target_stack -> current_top_target() throughout
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 check_no_tracepoint_commands (c->body_list_0.get ());
1019 check_no_tracepoint_commands (c->body_list_1.get ());
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_list_1 == nullptr);
1131 c2 = while_stepping->body_list_0.get ();
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 counted_command_line &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 static void
1220 commands_command_1 (const char *arg, int from_tty,
1221 struct command_line *control)
1222 {
1223 counted_command_line cmd;
1224
1225 std::string new_arg;
1226
1227 if (arg == NULL || !*arg)
1228 {
1229 if (breakpoint_count - prev_breakpoint_count > 1)
1230 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1231 breakpoint_count);
1232 else if (breakpoint_count > 0)
1233 new_arg = string_printf ("%d", breakpoint_count);
1234 arg = new_arg.c_str ();
1235 }
1236
1237 map_breakpoint_numbers
1238 (arg, [&] (breakpoint *b)
1239 {
1240 if (cmd == NULL)
1241 {
1242 if (control != NULL)
1243 cmd = control->body_list_0;
1244 else
1245 {
1246 std::string str
1247 = string_printf (_("Type commands for breakpoint(s) "
1248 "%s, one per line."),
1249 arg);
1250
1251 auto do_validate = [=] (const char *line)
1252 {
1253 validate_actionline (line, b);
1254 };
1255 gdb::function_view<void (const char *)> validator;
1256 if (is_tracepoint (b))
1257 validator = do_validate;
1258
1259 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1260 }
1261 }
1262
1263 /* If a breakpoint was on the list more than once, we don't need to
1264 do anything. */
1265 if (b->commands != cmd)
1266 {
1267 validate_commands_for_breakpoint (b, cmd.get ());
1268 b->commands = cmd;
1269 gdb::observers::breakpoint_modified.notify (b);
1270 }
1271 });
1272 }
1273
1274 static void
1275 commands_command (const char *arg, int from_tty)
1276 {
1277 commands_command_1 (arg, from_tty, NULL);
1278 }
1279
1280 /* Like commands_command, but instead of reading the commands from
1281 input stream, takes them from an already parsed command structure.
1282
1283 This is used by cli-script.c to DTRT with breakpoint commands
1284 that are part of if and while bodies. */
1285 enum command_control_type
1286 commands_from_control_command (const char *arg, struct command_line *cmd)
1287 {
1288 commands_command_1 (arg, 0, cmd);
1289 return simple_control;
1290 }
1291
1292 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1293
1294 static int
1295 bp_location_has_shadow (struct bp_location *bl)
1296 {
1297 if (bl->loc_type != bp_loc_software_breakpoint)
1298 return 0;
1299 if (!bl->inserted)
1300 return 0;
1301 if (bl->target_info.shadow_len == 0)
1302 /* BL isn't valid, or doesn't shadow memory. */
1303 return 0;
1304 return 1;
1305 }
1306
1307 /* Update BUF, which is LEN bytes read from the target address
1308 MEMADDR, by replacing a memory breakpoint with its shadowed
1309 contents.
1310
1311 If READBUF is not NULL, this buffer must not overlap with the of
1312 the breakpoint location's shadow_contents buffer. Otherwise, a
1313 failed assertion internal error will be raised. */
1314
1315 static void
1316 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1317 const gdb_byte *writebuf_org,
1318 ULONGEST memaddr, LONGEST len,
1319 struct bp_target_info *target_info,
1320 struct gdbarch *gdbarch)
1321 {
1322 /* Now do full processing of the found relevant range of elements. */
1323 CORE_ADDR bp_addr = 0;
1324 int bp_size = 0;
1325 int bptoffset = 0;
1326
1327 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1328 current_program_space->aspace, 0))
1329 {
1330 /* The breakpoint is inserted in a different address space. */
1331 return;
1332 }
1333
1334 /* Addresses and length of the part of the breakpoint that
1335 we need to copy. */
1336 bp_addr = target_info->placed_address;
1337 bp_size = target_info->shadow_len;
1338
1339 if (bp_addr + bp_size <= memaddr)
1340 {
1341 /* The breakpoint is entirely before the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 if (bp_addr >= memaddr + len)
1347 {
1348 /* The breakpoint is entirely after the chunk of memory we are
1349 reading. */
1350 return;
1351 }
1352
1353 /* Offset within shadow_contents. */
1354 if (bp_addr < memaddr)
1355 {
1356 /* Only copy the second part of the breakpoint. */
1357 bp_size -= memaddr - bp_addr;
1358 bptoffset = memaddr - bp_addr;
1359 bp_addr = memaddr;
1360 }
1361
1362 if (bp_addr + bp_size > memaddr + len)
1363 {
1364 /* Only copy the first part of the breakpoint. */
1365 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1366 }
1367
1368 if (readbuf != NULL)
1369 {
1370 /* Verify that the readbuf buffer does not overlap with the
1371 shadow_contents buffer. */
1372 gdb_assert (target_info->shadow_contents >= readbuf + len
1373 || readbuf >= (target_info->shadow_contents
1374 + target_info->shadow_len));
1375
1376 /* Update the read buffer with this inserted breakpoint's
1377 shadow. */
1378 memcpy (readbuf + bp_addr - memaddr,
1379 target_info->shadow_contents + bptoffset, bp_size);
1380 }
1381 else
1382 {
1383 const unsigned char *bp;
1384 CORE_ADDR addr = target_info->reqstd_address;
1385 int placed_size;
1386
1387 /* Update the shadow with what we want to write to memory. */
1388 memcpy (target_info->shadow_contents + bptoffset,
1389 writebuf_org + bp_addr - memaddr, bp_size);
1390
1391 /* Determine appropriate breakpoint contents and size for this
1392 address. */
1393 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1394
1395 /* Update the final write buffer with this inserted
1396 breakpoint's INSN. */
1397 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1398 }
1399 }
1400
1401 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1402 by replacing any memory breakpoints with their shadowed contents.
1403
1404 If READBUF is not NULL, this buffer must not overlap with any of
1405 the breakpoint location's shadow_contents buffers. Otherwise,
1406 a failed assertion internal error will be raised.
1407
1408 The range of shadowed area by each bp_location is:
1409 bl->address - bp_locations_placed_address_before_address_max
1410 up to bl->address + bp_locations_shadow_len_after_address_max
1411 The range we were requested to resolve shadows for is:
1412 memaddr ... memaddr + len
1413 Thus the safe cutoff boundaries for performance optimization are
1414 memaddr + len <= (bl->address
1415 - bp_locations_placed_address_before_address_max)
1416 and:
1417 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1418
1419 void
1420 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1421 const gdb_byte *writebuf_org,
1422 ULONGEST memaddr, LONGEST len)
1423 {
1424 /* Left boundary, right boundary and median element of our binary
1425 search. */
1426 unsigned bc_l, bc_r, bc;
1427
1428 /* Find BC_L which is a leftmost element which may affect BUF
1429 content. It is safe to report lower value but a failure to
1430 report higher one. */
1431
1432 bc_l = 0;
1433 bc_r = bp_locations_count;
1434 while (bc_l + 1 < bc_r)
1435 {
1436 struct bp_location *bl;
1437
1438 bc = (bc_l + bc_r) / 2;
1439 bl = bp_locations[bc];
1440
1441 /* Check first BL->ADDRESS will not overflow due to the added
1442 constant. Then advance the left boundary only if we are sure
1443 the BC element can in no way affect the BUF content (MEMADDR
1444 to MEMADDR + LEN range).
1445
1446 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1447 offset so that we cannot miss a breakpoint with its shadow
1448 range tail still reaching MEMADDR. */
1449
1450 if ((bl->address + bp_locations_shadow_len_after_address_max
1451 >= bl->address)
1452 && (bl->address + bp_locations_shadow_len_after_address_max
1453 <= memaddr))
1454 bc_l = bc;
1455 else
1456 bc_r = bc;
1457 }
1458
1459 /* Due to the binary search above, we need to make sure we pick the
1460 first location that's at BC_L's address. E.g., if there are
1461 multiple locations at the same address, BC_L may end up pointing
1462 at a duplicate location, and miss the "master"/"inserted"
1463 location. Say, given locations L1, L2 and L3 at addresses A and
1464 B:
1465
1466 L1@A, L2@A, L3@B, ...
1467
1468 BC_L could end up pointing at location L2, while the "master"
1469 location could be L1. Since the `loc->inserted' flag is only set
1470 on "master" locations, we'd forget to restore the shadow of L1
1471 and L2. */
1472 while (bc_l > 0
1473 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1474 bc_l--;
1475
1476 /* Now do full processing of the found relevant range of elements. */
1477
1478 for (bc = bc_l; bc < bp_locations_count; bc++)
1479 {
1480 struct bp_location *bl = bp_locations[bc];
1481
1482 /* bp_location array has BL->OWNER always non-NULL. */
1483 if (bl->owner->type == bp_none)
1484 warning (_("reading through apparently deleted breakpoint #%d?"),
1485 bl->owner->number);
1486
1487 /* Performance optimization: any further element can no longer affect BUF
1488 content. */
1489
1490 if (bl->address >= bp_locations_placed_address_before_address_max
1491 && memaddr + len <= (bl->address
1492 - bp_locations_placed_address_before_address_max))
1493 break;
1494
1495 if (!bp_location_has_shadow (bl))
1496 continue;
1497
1498 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1499 memaddr, len, &bl->target_info, bl->gdbarch);
1500 }
1501 }
1502
1503 \f
1504
1505 /* Return true if BPT is either a software breakpoint or a hardware
1506 breakpoint. */
1507
1508 int
1509 is_breakpoint (const struct breakpoint *bpt)
1510 {
1511 return (bpt->type == bp_breakpoint
1512 || bpt->type == bp_hardware_breakpoint
1513 || bpt->type == bp_dprintf);
1514 }
1515
1516 /* Return true if BPT is of any hardware watchpoint kind. */
1517
1518 static int
1519 is_hardware_watchpoint (const struct breakpoint *bpt)
1520 {
1521 return (bpt->type == bp_hardware_watchpoint
1522 || bpt->type == bp_read_watchpoint
1523 || bpt->type == bp_access_watchpoint);
1524 }
1525
1526 /* Return true if BPT is of any watchpoint kind, hardware or
1527 software. */
1528
1529 int
1530 is_watchpoint (const struct breakpoint *bpt)
1531 {
1532 return (is_hardware_watchpoint (bpt)
1533 || bpt->type == bp_watchpoint);
1534 }
1535
1536 /* Returns true if the current thread and its running state are safe
1537 to evaluate or update watchpoint B. Watchpoints on local
1538 expressions need to be evaluated in the context of the thread that
1539 was current when the watchpoint was created, and, that thread needs
1540 to be stopped to be able to select the correct frame context.
1541 Watchpoints on global expressions can be evaluated on any thread,
1542 and in any state. It is presently left to the target allowing
1543 memory accesses when threads are running. */
1544
1545 static int
1546 watchpoint_in_thread_scope (struct watchpoint *b)
1547 {
1548 return (b->pspace == current_program_space
1549 && (ptid_equal (b->watchpoint_thread, null_ptid)
1550 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1551 && !is_executing (inferior_ptid))));
1552 }
1553
1554 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1555 associated bp_watchpoint_scope breakpoint. */
1556
1557 static void
1558 watchpoint_del_at_next_stop (struct watchpoint *w)
1559 {
1560 if (w->related_breakpoint != w)
1561 {
1562 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1563 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1564 w->related_breakpoint->disposition = disp_del_at_next_stop;
1565 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1566 w->related_breakpoint = w;
1567 }
1568 w->disposition = disp_del_at_next_stop;
1569 }
1570
1571 /* Extract a bitfield value from value VAL using the bit parameters contained in
1572 watchpoint W. */
1573
1574 static struct value *
1575 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1576 {
1577 struct value *bit_val;
1578
1579 if (val == NULL)
1580 return NULL;
1581
1582 bit_val = allocate_value (value_type (val));
1583
1584 unpack_value_bitfield (bit_val,
1585 w->val_bitpos,
1586 w->val_bitsize,
1587 value_contents_for_printing (val),
1588 value_offset (val),
1589 val);
1590
1591 return bit_val;
1592 }
1593
1594 /* Allocate a dummy location and add it to B, which must be a software
1595 watchpoint. This is required because even if a software watchpoint
1596 is not watching any memory, bpstat_stop_status requires a location
1597 to be able to report stops. */
1598
1599 static void
1600 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1601 struct program_space *pspace)
1602 {
1603 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1604
1605 b->loc = allocate_bp_location (b);
1606 b->loc->pspace = pspace;
1607 b->loc->address = -1;
1608 b->loc->length = -1;
1609 }
1610
1611 /* Returns true if B is a software watchpoint that is not watching any
1612 memory (e.g., "watch $pc"). */
1613
1614 static int
1615 is_no_memory_software_watchpoint (struct breakpoint *b)
1616 {
1617 return (b->type == bp_watchpoint
1618 && b->loc != NULL
1619 && b->loc->next == NULL
1620 && b->loc->address == -1
1621 && b->loc->length == -1);
1622 }
1623
1624 /* Assuming that B is a watchpoint:
1625 - Reparse watchpoint expression, if REPARSE is non-zero
1626 - Evaluate expression and store the result in B->val
1627 - Evaluate the condition if there is one, and store the result
1628 in b->loc->cond.
1629 - Update the list of values that must be watched in B->loc.
1630
1631 If the watchpoint disposition is disp_del_at_next_stop, then do
1632 nothing. If this is local watchpoint that is out of scope, delete
1633 it.
1634
1635 Even with `set breakpoint always-inserted on' the watchpoints are
1636 removed + inserted on each stop here. Normal breakpoints must
1637 never be removed because they might be missed by a running thread
1638 when debugging in non-stop mode. On the other hand, hardware
1639 watchpoints (is_hardware_watchpoint; processed here) are specific
1640 to each LWP since they are stored in each LWP's hardware debug
1641 registers. Therefore, such LWP must be stopped first in order to
1642 be able to modify its hardware watchpoints.
1643
1644 Hardware watchpoints must be reset exactly once after being
1645 presented to the user. It cannot be done sooner, because it would
1646 reset the data used to present the watchpoint hit to the user. And
1647 it must not be done later because it could display the same single
1648 watchpoint hit during multiple GDB stops. Note that the latter is
1649 relevant only to the hardware watchpoint types bp_read_watchpoint
1650 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1651 not user-visible - its hit is suppressed if the memory content has
1652 not changed.
1653
1654 The following constraints influence the location where we can reset
1655 hardware watchpoints:
1656
1657 * target_stopped_by_watchpoint and target_stopped_data_address are
1658 called several times when GDB stops.
1659
1660 [linux]
1661 * Multiple hardware watchpoints can be hit at the same time,
1662 causing GDB to stop. GDB only presents one hardware watchpoint
1663 hit at a time as the reason for stopping, and all the other hits
1664 are presented later, one after the other, each time the user
1665 requests the execution to be resumed. Execution is not resumed
1666 for the threads still having pending hit event stored in
1667 LWP_INFO->STATUS. While the watchpoint is already removed from
1668 the inferior on the first stop the thread hit event is kept being
1669 reported from its cached value by linux_nat_stopped_data_address
1670 until the real thread resume happens after the watchpoint gets
1671 presented and thus its LWP_INFO->STATUS gets reset.
1672
1673 Therefore the hardware watchpoint hit can get safely reset on the
1674 watchpoint removal from inferior. */
1675
1676 static void
1677 update_watchpoint (struct watchpoint *b, int reparse)
1678 {
1679 int within_current_scope;
1680 struct frame_id saved_frame_id;
1681 int frame_saved;
1682
1683 /* If this is a local watchpoint, we only want to check if the
1684 watchpoint frame is in scope if the current thread is the thread
1685 that was used to create the watchpoint. */
1686 if (!watchpoint_in_thread_scope (b))
1687 return;
1688
1689 if (b->disposition == disp_del_at_next_stop)
1690 return;
1691
1692 frame_saved = 0;
1693
1694 /* Determine if the watchpoint is within scope. */
1695 if (b->exp_valid_block == NULL)
1696 within_current_scope = 1;
1697 else
1698 {
1699 struct frame_info *fi = get_current_frame ();
1700 struct gdbarch *frame_arch = get_frame_arch (fi);
1701 CORE_ADDR frame_pc = get_frame_pc (fi);
1702
1703 /* If we're at a point where the stack has been destroyed
1704 (e.g. in a function epilogue), unwinding may not work
1705 properly. Do not attempt to recreate locations at this
1706 point. See similar comments in watchpoint_check. */
1707 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1708 return;
1709
1710 /* Save the current frame's ID so we can restore it after
1711 evaluating the watchpoint expression on its own frame. */
1712 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1713 took a frame parameter, so that we didn't have to change the
1714 selected frame. */
1715 frame_saved = 1;
1716 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1717
1718 fi = frame_find_by_id (b->watchpoint_frame);
1719 within_current_scope = (fi != NULL);
1720 if (within_current_scope)
1721 select_frame (fi);
1722 }
1723
1724 /* We don't free locations. They are stored in the bp_location array
1725 and update_global_location_list will eventually delete them and
1726 remove breakpoints if needed. */
1727 b->loc = NULL;
1728
1729 if (within_current_scope && reparse)
1730 {
1731 const char *s;
1732
1733 b->exp.reset ();
1734 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1735 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1736 /* If the meaning of expression itself changed, the old value is
1737 no longer relevant. We don't want to report a watchpoint hit
1738 to the user when the old value and the new value may actually
1739 be completely different objects. */
1740 b->val = NULL;
1741 b->val_valid = 0;
1742
1743 /* Note that unlike with breakpoints, the watchpoint's condition
1744 expression is stored in the breakpoint object, not in the
1745 locations (re)created below. */
1746 if (b->cond_string != NULL)
1747 {
1748 b->cond_exp.reset ();
1749
1750 s = b->cond_string;
1751 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1752 }
1753 }
1754
1755 /* If we failed to parse the expression, for example because
1756 it refers to a global variable in a not-yet-loaded shared library,
1757 don't try to insert watchpoint. We don't automatically delete
1758 such watchpoint, though, since failure to parse expression
1759 is different from out-of-scope watchpoint. */
1760 if (!target_has_execution)
1761 {
1762 /* Without execution, memory can't change. No use to try and
1763 set watchpoint locations. The watchpoint will be reset when
1764 the target gains execution, through breakpoint_re_set. */
1765 if (!can_use_hw_watchpoints)
1766 {
1767 if (b->ops->works_in_software_mode (b))
1768 b->type = bp_watchpoint;
1769 else
1770 error (_("Can't set read/access watchpoint when "
1771 "hardware watchpoints are disabled."));
1772 }
1773 }
1774 else if (within_current_scope && b->exp)
1775 {
1776 int pc = 0;
1777 std::vector<value_ref_ptr> val_chain;
1778 struct value *v, *result, *next;
1779 struct program_space *frame_pspace;
1780
1781 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1782
1783 /* Avoid setting b->val if it's already set. The meaning of
1784 b->val is 'the last value' user saw, and we should update
1785 it only if we reported that last value to user. As it
1786 happens, the code that reports it updates b->val directly.
1787 We don't keep track of the memory value for masked
1788 watchpoints. */
1789 if (!b->val_valid && !is_masked_watchpoint (b))
1790 {
1791 if (b->val_bitsize != 0)
1792 v = extract_bitfield_from_watchpoint_value (b, v);
1793 b->val = release_value (v);
1794 b->val_valid = 1;
1795 }
1796
1797 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1798
1799 /* Look at each value on the value chain. */
1800 gdb_assert (!val_chain.empty ());
1801 for (const value_ref_ptr &iter : val_chain)
1802 {
1803 v = iter.get ();
1804
1805 /* If it's a memory location, and GDB actually needed
1806 its contents to evaluate the expression, then we
1807 must watch it. If the first value returned is
1808 still lazy, that means an error occurred reading it;
1809 watch it anyway in case it becomes readable. */
1810 if (VALUE_LVAL (v) == lval_memory
1811 && (v == val_chain[0] || ! value_lazy (v)))
1812 {
1813 struct type *vtype = check_typedef (value_type (v));
1814
1815 /* We only watch structs and arrays if user asked
1816 for it explicitly, never if they just happen to
1817 appear in the middle of some value chain. */
1818 if (v == result
1819 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1820 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1821 {
1822 CORE_ADDR addr;
1823 enum target_hw_bp_type type;
1824 struct bp_location *loc, **tmp;
1825 int bitpos = 0, bitsize = 0;
1826
1827 if (value_bitsize (v) != 0)
1828 {
1829 /* Extract the bit parameters out from the bitfield
1830 sub-expression. */
1831 bitpos = value_bitpos (v);
1832 bitsize = value_bitsize (v);
1833 }
1834 else if (v == result && b->val_bitsize != 0)
1835 {
1836 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1837 lvalue whose bit parameters are saved in the fields
1838 VAL_BITPOS and VAL_BITSIZE. */
1839 bitpos = b->val_bitpos;
1840 bitsize = b->val_bitsize;
1841 }
1842
1843 addr = value_address (v);
1844 if (bitsize != 0)
1845 {
1846 /* Skip the bytes that don't contain the bitfield. */
1847 addr += bitpos / 8;
1848 }
1849
1850 type = hw_write;
1851 if (b->type == bp_read_watchpoint)
1852 type = hw_read;
1853 else if (b->type == bp_access_watchpoint)
1854 type = hw_access;
1855
1856 loc = allocate_bp_location (b);
1857 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1858 ;
1859 *tmp = loc;
1860 loc->gdbarch = get_type_arch (value_type (v));
1861
1862 loc->pspace = frame_pspace;
1863 loc->address = address_significant (loc->gdbarch, addr);
1864
1865 if (bitsize != 0)
1866 {
1867 /* Just cover the bytes that make up the bitfield. */
1868 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1869 }
1870 else
1871 loc->length = TYPE_LENGTH (value_type (v));
1872
1873 loc->watchpoint_type = type;
1874 }
1875 }
1876 }
1877
1878 /* Change the type of breakpoint between hardware assisted or
1879 an ordinary watchpoint depending on the hardware support
1880 and free hardware slots. REPARSE is set when the inferior
1881 is started. */
1882 if (reparse)
1883 {
1884 int reg_cnt;
1885 enum bp_loc_type loc_type;
1886 struct bp_location *bl;
1887
1888 reg_cnt = can_use_hardware_watchpoint (val_chain);
1889
1890 if (reg_cnt)
1891 {
1892 int i, target_resources_ok, other_type_used;
1893 enum bptype type;
1894
1895 /* Use an exact watchpoint when there's only one memory region to be
1896 watched, and only one debug register is needed to watch it. */
1897 b->exact = target_exact_watchpoints && reg_cnt == 1;
1898
1899 /* We need to determine how many resources are already
1900 used for all other hardware watchpoints plus this one
1901 to see if we still have enough resources to also fit
1902 this watchpoint in as well. */
1903
1904 /* If this is a software watchpoint, we try to turn it
1905 to a hardware one -- count resources as if B was of
1906 hardware watchpoint type. */
1907 type = b->type;
1908 if (type == bp_watchpoint)
1909 type = bp_hardware_watchpoint;
1910
1911 /* This watchpoint may or may not have been placed on
1912 the list yet at this point (it won't be in the list
1913 if we're trying to create it for the first time,
1914 through watch_command), so always account for it
1915 manually. */
1916
1917 /* Count resources used by all watchpoints except B. */
1918 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1919
1920 /* Add in the resources needed for B. */
1921 i += hw_watchpoint_use_count (b);
1922
1923 target_resources_ok
1924 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1925 if (target_resources_ok <= 0)
1926 {
1927 int sw_mode = b->ops->works_in_software_mode (b);
1928
1929 if (target_resources_ok == 0 && !sw_mode)
1930 error (_("Target does not support this type of "
1931 "hardware watchpoint."));
1932 else if (target_resources_ok < 0 && !sw_mode)
1933 error (_("There are not enough available hardware "
1934 "resources for this watchpoint."));
1935
1936 /* Downgrade to software watchpoint. */
1937 b->type = bp_watchpoint;
1938 }
1939 else
1940 {
1941 /* If this was a software watchpoint, we've just
1942 found we have enough resources to turn it to a
1943 hardware watchpoint. Otherwise, this is a
1944 nop. */
1945 b->type = type;
1946 }
1947 }
1948 else if (!b->ops->works_in_software_mode (b))
1949 {
1950 if (!can_use_hw_watchpoints)
1951 error (_("Can't set read/access watchpoint when "
1952 "hardware watchpoints are disabled."));
1953 else
1954 error (_("Expression cannot be implemented with "
1955 "read/access watchpoint."));
1956 }
1957 else
1958 b->type = bp_watchpoint;
1959
1960 loc_type = (b->type == bp_watchpoint? bp_loc_other
1961 : bp_loc_hardware_watchpoint);
1962 for (bl = b->loc; bl; bl = bl->next)
1963 bl->loc_type = loc_type;
1964 }
1965
1966 /* If a software watchpoint is not watching any memory, then the
1967 above left it without any location set up. But,
1968 bpstat_stop_status requires a location to be able to report
1969 stops, so make sure there's at least a dummy one. */
1970 if (b->type == bp_watchpoint && b->loc == NULL)
1971 software_watchpoint_add_no_memory_location (b, frame_pspace);
1972 }
1973 else if (!within_current_scope)
1974 {
1975 printf_filtered (_("\
1976 Watchpoint %d deleted because the program has left the block\n\
1977 in which its expression is valid.\n"),
1978 b->number);
1979 watchpoint_del_at_next_stop (b);
1980 }
1981
1982 /* Restore the selected frame. */
1983 if (frame_saved)
1984 select_frame (frame_find_by_id (saved_frame_id));
1985 }
1986
1987
1988 /* Returns 1 iff breakpoint location should be
1989 inserted in the inferior. We don't differentiate the type of BL's owner
1990 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1991 breakpoint_ops is not defined, because in insert_bp_location,
1992 tracepoint's insert_location will not be called. */
1993 static int
1994 should_be_inserted (struct bp_location *bl)
1995 {
1996 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1997 return 0;
1998
1999 if (bl->owner->disposition == disp_del_at_next_stop)
2000 return 0;
2001
2002 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2003 return 0;
2004
2005 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2006 return 0;
2007
2008 /* This is set for example, when we're attached to the parent of a
2009 vfork, and have detached from the child. The child is running
2010 free, and we expect it to do an exec or exit, at which point the
2011 OS makes the parent schedulable again (and the target reports
2012 that the vfork is done). Until the child is done with the shared
2013 memory region, do not insert breakpoints in the parent, otherwise
2014 the child could still trip on the parent's breakpoints. Since
2015 the parent is blocked anyway, it won't miss any breakpoint. */
2016 if (bl->pspace->breakpoints_not_allowed)
2017 return 0;
2018
2019 /* Don't insert a breakpoint if we're trying to step past its
2020 location, except if the breakpoint is a single-step breakpoint,
2021 and the breakpoint's thread is the thread which is stepping past
2022 a breakpoint. */
2023 if ((bl->loc_type == bp_loc_software_breakpoint
2024 || bl->loc_type == bp_loc_hardware_breakpoint)
2025 && stepping_past_instruction_at (bl->pspace->aspace,
2026 bl->address)
2027 /* The single-step breakpoint may be inserted at the location
2028 we're trying to step if the instruction branches to itself.
2029 However, the instruction won't be executed at all and it may
2030 break the semantics of the instruction, for example, the
2031 instruction is a conditional branch or updates some flags.
2032 We can't fix it unless GDB is able to emulate the instruction
2033 or switch to displaced stepping. */
2034 && !(bl->owner->type == bp_single_step
2035 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2036 {
2037 if (debug_infrun)
2038 {
2039 fprintf_unfiltered (gdb_stdlog,
2040 "infrun: skipping breakpoint: "
2041 "stepping past insn at: %s\n",
2042 paddress (bl->gdbarch, bl->address));
2043 }
2044 return 0;
2045 }
2046
2047 /* Don't insert watchpoints if we're trying to step past the
2048 instruction that triggered one. */
2049 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2050 && stepping_past_nonsteppable_watchpoint ())
2051 {
2052 if (debug_infrun)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: stepping past non-steppable watchpoint. "
2056 "skipping watchpoint at %s:%d\n",
2057 paddress (bl->gdbarch, bl->address),
2058 bl->length);
2059 }
2060 return 0;
2061 }
2062
2063 return 1;
2064 }
2065
2066 /* Same as should_be_inserted but does the check assuming
2067 that the location is not duplicated. */
2068
2069 static int
2070 unduplicated_should_be_inserted (struct bp_location *bl)
2071 {
2072 int result;
2073 const int save_duplicate = bl->duplicate;
2074
2075 bl->duplicate = 0;
2076 result = should_be_inserted (bl);
2077 bl->duplicate = save_duplicate;
2078 return result;
2079 }
2080
2081 /* Parses a conditional described by an expression COND into an
2082 agent expression bytecode suitable for evaluation
2083 by the bytecode interpreter. Return NULL if there was
2084 any error during parsing. */
2085
2086 static agent_expr_up
2087 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2088 {
2089 if (cond == NULL)
2090 return NULL;
2091
2092 agent_expr_up aexpr;
2093
2094 /* We don't want to stop processing, so catch any errors
2095 that may show up. */
2096 TRY
2097 {
2098 aexpr = gen_eval_for_expr (scope, cond);
2099 }
2100
2101 CATCH (ex, RETURN_MASK_ERROR)
2102 {
2103 /* If we got here, it means the condition could not be parsed to a valid
2104 bytecode expression and thus can't be evaluated on the target's side.
2105 It's no use iterating through the conditions. */
2106 }
2107 END_CATCH
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent expression
2140 bytecode. If any of these happen, then it's no use to send conditions
2141 to the target since this location will always trigger and generate a
2142 response back to GDB. */
2143 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2144 {
2145 loc = (*loc2p);
2146 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2147 {
2148 if (modified)
2149 {
2150 /* Re-parse the conditions since something changed. In that
2151 case we already freed the condition bytecodes (see
2152 force_breakpoint_reinsertion). We just
2153 need to parse the condition to bytecodes again. */
2154 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2155 loc->cond.get ());
2156 }
2157
2158 /* If we have a NULL bytecode expression, it means something
2159 went wrong or we have a null condition expression. */
2160 if (!loc->cond_bytecode)
2161 {
2162 null_condition_or_parse_error = 1;
2163 break;
2164 }
2165 }
2166 }
2167
2168 /* If any of these happened, it means we will have to evaluate the conditions
2169 for the location's address on gdb's side. It is no use keeping bytecodes
2170 for all the other duplicate locations, thus we free all of them here.
2171
2172 This is so we have a finer control over which locations' conditions are
2173 being evaluated by GDB or the remote stub. */
2174 if (null_condition_or_parse_error)
2175 {
2176 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2177 {
2178 loc = (*loc2p);
2179 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2180 {
2181 /* Only go as far as the first NULL bytecode is
2182 located. */
2183 if (!loc->cond_bytecode)
2184 return;
2185
2186 loc->cond_bytecode.reset ();
2187 }
2188 }
2189 }
2190
2191 /* No NULL conditions or failed bytecode generation. Build a condition list
2192 for this location's address. */
2193 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2194 {
2195 loc = (*loc2p);
2196 if (loc->cond
2197 && is_breakpoint (loc->owner)
2198 && loc->pspace->num == bl->pspace->num
2199 && loc->owner->enable_state == bp_enabled
2200 && loc->enabled)
2201 {
2202 /* Add the condition to the vector. This will be used later
2203 to send the conditions to the target. */
2204 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2205 }
2206 }
2207
2208 return;
2209 }
2210
2211 /* Parses a command described by string CMD into an agent expression
2212 bytecode suitable for evaluation by the bytecode interpreter.
2213 Return NULL if there was any error during parsing. */
2214
2215 static agent_expr_up
2216 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2217 {
2218 const char *cmdrest;
2219 const char *format_start, *format_end;
2220 struct gdbarch *gdbarch = get_current_arch ();
2221
2222 if (cmd == NULL)
2223 return NULL;
2224
2225 cmdrest = cmd;
2226
2227 if (*cmdrest == ',')
2228 ++cmdrest;
2229 cmdrest = skip_spaces (cmdrest);
2230
2231 if (*cmdrest++ != '"')
2232 error (_("No format string following the location"));
2233
2234 format_start = cmdrest;
2235
2236 format_pieces fpieces (&cmdrest);
2237
2238 format_end = cmdrest;
2239
2240 if (*cmdrest++ != '"')
2241 error (_("Bad format string, non-terminated '\"'."));
2242
2243 cmdrest = skip_spaces (cmdrest);
2244
2245 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2246 error (_("Invalid argument syntax"));
2247
2248 if (*cmdrest == ',')
2249 cmdrest++;
2250 cmdrest = skip_spaces (cmdrest);
2251
2252 /* For each argument, make an expression. */
2253
2254 std::vector<struct expression *> argvec;
2255 while (*cmdrest != '\0')
2256 {
2257 const char *cmd1;
2258
2259 cmd1 = cmdrest;
2260 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2261 argvec.push_back (expr.release ());
2262 cmdrest = cmd1;
2263 if (*cmdrest == ',')
2264 ++cmdrest;
2265 }
2266
2267 agent_expr_up aexpr;
2268
2269 /* We don't want to stop processing, so catch any errors
2270 that may show up. */
2271 TRY
2272 {
2273 aexpr = gen_printf (scope, gdbarch, 0, 0,
2274 format_start, format_end - format_start,
2275 argvec.size (), argvec.data ());
2276 }
2277 CATCH (ex, RETURN_MASK_ERROR)
2278 {
2279 /* If we got here, it means the command could not be parsed to a valid
2280 bytecode expression and thus can't be evaluated on the target's side.
2281 It's no use iterating through the other commands. */
2282 }
2283 END_CATCH
2284
2285 /* We have a valid agent expression, return it. */
2286 return aexpr;
2287 }
2288
2289 /* Based on location BL, create a list of breakpoint commands to be
2290 passed on to the target. If we have duplicated locations with
2291 different commands, we will add any such to the list. */
2292
2293 static void
2294 build_target_command_list (struct bp_location *bl)
2295 {
2296 struct bp_location **locp = NULL, **loc2p;
2297 int null_command_or_parse_error = 0;
2298 int modified = bl->needs_update;
2299 struct bp_location *loc;
2300
2301 /* Clear commands left over from a previous insert. */
2302 bl->target_info.tcommands.clear ();
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* For now, limit to agent-style dprintf breakpoints. */
2308 if (dprintf_style != dprintf_style_agent)
2309 return;
2310
2311 /* For now, if we have any duplicate location that isn't a dprintf,
2312 don't install the target-side commands, as that would make the
2313 breakpoint not be reported to the core, and we'd lose
2314 control. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner)
2319 && loc->pspace->num == bl->pspace->num
2320 && loc->owner->type != bp_dprintf)
2321 return;
2322 }
2323
2324 /* Do a first pass to check for locations with no assigned
2325 conditions or conditions that fail to parse to a valid agent expression
2326 bytecode. If any of these happen, then it's no use to send conditions
2327 to the target since this location will always trigger and generate a
2328 response back to GDB. */
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2333 {
2334 if (modified)
2335 {
2336 /* Re-parse the commands since something changed. In that
2337 case we already freed the command bytecodes (see
2338 force_breakpoint_reinsertion). We just
2339 need to parse the command to bytecodes again. */
2340 loc->cmd_bytecode
2341 = parse_cmd_to_aexpr (bl->address,
2342 loc->owner->extra_string);
2343 }
2344
2345 /* If we have a NULL bytecode expression, it means something
2346 went wrong or we have a null command expression. */
2347 if (!loc->cmd_bytecode)
2348 {
2349 null_command_or_parse_error = 1;
2350 break;
2351 }
2352 }
2353 }
2354
2355 /* If anything failed, then we're not doing target-side commands,
2356 and so clean up. */
2357 if (null_command_or_parse_error)
2358 {
2359 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2360 {
2361 loc = (*loc2p);
2362 if (is_breakpoint (loc->owner)
2363 && loc->pspace->num == bl->pspace->num)
2364 {
2365 /* Only go as far as the first NULL bytecode is
2366 located. */
2367 if (loc->cmd_bytecode == NULL)
2368 return;
2369
2370 loc->cmd_bytecode.reset ();
2371 }
2372 }
2373 }
2374
2375 /* No NULL commands or failed bytecode generation. Build a command list
2376 for this location's address. */
2377 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2378 {
2379 loc = (*loc2p);
2380 if (loc->owner->extra_string
2381 && is_breakpoint (loc->owner)
2382 && loc->pspace->num == bl->pspace->num
2383 && loc->owner->enable_state == bp_enabled
2384 && loc->enabled)
2385 {
2386 /* Add the command to the vector. This will be used later
2387 to send the commands to the target. */
2388 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2389 }
2390 }
2391
2392 bl->target_info.persist = 0;
2393 /* Maybe flag this location as persistent. */
2394 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2395 bl->target_info.persist = 1;
2396 }
2397
2398 /* Return the kind of breakpoint on address *ADDR. Get the kind
2399 of breakpoint according to ADDR except single-step breakpoint.
2400 Get the kind of single-step breakpoint according to the current
2401 registers state. */
2402
2403 static int
2404 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2405 {
2406 if (bl->owner->type == bp_single_step)
2407 {
2408 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2409 struct regcache *regcache;
2410
2411 regcache = get_thread_regcache (thr->ptid);
2412
2413 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2414 regcache, addr);
2415 }
2416 else
2417 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2418 }
2419
2420 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2421 location. Any error messages are printed to TMP_ERROR_STREAM; and
2422 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2423 Returns 0 for success, 1 if the bp_location type is not supported or
2424 -1 for failure.
2425
2426 NOTE drow/2003-09-09: This routine could be broken down to an
2427 object-style method for each breakpoint or catchpoint type. */
2428 static int
2429 insert_bp_location (struct bp_location *bl,
2430 struct ui_file *tmp_error_stream,
2431 int *disabled_breaks,
2432 int *hw_breakpoint_error,
2433 int *hw_bp_error_explained_already)
2434 {
2435 gdb_exception bp_excpt = exception_none;
2436
2437 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2438 return 0;
2439
2440 /* Note we don't initialize bl->target_info, as that wipes out
2441 the breakpoint location's shadow_contents if the breakpoint
2442 is still inserted at that location. This in turn breaks
2443 target_read_memory which depends on these buffers when
2444 a memory read is requested at the breakpoint location:
2445 Once the target_info has been wiped, we fail to see that
2446 we have a breakpoint inserted at that address and thus
2447 read the breakpoint instead of returning the data saved in
2448 the breakpoint location's shadow contents. */
2449 bl->target_info.reqstd_address = bl->address;
2450 bl->target_info.placed_address_space = bl->pspace->aspace;
2451 bl->target_info.length = bl->length;
2452
2453 /* When working with target-side conditions, we must pass all the conditions
2454 for the same breakpoint address down to the target since GDB will not
2455 insert those locations. With a list of breakpoint conditions, the target
2456 can decide when to stop and notify GDB. */
2457
2458 if (is_breakpoint (bl->owner))
2459 {
2460 build_target_condition_list (bl);
2461 build_target_command_list (bl);
2462 /* Reset the modification marker. */
2463 bl->needs_update = 0;
2464 }
2465
2466 if (bl->loc_type == bp_loc_software_breakpoint
2467 || bl->loc_type == bp_loc_hardware_breakpoint)
2468 {
2469 if (bl->owner->type != bp_hardware_breakpoint)
2470 {
2471 /* If the explicitly specified breakpoint type
2472 is not hardware breakpoint, check the memory map to see
2473 if the breakpoint address is in read only memory or not.
2474
2475 Two important cases are:
2476 - location type is not hardware breakpoint, memory
2477 is readonly. We change the type of the location to
2478 hardware breakpoint.
2479 - location type is hardware breakpoint, memory is
2480 read-write. This means we've previously made the
2481 location hardware one, but then the memory map changed,
2482 so we undo.
2483
2484 When breakpoints are removed, remove_breakpoints will use
2485 location types we've just set here, the only possible
2486 problem is that memory map has changed during running
2487 program, but it's not going to work anyway with current
2488 gdb. */
2489 struct mem_region *mr
2490 = lookup_mem_region (bl->target_info.reqstd_address);
2491
2492 if (mr)
2493 {
2494 if (automatic_hardware_breakpoints)
2495 {
2496 enum bp_loc_type new_type;
2497
2498 if (mr->attrib.mode != MEM_RW)
2499 new_type = bp_loc_hardware_breakpoint;
2500 else
2501 new_type = bp_loc_software_breakpoint;
2502
2503 if (new_type != bl->loc_type)
2504 {
2505 static int said = 0;
2506
2507 bl->loc_type = new_type;
2508 if (!said)
2509 {
2510 fprintf_filtered (gdb_stdout,
2511 _("Note: automatically using "
2512 "hardware breakpoints for "
2513 "read-only addresses.\n"));
2514 said = 1;
2515 }
2516 }
2517 }
2518 else if (bl->loc_type == bp_loc_software_breakpoint
2519 && mr->attrib.mode != MEM_RW)
2520 {
2521 fprintf_unfiltered (tmp_error_stream,
2522 _("Cannot insert breakpoint %d.\n"
2523 "Cannot set software breakpoint "
2524 "at read-only address %s\n"),
2525 bl->owner->number,
2526 paddress (bl->gdbarch, bl->address));
2527 return 1;
2528 }
2529 }
2530 }
2531
2532 /* First check to see if we have to handle an overlay. */
2533 if (overlay_debugging == ovly_off
2534 || bl->section == NULL
2535 || !(section_is_overlay (bl->section)))
2536 {
2537 /* No overlay handling: just set the breakpoint. */
2538 TRY
2539 {
2540 int val;
2541
2542 val = bl->owner->ops->insert_location (bl);
2543 if (val)
2544 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2545 }
2546 CATCH (e, RETURN_MASK_ALL)
2547 {
2548 bp_excpt = e;
2549 }
2550 END_CATCH
2551 }
2552 else
2553 {
2554 /* This breakpoint is in an overlay section.
2555 Shall we set a breakpoint at the LMA? */
2556 if (!overlay_events_enabled)
2557 {
2558 /* Yes -- overlay event support is not active,
2559 so we must try to set a breakpoint at the LMA.
2560 This will not work for a hardware breakpoint. */
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 warning (_("hardware breakpoint %d not supported in overlay!"),
2563 bl->owner->number);
2564 else
2565 {
2566 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2567 bl->section);
2568 /* Set a software (trap) breakpoint at the LMA. */
2569 bl->overlay_target_info = bl->target_info;
2570 bl->overlay_target_info.reqstd_address = addr;
2571
2572 /* No overlay handling: just set the breakpoint. */
2573 TRY
2574 {
2575 int val;
2576
2577 bl->overlay_target_info.kind
2578 = breakpoint_kind (bl, &addr);
2579 bl->overlay_target_info.placed_address = addr;
2580 val = target_insert_breakpoint (bl->gdbarch,
2581 &bl->overlay_target_info);
2582 if (val)
2583 bp_excpt
2584 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2585 }
2586 CATCH (e, RETURN_MASK_ALL)
2587 {
2588 bp_excpt = e;
2589 }
2590 END_CATCH
2591
2592 if (bp_excpt.reason != 0)
2593 fprintf_unfiltered (tmp_error_stream,
2594 "Overlay breakpoint %d "
2595 "failed: in ROM?\n",
2596 bl->owner->number);
2597 }
2598 }
2599 /* Shall we set a breakpoint at the VMA? */
2600 if (section_is_mapped (bl->section))
2601 {
2602 /* Yes. This overlay section is mapped into memory. */
2603 TRY
2604 {
2605 int val;
2606
2607 val = bl->owner->ops->insert_location (bl);
2608 if (val)
2609 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2610 }
2611 CATCH (e, RETURN_MASK_ALL)
2612 {
2613 bp_excpt = e;
2614 }
2615 END_CATCH
2616 }
2617 else
2618 {
2619 /* No. This breakpoint will not be inserted.
2620 No error, but do not mark the bp as 'inserted'. */
2621 return 0;
2622 }
2623 }
2624
2625 if (bp_excpt.reason != 0)
2626 {
2627 /* Can't set the breakpoint. */
2628
2629 /* In some cases, we might not be able to insert a
2630 breakpoint in a shared library that has already been
2631 removed, but we have not yet processed the shlib unload
2632 event. Unfortunately, some targets that implement
2633 breakpoint insertion themselves can't tell why the
2634 breakpoint insertion failed (e.g., the remote target
2635 doesn't define error codes), so we must treat generic
2636 errors as memory errors. */
2637 if (bp_excpt.reason == RETURN_ERROR
2638 && (bp_excpt.error == GENERIC_ERROR
2639 || bp_excpt.error == MEMORY_ERROR)
2640 && bl->loc_type == bp_loc_software_breakpoint
2641 && (solib_name_from_address (bl->pspace, bl->address)
2642 || shared_objfile_contains_address_p (bl->pspace,
2643 bl->address)))
2644 {
2645 /* See also: disable_breakpoints_in_shlibs. */
2646 bl->shlib_disabled = 1;
2647 gdb::observers::breakpoint_modified.notify (bl->owner);
2648 if (!*disabled_breaks)
2649 {
2650 fprintf_unfiltered (tmp_error_stream,
2651 "Cannot insert breakpoint %d.\n",
2652 bl->owner->number);
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Temporarily disabling shared "
2655 "library breakpoints:\n");
2656 }
2657 *disabled_breaks = 1;
2658 fprintf_unfiltered (tmp_error_stream,
2659 "breakpoint #%d\n", bl->owner->number);
2660 return 0;
2661 }
2662 else
2663 {
2664 if (bl->loc_type == bp_loc_hardware_breakpoint)
2665 {
2666 *hw_breakpoint_error = 1;
2667 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2668 fprintf_unfiltered (tmp_error_stream,
2669 "Cannot insert hardware breakpoint %d%s",
2670 bl->owner->number,
2671 bp_excpt.message ? ":" : ".\n");
2672 if (bp_excpt.message != NULL)
2673 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2674 bp_excpt.message);
2675 }
2676 else
2677 {
2678 if (bp_excpt.message == NULL)
2679 {
2680 std::string message
2681 = memory_error_message (TARGET_XFER_E_IO,
2682 bl->gdbarch, bl->address);
2683
2684 fprintf_unfiltered (tmp_error_stream,
2685 "Cannot insert breakpoint %d.\n"
2686 "%s\n",
2687 bl->owner->number, message.c_str ());
2688 }
2689 else
2690 {
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert breakpoint %d: %s\n",
2693 bl->owner->number,
2694 bp_excpt.message);
2695 }
2696 }
2697 return 1;
2698
2699 }
2700 }
2701 else
2702 bl->inserted = 1;
2703
2704 return 0;
2705 }
2706
2707 else if (bl->loc_type == bp_loc_hardware_watchpoint
2708 /* NOTE drow/2003-09-08: This state only exists for removing
2709 watchpoints. It's not clear that it's necessary... */
2710 && bl->owner->disposition != disp_del_at_next_stop)
2711 {
2712 int val;
2713
2714 gdb_assert (bl->owner->ops != NULL
2715 && bl->owner->ops->insert_location != NULL);
2716
2717 val = bl->owner->ops->insert_location (bl);
2718
2719 /* If trying to set a read-watchpoint, and it turns out it's not
2720 supported, try emulating one with an access watchpoint. */
2721 if (val == 1 && bl->watchpoint_type == hw_read)
2722 {
2723 struct bp_location *loc, **loc_temp;
2724
2725 /* But don't try to insert it, if there's already another
2726 hw_access location that would be considered a duplicate
2727 of this one. */
2728 ALL_BP_LOCATIONS (loc, loc_temp)
2729 if (loc != bl
2730 && loc->watchpoint_type == hw_access
2731 && watchpoint_locations_match (bl, loc))
2732 {
2733 bl->duplicate = 1;
2734 bl->inserted = 1;
2735 bl->target_info = loc->target_info;
2736 bl->watchpoint_type = hw_access;
2737 val = 0;
2738 break;
2739 }
2740
2741 if (val == 1)
2742 {
2743 bl->watchpoint_type = hw_access;
2744 val = bl->owner->ops->insert_location (bl);
2745
2746 if (val)
2747 /* Back to the original value. */
2748 bl->watchpoint_type = hw_read;
2749 }
2750 }
2751
2752 bl->inserted = (val == 0);
2753 }
2754
2755 else if (bl->owner->type == bp_catchpoint)
2756 {
2757 int val;
2758
2759 gdb_assert (bl->owner->ops != NULL
2760 && bl->owner->ops->insert_location != NULL);
2761
2762 val = bl->owner->ops->insert_location (bl);
2763 if (val)
2764 {
2765 bl->owner->enable_state = bp_disabled;
2766
2767 if (val == 1)
2768 warning (_("\
2769 Error inserting catchpoint %d: Your system does not support this type\n\
2770 of catchpoint."), bl->owner->number);
2771 else
2772 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2773 }
2774
2775 bl->inserted = (val == 0);
2776
2777 /* We've already printed an error message if there was a problem
2778 inserting this catchpoint, and we've disabled the catchpoint,
2779 so just return success. */
2780 return 0;
2781 }
2782
2783 return 0;
2784 }
2785
2786 /* This function is called when program space PSPACE is about to be
2787 deleted. It takes care of updating breakpoints to not reference
2788 PSPACE anymore. */
2789
2790 void
2791 breakpoint_program_space_exit (struct program_space *pspace)
2792 {
2793 struct breakpoint *b, *b_temp;
2794 struct bp_location *loc, **loc_temp;
2795
2796 /* Remove any breakpoint that was set through this program space. */
2797 ALL_BREAKPOINTS_SAFE (b, b_temp)
2798 {
2799 if (b->pspace == pspace)
2800 delete_breakpoint (b);
2801 }
2802
2803 /* Breakpoints set through other program spaces could have locations
2804 bound to PSPACE as well. Remove those. */
2805 ALL_BP_LOCATIONS (loc, loc_temp)
2806 {
2807 struct bp_location *tmp;
2808
2809 if (loc->pspace == pspace)
2810 {
2811 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2812 if (loc->owner->loc == loc)
2813 loc->owner->loc = loc->next;
2814 else
2815 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2816 if (tmp->next == loc)
2817 {
2818 tmp->next = loc->next;
2819 break;
2820 }
2821 }
2822 }
2823
2824 /* Now update the global location list to permanently delete the
2825 removed locations above. */
2826 update_global_location_list (UGLL_DONT_INSERT);
2827 }
2828
2829 /* Make sure all breakpoints are inserted in inferior.
2830 Throws exception on any error.
2831 A breakpoint that is already inserted won't be inserted
2832 again, so calling this function twice is safe. */
2833 void
2834 insert_breakpoints (void)
2835 {
2836 struct breakpoint *bpt;
2837
2838 ALL_BREAKPOINTS (bpt)
2839 if (is_hardware_watchpoint (bpt))
2840 {
2841 struct watchpoint *w = (struct watchpoint *) bpt;
2842
2843 update_watchpoint (w, 0 /* don't reparse. */);
2844 }
2845
2846 /* Updating watchpoints creates new locations, so update the global
2847 location list. Explicitly tell ugll to insert locations and
2848 ignore breakpoints_always_inserted_mode. */
2849 update_global_location_list (UGLL_INSERT);
2850 }
2851
2852 /* Invoke CALLBACK for each of bp_location. */
2853
2854 void
2855 iterate_over_bp_locations (walk_bp_location_callback callback)
2856 {
2857 struct bp_location *loc, **loc_tmp;
2858
2859 ALL_BP_LOCATIONS (loc, loc_tmp)
2860 {
2861 callback (loc, NULL);
2862 }
2863 }
2864
2865 /* This is used when we need to synch breakpoint conditions between GDB and the
2866 target. It is the case with deleting and disabling of breakpoints when using
2867 always-inserted mode. */
2868
2869 static void
2870 update_inserted_breakpoint_locations (void)
2871 {
2872 struct bp_location *bl, **blp_tmp;
2873 int error_flag = 0;
2874 int val = 0;
2875 int disabled_breaks = 0;
2876 int hw_breakpoint_error = 0;
2877 int hw_bp_details_reported = 0;
2878
2879 string_file tmp_error_stream;
2880
2881 /* Explicitly mark the warning -- this will only be printed if
2882 there was an error. */
2883 tmp_error_stream.puts ("Warning:\n");
2884
2885 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2886
2887 ALL_BP_LOCATIONS (bl, blp_tmp)
2888 {
2889 /* We only want to update software breakpoints and hardware
2890 breakpoints. */
2891 if (!is_breakpoint (bl->owner))
2892 continue;
2893
2894 /* We only want to update locations that are already inserted
2895 and need updating. This is to avoid unwanted insertion during
2896 deletion of breakpoints. */
2897 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2898 continue;
2899
2900 switch_to_program_space_and_thread (bl->pspace);
2901
2902 /* For targets that support global breakpoints, there's no need
2903 to select an inferior to insert breakpoint to. In fact, even
2904 if we aren't attached to any process yet, we should still
2905 insert breakpoints. */
2906 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2907 && ptid_equal (inferior_ptid, null_ptid))
2908 continue;
2909
2910 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2911 &hw_breakpoint_error, &hw_bp_details_reported);
2912 if (val)
2913 error_flag = val;
2914 }
2915
2916 if (error_flag)
2917 {
2918 target_terminal::ours_for_output ();
2919 error_stream (tmp_error_stream);
2920 }
2921 }
2922
2923 /* Used when starting or continuing the program. */
2924
2925 static void
2926 insert_breakpoint_locations (void)
2927 {
2928 struct breakpoint *bpt;
2929 struct bp_location *bl, **blp_tmp;
2930 int error_flag = 0;
2931 int val = 0;
2932 int disabled_breaks = 0;
2933 int hw_breakpoint_error = 0;
2934 int hw_bp_error_explained_already = 0;
2935
2936 string_file tmp_error_stream;
2937
2938 /* Explicitly mark the warning -- this will only be printed if
2939 there was an error. */
2940 tmp_error_stream.puts ("Warning:\n");
2941
2942 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2943
2944 ALL_BP_LOCATIONS (bl, blp_tmp)
2945 {
2946 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2947 continue;
2948
2949 /* There is no point inserting thread-specific breakpoints if
2950 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2951 has BL->OWNER always non-NULL. */
2952 if (bl->owner->thread != -1
2953 && !valid_global_thread_id (bl->owner->thread))
2954 continue;
2955
2956 switch_to_program_space_and_thread (bl->pspace);
2957
2958 /* For targets that support global breakpoints, there's no need
2959 to select an inferior to insert breakpoint to. In fact, even
2960 if we aren't attached to any process yet, we should still
2961 insert breakpoints. */
2962 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2963 && ptid_equal (inferior_ptid, null_ptid))
2964 continue;
2965
2966 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2967 &hw_breakpoint_error, &hw_bp_error_explained_already);
2968 if (val)
2969 error_flag = val;
2970 }
2971
2972 /* If we failed to insert all locations of a watchpoint, remove
2973 them, as half-inserted watchpoint is of limited use. */
2974 ALL_BREAKPOINTS (bpt)
2975 {
2976 int some_failed = 0;
2977 struct bp_location *loc;
2978
2979 if (!is_hardware_watchpoint (bpt))
2980 continue;
2981
2982 if (!breakpoint_enabled (bpt))
2983 continue;
2984
2985 if (bpt->disposition == disp_del_at_next_stop)
2986 continue;
2987
2988 for (loc = bpt->loc; loc; loc = loc->next)
2989 if (!loc->inserted && should_be_inserted (loc))
2990 {
2991 some_failed = 1;
2992 break;
2993 }
2994 if (some_failed)
2995 {
2996 for (loc = bpt->loc; loc; loc = loc->next)
2997 if (loc->inserted)
2998 remove_breakpoint (loc);
2999
3000 hw_breakpoint_error = 1;
3001 tmp_error_stream.printf ("Could not insert "
3002 "hardware watchpoint %d.\n",
3003 bpt->number);
3004 error_flag = -1;
3005 }
3006 }
3007
3008 if (error_flag)
3009 {
3010 /* If a hardware breakpoint or watchpoint was inserted, add a
3011 message about possibly exhausted resources. */
3012 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3013 {
3014 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3015 You may have requested too many hardware breakpoints/watchpoints.\n");
3016 }
3017 target_terminal::ours_for_output ();
3018 error_stream (tmp_error_stream);
3019 }
3020 }
3021
3022 /* Used when the program stops.
3023 Returns zero if successful, or non-zero if there was a problem
3024 removing a breakpoint location. */
3025
3026 int
3027 remove_breakpoints (void)
3028 {
3029 struct bp_location *bl, **blp_tmp;
3030 int val = 0;
3031
3032 ALL_BP_LOCATIONS (bl, blp_tmp)
3033 {
3034 if (bl->inserted && !is_tracepoint (bl->owner))
3035 val |= remove_breakpoint (bl);
3036 }
3037 return val;
3038 }
3039
3040 /* When a thread exits, remove breakpoints that are related to
3041 that thread. */
3042
3043 static void
3044 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3045 {
3046 struct breakpoint *b, *b_tmp;
3047
3048 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3049 {
3050 if (b->thread == tp->global_num && user_breakpoint_p (b))
3051 {
3052 b->disposition = disp_del_at_next_stop;
3053
3054 printf_filtered (_("\
3055 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3056 b->number, print_thread_id (tp));
3057
3058 /* Hide it from the user. */
3059 b->number = 0;
3060 }
3061 }
3062 }
3063
3064 /* Remove breakpoints of process PID. */
3065
3066 int
3067 remove_breakpoints_pid (int pid)
3068 {
3069 struct bp_location *bl, **blp_tmp;
3070 int val;
3071 struct inferior *inf = find_inferior_pid (pid);
3072
3073 ALL_BP_LOCATIONS (bl, blp_tmp)
3074 {
3075 if (bl->pspace != inf->pspace)
3076 continue;
3077
3078 if (bl->inserted && !bl->target_info.persist)
3079 {
3080 val = remove_breakpoint (bl);
3081 if (val != 0)
3082 return val;
3083 }
3084 }
3085 return 0;
3086 }
3087
3088 static int internal_breakpoint_number = -1;
3089
3090 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3091 If INTERNAL is non-zero, the breakpoint number will be populated
3092 from internal_breakpoint_number and that variable decremented.
