10929
10930 w->exp_string_reparse
10931 = current_language->la_watch_location_expression (t, addr).release ();
10932
10933 w->exp_string = xstrprintf ("-location %.*s",
10934 (int) (exp_end - exp_start), exp_start);
10935 }
10936 else
10937 w->exp_string = savestring (exp_start, exp_end - exp_start);
10938
10939 if (use_mask)
10940 {
10941 w->hw_wp_mask = mask;
10942 }
10943 else
10944 {
10945 w->val = val;
10946 w->val_bitpos = saved_bitpos;
10947 w->val_bitsize = saved_bitsize;
10948 w->val_valid = 1;
10949 }
10950
10951 if (cond_start)
10952 w->cond_string = savestring (cond_start, cond_end - cond_start);
10953 else
10954 w->cond_string = 0;
10955
10956 if (frame_id_p (watchpoint_frame))
10957 {
10958 w->watchpoint_frame = watchpoint_frame;
10959 w->watchpoint_thread = inferior_ptid;
10960 }
10961 else
10962 {
10963 w->watchpoint_frame = null_frame_id;
10964 w->watchpoint_thread = null_ptid;
10965 }
10966
10967 if (scope_breakpoint != NULL)
10968 {
10969 /* The scope breakpoint is related to the watchpoint. We will
10970 need to act on them together. */
10971 w->related_breakpoint = scope_breakpoint;
10972 scope_breakpoint->related_breakpoint = w.get ();
10973 }
10974
10975 if (!just_location)
10976 value_free_to_mark (mark);
10977
10978 /* Finally update the new watchpoint. This creates the locations
10979 that should be inserted. */
10980 update_watchpoint (w.get (), 1);
10981
10982 install_breakpoint (internal, std::move (w), 1);
10983 }
10984
10985 /* Return count of debug registers needed to watch the given expression.
10986 If the watchpoint cannot be handled in hardware return zero. */
10987
10988 static int
10989 can_use_hardware_watchpoint (struct value *v)
10990 {
10991 int found_memory_cnt = 0;
10992 struct value *head = v;
10993
10994 /* Did the user specifically forbid us to use hardware watchpoints? */
10995 if (!can_use_hw_watchpoints)
10996 return 0;
10997
10998 /* Make sure that the value of the expression depends only upon
10999 memory contents, and values computed from them within GDB. If we
11000 find any register references or function calls, we can't use a
11001 hardware watchpoint.
11002
11003 The idea here is that evaluating an expression generates a series
11004 of values, one holding the value of every subexpression. (The
11005 expression a*b+c has five subexpressions: a, b, a*b, c, and
11006 a*b+c.) GDB's values hold almost enough information to establish
11007 the criteria given above --- they identify memory lvalues,
11008 register lvalues, computed values, etcetera. So we can evaluate
11009 the expression, and then scan the chain of values that leaves
11010 behind to decide whether we can detect any possible change to the
11011 expression's final value using only hardware watchpoints.
11012
11013 However, I don't think that the values returned by inferior
11014 function calls are special in any way. So this function may not
11015 notice that an expression involving an inferior function call
11016 can't be watched with hardware watchpoints. FIXME. */
11017 for (; v; v = value_next (v))
11018 {
11019 if (VALUE_LVAL (v) == lval_memory)
11020 {
11021 if (v != head && value_lazy (v))
11022 /* A lazy memory lvalue in the chain is one that GDB never
11023 needed to fetch; we either just used its address (e.g.,
11024 `a' in `a.b') or we never needed it at all (e.g., `a'
11025 in `a,b'). This doesn't apply to HEAD; if that is
11026 lazy then it was not readable, but watch it anyway. */
11027 ;
11028 else
11029 {
11030 /* Ahh, memory we actually used! Check if we can cover
11031 it with hardware watchpoints. */
11032 struct type *vtype = check_typedef (value_type (v));
11033
11034 /* We only watch structs and arrays if user asked for it
11035 explicitly, never if they just happen to appear in a
11036 middle of some value chain. */
11037 if (v == head
11038 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11039 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11040 {
11041 CORE_ADDR vaddr = value_address (v);
11042 int len;
11043 int num_regs;
11044
11045 len = (target_exact_watchpoints
11046 && is_scalar_type_recursive (vtype))?
11047 1 : TYPE_LENGTH (value_type (v));
11048
11049 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11050 if (!num_regs)
11051 return 0;
11052 else
11053 found_memory_cnt += num_regs;
11054 }
11055 }
11056 }
11057 else if (VALUE_LVAL (v) != not_lval
11058 && deprecated_value_modifiable (v) == 0)
11059 return 0; /* These are values from the history (e.g., $1). */
11060 else if (VALUE_LVAL (v) == lval_register)
11061 return 0; /* Cannot watch a register with a HW watchpoint. */
11062 }
11063
11064 /* The expression itself looks suitable for using a hardware
11065 watchpoint, but give the target machine a chance to reject it. */
11066 return found_memory_cnt;
11067 }
11068
11069 void
11070 watch_command_wrapper (const char *arg, int from_tty, int internal)
11071 {
11072 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11073 }
11074
11075 /* A helper function that looks for the "-location" argument and then
11076 calls watch_command_1. */
11077
11078 static void
11079 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11080 {
11081 int just_location = 0;
11082
11083 if (arg
11084 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11085 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11086 {
11087 arg = skip_spaces (arg);
11088 just_location = 1;
11089 }
11090
11091 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11092 }
11093
11094 static void
11095 watch_command (char *arg, int from_tty)
11096 {
11097 watch_maybe_just_location (arg, hw_write, from_tty);
11098 }
11099
11100 void
11101 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11102 {
11103 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11104 }
11105
11106 static void
11107 rwatch_command (char *arg, int from_tty)
11108 {
11109 watch_maybe_just_location (arg, hw_read, from_tty);
11110 }
11111
11112 void
11113 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11114 {
11115 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11116 }
11117
11118 static void
11119 awatch_command (char *arg, int from_tty)
11120 {
11121 watch_maybe_just_location (arg, hw_access, from_tty);
11122 }
11123 \f
11124
11125 /* Data for the FSM that manages the until(location)/advance commands
11126 in infcmd.c. Here because it uses the mechanisms of
11127 breakpoints. */
11128
11129 struct until_break_fsm
11130 {
11131 /* The base class. */
11132 struct thread_fsm thread_fsm;
11133
11134 /* The thread that as current when the command was executed. */
11135 int thread;
11136
11137 /* The breakpoint set at the destination location. */
11138 struct breakpoint *location_breakpoint;
11139
11140 /* Breakpoint set at the return address in the caller frame. May be
11141 NULL. */
11142 struct breakpoint *caller_breakpoint;
11143 };
11144
11145 static void until_break_fsm_clean_up (struct thread_fsm *self,
11146 struct thread_info *thread);
11147 static int until_break_fsm_should_stop (struct thread_fsm *self,
11148 struct thread_info *thread);
11149 static enum async_reply_reason
11150 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11151
11152 /* until_break_fsm's vtable. */
11153
11154 static struct thread_fsm_ops until_break_fsm_ops =
11155 {
11156 NULL, /* dtor */
11157 until_break_fsm_clean_up,
11158 until_break_fsm_should_stop,
11159 NULL, /* return_value */
11160 until_break_fsm_async_reply_reason,
11161 };
11162
11163 /* Allocate a new until_break_command_fsm. */
11164
11165 static struct until_break_fsm *
11166 new_until_break_fsm (struct interp *cmd_interp, int thread,
11167 struct breakpoint *location_breakpoint,
11168 struct breakpoint *caller_breakpoint)
11169 {
11170 struct until_break_fsm *sm;
11171
11172 sm = XCNEW (struct until_break_fsm);
11173 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11174
11175 sm->thread = thread;
11176 sm->location_breakpoint = location_breakpoint;
11177 sm->caller_breakpoint = caller_breakpoint;
11178
11179 return sm;
11180 }
11181
11182 /* Implementation of the 'should_stop' FSM method for the
11183 until(location)/advance commands. */
11184
11185 static int
11186 until_break_fsm_should_stop (struct thread_fsm *self,
11187 struct thread_info *tp)
11188 {
11189 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11190
11191 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11192 sm->location_breakpoint) != NULL
11193 || (sm->caller_breakpoint != NULL
11194 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11195 sm->caller_breakpoint) != NULL))
11196 thread_fsm_set_finished (self);
11197
11198 return 1;
11199 }
11200
11201 /* Implementation of the 'clean_up' FSM method for the
11202 until(location)/advance commands. */
11203
11204 static void
11205 until_break_fsm_clean_up (struct thread_fsm *self,
11206 struct thread_info *thread)
11207 {
11208 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11209
11210 /* Clean up our temporary breakpoints. */
11211 if (sm->location_breakpoint != NULL)
11212 {
11213 delete_breakpoint (sm->location_breakpoint);
11214 sm->location_breakpoint = NULL;
11215 }
11216 if (sm->caller_breakpoint != NULL)
11217 {
11218 delete_breakpoint (sm->caller_breakpoint);
11219 sm->caller_breakpoint = NULL;
11220 }
11221 delete_longjmp_breakpoint (sm->thread);
11222 }
11223
11224 /* Implementation of the 'async_reply_reason' FSM method for the
11225 until(location)/advance commands. */
11226
11227 static enum async_reply_reason
11228 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11229 {
11230 return EXEC_ASYNC_LOCATION_REACHED;
11231 }
11232
11233 void
11234 until_break_command (const char *arg, int from_tty, int anywhere)
11235 {
11236 struct frame_info *frame;
11237 struct gdbarch *frame_gdbarch;
11238 struct frame_id stack_frame_id;
11239 struct frame_id caller_frame_id;
11240 struct breakpoint *location_breakpoint;
11241 struct breakpoint *caller_breakpoint = NULL;
11242 struct cleanup *old_chain;
11243 int thread;
11244 struct thread_info *tp;
11245 struct until_break_fsm *sm;
11246
11247 clear_proceed_status (0);
11248
11249 /* Set a breakpoint where the user wants it and at return from
11250 this function. */
11251
11252 event_location_up location = string_to_event_location (&arg, current_language);
11253
11254 std::vector<symtab_and_line> sals
11255 = (last_displayed_sal_is_valid ()
11256 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11257 get_last_displayed_symtab (),
11258 get_last_displayed_line ())
11259 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11260 NULL, (struct symtab *) NULL, 0));
11261
11262 if (sals.size () != 1)
11263 error (_("Couldn't get information on specified line."));
11264
11265 symtab_and_line &sal = sals[0];
11266
11267 if (*arg)
11268 error (_("Junk at end of arguments."));
11269
11270 resolve_sal_pc (&sal);
11271
11272 tp = inferior_thread ();
11273 thread = tp->global_num;
11274
11275 old_chain = make_cleanup (null_cleanup, NULL);
11276
11277 /* Note linespec handling above invalidates the frame chain.
11278 Installing a breakpoint also invalidates the frame chain (as it
11279 may need to switch threads), so do any frame handling before
11280 that. */
11281
11282 frame = get_selected_frame (NULL);
11283 frame_gdbarch = get_frame_arch (frame);
11284 stack_frame_id = get_stack_frame_id (frame);
11285 caller_frame_id = frame_unwind_caller_id (frame);
11286
11287 /* Keep within the current frame, or in frames called by the current
11288 one. */
11289
11290 if (frame_id_p (caller_frame_id))
11291 {
11292 struct symtab_and_line sal2;
11293 struct gdbarch *caller_gdbarch;
11294
11295 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11296 sal2.pc = frame_unwind_caller_pc (frame);
11297 caller_gdbarch = frame_unwind_caller_arch (frame);
11298 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11299 sal2,
11300 caller_frame_id,
11301 bp_until);
11302 make_cleanup_delete_breakpoint (caller_breakpoint);
11303
11304 set_longjmp_breakpoint (tp, caller_frame_id);
11305 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11306 }
11307
11308 /* set_momentary_breakpoint could invalidate FRAME. */
11309 frame = NULL;
11310
11311 if (anywhere)
11312 /* If the user told us to continue until a specified location,
11313 we don't specify a frame at which we need to stop. */
11314 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11315 null_frame_id, bp_until);
11316 else
11317 /* Otherwise, specify the selected frame, because we want to stop
11318 only at the very same frame. */
11319 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11320 stack_frame_id, bp_until);
11321 make_cleanup_delete_breakpoint (location_breakpoint);
11322
11323 sm = new_until_break_fsm (command_interp (), tp->global_num,
11324 location_breakpoint, caller_breakpoint);
11325 tp->thread_fsm = &sm->thread_fsm;
11326
11327 discard_cleanups (old_chain);
11328
11329 proceed (-1, GDB_SIGNAL_DEFAULT);
11330 }
11331
11332 /* This function attempts to parse an optional "if <cond>" clause
11333 from the arg string. If one is not found, it returns NULL.
11334
11335 Else, it returns a pointer to the condition string. (It does not
11336 attempt to evaluate the string against a particular block.) And,
11337 it updates arg to point to the first character following the parsed
11338 if clause in the arg string. */
11339
11340 const char *
11341 ep_parse_optional_if_clause (const char **arg)
11342 {
11343 const char *cond_string;
11344
11345 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11346 return NULL;
11347
11348 /* Skip the "if" keyword. */
11349 (*arg) += 2;
11350
11351 /* Skip any extra leading whitespace, and record the start of the
11352 condition string. */
11353 *arg = skip_spaces (*arg);
11354 cond_string = *arg;
11355
11356 /* Assume that the condition occupies the remainder of the arg
11357 string. */
11358 (*arg) += strlen (cond_string);
11359
11360 return cond_string;
11361 }
11362
11363 /* Commands to deal with catching events, such as signals, exceptions,
11364 process start/exit, etc. */
11365
11366 typedef enum
11367 {
11368 catch_fork_temporary, catch_vfork_temporary,
11369 catch_fork_permanent, catch_vfork_permanent
11370 }
11371 catch_fork_kind;
11372
11373 static void
11374 catch_fork_command_1 (char *arg_entry, int from_tty,
11375 struct cmd_list_element *command)
11376 {
11377 const char *arg = arg_entry;
11378 struct gdbarch *gdbarch = get_current_arch ();
11379 const char *cond_string = NULL;
11380 catch_fork_kind fork_kind;
11381 int tempflag;
11382
11383 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11384 tempflag = (fork_kind == catch_fork_temporary
11385 || fork_kind == catch_vfork_temporary);
11386
11387 if (!arg)
11388 arg = "";
11389 arg = skip_spaces (arg);
11390
11391 /* The allowed syntax is:
11392 catch [v]fork
11393 catch [v]fork if <cond>
11394
11395 First, check if there's an if clause. */
11396 cond_string = ep_parse_optional_if_clause (&arg);
11397
11398 if ((*arg != '\0') && !isspace (*arg))
11399 error (_("Junk at end of arguments."));
11400
11401 /* If this target supports it, create a fork or vfork catchpoint
11402 and enable reporting of such events. */
11403 switch (fork_kind)
11404 {
11405 case catch_fork_temporary:
11406 case catch_fork_permanent:
11407 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11408 &catch_fork_breakpoint_ops);
11409 break;
11410 case catch_vfork_temporary:
11411 case catch_vfork_permanent:
11412 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11413 &catch_vfork_breakpoint_ops);
11414 break;
11415 default:
11416 error (_("unsupported or unknown fork kind; cannot catch it"));
11417 break;
11418 }
11419 }
11420
11421 static void
11422 catch_exec_command_1 (char *arg_entry, int from_tty,
11423 struct cmd_list_element *command)
11424 {
11425 const char *arg = arg_entry;
11426 struct gdbarch *gdbarch = get_current_arch ();
11427 int tempflag;
11428 const char *cond_string = NULL;
11429
11430 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11431
11432 if (!arg)
11433 arg = "";
11434 arg = skip_spaces (arg);
11435
11436 /* The allowed syntax is:
11437 catch exec
11438 catch exec if <cond>
11439
11440 First, check if there's an if clause. */
11441 cond_string = ep_parse_optional_if_clause (&arg);
11442
11443 if ((*arg != '\0') && !isspace (*arg))
11444 error (_("Junk at end of arguments."));
11445
11446 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11447 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11448 &catch_exec_breakpoint_ops);
11449 c->exec_pathname = NULL;
11450
11451 install_breakpoint (0, std::move (c), 1);
11452 }
11453
11454 void
11455 init_ada_exception_breakpoint (struct breakpoint *b,
11456 struct gdbarch *gdbarch,
11457 struct symtab_and_line sal,
11458 const char *addr_string,
11459 const struct breakpoint_ops *ops,
11460 int tempflag,
11461 int enabled,
11462 int from_tty)
11463 {
11464 if (from_tty)
11465 {
11466 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11467 if (!loc_gdbarch)
11468 loc_gdbarch = gdbarch;
11469
11470 describe_other_breakpoints (loc_gdbarch,
11471 sal.pspace, sal.pc, sal.section, -1);
11472 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11473 version for exception catchpoints, because two catchpoints
11474 used for different exception names will use the same address.
11475 In this case, a "breakpoint ... also set at..." warning is
11476 unproductive. Besides, the warning phrasing is also a bit
11477 inappropriate, we should use the word catchpoint, and tell
11478 the user what type of catchpoint it is. The above is good
11479 enough for now, though. */
11480 }
11481
11482 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11483
11484 b->enable_state = enabled ? bp_enabled : bp_disabled;
11485 b->disposition = tempflag ? disp_del : disp_donttouch;
11486 b->location = string_to_event_location (&addr_string,
11487 language_def (language_ada));
11488 b->language = language_ada;
11489 }
11490
11491 static void
11492 catch_command (const char *arg, int from_tty)
11493 {
11494 error (_("Catch requires an event name."));
11495 }
11496 \f
11497
11498 static void
11499 tcatch_command (const char *arg, int from_tty)
11500 {
11501 error (_("Catch requires an event name."));
11502 }
11503
11504 /* Compare two breakpoints and return a strcmp-like result. */
11505
11506 static int
11507 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11508 {
11509 uintptr_t ua = (uintptr_t) a;
11510 uintptr_t ub = (uintptr_t) b;
11511
11512 if (a->number < b->number)
11513 return -1;
11514 else if (a->number > b->number)
11515 return 1;
11516
11517 /* Now sort by address, in case we see, e..g, two breakpoints with
11518 the number 0. */
11519 if (ua < ub)
11520 return -1;
11521 return ua > ub ? 1 : 0;
11522 }
11523
11524 /* Delete breakpoints by address or line. */
11525
11526 static void
11527 clear_command (char *arg, int from_tty)
11528 {
11529 struct breakpoint *b;
11530 int default_match;
11531 int i;
11532
11533 std::vector<symtab_and_line> decoded_sals;
11534 symtab_and_line last_sal;
11535 gdb::array_view<symtab_and_line> sals;
11536 if (arg)
11537 {
11538 decoded_sals
11539 = decode_line_with_current_source (arg,
11540 (DECODE_LINE_FUNFIRSTLINE
11541 | DECODE_LINE_LIST_MODE));
11542 default_match = 0;
11543 sals = decoded_sals;
11544 }
11545 else
11546 {
11547 /* Set sal's line, symtab, pc, and pspace to the values
11548 corresponding to the last call to print_frame_info. If the
11549 codepoint is not valid, this will set all the fields to 0. */
11550 last_sal = get_last_displayed_sal ();
11551 if (last_sal.symtab == 0)
11552 error (_("No source file specified."));
11553
11554 default_match = 1;
11555 sals = last_sal;
11556 }
11557
11558 /* We don't call resolve_sal_pc here. That's not as bad as it
11559 seems, because all existing breakpoints typically have both
11560 file/line and pc set. So, if clear is given file/line, we can
11561 match this to existing breakpoint without obtaining pc at all.
11562
11563 We only support clearing given the address explicitly
11564 present in breakpoint table. Say, we've set breakpoint
11565 at file:line. There were several PC values for that file:line,
11566 due to optimization, all in one block.
11567
11568 We've picked one PC value. If "clear" is issued with another
11569 PC corresponding to the same file:line, the breakpoint won't
11570 be cleared. We probably can still clear the breakpoint, but
11571 since the other PC value is never presented to user, user
11572 can only find it by guessing, and it does not seem important
11573 to support that. */
11574
11575 /* For each line spec given, delete bps which correspond to it. Do
11576 it in two passes, solely to preserve the current behavior that
11577 from_tty is forced true if we delete more than one
11578 breakpoint. */
11579
11580 std::vector<struct breakpoint *> found;
11581 for (const auto &sal : sals)
11582 {
11583 const char *sal_fullname;
11584
11585 /* If exact pc given, clear bpts at that pc.
11586 If line given (pc == 0), clear all bpts on specified line.
11587 If defaulting, clear all bpts on default line
11588 or at default pc.
