Convert struct target_ops to C++
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (ptid_equal (b->watchpoint_thread, null_ptid)
1554 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1555 && !is_executing (inferior_ptid))));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result, *next;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr->ptid);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && ptid_equal (inferior_ptid, null_ptid))
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && ptid_equal (inferior_ptid, null_ptid))
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of process PID. */
3069
3070 int
3071 remove_breakpoints_pid (int pid)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075 struct inferior *inf = find_inferior_pid (pid);
3076
3077 ALL_BP_LOCATIONS (bl, blp_tmp)
3078 {
3079 if (bl->pspace != inf->pspace)
3080 continue;
3081
3082 if (bl->inserted && !bl->target_info.persist)
3083 {
3084 val = remove_breakpoint (bl);
3085 if (val != 0)
3086 return val;
3087 }
3088 }
3089 return 0;
3090 }
3091
3092 static int internal_breakpoint_number = -1;
3093
3094 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3095 If INTERNAL is non-zero, the breakpoint number will be populated
3096 from internal_breakpoint_number and that variable decremented.
3097 Otherwise the breakpoint number will be populated from
3098 breakpoint_count and that value incremented. Internal breakpoints
3099 do not set the internal var bpnum. */
3100 static void
3101 set_breakpoint_number (int internal, struct breakpoint *b)
3102 {
3103 if (internal)
3104 b->number = internal_breakpoint_number--;
3105 else
3106 {
3107 set_breakpoint_count (breakpoint_count + 1);
3108 b->number = breakpoint_count;
3109 }
3110 }
3111
3112 static struct breakpoint *
3113 create_internal_breakpoint (struct gdbarch *gdbarch,
3114 CORE_ADDR address, enum bptype type,
3115 const struct breakpoint_ops *ops)
3116 {
3117 symtab_and_line sal;
3118 sal.pc = address;
3119 sal.section = find_pc_overlay (sal.pc);
3120 sal.pspace = current_program_space;
3121
3122 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3123 b->number = internal_breakpoint_number--;
3124 b->disposition = disp_donttouch;
3125
3126 return b;
3127 }
3128
3129 static const char *const longjmp_names[] =
3130 {
3131 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3132 };
3133 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3134
3135 /* Per-objfile data private to breakpoint.c. */
3136 struct breakpoint_objfile_data
3137 {
3138 /* Minimal symbol for "_ovly_debug_event" (if any). */
3139 struct bound_minimal_symbol overlay_msym {};
3140
3141 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3142 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3143
3144 /* True if we have looked for longjmp probes. */
3145 int longjmp_searched = 0;
3146
3147 /* SystemTap probe points for longjmp (if any). These are non-owning
3148 references. */
3149 std::vector<probe *> longjmp_probes;
3150
3151 /* Minimal symbol for "std::terminate()" (if any). */
3152 struct bound_minimal_symbol terminate_msym {};
3153
3154 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3155 struct bound_minimal_symbol exception_msym {};
3156
3157 /* True if we have looked for exception probes. */
3158 int exception_searched = 0;
3159
3160 /* SystemTap probe points for unwinding (if any). These are non-owning
3161 references. */
3162 std::vector<probe *> exception_probes;
3163 };
3164
3165 static const struct objfile_data *breakpoint_objfile_key;
3166
3167 /* Minimal symbol not found sentinel. */
3168 static struct minimal_symbol msym_not_found;
3169
3170 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3171
3172 static int
3173 msym_not_found_p (const struct minimal_symbol *msym)
3174 {
3175 return msym == &msym_not_found;
3176 }
3177
3178 /* Return per-objfile data needed by breakpoint.c.
3179 Allocate the data if necessary. */
3180
3181 static struct breakpoint_objfile_data *
3182 get_breakpoint_objfile_data (struct objfile *objfile)
3183 {
3184 struct breakpoint_objfile_data *bp_objfile_data;
3185
3186 bp_objfile_data = ((struct breakpoint_objfile_data *)
3187 objfile_data (objfile, breakpoint_objfile_key));
3188 if (bp_objfile_data == NULL)
3189 {
3190 bp_objfile_data = new breakpoint_objfile_data ();
3191 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3192 }
3193 return bp_objfile_data;
3194 }
3195
3196 static void
3197 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3198 {
3199 struct breakpoint_objfile_data *bp_objfile_data
3200 = (struct breakpoint_objfile_data *) data;
3201
3202 delete bp_objfile_data;
3203 }
3204
3205 static void
3206 create_overlay_event_breakpoint (void)
3207 {
3208 struct objfile *objfile;
3209 const char *const func_name = "_ovly_debug_event";
3210
3211 ALL_OBJFILES (objfile)
3212 {
3213 struct breakpoint *b;
3214 struct breakpoint_objfile_data *bp_objfile_data;
3215 CORE_ADDR addr;
3216 struct explicit_location explicit_loc;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3221 continue;
3222
3223 if (bp_objfile_data->overlay_msym.minsym == NULL)
3224 {
3225 struct bound_minimal_symbol m;
3226
3227 m = lookup_minimal_symbol_text (func_name, objfile);
3228 if (m.minsym == NULL)
3229 {
3230 /* Avoid future lookups in this objfile. */
3231 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3232 continue;
3233 }
3234 bp_objfile_data->overlay_msym = m;
3235 }
3236
3237 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3238 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3239 bp_overlay_event,
3240 &internal_breakpoint_ops);
3241 initialize_explicit_location (&explicit_loc);
3242 explicit_loc.function_name = ASTRDUP (func_name);
3243 b->location = new_explicit_location (&explicit_loc);
3244
3245 if (overlay_debugging == ovly_auto)
3246 {
3247 b->enable_state = bp_enabled;
3248 overlay_events_enabled = 1;
3249 }
3250 else
3251 {
3252 b->enable_state = bp_disabled;
3253 overlay_events_enabled = 0;
3254 }
3255 }
3256 }
3257
3258 static void
3259 create_longjmp_master_breakpoint (void)
3260 {
3261 struct program_space *pspace;
3262
3263 scoped_restore_current_program_space restore_pspace;
3264
3265 ALL_PSPACES (pspace)
3266 {
3267 struct objfile *objfile;
3268
3269 set_current_program_space (pspace);
3270
3271 ALL_OBJFILES (objfile)
3272 {
3273 int i;
3274 struct gdbarch *gdbarch;
3275 struct breakpoint_objfile_data *bp_objfile_data;
3276
3277 gdbarch = get_objfile_arch (objfile);
3278
3279 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3280
3281 if (!bp_objfile_data->longjmp_searched)
3282 {
3283 std::vector<probe *> ret
3284 = find_probes_in_objfile (objfile, "libc", "longjmp");
3285
3286 if (!ret.empty ())
3287 {
3288 /* We are only interested in checking one element. */
3289 probe *p = ret[0];
3290
3291 if (!p->can_evaluate_arguments ())
3292 {
3293 /* We cannot use the probe interface here, because it does
3294 not know how to evaluate arguments. */
3295 ret.clear ();
3296 }
3297 }
3298 bp_objfile_data->longjmp_probes = ret;
3299 bp_objfile_data->longjmp_searched = 1;
3300 }
3301
3302 if (!bp_objfile_data->longjmp_probes.empty ())
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3305
3306 for (probe *p : bp_objfile_data->longjmp_probes)
3307 {
3308 struct breakpoint *b;
3309
3310 b = create_internal_breakpoint (gdbarch,
3311 p->get_relocated_address (objfile),
3312 bp_longjmp_master,
3313 &internal_breakpoint_ops);
3314 b->location = new_probe_location ("-probe-stap libc:longjmp");
3315 b->enable_state = bp_disabled;
3316 }
3317
3318 continue;
3319 }
3320
3321 if (!gdbarch_get_longjmp_target_p (gdbarch))
3322 continue;
3323
3324 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3325 {
3326 struct breakpoint *b;
3327 const char *func_name;
3328 CORE_ADDR addr;
3329 struct explicit_location explicit_loc;
3330
3331 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3332 continue;
3333
3334 func_name = longjmp_names[i];
3335 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3336 {
3337 struct bound_minimal_symbol m;
3338
3339 m = lookup_minimal_symbol_text (func_name, objfile);
3340 if (m.minsym == NULL)
3341 {
3342 /* Prevent future lookups in this objfile. */
3343 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3344 continue;
3345 }
3346 bp_objfile_data->longjmp_msym[i] = m;
3347 }
3348
3349 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3350 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3351 &internal_breakpoint_ops);
3352 initialize_explicit_location (&explicit_loc);
3353 explicit_loc.function_name = ASTRDUP (func_name);
3354 b->location = new_explicit_location (&explicit_loc);
3355 b->enable_state = bp_disabled;
3356 }
3357 }
3358 }
3359 }
3360
3361 /* Create a master std::terminate breakpoint. */
3362 static void
3363 create_std_terminate_master_breakpoint (void)
3364 {
3365 struct program_space *pspace;
3366 const char *const func_name = "std::terminate()";
3367
3368 scoped_restore_current_program_space restore_pspace;
3369
3370 ALL_PSPACES (pspace)
3371 {
3372 struct objfile *objfile;
3373 CORE_ADDR addr;
3374
3375 set_current_program_space (pspace);
3376
3377 ALL_OBJFILES (objfile)
3378 {
3379 struct breakpoint *b;
3380 struct breakpoint_objfile_data *bp_objfile_data;
3381 struct explicit_location explicit_loc;
3382
3383 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3384
3385 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3386 continue;
3387
3388 if (bp_objfile_data->terminate_msym.minsym == NULL)
3389 {
3390 struct bound_minimal_symbol m;
3391
3392 m = lookup_minimal_symbol (func_name, NULL, objfile);
3393 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3394 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3395 {
3396 /* Prevent future lookups in this objfile. */
3397 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3398 continue;
3399 }
3400 bp_objfile_data->terminate_msym = m;
3401 }
3402
3403 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3404 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3405 bp_std_terminate_master,
3406 &internal_breakpoint_ops);
3407 initialize_explicit_location (&explicit_loc);
3408 explicit_loc.function_name = ASTRDUP (func_name);
3409 b->location = new_explicit_location (&explicit_loc);
3410 b->enable_state = bp_disabled;
3411 }
3412 }
3413 }
3414
3415 /* Install a master breakpoint on the unwinder's debug hook. */
3416
3417 static void
3418 create_exception_master_breakpoint (void)
3419 {
3420 struct objfile *objfile;
3421 const char *const func_name = "_Unwind_DebugHook";
3422
3423 ALL_OBJFILES (objfile)
3424 {
3425 struct breakpoint *b;
3426 struct gdbarch *gdbarch;
3427 struct breakpoint_objfile_data *bp_objfile_data;
3428 CORE_ADDR addr;
3429 struct explicit_location explicit_loc;
3430
3431 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3432
3433 /* We prefer the SystemTap probe point if it exists. */
3434 if (!bp_objfile_data->exception_searched)
3435 {
3436 std::vector<probe *> ret
3437 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3438
3439 if (!ret.empty ())
3440 {
3441 /* We are only interested in checking one element. */
3442 probe *p = ret[0];
3443
3444 if (!p->can_evaluate_arguments ())
3445 {
3446 /* We cannot use the probe interface here, because it does
3447 not know how to evaluate arguments. */
3448 ret.clear ();
3449 }
3450 }
3451 bp_objfile_data->exception_probes = ret;
3452 bp_objfile_data->exception_searched = 1;
3453 }
3454
3455 if (!bp_objfile_data->exception_probes.empty ())
3456 {
3457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3458
3459 for (probe *p : bp_objfile_data->exception_probes)
3460 {
3461 struct breakpoint *b;
3462
3463 b = create_internal_breakpoint (gdbarch,
3464 p->get_relocated_address (objfile),
3465 bp_exception_master,
3466 &internal_breakpoint_ops);
3467 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3468 b->enable_state = bp_disabled;
3469 }
3470
3471 continue;
3472 }
3473
3474 /* Otherwise, try the hook function. */
3475
3476 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3477 continue;
3478
3479 gdbarch = get_objfile_arch (objfile);
3480
3481 if (bp_objfile_data->exception_msym.minsym == NULL)
3482 {
3483 struct bound_minimal_symbol debug_hook;
3484
3485 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3486 if (debug_hook.minsym == NULL)
3487 {
3488 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491
3492 bp_objfile_data->exception_msym = debug_hook;
3493 }
3494
3495 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3496 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, target_stack);
3497 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3498 &internal_breakpoint_ops);
3499 initialize_explicit_location (&explicit_loc);
3500 explicit_loc.function_name = ASTRDUP (func_name);
3501 b->location = new_explicit_location (&explicit_loc);
3502 b->enable_state = bp_disabled;
3503 }
3504 }
3505
3506 /* Does B have a location spec? */
3507
3508 static int
3509 breakpoint_event_location_empty_p (const struct breakpoint *b)
3510 {
3511 return b->location != NULL && event_location_empty_p (b->location.get ());
3512 }
3513
3514 void
3515 update_breakpoints_after_exec (void)
3516 {
3517 struct breakpoint *b, *b_tmp;
3518 struct bp_location *bploc, **bplocp_tmp;
3519
3520 /* We're about to delete breakpoints from GDB's lists. If the
3521 INSERTED flag is true, GDB will try to lift the breakpoints by
3522 writing the breakpoints' "shadow contents" back into memory. The
3523 "shadow contents" are NOT valid after an exec, so GDB should not
3524 do that. Instead, the target is responsible from marking
3525 breakpoints out as soon as it detects an exec. We don't do that
3526 here instead, because there may be other attempts to delete
3527 breakpoints after detecting an exec and before reaching here. */
3528 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3529 if (bploc->pspace == current_program_space)
3530 gdb_assert (!bploc->inserted);
3531
3532 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3533 {
3534 if (b->pspace != current_program_space)
3535 continue;
3536
3537 /* Solib breakpoints must be explicitly reset after an exec(). */
3538 if (b->type == bp_shlib_event)
3539 {
3540 delete_breakpoint (b);
3541 continue;
3542 }
3543
3544 /* JIT breakpoints must be explicitly reset after an exec(). */
3545 if (b->type == bp_jit_event)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Thread event breakpoints must be set anew after an exec(),
3552 as must overlay event and longjmp master breakpoints. */
3553 if (b->type == bp_thread_event || b->type == bp_overlay_event
3554 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3555 || b->type == bp_exception_master)
3556 {
3557 delete_breakpoint (b);
3558 continue;
3559 }
3560
3561 /* Step-resume breakpoints are meaningless after an exec(). */
3562 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3563 {
3564 delete_breakpoint (b);
3565 continue;
3566 }
3567
3568 /* Just like single-step breakpoints. */
3569 if (b->type == bp_single_step)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 /* Longjmp and longjmp-resume breakpoints are also meaningless
3576 after an exec. */
3577 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3578 || b->type == bp_longjmp_call_dummy
3579 || b->type == bp_exception || b->type == bp_exception_resume)
3580 {
3581 delete_breakpoint (b);
3582 continue;
3583 }
3584
3585 if (b->type == bp_catchpoint)
3586 {
3587 /* For now, none of the bp_catchpoint breakpoints need to
3588 do anything at this point. In the future, if some of
3589 the catchpoints need to something, we will need to add
3590 a new method, and call this method from here. */
3591 continue;
3592 }
3593
3594 /* bp_finish is a special case. The only way we ought to be able
3595 to see one of these when an exec() has happened, is if the user
3596 caught a vfork, and then said "finish". Ordinarily a finish just
3597 carries them to the call-site of the current callee, by setting
3598 a temporary bp there and resuming. But in this case, the finish
3599 will carry them entirely through the vfork & exec.
3600
3601 We don't want to allow a bp_finish to remain inserted now. But
3602 we can't safely delete it, 'cause finish_command has a handle to
3603 the bp on a bpstat, and will later want to delete it. There's a
3604 chance (and I've seen it happen) that if we delete the bp_finish
3605 here, that its storage will get reused by the time finish_command
3606 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3607 We really must allow finish_command to delete a bp_finish.
3608
3609 In the absence of a general solution for the "how do we know
3610 it's safe to delete something others may have handles to?"
3611 problem, what we'll do here is just uninsert the bp_finish, and
3612 let finish_command delete it.
3613
3614 (We know the bp_finish is "doomed" in the sense that it's
3615 momentary, and will be deleted as soon as finish_command sees
3616 the inferior stopped. So it doesn't matter that the bp's
3617 address is probably bogus in the new a.out, unlike e.g., the
3618 solib breakpoints.) */
3619
3620 if (b->type == bp_finish)
3621 {
3622 continue;
3623 }
3624
3625 /* Without a symbolic address, we have little hope of the
3626 pre-exec() address meaning the same thing in the post-exec()
3627 a.out. */
3628 if (breakpoint_event_location_empty_p (b))
3629 {
3630 delete_breakpoint (b);
3631 continue;
3632 }
3633 }
3634 }
3635
3636 int
3637 detach_breakpoints (ptid_t ptid)
3638 {
3639 struct bp_location *bl, **blp_tmp;
3640 int val = 0;
3641 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3642 struct inferior *inf = current_inferior ();
3643
3644 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3645 error (_("Cannot detach breakpoints of inferior_ptid"));
3646
3647 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3648 inferior_ptid = ptid;
3649 ALL_BP_LOCATIONS (bl, blp_tmp)
3650 {
3651 if (bl->pspace != inf->pspace)
3652 continue;
3653
3654 /* This function must physically remove breakpoints locations
3655 from the specified ptid, without modifying the breakpoint
3656 package's state. Locations of type bp_loc_other are only
3657 maintained at GDB side. So, there is no need to remove
3658 these bp_loc_other locations. Moreover, removing these
3659 would modify the breakpoint package's state. */
3660 if (bl->loc_type == bp_loc_other)
3661 continue;
3662
3663 if (bl->inserted)
3664 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3665 }
3666
3667 return val;
3668 }
3669
3670 /* Remove the breakpoint location BL from the current address space.
3671 Note that this is used to detach breakpoints from a child fork.
3672 When we get here, the child isn't in the inferior list, and neither
3673 do we have objects to represent its address space --- we should
3674 *not* look at bl->pspace->aspace here. */
3675
3676 static int
3677 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3678 {
3679 int val;
3680
3681 /* BL is never in moribund_locations by our callers. */
3682 gdb_assert (bl->owner != NULL);
3683
3684 /* The type of none suggests that owner is actually deleted.
3685 This should not ever happen. */
3686 gdb_assert (bl->owner->type != bp_none);
3687
3688 if (bl->loc_type == bp_loc_software_breakpoint
3689 || bl->loc_type == bp_loc_hardware_breakpoint)
3690 {
3691 /* "Normal" instruction breakpoint: either the standard
3692 trap-instruction bp (bp_breakpoint), or a
3693 bp_hardware_breakpoint. */
3694
3695 /* First check to see if we have to handle an overlay. */
3696 if (overlay_debugging == ovly_off
3697 || bl->section == NULL
3698 || !(section_is_overlay (bl->section)))
3699 {
3700 /* No overlay handling: just remove the breakpoint. */
3701
3702 /* If we're trying to uninsert a memory breakpoint that we
3703 know is set in a dynamic object that is marked
3704 shlib_disabled, then either the dynamic object was
3705 removed with "remove-symbol-file" or with
3706 "nosharedlibrary". In the former case, we don't know
3707 whether another dynamic object might have loaded over the
3708 breakpoint's address -- the user might well let us know
3709 about it next with add-symbol-file (the whole point of
3710 add-symbol-file is letting the user manually maintain a
3711 list of dynamically loaded objects). If we have the
3712 breakpoint's shadow memory, that is, this is a software
3713 breakpoint managed by GDB, check whether the breakpoint
3714 is still inserted in memory, to avoid overwriting wrong
3715 code with stale saved shadow contents. Note that HW
3716 breakpoints don't have shadow memory, as they're
3717 implemented using a mechanism that is not dependent on
3718 being able to modify the target's memory, and as such
3719 they should always be removed. */
3720 if (bl->shlib_disabled
3721 && bl->target_info.shadow_len != 0
3722 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3723 val = 0;
3724 else
3725 val = bl->owner->ops->remove_location (bl, reason);
3726 }
3727 else
3728 {
3729 /* This breakpoint is in an overlay section.
3730 Did we set a breakpoint at the LMA? */
3731 if (!overlay_events_enabled)
3732 {
3733 /* Yes -- overlay event support is not active, so we
3734 should have set a breakpoint at the LMA. Remove it.
3735 */
3736 /* Ignore any failures: if the LMA is in ROM, we will
3737 have already warned when we failed to insert it. */
3738 if (bl->loc_type == bp_loc_hardware_breakpoint)
3739 target_remove_hw_breakpoint (bl->gdbarch,
3740 &bl->overlay_target_info);
3741 else
3742 target_remove_breakpoint (bl->gdbarch,
3743 &bl->overlay_target_info,
3744 reason);
3745 }
3746 /* Did we set a breakpoint at the VMA?
3747 If so, we will have marked the breakpoint 'inserted'. */
3748 if (bl->inserted)
3749 {
3750 /* Yes -- remove it. Previously we did not bother to
3751 remove the breakpoint if the section had been
3752 unmapped, but let's not rely on that being safe. We
3753 don't know what the overlay manager might do. */
3754
3755 /* However, we should remove *software* breakpoints only
3756 if the section is still mapped, or else we overwrite
3757 wrong code with the saved shadow contents. */
3758 if (bl->loc_type == bp_loc_hardware_breakpoint
3759 || section_is_mapped (bl->section))
3760 val = bl->owner->ops->remove_location (bl, reason);
3761 else
3762 val = 0;
3763 }
3764 else
3765 {
3766 /* No -- not inserted, so no need to remove. No error. */
3767 val = 0;
3768 }
3769 }
3770
3771 /* In some cases, we might not be able to remove a breakpoint in
3772 a shared library that has already been removed, but we have
3773 not yet processed the shlib unload event. Similarly for an
3774 unloaded add-symbol-file object - the user might not yet have
3775 had the chance to remove-symbol-file it. shlib_disabled will
3776 be set if the library/object has already been removed, but
3777 the breakpoint hasn't been uninserted yet, e.g., after
3778 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3779 always-inserted mode. */
3780 if (val
3781 && (bl->loc_type == bp_loc_software_breakpoint
3782 && (bl->shlib_disabled
3783 || solib_name_from_address (bl->pspace, bl->address)
3784 || shared_objfile_contains_address_p (bl->pspace,
3785 bl->address))))
3786 val = 0;
3787
3788 if (val)
3789 return val;
3790 bl->inserted = (reason == DETACH_BREAKPOINT);
3791 }
3792 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3793 {
3794 gdb_assert (bl->owner->ops != NULL
3795 && bl->owner->ops->remove_location != NULL);
3796
3797 bl->inserted = (reason == DETACH_BREAKPOINT);
3798 bl->owner->ops->remove_location (bl, reason);
3799
3800 /* Failure to remove any of the hardware watchpoints comes here. */
3801 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3802 warning (_("Could not remove hardware watchpoint %d."),
3803 bl->owner->number);
3804 }
3805 else if (bl->owner->type == bp_catchpoint
3806 && breakpoint_enabled (bl->owner)
3807 && !bl->duplicate)
3808 {
3809 gdb_assert (bl->owner->ops != NULL
3810 && bl->owner->ops->remove_location != NULL);
3811
3812 val = bl->owner->ops->remove_location (bl, reason);
3813 if (val)
3814 return val;
3815
3816 bl->inserted = (reason == DETACH_BREAKPOINT);
3817 }
3818
3819 return 0;
3820 }
3821
3822 static int
3823 remove_breakpoint (struct bp_location *bl)
3824 {
3825 /* BL is never in moribund_locations by our callers. */
3826 gdb_assert (bl->owner != NULL);
3827
3828 /* The type of none suggests that owner is actually deleted.
3829 This should not ever happen. */
3830 gdb_assert (bl->owner->type != bp_none);
3831
3832 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3833
3834 switch_to_program_space_and_thread (bl->pspace);
3835
3836 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3837 }
3838
3839 /* Clear the "inserted" flag in all breakpoints. */
3840
3841 void
3842 mark_breakpoints_out (void)
3843 {
3844 struct bp_location *bl, **blp_tmp;
3845
3846 ALL_BP_LOCATIONS (bl, blp_tmp)
3847 if (bl->pspace == current_program_space)
3848 bl->inserted = 0;
3849 }
3850
3851 /* Clear the "inserted" flag in all breakpoints and delete any
3852 breakpoints which should go away between runs of the program.
3853
3854 Plus other such housekeeping that has to be done for breakpoints
3855 between runs.
3856
3857 Note: this function gets called at the end of a run (by
3858 generic_mourn_inferior) and when a run begins (by
3859 init_wait_for_inferior). */
3860
3861
3862
3863 void
3864 breakpoint_init_inferior (enum inf_context context)
3865 {
3866 struct breakpoint *b, *b_tmp;
3867 struct bp_location *bl;
3868 int ix;
3869 struct program_space *pspace = current_program_space;
3870
3871 /* If breakpoint locations are shared across processes, then there's
3872 nothing to do. */
3873 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3874 return;
3875
3876 mark_breakpoints_out ();
3877
3878 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3879 {
3880 if (b->loc && b->loc->pspace != pspace)
3881 continue;
3882
3883 switch (b->type)
3884 {
3885 case bp_call_dummy:
3886 case bp_longjmp_call_dummy:
3887
3888 /* If the call dummy breakpoint is at the entry point it will
3889 cause problems when the inferior is rerun, so we better get
3890 rid of it. */
3891
3892 case bp_watchpoint_scope:
3893
3894 /* Also get rid of scope breakpoints. */
3895
3896 case bp_shlib_event:
3897
3898 /* Also remove solib event breakpoints. Their addresses may
3899 have changed since the last time we ran the program.
3900 Actually we may now be debugging against different target;
3901 and so the solib backend that installed this breakpoint may
3902 not be used in by the target. E.g.,
3903
3904 (gdb) file prog-linux
3905 (gdb) run # native linux target
3906 ...
3907 (gdb) kill
3908 (gdb) file prog-win.exe
3909 (gdb) tar rem :9999 # remote Windows gdbserver.
3910 */
3911
3912 case bp_step_resume:
3913
3914 /* Also remove step-resume breakpoints. */
3915
3916 case bp_single_step:
3917
3918 /* Also remove single-step breakpoints. */
3919
3920 delete_breakpoint (b);
3921 break;
3922
3923 case bp_watchpoint:
3924 case bp_hardware_watchpoint:
3925 case bp_read_watchpoint:
3926 case bp_access_watchpoint:
3927 {
3928 struct watchpoint *w = (struct watchpoint *) b;
3929
3930 /* Likewise for watchpoints on local expressions. */
3931 if (w->exp_valid_block != NULL)
3932 delete_breakpoint (b);
3933 else
3934 {
3935 /* Get rid of existing locations, which are no longer
3936 valid. New ones will be created in
3937 update_watchpoint, when the inferior is restarted.
3938 The next update_global_location_list call will
3939 garbage collect them. */
3940 b->loc = NULL;
3941
3942 if (context == inf_starting)
3943 {
3944 /* Reset val field to force reread of starting value in
3945 insert_breakpoints. */
3946 w->val.reset (nullptr);
3947 w->val_valid = 0;
3948 }
3949 }
3950 }
3951 break;
3952 default:
3953 break;
3954 }
3955 }
3956
3957 /* Get rid of the moribund locations. */
3958 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3959 decref_bp_location (&bl);
3960 VEC_free (bp_location_p, moribund_locations);
3961 }
3962
3963 /* These functions concern about actual breakpoints inserted in the
3964 target --- to e.g. check if we need to do decr_pc adjustment or if
3965 we need to hop over the bkpt --- so we check for address space
3966 match, not program space. */
3967
3968 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3969 exists at PC. It returns ordinary_breakpoint_here if it's an
3970 ordinary breakpoint, or permanent_breakpoint_here if it's a
3971 permanent breakpoint.
3972 - When continuing from a location with an ordinary breakpoint, we
3973 actually single step once before calling insert_breakpoints.
3974 - When continuing from a location with a permanent breakpoint, we
3975 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3976 the target, to advance the PC past the breakpoint. */
3977
3978 enum breakpoint_here
3979 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3980 {
3981 struct bp_location *bl, **blp_tmp;
3982 int any_breakpoint_here = 0;
3983
3984 ALL_BP_LOCATIONS (bl, blp_tmp)
3985 {
3986 if (bl->loc_type != bp_loc_software_breakpoint
3987 && bl->loc_type != bp_loc_hardware_breakpoint)
3988 continue;
3989
3990 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3991 if ((breakpoint_enabled (bl->owner)
3992 || bl->permanent)
3993 && breakpoint_location_address_match (bl, aspace, pc))
3994 {
3995 if (overlay_debugging
3996 && section_is_overlay (bl->section)
3997 && !section_is_mapped (bl->section))
3998 continue; /* unmapped overlay -- can't be a match */
3999 else if (bl->permanent)
4000 return permanent_breakpoint_here;
4001 else
4002 any_breakpoint_here = 1;
4003 }
4004 }
4005
4006 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4007 }
4008
4009 /* See breakpoint.h. */
4010
4011 int
4012 breakpoint_in_range_p (const address_space *aspace,
4013 CORE_ADDR addr, ULONGEST len)
4014 {
4015 struct bp_location *bl, **blp_tmp;
4016
4017 ALL_BP_LOCATIONS (bl, blp_tmp)
4018 {
4019 if (bl->loc_type != bp_loc_software_breakpoint
4020 && bl->loc_type != bp_loc_hardware_breakpoint)
4021 continue;
4022
4023 if ((breakpoint_enabled (bl->owner)
4024 || bl->permanent)
4025 && breakpoint_location_address_range_overlap (bl, aspace,
4026 addr, len))
4027 {
4028 if (overlay_debugging
4029 && section_is_overlay (bl->section)
4030 && !section_is_mapped (bl->section))
4031 {
4032 /* Unmapped overlay -- can't be a match. */
4033 continue;
4034 }
4035
4036 return 1;
4037 }
4038 }
4039
4040 return 0;
4041 }
4042
4043 /* Return true if there's a moribund breakpoint at PC. */
4044
4045 int
4046 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4047 {
4048 struct bp_location *loc;
4049 int ix;
4050
4051 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4052 if (breakpoint_location_address_match (loc, aspace, pc))
4053 return 1;
4054
4055 return 0;
4056 }
4057
4058 /* Returns non-zero iff BL is inserted at PC, in address space
4059 ASPACE. */
4060
4061 static int
4062 bp_location_inserted_here_p (struct bp_location *bl,
4063 const address_space *aspace, CORE_ADDR pc)
4064 {
4065 if (bl->inserted
4066 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4067 aspace, pc))
4068 {
4069 if (overlay_debugging
4070 && section_is_overlay (bl->section)
4071 && !section_is_mapped (bl->section))
4072 return 0; /* unmapped overlay -- can't be a match */
4073 else
4074 return 1;
4075 }
4076 return 0;
4077 }
4078
4079 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4080
4081 int
4082 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4083 {
4084 struct bp_location **blp, **blp_tmp = NULL;
4085
4086 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4087 {
4088 struct bp_location *bl = *blp;
4089
4090 if (bl->loc_type != bp_loc_software_breakpoint
4091 && bl->loc_type != bp_loc_hardware_breakpoint)
4092 continue;
4093
4094 if (bp_location_inserted_here_p (bl, aspace, pc))
4095 return 1;
4096 }
4097 return 0;
4098 }
4099
4100 /* This function returns non-zero iff there is a software breakpoint
4101 inserted at PC. */
4102
4103 int
4104 software_breakpoint_inserted_here_p (const address_space *aspace,
4105 CORE_ADDR pc)
4106 {
4107 struct bp_location **blp, **blp_tmp = NULL;
4108
4109 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4110 {
4111 struct bp_location *bl = *blp;
4112
4113 if (bl->loc_type != bp_loc_software_breakpoint)
4114 continue;
4115
4116 if (bp_location_inserted_here_p (bl, aspace, pc))
4117 return 1;
4118 }
4119
4120 return 0;
4121 }
4122
4123 /* See breakpoint.h. */
4124
4125 int
4126 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4127 CORE_ADDR pc)
4128 {
4129 struct bp_location **blp, **blp_tmp = NULL;
4130
4131 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4132 {
4133 struct bp_location *bl = *blp;
4134
4135 if (bl->loc_type != bp_loc_hardware_breakpoint)
4136 continue;
4137
4138 if (bp_location_inserted_here_p (bl, aspace, pc))
4139 return 1;
4140 }
4141
4142 return 0;
4143 }
4144
4145 int
4146 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4147 CORE_ADDR addr, ULONGEST len)
4148 {
4149 struct breakpoint *bpt;
4150
4151 ALL_BREAKPOINTS (bpt)
4152 {
4153 struct bp_location *loc;
4154
4155 if (bpt->type != bp_hardware_watchpoint
4156 && bpt->type != bp_access_watchpoint)
4157 continue;
4158
4159 if (!breakpoint_enabled (bpt))
4160 continue;
4161
4162 for (loc = bpt->loc; loc; loc = loc->next)
4163 if (loc->pspace->aspace == aspace && loc->inserted)
4164 {
4165 CORE_ADDR l, h;
4166
4167 /* Check for intersection. */
4168 l = std::max<CORE_ADDR> (loc->address, addr);
4169 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4170 if (l < h)
4171 return 1;
4172 }
4173 }
4174 return 0;
4175 }
4176 \f
4177
4178 /* bpstat stuff. External routines' interfaces are documented
4179 in breakpoint.h. */
4180
4181 int
4182 is_catchpoint (struct breakpoint *ep)
4183 {
4184 return (ep->type == bp_catchpoint);
4185 }
4186
4187 /* Frees any storage that is part of a bpstat. Does not walk the
4188 'next' chain. */
4189
4190 bpstats::~bpstats ()
4191 {
4192 if (bp_location_at != NULL)
4193 decref_bp_location (&bp_location_at);
4194 }
4195
4196 /* Clear a bpstat so that it says we are not at any breakpoint.
4197 Also free any storage that is part of a bpstat. */
4198
4199 void
4200 bpstat_clear (bpstat *bsp)
4201 {
4202 bpstat p;
4203 bpstat q;
4204
4205 if (bsp == 0)
4206 return;
4207 p = *bsp;
4208 while (p != NULL)
4209 {
4210 q = p->next;
4211 delete p;
4212 p = q;
4213 }
4214 *bsp = NULL;
4215 }
4216
4217 bpstats::bpstats (const bpstats &other)
4218 : next (NULL),
4219 bp_location_at (other.bp_location_at),
4220 breakpoint_at (other.breakpoint_at),
4221 commands (other.commands),
4222 print (other.print),
4223 stop (other.stop),
4224 print_it (other.print_it)
4225 {
4226 if (other.old_val != NULL)
4227 old_val = release_value (value_copy (other.old_val.get ()));
4228 incref_bp_location (bp_location_at);
4229 }
4230
4231 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4232 is part of the bpstat is copied as well. */
4233
4234 bpstat
4235 bpstat_copy (bpstat bs)
4236 {
4237 bpstat p = NULL;
4238 bpstat tmp;
4239 bpstat retval = NULL;
4240
4241 if (bs == NULL)
4242 return bs;
4243
4244 for (; bs != NULL; bs = bs->next)
4245 {
4246 tmp = new bpstats (*bs);
4247
4248 if (p == NULL)
4249 /* This is the first thing in the chain. */
4250 retval = tmp;
4251 else
4252 p->next = tmp;
4253 p = tmp;
4254 }
4255 p->next = NULL;
4256 return retval;
4257 }
4258
4259 /* Find the bpstat associated with this breakpoint. */
4260
4261 bpstat
4262 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4263 {
4264 if (bsp == NULL)
4265 return NULL;
4266
4267 for (; bsp != NULL; bsp = bsp->next)
4268 {
4269 if (bsp->breakpoint_at == breakpoint)
4270 return bsp;
4271 }
4272 return NULL;
4273 }
4274
4275 /* See breakpoint.h. */
4276
4277 int
4278 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4279 {
4280 for (; bsp != NULL; bsp = bsp->next)
4281 {
4282 if (bsp->breakpoint_at == NULL)
4283 {
4284 /* A moribund location can never explain a signal other than
4285 GDB_SIGNAL_TRAP. */
4286 if (sig == GDB_SIGNAL_TRAP)
4287 return 1;
4288 }
4289 else
4290 {
4291 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4292 sig))
4293 return 1;
4294 }
4295 }
4296
4297 return 0;
4298 }
4299
4300 /* Put in *NUM the breakpoint number of the first breakpoint we are
4301 stopped at. *BSP upon return is a bpstat which points to the
4302 remaining breakpoints stopped at (but which is not guaranteed to be
4303 good for anything but further calls to bpstat_num).
4304
4305 Return 0 if passed a bpstat which does not indicate any breakpoints.
4306 Return -1 if stopped at a breakpoint that has been deleted since
4307 we set it.
4308 Return 1 otherwise. */
4309
4310 int
4311 bpstat_num (bpstat *bsp, int *num)
4312 {
4313 struct breakpoint *b;
4314
4315 if ((*bsp) == NULL)
4316 return 0; /* No more breakpoint values */
4317
4318 /* We assume we'll never have several bpstats that correspond to a
4319 single breakpoint -- otherwise, this function might return the
4320 same number more than once and this will look ugly. */
4321 b = (*bsp)->breakpoint_at;
4322 *bsp = (*bsp)->next;
4323 if (b == NULL)
4324 return -1; /* breakpoint that's been deleted since */
4325
4326 *num = b->number; /* We have its number */
4327 return 1;
4328 }
4329
4330 /* See breakpoint.h. */
4331
4332 void
4333 bpstat_clear_actions (void)
4334 {
4335 struct thread_info *tp;
4336 bpstat bs;
4337
4338 if (ptid_equal (inferior_ptid, null_ptid))
4339 return;
4340
4341 tp = find_thread_ptid (inferior_ptid);
4342 if (tp == NULL)
4343 return;
4344
4345 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4346 {
4347 bs->commands = NULL;
4348 bs->old_val.reset (nullptr);
4349 }
4350 }
4351
4352 /* Called when a command is about to proceed the inferior. */
4353
4354 static void
4355 breakpoint_about_to_proceed (void)
4356 {
4357 if (!ptid_equal (inferior_ptid, null_ptid))
4358 {
4359 struct thread_info *tp = inferior_thread ();
4360
4361 /* Allow inferior function calls in breakpoint commands to not
4362 interrupt the command list. When the call finishes
4363 successfully, the inferior will be standing at the same
4364 breakpoint as if nothing happened. */
4365 if (tp->control.in_infcall)
4366 return;
4367 }
4368
4369 breakpoint_proceeded = 1;
4370 }
4371
4372 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4373 or its equivalent. */
4374
4375 static int
4376 command_line_is_silent (struct command_line *cmd)
4377 {
4378 return cmd && (strcmp ("silent", cmd->line) == 0);
4379 }
4380
4381 /* Execute all the commands associated with all the breakpoints at
4382 this location. Any of these commands could cause the process to
4383 proceed beyond this point, etc. We look out for such changes by
4384 checking the global "breakpoint_proceeded" after each command.
4385
4386 Returns true if a breakpoint command resumed the inferior. In that
4387 case, it is the caller's responsibility to recall it again with the
4388 bpstat of the current thread. */
4389
4390 static int
4391 bpstat_do_actions_1 (bpstat *bsp)
4392 {
4393 bpstat bs;
4394 int again = 0;
4395
4396 /* Avoid endless recursion if a `source' command is contained
4397 in bs->commands. */
4398 if (executing_breakpoint_commands)
4399 return 0;
4400
4401 scoped_restore save_executing
4402 = make_scoped_restore (&executing_breakpoint_commands, 1);
4403
4404 scoped_restore preventer = prevent_dont_repeat ();
4405
4406 /* This pointer will iterate over the list of bpstat's. */
4407 bs = *bsp;
4408
4409 breakpoint_proceeded = 0;
4410 for (; bs != NULL; bs = bs->next)
4411 {
4412 struct command_line *cmd = NULL;
4413
4414 /* Take ownership of the BSP's command tree, if it has one.
4415
4416 The command tree could legitimately contain commands like
4417 'step' and 'next', which call clear_proceed_status, which
4418 frees stop_bpstat's command tree. To make sure this doesn't
4419 free the tree we're executing out from under us, we need to
4420 take ownership of the tree ourselves. Since a given bpstat's
4421 commands are only executed once, we don't need to copy it; we
4422 can clear the pointer in the bpstat, and make sure we free
4423 the tree when we're done. */
4424 counted_command_line ccmd = bs->commands;
4425 bs->commands = NULL;
4426 if (ccmd != NULL)
4427 cmd = ccmd.get ();
4428 if (command_line_is_silent (cmd))
4429 {
4430 /* The action has been already done by bpstat_stop_status. */
4431 cmd = cmd->next;
4432 }
4433
4434 while (cmd != NULL)
4435 {
4436 execute_control_command (cmd);
4437
4438 if (breakpoint_proceeded)
4439 break;
4440 else
4441 cmd = cmd->next;
4442 }
4443
4444 if (breakpoint_proceeded)
4445 {
4446 if (current_ui->async)
4447 /* If we are in async mode, then the target might be still
4448 running, not stopped at any breakpoint, so nothing for
4449 us to do here -- just return to the event loop. */
4450 ;
4451 else
4452 /* In sync mode, when execute_control_command returns
4453 we're already standing on the next breakpoint.
4454 Breakpoint commands for that stop were not run, since
4455 execute_command does not run breakpoint commands --
4456 only command_line_handler does, but that one is not
4457 involved in execution of breakpoint commands. So, we
4458 can now execute breakpoint commands. It should be
4459 noted that making execute_command do bpstat actions is
4460 not an option -- in this case we'll have recursive
4461 invocation of bpstat for each breakpoint with a
4462 command, and can easily blow up GDB stack. Instead, we
4463 return true, which will trigger the caller to recall us
4464 with the new stop_bpstat. */
4465 again = 1;
4466 break;
4467 }
4468 }
4469 return again;
4470 }
4471
4472 void
4473 bpstat_do_actions (void)
4474 {
4475 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4476
4477 /* Do any commands attached to breakpoint we are stopped at. */
4478 while (!ptid_equal (inferior_ptid, null_ptid)
4479 && target_has_execution
4480 && !is_exited (inferior_ptid)
4481 && !is_executing (inferior_ptid))
4482 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4483 and only return when it is stopped at the next breakpoint, we
4484 keep doing breakpoint actions until it returns false to
4485 indicate the inferior was not resumed. */
4486 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4487 break;
4488
4489 discard_cleanups (cleanup_if_error);
4490 }
4491
4492 /* Print out the (old or new) value associated with a watchpoint. */
4493
4494 static void
4495 watchpoint_value_print (struct value *val, struct ui_file *stream)
4496 {
4497 if (val == NULL)
4498 fprintf_unfiltered (stream, _("<unreadable>"));
4499 else
4500 {
4501 struct value_print_options opts;
4502 get_user_print_options (&opts);
4503 value_print (val, stream, &opts);
4504 }
4505 }
4506
4507 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4508 debugging multiple threads. */
4509
4510 void
4511 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4512 {
4513 if (uiout->is_mi_like_p ())
4514 return;
4515
4516 uiout->text ("\n");
4517
4518 if (show_thread_that_caused_stop ())
4519 {
4520 const char *name;
4521 struct thread_info *thr = inferior_thread ();
4522
4523 uiout->text ("Thread ");
4524 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4525
4526 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4527 if (name != NULL)
4528 {
4529 uiout->text (" \"");
4530 uiout->field_fmt ("name", "%s", name);
4531 uiout->text ("\"");
4532 }
4533
4534 uiout->text (" hit ");
4535 }
4536 }
4537
4538 /* Generic routine for printing messages indicating why we
4539 stopped. The behavior of this function depends on the value
4540 'print_it' in the bpstat structure. Under some circumstances we
4541 may decide not to print anything here and delegate the task to
4542 normal_stop(). */
4543
4544 static enum print_stop_action
4545 print_bp_stop_message (bpstat bs)
4546 {
4547 switch (bs->print_it)
4548 {
4549 case print_it_noop:
4550 /* Nothing should be printed for this bpstat entry. */
4551 return PRINT_UNKNOWN;
4552 break;
4553
4554 case print_it_done:
4555 /* We still want to print the frame, but we already printed the
4556 relevant messages. */
4557 return PRINT_SRC_AND_LOC;
4558 break;
4559
4560 case print_it_normal:
4561 {
4562 struct breakpoint *b = bs->breakpoint_at;
4563
4564 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4565 which has since been deleted. */
4566 if (b == NULL)
4567 return PRINT_UNKNOWN;
4568
4569 /* Normal case. Call the breakpoint's print_it method. */
4570 return b->ops->print_it (bs);
4571 }
4572 break;
4573
4574 default:
4575 internal_error (__FILE__, __LINE__,
4576 _("print_bp_stop_message: unrecognized enum value"));
4577 break;
4578 }
4579 }
4580
4581 /* A helper function that prints a shared library stopped event. */
4582
4583 static void
4584 print_solib_event (int is_catchpoint)
4585 {
4586 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4587 int any_added
4588 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4589
4590 if (!is_catchpoint)
4591 {
4592 if (any_added || any_deleted)
4593 current_uiout->text (_("Stopped due to shared library event:\n"));
4594 else
4595 current_uiout->text (_("Stopped due to shared library event (no "
4596 "libraries added or removed)\n"));
4597 }
4598
4599 if (current_uiout->is_mi_like_p ())
4600 current_uiout->field_string ("reason",
4601 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4602
4603 if (any_deleted)
4604 {
4605 current_uiout->text (_(" Inferior unloaded "));
4606 ui_out_emit_list list_emitter (current_uiout, "removed");
4607 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4608 {
4609 const std::string &name = current_program_space->deleted_solibs[ix];
4610
4611 if (ix > 0)
4612 current_uiout->text (" ");
4613 current_uiout->field_string ("library", name);
4614 current_uiout->text ("\n");
4615 }
4616 }
4617
4618 if (any_added)
4619 {
4620 struct so_list *iter;
4621 int ix;
4622
4623 current_uiout->text (_(" Inferior loaded "));
4624 ui_out_emit_list list_emitter (current_uiout, "added");
4625 for (ix = 0;
4626 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4627 ix, iter);
4628 ++ix)
4629 {
4630 if (ix > 0)
4631 current_uiout->text (" ");
4632 current_uiout->field_string ("library", iter->so_name);
4633 current_uiout->text ("\n");
4634 }
4635 }
4636 }
4637
4638 /* Print a message indicating what happened. This is called from
4639 normal_stop(). The input to this routine is the head of the bpstat
4640 list - a list of the eventpoints that caused this stop. KIND is
4641 the target_waitkind for the stopping event. This
4642 routine calls the generic print routine for printing a message
4643 about reasons for stopping. This will print (for example) the
4644 "Breakpoint n," part of the output. The return value of this
4645 routine is one of:
4646
4647 PRINT_UNKNOWN: Means we printed nothing.
4648 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4649 code to print the location. An example is
4650 "Breakpoint 1, " which should be followed by
4651 the location.
4652 PRINT_SRC_ONLY: Means we printed something, but there is no need
4653 to also print the location part of the message.
4654 An example is the catch/throw messages, which
4655 don't require a location appended to the end.
4656 PRINT_NOTHING: We have done some printing and we don't need any
4657 further info to be printed. */
4658
4659 enum print_stop_action
4660 bpstat_print (bpstat bs, int kind)
4661 {
4662 enum print_stop_action val;
4663
4664 /* Maybe another breakpoint in the chain caused us to stop.
4665 (Currently all watchpoints go on the bpstat whether hit or not.
4666 That probably could (should) be changed, provided care is taken
4667 with respect to bpstat_explains_signal). */
4668 for (; bs; bs = bs->next)
4669 {
4670 val = print_bp_stop_message (bs);
4671 if (val == PRINT_SRC_ONLY
4672 || val == PRINT_SRC_AND_LOC
4673 || val == PRINT_NOTHING)
4674 return val;
4675 }
4676
4677 /* If we had hit a shared library event breakpoint,
4678 print_bp_stop_message would print out this message. If we hit an
4679 OS-level shared library event, do the same thing. */
4680 if (kind == TARGET_WAITKIND_LOADED)
4681 {
4682 print_solib_event (0);
4683 return PRINT_NOTHING;
4684 }
4685
4686 /* We reached the end of the chain, or we got a null BS to start
4687 with and nothing was printed. */
4688 return PRINT_UNKNOWN;
4689 }
4690
4691 /* Evaluate the boolean expression EXP and return the result. */
4692
4693 static bool
4694 breakpoint_cond_eval (expression *exp)
4695 {
4696 struct value *mark = value_mark ();
4697 bool res = value_true (evaluate_expression (exp));
4698
4699 value_free_to_mark (mark);
4700 return res;
4701 }
4702
4703 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4704
4705 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4706 : next (NULL),
4707 bp_location_at (bl),
4708 breakpoint_at (bl->owner),
4709 commands (NULL),
4710 print (0),
4711 stop (0),
4712 print_it (print_it_normal)
4713 {
4714 incref_bp_location (bl);
4715 **bs_link_pointer = this;
4716 *bs_link_pointer = &next;
4717 }
4718
4719 bpstats::bpstats ()
4720 : next (NULL),
4721 bp_location_at (NULL),
4722 breakpoint_at (NULL),
4723 commands (NULL),
4724 print (0),
4725 stop (0),
4726 print_it (print_it_normal)
4727 {
4728 }
4729 \f
4730 /* The target has stopped with waitstatus WS. Check if any hardware
4731 watchpoints have triggered, according to the target. */
4732
4733 int
4734 watchpoints_triggered (struct target_waitstatus *ws)
4735 {
4736 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4737 CORE_ADDR addr;
4738 struct breakpoint *b;
4739
4740 if (!stopped_by_watchpoint)
4741 {
4742 /* We were not stopped by a watchpoint. Mark all watchpoints
4743 as not triggered. */
4744 ALL_BREAKPOINTS (b)
4745 if (is_hardware_watchpoint (b))
4746 {
4747 struct watchpoint *w = (struct watchpoint *) b;
4748
4749 w->watchpoint_triggered = watch_triggered_no;
4750 }
4751
4752 return 0;
4753 }
4754
4755 if (!target_stopped_data_address (target_stack, &addr))
4756 {
4757 /* We were stopped by a watchpoint, but we don't know where.
