gdb/
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 struct linespec_sals *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_linespec_default (struct breakpoint *, char **,
130 struct symtabs_and_lines *);
131
132 static void clear_command (char *, int);
133
134 static void catch_command (char *, int);
135
136 static int can_use_hardware_watchpoint (struct value *);
137
138 static void break_command_1 (char *, int, int);
139
140 static void mention (struct breakpoint *);
141
142 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
143 enum bptype,
144 const struct breakpoint_ops *);
145 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
146 const struct symtab_and_line *);
147
148 /* This function is used in gdbtk sources and thus can not be made
149 static. */
150 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
151 struct symtab_and_line,
152 enum bptype,
153 const struct breakpoint_ops *);
154
155 static struct breakpoint *
156 momentary_breakpoint_from_master (struct breakpoint *orig,
157 enum bptype type,
158 const struct breakpoint_ops *ops);
159
160 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
161
162 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
163 CORE_ADDR bpaddr,
164 enum bptype bptype);
165
166 static void describe_other_breakpoints (struct gdbarch *,
167 struct program_space *, CORE_ADDR,
168 struct obj_section *, int);
169
170 static int breakpoint_address_match (struct address_space *aspace1,
171 CORE_ADDR addr1,
172 struct address_space *aspace2,
173 CORE_ADDR addr2);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static void breakpoints_info (char *, int);
183
184 static void watchpoints_info (char *, int);
185
186 static int breakpoint_1 (char *, int,
187 int (*) (const struct breakpoint *));
188
189 static int breakpoint_cond_eval (void *);
190
191 static void cleanup_executing_breakpoints (void *);
192
193 static void commands_command (char *, int);
194
195 static void condition_command (char *, int);
196
197 typedef enum
198 {
199 mark_inserted,
200 mark_uninserted
201 }
202 insertion_state_t;
203
204 static int remove_breakpoint (struct bp_location *, insertion_state_t);
205 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
206
207 static enum print_stop_action print_bp_stop_message (bpstat bs);
208
209 static int watchpoint_check (void *);
210
211 static void maintenance_info_breakpoints (char *, int);
212
213 static int hw_breakpoint_used_count (void);
214
215 static int hw_watchpoint_use_count (struct breakpoint *);
216
217 static int hw_watchpoint_used_count_others (struct breakpoint *except,
218 enum bptype type,
219 int *other_type_used);
220
221 static void hbreak_command (char *, int);
222
223 static void thbreak_command (char *, int);
224
225 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
226 int count);
227
228 static void stop_command (char *arg, int from_tty);
229
230 static void stopin_command (char *arg, int from_tty);
231
232 static void stopat_command (char *arg, int from_tty);
233
234 static void tcatch_command (char *arg, int from_tty);
235
236 static void detach_single_step_breakpoints (void);
237
238 static int single_step_breakpoint_inserted_here_p (struct address_space *,
239 CORE_ADDR pc);
240
241 static void free_bp_location (struct bp_location *loc);
242 static void incref_bp_location (struct bp_location *loc);
243 static void decref_bp_location (struct bp_location **loc);
244
245 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
246
247 static void update_global_location_list (int);
248
249 static void update_global_location_list_nothrow (int);
250
251 static int is_hardware_watchpoint (const struct breakpoint *bpt);
252
253 static void insert_breakpoint_locations (void);
254
255 static int syscall_catchpoint_p (struct breakpoint *b);
256
257 static void tracepoints_info (char *, int);
258
259 static void delete_trace_command (char *, int);
260
261 static void enable_trace_command (char *, int);
262
263 static void disable_trace_command (char *, int);
264
265 static void trace_pass_command (char *, int);
266
267 static void set_tracepoint_count (int num);
268
269 static int is_masked_watchpoint (const struct breakpoint *b);
270
271 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
272
273 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
274 otherwise. */
275
276 static int strace_marker_p (struct breakpoint *b);
277
278 /* The abstract base class all breakpoint_ops structures inherit
279 from. */
280 struct breakpoint_ops base_breakpoint_ops;
281
