* tracepoint.c (trace_save): Call the writer's start method.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 struct linespec_sals *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_linespec_default (struct breakpoint *, char **,
130 struct symtabs_and_lines *);
131
132 static void clear_command (char *, int);
133
134 static void catch_command (char *, int);
135
136 static int can_use_hardware_watchpoint (struct value *);
137
138 static void break_command_1 (char *, int, int);
139
140 static void mention (struct breakpoint *);
141
142 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
143 enum bptype,
144 const struct breakpoint_ops *);
145 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
146 const struct symtab_and_line *);
147
148 /* This function is used in gdbtk sources and thus can not be made
149 static. */
150 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
151 struct symtab_and_line,
152 enum bptype,
153 const struct breakpoint_ops *);
154
155 static struct breakpoint *
156 momentary_breakpoint_from_master (struct breakpoint *orig,
157 enum bptype type,
158 const struct breakpoint_ops *ops);
159
160 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
161
162 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
163 CORE_ADDR bpaddr,
164 enum bptype bptype);
165
166 static void describe_other_breakpoints (struct gdbarch *,
167 struct program_space *, CORE_ADDR,
168 struct obj_section *, int);
169
170 static int breakpoint_address_match (struct address_space *aspace1,
171 CORE_ADDR addr1,
172 struct address_space *aspace2,
173 CORE_ADDR addr2);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static void breakpoints_info (char *, int);
183
184 static void watchpoints_info (char *, int);
185
186 static int breakpoint_1 (char *, int,
187 int (*) (const struct breakpoint *));
188
189 static int breakpoint_cond_eval (void *);
190
191 static void cleanup_executing_breakpoints (void *);
192
193 static void commands_command (char *, int);
194
195 static void condition_command (char *, int);
196
197 typedef enum
198 {
199 mark_inserted,
200 mark_uninserted
201 }
202 insertion_state_t;
203
204 static int remove_breakpoint (struct bp_location *, insertion_state_t);
205 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
206
207 static enum print_stop_action print_bp_stop_message (bpstat bs);
208
209 static int watchpoint_check (void *);
210
211 static void maintenance_info_breakpoints (char *, int);
212
213 static int hw_breakpoint_used_count (void);
214
215 static int hw_watchpoint_use_count (struct breakpoint *);
216
217 static int hw_watchpoint_used_count_others (struct breakpoint *except,
218 enum bptype type,
219 int *other_type_used);
220
221 static void hbreak_command (char *, int);
222
223 static void thbreak_command (char *, int);
224
225 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
226 int count);
227
228 static void stop_command (char *arg, int from_tty);
229
230 static void stopin_command (char *arg, int from_tty);
231
232 static void stopat_command (char *arg, int from_tty);
233
234 static void tcatch_command (char *arg, int from_tty);
235
236 static void detach_single_step_breakpoints (void);
237
238 static int single_step_breakpoint_inserted_here_p (struct address_space *,
239 CORE_ADDR pc);
240
241 static void free_bp_location (struct bp_location *loc);
242 static void incref_bp_location (struct bp_location *loc);
243 static void decref_bp_location (struct bp_location **loc);
244
245 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
246
247 static void update_global_location_list (int);
248
249 static void update_global_location_list_nothrow (int);
250
251 static int is_hardware_watchpoint (const struct breakpoint *bpt);
252
253 static void insert_breakpoint_locations (void);
254
255 static int syscall_catchpoint_p (struct breakpoint *b);
256
257 static void tracepoints_info (char *, int);
258
259 static void delete_trace_command (char *, int);
260
261 static void enable_trace_command (char *, int);
262
263 static void disable_trace_command (char *, int);
264
265 static void trace_pass_command (char *, int);
266
267 static void set_tracepoint_count (int num);
268
269 static int is_masked_watchpoint (const struct breakpoint *b);
270
271 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
272
273 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
274 otherwise. */
275
276 static int strace_marker_p (struct breakpoint *b);
277
278 /* The abstract base class all breakpoint_ops structures inherit
279 from. */
280 struct breakpoint_ops base_breakpoint_ops;
281
282 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
283 that are implemented on top of software or hardware breakpoints
284 (user breakpoints, internal and momentary breakpoints, etc.). */
285 static struct breakpoint_ops bkpt_base_breakpoint_ops;
286
287 /* Internal breakpoints class type. */
288 static struct breakpoint_ops internal_breakpoint_ops;
289
290 /* Momentary breakpoints class type. */
291 static struct breakpoint_ops momentary_breakpoint_ops;
292
293 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
294 static struct breakpoint_ops longjmp_breakpoint_ops;
295
296 /* The breakpoint_ops structure to be used in regular user created
297 breakpoints. */
298 struct breakpoint_ops bkpt_breakpoint_ops;
299
300 /* Breakpoints set on probes. */
301 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
302
303 /* Dynamic printf class type. */
304 static struct breakpoint_ops dprintf_breakpoint_ops;
305
306 /* The style in which to perform a dynamic printf. This is a user
307 option because different output options have different tradeoffs;
308 if GDB does the printing, there is better error handling if there
309 is a problem with any of the arguments, but using an inferior
310 function lets you have special-purpose printers and sending of
311 output to the same place as compiled-in print functions. */
312
313 static const char dprintf_style_gdb[] = "gdb";
314 static const char dprintf_style_call[] = "call";
315 static const char dprintf_style_agent[] = "agent";
316 static const char *const dprintf_style_enums[] = {
317 dprintf_style_gdb,
318 dprintf_style_call,
319 dprintf_style_agent,
320 NULL
321 };
322 static const char *dprintf_style = dprintf_style_gdb;
323
324 /* The function to use for dynamic printf if the preferred style is to
325 call into the inferior. The value is simply a string that is
326 copied into the command, so it can be anything that GDB can
327 evaluate to a callable address, not necessarily a function name. */
328
329 static char *dprintf_function = "";
330
331 /* The channel to use for dynamic printf if the preferred style is to
332 call into the inferior; if a nonempty string, it will be passed to
333 the call as the first argument, with the format string as the
334 second. As with the dprintf function, this can be anything that
335 GDB knows how to evaluate, so in addition to common choices like
336 "stderr", this could be an app-specific expression like
337 "mystreams[curlogger]". */
338
339 static char *dprintf_channel = "";
340
341 /* True if dprintf commands should continue to operate even if GDB
342 has disconnected. */
343 static int disconnected_dprintf = 1;
344
345 /* A reference-counted struct command_line. This lets multiple
346 breakpoints share a single command list. */
347 struct counted_command_line
348 {
349 /* The reference count. */
350 int refc;
351
352 /* The command list. */
353 struct command_line *commands;
354 };
355
356 struct command_line *
357 breakpoint_commands (struct breakpoint *b)
358 {
359 return b->commands ? b->commands->commands : NULL;
360 }
361
362 /* Flag indicating that a command has proceeded the inferior past the
363 current breakpoint. */
364
365 static int breakpoint_proceeded;
366
367 const char *
368 bpdisp_text (enum bpdisp disp)
369 {
370 /* NOTE: the following values are a part of MI protocol and
371 represent values of 'disp' field returned when inferior stops at
372 a breakpoint. */
373 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
374
375 return bpdisps[(int) disp];
376 }
377
378 /* Prototypes for exported functions. */
379 /* If FALSE, gdb will not use hardware support for watchpoints, even
380 if such is available. */
381 static int can_use_hw_watchpoints;
382
383 static void
384 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c,
386 const char *value)
387 {
388 fprintf_filtered (file,
389 _("Debugger's willingness to use "
390 "watchpoint hardware is %s.\n"),
391 value);
392 }
393
394 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
395 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
396 for unrecognized breakpoint locations.
397 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
398 static enum auto_boolean pending_break_support;
399 static void
400 show_pending_break_support (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c,
402 const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger's behavior regarding "
406 "pending breakpoints is %s.\n"),
407 value);
408 }
409
410 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
411 set with "break" but falling in read-only memory.
412 If 0, gdb will warn about such breakpoints, but won't automatically
413 use hardware breakpoints. */
414 static int automatic_hardware_breakpoints;
415 static void
416 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c,
418 const char *value)
419 {
420 fprintf_filtered (file,
421 _("Automatic usage of hardware breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If on, gdb will keep breakpoints inserted even as inferior is
426 stopped, and immediately insert any new breakpoints. If off, gdb
427 will insert breakpoints into inferior only when resuming it, and
428 will remove breakpoints upon stop. If auto, GDB will behave as ON
429 if in non-stop mode, and as OFF if all-stop mode.*/
430
431 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
432
433 static void
434 show_always_inserted_mode (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c, const char *value)
436 {
437 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
438 fprintf_filtered (file,
439 _("Always inserted breakpoint "
440 "mode is %s (currently %s).\n"),
441 value,
442 breakpoints_always_inserted_mode () ? "on" : "off");
443 else
444 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
445 value);
446 }
447
448 int
449 breakpoints_always_inserted_mode (void)
450 {
451 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
452 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
453 }
454
455 static const char condition_evaluation_both[] = "host or target";
456
457 /* Modes for breakpoint condition evaluation. */
458 static const char condition_evaluation_auto[] = "auto";
459 static const char condition_evaluation_host[] = "host";
460 static const char condition_evaluation_target[] = "target";
461 static const char *const condition_evaluation_enums[] = {
462 condition_evaluation_auto,
463 condition_evaluation_host,
464 condition_evaluation_target,
465 NULL
466 };
467
468 /* Global that holds the current mode for breakpoint condition evaluation. */
469 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
470
471 /* Global that we use to display information to the user (gets its value from
472 condition_evaluation_mode_1. */
473 static const char *condition_evaluation_mode = condition_evaluation_auto;
474
475 /* Translate a condition evaluation mode MODE into either "host"
476 or "target". This is used mostly to translate from "auto" to the
477 real setting that is being used. It returns the translated
478 evaluation mode. */
479
480 static const char *
481 translate_condition_evaluation_mode (const char *mode)
482 {
483 if (mode == condition_evaluation_auto)
484 {
485 if (target_supports_evaluation_of_breakpoint_conditions ())
486 return condition_evaluation_target;
487 else
488 return condition_evaluation_host;
489 }
490 else
491 return mode;
492 }
493
494 /* Discovers what condition_evaluation_auto translates to. */
495
496 static const char *
497 breakpoint_condition_evaluation_mode (void)
498 {
499 return translate_condition_evaluation_mode (condition_evaluation_mode);
500 }
501
502 /* Return true if GDB should evaluate breakpoint conditions or false
503 otherwise. */
504
505 static int
506 gdb_evaluates_breakpoint_condition_p (void)
507 {
508 const char *mode = breakpoint_condition_evaluation_mode ();
509
510 return (mode == condition_evaluation_host);
511 }
512
513 void _initialize_breakpoint (void);
514
515 /* Are we executing breakpoint commands? */
516 static int executing_breakpoint_commands;
517
518 /* Are overlay event breakpoints enabled? */
519 static int overlay_events_enabled;
520
521 /* See description in breakpoint.h. */
522 int target_exact_watchpoints = 0;
523
524 /* Walk the following statement or block through all breakpoints.
525 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
526 current breakpoint. */
527
528 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
529
530 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
531 for (B = breakpoint_chain; \
532 B ? (TMP=B->next, 1): 0; \
533 B = TMP)
534
535 /* Similar iterator for the low-level breakpoints. SAFE variant is
536 not provided so update_global_location_list must not be called
537 while executing the block of ALL_BP_LOCATIONS. */
538
539 #define ALL_BP_LOCATIONS(B,BP_TMP) \
540 for (BP_TMP = bp_location; \
541 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
542 BP_TMP++)
543
544 /* Iterates through locations with address ADDRESS for the currently selected
545 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
546 to where the loop should start from.
547 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
548 appropriate location to start with. */
549
550 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
551 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
552 BP_LOCP_TMP = BP_LOCP_START; \
553 BP_LOCP_START \
554 && (BP_LOCP_TMP < bp_location + bp_location_count \
555 && (*BP_LOCP_TMP)->address == ADDRESS); \
556 BP_LOCP_TMP++)
557
558 /* Iterator for tracepoints only. */
559
560 #define ALL_TRACEPOINTS(B) \
561 for (B = breakpoint_chain; B; B = B->next) \
562 if (is_tracepoint (B))
563
564 /* Chains of all breakpoints defined. */
565
566 struct breakpoint *breakpoint_chain;
567
568 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
569
570 static struct bp_location **bp_location;
571
572 /* Number of elements of BP_LOCATION. */
573
574 static unsigned bp_location_count;
575
576 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
577 ADDRESS for the current elements of BP_LOCATION which get a valid
578 result from bp_location_has_shadow. You can use it for roughly
579 limiting the subrange of BP_LOCATION to scan for shadow bytes for
580 an address you need to read. */
581
582 static CORE_ADDR bp_location_placed_address_before_address_max;
583
584 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
585 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
586 BP_LOCATION which get a valid result from bp_location_has_shadow.
587 You can use it for roughly limiting the subrange of BP_LOCATION to
588 scan for shadow bytes for an address you need to read. */
589
590 static CORE_ADDR bp_location_shadow_len_after_address_max;
591
592 /* The locations that no longer correspond to any breakpoint, unlinked
593 from bp_location array, but for which a hit may still be reported
594 by a target. */
595 VEC(bp_location_p) *moribund_locations = NULL;
596
597 /* Number of last breakpoint made. */
598
599 static int breakpoint_count;
600
601 /* The value of `breakpoint_count' before the last command that
602 created breakpoints. If the last (break-like) command created more
603 than one breakpoint, then the difference between BREAKPOINT_COUNT
604 and PREV_BREAKPOINT_COUNT is more than one. */
605 static int prev_breakpoint_count;
606
607 /* Number of last tracepoint made. */
608
609 static int tracepoint_count;
610
611 static struct cmd_list_element *breakpoint_set_cmdlist;
612 static struct cmd_list_element *breakpoint_show_cmdlist;
613 struct cmd_list_element *save_cmdlist;
614
615 /* Return whether a breakpoint is an active enabled breakpoint. */
616 static int
617 breakpoint_enabled (struct breakpoint *b)
618 {
619 return (b->enable_state == bp_enabled);
620 }
621
622 /* Set breakpoint count to NUM. */
623
624 static void
625 set_breakpoint_count (int num)
626 {
627 prev_breakpoint_count = breakpoint_count;
628 breakpoint_count = num;
629 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
630 }
631
632 /* Used by `start_rbreak_breakpoints' below, to record the current
633 breakpoint count before "rbreak" creates any breakpoint. */
634 static int rbreak_start_breakpoint_count;
635
636 /* Called at the start an "rbreak" command to record the first
637 breakpoint made. */
638
639 void
640 start_rbreak_breakpoints (void)
641 {
642 rbreak_start_breakpoint_count = breakpoint_count;
643 }
644
645 /* Called at the end of an "rbreak" command to record the last
646 breakpoint made. */
647
648 void
649 end_rbreak_breakpoints (void)
650 {
651 prev_breakpoint_count = rbreak_start_breakpoint_count;
652 }
653
654 /* Used in run_command to zero the hit count when a new run starts. */
655
656 void
657 clear_breakpoint_hit_counts (void)
658 {
659 struct breakpoint *b;
660
661 ALL_BREAKPOINTS (b)
662 b->hit_count = 0;
663 }
664
665 /* Allocate a new counted_command_line with reference count of 1.
666 The new structure owns COMMANDS. */
667
668 static struct counted_command_line *
669 alloc_counted_command_line (struct command_line *commands)
670 {
671 struct counted_command_line *result
672 = xmalloc (sizeof (struct counted_command_line));
673
674 result->refc = 1;
675 result->commands = commands;
676 return result;
677 }
678
679 /* Increment reference count. This does nothing if CMD is NULL. */
680
681 static void
682 incref_counted_command_line (struct counted_command_line *cmd)
683 {
684 if (cmd)
685 ++cmd->refc;
686 }
687
688 /* Decrement reference count. If the reference count reaches 0,
689 destroy the counted_command_line. Sets *CMDP to NULL. This does
690 nothing if *CMDP is NULL. */
691
692 static void
693 decref_counted_command_line (struct counted_command_line **cmdp)
694 {
695 if (*cmdp)
696 {
697 if (--(*cmdp)->refc == 0)
698 {
699 free_command_lines (&(*cmdp)->commands);
700 xfree (*cmdp);
701 }
702 *cmdp = NULL;
703 }
704 }
705
706 /* A cleanup function that calls decref_counted_command_line. */
707
708 static void
709 do_cleanup_counted_command_line (void *arg)
710 {
711 decref_counted_command_line (arg);
712 }
713
714 /* Create a cleanup that calls decref_counted_command_line on the
715 argument. */
716
717 static struct cleanup *
718 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
719 {
720 return make_cleanup (do_cleanup_counted_command_line, cmdp);
721 }
722
723 \f
724 /* Return the breakpoint with the specified number, or NULL
725 if the number does not refer to an existing breakpoint. */
726
727 struct breakpoint *
728 get_breakpoint (int num)
729 {
730 struct breakpoint *b;
731
732 ALL_BREAKPOINTS (b)
733 if (b->number == num)
734 return b;
735
736 return NULL;
737 }
738
739 \f
740
741 /* Mark locations as "conditions have changed" in case the target supports
742 evaluating conditions on its side. */
743
744 static void
745 mark_breakpoint_modified (struct breakpoint *b)
746 {
747 struct bp_location *loc;
748
749 /* This is only meaningful if the target is
750 evaluating conditions and if the user has
751 opted for condition evaluation on the target's
752 side. */
753 if (gdb_evaluates_breakpoint_condition_p ()
754 || !target_supports_evaluation_of_breakpoint_conditions ())
755 return;
756
757 if (!is_breakpoint (b))
758 return;
759
760 for (loc = b->loc; loc; loc = loc->next)
761 loc->condition_changed = condition_modified;
762 }
763
764 /* Mark location as "conditions have changed" in case the target supports
765 evaluating conditions on its side. */
766
767 static void
768 mark_breakpoint_location_modified (struct bp_location *loc)
769 {
770 /* This is only meaningful if the target is
771 evaluating conditions and if the user has
772 opted for condition evaluation on the target's
773 side. */
774 if (gdb_evaluates_breakpoint_condition_p ()
775 || !target_supports_evaluation_of_breakpoint_conditions ())
776
777 return;
778
779 if (!is_breakpoint (loc->owner))
780 return;
781
782 loc->condition_changed = condition_modified;
783 }
784
785 /* Sets the condition-evaluation mode using the static global
786 condition_evaluation_mode. */
787
788 static void
789 set_condition_evaluation_mode (char *args, int from_tty,
790 struct cmd_list_element *c)
791 {
792 const char *old_mode, *new_mode;
793
794 if ((condition_evaluation_mode_1 == condition_evaluation_target)
795 && !target_supports_evaluation_of_breakpoint_conditions ())
796 {
797 condition_evaluation_mode_1 = condition_evaluation_mode;
798 warning (_("Target does not support breakpoint condition evaluation.\n"
799 "Using host evaluation mode instead."));
800 return;
801 }
802
803 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
804 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
805
806 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
807 settings was "auto". */
808 condition_evaluation_mode = condition_evaluation_mode_1;
809
810 /* Only update the mode if the user picked a different one. */
811 if (new_mode != old_mode)
812 {
813 struct bp_location *loc, **loc_tmp;
814 /* If the user switched to a different evaluation mode, we
815 need to synch the changes with the target as follows:
816
817 "host" -> "target": Send all (valid) conditions to the target.
818 "target" -> "host": Remove all the conditions from the target.
819 */
820
821 if (new_mode == condition_evaluation_target)
822 {
823 /* Mark everything modified and synch conditions with the
824 target. */
825 ALL_BP_LOCATIONS (loc, loc_tmp)
826 mark_breakpoint_location_modified (loc);
827 }
828 else
829 {
830 /* Manually mark non-duplicate locations to synch conditions
831 with the target. We do this to remove all the conditions the
832 target knows about. */
833 ALL_BP_LOCATIONS (loc, loc_tmp)
834 if (is_breakpoint (loc->owner) && loc->inserted)
835 loc->needs_update = 1;
836 }
837
838 /* Do the update. */
839 update_global_location_list (1);
840 }
841
842 return;
843 }
844
845 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
846 what "auto" is translating to. */
847
848 static void
849 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851 {
852 if (condition_evaluation_mode == condition_evaluation_auto)
853 fprintf_filtered (file,
854 _("Breakpoint condition evaluation "
855 "mode is %s (currently %s).\n"),
856 value,
857 breakpoint_condition_evaluation_mode ());
858 else
859 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
860 value);
861 }
862
863 /* A comparison function for bp_location AP and BP that is used by
864 bsearch. This comparison function only cares about addresses, unlike
865 the more general bp_location_compare function. */
866
867 static int
868 bp_location_compare_addrs (const void *ap, const void *bp)
869 {
870 struct bp_location *a = *(void **) ap;
871 struct bp_location *b = *(void **) bp;
872
873 if (a->address == b->address)
874 return 0;
875 else
876 return ((a->address > b->address) - (a->address < b->address));
877 }
878
879 /* Helper function to skip all bp_locations with addresses
880 less than ADDRESS. It returns the first bp_location that
881 is greater than or equal to ADDRESS. If none is found, just
882 return NULL. */
883
884 static struct bp_location **
885 get_first_locp_gte_addr (CORE_ADDR address)
886 {
887 struct bp_location dummy_loc;
888 struct bp_location *dummy_locp = &dummy_loc;
889 struct bp_location **locp_found = NULL;
890
891 /* Initialize the dummy location's address field. */
892 memset (&dummy_loc, 0, sizeof (struct bp_location));
893 dummy_loc.address = address;
894
895 /* Find a close match to the first location at ADDRESS. */
896 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
897 sizeof (struct bp_location **),
898 bp_location_compare_addrs);
899
900 /* Nothing was found, nothing left to do. */
901 if (locp_found == NULL)
902 return NULL;
903
904 /* We may have found a location that is at ADDRESS but is not the first in the
905 location's list. Go backwards (if possible) and locate the first one. */
906 while ((locp_found - 1) >= bp_location
907 && (*(locp_found - 1))->address == address)
908 locp_found--;
909
910 return locp_found;
911 }
912
913 void
914 set_breakpoint_condition (struct breakpoint *b, char *exp,
915 int from_tty)
916 {
917 xfree (b->cond_string);
918 b->cond_string = NULL;
919
920 if (is_watchpoint (b))
921 {
922 struct watchpoint *w = (struct watchpoint *) b;
923
924 xfree (w->cond_exp);
925 w->cond_exp = NULL;
926 }
927 else
928 {
929 struct bp_location *loc;
930
931 for (loc = b->loc; loc; loc = loc->next)
932 {
933 xfree (loc->cond);
934 loc->cond = NULL;
935
936 /* No need to free the condition agent expression
937 bytecode (if we have one). We will handle this
938 when we go through update_global_location_list. */
939 }
940 }
941
942 if (*exp == 0)
943 {
944 if (from_tty)
945 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
946 }
947 else
948 {
949 const char *arg = exp;
950
951 /* I don't know if it matters whether this is the string the user
952 typed in or the decompiled expression. */
953 b->cond_string = xstrdup (arg);
954 b->condition_not_parsed = 0;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 innermost_block = NULL;
961 arg = exp;
962 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
963 if (*arg)
964 error (_("Junk at end of expression"));
965 w->cond_exp_valid_block = innermost_block;
966 }
967 else
968 {
969 struct bp_location *loc;
970
971 for (loc = b->loc; loc; loc = loc->next)
972 {
973 arg = exp;
974 loc->cond =
975 parse_exp_1 (&arg, loc->address,
976 block_for_pc (loc->address), 0);
977 if (*arg)
978 error (_("Junk at end of expression"));
979 }
980 }
981 }
982 mark_breakpoint_modified (b);
983
984 observer_notify_breakpoint_modified (b);
985 }
986
987 /* Completion for the "condition" command. */
988
989 static VEC (char_ptr) *
990 condition_completer (struct cmd_list_element *cmd,
991 const char *text, const char *word)
992 {
993 const char *space;
994
995 text = skip_spaces_const (text);
996 space = skip_to_space_const (text);
997 if (*space == '\0')
998 {
999 int len;
1000 struct breakpoint *b;
1001 VEC (char_ptr) *result = NULL;
1002
1003 if (text[0] == '$')
1004 {
1005 /* We don't support completion of history indices. */
1006 if (isdigit (text[1]))
1007 return NULL;
1008 return complete_internalvar (&text[1]);
1009 }
1010
1011 /* We're completing the breakpoint number. */
1012 len = strlen (text);
1013
1014 ALL_BREAKPOINTS (b)
1015 {
1016 int single = b->loc->next == NULL;
1017 struct bp_location *loc;
1018 int count = 1;
1019
1020 for (loc = b->loc; loc; loc = loc->next)
1021 {
1022 char location[50];
1023
1024 if (single)
1025 xsnprintf (location, sizeof (location), "%d", b->number);
1026 else
1027 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1028 count);
1029
1030 if (strncmp (location, text, len) == 0)
1031 VEC_safe_push (char_ptr, result, xstrdup (location));
1032
1033 ++count;
1034 }
1035 }
1036
1037 return result;
1038 }
1039
1040 /* We're completing the expression part. */
1041 text = skip_spaces_const (space);
1042 return expression_completer (cmd, text, word);
1043 }
1044
1045 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1046
1047 static void
1048 condition_command (char *arg, int from_tty)
1049 {
1050 struct breakpoint *b;
1051 char *p;
1052 int bnum;
1053
1054 if (arg == 0)
1055 error_no_arg (_("breakpoint number"));
1056
1057 p = arg;
1058 bnum = get_number (&p);
1059 if (bnum == 0)
1060 error (_("Bad breakpoint argument: '%s'"), arg);
1061
1062 ALL_BREAKPOINTS (b)
1063 if (b->number == bnum)
1064 {
1065 /* Check if this breakpoint has a Python object assigned to
1066 it, and if it has a definition of the "stop"
1067 method. This method and conditions entered into GDB from
1068 the CLI are mutually exclusive. */
1069 if (b->py_bp_object
1070 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1071 error (_("Cannot set a condition where a Python 'stop' "
1072 "method has been defined in the breakpoint."));
1073 set_breakpoint_condition (b, p, from_tty);
1074
1075 if (is_breakpoint (b))
1076 update_global_location_list (1);
1077
1078 return;
1079 }
1080
1081 error (_("No breakpoint number %d."), bnum);
1082 }
1083
1084 /* Check that COMMAND do not contain commands that are suitable
1085 only for tracepoints and not suitable for ordinary breakpoints.
1086 Throw if any such commands is found. */
1087
1088 static void
1089 check_no_tracepoint_commands (struct command_line *commands)
1090 {
1091 struct command_line *c;
1092
1093 for (c = commands; c; c = c->next)
1094 {
1095 int i;
1096
1097 if (c->control_type == while_stepping_control)
1098 error (_("The 'while-stepping' command can "
1099 "only be used for tracepoints"));
1100
1101 for (i = 0; i < c->body_count; ++i)
1102 check_no_tracepoint_commands ((c->body_list)[i]);
1103
1104 /* Not that command parsing removes leading whitespace and comment
1105 lines and also empty lines. So, we only need to check for
1106 command directly. */
1107 if (strstr (c->line, "collect ") == c->line)
1108 error (_("The 'collect' command can only be used for tracepoints"));
1109
1110 if (strstr (c->line, "teval ") == c->line)
1111 error (_("The 'teval' command can only be used for tracepoints"));
1112 }
1113 }
1114
1115 /* Encapsulate tests for different types of tracepoints. */
1116
1117 static int
1118 is_tracepoint_type (enum bptype type)
1119 {
1120 return (type == bp_tracepoint
1121 || type == bp_fast_tracepoint
1122 || type == bp_static_tracepoint);
1123 }
1124
1125 int
1126 is_tracepoint (const struct breakpoint *b)
1127 {
1128 return is_tracepoint_type (b->type);
1129 }
1130
1131 /* A helper function that validates that COMMANDS are valid for a
1132 breakpoint. This function will throw an exception if a problem is
1133 found. */
1134
1135 static void
1136 validate_commands_for_breakpoint (struct breakpoint *b,
1137 struct command_line *commands)
1138 {
1139 if (is_tracepoint (b))
1140 {
1141 struct tracepoint *t = (struct tracepoint *) b;
1142 struct command_line *c;
1143 struct command_line *while_stepping = 0;
1144
1145 /* Reset the while-stepping step count. The previous commands
1146 might have included a while-stepping action, while the new
1147 ones might not. */
1148 t->step_count = 0;
1149
1150 /* We need to verify that each top-level element of commands is
1151 valid for tracepoints, that there's at most one
1152 while-stepping element, and that the while-stepping's body
1153 has valid tracing commands excluding nested while-stepping.
1154 We also need to validate the tracepoint action line in the
1155 context of the tracepoint --- validate_actionline actually
1156 has side effects, like setting the tracepoint's
1157 while-stepping STEP_COUNT, in addition to checking if the
1158 collect/teval actions parse and make sense in the
1159 tracepoint's context. */
1160 for (c = commands; c; c = c->next)
1161 {
1162 if (c->control_type == while_stepping_control)
1163 {
1164 if (b->type == bp_fast_tracepoint)
1165 error (_("The 'while-stepping' command "
1166 "cannot be used for fast tracepoint"));
1167 else if (b->type == bp_static_tracepoint)
1168 error (_("The 'while-stepping' command "
1169 "cannot be used for static tracepoint"));
1170
1171 if (while_stepping)
1172 error (_("The 'while-stepping' command "
1173 "can be used only once"));
1174 else
1175 while_stepping = c;
1176 }
1177
1178 validate_actionline (c->line, b);
1179 }
1180 if (while_stepping)
1181 {
1182 struct command_line *c2;
1183
1184 gdb_assert (while_stepping->body_count == 1);
1185 c2 = while_stepping->body_list[0];
1186 for (; c2; c2 = c2->next)
1187 {
1188 if (c2->control_type == while_stepping_control)
1189 error (_("The 'while-stepping' command cannot be nested"));
1190 }
1191 }
1192 }
1193 else
1194 {
1195 check_no_tracepoint_commands (commands);
1196 }
1197 }
1198
1199 /* Return a vector of all the static tracepoints set at ADDR. The
1200 caller is responsible for releasing the vector. */
1201
1202 VEC(breakpoint_p) *
1203 static_tracepoints_here (CORE_ADDR addr)
1204 {
1205 struct breakpoint *b;
1206 VEC(breakpoint_p) *found = 0;
1207 struct bp_location *loc;
1208
1209 ALL_BREAKPOINTS (b)
1210 if (b->type == bp_static_tracepoint)
1211 {
1212 for (loc = b->loc; loc; loc = loc->next)
1213 if (loc->address == addr)
1214 VEC_safe_push(breakpoint_p, found, b);
1215 }
1216
1217 return found;
1218 }
1219
1220 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1221 validate that only allowed commands are included. */
1222
1223 void
1224 breakpoint_set_commands (struct breakpoint *b,
1225 struct command_line *commands)
1226 {
1227 validate_commands_for_breakpoint (b, commands);
1228
1229 decref_counted_command_line (&b->commands);
1230 b->commands = alloc_counted_command_line (commands);
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the internal `silent' flag on the breakpoint. Note that this
1235 is not the same as the "silent" that may appear in the breakpoint's
1236 commands. */
1237
1238 void
1239 breakpoint_set_silent (struct breakpoint *b, int silent)
1240 {
1241 int old_silent = b->silent;
1242
1243 b->silent = silent;
1244 if (old_silent != silent)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the thread for this breakpoint. If THREAD is -1, make the
1249 breakpoint work for any thread. */
1250
1251 void
1252 breakpoint_set_thread (struct breakpoint *b, int thread)
1253 {
1254 int old_thread = b->thread;
1255
1256 b->thread = thread;
1257 if (old_thread != thread)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 /* Set the task for this breakpoint. If TASK is 0, make the
1262 breakpoint work for any task. */
1263
1264 void
1265 breakpoint_set_task (struct breakpoint *b, int task)
1266 {
1267 int old_task = b->task;
1268
1269 b->task = task;
1270 if (old_task != task)
1271 observer_notify_breakpoint_modified (b);
1272 }
1273
1274 void
1275 check_tracepoint_command (char *line, void *closure)
1276 {
1277 struct breakpoint *b = closure;
1278
1279 validate_actionline (line, b);
1280 }
1281
1282 /* A structure used to pass information through
1283 map_breakpoint_numbers. */
1284
1285 struct commands_info
1286 {
1287 /* True if the command was typed at a tty. */
1288 int from_tty;
1289
1290 /* The breakpoint range spec. */
1291 char *arg;
1292
1293 /* Non-NULL if the body of the commands are being read from this
1294 already-parsed command. */
1295 struct command_line *control;
1296
1297 /* The command lines read from the user, or NULL if they have not
1298 yet been read. */
1299 struct counted_command_line *cmd;
1300 };
1301
1302 /* A callback for map_breakpoint_numbers that sets the commands for
1303 commands_command. */
1304
1305 static void
1306 do_map_commands_command (struct breakpoint *b, void *data)
1307 {
1308 struct commands_info *info = data;
1309
1310 if (info->cmd == NULL)
1311 {
1312 struct command_line *l;
1313
1314 if (info->control != NULL)
1315 l = copy_command_lines (info->control->body_list[0]);
1316 else
1317 {
1318 struct cleanup *old_chain;
1319 char *str;
1320
1321 str = xstrprintf (_("Type commands for breakpoint(s) "
1322 "%s, one per line."),
1323 info->arg);
1324
1325 old_chain = make_cleanup (xfree, str);
1326
1327 l = read_command_lines (str,
1328 info->from_tty, 1,
1329 (is_tracepoint (b)
1330 ? check_tracepoint_command : 0),
1331 b);
1332
1333 do_cleanups (old_chain);
1334 }
1335
1336 info->cmd = alloc_counted_command_line (l);
1337 }
1338
1339 /* If a breakpoint was on the list more than once, we don't need to
1340 do anything. */
1341 if (b->commands != info->cmd)
1342 {
1343 validate_commands_for_breakpoint (b, info->cmd->commands);
1344 incref_counted_command_line (info->cmd);
1345 decref_counted_command_line (&b->commands);
1346 b->commands = info->cmd;
1347 observer_notify_breakpoint_modified (b);
1348 }
1349 }
1350
1351 static void
1352 commands_command_1 (char *arg, int from_tty,
1353 struct command_line *control)
1354 {
1355 struct cleanup *cleanups;
1356 struct commands_info info;
1357
1358 info.from_tty = from_tty;
1359 info.control = control;
1360 info.cmd = NULL;
1361 /* If we read command lines from the user, then `info' will hold an
1362 extra reference to the commands that we must clean up. */
1363 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1364
1365 if (arg == NULL || !*arg)
1366 {
1367 if (breakpoint_count - prev_breakpoint_count > 1)
1368 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1369 breakpoint_count);
1370 else if (breakpoint_count > 0)
1371 arg = xstrprintf ("%d", breakpoint_count);
1372 else
1373 {
1374 /* So that we don't try to free the incoming non-NULL
1375 argument in the cleanup below. Mapping breakpoint
1376 numbers will fail in this case. */
1377 arg = NULL;
1378 }
1379 }
1380 else
1381 /* The command loop has some static state, so we need to preserve
1382 our argument. */
1383 arg = xstrdup (arg);
1384
1385 if (arg != NULL)
1386 make_cleanup (xfree, arg);
1387
1388 info.arg = arg;
1389
1390 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1391
1392 if (info.cmd == NULL)
1393 error (_("No breakpoints specified."));
1394
1395 do_cleanups (cleanups);
1396 }
1397
1398 static void
1399 commands_command (char *arg, int from_tty)
1400 {
1401 commands_command_1 (arg, from_tty, NULL);
1402 }
1403
1404 /* Like commands_command, but instead of reading the commands from
1405 input stream, takes them from an already parsed command structure.
1406
1407 This is used by cli-script.c to DTRT with breakpoint commands
1408 that are part of if and while bodies. */
1409 enum command_control_type
1410 commands_from_control_command (char *arg, struct command_line *cmd)
1411 {
1412 commands_command_1 (arg, 0, cmd);
1413 return simple_control;
1414 }
1415
1416 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1417
1418 static int
1419 bp_location_has_shadow (struct bp_location *bl)
1420 {
1421 if (bl->loc_type != bp_loc_software_breakpoint)
1422 return 0;
1423 if (!bl->inserted)
1424 return 0;
1425 if (bl->target_info.shadow_len == 0)
1426 /* BL isn't valid, or doesn't shadow memory. */
1427 return 0;
1428 return 1;
1429 }
1430
1431 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1432 by replacing any memory breakpoints with their shadowed contents.
1433
1434 If READBUF is not NULL, this buffer must not overlap with any of
1435 the breakpoint location's shadow_contents buffers. Otherwise,
1436 a failed assertion internal error will be raised.
1437
1438 The range of shadowed area by each bp_location is:
1439 bl->address - bp_location_placed_address_before_address_max
1440 up to bl->address + bp_location_shadow_len_after_address_max
1441 The range we were requested to resolve shadows for is:
1442 memaddr ... memaddr + len
1443 Thus the safe cutoff boundaries for performance optimization are
1444 memaddr + len <= (bl->address
1445 - bp_location_placed_address_before_address_max)
1446 and:
1447 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1448
1449 void
1450 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1451 const gdb_byte *writebuf_org,
1452 ULONGEST memaddr, LONGEST len)
1453 {
1454 /* Left boundary, right boundary and median element of our binary
1455 search. */
1456 unsigned bc_l, bc_r, bc;
1457
1458 /* Find BC_L which is a leftmost element which may affect BUF
1459 content. It is safe to report lower value but a failure to
1460 report higher one. */
1461
1462 bc_l = 0;
1463 bc_r = bp_location_count;
1464 while (bc_l + 1 < bc_r)
1465 {
1466 struct bp_location *bl;
1467
1468 bc = (bc_l + bc_r) / 2;
1469 bl = bp_location[bc];
1470
1471 /* Check first BL->ADDRESS will not overflow due to the added
1472 constant. Then advance the left boundary only if we are sure
1473 the BC element can in no way affect the BUF content (MEMADDR
1474 to MEMADDR + LEN range).
1475
1476 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1477 offset so that we cannot miss a breakpoint with its shadow
1478 range tail still reaching MEMADDR. */
1479
1480 if ((bl->address + bp_location_shadow_len_after_address_max
1481 >= bl->address)
1482 && (bl->address + bp_location_shadow_len_after_address_max
1483 <= memaddr))
1484 bc_l = bc;
1485 else
1486 bc_r = bc;
1487 }
1488
1489 /* Due to the binary search above, we need to make sure we pick the
1490 first location that's at BC_L's address. E.g., if there are
1491 multiple locations at the same address, BC_L may end up pointing
1492 at a duplicate location, and miss the "master"/"inserted"
1493 location. Say, given locations L1, L2 and L3 at addresses A and
1494 B:
1495
1496 L1@A, L2@A, L3@B, ...
1497
1498 BC_L could end up pointing at location L2, while the "master"
1499 location could be L1. Since the `loc->inserted' flag is only set
1500 on "master" locations, we'd forget to restore the shadow of L1
1501 and L2. */
1502 while (bc_l > 0
1503 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1504 bc_l--;
1505
1506 /* Now do full processing of the found relevant range of elements. */
1507
1508 for (bc = bc_l; bc < bp_location_count; bc++)
1509 {
1510 struct bp_location *bl = bp_location[bc];
1511 CORE_ADDR bp_addr = 0;
1512 int bp_size = 0;
1513 int bptoffset = 0;
1514
1515 /* bp_location array has BL->OWNER always non-NULL. */
1516 if (bl->owner->type == bp_none)
1517 warning (_("reading through apparently deleted breakpoint #%d?"),
1518 bl->owner->number);
1519
1520 /* Performance optimization: any further element can no longer affect BUF
1521 content. */
1522
1523 if (bl->address >= bp_location_placed_address_before_address_max
1524 && memaddr + len <= (bl->address
1525 - bp_location_placed_address_before_address_max))
1526 break;
1527
1528 if (!bp_location_has_shadow (bl))
1529 continue;
1530 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1531 current_program_space->aspace, 0))
1532 continue;
1533
1534 /* Addresses and length of the part of the breakpoint that
1535 we need to copy. */
1536 bp_addr = bl->target_info.placed_address;
1537 bp_size = bl->target_info.shadow_len;
1538
1539 if (bp_addr + bp_size <= memaddr)
1540 /* The breakpoint is entirely before the chunk of memory we
1541 are reading. */
1542 continue;
1543
1544 if (bp_addr >= memaddr + len)
1545 /* The breakpoint is entirely after the chunk of memory we are
1546 reading. */
1547 continue;
1548
1549 /* Offset within shadow_contents. */
1550 if (bp_addr < memaddr)
1551 {
1552 /* Only copy the second part of the breakpoint. */
1553 bp_size -= memaddr - bp_addr;
1554 bptoffset = memaddr - bp_addr;
1555 bp_addr = memaddr;
1556 }
1557
1558 if (bp_addr + bp_size > memaddr + len)
1559 {
1560 /* Only copy the first part of the breakpoint. */
1561 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1562 }
1563
1564 if (readbuf != NULL)
1565 {
1566 /* Verify that the readbuf buffer does not overlap with
1567 the shadow_contents buffer. */
1568 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1569 || readbuf >= (bl->target_info.shadow_contents
1570 + bl->target_info.shadow_len));
1571
1572 /* Update the read buffer with this inserted breakpoint's
1573 shadow. */
1574 memcpy (readbuf + bp_addr - memaddr,
1575 bl->target_info.shadow_contents + bptoffset, bp_size);
1576 }
1577 else
1578 {
1579 struct gdbarch *gdbarch = bl->gdbarch;
1580 const unsigned char *bp;
1581 CORE_ADDR placed_address = bl->target_info.placed_address;
1582 int placed_size = bl->target_info.placed_size;
1583
1584 /* Update the shadow with what we want to write to memory. */
1585 memcpy (bl->target_info.shadow_contents + bptoffset,
1586 writebuf_org + bp_addr - memaddr, bp_size);
1587
1588 /* Determine appropriate breakpoint contents and size for this
1589 address. */
1590 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1591
1592 /* Update the final write buffer with this inserted
1593 breakpoint's INSN. */
1594 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1595 }
1596 }
1597 }
1598 \f
1599
1600 /* Return true if BPT is either a software breakpoint or a hardware
1601 breakpoint. */
1602
1603 int
1604 is_breakpoint (const struct breakpoint *bpt)
1605 {
1606 return (bpt->type == bp_breakpoint
1607 || bpt->type == bp_hardware_breakpoint
1608 || bpt->type == bp_dprintf);
1609 }
1610
1611 /* Return true if BPT is of any hardware watchpoint kind. */
1612
1613 static int
1614 is_hardware_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (bpt->type == bp_hardware_watchpoint
1617 || bpt->type == bp_read_watchpoint
1618 || bpt->type == bp_access_watchpoint);
1619 }
1620
1621 /* Return true if BPT is of any watchpoint kind, hardware or
1622 software. */
1623
1624 int
1625 is_watchpoint (const struct breakpoint *bpt)
1626 {
1627 return (is_hardware_watchpoint (bpt)
1628 || bpt->type == bp_watchpoint);
1629 }
1630
1631 /* Returns true if the current thread and its running state are safe
1632 to evaluate or update watchpoint B. Watchpoints on local
1633 expressions need to be evaluated in the context of the thread that
1634 was current when the watchpoint was created, and, that thread needs
1635 to be stopped to be able to select the correct frame context.
1636 Watchpoints on global expressions can be evaluated on any thread,
1637 and in any state. It is presently left to the target allowing
1638 memory accesses when threads are running. */
1639
1640 static int
1641 watchpoint_in_thread_scope (struct watchpoint *b)
1642 {
1643 return (b->base.pspace == current_program_space
1644 && (ptid_equal (b->watchpoint_thread, null_ptid)
1645 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1646 && !is_executing (inferior_ptid))));
1647 }
1648
1649 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1650 associated bp_watchpoint_scope breakpoint. */
1651
1652 static void
1653 watchpoint_del_at_next_stop (struct watchpoint *w)
1654 {
1655 struct breakpoint *b = &w->base;
1656
1657 if (b->related_breakpoint != b)
1658 {
1659 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1660 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1661 b->related_breakpoint->disposition = disp_del_at_next_stop;
1662 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1663 b->related_breakpoint = b;
1664 }
1665 b->disposition = disp_del_at_next_stop;
1666 }
1667
1668 /* Assuming that B is a watchpoint:
1669 - Reparse watchpoint expression, if REPARSE is non-zero
1670 - Evaluate expression and store the result in B->val
1671 - Evaluate the condition if there is one, and store the result
1672 in b->loc->cond.
1673 - Update the list of values that must be watched in B->loc.
1674
1675 If the watchpoint disposition is disp_del_at_next_stop, then do
1676 nothing. If this is local watchpoint that is out of scope, delete
1677 it.
1678
1679 Even with `set breakpoint always-inserted on' the watchpoints are
1680 removed + inserted on each stop here. Normal breakpoints must
1681 never be removed because they might be missed by a running thread
1682 when debugging in non-stop mode. On the other hand, hardware
1683 watchpoints (is_hardware_watchpoint; processed here) are specific
1684 to each LWP since they are stored in each LWP's hardware debug
1685 registers. Therefore, such LWP must be stopped first in order to
1686 be able to modify its hardware watchpoints.
1687
1688 Hardware watchpoints must be reset exactly once after being
1689 presented to the user. It cannot be done sooner, because it would
1690 reset the data used to present the watchpoint hit to the user. And
1691 it must not be done later because it could display the same single
1692 watchpoint hit during multiple GDB stops. Note that the latter is
1693 relevant only to the hardware watchpoint types bp_read_watchpoint
1694 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1695 not user-visible - its hit is suppressed if the memory content has
1696 not changed.
1697
1698 The following constraints influence the location where we can reset
1699 hardware watchpoints:
1700
1701 * target_stopped_by_watchpoint and target_stopped_data_address are
1702 called several times when GDB stops.
1703
1704 [linux]
1705 * Multiple hardware watchpoints can be hit at the same time,
1706 causing GDB to stop. GDB only presents one hardware watchpoint
1707 hit at a time as the reason for stopping, and all the other hits
1708 are presented later, one after the other, each time the user
1709 requests the execution to be resumed. Execution is not resumed
1710 for the threads still having pending hit event stored in
1711 LWP_INFO->STATUS. While the watchpoint is already removed from
1712 the inferior on the first stop the thread hit event is kept being
1713 reported from its cached value by linux_nat_stopped_data_address
1714 until the real thread resume happens after the watchpoint gets
1715 presented and thus its LWP_INFO->STATUS gets reset.
1716
1717 Therefore the hardware watchpoint hit can get safely reset on the
1718 watchpoint removal from inferior. */
1719
1720 static void
1721 update_watchpoint (struct watchpoint *b, int reparse)
1722 {
1723 int within_current_scope;
1724 struct frame_id saved_frame_id;
1725 int frame_saved;
1726
1727 /* If this is a local watchpoint, we only want to check if the
1728 watchpoint frame is in scope if the current thread is the thread
1729 that was used to create the watchpoint. */
1730 if (!watchpoint_in_thread_scope (b))
1731 return;
1732
1733 if (b->base.disposition == disp_del_at_next_stop)
1734 return;
1735
1736 frame_saved = 0;
1737
1738 /* Determine if the watchpoint is within scope. */
1739 if (b->exp_valid_block == NULL)
1740 within_current_scope = 1;
1741 else
1742 {
1743 struct frame_info *fi = get_current_frame ();
1744 struct gdbarch *frame_arch = get_frame_arch (fi);
1745 CORE_ADDR frame_pc = get_frame_pc (fi);
1746
1747 /* If we're in a function epilogue, unwinding may not work
1748 properly, so do not attempt to recreate locations at this
1749 point. See similar comments in watchpoint_check. */
1750 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1751 return;
1752
1753 /* Save the current frame's ID so we can restore it after
1754 evaluating the watchpoint expression on its own frame. */
1755 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1756 took a frame parameter, so that we didn't have to change the
1757 selected frame. */
1758 frame_saved = 1;
1759 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1760
1761 fi = frame_find_by_id (b->watchpoint_frame);
1762 within_current_scope = (fi != NULL);
1763 if (within_current_scope)
1764 select_frame (fi);
1765 }
1766
1767 /* We don't free locations. They are stored in the bp_location array
1768 and update_global_location_list will eventually delete them and
1769 remove breakpoints if needed. */
1770 b->base.loc = NULL;
1771
1772 if (within_current_scope && reparse)
1773 {
1774 const char *s;
1775
1776 if (b->exp)
1777 {
1778 xfree (b->exp);
1779 b->exp = NULL;
1780 }
1781 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1782 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1783 /* If the meaning of expression itself changed, the old value is
1784 no longer relevant. We don't want to report a watchpoint hit
1785 to the user when the old value and the new value may actually
1786 be completely different objects. */
1787 value_free (b->val);
1788 b->val = NULL;
1789 b->val_valid = 0;
1790
1791 /* Note that unlike with breakpoints, the watchpoint's condition
1792 expression is stored in the breakpoint object, not in the
1793 locations (re)created below. */
1794 if (b->base.cond_string != NULL)
1795 {
1796 if (b->cond_exp != NULL)
1797 {
1798 xfree (b->cond_exp);
1799 b->cond_exp = NULL;
1800 }
1801
1802 s = b->base.cond_string;
1803 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1804 }
1805 }
1806
1807 /* If we failed to parse the expression, for example because
1808 it refers to a global variable in a not-yet-loaded shared library,
1809 don't try to insert watchpoint. We don't automatically delete
1810 such watchpoint, though, since failure to parse expression
1811 is different from out-of-scope watchpoint. */
1812 if ( !target_has_execution)
1813 {
1814 /* Without execution, memory can't change. No use to try and
1815 set watchpoint locations. The watchpoint will be reset when
1816 the target gains execution, through breakpoint_re_set. */
1817 }
1818 else if (within_current_scope && b->exp)
1819 {
1820 int pc = 0;
1821 struct value *val_chain, *v, *result, *next;
1822 struct program_space *frame_pspace;
1823
1824 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1825
1826 /* Avoid setting b->val if it's already set. The meaning of
1827 b->val is 'the last value' user saw, and we should update
1828 it only if we reported that last value to user. As it
1829 happens, the code that reports it updates b->val directly.
1830 We don't keep track of the memory value for masked
1831 watchpoints. */
1832 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1833 {
1834 b->val = v;
1835 b->val_valid = 1;
1836 }
1837
1838 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1839
1840 /* Look at each value on the value chain. */
1841 for (v = val_chain; v; v = value_next (v))
1842 {
1843 /* If it's a memory location, and GDB actually needed
1844 its contents to evaluate the expression, then we
1845 must watch it. If the first value returned is
1846 still lazy, that means an error occurred reading it;
1847 watch it anyway in case it becomes readable. */
1848 if (VALUE_LVAL (v) == lval_memory
1849 && (v == val_chain || ! value_lazy (v)))
1850 {
1851 struct type *vtype = check_typedef (value_type (v));
1852
1853 /* We only watch structs and arrays if user asked
1854 for it explicitly, never if they just happen to
1855 appear in the middle of some value chain. */
1856 if (v == result
1857 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1858 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1859 {
1860 CORE_ADDR addr;
1861 int type;
1862 struct bp_location *loc, **tmp;
1863
1864 addr = value_address (v);
1865 type = hw_write;
1866 if (b->base.type == bp_read_watchpoint)
1867 type = hw_read;
1868 else if (b->base.type == bp_access_watchpoint)
1869 type = hw_access;
1870
1871 loc = allocate_bp_location (&b->base);
1872 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1873 ;
1874 *tmp = loc;
1875 loc->gdbarch = get_type_arch (value_type (v));
1876
1877 loc->pspace = frame_pspace;
1878 loc->address = addr;
1879 loc->length = TYPE_LENGTH (value_type (v));
1880 loc->watchpoint_type = type;
1881 }
1882 }
1883 }
1884
1885 /* Change the type of breakpoint between hardware assisted or
1886 an ordinary watchpoint depending on the hardware support
1887 and free hardware slots. REPARSE is set when the inferior
1888 is started. */
1889 if (reparse)
1890 {
1891 int reg_cnt;
1892 enum bp_loc_type loc_type;
1893 struct bp_location *bl;
1894
1895 reg_cnt = can_use_hardware_watchpoint (val_chain);
1896
1897 if (reg_cnt)
1898 {
1899 int i, target_resources_ok, other_type_used;
1900 enum bptype type;
1901
1902 /* Use an exact watchpoint when there's only one memory region to be
1903 watched, and only one debug register is needed to watch it. */
1904 b->exact = target_exact_watchpoints && reg_cnt == 1;
1905
1906 /* We need to determine how many resources are already
1907 used for all other hardware watchpoints plus this one
1908 to see if we still have enough resources to also fit
1909 this watchpoint in as well. */
1910
1911 /* If this is a software watchpoint, we try to turn it
1912 to a hardware one -- count resources as if B was of
1913 hardware watchpoint type. */
1914 type = b->base.type;
1915 if (type == bp_watchpoint)
1916 type = bp_hardware_watchpoint;
1917
1918 /* This watchpoint may or may not have been placed on
1919 the list yet at this point (it won't be in the list
1920 if we're trying to create it for the first time,
1921 through watch_command), so always account for it
1922 manually. */
1923
1924 /* Count resources used by all watchpoints except B. */
1925 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1926
1927 /* Add in the resources needed for B. */
1928 i += hw_watchpoint_use_count (&b->base);
1929
1930 target_resources_ok
1931 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1932 if (target_resources_ok <= 0)
1933 {
1934 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1935
1936 if (target_resources_ok == 0 && !sw_mode)
1937 error (_("Target does not support this type of "
1938 "hardware watchpoint."));
1939 else if (target_resources_ok < 0 && !sw_mode)
1940 error (_("There are not enough available hardware "
1941 "resources for this watchpoint."));
1942
1943 /* Downgrade to software watchpoint. */
1944 b->base.type = bp_watchpoint;
1945 }
1946 else
1947 {
1948 /* If this was a software watchpoint, we've just
1949 found we have enough resources to turn it to a
1950 hardware watchpoint. Otherwise, this is a
1951 nop. */
1952 b->base.type = type;
1953 }
1954 }
1955 else if (!b->base.ops->works_in_software_mode (&b->base))
1956 error (_("Expression cannot be implemented with "
1957 "read/access watchpoint."));
1958 else
1959 b->base.type = bp_watchpoint;
1960
1961 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->base.loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 for (v = val_chain; v; v = next)
1968 {
1969 next = value_next (v);
1970 if (v != b->val)
1971 value_free (v);
1972 }
1973
1974 /* If a software watchpoint is not watching any memory, then the
1975 above left it without any location set up. But,
1976 bpstat_stop_status requires a location to be able to report
1977 stops, so make sure there's at least a dummy one. */
1978 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1979 {
1980 struct breakpoint *base = &b->base;
1981 base->loc = allocate_bp_location (base);
1982 base->loc->pspace = frame_pspace;
1983 base->loc->address = -1;
1984 base->loc->length = -1;
1985 base->loc->watchpoint_type = -1;
1986 }
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->base.number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 return 1;
2035 }
2036
2037 /* Same as should_be_inserted but does the check assuming
2038 that the location is not duplicated. */
2039
2040 static int
2041 unduplicated_should_be_inserted (struct bp_location *bl)
2042 {
2043 int result;
2044 const int save_duplicate = bl->duplicate;
2045
2046 bl->duplicate = 0;
2047 result = should_be_inserted (bl);
2048 bl->duplicate = save_duplicate;
2049 return result;
2050 }
2051
2052 /* Parses a conditional described by an expression COND into an
2053 agent expression bytecode suitable for evaluation
2054 by the bytecode interpreter. Return NULL if there was
2055 any error during parsing. */
2056
2057 static struct agent_expr *
2058 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2059 {
2060 struct agent_expr *aexpr = NULL;
2061 volatile struct gdb_exception ex;
2062
2063 if (!cond)
2064 return NULL;
2065
2066 /* We don't want to stop processing, so catch any errors
2067 that may show up. */
2068 TRY_CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 aexpr = gen_eval_for_expr (scope, cond);
2071 }
2072
2073 if (ex.reason < 0)
2074 {
2075 /* If we got here, it means the condition could not be parsed to a valid
2076 bytecode expression and thus can't be evaluated on the target's side.
2077 It's no use iterating through the conditions. */
2078 return NULL;
2079 }
2080
2081 /* We have a valid agent expression. */
2082 return aexpr;
2083 }
2084
2085 /* Based on location BL, create a list of breakpoint conditions to be
2086 passed on to the target. If we have duplicated locations with different
2087 conditions, we will add such conditions to the list. The idea is that the
2088 target will evaluate the list of conditions and will only notify GDB when
2089 one of them is true. */
2090
2091 static void
2092 build_target_condition_list (struct bp_location *bl)
2093 {
2094 struct bp_location **locp = NULL, **loc2p;
2095 int null_condition_or_parse_error = 0;
2096 int modified = bl->needs_update;
2097 struct bp_location *loc;
2098
2099 /* This is only meaningful if the target is
2100 evaluating conditions and if the user has
2101 opted for condition evaluation on the target's
2102 side. */
2103 if (gdb_evaluates_breakpoint_condition_p ()
2104 || !target_supports_evaluation_of_breakpoint_conditions ())
2105 return;
2106
2107 /* Do a first pass to check for locations with no assigned
2108 conditions or conditions that fail to parse to a valid agent expression
2109 bytecode. If any of these happen, then it's no use to send conditions
2110 to the target since this location will always trigger and generate a
2111 response back to GDB. */
2112 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2113 {
2114 loc = (*loc2p);
2115 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2116 {
2117 if (modified)
2118 {
2119 struct agent_expr *aexpr;
2120
2121 /* Re-parse the conditions since something changed. In that
2122 case we already freed the condition bytecodes (see
2123 force_breakpoint_reinsertion). We just
2124 need to parse the condition to bytecodes again. */
2125 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2126 loc->cond_bytecode = aexpr;
2127
2128 /* Check if we managed to parse the conditional expression
2129 correctly. If not, we will not send this condition
2130 to the target. */
2131 if (aexpr)
2132 continue;
2133 }
2134
2135 /* If we have a NULL bytecode expression, it means something
2136 went wrong or we have a null condition expression. */
2137 if (!loc->cond_bytecode)
2138 {
2139 null_condition_or_parse_error = 1;
2140 break;
2141 }
2142 }
2143 }
2144
2145 /* If any of these happened, it means we will have to evaluate the conditions
2146 for the location's address on gdb's side. It is no use keeping bytecodes
2147 for all the other duplicate locations, thus we free all of them here.
2148
2149 This is so we have a finer control over which locations' conditions are
2150 being evaluated by GDB or the remote stub. */
2151 if (null_condition_or_parse_error)
2152 {
2153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2154 {
2155 loc = (*loc2p);
2156 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2157 {
2158 /* Only go as far as the first NULL bytecode is
2159 located. */
2160 if (!loc->cond_bytecode)
2161 return;
2162
2163 free_agent_expr (loc->cond_bytecode);
2164 loc->cond_bytecode = NULL;
2165 }
2166 }
2167 }
2168
2169 /* No NULL conditions or failed bytecode generation. Build a condition list
2170 for this location's address. */
2171 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2172 {
2173 loc = (*loc2p);
2174 if (loc->cond
2175 && is_breakpoint (loc->owner)
2176 && loc->pspace->num == bl->pspace->num
2177 && loc->owner->enable_state == bp_enabled
2178 && loc->enabled)
2179 /* Add the condition to the vector. This will be used later to send the
2180 conditions to the target. */
2181 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2182 loc->cond_bytecode);
2183 }
2184
2185 return;
2186 }
2187
2188 /* Parses a command described by string CMD into an agent expression
2189 bytecode suitable for evaluation by the bytecode interpreter.
2190 Return NULL if there was any error during parsing. */
2191
2192 static struct agent_expr *
2193 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2194 {
2195 struct cleanup *old_cleanups = 0;
2196 struct expression *expr, **argvec;
2197 struct agent_expr *aexpr = NULL;
2198 volatile struct gdb_exception ex;
2199 const char *cmdrest;
2200 const char *format_start, *format_end;
2201 struct format_piece *fpieces;
2202 int nargs;
2203 struct gdbarch *gdbarch = get_current_arch ();
2204
2205 if (!cmd)
2206 return NULL;
2207
2208 cmdrest = cmd;
2209
2210 if (*cmdrest == ',')
2211 ++cmdrest;
2212 cmdrest = skip_spaces_const (cmdrest);
2213
2214 if (*cmdrest++ != '"')
2215 error (_("No format string following the location"));
2216
2217 format_start = cmdrest;
2218
2219 fpieces = parse_format_string (&cmdrest);
2220
2221 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2222
2223 format_end = cmdrest;
2224
2225 if (*cmdrest++ != '"')
2226 error (_("Bad format string, non-terminated '\"'."));
2227
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2231 error (_("Invalid argument syntax"));
2232
2233 if (*cmdrest == ',')
2234 cmdrest++;
2235 cmdrest = skip_spaces_const (cmdrest);
2236
2237 /* For each argument, make an expression. */
2238
2239 argvec = (struct expression **) alloca (strlen (cmd)
2240 * sizeof (struct expression *));
2241
2242 nargs = 0;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec[nargs++] = expr;
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 /* We don't want to stop processing, so catch any errors
2256 that may show up. */
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 aexpr = gen_printf (scope, gdbarch, 0, 0,
2260 format_start, format_end - format_start,
2261 fpieces, nargs, argvec);
2262 }
2263
2264 if (ex.reason < 0)
2265 {
2266 /* If we got here, it means the command could not be parsed to a valid
2267 bytecode expression and thus can't be evaluated on the target's side.