4758 Mark all watchpoints as unknown. */
4759 ALL_BREAKPOINTS (b)
4760 if (is_hardware_watchpoint (b))
4761 {
4762 struct watchpoint *w = (struct watchpoint *) b;
4763
4764 w->watchpoint_triggered = watch_triggered_unknown;
4765 }
4766
4767 return 1;
4768 }
4769
4770 /* The target could report the data address. Mark watchpoints
4771 affected by this data address as triggered, and all others as not
4772 triggered. */
4773
4774 ALL_BREAKPOINTS (b)
4775 if (is_hardware_watchpoint (b))
4776 {
4777 struct watchpoint *w = (struct watchpoint *) b;
4778 struct bp_location *loc;
4779
4780 w->watchpoint_triggered = watch_triggered_no;
4781 for (loc = b->loc; loc; loc = loc->next)
4782 {
4783 if (is_masked_watchpoint (b))
4784 {
4785 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4786 CORE_ADDR start = loc->address & w->hw_wp_mask;
4787
4788 if (newaddr == start)
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 /* Exact match not required. Within range is sufficient. */
4795 else if (target_watchpoint_addr_within_range (target_stack,
4796 addr, loc->address,
4797 loc->length))
4798 {
4799 w->watchpoint_triggered = watch_triggered_yes;
4800 break;
4801 }
4802 }
4803 }
4804
4805 return 1;
4806 }
4807
4808 /* Possible return values for watchpoint_check. */
4809 enum wp_check_result
4810 {
4811 /* The watchpoint has been deleted. */
4812 WP_DELETED = 1,
4813
4814 /* The value has changed. */
4815 WP_VALUE_CHANGED = 2,
4816
4817 /* The value has not changed. */
4818 WP_VALUE_NOT_CHANGED = 3,
4819
4820 /* Ignore this watchpoint, no matter if the value changed or not. */
4821 WP_IGNORE = 4,
4822 };
4823
4824 #define BP_TEMPFLAG 1
4825 #define BP_HARDWAREFLAG 2
4826
4827 /* Evaluate watchpoint condition expression and check if its value
4828 changed. */
4829
4830 static wp_check_result
4831 watchpoint_check (bpstat bs)
4832 {
4833 struct watchpoint *b;
4834 struct frame_info *fr;
4835 int within_current_scope;
4836
4837 /* BS is built from an existing struct breakpoint. */
4838 gdb_assert (bs->breakpoint_at != NULL);
4839 b = (struct watchpoint *) bs->breakpoint_at;
4840
4841 /* If this is a local watchpoint, we only want to check if the
4842 watchpoint frame is in scope if the current thread is the thread
4843 that was used to create the watchpoint. */
4844 if (!watchpoint_in_thread_scope (b))
4845 return WP_IGNORE;
4846
4847 if (b->exp_valid_block == NULL)
4848 within_current_scope = 1;
4849 else
4850 {
4851 struct frame_info *frame = get_current_frame ();
4852 struct gdbarch *frame_arch = get_frame_arch (frame);
4853 CORE_ADDR frame_pc = get_frame_pc (frame);
4854
4855 /* stack_frame_destroyed_p() returns a non-zero value if we're
4856 still in the function but the stack frame has already been
4857 invalidated. Since we can't rely on the values of local
4858 variables after the stack has been destroyed, we are treating
4859 the watchpoint in that state as `not changed' without further
4860 checking. Don't mark watchpoints as changed if the current
4861 frame is in an epilogue - even if they are in some other
4862 frame, our view of the stack is likely to be wrong and
4863 frame_find_by_id could error out. */
4864 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4865 return WP_IGNORE;
4866
4867 fr = frame_find_by_id (b->watchpoint_frame);
4868 within_current_scope = (fr != NULL);
4869
4870 /* If we've gotten confused in the unwinder, we might have
4871 returned a frame that can't describe this variable. */
4872 if (within_current_scope)
4873 {
4874 struct symbol *function;
4875
4876 function = get_frame_function (fr);
4877 if (function == NULL
4878 || !contained_in (b->exp_valid_block,
4879 SYMBOL_BLOCK_VALUE (function)))
4880 within_current_scope = 0;
4881 }
4882
4883 if (within_current_scope)
4884 /* If we end up stopping, the current frame will get selected
4885 in normal_stop. So this call to select_frame won't affect
4886 the user. */
4887 select_frame (fr);
4888 }
4889
4890 if (within_current_scope)
4891 {
4892 /* We use value_{,free_to_}mark because it could be a *long*
4893 time before we return to the command level and call
4894 free_all_values. We can't call free_all_values because we
4895 might be in the middle of evaluating a function call. */
4896
4897 int pc = 0;
4898 struct value *mark;
4899 struct value *new_val;
4900
4901 if (is_masked_watchpoint (b))
4902 /* Since we don't know the exact trigger address (from
4903 stopped_data_address), just tell the user we've triggered
4904 a mask watchpoint. */
4905 return WP_VALUE_CHANGED;
4906
4907 mark = value_mark ();
4908 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4909
4910 if (b->val_bitsize != 0)
4911 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4912
4913 /* We use value_equal_contents instead of value_equal because
4914 the latter coerces an array to a pointer, thus comparing just
4915 the address of the array instead of its contents. This is
4916 not what we want. */
4917 if ((b->val != NULL) != (new_val != NULL)
4918 || (b->val != NULL && !value_equal_contents (b->val.get (),
4919 new_val)))
4920 {
4921 bs->old_val = b->val;
4922 b->val = release_value (new_val);
4923 b->val_valid = 1;
4924 if (new_val != NULL)
4925 value_free_to_mark (mark);
4926 return WP_VALUE_CHANGED;
4927 }
4928 else
4929 {
4930 /* Nothing changed. */
4931 value_free_to_mark (mark);
4932 return WP_VALUE_NOT_CHANGED;
4933 }
4934 }
4935 else
4936 {
4937 /* This seems like the only logical thing to do because
4938 if we temporarily ignored the watchpoint, then when
4939 we reenter the block in which it is valid it contains
4940 garbage (in the case of a function, it may have two
4941 garbage values, one before and one after the prologue).
4942 So we can't even detect the first assignment to it and
4943 watch after that (since the garbage may or may not equal
4944 the first value assigned). */
4945 /* We print all the stop information in
4946 breakpoint_ops->print_it, but in this case, by the time we
4947 call breakpoint_ops->print_it this bp will be deleted
4948 already. So we have no choice but print the information
4949 here. */
4950
4951 SWITCH_THRU_ALL_UIS ()
4952 {
4953 struct ui_out *uiout = current_uiout;
4954
4955 if (uiout->is_mi_like_p ())
4956 uiout->field_string
4957 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4958 uiout->text ("\nWatchpoint ");
4959 uiout->field_int ("wpnum", b->number);
4960 uiout->text (" deleted because the program has left the block in\n"
4961 "which its expression is valid.\n");
4962 }
4963
4964 /* Make sure the watchpoint's commands aren't executed. */
4965 b->commands = NULL;
4966 watchpoint_del_at_next_stop (b);
4967
4968 return WP_DELETED;
4969 }
4970 }
4971
4972 /* Return true if it looks like target has stopped due to hitting
4973 breakpoint location BL. This function does not check if we should
4974 stop, only if BL explains the stop. */
4975
4976 static int
4977 bpstat_check_location (const struct bp_location *bl,
4978 const address_space *aspace, CORE_ADDR bp_addr,
4979 const struct target_waitstatus *ws)
4980 {
4981 struct breakpoint *b = bl->owner;
4982
4983 /* BL is from an existing breakpoint. */
4984 gdb_assert (b != NULL);
4985
4986 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4987 }
4988
4989 /* Determine if the watched values have actually changed, and we
4990 should stop. If not, set BS->stop to 0. */
4991
4992 static void
4993 bpstat_check_watchpoint (bpstat bs)
4994 {
4995 const struct bp_location *bl;
4996 struct watchpoint *b;
4997
4998 /* BS is built for existing struct breakpoint. */
4999 bl = bs->bp_location_at;
5000 gdb_assert (bl != NULL);
5001 b = (struct watchpoint *) bs->breakpoint_at;
5002 gdb_assert (b != NULL);
5003
5004 {
5005 int must_check_value = 0;
5006
5007 if (b->type == bp_watchpoint)
5008 /* For a software watchpoint, we must always check the
5009 watched value. */
5010 must_check_value = 1;
5011 else if (b->watchpoint_triggered == watch_triggered_yes)
5012 /* We have a hardware watchpoint (read, write, or access)
5013 and the target earlier reported an address watched by
5014 this watchpoint. */
5015 must_check_value = 1;
5016 else if (b->watchpoint_triggered == watch_triggered_unknown
5017 && b->type == bp_hardware_watchpoint)
5018 /* We were stopped by a hardware watchpoint, but the target could
5019 not report the data address. We must check the watchpoint's
5020 value. Access and read watchpoints are out of luck; without
5021 a data address, we can't figure it out. */
5022 must_check_value = 1;
5023
5024 if (must_check_value)
5025 {
5026 wp_check_result e;
5027
5028 TRY
5029 {
5030 e = watchpoint_check (bs);
5031 }
5032 CATCH (ex, RETURN_MASK_ALL)
5033 {
5034 exception_fprintf (gdb_stderr, ex,
5035 "Error evaluating expression "
5036 "for watchpoint %d\n",
5037 b->number);
5038
5039 SWITCH_THRU_ALL_UIS ()
5040 {
5041 printf_filtered (_("Watchpoint %d deleted.\n"),
5042 b->number);
5043 }
5044 watchpoint_del_at_next_stop (b);
5045 e = WP_DELETED;
5046 }
5047 END_CATCH
5048
5049 switch (e)
5050 {
5051 case WP_DELETED:
5052 /* We've already printed what needs to be printed. */
5053 bs->print_it = print_it_done;
5054 /* Stop. */
5055 break;
5056 case WP_IGNORE:
5057 bs->print_it = print_it_noop;
5058 bs->stop = 0;
5059 break;
5060 case WP_VALUE_CHANGED:
5061 if (b->type == bp_read_watchpoint)
5062 {
5063 /* There are two cases to consider here:
5064
5065 1. We're watching the triggered memory for reads.
5066 In that case, trust the target, and always report
5067 the watchpoint hit to the user. Even though
5068 reads don't cause value changes, the value may
5069 have changed since the last time it was read, and
5070 since we're not trapping writes, we will not see
5071 those, and as such we should ignore our notion of
5072 old value.
5073
5074 2. We're watching the triggered memory for both
5075 reads and writes. There are two ways this may
5076 happen:
5077
5078 2.1. This is a target that can't break on data
5079 reads only, but can break on accesses (reads or
5080 writes), such as e.g., x86. We detect this case
5081 at the time we try to insert read watchpoints.
5082
5083 2.2. Otherwise, the target supports read
5084 watchpoints, but, the user set an access or write
5085 watchpoint watching the same memory as this read
5086 watchpoint.
5087
5088 If we're watching memory writes as well as reads,
5089 ignore watchpoint hits when we find that the
5090 value hasn't changed, as reads don't cause
5091 changes. This still gives false positives when
5092 the program writes the same value to memory as
5093 what there was already in memory (we will confuse
5094 it for a read), but it's much better than
5095 nothing. */
5096
5097 int other_write_watchpoint = 0;
5098
5099 if (bl->watchpoint_type == hw_read)
5100 {
5101 struct breakpoint *other_b;
5102
5103 ALL_BREAKPOINTS (other_b)
5104 if (other_b->type == bp_hardware_watchpoint
5105 || other_b->type == bp_access_watchpoint)
5106 {
5107 struct watchpoint *other_w =
5108 (struct watchpoint *) other_b;
5109
5110 if (other_w->watchpoint_triggered
5111 == watch_triggered_yes)
5112 {
5113 other_write_watchpoint = 1;
5114 break;
5115 }
5116 }
5117 }
5118
5119 if (other_write_watchpoint
5120 || bl->watchpoint_type == hw_access)
5121 {
5122 /* We're watching the same memory for writes,
5123 and the value changed since the last time we
5124 updated it, so this trap must be for a write.
5125 Ignore it. */
5126 bs->print_it = print_it_noop;
5127 bs->stop = 0;
5128 }
5129 }
5130 break;
5131 case WP_VALUE_NOT_CHANGED:
5132 if (b->type == bp_hardware_watchpoint
5133 || b->type == bp_watchpoint)
5134 {
5135 /* Don't stop: write watchpoints shouldn't fire if
5136 the value hasn't changed. */
5137 bs->print_it = print_it_noop;
5138 bs->stop = 0;
5139 }
5140 /* Stop. */
5141 break;
5142 default:
5143 /* Can't happen. */
5144 break;
5145 }
5146 }
5147 else /* must_check_value == 0 */
5148 {
5149 /* This is a case where some watchpoint(s) triggered, but
5150 not at the address of this watchpoint, or else no
5151 watchpoint triggered after all. So don't print
5152 anything for this watchpoint. */
5153 bs->print_it = print_it_noop;
5154 bs->stop = 0;
5155 }
5156 }
5157 }
5158
5159 /* For breakpoints that are currently marked as telling gdb to stop,
5160 check conditions (condition proper, frame, thread and ignore count)
5161 of breakpoint referred to by BS. If we should not stop for this
5162 breakpoint, set BS->stop to 0. */
5163
5164 static void
5165 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5166 {
5167 const struct bp_location *bl;
5168 struct breakpoint *b;
5169 /* Assume stop. */
5170 bool condition_result = true;
5171 struct expression *cond;
5172
5173 gdb_assert (bs->stop);
5174
5175 /* BS is built for existing struct breakpoint. */
5176 bl = bs->bp_location_at;
5177 gdb_assert (bl != NULL);
5178 b = bs->breakpoint_at;
5179 gdb_assert (b != NULL);
5180
5181 /* Even if the target evaluated the condition on its end and notified GDB, we
5182 need to do so again since GDB does not know if we stopped due to a
5183 breakpoint or a single step breakpoint. */
5184
5185 if (frame_id_p (b->frame_id)
5186 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5187 {
5188 bs->stop = 0;
5189 return;
5190 }
5191
5192 /* If this is a thread/task-specific breakpoint, don't waste cpu
5193 evaluating the condition if this isn't the specified
5194 thread/task. */
5195 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5196 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5197
5198 {
5199 bs->stop = 0;
5200 return;
5201 }
5202
5203 /* Evaluate extension language breakpoints that have a "stop" method
5204 implemented. */
5205 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5206
5207 if (is_watchpoint (b))
5208 {
5209 struct watchpoint *w = (struct watchpoint *) b;
5210
5211 cond = w->cond_exp.get ();
5212 }
5213 else
5214 cond = bl->cond.get ();
5215
5216 if (cond && b->disposition != disp_del_at_next_stop)
5217 {
5218 int within_current_scope = 1;
5219 struct watchpoint * w;
5220
5221 /* We use value_mark and value_free_to_mark because it could
5222 be a long time before we return to the command level and
5223 call free_all_values. We can't call free_all_values
5224 because we might be in the middle of evaluating a
5225 function call. */
5226 struct value *mark = value_mark ();
5227
5228 if (is_watchpoint (b))
5229 w = (struct watchpoint *) b;
5230 else
5231 w = NULL;
5232
5233 /* Need to select the frame, with all that implies so that
5234 the conditions will have the right context. Because we
5235 use the frame, we will not see an inlined function's
5236 variables when we arrive at a breakpoint at the start
5237 of the inlined function; the current frame will be the
5238 call site. */
5239 if (w == NULL || w->cond_exp_valid_block == NULL)
5240 select_frame (get_current_frame ());
5241 else
5242 {
5243 struct frame_info *frame;
5244
5245 /* For local watchpoint expressions, which particular
5246 instance of a local is being watched matters, so we
5247 keep track of the frame to evaluate the expression
5248 in. To evaluate the condition however, it doesn't
5249 really matter which instantiation of the function
5250 where the condition makes sense triggers the
5251 watchpoint. This allows an expression like "watch
5252 global if q > 10" set in `func', catch writes to
5253 global on all threads that call `func', or catch
5254 writes on all recursive calls of `func' by a single
5255 thread. We simply always evaluate the condition in
5256 the innermost frame that's executing where it makes
5257 sense to evaluate the condition. It seems
5258 intuitive. */
5259 frame = block_innermost_frame (w->cond_exp_valid_block);
5260 if (frame != NULL)
5261 select_frame (frame);
5262 else
5263 within_current_scope = 0;
5264 }
5265 if (within_current_scope)
5266 {
5267 TRY
5268 {
5269 condition_result = breakpoint_cond_eval (cond);
5270 }
5271 CATCH (ex, RETURN_MASK_ALL)
5272 {
5273 exception_fprintf (gdb_stderr, ex,
5274 "Error in testing breakpoint condition:\n");
5275 }
5276 END_CATCH
5277 }
5278 else
5279 {
5280 warning (_("Watchpoint condition cannot be tested "
5281 "in the current scope"));
5282 /* If we failed to set the right context for this
5283 watchpoint, unconditionally report it. */
5284 }
5285 /* FIXME-someday, should give breakpoint #. */
5286 value_free_to_mark (mark);
5287 }
5288
5289 if (cond && !condition_result)
5290 {
5291 bs->stop = 0;
5292 }
5293 else if (b->ignore_count > 0)
5294 {
5295 b->ignore_count--;
5296 bs->stop = 0;
5297 /* Increase the hit count even though we don't stop. */
5298 ++(b->hit_count);
5299 gdb::observers::breakpoint_modified.notify (b);
5300 }
5301 }
5302
5303 /* Returns true if we need to track moribund locations of LOC's type
5304 on the current target. */
5305
5306 static int
5307 need_moribund_for_location_type (struct bp_location *loc)
5308 {
5309 return ((loc->loc_type == bp_loc_software_breakpoint
5310 && !target_supports_stopped_by_sw_breakpoint ())
5311 || (loc->loc_type == bp_loc_hardware_breakpoint
5312 && !target_supports_stopped_by_hw_breakpoint ()));
5313 }
5314
5315
5316 /* Get a bpstat associated with having just stopped at address
5317 BP_ADDR in thread PTID.
5318
5319 Determine whether we stopped at a breakpoint, etc, or whether we
5320 don't understand this stop. Result is a chain of bpstat's such
5321 that:
5322
5323 if we don't understand the stop, the result is a null pointer.
5324
5325 if we understand why we stopped, the result is not null.
5326
5327 Each element of the chain refers to a particular breakpoint or
5328 watchpoint at which we have stopped. (We may have stopped for
5329 several reasons concurrently.)
5330
5331 Each element of the chain has valid next, breakpoint_at,
5332 commands, FIXME??? fields. */
5333
5334 bpstat
5335 bpstat_stop_status (const address_space *aspace,
5336 CORE_ADDR bp_addr, ptid_t ptid,
5337 const struct target_waitstatus *ws)
5338 {
5339 struct breakpoint *b = NULL;
5340 struct bp_location *bl;
5341 struct bp_location *loc;
5342 /* First item of allocated bpstat's. */
5343 bpstat bs_head = NULL, *bs_link = &bs_head;
5344 /* Pointer to the last thing in the chain currently. */
5345 bpstat bs;
5346 int ix;
5347 int need_remove_insert;
5348 int removed_any;
5349
5350 /* First, build the bpstat chain with locations that explain a
5351 target stop, while being careful to not set the target running,
5352 as that may invalidate locations (in particular watchpoint
5353 locations are recreated). Resuming will happen here with
5354 breakpoint conditions or watchpoint expressions that include
5355 inferior function calls. */
5356
5357 ALL_BREAKPOINTS (b)
5358 {
5359 if (!breakpoint_enabled (b))
5360 continue;
5361
5362 for (bl = b->loc; bl != NULL; bl = bl->next)
5363 {
5364 /* For hardware watchpoints, we look only at the first
5365 location. The watchpoint_check function will work on the
5366 entire expression, not the individual locations. For
5367 read watchpoints, the watchpoints_triggered function has
5368 checked all locations already. */
5369 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5370 break;
5371
5372 if (!bl->enabled || bl->shlib_disabled)
5373 continue;
5374
5375 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5376 continue;
5377
5378 /* Come here if it's a watchpoint, or if the break address
5379 matches. */
5380
5381 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5382 explain stop. */
5383
5384 /* Assume we stop. Should we find a watchpoint that is not
5385 actually triggered, or if the condition of the breakpoint
5386 evaluates as false, we'll reset 'stop' to 0. */
5387 bs->stop = 1;
5388 bs->print = 1;
5389
5390 /* If this is a scope breakpoint, mark the associated
5391 watchpoint as triggered so that we will handle the
5392 out-of-scope event. We'll get to the watchpoint next
5393 iteration. */
5394 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5395 {
5396 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5397
5398 w->watchpoint_triggered = watch_triggered_yes;
5399 }
5400 }
5401 }
5402
5403 /* Check if a moribund breakpoint explains the stop. */
5404 if (!target_supports_stopped_by_sw_breakpoint ()
5405 || !target_supports_stopped_by_hw_breakpoint ())
5406 {
5407 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5408 {
5409 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5410 && need_moribund_for_location_type (loc))
5411 {
5412 bs = new bpstats (loc, &bs_link);
5413 /* For hits of moribund locations, we should just proceed. */
5414 bs->stop = 0;
5415 bs->print = 0;
5416 bs->print_it = print_it_noop;
5417 }
5418 }
5419 }
5420
5421 /* A bit of special processing for shlib breakpoints. We need to
5422 process solib loading here, so that the lists of loaded and
5423 unloaded libraries are correct before we handle "catch load" and
5424 "catch unload". */
5425 for (bs = bs_head; bs != NULL; bs = bs->next)
5426 {
5427 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5428 {
5429 handle_solib_event ();
5430 break;
5431 }
5432 }
5433
5434 /* Now go through the locations that caused the target to stop, and
5435 check whether we're interested in reporting this stop to higher
5436 layers, or whether we should resume the target transparently. */
5437
5438 removed_any = 0;
5439
5440 for (bs = bs_head; bs != NULL; bs = bs->next)
5441 {
5442 if (!bs->stop)
5443 continue;
5444
5445 b = bs->breakpoint_at;
5446 b->ops->check_status (bs);
5447 if (bs->stop)
5448 {
5449 bpstat_check_breakpoint_conditions (bs, ptid);
5450
5451 if (bs->stop)
5452 {
5453 ++(b->hit_count);
5454 gdb::observers::breakpoint_modified.notify (b);
5455
5456 /* We will stop here. */
5457 if (b->disposition == disp_disable)
5458 {
5459 --(b->enable_count);
5460 if (b->enable_count <= 0)
5461 b->enable_state = bp_disabled;
5462 removed_any = 1;
5463 }
5464 if (b->silent)
5465 bs->print = 0;
5466 bs->commands = b->commands;
5467 if (command_line_is_silent (bs->commands
5468 ? bs->commands.get () : NULL))
5469 bs->print = 0;
5470
5471 b->ops->after_condition_true (bs);
5472 }
5473
5474 }
5475
5476 /* Print nothing for this entry if we don't stop or don't
5477 print. */
5478 if (!bs->stop || !bs->print)
5479 bs->print_it = print_it_noop;
5480 }
5481
5482 /* If we aren't stopping, the value of some hardware watchpoint may
5483 not have changed, but the intermediate memory locations we are
5484 watching may have. Don't bother if we're stopping; this will get
5485 done later. */
5486 need_remove_insert = 0;
5487 if (! bpstat_causes_stop (bs_head))
5488 for (bs = bs_head; bs != NULL; bs = bs->next)
5489 if (!bs->stop
5490 && bs->breakpoint_at
5491 && is_hardware_watchpoint (bs->breakpoint_at))
5492 {
5493 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5494
5495 update_watchpoint (w, 0 /* don't reparse. */);
5496 need_remove_insert = 1;
5497 }
5498
5499 if (need_remove_insert)
5500 update_global_location_list (UGLL_MAY_INSERT);
5501 else if (removed_any)
5502 update_global_location_list (UGLL_DONT_INSERT);
5503
5504 return bs_head;
5505 }
5506
5507 static void
5508 handle_jit_event (void)
5509 {
5510 struct frame_info *frame;
5511 struct gdbarch *gdbarch;
5512
5513 if (debug_infrun)
5514 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5515
5516 /* Switch terminal for any messages produced by
5517 breakpoint_re_set. */
5518 target_terminal::ours_for_output ();
5519
5520 frame = get_current_frame ();
5521 gdbarch = get_frame_arch (frame);
5522
5523 jit_event_handler (gdbarch);
5524
5525 target_terminal::inferior ();
5526 }
5527
5528 /* Prepare WHAT final decision for infrun. */
5529
5530 /* Decide what infrun needs to do with this bpstat. */
5531
5532 struct bpstat_what
5533 bpstat_what (bpstat bs_head)
5534 {
5535 struct bpstat_what retval;
5536 bpstat bs;
5537
5538 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5539 retval.call_dummy = STOP_NONE;
5540 retval.is_longjmp = 0;
5541
5542 for (bs = bs_head; bs != NULL; bs = bs->next)
5543 {
5544 /* Extract this BS's action. After processing each BS, we check
5545 if its action overrides all we've seem so far. */
5546 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5547 enum bptype bptype;
5548
5549 if (bs->breakpoint_at == NULL)
5550 {
5551 /* I suspect this can happen if it was a momentary
5552 breakpoint which has since been deleted. */
5553 bptype = bp_none;
5554 }
5555 else
5556 bptype = bs->breakpoint_at->type;
5557
5558 switch (bptype)
5559 {
5560 case bp_none:
5561 break;
5562 case bp_breakpoint:
5563 case bp_hardware_breakpoint:
5564 case bp_single_step:
5565 case bp_until:
5566 case bp_finish:
5567 case bp_shlib_event:
5568 if (bs->stop)
5569 {
5570 if (bs->print)
5571 this_action = BPSTAT_WHAT_STOP_NOISY;
5572 else
5573 this_action = BPSTAT_WHAT_STOP_SILENT;
5574 }
5575 else
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 break;
5578 case bp_watchpoint:
5579 case bp_hardware_watchpoint:
5580 case bp_read_watchpoint:
5581 case bp_access_watchpoint:
5582 if (bs->stop)
5583 {
5584 if (bs->print)
5585 this_action = BPSTAT_WHAT_STOP_NOISY;
5586 else
5587 this_action = BPSTAT_WHAT_STOP_SILENT;
5588 }
5589 else
5590 {
5591 /* There was a watchpoint, but we're not stopping.
5592 This requires no further action. */
5593 }
5594 break;
5595 case bp_longjmp:
5596 case bp_longjmp_call_dummy:
5597 case bp_exception:
5598 if (bs->stop)
5599 {
5600 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5601 retval.is_longjmp = bptype != bp_exception;
5602 }
5603 else
5604 this_action = BPSTAT_WHAT_SINGLE;
5605 break;
5606 case bp_longjmp_resume:
5607 case bp_exception_resume:
5608 if (bs->stop)
5609 {
5610 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5611 retval.is_longjmp = bptype == bp_longjmp_resume;
5612 }
5613 else
5614 this_action = BPSTAT_WHAT_SINGLE;
5615 break;
5616 case bp_step_resume:
5617 if (bs->stop)
5618 this_action = BPSTAT_WHAT_STEP_RESUME;
5619 else
5620 {
5621 /* It is for the wrong frame. */
5622 this_action = BPSTAT_WHAT_SINGLE;
5623 }
5624 break;
5625 case bp_hp_step_resume:
5626 if (bs->stop)
5627 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5628 else
5629 {
5630 /* It is for the wrong frame. */
5631 this_action = BPSTAT_WHAT_SINGLE;
5632 }
5633 break;
5634 case bp_watchpoint_scope:
5635 case bp_thread_event:
5636 case bp_overlay_event:
5637 case bp_longjmp_master:
5638 case bp_std_terminate_master:
5639 case bp_exception_master:
5640 this_action = BPSTAT_WHAT_SINGLE;
5641 break;
5642 case bp_catchpoint:
5643 if (bs->stop)
5644 {
5645 if (bs->print)
5646 this_action = BPSTAT_WHAT_STOP_NOISY;
5647 else
5648 this_action = BPSTAT_WHAT_STOP_SILENT;
5649 }
5650 else
5651 {
5652 /* There was a catchpoint, but we're not stopping.
5653 This requires no further action. */
5654 }
5655 break;
5656 case bp_jit_event:
5657 this_action = BPSTAT_WHAT_SINGLE;
5658 break;
5659 case bp_call_dummy:
5660 /* Make sure the action is stop (silent or noisy),
5661 so infrun.c pops the dummy frame. */
5662 retval.call_dummy = STOP_STACK_DUMMY;
5663 this_action = BPSTAT_WHAT_STOP_SILENT;
5664 break;
5665 case bp_std_terminate:
5666 /* Make sure the action is stop (silent or noisy),
5667 so infrun.c pops the dummy frame. */
5668 retval.call_dummy = STOP_STD_TERMINATE;
5669 this_action = BPSTAT_WHAT_STOP_SILENT;
5670 break;
5671 case bp_tracepoint:
5672 case bp_fast_tracepoint:
5673 case bp_static_tracepoint:
5674 /* Tracepoint hits should not be reported back to GDB, and
5675 if one got through somehow, it should have been filtered
5676 out already. */
5677 internal_error (__FILE__, __LINE__,
5678 _("bpstat_what: tracepoint encountered"));
5679 break;
5680 case bp_gnu_ifunc_resolver:
5681 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684 case bp_gnu_ifunc_resolver_return:
5685 /* The breakpoint will be removed, execution will restart from the
5686 PC of the former breakpoint. */
5687 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5688 break;
5689
5690 case bp_dprintf:
5691 if (bs->stop)
5692 this_action = BPSTAT_WHAT_STOP_SILENT;
5693 else
5694 this_action = BPSTAT_WHAT_SINGLE;
5695 break;
5696
5697 default:
5698 internal_error (__FILE__, __LINE__,
5699 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5700 }
5701
5702 retval.main_action = std::max (retval.main_action, this_action);
5703 }
5704
5705 return retval;
5706 }
5707
5708 void
5709 bpstat_run_callbacks (bpstat bs_head)
5710 {
5711 bpstat bs;
5712
5713 for (bs = bs_head; bs != NULL; bs = bs->next)
5714 {
5715 struct breakpoint *b = bs->breakpoint_at;
5716
5717 if (b == NULL)
5718 continue;
5719 switch (b->type)
5720 {
5721 case bp_jit_event:
5722 handle_jit_event ();
5723 break;
5724 case bp_gnu_ifunc_resolver:
5725 gnu_ifunc_resolver_stop (b);
5726 break;
5727 case bp_gnu_ifunc_resolver_return:
5728 gnu_ifunc_resolver_return_stop (b);
5729 break;
5730 }
5731 }
5732 }
5733
5734 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5735 without hardware support). This isn't related to a specific bpstat,
5736 just to things like whether watchpoints are set. */
5737
5738 int
5739 bpstat_should_step (void)
5740 {
5741 struct breakpoint *b;
5742
5743 ALL_BREAKPOINTS (b)
5744 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5745 return 1;
5746 return 0;
5747 }
5748
5749 int
5750 bpstat_causes_stop (bpstat bs)
5751 {
5752 for (; bs != NULL; bs = bs->next)
5753 if (bs->stop)
5754 return 1;
5755
5756 return 0;
5757 }
5758
5759 \f
5760
5761 /* Compute a string of spaces suitable to indent the next line
5762 so it starts at the position corresponding to the table column
5763 named COL_NAME in the currently active table of UIOUT. */
5764
5765 static char *
5766 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5767 {
5768 static char wrap_indent[80];
5769 int i, total_width, width, align;
5770 const char *text;
5771
5772 total_width = 0;
5773 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5774 {
5775 if (strcmp (text, col_name) == 0)
5776 {
5777 gdb_assert (total_width < sizeof wrap_indent);
5778 memset (wrap_indent, ' ', total_width);
5779 wrap_indent[total_width] = 0;
5780
5781 return wrap_indent;
5782 }
5783
5784 total_width += width + 1;
5785 }
5786
5787 return NULL;
5788 }
5789
5790 /* Determine if the locations of this breakpoint will have their conditions
5791 evaluated by the target, host or a mix of both. Returns the following:
5792
5793 "host": Host evals condition.
5794 "host or target": Host or Target evals condition.
5795 "target": Target evals condition.
5796 */
5797
5798 static const char *
5799 bp_condition_evaluator (struct breakpoint *b)
5800 {
5801 struct bp_location *bl;
5802 char host_evals = 0;
5803 char target_evals = 0;
5804
5805 if (!b)
5806 return NULL;
5807
5808 if (!is_breakpoint (b))
5809 return NULL;
5810
5811 if (gdb_evaluates_breakpoint_condition_p ()
5812 || !target_supports_evaluation_of_breakpoint_conditions ())
5813 return condition_evaluation_host;
5814
5815 for (bl = b->loc; bl; bl = bl->next)
5816 {
5817 if (bl->cond_bytecode)
5818 target_evals++;
5819 else
5820 host_evals++;
5821 }
5822
5823 if (host_evals && target_evals)
5824 return condition_evaluation_both;
5825 else if (target_evals)
5826 return condition_evaluation_target;
5827 else
5828 return condition_evaluation_host;
5829 }
5830
5831 /* Determine the breakpoint location's condition evaluator. This is
5832 similar to bp_condition_evaluator, but for locations. */
5833
5834 static const char *
5835 bp_location_condition_evaluator (struct bp_location *bl)
5836 {
5837 if (bl && !is_breakpoint (bl->owner))
5838 return NULL;
5839
5840 if (gdb_evaluates_breakpoint_condition_p ()
5841 || !target_supports_evaluation_of_breakpoint_conditions ())
5842 return condition_evaluation_host;
5843
5844 if (bl && bl->cond_bytecode)
5845 return condition_evaluation_target;
5846 else
5847 return condition_evaluation_host;
5848 }
5849
5850 /* Print the LOC location out of the list of B->LOC locations. */
5851
5852 static void
5853 print_breakpoint_location (struct breakpoint *b,
5854 struct bp_location *loc)
5855 {
5856 struct ui_out *uiout = current_uiout;
5857
5858 scoped_restore_current_program_space restore_pspace;
5859
5860 if (loc != NULL && loc->shlib_disabled)
5861 loc = NULL;
5862
5863 if (loc != NULL)
5864 set_current_program_space (loc->pspace);
5865
5866 if (b->display_canonical)
5867 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5868 else if (loc && loc->symtab)
5869 {
5870 const struct symbol *sym = loc->symbol;
5871
5872 if (sym == NULL)
5873 sym = find_pc_sect_function (loc->address, loc->section);
5874
5875 if (sym)
5876 {
5877 uiout->text ("in ");
5878 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5879 uiout->text (" ");
5880 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5881 uiout->text ("at ");
5882 }
5883 uiout->field_string ("file",
5884 symtab_to_filename_for_display (loc->symtab));
5885 uiout->text (":");
5886
5887 if (uiout->is_mi_like_p ())
5888 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5889
5890 uiout->field_int ("line", loc->line_number);
5891 }
5892 else if (loc)
5893 {
5894 string_file stb;
5895
5896 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5897 demangle, "");
5898 uiout->field_stream ("at", stb);
5899 }
5900 else
5901 {
5902 uiout->field_string ("pending",
5903 event_location_to_string (b->location.get ()));
5904 /* If extra_string is available, it could be holding a condition
5905 or dprintf arguments. In either case, make sure it is printed,
5906 too, but only for non-MI streams. */
5907 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5908 {
5909 if (b->type == bp_dprintf)
5910 uiout->text (",");
5911 else
5912 uiout->text (" ");
5913 uiout->text (b->extra_string);
5914 }
5915 }
5916
5917 if (loc && is_breakpoint (b)
5918 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5919 && bp_condition_evaluator (b) == condition_evaluation_both)
5920 {
5921 uiout->text (" (");
5922 uiout->field_string ("evaluated-by",
5923 bp_location_condition_evaluator (loc));
5924 uiout->text (")");
5925 }
5926 }
5927
5928 static const char *
5929 bptype_string (enum bptype type)
5930 {
5931 struct ep_type_description
5932 {
5933 enum bptype type;
5934 const char *description;
5935 };
5936 static struct ep_type_description bptypes[] =
5937 {
5938 {bp_none, "?deleted?"},
5939 {bp_breakpoint, "breakpoint"},
5940 {bp_hardware_breakpoint, "hw breakpoint"},
5941 {bp_single_step, "sw single-step"},
5942 {bp_until, "until"},
5943 {bp_finish, "finish"},
5944 {bp_watchpoint, "watchpoint"},
5945 {bp_hardware_watchpoint, "hw watchpoint"},
5946 {bp_read_watchpoint, "read watchpoint"},
5947 {bp_access_watchpoint, "acc watchpoint"},
5948 {bp_longjmp, "longjmp"},
5949 {bp_longjmp_resume, "longjmp resume"},
5950 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5951 {bp_exception, "exception"},
5952 {bp_exception_resume, "exception resume"},
5953 {bp_step_resume, "step resume"},
5954 {bp_hp_step_resume, "high-priority step resume"},
5955 {bp_watchpoint_scope, "watchpoint scope"},
5956 {bp_call_dummy, "call dummy"},
5957 {bp_std_terminate, "std::terminate"},
5958 {bp_shlib_event, "shlib events"},
5959 {bp_thread_event, "thread events"},
5960 {bp_overlay_event, "overlay events"},
5961 {bp_longjmp_master, "longjmp master"},
5962 {bp_std_terminate_master, "std::terminate master"},
5963 {bp_exception_master, "exception master"},
5964 {bp_catchpoint, "catchpoint"},
5965 {bp_tracepoint, "tracepoint"},
5966 {bp_fast_tracepoint, "fast tracepoint"},
5967 {bp_static_tracepoint, "static tracepoint"},
5968 {bp_dprintf, "dprintf"},
5969 {bp_jit_event, "jit events"},
5970 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5971 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5972 };
5973
5974 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5975 || ((int) type != bptypes[(int) type].type))
5976 internal_error (__FILE__, __LINE__,
5977 _("bptypes table does not describe type #%d."),
5978 (int) type);
5979
5980 return bptypes[(int) type].description;
5981 }
5982
5983 /* For MI, output a field named 'thread-groups' with a list as the value.
5984 For CLI, prefix the list with the string 'inf'. */
5985
5986 static void
5987 output_thread_groups (struct ui_out *uiout,
5988 const char *field_name,
5989 const std::vector<int> &inf_nums,
5990 int mi_only)
5991 {
5992 int is_mi = uiout->is_mi_like_p ();
5993
5994 /* For backward compatibility, don't display inferiors in CLI unless
5995 there are several. Always display them for MI. */
5996 if (!is_mi && mi_only)
5997 return;
5998
5999 ui_out_emit_list list_emitter (uiout, field_name);
6000
6001 for (size_t i = 0; i < inf_nums.size (); i++)
6002 {
6003 if (is_mi)
6004 {
6005 char mi_group[10];
6006
6007 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6008 uiout->field_string (NULL, mi_group);
6009 }
6010 else
6011 {
6012 if (i == 0)
6013 uiout->text (" inf ");
6014 else
6015 uiout->text (", ");
6016
6017 uiout->text (plongest (inf_nums[i]));
6018 }
6019 }
6020 }
6021
6022 /* Print B to gdb_stdout. */
6023
6024 static void
6025 print_one_breakpoint_location (struct breakpoint *b,
6026 struct bp_location *loc,
6027 int loc_number,
6028 struct bp_location **last_loc,
6029 int allflag)
6030 {
6031 struct command_line *l;
6032 static char bpenables[] = "nynny";
6033
6034 struct ui_out *uiout = current_uiout;
6035 int header_of_multiple = 0;
6036 int part_of_multiple = (loc != NULL);
6037 struct value_print_options opts;
6038
6039 get_user_print_options (&opts);
6040
6041 gdb_assert (!loc || loc_number != 0);
6042 /* See comment in print_one_breakpoint concerning treatment of
6043 breakpoints with single disabled location. */
6044 if (loc == NULL
6045 && (b->loc != NULL
6046 && (b->loc->next != NULL || !b->loc->enabled)))
6047 header_of_multiple = 1;
6048 if (loc == NULL)
6049 loc = b->loc;
6050
6051 annotate_record ();
6052
6053 /* 1 */
6054 annotate_field (0);
6055 if (part_of_multiple)
6056 {
6057 char *formatted;
6058 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6059 uiout->field_string ("number", formatted);
6060 xfree (formatted);
6061 }
6062 else
6063 {
6064 uiout->field_int ("number", b->number);
6065 }
6066
6067 /* 2 */
6068 annotate_field (1);
6069 if (part_of_multiple)
6070 uiout->field_skip ("type");
6071 else
6072 uiout->field_string ("type", bptype_string (b->type));
6073
6074 /* 3 */
6075 annotate_field (2);
6076 if (part_of_multiple)
6077 uiout->field_skip ("disp");
6078 else
6079 uiout->field_string ("disp", bpdisp_text (b->disposition));
6080
6081
6082 /* 4 */
6083 annotate_field (3);
6084 if (part_of_multiple)
6085 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6086 else
6087 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6088 uiout->spaces (2);
6089
6090
6091 /* 5 and 6 */
6092 if (b->ops != NULL && b->ops->print_one != NULL)
6093 {
6094 /* Although the print_one can possibly print all locations,
6095 calling it here is not likely to get any nice result. So,
6096 make sure there's just one location. */
6097 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6098 b->ops->print_one (b, last_loc);
6099 }
6100 else
6101 switch (b->type)
6102 {
6103 case bp_none:
6104 internal_error (__FILE__, __LINE__,
6105 _("print_one_breakpoint: bp_none encountered\n"));
6106 break;
6107
6108 case bp_watchpoint:
6109 case bp_hardware_watchpoint:
6110 case bp_read_watchpoint:
6111 case bp_access_watchpoint:
6112 {
6113 struct watchpoint *w = (struct watchpoint *) b;
6114
6115 /* Field 4, the address, is omitted (which makes the columns
6116 not line up too nicely with the headers, but the effect
6117 is relatively readable). */
6118 if (opts.addressprint)
6119 uiout->field_skip ("addr");
6120 annotate_field (5);
6121 uiout->field_string ("what", w->exp_string);
6122 }
6123 break;
6124
6125 case bp_breakpoint:
6126 case bp_hardware_breakpoint:
6127 case bp_single_step:
6128 case bp_until:
6129 case bp_finish:
6130 case bp_longjmp:
6131 case bp_longjmp_resume:
6132 case bp_longjmp_call_dummy:
6133 case bp_exception:
6134 case bp_exception_resume:
6135 case bp_step_resume:
6136 case bp_hp_step_resume:
6137 case bp_watchpoint_scope:
6138 case bp_call_dummy:
6139 case bp_std_terminate:
6140 case bp_shlib_event:
6141 case bp_thread_event:
6142 case bp_overlay_event:
6143 case bp_longjmp_master:
6144 case bp_std_terminate_master:
6145 case bp_exception_master:
6146 case bp_tracepoint:
6147 case bp_fast_tracepoint:
6148 case bp_static_tracepoint:
6149 case bp_dprintf:
6150 case bp_jit_event:
6151 case bp_gnu_ifunc_resolver:
6152 case bp_gnu_ifunc_resolver_return:
6153 if (opts.addressprint)
6154 {
6155 annotate_field (4);
6156 if (header_of_multiple)
6157 uiout->field_string ("addr", "<MULTIPLE>");
6158 else if (b->loc == NULL || loc->shlib_disabled)
6159 uiout->field_string ("addr", "<PENDING>");
6160 else
6161 uiout->field_core_addr ("addr",
6162 loc->gdbarch, loc->address);
6163 }
6164 annotate_field (5);
6165 if (!header_of_multiple)
6166 print_breakpoint_location (b, loc);
6167 if (b->loc)
6168 *last_loc = b->loc;
6169 break;
6170 }
6171
6172
6173 if (loc != NULL && !header_of_multiple)
6174 {
6175 struct inferior *inf;
6176 std::vector<int> inf_nums;
6177 int mi_only = 1;
6178
6179 ALL_INFERIORS (inf)
6180 {
6181 if (inf->pspace == loc->pspace)
6182 inf_nums.push_back (inf->num);
6183 }
6184
6185 /* For backward compatibility, don't display inferiors in CLI unless
6186 there are several. Always display for MI. */
6187 if (allflag
6188 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6189 && (number_of_program_spaces () > 1
6190 || number_of_inferiors () > 1)
6191 /* LOC is for existing B, it cannot be in
6192 moribund_locations and thus having NULL OWNER. */
6193 && loc->owner->type != bp_catchpoint))
6194 mi_only = 0;
6195 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6196 }
6197
6198 if (!part_of_multiple)
6199 {
6200 if (b->thread != -1)
6201 {
6202 /* FIXME: This seems to be redundant and lost here; see the
6203 "stop only in" line a little further down. */
6204 uiout->text (" thread ");
6205 uiout->field_int ("thread", b->thread);
6206 }
6207 else if (b->task != 0)
6208 {
6209 uiout->text (" task ");
6210 uiout->field_int ("task", b->task);
6211 }
6212 }
6213
6214 uiout->text ("\n");
6215
6216 if (!part_of_multiple)
6217 b->ops->print_one_detail (b, uiout);
6218
6219 if (part_of_multiple && frame_id_p (b->frame_id))
6220 {
6221 annotate_field (6);
6222 uiout->text ("\tstop only in stack frame at ");
6223 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6224 the frame ID. */
6225 uiout->field_core_addr ("frame",
6226 b->gdbarch, b->frame_id.stack_addr);
6227 uiout->text ("\n");
6228 }
6229
6230 if (!part_of_multiple && b->cond_string)
6231 {
6232 annotate_field (7);
6233 if (is_tracepoint (b))
6234 uiout->text ("\ttrace only if ");
6235 else
6236 uiout->text ("\tstop only if ");
6237 uiout->field_string ("cond", b->cond_string);
6238
6239 /* Print whether the target is doing the breakpoint's condition
6240 evaluation. If GDB is doing the evaluation, don't print anything. */
6241 if (is_breakpoint (b)
6242 && breakpoint_condition_evaluation_mode ()
6243 == condition_evaluation_target)
6244 {
6245 uiout->text (" (");
6246 uiout->field_string ("evaluated-by",
6247 bp_condition_evaluator (b));
6248 uiout->text (" evals)");
6249 }
6250 uiout->text ("\n");
6251 }
6252
6253 if (!part_of_multiple && b->thread != -1)
6254 {
6255 /* FIXME should make an annotation for this. */
6256 uiout->text ("\tstop only in thread ");
6257 if (uiout->is_mi_like_p ())
6258 uiout->field_int ("thread", b->thread);
6259 else
6260 {
6261 struct thread_info *thr = find_thread_global_id (b->thread);
6262
6263 uiout->field_string ("thread", print_thread_id (thr));
6264 }
6265 uiout->text ("\n");
6266 }
6267
6268 if (!part_of_multiple)
6269 {
6270 if (b->hit_count)
6271 {
6272 /* FIXME should make an annotation for this. */
6273 if (is_catchpoint (b))
6274 uiout->text ("\tcatchpoint");
6275 else if (is_tracepoint (b))
6276 uiout->text ("\ttracepoint");
6277 else
6278 uiout->text ("\tbreakpoint");
6279 uiout->text (" already hit ");
6280 uiout->field_int ("times", b->hit_count);
6281 if (b->hit_count == 1)
6282 uiout->text (" time\n");
6283 else
6284 uiout->text (" times\n");
6285 }
6286 else
6287 {
6288 /* Output the count also if it is zero, but only if this is mi. */
6289 if (uiout->is_mi_like_p ())
6290 uiout->field_int ("times", b->hit_count);
6291 }
6292 }
6293
6294 if (!part_of_multiple && b->ignore_count)
6295 {
6296 annotate_field (8);
6297 uiout->text ("\tignore next ");
6298 uiout->field_int ("ignore", b->ignore_count);
6299 uiout->text (" hits\n");
6300 }
6301
6302 /* Note that an enable count of 1 corresponds to "enable once"
6303 behavior, which is reported by the combination of enablement and
6304 disposition, so we don't need to mention it here. */
6305 if (!part_of_multiple && b->enable_count > 1)
6306 {
6307 annotate_field (8);
6308 uiout->text ("\tdisable after ");
6309 /* Tweak the wording to clarify that ignore and enable counts
6310 are distinct, and have additive effect. */
6311 if (b->ignore_count)
6312 uiout->text ("additional ");
6313 else
6314 uiout->text ("next ");
6315 uiout->field_int ("enable", b->enable_count);
6316 uiout->text (" hits\n");
6317 }
6318
6319 if (!part_of_multiple && is_tracepoint (b))
6320 {
6321 struct tracepoint *tp = (struct tracepoint *) b;
6322
6323 if (tp->traceframe_usage)
6324 {
6325 uiout->text ("\ttrace buffer usage ");
6326 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6327 uiout->text (" bytes\n");
6328 }
6329 }
6330
6331 l = b->commands ? b->commands.get () : NULL;
6332 if (!part_of_multiple && l)
6333 {
6334 annotate_field (9);
6335 ui_out_emit_tuple tuple_emitter (uiout, "script");
6336 print_command_lines (uiout, l, 4);
6337 }
6338
6339 if (is_tracepoint (b))
6340 {
6341 struct tracepoint *t = (struct tracepoint *) b;
6342
6343 if (!part_of_multiple && t->pass_count)
6344 {
6345 annotate_field (10);
6346 uiout->text ("\tpass count ");
6347 uiout->field_int ("pass", t->pass_count);
6348 uiout->text (" \n");
6349 }
6350
6351 /* Don't display it when tracepoint or tracepoint location is
6352 pending. */
6353 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6354 {
6355 annotate_field (11);
6356
6357 if (uiout->is_mi_like_p ())
6358 uiout->field_string ("installed",
6359 loc->inserted ? "y" : "n");
6360 else
6361 {
6362 if (loc->inserted)
6363 uiout->text ("\t");
6364 else
6365 uiout->text ("\tnot ");
6366 uiout->text ("installed on target\n");
6367 }
6368 }
6369 }
6370
6371 if (uiout->is_mi_like_p () && !part_of_multiple)
6372 {
6373 if (is_watchpoint (b))
6374 {
6375 struct watchpoint *w = (struct watchpoint *) b;
6376
6377 uiout->field_string ("original-location", w->exp_string);
6378 }
6379 else if (b->location != NULL
6380 && event_location_to_string (b->location.get ()) != NULL)
6381 uiout->field_string ("original-location",
6382 event_location_to_string (b->location.get ()));
6383 }
6384 }
6385
6386 static void
6387 print_one_breakpoint (struct breakpoint *b,
6388 struct bp_location **last_loc,
6389 int allflag)
6390 {
6391 struct ui_out *uiout = current_uiout;
6392
6393 {
6394 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6395
6396 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6397 }
6398
6399 /* If this breakpoint has custom print function,
6400 it's already printed. Otherwise, print individual
6401 locations, if any. */
6402 if (b->ops == NULL || b->ops->print_one == NULL)
6403 {
6404 /* If breakpoint has a single location that is disabled, we
6405 print it as if it had several locations, since otherwise it's
6406 hard to represent "breakpoint enabled, location disabled"
6407 situation.