11589
11590 defaulting sal.pc != 0 tests to do
11591
11592 0 1 pc
11593 1 1 pc _and_ line
11594 0 0 line
11595 1 0 <can't happen> */
11596
11597 sal_fullname = (sal.symtab == NULL
11598 ? NULL : symtab_to_fullname (sal.symtab));
11599
11600 /* Find all matching breakpoints and add them to 'found'. */
11601 ALL_BREAKPOINTS (b)
11602 {
11603 int match = 0;
11604 /* Are we going to delete b? */
11605 if (b->type != bp_none && !is_watchpoint (b))
11606 {
11607 struct bp_location *loc = b->loc;
11608 for (; loc; loc = loc->next)
11609 {
11610 /* If the user specified file:line, don't allow a PC
11611 match. This matches historical gdb behavior. */
11612 int pc_match = (!sal.explicit_line
11613 && sal.pc
11614 && (loc->pspace == sal.pspace)
11615 && (loc->address == sal.pc)
11616 && (!section_is_overlay (loc->section)
11617 || loc->section == sal.section));
11618 int line_match = 0;
11619
11620 if ((default_match || sal.explicit_line)
11621 && loc->symtab != NULL
11622 && sal_fullname != NULL
11623 && sal.pspace == loc->pspace
11624 && loc->line_number == sal.line
11625 && filename_cmp (symtab_to_fullname (loc->symtab),
11626 sal_fullname) == 0)
11627 line_match = 1;
11628
11629 if (pc_match || line_match)
11630 {
11631 match = 1;
11632 break;
11633 }
11634 }
11635 }
11636
11637 if (match)
11638 found.push_back (b);
11639 }
11640 }
11641
11642 /* Now go thru the 'found' chain and delete them. */
11643 if (found.empty ())
11644 {
11645 if (arg)
11646 error (_("No breakpoint at %s."), arg);
11647 else
11648 error (_("No breakpoint at this line."));
11649 }
11650
11651 /* Remove duplicates from the vec. */
11652 std::sort (found.begin (), found.end (),
11653 [] (const breakpoint *a, const breakpoint *b)
11654 {
11655 return compare_breakpoints (a, b) < 0;
11656 });
11657 found.erase (std::unique (found.begin (), found.end (),
11658 [] (const breakpoint *a, const breakpoint *b)
11659 {
11660 return compare_breakpoints (a, b) == 0;
11661 }),
11662 found.end ());
11663
11664 if (found.size () > 1)
11665 from_tty = 1; /* Always report if deleted more than one. */
11666 if (from_tty)
11667 {
11668 if (found.size () == 1)
11669 printf_unfiltered (_("Deleted breakpoint "));
11670 else
11671 printf_unfiltered (_("Deleted breakpoints "));
11672 }
11673
11674 for (breakpoint *iter : found)
11675 {
11676 if (from_tty)
11677 printf_unfiltered ("%d ", iter->number);
11678 delete_breakpoint (iter);
11679 }
11680 if (from_tty)
11681 putchar_unfiltered ('\n');
11682 }
11683 \f
11684 /* Delete breakpoint in BS if they are `delete' breakpoints and
11685 all breakpoints that are marked for deletion, whether hit or not.
11686 This is called after any breakpoint is hit, or after errors. */
11687
11688 void
11689 breakpoint_auto_delete (bpstat bs)
11690 {
11691 struct breakpoint *b, *b_tmp;
11692
11693 for (; bs; bs = bs->next)
11694 if (bs->breakpoint_at
11695 && bs->breakpoint_at->disposition == disp_del
11696 && bs->stop)
11697 delete_breakpoint (bs->breakpoint_at);
11698
11699 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11700 {
11701 if (b->disposition == disp_del_at_next_stop)
11702 delete_breakpoint (b);
11703 }
11704 }
11705
11706 /* A comparison function for bp_location AP and BP being interfaced to
11707 qsort. Sort elements primarily by their ADDRESS (no matter what
11708 does breakpoint_address_is_meaningful say for its OWNER),
11709 secondarily by ordering first permanent elements and
11710 terciarily just ensuring the array is sorted stable way despite
11711 qsort being an unstable algorithm. */
11712
11713 static int
11714 bp_locations_compare (const void *ap, const void *bp)
11715 {
11716 const struct bp_location *a = *(const struct bp_location **) ap;
11717 const struct bp_location *b = *(const struct bp_location **) bp;
11718
11719 if (a->address != b->address)
11720 return (a->address > b->address) - (a->address < b->address);
11721
11722 /* Sort locations at the same address by their pspace number, keeping
11723 locations of the same inferior (in a multi-inferior environment)
11724 grouped. */
11725
11726 if (a->pspace->num != b->pspace->num)
11727 return ((a->pspace->num > b->pspace->num)
11728 - (a->pspace->num < b->pspace->num));
11729
11730 /* Sort permanent breakpoints first. */
11731 if (a->permanent != b->permanent)
11732 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11733
11734 /* Make the internal GDB representation stable across GDB runs
11735 where A and B memory inside GDB can differ. Breakpoint locations of
11736 the same type at the same address can be sorted in arbitrary order. */
11737
11738 if (a->owner->number != b->owner->number)
11739 return ((a->owner->number > b->owner->number)
11740 - (a->owner->number < b->owner->number));
11741
11742 return (a > b) - (a < b);
11743 }
11744
11745 /* Set bp_locations_placed_address_before_address_max and
11746 bp_locations_shadow_len_after_address_max according to the current
11747 content of the bp_locations array. */
11748
11749 static void
11750 bp_locations_target_extensions_update (void)
11751 {
11752 struct bp_location *bl, **blp_tmp;
11753
11754 bp_locations_placed_address_before_address_max = 0;
11755 bp_locations_shadow_len_after_address_max = 0;
11756
11757 ALL_BP_LOCATIONS (bl, blp_tmp)
11758 {
11759 CORE_ADDR start, end, addr;
11760
11761 if (!bp_location_has_shadow (bl))
11762 continue;
11763
11764 start = bl->target_info.placed_address;
11765 end = start + bl->target_info.shadow_len;
11766
11767 gdb_assert (bl->address >= start);
11768 addr = bl->address - start;
11769 if (addr > bp_locations_placed_address_before_address_max)
11770 bp_locations_placed_address_before_address_max = addr;
11771
11772 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11773
11774 gdb_assert (bl->address < end);
11775 addr = end - bl->address;
11776 if (addr > bp_locations_shadow_len_after_address_max)
11777 bp_locations_shadow_len_after_address_max = addr;
11778 }
11779 }
11780
11781 /* Download tracepoint locations if they haven't been. */
11782
11783 static void
11784 download_tracepoint_locations (void)
11785 {
11786 struct breakpoint *b;
11787 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11788
11789 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11790
11791 ALL_TRACEPOINTS (b)
11792 {
11793 struct bp_location *bl;
11794 struct tracepoint *t;
11795 int bp_location_downloaded = 0;
11796
11797 if ((b->type == bp_fast_tracepoint
11798 ? !may_insert_fast_tracepoints
11799 : !may_insert_tracepoints))
11800 continue;
11801
11802 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11803 {
11804 if (target_can_download_tracepoint ())
11805 can_download_tracepoint = TRIBOOL_TRUE;
11806 else
11807 can_download_tracepoint = TRIBOOL_FALSE;
11808 }
11809
11810 if (can_download_tracepoint == TRIBOOL_FALSE)
11811 break;
11812
11813 for (bl = b->loc; bl; bl = bl->next)
11814 {
11815 /* In tracepoint, locations are _never_ duplicated, so
11816 should_be_inserted is equivalent to
11817 unduplicated_should_be_inserted. */
11818 if (!should_be_inserted (bl) || bl->inserted)
11819 continue;
11820
11821 switch_to_program_space_and_thread (bl->pspace);
11822
11823 target_download_tracepoint (bl);
11824
11825 bl->inserted = 1;
11826 bp_location_downloaded = 1;
11827 }
11828 t = (struct tracepoint *) b;
11829 t->number_on_target = b->number;
11830 if (bp_location_downloaded)
11831 observer_notify_breakpoint_modified (b);
11832 }
11833 }
11834
11835 /* Swap the insertion/duplication state between two locations. */
11836
11837 static void
11838 swap_insertion (struct bp_location *left, struct bp_location *right)
11839 {
11840 const int left_inserted = left->inserted;
11841 const int left_duplicate = left->duplicate;
11842 const int left_needs_update = left->needs_update;
11843 const struct bp_target_info left_target_info = left->target_info;
11844
11845 /* Locations of tracepoints can never be duplicated. */
11846 if (is_tracepoint (left->owner))
11847 gdb_assert (!left->duplicate);
11848 if (is_tracepoint (right->owner))
11849 gdb_assert (!right->duplicate);
11850
11851 left->inserted = right->inserted;
11852 left->duplicate = right->duplicate;
11853 left->needs_update = right->needs_update;
11854 left->target_info = right->target_info;
11855 right->inserted = left_inserted;
11856 right->duplicate = left_duplicate;
11857 right->needs_update = left_needs_update;
11858 right->target_info = left_target_info;
11859 }
11860
11861 /* Force the re-insertion of the locations at ADDRESS. This is called
11862 once a new/deleted/modified duplicate location is found and we are evaluating
11863 conditions on the target's side. Such conditions need to be updated on
11864 the target. */
11865
11866 static void
11867 force_breakpoint_reinsertion (struct bp_location *bl)
11868 {
11869 struct bp_location **locp = NULL, **loc2p;
11870 struct bp_location *loc;
11871 CORE_ADDR address = 0;
11872 int pspace_num;
11873
11874 address = bl->address;
11875 pspace_num = bl->pspace->num;
11876
11877 /* This is only meaningful if the target is
11878 evaluating conditions and if the user has
11879 opted for condition evaluation on the target's
11880 side. */
11881 if (gdb_evaluates_breakpoint_condition_p ()
11882 || !target_supports_evaluation_of_breakpoint_conditions ())
11883 return;
11884
11885 /* Flag all breakpoint locations with this address and
11886 the same program space as the location
11887 as "its condition has changed". We need to
11888 update the conditions on the target's side. */
11889 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11890 {
11891 loc = *loc2p;
11892
11893 if (!is_breakpoint (loc->owner)
11894 || pspace_num != loc->pspace->num)
11895 continue;
11896
11897 /* Flag the location appropriately. We use a different state to
11898 let everyone know that we already updated the set of locations
11899 with addr bl->address and program space bl->pspace. This is so
11900 we don't have to keep calling these functions just to mark locations
11901 that have already been marked. */
11902 loc->condition_changed = condition_updated;
11903
11904 /* Free the agent expression bytecode as well. We will compute
11905 it later on. */
11906 loc->cond_bytecode.reset ();
11907 }
11908 }
11909 /* Called whether new breakpoints are created, or existing breakpoints
11910 deleted, to update the global location list and recompute which
11911 locations are duplicate of which.
11912
11913 The INSERT_MODE flag determines whether locations may not, may, or
11914 shall be inserted now. See 'enum ugll_insert_mode' for more
11915 info. */
11916
11917 static void
11918 update_global_location_list (enum ugll_insert_mode insert_mode)
11919 {
11920 struct breakpoint *b;
11921 struct bp_location **locp, *loc;
11922 /* Last breakpoint location address that was marked for update. */
11923 CORE_ADDR last_addr = 0;
11924 /* Last breakpoint location program space that was marked for update. */
11925 int last_pspace_num = -1;
11926
11927 /* Used in the duplicates detection below. When iterating over all
11928 bp_locations, points to the first bp_location of a given address.
11929 Breakpoints and watchpoints of different types are never
11930 duplicates of each other. Keep one pointer for each type of
11931 breakpoint/watchpoint, so we only need to loop over all locations
11932 once. */
11933 struct bp_location *bp_loc_first; /* breakpoint */
11934 struct bp_location *wp_loc_first; /* hardware watchpoint */
11935 struct bp_location *awp_loc_first; /* access watchpoint */
11936 struct bp_location *rwp_loc_first; /* read watchpoint */
11937
11938 /* Saved former bp_locations array which we compare against the newly
11939 built bp_locations from the current state of ALL_BREAKPOINTS. */
11940 struct bp_location **old_locp;
11941 unsigned old_locations_count;
11942 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11943
11944 old_locations_count = bp_locations_count;
11945 bp_locations = NULL;
11946 bp_locations_count = 0;
11947
11948 ALL_BREAKPOINTS (b)
11949 for (loc = b->loc; loc; loc = loc->next)
11950 bp_locations_count++;
11951
11952 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11953 locp = bp_locations;
11954 ALL_BREAKPOINTS (b)
11955 for (loc = b->loc; loc; loc = loc->next)
11956 *locp++ = loc;
11957 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11958 bp_locations_compare);
11959
11960 bp_locations_target_extensions_update ();
11961
11962 /* Identify bp_location instances that are no longer present in the
11963 new list, and therefore should be freed. Note that it's not
11964 necessary that those locations should be removed from inferior --
11965 if there's another location at the same address (previously
11966 marked as duplicate), we don't need to remove/insert the
11967 location.
11968
11969 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11970 and former bp_location array state respectively. */
11971
11972 locp = bp_locations;
11973 for (old_locp = old_locations.get ();
11974 old_locp < old_locations.get () + old_locations_count;
11975 old_locp++)
11976 {
11977 struct bp_location *old_loc = *old_locp;
11978 struct bp_location **loc2p;
11979
11980 /* Tells if 'old_loc' is found among the new locations. If
11981 not, we have to free it. */
11982 int found_object = 0;
11983 /* Tells if the location should remain inserted in the target. */
11984 int keep_in_target = 0;
11985 int removed = 0;
11986
11987 /* Skip LOCP entries which will definitely never be needed.
11988 Stop either at or being the one matching OLD_LOC. */
11989 while (locp < bp_locations + bp_locations_count
11990 && (*locp)->address < old_loc->address)
11991 locp++;
11992
11993 for (loc2p = locp;
11994 (loc2p < bp_locations + bp_locations_count
11995 && (*loc2p)->address == old_loc->address);
11996 loc2p++)
11997 {
11998 /* Check if this is a new/duplicated location or a duplicated
11999 location that had its condition modified. If so, we want to send
12000 its condition to the target if evaluation of conditions is taking
12001 place there. */
12002 if ((*loc2p)->condition_changed == condition_modified
12003 && (last_addr != old_loc->address
12004 || last_pspace_num != old_loc->pspace->num))
12005 {
12006 force_breakpoint_reinsertion (*loc2p);
12007 last_pspace_num = old_loc->pspace->num;
12008 }
12009
12010 if (*loc2p == old_loc)
12011 found_object = 1;
12012 }
12013
12014 /* We have already handled this address, update it so that we don't
12015 have to go through updates again. */
12016 last_addr = old_loc->address;
12017
12018 /* Target-side condition evaluation: Handle deleted locations. */
12019 if (!found_object)
12020 force_breakpoint_reinsertion (old_loc);
12021
12022 /* If this location is no longer present, and inserted, look if
12023 there's maybe a new location at the same address. If so,
12024 mark that one inserted, and don't remove this one. This is
12025 needed so that we don't have a time window where a breakpoint
12026 at certain location is not inserted. */
12027
12028 if (old_loc->inserted)
12029 {
12030 /* If the location is inserted now, we might have to remove
12031 it. */
12032
12033 if (found_object && should_be_inserted (old_loc))
12034 {
12035 /* The location is still present in the location list,
12036 and still should be inserted. Don't do anything. */
12037 keep_in_target = 1;
12038 }
12039 else
12040 {
12041 /* This location still exists, but it won't be kept in the
12042 target since it may have been disabled. We proceed to
12043 remove its target-side condition. */
12044
12045 /* The location is either no longer present, or got
12046 disabled. See if there's another location at the
12047 same address, in which case we don't need to remove
12048 this one from the target. */
12049
12050 /* OLD_LOC comes from existing struct breakpoint. */
12051 if (breakpoint_address_is_meaningful (old_loc->owner))
12052 {
12053 for (loc2p = locp;
12054 (loc2p < bp_locations + bp_locations_count
12055 && (*loc2p)->address == old_loc->address);
12056 loc2p++)
12057 {
12058 struct bp_location *loc2 = *loc2p;
12059
12060 if (breakpoint_locations_match (loc2, old_loc))
12061 {
12062 /* Read watchpoint locations are switched to
12063 access watchpoints, if the former are not
12064 supported, but the latter are. */
12065 if (is_hardware_watchpoint (old_loc->owner))
12066 {
12067 gdb_assert (is_hardware_watchpoint (loc2->owner));
12068 loc2->watchpoint_type = old_loc->watchpoint_type;
12069 }
12070
12071 /* loc2 is a duplicated location. We need to check
12072 if it should be inserted in case it will be
12073 unduplicated. */
12074 if (loc2 != old_loc
12075 && unduplicated_should_be_inserted (loc2))
12076 {
12077 swap_insertion (old_loc, loc2);
12078 keep_in_target = 1;
12079 break;
12080 }
12081 }
12082 }
12083 }
12084 }
12085
12086 if (!keep_in_target)
12087 {
12088 if (remove_breakpoint (old_loc))
12089 {
12090 /* This is just about all we can do. We could keep
12091 this location on the global list, and try to
12092 remove it next time, but there's no particular
12093 reason why we will succeed next time.
12094
12095 Note that at this point, old_loc->owner is still
12096 valid, as delete_breakpoint frees the breakpoint
12097 only after calling us. */
12098 printf_filtered (_("warning: Error removing "
12099 "breakpoint %d\n"),
12100 old_loc->owner->number);
12101 }
12102 removed = 1;
12103 }
12104 }
12105
12106 if (!found_object)
12107 {
12108 if (removed && target_is_non_stop_p ()
12109 && need_moribund_for_location_type (old_loc))
12110 {
12111 /* This location was removed from the target. In
12112 non-stop mode, a race condition is possible where
12113 we've removed a breakpoint, but stop events for that
12114 breakpoint are already queued and will arrive later.
12115 We apply an heuristic to be able to distinguish such
12116 SIGTRAPs from other random SIGTRAPs: we keep this
12117 breakpoint location for a bit, and will retire it
12118 after we see some number of events. The theory here
12119 is that reporting of events should, "on the average",
12120 be fair, so after a while we'll see events from all
12121 threads that have anything of interest, and no longer
12122 need to keep this breakpoint location around. We
12123 don't hold locations forever so to reduce chances of
12124 mistaking a non-breakpoint SIGTRAP for a breakpoint
12125 SIGTRAP.
12126
12127 The heuristic failing can be disastrous on
12128 decr_pc_after_break targets.
12129
12130 On decr_pc_after_break targets, like e.g., x86-linux,
12131 if we fail to recognize a late breakpoint SIGTRAP,
12132 because events_till_retirement has reached 0 too
12133 soon, we'll fail to do the PC adjustment, and report
12134 a random SIGTRAP to the user. When the user resumes
12135 the inferior, it will most likely immediately crash
12136 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12137 corrupted, because of being resumed e.g., in the
12138 middle of a multi-byte instruction, or skipped a
12139 one-byte instruction. This was actually seen happen
12140 on native x86-linux, and should be less rare on
12141 targets that do not support new thread events, like
12142 remote, due to the heuristic depending on
12143 thread_count.
12144
12145 Mistaking a random SIGTRAP for a breakpoint trap
12146 causes similar symptoms (PC adjustment applied when
12147 it shouldn't), but then again, playing with SIGTRAPs
12148 behind the debugger's back is asking for trouble.
12149
12150 Since hardware watchpoint traps are always
12151 distinguishable from other traps, so we don't need to
12152 apply keep hardware watchpoint moribund locations
12153 around. We simply always ignore hardware watchpoint
12154 traps we can no longer explain. */
12155
12156 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12157 old_loc->owner = NULL;
12158
12159 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12160 }
12161 else
12162 {
12163 old_loc->owner = NULL;
12164 decref_bp_location (&old_loc);
12165 }
12166 }
12167 }
12168
12169 /* Rescan breakpoints at the same address and section, marking the
12170 first one as "first" and any others as "duplicates". This is so
12171 that the bpt instruction is only inserted once. If we have a
12172 permanent breakpoint at the same place as BPT, make that one the
12173 official one, and the rest as duplicates. Permanent breakpoints
12174 are sorted first for the same address.