282 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
283 that are implemented on top of software or hardware breakpoints
284 (user breakpoints, internal and momentary breakpoints, etc.). */
285 static struct breakpoint_ops bkpt_base_breakpoint_ops;
286
287 /* Internal breakpoints class type. */
288 static struct breakpoint_ops internal_breakpoint_ops;
289
290 /* Momentary breakpoints class type. */
291 static struct breakpoint_ops momentary_breakpoint_ops;
292
293 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
294 static struct breakpoint_ops longjmp_breakpoint_ops;
295
296 /* The breakpoint_ops structure to be used in regular user created
297 breakpoints. */
298 struct breakpoint_ops bkpt_breakpoint_ops;
299
300 /* Breakpoints set on probes. */
301 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
302
303 /* Dynamic printf class type. */
304 static struct breakpoint_ops dprintf_breakpoint_ops;
305
306 /* The style in which to perform a dynamic printf. This is a user
307 option because different output options have different tradeoffs;
308 if GDB does the printing, there is better error handling if there
309 is a problem with any of the arguments, but using an inferior
310 function lets you have special-purpose printers and sending of
311 output to the same place as compiled-in print functions. */
312
313 static const char dprintf_style_gdb[] = "gdb";
314 static const char dprintf_style_call[] = "call";
315 static const char dprintf_style_agent[] = "agent";
316 static const char *const dprintf_style_enums[] = {
317 dprintf_style_gdb,
318 dprintf_style_call,
319 dprintf_style_agent,
320 NULL
321 };
322 static const char *dprintf_style = dprintf_style_gdb;
323
324 /* The function to use for dynamic printf if the preferred style is to
325 call into the inferior. The value is simply a string that is
326 copied into the command, so it can be anything that GDB can
327 evaluate to a callable address, not necessarily a function name. */
328
329 static char *dprintf_function = "";
330
331 /* The channel to use for dynamic printf if the preferred style is to
332 call into the inferior; if a nonempty string, it will be passed to
333 the call as the first argument, with the format string as the
334 second. As with the dprintf function, this can be anything that
335 GDB knows how to evaluate, so in addition to common choices like
336 "stderr", this could be an app-specific expression like
337 "mystreams[curlogger]". */
338
339 static char *dprintf_channel = "";
340
341 /* True if dprintf commands should continue to operate even if GDB
342 has disconnected. */
343 static int disconnected_dprintf = 1;
344
345 /* A reference-counted struct command_line. This lets multiple
346 breakpoints share a single command list. */
347 struct counted_command_line
348 {
349 /* The reference count. */
350 int refc;
351
352 /* The command list. */
353 struct command_line *commands;
354 };
355
356 struct command_line *
357 breakpoint_commands (struct breakpoint *b)
358 {
359 return b->commands ? b->commands->commands : NULL;
360 }
361
362 /* Flag indicating that a command has proceeded the inferior past the
363 current breakpoint. */
364
365 static int breakpoint_proceeded;
366
367 const char *
368 bpdisp_text (enum bpdisp disp)
369 {
370 /* NOTE: the following values are a part of MI protocol and
371 represent values of 'disp' field returned when inferior stops at
372 a breakpoint. */
373 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
374
375 return bpdisps[(int) disp];
376 }
377
378 /* Prototypes for exported functions. */
379 /* If FALSE, gdb will not use hardware support for watchpoints, even
380 if such is available. */
381 static int can_use_hw_watchpoints;
382
383 static void
384 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c,
386 const char *value)
387 {
388 fprintf_filtered (file,
389 _("Debugger's willingness to use "
390 "watchpoint hardware is %s.\n"),
391 value);
392 }
393
394 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
395 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
396 for unrecognized breakpoint locations.
397 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
398 static enum auto_boolean pending_break_support;
399 static void
400 show_pending_break_support (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c,
402 const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger's behavior regarding "
406 "pending breakpoints is %s.\n"),
407 value);
408 }
409
410 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
411 set with "break" but falling in read-only memory.