2268 It's no use iterating through the other commands. */
2269 return NULL;
2270 }
2271
2272 do_cleanups (old_cleanups);
2273
2274 /* We have a valid agent expression, return it. */
2275 return aexpr;
2276 }
2277
2278 /* Based on location BL, create a list of breakpoint commands to be
2279 passed on to the target. If we have duplicated locations with
2280 different commands, we will add any such to the list. */
2281
2282 static void
2283 build_target_command_list (struct bp_location *bl)
2284 {
2285 struct bp_location **locp = NULL, **loc2p;
2286 int null_command_or_parse_error = 0;
2287 int modified = bl->needs_update;
2288 struct bp_location *loc;
2289
2290 /* For now, limit to agent-style dprintf breakpoints. */
2291 if (bl->owner->type != bp_dprintf
2292 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2293 return;
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* Do a first pass to check for locations with no assigned
2299 conditions or conditions that fail to parse to a valid agent expression
2300 bytecode. If any of these happen, then it's no use to send conditions
2301 to the target since this location will always trigger and generate a
2302 response back to GDB. */
2303 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2304 {
2305 loc = (*loc2p);
2306 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2307 {
2308 if (modified)
2309 {
2310 struct agent_expr *aexpr;
2311
2312 /* Re-parse the commands since something changed. In that
2313 case we already freed the command bytecodes (see
2314 force_breakpoint_reinsertion). We just
2315 need to parse the command to bytecodes again. */
2316 aexpr = parse_cmd_to_aexpr (bl->address,
2317 loc->owner->extra_string);
2318 loc->cmd_bytecode = aexpr;
2319
2320 if (!aexpr)
2321 continue;
2322 }
2323
2324 /* If we have a NULL bytecode expression, it means something
2325 went wrong or we have a null command expression. */
2326 if (!loc->cmd_bytecode)
2327 {
2328 null_command_or_parse_error = 1;
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* If anything failed, then we're not doing target-side commands,
2335 and so clean up. */
2336 if (null_command_or_parse_error)
2337 {
2338 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2339 {
2340 loc = (*loc2p);
2341 if (is_breakpoint (loc->owner)
2342 && loc->pspace->num == bl->pspace->num)
2343 {
2344 /* Only go as far as the first NULL bytecode is
2345 located. */
2346 if (!loc->cond_bytecode)
2347 return;
2348
2349 free_agent_expr (loc->cond_bytecode);
2350 loc->cond_bytecode = NULL;
2351 }
2352 }
2353 }
2354
2355 /* No NULL commands or failed bytecode generation. Build a command list
2356 for this location's address. */
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (loc->owner->extra_string
2361 && is_breakpoint (loc->owner)
2362 && loc->pspace->num == bl->pspace->num
2363 && loc->owner->enable_state == bp_enabled
2364 && loc->enabled)
2365 /* Add the command to the vector. This will be used later
2366 to send the commands to the target. */
2367 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2368 loc->cmd_bytecode);
2369 }
2370
2371 bl->target_info.persist = 0;
2372 /* Maybe flag this location as persistent. */
2373 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2374 bl->target_info.persist = 1;
2375 }
2376
2377 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2378 location. Any error messages are printed to TMP_ERROR_STREAM; and
2379 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2380 Returns 0 for success, 1 if the bp_location type is not supported or
2381 -1 for failure.
2382
2383 NOTE drow/2003-09-09: This routine could be broken down to an
2384 object-style method for each breakpoint or catchpoint type. */
2385 static int
2386 insert_bp_location (struct bp_location *bl,
2387 struct ui_file *tmp_error_stream,
2388 int *disabled_breaks,
2389 int *hw_breakpoint_error,
2390 int *hw_bp_error_explained_already)
2391 {
2392 int val = 0;
2393 char *hw_bp_err_string = NULL;
2394 struct gdb_exception e;
2395
2396 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2397 return 0;
2398
2399 /* Note we don't initialize bl->target_info, as that wipes out
2400 the breakpoint location's shadow_contents if the breakpoint
2401 is still inserted at that location. This in turn breaks
2402 target_read_memory which depends on these buffers when
2403 a memory read is requested at the breakpoint location:
2404 Once the target_info has been wiped, we fail to see that
2405 we have a breakpoint inserted at that address and thus
2406 read the breakpoint instead of returning the data saved in
2407 the breakpoint location's shadow contents. */
2408 bl->target_info.placed_address = bl->address;
2409 bl->target_info.placed_address_space = bl->pspace->aspace;
2410 bl->target_info.length = bl->length;
2411
2412 /* When working with target-side conditions, we must pass all the conditions
2413 for the same breakpoint address down to the target since GDB will not
2414 insert those locations. With a list of breakpoint conditions, the target
2415 can decide when to stop and notify GDB. */
2416
2417 if (is_breakpoint (bl->owner))
2418 {
2419 build_target_condition_list (bl);
2420 build_target_command_list (bl);
2421 /* Reset the modification marker. */
2422 bl->needs_update = 0;
2423 }
2424
2425 if (bl->loc_type == bp_loc_software_breakpoint
2426 || bl->loc_type == bp_loc_hardware_breakpoint)
2427 {
2428 if (bl->owner->type != bp_hardware_breakpoint)
2429 {
2430 /* If the explicitly specified breakpoint type
2431 is not hardware breakpoint, check the memory map to see
2432 if the breakpoint address is in read only memory or not.
2433
2434 Two important cases are:
2435 - location type is not hardware breakpoint, memory
2436 is readonly. We change the type of the location to
2437 hardware breakpoint.
2438 - location type is hardware breakpoint, memory is
2439 read-write. This means we've previously made the
2440 location hardware one, but then the memory map changed,
2441 so we undo.
2442
2443 When breakpoints are removed, remove_breakpoints will use
2444 location types we've just set here, the only possible
2445 problem is that memory map has changed during running
2446 program, but it's not going to work anyway with current
2447 gdb. */
2448 struct mem_region *mr
2449 = lookup_mem_region (bl->target_info.placed_address);
2450
2451 if (mr)
2452 {
2453 if (automatic_hardware_breakpoints)
2454 {
2455 enum bp_loc_type new_type;
2456
2457 if (mr->attrib.mode != MEM_RW)
2458 new_type = bp_loc_hardware_breakpoint;
2459 else
2460 new_type = bp_loc_software_breakpoint;
2461
2462 if (new_type != bl->loc_type)
2463 {
2464 static int said = 0;
2465
2466 bl->loc_type = new_type;
2467 if (!said)
2468 {
2469 fprintf_filtered (gdb_stdout,
2470 _("Note: automatically using "
2471 "hardware breakpoints for "
2472 "read-only addresses.\n"));
2473 said = 1;
2474 }
2475 }
2476 }
2477 else if (bl->loc_type == bp_loc_software_breakpoint
2478 && mr->attrib.mode != MEM_RW)
2479 warning (_("cannot set software breakpoint "
2480 "at readonly address %s"),
2481 paddress (bl->gdbarch, bl->address));
2482 }
2483 }
2484
2485 /* First check to see if we have to handle an overlay. */
2486 if (overlay_debugging == ovly_off
2487 || bl->section == NULL
2488 || !(section_is_overlay (bl->section)))
2489 {
2490 /* No overlay handling: just set the breakpoint. */
2491 TRY_CATCH (e, RETURN_MASK_ALL)
2492 {
2493 val = bl->owner->ops->insert_location (bl);
2494 }
2495 if (e.reason < 0)
2496 {
2497 val = 1;
2498 hw_bp_err_string = (char *) e.message;
2499 }
2500 }
2501 else
2502 {
2503 /* This breakpoint is in an overlay section.
2504 Shall we set a breakpoint at the LMA? */
2505 if (!overlay_events_enabled)
2506 {
2507 /* Yes -- overlay event support is not active,
2508 so we must try to set a breakpoint at the LMA.
2509 This will not work for a hardware breakpoint. */
2510 if (bl->loc_type == bp_loc_hardware_breakpoint)
2511 warning (_("hardware breakpoint %d not supported in overlay!"),
2512 bl->owner->number);
2513 else
2514 {
2515 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2516 bl->section);
2517 /* Set a software (trap) breakpoint at the LMA. */
2518 bl->overlay_target_info = bl->target_info;
2519 bl->overlay_target_info.placed_address = addr;
2520 val = target_insert_breakpoint (bl->gdbarch,
2521 &bl->overlay_target_info);
2522 if (val != 0)
2523 fprintf_unfiltered (tmp_error_stream,
2524 "Overlay breakpoint %d "
2525 "failed: in ROM?\n",
2526 bl->owner->number);
2527 }
2528 }
2529 /* Shall we set a breakpoint at the VMA? */
2530 if (section_is_mapped (bl->section))
2531 {
2532 /* Yes. This overlay section is mapped into memory. */
2533 TRY_CATCH (e, RETURN_MASK_ALL)
2534 {
2535 val = bl->owner->ops->insert_location (bl);
2536 }
2537 if (e.reason < 0)
2538 {
2539 val = 1;
2540 hw_bp_err_string = (char *) e.message;
2541 }
2542 }
2543 else
2544 {
2545 /* No. This breakpoint will not be inserted.
2546 No error, but do not mark the bp as 'inserted'. */
2547 return 0;
2548 }
2549 }
2550
2551 if (val)
2552 {
2553 /* Can't set the breakpoint. */
2554 if (solib_name_from_address (bl->pspace, bl->address))
2555 {
2556 /* See also: disable_breakpoints_in_shlibs. */
2557 val = 0;
2558 bl->shlib_disabled = 1;
2559 observer_notify_breakpoint_modified (bl->owner);
2560 if (!*disabled_breaks)
2561 {
2562 fprintf_unfiltered (tmp_error_stream,
2563 "Cannot insert breakpoint %d.\n",
2564 bl->owner->number);
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Temporarily disabling shared "
2567 "library breakpoints:\n");
2568 }
2569 *disabled_breaks = 1;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "breakpoint #%d\n", bl->owner->number);
2572 }
2573 else
2574 {
2575 if (bl->loc_type == bp_loc_hardware_breakpoint)
2576 {
2577 *hw_breakpoint_error = 1;
2578 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2579 fprintf_unfiltered (tmp_error_stream,
2580 "Cannot insert hardware breakpoint %d%s",
2581 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2582 if (hw_bp_err_string)
2583 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2584 }
2585 else
2586 {
2587 fprintf_unfiltered (tmp_error_stream,
2588 "Cannot insert breakpoint %d.\n",
2589 bl->owner->number);
2590 fprintf_filtered (tmp_error_stream,
2591 "Error accessing memory address ");
2592 fputs_filtered (paddress (bl->gdbarch, bl->address),
2593 tmp_error_stream);
2594 fprintf_filtered (tmp_error_stream, ": %s.\n",
2595 safe_strerror (val));
2596 }
2597
2598 }
2599 }
2600 else
2601 bl->inserted = 1;
2602
2603 return val;
2604 }
2605
2606 else if (bl->loc_type == bp_loc_hardware_watchpoint
2607 /* NOTE drow/2003-09-08: This state only exists for removing
2608 watchpoints. It's not clear that it's necessary... */
2609 && bl->owner->disposition != disp_del_at_next_stop)
2610 {
2611 gdb_assert (bl->owner->ops != NULL
2612 && bl->owner->ops->insert_location != NULL);
2613
2614 val = bl->owner->ops->insert_location (bl);
2615
2616 /* If trying to set a read-watchpoint, and it turns out it's not
2617 supported, try emulating one with an access watchpoint. */
2618 if (val == 1 && bl->watchpoint_type == hw_read)
2619 {
2620 struct bp_location *loc, **loc_temp;
2621
2622 /* But don't try to insert it, if there's already another
2623 hw_access location that would be considered a duplicate
2624 of this one. */
2625 ALL_BP_LOCATIONS (loc, loc_temp)
2626 if (loc != bl
2627 && loc->watchpoint_type == hw_access
2628 && watchpoint_locations_match (bl, loc))
2629 {
2630 bl->duplicate = 1;
2631 bl->inserted = 1;
2632 bl->target_info = loc->target_info;
2633 bl->watchpoint_type = hw_access;
2634 val = 0;
2635 break;
2636 }
2637
2638 if (val == 1)
2639 {
2640 bl->watchpoint_type = hw_access;
2641 val = bl->owner->ops->insert_location (bl);
2642
2643 if (val)
2644 /* Back to the original value. */
2645 bl->watchpoint_type = hw_read;
2646 }
2647 }
2648
2649 bl->inserted = (val == 0);
2650 }
2651
2652 else if (bl->owner->type == bp_catchpoint)
2653 {
2654 gdb_assert (bl->owner->ops != NULL
2655 && bl->owner->ops->insert_location != NULL);
2656
2657 val = bl->owner->ops->insert_location (bl);
2658 if (val)
2659 {
2660 bl->owner->enable_state = bp_disabled;
2661
2662 if (val == 1)
2663 warning (_("\
2664 Error inserting catchpoint %d: Your system does not support this type\n\
2665 of catchpoint."), bl->owner->number);
2666 else
2667 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2668 }
2669
2670 bl->inserted = (val == 0);
2671
2672 /* We've already printed an error message if there was a problem
2673 inserting this catchpoint, and we've disabled the catchpoint,
2674 so just return success. */
2675 return 0;
2676 }
2677
2678 return 0;
2679 }
2680
2681 /* This function is called when program space PSPACE is about to be
2682 deleted. It takes care of updating breakpoints to not reference
2683 PSPACE anymore. */
2684
2685 void
2686 breakpoint_program_space_exit (struct program_space *pspace)
2687 {
2688 struct breakpoint *b, *b_temp;
2689 struct bp_location *loc, **loc_temp;
2690
2691 /* Remove any breakpoint that was set through this program space. */
2692 ALL_BREAKPOINTS_SAFE (b, b_temp)
2693 {
2694 if (b->pspace == pspace)
2695 delete_breakpoint (b);
2696 }
2697
2698 /* Breakpoints set through other program spaces could have locations
2699 bound to PSPACE as well. Remove those. */
2700 ALL_BP_LOCATIONS (loc, loc_temp)
2701 {
2702 struct bp_location *tmp;
2703
2704 if (loc->pspace == pspace)
2705 {
2706 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2707 if (loc->owner->loc == loc)
2708 loc->owner->loc = loc->next;
2709 else
2710 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2711 if (tmp->next == loc)
2712 {
2713 tmp->next = loc->next;
2714 break;
2715 }
2716 }
2717 }
2718
2719 /* Now update the global location list to permanently delete the
2720 removed locations above. */
2721 update_global_location_list (0);
2722 }
2723
2724 /* Make sure all breakpoints are inserted in inferior.
2725 Throws exception on any error.
2726 A breakpoint that is already inserted won't be inserted
2727 again, so calling this function twice is safe. */
2728 void
2729 insert_breakpoints (void)
2730 {
2731 struct breakpoint *bpt;
2732
2733 ALL_BREAKPOINTS (bpt)
2734 if (is_hardware_watchpoint (bpt))
2735 {
2736 struct watchpoint *w = (struct watchpoint *) bpt;
2737
2738 update_watchpoint (w, 0 /* don't reparse. */);
2739 }
2740
2741 update_global_location_list (1);
2742
2743 /* update_global_location_list does not insert breakpoints when
2744 always_inserted_mode is not enabled. Explicitly insert them
2745 now. */
2746 if (!breakpoints_always_inserted_mode ())
2747 insert_breakpoint_locations ();
2748 }
2749
2750 /* Invoke CALLBACK for each of bp_location. */
2751
2752 void
2753 iterate_over_bp_locations (walk_bp_location_callback callback)
2754 {
2755 struct bp_location *loc, **loc_tmp;
2756
2757 ALL_BP_LOCATIONS (loc, loc_tmp)
2758 {
2759 callback (loc, NULL);
2760 }
2761 }
2762
2763 /* This is used when we need to synch breakpoint conditions between GDB and the
2764 target. It is the case with deleting and disabling of breakpoints when using
2765 always-inserted mode. */
2766
2767 static void
2768 update_inserted_breakpoint_locations (void)
2769 {
2770 struct bp_location *bl, **blp_tmp;
2771 int error_flag = 0;
2772 int val = 0;
2773 int disabled_breaks = 0;
2774 int hw_breakpoint_error = 0;
2775 int hw_bp_details_reported = 0;
2776
2777 struct ui_file *tmp_error_stream = mem_fileopen ();
2778 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2779
2780 /* Explicitly mark the warning -- this will only be printed if
2781 there was an error. */
2782 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2783
2784 save_current_space_and_thread ();
2785
2786 ALL_BP_LOCATIONS (bl, blp_tmp)
2787 {
2788 /* We only want to update software breakpoints and hardware
2789 breakpoints. */
2790 if (!is_breakpoint (bl->owner))
2791 continue;
2792
2793 /* We only want to update locations that are already inserted
2794 and need updating. This is to avoid unwanted insertion during
2795 deletion of breakpoints. */
2796 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2797 continue;
2798
2799 switch_to_program_space_and_thread (bl->pspace);
2800
2801 /* For targets that support global breakpoints, there's no need
2802 to select an inferior to insert breakpoint to. In fact, even
2803 if we aren't attached to any process yet, we should still
2804 insert breakpoints. */
2805 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2806 && ptid_equal (inferior_ptid, null_ptid))
2807 continue;
2808
2809 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2810 &hw_breakpoint_error, &hw_bp_details_reported);
2811 if (val)
2812 error_flag = val;
2813 }
2814
2815 if (error_flag)
2816 {
2817 target_terminal_ours_for_output ();
2818 error_stream (tmp_error_stream);
2819 }
2820
2821 do_cleanups (cleanups);
2822 }
2823
2824 /* Used when starting or continuing the program. */
2825
2826 static void
2827 insert_breakpoint_locations (void)
2828 {
2829 struct breakpoint *bpt;
2830 struct bp_location *bl, **blp_tmp;
2831 int error_flag = 0;
2832 int val = 0;
2833 int disabled_breaks = 0;
2834 int hw_breakpoint_error = 0;
2835 int hw_bp_error_explained_already = 0;
2836
2837 struct ui_file *tmp_error_stream = mem_fileopen ();
2838 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2839
2840 /* Explicitly mark the warning -- this will only be printed if
2841 there was an error. */
2842 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2843
2844 save_current_space_and_thread ();
2845
2846 ALL_BP_LOCATIONS (bl, blp_tmp)
2847 {
2848 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2849 continue;
2850
2851 /* There is no point inserting thread-specific breakpoints if
2852 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2853 has BL->OWNER always non-NULL. */
2854 if (bl->owner->thread != -1
2855 && !valid_thread_id (bl->owner->thread))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_error_explained_already);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 /* If we failed to insert all locations of a watchpoint, remove
2875 them, as half-inserted watchpoint is of limited use. */
2876 ALL_BREAKPOINTS (bpt)
2877 {
2878 int some_failed = 0;
2879 struct bp_location *loc;
2880
2881 if (!is_hardware_watchpoint (bpt))
2882 continue;
2883
2884 if (!breakpoint_enabled (bpt))
2885 continue;
2886
2887 if (bpt->disposition == disp_del_at_next_stop)
2888 continue;
2889
2890 for (loc = bpt->loc; loc; loc = loc->next)
2891 if (!loc->inserted && should_be_inserted (loc))
2892 {
2893 some_failed = 1;
2894 break;
2895 }
2896 if (some_failed)
2897 {
2898 for (loc = bpt->loc; loc; loc = loc->next)
2899 if (loc->inserted)
2900 remove_breakpoint (loc, mark_uninserted);
2901
2902 hw_breakpoint_error = 1;
2903 fprintf_unfiltered (tmp_error_stream,
2904 "Could not insert hardware watchpoint %d.\n",
2905 bpt->number);
2906 error_flag = -1;
2907 }
2908 }
2909
2910 if (error_flag)
2911 {
2912 /* If a hardware breakpoint or watchpoint was inserted, add a
2913 message about possibly exhausted resources. */
2914 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2915 {
2916 fprintf_unfiltered (tmp_error_stream,
2917 "Could not insert hardware breakpoints:\n\
2918 You may have requested too many hardware breakpoints/watchpoints.\n");
2919 }
2920 target_terminal_ours_for_output ();
2921 error_stream (tmp_error_stream);
2922 }
2923
2924 do_cleanups (cleanups);
2925 }
2926
2927 /* Used when the program stops.
2928 Returns zero if successful, or non-zero if there was a problem
2929 removing a breakpoint location. */
2930
2931 int
2932 remove_breakpoints (void)
2933 {
2934 struct bp_location *bl, **blp_tmp;
2935 int val = 0;
2936
2937 ALL_BP_LOCATIONS (bl, blp_tmp)
2938 {
2939 if (bl->inserted && !is_tracepoint (bl->owner))
2940 val |= remove_breakpoint (bl, mark_uninserted);
2941 }
2942 return val;
2943 }
2944
2945 /* Remove breakpoints of process PID. */
2946
2947 int
2948 remove_breakpoints_pid (int pid)
2949 {
2950 struct bp_location *bl, **blp_tmp;
2951 int val;
2952 struct inferior *inf = find_inferior_pid (pid);
2953
2954 ALL_BP_LOCATIONS (bl, blp_tmp)
2955 {
2956 if (bl->pspace != inf->pspace)
2957 continue;
2958
2959 if (bl->owner->type == bp_dprintf)
2960 continue;
2961
2962 if (bl->inserted)
2963 {
2964 val = remove_breakpoint (bl, mark_uninserted);
2965 if (val != 0)
2966 return val;
2967 }
2968 }
2969 return 0;
2970 }
2971
2972 int
2973 reattach_breakpoints (int pid)
2974 {
2975 struct cleanup *old_chain;
2976 struct bp_location *bl, **blp_tmp;
2977 int val;
2978 struct ui_file *tmp_error_stream;
2979 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2980 struct inferior *inf;
2981 struct thread_info *tp;
2982
2983 tp = any_live_thread_of_process (pid);
2984 if (tp == NULL)
2985 return 1;
2986
2987 inf = find_inferior_pid (pid);
2988 old_chain = save_inferior_ptid ();
2989
2990 inferior_ptid = tp->ptid;
2991
2992 tmp_error_stream = mem_fileopen ();
2993 make_cleanup_ui_file_delete (tmp_error_stream);
2994
2995 ALL_BP_LOCATIONS (bl, blp_tmp)
2996 {
2997 if (bl->pspace != inf->pspace)
2998 continue;
2999
3000 if (bl->inserted)
3001 {
3002 bl->inserted = 0;
3003 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3004 if (val != 0)
3005 {
3006 do_cleanups (old_chain);
3007 return val;
3008 }
3009 }
3010 }
3011 do_cleanups (old_chain);
3012 return 0;
3013 }
3014
3015 static int internal_breakpoint_number = -1;
3016
3017 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3018 If INTERNAL is non-zero, the breakpoint number will be populated
3019 from internal_breakpoint_number and that variable decremented.
3020 Otherwise the breakpoint number will be populated from
3021 breakpoint_count and that value incremented. Internal breakpoints
3022 do not set the internal var bpnum. */
3023 static void
3024 set_breakpoint_number (int internal, struct breakpoint *b)
3025 {
3026 if (internal)
3027 b->number = internal_breakpoint_number--;
3028 else
3029 {
3030 set_breakpoint_count (breakpoint_count + 1);
3031 b->number = breakpoint_count;
3032 }
3033 }
3034
3035 static struct breakpoint *
3036 create_internal_breakpoint (struct gdbarch *gdbarch,
3037 CORE_ADDR address, enum bptype type,
3038 const struct breakpoint_ops *ops)
3039 {
3040 struct symtab_and_line sal;
3041 struct breakpoint *b;
3042
3043 init_sal (&sal); /* Initialize to zeroes. */
3044
3045 sal.pc = address;
3046 sal.section = find_pc_overlay (sal.pc);
3047 sal.pspace = current_program_space;
3048
3049 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3050 b->number = internal_breakpoint_number--;
3051 b->disposition = disp_donttouch;
3052
3053 return b;
3054 }
3055
3056 static const char *const longjmp_names[] =
3057 {
3058 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3059 };
3060 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3061
3062 /* Per-objfile data private to breakpoint.c. */
3063 struct breakpoint_objfile_data
3064 {
3065 /* Minimal symbol for "_ovly_debug_event" (if any). */
3066 struct minimal_symbol *overlay_msym;
3067
3068 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3069 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3070
3071 /* True if we have looked for longjmp probes. */
3072 int longjmp_searched;
3073
3074 /* SystemTap probe points for longjmp (if any). */
3075 VEC (probe_p) *longjmp_probes;
3076
3077 /* Minimal symbol for "std::terminate()" (if any). */
3078 struct minimal_symbol *terminate_msym;
3079
3080 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3081 struct minimal_symbol *exception_msym;
3082
3083 /* True if we have looked for exception probes. */
3084 int exception_searched;
3085
3086 /* SystemTap probe points for unwinding (if any). */
3087 VEC (probe_p) *exception_probes;
3088 };
3089
3090 static const struct objfile_data *breakpoint_objfile_key;
3091
3092 /* Minimal symbol not found sentinel. */
3093 static struct minimal_symbol msym_not_found;
3094
3095 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3096
3097 static int
3098 msym_not_found_p (const struct minimal_symbol *msym)
3099 {
3100 return msym == &msym_not_found;
3101 }
3102
3103 /* Return per-objfile data needed by breakpoint.c.
3104 Allocate the data if necessary. */
3105
3106 static struct breakpoint_objfile_data *
3107 get_breakpoint_objfile_data (struct objfile *objfile)
3108 {
3109 struct breakpoint_objfile_data *bp_objfile_data;
3110
3111 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3112 if (bp_objfile_data == NULL)
3113 {
3114 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3115 sizeof (*bp_objfile_data));
3116
3117 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3118 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3119 }
3120 return bp_objfile_data;
3121 }
3122
3123 static void
3124 free_breakpoint_probes (struct objfile *obj, void *data)
3125 {
3126 struct breakpoint_objfile_data *bp_objfile_data = data;
3127
3128 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3129 VEC_free (probe_p, bp_objfile_data->exception_probes);
3130 }
3131
3132 static void
3133 create_overlay_event_breakpoint (void)
3134 {
3135 struct objfile *objfile;
3136 const char *const func_name = "_ovly_debug_event";
3137
3138 ALL_OBJFILES (objfile)
3139 {
3140 struct breakpoint *b;
3141 struct breakpoint_objfile_data *bp_objfile_data;
3142 CORE_ADDR addr;
3143
3144 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3145
3146 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3147 continue;
3148
3149 if (bp_objfile_data->overlay_msym == NULL)
3150 {
3151 struct minimal_symbol *m;
3152
3153 m = lookup_minimal_symbol_text (func_name, objfile);
3154 if (m == NULL)
3155 {
3156 /* Avoid future lookups in this objfile. */
3157 bp_objfile_data->overlay_msym = &msym_not_found;
3158 continue;
3159 }
3160 bp_objfile_data->overlay_msym = m;
3161 }
3162
3163 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3164 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3165 bp_overlay_event,
3166 &internal_breakpoint_ops);
3167 b->addr_string = xstrdup (func_name);
3168
3169 if (overlay_debugging == ovly_auto)
3170 {
3171 b->enable_state = bp_enabled;
3172 overlay_events_enabled = 1;
3173 }
3174 else
3175 {
3176 b->enable_state = bp_disabled;
3177 overlay_events_enabled = 0;
3178 }
3179 }
3180 update_global_location_list (1);
3181 }
3182
3183 static void
3184 create_longjmp_master_breakpoint (void)
3185 {
3186 struct program_space *pspace;
3187 struct cleanup *old_chain;
3188
3189 old_chain = save_current_program_space ();
3190
3191 ALL_PSPACES (pspace)
3192 {
3193 struct objfile *objfile;
3194
3195 set_current_program_space (pspace);
3196
3197 ALL_OBJFILES (objfile)
3198 {
3199 int i;
3200 struct gdbarch *gdbarch;
3201 struct breakpoint_objfile_data *bp_objfile_data;
3202
3203 gdbarch = get_objfile_arch (objfile);
3204 if (!gdbarch_get_longjmp_target_p (gdbarch))
3205 continue;
3206
3207 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3208
3209 if (!bp_objfile_data->longjmp_searched)
3210 {
3211 bp_objfile_data->longjmp_probes
3212 = find_probes_in_objfile (objfile, "libc", "longjmp");
3213 bp_objfile_data->longjmp_searched = 1;
3214 }
3215
3216 if (bp_objfile_data->longjmp_probes != NULL)
3217 {
3218 int i;
3219 struct probe *probe;
3220 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3221
3222 for (i = 0;
3223 VEC_iterate (probe_p,
3224 bp_objfile_data->longjmp_probes,
3225 i, probe);
3226 ++i)
3227 {
3228 struct breakpoint *b;
3229
3230 b = create_internal_breakpoint (gdbarch, probe->address,
3231 bp_longjmp_master,
3232 &internal_breakpoint_ops);
3233 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3234 b->enable_state = bp_disabled;
3235 }
3236
3237 continue;
3238 }
3239
3240 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3241 {
3242 struct breakpoint *b;
3243 const char *func_name;
3244 CORE_ADDR addr;
3245
3246 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3247 continue;
3248
3249 func_name = longjmp_names[i];
3250 if (bp_objfile_data->longjmp_msym[i] == NULL)
3251 {
3252 struct minimal_symbol *m;
3253
3254 m = lookup_minimal_symbol_text (func_name, objfile);
3255 if (m == NULL)
3256 {
3257 /* Prevent future lookups in this objfile. */
3258 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3259 continue;
3260 }
3261 bp_objfile_data->longjmp_msym[i] = m;
3262 }
3263
3264 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3265 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3266 &internal_breakpoint_ops);
3267 b->addr_string = xstrdup (func_name);
3268 b->enable_state = bp_disabled;
3269 }
3270 }
3271 }
3272 update_global_location_list (1);
3273
3274 do_cleanups (old_chain);
3275 }
3276
3277 /* Create a master std::terminate breakpoint. */
3278 static void
3279 create_std_terminate_master_breakpoint (void)
3280 {
3281 struct program_space *pspace;
3282 struct cleanup *old_chain;
3283 const char *const func_name = "std::terminate()";
3284
3285 old_chain = save_current_program_space ();
3286
3287 ALL_PSPACES (pspace)
3288 {
3289 struct objfile *objfile;
3290 CORE_ADDR addr;
3291
3292 set_current_program_space (pspace);
3293
3294 ALL_OBJFILES (objfile)
3295 {
3296 struct breakpoint *b;
3297 struct breakpoint_objfile_data *bp_objfile_data;
3298
3299 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3300
3301 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3302 continue;
3303
3304 if (bp_objfile_data->terminate_msym == NULL)
3305 {
3306 struct minimal_symbol *m;
3307
3308 m = lookup_minimal_symbol (func_name, NULL, objfile);
3309 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3310 && MSYMBOL_TYPE (m) != mst_file_text))
3311 {
3312 /* Prevent future lookups in this objfile. */
3313 bp_objfile_data->terminate_msym = &msym_not_found;
3314 continue;
3315 }
3316 bp_objfile_data->terminate_msym = m;
3317 }
3318
3319 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3320 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3321 bp_std_terminate_master,
3322 &internal_breakpoint_ops);
3323 b->addr_string = xstrdup (func_name);
3324 b->enable_state = bp_disabled;
3325 }
3326 }
3327
3328 update_global_location_list (1);
3329
3330 do_cleanups (old_chain);
3331 }
3332
3333 /* Install a master breakpoint on the unwinder's debug hook. */
3334
3335 static void
3336 create_exception_master_breakpoint (void)
3337 {
3338 struct objfile *objfile;
3339 const char *const func_name = "_Unwind_DebugHook";
3340
3341 ALL_OBJFILES (objfile)
3342 {
3343 struct breakpoint *b;
3344 struct gdbarch *gdbarch;
3345 struct breakpoint_objfile_data *bp_objfile_data;
3346 CORE_ADDR addr;
3347
3348 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3349
3350 /* We prefer the SystemTap probe point if it exists. */
3351 if (!bp_objfile_data->exception_searched)
3352 {
3353 bp_objfile_data->exception_probes
3354 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3355 bp_objfile_data->exception_searched = 1;
3356 }
3357
3358 if (bp_objfile_data->exception_probes != NULL)
3359 {
3360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3361 int i;
3362 struct probe *probe;
3363
3364 for (i = 0;
3365 VEC_iterate (probe_p,
3366 bp_objfile_data->exception_probes,
3367 i, probe);
3368 ++i)
3369 {
3370 struct breakpoint *b;
3371
3372 b = create_internal_breakpoint (gdbarch, probe->address,
3373 bp_exception_master,
3374 &internal_breakpoint_ops);
3375 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3376 b->enable_state = bp_disabled;
3377 }
3378
3379 continue;
3380 }
3381
3382 /* Otherwise, try the hook function. */
3383
3384 if (msym_not_found_p (bp_objfile_data->exception_msym))
3385 continue;
3386
3387 gdbarch = get_objfile_arch (objfile);
3388
3389 if (bp_objfile_data->exception_msym == NULL)
3390 {
3391 struct minimal_symbol *debug_hook;
3392
3393 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3394 if (debug_hook == NULL)
3395 {
3396 bp_objfile_data->exception_msym = &msym_not_found;
3397 continue;
3398 }
3399
3400 bp_objfile_data->exception_msym = debug_hook;
3401 }
3402
3403 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3404 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3405 &current_target);
3406 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3407 &internal_breakpoint_ops);
3408 b->addr_string = xstrdup (func_name);
3409 b->enable_state = bp_disabled;
3410 }
3411
3412 update_global_location_list (1);
3413 }
3414
3415 void
3416 update_breakpoints_after_exec (void)
3417 {
3418 struct breakpoint *b, *b_tmp;
3419 struct bp_location *bploc, **bplocp_tmp;
3420
3421 /* We're about to delete breakpoints from GDB's lists. If the
3422 INSERTED flag is true, GDB will try to lift the breakpoints by
3423 writing the breakpoints' "shadow contents" back into memory. The
3424 "shadow contents" are NOT valid after an exec, so GDB should not
3425 do that. Instead, the target is responsible from marking
3426 breakpoints out as soon as it detects an exec. We don't do that
3427 here instead, because there may be other attempts to delete
3428 breakpoints after detecting an exec and before reaching here. */
3429 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3430 if (bploc->pspace == current_program_space)
3431 gdb_assert (!bploc->inserted);
3432
3433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3434 {
3435 if (b->pspace != current_program_space)
3436 continue;
3437
3438 /* Solib breakpoints must be explicitly reset after an exec(). */
3439 if (b->type == bp_shlib_event)
3440 {
3441 delete_breakpoint (b);
3442 continue;
3443 }
3444
3445 /* JIT breakpoints must be explicitly reset after an exec(). */
3446 if (b->type == bp_jit_event)
3447 {
3448 delete_breakpoint (b);
3449 continue;
3450 }
3451
3452 /* Thread event breakpoints must be set anew after an exec(),
3453 as must overlay event and longjmp master breakpoints. */
3454 if (b->type == bp_thread_event || b->type == bp_overlay_event
3455 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3456 || b->type == bp_exception_master)
3457 {
3458 delete_breakpoint (b);
3459 continue;
3460 }
3461
3462 /* Step-resume breakpoints are meaningless after an exec(). */
3463 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3464 {
3465 delete_breakpoint (b);
3466 continue;
3467 }
3468
3469 /* Longjmp and longjmp-resume breakpoints are also meaningless
3470 after an exec. */
3471 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3472 || b->type == bp_longjmp_call_dummy
3473 || b->type == bp_exception || b->type == bp_exception_resume)
3474 {
3475 delete_breakpoint (b);
3476 continue;
3477 }
3478
3479 if (b->type == bp_catchpoint)
3480 {
3481 /* For now, none of the bp_catchpoint breakpoints need to
3482 do anything at this point. In the future, if some of
3483 the catchpoints need to something, we will need to add
3484 a new method, and call this method from here. */
3485 continue;
3486 }
3487
3488 /* bp_finish is a special case. The only way we ought to be able
3489 to see one of these when an exec() has happened, is if the user
3490 caught a vfork, and then said "finish". Ordinarily a finish just
3491 carries them to the call-site of the current callee, by setting
3492 a temporary bp there and resuming. But in this case, the finish
3493 will carry them entirely through the vfork & exec.
3494
3495 We don't want to allow a bp_finish to remain inserted now. But
3496 we can't safely delete it, 'cause finish_command has a handle to
3497 the bp on a bpstat, and will later want to delete it. There's a
3498 chance (and I've seen it happen) that if we delete the bp_finish
3499 here, that its storage will get reused by the time finish_command
3500 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3501 We really must allow finish_command to delete a bp_finish.
3502
3503 In the absence of a general solution for the "how do we know
3504 it's safe to delete something others may have handles to?"
3505 problem, what we'll do here is just uninsert the bp_finish, and
3506 let finish_command delete it.
3507
3508 (We know the bp_finish is "doomed" in the sense that it's
3509 momentary, and will be deleted as soon as finish_command sees
3510 the inferior stopped. So it doesn't matter that the bp's
3511 address is probably bogus in the new a.out, unlike e.g., the
3512 solib breakpoints.) */
3513
3514 if (b->type == bp_finish)
3515 {
3516 continue;
3517 }
3518
3519 /* Without a symbolic address, we have little hope of the
3520 pre-exec() address meaning the same thing in the post-exec()
3521 a.out. */
3522 if (b->addr_string == NULL)
3523 {
3524 delete_breakpoint (b);
3525 continue;
3526 }
3527 }
3528 /* FIXME what about longjmp breakpoints? Re-create them here? */
3529 create_overlay_event_breakpoint ();
3530 create_longjmp_master_breakpoint ();
3531 create_std_terminate_master_breakpoint ();
3532 create_exception_master_breakpoint ();
3533 }
3534
3535 int
3536 detach_breakpoints (ptid_t ptid)
3537 {
3538 struct bp_location *bl, **blp_tmp;
3539 int val = 0;
3540 struct cleanup *old_chain = save_inferior_ptid ();
3541 struct inferior *inf = current_inferior ();
3542
3543 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3544 error (_("Cannot detach breakpoints of inferior_ptid"));
3545
3546 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3547 inferior_ptid = ptid;
3548 ALL_BP_LOCATIONS (bl, blp_tmp)
3549 {
3550 if (bl->pspace != inf->pspace)
3551 continue;
3552
3553 if (bl->inserted)
3554 val |= remove_breakpoint_1 (bl, mark_inserted);
3555 }
3556
3557 /* Detach single-step breakpoints as well. */
3558 detach_single_step_breakpoints ();
3559
3560 do_cleanups (old_chain);
3561 return val;
3562 }
3563
3564 /* Remove the breakpoint location BL from the current address space.
3565 Note that this is used to detach breakpoints from a child fork.
3566 When we get here, the child isn't in the inferior list, and neither
3567 do we have objects to represent its address space --- we should
3568 *not* look at bl->pspace->aspace here. */
3569
3570 static int
3571 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3572 {
3573 int val;
3574
3575 /* BL is never in moribund_locations by our callers. */
3576 gdb_assert (bl->owner != NULL);
3577
3578 if (bl->owner->enable_state == bp_permanent)
3579 /* Permanent breakpoints cannot be inserted or removed. */
3580 return 0;
3581
3582 /* The type of none suggests that owner is actually deleted.
3583 This should not ever happen. */
3584 gdb_assert (bl->owner->type != bp_none);
3585
3586 if (bl->loc_type == bp_loc_software_breakpoint
3587 || bl->loc_type == bp_loc_hardware_breakpoint)
3588 {
3589 /* "Normal" instruction breakpoint: either the standard
3590 trap-instruction bp (bp_breakpoint), or a
3591 bp_hardware_breakpoint. */
3592
3593 /* First check to see if we have to handle an overlay. */
3594 if (overlay_debugging == ovly_off
3595 || bl->section == NULL
3596 || !(section_is_overlay (bl->section)))
3597 {
3598 /* No overlay handling: just remove the breakpoint. */
3599 val = bl->owner->ops->remove_location (bl);
3600 }
3601 else
3602 {
3603 /* This breakpoint is in an overlay section.
3604 Did we set a breakpoint at the LMA? */
3605 if (!overlay_events_enabled)
3606 {
3607 /* Yes -- overlay event support is not active, so we
3608 should have set a breakpoint at the LMA. Remove it.
3609 */
3610 /* Ignore any failures: if the LMA is in ROM, we will
3611 have already warned when we failed to insert it. */
3612 if (bl->loc_type == bp_loc_hardware_breakpoint)
3613 target_remove_hw_breakpoint (bl->gdbarch,
3614 &bl->overlay_target_info);
3615 else
3616 target_remove_breakpoint (bl->gdbarch,
3617 &bl->overlay_target_info);
3618 }
3619 /* Did we set a breakpoint at the VMA?
3620 If so, we will have marked the breakpoint 'inserted'. */
3621 if (bl->inserted)
3622 {
3623 /* Yes -- remove it. Previously we did not bother to
3624 remove the breakpoint if the section had been
3625 unmapped, but let's not rely on that being safe. We
3626 don't know what the overlay manager might do. */
3627
3628 /* However, we should remove *software* breakpoints only
3629 if the section is still mapped, or else we overwrite
3630 wrong code with the saved shadow contents. */
3631 if (bl->loc_type == bp_loc_hardware_breakpoint
3632 || section_is_mapped (bl->section))
3633 val = bl->owner->ops->remove_location (bl);
3634 else
3635 val = 0;
3636 }
3637 else
3638 {
3639 /* No -- not inserted, so no need to remove. No error. */
3640 val = 0;
3641 }
3642 }
3643
3644 /* In some cases, we might not be able to remove a breakpoint
3645 in a shared library that has already been removed, but we
3646 have not yet processed the shlib unload event. */
3647 if (val && solib_name_from_address (bl->pspace, bl->address))
3648 val = 0;
3649
3650 if (val)
3651 return val;
3652 bl->inserted = (is == mark_inserted);
3653 }
3654 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3655 {
3656 gdb_assert (bl->owner->ops != NULL
3657 && bl->owner->ops->remove_location != NULL);
3658
3659 bl->inserted = (is == mark_inserted);
3660 bl->owner->ops->remove_location (bl);
3661
3662 /* Failure to remove any of the hardware watchpoints comes here. */
3663 if ((is == mark_uninserted) && (bl->inserted))
3664 warning (_("Could not remove hardware watchpoint %d."),
3665 bl->owner->number);
3666 }
3667 else if (bl->owner->type == bp_catchpoint
3668 && breakpoint_enabled (bl->owner)
3669 && !bl->duplicate)
3670 {
3671 gdb_assert (bl->owner->ops != NULL
3672 && bl->owner->ops->remove_location != NULL);
3673
3674 val = bl->owner->ops->remove_location (bl);
3675 if (val)
3676 return val;
3677
3678 bl->inserted = (is == mark_inserted);
3679 }
3680
3681 return 0;
3682 }
3683
3684 static int
3685 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3686 {
3687 int ret;
3688 struct cleanup *old_chain;
3689
3690 /* BL is never in moribund_locations by our callers. */
3691 gdb_assert (bl->owner != NULL);
3692
3693 if (bl->owner->enable_state == bp_permanent)
3694 /* Permanent breakpoints cannot be inserted or removed. */
3695 return 0;
3696
3697 /* The type of none suggests that owner is actually deleted.
3698 This should not ever happen. */
3699 gdb_assert (bl->owner->type != bp_none);
3700
3701 old_chain = save_current_space_and_thread ();
3702
3703 switch_to_program_space_and_thread (bl->pspace);
3704
3705 ret = remove_breakpoint_1 (bl, is);
3706
3707 do_cleanups (old_chain);
3708 return ret;
3709 }
3710
3711 /* Clear the "inserted" flag in all breakpoints. */
3712
3713 void
3714 mark_breakpoints_out (void)
3715 {
3716 struct bp_location *bl, **blp_tmp;
3717
3718 ALL_BP_LOCATIONS (bl, blp_tmp)
3719 if (bl->pspace == current_program_space)
3720 bl->inserted = 0;
3721 }
3722
3723 /* Clear the "inserted" flag in all breakpoints and delete any
3724 breakpoints which should go away between runs of the program.
3725
3726 Plus other such housekeeping that has to be done for breakpoints
3727 between runs.
3728
3729 Note: this function gets called at the end of a run (by
3730 generic_mourn_inferior) and when a run begins (by
3731 init_wait_for_inferior). */
3732
3733
3734
3735 void
3736 breakpoint_init_inferior (enum inf_context context)
3737 {
3738 struct breakpoint *b, *b_tmp;
3739 struct bp_location *bl, **blp_tmp;
3740 int ix;
3741 struct program_space *pspace = current_program_space;
3742
3743 /* If breakpoint locations are shared across processes, then there's
3744 nothing to do. */
3745 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3746 return;
3747
3748 ALL_BP_LOCATIONS (bl, blp_tmp)
3749 {
3750 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3751 if (bl->pspace == pspace
3752 && bl->owner->enable_state != bp_permanent)
3753 bl->inserted = 0;
3754 }
3755
3756 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3757 {
3758 if (b->loc && b->loc->pspace != pspace)
3759 continue;
3760
3761 switch (b->type)
3762 {
3763 case bp_call_dummy:
3764 case bp_longjmp_call_dummy:
3765
3766 /* If the call dummy breakpoint is at the entry point it will
3767 cause problems when the inferior is rerun, so we better get
3768 rid of it. */
3769
3770 case bp_watchpoint_scope:
3771
3772 /* Also get rid of scope breakpoints. */
3773
3774 case bp_shlib_event:
3775
3776 /* Also remove solib event breakpoints. Their addresses may
3777 have changed since the last time we ran the program.
3778 Actually we may now be debugging against different target;
3779 and so the solib backend that installed this breakpoint may
3780 not be used in by the target. E.g.,
3781
3782 (gdb) file prog-linux
3783 (gdb) run # native linux target
3784 ...
3785 (gdb) kill
3786 (gdb) file prog-win.exe
3787 (gdb) tar rem :9999 # remote Windows gdbserver.
3788 */
3789
3790 case bp_step_resume:
3791
3792 /* Also remove step-resume breakpoints. */
3793
3794 delete_breakpoint (b);
3795 break;
3796
3797 case bp_watchpoint:
3798 case bp_hardware_watchpoint:
3799 case bp_read_watchpoint:
3800 case bp_access_watchpoint:
3801 {
3802 struct watchpoint *w = (struct watchpoint *) b;
3803
3804 /* Likewise for watchpoints on local expressions. */
3805 if (w->exp_valid_block != NULL)
3806 delete_breakpoint (b);
3807 else if (context == inf_starting)
3808 {
3809 /* Reset val field to force reread of starting value in
3810 insert_breakpoints. */
3811 if (w->val)
3812 value_free (w->val);
3813 w->val = NULL;
3814 w->val_valid = 0;
3815 }
3816 }
3817 break;
3818 default:
3819 break;
3820 }
3821 }
3822
3823 /* Get rid of the moribund locations. */
3824 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3825 decref_bp_location (&bl);
3826 VEC_free (bp_location_p, moribund_locations);
3827 }
3828
3829 /* These functions concern about actual breakpoints inserted in the
3830 target --- to e.g. check if we need to do decr_pc adjustment or if
3831 we need to hop over the bkpt --- so we check for address space
3832 match, not program space. */
3833
3834 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3835 exists at PC. It returns ordinary_breakpoint_here if it's an
3836 ordinary breakpoint, or permanent_breakpoint_here if it's a
3837 permanent breakpoint.
3838 - When continuing from a location with an ordinary breakpoint, we
3839 actually single step once before calling insert_breakpoints.
3840 - When continuing from a location with a permanent breakpoint, we
3841 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3842 the target, to advance the PC past the breakpoint. */
3843
3844 enum breakpoint_here
3845 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3846 {
3847 struct bp_location *bl, **blp_tmp;
3848 int any_breakpoint_here = 0;
3849
3850 ALL_BP_LOCATIONS (bl, blp_tmp)
3851 {
3852 if (bl->loc_type != bp_loc_software_breakpoint
3853 && bl->loc_type != bp_loc_hardware_breakpoint)
3854 continue;
3855
3856 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3857 if ((breakpoint_enabled (bl->owner)
3858 || bl->owner->enable_state == bp_permanent)
3859 && breakpoint_location_address_match (bl, aspace, pc))
3860 {
3861 if (overlay_debugging
3862 && section_is_overlay (bl->section)
3863 && !section_is_mapped (bl->section))
3864 continue; /* unmapped overlay -- can't be a match */
3865 else if (bl->owner->enable_state == bp_permanent)
3866 return permanent_breakpoint_here;
3867 else
3868 any_breakpoint_here = 1;
3869 }
3870 }
3871
3872 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3873 }
3874
3875 /* Return true if there's a moribund breakpoint at PC. */
3876
3877 int
3878 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3879 {
3880 struct bp_location *loc;
3881 int ix;
3882
3883 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3884 if (breakpoint_location_address_match (loc, aspace, pc))
3885 return 1;
3886
3887 return 0;
3888 }
3889
3890 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3891 inserted using regular breakpoint_chain / bp_location array
3892 mechanism. This does not check for single-step breakpoints, which
3893 are inserted and removed using direct target manipulation. */
3894
3895 int
3896 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3897 CORE_ADDR pc)
3898 {
3899 struct bp_location *bl, **blp_tmp;
3900
3901 ALL_BP_LOCATIONS (bl, blp_tmp)
3902 {
3903 if (bl->loc_type != bp_loc_software_breakpoint
3904 && bl->loc_type != bp_loc_hardware_breakpoint)
3905 continue;
3906
3907 if (bl->inserted
3908 && breakpoint_location_address_match (bl, aspace, pc))
3909 {
3910 if (overlay_debugging
3911 && section_is_overlay (bl->section)
3912 && !section_is_mapped (bl->section))
3913 continue; /* unmapped overlay -- can't be a match */
3914 else
3915 return 1;
3916 }
3917 }
3918 return 0;
3919 }
3920
3921 /* Returns non-zero iff there's either regular breakpoint
3922 or a single step breakpoint inserted at PC. */
3923
3924 int
3925 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3926 {
3927 if (regular_breakpoint_inserted_here_p (aspace, pc))
3928 return 1;
3929
3930 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3931 return 1;
3932
3933 return 0;
3934 }
3935
3936 /* This function returns non-zero iff there is a software breakpoint
3937 inserted at PC. */
3938
3939 int
3940 software_breakpoint_inserted_here_p (struct address_space *aspace,
3941 CORE_ADDR pc)
3942 {
3943 struct bp_location *bl, **blp_tmp;
3944
3945 ALL_BP_LOCATIONS (bl, blp_tmp)
3946 {
3947 if (bl->loc_type != bp_loc_software_breakpoint)
3948 continue;
3949
3950 if (bl->inserted
3951 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3952 aspace, pc))
3953 {
3954 if (overlay_debugging
3955 && section_is_overlay (bl->section)
3956 && !section_is_mapped (bl->section))
3957 continue; /* unmapped overlay -- can't be a match */
3958 else
3959 return 1;
3960 }
3961 }
3962
3963 /* Also check for software single-step breakpoints. */
3964 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3965 return 1;
3966
3967 return 0;
3968 }
3969
3970 int
3971 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3972 CORE_ADDR addr, ULONGEST len)
3973 {
3974 struct breakpoint *bpt;
3975
3976 ALL_BREAKPOINTS (bpt)
3977 {
3978 struct bp_location *loc;
3979
3980 if (bpt->type != bp_hardware_watchpoint
3981 && bpt->type != bp_access_watchpoint)
3982 continue;
3983
3984 if (!breakpoint_enabled (bpt))
3985 continue;
3986
3987 for (loc = bpt->loc; loc; loc = loc->next)
3988 if (loc->pspace->aspace == aspace && loc->inserted)
3989 {
3990 CORE_ADDR l, h;
3991
3992 /* Check for intersection. */
3993 l = max (loc->address, addr);
3994 h = min (loc->address + loc->length, addr + len);
3995 if (l < h)
3996 return 1;
3997 }
3998 }
3999 return 0;
4000 }
4001
4002 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4003 PC is valid for process/thread PTID. */
4004
4005 int
4006 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4007 ptid_t ptid)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010 /* The thread and task IDs associated to PTID, computed lazily. */
4011 int thread = -1;
4012 int task = 0;
4013
4014 ALL_BP_LOCATIONS (bl, blp_tmp)
4015 {
4016 if (bl->loc_type != bp_loc_software_breakpoint
4017 && bl->loc_type != bp_loc_hardware_breakpoint)
4018 continue;
4019
4020 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4021 if (!breakpoint_enabled (bl->owner)
4022 && bl->owner->enable_state != bp_permanent)
4023 continue;
4024
4025 if (!breakpoint_location_address_match (bl, aspace, pc))
4026 continue;
4027
4028 if (bl->owner->thread != -1)
4029 {
4030 /* This is a thread-specific breakpoint. Check that ptid
4031 matches that thread. If thread hasn't been computed yet,
4032 it is now time to do so. */
4033 if (thread == -1)
4034 thread = pid_to_thread_id (ptid);
4035 if (bl->owner->thread != thread)
4036 continue;
4037 }
4038
4039 if (bl->owner->task != 0)
4040 {
4041 /* This is a task-specific breakpoint. Check that ptid
4042 matches that task. If task hasn't been computed yet,
4043 it is now time to do so. */
4044 if (task == 0)
4045 task = ada_get_task_number (ptid);
4046 if (bl->owner->task != task)
4047 continue;
4048 }
4049
4050 if (overlay_debugging
4051 && section_is_overlay (bl->section)
4052 && !section_is_mapped (bl->section))
4053 continue; /* unmapped overlay -- can't be a match */
4054
4055 return 1;
4056 }
4057
4058 return 0;
4059 }
4060 \f
4061
4062 /* bpstat stuff. External routines' interfaces are documented
4063 in breakpoint.h. */
4064
4065 int
4066 is_catchpoint (struct breakpoint *ep)
4067 {
4068 return (ep->type == bp_catchpoint);
4069 }
4070
4071 /* Frees any storage that is part of a bpstat. Does not walk the
4072 'next' chain. */
4073
4074 static void
4075 bpstat_free (bpstat bs)
4076 {
4077 if (bs->old_val != NULL)
4078 value_free (bs->old_val);
4079 decref_counted_command_line (&bs->commands);
4080 decref_bp_location (&bs->bp_location_at);
4081 xfree (bs);
4082 }
4083
4084 /* Clear a bpstat so that it says we are not at any breakpoint.
4085 Also free any storage that is part of a bpstat. */
4086
4087 void
4088 bpstat_clear (bpstat *bsp)
4089 {
4090 bpstat p;
4091 bpstat q;
4092
4093 if (bsp == 0)
4094 return;
4095 p = *bsp;
4096 while (p != NULL)
4097 {
4098 q = p->next;
4099 bpstat_free (p);
4100 p = q;
4101 }
4102 *bsp = NULL;
4103 }
4104
4105 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4106 is part of the bpstat is copied as well. */
4107
4108 bpstat
4109 bpstat_copy (bpstat bs)
4110 {
4111 bpstat p = NULL;
4112 bpstat tmp;
4113 bpstat retval = NULL;
4114
4115 if (bs == NULL)
4116 return bs;
4117
4118 for (; bs != NULL; bs = bs->next)
4119 {
4120 tmp = (bpstat) xmalloc (sizeof (*tmp));
4121 memcpy (tmp, bs, sizeof (*tmp));
4122 incref_counted_command_line (tmp->commands);
4123 incref_bp_location (tmp->bp_location_at);
4124 if (bs->old_val != NULL)
4125 {
4126 tmp->old_val = value_copy (bs->old_val);
4127 release_value (tmp->old_val);
4128 }
4129
4130 if (p == NULL)
4131 /* This is the first thing in the chain. */
4132 retval = tmp;
4133 else
4134 p->next = tmp;
4135 p = tmp;
4136 }
4137 p->next = NULL;
4138 return retval;
4139 }
4140
4141 /* Find the bpstat associated with this breakpoint. */
4142
4143 bpstat
4144 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4145 {
4146 if (bsp == NULL)
4147 return NULL;
4148
4149 for (; bsp != NULL; bsp = bsp->next)
4150 {
4151 if (bsp->breakpoint_at == breakpoint)
4152 return bsp;
4153 }
4154 return NULL;
4155 }
4156
4157 /* See breakpoint.h. */
4158
4159 enum bpstat_signal_value
4160 bpstat_explains_signal (bpstat bsp)
4161 {
4162 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4163
4164 for (; bsp != NULL; bsp = bsp->next)
4165 {
4166 /* Ensure that, if we ever entered this loop, then we at least
4167 return BPSTAT_SIGNAL_HIDE. */
4168 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4169
4170 if (bsp->breakpoint_at != NULL)
4171 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4172
4173 if (newval > result)
4174 result = newval;
4175 }
4176
4177 return result;
4178 }
4179
4180 /* Put in *NUM the breakpoint number of the first breakpoint we are
4181 stopped at. *BSP upon return is a bpstat which points to the
4182 remaining breakpoints stopped at (but which is not guaranteed to be
4183 good for anything but further calls to bpstat_num).
4184
4185 Return 0 if passed a bpstat which does not indicate any breakpoints.
4186 Return -1 if stopped at a breakpoint that has been deleted since
4187 we set it.
4188 Return 1 otherwise. */
4189
4190 int
4191 bpstat_num (bpstat *bsp, int *num)
4192 {
4193 struct breakpoint *b;
4194
4195 if ((*bsp) == NULL)
4196 return 0; /* No more breakpoint values */
4197
4198 /* We assume we'll never have several bpstats that correspond to a
4199 single breakpoint -- otherwise, this function might return the
4200 same number more than once and this will look ugly. */
4201 b = (*bsp)->breakpoint_at;
4202 *bsp = (*bsp)->next;
4203 if (b == NULL)
4204 return -1; /* breakpoint that's been deleted since */
4205
4206 *num = b->number; /* We have its number */
4207 return 1;
4208 }
4209
4210 /* See breakpoint.h. */
4211
4212 void
4213 bpstat_clear_actions (void)
4214 {
4215 struct thread_info *tp;
4216 bpstat bs;
4217
4218 if (ptid_equal (inferior_ptid, null_ptid))
4219 return;
4220
4221 tp = find_thread_ptid (inferior_ptid);
4222 if (tp == NULL)
4223 return;
4224
4225 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4226 {
4227 decref_counted_command_line (&bs->commands);
4228
4229 if (bs->old_val != NULL)
4230 {
4231 value_free (bs->old_val);
4232 bs->old_val = NULL;
4233 }
4234 }
4235 }
4236
4237 /* Called when a command is about to proceed the inferior. */
4238
4239 static void
4240 breakpoint_about_to_proceed (void)
4241 {
4242 if (!ptid_equal (inferior_ptid, null_ptid))
4243 {
4244 struct thread_info *tp = inferior_thread ();
4245
4246 /* Allow inferior function calls in breakpoint commands to not
4247 interrupt the command list. When the call finishes
4248 successfully, the inferior will be standing at the same
4249 breakpoint as if nothing happened. */
4250 if (tp->control.in_infcall)
4251 return;
4252 }
4253
4254 breakpoint_proceeded = 1;
4255 }
4256
4257 /* Stub for cleaning up our state if we error-out of a breakpoint
4258 command. */
4259 static void
4260 cleanup_executing_breakpoints (void *ignore)
4261 {
4262 executing_breakpoint_commands = 0;
4263 }
4264
4265 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4266 or its equivalent. */
4267
4268 static int
4269 command_line_is_silent (struct command_line *cmd)
4270 {
4271 return cmd && (strcmp ("silent", cmd->line) == 0
4272 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4273 }
4274
4275 /* Execute all the commands associated with all the breakpoints at
4276 this location. Any of these commands could cause the process to
4277 proceed beyond this point, etc. We look out for such changes by
4278 checking the global "breakpoint_proceeded" after each command.
4279
4280 Returns true if a breakpoint command resumed the inferior. In that
4281 case, it is the caller's responsibility to recall it again with the
4282 bpstat of the current thread. */
4283
4284 static int
4285 bpstat_do_actions_1 (bpstat *bsp)
4286 {
4287 bpstat bs;
4288 struct cleanup *old_chain;
4289 int again = 0;
4290
4291 /* Avoid endless recursion if a `source' command is contained
4292 in bs->commands. */
4293 if (executing_breakpoint_commands)
4294 return 0;
4295
4296 executing_breakpoint_commands = 1;
4297 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4298
4299 prevent_dont_repeat ();
4300
4301 /* This pointer will iterate over the list of bpstat's. */
4302 bs = *bsp;
4303
4304 breakpoint_proceeded = 0;
4305 for (; bs != NULL; bs = bs->next)
4306 {
4307 struct counted_command_line *ccmd;
4308 struct command_line *cmd;
4309 struct cleanup *this_cmd_tree_chain;
4310
4311 /* Take ownership of the BSP's command tree, if it has one.
4312
4313 The command tree could legitimately contain commands like
4314 'step' and 'next', which call clear_proceed_status, which
4315 frees stop_bpstat's command tree. To make sure this doesn't
4316 free the tree we're executing out from under us, we need to
4317 take ownership of the tree ourselves. Since a given bpstat's
4318 commands are only executed once, we don't need to copy it; we
4319 can clear the pointer in the bpstat, and make sure we free
4320 the tree when we're done. */
4321 ccmd = bs->commands;
4322 bs->commands = NULL;
4323 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4324 cmd = ccmd ? ccmd->commands : NULL;
4325 if (command_line_is_silent (cmd))
4326 {
4327 /* The action has been already done by bpstat_stop_status. */
4328 cmd = cmd->next;
4329 }
4330
4331 while (cmd != NULL)
4332 {
4333 execute_control_command (cmd);
4334
4335 if (breakpoint_proceeded)
4336 break;
4337 else
4338 cmd = cmd->next;
4339 }
4340
4341 /* We can free this command tree now. */
4342 do_cleanups (this_cmd_tree_chain);
4343
4344 if (breakpoint_proceeded)
4345 {
4346 if (target_can_async_p ())
4347 /* If we are in async mode, then the target might be still
4348 running, not stopped at any breakpoint, so nothing for
4349 us to do here -- just return to the event loop. */
4350 ;
4351 else
4352 /* In sync mode, when execute_control_command returns
4353 we're already standing on the next breakpoint.