12175
12176 Do the same for hardware watchpoints, but also considering the
12177 watchpoint's type (regular/access/read) and length. */
12178
12179 bp_loc_first = NULL;
12180 wp_loc_first = NULL;
12181 awp_loc_first = NULL;
12182 rwp_loc_first = NULL;
12183 ALL_BP_LOCATIONS (loc, locp)
12184 {
12185 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12186 non-NULL. */
12187 struct bp_location **loc_first_p;
12188 b = loc->owner;
12189
12190 if (!unduplicated_should_be_inserted (loc)
12191 || !breakpoint_address_is_meaningful (b)
12192 /* Don't detect duplicate for tracepoint locations because they are
12193 never duplicated. See the comments in field `duplicate' of
12194 `struct bp_location'. */
12195 || is_tracepoint (b))
12196 {
12197 /* Clear the condition modification flag. */
12198 loc->condition_changed = condition_unchanged;
12199 continue;
12200 }
12201
12202 if (b->type == bp_hardware_watchpoint)
12203 loc_first_p = &wp_loc_first;
12204 else if (b->type == bp_read_watchpoint)
12205 loc_first_p = &rwp_loc_first;
12206 else if (b->type == bp_access_watchpoint)
12207 loc_first_p = &awp_loc_first;
12208 else
12209 loc_first_p = &bp_loc_first;
12210
12211 if (*loc_first_p == NULL
12212 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12213 || !breakpoint_locations_match (loc, *loc_first_p))
12214 {
12215 *loc_first_p = loc;
12216 loc->duplicate = 0;
12217
12218 if (is_breakpoint (loc->owner) && loc->condition_changed)
12219 {
12220 loc->needs_update = 1;
12221 /* Clear the condition modification flag. */
12222 loc->condition_changed = condition_unchanged;
12223 }
12224 continue;
12225 }
12226
12227
12228 /* This and the above ensure the invariant that the first location
12229 is not duplicated, and is the inserted one.
12230 All following are marked as duplicated, and are not inserted. */
12231 if (loc->inserted)
12232 swap_insertion (loc, *loc_first_p);
12233 loc->duplicate = 1;
12234
12235 /* Clear the condition modification flag. */
12236 loc->condition_changed = condition_unchanged;
12237 }
12238
12239 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12240 {
12241 if (insert_mode != UGLL_DONT_INSERT)
12242 insert_breakpoint_locations ();
12243 else
12244 {
12245 /* Even though the caller told us to not insert new
12246 locations, we may still need to update conditions on the
12247 target's side of breakpoints that were already inserted
12248 if the target is evaluating breakpoint conditions. We
12249 only update conditions for locations that are marked
12250 "needs_update". */
12251 update_inserted_breakpoint_locations ();
12252 }
12253 }
12254
12255 if (insert_mode != UGLL_DONT_INSERT)
12256 download_tracepoint_locations ();
12257 }
12258
12259 void
12260 breakpoint_retire_moribund (void)
12261 {
12262 struct bp_location *loc;
12263 int ix;
12264
12265 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12266 if (--(loc->events_till_retirement) == 0)
12267 {
12268 decref_bp_location (&loc);
12269 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12270 --ix;
12271 }
12272 }
12273
12274 static void
12275 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12276 {
12277
12278 TRY
12279 {
12280 update_global_location_list (insert_mode);
12281 }
12282 CATCH (e, RETURN_MASK_ERROR)
12283 {
12284 }
12285 END_CATCH
12286 }
12287
12288 /* Clear BKP from a BPS. */
12289
12290 static void
12291 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12292 {
12293 bpstat bs;
12294
12295 for (bs = bps; bs; bs = bs->next)
12296 if (bs->breakpoint_at == bpt)
12297 {
12298 bs->breakpoint_at = NULL;
12299 bs->old_val = NULL;
12300 /* bs->commands will be freed later. */
12301 }
12302 }
12303
12304 /* Callback for iterate_over_threads. */
12305 static int
12306 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12307 {
12308 struct breakpoint *bpt = (struct breakpoint *) data;
12309
12310 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12311 return 0;
12312 }
12313
12314 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12315 callbacks. */
12316
12317 static void
12318 say_where (struct breakpoint *b)
12319 {
12320 struct value_print_options opts;
12321
12322 get_user_print_options (&opts);
12323
12324 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12325 single string. */
12326 if (b->loc == NULL)
12327 {
12328 /* For pending locations, the output differs slightly based
12329 on b->extra_string. If this is non-NULL, it contains either
12330 a condition or dprintf arguments. */
12331 if (b->extra_string == NULL)
12332 {
12333 printf_filtered (_(" (%s) pending."),
12334 event_location_to_string (b->location.get ()));
12335 }
12336 else if (b->type == bp_dprintf)
12337 {
12338 printf_filtered (_(" (%s,%s) pending."),
12339 event_location_to_string (b->location.get ()),
12340 b->extra_string);
12341 }
12342 else
12343 {
12344 printf_filtered (_(" (%s %s) pending."),
12345 event_location_to_string (b->location.get ()),
12346 b->extra_string);
12347 }
12348 }
12349 else
12350 {
12351 if (opts.addressprint || b->loc->symtab == NULL)
12352 {
12353 printf_filtered (" at ");
12354 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12355 gdb_stdout);
12356 }
12357 if (b->loc->symtab != NULL)
12358 {
12359 /* If there is a single location, we can print the location
12360 more nicely. */
12361 if (b->loc->next == NULL)
12362 printf_filtered (": file %s, line %d.",
12363 symtab_to_filename_for_display (b->loc->symtab),
12364 b->loc->line_number);
12365 else
12366 /* This is not ideal, but each location may have a
12367 different file name, and this at least reflects the
12368 real situation somewhat. */
12369 printf_filtered (": %s.",
12370 event_location_to_string (b->location.get ()));
12371 }
12372
12373 if (b->loc->next)
12374 {
12375 struct bp_location *loc = b->loc;
12376 int n = 0;
12377 for (; loc; loc = loc->next)
12378 ++n;
12379 printf_filtered (" (%d locations)", n);
12380 }
12381 }
12382 }
12383
12384 /* Default bp_location_ops methods. */
12385
12386 static void
12387 bp_location_dtor (struct bp_location *self)
12388 {
12389 xfree (self->function_name);
12390 }
12391
12392 static const struct bp_location_ops bp_location_ops =
12393 {
12394 bp_location_dtor
12395 };
12396
12397 /* Destructor for the breakpoint base class. */
12398
12399 breakpoint::~breakpoint ()
12400 {
12401 xfree (this->cond_string);
12402 xfree (this->extra_string);
12403 xfree (this->filter);
12404 }
12405
12406 static struct bp_location *
12407 base_breakpoint_allocate_location (struct breakpoint *self)
12408 {
12409 return new bp_location (&bp_location_ops, self);
12410 }
12411
12412 static void
12413 base_breakpoint_re_set (struct breakpoint *b)
12414 {
12415 /* Nothing to re-set. */
12416 }
12417
12418 #define internal_error_pure_virtual_called() \
12419 gdb_assert_not_reached ("pure virtual function called")
12420
12421 static int
12422 base_breakpoint_insert_location (struct bp_location *bl)
12423 {
12424 internal_error_pure_virtual_called ();
12425 }
12426
12427 static int
12428 base_breakpoint_remove_location (struct bp_location *bl,
12429 enum remove_bp_reason reason)
12430 {
12431 internal_error_pure_virtual_called ();
12432 }
12433
12434 static int
12435 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12436 struct address_space *aspace,
12437 CORE_ADDR bp_addr,
12438 const struct target_waitstatus *ws)
12439 {
12440 internal_error_pure_virtual_called ();
12441 }
12442
12443 static void
12444 base_breakpoint_check_status (bpstat bs)
12445 {
12446 /* Always stop. */
12447 }
12448
12449 /* A "works_in_software_mode" breakpoint_ops method that just internal
12450 errors. */
12451
12452 static int
12453 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12454 {
12455 internal_error_pure_virtual_called ();
12456 }
12457
12458 /* A "resources_needed" breakpoint_ops method that just internal
12459 errors. */
12460
12461 static int
12462 base_breakpoint_resources_needed (const struct bp_location *bl)
12463 {
12464 internal_error_pure_virtual_called ();
12465 }
12466
12467 static enum print_stop_action
12468 base_breakpoint_print_it (bpstat bs)
12469 {
12470 internal_error_pure_virtual_called ();
12471 }
12472
12473 static void
12474 base_breakpoint_print_one_detail (const struct breakpoint *self,
12475 struct ui_out *uiout)
12476 {
12477 /* nothing */
12478 }
12479
12480 static void
12481 base_breakpoint_print_mention (struct breakpoint *b)
12482 {
12483 internal_error_pure_virtual_called ();
12484 }
12485
12486 static void
12487 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12488 {
12489 internal_error_pure_virtual_called ();
12490 }
12491
12492 static void
12493 base_breakpoint_create_sals_from_location
12494 (const struct event_location *location,
12495 struct linespec_result *canonical,
12496 enum bptype type_wanted)
12497 {
12498 internal_error_pure_virtual_called ();
12499 }
12500
12501 static void
12502 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12503 struct linespec_result *c,
12504 gdb::unique_xmalloc_ptr<char> cond_string,
12505 gdb::unique_xmalloc_ptr<char> extra_string,
12506 enum bptype type_wanted,
12507 enum bpdisp disposition,
12508 int thread,
12509 int task, int ignore_count,
12510 const struct breakpoint_ops *o,
12511 int from_tty, int enabled,
12512 int internal, unsigned flags)
12513 {
12514 internal_error_pure_virtual_called ();
12515 }
12516
12517 static std::vector<symtab_and_line>
12518 base_breakpoint_decode_location (struct breakpoint *b,
12519 const struct event_location *location,
12520 struct program_space *search_pspace)
12521 {
12522 internal_error_pure_virtual_called ();
12523 }
12524
12525 /* The default 'explains_signal' method. */
12526
12527 static int
12528 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12529 {
12530 return 1;
12531 }
12532
12533 /* The default "after_condition_true" method. */
12534
12535 static void
12536 base_breakpoint_after_condition_true (struct bpstats *bs)
12537 {
12538 /* Nothing to do. */
12539 }
12540
12541 struct breakpoint_ops base_breakpoint_ops =
12542 {
12543 base_breakpoint_allocate_location,
12544 base_breakpoint_re_set,
12545 base_breakpoint_insert_location,
12546 base_breakpoint_remove_location,
12547 base_breakpoint_breakpoint_hit,
12548 base_breakpoint_check_status,
12549 base_breakpoint_resources_needed,
12550 base_breakpoint_works_in_software_mode,
12551 base_breakpoint_print_it,
12552 NULL,
12553 base_breakpoint_print_one_detail,
12554 base_breakpoint_print_mention,
12555 base_breakpoint_print_recreate,
12556 base_breakpoint_create_sals_from_location,
12557 base_breakpoint_create_breakpoints_sal,
12558 base_breakpoint_decode_location,
12559 base_breakpoint_explains_signal,
12560 base_breakpoint_after_condition_true,
12561 };
12562
12563 /* Default breakpoint_ops methods. */
12564
12565 static void
12566 bkpt_re_set (struct breakpoint *b)
12567 {
12568 /* FIXME: is this still reachable? */
12569 if (breakpoint_event_location_empty_p (b))
12570 {
12571 /* Anything without a location can't be re-set. */
12572 delete_breakpoint (b);
12573 return;
12574 }
12575
12576 breakpoint_re_set_default (b);
12577 }
12578
12579 static int
12580 bkpt_insert_location (struct bp_location *bl)
12581 {
12582 CORE_ADDR addr = bl->target_info.reqstd_address;
12583
12584 bl->target_info.kind = breakpoint_kind (bl, &addr);
12585 bl->target_info.placed_address = addr;
12586
12587 if (bl->loc_type == bp_loc_hardware_breakpoint)
12588 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12589 else
12590 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12591 }
12592
12593 static int
12594 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12595 {
12596 if (bl->loc_type == bp_loc_hardware_breakpoint)
12597 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12598 else
12599 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12600 }
12601
12602 static int
12603 bkpt_breakpoint_hit (const struct bp_location *bl,
12604 struct address_space *aspace, CORE_ADDR bp_addr,
12605 const struct target_waitstatus *ws)
12606 {
12607 if (ws->kind != TARGET_WAITKIND_STOPPED
12608 || ws->value.sig != GDB_SIGNAL_TRAP)
12609 return 0;
12610
12611 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12612 aspace, bp_addr))
12613 return 0;
12614
12615 if (overlay_debugging /* unmapped overlay section */
12616 && section_is_overlay (bl->section)
12617 && !section_is_mapped (bl->section))
12618 return 0;
12619
12620 return 1;
12621 }
12622
12623 static int
12624 dprintf_breakpoint_hit (const struct bp_location *bl,
12625 struct address_space *aspace, CORE_ADDR bp_addr,
12626 const struct target_waitstatus *ws)
12627 {
12628 if (dprintf_style == dprintf_style_agent
12629 && target_can_run_breakpoint_commands ())
12630 {
12631 /* An agent-style dprintf never causes a stop. If we see a trap
12632 for this address it must be for a breakpoint that happens to
12633 be set at the same address. */
12634 return 0;
12635 }
12636
12637 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12638 }
12639
12640 static int
12641 bkpt_resources_needed (const struct bp_location *bl)
12642 {
12643 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12644
12645 return 1;
12646 }
12647
12648 static enum print_stop_action
12649 bkpt_print_it (bpstat bs)
12650 {
12651 struct breakpoint *b;
12652 const struct bp_location *bl;
12653 int bp_temp;
12654 struct ui_out *uiout = current_uiout;
12655
12656 gdb_assert (bs->bp_location_at != NULL);
12657
12658 bl = bs->bp_location_at;
12659 b = bs->breakpoint_at;
12660
12661 bp_temp = b->disposition == disp_del;
12662 if (bl->address != bl->requested_address)
12663 breakpoint_adjustment_warning (bl->requested_address,
12664 bl->address,
12665 b->number, 1);
12666 annotate_breakpoint (b->number);
12667 maybe_print_thread_hit_breakpoint (uiout);
12668
12669 if (bp_temp)
12670 uiout->text ("Temporary breakpoint ");
12671 else
12672 uiout->text ("Breakpoint ");
12673 if (uiout->is_mi_like_p ())
12674 {
12675 uiout->field_string ("reason",
12676 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12677 uiout->field_string ("disp", bpdisp_text (b->disposition));
12678 }
12679 uiout->field_int ("bkptno", b->number);
12680 uiout->text (", ");
12681
12682 return PRINT_SRC_AND_LOC;
12683 }
12684
12685 static void
12686 bkpt_print_mention (struct breakpoint *b)
12687 {
12688 if (current_uiout->is_mi_like_p ())
12689 return;
12690
12691 switch (b->type)
12692 {
12693 case bp_breakpoint:
12694 case bp_gnu_ifunc_resolver:
12695 if (b->disposition == disp_del)
12696 printf_filtered (_("Temporary breakpoint"));
12697 else
12698 printf_filtered (_("Breakpoint"));
12699 printf_filtered (_(" %d"), b->number);
12700 if (b->type == bp_gnu_ifunc_resolver)
12701 printf_filtered (_(" at gnu-indirect-function resolver"));
12702 break;
12703 case bp_hardware_breakpoint:
12704 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12705 break;
12706 case bp_dprintf:
12707 printf_filtered (_("Dprintf %d"), b->number);
12708 break;
12709 }
12710
12711 say_where (b);
12712 }
12713
12714 static void
12715 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12716 {
12717 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12718 fprintf_unfiltered (fp, "tbreak");
12719 else if (tp->type == bp_breakpoint)
12720 fprintf_unfiltered (fp, "break");
12721 else if (tp->type == bp_hardware_breakpoint
12722 && tp->disposition == disp_del)
12723 fprintf_unfiltered (fp, "thbreak");
12724 else if (tp->type == bp_hardware_breakpoint)
12725 fprintf_unfiltered (fp, "hbreak");
12726 else
12727 internal_error (__FILE__, __LINE__,
12728 _("unhandled breakpoint type %d"), (int) tp->type);
12729
12730 fprintf_unfiltered (fp, " %s",
12731 event_location_to_string (tp->location.get ()));
12732
12733 /* Print out extra_string if this breakpoint is pending. It might
12734 contain, for example, conditions that were set by the user. */
12735 if (tp->loc == NULL && tp->extra_string != NULL)
12736 fprintf_unfiltered (fp, " %s", tp->extra_string);
12737
12738 print_recreate_thread (tp, fp);
12739 }
12740
12741 static void
12742 bkpt_create_sals_from_location (const struct event_location *location,
12743 struct linespec_result *canonical,
12744 enum bptype type_wanted)
12745 {
12746 create_sals_from_location_default (location, canonical, type_wanted);
12747 }
12748
12749 static void
12750 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12751 struct linespec_result *canonical,
12752 gdb::unique_xmalloc_ptr<char> cond_string,
12753 gdb::unique_xmalloc_ptr<char> extra_string,
12754 enum bptype type_wanted,
12755 enum bpdisp disposition,
12756 int thread,
12757 int task, int ignore_count,
12758 const struct breakpoint_ops *ops,
12759 int from_tty, int enabled,
12760 int internal, unsigned flags)
12761 {
12762 create_breakpoints_sal_default (gdbarch, canonical,
12763 std::move (cond_string),
12764 std::move (extra_string),
12765 type_wanted,
12766 disposition, thread, task,
12767 ignore_count, ops, from_tty,
12768 enabled, internal, flags);
12769 }
12770
12771 static std::vector<symtab_and_line>
12772 bkpt_decode_location (struct breakpoint *b,
12773 const struct event_location *location,
12774 struct program_space *search_pspace)
12775 {
12776 return decode_location_default (b, location, search_pspace);
12777 }
12778
12779 /* Virtual table for internal breakpoints. */
12780
12781 static void
12782 internal_bkpt_re_set (struct breakpoint *b)
12783 {
12784 switch (b->type)
12785 {
12786 /* Delete overlay event and longjmp master breakpoints; they
12787 will be reset later by breakpoint_re_set. */
12788 case bp_overlay_event:
12789 case bp_longjmp_master:
12790 case bp_std_terminate_master:
12791 case bp_exception_master:
12792 delete_breakpoint (b);
12793 break;
12794
12795 /* This breakpoint is special, it's set up when the inferior
12796 starts and we really don't want to touch it. */
12797 case bp_shlib_event:
12798
12799 /* Like bp_shlib_event, this breakpoint type is special. Once
12800 it is set up, we do not want to touch it. */
12801 case bp_thread_event:
12802 break;
12803 }
12804 }
12805
12806 static void
12807 internal_bkpt_check_status (bpstat bs)
12808 {
12809 if (bs->breakpoint_at->type == bp_shlib_event)
12810 {
12811 /* If requested, stop when the dynamic linker notifies GDB of
12812 events. This allows the user to get control and place
12813 breakpoints in initializer routines for dynamically loaded
12814 objects (among other things). */
12815 bs->stop = stop_on_solib_events;
12816 bs->print = stop_on_solib_events;
12817 }
12818 else
12819 bs->stop = 0;
12820 }
12821
12822 static enum print_stop_action
12823 internal_bkpt_print_it (bpstat bs)
12824 {
12825 struct breakpoint *b;
12826
12827 b = bs->breakpoint_at;
12828
12829 switch (b->type)
12830 {
12831 case bp_shlib_event:
12832 /* Did we stop because the user set the stop_on_solib_events
12833 variable? (If so, we report this as a generic, "Stopped due
12834 to shlib event" message.) */
12835 print_solib_event (0);
12836 break;
12837
12838 case bp_thread_event:
12839 /* Not sure how we will get here.
12840 GDB should not stop for these breakpoints. */
12841 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12842 break;
12843
12844 case bp_overlay_event:
12845 /* By analogy with the thread event, GDB should not stop for these. */
12846 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12847 break;
12848
12849 case bp_longjmp_master:
12850 /* These should never be enabled. */
12851 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12852 break;
12853
12854 case bp_std_terminate_master:
12855 /* These should never be enabled. */
12856 printf_filtered (_("std::terminate Master Breakpoint: "
12857 "gdb should not stop!\n"));
12858 break;
12859
12860 case bp_exception_master:
12861 /* These should never be enabled. */
12862 printf_filtered (_("Exception Master Breakpoint: "
12863 "gdb should not stop!\n"));
12864 break;
12865 }
12866
12867 return PRINT_NOTHING;
12868 }
12869
12870 static void
12871 internal_bkpt_print_mention (struct breakpoint *b)
12872 {
12873 /* Nothing to mention. These breakpoints are internal. */
12874 }
12875
12876 /* Virtual table for momentary breakpoints */
12877
12878 static void
12879 momentary_bkpt_re_set (struct breakpoint *b)
12880 {
12881 /* Keep temporary breakpoints, which can be encountered when we step
12882 over a dlopen call and solib_add is resetting the breakpoints.