3093 Otherwise the breakpoint number will be populated from
3094 breakpoint_count and that value incremented. Internal breakpoints
3095 do not set the internal var bpnum. */
3096 static void
3097 set_breakpoint_number (int internal, struct breakpoint *b)
3098 {
3099 if (internal)
3100 b->number = internal_breakpoint_number--;
3101 else
3102 {
3103 set_breakpoint_count (breakpoint_count + 1);
3104 b->number = breakpoint_count;
3105 }
3106 }
3107
3108 static struct breakpoint *
3109 create_internal_breakpoint (struct gdbarch *gdbarch,
3110 CORE_ADDR address, enum bptype type,
3111 const struct breakpoint_ops *ops)
3112 {
3113 symtab_and_line sal;
3114 sal.pc = address;
3115 sal.section = find_pc_overlay (sal.pc);
3116 sal.pspace = current_program_space;
3117
3118 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3119 b->number = internal_breakpoint_number--;
3120 b->disposition = disp_donttouch;
3121
3122 return b;
3123 }
3124
3125 static const char *const longjmp_names[] =
3126 {
3127 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3128 };
3129 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3130
3131 /* Per-objfile data private to breakpoint.c. */
3132 struct breakpoint_objfile_data
3133 {
3134 /* Minimal symbol for "_ovly_debug_event" (if any). */
3135 struct bound_minimal_symbol overlay_msym {};
3136
3137 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3138 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3139
3140 /* True if we have looked for longjmp probes. */
3141 int longjmp_searched = 0;
3142
3143 /* SystemTap probe points for longjmp (if any). These are non-owning
3144 references. */
3145 std::vector<probe *> longjmp_probes;
3146
3147 /* Minimal symbol for "std::terminate()" (if any). */
3148 struct bound_minimal_symbol terminate_msym {};
3149
3150 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3151 struct bound_minimal_symbol exception_msym {};
3152
3153 /* True if we have looked for exception probes. */
3154 int exception_searched = 0;
3155
3156 /* SystemTap probe points for unwinding (if any). These are non-owning
3157 references. */
3158 std::vector<probe *> exception_probes;
3159 };
3160
3161 static const struct objfile_data *breakpoint_objfile_key;
3162
3163 /* Minimal symbol not found sentinel. */
3164 static struct minimal_symbol msym_not_found;
3165
3166 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3167
3168 static int
3169 msym_not_found_p (const struct minimal_symbol *msym)
3170 {
3171 return msym == &msym_not_found;
3172 }
3173
3174 /* Return per-objfile data needed by breakpoint.c.
3175 Allocate the data if necessary. */
3176
3177 static struct breakpoint_objfile_data *
3178 get_breakpoint_objfile_data (struct objfile *objfile)
3179 {
3180 struct breakpoint_objfile_data *bp_objfile_data;
3181
3182 bp_objfile_data = ((struct breakpoint_objfile_data *)
3183 objfile_data (objfile, breakpoint_objfile_key));
3184 if (bp_objfile_data == NULL)
3185 {
3186 bp_objfile_data = new breakpoint_objfile_data ();
3187 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3188 }
3189 return bp_objfile_data;
3190 }
3191
3192 static void
3193 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3194 {
3195 struct breakpoint_objfile_data *bp_objfile_data
3196 = (struct breakpoint_objfile_data *) data;
3197
3198 delete bp_objfile_data;
3199 }
3200
3201 static void
3202 create_overlay_event_breakpoint (void)
3203 {
3204 struct objfile *objfile;
3205 const char *const func_name = "_ovly_debug_event";
3206
3207 ALL_OBJFILES (objfile)
3208 {
3209 struct breakpoint *b;
3210 struct breakpoint_objfile_data *bp_objfile_data;
3211 CORE_ADDR addr;
3212 struct explicit_location explicit_loc;
3213
3214 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3215
3216 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3217 continue;
3218
3219 if (bp_objfile_data->overlay_msym.minsym == NULL)
3220 {
3221 struct bound_minimal_symbol m;
3222
3223 m = lookup_minimal_symbol_text (func_name, objfile);
3224 if (m.minsym == NULL)
3225 {
3226 /* Avoid future lookups in this objfile. */
3227 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3228 continue;
3229 }
3230 bp_objfile_data->overlay_msym = m;
3231 }
3232
3233 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3234 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3235 bp_overlay_event,
3236 &internal_breakpoint_ops);
3237 initialize_explicit_location (&explicit_loc);
3238 explicit_loc.function_name = ASTRDUP (func_name);
3239 b->location = new_explicit_location (&explicit_loc);
3240
3241 if (overlay_debugging == ovly_auto)
3242 {
3243 b->enable_state = bp_enabled;
3244 overlay_events_enabled = 1;
3245 }
3246 else
3247 {
3248 b->enable_state = bp_disabled;
3249 overlay_events_enabled = 0;
3250 }
3251 }
3252 }
3253
3254 static void
3255 create_longjmp_master_breakpoint (void)
3256 {
3257 struct program_space *pspace;
3258
3259 scoped_restore_current_program_space restore_pspace;
3260
3261 ALL_PSPACES (pspace)
3262 {
3263 struct objfile *objfile;
3264
3265 set_current_program_space (pspace);
3266
3267 ALL_OBJFILES (objfile)
3268 {
3269 int i;
3270 struct gdbarch *gdbarch;
3271 struct breakpoint_objfile_data *bp_objfile_data;
3272
3273 gdbarch = get_objfile_arch (objfile);
3274
3275 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3276
3277 if (!bp_objfile_data->longjmp_searched)
3278 {
3279 std::vector<probe *> ret
3280 = find_probes_in_objfile (objfile, "libc", "longjmp");
3281
3282 if (!ret.empty ())
3283 {
3284 /* We are only interested in checking one element. */
3285 probe *p = ret[0];
3286
3287 if (!p->can_evaluate_arguments ())
3288 {
3289 /* We cannot use the probe interface here, because it does
3290 not know how to evaluate arguments. */
3291 ret.clear ();
3292 }
3293 }
3294 bp_objfile_data->longjmp_probes = ret;
3295 bp_objfile_data->longjmp_searched = 1;
3296 }
3297
3298 if (!bp_objfile_data->longjmp_probes.empty ())
3299 {
3300 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3301
3302 for (probe *p : bp_objfile_data->longjmp_probes)
3303 {
3304 struct breakpoint *b;
3305
3306 b = create_internal_breakpoint (gdbarch,
3307 p->get_relocated_address (objfile),
3308 bp_longjmp_master,
3309 &internal_breakpoint_ops);
3310 b->location = new_probe_location ("-probe-stap libc:longjmp");
3311 b->enable_state = bp_disabled;
3312 }
3313
3314 continue;
3315 }
3316
3317 if (!gdbarch_get_longjmp_target_p (gdbarch))
3318 continue;
3319
3320 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3321 {
3322 struct breakpoint *b;
3323 const char *func_name;
3324 CORE_ADDR addr;
3325 struct explicit_location explicit_loc;
3326
3327 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3328 continue;
3329
3330 func_name = longjmp_names[i];
3331 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3332 {
3333 struct bound_minimal_symbol m;
3334
3335 m = lookup_minimal_symbol_text (func_name, objfile);
3336 if (m.minsym == NULL)
3337 {
3338 /* Prevent future lookups in this objfile. */
3339 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3340 continue;
3341 }
3342 bp_objfile_data->longjmp_msym[i] = m;
3343 }
3344
3345 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3346 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3347 &internal_breakpoint_ops);
3348 initialize_explicit_location (&explicit_loc);
3349 explicit_loc.function_name = ASTRDUP (func_name);
3350 b->location = new_explicit_location (&explicit_loc);
3351 b->enable_state = bp_disabled;
3352 }
3353 }
3354 }
3355 }
3356
3357 /* Create a master std::terminate breakpoint. */
3358 static void
3359 create_std_terminate_master_breakpoint (void)
3360 {
3361 struct program_space *pspace;
3362 const char *const func_name = "std::terminate()";
3363
3364 scoped_restore_current_program_space restore_pspace;
3365
3366 ALL_PSPACES (pspace)
3367 {
3368 struct objfile *objfile;
3369 CORE_ADDR addr;
3370
3371 set_current_program_space (pspace);
3372
3373 ALL_OBJFILES (objfile)
3374 {
3375 struct breakpoint *b;
3376 struct breakpoint_objfile_data *bp_objfile_data;
3377 struct explicit_location explicit_loc;
3378
3379 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3380
3381 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3382 continue;
3383
3384 if (bp_objfile_data->terminate_msym.minsym == NULL)
3385 {
3386 struct bound_minimal_symbol m;
3387
3388 m = lookup_minimal_symbol (func_name, NULL, objfile);
3389 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3390 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3391 {
3392 /* Prevent future lookups in this objfile. */
3393 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3394 continue;
3395 }
3396 bp_objfile_data->terminate_msym = m;
3397 }
3398
3399 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3400 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3401 bp_std_terminate_master,
3402 &internal_breakpoint_ops);
3403 initialize_explicit_location (&explicit_loc);
3404 explicit_loc.function_name = ASTRDUP (func_name);
3405 b->location = new_explicit_location (&explicit_loc);
3406 b->enable_state = bp_disabled;
3407 }
3408 }
3409 }
3410
3411 /* Install a master breakpoint on the unwinder's debug hook. */
3412
3413 static void
3414 create_exception_master_breakpoint (void)
3415 {
3416 struct objfile *objfile;
3417 const char *const func_name = "_Unwind_DebugHook";
3418
3419 ALL_OBJFILES (objfile)
3420 {
3421 struct breakpoint *b;
3422 struct gdbarch *gdbarch;
3423 struct breakpoint_objfile_data *bp_objfile_data;
3424 CORE_ADDR addr;
3425 struct explicit_location explicit_loc;
3426
3427 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3428
3429 /* We prefer the SystemTap probe point if it exists. */
3430 if (!bp_objfile_data->exception_searched)
3431 {
3432 std::vector<probe *> ret
3433 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3434
3435 if (!ret.empty ())
3436 {
3437 /* We are only interested in checking one element. */
3438 probe *p = ret[0];
3439
3440 if (!p->can_evaluate_arguments ())
3441 {
3442 /* We cannot use the probe interface here, because it does
3443 not know how to evaluate arguments. */
3444 ret.clear ();
3445 }
3446 }
3447 bp_objfile_data->exception_probes = ret;
3448 bp_objfile_data->exception_searched = 1;
3449 }
3450
3451 if (!bp_objfile_data->exception_probes.empty ())
3452 {
3453 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3454
3455 for (probe *p : bp_objfile_data->exception_probes)
3456 {
3457 struct breakpoint *b;
3458
3459 b = create_internal_breakpoint (gdbarch,
3460 p->get_relocated_address (objfile),
3461 bp_exception_master,
3462 &internal_breakpoint_ops);
3463 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3464 b->enable_state = bp_disabled;
3465 }
3466
3467 continue;
3468 }
3469
3470 /* Otherwise, try the hook function. */
3471
3472 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3473 continue;
3474
3475 gdbarch = get_objfile_arch (objfile);
3476
3477 if (bp_objfile_data->exception_msym.minsym == NULL)
3478 {
3479 struct bound_minimal_symbol debug_hook;
3480
3481 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3482 if (debug_hook.minsym == NULL)
3483 {
3484 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3485 continue;
3486 }
3487
3488 bp_objfile_data->exception_msym = debug_hook;
3489 }
3490
3491 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3492 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3493 current_top_target ());
3494 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3495 &internal_breakpoint_ops);
3496 initialize_explicit_location (&explicit_loc);
3497 explicit_loc.function_name = ASTRDUP (func_name);
3498 b->location = new_explicit_location (&explicit_loc);
3499 b->enable_state = bp_disabled;
3500 }
3501 }
3502
3503 /* Does B have a location spec? */
3504
3505 static int
3506 breakpoint_event_location_empty_p (const struct breakpoint *b)
3507 {
3508 return b->location != NULL && event_location_empty_p (b->location.get ());
3509 }
3510
3511 void
3512 update_breakpoints_after_exec (void)
3513 {
3514 struct breakpoint *b, *b_tmp;
3515 struct bp_location *bploc, **bplocp_tmp;
3516
3517 /* We're about to delete breakpoints from GDB's lists. If the
3518 INSERTED flag is true, GDB will try to lift the breakpoints by
3519 writing the breakpoints' "shadow contents" back into memory. The
3520 "shadow contents" are NOT valid after an exec, so GDB should not
3521 do that. Instead, the target is responsible from marking
3522 breakpoints out as soon as it detects an exec. We don't do that
3523 here instead, because there may be other attempts to delete
3524 breakpoints after detecting an exec and before reaching here. */
3525 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3526 if (bploc->pspace == current_program_space)
3527 gdb_assert (!bploc->inserted);
3528
3529 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3530 {
3531 if (b->pspace != current_program_space)
3532 continue;
3533
3534 /* Solib breakpoints must be explicitly reset after an exec(). */
3535 if (b->type == bp_shlib_event)
3536 {
3537 delete_breakpoint (b);
3538 continue;
3539 }
3540
3541 /* JIT breakpoints must be explicitly reset after an exec(). */
3542 if (b->type == bp_jit_event)
3543 {
3544 delete_breakpoint (b);
3545 continue;
3546 }
3547
3548 /* Thread event breakpoints must be set anew after an exec(),
3549 as must overlay event and longjmp master breakpoints. */
3550 if (b->type == bp_thread_event || b->type == bp_overlay_event
3551 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3552 || b->type == bp_exception_master)
3553 {
3554 delete_breakpoint (b);
3555 continue;
3556 }
3557
3558 /* Step-resume breakpoints are meaningless after an exec(). */
3559 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3560 {
3561 delete_breakpoint (b);
3562 continue;
3563 }
3564
3565 /* Just like single-step breakpoints. */
3566 if (b->type == bp_single_step)
3567 {
3568 delete_breakpoint (b);
3569 continue;
3570 }
3571
3572 /* Longjmp and longjmp-resume breakpoints are also meaningless
3573 after an exec. */
3574 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3575 || b->type == bp_longjmp_call_dummy
3576 || b->type == bp_exception || b->type == bp_exception_resume)
3577 {
3578 delete_breakpoint (b);
3579 continue;
3580 }
3581
3582 if (b->type == bp_catchpoint)
3583 {
3584 /* For now, none of the bp_catchpoint breakpoints need to
3585 do anything at this point. In the future, if some of
3586 the catchpoints need to something, we will need to add
3587 a new method, and call this method from here. */
3588 continue;
3589 }
3590
3591 /* bp_finish is a special case. The only way we ought to be able
3592 to see one of these when an exec() has happened, is if the user
3593 caught a vfork, and then said "finish". Ordinarily a finish just
3594 carries them to the call-site of the current callee, by setting
3595 a temporary bp there and resuming. But in this case, the finish
3596 will carry them entirely through the vfork & exec.
3597
3598 We don't want to allow a bp_finish to remain inserted now. But
3599 we can't safely delete it, 'cause finish_command has a handle to
3600 the bp on a bpstat, and will later want to delete it. There's a
3601 chance (and I've seen it happen) that if we delete the bp_finish
3602 here, that its storage will get reused by the time finish_command
3603 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3604 We really must allow finish_command to delete a bp_finish.
3605
3606 In the absence of a general solution for the "how do we know
3607 it's safe to delete something others may have handles to?"
3608 problem, what we'll do here is just uninsert the bp_finish, and
3609 let finish_command delete it.
3610
3611 (We know the bp_finish is "doomed" in the sense that it's
3612 momentary, and will be deleted as soon as finish_command sees
3613 the inferior stopped. So it doesn't matter that the bp's
3614 address is probably bogus in the new a.out, unlike e.g., the
3615 solib breakpoints.) */
3616
3617 if (b->type == bp_finish)
3618 {
3619 continue;
3620 }
3621
3622 /* Without a symbolic address, we have little hope of the
3623 pre-exec() address meaning the same thing in the post-exec()
3624 a.out. */
3625 if (breakpoint_event_location_empty_p (b))
3626 {
3627 delete_breakpoint (b);
3628 continue;
3629 }
3630 }
3631 }
3632
3633 int
3634 detach_breakpoints (ptid_t ptid)
3635 {
3636 struct bp_location *bl, **blp_tmp;
3637 int val = 0;
3638 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3639 struct inferior *inf = current_inferior ();
3640
3641 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3642 error (_("Cannot detach breakpoints of inferior_ptid"));
3643
3644 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3645 inferior_ptid = ptid;
3646 ALL_BP_LOCATIONS (bl, blp_tmp)
3647 {
3648 if (bl->pspace != inf->pspace)
3649 continue;
3650
3651 /* This function must physically remove breakpoints locations
3652 from the specified ptid, without modifying the breakpoint
3653 package's state. Locations of type bp_loc_other are only
3654 maintained at GDB side. So, there is no need to remove
3655 these bp_loc_other locations. Moreover, removing these
3656 would modify the breakpoint package's state. */
3657 if (bl->loc_type == bp_loc_other)
3658 continue;
3659
3660 if (bl->inserted)
3661 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3662 }
3663
3664 return val;
3665 }
3666
3667 /* Remove the breakpoint location BL from the current address space.
3668 Note that this is used to detach breakpoints from a child fork.
3669 When we get here, the child isn't in the inferior list, and neither
3670 do we have objects to represent its address space --- we should
3671 *not* look at bl->pspace->aspace here. */
3672
3673 static int
3674 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3675 {
3676 int val;
3677
3678 /* BL is never in moribund_locations by our callers. */
3679 gdb_assert (bl->owner != NULL);
3680
3681 /* The type of none suggests that owner is actually deleted.
3682 This should not ever happen. */
3683 gdb_assert (bl->owner->type != bp_none);
3684
3685 if (bl->loc_type == bp_loc_software_breakpoint
3686 || bl->loc_type == bp_loc_hardware_breakpoint)
3687 {
3688 /* "Normal" instruction breakpoint: either the standard
3689 trap-instruction bp (bp_breakpoint), or a
3690 bp_hardware_breakpoint. */
3691
3692 /* First check to see if we have to handle an overlay. */
3693 if (overlay_debugging == ovly_off
3694 || bl->section == NULL
3695 || !(section_is_overlay (bl->section)))
3696 {
3697 /* No overlay handling: just remove the breakpoint. */
3698
3699 /* If we're trying to uninsert a memory breakpoint that we
3700 know is set in a dynamic object that is marked
3701 shlib_disabled, then either the dynamic object was
3702 removed with "remove-symbol-file" or with
3703 "nosharedlibrary". In the former case, we don't know
3704 whether another dynamic object might have loaded over the
3705 breakpoint's address -- the user might well let us know
3706 about it next with add-symbol-file (the whole point of
3707 add-symbol-file is letting the user manually maintain a
3708 list of dynamically loaded objects). If we have the
3709 breakpoint's shadow memory, that is, this is a software
3710 breakpoint managed by GDB, check whether the breakpoint
3711 is still inserted in memory, to avoid overwriting wrong
3712 code with stale saved shadow contents. Note that HW
3713 breakpoints don't have shadow memory, as they're
3714 implemented using a mechanism that is not dependent on
3715 being able to modify the target's memory, and as such
3716 they should always be removed. */
3717 if (bl->shlib_disabled
3718 && bl->target_info.shadow_len != 0
3719 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3720 val = 0;
3721 else
3722 val = bl->owner->ops->remove_location (bl, reason);
3723 }
3724 else
3725 {
3726 /* This breakpoint is in an overlay section.
3727 Did we set a breakpoint at the LMA? */
3728 if (!overlay_events_enabled)
3729 {
3730 /* Yes -- overlay event support is not active, so we
3731 should have set a breakpoint at the LMA. Remove it.
3732 */
3733 /* Ignore any failures: if the LMA is in ROM, we will
3734 have already warned when we failed to insert it. */
3735 if (bl->loc_type == bp_loc_hardware_breakpoint)
3736 target_remove_hw_breakpoint (bl->gdbarch,
3737 &bl->overlay_target_info);
3738 else
3739 target_remove_breakpoint (bl->gdbarch,
3740 &bl->overlay_target_info,
3741 reason);
3742 }
3743 /* Did we set a breakpoint at the VMA?
3744 If so, we will have marked the breakpoint 'inserted'. */
3745 if (bl->inserted)
3746 {
3747 /* Yes -- remove it. Previously we did not bother to
3748 remove the breakpoint if the section had been
3749 unmapped, but let's not rely on that being safe. We
3750 don't know what the overlay manager might do. */
3751
3752 /* However, we should remove *software* breakpoints only
3753 if the section is still mapped, or else we overwrite
3754 wrong code with the saved shadow contents. */
3755 if (bl->loc_type == bp_loc_hardware_breakpoint
3756 || section_is_mapped (bl->section))
3757 val = bl->owner->ops->remove_location (bl, reason);
3758 else
3759 val = 0;
3760 }
3761 else
3762 {
3763 /* No -- not inserted, so no need to remove. No error. */
3764 val = 0;
3765 }
3766 }
3767
3768 /* In some cases, we might not be able to remove a breakpoint in
3769 a shared library that has already been removed, but we have
3770 not yet processed the shlib unload event. Similarly for an
3771 unloaded add-symbol-file object - the user might not yet have
3772 had the chance to remove-symbol-file it. shlib_disabled will
3773 be set if the library/object has already been removed, but
3774 the breakpoint hasn't been uninserted yet, e.g., after
3775 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3776 always-inserted mode. */
3777 if (val
3778 && (bl->loc_type == bp_loc_software_breakpoint
3779 && (bl->shlib_disabled
3780 || solib_name_from_address (bl->pspace, bl->address)
3781 || shared_objfile_contains_address_p (bl->pspace,
3782 bl->address))))
3783 val = 0;
3784
3785 if (val)
3786 return val;
3787 bl->inserted = (reason == DETACH_BREAKPOINT);
3788 }
3789 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3790 {
3791 gdb_assert (bl->owner->ops != NULL
3792 && bl->owner->ops->remove_location != NULL);
3793
3794 bl->inserted = (reason == DETACH_BREAKPOINT);
3795 bl->owner->ops->remove_location (bl, reason);
3796
3797 /* Failure to remove any of the hardware watchpoints comes here. */
3798 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3799 warning (_("Could not remove hardware watchpoint %d."),
3800 bl->owner->number);
3801 }
3802 else if (bl->owner->type == bp_catchpoint
3803 && breakpoint_enabled (bl->owner)
3804 && !bl->duplicate)
3805 {
3806 gdb_assert (bl->owner->ops != NULL
3807 && bl->owner->ops->remove_location != NULL);
3808
3809 val = bl->owner->ops->remove_location (bl, reason);
3810 if (val)
3811 return val;
3812
3813 bl->inserted = (reason == DETACH_BREAKPOINT);
3814 }
3815
3816 return 0;
3817 }
3818
3819 static int
3820 remove_breakpoint (struct bp_location *bl)
3821 {
3822 /* BL is never in moribund_locations by our callers. */
3823 gdb_assert (bl->owner != NULL);
3824
3825 /* The type of none suggests that owner is actually deleted.
3826 This should not ever happen. */
3827 gdb_assert (bl->owner->type != bp_none);
3828
3829 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3830
3831 switch_to_program_space_and_thread (bl->pspace);
3832
3833 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3834 }
3835
3836 /* Clear the "inserted" flag in all breakpoints. */
3837
3838 void
3839 mark_breakpoints_out (void)
3840 {
3841 struct bp_location *bl, **blp_tmp;
3842
3843 ALL_BP_LOCATIONS (bl, blp_tmp)
3844 if (bl->pspace == current_program_space)
3845 bl->inserted = 0;
3846 }
3847
3848 /* Clear the "inserted" flag in all breakpoints and delete any
3849 breakpoints which should go away between runs of the program.
3850
3851 Plus other such housekeeping that has to be done for breakpoints
3852 between runs.
3853
3854 Note: this function gets called at the end of a run (by
3855 generic_mourn_inferior) and when a run begins (by
3856 init_wait_for_inferior). */
3857
3858
3859
3860 void
3861 breakpoint_init_inferior (enum inf_context context)
3862 {
3863 struct breakpoint *b, *b_tmp;
3864 struct bp_location *bl;
3865 int ix;
3866 struct program_space *pspace = current_program_space;
3867
3868 /* If breakpoint locations are shared across processes, then there's
3869 nothing to do. */
3870 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3871 return;
3872
3873 mark_breakpoints_out ();
3874
3875 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3876 {
3877 if (b->loc && b->loc->pspace != pspace)
3878 continue;
3879
3880 switch (b->type)
3881 {
3882 case bp_call_dummy:
3883 case bp_longjmp_call_dummy:
3884
3885 /* If the call dummy breakpoint is at the entry point it will
3886 cause problems when the inferior is rerun, so we better get
3887 rid of it. */
3888
3889 case bp_watchpoint_scope:
3890
3891 /* Also get rid of scope breakpoints. */
3892
3893 case bp_shlib_event:
3894
3895 /* Also remove solib event breakpoints. Their addresses may
3896 have changed since the last time we ran the program.
3897 Actually we may now be debugging against different target;
3898 and so the solib backend that installed this breakpoint may
3899 not be used in by the target. E.g.,
3900
3901 (gdb) file prog-linux
3902 (gdb) run # native linux target
3903 ...
3904 (gdb) kill
3905 (gdb) file prog-win.exe
3906 (gdb) tar rem :9999 # remote Windows gdbserver.
3907 */
3908
3909 case bp_step_resume:
3910
3911 /* Also remove step-resume breakpoints. */
3912
3913 case bp_single_step:
3914
3915 /* Also remove single-step breakpoints. */
3916
3917 delete_breakpoint (b);
3918 break;
3919
3920 case bp_watchpoint:
3921 case bp_hardware_watchpoint:
3922 case bp_read_watchpoint:
3923 case bp_access_watchpoint:
3924 {
3925 struct watchpoint *w = (struct watchpoint *) b;
3926
3927 /* Likewise for watchpoints on local expressions. */
3928 if (w->exp_valid_block != NULL)
3929 delete_breakpoint (b);
3930 else
3931 {
3932 /* Get rid of existing locations, which are no longer
3933 valid. New ones will be created in
3934 update_watchpoint, when the inferior is restarted.
3935 The next update_global_location_list call will
3936 garbage collect them. */
3937 b->loc = NULL;
3938
3939 if (context == inf_starting)
3940 {
3941 /* Reset val field to force reread of starting value in
3942 insert_breakpoints. */
3943 w->val.reset (nullptr);
3944 w->val_valid = 0;
3945 }
3946 }
3947 }
3948 break;
3949 default:
3950 break;
3951 }
3952 }
3953
3954 /* Get rid of the moribund locations. */
3955 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3956 decref_bp_location (&bl);
3957 VEC_free (bp_location_p, moribund_locations);
3958 }
3959
3960 /* These functions concern about actual breakpoints inserted in the
3961 target --- to e.g. check if we need to do decr_pc adjustment or if
3962 we need to hop over the bkpt --- so we check for address space
3963 match, not program space. */
3964
3965 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3966 exists at PC. It returns ordinary_breakpoint_here if it's an
3967 ordinary breakpoint, or permanent_breakpoint_here if it's a
3968 permanent breakpoint.
3969 - When continuing from a location with an ordinary breakpoint, we
3970 actually single step once before calling insert_breakpoints.
3971 - When continuing from a location with a permanent breakpoint, we
3972 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3973 the target, to advance the PC past the breakpoint. */
3974
3975 enum breakpoint_here
3976 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3977 {
3978 struct bp_location *bl, **blp_tmp;
3979 int any_breakpoint_here = 0;
3980
3981 ALL_BP_LOCATIONS (bl, blp_tmp)
3982 {
3983 if (bl->loc_type != bp_loc_software_breakpoint
3984 && bl->loc_type != bp_loc_hardware_breakpoint)
3985 continue;
3986
3987 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3988 if ((breakpoint_enabled (bl->owner)
3989 || bl->permanent)
3990 && breakpoint_location_address_match (bl, aspace, pc))
3991 {
3992 if (overlay_debugging
3993 && section_is_overlay (bl->section)
3994 && !section_is_mapped (bl->section))
3995 continue; /* unmapped overlay -- can't be a match */
3996 else if (bl->permanent)
3997 return permanent_breakpoint_here;
3998 else
3999 any_breakpoint_here = 1;
4000 }
4001 }
4002
4003 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4004 }
4005
4006 /* See breakpoint.h. */
4007
4008 int
4009 breakpoint_in_range_p (const address_space *aspace,
4010 CORE_ADDR addr, ULONGEST len)
4011 {
4012 struct bp_location *bl, **blp_tmp;
4013
4014 ALL_BP_LOCATIONS (bl, blp_tmp)
4015 {
4016 if (bl->loc_type != bp_loc_software_breakpoint
4017 && bl->loc_type != bp_loc_hardware_breakpoint)
4018 continue;
4019
4020 if ((breakpoint_enabled (bl->owner)
4021 || bl->permanent)
4022 && breakpoint_location_address_range_overlap (bl, aspace,
4023 addr, len))
4024 {
4025 if (overlay_debugging
4026 && section_is_overlay (bl->section)
4027 && !section_is_mapped (bl->section))
4028 {
4029 /* Unmapped overlay -- can't be a match. */
4030 continue;
4031 }
4032
4033 return 1;
4034 }
4035 }
4036
4037 return 0;
4038 }
4039
4040 /* Return true if there's a moribund breakpoint at PC. */
4041
4042 int
4043 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4044 {
4045 struct bp_location *loc;
4046 int ix;
4047
4048 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4049 if (breakpoint_location_address_match (loc, aspace, pc))
4050 return 1;
4051
4052 return 0;
4053 }
4054
4055 /* Returns non-zero iff BL is inserted at PC, in address space
4056 ASPACE. */
4057
4058 static int
4059 bp_location_inserted_here_p (struct bp_location *bl,
4060 const address_space *aspace, CORE_ADDR pc)
4061 {
4062 if (bl->inserted
4063 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4064 aspace, pc))
4065 {
4066 if (overlay_debugging
4067 && section_is_overlay (bl->section)
4068 && !section_is_mapped (bl->section))
4069 return 0; /* unmapped overlay -- can't be a match */
4070 else
4071 return 1;
4072 }
4073 return 0;
4074 }
4075
4076 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4077
4078 int
4079 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4080 {
4081 struct bp_location **blp, **blp_tmp = NULL;
4082
4083 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4084 {
4085 struct bp_location *bl = *blp;
4086
4087 if (bl->loc_type != bp_loc_software_breakpoint
4088 && bl->loc_type != bp_loc_hardware_breakpoint)
4089 continue;
4090
4091 if (bp_location_inserted_here_p (bl, aspace, pc))
4092 return 1;
4093 }
4094 return 0;
4095 }
4096
4097 /* This function returns non-zero iff there is a software breakpoint
4098 inserted at PC. */
4099
4100 int
4101 software_breakpoint_inserted_here_p (const address_space *aspace,
4102 CORE_ADDR pc)
4103 {
4104 struct bp_location **blp, **blp_tmp = NULL;
4105
4106 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4107 {
4108 struct bp_location *bl = *blp;
4109
4110 if (bl->loc_type != bp_loc_software_breakpoint)
4111 continue;
4112
4113 if (bp_location_inserted_here_p (bl, aspace, pc))
4114 return 1;
4115 }
4116
4117 return 0;
4118 }
4119
4120 /* See breakpoint.h. */
4121
4122 int
4123 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4124 CORE_ADDR pc)
4125 {
4126 struct bp_location **blp, **blp_tmp = NULL;
4127
4128 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4129 {
4130 struct bp_location *bl = *blp;
4131
4132 if (bl->loc_type != bp_loc_hardware_breakpoint)
4133 continue;
4134
4135 if (bp_location_inserted_here_p (bl, aspace, pc))
4136 return 1;
4137 }
4138
4139 return 0;
4140 }
4141
4142 int
4143 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4144 CORE_ADDR addr, ULONGEST len)
4145 {
4146 struct breakpoint *bpt;
4147
4148 ALL_BREAKPOINTS (bpt)
4149 {
4150 struct bp_location *loc;
4151
4152 if (bpt->type != bp_hardware_watchpoint
4153 && bpt->type != bp_access_watchpoint)
4154 continue;
4155
4156 if (!breakpoint_enabled (bpt))
4157 continue;
4158
4159 for (loc = bpt->loc; loc; loc = loc->next)
4160 if (loc->pspace->aspace == aspace && loc->inserted)
4161 {
4162 CORE_ADDR l, h;
4163
4164 /* Check for intersection. */
4165 l = std::max<CORE_ADDR> (loc->address, addr);
4166 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4167 if (l < h)
4168 return 1;
4169 }
4170 }
4171 return 0;
4172 }
4173 \f
4174
4175 /* bpstat stuff. External routines' interfaces are documented
4176 in breakpoint.h. */
4177
4178 int
4179 is_catchpoint (struct breakpoint *ep)
4180 {
4181 return (ep->type == bp_catchpoint);
4182 }
4183
4184 /* Frees any storage that is part of a bpstat. Does not walk the
4185 'next' chain. */
4186
4187 bpstats::~bpstats ()
4188 {
4189 if (bp_location_at != NULL)
4190 decref_bp_location (&bp_location_at);
4191 }
4192
4193 /* Clear a bpstat so that it says we are not at any breakpoint.
4194 Also free any storage that is part of a bpstat. */
4195
4196 void
4197 bpstat_clear (bpstat *bsp)
4198 {
4199 bpstat p;
4200 bpstat q;
4201
4202 if (bsp == 0)
4203 return;
4204 p = *bsp;
4205 while (p != NULL)
4206 {
4207 q = p->next;
4208 delete p;
4209 p = q;
4210 }
4211 *bsp = NULL;
4212 }
4213
4214 bpstats::bpstats (const bpstats &other)
4215 : next (NULL),
4216 bp_location_at (other.bp_location_at),
4217 breakpoint_at (other.breakpoint_at),
4218 commands (other.commands),
4219 print (other.print),
4220 stop (other.stop),
4221 print_it (other.print_it)
4222 {
4223 if (other.old_val != NULL)
4224 old_val = release_value (value_copy (other.old_val.get ()));
4225 incref_bp_location (bp_location_at);
4226 }
4227
4228 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4229 is part of the bpstat is copied as well. */
4230
4231 bpstat
4232 bpstat_copy (bpstat bs)
4233 {
4234 bpstat p = NULL;
4235 bpstat tmp;
4236 bpstat retval = NULL;
4237
4238 if (bs == NULL)
4239 return bs;
4240
4241 for (; bs != NULL; bs = bs->next)
4242 {
4243 tmp = new bpstats (*bs);
4244
4245 if (p == NULL)
4246 /* This is the first thing in the chain. */
4247 retval = tmp;
4248 else
4249 p->next = tmp;
4250 p = tmp;
4251 }
4252 p->next = NULL;
4253 return retval;
4254 }
4255
4256 /* Find the bpstat associated with this breakpoint. */
4257
4258 bpstat
4259 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4260 {
4261 if (bsp == NULL)
4262 return NULL;
4263
4264 for (; bsp != NULL; bsp = bsp->next)
4265 {
4266 if (bsp->breakpoint_at == breakpoint)
4267 return bsp;
4268 }
4269 return NULL;
4270 }
4271
4272 /* See breakpoint.h. */
4273
4274 int
4275 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4276 {
4277 for (; bsp != NULL; bsp = bsp->next)
4278 {
4279 if (bsp->breakpoint_at == NULL)
4280 {
4281 /* A moribund location can never explain a signal other than
4282 GDB_SIGNAL_TRAP. */
4283 if (sig == GDB_SIGNAL_TRAP)
4284 return 1;
4285 }
4286 else
4287 {
4288 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4289 sig))
4290 return 1;
4291 }
4292 }
4293
4294 return 0;
4295 }
4296
4297 /* Put in *NUM the breakpoint number of the first breakpoint we are
4298 stopped at. *BSP upon return is a bpstat which points to the
4299 remaining breakpoints stopped at (but which is not guaranteed to be
4300 good for anything but further calls to bpstat_num).
4301
4302 Return 0 if passed a bpstat which does not indicate any breakpoints.
4303 Return -1 if stopped at a breakpoint that has been deleted since
4304 we set it.
4305 Return 1 otherwise. */
4306
4307 int
4308 bpstat_num (bpstat *bsp, int *num)
4309 {
4310 struct breakpoint *b;
4311
4312 if ((*bsp) == NULL)
4313 return 0; /* No more breakpoint values */
4314
4315 /* We assume we'll never have several bpstats that correspond to a
4316 single breakpoint -- otherwise, this function might return the
4317 same number more than once and this will look ugly. */
4318 b = (*bsp)->breakpoint_at;
4319 *bsp = (*bsp)->next;
4320 if (b == NULL)
4321 return -1; /* breakpoint that's been deleted since */
4322
4323 *num = b->number; /* We have its number */
4324 return 1;
4325 }
4326
4327 /* See breakpoint.h. */
4328
4329 void
4330 bpstat_clear_actions (void)
4331 {
4332 struct thread_info *tp;
4333 bpstat bs;
4334
4335 if (ptid_equal (inferior_ptid, null_ptid))
4336 return;
4337
4338 tp = find_thread_ptid (inferior_ptid);
4339 if (tp == NULL)
4340 return;
4341
4342 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4343 {
4344 bs->commands = NULL;
4345 bs->old_val.reset (nullptr);
4346 }
4347 }
4348
4349 /* Called when a command is about to proceed the inferior. */
4350
4351 static void
4352 breakpoint_about_to_proceed (void)
4353 {
4354 if (!ptid_equal (inferior_ptid, null_ptid))
4355 {
4356 struct thread_info *tp = inferior_thread ();
4357
4358 /* Allow inferior function calls in breakpoint commands to not
4359 interrupt the command list. When the call finishes
4360 successfully, the inferior will be standing at the same
4361 breakpoint as if nothing happened. */
4362 if (tp->control.in_infcall)
4363 return;
4364 }
4365
4366 breakpoint_proceeded = 1;
4367 }
4368
4369 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4370 or its equivalent. */
4371
4372 static int
4373 command_line_is_silent (struct command_line *cmd)
4374 {
4375 return cmd && (strcmp ("silent", cmd->line) == 0);
4376 }
4377
4378 /* Execute all the commands associated with all the breakpoints at
4379 this location. Any of these commands could cause the process to
4380 proceed beyond this point, etc. We look out for such changes by
4381 checking the global "breakpoint_proceeded" after each command.
4382
4383 Returns true if a breakpoint command resumed the inferior. In that
4384 case, it is the caller's responsibility to recall it again with the
4385 bpstat of the current thread. */
4386
4387 static int
4388 bpstat_do_actions_1 (bpstat *bsp)
4389 {
4390 bpstat bs;
4391 int again = 0;
4392
4393 /* Avoid endless recursion if a `source' command is contained
4394 in bs->commands. */
4395 if (executing_breakpoint_commands)
4396 return 0;
4397
4398 scoped_restore save_executing
4399 = make_scoped_restore (&executing_breakpoint_commands, 1);
4400
4401 scoped_restore preventer = prevent_dont_repeat ();
4402
4403 /* This pointer will iterate over the list of bpstat's. */
4404 bs = *bsp;
4405
4406 breakpoint_proceeded = 0;
4407 for (; bs != NULL; bs = bs->next)
4408 {
4409 struct command_line *cmd = NULL;
4410
4411 /* Take ownership of the BSP's command tree, if it has one.
4412
4413 The command tree could legitimately contain commands like
4414 'step' and 'next', which call clear_proceed_status, which
4415 frees stop_bpstat's command tree. To make sure this doesn't
4416 free the tree we're executing out from under us, we need to
4417 take ownership of the tree ourselves. Since a given bpstat's
4418 commands are only executed once, we don't need to copy it; we
4419 can clear the pointer in the bpstat, and make sure we free
4420 the tree when we're done. */
4421 counted_command_line ccmd = bs->commands;
4422 bs->commands = NULL;
4423 if (ccmd != NULL)
4424 cmd = ccmd.get ();
4425 if (command_line_is_silent (cmd))
4426 {
4427 /* The action has been already done by bpstat_stop_status. */
4428 cmd = cmd->next;
4429 }
4430
4431 while (cmd != NULL)
4432 {
4433 execute_control_command (cmd);
4434
4435 if (breakpoint_proceeded)
4436 break;
4437 else
4438 cmd = cmd->next;
4439 }
4440
4441 if (breakpoint_proceeded)
4442 {
4443 if (current_ui->async)
4444 /* If we are in async mode, then the target might be still
4445 running, not stopped at any breakpoint, so nothing for
4446 us to do here -- just return to the event loop. */
4447 ;
4448 else
4449 /* In sync mode, when execute_control_command returns
4450 we're already standing on the next breakpoint.
4451 Breakpoint commands for that stop were not run, since
4452 execute_command does not run breakpoint commands --
4453 only command_line_handler does, but that one is not
4454 involved in execution of breakpoint commands. So, we
4455 can now execute breakpoint commands. It should be
4456 noted that making execute_command do bpstat actions is
4457 not an option -- in this case we'll have recursive
4458 invocation of bpstat for each breakpoint with a
4459 command, and can easily blow up GDB stack. Instead, we
4460 return true, which will trigger the caller to recall us
4461 with the new stop_bpstat. */
4462 again = 1;
4463 break;
4464 }
4465 }
4466 return again;
4467 }
4468
4469 void
4470 bpstat_do_actions (void)
4471 {
4472 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4473
4474 /* Do any commands attached to breakpoint we are stopped at. */
4475 while (!ptid_equal (inferior_ptid, null_ptid)
4476 && target_has_execution
4477 && !is_exited (inferior_ptid)
4478 && !is_executing (inferior_ptid))
4479 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4480 and only return when it is stopped at the next breakpoint, we
4481 keep doing breakpoint actions until it returns false to
4482 indicate the inferior was not resumed. */
4483 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4484 break;
4485
4486 discard_cleanups (cleanup_if_error);
4487 }
4488
4489 /* Print out the (old or new) value associated with a watchpoint. */
4490
4491 static void
4492 watchpoint_value_print (struct value *val, struct ui_file *stream)
4493 {
4494 if (val == NULL)
4495 fprintf_unfiltered (stream, _("<unreadable>"));
4496 else
4497 {
4498 struct value_print_options opts;
4499 get_user_print_options (&opts);
4500 value_print (val, stream, &opts);
4501 }
4502 }
4503
4504 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4505 debugging multiple threads. */
4506
4507 void
4508 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4509 {
4510 if (uiout->is_mi_like_p ())
4511 return;
4512
4513 uiout->text ("\n");
4514
4515 if (show_thread_that_caused_stop ())
4516 {
4517 const char *name;
4518 struct thread_info *thr = inferior_thread ();
4519
4520 uiout->text ("Thread ");
4521 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4522
4523 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4524 if (name != NULL)
4525 {
4526 uiout->text (" \"");
4527 uiout->field_fmt ("name", "%s", name);
4528 uiout->text ("\"");
4529 }
4530
4531 uiout->text (" hit ");
4532 }
4533 }
4534
4535 /* Generic routine for printing messages indicating why we
4536 stopped. The behavior of this function depends on the value
4537 'print_it' in the bpstat structure. Under some circumstances we
4538 may decide not to print anything here and delegate the task to
4539 normal_stop(). */
4540
4541 static enum print_stop_action
4542 print_bp_stop_message (bpstat bs)
4543 {
4544 switch (bs->print_it)
4545 {
4546 case print_it_noop:
4547 /* Nothing should be printed for this bpstat entry. */
4548 return PRINT_UNKNOWN;
4549 break;
4550
4551 case print_it_done:
4552 /* We still want to print the frame, but we already printed the
4553 relevant messages. */
4554 return PRINT_SRC_AND_LOC;
4555 break;
4556
4557 case print_it_normal:
4558 {
4559 struct breakpoint *b = bs->breakpoint_at;
4560
4561 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4562 which has since been deleted. */
4563 if (b == NULL)
4564 return PRINT_UNKNOWN;
4565
4566 /* Normal case. Call the breakpoint's print_it method. */
4567 return b->ops->print_it (bs);
4568 }
4569 break;
4570
4571 default:
4572 internal_error (__FILE__, __LINE__,
4573 _("print_bp_stop_message: unrecognized enum value"));
4574 break;
4575 }
4576 }
4577
4578 /* A helper function that prints a shared library stopped event. */
4579
4580 static void
4581 print_solib_event (int is_catchpoint)
4582 {
4583 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4584 bool any_added = !current_program_space->added_solibs.empty ();
4585
4586 if (!is_catchpoint)
4587 {
4588 if (any_added || any_deleted)
4589 current_uiout->text (_("Stopped due to shared library event:\n"));
4590 else
4591 current_uiout->text (_("Stopped due to shared library event (no "
4592 "libraries added or removed)\n"));
4593 }
4594
4595 if (current_uiout->is_mi_like_p ())
4596 current_uiout->field_string ("reason",
4597 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4598
4599 if (any_deleted)
4600 {
4601 current_uiout->text (_(" Inferior unloaded "));
4602 ui_out_emit_list list_emitter (current_uiout, "removed");
4603 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4604 {
4605 const std::string &name = current_program_space->deleted_solibs[ix];
4606
4607 if (ix > 0)
4608 current_uiout->text (" ");
4609 current_uiout->field_string ("library", name);
4610 current_uiout->text ("\n");
4611 }
4612 }
4613
4614 if (any_added)
4615 {
4616 current_uiout->text (_(" Inferior loaded "));
4617 ui_out_emit_list list_emitter (current_uiout, "added");
4618 bool first = true;
4619 for (so_list *iter : current_program_space->added_solibs)
4620 {
4621 if (!first)
4622 current_uiout->text (" ");
4623 first = false;
4624 current_uiout->field_string ("library", iter->so_name);
4625 current_uiout->text ("\n");
4626 }
4627 }
4628 }
4629
4630 /* Print a message indicating what happened. This is called from
4631 normal_stop(). The input to this routine is the head of the bpstat
4632 list - a list of the eventpoints that caused this stop. KIND is
4633 the target_waitkind for the stopping event. This
4634 routine calls the generic print routine for printing a message
4635 about reasons for stopping. This will print (for example) the
4636 "Breakpoint n," part of the output. The return value of this
4637 routine is one of:
4638
4639 PRINT_UNKNOWN: Means we printed nothing.
4640 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4641 code to print the location. An example is
4642 "Breakpoint 1, " which should be followed by
4643 the location.
4644 PRINT_SRC_ONLY: Means we printed something, but there is no need
4645 to also print the location part of the message.
4646 An example is the catch/throw messages, which
4647 don't require a location appended to the end.
4648 PRINT_NOTHING: We have done some printing and we don't need any
4649 further info to be printed. */
4650
4651 enum print_stop_action
4652 bpstat_print (bpstat bs, int kind)
4653 {
4654 enum print_stop_action val;
4655
4656 /* Maybe another breakpoint in the chain caused us to stop.
4657 (Currently all watchpoints go on the bpstat whether hit or not.
4658 That probably could (should) be changed, provided care is taken
4659 with respect to bpstat_explains_signal). */
4660 for (; bs; bs = bs->next)
4661 {
4662 val = print_bp_stop_message (bs);
4663 if (val == PRINT_SRC_ONLY
4664 || val == PRINT_SRC_AND_LOC
4665 || val == PRINT_NOTHING)
4666 return val;
4667 }
4668
4669 /* If we had hit a shared library event breakpoint,
4670 print_bp_stop_message would print out this message. If we hit an
4671 OS-level shared library event, do the same thing. */
4672 if (kind == TARGET_WAITKIND_LOADED)
4673 {
4674 print_solib_event (0);
4675 return PRINT_NOTHING;
4676 }
4677
4678 /* We reached the end of the chain, or we got a null BS to start
4679 with and nothing was printed. */
4680 return PRINT_UNKNOWN;
4681 }
4682
4683 /* Evaluate the boolean expression EXP and return the result. */
4684
4685 static bool
4686 breakpoint_cond_eval (expression *exp)
4687 {
4688 struct value *mark = value_mark ();
4689 bool res = value_true (evaluate_expression (exp));
4690
4691 value_free_to_mark (mark);
4692 return res;
4693 }
4694
4695 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4696
4697 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4698 : next (NULL),
4699 bp_location_at (bl),
4700 breakpoint_at (bl->owner),
4701 commands (NULL),
4702 print (0),
4703 stop (0),
4704 print_it (print_it_normal)
4705 {
4706 incref_bp_location (bl);
4707 **bs_link_pointer = this;
4708 *bs_link_pointer = &next;
4709 }
4710
4711 bpstats::bpstats ()
4712 : next (NULL),
4713 bp_location_at (NULL),
4714 breakpoint_at (NULL),
4715 commands (NULL),
4716 print (0),
4717 stop (0),
4718 print_it (print_it_normal)
4719 {
4720 }
4721 \f
4722 /* The target has stopped with waitstatus WS. Check if any hardware
4723 watchpoints have triggered, according to the target. */
4724
4725 int
4726 watchpoints_triggered (struct target_waitstatus *ws)
4727 {
4728 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4729 CORE_ADDR addr;
4730 struct breakpoint *b;
4731
4732 if (!stopped_by_watchpoint)
4733 {
4734 /* We were not stopped by a watchpoint. Mark all watchpoints
4735 as not triggered. */
4736 ALL_BREAKPOINTS (b)
4737 if (is_hardware_watchpoint (b))
4738 {
4739 struct watchpoint *w = (struct watchpoint *) b;
4740
4741 w->watchpoint_triggered = watch_triggered_no;
4742 }
4743
4744 return 0;
4745 }
4746
4747 if (!target_stopped_data_address (current_top_target (), &addr))
4748 {
4749 /* We were stopped by a watchpoint, but we don't know where.
4750 Mark all watchpoints as unknown. */
4751 ALL_BREAKPOINTS (b)
4752 if (is_hardware_watchpoint (b))
4753 {
4754 struct watchpoint *w = (struct watchpoint *) b;
4755
4756 w->watchpoint_triggered = watch_triggered_unknown;
4757 }
4758
4759 return 1;
4760 }
4761
4762 /* The target could report the data address. Mark watchpoints
4763 affected by this data address as triggered, and all others as not
4764 triggered. */
4765
4766 ALL_BREAKPOINTS (b)
4767 if (is_hardware_watchpoint (b))
4768 {
4769 struct watchpoint *w = (struct watchpoint *) b;
4770 struct bp_location *loc;
4771
4772 w->watchpoint_triggered = watch_triggered_no;
4773 for (loc = b->loc; loc; loc = loc->next)
4774 {
4775 if (is_masked_watchpoint (b))
4776 {
4777 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4778 CORE_ADDR start = loc->address & w->hw_wp_mask;
4779
4780 if (newaddr == start)
4781 {
4782 w->watchpoint_triggered = watch_triggered_yes;
4783 break;
4784 }
4785 }
4786 /* Exact match not required. Within range is sufficient. */
4787 else if (target_watchpoint_addr_within_range (current_top_target (),
4788 addr, loc->address,
4789 loc->length))
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 }
4796
4797 return 1;
4798 }
4799
4800 /* Possible return values for watchpoint_check. */
4801 enum wp_check_result
4802 {
4803 /* The watchpoint has been deleted. */
4804 WP_DELETED = 1,
4805
4806 /* The value has changed. */
4807 WP_VALUE_CHANGED = 2,
4808
4809 /* The value has not changed. */
4810 WP_VALUE_NOT_CHANGED = 3,
4811
4812 /* Ignore this watchpoint, no matter if the value changed or not. */
4813 WP_IGNORE = 4,
4814 };
4815
4816 #define BP_TEMPFLAG 1
4817 #define BP_HARDWAREFLAG 2
4818
4819 /* Evaluate watchpoint condition expression and check if its value
4820 changed. */
4821
4822 static wp_check_result
4823 watchpoint_check (bpstat bs)
4824 {
4825 struct watchpoint *b;
4826 struct frame_info *fr;
4827 int within_current_scope;
4828
4829 /* BS is built from an existing struct breakpoint. */
4830 gdb_assert (bs->breakpoint_at != NULL);
4831 b = (struct watchpoint *) bs->breakpoint_at;
4832
4833 /* If this is a local watchpoint, we only want to check if the
4834 watchpoint frame is in scope if the current thread is the thread
4835 that was used to create the watchpoint. */
4836 if (!watchpoint_in_thread_scope (b))
4837 return WP_IGNORE;
4838
4839 if (b->exp_valid_block == NULL)
4840 within_current_scope = 1;
4841 else
4842 {
4843 struct frame_info *frame = get_current_frame ();
4844 struct gdbarch *frame_arch = get_frame_arch (frame);
4845 CORE_ADDR frame_pc = get_frame_pc (frame);
4846
4847 /* stack_frame_destroyed_p() returns a non-zero value if we're
4848 still in the function but the stack frame has already been
4849 invalidated. Since we can't rely on the values of local
4850 variables after the stack has been destroyed, we are treating
4851 the watchpoint in that state as `not changed' without further
4852 checking. Don't mark watchpoints as changed if the current
4853 frame is in an epilogue - even if they are in some other
4854 frame, our view of the stack is likely to be wrong and
4855 frame_find_by_id could error out. */
4856 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4857 return WP_IGNORE;
4858
4859 fr = frame_find_by_id (b->watchpoint_frame);
4860 within_current_scope = (fr != NULL);
4861
4862 /* If we've gotten confused in the unwinder, we might have
4863 returned a frame that can't describe this variable. */
4864 if (within_current_scope)
4865 {
4866 struct symbol *function;
4867
4868 function = get_frame_function (fr);
4869 if (function == NULL
4870 || !contained_in (b->exp_valid_block,
4871 SYMBOL_BLOCK_VALUE (function)))
4872 within_current_scope = 0;
4873 }
4874
4875 if (within_current_scope)
4876 /* If we end up stopping, the current frame will get selected
4877 in normal_stop. So this call to select_frame won't affect
4878 the user. */
4879 select_frame (fr);
4880 }
4881
4882 if (within_current_scope)
4883 {
4884 /* We use value_{,free_to_}mark because it could be a *long*
4885 time before we return to the command level and call
4886 free_all_values. We can't call free_all_values because we
4887 might be in the middle of evaluating a function call. */
4888
4889 int pc = 0;
4890 struct value *mark;
4891 struct value *new_val;
4892
4893 if (is_masked_watchpoint (b))
4894 /* Since we don't know the exact trigger address (from
4895 stopped_data_address), just tell the user we've triggered
4896 a mask watchpoint. */
4897 return WP_VALUE_CHANGED;
4898
4899 mark = value_mark ();
4900 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4901
4902 if (b->val_bitsize != 0)
4903 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4904
4905 /* We use value_equal_contents instead of value_equal because
4906 the latter coerces an array to a pointer, thus comparing just
4907 the address of the array instead of its contents. This is
4908 not what we want. */
4909 if ((b->val != NULL) != (new_val != NULL)
4910 || (b->val != NULL && !value_equal_contents (b->val.get (),
4911 new_val)))
4912 {
4913 bs->old_val = b->val;
4914 b->val = release_value (new_val);
4915 b->val_valid = 1;
4916 if (new_val != NULL)
4917 value_free_to_mark (mark);
4918 return WP_VALUE_CHANGED;
4919 }
4920 else
4921 {
4922 /* Nothing changed. */
4923 value_free_to_mark (mark);
4924 return WP_VALUE_NOT_CHANGED;
4925 }
4926 }
4927 else
4928 {
4929 /* This seems like the only logical thing to do because
4930 if we temporarily ignored the watchpoint, then when
4931 we reenter the block in which it is valid it contains
4932 garbage (in the case of a function, it may have two
4933 garbage values, one before and one after the prologue).