4354 Breakpoint commands for that stop were not run, since
4355 execute_command does not run breakpoint commands --
4356 only command_line_handler does, but that one is not
4357 involved in execution of breakpoint commands. So, we
4358 can now execute breakpoint commands. It should be
4359 noted that making execute_command do bpstat actions is
4360 not an option -- in this case we'll have recursive
4361 invocation of bpstat for each breakpoint with a
4362 command, and can easily blow up GDB stack. Instead, we
4363 return true, which will trigger the caller to recall us
4364 with the new stop_bpstat. */
4365 again = 1;
4366 break;
4367 }
4368 }
4369 do_cleanups (old_chain);
4370 return again;
4371 }
4372
4373 void
4374 bpstat_do_actions (void)
4375 {
4376 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4377
4378 /* Do any commands attached to breakpoint we are stopped at. */
4379 while (!ptid_equal (inferior_ptid, null_ptid)
4380 && target_has_execution
4381 && !is_exited (inferior_ptid)
4382 && !is_executing (inferior_ptid))
4383 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4384 and only return when it is stopped at the next breakpoint, we
4385 keep doing breakpoint actions until it returns false to
4386 indicate the inferior was not resumed. */
4387 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4388 break;
4389
4390 discard_cleanups (cleanup_if_error);
4391 }
4392
4393 /* Print out the (old or new) value associated with a watchpoint. */
4394
4395 static void
4396 watchpoint_value_print (struct value *val, struct ui_file *stream)
4397 {
4398 if (val == NULL)
4399 fprintf_unfiltered (stream, _("<unreadable>"));
4400 else
4401 {
4402 struct value_print_options opts;
4403 get_user_print_options (&opts);
4404 value_print (val, stream, &opts);
4405 }
4406 }
4407
4408 /* Generic routine for printing messages indicating why we
4409 stopped. The behavior of this function depends on the value
4410 'print_it' in the bpstat structure. Under some circumstances we
4411 may decide not to print anything here and delegate the task to
4412 normal_stop(). */
4413
4414 static enum print_stop_action
4415 print_bp_stop_message (bpstat bs)
4416 {
4417 switch (bs->print_it)
4418 {
4419 case print_it_noop:
4420 /* Nothing should be printed for this bpstat entry. */
4421 return PRINT_UNKNOWN;
4422 break;
4423
4424 case print_it_done:
4425 /* We still want to print the frame, but we already printed the
4426 relevant messages. */
4427 return PRINT_SRC_AND_LOC;
4428 break;
4429
4430 case print_it_normal:
4431 {
4432 struct breakpoint *b = bs->breakpoint_at;
4433
4434 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4435 which has since been deleted. */
4436 if (b == NULL)
4437 return PRINT_UNKNOWN;
4438
4439 /* Normal case. Call the breakpoint's print_it method. */
4440 return b->ops->print_it (bs);
4441 }
4442 break;
4443
4444 default:
4445 internal_error (__FILE__, __LINE__,
4446 _("print_bp_stop_message: unrecognized enum value"));
4447 break;
4448 }
4449 }
4450
4451 /* A helper function that prints a shared library stopped event. */
4452
4453 static void
4454 print_solib_event (int is_catchpoint)
4455 {
4456 int any_deleted
4457 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4458 int any_added
4459 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4460
4461 if (!is_catchpoint)
4462 {
4463 if (any_added || any_deleted)
4464 ui_out_text (current_uiout,
4465 _("Stopped due to shared library event:\n"));
4466 else
4467 ui_out_text (current_uiout,
4468 _("Stopped due to shared library event (no "
4469 "libraries added or removed)\n"));
4470 }
4471
4472 if (ui_out_is_mi_like_p (current_uiout))
4473 ui_out_field_string (current_uiout, "reason",
4474 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4475
4476 if (any_deleted)
4477 {
4478 struct cleanup *cleanup;
4479 char *name;
4480 int ix;
4481
4482 ui_out_text (current_uiout, _(" Inferior unloaded "));
4483 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4484 "removed");
4485 for (ix = 0;
4486 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4487 ix, name);
4488 ++ix)
4489 {
4490 if (ix > 0)
4491 ui_out_text (current_uiout, " ");
4492 ui_out_field_string (current_uiout, "library", name);
4493 ui_out_text (current_uiout, "\n");
4494 }
4495
4496 do_cleanups (cleanup);
4497 }
4498
4499 if (any_added)
4500 {
4501 struct so_list *iter;
4502 int ix;
4503 struct cleanup *cleanup;
4504
4505 ui_out_text (current_uiout, _(" Inferior loaded "));
4506 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4507 "added");
4508 for (ix = 0;
4509 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4510 ix, iter);
4511 ++ix)
4512 {
4513 if (ix > 0)
4514 ui_out_text (current_uiout, " ");
4515 ui_out_field_string (current_uiout, "library", iter->so_name);
4516 ui_out_text (current_uiout, "\n");
4517 }
4518
4519 do_cleanups (cleanup);
4520 }
4521 }
4522
4523 /* Print a message indicating what happened. This is called from
4524 normal_stop(). The input to this routine is the head of the bpstat
4525 list - a list of the eventpoints that caused this stop. KIND is
4526 the target_waitkind for the stopping event. This
4527 routine calls the generic print routine for printing a message
4528 about reasons for stopping. This will print (for example) the
4529 "Breakpoint n," part of the output. The return value of this
4530 routine is one of:
4531
4532 PRINT_UNKNOWN: Means we printed nothing.
4533 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4534 code to print the location. An example is
4535 "Breakpoint 1, " which should be followed by
4536 the location.
4537 PRINT_SRC_ONLY: Means we printed something, but there is no need
4538 to also print the location part of the message.
4539 An example is the catch/throw messages, which
4540 don't require a location appended to the end.
4541 PRINT_NOTHING: We have done some printing and we don't need any
4542 further info to be printed. */
4543
4544 enum print_stop_action
4545 bpstat_print (bpstat bs, int kind)
4546 {
4547 int val;
4548
4549 /* Maybe another breakpoint in the chain caused us to stop.
4550 (Currently all watchpoints go on the bpstat whether hit or not.
4551 That probably could (should) be changed, provided care is taken
4552 with respect to bpstat_explains_signal). */
4553 for (; bs; bs = bs->next)
4554 {
4555 val = print_bp_stop_message (bs);
4556 if (val == PRINT_SRC_ONLY
4557 || val == PRINT_SRC_AND_LOC
4558 || val == PRINT_NOTHING)
4559 return val;
4560 }
4561
4562 /* If we had hit a shared library event breakpoint,
4563 print_bp_stop_message would print out this message. If we hit an
4564 OS-level shared library event, do the same thing. */
4565 if (kind == TARGET_WAITKIND_LOADED)
4566 {
4567 print_solib_event (0);
4568 return PRINT_NOTHING;
4569 }
4570
4571 /* We reached the end of the chain, or we got a null BS to start
4572 with and nothing was printed. */
4573 return PRINT_UNKNOWN;
4574 }
4575
4576 /* Evaluate the expression EXP and return 1 if value is zero. This is
4577 used inside a catch_errors to evaluate the breakpoint condition.
4578 The argument is a "struct expression *" that has been cast to a
4579 "char *" to make it pass through catch_errors. */
4580
4581 static int
4582 breakpoint_cond_eval (void *exp)
4583 {
4584 struct value *mark = value_mark ();
4585 int i = !value_true (evaluate_expression ((struct expression *) exp));
4586
4587 value_free_to_mark (mark);
4588 return i;
4589 }
4590
4591 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4592
4593 static bpstat
4594 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4595 {
4596 bpstat bs;
4597
4598 bs = (bpstat) xmalloc (sizeof (*bs));
4599 bs->next = NULL;
4600 **bs_link_pointer = bs;
4601 *bs_link_pointer = &bs->next;
4602 bs->breakpoint_at = bl->owner;
4603 bs->bp_location_at = bl;
4604 incref_bp_location (bl);
4605 /* If the condition is false, etc., don't do the commands. */
4606 bs->commands = NULL;
4607 bs->old_val = NULL;
4608 bs->print_it = print_it_normal;
4609 return bs;
4610 }
4611 \f
4612 /* The target has stopped with waitstatus WS. Check if any hardware
4613 watchpoints have triggered, according to the target. */
4614
4615 int
4616 watchpoints_triggered (struct target_waitstatus *ws)
4617 {
4618 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4619 CORE_ADDR addr;
4620 struct breakpoint *b;
4621
4622 if (!stopped_by_watchpoint)
4623 {
4624 /* We were not stopped by a watchpoint. Mark all watchpoints
4625 as not triggered. */
4626 ALL_BREAKPOINTS (b)
4627 if (is_hardware_watchpoint (b))
4628 {
4629 struct watchpoint *w = (struct watchpoint *) b;
4630
4631 w->watchpoint_triggered = watch_triggered_no;
4632 }
4633
4634 return 0;
4635 }
4636
4637 if (!target_stopped_data_address (&current_target, &addr))
4638 {
4639 /* We were stopped by a watchpoint, but we don't know where.
4640 Mark all watchpoints as unknown. */
4641 ALL_BREAKPOINTS (b)
4642 if (is_hardware_watchpoint (b))
4643 {
4644 struct watchpoint *w = (struct watchpoint *) b;
4645
4646 w->watchpoint_triggered = watch_triggered_unknown;
4647 }
4648
4649 return stopped_by_watchpoint;
4650 }
4651
4652 /* The target could report the data address. Mark watchpoints
4653 affected by this data address as triggered, and all others as not
4654 triggered. */
4655
4656 ALL_BREAKPOINTS (b)
4657 if (is_hardware_watchpoint (b))
4658 {
4659 struct watchpoint *w = (struct watchpoint *) b;
4660 struct bp_location *loc;
4661
4662 w->watchpoint_triggered = watch_triggered_no;
4663 for (loc = b->loc; loc; loc = loc->next)
4664 {
4665 if (is_masked_watchpoint (b))
4666 {
4667 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4668 CORE_ADDR start = loc->address & w->hw_wp_mask;
4669
4670 if (newaddr == start)
4671 {
4672 w->watchpoint_triggered = watch_triggered_yes;
4673 break;
4674 }
4675 }
4676 /* Exact match not required. Within range is sufficient. */
4677 else if (target_watchpoint_addr_within_range (&current_target,
4678 addr, loc->address,
4679 loc->length))
4680 {
4681 w->watchpoint_triggered = watch_triggered_yes;
4682 break;
4683 }
4684 }
4685 }
4686
4687 return 1;
4688 }
4689
4690 /* Possible return values for watchpoint_check (this can't be an enum
4691 because of check_errors). */
4692 /* The watchpoint has been deleted. */
4693 #define WP_DELETED 1
4694 /* The value has changed. */
4695 #define WP_VALUE_CHANGED 2
4696 /* The value has not changed. */
4697 #define WP_VALUE_NOT_CHANGED 3
4698 /* Ignore this watchpoint, no matter if the value changed or not. */
4699 #define WP_IGNORE 4
4700
4701 #define BP_TEMPFLAG 1
4702 #define BP_HARDWAREFLAG 2
4703
4704 /* Evaluate watchpoint condition expression and check if its value
4705 changed.
4706
4707 P should be a pointer to struct bpstat, but is defined as a void *
4708 in order for this function to be usable with catch_errors. */
4709
4710 static int
4711 watchpoint_check (void *p)
4712 {
4713 bpstat bs = (bpstat) p;
4714 struct watchpoint *b;
4715 struct frame_info *fr;
4716 int within_current_scope;
4717
4718 /* BS is built from an existing struct breakpoint. */
4719 gdb_assert (bs->breakpoint_at != NULL);
4720 b = (struct watchpoint *) bs->breakpoint_at;
4721
4722 /* If this is a local watchpoint, we only want to check if the
4723 watchpoint frame is in scope if the current thread is the thread
4724 that was used to create the watchpoint. */
4725 if (!watchpoint_in_thread_scope (b))
4726 return WP_IGNORE;
4727
4728 if (b->exp_valid_block == NULL)
4729 within_current_scope = 1;
4730 else
4731 {
4732 struct frame_info *frame = get_current_frame ();
4733 struct gdbarch *frame_arch = get_frame_arch (frame);
4734 CORE_ADDR frame_pc = get_frame_pc (frame);
4735
4736 /* in_function_epilogue_p() returns a non-zero value if we're
4737 still in the function but the stack frame has already been
4738 invalidated. Since we can't rely on the values of local
4739 variables after the stack has been destroyed, we are treating
4740 the watchpoint in that state as `not changed' without further
4741 checking. Don't mark watchpoints as changed if the current
4742 frame is in an epilogue - even if they are in some other
4743 frame, our view of the stack is likely to be wrong and
4744 frame_find_by_id could error out. */
4745 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4746 return WP_IGNORE;
4747
4748 fr = frame_find_by_id (b->watchpoint_frame);
4749 within_current_scope = (fr != NULL);
4750
4751 /* If we've gotten confused in the unwinder, we might have
4752 returned a frame that can't describe this variable. */
4753 if (within_current_scope)
4754 {
4755 struct symbol *function;
4756
4757 function = get_frame_function (fr);
4758 if (function == NULL
4759 || !contained_in (b->exp_valid_block,
4760 SYMBOL_BLOCK_VALUE (function)))
4761 within_current_scope = 0;
4762 }
4763
4764 if (within_current_scope)
4765 /* If we end up stopping, the current frame will get selected
4766 in normal_stop. So this call to select_frame won't affect
4767 the user. */
4768 select_frame (fr);
4769 }
4770
4771 if (within_current_scope)
4772 {
4773 /* We use value_{,free_to_}mark because it could be a *long*
4774 time before we return to the command level and call
4775 free_all_values. We can't call free_all_values because we
4776 might be in the middle of evaluating a function call. */
4777
4778 int pc = 0;
4779 struct value *mark;
4780 struct value *new_val;
4781
4782 if (is_masked_watchpoint (&b->base))
4783 /* Since we don't know the exact trigger address (from
4784 stopped_data_address), just tell the user we've triggered
4785 a mask watchpoint. */
4786 return WP_VALUE_CHANGED;
4787
4788 mark = value_mark ();
4789 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4790
4791 /* We use value_equal_contents instead of value_equal because
4792 the latter coerces an array to a pointer, thus comparing just
4793 the address of the array instead of its contents. This is
4794 not what we want. */
4795 if ((b->val != NULL) != (new_val != NULL)
4796 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4797 {
4798 if (new_val != NULL)
4799 {
4800 release_value (new_val);
4801 value_free_to_mark (mark);
4802 }
4803 bs->old_val = b->val;
4804 b->val = new_val;
4805 b->val_valid = 1;
4806 return WP_VALUE_CHANGED;
4807 }
4808 else
4809 {
4810 /* Nothing changed. */
4811 value_free_to_mark (mark);
4812 return WP_VALUE_NOT_CHANGED;
4813 }
4814 }
4815 else
4816 {
4817 struct ui_out *uiout = current_uiout;
4818
4819 /* This seems like the only logical thing to do because
4820 if we temporarily ignored the watchpoint, then when
4821 we reenter the block in which it is valid it contains
4822 garbage (in the case of a function, it may have two
4823 garbage values, one before and one after the prologue).
4824 So we can't even detect the first assignment to it and
4825 watch after that (since the garbage may or may not equal
4826 the first value assigned). */
4827 /* We print all the stop information in
4828 breakpoint_ops->print_it, but in this case, by the time we
4829 call breakpoint_ops->print_it this bp will be deleted
4830 already. So we have no choice but print the information
4831 here. */
4832 if (ui_out_is_mi_like_p (uiout))
4833 ui_out_field_string
4834 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4835 ui_out_text (uiout, "\nWatchpoint ");
4836 ui_out_field_int (uiout, "wpnum", b->base.number);
4837 ui_out_text (uiout,
4838 " deleted because the program has left the block in\n\
4839 which its expression is valid.\n");
4840
4841 /* Make sure the watchpoint's commands aren't executed. */
4842 decref_counted_command_line (&b->base.commands);
4843 watchpoint_del_at_next_stop (b);
4844
4845 return WP_DELETED;
4846 }
4847 }
4848
4849 /* Return true if it looks like target has stopped due to hitting
4850 breakpoint location BL. This function does not check if we should
4851 stop, only if BL explains the stop. */
4852
4853 static int
4854 bpstat_check_location (const struct bp_location *bl,
4855 struct address_space *aspace, CORE_ADDR bp_addr,
4856 const struct target_waitstatus *ws)
4857 {
4858 struct breakpoint *b = bl->owner;
4859
4860 /* BL is from an existing breakpoint. */
4861 gdb_assert (b != NULL);
4862
4863 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4864 }
4865
4866 /* Determine if the watched values have actually changed, and we
4867 should stop. If not, set BS->stop to 0. */
4868
4869 static void
4870 bpstat_check_watchpoint (bpstat bs)
4871 {
4872 const struct bp_location *bl;
4873 struct watchpoint *b;
4874
4875 /* BS is built for existing struct breakpoint. */
4876 bl = bs->bp_location_at;
4877 gdb_assert (bl != NULL);
4878 b = (struct watchpoint *) bs->breakpoint_at;
4879 gdb_assert (b != NULL);
4880
4881 {
4882 int must_check_value = 0;
4883
4884 if (b->base.type == bp_watchpoint)
4885 /* For a software watchpoint, we must always check the
4886 watched value. */
4887 must_check_value = 1;
4888 else if (b->watchpoint_triggered == watch_triggered_yes)
4889 /* We have a hardware watchpoint (read, write, or access)
4890 and the target earlier reported an address watched by
4891 this watchpoint. */
4892 must_check_value = 1;
4893 else if (b->watchpoint_triggered == watch_triggered_unknown
4894 && b->base.type == bp_hardware_watchpoint)
4895 /* We were stopped by a hardware watchpoint, but the target could
4896 not report the data address. We must check the watchpoint's
4897 value. Access and read watchpoints are out of luck; without
4898 a data address, we can't figure it out. */
4899 must_check_value = 1;
4900
4901 if (must_check_value)
4902 {
4903 char *message
4904 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4905 b->base.number);
4906 struct cleanup *cleanups = make_cleanup (xfree, message);
4907 int e = catch_errors (watchpoint_check, bs, message,
4908 RETURN_MASK_ALL);
4909 do_cleanups (cleanups);
4910 switch (e)
4911 {
4912 case WP_DELETED:
4913 /* We've already printed what needs to be printed. */
4914 bs->print_it = print_it_done;
4915 /* Stop. */
4916 break;
4917 case WP_IGNORE:
4918 bs->print_it = print_it_noop;
4919 bs->stop = 0;
4920 break;
4921 case WP_VALUE_CHANGED:
4922 if (b->base.type == bp_read_watchpoint)
4923 {
4924 /* There are two cases to consider here:
4925
4926 1. We're watching the triggered memory for reads.
4927 In that case, trust the target, and always report
4928 the watchpoint hit to the user. Even though
4929 reads don't cause value changes, the value may
4930 have changed since the last time it was read, and
4931 since we're not trapping writes, we will not see
4932 those, and as such we should ignore our notion of
4933 old value.
4934
4935 2. We're watching the triggered memory for both
4936 reads and writes. There are two ways this may
4937 happen:
4938
4939 2.1. This is a target that can't break on data
4940 reads only, but can break on accesses (reads or
4941 writes), such as e.g., x86. We detect this case
4942 at the time we try to insert read watchpoints.
4943
4944 2.2. Otherwise, the target supports read
4945 watchpoints, but, the user set an access or write
4946 watchpoint watching the same memory as this read
4947 watchpoint.
4948
4949 If we're watching memory writes as well as reads,
4950 ignore watchpoint hits when we find that the
4951 value hasn't changed, as reads don't cause
4952 changes. This still gives false positives when
4953 the program writes the same value to memory as
4954 what there was already in memory (we will confuse
4955 it for a read), but it's much better than
4956 nothing. */
4957
4958 int other_write_watchpoint = 0;
4959
4960 if (bl->watchpoint_type == hw_read)
4961 {
4962 struct breakpoint *other_b;
4963
4964 ALL_BREAKPOINTS (other_b)
4965 if (other_b->type == bp_hardware_watchpoint
4966 || other_b->type == bp_access_watchpoint)
4967 {
4968 struct watchpoint *other_w =
4969 (struct watchpoint *) other_b;
4970
4971 if (other_w->watchpoint_triggered
4972 == watch_triggered_yes)
4973 {
4974 other_write_watchpoint = 1;
4975 break;
4976 }
4977 }
4978 }
4979
4980 if (other_write_watchpoint
4981 || bl->watchpoint_type == hw_access)
4982 {
4983 /* We're watching the same memory for writes,
4984 and the value changed since the last time we
4985 updated it, so this trap must be for a write.
4986 Ignore it. */
4987 bs->print_it = print_it_noop;
4988 bs->stop = 0;
4989 }
4990 }
4991 break;
4992 case WP_VALUE_NOT_CHANGED:
4993 if (b->base.type == bp_hardware_watchpoint
4994 || b->base.type == bp_watchpoint)
4995 {
4996 /* Don't stop: write watchpoints shouldn't fire if
4997 the value hasn't changed. */
4998 bs->print_it = print_it_noop;
4999 bs->stop = 0;
5000 }
5001 /* Stop. */
5002 break;
5003 default:
5004 /* Can't happen. */
5005 case 0:
5006 /* Error from catch_errors. */
5007 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5008 watchpoint_del_at_next_stop (b);
5009 /* We've already printed what needs to be printed. */
5010 bs->print_it = print_it_done;
5011 break;
5012 }
5013 }
5014 else /* must_check_value == 0 */
5015 {
5016 /* This is a case where some watchpoint(s) triggered, but
5017 not at the address of this watchpoint, or else no
5018 watchpoint triggered after all. So don't print
5019 anything for this watchpoint. */
5020 bs->print_it = print_it_noop;
5021 bs->stop = 0;
5022 }
5023 }
5024 }
5025
5026
5027 /* Check conditions (condition proper, frame, thread and ignore count)
5028 of breakpoint referred to by BS. If we should not stop for this
5029 breakpoint, set BS->stop to 0. */
5030
5031 static void
5032 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5033 {
5034 int thread_id = pid_to_thread_id (ptid);
5035 const struct bp_location *bl;
5036 struct breakpoint *b;
5037
5038 /* BS is built for existing struct breakpoint. */
5039 bl = bs->bp_location_at;
5040 gdb_assert (bl != NULL);
5041 b = bs->breakpoint_at;
5042 gdb_assert (b != NULL);
5043
5044 /* Even if the target evaluated the condition on its end and notified GDB, we
5045 need to do so again since GDB does not know if we stopped due to a
5046 breakpoint or a single step breakpoint. */
5047
5048 if (frame_id_p (b->frame_id)
5049 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5050 bs->stop = 0;
5051 else if (bs->stop)
5052 {
5053 int value_is_zero = 0;
5054 struct expression *cond;
5055
5056 /* Evaluate Python breakpoints that have a "stop"
5057 method implemented. */
5058 if (b->py_bp_object)
5059 bs->stop = gdbpy_should_stop (b->py_bp_object);
5060
5061 if (is_watchpoint (b))
5062 {
5063 struct watchpoint *w = (struct watchpoint *) b;
5064
5065 cond = w->cond_exp;
5066 }
5067 else
5068 cond = bl->cond;
5069
5070 if (cond && b->disposition != disp_del_at_next_stop)
5071 {
5072 int within_current_scope = 1;
5073 struct watchpoint * w;
5074
5075 /* We use value_mark and value_free_to_mark because it could
5076 be a long time before we return to the command level and
5077 call free_all_values. We can't call free_all_values
5078 because we might be in the middle of evaluating a
5079 function call. */
5080 struct value *mark = value_mark ();
5081
5082 if (is_watchpoint (b))
5083 w = (struct watchpoint *) b;
5084 else
5085 w = NULL;
5086
5087 /* Need to select the frame, with all that implies so that
5088 the conditions will have the right context. Because we
5089 use the frame, we will not see an inlined function's
5090 variables when we arrive at a breakpoint at the start
5091 of the inlined function; the current frame will be the
5092 call site. */
5093 if (w == NULL || w->cond_exp_valid_block == NULL)
5094 select_frame (get_current_frame ());
5095 else
5096 {
5097 struct frame_info *frame;
5098
5099 /* For local watchpoint expressions, which particular
5100 instance of a local is being watched matters, so we
5101 keep track of the frame to evaluate the expression
5102 in. To evaluate the condition however, it doesn't
5103 really matter which instantiation of the function
5104 where the condition makes sense triggers the
5105 watchpoint. This allows an expression like "watch
5106 global if q > 10" set in `func', catch writes to
5107 global on all threads that call `func', or catch
5108 writes on all recursive calls of `func' by a single
5109 thread. We simply always evaluate the condition in
5110 the innermost frame that's executing where it makes
5111 sense to evaluate the condition. It seems
5112 intuitive. */
5113 frame = block_innermost_frame (w->cond_exp_valid_block);
5114 if (frame != NULL)
5115 select_frame (frame);
5116 else
5117 within_current_scope = 0;
5118 }
5119 if (within_current_scope)
5120 value_is_zero
5121 = catch_errors (breakpoint_cond_eval, cond,
5122 "Error in testing breakpoint condition:\n",
5123 RETURN_MASK_ALL);
5124 else
5125 {
5126 warning (_("Watchpoint condition cannot be tested "
5127 "in the current scope"));
5128 /* If we failed to set the right context for this
5129 watchpoint, unconditionally report it. */
5130 value_is_zero = 0;
5131 }
5132 /* FIXME-someday, should give breakpoint #. */
5133 value_free_to_mark (mark);
5134 }
5135
5136 if (cond && value_is_zero)
5137 {
5138 bs->stop = 0;
5139 }
5140 else if (b->thread != -1 && b->thread != thread_id)
5141 {
5142 bs->stop = 0;
5143 }
5144 else if (b->ignore_count > 0)
5145 {
5146 b->ignore_count--;
5147 bs->stop = 0;
5148 /* Increase the hit count even though we don't stop. */
5149 ++(b->hit_count);
5150 observer_notify_breakpoint_modified (b);
5151 }
5152 }
5153 }
5154
5155
5156 /* Get a bpstat associated with having just stopped at address
5157 BP_ADDR in thread PTID.
5158
5159 Determine whether we stopped at a breakpoint, etc, or whether we
5160 don't understand this stop. Result is a chain of bpstat's such
5161 that:
5162
5163 if we don't understand the stop, the result is a null pointer.
5164
5165 if we understand why we stopped, the result is not null.
5166
5167 Each element of the chain refers to a particular breakpoint or
5168 watchpoint at which we have stopped. (We may have stopped for
5169 several reasons concurrently.)
5170
5171 Each element of the chain has valid next, breakpoint_at,
5172 commands, FIXME??? fields. */
5173
5174 bpstat
5175 bpstat_stop_status (struct address_space *aspace,
5176 CORE_ADDR bp_addr, ptid_t ptid,
5177 const struct target_waitstatus *ws)
5178 {
5179 struct breakpoint *b = NULL;
5180 struct bp_location *bl;
5181 struct bp_location *loc;
5182 /* First item of allocated bpstat's. */
5183 bpstat bs_head = NULL, *bs_link = &bs_head;
5184 /* Pointer to the last thing in the chain currently. */
5185 bpstat bs;
5186 int ix;
5187 int need_remove_insert;
5188 int removed_any;
5189
5190 /* First, build the bpstat chain with locations that explain a
5191 target stop, while being careful to not set the target running,
5192 as that may invalidate locations (in particular watchpoint
5193 locations are recreated). Resuming will happen here with
5194 breakpoint conditions or watchpoint expressions that include
5195 inferior function calls. */
5196
5197 ALL_BREAKPOINTS (b)
5198 {
5199 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5200 continue;
5201
5202 for (bl = b->loc; bl != NULL; bl = bl->next)
5203 {
5204 /* For hardware watchpoints, we look only at the first
5205 location. The watchpoint_check function will work on the
5206 entire expression, not the individual locations. For
5207 read watchpoints, the watchpoints_triggered function has
5208 checked all locations already. */
5209 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5210 break;
5211
5212 if (!bl->enabled || bl->shlib_disabled)
5213 continue;
5214
5215 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5216 continue;
5217
5218 /* Come here if it's a watchpoint, or if the break address
5219 matches. */
5220
5221 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5222 explain stop. */
5223
5224 /* Assume we stop. Should we find a watchpoint that is not
5225 actually triggered, or if the condition of the breakpoint
5226 evaluates as false, we'll reset 'stop' to 0. */
5227 bs->stop = 1;
5228 bs->print = 1;
5229
5230 /* If this is a scope breakpoint, mark the associated
5231 watchpoint as triggered so that we will handle the
5232 out-of-scope event. We'll get to the watchpoint next
5233 iteration. */
5234 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5235 {
5236 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5237
5238 w->watchpoint_triggered = watch_triggered_yes;
5239 }
5240 }
5241 }
5242
5243 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5244 {
5245 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5246 {
5247 bs = bpstat_alloc (loc, &bs_link);
5248 /* For hits of moribund locations, we should just proceed. */
5249 bs->stop = 0;
5250 bs->print = 0;
5251 bs->print_it = print_it_noop;
5252 }
5253 }
5254
5255 /* A bit of special processing for shlib breakpoints. We need to
5256 process solib loading here, so that the lists of loaded and
5257 unloaded libraries are correct before we handle "catch load" and
5258 "catch unload". */
5259 for (bs = bs_head; bs != NULL; bs = bs->next)
5260 {
5261 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5262 {
5263 handle_solib_event ();
5264 break;
5265 }
5266 }
5267
5268 /* Now go through the locations that caused the target to stop, and
5269 check whether we're interested in reporting this stop to higher
5270 layers, or whether we should resume the target transparently. */
5271
5272 removed_any = 0;
5273
5274 for (bs = bs_head; bs != NULL; bs = bs->next)
5275 {
5276 if (!bs->stop)
5277 continue;
5278
5279 b = bs->breakpoint_at;
5280 b->ops->check_status (bs);
5281 if (bs->stop)
5282 {
5283 bpstat_check_breakpoint_conditions (bs, ptid);
5284
5285 if (bs->stop)
5286 {
5287 ++(b->hit_count);
5288 observer_notify_breakpoint_modified (b);
5289
5290 /* We will stop here. */
5291 if (b->disposition == disp_disable)
5292 {
5293 --(b->enable_count);
5294 if (b->enable_count <= 0
5295 && b->enable_state != bp_permanent)
5296 b->enable_state = bp_disabled;
5297 removed_any = 1;
5298 }
5299 if (b->silent)
5300 bs->print = 0;
5301 bs->commands = b->commands;
5302 incref_counted_command_line (bs->commands);
5303 if (command_line_is_silent (bs->commands
5304 ? bs->commands->commands : NULL))
5305 bs->print = 0;
5306 }
5307
5308 }
5309
5310 /* Print nothing for this entry if we don't stop or don't
5311 print. */
5312 if (!bs->stop || !bs->print)
5313 bs->print_it = print_it_noop;
5314 }
5315
5316 /* If we aren't stopping, the value of some hardware watchpoint may
5317 not have changed, but the intermediate memory locations we are
5318 watching may have. Don't bother if we're stopping; this will get
5319 done later. */
5320 need_remove_insert = 0;
5321 if (! bpstat_causes_stop (bs_head))
5322 for (bs = bs_head; bs != NULL; bs = bs->next)
5323 if (!bs->stop
5324 && bs->breakpoint_at
5325 && is_hardware_watchpoint (bs->breakpoint_at))
5326 {
5327 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5328
5329 update_watchpoint (w, 0 /* don't reparse. */);
5330 need_remove_insert = 1;
5331 }
5332
5333 if (need_remove_insert)
5334 update_global_location_list (1);
5335 else if (removed_any)
5336 update_global_location_list (0);
5337
5338 return bs_head;
5339 }
5340
5341 static void
5342 handle_jit_event (void)
5343 {
5344 struct frame_info *frame;
5345 struct gdbarch *gdbarch;
5346
5347 /* Switch terminal for any messages produced by
5348 breakpoint_re_set. */
5349 target_terminal_ours_for_output ();
5350
5351 frame = get_current_frame ();
5352 gdbarch = get_frame_arch (frame);
5353
5354 jit_event_handler (gdbarch);
5355
5356 target_terminal_inferior ();
5357 }
5358
5359 /* Handle an solib event by calling solib_add. */
5360
5361 void
5362 handle_solib_event (void)
5363 {
5364 clear_program_space_solib_cache (current_inferior ()->pspace);
5365
5366 /* Check for any newly added shared libraries if we're supposed to
5367 be adding them automatically. Switch terminal for any messages
5368 produced by breakpoint_re_set. */
5369 target_terminal_ours_for_output ();
5370 #ifdef SOLIB_ADD
5371 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
5372 #else
5373 solib_add (NULL, 0, &current_target, auto_solib_add);
5374 #endif
5375 target_terminal_inferior ();
5376 }
5377
5378 /* Prepare WHAT final decision for infrun. */
5379
5380 /* Decide what infrun needs to do with this bpstat. */
5381
5382 struct bpstat_what
5383 bpstat_what (bpstat bs_head)
5384 {
5385 struct bpstat_what retval;
5386 int jit_event = 0;
5387 bpstat bs;
5388
5389 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5390 retval.call_dummy = STOP_NONE;
5391 retval.is_longjmp = 0;
5392
5393 for (bs = bs_head; bs != NULL; bs = bs->next)
5394 {
5395 /* Extract this BS's action. After processing each BS, we check
5396 if its action overrides all we've seem so far. */
5397 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5398 enum bptype bptype;
5399
5400 if (bs->breakpoint_at == NULL)
5401 {
5402 /* I suspect this can happen if it was a momentary
5403 breakpoint which has since been deleted. */
5404 bptype = bp_none;
5405 }
5406 else
5407 bptype = bs->breakpoint_at->type;
5408
5409 switch (bptype)
5410 {
5411 case bp_none:
5412 break;
5413 case bp_breakpoint:
5414 case bp_hardware_breakpoint:
5415 case bp_until:
5416 case bp_finish:
5417 case bp_shlib_event:
5418 if (bs->stop)
5419 {
5420 if (bs->print)
5421 this_action = BPSTAT_WHAT_STOP_NOISY;
5422 else
5423 this_action = BPSTAT_WHAT_STOP_SILENT;
5424 }
5425 else
5426 this_action = BPSTAT_WHAT_SINGLE;
5427 break;
5428 case bp_watchpoint:
5429 case bp_hardware_watchpoint:
5430 case bp_read_watchpoint:
5431 case bp_access_watchpoint:
5432 if (bs->stop)
5433 {
5434 if (bs->print)
5435 this_action = BPSTAT_WHAT_STOP_NOISY;
5436 else
5437 this_action = BPSTAT_WHAT_STOP_SILENT;
5438 }
5439 else
5440 {
5441 /* There was a watchpoint, but we're not stopping.
5442 This requires no further action. */
5443 }
5444 break;
5445 case bp_longjmp:
5446 case bp_longjmp_call_dummy:
5447 case bp_exception:
5448 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5449 retval.is_longjmp = bptype != bp_exception;
5450 break;
5451 case bp_longjmp_resume:
5452 case bp_exception_resume:
5453 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5454 retval.is_longjmp = bptype == bp_longjmp_resume;
5455 break;
5456 case bp_step_resume:
5457 if (bs->stop)
5458 this_action = BPSTAT_WHAT_STEP_RESUME;
5459 else
5460 {
5461 /* It is for the wrong frame. */
5462 this_action = BPSTAT_WHAT_SINGLE;
5463 }
5464 break;
5465 case bp_hp_step_resume:
5466 if (bs->stop)
5467 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5468 else
5469 {
5470 /* It is for the wrong frame. */
5471 this_action = BPSTAT_WHAT_SINGLE;
5472 }
5473 break;
5474 case bp_watchpoint_scope:
5475 case bp_thread_event:
5476 case bp_overlay_event:
5477 case bp_longjmp_master:
5478 case bp_std_terminate_master:
5479 case bp_exception_master:
5480 this_action = BPSTAT_WHAT_SINGLE;
5481 break;
5482 case bp_catchpoint:
5483 if (bs->stop)
5484 {
5485 if (bs->print)
5486 this_action = BPSTAT_WHAT_STOP_NOISY;
5487 else
5488 this_action = BPSTAT_WHAT_STOP_SILENT;
5489 }
5490 else
5491 {
5492 /* There was a catchpoint, but we're not stopping.
5493 This requires no further action. */
5494 }
5495 break;
5496 case bp_jit_event:
5497 jit_event = 1;
5498 this_action = BPSTAT_WHAT_SINGLE;
5499 break;
5500 case bp_call_dummy:
5501 /* Make sure the action is stop (silent or noisy),
5502 so infrun.c pops the dummy frame. */
5503 retval.call_dummy = STOP_STACK_DUMMY;
5504 this_action = BPSTAT_WHAT_STOP_SILENT;
5505 break;
5506 case bp_std_terminate:
5507 /* Make sure the action is stop (silent or noisy),
5508 so infrun.c pops the dummy frame. */
5509 retval.call_dummy = STOP_STD_TERMINATE;
5510 this_action = BPSTAT_WHAT_STOP_SILENT;
5511 break;
5512 case bp_tracepoint:
5513 case bp_fast_tracepoint:
5514 case bp_static_tracepoint:
5515 /* Tracepoint hits should not be reported back to GDB, and
5516 if one got through somehow, it should have been filtered
5517 out already. */
5518 internal_error (__FILE__, __LINE__,
5519 _("bpstat_what: tracepoint encountered"));
5520 break;
5521 case bp_gnu_ifunc_resolver:
5522 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5523 this_action = BPSTAT_WHAT_SINGLE;
5524 break;
5525 case bp_gnu_ifunc_resolver_return:
5526 /* The breakpoint will be removed, execution will restart from the
5527 PC of the former breakpoint. */
5528 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5529 break;
5530
5531 case bp_dprintf:
5532 if (bs->stop)
5533 this_action = BPSTAT_WHAT_STOP_SILENT;
5534 else
5535 this_action = BPSTAT_WHAT_SINGLE;
5536 break;
5537
5538 default:
5539 internal_error (__FILE__, __LINE__,
5540 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5541 }
5542
5543 retval.main_action = max (retval.main_action, this_action);
5544 }
5545
5546 /* These operations may affect the bs->breakpoint_at state so they are
5547 delayed after MAIN_ACTION is decided above. */
5548
5549 if (jit_event)
5550 {
5551 if (debug_infrun)
5552 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5553
5554 handle_jit_event ();
5555 }
5556
5557 for (bs = bs_head; bs != NULL; bs = bs->next)
5558 {
5559 struct breakpoint *b = bs->breakpoint_at;
5560
5561 if (b == NULL)
5562 continue;
5563 switch (b->type)
5564 {
5565 case bp_gnu_ifunc_resolver:
5566 gnu_ifunc_resolver_stop (b);
5567 break;
5568 case bp_gnu_ifunc_resolver_return:
5569 gnu_ifunc_resolver_return_stop (b);
5570 break;
5571 }
5572 }
5573
5574 return retval;
5575 }
5576
5577 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5578 without hardware support). This isn't related to a specific bpstat,
5579 just to things like whether watchpoints are set. */
5580
5581 int
5582 bpstat_should_step (void)
5583 {
5584 struct breakpoint *b;
5585
5586 ALL_BREAKPOINTS (b)
5587 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5588 return 1;
5589 return 0;
5590 }
5591
5592 int
5593 bpstat_causes_stop (bpstat bs)
5594 {
5595 for (; bs != NULL; bs = bs->next)
5596 if (bs->stop)
5597 return 1;
5598
5599 return 0;
5600 }
5601
5602 \f
5603
5604 /* Compute a string of spaces suitable to indent the next line
5605 so it starts at the position corresponding to the table column
5606 named COL_NAME in the currently active table of UIOUT. */
5607
5608 static char *
5609 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5610 {
5611 static char wrap_indent[80];
5612 int i, total_width, width, align;
5613 char *text;
5614
5615 total_width = 0;
5616 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5617 {
5618 if (strcmp (text, col_name) == 0)
5619 {
5620 gdb_assert (total_width < sizeof wrap_indent);
5621 memset (wrap_indent, ' ', total_width);
5622 wrap_indent[total_width] = 0;
5623
5624 return wrap_indent;
5625 }
5626
5627 total_width += width + 1;
5628 }
5629
5630 return NULL;
5631 }
5632
5633 /* Determine if the locations of this breakpoint will have their conditions
5634 evaluated by the target, host or a mix of both. Returns the following:
5635
5636 "host": Host evals condition.
5637 "host or target": Host or Target evals condition.
5638 "target": Target evals condition.
5639 */
5640
5641 static const char *
5642 bp_condition_evaluator (struct breakpoint *b)
5643 {
5644 struct bp_location *bl;
5645 char host_evals = 0;
5646 char target_evals = 0;
5647
5648 if (!b)
5649 return NULL;
5650
5651 if (!is_breakpoint (b))
5652 return NULL;
5653
5654 if (gdb_evaluates_breakpoint_condition_p ()
5655 || !target_supports_evaluation_of_breakpoint_conditions ())
5656 return condition_evaluation_host;
5657
5658 for (bl = b->loc; bl; bl = bl->next)
5659 {
5660 if (bl->cond_bytecode)
5661 target_evals++;
5662 else
5663 host_evals++;
5664 }
5665
5666 if (host_evals && target_evals)
5667 return condition_evaluation_both;
5668 else if (target_evals)
5669 return condition_evaluation_target;
5670 else
5671 return condition_evaluation_host;
5672 }
5673
5674 /* Determine the breakpoint location's condition evaluator. This is
5675 similar to bp_condition_evaluator, but for locations. */
5676
5677 static const char *
5678 bp_location_condition_evaluator (struct bp_location *bl)
5679 {
5680 if (bl && !is_breakpoint (bl->owner))
5681 return NULL;
5682
5683 if (gdb_evaluates_breakpoint_condition_p ()
5684 || !target_supports_evaluation_of_breakpoint_conditions ())
5685 return condition_evaluation_host;
5686
5687 if (bl && bl->cond_bytecode)
5688 return condition_evaluation_target;
5689 else
5690 return condition_evaluation_host;
5691 }
5692
5693 /* Print the LOC location out of the list of B->LOC locations. */
5694
5695 static void
5696 print_breakpoint_location (struct breakpoint *b,
5697 struct bp_location *loc)
5698 {
5699 struct ui_out *uiout = current_uiout;
5700 struct cleanup *old_chain = save_current_program_space ();
5701
5702 if (loc != NULL && loc->shlib_disabled)
5703 loc = NULL;
5704
5705 if (loc != NULL)
5706 set_current_program_space (loc->pspace);
5707
5708 if (b->display_canonical)
5709 ui_out_field_string (uiout, "what", b->addr_string);
5710 else if (loc && loc->symtab)
5711 {
5712 struct symbol *sym
5713 = find_pc_sect_function (loc->address, loc->section);
5714 if (sym)
5715 {
5716 ui_out_text (uiout, "in ");
5717 ui_out_field_string (uiout, "func",
5718 SYMBOL_PRINT_NAME (sym));
5719 ui_out_text (uiout, " ");
5720 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5721 ui_out_text (uiout, "at ");
5722 }
5723 ui_out_field_string (uiout, "file",
5724 symtab_to_filename_for_display (loc->symtab));
5725 ui_out_text (uiout, ":");
5726
5727 if (ui_out_is_mi_like_p (uiout))
5728 ui_out_field_string (uiout, "fullname",
5729 symtab_to_fullname (loc->symtab));
5730
5731 ui_out_field_int (uiout, "line", loc->line_number);
5732 }
5733 else if (loc)
5734 {
5735 struct ui_file *stb = mem_fileopen ();
5736 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5737
5738 print_address_symbolic (loc->gdbarch, loc->address, stb,
5739 demangle, "");
5740 ui_out_field_stream (uiout, "at", stb);
5741
5742 do_cleanups (stb_chain);
5743 }
5744 else
5745 ui_out_field_string (uiout, "pending", b->addr_string);
5746
5747 if (loc && is_breakpoint (b)
5748 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5749 && bp_condition_evaluator (b) == condition_evaluation_both)
5750 {
5751 ui_out_text (uiout, " (");
5752 ui_out_field_string (uiout, "evaluated-by",
5753 bp_location_condition_evaluator (loc));
5754 ui_out_text (uiout, ")");
5755 }
5756
5757 do_cleanups (old_chain);
5758 }
5759
5760 static const char *
5761 bptype_string (enum bptype type)
5762 {
5763 struct ep_type_description
5764 {
5765 enum bptype type;
5766 char *description;
5767 };
5768 static struct ep_type_description bptypes[] =
5769 {
5770 {bp_none, "?deleted?"},
5771 {bp_breakpoint, "breakpoint"},
5772 {bp_hardware_breakpoint, "hw breakpoint"},
5773 {bp_until, "until"},
5774 {bp_finish, "finish"},
5775 {bp_watchpoint, "watchpoint"},
5776 {bp_hardware_watchpoint, "hw watchpoint"},
5777 {bp_read_watchpoint, "read watchpoint"},
5778 {bp_access_watchpoint, "acc watchpoint"},
5779 {bp_longjmp, "longjmp"},
5780 {bp_longjmp_resume, "longjmp resume"},
5781 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5782 {bp_exception, "exception"},
5783 {bp_exception_resume, "exception resume"},
5784 {bp_step_resume, "step resume"},
5785 {bp_hp_step_resume, "high-priority step resume"},
5786 {bp_watchpoint_scope, "watchpoint scope"},
5787 {bp_call_dummy, "call dummy"},
5788 {bp_std_terminate, "std::terminate"},
5789 {bp_shlib_event, "shlib events"},
5790 {bp_thread_event, "thread events"},
5791 {bp_overlay_event, "overlay events"},
5792 {bp_longjmp_master, "longjmp master"},
5793 {bp_std_terminate_master, "std::terminate master"},
5794 {bp_exception_master, "exception master"},
5795 {bp_catchpoint, "catchpoint"},
5796 {bp_tracepoint, "tracepoint"},
5797 {bp_fast_tracepoint, "fast tracepoint"},
5798 {bp_static_tracepoint, "static tracepoint"},
5799 {bp_dprintf, "dprintf"},
5800 {bp_jit_event, "jit events"},
5801 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5802 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5803 };
5804
5805 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5806 || ((int) type != bptypes[(int) type].type))
5807 internal_error (__FILE__, __LINE__,
5808 _("bptypes table does not describe type #%d."),
5809 (int) type);
5810
5811 return bptypes[(int) type].description;
5812 }
5813
5814 DEF_VEC_I(int);
5815
5816 /* For MI, output a field named 'thread-groups' with a list as the value.
5817 For CLI, prefix the list with the string 'inf'. */
5818
5819 static void
5820 output_thread_groups (struct ui_out *uiout,
5821 const char *field_name,
5822 VEC(int) *inf_num,
5823 int mi_only)
5824 {
5825 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
5826 field_name);
5827 int is_mi = ui_out_is_mi_like_p (uiout);
5828 int inf;
5829 int i;
5830
5831 /* For backward compatibility, don't display inferiors in CLI unless
5832 there are several. Always display them for MI. */
5833 if (!is_mi && mi_only)
5834 return;
5835
5836 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5837 {
5838 if (is_mi)
5839 {
5840 char mi_group[10];
5841
5842 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5843 ui_out_field_string (uiout, NULL, mi_group);
5844 }
5845 else
5846 {
5847 if (i == 0)
5848 ui_out_text (uiout, " inf ");
5849 else
5850 ui_out_text (uiout, ", ");
5851
5852 ui_out_text (uiout, plongest (inf));
5853 }
5854 }
5855
5856 do_cleanups (back_to);
5857 }
5858
5859 /* Print B to gdb_stdout. */
5860
5861 static void
5862 print_one_breakpoint_location (struct breakpoint *b,
5863 struct bp_location *loc,
5864 int loc_number,
5865 struct bp_location **last_loc,
5866 int allflag)
5867 {
5868 struct command_line *l;
5869 static char bpenables[] = "nynny";
5870
5871 struct ui_out *uiout = current_uiout;
5872 int header_of_multiple = 0;
5873 int part_of_multiple = (loc != NULL);
5874 struct value_print_options opts;
5875
5876 get_user_print_options (&opts);
5877
5878 gdb_assert (!loc || loc_number != 0);
5879 /* See comment in print_one_breakpoint concerning treatment of
5880 breakpoints with single disabled location. */
5881 if (loc == NULL
5882 && (b->loc != NULL
5883 && (b->loc->next != NULL || !b->loc->enabled)))
5884 header_of_multiple = 1;
5885 if (loc == NULL)
5886 loc = b->loc;
5887
5888 annotate_record ();
5889
5890 /* 1 */
5891 annotate_field (0);
5892 if (part_of_multiple)
5893 {
5894 char *formatted;
5895 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5896 ui_out_field_string (uiout, "number", formatted);
5897 xfree (formatted);
5898 }
5899 else
5900 {
5901 ui_out_field_int (uiout, "number", b->number);
5902 }
5903
5904 /* 2 */
5905 annotate_field (1);
5906 if (part_of_multiple)
5907 ui_out_field_skip (uiout, "type");
5908 else
5909 ui_out_field_string (uiout, "type", bptype_string (b->type));
5910
5911 /* 3 */
5912 annotate_field (2);
5913 if (part_of_multiple)
5914 ui_out_field_skip (uiout, "disp");
5915 else
5916 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5917
5918
5919 /* 4 */
5920 annotate_field (3);
5921 if (part_of_multiple)
5922 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5923 else
5924 ui_out_field_fmt (uiout, "enabled", "%c",
5925 bpenables[(int) b->enable_state]);
5926 ui_out_spaces (uiout, 2);
5927
5928
5929 /* 5 and 6 */
5930 if (b->ops != NULL && b->ops->print_one != NULL)
5931 {
5932 /* Although the print_one can possibly print all locations,
5933 calling it here is not likely to get any nice result. So,
5934 make sure there's just one location. */
5935 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5936 b->ops->print_one (b, last_loc);
5937 }
5938 else
5939 switch (b->type)
5940 {
5941 case bp_none:
5942 internal_error (__FILE__, __LINE__,
5943 _("print_one_breakpoint: bp_none encountered\n"));
5944 break;
5945
5946 case bp_watchpoint:
5947 case bp_hardware_watchpoint:
5948 case bp_read_watchpoint:
5949 case bp_access_watchpoint:
5950 {
5951 struct watchpoint *w = (struct watchpoint *) b;
5952
5953 /* Field 4, the address, is omitted (which makes the columns
5954 not line up too nicely with the headers, but the effect
5955 is relatively readable). */
5956 if (opts.addressprint)
5957 ui_out_field_skip (uiout, "addr");
5958 annotate_field (5);
5959 ui_out_field_string (uiout, "what", w->exp_string);
5960 }
5961 break;
5962
5963 case bp_breakpoint:
5964 case bp_hardware_breakpoint:
5965 case bp_until:
5966 case bp_finish:
5967 case bp_longjmp:
5968 case bp_longjmp_resume:
5969 case bp_longjmp_call_dummy:
5970 case bp_exception:
5971 case bp_exception_resume:
5972 case bp_step_resume:
5973 case bp_hp_step_resume:
5974 case bp_watchpoint_scope:
5975 case bp_call_dummy:
5976 case bp_std_terminate:
5977 case bp_shlib_event:
5978 case bp_thread_event:
5979 case bp_overlay_event:
5980 case bp_longjmp_master:
5981 case bp_std_terminate_master:
5982 case bp_exception_master:
5983 case bp_tracepoint:
5984 case bp_fast_tracepoint:
5985 case bp_static_tracepoint:
5986 case bp_dprintf:
5987 case bp_jit_event:
5988 case bp_gnu_ifunc_resolver:
5989 case bp_gnu_ifunc_resolver_return:
5990 if (opts.addressprint)
5991 {
5992 annotate_field (4);
5993 if (header_of_multiple)
5994 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5995 else if (b->loc == NULL || loc->shlib_disabled)
5996 ui_out_field_string (uiout, "addr", "<PENDING>");
5997 else
5998 ui_out_field_core_addr (uiout, "addr",
5999 loc->gdbarch, loc->address);
6000 }
6001 annotate_field (5);
6002 if (!header_of_multiple)
6003 print_breakpoint_location (b, loc);
6004 if (b->loc)
6005 *last_loc = b->loc;
6006 break;
6007 }
6008
6009
6010 if (loc != NULL && !header_of_multiple)
6011 {
6012 struct inferior *inf;
6013 VEC(int) *inf_num = NULL;
6014 int mi_only = 1;
6015
6016 ALL_INFERIORS (inf)
6017 {
6018 if (inf->pspace == loc->pspace)
6019 VEC_safe_push (int, inf_num, inf->num);
6020 }
6021
6022 /* For backward compatibility, don't display inferiors in CLI unless
6023 there are several. Always display for MI. */
6024 if (allflag
6025 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6026 && (number_of_program_spaces () > 1
6027 || number_of_inferiors () > 1)
6028 /* LOC is for existing B, it cannot be in
6029 moribund_locations and thus having NULL OWNER. */
6030 && loc->owner->type != bp_catchpoint))
6031 mi_only = 0;
6032 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6033 VEC_free (int, inf_num);
6034 }
6035
6036 if (!part_of_multiple)
6037 {
6038 if (b->thread != -1)
6039 {
6040 /* FIXME: This seems to be redundant and lost here; see the
6041 "stop only in" line a little further down. */
6042 ui_out_text (uiout, " thread ");
6043 ui_out_field_int (uiout, "thread", b->thread);
6044 }
6045 else if (b->task != 0)
6046 {
6047 ui_out_text (uiout, " task ");
6048 ui_out_field_int (uiout, "task", b->task);
6049 }
6050 }
6051
6052 ui_out_text (uiout, "\n");
6053
6054 if (!part_of_multiple)
6055 b->ops->print_one_detail (b, uiout);
6056
6057 if (part_of_multiple && frame_id_p (b->frame_id))
6058 {
6059 annotate_field (6);
6060 ui_out_text (uiout, "\tstop only in stack frame at ");
6061 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6062 the frame ID. */
6063 ui_out_field_core_addr (uiout, "frame",
6064 b->gdbarch, b->frame_id.stack_addr);
6065 ui_out_text (uiout, "\n");
6066 }
6067
6068 if (!part_of_multiple && b->cond_string)
6069 {
6070 annotate_field (7);
6071 if (is_tracepoint (b))
6072 ui_out_text (uiout, "\ttrace only if ");
6073 else
6074 ui_out_text (uiout, "\tstop only if ");
6075 ui_out_field_string (uiout, "cond", b->cond_string);
6076
6077 /* Print whether the target is doing the breakpoint's condition
6078 evaluation. If GDB is doing the evaluation, don't print anything. */
6079 if (is_breakpoint (b)
6080 && breakpoint_condition_evaluation_mode ()
6081 == condition_evaluation_target)
6082 {
6083 ui_out_text (uiout, " (");
6084 ui_out_field_string (uiout, "evaluated-by",
6085 bp_condition_evaluator (b));
6086 ui_out_text (uiout, " evals)");
6087 }
6088 ui_out_text (uiout, "\n");
6089 }
6090
6091 if (!part_of_multiple && b->thread != -1)
6092 {
6093 /* FIXME should make an annotation for this. */
6094 ui_out_text (uiout, "\tstop only in thread ");
6095 ui_out_field_int (uiout, "thread", b->thread);
6096 ui_out_text (uiout, "\n");
6097 }
6098
6099 if (!part_of_multiple)
6100 {
6101 if (b->hit_count)
6102 {
6103 /* FIXME should make an annotation for this. */
6104 if (is_catchpoint (b))
6105 ui_out_text (uiout, "\tcatchpoint");
6106 else if (is_tracepoint (b))
6107 ui_out_text (uiout, "\ttracepoint");
6108 else
6109 ui_out_text (uiout, "\tbreakpoint");
6110 ui_out_text (uiout, " already hit ");
6111 ui_out_field_int (uiout, "times", b->hit_count);
6112 if (b->hit_count == 1)
6113 ui_out_text (uiout, " time\n");
6114 else
6115 ui_out_text (uiout, " times\n");
6116 }
6117 else
6118 {
6119 /* Output the count also if it is zero, but only if this is mi. */
6120 if (ui_out_is_mi_like_p (uiout))
6121 ui_out_field_int (uiout, "times", b->hit_count);
6122 }
6123 }
6124
6125 if (!part_of_multiple && b->ignore_count)
6126 {
6127 annotate_field (8);
6128 ui_out_text (uiout, "\tignore next ");
6129 ui_out_field_int (uiout, "ignore", b->ignore_count);
6130 ui_out_text (uiout, " hits\n");
6131 }
6132
6133 /* Note that an enable count of 1 corresponds to "enable once"
6134 behavior, which is reported by the combination of enablement and
6135 disposition, so we don't need to mention it here. */
6136 if (!part_of_multiple && b->enable_count > 1)
6137 {
6138 annotate_field (8);
6139 ui_out_text (uiout, "\tdisable after ");
6140 /* Tweak the wording to clarify that ignore and enable counts
6141 are distinct, and have additive effect. */
6142 if (b->ignore_count)
6143 ui_out_text (uiout, "additional ");
6144 else
6145 ui_out_text (uiout, "next ");
6146 ui_out_field_int (uiout, "enable", b->enable_count);
6147 ui_out_text (uiout, " hits\n");
6148 }
6149
6150 if (!part_of_multiple && is_tracepoint (b))
6151 {
6152 struct tracepoint *tp = (struct tracepoint *) b;
6153
6154 if (tp->traceframe_usage)
6155 {
6156 ui_out_text (uiout, "\ttrace buffer usage ");
6157 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6158 ui_out_text (uiout, " bytes\n");
6159 }
6160 }
6161
6162 l = b->commands ? b->commands->commands : NULL;
6163 if (!part_of_multiple && l)
6164 {
6165 struct cleanup *script_chain;
6166
6167 annotate_field (9);
6168 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6169 print_command_lines (uiout, l, 4);
6170 do_cleanups (script_chain);
6171 }
6172
6173 if (is_tracepoint (b))
6174 {
6175 struct tracepoint *t = (struct tracepoint *) b;
6176
6177 if (!part_of_multiple && t->pass_count)
6178 {
6179 annotate_field (10);
6180 ui_out_text (uiout, "\tpass count ");
6181 ui_out_field_int (uiout, "pass", t->pass_count);
6182 ui_out_text (uiout, " \n");
6183 }
6184
6185 /* Don't display it when tracepoint or tracepoint location is
6186 pending. */
6187 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6188 {
6189 annotate_field (11);
6190
6191 if (ui_out_is_mi_like_p (uiout))
6192 ui_out_field_string (uiout, "installed",
6193 loc->inserted ? "y" : "n");
6194 else
6195 {
6196 if (loc->inserted)
6197 ui_out_text (uiout, "\t");
6198 else
6199 ui_out_text (uiout, "\tnot ");
6200 ui_out_text (uiout, "installed on target\n");
6201 }
6202 }
6203 }
6204
6205 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6206 {
6207 if (is_watchpoint (b))
6208 {
6209 struct watchpoint *w = (struct watchpoint *) b;
6210
6211 ui_out_field_string (uiout, "original-location", w->exp_string);
6212 }
6213 else if (b->addr_string)
6214 ui_out_field_string (uiout, "original-location", b->addr_string);
6215 }
6216 }
6217
6218 static void
6219 print_one_breakpoint (struct breakpoint *b,
6220 struct bp_location **last_loc,
6221 int allflag)
6222 {
6223 struct cleanup *bkpt_chain;
6224 struct ui_out *uiout = current_uiout;
6225
6226 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6227
6228 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6229 do_cleanups (bkpt_chain);
6230
6231 /* If this breakpoint has custom print function,
6232 it's already printed. Otherwise, print individual
6233 locations, if any. */
6234 if (b->ops == NULL || b->ops->print_one == NULL)
6235 {
6236 /* If breakpoint has a single location that is disabled, we
6237 print it as if it had several locations, since otherwise it's
6238 hard to represent "breakpoint enabled, location disabled"
6239 situation.