12883 Otherwise these should have been blown away via the cleanup chain
12884 or by breakpoint_init_inferior when we rerun the executable. */
12885 }
12886
12887 static void
12888 momentary_bkpt_check_status (bpstat bs)
12889 {
12890 /* Nothing. The point of these breakpoints is causing a stop. */
12891 }
12892
12893 static enum print_stop_action
12894 momentary_bkpt_print_it (bpstat bs)
12895 {
12896 return PRINT_UNKNOWN;
12897 }
12898
12899 static void
12900 momentary_bkpt_print_mention (struct breakpoint *b)
12901 {
12902 /* Nothing to mention. These breakpoints are internal. */
12903 }
12904
12905 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12906
12907 It gets cleared already on the removal of the first one of such placed
12908 breakpoints. This is OK as they get all removed altogether. */
12909
12910 longjmp_breakpoint::~longjmp_breakpoint ()
12911 {
12912 thread_info *tp = find_thread_global_id (this->thread);
12913
12914 if (tp != NULL)
12915 tp->initiating_frame = null_frame_id;
12916 }
12917
12918 /* Specific methods for probe breakpoints. */
12919
12920 static int
12921 bkpt_probe_insert_location (struct bp_location *bl)
12922 {
12923 int v = bkpt_insert_location (bl);
12924
12925 if (v == 0)
12926 {
12927 /* The insertion was successful, now let's set the probe's semaphore
12928 if needed. */
12929 if (bl->probe.probe->pops->set_semaphore != NULL)
12930 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
12931 bl->probe.objfile,
12932 bl->gdbarch);
12933 }
12934
12935 return v;
12936 }
12937
12938 static int
12939 bkpt_probe_remove_location (struct bp_location *bl,
12940 enum remove_bp_reason reason)
12941 {
12942 /* Let's clear the semaphore before removing the location. */
12943 if (bl->probe.probe->pops->clear_semaphore != NULL)
12944 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
12945 bl->probe.objfile,
12946 bl->gdbarch);
12947
12948 return bkpt_remove_location (bl, reason);
12949 }
12950
12951 static void
12952 bkpt_probe_create_sals_from_location (const struct event_location *location,
12953 struct linespec_result *canonical,
12954 enum bptype type_wanted)
12955 {
12956 struct linespec_sals lsal;
12957
12958 lsal.sals = parse_probes (location, NULL, canonical);
12959 lsal.canonical
12960 = xstrdup (event_location_to_string (canonical->location.get ()));
12961 canonical->lsals.push_back (std::move (lsal));
12962 }
12963
12964 static std::vector<symtab_and_line>
12965 bkpt_probe_decode_location (struct breakpoint *b,
12966 const struct event_location *location,
12967 struct program_space *search_pspace)
12968 {
12969 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12970 if (sals.empty ())
12971 error (_("probe not found"));
12972 return sals;
12973 }
12974
12975 /* The breakpoint_ops structure to be used in tracepoints. */
12976
12977 static void
12978 tracepoint_re_set (struct breakpoint *b)
12979 {
12980 breakpoint_re_set_default (b);
12981 }
12982
12983 static int
12984 tracepoint_breakpoint_hit (const struct bp_location *bl,
12985 struct address_space *aspace, CORE_ADDR bp_addr,
12986 const struct target_waitstatus *ws)
12987 {
12988 /* By definition, the inferior does not report stops at
12989 tracepoints. */
12990 return 0;
12991 }
12992
12993 static void
12994 tracepoint_print_one_detail (const struct breakpoint *self,
12995 struct ui_out *uiout)
12996 {
12997 struct tracepoint *tp = (struct tracepoint *) self;
12998 if (tp->static_trace_marker_id)
12999 {
13000 gdb_assert (self->type == bp_static_tracepoint);
13001
13002 uiout->text ("\tmarker id is ");
13003 uiout->field_string ("static-tracepoint-marker-string-id",
13004 tp->static_trace_marker_id);
13005 uiout->text ("\n");
13006 }
13007 }
13008
13009 static void
13010 tracepoint_print_mention (struct breakpoint *b)
13011 {
13012 if (current_uiout->is_mi_like_p ())
13013 return;
13014
13015 switch (b->type)
13016 {
13017 case bp_tracepoint:
13018 printf_filtered (_("Tracepoint"));
13019 printf_filtered (_(" %d"), b->number);
13020 break;
13021 case bp_fast_tracepoint:
13022 printf_filtered (_("Fast tracepoint"));
13023 printf_filtered (_(" %d"), b->number);
13024 break;
13025 case bp_static_tracepoint:
13026 printf_filtered (_("Static tracepoint"));
13027 printf_filtered (_(" %d"), b->number);
13028 break;
13029 default:
13030 internal_error (__FILE__, __LINE__,
13031 _("unhandled tracepoint type %d"), (int) b->type);
13032 }
13033
13034 say_where (b);
13035 }
13036
13037 static void
13038 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13039 {
13040 struct tracepoint *tp = (struct tracepoint *) self;
13041
13042 if (self->type == bp_fast_tracepoint)
13043 fprintf_unfiltered (fp, "ftrace");
13044 else if (self->type == bp_static_tracepoint)
13045 fprintf_unfiltered (fp, "strace");
13046 else if (self->type == bp_tracepoint)
13047 fprintf_unfiltered (fp, "trace");
13048 else
13049 internal_error (__FILE__, __LINE__,
13050 _("unhandled tracepoint type %d"), (int) self->type);
13051
13052 fprintf_unfiltered (fp, " %s",
13053 event_location_to_string (self->location.get ()));
13054 print_recreate_thread (self, fp);
13055
13056 if (tp->pass_count)
13057 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13058 }
13059
13060 static void
13061 tracepoint_create_sals_from_location (const struct event_location *location,
13062 struct linespec_result *canonical,
13063 enum bptype type_wanted)
13064 {
13065 create_sals_from_location_default (location, canonical, type_wanted);
13066 }
13067
13068 static void
13069 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13070 struct linespec_result *canonical,
13071 gdb::unique_xmalloc_ptr<char> cond_string,
13072 gdb::unique_xmalloc_ptr<char> extra_string,
13073 enum bptype type_wanted,
13074 enum bpdisp disposition,
13075 int thread,
13076 int task, int ignore_count,
13077 const struct breakpoint_ops *ops,
13078 int from_tty, int enabled,
13079 int internal, unsigned flags)
13080 {
13081 create_breakpoints_sal_default (gdbarch, canonical,
13082 std::move (cond_string),
13083 std::move (extra_string),
13084 type_wanted,
13085 disposition, thread, task,
13086 ignore_count, ops, from_tty,
13087 enabled, internal, flags);
13088 }
13089
13090 static std::vector<symtab_and_line>
13091 tracepoint_decode_location (struct breakpoint *b,
13092 const struct event_location *location,
13093 struct program_space *search_pspace)
13094 {
13095 return decode_location_default (b, location, search_pspace);
13096 }
13097
13098 struct breakpoint_ops tracepoint_breakpoint_ops;
13099
13100 /* The breakpoint_ops structure to be use on tracepoints placed in a
13101 static probe. */
13102
13103 static void
13104 tracepoint_probe_create_sals_from_location
13105 (const struct event_location *location,
13106 struct linespec_result *canonical,
13107 enum bptype type_wanted)
13108 {
13109 /* We use the same method for breakpoint on probes. */
13110 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13111 }
13112
13113 static std::vector<symtab_and_line>
13114 tracepoint_probe_decode_location (struct breakpoint *b,
13115 const struct event_location *location,
13116 struct program_space *search_pspace)
13117 {
13118 /* We use the same method for breakpoint on probes. */
13119 return bkpt_probe_decode_location (b, location, search_pspace);
13120 }
13121
13122 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13123
13124 /* Dprintf breakpoint_ops methods. */
13125
13126 static void
13127 dprintf_re_set (struct breakpoint *b)
13128 {
13129 breakpoint_re_set_default (b);
13130
13131 /* extra_string should never be non-NULL for dprintf. */
13132 gdb_assert (b->extra_string != NULL);
13133
13134 /* 1 - connect to target 1, that can run breakpoint commands.
13135 2 - create a dprintf, which resolves fine.
13136 3 - disconnect from target 1
13137 4 - connect to target 2, that can NOT run breakpoint commands.
13138
13139 After steps #3/#4, you'll want the dprintf command list to
13140 be updated, because target 1 and 2 may well return different
13141 answers for target_can_run_breakpoint_commands().
13142 Given absence of finer grained resetting, we get to do
13143 it all the time. */
13144 if (b->extra_string != NULL)
13145 update_dprintf_command_list (b);
13146 }
13147
13148 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13149
13150 static void
13151 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13152 {
13153 fprintf_unfiltered (fp, "dprintf %s,%s",
13154 event_location_to_string (tp->location.get ()),
13155 tp->extra_string);
13156 print_recreate_thread (tp, fp);
13157 }
13158
13159 /* Implement the "after_condition_true" breakpoint_ops method for
13160 dprintf.
13161
13162 dprintf's are implemented with regular commands in their command
13163 list, but we run the commands here instead of before presenting the
13164 stop to the user, as dprintf's don't actually cause a stop. This
13165 also makes it so that the commands of multiple dprintfs at the same
13166 address are all handled. */
13167
13168 static void
13169 dprintf_after_condition_true (struct bpstats *bs)
13170 {
13171 struct bpstats tmp_bs;
13172 struct bpstats *tmp_bs_p = &tmp_bs;
13173
13174 /* dprintf's never cause a stop. This wasn't set in the
13175 check_status hook instead because that would make the dprintf's
13176 condition not be evaluated. */
13177 bs->stop = 0;
13178
13179 /* Run the command list here. Take ownership of it instead of
13180 copying. We never want these commands to run later in
13181 bpstat_do_actions, if a breakpoint that causes a stop happens to
13182 be set at same address as this dprintf, or even if running the
13183 commands here throws. */
13184 tmp_bs.commands = bs->commands;
13185 bs->commands = NULL;
13186
13187 bpstat_do_actions_1 (&tmp_bs_p);
13188
13189 /* 'tmp_bs.commands' will usually be NULL by now, but
13190 bpstat_do_actions_1 may return early without processing the whole
13191 list. */
13192 }
13193
13194 /* The breakpoint_ops structure to be used on static tracepoints with
13195 markers (`-m'). */
13196
13197 static void
13198 strace_marker_create_sals_from_location (const struct event_location *location,
13199 struct linespec_result *canonical,
13200 enum bptype type_wanted)
13201 {
13202 struct linespec_sals lsal;
13203 const char *arg_start, *arg;
13204
13205 arg = arg_start = get_linespec_location (location);
13206 lsal.sals = decode_static_tracepoint_spec (&arg);
13207
13208 std::string str (arg_start, arg - arg_start);
13209 const char *ptr = str.c_str ();
13210 canonical->location = new_linespec_location (&ptr);
13211
13212 lsal.canonical
13213 = xstrdup (event_location_to_string (canonical->location.get ()));
13214 canonical->lsals.push_back (std::move (lsal));
13215 }
13216
13217 static void
13218 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13219 struct linespec_result *canonical,
13220 gdb::unique_xmalloc_ptr<char> cond_string,
13221 gdb::unique_xmalloc_ptr<char> extra_string,
13222 enum bptype type_wanted,
13223 enum bpdisp disposition,
13224 int thread,
13225 int task, int ignore_count,
13226 const struct breakpoint_ops *ops,
13227 int from_tty, int enabled,
13228 int internal, unsigned flags)
13229 {
13230 const linespec_sals &lsal = canonical->lsals[0];
13231
13232 /* If the user is creating a static tracepoint by marker id
13233 (strace -m MARKER_ID), then store the sals index, so that
13234 breakpoint_re_set can try to match up which of the newly
13235 found markers corresponds to this one, and, don't try to
13236 expand multiple locations for each sal, given than SALS
13237 already should contain all sals for MARKER_ID. */
13238
13239 for (size_t i = 0; i < lsal.sals.size (); i++)
13240 {
13241 event_location_up location
13242 = copy_event_location (canonical->location.get ());
13243
13244 std::unique_ptr<tracepoint> tp (new tracepoint ());
13245 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13246 std::move (location), NULL,
13247 std::move (cond_string),
13248 std::move (extra_string),
13249 type_wanted, disposition,
13250 thread, task, ignore_count, ops,
13251 from_tty, enabled, internal, flags,
13252 canonical->special_display);
13253 /* Given that its possible to have multiple markers with
13254 the same string id, if the user is creating a static
13255 tracepoint by marker id ("strace -m MARKER_ID"), then
13256 store the sals index, so that breakpoint_re_set can
13257 try to match up which of the newly found markers
13258 corresponds to this one */
13259 tp->static_trace_marker_id_idx = i;
13260
13261 install_breakpoint (internal, std::move (tp), 0);
13262 }
13263 }
13264
13265 static std::vector<symtab_and_line>
13266 strace_marker_decode_location (struct breakpoint *b,
13267 const struct event_location *location,
13268 struct program_space *search_pspace)
13269 {
13270 struct tracepoint *tp = (struct tracepoint *) b;
13271 const char *s = get_linespec_location (location);
13272
13273 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13274 if (sals.size () > tp->static_trace_marker_id_idx)
13275 {
13276 sals[0] = sals[tp->static_trace_marker_id_idx];
13277 sals.resize (1);
13278 return sals;
13279 }
13280 else
13281 error (_("marker %s not found"), tp->static_trace_marker_id);
13282 }
13283
13284 static struct breakpoint_ops strace_marker_breakpoint_ops;
13285
13286 static int
13287 strace_marker_p (struct breakpoint *b)
13288 {
13289 return b->ops == &strace_marker_breakpoint_ops;
13290 }
13291
13292 /* Delete a breakpoint and clean up all traces of it in the data
13293 structures. */
13294
13295 void
13296 delete_breakpoint (struct breakpoint *bpt)
13297 {
13298 struct breakpoint *b;
13299
13300 gdb_assert (bpt != NULL);
13301
13302 /* Has this bp already been deleted? This can happen because
13303 multiple lists can hold pointers to bp's. bpstat lists are
13304 especial culprits.
13305
13306 One example of this happening is a watchpoint's scope bp. When
13307 the scope bp triggers, we notice that the watchpoint is out of
13308 scope, and delete it. We also delete its scope bp. But the
13309 scope bp is marked "auto-deleting", and is already on a bpstat.
13310 That bpstat is then checked for auto-deleting bp's, which are
13311 deleted.
13312
13313 A real solution to this problem might involve reference counts in
13314 bp's, and/or giving them pointers back to their referencing
13315 bpstat's, and teaching delete_breakpoint to only free a bp's
13316 storage when no more references were extent. A cheaper bandaid
13317 was chosen. */
13318 if (bpt->type == bp_none)
13319 return;
13320
13321 /* At least avoid this stale reference until the reference counting
13322 of breakpoints gets resolved. */
13323 if (bpt->related_breakpoint != bpt)
13324 {
13325 struct breakpoint *related;
13326 struct watchpoint *w;
13327
13328 if (bpt->type == bp_watchpoint_scope)
13329 w = (struct watchpoint *) bpt->related_breakpoint;
13330 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13331 w = (struct watchpoint *) bpt;
13332 else
13333 w = NULL;
13334 if (w != NULL)
13335 watchpoint_del_at_next_stop (w);
13336
13337 /* Unlink bpt from the bpt->related_breakpoint ring. */
13338 for (related = bpt; related->related_breakpoint != bpt;
13339 related = related->related_breakpoint);
13340 related->related_breakpoint = bpt->related_breakpoint;
13341 bpt->related_breakpoint = bpt;
13342 }
13343
13344 /* watch_command_1 creates a watchpoint but only sets its number if
13345 update_watchpoint succeeds in creating its bp_locations. If there's
13346 a problem in that process, we'll be asked to delete the half-created
13347 watchpoint. In that case, don't announce the deletion. */
13348 if (bpt->number)
13349 observer_notify_breakpoint_deleted (bpt);
13350
13351 if (breakpoint_chain == bpt)
13352 breakpoint_chain = bpt->next;
13353
13354 ALL_BREAKPOINTS (b)
13355 if (b->next == bpt)
13356 {
13357 b->next = bpt->next;
13358 break;
13359 }
13360
13361 /* Be sure no bpstat's are pointing at the breakpoint after it's
13362 been freed. */
13363 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13364 in all threads for now. Note that we cannot just remove bpstats
13365 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13366 commands are associated with the bpstat; if we remove it here,
13367 then the later call to bpstat_do_actions (&stop_bpstat); in
13368 event-top.c won't do anything, and temporary breakpoints with
13369 commands won't work. */
13370
13371 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13372
13373 /* Now that breakpoint is removed from breakpoint list, update the
13374 global location list. This will remove locations that used to
13375 belong to this breakpoint. Do this before freeing the breakpoint
13376 itself, since remove_breakpoint looks at location's owner. It
13377 might be better design to have location completely
13378 self-contained, but it's not the case now. */
13379 update_global_location_list (UGLL_DONT_INSERT);
13380
13381 /* On the chance that someone will soon try again to delete this
13382 same bp, we mark it as deleted before freeing its storage. */
13383 bpt->type = bp_none;
13384 delete bpt;
13385 }
13386
13387 static void
13388 do_delete_breakpoint_cleanup (void *b)
13389 {
13390 delete_breakpoint ((struct breakpoint *) b);
13391 }
13392
13393 struct cleanup *
13394 make_cleanup_delete_breakpoint (struct breakpoint *b)
13395 {
13396 return make_cleanup (do_delete_breakpoint_cleanup, b);
13397 }
13398
13399 /* Iterator function to call a user-provided callback function once
13400 for each of B and its related breakpoints. */
13401
13402 static void
13403 iterate_over_related_breakpoints (struct breakpoint *b,
13404 gdb::function_view<void (breakpoint *)> function)
13405 {
13406 struct breakpoint *related;
13407
13408 related = b;
13409 do
13410 {
13411 struct breakpoint *next;
13412
13413 /* FUNCTION may delete RELATED. */
13414 next = related->related_breakpoint;
13415
13416 if (next == related)
13417 {
13418 /* RELATED is the last ring entry. */
13419 function (related);
13420
13421 /* FUNCTION may have deleted it, so we'd never reach back to
13422 B. There's nothing left to do anyway, so just break
13423 out. */
13424 break;
13425 }
13426 else
13427 function (related);
13428
13429 related = next;
13430 }
13431 while (related != b);
13432 }
13433
13434 static void
13435 delete_command (const char *arg, int from_tty)
13436 {
13437 struct breakpoint *b, *b_tmp;
13438
13439 dont_repeat ();
13440
13441 if (arg == 0)
13442 {
13443 int breaks_to_delete = 0;
13444
13445 /* Delete all breakpoints if no argument. Do not delete
13446 internal breakpoints, these have to be deleted with an
13447 explicit breakpoint number argument. */
13448 ALL_BREAKPOINTS (b)
13449 if (user_breakpoint_p (b))
13450 {
13451 breaks_to_delete = 1;
13452 break;
13453 }
13454
13455 /* Ask user only if there are some breakpoints to delete. */
13456 if (!from_tty
13457 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13458 {
13459 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13460 if (user_breakpoint_p (b))
13461 delete_breakpoint (b);
13462 }
13463 }
13464 else
13465 map_breakpoint_numbers
13466 (arg, [&] (breakpoint *b)
13467 {
13468 iterate_over_related_breakpoints (b, delete_breakpoint);
13469 });
13470 }
13471
13472 /* Return true if all locations of B bound to PSPACE are pending. If
13473 PSPACE is NULL, all locations of all program spaces are
13474 considered. */
13475
13476 static int
13477 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13478 {
13479 struct bp_location *loc;
13480
13481 for (loc = b->loc; loc != NULL; loc = loc->next)
13482 if ((pspace == NULL
13483 || loc->pspace == pspace)
13484 && !loc->shlib_disabled
13485 && !loc->pspace->executing_startup)
13486 return 0;
13487 return 1;
13488 }
13489
13490 /* Subroutine of update_breakpoint_locations to simplify it.
13491 Return non-zero if multiple fns in list LOC have the same name.
13492 Null names are ignored. */
13493
13494 static int
13495 ambiguous_names_p (struct bp_location *loc)
13496 {
13497 struct bp_location *l;
13498 htab_t htab = htab_create_alloc (13, htab_hash_string,
13499 (int (*) (const void *,
13500 const void *)) streq,
13501 NULL, xcalloc, xfree);
13502
13503 for (l = loc; l != NULL; l = l->next)
13504 {
13505 const char **slot;
13506 const char *name = l->function_name;
13507
13508 /* Allow for some names to be NULL, ignore them. */
13509 if (name == NULL)
13510 continue;
13511
13512 slot = (const char **) htab_find_slot (htab, (const void *) name,
13513 INSERT);
13514 /* NOTE: We can assume slot != NULL here because xcalloc never
13515 returns NULL. */
13516 if (*slot != NULL)
13517 {
13518 htab_delete (htab);
13519 return 1;
13520 }
13521 *slot = name;
13522 }
13523
13524 htab_delete (htab);
13525 return 0;
13526 }
13527
13528 /* When symbols change, it probably means the sources changed as well,
13529 and it might mean the static tracepoint markers are no longer at
13530 the same address or line numbers they used to be at last we
13531 checked. Losing your static tracepoints whenever you rebuild is
13532 undesirable. This function tries to resync/rematch gdb static
13533 tracepoints with the markers on the target, for static tracepoints
13534 that have not been set by marker id. Static tracepoint that have
13535 been set by marker id are reset by marker id in breakpoint_re_set.
13536 The heuristic is:
13537
13538 1) For a tracepoint set at a specific address, look for a marker at
13539 the old PC. If one is found there, assume to be the same marker.
13540 If the name / string id of the marker found is different from the
13541 previous known name, assume that means the user renamed the marker
13542 in the sources, and output a warning.