4934 So we can't even detect the first assignment to it and
4935 watch after that (since the garbage may or may not equal
4936 the first value assigned). */
4937 /* We print all the stop information in
4938 breakpoint_ops->print_it, but in this case, by the time we
4939 call breakpoint_ops->print_it this bp will be deleted
4940 already. So we have no choice but print the information
4941 here. */
4942
4943 SWITCH_THRU_ALL_UIS ()
4944 {
4945 struct ui_out *uiout = current_uiout;
4946
4947 if (uiout->is_mi_like_p ())
4948 uiout->field_string
4949 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4950 uiout->text ("\nWatchpoint ");
4951 uiout->field_int ("wpnum", b->number);
4952 uiout->text (" deleted because the program has left the block in\n"
4953 "which its expression is valid.\n");
4954 }
4955
4956 /* Make sure the watchpoint's commands aren't executed. */
4957 b->commands = NULL;
4958 watchpoint_del_at_next_stop (b);
4959
4960 return WP_DELETED;
4961 }
4962 }
4963
4964 /* Return true if it looks like target has stopped due to hitting
4965 breakpoint location BL. This function does not check if we should
4966 stop, only if BL explains the stop. */
4967
4968 static int
4969 bpstat_check_location (const struct bp_location *bl,
4970 const address_space *aspace, CORE_ADDR bp_addr,
4971 const struct target_waitstatus *ws)
4972 {
4973 struct breakpoint *b = bl->owner;
4974
4975 /* BL is from an existing breakpoint. */
4976 gdb_assert (b != NULL);
4977
4978 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4979 }
4980
4981 /* Determine if the watched values have actually changed, and we
4982 should stop. If not, set BS->stop to 0. */
4983
4984 static void
4985 bpstat_check_watchpoint (bpstat bs)
4986 {
4987 const struct bp_location *bl;
4988 struct watchpoint *b;
4989
4990 /* BS is built for existing struct breakpoint. */
4991 bl = bs->bp_location_at;
4992 gdb_assert (bl != NULL);
4993 b = (struct watchpoint *) bs->breakpoint_at;
4994 gdb_assert (b != NULL);
4995
4996 {
4997 int must_check_value = 0;
4998
4999 if (b->type == bp_watchpoint)
5000 /* For a software watchpoint, we must always check the
5001 watched value. */
5002 must_check_value = 1;
5003 else if (b->watchpoint_triggered == watch_triggered_yes)
5004 /* We have a hardware watchpoint (read, write, or access)
5005 and the target earlier reported an address watched by
5006 this watchpoint. */
5007 must_check_value = 1;
5008 else if (b->watchpoint_triggered == watch_triggered_unknown
5009 && b->type == bp_hardware_watchpoint)
5010 /* We were stopped by a hardware watchpoint, but the target could
5011 not report the data address. We must check the watchpoint's
5012 value. Access and read watchpoints are out of luck; without
5013 a data address, we can't figure it out. */
5014 must_check_value = 1;
5015
5016 if (must_check_value)
5017 {
5018 wp_check_result e;
5019
5020 TRY
5021 {
5022 e = watchpoint_check (bs);
5023 }
5024 CATCH (ex, RETURN_MASK_ALL)
5025 {
5026 exception_fprintf (gdb_stderr, ex,
5027 "Error evaluating expression "
5028 "for watchpoint %d\n",
5029 b->number);
5030
5031 SWITCH_THRU_ALL_UIS ()
5032 {
5033 printf_filtered (_("Watchpoint %d deleted.\n"),
5034 b->number);
5035 }
5036 watchpoint_del_at_next_stop (b);
5037 e = WP_DELETED;
5038 }
5039 END_CATCH
5040
5041 switch (e)
5042 {
5043 case WP_DELETED:
5044 /* We've already printed what needs to be printed. */
5045 bs->print_it = print_it_done;
5046 /* Stop. */
5047 break;
5048 case WP_IGNORE:
5049 bs->print_it = print_it_noop;
5050 bs->stop = 0;
5051 break;
5052 case WP_VALUE_CHANGED:
5053 if (b->type == bp_read_watchpoint)
5054 {
5055 /* There are two cases to consider here:
5056
5057 1. We're watching the triggered memory for reads.
5058 In that case, trust the target, and always report
5059 the watchpoint hit to the user. Even though
5060 reads don't cause value changes, the value may
5061 have changed since the last time it was read, and
5062 since we're not trapping writes, we will not see
5063 those, and as such we should ignore our notion of
5064 old value.
5065
5066 2. We're watching the triggered memory for both
5067 reads and writes. There are two ways this may
5068 happen:
5069
5070 2.1. This is a target that can't break on data
5071 reads only, but can break on accesses (reads or
5072 writes), such as e.g., x86. We detect this case
5073 at the time we try to insert read watchpoints.
5074
5075 2.2. Otherwise, the target supports read
5076 watchpoints, but, the user set an access or write
5077 watchpoint watching the same memory as this read
5078 watchpoint.
5079
5080 If we're watching memory writes as well as reads,
5081 ignore watchpoint hits when we find that the
5082 value hasn't changed, as reads don't cause
5083 changes. This still gives false positives when
5084 the program writes the same value to memory as
5085 what there was already in memory (we will confuse
5086 it for a read), but it's much better than
5087 nothing. */
5088
5089 int other_write_watchpoint = 0;
5090
5091 if (bl->watchpoint_type == hw_read)
5092 {
5093 struct breakpoint *other_b;
5094
5095 ALL_BREAKPOINTS (other_b)
5096 if (other_b->type == bp_hardware_watchpoint
5097 || other_b->type == bp_access_watchpoint)
5098 {
5099 struct watchpoint *other_w =
5100 (struct watchpoint *) other_b;
5101
5102 if (other_w->watchpoint_triggered
5103 == watch_triggered_yes)
5104 {
5105 other_write_watchpoint = 1;
5106 break;
5107 }
5108 }
5109 }
5110
5111 if (other_write_watchpoint
5112 || bl->watchpoint_type == hw_access)
5113 {
5114 /* We're watching the same memory for writes,
5115 and the value changed since the last time we
5116 updated it, so this trap must be for a write.
5117 Ignore it. */
5118 bs->print_it = print_it_noop;
5119 bs->stop = 0;
5120 }
5121 }
5122 break;
5123 case WP_VALUE_NOT_CHANGED:
5124 if (b->type == bp_hardware_watchpoint
5125 || b->type == bp_watchpoint)
5126 {
5127 /* Don't stop: write watchpoints shouldn't fire if
5128 the value hasn't changed. */
5129 bs->print_it = print_it_noop;
5130 bs->stop = 0;
5131 }
5132 /* Stop. */
5133 break;
5134 default:
5135 /* Can't happen. */
5136 break;
5137 }
5138 }
5139 else /* must_check_value == 0 */
5140 {
5141 /* This is a case where some watchpoint(s) triggered, but
5142 not at the address of this watchpoint, or else no
5143 watchpoint triggered after all. So don't print
5144 anything for this watchpoint. */
5145 bs->print_it = print_it_noop;
5146 bs->stop = 0;
5147 }
5148 }
5149 }
5150
5151 /* For breakpoints that are currently marked as telling gdb to stop,
5152 check conditions (condition proper, frame, thread and ignore count)
5153 of breakpoint referred to by BS. If we should not stop for this
5154 breakpoint, set BS->stop to 0. */
5155
5156 static void
5157 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5158 {
5159 const struct bp_location *bl;
5160 struct breakpoint *b;
5161 /* Assume stop. */
5162 bool condition_result = true;
5163 struct expression *cond;
5164
5165 gdb_assert (bs->stop);
5166
5167 /* BS is built for existing struct breakpoint. */
5168 bl = bs->bp_location_at;
5169 gdb_assert (bl != NULL);
5170 b = bs->breakpoint_at;
5171 gdb_assert (b != NULL);
5172
5173 /* Even if the target evaluated the condition on its end and notified GDB, we
5174 need to do so again since GDB does not know if we stopped due to a
5175 breakpoint or a single step breakpoint. */
5176
5177 if (frame_id_p (b->frame_id)
5178 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5179 {
5180 bs->stop = 0;
5181 return;
5182 }
5183
5184 /* If this is a thread/task-specific breakpoint, don't waste cpu
5185 evaluating the condition if this isn't the specified
5186 thread/task. */
5187 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5188 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5189
5190 {
5191 bs->stop = 0;
5192 return;
5193 }
5194
5195 /* Evaluate extension language breakpoints that have a "stop" method
5196 implemented. */
5197 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5198
5199 if (is_watchpoint (b))
5200 {
5201 struct watchpoint *w = (struct watchpoint *) b;
5202
5203 cond = w->cond_exp.get ();
5204 }
5205 else
5206 cond = bl->cond.get ();
5207
5208 if (cond && b->disposition != disp_del_at_next_stop)
5209 {
5210 int within_current_scope = 1;
5211 struct watchpoint * w;
5212
5213 /* We use value_mark and value_free_to_mark because it could
5214 be a long time before we return to the command level and
5215 call free_all_values. We can't call free_all_values
5216 because we might be in the middle of evaluating a
5217 function call. */
5218 struct value *mark = value_mark ();
5219
5220 if (is_watchpoint (b))
5221 w = (struct watchpoint *) b;
5222 else
5223 w = NULL;
5224
5225 /* Need to select the frame, with all that implies so that
5226 the conditions will have the right context. Because we
5227 use the frame, we will not see an inlined function's
5228 variables when we arrive at a breakpoint at the start
5229 of the inlined function; the current frame will be the
5230 call site. */
5231 if (w == NULL || w->cond_exp_valid_block == NULL)
5232 select_frame (get_current_frame ());
5233 else
5234 {
5235 struct frame_info *frame;
5236
5237 /* For local watchpoint expressions, which particular
5238 instance of a local is being watched matters, so we
5239 keep track of the frame to evaluate the expression
5240 in. To evaluate the condition however, it doesn't
5241 really matter which instantiation of the function
5242 where the condition makes sense triggers the
5243 watchpoint. This allows an expression like "watch
5244 global if q > 10" set in `func', catch writes to
5245 global on all threads that call `func', or catch
5246 writes on all recursive calls of `func' by a single
5247 thread. We simply always evaluate the condition in
5248 the innermost frame that's executing where it makes
5249 sense to evaluate the condition. It seems
5250 intuitive. */
5251 frame = block_innermost_frame (w->cond_exp_valid_block);
5252 if (frame != NULL)
5253 select_frame (frame);
5254 else
5255 within_current_scope = 0;
5256 }
5257 if (within_current_scope)
5258 {
5259 TRY
5260 {
5261 condition_result = breakpoint_cond_eval (cond);
5262 }
5263 CATCH (ex, RETURN_MASK_ALL)
5264 {
5265 exception_fprintf (gdb_stderr, ex,
5266 "Error in testing breakpoint condition:\n");
5267 }
5268 END_CATCH
5269 }
5270 else
5271 {
5272 warning (_("Watchpoint condition cannot be tested "
5273 "in the current scope"));
5274 /* If we failed to set the right context for this
5275 watchpoint, unconditionally report it. */
5276 }
5277 /* FIXME-someday, should give breakpoint #. */
5278 value_free_to_mark (mark);
5279 }
5280
5281 if (cond && !condition_result)
5282 {
5283 bs->stop = 0;
5284 }
5285 else if (b->ignore_count > 0)
5286 {
5287 b->ignore_count--;
5288 bs->stop = 0;
5289 /* Increase the hit count even though we don't stop. */
5290 ++(b->hit_count);
5291 gdb::observers::breakpoint_modified.notify (b);
5292 }
5293 }
5294
5295 /* Returns true if we need to track moribund locations of LOC's type
5296 on the current target. */
5297
5298 static int
5299 need_moribund_for_location_type (struct bp_location *loc)
5300 {
5301 return ((loc->loc_type == bp_loc_software_breakpoint
5302 && !target_supports_stopped_by_sw_breakpoint ())
5303 || (loc->loc_type == bp_loc_hardware_breakpoint
5304 && !target_supports_stopped_by_hw_breakpoint ()));
5305 }
5306
5307 /* See breakpoint.h. */
5308
5309 bpstat
5310 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5311 const struct target_waitstatus *ws)
5312 {
5313 struct breakpoint *b;
5314 bpstat bs_head = NULL, *bs_link = &bs_head;
5315
5316 ALL_BREAKPOINTS (b)
5317 {
5318 if (!breakpoint_enabled (b))
5319 continue;
5320
5321 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5322 {
5323 /* For hardware watchpoints, we look only at the first
5324 location. The watchpoint_check function will work on the
5325 entire expression, not the individual locations. For
5326 read watchpoints, the watchpoints_triggered function has
5327 checked all locations already. */
5328 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5329 break;
5330
5331 if (!bl->enabled || bl->shlib_disabled)
5332 continue;
5333
5334 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5335 continue;
5336
5337 /* Come here if it's a watchpoint, or if the break address
5338 matches. */
5339
5340 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5341 explain stop. */
5342
5343 /* Assume we stop. Should we find a watchpoint that is not
5344 actually triggered, or if the condition of the breakpoint
5345 evaluates as false, we'll reset 'stop' to 0. */
5346 bs->stop = 1;
5347 bs->print = 1;
5348
5349 /* If this is a scope breakpoint, mark the associated
5350 watchpoint as triggered so that we will handle the
5351 out-of-scope event. We'll get to the watchpoint next
5352 iteration. */
5353 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5354 {
5355 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5356
5357 w->watchpoint_triggered = watch_triggered_yes;
5358 }
5359 }
5360 }
5361
5362 /* Check if a moribund breakpoint explains the stop. */
5363 if (!target_supports_stopped_by_sw_breakpoint ()
5364 || !target_supports_stopped_by_hw_breakpoint ())
5365 {
5366 bp_location *loc;
5367
5368 for (int ix = 0;
5369 VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5370 {
5371 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5372 && need_moribund_for_location_type (loc))
5373 {
5374 bpstat bs = new bpstats (loc, &bs_link);
5375 /* For hits of moribund locations, we should just proceed. */
5376 bs->stop = 0;
5377 bs->print = 0;
5378 bs->print_it = print_it_noop;
5379 }
5380 }
5381 }
5382
5383 return bs_head;
5384 }
5385
5386 /* See breakpoint.h. */
5387
5388 bpstat
5389 bpstat_stop_status (const address_space *aspace,
5390 CORE_ADDR bp_addr, ptid_t ptid,
5391 const struct target_waitstatus *ws,
5392 bpstat stop_chain)
5393 {
5394 struct breakpoint *b = NULL;
5395 /* First item of allocated bpstat's. */
5396 bpstat bs_head = stop_chain;
5397 bpstat bs;
5398 int need_remove_insert;
5399 int removed_any;
5400
5401 /* First, build the bpstat chain with locations that explain a
5402 target stop, while being careful to not set the target running,
5403 as that may invalidate locations (in particular watchpoint
5404 locations are recreated). Resuming will happen here with
5405 breakpoint conditions or watchpoint expressions that include
5406 inferior function calls. */
5407 if (bs_head == NULL)
5408 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5409
5410 /* A bit of special processing for shlib breakpoints. We need to
5411 process solib loading here, so that the lists of loaded and
5412 unloaded libraries are correct before we handle "catch load" and
5413 "catch unload". */
5414 for (bs = bs_head; bs != NULL; bs = bs->next)
5415 {
5416 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5417 {
5418 handle_solib_event ();
5419 break;
5420 }
5421 }
5422
5423 /* Now go through the locations that caused the target to stop, and
5424 check whether we're interested in reporting this stop to higher
5425 layers, or whether we should resume the target transparently. */
5426
5427 removed_any = 0;
5428
5429 for (bs = bs_head; bs != NULL; bs = bs->next)
5430 {
5431 if (!bs->stop)
5432 continue;
5433
5434 b = bs->breakpoint_at;
5435 b->ops->check_status (bs);
5436 if (bs->stop)
5437 {
5438 bpstat_check_breakpoint_conditions (bs, ptid);
5439
5440 if (bs->stop)
5441 {
5442 ++(b->hit_count);
5443 gdb::observers::breakpoint_modified.notify (b);
5444
5445 /* We will stop here. */
5446 if (b->disposition == disp_disable)
5447 {
5448 --(b->enable_count);
5449 if (b->enable_count <= 0)
5450 b->enable_state = bp_disabled;
5451 removed_any = 1;
5452 }
5453 if (b->silent)
5454 bs->print = 0;
5455 bs->commands = b->commands;
5456 if (command_line_is_silent (bs->commands
5457 ? bs->commands.get () : NULL))
5458 bs->print = 0;
5459
5460 b->ops->after_condition_true (bs);
5461 }
5462
5463 }
5464
5465 /* Print nothing for this entry if we don't stop or don't
5466 print. */
5467 if (!bs->stop || !bs->print)
5468 bs->print_it = print_it_noop;
5469 }
5470
5471 /* If we aren't stopping, the value of some hardware watchpoint may
5472 not have changed, but the intermediate memory locations we are
5473 watching may have. Don't bother if we're stopping; this will get
5474 done later. */
5475 need_remove_insert = 0;
5476 if (! bpstat_causes_stop (bs_head))
5477 for (bs = bs_head; bs != NULL; bs = bs->next)
5478 if (!bs->stop
5479 && bs->breakpoint_at
5480 && is_hardware_watchpoint (bs->breakpoint_at))
5481 {
5482 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5483
5484 update_watchpoint (w, 0 /* don't reparse. */);
5485 need_remove_insert = 1;
5486 }
5487
5488 if (need_remove_insert)
5489 update_global_location_list (UGLL_MAY_INSERT);
5490 else if (removed_any)
5491 update_global_location_list (UGLL_DONT_INSERT);
5492
5493 return bs_head;
5494 }
5495
5496 static void
5497 handle_jit_event (void)
5498 {
5499 struct frame_info *frame;
5500 struct gdbarch *gdbarch;
5501
5502 if (debug_infrun)
5503 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5504
5505 /* Switch terminal for any messages produced by
5506 breakpoint_re_set. */
5507 target_terminal::ours_for_output ();
5508
5509 frame = get_current_frame ();
5510 gdbarch = get_frame_arch (frame);
5511
5512 jit_event_handler (gdbarch);
5513
5514 target_terminal::inferior ();
5515 }
5516
5517 /* Prepare WHAT final decision for infrun. */
5518
5519 /* Decide what infrun needs to do with this bpstat. */
5520
5521 struct bpstat_what
5522 bpstat_what (bpstat bs_head)
5523 {
5524 struct bpstat_what retval;
5525 bpstat bs;
5526
5527 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5528 retval.call_dummy = STOP_NONE;
5529 retval.is_longjmp = 0;
5530
5531 for (bs = bs_head; bs != NULL; bs = bs->next)
5532 {
5533 /* Extract this BS's action. After processing each BS, we check
5534 if its action overrides all we've seem so far. */
5535 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5536 enum bptype bptype;
5537
5538 if (bs->breakpoint_at == NULL)
5539 {
5540 /* I suspect this can happen if it was a momentary
5541 breakpoint which has since been deleted. */
5542 bptype = bp_none;
5543 }
5544 else
5545 bptype = bs->breakpoint_at->type;
5546
5547 switch (bptype)
5548 {
5549 case bp_none:
5550 break;
5551 case bp_breakpoint:
5552 case bp_hardware_breakpoint:
5553 case bp_single_step:
5554 case bp_until:
5555 case bp_finish:
5556 case bp_shlib_event:
5557 if (bs->stop)
5558 {
5559 if (bs->print)
5560 this_action = BPSTAT_WHAT_STOP_NOISY;
5561 else
5562 this_action = BPSTAT_WHAT_STOP_SILENT;
5563 }
5564 else
5565 this_action = BPSTAT_WHAT_SINGLE;
5566 break;
5567 case bp_watchpoint:
5568 case bp_hardware_watchpoint:
5569 case bp_read_watchpoint:
5570 case bp_access_watchpoint:
5571 if (bs->stop)
5572 {
5573 if (bs->print)
5574 this_action = BPSTAT_WHAT_STOP_NOISY;
5575 else
5576 this_action = BPSTAT_WHAT_STOP_SILENT;
5577 }
5578 else
5579 {
5580 /* There was a watchpoint, but we're not stopping.
5581 This requires no further action. */
5582 }
5583 break;
5584 case bp_longjmp:
5585 case bp_longjmp_call_dummy:
5586 case bp_exception:
5587 if (bs->stop)
5588 {
5589 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5590 retval.is_longjmp = bptype != bp_exception;
5591 }
5592 else
5593 this_action = BPSTAT_WHAT_SINGLE;
5594 break;
5595 case bp_longjmp_resume:
5596 case bp_exception_resume:
5597 if (bs->stop)
5598 {
5599 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5600 retval.is_longjmp = bptype == bp_longjmp_resume;
5601 }
5602 else
5603 this_action = BPSTAT_WHAT_SINGLE;
5604 break;
5605 case bp_step_resume:
5606 if (bs->stop)
5607 this_action = BPSTAT_WHAT_STEP_RESUME;
5608 else
5609 {
5610 /* It is for the wrong frame. */
5611 this_action = BPSTAT_WHAT_SINGLE;
5612 }
5613 break;
5614 case bp_hp_step_resume:
5615 if (bs->stop)
5616 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5617 else
5618 {
5619 /* It is for the wrong frame. */
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 }
5622 break;
5623 case bp_watchpoint_scope:
5624 case bp_thread_event:
5625 case bp_overlay_event:
5626 case bp_longjmp_master:
5627 case bp_std_terminate_master:
5628 case bp_exception_master:
5629 this_action = BPSTAT_WHAT_SINGLE;
5630 break;
5631 case bp_catchpoint:
5632 if (bs->stop)
5633 {
5634 if (bs->print)
5635 this_action = BPSTAT_WHAT_STOP_NOISY;
5636 else
5637 this_action = BPSTAT_WHAT_STOP_SILENT;
5638 }
5639 else
5640 {
5641 /* There was a catchpoint, but we're not stopping.
5642 This requires no further action. */
5643 }
5644 break;
5645 case bp_jit_event:
5646 this_action = BPSTAT_WHAT_SINGLE;
5647 break;
5648 case bp_call_dummy:
5649 /* Make sure the action is stop (silent or noisy),
5650 so infrun.c pops the dummy frame. */
5651 retval.call_dummy = STOP_STACK_DUMMY;
5652 this_action = BPSTAT_WHAT_STOP_SILENT;
5653 break;
5654 case bp_std_terminate:
5655 /* Make sure the action is stop (silent or noisy),
5656 so infrun.c pops the dummy frame. */
5657 retval.call_dummy = STOP_STD_TERMINATE;
5658 this_action = BPSTAT_WHAT_STOP_SILENT;
5659 break;
5660 case bp_tracepoint:
5661 case bp_fast_tracepoint:
5662 case bp_static_tracepoint:
5663 /* Tracepoint hits should not be reported back to GDB, and
5664 if one got through somehow, it should have been filtered
5665 out already. */
5666 internal_error (__FILE__, __LINE__,
5667 _("bpstat_what: tracepoint encountered"));
5668 break;
5669 case bp_gnu_ifunc_resolver:
5670 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5671 this_action = BPSTAT_WHAT_SINGLE;
5672 break;
5673 case bp_gnu_ifunc_resolver_return:
5674 /* The breakpoint will be removed, execution will restart from the
5675 PC of the former breakpoint. */
5676 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5677 break;
5678
5679 case bp_dprintf:
5680 if (bs->stop)
5681 this_action = BPSTAT_WHAT_STOP_SILENT;
5682 else
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 break;
5685
5686 default:
5687 internal_error (__FILE__, __LINE__,
5688 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5689 }
5690
5691 retval.main_action = std::max (retval.main_action, this_action);
5692 }
5693
5694 return retval;
5695 }
5696
5697 void
5698 bpstat_run_callbacks (bpstat bs_head)
5699 {
5700 bpstat bs;
5701
5702 for (bs = bs_head; bs != NULL; bs = bs->next)
5703 {
5704 struct breakpoint *b = bs->breakpoint_at;
5705
5706 if (b == NULL)
5707 continue;
5708 switch (b->type)
5709 {
5710 case bp_jit_event:
5711 handle_jit_event ();
5712 break;
5713 case bp_gnu_ifunc_resolver:
5714 gnu_ifunc_resolver_stop (b);
5715 break;
5716 case bp_gnu_ifunc_resolver_return:
5717 gnu_ifunc_resolver_return_stop (b);
5718 break;
5719 }
5720 }
5721 }
5722
5723 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5724 without hardware support). This isn't related to a specific bpstat,
5725 just to things like whether watchpoints are set. */
5726
5727 int
5728 bpstat_should_step (void)
5729 {
5730 struct breakpoint *b;
5731
5732 ALL_BREAKPOINTS (b)
5733 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5734 return 1;
5735 return 0;
5736 }
5737
5738 int
5739 bpstat_causes_stop (bpstat bs)
5740 {
5741 for (; bs != NULL; bs = bs->next)
5742 if (bs->stop)
5743 return 1;
5744
5745 return 0;
5746 }
5747
5748 \f
5749
5750 /* Compute a string of spaces suitable to indent the next line
5751 so it starts at the position corresponding to the table column
5752 named COL_NAME in the currently active table of UIOUT. */
5753
5754 static char *
5755 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5756 {
5757 static char wrap_indent[80];
5758 int i, total_width, width, align;
5759 const char *text;
5760
5761 total_width = 0;
5762 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5763 {
5764 if (strcmp (text, col_name) == 0)
5765 {
5766 gdb_assert (total_width < sizeof wrap_indent);
5767 memset (wrap_indent, ' ', total_width);
5768 wrap_indent[total_width] = 0;
5769
5770 return wrap_indent;
5771 }
5772
5773 total_width += width + 1;
5774 }
5775
5776 return NULL;
5777 }
5778
5779 /* Determine if the locations of this breakpoint will have their conditions
5780 evaluated by the target, host or a mix of both. Returns the following:
5781
5782 "host": Host evals condition.
5783 "host or target": Host or Target evals condition.
5784 "target": Target evals condition.
5785 */
5786
5787 static const char *
5788 bp_condition_evaluator (struct breakpoint *b)
5789 {
5790 struct bp_location *bl;
5791 char host_evals = 0;
5792 char target_evals = 0;
5793
5794 if (!b)
5795 return NULL;
5796
5797 if (!is_breakpoint (b))
5798 return NULL;
5799
5800 if (gdb_evaluates_breakpoint_condition_p ()
5801 || !target_supports_evaluation_of_breakpoint_conditions ())
5802 return condition_evaluation_host;
5803
5804 for (bl = b->loc; bl; bl = bl->next)
5805 {
5806 if (bl->cond_bytecode)
5807 target_evals++;
5808 else
5809 host_evals++;
5810 }
5811
5812 if (host_evals && target_evals)
5813 return condition_evaluation_both;
5814 else if (target_evals)
5815 return condition_evaluation_target;
5816 else
5817 return condition_evaluation_host;
5818 }
5819
5820 /* Determine the breakpoint location's condition evaluator. This is
5821 similar to bp_condition_evaluator, but for locations. */
5822
5823 static const char *
5824 bp_location_condition_evaluator (struct bp_location *bl)
5825 {
5826 if (bl && !is_breakpoint (bl->owner))
5827 return NULL;
5828
5829 if (gdb_evaluates_breakpoint_condition_p ()
5830 || !target_supports_evaluation_of_breakpoint_conditions ())
5831 return condition_evaluation_host;
5832
5833 if (bl && bl->cond_bytecode)
5834 return condition_evaluation_target;
5835 else
5836 return condition_evaluation_host;
5837 }
5838
5839 /* Print the LOC location out of the list of B->LOC locations. */
5840
5841 static void
5842 print_breakpoint_location (struct breakpoint *b,
5843 struct bp_location *loc)
5844 {
5845 struct ui_out *uiout = current_uiout;
5846
5847 scoped_restore_current_program_space restore_pspace;
5848
5849 if (loc != NULL && loc->shlib_disabled)
5850 loc = NULL;
5851
5852 if (loc != NULL)
5853 set_current_program_space (loc->pspace);
5854
5855 if (b->display_canonical)
5856 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5857 else if (loc && loc->symtab)
5858 {
5859 const struct symbol *sym = loc->symbol;
5860
5861 if (sym == NULL)
5862 sym = find_pc_sect_function (loc->address, loc->section);
5863
5864 if (sym)
5865 {
5866 uiout->text ("in ");
5867 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5868 uiout->text (" ");
5869 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5870 uiout->text ("at ");
5871 }
5872 uiout->field_string ("file",
5873 symtab_to_filename_for_display (loc->symtab));
5874 uiout->text (":");
5875
5876 if (uiout->is_mi_like_p ())
5877 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5878
5879 uiout->field_int ("line", loc->line_number);
5880 }
5881 else if (loc)
5882 {
5883 string_file stb;
5884
5885 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5886 demangle, "");
5887 uiout->field_stream ("at", stb);
5888 }
5889 else
5890 {
5891 uiout->field_string ("pending",
5892 event_location_to_string (b->location.get ()));
5893 /* If extra_string is available, it could be holding a condition
5894 or dprintf arguments. In either case, make sure it is printed,
5895 too, but only for non-MI streams. */
5896 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5897 {
5898 if (b->type == bp_dprintf)
5899 uiout->text (",");
5900 else
5901 uiout->text (" ");
5902 uiout->text (b->extra_string);
5903 }
5904 }
5905
5906 if (loc && is_breakpoint (b)
5907 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5908 && bp_condition_evaluator (b) == condition_evaluation_both)
5909 {
5910 uiout->text (" (");
5911 uiout->field_string ("evaluated-by",
5912 bp_location_condition_evaluator (loc));
5913 uiout->text (")");
5914 }
5915 }
5916
5917 static const char *
5918 bptype_string (enum bptype type)
5919 {
5920 struct ep_type_description
5921 {
5922 enum bptype type;
5923 const char *description;
5924 };
5925 static struct ep_type_description bptypes[] =
5926 {
5927 {bp_none, "?deleted?"},
5928 {bp_breakpoint, "breakpoint"},
5929 {bp_hardware_breakpoint, "hw breakpoint"},
5930 {bp_single_step, "sw single-step"},
5931 {bp_until, "until"},
5932 {bp_finish, "finish"},
5933 {bp_watchpoint, "watchpoint"},
5934 {bp_hardware_watchpoint, "hw watchpoint"},
5935 {bp_read_watchpoint, "read watchpoint"},
5936 {bp_access_watchpoint, "acc watchpoint"},
5937 {bp_longjmp, "longjmp"},
5938 {bp_longjmp_resume, "longjmp resume"},
5939 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5940 {bp_exception, "exception"},
5941 {bp_exception_resume, "exception resume"},
5942 {bp_step_resume, "step resume"},
5943 {bp_hp_step_resume, "high-priority step resume"},
5944 {bp_watchpoint_scope, "watchpoint scope"},
5945 {bp_call_dummy, "call dummy"},
5946 {bp_std_terminate, "std::terminate"},
5947 {bp_shlib_event, "shlib events"},
5948 {bp_thread_event, "thread events"},
5949 {bp_overlay_event, "overlay events"},
5950 {bp_longjmp_master, "longjmp master"},
5951 {bp_std_terminate_master, "std::terminate master"},
5952 {bp_exception_master, "exception master"},
5953 {bp_catchpoint, "catchpoint"},
5954 {bp_tracepoint, "tracepoint"},
5955 {bp_fast_tracepoint, "fast tracepoint"},
5956 {bp_static_tracepoint, "static tracepoint"},
5957 {bp_dprintf, "dprintf"},
5958 {bp_jit_event, "jit events"},
5959 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5960 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5961 };
5962
5963 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5964 || ((int) type != bptypes[(int) type].type))
5965 internal_error (__FILE__, __LINE__,
5966 _("bptypes table does not describe type #%d."),
5967 (int) type);
5968
5969 return bptypes[(int) type].description;
5970 }
5971
5972 /* For MI, output a field named 'thread-groups' with a list as the value.
5973 For CLI, prefix the list with the string 'inf'. */
5974
5975 static void
5976 output_thread_groups (struct ui_out *uiout,
5977 const char *field_name,
5978 const std::vector<int> &inf_nums,
5979 int mi_only)
5980 {
5981 int is_mi = uiout->is_mi_like_p ();
5982
5983 /* For backward compatibility, don't display inferiors in CLI unless
5984 there are several. Always display them for MI. */
5985 if (!is_mi && mi_only)
5986 return;
5987
5988 ui_out_emit_list list_emitter (uiout, field_name);
5989
5990 for (size_t i = 0; i < inf_nums.size (); i++)
5991 {
5992 if (is_mi)
5993 {
5994 char mi_group[10];
5995
5996 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5997 uiout->field_string (NULL, mi_group);
5998 }
5999 else
6000 {
6001 if (i == 0)
6002 uiout->text (" inf ");
6003 else
6004 uiout->text (", ");
6005
6006 uiout->text (plongest (inf_nums[i]));
6007 }
6008 }
6009 }
6010
6011 /* Print B to gdb_stdout. */
6012
6013 static void
6014 print_one_breakpoint_location (struct breakpoint *b,
6015 struct bp_location *loc,
6016 int loc_number,
6017 struct bp_location **last_loc,
6018 int allflag)
6019 {
6020 struct command_line *l;
6021 static char bpenables[] = "nynny";
6022
6023 struct ui_out *uiout = current_uiout;
6024 int header_of_multiple = 0;
6025 int part_of_multiple = (loc != NULL);
6026 struct value_print_options opts;
6027
6028 get_user_print_options (&opts);
6029
6030 gdb_assert (!loc || loc_number != 0);
6031 /* See comment in print_one_breakpoint concerning treatment of
6032 breakpoints with single disabled location. */
6033 if (loc == NULL
6034 && (b->loc != NULL
6035 && (b->loc->next != NULL || !b->loc->enabled)))
6036 header_of_multiple = 1;
6037 if (loc == NULL)
6038 loc = b->loc;
6039
6040 annotate_record ();
6041
6042 /* 1 */
6043 annotate_field (0);
6044 if (part_of_multiple)
6045 {
6046 char *formatted;
6047 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6048 uiout->field_string ("number", formatted);
6049 xfree (formatted);
6050 }
6051 else
6052 {
6053 uiout->field_int ("number", b->number);
6054 }
6055
6056 /* 2 */
6057 annotate_field (1);
6058 if (part_of_multiple)
6059 uiout->field_skip ("type");
6060 else
6061 uiout->field_string ("type", bptype_string (b->type));
6062
6063 /* 3 */
6064 annotate_field (2);
6065 if (part_of_multiple)
6066 uiout->field_skip ("disp");
6067 else
6068 uiout->field_string ("disp", bpdisp_text (b->disposition));
6069
6070
6071 /* 4 */
6072 annotate_field (3);
6073 if (part_of_multiple)
6074 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6075 else
6076 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6077 uiout->spaces (2);
6078
6079
6080 /* 5 and 6 */
6081 if (b->ops != NULL && b->ops->print_one != NULL)
6082 {
6083 /* Although the print_one can possibly print all locations,
6084 calling it here is not likely to get any nice result. So,
6085 make sure there's just one location. */
6086 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6087 b->ops->print_one (b, last_loc);
6088 }
6089 else
6090 switch (b->type)
6091 {
6092 case bp_none:
6093 internal_error (__FILE__, __LINE__,
6094 _("print_one_breakpoint: bp_none encountered\n"));
6095 break;
6096
6097 case bp_watchpoint:
6098 case bp_hardware_watchpoint:
6099 case bp_read_watchpoint:
6100 case bp_access_watchpoint:
6101 {
6102 struct watchpoint *w = (struct watchpoint *) b;
6103
6104 /* Field 4, the address, is omitted (which makes the columns
6105 not line up too nicely with the headers, but the effect
6106 is relatively readable). */
6107 if (opts.addressprint)
6108 uiout->field_skip ("addr");
6109 annotate_field (5);
6110 uiout->field_string ("what", w->exp_string);
6111 }
6112 break;
6113
6114 case bp_breakpoint:
6115 case bp_hardware_breakpoint:
6116 case bp_single_step:
6117 case bp_until:
6118 case bp_finish:
6119 case bp_longjmp:
6120 case bp_longjmp_resume:
6121 case bp_longjmp_call_dummy:
6122 case bp_exception:
6123 case bp_exception_resume:
6124 case bp_step_resume:
6125 case bp_hp_step_resume:
6126 case bp_watchpoint_scope:
6127 case bp_call_dummy:
6128 case bp_std_terminate:
6129 case bp_shlib_event:
6130 case bp_thread_event:
6131 case bp_overlay_event:
6132 case bp_longjmp_master:
6133 case bp_std_terminate_master:
6134 case bp_exception_master:
6135 case bp_tracepoint:
6136 case bp_fast_tracepoint:
6137 case bp_static_tracepoint:
6138 case bp_dprintf:
6139 case bp_jit_event:
6140 case bp_gnu_ifunc_resolver:
6141 case bp_gnu_ifunc_resolver_return:
6142 if (opts.addressprint)
6143 {
6144 annotate_field (4);
6145 if (header_of_multiple)
6146 uiout->field_string ("addr", "<MULTIPLE>");
6147 else if (b->loc == NULL || loc->shlib_disabled)
6148 uiout->field_string ("addr", "<PENDING>");
6149 else
6150 uiout->field_core_addr ("addr",
6151 loc->gdbarch, loc->address);
6152 }
6153 annotate_field (5);
6154 if (!header_of_multiple)
6155 print_breakpoint_location (b, loc);
6156 if (b->loc)
6157 *last_loc = b->loc;
6158 break;
6159 }
6160
6161
6162 if (loc != NULL && !header_of_multiple)
6163 {
6164 struct inferior *inf;
6165 std::vector<int> inf_nums;
6166 int mi_only = 1;
6167
6168 ALL_INFERIORS (inf)
6169 {
6170 if (inf->pspace == loc->pspace)
6171 inf_nums.push_back (inf->num);
6172 }
6173
6174 /* For backward compatibility, don't display inferiors in CLI unless
6175 there are several. Always display for MI. */
6176 if (allflag
6177 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6178 && (number_of_program_spaces () > 1
6179 || number_of_inferiors () > 1)
6180 /* LOC is for existing B, it cannot be in
6181 moribund_locations and thus having NULL OWNER. */
6182 && loc->owner->type != bp_catchpoint))
6183 mi_only = 0;
6184 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6185 }
6186
6187 if (!part_of_multiple)
6188 {
6189 if (b->thread != -1)
6190 {
6191 /* FIXME: This seems to be redundant and lost here; see the
6192 "stop only in" line a little further down. */
6193 uiout->text (" thread ");
6194 uiout->field_int ("thread", b->thread);
6195 }
6196 else if (b->task != 0)
6197 {
6198 uiout->text (" task ");
6199 uiout->field_int ("task", b->task);
6200 }
6201 }
6202
6203 uiout->text ("\n");
6204
6205 if (!part_of_multiple)
6206 b->ops->print_one_detail (b, uiout);
6207
6208 if (part_of_multiple && frame_id_p (b->frame_id))
6209 {
6210 annotate_field (6);
6211 uiout->text ("\tstop only in stack frame at ");
6212 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6213 the frame ID. */
6214 uiout->field_core_addr ("frame",
6215 b->gdbarch, b->frame_id.stack_addr);
6216 uiout->text ("\n");
6217 }
6218
6219 if (!part_of_multiple && b->cond_string)
6220 {
6221 annotate_field (7);
6222 if (is_tracepoint (b))
6223 uiout->text ("\ttrace only if ");
6224 else
6225 uiout->text ("\tstop only if ");
6226 uiout->field_string ("cond", b->cond_string);
6227
6228 /* Print whether the target is doing the breakpoint's condition
6229 evaluation. If GDB is doing the evaluation, don't print anything. */
6230 if (is_breakpoint (b)
6231 && breakpoint_condition_evaluation_mode ()
6232 == condition_evaluation_target)
6233 {
6234 uiout->text (" (");
6235 uiout->field_string ("evaluated-by",
6236 bp_condition_evaluator (b));
6237 uiout->text (" evals)");
6238 }
6239 uiout->text ("\n");
6240 }
6241
6242 if (!part_of_multiple && b->thread != -1)
6243 {
6244 /* FIXME should make an annotation for this. */
6245 uiout->text ("\tstop only in thread ");
6246 if (uiout->is_mi_like_p ())
6247 uiout->field_int ("thread", b->thread);
6248 else
6249 {
6250 struct thread_info *thr = find_thread_global_id (b->thread);
6251
6252 uiout->field_string ("thread", print_thread_id (thr));
6253 }
6254 uiout->text ("\n");
6255 }
6256
6257 if (!part_of_multiple)
6258 {
6259 if (b->hit_count)
6260 {
6261 /* FIXME should make an annotation for this. */
6262 if (is_catchpoint (b))
6263 uiout->text ("\tcatchpoint");
6264 else if (is_tracepoint (b))
6265 uiout->text ("\ttracepoint");
6266 else
6267 uiout->text ("\tbreakpoint");
6268 uiout->text (" already hit ");
6269 uiout->field_int ("times", b->hit_count);
6270 if (b->hit_count == 1)
6271 uiout->text (" time\n");
6272 else
6273 uiout->text (" times\n");
6274 }
6275 else
6276 {
6277 /* Output the count also if it is zero, but only if this is mi. */
6278 if (uiout->is_mi_like_p ())
6279 uiout->field_int ("times", b->hit_count);
6280 }
6281 }
6282
6283 if (!part_of_multiple && b->ignore_count)
6284 {
6285 annotate_field (8);
6286 uiout->text ("\tignore next ");
6287 uiout->field_int ("ignore", b->ignore_count);
6288 uiout->text (" hits\n");
6289 }
6290
6291 /* Note that an enable count of 1 corresponds to "enable once"
6292 behavior, which is reported by the combination of enablement and
6293 disposition, so we don't need to mention it here. */
6294 if (!part_of_multiple && b->enable_count > 1)
6295 {
6296 annotate_field (8);
6297 uiout->text ("\tdisable after ");
6298 /* Tweak the wording to clarify that ignore and enable counts
6299 are distinct, and have additive effect. */
6300 if (b->ignore_count)
6301 uiout->text ("additional ");
6302 else
6303 uiout->text ("next ");
6304 uiout->field_int ("enable", b->enable_count);
6305 uiout->text (" hits\n");
6306 }
6307
6308 if (!part_of_multiple && is_tracepoint (b))
6309 {
6310 struct tracepoint *tp = (struct tracepoint *) b;
6311
6312 if (tp->traceframe_usage)
6313 {
6314 uiout->text ("\ttrace buffer usage ");
6315 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6316 uiout->text (" bytes\n");
6317 }
6318 }
6319
6320 l = b->commands ? b->commands.get () : NULL;
6321 if (!part_of_multiple && l)
6322 {
6323 annotate_field (9);
6324 ui_out_emit_tuple tuple_emitter (uiout, "script");
6325 print_command_lines (uiout, l, 4);
6326 }
6327
6328 if (is_tracepoint (b))
6329 {
6330 struct tracepoint *t = (struct tracepoint *) b;
6331
6332 if (!part_of_multiple && t->pass_count)
6333 {
6334 annotate_field (10);
6335 uiout->text ("\tpass count ");
6336 uiout->field_int ("pass", t->pass_count);
6337 uiout->text (" \n");
6338 }
6339
6340 /* Don't display it when tracepoint or tracepoint location is
6341 pending. */
6342 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6343 {
6344 annotate_field (11);
6345
6346 if (uiout->is_mi_like_p ())
6347 uiout->field_string ("installed",
6348 loc->inserted ? "y" : "n");
6349 else
6350 {
6351 if (loc->inserted)
6352 uiout->text ("\t");
6353 else
6354 uiout->text ("\tnot ");
6355 uiout->text ("installed on target\n");
6356 }
6357 }
6358 }
6359
6360 if (uiout->is_mi_like_p () && !part_of_multiple)
6361 {
6362 if (is_watchpoint (b))
6363 {
6364 struct watchpoint *w = (struct watchpoint *) b;
6365
6366 uiout->field_string ("original-location", w->exp_string);
6367 }
6368 else if (b->location != NULL
6369 && event_location_to_string (b->location.get ()) != NULL)
6370 uiout->field_string ("original-location",
6371 event_location_to_string (b->location.get ()));
6372 }
6373 }
6374
6375 static void
6376 print_one_breakpoint (struct breakpoint *b,
6377 struct bp_location **last_loc,
6378 int allflag)
6379 {
6380 struct ui_out *uiout = current_uiout;
6381
6382 {
6383 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6384
6385 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6386 }
6387
6388 /* If this breakpoint has custom print function,
6389 it's already printed. Otherwise, print individual
6390 locations, if any. */
6391 if (b->ops == NULL || b->ops->print_one == NULL)
6392 {
6393 /* If breakpoint has a single location that is disabled, we
6394 print it as if it had several locations, since otherwise it's
6395 hard to represent "breakpoint enabled, location disabled"
6396 situation.
6397
6398 Note that while hardware watchpoints have several locations
6399 internally, that's not a property exposed to user. */
6400 if (b->loc
6401 && !is_hardware_watchpoint (b)
6402 && (b->loc->next || !b->loc->enabled))
6403 {
6404 struct bp_location *loc;
6405 int n = 1;
6406
6407 for (loc = b->loc; loc; loc = loc->next, ++n)
6408 {
6409 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6410 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6411 }
6412 }
6413 }
6414 }
6415
6416 static int
6417 breakpoint_address_bits (struct breakpoint *b)
6418 {
6419 int print_address_bits = 0;
6420 struct bp_location *loc;
6421
6422 /* Software watchpoints that aren't watching memory don't have an
6423 address to print. */
6424 if (is_no_memory_software_watchpoint (b))
6425 return 0;
6426
6427 for (loc = b->loc; loc; loc = loc->next)
6428 {
6429 int addr_bit;
6430
6431 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6432 if (addr_bit > print_address_bits)
6433 print_address_bits = addr_bit;
6434 }
6435
6436 return print_address_bits;
6437 }
6438
6439 /* See breakpoint.h. */
6440
6441 void
6442 print_breakpoint (breakpoint *b)
6443 {
6444 struct bp_location *dummy_loc = NULL;
6445 print_one_breakpoint (b, &dummy_loc, 0);
6446 }
6447
6448 /* Return true if this breakpoint was set by the user, false if it is
6449 internal or momentary. */
6450
6451 int
6452 user_breakpoint_p (struct breakpoint *b)
6453 {
6454 return b->number > 0;
6455 }
6456
6457 /* See breakpoint.h. */
6458
6459 int
6460 pending_breakpoint_p (struct breakpoint *b)
6461 {
6462 return b->loc == NULL;
6463 }
6464
6465 /* Print information on user settable breakpoint (watchpoint, etc)
6466 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6467 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6468 FILTER is non-NULL, call it on each breakpoint and only include the
6469 ones for which it returns non-zero. Return the total number of
6470 breakpoints listed. */
6471
6472 static int
6473 breakpoint_1 (const char *args, int allflag,
6474 int (*filter) (const struct breakpoint *))
6475 {
6476 struct breakpoint *b;
6477 struct bp_location *last_loc = NULL;
6478 int nr_printable_breakpoints;
6479 struct value_print_options opts;
6480 int print_address_bits = 0;
6481 int print_type_col_width = 14;
6482 struct ui_out *uiout = current_uiout;
6483
6484 get_user_print_options (&opts);
6485
6486 /* Compute the number of rows in the table, as well as the size
6487 required for address fields. */
6488 nr_printable_breakpoints = 0;
6489 ALL_BREAKPOINTS (b)
6490 {
6491 /* If we have a filter, only list the breakpoints it accepts. */
6492 if (filter && !filter (b))
6493 continue;
6494
6495 /* If we have an "args" string, it is a list of breakpoints to
6496 accept. Skip the others. */
6497 if (args != NULL && *args != '\0')
6498 {
6499 if (allflag && parse_and_eval_long (args) != b->number)
6500 continue;
6501 if (!allflag && !number_is_in_list (args, b->number))
6502 continue;
6503 }
6504
6505 if (allflag || user_breakpoint_p (b))
6506 {
6507 int addr_bit, type_len;
6508
6509 addr_bit = breakpoint_address_bits (b);
6510 if (addr_bit > print_address_bits)
6511 print_address_bits = addr_bit;
6512
6513 type_len = strlen (bptype_string (b->type));
6514 if (type_len > print_type_col_width)
6515 print_type_col_width = type_len;
6516
6517 nr_printable_breakpoints++;
6518 }
6519 }
6520
6521 {
6522 ui_out_emit_table table_emitter (uiout,
6523 opts.addressprint ? 6 : 5,
6524 nr_printable_breakpoints,
6525 "BreakpointTable");
6526
6527 if (nr_printable_breakpoints > 0)
6528 annotate_breakpoints_headers ();
6529 if (nr_printable_breakpoints > 0)
6530 annotate_field (0);
6531 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6532 if (nr_printable_breakpoints > 0)
6533 annotate_field (1);
6534 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6535 if (nr_printable_breakpoints > 0)
6536 annotate_field (2);
6537 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6538 if (nr_printable_breakpoints > 0)
6539 annotate_field (3);
6540 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6541 if (opts.addressprint)
6542 {
6543 if (nr_printable_breakpoints > 0)
6544 annotate_field (4);
6545 if (print_address_bits <= 32)
6546 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6547 else
6548 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6549 }
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (5);
6552 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6553 uiout->table_body ();
6554 if (nr_printable_breakpoints > 0)
6555 annotate_breakpoints_table ();
6556
6557 ALL_BREAKPOINTS (b)
6558 {
6559 QUIT;
6560 /* If we have a filter, only list the breakpoints it accepts. */
6561 if (filter && !filter (b))
6562 continue;
6563
6564 /* If we have an "args" string, it is a list of breakpoints to
6565 accept. Skip the others. */
6566
6567 if (args != NULL && *args != '\0')
6568 {
6569 if (allflag) /* maintenance info breakpoint */
6570 {
6571 if (parse_and_eval_long (args) != b->number)
6572 continue;
6573 }
6574 else /* all others */
6575 {
6576 if (!number_is_in_list (args, b->number))
6577 continue;
6578 }
6579 }
6580 /* We only print out user settable breakpoints unless the
6581 allflag is set. */
6582 if (allflag || user_breakpoint_p (b))
6583 print_one_breakpoint (b, &last_loc, allflag);
6584 }
6585 }
6586
6587 if (nr_printable_breakpoints == 0)
6588 {
6589 /* If there's a filter, let the caller decide how to report
6590 empty list. */
6591 if (!filter)
6592 {
6593 if (args == NULL || *args == '\0')
6594 uiout->message ("No breakpoints or watchpoints.\n");
6595 else
6596 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6597 args);
6598 }
6599 }
6600 else
6601 {
6602 if (last_loc && !server_command)
6603 set_next_address (last_loc->gdbarch, last_loc->address);
6604 }
6605
6606 /* FIXME? Should this be moved up so that it is only called when
6607 there have been breakpoints? */
6608 annotate_breakpoints_table_end ();
6609
6610 return nr_printable_breakpoints;
6611 }
6612
6613 /* Display the value of default-collect in a way that is generally
6614 compatible with the breakpoint list. */
6615
6616 static void
6617 default_collect_info (void)
6618 {
6619 struct ui_out *uiout = current_uiout;
6620
6621 /* If it has no value (which is frequently the case), say nothing; a
6622 message like "No default-collect." gets in user's face when it's
6623 not wanted. */
6624 if (!*default_collect)
6625 return;
6626
6627 /* The following phrase lines up nicely with per-tracepoint collect
6628 actions. */
6629 uiout->text ("default collect ");
6630 uiout->field_string ("default-collect", default_collect);
6631 uiout->text (" \n");
6632 }
6633
6634 static void
6635 info_breakpoints_command (const char *args, int from_tty)
6636 {
6637 breakpoint_1 (args, 0, NULL);
6638
6639 default_collect_info ();
6640 }
6641
6642 static void
6643 info_watchpoints_command (const char *args, int from_tty)
6644 {
6645 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6646 struct ui_out *uiout = current_uiout;
6647
6648 if (num_printed == 0)
6649 {
6650 if (args == NULL || *args == '\0')
6651 uiout->message ("No watchpoints.\n");
6652 else
6653 uiout->message ("No watchpoint matching '%s'.\n", args);
6654 }
6655 }
6656
6657 static void
6658 maintenance_info_breakpoints (const char *args, int from_tty)
6659 {
6660 breakpoint_1 (args, 1, NULL);
6661
6662 default_collect_info ();
6663 }
6664
6665 static int
6666 breakpoint_has_pc (struct breakpoint *b,
6667 struct program_space *pspace,
6668 CORE_ADDR pc, struct obj_section *section)
6669 {
6670 struct bp_location *bl = b->loc;
6671
6672 for (; bl; bl = bl->next)
6673 {
6674 if (bl->pspace == pspace
6675 && bl->address == pc
6676 && (!overlay_debugging || bl->section == section))
6677 return 1;
6678 }
6679 return 0;
6680 }
6681
6682 /* Print a message describing any user-breakpoints set at PC. This
6683 concerns with logical breakpoints, so we match program spaces, not
6684 address spaces. */
6685
6686 static void
6687 describe_other_breakpoints (struct gdbarch *gdbarch,
6688 struct program_space *pspace, CORE_ADDR pc,
6689 struct obj_section *section, int thread)
6690 {
6691 int others = 0;
6692 struct breakpoint *b;
6693
6694 ALL_BREAKPOINTS (b)
6695 others += (user_breakpoint_p (b)
6696 && breakpoint_has_pc (b, pspace, pc, section));
6697 if (others > 0)
6698 {
6699 if (others == 1)
6700 printf_filtered (_("Note: breakpoint "));
6701 else /* if (others == ???) */
6702 printf_filtered (_("Note: breakpoints "));
6703 ALL_BREAKPOINTS (b)
6704 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6705 {
6706 others--;
6707 printf_filtered ("%d", b->number);
6708 if (b->thread == -1 && thread != -1)
6709 printf_filtered (" (all threads)");
6710 else if (b->thread != -1)
6711 printf_filtered (" (thread %d)", b->thread);
6712 printf_filtered ("%s%s ",
6713 ((b->enable_state == bp_disabled
6714 || b->enable_state == bp_call_disabled)
6715 ? " (disabled)"
6716 : ""),
6717 (others > 1) ? ","
6718 : ((others == 1) ? " and" : ""));
6719 }
6720 printf_filtered (_("also set at pc "));
6721 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6722 printf_filtered (".\n");
6723 }
6724 }
6725 \f
6726
6727 /* Return true iff it is meaningful to use the address member of
6728 BPT locations. For some breakpoint types, the locations' address members
6729 are irrelevant and it makes no sense to attempt to compare them to other
6730 addresses (or use them for any other purpose either).
6731
6732 More specifically, each of the following breakpoint types will
6733 always have a zero valued location address and we don't want to mark
6734 breakpoints of any of these types to be a duplicate of an actual
6735 breakpoint location at address zero:
6736
6737 bp_watchpoint
6738 bp_catchpoint
6739
6740 */
6741
6742 static int
6743 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6744 {
6745 enum bptype type = bpt->type;
6746
6747 return (type != bp_watchpoint && type != bp_catchpoint);
6748 }
6749
6750 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6751 true if LOC1 and LOC2 represent the same watchpoint location. */
6752
6753 static int
6754 watchpoint_locations_match (struct bp_location *loc1,
6755 struct bp_location *loc2)
6756 {
6757 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6758 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6759
6760 /* Both of them must exist. */
6761 gdb_assert (w1 != NULL);
6762 gdb_assert (w2 != NULL);
6763
6764 /* If the target can evaluate the condition expression in hardware,
6765 then we we need to insert both watchpoints even if they are at
6766 the same place. Otherwise the watchpoint will only trigger when
6767 the condition of whichever watchpoint was inserted evaluates to
6768 true, not giving a chance for GDB to check the condition of the
6769 other watchpoint. */
6770 if ((w1->cond_exp
6771 && target_can_accel_watchpoint_condition (loc1->address,
6772 loc1->length,
6773 loc1->watchpoint_type,
6774 w1->cond_exp.get ()))
6775 || (w2->cond_exp
6776 && target_can_accel_watchpoint_condition (loc2->address,
6777 loc2->length,
6778 loc2->watchpoint_type,
6779 w2->cond_exp.get ())))
6780 return 0;
6781
6782 /* Note that this checks the owner's type, not the location's. In
6783 case the target does not support read watchpoints, but does
6784 support access watchpoints, we'll have bp_read_watchpoint
6785 watchpoints with hw_access locations. Those should be considered
6786 duplicates of hw_read locations. The hw_read locations will
6787 become hw_access locations later. */
6788 return (loc1->owner->type == loc2->owner->type
6789 && loc1->pspace->aspace == loc2->pspace->aspace
6790 && loc1->address == loc2->address
6791 && loc1->length == loc2->length);
6792 }
6793
6794 /* See breakpoint.h. */
6795
6796 int
6797 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6798 const address_space *aspace2, CORE_ADDR addr2)
6799 {
6800 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6801 || aspace1 == aspace2)
6802 && addr1 == addr2);
6803 }
6804
6805 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6806 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6807 matches ASPACE2. On targets that have global breakpoints, the address
6808 space doesn't really matter. */
6809
6810 static int
6811 breakpoint_address_match_range (const address_space *aspace1,
6812 CORE_ADDR addr1,
6813 int len1, const address_space *aspace2,
6814 CORE_ADDR addr2)
6815 {
6816 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6817 || aspace1 == aspace2)
6818 && addr2 >= addr1 && addr2 < addr1 + len1);
6819 }
6820
6821 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6822 a ranged breakpoint. In most targets, a match happens only if ASPACE
6823 matches the breakpoint's address space. On targets that have global
6824 breakpoints, the address space doesn't really matter. */
6825
6826 static int
6827 breakpoint_location_address_match (struct bp_location *bl,
6828 const address_space *aspace,
6829 CORE_ADDR addr)
6830 {
6831 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6832 aspace, addr)
6833 || (bl->length
6834 && breakpoint_address_match_range (bl->pspace->aspace,
6835 bl->address, bl->length,
6836 aspace, addr)));
6837 }
6838
6839 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6840 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6841 match happens only if ASPACE matches the breakpoint's address
6842 space. On targets that have global breakpoints, the address space
6843 doesn't really matter. */
6844
6845 static int
6846 breakpoint_location_address_range_overlap (struct bp_location *bl,
6847 const address_space *aspace,
6848 CORE_ADDR addr, int len)
6849 {
6850 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6851 || bl->pspace->aspace == aspace)
6852 {
6853 int bl_len = bl->length != 0 ? bl->length : 1;
6854
6855 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6856 return 1;
6857 }
6858 return 0;
6859 }
6860
6861 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6862 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6863 true, otherwise returns false. */
6864
6865 static int
6866 tracepoint_locations_match (struct bp_location *loc1,
6867 struct bp_location *loc2)
6868 {
6869 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6870 /* Since tracepoint locations are never duplicated with others', tracepoint
6871 locations at the same address of different tracepoints are regarded as
6872 different locations. */
6873 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6874 else
6875 return 0;
6876 }
6877
6878 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6879 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6880 represent the same location. */
6881
6882 static int
6883 breakpoint_locations_match (struct bp_location *loc1,
6884 struct bp_location *loc2)
6885 {
6886 int hw_point1, hw_point2;
6887
6888 /* Both of them must not be in moribund_locations. */
6889 gdb_assert (loc1->owner != NULL);
6890 gdb_assert (loc2->owner != NULL);
6891
6892 hw_point1 = is_hardware_watchpoint (loc1->owner);
6893 hw_point2 = is_hardware_watchpoint (loc2->owner);
6894
6895 if (hw_point1 != hw_point2)
6896 return 0;
6897 else if (hw_point1)
6898 return watchpoint_locations_match (loc1, loc2);
6899 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6900 return tracepoint_locations_match (loc1, loc2);
6901 else
6902 /* We compare bp_location.length in order to cover ranged breakpoints. */
6903 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6904 loc2->pspace->aspace, loc2->address)
6905 && loc1->length == loc2->length);
6906 }
6907
6908 static void
6909 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6910 int bnum, int have_bnum)
6911 {
6912 /* The longest string possibly returned by hex_string_custom
6913 is 50 chars. These must be at least that big for safety. */
6914 char astr1[64];
6915 char astr2[64];
6916
6917 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6918 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6919 if (have_bnum)
6920 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6921 bnum, astr1, astr2);
6922 else
6923 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6924 }
6925
6926 /* Adjust a breakpoint's address to account for architectural
6927 constraints on breakpoint placement. Return the adjusted address.