412 If 0, gdb will warn about such breakpoints, but won't automatically
413 use hardware breakpoints. */
414 static int automatic_hardware_breakpoints;
415 static void
416 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c,
418 const char *value)
419 {
420 fprintf_filtered (file,
421 _("Automatic usage of hardware breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If on, gdb will keep breakpoints inserted even as inferior is
426 stopped, and immediately insert any new breakpoints. If off, gdb
427 will insert breakpoints into inferior only when resuming it, and
428 will remove breakpoints upon stop. If auto, GDB will behave as ON
429 if in non-stop mode, and as OFF if all-stop mode.*/
430
431 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
432
433 static void
434 show_always_inserted_mode (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c, const char *value)
436 {
437 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
438 fprintf_filtered (file,
439 _("Always inserted breakpoint "
440 "mode is %s (currently %s).\n"),
441 value,
442 breakpoints_always_inserted_mode () ? "on" : "off");
443 else
444 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
445 value);
446 }
447
448 int
449 breakpoints_always_inserted_mode (void)
450 {
451 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
452 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
453 }
454
455 static const char condition_evaluation_both[] = "host or target";
456
457 /* Modes for breakpoint condition evaluation. */
458 static const char condition_evaluation_auto[] = "auto";
459 static const char condition_evaluation_host[] = "host";
460 static const char condition_evaluation_target[] = "target";
461 static const char *const condition_evaluation_enums[] = {
462 condition_evaluation_auto,
463 condition_evaluation_host,
464 condition_evaluation_target,
465 NULL
466 };
467
468 /* Global that holds the current mode for breakpoint condition evaluation. */
469 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
470
471 /* Global that we use to display information to the user (gets its value from
472 condition_evaluation_mode_1. */
473 static const char *condition_evaluation_mode = condition_evaluation_auto;
474
475 /* Translate a condition evaluation mode MODE into either "host"
476 or "target". This is used mostly to translate from "auto" to the
477 real setting that is being used. It returns the translated
478 evaluation mode. */
479
480 static const char *
481 translate_condition_evaluation_mode (const char *mode)
482 {
483 if (mode == condition_evaluation_auto)
484 {
485 if (target_supports_evaluation_of_breakpoint_conditions ())
486 return condition_evaluation_target;
487 else
488 return condition_evaluation_host;
489 }
490 else
491 return mode;
492 }
493
494 /* Discovers what condition_evaluation_auto translates to. */
495
496 static const char *
497 breakpoint_condition_evaluation_mode (void)
498 {
499 return translate_condition_evaluation_mode (condition_evaluation_mode);
500 }
501
502 /* Return true if GDB should evaluate breakpoint conditions or false
503 otherwise. */
504
505 static int
506 gdb_evaluates_breakpoint_condition_p (void)
507 {
508 const char *mode = breakpoint_condition_evaluation_mode ();
509
510 return (mode == condition_evaluation_host);
511 }
512
513 void _initialize_breakpoint (void);
514
515 /* Are we executing breakpoint commands? */
516 static int executing_breakpoint_commands;
517
518 /* Are overlay event breakpoints enabled? */
519 static int overlay_events_enabled;
520
521 /* See description in breakpoint.h. */
522 int target_exact_watchpoints = 0;
523
524 /* Walk the following statement or block through all breakpoints.
525 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
526 current breakpoint. */
527
528 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
529
530 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
531 for (B = breakpoint_chain; \
532 B ? (TMP=B->next, 1): 0; \
533 B = TMP)
534
535 /* Similar iterator for the low-level breakpoints. SAFE variant is
536 not provided so update_global_location_list must not be called
537 while executing the block of ALL_BP_LOCATIONS. */
538
539 #define ALL_BP_LOCATIONS(B,BP_TMP) \
540 for (BP_TMP = bp_location; \
541 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
542 BP_TMP++)
543
544 /* Iterates through locations with address ADDRESS for the currently selected
545 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
546 to where the loop should start from.
547 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
548 appropriate location to start with. */
549
550 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
551 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
552 BP_LOCP_TMP = BP_LOCP_START; \
553 BP_LOCP_START \
554 && (BP_LOCP_TMP < bp_location + bp_location_count \
555 && (*BP_LOCP_TMP)->address == ADDRESS); \
556 BP_LOCP_TMP++)
557
558 /* Iterator for tracepoints only. */
559
560 #define ALL_TRACEPOINTS(B) \
561 for (B = breakpoint_chain; B; B = B->next) \
562 if (is_tracepoint (B))
563
564 /* Chains of all breakpoints defined. */
565
566 struct breakpoint *breakpoint_chain;
567
568 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
569
570 static struct bp_location **bp_location;
571
572 /* Number of elements of BP_LOCATION. */
573
574 static unsigned bp_location_count;
575
576 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
577 ADDRESS for the current elements of BP_LOCATION which get a valid
578 result from bp_location_has_shadow. You can use it for roughly
579 limiting the subrange of BP_LOCATION to scan for shadow bytes for
580 an address you need to read. */
581
582 static CORE_ADDR bp_location_placed_address_before_address_max;