6408
6409 Note that while hardware watchpoints have several locations
6410 internally, that's not a property exposed to user. */
6411 if (b->loc
6412 && !is_hardware_watchpoint (b)
6413 && (b->loc->next || !b->loc->enabled))
6414 {
6415 struct bp_location *loc;
6416 int n = 1;
6417
6418 for (loc = b->loc; loc; loc = loc->next, ++n)
6419 {
6420 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6421 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6422 }
6423 }
6424 }
6425 }
6426
6427 static int
6428 breakpoint_address_bits (struct breakpoint *b)
6429 {
6430 int print_address_bits = 0;
6431 struct bp_location *loc;
6432
6433 /* Software watchpoints that aren't watching memory don't have an
6434 address to print. */
6435 if (is_no_memory_software_watchpoint (b))
6436 return 0;
6437
6438 for (loc = b->loc; loc; loc = loc->next)
6439 {
6440 int addr_bit;
6441
6442 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6443 if (addr_bit > print_address_bits)
6444 print_address_bits = addr_bit;
6445 }
6446
6447 return print_address_bits;
6448 }
6449
6450 /* See breakpoint.h. */
6451
6452 void
6453 print_breakpoint (breakpoint *b)
6454 {
6455 struct bp_location *dummy_loc = NULL;
6456 print_one_breakpoint (b, &dummy_loc, 0);
6457 }
6458
6459 /* Return true if this breakpoint was set by the user, false if it is
6460 internal or momentary. */
6461
6462 int
6463 user_breakpoint_p (struct breakpoint *b)
6464 {
6465 return b->number > 0;
6466 }
6467
6468 /* See breakpoint.h. */
6469
6470 int
6471 pending_breakpoint_p (struct breakpoint *b)
6472 {
6473 return b->loc == NULL;
6474 }
6475
6476 /* Print information on user settable breakpoint (watchpoint, etc)
6477 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6478 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6479 FILTER is non-NULL, call it on each breakpoint and only include the
6480 ones for which it returns non-zero. Return the total number of
6481 breakpoints listed. */
6482
6483 static int
6484 breakpoint_1 (const char *args, int allflag,
6485 int (*filter) (const struct breakpoint *))
6486 {
6487 struct breakpoint *b;
6488 struct bp_location *last_loc = NULL;
6489 int nr_printable_breakpoints;
6490 struct value_print_options opts;
6491 int print_address_bits = 0;
6492 int print_type_col_width = 14;
6493 struct ui_out *uiout = current_uiout;
6494
6495 get_user_print_options (&opts);
6496
6497 /* Compute the number of rows in the table, as well as the size
6498 required for address fields. */
6499 nr_printable_breakpoints = 0;
6500 ALL_BREAKPOINTS (b)
6501 {
6502 /* If we have a filter, only list the breakpoints it accepts. */
6503 if (filter && !filter (b))
6504 continue;
6505
6506 /* If we have an "args" string, it is a list of breakpoints to
6507 accept. Skip the others. */
6508 if (args != NULL && *args != '\0')
6509 {
6510 if (allflag && parse_and_eval_long (args) != b->number)
6511 continue;
6512 if (!allflag && !number_is_in_list (args, b->number))
6513 continue;
6514 }
6515
6516 if (allflag || user_breakpoint_p (b))
6517 {
6518 int addr_bit, type_len;
6519
6520 addr_bit = breakpoint_address_bits (b);
6521 if (addr_bit > print_address_bits)
6522 print_address_bits = addr_bit;
6523
6524 type_len = strlen (bptype_string (b->type));
6525 if (type_len > print_type_col_width)
6526 print_type_col_width = type_len;
6527
6528 nr_printable_breakpoints++;
6529 }
6530 }
6531
6532 {
6533 ui_out_emit_table table_emitter (uiout,
6534 opts.addressprint ? 6 : 5,
6535 nr_printable_breakpoints,
6536 "BreakpointTable");
6537
6538 if (nr_printable_breakpoints > 0)
6539 annotate_breakpoints_headers ();
6540 if (nr_printable_breakpoints > 0)
6541 annotate_field (0);
6542 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6543 if (nr_printable_breakpoints > 0)
6544 annotate_field (1);
6545 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6546 if (nr_printable_breakpoints > 0)
6547 annotate_field (2);
6548 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6549 if (nr_printable_breakpoints > 0)
6550 annotate_field (3);
6551 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6552 if (opts.addressprint)
6553 {
6554 if (nr_printable_breakpoints > 0)
6555 annotate_field (4);
6556 if (print_address_bits <= 32)
6557 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6558 else
6559 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6560 }
6561 if (nr_printable_breakpoints > 0)
6562 annotate_field (5);
6563 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6564 uiout->table_body ();
6565 if (nr_printable_breakpoints > 0)
6566 annotate_breakpoints_table ();
6567
6568 ALL_BREAKPOINTS (b)
6569 {
6570 QUIT;
6571 /* If we have a filter, only list the breakpoints it accepts. */
6572 if (filter && !filter (b))
6573 continue;
6574
6575 /* If we have an "args" string, it is a list of breakpoints to
6576 accept. Skip the others. */
6577
6578 if (args != NULL && *args != '\0')
6579 {
6580 if (allflag) /* maintenance info breakpoint */
6581 {
6582 if (parse_and_eval_long (args) != b->number)
6583 continue;
6584 }
6585 else /* all others */
6586 {
6587 if (!number_is_in_list (args, b->number))
6588 continue;
6589 }
6590 }
6591 /* We only print out user settable breakpoints unless the
6592 allflag is set. */
6593 if (allflag || user_breakpoint_p (b))
6594 print_one_breakpoint (b, &last_loc, allflag);
6595 }
6596 }
6597
6598 if (nr_printable_breakpoints == 0)
6599 {
6600 /* If there's a filter, let the caller decide how to report
6601 empty list. */
6602 if (!filter)
6603 {
6604 if (args == NULL || *args == '\0')
6605 uiout->message ("No breakpoints or watchpoints.\n");
6606 else
6607 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6608 args);
6609 }
6610 }
6611 else
6612 {
6613 if (last_loc && !server_command)
6614 set_next_address (last_loc->gdbarch, last_loc->address);
6615 }
6616
6617 /* FIXME? Should this be moved up so that it is only called when
6618 there have been breakpoints? */
6619 annotate_breakpoints_table_end ();
6620
6621 return nr_printable_breakpoints;
6622 }
6623
6624 /* Display the value of default-collect in a way that is generally
6625 compatible with the breakpoint list. */
6626
6627 static void
6628 default_collect_info (void)
6629 {
6630 struct ui_out *uiout = current_uiout;
6631
6632 /* If it has no value (which is frequently the case), say nothing; a
6633 message like "No default-collect." gets in user's face when it's
6634 not wanted. */
6635 if (!*default_collect)
6636 return;
6637
6638 /* The following phrase lines up nicely with per-tracepoint collect
6639 actions. */
6640 uiout->text ("default collect ");
6641 uiout->field_string ("default-collect", default_collect);
6642 uiout->text (" \n");
6643 }
6644
6645 static void
6646 info_breakpoints_command (const char *args, int from_tty)
6647 {
6648 breakpoint_1 (args, 0, NULL);
6649
6650 default_collect_info ();
6651 }
6652
6653 static void
6654 info_watchpoints_command (const char *args, int from_tty)
6655 {
6656 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6657 struct ui_out *uiout = current_uiout;
6658
6659 if (num_printed == 0)
6660 {
6661 if (args == NULL || *args == '\0')
6662 uiout->message ("No watchpoints.\n");
6663 else
6664 uiout->message ("No watchpoint matching '%s'.\n", args);
6665 }
6666 }
6667
6668 static void
6669 maintenance_info_breakpoints (const char *args, int from_tty)
6670 {
6671 breakpoint_1 (args, 1, NULL);
6672
6673 default_collect_info ();
6674 }
6675
6676 static int
6677 breakpoint_has_pc (struct breakpoint *b,
6678 struct program_space *pspace,
6679 CORE_ADDR pc, struct obj_section *section)
6680 {
6681 struct bp_location *bl = b->loc;
6682
6683 for (; bl; bl = bl->next)
6684 {
6685 if (bl->pspace == pspace
6686 && bl->address == pc
6687 && (!overlay_debugging || bl->section == section))
6688 return 1;
6689 }
6690 return 0;
6691 }
6692
6693 /* Print a message describing any user-breakpoints set at PC. This
6694 concerns with logical breakpoints, so we match program spaces, not
6695 address spaces. */
6696
6697 static void
6698 describe_other_breakpoints (struct gdbarch *gdbarch,
6699 struct program_space *pspace, CORE_ADDR pc,
6700 struct obj_section *section, int thread)
6701 {
6702 int others = 0;
6703 struct breakpoint *b;
6704
6705 ALL_BREAKPOINTS (b)
6706 others += (user_breakpoint_p (b)
6707 && breakpoint_has_pc (b, pspace, pc, section));
6708 if (others > 0)
6709 {
6710 if (others == 1)
6711 printf_filtered (_("Note: breakpoint "));
6712 else /* if (others == ???) */
6713 printf_filtered (_("Note: breakpoints "));
6714 ALL_BREAKPOINTS (b)
6715 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6716 {
6717 others--;
6718 printf_filtered ("%d", b->number);
6719 if (b->thread == -1 && thread != -1)
6720 printf_filtered (" (all threads)");
6721 else if (b->thread != -1)
6722 printf_filtered (" (thread %d)", b->thread);
6723 printf_filtered ("%s%s ",
6724 ((b->enable_state == bp_disabled
6725 || b->enable_state == bp_call_disabled)
6726 ? " (disabled)"
6727 : ""),
6728 (others > 1) ? ","
6729 : ((others == 1) ? " and" : ""));
6730 }
6731 printf_filtered (_("also set at pc "));
6732 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6733 printf_filtered (".\n");
6734 }
6735 }
6736 \f
6737
6738 /* Return true iff it is meaningful to use the address member of
6739 BPT locations. For some breakpoint types, the locations' address members
6740 are irrelevant and it makes no sense to attempt to compare them to other
6741 addresses (or use them for any other purpose either).
6742
6743 More specifically, each of the following breakpoint types will
6744 always have a zero valued location address and we don't want to mark
6745 breakpoints of any of these types to be a duplicate of an actual
6746 breakpoint location at address zero:
6747
6748 bp_watchpoint
6749 bp_catchpoint
6750
6751 */
6752
6753 static int
6754 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6755 {
6756 enum bptype type = bpt->type;
6757
6758 return (type != bp_watchpoint && type != bp_catchpoint);
6759 }
6760
6761 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6762 true if LOC1 and LOC2 represent the same watchpoint location. */
6763
6764 static int
6765 watchpoint_locations_match (struct bp_location *loc1,
6766 struct bp_location *loc2)
6767 {
6768 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6769 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6770
6771 /* Both of them must exist. */
6772 gdb_assert (w1 != NULL);
6773 gdb_assert (w2 != NULL);
6774
6775 /* If the target can evaluate the condition expression in hardware,
6776 then we we need to insert both watchpoints even if they are at
6777 the same place. Otherwise the watchpoint will only trigger when
6778 the condition of whichever watchpoint was inserted evaluates to
6779 true, not giving a chance for GDB to check the condition of the
6780 other watchpoint. */
6781 if ((w1->cond_exp
6782 && target_can_accel_watchpoint_condition (loc1->address,
6783 loc1->length,
6784 loc1->watchpoint_type,
6785 w1->cond_exp.get ()))
6786 || (w2->cond_exp
6787 && target_can_accel_watchpoint_condition (loc2->address,
6788 loc2->length,
6789 loc2->watchpoint_type,
6790 w2->cond_exp.get ())))
6791 return 0;
6792
6793 /* Note that this checks the owner's type, not the location's. In
6794 case the target does not support read watchpoints, but does
6795 support access watchpoints, we'll have bp_read_watchpoint
6796 watchpoints with hw_access locations. Those should be considered
6797 duplicates of hw_read locations. The hw_read locations will
6798 become hw_access locations later. */
6799 return (loc1->owner->type == loc2->owner->type
6800 && loc1->pspace->aspace == loc2->pspace->aspace
6801 && loc1->address == loc2->address
6802 && loc1->length == loc2->length);
6803 }
6804
6805 /* See breakpoint.h. */
6806
6807 int
6808 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6809 const address_space *aspace2, CORE_ADDR addr2)
6810 {
6811 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6812 || aspace1 == aspace2)
6813 && addr1 == addr2);
6814 }
6815
6816 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6817 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6818 matches ASPACE2. On targets that have global breakpoints, the address
6819 space doesn't really matter. */
6820
6821 static int
6822 breakpoint_address_match_range (const address_space *aspace1,
6823 CORE_ADDR addr1,
6824 int len1, const address_space *aspace2,
6825 CORE_ADDR addr2)
6826 {
6827 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6828 || aspace1 == aspace2)
6829 && addr2 >= addr1 && addr2 < addr1 + len1);
6830 }
6831
6832 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6833 a ranged breakpoint. In most targets, a match happens only if ASPACE
6834 matches the breakpoint's address space. On targets that have global
6835 breakpoints, the address space doesn't really matter. */
6836
6837 static int
6838 breakpoint_location_address_match (struct bp_location *bl,
6839 const address_space *aspace,
6840 CORE_ADDR addr)
6841 {
6842 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6843 aspace, addr)
6844 || (bl->length
6845 && breakpoint_address_match_range (bl->pspace->aspace,
6846 bl->address, bl->length,
6847 aspace, addr)));
6848 }
6849
6850 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6851 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6852 match happens only if ASPACE matches the breakpoint's address
6853 space. On targets that have global breakpoints, the address space
6854 doesn't really matter. */
6855
6856 static int
6857 breakpoint_location_address_range_overlap (struct bp_location *bl,
6858 const address_space *aspace,
6859 CORE_ADDR addr, int len)
6860 {
6861 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6862 || bl->pspace->aspace == aspace)
6863 {
6864 int bl_len = bl->length != 0 ? bl->length : 1;
6865
6866 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6867 return 1;
6868 }
6869 return 0;
6870 }
6871
6872 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6873 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6874 true, otherwise returns false. */
6875
6876 static int
6877 tracepoint_locations_match (struct bp_location *loc1,
6878 struct bp_location *loc2)
6879 {
6880 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6881 /* Since tracepoint locations are never duplicated with others', tracepoint
6882 locations at the same address of different tracepoints are regarded as
6883 different locations. */
6884 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6885 else
6886 return 0;
6887 }
6888
6889 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6890 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6891 represent the same location. */
6892
6893 static int
6894 breakpoint_locations_match (struct bp_location *loc1,
6895 struct bp_location *loc2)
6896 {
6897 int hw_point1, hw_point2;
6898
6899 /* Both of them must not be in moribund_locations. */
6900 gdb_assert (loc1->owner != NULL);
6901 gdb_assert (loc2->owner != NULL);
6902
6903 hw_point1 = is_hardware_watchpoint (loc1->owner);
6904 hw_point2 = is_hardware_watchpoint (loc2->owner);
6905
6906 if (hw_point1 != hw_point2)
6907 return 0;
6908 else if (hw_point1)
6909 return watchpoint_locations_match (loc1, loc2);
6910 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6911 return tracepoint_locations_match (loc1, loc2);
6912 else
6913 /* We compare bp_location.length in order to cover ranged breakpoints. */
6914 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6915 loc2->pspace->aspace, loc2->address)
6916 && loc1->length == loc2->length);
6917 }
6918
6919 static void
6920 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6921 int bnum, int have_bnum)
6922 {
6923 /* The longest string possibly returned by hex_string_custom
6924 is 50 chars. These must be at least that big for safety. */
6925 char astr1[64];
6926 char astr2[64];
6927
6928 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6929 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6930 if (have_bnum)
6931 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6932 bnum, astr1, astr2);
6933 else
6934 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6935 }
6936
6937 /* Adjust a breakpoint's address to account for architectural
6938 constraints on breakpoint placement. Return the adjusted address.
6939 Note: Very few targets require this kind of adjustment. For most
6940 targets, this function is simply the identity function. */
6941
6942 static CORE_ADDR
6943 adjust_breakpoint_address (struct gdbarch *gdbarch,
6944 CORE_ADDR bpaddr, enum bptype bptype)
6945 {
6946 if (bptype == bp_watchpoint
6947 || bptype == bp_hardware_watchpoint
6948 || bptype == bp_read_watchpoint
6949 || bptype == bp_access_watchpoint
6950 || bptype == bp_catchpoint)
6951 {
6952 /* Watchpoints and the various bp_catch_* eventpoints should not
6953 have their addresses modified. */
6954 return bpaddr;
6955 }
6956 else if (bptype == bp_single_step)
6957 {
6958 /* Single-step breakpoints should not have their addresses
6959 modified. If there's any architectural constrain that
6960 applies to this address, then it should have already been
6961 taken into account when the breakpoint was created in the
6962 first place. If we didn't do this, stepping through e.g.,
6963 Thumb-2 IT blocks would break. */
6964 return bpaddr;
6965 }
6966 else
6967 {
6968 CORE_ADDR adjusted_bpaddr = bpaddr;
6969
6970 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6971 {
6972 /* Some targets have architectural constraints on the placement
6973 of breakpoint instructions. Obtain the adjusted address. */
6974 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6975 }
6976
6977 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6978
6979 /* An adjusted breakpoint address can significantly alter
6980 a user's expectations. Print a warning if an adjustment
6981 is required. */
6982 if (adjusted_bpaddr != bpaddr)
6983 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6984
6985 return adjusted_bpaddr;
6986 }
6987 }
6988
6989 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6990 {
6991 bp_location *loc = this;
6992
6993 gdb_assert (ops != NULL);
6994
6995 loc->ops = ops;
6996 loc->owner = owner;
6997 loc->cond_bytecode = NULL;
6998 loc->shlib_disabled = 0;
6999 loc->enabled = 1;
7000
7001 switch (owner->type)
7002 {
7003 case bp_breakpoint:
7004 case bp_single_step:
7005 case bp_until:
7006 case bp_finish:
7007 case bp_longjmp:
7008 case bp_longjmp_resume:
7009 case bp_longjmp_call_dummy:
7010 case bp_exception:
7011 case bp_exception_resume:
7012 case bp_step_resume:
7013 case bp_hp_step_resume:
7014 case bp_watchpoint_scope:
7015 case bp_call_dummy:
7016 case bp_std_terminate:
7017 case bp_shlib_event:
7018 case bp_thread_event:
7019 case bp_overlay_event:
7020 case bp_jit_event:
7021 case bp_longjmp_master:
7022 case bp_std_terminate_master:
7023 case bp_exception_master:
7024 case bp_gnu_ifunc_resolver:
7025 case bp_gnu_ifunc_resolver_return:
7026 case bp_dprintf:
7027 loc->loc_type = bp_loc_software_breakpoint;
7028 mark_breakpoint_location_modified (loc);
7029 break;
7030 case bp_hardware_breakpoint:
7031 loc->loc_type = bp_loc_hardware_breakpoint;
7032 mark_breakpoint_location_modified (loc);
7033 break;
7034 case bp_hardware_watchpoint:
7035 case bp_read_watchpoint:
7036 case bp_access_watchpoint:
7037 loc->loc_type = bp_loc_hardware_watchpoint;
7038 break;
7039 case bp_watchpoint:
7040 case bp_catchpoint:
7041 case bp_tracepoint:
7042 case bp_fast_tracepoint:
7043 case bp_static_tracepoint:
7044 loc->loc_type = bp_loc_other;
7045 break;
7046 default:
7047 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7048 }
7049
7050 loc->refc = 1;
7051 }
7052
7053 /* Allocate a struct bp_location. */
7054
7055 static struct bp_location *
7056 allocate_bp_location (struct breakpoint *bpt)
7057 {
7058 return bpt->ops->allocate_location (bpt);
7059 }
7060
7061 static void
7062 free_bp_location (struct bp_location *loc)
7063 {
7064 loc->ops->dtor (loc);
7065 delete loc;
7066 }
7067
7068 /* Increment reference count. */
7069
7070 static void
7071 incref_bp_location (struct bp_location *bl)
7072 {
7073 ++bl->refc;
7074 }
7075
7076 /* Decrement reference count. If the reference count reaches 0,
7077 destroy the bp_location. Sets *BLP to NULL. */
7078
7079 static void
7080 decref_bp_location (struct bp_location **blp)
7081 {
7082 gdb_assert ((*blp)->refc > 0);
7083
7084 if (--(*blp)->refc == 0)
7085 free_bp_location (*blp);
7086 *blp = NULL;
7087 }
7088
7089 /* Add breakpoint B at the end of the global breakpoint chain. */
7090
7091 static breakpoint *
7092 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7093 {
7094 struct breakpoint *b1;
7095 struct breakpoint *result = b.get ();
7096
7097 /* Add this breakpoint to the end of the chain so that a list of
7098 breakpoints will come out in order of increasing numbers. */
7099
7100 b1 = breakpoint_chain;
7101 if (b1 == 0)
7102 breakpoint_chain = b.release ();
7103 else
7104 {
7105 while (b1->next)
7106 b1 = b1->next;
7107 b1->next = b.release ();
7108 }
7109
7110 return result;
7111 }
7112
7113 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7114
7115 static void
7116 init_raw_breakpoint_without_location (struct breakpoint *b,
7117 struct gdbarch *gdbarch,
7118 enum bptype bptype,
7119 const struct breakpoint_ops *ops)
7120 {
7121 gdb_assert (ops != NULL);
7122
7123 b->ops = ops;
7124 b->type = bptype;
7125 b->gdbarch = gdbarch;
7126 b->language = current_language->la_language;
7127 b->input_radix = input_radix;
7128 b->related_breakpoint = b;
7129 }
7130
7131 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7132 that has type BPTYPE and has no locations as yet. */
7133
7134 static struct breakpoint *
7135 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7136 enum bptype bptype,
7137 const struct breakpoint_ops *ops)
7138 {
7139 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7140
7141 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7142 return add_to_breakpoint_chain (std::move (b));
7143 }
7144
7145 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7146 resolutions should be made as the user specified the location explicitly
7147 enough. */
7148
7149 static void
7150 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7151 {
7152 gdb_assert (loc->owner != NULL);
7153
7154 if (loc->owner->type == bp_breakpoint
7155 || loc->owner->type == bp_hardware_breakpoint
7156 || is_tracepoint (loc->owner))
7157 {
7158 const char *function_name;
7159
7160 if (loc->msymbol != NULL
7161 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7162 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7163 && !explicit_loc)
7164 {
7165 struct breakpoint *b = loc->owner;
7166
7167 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7168
7169 if (b->type == bp_breakpoint && b->loc == loc
7170 && loc->next == NULL && b->related_breakpoint == b)
7171 {
7172 /* Create only the whole new breakpoint of this type but do not
7173 mess more complicated breakpoints with multiple locations. */
7174 b->type = bp_gnu_ifunc_resolver;
7175 /* Remember the resolver's address for use by the return
7176 breakpoint. */
7177 loc->related_address = loc->address;
7178 }
7179 }
7180 else
7181 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7182
7183 if (function_name)
7184 loc->function_name = xstrdup (function_name);
7185 }
7186 }
7187
7188 /* Attempt to determine architecture of location identified by SAL. */
7189 struct gdbarch *
7190 get_sal_arch (struct symtab_and_line sal)
7191 {
7192 if (sal.section)
7193 return get_objfile_arch (sal.section->objfile);
7194 if (sal.symtab)
7195 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7196
7197 return NULL;
7198 }
7199
7200 /* Low level routine for partially initializing a breakpoint of type
7201 BPTYPE. The newly created breakpoint's address, section, source
7202 file name, and line number are provided by SAL.
7203
7204 It is expected that the caller will complete the initialization of
7205 the newly created breakpoint struct as well as output any status
7206 information regarding the creation of a new breakpoint. */
7207
7208 static void
7209 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7210 struct symtab_and_line sal, enum bptype bptype,
7211 const struct breakpoint_ops *ops)
7212 {
7213 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7214
7215 add_location_to_breakpoint (b, &sal);
7216
7217 if (bptype != bp_catchpoint)
7218 gdb_assert (sal.pspace != NULL);
7219
7220 /* Store the program space that was used to set the breakpoint,
7221 except for ordinary breakpoints, which are independent of the
7222 program space. */
7223 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7224 b->pspace = sal.pspace;
7225 }
7226
7227 /* set_raw_breakpoint is a low level routine for allocating and
7228 partially initializing a breakpoint of type BPTYPE. The newly
7229 created breakpoint's address, section, source file name, and line
7230 number are provided by SAL. The newly created and partially
7231 initialized breakpoint is added to the breakpoint chain and
7232 is also returned as the value of this function.
7233
7234 It is expected that the caller will complete the initialization of
7235 the newly created breakpoint struct as well as output any status
7236 information regarding the creation of a new breakpoint. In
7237 particular, set_raw_breakpoint does NOT set the breakpoint
7238 number! Care should be taken to not allow an error to occur
7239 prior to completing the initialization of the breakpoint. If this
7240 should happen, a bogus breakpoint will be left on the chain. */
7241
7242 struct breakpoint *
7243 set_raw_breakpoint (struct gdbarch *gdbarch,
7244 struct symtab_and_line sal, enum bptype bptype,
7245 const struct breakpoint_ops *ops)
7246 {
7247 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7248
7249 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7250 return add_to_breakpoint_chain (std::move (b));
7251 }
7252
7253 /* Call this routine when stepping and nexting to enable a breakpoint
7254 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7255 initiated the operation. */
7256
7257 void
7258 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7259 {
7260 struct breakpoint *b, *b_tmp;
7261 int thread = tp->global_num;
7262
7263 /* To avoid having to rescan all objfile symbols at every step,
7264 we maintain a list of continually-inserted but always disabled
7265 longjmp "master" breakpoints. Here, we simply create momentary
7266 clones of those and enable them for the requested thread. */
7267 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7268 if (b->pspace == current_program_space
7269 && (b->type == bp_longjmp_master
7270 || b->type == bp_exception_master))
7271 {
7272 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7273 struct breakpoint *clone;
7274
7275 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7276 after their removal. */
7277 clone = momentary_breakpoint_from_master (b, type,
7278 &momentary_breakpoint_ops, 1);
7279 clone->thread = thread;
7280 }
7281
7282 tp->initiating_frame = frame;
7283 }
7284
7285 /* Delete all longjmp breakpoints from THREAD. */
7286 void
7287 delete_longjmp_breakpoint (int thread)
7288 {
7289 struct breakpoint *b, *b_tmp;
7290
7291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7292 if (b->type == bp_longjmp || b->type == bp_exception)
7293 {
7294 if (b->thread == thread)
7295 delete_breakpoint (b);
7296 }
7297 }
7298
7299 void
7300 delete_longjmp_breakpoint_at_next_stop (int thread)
7301 {
7302 struct breakpoint *b, *b_tmp;
7303
7304 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7305 if (b->type == bp_longjmp || b->type == bp_exception)
7306 {
7307 if (b->thread == thread)
7308 b->disposition = disp_del_at_next_stop;
7309 }
7310 }
7311
7312 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7313 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7314 pointer to any of them. Return NULL if this system cannot place longjmp
7315 breakpoints. */
7316
7317 struct breakpoint *
7318 set_longjmp_breakpoint_for_call_dummy (void)
7319 {
7320 struct breakpoint *b, *retval = NULL;
7321
7322 ALL_BREAKPOINTS (b)
7323 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7324 {
7325 struct breakpoint *new_b;
7326
7327 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7328 &momentary_breakpoint_ops,
7329 1);
7330 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7331
7332 /* Link NEW_B into the chain of RETVAL breakpoints. */
7333
7334 gdb_assert (new_b->related_breakpoint == new_b);
7335 if (retval == NULL)
7336 retval = new_b;
7337 new_b->related_breakpoint = retval;
7338 while (retval->related_breakpoint != new_b->related_breakpoint)
7339 retval = retval->related_breakpoint;
7340 retval->related_breakpoint = new_b;
7341 }
7342
7343 return retval;
7344 }
7345
7346 /* Verify all existing dummy frames and their associated breakpoints for
7347 TP. Remove those which can no longer be found in the current frame
7348 stack.
7349
7350 You should call this function only at places where it is safe to currently
7351 unwind the whole stack. Failed stack unwind would discard live dummy
7352 frames. */
7353
7354 void
7355 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7356 {
7357 struct breakpoint *b, *b_tmp;
7358
7359 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7360 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7361 {
7362 struct breakpoint *dummy_b = b->related_breakpoint;
7363
7364 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7365 dummy_b = dummy_b->related_breakpoint;
7366 if (dummy_b->type != bp_call_dummy
7367 || frame_find_by_id (dummy_b->frame_id) != NULL)
7368 continue;
7369
7370 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7371
7372 while (b->related_breakpoint != b)
7373 {
7374 if (b_tmp == b->related_breakpoint)
7375 b_tmp = b->related_breakpoint->next;
7376 delete_breakpoint (b->related_breakpoint);
7377 }
7378 delete_breakpoint (b);
7379 }
7380 }
7381
7382 void
7383 enable_overlay_breakpoints (void)
7384 {
7385 struct breakpoint *b;
7386
7387 ALL_BREAKPOINTS (b)
7388 if (b->type == bp_overlay_event)
7389 {
7390 b->enable_state = bp_enabled;
7391 update_global_location_list (UGLL_MAY_INSERT);
7392 overlay_events_enabled = 1;
7393 }
7394 }
7395
7396 void
7397 disable_overlay_breakpoints (void)
7398 {
7399 struct breakpoint *b;
7400
7401 ALL_BREAKPOINTS (b)
7402 if (b->type == bp_overlay_event)
7403 {
7404 b->enable_state = bp_disabled;
7405 update_global_location_list (UGLL_DONT_INSERT);
7406 overlay_events_enabled = 0;
7407 }
7408 }
7409
7410 /* Set an active std::terminate breakpoint for each std::terminate
7411 master breakpoint. */
7412 void
7413 set_std_terminate_breakpoint (void)
7414 {
7415 struct breakpoint *b, *b_tmp;
7416
7417 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7418 if (b->pspace == current_program_space
7419 && b->type == bp_std_terminate_master)
7420 {
7421 momentary_breakpoint_from_master (b, bp_std_terminate,
7422 &momentary_breakpoint_ops, 1);
7423 }
7424 }
7425
7426 /* Delete all the std::terminate breakpoints. */
7427 void
7428 delete_std_terminate_breakpoint (void)
7429 {
7430 struct breakpoint *b, *b_tmp;
7431
7432 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7433 if (b->type == bp_std_terminate)
7434 delete_breakpoint (b);
7435 }
7436
7437 struct breakpoint *
7438 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7439 {
7440 struct breakpoint *b;
7441
7442 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7443 &internal_breakpoint_ops);
7444
7445 b->enable_state = bp_enabled;
7446 /* location has to be used or breakpoint_re_set will delete me. */
7447 b->location = new_address_location (b->loc->address, NULL, 0);
7448
7449 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7450
7451 return b;
7452 }
7453
7454 struct lang_and_radix
7455 {
7456 enum language lang;
7457 int radix;
7458 };
7459
7460 /* Create a breakpoint for JIT code registration and unregistration. */
7461
7462 struct breakpoint *
7463 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7464 {
7465 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7466 &internal_breakpoint_ops);
7467 }
7468
7469 /* Remove JIT code registration and unregistration breakpoint(s). */
7470
7471 void
7472 remove_jit_event_breakpoints (void)
7473 {
7474 struct breakpoint *b, *b_tmp;
7475
7476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7477 if (b->type == bp_jit_event
7478 && b->loc->pspace == current_program_space)
7479 delete_breakpoint (b);
7480 }
7481
7482 void
7483 remove_solib_event_breakpoints (void)
7484 {
7485 struct breakpoint *b, *b_tmp;
7486
7487 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7488 if (b->type == bp_shlib_event
7489 && b->loc->pspace == current_program_space)
7490 delete_breakpoint (b);
7491 }
7492
7493 /* See breakpoint.h. */
7494
7495 void
7496 remove_solib_event_breakpoints_at_next_stop (void)
7497 {
7498 struct breakpoint *b, *b_tmp;
7499
7500 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7501 if (b->type == bp_shlib_event
7502 && b->loc->pspace == current_program_space)
7503 b->disposition = disp_del_at_next_stop;
7504 }
7505
7506 /* Helper for create_solib_event_breakpoint /
7507 create_and_insert_solib_event_breakpoint. Allows specifying which
7508 INSERT_MODE to pass through to update_global_location_list. */
7509
7510 static struct breakpoint *
7511 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7512 enum ugll_insert_mode insert_mode)
7513 {
7514 struct breakpoint *b;
7515
7516 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7517 &internal_breakpoint_ops);
7518 update_global_location_list_nothrow (insert_mode);
7519 return b;
7520 }
7521
7522 struct breakpoint *
7523 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7524 {
7525 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7526 }
7527
7528 /* See breakpoint.h. */
7529
7530 struct breakpoint *
7531 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7532 {
7533 struct breakpoint *b;
7534
7535 /* Explicitly tell update_global_location_list to insert
7536 locations. */
7537 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7538 if (!b->loc->inserted)
7539 {
7540 delete_breakpoint (b);
7541 return NULL;
7542 }
7543 return b;
7544 }
7545
7546 /* Disable any breakpoints that are on code in shared libraries. Only
7547 apply to enabled breakpoints, disabled ones can just stay disabled. */
7548
7549 void
7550 disable_breakpoints_in_shlibs (void)
7551 {
7552 struct bp_location *loc, **locp_tmp;
7553
7554 ALL_BP_LOCATIONS (loc, locp_tmp)
7555 {
7556 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7557 struct breakpoint *b = loc->owner;
7558
7559 /* We apply the check to all breakpoints, including disabled for
7560 those with loc->duplicate set. This is so that when breakpoint
7561 becomes enabled, or the duplicate is removed, gdb will try to
7562 insert all breakpoints. If we don't set shlib_disabled here,
7563 we'll try to insert those breakpoints and fail. */
7564 if (((b->type == bp_breakpoint)
7565 || (b->type == bp_jit_event)
7566 || (b->type == bp_hardware_breakpoint)
7567 || (is_tracepoint (b)))
7568 && loc->pspace == current_program_space
7569 && !loc->shlib_disabled
7570 && solib_name_from_address (loc->pspace, loc->address)
7571 )
7572 {
7573 loc->shlib_disabled = 1;
7574 }
7575 }
7576 }
7577
7578 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7579 notification of unloaded_shlib. Only apply to enabled breakpoints,
7580 disabled ones can just stay disabled. */
7581
7582 static void
7583 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7584 {
7585 struct bp_location *loc, **locp_tmp;
7586 int disabled_shlib_breaks = 0;
7587
7588 ALL_BP_LOCATIONS (loc, locp_tmp)
7589 {
7590 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7591 struct breakpoint *b = loc->owner;
7592
7593 if (solib->pspace == loc->pspace
7594 && !loc->shlib_disabled
7595 && (((b->type == bp_breakpoint
7596 || b->type == bp_jit_event
7597 || b->type == bp_hardware_breakpoint)
7598 && (loc->loc_type == bp_loc_hardware_breakpoint
7599 || loc->loc_type == bp_loc_software_breakpoint))
7600 || is_tracepoint (b))
7601 && solib_contains_address_p (solib, loc->address))
7602 {
7603 loc->shlib_disabled = 1;
7604 /* At this point, we cannot rely on remove_breakpoint
7605 succeeding so we must mark the breakpoint as not inserted
7606 to prevent future errors occurring in remove_breakpoints. */
7607 loc->inserted = 0;
7608
7609 /* This may cause duplicate notifications for the same breakpoint. */
7610 gdb::observers::breakpoint_modified.notify (b);
7611
7612 if (!disabled_shlib_breaks)
7613 {
7614 target_terminal::ours_for_output ();
7615 warning (_("Temporarily disabling breakpoints "
7616 "for unloaded shared library \"%s\""),
7617 solib->so_name);
7618 }
7619 disabled_shlib_breaks = 1;
7620 }
7621 }
7622 }
7623
7624 /* Disable any breakpoints and tracepoints in OBJFILE upon
7625 notification of free_objfile. Only apply to enabled breakpoints,
7626 disabled ones can just stay disabled. */
7627
7628 static void
7629 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7630 {
7631 struct breakpoint *b;
7632
7633 if (objfile == NULL)
7634 return;
7635
7636 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7637 managed by the user with add-symbol-file/remove-symbol-file.
7638 Similarly to how breakpoints in shared libraries are handled in
7639 response to "nosharedlibrary", mark breakpoints in such modules
7640 shlib_disabled so they end up uninserted on the next global
7641 location list update. Shared libraries not loaded by the user
7642 aren't handled here -- they're already handled in
7643 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7644 solib_unloaded observer. We skip objfiles that are not
7645 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7646 main objfile). */
7647 if ((objfile->flags & OBJF_SHARED) == 0
7648 || (objfile->flags & OBJF_USERLOADED) == 0)
7649 return;
7650
7651 ALL_BREAKPOINTS (b)
7652 {
7653 struct bp_location *loc;
7654 int bp_modified = 0;
7655
7656 if (!is_breakpoint (b) && !is_tracepoint (b))
7657 continue;
7658
7659 for (loc = b->loc; loc != NULL; loc = loc->next)
7660 {
7661 CORE_ADDR loc_addr = loc->address;
7662
7663 if (loc->loc_type != bp_loc_hardware_breakpoint
7664 && loc->loc_type != bp_loc_software_breakpoint)
7665 continue;
7666
7667 if (loc->shlib_disabled != 0)
7668 continue;
7669
7670 if (objfile->pspace != loc->pspace)
7671 continue;
7672
7673 if (loc->loc_type != bp_loc_hardware_breakpoint
7674 && loc->loc_type != bp_loc_software_breakpoint)
7675 continue;
7676
7677 if (is_addr_in_objfile (loc_addr, objfile))
7678 {
7679 loc->shlib_disabled = 1;
7680 /* At this point, we don't know whether the object was
7681 unmapped from the inferior or not, so leave the
7682 inserted flag alone. We'll handle failure to
7683 uninsert quietly, in case the object was indeed
7684 unmapped. */
7685
7686 mark_breakpoint_location_modified (loc);
7687
7688 bp_modified = 1;
7689 }
7690 }
7691
7692 if (bp_modified)
7693 gdb::observers::breakpoint_modified.notify (b);
7694 }
7695 }
7696
7697 /* FORK & VFORK catchpoints. */
7698
7699 /* An instance of this type is used to represent a fork or vfork
7700 catchpoint. A breakpoint is really of this type iff its ops pointer points
7701 to CATCH_FORK_BREAKPOINT_OPS. */
7702
7703 struct fork_catchpoint : public breakpoint
7704 {
7705 /* Process id of a child process whose forking triggered this
7706 catchpoint. This field is only valid immediately after this
7707 catchpoint has triggered. */
7708 ptid_t forked_inferior_pid;
7709 };
7710
7711 /* Implement the "insert" breakpoint_ops method for fork
7712 catchpoints. */
7713
7714 static int
7715 insert_catch_fork (struct bp_location *bl)
7716 {
7717 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7718 }
7719
7720 /* Implement the "remove" breakpoint_ops method for fork
7721 catchpoints. */
7722
7723 static int
7724 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7725 {
7726 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7727 }
7728
7729 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7730 catchpoints. */
7731
7732 static int
7733 breakpoint_hit_catch_fork (const struct bp_location *bl,
7734 const address_space *aspace, CORE_ADDR bp_addr,
7735 const struct target_waitstatus *ws)
7736 {
7737 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7738
7739 if (ws->kind != TARGET_WAITKIND_FORKED)
7740 return 0;
7741
7742 c->forked_inferior_pid = ws->value.related_pid;
7743 return 1;
7744 }
7745
7746 /* Implement the "print_it" breakpoint_ops method for fork
7747 catchpoints. */
7748
7749 static enum print_stop_action
7750 print_it_catch_fork (bpstat bs)
7751 {
7752 struct ui_out *uiout = current_uiout;
7753 struct breakpoint *b = bs->breakpoint_at;
7754 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7755
7756 annotate_catchpoint (b->number);
7757 maybe_print_thread_hit_breakpoint (uiout);
7758 if (b->disposition == disp_del)
7759 uiout->text ("Temporary catchpoint ");
7760 else
7761 uiout->text ("Catchpoint ");
7762 if (uiout->is_mi_like_p ())
7763 {
7764 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7765 uiout->field_string ("disp", bpdisp_text (b->disposition));
7766 }
7767 uiout->field_int ("bkptno", b->number);
7768 uiout->text (" (forked process ");
7769 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7770 uiout->text ("), ");
7771 return PRINT_SRC_AND_LOC;
7772 }
7773
7774 /* Implement the "print_one" breakpoint_ops method for fork
7775 catchpoints. */
7776
7777 static void
7778 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7779 {
7780 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7781 struct value_print_options opts;
7782 struct ui_out *uiout = current_uiout;
7783
7784 get_user_print_options (&opts);
7785
7786 /* Field 4, the address, is omitted (which makes the columns not
7787 line up too nicely with the headers, but the effect is relatively
7788 readable). */
7789 if (opts.addressprint)
7790 uiout->field_skip ("addr");
7791 annotate_field (5);
7792 uiout->text ("fork");
7793 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7794 {
7795 uiout->text (", process ");
7796 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7797 uiout->spaces (1);
7798 }
7799
7800 if (uiout->is_mi_like_p ())
7801 uiout->field_string ("catch-type", "fork");
7802 }
7803
7804 /* Implement the "print_mention" breakpoint_ops method for fork
7805 catchpoints. */
7806
7807 static void
7808 print_mention_catch_fork (struct breakpoint *b)
7809 {
7810 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7811 }
7812
7813 /* Implement the "print_recreate" breakpoint_ops method for fork
7814 catchpoints. */
7815
7816 static void
7817 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7818 {
7819 fprintf_unfiltered (fp, "catch fork");
7820 print_recreate_thread (b, fp);
7821 }
7822
7823 /* The breakpoint_ops structure to be used in fork catchpoints. */
7824
7825 static struct breakpoint_ops catch_fork_breakpoint_ops;
7826
7827 /* Implement the "insert" breakpoint_ops method for vfork
7828 catchpoints. */
7829
7830 static int
7831 insert_catch_vfork (struct bp_location *bl)
7832 {
7833 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7834 }
7835
7836 /* Implement the "remove" breakpoint_ops method for vfork
7837 catchpoints. */
7838
7839 static int
7840 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7841 {
7842 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7843 }
7844
7845 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7846 catchpoints. */
7847
7848 static int
7849 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7850 const address_space *aspace, CORE_ADDR bp_addr,
7851 const struct target_waitstatus *ws)
7852 {
7853 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7854
7855 if (ws->kind != TARGET_WAITKIND_VFORKED)
7856 return 0;
7857
7858 c->forked_inferior_pid = ws->value.related_pid;
7859 return 1;
7860 }
7861
7862 /* Implement the "print_it" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static enum print_stop_action
7866 print_it_catch_vfork (bpstat bs)
7867 {
7868 struct ui_out *uiout = current_uiout;
7869 struct breakpoint *b = bs->breakpoint_at;
7870 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7871
7872 annotate_catchpoint (b->number);
7873 maybe_print_thread_hit_breakpoint (uiout);
7874 if (b->disposition == disp_del)
7875 uiout->text ("Temporary catchpoint ");
7876 else
7877 uiout->text ("Catchpoint ");
7878 if (uiout->is_mi_like_p ())
7879 {
7880 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7881 uiout->field_string ("disp", bpdisp_text (b->disposition));
7882 }
7883 uiout->field_int ("bkptno", b->number);
7884 uiout->text (" (vforked process ");
7885 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7886 uiout->text ("), ");
7887 return PRINT_SRC_AND_LOC;
7888 }
7889
7890 /* Implement the "print_one" breakpoint_ops method for vfork
7891 catchpoints. */
7892
7893 static void
7894 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7895 {
7896 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7897 struct value_print_options opts;
7898 struct ui_out *uiout = current_uiout;
7899
7900 get_user_print_options (&opts);
7901 /* Field 4, the address, is omitted (which makes the columns not
7902 line up too nicely with the headers, but the effect is relatively
7903 readable). */
7904 if (opts.addressprint)
7905 uiout->field_skip ("addr");
7906 annotate_field (5);
7907 uiout->text ("vfork");
7908 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7909 {
7910 uiout->text (", process ");
7911 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7912 uiout->spaces (1);
7913 }
7914
7915 if (uiout->is_mi_like_p ())
7916 uiout->field_string ("catch-type", "vfork");
7917 }
7918
7919 /* Implement the "print_mention" breakpoint_ops method for vfork
7920 catchpoints. */
7921
7922 static void
7923 print_mention_catch_vfork (struct breakpoint *b)
7924 {
7925 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7926 }
7927
7928 /* Implement the "print_recreate" breakpoint_ops method for vfork
7929 catchpoints. */
7930
7931 static void
7932 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7933 {
7934 fprintf_unfiltered (fp, "catch vfork");
7935 print_recreate_thread (b, fp);
7936 }
7937
7938 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7939
7940 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7941
7942 /* An instance of this type is used to represent an solib catchpoint.
7943 A breakpoint is really of this type iff its ops pointer points to
7944 CATCH_SOLIB_BREAKPOINT_OPS. */
7945
7946 struct solib_catchpoint : public breakpoint
7947 {
7948 ~solib_catchpoint () override;
7949
7950 /* True for "catch load", false for "catch unload". */
7951 unsigned char is_load;
7952
7953 /* Regular expression to match, if any. COMPILED is only valid when
7954 REGEX is non-NULL. */
7955 char *regex;
7956 std::unique_ptr<compiled_regex> compiled;
7957 };
7958
7959 solib_catchpoint::~solib_catchpoint ()
7960 {
7961 xfree (this->regex);
7962 }
7963
7964 static int
7965 insert_catch_solib (struct bp_location *ignore)
7966 {
7967 return 0;
7968 }
7969
7970 static int
7971 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7972 {
7973 return 0;
7974 }
7975
7976 static int
7977 breakpoint_hit_catch_solib (const struct bp_location *bl,
7978 const address_space *aspace,
7979 CORE_ADDR bp_addr,
7980 const struct target_waitstatus *ws)
7981 {
7982 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7983 struct breakpoint *other;
7984
7985 if (ws->kind == TARGET_WAITKIND_LOADED)
7986 return 1;
7987
7988 ALL_BREAKPOINTS (other)
7989 {
7990 struct bp_location *other_bl;
7991
7992 if (other == bl->owner)
7993 continue;
7994
7995 if (other->type != bp_shlib_event)
7996 continue;
7997
7998 if (self->pspace != NULL && other->pspace != self->pspace)
7999 continue;
8000
8001 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8002 {
8003 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8004 return 1;
8005 }
8006 }
8007
8008 return 0;
8009 }
8010
8011 static void
8012 check_status_catch_solib (struct bpstats *bs)
8013 {
8014 struct solib_catchpoint *self
8015 = (struct solib_catchpoint *) bs->breakpoint_at;
8016
8017 if (self->is_load)
8018 {
8019 struct so_list *iter;
8020
8021 for (int ix = 0;
8022 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8023 ix, iter);
8024 ++ix)
8025 {
8026 if (!self->regex
8027 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8028 return;
8029 }
8030 }
8031 else
8032 {
8033 for (const std::string &iter : current_program_space->deleted_solibs)
8034 {
8035 if (!self->regex
8036 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8037 return;
8038 }
8039 }
8040
8041 bs->stop = 0;
8042 bs->print_it = print_it_noop;
8043 }
8044
8045 static enum print_stop_action
8046 print_it_catch_solib (bpstat bs)
8047 {
8048 struct breakpoint *b = bs->breakpoint_at;
8049 struct ui_out *uiout = current_uiout;
8050
8051 annotate_catchpoint (b->number);
8052 maybe_print_thread_hit_breakpoint (uiout);
8053 if (b->disposition == disp_del)
8054 uiout->text ("Temporary catchpoint ");
8055 else
8056 uiout->text ("Catchpoint ");
8057 uiout->field_int ("bkptno", b->number);
8058 uiout->text ("\n");
8059 if (uiout->is_mi_like_p ())
8060 uiout->field_string ("disp", bpdisp_text (b->disposition));
8061 print_solib_event (1);
8062 return PRINT_SRC_AND_LOC;
8063 }
8064
8065 static void
8066 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8067 {
8068 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8069 struct value_print_options opts;
8070 struct ui_out *uiout = current_uiout;
8071 char *msg;
8072
8073 get_user_print_options (&opts);
8074 /* Field 4, the address, is omitted (which makes the columns not
8075 line up too nicely with the headers, but the effect is relatively
8076 readable). */
8077 if (opts.addressprint)
8078 {
8079 annotate_field (4);
8080 uiout->field_skip ("addr");
8081 }
8082
8083 annotate_field (5);
8084 if (self->is_load)
8085 {
8086 if (self->regex)
8087 msg = xstrprintf (_("load of library matching %s"), self->regex);
8088 else
8089 msg = xstrdup (_("load of library"));
8090 }
8091 else
8092 {
8093 if (self->regex)
8094 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8095 else
8096 msg = xstrdup (_("unload of library"));
8097 }
8098 uiout->field_string ("what", msg);
8099 xfree (msg);
8100
8101 if (uiout->is_mi_like_p ())
8102 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8103 }
8104
8105 static void
8106 print_mention_catch_solib (struct breakpoint *b)
8107 {
8108 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8109
8110 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8111 self->is_load ? "load" : "unload");
8112 }
8113
8114 static void
8115 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8116 {
8117 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8118
8119 fprintf_unfiltered (fp, "%s %s",
8120 b->disposition == disp_del ? "tcatch" : "catch",
8121 self->is_load ? "load" : "unload");
8122 if (self->regex)
8123 fprintf_unfiltered (fp, " %s", self->regex);
8124 fprintf_unfiltered (fp, "\n");
8125 }
8126
8127 static struct breakpoint_ops catch_solib_breakpoint_ops;
8128
8129 /* Shared helper function (MI and CLI) for creating and installing
8130 a shared object event catchpoint. If IS_LOAD is non-zero then
8131 the events to be caught are load events, otherwise they are
8132 unload events. If IS_TEMP is non-zero the catchpoint is a
8133 temporary one. If ENABLED is non-zero the catchpoint is
8134 created in an enabled state. */
8135
8136 void
8137 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8138 {
8139 struct gdbarch *gdbarch = get_current_arch ();
8140
8141 if (!arg)
8142 arg = "";
8143 arg = skip_spaces (arg);
8144
8145 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8146
8147 if (*arg != '\0')
8148 {
8149 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8150 _("Invalid regexp")));
8151 c->regex = xstrdup (arg);
8152 }
8153
8154 c->is_load = is_load;
8155 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8156 &catch_solib_breakpoint_ops);
8157
8158 c->enable_state = enabled ? bp_enabled : bp_disabled;
8159
8160 install_breakpoint (0, std::move (c), 1);
8161 }
8162
8163 /* A helper function that does all the work for "catch load" and
8164 "catch unload". */
8165
8166 static void
8167 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8168 struct cmd_list_element *command)
8169 {
8170 int tempflag;
8171 const int enabled = 1;
8172
8173 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8174
8175 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8176 }
8177
8178 static void
8179 catch_load_command_1 (const char *arg, int from_tty,
8180 struct cmd_list_element *command)
8181 {
8182 catch_load_or_unload (arg, from_tty, 1, command);
8183 }
8184
8185 static void
8186 catch_unload_command_1 (const char *arg, int from_tty,
8187 struct cmd_list_element *command)
8188 {
8189 catch_load_or_unload (arg, from_tty, 0, command);
8190 }
8191
8192 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8193 is non-zero, then make the breakpoint temporary. If COND_STRING is
8194 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8195 the breakpoint_ops structure associated to the catchpoint. */
8196
8197 void
8198 init_catchpoint (struct breakpoint *b,
8199 struct gdbarch *gdbarch, int tempflag,
8200 const char *cond_string,
8201 const struct breakpoint_ops *ops)
8202 {
8203 symtab_and_line sal;
8204 sal.pspace = current_program_space;
8205
8206 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8207
8208 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8209 b->disposition = tempflag ? disp_del : disp_donttouch;
8210 }
8211
8212 void
8213 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8214 {
8215 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8216 set_breakpoint_number (internal, b);
8217 if (is_tracepoint (b))
8218 set_tracepoint_count (breakpoint_count);
8219 if (!internal)
8220 mention (b);
8221 gdb::observers::breakpoint_created.notify (b);
8222
8223 if (update_gll)
8224 update_global_location_list (UGLL_MAY_INSERT);
8225 }
8226
8227 static void
8228 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8229 int tempflag, const char *cond_string,
8230 const struct breakpoint_ops *ops)
8231 {
8232 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8233
8234 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8235
8236 c->forked_inferior_pid = null_ptid;
8237
8238 install_breakpoint (0, std::move (c), 1);
8239 }
8240
8241 /* Exec catchpoints. */
8242
8243 /* An instance of this type is used to represent an exec catchpoint.