6928 Note: Very few targets require this kind of adjustment. For most
6929 targets, this function is simply the identity function. */
6930
6931 static CORE_ADDR
6932 adjust_breakpoint_address (struct gdbarch *gdbarch,
6933 CORE_ADDR bpaddr, enum bptype bptype)
6934 {
6935 if (bptype == bp_watchpoint
6936 || bptype == bp_hardware_watchpoint
6937 || bptype == bp_read_watchpoint
6938 || bptype == bp_access_watchpoint
6939 || bptype == bp_catchpoint)
6940 {
6941 /* Watchpoints and the various bp_catch_* eventpoints should not
6942 have their addresses modified. */
6943 return bpaddr;
6944 }
6945 else if (bptype == bp_single_step)
6946 {
6947 /* Single-step breakpoints should not have their addresses
6948 modified. If there's any architectural constrain that
6949 applies to this address, then it should have already been
6950 taken into account when the breakpoint was created in the
6951 first place. If we didn't do this, stepping through e.g.,
6952 Thumb-2 IT blocks would break. */
6953 return bpaddr;
6954 }
6955 else
6956 {
6957 CORE_ADDR adjusted_bpaddr = bpaddr;
6958
6959 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6960 {
6961 /* Some targets have architectural constraints on the placement
6962 of breakpoint instructions. Obtain the adjusted address. */
6963 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6964 }
6965
6966 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6967
6968 /* An adjusted breakpoint address can significantly alter
6969 a user's expectations. Print a warning if an adjustment
6970 is required. */
6971 if (adjusted_bpaddr != bpaddr)
6972 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6973
6974 return adjusted_bpaddr;
6975 }
6976 }
6977
6978 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6979 {
6980 bp_location *loc = this;
6981
6982 gdb_assert (ops != NULL);
6983
6984 loc->ops = ops;
6985 loc->owner = owner;
6986 loc->cond_bytecode = NULL;
6987 loc->shlib_disabled = 0;
6988 loc->enabled = 1;
6989
6990 switch (owner->type)
6991 {
6992 case bp_breakpoint:
6993 case bp_single_step:
6994 case bp_until:
6995 case bp_finish:
6996 case bp_longjmp:
6997 case bp_longjmp_resume:
6998 case bp_longjmp_call_dummy:
6999 case bp_exception:
7000 case bp_exception_resume:
7001 case bp_step_resume:
7002 case bp_hp_step_resume:
7003 case bp_watchpoint_scope:
7004 case bp_call_dummy:
7005 case bp_std_terminate:
7006 case bp_shlib_event:
7007 case bp_thread_event:
7008 case bp_overlay_event:
7009 case bp_jit_event:
7010 case bp_longjmp_master:
7011 case bp_std_terminate_master:
7012 case bp_exception_master:
7013 case bp_gnu_ifunc_resolver:
7014 case bp_gnu_ifunc_resolver_return:
7015 case bp_dprintf:
7016 loc->loc_type = bp_loc_software_breakpoint;
7017 mark_breakpoint_location_modified (loc);
7018 break;
7019 case bp_hardware_breakpoint:
7020 loc->loc_type = bp_loc_hardware_breakpoint;
7021 mark_breakpoint_location_modified (loc);
7022 break;
7023 case bp_hardware_watchpoint:
7024 case bp_read_watchpoint:
7025 case bp_access_watchpoint:
7026 loc->loc_type = bp_loc_hardware_watchpoint;
7027 break;
7028 case bp_watchpoint:
7029 case bp_catchpoint:
7030 case bp_tracepoint:
7031 case bp_fast_tracepoint:
7032 case bp_static_tracepoint:
7033 loc->loc_type = bp_loc_other;
7034 break;
7035 default:
7036 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7037 }
7038
7039 loc->refc = 1;
7040 }
7041
7042 /* Allocate a struct bp_location. */
7043
7044 static struct bp_location *
7045 allocate_bp_location (struct breakpoint *bpt)
7046 {
7047 return bpt->ops->allocate_location (bpt);
7048 }
7049
7050 static void
7051 free_bp_location (struct bp_location *loc)
7052 {
7053 loc->ops->dtor (loc);
7054 delete loc;
7055 }
7056
7057 /* Increment reference count. */
7058
7059 static void
7060 incref_bp_location (struct bp_location *bl)
7061 {
7062 ++bl->refc;
7063 }
7064
7065 /* Decrement reference count. If the reference count reaches 0,
7066 destroy the bp_location. Sets *BLP to NULL. */
7067
7068 static void
7069 decref_bp_location (struct bp_location **blp)
7070 {
7071 gdb_assert ((*blp)->refc > 0);
7072
7073 if (--(*blp)->refc == 0)
7074 free_bp_location (*blp);
7075 *blp = NULL;
7076 }
7077
7078 /* Add breakpoint B at the end of the global breakpoint chain. */
7079
7080 static breakpoint *
7081 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7082 {
7083 struct breakpoint *b1;
7084 struct breakpoint *result = b.get ();
7085
7086 /* Add this breakpoint to the end of the chain so that a list of
7087 breakpoints will come out in order of increasing numbers. */
7088
7089 b1 = breakpoint_chain;
7090 if (b1 == 0)
7091 breakpoint_chain = b.release ();
7092 else
7093 {
7094 while (b1->next)
7095 b1 = b1->next;
7096 b1->next = b.release ();
7097 }
7098
7099 return result;
7100 }
7101
7102 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7103
7104 static void
7105 init_raw_breakpoint_without_location (struct breakpoint *b,
7106 struct gdbarch *gdbarch,
7107 enum bptype bptype,
7108 const struct breakpoint_ops *ops)
7109 {
7110 gdb_assert (ops != NULL);
7111
7112 b->ops = ops;
7113 b->type = bptype;
7114 b->gdbarch = gdbarch;
7115 b->language = current_language->la_language;
7116 b->input_radix = input_radix;
7117 b->related_breakpoint = b;
7118 }
7119
7120 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7121 that has type BPTYPE and has no locations as yet. */
7122
7123 static struct breakpoint *
7124 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7125 enum bptype bptype,
7126 const struct breakpoint_ops *ops)
7127 {
7128 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7129
7130 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7131 return add_to_breakpoint_chain (std::move (b));
7132 }
7133
7134 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7135 resolutions should be made as the user specified the location explicitly
7136 enough. */
7137
7138 static void
7139 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7140 {
7141 gdb_assert (loc->owner != NULL);
7142
7143 if (loc->owner->type == bp_breakpoint
7144 || loc->owner->type == bp_hardware_breakpoint
7145 || is_tracepoint (loc->owner))
7146 {
7147 const char *function_name;
7148
7149 if (loc->msymbol != NULL
7150 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7151 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7152 && !explicit_loc)
7153 {
7154 struct breakpoint *b = loc->owner;
7155
7156 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7157
7158 if (b->type == bp_breakpoint && b->loc == loc
7159 && loc->next == NULL && b->related_breakpoint == b)
7160 {
7161 /* Create only the whole new breakpoint of this type but do not
7162 mess more complicated breakpoints with multiple locations. */
7163 b->type = bp_gnu_ifunc_resolver;
7164 /* Remember the resolver's address for use by the return
7165 breakpoint. */
7166 loc->related_address = loc->address;
7167 }
7168 }
7169 else
7170 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7171
7172 if (function_name)
7173 loc->function_name = xstrdup (function_name);
7174 }
7175 }
7176
7177 /* Attempt to determine architecture of location identified by SAL. */
7178 struct gdbarch *
7179 get_sal_arch (struct symtab_and_line sal)
7180 {
7181 if (sal.section)
7182 return get_objfile_arch (sal.section->objfile);
7183 if (sal.symtab)
7184 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7185
7186 return NULL;
7187 }
7188
7189 /* Low level routine for partially initializing a breakpoint of type
7190 BPTYPE. The newly created breakpoint's address, section, source
7191 file name, and line number are provided by SAL.
7192
7193 It is expected that the caller will complete the initialization of
7194 the newly created breakpoint struct as well as output any status
7195 information regarding the creation of a new breakpoint. */
7196
7197 static void
7198 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7199 struct symtab_and_line sal, enum bptype bptype,
7200 const struct breakpoint_ops *ops)
7201 {
7202 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7203
7204 add_location_to_breakpoint (b, &sal);
7205
7206 if (bptype != bp_catchpoint)
7207 gdb_assert (sal.pspace != NULL);
7208
7209 /* Store the program space that was used to set the breakpoint,
7210 except for ordinary breakpoints, which are independent of the
7211 program space. */
7212 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7213 b->pspace = sal.pspace;
7214 }
7215
7216 /* set_raw_breakpoint is a low level routine for allocating and
7217 partially initializing a breakpoint of type BPTYPE. The newly
7218 created breakpoint's address, section, source file name, and line
7219 number are provided by SAL. The newly created and partially
7220 initialized breakpoint is added to the breakpoint chain and
7221 is also returned as the value of this function.
7222
7223 It is expected that the caller will complete the initialization of
7224 the newly created breakpoint struct as well as output any status
7225 information regarding the creation of a new breakpoint. In
7226 particular, set_raw_breakpoint does NOT set the breakpoint
7227 number! Care should be taken to not allow an error to occur
7228 prior to completing the initialization of the breakpoint. If this
7229 should happen, a bogus breakpoint will be left on the chain. */
7230
7231 struct breakpoint *
7232 set_raw_breakpoint (struct gdbarch *gdbarch,
7233 struct symtab_and_line sal, enum bptype bptype,
7234 const struct breakpoint_ops *ops)
7235 {
7236 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7237
7238 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7239 return add_to_breakpoint_chain (std::move (b));
7240 }
7241
7242 /* Call this routine when stepping and nexting to enable a breakpoint
7243 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7244 initiated the operation. */
7245
7246 void
7247 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7248 {
7249 struct breakpoint *b, *b_tmp;
7250 int thread = tp->global_num;
7251
7252 /* To avoid having to rescan all objfile symbols at every step,
7253 we maintain a list of continually-inserted but always disabled
7254 longjmp "master" breakpoints. Here, we simply create momentary
7255 clones of those and enable them for the requested thread. */
7256 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7257 if (b->pspace == current_program_space
7258 && (b->type == bp_longjmp_master
7259 || b->type == bp_exception_master))
7260 {
7261 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7262 struct breakpoint *clone;
7263
7264 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7265 after their removal. */
7266 clone = momentary_breakpoint_from_master (b, type,
7267 &momentary_breakpoint_ops, 1);
7268 clone->thread = thread;
7269 }
7270
7271 tp->initiating_frame = frame;
7272 }
7273
7274 /* Delete all longjmp breakpoints from THREAD. */
7275 void
7276 delete_longjmp_breakpoint (int thread)
7277 {
7278 struct breakpoint *b, *b_tmp;
7279
7280 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7281 if (b->type == bp_longjmp || b->type == bp_exception)
7282 {
7283 if (b->thread == thread)
7284 delete_breakpoint (b);
7285 }
7286 }
7287
7288 void
7289 delete_longjmp_breakpoint_at_next_stop (int thread)
7290 {
7291 struct breakpoint *b, *b_tmp;
7292
7293 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7294 if (b->type == bp_longjmp || b->type == bp_exception)
7295 {
7296 if (b->thread == thread)
7297 b->disposition = disp_del_at_next_stop;
7298 }
7299 }
7300
7301 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7302 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7303 pointer to any of them. Return NULL if this system cannot place longjmp
7304 breakpoints. */
7305
7306 struct breakpoint *
7307 set_longjmp_breakpoint_for_call_dummy (void)
7308 {
7309 struct breakpoint *b, *retval = NULL;
7310
7311 ALL_BREAKPOINTS (b)
7312 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7313 {
7314 struct breakpoint *new_b;
7315
7316 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7317 &momentary_breakpoint_ops,
7318 1);
7319 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7320
7321 /* Link NEW_B into the chain of RETVAL breakpoints. */
7322
7323 gdb_assert (new_b->related_breakpoint == new_b);
7324 if (retval == NULL)
7325 retval = new_b;
7326 new_b->related_breakpoint = retval;
7327 while (retval->related_breakpoint != new_b->related_breakpoint)
7328 retval = retval->related_breakpoint;
7329 retval->related_breakpoint = new_b;
7330 }
7331
7332 return retval;
7333 }
7334
7335 /* Verify all existing dummy frames and their associated breakpoints for
7336 TP. Remove those which can no longer be found in the current frame
7337 stack.
7338
7339 You should call this function only at places where it is safe to currently
7340 unwind the whole stack. Failed stack unwind would discard live dummy
7341 frames. */
7342
7343 void
7344 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7345 {
7346 struct breakpoint *b, *b_tmp;
7347
7348 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7349 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7350 {
7351 struct breakpoint *dummy_b = b->related_breakpoint;
7352
7353 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7354 dummy_b = dummy_b->related_breakpoint;
7355 if (dummy_b->type != bp_call_dummy
7356 || frame_find_by_id (dummy_b->frame_id) != NULL)
7357 continue;
7358
7359 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7360
7361 while (b->related_breakpoint != b)
7362 {
7363 if (b_tmp == b->related_breakpoint)
7364 b_tmp = b->related_breakpoint->next;
7365 delete_breakpoint (b->related_breakpoint);
7366 }
7367 delete_breakpoint (b);
7368 }
7369 }
7370
7371 void
7372 enable_overlay_breakpoints (void)
7373 {
7374 struct breakpoint *b;
7375
7376 ALL_BREAKPOINTS (b)
7377 if (b->type == bp_overlay_event)
7378 {
7379 b->enable_state = bp_enabled;
7380 update_global_location_list (UGLL_MAY_INSERT);
7381 overlay_events_enabled = 1;
7382 }
7383 }
7384
7385 void
7386 disable_overlay_breakpoints (void)
7387 {
7388 struct breakpoint *b;
7389
7390 ALL_BREAKPOINTS (b)
7391 if (b->type == bp_overlay_event)
7392 {
7393 b->enable_state = bp_disabled;
7394 update_global_location_list (UGLL_DONT_INSERT);
7395 overlay_events_enabled = 0;
7396 }
7397 }
7398
7399 /* Set an active std::terminate breakpoint for each std::terminate
7400 master breakpoint. */
7401 void
7402 set_std_terminate_breakpoint (void)
7403 {
7404 struct breakpoint *b, *b_tmp;
7405
7406 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7407 if (b->pspace == current_program_space
7408 && b->type == bp_std_terminate_master)
7409 {
7410 momentary_breakpoint_from_master (b, bp_std_terminate,
7411 &momentary_breakpoint_ops, 1);
7412 }
7413 }
7414
7415 /* Delete all the std::terminate breakpoints. */
7416 void
7417 delete_std_terminate_breakpoint (void)
7418 {
7419 struct breakpoint *b, *b_tmp;
7420
7421 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7422 if (b->type == bp_std_terminate)
7423 delete_breakpoint (b);
7424 }
7425
7426 struct breakpoint *
7427 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7428 {
7429 struct breakpoint *b;
7430
7431 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7432 &internal_breakpoint_ops);
7433
7434 b->enable_state = bp_enabled;
7435 /* location has to be used or breakpoint_re_set will delete me. */
7436 b->location = new_address_location (b->loc->address, NULL, 0);
7437
7438 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7439
7440 return b;
7441 }
7442
7443 struct lang_and_radix
7444 {
7445 enum language lang;
7446 int radix;
7447 };
7448
7449 /* Create a breakpoint for JIT code registration and unregistration. */
7450
7451 struct breakpoint *
7452 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7453 {
7454 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7455 &internal_breakpoint_ops);
7456 }
7457
7458 /* Remove JIT code registration and unregistration breakpoint(s). */
7459
7460 void
7461 remove_jit_event_breakpoints (void)
7462 {
7463 struct breakpoint *b, *b_tmp;
7464
7465 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7466 if (b->type == bp_jit_event
7467 && b->loc->pspace == current_program_space)
7468 delete_breakpoint (b);
7469 }
7470
7471 void
7472 remove_solib_event_breakpoints (void)
7473 {
7474 struct breakpoint *b, *b_tmp;
7475
7476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7477 if (b->type == bp_shlib_event
7478 && b->loc->pspace == current_program_space)
7479 delete_breakpoint (b);
7480 }
7481
7482 /* See breakpoint.h. */
7483
7484 void
7485 remove_solib_event_breakpoints_at_next_stop (void)
7486 {
7487 struct breakpoint *b, *b_tmp;
7488
7489 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7490 if (b->type == bp_shlib_event
7491 && b->loc->pspace == current_program_space)
7492 b->disposition = disp_del_at_next_stop;
7493 }
7494
7495 /* Helper for create_solib_event_breakpoint /
7496 create_and_insert_solib_event_breakpoint. Allows specifying which
7497 INSERT_MODE to pass through to update_global_location_list. */
7498
7499 static struct breakpoint *
7500 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7501 enum ugll_insert_mode insert_mode)
7502 {
7503 struct breakpoint *b;
7504
7505 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7506 &internal_breakpoint_ops);
7507 update_global_location_list_nothrow (insert_mode);
7508 return b;
7509 }
7510
7511 struct breakpoint *
7512 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7513 {
7514 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7515 }
7516
7517 /* See breakpoint.h. */
7518
7519 struct breakpoint *
7520 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7521 {
7522 struct breakpoint *b;
7523
7524 /* Explicitly tell update_global_location_list to insert
7525 locations. */
7526 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7527 if (!b->loc->inserted)
7528 {
7529 delete_breakpoint (b);
7530 return NULL;
7531 }
7532 return b;
7533 }
7534
7535 /* Disable any breakpoints that are on code in shared libraries. Only
7536 apply to enabled breakpoints, disabled ones can just stay disabled. */
7537
7538 void
7539 disable_breakpoints_in_shlibs (void)
7540 {
7541 struct bp_location *loc, **locp_tmp;
7542
7543 ALL_BP_LOCATIONS (loc, locp_tmp)
7544 {
7545 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7546 struct breakpoint *b = loc->owner;
7547
7548 /* We apply the check to all breakpoints, including disabled for
7549 those with loc->duplicate set. This is so that when breakpoint
7550 becomes enabled, or the duplicate is removed, gdb will try to
7551 insert all breakpoints. If we don't set shlib_disabled here,
7552 we'll try to insert those breakpoints and fail. */
7553 if (((b->type == bp_breakpoint)
7554 || (b->type == bp_jit_event)
7555 || (b->type == bp_hardware_breakpoint)
7556 || (is_tracepoint (b)))
7557 && loc->pspace == current_program_space
7558 && !loc->shlib_disabled
7559 && solib_name_from_address (loc->pspace, loc->address)
7560 )
7561 {
7562 loc->shlib_disabled = 1;
7563 }
7564 }
7565 }
7566
7567 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7568 notification of unloaded_shlib. Only apply to enabled breakpoints,
7569 disabled ones can just stay disabled. */
7570
7571 static void
7572 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7573 {
7574 struct bp_location *loc, **locp_tmp;
7575 int disabled_shlib_breaks = 0;
7576
7577 ALL_BP_LOCATIONS (loc, locp_tmp)
7578 {
7579 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7580 struct breakpoint *b = loc->owner;
7581
7582 if (solib->pspace == loc->pspace
7583 && !loc->shlib_disabled
7584 && (((b->type == bp_breakpoint
7585 || b->type == bp_jit_event
7586 || b->type == bp_hardware_breakpoint)
7587 && (loc->loc_type == bp_loc_hardware_breakpoint
7588 || loc->loc_type == bp_loc_software_breakpoint))
7589 || is_tracepoint (b))
7590 && solib_contains_address_p (solib, loc->address))
7591 {
7592 loc->shlib_disabled = 1;
7593 /* At this point, we cannot rely on remove_breakpoint
7594 succeeding so we must mark the breakpoint as not inserted
7595 to prevent future errors occurring in remove_breakpoints. */
7596 loc->inserted = 0;
7597
7598 /* This may cause duplicate notifications for the same breakpoint. */
7599 gdb::observers::breakpoint_modified.notify (b);
7600
7601 if (!disabled_shlib_breaks)
7602 {
7603 target_terminal::ours_for_output ();
7604 warning (_("Temporarily disabling breakpoints "
7605 "for unloaded shared library \"%s\""),
7606 solib->so_name);
7607 }
7608 disabled_shlib_breaks = 1;
7609 }
7610 }
7611 }
7612
7613 /* Disable any breakpoints and tracepoints in OBJFILE upon
7614 notification of free_objfile. Only apply to enabled breakpoints,
7615 disabled ones can just stay disabled. */
7616
7617 static void
7618 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7619 {
7620 struct breakpoint *b;
7621
7622 if (objfile == NULL)
7623 return;
7624
7625 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7626 managed by the user with add-symbol-file/remove-symbol-file.
7627 Similarly to how breakpoints in shared libraries are handled in
7628 response to "nosharedlibrary", mark breakpoints in such modules
7629 shlib_disabled so they end up uninserted on the next global
7630 location list update. Shared libraries not loaded by the user
7631 aren't handled here -- they're already handled in
7632 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7633 solib_unloaded observer. We skip objfiles that are not
7634 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7635 main objfile). */
7636 if ((objfile->flags & OBJF_SHARED) == 0
7637 || (objfile->flags & OBJF_USERLOADED) == 0)
7638 return;
7639
7640 ALL_BREAKPOINTS (b)
7641 {
7642 struct bp_location *loc;
7643 int bp_modified = 0;
7644
7645 if (!is_breakpoint (b) && !is_tracepoint (b))
7646 continue;
7647
7648 for (loc = b->loc; loc != NULL; loc = loc->next)
7649 {
7650 CORE_ADDR loc_addr = loc->address;
7651
7652 if (loc->loc_type != bp_loc_hardware_breakpoint
7653 && loc->loc_type != bp_loc_software_breakpoint)
7654 continue;
7655
7656 if (loc->shlib_disabled != 0)
7657 continue;
7658
7659 if (objfile->pspace != loc->pspace)
7660 continue;
7661
7662 if (loc->loc_type != bp_loc_hardware_breakpoint
7663 && loc->loc_type != bp_loc_software_breakpoint)
7664 continue;
7665
7666 if (is_addr_in_objfile (loc_addr, objfile))
7667 {
7668 loc->shlib_disabled = 1;
7669 /* At this point, we don't know whether the object was
7670 unmapped from the inferior or not, so leave the
7671 inserted flag alone. We'll handle failure to
7672 uninsert quietly, in case the object was indeed
7673 unmapped. */
7674
7675 mark_breakpoint_location_modified (loc);
7676
7677 bp_modified = 1;
7678 }
7679 }
7680
7681 if (bp_modified)
7682 gdb::observers::breakpoint_modified.notify (b);
7683 }
7684 }
7685
7686 /* FORK & VFORK catchpoints. */
7687
7688 /* An instance of this type is used to represent a fork or vfork
7689 catchpoint. A breakpoint is really of this type iff its ops pointer points
7690 to CATCH_FORK_BREAKPOINT_OPS. */
7691
7692 struct fork_catchpoint : public breakpoint
7693 {
7694 /* Process id of a child process whose forking triggered this
7695 catchpoint. This field is only valid immediately after this
7696 catchpoint has triggered. */
7697 ptid_t forked_inferior_pid;
7698 };
7699
7700 /* Implement the "insert" breakpoint_ops method for fork
7701 catchpoints. */
7702
7703 static int
7704 insert_catch_fork (struct bp_location *bl)
7705 {
7706 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7707 }
7708
7709 /* Implement the "remove" breakpoint_ops method for fork
7710 catchpoints. */
7711
7712 static int
7713 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7714 {
7715 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7716 }
7717
7718 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7719 catchpoints. */
7720
7721 static int
7722 breakpoint_hit_catch_fork (const struct bp_location *bl,
7723 const address_space *aspace, CORE_ADDR bp_addr,
7724 const struct target_waitstatus *ws)
7725 {
7726 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7727
7728 if (ws->kind != TARGET_WAITKIND_FORKED)
7729 return 0;
7730
7731 c->forked_inferior_pid = ws->value.related_pid;
7732 return 1;
7733 }
7734
7735 /* Implement the "print_it" breakpoint_ops method for fork
7736 catchpoints. */
7737
7738 static enum print_stop_action
7739 print_it_catch_fork (bpstat bs)
7740 {
7741 struct ui_out *uiout = current_uiout;
7742 struct breakpoint *b = bs->breakpoint_at;
7743 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7744
7745 annotate_catchpoint (b->number);
7746 maybe_print_thread_hit_breakpoint (uiout);
7747 if (b->disposition == disp_del)
7748 uiout->text ("Temporary catchpoint ");
7749 else
7750 uiout->text ("Catchpoint ");
7751 if (uiout->is_mi_like_p ())
7752 {
7753 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7754 uiout->field_string ("disp", bpdisp_text (b->disposition));
7755 }
7756 uiout->field_int ("bkptno", b->number);
7757 uiout->text (" (forked process ");
7758 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7759 uiout->text ("), ");
7760 return PRINT_SRC_AND_LOC;
7761 }
7762
7763 /* Implement the "print_one" breakpoint_ops method for fork
7764 catchpoints. */
7765
7766 static void
7767 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7768 {
7769 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7770 struct value_print_options opts;
7771 struct ui_out *uiout = current_uiout;
7772
7773 get_user_print_options (&opts);
7774
7775 /* Field 4, the address, is omitted (which makes the columns not
7776 line up too nicely with the headers, but the effect is relatively
7777 readable). */
7778 if (opts.addressprint)
7779 uiout->field_skip ("addr");
7780 annotate_field (5);
7781 uiout->text ("fork");
7782 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7783 {
7784 uiout->text (", process ");
7785 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7786 uiout->spaces (1);
7787 }
7788
7789 if (uiout->is_mi_like_p ())
7790 uiout->field_string ("catch-type", "fork");
7791 }
7792
7793 /* Implement the "print_mention" breakpoint_ops method for fork
7794 catchpoints. */
7795
7796 static void
7797 print_mention_catch_fork (struct breakpoint *b)
7798 {
7799 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7800 }
7801
7802 /* Implement the "print_recreate" breakpoint_ops method for fork
7803 catchpoints. */
7804
7805 static void
7806 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7807 {
7808 fprintf_unfiltered (fp, "catch fork");
7809 print_recreate_thread (b, fp);
7810 }
7811
7812 /* The breakpoint_ops structure to be used in fork catchpoints. */
7813
7814 static struct breakpoint_ops catch_fork_breakpoint_ops;
7815
7816 /* Implement the "insert" breakpoint_ops method for vfork
7817 catchpoints. */
7818
7819 static int
7820 insert_catch_vfork (struct bp_location *bl)
7821 {
7822 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7823 }
7824
7825 /* Implement the "remove" breakpoint_ops method for vfork
7826 catchpoints. */
7827
7828 static int
7829 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7830 {
7831 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7832 }
7833
7834 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static int
7838 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7839 const address_space *aspace, CORE_ADDR bp_addr,
7840 const struct target_waitstatus *ws)
7841 {
7842 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7843
7844 if (ws->kind != TARGET_WAITKIND_VFORKED)
7845 return 0;
7846
7847 c->forked_inferior_pid = ws->value.related_pid;
7848 return 1;
7849 }
7850
7851 /* Implement the "print_it" breakpoint_ops method for vfork
7852 catchpoints. */
7853
7854 static enum print_stop_action
7855 print_it_catch_vfork (bpstat bs)
7856 {
7857 struct ui_out *uiout = current_uiout;
7858 struct breakpoint *b = bs->breakpoint_at;
7859 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7860
7861 annotate_catchpoint (b->number);
7862 maybe_print_thread_hit_breakpoint (uiout);
7863 if (b->disposition == disp_del)
7864 uiout->text ("Temporary catchpoint ");
7865 else
7866 uiout->text ("Catchpoint ");
7867 if (uiout->is_mi_like_p ())
7868 {
7869 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7870 uiout->field_string ("disp", bpdisp_text (b->disposition));
7871 }
7872 uiout->field_int ("bkptno", b->number);
7873 uiout->text (" (vforked process ");
7874 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7875 uiout->text ("), ");
7876 return PRINT_SRC_AND_LOC;
7877 }
7878
7879 /* Implement the "print_one" breakpoint_ops method for vfork
7880 catchpoints. */
7881
7882 static void
7883 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7884 {
7885 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7886 struct value_print_options opts;
7887 struct ui_out *uiout = current_uiout;
7888
7889 get_user_print_options (&opts);
7890 /* Field 4, the address, is omitted (which makes the columns not
7891 line up too nicely with the headers, but the effect is relatively
7892 readable). */
7893 if (opts.addressprint)
7894 uiout->field_skip ("addr");
7895 annotate_field (5);
7896 uiout->text ("vfork");
7897 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7898 {
7899 uiout->text (", process ");
7900 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7901 uiout->spaces (1);
7902 }
7903
7904 if (uiout->is_mi_like_p ())
7905 uiout->field_string ("catch-type", "vfork");
7906 }
7907
7908 /* Implement the "print_mention" breakpoint_ops method for vfork
7909 catchpoints. */
7910
7911 static void
7912 print_mention_catch_vfork (struct breakpoint *b)
7913 {
7914 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7915 }
7916
7917 /* Implement the "print_recreate" breakpoint_ops method for vfork
7918 catchpoints. */
7919
7920 static void
7921 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7922 {
7923 fprintf_unfiltered (fp, "catch vfork");
7924 print_recreate_thread (b, fp);
7925 }
7926
7927 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7928
7929 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7930
7931 /* An instance of this type is used to represent an solib catchpoint.
7932 A breakpoint is really of this type iff its ops pointer points to
7933 CATCH_SOLIB_BREAKPOINT_OPS. */
7934
7935 struct solib_catchpoint : public breakpoint
7936 {
7937 ~solib_catchpoint () override;
7938
7939 /* True for "catch load", false for "catch unload". */
7940 unsigned char is_load;
7941
7942 /* Regular expression to match, if any. COMPILED is only valid when
7943 REGEX is non-NULL. */
7944 char *regex;
7945 std::unique_ptr<compiled_regex> compiled;
7946 };
7947
7948 solib_catchpoint::~solib_catchpoint ()
7949 {
7950 xfree (this->regex);
7951 }
7952
7953 static int
7954 insert_catch_solib (struct bp_location *ignore)
7955 {
7956 return 0;
7957 }
7958
7959 static int
7960 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7961 {
7962 return 0;
7963 }
7964
7965 static int
7966 breakpoint_hit_catch_solib (const struct bp_location *bl,
7967 const address_space *aspace,
7968 CORE_ADDR bp_addr,
7969 const struct target_waitstatus *ws)
7970 {
7971 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7972 struct breakpoint *other;
7973
7974 if (ws->kind == TARGET_WAITKIND_LOADED)
7975 return 1;
7976
7977 ALL_BREAKPOINTS (other)
7978 {
7979 struct bp_location *other_bl;
7980
7981 if (other == bl->owner)
7982 continue;
7983
7984 if (other->type != bp_shlib_event)
7985 continue;
7986
7987 if (self->pspace != NULL && other->pspace != self->pspace)
7988 continue;
7989
7990 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7991 {
7992 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7993 return 1;
7994 }
7995 }
7996
7997 return 0;
7998 }
7999
8000 static void
8001 check_status_catch_solib (struct bpstats *bs)
8002 {
8003 struct solib_catchpoint *self
8004 = (struct solib_catchpoint *) bs->breakpoint_at;
8005
8006 if (self->is_load)
8007 {
8008 for (so_list *iter : current_program_space->added_solibs)
8009 {
8010 if (!self->regex
8011 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8012 return;
8013 }
8014 }
8015 else
8016 {
8017 for (const std::string &iter : current_program_space->deleted_solibs)
8018 {
8019 if (!self->regex
8020 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8021 return;
8022 }
8023 }
8024
8025 bs->stop = 0;
8026 bs->print_it = print_it_noop;
8027 }
8028
8029 static enum print_stop_action
8030 print_it_catch_solib (bpstat bs)
8031 {
8032 struct breakpoint *b = bs->breakpoint_at;
8033 struct ui_out *uiout = current_uiout;
8034
8035 annotate_catchpoint (b->number);
8036 maybe_print_thread_hit_breakpoint (uiout);
8037 if (b->disposition == disp_del)
8038 uiout->text ("Temporary catchpoint ");
8039 else
8040 uiout->text ("Catchpoint ");
8041 uiout->field_int ("bkptno", b->number);
8042 uiout->text ("\n");
8043 if (uiout->is_mi_like_p ())
8044 uiout->field_string ("disp", bpdisp_text (b->disposition));
8045 print_solib_event (1);
8046 return PRINT_SRC_AND_LOC;
8047 }
8048
8049 static void
8050 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8051 {
8052 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8053 struct value_print_options opts;
8054 struct ui_out *uiout = current_uiout;
8055 char *msg;
8056
8057 get_user_print_options (&opts);
8058 /* Field 4, the address, is omitted (which makes the columns not
8059 line up too nicely with the headers, but the effect is relatively
8060 readable). */
8061 if (opts.addressprint)
8062 {
8063 annotate_field (4);
8064 uiout->field_skip ("addr");
8065 }
8066
8067 annotate_field (5);
8068 if (self->is_load)
8069 {
8070 if (self->regex)
8071 msg = xstrprintf (_("load of library matching %s"), self->regex);
8072 else
8073 msg = xstrdup (_("load of library"));
8074 }
8075 else
8076 {
8077 if (self->regex)
8078 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8079 else
8080 msg = xstrdup (_("unload of library"));
8081 }
8082 uiout->field_string ("what", msg);
8083 xfree (msg);
8084
8085 if (uiout->is_mi_like_p ())
8086 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8087 }
8088
8089 static void
8090 print_mention_catch_solib (struct breakpoint *b)
8091 {
8092 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8093
8094 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8095 self->is_load ? "load" : "unload");
8096 }
8097
8098 static void
8099 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8100 {
8101 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8102
8103 fprintf_unfiltered (fp, "%s %s",
8104 b->disposition == disp_del ? "tcatch" : "catch",
8105 self->is_load ? "load" : "unload");
8106 if (self->regex)
8107 fprintf_unfiltered (fp, " %s", self->regex);
8108 fprintf_unfiltered (fp, "\n");
8109 }
8110
8111 static struct breakpoint_ops catch_solib_breakpoint_ops;
8112
8113 /* Shared helper function (MI and CLI) for creating and installing
8114 a shared object event catchpoint. If IS_LOAD is non-zero then
8115 the events to be caught are load events, otherwise they are
8116 unload events. If IS_TEMP is non-zero the catchpoint is a
8117 temporary one. If ENABLED is non-zero the catchpoint is
8118 created in an enabled state. */
8119
8120 void
8121 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8122 {
8123 struct gdbarch *gdbarch = get_current_arch ();
8124
8125 if (!arg)
8126 arg = "";
8127 arg = skip_spaces (arg);
8128
8129 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8130
8131 if (*arg != '\0')
8132 {
8133 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8134 _("Invalid regexp")));
8135 c->regex = xstrdup (arg);
8136 }
8137
8138 c->is_load = is_load;
8139 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8140 &catch_solib_breakpoint_ops);
8141
8142 c->enable_state = enabled ? bp_enabled : bp_disabled;
8143
8144 install_breakpoint (0, std::move (c), 1);
8145 }
8146
8147 /* A helper function that does all the work for "catch load" and
8148 "catch unload". */
8149
8150 static void
8151 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8152 struct cmd_list_element *command)
8153 {
8154 int tempflag;
8155 const int enabled = 1;
8156
8157 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8158
8159 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8160 }
8161
8162 static void
8163 catch_load_command_1 (const char *arg, int from_tty,
8164 struct cmd_list_element *command)
8165 {
8166 catch_load_or_unload (arg, from_tty, 1, command);
8167 }
8168
8169 static void
8170 catch_unload_command_1 (const char *arg, int from_tty,
8171 struct cmd_list_element *command)
8172 {
8173 catch_load_or_unload (arg, from_tty, 0, command);
8174 }
8175
8176 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8177 is non-zero, then make the breakpoint temporary. If COND_STRING is
8178 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8179 the breakpoint_ops structure associated to the catchpoint. */
8180
8181 void
8182 init_catchpoint (struct breakpoint *b,
8183 struct gdbarch *gdbarch, int tempflag,
8184 const char *cond_string,
8185 const struct breakpoint_ops *ops)
8186 {
8187 symtab_and_line sal;
8188 sal.pspace = current_program_space;
8189
8190 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8191
8192 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8193 b->disposition = tempflag ? disp_del : disp_donttouch;
8194 }
8195
8196 void
8197 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8198 {
8199 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8200 set_breakpoint_number (internal, b);
8201 if (is_tracepoint (b))
8202 set_tracepoint_count (breakpoint_count);
8203 if (!internal)
8204 mention (b);
8205 gdb::observers::breakpoint_created.notify (b);
8206
8207 if (update_gll)
8208 update_global_location_list (UGLL_MAY_INSERT);
8209 }
8210
8211 static void
8212 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8213 int tempflag, const char *cond_string,
8214 const struct breakpoint_ops *ops)
8215 {
8216 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8217
8218 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8219
8220 c->forked_inferior_pid = null_ptid;
8221
8222 install_breakpoint (0, std::move (c), 1);
8223 }
8224
8225 /* Exec catchpoints. */
8226
8227 /* An instance of this type is used to represent an exec catchpoint.
8228 A breakpoint is really of this type iff its ops pointer points to
8229 CATCH_EXEC_BREAKPOINT_OPS. */
8230
8231 struct exec_catchpoint : public breakpoint
8232 {
8233 ~exec_catchpoint () override;
8234
8235 /* Filename of a program whose exec triggered this catchpoint.
8236 This field is only valid immediately after this catchpoint has
8237 triggered. */
8238 char *exec_pathname;
8239 };
8240
8241 /* Exec catchpoint destructor. */
8242
8243 exec_catchpoint::~exec_catchpoint ()
8244 {
8245 xfree (this->exec_pathname);
8246 }
8247
8248 static int
8249 insert_catch_exec (struct bp_location *bl)
8250 {
8251 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8252 }
8253
8254 static int
8255 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8256 {
8257 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8258 }
8259
8260 static int
8261 breakpoint_hit_catch_exec (const struct bp_location *bl,
8262 const address_space *aspace, CORE_ADDR bp_addr,
8263 const struct target_waitstatus *ws)
8264 {
8265 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8266
8267 if (ws->kind != TARGET_WAITKIND_EXECD)
8268 return 0;
8269
8270 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8271 return 1;
8272 }
8273
8274 static enum print_stop_action
8275 print_it_catch_exec (bpstat bs)
8276 {
8277 struct ui_out *uiout = current_uiout;
8278 struct breakpoint *b = bs->breakpoint_at;
8279 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8280
8281 annotate_catchpoint (b->number);
8282 maybe_print_thread_hit_breakpoint (uiout);
8283 if (b->disposition == disp_del)
8284 uiout->text ("Temporary catchpoint ");
8285 else
8286 uiout->text ("Catchpoint ");
8287 if (uiout->is_mi_like_p ())
8288 {
8289 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8290 uiout->field_string ("disp", bpdisp_text (b->disposition));
8291 }
8292 uiout->field_int ("bkptno", b->number);
8293 uiout->text (" (exec'd ");
8294 uiout->field_string ("new-exec", c->exec_pathname);
8295 uiout->text ("), ");
8296
8297 return PRINT_SRC_AND_LOC;
8298 }
8299
8300 static void
8301 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8302 {
8303 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8304 struct value_print_options opts;
8305 struct ui_out *uiout = current_uiout;
8306
8307 get_user_print_options (&opts);
8308
8309 /* Field 4, the address, is omitted (which makes the columns
8310 not line up too nicely with the headers, but the effect
8311 is relatively readable). */
8312 if (opts.addressprint)
8313 uiout->field_skip ("addr");
8314 annotate_field (5);
8315 uiout->text ("exec");
8316 if (c->exec_pathname != NULL)
8317 {
8318 uiout->text (", program \"");
8319 uiout->field_string ("what", c->exec_pathname);
8320 uiout->text ("\" ");
8321 }
8322
8323 if (uiout->is_mi_like_p ())
8324 uiout->field_string ("catch-type", "exec");
8325 }
8326
8327 static void
8328 print_mention_catch_exec (struct breakpoint *b)
8329 {
8330 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8331 }
8332
8333 /* Implement the "print_recreate" breakpoint_ops method for exec
8334 catchpoints. */
8335
8336 static void
8337 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8338 {
8339 fprintf_unfiltered (fp, "catch exec");
8340 print_recreate_thread (b, fp);
8341 }
8342
8343 static struct breakpoint_ops catch_exec_breakpoint_ops;
8344
8345 static int
8346 hw_breakpoint_used_count (void)
8347 {
8348 int i = 0;
8349 struct breakpoint *b;
8350 struct bp_location *bl;
8351
8352 ALL_BREAKPOINTS (b)
8353 {
8354 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8355 for (bl = b->loc; bl; bl = bl->next)
8356 {
8357 /* Special types of hardware breakpoints may use more than
8358 one register. */
8359 i += b->ops->resources_needed (bl);
8360 }
8361 }
8362
8363 return i;
8364 }
8365
8366 /* Returns the resources B would use if it were a hardware
8367 watchpoint. */
8368
8369 static int
8370 hw_watchpoint_use_count (struct breakpoint *b)
8371 {
8372 int i = 0;
8373 struct bp_location *bl;
8374
8375 if (!breakpoint_enabled (b))
8376 return 0;
8377
8378 for (bl = b->loc; bl; bl = bl->next)
8379 {
8380 /* Special types of hardware watchpoints may use more than
8381 one register. */
8382 i += b->ops->resources_needed (bl);
8383 }
8384
8385 return i;
8386 }
8387
8388 /* Returns the sum the used resources of all hardware watchpoints of
8389 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8390 the sum of the used resources of all hardware watchpoints of other
8391 types _not_ TYPE. */
8392
8393 static int
8394 hw_watchpoint_used_count_others (struct breakpoint *except,
8395 enum bptype type, int *other_type_used)
8396 {
8397 int i = 0;
8398 struct breakpoint *b;
8399
8400 *other_type_used = 0;
8401 ALL_BREAKPOINTS (b)
8402 {
8403 if (b == except)
8404 continue;
8405 if (!breakpoint_enabled (b))
8406 continue;
8407
8408 if (b->type == type)
8409 i += hw_watchpoint_use_count (b);
8410 else if (is_hardware_watchpoint (b))
8411 *other_type_used = 1;
8412 }
8413
8414 return i;
8415 }
8416
8417 void
8418 disable_watchpoints_before_interactive_call_start (void)
8419 {
8420 struct breakpoint *b;
8421
8422 ALL_BREAKPOINTS (b)
8423 {
8424 if (is_watchpoint (b) && breakpoint_enabled (b))
8425 {
8426 b->enable_state = bp_call_disabled;
8427 update_global_location_list (UGLL_DONT_INSERT);
8428 }
8429 }
8430 }
8431
8432 void
8433 enable_watchpoints_after_interactive_call_stop (void)
8434 {
8435 struct breakpoint *b;
8436
8437 ALL_BREAKPOINTS (b)
8438 {
8439 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8440 {
8441 b->enable_state = bp_enabled;
8442 update_global_location_list (UGLL_MAY_INSERT);
8443 }
8444 }
8445 }
8446
8447 void
8448 disable_breakpoints_before_startup (void)
8449 {
8450 current_program_space->executing_startup = 1;
8451 update_global_location_list (UGLL_DONT_INSERT);
8452 }
8453
8454 void
8455 enable_breakpoints_after_startup (void)
8456 {
8457 current_program_space->executing_startup = 0;
8458 breakpoint_re_set ();
8459 }
8460
8461 /* Create a new single-step breakpoint for thread THREAD, with no
8462 locations. */
8463
8464 static struct breakpoint *
8465 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8466 {
8467 std::unique_ptr<breakpoint> b (new breakpoint ());
8468
8469 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8470 &momentary_breakpoint_ops);
8471
8472 b->disposition = disp_donttouch;
8473 b->frame_id = null_frame_id;
8474
8475 b->thread = thread;
8476 gdb_assert (b->thread != 0);
8477
8478 return add_to_breakpoint_chain (std::move (b));
8479 }
8480
8481 /* Set a momentary breakpoint of type TYPE at address specified by
8482 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8483 frame. */
8484
8485 breakpoint_up
8486 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8487 struct frame_id frame_id, enum bptype type)
8488 {
8489 struct breakpoint *b;
8490
8491 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8492 tail-called one. */
8493 gdb_assert (!frame_id_artificial_p (frame_id));
8494
8495 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8496 b->enable_state = bp_enabled;
8497 b->disposition = disp_donttouch;
8498 b->frame_id = frame_id;
8499
8500 /* If we're debugging a multi-threaded program, then we want
8501 momentary breakpoints to be active in only a single thread of
8502 control. */
8503 if (in_thread_list (inferior_ptid))
8504 b->thread = ptid_to_global_thread_id (inferior_ptid);
8505
8506 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8507
8508 return breakpoint_up (b);
8509 }
8510
8511 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8512 The new breakpoint will have type TYPE, use OPS as its
8513 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8514
8515 static struct breakpoint *
8516 momentary_breakpoint_from_master (struct breakpoint *orig,
8517 enum bptype type,
8518 const struct breakpoint_ops *ops,
8519 int loc_enabled)
8520 {
8521 struct breakpoint *copy;
8522
8523 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8524 copy->loc = allocate_bp_location (copy);
8525 set_breakpoint_location_function (copy->loc, 1);
8526
8527 copy->loc->gdbarch = orig->loc->gdbarch;
8528 copy->loc->requested_address = orig->loc->requested_address;
8529 copy->loc->address = orig->loc->address;
8530 copy->loc->section = orig->loc->section;
8531 copy->loc->pspace = orig->loc->pspace;
8532 copy->loc->probe = orig->loc->probe;
8533 copy->loc->line_number = orig->loc->line_number;
8534 copy->loc->symtab = orig->loc->symtab;
8535 copy->loc->enabled = loc_enabled;
8536 copy->frame_id = orig->frame_id;
8537 copy->thread = orig->thread;
8538 copy->pspace = orig->pspace;
8539
8540 copy->enable_state = bp_enabled;
8541 copy->disposition = disp_donttouch;
8542 copy->number = internal_breakpoint_number--;
8543
8544 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8545 return copy;
8546 }
8547
8548 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8549 ORIG is NULL. */
8550
8551 struct breakpoint *
8552 clone_momentary_breakpoint (struct breakpoint *orig)
8553 {
8554 /* If there's nothing to clone, then return nothing. */
8555 if (orig == NULL)
8556 return NULL;
8557
8558 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8559 }
8560
8561 breakpoint_up
8562 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8563 enum bptype type)
8564 {
8565 struct symtab_and_line sal;
8566
8567 sal = find_pc_line (pc, 0);
8568 sal.pc = pc;
8569 sal.section = find_pc_overlay (pc);
8570 sal.explicit_pc = 1;
8571
8572 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8573 }
8574 \f
8575
8576 /* Tell the user we have just set a breakpoint B. */
8577
8578 static void
8579 mention (struct breakpoint *b)
8580 {
8581 b->ops->print_mention (b);
8582 current_uiout->text ("\n");
8583 }
8584 \f
8585
8586 static int bp_loc_is_permanent (struct bp_location *loc);
8587
8588 static struct bp_location *
8589 add_location_to_breakpoint (struct breakpoint *b,
8590 const struct symtab_and_line *sal)
8591 {
8592 struct bp_location *loc, **tmp;
8593 CORE_ADDR adjusted_address;
8594 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8595
8596 if (loc_gdbarch == NULL)
8597 loc_gdbarch = b->gdbarch;
8598
8599 /* Adjust the breakpoint's address prior to allocating a location.
8600 Once we call allocate_bp_location(), that mostly uninitialized
8601 location will be placed on the location chain. Adjustment of the
8602 breakpoint may cause target_read_memory() to be called and we do
8603 not want its scan of the location chain to find a breakpoint and
8604 location that's only been partially initialized. */
8605 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8606 sal->pc, b->type);
8607
8608 /* Sort the locations by their ADDRESS. */
8609 loc = allocate_bp_location (b);
8610 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8611 tmp = &((*tmp)->next))
8612 ;
8613 loc->next = *tmp;
8614 *tmp = loc;
8615
8616 loc->requested_address = sal->pc;
8617 loc->address = adjusted_address;
8618 loc->pspace = sal->pspace;
8619 loc->probe.prob = sal->prob;
8620 loc->probe.objfile = sal->objfile;
8621 gdb_assert (loc->pspace != NULL);
8622 loc->section = sal->section;
8623 loc->gdbarch = loc_gdbarch;
8624 loc->line_number = sal->line;
8625 loc->symtab = sal->symtab;
8626 loc->symbol = sal->symbol;
8627 loc->msymbol = sal->msymbol;
8628 loc->objfile = sal->objfile;
8629
8630 set_breakpoint_location_function (loc,
8631 sal->explicit_pc || sal->explicit_line);
8632
8633 /* While by definition, permanent breakpoints are already present in the
8634 code, we don't mark the location as inserted. Normally one would expect
8635 that GDB could rely on that breakpoint instruction to stop the program,
8636 thus removing the need to insert its own breakpoint, except that executing
8637 the breakpoint instruction can kill the target instead of reporting a
8638 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8639 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8640 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8641 breakpoint be inserted normally results in QEMU knowing about the GDB
8642 breakpoint, and thus trap before the breakpoint instruction is executed.
8643 (If GDB later needs to continue execution past the permanent breakpoint,
8644 it manually increments the PC, thus avoiding executing the breakpoint
8645 instruction.) */
8646 if (bp_loc_is_permanent (loc))
8647 loc->permanent = 1;
8648
8649 return loc;
8650 }
8651 \f
8652
8653 /* See breakpoint.h. */
8654
8655 int
8656 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8657 {
8658 int len;
8659 CORE_ADDR addr;
8660 const gdb_byte *bpoint;
8661 gdb_byte *target_mem;
8662
8663 addr = address;
8664 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8665
8666 /* Software breakpoints unsupported? */
8667 if (bpoint == NULL)
8668 return 0;
8669
8670 target_mem = (gdb_byte *) alloca (len);
8671
8672 /* Enable the automatic memory restoration from breakpoints while
8673 we read the memory. Otherwise we could say about our temporary
8674 breakpoints they are permanent. */
8675 scoped_restore restore_memory
8676 = make_scoped_restore_show_memory_breakpoints (0);
8677
8678 if (target_read_memory (address, target_mem, len) == 0
8679 && memcmp (target_mem, bpoint, len) == 0)
8680 return 1;
8681
8682 return 0;
8683 }
8684
8685 /* Return 1 if LOC is pointing to a permanent breakpoint,
8686 return 0 otherwise. */
8687
8688 static int
8689 bp_loc_is_permanent (struct bp_location *loc)
8690 {
8691 gdb_assert (loc != NULL);
8692
8693 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8694 attempt to read from the addresses the locations of these breakpoint types
8695 point to. program_breakpoint_here_p, below, will attempt to read
8696 memory. */
8697 if (!breakpoint_address_is_meaningful (loc->owner))
8698 return 0;
8699
8700 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8701 switch_to_program_space_and_thread (loc->pspace);
8702 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8703 }
8704
8705 /* Build a command list for the dprintf corresponding to the current
8706 settings of the dprintf style options. */
8707
8708 static void
8709 update_dprintf_command_list (struct breakpoint *b)
8710 {
8711 char *dprintf_args = b->extra_string;
8712 char *printf_line = NULL;
8713
8714 if (!dprintf_args)
8715 return;
8716
8717 dprintf_args = skip_spaces (dprintf_args);
8718
8719 /* Allow a comma, as it may have terminated a location, but don't
8720 insist on it. */
8721 if (*dprintf_args == ',')
8722 ++dprintf_args;
8723 dprintf_args = skip_spaces (dprintf_args);
8724
8725 if (*dprintf_args != '"')
8726 error (_("Bad format string, missing '\"'."));
8727
8728 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8729 printf_line = xstrprintf ("printf %s", dprintf_args);
8730 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8731 {
8732 if (!dprintf_function)
8733 error (_("No function supplied for dprintf call"));
8734
8735 if (dprintf_channel && strlen (dprintf_channel) > 0)
8736 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8737 dprintf_function,
8738 dprintf_channel,
8739 dprintf_args);
8740 else
8741 printf_line = xstrprintf ("call (void) %s (%s)",
8742 dprintf_function,
8743 dprintf_args);
8744 }
8745 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8746 {
8747 if (target_can_run_breakpoint_commands ())
8748 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8749 else
8750 {
8751 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8752 printf_line = xstrprintf ("printf %s", dprintf_args);
8753 }
8754 }
8755 else
8756 internal_error (__FILE__, __LINE__,
8757 _("Invalid dprintf style."));
8758
8759 gdb_assert (printf_line != NULL);
8760
8761 /* Manufacture a printf sequence. */
8762 struct command_line *printf_cmd_line
8763 = new struct command_line (simple_control, printf_line);
8764 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8765 command_lines_deleter ()));
8766 }
8767
8768 /* Update all dprintf commands, making their command lists reflect
8769 current style settings. */
8770
8771 static void
8772 update_dprintf_commands (const char *args, int from_tty,
8773 struct cmd_list_element *c)
8774 {
8775 struct breakpoint *b;
8776
8777 ALL_BREAKPOINTS (b)
8778 {
8779 if (b->type == bp_dprintf)
8780 update_dprintf_command_list (b);
8781 }
8782 }
8783
8784 /* Create a breakpoint with SAL as location. Use LOCATION
8785 as a description of the location, and COND_STRING
8786 as condition expression. If LOCATION is NULL then create an
8787 "address location" from the address in the SAL. */
8788
8789 static void
8790 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8791 gdb::array_view<const symtab_and_line> sals,
8792 event_location_up &&location,
8793 gdb::unique_xmalloc_ptr<char> filter,
8794 gdb::unique_xmalloc_ptr<char> cond_string,
8795 gdb::unique_xmalloc_ptr<char> extra_string,
8796 enum bptype type, enum bpdisp disposition,
8797 int thread, int task, int ignore_count,
8798 const struct breakpoint_ops *ops, int from_tty,
8799 int enabled, int internal, unsigned flags,
8800 int display_canonical)
8801 {
8802 int i;
8803
8804 if (type == bp_hardware_breakpoint)
8805 {
8806 int target_resources_ok;
8807
8808 i = hw_breakpoint_used_count ();
8809 target_resources_ok =
8810 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8811 i + 1, 0);
8812 if (target_resources_ok == 0)
8813 error (_("No hardware breakpoint support in the target."));
8814 else if (target_resources_ok < 0)
8815 error (_("Hardware breakpoints used exceeds limit."));
8816 }
8817
8818 gdb_assert (!sals.empty ());
8819
8820 for (const auto &sal : sals)
8821 {
8822 struct bp_location *loc;
8823
8824 if (from_tty)
8825 {
8826 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8827 if (!loc_gdbarch)
8828 loc_gdbarch = gdbarch;
8829
8830 describe_other_breakpoints (loc_gdbarch,
8831 sal.pspace, sal.pc, sal.section, thread);
8832 }
8833
8834 if (&sal == &sals[0])
8835 {
8836 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8837 b->thread = thread;
8838 b->task = task;
8839
8840 b->cond_string = cond_string.release ();
8841 b->extra_string = extra_string.release ();
8842 b->ignore_count = ignore_count;
8843 b->enable_state = enabled ? bp_enabled : bp_disabled;
8844 b->disposition = disposition;
8845
8846 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8847 b->loc->inserted = 1;
8848
8849 if (type == bp_static_tracepoint)
8850 {
8851 struct tracepoint *t = (struct tracepoint *) b;
8852 struct static_tracepoint_marker marker;
8853
8854 if (strace_marker_p (b))
8855 {
8856 /* We already know the marker exists, otherwise, we
8857 wouldn't see a sal for it. */
8858 const char *p
8859 = &event_location_to_string (b->location.get ())[3];
8860 const char *endp;
8861
8862 p = skip_spaces (p);
8863
8864 endp = skip_to_space (p);
8865
8866 t->static_trace_marker_id.assign (p, endp - p);
8867
8868 printf_filtered (_("Probed static tracepoint "
8869 "marker \"%s\"\n"),
8870 t->static_trace_marker_id.c_str ());
8871 }
8872 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8873 {
8874 t->static_trace_marker_id = std::move (marker.str_id);
8875
8876 printf_filtered (_("Probed static tracepoint "
8877 "marker \"%s\"\n"),
8878 t->static_trace_marker_id.c_str ());
8879 }
8880 else
8881 warning (_("Couldn't determine the static "
8882 "tracepoint marker to probe"));
8883 }
8884
8885 loc = b->loc;
8886 }
8887 else
8888 {
8889 loc = add_location_to_breakpoint (b, &sal);
8890 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8891 loc->inserted = 1;
8892 }
8893
8894 if (b->cond_string)
8895 {
8896 const char *arg = b->cond_string;
8897
8898 loc->cond = parse_exp_1 (&arg, loc->address,
8899 block_for_pc (loc->address), 0);
8900 if (*arg)
8901 error (_("Garbage '%s' follows condition"), arg);
8902 }
8903
8904 /* Dynamic printf requires and uses additional arguments on the
8905 command line, otherwise it's an error. */
8906 if (type == bp_dprintf)
8907 {
8908 if (b->extra_string)
8909 update_dprintf_command_list (b);
8910 else
8911 error (_("Format string required"));
8912 }
8913 else if (b->extra_string)
8914 error (_("Garbage '%s' at end of command"), b->extra_string);
8915 }
8916
8917 b->display_canonical = display_canonical;
8918 if (location != NULL)
8919 b->location = std::move (location);
8920 else
8921 b->location = new_address_location (b->loc->address, NULL, 0);
8922 b->filter = filter.release ();
8923 }
8924
8925 static void
8926 create_breakpoint_sal (struct gdbarch *gdbarch,
8927 gdb::array_view<const symtab_and_line> sals,
8928 event_location_up &&location,
8929 gdb::unique_xmalloc_ptr<char> filter,
8930 gdb::unique_xmalloc_ptr<char> cond_string,
8931 gdb::unique_xmalloc_ptr<char> extra_string,
8932 enum bptype type, enum bpdisp disposition,
8933 int thread, int task, int ignore_count,
8934 const struct breakpoint_ops *ops, int from_tty,
8935 int enabled, int internal, unsigned flags,
8936 int display_canonical)
8937 {
8938 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8939
8940 init_breakpoint_sal (b.get (), gdbarch,
8941 sals, std::move (location),
8942 std::move (filter),
8943 std::move (cond_string),
8944 std::move (extra_string),
8945 type, disposition,
8946 thread, task, ignore_count,
8947 ops, from_tty,
8948 enabled, internal, flags,
8949 display_canonical);
8950
8951 install_breakpoint (internal, std::move (b), 0);
8952 }
8953
8954 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8955 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8956 value. COND_STRING, if not NULL, specified the condition to be
8957 used for all breakpoints. Essentially the only case where
8958 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8959 function. In that case, it's still not possible to specify
8960 separate conditions for different overloaded functions, so
8961 we take just a single condition string.