13543
13544 2) For a tracepoint set at a given line number, look for a marker
13545 at the new address of the old line number. If one is found there,
13546 assume to be the same marker. If the name / string id of the
13547 marker found is different from the previous known name, assume that
13548 means the user renamed the marker in the sources, and output a
13549 warning.
13550
13551 3) If a marker is no longer found at the same address or line, it
13552 may mean the marker no longer exists. But it may also just mean
13553 the code changed a bit. Maybe the user added a few lines of code
13554 that made the marker move up or down (in line number terms). Ask
13555 the target for info about the marker with the string id as we knew
13556 it. If found, update line number and address in the matching
13557 static tracepoint. This will get confused if there's more than one
13558 marker with the same ID (possible in UST, although unadvised
13559 precisely because it confuses tools). */
13560
13561 static struct symtab_and_line
13562 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13563 {
13564 struct tracepoint *tp = (struct tracepoint *) b;
13565 struct static_tracepoint_marker marker;
13566 CORE_ADDR pc;
13567
13568 pc = sal.pc;
13569 if (sal.line)
13570 find_line_pc (sal.symtab, sal.line, &pc);
13571
13572 if (target_static_tracepoint_marker_at (pc, &marker))
13573 {
13574 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13575 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13576 b->number,
13577 tp->static_trace_marker_id, marker.str_id);
13578
13579 xfree (tp->static_trace_marker_id);
13580 tp->static_trace_marker_id = xstrdup (marker.str_id);
13581 release_static_tracepoint_marker (&marker);
13582
13583 return sal;
13584 }
13585
13586 /* Old marker wasn't found on target at lineno. Try looking it up
13587 by string ID. */
13588 if (!sal.explicit_pc
13589 && sal.line != 0
13590 && sal.symtab != NULL
13591 && tp->static_trace_marker_id != NULL)
13592 {
13593 VEC(static_tracepoint_marker_p) *markers;
13594
13595 markers
13596 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13597
13598 if (!VEC_empty(static_tracepoint_marker_p, markers))
13599 {
13600 struct symbol *sym;
13601 struct static_tracepoint_marker *tpmarker;
13602 struct ui_out *uiout = current_uiout;
13603 struct explicit_location explicit_loc;
13604
13605 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13606
13607 xfree (tp->static_trace_marker_id);
13608 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13609
13610 warning (_("marker for static tracepoint %d (%s) not "
13611 "found at previous line number"),
13612 b->number, tp->static_trace_marker_id);
13613
13614 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13615 sym = find_pc_sect_function (tpmarker->address, NULL);
13616 uiout->text ("Now in ");
13617 if (sym)
13618 {
13619 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13620 uiout->text (" at ");
13621 }
13622 uiout->field_string ("file",
13623 symtab_to_filename_for_display (sal2.symtab));
13624 uiout->text (":");
13625
13626 if (uiout->is_mi_like_p ())
13627 {
13628 const char *fullname = symtab_to_fullname (sal2.symtab);
13629
13630 uiout->field_string ("fullname", fullname);
13631 }
13632
13633 uiout->field_int ("line", sal2.line);
13634 uiout->text ("\n");
13635
13636 b->loc->line_number = sal2.line;
13637 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13638
13639 b->location.reset (NULL);
13640 initialize_explicit_location (&explicit_loc);
13641 explicit_loc.source_filename
13642 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13643 explicit_loc.line_offset.offset = b->loc->line_number;
13644 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13645 b->location = new_explicit_location (&explicit_loc);
13646
13647 /* Might be nice to check if function changed, and warn if
13648 so. */
13649
13650 release_static_tracepoint_marker (tpmarker);
13651 }
13652 }
13653 return sal;
13654 }
13655
13656 /* Returns 1 iff locations A and B are sufficiently same that
13657 we don't need to report breakpoint as changed. */
13658
13659 static int
13660 locations_are_equal (struct bp_location *a, struct bp_location *b)
13661 {
13662 while (a && b)
13663 {
13664 if (a->address != b->address)
13665 return 0;
13666
13667 if (a->shlib_disabled != b->shlib_disabled)
13668 return 0;
13669
13670 if (a->enabled != b->enabled)
13671 return 0;
13672
13673 a = a->next;
13674 b = b->next;
13675 }
13676
13677 if ((a == NULL) != (b == NULL))
13678 return 0;
13679
13680 return 1;
13681 }
13682
13683 /* Split all locations of B that are bound to PSPACE out of B's
13684 location list to a separate list and return that list's head. If
13685 PSPACE is NULL, hoist out all locations of B. */
13686
13687 static struct bp_location *
13688 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13689 {
13690 struct bp_location head;
13691 struct bp_location *i = b->loc;
13692 struct bp_location **i_link = &b->loc;
13693 struct bp_location *hoisted = &head;
13694
13695 if (pspace == NULL)
13696 {
13697 i = b->loc;
13698 b->loc = NULL;
13699 return i;
13700 }
13701
13702 head.next = NULL;
13703
13704 while (i != NULL)
13705 {
13706 if (i->pspace == pspace)
13707 {
13708 *i_link = i->next;
13709 i->next = NULL;
13710 hoisted->next = i;
13711 hoisted = i;
13712 }
13713 else
13714 i_link = &i->next;
13715 i = *i_link;
13716 }
13717
13718 return head.next;
13719 }
13720
13721 /* Create new breakpoint locations for B (a hardware or software
13722 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13723 zero, then B is a ranged breakpoint. Only recreates locations for
13724 FILTER_PSPACE. Locations of other program spaces are left
13725 untouched. */
13726
13727 void
13728 update_breakpoint_locations (struct breakpoint *b,
13729 struct program_space *filter_pspace,
13730 gdb::array_view<const symtab_and_line> sals,
13731 gdb::array_view<const symtab_and_line> sals_end)
13732 {
13733 int i;
13734 struct bp_location *existing_locations;
13735
13736 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13737 {
13738 /* Ranged breakpoints have only one start location and one end
13739 location. */
13740 b->enable_state = bp_disabled;
13741 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13742 "multiple locations found\n"),
13743 b->number);
13744 return;
13745 }
13746
13747 /* If there's no new locations, and all existing locations are
13748 pending, don't do anything. This optimizes the common case where
13749 all locations are in the same shared library, that was unloaded.
13750 We'd like to retain the location, so that when the library is
13751 loaded again, we don't loose the enabled/disabled status of the
13752 individual locations. */
13753 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13754 return;
13755
13756 existing_locations = hoist_existing_locations (b, filter_pspace);
13757
13758 for (const auto &sal : sals)
13759 {
13760 struct bp_location *new_loc;
13761
13762 switch_to_program_space_and_thread (sal.pspace);
13763
13764 new_loc = add_location_to_breakpoint (b, &sal);
13765
13766 /* Reparse conditions, they might contain references to the
13767 old symtab. */
13768 if (b->cond_string != NULL)
13769 {
13770 const char *s;
13771
13772 s = b->cond_string;
13773 TRY
13774 {
13775 new_loc->cond = parse_exp_1 (&s, sal.pc,
13776 block_for_pc (sal.pc),
13777 0);
13778 }
13779 CATCH (e, RETURN_MASK_ERROR)
13780 {
13781 warning (_("failed to reevaluate condition "
13782 "for breakpoint %d: %s"),
13783 b->number, e.message);
13784 new_loc->enabled = 0;
13785 }
13786 END_CATCH
13787 }
13788
13789 if (!sals_end.empty ())
13790 {
13791 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13792
13793 new_loc->length = end - sals[0].pc + 1;
13794 }
13795 }
13796
13797 /* If possible, carry over 'disable' status from existing
13798 breakpoints. */
13799 {
13800 struct bp_location *e = existing_locations;
13801 /* If there are multiple breakpoints with the same function name,
13802 e.g. for inline functions, comparing function names won't work.
13803 Instead compare pc addresses; this is just a heuristic as things
13804 may have moved, but in practice it gives the correct answer
13805 often enough until a better solution is found. */
13806 int have_ambiguous_names = ambiguous_names_p (b->loc);
13807
13808 for (; e; e = e->next)
13809 {
13810 if (!e->enabled && e->function_name)
13811 {
13812 struct bp_location *l = b->loc;
13813 if (have_ambiguous_names)
13814 {
13815 for (; l; l = l->next)
13816 if (breakpoint_locations_match (e, l))
13817 {
13818 l->enabled = 0;
13819 break;
13820 }
13821 }
13822 else
13823 {
13824 for (; l; l = l->next)
13825 if (l->function_name
13826 && strcmp (e->function_name, l->function_name) == 0)
13827 {
13828 l->enabled = 0;
13829 break;
13830 }
13831 }
13832 }
13833 }
13834 }
13835
13836 if (!locations_are_equal (existing_locations, b->loc))
13837 observer_notify_breakpoint_modified (b);
13838 }
13839
13840 /* Find the SaL locations corresponding to the given LOCATION.
13841 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13842
13843 static std::vector<symtab_and_line>
13844 location_to_sals (struct breakpoint *b, struct event_location *location,
13845 struct program_space *search_pspace, int *found)
13846 {
13847 struct gdb_exception exception = exception_none;
13848
13849 gdb_assert (b->ops != NULL);
13850
13851 std::vector<symtab_and_line> sals;
13852
13853 TRY
13854 {
13855 sals = b->ops->decode_location (b, location, search_pspace);
13856 }
13857 CATCH (e, RETURN_MASK_ERROR)
13858 {
13859 int not_found_and_ok = 0;
13860
13861 exception = e;
13862
13863 /* For pending breakpoints, it's expected that parsing will
13864 fail until the right shared library is loaded. User has
13865 already told to create pending breakpoints and don't need
13866 extra messages. If breakpoint is in bp_shlib_disabled
13867 state, then user already saw the message about that
13868 breakpoint being disabled, and don't want to see more
13869 errors. */
13870 if (e.error == NOT_FOUND_ERROR
13871 && (b->condition_not_parsed
13872 || (b->loc != NULL
13873 && search_pspace != NULL
13874 && b->loc->pspace != search_pspace)
13875 || (b->loc && b->loc->shlib_disabled)
13876 || (b->loc && b->loc->pspace->executing_startup)
13877 || b->enable_state == bp_disabled))
13878 not_found_and_ok = 1;
13879
13880 if (!not_found_and_ok)
13881 {
13882 /* We surely don't want to warn about the same breakpoint
13883 10 times. One solution, implemented here, is disable
13884 the breakpoint on error. Another solution would be to
13885 have separate 'warning emitted' flag. Since this
13886 happens only when a binary has changed, I don't know
13887 which approach is better. */
13888 b->enable_state = bp_disabled;
13889 throw_exception (e);
13890 }
13891 }
13892 END_CATCH
13893
13894 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13895 {
13896 for (auto &sal : sals)
13897 resolve_sal_pc (&sal);
13898 if (b->condition_not_parsed && b->extra_string != NULL)
13899 {
13900 char *cond_string, *extra_string;
13901 int thread, task;
13902
13903 find_condition_and_thread (b->extra_string, sals[0].pc,
13904 &cond_string, &thread, &task,
13905 &extra_string);
13906 gdb_assert (b->cond_string == NULL);
13907 if (cond_string)
13908 b->cond_string = cond_string;
13909 b->thread = thread;
13910 b->task = task;
13911 if (extra_string)
13912 {
13913 xfree (b->extra_string);
13914 b->extra_string = extra_string;
13915 }
13916 b->condition_not_parsed = 0;
13917 }
13918
13919 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13920 sals[0] = update_static_tracepoint (b, sals[0]);
13921
13922 *found = 1;
13923 }
13924 else
13925 *found = 0;
13926
13927 return sals;
13928 }
13929
13930 /* The default re_set method, for typical hardware or software
13931 breakpoints. Reevaluate the breakpoint and recreate its
13932 locations. */
13933
13934 static void
13935 breakpoint_re_set_default (struct breakpoint *b)
13936 {
13937 struct program_space *filter_pspace = current_program_space;
13938 std::vector<symtab_and_line> expanded, expanded_end;
13939
13940 int found;
13941 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13942 filter_pspace, &found);
13943 if (found)
13944 expanded = std::move (sals);
13945
13946 if (b->location_range_end != NULL)
13947 {
13948 std::vector<symtab_and_line> sals_end
13949 = location_to_sals (b, b->location_range_end.get (),
13950 filter_pspace, &found);
13951 if (found)
13952 expanded_end = std::move (sals_end);
13953 }
13954
13955 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13956 }
13957
13958 /* Default method for creating SALs from an address string. It basically
13959 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13960
13961 static void
13962 create_sals_from_location_default (const struct event_location *location,
13963 struct linespec_result *canonical,
13964 enum bptype type_wanted)
13965 {
13966 parse_breakpoint_sals (location, canonical);
13967 }
13968
13969 /* Call create_breakpoints_sal for the given arguments. This is the default
13970 function for the `create_breakpoints_sal' method of
13971 breakpoint_ops. */
13972
13973 static void
13974 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13975 struct linespec_result *canonical,
13976 gdb::unique_xmalloc_ptr<char> cond_string,
13977 gdb::unique_xmalloc_ptr<char> extra_string,
13978 enum bptype type_wanted,
13979 enum bpdisp disposition,
13980 int thread,
13981 int task, int ignore_count,
13982 const struct breakpoint_ops *ops,
13983 int from_tty, int enabled,
13984 int internal, unsigned flags)
13985 {
13986 create_breakpoints_sal (gdbarch, canonical,
13987 std::move (cond_string),
13988 std::move (extra_string),
13989 type_wanted, disposition,
13990 thread, task, ignore_count, ops, from_tty,
13991 enabled, internal, flags);
13992 }
13993
13994 /* Decode the line represented by S by calling decode_line_full. This is the
13995 default function for the `decode_location' method of breakpoint_ops. */
13996
13997 static std::vector<symtab_and_line>
13998 decode_location_default (struct breakpoint *b,
13999 const struct event_location *location,
14000 struct program_space *search_pspace)
14001 {
14002 struct linespec_result canonical;
14003
14004 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14005 (struct symtab *) NULL, 0,
14006 &canonical, multiple_symbols_all,
14007 b->filter);
14008
14009 /* We should get 0 or 1 resulting SALs. */
14010 gdb_assert (canonical.lsals.size () < 2);
14011
14012 if (!canonical.lsals.empty ())
14013 {
14014 const linespec_sals &lsal = canonical.lsals[0];
14015 return std::move (lsal.sals);
14016 }
14017 return {};
14018 }
14019
14020 /* Reset a breakpoint. */
14021
14022 static void
14023 breakpoint_re_set_one (breakpoint *b)
14024 {
14025 input_radix = b->input_radix;
14026 set_language (b->language);
14027
14028 b->ops->re_set (b);
14029 }
14030
14031 /* Re-set breakpoint locations for the current program space.
14032 Locations bound to other program spaces are left untouched. */
14033
14034 void
14035 breakpoint_re_set (void)
14036 {
14037 struct breakpoint *b, *b_tmp;
14038
14039 {
14040 scoped_restore_current_language save_language;
14041 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
14042 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14043
14044 /* Note: we must not try to insert locations until after all
14045 breakpoints have been re-set. Otherwise, e.g., when re-setting
14046 breakpoint 1, we'd insert the locations of breakpoint 2, which
14047 hadn't been re-set yet, and thus may have stale locations. */
14048
14049 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14050 {
14051 TRY
14052 {
14053 breakpoint_re_set_one (b);
14054 }
14055 CATCH (ex, RETURN_MASK_ALL)
14056 {
14057 exception_fprintf (gdb_stderr, ex,
14058 "Error in re-setting breakpoint %d: ",
14059 b->number);
14060 }
14061 END_CATCH
14062 }
14063
14064 jit_breakpoint_re_set ();
14065 }
14066
14067 create_overlay_event_breakpoint ();
14068 create_longjmp_master_breakpoint ();
14069 create_std_terminate_master_breakpoint ();
14070 create_exception_master_breakpoint ();
14071
14072 /* Now we can insert. */
14073 update_global_location_list (UGLL_MAY_INSERT);
14074 }
14075 \f
14076 /* Reset the thread number of this breakpoint:
14077
14078 - If the breakpoint is for all threads, leave it as-is.
14079 - Else, reset it to the current thread for inferior_ptid. */
14080 void
14081 breakpoint_re_set_thread (struct breakpoint *b)
14082 {
14083 if (b->thread != -1)
14084 {
14085 if (in_thread_list (inferior_ptid))
14086 b->thread = ptid_to_global_thread_id (inferior_ptid);
14087
14088 /* We're being called after following a fork. The new fork is
14089 selected as current, and unless this was a vfork will have a
14090 different program space from the original thread. Reset that
14091 as well. */
14092 b->loc->pspace = current_program_space;
14093 }
14094 }
14095
14096 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14097 If from_tty is nonzero, it prints a message to that effect,
14098 which ends with a period (no newline). */
14099
14100 void
14101 set_ignore_count (int bptnum, int count, int from_tty)
14102 {
14103 struct breakpoint *b;
14104
14105 if (count < 0)
14106 count = 0;
14107
14108 ALL_BREAKPOINTS (b)
14109 if (b->number == bptnum)
14110 {
14111 if (is_tracepoint (b))
14112 {
14113 if (from_tty && count != 0)
14114 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14115 bptnum);
14116 return;
14117 }
14118
14119 b->ignore_count = count;
14120 if (from_tty)
14121 {
14122 if (count == 0)
14123 printf_filtered (_("Will stop next time "
14124 "breakpoint %d is reached."),
14125 bptnum);
14126 else if (count == 1)
14127 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14128 bptnum);
14129 else
14130 printf_filtered (_("Will ignore next %d "
14131 "crossings of breakpoint %d."),
14132 count, bptnum);
14133 }
14134 observer_notify_breakpoint_modified (b);
14135 return;
14136 }
14137
14138 error (_("No breakpoint number %d."), bptnum);
14139 }
14140
14141 /* Command to set ignore-count of breakpoint N to COUNT. */
14142
14143 static void
14144 ignore_command (char *args, int from_tty)
14145 {
14146 char *p = args;
14147 int num;
14148
14149 if (p == 0)
14150 error_no_arg (_("a breakpoint number"));
14151
14152 num = get_number (&p);
14153 if (num == 0)
14154 error (_("bad breakpoint number: '%s'"), args);
14155 if (*p == 0)
14156 error (_("Second argument (specified ignore-count) is missing."));
14157
14158 set_ignore_count (num,
14159 longest_to_int (value_as_long (parse_and_eval (p))),
14160 from_tty);
14161 if (from_tty)
14162 printf_filtered ("\n");
14163 }
14164 \f
14165 /* Call FUNCTION on each of the breakpoints
14166 whose numbers are given in ARGS. */
14167
14168 static void
14169 map_breakpoint_numbers (const char *args,
14170 gdb::function_view<void (breakpoint *)> function)
14171 {
14172 int num;
14173 struct breakpoint *b, *tmp;
14174
14175 if (args == 0 || *args == '\0')
14176 error_no_arg (_("one or more breakpoint numbers"));
14177
14178 number_or_range_parser parser (args);
14179
14180 while (!parser.finished ())
14181 {
14182 const char *p = parser.cur_tok ();
14183 bool match = false;
14184
14185 num = parser.get_number ();
14186 if (num == 0)
14187 {
14188 warning (_("bad breakpoint number at or near '%s'"), p);
14189 }
14190 else
14191 {
14192 ALL_BREAKPOINTS_SAFE (b, tmp)
14193 if (b->number == num)
14194 {
14195 match = true;
14196 function (b);
14197 break;
14198 }
14199 if (!match)
14200 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14201 }
14202 }
14203 }
14204
14205 static struct bp_location *
14206 find_location_by_number (const char *number)
14207 {
14208 const char *p1;
14209 int bp_num;
14210 int loc_num;
14211 struct breakpoint *b;
14212 struct bp_location *loc;
14213
14214 p1 = number;
14215 bp_num = get_number_trailer (&p1, '.');
14216 if (bp_num == 0 || p1[0] != '.')