6240
6241 Note that while hardware watchpoints have several locations
6242 internally, that's not a property exposed to user. */
6243 if (b->loc
6244 && !is_hardware_watchpoint (b)
6245 && (b->loc->next || !b->loc->enabled))
6246 {
6247 struct bp_location *loc;
6248 int n = 1;
6249
6250 for (loc = b->loc; loc; loc = loc->next, ++n)
6251 {
6252 struct cleanup *inner2 =
6253 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6254 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6255 do_cleanups (inner2);
6256 }
6257 }
6258 }
6259 }
6260
6261 static int
6262 breakpoint_address_bits (struct breakpoint *b)
6263 {
6264 int print_address_bits = 0;
6265 struct bp_location *loc;
6266
6267 for (loc = b->loc; loc; loc = loc->next)
6268 {
6269 int addr_bit;
6270
6271 /* Software watchpoints that aren't watching memory don't have
6272 an address to print. */
6273 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6274 continue;
6275
6276 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6277 if (addr_bit > print_address_bits)
6278 print_address_bits = addr_bit;
6279 }
6280
6281 return print_address_bits;
6282 }
6283
6284 struct captured_breakpoint_query_args
6285 {
6286 int bnum;
6287 };
6288
6289 static int
6290 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6291 {
6292 struct captured_breakpoint_query_args *args = data;
6293 struct breakpoint *b;
6294 struct bp_location *dummy_loc = NULL;
6295
6296 ALL_BREAKPOINTS (b)
6297 {
6298 if (args->bnum == b->number)
6299 {
6300 print_one_breakpoint (b, &dummy_loc, 0);
6301 return GDB_RC_OK;
6302 }
6303 }
6304 return GDB_RC_NONE;
6305 }
6306
6307 enum gdb_rc
6308 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6309 char **error_message)
6310 {
6311 struct captured_breakpoint_query_args args;
6312
6313 args.bnum = bnum;
6314 /* For the moment we don't trust print_one_breakpoint() to not throw
6315 an error. */
6316 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6317 error_message, RETURN_MASK_ALL) < 0)
6318 return GDB_RC_FAIL;
6319 else
6320 return GDB_RC_OK;
6321 }
6322
6323 /* Return true if this breakpoint was set by the user, false if it is
6324 internal or momentary. */
6325
6326 int
6327 user_breakpoint_p (struct breakpoint *b)
6328 {
6329 return b->number > 0;
6330 }
6331
6332 /* Print information on user settable breakpoint (watchpoint, etc)
6333 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6334 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6335 FILTER is non-NULL, call it on each breakpoint and only include the
6336 ones for which it returns non-zero. Return the total number of
6337 breakpoints listed. */
6338
6339 static int
6340 breakpoint_1 (char *args, int allflag,
6341 int (*filter) (const struct breakpoint *))
6342 {
6343 struct breakpoint *b;
6344 struct bp_location *last_loc = NULL;
6345 int nr_printable_breakpoints;
6346 struct cleanup *bkpttbl_chain;
6347 struct value_print_options opts;
6348 int print_address_bits = 0;
6349 int print_type_col_width = 14;
6350 struct ui_out *uiout = current_uiout;
6351
6352 get_user_print_options (&opts);
6353
6354 /* Compute the number of rows in the table, as well as the size
6355 required for address fields. */
6356 nr_printable_breakpoints = 0;
6357 ALL_BREAKPOINTS (b)
6358 {
6359 /* If we have a filter, only list the breakpoints it accepts. */
6360 if (filter && !filter (b))
6361 continue;
6362
6363 /* If we have an "args" string, it is a list of breakpoints to
6364 accept. Skip the others. */
6365 if (args != NULL && *args != '\0')
6366 {
6367 if (allflag && parse_and_eval_long (args) != b->number)
6368 continue;
6369 if (!allflag && !number_is_in_list (args, b->number))
6370 continue;
6371 }
6372
6373 if (allflag || user_breakpoint_p (b))
6374 {
6375 int addr_bit, type_len;
6376
6377 addr_bit = breakpoint_address_bits (b);
6378 if (addr_bit > print_address_bits)
6379 print_address_bits = addr_bit;
6380
6381 type_len = strlen (bptype_string (b->type));
6382 if (type_len > print_type_col_width)
6383 print_type_col_width = type_len;
6384
6385 nr_printable_breakpoints++;
6386 }
6387 }
6388
6389 if (opts.addressprint)
6390 bkpttbl_chain
6391 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6392 nr_printable_breakpoints,
6393 "BreakpointTable");
6394 else
6395 bkpttbl_chain
6396 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6397 nr_printable_breakpoints,
6398 "BreakpointTable");
6399
6400 if (nr_printable_breakpoints > 0)
6401 annotate_breakpoints_headers ();
6402 if (nr_printable_breakpoints > 0)
6403 annotate_field (0);
6404 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6405 if (nr_printable_breakpoints > 0)
6406 annotate_field (1);
6407 ui_out_table_header (uiout, print_type_col_width, ui_left,
6408 "type", "Type"); /* 2 */
6409 if (nr_printable_breakpoints > 0)
6410 annotate_field (2);
6411 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6412 if (nr_printable_breakpoints > 0)
6413 annotate_field (3);
6414 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6415 if (opts.addressprint)
6416 {
6417 if (nr_printable_breakpoints > 0)
6418 annotate_field (4);
6419 if (print_address_bits <= 32)
6420 ui_out_table_header (uiout, 10, ui_left,
6421 "addr", "Address"); /* 5 */
6422 else
6423 ui_out_table_header (uiout, 18, ui_left,
6424 "addr", "Address"); /* 5 */
6425 }
6426 if (nr_printable_breakpoints > 0)
6427 annotate_field (5);
6428 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6429 ui_out_table_body (uiout);
6430 if (nr_printable_breakpoints > 0)
6431 annotate_breakpoints_table ();
6432
6433 ALL_BREAKPOINTS (b)
6434 {
6435 QUIT;
6436 /* If we have a filter, only list the breakpoints it accepts. */
6437 if (filter && !filter (b))
6438 continue;
6439
6440 /* If we have an "args" string, it is a list of breakpoints to
6441 accept. Skip the others. */
6442
6443 if (args != NULL && *args != '\0')
6444 {
6445 if (allflag) /* maintenance info breakpoint */
6446 {
6447 if (parse_and_eval_long (args) != b->number)
6448 continue;
6449 }
6450 else /* all others */
6451 {
6452 if (!number_is_in_list (args, b->number))
6453 continue;
6454 }
6455 }
6456 /* We only print out user settable breakpoints unless the
6457 allflag is set. */
6458 if (allflag || user_breakpoint_p (b))
6459 print_one_breakpoint (b, &last_loc, allflag);
6460 }
6461
6462 do_cleanups (bkpttbl_chain);
6463
6464 if (nr_printable_breakpoints == 0)
6465 {
6466 /* If there's a filter, let the caller decide how to report
6467 empty list. */
6468 if (!filter)
6469 {
6470 if (args == NULL || *args == '\0')
6471 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6472 else
6473 ui_out_message (uiout, 0,
6474 "No breakpoint or watchpoint matching '%s'.\n",
6475 args);
6476 }
6477 }
6478 else
6479 {
6480 if (last_loc && !server_command)
6481 set_next_address (last_loc->gdbarch, last_loc->address);
6482 }
6483
6484 /* FIXME? Should this be moved up so that it is only called when
6485 there have been breakpoints? */
6486 annotate_breakpoints_table_end ();
6487
6488 return nr_printable_breakpoints;
6489 }
6490
6491 /* Display the value of default-collect in a way that is generally
6492 compatible with the breakpoint list. */
6493
6494 static void
6495 default_collect_info (void)
6496 {
6497 struct ui_out *uiout = current_uiout;
6498
6499 /* If it has no value (which is frequently the case), say nothing; a
6500 message like "No default-collect." gets in user's face when it's
6501 not wanted. */
6502 if (!*default_collect)
6503 return;
6504
6505 /* The following phrase lines up nicely with per-tracepoint collect
6506 actions. */
6507 ui_out_text (uiout, "default collect ");
6508 ui_out_field_string (uiout, "default-collect", default_collect);
6509 ui_out_text (uiout, " \n");
6510 }
6511
6512 static void
6513 breakpoints_info (char *args, int from_tty)
6514 {
6515 breakpoint_1 (args, 0, NULL);
6516
6517 default_collect_info ();
6518 }
6519
6520 static void
6521 watchpoints_info (char *args, int from_tty)
6522 {
6523 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6524 struct ui_out *uiout = current_uiout;
6525
6526 if (num_printed == 0)
6527 {
6528 if (args == NULL || *args == '\0')
6529 ui_out_message (uiout, 0, "No watchpoints.\n");
6530 else
6531 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6532 }
6533 }
6534
6535 static void
6536 maintenance_info_breakpoints (char *args, int from_tty)
6537 {
6538 breakpoint_1 (args, 1, NULL);
6539
6540 default_collect_info ();
6541 }
6542
6543 static int
6544 breakpoint_has_pc (struct breakpoint *b,
6545 struct program_space *pspace,
6546 CORE_ADDR pc, struct obj_section *section)
6547 {
6548 struct bp_location *bl = b->loc;
6549
6550 for (; bl; bl = bl->next)
6551 {
6552 if (bl->pspace == pspace
6553 && bl->address == pc
6554 && (!overlay_debugging || bl->section == section))
6555 return 1;
6556 }
6557 return 0;
6558 }
6559
6560 /* Print a message describing any user-breakpoints set at PC. This
6561 concerns with logical breakpoints, so we match program spaces, not
6562 address spaces. */
6563
6564 static void
6565 describe_other_breakpoints (struct gdbarch *gdbarch,
6566 struct program_space *pspace, CORE_ADDR pc,
6567 struct obj_section *section, int thread)
6568 {
6569 int others = 0;
6570 struct breakpoint *b;
6571
6572 ALL_BREAKPOINTS (b)
6573 others += (user_breakpoint_p (b)
6574 && breakpoint_has_pc (b, pspace, pc, section));
6575 if (others > 0)
6576 {
6577 if (others == 1)
6578 printf_filtered (_("Note: breakpoint "));
6579 else /* if (others == ???) */
6580 printf_filtered (_("Note: breakpoints "));
6581 ALL_BREAKPOINTS (b)
6582 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6583 {
6584 others--;
6585 printf_filtered ("%d", b->number);
6586 if (b->thread == -1 && thread != -1)
6587 printf_filtered (" (all threads)");
6588 else if (b->thread != -1)
6589 printf_filtered (" (thread %d)", b->thread);
6590 printf_filtered ("%s%s ",
6591 ((b->enable_state == bp_disabled
6592 || b->enable_state == bp_call_disabled)
6593 ? " (disabled)"
6594 : b->enable_state == bp_permanent
6595 ? " (permanent)"
6596 : ""),
6597 (others > 1) ? ","
6598 : ((others == 1) ? " and" : ""));
6599 }
6600 printf_filtered (_("also set at pc "));
6601 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6602 printf_filtered (".\n");
6603 }
6604 }
6605 \f
6606
6607 /* Return true iff it is meaningful to use the address member of
6608 BPT. For some breakpoint types, the address member is irrelevant
6609 and it makes no sense to attempt to compare it to other addresses
6610 (or use it for any other purpose either).
6611
6612 More specifically, each of the following breakpoint types will
6613 always have a zero valued address and we don't want to mark
6614 breakpoints of any of these types to be a duplicate of an actual
6615 breakpoint at address zero:
6616
6617 bp_watchpoint
6618 bp_catchpoint
6619
6620 */
6621
6622 static int
6623 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6624 {
6625 enum bptype type = bpt->type;
6626
6627 return (type != bp_watchpoint && type != bp_catchpoint);
6628 }
6629
6630 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6631 true if LOC1 and LOC2 represent the same watchpoint location. */
6632
6633 static int
6634 watchpoint_locations_match (struct bp_location *loc1,
6635 struct bp_location *loc2)
6636 {
6637 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6638 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6639
6640 /* Both of them must exist. */
6641 gdb_assert (w1 != NULL);
6642 gdb_assert (w2 != NULL);
6643
6644 /* If the target can evaluate the condition expression in hardware,
6645 then we we need to insert both watchpoints even if they are at
6646 the same place. Otherwise the watchpoint will only trigger when
6647 the condition of whichever watchpoint was inserted evaluates to
6648 true, not giving a chance for GDB to check the condition of the
6649 other watchpoint. */
6650 if ((w1->cond_exp
6651 && target_can_accel_watchpoint_condition (loc1->address,
6652 loc1->length,
6653 loc1->watchpoint_type,
6654 w1->cond_exp))
6655 || (w2->cond_exp
6656 && target_can_accel_watchpoint_condition (loc2->address,
6657 loc2->length,
6658 loc2->watchpoint_type,
6659 w2->cond_exp)))
6660 return 0;
6661
6662 /* Note that this checks the owner's type, not the location's. In
6663 case the target does not support read watchpoints, but does
6664 support access watchpoints, we'll have bp_read_watchpoint
6665 watchpoints with hw_access locations. Those should be considered
6666 duplicates of hw_read locations. The hw_read locations will
6667 become hw_access locations later. */
6668 return (loc1->owner->type == loc2->owner->type
6669 && loc1->pspace->aspace == loc2->pspace->aspace
6670 && loc1->address == loc2->address
6671 && loc1->length == loc2->length);
6672 }
6673
6674 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6675 same breakpoint location. In most targets, this can only be true
6676 if ASPACE1 matches ASPACE2. On targets that have global
6677 breakpoints, the address space doesn't really matter. */
6678
6679 static int
6680 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6681 struct address_space *aspace2, CORE_ADDR addr2)
6682 {
6683 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6684 || aspace1 == aspace2)
6685 && addr1 == addr2);
6686 }
6687
6688 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6689 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6690 matches ASPACE2. On targets that have global breakpoints, the address
6691 space doesn't really matter. */
6692
6693 static int
6694 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6695 int len1, struct address_space *aspace2,
6696 CORE_ADDR addr2)
6697 {
6698 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6699 || aspace1 == aspace2)
6700 && addr2 >= addr1 && addr2 < addr1 + len1);
6701 }
6702
6703 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6704 a ranged breakpoint. In most targets, a match happens only if ASPACE
6705 matches the breakpoint's address space. On targets that have global
6706 breakpoints, the address space doesn't really matter. */
6707
6708 static int
6709 breakpoint_location_address_match (struct bp_location *bl,
6710 struct address_space *aspace,
6711 CORE_ADDR addr)
6712 {
6713 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6714 aspace, addr)
6715 || (bl->length
6716 && breakpoint_address_match_range (bl->pspace->aspace,
6717 bl->address, bl->length,
6718 aspace, addr)));
6719 }
6720
6721 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6722 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6723 true, otherwise returns false. */
6724
6725 static int
6726 tracepoint_locations_match (struct bp_location *loc1,
6727 struct bp_location *loc2)
6728 {
6729 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6730 /* Since tracepoint locations are never duplicated with others', tracepoint
6731 locations at the same address of different tracepoints are regarded as
6732 different locations. */
6733 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6734 else
6735 return 0;
6736 }
6737
6738 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6739 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6740 represent the same location. */
6741
6742 static int
6743 breakpoint_locations_match (struct bp_location *loc1,
6744 struct bp_location *loc2)
6745 {
6746 int hw_point1, hw_point2;
6747
6748 /* Both of them must not be in moribund_locations. */
6749 gdb_assert (loc1->owner != NULL);
6750 gdb_assert (loc2->owner != NULL);
6751
6752 hw_point1 = is_hardware_watchpoint (loc1->owner);
6753 hw_point2 = is_hardware_watchpoint (loc2->owner);
6754
6755 if (hw_point1 != hw_point2)
6756 return 0;
6757 else if (hw_point1)
6758 return watchpoint_locations_match (loc1, loc2);
6759 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6760 return tracepoint_locations_match (loc1, loc2);
6761 else
6762 /* We compare bp_location.length in order to cover ranged breakpoints. */
6763 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6764 loc2->pspace->aspace, loc2->address)
6765 && loc1->length == loc2->length);
6766 }
6767
6768 static void
6769 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6770 int bnum, int have_bnum)
6771 {
6772 /* The longest string possibly returned by hex_string_custom
6773 is 50 chars. These must be at least that big for safety. */
6774 char astr1[64];
6775 char astr2[64];
6776
6777 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6778 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6779 if (have_bnum)
6780 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6781 bnum, astr1, astr2);
6782 else
6783 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6784 }
6785
6786 /* Adjust a breakpoint's address to account for architectural
6787 constraints on breakpoint placement. Return the adjusted address.
6788 Note: Very few targets require this kind of adjustment. For most
6789 targets, this function is simply the identity function. */
6790
6791 static CORE_ADDR
6792 adjust_breakpoint_address (struct gdbarch *gdbarch,
6793 CORE_ADDR bpaddr, enum bptype bptype)
6794 {
6795 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6796 {
6797 /* Very few targets need any kind of breakpoint adjustment. */
6798 return bpaddr;
6799 }
6800 else if (bptype == bp_watchpoint
6801 || bptype == bp_hardware_watchpoint
6802 || bptype == bp_read_watchpoint
6803 || bptype == bp_access_watchpoint
6804 || bptype == bp_catchpoint)
6805 {
6806 /* Watchpoints and the various bp_catch_* eventpoints should not
6807 have their addresses modified. */
6808 return bpaddr;
6809 }
6810 else
6811 {
6812 CORE_ADDR adjusted_bpaddr;
6813
6814 /* Some targets have architectural constraints on the placement
6815 of breakpoint instructions. Obtain the adjusted address. */
6816 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6817
6818 /* An adjusted breakpoint address can significantly alter
6819 a user's expectations. Print a warning if an adjustment
6820 is required. */
6821 if (adjusted_bpaddr != bpaddr)
6822 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6823
6824 return adjusted_bpaddr;
6825 }
6826 }
6827
6828 void
6829 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6830 struct breakpoint *owner)
6831 {
6832 memset (loc, 0, sizeof (*loc));
6833
6834 gdb_assert (ops != NULL);
6835
6836 loc->ops = ops;
6837 loc->owner = owner;
6838 loc->cond = NULL;
6839 loc->cond_bytecode = NULL;
6840 loc->shlib_disabled = 0;
6841 loc->enabled = 1;
6842
6843 switch (owner->type)
6844 {
6845 case bp_breakpoint:
6846 case bp_until:
6847 case bp_finish:
6848 case bp_longjmp:
6849 case bp_longjmp_resume:
6850 case bp_longjmp_call_dummy:
6851 case bp_exception:
6852 case bp_exception_resume:
6853 case bp_step_resume:
6854 case bp_hp_step_resume:
6855 case bp_watchpoint_scope:
6856 case bp_call_dummy:
6857 case bp_std_terminate:
6858 case bp_shlib_event:
6859 case bp_thread_event:
6860 case bp_overlay_event:
6861 case bp_jit_event:
6862 case bp_longjmp_master:
6863 case bp_std_terminate_master:
6864 case bp_exception_master:
6865 case bp_gnu_ifunc_resolver:
6866 case bp_gnu_ifunc_resolver_return:
6867 case bp_dprintf:
6868 loc->loc_type = bp_loc_software_breakpoint;
6869 mark_breakpoint_location_modified (loc);
6870 break;
6871 case bp_hardware_breakpoint:
6872 loc->loc_type = bp_loc_hardware_breakpoint;
6873 mark_breakpoint_location_modified (loc);
6874 break;
6875 case bp_hardware_watchpoint:
6876 case bp_read_watchpoint:
6877 case bp_access_watchpoint:
6878 loc->loc_type = bp_loc_hardware_watchpoint;
6879 break;
6880 case bp_watchpoint:
6881 case bp_catchpoint:
6882 case bp_tracepoint:
6883 case bp_fast_tracepoint:
6884 case bp_static_tracepoint:
6885 loc->loc_type = bp_loc_other;
6886 break;
6887 default:
6888 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6889 }
6890
6891 loc->refc = 1;
6892 }
6893
6894 /* Allocate a struct bp_location. */
6895
6896 static struct bp_location *
6897 allocate_bp_location (struct breakpoint *bpt)
6898 {
6899 return bpt->ops->allocate_location (bpt);
6900 }
6901
6902 static void
6903 free_bp_location (struct bp_location *loc)
6904 {
6905 loc->ops->dtor (loc);
6906 xfree (loc);
6907 }
6908
6909 /* Increment reference count. */
6910
6911 static void
6912 incref_bp_location (struct bp_location *bl)
6913 {
6914 ++bl->refc;
6915 }
6916
6917 /* Decrement reference count. If the reference count reaches 0,
6918 destroy the bp_location. Sets *BLP to NULL. */
6919
6920 static void
6921 decref_bp_location (struct bp_location **blp)
6922 {
6923 gdb_assert ((*blp)->refc > 0);
6924
6925 if (--(*blp)->refc == 0)
6926 free_bp_location (*blp);
6927 *blp = NULL;
6928 }
6929
6930 /* Add breakpoint B at the end of the global breakpoint chain. */
6931
6932 static void
6933 add_to_breakpoint_chain (struct breakpoint *b)
6934 {
6935 struct breakpoint *b1;
6936
6937 /* Add this breakpoint to the end of the chain so that a list of
6938 breakpoints will come out in order of increasing numbers. */
6939
6940 b1 = breakpoint_chain;
6941 if (b1 == 0)
6942 breakpoint_chain = b;
6943 else
6944 {
6945 while (b1->next)
6946 b1 = b1->next;
6947 b1->next = b;
6948 }
6949 }
6950
6951 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6952
6953 static void
6954 init_raw_breakpoint_without_location (struct breakpoint *b,
6955 struct gdbarch *gdbarch,
6956 enum bptype bptype,
6957 const struct breakpoint_ops *ops)
6958 {
6959 memset (b, 0, sizeof (*b));
6960
6961 gdb_assert (ops != NULL);
6962
6963 b->ops = ops;
6964 b->type = bptype;
6965 b->gdbarch = gdbarch;
6966 b->language = current_language->la_language;
6967 b->input_radix = input_radix;
6968 b->thread = -1;
6969 b->enable_state = bp_enabled;
6970 b->next = 0;
6971 b->silent = 0;
6972 b->ignore_count = 0;
6973 b->commands = NULL;
6974 b->frame_id = null_frame_id;
6975 b->condition_not_parsed = 0;
6976 b->py_bp_object = NULL;
6977 b->related_breakpoint = b;
6978 }
6979
6980 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6981 that has type BPTYPE and has no locations as yet. */
6982
6983 static struct breakpoint *
6984 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6985 enum bptype bptype,
6986 const struct breakpoint_ops *ops)
6987 {
6988 struct breakpoint *b = XNEW (struct breakpoint);
6989
6990 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6991 add_to_breakpoint_chain (b);
6992 return b;
6993 }
6994
6995 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6996 resolutions should be made as the user specified the location explicitly
6997 enough. */
6998
6999 static void
7000 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7001 {
7002 gdb_assert (loc->owner != NULL);
7003
7004 if (loc->owner->type == bp_breakpoint
7005 || loc->owner->type == bp_hardware_breakpoint
7006 || is_tracepoint (loc->owner))
7007 {
7008 int is_gnu_ifunc;
7009 const char *function_name;
7010 CORE_ADDR func_addr;
7011
7012 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7013 &func_addr, NULL, &is_gnu_ifunc);
7014
7015 if (is_gnu_ifunc && !explicit_loc)
7016 {
7017 struct breakpoint *b = loc->owner;
7018
7019 gdb_assert (loc->pspace == current_program_space);
7020 if (gnu_ifunc_resolve_name (function_name,
7021 &loc->requested_address))
7022 {
7023 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7024 loc->address = adjust_breakpoint_address (loc->gdbarch,
7025 loc->requested_address,
7026 b->type);
7027 }
7028 else if (b->type == bp_breakpoint && b->loc == loc
7029 && loc->next == NULL && b->related_breakpoint == b)
7030 {
7031 /* Create only the whole new breakpoint of this type but do not
7032 mess more complicated breakpoints with multiple locations. */
7033 b->type = bp_gnu_ifunc_resolver;
7034 /* Remember the resolver's address for use by the return
7035 breakpoint. */
7036 loc->related_address = func_addr;
7037 }
7038 }
7039
7040 if (function_name)
7041 loc->function_name = xstrdup (function_name);
7042 }
7043 }
7044
7045 /* Attempt to determine architecture of location identified by SAL. */
7046 struct gdbarch *
7047 get_sal_arch (struct symtab_and_line sal)
7048 {
7049 if (sal.section)
7050 return get_objfile_arch (sal.section->objfile);
7051 if (sal.symtab)
7052 return get_objfile_arch (sal.symtab->objfile);
7053
7054 return NULL;
7055 }
7056
7057 /* Low level routine for partially initializing a breakpoint of type
7058 BPTYPE. The newly created breakpoint's address, section, source
7059 file name, and line number are provided by SAL.
7060
7061 It is expected that the caller will complete the initialization of
7062 the newly created breakpoint struct as well as output any status
7063 information regarding the creation of a new breakpoint. */
7064
7065 static void
7066 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7067 struct symtab_and_line sal, enum bptype bptype,
7068 const struct breakpoint_ops *ops)
7069 {
7070 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7071
7072 add_location_to_breakpoint (b, &sal);
7073
7074 if (bptype != bp_catchpoint)
7075 gdb_assert (sal.pspace != NULL);
7076
7077 /* Store the program space that was used to set the breakpoint,
7078 except for ordinary breakpoints, which are independent of the
7079 program space. */
7080 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7081 b->pspace = sal.pspace;
7082 }
7083
7084 /* set_raw_breakpoint is a low level routine for allocating and
7085 partially initializing a breakpoint of type BPTYPE. The newly
7086 created breakpoint's address, section, source file name, and line
7087 number are provided by SAL. The newly created and partially
7088 initialized breakpoint is added to the breakpoint chain and
7089 is also returned as the value of this function.
7090
7091 It is expected that the caller will complete the initialization of
7092 the newly created breakpoint struct as well as output any status
7093 information regarding the creation of a new breakpoint. In
7094 particular, set_raw_breakpoint does NOT set the breakpoint
7095 number! Care should be taken to not allow an error to occur
7096 prior to completing the initialization of the breakpoint. If this
7097 should happen, a bogus breakpoint will be left on the chain. */
7098
7099 struct breakpoint *
7100 set_raw_breakpoint (struct gdbarch *gdbarch,
7101 struct symtab_and_line sal, enum bptype bptype,
7102 const struct breakpoint_ops *ops)
7103 {
7104 struct breakpoint *b = XNEW (struct breakpoint);
7105
7106 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7107 add_to_breakpoint_chain (b);
7108 return b;
7109 }
7110
7111
7112 /* Note that the breakpoint object B describes a permanent breakpoint
7113 instruction, hard-wired into the inferior's code. */
7114 void
7115 make_breakpoint_permanent (struct breakpoint *b)
7116 {
7117 struct bp_location *bl;
7118
7119 b->enable_state = bp_permanent;
7120
7121 /* By definition, permanent breakpoints are already present in the
7122 code. Mark all locations as inserted. For now,
7123 make_breakpoint_permanent is called in just one place, so it's
7124 hard to say if it's reasonable to have permanent breakpoint with
7125 multiple locations or not, but it's easy to implement. */
7126 for (bl = b->loc; bl; bl = bl->next)
7127 bl->inserted = 1;
7128 }
7129
7130 /* Call this routine when stepping and nexting to enable a breakpoint
7131 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7132 initiated the operation. */
7133
7134 void
7135 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7136 {
7137 struct breakpoint *b, *b_tmp;
7138 int thread = tp->num;
7139
7140 /* To avoid having to rescan all objfile symbols at every step,
7141 we maintain a list of continually-inserted but always disabled
7142 longjmp "master" breakpoints. Here, we simply create momentary
7143 clones of those and enable them for the requested thread. */
7144 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7145 if (b->pspace == current_program_space
7146 && (b->type == bp_longjmp_master
7147 || b->type == bp_exception_master))
7148 {
7149 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7150 struct breakpoint *clone;
7151
7152 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7153 after their removal. */
7154 clone = momentary_breakpoint_from_master (b, type,
7155 &longjmp_breakpoint_ops);
7156 clone->thread = thread;
7157 }
7158
7159 tp->initiating_frame = frame;
7160 }
7161
7162 /* Delete all longjmp breakpoints from THREAD. */
7163 void
7164 delete_longjmp_breakpoint (int thread)
7165 {
7166 struct breakpoint *b, *b_tmp;
7167
7168 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7169 if (b->type == bp_longjmp || b->type == bp_exception)
7170 {
7171 if (b->thread == thread)
7172 delete_breakpoint (b);
7173 }
7174 }
7175
7176 void
7177 delete_longjmp_breakpoint_at_next_stop (int thread)
7178 {
7179 struct breakpoint *b, *b_tmp;
7180
7181 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7182 if (b->type == bp_longjmp || b->type == bp_exception)
7183 {
7184 if (b->thread == thread)
7185 b->disposition = disp_del_at_next_stop;
7186 }
7187 }
7188
7189 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7190 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7191 pointer to any of them. Return NULL if this system cannot place longjmp
7192 breakpoints. */
7193
7194 struct breakpoint *
7195 set_longjmp_breakpoint_for_call_dummy (void)
7196 {
7197 struct breakpoint *b, *retval = NULL;
7198
7199 ALL_BREAKPOINTS (b)
7200 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7201 {
7202 struct breakpoint *new_b;
7203
7204 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7205 &momentary_breakpoint_ops);
7206 new_b->thread = pid_to_thread_id (inferior_ptid);
7207
7208 /* Link NEW_B into the chain of RETVAL breakpoints. */
7209
7210 gdb_assert (new_b->related_breakpoint == new_b);
7211 if (retval == NULL)
7212 retval = new_b;
7213 new_b->related_breakpoint = retval;
7214 while (retval->related_breakpoint != new_b->related_breakpoint)
7215 retval = retval->related_breakpoint;
7216 retval->related_breakpoint = new_b;
7217 }
7218
7219 return retval;
7220 }
7221
7222 /* Verify all existing dummy frames and their associated breakpoints for
7223 THREAD. Remove those which can no longer be found in the current frame
7224 stack.
7225
7226 You should call this function only at places where it is safe to currently
7227 unwind the whole stack. Failed stack unwind would discard live dummy
7228 frames. */
7229
7230 void
7231 check_longjmp_breakpoint_for_call_dummy (int thread)
7232 {
7233 struct breakpoint *b, *b_tmp;
7234
7235 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7236 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7237 {
7238 struct breakpoint *dummy_b = b->related_breakpoint;
7239
7240 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7241 dummy_b = dummy_b->related_breakpoint;
7242 if (dummy_b->type != bp_call_dummy
7243 || frame_find_by_id (dummy_b->frame_id) != NULL)
7244 continue;
7245
7246 dummy_frame_discard (dummy_b->frame_id);
7247
7248 while (b->related_breakpoint != b)
7249 {
7250 if (b_tmp == b->related_breakpoint)
7251 b_tmp = b->related_breakpoint->next;
7252 delete_breakpoint (b->related_breakpoint);
7253 }
7254 delete_breakpoint (b);
7255 }
7256 }
7257
7258 void
7259 enable_overlay_breakpoints (void)
7260 {
7261 struct breakpoint *b;
7262
7263 ALL_BREAKPOINTS (b)
7264 if (b->type == bp_overlay_event)
7265 {
7266 b->enable_state = bp_enabled;
7267 update_global_location_list (1);
7268 overlay_events_enabled = 1;
7269 }
7270 }
7271
7272 void
7273 disable_overlay_breakpoints (void)
7274 {
7275 struct breakpoint *b;
7276
7277 ALL_BREAKPOINTS (b)
7278 if (b->type == bp_overlay_event)
7279 {
7280 b->enable_state = bp_disabled;
7281 update_global_location_list (0);
7282 overlay_events_enabled = 0;
7283 }
7284 }
7285
7286 /* Set an active std::terminate breakpoint for each std::terminate
7287 master breakpoint. */
7288 void
7289 set_std_terminate_breakpoint (void)
7290 {
7291 struct breakpoint *b, *b_tmp;
7292
7293 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7294 if (b->pspace == current_program_space
7295 && b->type == bp_std_terminate_master)
7296 {
7297 momentary_breakpoint_from_master (b, bp_std_terminate,
7298 &momentary_breakpoint_ops);
7299 }
7300 }
7301
7302 /* Delete all the std::terminate breakpoints. */
7303 void
7304 delete_std_terminate_breakpoint (void)
7305 {
7306 struct breakpoint *b, *b_tmp;
7307
7308 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7309 if (b->type == bp_std_terminate)
7310 delete_breakpoint (b);
7311 }
7312
7313 struct breakpoint *
7314 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7315 {
7316 struct breakpoint *b;
7317
7318 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7319 &internal_breakpoint_ops);
7320
7321 b->enable_state = bp_enabled;
7322 /* addr_string has to be used or breakpoint_re_set will delete me. */
7323 b->addr_string
7324 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7325
7326 update_global_location_list_nothrow (1);
7327
7328 return b;
7329 }
7330
7331 void
7332 remove_thread_event_breakpoints (void)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->type == bp_thread_event
7338 && b->loc->pspace == current_program_space)
7339 delete_breakpoint (b);
7340 }
7341
7342 struct lang_and_radix
7343 {
7344 enum language lang;
7345 int radix;
7346 };
7347
7348 /* Create a breakpoint for JIT code registration and unregistration. */
7349
7350 struct breakpoint *
7351 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7352 {
7353 struct breakpoint *b;
7354
7355 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7356 &internal_breakpoint_ops);
7357 update_global_location_list_nothrow (1);
7358 return b;
7359 }
7360
7361 /* Remove JIT code registration and unregistration breakpoint(s). */
7362
7363 void
7364 remove_jit_event_breakpoints (void)
7365 {
7366 struct breakpoint *b, *b_tmp;
7367
7368 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7369 if (b->type == bp_jit_event
7370 && b->loc->pspace == current_program_space)
7371 delete_breakpoint (b);
7372 }
7373
7374 void
7375 remove_solib_event_breakpoints (void)
7376 {
7377 struct breakpoint *b, *b_tmp;
7378
7379 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7380 if (b->type == bp_shlib_event
7381 && b->loc->pspace == current_program_space)
7382 delete_breakpoint (b);
7383 }
7384
7385 struct breakpoint *
7386 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7387 {
7388 struct breakpoint *b;
7389
7390 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7391 &internal_breakpoint_ops);
7392 update_global_location_list_nothrow (1);
7393 return b;
7394 }
7395
7396 /* Disable any breakpoints that are on code in shared libraries. Only
7397 apply to enabled breakpoints, disabled ones can just stay disabled. */
7398
7399 void
7400 disable_breakpoints_in_shlibs (void)
7401 {
7402 struct bp_location *loc, **locp_tmp;
7403
7404 ALL_BP_LOCATIONS (loc, locp_tmp)
7405 {
7406 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7407 struct breakpoint *b = loc->owner;
7408
7409 /* We apply the check to all breakpoints, including disabled for
7410 those with loc->duplicate set. This is so that when breakpoint
7411 becomes enabled, or the duplicate is removed, gdb will try to
7412 insert all breakpoints. If we don't set shlib_disabled here,
7413 we'll try to insert those breakpoints and fail. */
7414 if (((b->type == bp_breakpoint)
7415 || (b->type == bp_jit_event)
7416 || (b->type == bp_hardware_breakpoint)
7417 || (is_tracepoint (b)))
7418 && loc->pspace == current_program_space
7419 && !loc->shlib_disabled
7420 #ifdef PC_SOLIB
7421 && PC_SOLIB (loc->address)
7422 #else
7423 && solib_name_from_address (loc->pspace, loc->address)
7424 #endif
7425 )
7426 {
7427 loc->shlib_disabled = 1;
7428 }
7429 }
7430 }
7431
7432 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7433 library. Only apply to enabled breakpoints, disabled ones can just stay
7434 disabled. */
7435
7436 static void
7437 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7438 {
7439 struct bp_location *loc, **locp_tmp;
7440 int disabled_shlib_breaks = 0;
7441
7442 /* SunOS a.out shared libraries are always mapped, so do not
7443 disable breakpoints; they will only be reported as unloaded
7444 through clear_solib when GDB discards its shared library
7445 list. See clear_solib for more information. */
7446 if (exec_bfd != NULL
7447 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7448 return;
7449
7450 ALL_BP_LOCATIONS (loc, locp_tmp)
7451 {
7452 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7453 struct breakpoint *b = loc->owner;
7454
7455 if (solib->pspace == loc->pspace
7456 && !loc->shlib_disabled
7457 && (((b->type == bp_breakpoint
7458 || b->type == bp_jit_event
7459 || b->type == bp_hardware_breakpoint)
7460 && (loc->loc_type == bp_loc_hardware_breakpoint
7461 || loc->loc_type == bp_loc_software_breakpoint))
7462 || is_tracepoint (b))
7463 && solib_contains_address_p (solib, loc->address))
7464 {
7465 loc->shlib_disabled = 1;
7466 /* At this point, we cannot rely on remove_breakpoint
7467 succeeding so we must mark the breakpoint as not inserted
7468 to prevent future errors occurring in remove_breakpoints. */
7469 loc->inserted = 0;
7470
7471 /* This may cause duplicate notifications for the same breakpoint. */
7472 observer_notify_breakpoint_modified (b);
7473
7474 if (!disabled_shlib_breaks)
7475 {
7476 target_terminal_ours_for_output ();
7477 warning (_("Temporarily disabling breakpoints "
7478 "for unloaded shared library \"%s\""),
7479 solib->so_name);
7480 }
7481 disabled_shlib_breaks = 1;
7482 }
7483 }
7484 }
7485
7486 /* FORK & VFORK catchpoints. */
7487
7488 /* An instance of this type is used to represent a fork or vfork
7489 catchpoint. It includes a "struct breakpoint" as a kind of base
7490 class; users downcast to "struct breakpoint *" when needed. A
7491 breakpoint is really of this type iff its ops pointer points to
7492 CATCH_FORK_BREAKPOINT_OPS. */
7493
7494 struct fork_catchpoint
7495 {
7496 /* The base class. */
7497 struct breakpoint base;
7498
7499 /* Process id of a child process whose forking triggered this
7500 catchpoint. This field is only valid immediately after this
7501 catchpoint has triggered. */
7502 ptid_t forked_inferior_pid;
7503 };
7504
7505 /* Implement the "insert" breakpoint_ops method for fork
7506 catchpoints. */
7507
7508 static int
7509 insert_catch_fork (struct bp_location *bl)
7510 {
7511 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7512 }
7513
7514 /* Implement the "remove" breakpoint_ops method for fork
7515 catchpoints. */
7516
7517 static int
7518 remove_catch_fork (struct bp_location *bl)
7519 {
7520 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7521 }
7522
7523 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7524 catchpoints. */
7525
7526 static int
7527 breakpoint_hit_catch_fork (const struct bp_location *bl,
7528 struct address_space *aspace, CORE_ADDR bp_addr,
7529 const struct target_waitstatus *ws)
7530 {
7531 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7532
7533 if (ws->kind != TARGET_WAITKIND_FORKED)
7534 return 0;
7535
7536 c->forked_inferior_pid = ws->value.related_pid;
7537 return 1;
7538 }
7539
7540 /* Implement the "print_it" breakpoint_ops method for fork
7541 catchpoints. */
7542
7543 static enum print_stop_action
7544 print_it_catch_fork (bpstat bs)
7545 {
7546 struct ui_out *uiout = current_uiout;
7547 struct breakpoint *b = bs->breakpoint_at;
7548 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7549
7550 annotate_catchpoint (b->number);
7551 if (b->disposition == disp_del)
7552 ui_out_text (uiout, "\nTemporary catchpoint ");
7553 else
7554 ui_out_text (uiout, "\nCatchpoint ");
7555 if (ui_out_is_mi_like_p (uiout))
7556 {
7557 ui_out_field_string (uiout, "reason",
7558 async_reason_lookup (EXEC_ASYNC_FORK));
7559 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7560 }
7561 ui_out_field_int (uiout, "bkptno", b->number);
7562 ui_out_text (uiout, " (forked process ");
7563 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7564 ui_out_text (uiout, "), ");
7565 return PRINT_SRC_AND_LOC;
7566 }
7567
7568 /* Implement the "print_one" breakpoint_ops method for fork
7569 catchpoints. */
7570
7571 static void
7572 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7573 {
7574 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7575 struct value_print_options opts;
7576 struct ui_out *uiout = current_uiout;
7577
7578 get_user_print_options (&opts);
7579
7580 /* Field 4, the address, is omitted (which makes the columns not
7581 line up too nicely with the headers, but the effect is relatively
7582 readable). */
7583 if (opts.addressprint)
7584 ui_out_field_skip (uiout, "addr");
7585 annotate_field (5);
7586 ui_out_text (uiout, "fork");
7587 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7588 {
7589 ui_out_text (uiout, ", process ");
7590 ui_out_field_int (uiout, "what",
7591 ptid_get_pid (c->forked_inferior_pid));
7592 ui_out_spaces (uiout, 1);
7593 }
7594
7595 if (ui_out_is_mi_like_p (uiout))
7596 ui_out_field_string (uiout, "catch-type", "fork");
7597 }
7598
7599 /* Implement the "print_mention" breakpoint_ops method for fork
7600 catchpoints. */
7601
7602 static void
7603 print_mention_catch_fork (struct breakpoint *b)
7604 {
7605 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7606 }
7607
7608 /* Implement the "print_recreate" breakpoint_ops method for fork
7609 catchpoints. */
7610
7611 static void
7612 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7613 {
7614 fprintf_unfiltered (fp, "catch fork");
7615 print_recreate_thread (b, fp);
7616 }
7617
7618 /* The breakpoint_ops structure to be used in fork catchpoints. */
7619
7620 static struct breakpoint_ops catch_fork_breakpoint_ops;
7621
7622 /* Implement the "insert" breakpoint_ops method for vfork
7623 catchpoints. */
7624
7625 static int
7626 insert_catch_vfork (struct bp_location *bl)
7627 {
7628 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7629 }
7630
7631 /* Implement the "remove" breakpoint_ops method for vfork
7632 catchpoints. */
7633
7634 static int
7635 remove_catch_vfork (struct bp_location *bl)
7636 {
7637 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7638 }
7639
7640 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7641 catchpoints. */
7642
7643 static int
7644 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7645 struct address_space *aspace, CORE_ADDR bp_addr,
7646 const struct target_waitstatus *ws)
7647 {
7648 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7649
7650 if (ws->kind != TARGET_WAITKIND_VFORKED)
7651 return 0;
7652
7653 c->forked_inferior_pid = ws->value.related_pid;
7654 return 1;
7655 }
7656
7657 /* Implement the "print_it" breakpoint_ops method for vfork
7658 catchpoints. */
7659
7660 static enum print_stop_action
7661 print_it_catch_vfork (bpstat bs)
7662 {
7663 struct ui_out *uiout = current_uiout;
7664 struct breakpoint *b = bs->breakpoint_at;
7665 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7666
7667 annotate_catchpoint (b->number);
7668 if (b->disposition == disp_del)
7669 ui_out_text (uiout, "\nTemporary catchpoint ");
7670 else
7671 ui_out_text (uiout, "\nCatchpoint ");
7672 if (ui_out_is_mi_like_p (uiout))
7673 {
7674 ui_out_field_string (uiout, "reason",
7675 async_reason_lookup (EXEC_ASYNC_VFORK));
7676 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7677 }
7678 ui_out_field_int (uiout, "bkptno", b->number);
7679 ui_out_text (uiout, " (vforked process ");
7680 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7681 ui_out_text (uiout, "), ");
7682 return PRINT_SRC_AND_LOC;
7683 }
7684
7685 /* Implement the "print_one" breakpoint_ops method for vfork
7686 catchpoints. */
7687
7688 static void
7689 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7690 {
7691 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7692 struct value_print_options opts;
7693 struct ui_out *uiout = current_uiout;
7694
7695 get_user_print_options (&opts);
7696 /* Field 4, the address, is omitted (which makes the columns not
7697 line up too nicely with the headers, but the effect is relatively
7698 readable). */
7699 if (opts.addressprint)
7700 ui_out_field_skip (uiout, "addr");
7701 annotate_field (5);
7702 ui_out_text (uiout, "vfork");
7703 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7704 {
7705 ui_out_text (uiout, ", process ");
7706 ui_out_field_int (uiout, "what",
7707 ptid_get_pid (c->forked_inferior_pid));
7708 ui_out_spaces (uiout, 1);
7709 }
7710
7711 if (ui_out_is_mi_like_p (uiout))
7712 ui_out_field_string (uiout, "catch-type", "vfork");
7713 }
7714
7715 /* Implement the "print_mention" breakpoint_ops method for vfork
7716 catchpoints. */
7717
7718 static void
7719 print_mention_catch_vfork (struct breakpoint *b)
7720 {
7721 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7722 }
7723
7724 /* Implement the "print_recreate" breakpoint_ops method for vfork
7725 catchpoints. */
7726
7727 static void
7728 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7729 {
7730 fprintf_unfiltered (fp, "catch vfork");
7731 print_recreate_thread (b, fp);
7732 }
7733
7734 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7735
7736 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7737
7738 /* An instance of this type is used to represent an solib catchpoint.
7739 It includes a "struct breakpoint" as a kind of base class; users
7740 downcast to "struct breakpoint *" when needed. A breakpoint is
7741 really of this type iff its ops pointer points to
7742 CATCH_SOLIB_BREAKPOINT_OPS. */
7743
7744 struct solib_catchpoint
7745 {
7746 /* The base class. */
7747 struct breakpoint base;
7748
7749 /* True for "catch load", false for "catch unload". */
7750 unsigned char is_load;
7751
7752 /* Regular expression to match, if any. COMPILED is only valid when
7753 REGEX is non-NULL. */
7754 char *regex;
7755 regex_t compiled;
7756 };
7757
7758 static void
7759 dtor_catch_solib (struct breakpoint *b)
7760 {
7761 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7762
7763 if (self->regex)
7764 regfree (&self->compiled);
7765 xfree (self->regex);
7766
7767 base_breakpoint_ops.dtor (b);
7768 }
7769
7770 static int
7771 insert_catch_solib (struct bp_location *ignore)
7772 {
7773 return 0;
7774 }
7775
7776 static int
7777 remove_catch_solib (struct bp_location *ignore)
7778 {
7779 return 0;
7780 }
7781
7782 static int
7783 breakpoint_hit_catch_solib (const struct bp_location *bl,
7784 struct address_space *aspace,
7785 CORE_ADDR bp_addr,
7786 const struct target_waitstatus *ws)
7787 {
7788 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7789 struct breakpoint *other;
7790
7791 if (ws->kind == TARGET_WAITKIND_LOADED)
7792 return 1;
7793
7794 ALL_BREAKPOINTS (other)
7795 {
7796 struct bp_location *other_bl;
7797
7798 if (other == bl->owner)
7799 continue;
7800
7801 if (other->type != bp_shlib_event)
7802 continue;
7803
7804 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7805 continue;
7806
7807 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7808 {
7809 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7810 return 1;
7811 }
7812 }
7813
7814 return 0;
7815 }
7816
7817 static void
7818 check_status_catch_solib (struct bpstats *bs)
7819 {
7820 struct solib_catchpoint *self
7821 = (struct solib_catchpoint *) bs->breakpoint_at;
7822 int ix;
7823
7824 if (self->is_load)
7825 {
7826 struct so_list *iter;
7827
7828 for (ix = 0;
7829 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7830 ix, iter);
7831 ++ix)
7832 {
7833 if (!self->regex
7834 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7835 return;
7836 }
7837 }
7838 else
7839 {
7840 char *iter;
7841
7842 for (ix = 0;
7843 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7844 ix, iter);
7845 ++ix)
7846 {
7847 if (!self->regex
7848 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7849 return;
7850 }
7851 }
7852
7853 bs->stop = 0;
7854 bs->print_it = print_it_noop;
7855 }
7856
7857 static enum print_stop_action
7858 print_it_catch_solib (bpstat bs)
7859 {
7860 struct breakpoint *b = bs->breakpoint_at;
7861 struct ui_out *uiout = current_uiout;
7862
7863 annotate_catchpoint (b->number);
7864 if (b->disposition == disp_del)
7865 ui_out_text (uiout, "\nTemporary catchpoint ");
7866 else
7867 ui_out_text (uiout, "\nCatchpoint ");
7868 ui_out_field_int (uiout, "bkptno", b->number);
7869 ui_out_text (uiout, "\n");
7870 if (ui_out_is_mi_like_p (uiout))
7871 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7872 print_solib_event (1);
7873 return PRINT_SRC_AND_LOC;
7874 }
7875
7876 static void
7877 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7878 {
7879 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7880 struct value_print_options opts;
7881 struct ui_out *uiout = current_uiout;
7882 char *msg;
7883
7884 get_user_print_options (&opts);
7885 /* Field 4, the address, is omitted (which makes the columns not
7886 line up too nicely with the headers, but the effect is relatively
7887 readable). */
7888 if (opts.addressprint)
7889 {
7890 annotate_field (4);
7891 ui_out_field_skip (uiout, "addr");
7892 }
7893
7894 annotate_field (5);
7895 if (self->is_load)
7896 {
7897 if (self->regex)
7898 msg = xstrprintf (_("load of library matching %s"), self->regex);
7899 else
7900 msg = xstrdup (_("load of library"));
7901 }
7902 else
7903 {
7904 if (self->regex)
7905 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7906 else
7907 msg = xstrdup (_("unload of library"));
7908 }
7909 ui_out_field_string (uiout, "what", msg);
7910 xfree (msg);
7911
7912 if (ui_out_is_mi_like_p (uiout))
7913 ui_out_field_string (uiout, "catch-type",
7914 self->is_load ? "load" : "unload");
7915 }
7916
7917 static void
7918 print_mention_catch_solib (struct breakpoint *b)
7919 {
7920 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7921
7922 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7923 self->is_load ? "load" : "unload");
7924 }
7925
7926 static void
7927 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7928 {
7929 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7930
7931 fprintf_unfiltered (fp, "%s %s",
7932 b->disposition == disp_del ? "tcatch" : "catch",
7933 self->is_load ? "load" : "unload");
7934 if (self->regex)
7935 fprintf_unfiltered (fp, " %s", self->regex);
7936 fprintf_unfiltered (fp, "\n");
7937 }
7938
7939 static struct breakpoint_ops catch_solib_breakpoint_ops;
7940
7941 /* Shared helper function (MI and CLI) for creating and installing
7942 a shared object event catchpoint. If IS_LOAD is non-zero then
7943 the events to be caught are load events, otherwise they are
7944 unload events. If IS_TEMP is non-zero the catchpoint is a
7945 temporary one. If ENABLED is non-zero the catchpoint is
7946 created in an enabled state. */
7947
7948 void
7949 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7950 {
7951 struct solib_catchpoint *c;
7952 struct gdbarch *gdbarch = get_current_arch ();
7953 struct cleanup *cleanup;
7954
7955 if (!arg)
7956 arg = "";
7957 arg = skip_spaces (arg);
7958
7959 c = XCNEW (struct solib_catchpoint);
7960 cleanup = make_cleanup (xfree, c);
7961
7962 if (*arg != '\0')
7963 {
7964 int errcode;
7965
7966 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7967 if (errcode != 0)
7968 {
7969 char *err = get_regcomp_error (errcode, &c->compiled);
7970
7971 make_cleanup (xfree, err);
7972 error (_("Invalid regexp (%s): %s"), err, arg);
7973 }
7974 c->regex = xstrdup (arg);
7975 }
7976
7977 c->is_load = is_load;
7978 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7979 &catch_solib_breakpoint_ops);
7980
7981 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7982
7983 discard_cleanups (cleanup);
7984 install_breakpoint (0, &c->base, 1);
7985 }
7986
7987 /* A helper function that does all the work for "catch load" and
7988 "catch unload". */
7989
7990 static void
7991 catch_load_or_unload (char *arg, int from_tty, int is_load,
7992 struct cmd_list_element *command)
7993 {
7994 int tempflag;
7995 const int enabled = 1;
7996
7997 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7998
7999 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8000 }
8001
8002 static void
8003 catch_load_command_1 (char *arg, int from_tty,
8004 struct cmd_list_element *command)
8005 {
8006 catch_load_or_unload (arg, from_tty, 1, command);
8007 }
8008
8009 static void
8010 catch_unload_command_1 (char *arg, int from_tty,
8011 struct cmd_list_element *command)
8012 {
8013 catch_load_or_unload (arg, from_tty, 0, command);
8014 }
8015
8016 /* An instance of this type is used to represent a syscall catchpoint.
8017 It includes a "struct breakpoint" as a kind of base class; users
8018 downcast to "struct breakpoint *" when needed. A breakpoint is
8019 really of this type iff its ops pointer points to
8020 CATCH_SYSCALL_BREAKPOINT_OPS. */
8021
8022 struct syscall_catchpoint
8023 {
8024 /* The base class. */
8025 struct breakpoint base;
8026
8027 /* Syscall numbers used for the 'catch syscall' feature. If no
8028 syscall has been specified for filtering, its value is NULL.
8029 Otherwise, it holds a list of all syscalls to be caught. The
8030 list elements are allocated with xmalloc. */
8031 VEC(int) *syscalls_to_be_caught;
8032 };
8033
8034 /* Implement the "dtor" breakpoint_ops method for syscall
8035 catchpoints. */
8036
8037 static void
8038 dtor_catch_syscall (struct breakpoint *b)
8039 {
8040 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8041
8042 VEC_free (int, c->syscalls_to_be_caught);
8043
8044 base_breakpoint_ops.dtor (b);
8045 }
8046
8047 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8048
8049 struct catch_syscall_inferior_data
8050 {
8051 /* We keep a count of the number of times the user has requested a
8052 particular syscall to be tracked, and pass this information to the
8053 target. This lets capable targets implement filtering directly. */
8054
8055 /* Number of times that "any" syscall is requested. */
8056 int any_syscall_count;
8057
8058 /* Count of each system call. */
8059 VEC(int) *syscalls_counts;
8060
8061 /* This counts all syscall catch requests, so we can readily determine
8062 if any catching is necessary. */
8063 int total_syscalls_count;
8064 };
8065
8066 static struct catch_syscall_inferior_data*
8067 get_catch_syscall_inferior_data (struct inferior *inf)
8068 {
8069 struct catch_syscall_inferior_data *inf_data;
8070
8071 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8072 if (inf_data == NULL)
8073 {
8074 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8075 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8076 }
8077
8078 return inf_data;
8079 }
8080
8081 static void
8082 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8083 {
8084 xfree (arg);
8085 }
8086
8087
8088 /* Implement the "insert" breakpoint_ops method for syscall
8089 catchpoints. */
8090
8091 static int
8092 insert_catch_syscall (struct bp_location *bl)
8093 {
8094 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8095 struct inferior *inf = current_inferior ();
8096 struct catch_syscall_inferior_data *inf_data
8097 = get_catch_syscall_inferior_data (inf);
8098
8099 ++inf_data->total_syscalls_count;
8100 if (!c->syscalls_to_be_caught)
8101 ++inf_data->any_syscall_count;
8102 else
8103 {
8104 int i, iter;
8105
8106 for (i = 0;
8107 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8108 i++)
8109 {
8110 int elem;
8111
8112 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8113 {
8114 int old_size = VEC_length (int, inf_data->syscalls_counts);
8115 uintptr_t vec_addr_offset
8116 = old_size * ((uintptr_t) sizeof (int));
8117 uintptr_t vec_addr;
8118 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8119 vec_addr = ((uintptr_t) VEC_address (int,
8120 inf_data->syscalls_counts)
8121 + vec_addr_offset);
8122 memset ((void *) vec_addr, 0,
8123 (iter + 1 - old_size) * sizeof (int));
8124 }
8125 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8126 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8127 }
8128 }
8129
8130 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8131 inf_data->total_syscalls_count != 0,
8132 inf_data->any_syscall_count,
8133 VEC_length (int,
8134 inf_data->syscalls_counts),
8135 VEC_address (int,
8136 inf_data->syscalls_counts));
8137 }
8138
8139 /* Implement the "remove" breakpoint_ops method for syscall
8140 catchpoints. */
8141
8142 static int
8143 remove_catch_syscall (struct bp_location *bl)
8144 {
8145 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8146 struct inferior *inf = current_inferior ();
8147 struct catch_syscall_inferior_data *inf_data
8148 = get_catch_syscall_inferior_data (inf);
8149
8150 --inf_data->total_syscalls_count;
8151 if (!c->syscalls_to_be_caught)
8152 --inf_data->any_syscall_count;
8153 else
8154 {
8155 int i, iter;
8156
8157 for (i = 0;
8158 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8159 i++)
8160 {
8161 int elem;
8162 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8163 /* Shouldn't happen. */
8164 continue;
8165 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8166 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8167 }
8168 }
8169
8170 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8171 inf_data->total_syscalls_count != 0,
8172 inf_data->any_syscall_count,
8173 VEC_length (int,
8174 inf_data->syscalls_counts),
8175 VEC_address (int,
8176 inf_data->syscalls_counts));
8177 }
8178
8179 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8180 catchpoints. */
8181
8182 static int
8183 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8184 struct address_space *aspace, CORE_ADDR bp_addr,
8185 const struct target_waitstatus *ws)
8186 {
8187 /* We must check if we are catching specific syscalls in this
8188 breakpoint. If we are, then we must guarantee that the called
8189 syscall is the same syscall we are catching. */
8190 int syscall_number = 0;
8191 const struct syscall_catchpoint *c
8192 = (const struct syscall_catchpoint *) bl->owner;
8193
8194 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8195 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8196 return 0;
8197
8198 syscall_number = ws->value.syscall_number;
8199
8200 /* Now, checking if the syscall is the same. */
8201 if (c->syscalls_to_be_caught)
8202 {
8203 int i, iter;
8204
8205 for (i = 0;
8206 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8207 i++)
8208 if (syscall_number == iter)
8209 break;
8210 /* Not the same. */
8211 if (!iter)
8212 return 0;
8213 }
8214
8215 return 1;
8216 }
8217
8218 /* Implement the "print_it" breakpoint_ops method for syscall
8219 catchpoints. */
8220
8221 static enum print_stop_action
8222 print_it_catch_syscall (bpstat bs)
8223 {
8224 struct ui_out *uiout = current_uiout;
8225 struct breakpoint *b = bs->breakpoint_at;
8226 /* These are needed because we want to know in which state a
8227 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8228 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8229 must print "called syscall" or "returned from syscall". */
8230 ptid_t ptid;
8231 struct target_waitstatus last;
8232 struct syscall s;
8233
8234 get_last_target_status (&ptid, &last);
8235
8236 get_syscall_by_number (last.value.syscall_number, &s);
8237
8238 annotate_catchpoint (b->number);
8239
8240 if (b->disposition == disp_del)
8241 ui_out_text (uiout, "\nTemporary catchpoint ");
8242 else
8243 ui_out_text (uiout, "\nCatchpoint ");
8244 if (ui_out_is_mi_like_p (uiout))
8245 {
8246 ui_out_field_string (uiout, "reason",
8247 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8248 ? EXEC_ASYNC_SYSCALL_ENTRY
8249 : EXEC_ASYNC_SYSCALL_RETURN));
8250 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8251 }
8252 ui_out_field_int (uiout, "bkptno", b->number);
8253
8254 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8255 ui_out_text (uiout, " (call to syscall ");
8256 else
8257 ui_out_text (uiout, " (returned from syscall ");
8258
8259 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8260 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8261 if (s.name != NULL)
8262 ui_out_field_string (uiout, "syscall-name", s.name);
8263
8264 ui_out_text (uiout, "), ");
8265
8266 return PRINT_SRC_AND_LOC;
8267 }
8268
8269 /* Implement the "print_one" breakpoint_ops method for syscall
8270 catchpoints. */
8271
8272 static void
8273 print_one_catch_syscall (struct breakpoint *b,
8274 struct bp_location **last_loc)
8275 {
8276 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8277 struct value_print_options opts;
8278 struct ui_out *uiout = current_uiout;
8279
8280 get_user_print_options (&opts);
8281 /* Field 4, the address, is omitted (which makes the columns not
8282 line up too nicely with the headers, but the effect is relatively
8283 readable). */
8284 if (opts.addressprint)
8285 ui_out_field_skip (uiout, "addr");
8286 annotate_field (5);
8287
8288 if (c->syscalls_to_be_caught
8289 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8290 ui_out_text (uiout, "syscalls \"");
8291 else
8292 ui_out_text (uiout, "syscall \"");
8293
8294 if (c->syscalls_to_be_caught)
8295 {
8296 int i, iter;
8297 char *text = xstrprintf ("%s", "");
8298
8299 for (i = 0;
8300 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8301 i++)
8302 {
8303 char *x = text;
8304 struct syscall s;
8305 get_syscall_by_number (iter, &s);
8306
8307 if (s.name != NULL)
8308 text = xstrprintf ("%s%s, ", text, s.name);
8309 else
8310 text = xstrprintf ("%s%d, ", text, iter);
8311
8312 /* We have to xfree the last 'text' (now stored at 'x')
8313 because xstrprintf dynamically allocates new space for it
8314 on every call. */
8315 xfree (x);
8316 }
8317 /* Remove the last comma. */
8318 text[strlen (text) - 2] = '\0';
8319 ui_out_field_string (uiout, "what", text);
8320 }
8321 else
8322 ui_out_field_string (uiout, "what", "<any syscall>");
8323 ui_out_text (uiout, "\" ");
8324
8325 if (ui_out_is_mi_like_p (uiout))
8326 ui_out_field_string (uiout, "catch-type", "syscall");
8327 }
8328
8329 /* Implement the "print_mention" breakpoint_ops method for syscall
8330 catchpoints. */
8331
8332 static void
8333 print_mention_catch_syscall (struct breakpoint *b)
8334 {
8335 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8336
8337 if (c->syscalls_to_be_caught)
8338 {
8339 int i, iter;
8340
8341 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8342 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8343 else
8344 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8345
8346 for (i = 0;
8347 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8348 i++)
8349 {
8350 struct syscall s;
8351 get_syscall_by_number (iter, &s);
8352
8353 if (s.name)
8354 printf_filtered (" '%s' [%d]", s.name, s.number);
8355 else
8356 printf_filtered (" %d", s.number);
8357 }
8358 printf_filtered (")");
8359 }
8360 else
8361 printf_filtered (_("Catchpoint %d (any syscall)"),
8362 b->number);
8363 }
8364
8365 /* Implement the "print_recreate" breakpoint_ops method for syscall
8366 catchpoints. */
8367
8368 static void
8369 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8370 {
8371 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8372
8373 fprintf_unfiltered (fp, "catch syscall");
8374
8375 if (c->syscalls_to_be_caught)
8376 {
8377 int i, iter;
8378
8379 for (i = 0;
8380 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8381 i++)
8382 {
8383 struct syscall s;
8384
8385 get_syscall_by_number (iter, &s);
8386 if (s.name)
8387 fprintf_unfiltered (fp, " %s", s.name);
8388 else
8389 fprintf_unfiltered (fp, " %d", s.number);
8390 }
8391 }
8392 print_recreate_thread (b, fp);
8393 }
8394
8395 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8396
8397 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8398
8399 /* Returns non-zero if 'b' is a syscall catchpoint. */
8400
8401 static int
8402 syscall_catchpoint_p (struct breakpoint *b)
8403 {
8404 return (b->ops == &catch_syscall_breakpoint_ops);
8405 }
8406
8407 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8408 is non-zero, then make the breakpoint temporary. If COND_STRING is
8409 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8410 the breakpoint_ops structure associated to the catchpoint. */
8411
8412 void
8413 init_catchpoint (struct breakpoint *b,
8414 struct gdbarch *gdbarch, int tempflag,
8415 char *cond_string,
8416 const struct breakpoint_ops *ops)
8417 {
8418 struct symtab_and_line sal;
8419
8420 init_sal (&sal);
8421 sal.pspace = current_program_space;
8422
8423 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8424
8425 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8426 b->disposition = tempflag ? disp_del : disp_donttouch;
8427 }
8428
8429 void
8430 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8431 {
8432 add_to_breakpoint_chain (b);
8433 set_breakpoint_number (internal, b);
8434 if (is_tracepoint (b))
8435 set_tracepoint_count (breakpoint_count);
8436 if (!internal)
8437 mention (b);
8438 observer_notify_breakpoint_created (b);
8439
8440 if (update_gll)
8441 update_global_location_list (1);
8442 }
8443
8444 static void
8445 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8446 int tempflag, char *cond_string,
8447 const struct breakpoint_ops *ops)
8448 {
8449 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8450
8451 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8452
8453 c->forked_inferior_pid = null_ptid;
8454
8455 install_breakpoint (0, &c->base, 1);
8456 }
8457
8458 /* Exec catchpoints. */
8459
8460 /* An instance of this type is used to represent an exec catchpoint.
8461 It includes a "struct breakpoint" as a kind of base class; users
8462 downcast to "struct breakpoint *" when needed. A breakpoint is
8463 really of this type iff its ops pointer points to
8464 CATCH_EXEC_BREAKPOINT_OPS. */
8465
8466 struct exec_catchpoint
8467 {
8468 /* The base class. */
8469 struct breakpoint base;
8470
8471 /* Filename of a program whose exec triggered this catchpoint.