8962
8963 NOTE: If the function succeeds, the caller is expected to cleanup
8964 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8965 array contents). If the function fails (error() is called), the
8966 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8967 COND and SALS arrays and each of those arrays contents. */
8968
8969 static void
8970 create_breakpoints_sal (struct gdbarch *gdbarch,
8971 struct linespec_result *canonical,
8972 gdb::unique_xmalloc_ptr<char> cond_string,
8973 gdb::unique_xmalloc_ptr<char> extra_string,
8974 enum bptype type, enum bpdisp disposition,
8975 int thread, int task, int ignore_count,
8976 const struct breakpoint_ops *ops, int from_tty,
8977 int enabled, int internal, unsigned flags)
8978 {
8979 if (canonical->pre_expanded)
8980 gdb_assert (canonical->lsals.size () == 1);
8981
8982 for (const auto &lsal : canonical->lsals)
8983 {
8984 /* Note that 'location' can be NULL in the case of a plain
8985 'break', without arguments. */
8986 event_location_up location
8987 = (canonical->location != NULL
8988 ? copy_event_location (canonical->location.get ()) : NULL);
8989 gdb::unique_xmalloc_ptr<char> filter_string
8990 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8991
8992 create_breakpoint_sal (gdbarch, lsal.sals,
8993 std::move (location),
8994 std::move (filter_string),
8995 std::move (cond_string),
8996 std::move (extra_string),
8997 type, disposition,
8998 thread, task, ignore_count, ops,
8999 from_tty, enabled, internal, flags,
9000 canonical->special_display);
9001 }
9002 }
9003
9004 /* Parse LOCATION which is assumed to be a SAL specification possibly
9005 followed by conditionals. On return, SALS contains an array of SAL
9006 addresses found. LOCATION points to the end of the SAL (for
9007 linespec locations).
9008
9009 The array and the line spec strings are allocated on the heap, it is
9010 the caller's responsibility to free them. */
9011
9012 static void
9013 parse_breakpoint_sals (const struct event_location *location,
9014 struct linespec_result *canonical)
9015 {
9016 struct symtab_and_line cursal;
9017
9018 if (event_location_type (location) == LINESPEC_LOCATION)
9019 {
9020 const char *spec = get_linespec_location (location)->spec_string;
9021
9022 if (spec == NULL)
9023 {
9024 /* The last displayed codepoint, if it's valid, is our default
9025 breakpoint address. */
9026 if (last_displayed_sal_is_valid ())
9027 {
9028 /* Set sal's pspace, pc, symtab, and line to the values
9029 corresponding to the last call to print_frame_info.
9030 Be sure to reinitialize LINE with NOTCURRENT == 0
9031 as the breakpoint line number is inappropriate otherwise.
9032 find_pc_line would adjust PC, re-set it back. */
9033 symtab_and_line sal = get_last_displayed_sal ();
9034 CORE_ADDR pc = sal.pc;
9035
9036 sal = find_pc_line (pc, 0);
9037
9038 /* "break" without arguments is equivalent to "break *PC"
9039 where PC is the last displayed codepoint's address. So
9040 make sure to set sal.explicit_pc to prevent GDB from
9041 trying to expand the list of sals to include all other
9042 instances with the same symtab and line. */
9043 sal.pc = pc;
9044 sal.explicit_pc = 1;
9045
9046 struct linespec_sals lsal;
9047 lsal.sals = {sal};
9048 lsal.canonical = NULL;
9049
9050 canonical->lsals.push_back (std::move (lsal));
9051 return;
9052 }
9053 else
9054 error (_("No default breakpoint address now."));
9055 }
9056 }
9057
9058 /* Force almost all breakpoints to be in terms of the
9059 current_source_symtab (which is decode_line_1's default).
9060 This should produce the results we want almost all of the
9061 time while leaving default_breakpoint_* alone.
9062
9063 ObjC: However, don't match an Objective-C method name which
9064 may have a '+' or '-' succeeded by a '['. */
9065 cursal = get_current_source_symtab_and_line ();
9066 if (last_displayed_sal_is_valid ())
9067 {
9068 const char *spec = NULL;
9069
9070 if (event_location_type (location) == LINESPEC_LOCATION)
9071 spec = get_linespec_location (location)->spec_string;
9072
9073 if (!cursal.symtab
9074 || (spec != NULL
9075 && strchr ("+-", spec[0]) != NULL
9076 && spec[1] != '['))
9077 {
9078 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9079 get_last_displayed_symtab (),
9080 get_last_displayed_line (),
9081 canonical, NULL, NULL);
9082 return;
9083 }
9084 }
9085
9086 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9087 cursal.symtab, cursal.line, canonical, NULL, NULL);
9088 }
9089
9090
9091 /* Convert each SAL into a real PC. Verify that the PC can be
9092 inserted as a breakpoint. If it can't throw an error. */
9093
9094 static void
9095 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9096 {
9097 for (auto &sal : sals)
9098 resolve_sal_pc (&sal);
9099 }
9100
9101 /* Fast tracepoints may have restrictions on valid locations. For
9102 instance, a fast tracepoint using a jump instead of a trap will
9103 likely have to overwrite more bytes than a trap would, and so can
9104 only be placed where the instruction is longer than the jump, or a
9105 multi-instruction sequence does not have a jump into the middle of
9106 it, etc. */
9107
9108 static void
9109 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9110 gdb::array_view<const symtab_and_line> sals)
9111 {
9112 for (const auto &sal : sals)
9113 {
9114 struct gdbarch *sarch;
9115
9116 sarch = get_sal_arch (sal);
9117 /* We fall back to GDBARCH if there is no architecture
9118 associated with SAL. */
9119 if (sarch == NULL)
9120 sarch = gdbarch;
9121 std::string msg;
9122 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9123 error (_("May not have a fast tracepoint at %s%s"),
9124 paddress (sarch, sal.pc), msg.c_str ());
9125 }
9126 }
9127
9128 /* Given TOK, a string specification of condition and thread, as
9129 accepted by the 'break' command, extract the condition
9130 string and thread number and set *COND_STRING and *THREAD.
9131 PC identifies the context at which the condition should be parsed.
9132 If no condition is found, *COND_STRING is set to NULL.
9133 If no thread is found, *THREAD is set to -1. */
9134
9135 static void
9136 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9137 char **cond_string, int *thread, int *task,
9138 char **rest)
9139 {
9140 *cond_string = NULL;
9141 *thread = -1;
9142 *task = 0;
9143 *rest = NULL;
9144
9145 while (tok && *tok)
9146 {
9147 const char *end_tok;
9148 int toklen;
9149 const char *cond_start = NULL;
9150 const char *cond_end = NULL;
9151
9152 tok = skip_spaces (tok);
9153
9154 if ((*tok == '"' || *tok == ',') && rest)
9155 {
9156 *rest = savestring (tok, strlen (tok));
9157 return;
9158 }
9159
9160 end_tok = skip_to_space (tok);
9161
9162 toklen = end_tok - tok;
9163
9164 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9165 {
9166 tok = cond_start = end_tok + 1;
9167 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9168 cond_end = tok;
9169 *cond_string = savestring (cond_start, cond_end - cond_start);
9170 }
9171 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9172 {
9173 const char *tmptok;
9174 struct thread_info *thr;
9175
9176 tok = end_tok + 1;
9177 thr = parse_thread_id (tok, &tmptok);
9178 if (tok == tmptok)
9179 error (_("Junk after thread keyword."));
9180 *thread = thr->global_num;
9181 tok = tmptok;
9182 }
9183 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9184 {
9185 char *tmptok;
9186
9187 tok = end_tok + 1;
9188 *task = strtol (tok, &tmptok, 0);
9189 if (tok == tmptok)
9190 error (_("Junk after task keyword."));
9191 if (!valid_task_id (*task))
9192 error (_("Unknown task %d."), *task);
9193 tok = tmptok;
9194 }
9195 else if (rest)
9196 {
9197 *rest = savestring (tok, strlen (tok));
9198 return;
9199 }
9200 else
9201 error (_("Junk at end of arguments."));
9202 }
9203 }
9204
9205 /* Decode a static tracepoint marker spec. */
9206
9207 static std::vector<symtab_and_line>
9208 decode_static_tracepoint_spec (const char **arg_p)
9209 {
9210 const char *p = &(*arg_p)[3];
9211 const char *endp;
9212
9213 p = skip_spaces (p);
9214
9215 endp = skip_to_space (p);
9216
9217 std::string marker_str (p, endp - p);
9218
9219 std::vector<static_tracepoint_marker> markers
9220 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9221 if (markers.empty ())
9222 error (_("No known static tracepoint marker named %s"),
9223 marker_str.c_str ());
9224
9225 std::vector<symtab_and_line> sals;
9226 sals.reserve (markers.size ());
9227
9228 for (const static_tracepoint_marker &marker : markers)
9229 {
9230 symtab_and_line sal = find_pc_line (marker.address, 0);
9231 sal.pc = marker.address;
9232 sals.push_back (sal);
9233 }
9234
9235 *arg_p = endp;
9236 return sals;
9237 }
9238
9239 /* See breakpoint.h. */
9240
9241 int
9242 create_breakpoint (struct gdbarch *gdbarch,
9243 const struct event_location *location,
9244 const char *cond_string,
9245 int thread, const char *extra_string,
9246 int parse_extra,
9247 int tempflag, enum bptype type_wanted,
9248 int ignore_count,
9249 enum auto_boolean pending_break_support,
9250 const struct breakpoint_ops *ops,
9251 int from_tty, int enabled, int internal,
9252 unsigned flags)
9253 {
9254 struct linespec_result canonical;
9255 struct cleanup *bkpt_chain = NULL;
9256 int pending = 0;
9257 int task = 0;
9258 int prev_bkpt_count = breakpoint_count;
9259
9260 gdb_assert (ops != NULL);
9261
9262 /* If extra_string isn't useful, set it to NULL. */
9263 if (extra_string != NULL && *extra_string == '\0')
9264 extra_string = NULL;
9265
9266 TRY
9267 {
9268 ops->create_sals_from_location (location, &canonical, type_wanted);
9269 }
9270 CATCH (e, RETURN_MASK_ERROR)
9271 {
9272 /* If caller is interested in rc value from parse, set
9273 value. */
9274 if (e.error == NOT_FOUND_ERROR)
9275 {
9276 /* If pending breakpoint support is turned off, throw
9277 error. */
9278
9279 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9280 throw_exception (e);
9281
9282 exception_print (gdb_stderr, e);
9283
9284 /* If pending breakpoint support is auto query and the user
9285 selects no, then simply return the error code. */
9286 if (pending_break_support == AUTO_BOOLEAN_AUTO
9287 && !nquery (_("Make %s pending on future shared library load? "),
9288 bptype_string (type_wanted)))
9289 return 0;
9290
9291 /* At this point, either the user was queried about setting
9292 a pending breakpoint and selected yes, or pending
9293 breakpoint behavior is on and thus a pending breakpoint
9294 is defaulted on behalf of the user. */
9295 pending = 1;
9296 }
9297 else
9298 throw_exception (e);
9299 }
9300 END_CATCH
9301
9302 if (!pending && canonical.lsals.empty ())
9303 return 0;
9304
9305 /* ----------------------------- SNIP -----------------------------
9306 Anything added to the cleanup chain beyond this point is assumed
9307 to be part of a breakpoint. If the breakpoint create succeeds
9308 then the memory is not reclaimed. */
9309 bkpt_chain = make_cleanup (null_cleanup, 0);
9310
9311 /* Resolve all line numbers to PC's and verify that the addresses
9312 are ok for the target. */
9313 if (!pending)
9314 {
9315 for (auto &lsal : canonical.lsals)
9316 breakpoint_sals_to_pc (lsal.sals);
9317 }
9318
9319 /* Fast tracepoints may have additional restrictions on location. */
9320 if (!pending && type_wanted == bp_fast_tracepoint)
9321 {
9322 for (const auto &lsal : canonical.lsals)
9323 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9324 }
9325
9326 /* Verify that condition can be parsed, before setting any
9327 breakpoints. Allocate a separate condition expression for each
9328 breakpoint. */
9329 if (!pending)
9330 {
9331 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9332 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9333
9334 if (parse_extra)
9335 {
9336 char *rest;
9337 char *cond;
9338
9339 const linespec_sals &lsal = canonical.lsals[0];
9340
9341 /* Here we only parse 'arg' to separate condition
9342 from thread number, so parsing in context of first
9343 sal is OK. When setting the breakpoint we'll
9344 re-parse it in context of each sal. */
9345
9346 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9347 &cond, &thread, &task, &rest);
9348 cond_string_copy.reset (cond);
9349 extra_string_copy.reset (rest);
9350 }
9351 else
9352 {
9353 if (type_wanted != bp_dprintf
9354 && extra_string != NULL && *extra_string != '\0')
9355 error (_("Garbage '%s' at end of location"), extra_string);
9356
9357 /* Create a private copy of condition string. */
9358 if (cond_string)
9359 cond_string_copy.reset (xstrdup (cond_string));
9360 /* Create a private copy of any extra string. */
9361 if (extra_string)
9362 extra_string_copy.reset (xstrdup (extra_string));
9363 }
9364
9365 ops->create_breakpoints_sal (gdbarch, &canonical,
9366 std::move (cond_string_copy),
9367 std::move (extra_string_copy),
9368 type_wanted,
9369 tempflag ? disp_del : disp_donttouch,
9370 thread, task, ignore_count, ops,
9371 from_tty, enabled, internal, flags);
9372 }
9373 else
9374 {
9375 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9376
9377 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9378 b->location = copy_event_location (location);
9379
9380 if (parse_extra)
9381 b->cond_string = NULL;
9382 else
9383 {
9384 /* Create a private copy of condition string. */
9385 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9386 b->thread = thread;
9387 }
9388
9389 /* Create a private copy of any extra string. */
9390 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9391 b->ignore_count = ignore_count;
9392 b->disposition = tempflag ? disp_del : disp_donttouch;
9393 b->condition_not_parsed = 1;
9394 b->enable_state = enabled ? bp_enabled : bp_disabled;
9395 if ((type_wanted != bp_breakpoint
9396 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9397 b->pspace = current_program_space;
9398
9399 install_breakpoint (internal, std::move (b), 0);
9400 }
9401
9402 if (canonical.lsals.size () > 1)
9403 {
9404 warning (_("Multiple breakpoints were set.\nUse the "
9405 "\"delete\" command to delete unwanted breakpoints."));
9406 prev_breakpoint_count = prev_bkpt_count;
9407 }
9408
9409 /* That's it. Discard the cleanups for data inserted into the
9410 breakpoint. */
9411 discard_cleanups (bkpt_chain);
9412
9413 /* error call may happen here - have BKPT_CHAIN already discarded. */
9414 update_global_location_list (UGLL_MAY_INSERT);
9415
9416 return 1;
9417 }
9418
9419 /* Set a breakpoint.
9420 ARG is a string describing breakpoint address,
9421 condition, and thread.
9422 FLAG specifies if a breakpoint is hardware on,
9423 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9424 and BP_TEMPFLAG. */
9425
9426 static void
9427 break_command_1 (const char *arg, int flag, int from_tty)
9428 {
9429 int tempflag = flag & BP_TEMPFLAG;
9430 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9431 ? bp_hardware_breakpoint
9432 : bp_breakpoint);
9433 struct breakpoint_ops *ops;
9434
9435 event_location_up location = string_to_event_location (&arg, current_language);
9436
9437 /* Matching breakpoints on probes. */
9438 if (location != NULL
9439 && event_location_type (location.get ()) == PROBE_LOCATION)
9440 ops = &bkpt_probe_breakpoint_ops;
9441 else
9442 ops = &bkpt_breakpoint_ops;
9443
9444 create_breakpoint (get_current_arch (),
9445 location.get (),
9446 NULL, 0, arg, 1 /* parse arg */,
9447 tempflag, type_wanted,
9448 0 /* Ignore count */,
9449 pending_break_support,
9450 ops,
9451 from_tty,
9452 1 /* enabled */,
9453 0 /* internal */,
9454 0);
9455 }
9456
9457 /* Helper function for break_command_1 and disassemble_command. */
9458
9459 void
9460 resolve_sal_pc (struct symtab_and_line *sal)
9461 {
9462 CORE_ADDR pc;
9463
9464 if (sal->pc == 0 && sal->symtab != NULL)
9465 {
9466 if (!find_line_pc (sal->symtab, sal->line, &pc))
9467 error (_("No line %d in file \"%s\"."),
9468 sal->line, symtab_to_filename_for_display (sal->symtab));
9469 sal->pc = pc;
9470
9471 /* If this SAL corresponds to a breakpoint inserted using a line
9472 number, then skip the function prologue if necessary. */
9473 if (sal->explicit_line)
9474 skip_prologue_sal (sal);
9475 }
9476
9477 if (sal->section == 0 && sal->symtab != NULL)
9478 {
9479 const struct blockvector *bv;
9480 const struct block *b;
9481 struct symbol *sym;
9482
9483 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9484 SYMTAB_COMPUNIT (sal->symtab));
9485 if (bv != NULL)
9486 {
9487 sym = block_linkage_function (b);
9488 if (sym != NULL)
9489 {
9490 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9491 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9492 sym);
9493 }
9494 else
9495 {
9496 /* It really is worthwhile to have the section, so we'll
9497 just have to look harder. This case can be executed
9498 if we have line numbers but no functions (as can
9499 happen in assembly source). */
9500
9501 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9502 switch_to_program_space_and_thread (sal->pspace);
9503
9504 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9505 if (msym.minsym)
9506 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9507 }
9508 }
9509 }
9510 }
9511
9512 void
9513 break_command (const char *arg, int from_tty)
9514 {
9515 break_command_1 (arg, 0, from_tty);
9516 }
9517
9518 void
9519 tbreak_command (const char *arg, int from_tty)
9520 {
9521 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9522 }
9523
9524 static void
9525 hbreak_command (const char *arg, int from_tty)
9526 {
9527 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9528 }
9529
9530 static void
9531 thbreak_command (const char *arg, int from_tty)
9532 {
9533 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9534 }
9535
9536 static void
9537 stop_command (const char *arg, int from_tty)
9538 {
9539 printf_filtered (_("Specify the type of breakpoint to set.\n\
9540 Usage: stop in <function | address>\n\
9541 stop at <line>\n"));
9542 }
9543
9544 static void
9545 stopin_command (const char *arg, int from_tty)
9546 {
9547 int badInput = 0;
9548
9549 if (arg == (char *) NULL)
9550 badInput = 1;
9551 else if (*arg != '*')
9552 {
9553 const char *argptr = arg;
9554 int hasColon = 0;
9555
9556 /* Look for a ':'. If this is a line number specification, then
9557 say it is bad, otherwise, it should be an address or
9558 function/method name. */
9559 while (*argptr && !hasColon)
9560 {
9561 hasColon = (*argptr == ':');
9562 argptr++;
9563 }
9564
9565 if (hasColon)
9566 badInput = (*argptr != ':'); /* Not a class::method */
9567 else
9568 badInput = isdigit (*arg); /* a simple line number */
9569 }
9570
9571 if (badInput)
9572 printf_filtered (_("Usage: stop in <function | address>\n"));
9573 else
9574 break_command_1 (arg, 0, from_tty);
9575 }
9576
9577 static void
9578 stopat_command (const char *arg, int from_tty)
9579 {
9580 int badInput = 0;
9581
9582 if (arg == (char *) NULL || *arg == '*') /* no line number */
9583 badInput = 1;
9584 else
9585 {
9586 const char *argptr = arg;
9587 int hasColon = 0;
9588
9589 /* Look for a ':'. If there is a '::' then get out, otherwise
9590 it is probably a line number. */
9591 while (*argptr && !hasColon)
9592 {
9593 hasColon = (*argptr == ':');
9594 argptr++;
9595 }
9596
9597 if (hasColon)
9598 badInput = (*argptr == ':'); /* we have class::method */
9599 else
9600 badInput = !isdigit (*arg); /* not a line number */
9601 }
9602
9603 if (badInput)
9604 printf_filtered (_("Usage: stop at <line>\n"));
9605 else
9606 break_command_1 (arg, 0, from_tty);
9607 }
9608
9609 /* The dynamic printf command is mostly like a regular breakpoint, but
9610 with a prewired command list consisting of a single output command,
9611 built from extra arguments supplied on the dprintf command
9612 line. */
9613
9614 static void
9615 dprintf_command (const char *arg, int from_tty)
9616 {
9617 event_location_up location = string_to_event_location (&arg, current_language);
9618
9619 /* If non-NULL, ARG should have been advanced past the location;
9620 the next character must be ','. */
9621 if (arg != NULL)
9622 {
9623 if (arg[0] != ',' || arg[1] == '\0')
9624 error (_("Format string required"));
9625 else
9626 {
9627 /* Skip the comma. */
9628 ++arg;
9629 }
9630 }
9631
9632 create_breakpoint (get_current_arch (),
9633 location.get (),
9634 NULL, 0, arg, 1 /* parse arg */,
9635 0, bp_dprintf,
9636 0 /* Ignore count */,
9637 pending_break_support,
9638 &dprintf_breakpoint_ops,
9639 from_tty,
9640 1 /* enabled */,
9641 0 /* internal */,
9642 0);
9643 }
9644
9645 static void
9646 agent_printf_command (const char *arg, int from_tty)
9647 {
9648 error (_("May only run agent-printf on the target"));
9649 }
9650
9651 /* Implement the "breakpoint_hit" breakpoint_ops method for
9652 ranged breakpoints. */
9653
9654 static int
9655 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9656 const address_space *aspace,
9657 CORE_ADDR bp_addr,
9658 const struct target_waitstatus *ws)
9659 {
9660 if (ws->kind != TARGET_WAITKIND_STOPPED
9661 || ws->value.sig != GDB_SIGNAL_TRAP)
9662 return 0;
9663
9664 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9665 bl->length, aspace, bp_addr);
9666 }
9667
9668 /* Implement the "resources_needed" breakpoint_ops method for
9669 ranged breakpoints. */
9670
9671 static int
9672 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9673 {
9674 return target_ranged_break_num_registers ();
9675 }
9676
9677 /* Implement the "print_it" breakpoint_ops method for
9678 ranged breakpoints. */
9679
9680 static enum print_stop_action
9681 print_it_ranged_breakpoint (bpstat bs)
9682 {
9683 struct breakpoint *b = bs->breakpoint_at;
9684 struct bp_location *bl = b->loc;
9685 struct ui_out *uiout = current_uiout;
9686
9687 gdb_assert (b->type == bp_hardware_breakpoint);
9688
9689 /* Ranged breakpoints have only one location. */
9690 gdb_assert (bl && bl->next == NULL);
9691
9692 annotate_breakpoint (b->number);
9693
9694 maybe_print_thread_hit_breakpoint (uiout);
9695
9696 if (b->disposition == disp_del)
9697 uiout->text ("Temporary ranged breakpoint ");
9698 else
9699 uiout->text ("Ranged breakpoint ");
9700 if (uiout->is_mi_like_p ())
9701 {
9702 uiout->field_string ("reason",
9703 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9704 uiout->field_string ("disp", bpdisp_text (b->disposition));
9705 }
9706 uiout->field_int ("bkptno", b->number);
9707 uiout->text (", ");
9708
9709 return PRINT_SRC_AND_LOC;
9710 }
9711
9712 /* Implement the "print_one" breakpoint_ops method for
9713 ranged breakpoints. */
9714
9715 static void
9716 print_one_ranged_breakpoint (struct breakpoint *b,
9717 struct bp_location **last_loc)
9718 {
9719 struct bp_location *bl = b->loc;
9720 struct value_print_options opts;
9721 struct ui_out *uiout = current_uiout;
9722
9723 /* Ranged breakpoints have only one location. */
9724 gdb_assert (bl && bl->next == NULL);
9725
9726 get_user_print_options (&opts);
9727
9728 if (opts.addressprint)
9729 /* We don't print the address range here, it will be printed later
9730 by print_one_detail_ranged_breakpoint. */
9731 uiout->field_skip ("addr");
9732 annotate_field (5);
9733 print_breakpoint_location (b, bl);
9734 *last_loc = bl;
9735 }
9736
9737 /* Implement the "print_one_detail" breakpoint_ops method for
9738 ranged breakpoints. */
9739
9740 static void
9741 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9742 struct ui_out *uiout)
9743 {
9744 CORE_ADDR address_start, address_end;
9745 struct bp_location *bl = b->loc;
9746 string_file stb;
9747
9748 gdb_assert (bl);
9749
9750 address_start = bl->address;
9751 address_end = address_start + bl->length - 1;
9752
9753 uiout->text ("\taddress range: ");
9754 stb.printf ("[%s, %s]",
9755 print_core_address (bl->gdbarch, address_start),
9756 print_core_address (bl->gdbarch, address_end));
9757 uiout->field_stream ("addr", stb);
9758 uiout->text ("\n");
9759 }
9760
9761 /* Implement the "print_mention" breakpoint_ops method for
9762 ranged breakpoints. */
9763
9764 static void
9765 print_mention_ranged_breakpoint (struct breakpoint *b)
9766 {
9767 struct bp_location *bl = b->loc;
9768 struct ui_out *uiout = current_uiout;
9769
9770 gdb_assert (bl);
9771 gdb_assert (b->type == bp_hardware_breakpoint);
9772
9773 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9774 b->number, paddress (bl->gdbarch, bl->address),
9775 paddress (bl->gdbarch, bl->address + bl->length - 1));
9776 }
9777
9778 /* Implement the "print_recreate" breakpoint_ops method for
9779 ranged breakpoints. */
9780
9781 static void
9782 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9783 {
9784 fprintf_unfiltered (fp, "break-range %s, %s",
9785 event_location_to_string (b->location.get ()),
9786 event_location_to_string (b->location_range_end.get ()));
9787 print_recreate_thread (b, fp);
9788 }
9789
9790 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9791
9792 static struct breakpoint_ops ranged_breakpoint_ops;
9793
9794 /* Find the address where the end of the breakpoint range should be
9795 placed, given the SAL of the end of the range. This is so that if
9796 the user provides a line number, the end of the range is set to the
9797 last instruction of the given line. */
9798
9799 static CORE_ADDR
9800 find_breakpoint_range_end (struct symtab_and_line sal)
9801 {
9802 CORE_ADDR end;
9803
9804 /* If the user provided a PC value, use it. Otherwise,
9805 find the address of the end of the given location. */
9806 if (sal.explicit_pc)
9807 end = sal.pc;
9808 else
9809 {
9810 int ret;
9811 CORE_ADDR start;
9812
9813 ret = find_line_pc_range (sal, &start, &end);
9814 if (!ret)
9815 error (_("Could not find location of the end of the range."));
9816
9817 /* find_line_pc_range returns the start of the next line. */
9818 end--;
9819 }
9820
9821 return end;
9822 }
9823
9824 /* Implement the "break-range" CLI command. */
9825
9826 static void
9827 break_range_command (const char *arg, int from_tty)
9828 {
9829 const char *arg_start;
9830 struct linespec_result canonical_start, canonical_end;
9831 int bp_count, can_use_bp, length;
9832 CORE_ADDR end;
9833 struct breakpoint *b;
9834
9835 /* We don't support software ranged breakpoints. */
9836 if (target_ranged_break_num_registers () < 0)
9837 error (_("This target does not support hardware ranged breakpoints."));
9838
9839 bp_count = hw_breakpoint_used_count ();
9840 bp_count += target_ranged_break_num_registers ();
9841 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9842 bp_count, 0);
9843 if (can_use_bp < 0)
9844 error (_("Hardware breakpoints used exceeds limit."));
9845
9846 arg = skip_spaces (arg);
9847 if (arg == NULL || arg[0] == '\0')
9848 error(_("No address range specified."));
9849
9850 arg_start = arg;
9851 event_location_up start_location = string_to_event_location (&arg,
9852 current_language);
9853 parse_breakpoint_sals (start_location.get (), &canonical_start);
9854
9855 if (arg[0] != ',')
9856 error (_("Too few arguments."));
9857 else if (canonical_start.lsals.empty ())
9858 error (_("Could not find location of the beginning of the range."));
9859
9860 const linespec_sals &lsal_start = canonical_start.lsals[0];
9861
9862 if (canonical_start.lsals.size () > 1
9863 || lsal_start.sals.size () != 1)
9864 error (_("Cannot create a ranged breakpoint with multiple locations."));
9865
9866 const symtab_and_line &sal_start = lsal_start.sals[0];
9867 std::string addr_string_start (arg_start, arg - arg_start);
9868
9869 arg++; /* Skip the comma. */
9870 arg = skip_spaces (arg);
9871
9872 /* Parse the end location. */
9873
9874 arg_start = arg;
9875
9876 /* We call decode_line_full directly here instead of using
9877 parse_breakpoint_sals because we need to specify the start location's
9878 symtab and line as the default symtab and line for the end of the
9879 range. This makes it possible to have ranges like "foo.c:27, +14",
9880 where +14 means 14 lines from the start location. */
9881 event_location_up end_location = string_to_event_location (&arg,
9882 current_language);
9883 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9884 sal_start.symtab, sal_start.line,
9885 &canonical_end, NULL, NULL);
9886
9887 if (canonical_end.lsals.empty ())
9888 error (_("Could not find location of the end of the range."));
9889
9890 const linespec_sals &lsal_end = canonical_end.lsals[0];
9891 if (canonical_end.lsals.size () > 1
9892 || lsal_end.sals.size () != 1)
9893 error (_("Cannot create a ranged breakpoint with multiple locations."));
9894
9895 const symtab_and_line &sal_end = lsal_end.sals[0];
9896
9897 end = find_breakpoint_range_end (sal_end);
9898 if (sal_start.pc > end)
9899 error (_("Invalid address range, end precedes start."));
9900
9901 length = end - sal_start.pc + 1;
9902 if (length < 0)
9903 /* Length overflowed. */
9904 error (_("Address range too large."));
9905 else if (length == 1)
9906 {
9907 /* This range is simple enough to be handled by
9908 the `hbreak' command. */
9909 hbreak_command (&addr_string_start[0], 1);
9910
9911 return;
9912 }
9913
9914 /* Now set up the breakpoint. */
9915 b = set_raw_breakpoint (get_current_arch (), sal_start,
9916 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9917 set_breakpoint_count (breakpoint_count + 1);
9918 b->number = breakpoint_count;
9919 b->disposition = disp_donttouch;
9920 b->location = std::move (start_location);
9921 b->location_range_end = std::move (end_location);
9922 b->loc->length = length;
9923
9924 mention (b);
9925 gdb::observers::breakpoint_created.notify (b);
9926 update_global_location_list (UGLL_MAY_INSERT);
9927 }
9928
9929 /* Return non-zero if EXP is verified as constant. Returned zero
9930 means EXP is variable. Also the constant detection may fail for
9931 some constant expressions and in such case still falsely return
9932 zero. */
9933
9934 static int
9935 watchpoint_exp_is_const (const struct expression *exp)
9936 {
9937 int i = exp->nelts;
9938
9939 while (i > 0)
9940 {
9941 int oplenp, argsp;
9942
9943 /* We are only interested in the descriptor of each element. */
9944 operator_length (exp, i, &oplenp, &argsp);
9945 i -= oplenp;
9946
9947 switch (exp->elts[i].opcode)
9948 {
9949 case BINOP_ADD:
9950 case BINOP_SUB:
9951 case BINOP_MUL:
9952 case BINOP_DIV:
9953 case BINOP_REM:
9954 case BINOP_MOD:
9955 case BINOP_LSH:
9956 case BINOP_RSH:
9957 case BINOP_LOGICAL_AND:
9958 case BINOP_LOGICAL_OR:
9959 case BINOP_BITWISE_AND:
9960 case BINOP_BITWISE_IOR:
9961 case BINOP_BITWISE_XOR:
9962 case BINOP_EQUAL:
9963 case BINOP_NOTEQUAL:
9964 case BINOP_LESS:
9965 case BINOP_GTR:
9966 case BINOP_LEQ:
9967 case BINOP_GEQ:
9968 case BINOP_REPEAT:
9969 case BINOP_COMMA:
9970 case BINOP_EXP:
9971 case BINOP_MIN:
9972 case BINOP_MAX:
9973 case BINOP_INTDIV:
9974 case BINOP_CONCAT:
9975 case TERNOP_COND:
9976 case TERNOP_SLICE:
9977
9978 case OP_LONG:
9979 case OP_FLOAT:
9980 case OP_LAST:
9981 case OP_COMPLEX:
9982 case OP_STRING:
9983 case OP_ARRAY:
9984 case OP_TYPE:
9985 case OP_TYPEOF:
9986 case OP_DECLTYPE:
9987 case OP_TYPEID:
9988 case OP_NAME:
9989 case OP_OBJC_NSSTRING:
9990
9991 case UNOP_NEG:
9992 case UNOP_LOGICAL_NOT:
9993 case UNOP_COMPLEMENT:
9994 case UNOP_ADDR:
9995 case UNOP_HIGH:
9996 case UNOP_CAST:
9997
9998 case UNOP_CAST_TYPE:
9999 case UNOP_REINTERPRET_CAST:
10000 case UNOP_DYNAMIC_CAST:
10001 /* Unary, binary and ternary operators: We have to check
10002 their operands. If they are constant, then so is the
10003 result of that operation. For instance, if A and B are
10004 determined to be constants, then so is "A + B".
10005
10006 UNOP_IND is one exception to the rule above, because the
10007 value of *ADDR is not necessarily a constant, even when
10008 ADDR is. */
10009 break;
10010
10011 case OP_VAR_VALUE:
10012 /* Check whether the associated symbol is a constant.
10013
10014 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10015 possible that a buggy compiler could mark a variable as
10016 constant even when it is not, and TYPE_CONST would return
10017 true in this case, while SYMBOL_CLASS wouldn't.
10018
10019 We also have to check for function symbols because they
10020 are always constant. */
10021 {
10022 struct symbol *s = exp->elts[i + 2].symbol;
10023
10024 if (SYMBOL_CLASS (s) != LOC_BLOCK
10025 && SYMBOL_CLASS (s) != LOC_CONST
10026 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10027 return 0;
10028 break;
10029 }
10030
10031 /* The default action is to return 0 because we are using
10032 the optimistic approach here: If we don't know something,
10033 then it is not a constant. */
10034 default:
10035 return 0;
10036 }
10037 }
10038
10039 return 1;
10040 }
10041
10042 /* Watchpoint destructor. */
10043
10044 watchpoint::~watchpoint ()
10045 {
10046 xfree (this->exp_string);
10047 xfree (this->exp_string_reparse);
10048 }
10049
10050 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10051
10052 static void
10053 re_set_watchpoint (struct breakpoint *b)
10054 {
10055 struct watchpoint *w = (struct watchpoint *) b;
10056
10057 /* Watchpoint can be either on expression using entirely global
10058 variables, or it can be on local variables.
10059
10060 Watchpoints of the first kind are never auto-deleted, and even
10061 persist across program restarts. Since they can use variables
10062 from shared libraries, we need to reparse expression as libraries
10063 are loaded and unloaded.
10064
10065 Watchpoints on local variables can also change meaning as result
10066 of solib event. For example, if a watchpoint uses both a local
10067 and a global variables in expression, it's a local watchpoint,
10068 but unloading of a shared library will make the expression
10069 invalid. This is not a very common use case, but we still
10070 re-evaluate expression, to avoid surprises to the user.
10071
10072 Note that for local watchpoints, we re-evaluate it only if
10073 watchpoints frame id is still valid. If it's not, it means the
10074 watchpoint is out of scope and will be deleted soon. In fact,
10075 I'm not sure we'll ever be called in this case.
10076
10077 If a local watchpoint's frame id is still valid, then
10078 w->exp_valid_block is likewise valid, and we can safely use it.
10079
10080 Don't do anything about disabled watchpoints, since they will be
10081 reevaluated again when enabled. */
10082 update_watchpoint (w, 1 /* reparse */);
10083 }
10084
10085 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10086
10087 static int
10088 insert_watchpoint (struct bp_location *bl)
10089 {
10090 struct watchpoint *w = (struct watchpoint *) bl->owner;
10091 int length = w->exact ? 1 : bl->length;
10092
10093 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10094 w->cond_exp.get ());
10095 }
10096
10097 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10098
10099 static int
10100 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10101 {
10102 struct watchpoint *w = (struct watchpoint *) bl->owner;
10103 int length = w->exact ? 1 : bl->length;
10104
10105 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10106 w->cond_exp.get ());
10107 }
10108
10109 static int
10110 breakpoint_hit_watchpoint (const struct bp_location *bl,
10111 const address_space *aspace, CORE_ADDR bp_addr,
10112 const struct target_waitstatus *ws)
10113 {
10114 struct breakpoint *b = bl->owner;
10115 struct watchpoint *w = (struct watchpoint *) b;
10116
10117 /* Continuable hardware watchpoints are treated as non-existent if the
10118 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10119 some data address). Otherwise gdb won't stop on a break instruction
10120 in the code (not from a breakpoint) when a hardware watchpoint has
10121 been defined. Also skip watchpoints which we know did not trigger
10122 (did not match the data address). */
10123 if (is_hardware_watchpoint (b)
10124 && w->watchpoint_triggered == watch_triggered_no)
10125 return 0;
10126
10127 return 1;
10128 }
10129
10130 static void
10131 check_status_watchpoint (bpstat bs)
10132 {
10133 gdb_assert (is_watchpoint (bs->breakpoint_at));
10134
10135 bpstat_check_watchpoint (bs);
10136 }
10137
10138 /* Implement the "resources_needed" breakpoint_ops method for
10139 hardware watchpoints. */
10140
10141 static int
10142 resources_needed_watchpoint (const struct bp_location *bl)
10143 {
10144 struct watchpoint *w = (struct watchpoint *) bl->owner;
10145 int length = w->exact? 1 : bl->length;
10146
10147 return target_region_ok_for_hw_watchpoint (bl->address, length);
10148 }
10149
10150 /* Implement the "works_in_software_mode" breakpoint_ops method for
10151 hardware watchpoints. */
10152
10153 static int
10154 works_in_software_mode_watchpoint (const struct breakpoint *b)
10155 {
10156 /* Read and access watchpoints only work with hardware support. */
10157 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10158 }
10159
10160 static enum print_stop_action
10161 print_it_watchpoint (bpstat bs)
10162 {
10163 struct breakpoint *b;
10164 enum print_stop_action result;
10165 struct watchpoint *w;
10166 struct ui_out *uiout = current_uiout;
10167
10168 gdb_assert (bs->bp_location_at != NULL);
10169
10170 b = bs->breakpoint_at;
10171 w = (struct watchpoint *) b;
10172
10173 annotate_watchpoint (b->number);
10174 maybe_print_thread_hit_breakpoint (uiout);
10175
10176 string_file stb;
10177
10178 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10179 switch (b->type)
10180 {
10181 case bp_watchpoint:
10182 case bp_hardware_watchpoint:
10183 if (uiout->is_mi_like_p ())
10184 uiout->field_string
10185 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10186 mention (b);
10187 tuple_emitter.emplace (uiout, "value");
10188 uiout->text ("\nOld value = ");
10189 watchpoint_value_print (bs->old_val.get (), &stb);
10190 uiout->field_stream ("old", stb);
10191 uiout->text ("\nNew value = ");
10192 watchpoint_value_print (w->val.get (), &stb);
10193 uiout->field_stream ("new", stb);
10194 uiout->text ("\n");
10195 /* More than one watchpoint may have been triggered. */
10196 result = PRINT_UNKNOWN;
10197 break;
10198
10199 case bp_read_watchpoint:
10200 if (uiout->is_mi_like_p ())
10201 uiout->field_string
10202 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10203 mention (b);
10204 tuple_emitter.emplace (uiout, "value");
10205 uiout->text ("\nValue = ");
10206 watchpoint_value_print (w->val.get (), &stb);
10207 uiout->field_stream ("value", stb);
10208 uiout->text ("\n");
10209 result = PRINT_UNKNOWN;
10210 break;
10211
10212 case bp_access_watchpoint:
10213 if (bs->old_val != NULL)
10214 {
10215 if (uiout->is_mi_like_p ())
10216 uiout->field_string
10217 ("reason",
10218 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10219 mention (b);
10220 tuple_emitter.emplace (uiout, "value");
10221 uiout->text ("\nOld value = ");
10222 watchpoint_value_print (bs->old_val.get (), &stb);
10223 uiout->field_stream ("old", stb);
10224 uiout->text ("\nNew value = ");
10225 }
10226 else
10227 {
10228 mention (b);
10229 if (uiout->is_mi_like_p ())
10230 uiout->field_string
10231 ("reason",
10232 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10233 tuple_emitter.emplace (uiout, "value");
10234 uiout->text ("\nValue = ");
10235 }
10236 watchpoint_value_print (w->val.get (), &stb);
10237 uiout->field_stream ("new", stb);
10238 uiout->text ("\n");
10239 result = PRINT_UNKNOWN;
10240 break;
10241 default:
10242 result = PRINT_UNKNOWN;
10243 }
10244
10245 return result;
10246 }
10247
10248 /* Implement the "print_mention" breakpoint_ops method for hardware
10249 watchpoints. */
10250
10251 static void
10252 print_mention_watchpoint (struct breakpoint *b)
10253 {
10254 struct watchpoint *w = (struct watchpoint *) b;
10255 struct ui_out *uiout = current_uiout;
10256 const char *tuple_name;
10257
10258 switch (b->type)
10259 {
10260 case bp_watchpoint:
10261 uiout->text ("Watchpoint ");
10262 tuple_name = "wpt";
10263 break;
10264 case bp_hardware_watchpoint:
10265 uiout->text ("Hardware watchpoint ");
10266 tuple_name = "wpt";
10267 break;
10268 case bp_read_watchpoint:
10269 uiout->text ("Hardware read watchpoint ");
10270 tuple_name = "hw-rwpt";
10271 break;
10272 case bp_access_watchpoint:
10273 uiout->text ("Hardware access (read/write) watchpoint ");
10274 tuple_name = "hw-awpt";
10275 break;
10276 default:
10277 internal_error (__FILE__, __LINE__,
10278 _("Invalid hardware watchpoint type."));
10279 }
10280
10281 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10282 uiout->field_int ("number", b->number);
10283 uiout->text (": ");
10284 uiout->field_string ("exp", w->exp_string);
10285 }
10286
10287 /* Implement the "print_recreate" breakpoint_ops method for
10288 watchpoints. */
10289
10290 static void
10291 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10292 {
10293 struct watchpoint *w = (struct watchpoint *) b;
10294
10295 switch (b->type)
10296 {
10297 case bp_watchpoint:
10298 case bp_hardware_watchpoint:
10299 fprintf_unfiltered (fp, "watch");
10300 break;
10301 case bp_read_watchpoint:
10302 fprintf_unfiltered (fp, "rwatch");
10303 break;
10304 case bp_access_watchpoint:
10305 fprintf_unfiltered (fp, "awatch");
10306 break;
10307 default:
10308 internal_error (__FILE__, __LINE__,
10309 _("Invalid watchpoint type."));
10310 }
10311
10312 fprintf_unfiltered (fp, " %s", w->exp_string);
10313 print_recreate_thread (b, fp);
10314 }
10315
10316 /* Implement the "explains_signal" breakpoint_ops method for
10317 watchpoints. */
10318
10319 static int
10320 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10321 {
10322 /* A software watchpoint cannot cause a signal other than
10323 GDB_SIGNAL_TRAP. */
10324 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10325 return 0;
10326
10327 return 1;
10328 }
10329
10330 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10331
10332 static struct breakpoint_ops watchpoint_breakpoint_ops;
10333
10334 /* Implement the "insert" breakpoint_ops method for
10335 masked hardware watchpoints. */
10336
10337 static int
10338 insert_masked_watchpoint (struct bp_location *bl)
10339 {
10340 struct watchpoint *w = (struct watchpoint *) bl->owner;
10341
10342 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10343 bl->watchpoint_type);
10344 }
10345
10346 /* Implement the "remove" breakpoint_ops method for
10347 masked hardware watchpoints. */
10348
10349 static int
10350 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10351 {
10352 struct watchpoint *w = (struct watchpoint *) bl->owner;
10353
10354 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10355 bl->watchpoint_type);
10356 }
10357
10358 /* Implement the "resources_needed" breakpoint_ops method for
10359 masked hardware watchpoints. */
10360
10361 static int
10362 resources_needed_masked_watchpoint (const struct bp_location *bl)
10363 {
10364 struct watchpoint *w = (struct watchpoint *) bl->owner;
10365
10366 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10367 }
10368
10369 /* Implement the "works_in_software_mode" breakpoint_ops method for
10370 masked hardware watchpoints. */
10371
10372 static int
10373 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10374 {
10375 return 0;
10376 }
10377
10378 /* Implement the "print_it" breakpoint_ops method for
10379 masked hardware watchpoints. */
10380
10381 static enum print_stop_action
10382 print_it_masked_watchpoint (bpstat bs)
10383 {
10384 struct breakpoint *b = bs->breakpoint_at;
10385 struct ui_out *uiout = current_uiout;
10386
10387 /* Masked watchpoints have only one location. */
10388 gdb_assert (b->loc && b->loc->next == NULL);
10389
10390 annotate_watchpoint (b->number);
10391 maybe_print_thread_hit_breakpoint (uiout);
10392
10393 switch (b->type)
10394 {
10395 case bp_hardware_watchpoint:
10396 if (uiout->is_mi_like_p ())
10397 uiout->field_string
10398 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10399 break;
10400
10401 case bp_read_watchpoint:
10402 if (uiout->is_mi_like_p ())
10403 uiout->field_string
10404 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10405 break;
10406
10407 case bp_access_watchpoint:
10408 if (uiout->is_mi_like_p ())
10409 uiout->field_string
10410 ("reason",
10411 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10412 break;
10413 default:
10414 internal_error (__FILE__, __LINE__,
10415 _("Invalid hardware watchpoint type."));
10416 }
10417
10418 mention (b);
10419 uiout->text (_("\n\
10420 Check the underlying instruction at PC for the memory\n\
10421 address and value which triggered this watchpoint.\n"));
10422 uiout->text ("\n");
10423
10424 /* More than one watchpoint may have been triggered. */
10425 return PRINT_UNKNOWN;
10426 }
10427
10428 /* Implement the "print_one_detail" breakpoint_ops method for
10429 masked hardware watchpoints. */
10430
10431 static void
10432 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10433 struct ui_out *uiout)
10434 {
10435 struct watchpoint *w = (struct watchpoint *) b;
10436
10437 /* Masked watchpoints have only one location. */
10438 gdb_assert (b->loc && b->loc->next == NULL);
10439
10440 uiout->text ("\tmask ");
10441 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10442 uiout->text ("\n");
10443 }
10444
10445 /* Implement the "print_mention" breakpoint_ops method for
10446 masked hardware watchpoints. */
10447
10448 static void
10449 print_mention_masked_watchpoint (struct breakpoint *b)
10450 {
10451 struct watchpoint *w = (struct watchpoint *) b;
10452 struct ui_out *uiout = current_uiout;
10453 const char *tuple_name;
10454
10455 switch (b->type)
10456 {
10457 case bp_hardware_watchpoint:
10458 uiout->text ("Masked hardware watchpoint ");
10459 tuple_name = "wpt";
10460 break;
10461 case bp_read_watchpoint:
10462 uiout->text ("Masked hardware read watchpoint ");
10463 tuple_name = "hw-rwpt";
10464 break;
10465 case bp_access_watchpoint:
10466 uiout->text ("Masked hardware access (read/write) watchpoint ");
10467 tuple_name = "hw-awpt";
10468 break;
10469 default:
10470 internal_error (__FILE__, __LINE__,
10471 _("Invalid hardware watchpoint type."));
10472 }
10473
10474 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10475 uiout->field_int ("number", b->number);
10476 uiout->text (": ");
10477 uiout->field_string ("exp", w->exp_string);
10478 }
10479
10480 /* Implement the "print_recreate" breakpoint_ops method for
10481 masked hardware watchpoints. */
10482
10483 static void
10484 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10485 {
10486 struct watchpoint *w = (struct watchpoint *) b;
10487 char tmp[40];
10488
10489 switch (b->type)
10490 {
10491 case bp_hardware_watchpoint:
10492 fprintf_unfiltered (fp, "watch");
10493 break;
10494 case bp_read_watchpoint:
10495 fprintf_unfiltered (fp, "rwatch");
10496 break;
10497 case bp_access_watchpoint:
10498 fprintf_unfiltered (fp, "awatch");
10499 break;
10500 default:
10501 internal_error (__FILE__, __LINE__,
10502 _("Invalid hardware watchpoint type."));
10503 }
10504
10505 sprintf_vma (tmp, w->hw_wp_mask);
10506 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10507 print_recreate_thread (b, fp);
10508 }
10509
10510 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10511
10512 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10513
10514 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10515
10516 static int
10517 is_masked_watchpoint (const struct breakpoint *b)
10518 {
10519 return b->ops == &masked_watchpoint_breakpoint_ops;
10520 }
10521
10522 /* accessflag: hw_write: watch write,
10523 hw_read: watch read,
10524 hw_access: watch access (read or write) */
10525 static void
10526 watch_command_1 (const char *arg, int accessflag, int from_tty,
10527 int just_location, int internal)
10528 {
10529 struct breakpoint *scope_breakpoint = NULL;
10530 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10531 struct value *mark, *result;
10532 int saved_bitpos = 0, saved_bitsize = 0;
10533 const char *exp_start = NULL;
10534 const char *exp_end = NULL;
10535 const char *tok, *end_tok;
10536 int toklen = -1;
10537 const char *cond_start = NULL;
10538 const char *cond_end = NULL;
10539 enum bptype bp_type;
10540 int thread = -1;
10541 int pc = 0;
10542 /* Flag to indicate whether we are going to use masks for
10543 the hardware watchpoint. */
10544 int use_mask = 0;
10545 CORE_ADDR mask = 0;
10546
10547 /* Make sure that we actually have parameters to parse. */
10548 if (arg != NULL && arg[0] != '\0')
10549 {
10550 const char *value_start;
10551
10552 exp_end = arg + strlen (arg);
10553
10554 /* Look for "parameter value" pairs at the end
10555 of the arguments string. */
10556 for (tok = exp_end - 1; tok > arg; tok--)
10557 {
10558 /* Skip whitespace at the end of the argument list. */
10559 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10560 tok--;
10561
10562 /* Find the beginning of the last token.
10563 This is the value of the parameter. */
10564 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10565 tok--;
10566 value_start = tok + 1;
10567
10568 /* Skip whitespace. */
10569 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10570 tok--;
10571
10572 end_tok = tok;
10573
10574 /* Find the beginning of the second to last token.
10575 This is the parameter itself. */
10576 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10577 tok--;
10578 tok++;
10579 toklen = end_tok - tok + 1;
10580
10581 if (toklen == 6 && startswith (tok, "thread"))
10582 {
10583 struct thread_info *thr;
10584 /* At this point we've found a "thread" token, which means
10585 the user is trying to set a watchpoint that triggers
10586 only in a specific thread. */
10587 const char *endp;
10588
10589 if (thread != -1)
10590 error(_("You can specify only one thread."));
10591
10592 /* Extract the thread ID from the next token. */
10593 thr = parse_thread_id (value_start, &endp);
10594
10595 /* Check if the user provided a valid thread ID. */
10596 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10597 invalid_thread_id_error (value_start);
10598
10599 thread = thr->global_num;
10600 }
10601 else if (toklen == 4 && startswith (tok, "mask"))
10602 {
10603 /* We've found a "mask" token, which means the user wants to
10604 create a hardware watchpoint that is going to have the mask
10605 facility. */
10606 struct value *mask_value, *mark;
10607
10608 if (use_mask)
10609 error(_("You can specify only one mask."));
10610
10611 use_mask = just_location = 1;
10612
10613 mark = value_mark ();
10614 mask_value = parse_to_comma_and_eval (&value_start);
10615 mask = value_as_address (mask_value);
10616 value_free_to_mark (mark);
10617 }
10618 else
10619 /* We didn't recognize what we found. We should stop here. */
10620 break;
10621
10622 /* Truncate the string and get rid of the "parameter value" pair before
10623 the arguments string is parsed by the parse_exp_1 function. */
10624 exp_end = tok;
10625 }
10626 }
10627 else
10628 exp_end = arg;
10629
10630 /* Parse the rest of the arguments. From here on out, everything
10631 is in terms of a newly allocated string instead of the original
10632 ARG. */
10633 innermost_block.reset ();
10634 std::string expression (arg, exp_end - arg);
10635 exp_start = arg = expression.c_str ();
10636 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10637 exp_end = arg;
10638 /* Remove trailing whitespace from the expression before saving it.