8244 A breakpoint is really of this type iff its ops pointer points to
8245 CATCH_EXEC_BREAKPOINT_OPS. */
8246
8247 struct exec_catchpoint : public breakpoint
8248 {
8249 ~exec_catchpoint () override;
8250
8251 /* Filename of a program whose exec triggered this catchpoint.
8252 This field is only valid immediately after this catchpoint has
8253 triggered. */
8254 char *exec_pathname;
8255 };
8256
8257 /* Exec catchpoint destructor. */
8258
8259 exec_catchpoint::~exec_catchpoint ()
8260 {
8261 xfree (this->exec_pathname);
8262 }
8263
8264 static int
8265 insert_catch_exec (struct bp_location *bl)
8266 {
8267 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8268 }
8269
8270 static int
8271 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8272 {
8273 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8274 }
8275
8276 static int
8277 breakpoint_hit_catch_exec (const struct bp_location *bl,
8278 const address_space *aspace, CORE_ADDR bp_addr,
8279 const struct target_waitstatus *ws)
8280 {
8281 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8282
8283 if (ws->kind != TARGET_WAITKIND_EXECD)
8284 return 0;
8285
8286 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8287 return 1;
8288 }
8289
8290 static enum print_stop_action
8291 print_it_catch_exec (bpstat bs)
8292 {
8293 struct ui_out *uiout = current_uiout;
8294 struct breakpoint *b = bs->breakpoint_at;
8295 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8296
8297 annotate_catchpoint (b->number);
8298 maybe_print_thread_hit_breakpoint (uiout);
8299 if (b->disposition == disp_del)
8300 uiout->text ("Temporary catchpoint ");
8301 else
8302 uiout->text ("Catchpoint ");
8303 if (uiout->is_mi_like_p ())
8304 {
8305 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8306 uiout->field_string ("disp", bpdisp_text (b->disposition));
8307 }
8308 uiout->field_int ("bkptno", b->number);
8309 uiout->text (" (exec'd ");
8310 uiout->field_string ("new-exec", c->exec_pathname);
8311 uiout->text ("), ");
8312
8313 return PRINT_SRC_AND_LOC;
8314 }
8315
8316 static void
8317 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8318 {
8319 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8320 struct value_print_options opts;
8321 struct ui_out *uiout = current_uiout;
8322
8323 get_user_print_options (&opts);
8324
8325 /* Field 4, the address, is omitted (which makes the columns
8326 not line up too nicely with the headers, but the effect
8327 is relatively readable). */
8328 if (opts.addressprint)
8329 uiout->field_skip ("addr");
8330 annotate_field (5);
8331 uiout->text ("exec");
8332 if (c->exec_pathname != NULL)
8333 {
8334 uiout->text (", program \"");
8335 uiout->field_string ("what", c->exec_pathname);
8336 uiout->text ("\" ");
8337 }
8338
8339 if (uiout->is_mi_like_p ())
8340 uiout->field_string ("catch-type", "exec");
8341 }
8342
8343 static void
8344 print_mention_catch_exec (struct breakpoint *b)
8345 {
8346 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8347 }
8348
8349 /* Implement the "print_recreate" breakpoint_ops method for exec
8350 catchpoints. */
8351
8352 static void
8353 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8354 {
8355 fprintf_unfiltered (fp, "catch exec");
8356 print_recreate_thread (b, fp);
8357 }
8358
8359 static struct breakpoint_ops catch_exec_breakpoint_ops;
8360
8361 static int
8362 hw_breakpoint_used_count (void)
8363 {
8364 int i = 0;
8365 struct breakpoint *b;
8366 struct bp_location *bl;
8367
8368 ALL_BREAKPOINTS (b)
8369 {
8370 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8371 for (bl = b->loc; bl; bl = bl->next)
8372 {
8373 /* Special types of hardware breakpoints may use more than
8374 one register. */
8375 i += b->ops->resources_needed (bl);
8376 }
8377 }
8378
8379 return i;
8380 }
8381
8382 /* Returns the resources B would use if it were a hardware
8383 watchpoint. */
8384
8385 static int
8386 hw_watchpoint_use_count (struct breakpoint *b)
8387 {
8388 int i = 0;
8389 struct bp_location *bl;
8390
8391 if (!breakpoint_enabled (b))
8392 return 0;
8393
8394 for (bl = b->loc; bl; bl = bl->next)
8395 {
8396 /* Special types of hardware watchpoints may use more than
8397 one register. */
8398 i += b->ops->resources_needed (bl);
8399 }
8400
8401 return i;
8402 }
8403
8404 /* Returns the sum the used resources of all hardware watchpoints of
8405 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8406 the sum of the used resources of all hardware watchpoints of other
8407 types _not_ TYPE. */
8408
8409 static int
8410 hw_watchpoint_used_count_others (struct breakpoint *except,
8411 enum bptype type, int *other_type_used)
8412 {
8413 int i = 0;
8414 struct breakpoint *b;
8415
8416 *other_type_used = 0;
8417 ALL_BREAKPOINTS (b)
8418 {
8419 if (b == except)
8420 continue;
8421 if (!breakpoint_enabled (b))
8422 continue;
8423
8424 if (b->type == type)
8425 i += hw_watchpoint_use_count (b);
8426 else if (is_hardware_watchpoint (b))
8427 *other_type_used = 1;
8428 }
8429
8430 return i;
8431 }
8432
8433 void
8434 disable_watchpoints_before_interactive_call_start (void)
8435 {
8436 struct breakpoint *b;
8437
8438 ALL_BREAKPOINTS (b)
8439 {
8440 if (is_watchpoint (b) && breakpoint_enabled (b))
8441 {
8442 b->enable_state = bp_call_disabled;
8443 update_global_location_list (UGLL_DONT_INSERT);
8444 }
8445 }
8446 }
8447
8448 void
8449 enable_watchpoints_after_interactive_call_stop (void)
8450 {
8451 struct breakpoint *b;
8452
8453 ALL_BREAKPOINTS (b)
8454 {
8455 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8456 {
8457 b->enable_state = bp_enabled;
8458 update_global_location_list (UGLL_MAY_INSERT);
8459 }
8460 }
8461 }
8462
8463 void
8464 disable_breakpoints_before_startup (void)
8465 {
8466 current_program_space->executing_startup = 1;
8467 update_global_location_list (UGLL_DONT_INSERT);
8468 }
8469
8470 void
8471 enable_breakpoints_after_startup (void)
8472 {
8473 current_program_space->executing_startup = 0;
8474 breakpoint_re_set ();
8475 }
8476
8477 /* Create a new single-step breakpoint for thread THREAD, with no
8478 locations. */
8479
8480 static struct breakpoint *
8481 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8482 {
8483 std::unique_ptr<breakpoint> b (new breakpoint ());
8484
8485 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8486 &momentary_breakpoint_ops);
8487
8488 b->disposition = disp_donttouch;
8489 b->frame_id = null_frame_id;
8490
8491 b->thread = thread;
8492 gdb_assert (b->thread != 0);
8493
8494 return add_to_breakpoint_chain (std::move (b));
8495 }
8496
8497 /* Set a momentary breakpoint of type TYPE at address specified by
8498 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8499 frame. */
8500
8501 breakpoint_up
8502 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8503 struct frame_id frame_id, enum bptype type)
8504 {
8505 struct breakpoint *b;
8506
8507 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8508 tail-called one. */
8509 gdb_assert (!frame_id_artificial_p (frame_id));
8510
8511 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8512 b->enable_state = bp_enabled;
8513 b->disposition = disp_donttouch;
8514 b->frame_id = frame_id;
8515
8516 /* If we're debugging a multi-threaded program, then we want
8517 momentary breakpoints to be active in only a single thread of
8518 control. */
8519 if (in_thread_list (inferior_ptid))
8520 b->thread = ptid_to_global_thread_id (inferior_ptid);
8521
8522 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8523
8524 return breakpoint_up (b);
8525 }
8526
8527 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8528 The new breakpoint will have type TYPE, use OPS as its
8529 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8530
8531 static struct breakpoint *
8532 momentary_breakpoint_from_master (struct breakpoint *orig,
8533 enum bptype type,
8534 const struct breakpoint_ops *ops,
8535 int loc_enabled)
8536 {
8537 struct breakpoint *copy;
8538
8539 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8540 copy->loc = allocate_bp_location (copy);
8541 set_breakpoint_location_function (copy->loc, 1);
8542
8543 copy->loc->gdbarch = orig->loc->gdbarch;
8544 copy->loc->requested_address = orig->loc->requested_address;
8545 copy->loc->address = orig->loc->address;
8546 copy->loc->section = orig->loc->section;
8547 copy->loc->pspace = orig->loc->pspace;
8548 copy->loc->probe = orig->loc->probe;
8549 copy->loc->line_number = orig->loc->line_number;
8550 copy->loc->symtab = orig->loc->symtab;
8551 copy->loc->enabled = loc_enabled;
8552 copy->frame_id = orig->frame_id;
8553 copy->thread = orig->thread;
8554 copy->pspace = orig->pspace;
8555
8556 copy->enable_state = bp_enabled;
8557 copy->disposition = disp_donttouch;
8558 copy->number = internal_breakpoint_number--;
8559
8560 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8561 return copy;
8562 }
8563
8564 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8565 ORIG is NULL. */
8566
8567 struct breakpoint *
8568 clone_momentary_breakpoint (struct breakpoint *orig)
8569 {
8570 /* If there's nothing to clone, then return nothing. */
8571 if (orig == NULL)
8572 return NULL;
8573
8574 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8575 }
8576
8577 breakpoint_up
8578 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8579 enum bptype type)
8580 {
8581 struct symtab_and_line sal;
8582
8583 sal = find_pc_line (pc, 0);
8584 sal.pc = pc;
8585 sal.section = find_pc_overlay (pc);
8586 sal.explicit_pc = 1;
8587
8588 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8589 }
8590 \f
8591
8592 /* Tell the user we have just set a breakpoint B. */
8593
8594 static void
8595 mention (struct breakpoint *b)
8596 {
8597 b->ops->print_mention (b);
8598 current_uiout->text ("\n");
8599 }
8600 \f
8601
8602 static int bp_loc_is_permanent (struct bp_location *loc);
8603
8604 static struct bp_location *
8605 add_location_to_breakpoint (struct breakpoint *b,
8606 const struct symtab_and_line *sal)
8607 {
8608 struct bp_location *loc, **tmp;
8609 CORE_ADDR adjusted_address;
8610 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8611
8612 if (loc_gdbarch == NULL)
8613 loc_gdbarch = b->gdbarch;
8614
8615 /* Adjust the breakpoint's address prior to allocating a location.
8616 Once we call allocate_bp_location(), that mostly uninitialized
8617 location will be placed on the location chain. Adjustment of the
8618 breakpoint may cause target_read_memory() to be called and we do
8619 not want its scan of the location chain to find a breakpoint and
8620 location that's only been partially initialized. */
8621 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8622 sal->pc, b->type);
8623
8624 /* Sort the locations by their ADDRESS. */
8625 loc = allocate_bp_location (b);
8626 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8627 tmp = &((*tmp)->next))
8628 ;
8629 loc->next = *tmp;
8630 *tmp = loc;
8631
8632 loc->requested_address = sal->pc;
8633 loc->address = adjusted_address;
8634 loc->pspace = sal->pspace;
8635 loc->probe.prob = sal->prob;
8636 loc->probe.objfile = sal->objfile;
8637 gdb_assert (loc->pspace != NULL);
8638 loc->section = sal->section;
8639 loc->gdbarch = loc_gdbarch;
8640 loc->line_number = sal->line;
8641 loc->symtab = sal->symtab;
8642 loc->symbol = sal->symbol;
8643 loc->msymbol = sal->msymbol;
8644 loc->objfile = sal->objfile;
8645
8646 set_breakpoint_location_function (loc,
8647 sal->explicit_pc || sal->explicit_line);
8648
8649 /* While by definition, permanent breakpoints are already present in the
8650 code, we don't mark the location as inserted. Normally one would expect
8651 that GDB could rely on that breakpoint instruction to stop the program,
8652 thus removing the need to insert its own breakpoint, except that executing
8653 the breakpoint instruction can kill the target instead of reporting a
8654 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8655 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8656 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8657 breakpoint be inserted normally results in QEMU knowing about the GDB
8658 breakpoint, and thus trap before the breakpoint instruction is executed.
8659 (If GDB later needs to continue execution past the permanent breakpoint,
8660 it manually increments the PC, thus avoiding executing the breakpoint
8661 instruction.) */
8662 if (bp_loc_is_permanent (loc))
8663 loc->permanent = 1;
8664
8665 return loc;
8666 }
8667 \f
8668
8669 /* See breakpoint.h. */
8670
8671 int
8672 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8673 {
8674 int len;
8675 CORE_ADDR addr;
8676 const gdb_byte *bpoint;
8677 gdb_byte *target_mem;
8678
8679 addr = address;
8680 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8681
8682 /* Software breakpoints unsupported? */
8683 if (bpoint == NULL)
8684 return 0;
8685
8686 target_mem = (gdb_byte *) alloca (len);
8687
8688 /* Enable the automatic memory restoration from breakpoints while
8689 we read the memory. Otherwise we could say about our temporary
8690 breakpoints they are permanent. */
8691 scoped_restore restore_memory
8692 = make_scoped_restore_show_memory_breakpoints (0);
8693
8694 if (target_read_memory (address, target_mem, len) == 0
8695 && memcmp (target_mem, bpoint, len) == 0)
8696 return 1;
8697
8698 return 0;
8699 }
8700
8701 /* Return 1 if LOC is pointing to a permanent breakpoint,
8702 return 0 otherwise. */
8703
8704 static int
8705 bp_loc_is_permanent (struct bp_location *loc)
8706 {
8707 gdb_assert (loc != NULL);
8708
8709 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8710 attempt to read from the addresses the locations of these breakpoint types
8711 point to. program_breakpoint_here_p, below, will attempt to read
8712 memory. */
8713 if (!breakpoint_address_is_meaningful (loc->owner))
8714 return 0;
8715
8716 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8717 switch_to_program_space_and_thread (loc->pspace);
8718 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8719 }
8720
8721 /* Build a command list for the dprintf corresponding to the current
8722 settings of the dprintf style options. */
8723
8724 static void
8725 update_dprintf_command_list (struct breakpoint *b)
8726 {
8727 char *dprintf_args = b->extra_string;
8728 char *printf_line = NULL;
8729
8730 if (!dprintf_args)
8731 return;
8732
8733 dprintf_args = skip_spaces (dprintf_args);
8734
8735 /* Allow a comma, as it may have terminated a location, but don't
8736 insist on it. */
8737 if (*dprintf_args == ',')
8738 ++dprintf_args;
8739 dprintf_args = skip_spaces (dprintf_args);
8740
8741 if (*dprintf_args != '"')
8742 error (_("Bad format string, missing '\"'."));
8743
8744 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8745 printf_line = xstrprintf ("printf %s", dprintf_args);
8746 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8747 {
8748 if (!dprintf_function)
8749 error (_("No function supplied for dprintf call"));
8750
8751 if (dprintf_channel && strlen (dprintf_channel) > 0)
8752 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8753 dprintf_function,
8754 dprintf_channel,
8755 dprintf_args);
8756 else
8757 printf_line = xstrprintf ("call (void) %s (%s)",
8758 dprintf_function,
8759 dprintf_args);
8760 }
8761 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8762 {
8763 if (target_can_run_breakpoint_commands ())
8764 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8765 else
8766 {
8767 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8768 printf_line = xstrprintf ("printf %s", dprintf_args);
8769 }
8770 }
8771 else
8772 internal_error (__FILE__, __LINE__,
8773 _("Invalid dprintf style."));
8774
8775 gdb_assert (printf_line != NULL);
8776 /* Manufacture a printf sequence. */
8777 {
8778 struct command_line *printf_cmd_line = XNEW (struct command_line);
8779
8780 printf_cmd_line->control_type = simple_control;
8781 printf_cmd_line->body_count = 0;
8782 printf_cmd_line->body_list = NULL;
8783 printf_cmd_line->next = NULL;
8784 printf_cmd_line->line = printf_line;
8785
8786 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8787 }
8788 }
8789
8790 /* Update all dprintf commands, making their command lists reflect
8791 current style settings. */
8792
8793 static void
8794 update_dprintf_commands (const char *args, int from_tty,
8795 struct cmd_list_element *c)
8796 {
8797 struct breakpoint *b;
8798
8799 ALL_BREAKPOINTS (b)
8800 {
8801 if (b->type == bp_dprintf)
8802 update_dprintf_command_list (b);
8803 }
8804 }
8805
8806 /* Create a breakpoint with SAL as location. Use LOCATION
8807 as a description of the location, and COND_STRING
8808 as condition expression. If LOCATION is NULL then create an
8809 "address location" from the address in the SAL. */
8810
8811 static void
8812 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8813 gdb::array_view<const symtab_and_line> sals,
8814 event_location_up &&location,
8815 gdb::unique_xmalloc_ptr<char> filter,
8816 gdb::unique_xmalloc_ptr<char> cond_string,
8817 gdb::unique_xmalloc_ptr<char> extra_string,
8818 enum bptype type, enum bpdisp disposition,
8819 int thread, int task, int ignore_count,
8820 const struct breakpoint_ops *ops, int from_tty,
8821 int enabled, int internal, unsigned flags,
8822 int display_canonical)
8823 {
8824 int i;
8825
8826 if (type == bp_hardware_breakpoint)
8827 {
8828 int target_resources_ok;
8829
8830 i = hw_breakpoint_used_count ();
8831 target_resources_ok =
8832 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8833 i + 1, 0);
8834 if (target_resources_ok == 0)
8835 error (_("No hardware breakpoint support in the target."));
8836 else if (target_resources_ok < 0)
8837 error (_("Hardware breakpoints used exceeds limit."));
8838 }
8839
8840 gdb_assert (!sals.empty ());
8841
8842 for (const auto &sal : sals)
8843 {
8844 struct bp_location *loc;
8845
8846 if (from_tty)
8847 {
8848 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8849 if (!loc_gdbarch)
8850 loc_gdbarch = gdbarch;
8851
8852 describe_other_breakpoints (loc_gdbarch,
8853 sal.pspace, sal.pc, sal.section, thread);
8854 }
8855
8856 if (&sal == &sals[0])
8857 {
8858 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8859 b->thread = thread;
8860 b->task = task;
8861
8862 b->cond_string = cond_string.release ();
8863 b->extra_string = extra_string.release ();
8864 b->ignore_count = ignore_count;
8865 b->enable_state = enabled ? bp_enabled : bp_disabled;
8866 b->disposition = disposition;
8867
8868 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8869 b->loc->inserted = 1;
8870
8871 if (type == bp_static_tracepoint)
8872 {
8873 struct tracepoint *t = (struct tracepoint *) b;
8874 struct static_tracepoint_marker marker;
8875
8876 if (strace_marker_p (b))
8877 {
8878 /* We already know the marker exists, otherwise, we
8879 wouldn't see a sal for it. */
8880 const char *p
8881 = &event_location_to_string (b->location.get ())[3];
8882 const char *endp;
8883
8884 p = skip_spaces (p);
8885
8886 endp = skip_to_space (p);
8887
8888 t->static_trace_marker_id.assign (p, endp - p);
8889
8890 printf_filtered (_("Probed static tracepoint "
8891 "marker \"%s\"\n"),
8892 t->static_trace_marker_id.c_str ());
8893 }
8894 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8895 {
8896 t->static_trace_marker_id = std::move (marker.str_id);
8897
8898 printf_filtered (_("Probed static tracepoint "
8899 "marker \"%s\"\n"),
8900 t->static_trace_marker_id.c_str ());
8901 }
8902 else
8903 warning (_("Couldn't determine the static "
8904 "tracepoint marker to probe"));
8905 }
8906
8907 loc = b->loc;
8908 }
8909 else
8910 {
8911 loc = add_location_to_breakpoint (b, &sal);
8912 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8913 loc->inserted = 1;
8914 }
8915
8916 if (b->cond_string)
8917 {
8918 const char *arg = b->cond_string;
8919
8920 loc->cond = parse_exp_1 (&arg, loc->address,
8921 block_for_pc (loc->address), 0);
8922 if (*arg)
8923 error (_("Garbage '%s' follows condition"), arg);
8924 }
8925
8926 /* Dynamic printf requires and uses additional arguments on the
8927 command line, otherwise it's an error. */
8928 if (type == bp_dprintf)
8929 {
8930 if (b->extra_string)
8931 update_dprintf_command_list (b);
8932 else
8933 error (_("Format string required"));
8934 }
8935 else if (b->extra_string)
8936 error (_("Garbage '%s' at end of command"), b->extra_string);
8937 }
8938
8939 b->display_canonical = display_canonical;
8940 if (location != NULL)
8941 b->location = std::move (location);
8942 else
8943 b->location = new_address_location (b->loc->address, NULL, 0);
8944 b->filter = filter.release ();
8945 }
8946
8947 static void
8948 create_breakpoint_sal (struct gdbarch *gdbarch,
8949 gdb::array_view<const symtab_and_line> sals,
8950 event_location_up &&location,
8951 gdb::unique_xmalloc_ptr<char> filter,
8952 gdb::unique_xmalloc_ptr<char> cond_string,
8953 gdb::unique_xmalloc_ptr<char> extra_string,
8954 enum bptype type, enum bpdisp disposition,
8955 int thread, int task, int ignore_count,
8956 const struct breakpoint_ops *ops, int from_tty,
8957 int enabled, int internal, unsigned flags,
8958 int display_canonical)
8959 {
8960 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8961
8962 init_breakpoint_sal (b.get (), gdbarch,
8963 sals, std::move (location),
8964 std::move (filter),
8965 std::move (cond_string),
8966 std::move (extra_string),
8967 type, disposition,
8968 thread, task, ignore_count,
8969 ops, from_tty,
8970 enabled, internal, flags,
8971 display_canonical);
8972
8973 install_breakpoint (internal, std::move (b), 0);
8974 }
8975
8976 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8977 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8978 value. COND_STRING, if not NULL, specified the condition to be
8979 used for all breakpoints. Essentially the only case where
8980 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8981 function. In that case, it's still not possible to specify
8982 separate conditions for different overloaded functions, so
8983 we take just a single condition string.
8984
8985 NOTE: If the function succeeds, the caller is expected to cleanup
8986 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8987 array contents). If the function fails (error() is called), the
8988 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8989 COND and SALS arrays and each of those arrays contents. */
8990
8991 static void
8992 create_breakpoints_sal (struct gdbarch *gdbarch,
8993 struct linespec_result *canonical,
8994 gdb::unique_xmalloc_ptr<char> cond_string,
8995 gdb::unique_xmalloc_ptr<char> extra_string,
8996 enum bptype type, enum bpdisp disposition,
8997 int thread, int task, int ignore_count,
8998 const struct breakpoint_ops *ops, int from_tty,
8999 int enabled, int internal, unsigned flags)
9000 {
9001 if (canonical->pre_expanded)
9002 gdb_assert (canonical->lsals.size () == 1);
9003
9004 for (const auto &lsal : canonical->lsals)
9005 {
9006 /* Note that 'location' can be NULL in the case of a plain
9007 'break', without arguments. */
9008 event_location_up location
9009 = (canonical->location != NULL
9010 ? copy_event_location (canonical->location.get ()) : NULL);
9011 gdb::unique_xmalloc_ptr<char> filter_string
9012 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9013
9014 create_breakpoint_sal (gdbarch, lsal.sals,
9015 std::move (location),
9016 std::move (filter_string),
9017 std::move (cond_string),
9018 std::move (extra_string),
9019 type, disposition,
9020 thread, task, ignore_count, ops,
9021 from_tty, enabled, internal, flags,
9022 canonical->special_display);
9023 }
9024 }
9025
9026 /* Parse LOCATION which is assumed to be a SAL specification possibly
9027 followed by conditionals. On return, SALS contains an array of SAL
9028 addresses found. LOCATION points to the end of the SAL (for
9029 linespec locations).
9030
9031 The array and the line spec strings are allocated on the heap, it is
9032 the caller's responsibility to free them. */
9033
9034 static void
9035 parse_breakpoint_sals (const struct event_location *location,
9036 struct linespec_result *canonical)
9037 {
9038 struct symtab_and_line cursal;
9039
9040 if (event_location_type (location) == LINESPEC_LOCATION)
9041 {
9042 const char *spec = get_linespec_location (location)->spec_string;
9043
9044 if (spec == NULL)
9045 {
9046 /* The last displayed codepoint, if it's valid, is our default
9047 breakpoint address. */
9048 if (last_displayed_sal_is_valid ())
9049 {
9050 /* Set sal's pspace, pc, symtab, and line to the values
9051 corresponding to the last call to print_frame_info.
9052 Be sure to reinitialize LINE with NOTCURRENT == 0
9053 as the breakpoint line number is inappropriate otherwise.
9054 find_pc_line would adjust PC, re-set it back. */
9055 symtab_and_line sal = get_last_displayed_sal ();
9056 CORE_ADDR pc = sal.pc;
9057
9058 sal = find_pc_line (pc, 0);
9059
9060 /* "break" without arguments is equivalent to "break *PC"
9061 where PC is the last displayed codepoint's address. So
9062 make sure to set sal.explicit_pc to prevent GDB from
9063 trying to expand the list of sals to include all other
9064 instances with the same symtab and line. */
9065 sal.pc = pc;
9066 sal.explicit_pc = 1;
9067
9068 struct linespec_sals lsal;
9069 lsal.sals = {sal};
9070 lsal.canonical = NULL;
9071
9072 canonical->lsals.push_back (std::move (lsal));
9073 return;
9074 }
9075 else
9076 error (_("No default breakpoint address now."));
9077 }
9078 }
9079
9080 /* Force almost all breakpoints to be in terms of the
9081 current_source_symtab (which is decode_line_1's default).
9082 This should produce the results we want almost all of the
9083 time while leaving default_breakpoint_* alone.
9084
9085 ObjC: However, don't match an Objective-C method name which
9086 may have a '+' or '-' succeeded by a '['. */
9087 cursal = get_current_source_symtab_and_line ();
9088 if (last_displayed_sal_is_valid ())
9089 {
9090 const char *spec = NULL;
9091
9092 if (event_location_type (location) == LINESPEC_LOCATION)
9093 spec = get_linespec_location (location)->spec_string;
9094
9095 if (!cursal.symtab
9096 || (spec != NULL
9097 && strchr ("+-", spec[0]) != NULL
9098 && spec[1] != '['))
9099 {
9100 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9101 get_last_displayed_symtab (),
9102 get_last_displayed_line (),
9103 canonical, NULL, NULL);
9104 return;
9105 }
9106 }
9107
9108 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9109 cursal.symtab, cursal.line, canonical, NULL, NULL);
9110 }
9111
9112
9113 /* Convert each SAL into a real PC. Verify that the PC can be
9114 inserted as a breakpoint. If it can't throw an error. */
9115
9116 static void
9117 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9118 {
9119 for (auto &sal : sals)
9120 resolve_sal_pc (&sal);
9121 }
9122
9123 /* Fast tracepoints may have restrictions on valid locations. For
9124 instance, a fast tracepoint using a jump instead of a trap will
9125 likely have to overwrite more bytes than a trap would, and so can
9126 only be placed where the instruction is longer than the jump, or a
9127 multi-instruction sequence does not have a jump into the middle of
9128 it, etc. */
9129
9130 static void
9131 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9132 gdb::array_view<const symtab_and_line> sals)
9133 {
9134 for (const auto &sal : sals)
9135 {
9136 struct gdbarch *sarch;
9137
9138 sarch = get_sal_arch (sal);
9139 /* We fall back to GDBARCH if there is no architecture
9140 associated with SAL. */
9141 if (sarch == NULL)
9142 sarch = gdbarch;
9143 std::string msg;
9144 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9145 error (_("May not have a fast tracepoint at %s%s"),
9146 paddress (sarch, sal.pc), msg.c_str ());
9147 }
9148 }
9149
9150 /* Given TOK, a string specification of condition and thread, as
9151 accepted by the 'break' command, extract the condition
9152 string and thread number and set *COND_STRING and *THREAD.
9153 PC identifies the context at which the condition should be parsed.
9154 If no condition is found, *COND_STRING is set to NULL.
9155 If no thread is found, *THREAD is set to -1. */
9156
9157 static void
9158 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9159 char **cond_string, int *thread, int *task,
9160 char **rest)
9161 {
9162 *cond_string = NULL;
9163 *thread = -1;
9164 *task = 0;
9165 *rest = NULL;
9166
9167 while (tok && *tok)
9168 {
9169 const char *end_tok;
9170 int toklen;
9171 const char *cond_start = NULL;
9172 const char *cond_end = NULL;
9173
9174 tok = skip_spaces (tok);
9175
9176 if ((*tok == '"' || *tok == ',') && rest)
9177 {
9178 *rest = savestring (tok, strlen (tok));
9179 return;
9180 }
9181
9182 end_tok = skip_to_space (tok);
9183
9184 toklen = end_tok - tok;
9185
9186 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9187 {
9188 tok = cond_start = end_tok + 1;
9189 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9190 cond_end = tok;
9191 *cond_string = savestring (cond_start, cond_end - cond_start);
9192 }
9193 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9194 {
9195 const char *tmptok;
9196 struct thread_info *thr;
9197
9198 tok = end_tok + 1;
9199 thr = parse_thread_id (tok, &tmptok);
9200 if (tok == tmptok)
9201 error (_("Junk after thread keyword."));
9202 *thread = thr->global_num;
9203 tok = tmptok;
9204 }
9205 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9206 {
9207 char *tmptok;
9208
9209 tok = end_tok + 1;
9210 *task = strtol (tok, &tmptok, 0);
9211 if (tok == tmptok)
9212 error (_("Junk after task keyword."));
9213 if (!valid_task_id (*task))
9214 error (_("Unknown task %d."), *task);
9215 tok = tmptok;
9216 }
9217 else if (rest)
9218 {
9219 *rest = savestring (tok, strlen (tok));
9220 return;
9221 }
9222 else
9223 error (_("Junk at end of arguments."));
9224 }
9225 }
9226
9227 /* Decode a static tracepoint marker spec. */
9228
9229 static std::vector<symtab_and_line>
9230 decode_static_tracepoint_spec (const char **arg_p)
9231 {
9232 const char *p = &(*arg_p)[3];
9233 const char *endp;
9234
9235 p = skip_spaces (p);
9236
9237 endp = skip_to_space (p);
9238
9239 std::string marker_str (p, endp - p);
9240
9241 std::vector<static_tracepoint_marker> markers
9242 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9243 if (markers.empty ())
9244 error (_("No known static tracepoint marker named %s"),
9245 marker_str.c_str ());
9246
9247 std::vector<symtab_and_line> sals;
9248 sals.reserve (markers.size ());
9249
9250 for (const static_tracepoint_marker &marker : markers)
9251 {
9252 symtab_and_line sal = find_pc_line (marker.address, 0);
9253 sal.pc = marker.address;
9254 sals.push_back (sal);
9255 }
9256
9257 *arg_p = endp;
9258 return sals;
9259 }
9260
9261 /* See breakpoint.h. */
9262
9263 int
9264 create_breakpoint (struct gdbarch *gdbarch,
9265 const struct event_location *location,
9266 const char *cond_string,
9267 int thread, const char *extra_string,
9268 int parse_extra,
9269 int tempflag, enum bptype type_wanted,
9270 int ignore_count,
9271 enum auto_boolean pending_break_support,
9272 const struct breakpoint_ops *ops,
9273 int from_tty, int enabled, int internal,
9274 unsigned flags)
9275 {
9276 struct linespec_result canonical;
9277 struct cleanup *bkpt_chain = NULL;
9278 int pending = 0;
9279 int task = 0;
9280 int prev_bkpt_count = breakpoint_count;
9281
9282 gdb_assert (ops != NULL);
9283
9284 /* If extra_string isn't useful, set it to NULL. */
9285 if (extra_string != NULL && *extra_string == '\0')
9286 extra_string = NULL;
9287
9288 TRY
9289 {
9290 ops->create_sals_from_location (location, &canonical, type_wanted);
9291 }
9292 CATCH (e, RETURN_MASK_ERROR)
9293 {
9294 /* If caller is interested in rc value from parse, set
9295 value. */
9296 if (e.error == NOT_FOUND_ERROR)
9297 {
9298 /* If pending breakpoint support is turned off, throw
9299 error. */
9300
9301 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9302 throw_exception (e);
9303
9304 exception_print (gdb_stderr, e);
9305
9306 /* If pending breakpoint support is auto query and the user
9307 selects no, then simply return the error code. */
9308 if (pending_break_support == AUTO_BOOLEAN_AUTO
9309 && !nquery (_("Make %s pending on future shared library load? "),
9310 bptype_string (type_wanted)))
9311 return 0;
9312
9313 /* At this point, either the user was queried about setting
9314 a pending breakpoint and selected yes, or pending
9315 breakpoint behavior is on and thus a pending breakpoint
9316 is defaulted on behalf of the user. */
9317 pending = 1;
9318 }
9319 else
9320 throw_exception (e);
9321 }
9322 END_CATCH
9323
9324 if (!pending && canonical.lsals.empty ())
9325 return 0;
9326
9327 /* ----------------------------- SNIP -----------------------------
9328 Anything added to the cleanup chain beyond this point is assumed
9329 to be part of a breakpoint. If the breakpoint create succeeds
9330 then the memory is not reclaimed. */
9331 bkpt_chain = make_cleanup (null_cleanup, 0);
9332
9333 /* Resolve all line numbers to PC's and verify that the addresses
9334 are ok for the target. */
9335 if (!pending)
9336 {
9337 for (auto &lsal : canonical.lsals)
9338 breakpoint_sals_to_pc (lsal.sals);
9339 }
9340
9341 /* Fast tracepoints may have additional restrictions on location. */
9342 if (!pending && type_wanted == bp_fast_tracepoint)
9343 {
9344 for (const auto &lsal : canonical.lsals)
9345 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9346 }
9347
9348 /* Verify that condition can be parsed, before setting any
9349 breakpoints. Allocate a separate condition expression for each
9350 breakpoint. */
9351 if (!pending)
9352 {
9353 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9354 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9355
9356 if (parse_extra)
9357 {
9358 char *rest;
9359 char *cond;
9360
9361 const linespec_sals &lsal = canonical.lsals[0];
9362
9363 /* Here we only parse 'arg' to separate condition
9364 from thread number, so parsing in context of first
9365 sal is OK. When setting the breakpoint we'll
9366 re-parse it in context of each sal. */
9367
9368 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9369 &cond, &thread, &task, &rest);
9370 cond_string_copy.reset (cond);
9371 extra_string_copy.reset (rest);
9372 }
9373 else
9374 {
9375 if (type_wanted != bp_dprintf
9376 && extra_string != NULL && *extra_string != '\0')
9377 error (_("Garbage '%s' at end of location"), extra_string);
9378
9379 /* Create a private copy of condition string. */
9380 if (cond_string)
9381 cond_string_copy.reset (xstrdup (cond_string));
9382 /* Create a private copy of any extra string. */
9383 if (extra_string)
9384 extra_string_copy.reset (xstrdup (extra_string));
9385 }
9386
9387 ops->create_breakpoints_sal (gdbarch, &canonical,
9388 std::move (cond_string_copy),
9389 std::move (extra_string_copy),
9390 type_wanted,
9391 tempflag ? disp_del : disp_donttouch,
9392 thread, task, ignore_count, ops,
9393 from_tty, enabled, internal, flags);
9394 }
9395 else
9396 {
9397 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9398
9399 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9400 b->location = copy_event_location (location);
9401
9402 if (parse_extra)
9403 b->cond_string = NULL;
9404 else
9405 {
9406 /* Create a private copy of condition string. */
9407 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9408 b->thread = thread;
9409 }
9410
9411 /* Create a private copy of any extra string. */
9412 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9413 b->ignore_count = ignore_count;
9414 b->disposition = tempflag ? disp_del : disp_donttouch;
9415 b->condition_not_parsed = 1;
9416 b->enable_state = enabled ? bp_enabled : bp_disabled;
9417 if ((type_wanted != bp_breakpoint
9418 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9419 b->pspace = current_program_space;
9420
9421 install_breakpoint (internal, std::move (b), 0);
9422 }
9423
9424 if (canonical.lsals.size () > 1)
9425 {
9426 warning (_("Multiple breakpoints were set.\nUse the "
9427 "\"delete\" command to delete unwanted breakpoints."));
9428 prev_breakpoint_count = prev_bkpt_count;
9429 }
9430
9431 /* That's it. Discard the cleanups for data inserted into the
9432 breakpoint. */
9433 discard_cleanups (bkpt_chain);
9434
9435 /* error call may happen here - have BKPT_CHAIN already discarded. */
9436 update_global_location_list (UGLL_MAY_INSERT);
9437
9438 return 1;
9439 }
9440
9441 /* Set a breakpoint.
9442 ARG is a string describing breakpoint address,
9443 condition, and thread.
9444 FLAG specifies if a breakpoint is hardware on,
9445 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9446 and BP_TEMPFLAG. */
9447
9448 static void
9449 break_command_1 (const char *arg, int flag, int from_tty)
9450 {
9451 int tempflag = flag & BP_TEMPFLAG;
9452 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9453 ? bp_hardware_breakpoint
9454 : bp_breakpoint);
9455 struct breakpoint_ops *ops;
9456
9457 event_location_up location = string_to_event_location (&arg, current_language);
9458
9459 /* Matching breakpoints on probes. */
9460 if (location != NULL
9461 && event_location_type (location.get ()) == PROBE_LOCATION)
9462 ops = &bkpt_probe_breakpoint_ops;
9463 else
9464 ops = &bkpt_breakpoint_ops;
9465
9466 create_breakpoint (get_current_arch (),
9467 location.get (),
9468 NULL, 0, arg, 1 /* parse arg */,
9469 tempflag, type_wanted,
9470 0 /* Ignore count */,
9471 pending_break_support,
9472 ops,
9473 from_tty,
9474 1 /* enabled */,
9475 0 /* internal */,
9476 0);
9477 }
9478
9479 /* Helper function for break_command_1 and disassemble_command. */
9480
9481 void
9482 resolve_sal_pc (struct symtab_and_line *sal)
9483 {
9484 CORE_ADDR pc;
9485
9486 if (sal->pc == 0 && sal->symtab != NULL)
9487 {
9488 if (!find_line_pc (sal->symtab, sal->line, &pc))
9489 error (_("No line %d in file \"%s\"."),
9490 sal->line, symtab_to_filename_for_display (sal->symtab));
9491 sal->pc = pc;
9492
9493 /* If this SAL corresponds to a breakpoint inserted using a line
9494 number, then skip the function prologue if necessary. */
9495 if (sal->explicit_line)
9496 skip_prologue_sal (sal);
9497 }
9498
9499 if (sal->section == 0 && sal->symtab != NULL)
9500 {
9501 const struct blockvector *bv;
9502 const struct block *b;
9503 struct symbol *sym;
9504
9505 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9506 SYMTAB_COMPUNIT (sal->symtab));
9507 if (bv != NULL)
9508 {
9509 sym = block_linkage_function (b);
9510 if (sym != NULL)
9511 {
9512 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9513 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9514 sym);
9515 }
9516 else
9517 {
9518 /* It really is worthwhile to have the section, so we'll
9519 just have to look harder. This case can be executed
9520 if we have line numbers but no functions (as can
9521 happen in assembly source). */
9522
9523 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9524 switch_to_program_space_and_thread (sal->pspace);
9525
9526 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9527 if (msym.minsym)
9528 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9529 }
9530 }
9531 }
9532 }
9533
9534 void
9535 break_command (const char *arg, int from_tty)
9536 {
9537 break_command_1 (arg, 0, from_tty);
9538 }
9539
9540 void
9541 tbreak_command (const char *arg, int from_tty)
9542 {
9543 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9544 }
9545
9546 static void
9547 hbreak_command (const char *arg, int from_tty)
9548 {
9549 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9550 }
9551
9552 static void
9553 thbreak_command (const char *arg, int from_tty)
9554 {
9555 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9556 }
9557
9558 static void
9559 stop_command (const char *arg, int from_tty)
9560 {
9561 printf_filtered (_("Specify the type of breakpoint to set.\n\
9562 Usage: stop in <function | address>\n\
9563 stop at <line>\n"));
9564 }
9565
9566 static void
9567 stopin_command (const char *arg, int from_tty)
9568 {
9569 int badInput = 0;
9570
9571 if (arg == (char *) NULL)
9572 badInput = 1;
9573 else if (*arg != '*')
9574 {
9575 const char *argptr = arg;
9576 int hasColon = 0;
9577
9578 /* Look for a ':'. If this is a line number specification, then
9579 say it is bad, otherwise, it should be an address or
9580 function/method name. */
9581 while (*argptr && !hasColon)
9582 {
9583 hasColon = (*argptr == ':');
9584 argptr++;
9585 }
9586
9587 if (hasColon)
9588 badInput = (*argptr != ':'); /* Not a class::method */
9589 else
9590 badInput = isdigit (*arg); /* a simple line number */
9591 }
9592
9593 if (badInput)
9594 printf_filtered (_("Usage: stop in <function | address>\n"));
9595 else
9596 break_command_1 (arg, 0, from_tty);
9597 }
9598
9599 static void
9600 stopat_command (const char *arg, int from_tty)
9601 {
9602 int badInput = 0;
9603
9604 if (arg == (char *) NULL || *arg == '*') /* no line number */
9605 badInput = 1;
9606 else
9607 {
9608 const char *argptr = arg;
9609 int hasColon = 0;
9610
9611 /* Look for a ':'. If there is a '::' then get out, otherwise
9612 it is probably a line number. */
9613 while (*argptr && !hasColon)
9614 {
9615 hasColon = (*argptr == ':');
9616 argptr++;
9617 }
9618
9619 if (hasColon)
9620 badInput = (*argptr == ':'); /* we have class::method */
9621 else
9622 badInput = !isdigit (*arg); /* not a line number */
9623 }
9624
9625 if (badInput)
9626 printf_filtered (_("Usage: stop at <line>\n"));
9627 else
9628 break_command_1 (arg, 0, from_tty);
9629 }
9630
9631 /* The dynamic printf command is mostly like a regular breakpoint, but
9632 with a prewired command list consisting of a single output command,
9633 built from extra arguments supplied on the dprintf command
9634 line. */
9635
9636 static void
9637 dprintf_command (const char *arg, int from_tty)
9638 {
9639 event_location_up location = string_to_event_location (&arg, current_language);
9640
9641 /* If non-NULL, ARG should have been advanced past the location;
9642 the next character must be ','. */
9643 if (arg != NULL)
9644 {
9645 if (arg[0] != ',' || arg[1] == '\0')
9646 error (_("Format string required"));
9647 else
9648 {
9649 /* Skip the comma. */
9650 ++arg;
9651 }
9652 }
9653
9654 create_breakpoint (get_current_arch (),
9655 location.get (),
9656 NULL, 0, arg, 1 /* parse arg */,
9657 0, bp_dprintf,
9658 0 /* Ignore count */,
9659 pending_break_support,
9660 &dprintf_breakpoint_ops,
9661 from_tty,
9662 1 /* enabled */,
9663 0 /* internal */,
9664 0);
9665 }
9666
9667 static void
9668 agent_printf_command (const char *arg, int from_tty)
9669 {
9670 error (_("May only run agent-printf on the target"));
9671 }
9672
9673 /* Implement the "breakpoint_hit" breakpoint_ops method for
9674 ranged breakpoints. */
9675
9676 static int
9677 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9678 const address_space *aspace,
9679 CORE_ADDR bp_addr,
9680 const struct target_waitstatus *ws)
9681 {
9682 if (ws->kind != TARGET_WAITKIND_STOPPED
9683 || ws->value.sig != GDB_SIGNAL_TRAP)
9684 return 0;
9685
9686 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9687 bl->length, aspace, bp_addr);
9688 }
9689
9690 /* Implement the "resources_needed" breakpoint_ops method for
9691 ranged breakpoints. */
9692
9693 static int
9694 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9695 {
9696 return target_ranged_break_num_registers ();
9697 }
9698
9699 /* Implement the "print_it" breakpoint_ops method for
9700 ranged breakpoints. */
9701
9702 static enum print_stop_action
9703 print_it_ranged_breakpoint (bpstat bs)
9704 {
9705 struct breakpoint *b = bs->breakpoint_at;
9706 struct bp_location *bl = b->loc;
9707 struct ui_out *uiout = current_uiout;
9708
9709 gdb_assert (b->type == bp_hardware_breakpoint);
9710
9711 /* Ranged breakpoints have only one location. */
9712 gdb_assert (bl && bl->next == NULL);
9713
9714 annotate_breakpoint (b->number);
9715
9716 maybe_print_thread_hit_breakpoint (uiout);
9717
9718 if (b->disposition == disp_del)
9719 uiout->text ("Temporary ranged breakpoint ");
9720 else
9721 uiout->text ("Ranged breakpoint ");
9722 if (uiout->is_mi_like_p ())
9723 {
9724 uiout->field_string ("reason",
9725 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9726 uiout->field_string ("disp", bpdisp_text (b->disposition));
9727 }
9728 uiout->field_int ("bkptno", b->number);
9729 uiout->text (", ");
9730
9731 return PRINT_SRC_AND_LOC;
9732 }
9733
9734 /* Implement the "print_one" breakpoint_ops method for
9735 ranged breakpoints. */
9736
9737 static void
9738 print_one_ranged_breakpoint (struct breakpoint *b,
9739 struct bp_location **last_loc)
9740 {
9741 struct bp_location *bl = b->loc;
9742 struct value_print_options opts;
9743 struct ui_out *uiout = current_uiout;
9744
9745 /* Ranged breakpoints have only one location. */
9746 gdb_assert (bl && bl->next == NULL);
9747
9748 get_user_print_options (&opts);
9749
9750 if (opts.addressprint)
9751 /* We don't print the address range here, it will be printed later
9752 by print_one_detail_ranged_breakpoint. */
9753 uiout->field_skip ("addr");
9754 annotate_field (5);
9755 print_breakpoint_location (b, bl);
9756 *last_loc = bl;
9757 }
9758
9759 /* Implement the "print_one_detail" breakpoint_ops method for
9760 ranged breakpoints. */
9761
9762 static void
9763 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9764 struct ui_out *uiout)
9765 {
9766 CORE_ADDR address_start, address_end;
9767 struct bp_location *bl = b->loc;
9768 string_file stb;
9769
9770 gdb_assert (bl);
9771
9772 address_start = bl->address;
9773 address_end = address_start + bl->length - 1;
9774
9775 uiout->text ("\taddress range: ");
9776 stb.printf ("[%s, %s]",
9777 print_core_address (bl->gdbarch, address_start),
9778 print_core_address (bl->gdbarch, address_end));
9779 uiout->field_stream ("addr", stb);
9780 uiout->text ("\n");
9781 }
9782
9783 /* Implement the "print_mention" breakpoint_ops method for
9784 ranged breakpoints. */
9785
9786 static void
9787 print_mention_ranged_breakpoint (struct breakpoint *b)
9788 {
9789 struct bp_location *bl = b->loc;
9790 struct ui_out *uiout = current_uiout;
9791
9792 gdb_assert (bl);
9793 gdb_assert (b->type == bp_hardware_breakpoint);
9794
9795 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9796 b->number, paddress (bl->gdbarch, bl->address),
9797 paddress (bl->gdbarch, bl->address + bl->length - 1));
9798 }
9799
9800 /* Implement the "print_recreate" breakpoint_ops method for
9801 ranged breakpoints. */
9802
9803 static void
9804 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9805 {
9806 fprintf_unfiltered (fp, "break-range %s, %s",
9807 event_location_to_string (b->location.get ()),
9808 event_location_to_string (b->location_range_end.get ()));
9809 print_recreate_thread (b, fp);
9810 }
9811
9812 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9813
9814 static struct breakpoint_ops ranged_breakpoint_ops;
9815
9816 /* Find the address where the end of the breakpoint range should be
9817 placed, given the SAL of the end of the range. This is so that if
9818 the user provides a line number, the end of the range is set to the
9819 last instruction of the given line. */
9820
9821 static CORE_ADDR
9822 find_breakpoint_range_end (struct symtab_and_line sal)
9823 {
9824 CORE_ADDR end;
9825
9826 /* If the user provided a PC value, use it. Otherwise,
9827 find the address of the end of the given location. */
9828 if (sal.explicit_pc)
9829 end = sal.pc;
9830 else
9831 {
9832 int ret;
9833 CORE_ADDR start;
9834
9835 ret = find_line_pc_range (sal, &start, &end);
9836 if (!ret)
9837 error (_("Could not find location of the end of the range."));
9838
9839 /* find_line_pc_range returns the start of the next line. */
9840 end--;
9841 }
9842
9843 return end;
9844 }
9845
9846 /* Implement the "break-range" CLI command. */
9847
9848 static void
9849 break_range_command (const char *arg, int from_tty)
9850 {
9851 const char *arg_start;
9852 struct linespec_result canonical_start, canonical_end;
9853 int bp_count, can_use_bp, length;
9854 CORE_ADDR end;
9855 struct breakpoint *b;
9856
9857 /* We don't support software ranged breakpoints. */
9858 if (target_ranged_break_num_registers () < 0)
9859 error (_("This target does not support hardware ranged breakpoints."));
9860
9861 bp_count = hw_breakpoint_used_count ();
9862 bp_count += target_ranged_break_num_registers ();
9863 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9864 bp_count, 0);
9865 if (can_use_bp < 0)
9866 error (_("Hardware breakpoints used exceeds limit."));
9867
9868 arg = skip_spaces (arg);
9869 if (arg == NULL || arg[0] == '\0')
9870 error(_("No address range specified."));
9871
9872 arg_start = arg;
9873 event_location_up start_location = string_to_event_location (&arg,
9874 current_language);
9875 parse_breakpoint_sals (start_location.get (), &canonical_start);
9876
9877 if (arg[0] != ',')
9878 error (_("Too few arguments."));
9879 else if (canonical_start.lsals.empty ())
9880 error (_("Could not find location of the beginning of the range."));
9881
9882 const linespec_sals &lsal_start = canonical_start.lsals[0];
9883
9884 if (canonical_start.lsals.size () > 1
9885 || lsal_start.sals.size () != 1)
9886 error (_("Cannot create a ranged breakpoint with multiple locations."));
9887
9888 const symtab_and_line &sal_start = lsal_start.sals[0];
9889 std::string addr_string_start (arg_start, arg - arg_start);
9890
9891 arg++; /* Skip the comma. */
9892 arg = skip_spaces (arg);
9893
9894 /* Parse the end location. */
9895
9896 arg_start = arg;
9897
9898 /* We call decode_line_full directly here instead of using
9899 parse_breakpoint_sals because we need to specify the start location's
9900 symtab and line as the default symtab and line for the end of the
9901 range. This makes it possible to have ranges like "foo.c:27, +14",
9902 where +14 means 14 lines from the start location. */
9903 event_location_up end_location = string_to_event_location (&arg,
9904 current_language);
9905 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9906 sal_start.symtab, sal_start.line,
9907 &canonical_end, NULL, NULL);
9908
9909 if (canonical_end.lsals.empty ())
9910 error (_("Could not find location of the end of the range."));
9911
9912 const linespec_sals &lsal_end = canonical_end.lsals[0];
9913 if (canonical_end.lsals.size () > 1
9914 || lsal_end.sals.size () != 1)
9915 error (_("Cannot create a ranged breakpoint with multiple locations."));
9916
9917 const symtab_and_line &sal_end = lsal_end.sals[0];
9918
9919 end = find_breakpoint_range_end (sal_end);
9920 if (sal_start.pc > end)
9921 error (_("Invalid address range, end precedes start."));
9922
9923 length = end - sal_start.pc + 1;
9924 if (length < 0)
9925 /* Length overflowed. */
9926 error (_("Address range too large."));
9927 else if (length == 1)
9928 {
9929 /* This range is simple enough to be handled by
9930 the `hbreak' command. */
9931 hbreak_command (&addr_string_start[0], 1);
9932
9933 return;
9934 }
9935
9936 /* Now set up the breakpoint. */
9937 b = set_raw_breakpoint (get_current_arch (), sal_start,
9938 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9939 set_breakpoint_count (breakpoint_count + 1);
9940 b->number = breakpoint_count;
9941 b->disposition = disp_donttouch;
9942 b->location = std::move (start_location);
9943 b->location_range_end = std::move (end_location);
9944 b->loc->length = length;
9945
9946 mention (b);
9947 gdb::observers::breakpoint_created.notify (b);
9948 update_global_location_list (UGLL_MAY_INSERT);
9949 }
9950
9951 /* Return non-zero if EXP is verified as constant. Returned zero
9952 means EXP is variable. Also the constant detection may fail for
9953 some constant expressions and in such case still falsely return
9954 zero. */
9955
9956 static int
9957 watchpoint_exp_is_const (const struct expression *exp)
9958 {
9959 int i = exp->nelts;
9960
9961 while (i > 0)
9962 {
9963 int oplenp, argsp;
9964
9965 /* We are only interested in the descriptor of each element. */
9966 operator_length (exp, i, &oplenp, &argsp);
9967 i -= oplenp;
9968
9969 switch (exp->elts[i].opcode)
9970 {
9971 case BINOP_ADD:
9972 case BINOP_SUB:
9973 case BINOP_MUL:
9974 case BINOP_DIV:
9975 case BINOP_REM:
9976 case BINOP_MOD:
9977 case BINOP_LSH:
9978 case BINOP_RSH:
9979 case BINOP_LOGICAL_AND:
9980 case BINOP_LOGICAL_OR:
9981 case BINOP_BITWISE_AND:
9982 case BINOP_BITWISE_IOR:
9983 case BINOP_BITWISE_XOR:
9984 case BINOP_EQUAL:
9985 case BINOP_NOTEQUAL:
9986 case BINOP_LESS:
9987 case BINOP_GTR:
9988 case BINOP_LEQ:
9989 case BINOP_GEQ:
9990 case BINOP_REPEAT:
9991 case BINOP_COMMA:
9992 case BINOP_EXP:
9993 case BINOP_MIN:
9994 case BINOP_MAX:
9995 case BINOP_INTDIV:
9996 case BINOP_CONCAT:
9997 case TERNOP_COND:
9998 case TERNOP_SLICE:
9999
10000 case OP_LONG:
10001 case OP_FLOAT:
10002 case OP_LAST:
10003 case OP_COMPLEX:
10004 case OP_STRING:
10005 case OP_ARRAY:
10006 case OP_TYPE:
10007 case OP_TYPEOF:
10008 case OP_DECLTYPE:
10009 case OP_TYPEID:
10010 case OP_NAME:
10011 case OP_OBJC_NSSTRING:
10012
10013 case UNOP_NEG:
10014 case UNOP_LOGICAL_NOT:
10015 case UNOP_COMPLEMENT:
10016 case UNOP_ADDR:
10017 case UNOP_HIGH:
10018 case UNOP_CAST:
10019
10020 case UNOP_CAST_TYPE:
10021 case UNOP_REINTERPRET_CAST:
10022 case UNOP_DYNAMIC_CAST:
10023 /* Unary, binary and ternary operators: We have to check
10024 their operands. If they are constant, then so is the
10025 result of that operation. For instance, if A and B are
10026 determined to be constants, then so is "A + B".