8472 This field is only valid immediately after this catchpoint has
8473 triggered. */
8474 char *exec_pathname;
8475 };
8476
8477 /* Implement the "dtor" breakpoint_ops method for exec
8478 catchpoints. */
8479
8480 static void
8481 dtor_catch_exec (struct breakpoint *b)
8482 {
8483 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8484
8485 xfree (c->exec_pathname);
8486
8487 base_breakpoint_ops.dtor (b);
8488 }
8489
8490 static int
8491 insert_catch_exec (struct bp_location *bl)
8492 {
8493 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8494 }
8495
8496 static int
8497 remove_catch_exec (struct bp_location *bl)
8498 {
8499 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8500 }
8501
8502 static int
8503 breakpoint_hit_catch_exec (const struct bp_location *bl,
8504 struct address_space *aspace, CORE_ADDR bp_addr,
8505 const struct target_waitstatus *ws)
8506 {
8507 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8508
8509 if (ws->kind != TARGET_WAITKIND_EXECD)
8510 return 0;
8511
8512 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8513 return 1;
8514 }
8515
8516 static enum print_stop_action
8517 print_it_catch_exec (bpstat bs)
8518 {
8519 struct ui_out *uiout = current_uiout;
8520 struct breakpoint *b = bs->breakpoint_at;
8521 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8522
8523 annotate_catchpoint (b->number);
8524 if (b->disposition == disp_del)
8525 ui_out_text (uiout, "\nTemporary catchpoint ");
8526 else
8527 ui_out_text (uiout, "\nCatchpoint ");
8528 if (ui_out_is_mi_like_p (uiout))
8529 {
8530 ui_out_field_string (uiout, "reason",
8531 async_reason_lookup (EXEC_ASYNC_EXEC));
8532 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8533 }
8534 ui_out_field_int (uiout, "bkptno", b->number);
8535 ui_out_text (uiout, " (exec'd ");
8536 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8537 ui_out_text (uiout, "), ");
8538
8539 return PRINT_SRC_AND_LOC;
8540 }
8541
8542 static void
8543 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8544 {
8545 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8546 struct value_print_options opts;
8547 struct ui_out *uiout = current_uiout;
8548
8549 get_user_print_options (&opts);
8550
8551 /* Field 4, the address, is omitted (which makes the columns
8552 not line up too nicely with the headers, but the effect
8553 is relatively readable). */
8554 if (opts.addressprint)
8555 ui_out_field_skip (uiout, "addr");
8556 annotate_field (5);
8557 ui_out_text (uiout, "exec");
8558 if (c->exec_pathname != NULL)
8559 {
8560 ui_out_text (uiout, ", program \"");
8561 ui_out_field_string (uiout, "what", c->exec_pathname);
8562 ui_out_text (uiout, "\" ");
8563 }
8564
8565 if (ui_out_is_mi_like_p (uiout))
8566 ui_out_field_string (uiout, "catch-type", "exec");
8567 }
8568
8569 static void
8570 print_mention_catch_exec (struct breakpoint *b)
8571 {
8572 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8573 }
8574
8575 /* Implement the "print_recreate" breakpoint_ops method for exec
8576 catchpoints. */
8577
8578 static void
8579 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8580 {
8581 fprintf_unfiltered (fp, "catch exec");
8582 print_recreate_thread (b, fp);
8583 }
8584
8585 static struct breakpoint_ops catch_exec_breakpoint_ops;
8586
8587 static void
8588 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8589 const struct breakpoint_ops *ops)
8590 {
8591 struct syscall_catchpoint *c;
8592 struct gdbarch *gdbarch = get_current_arch ();
8593
8594 c = XNEW (struct syscall_catchpoint);
8595 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8596 c->syscalls_to_be_caught = filter;
8597
8598 install_breakpoint (0, &c->base, 1);
8599 }
8600
8601 static int
8602 hw_breakpoint_used_count (void)
8603 {
8604 int i = 0;
8605 struct breakpoint *b;
8606 struct bp_location *bl;
8607
8608 ALL_BREAKPOINTS (b)
8609 {
8610 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8611 for (bl = b->loc; bl; bl = bl->next)
8612 {
8613 /* Special types of hardware breakpoints may use more than
8614 one register. */
8615 i += b->ops->resources_needed (bl);
8616 }
8617 }
8618
8619 return i;
8620 }
8621
8622 /* Returns the resources B would use if it were a hardware
8623 watchpoint. */
8624
8625 static int
8626 hw_watchpoint_use_count (struct breakpoint *b)
8627 {
8628 int i = 0;
8629 struct bp_location *bl;
8630
8631 if (!breakpoint_enabled (b))
8632 return 0;
8633
8634 for (bl = b->loc; bl; bl = bl->next)
8635 {
8636 /* Special types of hardware watchpoints may use more than
8637 one register. */
8638 i += b->ops->resources_needed (bl);
8639 }
8640
8641 return i;
8642 }
8643
8644 /* Returns the sum the used resources of all hardware watchpoints of
8645 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8646 the sum of the used resources of all hardware watchpoints of other
8647 types _not_ TYPE. */
8648
8649 static int
8650 hw_watchpoint_used_count_others (struct breakpoint *except,
8651 enum bptype type, int *other_type_used)
8652 {
8653 int i = 0;
8654 struct breakpoint *b;
8655
8656 *other_type_used = 0;
8657 ALL_BREAKPOINTS (b)
8658 {
8659 if (b == except)
8660 continue;
8661 if (!breakpoint_enabled (b))
8662 continue;
8663
8664 if (b->type == type)
8665 i += hw_watchpoint_use_count (b);
8666 else if (is_hardware_watchpoint (b))
8667 *other_type_used = 1;
8668 }
8669
8670 return i;
8671 }
8672
8673 void
8674 disable_watchpoints_before_interactive_call_start (void)
8675 {
8676 struct breakpoint *b;
8677
8678 ALL_BREAKPOINTS (b)
8679 {
8680 if (is_watchpoint (b) && breakpoint_enabled (b))
8681 {
8682 b->enable_state = bp_call_disabled;
8683 update_global_location_list (0);
8684 }
8685 }
8686 }
8687
8688 void
8689 enable_watchpoints_after_interactive_call_stop (void)
8690 {
8691 struct breakpoint *b;
8692
8693 ALL_BREAKPOINTS (b)
8694 {
8695 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8696 {
8697 b->enable_state = bp_enabled;
8698 update_global_location_list (1);
8699 }
8700 }
8701 }
8702
8703 void
8704 disable_breakpoints_before_startup (void)
8705 {
8706 current_program_space->executing_startup = 1;
8707 update_global_location_list (0);
8708 }
8709
8710 void
8711 enable_breakpoints_after_startup (void)
8712 {
8713 current_program_space->executing_startup = 0;
8714 breakpoint_re_set ();
8715 }
8716
8717
8718 /* Set a breakpoint that will evaporate an end of command
8719 at address specified by SAL.
8720 Restrict it to frame FRAME if FRAME is nonzero. */
8721
8722 struct breakpoint *
8723 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8724 struct frame_id frame_id, enum bptype type)
8725 {
8726 struct breakpoint *b;
8727
8728 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8729 tail-called one. */
8730 gdb_assert (!frame_id_artificial_p (frame_id));
8731
8732 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8733 b->enable_state = bp_enabled;
8734 b->disposition = disp_donttouch;
8735 b->frame_id = frame_id;
8736
8737 /* If we're debugging a multi-threaded program, then we want
8738 momentary breakpoints to be active in only a single thread of
8739 control. */
8740 if (in_thread_list (inferior_ptid))
8741 b->thread = pid_to_thread_id (inferior_ptid);
8742
8743 update_global_location_list_nothrow (1);
8744
8745 return b;
8746 }
8747
8748 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8749 The new breakpoint will have type TYPE, and use OPS as it
8750 breakpoint_ops. */
8751
8752 static struct breakpoint *
8753 momentary_breakpoint_from_master (struct breakpoint *orig,
8754 enum bptype type,
8755 const struct breakpoint_ops *ops)
8756 {
8757 struct breakpoint *copy;
8758
8759 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8760 copy->loc = allocate_bp_location (copy);
8761 set_breakpoint_location_function (copy->loc, 1);
8762
8763 copy->loc->gdbarch = orig->loc->gdbarch;
8764 copy->loc->requested_address = orig->loc->requested_address;
8765 copy->loc->address = orig->loc->address;
8766 copy->loc->section = orig->loc->section;
8767 copy->loc->pspace = orig->loc->pspace;
8768 copy->loc->probe = orig->loc->probe;
8769 copy->loc->line_number = orig->loc->line_number;
8770 copy->loc->symtab = orig->loc->symtab;
8771 copy->frame_id = orig->frame_id;
8772 copy->thread = orig->thread;
8773 copy->pspace = orig->pspace;
8774
8775 copy->enable_state = bp_enabled;
8776 copy->disposition = disp_donttouch;
8777 copy->number = internal_breakpoint_number--;
8778
8779 update_global_location_list_nothrow (0);
8780 return copy;
8781 }
8782
8783 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8784 ORIG is NULL. */
8785
8786 struct breakpoint *
8787 clone_momentary_breakpoint (struct breakpoint *orig)
8788 {
8789 /* If there's nothing to clone, then return nothing. */
8790 if (orig == NULL)
8791 return NULL;
8792
8793 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8794 }
8795
8796 struct breakpoint *
8797 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8798 enum bptype type)
8799 {
8800 struct symtab_and_line sal;
8801
8802 sal = find_pc_line (pc, 0);
8803 sal.pc = pc;
8804 sal.section = find_pc_overlay (pc);
8805 sal.explicit_pc = 1;
8806
8807 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8808 }
8809 \f
8810
8811 /* Tell the user we have just set a breakpoint B. */
8812
8813 static void
8814 mention (struct breakpoint *b)
8815 {
8816 b->ops->print_mention (b);
8817 if (ui_out_is_mi_like_p (current_uiout))
8818 return;
8819 printf_filtered ("\n");
8820 }
8821 \f
8822
8823 static struct bp_location *
8824 add_location_to_breakpoint (struct breakpoint *b,
8825 const struct symtab_and_line *sal)
8826 {
8827 struct bp_location *loc, **tmp;
8828 CORE_ADDR adjusted_address;
8829 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8830
8831 if (loc_gdbarch == NULL)
8832 loc_gdbarch = b->gdbarch;
8833
8834 /* Adjust the breakpoint's address prior to allocating a location.
8835 Once we call allocate_bp_location(), that mostly uninitialized
8836 location will be placed on the location chain. Adjustment of the
8837 breakpoint may cause target_read_memory() to be called and we do
8838 not want its scan of the location chain to find a breakpoint and
8839 location that's only been partially initialized. */
8840 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8841 sal->pc, b->type);
8842
8843 /* Sort the locations by their ADDRESS. */
8844 loc = allocate_bp_location (b);
8845 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8846 tmp = &((*tmp)->next))
8847 ;
8848 loc->next = *tmp;
8849 *tmp = loc;
8850
8851 loc->requested_address = sal->pc;
8852 loc->address = adjusted_address;
8853 loc->pspace = sal->pspace;
8854 loc->probe = sal->probe;
8855 gdb_assert (loc->pspace != NULL);
8856 loc->section = sal->section;
8857 loc->gdbarch = loc_gdbarch;
8858 loc->line_number = sal->line;
8859 loc->symtab = sal->symtab;
8860
8861 set_breakpoint_location_function (loc,
8862 sal->explicit_pc || sal->explicit_line);
8863 return loc;
8864 }
8865 \f
8866
8867 /* Return 1 if LOC is pointing to a permanent breakpoint,
8868 return 0 otherwise. */
8869
8870 static int
8871 bp_loc_is_permanent (struct bp_location *loc)
8872 {
8873 int len;
8874 CORE_ADDR addr;
8875 const gdb_byte *bpoint;
8876 gdb_byte *target_mem;
8877 struct cleanup *cleanup;
8878 int retval = 0;
8879
8880 gdb_assert (loc != NULL);
8881
8882 addr = loc->address;
8883 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8884
8885 /* Software breakpoints unsupported? */
8886 if (bpoint == NULL)
8887 return 0;
8888
8889 target_mem = alloca (len);
8890
8891 /* Enable the automatic memory restoration from breakpoints while
8892 we read the memory. Otherwise we could say about our temporary
8893 breakpoints they are permanent. */
8894 cleanup = save_current_space_and_thread ();
8895
8896 switch_to_program_space_and_thread (loc->pspace);
8897 make_show_memory_breakpoints_cleanup (0);
8898
8899 if (target_read_memory (loc->address, target_mem, len) == 0
8900 && memcmp (target_mem, bpoint, len) == 0)
8901 retval = 1;
8902
8903 do_cleanups (cleanup);
8904
8905 return retval;
8906 }
8907
8908 /* Build a command list for the dprintf corresponding to the current
8909 settings of the dprintf style options. */
8910
8911 static void
8912 update_dprintf_command_list (struct breakpoint *b)
8913 {
8914 char *dprintf_args = b->extra_string;
8915 char *printf_line = NULL;
8916
8917 if (!dprintf_args)
8918 return;
8919
8920 dprintf_args = skip_spaces (dprintf_args);
8921
8922 /* Allow a comma, as it may have terminated a location, but don't
8923 insist on it. */
8924 if (*dprintf_args == ',')
8925 ++dprintf_args;
8926 dprintf_args = skip_spaces (dprintf_args);
8927
8928 if (*dprintf_args != '"')
8929 error (_("Bad format string, missing '\"'."));
8930
8931 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8932 printf_line = xstrprintf ("printf %s", dprintf_args);
8933 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8934 {
8935 if (!dprintf_function)
8936 error (_("No function supplied for dprintf call"));
8937
8938 if (dprintf_channel && strlen (dprintf_channel) > 0)
8939 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8940 dprintf_function,
8941 dprintf_channel,
8942 dprintf_args);
8943 else
8944 printf_line = xstrprintf ("call (void) %s (%s)",
8945 dprintf_function,
8946 dprintf_args);
8947 }
8948 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8949 {
8950 if (target_can_run_breakpoint_commands ())
8951 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8952 else
8953 {
8954 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8955 printf_line = xstrprintf ("printf %s", dprintf_args);
8956 }
8957 }
8958 else
8959 internal_error (__FILE__, __LINE__,
8960 _("Invalid dprintf style."));
8961
8962 gdb_assert (printf_line != NULL);
8963 /* Manufacture a printf/continue sequence. */
8964 {
8965 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8966
8967 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8968 {
8969 cont_cmd_line = xmalloc (sizeof (struct command_line));
8970 cont_cmd_line->control_type = simple_control;
8971 cont_cmd_line->body_count = 0;
8972 cont_cmd_line->body_list = NULL;
8973 cont_cmd_line->next = NULL;
8974 cont_cmd_line->line = xstrdup ("continue");
8975 }
8976
8977 printf_cmd_line = xmalloc (sizeof (struct command_line));
8978 printf_cmd_line->control_type = simple_control;
8979 printf_cmd_line->body_count = 0;
8980 printf_cmd_line->body_list = NULL;
8981 printf_cmd_line->next = cont_cmd_line;
8982 printf_cmd_line->line = printf_line;
8983
8984 breakpoint_set_commands (b, printf_cmd_line);
8985 }
8986 }
8987
8988 /* Update all dprintf commands, making their command lists reflect
8989 current style settings. */
8990
8991 static void
8992 update_dprintf_commands (char *args, int from_tty,
8993 struct cmd_list_element *c)
8994 {
8995 struct breakpoint *b;
8996
8997 ALL_BREAKPOINTS (b)
8998 {
8999 if (b->type == bp_dprintf)
9000 update_dprintf_command_list (b);
9001 }
9002 }
9003
9004 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9005 as textual description of the location, and COND_STRING
9006 as condition expression. */
9007
9008 static void
9009 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9010 struct symtabs_and_lines sals, char *addr_string,
9011 char *filter, char *cond_string,
9012 char *extra_string,
9013 enum bptype type, enum bpdisp disposition,
9014 int thread, int task, int ignore_count,
9015 const struct breakpoint_ops *ops, int from_tty,
9016 int enabled, int internal, unsigned flags,
9017 int display_canonical)
9018 {
9019 int i;
9020
9021 if (type == bp_hardware_breakpoint)
9022 {
9023 int target_resources_ok;
9024
9025 i = hw_breakpoint_used_count ();
9026 target_resources_ok =
9027 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9028 i + 1, 0);
9029 if (target_resources_ok == 0)
9030 error (_("No hardware breakpoint support in the target."));
9031 else if (target_resources_ok < 0)
9032 error (_("Hardware breakpoints used exceeds limit."));
9033 }
9034
9035 gdb_assert (sals.nelts > 0);
9036
9037 for (i = 0; i < sals.nelts; ++i)
9038 {
9039 struct symtab_and_line sal = sals.sals[i];
9040 struct bp_location *loc;
9041
9042 if (from_tty)
9043 {
9044 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9045 if (!loc_gdbarch)
9046 loc_gdbarch = gdbarch;
9047
9048 describe_other_breakpoints (loc_gdbarch,
9049 sal.pspace, sal.pc, sal.section, thread);
9050 }
9051
9052 if (i == 0)
9053 {
9054 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9055 b->thread = thread;
9056 b->task = task;
9057
9058 b->cond_string = cond_string;
9059 b->extra_string = extra_string;
9060 b->ignore_count = ignore_count;
9061 b->enable_state = enabled ? bp_enabled : bp_disabled;
9062 b->disposition = disposition;
9063
9064 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9065 b->loc->inserted = 1;
9066
9067 if (type == bp_static_tracepoint)
9068 {
9069 struct tracepoint *t = (struct tracepoint *) b;
9070 struct static_tracepoint_marker marker;
9071
9072 if (strace_marker_p (b))
9073 {
9074 /* We already know the marker exists, otherwise, we
9075 wouldn't see a sal for it. */
9076 char *p = &addr_string[3];
9077 char *endp;
9078 char *marker_str;
9079
9080 p = skip_spaces (p);
9081
9082 endp = skip_to_space (p);
9083
9084 marker_str = savestring (p, endp - p);
9085 t->static_trace_marker_id = marker_str;
9086
9087 printf_filtered (_("Probed static tracepoint "
9088 "marker \"%s\"\n"),
9089 t->static_trace_marker_id);
9090 }
9091 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9092 {
9093 t->static_trace_marker_id = xstrdup (marker.str_id);
9094 release_static_tracepoint_marker (&marker);
9095
9096 printf_filtered (_("Probed static tracepoint "
9097 "marker \"%s\"\n"),
9098 t->static_trace_marker_id);
9099 }
9100 else
9101 warning (_("Couldn't determine the static "
9102 "tracepoint marker to probe"));
9103 }
9104
9105 loc = b->loc;
9106 }
9107 else
9108 {
9109 loc = add_location_to_breakpoint (b, &sal);
9110 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9111 loc->inserted = 1;
9112 }
9113
9114 if (bp_loc_is_permanent (loc))
9115 make_breakpoint_permanent (b);
9116
9117 if (b->cond_string)
9118 {
9119 const char *arg = b->cond_string;
9120
9121 loc->cond = parse_exp_1 (&arg, loc->address,
9122 block_for_pc (loc->address), 0);
9123 if (*arg)
9124 error (_("Garbage '%s' follows condition"), arg);
9125 }
9126
9127 /* Dynamic printf requires and uses additional arguments on the
9128 command line, otherwise it's an error. */
9129 if (type == bp_dprintf)
9130 {
9131 if (b->extra_string)
9132 update_dprintf_command_list (b);
9133 else
9134 error (_("Format string required"));
9135 }
9136 else if (b->extra_string)
9137 error (_("Garbage '%s' at end of command"), b->extra_string);
9138 }
9139
9140 b->display_canonical = display_canonical;
9141 if (addr_string)
9142 b->addr_string = addr_string;
9143 else
9144 /* addr_string has to be used or breakpoint_re_set will delete
9145 me. */
9146 b->addr_string
9147 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9148 b->filter = filter;
9149 }
9150
9151 static void
9152 create_breakpoint_sal (struct gdbarch *gdbarch,
9153 struct symtabs_and_lines sals, char *addr_string,
9154 char *filter, char *cond_string,
9155 char *extra_string,
9156 enum bptype type, enum bpdisp disposition,
9157 int thread, int task, int ignore_count,
9158 const struct breakpoint_ops *ops, int from_tty,
9159 int enabled, int internal, unsigned flags,
9160 int display_canonical)
9161 {
9162 struct breakpoint *b;
9163 struct cleanup *old_chain;
9164
9165 if (is_tracepoint_type (type))
9166 {
9167 struct tracepoint *t;
9168
9169 t = XCNEW (struct tracepoint);
9170 b = &t->base;
9171 }
9172 else
9173 b = XNEW (struct breakpoint);
9174
9175 old_chain = make_cleanup (xfree, b);
9176
9177 init_breakpoint_sal (b, gdbarch,
9178 sals, addr_string,
9179 filter, cond_string, extra_string,
9180 type, disposition,
9181 thread, task, ignore_count,
9182 ops, from_tty,
9183 enabled, internal, flags,
9184 display_canonical);
9185 discard_cleanups (old_chain);
9186
9187 install_breakpoint (internal, b, 0);
9188 }
9189
9190 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9191 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9192 value. COND_STRING, if not NULL, specified the condition to be
9193 used for all breakpoints. Essentially the only case where
9194 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9195 function. In that case, it's still not possible to specify
9196 separate conditions for different overloaded functions, so
9197 we take just a single condition string.
9198
9199 NOTE: If the function succeeds, the caller is expected to cleanup
9200 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9201 array contents). If the function fails (error() is called), the
9202 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9203 COND and SALS arrays and each of those arrays contents. */
9204
9205 static void
9206 create_breakpoints_sal (struct gdbarch *gdbarch,
9207 struct linespec_result *canonical,
9208 char *cond_string, char *extra_string,
9209 enum bptype type, enum bpdisp disposition,
9210 int thread, int task, int ignore_count,
9211 const struct breakpoint_ops *ops, int from_tty,
9212 int enabled, int internal, unsigned flags)
9213 {
9214 int i;
9215 struct linespec_sals *lsal;
9216
9217 if (canonical->pre_expanded)
9218 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9219
9220 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9221 {
9222 /* Note that 'addr_string' can be NULL in the case of a plain
9223 'break', without arguments. */
9224 char *addr_string = (canonical->addr_string
9225 ? xstrdup (canonical->addr_string)
9226 : NULL);
9227 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9228 struct cleanup *inner = make_cleanup (xfree, addr_string);
9229
9230 make_cleanup (xfree, filter_string);
9231 create_breakpoint_sal (gdbarch, lsal->sals,
9232 addr_string,
9233 filter_string,
9234 cond_string, extra_string,
9235 type, disposition,
9236 thread, task, ignore_count, ops,
9237 from_tty, enabled, internal, flags,
9238 canonical->special_display);
9239 discard_cleanups (inner);
9240 }
9241 }
9242
9243 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9244 followed by conditionals. On return, SALS contains an array of SAL
9245 addresses found. ADDR_STRING contains a vector of (canonical)
9246 address strings. ADDRESS points to the end of the SAL.
9247
9248 The array and the line spec strings are allocated on the heap, it is
9249 the caller's responsibility to free them. */
9250
9251 static void
9252 parse_breakpoint_sals (char **address,
9253 struct linespec_result *canonical)
9254 {
9255 /* If no arg given, or if first arg is 'if ', use the default
9256 breakpoint. */
9257 if ((*address) == NULL
9258 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9259 {
9260 /* The last displayed codepoint, if it's valid, is our default breakpoint
9261 address. */
9262 if (last_displayed_sal_is_valid ())
9263 {
9264 struct linespec_sals lsal;
9265 struct symtab_and_line sal;
9266 CORE_ADDR pc;
9267
9268 init_sal (&sal); /* Initialize to zeroes. */
9269 lsal.sals.sals = (struct symtab_and_line *)
9270 xmalloc (sizeof (struct symtab_and_line));
9271
9272 /* Set sal's pspace, pc, symtab, and line to the values
9273 corresponding to the last call to print_frame_info.
9274 Be sure to reinitialize LINE with NOTCURRENT == 0
9275 as the breakpoint line number is inappropriate otherwise.
9276 find_pc_line would adjust PC, re-set it back. */
9277 get_last_displayed_sal (&sal);
9278 pc = sal.pc;
9279 sal = find_pc_line (pc, 0);
9280
9281 /* "break" without arguments is equivalent to "break *PC"
9282 where PC is the last displayed codepoint's address. So
9283 make sure to set sal.explicit_pc to prevent GDB from
9284 trying to expand the list of sals to include all other
9285 instances with the same symtab and line. */
9286 sal.pc = pc;
9287 sal.explicit_pc = 1;
9288
9289 lsal.sals.sals[0] = sal;
9290 lsal.sals.nelts = 1;
9291 lsal.canonical = NULL;
9292
9293 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9294 }
9295 else
9296 error (_("No default breakpoint address now."));
9297 }
9298 else
9299 {
9300 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9301
9302 /* Force almost all breakpoints to be in terms of the
9303 current_source_symtab (which is decode_line_1's default).
9304 This should produce the results we want almost all of the
9305 time while leaving default_breakpoint_* alone.
9306
9307 ObjC: However, don't match an Objective-C method name which
9308 may have a '+' or '-' succeeded by a '['. */
9309 if (last_displayed_sal_is_valid ()
9310 && (!cursal.symtab
9311 || ((strchr ("+-", (*address)[0]) != NULL)
9312 && ((*address)[1] != '['))))
9313 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9314 get_last_displayed_symtab (),
9315 get_last_displayed_line (),
9316 canonical, NULL, NULL);
9317 else
9318 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9319 cursal.symtab, cursal.line, canonical, NULL, NULL);
9320 }
9321 }
9322
9323
9324 /* Convert each SAL into a real PC. Verify that the PC can be
9325 inserted as a breakpoint. If it can't throw an error. */
9326
9327 static void
9328 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9329 {
9330 int i;
9331
9332 for (i = 0; i < sals->nelts; i++)
9333 resolve_sal_pc (&sals->sals[i]);
9334 }
9335
9336 /* Fast tracepoints may have restrictions on valid locations. For
9337 instance, a fast tracepoint using a jump instead of a trap will
9338 likely have to overwrite more bytes than a trap would, and so can
9339 only be placed where the instruction is longer than the jump, or a
9340 multi-instruction sequence does not have a jump into the middle of
9341 it, etc. */
9342
9343 static void
9344 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9345 struct symtabs_and_lines *sals)
9346 {
9347 int i, rslt;
9348 struct symtab_and_line *sal;
9349 char *msg;
9350 struct cleanup *old_chain;
9351
9352 for (i = 0; i < sals->nelts; i++)
9353 {
9354 struct gdbarch *sarch;
9355
9356 sal = &sals->sals[i];
9357
9358 sarch = get_sal_arch (*sal);
9359 /* We fall back to GDBARCH if there is no architecture
9360 associated with SAL. */
9361 if (sarch == NULL)
9362 sarch = gdbarch;
9363 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9364 NULL, &msg);
9365 old_chain = make_cleanup (xfree, msg);
9366
9367 if (!rslt)
9368 error (_("May not have a fast tracepoint at 0x%s%s"),
9369 paddress (sarch, sal->pc), (msg ? msg : ""));
9370
9371 do_cleanups (old_chain);
9372 }
9373 }
9374
9375 /* Issue an invalid thread ID error. */
9376
9377 static void ATTRIBUTE_NORETURN
9378 invalid_thread_id_error (int id)
9379 {
9380 error (_("Unknown thread %d."), id);
9381 }
9382
9383 /* Given TOK, a string specification of condition and thread, as
9384 accepted by the 'break' command, extract the condition
9385 string and thread number and set *COND_STRING and *THREAD.
9386 PC identifies the context at which the condition should be parsed.
9387 If no condition is found, *COND_STRING is set to NULL.
9388 If no thread is found, *THREAD is set to -1. */
9389
9390 static void
9391 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9392 char **cond_string, int *thread, int *task,
9393 char **rest)
9394 {
9395 *cond_string = NULL;
9396 *thread = -1;
9397 *task = 0;
9398 *rest = NULL;
9399
9400 while (tok && *tok)
9401 {
9402 const char *end_tok;
9403 int toklen;
9404 const char *cond_start = NULL;
9405 const char *cond_end = NULL;
9406
9407 tok = skip_spaces_const (tok);
9408
9409 if ((*tok == '"' || *tok == ',') && rest)
9410 {
9411 *rest = savestring (tok, strlen (tok));
9412 return;
9413 }
9414
9415 end_tok = skip_to_space_const (tok);
9416
9417 toklen = end_tok - tok;
9418
9419 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9420 {
9421 struct expression *expr;
9422
9423 tok = cond_start = end_tok + 1;
9424 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9425 xfree (expr);
9426 cond_end = tok;
9427 *cond_string = savestring (cond_start, cond_end - cond_start);
9428 }
9429 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9430 {
9431 char *tmptok;
9432
9433 tok = end_tok + 1;
9434 *thread = strtol (tok, &tmptok, 0);
9435 if (tok == tmptok)
9436 error (_("Junk after thread keyword."));
9437 if (!valid_thread_id (*thread))
9438 invalid_thread_id_error (*thread);
9439 tok = tmptok;
9440 }
9441 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9442 {
9443 char *tmptok;
9444
9445 tok = end_tok + 1;
9446 *task = strtol (tok, &tmptok, 0);
9447 if (tok == tmptok)
9448 error (_("Junk after task keyword."));
9449 if (!valid_task_id (*task))
9450 error (_("Unknown task %d."), *task);
9451 tok = tmptok;
9452 }
9453 else if (rest)
9454 {
9455 *rest = savestring (tok, strlen (tok));
9456 return;
9457 }
9458 else
9459 error (_("Junk at end of arguments."));
9460 }
9461 }
9462
9463 /* Decode a static tracepoint marker spec. */
9464
9465 static struct symtabs_and_lines
9466 decode_static_tracepoint_spec (char **arg_p)
9467 {
9468 VEC(static_tracepoint_marker_p) *markers = NULL;
9469 struct symtabs_and_lines sals;
9470 struct cleanup *old_chain;
9471 char *p = &(*arg_p)[3];
9472 char *endp;
9473 char *marker_str;
9474 int i;
9475
9476 p = skip_spaces (p);
9477
9478 endp = skip_to_space (p);
9479
9480 marker_str = savestring (p, endp - p);
9481 old_chain = make_cleanup (xfree, marker_str);
9482
9483 markers = target_static_tracepoint_markers_by_strid (marker_str);
9484 if (VEC_empty(static_tracepoint_marker_p, markers))
9485 error (_("No known static tracepoint marker named %s"), marker_str);
9486
9487 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9488 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9489
9490 for (i = 0; i < sals.nelts; i++)
9491 {
9492 struct static_tracepoint_marker *marker;
9493
9494 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9495
9496 init_sal (&sals.sals[i]);
9497
9498 sals.sals[i] = find_pc_line (marker->address, 0);
9499 sals.sals[i].pc = marker->address;
9500
9501 release_static_tracepoint_marker (marker);
9502 }
9503
9504 do_cleanups (old_chain);
9505
9506 *arg_p = endp;
9507 return sals;
9508 }
9509
9510 /* Set a breakpoint. This function is shared between CLI and MI
9511 functions for setting a breakpoint. This function has two major
9512 modes of operations, selected by the PARSE_ARG parameter. If
9513 non-zero, the function will parse ARG, extracting location,
9514 condition, thread and extra string. Otherwise, ARG is just the
9515 breakpoint's location, with condition, thread, and extra string
9516 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9517 If INTERNAL is non-zero, the breakpoint number will be allocated
9518 from the internal breakpoint count. Returns true if any breakpoint
9519 was created; false otherwise. */
9520
9521 int
9522 create_breakpoint (struct gdbarch *gdbarch,
9523 char *arg, char *cond_string,
9524 int thread, char *extra_string,
9525 int parse_arg,
9526 int tempflag, enum bptype type_wanted,
9527 int ignore_count,
9528 enum auto_boolean pending_break_support,
9529 const struct breakpoint_ops *ops,
9530 int from_tty, int enabled, int internal,
9531 unsigned flags)
9532 {
9533 volatile struct gdb_exception e;
9534 char *copy_arg = NULL;
9535 char *addr_start = arg;
9536 struct linespec_result canonical;
9537 struct cleanup *old_chain;
9538 struct cleanup *bkpt_chain = NULL;
9539 int pending = 0;
9540 int task = 0;
9541 int prev_bkpt_count = breakpoint_count;
9542
9543 gdb_assert (ops != NULL);
9544
9545 init_linespec_result (&canonical);
9546
9547 TRY_CATCH (e, RETURN_MASK_ALL)
9548 {
9549 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9550 addr_start, &copy_arg);
9551 }
9552
9553 /* If caller is interested in rc value from parse, set value. */
9554 switch (e.reason)
9555 {
9556 case GDB_NO_ERROR:
9557 if (VEC_empty (linespec_sals, canonical.sals))
9558 return 0;
9559 break;
9560 case RETURN_ERROR:
9561 switch (e.error)
9562 {
9563 case NOT_FOUND_ERROR:
9564
9565 /* If pending breakpoint support is turned off, throw
9566 error. */
9567
9568 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9569 throw_exception (e);
9570
9571 exception_print (gdb_stderr, e);
9572
9573 /* If pending breakpoint support is auto query and the user
9574 selects no, then simply return the error code. */
9575 if (pending_break_support == AUTO_BOOLEAN_AUTO
9576 && !nquery (_("Make %s pending on future shared library load? "),
9577 bptype_string (type_wanted)))
9578 return 0;
9579
9580 /* At this point, either the user was queried about setting
9581 a pending breakpoint and selected yes, or pending
9582 breakpoint behavior is on and thus a pending breakpoint
9583 is defaulted on behalf of the user. */
9584 {
9585 struct linespec_sals lsal;
9586
9587 copy_arg = xstrdup (addr_start);
9588 lsal.canonical = xstrdup (copy_arg);
9589 lsal.sals.nelts = 1;
9590 lsal.sals.sals = XNEW (struct symtab_and_line);
9591 init_sal (&lsal.sals.sals[0]);
9592 pending = 1;
9593 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9594 }
9595 break;
9596 default:
9597 throw_exception (e);
9598 }
9599 break;
9600 default:
9601 throw_exception (e);
9602 }
9603
9604 /* Create a chain of things that always need to be cleaned up. */
9605 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9606
9607 /* ----------------------------- SNIP -----------------------------
9608 Anything added to the cleanup chain beyond this point is assumed
9609 to be part of a breakpoint. If the breakpoint create succeeds
9610 then the memory is not reclaimed. */
9611 bkpt_chain = make_cleanup (null_cleanup, 0);
9612
9613 /* Resolve all line numbers to PC's and verify that the addresses
9614 are ok for the target. */
9615 if (!pending)
9616 {
9617 int ix;
9618 struct linespec_sals *iter;
9619
9620 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9621 breakpoint_sals_to_pc (&iter->sals);
9622 }
9623
9624 /* Fast tracepoints may have additional restrictions on location. */
9625 if (!pending && type_wanted == bp_fast_tracepoint)
9626 {
9627 int ix;
9628 struct linespec_sals *iter;
9629
9630 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9631 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9632 }
9633
9634 /* Verify that condition can be parsed, before setting any
9635 breakpoints. Allocate a separate condition expression for each
9636 breakpoint. */
9637 if (!pending)
9638 {
9639 struct linespec_sals *lsal;
9640
9641 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9642
9643 if (parse_arg)
9644 {
9645 char *rest;
9646 /* Here we only parse 'arg' to separate condition
9647 from thread number, so parsing in context of first
9648 sal is OK. When setting the breakpoint we'll
9649 re-parse it in context of each sal. */
9650
9651 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9652 &thread, &task, &rest);
9653 if (cond_string)
9654 make_cleanup (xfree, cond_string);
9655 if (rest)
9656 make_cleanup (xfree, rest);
9657 if (rest)
9658 extra_string = rest;
9659 }
9660 else
9661 {
9662 if (*arg != '\0')
9663 error (_("Garbage '%s' at end of location"), arg);
9664
9665 /* Create a private copy of condition string. */
9666 if (cond_string)
9667 {
9668 cond_string = xstrdup (cond_string);
9669 make_cleanup (xfree, cond_string);
9670 }
9671 /* Create a private copy of any extra string. */
9672 if (extra_string)
9673 {
9674 extra_string = xstrdup (extra_string);
9675 make_cleanup (xfree, extra_string);
9676 }
9677 }
9678
9679 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9680 cond_string, extra_string, type_wanted,
9681 tempflag ? disp_del : disp_donttouch,
9682 thread, task, ignore_count, ops,
9683 from_tty, enabled, internal, flags);
9684 }
9685 else
9686 {
9687 struct breakpoint *b;
9688
9689 make_cleanup (xfree, copy_arg);
9690
9691 if (is_tracepoint_type (type_wanted))
9692 {
9693 struct tracepoint *t;
9694
9695 t = XCNEW (struct tracepoint);
9696 b = &t->base;
9697 }
9698 else
9699 b = XNEW (struct breakpoint);
9700
9701 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9702
9703 b->addr_string = copy_arg;
9704 if (parse_arg)
9705 b->cond_string = NULL;
9706 else
9707 {
9708 /* Create a private copy of condition string. */
9709 if (cond_string)
9710 {
9711 cond_string = xstrdup (cond_string);
9712 make_cleanup (xfree, cond_string);
9713 }
9714 b->cond_string = cond_string;
9715 }
9716 b->extra_string = NULL;
9717 b->ignore_count = ignore_count;
9718 b->disposition = tempflag ? disp_del : disp_donttouch;
9719 b->condition_not_parsed = 1;
9720 b->enable_state = enabled ? bp_enabled : bp_disabled;
9721 if ((type_wanted != bp_breakpoint
9722 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9723 b->pspace = current_program_space;
9724
9725 install_breakpoint (internal, b, 0);
9726 }
9727
9728 if (VEC_length (linespec_sals, canonical.sals) > 1)
9729 {
9730 warning (_("Multiple breakpoints were set.\nUse the "
9731 "\"delete\" command to delete unwanted breakpoints."));
9732 prev_breakpoint_count = prev_bkpt_count;
9733 }
9734
9735 /* That's it. Discard the cleanups for data inserted into the
9736 breakpoint. */
9737 discard_cleanups (bkpt_chain);
9738 /* But cleanup everything else. */
9739 do_cleanups (old_chain);
9740
9741 /* error call may happen here - have BKPT_CHAIN already discarded. */
9742 update_global_location_list (1);
9743
9744 return 1;
9745 }
9746
9747 /* Set a breakpoint.
9748 ARG is a string describing breakpoint address,
9749 condition, and thread.
9750 FLAG specifies if a breakpoint is hardware on,
9751 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9752 and BP_TEMPFLAG. */
9753
9754 static void
9755 break_command_1 (char *arg, int flag, int from_tty)
9756 {
9757 int tempflag = flag & BP_TEMPFLAG;
9758 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9759 ? bp_hardware_breakpoint
9760 : bp_breakpoint);
9761 struct breakpoint_ops *ops;
9762 const char *arg_cp = arg;
9763
9764 /* Matching breakpoints on probes. */
9765 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9766 ops = &bkpt_probe_breakpoint_ops;
9767 else
9768 ops = &bkpt_breakpoint_ops;
9769
9770 create_breakpoint (get_current_arch (),
9771 arg,
9772 NULL, 0, NULL, 1 /* parse arg */,
9773 tempflag, type_wanted,
9774 0 /* Ignore count */,
9775 pending_break_support,
9776 ops,
9777 from_tty,
9778 1 /* enabled */,
9779 0 /* internal */,
9780 0);
9781 }
9782
9783 /* Helper function for break_command_1 and disassemble_command. */
9784
9785 void
9786 resolve_sal_pc (struct symtab_and_line *sal)
9787 {
9788 CORE_ADDR pc;
9789
9790 if (sal->pc == 0 && sal->symtab != NULL)
9791 {
9792 if (!find_line_pc (sal->symtab, sal->line, &pc))
9793 error (_("No line %d in file \"%s\"."),
9794 sal->line, symtab_to_filename_for_display (sal->symtab));
9795 sal->pc = pc;
9796
9797 /* If this SAL corresponds to a breakpoint inserted using a line
9798 number, then skip the function prologue if necessary. */
9799 if (sal->explicit_line)
9800 skip_prologue_sal (sal);
9801 }
9802
9803 if (sal->section == 0 && sal->symtab != NULL)
9804 {
9805 struct blockvector *bv;
9806 struct block *b;
9807 struct symbol *sym;
9808
9809 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9810 if (bv != NULL)
9811 {
9812 sym = block_linkage_function (b);
9813 if (sym != NULL)
9814 {
9815 fixup_symbol_section (sym, sal->symtab->objfile);
9816 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9817 }
9818 else
9819 {
9820 /* It really is worthwhile to have the section, so we'll
9821 just have to look harder. This case can be executed
9822 if we have line numbers but no functions (as can
9823 happen in assembly source). */
9824
9825 struct bound_minimal_symbol msym;
9826 struct cleanup *old_chain = save_current_space_and_thread ();
9827
9828 switch_to_program_space_and_thread (sal->pspace);
9829
9830 msym = lookup_minimal_symbol_by_pc (sal->pc);
9831 if (msym.minsym)
9832 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9833
9834 do_cleanups (old_chain);
9835 }
9836 }
9837 }
9838 }
9839
9840 void
9841 break_command (char *arg, int from_tty)
9842 {
9843 break_command_1 (arg, 0, from_tty);
9844 }
9845
9846 void
9847 tbreak_command (char *arg, int from_tty)
9848 {
9849 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9850 }
9851
9852 static void
9853 hbreak_command (char *arg, int from_tty)
9854 {
9855 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9856 }
9857
9858 static void
9859 thbreak_command (char *arg, int from_tty)
9860 {
9861 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9862 }
9863
9864 static void
9865 stop_command (char *arg, int from_tty)
9866 {
9867 printf_filtered (_("Specify the type of breakpoint to set.\n\
9868 Usage: stop in <function | address>\n\
9869 stop at <line>\n"));
9870 }
9871
9872 static void
9873 stopin_command (char *arg, int from_tty)
9874 {
9875 int badInput = 0;
9876
9877 if (arg == (char *) NULL)
9878 badInput = 1;
9879 else if (*arg != '*')
9880 {
9881 char *argptr = arg;
9882 int hasColon = 0;
9883
9884 /* Look for a ':'. If this is a line number specification, then
9885 say it is bad, otherwise, it should be an address or
9886 function/method name. */
9887 while (*argptr && !hasColon)
9888 {
9889 hasColon = (*argptr == ':');
9890 argptr++;
9891 }
9892
9893 if (hasColon)
9894 badInput = (*argptr != ':'); /* Not a class::method */
9895 else
9896 badInput = isdigit (*arg); /* a simple line number */
9897 }
9898
9899 if (badInput)
9900 printf_filtered (_("Usage: stop in <function | address>\n"));
9901 else
9902 break_command_1 (arg, 0, from_tty);
9903 }
9904
9905 static void
9906 stopat_command (char *arg, int from_tty)
9907 {
9908 int badInput = 0;
9909
9910 if (arg == (char *) NULL || *arg == '*') /* no line number */
9911 badInput = 1;
9912 else
9913 {
9914 char *argptr = arg;
9915 int hasColon = 0;
9916
9917 /* Look for a ':'. If there is a '::' then get out, otherwise
9918 it is probably a line number. */
9919 while (*argptr && !hasColon)
9920 {
9921 hasColon = (*argptr == ':');
9922 argptr++;
9923 }
9924
9925 if (hasColon)
9926 badInput = (*argptr == ':'); /* we have class::method */
9927 else
9928 badInput = !isdigit (*arg); /* not a line number */
9929 }
9930
9931 if (badInput)
9932 printf_filtered (_("Usage: stop at <line>\n"));
9933 else
9934 break_command_1 (arg, 0, from_tty);
9935 }
9936
9937 /* The dynamic printf command is mostly like a regular breakpoint, but
9938 with a prewired command list consisting of a single output command,
9939 built from extra arguments supplied on the dprintf command
9940 line. */
9941
9942 static void
9943 dprintf_command (char *arg, int from_tty)
9944 {
9945 create_breakpoint (get_current_arch (),
9946 arg,
9947 NULL, 0, NULL, 1 /* parse arg */,
9948 0, bp_dprintf,
9949 0 /* Ignore count */,
9950 pending_break_support,
9951 &dprintf_breakpoint_ops,
9952 from_tty,
9953 1 /* enabled */,
9954 0 /* internal */,
9955 0);
9956 }
9957
9958 static void
9959 agent_printf_command (char *arg, int from_tty)
9960 {
9961 error (_("May only run agent-printf on the target"));
9962 }
9963
9964 /* Implement the "breakpoint_hit" breakpoint_ops method for
9965 ranged breakpoints. */
9966
9967 static int
9968 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9969 struct address_space *aspace,
9970 CORE_ADDR bp_addr,
9971 const struct target_waitstatus *ws)
9972 {
9973 if (ws->kind != TARGET_WAITKIND_STOPPED
9974 || ws->value.sig != GDB_SIGNAL_TRAP)
9975 return 0;
9976
9977 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9978 bl->length, aspace, bp_addr);
9979 }
9980
9981 /* Implement the "resources_needed" breakpoint_ops method for
9982 ranged breakpoints. */
9983
9984 static int
9985 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9986 {
9987 return target_ranged_break_num_registers ();
9988 }
9989
9990 /* Implement the "print_it" breakpoint_ops method for
9991 ranged breakpoints. */
9992
9993 static enum print_stop_action
9994 print_it_ranged_breakpoint (bpstat bs)
9995 {
9996 struct breakpoint *b = bs->breakpoint_at;
9997 struct bp_location *bl = b->loc;
9998 struct ui_out *uiout = current_uiout;
9999
10000 gdb_assert (b->type == bp_hardware_breakpoint);
10001
10002 /* Ranged breakpoints have only one location. */
10003 gdb_assert (bl && bl->next == NULL);
10004
10005 annotate_breakpoint (b->number);
10006 if (b->disposition == disp_del)
10007 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10008 else
10009 ui_out_text (uiout, "\nRanged breakpoint ");
10010 if (ui_out_is_mi_like_p (uiout))
10011 {
10012 ui_out_field_string (uiout, "reason",
10013 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10014 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10015 }
10016 ui_out_field_int (uiout, "bkptno", b->number);
10017 ui_out_text (uiout, ", ");
10018
10019 return PRINT_SRC_AND_LOC;
10020 }
10021
10022 /* Implement the "print_one" breakpoint_ops method for
10023 ranged breakpoints. */
10024
10025 static void
10026 print_one_ranged_breakpoint (struct breakpoint *b,
10027 struct bp_location **last_loc)
10028 {
10029 struct bp_location *bl = b->loc;
10030 struct value_print_options opts;
10031 struct ui_out *uiout = current_uiout;
10032
10033 /* Ranged breakpoints have only one location. */
10034 gdb_assert (bl && bl->next == NULL);
10035
10036 get_user_print_options (&opts);
10037
10038 if (opts.addressprint)
10039 /* We don't print the address range here, it will be printed later
10040 by print_one_detail_ranged_breakpoint. */
10041 ui_out_field_skip (uiout, "addr");
10042 annotate_field (5);
10043 print_breakpoint_location (b, bl);
10044 *last_loc = bl;
10045 }
10046
10047 /* Implement the "print_one_detail" breakpoint_ops method for
10048 ranged breakpoints. */
10049
10050 static void
10051 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10052 struct ui_out *uiout)
10053 {
10054 CORE_ADDR address_start, address_end;
10055 struct bp_location *bl = b->loc;
10056 struct ui_file *stb = mem_fileopen ();
10057 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10058
10059 gdb_assert (bl);
10060
10061 address_start = bl->address;
10062 address_end = address_start + bl->length - 1;
10063
10064 ui_out_text (uiout, "\taddress range: ");
10065 fprintf_unfiltered (stb, "[%s, %s]",
10066 print_core_address (bl->gdbarch, address_start),
10067 print_core_address (bl->gdbarch, address_end));
10068 ui_out_field_stream (uiout, "addr", stb);
10069 ui_out_text (uiout, "\n");
10070
10071 do_cleanups (cleanup);
10072 }
10073
10074 /* Implement the "print_mention" breakpoint_ops method for
10075 ranged breakpoints. */
10076
10077 static void
10078 print_mention_ranged_breakpoint (struct breakpoint *b)
10079 {
10080 struct bp_location *bl = b->loc;
10081 struct ui_out *uiout = current_uiout;
10082
10083 gdb_assert (bl);
10084 gdb_assert (b->type == bp_hardware_breakpoint);
10085
10086 if (ui_out_is_mi_like_p (uiout))
10087 return;
10088
10089 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10090 b->number, paddress (bl->gdbarch, bl->address),
10091 paddress (bl->gdbarch, bl->address + bl->length - 1));
10092 }
10093
10094 /* Implement the "print_recreate" breakpoint_ops method for
10095 ranged breakpoints. */
10096
10097 static void
10098 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10099 {
10100 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10101 b->addr_string_range_end);
10102 print_recreate_thread (b, fp);
10103 }
10104
10105 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10106
10107 static struct breakpoint_ops ranged_breakpoint_ops;
10108
10109 /* Find the address where the end of the breakpoint range should be
10110 placed, given the SAL of the end of the range. This is so that if
10111 the user provides a line number, the end of the range is set to the
10112 last instruction of the given line. */
10113
10114 static CORE_ADDR
10115 find_breakpoint_range_end (struct symtab_and_line sal)
10116 {
10117 CORE_ADDR end;
10118
10119 /* If the user provided a PC value, use it. Otherwise,
10120 find the address of the end of the given location. */
10121 if (sal.explicit_pc)
10122 end = sal.pc;
10123 else
10124 {
10125 int ret;
10126 CORE_ADDR start;
10127
10128 ret = find_line_pc_range (sal, &start, &end);
10129 if (!ret)
10130 error (_("Could not find location of the end of the range."));
10131
10132 /* find_line_pc_range returns the start of the next line. */
10133 end--;
10134 }
10135
10136 return end;
10137 }
10138
10139 /* Implement the "break-range" CLI command. */
10140
10141 static void
10142 break_range_command (char *arg, int from_tty)
10143 {
10144 char *arg_start, *addr_string_start, *addr_string_end;
10145 struct linespec_result canonical_start, canonical_end;
10146 int bp_count, can_use_bp, length;
10147 CORE_ADDR end;
10148 struct breakpoint *b;
10149 struct symtab_and_line sal_start, sal_end;
10150 struct cleanup *cleanup_bkpt;
10151 struct linespec_sals *lsal_start, *lsal_end;
10152
10153 /* We don't support software ranged breakpoints. */
10154 if (target_ranged_break_num_registers () < 0)
10155 error (_("This target does not support hardware ranged breakpoints."));
10156
10157 bp_count = hw_breakpoint_used_count ();
10158 bp_count += target_ranged_break_num_registers ();
10159 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10160 bp_count, 0);
10161 if (can_use_bp < 0)
10162 error (_("Hardware breakpoints used exceeds limit."));
10163
10164 arg = skip_spaces (arg);
10165 if (arg == NULL || arg[0] == '\0')
10166 error(_("No address range specified."));
10167
10168 init_linespec_result (&canonical_start);
10169
10170 arg_start = arg;
10171 parse_breakpoint_sals (&arg, &canonical_start);
10172
10173 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10174
10175 if (arg[0] != ',')
10176 error (_("Too few arguments."));
10177 else if (VEC_empty (linespec_sals, canonical_start.sals))
10178 error (_("Could not find location of the beginning of the range."));
10179
10180 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10181
10182 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10183 || lsal_start->sals.nelts != 1)
10184 error (_("Cannot create a ranged breakpoint with multiple locations."));
10185
10186 sal_start = lsal_start->sals.sals[0];
10187 addr_string_start = savestring (arg_start, arg - arg_start);
10188 make_cleanup (xfree, addr_string_start);
10189
10190 arg++; /* Skip the comma. */
10191 arg = skip_spaces (arg);
10192
10193 /* Parse the end location. */
10194
10195 init_linespec_result (&canonical_end);
10196 arg_start = arg;
10197
10198 /* We call decode_line_full directly here instead of using
10199 parse_breakpoint_sals because we need to specify the start location's
10200 symtab and line as the default symtab and line for the end of the
10201 range. This makes it possible to have ranges like "foo.c:27, +14",
10202 where +14 means 14 lines from the start location. */
10203 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10204 sal_start.symtab, sal_start.line,
10205 &canonical_end, NULL, NULL);
10206
10207 make_cleanup_destroy_linespec_result (&canonical_end);
10208
10209 if (VEC_empty (linespec_sals, canonical_end.sals))
10210 error (_("Could not find location of the end of the range."));
10211
10212 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10213 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10214 || lsal_end->sals.nelts != 1)
10215 error (_("Cannot create a ranged breakpoint with multiple locations."));
10216
10217 sal_end = lsal_end->sals.sals[0];
10218 addr_string_end = savestring (arg_start, arg - arg_start);
10219 make_cleanup (xfree, addr_string_end);
10220
10221 end = find_breakpoint_range_end (sal_end);
10222 if (sal_start.pc > end)
10223 error (_("Invalid address range, end precedes start."));
10224
10225 length = end - sal_start.pc + 1;
10226 if (length < 0)
10227 /* Length overflowed. */
10228 error (_("Address range too large."));
10229 else if (length == 1)
10230 {
10231 /* This range is simple enough to be handled by
10232 the `hbreak' command. */
10233 hbreak_command (addr_string_start, 1);
10234
10235 do_cleanups (cleanup_bkpt);
10236
10237 return;
10238 }
10239
10240 /* Now set up the breakpoint. */
10241 b = set_raw_breakpoint (get_current_arch (), sal_start,
10242 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10243 set_breakpoint_count (breakpoint_count + 1);
10244 b->number = breakpoint_count;
10245 b->disposition = disp_donttouch;
10246 b->addr_string = xstrdup (addr_string_start);
10247 b->addr_string_range_end = xstrdup (addr_string_end);
10248 b->loc->length = length;
10249
10250 do_cleanups (cleanup_bkpt);
10251
10252 mention (b);
10253 observer_notify_breakpoint_created (b);
10254 update_global_location_list (1);
10255 }
10256
10257 /* Return non-zero if EXP is verified as constant. Returned zero
10258 means EXP is variable. Also the constant detection may fail for
10259 some constant expressions and in such case still falsely return
10260 zero. */
10261
10262 static int
10263 watchpoint_exp_is_const (const struct expression *exp)
10264 {
10265 int i = exp->nelts;
10266
10267 while (i > 0)
10268 {
10269 int oplenp, argsp;
10270
10271 /* We are only interested in the descriptor of each element. */
10272 operator_length (exp, i, &oplenp, &argsp);
10273 i -= oplenp;
10274
10275 switch (exp->elts[i].opcode)
10276 {
10277 case BINOP_ADD:
10278 case BINOP_SUB:
10279 case BINOP_MUL:
10280 case BINOP_DIV:
10281 case BINOP_REM:
10282 case BINOP_MOD:
10283 case BINOP_LSH:
10284 case BINOP_RSH:
10285 case BINOP_LOGICAL_AND:
10286 case BINOP_LOGICAL_OR:
10287 case BINOP_BITWISE_AND:
10288 case BINOP_BITWISE_IOR:
10289 case BINOP_BITWISE_XOR:
10290 case BINOP_EQUAL:
10291 case BINOP_NOTEQUAL:
10292 case BINOP_LESS:
10293 case BINOP_GTR:
10294 case BINOP_LEQ:
10295 case BINOP_GEQ:
10296 case BINOP_REPEAT:
10297 case BINOP_COMMA:
10298 case BINOP_EXP:
10299 case BINOP_MIN:
10300 case BINOP_MAX:
10301 case BINOP_INTDIV:
10302 case BINOP_CONCAT:
10303 case BINOP_IN:
10304 case BINOP_RANGE:
10305 case TERNOP_COND:
10306 case TERNOP_SLICE:
10307
10308 case OP_LONG:
10309 case OP_DOUBLE:
10310 case OP_DECFLOAT:
10311 case OP_LAST:
10312 case OP_COMPLEX:
10313 case OP_STRING:
10314 case OP_ARRAY:
10315 case OP_TYPE:
10316 case OP_TYPEOF:
10317 case OP_DECLTYPE:
10318 case OP_TYPEID:
10319 case OP_NAME:
10320 case OP_OBJC_NSSTRING:
10321
10322 case UNOP_NEG:
10323 case UNOP_LOGICAL_NOT:
10324 case UNOP_COMPLEMENT:
10325 case UNOP_ADDR:
10326 case UNOP_HIGH:
10327 case UNOP_CAST:
10328
10329 case UNOP_CAST_TYPE:
10330 case UNOP_REINTERPRET_CAST:
10331 case UNOP_DYNAMIC_CAST:
10332 /* Unary, binary and ternary operators: We have to check
10333 their operands. If they are constant, then so is the
10334 result of that operation. For instance, if A and B are
10335 determined to be constants, then so is "A + B".
10336
10337 UNOP_IND is one exception to the rule above, because the
10338 value of *ADDR is not necessarily a constant, even when
10339 ADDR is. */
10340 break;
10341
10342 case OP_VAR_VALUE:
10343 /* Check whether the associated symbol is a constant.
10344
10345 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10346 possible that a buggy compiler could mark a variable as
10347 constant even when it is not, and TYPE_CONST would return
10348 true in this case, while SYMBOL_CLASS wouldn't.
10349
10350 We also have to check for function symbols because they
10351 are always constant. */
10352 {
10353 struct symbol *s = exp->elts[i + 2].symbol;
10354
10355 if (SYMBOL_CLASS (s) != LOC_BLOCK
10356 && SYMBOL_CLASS (s) != LOC_CONST
10357 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10358 return 0;
10359 break;
10360 }
10361
10362 /* The default action is to return 0 because we are using
10363 the optimistic approach here: If we don't know something,
10364 then it is not a constant. */
10365 default:
10366 return 0;
10367 }
10368 }
10369
10370 return 1;
10371 }
10372
10373 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10374
10375 static void
10376 dtor_watchpoint (struct breakpoint *self)
10377 {
10378 struct watchpoint *w = (struct watchpoint *) self;
10379
10380 xfree (w->cond_exp);
10381 xfree (w->exp);
10382 xfree (w->exp_string);
10383 xfree (w->exp_string_reparse);
10384 value_free (w->val);
10385
10386 base_breakpoint_ops.dtor (self);
10387 }
10388
10389 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10390
10391 static void
10392 re_set_watchpoint (struct breakpoint *b)
10393 {
10394 struct watchpoint *w = (struct watchpoint *) b;
10395
10396 /* Watchpoint can be either on expression using entirely global
10397 variables, or it can be on local variables.
10398
10399 Watchpoints of the first kind are never auto-deleted, and even
10400 persist across program restarts. Since they can use variables
10401 from shared libraries, we need to reparse expression as libraries
10402 are loaded and unloaded.
10403
10404 Watchpoints on local variables can also change meaning as result
10405 of solib event. For example, if a watchpoint uses both a local
10406 and a global variables in expression, it's a local watchpoint,
10407 but unloading of a shared library will make the expression
10408 invalid. This is not a very common use case, but we still
10409 re-evaluate expression, to avoid surprises to the user.
10410
10411 Note that for local watchpoints, we re-evaluate it only if
10412 watchpoints frame id is still valid. If it's not, it means the
10413 watchpoint is out of scope and will be deleted soon. In fact,
10414 I'm not sure we'll ever be called in this case.
10415
10416 If a local watchpoint's frame id is still valid, then
10417 w->exp_valid_block is likewise valid, and we can safely use it.