10639 This makes the eventual display of the expression string a bit
10640 prettier. */
10641 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10642 --exp_end;
10643
10644 /* Checking if the expression is not constant. */
10645 if (watchpoint_exp_is_const (exp.get ()))
10646 {
10647 int len;
10648
10649 len = exp_end - exp_start;
10650 while (len > 0 && isspace (exp_start[len - 1]))
10651 len--;
10652 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10653 }
10654
10655 exp_valid_block = innermost_block.block ();
10656 mark = value_mark ();
10657 struct value *val_as_value = nullptr;
10658 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10659 just_location);
10660
10661 if (val_as_value != NULL && just_location)
10662 {
10663 saved_bitpos = value_bitpos (val_as_value);
10664 saved_bitsize = value_bitsize (val_as_value);
10665 }
10666
10667 value_ref_ptr val;
10668 if (just_location)
10669 {
10670 int ret;
10671
10672 exp_valid_block = NULL;
10673 val = release_value (value_addr (result));
10674 value_free_to_mark (mark);
10675
10676 if (use_mask)
10677 {
10678 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10679 mask);
10680 if (ret == -1)
10681 error (_("This target does not support masked watchpoints."));
10682 else if (ret == -2)
10683 error (_("Invalid mask or memory region."));
10684 }
10685 }
10686 else if (val_as_value != NULL)
10687 val = release_value (val_as_value);
10688
10689 tok = skip_spaces (arg);
10690 end_tok = skip_to_space (tok);
10691
10692 toklen = end_tok - tok;
10693 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10694 {
10695 innermost_block.reset ();
10696 tok = cond_start = end_tok + 1;
10697 parse_exp_1 (&tok, 0, 0, 0);
10698
10699 /* The watchpoint expression may not be local, but the condition
10700 may still be. E.g.: `watch global if local > 0'. */
10701 cond_exp_valid_block = innermost_block.block ();
10702
10703 cond_end = tok;
10704 }
10705 if (*tok)
10706 error (_("Junk at end of command."));
10707
10708 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10709
10710 /* Save this because create_internal_breakpoint below invalidates
10711 'wp_frame'. */
10712 frame_id watchpoint_frame = get_frame_id (wp_frame);
10713
10714 /* If the expression is "local", then set up a "watchpoint scope"
10715 breakpoint at the point where we've left the scope of the watchpoint
10716 expression. Create the scope breakpoint before the watchpoint, so
10717 that we will encounter it first in bpstat_stop_status. */
10718 if (exp_valid_block != NULL && wp_frame != NULL)
10719 {
10720 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10721
10722 if (frame_id_p (caller_frame_id))
10723 {
10724 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10725 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10726
10727 scope_breakpoint
10728 = create_internal_breakpoint (caller_arch, caller_pc,
10729 bp_watchpoint_scope,
10730 &momentary_breakpoint_ops);
10731
10732 /* create_internal_breakpoint could invalidate WP_FRAME. */
10733 wp_frame = NULL;
10734
10735 scope_breakpoint->enable_state = bp_enabled;
10736
10737 /* Automatically delete the breakpoint when it hits. */
10738 scope_breakpoint->disposition = disp_del;
10739
10740 /* Only break in the proper frame (help with recursion). */
10741 scope_breakpoint->frame_id = caller_frame_id;
10742
10743 /* Set the address at which we will stop. */
10744 scope_breakpoint->loc->gdbarch = caller_arch;
10745 scope_breakpoint->loc->requested_address = caller_pc;
10746 scope_breakpoint->loc->address
10747 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10748 scope_breakpoint->loc->requested_address,
10749 scope_breakpoint->type);
10750 }
10751 }
10752
10753 /* Now set up the breakpoint. We create all watchpoints as hardware
10754 watchpoints here even if hardware watchpoints are turned off, a call
10755 to update_watchpoint later in this function will cause the type to
10756 drop back to bp_watchpoint (software watchpoint) if required. */
10757
10758 if (accessflag == hw_read)
10759 bp_type = bp_read_watchpoint;
10760 else if (accessflag == hw_access)
10761 bp_type = bp_access_watchpoint;
10762 else
10763 bp_type = bp_hardware_watchpoint;
10764
10765 std::unique_ptr<watchpoint> w (new watchpoint ());
10766
10767 if (use_mask)
10768 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10769 &masked_watchpoint_breakpoint_ops);
10770 else
10771 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10772 &watchpoint_breakpoint_ops);
10773 w->thread = thread;
10774 w->disposition = disp_donttouch;
10775 w->pspace = current_program_space;
10776 w->exp = std::move (exp);
10777 w->exp_valid_block = exp_valid_block;
10778 w->cond_exp_valid_block = cond_exp_valid_block;
10779 if (just_location)
10780 {
10781 struct type *t = value_type (val.get ());
10782 CORE_ADDR addr = value_as_address (val.get ());
10783
10784 w->exp_string_reparse
10785 = current_language->la_watch_location_expression (t, addr).release ();
10786
10787 w->exp_string = xstrprintf ("-location %.*s",
10788 (int) (exp_end - exp_start), exp_start);
10789 }
10790 else
10791 w->exp_string = savestring (exp_start, exp_end - exp_start);
10792
10793 if (use_mask)
10794 {
10795 w->hw_wp_mask = mask;
10796 }
10797 else
10798 {
10799 w->val = val;
10800 w->val_bitpos = saved_bitpos;
10801 w->val_bitsize = saved_bitsize;
10802 w->val_valid = 1;
10803 }
10804
10805 if (cond_start)
10806 w->cond_string = savestring (cond_start, cond_end - cond_start);
10807 else
10808 w->cond_string = 0;
10809
10810 if (frame_id_p (watchpoint_frame))
10811 {
10812 w->watchpoint_frame = watchpoint_frame;
10813 w->watchpoint_thread = inferior_ptid;
10814 }
10815 else
10816 {
10817 w->watchpoint_frame = null_frame_id;
10818 w->watchpoint_thread = null_ptid;
10819 }
10820
10821 if (scope_breakpoint != NULL)
10822 {
10823 /* The scope breakpoint is related to the watchpoint. We will
10824 need to act on them together. */
10825 w->related_breakpoint = scope_breakpoint;
10826 scope_breakpoint->related_breakpoint = w.get ();
10827 }
10828
10829 if (!just_location)
10830 value_free_to_mark (mark);
10831
10832 /* Finally update the new watchpoint. This creates the locations
10833 that should be inserted. */
10834 update_watchpoint (w.get (), 1);
10835
10836 install_breakpoint (internal, std::move (w), 1);
10837 }
10838
10839 /* Return count of debug registers needed to watch the given expression.
10840 If the watchpoint cannot be handled in hardware return zero. */
10841
10842 static int
10843 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10844 {
10845 int found_memory_cnt = 0;
10846
10847 /* Did the user specifically forbid us to use hardware watchpoints? */
10848 if (!can_use_hw_watchpoints)
10849 return 0;
10850
10851 gdb_assert (!vals.empty ());
10852 struct value *head = vals[0].get ();
10853
10854 /* Make sure that the value of the expression depends only upon
10855 memory contents, and values computed from them within GDB. If we
10856 find any register references or function calls, we can't use a
10857 hardware watchpoint.
10858
10859 The idea here is that evaluating an expression generates a series
10860 of values, one holding the value of every subexpression. (The
10861 expression a*b+c has five subexpressions: a, b, a*b, c, and
10862 a*b+c.) GDB's values hold almost enough information to establish
10863 the criteria given above --- they identify memory lvalues,
10864 register lvalues, computed values, etcetera. So we can evaluate
10865 the expression, and then scan the chain of values that leaves
10866 behind to decide whether we can detect any possible change to the
10867 expression's final value using only hardware watchpoints.
10868
10869 However, I don't think that the values returned by inferior
10870 function calls are special in any way. So this function may not
10871 notice that an expression involving an inferior function call
10872 can't be watched with hardware watchpoints. FIXME. */
10873 for (const value_ref_ptr &iter : vals)
10874 {
10875 struct value *v = iter.get ();
10876
10877 if (VALUE_LVAL (v) == lval_memory)
10878 {
10879 if (v != head && value_lazy (v))
10880 /* A lazy memory lvalue in the chain is one that GDB never
10881 needed to fetch; we either just used its address (e.g.,
10882 `a' in `a.b') or we never needed it at all (e.g., `a'
10883 in `a,b'). This doesn't apply to HEAD; if that is
10884 lazy then it was not readable, but watch it anyway. */
10885 ;
10886 else
10887 {
10888 /* Ahh, memory we actually used! Check if we can cover
10889 it with hardware watchpoints. */
10890 struct type *vtype = check_typedef (value_type (v));
10891
10892 /* We only watch structs and arrays if user asked for it
10893 explicitly, never if they just happen to appear in a
10894 middle of some value chain. */
10895 if (v == head
10896 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10897 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10898 {
10899 CORE_ADDR vaddr = value_address (v);
10900 int len;
10901 int num_regs;
10902
10903 len = (target_exact_watchpoints
10904 && is_scalar_type_recursive (vtype))?
10905 1 : TYPE_LENGTH (value_type (v));
10906
10907 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10908 if (!num_regs)
10909 return 0;
10910 else
10911 found_memory_cnt += num_regs;
10912 }
10913 }
10914 }
10915 else if (VALUE_LVAL (v) != not_lval
10916 && deprecated_value_modifiable (v) == 0)
10917 return 0; /* These are values from the history (e.g., $1). */
10918 else if (VALUE_LVAL (v) == lval_register)
10919 return 0; /* Cannot watch a register with a HW watchpoint. */
10920 }
10921
10922 /* The expression itself looks suitable for using a hardware
10923 watchpoint, but give the target machine a chance to reject it. */
10924 return found_memory_cnt;
10925 }
10926
10927 void
10928 watch_command_wrapper (const char *arg, int from_tty, int internal)
10929 {
10930 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10931 }
10932
10933 /* A helper function that looks for the "-location" argument and then
10934 calls watch_command_1. */
10935
10936 static void
10937 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10938 {
10939 int just_location = 0;
10940
10941 if (arg
10942 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10943 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10944 {
10945 arg = skip_spaces (arg);
10946 just_location = 1;
10947 }
10948
10949 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10950 }
10951
10952 static void
10953 watch_command (const char *arg, int from_tty)
10954 {
10955 watch_maybe_just_location (arg, hw_write, from_tty);
10956 }
10957
10958 void
10959 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10960 {
10961 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10962 }
10963
10964 static void
10965 rwatch_command (const char *arg, int from_tty)
10966 {
10967 watch_maybe_just_location (arg, hw_read, from_tty);
10968 }
10969
10970 void
10971 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10972 {
10973 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10974 }
10975
10976 static void
10977 awatch_command (const char *arg, int from_tty)
10978 {
10979 watch_maybe_just_location (arg, hw_access, from_tty);
10980 }
10981 \f
10982
10983 /* Data for the FSM that manages the until(location)/advance commands
10984 in infcmd.c. Here because it uses the mechanisms of
10985 breakpoints. */
10986
10987 struct until_break_fsm
10988 {
10989 /* The base class. */
10990 struct thread_fsm thread_fsm;
10991
10992 /* The thread that as current when the command was executed. */
10993 int thread;
10994
10995 /* The breakpoint set at the destination location. */
10996 struct breakpoint *location_breakpoint;
10997
10998 /* Breakpoint set at the return address in the caller frame. May be
10999 NULL. */
11000 struct breakpoint *caller_breakpoint;
11001 };
11002
11003 static void until_break_fsm_clean_up (struct thread_fsm *self,
11004 struct thread_info *thread);
11005 static int until_break_fsm_should_stop (struct thread_fsm *self,
11006 struct thread_info *thread);
11007 static enum async_reply_reason
11008 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11009
11010 /* until_break_fsm's vtable. */
11011
11012 static struct thread_fsm_ops until_break_fsm_ops =
11013 {
11014 NULL, /* dtor */
11015 until_break_fsm_clean_up,
11016 until_break_fsm_should_stop,
11017 NULL, /* return_value */
11018 until_break_fsm_async_reply_reason,
11019 };
11020
11021 /* Allocate a new until_break_command_fsm. */
11022
11023 static struct until_break_fsm *
11024 new_until_break_fsm (struct interp *cmd_interp, int thread,
11025 breakpoint_up &&location_breakpoint,
11026 breakpoint_up &&caller_breakpoint)
11027 {
11028 struct until_break_fsm *sm;
11029
11030 sm = XCNEW (struct until_break_fsm);
11031 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11032
11033 sm->thread = thread;
11034 sm->location_breakpoint = location_breakpoint.release ();
11035 sm->caller_breakpoint = caller_breakpoint.release ();
11036
11037 return sm;
11038 }
11039
11040 /* Implementation of the 'should_stop' FSM method for the
11041 until(location)/advance commands. */
11042
11043 static int
11044 until_break_fsm_should_stop (struct thread_fsm *self,
11045 struct thread_info *tp)
11046 {
11047 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11048
11049 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11050 sm->location_breakpoint) != NULL
11051 || (sm->caller_breakpoint != NULL
11052 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11053 sm->caller_breakpoint) != NULL))
11054 thread_fsm_set_finished (self);
11055
11056 return 1;
11057 }
11058
11059 /* Implementation of the 'clean_up' FSM method for the
11060 until(location)/advance commands. */
11061
11062 static void
11063 until_break_fsm_clean_up (struct thread_fsm *self,
11064 struct thread_info *thread)
11065 {
11066 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11067
11068 /* Clean up our temporary breakpoints. */
11069 if (sm->location_breakpoint != NULL)
11070 {
11071 delete_breakpoint (sm->location_breakpoint);
11072 sm->location_breakpoint = NULL;
11073 }
11074 if (sm->caller_breakpoint != NULL)
11075 {
11076 delete_breakpoint (sm->caller_breakpoint);
11077 sm->caller_breakpoint = NULL;
11078 }
11079 delete_longjmp_breakpoint (sm->thread);
11080 }
11081
11082 /* Implementation of the 'async_reply_reason' FSM method for the
11083 until(location)/advance commands. */
11084
11085 static enum async_reply_reason
11086 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11087 {
11088 return EXEC_ASYNC_LOCATION_REACHED;
11089 }
11090
11091 void
11092 until_break_command (const char *arg, int from_tty, int anywhere)
11093 {
11094 struct frame_info *frame;
11095 struct gdbarch *frame_gdbarch;
11096 struct frame_id stack_frame_id;
11097 struct frame_id caller_frame_id;
11098 struct cleanup *old_chain;
11099 int thread;
11100 struct thread_info *tp;
11101 struct until_break_fsm *sm;
11102
11103 clear_proceed_status (0);
11104
11105 /* Set a breakpoint where the user wants it and at return from
11106 this function. */
11107
11108 event_location_up location = string_to_event_location (&arg, current_language);
11109
11110 std::vector<symtab_and_line> sals
11111 = (last_displayed_sal_is_valid ()
11112 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11113 get_last_displayed_symtab (),
11114 get_last_displayed_line ())
11115 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11116 NULL, (struct symtab *) NULL, 0));
11117
11118 if (sals.size () != 1)
11119 error (_("Couldn't get information on specified line."));
11120
11121 symtab_and_line &sal = sals[0];
11122
11123 if (*arg)
11124 error (_("Junk at end of arguments."));
11125
11126 resolve_sal_pc (&sal);
11127
11128 tp = inferior_thread ();
11129 thread = tp->global_num;
11130
11131 old_chain = make_cleanup (null_cleanup, NULL);
11132
11133 /* Note linespec handling above invalidates the frame chain.
11134 Installing a breakpoint also invalidates the frame chain (as it
11135 may need to switch threads), so do any frame handling before
11136 that. */
11137
11138 frame = get_selected_frame (NULL);
11139 frame_gdbarch = get_frame_arch (frame);
11140 stack_frame_id = get_stack_frame_id (frame);
11141 caller_frame_id = frame_unwind_caller_id (frame);
11142
11143 /* Keep within the current frame, or in frames called by the current
11144 one. */
11145
11146 breakpoint_up caller_breakpoint;
11147 if (frame_id_p (caller_frame_id))
11148 {
11149 struct symtab_and_line sal2;
11150 struct gdbarch *caller_gdbarch;
11151
11152 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11153 sal2.pc = frame_unwind_caller_pc (frame);
11154 caller_gdbarch = frame_unwind_caller_arch (frame);
11155 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11156 sal2,
11157 caller_frame_id,
11158 bp_until);
11159
11160 set_longjmp_breakpoint (tp, caller_frame_id);
11161 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11162 }
11163
11164 /* set_momentary_breakpoint could invalidate FRAME. */
11165 frame = NULL;
11166
11167 breakpoint_up location_breakpoint;
11168 if (anywhere)
11169 /* If the user told us to continue until a specified location,
11170 we don't specify a frame at which we need to stop. */
11171 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11172 null_frame_id, bp_until);
11173 else
11174 /* Otherwise, specify the selected frame, because we want to stop
11175 only at the very same frame. */
11176 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11177 stack_frame_id, bp_until);
11178
11179 sm = new_until_break_fsm (command_interp (), tp->global_num,
11180 std::move (location_breakpoint),
11181 std::move (caller_breakpoint));
11182 tp->thread_fsm = &sm->thread_fsm;
11183
11184 discard_cleanups (old_chain);
11185
11186 proceed (-1, GDB_SIGNAL_DEFAULT);
11187 }
11188
11189 /* This function attempts to parse an optional "if <cond>" clause
11190 from the arg string. If one is not found, it returns NULL.
11191
11192 Else, it returns a pointer to the condition string. (It does not
11193 attempt to evaluate the string against a particular block.) And,
11194 it updates arg to point to the first character following the parsed
11195 if clause in the arg string. */
11196
11197 const char *
11198 ep_parse_optional_if_clause (const char **arg)
11199 {
11200 const char *cond_string;
11201
11202 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11203 return NULL;
11204
11205 /* Skip the "if" keyword. */
11206 (*arg) += 2;
11207
11208 /* Skip any extra leading whitespace, and record the start of the
11209 condition string. */
11210 *arg = skip_spaces (*arg);
11211 cond_string = *arg;
11212
11213 /* Assume that the condition occupies the remainder of the arg
11214 string. */
11215 (*arg) += strlen (cond_string);
11216
11217 return cond_string;
11218 }
11219
11220 /* Commands to deal with catching events, such as signals, exceptions,
11221 process start/exit, etc. */
11222
11223 typedef enum
11224 {
11225 catch_fork_temporary, catch_vfork_temporary,
11226 catch_fork_permanent, catch_vfork_permanent
11227 }
11228 catch_fork_kind;
11229
11230 static void
11231 catch_fork_command_1 (const char *arg, int from_tty,
11232 struct cmd_list_element *command)
11233 {
11234 struct gdbarch *gdbarch = get_current_arch ();
11235 const char *cond_string = NULL;
11236 catch_fork_kind fork_kind;
11237 int tempflag;
11238
11239 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11240 tempflag = (fork_kind == catch_fork_temporary
11241 || fork_kind == catch_vfork_temporary);
11242
11243 if (!arg)
11244 arg = "";
11245 arg = skip_spaces (arg);
11246
11247 /* The allowed syntax is:
11248 catch [v]fork
11249 catch [v]fork if <cond>
11250
11251 First, check if there's an if clause. */
11252 cond_string = ep_parse_optional_if_clause (&arg);
11253
11254 if ((*arg != '\0') && !isspace (*arg))
11255 error (_("Junk at end of arguments."));
11256
11257 /* If this target supports it, create a fork or vfork catchpoint
11258 and enable reporting of such events. */
11259 switch (fork_kind)
11260 {
11261 case catch_fork_temporary:
11262 case catch_fork_permanent:
11263 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11264 &catch_fork_breakpoint_ops);
11265 break;
11266 case catch_vfork_temporary:
11267 case catch_vfork_permanent:
11268 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11269 &catch_vfork_breakpoint_ops);
11270 break;
11271 default:
11272 error (_("unsupported or unknown fork kind; cannot catch it"));
11273 break;
11274 }
11275 }
11276
11277 static void
11278 catch_exec_command_1 (const char *arg, int from_tty,
11279 struct cmd_list_element *command)
11280 {
11281 struct gdbarch *gdbarch = get_current_arch ();
11282 int tempflag;
11283 const char *cond_string = NULL;
11284
11285 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11286
11287 if (!arg)
11288 arg = "";
11289 arg = skip_spaces (arg);
11290
11291 /* The allowed syntax is:
11292 catch exec
11293 catch exec if <cond>
11294
11295 First, check if there's an if clause. */
11296 cond_string = ep_parse_optional_if_clause (&arg);
11297
11298 if ((*arg != '\0') && !isspace (*arg))
11299 error (_("Junk at end of arguments."));
11300
11301 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11302 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11303 &catch_exec_breakpoint_ops);
11304 c->exec_pathname = NULL;
11305
11306 install_breakpoint (0, std::move (c), 1);
11307 }
11308
11309 void
11310 init_ada_exception_breakpoint (struct breakpoint *b,
11311 struct gdbarch *gdbarch,
11312 struct symtab_and_line sal,
11313 const char *addr_string,
11314 const struct breakpoint_ops *ops,
11315 int tempflag,
11316 int enabled,
11317 int from_tty)
11318 {
11319 if (from_tty)
11320 {
11321 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11322 if (!loc_gdbarch)
11323 loc_gdbarch = gdbarch;
11324
11325 describe_other_breakpoints (loc_gdbarch,
11326 sal.pspace, sal.pc, sal.section, -1);
11327 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11328 version for exception catchpoints, because two catchpoints
11329 used for different exception names will use the same address.
11330 In this case, a "breakpoint ... also set at..." warning is
11331 unproductive. Besides, the warning phrasing is also a bit
11332 inappropriate, we should use the word catchpoint, and tell
11333 the user what type of catchpoint it is. The above is good
11334 enough for now, though. */
11335 }
11336
11337 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11338
11339 b->enable_state = enabled ? bp_enabled : bp_disabled;
11340 b->disposition = tempflag ? disp_del : disp_donttouch;
11341 b->location = string_to_event_location (&addr_string,
11342 language_def (language_ada));
11343 b->language = language_ada;
11344 }
11345
11346 static void
11347 catch_command (const char *arg, int from_tty)
11348 {
11349 error (_("Catch requires an event name."));
11350 }
11351 \f
11352
11353 static void
11354 tcatch_command (const char *arg, int from_tty)
11355 {
11356 error (_("Catch requires an event name."));
11357 }
11358
11359 /* Compare two breakpoints and return a strcmp-like result. */
11360
11361 static int
11362 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11363 {
11364 uintptr_t ua = (uintptr_t) a;
11365 uintptr_t ub = (uintptr_t) b;
11366
11367 if (a->number < b->number)
11368 return -1;
11369 else if (a->number > b->number)
11370 return 1;
11371
11372 /* Now sort by address, in case we see, e..g, two breakpoints with
11373 the number 0. */
11374 if (ua < ub)
11375 return -1;
11376 return ua > ub ? 1 : 0;
11377 }
11378
11379 /* Delete breakpoints by address or line. */
11380
11381 static void
11382 clear_command (const char *arg, int from_tty)
11383 {
11384 struct breakpoint *b;
11385 int default_match;
11386
11387 std::vector<symtab_and_line> decoded_sals;
11388 symtab_and_line last_sal;
11389 gdb::array_view<symtab_and_line> sals;
11390 if (arg)
11391 {
11392 decoded_sals
11393 = decode_line_with_current_source (arg,
11394 (DECODE_LINE_FUNFIRSTLINE
11395 | DECODE_LINE_LIST_MODE));
11396 default_match = 0;
11397 sals = decoded_sals;
11398 }
11399 else
11400 {
11401 /* Set sal's line, symtab, pc, and pspace to the values
11402 corresponding to the last call to print_frame_info. If the
11403 codepoint is not valid, this will set all the fields to 0. */
11404 last_sal = get_last_displayed_sal ();
11405 if (last_sal.symtab == 0)
11406 error (_("No source file specified."));
11407
11408 default_match = 1;
11409 sals = last_sal;
11410 }
11411
11412 /* We don't call resolve_sal_pc here. That's not as bad as it
11413 seems, because all existing breakpoints typically have both
11414 file/line and pc set. So, if clear is given file/line, we can
11415 match this to existing breakpoint without obtaining pc at all.
11416
11417 We only support clearing given the address explicitly
11418 present in breakpoint table. Say, we've set breakpoint
11419 at file:line. There were several PC values for that file:line,
11420 due to optimization, all in one block.
11421
11422 We've picked one PC value. If "clear" is issued with another
11423 PC corresponding to the same file:line, the breakpoint won't
11424 be cleared. We probably can still clear the breakpoint, but
11425 since the other PC value is never presented to user, user
11426 can only find it by guessing, and it does not seem important
11427 to support that. */
11428
11429 /* For each line spec given, delete bps which correspond to it. Do
11430 it in two passes, solely to preserve the current behavior that
11431 from_tty is forced true if we delete more than one
11432 breakpoint. */
11433
11434 std::vector<struct breakpoint *> found;
11435 for (const auto &sal : sals)
11436 {
11437 const char *sal_fullname;
11438
11439 /* If exact pc given, clear bpts at that pc.
11440 If line given (pc == 0), clear all bpts on specified line.
11441 If defaulting, clear all bpts on default line
11442 or at default pc.
11443
11444 defaulting sal.pc != 0 tests to do
11445
11446 0 1 pc
11447 1 1 pc _and_ line
11448 0 0 line
11449 1 0 <can't happen> */
11450
11451 sal_fullname = (sal.symtab == NULL
11452 ? NULL : symtab_to_fullname (sal.symtab));
11453
11454 /* Find all matching breakpoints and add them to 'found'. */
11455 ALL_BREAKPOINTS (b)
11456 {
11457 int match = 0;
11458 /* Are we going to delete b? */
11459 if (b->type != bp_none && !is_watchpoint (b))
11460 {
11461 struct bp_location *loc = b->loc;
11462 for (; loc; loc = loc->next)
11463 {
11464 /* If the user specified file:line, don't allow a PC
11465 match. This matches historical gdb behavior. */
11466 int pc_match = (!sal.explicit_line
11467 && sal.pc
11468 && (loc->pspace == sal.pspace)
11469 && (loc->address == sal.pc)
11470 && (!section_is_overlay (loc->section)
11471 || loc->section == sal.section));
11472 int line_match = 0;
11473
11474 if ((default_match || sal.explicit_line)
11475 && loc->symtab != NULL
11476 && sal_fullname != NULL
11477 && sal.pspace == loc->pspace
11478 && loc->line_number == sal.line
11479 && filename_cmp (symtab_to_fullname (loc->symtab),
11480 sal_fullname) == 0)
11481 line_match = 1;
11482
11483 if (pc_match || line_match)
11484 {
11485 match = 1;
11486 break;
11487 }
11488 }
11489 }
11490
11491 if (match)
11492 found.push_back (b);
11493 }
11494 }
11495
11496 /* Now go thru the 'found' chain and delete them. */
11497 if (found.empty ())
11498 {
11499 if (arg)
11500 error (_("No breakpoint at %s."), arg);
11501 else
11502 error (_("No breakpoint at this line."));
11503 }
11504
11505 /* Remove duplicates from the vec. */
11506 std::sort (found.begin (), found.end (),
11507 [] (const breakpoint *a, const breakpoint *b)
11508 {
11509 return compare_breakpoints (a, b) < 0;
11510 });
11511 found.erase (std::unique (found.begin (), found.end (),
11512 [] (const breakpoint *a, const breakpoint *b)
11513 {
11514 return compare_breakpoints (a, b) == 0;
11515 }),
11516 found.end ());
11517
11518 if (found.size () > 1)
11519 from_tty = 1; /* Always report if deleted more than one. */
11520 if (from_tty)
11521 {
11522 if (found.size () == 1)
11523 printf_unfiltered (_("Deleted breakpoint "));
11524 else
11525 printf_unfiltered (_("Deleted breakpoints "));
11526 }
11527
11528 for (breakpoint *iter : found)
11529 {
11530 if (from_tty)
11531 printf_unfiltered ("%d ", iter->number);
11532 delete_breakpoint (iter);
11533 }
11534 if (from_tty)
11535 putchar_unfiltered ('\n');
11536 }
11537 \f
11538 /* Delete breakpoint in BS if they are `delete' breakpoints and
11539 all breakpoints that are marked for deletion, whether hit or not.
11540 This is called after any breakpoint is hit, or after errors. */
11541
11542 void
11543 breakpoint_auto_delete (bpstat bs)
11544 {
11545 struct breakpoint *b, *b_tmp;
11546
11547 for (; bs; bs = bs->next)
11548 if (bs->breakpoint_at
11549 && bs->breakpoint_at->disposition == disp_del
11550 && bs->stop)
11551 delete_breakpoint (bs->breakpoint_at);
11552
11553 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11554 {
11555 if (b->disposition == disp_del_at_next_stop)
11556 delete_breakpoint (b);
11557 }
11558 }
11559
11560 /* A comparison function for bp_location AP and BP being interfaced to
11561 qsort. Sort elements primarily by their ADDRESS (no matter what
11562 does breakpoint_address_is_meaningful say for its OWNER),
11563 secondarily by ordering first permanent elements and
11564 terciarily just ensuring the array is sorted stable way despite
11565 qsort being an unstable algorithm. */
11566
11567 static int
11568 bp_locations_compare (const void *ap, const void *bp)
11569 {
11570 const struct bp_location *a = *(const struct bp_location **) ap;
11571 const struct bp_location *b = *(const struct bp_location **) bp;
11572
11573 if (a->address != b->address)
11574 return (a->address > b->address) - (a->address < b->address);
11575
11576 /* Sort locations at the same address by their pspace number, keeping
11577 locations of the same inferior (in a multi-inferior environment)
11578 grouped. */
11579
11580 if (a->pspace->num != b->pspace->num)
11581 return ((a->pspace->num > b->pspace->num)
11582 - (a->pspace->num < b->pspace->num));
11583
11584 /* Sort permanent breakpoints first. */
11585 if (a->permanent != b->permanent)
11586 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11587
11588 /* Make the internal GDB representation stable across GDB runs
11589 where A and B memory inside GDB can differ. Breakpoint locations of
11590 the same type at the same address can be sorted in arbitrary order. */
11591
11592 if (a->owner->number != b->owner->number)
11593 return ((a->owner->number > b->owner->number)
11594 - (a->owner->number < b->owner->number));
11595
11596 return (a > b) - (a < b);
11597 }
11598
11599 /* Set bp_locations_placed_address_before_address_max and
11600 bp_locations_shadow_len_after_address_max according to the current
11601 content of the bp_locations array. */
11602
11603 static void
11604 bp_locations_target_extensions_update (void)
11605 {
11606 struct bp_location *bl, **blp_tmp;
11607
11608 bp_locations_placed_address_before_address_max = 0;
11609 bp_locations_shadow_len_after_address_max = 0;
11610
11611 ALL_BP_LOCATIONS (bl, blp_tmp)
11612 {
11613 CORE_ADDR start, end, addr;
11614
11615 if (!bp_location_has_shadow (bl))
11616 continue;
11617
11618 start = bl->target_info.placed_address;
11619 end = start + bl->target_info.shadow_len;
11620
11621 gdb_assert (bl->address >= start);
11622 addr = bl->address - start;
11623 if (addr > bp_locations_placed_address_before_address_max)
11624 bp_locations_placed_address_before_address_max = addr;
11625
11626 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11627
11628 gdb_assert (bl->address < end);
11629 addr = end - bl->address;
11630 if (addr > bp_locations_shadow_len_after_address_max)
11631 bp_locations_shadow_len_after_address_max = addr;
11632 }
11633 }
11634
11635 /* Download tracepoint locations if they haven't been. */
11636
11637 static void
11638 download_tracepoint_locations (void)
11639 {
11640 struct breakpoint *b;
11641 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11642
11643 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11644
11645 ALL_TRACEPOINTS (b)
11646 {
11647 struct bp_location *bl;
11648 struct tracepoint *t;
11649 int bp_location_downloaded = 0;
11650
11651 if ((b->type == bp_fast_tracepoint
11652 ? !may_insert_fast_tracepoints
11653 : !may_insert_tracepoints))
11654 continue;
11655
11656 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11657 {
11658 if (target_can_download_tracepoint ())
11659 can_download_tracepoint = TRIBOOL_TRUE;
11660 else
11661 can_download_tracepoint = TRIBOOL_FALSE;
11662 }
11663
11664 if (can_download_tracepoint == TRIBOOL_FALSE)
11665 break;
11666
11667 for (bl = b->loc; bl; bl = bl->next)
11668 {
11669 /* In tracepoint, locations are _never_ duplicated, so
11670 should_be_inserted is equivalent to
11671 unduplicated_should_be_inserted. */
11672 if (!should_be_inserted (bl) || bl->inserted)
11673 continue;
11674
11675 switch_to_program_space_and_thread (bl->pspace);
11676
11677 target_download_tracepoint (bl);
11678
11679 bl->inserted = 1;
11680 bp_location_downloaded = 1;
11681 }
11682 t = (struct tracepoint *) b;
11683 t->number_on_target = b->number;
11684 if (bp_location_downloaded)
11685 gdb::observers::breakpoint_modified.notify (b);
11686 }
11687 }
11688
11689 /* Swap the insertion/duplication state between two locations. */
11690
11691 static void
11692 swap_insertion (struct bp_location *left, struct bp_location *right)
11693 {
11694 const int left_inserted = left->inserted;
11695 const int left_duplicate = left->duplicate;
11696 const int left_needs_update = left->needs_update;
11697 const struct bp_target_info left_target_info = left->target_info;
11698
11699 /* Locations of tracepoints can never be duplicated. */
11700 if (is_tracepoint (left->owner))
11701 gdb_assert (!left->duplicate);
11702 if (is_tracepoint (right->owner))
11703 gdb_assert (!right->duplicate);
11704
11705 left->inserted = right->inserted;
11706 left->duplicate = right->duplicate;
11707 left->needs_update = right->needs_update;
11708 left->target_info = right->target_info;
11709 right->inserted = left_inserted;
11710 right->duplicate = left_duplicate;
11711 right->needs_update = left_needs_update;
11712 right->target_info = left_target_info;
11713 }
11714
11715 /* Force the re-insertion of the locations at ADDRESS. This is called
11716 once a new/deleted/modified duplicate location is found and we are evaluating
11717 conditions on the target's side. Such conditions need to be updated on
11718 the target. */
11719
11720 static void
11721 force_breakpoint_reinsertion (struct bp_location *bl)
11722 {
11723 struct bp_location **locp = NULL, **loc2p;
11724 struct bp_location *loc;
11725 CORE_ADDR address = 0;
11726 int pspace_num;
11727
11728 address = bl->address;
11729 pspace_num = bl->pspace->num;
11730
11731 /* This is only meaningful if the target is
11732 evaluating conditions and if the user has
11733 opted for condition evaluation on the target's
11734 side. */
11735 if (gdb_evaluates_breakpoint_condition_p ()
11736 || !target_supports_evaluation_of_breakpoint_conditions ())
11737 return;
11738
11739 /* Flag all breakpoint locations with this address and
11740 the same program space as the location
11741 as "its condition has changed". We need to
11742 update the conditions on the target's side. */
11743 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11744 {
11745 loc = *loc2p;
11746
11747 if (!is_breakpoint (loc->owner)
11748 || pspace_num != loc->pspace->num)
11749 continue;
11750
11751 /* Flag the location appropriately. We use a different state to
11752 let everyone know that we already updated the set of locations
11753 with addr bl->address and program space bl->pspace. This is so
11754 we don't have to keep calling these functions just to mark locations
11755 that have already been marked. */
11756 loc->condition_changed = condition_updated;
11757
11758 /* Free the agent expression bytecode as well. We will compute
11759 it later on. */
11760 loc->cond_bytecode.reset ();
11761 }
11762 }
11763 /* Called whether new breakpoints are created, or existing breakpoints
11764 deleted, to update the global location list and recompute which
11765 locations are duplicate of which.
11766
11767 The INSERT_MODE flag determines whether locations may not, may, or
11768 shall be inserted now. See 'enum ugll_insert_mode' for more
11769 info. */
11770
11771 static void
11772 update_global_location_list (enum ugll_insert_mode insert_mode)
11773 {
11774 struct breakpoint *b;
11775 struct bp_location **locp, *loc;
11776 /* Last breakpoint location address that was marked for update. */
11777 CORE_ADDR last_addr = 0;
11778 /* Last breakpoint location program space that was marked for update. */
11779 int last_pspace_num = -1;
11780
11781 /* Used in the duplicates detection below. When iterating over all
11782 bp_locations, points to the first bp_location of a given address.
11783 Breakpoints and watchpoints of different types are never
11784 duplicates of each other. Keep one pointer for each type of
11785 breakpoint/watchpoint, so we only need to loop over all locations
11786 once. */
11787 struct bp_location *bp_loc_first; /* breakpoint */
11788 struct bp_location *wp_loc_first; /* hardware watchpoint */
11789 struct bp_location *awp_loc_first; /* access watchpoint */
11790 struct bp_location *rwp_loc_first; /* read watchpoint */
11791
11792 /* Saved former bp_locations array which we compare against the newly
11793 built bp_locations from the current state of ALL_BREAKPOINTS. */
11794 struct bp_location **old_locp;
11795 unsigned old_locations_count;
11796 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11797
11798 old_locations_count = bp_locations_count;
11799 bp_locations = NULL;
11800 bp_locations_count = 0;
11801
11802 ALL_BREAKPOINTS (b)
11803 for (loc = b->loc; loc; loc = loc->next)
11804 bp_locations_count++;
11805
11806 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11807 locp = bp_locations;
11808 ALL_BREAKPOINTS (b)
11809 for (loc = b->loc; loc; loc = loc->next)
11810 *locp++ = loc;
11811 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11812 bp_locations_compare);
11813
11814 bp_locations_target_extensions_update ();
11815
11816 /* Identify bp_location instances that are no longer present in the
11817 new list, and therefore should be freed. Note that it's not
11818 necessary that those locations should be removed from inferior --
11819 if there's another location at the same address (previously
11820 marked as duplicate), we don't need to remove/insert the
11821 location.
11822
11823 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11824 and former bp_location array state respectively. */
11825
11826 locp = bp_locations;
11827 for (old_locp = old_locations.get ();
11828 old_locp < old_locations.get () + old_locations_count;
11829 old_locp++)
11830 {
11831 struct bp_location *old_loc = *old_locp;
11832 struct bp_location **loc2p;
11833
11834 /* Tells if 'old_loc' is found among the new locations. If
11835 not, we have to free it. */
11836 int found_object = 0;
11837 /* Tells if the location should remain inserted in the target. */
11838 int keep_in_target = 0;
11839 int removed = 0;
11840
11841 /* Skip LOCP entries which will definitely never be needed.
11842 Stop either at or being the one matching OLD_LOC. */
11843 while (locp < bp_locations + bp_locations_count
11844 && (*locp)->address < old_loc->address)
11845 locp++;
11846
11847 for (loc2p = locp;
11848 (loc2p < bp_locations + bp_locations_count
11849 && (*loc2p)->address == old_loc->address);
11850 loc2p++)
11851 {
11852 /* Check if this is a new/duplicated location or a duplicated
11853 location that had its condition modified. If so, we want to send
11854 its condition to the target if evaluation of conditions is taking
11855 place there. */
11856 if ((*loc2p)->condition_changed == condition_modified
11857 && (last_addr != old_loc->address
11858 || last_pspace_num != old_loc->pspace->num))
11859 {
11860 force_breakpoint_reinsertion (*loc2p);
11861 last_pspace_num = old_loc->pspace->num;
11862 }
11863
11864 if (*loc2p == old_loc)
11865 found_object = 1;
11866 }
11867
11868 /* We have already handled this address, update it so that we don't
11869 have to go through updates again. */
11870 last_addr = old_loc->address;
11871
11872 /* Target-side condition evaluation: Handle deleted locations. */
11873 if (!found_object)
11874 force_breakpoint_reinsertion (old_loc);
11875
11876 /* If this location is no longer present, and inserted, look if
11877 there's maybe a new location at the same address. If so,
11878 mark that one inserted, and don't remove this one. This is
11879 needed so that we don't have a time window where a breakpoint
11880 at certain location is not inserted. */
11881
11882 if (old_loc->inserted)
11883 {
11884 /* If the location is inserted now, we might have to remove
11885 it. */
11886
11887 if (found_object && should_be_inserted (old_loc))
11888 {
11889 /* The location is still present in the location list,
11890 and still should be inserted. Don't do anything. */
11891 keep_in_target = 1;
11892 }
11893 else
11894 {
11895 /* This location still exists, but it won't be kept in the
11896 target since it may have been disabled. We proceed to
11897 remove its target-side condition. */
11898
11899 /* The location is either no longer present, or got
11900 disabled. See if there's another location at the
11901 same address, in which case we don't need to remove
11902 this one from the target. */
11903
11904 /* OLD_LOC comes from existing struct breakpoint. */
11905 if (breakpoint_address_is_meaningful (old_loc->owner))
11906 {
11907 for (loc2p = locp;
11908 (loc2p < bp_locations + bp_locations_count
11909 && (*loc2p)->address == old_loc->address);
11910 loc2p++)
11911 {
11912 struct bp_location *loc2 = *loc2p;
11913
11914 if (breakpoint_locations_match (loc2, old_loc))
11915 {
11916 /* Read watchpoint locations are switched to
11917 access watchpoints, if the former are not
11918 supported, but the latter are. */
11919 if (is_hardware_watchpoint (old_loc->owner))
11920 {
11921 gdb_assert (is_hardware_watchpoint (loc2->owner));
11922 loc2->watchpoint_type = old_loc->watchpoint_type;
11923 }
11924
11925 /* loc2 is a duplicated location. We need to check
11926 if it should be inserted in case it will be
11927 unduplicated. */
11928 if (loc2 != old_loc
11929 && unduplicated_should_be_inserted (loc2))
11930 {
11931 swap_insertion (old_loc, loc2);
11932 keep_in_target = 1;
11933 break;
11934 }
11935 }
11936 }
11937 }
11938 }
11939
11940 if (!keep_in_target)
11941 {
11942 if (remove_breakpoint (old_loc))
11943 {
11944 /* This is just about all we can do. We could keep
11945 this location on the global list, and try to
11946 remove it next time, but there's no particular
11947 reason why we will succeed next time.
11948
11949 Note that at this point, old_loc->owner is still
11950 valid, as delete_breakpoint frees the breakpoint
11951 only after calling us. */
11952 printf_filtered (_("warning: Error removing "
11953 "breakpoint %d\n"),
11954 old_loc->owner->number);
11955 }
11956 removed = 1;
11957 }
11958 }
11959
11960 if (!found_object)
11961 {
11962 if (removed && target_is_non_stop_p ()
11963 && need_moribund_for_location_type (old_loc))
11964 {
11965 /* This location was removed from the target. In
11966 non-stop mode, a race condition is possible where
11967 we've removed a breakpoint, but stop events for that
11968 breakpoint are already queued and will arrive later.
11969 We apply an heuristic to be able to distinguish such
11970 SIGTRAPs from other random SIGTRAPs: we keep this
11971 breakpoint location for a bit, and will retire it
11972 after we see some number of events. The theory here
11973 is that reporting of events should, "on the average",
11974 be fair, so after a while we'll see events from all
11975 threads that have anything of interest, and no longer
11976 need to keep this breakpoint location around. We
11977 don't hold locations forever so to reduce chances of
11978 mistaking a non-breakpoint SIGTRAP for a breakpoint
11979 SIGTRAP.
11980
11981 The heuristic failing can be disastrous on
11982 decr_pc_after_break targets.
11983
11984 On decr_pc_after_break targets, like e.g., x86-linux,
11985 if we fail to recognize a late breakpoint SIGTRAP,
11986 because events_till_retirement has reached 0 too
11987 soon, we'll fail to do the PC adjustment, and report
11988 a random SIGTRAP to the user. When the user resumes
11989 the inferior, it will most likely immediately crash
11990 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11991 corrupted, because of being resumed e.g., in the
11992 middle of a multi-byte instruction, or skipped a
11993 one-byte instruction. This was actually seen happen
11994 on native x86-linux, and should be less rare on
11995 targets that do not support new thread events, like
11996 remote, due to the heuristic depending on
11997 thread_count.
11998
11999 Mistaking a random SIGTRAP for a breakpoint trap
12000 causes similar symptoms (PC adjustment applied when
12001 it shouldn't), but then again, playing with SIGTRAPs
12002 behind the debugger's back is asking for trouble.
12003
12004 Since hardware watchpoint traps are always
12005 distinguishable from other traps, so we don't need to
12006 apply keep hardware watchpoint moribund locations
12007 around. We simply always ignore hardware watchpoint
12008 traps we can no longer explain. */
12009
12010 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12011 old_loc->owner = NULL;
12012
12013 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12014 }
12015 else
12016 {
12017 old_loc->owner = NULL;
12018 decref_bp_location (&old_loc);
12019 }
12020 }
12021 }
12022
12023 /* Rescan breakpoints at the same address and section, marking the
12024 first one as "first" and any others as "duplicates". This is so
12025 that the bpt instruction is only inserted once. If we have a
12026 permanent breakpoint at the same place as BPT, make that one the
12027 official one, and the rest as duplicates. Permanent breakpoints
12028 are sorted first for the same address.
12029
12030 Do the same for hardware watchpoints, but also considering the
12031 watchpoint's type (regular/access/read) and length. */
12032
12033 bp_loc_first = NULL;
12034 wp_loc_first = NULL;
12035 awp_loc_first = NULL;
12036 rwp_loc_first = NULL;
12037 ALL_BP_LOCATIONS (loc, locp)
12038 {
12039 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12040 non-NULL. */
12041 struct bp_location **loc_first_p;
12042 b = loc->owner;
12043
12044 if (!unduplicated_should_be_inserted (loc)
12045 || !breakpoint_address_is_meaningful (b)
12046 /* Don't detect duplicate for tracepoint locations because they are
12047 never duplicated. See the comments in field `duplicate' of
12048 `struct bp_location'. */
12049 || is_tracepoint (b))
12050 {
12051 /* Clear the condition modification flag. */
12052 loc->condition_changed = condition_unchanged;
12053 continue;
12054 }
12055
12056 if (b->type == bp_hardware_watchpoint)
12057 loc_first_p = &wp_loc_first;
12058 else if (b->type == bp_read_watchpoint)
12059 loc_first_p = &rwp_loc_first;
12060 else if (b->type == bp_access_watchpoint)
12061 loc_first_p = &awp_loc_first;
12062 else
12063 loc_first_p = &bp_loc_first;
12064
12065 if (*loc_first_p == NULL
12066 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12067 || !breakpoint_locations_match (loc, *loc_first_p))
12068 {
12069 *loc_first_p = loc;
12070 loc->duplicate = 0;
12071
12072 if (is_breakpoint (loc->owner) && loc->condition_changed)
12073 {
12074 loc->needs_update = 1;
12075 /* Clear the condition modification flag. */
12076 loc->condition_changed = condition_unchanged;
12077 }
12078 continue;
12079 }
12080
12081
12082 /* This and the above ensure the invariant that the first location
12083 is not duplicated, and is the inserted one.
12084 All following are marked as duplicated, and are not inserted. */
12085 if (loc->inserted)
12086 swap_insertion (loc, *loc_first_p);
12087 loc->duplicate = 1;
12088
12089 /* Clear the condition modification flag. */
12090 loc->condition_changed = condition_unchanged;
12091 }
12092
12093 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12094 {
12095 if (insert_mode != UGLL_DONT_INSERT)
12096 insert_breakpoint_locations ();
12097 else
12098 {
12099 /* Even though the caller told us to not insert new
12100 locations, we may still need to update conditions on the
12101 target's side of breakpoints that were already inserted
12102 if the target is evaluating breakpoint conditions. We
12103 only update conditions for locations that are marked
12104 "needs_update". */
12105 update_inserted_breakpoint_locations ();
12106 }
12107 }
12108
12109 if (insert_mode != UGLL_DONT_INSERT)
12110 download_tracepoint_locations ();
12111 }
12112
12113 void
12114 breakpoint_retire_moribund (void)
12115 {
12116 struct bp_location *loc;
12117 int ix;
12118
12119 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12120 if (--(loc->events_till_retirement) == 0)
12121 {
12122 decref_bp_location (&loc);
12123 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12124 --ix;
12125 }
12126 }
12127
12128 static void
12129 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12130 {
12131
12132 TRY
12133 {
12134 update_global_location_list (insert_mode);
12135 }
12136 CATCH (e, RETURN_MASK_ERROR)
12137 {
12138 }
12139 END_CATCH
12140 }
12141
12142 /* Clear BKP from a BPS. */
12143
12144 static void
12145 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12146 {
12147 bpstat bs;
12148
12149 for (bs = bps; bs; bs = bs->next)
12150 if (bs->breakpoint_at == bpt)
12151 {
12152 bs->breakpoint_at = NULL;
12153 bs->old_val = NULL;
12154 /* bs->commands will be freed later. */
12155 }
12156 }
12157
12158 /* Callback for iterate_over_threads. */
12159 static int
12160 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12161 {
12162 struct breakpoint *bpt = (struct breakpoint *) data;
12163
12164 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12165 return 0;
12166 }
12167
12168 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12169 callbacks. */
12170
12171 static void
12172 say_where (struct breakpoint *b)
12173 {
12174 struct value_print_options opts;
12175
12176 get_user_print_options (&opts);
12177
12178 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12179 single string. */
12180 if (b->loc == NULL)
12181 {
12182 /* For pending locations, the output differs slightly based
12183 on b->extra_string. If this is non-NULL, it contains either
12184 a condition or dprintf arguments. */
12185 if (b->extra_string == NULL)
12186 {
12187 printf_filtered (_(" (%s) pending."),
12188 event_location_to_string (b->location.get ()));
12189 }
12190 else if (b->type == bp_dprintf)
12191 {
12192 printf_filtered (_(" (%s,%s) pending."),
12193 event_location_to_string (b->location.get ()),
12194 b->extra_string);
12195 }
12196 else
12197 {
12198 printf_filtered (_(" (%s %s) pending."),
12199 event_location_to_string (b->location.get ()),
12200 b->extra_string);
12201 }
12202 }
12203 else
12204 {
12205 if (opts.addressprint || b->loc->symtab == NULL)
12206 {
12207 printf_filtered (" at ");
12208 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12209 gdb_stdout);
12210 }
12211 if (b->loc->symtab != NULL)
12212 {
12213 /* If there is a single location, we can print the location
12214 more nicely. */
12215 if (b->loc->next == NULL)
12216 printf_filtered (": file %s, line %d.",
12217 symtab_to_filename_for_display (b->loc->symtab),
12218 b->loc->line_number);
12219 else
12220 /* This is not ideal, but each location may have a
12221 different file name, and this at least reflects the
12222 real situation somewhat. */
12223 printf_filtered (": %s.",
12224 event_location_to_string (b->location.get ()));
12225 }
12226
12227 if (b->loc->next)
12228 {
12229 struct bp_location *loc = b->loc;
12230 int n = 0;
12231 for (; loc; loc = loc->next)
12232 ++n;
12233 printf_filtered (" (%d locations)", n);
12234 }
12235 }
12236 }
12237
12238 /* Default bp_location_ops methods. */
12239
12240 static void
12241 bp_location_dtor (struct bp_location *self)
12242 {
12243 xfree (self->function_name);
12244 }
12245
12246 static const struct bp_location_ops bp_location_ops =
12247 {
12248 bp_location_dtor
12249 };
12250
12251 /* Destructor for the breakpoint base class. */
12252
12253 breakpoint::~breakpoint ()
12254 {
12255 xfree (this->cond_string);
12256 xfree (this->extra_string);
12257 xfree (this->filter);
12258 }
12259
12260 static struct bp_location *
12261 base_breakpoint_allocate_location (struct breakpoint *self)
12262 {
12263 return new bp_location (&bp_location_ops, self);
12264 }
12265
12266 static void
12267 base_breakpoint_re_set (struct breakpoint *b)
12268 {
12269 /* Nothing to re-set. */
12270 }
12271
12272 #define internal_error_pure_virtual_called() \
12273 gdb_assert_not_reached ("pure virtual function called")
12274
12275 static int
12276 base_breakpoint_insert_location (struct bp_location *bl)
12277 {
12278 internal_error_pure_virtual_called ();
12279 }
12280
12281 static int
12282 base_breakpoint_remove_location (struct bp_location *bl,
12283 enum remove_bp_reason reason)
12284 {
12285 internal_error_pure_virtual_called ();
12286 }
12287
12288 static int
12289 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12290 const address_space *aspace,
12291 CORE_ADDR bp_addr,
12292 const struct target_waitstatus *ws)
12293 {
12294 internal_error_pure_virtual_called ();
12295 }
12296
12297 static void
12298 base_breakpoint_check_status (bpstat bs)
12299 {
12300 /* Always stop. */
12301 }
12302
12303 /* A "works_in_software_mode" breakpoint_ops method that just internal
12304 errors. */
12305
12306 static int
12307 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12308 {
12309 internal_error_pure_virtual_called ();
12310 }
12311
12312 /* A "resources_needed" breakpoint_ops method that just internal
12313 errors. */
12314
12315 static int
12316 base_breakpoint_resources_needed (const struct bp_location *bl)
12317 {
12318 internal_error_pure_virtual_called ();
12319 }
12320
12321 static enum print_stop_action
12322 base_breakpoint_print_it (bpstat bs)
12323 {
12324 internal_error_pure_virtual_called ();
12325 }
12326
12327 static void
12328 base_breakpoint_print_one_detail (const struct breakpoint *self,
12329 struct ui_out *uiout)
12330 {
12331 /* nothing */
12332 }
12333
12334 static void
12335 base_breakpoint_print_mention (struct breakpoint *b)
12336 {
12337 internal_error_pure_virtual_called ();
12338 }
12339
12340 static void
12341 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12342 {
12343 internal_error_pure_virtual_called ();
12344 }
12345
12346 static void
12347 base_breakpoint_create_sals_from_location
12348 (const struct event_location *location,
12349 struct linespec_result *canonical,
12350 enum bptype type_wanted)
12351 {
12352 internal_error_pure_virtual_called ();
12353 }
12354
12355 static void
12356 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12357 struct linespec_result *c,
12358 gdb::unique_xmalloc_ptr<char> cond_string,
12359 gdb::unique_xmalloc_ptr<char> extra_string,
12360 enum bptype type_wanted,
12361 enum bpdisp disposition,
12362 int thread,
12363 int task, int ignore_count,
12364 const struct breakpoint_ops *o,
12365 int from_tty, int enabled,
12366 int internal, unsigned flags)
12367 {
12368 internal_error_pure_virtual_called ();
12369 }
12370
12371 static std::vector<symtab_and_line>
12372 base_breakpoint_decode_location (struct breakpoint *b,
12373 const struct event_location *location,
12374 struct program_space *search_pspace)
12375 {
12376 internal_error_pure_virtual_called ();
12377 }
12378
12379 /* The default 'explains_signal' method. */
12380
12381 static int
12382 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12383 {
12384 return 1;
12385 }
12386
12387 /* The default "after_condition_true" method. */
12388
12389 static void
12390 base_breakpoint_after_condition_true (struct bpstats *bs)
12391 {
12392 /* Nothing to do. */
12393 }
12394
12395 struct breakpoint_ops base_breakpoint_ops =
12396 {
12397 base_breakpoint_allocate_location,
12398 base_breakpoint_re_set,
12399 base_breakpoint_insert_location,
12400 base_breakpoint_remove_location,
12401 base_breakpoint_breakpoint_hit,
12402 base_breakpoint_check_status,
12403 base_breakpoint_resources_needed,
12404 base_breakpoint_works_in_software_mode,
12405 base_breakpoint_print_it,
12406 NULL,
12407 base_breakpoint_print_one_detail,
12408 base_breakpoint_print_mention,
12409 base_breakpoint_print_recreate,
12410 base_breakpoint_create_sals_from_location,
12411 base_breakpoint_create_breakpoints_sal,
12412 base_breakpoint_decode_location,
12413 base_breakpoint_explains_signal,
12414 base_breakpoint_after_condition_true,
12415 };
12416
12417 /* Default breakpoint_ops methods. */
12418
12419 static void
12420 bkpt_re_set (struct breakpoint *b)
12421 {
12422 /* FIXME: is this still reachable? */
12423 if (breakpoint_event_location_empty_p (b))
12424 {
12425 /* Anything without a location can't be re-set. */
12426 delete_breakpoint (b);
12427 return;
12428 }
12429
12430 breakpoint_re_set_default (b);
12431 }
12432
12433 static int
12434 bkpt_insert_location (struct bp_location *bl)
12435 {
12436 CORE_ADDR addr = bl->target_info.reqstd_address;
12437
12438 bl->target_info.kind = breakpoint_kind (bl, &addr);
12439 bl->target_info.placed_address = addr;
12440
12441 if (bl->loc_type == bp_loc_hardware_breakpoint)
12442 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12443 else
12444 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12445 }
12446
12447 static int
12448 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12449 {
12450 if (bl->loc_type == bp_loc_hardware_breakpoint)
12451 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12452 else
12453 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12454 }
12455
12456 static int
12457 bkpt_breakpoint_hit (const struct bp_location *bl,
12458 const address_space *aspace, CORE_ADDR bp_addr,
12459 const struct target_waitstatus *ws)
12460 {
12461 if (ws->kind != TARGET_WAITKIND_STOPPED
12462 || ws->value.sig != GDB_SIGNAL_TRAP)
12463 return 0;
12464
12465 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12466 aspace, bp_addr))
12467 return 0;
12468
12469 if (overlay_debugging /* unmapped overlay section */
12470 && section_is_overlay (bl->section)
12471 && !section_is_mapped (bl->section))
12472 return 0;
12473
12474 return 1;
12475 }
12476
12477 static int
12478 dprintf_breakpoint_hit (const struct bp_location *bl,
12479 const address_space *aspace, CORE_ADDR bp_addr,
12480 const struct target_waitstatus *ws)
12481 {
12482 if (dprintf_style == dprintf_style_agent
12483 && target_can_run_breakpoint_commands ())
12484 {
12485 /* An agent-style dprintf never causes a stop. If we see a trap
12486 for this address it must be for a breakpoint that happens to
12487 be set at the same address. */
12488 return 0;
12489 }
12490
12491 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12492 }
12493
12494 static int
12495 bkpt_resources_needed (const struct bp_location *bl)
12496 {
12497 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12498
12499 return 1;
12500 }
12501
12502 static enum print_stop_action
12503 bkpt_print_it (bpstat bs)
12504 {
12505 struct breakpoint *b;
12506 const struct bp_location *bl;
12507 int bp_temp;
12508 struct ui_out *uiout = current_uiout;
12509
12510 gdb_assert (bs->bp_location_at != NULL);
12511
12512 bl = bs->bp_location_at;
12513 b = bs->breakpoint_at;
12514
12515 bp_temp = b->disposition == disp_del;
12516 if (bl->address != bl->requested_address)
12517 breakpoint_adjustment_warning (bl->requested_address,
12518 bl->address,
12519 b->number, 1);
12520 annotate_breakpoint (b->number);
12521 maybe_print_thread_hit_breakpoint (uiout);
12522
12523 if (bp_temp)
12524 uiout->text ("Temporary breakpoint ");
12525 else
12526 uiout->text ("Breakpoint ");
12527 if (uiout->is_mi_like_p ())
12528 {
12529 uiout->field_string ("reason",
12530 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12531 uiout->field_string ("disp", bpdisp_text (b->disposition));
12532 }
12533 uiout->field_int ("bkptno", b->number);
12534 uiout->text (", ");
12535
12536 return PRINT_SRC_AND_LOC;
12537 }
12538
12539 static void
12540 bkpt_print_mention (struct breakpoint *b)
12541 {
12542 if (current_uiout->is_mi_like_p ())
12543 return;
12544
12545 switch (b->type)
12546 {
12547 case bp_breakpoint:
12548 case bp_gnu_ifunc_resolver:
12549 if (b->disposition == disp_del)
12550 printf_filtered (_("Temporary breakpoint"));
12551 else
12552 printf_filtered (_("Breakpoint"));
12553 printf_filtered (_(" %d"), b->number);
12554 if (b->type == bp_gnu_ifunc_resolver)
12555 printf_filtered (_(" at gnu-indirect-function resolver"));
12556 break;
12557 case bp_hardware_breakpoint:
12558 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12559 break;
12560 case bp_dprintf:
12561 printf_filtered (_("Dprintf %d"), b->number);
12562 break;
12563 }
12564
12565 say_where (b);
12566 }
12567
12568 static void
12569 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12570 {
12571 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12572 fprintf_unfiltered (fp, "tbreak");
12573 else if (tp->type == bp_breakpoint)
12574 fprintf_unfiltered (fp, "break");
12575 else if (tp->type == bp_hardware_breakpoint
12576 && tp->disposition == disp_del)
12577 fprintf_unfiltered (fp, "thbreak");
12578 else if (tp->type == bp_hardware_breakpoint)
12579 fprintf_unfiltered (fp, "hbreak");
12580 else
12581 internal_error (__FILE__, __LINE__,
12582 _("unhandled breakpoint type %d"), (int) tp->type);
12583
12584 fprintf_unfiltered (fp, " %s",
12585 event_location_to_string (tp->location.get ()));
12586
12587 /* Print out extra_string if this breakpoint is pending. It might
12588 contain, for example, conditions that were set by the user. */
12589 if (tp->loc == NULL && tp->extra_string != NULL)
12590 fprintf_unfiltered (fp, " %s", tp->extra_string);
12591
12592 print_recreate_thread (tp, fp);
12593 }
12594
12595 static void
12596 bkpt_create_sals_from_location (const struct event_location *location,
12597 struct linespec_result *canonical,
12598 enum bptype type_wanted)
12599 {
12600 create_sals_from_location_default (location, canonical, type_wanted);
12601 }
12602
12603 static void
12604 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12605 struct linespec_result *canonical,
12606 gdb::unique_xmalloc_ptr<char> cond_string,
12607 gdb::unique_xmalloc_ptr<char> extra_string,
12608 enum bptype type_wanted,
12609 enum bpdisp disposition,
12610 int thread,
12611 int task, int ignore_count,
12612 const struct breakpoint_ops *ops,
12613 int from_tty, int enabled,
12614 int internal, unsigned flags)
12615 {
12616 create_breakpoints_sal_default (gdbarch, canonical,
12617 std::move (cond_string),
12618 std::move (extra_string),
12619 type_wanted,
12620 disposition, thread, task,
12621 ignore_count, ops, from_tty,
12622 enabled, internal, flags);
12623 }
12624
12625 static std::vector<symtab_and_line>
12626 bkpt_decode_location (struct breakpoint *b,
12627 const struct event_location *location,
12628 struct program_space *search_pspace)
12629 {
12630 return decode_location_default (b, location, search_pspace);
12631 }
12632
12633 /* Virtual table for internal breakpoints. */
12634
12635 static void
12636 internal_bkpt_re_set (struct breakpoint *b)
12637 {
12638 switch (b->type)
12639 {
12640 /* Delete overlay event and longjmp master breakpoints; they
12641 will be reset later by breakpoint_re_set. */
12642 case bp_overlay_event:
12643 case bp_longjmp_master:
12644 case bp_std_terminate_master:
12645 case bp_exception_master:
12646 delete_breakpoint (b);
12647 break;
12648
12649 /* This breakpoint is special, it's set up when the inferior
12650 starts and we really don't want to touch it. */
12651 case bp_shlib_event:
12652
12653 /* Like bp_shlib_event, this breakpoint type is special. Once
12654 it is set up, we do not want to touch it. */
12655 case bp_thread_event:
12656 break;
12657 }
12658 }
12659
12660 static void
12661 internal_bkpt_check_status (bpstat bs)
12662 {
12663 if (bs->breakpoint_at->type == bp_shlib_event)
12664 {
12665 /* If requested, stop when the dynamic linker notifies GDB of
12666 events. This allows the user to get control and place
12667 breakpoints in initializer routines for dynamically loaded
12668 objects (among other things). */
12669 bs->stop = stop_on_solib_events;
12670 bs->print = stop_on_solib_events;
12671 }
12672 else
12673 bs->stop = 0;
12674 }
12675
12676 static enum print_stop_action
12677 internal_bkpt_print_it (bpstat bs)
12678 {
12679 struct breakpoint *b;
12680
12681 b = bs->breakpoint_at;
12682
12683 switch (b->type)
12684 {
12685 case bp_shlib_event:
12686 /* Did we stop because the user set the stop_on_solib_events
12687 variable? (If so, we report this as a generic, "Stopped due
12688 to shlib event" message.) */
12689 print_solib_event (0);
12690 break;
12691
12692 case bp_thread_event:
12693 /* Not sure how we will get here.