10027
10028 UNOP_IND is one exception to the rule above, because the
10029 value of *ADDR is not necessarily a constant, even when
10030 ADDR is. */
10031 break;
10032
10033 case OP_VAR_VALUE:
10034 /* Check whether the associated symbol is a constant.
10035
10036 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10037 possible that a buggy compiler could mark a variable as
10038 constant even when it is not, and TYPE_CONST would return
10039 true in this case, while SYMBOL_CLASS wouldn't.
10040
10041 We also have to check for function symbols because they
10042 are always constant. */
10043 {
10044 struct symbol *s = exp->elts[i + 2].symbol;
10045
10046 if (SYMBOL_CLASS (s) != LOC_BLOCK
10047 && SYMBOL_CLASS (s) != LOC_CONST
10048 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10049 return 0;
10050 break;
10051 }
10052
10053 /* The default action is to return 0 because we are using
10054 the optimistic approach here: If we don't know something,
10055 then it is not a constant. */
10056 default:
10057 return 0;
10058 }
10059 }
10060
10061 return 1;
10062 }
10063
10064 /* Watchpoint destructor. */
10065
10066 watchpoint::~watchpoint ()
10067 {
10068 xfree (this->exp_string);
10069 xfree (this->exp_string_reparse);
10070 }
10071
10072 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10073
10074 static void
10075 re_set_watchpoint (struct breakpoint *b)
10076 {
10077 struct watchpoint *w = (struct watchpoint *) b;
10078
10079 /* Watchpoint can be either on expression using entirely global
10080 variables, or it can be on local variables.
10081
10082 Watchpoints of the first kind are never auto-deleted, and even
10083 persist across program restarts. Since they can use variables
10084 from shared libraries, we need to reparse expression as libraries
10085 are loaded and unloaded.
10086
10087 Watchpoints on local variables can also change meaning as result
10088 of solib event. For example, if a watchpoint uses both a local
10089 and a global variables in expression, it's a local watchpoint,
10090 but unloading of a shared library will make the expression
10091 invalid. This is not a very common use case, but we still
10092 re-evaluate expression, to avoid surprises to the user.
10093
10094 Note that for local watchpoints, we re-evaluate it only if
10095 watchpoints frame id is still valid. If it's not, it means the
10096 watchpoint is out of scope and will be deleted soon. In fact,
10097 I'm not sure we'll ever be called in this case.
10098
10099 If a local watchpoint's frame id is still valid, then
10100 w->exp_valid_block is likewise valid, and we can safely use it.
10101
10102 Don't do anything about disabled watchpoints, since they will be
10103 reevaluated again when enabled. */
10104 update_watchpoint (w, 1 /* reparse */);
10105 }
10106
10107 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10108
10109 static int
10110 insert_watchpoint (struct bp_location *bl)
10111 {
10112 struct watchpoint *w = (struct watchpoint *) bl->owner;
10113 int length = w->exact ? 1 : bl->length;
10114
10115 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10116 w->cond_exp.get ());
10117 }
10118
10119 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10120
10121 static int
10122 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10123 {
10124 struct watchpoint *w = (struct watchpoint *) bl->owner;
10125 int length = w->exact ? 1 : bl->length;
10126
10127 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10128 w->cond_exp.get ());
10129 }
10130
10131 static int
10132 breakpoint_hit_watchpoint (const struct bp_location *bl,
10133 const address_space *aspace, CORE_ADDR bp_addr,
10134 const struct target_waitstatus *ws)
10135 {
10136 struct breakpoint *b = bl->owner;
10137 struct watchpoint *w = (struct watchpoint *) b;
10138
10139 /* Continuable hardware watchpoints are treated as non-existent if the
10140 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10141 some data address). Otherwise gdb won't stop on a break instruction
10142 in the code (not from a breakpoint) when a hardware watchpoint has
10143 been defined. Also skip watchpoints which we know did not trigger
10144 (did not match the data address). */
10145 if (is_hardware_watchpoint (b)
10146 && w->watchpoint_triggered == watch_triggered_no)
10147 return 0;
10148
10149 return 1;
10150 }
10151
10152 static void
10153 check_status_watchpoint (bpstat bs)
10154 {
10155 gdb_assert (is_watchpoint (bs->breakpoint_at));
10156
10157 bpstat_check_watchpoint (bs);
10158 }
10159
10160 /* Implement the "resources_needed" breakpoint_ops method for
10161 hardware watchpoints. */
10162
10163 static int
10164 resources_needed_watchpoint (const struct bp_location *bl)
10165 {
10166 struct watchpoint *w = (struct watchpoint *) bl->owner;
10167 int length = w->exact? 1 : bl->length;
10168
10169 return target_region_ok_for_hw_watchpoint (bl->address, length);
10170 }
10171
10172 /* Implement the "works_in_software_mode" breakpoint_ops method for
10173 hardware watchpoints. */
10174
10175 static int
10176 works_in_software_mode_watchpoint (const struct breakpoint *b)
10177 {
10178 /* Read and access watchpoints only work with hardware support. */
10179 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10180 }
10181
10182 static enum print_stop_action
10183 print_it_watchpoint (bpstat bs)
10184 {
10185 struct breakpoint *b;
10186 enum print_stop_action result;
10187 struct watchpoint *w;
10188 struct ui_out *uiout = current_uiout;
10189
10190 gdb_assert (bs->bp_location_at != NULL);
10191
10192 b = bs->breakpoint_at;
10193 w = (struct watchpoint *) b;
10194
10195 annotate_watchpoint (b->number);
10196 maybe_print_thread_hit_breakpoint (uiout);
10197
10198 string_file stb;
10199
10200 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10201 switch (b->type)
10202 {
10203 case bp_watchpoint:
10204 case bp_hardware_watchpoint:
10205 if (uiout->is_mi_like_p ())
10206 uiout->field_string
10207 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10208 mention (b);
10209 tuple_emitter.emplace (uiout, "value");
10210 uiout->text ("\nOld value = ");
10211 watchpoint_value_print (bs->old_val.get (), &stb);
10212 uiout->field_stream ("old", stb);
10213 uiout->text ("\nNew value = ");
10214 watchpoint_value_print (w->val.get (), &stb);
10215 uiout->field_stream ("new", stb);
10216 uiout->text ("\n");
10217 /* More than one watchpoint may have been triggered. */
10218 result = PRINT_UNKNOWN;
10219 break;
10220
10221 case bp_read_watchpoint:
10222 if (uiout->is_mi_like_p ())
10223 uiout->field_string
10224 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10225 mention (b);
10226 tuple_emitter.emplace (uiout, "value");
10227 uiout->text ("\nValue = ");
10228 watchpoint_value_print (w->val.get (), &stb);
10229 uiout->field_stream ("value", stb);
10230 uiout->text ("\n");
10231 result = PRINT_UNKNOWN;
10232 break;
10233
10234 case bp_access_watchpoint:
10235 if (bs->old_val != NULL)
10236 {
10237 if (uiout->is_mi_like_p ())
10238 uiout->field_string
10239 ("reason",
10240 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10241 mention (b);
10242 tuple_emitter.emplace (uiout, "value");
10243 uiout->text ("\nOld value = ");
10244 watchpoint_value_print (bs->old_val.get (), &stb);
10245 uiout->field_stream ("old", stb);
10246 uiout->text ("\nNew value = ");
10247 }
10248 else
10249 {
10250 mention (b);
10251 if (uiout->is_mi_like_p ())
10252 uiout->field_string
10253 ("reason",
10254 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10255 tuple_emitter.emplace (uiout, "value");
10256 uiout->text ("\nValue = ");
10257 }
10258 watchpoint_value_print (w->val.get (), &stb);
10259 uiout->field_stream ("new", stb);
10260 uiout->text ("\n");
10261 result = PRINT_UNKNOWN;
10262 break;
10263 default:
10264 result = PRINT_UNKNOWN;
10265 }
10266
10267 return result;
10268 }
10269
10270 /* Implement the "print_mention" breakpoint_ops method for hardware
10271 watchpoints. */
10272
10273 static void
10274 print_mention_watchpoint (struct breakpoint *b)
10275 {
10276 struct watchpoint *w = (struct watchpoint *) b;
10277 struct ui_out *uiout = current_uiout;
10278 const char *tuple_name;
10279
10280 switch (b->type)
10281 {
10282 case bp_watchpoint:
10283 uiout->text ("Watchpoint ");
10284 tuple_name = "wpt";
10285 break;
10286 case bp_hardware_watchpoint:
10287 uiout->text ("Hardware watchpoint ");
10288 tuple_name = "wpt";
10289 break;
10290 case bp_read_watchpoint:
10291 uiout->text ("Hardware read watchpoint ");
10292 tuple_name = "hw-rwpt";
10293 break;
10294 case bp_access_watchpoint:
10295 uiout->text ("Hardware access (read/write) watchpoint ");
10296 tuple_name = "hw-awpt";
10297 break;
10298 default:
10299 internal_error (__FILE__, __LINE__,
10300 _("Invalid hardware watchpoint type."));
10301 }
10302
10303 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10304 uiout->field_int ("number", b->number);
10305 uiout->text (": ");
10306 uiout->field_string ("exp", w->exp_string);
10307 }
10308
10309 /* Implement the "print_recreate" breakpoint_ops method for
10310 watchpoints. */
10311
10312 static void
10313 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10314 {
10315 struct watchpoint *w = (struct watchpoint *) b;
10316
10317 switch (b->type)
10318 {
10319 case bp_watchpoint:
10320 case bp_hardware_watchpoint:
10321 fprintf_unfiltered (fp, "watch");
10322 break;
10323 case bp_read_watchpoint:
10324 fprintf_unfiltered (fp, "rwatch");
10325 break;
10326 case bp_access_watchpoint:
10327 fprintf_unfiltered (fp, "awatch");
10328 break;
10329 default:
10330 internal_error (__FILE__, __LINE__,
10331 _("Invalid watchpoint type."));
10332 }
10333
10334 fprintf_unfiltered (fp, " %s", w->exp_string);
10335 print_recreate_thread (b, fp);
10336 }
10337
10338 /* Implement the "explains_signal" breakpoint_ops method for
10339 watchpoints. */
10340
10341 static int
10342 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10343 {
10344 /* A software watchpoint cannot cause a signal other than
10345 GDB_SIGNAL_TRAP. */
10346 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10347 return 0;
10348
10349 return 1;
10350 }
10351
10352 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10353
10354 static struct breakpoint_ops watchpoint_breakpoint_ops;
10355
10356 /* Implement the "insert" breakpoint_ops method for
10357 masked hardware watchpoints. */
10358
10359 static int
10360 insert_masked_watchpoint (struct bp_location *bl)
10361 {
10362 struct watchpoint *w = (struct watchpoint *) bl->owner;
10363
10364 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10365 bl->watchpoint_type);
10366 }
10367
10368 /* Implement the "remove" breakpoint_ops method for
10369 masked hardware watchpoints. */
10370
10371 static int
10372 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10373 {
10374 struct watchpoint *w = (struct watchpoint *) bl->owner;
10375
10376 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10377 bl->watchpoint_type);
10378 }
10379
10380 /* Implement the "resources_needed" breakpoint_ops method for
10381 masked hardware watchpoints. */
10382
10383 static int
10384 resources_needed_masked_watchpoint (const struct bp_location *bl)
10385 {
10386 struct watchpoint *w = (struct watchpoint *) bl->owner;
10387
10388 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10389 }
10390
10391 /* Implement the "works_in_software_mode" breakpoint_ops method for
10392 masked hardware watchpoints. */
10393
10394 static int
10395 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10396 {
10397 return 0;
10398 }
10399
10400 /* Implement the "print_it" breakpoint_ops method for
10401 masked hardware watchpoints. */
10402
10403 static enum print_stop_action
10404 print_it_masked_watchpoint (bpstat bs)
10405 {
10406 struct breakpoint *b = bs->breakpoint_at;
10407 struct ui_out *uiout = current_uiout;
10408
10409 /* Masked watchpoints have only one location. */
10410 gdb_assert (b->loc && b->loc->next == NULL);
10411
10412 annotate_watchpoint (b->number);
10413 maybe_print_thread_hit_breakpoint (uiout);
10414
10415 switch (b->type)
10416 {
10417 case bp_hardware_watchpoint:
10418 if (uiout->is_mi_like_p ())
10419 uiout->field_string
10420 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10421 break;
10422
10423 case bp_read_watchpoint:
10424 if (uiout->is_mi_like_p ())
10425 uiout->field_string
10426 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10427 break;
10428
10429 case bp_access_watchpoint:
10430 if (uiout->is_mi_like_p ())
10431 uiout->field_string
10432 ("reason",
10433 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10434 break;
10435 default:
10436 internal_error (__FILE__, __LINE__,
10437 _("Invalid hardware watchpoint type."));
10438 }
10439
10440 mention (b);
10441 uiout->text (_("\n\
10442 Check the underlying instruction at PC for the memory\n\
10443 address and value which triggered this watchpoint.\n"));
10444 uiout->text ("\n");
10445
10446 /* More than one watchpoint may have been triggered. */
10447 return PRINT_UNKNOWN;
10448 }
10449
10450 /* Implement the "print_one_detail" breakpoint_ops method for
10451 masked hardware watchpoints. */
10452
10453 static void
10454 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10455 struct ui_out *uiout)
10456 {
10457 struct watchpoint *w = (struct watchpoint *) b;
10458
10459 /* Masked watchpoints have only one location. */
10460 gdb_assert (b->loc && b->loc->next == NULL);
10461
10462 uiout->text ("\tmask ");
10463 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10464 uiout->text ("\n");
10465 }
10466
10467 /* Implement the "print_mention" breakpoint_ops method for
10468 masked hardware watchpoints. */
10469
10470 static void
10471 print_mention_masked_watchpoint (struct breakpoint *b)
10472 {
10473 struct watchpoint *w = (struct watchpoint *) b;
10474 struct ui_out *uiout = current_uiout;
10475 const char *tuple_name;
10476
10477 switch (b->type)
10478 {
10479 case bp_hardware_watchpoint:
10480 uiout->text ("Masked hardware watchpoint ");
10481 tuple_name = "wpt";
10482 break;
10483 case bp_read_watchpoint:
10484 uiout->text ("Masked hardware read watchpoint ");
10485 tuple_name = "hw-rwpt";
10486 break;
10487 case bp_access_watchpoint:
10488 uiout->text ("Masked hardware access (read/write) watchpoint ");
10489 tuple_name = "hw-awpt";
10490 break;
10491 default:
10492 internal_error (__FILE__, __LINE__,
10493 _("Invalid hardware watchpoint type."));
10494 }
10495
10496 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10497 uiout->field_int ("number", b->number);
10498 uiout->text (": ");
10499 uiout->field_string ("exp", w->exp_string);
10500 }
10501
10502 /* Implement the "print_recreate" breakpoint_ops method for
10503 masked hardware watchpoints. */
10504
10505 static void
10506 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10507 {
10508 struct watchpoint *w = (struct watchpoint *) b;
10509 char tmp[40];
10510
10511 switch (b->type)
10512 {
10513 case bp_hardware_watchpoint:
10514 fprintf_unfiltered (fp, "watch");
10515 break;
10516 case bp_read_watchpoint:
10517 fprintf_unfiltered (fp, "rwatch");
10518 break;
10519 case bp_access_watchpoint:
10520 fprintf_unfiltered (fp, "awatch");
10521 break;
10522 default:
10523 internal_error (__FILE__, __LINE__,
10524 _("Invalid hardware watchpoint type."));
10525 }
10526
10527 sprintf_vma (tmp, w->hw_wp_mask);
10528 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10529 print_recreate_thread (b, fp);
10530 }
10531
10532 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10533
10534 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10535
10536 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10537
10538 static int
10539 is_masked_watchpoint (const struct breakpoint *b)
10540 {
10541 return b->ops == &masked_watchpoint_breakpoint_ops;
10542 }
10543
10544 /* accessflag: hw_write: watch write,
10545 hw_read: watch read,
10546 hw_access: watch access (read or write) */
10547 static void
10548 watch_command_1 (const char *arg, int accessflag, int from_tty,
10549 int just_location, int internal)
10550 {
10551 struct breakpoint *scope_breakpoint = NULL;
10552 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10553 struct value *mark, *result;
10554 int saved_bitpos = 0, saved_bitsize = 0;
10555 const char *exp_start = NULL;
10556 const char *exp_end = NULL;
10557 const char *tok, *end_tok;
10558 int toklen = -1;
10559 const char *cond_start = NULL;
10560 const char *cond_end = NULL;
10561 enum bptype bp_type;
10562 int thread = -1;
10563 int pc = 0;
10564 /* Flag to indicate whether we are going to use masks for
10565 the hardware watchpoint. */
10566 int use_mask = 0;
10567 CORE_ADDR mask = 0;
10568
10569 /* Make sure that we actually have parameters to parse. */
10570 if (arg != NULL && arg[0] != '\0')
10571 {
10572 const char *value_start;
10573
10574 exp_end = arg + strlen (arg);
10575
10576 /* Look for "parameter value" pairs at the end
10577 of the arguments string. */
10578 for (tok = exp_end - 1; tok > arg; tok--)
10579 {
10580 /* Skip whitespace at the end of the argument list. */
10581 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10582 tok--;
10583
10584 /* Find the beginning of the last token.
10585 This is the value of the parameter. */
10586 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10587 tok--;
10588 value_start = tok + 1;
10589
10590 /* Skip whitespace. */
10591 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10592 tok--;
10593
10594 end_tok = tok;
10595
10596 /* Find the beginning of the second to last token.
10597 This is the parameter itself. */
10598 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10599 tok--;
10600 tok++;
10601 toklen = end_tok - tok + 1;
10602
10603 if (toklen == 6 && startswith (tok, "thread"))
10604 {
10605 struct thread_info *thr;
10606 /* At this point we've found a "thread" token, which means
10607 the user is trying to set a watchpoint that triggers
10608 only in a specific thread. */
10609 const char *endp;
10610
10611 if (thread != -1)
10612 error(_("You can specify only one thread."));
10613
10614 /* Extract the thread ID from the next token. */
10615 thr = parse_thread_id (value_start, &endp);
10616
10617 /* Check if the user provided a valid thread ID. */
10618 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10619 invalid_thread_id_error (value_start);
10620
10621 thread = thr->global_num;
10622 }
10623 else if (toklen == 4 && startswith (tok, "mask"))
10624 {
10625 /* We've found a "mask" token, which means the user wants to
10626 create a hardware watchpoint that is going to have the mask
10627 facility. */
10628 struct value *mask_value, *mark;
10629
10630 if (use_mask)
10631 error(_("You can specify only one mask."));
10632
10633 use_mask = just_location = 1;
10634
10635 mark = value_mark ();
10636 mask_value = parse_to_comma_and_eval (&value_start);
10637 mask = value_as_address (mask_value);
10638 value_free_to_mark (mark);
10639 }
10640 else
10641 /* We didn't recognize what we found. We should stop here. */
10642 break;
10643
10644 /* Truncate the string and get rid of the "parameter value" pair before
10645 the arguments string is parsed by the parse_exp_1 function. */
10646 exp_end = tok;
10647 }
10648 }
10649 else
10650 exp_end = arg;
10651
10652 /* Parse the rest of the arguments. From here on out, everything
10653 is in terms of a newly allocated string instead of the original
10654 ARG. */
10655 innermost_block.reset ();
10656 std::string expression (arg, exp_end - arg);
10657 exp_start = arg = expression.c_str ();
10658 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10659 exp_end = arg;
10660 /* Remove trailing whitespace from the expression before saving it.
10661 This makes the eventual display of the expression string a bit
10662 prettier. */
10663 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10664 --exp_end;
10665
10666 /* Checking if the expression is not constant. */
10667 if (watchpoint_exp_is_const (exp.get ()))
10668 {
10669 int len;
10670
10671 len = exp_end - exp_start;
10672 while (len > 0 && isspace (exp_start[len - 1]))
10673 len--;
10674 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10675 }
10676
10677 exp_valid_block = innermost_block.block ();
10678 mark = value_mark ();
10679 struct value *val_as_value = nullptr;
10680 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10681 just_location);
10682
10683 if (val_as_value != NULL && just_location)
10684 {
10685 saved_bitpos = value_bitpos (val_as_value);
10686 saved_bitsize = value_bitsize (val_as_value);
10687 }
10688
10689 value_ref_ptr val;
10690 if (just_location)
10691 {
10692 int ret;
10693
10694 exp_valid_block = NULL;
10695 val = release_value (value_addr (result));
10696 value_free_to_mark (mark);
10697
10698 if (use_mask)
10699 {
10700 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10701 mask);
10702 if (ret == -1)
10703 error (_("This target does not support masked watchpoints."));
10704 else if (ret == -2)
10705 error (_("Invalid mask or memory region."));
10706 }
10707 }
10708 else if (val_as_value != NULL)
10709 val = release_value (val_as_value);
10710
10711 tok = skip_spaces (arg);
10712 end_tok = skip_to_space (tok);
10713
10714 toklen = end_tok - tok;
10715 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10716 {
10717 innermost_block.reset ();
10718 tok = cond_start = end_tok + 1;
10719 parse_exp_1 (&tok, 0, 0, 0);
10720
10721 /* The watchpoint expression may not be local, but the condition
10722 may still be. E.g.: `watch global if local > 0'. */
10723 cond_exp_valid_block = innermost_block.block ();
10724
10725 cond_end = tok;
10726 }
10727 if (*tok)
10728 error (_("Junk at end of command."));
10729
10730 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10731
10732 /* Save this because create_internal_breakpoint below invalidates
10733 'wp_frame'. */
10734 frame_id watchpoint_frame = get_frame_id (wp_frame);
10735
10736 /* If the expression is "local", then set up a "watchpoint scope"
10737 breakpoint at the point where we've left the scope of the watchpoint
10738 expression. Create the scope breakpoint before the watchpoint, so
10739 that we will encounter it first in bpstat_stop_status. */
10740 if (exp_valid_block != NULL && wp_frame != NULL)
10741 {
10742 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10743
10744 if (frame_id_p (caller_frame_id))
10745 {
10746 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10747 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10748
10749 scope_breakpoint
10750 = create_internal_breakpoint (caller_arch, caller_pc,
10751 bp_watchpoint_scope,
10752 &momentary_breakpoint_ops);
10753
10754 /* create_internal_breakpoint could invalidate WP_FRAME. */
10755 wp_frame = NULL;
10756
10757 scope_breakpoint->enable_state = bp_enabled;
10758
10759 /* Automatically delete the breakpoint when it hits. */
10760 scope_breakpoint->disposition = disp_del;
10761
10762 /* Only break in the proper frame (help with recursion). */
10763 scope_breakpoint->frame_id = caller_frame_id;
10764
10765 /* Set the address at which we will stop. */
10766 scope_breakpoint->loc->gdbarch = caller_arch;
10767 scope_breakpoint->loc->requested_address = caller_pc;
10768 scope_breakpoint->loc->address
10769 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10770 scope_breakpoint->loc->requested_address,
10771 scope_breakpoint->type);
10772 }
10773 }
10774
10775 /* Now set up the breakpoint. We create all watchpoints as hardware
10776 watchpoints here even if hardware watchpoints are turned off, a call
10777 to update_watchpoint later in this function will cause the type to
10778 drop back to bp_watchpoint (software watchpoint) if required. */
10779
10780 if (accessflag == hw_read)
10781 bp_type = bp_read_watchpoint;
10782 else if (accessflag == hw_access)
10783 bp_type = bp_access_watchpoint;
10784 else
10785 bp_type = bp_hardware_watchpoint;
10786
10787 std::unique_ptr<watchpoint> w (new watchpoint ());
10788
10789 if (use_mask)
10790 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10791 &masked_watchpoint_breakpoint_ops);
10792 else
10793 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10794 &watchpoint_breakpoint_ops);
10795 w->thread = thread;
10796 w->disposition = disp_donttouch;
10797 w->pspace = current_program_space;
10798 w->exp = std::move (exp);
10799 w->exp_valid_block = exp_valid_block;
10800 w->cond_exp_valid_block = cond_exp_valid_block;
10801 if (just_location)
10802 {
10803 struct type *t = value_type (val.get ());
10804 CORE_ADDR addr = value_as_address (val.get ());
10805
10806 w->exp_string_reparse
10807 = current_language->la_watch_location_expression (t, addr).release ();
10808
10809 w->exp_string = xstrprintf ("-location %.*s",
10810 (int) (exp_end - exp_start), exp_start);
10811 }
10812 else
10813 w->exp_string = savestring (exp_start, exp_end - exp_start);
10814
10815 if (use_mask)
10816 {
10817 w->hw_wp_mask = mask;
10818 }
10819 else
10820 {
10821 w->val = val;
10822 w->val_bitpos = saved_bitpos;
10823 w->val_bitsize = saved_bitsize;
10824 w->val_valid = 1;
10825 }
10826
10827 if (cond_start)
10828 w->cond_string = savestring (cond_start, cond_end - cond_start);
10829 else
10830 w->cond_string = 0;
10831
10832 if (frame_id_p (watchpoint_frame))
10833 {
10834 w->watchpoint_frame = watchpoint_frame;
10835 w->watchpoint_thread = inferior_ptid;
10836 }
10837 else
10838 {
10839 w->watchpoint_frame = null_frame_id;
10840 w->watchpoint_thread = null_ptid;
10841 }
10842
10843 if (scope_breakpoint != NULL)
10844 {
10845 /* The scope breakpoint is related to the watchpoint. We will
10846 need to act on them together. */
10847 w->related_breakpoint = scope_breakpoint;
10848 scope_breakpoint->related_breakpoint = w.get ();
10849 }
10850
10851 if (!just_location)
10852 value_free_to_mark (mark);
10853
10854 /* Finally update the new watchpoint. This creates the locations
10855 that should be inserted. */
10856 update_watchpoint (w.get (), 1);
10857
10858 install_breakpoint (internal, std::move (w), 1);
10859 }
10860
10861 /* Return count of debug registers needed to watch the given expression.
10862 If the watchpoint cannot be handled in hardware return zero. */
10863
10864 static int
10865 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10866 {
10867 int found_memory_cnt = 0;
10868
10869 /* Did the user specifically forbid us to use hardware watchpoints? */
10870 if (!can_use_hw_watchpoints)
10871 return 0;
10872
10873 gdb_assert (!vals.empty ());
10874 struct value *head = vals[0].get ();
10875
10876 /* Make sure that the value of the expression depends only upon
10877 memory contents, and values computed from them within GDB. If we
10878 find any register references or function calls, we can't use a
10879 hardware watchpoint.
10880
10881 The idea here is that evaluating an expression generates a series
10882 of values, one holding the value of every subexpression. (The
10883 expression a*b+c has five subexpressions: a, b, a*b, c, and
10884 a*b+c.) GDB's values hold almost enough information to establish
10885 the criteria given above --- they identify memory lvalues,
10886 register lvalues, computed values, etcetera. So we can evaluate
10887 the expression, and then scan the chain of values that leaves
10888 behind to decide whether we can detect any possible change to the
10889 expression's final value using only hardware watchpoints.
10890
10891 However, I don't think that the values returned by inferior
10892 function calls are special in any way. So this function may not
10893 notice that an expression involving an inferior function call
10894 can't be watched with hardware watchpoints. FIXME. */
10895 for (const value_ref_ptr &iter : vals)
10896 {
10897 struct value *v = iter.get ();
10898
10899 if (VALUE_LVAL (v) == lval_memory)
10900 {
10901 if (v != head && value_lazy (v))
10902 /* A lazy memory lvalue in the chain is one that GDB never
10903 needed to fetch; we either just used its address (e.g.,
10904 `a' in `a.b') or we never needed it at all (e.g., `a'
10905 in `a,b'). This doesn't apply to HEAD; if that is
10906 lazy then it was not readable, but watch it anyway. */
10907 ;
10908 else
10909 {
10910 /* Ahh, memory we actually used! Check if we can cover
10911 it with hardware watchpoints. */
10912 struct type *vtype = check_typedef (value_type (v));
10913
10914 /* We only watch structs and arrays if user asked for it
10915 explicitly, never if they just happen to appear in a
10916 middle of some value chain. */
10917 if (v == head
10918 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10919 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10920 {
10921 CORE_ADDR vaddr = value_address (v);
10922 int len;
10923 int num_regs;
10924
10925 len = (target_exact_watchpoints
10926 && is_scalar_type_recursive (vtype))?
10927 1 : TYPE_LENGTH (value_type (v));
10928
10929 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10930 if (!num_regs)
10931 return 0;
10932 else
10933 found_memory_cnt += num_regs;
10934 }
10935 }
10936 }
10937 else if (VALUE_LVAL (v) != not_lval
10938 && deprecated_value_modifiable (v) == 0)
10939 return 0; /* These are values from the history (e.g., $1). */
10940 else if (VALUE_LVAL (v) == lval_register)
10941 return 0; /* Cannot watch a register with a HW watchpoint. */
10942 }
10943
10944 /* The expression itself looks suitable for using a hardware
10945 watchpoint, but give the target machine a chance to reject it. */
10946 return found_memory_cnt;
10947 }
10948
10949 void
10950 watch_command_wrapper (const char *arg, int from_tty, int internal)
10951 {
10952 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10953 }
10954
10955 /* A helper function that looks for the "-location" argument and then
10956 calls watch_command_1. */
10957
10958 static void
10959 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10960 {
10961 int just_location = 0;
10962
10963 if (arg
10964 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10965 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10966 {
10967 arg = skip_spaces (arg);
10968 just_location = 1;
10969 }
10970
10971 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10972 }
10973
10974 static void
10975 watch_command (const char *arg, int from_tty)
10976 {
10977 watch_maybe_just_location (arg, hw_write, from_tty);
10978 }
10979
10980 void
10981 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10982 {
10983 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10984 }
10985
10986 static void
10987 rwatch_command (const char *arg, int from_tty)
10988 {
10989 watch_maybe_just_location (arg, hw_read, from_tty);
10990 }
10991
10992 void
10993 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10994 {
10995 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10996 }
10997
10998 static void
10999 awatch_command (const char *arg, int from_tty)
11000 {
11001 watch_maybe_just_location (arg, hw_access, from_tty);
11002 }
11003 \f
11004
11005 /* Data for the FSM that manages the until(location)/advance commands
11006 in infcmd.c. Here because it uses the mechanisms of
11007 breakpoints. */
11008
11009 struct until_break_fsm
11010 {
11011 /* The base class. */
11012 struct thread_fsm thread_fsm;
11013
11014 /* The thread that as current when the command was executed. */
11015 int thread;
11016
11017 /* The breakpoint set at the destination location. */
11018 struct breakpoint *location_breakpoint;
11019
11020 /* Breakpoint set at the return address in the caller frame. May be
11021 NULL. */
11022 struct breakpoint *caller_breakpoint;
11023 };
11024
11025 static void until_break_fsm_clean_up (struct thread_fsm *self,
11026 struct thread_info *thread);
11027 static int until_break_fsm_should_stop (struct thread_fsm *self,
11028 struct thread_info *thread);
11029 static enum async_reply_reason
11030 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11031
11032 /* until_break_fsm's vtable. */
11033
11034 static struct thread_fsm_ops until_break_fsm_ops =
11035 {
11036 NULL, /* dtor */
11037 until_break_fsm_clean_up,
11038 until_break_fsm_should_stop,
11039 NULL, /* return_value */
11040 until_break_fsm_async_reply_reason,
11041 };
11042
11043 /* Allocate a new until_break_command_fsm. */
11044
11045 static struct until_break_fsm *
11046 new_until_break_fsm (struct interp *cmd_interp, int thread,
11047 breakpoint_up &&location_breakpoint,
11048 breakpoint_up &&caller_breakpoint)
11049 {
11050 struct until_break_fsm *sm;
11051
11052 sm = XCNEW (struct until_break_fsm);
11053 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11054
11055 sm->thread = thread;
11056 sm->location_breakpoint = location_breakpoint.release ();
11057 sm->caller_breakpoint = caller_breakpoint.release ();
11058
11059 return sm;
11060 }
11061
11062 /* Implementation of the 'should_stop' FSM method for the
11063 until(location)/advance commands. */
11064
11065 static int
11066 until_break_fsm_should_stop (struct thread_fsm *self,
11067 struct thread_info *tp)
11068 {
11069 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11070
11071 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11072 sm->location_breakpoint) != NULL
11073 || (sm->caller_breakpoint != NULL
11074 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11075 sm->caller_breakpoint) != NULL))
11076 thread_fsm_set_finished (self);
11077
11078 return 1;
11079 }
11080
11081 /* Implementation of the 'clean_up' FSM method for the
11082 until(location)/advance commands. */
11083
11084 static void
11085 until_break_fsm_clean_up (struct thread_fsm *self,
11086 struct thread_info *thread)
11087 {
11088 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11089
11090 /* Clean up our temporary breakpoints. */
11091 if (sm->location_breakpoint != NULL)
11092 {
11093 delete_breakpoint (sm->location_breakpoint);
11094 sm->location_breakpoint = NULL;
11095 }
11096 if (sm->caller_breakpoint != NULL)
11097 {
11098 delete_breakpoint (sm->caller_breakpoint);
11099 sm->caller_breakpoint = NULL;
11100 }
11101 delete_longjmp_breakpoint (sm->thread);
11102 }
11103
11104 /* Implementation of the 'async_reply_reason' FSM method for the
11105 until(location)/advance commands. */
11106
11107 static enum async_reply_reason
11108 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11109 {
11110 return EXEC_ASYNC_LOCATION_REACHED;
11111 }
11112
11113 void
11114 until_break_command (const char *arg, int from_tty, int anywhere)
11115 {
11116 struct frame_info *frame;
11117 struct gdbarch *frame_gdbarch;
11118 struct frame_id stack_frame_id;
11119 struct frame_id caller_frame_id;
11120 struct cleanup *old_chain;
11121 int thread;
11122 struct thread_info *tp;
11123 struct until_break_fsm *sm;
11124
11125 clear_proceed_status (0);
11126
11127 /* Set a breakpoint where the user wants it and at return from
11128 this function. */
11129
11130 event_location_up location = string_to_event_location (&arg, current_language);
11131
11132 std::vector<symtab_and_line> sals
11133 = (last_displayed_sal_is_valid ()
11134 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11135 get_last_displayed_symtab (),
11136 get_last_displayed_line ())
11137 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11138 NULL, (struct symtab *) NULL, 0));
11139
11140 if (sals.size () != 1)
11141 error (_("Couldn't get information on specified line."));
11142
11143 symtab_and_line &sal = sals[0];
11144
11145 if (*arg)
11146 error (_("Junk at end of arguments."));
11147
11148 resolve_sal_pc (&sal);
11149
11150 tp = inferior_thread ();
11151 thread = tp->global_num;
11152
11153 old_chain = make_cleanup (null_cleanup, NULL);
11154
11155 /* Note linespec handling above invalidates the frame chain.
11156 Installing a breakpoint also invalidates the frame chain (as it
11157 may need to switch threads), so do any frame handling before
11158 that. */
11159
11160 frame = get_selected_frame (NULL);
11161 frame_gdbarch = get_frame_arch (frame);
11162 stack_frame_id = get_stack_frame_id (frame);
11163 caller_frame_id = frame_unwind_caller_id (frame);
11164
11165 /* Keep within the current frame, or in frames called by the current
11166 one. */
11167
11168 breakpoint_up caller_breakpoint;
11169 if (frame_id_p (caller_frame_id))
11170 {
11171 struct symtab_and_line sal2;
11172 struct gdbarch *caller_gdbarch;
11173
11174 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11175 sal2.pc = frame_unwind_caller_pc (frame);
11176 caller_gdbarch = frame_unwind_caller_arch (frame);
11177 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11178 sal2,
11179 caller_frame_id,
11180 bp_until);
11181
11182 set_longjmp_breakpoint (tp, caller_frame_id);
11183 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11184 }
11185
11186 /* set_momentary_breakpoint could invalidate FRAME. */
11187 frame = NULL;
11188
11189 breakpoint_up location_breakpoint;
11190 if (anywhere)
11191 /* If the user told us to continue until a specified location,
11192 we don't specify a frame at which we need to stop. */
11193 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11194 null_frame_id, bp_until);
11195 else
11196 /* Otherwise, specify the selected frame, because we want to stop
11197 only at the very same frame. */
11198 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11199 stack_frame_id, bp_until);
11200
11201 sm = new_until_break_fsm (command_interp (), tp->global_num,
11202 std::move (location_breakpoint),
11203 std::move (caller_breakpoint));
11204 tp->thread_fsm = &sm->thread_fsm;
11205
11206 discard_cleanups (old_chain);
11207
11208 proceed (-1, GDB_SIGNAL_DEFAULT);
11209 }
11210
11211 /* This function attempts to parse an optional "if <cond>" clause
11212 from the arg string. If one is not found, it returns NULL.
11213
11214 Else, it returns a pointer to the condition string. (It does not
11215 attempt to evaluate the string against a particular block.) And,
11216 it updates arg to point to the first character following the parsed
11217 if clause in the arg string. */
11218
11219 const char *
11220 ep_parse_optional_if_clause (const char **arg)
11221 {
11222 const char *cond_string;
11223
11224 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11225 return NULL;
11226
11227 /* Skip the "if" keyword. */
11228 (*arg) += 2;
11229
11230 /* Skip any extra leading whitespace, and record the start of the
11231 condition string. */
11232 *arg = skip_spaces (*arg);
11233 cond_string = *arg;
11234
11235 /* Assume that the condition occupies the remainder of the arg
11236 string. */
11237 (*arg) += strlen (cond_string);
11238
11239 return cond_string;
11240 }
11241
11242 /* Commands to deal with catching events, such as signals, exceptions,
11243 process start/exit, etc. */
11244
11245 typedef enum
11246 {
11247 catch_fork_temporary, catch_vfork_temporary,
11248 catch_fork_permanent, catch_vfork_permanent
11249 }
11250 catch_fork_kind;
11251
11252 static void
11253 catch_fork_command_1 (const char *arg, int from_tty,
11254 struct cmd_list_element *command)
11255 {
11256 struct gdbarch *gdbarch = get_current_arch ();
11257 const char *cond_string = NULL;
11258 catch_fork_kind fork_kind;
11259 int tempflag;
11260
11261 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11262 tempflag = (fork_kind == catch_fork_temporary
11263 || fork_kind == catch_vfork_temporary);
11264
11265 if (!arg)
11266 arg = "";
11267 arg = skip_spaces (arg);
11268
11269 /* The allowed syntax is:
11270 catch [v]fork
11271 catch [v]fork if <cond>
11272
11273 First, check if there's an if clause. */
11274 cond_string = ep_parse_optional_if_clause (&arg);
11275
11276 if ((*arg != '\0') && !isspace (*arg))
11277 error (_("Junk at end of arguments."));
11278
11279 /* If this target supports it, create a fork or vfork catchpoint
11280 and enable reporting of such events. */
11281 switch (fork_kind)
11282 {
11283 case catch_fork_temporary:
11284 case catch_fork_permanent:
11285 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11286 &catch_fork_breakpoint_ops);
11287 break;
11288 case catch_vfork_temporary:
11289 case catch_vfork_permanent:
11290 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11291 &catch_vfork_breakpoint_ops);
11292 break;
11293 default:
11294 error (_("unsupported or unknown fork kind; cannot catch it"));
11295 break;
11296 }
11297 }
11298
11299 static void
11300 catch_exec_command_1 (const char *arg, int from_tty,
11301 struct cmd_list_element *command)
11302 {
11303 struct gdbarch *gdbarch = get_current_arch ();
11304 int tempflag;
11305 const char *cond_string = NULL;
11306
11307 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11308
11309 if (!arg)
11310 arg = "";
11311 arg = skip_spaces (arg);
11312
11313 /* The allowed syntax is:
11314 catch exec
11315 catch exec if <cond>
11316
11317 First, check if there's an if clause. */
11318 cond_string = ep_parse_optional_if_clause (&arg);
11319
11320 if ((*arg != '\0') && !isspace (*arg))
11321 error (_("Junk at end of arguments."));
11322
11323 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11324 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11325 &catch_exec_breakpoint_ops);
11326 c->exec_pathname = NULL;
11327
11328 install_breakpoint (0, std::move (c), 1);
11329 }
11330
11331 void
11332 init_ada_exception_breakpoint (struct breakpoint *b,
11333 struct gdbarch *gdbarch,
11334 struct symtab_and_line sal,
11335 const char *addr_string,
11336 const struct breakpoint_ops *ops,
11337 int tempflag,
11338 int enabled,
11339 int from_tty)
11340 {
11341 if (from_tty)
11342 {
11343 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11344 if (!loc_gdbarch)
11345 loc_gdbarch = gdbarch;
11346
11347 describe_other_breakpoints (loc_gdbarch,
11348 sal.pspace, sal.pc, sal.section, -1);
11349 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11350 version for exception catchpoints, because two catchpoints
11351 used for different exception names will use the same address.
11352 In this case, a "breakpoint ... also set at..." warning is
11353 unproductive. Besides, the warning phrasing is also a bit
11354 inappropriate, we should use the word catchpoint, and tell
11355 the user what type of catchpoint it is. The above is good
11356 enough for now, though. */
11357 }
11358
11359 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11360
11361 b->enable_state = enabled ? bp_enabled : bp_disabled;
11362 b->disposition = tempflag ? disp_del : disp_donttouch;
11363 b->location = string_to_event_location (&addr_string,
11364 language_def (language_ada));
11365 b->language = language_ada;
11366 }
11367
11368 static void
11369 catch_command (const char *arg, int from_tty)
11370 {
11371 error (_("Catch requires an event name."));
11372 }
11373 \f
11374
11375 static void
11376 tcatch_command (const char *arg, int from_tty)
11377 {
11378 error (_("Catch requires an event name."));
11379 }
11380
11381 /* Compare two breakpoints and return a strcmp-like result. */
11382
11383 static int
11384 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11385 {
11386 uintptr_t ua = (uintptr_t) a;
11387 uintptr_t ub = (uintptr_t) b;
11388
11389 if (a->number < b->number)
11390 return -1;
11391 else if (a->number > b->number)
11392 return 1;
11393
11394 /* Now sort by address, in case we see, e..g, two breakpoints with
11395 the number 0. */
11396 if (ua < ub)
11397 return -1;
11398 return ua > ub ? 1 : 0;
11399 }
11400
11401 /* Delete breakpoints by address or line. */
11402
11403 static void
11404 clear_command (const char *arg, int from_tty)
11405 {
11406 struct breakpoint *b;
11407 int default_match;
11408
11409 std::vector<symtab_and_line> decoded_sals;
11410 symtab_and_line last_sal;
11411 gdb::array_view<symtab_and_line> sals;
11412 if (arg)
11413 {
11414 decoded_sals
11415 = decode_line_with_current_source (arg,
11416 (DECODE_LINE_FUNFIRSTLINE
11417 | DECODE_LINE_LIST_MODE));
11418 default_match = 0;
11419 sals = decoded_sals;
11420 }
11421 else
11422 {
11423 /* Set sal's line, symtab, pc, and pspace to the values
11424 corresponding to the last call to print_frame_info. If the
11425 codepoint is not valid, this will set all the fields to 0. */
11426 last_sal = get_last_displayed_sal ();
11427 if (last_sal.symtab == 0)
11428 error (_("No source file specified."));
11429
11430 default_match = 1;
11431 sals = last_sal;
11432 }
11433
11434 /* We don't call resolve_sal_pc here. That's not as bad as it
11435 seems, because all existing breakpoints typically have both
11436 file/line and pc set. So, if clear is given file/line, we can
11437 match this to existing breakpoint without obtaining pc at all.