10418
10419 Don't do anything about disabled watchpoints, since they will be
10420 reevaluated again when enabled. */
10421 update_watchpoint (w, 1 /* reparse */);
10422 }
10423
10424 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10425
10426 static int
10427 insert_watchpoint (struct bp_location *bl)
10428 {
10429 struct watchpoint *w = (struct watchpoint *) bl->owner;
10430 int length = w->exact ? 1 : bl->length;
10431
10432 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10433 w->cond_exp);
10434 }
10435
10436 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10437
10438 static int
10439 remove_watchpoint (struct bp_location *bl)
10440 {
10441 struct watchpoint *w = (struct watchpoint *) bl->owner;
10442 int length = w->exact ? 1 : bl->length;
10443
10444 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10445 w->cond_exp);
10446 }
10447
10448 static int
10449 breakpoint_hit_watchpoint (const struct bp_location *bl,
10450 struct address_space *aspace, CORE_ADDR bp_addr,
10451 const struct target_waitstatus *ws)
10452 {
10453 struct breakpoint *b = bl->owner;
10454 struct watchpoint *w = (struct watchpoint *) b;
10455
10456 /* Continuable hardware watchpoints are treated as non-existent if the
10457 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10458 some data address). Otherwise gdb won't stop on a break instruction
10459 in the code (not from a breakpoint) when a hardware watchpoint has
10460 been defined. Also skip watchpoints which we know did not trigger
10461 (did not match the data address). */
10462 if (is_hardware_watchpoint (b)
10463 && w->watchpoint_triggered == watch_triggered_no)
10464 return 0;
10465
10466 return 1;
10467 }
10468
10469 static void
10470 check_status_watchpoint (bpstat bs)
10471 {
10472 gdb_assert (is_watchpoint (bs->breakpoint_at));
10473
10474 bpstat_check_watchpoint (bs);
10475 }
10476
10477 /* Implement the "resources_needed" breakpoint_ops method for
10478 hardware watchpoints. */
10479
10480 static int
10481 resources_needed_watchpoint (const struct bp_location *bl)
10482 {
10483 struct watchpoint *w = (struct watchpoint *) bl->owner;
10484 int length = w->exact? 1 : bl->length;
10485
10486 return target_region_ok_for_hw_watchpoint (bl->address, length);
10487 }
10488
10489 /* Implement the "works_in_software_mode" breakpoint_ops method for
10490 hardware watchpoints. */
10491
10492 static int
10493 works_in_software_mode_watchpoint (const struct breakpoint *b)
10494 {
10495 /* Read and access watchpoints only work with hardware support. */
10496 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10497 }
10498
10499 static enum print_stop_action
10500 print_it_watchpoint (bpstat bs)
10501 {
10502 struct cleanup *old_chain;
10503 struct breakpoint *b;
10504 struct ui_file *stb;
10505 enum print_stop_action result;
10506 struct watchpoint *w;
10507 struct ui_out *uiout = current_uiout;
10508
10509 gdb_assert (bs->bp_location_at != NULL);
10510
10511 b = bs->breakpoint_at;
10512 w = (struct watchpoint *) b;
10513
10514 stb = mem_fileopen ();
10515 old_chain = make_cleanup_ui_file_delete (stb);
10516
10517 switch (b->type)
10518 {
10519 case bp_watchpoint:
10520 case bp_hardware_watchpoint:
10521 annotate_watchpoint (b->number);
10522 if (ui_out_is_mi_like_p (uiout))
10523 ui_out_field_string
10524 (uiout, "reason",
10525 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10526 mention (b);
10527 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10528 ui_out_text (uiout, "\nOld value = ");
10529 watchpoint_value_print (bs->old_val, stb);
10530 ui_out_field_stream (uiout, "old", stb);
10531 ui_out_text (uiout, "\nNew value = ");
10532 watchpoint_value_print (w->val, stb);
10533 ui_out_field_stream (uiout, "new", stb);
10534 ui_out_text (uiout, "\n");
10535 /* More than one watchpoint may have been triggered. */
10536 result = PRINT_UNKNOWN;
10537 break;
10538
10539 case bp_read_watchpoint:
10540 if (ui_out_is_mi_like_p (uiout))
10541 ui_out_field_string
10542 (uiout, "reason",
10543 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10544 mention (b);
10545 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10546 ui_out_text (uiout, "\nValue = ");
10547 watchpoint_value_print (w->val, stb);
10548 ui_out_field_stream (uiout, "value", stb);
10549 ui_out_text (uiout, "\n");
10550 result = PRINT_UNKNOWN;
10551 break;
10552
10553 case bp_access_watchpoint:
10554 if (bs->old_val != NULL)
10555 {
10556 annotate_watchpoint (b->number);
10557 if (ui_out_is_mi_like_p (uiout))
10558 ui_out_field_string
10559 (uiout, "reason",
10560 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10561 mention (b);
10562 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10563 ui_out_text (uiout, "\nOld value = ");
10564 watchpoint_value_print (bs->old_val, stb);
10565 ui_out_field_stream (uiout, "old", stb);
10566 ui_out_text (uiout, "\nNew value = ");
10567 }
10568 else
10569 {
10570 mention (b);
10571 if (ui_out_is_mi_like_p (uiout))
10572 ui_out_field_string
10573 (uiout, "reason",
10574 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10575 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10576 ui_out_text (uiout, "\nValue = ");
10577 }
10578 watchpoint_value_print (w->val, stb);
10579 ui_out_field_stream (uiout, "new", stb);
10580 ui_out_text (uiout, "\n");
10581 result = PRINT_UNKNOWN;
10582 break;
10583 default:
10584 result = PRINT_UNKNOWN;
10585 }
10586
10587 do_cleanups (old_chain);
10588 return result;
10589 }
10590
10591 /* Implement the "print_mention" breakpoint_ops method for hardware
10592 watchpoints. */
10593
10594 static void
10595 print_mention_watchpoint (struct breakpoint *b)
10596 {
10597 struct cleanup *ui_out_chain;
10598 struct watchpoint *w = (struct watchpoint *) b;
10599 struct ui_out *uiout = current_uiout;
10600
10601 switch (b->type)
10602 {
10603 case bp_watchpoint:
10604 ui_out_text (uiout, "Watchpoint ");
10605 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10606 break;
10607 case bp_hardware_watchpoint:
10608 ui_out_text (uiout, "Hardware watchpoint ");
10609 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10610 break;
10611 case bp_read_watchpoint:
10612 ui_out_text (uiout, "Hardware read watchpoint ");
10613 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10614 break;
10615 case bp_access_watchpoint:
10616 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10617 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10618 break;
10619 default:
10620 internal_error (__FILE__, __LINE__,
10621 _("Invalid hardware watchpoint type."));
10622 }
10623
10624 ui_out_field_int (uiout, "number", b->number);
10625 ui_out_text (uiout, ": ");
10626 ui_out_field_string (uiout, "exp", w->exp_string);
10627 do_cleanups (ui_out_chain);
10628 }
10629
10630 /* Implement the "print_recreate" breakpoint_ops method for
10631 watchpoints. */
10632
10633 static void
10634 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10635 {
10636 struct watchpoint *w = (struct watchpoint *) b;
10637
10638 switch (b->type)
10639 {
10640 case bp_watchpoint:
10641 case bp_hardware_watchpoint:
10642 fprintf_unfiltered (fp, "watch");
10643 break;
10644 case bp_read_watchpoint:
10645 fprintf_unfiltered (fp, "rwatch");
10646 break;
10647 case bp_access_watchpoint:
10648 fprintf_unfiltered (fp, "awatch");
10649 break;
10650 default:
10651 internal_error (__FILE__, __LINE__,
10652 _("Invalid watchpoint type."));
10653 }
10654
10655 fprintf_unfiltered (fp, " %s", w->exp_string);
10656 print_recreate_thread (b, fp);
10657 }
10658
10659 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10660
10661 static struct breakpoint_ops watchpoint_breakpoint_ops;
10662
10663 /* Implement the "insert" breakpoint_ops method for
10664 masked hardware watchpoints. */
10665
10666 static int
10667 insert_masked_watchpoint (struct bp_location *bl)
10668 {
10669 struct watchpoint *w = (struct watchpoint *) bl->owner;
10670
10671 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10672 bl->watchpoint_type);
10673 }
10674
10675 /* Implement the "remove" breakpoint_ops method for
10676 masked hardware watchpoints. */
10677
10678 static int
10679 remove_masked_watchpoint (struct bp_location *bl)
10680 {
10681 struct watchpoint *w = (struct watchpoint *) bl->owner;
10682
10683 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10684 bl->watchpoint_type);
10685 }
10686
10687 /* Implement the "resources_needed" breakpoint_ops method for
10688 masked hardware watchpoints. */
10689
10690 static int
10691 resources_needed_masked_watchpoint (const struct bp_location *bl)
10692 {
10693 struct watchpoint *w = (struct watchpoint *) bl->owner;
10694
10695 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10696 }
10697
10698 /* Implement the "works_in_software_mode" breakpoint_ops method for
10699 masked hardware watchpoints. */
10700
10701 static int
10702 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10703 {
10704 return 0;
10705 }
10706
10707 /* Implement the "print_it" breakpoint_ops method for
10708 masked hardware watchpoints. */
10709
10710 static enum print_stop_action
10711 print_it_masked_watchpoint (bpstat bs)
10712 {
10713 struct breakpoint *b = bs->breakpoint_at;
10714 struct ui_out *uiout = current_uiout;
10715
10716 /* Masked watchpoints have only one location. */
10717 gdb_assert (b->loc && b->loc->next == NULL);
10718
10719 switch (b->type)
10720 {
10721 case bp_hardware_watchpoint:
10722 annotate_watchpoint (b->number);
10723 if (ui_out_is_mi_like_p (uiout))
10724 ui_out_field_string
10725 (uiout, "reason",
10726 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10727 break;
10728
10729 case bp_read_watchpoint:
10730 if (ui_out_is_mi_like_p (uiout))
10731 ui_out_field_string
10732 (uiout, "reason",
10733 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10734 break;
10735
10736 case bp_access_watchpoint:
10737 if (ui_out_is_mi_like_p (uiout))
10738 ui_out_field_string
10739 (uiout, "reason",
10740 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10741 break;
10742 default:
10743 internal_error (__FILE__, __LINE__,
10744 _("Invalid hardware watchpoint type."));
10745 }
10746
10747 mention (b);
10748 ui_out_text (uiout, _("\n\
10749 Check the underlying instruction at PC for the memory\n\
10750 address and value which triggered this watchpoint.\n"));
10751 ui_out_text (uiout, "\n");
10752
10753 /* More than one watchpoint may have been triggered. */
10754 return PRINT_UNKNOWN;
10755 }
10756
10757 /* Implement the "print_one_detail" breakpoint_ops method for
10758 masked hardware watchpoints. */
10759
10760 static void
10761 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10762 struct ui_out *uiout)
10763 {
10764 struct watchpoint *w = (struct watchpoint *) b;
10765
10766 /* Masked watchpoints have only one location. */
10767 gdb_assert (b->loc && b->loc->next == NULL);
10768
10769 ui_out_text (uiout, "\tmask ");
10770 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10771 ui_out_text (uiout, "\n");
10772 }
10773
10774 /* Implement the "print_mention" breakpoint_ops method for
10775 masked hardware watchpoints. */
10776
10777 static void
10778 print_mention_masked_watchpoint (struct breakpoint *b)
10779 {
10780 struct watchpoint *w = (struct watchpoint *) b;
10781 struct ui_out *uiout = current_uiout;
10782 struct cleanup *ui_out_chain;
10783
10784 switch (b->type)
10785 {
10786 case bp_hardware_watchpoint:
10787 ui_out_text (uiout, "Masked hardware watchpoint ");
10788 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10789 break;
10790 case bp_read_watchpoint:
10791 ui_out_text (uiout, "Masked hardware read watchpoint ");
10792 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10793 break;
10794 case bp_access_watchpoint:
10795 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10796 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10797 break;
10798 default:
10799 internal_error (__FILE__, __LINE__,
10800 _("Invalid hardware watchpoint type."));
10801 }
10802
10803 ui_out_field_int (uiout, "number", b->number);
10804 ui_out_text (uiout, ": ");
10805 ui_out_field_string (uiout, "exp", w->exp_string);
10806 do_cleanups (ui_out_chain);
10807 }
10808
10809 /* Implement the "print_recreate" breakpoint_ops method for
10810 masked hardware watchpoints. */
10811
10812 static void
10813 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10814 {
10815 struct watchpoint *w = (struct watchpoint *) b;
10816 char tmp[40];
10817
10818 switch (b->type)
10819 {
10820 case bp_hardware_watchpoint:
10821 fprintf_unfiltered (fp, "watch");
10822 break;
10823 case bp_read_watchpoint:
10824 fprintf_unfiltered (fp, "rwatch");
10825 break;
10826 case bp_access_watchpoint:
10827 fprintf_unfiltered (fp, "awatch");
10828 break;
10829 default:
10830 internal_error (__FILE__, __LINE__,
10831 _("Invalid hardware watchpoint type."));
10832 }
10833
10834 sprintf_vma (tmp, w->hw_wp_mask);
10835 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10836 print_recreate_thread (b, fp);
10837 }
10838
10839 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10840
10841 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10842
10843 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10844
10845 static int
10846 is_masked_watchpoint (const struct breakpoint *b)
10847 {
10848 return b->ops == &masked_watchpoint_breakpoint_ops;
10849 }
10850
10851 /* accessflag: hw_write: watch write,
10852 hw_read: watch read,
10853 hw_access: watch access (read or write) */
10854 static void
10855 watch_command_1 (const char *arg, int accessflag, int from_tty,
10856 int just_location, int internal)
10857 {
10858 volatile struct gdb_exception e;
10859 struct breakpoint *b, *scope_breakpoint = NULL;
10860 struct expression *exp;
10861 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10862 struct value *val, *mark, *result;
10863 struct frame_info *frame;
10864 const char *exp_start = NULL;
10865 const char *exp_end = NULL;
10866 const char *tok, *end_tok;
10867 int toklen = -1;
10868 const char *cond_start = NULL;
10869 const char *cond_end = NULL;
10870 enum bptype bp_type;
10871 int thread = -1;
10872 int pc = 0;
10873 /* Flag to indicate whether we are going to use masks for
10874 the hardware watchpoint. */
10875 int use_mask = 0;
10876 CORE_ADDR mask = 0;
10877 struct watchpoint *w;
10878 char *expression;
10879 struct cleanup *back_to;
10880
10881 /* Make sure that we actually have parameters to parse. */
10882 if (arg != NULL && arg[0] != '\0')
10883 {
10884 const char *value_start;
10885
10886 exp_end = arg + strlen (arg);
10887
10888 /* Look for "parameter value" pairs at the end
10889 of the arguments string. */
10890 for (tok = exp_end - 1; tok > arg; tok--)
10891 {
10892 /* Skip whitespace at the end of the argument list. */
10893 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10894 tok--;
10895
10896 /* Find the beginning of the last token.
10897 This is the value of the parameter. */
10898 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10899 tok--;
10900 value_start = tok + 1;
10901
10902 /* Skip whitespace. */
10903 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10904 tok--;
10905
10906 end_tok = tok;
10907
10908 /* Find the beginning of the second to last token.
10909 This is the parameter itself. */
10910 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10911 tok--;
10912 tok++;
10913 toklen = end_tok - tok + 1;
10914
10915 if (toklen == 6 && !strncmp (tok, "thread", 6))
10916 {
10917 /* At this point we've found a "thread" token, which means
10918 the user is trying to set a watchpoint that triggers
10919 only in a specific thread. */
10920 char *endp;
10921
10922 if (thread != -1)
10923 error(_("You can specify only one thread."));
10924
10925 /* Extract the thread ID from the next token. */
10926 thread = strtol (value_start, &endp, 0);
10927
10928 /* Check if the user provided a valid numeric value for the
10929 thread ID. */
10930 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10931 error (_("Invalid thread ID specification %s."), value_start);
10932
10933 /* Check if the thread actually exists. */
10934 if (!valid_thread_id (thread))
10935 invalid_thread_id_error (thread);
10936 }
10937 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10938 {
10939 /* We've found a "mask" token, which means the user wants to
10940 create a hardware watchpoint that is going to have the mask
10941 facility. */
10942 struct value *mask_value, *mark;
10943
10944 if (use_mask)
10945 error(_("You can specify only one mask."));
10946
10947 use_mask = just_location = 1;
10948
10949 mark = value_mark ();
10950 mask_value = parse_to_comma_and_eval (&value_start);
10951 mask = value_as_address (mask_value);
10952 value_free_to_mark (mark);
10953 }
10954 else
10955 /* We didn't recognize what we found. We should stop here. */
10956 break;
10957
10958 /* Truncate the string and get rid of the "parameter value" pair before
10959 the arguments string is parsed by the parse_exp_1 function. */
10960 exp_end = tok;
10961 }
10962 }
10963 else
10964 exp_end = arg;
10965
10966 /* Parse the rest of the arguments. From here on out, everything
10967 is in terms of a newly allocated string instead of the original
10968 ARG. */
10969 innermost_block = NULL;
10970 expression = savestring (arg, exp_end - arg);
10971 back_to = make_cleanup (xfree, expression);
10972 exp_start = arg = expression;
10973 exp = parse_exp_1 (&arg, 0, 0, 0);
10974 exp_end = arg;
10975 /* Remove trailing whitespace from the expression before saving it.
10976 This makes the eventual display of the expression string a bit
10977 prettier. */
10978 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10979 --exp_end;
10980
10981 /* Checking if the expression is not constant. */
10982 if (watchpoint_exp_is_const (exp))
10983 {
10984 int len;
10985
10986 len = exp_end - exp_start;
10987 while (len > 0 && isspace (exp_start[len - 1]))
10988 len--;
10989 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10990 }
10991
10992 exp_valid_block = innermost_block;
10993 mark = value_mark ();
10994 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10995
10996 if (just_location)
10997 {
10998 int ret;
10999
11000 exp_valid_block = NULL;
11001 val = value_addr (result);
11002 release_value (val);
11003 value_free_to_mark (mark);
11004
11005 if (use_mask)
11006 {
11007 ret = target_masked_watch_num_registers (value_as_address (val),
11008 mask);
11009 if (ret == -1)
11010 error (_("This target does not support masked watchpoints."));
11011 else if (ret == -2)
11012 error (_("Invalid mask or memory region."));
11013 }
11014 }
11015 else if (val != NULL)
11016 release_value (val);
11017
11018 tok = skip_spaces_const (arg);
11019 end_tok = skip_to_space_const (tok);
11020
11021 toklen = end_tok - tok;
11022 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11023 {
11024 struct expression *cond;
11025
11026 innermost_block = NULL;
11027 tok = cond_start = end_tok + 1;
11028 cond = parse_exp_1 (&tok, 0, 0, 0);
11029
11030 /* The watchpoint expression may not be local, but the condition
11031 may still be. E.g.: `watch global if local > 0'. */
11032 cond_exp_valid_block = innermost_block;
11033
11034 xfree (cond);
11035 cond_end = tok;
11036 }
11037 if (*tok)
11038 error (_("Junk at end of command."));
11039
11040 if (accessflag == hw_read)
11041 bp_type = bp_read_watchpoint;
11042 else if (accessflag == hw_access)
11043 bp_type = bp_access_watchpoint;
11044 else
11045 bp_type = bp_hardware_watchpoint;
11046
11047 frame = block_innermost_frame (exp_valid_block);
11048
11049 /* If the expression is "local", then set up a "watchpoint scope"
11050 breakpoint at the point where we've left the scope of the watchpoint
11051 expression. Create the scope breakpoint before the watchpoint, so
11052 that we will encounter it first in bpstat_stop_status. */
11053 if (exp_valid_block && frame)
11054 {
11055 if (frame_id_p (frame_unwind_caller_id (frame)))
11056 {
11057 scope_breakpoint
11058 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11059 frame_unwind_caller_pc (frame),
11060 bp_watchpoint_scope,
11061 &momentary_breakpoint_ops);
11062
11063 scope_breakpoint->enable_state = bp_enabled;
11064
11065 /* Automatically delete the breakpoint when it hits. */
11066 scope_breakpoint->disposition = disp_del;
11067
11068 /* Only break in the proper frame (help with recursion). */
11069 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11070
11071 /* Set the address at which we will stop. */
11072 scope_breakpoint->loc->gdbarch
11073 = frame_unwind_caller_arch (frame);
11074 scope_breakpoint->loc->requested_address
11075 = frame_unwind_caller_pc (frame);
11076 scope_breakpoint->loc->address
11077 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11078 scope_breakpoint->loc->requested_address,
11079 scope_breakpoint->type);
11080 }
11081 }
11082
11083 /* Now set up the breakpoint. */
11084
11085 w = XCNEW (struct watchpoint);
11086 b = &w->base;
11087 if (use_mask)
11088 init_raw_breakpoint_without_location (b, NULL, bp_type,
11089 &masked_watchpoint_breakpoint_ops);
11090 else
11091 init_raw_breakpoint_without_location (b, NULL, bp_type,
11092 &watchpoint_breakpoint_ops);
11093 b->thread = thread;
11094 b->disposition = disp_donttouch;
11095 b->pspace = current_program_space;
11096 w->exp = exp;
11097 w->exp_valid_block = exp_valid_block;
11098 w->cond_exp_valid_block = cond_exp_valid_block;
11099 if (just_location)
11100 {
11101 struct type *t = value_type (val);
11102 CORE_ADDR addr = value_as_address (val);
11103 char *name;
11104
11105 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11106 name = type_to_string (t);
11107
11108 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11109 core_addr_to_string (addr));
11110 xfree (name);
11111
11112 w->exp_string = xstrprintf ("-location %.*s",
11113 (int) (exp_end - exp_start), exp_start);
11114
11115 /* The above expression is in C. */
11116 b->language = language_c;
11117 }
11118 else
11119 w->exp_string = savestring (exp_start, exp_end - exp_start);
11120
11121 if (use_mask)
11122 {
11123 w->hw_wp_mask = mask;
11124 }
11125 else
11126 {
11127 w->val = val;
11128 w->val_valid = 1;
11129 }
11130
11131 if (cond_start)
11132 b->cond_string = savestring (cond_start, cond_end - cond_start);
11133 else
11134 b->cond_string = 0;
11135
11136 if (frame)
11137 {
11138 w->watchpoint_frame = get_frame_id (frame);
11139 w->watchpoint_thread = inferior_ptid;
11140 }
11141 else
11142 {
11143 w->watchpoint_frame = null_frame_id;
11144 w->watchpoint_thread = null_ptid;
11145 }
11146
11147 if (scope_breakpoint != NULL)
11148 {
11149 /* The scope breakpoint is related to the watchpoint. We will
11150 need to act on them together. */
11151 b->related_breakpoint = scope_breakpoint;
11152 scope_breakpoint->related_breakpoint = b;
11153 }
11154
11155 if (!just_location)
11156 value_free_to_mark (mark);
11157
11158 TRY_CATCH (e, RETURN_MASK_ALL)
11159 {
11160 /* Finally update the new watchpoint. This creates the locations
11161 that should be inserted. */
11162 update_watchpoint (w, 1);
11163 }
11164 if (e.reason < 0)
11165 {
11166 delete_breakpoint (b);
11167 throw_exception (e);
11168 }
11169
11170 install_breakpoint (internal, b, 1);
11171 do_cleanups (back_to);
11172 }
11173
11174 /* Return count of debug registers needed to watch the given expression.
11175 If the watchpoint cannot be handled in hardware return zero. */
11176
11177 static int
11178 can_use_hardware_watchpoint (struct value *v)
11179 {
11180 int found_memory_cnt = 0;
11181 struct value *head = v;
11182
11183 /* Did the user specifically forbid us to use hardware watchpoints? */
11184 if (!can_use_hw_watchpoints)
11185 return 0;
11186
11187 /* Make sure that the value of the expression depends only upon
11188 memory contents, and values computed from them within GDB. If we
11189 find any register references or function calls, we can't use a
11190 hardware watchpoint.
11191
11192 The idea here is that evaluating an expression generates a series
11193 of values, one holding the value of every subexpression. (The
11194 expression a*b+c has five subexpressions: a, b, a*b, c, and
11195 a*b+c.) GDB's values hold almost enough information to establish
11196 the criteria given above --- they identify memory lvalues,
11197 register lvalues, computed values, etcetera. So we can evaluate
11198 the expression, and then scan the chain of values that leaves
11199 behind to decide whether we can detect any possible change to the
11200 expression's final value using only hardware watchpoints.
11201
11202 However, I don't think that the values returned by inferior
11203 function calls are special in any way. So this function may not
11204 notice that an expression involving an inferior function call
11205 can't be watched with hardware watchpoints. FIXME. */
11206 for (; v; v = value_next (v))
11207 {
11208 if (VALUE_LVAL (v) == lval_memory)
11209 {
11210 if (v != head && value_lazy (v))
11211 /* A lazy memory lvalue in the chain is one that GDB never
11212 needed to fetch; we either just used its address (e.g.,
11213 `a' in `a.b') or we never needed it at all (e.g., `a'
11214 in `a,b'). This doesn't apply to HEAD; if that is
11215 lazy then it was not readable, but watch it anyway. */
11216 ;
11217 else
11218 {
11219 /* Ahh, memory we actually used! Check if we can cover
11220 it with hardware watchpoints. */
11221 struct type *vtype = check_typedef (value_type (v));
11222
11223 /* We only watch structs and arrays if user asked for it
11224 explicitly, never if they just happen to appear in a
11225 middle of some value chain. */
11226 if (v == head
11227 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11228 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11229 {
11230 CORE_ADDR vaddr = value_address (v);
11231 int len;
11232 int num_regs;
11233
11234 len = (target_exact_watchpoints
11235 && is_scalar_type_recursive (vtype))?
11236 1 : TYPE_LENGTH (value_type (v));
11237
11238 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11239 if (!num_regs)
11240 return 0;
11241 else
11242 found_memory_cnt += num_regs;
11243 }
11244 }
11245 }
11246 else if (VALUE_LVAL (v) != not_lval
11247 && deprecated_value_modifiable (v) == 0)
11248 return 0; /* These are values from the history (e.g., $1). */
11249 else if (VALUE_LVAL (v) == lval_register)
11250 return 0; /* Cannot watch a register with a HW watchpoint. */
11251 }
11252
11253 /* The expression itself looks suitable for using a hardware
11254 watchpoint, but give the target machine a chance to reject it. */
11255 return found_memory_cnt;
11256 }
11257
11258 void
11259 watch_command_wrapper (char *arg, int from_tty, int internal)
11260 {
11261 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11262 }
11263
11264 /* A helper function that looks for the "-location" argument and then
11265 calls watch_command_1. */
11266
11267 static void
11268 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11269 {
11270 int just_location = 0;
11271
11272 if (arg
11273 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11274 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11275 {
11276 arg = skip_spaces (arg);
11277 just_location = 1;
11278 }
11279
11280 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11281 }
11282
11283 static void
11284 watch_command (char *arg, int from_tty)
11285 {
11286 watch_maybe_just_location (arg, hw_write, from_tty);
11287 }
11288
11289 void
11290 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11291 {
11292 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11293 }
11294
11295 static void
11296 rwatch_command (char *arg, int from_tty)
11297 {
11298 watch_maybe_just_location (arg, hw_read, from_tty);
11299 }
11300
11301 void
11302 awatch_command_wrapper (char *arg, int from_tty, int internal)
11303 {
11304 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11305 }
11306
11307 static void
11308 awatch_command (char *arg, int from_tty)
11309 {
11310 watch_maybe_just_location (arg, hw_access, from_tty);
11311 }
11312 \f
11313
11314 /* Helper routines for the until_command routine in infcmd.c. Here
11315 because it uses the mechanisms of breakpoints. */
11316
11317 struct until_break_command_continuation_args
11318 {
11319 struct breakpoint *breakpoint;
11320 struct breakpoint *breakpoint2;
11321 int thread_num;
11322 };
11323
11324 /* This function is called by fetch_inferior_event via the
11325 cmd_continuation pointer, to complete the until command. It takes
11326 care of cleaning up the temporary breakpoints set up by the until
11327 command. */
11328 static void
11329 until_break_command_continuation (void *arg, int err)
11330 {
11331 struct until_break_command_continuation_args *a = arg;
11332
11333 delete_breakpoint (a->breakpoint);
11334 if (a->breakpoint2)
11335 delete_breakpoint (a->breakpoint2);
11336 delete_longjmp_breakpoint (a->thread_num);
11337 }
11338
11339 void
11340 until_break_command (char *arg, int from_tty, int anywhere)
11341 {
11342 struct symtabs_and_lines sals;
11343 struct symtab_and_line sal;
11344 struct frame_info *frame;
11345 struct gdbarch *frame_gdbarch;
11346 struct frame_id stack_frame_id;
11347 struct frame_id caller_frame_id;
11348 struct breakpoint *breakpoint;
11349 struct breakpoint *breakpoint2 = NULL;
11350 struct cleanup *old_chain;
11351 int thread;
11352 struct thread_info *tp;
11353
11354 clear_proceed_status ();
11355
11356 /* Set a breakpoint where the user wants it and at return from
11357 this function. */
11358
11359 if (last_displayed_sal_is_valid ())
11360 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11361 get_last_displayed_symtab (),
11362 get_last_displayed_line ());
11363 else
11364 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11365 (struct symtab *) NULL, 0);
11366
11367 if (sals.nelts != 1)
11368 error (_("Couldn't get information on specified line."));
11369
11370 sal = sals.sals[0];
11371 xfree (sals.sals); /* malloc'd, so freed. */
11372
11373 if (*arg)
11374 error (_("Junk at end of arguments."));
11375
11376 resolve_sal_pc (&sal);
11377
11378 tp = inferior_thread ();
11379 thread = tp->num;
11380
11381 old_chain = make_cleanup (null_cleanup, NULL);
11382
11383 /* Note linespec handling above invalidates the frame chain.
11384 Installing a breakpoint also invalidates the frame chain (as it
11385 may need to switch threads), so do any frame handling before
11386 that. */
11387
11388 frame = get_selected_frame (NULL);
11389 frame_gdbarch = get_frame_arch (frame);
11390 stack_frame_id = get_stack_frame_id (frame);
11391 caller_frame_id = frame_unwind_caller_id (frame);
11392
11393 /* Keep within the current frame, or in frames called by the current
11394 one. */
11395
11396 if (frame_id_p (caller_frame_id))
11397 {
11398 struct symtab_and_line sal2;
11399
11400 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11401 sal2.pc = frame_unwind_caller_pc (frame);
11402 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11403 sal2,
11404 caller_frame_id,
11405 bp_until);
11406 make_cleanup_delete_breakpoint (breakpoint2);
11407
11408 set_longjmp_breakpoint (tp, caller_frame_id);
11409 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11410 }
11411
11412 /* set_momentary_breakpoint could invalidate FRAME. */
11413 frame = NULL;
11414
11415 if (anywhere)
11416 /* If the user told us to continue until a specified location,
11417 we don't specify a frame at which we need to stop. */
11418 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11419 null_frame_id, bp_until);
11420 else
11421 /* Otherwise, specify the selected frame, because we want to stop
11422 only at the very same frame. */
11423 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11424 stack_frame_id, bp_until);
11425 make_cleanup_delete_breakpoint (breakpoint);
11426
11427 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11428
11429 /* If we are running asynchronously, and proceed call above has
11430 actually managed to start the target, arrange for breakpoints to
11431 be deleted when the target stops. Otherwise, we're already
11432 stopped and delete breakpoints via cleanup chain. */
11433
11434 if (target_can_async_p () && is_running (inferior_ptid))
11435 {
11436 struct until_break_command_continuation_args *args;
11437 args = xmalloc (sizeof (*args));
11438
11439 args->breakpoint = breakpoint;
11440 args->breakpoint2 = breakpoint2;
11441 args->thread_num = thread;
11442
11443 discard_cleanups (old_chain);
11444 add_continuation (inferior_thread (),
11445 until_break_command_continuation, args,
11446 xfree);
11447 }
11448 else
11449 do_cleanups (old_chain);
11450 }
11451
11452 /* This function attempts to parse an optional "if <cond>" clause
11453 from the arg string. If one is not found, it returns NULL.
11454
11455 Else, it returns a pointer to the condition string. (It does not
11456 attempt to evaluate the string against a particular block.) And,
11457 it updates arg to point to the first character following the parsed
11458 if clause in the arg string. */
11459
11460 char *
11461 ep_parse_optional_if_clause (char **arg)
11462 {
11463 char *cond_string;
11464
11465 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11466 return NULL;
11467
11468 /* Skip the "if" keyword. */
11469 (*arg) += 2;
11470
11471 /* Skip any extra leading whitespace, and record the start of the
11472 condition string. */
11473 *arg = skip_spaces (*arg);
11474 cond_string = *arg;
11475
11476 /* Assume that the condition occupies the remainder of the arg
11477 string. */
11478 (*arg) += strlen (cond_string);
11479
11480 return cond_string;
11481 }
11482
11483 /* Commands to deal with catching events, such as signals, exceptions,
11484 process start/exit, etc. */
11485
11486 typedef enum
11487 {
11488 catch_fork_temporary, catch_vfork_temporary,
11489 catch_fork_permanent, catch_vfork_permanent
11490 }
11491 catch_fork_kind;
11492
11493 static void
11494 catch_fork_command_1 (char *arg, int from_tty,
11495 struct cmd_list_element *command)
11496 {
11497 struct gdbarch *gdbarch = get_current_arch ();
11498 char *cond_string = NULL;
11499 catch_fork_kind fork_kind;
11500 int tempflag;
11501
11502 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11503 tempflag = (fork_kind == catch_fork_temporary
11504 || fork_kind == catch_vfork_temporary);
11505
11506 if (!arg)
11507 arg = "";
11508 arg = skip_spaces (arg);
11509
11510 /* The allowed syntax is:
11511 catch [v]fork
11512 catch [v]fork if <cond>
11513
11514 First, check if there's an if clause. */
11515 cond_string = ep_parse_optional_if_clause (&arg);
11516
11517 if ((*arg != '\0') && !isspace (*arg))
11518 error (_("Junk at end of arguments."));
11519
11520 /* If this target supports it, create a fork or vfork catchpoint
11521 and enable reporting of such events. */
11522 switch (fork_kind)
11523 {
11524 case catch_fork_temporary:
11525 case catch_fork_permanent:
11526 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11527 &catch_fork_breakpoint_ops);
11528 break;
11529 case catch_vfork_temporary:
11530 case catch_vfork_permanent:
11531 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11532 &catch_vfork_breakpoint_ops);
11533 break;
11534 default:
11535 error (_("unsupported or unknown fork kind; cannot catch it"));
11536 break;
11537 }
11538 }
11539
11540 static void
11541 catch_exec_command_1 (char *arg, int from_tty,
11542 struct cmd_list_element *command)
11543 {
11544 struct exec_catchpoint *c;
11545 struct gdbarch *gdbarch = get_current_arch ();
11546 int tempflag;
11547 char *cond_string = NULL;
11548
11549 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11550
11551 if (!arg)
11552 arg = "";
11553 arg = skip_spaces (arg);
11554
11555 /* The allowed syntax is:
11556 catch exec
11557 catch exec if <cond>
11558
11559 First, check if there's an if clause. */
11560 cond_string = ep_parse_optional_if_clause (&arg);
11561
11562 if ((*arg != '\0') && !isspace (*arg))
11563 error (_("Junk at end of arguments."));
11564
11565 c = XNEW (struct exec_catchpoint);
11566 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11567 &catch_exec_breakpoint_ops);
11568 c->exec_pathname = NULL;
11569
11570 install_breakpoint (0, &c->base, 1);
11571 }
11572
11573 void
11574 init_ada_exception_breakpoint (struct breakpoint *b,
11575 struct gdbarch *gdbarch,
11576 struct symtab_and_line sal,
11577 char *addr_string,
11578 const struct breakpoint_ops *ops,
11579 int tempflag,
11580 int from_tty)
11581 {
11582 if (from_tty)
11583 {
11584 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11585 if (!loc_gdbarch)
11586 loc_gdbarch = gdbarch;
11587
11588 describe_other_breakpoints (loc_gdbarch,
11589 sal.pspace, sal.pc, sal.section, -1);
11590 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11591 version for exception catchpoints, because two catchpoints
11592 used for different exception names will use the same address.
11593 In this case, a "breakpoint ... also set at..." warning is
11594 unproductive. Besides, the warning phrasing is also a bit
11595 inappropriate, we should use the word catchpoint, and tell
11596 the user what type of catchpoint it is. The above is good
11597 enough for now, though. */
11598 }
11599
11600 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11601
11602 b->enable_state = bp_enabled;
11603 b->disposition = tempflag ? disp_del : disp_donttouch;
11604 b->addr_string = addr_string;
11605 b->language = language_ada;
11606 }
11607
11608 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11609 filter list, or NULL if no filtering is required. */
11610 static VEC(int) *
11611 catch_syscall_split_args (char *arg)
11612 {
11613 VEC(int) *result = NULL;
11614 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11615
11616 while (*arg != '\0')
11617 {
11618 int i, syscall_number;
11619 char *endptr;
11620 char cur_name[128];
11621 struct syscall s;
11622
11623 /* Skip whitespace. */
11624 arg = skip_spaces (arg);
11625
11626 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11627 cur_name[i] = arg[i];
11628 cur_name[i] = '\0';
11629 arg += i;
11630
11631 /* Check if the user provided a syscall name or a number. */
11632 syscall_number = (int) strtol (cur_name, &endptr, 0);
11633 if (*endptr == '\0')
11634 get_syscall_by_number (syscall_number, &s);
11635 else
11636 {
11637 /* We have a name. Let's check if it's valid and convert it
11638 to a number. */
11639 get_syscall_by_name (cur_name, &s);
11640
11641 if (s.number == UNKNOWN_SYSCALL)
11642 /* Here we have to issue an error instead of a warning,
11643 because GDB cannot do anything useful if there's no
11644 syscall number to be caught. */
11645 error (_("Unknown syscall name '%s'."), cur_name);
11646 }
11647
11648 /* Ok, it's valid. */
11649 VEC_safe_push (int, result, s.number);
11650 }
11651
11652 discard_cleanups (cleanup);
11653 return result;
11654 }
11655
11656 /* Implement the "catch syscall" command. */
11657
11658 static void
11659 catch_syscall_command_1 (char *arg, int from_tty,
11660 struct cmd_list_element *command)
11661 {
11662 int tempflag;
11663 VEC(int) *filter;
11664 struct syscall s;
11665 struct gdbarch *gdbarch = get_current_arch ();
11666
11667 /* Checking if the feature if supported. */
11668 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11669 error (_("The feature 'catch syscall' is not supported on \
11670 this architecture yet."));
11671
11672 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11673
11674 arg = skip_spaces (arg);
11675
11676 /* We need to do this first "dummy" translation in order
11677 to get the syscall XML file loaded or, most important,
11678 to display a warning to the user if there's no XML file
11679 for his/her architecture. */
11680 get_syscall_by_number (0, &s);
11681
11682 /* The allowed syntax is:
11683 catch syscall
11684 catch syscall <name | number> [<name | number> ... <name | number>]
11685
11686 Let's check if there's a syscall name. */
11687
11688 if (arg != NULL)
11689 filter = catch_syscall_split_args (arg);
11690 else
11691 filter = NULL;
11692
11693 create_syscall_event_catchpoint (tempflag, filter,
11694 &catch_syscall_breakpoint_ops);
11695 }
11696
11697 static void
11698 catch_command (char *arg, int from_tty)
11699 {
11700 error (_("Catch requires an event name."));
11701 }
11702 \f
11703
11704 static void
11705 tcatch_command (char *arg, int from_tty)
11706 {
11707 error (_("Catch requires an event name."));
11708 }
11709
11710 /* A qsort comparison function that sorts breakpoints in order. */
11711
11712 static int
11713 compare_breakpoints (const void *a, const void *b)
11714 {
11715 const breakpoint_p *ba = a;
11716 uintptr_t ua = (uintptr_t) *ba;
11717 const breakpoint_p *bb = b;
11718 uintptr_t ub = (uintptr_t) *bb;
11719
11720 if ((*ba)->number < (*bb)->number)
11721 return -1;
11722 else if ((*ba)->number > (*bb)->number)
11723 return 1;
11724
11725 /* Now sort by address, in case we see, e..g, two breakpoints with
11726 the number 0. */
11727 if (ua < ub)
11728 return -1;
11729 return ua > ub ? 1 : 0;
11730 }
11731
11732 /* Delete breakpoints by address or line. */
11733
11734 static void
11735 clear_command (char *arg, int from_tty)
11736 {
11737 struct breakpoint *b, *prev;
11738 VEC(breakpoint_p) *found = 0;
11739 int ix;
11740 int default_match;
11741 struct symtabs_and_lines sals;
11742 struct symtab_and_line sal;
11743 int i;
11744 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11745
11746 if (arg)
11747 {
11748 sals = decode_line_with_current_source (arg,
11749 (DECODE_LINE_FUNFIRSTLINE
11750 | DECODE_LINE_LIST_MODE));
11751 make_cleanup (xfree, sals.sals);
11752 default_match = 0;
11753 }
11754 else
11755 {
11756 sals.sals = (struct symtab_and_line *)
11757 xmalloc (sizeof (struct symtab_and_line));
11758 make_cleanup (xfree, sals.sals);
11759 init_sal (&sal); /* Initialize to zeroes. */
11760
11761 /* Set sal's line, symtab, pc, and pspace to the values
11762 corresponding to the last call to print_frame_info. If the
11763 codepoint is not valid, this will set all the fields to 0. */
11764 get_last_displayed_sal (&sal);
11765 if (sal.symtab == 0)
11766 error (_("No source file specified."));
11767
11768 sals.sals[0] = sal;
11769 sals.nelts = 1;
11770
11771 default_match = 1;
11772 }
11773
11774 /* We don't call resolve_sal_pc here. That's not as bad as it
11775 seems, because all existing breakpoints typically have both
11776 file/line and pc set. So, if clear is given file/line, we can
11777 match this to existing breakpoint without obtaining pc at all.
11778
11779 We only support clearing given the address explicitly
11780 present in breakpoint table. Say, we've set breakpoint
11781 at file:line. There were several PC values for that file:line,
11782 due to optimization, all in one block.
11783
11784 We've picked one PC value. If "clear" is issued with another
11785 PC corresponding to the same file:line, the breakpoint won't
11786 be cleared. We probably can still clear the breakpoint, but
11787 since the other PC value is never presented to user, user
11788 can only find it by guessing, and it does not seem important
11789 to support that. */
11790
11791 /* For each line spec given, delete bps which correspond to it. Do
11792 it in two passes, solely to preserve the current behavior that
11793 from_tty is forced true if we delete more than one
11794 breakpoint. */
11795
11796 found = NULL;
11797 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11798 for (i = 0; i < sals.nelts; i++)
11799 {
11800 const char *sal_fullname;
11801
11802 /* If exact pc given, clear bpts at that pc.
11803 If line given (pc == 0), clear all bpts on specified line.
11804 If defaulting, clear all bpts on default line
11805 or at default pc.
11806
11807 defaulting sal.pc != 0 tests to do
11808
11809 0 1 pc
11810 1 1 pc _and_ line
11811 0 0 line
11812 1 0 <can't happen> */
11813
11814 sal = sals.sals[i];
11815 sal_fullname = (sal.symtab == NULL
11816 ? NULL : symtab_to_fullname (sal.symtab));
11817
11818 /* Find all matching breakpoints and add them to 'found'. */
11819 ALL_BREAKPOINTS (b)
11820 {
11821 int match = 0;
11822 /* Are we going to delete b? */
11823 if (b->type != bp_none && !is_watchpoint (b))
11824 {
11825 struct bp_location *loc = b->loc;
11826 for (; loc; loc = loc->next)
11827 {
11828 /* If the user specified file:line, don't allow a PC
11829 match. This matches historical gdb behavior. */
11830 int pc_match = (!sal.explicit_line
11831 && sal.pc
11832 && (loc->pspace == sal.pspace)
11833 && (loc->address == sal.pc)
11834 && (!section_is_overlay (loc->section)
11835 || loc->section == sal.section));
11836 int line_match = 0;
11837
11838 if ((default_match || sal.explicit_line)
11839 && loc->symtab != NULL
11840 && sal_fullname != NULL
11841 && sal.pspace == loc->pspace
11842 && loc->line_number == sal.line
11843 && filename_cmp (symtab_to_fullname (loc->symtab),
11844 sal_fullname) == 0)
11845 line_match = 1;
11846
11847 if (pc_match || line_match)
11848 {
11849 match = 1;
11850 break;
11851 }
11852 }
11853 }
11854
11855 if (match)
11856 VEC_safe_push(breakpoint_p, found, b);
11857 }
11858 }
11859
11860 /* Now go thru the 'found' chain and delete them. */
11861 if (VEC_empty(breakpoint_p, found))
11862 {
11863 if (arg)
11864 error (_("No breakpoint at %s."), arg);
11865 else
11866 error (_("No breakpoint at this line."));
11867 }
11868
11869 /* Remove duplicates from the vec. */
11870 qsort (VEC_address (breakpoint_p, found),
11871 VEC_length (breakpoint_p, found),
11872 sizeof (breakpoint_p),
11873 compare_breakpoints);
11874 prev = VEC_index (breakpoint_p, found, 0);
11875 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11876 {
11877 if (b == prev)
11878 {
11879 VEC_ordered_remove (breakpoint_p, found, ix);
11880 --ix;
11881 }
11882 }
11883
11884 if (VEC_length(breakpoint_p, found) > 1)
11885 from_tty = 1; /* Always report if deleted more than one. */
11886 if (from_tty)
11887 {
11888 if (VEC_length(breakpoint_p, found) == 1)
11889 printf_unfiltered (_("Deleted breakpoint "));
11890 else
11891 printf_unfiltered (_("Deleted breakpoints "));
11892 }
11893
11894 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11895 {
11896 if (from_tty)
11897 printf_unfiltered ("%d ", b->number);
11898 delete_breakpoint (b);
11899 }
11900 if (from_tty)
11901 putchar_unfiltered ('\n');
11902
11903 do_cleanups (cleanups);
11904 }
11905 \f
11906 /* Delete breakpoint in BS if they are `delete' breakpoints and
11907 all breakpoints that are marked for deletion, whether hit or not.
11908 This is called after any breakpoint is hit, or after errors. */
11909
11910 void
11911 breakpoint_auto_delete (bpstat bs)
11912 {
11913 struct breakpoint *b, *b_tmp;
11914
11915 for (; bs; bs = bs->next)
11916 if (bs->breakpoint_at
11917 && bs->breakpoint_at->disposition == disp_del
11918 && bs->stop)
11919 delete_breakpoint (bs->breakpoint_at);
11920
11921 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11922 {
11923 if (b->disposition == disp_del_at_next_stop)
11924 delete_breakpoint (b);
11925 }
11926 }
11927
11928 /* A comparison function for bp_location AP and BP being interfaced to
11929 qsort. Sort elements primarily by their ADDRESS (no matter what
11930 does breakpoint_address_is_meaningful say for its OWNER),
11931 secondarily by ordering first bp_permanent OWNERed elements and
11932 terciarily just ensuring the array is sorted stable way despite
11933 qsort being an unstable algorithm. */
11934
11935 static int
11936 bp_location_compare (const void *ap, const void *bp)
11937 {
11938 struct bp_location *a = *(void **) ap;
11939 struct bp_location *b = *(void **) bp;
11940 /* A and B come from existing breakpoints having non-NULL OWNER. */
11941 int a_perm = a->owner->enable_state == bp_permanent;
11942 int b_perm = b->owner->enable_state == bp_permanent;
11943
11944 if (a->address != b->address)
11945 return (a->address > b->address) - (a->address < b->address);
11946
11947 /* Sort locations at the same address by their pspace number, keeping
11948 locations of the same inferior (in a multi-inferior environment)
11949 grouped. */
11950
11951 if (a->pspace->num != b->pspace->num)
11952 return ((a->pspace->num > b->pspace->num)
11953 - (a->pspace->num < b->pspace->num));
11954
11955 /* Sort permanent breakpoints first. */
11956 if (a_perm != b_perm)
11957 return (a_perm < b_perm) - (a_perm > b_perm);
11958
11959 /* Make the internal GDB representation stable across GDB runs
11960 where A and B memory inside GDB can differ. Breakpoint locations of
11961 the same type at the same address can be sorted in arbitrary order. */
11962
11963 if (a->owner->number != b->owner->number)
11964 return ((a->owner->number > b->owner->number)
11965 - (a->owner->number < b->owner->number));
11966
11967 return (a > b) - (a < b);
11968 }
11969
11970 /* Set bp_location_placed_address_before_address_max and
11971 bp_location_shadow_len_after_address_max according to the current
11972 content of the bp_location array. */
11973
11974 static void
11975 bp_location_target_extensions_update (void)
11976 {
11977 struct bp_location *bl, **blp_tmp;
11978
11979 bp_location_placed_address_before_address_max = 0;
11980 bp_location_shadow_len_after_address_max = 0;
11981
11982 ALL_BP_LOCATIONS (bl, blp_tmp)
11983 {
11984 CORE_ADDR start, end, addr;
11985
11986 if (!bp_location_has_shadow (bl))
11987 continue;
11988
11989 start = bl->target_info.placed_address;
11990 end = start + bl->target_info.shadow_len;
11991
11992 gdb_assert (bl->address >= start);
11993 addr = bl->address - start;
11994 if (addr > bp_location_placed_address_before_address_max)
11995 bp_location_placed_address_before_address_max = addr;
11996
11997 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11998
11999 gdb_assert (bl->address < end);
12000 addr = end - bl->address;
12001 if (addr > bp_location_shadow_len_after_address_max)
12002 bp_location_shadow_len_after_address_max = addr;
12003 }
12004 }
12005
12006 /* Download tracepoint locations if they haven't been. */
12007
12008 static void
12009 download_tracepoint_locations (void)
12010 {
12011 struct breakpoint *b;
12012 struct cleanup *old_chain;
12013
12014 if (!target_can_download_tracepoint ())
12015 return;
12016
12017 old_chain = save_current_space_and_thread ();
12018
12019 ALL_TRACEPOINTS (b)
12020 {
12021 struct bp_location *bl;
12022 struct tracepoint *t;
12023 int bp_location_downloaded = 0;
12024
12025 if ((b->type == bp_fast_tracepoint
12026 ? !may_insert_fast_tracepoints
12027 : !may_insert_tracepoints))
12028 continue;
12029
12030 for (bl = b->loc; bl; bl = bl->next)
12031 {
12032 /* In tracepoint, locations are _never_ duplicated, so
12033 should_be_inserted is equivalent to
12034 unduplicated_should_be_inserted. */
12035 if (!should_be_inserted (bl) || bl->inserted)
12036 continue;
12037
12038 switch_to_program_space_and_thread (bl->pspace);
12039
12040 target_download_tracepoint (bl);
12041
12042 bl->inserted = 1;
12043 bp_location_downloaded = 1;
12044 }
12045 t = (struct tracepoint *) b;
12046 t->number_on_target = b->number;
12047 if (bp_location_downloaded)
12048 observer_notify_breakpoint_modified (b);
12049 }
12050
12051 do_cleanups (old_chain);
12052 }
12053
12054 /* Swap the insertion/duplication state between two locations. */
12055
12056 static void
12057 swap_insertion (struct bp_location *left, struct bp_location *right)
12058 {
12059 const int left_inserted = left->inserted;
12060 const int left_duplicate = left->duplicate;
12061 const int left_needs_update = left->needs_update;
12062 const struct bp_target_info left_target_info = left->target_info;
12063
12064 /* Locations of tracepoints can never be duplicated. */
12065 if (is_tracepoint (left->owner))
12066 gdb_assert (!left->duplicate);
12067 if (is_tracepoint (right->owner))
12068 gdb_assert (!right->duplicate);
12069
12070 left->inserted = right->inserted;
12071 left->duplicate = right->duplicate;
12072 left->needs_update = right->needs_update;
12073 left->target_info = right->target_info;
12074 right->inserted = left_inserted;
12075 right->duplicate = left_duplicate;
12076 right->needs_update = left_needs_update;
12077 right->target_info = left_target_info;
12078 }
12079
12080 /* Force the re-insertion of the locations at ADDRESS. This is called
12081 once a new/deleted/modified duplicate location is found and we are evaluating
12082 conditions on the target's side. Such conditions need to be updated on
12083 the target. */
12084
12085 static void
12086 force_breakpoint_reinsertion (struct bp_location *bl)
12087 {
12088 struct bp_location **locp = NULL, **loc2p;
12089 struct bp_location *loc;
12090 CORE_ADDR address = 0;
12091 int pspace_num;
12092
12093 address = bl->address;
12094 pspace_num = bl->pspace->num;
12095
12096 /* This is only meaningful if the target is
12097 evaluating conditions and if the user has
12098 opted for condition evaluation on the target's
12099 side. */
12100 if (gdb_evaluates_breakpoint_condition_p ()
12101 || !target_supports_evaluation_of_breakpoint_conditions ())
12102 return;
12103
12104 /* Flag all breakpoint locations with this address and
12105 the same program space as the location
12106 as "its condition has changed". We need to
12107 update the conditions on the target's side. */
12108 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12109 {
12110 loc = *loc2p;
12111
12112 if (!is_breakpoint (loc->owner)
12113 || pspace_num != loc->pspace->num)
12114 continue;
12115
12116 /* Flag the location appropriately. We use a different state to
12117 let everyone know that we already updated the set of locations
12118 with addr bl->address and program space bl->pspace. This is so
12119 we don't have to keep calling these functions just to mark locations
12120 that have already been marked. */
12121 loc->condition_changed = condition_updated;
12122
12123 /* Free the agent expression bytecode as well. We will compute
12124 it later on. */
12125 if (loc->cond_bytecode)
12126 {
12127 free_agent_expr (loc->cond_bytecode);
12128 loc->cond_bytecode = NULL;
12129 }
12130 }
12131 }
12132
12133 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12134 into the inferior, only remove already-inserted locations that no
12135 longer should be inserted. Functions that delete a breakpoint or
12136 breakpoints should pass false, so that deleting a breakpoint
12137 doesn't have the side effect of inserting the locations of other
12138 breakpoints that are marked not-inserted, but should_be_inserted
12139 returns true on them.
12140
12141 This behaviour is useful is situations close to tear-down -- e.g.,
12142 after an exec, while the target still has execution, but breakpoint
12143 shadows of the previous executable image should *NOT* be restored
12144 to the new image; or before detaching, where the target still has
12145 execution and wants to delete breakpoints from GDB's lists, and all
12146 breakpoints had already been removed from the inferior. */
12147
12148 static void
12149 update_global_location_list (int should_insert)
12150 {
12151 struct breakpoint *b;
12152 struct bp_location **locp, *loc;
12153 struct cleanup *cleanups;
12154 /* Last breakpoint location address that was marked for update. */
12155 CORE_ADDR last_addr = 0;
12156 /* Last breakpoint location program space that was marked for update. */
12157 int last_pspace_num = -1;
12158
12159 /* Used in the duplicates detection below. When iterating over all
12160 bp_locations, points to the first bp_location of a given address.
12161 Breakpoints and watchpoints of different types are never
12162 duplicates of each other. Keep one pointer for each type of
12163 breakpoint/watchpoint, so we only need to loop over all locations
12164 once. */
12165 struct bp_location *bp_loc_first; /* breakpoint */
12166 struct bp_location *wp_loc_first; /* hardware watchpoint */
12167 struct bp_location *awp_loc_first; /* access watchpoint */
12168 struct bp_location *rwp_loc_first; /* read watchpoint */
12169
12170 /* Saved former bp_location array which we compare against the newly
12171 built bp_location from the current state of ALL_BREAKPOINTS. */
12172 struct bp_location **old_location, **old_locp;
12173 unsigned old_location_count;
12174
12175 old_location = bp_location;
12176 old_location_count = bp_location_count;
12177 bp_location = NULL;
12178 bp_location_count = 0;
12179 cleanups = make_cleanup (xfree, old_location);
12180
12181 ALL_BREAKPOINTS (b)
12182 for (loc = b->loc; loc; loc = loc->next)
12183 bp_location_count++;
12184
12185 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12186 locp = bp_location;
12187 ALL_BREAKPOINTS (b)
12188 for (loc = b->loc; loc; loc = loc->next)
12189 *locp++ = loc;
12190 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12191 bp_location_compare);
12192
12193 bp_location_target_extensions_update ();
12194
12195 /* Identify bp_location instances that are no longer present in the
12196 new list, and therefore should be freed. Note that it's not
12197 necessary that those locations should be removed from inferior --
12198 if there's another location at the same address (previously
12199 marked as duplicate), we don't need to remove/insert the
12200 location.
12201
12202 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12203 and former bp_location array state respectively. */
12204
12205 locp = bp_location;
12206 for (old_locp = old_location; old_locp < old_location + old_location_count;
12207 old_locp++)
12208 {
12209 struct bp_location *old_loc = *old_locp;
12210 struct bp_location **loc2p;
12211
12212 /* Tells if 'old_loc' is found among the new locations. If
12213 not, we have to free it. */
12214 int found_object = 0;
12215 /* Tells if the location should remain inserted in the target. */
12216 int keep_in_target = 0;
12217 int removed = 0;
12218
12219 /* Skip LOCP entries which will definitely never be needed.
12220 Stop either at or being the one matching OLD_LOC. */
12221 while (locp < bp_location + bp_location_count
12222 && (*locp)->address < old_loc->address)
12223 locp++;
12224
12225 for (loc2p = locp;
12226 (loc2p < bp_location + bp_location_count
12227 && (*loc2p)->address == old_loc->address);
12228 loc2p++)
12229 {
12230 /* Check if this is a new/duplicated location or a duplicated
12231 location that had its condition modified. If so, we want to send
12232 its condition to the target if evaluation of conditions is taking
12233 place there. */
12234 if ((*loc2p)->condition_changed == condition_modified
12235 && (last_addr != old_loc->address
12236 || last_pspace_num != old_loc->pspace->num))
12237 {
12238 force_breakpoint_reinsertion (*loc2p);
12239 last_pspace_num = old_loc->pspace->num;
12240 }
12241
12242 if (*loc2p == old_loc)
12243 found_object = 1;
12244 }
12245
12246 /* We have already handled this address, update it so that we don't
12247 have to go through updates again. */
12248 last_addr = old_loc->address;
12249
12250 /* Target-side condition evaluation: Handle deleted locations. */
12251 if (!found_object)
12252 force_breakpoint_reinsertion (old_loc);
12253
12254 /* If this location is no longer present, and inserted, look if
12255 there's maybe a new location at the same address. If so,
12256 mark that one inserted, and don't remove this one. This is
12257 needed so that we don't have a time window where a breakpoint
12258 at certain location is not inserted. */
12259
12260 if (old_loc->inserted)
12261 {
12262 /* If the location is inserted now, we might have to remove
12263 it. */
12264
12265 if (found_object && should_be_inserted (old_loc))
12266 {
12267 /* The location is still present in the location list,
12268 and still should be inserted. Don't do anything. */
12269 keep_in_target = 1;
12270 }
12271 else
12272 {
12273 /* This location still exists, but it won't be kept in the
12274 target since it may have been disabled. We proceed to
12275 remove its target-side condition. */
12276
12277 /* The location is either no longer present, or got
12278 disabled. See if there's another location at the
12279 same address, in which case we don't need to remove
12280 this one from the target. */
12281
12282 /* OLD_LOC comes from existing struct breakpoint. */
12283 if (breakpoint_address_is_meaningful (old_loc->owner))
12284 {
12285 for (loc2p = locp;
12286 (loc2p < bp_location + bp_location_count
12287 && (*loc2p)->address == old_loc->address);
12288 loc2p++)
12289 {
12290 struct bp_location *loc2 = *loc2p;
12291
12292 if (breakpoint_locations_match (loc2, old_loc))
12293 {
12294 /* Read watchpoint locations are switched to
12295 access watchpoints, if the former are not
12296 supported, but the latter are. */
12297 if (is_hardware_watchpoint (old_loc->owner))
12298 {
12299 gdb_assert (is_hardware_watchpoint (loc2->owner));
12300 loc2->watchpoint_type = old_loc->watchpoint_type;
12301 }
12302
12303 /* loc2 is a duplicated location. We need to check
12304 if it should be inserted in case it will be
12305 unduplicated. */
12306 if (loc2 != old_loc
12307 && unduplicated_should_be_inserted (loc2))
12308 {
12309 swap_insertion (old_loc, loc2);
12310 keep_in_target = 1;
12311 break;
12312 }
12313 }
12314 }
12315 }
12316 }
12317
12318 if (!keep_in_target)
12319 {
12320 if (remove_breakpoint (old_loc, mark_uninserted))
12321 {
12322 /* This is just about all we can do. We could keep
12323 this location on the global list, and try to
12324 remove it next time, but there's no particular
12325 reason why we will succeed next time.
12326
12327 Note that at this point, old_loc->owner is still
12328 valid, as delete_breakpoint frees the breakpoint
12329 only after calling us. */
12330 printf_filtered (_("warning: Error removing "
12331 "breakpoint %d\n"),
12332 old_loc->owner->number);
12333 }
12334 removed = 1;
12335 }
12336 }
12337
12338 if (!found_object)
12339 {
12340 if (removed && non_stop
12341 && breakpoint_address_is_meaningful (old_loc->owner)
12342 && !is_hardware_watchpoint (old_loc->owner))
12343 {
12344 /* This location was removed from the target. In
12345 non-stop mode, a race condition is possible where
12346 we've removed a breakpoint, but stop events for that
12347 breakpoint are already queued and will arrive later.
12348 We apply an heuristic to be able to distinguish such
12349 SIGTRAPs from other random SIGTRAPs: we keep this
12350 breakpoint location for a bit, and will retire it
12351 after we see some number of events. The theory here
12352 is that reporting of events should, "on the average",
12353 be fair, so after a while we'll see events from all
12354 threads that have anything of interest, and no longer
12355 need to keep this breakpoint location around. We
12356 don't hold locations forever so to reduce chances of
12357 mistaking a non-breakpoint SIGTRAP for a breakpoint
12358 SIGTRAP.
12359
12360 The heuristic failing can be disastrous on
12361 decr_pc_after_break targets.
12362
12363 On decr_pc_after_break targets, like e.g., x86-linux,
12364 if we fail to recognize a late breakpoint SIGTRAP,
12365 because events_till_retirement has reached 0 too
12366 soon, we'll fail to do the PC adjustment, and report
12367 a random SIGTRAP to the user. When the user resumes
12368 the inferior, it will most likely immediately crash
12369 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12370 corrupted, because of being resumed e.g., in the
12371 middle of a multi-byte instruction, or skipped a
12372 one-byte instruction. This was actually seen happen
12373 on native x86-linux, and should be less rare on
12374 targets that do not support new thread events, like
12375 remote, due to the heuristic depending on
12376 thread_count.
12377
12378 Mistaking a random SIGTRAP for a breakpoint trap
12379 causes similar symptoms (PC adjustment applied when
12380 it shouldn't), but then again, playing with SIGTRAPs
12381 behind the debugger's back is asking for trouble.
12382
12383 Since hardware watchpoint traps are always
12384 distinguishable from other traps, so we don't need to
12385 apply keep hardware watchpoint moribund locations
12386 around. We simply always ignore hardware watchpoint
12387 traps we can no longer explain. */
12388
12389 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12390 old_loc->owner = NULL;
12391
12392 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12393 }
12394 else
12395 {
12396 old_loc->owner = NULL;
12397 decref_bp_location (&old_loc);
12398 }
12399 }
12400 }
12401
12402 /* Rescan breakpoints at the same address and section, marking the
12403 first one as "first" and any others as "duplicates". This is so
12404 that the bpt instruction is only inserted once. If we have a
12405 permanent breakpoint at the same place as BPT, make that one the
12406 official one, and the rest as duplicates. Permanent breakpoints
12407 are sorted first for the same address.
12408
12409 Do the same for hardware watchpoints, but also considering the
12410 watchpoint's type (regular/access/read) and length. */
12411
12412 bp_loc_first = NULL;
12413 wp_loc_first = NULL;
12414 awp_loc_first = NULL;
12415 rwp_loc_first = NULL;
12416 ALL_BP_LOCATIONS (loc, locp)
12417 {
12418 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12419 non-NULL. */
12420 struct bp_location **loc_first_p;
12421 b = loc->owner;
12422
12423 if (!unduplicated_should_be_inserted (loc)
12424 || !breakpoint_address_is_meaningful (b)
12425 /* Don't detect duplicate for tracepoint locations because they are
12426 never duplicated. See the comments in field `duplicate' of
12427 `struct bp_location'. */
12428 || is_tracepoint (b))
12429 {
12430 /* Clear the condition modification flag. */
12431 loc->condition_changed = condition_unchanged;
12432 continue;
12433 }
12434
12435 /* Permanent breakpoint should always be inserted. */
12436 if (b->enable_state == bp_permanent && ! loc->inserted)
12437 internal_error (__FILE__, __LINE__,
12438 _("allegedly permanent breakpoint is not "
12439 "actually inserted"));
12440
12441 if (b->type == bp_hardware_watchpoint)
12442 loc_first_p = &wp_loc_first;
12443 else if (b->type == bp_read_watchpoint)
12444 loc_first_p = &rwp_loc_first;
12445 else if (b->type == bp_access_watchpoint)
12446 loc_first_p = &awp_loc_first;
12447 else
12448 loc_first_p = &bp_loc_first;
12449
12450 if (*loc_first_p == NULL
12451 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12452 || !breakpoint_locations_match (loc, *loc_first_p))
12453 {
12454 *loc_first_p = loc;
12455 loc->duplicate = 0;
12456
12457 if (is_breakpoint (loc->owner) && loc->condition_changed)
12458 {
12459 loc->needs_update = 1;
12460 /* Clear the condition modification flag. */
12461 loc->condition_changed = condition_unchanged;
12462 }
12463 continue;
12464 }
12465
12466
12467 /* This and the above ensure the invariant that the first location
12468 is not duplicated, and is the inserted one.