12694 GDB should not stop for these breakpoints. */
12695 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12696 break;
12697
12698 case bp_overlay_event:
12699 /* By analogy with the thread event, GDB should not stop for these. */
12700 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12701 break;
12702
12703 case bp_longjmp_master:
12704 /* These should never be enabled. */
12705 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12706 break;
12707
12708 case bp_std_terminate_master:
12709 /* These should never be enabled. */
12710 printf_filtered (_("std::terminate Master Breakpoint: "
12711 "gdb should not stop!\n"));
12712 break;
12713
12714 case bp_exception_master:
12715 /* These should never be enabled. */
12716 printf_filtered (_("Exception Master Breakpoint: "
12717 "gdb should not stop!\n"));
12718 break;
12719 }
12720
12721 return PRINT_NOTHING;
12722 }
12723
12724 static void
12725 internal_bkpt_print_mention (struct breakpoint *b)
12726 {
12727 /* Nothing to mention. These breakpoints are internal. */
12728 }
12729
12730 /* Virtual table for momentary breakpoints */
12731
12732 static void
12733 momentary_bkpt_re_set (struct breakpoint *b)
12734 {
12735 /* Keep temporary breakpoints, which can be encountered when we step
12736 over a dlopen call and solib_add is resetting the breakpoints.
12737 Otherwise these should have been blown away via the cleanup chain
12738 or by breakpoint_init_inferior when we rerun the executable. */
12739 }
12740
12741 static void
12742 momentary_bkpt_check_status (bpstat bs)
12743 {
12744 /* Nothing. The point of these breakpoints is causing a stop. */
12745 }
12746
12747 static enum print_stop_action
12748 momentary_bkpt_print_it (bpstat bs)
12749 {
12750 return PRINT_UNKNOWN;
12751 }
12752
12753 static void
12754 momentary_bkpt_print_mention (struct breakpoint *b)
12755 {
12756 /* Nothing to mention. These breakpoints are internal. */
12757 }
12758
12759 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12760
12761 It gets cleared already on the removal of the first one of such placed
12762 breakpoints. This is OK as they get all removed altogether. */
12763
12764 longjmp_breakpoint::~longjmp_breakpoint ()
12765 {
12766 thread_info *tp = find_thread_global_id (this->thread);
12767
12768 if (tp != NULL)
12769 tp->initiating_frame = null_frame_id;
12770 }
12771
12772 /* Specific methods for probe breakpoints. */
12773
12774 static int
12775 bkpt_probe_insert_location (struct bp_location *bl)
12776 {
12777 int v = bkpt_insert_location (bl);
12778
12779 if (v == 0)
12780 {
12781 /* The insertion was successful, now let's set the probe's semaphore
12782 if needed. */
12783 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12784 }
12785
12786 return v;
12787 }
12788
12789 static int
12790 bkpt_probe_remove_location (struct bp_location *bl,
12791 enum remove_bp_reason reason)
12792 {
12793 /* Let's clear the semaphore before removing the location. */
12794 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12795
12796 return bkpt_remove_location (bl, reason);
12797 }
12798
12799 static void
12800 bkpt_probe_create_sals_from_location (const struct event_location *location,
12801 struct linespec_result *canonical,
12802 enum bptype type_wanted)
12803 {
12804 struct linespec_sals lsal;
12805
12806 lsal.sals = parse_probes (location, NULL, canonical);
12807 lsal.canonical
12808 = xstrdup (event_location_to_string (canonical->location.get ()));
12809 canonical->lsals.push_back (std::move (lsal));
12810 }
12811
12812 static std::vector<symtab_and_line>
12813 bkpt_probe_decode_location (struct breakpoint *b,
12814 const struct event_location *location,
12815 struct program_space *search_pspace)
12816 {
12817 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12818 if (sals.empty ())
12819 error (_("probe not found"));
12820 return sals;
12821 }
12822
12823 /* The breakpoint_ops structure to be used in tracepoints. */
12824
12825 static void
12826 tracepoint_re_set (struct breakpoint *b)
12827 {
12828 breakpoint_re_set_default (b);
12829 }
12830
12831 static int
12832 tracepoint_breakpoint_hit (const struct bp_location *bl,
12833 const address_space *aspace, CORE_ADDR bp_addr,
12834 const struct target_waitstatus *ws)
12835 {
12836 /* By definition, the inferior does not report stops at
12837 tracepoints. */
12838 return 0;
12839 }
12840
12841 static void
12842 tracepoint_print_one_detail (const struct breakpoint *self,
12843 struct ui_out *uiout)
12844 {
12845 struct tracepoint *tp = (struct tracepoint *) self;
12846 if (!tp->static_trace_marker_id.empty ())
12847 {
12848 gdb_assert (self->type == bp_static_tracepoint);
12849
12850 uiout->text ("\tmarker id is ");
12851 uiout->field_string ("static-tracepoint-marker-string-id",
12852 tp->static_trace_marker_id);
12853 uiout->text ("\n");
12854 }
12855 }
12856
12857 static void
12858 tracepoint_print_mention (struct breakpoint *b)
12859 {
12860 if (current_uiout->is_mi_like_p ())
12861 return;
12862
12863 switch (b->type)
12864 {
12865 case bp_tracepoint:
12866 printf_filtered (_("Tracepoint"));
12867 printf_filtered (_(" %d"), b->number);
12868 break;
12869 case bp_fast_tracepoint:
12870 printf_filtered (_("Fast tracepoint"));
12871 printf_filtered (_(" %d"), b->number);
12872 break;
12873 case bp_static_tracepoint:
12874 printf_filtered (_("Static tracepoint"));
12875 printf_filtered (_(" %d"), b->number);
12876 break;
12877 default:
12878 internal_error (__FILE__, __LINE__,
12879 _("unhandled tracepoint type %d"), (int) b->type);
12880 }
12881
12882 say_where (b);
12883 }
12884
12885 static void
12886 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12887 {
12888 struct tracepoint *tp = (struct tracepoint *) self;
12889
12890 if (self->type == bp_fast_tracepoint)
12891 fprintf_unfiltered (fp, "ftrace");
12892 else if (self->type == bp_static_tracepoint)
12893 fprintf_unfiltered (fp, "strace");
12894 else if (self->type == bp_tracepoint)
12895 fprintf_unfiltered (fp, "trace");
12896 else
12897 internal_error (__FILE__, __LINE__,
12898 _("unhandled tracepoint type %d"), (int) self->type);
12899
12900 fprintf_unfiltered (fp, " %s",
12901 event_location_to_string (self->location.get ()));
12902 print_recreate_thread (self, fp);
12903
12904 if (tp->pass_count)
12905 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12906 }
12907
12908 static void
12909 tracepoint_create_sals_from_location (const struct event_location *location,
12910 struct linespec_result *canonical,
12911 enum bptype type_wanted)
12912 {
12913 create_sals_from_location_default (location, canonical, type_wanted);
12914 }
12915
12916 static void
12917 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12918 struct linespec_result *canonical,
12919 gdb::unique_xmalloc_ptr<char> cond_string,
12920 gdb::unique_xmalloc_ptr<char> extra_string,
12921 enum bptype type_wanted,
12922 enum bpdisp disposition,
12923 int thread,
12924 int task, int ignore_count,
12925 const struct breakpoint_ops *ops,
12926 int from_tty, int enabled,
12927 int internal, unsigned flags)
12928 {
12929 create_breakpoints_sal_default (gdbarch, canonical,
12930 std::move (cond_string),
12931 std::move (extra_string),
12932 type_wanted,
12933 disposition, thread, task,
12934 ignore_count, ops, from_tty,
12935 enabled, internal, flags);
12936 }
12937
12938 static std::vector<symtab_and_line>
12939 tracepoint_decode_location (struct breakpoint *b,
12940 const struct event_location *location,
12941 struct program_space *search_pspace)
12942 {
12943 return decode_location_default (b, location, search_pspace);
12944 }
12945
12946 struct breakpoint_ops tracepoint_breakpoint_ops;
12947
12948 /* The breakpoint_ops structure to be use on tracepoints placed in a
12949 static probe. */
12950
12951 static void
12952 tracepoint_probe_create_sals_from_location
12953 (const struct event_location *location,
12954 struct linespec_result *canonical,
12955 enum bptype type_wanted)
12956 {
12957 /* We use the same method for breakpoint on probes. */
12958 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12959 }
12960
12961 static std::vector<symtab_and_line>
12962 tracepoint_probe_decode_location (struct breakpoint *b,
12963 const struct event_location *location,
12964 struct program_space *search_pspace)
12965 {
12966 /* We use the same method for breakpoint on probes. */
12967 return bkpt_probe_decode_location (b, location, search_pspace);
12968 }
12969
12970 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12971
12972 /* Dprintf breakpoint_ops methods. */
12973
12974 static void
12975 dprintf_re_set (struct breakpoint *b)
12976 {
12977 breakpoint_re_set_default (b);
12978
12979 /* extra_string should never be non-NULL for dprintf. */
12980 gdb_assert (b->extra_string != NULL);
12981
12982 /* 1 - connect to target 1, that can run breakpoint commands.
12983 2 - create a dprintf, which resolves fine.
12984 3 - disconnect from target 1
12985 4 - connect to target 2, that can NOT run breakpoint commands.
12986
12987 After steps #3/#4, you'll want the dprintf command list to
12988 be updated, because target 1 and 2 may well return different
12989 answers for target_can_run_breakpoint_commands().
12990 Given absence of finer grained resetting, we get to do
12991 it all the time. */
12992 if (b->extra_string != NULL)
12993 update_dprintf_command_list (b);
12994 }
12995
12996 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12997
12998 static void
12999 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13000 {
13001 fprintf_unfiltered (fp, "dprintf %s,%s",
13002 event_location_to_string (tp->location.get ()),
13003 tp->extra_string);
13004 print_recreate_thread (tp, fp);
13005 }
13006
13007 /* Implement the "after_condition_true" breakpoint_ops method for
13008 dprintf.
13009
13010 dprintf's are implemented with regular commands in their command
13011 list, but we run the commands here instead of before presenting the
13012 stop to the user, as dprintf's don't actually cause a stop. This
13013 also makes it so that the commands of multiple dprintfs at the same
13014 address are all handled. */
13015
13016 static void
13017 dprintf_after_condition_true (struct bpstats *bs)
13018 {
13019 struct bpstats tmp_bs;
13020 struct bpstats *tmp_bs_p = &tmp_bs;
13021
13022 /* dprintf's never cause a stop. This wasn't set in the
13023 check_status hook instead because that would make the dprintf's
13024 condition not be evaluated. */
13025 bs->stop = 0;
13026
13027 /* Run the command list here. Take ownership of it instead of
13028 copying. We never want these commands to run later in
13029 bpstat_do_actions, if a breakpoint that causes a stop happens to
13030 be set at same address as this dprintf, or even if running the
13031 commands here throws. */
13032 tmp_bs.commands = bs->commands;
13033 bs->commands = NULL;
13034
13035 bpstat_do_actions_1 (&tmp_bs_p);
13036
13037 /* 'tmp_bs.commands' will usually be NULL by now, but
13038 bpstat_do_actions_1 may return early without processing the whole
13039 list. */
13040 }
13041
13042 /* The breakpoint_ops structure to be used on static tracepoints with
13043 markers (`-m'). */
13044
13045 static void
13046 strace_marker_create_sals_from_location (const struct event_location *location,
13047 struct linespec_result *canonical,
13048 enum bptype type_wanted)
13049 {
13050 struct linespec_sals lsal;
13051 const char *arg_start, *arg;
13052
13053 arg = arg_start = get_linespec_location (location)->spec_string;
13054 lsal.sals = decode_static_tracepoint_spec (&arg);
13055
13056 std::string str (arg_start, arg - arg_start);
13057 const char *ptr = str.c_str ();
13058 canonical->location
13059 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13060
13061 lsal.canonical
13062 = xstrdup (event_location_to_string (canonical->location.get ()));
13063 canonical->lsals.push_back (std::move (lsal));
13064 }
13065
13066 static void
13067 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13068 struct linespec_result *canonical,
13069 gdb::unique_xmalloc_ptr<char> cond_string,
13070 gdb::unique_xmalloc_ptr<char> extra_string,
13071 enum bptype type_wanted,
13072 enum bpdisp disposition,
13073 int thread,
13074 int task, int ignore_count,
13075 const struct breakpoint_ops *ops,
13076 int from_tty, int enabled,
13077 int internal, unsigned flags)
13078 {
13079 const linespec_sals &lsal = canonical->lsals[0];
13080
13081 /* If the user is creating a static tracepoint by marker id
13082 (strace -m MARKER_ID), then store the sals index, so that
13083 breakpoint_re_set can try to match up which of the newly
13084 found markers corresponds to this one, and, don't try to
13085 expand multiple locations for each sal, given than SALS
13086 already should contain all sals for MARKER_ID. */
13087
13088 for (size_t i = 0; i < lsal.sals.size (); i++)
13089 {
13090 event_location_up location
13091 = copy_event_location (canonical->location.get ());
13092
13093 std::unique_ptr<tracepoint> tp (new tracepoint ());
13094 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13095 std::move (location), NULL,
13096 std::move (cond_string),
13097 std::move (extra_string),
13098 type_wanted, disposition,
13099 thread, task, ignore_count, ops,
13100 from_tty, enabled, internal, flags,
13101 canonical->special_display);
13102 /* Given that its possible to have multiple markers with
13103 the same string id, if the user is creating a static
13104 tracepoint by marker id ("strace -m MARKER_ID"), then
13105 store the sals index, so that breakpoint_re_set can
13106 try to match up which of the newly found markers
13107 corresponds to this one */
13108 tp->static_trace_marker_id_idx = i;
13109
13110 install_breakpoint (internal, std::move (tp), 0);
13111 }
13112 }
13113
13114 static std::vector<symtab_and_line>
13115 strace_marker_decode_location (struct breakpoint *b,
13116 const struct event_location *location,
13117 struct program_space *search_pspace)
13118 {
13119 struct tracepoint *tp = (struct tracepoint *) b;
13120 const char *s = get_linespec_location (location)->spec_string;
13121
13122 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13123 if (sals.size () > tp->static_trace_marker_id_idx)
13124 {
13125 sals[0] = sals[tp->static_trace_marker_id_idx];
13126 sals.resize (1);
13127 return sals;
13128 }
13129 else
13130 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13131 }
13132
13133 static struct breakpoint_ops strace_marker_breakpoint_ops;
13134
13135 static int
13136 strace_marker_p (struct breakpoint *b)
13137 {
13138 return b->ops == &strace_marker_breakpoint_ops;
13139 }
13140
13141 /* Delete a breakpoint and clean up all traces of it in the data
13142 structures. */
13143
13144 void
13145 delete_breakpoint (struct breakpoint *bpt)
13146 {
13147 struct breakpoint *b;
13148
13149 gdb_assert (bpt != NULL);
13150
13151 /* Has this bp already been deleted? This can happen because
13152 multiple lists can hold pointers to bp's. bpstat lists are
13153 especial culprits.
13154
13155 One example of this happening is a watchpoint's scope bp. When
13156 the scope bp triggers, we notice that the watchpoint is out of
13157 scope, and delete it. We also delete its scope bp. But the
13158 scope bp is marked "auto-deleting", and is already on a bpstat.
13159 That bpstat is then checked for auto-deleting bp's, which are
13160 deleted.
13161
13162 A real solution to this problem might involve reference counts in
13163 bp's, and/or giving them pointers back to their referencing
13164 bpstat's, and teaching delete_breakpoint to only free a bp's
13165 storage when no more references were extent. A cheaper bandaid
13166 was chosen. */
13167 if (bpt->type == bp_none)
13168 return;
13169
13170 /* At least avoid this stale reference until the reference counting
13171 of breakpoints gets resolved. */
13172 if (bpt->related_breakpoint != bpt)
13173 {
13174 struct breakpoint *related;
13175 struct watchpoint *w;
13176
13177 if (bpt->type == bp_watchpoint_scope)
13178 w = (struct watchpoint *) bpt->related_breakpoint;
13179 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13180 w = (struct watchpoint *) bpt;
13181 else
13182 w = NULL;
13183 if (w != NULL)
13184 watchpoint_del_at_next_stop (w);
13185
13186 /* Unlink bpt from the bpt->related_breakpoint ring. */
13187 for (related = bpt; related->related_breakpoint != bpt;
13188 related = related->related_breakpoint);
13189 related->related_breakpoint = bpt->related_breakpoint;
13190 bpt->related_breakpoint = bpt;
13191 }
13192
13193 /* watch_command_1 creates a watchpoint but only sets its number if
13194 update_watchpoint succeeds in creating its bp_locations. If there's
13195 a problem in that process, we'll be asked to delete the half-created
13196 watchpoint. In that case, don't announce the deletion. */
13197 if (bpt->number)
13198 gdb::observers::breakpoint_deleted.notify (bpt);
13199
13200 if (breakpoint_chain == bpt)
13201 breakpoint_chain = bpt->next;
13202
13203 ALL_BREAKPOINTS (b)
13204 if (b->next == bpt)
13205 {
13206 b->next = bpt->next;
13207 break;
13208 }
13209
13210 /* Be sure no bpstat's are pointing at the breakpoint after it's
13211 been freed. */
13212 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13213 in all threads for now. Note that we cannot just remove bpstats
13214 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13215 commands are associated with the bpstat; if we remove it here,
13216 then the later call to bpstat_do_actions (&stop_bpstat); in
13217 event-top.c won't do anything, and temporary breakpoints with
13218 commands won't work. */
13219
13220 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13221
13222 /* Now that breakpoint is removed from breakpoint list, update the
13223 global location list. This will remove locations that used to
13224 belong to this breakpoint. Do this before freeing the breakpoint
13225 itself, since remove_breakpoint looks at location's owner. It
13226 might be better design to have location completely
13227 self-contained, but it's not the case now. */
13228 update_global_location_list (UGLL_DONT_INSERT);
13229
13230 /* On the chance that someone will soon try again to delete this
13231 same bp, we mark it as deleted before freeing its storage. */
13232 bpt->type = bp_none;
13233 delete bpt;
13234 }
13235
13236 /* Iterator function to call a user-provided callback function once
13237 for each of B and its related breakpoints. */
13238
13239 static void
13240 iterate_over_related_breakpoints (struct breakpoint *b,
13241 gdb::function_view<void (breakpoint *)> function)
13242 {
13243 struct breakpoint *related;
13244
13245 related = b;
13246 do
13247 {
13248 struct breakpoint *next;
13249
13250 /* FUNCTION may delete RELATED. */
13251 next = related->related_breakpoint;
13252
13253 if (next == related)
13254 {
13255 /* RELATED is the last ring entry. */
13256 function (related);
13257
13258 /* FUNCTION may have deleted it, so we'd never reach back to
13259 B. There's nothing left to do anyway, so just break
13260 out. */
13261 break;
13262 }
13263 else
13264 function (related);
13265
13266 related = next;
13267 }
13268 while (related != b);
13269 }
13270
13271 static void
13272 delete_command (const char *arg, int from_tty)
13273 {
13274 struct breakpoint *b, *b_tmp;
13275
13276 dont_repeat ();
13277
13278 if (arg == 0)
13279 {
13280 int breaks_to_delete = 0;
13281
13282 /* Delete all breakpoints if no argument. Do not delete
13283 internal breakpoints, these have to be deleted with an
13284 explicit breakpoint number argument. */
13285 ALL_BREAKPOINTS (b)
13286 if (user_breakpoint_p (b))
13287 {
13288 breaks_to_delete = 1;
13289 break;
13290 }
13291
13292 /* Ask user only if there are some breakpoints to delete. */
13293 if (!from_tty
13294 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13295 {
13296 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13297 if (user_breakpoint_p (b))
13298 delete_breakpoint (b);
13299 }
13300 }
13301 else
13302 map_breakpoint_numbers
13303 (arg, [&] (breakpoint *b)
13304 {
13305 iterate_over_related_breakpoints (b, delete_breakpoint);
13306 });
13307 }
13308
13309 /* Return true if all locations of B bound to PSPACE are pending. If
13310 PSPACE is NULL, all locations of all program spaces are
13311 considered. */
13312
13313 static int
13314 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13315 {
13316 struct bp_location *loc;
13317
13318 for (loc = b->loc; loc != NULL; loc = loc->next)
13319 if ((pspace == NULL
13320 || loc->pspace == pspace)
13321 && !loc->shlib_disabled
13322 && !loc->pspace->executing_startup)
13323 return 0;
13324 return 1;
13325 }
13326
13327 /* Subroutine of update_breakpoint_locations to simplify it.
13328 Return non-zero if multiple fns in list LOC have the same name.
13329 Null names are ignored. */
13330
13331 static int
13332 ambiguous_names_p (struct bp_location *loc)
13333 {
13334 struct bp_location *l;
13335 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13336 xcalloc, xfree);
13337
13338 for (l = loc; l != NULL; l = l->next)
13339 {
13340 const char **slot;
13341 const char *name = l->function_name;
13342
13343 /* Allow for some names to be NULL, ignore them. */
13344 if (name == NULL)
13345 continue;
13346
13347 slot = (const char **) htab_find_slot (htab, (const void *) name,
13348 INSERT);
13349 /* NOTE: We can assume slot != NULL here because xcalloc never
13350 returns NULL. */
13351 if (*slot != NULL)
13352 {
13353 htab_delete (htab);
13354 return 1;
13355 }
13356 *slot = name;
13357 }
13358
13359 htab_delete (htab);
13360 return 0;
13361 }
13362
13363 /* When symbols change, it probably means the sources changed as well,
13364 and it might mean the static tracepoint markers are no longer at
13365 the same address or line numbers they used to be at last we
13366 checked. Losing your static tracepoints whenever you rebuild is
13367 undesirable. This function tries to resync/rematch gdb static
13368 tracepoints with the markers on the target, for static tracepoints
13369 that have not been set by marker id. Static tracepoint that have
13370 been set by marker id are reset by marker id in breakpoint_re_set.
13371 The heuristic is:
13372
13373 1) For a tracepoint set at a specific address, look for a marker at
13374 the old PC. If one is found there, assume to be the same marker.
13375 If the name / string id of the marker found is different from the
13376 previous known name, assume that means the user renamed the marker
13377 in the sources, and output a warning.
13378
13379 2) For a tracepoint set at a given line number, look for a marker
13380 at the new address of the old line number. If one is found there,
13381 assume to be the same marker. If the name / string id of the
13382 marker found is different from the previous known name, assume that
13383 means the user renamed the marker in the sources, and output a
13384 warning.
13385
13386 3) If a marker is no longer found at the same address or line, it
13387 may mean the marker no longer exists. But it may also just mean
13388 the code changed a bit. Maybe the user added a few lines of code
13389 that made the marker move up or down (in line number terms). Ask
13390 the target for info about the marker with the string id as we knew
13391 it. If found, update line number and address in the matching
13392 static tracepoint. This will get confused if there's more than one
13393 marker with the same ID (possible in UST, although unadvised
13394 precisely because it confuses tools). */
13395
13396 static struct symtab_and_line
13397 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13398 {
13399 struct tracepoint *tp = (struct tracepoint *) b;
13400 struct static_tracepoint_marker marker;
13401 CORE_ADDR pc;
13402
13403 pc = sal.pc;
13404 if (sal.line)
13405 find_line_pc (sal.symtab, sal.line, &pc);
13406
13407 if (target_static_tracepoint_marker_at (pc, &marker))
13408 {
13409 if (tp->static_trace_marker_id != marker.str_id)
13410 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13411 b->number, tp->static_trace_marker_id.c_str (),
13412 marker.str_id.c_str ());
13413
13414 tp->static_trace_marker_id = std::move (marker.str_id);
13415
13416 return sal;
13417 }
13418
13419 /* Old marker wasn't found on target at lineno. Try looking it up
13420 by string ID. */
13421 if (!sal.explicit_pc
13422 && sal.line != 0
13423 && sal.symtab != NULL
13424 && !tp->static_trace_marker_id.empty ())
13425 {
13426 std::vector<static_tracepoint_marker> markers
13427 = target_static_tracepoint_markers_by_strid
13428 (tp->static_trace_marker_id.c_str ());
13429
13430 if (!markers.empty ())
13431 {
13432 struct symbol *sym;
13433 struct static_tracepoint_marker *tpmarker;
13434 struct ui_out *uiout = current_uiout;
13435 struct explicit_location explicit_loc;
13436
13437 tpmarker = &markers[0];
13438
13439 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13440
13441 warning (_("marker for static tracepoint %d (%s) not "
13442 "found at previous line number"),
13443 b->number, tp->static_trace_marker_id.c_str ());
13444
13445 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13446 sym = find_pc_sect_function (tpmarker->address, NULL);
13447 uiout->text ("Now in ");
13448 if (sym)
13449 {
13450 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13451 uiout->text (" at ");
13452 }
13453 uiout->field_string ("file",
13454 symtab_to_filename_for_display (sal2.symtab));
13455 uiout->text (":");
13456
13457 if (uiout->is_mi_like_p ())
13458 {
13459 const char *fullname = symtab_to_fullname (sal2.symtab);
13460
13461 uiout->field_string ("fullname", fullname);
13462 }
13463
13464 uiout->field_int ("line", sal2.line);
13465 uiout->text ("\n");
13466
13467 b->loc->line_number = sal2.line;
13468 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13469
13470 b->location.reset (NULL);
13471 initialize_explicit_location (&explicit_loc);
13472 explicit_loc.source_filename
13473 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13474 explicit_loc.line_offset.offset = b->loc->line_number;
13475 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13476 b->location = new_explicit_location (&explicit_loc);
13477
13478 /* Might be nice to check if function changed, and warn if
13479 so. */
13480 }
13481 }
13482 return sal;
13483 }
13484
13485 /* Returns 1 iff locations A and B are sufficiently same that
13486 we don't need to report breakpoint as changed. */
13487
13488 static int
13489 locations_are_equal (struct bp_location *a, struct bp_location *b)
13490 {
13491 while (a && b)
13492 {
13493 if (a->address != b->address)
13494 return 0;
13495
13496 if (a->shlib_disabled != b->shlib_disabled)
13497 return 0;
13498
13499 if (a->enabled != b->enabled)
13500 return 0;
13501
13502 a = a->next;
13503 b = b->next;
13504 }
13505
13506 if ((a == NULL) != (b == NULL))
13507 return 0;
13508
13509 return 1;
13510 }
13511
13512 /* Split all locations of B that are bound to PSPACE out of B's
13513 location list to a separate list and return that list's head. If
13514 PSPACE is NULL, hoist out all locations of B. */
13515
13516 static struct bp_location *
13517 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13518 {
13519 struct bp_location head;
13520 struct bp_location *i = b->loc;
13521 struct bp_location **i_link = &b->loc;
13522 struct bp_location *hoisted = &head;
13523
13524 if (pspace == NULL)
13525 {
13526 i = b->loc;
13527 b->loc = NULL;
13528 return i;
13529 }
13530
13531 head.next = NULL;
13532
13533 while (i != NULL)
13534 {
13535 if (i->pspace == pspace)
13536 {
13537 *i_link = i->next;
13538 i->next = NULL;
13539 hoisted->next = i;
13540 hoisted = i;
13541 }
13542 else
13543 i_link = &i->next;
13544 i = *i_link;
13545 }
13546
13547 return head.next;
13548 }
13549
13550 /* Create new breakpoint locations for B (a hardware or software
13551 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13552 zero, then B is a ranged breakpoint. Only recreates locations for
13553 FILTER_PSPACE. Locations of other program spaces are left
13554 untouched. */
13555
13556 void
13557 update_breakpoint_locations (struct breakpoint *b,
13558 struct program_space *filter_pspace,
13559 gdb::array_view<const symtab_and_line> sals,
13560 gdb::array_view<const symtab_and_line> sals_end)
13561 {
13562 struct bp_location *existing_locations;
13563
13564 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13565 {
13566 /* Ranged breakpoints have only one start location and one end
13567 location. */
13568 b->enable_state = bp_disabled;
13569 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13570 "multiple locations found\n"),
13571 b->number);
13572 return;
13573 }
13574
13575 /* If there's no new locations, and all existing locations are
13576 pending, don't do anything. This optimizes the common case where
13577 all locations are in the same shared library, that was unloaded.
13578 We'd like to retain the location, so that when the library is
13579 loaded again, we don't loose the enabled/disabled status of the
13580 individual locations. */
13581 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13582 return;
13583
13584 existing_locations = hoist_existing_locations (b, filter_pspace);
13585
13586 for (const auto &sal : sals)
13587 {
13588 struct bp_location *new_loc;
13589
13590 switch_to_program_space_and_thread (sal.pspace);
13591
13592 new_loc = add_location_to_breakpoint (b, &sal);
13593
13594 /* Reparse conditions, they might contain references to the
13595 old symtab. */
13596 if (b->cond_string != NULL)
13597 {
13598 const char *s;
13599
13600 s = b->cond_string;
13601 TRY
13602 {
13603 new_loc->cond = parse_exp_1 (&s, sal.pc,
13604 block_for_pc (sal.pc),
13605 0);
13606 }
13607 CATCH (e, RETURN_MASK_ERROR)
13608 {
13609 warning (_("failed to reevaluate condition "
13610 "for breakpoint %d: %s"),
13611 b->number, e.message);
13612 new_loc->enabled = 0;
13613 }
13614 END_CATCH
13615 }
13616
13617 if (!sals_end.empty ())
13618 {
13619 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13620
13621 new_loc->length = end - sals[0].pc + 1;
13622 }
13623 }
13624
13625 /* If possible, carry over 'disable' status from existing
13626 breakpoints. */
13627 {
13628 struct bp_location *e = existing_locations;
13629 /* If there are multiple breakpoints with the same function name,
13630 e.g. for inline functions, comparing function names won't work.
13631 Instead compare pc addresses; this is just a heuristic as things
13632 may have moved, but in practice it gives the correct answer
13633 often enough until a better solution is found. */
13634 int have_ambiguous_names = ambiguous_names_p (b->loc);
13635
13636 for (; e; e = e->next)
13637 {
13638 if (!e->enabled && e->function_name)
13639 {
13640 struct bp_location *l = b->loc;
13641 if (have_ambiguous_names)
13642 {
13643 for (; l; l = l->next)
13644 if (breakpoint_locations_match (e, l))
13645 {
13646 l->enabled = 0;
13647 break;
13648 }
13649 }
13650 else
13651 {
13652 for (; l; l = l->next)
13653 if (l->function_name
13654 && strcmp (e->function_name, l->function_name) == 0)
13655 {
13656 l->enabled = 0;
13657 break;
13658 }
13659 }
13660 }
13661 }
13662 }
13663
13664 if (!locations_are_equal (existing_locations, b->loc))
13665 gdb::observers::breakpoint_modified.notify (b);
13666 }
13667
13668 /* Find the SaL locations corresponding to the given LOCATION.
13669 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13670
13671 static std::vector<symtab_and_line>
13672 location_to_sals (struct breakpoint *b, struct event_location *location,
13673 struct program_space *search_pspace, int *found)
13674 {
13675 struct gdb_exception exception = exception_none;
13676
13677 gdb_assert (b->ops != NULL);
13678
13679 std::vector<symtab_and_line> sals;
13680
13681 TRY
13682 {
13683 sals = b->ops->decode_location (b, location, search_pspace);
13684 }
13685 CATCH (e, RETURN_MASK_ERROR)
13686 {
13687 int not_found_and_ok = 0;
13688
13689 exception = e;
13690
13691 /* For pending breakpoints, it's expected that parsing will
13692 fail until the right shared library is loaded. User has
13693 already told to create pending breakpoints and don't need
13694 extra messages. If breakpoint is in bp_shlib_disabled
13695 state, then user already saw the message about that
13696 breakpoint being disabled, and don't want to see more
13697 errors. */
13698 if (e.error == NOT_FOUND_ERROR
13699 && (b->condition_not_parsed
13700 || (b->loc != NULL
13701 && search_pspace != NULL
13702 && b->loc->pspace != search_pspace)
13703 || (b->loc && b->loc->shlib_disabled)
13704 || (b->loc && b->loc->pspace->executing_startup)
13705 || b->enable_state == bp_disabled))
13706 not_found_and_ok = 1;
13707
13708 if (!not_found_and_ok)
13709 {
13710 /* We surely don't want to warn about the same breakpoint
13711 10 times. One solution, implemented here, is disable
13712 the breakpoint on error. Another solution would be to
13713 have separate 'warning emitted' flag. Since this
13714 happens only when a binary has changed, I don't know
13715 which approach is better. */
13716 b->enable_state = bp_disabled;
13717 throw_exception (e);
13718 }
13719 }
13720 END_CATCH
13721
13722 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13723 {
13724 for (auto &sal : sals)
13725 resolve_sal_pc (&sal);
13726 if (b->condition_not_parsed && b->extra_string != NULL)
13727 {
13728 char *cond_string, *extra_string;
13729 int thread, task;
13730
13731 find_condition_and_thread (b->extra_string, sals[0].pc,
13732 &cond_string, &thread, &task,
13733 &extra_string);
13734 gdb_assert (b->cond_string == NULL);
13735 if (cond_string)
13736 b->cond_string = cond_string;
13737 b->thread = thread;
13738 b->task = task;
13739 if (extra_string)
13740 {
13741 xfree (b->extra_string);
13742 b->extra_string = extra_string;
13743 }
13744 b->condition_not_parsed = 0;
13745 }
13746
13747 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13748 sals[0] = update_static_tracepoint (b, sals[0]);
13749
13750 *found = 1;
13751 }
13752 else
13753 *found = 0;
13754
13755 return sals;
13756 }
13757
13758 /* The default re_set method, for typical hardware or software
13759 breakpoints. Reevaluate the breakpoint and recreate its
13760 locations. */
13761
13762 static void
13763 breakpoint_re_set_default (struct breakpoint *b)
13764 {
13765 struct program_space *filter_pspace = current_program_space;
13766 std::vector<symtab_and_line> expanded, expanded_end;
13767
13768 int found;
13769 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13770 filter_pspace, &found);
13771 if (found)
13772 expanded = std::move (sals);
13773
13774 if (b->location_range_end != NULL)
13775 {
13776 std::vector<symtab_and_line> sals_end
13777 = location_to_sals (b, b->location_range_end.get (),
13778 filter_pspace, &found);
13779 if (found)
13780 expanded_end = std::move (sals_end);
13781 }
13782
13783 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13784 }
13785
13786 /* Default method for creating SALs from an address string. It basically
13787 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13788
13789 static void
13790 create_sals_from_location_default (const struct event_location *location,
13791 struct linespec_result *canonical,
13792 enum bptype type_wanted)
13793 {
13794 parse_breakpoint_sals (location, canonical);
13795 }
13796
13797 /* Call create_breakpoints_sal for the given arguments. This is the default
13798 function for the `create_breakpoints_sal' method of
13799 breakpoint_ops. */
13800
13801 static void
13802 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13803 struct linespec_result *canonical,
13804 gdb::unique_xmalloc_ptr<char> cond_string,
13805 gdb::unique_xmalloc_ptr<char> extra_string,
13806 enum bptype type_wanted,
13807 enum bpdisp disposition,
13808 int thread,
13809 int task, int ignore_count,
13810 const struct breakpoint_ops *ops,
13811 int from_tty, int enabled,
13812 int internal, unsigned flags)
13813 {
13814 create_breakpoints_sal (gdbarch, canonical,
13815 std::move (cond_string),
13816 std::move (extra_string),
13817 type_wanted, disposition,
13818 thread, task, ignore_count, ops, from_tty,
13819 enabled, internal, flags);
13820 }
13821
13822 /* Decode the line represented by S by calling decode_line_full. This is the
13823 default function for the `decode_location' method of breakpoint_ops. */
13824
13825 static std::vector<symtab_and_line>
13826 decode_location_default (struct breakpoint *b,
13827 const struct event_location *location,
13828 struct program_space *search_pspace)
13829 {
13830 struct linespec_result canonical;
13831
13832 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13833 (struct symtab *) NULL, 0,
13834 &canonical, multiple_symbols_all,
13835 b->filter);
13836
13837 /* We should get 0 or 1 resulting SALs. */
13838 gdb_assert (canonical.lsals.size () < 2);
13839
13840 if (!canonical.lsals.empty ())
13841 {
13842 const linespec_sals &lsal = canonical.lsals[0];
13843 return std::move (lsal.sals);
13844 }
13845 return {};
13846 }
13847
13848 /* Reset a breakpoint. */
13849
13850 static void
13851 breakpoint_re_set_one (breakpoint *b)
13852 {
13853 input_radix = b->input_radix;
13854 set_language (b->language);
13855
13856 b->ops->re_set (b);
13857 }
13858
13859 /* Re-set breakpoint locations for the current program space.
13860 Locations bound to other program spaces are left untouched. */
13861
13862 void
13863 breakpoint_re_set (void)
13864 {
13865 struct breakpoint *b, *b_tmp;
13866
13867 {
13868 scoped_restore_current_language save_language;
13869 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13870 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13871
13872 /* breakpoint_re_set_one sets the current_language to the language
13873 of the breakpoint it is resetting (see prepare_re_set_context)
13874 before re-evaluating the breakpoint's location. This change can
13875 unfortunately get undone by accident if the language_mode is set
13876 to auto, and we either switch frames, or more likely in this context,
13877 we select the current frame.
13878
13879 We prevent this by temporarily turning the language_mode to
13880 language_mode_manual. We restore it once all breakpoints
13881 have been reset. */
13882 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13883 language_mode = language_mode_manual;
13884
13885 /* Note: we must not try to insert locations until after all
13886 breakpoints have been re-set. Otherwise, e.g., when re-setting
13887 breakpoint 1, we'd insert the locations of breakpoint 2, which
13888 hadn't been re-set yet, and thus may have stale locations. */
13889
13890 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13891 {
13892 TRY
13893 {
13894 breakpoint_re_set_one (b);
13895 }
13896 CATCH (ex, RETURN_MASK_ALL)
13897 {
13898 exception_fprintf (gdb_stderr, ex,
13899 "Error in re-setting breakpoint %d: ",
13900 b->number);
13901 }
13902 END_CATCH
13903 }
13904
13905 jit_breakpoint_re_set ();
13906 }
13907
13908 create_overlay_event_breakpoint ();
13909 create_longjmp_master_breakpoint ();
13910 create_std_terminate_master_breakpoint ();
13911 create_exception_master_breakpoint ();
13912
13913 /* Now we can insert. */
13914 update_global_location_list (UGLL_MAY_INSERT);
13915 }
13916 \f
13917 /* Reset the thread number of this breakpoint:
13918
13919 - If the breakpoint is for all threads, leave it as-is.
13920 - Else, reset it to the current thread for inferior_ptid. */
13921 void
13922 breakpoint_re_set_thread (struct breakpoint *b)
13923 {
13924 if (b->thread != -1)
13925 {
13926 if (in_thread_list (inferior_ptid))
13927 b->thread = ptid_to_global_thread_id (inferior_ptid);
13928
13929 /* We're being called after following a fork. The new fork is
13930 selected as current, and unless this was a vfork will have a
13931 different program space from the original thread. Reset that
13932 as well. */
13933 b->loc->pspace = current_program_space;
13934 }
13935 }
13936
13937 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13938 If from_tty is nonzero, it prints a message to that effect,
13939 which ends with a period (no newline). */
13940
13941 void
13942 set_ignore_count (int bptnum, int count, int from_tty)
13943 {
13944 struct breakpoint *b;
13945
13946 if (count < 0)
13947 count = 0;
13948
13949 ALL_BREAKPOINTS (b)
13950 if (b->number == bptnum)
13951 {
13952 if (is_tracepoint (b))
13953 {
13954 if (from_tty && count != 0)
13955 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13956 bptnum);
13957 return;
13958 }
13959
13960 b->ignore_count = count;
13961 if (from_tty)
13962 {
13963 if (count == 0)
13964 printf_filtered (_("Will stop next time "
13965 "breakpoint %d is reached."),
13966 bptnum);
13967 else if (count == 1)
13968 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13969 bptnum);
13970 else
13971 printf_filtered (_("Will ignore next %d "
13972 "crossings of breakpoint %d."),
13973 count, bptnum);
13974 }
13975 gdb::observers::breakpoint_modified.notify (b);
13976 return;
13977 }
13978
13979 error (_("No breakpoint number %d."), bptnum);
13980 }
13981
13982 /* Command to set ignore-count of breakpoint N to COUNT. */
13983
13984 static void
13985 ignore_command (const char *args, int from_tty)
13986 {
13987 const char *p = args;
13988 int num;
13989
13990 if (p == 0)
13991 error_no_arg (_("a breakpoint number"));
13992
13993 num = get_number (&p);
13994 if (num == 0)
13995 error (_("bad breakpoint number: '%s'"), args);
13996 if (*p == 0)
13997 error (_("Second argument (specified ignore-count) is missing."));
13998
13999 set_ignore_count (num,
14000 longest_to_int (value_as_long (parse_and_eval (p))),
14001 from_tty);
14002 if (from_tty)
14003 printf_filtered ("\n");
14004 }
14005 \f
14006
14007 /* Call FUNCTION on each of the breakpoints with numbers in the range
14008 defined by BP_NUM_RANGE (an inclusive range). */
14009
14010 static void
14011 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14012 gdb::function_view<void (breakpoint *)> function)
14013 {
14014 if (bp_num_range.first == 0)
14015 {
14016 warning (_("bad breakpoint number at or near '%d'"),
14017 bp_num_range.first);
14018 }
14019 else
14020 {
14021 struct breakpoint *b, *tmp;
14022
14023 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14024 {
14025 bool match = false;
14026
14027 ALL_BREAKPOINTS_SAFE (b, tmp)
14028 if (b->number == i)
14029 {
14030 match = true;
14031 function (b);
14032 break;
14033 }
14034 if (!match)
14035 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14036 }
14037 }
14038 }
14039
14040 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14041 ARGS. */
14042
14043 static void
14044 map_breakpoint_numbers (const char *args,
14045 gdb::function_view<void (breakpoint *)> function)
14046 {
14047 if (args == NULL || *args == '\0')
14048 error_no_arg (_("one or more breakpoint numbers"));
14049
14050 number_or_range_parser parser (args);
14051
14052 while (!parser.finished ())
14053 {
14054 int num = parser.get_number ();
14055 map_breakpoint_number_range (std::make_pair (num, num), function);
14056 }
14057 }
14058
14059 /* Return the breakpoint location structure corresponding to the
14060 BP_NUM and LOC_NUM values. */
14061
14062 static struct bp_location *
14063 find_location_by_number (int bp_num, int loc_num)
14064 {
14065 struct breakpoint *b;
14066
14067 ALL_BREAKPOINTS (b)
14068 if (b->number == bp_num)
14069 {
14070 break;
14071 }
14072
14073 if (!b || b->number != bp_num)
14074 error (_("Bad breakpoint number '%d'"), bp_num);
14075
14076 if (loc_num == 0)
14077 error (_("Bad breakpoint location number '%d'"), loc_num);
14078
14079 int n = 0;
14080 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14081 if (++n == loc_num)
14082 return loc;
14083
14084 error (_("Bad breakpoint location number '%d'"), loc_num);
14085 }
14086
14087 /* Modes of operation for extract_bp_num. */
14088 enum class extract_bp_kind
14089 {
14090 /* Extracting a breakpoint number. */
14091 bp,
14092
14093 /* Extracting a location number. */
14094 loc,
14095 };
14096
14097 /* Extract a breakpoint or location number (as determined by KIND)
14098 from the string starting at START. TRAILER is a character which
14099 can be found after the number. If you don't want a trailer, use
14100 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14101 string. This always returns a positive integer. */
14102
14103 static int
14104 extract_bp_num (extract_bp_kind kind, const char *start,
14105 int trailer, const char **end_out = NULL)
14106 {
14107 const char *end = start;
14108 int num = get_number_trailer (&end, trailer);
14109 if (num < 0)
14110 error (kind == extract_bp_kind::bp
14111 ? _("Negative breakpoint number '%.*s'")
14112 : _("Negative breakpoint location number '%.*s'"),
14113 int (end - start), start);
14114 if (num == 0)
14115 error (kind == extract_bp_kind::bp
14116 ? _("Bad breakpoint number '%.*s'")
14117 : _("Bad breakpoint location number '%.*s'"),
14118 int (end - start), start);
14119
14120 if (end_out != NULL)
14121 *end_out = end;
14122 return num;
14123 }
14124
14125 /* Extract a breakpoint or location range (as determined by KIND) in
14126 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14127 representing the (inclusive) range. The returned pair's elements
14128 are always positive integers. */
14129
14130 static std::pair<int, int>
14131 extract_bp_or_bp_range (extract_bp_kind kind,
14132 const std::string &arg,
14133 std::string::size_type arg_offset)
14134 {
14135 std::pair<int, int> range;
14136 const char *bp_loc = &arg[arg_offset];
14137 std::string::size_type dash = arg.find ('-', arg_offset);
14138 if (dash != std::string::npos)
14139 {
14140 /* bp_loc is a range (x-z). */
14141 if (arg.length () == dash + 1)
14142 error (kind == extract_bp_kind::bp
14143 ? _("Bad breakpoint number at or near: '%s'")
14144 : _("Bad breakpoint location number at or near: '%s'"),
14145 bp_loc);
14146
14147 const char *end;
14148 const char *start_first = bp_loc;
14149 const char *start_second = &arg[dash + 1];
14150 range.first = extract_bp_num (kind, start_first, '-');
14151 range.second = extract_bp_num (kind, start_second, '\0', &end);
14152
14153 if (range.first > range.second)
14154 error (kind == extract_bp_kind::bp
14155 ? _("Inverted breakpoint range at '%.*s'")
14156 : _("Inverted breakpoint location range at '%.*s'"),
14157 int (end - start_first), start_first);
14158 }
14159 else
14160 {
14161 /* bp_loc is a single value. */
14162 range.first = extract_bp_num (kind, bp_loc, '\0');
14163 range.second = range.first;
14164 }
14165 return range;
14166 }
14167
14168 /* Extract the breakpoint/location range specified by ARG. Returns
14169 the breakpoint range in BP_NUM_RANGE, and the location range in
14170 BP_LOC_RANGE.
14171
14172 ARG may be in any of the following forms:
14173
14174 x where 'x' is a breakpoint number.
14175 x-y where 'x' and 'y' specify a breakpoint numbers range.
14176 x.y where 'x' is a breakpoint number and 'y' a location number.
14177 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14178 location number range.