14217 error (_("Bad breakpoint number '%s'"), number);
14218
14219 ALL_BREAKPOINTS (b)
14220 if (b->number == bp_num)
14221 {
14222 break;
14223 }
14224
14225 if (!b || b->number != bp_num)
14226 error (_("Bad breakpoint number '%s'"), number);
14227
14228 /* Skip the dot. */
14229 ++p1;
14230 const char *save = p1;
14231 loc_num = get_number (&p1);
14232 if (loc_num == 0)
14233 error (_("Bad breakpoint location number '%s'"), number);
14234
14235 --loc_num;
14236 loc = b->loc;
14237 for (;loc_num && loc; --loc_num, loc = loc->next)
14238 ;
14239 if (!loc)
14240 error (_("Bad breakpoint location number '%s'"), save);
14241
14242 return loc;
14243 }
14244
14245
14246 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14247 If from_tty is nonzero, it prints a message to that effect,
14248 which ends with a period (no newline). */
14249
14250 void
14251 disable_breakpoint (struct breakpoint *bpt)
14252 {
14253 /* Never disable a watchpoint scope breakpoint; we want to
14254 hit them when we leave scope so we can delete both the
14255 watchpoint and its scope breakpoint at that time. */
14256 if (bpt->type == bp_watchpoint_scope)
14257 return;
14258
14259 bpt->enable_state = bp_disabled;
14260
14261 /* Mark breakpoint locations modified. */
14262 mark_breakpoint_modified (bpt);
14263
14264 if (target_supports_enable_disable_tracepoint ()
14265 && current_trace_status ()->running && is_tracepoint (bpt))
14266 {
14267 struct bp_location *location;
14268
14269 for (location = bpt->loc; location; location = location->next)
14270 target_disable_tracepoint (location);
14271 }
14272
14273 update_global_location_list (UGLL_DONT_INSERT);
14274
14275 observer_notify_breakpoint_modified (bpt);
14276 }
14277
14278 static void
14279 disable_command (const char *args, int from_tty)
14280 {
14281 if (args == 0)
14282 {
14283 struct breakpoint *bpt;
14284
14285 ALL_BREAKPOINTS (bpt)
14286 if (user_breakpoint_p (bpt))
14287 disable_breakpoint (bpt);
14288 }
14289 else
14290 {
14291 std::string num = extract_arg (&args);
14292
14293 while (!num.empty ())
14294 {
14295 if (num.find ('.') != std::string::npos)
14296 {
14297 struct bp_location *loc = find_location_by_number (num.c_str ());
14298
14299 if (loc)
14300 {
14301 if (loc->enabled)
14302 {
14303 loc->enabled = 0;
14304 mark_breakpoint_location_modified (loc);
14305 }
14306 if (target_supports_enable_disable_tracepoint ()
14307 && current_trace_status ()->running && loc->owner
14308 && is_tracepoint (loc->owner))
14309 target_disable_tracepoint (loc);
14310 }
14311 update_global_location_list (UGLL_DONT_INSERT);
14312 }
14313 else
14314 map_breakpoint_numbers
14315 (num.c_str (), [&] (breakpoint *b)
14316 {
14317 iterate_over_related_breakpoints (b, disable_breakpoint);
14318 });
14319 num = extract_arg (&args);
14320 }
14321 }
14322 }
14323
14324 static void
14325 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14326 int count)
14327 {
14328 int target_resources_ok;
14329
14330 if (bpt->type == bp_hardware_breakpoint)
14331 {
14332 int i;
14333 i = hw_breakpoint_used_count ();
14334 target_resources_ok =
14335 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14336 i + 1, 0);
14337 if (target_resources_ok == 0)
14338 error (_("No hardware breakpoint support in the target."));
14339 else if (target_resources_ok < 0)
14340 error (_("Hardware breakpoints used exceeds limit."));
14341 }
14342
14343 if (is_watchpoint (bpt))
14344 {
14345 /* Initialize it just to avoid a GCC false warning. */
14346 enum enable_state orig_enable_state = bp_disabled;
14347
14348 TRY
14349 {
14350 struct watchpoint *w = (struct watchpoint *) bpt;
14351
14352 orig_enable_state = bpt->enable_state;
14353 bpt->enable_state = bp_enabled;
14354 update_watchpoint (w, 1 /* reparse */);
14355 }
14356 CATCH (e, RETURN_MASK_ALL)
14357 {
14358 bpt->enable_state = orig_enable_state;
14359 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14360 bpt->number);
14361 return;
14362 }
14363 END_CATCH
14364 }
14365
14366 bpt->enable_state = bp_enabled;
14367
14368 /* Mark breakpoint locations modified. */
14369 mark_breakpoint_modified (bpt);
14370
14371 if (target_supports_enable_disable_tracepoint ()
14372 && current_trace_status ()->running && is_tracepoint (bpt))
14373 {
14374 struct bp_location *location;
14375
14376 for (location = bpt->loc; location; location = location->next)
14377 target_enable_tracepoint (location);
14378 }
14379
14380 bpt->disposition = disposition;
14381 bpt->enable_count = count;
14382 update_global_location_list (UGLL_MAY_INSERT);
14383
14384 observer_notify_breakpoint_modified (bpt);
14385 }
14386
14387
14388 void
14389 enable_breakpoint (struct breakpoint *bpt)
14390 {
14391 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14392 }
14393
14394 /* The enable command enables the specified breakpoints (or all defined
14395 breakpoints) so they once again become (or continue to be) effective
14396 in stopping the inferior. */
14397
14398 static void
14399 enable_command (const char *args, int from_tty)
14400 {
14401 if (args == 0)
14402 {
14403 struct breakpoint *bpt;
14404
14405 ALL_BREAKPOINTS (bpt)
14406 if (user_breakpoint_p (bpt))
14407 enable_breakpoint (bpt);
14408 }
14409 else
14410 {
14411 std::string num = extract_arg (&args);
14412
14413 while (!num.empty ())
14414 {
14415 if (num.find ('.') != std::string::npos)
14416 {
14417 struct bp_location *loc = find_location_by_number (num.c_str ());
14418
14419 if (loc)
14420 {
14421 if (!loc->enabled)
14422 {
14423 loc->enabled = 1;
14424 mark_breakpoint_location_modified (loc);
14425 }
14426 if (target_supports_enable_disable_tracepoint ()
14427 && current_trace_status ()->running && loc->owner
14428 && is_tracepoint (loc->owner))
14429 target_enable_tracepoint (loc);
14430 }
14431 update_global_location_list (UGLL_MAY_INSERT);
14432 }
14433 else
14434 map_breakpoint_numbers
14435 (num.c_str (), [&] (breakpoint *b)
14436 {
14437 iterate_over_related_breakpoints (b, enable_breakpoint);
14438 });
14439 num = extract_arg (&args);
14440 }
14441 }
14442 }
14443
14444 static void
14445 enable_once_command (const char *args, int from_tty)
14446 {
14447 map_breakpoint_numbers
14448 (args, [&] (breakpoint *b)
14449 {
14450 iterate_over_related_breakpoints
14451 (b, [&] (breakpoint *bpt)
14452 {
14453 enable_breakpoint_disp (bpt, disp_disable, 1);
14454 });
14455 });
14456 }
14457
14458 static void
14459 enable_count_command (const char *args, int from_tty)
14460 {
14461 int count;
14462
14463 if (args == NULL)
14464 error_no_arg (_("hit count"));
14465
14466 count = get_number (&args);
14467
14468 map_breakpoint_numbers
14469 (args, [&] (breakpoint *b)
14470 {
14471 iterate_over_related_breakpoints
14472 (b, [&] (breakpoint *bpt)
14473 {
14474 enable_breakpoint_disp (bpt, disp_disable, count);
14475 });
14476 });
14477 }
14478
14479 static void
14480 enable_delete_command (const char *args, int from_tty)
14481 {
14482 map_breakpoint_numbers
14483 (args, [&] (breakpoint *b)
14484 {
14485 iterate_over_related_breakpoints
14486 (b, [&] (breakpoint *bpt)
14487 {
14488 enable_breakpoint_disp (bpt, disp_del, 1);
14489 });
14490 });
14491 }
14492 \f
14493 static void
14494 set_breakpoint_cmd (const char *args, int from_tty)
14495 {
14496 }
14497
14498 static void
14499 show_breakpoint_cmd (const char *args, int from_tty)
14500 {
14501 }
14502
14503 /* Invalidate last known value of any hardware watchpoint if
14504 the memory which that value represents has been written to by
14505 GDB itself. */
14506
14507 static void
14508 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14509 CORE_ADDR addr, ssize_t len,
14510 const bfd_byte *data)
14511 {
14512 struct breakpoint *bp;
14513
14514 ALL_BREAKPOINTS (bp)
14515 if (bp->enable_state == bp_enabled
14516 && bp->type == bp_hardware_watchpoint)
14517 {
14518 struct watchpoint *wp = (struct watchpoint *) bp;
14519
14520 if (wp->val_valid && wp->val)
14521 {
14522 struct bp_location *loc;
14523
14524 for (loc = bp->loc; loc != NULL; loc = loc->next)
14525 if (loc->loc_type == bp_loc_hardware_watchpoint
14526 && loc->address + loc->length > addr
14527 && addr + len > loc->address)
14528 {
14529 value_free (wp->val);
14530 wp->val = NULL;
14531 wp->val_valid = 0;
14532 }
14533 }
14534 }
14535 }
14536
14537 /* Create and insert a breakpoint for software single step. */
14538
14539 void
14540 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14541 const address_space *aspace,
14542 CORE_ADDR next_pc)
14543 {
14544 struct thread_info *tp = inferior_thread ();
14545 struct symtab_and_line sal;
14546 CORE_ADDR pc = next_pc;
14547
14548 if (tp->control.single_step_breakpoints == NULL)
14549 {
14550 tp->control.single_step_breakpoints
14551 = new_single_step_breakpoint (tp->global_num, gdbarch);
14552 }
14553
14554 sal = find_pc_line (pc, 0);
14555 sal.pc = pc;
14556 sal.section = find_pc_overlay (pc);
14557 sal.explicit_pc = 1;
14558 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14559
14560 update_global_location_list (UGLL_INSERT);
14561 }
14562
14563 /* Insert single step breakpoints according to the current state. */
14564
14565 int
14566 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14567 {
14568 struct regcache *regcache = get_current_regcache ();
14569 std::vector<CORE_ADDR> next_pcs;
14570
14571 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14572
14573 if (!next_pcs.empty ())
14574 {
14575 struct frame_info *frame = get_current_frame ();
14576 struct address_space *aspace = get_frame_address_space (frame);
14577
14578 for (CORE_ADDR pc : next_pcs)
14579 insert_single_step_breakpoint (gdbarch, aspace, pc);
14580
14581 return 1;
14582 }
14583 else
14584 return 0;
14585 }
14586
14587 /* See breakpoint.h. */
14588
14589 int
14590 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14591 const address_space *aspace,
14592 CORE_ADDR pc)
14593 {
14594 struct bp_location *loc;
14595
14596 for (loc = bp->loc; loc != NULL; loc = loc->next)
14597 if (loc->inserted
14598 && breakpoint_location_address_match (loc, aspace, pc))
14599 return 1;
14600
14601 return 0;
14602 }
14603
14604 /* Check whether a software single-step breakpoint is inserted at
14605 PC. */
14606
14607 int
14608 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14609 CORE_ADDR pc)
14610 {
14611 struct breakpoint *bpt;
14612
14613 ALL_BREAKPOINTS (bpt)
14614 {
14615 if (bpt->type == bp_single_step
14616 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14617 return 1;
14618 }
14619 return 0;
14620 }
14621
14622 /* Tracepoint-specific operations. */
14623
14624 /* Set tracepoint count to NUM. */
14625 static void
14626 set_tracepoint_count (int num)
14627 {
14628 tracepoint_count = num;
14629 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14630 }
14631
14632 static void
14633 trace_command (char *arg_in, int from_tty)
14634 {
14635 const char *arg = arg_in;
14636 struct breakpoint_ops *ops;
14637
14638 event_location_up location = string_to_event_location (&arg,
14639 current_language);
14640 if (location != NULL
14641 && event_location_type (location.get ()) == PROBE_LOCATION)
14642 ops = &tracepoint_probe_breakpoint_ops;
14643 else
14644 ops = &tracepoint_breakpoint_ops;
14645
14646 create_breakpoint (get_current_arch (),
14647 location.get (),
14648 NULL, 0, arg, 1 /* parse arg */,
14649 0 /* tempflag */,
14650 bp_tracepoint /* type_wanted */,
14651 0 /* Ignore count */,
14652 pending_break_support,
14653 ops,
14654 from_tty,
14655 1 /* enabled */,
14656 0 /* internal */, 0);
14657 }
14658
14659 static void
14660 ftrace_command (char *arg_in, int from_tty)
14661 {
14662 const char *arg = arg_in;
14663 event_location_up location = string_to_event_location (&arg,
14664 current_language);
14665 create_breakpoint (get_current_arch (),
14666 location.get (),
14667 NULL, 0, arg, 1 /* parse arg */,
14668 0 /* tempflag */,
14669 bp_fast_tracepoint /* type_wanted */,
14670 0 /* Ignore count */,
14671 pending_break_support,
14672 &tracepoint_breakpoint_ops,
14673 from_tty,
14674 1 /* enabled */,
14675 0 /* internal */, 0);
14676 }
14677
14678 /* strace command implementation. Creates a static tracepoint. */
14679
14680 static void
14681 strace_command (char *arg_in, int from_tty)
14682 {
14683 const char *arg = arg_in;
14684 struct breakpoint_ops *ops;
14685 event_location_up location;
14686
14687 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14688 or with a normal static tracepoint. */
14689 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14690 {
14691 ops = &strace_marker_breakpoint_ops;
14692 location = new_linespec_location (&arg);
14693 }
14694 else
14695 {
14696 ops = &tracepoint_breakpoint_ops;
14697 location = string_to_event_location (&arg, current_language);
14698 }
14699
14700 create_breakpoint (get_current_arch (),
14701 location.get (),
14702 NULL, 0, arg, 1 /* parse arg */,
14703 0 /* tempflag */,
14704 bp_static_tracepoint /* type_wanted */,
14705 0 /* Ignore count */,
14706 pending_break_support,
14707 ops,
14708 from_tty,
14709 1 /* enabled */,
14710 0 /* internal */, 0);
14711 }
14712
14713 /* Set up a fake reader function that gets command lines from a linked
14714 list that was acquired during tracepoint uploading. */
14715
14716 static struct uploaded_tp *this_utp;
14717 static int next_cmd;
14718
14719 static char *
14720 read_uploaded_action (void)
14721 {
14722 char *rslt;
14723
14724 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14725
14726 next_cmd++;
14727
14728 return rslt;
14729 }
14730
14731 /* Given information about a tracepoint as recorded on a target (which
14732 can be either a live system or a trace file), attempt to create an
14733 equivalent GDB tracepoint. This is not a reliable process, since
14734 the target does not necessarily have all the information used when
14735 the tracepoint was originally defined. */
14736
14737 struct tracepoint *
14738 create_tracepoint_from_upload (struct uploaded_tp *utp)
14739 {
14740 const char *addr_str;
14741 char small_buf[100];
14742 struct tracepoint *tp;
14743
14744 if (utp->at_string)
14745 addr_str = utp->at_string;
14746 else
14747 {
14748 /* In the absence of a source location, fall back to raw
14749 address. Since there is no way to confirm that the address
14750 means the same thing as when the trace was started, warn the
14751 user. */
14752 warning (_("Uploaded tracepoint %d has no "
14753 "source location, using raw address"),
14754 utp->number);
14755 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14756 addr_str = small_buf;
14757 }
14758
14759 /* There's not much we can do with a sequence of bytecodes. */
14760 if (utp->cond && !utp->cond_string)
14761 warning (_("Uploaded tracepoint %d condition "
14762 "has no source form, ignoring it"),
14763 utp->number);
14764
14765 event_location_up location = string_to_event_location (&addr_str,
14766 current_language);
14767 if (!create_breakpoint (get_current_arch (),
14768 location.get (),
14769 utp->cond_string, -1, addr_str,
14770 0 /* parse cond/thread */,
14771 0 /* tempflag */,
14772 utp->type /* type_wanted */,
14773 0 /* Ignore count */,
14774 pending_break_support,
14775 &tracepoint_breakpoint_ops,
14776 0 /* from_tty */,
14777 utp->enabled /* enabled */,
14778 0 /* internal */,
14779 CREATE_BREAKPOINT_FLAGS_INSERTED))
14780 return NULL;
14781
14782 /* Get the tracepoint we just created. */
14783 tp = get_tracepoint (tracepoint_count);
14784 gdb_assert (tp != NULL);
14785
14786 if (utp->pass > 0)
14787 {
14788 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14789 tp->number);
14790
14791 trace_pass_command (small_buf, 0);
14792 }
14793
14794 /* If we have uploaded versions of the original commands, set up a
14795 special-purpose "reader" function and call the usual command line
14796 reader, then pass the result to the breakpoint command-setting
14797 function. */
14798 if (!VEC_empty (char_ptr, utp->cmd_strings))
14799 {
14800 command_line_up cmd_list;
14801
14802 this_utp = utp;
14803 next_cmd = 0;
14804
14805 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14806
14807 breakpoint_set_commands (tp, std::move (cmd_list));
14808 }
14809 else if (!VEC_empty (char_ptr, utp->actions)
14810 || !VEC_empty (char_ptr, utp->step_actions))
14811 warning (_("Uploaded tracepoint %d actions "
14812 "have no source form, ignoring them"),
14813 utp->number);
14814
14815 /* Copy any status information that might be available. */
14816 tp->hit_count = utp->hit_count;
14817 tp->traceframe_usage = utp->traceframe_usage;
14818
14819 return tp;
14820 }
14821
14822 /* Print information on tracepoint number TPNUM_EXP, or all if
14823 omitted. */
14824
14825 static void
14826 info_tracepoints_command (char *args, int from_tty)
14827 {
14828 struct ui_out *uiout = current_uiout;
14829 int num_printed;
14830
14831 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14832
14833 if (num_printed == 0)
14834 {
14835 if (args == NULL || *args == '\0')
14836 uiout->message ("No tracepoints.\n");
14837 else
14838 uiout->message ("No tracepoint matching '%s'.\n", args);
14839 }
14840
14841 default_collect_info ();
14842 }
14843
14844 /* The 'enable trace' command enables tracepoints.
14845 Not supported by all targets. */
14846 static void
14847 enable_trace_command (char *args, int from_tty)
14848 {
14849 enable_command (args, from_tty);
14850 }
14851
14852 /* The 'disable trace' command disables tracepoints.
14853 Not supported by all targets. */
14854 static void
14855 disable_trace_command (char *args, int from_tty)
14856 {
14857 disable_command (args, from_tty);
14858 }
14859
14860 /* Remove a tracepoint (or all if no argument). */
14861 static void
14862 delete_trace_command (const char *arg, int from_tty)
14863 {
14864 struct breakpoint *b, *b_tmp;
14865
14866 dont_repeat ();
14867
14868 if (arg == 0)
14869 {
14870 int breaks_to_delete = 0;
14871
14872 /* Delete all breakpoints if no argument.
14873 Do not delete internal or call-dummy breakpoints, these
14874 have to be deleted with an explicit breakpoint number
14875 argument. */
14876 ALL_TRACEPOINTS (b)
14877 if (is_tracepoint (b) && user_breakpoint_p (b))
14878 {
14879 breaks_to_delete = 1;
14880 break;
14881 }
14882
14883 /* Ask user only if there are some breakpoints to delete. */
14884 if (!from_tty
14885 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14886 {
14887 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14888 if (is_tracepoint (b) && user_breakpoint_p (b))
14889 delete_breakpoint (b);
14890 }
14891 }
14892 else
14893 map_breakpoint_numbers
14894 (arg, [&] (breakpoint *b)
14895 {
14896 iterate_over_related_breakpoints (b, delete_breakpoint);
14897 });
14898 }
14899
14900 /* Helper function for trace_pass_command. */
14901
14902 static void
14903 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14904 {
14905 tp->pass_count = count;
14906 observer_notify_breakpoint_modified (tp);
14907 if (from_tty)
14908 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14909 tp->number, count);
14910 }
14911
14912 /* Set passcount for tracepoint.
14913
14914 First command argument is passcount, second is tracepoint number.
14915 If tracepoint number omitted, apply to most recently defined.
14916 Also accepts special argument "all". */
14917
14918 static void
14919 trace_pass_command (char *args, int from_tty)
14920 {
14921 struct tracepoint *t1;
14922 unsigned int count;
14923
14924 if (args == 0 || *args == 0)
14925 error (_("passcount command requires an "
14926 "argument (count + optional TP num)"));
14927
14928 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
14929
14930 args = skip_spaces (args);
14931 if (*args && strncasecmp (args, "all", 3) == 0)
14932 {
14933 struct breakpoint *b;
14934
14935 args += 3; /* Skip special argument "all". */
14936 if (*args)
14937 error (_("Junk at end of arguments."));
14938
14939 ALL_TRACEPOINTS (b)
14940 {
14941 t1 = (struct tracepoint *) b;
14942 trace_pass_set_count (t1, count, from_tty);
14943 }
14944 }
14945 else if (*args == '\0')
14946 {
14947 t1 = get_tracepoint_by_number (&args, NULL);
14948 if (t1)
14949 trace_pass_set_count (t1, count, from_tty);
14950 }
14951 else
14952 {
14953 number_or_range_parser parser (args);
14954 while (!parser.finished ())
14955 {
14956 t1 = get_tracepoint_by_number (&args, &parser);
14957 if (t1)
14958 trace_pass_set_count (t1, count, from_tty);
14959 }
14960 }
14961 }
14962
14963 struct tracepoint *
14964 get_tracepoint (int num)
14965 {
14966 struct breakpoint *t;
14967
14968 ALL_TRACEPOINTS (t)
14969 if (t->number == num)
14970 return (struct tracepoint *) t;
14971
14972 return NULL;
14973 }
14974
14975 /* Find the tracepoint with the given target-side number (which may be
14976 different from the tracepoint number after disconnecting and
14977 reconnecting). */
14978
14979 struct tracepoint *
14980 get_tracepoint_by_number_on_target (int num)
14981 {
14982 struct breakpoint *b;
14983
14984 ALL_TRACEPOINTS (b)
14985 {
14986 struct tracepoint *t = (struct tracepoint *) b;
14987
14988 if (t->number_on_target == num)
14989 return t;
14990 }
14991
14992 return NULL;
14993 }
14994
14995 /* Utility: parse a tracepoint number and look it up in the list.