583
584 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
585 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
586 BP_LOCATION which get a valid result from bp_location_has_shadow.
587 You can use it for roughly limiting the subrange of BP_LOCATION to
588 scan for shadow bytes for an address you need to read. */
589
590 static CORE_ADDR bp_location_shadow_len_after_address_max;
591
592 /* The locations that no longer correspond to any breakpoint, unlinked
593 from bp_location array, but for which a hit may still be reported
594 by a target. */
595 VEC(bp_location_p) *moribund_locations = NULL;
596
597 /* Number of last breakpoint made. */
598
599 static int breakpoint_count;
600
601 /* The value of `breakpoint_count' before the last command that
602 created breakpoints. If the last (break-like) command created more
603 than one breakpoint, then the difference between BREAKPOINT_COUNT
604 and PREV_BREAKPOINT_COUNT is more than one. */
605 static int prev_breakpoint_count;
606
607 /* Number of last tracepoint made. */
608
609 static int tracepoint_count;
610
611 static struct cmd_list_element *breakpoint_set_cmdlist;
612 static struct cmd_list_element *breakpoint_show_cmdlist;
613 struct cmd_list_element *save_cmdlist;
614
615 /* Return whether a breakpoint is an active enabled breakpoint. */
616 static int
617 breakpoint_enabled (struct breakpoint *b)
618 {
619 return (b->enable_state == bp_enabled);
620 }
621
622 /* Set breakpoint count to NUM. */
623
624 static void
625 set_breakpoint_count (int num)
626 {
627 prev_breakpoint_count = breakpoint_count;
628 breakpoint_count = num;
629 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
630 }
631
632 /* Used by `start_rbreak_breakpoints' below, to record the current
633 breakpoint count before "rbreak" creates any breakpoint. */
634 static int rbreak_start_breakpoint_count;
635
636 /* Called at the start an "rbreak" command to record the first
637 breakpoint made. */
638
639 void
640 start_rbreak_breakpoints (void)
641 {
642 rbreak_start_breakpoint_count = breakpoint_count;
643 }
644
645 /* Called at the end of an "rbreak" command to record the last
646 breakpoint made. */
647
648 void
649 end_rbreak_breakpoints (void)
650 {
651 prev_breakpoint_count = rbreak_start_breakpoint_count;
652 }
653
654 /* Used in run_command to zero the hit count when a new run starts. */
655
656 void
657 clear_breakpoint_hit_counts (void)
658 {
659 struct breakpoint *b;
660
661 ALL_BREAKPOINTS (b)
662 b->hit_count = 0;
663 }
664
665 /* Allocate a new counted_command_line with reference count of 1.