14179 */
14180
14181 static void
14182 extract_bp_number_and_location (const std::string &arg,
14183 std::pair<int, int> &bp_num_range,
14184 std::pair<int, int> &bp_loc_range)
14185 {
14186 std::string::size_type dot = arg.find ('.');
14187
14188 if (dot != std::string::npos)
14189 {
14190 /* Handle 'x.y' and 'x.y-z' cases. */
14191
14192 if (arg.length () == dot + 1 || dot == 0)
14193 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14194
14195 bp_num_range.first
14196 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14197 bp_num_range.second = bp_num_range.first;
14198
14199 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14200 arg, dot + 1);
14201 }
14202 else
14203 {
14204 /* Handle x and x-y cases. */
14205
14206 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14207 bp_loc_range.first = 0;
14208 bp_loc_range.second = 0;
14209 }
14210 }
14211
14212 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14213 specifies whether to enable or disable. */
14214
14215 static void
14216 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14217 {
14218 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14219 if (loc != NULL)
14220 {
14221 if (loc->enabled != enable)
14222 {
14223 loc->enabled = enable;
14224 mark_breakpoint_location_modified (loc);
14225 }
14226 if (target_supports_enable_disable_tracepoint ()
14227 && current_trace_status ()->running && loc->owner
14228 && is_tracepoint (loc->owner))
14229 target_disable_tracepoint (loc);
14230 }
14231 update_global_location_list (UGLL_DONT_INSERT);
14232 }
14233
14234 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14235 number of the breakpoint, and BP_LOC_RANGE specifies the
14236 (inclusive) range of location numbers of that breakpoint to
14237 enable/disable. ENABLE specifies whether to enable or disable the
14238 location. */
14239
14240 static void
14241 enable_disable_breakpoint_location_range (int bp_num,
14242 std::pair<int, int> &bp_loc_range,
14243 bool enable)
14244 {
14245 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14246 enable_disable_bp_num_loc (bp_num, i, enable);
14247 }
14248
14249 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14250 If from_tty is nonzero, it prints a message to that effect,
14251 which ends with a period (no newline). */
14252
14253 void
14254 disable_breakpoint (struct breakpoint *bpt)
14255 {
14256 /* Never disable a watchpoint scope breakpoint; we want to
14257 hit them when we leave scope so we can delete both the
14258 watchpoint and its scope breakpoint at that time. */
14259 if (bpt->type == bp_watchpoint_scope)
14260 return;
14261
14262 bpt->enable_state = bp_disabled;
14263
14264 /* Mark breakpoint locations modified. */
14265 mark_breakpoint_modified (bpt);
14266
14267 if (target_supports_enable_disable_tracepoint ()
14268 && current_trace_status ()->running && is_tracepoint (bpt))
14269 {
14270 struct bp_location *location;
14271
14272 for (location = bpt->loc; location; location = location->next)
14273 target_disable_tracepoint (location);
14274 }
14275
14276 update_global_location_list (UGLL_DONT_INSERT);
14277
14278 gdb::observers::breakpoint_modified.notify (bpt);
14279 }
14280
14281 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14282 specified in ARGS. ARGS may be in any of the formats handled by
14283 extract_bp_number_and_location. ENABLE specifies whether to enable
14284 or disable the breakpoints/locations. */
14285
14286 static void
14287 enable_disable_command (const char *args, int from_tty, bool enable)
14288 {
14289 if (args == 0)
14290 {
14291 struct breakpoint *bpt;
14292
14293 ALL_BREAKPOINTS (bpt)
14294 if (user_breakpoint_p (bpt))
14295 {
14296 if (enable)
14297 enable_breakpoint (bpt);
14298 else
14299 disable_breakpoint (bpt);
14300 }
14301 }
14302 else
14303 {
14304 std::string num = extract_arg (&args);
14305
14306 while (!num.empty ())
14307 {
14308 std::pair<int, int> bp_num_range, bp_loc_range;
14309
14310 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14311
14312 if (bp_loc_range.first == bp_loc_range.second
14313 && bp_loc_range.first == 0)
14314 {
14315 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14316 map_breakpoint_number_range (bp_num_range,
14317 enable
14318 ? enable_breakpoint
14319 : disable_breakpoint);
14320 }
14321 else
14322 {
14323 /* Handle breakpoint ids with formats 'x.y' or
14324 'x.y-z'. */
14325 enable_disable_breakpoint_location_range
14326 (bp_num_range.first, bp_loc_range, enable);
14327 }
14328 num = extract_arg (&args);
14329 }
14330 }
14331 }
14332
14333 /* The disable command disables the specified breakpoints/locations
14334 (or all defined breakpoints) so they're no longer effective in
14335 stopping the inferior. ARGS may be in any of the forms defined in
14336 extract_bp_number_and_location. */
14337
14338 static void
14339 disable_command (const char *args, int from_tty)
14340 {
14341 enable_disable_command (args, from_tty, false);
14342 }
14343
14344 static void
14345 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14346 int count)
14347 {
14348 int target_resources_ok;
14349
14350 if (bpt->type == bp_hardware_breakpoint)
14351 {
14352 int i;
14353 i = hw_breakpoint_used_count ();
14354 target_resources_ok =
14355 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14356 i + 1, 0);
14357 if (target_resources_ok == 0)
14358 error (_("No hardware breakpoint support in the target."));
14359 else if (target_resources_ok < 0)
14360 error (_("Hardware breakpoints used exceeds limit."));
14361 }
14362
14363 if (is_watchpoint (bpt))
14364 {
14365 /* Initialize it just to avoid a GCC false warning. */
14366 enum enable_state orig_enable_state = bp_disabled;
14367
14368 TRY
14369 {
14370 struct watchpoint *w = (struct watchpoint *) bpt;
14371
14372 orig_enable_state = bpt->enable_state;
14373 bpt->enable_state = bp_enabled;
14374 update_watchpoint (w, 1 /* reparse */);
14375 }
14376 CATCH (e, RETURN_MASK_ALL)
14377 {
14378 bpt->enable_state = orig_enable_state;
14379 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14380 bpt->number);
14381 return;
14382 }
14383 END_CATCH
14384 }
14385
14386 bpt->enable_state = bp_enabled;
14387
14388 /* Mark breakpoint locations modified. */
14389 mark_breakpoint_modified (bpt);
14390
14391 if (target_supports_enable_disable_tracepoint ()
14392 && current_trace_status ()->running && is_tracepoint (bpt))
14393 {
14394 struct bp_location *location;
14395
14396 for (location = bpt->loc; location; location = location->next)
14397 target_enable_tracepoint (location);
14398 }
14399
14400 bpt->disposition = disposition;
14401 bpt->enable_count = count;
14402 update_global_location_list (UGLL_MAY_INSERT);
14403
14404 gdb::observers::breakpoint_modified.notify (bpt);
14405 }
14406
14407
14408 void
14409 enable_breakpoint (struct breakpoint *bpt)
14410 {
14411 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14412 }
14413
14414 /* The enable command enables the specified breakpoints/locations (or
14415 all defined breakpoints) so they once again become (or continue to
14416 be) effective in stopping the inferior. ARGS may be in any of the
14417 forms defined in extract_bp_number_and_location. */
14418
14419 static void
14420 enable_command (const char *args, int from_tty)
14421 {
14422 enable_disable_command (args, from_tty, true);
14423 }
14424
14425 static void
14426 enable_once_command (const char *args, int from_tty)
14427 {
14428 map_breakpoint_numbers
14429 (args, [&] (breakpoint *b)
14430 {
14431 iterate_over_related_breakpoints
14432 (b, [&] (breakpoint *bpt)
14433 {
14434 enable_breakpoint_disp (bpt, disp_disable, 1);
14435 });
14436 });
14437 }
14438
14439 static void
14440 enable_count_command (const char *args, int from_tty)
14441 {
14442 int count;
14443
14444 if (args == NULL)
14445 error_no_arg (_("hit count"));
14446
14447 count = get_number (&args);
14448
14449 map_breakpoint_numbers
14450 (args, [&] (breakpoint *b)
14451 {
14452 iterate_over_related_breakpoints
14453 (b, [&] (breakpoint *bpt)
14454 {
14455 enable_breakpoint_disp (bpt, disp_disable, count);
14456 });
14457 });
14458 }
14459
14460 static void
14461 enable_delete_command (const char *args, int from_tty)
14462 {
14463 map_breakpoint_numbers
14464 (args, [&] (breakpoint *b)
14465 {
14466 iterate_over_related_breakpoints
14467 (b, [&] (breakpoint *bpt)
14468 {
14469 enable_breakpoint_disp (bpt, disp_del, 1);
14470 });
14471 });
14472 }
14473 \f
14474 static void
14475 set_breakpoint_cmd (const char *args, int from_tty)
14476 {
14477 }
14478
14479 static void
14480 show_breakpoint_cmd (const char *args, int from_tty)
14481 {
14482 }
14483
14484 /* Invalidate last known value of any hardware watchpoint if
14485 the memory which that value represents has been written to by
14486 GDB itself. */
14487
14488 static void
14489 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14490 CORE_ADDR addr, ssize_t len,
14491 const bfd_byte *data)
14492 {
14493 struct breakpoint *bp;
14494
14495 ALL_BREAKPOINTS (bp)
14496 if (bp->enable_state == bp_enabled
14497 && bp->type == bp_hardware_watchpoint)
14498 {
14499 struct watchpoint *wp = (struct watchpoint *) bp;
14500
14501 if (wp->val_valid && wp->val != nullptr)
14502 {
14503 struct bp_location *loc;
14504
14505 for (loc = bp->loc; loc != NULL; loc = loc->next)
14506 if (loc->loc_type == bp_loc_hardware_watchpoint
14507 && loc->address + loc->length > addr
14508 && addr + len > loc->address)
14509 {
14510 wp->val = NULL;
14511 wp->val_valid = 0;
14512 }
14513 }
14514 }
14515 }
14516
14517 /* Create and insert a breakpoint for software single step. */
14518
14519 void
14520 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14521 const address_space *aspace,
14522 CORE_ADDR next_pc)
14523 {
14524 struct thread_info *tp = inferior_thread ();
14525 struct symtab_and_line sal;
14526 CORE_ADDR pc = next_pc;
14527
14528 if (tp->control.single_step_breakpoints == NULL)
14529 {
14530 tp->control.single_step_breakpoints
14531 = new_single_step_breakpoint (tp->global_num, gdbarch);
14532 }
14533
14534 sal = find_pc_line (pc, 0);
14535 sal.pc = pc;
14536 sal.section = find_pc_overlay (pc);
14537 sal.explicit_pc = 1;
14538 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14539
14540 update_global_location_list (UGLL_INSERT);
14541 }
14542
14543 /* Insert single step breakpoints according to the current state. */
14544
14545 int
14546 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14547 {
14548 struct regcache *regcache = get_current_regcache ();
14549 std::vector<CORE_ADDR> next_pcs;
14550
14551 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14552
14553 if (!next_pcs.empty ())
14554 {
14555 struct frame_info *frame = get_current_frame ();
14556 const address_space *aspace = get_frame_address_space (frame);
14557
14558 for (CORE_ADDR pc : next_pcs)
14559 insert_single_step_breakpoint (gdbarch, aspace, pc);
14560
14561 return 1;
14562 }
14563 else
14564 return 0;
14565 }
14566
14567 /* See breakpoint.h. */
14568
14569 int
14570 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14571 const address_space *aspace,
14572 CORE_ADDR pc)
14573 {
14574 struct bp_location *loc;
14575
14576 for (loc = bp->loc; loc != NULL; loc = loc->next)
14577 if (loc->inserted
14578 && breakpoint_location_address_match (loc, aspace, pc))
14579 return 1;
14580
14581 return 0;
14582 }
14583
14584 /* Check whether a software single-step breakpoint is inserted at
14585 PC. */
14586
14587 int
14588 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14589 CORE_ADDR pc)
14590 {
14591 struct breakpoint *bpt;
14592
14593 ALL_BREAKPOINTS (bpt)
14594 {
14595 if (bpt->type == bp_single_step
14596 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14597 return 1;
14598 }
14599 return 0;
14600 }
14601
14602 /* Tracepoint-specific operations. */
14603
14604 /* Set tracepoint count to NUM. */
14605 static void
14606 set_tracepoint_count (int num)
14607 {
14608 tracepoint_count = num;
14609 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14610 }
14611
14612 static void
14613 trace_command (const char *arg, int from_tty)
14614 {
14615 struct breakpoint_ops *ops;
14616
14617 event_location_up location = string_to_event_location (&arg,
14618 current_language);
14619 if (location != NULL
14620 && event_location_type (location.get ()) == PROBE_LOCATION)
14621 ops = &tracepoint_probe_breakpoint_ops;
14622 else
14623 ops = &tracepoint_breakpoint_ops;
14624
14625 create_breakpoint (get_current_arch (),
14626 location.get (),
14627 NULL, 0, arg, 1 /* parse arg */,
14628 0 /* tempflag */,
14629 bp_tracepoint /* type_wanted */,
14630 0 /* Ignore count */,
14631 pending_break_support,
14632 ops,
14633 from_tty,
14634 1 /* enabled */,
14635 0 /* internal */, 0);
14636 }
14637
14638 static void
14639 ftrace_command (const char *arg, int from_tty)
14640 {
14641 event_location_up location = string_to_event_location (&arg,
14642 current_language);
14643 create_breakpoint (get_current_arch (),
14644 location.get (),
14645 NULL, 0, arg, 1 /* parse arg */,
14646 0 /* tempflag */,
14647 bp_fast_tracepoint /* type_wanted */,
14648 0 /* Ignore count */,
14649 pending_break_support,
14650 &tracepoint_breakpoint_ops,
14651 from_tty,
14652 1 /* enabled */,
14653 0 /* internal */, 0);
14654 }
14655
14656 /* strace command implementation. Creates a static tracepoint. */
14657
14658 static void
14659 strace_command (const char *arg, int from_tty)
14660 {
14661 struct breakpoint_ops *ops;
14662 event_location_up location;
14663
14664 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14665 or with a normal static tracepoint. */
14666 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14667 {
14668 ops = &strace_marker_breakpoint_ops;
14669 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14670 }
14671 else
14672 {
14673 ops = &tracepoint_breakpoint_ops;
14674 location = string_to_event_location (&arg, current_language);
14675 }
14676
14677 create_breakpoint (get_current_arch (),
14678 location.get (),
14679 NULL, 0, arg, 1 /* parse arg */,
14680 0 /* tempflag */,
14681 bp_static_tracepoint /* type_wanted */,
14682 0 /* Ignore count */,
14683 pending_break_support,
14684 ops,
14685 from_tty,
14686 1 /* enabled */,
14687 0 /* internal */, 0);
14688 }
14689
14690 /* Set up a fake reader function that gets command lines from a linked
14691 list that was acquired during tracepoint uploading. */
14692
14693 static struct uploaded_tp *this_utp;
14694 static int next_cmd;
14695
14696 static char *
14697 read_uploaded_action (void)
14698 {
14699 char *rslt = nullptr;
14700
14701 if (next_cmd < this_utp->cmd_strings.size ())
14702 {
14703 rslt = this_utp->cmd_strings[next_cmd];
14704 next_cmd++;
14705 }
14706
14707 return rslt;
14708 }
14709
14710 /* Given information about a tracepoint as recorded on a target (which
14711 can be either a live system or a trace file), attempt to create an
14712 equivalent GDB tracepoint. This is not a reliable process, since
14713 the target does not necessarily have all the information used when
14714 the tracepoint was originally defined. */
14715
14716 struct tracepoint *
14717 create_tracepoint_from_upload (struct uploaded_tp *utp)
14718 {
14719 const char *addr_str;
14720 char small_buf[100];
14721 struct tracepoint *tp;
14722
14723 if (utp->at_string)
14724 addr_str = utp->at_string;
14725 else
14726 {
14727 /* In the absence of a source location, fall back to raw
14728 address. Since there is no way to confirm that the address
14729 means the same thing as when the trace was started, warn the
14730 user. */
14731 warning (_("Uploaded tracepoint %d has no "
14732 "source location, using raw address"),
14733 utp->number);
14734 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14735 addr_str = small_buf;
14736 }
14737
14738 /* There's not much we can do with a sequence of bytecodes. */
14739 if (utp->cond && !utp->cond_string)
14740 warning (_("Uploaded tracepoint %d condition "
14741 "has no source form, ignoring it"),
14742 utp->number);
14743
14744 event_location_up location = string_to_event_location (&addr_str,
14745 current_language);
14746 if (!create_breakpoint (get_current_arch (),
14747 location.get (),
14748 utp->cond_string, -1, addr_str,
14749 0 /* parse cond/thread */,
14750 0 /* tempflag */,
14751 utp->type /* type_wanted */,
14752 0 /* Ignore count */,
14753 pending_break_support,
14754 &tracepoint_breakpoint_ops,
14755 0 /* from_tty */,
14756 utp->enabled /* enabled */,
14757 0 /* internal */,
14758 CREATE_BREAKPOINT_FLAGS_INSERTED))
14759 return NULL;
14760
14761 /* Get the tracepoint we just created. */
14762 tp = get_tracepoint (tracepoint_count);
14763 gdb_assert (tp != NULL);
14764
14765 if (utp->pass > 0)
14766 {
14767 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14768 tp->number);
14769
14770 trace_pass_command (small_buf, 0);
14771 }
14772
14773 /* If we have uploaded versions of the original commands, set up a
14774 special-purpose "reader" function and call the usual command line
14775 reader, then pass the result to the breakpoint command-setting
14776 function. */
14777 if (!utp->cmd_strings.empty ())
14778 {
14779 counted_command_line cmd_list;
14780
14781 this_utp = utp;
14782 next_cmd = 0;
14783
14784 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14785
14786 breakpoint_set_commands (tp, std::move (cmd_list));
14787 }
14788 else if (!utp->actions.empty ()
14789 || !utp->step_actions.empty ())
14790 warning (_("Uploaded tracepoint %d actions "
14791 "have no source form, ignoring them"),
14792 utp->number);
14793
14794 /* Copy any status information that might be available. */
14795 tp->hit_count = utp->hit_count;
14796 tp->traceframe_usage = utp->traceframe_usage;
14797
14798 return tp;
14799 }
14800
14801 /* Print information on tracepoint number TPNUM_EXP, or all if
14802 omitted. */
14803
14804 static void
14805 info_tracepoints_command (const char *args, int from_tty)
14806 {
14807 struct ui_out *uiout = current_uiout;
14808 int num_printed;
14809
14810 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14811
14812 if (num_printed == 0)
14813 {
14814 if (args == NULL || *args == '\0')
14815 uiout->message ("No tracepoints.\n");
14816 else
14817 uiout->message ("No tracepoint matching '%s'.\n", args);
14818 }
14819
14820 default_collect_info ();
14821 }
14822
14823 /* The 'enable trace' command enables tracepoints.
14824 Not supported by all targets. */
14825 static void
14826 enable_trace_command (const char *args, int from_tty)
14827 {
14828 enable_command (args, from_tty);
14829 }
14830
14831 /* The 'disable trace' command disables tracepoints.
14832 Not supported by all targets. */
14833 static void
14834 disable_trace_command (const char *args, int from_tty)
14835 {
14836 disable_command (args, from_tty);
14837 }
14838
14839 /* Remove a tracepoint (or all if no argument). */
14840 static void
14841 delete_trace_command (const char *arg, int from_tty)
14842 {
14843 struct breakpoint *b, *b_tmp;
14844
14845 dont_repeat ();
14846
14847 if (arg == 0)
14848 {
14849 int breaks_to_delete = 0;
14850
14851 /* Delete all breakpoints if no argument.
14852 Do not delete internal or call-dummy breakpoints, these
14853 have to be deleted with an explicit breakpoint number
14854 argument. */
14855 ALL_TRACEPOINTS (b)
14856 if (is_tracepoint (b) && user_breakpoint_p (b))
14857 {
14858 breaks_to_delete = 1;
14859 break;
14860 }
14861
14862 /* Ask user only if there are some breakpoints to delete. */
14863 if (!from_tty
14864 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14865 {
14866 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14867 if (is_tracepoint (b) && user_breakpoint_p (b))
14868 delete_breakpoint (b);
14869 }
14870 }
14871 else
14872 map_breakpoint_numbers
14873 (arg, [&] (breakpoint *b)
14874 {
14875 iterate_over_related_breakpoints (b, delete_breakpoint);
14876 });
14877 }
14878
14879 /* Helper function for trace_pass_command. */
14880
14881 static void
14882 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14883 {
14884 tp->pass_count = count;
14885 gdb::observers::breakpoint_modified.notify (tp);
14886 if (from_tty)
14887 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14888 tp->number, count);
14889 }
14890
14891 /* Set passcount for tracepoint.
14892
14893 First command argument is passcount, second is tracepoint number.
14894 If tracepoint number omitted, apply to most recently defined.
14895 Also accepts special argument "all". */
14896
14897 static void
14898 trace_pass_command (const char *args, int from_tty)
14899 {
14900 struct tracepoint *t1;
14901 ULONGEST count;
14902
14903 if (args == 0 || *args == 0)
14904 error (_("passcount command requires an "
14905 "argument (count + optional TP num)"));
14906
14907 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14908
14909 args = skip_spaces (args);
14910 if (*args && strncasecmp (args, "all", 3) == 0)
14911 {
14912 struct breakpoint *b;
14913
14914 args += 3; /* Skip special argument "all". */
14915 if (*args)
14916 error (_("Junk at end of arguments."));
14917
14918 ALL_TRACEPOINTS (b)
14919 {
14920 t1 = (struct tracepoint *) b;
14921 trace_pass_set_count (t1, count, from_tty);
14922 }
14923 }
14924 else if (*args == '\0')
14925 {
14926 t1 = get_tracepoint_by_number (&args, NULL);
14927 if (t1)
14928 trace_pass_set_count (t1, count, from_tty);
14929 }
14930 else
14931 {
14932 number_or_range_parser parser (args);
14933 while (!parser.finished ())
14934 {
14935 t1 = get_tracepoint_by_number (&args, &parser);
14936 if (t1)
14937 trace_pass_set_count (t1, count, from_tty);
14938 }
14939 }
14940 }
14941
14942 struct tracepoint *
14943 get_tracepoint (int num)
14944 {
14945 struct breakpoint *t;
14946
14947 ALL_TRACEPOINTS (t)
14948 if (t->number == num)
14949 return (struct tracepoint *) t;
14950
14951 return NULL;
14952 }
14953
14954 /* Find the tracepoint with the given target-side number (which may be
14955 different from the tracepoint number after disconnecting and
14956 reconnecting). */
14957
14958 struct tracepoint *
14959 get_tracepoint_by_number_on_target (int num)
14960 {
14961 struct breakpoint *b;
14962
14963 ALL_TRACEPOINTS (b)
14964 {
14965 struct tracepoint *t = (struct tracepoint *) b;
14966
14967 if (t->number_on_target == num)
14968 return t;
14969 }
14970
14971 return NULL;
14972 }
14973
14974 /* Utility: parse a tracepoint number and look it up in the list.
14975 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14976 If the argument is missing, the most recent tracepoint
14977 (tracepoint_count) is returned. */
14978
14979 struct tracepoint *
14980 get_tracepoint_by_number (const char **arg,
14981 number_or_range_parser *parser)
14982 {
14983 struct breakpoint *t;
14984 int tpnum;
14985 const char *instring = arg == NULL ? NULL : *arg;
14986
14987 if (parser != NULL)
14988 {
14989 gdb_assert (!parser->finished ());
14990 tpnum = parser->get_number ();
14991 }
14992 else if (arg == NULL || *arg == NULL || ! **arg)
14993 tpnum = tracepoint_count;
14994 else
14995 tpnum = get_number (arg);
14996
14997 if (tpnum <= 0)
14998 {
14999 if (instring && *instring)
15000 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15001 instring);
15002 else
15003 printf_filtered (_("No previous tracepoint\n"));
15004 return NULL;
15005 }
15006
15007 ALL_TRACEPOINTS (t)
15008 if (t->number == tpnum)
15009 {
15010 return (struct tracepoint *) t;
15011 }
15012
15013 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15014 return NULL;
15015 }
15016
15017 void
15018 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15019 {
15020 if (b->thread != -1)
15021 fprintf_unfiltered (fp, " thread %d", b->thread);
15022
15023 if (b->task != 0)
15024 fprintf_unfiltered (fp, " task %d", b->task);
15025
15026 fprintf_unfiltered (fp, "\n");
15027 }
15028
15029 /* Save information on user settable breakpoints (watchpoints, etc) to
15030 a new script file named FILENAME. If FILTER is non-NULL, call it
15031 on each breakpoint and only include the ones for which it returns
15032 non-zero. */
15033
15034 static void
15035 save_breakpoints (const char *filename, int from_tty,
15036 int (*filter) (const struct breakpoint *))
15037 {
15038 struct breakpoint *tp;
15039 int any = 0;
15040 int extra_trace_bits = 0;
15041
15042 if (filename == 0 || *filename == 0)
15043 error (_("Argument required (file name in which to save)"));
15044
15045 /* See if we have anything to save. */
15046 ALL_BREAKPOINTS (tp)
15047 {
15048 /* Skip internal and momentary breakpoints. */
15049 if (!user_breakpoint_p (tp))
15050 continue;
15051
15052 /* If we have a filter, only save the breakpoints it accepts. */
15053 if (filter && !filter (tp))
15054 continue;
15055
15056 any = 1;
15057
15058 if (is_tracepoint (tp))
15059 {
15060 extra_trace_bits = 1;
15061
15062 /* We can stop searching. */
15063 break;
15064 }
15065 }
15066
15067 if (!any)
15068 {
15069 warning (_("Nothing to save."));
15070 return;
15071 }
15072
15073 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15074
15075 stdio_file fp;
15076
15077 if (!fp.open (expanded_filename.get (), "w"))
15078 error (_("Unable to open file '%s' for saving (%s)"),
15079 expanded_filename.get (), safe_strerror (errno));
15080
15081 if (extra_trace_bits)
15082 save_trace_state_variables (&fp);
15083
15084 ALL_BREAKPOINTS (tp)
15085 {
15086 /* Skip internal and momentary breakpoints. */
15087 if (!user_breakpoint_p (tp))
15088 continue;
15089
15090 /* If we have a filter, only save the breakpoints it accepts. */
15091 if (filter && !filter (tp))
15092 continue;
15093
15094 tp->ops->print_recreate (tp, &fp);
15095
15096 /* Note, we can't rely on tp->number for anything, as we can't
15097 assume the recreated breakpoint numbers will match. Use $bpnum
15098 instead. */
15099
15100 if (tp->cond_string)
15101 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15102
15103 if (tp->ignore_count)
15104 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15105
15106 if (tp->type != bp_dprintf && tp->commands)
15107 {
15108 fp.puts (" commands\n");
15109
15110 current_uiout->redirect (&fp);
15111 TRY
15112 {
15113 print_command_lines (current_uiout, tp->commands.get (), 2);
15114 }
15115 CATCH (ex, RETURN_MASK_ALL)
15116 {
15117 current_uiout->redirect (NULL);
15118 throw_exception (ex);
15119 }
15120 END_CATCH
15121
15122 current_uiout->redirect (NULL);
15123 fp.puts (" end\n");
15124 }
15125
15126 if (tp->enable_state == bp_disabled)
15127 fp.puts ("disable $bpnum\n");
15128
15129 /* If this is a multi-location breakpoint, check if the locations
15130 should be individually disabled. Watchpoint locations are
15131 special, and not user visible. */
15132 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15133 {
15134 struct bp_location *loc;
15135 int n = 1;
15136
15137 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15138 if (!loc->enabled)
15139 fp.printf ("disable $bpnum.%d\n", n);
15140 }
15141 }
15142
15143 if (extra_trace_bits && *default_collect)
15144 fp.printf ("set default-collect %s\n", default_collect);
15145
15146 if (from_tty)
15147 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15148 }
15149
15150 /* The `save breakpoints' command. */
15151
15152 static void
15153 save_breakpoints_command (const char *args, int from_tty)
15154 {
15155 save_breakpoints (args, from_tty, NULL);
15156 }
15157
15158 /* The `save tracepoints' command. */
15159
15160 static void
15161 save_tracepoints_command (const char *args, int from_tty)
15162 {
15163 save_breakpoints (args, from_tty, is_tracepoint);
15164 }
15165
15166 /* Create a vector of all tracepoints. */
15167
15168 VEC(breakpoint_p) *
15169 all_tracepoints (void)
15170 {
15171 VEC(breakpoint_p) *tp_vec = 0;
15172 struct breakpoint *tp;
15173
15174 ALL_TRACEPOINTS (tp)
15175 {
15176 VEC_safe_push (breakpoint_p, tp_vec, tp);
15177 }
15178
15179 return tp_vec;
15180 }
15181
15182 \f
15183 /* This help string is used to consolidate all the help string for specifying
15184 locations used by several commands. */
15185
15186 #define LOCATION_HELP_STRING \
15187 "Linespecs are colon-separated lists of location parameters, such as\n\
15188 source filename, function name, label name, and line number.\n\
15189 Example: To specify the start of a label named \"the_top\" in the\n\
15190 function \"fact\" in the file \"factorial.c\", use\n\
15191 \"factorial.c:fact:the_top\".\n\
15192 \n\
15193 Address locations begin with \"*\" and specify an exact address in the\n\
15194 program. Example: To specify the fourth byte past the start function\n\
15195 \"main\", use \"*main + 4\".\n\
15196 \n\
15197 Explicit locations are similar to linespecs but use an option/argument\n\
15198 syntax to specify location parameters.\n\
15199 Example: To specify the start of the label named \"the_top\" in the\n\
15200 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15201 -function fact -label the_top\".\n\
15202 \n\
15203 By default, a specified function is matched against the program's\n\
15204 functions in all scopes. For C++, this means in all namespaces and\n\
15205 classes. For Ada, this means in all packages. E.g., in C++,\n\
15206 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15207 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15208 specified name as a complete fully-qualified name instead.\n"
15209
15210 /* This help string is used for the break, hbreak, tbreak and thbreak
15211 commands. It is defined as a macro to prevent duplication.
15212 COMMAND should be a string constant containing the name of the
15213 command. */
15214
15215 #define BREAK_ARGS_HELP(command) \
15216 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15217 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15218 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15219 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15220 `-probe-dtrace' (for a DTrace probe).\n\
15221 LOCATION may be a linespec, address, or explicit location as described\n\
15222 below.\n\
15223 \n\
15224 With no LOCATION, uses current execution address of the selected\n\
15225 stack frame. This is useful for breaking on return to a stack frame.\n\
15226 \n\
15227 THREADNUM is the number from \"info threads\".\n\
15228 CONDITION is a boolean expression.\n\
15229 \n" LOCATION_HELP_STRING "\n\
15230 Multiple breakpoints at one place are permitted, and useful if their\n\
15231 conditions are different.\n\
15232 \n\
15233 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15234
15235 /* List of subcommands for "catch". */
15236 static struct cmd_list_element *catch_cmdlist;
15237
15238 /* List of subcommands for "tcatch". */
15239 static struct cmd_list_element *tcatch_cmdlist;
15240
15241 void
15242 add_catch_command (const char *name, const char *docstring,
15243 cmd_const_sfunc_ftype *sfunc,
15244 completer_ftype *completer,
15245 void *user_data_catch,
15246 void *user_data_tcatch)
15247 {
15248 struct cmd_list_element *command;
15249
15250 command = add_cmd (name, class_breakpoint, docstring,
15251 &catch_cmdlist);
15252 set_cmd_sfunc (command, sfunc);
15253 set_cmd_context (command, user_data_catch);
15254 set_cmd_completer (command, completer);
15255
15256 command = add_cmd (name, class_breakpoint, docstring,
15257 &tcatch_cmdlist);
15258 set_cmd_sfunc (command, sfunc);
15259 set_cmd_context (command, user_data_tcatch);
15260 set_cmd_completer (command, completer);
15261 }
15262
15263 static void
15264 save_command (const char *arg, int from_tty)
15265 {
15266 printf_unfiltered (_("\"save\" must be followed by "
15267 "the name of a save subcommand.\n"));
15268 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15269 }
15270
15271 struct breakpoint *
15272 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15273 void *data)
15274 {
15275 struct breakpoint *b, *b_tmp;
15276
15277 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15278 {
15279 if ((*callback) (b, data))
15280 return b;
15281 }
15282
15283 return NULL;
15284 }
15285
15286 /* Zero if any of the breakpoint's locations could be a location where
15287 functions have been inlined, nonzero otherwise. */
15288
15289 static int
15290 is_non_inline_function (struct breakpoint *b)
15291 {
15292 /* The shared library event breakpoint is set on the address of a
15293 non-inline function. */
15294 if (b->type == bp_shlib_event)
15295 return 1;
15296
15297 return 0;
15298 }
15299
15300 /* Nonzero if the specified PC cannot be a location where functions
15301 have been inlined. */
15302
15303 int
15304 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15305 const struct target_waitstatus *ws)
15306 {
15307 struct breakpoint *b;
15308 struct bp_location *bl;
15309
15310 ALL_BREAKPOINTS (b)
15311 {
15312 if (!is_non_inline_function (b))
15313 continue;
15314
15315 for (bl = b->loc; bl != NULL; bl = bl->next)
15316 {
15317 if (!bl->shlib_disabled
15318 && bpstat_check_location (bl, aspace, pc, ws))
15319 return 1;
15320 }
15321 }
15322
15323 return 0;
15324 }
15325
15326 /* Remove any references to OBJFILE which is going to be freed. */
15327
15328 void
15329 breakpoint_free_objfile (struct objfile *objfile)
15330 {
15331 struct bp_location **locp, *loc;
15332
15333 ALL_BP_LOCATIONS (loc, locp)
15334 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15335 loc->symtab = NULL;
15336 }
15337
15338 void
15339 initialize_breakpoint_ops (void)
15340 {
15341 static int initialized = 0;
15342
15343 struct breakpoint_ops *ops;
15344
15345 if (initialized)
15346 return;
15347 initialized = 1;
15348
15349 /* The breakpoint_ops structure to be inherit by all kinds of
15350 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15351 internal and momentary breakpoints, etc.). */
15352 ops = &bkpt_base_breakpoint_ops;
15353 *ops = base_breakpoint_ops;
15354 ops->re_set = bkpt_re_set;
15355 ops->insert_location = bkpt_insert_location;
15356 ops->remove_location = bkpt_remove_location;
15357 ops->breakpoint_hit = bkpt_breakpoint_hit;
15358 ops->create_sals_from_location = bkpt_create_sals_from_location;
15359 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15360 ops->decode_location = bkpt_decode_location;
15361
15362 /* The breakpoint_ops structure to be used in regular breakpoints. */
15363 ops = &bkpt_breakpoint_ops;
15364 *ops = bkpt_base_breakpoint_ops;
15365 ops->re_set = bkpt_re_set;
15366 ops->resources_needed = bkpt_resources_needed;
15367 ops->print_it = bkpt_print_it;
15368 ops->print_mention = bkpt_print_mention;
15369 ops->print_recreate = bkpt_print_recreate;
15370
15371 /* Ranged breakpoints. */
15372 ops = &ranged_breakpoint_ops;
15373 *ops = bkpt_breakpoint_ops;
15374 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15375 ops->resources_needed = resources_needed_ranged_breakpoint;
15376 ops->print_it = print_it_ranged_breakpoint;
15377 ops->print_one = print_one_ranged_breakpoint;
15378 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15379 ops->print_mention = print_mention_ranged_breakpoint;
15380 ops->print_recreate = print_recreate_ranged_breakpoint;
15381
15382 /* Internal breakpoints. */
15383 ops = &internal_breakpoint_ops;
15384 *ops = bkpt_base_breakpoint_ops;
15385 ops->re_set = internal_bkpt_re_set;
15386 ops->check_status = internal_bkpt_check_status;
15387 ops->print_it = internal_bkpt_print_it;
15388 ops->print_mention = internal_bkpt_print_mention;
15389
15390 /* Momentary breakpoints. */
15391 ops = &momentary_breakpoint_ops;
15392 *ops = bkpt_base_breakpoint_ops;
15393 ops->re_set = momentary_bkpt_re_set;
15394 ops->check_status = momentary_bkpt_check_status;
15395 ops->print_it = momentary_bkpt_print_it;
15396 ops->print_mention = momentary_bkpt_print_mention;
15397
15398 /* Probe breakpoints. */
15399 ops = &bkpt_probe_breakpoint_ops;
15400 *ops = bkpt_breakpoint_ops;
15401 ops->insert_location = bkpt_probe_insert_location;
15402 ops->remove_location = bkpt_probe_remove_location;
15403 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15404 ops->decode_location = bkpt_probe_decode_location;
15405
15406 /* Watchpoints. */
15407 ops = &watchpoint_breakpoint_ops;
15408 *ops = base_breakpoint_ops;
15409 ops->re_set = re_set_watchpoint;
15410 ops->insert_location = insert_watchpoint;
15411 ops->remove_location = remove_watchpoint;
15412 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15413 ops->check_status = check_status_watchpoint;
15414 ops->resources_needed = resources_needed_watchpoint;
15415 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15416 ops->print_it = print_it_watchpoint;
15417 ops->print_mention = print_mention_watchpoint;
15418 ops->print_recreate = print_recreate_watchpoint;
15419 ops->explains_signal = explains_signal_watchpoint;
15420
15421 /* Masked watchpoints. */
15422 ops = &masked_watchpoint_breakpoint_ops;
15423 *ops = watchpoint_breakpoint_ops;
15424 ops->insert_location = insert_masked_watchpoint;
15425 ops->remove_location = remove_masked_watchpoint;
15426 ops->resources_needed = resources_needed_masked_watchpoint;
15427 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15428 ops->print_it = print_it_masked_watchpoint;
15429 ops->print_one_detail = print_one_detail_masked_watchpoint;
15430 ops->print_mention = print_mention_masked_watchpoint;
15431 ops->print_recreate = print_recreate_masked_watchpoint;
15432
15433 /* Tracepoints. */
15434 ops = &tracepoint_breakpoint_ops;
15435 *ops = base_breakpoint_ops;
15436 ops->re_set = tracepoint_re_set;
15437 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15438 ops->print_one_detail = tracepoint_print_one_detail;
15439 ops->print_mention = tracepoint_print_mention;
15440 ops->print_recreate = tracepoint_print_recreate;
15441 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15442 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15443 ops->decode_location = tracepoint_decode_location;
15444
15445 /* Probe tracepoints. */
15446 ops = &tracepoint_probe_breakpoint_ops;
15447 *ops = tracepoint_breakpoint_ops;
15448 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15449 ops->decode_location = tracepoint_probe_decode_location;
15450
15451 /* Static tracepoints with marker (`-m'). */
15452 ops = &strace_marker_breakpoint_ops;
15453 *ops = tracepoint_breakpoint_ops;
15454 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15455 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15456 ops->decode_location = strace_marker_decode_location;
15457
15458 /* Fork catchpoints. */
15459 ops = &catch_fork_breakpoint_ops;
15460 *ops = base_breakpoint_ops;
15461 ops->insert_location = insert_catch_fork;
15462 ops->remove_location = remove_catch_fork;
15463 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15464 ops->print_it = print_it_catch_fork;
15465 ops->print_one = print_one_catch_fork;
15466 ops->print_mention = print_mention_catch_fork;
15467 ops->print_recreate = print_recreate_catch_fork;
15468
15469 /* Vfork catchpoints. */
15470 ops = &catch_vfork_breakpoint_ops;
15471 *ops = base_breakpoint_ops;
15472 ops->insert_location = insert_catch_vfork;
15473 ops->remove_location = remove_catch_vfork;
15474 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15475 ops->print_it = print_it_catch_vfork;
15476 ops->print_one = print_one_catch_vfork;
15477 ops->print_mention = print_mention_catch_vfork;
15478 ops->print_recreate = print_recreate_catch_vfork;
15479
15480 /* Exec catchpoints. */
15481 ops = &catch_exec_breakpoint_ops;
15482 *ops = base_breakpoint_ops;
15483 ops->insert_location = insert_catch_exec;
15484 ops->remove_location = remove_catch_exec;
15485 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15486 ops->print_it = print_it_catch_exec;
15487 ops->print_one = print_one_catch_exec;
15488 ops->print_mention = print_mention_catch_exec;
15489 ops->print_recreate = print_recreate_catch_exec;
15490
15491 /* Solib-related catchpoints. */
15492 ops = &catch_solib_breakpoint_ops;
15493 *ops = base_breakpoint_ops;
15494 ops->insert_location = insert_catch_solib;
15495 ops->remove_location = remove_catch_solib;
15496 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15497 ops->check_status = check_status_catch_solib;
15498 ops->print_it = print_it_catch_solib;
15499 ops->print_one = print_one_catch_solib;
15500 ops->print_mention = print_mention_catch_solib;
15501 ops->print_recreate = print_recreate_catch_solib;
15502
15503 ops = &dprintf_breakpoint_ops;
15504 *ops = bkpt_base_breakpoint_ops;
15505 ops->re_set = dprintf_re_set;
15506 ops->resources_needed = bkpt_resources_needed;
15507 ops->print_it = bkpt_print_it;
15508 ops->print_mention = bkpt_print_mention;
15509 ops->print_recreate = dprintf_print_recreate;
15510 ops->after_condition_true = dprintf_after_condition_true;
15511 ops->breakpoint_hit = dprintf_breakpoint_hit;
15512 }
15513
15514 /* Chain containing all defined "enable breakpoint" subcommands. */
15515
15516 static struct cmd_list_element *enablebreaklist = NULL;
15517
15518 void
15519 _initialize_breakpoint (void)
15520 {
15521 struct cmd_list_element *c;
15522
15523 initialize_breakpoint_ops ();
15524
15525 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15526 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15527 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15528
15529 breakpoint_objfile_key
15530 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15531
15532 breakpoint_chain = 0;
15533 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15534 before a breakpoint is set. */
15535 breakpoint_count = 0;
15536
15537 tracepoint_count = 0;
15538
15539 add_com ("ignore", class_breakpoint, ignore_command, _("\
15540 Set ignore-count of breakpoint number N to COUNT.\n\
15541 Usage is `ignore N COUNT'."));
15542
15543 add_com ("commands", class_breakpoint, commands_command, _("\
15544 Set commands to be executed when the given breakpoints are hit.\n\
15545 Give a space-separated breakpoint list as argument after \"commands\".\n\
15546 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15547 (e.g. `5-7').\n\
15548 With no argument, the targeted breakpoint is the last one set.\n\
15549 The commands themselves follow starting on the next line.\n\
15550 Type a line containing \"end\" to indicate the end of them.\n\
15551 Give \"silent\" as the first line to make the breakpoint silent;\n\
15552 then no output is printed when it is hit, except what the commands print."));
15553
15554 c = add_com ("condition", class_breakpoint, condition_command, _("\
15555 Specify breakpoint number N to break only if COND is true.\n\
15556 Usage is `condition N COND', where N is an integer and COND is an\n\
15557 expression to be evaluated whenever breakpoint N is reached."));
15558 set_cmd_completer (c, condition_completer);
15559
15560 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15561 Set a temporary breakpoint.\n\
15562 Like \"break\" except the breakpoint is only temporary,\n\
15563 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15564 by using \"enable delete\" on the breakpoint number.\n\
15565 \n"
15566 BREAK_ARGS_HELP ("tbreak")));
15567 set_cmd_completer (c, location_completer);
15568
15569 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15570 Set a hardware assisted breakpoint.\n\
15571 Like \"break\" except the breakpoint requires hardware support,\n\
15572 some target hardware may not have this support.\n\
15573 \n"
15574 BREAK_ARGS_HELP ("hbreak")));
15575 set_cmd_completer (c, location_completer);
15576
15577 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15578 Set a temporary hardware assisted breakpoint.\n\
15579 Like \"hbreak\" except the breakpoint is only temporary,\n\
15580 so it will be deleted when hit.\n\
15581 \n"
15582 BREAK_ARGS_HELP ("thbreak")));
15583 set_cmd_completer (c, location_completer);
15584
15585 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15586 Enable some breakpoints.\n\
15587 Give breakpoint numbers (separated by spaces) as arguments.\n\
15588 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15589 This is used to cancel the effect of the \"disable\" command.\n\
15590 With a subcommand you can enable temporarily."),
15591 &enablelist, "enable ", 1, &cmdlist);
15592
15593 add_com_alias ("en", "enable", class_breakpoint, 1);
15594
15595 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15596 Enable some breakpoints.\n\
15597 Give breakpoint numbers (separated by spaces) as arguments.\n\
15598 This is used to cancel the effect of the \"disable\" command.\n\
15599 May be abbreviated to simply \"enable\".\n"),
15600 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15601
15602 add_cmd ("once", no_class, enable_once_command, _("\
15603 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15604 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15605 &enablebreaklist);
15606
15607 add_cmd ("delete", no_class, enable_delete_command, _("\
15608 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15609 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15610 &enablebreaklist);
15611
15612 add_cmd ("count", no_class, enable_count_command, _("\
15613 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15614 If a breakpoint is hit while enabled in this fashion,\n\
15615 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15616 &enablebreaklist);
15617
15618 add_cmd ("delete", no_class, enable_delete_command, _("\
15619 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15620 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15621 &enablelist);
15622
15623 add_cmd ("once", no_class, enable_once_command, _("\
15624 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15625 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15626 &enablelist);
15627
15628 add_cmd ("count", no_class, enable_count_command, _("\
15629 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15630 If a breakpoint is hit while enabled in this fashion,\n\
15631 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15632 &enablelist);
15633
15634 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15635 Disable some breakpoints.\n\
15636 Arguments are breakpoint numbers with spaces in between.\n\
15637 To disable all breakpoints, give no argument.\n\
15638 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15639 &disablelist, "disable ", 1, &cmdlist);
15640 add_com_alias ("dis", "disable", class_breakpoint, 1);
15641 add_com_alias ("disa", "disable", class_breakpoint, 1);
15642
15643 add_cmd ("breakpoints", class_alias, disable_command, _("\
15644 Disable some breakpoints.\n\
15645 Arguments are breakpoint numbers with spaces in between.\n\
15646 To disable all breakpoints, give no argument.\n\
15647 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15648 This command may be abbreviated \"disable\"."),
15649 &disablelist);
15650
15651 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15652 Delete some breakpoints or auto-display expressions.\n\
15653 Arguments are breakpoint numbers with spaces in between.\n\
15654 To delete all breakpoints, give no argument.\n\
15655 \n\
15656 Also a prefix command for deletion of other GDB objects.\n\
15657 The \"unset\" command is also an alias for \"delete\"."),
15658 &deletelist, "delete ", 1, &cmdlist);
15659 add_com_alias ("d", "delete", class_breakpoint, 1);
15660 add_com_alias ("del", "delete", class_breakpoint, 1);
15661
15662 add_cmd ("breakpoints", class_alias, delete_command, _("\
15663 Delete some breakpoints or auto-display expressions.\n\
15664 Arguments are breakpoint numbers with spaces in between.\n\
15665 To delete all breakpoints, give no argument.\n\
15666 This command may be abbreviated \"delete\"."),
15667 &deletelist);
15668
15669 add_com ("clear", class_breakpoint, clear_command, _("\
15670 Clear breakpoint at specified location.\n\
15671 Argument may be a linespec, explicit, or address location as described below.\n\
15672 \n\
15673 With no argument, clears all breakpoints in the line that the selected frame\n\
15674 is executing in.\n"
15675 "\n" LOCATION_HELP_STRING "\n\
15676 See also the \"delete\" command which clears breakpoints by number."));
15677 add_com_alias ("cl", "clear", class_breakpoint, 1);
15678
15679 c = add_com ("break", class_breakpoint, break_command, _("\
15680 Set breakpoint at specified location.\n"
15681 BREAK_ARGS_HELP ("break")));
15682 set_cmd_completer (c, location_completer);
15683
15684 add_com_alias ("b", "break", class_run, 1);
15685 add_com_alias ("br", "break", class_run, 1);
15686 add_com_alias ("bre", "break", class_run, 1);
15687 add_com_alias ("brea", "break", class_run, 1);
15688
15689 if (dbx_commands)
15690 {
15691 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15692 Break in function/address or break at a line in the current file."),
15693 &stoplist, "stop ", 1, &cmdlist);
15694 add_cmd ("in", class_breakpoint, stopin_command,
15695 _("Break in function or address."), &stoplist);
15696 add_cmd ("at", class_breakpoint, stopat_command,
15697 _("Break at a line in the current file."), &stoplist);
15698 add_com ("status", class_info, info_breakpoints_command, _("\
15699 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15700 The \"Type\" column indicates one of:\n\
15701 \tbreakpoint - normal breakpoint\n\
15702 \twatchpoint - watchpoint\n\
15703 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15704 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15705 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15706 address and file/line number respectively.\n\
15707 \n\
15708 Convenience variable \"$_\" and default examine address for \"x\"\n\
15709 are set to the address of the last breakpoint listed unless the command\n\
15710 is prefixed with \"server \".\n\n\
15711 Convenience variable \"$bpnum\" contains the number of the last\n\
15712 breakpoint set."));
15713 }
15714
15715 add_info ("breakpoints", info_breakpoints_command, _("\
15716 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15717 The \"Type\" column indicates one of:\n\
15718 \tbreakpoint - normal breakpoint\n\
15719 \twatchpoint - watchpoint\n\
15720 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15721 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15722 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15723 address and file/line number respectively.\n\
15724 \n\
15725 Convenience variable \"$_\" and default examine address for \"x\"\n\
15726 are set to the address of the last breakpoint listed unless the command\n\
15727 is prefixed with \"server \".\n\n\
15728 Convenience variable \"$bpnum\" contains the number of the last\n\
15729 breakpoint set."));
15730
15731 add_info_alias ("b", "breakpoints", 1);
15732
15733 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15734 Status of all breakpoints, or breakpoint number NUMBER.\n\
15735 The \"Type\" column indicates one of:\n\
15736 \tbreakpoint - normal breakpoint\n\
15737 \twatchpoint - watchpoint\n\
15738 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15739 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15740 \tuntil - internal breakpoint used by the \"until\" command\n\
15741 \tfinish - internal breakpoint used by the \"finish\" command\n\
15742 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15743 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15744 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15745 address and file/line number respectively.\n\
15746 \n\
15747 Convenience variable \"$_\" and default examine address for \"x\"\n\
15748 are set to the address of the last breakpoint listed unless the command\n\
15749 is prefixed with \"server \".\n\n\
15750 Convenience variable \"$bpnum\" contains the number of the last\n\
15751 breakpoint set."),
15752 &maintenanceinfolist);
15753
15754 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15755 Set catchpoints to catch events."),
15756 &catch_cmdlist, "catch ",
15757 0/*allow-unknown*/, &cmdlist);
15758
15759 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15760 Set temporary catchpoints to catch events."),
15761 &tcatch_cmdlist, "tcatch ",
15762 0/*allow-unknown*/, &cmdlist);
15763
15764 add_catch_command ("fork", _("Catch calls to fork."),
15765 catch_fork_command_1,
15766 NULL,
15767 (void *) (uintptr_t) catch_fork_permanent,
15768 (void *) (uintptr_t) catch_fork_temporary);
15769 add_catch_command ("vfork", _("Catch calls to vfork."),
15770 catch_fork_command_1,
15771 NULL,
15772 (void *) (uintptr_t) catch_vfork_permanent,
15773 (void *) (uintptr_t) catch_vfork_temporary);
15774 add_catch_command ("exec", _("Catch calls to exec."),
15775 catch_exec_command_1,
15776 NULL,
15777 CATCH_PERMANENT,
15778 CATCH_TEMPORARY);
15779 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15780 Usage: catch load [REGEX]\n\
15781 If REGEX is given, only stop for libraries matching the regular expression."),
15782 catch_load_command_1,
15783 NULL,
15784 CATCH_PERMANENT,
15785 CATCH_TEMPORARY);
15786 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15787 Usage: catch unload [REGEX]\n\
15788 If REGEX is given, only stop for libraries matching the regular expression."),
15789 catch_unload_command_1,
15790 NULL,
15791 CATCH_PERMANENT,
15792 CATCH_TEMPORARY);
15793
15794 c = add_com ("watch", class_breakpoint, watch_command, _("\
15795 Set a watchpoint for an expression.\n\
15796 Usage: watch [-l|-location] EXPRESSION\n\
15797 A watchpoint stops execution of your program whenever the value of\n\
15798 an expression changes.\n\
15799 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15800 the memory to which it refers."));
15801 set_cmd_completer (c, expression_completer);
15802
15803 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15804 Set a read watchpoint for an expression.\n\
15805 Usage: rwatch [-l|-location] EXPRESSION\n\
15806 A watchpoint stops execution of your program whenever the value of\n\
15807 an expression is read.\n\
15808 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15809 the memory to which it refers."));
15810 set_cmd_completer (c, expression_completer);
15811
15812 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15813 Set a watchpoint for an expression.\n\
15814 Usage: awatch [-l|-location] EXPRESSION\n\
15815 A watchpoint stops execution of your program whenever the value of\n\
15816 an expression is either read or written.\n\
15817 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15818 the memory to which it refers."));
15819 set_cmd_completer (c, expression_completer);
15820
15821 add_info ("watchpoints", info_watchpoints_command, _("\
15822 Status of specified watchpoints (all watchpoints if no argument)."));
15823
15824 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15825 respond to changes - contrary to the description. */
15826 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15827 &can_use_hw_watchpoints, _("\
15828 Set debugger's willingness to use watchpoint hardware."), _("\
15829 Show debugger's willingness to use watchpoint hardware."), _("\
15830 If zero, gdb will not use hardware for new watchpoints, even if\n\
15831 such is available. (However, any hardware watchpoints that were\n\
15832 created before setting this to nonzero, will continue to use watchpoint\n\
15833 hardware.)"),
15834 NULL,
15835 show_can_use_hw_watchpoints,
15836 &setlist, &showlist);
15837
15838 can_use_hw_watchpoints = 1;
15839
15840 /* Tracepoint manipulation commands. */
15841
15842 c = add_com ("trace", class_breakpoint, trace_command, _("\
15843 Set a tracepoint at specified location.\n\
15844 \n"
15845 BREAK_ARGS_HELP ("trace") "\n\
15846 Do \"help tracepoints\" for info on other tracepoint commands."));
15847 set_cmd_completer (c, location_completer);
15848
15849 add_com_alias ("tp", "trace", class_alias, 0);
15850 add_com_alias ("tr", "trace", class_alias, 1);
15851 add_com_alias ("tra", "trace", class_alias, 1);
15852 add_com_alias ("trac", "trace", class_alias, 1);
15853
15854 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15855 Set a fast tracepoint at specified location.\n\
15856 \n"
15857 BREAK_ARGS_HELP ("ftrace") "\n\
15858 Do \"help tracepoints\" for info on other tracepoint commands."));
15859 set_cmd_completer (c, location_completer);
15860
15861 c = add_com ("strace", class_breakpoint, strace_command, _("\
15862 Set a static tracepoint at location or marker.\n\
15863 \n\
15864 strace [LOCATION] [if CONDITION]\n\
15865 LOCATION may be a linespec, explicit, or address location (described below) \n\
15866 or -m MARKER_ID.\n\n\
15867 If a marker id is specified, probe the marker with that name. With\n\
15868 no LOCATION, uses current execution address of the selected stack frame.\n\
15869 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15870 This collects arbitrary user data passed in the probe point call to the\n\
15871 tracing library. You can inspect it when analyzing the trace buffer,\n\
15872 by printing the $_sdata variable like any other convenience variable.\n\
15873 \n\
15874 CONDITION is a boolean expression.\n\
15875 \n" LOCATION_HELP_STRING "\n\
15876 Multiple tracepoints at one place are permitted, and useful if their\n\
15877 conditions are different.\n\
15878 \n\
15879 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15880 Do \"help tracepoints\" for info on other tracepoint commands."));
15881 set_cmd_completer (c, location_completer);
15882
15883 add_info ("tracepoints", info_tracepoints_command, _("\
15884 Status of specified tracepoints (all tracepoints if no argument).\n\
15885 Convenience variable \"$tpnum\" contains the number of the\n\
15886 last tracepoint set."));
15887
15888 add_info_alias ("tp", "tracepoints", 1);
15889
15890 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15891 Delete specified tracepoints.\n\
15892 Arguments are tracepoint numbers, separated by spaces.\n\
15893 No argument means delete all tracepoints."),
15894 &deletelist);
15895 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15896
15897 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15898 Disable specified tracepoints.\n\
15899 Arguments are tracepoint numbers, separated by spaces.\n\
15900 No argument means disable all tracepoints."),
15901 &disablelist);
15902 deprecate_cmd (c, "disable");
15903
15904 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15905 Enable specified tracepoints.\n\
15906 Arguments are tracepoint numbers, separated by spaces.\n\
15907 No argument means enable all tracepoints."),
15908 &enablelist);
15909 deprecate_cmd (c, "enable");
15910
15911 add_com ("passcount", class_trace, trace_pass_command, _("\
15912 Set the passcount for a tracepoint.\n\
15913 The trace will end when the tracepoint has been passed 'count' times.\n\
15914 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15915 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15916
15917 add_prefix_cmd ("save", class_breakpoint, save_command,
15918 _("Save breakpoint definitions as a script."),
15919 &save_cmdlist, "save ",
15920 0/*allow-unknown*/, &cmdlist);
15921
15922 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15923 Save current breakpoint definitions as a script.\n\
15924 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15925 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15926 session to restore them."),
15927 &save_cmdlist);
15928 set_cmd_completer (c, filename_completer);
15929
15930 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15931 Save current tracepoint definitions as a script.\n\
15932 Use the 'source' command in another debug session to restore them."),
15933 &save_cmdlist);
15934 set_cmd_completer (c, filename_completer);
15935
15936 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15937 deprecate_cmd (c, "save tracepoints");
15938
15939 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15940 Breakpoint specific settings\n\
15941 Configure various breakpoint-specific variables such as\n\
15942 pending breakpoint behavior"),
15943 &breakpoint_set_cmdlist, "set breakpoint ",
15944 0/*allow-unknown*/, &setlist);
15945 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15946 Breakpoint specific settings\n\
15947 Configure various breakpoint-specific variables such as\n\
15948 pending breakpoint behavior"),
15949 &breakpoint_show_cmdlist, "show breakpoint ",
15950 0/*allow-unknown*/, &showlist);
15951
15952 add_setshow_auto_boolean_cmd ("pending", no_class,
15953 &pending_break_support, _("\
15954 Set debugger's behavior regarding pending breakpoints."), _("\
15955 Show debugger's behavior regarding pending breakpoints."), _("\
15956 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15957 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15958 an error. If auto, an unrecognized breakpoint location results in a\n\
15959 user-query to see if a pending breakpoint should be created."),
15960 NULL,
15961 show_pending_break_support,
15962 &breakpoint_set_cmdlist,
15963 &breakpoint_show_cmdlist);
15964
15965 pending_break_support = AUTO_BOOLEAN_AUTO;
15966
15967 add_setshow_boolean_cmd ("auto-hw", no_class,
15968 &automatic_hardware_breakpoints, _("\
15969 Set automatic usage of hardware breakpoints."), _("\
15970 Show automatic usage of hardware breakpoints."), _("\
15971 If set, the debugger will automatically use hardware breakpoints for\n\
15972 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15973 a warning will be emitted for such breakpoints."),
15974 NULL,
15975 show_automatic_hardware_breakpoints,
15976 &breakpoint_set_cmdlist,
15977 &breakpoint_show_cmdlist);
15978
15979 add_setshow_boolean_cmd ("always-inserted", class_support,
15980 &always_inserted_mode, _("\
15981 Set mode for inserting breakpoints."), _("\
15982 Show mode for inserting breakpoints."), _("\
15983 When this mode is on, breakpoints are inserted immediately as soon as\n\
15984 they're created, kept inserted even when execution stops, and removed\n\
15985 only when the user deletes them. When this mode is off (the default),\n\
15986 breakpoints are inserted only when execution continues, and removed\n\
15987 when execution stops."),
15988 NULL,
15989 &show_always_inserted_mode,
15990 &breakpoint_set_cmdlist,
15991 &breakpoint_show_cmdlist);
15992
15993 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15994 condition_evaluation_enums,
15995 &condition_evaluation_mode_1, _("\
15996 Set mode of breakpoint condition evaluation."), _("\
15997 Show mode of breakpoint condition evaluation."), _("\
15998 When this is set to \"host\", breakpoint conditions will be\n\
15999 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16000 breakpoint conditions will be downloaded to the target (if the target\n\
16001 supports such feature) and conditions will be evaluated on the target's side.\n\
16002 If this is set to \"auto\" (default), this will be automatically set to\n\
16003 \"target\" if it supports condition evaluation, otherwise it will\n\
16004 be set to \"gdb\""),
16005 &set_condition_evaluation_mode,
16006 &show_condition_evaluation_mode,
16007 &breakpoint_set_cmdlist,
16008 &breakpoint_show_cmdlist);
16009
16010 add_com ("break-range", class_breakpoint, break_range_command, _("\
16011 Set a breakpoint for an address range.\n\
16012 break-range START-LOCATION, END-LOCATION\n\
16013 where START-LOCATION and END-LOCATION can be one of the following:\n\
16014 LINENUM, for that line in the current file,\n\
16015 FILE:LINENUM, for that line in that file,\n\
16016 +OFFSET, for that number of lines after the current line\n\
16017 or the start of the range\n\
16018 FUNCTION, for the first line in that function,\n\
16019 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16020 *ADDRESS, for the instruction at that address.\n\
16021 \n\
16022 The breakpoint will stop execution of the inferior whenever it executes\n\
16023 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16024 range (including START-LOCATION and END-LOCATION)."));
16025
16026 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16027 Set a dynamic printf at specified location.\n\
16028 dprintf location,format string,arg1,arg2,...\n\
16029 location may be a linespec, explicit, or address location.\n"
16030 "\n" LOCATION_HELP_STRING));
16031 set_cmd_completer (c, location_completer);
16032
16033 add_setshow_enum_cmd ("dprintf-style", class_support,
16034 dprintf_style_enums, &dprintf_style, _("\
16035 Set the style of usage for dynamic printf."), _("\
16036 Show the style of usage for dynamic printf."), _("\
16037 This setting chooses how GDB will do a dynamic printf.\n\
16038 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16039 console, as with the \"printf\" command.\n\
16040 If the value is \"call\", the print is done by calling a function in your\n\
16041 program; by default printf(), but you can choose a different function or\n\
16042 output stream by setting dprintf-function and dprintf-channel."),
16043 update_dprintf_commands, NULL,
16044 &setlist, &showlist);
16045
16046 dprintf_function = xstrdup ("printf");
16047 add_setshow_string_cmd ("dprintf-function", class_support,
16048 &dprintf_function, _("\
16049 Set the function to use for dynamic printf"), _("\
16050 Show the function to use for dynamic printf"), NULL,
16051 update_dprintf_commands, NULL,
16052 &setlist, &showlist);
16053
16054 dprintf_channel = xstrdup ("");
16055 add_setshow_string_cmd ("dprintf-channel", class_support,
16056 &dprintf_channel, _("\
16057 Set the channel to use for dynamic printf"), _("\
16058 Show the channel to use for dynamic printf"), NULL,
16059 update_dprintf_commands, NULL,
16060 &setlist, &showlist);
16061
16062 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16063 &disconnected_dprintf, _("\
16064 Set whether dprintf continues after GDB disconnects."), _("\
16065 Show whether dprintf continues after GDB disconnects."), _("\
16066 Use this to let dprintf commands continue to hit and produce output\n\
16067 even if GDB disconnects or detaches from the target."),
16068 NULL,
16069 NULL,
16070 &setlist, &showlist);
16071
16072 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16073 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16074 (target agent only) This is useful for formatted output in user-defined commands."));
16075
16076 automatic_hardware_breakpoints = 1;
16077
16078 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16079 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16080 }
This page took 0.358276 seconds and 4 git commands to generate.