14996 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14997 If the argument is missing, the most recent tracepoint
14998 (tracepoint_count) is returned. */
14999
15000 struct tracepoint *
15001 get_tracepoint_by_number (char **arg,
15002 number_or_range_parser *parser)
15003 {
15004 struct breakpoint *t;
15005 int tpnum;
15006 char *instring = arg == NULL ? NULL : *arg;
15007
15008 if (parser != NULL)
15009 {
15010 gdb_assert (!parser->finished ());
15011 tpnum = parser->get_number ();
15012 }
15013 else if (arg == NULL || *arg == NULL || ! **arg)
15014 tpnum = tracepoint_count;
15015 else
15016 tpnum = get_number (arg);
15017
15018 if (tpnum <= 0)
15019 {
15020 if (instring && *instring)
15021 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15022 instring);
15023 else
15024 printf_filtered (_("No previous tracepoint\n"));
15025 return NULL;
15026 }
15027
15028 ALL_TRACEPOINTS (t)
15029 if (t->number == tpnum)
15030 {
15031 return (struct tracepoint *) t;
15032 }
15033
15034 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15035 return NULL;
15036 }
15037
15038 void
15039 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15040 {
15041 if (b->thread != -1)
15042 fprintf_unfiltered (fp, " thread %d", b->thread);
15043
15044 if (b->task != 0)
15045 fprintf_unfiltered (fp, " task %d", b->task);
15046
15047 fprintf_unfiltered (fp, "\n");
15048 }
15049
15050 /* Save information on user settable breakpoints (watchpoints, etc) to
15051 a new script file named FILENAME. If FILTER is non-NULL, call it
15052 on each breakpoint and only include the ones for which it returns
15053 non-zero. */
15054
15055 static void
15056 save_breakpoints (const char *filename, int from_tty,
15057 int (*filter) (const struct breakpoint *))
15058 {
15059 struct breakpoint *tp;
15060 int any = 0;
15061 int extra_trace_bits = 0;
15062
15063 if (filename == 0 || *filename == 0)
15064 error (_("Argument required (file name in which to save)"));
15065
15066 /* See if we have anything to save. */
15067 ALL_BREAKPOINTS (tp)
15068 {
15069 /* Skip internal and momentary breakpoints. */
15070 if (!user_breakpoint_p (tp))
15071 continue;
15072
15073 /* If we have a filter, only save the breakpoints it accepts. */
15074 if (filter && !filter (tp))
15075 continue;
15076
15077 any = 1;
15078
15079 if (is_tracepoint (tp))
15080 {
15081 extra_trace_bits = 1;
15082
15083 /* We can stop searching. */
15084 break;
15085 }
15086 }
15087
15088 if (!any)
15089 {
15090 warning (_("Nothing to save."));
15091 return;
15092 }
15093
15094 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15095
15096 stdio_file fp;
15097
15098 if (!fp.open (expanded_filename.get (), "w"))
15099 error (_("Unable to open file '%s' for saving (%s)"),
15100 expanded_filename.get (), safe_strerror (errno));
15101
15102 if (extra_trace_bits)
15103 save_trace_state_variables (&fp);
15104
15105 ALL_BREAKPOINTS (tp)
15106 {
15107 /* Skip internal and momentary breakpoints. */
15108 if (!user_breakpoint_p (tp))
15109 continue;
15110
15111 /* If we have a filter, only save the breakpoints it accepts. */
15112 if (filter && !filter (tp))
15113 continue;
15114
15115 tp->ops->print_recreate (tp, &fp);
15116
15117 /* Note, we can't rely on tp->number for anything, as we can't
15118 assume the recreated breakpoint numbers will match. Use $bpnum
15119 instead. */
15120
15121 if (tp->cond_string)
15122 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15123
15124 if (tp->ignore_count)
15125 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15126
15127 if (tp->type != bp_dprintf && tp->commands)
15128 {
15129 fp.puts (" commands\n");
15130
15131 current_uiout->redirect (&fp);
15132 TRY
15133 {
15134 print_command_lines (current_uiout, tp->commands.get (), 2);
15135 }
15136 CATCH (ex, RETURN_MASK_ALL)
15137 {
15138 current_uiout->redirect (NULL);
15139 throw_exception (ex);
15140 }
15141 END_CATCH
15142
15143 current_uiout->redirect (NULL);
15144 fp.puts (" end\n");
15145 }
15146
15147 if (tp->enable_state == bp_disabled)
15148 fp.puts ("disable $bpnum\n");
15149
15150 /* If this is a multi-location breakpoint, check if the locations
15151 should be individually disabled. Watchpoint locations are
15152 special, and not user visible. */
15153 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15154 {
15155 struct bp_location *loc;
15156 int n = 1;
15157
15158 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15159 if (!loc->enabled)
15160 fp.printf ("disable $bpnum.%d\n", n);
15161 }
15162 }
15163
15164 if (extra_trace_bits && *default_collect)
15165 fp.printf ("set default-collect %s\n", default_collect);
15166
15167 if (from_tty)
15168 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15169 }
15170
15171 /* The `save breakpoints' command. */
15172
15173 static void
15174 save_breakpoints_command (const char *args, int from_tty)
15175 {
15176 save_breakpoints (args, from_tty, NULL);
15177 }
15178
15179 /* The `save tracepoints' command. */
15180
15181 static void
15182 save_tracepoints_command (const char *args, int from_tty)
15183 {
15184 save_breakpoints (args, from_tty, is_tracepoint);
15185 }
15186
15187 /* Create a vector of all tracepoints. */
15188
15189 VEC(breakpoint_p) *
15190 all_tracepoints (void)
15191 {
15192 VEC(breakpoint_p) *tp_vec = 0;
15193 struct breakpoint *tp;
15194
15195 ALL_TRACEPOINTS (tp)
15196 {
15197 VEC_safe_push (breakpoint_p, tp_vec, tp);
15198 }
15199
15200 return tp_vec;
15201 }
15202
15203 \f
15204 /* This help string is used to consolidate all the help string for specifying
15205 locations used by several commands. */
15206
15207 #define LOCATION_HELP_STRING \
15208 "Linespecs are colon-separated lists of location parameters, such as\n\
15209 source filename, function name, label name, and line number.\n\
15210 Example: To specify the start of a label named \"the_top\" in the\n\
15211 function \"fact\" in the file \"factorial.c\", use\n\
15212 \"factorial.c:fact:the_top\".\n\
15213 \n\
15214 Address locations begin with \"*\" and specify an exact address in the\n\
15215 program. Example: To specify the fourth byte past the start function\n\
15216 \"main\", use \"*main + 4\".\n\
15217 \n\
15218 Explicit locations are similar to linespecs but use an option/argument\n\
15219 syntax to specify location parameters.\n\
15220 Example: To specify the start of the label named \"the_top\" in the\n\
15221 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15222 -function fact -label the_top\".\n"
15223
15224 /* This help string is used for the break, hbreak, tbreak and thbreak
15225 commands. It is defined as a macro to prevent duplication.
15226 COMMAND should be a string constant containing the name of the
15227 command. */
15228
15229 #define BREAK_ARGS_HELP(command) \
15230 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15231 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15232 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15233 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15234 `-probe-dtrace' (for a DTrace probe).\n\
15235 LOCATION may be a linespec, address, or explicit location as described\n\
15236 below.\n\
15237 \n\
15238 With no LOCATION, uses current execution address of the selected\n\
15239 stack frame. This is useful for breaking on return to a stack frame.\n\
15240 \n\
15241 THREADNUM is the number from \"info threads\".\n\
15242 CONDITION is a boolean expression.\n\
15243 \n" LOCATION_HELP_STRING "\n\
15244 Multiple breakpoints at one place are permitted, and useful if their\n\
15245 conditions are different.\n\
15246 \n\
15247 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15248
15249 /* List of subcommands for "catch". */
15250 static struct cmd_list_element *catch_cmdlist;
15251
15252 /* List of subcommands for "tcatch". */
15253 static struct cmd_list_element *tcatch_cmdlist;
15254
15255 void
15256 add_catch_command (const char *name, const char *docstring,
15257 cmd_sfunc_ftype *sfunc,
15258 completer_ftype *completer,
15259 void *user_data_catch,
15260 void *user_data_tcatch)
15261 {
15262 struct cmd_list_element *command;
15263
15264 command = add_cmd (name, class_breakpoint, docstring,
15265 &catch_cmdlist);
15266 set_cmd_sfunc (command, sfunc);
15267 set_cmd_context (command, user_data_catch);
15268 set_cmd_completer (command, completer);
15269
15270 command = add_cmd (name, class_breakpoint, docstring,
15271 &tcatch_cmdlist);
15272 set_cmd_sfunc (command, sfunc);
15273 set_cmd_context (command, user_data_tcatch);
15274 set_cmd_completer (command, completer);
15275 }
15276
15277 static void
15278 save_command (const char *arg, int from_tty)
15279 {
15280 printf_unfiltered (_("\"save\" must be followed by "
15281 "the name of a save subcommand.\n"));
15282 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15283 }
15284
15285 struct breakpoint *
15286 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15287 void *data)
15288 {
15289 struct breakpoint *b, *b_tmp;
15290
15291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15292 {
15293 if ((*callback) (b, data))
15294 return b;
15295 }
15296
15297 return NULL;
15298 }
15299
15300 /* Zero if any of the breakpoint's locations could be a location where
15301 functions have been inlined, nonzero otherwise. */
15302
15303 static int
15304 is_non_inline_function (struct breakpoint *b)
15305 {
15306 /* The shared library event breakpoint is set on the address of a
15307 non-inline function. */
15308 if (b->type == bp_shlib_event)
15309 return 1;
15310
15311 return 0;
15312 }
15313
15314 /* Nonzero if the specified PC cannot be a location where functions
15315 have been inlined. */
15316
15317 int
15318 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15319 const struct target_waitstatus *ws)
15320 {
15321 struct breakpoint *b;
15322 struct bp_location *bl;
15323
15324 ALL_BREAKPOINTS (b)
15325 {
15326 if (!is_non_inline_function (b))
15327 continue;
15328
15329 for (bl = b->loc; bl != NULL; bl = bl->next)
15330 {
15331 if (!bl->shlib_disabled
15332 && bpstat_check_location (bl, aspace, pc, ws))
15333 return 1;
15334 }
15335 }
15336
15337 return 0;
15338 }
15339
15340 /* Remove any references to OBJFILE which is going to be freed. */
15341
15342 void
15343 breakpoint_free_objfile (struct objfile *objfile)
15344 {
15345 struct bp_location **locp, *loc;
15346
15347 ALL_BP_LOCATIONS (loc, locp)
15348 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15349 loc->symtab = NULL;
15350 }
15351
15352 void
15353 initialize_breakpoint_ops (void)
15354 {
15355 static int initialized = 0;
15356
15357 struct breakpoint_ops *ops;
15358
15359 if (initialized)
15360 return;
15361 initialized = 1;
15362
15363 /* The breakpoint_ops structure to be inherit by all kinds of
15364 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15365 internal and momentary breakpoints, etc.). */
15366 ops = &bkpt_base_breakpoint_ops;
15367 *ops = base_breakpoint_ops;
15368 ops->re_set = bkpt_re_set;
15369 ops->insert_location = bkpt_insert_location;
15370 ops->remove_location = bkpt_remove_location;
15371 ops->breakpoint_hit = bkpt_breakpoint_hit;
15372 ops->create_sals_from_location = bkpt_create_sals_from_location;
15373 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15374 ops->decode_location = bkpt_decode_location;
15375
15376 /* The breakpoint_ops structure to be used in regular breakpoints. */
15377 ops = &bkpt_breakpoint_ops;
15378 *ops = bkpt_base_breakpoint_ops;
15379 ops->re_set = bkpt_re_set;
15380 ops->resources_needed = bkpt_resources_needed;
15381 ops->print_it = bkpt_print_it;
15382 ops->print_mention = bkpt_print_mention;
15383 ops->print_recreate = bkpt_print_recreate;
15384
15385 /* Ranged breakpoints. */
15386 ops = &ranged_breakpoint_ops;
15387 *ops = bkpt_breakpoint_ops;
15388 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15389 ops->resources_needed = resources_needed_ranged_breakpoint;
15390 ops->print_it = print_it_ranged_breakpoint;
15391 ops->print_one = print_one_ranged_breakpoint;
15392 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15393 ops->print_mention = print_mention_ranged_breakpoint;
15394 ops->print_recreate = print_recreate_ranged_breakpoint;
15395
15396 /* Internal breakpoints. */
15397 ops = &internal_breakpoint_ops;
15398 *ops = bkpt_base_breakpoint_ops;
15399 ops->re_set = internal_bkpt_re_set;
15400 ops->check_status = internal_bkpt_check_status;
15401 ops->print_it = internal_bkpt_print_it;
15402 ops->print_mention = internal_bkpt_print_mention;
15403
15404 /* Momentary breakpoints. */
15405 ops = &momentary_breakpoint_ops;
15406 *ops = bkpt_base_breakpoint_ops;
15407 ops->re_set = momentary_bkpt_re_set;
15408 ops->check_status = momentary_bkpt_check_status;
15409 ops->print_it = momentary_bkpt_print_it;
15410 ops->print_mention = momentary_bkpt_print_mention;
15411
15412 /* Probe breakpoints. */
15413 ops = &bkpt_probe_breakpoint_ops;
15414 *ops = bkpt_breakpoint_ops;
15415 ops->insert_location = bkpt_probe_insert_location;
15416 ops->remove_location = bkpt_probe_remove_location;
15417 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15418 ops->decode_location = bkpt_probe_decode_location;
15419
15420 /* Watchpoints. */
15421 ops = &watchpoint_breakpoint_ops;
15422 *ops = base_breakpoint_ops;
15423 ops->re_set = re_set_watchpoint;
15424 ops->insert_location = insert_watchpoint;
15425 ops->remove_location = remove_watchpoint;
15426 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15427 ops->check_status = check_status_watchpoint;
15428 ops->resources_needed = resources_needed_watchpoint;
15429 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15430 ops->print_it = print_it_watchpoint;
15431 ops->print_mention = print_mention_watchpoint;
15432 ops->print_recreate = print_recreate_watchpoint;
15433 ops->explains_signal = explains_signal_watchpoint;
15434
15435 /* Masked watchpoints. */
15436 ops = &masked_watchpoint_breakpoint_ops;
15437 *ops = watchpoint_breakpoint_ops;
15438 ops->insert_location = insert_masked_watchpoint;
15439 ops->remove_location = remove_masked_watchpoint;
15440 ops->resources_needed = resources_needed_masked_watchpoint;
15441 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15442 ops->print_it = print_it_masked_watchpoint;
15443 ops->print_one_detail = print_one_detail_masked_watchpoint;
15444 ops->print_mention = print_mention_masked_watchpoint;
15445 ops->print_recreate = print_recreate_masked_watchpoint;
15446
15447 /* Tracepoints. */
15448 ops = &tracepoint_breakpoint_ops;
15449 *ops = base_breakpoint_ops;
15450 ops->re_set = tracepoint_re_set;
15451 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15452 ops->print_one_detail = tracepoint_print_one_detail;
15453 ops->print_mention = tracepoint_print_mention;
15454 ops->print_recreate = tracepoint_print_recreate;
15455 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15456 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15457 ops->decode_location = tracepoint_decode_location;
15458
15459 /* Probe tracepoints. */
15460 ops = &tracepoint_probe_breakpoint_ops;
15461 *ops = tracepoint_breakpoint_ops;
15462 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15463 ops->decode_location = tracepoint_probe_decode_location;
15464
15465 /* Static tracepoints with marker (`-m'). */
15466 ops = &strace_marker_breakpoint_ops;
15467 *ops = tracepoint_breakpoint_ops;
15468 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15469 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15470 ops->decode_location = strace_marker_decode_location;
15471
15472 /* Fork catchpoints. */
15473 ops = &catch_fork_breakpoint_ops;
15474 *ops = base_breakpoint_ops;
15475 ops->insert_location = insert_catch_fork;
15476 ops->remove_location = remove_catch_fork;
15477 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15478 ops->print_it = print_it_catch_fork;
15479 ops->print_one = print_one_catch_fork;
15480 ops->print_mention = print_mention_catch_fork;
15481 ops->print_recreate = print_recreate_catch_fork;
15482
15483 /* Vfork catchpoints. */
15484 ops = &catch_vfork_breakpoint_ops;
15485 *ops = base_breakpoint_ops;
15486 ops->insert_location = insert_catch_vfork;
15487 ops->remove_location = remove_catch_vfork;
15488 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15489 ops->print_it = print_it_catch_vfork;
15490 ops->print_one = print_one_catch_vfork;
15491 ops->print_mention = print_mention_catch_vfork;
15492 ops->print_recreate = print_recreate_catch_vfork;
15493
15494 /* Exec catchpoints. */
15495 ops = &catch_exec_breakpoint_ops;
15496 *ops = base_breakpoint_ops;
15497 ops->insert_location = insert_catch_exec;
15498 ops->remove_location = remove_catch_exec;
15499 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15500 ops->print_it = print_it_catch_exec;
15501 ops->print_one = print_one_catch_exec;
15502 ops->print_mention = print_mention_catch_exec;
15503 ops->print_recreate = print_recreate_catch_exec;
15504
15505 /* Solib-related catchpoints. */
15506 ops = &catch_solib_breakpoint_ops;
15507 *ops = base_breakpoint_ops;
15508 ops->insert_location = insert_catch_solib;
15509 ops->remove_location = remove_catch_solib;
15510 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15511 ops->check_status = check_status_catch_solib;
15512 ops->print_it = print_it_catch_solib;
15513 ops->print_one = print_one_catch_solib;
15514 ops->print_mention = print_mention_catch_solib;
15515 ops->print_recreate = print_recreate_catch_solib;
15516
15517 ops = &dprintf_breakpoint_ops;
15518 *ops = bkpt_base_breakpoint_ops;
15519 ops->re_set = dprintf_re_set;
15520 ops->resources_needed = bkpt_resources_needed;
15521 ops->print_it = bkpt_print_it;
15522 ops->print_mention = bkpt_print_mention;
15523 ops->print_recreate = dprintf_print_recreate;
15524 ops->after_condition_true = dprintf_after_condition_true;
15525 ops->breakpoint_hit = dprintf_breakpoint_hit;
15526 }
15527
15528 /* Chain containing all defined "enable breakpoint" subcommands. */
15529
15530 static struct cmd_list_element *enablebreaklist = NULL;
15531
15532 void
15533 _initialize_breakpoint (void)
15534 {
15535 struct cmd_list_element *c;
15536
15537 initialize_breakpoint_ops ();
15538
15539 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15540 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15541 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15542
15543 breakpoint_objfile_key
15544 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15545
15546 breakpoint_chain = 0;
15547 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15548 before a breakpoint is set. */
15549 breakpoint_count = 0;
15550
15551 tracepoint_count = 0;
15552
15553 add_com ("ignore", class_breakpoint, ignore_command, _("\
15554 Set ignore-count of breakpoint number N to COUNT.\n\
15555 Usage is `ignore N COUNT'."));
15556
15557 add_com ("commands", class_breakpoint, commands_command, _("\
15558 Set commands to be executed when the given breakpoints are hit.\n\
15559 Give a space-separated breakpoint list as argument after \"commands\".\n\
15560 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15561 (e.g. `5-7').\n\
15562 With no argument, the targeted breakpoint is the last one set.\n\
15563 The commands themselves follow starting on the next line.\n\
15564 Type a line containing \"end\" to indicate the end of them.\n\
15565 Give \"silent\" as the first line to make the breakpoint silent;\n\
15566 then no output is printed when it is hit, except what the commands print."));
15567
15568 c = add_com ("condition", class_breakpoint, condition_command, _("\
15569 Specify breakpoint number N to break only if COND is true.\n\
15570 Usage is `condition N COND', where N is an integer and COND is an\n\
15571 expression to be evaluated whenever breakpoint N is reached."));
15572 set_cmd_completer (c, condition_completer);
15573
15574 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15575 Set a temporary breakpoint.\n\
15576 Like \"break\" except the breakpoint is only temporary,\n\
15577 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15578 by using \"enable delete\" on the breakpoint number.\n\
15579 \n"
15580 BREAK_ARGS_HELP ("tbreak")));
15581 set_cmd_completer (c, location_completer);
15582
15583 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15584 Set a hardware assisted breakpoint.\n\
15585 Like \"break\" except the breakpoint requires hardware support,\n\
15586 some target hardware may not have this support.\n\
15587 \n"
15588 BREAK_ARGS_HELP ("hbreak")));
15589 set_cmd_completer (c, location_completer);
15590
15591 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15592 Set a temporary hardware assisted breakpoint.\n\
15593 Like \"hbreak\" except the breakpoint is only temporary,\n\
15594 so it will be deleted when hit.\n\
15595 \n"
15596 BREAK_ARGS_HELP ("thbreak")));
15597 set_cmd_completer (c, location_completer);
15598
15599 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15600 Enable some breakpoints.\n\
15601 Give breakpoint numbers (separated by spaces) as arguments.\n\
15602 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15603 This is used to cancel the effect of the \"disable\" command.\n\
15604 With a subcommand you can enable temporarily."),
15605 &enablelist, "enable ", 1, &cmdlist);
15606
15607 add_com_alias ("en", "enable", class_breakpoint, 1);
15608
15609 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15610 Enable some breakpoints.\n\
15611 Give breakpoint numbers (separated by spaces) as arguments.\n\
15612 This is used to cancel the effect of the \"disable\" command.\n\
15613 May be abbreviated to simply \"enable\".\n"),
15614 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15615
15616 add_cmd ("once", no_class, enable_once_command, _("\