11438
11439 We only support clearing given the address explicitly
11440 present in breakpoint table. Say, we've set breakpoint
11441 at file:line. There were several PC values for that file:line,
11442 due to optimization, all in one block.
11443
11444 We've picked one PC value. If "clear" is issued with another
11445 PC corresponding to the same file:line, the breakpoint won't
11446 be cleared. We probably can still clear the breakpoint, but
11447 since the other PC value is never presented to user, user
11448 can only find it by guessing, and it does not seem important
11449 to support that. */
11450
11451 /* For each line spec given, delete bps which correspond to it. Do
11452 it in two passes, solely to preserve the current behavior that
11453 from_tty is forced true if we delete more than one
11454 breakpoint. */
11455
11456 std::vector<struct breakpoint *> found;
11457 for (const auto &sal : sals)
11458 {
11459 const char *sal_fullname;
11460
11461 /* If exact pc given, clear bpts at that pc.
11462 If line given (pc == 0), clear all bpts on specified line.
11463 If defaulting, clear all bpts on default line
11464 or at default pc.
11465
11466 defaulting sal.pc != 0 tests to do
11467
11468 0 1 pc
11469 1 1 pc _and_ line
11470 0 0 line
11471 1 0 <can't happen> */
11472
11473 sal_fullname = (sal.symtab == NULL
11474 ? NULL : symtab_to_fullname (sal.symtab));
11475
11476 /* Find all matching breakpoints and add them to 'found'. */
11477 ALL_BREAKPOINTS (b)
11478 {
11479 int match = 0;
11480 /* Are we going to delete b? */
11481 if (b->type != bp_none && !is_watchpoint (b))
11482 {
11483 struct bp_location *loc = b->loc;
11484 for (; loc; loc = loc->next)
11485 {
11486 /* If the user specified file:line, don't allow a PC
11487 match. This matches historical gdb behavior. */
11488 int pc_match = (!sal.explicit_line
11489 && sal.pc
11490 && (loc->pspace == sal.pspace)
11491 && (loc->address == sal.pc)
11492 && (!section_is_overlay (loc->section)
11493 || loc->section == sal.section));
11494 int line_match = 0;
11495
11496 if ((default_match || sal.explicit_line)
11497 && loc->symtab != NULL
11498 && sal_fullname != NULL
11499 && sal.pspace == loc->pspace
11500 && loc->line_number == sal.line
11501 && filename_cmp (symtab_to_fullname (loc->symtab),
11502 sal_fullname) == 0)
11503 line_match = 1;
11504
11505 if (pc_match || line_match)
11506 {
11507 match = 1;
11508 break;
11509 }
11510 }
11511 }
11512
11513 if (match)
11514 found.push_back (b);
11515 }
11516 }
11517
11518 /* Now go thru the 'found' chain and delete them. */
11519 if (found.empty ())
11520 {
11521 if (arg)
11522 error (_("No breakpoint at %s."), arg);
11523 else
11524 error (_("No breakpoint at this line."));
11525 }
11526
11527 /* Remove duplicates from the vec. */
11528 std::sort (found.begin (), found.end (),
11529 [] (const breakpoint *a, const breakpoint *b)
11530 {
11531 return compare_breakpoints (a, b) < 0;
11532 });
11533 found.erase (std::unique (found.begin (), found.end (),
11534 [] (const breakpoint *a, const breakpoint *b)
11535 {
11536 return compare_breakpoints (a, b) == 0;
11537 }),
11538 found.end ());
11539
11540 if (found.size () > 1)
11541 from_tty = 1; /* Always report if deleted more than one. */
11542 if (from_tty)
11543 {
11544 if (found.size () == 1)
11545 printf_unfiltered (_("Deleted breakpoint "));
11546 else
11547 printf_unfiltered (_("Deleted breakpoints "));
11548 }
11549
11550 for (breakpoint *iter : found)
11551 {
11552 if (from_tty)
11553 printf_unfiltered ("%d ", iter->number);
11554 delete_breakpoint (iter);
11555 }
11556 if (from_tty)
11557 putchar_unfiltered ('\n');
11558 }
11559 \f
11560 /* Delete breakpoint in BS if they are `delete' breakpoints and
11561 all breakpoints that are marked for deletion, whether hit or not.
11562 This is called after any breakpoint is hit, or after errors. */
11563
11564 void
11565 breakpoint_auto_delete (bpstat bs)
11566 {
11567 struct breakpoint *b, *b_tmp;
11568
11569 for (; bs; bs = bs->next)
11570 if (bs->breakpoint_at
11571 && bs->breakpoint_at->disposition == disp_del
11572 && bs->stop)
11573 delete_breakpoint (bs->breakpoint_at);
11574
11575 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11576 {
11577 if (b->disposition == disp_del_at_next_stop)
11578 delete_breakpoint (b);
11579 }
11580 }
11581
11582 /* A comparison function for bp_location AP and BP being interfaced to
11583 qsort. Sort elements primarily by their ADDRESS (no matter what
11584 does breakpoint_address_is_meaningful say for its OWNER),
11585 secondarily by ordering first permanent elements and
11586 terciarily just ensuring the array is sorted stable way despite
11587 qsort being an unstable algorithm. */
11588
11589 static int
11590 bp_locations_compare (const void *ap, const void *bp)
11591 {
11592 const struct bp_location *a = *(const struct bp_location **) ap;
11593 const struct bp_location *b = *(const struct bp_location **) bp;
11594
11595 if (a->address != b->address)
11596 return (a->address > b->address) - (a->address < b->address);
11597
11598 /* Sort locations at the same address by their pspace number, keeping
11599 locations of the same inferior (in a multi-inferior environment)
11600 grouped. */
11601
11602 if (a->pspace->num != b->pspace->num)
11603 return ((a->pspace->num > b->pspace->num)
11604 - (a->pspace->num < b->pspace->num));
11605
11606 /* Sort permanent breakpoints first. */
11607 if (a->permanent != b->permanent)
11608 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11609
11610 /* Make the internal GDB representation stable across GDB runs
11611 where A and B memory inside GDB can differ. Breakpoint locations of
11612 the same type at the same address can be sorted in arbitrary order. */
11613
11614 if (a->owner->number != b->owner->number)
11615 return ((a->owner->number > b->owner->number)
11616 - (a->owner->number < b->owner->number));
11617
11618 return (a > b) - (a < b);
11619 }
11620
11621 /* Set bp_locations_placed_address_before_address_max and
11622 bp_locations_shadow_len_after_address_max according to the current
11623 content of the bp_locations array. */
11624
11625 static void
11626 bp_locations_target_extensions_update (void)
11627 {
11628 struct bp_location *bl, **blp_tmp;
11629
11630 bp_locations_placed_address_before_address_max = 0;
11631 bp_locations_shadow_len_after_address_max = 0;
11632
11633 ALL_BP_LOCATIONS (bl, blp_tmp)
11634 {
11635 CORE_ADDR start, end, addr;
11636
11637 if (!bp_location_has_shadow (bl))
11638 continue;
11639
11640 start = bl->target_info.placed_address;
11641 end = start + bl->target_info.shadow_len;
11642
11643 gdb_assert (bl->address >= start);
11644 addr = bl->address - start;
11645 if (addr > bp_locations_placed_address_before_address_max)
11646 bp_locations_placed_address_before_address_max = addr;
11647
11648 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11649
11650 gdb_assert (bl->address < end);
11651 addr = end - bl->address;
11652 if (addr > bp_locations_shadow_len_after_address_max)
11653 bp_locations_shadow_len_after_address_max = addr;
11654 }
11655 }
11656
11657 /* Download tracepoint locations if they haven't been. */
11658
11659 static void
11660 download_tracepoint_locations (void)
11661 {
11662 struct breakpoint *b;
11663 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11664
11665 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11666
11667 ALL_TRACEPOINTS (b)
11668 {
11669 struct bp_location *bl;
11670 struct tracepoint *t;
11671 int bp_location_downloaded = 0;
11672
11673 if ((b->type == bp_fast_tracepoint
11674 ? !may_insert_fast_tracepoints
11675 : !may_insert_tracepoints))
11676 continue;
11677
11678 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11679 {
11680 if (target_can_download_tracepoint ())
11681 can_download_tracepoint = TRIBOOL_TRUE;
11682 else
11683 can_download_tracepoint = TRIBOOL_FALSE;
11684 }
11685
11686 if (can_download_tracepoint == TRIBOOL_FALSE)
11687 break;
11688
11689 for (bl = b->loc; bl; bl = bl->next)
11690 {
11691 /* In tracepoint, locations are _never_ duplicated, so
11692 should_be_inserted is equivalent to
11693 unduplicated_should_be_inserted. */
11694 if (!should_be_inserted (bl) || bl->inserted)
11695 continue;
11696
11697 switch_to_program_space_and_thread (bl->pspace);
11698
11699 target_download_tracepoint (bl);
11700
11701 bl->inserted = 1;
11702 bp_location_downloaded = 1;
11703 }
11704 t = (struct tracepoint *) b;
11705 t->number_on_target = b->number;
11706 if (bp_location_downloaded)
11707 gdb::observers::breakpoint_modified.notify (b);
11708 }
11709 }
11710
11711 /* Swap the insertion/duplication state between two locations. */
11712
11713 static void
11714 swap_insertion (struct bp_location *left, struct bp_location *right)
11715 {
11716 const int left_inserted = left->inserted;
11717 const int left_duplicate = left->duplicate;
11718 const int left_needs_update = left->needs_update;
11719 const struct bp_target_info left_target_info = left->target_info;
11720
11721 /* Locations of tracepoints can never be duplicated. */
11722 if (is_tracepoint (left->owner))
11723 gdb_assert (!left->duplicate);
11724 if (is_tracepoint (right->owner))
11725 gdb_assert (!right->duplicate);
11726
11727 left->inserted = right->inserted;
11728 left->duplicate = right->duplicate;
11729 left->needs_update = right->needs_update;
11730 left->target_info = right->target_info;
11731 right->inserted = left_inserted;
11732 right->duplicate = left_duplicate;
11733 right->needs_update = left_needs_update;
11734 right->target_info = left_target_info;
11735 }
11736
11737 /* Force the re-insertion of the locations at ADDRESS. This is called
11738 once a new/deleted/modified duplicate location is found and we are evaluating
11739 conditions on the target's side. Such conditions need to be updated on
11740 the target. */
11741
11742 static void
11743 force_breakpoint_reinsertion (struct bp_location *bl)
11744 {
11745 struct bp_location **locp = NULL, **loc2p;
11746 struct bp_location *loc;
11747 CORE_ADDR address = 0;
11748 int pspace_num;
11749
11750 address = bl->address;
11751 pspace_num = bl->pspace->num;
11752
11753 /* This is only meaningful if the target is
11754 evaluating conditions and if the user has
11755 opted for condition evaluation on the target's
11756 side. */
11757 if (gdb_evaluates_breakpoint_condition_p ()
11758 || !target_supports_evaluation_of_breakpoint_conditions ())
11759 return;
11760
11761 /* Flag all breakpoint locations with this address and
11762 the same program space as the location
11763 as "its condition has changed". We need to
11764 update the conditions on the target's side. */
11765 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11766 {
11767 loc = *loc2p;
11768
11769 if (!is_breakpoint (loc->owner)
11770 || pspace_num != loc->pspace->num)
11771 continue;
11772
11773 /* Flag the location appropriately. We use a different state to
11774 let everyone know that we already updated the set of locations
11775 with addr bl->address and program space bl->pspace. This is so
11776 we don't have to keep calling these functions just to mark locations
11777 that have already been marked. */
11778 loc->condition_changed = condition_updated;
11779
11780 /* Free the agent expression bytecode as well. We will compute
11781 it later on. */
11782 loc->cond_bytecode.reset ();
11783 }
11784 }
11785 /* Called whether new breakpoints are created, or existing breakpoints
11786 deleted, to update the global location list and recompute which
11787 locations are duplicate of which.
11788
11789 The INSERT_MODE flag determines whether locations may not, may, or
11790 shall be inserted now. See 'enum ugll_insert_mode' for more
11791 info. */
11792
11793 static void
11794 update_global_location_list (enum ugll_insert_mode insert_mode)
11795 {
11796 struct breakpoint *b;
11797 struct bp_location **locp, *loc;
11798 /* Last breakpoint location address that was marked for update. */
11799 CORE_ADDR last_addr = 0;
11800 /* Last breakpoint location program space that was marked for update. */
11801 int last_pspace_num = -1;
11802
11803 /* Used in the duplicates detection below. When iterating over all
11804 bp_locations, points to the first bp_location of a given address.
11805 Breakpoints and watchpoints of different types are never
11806 duplicates of each other. Keep one pointer for each type of
11807 breakpoint/watchpoint, so we only need to loop over all locations
11808 once. */
11809 struct bp_location *bp_loc_first; /* breakpoint */
11810 struct bp_location *wp_loc_first; /* hardware watchpoint */
11811 struct bp_location *awp_loc_first; /* access watchpoint */
11812 struct bp_location *rwp_loc_first; /* read watchpoint */
11813
11814 /* Saved former bp_locations array which we compare against the newly
11815 built bp_locations from the current state of ALL_BREAKPOINTS. */
11816 struct bp_location **old_locp;
11817 unsigned old_locations_count;
11818 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11819
11820 old_locations_count = bp_locations_count;
11821 bp_locations = NULL;
11822 bp_locations_count = 0;
11823
11824 ALL_BREAKPOINTS (b)
11825 for (loc = b->loc; loc; loc = loc->next)
11826 bp_locations_count++;
11827
11828 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11829 locp = bp_locations;
11830 ALL_BREAKPOINTS (b)
11831 for (loc = b->loc; loc; loc = loc->next)
11832 *locp++ = loc;
11833 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11834 bp_locations_compare);
11835
11836 bp_locations_target_extensions_update ();
11837
11838 /* Identify bp_location instances that are no longer present in the
11839 new list, and therefore should be freed. Note that it's not
11840 necessary that those locations should be removed from inferior --
11841 if there's another location at the same address (previously
11842 marked as duplicate), we don't need to remove/insert the
11843 location.
11844
11845 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11846 and former bp_location array state respectively. */
11847
11848 locp = bp_locations;
11849 for (old_locp = old_locations.get ();
11850 old_locp < old_locations.get () + old_locations_count;
11851 old_locp++)
11852 {
11853 struct bp_location *old_loc = *old_locp;
11854 struct bp_location **loc2p;
11855
11856 /* Tells if 'old_loc' is found among the new locations. If
11857 not, we have to free it. */
11858 int found_object = 0;
11859 /* Tells if the location should remain inserted in the target. */
11860 int keep_in_target = 0;
11861 int removed = 0;
11862
11863 /* Skip LOCP entries which will definitely never be needed.
11864 Stop either at or being the one matching OLD_LOC. */
11865 while (locp < bp_locations + bp_locations_count
11866 && (*locp)->address < old_loc->address)
11867 locp++;
11868
11869 for (loc2p = locp;
11870 (loc2p < bp_locations + bp_locations_count
11871 && (*loc2p)->address == old_loc->address);
11872 loc2p++)
11873 {
11874 /* Check if this is a new/duplicated location or a duplicated
11875 location that had its condition modified. If so, we want to send
11876 its condition to the target if evaluation of conditions is taking
11877 place there. */
11878 if ((*loc2p)->condition_changed == condition_modified
11879 && (last_addr != old_loc->address
11880 || last_pspace_num != old_loc->pspace->num))
11881 {
11882 force_breakpoint_reinsertion (*loc2p);
11883 last_pspace_num = old_loc->pspace->num;
11884 }
11885
11886 if (*loc2p == old_loc)
11887 found_object = 1;
11888 }
11889
11890 /* We have already handled this address, update it so that we don't
11891 have to go through updates again. */
11892 last_addr = old_loc->address;
11893
11894 /* Target-side condition evaluation: Handle deleted locations. */
11895 if (!found_object)
11896 force_breakpoint_reinsertion (old_loc);
11897
11898 /* If this location is no longer present, and inserted, look if
11899 there's maybe a new location at the same address. If so,
11900 mark that one inserted, and don't remove this one. This is
11901 needed so that we don't have a time window where a breakpoint
11902 at certain location is not inserted. */
11903
11904 if (old_loc->inserted)
11905 {
11906 /* If the location is inserted now, we might have to remove
11907 it. */
11908
11909 if (found_object && should_be_inserted (old_loc))
11910 {
11911 /* The location is still present in the location list,
11912 and still should be inserted. Don't do anything. */
11913 keep_in_target = 1;
11914 }
11915 else
11916 {
11917 /* This location still exists, but it won't be kept in the
11918 target since it may have been disabled. We proceed to
11919 remove its target-side condition. */
11920
11921 /* The location is either no longer present, or got
11922 disabled. See if there's another location at the
11923 same address, in which case we don't need to remove
11924 this one from the target. */
11925
11926 /* OLD_LOC comes from existing struct breakpoint. */
11927 if (breakpoint_address_is_meaningful (old_loc->owner))
11928 {
11929 for (loc2p = locp;
11930 (loc2p < bp_locations + bp_locations_count
11931 && (*loc2p)->address == old_loc->address);
11932 loc2p++)
11933 {
11934 struct bp_location *loc2 = *loc2p;
11935
11936 if (breakpoint_locations_match (loc2, old_loc))
11937 {
11938 /* Read watchpoint locations are switched to
11939 access watchpoints, if the former are not
11940 supported, but the latter are. */
11941 if (is_hardware_watchpoint (old_loc->owner))
11942 {
11943 gdb_assert (is_hardware_watchpoint (loc2->owner));
11944 loc2->watchpoint_type = old_loc->watchpoint_type;
11945 }
11946
11947 /* loc2 is a duplicated location. We need to check
11948 if it should be inserted in case it will be
11949 unduplicated. */
11950 if (loc2 != old_loc
11951 && unduplicated_should_be_inserted (loc2))
11952 {
11953 swap_insertion (old_loc, loc2);
11954 keep_in_target = 1;
11955 break;
11956 }
11957 }
11958 }
11959 }
11960 }
11961
11962 if (!keep_in_target)
11963 {
11964 if (remove_breakpoint (old_loc))
11965 {
11966 /* This is just about all we can do. We could keep
11967 this location on the global list, and try to
11968 remove it next time, but there's no particular
11969 reason why we will succeed next time.
11970
11971 Note that at this point, old_loc->owner is still
11972 valid, as delete_breakpoint frees the breakpoint
11973 only after calling us. */
11974 printf_filtered (_("warning: Error removing "
11975 "breakpoint %d\n"),
11976 old_loc->owner->number);
11977 }
11978 removed = 1;
11979 }
11980 }
11981
11982 if (!found_object)
11983 {
11984 if (removed && target_is_non_stop_p ()
11985 && need_moribund_for_location_type (old_loc))
11986 {
11987 /* This location was removed from the target. In
11988 non-stop mode, a race condition is possible where
11989 we've removed a breakpoint, but stop events for that
11990 breakpoint are already queued and will arrive later.
11991 We apply an heuristic to be able to distinguish such
11992 SIGTRAPs from other random SIGTRAPs: we keep this
11993 breakpoint location for a bit, and will retire it
11994 after we see some number of events. The theory here
11995 is that reporting of events should, "on the average",
11996 be fair, so after a while we'll see events from all
11997 threads that have anything of interest, and no longer
11998 need to keep this breakpoint location around. We
11999 don't hold locations forever so to reduce chances of
12000 mistaking a non-breakpoint SIGTRAP for a breakpoint
12001 SIGTRAP.
12002
12003 The heuristic failing can be disastrous on
12004 decr_pc_after_break targets.
12005
12006 On decr_pc_after_break targets, like e.g., x86-linux,
12007 if we fail to recognize a late breakpoint SIGTRAP,
12008 because events_till_retirement has reached 0 too
12009 soon, we'll fail to do the PC adjustment, and report
12010 a random SIGTRAP to the user. When the user resumes
12011 the inferior, it will most likely immediately crash
12012 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12013 corrupted, because of being resumed e.g., in the
12014 middle of a multi-byte instruction, or skipped a
12015 one-byte instruction. This was actually seen happen
12016 on native x86-linux, and should be less rare on
12017 targets that do not support new thread events, like
12018 remote, due to the heuristic depending on
12019 thread_count.
12020
12021 Mistaking a random SIGTRAP for a breakpoint trap
12022 causes similar symptoms (PC adjustment applied when
12023 it shouldn't), but then again, playing with SIGTRAPs
12024 behind the debugger's back is asking for trouble.
12025
12026 Since hardware watchpoint traps are always
12027 distinguishable from other traps, so we don't need to
12028 apply keep hardware watchpoint moribund locations
12029 around. We simply always ignore hardware watchpoint
12030 traps we can no longer explain. */
12031
12032 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12033 old_loc->owner = NULL;
12034
12035 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12036 }
12037 else
12038 {
12039 old_loc->owner = NULL;
12040 decref_bp_location (&old_loc);
12041 }
12042 }
12043 }
12044
12045 /* Rescan breakpoints at the same address and section, marking the
12046 first one as "first" and any others as "duplicates". This is so
12047 that the bpt instruction is only inserted once. If we have a
12048 permanent breakpoint at the same place as BPT, make that one the
12049 official one, and the rest as duplicates. Permanent breakpoints
12050 are sorted first for the same address.
12051
12052 Do the same for hardware watchpoints, but also considering the
12053 watchpoint's type (regular/access/read) and length. */
12054
12055 bp_loc_first = NULL;
12056 wp_loc_first = NULL;
12057 awp_loc_first = NULL;
12058 rwp_loc_first = NULL;
12059 ALL_BP_LOCATIONS (loc, locp)
12060 {
12061 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12062 non-NULL. */
12063 struct bp_location **loc_first_p;
12064 b = loc->owner;
12065
12066 if (!unduplicated_should_be_inserted (loc)
12067 || !breakpoint_address_is_meaningful (b)
12068 /* Don't detect duplicate for tracepoint locations because they are
12069 never duplicated. See the comments in field `duplicate' of
12070 `struct bp_location'. */
12071 || is_tracepoint (b))
12072 {
12073 /* Clear the condition modification flag. */
12074 loc->condition_changed = condition_unchanged;
12075 continue;
12076 }
12077
12078 if (b->type == bp_hardware_watchpoint)
12079 loc_first_p = &wp_loc_first;
12080 else if (b->type == bp_read_watchpoint)
12081 loc_first_p = &rwp_loc_first;
12082 else if (b->type == bp_access_watchpoint)
12083 loc_first_p = &awp_loc_first;
12084 else
12085 loc_first_p = &bp_loc_first;
12086
12087 if (*loc_first_p == NULL
12088 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12089 || !breakpoint_locations_match (loc, *loc_first_p))
12090 {
12091 *loc_first_p = loc;
12092 loc->duplicate = 0;
12093
12094 if (is_breakpoint (loc->owner) && loc->condition_changed)
12095 {
12096 loc->needs_update = 1;
12097 /* Clear the condition modification flag. */
12098 loc->condition_changed = condition_unchanged;
12099 }
12100 continue;
12101 }
12102
12103
12104 /* This and the above ensure the invariant that the first location
12105 is not duplicated, and is the inserted one.
12106 All following are marked as duplicated, and are not inserted. */
12107 if (loc->inserted)
12108 swap_insertion (loc, *loc_first_p);
12109 loc->duplicate = 1;
12110
12111 /* Clear the condition modification flag. */
12112 loc->condition_changed = condition_unchanged;
12113 }
12114
12115 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12116 {
12117 if (insert_mode != UGLL_DONT_INSERT)
12118 insert_breakpoint_locations ();
12119 else
12120 {
12121 /* Even though the caller told us to not insert new
12122 locations, we may still need to update conditions on the
12123 target's side of breakpoints that were already inserted
12124 if the target is evaluating breakpoint conditions. We
12125 only update conditions for locations that are marked
12126 "needs_update". */
12127 update_inserted_breakpoint_locations ();
12128 }
12129 }
12130
12131 if (insert_mode != UGLL_DONT_INSERT)
12132 download_tracepoint_locations ();
12133 }
12134
12135 void
12136 breakpoint_retire_moribund (void)
12137 {
12138 struct bp_location *loc;
12139 int ix;
12140
12141 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12142 if (--(loc->events_till_retirement) == 0)
12143 {
12144 decref_bp_location (&loc);
12145 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12146 --ix;
12147 }
12148 }
12149
12150 static void
12151 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12152 {
12153
12154 TRY
12155 {
12156 update_global_location_list (insert_mode);
12157 }
12158 CATCH (e, RETURN_MASK_ERROR)
12159 {
12160 }
12161 END_CATCH
12162 }
12163
12164 /* Clear BKP from a BPS. */
12165
12166 static void
12167 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12168 {
12169 bpstat bs;
12170
12171 for (bs = bps; bs; bs = bs->next)
12172 if (bs->breakpoint_at == bpt)
12173 {
12174 bs->breakpoint_at = NULL;
12175 bs->old_val = NULL;
12176 /* bs->commands will be freed later. */
12177 }
12178 }
12179
12180 /* Callback for iterate_over_threads. */
12181 static int
12182 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12183 {
12184 struct breakpoint *bpt = (struct breakpoint *) data;
12185
12186 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12187 return 0;
12188 }
12189
12190 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12191 callbacks. */
12192
12193 static void
12194 say_where (struct breakpoint *b)
12195 {
12196 struct value_print_options opts;
12197
12198 get_user_print_options (&opts);
12199
12200 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12201 single string. */
12202 if (b->loc == NULL)
12203 {
12204 /* For pending locations, the output differs slightly based
12205 on b->extra_string. If this is non-NULL, it contains either
12206 a condition or dprintf arguments. */
12207 if (b->extra_string == NULL)
12208 {
12209 printf_filtered (_(" (%s) pending."),
12210 event_location_to_string (b->location.get ()));
12211 }
12212 else if (b->type == bp_dprintf)
12213 {
12214 printf_filtered (_(" (%s,%s) pending."),
12215 event_location_to_string (b->location.get ()),
12216 b->extra_string);
12217 }
12218 else
12219 {
12220 printf_filtered (_(" (%s %s) pending."),
12221 event_location_to_string (b->location.get ()),
12222 b->extra_string);
12223 }
12224 }
12225 else
12226 {
12227 if (opts.addressprint || b->loc->symtab == NULL)
12228 {
12229 printf_filtered (" at ");
12230 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12231 gdb_stdout);
12232 }
12233 if (b->loc->symtab != NULL)
12234 {
12235 /* If there is a single location, we can print the location
12236 more nicely. */
12237 if (b->loc->next == NULL)
12238 printf_filtered (": file %s, line %d.",
12239 symtab_to_filename_for_display (b->loc->symtab),
12240 b->loc->line_number);
12241 else
12242 /* This is not ideal, but each location may have a
12243 different file name, and this at least reflects the
12244 real situation somewhat. */
12245 printf_filtered (": %s.",
12246 event_location_to_string (b->location.get ()));
12247 }
12248
12249 if (b->loc->next)
12250 {
12251 struct bp_location *loc = b->loc;
12252 int n = 0;
12253 for (; loc; loc = loc->next)
12254 ++n;
12255 printf_filtered (" (%d locations)", n);
12256 }
12257 }
12258 }
12259
12260 /* Default bp_location_ops methods. */
12261
12262 static void
12263 bp_location_dtor (struct bp_location *self)
12264 {
12265 xfree (self->function_name);
12266 }
12267
12268 static const struct bp_location_ops bp_location_ops =
12269 {
12270 bp_location_dtor
12271 };
12272
12273 /* Destructor for the breakpoint base class. */
12274
12275 breakpoint::~breakpoint ()
12276 {
12277 xfree (this->cond_string);
12278 xfree (this->extra_string);
12279 xfree (this->filter);
12280 }
12281
12282 static struct bp_location *
12283 base_breakpoint_allocate_location (struct breakpoint *self)
12284 {
12285 return new bp_location (&bp_location_ops, self);
12286 }
12287
12288 static void
12289 base_breakpoint_re_set (struct breakpoint *b)
12290 {
12291 /* Nothing to re-set. */
12292 }
12293
12294 #define internal_error_pure_virtual_called() \
12295 gdb_assert_not_reached ("pure virtual function called")
12296
12297 static int
12298 base_breakpoint_insert_location (struct bp_location *bl)
12299 {
12300 internal_error_pure_virtual_called ();
12301 }
12302
12303 static int
12304 base_breakpoint_remove_location (struct bp_location *bl,
12305 enum remove_bp_reason reason)
12306 {
12307 internal_error_pure_virtual_called ();
12308 }
12309
12310 static int
12311 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12312 const address_space *aspace,
12313 CORE_ADDR bp_addr,
12314 const struct target_waitstatus *ws)
12315 {
12316 internal_error_pure_virtual_called ();
12317 }
12318
12319 static void
12320 base_breakpoint_check_status (bpstat bs)
12321 {
12322 /* Always stop. */
12323 }
12324
12325 /* A "works_in_software_mode" breakpoint_ops method that just internal
12326 errors. */
12327
12328 static int
12329 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12330 {
12331 internal_error_pure_virtual_called ();
12332 }
12333
12334 /* A "resources_needed" breakpoint_ops method that just internal
12335 errors. */
12336
12337 static int
12338 base_breakpoint_resources_needed (const struct bp_location *bl)
12339 {
12340 internal_error_pure_virtual_called ();
12341 }
12342
12343 static enum print_stop_action
12344 base_breakpoint_print_it (bpstat bs)
12345 {
12346 internal_error_pure_virtual_called ();
12347 }
12348
12349 static void
12350 base_breakpoint_print_one_detail (const struct breakpoint *self,
12351 struct ui_out *uiout)
12352 {
12353 /* nothing */
12354 }
12355
12356 static void
12357 base_breakpoint_print_mention (struct breakpoint *b)
12358 {
12359 internal_error_pure_virtual_called ();
12360 }
12361
12362 static void
12363 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12364 {
12365 internal_error_pure_virtual_called ();
12366 }
12367
12368 static void
12369 base_breakpoint_create_sals_from_location
12370 (const struct event_location *location,
12371 struct linespec_result *canonical,
12372 enum bptype type_wanted)
12373 {
12374 internal_error_pure_virtual_called ();
12375 }
12376
12377 static void
12378 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12379 struct linespec_result *c,
12380 gdb::unique_xmalloc_ptr<char> cond_string,
12381 gdb::unique_xmalloc_ptr<char> extra_string,
12382 enum bptype type_wanted,
12383 enum bpdisp disposition,
12384 int thread,
12385 int task, int ignore_count,
12386 const struct breakpoint_ops *o,
12387 int from_tty, int enabled,
12388 int internal, unsigned flags)
12389 {
12390 internal_error_pure_virtual_called ();
12391 }
12392
12393 static std::vector<symtab_and_line>
12394 base_breakpoint_decode_location (struct breakpoint *b,
12395 const struct event_location *location,
12396 struct program_space *search_pspace)
12397 {
12398 internal_error_pure_virtual_called ();
12399 }
12400
12401 /* The default 'explains_signal' method. */
12402
12403 static int
12404 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12405 {
12406 return 1;
12407 }
12408
12409 /* The default "after_condition_true" method. */
12410
12411 static void
12412 base_breakpoint_after_condition_true (struct bpstats *bs)
12413 {
12414 /* Nothing to do. */
12415 }
12416
12417 struct breakpoint_ops base_breakpoint_ops =
12418 {
12419 base_breakpoint_allocate_location,
12420 base_breakpoint_re_set,
12421 base_breakpoint_insert_location,
12422 base_breakpoint_remove_location,
12423 base_breakpoint_breakpoint_hit,
12424 base_breakpoint_check_status,
12425 base_breakpoint_resources_needed,
12426 base_breakpoint_works_in_software_mode,
12427 base_breakpoint_print_it,
12428 NULL,
12429 base_breakpoint_print_one_detail,
12430 base_breakpoint_print_mention,
12431 base_breakpoint_print_recreate,
12432 base_breakpoint_create_sals_from_location,
12433 base_breakpoint_create_breakpoints_sal,
12434 base_breakpoint_decode_location,
12435 base_breakpoint_explains_signal,
12436 base_breakpoint_after_condition_true,
12437 };
12438
12439 /* Default breakpoint_ops methods. */
12440
12441 static void
12442 bkpt_re_set (struct breakpoint *b)
12443 {
12444 /* FIXME: is this still reachable? */
12445 if (breakpoint_event_location_empty_p (b))
12446 {
12447 /* Anything without a location can't be re-set. */
12448 delete_breakpoint (b);
12449 return;
12450 }
12451
12452 breakpoint_re_set_default (b);
12453 }
12454
12455 static int
12456 bkpt_insert_location (struct bp_location *bl)
12457 {
12458 CORE_ADDR addr = bl->target_info.reqstd_address;
12459
12460 bl->target_info.kind = breakpoint_kind (bl, &addr);
12461 bl->target_info.placed_address = addr;
12462
12463 if (bl->loc_type == bp_loc_hardware_breakpoint)
12464 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12465 else
12466 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12467 }
12468
12469 static int
12470 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12471 {
12472 if (bl->loc_type == bp_loc_hardware_breakpoint)
12473 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12474 else
12475 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12476 }
12477
12478 static int
12479 bkpt_breakpoint_hit (const struct bp_location *bl,
12480 const address_space *aspace, CORE_ADDR bp_addr,
12481 const struct target_waitstatus *ws)
12482 {
12483 if (ws->kind != TARGET_WAITKIND_STOPPED
12484 || ws->value.sig != GDB_SIGNAL_TRAP)
12485 return 0;
12486
12487 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12488 aspace, bp_addr))
12489 return 0;
12490
12491 if (overlay_debugging /* unmapped overlay section */
12492 && section_is_overlay (bl->section)
12493 && !section_is_mapped (bl->section))
12494 return 0;
12495
12496 return 1;
12497 }
12498
12499 static int
12500 dprintf_breakpoint_hit (const struct bp_location *bl,
12501 const address_space *aspace, CORE_ADDR bp_addr,
12502 const struct target_waitstatus *ws)
12503 {
12504 if (dprintf_style == dprintf_style_agent
12505 && target_can_run_breakpoint_commands ())
12506 {
12507 /* An agent-style dprintf never causes a stop. If we see a trap
12508 for this address it must be for a breakpoint that happens to
12509 be set at the same address. */
12510 return 0;
12511 }
12512
12513 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12514 }
12515
12516 static int
12517 bkpt_resources_needed (const struct bp_location *bl)
12518 {
12519 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12520
12521 return 1;
12522 }
12523
12524 static enum print_stop_action
12525 bkpt_print_it (bpstat bs)
12526 {
12527 struct breakpoint *b;
12528 const struct bp_location *bl;
12529 int bp_temp;
12530 struct ui_out *uiout = current_uiout;
12531
12532 gdb_assert (bs->bp_location_at != NULL);
12533
12534 bl = bs->bp_location_at;
12535 b = bs->breakpoint_at;
12536
12537 bp_temp = b->disposition == disp_del;
12538 if (bl->address != bl->requested_address)
12539 breakpoint_adjustment_warning (bl->requested_address,
12540 bl->address,
12541 b->number, 1);
12542 annotate_breakpoint (b->number);
12543 maybe_print_thread_hit_breakpoint (uiout);
12544
12545 if (bp_temp)
12546 uiout->text ("Temporary breakpoint ");
12547 else
12548 uiout->text ("Breakpoint ");
12549 if (uiout->is_mi_like_p ())
12550 {
12551 uiout->field_string ("reason",
12552 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12553 uiout->field_string ("disp", bpdisp_text (b->disposition));
12554 }
12555 uiout->field_int ("bkptno", b->number);
12556 uiout->text (", ");
12557
12558 return PRINT_SRC_AND_LOC;
12559 }
12560
12561 static void
12562 bkpt_print_mention (struct breakpoint *b)
12563 {
12564 if (current_uiout->is_mi_like_p ())
12565 return;
12566
12567 switch (b->type)
12568 {
12569 case bp_breakpoint:
12570 case bp_gnu_ifunc_resolver:
12571 if (b->disposition == disp_del)
12572 printf_filtered (_("Temporary breakpoint"));
12573 else
12574 printf_filtered (_("Breakpoint"));
12575 printf_filtered (_(" %d"), b->number);
12576 if (b->type == bp_gnu_ifunc_resolver)
12577 printf_filtered (_(" at gnu-indirect-function resolver"));
12578 break;
12579 case bp_hardware_breakpoint:
12580 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12581 break;
12582 case bp_dprintf:
12583 printf_filtered (_("Dprintf %d"), b->number);
12584 break;
12585 }
12586
12587 say_where (b);
12588 }
12589
12590 static void
12591 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12592 {
12593 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12594 fprintf_unfiltered (fp, "tbreak");
12595 else if (tp->type == bp_breakpoint)
12596 fprintf_unfiltered (fp, "break");
12597 else if (tp->type == bp_hardware_breakpoint
12598 && tp->disposition == disp_del)
12599 fprintf_unfiltered (fp, "thbreak");
12600 else if (tp->type == bp_hardware_breakpoint)
12601 fprintf_unfiltered (fp, "hbreak");
12602 else
12603 internal_error (__FILE__, __LINE__,
12604 _("unhandled breakpoint type %d"), (int) tp->type);
12605
12606 fprintf_unfiltered (fp, " %s",
12607 event_location_to_string (tp->location.get ()));
12608
12609 /* Print out extra_string if this breakpoint is pending. It might
12610 contain, for example, conditions that were set by the user. */
12611 if (tp->loc == NULL && tp->extra_string != NULL)
12612 fprintf_unfiltered (fp, " %s", tp->extra_string);
12613
12614 print_recreate_thread (tp, fp);
12615 }
12616
12617 static void
12618 bkpt_create_sals_from_location (const struct event_location *location,
12619 struct linespec_result *canonical,
12620 enum bptype type_wanted)
12621 {
12622 create_sals_from_location_default (location, canonical, type_wanted);
12623 }
12624
12625 static void
12626 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12627 struct linespec_result *canonical,
12628 gdb::unique_xmalloc_ptr<char> cond_string,
12629 gdb::unique_xmalloc_ptr<char> extra_string,
12630 enum bptype type_wanted,
12631 enum bpdisp disposition,
12632 int thread,
12633 int task, int ignore_count,
12634 const struct breakpoint_ops *ops,
12635 int from_tty, int enabled,
12636 int internal, unsigned flags)
12637 {
12638 create_breakpoints_sal_default (gdbarch, canonical,
12639 std::move (cond_string),
12640 std::move (extra_string),
12641 type_wanted,
12642 disposition, thread, task,
12643 ignore_count, ops, from_tty,
12644 enabled, internal, flags);
12645 }
12646
12647 static std::vector<symtab_and_line>
12648 bkpt_decode_location (struct breakpoint *b,
12649 const struct event_location *location,
12650 struct program_space *search_pspace)
12651 {
12652 return decode_location_default (b, location, search_pspace);
12653 }
12654
12655 /* Virtual table for internal breakpoints. */
12656
12657 static void
12658 internal_bkpt_re_set (struct breakpoint *b)
12659 {
12660 switch (b->type)
12661 {
12662 /* Delete overlay event and longjmp master breakpoints; they
12663 will be reset later by breakpoint_re_set. */
12664 case bp_overlay_event:
12665 case bp_longjmp_master:
12666 case bp_std_terminate_master:
12667 case bp_exception_master:
12668 delete_breakpoint (b);
12669 break;
12670
12671 /* This breakpoint is special, it's set up when the inferior
12672 starts and we really don't want to touch it. */
12673 case bp_shlib_event:
12674
12675 /* Like bp_shlib_event, this breakpoint type is special. Once
12676 it is set up, we do not want to touch it. */
12677 case bp_thread_event:
12678 break;
12679 }
12680 }
12681
12682 static void
12683 internal_bkpt_check_status (bpstat bs)
12684 {
12685 if (bs->breakpoint_at->type == bp_shlib_event)
12686 {
12687 /* If requested, stop when the dynamic linker notifies GDB of
12688 events. This allows the user to get control and place
12689 breakpoints in initializer routines for dynamically loaded
12690 objects (among other things). */
12691 bs->stop = stop_on_solib_events;
12692 bs->print = stop_on_solib_events;
12693 }
12694 else
12695 bs->stop = 0;
12696 }
12697
12698 static enum print_stop_action
12699 internal_bkpt_print_it (bpstat bs)
12700 {
12701 struct breakpoint *b;
12702
12703 b = bs->breakpoint_at;
12704
12705 switch (b->type)
12706 {
12707 case bp_shlib_event:
12708 /* Did we stop because the user set the stop_on_solib_events
12709 variable? (If so, we report this as a generic, "Stopped due
12710 to shlib event" message.) */
12711 print_solib_event (0);
12712 break;
12713
12714 case bp_thread_event:
12715 /* Not sure how we will get here.
12716 GDB should not stop for these breakpoints. */
12717 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12718 break;
12719
12720 case bp_overlay_event:
12721 /* By analogy with the thread event, GDB should not stop for these. */
12722 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12723 break;
12724
12725 case bp_longjmp_master:
12726 /* These should never be enabled. */
12727 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12728 break;
12729
12730 case bp_std_terminate_master:
12731 /* These should never be enabled. */
12732 printf_filtered (_("std::terminate Master Breakpoint: "
12733 "gdb should not stop!\n"));
12734 break;
12735
12736 case bp_exception_master:
12737 /* These should never be enabled. */
12738 printf_filtered (_("Exception Master Breakpoint: "
12739 "gdb should not stop!\n"));
12740 break;
12741 }
12742
12743 return PRINT_NOTHING;
12744 }
12745
12746 static void
12747 internal_bkpt_print_mention (struct breakpoint *b)
12748 {
12749 /* Nothing to mention. These breakpoints are internal. */
12750 }
12751
12752 /* Virtual table for momentary breakpoints */
12753
12754 static void
12755 momentary_bkpt_re_set (struct breakpoint *b)
12756 {
12757 /* Keep temporary breakpoints, which can be encountered when we step
12758 over a dlopen call and solib_add is resetting the breakpoints.
12759 Otherwise these should have been blown away via the cleanup chain
12760 or by breakpoint_init_inferior when we rerun the executable. */
12761 }
12762
12763 static void
12764 momentary_bkpt_check_status (bpstat bs)
12765 {
12766 /* Nothing. The point of these breakpoints is causing a stop. */
12767 }
12768
12769 static enum print_stop_action
12770 momentary_bkpt_print_it (bpstat bs)
12771 {
12772 return PRINT_UNKNOWN;
12773 }
12774
12775 static void
12776 momentary_bkpt_print_mention (struct breakpoint *b)
12777 {
12778 /* Nothing to mention. These breakpoints are internal. */
12779 }
12780
12781 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12782
12783 It gets cleared already on the removal of the first one of such placed
12784 breakpoints. This is OK as they get all removed altogether. */
12785
12786 longjmp_breakpoint::~longjmp_breakpoint ()
12787 {
12788 thread_info *tp = find_thread_global_id (this->thread);
12789
12790 if (tp != NULL)
12791 tp->initiating_frame = null_frame_id;
12792 }
12793
12794 /* Specific methods for probe breakpoints. */
12795
12796 static int
12797 bkpt_probe_insert_location (struct bp_location *bl)
12798 {
12799 int v = bkpt_insert_location (bl);
12800
12801 if (v == 0)
12802 {
12803 /* The insertion was successful, now let's set the probe's semaphore
12804 if needed. */
12805 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12806 }
12807
12808 return v;
12809 }
12810
12811 static int
12812 bkpt_probe_remove_location (struct bp_location *bl,
12813 enum remove_bp_reason reason)
12814 {
12815 /* Let's clear the semaphore before removing the location. */
12816 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12817
12818 return bkpt_remove_location (bl, reason);
12819 }
12820
12821 static void
12822 bkpt_probe_create_sals_from_location (const struct event_location *location,
12823 struct linespec_result *canonical,
12824 enum bptype type_wanted)
12825 {
12826 struct linespec_sals lsal;
12827
12828 lsal.sals = parse_probes (location, NULL, canonical);
12829 lsal.canonical
12830 = xstrdup (event_location_to_string (canonical->location.get ()));
12831 canonical->lsals.push_back (std::move (lsal));
12832 }
12833
12834 static std::vector<symtab_and_line>
12835 bkpt_probe_decode_location (struct breakpoint *b,
12836 const struct event_location *location,
12837 struct program_space *search_pspace)
12838 {
12839 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12840 if (sals.empty ())
12841 error (_("probe not found"));
12842 return sals;
12843 }
12844
12845 /* The breakpoint_ops structure to be used in tracepoints. */
12846
12847 static void
12848 tracepoint_re_set (struct breakpoint *b)
12849 {
12850 breakpoint_re_set_default (b);
12851 }
12852
12853 static int
12854 tracepoint_breakpoint_hit (const struct bp_location *bl,
12855 const address_space *aspace, CORE_ADDR bp_addr,
12856 const struct target_waitstatus *ws)
12857 {
12858 /* By definition, the inferior does not report stops at
12859 tracepoints. */
12860 return 0;
12861 }
12862
12863 static void
12864 tracepoint_print_one_detail (const struct breakpoint *self,
12865 struct ui_out *uiout)
12866 {
12867 struct tracepoint *tp = (struct tracepoint *) self;
12868 if (!tp->static_trace_marker_id.empty ())
12869 {
12870 gdb_assert (self->type == bp_static_tracepoint);
12871
12872 uiout->text ("\tmarker id is ");
12873 uiout->field_string ("static-tracepoint-marker-string-id",
12874 tp->static_trace_marker_id);
12875 uiout->text ("\n");
12876 }
12877 }
12878
12879 static void
12880 tracepoint_print_mention (struct breakpoint *b)
12881 {
12882 if (current_uiout->is_mi_like_p ())
12883 return;
12884
12885 switch (b->type)
12886 {
12887 case bp_tracepoint:
12888 printf_filtered (_("Tracepoint"));
12889 printf_filtered (_(" %d"), b->number);
12890 break;
12891 case bp_fast_tracepoint:
12892 printf_filtered (_("Fast tracepoint"));
12893 printf_filtered (_(" %d"), b->number);
12894 break;
12895 case bp_static_tracepoint:
12896 printf_filtered (_("Static tracepoint"));
12897 printf_filtered (_(" %d"), b->number);
12898 break;
12899 default:
12900 internal_error (__FILE__, __LINE__,
12901 _("unhandled tracepoint type %d"), (int) b->type);
12902 }
12903
12904 say_where (b);
12905 }
12906
12907 static void
12908 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12909 {
12910 struct tracepoint *tp = (struct tracepoint *) self;
12911
12912 if (self->type == bp_fast_tracepoint)
12913 fprintf_unfiltered (fp, "ftrace");
12914 else if (self->type == bp_static_tracepoint)
12915 fprintf_unfiltered (fp, "strace");
12916 else if (self->type == bp_tracepoint)
12917 fprintf_unfiltered (fp, "trace");
12918 else
12919 internal_error (__FILE__, __LINE__,
12920 _("unhandled tracepoint type %d"), (int) self->type);
12921
12922 fprintf_unfiltered (fp, " %s",
12923 event_location_to_string (self->location.get ()));
12924 print_recreate_thread (self, fp);
12925
12926 if (tp->pass_count)
12927 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12928 }
12929
12930 static void
12931 tracepoint_create_sals_from_location (const struct event_location *location,
12932 struct linespec_result *canonical,
12933 enum bptype type_wanted)
12934 {
12935 create_sals_from_location_default (location, canonical, type_wanted);
12936 }
12937
12938 static void
12939 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12940 struct linespec_result *canonical,
12941 gdb::unique_xmalloc_ptr<char> cond_string,
12942 gdb::unique_xmalloc_ptr<char> extra_string,
12943 enum bptype type_wanted,
12944 enum bpdisp disposition,
12945 int thread,
12946 int task, int ignore_count,
12947 const struct breakpoint_ops *ops,
12948 int from_tty, int enabled,
12949 int internal, unsigned flags)
12950 {
12951 create_breakpoints_sal_default (gdbarch, canonical,
12952 std::move (cond_string),
12953 std::move (extra_string),
12954 type_wanted,
12955 disposition, thread, task,
12956 ignore_count, ops, from_tty,
12957 enabled, internal, flags);
12958 }
12959
12960 static std::vector<symtab_and_line>
12961 tracepoint_decode_location (struct breakpoint *b,
12962 const struct event_location *location,
12963 struct program_space *search_pspace)
12964 {
12965 return decode_location_default (b, location, search_pspace);
12966 }
12967
12968 struct breakpoint_ops tracepoint_breakpoint_ops;
12969
12970 /* The breakpoint_ops structure to be use on tracepoints placed in a
12971 static probe. */
12972
12973 static void
12974 tracepoint_probe_create_sals_from_location
12975 (const struct event_location *location,
12976 struct linespec_result *canonical,
12977 enum bptype type_wanted)
12978 {
12979 /* We use the same method for breakpoint on probes. */
12980 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12981 }
12982
12983 static std::vector<symtab_and_line>
12984 tracepoint_probe_decode_location (struct breakpoint *b,
12985 const struct event_location *location,
12986 struct program_space *search_pspace)
12987 {
12988 /* We use the same method for breakpoint on probes. */
12989 return bkpt_probe_decode_location (b, location, search_pspace);
12990 }
12991
12992 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12993
12994 /* Dprintf breakpoint_ops methods. */
12995
12996 static void
12997 dprintf_re_set (struct breakpoint *b)
12998 {
12999 breakpoint_re_set_default (b);
13000
13001 /* extra_string should never be non-NULL for dprintf. */
13002 gdb_assert (b->extra_string != NULL);
13003
13004 /* 1 - connect to target 1, that can run breakpoint commands.