12469 All following are marked as duplicated, and are not inserted. */
12470 if (loc->inserted)
12471 swap_insertion (loc, *loc_first_p);
12472 loc->duplicate = 1;
12473
12474 /* Clear the condition modification flag. */
12475 loc->condition_changed = condition_unchanged;
12476
12477 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12478 && b->enable_state != bp_permanent)
12479 internal_error (__FILE__, __LINE__,
12480 _("another breakpoint was inserted on top of "
12481 "a permanent breakpoint"));
12482 }
12483
12484 if (breakpoints_always_inserted_mode ()
12485 && (have_live_inferiors ()
12486 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12487 {
12488 if (should_insert)
12489 insert_breakpoint_locations ();
12490 else
12491 {
12492 /* Though should_insert is false, we may need to update conditions
12493 on the target's side if it is evaluating such conditions. We
12494 only update conditions for locations that are marked
12495 "needs_update". */
12496 update_inserted_breakpoint_locations ();
12497 }
12498 }
12499
12500 if (should_insert)
12501 download_tracepoint_locations ();
12502
12503 do_cleanups (cleanups);
12504 }
12505
12506 void
12507 breakpoint_retire_moribund (void)
12508 {
12509 struct bp_location *loc;
12510 int ix;
12511
12512 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12513 if (--(loc->events_till_retirement) == 0)
12514 {
12515 decref_bp_location (&loc);
12516 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12517 --ix;
12518 }
12519 }
12520
12521 static void
12522 update_global_location_list_nothrow (int inserting)
12523 {
12524 volatile struct gdb_exception e;
12525
12526 TRY_CATCH (e, RETURN_MASK_ERROR)
12527 update_global_location_list (inserting);
12528 }
12529
12530 /* Clear BKP from a BPS. */
12531
12532 static void
12533 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12534 {
12535 bpstat bs;
12536
12537 for (bs = bps; bs; bs = bs->next)
12538 if (bs->breakpoint_at == bpt)
12539 {
12540 bs->breakpoint_at = NULL;
12541 bs->old_val = NULL;
12542 /* bs->commands will be freed later. */
12543 }
12544 }
12545
12546 /* Callback for iterate_over_threads. */
12547 static int
12548 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12549 {
12550 struct breakpoint *bpt = data;
12551
12552 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12553 return 0;
12554 }
12555
12556 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12557 callbacks. */
12558
12559 static void
12560 say_where (struct breakpoint *b)
12561 {
12562 struct value_print_options opts;
12563
12564 get_user_print_options (&opts);
12565
12566 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12567 single string. */
12568 if (b->loc == NULL)
12569 {
12570 printf_filtered (_(" (%s) pending."), b->addr_string);
12571 }
12572 else
12573 {
12574 if (opts.addressprint || b->loc->symtab == NULL)
12575 {
12576 printf_filtered (" at ");
12577 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12578 gdb_stdout);
12579 }
12580 if (b->loc->symtab != NULL)
12581 {
12582 /* If there is a single location, we can print the location
12583 more nicely. */
12584 if (b->loc->next == NULL)
12585 printf_filtered (": file %s, line %d.",
12586 symtab_to_filename_for_display (b->loc->symtab),
12587 b->loc->line_number);
12588 else
12589 /* This is not ideal, but each location may have a
12590 different file name, and this at least reflects the
12591 real situation somewhat. */
12592 printf_filtered (": %s.", b->addr_string);
12593 }
12594
12595 if (b->loc->next)
12596 {
12597 struct bp_location *loc = b->loc;
12598 int n = 0;
12599 for (; loc; loc = loc->next)
12600 ++n;
12601 printf_filtered (" (%d locations)", n);
12602 }
12603 }
12604 }
12605
12606 /* Default bp_location_ops methods. */
12607
12608 static void
12609 bp_location_dtor (struct bp_location *self)
12610 {
12611 xfree (self->cond);
12612 if (self->cond_bytecode)
12613 free_agent_expr (self->cond_bytecode);
12614 xfree (self->function_name);
12615 }
12616
12617 static const struct bp_location_ops bp_location_ops =
12618 {
12619 bp_location_dtor
12620 };
12621
12622 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12623 inherit from. */
12624
12625 static void
12626 base_breakpoint_dtor (struct breakpoint *self)
12627 {
12628 decref_counted_command_line (&self->commands);
12629 xfree (self->cond_string);
12630 xfree (self->extra_string);
12631 xfree (self->addr_string);
12632 xfree (self->filter);
12633 xfree (self->addr_string_range_end);
12634 }
12635
12636 static struct bp_location *
12637 base_breakpoint_allocate_location (struct breakpoint *self)
12638 {
12639 struct bp_location *loc;
12640
12641 loc = XNEW (struct bp_location);
12642 init_bp_location (loc, &bp_location_ops, self);
12643 return loc;
12644 }
12645
12646 static void
12647 base_breakpoint_re_set (struct breakpoint *b)
12648 {
12649 /* Nothing to re-set. */
12650 }
12651
12652 #define internal_error_pure_virtual_called() \
12653 gdb_assert_not_reached ("pure virtual function called")
12654
12655 static int
12656 base_breakpoint_insert_location (struct bp_location *bl)
12657 {
12658 internal_error_pure_virtual_called ();
12659 }
12660
12661 static int
12662 base_breakpoint_remove_location (struct bp_location *bl)
12663 {
12664 internal_error_pure_virtual_called ();
12665 }
12666
12667 static int
12668 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12669 struct address_space *aspace,
12670 CORE_ADDR bp_addr,
12671 const struct target_waitstatus *ws)
12672 {
12673 internal_error_pure_virtual_called ();
12674 }
12675
12676 static void
12677 base_breakpoint_check_status (bpstat bs)
12678 {
12679 /* Always stop. */
12680 }
12681
12682 /* A "works_in_software_mode" breakpoint_ops method that just internal
12683 errors. */
12684
12685 static int
12686 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12687 {
12688 internal_error_pure_virtual_called ();
12689 }
12690
12691 /* A "resources_needed" breakpoint_ops method that just internal
12692 errors. */
12693
12694 static int
12695 base_breakpoint_resources_needed (const struct bp_location *bl)
12696 {
12697 internal_error_pure_virtual_called ();
12698 }
12699
12700 static enum print_stop_action
12701 base_breakpoint_print_it (bpstat bs)
12702 {
12703 internal_error_pure_virtual_called ();
12704 }
12705
12706 static void
12707 base_breakpoint_print_one_detail (const struct breakpoint *self,
12708 struct ui_out *uiout)
12709 {
12710 /* nothing */
12711 }
12712
12713 static void
12714 base_breakpoint_print_mention (struct breakpoint *b)
12715 {
12716 internal_error_pure_virtual_called ();
12717 }
12718
12719 static void
12720 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12721 {
12722 internal_error_pure_virtual_called ();
12723 }
12724
12725 static void
12726 base_breakpoint_create_sals_from_address (char **arg,
12727 struct linespec_result *canonical,
12728 enum bptype type_wanted,
12729 char *addr_start,
12730 char **copy_arg)
12731 {
12732 internal_error_pure_virtual_called ();
12733 }
12734
12735 static void
12736 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12737 struct linespec_result *c,
12738 struct linespec_sals *lsal,
12739 char *cond_string,
12740 char *extra_string,
12741 enum bptype type_wanted,
12742 enum bpdisp disposition,
12743 int thread,
12744 int task, int ignore_count,
12745 const struct breakpoint_ops *o,
12746 int from_tty, int enabled,
12747 int internal, unsigned flags)
12748 {
12749 internal_error_pure_virtual_called ();
12750 }
12751
12752 static void
12753 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12754 struct symtabs_and_lines *sals)
12755 {
12756 internal_error_pure_virtual_called ();
12757 }
12758
12759 /* The default 'explains_signal' method. */
12760
12761 static enum bpstat_signal_value
12762 base_breakpoint_explains_signal (struct breakpoint *b)
12763 {
12764 return BPSTAT_SIGNAL_HIDE;
12765 }
12766
12767 struct breakpoint_ops base_breakpoint_ops =
12768 {
12769 base_breakpoint_dtor,
12770 base_breakpoint_allocate_location,
12771 base_breakpoint_re_set,
12772 base_breakpoint_insert_location,
12773 base_breakpoint_remove_location,
12774 base_breakpoint_breakpoint_hit,
12775 base_breakpoint_check_status,
12776 base_breakpoint_resources_needed,
12777 base_breakpoint_works_in_software_mode,
12778 base_breakpoint_print_it,
12779 NULL,
12780 base_breakpoint_print_one_detail,
12781 base_breakpoint_print_mention,
12782 base_breakpoint_print_recreate,
12783 base_breakpoint_create_sals_from_address,
12784 base_breakpoint_create_breakpoints_sal,
12785 base_breakpoint_decode_linespec,
12786 base_breakpoint_explains_signal
12787 };
12788
12789 /* Default breakpoint_ops methods. */
12790
12791 static void
12792 bkpt_re_set (struct breakpoint *b)
12793 {
12794 /* FIXME: is this still reachable? */
12795 if (b->addr_string == NULL)
12796 {
12797 /* Anything without a string can't be re-set. */
12798 delete_breakpoint (b);
12799 return;
12800 }
12801
12802 breakpoint_re_set_default (b);
12803 }
12804
12805 static int
12806 bkpt_insert_location (struct bp_location *bl)
12807 {
12808 if (bl->loc_type == bp_loc_hardware_breakpoint)
12809 return target_insert_hw_breakpoint (bl->gdbarch,
12810 &bl->target_info);
12811 else
12812 return target_insert_breakpoint (bl->gdbarch,
12813 &bl->target_info);
12814 }
12815
12816 static int
12817 bkpt_remove_location (struct bp_location *bl)
12818 {
12819 if (bl->loc_type == bp_loc_hardware_breakpoint)
12820 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12821 else
12822 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12823 }
12824
12825 static int
12826 bkpt_breakpoint_hit (const struct bp_location *bl,
12827 struct address_space *aspace, CORE_ADDR bp_addr,
12828 const struct target_waitstatus *ws)
12829 {
12830 if (ws->kind != TARGET_WAITKIND_STOPPED
12831 || ws->value.sig != GDB_SIGNAL_TRAP)
12832 return 0;
12833
12834 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12835 aspace, bp_addr))
12836 return 0;
12837
12838 if (overlay_debugging /* unmapped overlay section */
12839 && section_is_overlay (bl->section)
12840 && !section_is_mapped (bl->section))
12841 return 0;
12842
12843 return 1;
12844 }
12845
12846 static int
12847 bkpt_resources_needed (const struct bp_location *bl)
12848 {
12849 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12850
12851 return 1;
12852 }
12853
12854 static enum print_stop_action
12855 bkpt_print_it (bpstat bs)
12856 {
12857 struct breakpoint *b;
12858 const struct bp_location *bl;
12859 int bp_temp;
12860 struct ui_out *uiout = current_uiout;
12861
12862 gdb_assert (bs->bp_location_at != NULL);
12863
12864 bl = bs->bp_location_at;
12865 b = bs->breakpoint_at;
12866
12867 bp_temp = b->disposition == disp_del;
12868 if (bl->address != bl->requested_address)
12869 breakpoint_adjustment_warning (bl->requested_address,
12870 bl->address,
12871 b->number, 1);
12872 annotate_breakpoint (b->number);
12873 if (bp_temp)
12874 ui_out_text (uiout, "\nTemporary breakpoint ");
12875 else
12876 ui_out_text (uiout, "\nBreakpoint ");
12877 if (ui_out_is_mi_like_p (uiout))
12878 {
12879 ui_out_field_string (uiout, "reason",
12880 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12881 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12882 }
12883 ui_out_field_int (uiout, "bkptno", b->number);
12884 ui_out_text (uiout, ", ");
12885
12886 return PRINT_SRC_AND_LOC;
12887 }
12888
12889 static void
12890 bkpt_print_mention (struct breakpoint *b)
12891 {
12892 if (ui_out_is_mi_like_p (current_uiout))
12893 return;
12894
12895 switch (b->type)
12896 {
12897 case bp_breakpoint:
12898 case bp_gnu_ifunc_resolver:
12899 if (b->disposition == disp_del)
12900 printf_filtered (_("Temporary breakpoint"));
12901 else
12902 printf_filtered (_("Breakpoint"));
12903 printf_filtered (_(" %d"), b->number);
12904 if (b->type == bp_gnu_ifunc_resolver)
12905 printf_filtered (_(" at gnu-indirect-function resolver"));
12906 break;
12907 case bp_hardware_breakpoint:
12908 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12909 break;
12910 case bp_dprintf:
12911 printf_filtered (_("Dprintf %d"), b->number);
12912 break;
12913 }
12914
12915 say_where (b);
12916 }
12917
12918 static void
12919 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12920 {
12921 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12922 fprintf_unfiltered (fp, "tbreak");
12923 else if (tp->type == bp_breakpoint)
12924 fprintf_unfiltered (fp, "break");
12925 else if (tp->type == bp_hardware_breakpoint
12926 && tp->disposition == disp_del)
12927 fprintf_unfiltered (fp, "thbreak");
12928 else if (tp->type == bp_hardware_breakpoint)
12929 fprintf_unfiltered (fp, "hbreak");
12930 else
12931 internal_error (__FILE__, __LINE__,
12932 _("unhandled breakpoint type %d"), (int) tp->type);
12933
12934 fprintf_unfiltered (fp, " %s", tp->addr_string);
12935 print_recreate_thread (tp, fp);
12936 }
12937
12938 static void
12939 bkpt_create_sals_from_address (char **arg,
12940 struct linespec_result *canonical,
12941 enum bptype type_wanted,
12942 char *addr_start, char **copy_arg)
12943 {
12944 create_sals_from_address_default (arg, canonical, type_wanted,
12945 addr_start, copy_arg);
12946 }
12947
12948 static void
12949 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12950 struct linespec_result *canonical,
12951 struct linespec_sals *lsal,
12952 char *cond_string,
12953 char *extra_string,
12954 enum bptype type_wanted,
12955 enum bpdisp disposition,
12956 int thread,
12957 int task, int ignore_count,
12958 const struct breakpoint_ops *ops,
12959 int from_tty, int enabled,
12960 int internal, unsigned flags)
12961 {
12962 create_breakpoints_sal_default (gdbarch, canonical, lsal,
12963 cond_string, extra_string,
12964 type_wanted,
12965 disposition, thread, task,
12966 ignore_count, ops, from_tty,
12967 enabled, internal, flags);
12968 }
12969
12970 static void
12971 bkpt_decode_linespec (struct breakpoint *b, char **s,
12972 struct symtabs_and_lines *sals)
12973 {
12974 decode_linespec_default (b, s, sals);
12975 }
12976
12977 /* Virtual table for internal breakpoints. */
12978
12979 static void
12980 internal_bkpt_re_set (struct breakpoint *b)
12981 {
12982 switch (b->type)
12983 {
12984 /* Delete overlay event and longjmp master breakpoints; they
12985 will be reset later by breakpoint_re_set. */
12986 case bp_overlay_event:
12987 case bp_longjmp_master:
12988 case bp_std_terminate_master:
12989 case bp_exception_master:
12990 delete_breakpoint (b);
12991 break;
12992
12993 /* This breakpoint is special, it's set up when the inferior
12994 starts and we really don't want to touch it. */
12995 case bp_shlib_event:
12996
12997 /* Like bp_shlib_event, this breakpoint type is special. Once
12998 it is set up, we do not want to touch it. */
12999 case bp_thread_event:
13000 break;
13001 }
13002 }
13003
13004 static void
13005 internal_bkpt_check_status (bpstat bs)
13006 {
13007 if (bs->breakpoint_at->type == bp_shlib_event)
13008 {
13009 /* If requested, stop when the dynamic linker notifies GDB of
13010 events. This allows the user to get control and place
13011 breakpoints in initializer routines for dynamically loaded
13012 objects (among other things). */
13013 bs->stop = stop_on_solib_events;
13014 bs->print = stop_on_solib_events;
13015 }
13016 else
13017 bs->stop = 0;
13018 }
13019
13020 static enum print_stop_action
13021 internal_bkpt_print_it (bpstat bs)
13022 {
13023 struct breakpoint *b;
13024
13025 b = bs->breakpoint_at;
13026
13027 switch (b->type)
13028 {
13029 case bp_shlib_event:
13030 /* Did we stop because the user set the stop_on_solib_events
13031 variable? (If so, we report this as a generic, "Stopped due
13032 to shlib event" message.) */
13033 print_solib_event (0);
13034 break;
13035
13036 case bp_thread_event:
13037 /* Not sure how we will get here.
13038 GDB should not stop for these breakpoints. */
13039 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13040 break;
13041
13042 case bp_overlay_event:
13043 /* By analogy with the thread event, GDB should not stop for these. */
13044 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13045 break;
13046
13047 case bp_longjmp_master:
13048 /* These should never be enabled. */
13049 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13050 break;
13051
13052 case bp_std_terminate_master:
13053 /* These should never be enabled. */
13054 printf_filtered (_("std::terminate Master Breakpoint: "
13055 "gdb should not stop!\n"));
13056 break;
13057
13058 case bp_exception_master:
13059 /* These should never be enabled. */
13060 printf_filtered (_("Exception Master Breakpoint: "
13061 "gdb should not stop!\n"));
13062 break;
13063 }
13064
13065 return PRINT_NOTHING;
13066 }
13067
13068 static void
13069 internal_bkpt_print_mention (struct breakpoint *b)
13070 {
13071 /* Nothing to mention. These breakpoints are internal. */
13072 }
13073
13074 /* Virtual table for momentary breakpoints */
13075
13076 static void
13077 momentary_bkpt_re_set (struct breakpoint *b)
13078 {
13079 /* Keep temporary breakpoints, which can be encountered when we step
13080 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
13081 Otherwise these should have been blown away via the cleanup chain
13082 or by breakpoint_init_inferior when we rerun the executable. */
13083 }
13084
13085 static void
13086 momentary_bkpt_check_status (bpstat bs)
13087 {
13088 /* Nothing. The point of these breakpoints is causing a stop. */
13089 }
13090
13091 static enum print_stop_action
13092 momentary_bkpt_print_it (bpstat bs)
13093 {
13094 struct ui_out *uiout = current_uiout;
13095
13096 if (ui_out_is_mi_like_p (uiout))
13097 {
13098 struct breakpoint *b = bs->breakpoint_at;
13099
13100 switch (b->type)
13101 {
13102 case bp_finish:
13103 ui_out_field_string
13104 (uiout, "reason",
13105 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13106 break;
13107
13108 case bp_until:
13109 ui_out_field_string
13110 (uiout, "reason",
13111 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13112 break;
13113 }
13114 }
13115
13116 return PRINT_UNKNOWN;
13117 }
13118
13119 static void
13120 momentary_bkpt_print_mention (struct breakpoint *b)
13121 {
13122 /* Nothing to mention. These breakpoints are internal. */
13123 }
13124
13125 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13126
13127 It gets cleared already on the removal of the first one of such placed
13128 breakpoints. This is OK as they get all removed altogether. */
13129
13130 static void
13131 longjmp_bkpt_dtor (struct breakpoint *self)
13132 {
13133 struct thread_info *tp = find_thread_id (self->thread);
13134
13135 if (tp)
13136 tp->initiating_frame = null_frame_id;
13137
13138 momentary_breakpoint_ops.dtor (self);
13139 }
13140
13141 /* Specific methods for probe breakpoints. */
13142
13143 static int
13144 bkpt_probe_insert_location (struct bp_location *bl)
13145 {
13146 int v = bkpt_insert_location (bl);
13147
13148 if (v == 0)
13149 {
13150 /* The insertion was successful, now let's set the probe's semaphore
13151 if needed. */
13152 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13153 }
13154
13155 return v;
13156 }
13157
13158 static int
13159 bkpt_probe_remove_location (struct bp_location *bl)
13160 {
13161 /* Let's clear the semaphore before removing the location. */
13162 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13163
13164 return bkpt_remove_location (bl);
13165 }
13166
13167 static void
13168 bkpt_probe_create_sals_from_address (char **arg,
13169 struct linespec_result *canonical,
13170 enum bptype type_wanted,
13171 char *addr_start, char **copy_arg)
13172 {
13173 struct linespec_sals lsal;
13174
13175 lsal.sals = parse_probes (arg, canonical);
13176
13177 *copy_arg = xstrdup (canonical->addr_string);
13178 lsal.canonical = xstrdup (*copy_arg);
13179
13180 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13181 }
13182
13183 static void
13184 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13185 struct symtabs_and_lines *sals)
13186 {
13187 *sals = parse_probes (s, NULL);
13188 if (!sals->sals)
13189 error (_("probe not found"));
13190 }
13191
13192 /* The breakpoint_ops structure to be used in tracepoints. */
13193
13194 static void
13195 tracepoint_re_set (struct breakpoint *b)
13196 {
13197 breakpoint_re_set_default (b);
13198 }
13199
13200 static int
13201 tracepoint_breakpoint_hit (const struct bp_location *bl,
13202 struct address_space *aspace, CORE_ADDR bp_addr,
13203 const struct target_waitstatus *ws)
13204 {
13205 /* By definition, the inferior does not report stops at
13206 tracepoints. */
13207 return 0;
13208 }
13209
13210 static void
13211 tracepoint_print_one_detail (const struct breakpoint *self,
13212 struct ui_out *uiout)
13213 {
13214 struct tracepoint *tp = (struct tracepoint *) self;
13215 if (tp->static_trace_marker_id)
13216 {
13217 gdb_assert (self->type == bp_static_tracepoint);
13218
13219 ui_out_text (uiout, "\tmarker id is ");
13220 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13221 tp->static_trace_marker_id);
13222 ui_out_text (uiout, "\n");
13223 }
13224 }
13225
13226 static void
13227 tracepoint_print_mention (struct breakpoint *b)
13228 {
13229 if (ui_out_is_mi_like_p (current_uiout))
13230 return;
13231
13232 switch (b->type)
13233 {
13234 case bp_tracepoint:
13235 printf_filtered (_("Tracepoint"));
13236 printf_filtered (_(" %d"), b->number);
13237 break;
13238 case bp_fast_tracepoint:
13239 printf_filtered (_("Fast tracepoint"));
13240 printf_filtered (_(" %d"), b->number);
13241 break;
13242 case bp_static_tracepoint:
13243 printf_filtered (_("Static tracepoint"));
13244 printf_filtered (_(" %d"), b->number);
13245 break;
13246 default:
13247 internal_error (__FILE__, __LINE__,
13248 _("unhandled tracepoint type %d"), (int) b->type);
13249 }
13250
13251 say_where (b);
13252 }
13253
13254 static void
13255 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13256 {
13257 struct tracepoint *tp = (struct tracepoint *) self;
13258
13259 if (self->type == bp_fast_tracepoint)
13260 fprintf_unfiltered (fp, "ftrace");
13261 if (self->type == bp_static_tracepoint)
13262 fprintf_unfiltered (fp, "strace");
13263 else if (self->type == bp_tracepoint)
13264 fprintf_unfiltered (fp, "trace");
13265 else
13266 internal_error (__FILE__, __LINE__,
13267 _("unhandled tracepoint type %d"), (int) self->type);
13268
13269 fprintf_unfiltered (fp, " %s", self->addr_string);
13270 print_recreate_thread (self, fp);
13271
13272 if (tp->pass_count)
13273 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13274 }
13275
13276 static void
13277 tracepoint_create_sals_from_address (char **arg,
13278 struct linespec_result *canonical,
13279 enum bptype type_wanted,
13280 char *addr_start, char **copy_arg)
13281 {
13282 create_sals_from_address_default (arg, canonical, type_wanted,
13283 addr_start, copy_arg);
13284 }
13285
13286 static void
13287 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13288 struct linespec_result *canonical,
13289 struct linespec_sals *lsal,
13290 char *cond_string,
13291 char *extra_string,
13292 enum bptype type_wanted,
13293 enum bpdisp disposition,
13294 int thread,
13295 int task, int ignore_count,
13296 const struct breakpoint_ops *ops,
13297 int from_tty, int enabled,
13298 int internal, unsigned flags)
13299 {
13300 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13301 cond_string, extra_string,
13302 type_wanted,
13303 disposition, thread, task,
13304 ignore_count, ops, from_tty,
13305 enabled, internal, flags);
13306 }
13307
13308 static void
13309 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13310 struct symtabs_and_lines *sals)
13311 {
13312 decode_linespec_default (b, s, sals);
13313 }
13314
13315 struct breakpoint_ops tracepoint_breakpoint_ops;
13316
13317 /* The breakpoint_ops structure to be use on tracepoints placed in a
13318 static probe. */
13319
13320 static void
13321 tracepoint_probe_create_sals_from_address (char **arg,
13322 struct linespec_result *canonical,
13323 enum bptype type_wanted,
13324 char *addr_start, char **copy_arg)
13325 {
13326 /* We use the same method for breakpoint on probes. */
13327 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13328 addr_start, copy_arg);
13329 }
13330
13331 static void
13332 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13333 struct symtabs_and_lines *sals)
13334 {
13335 /* We use the same method for breakpoint on probes. */
13336 bkpt_probe_decode_linespec (b, s, sals);
13337 }
13338
13339 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13340
13341 /* Dprintf breakpoint_ops methods. */
13342
13343 static void
13344 dprintf_re_set (struct breakpoint *b)
13345 {
13346 breakpoint_re_set_default (b);
13347
13348 /* This breakpoint could have been pending, and be resolved now, and
13349 if so, we should now have the extra string. If we don't, the
13350 dprintf was malformed when created, but we couldn't tell because
13351 we can't extract the extra string until the location is
13352 resolved. */
13353 if (b->loc != NULL && b->extra_string == NULL)
13354 error (_("Format string required"));
13355
13356 /* 1 - connect to target 1, that can run breakpoint commands.
13357 2 - create a dprintf, which resolves fine.
13358 3 - disconnect from target 1
13359 4 - connect to target 2, that can NOT run breakpoint commands.
13360
13361 After steps #3/#4, you'll want the dprintf command list to
13362 be updated, because target 1 and 2 may well return different
13363 answers for target_can_run_breakpoint_commands().
13364 Given absence of finer grained resetting, we get to do
13365 it all the time. */
13366 if (b->extra_string != NULL)
13367 update_dprintf_command_list (b);
13368 }
13369
13370 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13371
13372 static void
13373 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13374 {
13375 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13376 tp->extra_string);
13377 print_recreate_thread (tp, fp);
13378 }
13379
13380 /* The breakpoint_ops structure to be used on static tracepoints with
13381 markers (`-m'). */
13382
13383 static void
13384 strace_marker_create_sals_from_address (char **arg,
13385 struct linespec_result *canonical,
13386 enum bptype type_wanted,
13387 char *addr_start, char **copy_arg)
13388 {
13389 struct linespec_sals lsal;
13390
13391 lsal.sals = decode_static_tracepoint_spec (arg);
13392
13393 *copy_arg = savestring (addr_start, *arg - addr_start);
13394
13395 canonical->addr_string = xstrdup (*copy_arg);
13396 lsal.canonical = xstrdup (*copy_arg);
13397 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13398 }
13399
13400 static void
13401 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13402 struct linespec_result *canonical,
13403 struct linespec_sals *lsal,
13404 char *cond_string,
13405 char *extra_string,
13406 enum bptype type_wanted,
13407 enum bpdisp disposition,
13408 int thread,
13409 int task, int ignore_count,
13410 const struct breakpoint_ops *ops,
13411 int from_tty, int enabled,
13412 int internal, unsigned flags)
13413 {
13414 int i;
13415
13416 /* If the user is creating a static tracepoint by marker id
13417 (strace -m MARKER_ID), then store the sals index, so that
13418 breakpoint_re_set can try to match up which of the newly
13419 found markers corresponds to this one, and, don't try to
13420 expand multiple locations for each sal, given than SALS
13421 already should contain all sals for MARKER_ID. */
13422
13423 for (i = 0; i < lsal->sals.nelts; ++i)
13424 {
13425 struct symtabs_and_lines expanded;
13426 struct tracepoint *tp;
13427 struct cleanup *old_chain;
13428 char *addr_string;
13429
13430 expanded.nelts = 1;
13431 expanded.sals = &lsal->sals.sals[i];
13432
13433 addr_string = xstrdup (canonical->addr_string);
13434 old_chain = make_cleanup (xfree, addr_string);
13435
13436 tp = XCNEW (struct tracepoint);
13437 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13438 addr_string, NULL,
13439 cond_string, extra_string,
13440 type_wanted, disposition,
13441 thread, task, ignore_count, ops,
13442 from_tty, enabled, internal, flags,
13443 canonical->special_display);
13444 /* Given that its possible to have multiple markers with
13445 the same string id, if the user is creating a static
13446 tracepoint by marker id ("strace -m MARKER_ID"), then
13447 store the sals index, so that breakpoint_re_set can
13448 try to match up which of the newly found markers
13449 corresponds to this one */
13450 tp->static_trace_marker_id_idx = i;
13451
13452 install_breakpoint (internal, &tp->base, 0);
13453
13454 discard_cleanups (old_chain);
13455 }
13456 }
13457
13458 static void
13459 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13460 struct symtabs_and_lines *sals)
13461 {
13462 struct tracepoint *tp = (struct tracepoint *) b;
13463
13464 *sals = decode_static_tracepoint_spec (s);
13465 if (sals->nelts > tp->static_trace_marker_id_idx)
13466 {
13467 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13468 sals->nelts = 1;
13469 }
13470 else
13471 error (_("marker %s not found"), tp->static_trace_marker_id);
13472 }
13473
13474 static struct breakpoint_ops strace_marker_breakpoint_ops;
13475
13476 static int
13477 strace_marker_p (struct breakpoint *b)
13478 {
13479 return b->ops == &strace_marker_breakpoint_ops;
13480 }
13481
13482 /* Delete a breakpoint and clean up all traces of it in the data
13483 structures. */
13484
13485 void
13486 delete_breakpoint (struct breakpoint *bpt)
13487 {
13488 struct breakpoint *b;
13489
13490 gdb_assert (bpt != NULL);
13491
13492 /* Has this bp already been deleted? This can happen because
13493 multiple lists can hold pointers to bp's. bpstat lists are
13494 especial culprits.
13495
13496 One example of this happening is a watchpoint's scope bp. When
13497 the scope bp triggers, we notice that the watchpoint is out of
13498 scope, and delete it. We also delete its scope bp. But the
13499 scope bp is marked "auto-deleting", and is already on a bpstat.
13500 That bpstat is then checked for auto-deleting bp's, which are
13501 deleted.
13502
13503 A real solution to this problem might involve reference counts in
13504 bp's, and/or giving them pointers back to their referencing
13505 bpstat's, and teaching delete_breakpoint to only free a bp's
13506 storage when no more references were extent. A cheaper bandaid
13507 was chosen. */
13508 if (bpt->type == bp_none)
13509 return;
13510
13511 /* At least avoid this stale reference until the reference counting
13512 of breakpoints gets resolved. */
13513 if (bpt->related_breakpoint != bpt)
13514 {
13515 struct breakpoint *related;
13516 struct watchpoint *w;
13517
13518 if (bpt->type == bp_watchpoint_scope)
13519 w = (struct watchpoint *) bpt->related_breakpoint;
13520 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13521 w = (struct watchpoint *) bpt;
13522 else
13523 w = NULL;
13524 if (w != NULL)
13525 watchpoint_del_at_next_stop (w);
13526
13527 /* Unlink bpt from the bpt->related_breakpoint ring. */
13528 for (related = bpt; related->related_breakpoint != bpt;
13529 related = related->related_breakpoint);
13530 related->related_breakpoint = bpt->related_breakpoint;
13531 bpt->related_breakpoint = bpt;
13532 }
13533
13534 /* watch_command_1 creates a watchpoint but only sets its number if
13535 update_watchpoint succeeds in creating its bp_locations. If there's
13536 a problem in that process, we'll be asked to delete the half-created
13537 watchpoint. In that case, don't announce the deletion. */
13538 if (bpt->number)
13539 observer_notify_breakpoint_deleted (bpt);
13540
13541 if (breakpoint_chain == bpt)
13542 breakpoint_chain = bpt->next;
13543
13544 ALL_BREAKPOINTS (b)
13545 if (b->next == bpt)
13546 {
13547 b->next = bpt->next;
13548 break;
13549 }
13550
13551 /* Be sure no bpstat's are pointing at the breakpoint after it's
13552 been freed. */
13553 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13554 in all threads for now. Note that we cannot just remove bpstats
13555 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13556 commands are associated with the bpstat; if we remove it here,
13557 then the later call to bpstat_do_actions (&stop_bpstat); in
13558 event-top.c won't do anything, and temporary breakpoints with
13559 commands won't work. */
13560
13561 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13562
13563 /* Now that breakpoint is removed from breakpoint list, update the
13564 global location list. This will remove locations that used to
13565 belong to this breakpoint. Do this before freeing the breakpoint
13566 itself, since remove_breakpoint looks at location's owner. It
13567 might be better design to have location completely
13568 self-contained, but it's not the case now. */
13569 update_global_location_list (0);
13570
13571 bpt->ops->dtor (bpt);
13572 /* On the chance that someone will soon try again to delete this
13573 same bp, we mark it as deleted before freeing its storage. */
13574 bpt->type = bp_none;
13575 xfree (bpt);
13576 }
13577
13578 static void
13579 do_delete_breakpoint_cleanup (void *b)
13580 {
13581 delete_breakpoint (b);
13582 }
13583
13584 struct cleanup *
13585 make_cleanup_delete_breakpoint (struct breakpoint *b)
13586 {
13587 return make_cleanup (do_delete_breakpoint_cleanup, b);
13588 }
13589
13590 /* Iterator function to call a user-provided callback function once
13591 for each of B and its related breakpoints. */
13592
13593 static void
13594 iterate_over_related_breakpoints (struct breakpoint *b,
13595 void (*function) (struct breakpoint *,
13596 void *),
13597 void *data)
13598 {
13599 struct breakpoint *related;
13600
13601 related = b;
13602 do
13603 {
13604 struct breakpoint *next;
13605
13606 /* FUNCTION may delete RELATED. */
13607 next = related->related_breakpoint;
13608
13609 if (next == related)
13610 {
13611 /* RELATED is the last ring entry. */
13612 function (related, data);
13613
13614 /* FUNCTION may have deleted it, so we'd never reach back to
13615 B. There's nothing left to do anyway, so just break
13616 out. */
13617 break;
13618 }
13619 else
13620 function (related, data);
13621
13622 related = next;
13623 }
13624 while (related != b);
13625 }
13626
13627 static void
13628 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13629 {
13630 delete_breakpoint (b);
13631 }
13632
13633 /* A callback for map_breakpoint_numbers that calls
13634 delete_breakpoint. */
13635
13636 static void
13637 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13638 {
13639 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13640 }
13641
13642 void
13643 delete_command (char *arg, int from_tty)
13644 {
13645 struct breakpoint *b, *b_tmp;
13646
13647 dont_repeat ();
13648
13649 if (arg == 0)
13650 {
13651 int breaks_to_delete = 0;
13652
13653 /* Delete all breakpoints if no argument. Do not delete
13654 internal breakpoints, these have to be deleted with an
13655 explicit breakpoint number argument. */
13656 ALL_BREAKPOINTS (b)
13657 if (user_breakpoint_p (b))
13658 {
13659 breaks_to_delete = 1;
13660 break;
13661 }
13662
13663 /* Ask user only if there are some breakpoints to delete. */
13664 if (!from_tty
13665 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13666 {
13667 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13668 if (user_breakpoint_p (b))
13669 delete_breakpoint (b);
13670 }
13671 }
13672 else
13673 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13674 }
13675
13676 static int
13677 all_locations_are_pending (struct bp_location *loc)
13678 {
13679 for (; loc; loc = loc->next)
13680 if (!loc->shlib_disabled
13681 && !loc->pspace->executing_startup)
13682 return 0;
13683 return 1;
13684 }
13685
13686 /* Subroutine of update_breakpoint_locations to simplify it.
13687 Return non-zero if multiple fns in list LOC have the same name.
13688 Null names are ignored. */
13689
13690 static int
13691 ambiguous_names_p (struct bp_location *loc)
13692 {
13693 struct bp_location *l;
13694 htab_t htab = htab_create_alloc (13, htab_hash_string,
13695 (int (*) (const void *,
13696 const void *)) streq,
13697 NULL, xcalloc, xfree);
13698
13699 for (l = loc; l != NULL; l = l->next)
13700 {
13701 const char **slot;
13702 const char *name = l->function_name;
13703
13704 /* Allow for some names to be NULL, ignore them. */
13705 if (name == NULL)
13706 continue;
13707
13708 slot = (const char **) htab_find_slot (htab, (const void *) name,
13709 INSERT);
13710 /* NOTE: We can assume slot != NULL here because xcalloc never
13711 returns NULL. */
13712 if (*slot != NULL)
13713 {
13714 htab_delete (htab);
13715 return 1;
13716 }
13717 *slot = name;
13718 }
13719
13720 htab_delete (htab);
13721 return 0;
13722 }
13723
13724 /* When symbols change, it probably means the sources changed as well,
13725 and it might mean the static tracepoint markers are no longer at
13726 the same address or line numbers they used to be at last we
13727 checked. Losing your static tracepoints whenever you rebuild is
13728 undesirable. This function tries to resync/rematch gdb static
13729 tracepoints with the markers on the target, for static tracepoints
13730 that have not been set by marker id. Static tracepoint that have
13731 been set by marker id are reset by marker id in breakpoint_re_set.
13732 The heuristic is:
13733
13734 1) For a tracepoint set at a specific address, look for a marker at
13735 the old PC. If one is found there, assume to be the same marker.
13736 If the name / string id of the marker found is different from the
13737 previous known name, assume that means the user renamed the marker
13738 in the sources, and output a warning.
13739
13740 2) For a tracepoint set at a given line number, look for a marker
13741 at the new address of the old line number. If one is found there,
13742 assume to be the same marker. If the name / string id of the
13743 marker found is different from the previous known name, assume that
13744 means the user renamed the marker in the sources, and output a
13745 warning.
13746
13747 3) If a marker is no longer found at the same address or line, it
13748 may mean the marker no longer exists. But it may also just mean
13749 the code changed a bit. Maybe the user added a few lines of code
13750 that made the marker move up or down (in line number terms). Ask
13751 the target for info about the marker with the string id as we knew
13752 it. If found, update line number and address in the matching
13753 static tracepoint. This will get confused if there's more than one
13754 marker with the same ID (possible in UST, although unadvised
13755 precisely because it confuses tools). */
13756
13757 static struct symtab_and_line
13758 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13759 {
13760 struct tracepoint *tp = (struct tracepoint *) b;
13761 struct static_tracepoint_marker marker;
13762 CORE_ADDR pc;
13763
13764 pc = sal.pc;
13765 if (sal.line)
13766 find_line_pc (sal.symtab, sal.line, &pc);
13767
13768 if (target_static_tracepoint_marker_at (pc, &marker))
13769 {
13770 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13771 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13772 b->number,
13773 tp->static_trace_marker_id, marker.str_id);
13774
13775 xfree (tp->static_trace_marker_id);
13776 tp->static_trace_marker_id = xstrdup (marker.str_id);
13777 release_static_tracepoint_marker (&marker);
13778
13779 return sal;
13780 }
13781
13782 /* Old marker wasn't found on target at lineno. Try looking it up
13783 by string ID. */
13784 if (!sal.explicit_pc
13785 && sal.line != 0
13786 && sal.symtab != NULL
13787 && tp->static_trace_marker_id != NULL)
13788 {
13789 VEC(static_tracepoint_marker_p) *markers;
13790
13791 markers
13792 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13793
13794 if (!VEC_empty(static_tracepoint_marker_p, markers))
13795 {
13796 struct symtab_and_line sal2;
13797 struct symbol *sym;
13798 struct static_tracepoint_marker *tpmarker;
13799 struct ui_out *uiout = current_uiout;
13800
13801 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13802
13803 xfree (tp->static_trace_marker_id);
13804 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13805
13806 warning (_("marker for static tracepoint %d (%s) not "
13807 "found at previous line number"),
13808 b->number, tp->static_trace_marker_id);
13809
13810 init_sal (&sal2);
13811
13812 sal2.pc = tpmarker->address;
13813
13814 sal2 = find_pc_line (tpmarker->address, 0);
13815 sym = find_pc_sect_function (tpmarker->address, NULL);
13816 ui_out_text (uiout, "Now in ");
13817 if (sym)
13818 {
13819 ui_out_field_string (uiout, "func",
13820 SYMBOL_PRINT_NAME (sym));
13821 ui_out_text (uiout, " at ");
13822 }
13823 ui_out_field_string (uiout, "file",
13824 symtab_to_filename_for_display (sal2.symtab));
13825 ui_out_text (uiout, ":");
13826
13827 if (ui_out_is_mi_like_p (uiout))
13828 {
13829 const char *fullname = symtab_to_fullname (sal2.symtab);
13830
13831 ui_out_field_string (uiout, "fullname", fullname);
13832 }
13833
13834 ui_out_field_int (uiout, "line", sal2.line);
13835 ui_out_text (uiout, "\n");
13836
13837 b->loc->line_number = sal2.line;
13838 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13839
13840 xfree (b->addr_string);
13841 b->addr_string = xstrprintf ("%s:%d",
13842 symtab_to_filename_for_display (sal2.symtab),
13843 b->loc->line_number);
13844
13845 /* Might be nice to check if function changed, and warn if
13846 so. */
13847
13848 release_static_tracepoint_marker (tpmarker);
13849 }
13850 }
13851 return sal;
13852 }
13853
13854 /* Returns 1 iff locations A and B are sufficiently same that
13855 we don't need to report breakpoint as changed. */
13856
13857 static int
13858 locations_are_equal (struct bp_location *a, struct bp_location *b)
13859 {
13860 while (a && b)
13861 {
13862 if (a->address != b->address)
13863 return 0;
13864
13865 if (a->shlib_disabled != b->shlib_disabled)
13866 return 0;
13867
13868 if (a->enabled != b->enabled)
13869 return 0;
13870
13871 a = a->next;
13872 b = b->next;
13873 }
13874
13875 if ((a == NULL) != (b == NULL))
13876 return 0;
13877
13878 return 1;
13879 }
13880
13881 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13882 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13883 a ranged breakpoint. */
13884
13885 void
13886 update_breakpoint_locations (struct breakpoint *b,
13887 struct symtabs_and_lines sals,
13888 struct symtabs_and_lines sals_end)
13889 {
13890 int i;
13891 struct bp_location *existing_locations = b->loc;
13892
13893 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13894 {
13895 /* Ranged breakpoints have only one start location and one end
13896 location. */
13897 b->enable_state = bp_disabled;
13898 update_global_location_list (1);
13899 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13900 "multiple locations found\n"),
13901 b->number);
13902 return;
13903 }
13904
13905 /* If there's no new locations, and all existing locations are
13906 pending, don't do anything. This optimizes the common case where
13907 all locations are in the same shared library, that was unloaded.
13908 We'd like to retain the location, so that when the library is
13909 loaded again, we don't loose the enabled/disabled status of the
13910 individual locations. */
13911 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13912 return;
13913
13914 b->loc = NULL;
13915
13916 for (i = 0; i < sals.nelts; ++i)
13917 {
13918 struct bp_location *new_loc;
13919
13920 switch_to_program_space_and_thread (sals.sals[i].pspace);
13921
13922 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13923
13924 /* Reparse conditions, they might contain references to the
13925 old symtab. */
13926 if (b->cond_string != NULL)
13927 {
13928 const char *s;
13929 volatile struct gdb_exception e;
13930
13931 s = b->cond_string;
13932 TRY_CATCH (e, RETURN_MASK_ERROR)
13933 {
13934 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13935 block_for_pc (sals.sals[i].pc),
13936 0);
13937 }
13938 if (e.reason < 0)
13939 {
13940 warning (_("failed to reevaluate condition "
13941 "for breakpoint %d: %s"),
13942 b->number, e.message);
13943 new_loc->enabled = 0;
13944 }
13945 }
13946
13947 if (sals_end.nelts)
13948 {
13949 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13950
13951 new_loc->length = end - sals.sals[0].pc + 1;
13952 }
13953 }
13954
13955 /* Update locations of permanent breakpoints. */
13956 if (b->enable_state == bp_permanent)
13957 make_breakpoint_permanent (b);
13958
13959 /* If possible, carry over 'disable' status from existing
13960 breakpoints. */
13961 {
13962 struct bp_location *e = existing_locations;
13963 /* If there are multiple breakpoints with the same function name,
13964 e.g. for inline functions, comparing function names won't work.
13965 Instead compare pc addresses; this is just a heuristic as things
13966 may have moved, but in practice it gives the correct answer
13967 often enough until a better solution is found. */
13968 int have_ambiguous_names = ambiguous_names_p (b->loc);
13969
13970 for (; e; e = e->next)
13971 {
13972 if (!e->enabled && e->function_name)
13973 {
13974 struct bp_location *l = b->loc;
13975 if (have_ambiguous_names)
13976 {
13977 for (; l; l = l->next)
13978 if (breakpoint_locations_match (e, l))
13979 {
13980 l->enabled = 0;
13981 break;
13982 }
13983 }
13984 else
13985 {
13986 for (; l; l = l->next)
13987 if (l->function_name
13988 && strcmp (e->function_name, l->function_name) == 0)
13989 {
13990 l->enabled = 0;
13991 break;
13992 }
13993 }
13994 }
13995 }
13996 }
13997
13998 if (!locations_are_equal (existing_locations, b->loc))
13999 observer_notify_breakpoint_modified (b);
14000
14001 update_global_location_list (1);
14002 }
14003
14004 /* Find the SaL locations corresponding to the given ADDR_STRING.
14005 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14006
14007 static struct symtabs_and_lines
14008 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14009 {
14010 char *s;
14011 struct symtabs_and_lines sals = {0};
14012 volatile struct gdb_exception e;
14013
14014 gdb_assert (b->ops != NULL);
14015 s = addr_string;
14016
14017 TRY_CATCH (e, RETURN_MASK_ERROR)
14018 {
14019 b->ops->decode_linespec (b, &s, &sals);
14020 }
14021 if (e.reason < 0)
14022 {
14023 int not_found_and_ok = 0;
14024 /* For pending breakpoints, it's expected that parsing will
14025 fail until the right shared library is loaded. User has
14026 already told to create pending breakpoints and don't need
14027 extra messages. If breakpoint is in bp_shlib_disabled
14028 state, then user already saw the message about that
14029 breakpoint being disabled, and don't want to see more
14030 errors. */
14031 if (e.error == NOT_FOUND_ERROR
14032 && (b->condition_not_parsed
14033 || (b->loc && b->loc->shlib_disabled)
14034 || (b->loc && b->loc->pspace->executing_startup)
14035 || b->enable_state == bp_disabled))
14036 not_found_and_ok = 1;
14037
14038 if (!not_found_and_ok)
14039 {
14040 /* We surely don't want to warn about the same breakpoint
14041 10 times. One solution, implemented here, is disable
14042 the breakpoint on error. Another solution would be to
14043 have separate 'warning emitted' flag. Since this
14044 happens only when a binary has changed, I don't know
14045 which approach is better. */
14046 b->enable_state = bp_disabled;
14047 throw_exception (e);
14048 }
14049 }
14050
14051 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14052 {
14053 int i;
14054
14055 for (i = 0; i < sals.nelts; ++i)
14056 resolve_sal_pc (&sals.sals[i]);
14057 if (b->condition_not_parsed && s && s[0])
14058 {
14059 char *cond_string, *extra_string;
14060 int thread, task;
14061
14062 find_condition_and_thread (s, sals.sals[0].pc,
14063 &cond_string, &thread, &task,
14064 &extra_string);
14065 if (cond_string)
14066 b->cond_string = cond_string;
14067 b->thread = thread;
14068 b->task = task;
14069 if (extra_string)
14070 b->extra_string = extra_string;
14071 b->condition_not_parsed = 0;
14072 }
14073
14074 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14075 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14076
14077 *found = 1;
14078 }
14079 else
14080 *found = 0;
14081
14082 return sals;
14083 }
14084
14085 /* The default re_set method, for typical hardware or software
14086 breakpoints. Reevaluate the breakpoint and recreate its
14087 locations. */
14088
14089 static void
14090 breakpoint_re_set_default (struct breakpoint *b)
14091 {
14092 int found;
14093 struct symtabs_and_lines sals, sals_end;
14094 struct symtabs_and_lines expanded = {0};
14095 struct symtabs_and_lines expanded_end = {0};
14096
14097 sals = addr_string_to_sals (b, b->addr_string, &found);
14098 if (found)
14099 {
14100 make_cleanup (xfree, sals.sals);
14101 expanded = sals;
14102 }
14103
14104 if (b->addr_string_range_end)
14105 {
14106 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14107 if (found)
14108 {
14109 make_cleanup (xfree, sals_end.sals);
14110 expanded_end = sals_end;
14111 }
14112 }
14113
14114 update_breakpoint_locations (b, expanded, expanded_end);
14115 }
14116
14117 /* Default method for creating SALs from an address string. It basically
14118 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14119
14120 static void
14121 create_sals_from_address_default (char **arg,
14122 struct linespec_result *canonical,
14123 enum bptype type_wanted,
14124 char *addr_start, char **copy_arg)
14125 {
14126 parse_breakpoint_sals (arg, canonical);
14127 }
14128
14129 /* Call create_breakpoints_sal for the given arguments. This is the default
14130 function for the `create_breakpoints_sal' method of
14131 breakpoint_ops. */
14132
14133 static void
14134 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14135 struct linespec_result *canonical,
14136 struct linespec_sals *lsal,
14137 char *cond_string,
14138 char *extra_string,
14139 enum bptype type_wanted,
14140 enum bpdisp disposition,
14141 int thread,
14142 int task, int ignore_count,
14143 const struct breakpoint_ops *ops,
14144 int from_tty, int enabled,
14145 int internal, unsigned flags)
14146 {
14147 create_breakpoints_sal (gdbarch, canonical, cond_string,
14148 extra_string,
14149 type_wanted, disposition,
14150 thread, task, ignore_count, ops, from_tty,
14151 enabled, internal, flags);
14152 }
14153
14154 /* Decode the line represented by S by calling decode_line_full. This is the
14155 default function for the `decode_linespec' method of breakpoint_ops. */
14156
14157 static void
14158 decode_linespec_default (struct breakpoint *b, char **s,
14159 struct symtabs_and_lines *sals)
14160 {
14161 struct linespec_result canonical;
14162
14163 init_linespec_result (&canonical);
14164 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14165 (struct symtab *) NULL, 0,
14166 &canonical, multiple_symbols_all,
14167 b->filter);
14168
14169 /* We should get 0 or 1 resulting SALs. */
14170 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14171
14172 if (VEC_length (linespec_sals, canonical.sals) > 0)
14173 {
14174 struct linespec_sals *lsal;
14175
14176 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14177 *sals = lsal->sals;
14178 /* Arrange it so the destructor does not free the
14179 contents. */
14180 lsal->sals.sals = NULL;
14181 }
14182
14183 destroy_linespec_result (&canonical);
14184 }
14185
14186 /* Prepare the global context for a re-set of breakpoint B. */
14187
14188 static struct cleanup *
14189 prepare_re_set_context (struct breakpoint *b)
14190 {
14191 struct cleanup *cleanups;
14192
14193 input_radix = b->input_radix;
14194 cleanups = save_current_space_and_thread ();
14195 if (b->pspace != NULL)
14196 switch_to_program_space_and_thread (b->pspace);
14197 set_language (b->language);
14198
14199 return cleanups;
14200 }
14201
14202 /* Reset a breakpoint given it's struct breakpoint * BINT.
14203 The value we return ends up being the return value from catch_errors.
14204 Unused in this case. */
14205
14206 static int
14207 breakpoint_re_set_one (void *bint)
14208 {
14209 /* Get past catch_errs. */
14210 struct breakpoint *b = (struct breakpoint *) bint;
14211 struct cleanup *cleanups;
14212
14213 cleanups = prepare_re_set_context (b);
14214 b->ops->re_set (b);
14215 do_cleanups (cleanups);
14216 return 0;
14217 }
14218
14219 /* Re-set all breakpoints after symbols have been re-loaded. */
14220 void
14221 breakpoint_re_set (void)
14222 {
14223 struct breakpoint *b, *b_tmp;
14224 enum language save_language;
14225 int save_input_radix;
14226 struct cleanup *old_chain;
14227
14228 save_language = current_language->la_language;
14229 save_input_radix = input_radix;
14230 old_chain = save_current_program_space ();
14231
14232 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14233 {
14234 /* Format possible error msg. */
14235 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14236 b->number);
14237 struct cleanup *cleanups = make_cleanup (xfree, message);
14238 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14239 do_cleanups (cleanups);
14240 }
14241 set_language (save_language);
14242 input_radix = save_input_radix;
14243
14244 jit_breakpoint_re_set ();
14245
14246 do_cleanups (old_chain);
14247
14248 create_overlay_event_breakpoint ();
14249 create_longjmp_master_breakpoint ();
14250 create_std_terminate_master_breakpoint ();
14251 create_exception_master_breakpoint ();
14252 }
14253 \f
14254 /* Reset the thread number of this breakpoint:
14255
14256 - If the breakpoint is for all threads, leave it as-is.
14257 - Else, reset it to the current thread for inferior_ptid. */
14258 void
14259 breakpoint_re_set_thread (struct breakpoint *b)
14260 {
14261 if (b->thread != -1)
14262 {
14263 if (in_thread_list (inferior_ptid))
14264 b->thread = pid_to_thread_id (inferior_ptid);
14265
14266 /* We're being called after following a fork. The new fork is
14267 selected as current, and unless this was a vfork will have a
14268 different program space from the original thread. Reset that
14269 as well. */
14270 b->loc->pspace = current_program_space;
14271 }
14272 }
14273
14274 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14275 If from_tty is nonzero, it prints a message to that effect,
14276 which ends with a period (no newline). */
14277
14278 void
14279 set_ignore_count (int bptnum, int count, int from_tty)
14280 {
14281 struct breakpoint *b;
14282
14283 if (count < 0)
14284 count = 0;
14285
14286 ALL_BREAKPOINTS (b)
14287 if (b->number == bptnum)
14288 {
14289 if (is_tracepoint (b))
14290 {
14291 if (from_tty && count != 0)
14292 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14293 bptnum);
14294 return;
14295 }
14296
14297 b->ignore_count = count;
14298 if (from_tty)
14299 {
14300 if (count == 0)
14301 printf_filtered (_("Will stop next time "
14302 "breakpoint %d is reached."),
14303 bptnum);
14304 else if (count == 1)
14305 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14306 bptnum);
14307 else
14308 printf_filtered (_("Will ignore next %d "
14309 "crossings of breakpoint %d."),
14310 count, bptnum);
14311 }
14312 observer_notify_breakpoint_modified (b);
14313 return;
14314 }
14315
14316 error (_("No breakpoint number %d."), bptnum);
14317 }
14318
14319 /* Command to set ignore-count of breakpoint N to COUNT. */
14320
14321 static void
14322 ignore_command (char *args, int from_tty)
14323 {
14324 char *p = args;
14325 int num;
14326
14327 if (p == 0)
14328 error_no_arg (_("a breakpoint number"));
14329
14330 num = get_number (&p);
14331 if (num == 0)
14332 error (_("bad breakpoint number: '%s'"), args);
14333 if (*p == 0)
14334 error (_("Second argument (specified ignore-count) is missing."));
14335
14336 set_ignore_count (num,
14337 longest_to_int (value_as_long (parse_and_eval (p))),
14338 from_tty);
14339 if (from_tty)
14340 printf_filtered ("\n");
14341 }
14342 \f
14343 /* Call FUNCTION on each of the breakpoints
14344 whose numbers are given in ARGS. */
14345
14346 static void
14347 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14348 void *),
14349 void *data)
14350 {
14351 int num;
14352 struct breakpoint *b, *tmp;
14353 int match;
14354 struct get_number_or_range_state state;
14355
14356 if (args == 0)
14357 error_no_arg (_("one or more breakpoint numbers"));
14358
14359 init_number_or_range (&state, args);
14360
14361 while (!state.finished)
14362 {
14363 char *p = state.string;
14364
14365 match = 0;
14366
14367 num = get_number_or_range (&state);
14368 if (num == 0)
14369 {
14370 warning (_("bad breakpoint number at or near '%s'"), p);
14371 }
14372 else
14373 {
14374 ALL_BREAKPOINTS_SAFE (b, tmp)
14375 if (b->number == num)
14376 {
14377 match = 1;
14378 function (b, data);
14379 break;
14380 }
14381 if (match == 0)
14382 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14383 }
14384 }
14385 }
14386
14387 static struct bp_location *
14388 find_location_by_number (char *number)
14389 {
14390 char *dot = strchr (number, '.');
14391 char *p1;
14392 int bp_num;
14393 int loc_num;
14394 struct breakpoint *b;
14395 struct bp_location *loc;
14396
14397 *dot = '\0';
14398
14399 p1 = number;
14400 bp_num = get_number (&p1);
14401 if (bp_num == 0)
14402 error (_("Bad breakpoint number '%s'"), number);
14403
14404 ALL_BREAKPOINTS (b)
14405 if (b->number == bp_num)
14406 {
14407 break;
14408 }
14409
14410 if (!b || b->number != bp_num)
14411 error (_("Bad breakpoint number '%s'"), number);
14412
14413 p1 = dot+1;
14414 loc_num = get_number (&p1);
14415 if (loc_num == 0)
14416 error (_("Bad breakpoint location number '%s'"), number);
14417
14418 --loc_num;
14419 loc = b->loc;
14420 for (;loc_num && loc; --loc_num, loc = loc->next)
14421 ;
14422 if (!loc)
14423 error (_("Bad breakpoint location number '%s'"), dot+1);
14424
14425 return loc;
14426 }
14427
14428
14429 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14430 If from_tty is nonzero, it prints a message to that effect,
14431 which ends with a period (no newline). */
14432
14433 void
14434 disable_breakpoint (struct breakpoint *bpt)
14435 {
14436 /* Never disable a watchpoint scope breakpoint; we want to
14437 hit them when we leave scope so we can delete both the
14438 watchpoint and its scope breakpoint at that time. */
14439 if (bpt->type == bp_watchpoint_scope)
14440 return;
14441
14442 /* You can't disable permanent breakpoints. */
14443 if (bpt->enable_state == bp_permanent)
14444 return;
14445
14446 bpt->enable_state = bp_disabled;
14447
14448 /* Mark breakpoint locations modified. */
14449 mark_breakpoint_modified (bpt);
14450
14451 if (target_supports_enable_disable_tracepoint ()
14452 && current_trace_status ()->running && is_tracepoint (bpt))
14453 {
14454 struct bp_location *location;
14455
14456 for (location = bpt->loc; location; location = location->next)
14457 target_disable_tracepoint (location);
14458 }
14459
14460 update_global_location_list (0);
14461
14462 observer_notify_breakpoint_modified (bpt);
14463 }
14464
14465 /* A callback for iterate_over_related_breakpoints. */
14466
14467 static void
14468 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14469 {
14470 disable_breakpoint (b);
14471 }
14472
14473 /* A callback for map_breakpoint_numbers that calls
14474 disable_breakpoint. */
14475
14476 static void
14477 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14478 {
14479 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14480 }
14481
14482 static void
14483 disable_command (char *args, int from_tty)
14484 {
14485 if (args == 0)
14486 {
14487 struct breakpoint *bpt;
14488
14489 ALL_BREAKPOINTS (bpt)
14490 if (user_breakpoint_p (bpt))
14491 disable_breakpoint (bpt);
14492 }
14493 else if (strchr (args, '.'))
14494 {
14495 struct bp_location *loc = find_location_by_number (args);
14496 if (loc)
14497 {
14498 if (loc->enabled)
14499 {
14500 loc->enabled = 0;
14501 mark_breakpoint_location_modified (loc);
14502 }
14503 if (target_supports_enable_disable_tracepoint ()
14504 && current_trace_status ()->running && loc->owner
14505 && is_tracepoint (loc->owner))
14506 target_disable_tracepoint (loc);
14507 }
14508 update_global_location_list (0);
14509 }
14510 else
14511 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14512 }
14513
14514 static void
14515 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14516 int count)
14517 {
14518 int target_resources_ok;
14519
14520 if (bpt->type == bp_hardware_breakpoint)
14521 {
14522 int i;
14523 i = hw_breakpoint_used_count ();
14524 target_resources_ok =
14525 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14526 i + 1, 0);
14527 if (target_resources_ok == 0)
14528 error (_("No hardware breakpoint support in the target."));
14529 else if (target_resources_ok < 0)
14530 error (_("Hardware breakpoints used exceeds limit."));
14531 }
14532
14533 if (is_watchpoint (bpt))
14534 {
14535 /* Initialize it just to avoid a GCC false warning. */
14536 enum enable_state orig_enable_state = 0;
14537 volatile struct gdb_exception e;
14538
14539 TRY_CATCH (e, RETURN_MASK_ALL)
14540 {
14541 struct watchpoint *w = (struct watchpoint *) bpt;
14542
14543 orig_enable_state = bpt->enable_state;
14544 bpt->enable_state = bp_enabled;
14545 update_watchpoint (w, 1 /* reparse */);
14546 }
14547 if (e.reason < 0)
14548 {
14549 bpt->enable_state = orig_enable_state;
14550 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14551 bpt->number);
14552 return;
14553 }
14554 }
14555
14556 if (bpt->enable_state != bp_permanent)
14557 bpt->enable_state = bp_enabled;
14558
14559 bpt->enable_state = bp_enabled;
14560
14561 /* Mark breakpoint locations modified. */
14562 mark_breakpoint_modified (bpt);
14563
14564 if (target_supports_enable_disable_tracepoint ()
14565 && current_trace_status ()->running && is_tracepoint (bpt))
14566 {
14567 struct bp_location *location;
14568
14569 for (location = bpt->loc; location; location = location->next)
14570 target_enable_tracepoint (location);
14571 }
14572
14573 bpt->disposition = disposition;
14574 bpt->enable_count = count;
14575 update_global_location_list (1);
14576
14577 observer_notify_breakpoint_modified (bpt);
14578 }
14579
14580
14581 void
14582 enable_breakpoint (struct breakpoint *bpt)
14583 {
14584 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14585 }
14586
14587 static void
14588 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14589 {
14590 enable_breakpoint (bpt);
14591 }
14592
14593 /* A callback for map_breakpoint_numbers that calls
14594 enable_breakpoint. */
14595
14596 static void
14597 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14598 {
14599 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14600 }
14601
14602 /* The enable command enables the specified breakpoints (or all defined
14603 breakpoints) so they once again become (or continue to be) effective
14604 in stopping the inferior. */
14605
14606 static void
14607 enable_command (char *args, int from_tty)
14608 {
14609 if (args == 0)
14610 {
14611 struct breakpoint *bpt;
14612
14613 ALL_BREAKPOINTS (bpt)
14614 if (user_breakpoint_p (bpt))
14615 enable_breakpoint (bpt);
14616 }
14617 else if (strchr (args, '.'))