15617 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15618 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15619 &enablebreaklist);
15620
15621 add_cmd ("delete", no_class, enable_delete_command, _("\
15622 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15623 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15624 &enablebreaklist);
15625
15626 add_cmd ("count", no_class, enable_count_command, _("\
15627 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15628 If a breakpoint is hit while enabled in this fashion,\n\
15629 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15630 &enablebreaklist);
15631
15632 add_cmd ("delete", no_class, enable_delete_command, _("\
15633 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15634 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15635 &enablelist);
15636
15637 add_cmd ("once", no_class, enable_once_command, _("\
15638 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15639 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15640 &enablelist);
15641
15642 add_cmd ("count", no_class, enable_count_command, _("\
15643 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15644 If a breakpoint is hit while enabled in this fashion,\n\
15645 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15646 &enablelist);
15647
15648 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15649 Disable some breakpoints.\n\
15650 Arguments are breakpoint numbers with spaces in between.\n\
15651 To disable all breakpoints, give no argument.\n\
15652 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15653 &disablelist, "disable ", 1, &cmdlist);
15654 add_com_alias ("dis", "disable", class_breakpoint, 1);
15655 add_com_alias ("disa", "disable", class_breakpoint, 1);
15656
15657 add_cmd ("breakpoints", class_alias, disable_command, _("\
15658 Disable some breakpoints.\n\
15659 Arguments are breakpoint numbers with spaces in between.\n\
15660 To disable all breakpoints, give no argument.\n\
15661 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15662 This command may be abbreviated \"disable\"."),
15663 &disablelist);
15664
15665 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15666 Delete some breakpoints or auto-display expressions.\n\
15667 Arguments are breakpoint numbers with spaces in between.\n\
15668 To delete all breakpoints, give no argument.\n\
15669 \n\
15670 Also a prefix command for deletion of other GDB objects.\n\
15671 The \"unset\" command is also an alias for \"delete\"."),
15672 &deletelist, "delete ", 1, &cmdlist);
15673 add_com_alias ("d", "delete", class_breakpoint, 1);
15674 add_com_alias ("del", "delete", class_breakpoint, 1);
15675
15676 add_cmd ("breakpoints", class_alias, delete_command, _("\
15677 Delete some breakpoints or auto-display expressions.\n\
15678 Arguments are breakpoint numbers with spaces in between.\n\
15679 To delete all breakpoints, give no argument.\n\
15680 This command may be abbreviated \"delete\"."),
15681 &deletelist);
15682
15683 add_com ("clear", class_breakpoint, clear_command, _("\
15684 Clear breakpoint at specified location.\n\
15685 Argument may be a linespec, explicit, or address location as described below.\n\
15686 \n\
15687 With no argument, clears all breakpoints in the line that the selected frame\n\
15688 is executing in.\n"
15689 "\n" LOCATION_HELP_STRING "\n\
15690 See also the \"delete\" command which clears breakpoints by number."));
15691 add_com_alias ("cl", "clear", class_breakpoint, 1);
15692
15693 c = add_com ("break", class_breakpoint, break_command, _("\
15694 Set breakpoint at specified location.\n"
15695 BREAK_ARGS_HELP ("break")));
15696 set_cmd_completer (c, location_completer);
15697
15698 add_com_alias ("b", "break", class_run, 1);
15699 add_com_alias ("br", "break", class_run, 1);
15700 add_com_alias ("bre", "break", class_run, 1);
15701 add_com_alias ("brea", "break", class_run, 1);
15702
15703 if (dbx_commands)
15704 {
15705 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15706 Break in function/address or break at a line in the current file."),
15707 &stoplist, "stop ", 1, &cmdlist);
15708 add_cmd ("in", class_breakpoint, stopin_command,
15709 _("Break in function or address."), &stoplist);
15710 add_cmd ("at", class_breakpoint, stopat_command,
15711 _("Break at a line in the current file."), &stoplist);
15712 add_com ("status", class_info, info_breakpoints_command, _("\
15713 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15714 The \"Type\" column indicates one of:\n\
15715 \tbreakpoint - normal breakpoint\n\
15716 \twatchpoint - watchpoint\n\
15717 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15718 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15719 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15720 address and file/line number respectively.\n\
15721 \n\
15722 Convenience variable \"$_\" and default examine address for \"x\"\n\
15723 are set to the address of the last breakpoint listed unless the command\n\
15724 is prefixed with \"server \".\n\n\
15725 Convenience variable \"$bpnum\" contains the number of the last\n\
15726 breakpoint set."));
15727 }
15728
15729 add_info ("breakpoints", info_breakpoints_command, _("\
15730 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15731 The \"Type\" column indicates one of:\n\
15732 \tbreakpoint - normal breakpoint\n\
15733 \twatchpoint - watchpoint\n\
15734 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15735 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15736 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15737 address and file/line number respectively.\n\
15738 \n\
15739 Convenience variable \"$_\" and default examine address for \"x\"\n\
15740 are set to the address of the last breakpoint listed unless the command\n\
15741 is prefixed with \"server \".\n\n\
15742 Convenience variable \"$bpnum\" contains the number of the last\n\
15743 breakpoint set."));
15744
15745 add_info_alias ("b", "breakpoints", 1);
15746
15747 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15748 Status of all breakpoints, or breakpoint number NUMBER.\n\
15749 The \"Type\" column indicates one of:\n\
15750 \tbreakpoint - normal breakpoint\n\
15751 \twatchpoint - watchpoint\n\
15752 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15753 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15754 \tuntil - internal breakpoint used by the \"until\" command\n\
15755 \tfinish - internal breakpoint used by the \"finish\" command\n\
15756 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15757 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15758 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15759 address and file/line number respectively.\n\
15760 \n\
15761 Convenience variable \"$_\" and default examine address for \"x\"\n\
15762 are set to the address of the last breakpoint listed unless the command\n\
15763 is prefixed with \"server \".\n\n\
15764 Convenience variable \"$bpnum\" contains the number of the last\n\
15765 breakpoint set."),
15766 &maintenanceinfolist);
15767
15768 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15769 Set catchpoints to catch events."),
15770 &catch_cmdlist, "catch ",
15771 0/*allow-unknown*/, &cmdlist);
15772
15773 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15774 Set temporary catchpoints to catch events."),
15775 &tcatch_cmdlist, "tcatch ",
15776 0/*allow-unknown*/, &cmdlist);
15777
15778 add_catch_command ("fork", _("Catch calls to fork."),
15779 catch_fork_command_1,
15780 NULL,
15781 (void *) (uintptr_t) catch_fork_permanent,
15782 (void *) (uintptr_t) catch_fork_temporary);
15783 add_catch_command ("vfork", _("Catch calls to vfork."),
15784 catch_fork_command_1,
15785 NULL,
15786 (void *) (uintptr_t) catch_vfork_permanent,
15787 (void *) (uintptr_t) catch_vfork_temporary);
15788 add_catch_command ("exec", _("Catch calls to exec."),
15789 catch_exec_command_1,
15790 NULL,
15791 CATCH_PERMANENT,
15792 CATCH_TEMPORARY);
15793 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15794 Usage: catch load [REGEX]\n\
15795 If REGEX is given, only stop for libraries matching the regular expression."),
15796 catch_load_command_1,
15797 NULL,
15798 CATCH_PERMANENT,
15799 CATCH_TEMPORARY);
15800 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15801 Usage: catch unload [REGEX]\n\
15802 If REGEX is given, only stop for libraries matching the regular expression."),
15803 catch_unload_command_1,
15804 NULL,
15805 CATCH_PERMANENT,
15806 CATCH_TEMPORARY);
15807
15808 c = add_com ("watch", class_breakpoint, watch_command, _("\
15809 Set a watchpoint for an expression.\n\
15810 Usage: watch [-l|-location] EXPRESSION\n\
15811 A watchpoint stops execution of your program whenever the value of\n\
15812 an expression changes.\n\
15813 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15814 the memory to which it refers."));
15815 set_cmd_completer (c, expression_completer);
15816
15817 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15818 Set a read watchpoint for an expression.\n\
15819 Usage: rwatch [-l|-location] EXPRESSION\n\
15820 A watchpoint stops execution of your program whenever the value of\n\
15821 an expression is read.\n\
15822 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15823 the memory to which it refers."));
15824 set_cmd_completer (c, expression_completer);
15825
15826 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15827 Set a watchpoint for an expression.\n\
15828 Usage: awatch [-l|-location] EXPRESSION\n\
15829 A watchpoint stops execution of your program whenever the value of\n\
15830 an expression is either read or written.\n\
15831 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15832 the memory to which it refers."));
15833 set_cmd_completer (c, expression_completer);
15834
15835 add_info ("watchpoints", info_watchpoints_command, _("\
15836 Status of specified watchpoints (all watchpoints if no argument)."));
15837
15838 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15839 respond to changes - contrary to the description. */
15840 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15841 &can_use_hw_watchpoints, _("\
15842 Set debugger's willingness to use watchpoint hardware."), _("\
15843 Show debugger's willingness to use watchpoint hardware."), _("\
15844 If zero, gdb will not use hardware for new watchpoints, even if\n\
15845 such is available. (However, any hardware watchpoints that were\n\
15846 created before setting this to nonzero, will continue to use watchpoint\n\
15847 hardware.)"),
15848 NULL,
15849 show_can_use_hw_watchpoints,
15850 &setlist, &showlist);
15851
15852 can_use_hw_watchpoints = 1;
15853
15854 /* Tracepoint manipulation commands. */
15855
15856 c = add_com ("trace", class_breakpoint, trace_command, _("\
15857 Set a tracepoint at specified location.\n\
15858 \n"
15859 BREAK_ARGS_HELP ("trace") "\n\
15860 Do \"help tracepoints\" for info on other tracepoint commands."));
15861 set_cmd_completer (c, location_completer);
15862
15863 add_com_alias ("tp", "trace", class_alias, 0);
15864 add_com_alias ("tr", "trace", class_alias, 1);
15865 add_com_alias ("tra", "trace", class_alias, 1);
15866 add_com_alias ("trac", "trace", class_alias, 1);
15867
15868 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15869 Set a fast tracepoint at specified location.\n\
15870 \n"
15871 BREAK_ARGS_HELP ("ftrace") "\n\
15872 Do \"help tracepoints\" for info on other tracepoint commands."));
15873 set_cmd_completer (c, location_completer);
15874
15875 c = add_com ("strace", class_breakpoint, strace_command, _("\
15876 Set a static tracepoint at location or marker.\n\
15877 \n\
15878 strace [LOCATION] [if CONDITION]\n\
15879 LOCATION may be a linespec, explicit, or address location (described below) \n\
15880 or -m MARKER_ID.\n\n\
15881 If a marker id is specified, probe the marker with that name. With\n\
15882 no LOCATION, uses current execution address of the selected stack frame.\n\
15883 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15884 This collects arbitrary user data passed in the probe point call to the\n\
15885 tracing library. You can inspect it when analyzing the trace buffer,\n\
15886 by printing the $_sdata variable like any other convenience variable.\n\
15887 \n\
15888 CONDITION is a boolean expression.\n\
15889 \n" LOCATION_HELP_STRING "\n\
15890 Multiple tracepoints at one place are permitted, and useful if their\n\
15891 conditions are different.\n\
15892 \n\
15893 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15894 Do \"help tracepoints\" for info on other tracepoint commands."));
15895 set_cmd_completer (c, location_completer);
15896
15897 add_info ("tracepoints", info_tracepoints_command, _("\
15898 Status of specified tracepoints (all tracepoints if no argument).\n\
15899 Convenience variable \"$tpnum\" contains the number of the\n\
15900 last tracepoint set."));
15901
15902 add_info_alias ("tp", "tracepoints", 1);
15903
15904 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15905 Delete specified tracepoints.\n\
15906 Arguments are tracepoint numbers, separated by spaces.\n\
15907 No argument means delete all tracepoints."),
15908 &deletelist);
15909 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15910
15911 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15912 Disable specified tracepoints.\n\
15913 Arguments are tracepoint numbers, separated by spaces.\n\
15914 No argument means disable all tracepoints."),
15915 &disablelist);
15916 deprecate_cmd (c, "disable");
15917
15918 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15919 Enable specified tracepoints.\n\
15920 Arguments are tracepoint numbers, separated by spaces.\n\
15921 No argument means enable all tracepoints."),
15922 &enablelist);
15923 deprecate_cmd (c, "enable");
15924
15925 add_com ("passcount", class_trace, trace_pass_command, _("\
15926 Set the passcount for a tracepoint.\n\
15927 The trace will end when the tracepoint has been passed 'count' times.\n\
15928 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15929 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15930
15931 add_prefix_cmd ("save", class_breakpoint, save_command,
15932 _("Save breakpoint definitions as a script."),
15933 &save_cmdlist, "save ",
15934 0/*allow-unknown*/, &cmdlist);
15935
15936 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15937 Save current breakpoint definitions as a script.\n\
15938 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15939 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15940 session to restore them."),
15941 &save_cmdlist);
15942 set_cmd_completer (c, filename_completer);
15943
15944 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15945 Save current tracepoint definitions as a script.\n\
15946 Use the 'source' command in another debug session to restore them."),
15947 &save_cmdlist);
15948 set_cmd_completer (c, filename_completer);
15949
15950 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15951 deprecate_cmd (c, "save tracepoints");
15952
15953 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15954 Breakpoint specific settings\n\
15955 Configure various breakpoint-specific variables such as\n\
15956 pending breakpoint behavior"),
15957 &breakpoint_set_cmdlist, "set breakpoint ",
15958 0/*allow-unknown*/, &setlist);
15959 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15960 Breakpoint specific settings\n\
15961 Configure various breakpoint-specific variables such as\n\
15962 pending breakpoint behavior"),
15963 &breakpoint_show_cmdlist, "show breakpoint ",
15964 0/*allow-unknown*/, &showlist);
15965
15966 add_setshow_auto_boolean_cmd ("pending", no_class,
15967 &pending_break_support, _("\
15968 Set debugger's behavior regarding pending breakpoints."), _("\
15969 Show debugger's behavior regarding pending breakpoints."), _("\
15970 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15971 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15972 an error. If auto, an unrecognized breakpoint location results in a\n\
15973 user-query to see if a pending breakpoint should be created."),
15974 NULL,
15975 show_pending_break_support,
15976 &breakpoint_set_cmdlist,
15977 &breakpoint_show_cmdlist);
15978
15979 pending_break_support = AUTO_BOOLEAN_AUTO;
15980
15981 add_setshow_boolean_cmd ("auto-hw", no_class,
15982 &automatic_hardware_breakpoints, _("\
15983 Set automatic usage of hardware breakpoints."), _("\
15984 Show automatic usage of hardware breakpoints."), _("\
15985 If set, the debugger will automatically use hardware breakpoints for\n\
15986 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15987 a warning will be emitted for such breakpoints."),
15988 NULL,
15989 show_automatic_hardware_breakpoints,
15990 &breakpoint_set_cmdlist,
15991 &breakpoint_show_cmdlist);
15992
15993 add_setshow_boolean_cmd ("always-inserted", class_support,
15994 &always_inserted_mode, _("\
15995 Set mode for inserting breakpoints."), _("\
15996 Show mode for inserting breakpoints."), _("\
15997 When this mode is on, breakpoints are inserted immediately as soon as\n\
15998 they're created, kept inserted even when execution stops, and removed\n\
15999 only when the user deletes them. When this mode is off (the default),\n\
16000 breakpoints are inserted only when execution continues, and removed\n\
16001 when execution stops."),
16002 NULL,
16003 &show_always_inserted_mode,
16004 &breakpoint_set_cmdlist,
16005 &breakpoint_show_cmdlist);
16006
16007 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16008 condition_evaluation_enums,
16009 &condition_evaluation_mode_1, _("\
16010 Set mode of breakpoint condition evaluation."), _("\
16011 Show mode of breakpoint condition evaluation."), _("\
16012 When this is set to \"host\", breakpoint conditions will be\n\
16013 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16014 breakpoint conditions will be downloaded to the target (if the target\n\
16015 supports such feature) and conditions will be evaluated on the target's side.\n\
16016 If this is set to \"auto\" (default), this will be automatically set to\n\
16017 \"target\" if it supports condition evaluation, otherwise it will\n\
16018 be set to \"gdb\""),
16019 &set_condition_evaluation_mode,
16020 &show_condition_evaluation_mode,
16021 &breakpoint_set_cmdlist,
16022 &breakpoint_show_cmdlist);
16023
16024 add_com ("break-range", class_breakpoint, break_range_command, _("\
16025 Set a breakpoint for an address range.\n\
16026 break-range START-LOCATION, END-LOCATION\n\
16027 where START-LOCATION and END-LOCATION can be one of the following:\n\
16028 LINENUM, for that line in the current file,\n\
16029 FILE:LINENUM, for that line in that file,\n\
16030 +OFFSET, for that number of lines after the current line\n\
16031 or the start of the range\n\
16032 FUNCTION, for the first line in that function,\n\
16033 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16034 *ADDRESS, for the instruction at that address.\n\
16035 \n\
16036 The breakpoint will stop execution of the inferior whenever it executes\n\
16037 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16038 range (including START-LOCATION and END-LOCATION)."));
16039
16040 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16041 Set a dynamic printf at specified location.\n\
16042 dprintf location,format string,arg1,arg2,...\n\
16043 location may be a linespec, explicit, or address location.\n"
16044 "\n" LOCATION_HELP_STRING));
16045 set_cmd_completer (c, location_completer);
16046
16047 add_setshow_enum_cmd ("dprintf-style", class_support,
16048 dprintf_style_enums, &dprintf_style, _("\
16049 Set the style of usage for dynamic printf."), _("\
16050 Show the style of usage for dynamic printf."), _("\
16051 This setting chooses how GDB will do a dynamic printf.\n\
16052 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16053 console, as with the \"printf\" command.\n\
16054 If the value is \"call\", the print is done by calling a function in your\n\
16055 program; by default printf(), but you can choose a different function or\n\
16056 output stream by setting dprintf-function and dprintf-channel."),
16057 update_dprintf_commands, NULL,
16058 &setlist, &showlist);
16059
16060 dprintf_function = xstrdup ("printf");
16061 add_setshow_string_cmd ("dprintf-function", class_support,
16062 &dprintf_function, _("\
16063 Set the function to use for dynamic printf"), _("\
16064 Show the function to use for dynamic printf"), NULL,
16065 update_dprintf_commands, NULL,
16066 &setlist, &showlist);
16067
16068 dprintf_channel = xstrdup ("");
16069 add_setshow_string_cmd ("dprintf-channel", class_support,
16070 &dprintf_channel, _("\
16071 Set the channel to use for dynamic printf"), _("\
16072 Show the channel to use for dynamic printf"), NULL,
16073 update_dprintf_commands, NULL,
16074 &setlist, &showlist);
16075
16076 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16077 &disconnected_dprintf, _("\
16078 Set whether dprintf continues after GDB disconnects."), _("\
16079 Show whether dprintf continues after GDB disconnects."), _("\
16080 Use this to let dprintf commands continue to hit and produce output\n\
16081 even if GDB disconnects or detaches from the target."),
16082 NULL,
16083 NULL,
16084 &setlist, &showlist);
16085
16086 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16087 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16088 (target agent only) This is useful for formatted output in user-defined commands."));
16089
16090 automatic_hardware_breakpoints = 1;
16091
16092 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16093 observer_attach_thread_exit (remove_threaded_breakpoints);
16094 }
This page took 0.439067 seconds and 4 git commands to generate.