13005 2 - create a dprintf, which resolves fine.
13006 3 - disconnect from target 1
13007 4 - connect to target 2, that can NOT run breakpoint commands.
13008
13009 After steps #3/#4, you'll want the dprintf command list to
13010 be updated, because target 1 and 2 may well return different
13011 answers for target_can_run_breakpoint_commands().
13012 Given absence of finer grained resetting, we get to do
13013 it all the time. */
13014 if (b->extra_string != NULL)
13015 update_dprintf_command_list (b);
13016 }
13017
13018 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13019
13020 static void
13021 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13022 {
13023 fprintf_unfiltered (fp, "dprintf %s,%s",
13024 event_location_to_string (tp->location.get ()),
13025 tp->extra_string);
13026 print_recreate_thread (tp, fp);
13027 }
13028
13029 /* Implement the "after_condition_true" breakpoint_ops method for
13030 dprintf.
13031
13032 dprintf's are implemented with regular commands in their command
13033 list, but we run the commands here instead of before presenting the
13034 stop to the user, as dprintf's don't actually cause a stop. This
13035 also makes it so that the commands of multiple dprintfs at the same
13036 address are all handled. */
13037
13038 static void
13039 dprintf_after_condition_true (struct bpstats *bs)
13040 {
13041 struct bpstats tmp_bs;
13042 struct bpstats *tmp_bs_p = &tmp_bs;
13043
13044 /* dprintf's never cause a stop. This wasn't set in the
13045 check_status hook instead because that would make the dprintf's
13046 condition not be evaluated. */
13047 bs->stop = 0;
13048
13049 /* Run the command list here. Take ownership of it instead of
13050 copying. We never want these commands to run later in
13051 bpstat_do_actions, if a breakpoint that causes a stop happens to
13052 be set at same address as this dprintf, or even if running the
13053 commands here throws. */
13054 tmp_bs.commands = bs->commands;
13055 bs->commands = NULL;
13056
13057 bpstat_do_actions_1 (&tmp_bs_p);
13058
13059 /* 'tmp_bs.commands' will usually be NULL by now, but
13060 bpstat_do_actions_1 may return early without processing the whole
13061 list. */
13062 }
13063
13064 /* The breakpoint_ops structure to be used on static tracepoints with
13065 markers (`-m'). */
13066
13067 static void
13068 strace_marker_create_sals_from_location (const struct event_location *location,
13069 struct linespec_result *canonical,
13070 enum bptype type_wanted)
13071 {
13072 struct linespec_sals lsal;
13073 const char *arg_start, *arg;
13074
13075 arg = arg_start = get_linespec_location (location)->spec_string;
13076 lsal.sals = decode_static_tracepoint_spec (&arg);
13077
13078 std::string str (arg_start, arg - arg_start);
13079 const char *ptr = str.c_str ();
13080 canonical->location
13081 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13082
13083 lsal.canonical
13084 = xstrdup (event_location_to_string (canonical->location.get ()));
13085 canonical->lsals.push_back (std::move (lsal));
13086 }
13087
13088 static void
13089 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13090 struct linespec_result *canonical,
13091 gdb::unique_xmalloc_ptr<char> cond_string,
13092 gdb::unique_xmalloc_ptr<char> extra_string,
13093 enum bptype type_wanted,
13094 enum bpdisp disposition,
13095 int thread,
13096 int task, int ignore_count,
13097 const struct breakpoint_ops *ops,
13098 int from_tty, int enabled,
13099 int internal, unsigned flags)
13100 {
13101 const linespec_sals &lsal = canonical->lsals[0];
13102
13103 /* If the user is creating a static tracepoint by marker id
13104 (strace -m MARKER_ID), then store the sals index, so that
13105 breakpoint_re_set can try to match up which of the newly
13106 found markers corresponds to this one, and, don't try to
13107 expand multiple locations for each sal, given than SALS
13108 already should contain all sals for MARKER_ID. */
13109
13110 for (size_t i = 0; i < lsal.sals.size (); i++)
13111 {
13112 event_location_up location
13113 = copy_event_location (canonical->location.get ());
13114
13115 std::unique_ptr<tracepoint> tp (new tracepoint ());
13116 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13117 std::move (location), NULL,
13118 std::move (cond_string),
13119 std::move (extra_string),
13120 type_wanted, disposition,
13121 thread, task, ignore_count, ops,
13122 from_tty, enabled, internal, flags,
13123 canonical->special_display);
13124 /* Given that its possible to have multiple markers with
13125 the same string id, if the user is creating a static
13126 tracepoint by marker id ("strace -m MARKER_ID"), then
13127 store the sals index, so that breakpoint_re_set can
13128 try to match up which of the newly found markers
13129 corresponds to this one */
13130 tp->static_trace_marker_id_idx = i;
13131
13132 install_breakpoint (internal, std::move (tp), 0);
13133 }
13134 }
13135
13136 static std::vector<symtab_and_line>
13137 strace_marker_decode_location (struct breakpoint *b,
13138 const struct event_location *location,
13139 struct program_space *search_pspace)
13140 {
13141 struct tracepoint *tp = (struct tracepoint *) b;
13142 const char *s = get_linespec_location (location)->spec_string;
13143
13144 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13145 if (sals.size () > tp->static_trace_marker_id_idx)
13146 {
13147 sals[0] = sals[tp->static_trace_marker_id_idx];
13148 sals.resize (1);
13149 return sals;
13150 }
13151 else
13152 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13153 }
13154
13155 static struct breakpoint_ops strace_marker_breakpoint_ops;
13156
13157 static int
13158 strace_marker_p (struct breakpoint *b)
13159 {
13160 return b->ops == &strace_marker_breakpoint_ops;
13161 }
13162
13163 /* Delete a breakpoint and clean up all traces of it in the data
13164 structures. */
13165
13166 void
13167 delete_breakpoint (struct breakpoint *bpt)
13168 {
13169 struct breakpoint *b;
13170
13171 gdb_assert (bpt != NULL);
13172
13173 /* Has this bp already been deleted? This can happen because
13174 multiple lists can hold pointers to bp's. bpstat lists are
13175 especial culprits.
13176
13177 One example of this happening is a watchpoint's scope bp. When
13178 the scope bp triggers, we notice that the watchpoint is out of
13179 scope, and delete it. We also delete its scope bp. But the
13180 scope bp is marked "auto-deleting", and is already on a bpstat.
13181 That bpstat is then checked for auto-deleting bp's, which are
13182 deleted.
13183
13184 A real solution to this problem might involve reference counts in
13185 bp's, and/or giving them pointers back to their referencing
13186 bpstat's, and teaching delete_breakpoint to only free a bp's
13187 storage when no more references were extent. A cheaper bandaid
13188 was chosen. */
13189 if (bpt->type == bp_none)
13190 return;
13191
13192 /* At least avoid this stale reference until the reference counting
13193 of breakpoints gets resolved. */
13194 if (bpt->related_breakpoint != bpt)
13195 {
13196 struct breakpoint *related;
13197 struct watchpoint *w;
13198
13199 if (bpt->type == bp_watchpoint_scope)
13200 w = (struct watchpoint *) bpt->related_breakpoint;
13201 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13202 w = (struct watchpoint *) bpt;
13203 else
13204 w = NULL;
13205 if (w != NULL)
13206 watchpoint_del_at_next_stop (w);
13207
13208 /* Unlink bpt from the bpt->related_breakpoint ring. */
13209 for (related = bpt; related->related_breakpoint != bpt;
13210 related = related->related_breakpoint);
13211 related->related_breakpoint = bpt->related_breakpoint;
13212 bpt->related_breakpoint = bpt;
13213 }
13214
13215 /* watch_command_1 creates a watchpoint but only sets its number if
13216 update_watchpoint succeeds in creating its bp_locations. If there's
13217 a problem in that process, we'll be asked to delete the half-created
13218 watchpoint. In that case, don't announce the deletion. */
13219 if (bpt->number)
13220 gdb::observers::breakpoint_deleted.notify (bpt);
13221
13222 if (breakpoint_chain == bpt)
13223 breakpoint_chain = bpt->next;
13224
13225 ALL_BREAKPOINTS (b)
13226 if (b->next == bpt)
13227 {
13228 b->next = bpt->next;
13229 break;
13230 }
13231
13232 /* Be sure no bpstat's are pointing at the breakpoint after it's
13233 been freed. */
13234 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13235 in all threads for now. Note that we cannot just remove bpstats
13236 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13237 commands are associated with the bpstat; if we remove it here,
13238 then the later call to bpstat_do_actions (&stop_bpstat); in
13239 event-top.c won't do anything, and temporary breakpoints with
13240 commands won't work. */
13241
13242 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13243
13244 /* Now that breakpoint is removed from breakpoint list, update the
13245 global location list. This will remove locations that used to
13246 belong to this breakpoint. Do this before freeing the breakpoint
13247 itself, since remove_breakpoint looks at location's owner. It
13248 might be better design to have location completely
13249 self-contained, but it's not the case now. */
13250 update_global_location_list (UGLL_DONT_INSERT);
13251
13252 /* On the chance that someone will soon try again to delete this
13253 same bp, we mark it as deleted before freeing its storage. */
13254 bpt->type = bp_none;
13255 delete bpt;
13256 }
13257
13258 /* Iterator function to call a user-provided callback function once
13259 for each of B and its related breakpoints. */
13260
13261 static void
13262 iterate_over_related_breakpoints (struct breakpoint *b,
13263 gdb::function_view<void (breakpoint *)> function)
13264 {
13265 struct breakpoint *related;
13266
13267 related = b;
13268 do
13269 {
13270 struct breakpoint *next;
13271
13272 /* FUNCTION may delete RELATED. */
13273 next = related->related_breakpoint;
13274
13275 if (next == related)
13276 {
13277 /* RELATED is the last ring entry. */
13278 function (related);
13279
13280 /* FUNCTION may have deleted it, so we'd never reach back to
13281 B. There's nothing left to do anyway, so just break
13282 out. */
13283 break;
13284 }
13285 else
13286 function (related);
13287
13288 related = next;
13289 }
13290 while (related != b);
13291 }
13292
13293 static void
13294 delete_command (const char *arg, int from_tty)
13295 {
13296 struct breakpoint *b, *b_tmp;
13297
13298 dont_repeat ();
13299
13300 if (arg == 0)
13301 {
13302 int breaks_to_delete = 0;
13303
13304 /* Delete all breakpoints if no argument. Do not delete
13305 internal breakpoints, these have to be deleted with an
13306 explicit breakpoint number argument. */
13307 ALL_BREAKPOINTS (b)
13308 if (user_breakpoint_p (b))
13309 {
13310 breaks_to_delete = 1;
13311 break;
13312 }
13313
13314 /* Ask user only if there are some breakpoints to delete. */
13315 if (!from_tty
13316 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13317 {
13318 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13319 if (user_breakpoint_p (b))
13320 delete_breakpoint (b);
13321 }
13322 }
13323 else
13324 map_breakpoint_numbers
13325 (arg, [&] (breakpoint *b)
13326 {
13327 iterate_over_related_breakpoints (b, delete_breakpoint);
13328 });
13329 }
13330
13331 /* Return true if all locations of B bound to PSPACE are pending. If
13332 PSPACE is NULL, all locations of all program spaces are
13333 considered. */
13334
13335 static int
13336 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13337 {
13338 struct bp_location *loc;
13339
13340 for (loc = b->loc; loc != NULL; loc = loc->next)
13341 if ((pspace == NULL
13342 || loc->pspace == pspace)
13343 && !loc->shlib_disabled
13344 && !loc->pspace->executing_startup)
13345 return 0;
13346 return 1;
13347 }
13348
13349 /* Subroutine of update_breakpoint_locations to simplify it.
13350 Return non-zero if multiple fns in list LOC have the same name.
13351 Null names are ignored. */
13352
13353 static int
13354 ambiguous_names_p (struct bp_location *loc)
13355 {
13356 struct bp_location *l;
13357 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13358 xcalloc, xfree);
13359
13360 for (l = loc; l != NULL; l = l->next)
13361 {
13362 const char **slot;
13363 const char *name = l->function_name;
13364
13365 /* Allow for some names to be NULL, ignore them. */
13366 if (name == NULL)
13367 continue;
13368
13369 slot = (const char **) htab_find_slot (htab, (const void *) name,
13370 INSERT);
13371 /* NOTE: We can assume slot != NULL here because xcalloc never
13372 returns NULL. */
13373 if (*slot != NULL)
13374 {
13375 htab_delete (htab);
13376 return 1;
13377 }
13378 *slot = name;
13379 }
13380
13381 htab_delete (htab);
13382 return 0;
13383 }
13384
13385 /* When symbols change, it probably means the sources changed as well,
13386 and it might mean the static tracepoint markers are no longer at
13387 the same address or line numbers they used to be at last we
13388 checked. Losing your static tracepoints whenever you rebuild is
13389 undesirable. This function tries to resync/rematch gdb static
13390 tracepoints with the markers on the target, for static tracepoints
13391 that have not been set by marker id. Static tracepoint that have
13392 been set by marker id are reset by marker id in breakpoint_re_set.
13393 The heuristic is:
13394
13395 1) For a tracepoint set at a specific address, look for a marker at
13396 the old PC. If one is found there, assume to be the same marker.
13397 If the name / string id of the marker found is different from the
13398 previous known name, assume that means the user renamed the marker
13399 in the sources, and output a warning.
13400
13401 2) For a tracepoint set at a given line number, look for a marker
13402 at the new address of the old line number. If one is found there,
13403 assume to be the same marker. If the name / string id of the
13404 marker found is different from the previous known name, assume that
13405 means the user renamed the marker in the sources, and output a
13406 warning.
13407
13408 3) If a marker is no longer found at the same address or line, it
13409 may mean the marker no longer exists. But it may also just mean
13410 the code changed a bit. Maybe the user added a few lines of code
13411 that made the marker move up or down (in line number terms). Ask
13412 the target for info about the marker with the string id as we knew
13413 it. If found, update line number and address in the matching
13414 static tracepoint. This will get confused if there's more than one
13415 marker with the same ID (possible in UST, although unadvised
13416 precisely because it confuses tools). */
13417
13418 static struct symtab_and_line
13419 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13420 {
13421 struct tracepoint *tp = (struct tracepoint *) b;
13422 struct static_tracepoint_marker marker;
13423 CORE_ADDR pc;
13424
13425 pc = sal.pc;
13426 if (sal.line)
13427 find_line_pc (sal.symtab, sal.line, &pc);
13428
13429 if (target_static_tracepoint_marker_at (pc, &marker))
13430 {
13431 if (tp->static_trace_marker_id != marker.str_id)
13432 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13433 b->number, tp->static_trace_marker_id.c_str (),
13434 marker.str_id.c_str ());
13435
13436 tp->static_trace_marker_id = std::move (marker.str_id);
13437
13438 return sal;
13439 }
13440
13441 /* Old marker wasn't found on target at lineno. Try looking it up
13442 by string ID. */
13443 if (!sal.explicit_pc
13444 && sal.line != 0
13445 && sal.symtab != NULL
13446 && !tp->static_trace_marker_id.empty ())
13447 {
13448 std::vector<static_tracepoint_marker> markers
13449 = target_static_tracepoint_markers_by_strid
13450 (tp->static_trace_marker_id.c_str ());
13451
13452 if (!markers.empty ())
13453 {
13454 struct symbol *sym;
13455 struct static_tracepoint_marker *tpmarker;
13456 struct ui_out *uiout = current_uiout;
13457 struct explicit_location explicit_loc;
13458
13459 tpmarker = &markers[0];
13460
13461 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13462
13463 warning (_("marker for static tracepoint %d (%s) not "
13464 "found at previous line number"),
13465 b->number, tp->static_trace_marker_id.c_str ());
13466
13467 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13468 sym = find_pc_sect_function (tpmarker->address, NULL);
13469 uiout->text ("Now in ");
13470 if (sym)
13471 {
13472 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13473 uiout->text (" at ");
13474 }
13475 uiout->field_string ("file",
13476 symtab_to_filename_for_display (sal2.symtab));
13477 uiout->text (":");
13478
13479 if (uiout->is_mi_like_p ())
13480 {
13481 const char *fullname = symtab_to_fullname (sal2.symtab);
13482
13483 uiout->field_string ("fullname", fullname);
13484 }
13485
13486 uiout->field_int ("line", sal2.line);
13487 uiout->text ("\n");
13488
13489 b->loc->line_number = sal2.line;
13490 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13491
13492 b->location.reset (NULL);
13493 initialize_explicit_location (&explicit_loc);
13494 explicit_loc.source_filename
13495 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13496 explicit_loc.line_offset.offset = b->loc->line_number;
13497 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13498 b->location = new_explicit_location (&explicit_loc);
13499
13500 /* Might be nice to check if function changed, and warn if
13501 so. */
13502 }
13503 }
13504 return sal;
13505 }
13506
13507 /* Returns 1 iff locations A and B are sufficiently same that
13508 we don't need to report breakpoint as changed. */
13509
13510 static int
13511 locations_are_equal (struct bp_location *a, struct bp_location *b)
13512 {
13513 while (a && b)
13514 {
13515 if (a->address != b->address)
13516 return 0;
13517
13518 if (a->shlib_disabled != b->shlib_disabled)
13519 return 0;
13520
13521 if (a->enabled != b->enabled)
13522 return 0;
13523
13524 a = a->next;
13525 b = b->next;
13526 }
13527
13528 if ((a == NULL) != (b == NULL))
13529 return 0;
13530
13531 return 1;
13532 }
13533
13534 /* Split all locations of B that are bound to PSPACE out of B's
13535 location list to a separate list and return that list's head. If
13536 PSPACE is NULL, hoist out all locations of B. */
13537
13538 static struct bp_location *
13539 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13540 {
13541 struct bp_location head;
13542 struct bp_location *i = b->loc;
13543 struct bp_location **i_link = &b->loc;
13544 struct bp_location *hoisted = &head;
13545
13546 if (pspace == NULL)
13547 {
13548 i = b->loc;
13549 b->loc = NULL;
13550 return i;
13551 }
13552
13553 head.next = NULL;
13554
13555 while (i != NULL)
13556 {
13557 if (i->pspace == pspace)
13558 {
13559 *i_link = i->next;
13560 i->next = NULL;
13561 hoisted->next = i;
13562 hoisted = i;
13563 }
13564 else
13565 i_link = &i->next;
13566 i = *i_link;
13567 }
13568
13569 return head.next;
13570 }
13571
13572 /* Create new breakpoint locations for B (a hardware or software
13573 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13574 zero, then B is a ranged breakpoint. Only recreates locations for
13575 FILTER_PSPACE. Locations of other program spaces are left
13576 untouched. */
13577
13578 void
13579 update_breakpoint_locations (struct breakpoint *b,
13580 struct program_space *filter_pspace,
13581 gdb::array_view<const symtab_and_line> sals,
13582 gdb::array_view<const symtab_and_line> sals_end)
13583 {
13584 struct bp_location *existing_locations;
13585
13586 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13587 {
13588 /* Ranged breakpoints have only one start location and one end
13589 location. */
13590 b->enable_state = bp_disabled;
13591 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13592 "multiple locations found\n"),
13593 b->number);
13594 return;
13595 }
13596
13597 /* If there's no new locations, and all existing locations are
13598 pending, don't do anything. This optimizes the common case where
13599 all locations are in the same shared library, that was unloaded.
13600 We'd like to retain the location, so that when the library is
13601 loaded again, we don't loose the enabled/disabled status of the
13602 individual locations. */
13603 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13604 return;
13605
13606 existing_locations = hoist_existing_locations (b, filter_pspace);
13607
13608 for (const auto &sal : sals)
13609 {
13610 struct bp_location *new_loc;
13611
13612 switch_to_program_space_and_thread (sal.pspace);
13613
13614 new_loc = add_location_to_breakpoint (b, &sal);
13615
13616 /* Reparse conditions, they might contain references to the
13617 old symtab. */
13618 if (b->cond_string != NULL)
13619 {
13620 const char *s;
13621
13622 s = b->cond_string;
13623 TRY
13624 {
13625 new_loc->cond = parse_exp_1 (&s, sal.pc,
13626 block_for_pc (sal.pc),
13627 0);
13628 }
13629 CATCH (e, RETURN_MASK_ERROR)
13630 {
13631 warning (_("failed to reevaluate condition "
13632 "for breakpoint %d: %s"),
13633 b->number, e.message);
13634 new_loc->enabled = 0;
13635 }
13636 END_CATCH
13637 }
13638
13639 if (!sals_end.empty ())
13640 {
13641 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13642
13643 new_loc->length = end - sals[0].pc + 1;
13644 }
13645 }
13646
13647 /* If possible, carry over 'disable' status from existing
13648 breakpoints. */
13649 {
13650 struct bp_location *e = existing_locations;
13651 /* If there are multiple breakpoints with the same function name,
13652 e.g. for inline functions, comparing function names won't work.
13653 Instead compare pc addresses; this is just a heuristic as things
13654 may have moved, but in practice it gives the correct answer
13655 often enough until a better solution is found. */
13656 int have_ambiguous_names = ambiguous_names_p (b->loc);
13657
13658 for (; e; e = e->next)
13659 {
13660 if (!e->enabled && e->function_name)
13661 {
13662 struct bp_location *l = b->loc;
13663 if (have_ambiguous_names)
13664 {
13665 for (; l; l = l->next)
13666 if (breakpoint_locations_match (e, l))
13667 {
13668 l->enabled = 0;
13669 break;
13670 }
13671 }
13672 else
13673 {
13674 for (; l; l = l->next)
13675 if (l->function_name
13676 && strcmp (e->function_name, l->function_name) == 0)
13677 {
13678 l->enabled = 0;
13679 break;
13680 }
13681 }
13682 }
13683 }
13684 }
13685
13686 if (!locations_are_equal (existing_locations, b->loc))
13687 gdb::observers::breakpoint_modified.notify (b);
13688 }
13689
13690 /* Find the SaL locations corresponding to the given LOCATION.
13691 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13692
13693 static std::vector<symtab_and_line>
13694 location_to_sals (struct breakpoint *b, struct event_location *location,
13695 struct program_space *search_pspace, int *found)
13696 {
13697 struct gdb_exception exception = exception_none;
13698
13699 gdb_assert (b->ops != NULL);
13700
13701 std::vector<symtab_and_line> sals;
13702
13703 TRY
13704 {
13705 sals = b->ops->decode_location (b, location, search_pspace);
13706 }
13707 CATCH (e, RETURN_MASK_ERROR)
13708 {
13709 int not_found_and_ok = 0;
13710
13711 exception = e;
13712
13713 /* For pending breakpoints, it's expected that parsing will
13714 fail until the right shared library is loaded. User has
13715 already told to create pending breakpoints and don't need
13716 extra messages. If breakpoint is in bp_shlib_disabled
13717 state, then user already saw the message about that
13718 breakpoint being disabled, and don't want to see more
13719 errors. */
13720 if (e.error == NOT_FOUND_ERROR
13721 && (b->condition_not_parsed
13722 || (b->loc != NULL
13723 && search_pspace != NULL
13724 && b->loc->pspace != search_pspace)
13725 || (b->loc && b->loc->shlib_disabled)
13726 || (b->loc && b->loc->pspace->executing_startup)
13727 || b->enable_state == bp_disabled))
13728 not_found_and_ok = 1;
13729
13730 if (!not_found_and_ok)
13731 {
13732 /* We surely don't want to warn about the same breakpoint
13733 10 times. One solution, implemented here, is disable
13734 the breakpoint on error. Another solution would be to
13735 have separate 'warning emitted' flag. Since this
13736 happens only when a binary has changed, I don't know
13737 which approach is better. */
13738 b->enable_state = bp_disabled;
13739 throw_exception (e);
13740 }
13741 }
13742 END_CATCH
13743
13744 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13745 {
13746 for (auto &sal : sals)
13747 resolve_sal_pc (&sal);
13748 if (b->condition_not_parsed && b->extra_string != NULL)
13749 {
13750 char *cond_string, *extra_string;
13751 int thread, task;
13752
13753 find_condition_and_thread (b->extra_string, sals[0].pc,
13754 &cond_string, &thread, &task,
13755 &extra_string);
13756 gdb_assert (b->cond_string == NULL);
13757 if (cond_string)
13758 b->cond_string = cond_string;
13759 b->thread = thread;
13760 b->task = task;
13761 if (extra_string)
13762 {
13763 xfree (b->extra_string);
13764 b->extra_string = extra_string;
13765 }
13766 b->condition_not_parsed = 0;
13767 }
13768
13769 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13770 sals[0] = update_static_tracepoint (b, sals[0]);
13771
13772 *found = 1;
13773 }
13774 else
13775 *found = 0;
13776
13777 return sals;
13778 }
13779
13780 /* The default re_set method, for typical hardware or software
13781 breakpoints. Reevaluate the breakpoint and recreate its
13782 locations. */
13783
13784 static void
13785 breakpoint_re_set_default (struct breakpoint *b)
13786 {
13787 struct program_space *filter_pspace = current_program_space;
13788 std::vector<symtab_and_line> expanded, expanded_end;
13789
13790 int found;
13791 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13792 filter_pspace, &found);
13793 if (found)
13794 expanded = std::move (sals);
13795
13796 if (b->location_range_end != NULL)
13797 {
13798 std::vector<symtab_and_line> sals_end
13799 = location_to_sals (b, b->location_range_end.get (),
13800 filter_pspace, &found);
13801 if (found)
13802 expanded_end = std::move (sals_end);
13803 }
13804
13805 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13806 }
13807
13808 /* Default method for creating SALs from an address string. It basically
13809 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13810
13811 static void
13812 create_sals_from_location_default (const struct event_location *location,
13813 struct linespec_result *canonical,
13814 enum bptype type_wanted)
13815 {
13816 parse_breakpoint_sals (location, canonical);
13817 }
13818
13819 /* Call create_breakpoints_sal for the given arguments. This is the default
13820 function for the `create_breakpoints_sal' method of
13821 breakpoint_ops. */
13822
13823 static void
13824 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13825 struct linespec_result *canonical,
13826 gdb::unique_xmalloc_ptr<char> cond_string,
13827 gdb::unique_xmalloc_ptr<char> extra_string,
13828 enum bptype type_wanted,
13829 enum bpdisp disposition,
13830 int thread,
13831 int task, int ignore_count,
13832 const struct breakpoint_ops *ops,
13833 int from_tty, int enabled,
13834 int internal, unsigned flags)
13835 {
13836 create_breakpoints_sal (gdbarch, canonical,
13837 std::move (cond_string),
13838 std::move (extra_string),
13839 type_wanted, disposition,
13840 thread, task, ignore_count, ops, from_tty,
13841 enabled, internal, flags);
13842 }
13843
13844 /* Decode the line represented by S by calling decode_line_full. This is the
13845 default function for the `decode_location' method of breakpoint_ops. */
13846
13847 static std::vector<symtab_and_line>
13848 decode_location_default (struct breakpoint *b,
13849 const struct event_location *location,
13850 struct program_space *search_pspace)
13851 {
13852 struct linespec_result canonical;
13853
13854 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13855 (struct symtab *) NULL, 0,
13856 &canonical, multiple_symbols_all,
13857 b->filter);
13858
13859 /* We should get 0 or 1 resulting SALs. */
13860 gdb_assert (canonical.lsals.size () < 2);
13861
13862 if (!canonical.lsals.empty ())
13863 {
13864 const linespec_sals &lsal = canonical.lsals[0];
13865 return std::move (lsal.sals);
13866 }
13867 return {};
13868 }
13869
13870 /* Reset a breakpoint. */
13871
13872 static void
13873 breakpoint_re_set_one (breakpoint *b)
13874 {
13875 input_radix = b->input_radix;
13876 set_language (b->language);
13877
13878 b->ops->re_set (b);
13879 }
13880
13881 /* Re-set breakpoint locations for the current program space.
13882 Locations bound to other program spaces are left untouched. */
13883
13884 void
13885 breakpoint_re_set (void)
13886 {
13887 struct breakpoint *b, *b_tmp;
13888
13889 {
13890 scoped_restore_current_language save_language;
13891 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13892 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13893
13894 /* Note: we must not try to insert locations until after all
13895 breakpoints have been re-set. Otherwise, e.g., when re-setting
13896 breakpoint 1, we'd insert the locations of breakpoint 2, which
13897 hadn't been re-set yet, and thus may have stale locations. */
13898
13899 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13900 {
13901 TRY
13902 {
13903 breakpoint_re_set_one (b);
13904 }
13905 CATCH (ex, RETURN_MASK_ALL)
13906 {
13907 exception_fprintf (gdb_stderr, ex,
13908 "Error in re-setting breakpoint %d: ",
13909 b->number);
13910 }
13911 END_CATCH
13912 }
13913
13914 jit_breakpoint_re_set ();
13915 }
13916
13917 create_overlay_event_breakpoint ();
13918 create_longjmp_master_breakpoint ();
13919 create_std_terminate_master_breakpoint ();
13920 create_exception_master_breakpoint ();
13921
13922 /* Now we can insert. */
13923 update_global_location_list (UGLL_MAY_INSERT);
13924 }
13925 \f
13926 /* Reset the thread number of this breakpoint:
13927
13928 - If the breakpoint is for all threads, leave it as-is.
13929 - Else, reset it to the current thread for inferior_ptid. */
13930 void
13931 breakpoint_re_set_thread (struct breakpoint *b)
13932 {
13933 if (b->thread != -1)
13934 {
13935 if (in_thread_list (inferior_ptid))
13936 b->thread = ptid_to_global_thread_id (inferior_ptid);
13937
13938 /* We're being called after following a fork. The new fork is
13939 selected as current, and unless this was a vfork will have a
13940 different program space from the original thread. Reset that
13941 as well. */
13942 b->loc->pspace = current_program_space;
13943 }
13944 }
13945
13946 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13947 If from_tty is nonzero, it prints a message to that effect,
13948 which ends with a period (no newline). */
13949
13950 void
13951 set_ignore_count (int bptnum, int count, int from_tty)
13952 {
13953 struct breakpoint *b;
13954
13955 if (count < 0)
13956 count = 0;
13957
13958 ALL_BREAKPOINTS (b)
13959 if (b->number == bptnum)
13960 {
13961 if (is_tracepoint (b))
13962 {
13963 if (from_tty && count != 0)
13964 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13965 bptnum);
13966 return;
13967 }
13968
13969 b->ignore_count = count;
13970 if (from_tty)
13971 {
13972 if (count == 0)
13973 printf_filtered (_("Will stop next time "
13974 "breakpoint %d is reached."),
13975 bptnum);
13976 else if (count == 1)
13977 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13978 bptnum);
13979 else
13980 printf_filtered (_("Will ignore next %d "
13981 "crossings of breakpoint %d."),
13982 count, bptnum);
13983 }
13984 gdb::observers::breakpoint_modified.notify (b);
13985 return;
13986 }
13987
13988 error (_("No breakpoint number %d."), bptnum);
13989 }
13990
13991 /* Command to set ignore-count of breakpoint N to COUNT. */
13992
13993 static void
13994 ignore_command (const char *args, int from_tty)
13995 {
13996 const char *p = args;
13997 int num;
13998
13999 if (p == 0)
14000 error_no_arg (_("a breakpoint number"));
14001
14002 num = get_number (&p);
14003 if (num == 0)
14004 error (_("bad breakpoint number: '%s'"), args);
14005 if (*p == 0)
14006 error (_("Second argument (specified ignore-count) is missing."));
14007
14008 set_ignore_count (num,
14009 longest_to_int (value_as_long (parse_and_eval (p))),
14010 from_tty);
14011 if (from_tty)
14012 printf_filtered ("\n");
14013 }
14014 \f
14015
14016 /* Call FUNCTION on each of the breakpoints with numbers in the range
14017 defined by BP_NUM_RANGE (an inclusive range). */
14018
14019 static void
14020 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14021 gdb::function_view<void (breakpoint *)> function)
14022 {
14023 if (bp_num_range.first == 0)
14024 {
14025 warning (_("bad breakpoint number at or near '%d'"),
14026 bp_num_range.first);
14027 }
14028 else
14029 {
14030 struct breakpoint *b, *tmp;
14031
14032 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14033 {
14034 bool match = false;
14035
14036 ALL_BREAKPOINTS_SAFE (b, tmp)
14037 if (b->number == i)
14038 {
14039 match = true;
14040 function (b);
14041 break;
14042 }
14043 if (!match)
14044 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14045 }
14046 }
14047 }
14048
14049 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14050 ARGS. */
14051
14052 static void
14053 map_breakpoint_numbers (const char *args,
14054 gdb::function_view<void (breakpoint *)> function)
14055 {
14056 if (args == NULL || *args == '\0')
14057 error_no_arg (_("one or more breakpoint numbers"));
14058
14059 number_or_range_parser parser (args);
14060
14061 while (!parser.finished ())
14062 {
14063 int num = parser.get_number ();
14064 map_breakpoint_number_range (std::make_pair (num, num), function);
14065 }
14066 }
14067
14068 /* Return the breakpoint location structure corresponding to the
14069 BP_NUM and LOC_NUM values. */
14070
14071 static struct bp_location *
14072 find_location_by_number (int bp_num, int loc_num)
14073 {
14074 struct breakpoint *b;
14075
14076 ALL_BREAKPOINTS (b)
14077 if (b->number == bp_num)
14078 {
14079 break;
14080 }
14081
14082 if (!b || b->number != bp_num)
14083 error (_("Bad breakpoint number '%d'"), bp_num);
14084
14085 if (loc_num == 0)
14086 error (_("Bad breakpoint location number '%d'"), loc_num);
14087
14088 int n = 0;
14089 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14090 if (++n == loc_num)
14091 return loc;
14092
14093 error (_("Bad breakpoint location number '%d'"), loc_num);
14094 }
14095
14096 /* Modes of operation for extract_bp_num. */
14097 enum class extract_bp_kind
14098 {
14099 /* Extracting a breakpoint number. */
14100 bp,
14101
14102 /* Extracting a location number. */
14103 loc,
14104 };
14105
14106 /* Extract a breakpoint or location number (as determined by KIND)
14107 from the string starting at START. TRAILER is a character which
14108 can be found after the number. If you don't want a trailer, use
14109 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14110 string. This always returns a positive integer. */
14111
14112 static int
14113 extract_bp_num (extract_bp_kind kind, const char *start,
14114 int trailer, const char **end_out = NULL)
14115 {
14116 const char *end = start;
14117 int num = get_number_trailer (&end, trailer);
14118 if (num < 0)
14119 error (kind == extract_bp_kind::bp
14120 ? _("Negative breakpoint number '%.*s'")
14121 : _("Negative breakpoint location number '%.*s'"),
14122 int (end - start), start);
14123 if (num == 0)
14124 error (kind == extract_bp_kind::bp
14125 ? _("Bad breakpoint number '%.*s'")
14126 : _("Bad breakpoint location number '%.*s'"),
14127 int (end - start), start);
14128
14129 if (end_out != NULL)
14130 *end_out = end;
14131 return num;
14132 }
14133
14134 /* Extract a breakpoint or location range (as determined by KIND) in
14135 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14136 representing the (inclusive) range. The returned pair's elements
14137 are always positive integers. */
14138
14139 static std::pair<int, int>
14140 extract_bp_or_bp_range (extract_bp_kind kind,
14141 const std::string &arg,
14142 std::string::size_type arg_offset)
14143 {
14144 std::pair<int, int> range;
14145 const char *bp_loc = &arg[arg_offset];
14146 std::string::size_type dash = arg.find ('-', arg_offset);
14147 if (dash != std::string::npos)
14148 {
14149 /* bp_loc is a range (x-z). */
14150 if (arg.length () == dash + 1)
14151 error (kind == extract_bp_kind::bp
14152 ? _("Bad breakpoint number at or near: '%s'")
14153 : _("Bad breakpoint location number at or near: '%s'"),
14154 bp_loc);
14155
14156 const char *end;
14157 const char *start_first = bp_loc;
14158 const char *start_second = &arg[dash + 1];
14159 range.first = extract_bp_num (kind, start_first, '-');
14160 range.second = extract_bp_num (kind, start_second, '\0', &end);
14161
14162 if (range.first > range.second)
14163 error (kind == extract_bp_kind::bp
14164 ? _("Inverted breakpoint range at '%.*s'")
14165 : _("Inverted breakpoint location range at '%.*s'"),
14166 int (end - start_first), start_first);
14167 }
14168 else
14169 {
14170 /* bp_loc is a single value. */
14171 range.first = extract_bp_num (kind, bp_loc, '\0');
14172 range.second = range.first;
14173 }
14174 return range;
14175 }
14176
14177 /* Extract the breakpoint/location range specified by ARG. Returns
14178 the breakpoint range in BP_NUM_RANGE, and the location range in
14179 BP_LOC_RANGE.
14180
14181 ARG may be in any of the following forms:
14182
14183 x where 'x' is a breakpoint number.
14184 x-y where 'x' and 'y' specify a breakpoint numbers range.
14185 x.y where 'x' is a breakpoint number and 'y' a location number.
14186 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14187 location number range.
14188 */
14189
14190 static void
14191 extract_bp_number_and_location (const std::string &arg,
14192 std::pair<int, int> &bp_num_range,
14193 std::pair<int, int> &bp_loc_range)
14194 {
14195 std::string::size_type dot = arg.find ('.');
14196
14197 if (dot != std::string::npos)
14198 {
14199 /* Handle 'x.y' and 'x.y-z' cases. */
14200
14201 if (arg.length () == dot + 1 || dot == 0)
14202 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14203
14204 bp_num_range.first
14205 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14206 bp_num_range.second = bp_num_range.first;
14207
14208 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14209 arg, dot + 1);
14210 }
14211 else
14212 {
14213 /* Handle x and x-y cases. */
14214
14215 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14216 bp_loc_range.first = 0;
14217 bp_loc_range.second = 0;
14218 }
14219 }
14220
14221 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14222 specifies whether to enable or disable. */
14223
14224 static void
14225 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14226 {
14227 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14228 if (loc != NULL)
14229 {
14230 if (loc->enabled != enable)
14231 {
14232 loc->enabled = enable;
14233 mark_breakpoint_location_modified (loc);
14234 }
14235 if (target_supports_enable_disable_tracepoint ()
14236 && current_trace_status ()->running && loc->owner
14237 && is_tracepoint (loc->owner))
14238 target_disable_tracepoint (loc);
14239 }
14240 update_global_location_list (UGLL_DONT_INSERT);
14241 }
14242
14243 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14244 number of the breakpoint, and BP_LOC_RANGE specifies the
14245 (inclusive) range of location numbers of that breakpoint to
14246 enable/disable. ENABLE specifies whether to enable or disable the
14247 location. */
14248
14249 static void
14250 enable_disable_breakpoint_location_range (int bp_num,
14251 std::pair<int, int> &bp_loc_range,
14252 bool enable)
14253 {
14254 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14255 enable_disable_bp_num_loc (bp_num, i, enable);
14256 }
14257
14258 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14259 If from_tty is nonzero, it prints a message to that effect,
14260 which ends with a period (no newline). */
14261
14262 void
14263 disable_breakpoint (struct breakpoint *bpt)
14264 {
14265 /* Never disable a watchpoint scope breakpoint; we want to
14266 hit them when we leave scope so we can delete both the
14267 watchpoint and its scope breakpoint at that time. */
14268 if (bpt->type == bp_watchpoint_scope)
14269 return;
14270
14271 bpt->enable_state = bp_disabled;
14272
14273 /* Mark breakpoint locations modified. */
14274 mark_breakpoint_modified (bpt);
14275
14276 if (target_supports_enable_disable_tracepoint ()
14277 && current_trace_status ()->running && is_tracepoint (bpt))
14278 {
14279 struct bp_location *location;
14280
14281 for (location = bpt->loc; location; location = location->next)
14282 target_disable_tracepoint (location);
14283 }
14284
14285 update_global_location_list (UGLL_DONT_INSERT);
14286
14287 gdb::observers::breakpoint_modified.notify (bpt);
14288 }
14289
14290 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14291 specified in ARGS. ARGS may be in any of the formats handled by
14292 extract_bp_number_and_location. ENABLE specifies whether to enable
14293 or disable the breakpoints/locations. */
14294
14295 static void
14296 enable_disable_command (const char *args, int from_tty, bool enable)
14297 {
14298 if (args == 0)
14299 {
14300 struct breakpoint *bpt;
14301
14302 ALL_BREAKPOINTS (bpt)
14303 if (user_breakpoint_p (bpt))
14304 {
14305 if (enable)
14306 enable_breakpoint (bpt);
14307 else
14308 disable_breakpoint (bpt);
14309 }
14310 }
14311 else
14312 {
14313 std::string num = extract_arg (&args);
14314
14315 while (!num.empty ())
14316 {
14317 std::pair<int, int> bp_num_range, bp_loc_range;
14318
14319 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14320
14321 if (bp_loc_range.first == bp_loc_range.second
14322 && bp_loc_range.first == 0)
14323 {
14324 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14325 map_breakpoint_number_range (bp_num_range,
14326 enable
14327 ? enable_breakpoint
14328 : disable_breakpoint);
14329 }
14330 else
14331 {
14332 /* Handle breakpoint ids with formats 'x.y' or
14333 'x.y-z'. */
14334 enable_disable_breakpoint_location_range
14335 (bp_num_range.first, bp_loc_range, enable);
14336 }
14337 num = extract_arg (&args);
14338 }
14339 }
14340 }
14341
14342 /* The disable command disables the specified breakpoints/locations
14343 (or all defined breakpoints) so they're no longer effective in
14344 stopping the inferior. ARGS may be in any of the forms defined in
14345 extract_bp_number_and_location. */
14346
14347 static void
14348 disable_command (const char *args, int from_tty)
14349 {
14350 enable_disable_command (args, from_tty, false);
14351 }
14352
14353 static void
14354 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14355 int count)
14356 {
14357 int target_resources_ok;
14358
14359 if (bpt->type == bp_hardware_breakpoint)
14360 {
14361 int i;
14362 i = hw_breakpoint_used_count ();
14363 target_resources_ok =
14364 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14365 i + 1, 0);
14366 if (target_resources_ok == 0)
14367 error (_("No hardware breakpoint support in the target."));
14368 else if (target_resources_ok < 0)
14369 error (_("Hardware breakpoints used exceeds limit."));
14370 }
14371
14372 if (is_watchpoint (bpt))
14373 {
14374 /* Initialize it just to avoid a GCC false warning. */
14375 enum enable_state orig_enable_state = bp_disabled;
14376
14377 TRY
14378 {
14379 struct watchpoint *w = (struct watchpoint *) bpt;
14380
14381 orig_enable_state = bpt->enable_state;
14382 bpt->enable_state = bp_enabled;
14383 update_watchpoint (w, 1 /* reparse */);
14384 }
14385 CATCH (e, RETURN_MASK_ALL)
14386 {
14387 bpt->enable_state = orig_enable_state;
14388 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14389 bpt->number);
14390 return;
14391 }
14392 END_CATCH
14393 }
14394
14395 bpt->enable_state = bp_enabled;
14396
14397 /* Mark breakpoint locations modified. */
14398 mark_breakpoint_modified (bpt);
14399
14400 if (target_supports_enable_disable_tracepoint ()
14401 && current_trace_status ()->running && is_tracepoint (bpt))
14402 {
14403 struct bp_location *location;
14404
14405 for (location = bpt->loc; location; location = location->next)
14406 target_enable_tracepoint (location);
14407 }
14408
14409 bpt->disposition = disposition;
14410 bpt->enable_count = count;
14411 update_global_location_list (UGLL_MAY_INSERT);
14412
14413 gdb::observers::breakpoint_modified.notify (bpt);
14414 }
14415
14416
14417 void
14418 enable_breakpoint (struct breakpoint *bpt)
14419 {
14420 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14421 }
14422
14423 /* The enable command enables the specified breakpoints/locations (or
14424 all defined breakpoints) so they once again become (or continue to
14425 be) effective in stopping the inferior. ARGS may be in any of the
14426 forms defined in extract_bp_number_and_location. */
14427
14428 static void
14429 enable_command (const char *args, int from_tty)
14430 {
14431 enable_disable_command (args, from_tty, true);
14432 }
14433
14434 static void
14435 enable_once_command (const char *args, int from_tty)
14436 {
14437 map_breakpoint_numbers
14438 (args, [&] (breakpoint *b)
14439 {
14440 iterate_over_related_breakpoints
14441 (b, [&] (breakpoint *bpt)
14442 {
14443 enable_breakpoint_disp (bpt, disp_disable, 1);
14444 });
14445 });
14446 }
14447
14448 static void
14449 enable_count_command (const char *args, int from_tty)
14450 {
14451 int count;
14452
14453 if (args == NULL)
14454 error_no_arg (_("hit count"));
14455
14456 count = get_number (&args);
14457
14458 map_breakpoint_numbers
14459 (args, [&] (breakpoint *b)
14460 {
14461 iterate_over_related_breakpoints
14462 (b, [&] (breakpoint *bpt)
14463 {
14464 enable_breakpoint_disp (bpt, disp_disable, count);
14465 });
14466 });
14467 }
14468
14469 static void
14470 enable_delete_command (const char *args, int from_tty)
14471 {
14472 map_breakpoint_numbers
14473 (args, [&] (breakpoint *b)
14474 {
14475 iterate_over_related_breakpoints
14476 (b, [&] (breakpoint *bpt)
14477 {
14478 enable_breakpoint_disp (bpt, disp_del, 1);
14479 });
14480 });
14481 }
14482 \f
14483 static void
14484 set_breakpoint_cmd (const char *args, int from_tty)
14485 {
14486 }
14487
14488 static void
14489 show_breakpoint_cmd (const char *args, int from_tty)
14490 {
14491 }
14492
14493 /* Invalidate last known value of any hardware watchpoint if
14494 the memory which that value represents has been written to by
14495 GDB itself. */
14496
14497 static void
14498 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14499 CORE_ADDR addr, ssize_t len,
14500 const bfd_byte *data)
14501 {
14502 struct breakpoint *bp;
14503
14504 ALL_BREAKPOINTS (bp)
14505 if (bp->enable_state == bp_enabled
14506 && bp->type == bp_hardware_watchpoint)
14507 {
14508 struct watchpoint *wp = (struct watchpoint *) bp;
14509
14510 if (wp->val_valid && wp->val != nullptr)
14511 {
14512 struct bp_location *loc;
14513
14514 for (loc = bp->loc; loc != NULL; loc = loc->next)
14515 if (loc->loc_type == bp_loc_hardware_watchpoint
14516 && loc->address + loc->length > addr
14517 && addr + len > loc->address)
14518 {
14519 wp->val = NULL;
14520 wp->val_valid = 0;
14521 }
14522 }
14523 }
14524 }
14525
14526 /* Create and insert a breakpoint for software single step. */
14527
14528 void
14529 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14530 const address_space *aspace,
14531 CORE_ADDR next_pc)
14532 {
14533 struct thread_info *tp = inferior_thread ();
14534 struct symtab_and_line sal;
14535 CORE_ADDR pc = next_pc;
14536
14537 if (tp->control.single_step_breakpoints == NULL)
14538 {
14539 tp->control.single_step_breakpoints
14540 = new_single_step_breakpoint (tp->global_num, gdbarch);
14541 }
14542
14543 sal = find_pc_line (pc, 0);
14544 sal.pc = pc;
14545 sal.section = find_pc_overlay (pc);
14546 sal.explicit_pc = 1;
14547 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14548
14549 update_global_location_list (UGLL_INSERT);
14550 }
14551
14552 /* Insert single step breakpoints according to the current state. */
14553
14554 int
14555 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14556 {
14557 struct regcache *regcache = get_current_regcache ();
14558 std::vector<CORE_ADDR> next_pcs;
14559
14560 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14561
14562 if (!next_pcs.empty ())
14563 {
14564 struct frame_info *frame = get_current_frame ();
14565 const address_space *aspace = get_frame_address_space (frame);
14566
14567 for (CORE_ADDR pc : next_pcs)
14568 insert_single_step_breakpoint (gdbarch, aspace, pc);
14569
14570 return 1;
14571 }
14572 else
14573 return 0;
14574 }
14575
14576 /* See breakpoint.h. */
14577
14578 int
14579 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14580 const address_space *aspace,
14581 CORE_ADDR pc)
14582 {
14583 struct bp_location *loc;
14584
14585 for (loc = bp->loc; loc != NULL; loc = loc->next)
14586 if (loc->inserted
14587 && breakpoint_location_address_match (loc, aspace, pc))
14588 return 1;
14589
14590 return 0;
14591 }
14592
14593 /* Check whether a software single-step breakpoint is inserted at
14594 PC. */
14595
14596 int
14597 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14598 CORE_ADDR pc)
14599 {
14600 struct breakpoint *bpt;
14601
14602 ALL_BREAKPOINTS (bpt)
14603 {
14604 if (bpt->type == bp_single_step
14605 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14606 return 1;
14607 }
14608 return 0;
14609 }
14610
14611 /* Tracepoint-specific operations. */
14612
14613 /* Set tracepoint count to NUM. */
14614 static void
14615 set_tracepoint_count (int num)
14616 {
14617 tracepoint_count = num;
14618 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14619 }
14620
14621 static void
14622 trace_command (const char *arg, int from_tty)
14623 {
14624 struct breakpoint_ops *ops;
14625
14626 event_location_up location = string_to_event_location (&arg,
14627 current_language);
14628 if (location != NULL
14629 && event_location_type (location.get ()) == PROBE_LOCATION)
14630 ops = &tracepoint_probe_breakpoint_ops;
14631 else
14632 ops = &tracepoint_breakpoint_ops;
14633
14634 create_breakpoint (get_current_arch (),
14635 location.get (),
14636 NULL, 0, arg, 1 /* parse arg */,
14637 0 /* tempflag */,
14638 bp_tracepoint /* type_wanted */,
14639 0 /* Ignore count */,
14640 pending_break_support,
14641 ops,
14642 from_tty,
14643 1 /* enabled */,
14644 0 /* internal */, 0);
14645 }
14646
14647 static void
14648 ftrace_command (const char *arg, int from_tty)
14649 {
14650 event_location_up location = string_to_event_location (&arg,
14651 current_language);
14652 create_breakpoint (get_current_arch (),
14653 location.get (),
14654 NULL, 0, arg, 1 /* parse arg */,
14655 0 /* tempflag */,
14656 bp_fast_tracepoint /* type_wanted */,
14657 0 /* Ignore count */,
14658 pending_break_support,
14659 &tracepoint_breakpoint_ops,
14660 from_tty,
14661 1 /* enabled */,
14662 0 /* internal */, 0);
14663 }
14664
14665 /* strace command implementation. Creates a static tracepoint. */
14666
14667 static void
14668 strace_command (const char *arg, int from_tty)
14669 {
14670 struct breakpoint_ops *ops;
14671 event_location_up location;
14672
14673 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14674 or with a normal static tracepoint. */
14675 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14676 {
14677 ops = &strace_marker_breakpoint_ops;
14678 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14679 }
14680 else
14681 {
14682 ops = &tracepoint_breakpoint_ops;
14683 location = string_to_event_location (&arg, current_language);
14684 }
14685
14686 create_breakpoint (get_current_arch (),
14687 location.get (),
14688 NULL, 0, arg, 1 /* parse arg */,
14689 0 /* tempflag */,
14690 bp_static_tracepoint /* type_wanted */,
14691 0 /* Ignore count */,
14692 pending_break_support,
14693 ops,
14694 from_tty,
14695 1 /* enabled */,
14696 0 /* internal */, 0);
14697 }
14698
14699 /* Set up a fake reader function that gets command lines from a linked
14700 list that was acquired during tracepoint uploading. */
14701
14702 static struct uploaded_tp *this_utp;
14703 static int next_cmd;
14704
14705 static char *
14706 read_uploaded_action (void)
14707 {
14708 char *rslt = nullptr;
14709
14710 if (next_cmd < this_utp->cmd_strings.size ())
14711 {
14712 rslt = this_utp->cmd_strings[next_cmd];
14713 next_cmd++;
14714 }
14715
14716 return rslt;
14717 }
14718
14719 /* Given information about a tracepoint as recorded on a target (which
14720 can be either a live system or a trace file), attempt to create an
14721 equivalent GDB tracepoint. This is not a reliable process, since
14722 the target does not necessarily have all the information used when
14723 the tracepoint was originally defined. */
14724
14725 struct tracepoint *
14726 create_tracepoint_from_upload (struct uploaded_tp *utp)
14727 {
14728 const char *addr_str;
14729 char small_buf[100];
14730 struct tracepoint *tp;
14731
14732 if (utp->at_string)
14733 addr_str = utp->at_string;
14734 else
14735 {
14736 /* In the absence of a source location, fall back to raw
14737 address. Since there is no way to confirm that the address
14738 means the same thing as when the trace was started, warn the
14739 user. */
14740 warning (_("Uploaded tracepoint %d has no "
14741 "source location, using raw address"),
14742 utp->number);
14743 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14744 addr_str = small_buf;
14745 }
14746
14747 /* There's not much we can do with a sequence of bytecodes. */
14748 if (utp->cond && !utp->cond_string)
14749 warning (_("Uploaded tracepoint %d condition "
14750 "has no source form, ignoring it"),
14751 utp->number);
14752
14753 event_location_up location = string_to_event_location (&addr_str,
14754 current_language);
14755 if (!create_breakpoint (get_current_arch (),
14756 location.get (),
14757 utp->cond_string, -1, addr_str,
14758 0 /* parse cond/thread */,
14759 0 /* tempflag */,
14760 utp->type /* type_wanted */,
14761 0 /* Ignore count */,
14762 pending_break_support,
14763 &tracepoint_breakpoint_ops,
14764 0 /* from_tty */,
14765 utp->enabled /* enabled */,
14766 0 /* internal */,
14767 CREATE_BREAKPOINT_FLAGS_INSERTED))
14768 return NULL;
14769
14770 /* Get the tracepoint we just created. */
14771 tp = get_tracepoint (tracepoint_count);
14772 gdb_assert (tp != NULL);
14773
14774 if (utp->pass > 0)
14775 {
14776 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14777 tp->number);
14778
14779 trace_pass_command (small_buf, 0);
14780 }
14781
14782 /* If we have uploaded versions of the original commands, set up a
14783 special-purpose "reader" function and call the usual command line
14784 reader, then pass the result to the breakpoint command-setting
14785 function. */
14786 if (!utp->cmd_strings.empty ())
14787 {
14788 command_line_up cmd_list;
14789
14790 this_utp = utp;
14791 next_cmd = 0;
14792
14793 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14794
14795 breakpoint_set_commands (tp, std::move (cmd_list));
14796 }
14797 else if (!utp->actions.empty ()
14798 || !utp->step_actions.empty ())
14799 warning (_("Uploaded tracepoint %d actions "
14800 "have no source form, ignoring them"),
14801 utp->number);
14802
14803 /* Copy any status information that might be available. */
14804 tp->hit_count = utp->hit_count;
14805 tp->traceframe_usage = utp->traceframe_usage;
14806
14807 return tp;
14808 }
14809
14810 /* Print information on tracepoint number TPNUM_EXP, or all if
14811 omitted. */
14812
14813 static void
14814 info_tracepoints_command (const char *args, int from_tty)
14815 {
14816 struct ui_out *uiout = current_uiout;
14817 int num_printed;
14818
14819 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14820
14821 if (num_printed == 0)
14822 {
14823 if (args == NULL || *args == '\0')
14824 uiout->message ("No tracepoints.\n");
14825 else
14826 uiout->message ("No tracepoint matching '%s'.\n", args);
14827 }
14828
14829 default_collect_info ();
14830 }
14831
14832 /* The 'enable trace' command enables tracepoints.