14618 {
14619 struct bp_location *loc = find_location_by_number (args);
14620 if (loc)
14621 {
14622 if (!loc->enabled)
14623 {
14624 loc->enabled = 1;
14625 mark_breakpoint_location_modified (loc);
14626 }
14627 if (target_supports_enable_disable_tracepoint ()
14628 && current_trace_status ()->running && loc->owner
14629 && is_tracepoint (loc->owner))
14630 target_enable_tracepoint (loc);
14631 }
14632 update_global_location_list (1);
14633 }
14634 else
14635 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14636 }
14637
14638 /* This struct packages up disposition data for application to multiple
14639 breakpoints. */
14640
14641 struct disp_data
14642 {
14643 enum bpdisp disp;
14644 int count;
14645 };
14646
14647 static void
14648 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14649 {
14650 struct disp_data disp_data = *(struct disp_data *) arg;
14651
14652 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14653 }
14654
14655 static void
14656 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14657 {
14658 struct disp_data disp = { disp_disable, 1 };
14659
14660 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14661 }
14662
14663 static void
14664 enable_once_command (char *args, int from_tty)
14665 {
14666 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14667 }
14668
14669 static void
14670 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14671 {
14672 struct disp_data disp = { disp_disable, *(int *) countptr };
14673
14674 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14675 }
14676
14677 static void
14678 enable_count_command (char *args, int from_tty)
14679 {
14680 int count = get_number (&args);
14681
14682 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14683 }
14684
14685 static void
14686 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14687 {
14688 struct disp_data disp = { disp_del, 1 };
14689
14690 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14691 }
14692
14693 static void
14694 enable_delete_command (char *args, int from_tty)
14695 {
14696 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14697 }
14698 \f
14699 static void
14700 set_breakpoint_cmd (char *args, int from_tty)
14701 {
14702 }
14703
14704 static void
14705 show_breakpoint_cmd (char *args, int from_tty)
14706 {
14707 }
14708
14709 /* Invalidate last known value of any hardware watchpoint if
14710 the memory which that value represents has been written to by
14711 GDB itself. */
14712
14713 static void
14714 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14715 CORE_ADDR addr, ssize_t len,
14716 const bfd_byte *data)
14717 {
14718 struct breakpoint *bp;
14719
14720 ALL_BREAKPOINTS (bp)
14721 if (bp->enable_state == bp_enabled
14722 && bp->type == bp_hardware_watchpoint)
14723 {
14724 struct watchpoint *wp = (struct watchpoint *) bp;
14725
14726 if (wp->val_valid && wp->val)
14727 {
14728 struct bp_location *loc;
14729
14730 for (loc = bp->loc; loc != NULL; loc = loc->next)
14731 if (loc->loc_type == bp_loc_hardware_watchpoint
14732 && loc->address + loc->length > addr
14733 && addr + len > loc->address)
14734 {
14735 value_free (wp->val);
14736 wp->val = NULL;
14737 wp->val_valid = 0;
14738 }
14739 }
14740 }
14741 }
14742
14743 /* Create and insert a raw software breakpoint at PC. Return an
14744 identifier, which should be used to remove the breakpoint later.
14745 In general, places which call this should be using something on the
14746 breakpoint chain instead; this function should be eliminated
14747 someday. */
14748
14749 void *
14750 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14751 struct address_space *aspace, CORE_ADDR pc)
14752 {
14753 struct bp_target_info *bp_tgt;
14754
14755 bp_tgt = XZALLOC (struct bp_target_info);
14756
14757 bp_tgt->placed_address_space = aspace;
14758 bp_tgt->placed_address = pc;
14759
14760 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14761 {
14762 /* Could not insert the breakpoint. */
14763 xfree (bp_tgt);
14764 return NULL;
14765 }
14766
14767 return bp_tgt;
14768 }
14769
14770 /* Remove a breakpoint BP inserted by
14771 deprecated_insert_raw_breakpoint. */
14772
14773 int
14774 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14775 {
14776 struct bp_target_info *bp_tgt = bp;
14777 int ret;
14778
14779 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14780 xfree (bp_tgt);
14781
14782 return ret;
14783 }
14784
14785 /* One (or perhaps two) breakpoints used for software single
14786 stepping. */
14787
14788 static void *single_step_breakpoints[2];
14789 static struct gdbarch *single_step_gdbarch[2];
14790
14791 /* Create and insert a breakpoint for software single step. */
14792
14793 void
14794 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14795 struct address_space *aspace,
14796 CORE_ADDR next_pc)
14797 {
14798 void **bpt_p;
14799
14800 if (single_step_breakpoints[0] == NULL)
14801 {
14802 bpt_p = &single_step_breakpoints[0];
14803 single_step_gdbarch[0] = gdbarch;
14804 }
14805 else
14806 {
14807 gdb_assert (single_step_breakpoints[1] == NULL);
14808 bpt_p = &single_step_breakpoints[1];
14809 single_step_gdbarch[1] = gdbarch;
14810 }
14811
14812 /* NOTE drow/2006-04-11: A future improvement to this function would
14813 be to only create the breakpoints once, and actually put them on
14814 the breakpoint chain. That would let us use set_raw_breakpoint.
14815 We could adjust the addresses each time they were needed. Doing
14816 this requires corresponding changes elsewhere where single step
14817 breakpoints are handled, however. So, for now, we use this. */
14818
14819 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14820 if (*bpt_p == NULL)
14821 error (_("Could not insert single-step breakpoint at %s"),
14822 paddress (gdbarch, next_pc));
14823 }
14824
14825 /* Check if the breakpoints used for software single stepping
14826 were inserted or not. */
14827
14828 int
14829 single_step_breakpoints_inserted (void)
14830 {
14831 return (single_step_breakpoints[0] != NULL
14832 || single_step_breakpoints[1] != NULL);
14833 }
14834
14835 /* Remove and delete any breakpoints used for software single step. */
14836
14837 void
14838 remove_single_step_breakpoints (void)
14839 {
14840 gdb_assert (single_step_breakpoints[0] != NULL);
14841
14842 /* See insert_single_step_breakpoint for more about this deprecated
14843 call. */
14844 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14845 single_step_breakpoints[0]);
14846 single_step_gdbarch[0] = NULL;
14847 single_step_breakpoints[0] = NULL;
14848
14849 if (single_step_breakpoints[1] != NULL)
14850 {
14851 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14852 single_step_breakpoints[1]);
14853 single_step_gdbarch[1] = NULL;
14854 single_step_breakpoints[1] = NULL;
14855 }
14856 }
14857
14858 /* Delete software single step breakpoints without removing them from
14859 the inferior. This is intended to be used if the inferior's address
14860 space where they were inserted is already gone, e.g. after exit or
14861 exec. */
14862
14863 void
14864 cancel_single_step_breakpoints (void)
14865 {
14866 int i;
14867
14868 for (i = 0; i < 2; i++)
14869 if (single_step_breakpoints[i])
14870 {
14871 xfree (single_step_breakpoints[i]);
14872 single_step_breakpoints[i] = NULL;
14873 single_step_gdbarch[i] = NULL;
14874 }
14875 }
14876
14877 /* Detach software single-step breakpoints from INFERIOR_PTID without
14878 removing them. */
14879
14880 static void
14881 detach_single_step_breakpoints (void)
14882 {
14883 int i;
14884
14885 for (i = 0; i < 2; i++)
14886 if (single_step_breakpoints[i])
14887 target_remove_breakpoint (single_step_gdbarch[i],
14888 single_step_breakpoints[i]);
14889 }
14890
14891 /* Check whether a software single-step breakpoint is inserted at
14892 PC. */
14893
14894 static int
14895 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14896 CORE_ADDR pc)
14897 {
14898 int i;
14899
14900 for (i = 0; i < 2; i++)
14901 {
14902 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14903 if (bp_tgt
14904 && breakpoint_address_match (bp_tgt->placed_address_space,
14905 bp_tgt->placed_address,
14906 aspace, pc))
14907 return 1;
14908 }
14909
14910 return 0;
14911 }
14912
14913 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14914 non-zero otherwise. */
14915 static int
14916 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14917 {
14918 if (syscall_catchpoint_p (bp)
14919 && bp->enable_state != bp_disabled
14920 && bp->enable_state != bp_call_disabled)
14921 return 1;
14922 else
14923 return 0;
14924 }
14925
14926 int
14927 catch_syscall_enabled (void)
14928 {
14929 struct catch_syscall_inferior_data *inf_data
14930 = get_catch_syscall_inferior_data (current_inferior ());
14931
14932 return inf_data->total_syscalls_count != 0;
14933 }
14934
14935 int
14936 catching_syscall_number (int syscall_number)
14937 {
14938 struct breakpoint *bp;
14939
14940 ALL_BREAKPOINTS (bp)
14941 if (is_syscall_catchpoint_enabled (bp))
14942 {
14943 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14944
14945 if (c->syscalls_to_be_caught)
14946 {
14947 int i, iter;
14948 for (i = 0;
14949 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14950 i++)
14951 if (syscall_number == iter)
14952 return 1;
14953 }
14954 else
14955 return 1;
14956 }
14957
14958 return 0;
14959 }
14960
14961 /* Complete syscall names. Used by "catch syscall". */
14962 static VEC (char_ptr) *
14963 catch_syscall_completer (struct cmd_list_element *cmd,
14964 const char *text, const char *word)
14965 {
14966 const char **list = get_syscall_names ();
14967 VEC (char_ptr) *retlist
14968 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
14969
14970 xfree (list);
14971 return retlist;
14972 }
14973
14974 /* Tracepoint-specific operations. */
14975
14976 /* Set tracepoint count to NUM. */
14977 static void
14978 set_tracepoint_count (int num)
14979 {
14980 tracepoint_count = num;
14981 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14982 }
14983
14984 static void
14985 trace_command (char *arg, int from_tty)
14986 {
14987 struct breakpoint_ops *ops;
14988 const char *arg_cp = arg;
14989
14990 if (arg && probe_linespec_to_ops (&arg_cp))
14991 ops = &tracepoint_probe_breakpoint_ops;
14992 else
14993 ops = &tracepoint_breakpoint_ops;
14994
14995 create_breakpoint (get_current_arch (),
14996 arg,
14997 NULL, 0, NULL, 1 /* parse arg */,
14998 0 /* tempflag */,
14999 bp_tracepoint /* type_wanted */,
15000 0 /* Ignore count */,
15001 pending_break_support,
15002 ops,
15003 from_tty,
15004 1 /* enabled */,
15005 0 /* internal */, 0);
15006 }
15007
15008 static void
15009 ftrace_command (char *arg, int from_tty)
15010 {
15011 create_breakpoint (get_current_arch (),
15012 arg,
15013 NULL, 0, NULL, 1 /* parse arg */,
15014 0 /* tempflag */,
15015 bp_fast_tracepoint /* type_wanted */,
15016 0 /* Ignore count */,
15017 pending_break_support,
15018 &tracepoint_breakpoint_ops,
15019 from_tty,
15020 1 /* enabled */,
15021 0 /* internal */, 0);
15022 }
15023
15024 /* strace command implementation. Creates a static tracepoint. */
15025
15026 static void
15027 strace_command (char *arg, int from_tty)
15028 {
15029 struct breakpoint_ops *ops;
15030
15031 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15032 or with a normal static tracepoint. */
15033 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15034 ops = &strace_marker_breakpoint_ops;
15035 else
15036 ops = &tracepoint_breakpoint_ops;
15037
15038 create_breakpoint (get_current_arch (),
15039 arg,
15040 NULL, 0, NULL, 1 /* parse arg */,
15041 0 /* tempflag */,
15042 bp_static_tracepoint /* type_wanted */,
15043 0 /* Ignore count */,
15044 pending_break_support,
15045 ops,
15046 from_tty,
15047 1 /* enabled */,
15048 0 /* internal */, 0);
15049 }
15050
15051 /* Set up a fake reader function that gets command lines from a linked
15052 list that was acquired during tracepoint uploading. */
15053
15054 static struct uploaded_tp *this_utp;
15055 static int next_cmd;
15056
15057 static char *
15058 read_uploaded_action (void)
15059 {
15060 char *rslt;
15061
15062 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15063
15064 next_cmd++;
15065
15066 return rslt;
15067 }
15068
15069 /* Given information about a tracepoint as recorded on a target (which
15070 can be either a live system or a trace file), attempt to create an
15071 equivalent GDB tracepoint. This is not a reliable process, since
15072 the target does not necessarily have all the information used when
15073 the tracepoint was originally defined. */
15074
15075 struct tracepoint *
15076 create_tracepoint_from_upload (struct uploaded_tp *utp)
15077 {
15078 char *addr_str, small_buf[100];
15079 struct tracepoint *tp;
15080
15081 if (utp->at_string)
15082 addr_str = utp->at_string;
15083 else
15084 {
15085 /* In the absence of a source location, fall back to raw
15086 address. Since there is no way to confirm that the address
15087 means the same thing as when the trace was started, warn the
15088 user. */
15089 warning (_("Uploaded tracepoint %d has no "
15090 "source location, using raw address"),
15091 utp->number);
15092 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15093 addr_str = small_buf;
15094 }
15095
15096 /* There's not much we can do with a sequence of bytecodes. */
15097 if (utp->cond && !utp->cond_string)
15098 warning (_("Uploaded tracepoint %d condition "
15099 "has no source form, ignoring it"),
15100 utp->number);
15101
15102 if (!create_breakpoint (get_current_arch (),
15103 addr_str,
15104 utp->cond_string, -1, NULL,
15105 0 /* parse cond/thread */,
15106 0 /* tempflag */,
15107 utp->type /* type_wanted */,
15108 0 /* Ignore count */,
15109 pending_break_support,
15110 &tracepoint_breakpoint_ops,
15111 0 /* from_tty */,
15112 utp->enabled /* enabled */,
15113 0 /* internal */,
15114 CREATE_BREAKPOINT_FLAGS_INSERTED))
15115 return NULL;
15116
15117 /* Get the tracepoint we just created. */
15118 tp = get_tracepoint (tracepoint_count);
15119 gdb_assert (tp != NULL);
15120
15121 if (utp->pass > 0)
15122 {
15123 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15124 tp->base.number);
15125
15126 trace_pass_command (small_buf, 0);
15127 }
15128
15129 /* If we have uploaded versions of the original commands, set up a
15130 special-purpose "reader" function and call the usual command line
15131 reader, then pass the result to the breakpoint command-setting
15132 function. */
15133 if (!VEC_empty (char_ptr, utp->cmd_strings))
15134 {
15135 struct command_line *cmd_list;
15136
15137 this_utp = utp;
15138 next_cmd = 0;
15139
15140 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15141
15142 breakpoint_set_commands (&tp->base, cmd_list);
15143 }
15144 else if (!VEC_empty (char_ptr, utp->actions)
15145 || !VEC_empty (char_ptr, utp->step_actions))
15146 warning (_("Uploaded tracepoint %d actions "
15147 "have no source form, ignoring them"),
15148 utp->number);
15149
15150 /* Copy any status information that might be available. */
15151 tp->base.hit_count = utp->hit_count;
15152 tp->traceframe_usage = utp->traceframe_usage;
15153
15154 return tp;
15155 }
15156
15157 /* Print information on tracepoint number TPNUM_EXP, or all if
15158 omitted. */
15159
15160 static void
15161 tracepoints_info (char *args, int from_tty)
15162 {
15163 struct ui_out *uiout = current_uiout;
15164 int num_printed;
15165
15166 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15167
15168 if (num_printed == 0)
15169 {
15170 if (args == NULL || *args == '\0')
15171 ui_out_message (uiout, 0, "No tracepoints.\n");
15172 else
15173 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15174 }
15175
15176 default_collect_info ();
15177 }
15178
15179 /* The 'enable trace' command enables tracepoints.
15180 Not supported by all targets. */
15181 static void
15182 enable_trace_command (char *args, int from_tty)
15183 {
15184 enable_command (args, from_tty);
15185 }
15186
15187 /* The 'disable trace' command disables tracepoints.
15188 Not supported by all targets. */
15189 static void
15190 disable_trace_command (char *args, int from_tty)
15191 {
15192 disable_command (args, from_tty);
15193 }
15194
15195 /* Remove a tracepoint (or all if no argument). */
15196 static void
15197 delete_trace_command (char *arg, int from_tty)
15198 {
15199 struct breakpoint *b, *b_tmp;
15200
15201 dont_repeat ();
15202
15203 if (arg == 0)
15204 {
15205 int breaks_to_delete = 0;
15206
15207 /* Delete all breakpoints if no argument.
15208 Do not delete internal or call-dummy breakpoints, these
15209 have to be deleted with an explicit breakpoint number
15210 argument. */
15211 ALL_TRACEPOINTS (b)
15212 if (is_tracepoint (b) && user_breakpoint_p (b))
15213 {
15214 breaks_to_delete = 1;
15215 break;
15216 }
15217
15218 /* Ask user only if there are some breakpoints to delete. */
15219 if (!from_tty
15220 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15221 {
15222 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15223 if (is_tracepoint (b) && user_breakpoint_p (b))
15224 delete_breakpoint (b);
15225 }
15226 }
15227 else
15228 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15229 }
15230
15231 /* Helper function for trace_pass_command. */
15232
15233 static void
15234 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15235 {
15236 tp->pass_count = count;
15237 observer_notify_breakpoint_modified (&tp->base);
15238 if (from_tty)
15239 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15240 tp->base.number, count);
15241 }
15242
15243 /* Set passcount for tracepoint.
15244
15245 First command argument is passcount, second is tracepoint number.
15246 If tracepoint number omitted, apply to most recently defined.
15247 Also accepts special argument "all". */
15248
15249 static void
15250 trace_pass_command (char *args, int from_tty)
15251 {
15252 struct tracepoint *t1;
15253 unsigned int count;
15254
15255 if (args == 0 || *args == 0)
15256 error (_("passcount command requires an "
15257 "argument (count + optional TP num)"));
15258
15259 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15260
15261 args = skip_spaces (args);
15262 if (*args && strncasecmp (args, "all", 3) == 0)
15263 {
15264 struct breakpoint *b;
15265
15266 args += 3; /* Skip special argument "all". */
15267 if (*args)
15268 error (_("Junk at end of arguments."));
15269
15270 ALL_TRACEPOINTS (b)
15271 {
15272 t1 = (struct tracepoint *) b;
15273 trace_pass_set_count (t1, count, from_tty);
15274 }
15275 }
15276 else if (*args == '\0')
15277 {
15278 t1 = get_tracepoint_by_number (&args, NULL, 1);
15279 if (t1)
15280 trace_pass_set_count (t1, count, from_tty);
15281 }
15282 else
15283 {
15284 struct get_number_or_range_state state;
15285
15286 init_number_or_range (&state, args);
15287 while (!state.finished)
15288 {
15289 t1 = get_tracepoint_by_number (&args, &state, 1);
15290 if (t1)
15291 trace_pass_set_count (t1, count, from_tty);
15292 }
15293 }
15294 }
15295
15296 struct tracepoint *
15297 get_tracepoint (int num)
15298 {
15299 struct breakpoint *t;
15300
15301 ALL_TRACEPOINTS (t)
15302 if (t->number == num)
15303 return (struct tracepoint *) t;
15304
15305 return NULL;
15306 }
15307
15308 /* Find the tracepoint with the given target-side number (which may be
15309 different from the tracepoint number after disconnecting and
15310 reconnecting). */
15311
15312 struct tracepoint *
15313 get_tracepoint_by_number_on_target (int num)
15314 {
15315 struct breakpoint *b;
15316
15317 ALL_TRACEPOINTS (b)
15318 {
15319 struct tracepoint *t = (struct tracepoint *) b;
15320
15321 if (t->number_on_target == num)
15322 return t;
15323 }
15324
15325 return NULL;
15326 }
15327
15328 /* Utility: parse a tracepoint number and look it up in the list.
15329 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15330 If OPTIONAL_P is true, then if the argument is missing, the most
15331 recent tracepoint (tracepoint_count) is returned. */
15332 struct tracepoint *
15333 get_tracepoint_by_number (char **arg,
15334 struct get_number_or_range_state *state,
15335 int optional_p)
15336 {
15337 struct breakpoint *t;
15338 int tpnum;
15339 char *instring = arg == NULL ? NULL : *arg;
15340
15341 if (state)
15342 {
15343 gdb_assert (!state->finished);
15344 tpnum = get_number_or_range (state);
15345 }
15346 else if (arg == NULL || *arg == NULL || ! **arg)
15347 {
15348 if (optional_p)
15349 tpnum = tracepoint_count;
15350 else
15351 error_no_arg (_("tracepoint number"));
15352 }
15353 else
15354 tpnum = get_number (arg);
15355
15356 if (tpnum <= 0)
15357 {
15358 if (instring && *instring)
15359 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15360 instring);
15361 else
15362 printf_filtered (_("Tracepoint argument missing "
15363 "and no previous tracepoint\n"));
15364 return NULL;
15365 }
15366
15367 ALL_TRACEPOINTS (t)
15368 if (t->number == tpnum)
15369 {
15370 return (struct tracepoint *) t;
15371 }
15372
15373 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15374 return NULL;
15375 }
15376
15377 void
15378 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15379 {
15380 if (b->thread != -1)
15381 fprintf_unfiltered (fp, " thread %d", b->thread);
15382
15383 if (b->task != 0)
15384 fprintf_unfiltered (fp, " task %d", b->task);
15385
15386 fprintf_unfiltered (fp, "\n");
15387 }
15388
15389 /* Save information on user settable breakpoints (watchpoints, etc) to
15390 a new script file named FILENAME. If FILTER is non-NULL, call it
15391 on each breakpoint and only include the ones for which it returns
15392 non-zero. */
15393
15394 static void
15395 save_breakpoints (char *filename, int from_tty,
15396 int (*filter) (const struct breakpoint *))
15397 {
15398 struct breakpoint *tp;
15399 int any = 0;
15400 char *pathname;
15401 struct cleanup *cleanup;
15402 struct ui_file *fp;
15403 int extra_trace_bits = 0;
15404
15405 if (filename == 0 || *filename == 0)
15406 error (_("Argument required (file name in which to save)"));
15407
15408 /* See if we have anything to save. */
15409 ALL_BREAKPOINTS (tp)
15410 {
15411 /* Skip internal and momentary breakpoints. */
15412 if (!user_breakpoint_p (tp))
15413 continue;
15414
15415 /* If we have a filter, only save the breakpoints it accepts. */
15416 if (filter && !filter (tp))
15417 continue;
15418
15419 any = 1;
15420
15421 if (is_tracepoint (tp))
15422 {
15423 extra_trace_bits = 1;
15424
15425 /* We can stop searching. */
15426 break;
15427 }
15428 }
15429
15430 if (!any)
15431 {
15432 warning (_("Nothing to save."));
15433 return;
15434 }
15435
15436 pathname = tilde_expand (filename);
15437 cleanup = make_cleanup (xfree, pathname);
15438 fp = gdb_fopen (pathname, "w");
15439 if (!fp)
15440 error (_("Unable to open file '%s' for saving (%s)"),
15441 filename, safe_strerror (errno));
15442 make_cleanup_ui_file_delete (fp);
15443
15444 if (extra_trace_bits)
15445 save_trace_state_variables (fp);
15446
15447 ALL_BREAKPOINTS (tp)
15448 {
15449 /* Skip internal and momentary breakpoints. */
15450 if (!user_breakpoint_p (tp))
15451 continue;
15452
15453 /* If we have a filter, only save the breakpoints it accepts. */
15454 if (filter && !filter (tp))
15455 continue;
15456
15457 tp->ops->print_recreate (tp, fp);
15458
15459 /* Note, we can't rely on tp->number for anything, as we can't
15460 assume the recreated breakpoint numbers will match. Use $bpnum
15461 instead. */
15462
15463 if (tp->cond_string)
15464 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15465
15466 if (tp->ignore_count)
15467 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15468
15469 if (tp->type != bp_dprintf && tp->commands)
15470 {
15471 volatile struct gdb_exception ex;
15472
15473 fprintf_unfiltered (fp, " commands\n");
15474
15475 ui_out_redirect (current_uiout, fp);
15476 TRY_CATCH (ex, RETURN_MASK_ALL)
15477 {
15478 print_command_lines (current_uiout, tp->commands->commands, 2);
15479 }
15480 ui_out_redirect (current_uiout, NULL);
15481
15482 if (ex.reason < 0)
15483 throw_exception (ex);
15484
15485 fprintf_unfiltered (fp, " end\n");
15486 }
15487
15488 if (tp->enable_state == bp_disabled)
15489 fprintf_unfiltered (fp, "disable\n");
15490
15491 /* If this is a multi-location breakpoint, check if the locations
15492 should be individually disabled. Watchpoint locations are
15493 special, and not user visible. */
15494 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15495 {
15496 struct bp_location *loc;
15497 int n = 1;
15498
15499 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15500 if (!loc->enabled)
15501 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15502 }
15503 }
15504
15505 if (extra_trace_bits && *default_collect)
15506 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15507
15508 do_cleanups (cleanup);
15509 if (from_tty)
15510 printf_filtered (_("Saved to file '%s'.\n"), filename);
15511 }
15512
15513 /* The `save breakpoints' command. */
15514
15515 static void
15516 save_breakpoints_command (char *args, int from_tty)
15517 {
15518 save_breakpoints (args, from_tty, NULL);
15519 }
15520
15521 /* The `save tracepoints' command. */
15522
15523 static void
15524 save_tracepoints_command (char *args, int from_tty)
15525 {
15526 save_breakpoints (args, from_tty, is_tracepoint);
15527 }
15528
15529 /* Create a vector of all tracepoints. */
15530
15531 VEC(breakpoint_p) *
15532 all_tracepoints (void)
15533 {
15534 VEC(breakpoint_p) *tp_vec = 0;
15535 struct breakpoint *tp;
15536
15537 ALL_TRACEPOINTS (tp)
15538 {
15539 VEC_safe_push (breakpoint_p, tp_vec, tp);
15540 }
15541
15542 return tp_vec;
15543 }
15544
15545 \f
15546 /* This help string is used for the break, hbreak, tbreak and thbreak
15547 commands. It is defined as a macro to prevent duplication.
15548 COMMAND should be a string constant containing the name of the
15549 command. */
15550 #define BREAK_ARGS_HELP(command) \
15551 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15552 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15553 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15554 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15555 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15556 If a line number is specified, break at start of code for that line.\n\
15557 If a function is specified, break at start of code for that function.\n\
15558 If an address is specified, break at that exact address.\n\
15559 With no LOCATION, uses current execution address of the selected\n\
15560 stack frame. This is useful for breaking on return to a stack frame.\n\
15561 \n\
15562 THREADNUM is the number from \"info threads\".\n\
15563 CONDITION is a boolean expression.\n\
15564 \n\
15565 Multiple breakpoints at one place are permitted, and useful if their\n\
15566 conditions are different.\n\
15567 \n\
15568 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15569
15570 /* List of subcommands for "catch". */
15571 static struct cmd_list_element *catch_cmdlist;
15572
15573 /* List of subcommands for "tcatch". */
15574 static struct cmd_list_element *tcatch_cmdlist;
15575
15576 void
15577 add_catch_command (char *name, char *docstring,
15578 void (*sfunc) (char *args, int from_tty,
15579 struct cmd_list_element *command),
15580 completer_ftype *completer,
15581 void *user_data_catch,
15582 void *user_data_tcatch)
15583 {
15584 struct cmd_list_element *command;
15585
15586 command = add_cmd (name, class_breakpoint, NULL, docstring,
15587 &catch_cmdlist);
15588 set_cmd_sfunc (command, sfunc);
15589 set_cmd_context (command, user_data_catch);
15590 set_cmd_completer (command, completer);
15591
15592 command = add_cmd (name, class_breakpoint, NULL, docstring,
15593 &tcatch_cmdlist);
15594 set_cmd_sfunc (command, sfunc);
15595 set_cmd_context (command, user_data_tcatch);
15596 set_cmd_completer (command, completer);
15597 }
15598
15599 static void
15600 clear_syscall_counts (struct inferior *inf)
15601 {
15602 struct catch_syscall_inferior_data *inf_data
15603 = get_catch_syscall_inferior_data (inf);
15604
15605 inf_data->total_syscalls_count = 0;
15606 inf_data->any_syscall_count = 0;
15607 VEC_free (int, inf_data->syscalls_counts);
15608 }
15609
15610 static void
15611 save_command (char *arg, int from_tty)
15612 {
15613 printf_unfiltered (_("\"save\" must be followed by "
15614 "the name of a save subcommand.\n"));
15615 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15616 }
15617
15618 struct breakpoint *
15619 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15620 void *data)
15621 {
15622 struct breakpoint *b, *b_tmp;
15623
15624 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15625 {
15626 if ((*callback) (b, data))
15627 return b;
15628 }
15629
15630 return NULL;
15631 }
15632
15633 /* Zero if any of the breakpoint's locations could be a location where
15634 functions have been inlined, nonzero otherwise. */
15635
15636 static int
15637 is_non_inline_function (struct breakpoint *b)
15638 {
15639 /* The shared library event breakpoint is set on the address of a
15640 non-inline function. */
15641 if (b->type == bp_shlib_event)
15642 return 1;
15643
15644 return 0;
15645 }
15646
15647 /* Nonzero if the specified PC cannot be a location where functions
15648 have been inlined. */
15649
15650 int
15651 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15652 const struct target_waitstatus *ws)
15653 {
15654 struct breakpoint *b;
15655 struct bp_location *bl;
15656
15657 ALL_BREAKPOINTS (b)
15658 {
15659 if (!is_non_inline_function (b))
15660 continue;
15661
15662 for (bl = b->loc; bl != NULL; bl = bl->next)
15663 {
15664 if (!bl->shlib_disabled
15665 && bpstat_check_location (bl, aspace, pc, ws))
15666 return 1;
15667 }
15668 }
15669
15670 return 0;
15671 }
15672
15673 /* Remove any references to OBJFILE which is going to be freed. */
15674
15675 void
15676 breakpoint_free_objfile (struct objfile *objfile)
15677 {
15678 struct bp_location **locp, *loc;
15679
15680 ALL_BP_LOCATIONS (loc, locp)
15681 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15682 loc->symtab = NULL;
15683 }
15684
15685 void
15686 initialize_breakpoint_ops (void)
15687 {
15688 static int initialized = 0;
15689
15690 struct breakpoint_ops *ops;
15691
15692 if (initialized)
15693 return;
15694 initialized = 1;
15695
15696 /* The breakpoint_ops structure to be inherit by all kinds of
15697 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15698 internal and momentary breakpoints, etc.). */
15699 ops = &bkpt_base_breakpoint_ops;
15700 *ops = base_breakpoint_ops;
15701 ops->re_set = bkpt_re_set;
15702 ops->insert_location = bkpt_insert_location;
15703 ops->remove_location = bkpt_remove_location;
15704 ops->breakpoint_hit = bkpt_breakpoint_hit;
15705 ops->create_sals_from_address = bkpt_create_sals_from_address;
15706 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15707 ops->decode_linespec = bkpt_decode_linespec;
15708
15709 /* The breakpoint_ops structure to be used in regular breakpoints. */
15710 ops = &bkpt_breakpoint_ops;
15711 *ops = bkpt_base_breakpoint_ops;
15712 ops->re_set = bkpt_re_set;
15713 ops->resources_needed = bkpt_resources_needed;
15714 ops->print_it = bkpt_print_it;
15715 ops->print_mention = bkpt_print_mention;
15716 ops->print_recreate = bkpt_print_recreate;
15717
15718 /* Ranged breakpoints. */
15719 ops = &ranged_breakpoint_ops;
15720 *ops = bkpt_breakpoint_ops;
15721 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15722 ops->resources_needed = resources_needed_ranged_breakpoint;
15723 ops->print_it = print_it_ranged_breakpoint;
15724 ops->print_one = print_one_ranged_breakpoint;
15725 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15726 ops->print_mention = print_mention_ranged_breakpoint;
15727 ops->print_recreate = print_recreate_ranged_breakpoint;
15728
15729 /* Internal breakpoints. */
15730 ops = &internal_breakpoint_ops;
15731 *ops = bkpt_base_breakpoint_ops;
15732 ops->re_set = internal_bkpt_re_set;
15733 ops->check_status = internal_bkpt_check_status;
15734 ops->print_it = internal_bkpt_print_it;
15735 ops->print_mention = internal_bkpt_print_mention;
15736
15737 /* Momentary breakpoints. */
15738 ops = &momentary_breakpoint_ops;
15739 *ops = bkpt_base_breakpoint_ops;
15740 ops->re_set = momentary_bkpt_re_set;
15741 ops->check_status = momentary_bkpt_check_status;
15742 ops->print_it = momentary_bkpt_print_it;
15743 ops->print_mention = momentary_bkpt_print_mention;
15744
15745 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15746 ops = &longjmp_breakpoint_ops;
15747 *ops = momentary_breakpoint_ops;
15748 ops->dtor = longjmp_bkpt_dtor;
15749
15750 /* Probe breakpoints. */
15751 ops = &bkpt_probe_breakpoint_ops;
15752 *ops = bkpt_breakpoint_ops;
15753 ops->insert_location = bkpt_probe_insert_location;
15754 ops->remove_location = bkpt_probe_remove_location;
15755 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15756 ops->decode_linespec = bkpt_probe_decode_linespec;
15757
15758 /* Watchpoints. */
15759 ops = &watchpoint_breakpoint_ops;
15760 *ops = base_breakpoint_ops;
15761 ops->dtor = dtor_watchpoint;
15762 ops->re_set = re_set_watchpoint;
15763 ops->insert_location = insert_watchpoint;
15764 ops->remove_location = remove_watchpoint;
15765 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15766 ops->check_status = check_status_watchpoint;
15767 ops->resources_needed = resources_needed_watchpoint;
15768 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15769 ops->print_it = print_it_watchpoint;
15770 ops->print_mention = print_mention_watchpoint;
15771 ops->print_recreate = print_recreate_watchpoint;
15772
15773 /* Masked watchpoints. */
15774 ops = &masked_watchpoint_breakpoint_ops;
15775 *ops = watchpoint_breakpoint_ops;
15776 ops->insert_location = insert_masked_watchpoint;
15777 ops->remove_location = remove_masked_watchpoint;
15778 ops->resources_needed = resources_needed_masked_watchpoint;
15779 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15780 ops->print_it = print_it_masked_watchpoint;
15781 ops->print_one_detail = print_one_detail_masked_watchpoint;
15782 ops->print_mention = print_mention_masked_watchpoint;
15783 ops->print_recreate = print_recreate_masked_watchpoint;
15784
15785 /* Tracepoints. */
15786 ops = &tracepoint_breakpoint_ops;
15787 *ops = base_breakpoint_ops;
15788 ops->re_set = tracepoint_re_set;
15789 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15790 ops->print_one_detail = tracepoint_print_one_detail;
15791 ops->print_mention = tracepoint_print_mention;
15792 ops->print_recreate = tracepoint_print_recreate;
15793 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15794 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15795 ops->decode_linespec = tracepoint_decode_linespec;
15796
15797 /* Probe tracepoints. */
15798 ops = &tracepoint_probe_breakpoint_ops;
15799 *ops = tracepoint_breakpoint_ops;
15800 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15801 ops->decode_linespec = tracepoint_probe_decode_linespec;
15802
15803 /* Static tracepoints with marker (`-m'). */
15804 ops = &strace_marker_breakpoint_ops;
15805 *ops = tracepoint_breakpoint_ops;
15806 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15807 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15808 ops->decode_linespec = strace_marker_decode_linespec;
15809
15810 /* Fork catchpoints. */
15811 ops = &catch_fork_breakpoint_ops;
15812 *ops = base_breakpoint_ops;
15813 ops->insert_location = insert_catch_fork;
15814 ops->remove_location = remove_catch_fork;
15815 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15816 ops->print_it = print_it_catch_fork;
15817 ops->print_one = print_one_catch_fork;
15818 ops->print_mention = print_mention_catch_fork;
15819 ops->print_recreate = print_recreate_catch_fork;
15820
15821 /* Vfork catchpoints. */
15822 ops = &catch_vfork_breakpoint_ops;
15823 *ops = base_breakpoint_ops;
15824 ops->insert_location = insert_catch_vfork;
15825 ops->remove_location = remove_catch_vfork;
15826 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15827 ops->print_it = print_it_catch_vfork;
15828 ops->print_one = print_one_catch_vfork;
15829 ops->print_mention = print_mention_catch_vfork;
15830 ops->print_recreate = print_recreate_catch_vfork;
15831
15832 /* Exec catchpoints. */
15833 ops = &catch_exec_breakpoint_ops;
15834 *ops = base_breakpoint_ops;
15835 ops->dtor = dtor_catch_exec;
15836 ops->insert_location = insert_catch_exec;
15837 ops->remove_location = remove_catch_exec;
15838 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15839 ops->print_it = print_it_catch_exec;
15840 ops->print_one = print_one_catch_exec;
15841 ops->print_mention = print_mention_catch_exec;
15842 ops->print_recreate = print_recreate_catch_exec;
15843
15844 /* Syscall catchpoints. */
15845 ops = &catch_syscall_breakpoint_ops;
15846 *ops = base_breakpoint_ops;
15847 ops->dtor = dtor_catch_syscall;
15848 ops->insert_location = insert_catch_syscall;
15849 ops->remove_location = remove_catch_syscall;
15850 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15851 ops->print_it = print_it_catch_syscall;
15852 ops->print_one = print_one_catch_syscall;
15853 ops->print_mention = print_mention_catch_syscall;
15854 ops->print_recreate = print_recreate_catch_syscall;
15855
15856 /* Solib-related catchpoints. */
15857 ops = &catch_solib_breakpoint_ops;
15858 *ops = base_breakpoint_ops;
15859 ops->dtor = dtor_catch_solib;
15860 ops->insert_location = insert_catch_solib;
15861 ops->remove_location = remove_catch_solib;
15862 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15863 ops->check_status = check_status_catch_solib;
15864 ops->print_it = print_it_catch_solib;
15865 ops->print_one = print_one_catch_solib;
15866 ops->print_mention = print_mention_catch_solib;
15867 ops->print_recreate = print_recreate_catch_solib;
15868
15869 ops = &dprintf_breakpoint_ops;
15870 *ops = bkpt_base_breakpoint_ops;
15871 ops->re_set = dprintf_re_set;
15872 ops->resources_needed = bkpt_resources_needed;
15873 ops->print_it = bkpt_print_it;
15874 ops->print_mention = bkpt_print_mention;
15875 ops->print_recreate = dprintf_print_recreate;
15876 }
15877
15878 /* Chain containing all defined "enable breakpoint" subcommands. */
15879
15880 static struct cmd_list_element *enablebreaklist = NULL;
15881
15882 void
15883 _initialize_breakpoint (void)
15884 {
15885 struct cmd_list_element *c;
15886
15887 initialize_breakpoint_ops ();
15888
15889 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15890 observer_attach_inferior_exit (clear_syscall_counts);
15891 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15892
15893 breakpoint_objfile_key
15894 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15895
15896 catch_syscall_inferior_data
15897 = register_inferior_data_with_cleanup (NULL,
15898 catch_syscall_inferior_data_cleanup);
15899
15900 breakpoint_chain = 0;
15901 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15902 before a breakpoint is set. */
15903 breakpoint_count = 0;
15904
15905 tracepoint_count = 0;
15906
15907 add_com ("ignore", class_breakpoint, ignore_command, _("\
15908 Set ignore-count of breakpoint number N to COUNT.\n\
15909 Usage is `ignore N COUNT'."));
15910 if (xdb_commands)
15911 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15912
15913 add_com ("commands", class_breakpoint, commands_command, _("\
15914 Set commands to be executed when a breakpoint is hit.\n\
15915 Give breakpoint number as argument after \"commands\".\n\
15916 With no argument, the targeted breakpoint is the last one set.\n\
15917 The commands themselves follow starting on the next line.\n\
15918 Type a line containing \"end\" to indicate the end of them.\n\
15919 Give \"silent\" as the first line to make the breakpoint silent;\n\
15920 then no output is printed when it is hit, except what the commands print."));
15921
15922 c = add_com ("condition", class_breakpoint, condition_command, _("\
15923 Specify breakpoint number N to break only if COND is true.\n\
15924 Usage is `condition N COND', where N is an integer and COND is an\n\
15925 expression to be evaluated whenever breakpoint N is reached."));
15926 set_cmd_completer (c, condition_completer);
15927
15928 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15929 Set a temporary breakpoint.\n\
15930 Like \"break\" except the breakpoint is only temporary,\n\
15931 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15932 by using \"enable delete\" on the breakpoint number.\n\
15933 \n"
15934 BREAK_ARGS_HELP ("tbreak")));
15935 set_cmd_completer (c, location_completer);
15936
15937 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15938 Set a hardware assisted breakpoint.\n\
15939 Like \"break\" except the breakpoint requires hardware support,\n\
15940 some target hardware may not have this support.\n\
15941 \n"
15942 BREAK_ARGS_HELP ("hbreak")));
15943 set_cmd_completer (c, location_completer);
15944
15945 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15946 Set a temporary hardware assisted breakpoint.\n\
15947 Like \"hbreak\" except the breakpoint is only temporary,\n\
15948 so it will be deleted when hit.\n\
15949 \n"
15950 BREAK_ARGS_HELP ("thbreak")));
15951 set_cmd_completer (c, location_completer);
15952
15953 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15954 Enable some breakpoints.\n\
15955 Give breakpoint numbers (separated by spaces) as arguments.\n\
15956 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15957 This is used to cancel the effect of the \"disable\" command.\n\
15958 With a subcommand you can enable temporarily."),
15959 &enablelist, "enable ", 1, &cmdlist);
15960 if (xdb_commands)
15961 add_com ("ab", class_breakpoint, enable_command, _("\
15962 Enable some breakpoints.\n\
15963 Give breakpoint numbers (separated by spaces) as arguments.\n\
15964 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15965 This is used to cancel the effect of the \"disable\" command.\n\
15966 With a subcommand you can enable temporarily."));
15967
15968 add_com_alias ("en", "enable", class_breakpoint, 1);
15969
15970 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15971 Enable some breakpoints.\n\
15972 Give breakpoint numbers (separated by spaces) as arguments.\n\
15973 This is used to cancel the effect of the \"disable\" command.\n\
15974 May be abbreviated to simply \"enable\".\n"),
15975 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15976
15977 add_cmd ("once", no_class, enable_once_command, _("\
15978 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15979 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15980 &enablebreaklist);
15981
15982 add_cmd ("delete", no_class, enable_delete_command, _("\
15983 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15984 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15985 &enablebreaklist);
15986
15987 add_cmd ("count", no_class, enable_count_command, _("\
15988 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15989 If a breakpoint is hit while enabled in this fashion,\n\
15990 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15991 &enablebreaklist);
15992
15993 add_cmd ("delete", no_class, enable_delete_command, _("\
15994 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15995 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15996 &enablelist);
15997
15998 add_cmd ("once", no_class, enable_once_command, _("\
15999 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16000 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16001 &enablelist);
16002
16003 add_cmd ("count", no_class, enable_count_command, _("\
16004 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16005 If a breakpoint is hit while enabled in this fashion,\n\
16006 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16007 &enablelist);
16008
16009 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16010 Disable some breakpoints.\n\
16011 Arguments are breakpoint numbers with spaces in between.\n\
16012 To disable all breakpoints, give no argument.\n\
16013 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16014 &disablelist, "disable ", 1, &cmdlist);
16015 add_com_alias ("dis", "disable", class_breakpoint, 1);
16016 add_com_alias ("disa", "disable", class_breakpoint, 1);
16017 if (xdb_commands)
16018 add_com ("sb", class_breakpoint, disable_command, _("\
16019 Disable some breakpoints.\n\
16020 Arguments are breakpoint numbers with spaces in between.\n\
16021 To disable all breakpoints, give no argument.\n\
16022 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16023
16024 add_cmd ("breakpoints", class_alias, disable_command, _("\
16025 Disable some breakpoints.\n\
16026 Arguments are breakpoint numbers with spaces in between.\n\
16027 To disable all breakpoints, give no argument.\n\
16028 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16029 This command may be abbreviated \"disable\"."),
16030 &disablelist);
16031
16032 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16033 Delete some breakpoints or auto-display expressions.\n\
16034 Arguments are breakpoint numbers with spaces in between.\n\
16035 To delete all breakpoints, give no argument.\n\
16036 \n\
16037 Also a prefix command for deletion of other GDB objects.\n\
16038 The \"unset\" command is also an alias for \"delete\"."),
16039 &deletelist, "delete ", 1, &cmdlist);
16040 add_com_alias ("d", "delete", class_breakpoint, 1);
16041 add_com_alias ("del", "delete", class_breakpoint, 1);
16042 if (xdb_commands)
16043 add_com ("db", class_breakpoint, delete_command, _("\
16044 Delete some breakpoints.\n\
16045 Arguments are breakpoint numbers with spaces in between.\n\
16046 To delete all breakpoints, give no argument.\n"));
16047
16048 add_cmd ("breakpoints", class_alias, delete_command, _("\
16049 Delete some breakpoints or auto-display expressions.\n\
16050 Arguments are breakpoint numbers with spaces in between.\n\
16051 To delete all breakpoints, give no argument.\n\
16052 This command may be abbreviated \"delete\"."),
16053 &deletelist);
16054
16055 add_com ("clear", class_breakpoint, clear_command, _("\
16056 Clear breakpoint at specified line or function.\n\
16057 Argument may be line number, function name, or \"*\" and an address.\n\
16058 If line number is specified, all breakpoints in that line are cleared.\n\
16059 If function is specified, breakpoints at beginning of function are cleared.\n\
16060 If an address is specified, breakpoints at that address are cleared.\n\
16061 \n\
16062 With no argument, clears all breakpoints in the line that the selected frame\n\
16063 is executing in.\n\
16064 \n\
16065 See also the \"delete\" command which clears breakpoints by number."));
16066 add_com_alias ("cl", "clear", class_breakpoint, 1);
16067
16068 c = add_com ("break", class_breakpoint, break_command, _("\
16069 Set breakpoint at specified line or function.\n"
16070 BREAK_ARGS_HELP ("break")));
16071 set_cmd_completer (c, location_completer);
16072
16073 add_com_alias ("b", "break", class_run, 1);
16074 add_com_alias ("br", "break", class_run, 1);
16075 add_com_alias ("bre", "break", class_run, 1);
16076 add_com_alias ("brea", "break", class_run, 1);
16077
16078 if (xdb_commands)
16079 add_com_alias ("ba", "break", class_breakpoint, 1);
16080
16081 if (dbx_commands)
16082 {
16083 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16084 Break in function/address or break at a line in the current file."),
16085 &stoplist, "stop ", 1, &cmdlist);
16086 add_cmd ("in", class_breakpoint, stopin_command,
16087 _("Break in function or address."), &stoplist);
16088 add_cmd ("at", class_breakpoint, stopat_command,
16089 _("Break at a line in the current file."), &stoplist);
16090 add_com ("status", class_info, breakpoints_info, _("\
16091 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16092 The \"Type\" column indicates one of:\n\
16093 \tbreakpoint - normal breakpoint\n\
16094 \twatchpoint - watchpoint\n\
16095 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16096 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16097 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16098 address and file/line number respectively.\n\
16099 \n\
16100 Convenience variable \"$_\" and default examine address for \"x\"\n\
16101 are set to the address of the last breakpoint listed unless the command\n\
16102 is prefixed with \"server \".\n\n\
16103 Convenience variable \"$bpnum\" contains the number of the last\n\
16104 breakpoint set."));
16105 }
16106
16107 add_info ("breakpoints", breakpoints_info, _("\
16108 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16109 The \"Type\" column indicates one of:\n\
16110 \tbreakpoint - normal breakpoint\n\
16111 \twatchpoint - watchpoint\n\
16112 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16113 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16114 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16115 address and file/line number respectively.\n\
16116 \n\
16117 Convenience variable \"$_\" and default examine address for \"x\"\n\
16118 are set to the address of the last breakpoint listed unless the command\n\
16119 is prefixed with \"server \".\n\n\
16120 Convenience variable \"$bpnum\" contains the number of the last\n\
16121 breakpoint set."));
16122
16123 add_info_alias ("b", "breakpoints", 1);
16124
16125 if (xdb_commands)
16126 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16127 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16128 The \"Type\" column indicates one of:\n\
16129 \tbreakpoint - normal breakpoint\n\
16130 \twatchpoint - watchpoint\n\
16131 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16132 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16133 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16134 address and file/line number respectively.\n\
16135 \n\
16136 Convenience variable \"$_\" and default examine address for \"x\"\n\
16137 are set to the address of the last breakpoint listed unless the command\n\
16138 is prefixed with \"server \".\n\n\
16139 Convenience variable \"$bpnum\" contains the number of the last\n\
16140 breakpoint set."));
16141
16142 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16143 Status of all breakpoints, or breakpoint number NUMBER.\n\
16144 The \"Type\" column indicates one of:\n\
16145 \tbreakpoint - normal breakpoint\n\
16146 \twatchpoint - watchpoint\n\
16147 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16148 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16149 \tuntil - internal breakpoint used by the \"until\" command\n\
16150 \tfinish - internal breakpoint used by the \"finish\" command\n\
16151 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16152 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16153 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16154 address and file/line number respectively.\n\
16155 \n\
16156 Convenience variable \"$_\" and default examine address for \"x\"\n\
16157 are set to the address of the last breakpoint listed unless the command\n\
16158 is prefixed with \"server \".\n\n\
16159 Convenience variable \"$bpnum\" contains the number of the last\n\
16160 breakpoint set."),
16161 &maintenanceinfolist);
16162
16163 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16164 Set catchpoints to catch events."),
16165 &catch_cmdlist, "catch ",
16166 0/*allow-unknown*/, &cmdlist);
16167
16168 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16169 Set temporary catchpoints to catch events."),
16170 &tcatch_cmdlist, "tcatch ",
16171 0/*allow-unknown*/, &cmdlist);
16172
16173 add_catch_command ("fork", _("Catch calls to fork."),
16174 catch_fork_command_1,
16175 NULL,
16176 (void *) (uintptr_t) catch_fork_permanent,
16177 (void *) (uintptr_t) catch_fork_temporary);
16178 add_catch_command ("vfork", _("Catch calls to vfork."),
16179 catch_fork_command_1,
16180 NULL,
16181 (void *) (uintptr_t) catch_vfork_permanent,
16182 (void *) (uintptr_t) catch_vfork_temporary);
16183 add_catch_command ("exec", _("Catch calls to exec."),
16184 catch_exec_command_1,
16185 NULL,
16186 CATCH_PERMANENT,
16187 CATCH_TEMPORARY);
16188 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16189 Usage: catch load [REGEX]\n\
16190 If REGEX is given, only stop for libraries matching the regular expression."),
16191 catch_load_command_1,
16192 NULL,
16193 CATCH_PERMANENT,
16194 CATCH_TEMPORARY);
16195 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16196 Usage: catch unload [REGEX]\n\
16197 If REGEX is given, only stop for libraries matching the regular expression."),
16198 catch_unload_command_1,
16199 NULL,
16200 CATCH_PERMANENT,
16201 CATCH_TEMPORARY);
16202 add_catch_command ("syscall", _("\
16203 Catch system calls by their names and/or numbers.\n\
16204 Arguments say which system calls to catch. If no arguments\n\
16205 are given, every system call will be caught.\n\
16206 Arguments, if given, should be one or more system call names\n\
16207 (if your system supports that), or system call numbers."),
16208 catch_syscall_command_1,
16209 catch_syscall_completer,
16210 CATCH_PERMANENT,
16211 CATCH_TEMPORARY);
16212
16213 c = add_com ("watch", class_breakpoint, watch_command, _("\
16214 Set a watchpoint for an expression.\n\
16215 Usage: watch [-l|-location] EXPRESSION\n\
16216 A watchpoint stops execution of your program whenever the value of\n\
16217 an expression changes.\n\
16218 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16219 the memory to which it refers."));
16220 set_cmd_completer (c, expression_completer);
16221
16222 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16223 Set a read watchpoint for an expression.\n\
16224 Usage: rwatch [-l|-location] EXPRESSION\n\
16225 A watchpoint stops execution of your program whenever the value of\n\
16226 an expression is read.\n\
16227 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16228 the memory to which it refers."));
16229 set_cmd_completer (c, expression_completer);
16230
16231 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16232 Set a watchpoint for an expression.\n\
16233 Usage: awatch [-l|-location] EXPRESSION\n\
16234 A watchpoint stops execution of your program whenever the value of\n\
16235 an expression is either read or written.\n\
16236 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16237 the memory to which it refers."));
16238 set_cmd_completer (c, expression_completer);
16239
16240 add_info ("watchpoints", watchpoints_info, _("\
16241 Status of specified watchpoints (all watchpoints if no argument)."));
16242
16243 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16244 respond to changes - contrary to the description. */
16245 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16246 &can_use_hw_watchpoints, _("\
16247 Set debugger's willingness to use watchpoint hardware."), _("\
16248 Show debugger's willingness to use watchpoint hardware."), _("\
16249 If zero, gdb will not use hardware for new watchpoints, even if\n\
16250 such is available. (However, any hardware watchpoints that were\n\
16251 created before setting this to nonzero, will continue to use watchpoint\n\
16252 hardware.)"),
16253 NULL,
16254 show_can_use_hw_watchpoints,
16255 &setlist, &showlist);
16256
16257 can_use_hw_watchpoints = 1;
16258
16259 /* Tracepoint manipulation commands. */
16260
16261 c = add_com ("trace", class_breakpoint, trace_command, _("\
16262 Set a tracepoint at specified line or function.\n\
16263 \n"
16264 BREAK_ARGS_HELP ("trace") "\n\
16265 Do \"help tracepoints\" for info on other tracepoint commands."));
16266 set_cmd_completer (c, location_completer);
16267
16268 add_com_alias ("tp", "trace", class_alias, 0);
16269 add_com_alias ("tr", "trace", class_alias, 1);
16270 add_com_alias ("tra", "trace", class_alias, 1);
16271 add_com_alias ("trac", "trace", class_alias, 1);
16272
16273 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16274 Set a fast tracepoint at specified line or function.\n\
16275 \n"
16276 BREAK_ARGS_HELP ("ftrace") "\n\
16277 Do \"help tracepoints\" for info on other tracepoint commands."));
16278 set_cmd_completer (c, location_completer);
16279
16280 c = add_com ("strace", class_breakpoint, strace_command, _("\
16281 Set a static tracepoint at specified line, function or marker.\n\
16282 \n\
16283 strace [LOCATION] [if CONDITION]\n\
16284 LOCATION may be a line number, function name, \"*\" and an address,\n\
16285 or -m MARKER_ID.\n\
16286 If a line number is specified, probe the marker at start of code\n\
16287 for that line. If a function is specified, probe the marker at start\n\
16288 of code for that function. If an address is specified, probe the marker\n\
16289 at that exact address. If a marker id is specified, probe the marker\n\
16290 with that name. With no LOCATION, uses current execution address of\n\
16291 the selected stack frame.\n\
16292 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16293 This collects arbitrary user data passed in the probe point call to the\n\
16294 tracing library. You can inspect it when analyzing the trace buffer,\n\
16295 by printing the $_sdata variable like any other convenience variable.\n\
16296 \n\
16297 CONDITION is a boolean expression.\n\
16298 \n\
16299 Multiple tracepoints at one place are permitted, and useful if their\n\
16300 conditions are different.\n\
16301 \n\
16302 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16303 Do \"help tracepoints\" for info on other tracepoint commands."));
16304 set_cmd_completer (c, location_completer);
16305
16306 add_info ("tracepoints", tracepoints_info, _("\
16307 Status of specified tracepoints (all tracepoints if no argument).\n\
16308 Convenience variable \"$tpnum\" contains the number of the\n\
16309 last tracepoint set."));
16310
16311 add_info_alias ("tp", "tracepoints", 1);
16312
16313 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16314 Delete specified tracepoints.\n\
16315 Arguments are tracepoint numbers, separated by spaces.\n\
16316 No argument means delete all tracepoints."),
16317 &deletelist);
16318 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16319
16320 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16321 Disable specified tracepoints.\n\
16322 Arguments are tracepoint numbers, separated by spaces.\n\
16323 No argument means disable all tracepoints."),
16324 &disablelist);
16325 deprecate_cmd (c, "disable");
16326
16327 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16328 Enable specified tracepoints.\n\
16329 Arguments are tracepoint numbers, separated by spaces.\n\
16330 No argument means enable all tracepoints."),
16331 &enablelist);
16332 deprecate_cmd (c, "enable");
16333
16334 add_com ("passcount", class_trace, trace_pass_command, _("\
16335 Set the passcount for a tracepoint.\n\
16336 The trace will end when the tracepoint has been passed 'count' times.\n\
16337 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16338 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16339
16340 add_prefix_cmd ("save", class_breakpoint, save_command,
16341 _("Save breakpoint definitions as a script."),
16342 &save_cmdlist, "save ",
16343 0/*allow-unknown*/, &cmdlist);
16344
16345 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16346 Save current breakpoint definitions as a script.\n\
16347 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16348 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16349 session to restore them."),
16350 &save_cmdlist);
16351 set_cmd_completer (c, filename_completer);
16352
16353 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16354 Save current tracepoint definitions as a script.\n\
16355 Use the 'source' command in another debug session to restore them."),
16356 &save_cmdlist);
16357 set_cmd_completer (c, filename_completer);
16358
16359 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16360 deprecate_cmd (c, "save tracepoints");
16361
16362 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16363 Breakpoint specific settings\n\
16364 Configure various breakpoint-specific variables such as\n\
16365 pending breakpoint behavior"),
16366 &breakpoint_set_cmdlist, "set breakpoint ",
16367 0/*allow-unknown*/, &setlist);
16368 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16369 Breakpoint specific settings\n\
16370 Configure various breakpoint-specific variables such as\n\
16371 pending breakpoint behavior"),
16372 &breakpoint_show_cmdlist, "show breakpoint ",
16373 0/*allow-unknown*/, &showlist);
16374
16375 add_setshow_auto_boolean_cmd ("pending", no_class,
16376 &pending_break_support, _("\
16377 Set debugger's behavior regarding pending breakpoints."), _("\
16378 Show debugger's behavior regarding pending breakpoints."), _("\
16379 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16380 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16381 an error. If auto, an unrecognized breakpoint location results in a\n\
16382 user-query to see if a pending breakpoint should be created."),
16383 NULL,
16384 show_pending_break_support,
16385 &breakpoint_set_cmdlist,
16386 &breakpoint_show_cmdlist);
16387
16388 pending_break_support = AUTO_BOOLEAN_AUTO;
16389
16390 add_setshow_boolean_cmd ("auto-hw", no_class,
16391 &automatic_hardware_breakpoints, _("\
16392 Set automatic usage of hardware breakpoints."), _("\
16393 Show automatic usage of hardware breakpoints."), _("\
16394 If set, the debugger will automatically use hardware breakpoints for\n\
16395 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16396 a warning will be emitted for such breakpoints."),
16397 NULL,
16398 show_automatic_hardware_breakpoints,
16399 &breakpoint_set_cmdlist,
16400 &breakpoint_show_cmdlist);
16401
16402 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16403 &always_inserted_mode, _("\
16404 Set mode for inserting breakpoints."), _("\
16405 Show mode for inserting breakpoints."), _("\
16406 When this mode is off, breakpoints are inserted in inferior when it is\n\
16407 resumed, and removed when execution stops. When this mode is on,\n\
16408 breakpoints are inserted immediately and removed only when the user\n\
16409 deletes the breakpoint. When this mode is auto (which is the default),\n\
16410 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16411 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16412 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16413 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16414 NULL,
16415 &show_always_inserted_mode,
16416 &breakpoint_set_cmdlist,
16417 &breakpoint_show_cmdlist);
16418
16419 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16420 condition_evaluation_enums,
16421 &condition_evaluation_mode_1, _("\
16422 Set mode of breakpoint condition evaluation."), _("\
16423 Show mode of breakpoint condition evaluation."), _("\
16424 When this is set to \"host\", breakpoint conditions will be\n\
16425 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16426 breakpoint conditions will be downloaded to the target (if the target\n\
16427 supports such feature) and conditions will be evaluated on the target's side.\n\
16428 If this is set to \"auto\" (default), this will be automatically set to\n\
16429 \"target\" if it supports condition evaluation, otherwise it will\n\
16430 be set to \"gdb\""),
16431 &set_condition_evaluation_mode,
16432 &show_condition_evaluation_mode,
16433 &breakpoint_set_cmdlist,
16434 &breakpoint_show_cmdlist);
16435
16436 add_com ("break-range", class_breakpoint, break_range_command, _("\
16437 Set a breakpoint for an address range.\n\
16438 break-range START-LOCATION, END-LOCATION\n\
16439 where START-LOCATION and END-LOCATION can be one of the following:\n\
16440 LINENUM, for that line in the current file,\n\
16441 FILE:LINENUM, for that line in that file,\n\
16442 +OFFSET, for that number of lines after the current line\n\
16443 or the start of the range\n\
16444 FUNCTION, for the first line in that function,\n\
16445 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16446 *ADDRESS, for the instruction at that address.\n\
16447 \n\
16448 The breakpoint will stop execution of the inferior whenever it executes\n\
16449 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16450 range (including START-LOCATION and END-LOCATION)."));
16451
16452 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16453 Set a dynamic printf at specified line or function.\n\
16454 dprintf location,format string,arg1,arg2,...\n\
16455 location may be a line number, function name, or \"*\" and an address.\n\
16456 If a line number is specified, break at start of code for that line.\n\
16457 If a function is specified, break at start of code for that function.\n\
16458 "));
16459 set_cmd_completer (c, location_completer);
16460
16461 add_setshow_enum_cmd ("dprintf-style", class_support,
16462 dprintf_style_enums, &dprintf_style, _("\
16463 Set the style of usage for dynamic printf."), _("\
16464 Show the style of usage for dynamic printf."), _("\
16465 This setting chooses how GDB will do a dynamic printf.\n\
16466 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16467 console, as with the \"printf\" command.\n\
16468 If the value is \"call\", the print is done by calling a function in your\n\
16469 program; by default printf(), but you can choose a different function or\n\
16470 output stream by setting dprintf-function and dprintf-channel."),
16471 update_dprintf_commands, NULL,
16472 &setlist, &showlist);
16473
16474 dprintf_function = xstrdup ("printf");
16475 add_setshow_string_cmd ("dprintf-function", class_support,
16476 &dprintf_function, _("\
16477 Set the function to use for dynamic printf"), _("\
16478 Show the function to use for dynamic printf"), NULL,
16479 update_dprintf_commands, NULL,
16480 &setlist, &showlist);
16481
16482 dprintf_channel = xstrdup ("");
16483 add_setshow_string_cmd ("dprintf-channel", class_support,
16484 &dprintf_channel, _("\
16485 Set the channel to use for dynamic printf"), _("\
16486 Show the channel to use for dynamic printf"), NULL,
16487 update_dprintf_commands, NULL,
16488 &setlist, &showlist);
16489
16490 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16491 &disconnected_dprintf, _("\
16492 Set whether dprintf continues after GDB disconnects."), _("\
16493 Show whether dprintf continues after GDB disconnects."), _("\
16494 Use this to let dprintf commands continue to hit and produce output\n\
16495 even if GDB disconnects or detaches from the target."),
16496 NULL,
16497 NULL,
16498 &setlist, &showlist);
16499
16500 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16501 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16502 (target agent only) This is useful for formatted output in user-defined commands."));
16503
16504 automatic_hardware_breakpoints = 1;
16505
16506 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16507 }
This page took 0.504361 seconds and 4 git commands to generate.