14833 Not supported by all targets. */
14834 static void
14835 enable_trace_command (const char *args, int from_tty)
14836 {
14837 enable_command (args, from_tty);
14838 }
14839
14840 /* The 'disable trace' command disables tracepoints.
14841 Not supported by all targets. */
14842 static void
14843 disable_trace_command (const char *args, int from_tty)
14844 {
14845 disable_command (args, from_tty);
14846 }
14847
14848 /* Remove a tracepoint (or all if no argument). */
14849 static void
14850 delete_trace_command (const char *arg, int from_tty)
14851 {
14852 struct breakpoint *b, *b_tmp;
14853
14854 dont_repeat ();
14855
14856 if (arg == 0)
14857 {
14858 int breaks_to_delete = 0;
14859
14860 /* Delete all breakpoints if no argument.
14861 Do not delete internal or call-dummy breakpoints, these
14862 have to be deleted with an explicit breakpoint number
14863 argument. */
14864 ALL_TRACEPOINTS (b)
14865 if (is_tracepoint (b) && user_breakpoint_p (b))
14866 {
14867 breaks_to_delete = 1;
14868 break;
14869 }
14870
14871 /* Ask user only if there are some breakpoints to delete. */
14872 if (!from_tty
14873 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14874 {
14875 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14876 if (is_tracepoint (b) && user_breakpoint_p (b))
14877 delete_breakpoint (b);
14878 }
14879 }
14880 else
14881 map_breakpoint_numbers
14882 (arg, [&] (breakpoint *b)
14883 {
14884 iterate_over_related_breakpoints (b, delete_breakpoint);
14885 });
14886 }
14887
14888 /* Helper function for trace_pass_command. */
14889
14890 static void
14891 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14892 {
14893 tp->pass_count = count;
14894 gdb::observers::breakpoint_modified.notify (tp);
14895 if (from_tty)
14896 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14897 tp->number, count);
14898 }
14899
14900 /* Set passcount for tracepoint.
14901
14902 First command argument is passcount, second is tracepoint number.
14903 If tracepoint number omitted, apply to most recently defined.
14904 Also accepts special argument "all". */
14905
14906 static void
14907 trace_pass_command (const char *args, int from_tty)
14908 {
14909 struct tracepoint *t1;
14910 ULONGEST count;
14911
14912 if (args == 0 || *args == 0)
14913 error (_("passcount command requires an "
14914 "argument (count + optional TP num)"));
14915
14916 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14917
14918 args = skip_spaces (args);
14919 if (*args && strncasecmp (args, "all", 3) == 0)
14920 {
14921 struct breakpoint *b;
14922
14923 args += 3; /* Skip special argument "all". */
14924 if (*args)
14925 error (_("Junk at end of arguments."));
14926
14927 ALL_TRACEPOINTS (b)
14928 {
14929 t1 = (struct tracepoint *) b;
14930 trace_pass_set_count (t1, count, from_tty);
14931 }
14932 }
14933 else if (*args == '\0')
14934 {
14935 t1 = get_tracepoint_by_number (&args, NULL);
14936 if (t1)
14937 trace_pass_set_count (t1, count, from_tty);
14938 }
14939 else
14940 {
14941 number_or_range_parser parser (args);
14942 while (!parser.finished ())
14943 {
14944 t1 = get_tracepoint_by_number (&args, &parser);
14945 if (t1)
14946 trace_pass_set_count (t1, count, from_tty);
14947 }
14948 }
14949 }
14950
14951 struct tracepoint *
14952 get_tracepoint (int num)
14953 {
14954 struct breakpoint *t;
14955
14956 ALL_TRACEPOINTS (t)
14957 if (t->number == num)
14958 return (struct tracepoint *) t;
14959
14960 return NULL;
14961 }
14962
14963 /* Find the tracepoint with the given target-side number (which may be
14964 different from the tracepoint number after disconnecting and
14965 reconnecting). */
14966
14967 struct tracepoint *
14968 get_tracepoint_by_number_on_target (int num)
14969 {
14970 struct breakpoint *b;
14971
14972 ALL_TRACEPOINTS (b)
14973 {
14974 struct tracepoint *t = (struct tracepoint *) b;
14975
14976 if (t->number_on_target == num)
14977 return t;
14978 }
14979
14980 return NULL;
14981 }
14982
14983 /* Utility: parse a tracepoint number and look it up in the list.
14984 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14985 If the argument is missing, the most recent tracepoint
14986 (tracepoint_count) is returned. */
14987
14988 struct tracepoint *
14989 get_tracepoint_by_number (const char **arg,
14990 number_or_range_parser *parser)
14991 {
14992 struct breakpoint *t;
14993 int tpnum;
14994 const char *instring = arg == NULL ? NULL : *arg;
14995
14996 if (parser != NULL)
14997 {
14998 gdb_assert (!parser->finished ());
14999 tpnum = parser->get_number ();
15000 }
15001 else if (arg == NULL || *arg == NULL || ! **arg)
15002 tpnum = tracepoint_count;
15003 else
15004 tpnum = get_number (arg);
15005
15006 if (tpnum <= 0)
15007 {
15008 if (instring && *instring)
15009 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15010 instring);
15011 else
15012 printf_filtered (_("No previous tracepoint\n"));
15013 return NULL;
15014 }
15015
15016 ALL_TRACEPOINTS (t)
15017 if (t->number == tpnum)
15018 {
15019 return (struct tracepoint *) t;
15020 }
15021
15022 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15023 return NULL;
15024 }
15025
15026 void
15027 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15028 {
15029 if (b->thread != -1)
15030 fprintf_unfiltered (fp, " thread %d", b->thread);
15031
15032 if (b->task != 0)
15033 fprintf_unfiltered (fp, " task %d", b->task);
15034
15035 fprintf_unfiltered (fp, "\n");
15036 }
15037
15038 /* Save information on user settable breakpoints (watchpoints, etc) to
15039 a new script file named FILENAME. If FILTER is non-NULL, call it
15040 on each breakpoint and only include the ones for which it returns
15041 non-zero. */
15042
15043 static void
15044 save_breakpoints (const char *filename, int from_tty,
15045 int (*filter) (const struct breakpoint *))
15046 {
15047 struct breakpoint *tp;
15048 int any = 0;
15049 int extra_trace_bits = 0;
15050
15051 if (filename == 0 || *filename == 0)
15052 error (_("Argument required (file name in which to save)"));
15053
15054 /* See if we have anything to save. */
15055 ALL_BREAKPOINTS (tp)
15056 {
15057 /* Skip internal and momentary breakpoints. */
15058 if (!user_breakpoint_p (tp))
15059 continue;
15060
15061 /* If we have a filter, only save the breakpoints it accepts. */
15062 if (filter && !filter (tp))
15063 continue;
15064
15065 any = 1;
15066
15067 if (is_tracepoint (tp))
15068 {
15069 extra_trace_bits = 1;
15070
15071 /* We can stop searching. */
15072 break;
15073 }
15074 }
15075
15076 if (!any)
15077 {
15078 warning (_("Nothing to save."));
15079 return;
15080 }
15081
15082 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15083
15084 stdio_file fp;
15085
15086 if (!fp.open (expanded_filename.get (), "w"))
15087 error (_("Unable to open file '%s' for saving (%s)"),
15088 expanded_filename.get (), safe_strerror (errno));
15089
15090 if (extra_trace_bits)
15091 save_trace_state_variables (&fp);
15092
15093 ALL_BREAKPOINTS (tp)
15094 {
15095 /* Skip internal and momentary breakpoints. */
15096 if (!user_breakpoint_p (tp))
15097 continue;
15098
15099 /* If we have a filter, only save the breakpoints it accepts. */
15100 if (filter && !filter (tp))
15101 continue;
15102
15103 tp->ops->print_recreate (tp, &fp);
15104
15105 /* Note, we can't rely on tp->number for anything, as we can't
15106 assume the recreated breakpoint numbers will match. Use $bpnum
15107 instead. */
15108
15109 if (tp->cond_string)
15110 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15111
15112 if (tp->ignore_count)
15113 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15114
15115 if (tp->type != bp_dprintf && tp->commands)
15116 {
15117 fp.puts (" commands\n");
15118
15119 current_uiout->redirect (&fp);
15120 TRY
15121 {
15122 print_command_lines (current_uiout, tp->commands.get (), 2);
15123 }
15124 CATCH (ex, RETURN_MASK_ALL)
15125 {
15126 current_uiout->redirect (NULL);
15127 throw_exception (ex);
15128 }
15129 END_CATCH
15130
15131 current_uiout->redirect (NULL);
15132 fp.puts (" end\n");
15133 }
15134
15135 if (tp->enable_state == bp_disabled)
15136 fp.puts ("disable $bpnum\n");
15137
15138 /* If this is a multi-location breakpoint, check if the locations
15139 should be individually disabled. Watchpoint locations are
15140 special, and not user visible. */
15141 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15142 {
15143 struct bp_location *loc;
15144 int n = 1;
15145
15146 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15147 if (!loc->enabled)
15148 fp.printf ("disable $bpnum.%d\n", n);
15149 }
15150 }
15151
15152 if (extra_trace_bits && *default_collect)
15153 fp.printf ("set default-collect %s\n", default_collect);
15154
15155 if (from_tty)
15156 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15157 }
15158
15159 /* The `save breakpoints' command. */
15160
15161 static void
15162 save_breakpoints_command (const char *args, int from_tty)
15163 {
15164 save_breakpoints (args, from_tty, NULL);
15165 }
15166
15167 /* The `save tracepoints' command. */
15168
15169 static void
15170 save_tracepoints_command (const char *args, int from_tty)
15171 {
15172 save_breakpoints (args, from_tty, is_tracepoint);
15173 }
15174
15175 /* Create a vector of all tracepoints. */
15176
15177 VEC(breakpoint_p) *
15178 all_tracepoints (void)
15179 {
15180 VEC(breakpoint_p) *tp_vec = 0;
15181 struct breakpoint *tp;
15182
15183 ALL_TRACEPOINTS (tp)
15184 {
15185 VEC_safe_push (breakpoint_p, tp_vec, tp);
15186 }
15187
15188 return tp_vec;
15189 }
15190
15191 \f
15192 /* This help string is used to consolidate all the help string for specifying
15193 locations used by several commands. */
15194
15195 #define LOCATION_HELP_STRING \
15196 "Linespecs are colon-separated lists of location parameters, such as\n\
15197 source filename, function name, label name, and line number.\n\
15198 Example: To specify the start of a label named \"the_top\" in the\n\
15199 function \"fact\" in the file \"factorial.c\", use\n\
15200 \"factorial.c:fact:the_top\".\n\
15201 \n\
15202 Address locations begin with \"*\" and specify an exact address in the\n\
15203 program. Example: To specify the fourth byte past the start function\n\
15204 \"main\", use \"*main + 4\".\n\
15205 \n\
15206 Explicit locations are similar to linespecs but use an option/argument\n\
15207 syntax to specify location parameters.\n\
15208 Example: To specify the start of the label named \"the_top\" in the\n\
15209 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15210 -function fact -label the_top\".\n\
15211 \n\
15212 By default, a specified function is matched against the program's\n\
15213 functions in all scopes. For C++, this means in all namespaces and\n\
15214 classes. For Ada, this means in all packages. E.g., in C++,\n\
15215 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15216 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15217 specified name as a complete fully-qualified name instead.\n"
15218
15219 /* This help string is used for the break, hbreak, tbreak and thbreak
15220 commands. It is defined as a macro to prevent duplication.
15221 COMMAND should be a string constant containing the name of the
15222 command. */
15223
15224 #define BREAK_ARGS_HELP(command) \
15225 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15226 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15227 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15228 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15229 `-probe-dtrace' (for a DTrace probe).\n\
15230 LOCATION may be a linespec, address, or explicit location as described\n\
15231 below.\n\
15232 \n\
15233 With no LOCATION, uses current execution address of the selected\n\
15234 stack frame. This is useful for breaking on return to a stack frame.\n\
15235 \n\
15236 THREADNUM is the number from \"info threads\".\n\
15237 CONDITION is a boolean expression.\n\
15238 \n" LOCATION_HELP_STRING "\n\
15239 Multiple breakpoints at one place are permitted, and useful if their\n\
15240 conditions are different.\n\
15241 \n\
15242 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15243
15244 /* List of subcommands for "catch". */
15245 static struct cmd_list_element *catch_cmdlist;
15246
15247 /* List of subcommands for "tcatch". */
15248 static struct cmd_list_element *tcatch_cmdlist;
15249
15250 void
15251 add_catch_command (const char *name, const char *docstring,
15252 cmd_const_sfunc_ftype *sfunc,
15253 completer_ftype *completer,
15254 void *user_data_catch,
15255 void *user_data_tcatch)
15256 {
15257 struct cmd_list_element *command;
15258
15259 command = add_cmd (name, class_breakpoint, docstring,
15260 &catch_cmdlist);
15261 set_cmd_sfunc (command, sfunc);
15262 set_cmd_context (command, user_data_catch);
15263 set_cmd_completer (command, completer);
15264
15265 command = add_cmd (name, class_breakpoint, docstring,
15266 &tcatch_cmdlist);
15267 set_cmd_sfunc (command, sfunc);
15268 set_cmd_context (command, user_data_tcatch);
15269 set_cmd_completer (command, completer);
15270 }
15271
15272 static void
15273 save_command (const char *arg, int from_tty)
15274 {
15275 printf_unfiltered (_("\"save\" must be followed by "
15276 "the name of a save subcommand.\n"));
15277 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15278 }
15279
15280 struct breakpoint *
15281 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15282 void *data)
15283 {
15284 struct breakpoint *b, *b_tmp;
15285
15286 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15287 {
15288 if ((*callback) (b, data))
15289 return b;
15290 }
15291
15292 return NULL;
15293 }
15294
15295 /* Zero if any of the breakpoint's locations could be a location where
15296 functions have been inlined, nonzero otherwise. */
15297
15298 static int
15299 is_non_inline_function (struct breakpoint *b)
15300 {
15301 /* The shared library event breakpoint is set on the address of a
15302 non-inline function. */
15303 if (b->type == bp_shlib_event)
15304 return 1;
15305
15306 return 0;
15307 }
15308
15309 /* Nonzero if the specified PC cannot be a location where functions
15310 have been inlined. */
15311
15312 int
15313 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15314 const struct target_waitstatus *ws)
15315 {
15316 struct breakpoint *b;
15317 struct bp_location *bl;
15318
15319 ALL_BREAKPOINTS (b)
15320 {
15321 if (!is_non_inline_function (b))
15322 continue;
15323
15324 for (bl = b->loc; bl != NULL; bl = bl->next)
15325 {
15326 if (!bl->shlib_disabled
15327 && bpstat_check_location (bl, aspace, pc, ws))
15328 return 1;
15329 }
15330 }
15331
15332 return 0;
15333 }
15334
15335 /* Remove any references to OBJFILE which is going to be freed. */
15336
15337 void
15338 breakpoint_free_objfile (struct objfile *objfile)
15339 {
15340 struct bp_location **locp, *loc;
15341
15342 ALL_BP_LOCATIONS (loc, locp)
15343 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15344 loc->symtab = NULL;
15345 }
15346
15347 void
15348 initialize_breakpoint_ops (void)
15349 {
15350 static int initialized = 0;
15351
15352 struct breakpoint_ops *ops;
15353
15354 if (initialized)
15355 return;
15356 initialized = 1;
15357
15358 /* The breakpoint_ops structure to be inherit by all kinds of
15359 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15360 internal and momentary breakpoints, etc.). */
15361 ops = &bkpt_base_breakpoint_ops;
15362 *ops = base_breakpoint_ops;
15363 ops->re_set = bkpt_re_set;
15364 ops->insert_location = bkpt_insert_location;
15365 ops->remove_location = bkpt_remove_location;
15366 ops->breakpoint_hit = bkpt_breakpoint_hit;
15367 ops->create_sals_from_location = bkpt_create_sals_from_location;
15368 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15369 ops->decode_location = bkpt_decode_location;
15370
15371 /* The breakpoint_ops structure to be used in regular breakpoints. */
15372 ops = &bkpt_breakpoint_ops;
15373 *ops = bkpt_base_breakpoint_ops;
15374 ops->re_set = bkpt_re_set;
15375 ops->resources_needed = bkpt_resources_needed;
15376 ops->print_it = bkpt_print_it;
15377 ops->print_mention = bkpt_print_mention;
15378 ops->print_recreate = bkpt_print_recreate;
15379
15380 /* Ranged breakpoints. */
15381 ops = &ranged_breakpoint_ops;
15382 *ops = bkpt_breakpoint_ops;
15383 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15384 ops->resources_needed = resources_needed_ranged_breakpoint;
15385 ops->print_it = print_it_ranged_breakpoint;
15386 ops->print_one = print_one_ranged_breakpoint;
15387 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15388 ops->print_mention = print_mention_ranged_breakpoint;
15389 ops->print_recreate = print_recreate_ranged_breakpoint;
15390
15391 /* Internal breakpoints. */
15392 ops = &internal_breakpoint_ops;
15393 *ops = bkpt_base_breakpoint_ops;
15394 ops->re_set = internal_bkpt_re_set;
15395 ops->check_status = internal_bkpt_check_status;
15396 ops->print_it = internal_bkpt_print_it;
15397 ops->print_mention = internal_bkpt_print_mention;
15398
15399 /* Momentary breakpoints. */
15400 ops = &momentary_breakpoint_ops;
15401 *ops = bkpt_base_breakpoint_ops;
15402 ops->re_set = momentary_bkpt_re_set;
15403 ops->check_status = momentary_bkpt_check_status;
15404 ops->print_it = momentary_bkpt_print_it;
15405 ops->print_mention = momentary_bkpt_print_mention;
15406
15407 /* Probe breakpoints. */
15408 ops = &bkpt_probe_breakpoint_ops;
15409 *ops = bkpt_breakpoint_ops;
15410 ops->insert_location = bkpt_probe_insert_location;
15411 ops->remove_location = bkpt_probe_remove_location;
15412 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15413 ops->decode_location = bkpt_probe_decode_location;
15414
15415 /* Watchpoints. */
15416 ops = &watchpoint_breakpoint_ops;
15417 *ops = base_breakpoint_ops;
15418 ops->re_set = re_set_watchpoint;
15419 ops->insert_location = insert_watchpoint;
15420 ops->remove_location = remove_watchpoint;
15421 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15422 ops->check_status = check_status_watchpoint;
15423 ops->resources_needed = resources_needed_watchpoint;
15424 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15425 ops->print_it = print_it_watchpoint;
15426 ops->print_mention = print_mention_watchpoint;
15427 ops->print_recreate = print_recreate_watchpoint;
15428 ops->explains_signal = explains_signal_watchpoint;
15429
15430 /* Masked watchpoints. */
15431 ops = &masked_watchpoint_breakpoint_ops;
15432 *ops = watchpoint_breakpoint_ops;
15433 ops->insert_location = insert_masked_watchpoint;
15434 ops->remove_location = remove_masked_watchpoint;
15435 ops->resources_needed = resources_needed_masked_watchpoint;
15436 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15437 ops->print_it = print_it_masked_watchpoint;
15438 ops->print_one_detail = print_one_detail_masked_watchpoint;
15439 ops->print_mention = print_mention_masked_watchpoint;
15440 ops->print_recreate = print_recreate_masked_watchpoint;
15441
15442 /* Tracepoints. */
15443 ops = &tracepoint_breakpoint_ops;
15444 *ops = base_breakpoint_ops;
15445 ops->re_set = tracepoint_re_set;
15446 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15447 ops->print_one_detail = tracepoint_print_one_detail;
15448 ops->print_mention = tracepoint_print_mention;
15449 ops->print_recreate = tracepoint_print_recreate;
15450 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15451 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15452 ops->decode_location = tracepoint_decode_location;
15453
15454 /* Probe tracepoints. */
15455 ops = &tracepoint_probe_breakpoint_ops;
15456 *ops = tracepoint_breakpoint_ops;
15457 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15458 ops->decode_location = tracepoint_probe_decode_location;
15459
15460 /* Static tracepoints with marker (`-m'). */
15461 ops = &strace_marker_breakpoint_ops;
15462 *ops = tracepoint_breakpoint_ops;
15463 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15464 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15465 ops->decode_location = strace_marker_decode_location;
15466
15467 /* Fork catchpoints. */
15468 ops = &catch_fork_breakpoint_ops;
15469 *ops = base_breakpoint_ops;
15470 ops->insert_location = insert_catch_fork;
15471 ops->remove_location = remove_catch_fork;
15472 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15473 ops->print_it = print_it_catch_fork;
15474 ops->print_one = print_one_catch_fork;
15475 ops->print_mention = print_mention_catch_fork;
15476 ops->print_recreate = print_recreate_catch_fork;
15477
15478 /* Vfork catchpoints. */
15479 ops = &catch_vfork_breakpoint_ops;
15480 *ops = base_breakpoint_ops;
15481 ops->insert_location = insert_catch_vfork;
15482 ops->remove_location = remove_catch_vfork;
15483 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15484 ops->print_it = print_it_catch_vfork;
15485 ops->print_one = print_one_catch_vfork;
15486 ops->print_mention = print_mention_catch_vfork;
15487 ops->print_recreate = print_recreate_catch_vfork;
15488
15489 /* Exec catchpoints. */
15490 ops = &catch_exec_breakpoint_ops;
15491 *ops = base_breakpoint_ops;
15492 ops->insert_location = insert_catch_exec;
15493 ops->remove_location = remove_catch_exec;
15494 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15495 ops->print_it = print_it_catch_exec;
15496 ops->print_one = print_one_catch_exec;
15497 ops->print_mention = print_mention_catch_exec;
15498 ops->print_recreate = print_recreate_catch_exec;
15499
15500 /* Solib-related catchpoints. */
15501 ops = &catch_solib_breakpoint_ops;
15502 *ops = base_breakpoint_ops;
15503 ops->insert_location = insert_catch_solib;
15504 ops->remove_location = remove_catch_solib;
15505 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15506 ops->check_status = check_status_catch_solib;
15507 ops->print_it = print_it_catch_solib;
15508 ops->print_one = print_one_catch_solib;
15509 ops->print_mention = print_mention_catch_solib;
15510 ops->print_recreate = print_recreate_catch_solib;
15511
15512 ops = &dprintf_breakpoint_ops;
15513 *ops = bkpt_base_breakpoint_ops;
15514 ops->re_set = dprintf_re_set;
15515 ops->resources_needed = bkpt_resources_needed;
15516 ops->print_it = bkpt_print_it;
15517 ops->print_mention = bkpt_print_mention;
15518 ops->print_recreate = dprintf_print_recreate;
15519 ops->after_condition_true = dprintf_after_condition_true;
15520 ops->breakpoint_hit = dprintf_breakpoint_hit;
15521 }
15522
15523 /* Chain containing all defined "enable breakpoint" subcommands. */
15524
15525 static struct cmd_list_element *enablebreaklist = NULL;
15526
15527 void
15528 _initialize_breakpoint (void)
15529 {
15530 struct cmd_list_element *c;
15531
15532 initialize_breakpoint_ops ();
15533
15534 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15535 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15536 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15537
15538 breakpoint_objfile_key
15539 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15540
15541 breakpoint_chain = 0;
15542 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15543 before a breakpoint is set. */
15544 breakpoint_count = 0;
15545
15546 tracepoint_count = 0;
15547
15548 add_com ("ignore", class_breakpoint, ignore_command, _("\
15549 Set ignore-count of breakpoint number N to COUNT.\n\
15550 Usage is `ignore N COUNT'."));
15551
15552 add_com ("commands", class_breakpoint, commands_command, _("\
15553 Set commands to be executed when the given breakpoints are hit.\n\
15554 Give a space-separated breakpoint list as argument after \"commands\".\n\
15555 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15556 (e.g. `5-7').\n\
15557 With no argument, the targeted breakpoint is the last one set.\n\
15558 The commands themselves follow starting on the next line.\n\
15559 Type a line containing \"end\" to indicate the end of them.\n\
15560 Give \"silent\" as the first line to make the breakpoint silent;\n\
15561 then no output is printed when it is hit, except what the commands print."));
15562
15563 c = add_com ("condition", class_breakpoint, condition_command, _("\
15564 Specify breakpoint number N to break only if COND is true.\n\
15565 Usage is `condition N COND', where N is an integer and COND is an\n\
15566 expression to be evaluated whenever breakpoint N is reached."));
15567 set_cmd_completer (c, condition_completer);
15568
15569 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15570 Set a temporary breakpoint.\n\
15571 Like \"break\" except the breakpoint is only temporary,\n\
15572 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15573 by using \"enable delete\" on the breakpoint number.\n\
15574 \n"
15575 BREAK_ARGS_HELP ("tbreak")));
15576 set_cmd_completer (c, location_completer);
15577
15578 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15579 Set a hardware assisted breakpoint.\n\
15580 Like \"break\" except the breakpoint requires hardware support,\n\
15581 some target hardware may not have this support.\n\
15582 \n"
15583 BREAK_ARGS_HELP ("hbreak")));
15584 set_cmd_completer (c, location_completer);
15585
15586 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15587 Set a temporary hardware assisted breakpoint.\n\
15588 Like \"hbreak\" except the breakpoint is only temporary,\n\
15589 so it will be deleted when hit.\n\
15590 \n"
15591 BREAK_ARGS_HELP ("thbreak")));
15592 set_cmd_completer (c, location_completer);
15593
15594 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15595 Enable some breakpoints.\n\
15596 Give breakpoint numbers (separated by spaces) as arguments.\n\
15597 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15598 This is used to cancel the effect of the \"disable\" command.\n\
15599 With a subcommand you can enable temporarily."),
15600 &enablelist, "enable ", 1, &cmdlist);
15601
15602 add_com_alias ("en", "enable", class_breakpoint, 1);
15603
15604 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15605 Enable some breakpoints.\n\
15606 Give breakpoint numbers (separated by spaces) as arguments.\n\
15607 This is used to cancel the effect of the \"disable\" command.\n\
15608 May be abbreviated to simply \"enable\".\n"),
15609 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15610
15611 add_cmd ("once", no_class, enable_once_command, _("\
15612 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15613 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15614 &enablebreaklist);
15615
15616 add_cmd ("delete", no_class, enable_delete_command, _("\
15617 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15618 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15619 &enablebreaklist);
15620
15621 add_cmd ("count", no_class, enable_count_command, _("\
15622 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15623 If a breakpoint is hit while enabled in this fashion,\n\
15624 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15625 &enablebreaklist);
15626
15627 add_cmd ("delete", no_class, enable_delete_command, _("\
15628 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15629 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15630 &enablelist);
15631
15632 add_cmd ("once", no_class, enable_once_command, _("\
15633 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15634 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15635 &enablelist);
15636
15637 add_cmd ("count", no_class, enable_count_command, _("\
15638 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15639 If a breakpoint is hit while enabled in this fashion,\n\
15640 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15641 &enablelist);
15642
15643 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15644 Disable some breakpoints.\n\
15645 Arguments are breakpoint numbers with spaces in between.\n\
15646 To disable all breakpoints, give no argument.\n\
15647 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15648 &disablelist, "disable ", 1, &cmdlist);
15649 add_com_alias ("dis", "disable", class_breakpoint, 1);
15650 add_com_alias ("disa", "disable", class_breakpoint, 1);
15651
15652 add_cmd ("breakpoints", class_alias, disable_command, _("\
15653 Disable some breakpoints.\n\
15654 Arguments are breakpoint numbers with spaces in between.\n\
15655 To disable all breakpoints, give no argument.\n\
15656 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15657 This command may be abbreviated \"disable\"."),
15658 &disablelist);
15659
15660 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15661 Delete some breakpoints or auto-display expressions.\n\
15662 Arguments are breakpoint numbers with spaces in between.\n\
15663 To delete all breakpoints, give no argument.\n\
15664 \n\
15665 Also a prefix command for deletion of other GDB objects.\n\
15666 The \"unset\" command is also an alias for \"delete\"."),
15667 &deletelist, "delete ", 1, &cmdlist);
15668 add_com_alias ("d", "delete", class_breakpoint, 1);
15669 add_com_alias ("del", "delete", class_breakpoint, 1);
15670
15671 add_cmd ("breakpoints", class_alias, delete_command, _("\
15672 Delete some breakpoints or auto-display expressions.\n\
15673 Arguments are breakpoint numbers with spaces in between.\n\
15674 To delete all breakpoints, give no argument.\n\
15675 This command may be abbreviated \"delete\"."),
15676 &deletelist);
15677
15678 add_com ("clear", class_breakpoint, clear_command, _("\
15679 Clear breakpoint at specified location.\n\
15680 Argument may be a linespec, explicit, or address location as described below.\n\
15681 \n\
15682 With no argument, clears all breakpoints in the line that the selected frame\n\
15683 is executing in.\n"
15684 "\n" LOCATION_HELP_STRING "\n\
15685 See also the \"delete\" command which clears breakpoints by number."));
15686 add_com_alias ("cl", "clear", class_breakpoint, 1);
15687
15688 c = add_com ("break", class_breakpoint, break_command, _("\
15689 Set breakpoint at specified location.\n"
15690 BREAK_ARGS_HELP ("break")));
15691 set_cmd_completer (c, location_completer);
15692
15693 add_com_alias ("b", "break", class_run, 1);
15694 add_com_alias ("br", "break", class_run, 1);
15695 add_com_alias ("bre", "break", class_run, 1);
15696 add_com_alias ("brea", "break", class_run, 1);
15697
15698 if (dbx_commands)
15699 {
15700 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15701 Break in function/address or break at a line in the current file."),
15702 &stoplist, "stop ", 1, &cmdlist);
15703 add_cmd ("in", class_breakpoint, stopin_command,
15704 _("Break in function or address."), &stoplist);
15705 add_cmd ("at", class_breakpoint, stopat_command,
15706 _("Break at a line in the current file."), &stoplist);
15707 add_com ("status", class_info, info_breakpoints_command, _("\
15708 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15709 The \"Type\" column indicates one of:\n\
15710 \tbreakpoint - normal breakpoint\n\
15711 \twatchpoint - watchpoint\n\
15712 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15713 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15714 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15715 address and file/line number respectively.\n\
15716 \n\
15717 Convenience variable \"$_\" and default examine address for \"x\"\n\
15718 are set to the address of the last breakpoint listed unless the command\n\
15719 is prefixed with \"server \".\n\n\
15720 Convenience variable \"$bpnum\" contains the number of the last\n\
15721 breakpoint set."));
15722 }
15723
15724 add_info ("breakpoints", info_breakpoints_command, _("\
15725 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15726 The \"Type\" column indicates one of:\n\
15727 \tbreakpoint - normal breakpoint\n\
15728 \twatchpoint - watchpoint\n\
15729 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15730 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15731 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15732 address and file/line number respectively.\n\
15733 \n\
15734 Convenience variable \"$_\" and default examine address for \"x\"\n\
15735 are set to the address of the last breakpoint listed unless the command\n\
15736 is prefixed with \"server \".\n\n\
15737 Convenience variable \"$bpnum\" contains the number of the last\n\
15738 breakpoint set."));
15739
15740 add_info_alias ("b", "breakpoints", 1);
15741
15742 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15743 Status of all breakpoints, or breakpoint number NUMBER.\n\
15744 The \"Type\" column indicates one of:\n\
15745 \tbreakpoint - normal breakpoint\n\
15746 \twatchpoint - watchpoint\n\
15747 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15748 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15749 \tuntil - internal breakpoint used by the \"until\" command\n\
15750 \tfinish - internal breakpoint used by the \"finish\" command\n\
15751 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15752 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15753 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15754 address and file/line number respectively.\n\
15755 \n\
15756 Convenience variable \"$_\" and default examine address for \"x\"\n\
15757 are set to the address of the last breakpoint listed unless the command\n\
15758 is prefixed with \"server \".\n\n\
15759 Convenience variable \"$bpnum\" contains the number of the last\n\
15760 breakpoint set."),
15761 &maintenanceinfolist);
15762
15763 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15764 Set catchpoints to catch events."),
15765 &catch_cmdlist, "catch ",
15766 0/*allow-unknown*/, &cmdlist);
15767
15768 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15769 Set temporary catchpoints to catch events."),
15770 &tcatch_cmdlist, "tcatch ",
15771 0/*allow-unknown*/, &cmdlist);
15772
15773 add_catch_command ("fork", _("Catch calls to fork."),
15774 catch_fork_command_1,
15775 NULL,
15776 (void *) (uintptr_t) catch_fork_permanent,
15777 (void *) (uintptr_t) catch_fork_temporary);
15778 add_catch_command ("vfork", _("Catch calls to vfork."),
15779 catch_fork_command_1,
15780 NULL,
15781 (void *) (uintptr_t) catch_vfork_permanent,
15782 (void *) (uintptr_t) catch_vfork_temporary);
15783 add_catch_command ("exec", _("Catch calls to exec."),
15784 catch_exec_command_1,
15785 NULL,
15786 CATCH_PERMANENT,
15787 CATCH_TEMPORARY);
15788 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15789 Usage: catch load [REGEX]\n\
15790 If REGEX is given, only stop for libraries matching the regular expression."),
15791 catch_load_command_1,
15792 NULL,
15793 CATCH_PERMANENT,
15794 CATCH_TEMPORARY);
15795 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15796 Usage: catch unload [REGEX]\n\
15797 If REGEX is given, only stop for libraries matching the regular expression."),
15798 catch_unload_command_1,
15799 NULL,
15800 CATCH_PERMANENT,
15801 CATCH_TEMPORARY);
15802
15803 c = add_com ("watch", class_breakpoint, watch_command, _("\
15804 Set a watchpoint for an expression.\n\
15805 Usage: watch [-l|-location] EXPRESSION\n\
15806 A watchpoint stops execution of your program whenever the value of\n\
15807 an expression changes.\n\
15808 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15809 the memory to which it refers."));
15810 set_cmd_completer (c, expression_completer);
15811
15812 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15813 Set a read watchpoint for an expression.\n\
15814 Usage: rwatch [-l|-location] EXPRESSION\n\
15815 A watchpoint stops execution of your program whenever the value of\n\
15816 an expression is read.\n\
15817 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15818 the memory to which it refers."));
15819 set_cmd_completer (c, expression_completer);
15820
15821 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15822 Set a watchpoint for an expression.\n\
15823 Usage: awatch [-l|-location] EXPRESSION\n\
15824 A watchpoint stops execution of your program whenever the value of\n\
15825 an expression is either read or written.\n\
15826 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15827 the memory to which it refers."));
15828 set_cmd_completer (c, expression_completer);
15829
15830 add_info ("watchpoints", info_watchpoints_command, _("\
15831 Status of specified watchpoints (all watchpoints if no argument)."));
15832
15833 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15834 respond to changes - contrary to the description. */
15835 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15836 &can_use_hw_watchpoints, _("\
15837 Set debugger's willingness to use watchpoint hardware."), _("\
15838 Show debugger's willingness to use watchpoint hardware."), _("\
15839 If zero, gdb will not use hardware for new watchpoints, even if\n\
15840 such is available. (However, any hardware watchpoints that were\n\
15841 created before setting this to nonzero, will continue to use watchpoint\n\
15842 hardware.)"),
15843 NULL,
15844 show_can_use_hw_watchpoints,
15845 &setlist, &showlist);
15846
15847 can_use_hw_watchpoints = 1;
15848
15849 /* Tracepoint manipulation commands. */
15850
15851 c = add_com ("trace", class_breakpoint, trace_command, _("\
15852 Set a tracepoint at specified location.\n\
15853 \n"
15854 BREAK_ARGS_HELP ("trace") "\n\
15855 Do \"help tracepoints\" for info on other tracepoint commands."));
15856 set_cmd_completer (c, location_completer);
15857
15858 add_com_alias ("tp", "trace", class_alias, 0);
15859 add_com_alias ("tr", "trace", class_alias, 1);
15860 add_com_alias ("tra", "trace", class_alias, 1);
15861 add_com_alias ("trac", "trace", class_alias, 1);
15862
15863 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15864 Set a fast tracepoint at specified location.\n\
15865 \n"
15866 BREAK_ARGS_HELP ("ftrace") "\n\
15867 Do \"help tracepoints\" for info on other tracepoint commands."));
15868 set_cmd_completer (c, location_completer);
15869
15870 c = add_com ("strace", class_breakpoint, strace_command, _("\
15871 Set a static tracepoint at location or marker.\n\
15872 \n\
15873 strace [LOCATION] [if CONDITION]\n\
15874 LOCATION may be a linespec, explicit, or address location (described below) \n\
15875 or -m MARKER_ID.\n\n\
15876 If a marker id is specified, probe the marker with that name. With\n\
15877 no LOCATION, uses current execution address of the selected stack frame.\n\
15878 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15879 This collects arbitrary user data passed in the probe point call to the\n\
15880 tracing library. You can inspect it when analyzing the trace buffer,\n\
15881 by printing the $_sdata variable like any other convenience variable.\n\
15882 \n\
15883 CONDITION is a boolean expression.\n\
15884 \n" LOCATION_HELP_STRING "\n\
15885 Multiple tracepoints at one place are permitted, and useful if their\n\
15886 conditions are different.\n\
15887 \n\
15888 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15889 Do \"help tracepoints\" for info on other tracepoint commands."));
15890 set_cmd_completer (c, location_completer);
15891
15892 add_info ("tracepoints", info_tracepoints_command, _("\
15893 Status of specified tracepoints (all tracepoints if no argument).\n\
15894 Convenience variable \"$tpnum\" contains the number of the\n\
15895 last tracepoint set."));
15896
15897 add_info_alias ("tp", "tracepoints", 1);
15898
15899 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15900 Delete specified tracepoints.\n\
15901 Arguments are tracepoint numbers, separated by spaces.\n\
15902 No argument means delete all tracepoints."),
15903 &deletelist);
15904 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15905
15906 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15907 Disable specified tracepoints.\n\
15908 Arguments are tracepoint numbers, separated by spaces.\n\
15909 No argument means disable all tracepoints."),
15910 &disablelist);
15911 deprecate_cmd (c, "disable");
15912
15913 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15914 Enable specified tracepoints.\n\
15915 Arguments are tracepoint numbers, separated by spaces.\n\
15916 No argument means enable all tracepoints."),
15917 &enablelist);
15918 deprecate_cmd (c, "enable");
15919
15920 add_com ("passcount", class_trace, trace_pass_command, _("\
15921 Set the passcount for a tracepoint.\n\
15922 The trace will end when the tracepoint has been passed 'count' times.\n\
15923 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15924 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15925
15926 add_prefix_cmd ("save", class_breakpoint, save_command,
15927 _("Save breakpoint definitions as a script."),
15928 &save_cmdlist, "save ",
15929 0/*allow-unknown*/, &cmdlist);
15930
15931 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15932 Save current breakpoint definitions as a script.\n\
15933 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15934 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15935 session to restore them."),
15936 &save_cmdlist);
15937 set_cmd_completer (c, filename_completer);
15938
15939 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15940 Save current tracepoint definitions as a script.\n\
15941 Use the 'source' command in another debug session to restore them."),
15942 &save_cmdlist);
15943 set_cmd_completer (c, filename_completer);
15944
15945 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15946 deprecate_cmd (c, "save tracepoints");
15947
15948 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15949 Breakpoint specific settings\n\
15950 Configure various breakpoint-specific variables such as\n\
15951 pending breakpoint behavior"),
15952 &breakpoint_set_cmdlist, "set breakpoint ",
15953 0/*allow-unknown*/, &setlist);
15954 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15955 Breakpoint specific settings\n\
15956 Configure various breakpoint-specific variables such as\n\
15957 pending breakpoint behavior"),
15958 &breakpoint_show_cmdlist, "show breakpoint ",
15959 0/*allow-unknown*/, &showlist);
15960
15961 add_setshow_auto_boolean_cmd ("pending", no_class,
15962 &pending_break_support, _("\
15963 Set debugger's behavior regarding pending breakpoints."), _("\
15964 Show debugger's behavior regarding pending breakpoints."), _("\
15965 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15966 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15967 an error. If auto, an unrecognized breakpoint location results in a\n\
15968 user-query to see if a pending breakpoint should be created."),
15969 NULL,
15970 show_pending_break_support,
15971 &breakpoint_set_cmdlist,
15972 &breakpoint_show_cmdlist);
15973
15974 pending_break_support = AUTO_BOOLEAN_AUTO;
15975
15976 add_setshow_boolean_cmd ("auto-hw", no_class,
15977 &automatic_hardware_breakpoints, _("\
15978 Set automatic usage of hardware breakpoints."), _("\
15979 Show automatic usage of hardware breakpoints."), _("\
15980 If set, the debugger will automatically use hardware breakpoints for\n\
15981 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15982 a warning will be emitted for such breakpoints."),
15983 NULL,
15984 show_automatic_hardware_breakpoints,
15985 &breakpoint_set_cmdlist,
15986 &breakpoint_show_cmdlist);
15987
15988 add_setshow_boolean_cmd ("always-inserted", class_support,
15989 &always_inserted_mode, _("\
15990 Set mode for inserting breakpoints."), _("\
15991 Show mode for inserting breakpoints."), _("\
15992 When this mode is on, breakpoints are inserted immediately as soon as\n\
15993 they're created, kept inserted even when execution stops, and removed\n\
15994 only when the user deletes them. When this mode is off (the default),\n\
15995 breakpoints are inserted only when execution continues, and removed\n\
15996 when execution stops."),
15997 NULL,
15998 &show_always_inserted_mode,
15999 &breakpoint_set_cmdlist,
16000 &breakpoint_show_cmdlist);
16001
16002 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16003 condition_evaluation_enums,
16004 &condition_evaluation_mode_1, _("\
16005 Set mode of breakpoint condition evaluation."), _("\
16006 Show mode of breakpoint condition evaluation."), _("\
16007 When this is set to \"host\", breakpoint conditions will be\n\
16008 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16009 breakpoint conditions will be downloaded to the target (if the target\n\
16010 supports such feature) and conditions will be evaluated on the target's side.\n\
16011 If this is set to \"auto\" (default), this will be automatically set to\n\
16012 \"target\" if it supports condition evaluation, otherwise it will\n\
16013 be set to \"gdb\""),
16014 &set_condition_evaluation_mode,
16015 &show_condition_evaluation_mode,
16016 &breakpoint_set_cmdlist,
16017 &breakpoint_show_cmdlist);
16018
16019 add_com ("break-range", class_breakpoint, break_range_command, _("\
16020 Set a breakpoint for an address range.\n\
16021 break-range START-LOCATION, END-LOCATION\n\
16022 where START-LOCATION and END-LOCATION can be one of the following:\n\
16023 LINENUM, for that line in the current file,\n\
16024 FILE:LINENUM, for that line in that file,\n\
16025 +OFFSET, for that number of lines after the current line\n\
16026 or the start of the range\n\
16027 FUNCTION, for the first line in that function,\n\
16028 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16029 *ADDRESS, for the instruction at that address.\n\
16030 \n\
16031 The breakpoint will stop execution of the inferior whenever it executes\n\
16032 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16033 range (including START-LOCATION and END-LOCATION)."));
16034
16035 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16036 Set a dynamic printf at specified location.\n\
16037 dprintf location,format string,arg1,arg2,...\n\
16038 location may be a linespec, explicit, or address location.\n"
16039 "\n" LOCATION_HELP_STRING));
16040 set_cmd_completer (c, location_completer);
16041
16042 add_setshow_enum_cmd ("dprintf-style", class_support,
16043 dprintf_style_enums, &dprintf_style, _("\
16044 Set the style of usage for dynamic printf."), _("\
16045 Show the style of usage for dynamic printf."), _("\
16046 This setting chooses how GDB will do a dynamic printf.\n\
16047 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16048 console, as with the \"printf\" command.\n\
16049 If the value is \"call\", the print is done by calling a function in your\n\
16050 program; by default printf(), but you can choose a different function or\n\
16051 output stream by setting dprintf-function and dprintf-channel."),
16052 update_dprintf_commands, NULL,
16053 &setlist, &showlist);
16054
16055 dprintf_function = xstrdup ("printf");
16056 add_setshow_string_cmd ("dprintf-function", class_support,
16057 &dprintf_function, _("\
16058 Set the function to use for dynamic printf"), _("\
16059 Show the function to use for dynamic printf"), NULL,
16060 update_dprintf_commands, NULL,
16061 &setlist, &showlist);
16062
16063 dprintf_channel = xstrdup ("");
16064 add_setshow_string_cmd ("dprintf-channel", class_support,
16065 &dprintf_channel, _("\
16066 Set the channel to use for dynamic printf"), _("\
16067 Show the channel to use for dynamic printf"), NULL,
16068 update_dprintf_commands, NULL,
16069 &setlist, &showlist);
16070
16071 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16072 &disconnected_dprintf, _("\
16073 Set whether dprintf continues after GDB disconnects."), _("\
16074 Show whether dprintf continues after GDB disconnects."), _("\
16075 Use this to let dprintf commands continue to hit and produce output\n\
16076 even if GDB disconnects or detaches from the target."),
16077 NULL,
16078 NULL,
16079 &setlist, &showlist);
16080
16081 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16082 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16083 (target agent only) This is useful for formatted output in user-defined commands."));
16084
16085 automatic_hardware_breakpoints = 1;
16086
16087 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16088 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16089 }
This page took 0.511382 seconds and 4 git commands to generate.