666 The new structure owns COMMANDS. */
667
668 static struct counted_command_line *
669 alloc_counted_command_line (struct command_line *commands)
670 {
671 struct counted_command_line *result
672 = xmalloc (sizeof (struct counted_command_line));
673
674 result->refc = 1;
675 result->commands = commands;
676 return result;
677 }
678
679 /* Increment reference count. This does nothing if CMD is NULL. */
680
681 static void
682 incref_counted_command_line (struct counted_command_line *cmd)
683 {
684 if (cmd)
685 ++cmd->refc;
686 }
687
688 /* Decrement reference count. If the reference count reaches 0,
689 destroy the counted_command_line. Sets *CMDP to NULL. This does
690 nothing if *CMDP is NULL. */
691
692 static void
693 decref_counted_command_line (struct counted_command_line **cmdp)
694 {
695 if (*cmdp)
696 {
697 if (--(*cmdp)->refc == 0)
698 {
699 free_command_lines (&(*cmdp)->commands);
700 xfree (*cmdp);
701 }
702 *cmdp = NULL;
703 }
704 }
705
706 /* A cleanup function that calls decref_counted_command_line. */
707
708 static void
709 do_cleanup_counted_command_line (void *arg)
710 {
711 decref_counted_command_line (arg);
712 }
713
714 /* Create a cleanup that calls decref_counted_command_line on the
715 argument. */
716
717 static struct cleanup *
718 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
719 {
720 return make_cleanup (do_cleanup_counted_command_line, cmdp);
721 }
722
723 \f
724 /* Return the breakpoint with the specified number, or NULL
725 if the number does not refer to an existing breakpoint. */
726
727 struct breakpoint *
728 get_breakpoint (int num)
729 {
730 struct breakpoint *b;
731
732 ALL_BREAKPOINTS (b)
733 if (b->number == num)
734 return b;
735
736 return NULL;
737 }
738
739 \f
740
741 /* Mark locations as "conditions have changed" in case the target supports
742 evaluating conditions on its side. */
743
744 static void
745 mark_breakpoint_modified (struct breakpoint *b)
746 {
747 struct bp_location *loc;
748
749 /* This is only meaningful if the target is
750 evaluating conditions and if the user has
751 opted for condition evaluation on the target's
752 side. */
753 if (gdb_evaluates_breakpoint_condition_p ()
754 || !target_supports_evaluation_of_breakpoint_conditions ())
755 return;
756
757 if (!is_breakpoint (b))
758 return;
759
760 for (loc = b->loc; loc; loc = loc->next)
761 loc->condition_changed = condition_modified;
762 }
763
764 /* Mark location as "conditions have changed" in case the target supports
765 evaluating conditions on its side. */
766
767 static void
768 mark_breakpoint_location_modified (struct bp_location *loc)
769 {
770 /* This is only meaningful if the target is
771 evaluating conditions and if the user has
772 opted for condition evaluation on the target's
773 side. */
774 if (gdb_evaluates_breakpoint_condition_p ()
775 || !target_supports_evaluation_of_breakpoint_conditions ())
776
777 return;
778
779 if (!is_breakpoint (loc->owner))
780 return;
781
782 loc->condition_changed = condition_modified;
783 }
784
785 /* Sets the condition-evaluation mode using the static global
786 condition_evaluation_mode. */
787
788 static void
789 set_condition_evaluation_mode (char *args, int from_tty,
790 struct cmd_list_element *c)
791 {
792 const char *old_mode, *new_mode;
793
794 if ((condition_evaluation_mode_1 == condition_evaluation_target)
795 && !target_supports_evaluation_of_breakpoint_conditions ())
796 {
797 condition_evaluation_mode_1 = condition_evaluation_mode;
798 warning (_("Target does not support breakpoint condition evaluation.\n"
799 "Using host evaluation mode instead."));
800 return;
801 }
802
803 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
804 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
805
806 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
807 settings was "auto". */
808 condition_evaluation_mode = condition_evaluation_mode_1;
809
810 /* Only update the mode if the user picked a different one. */
811 if (new_mode != old_mode)
812 {
813 struct bp_location *loc, **loc_tmp;
814 /* If the user switched to a different evaluation mode, we
815 need to synch the changes with the target as follows:
816
817 "host" -> "target": Send all (valid) conditions to the target.
818 "target" -> "host": Remove all the conditions from the target.
819 */
820
821 if (new_mode == condition_evaluation_target)
822 {
823 /* Mark everything modified and synch conditions with the
824 target. */
825 ALL_BP_LOCATIONS (loc, loc_tmp)
826 mark_breakpoint_location_modified (loc);
827 }
828 else
829 {
830 /* Manually mark non-duplicate locations to synch conditions
831 with the target. We do this to remove all the conditions the
832 target knows about. */
833 ALL_BP_LOCATIONS (loc, loc_tmp)
834 if (is_breakpoint (loc->owner) && loc->inserted)
835 loc->needs_update = 1;
836 }
837
838 /* Do the update. */
839 update_global_location_list (1);
840 }
841
842 return;
843 }
844
845 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
846 what "auto" is translating to. */
847
848 static void
849 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851 {
852 if (condition_evaluation_mode == condition_evaluation_auto)
853 fprintf_filtered (file,
854 _("Breakpoint condition evaluation "
855 "mode is %s (currently %s).\n"),
856 value,
857 breakpoint_condition_evaluation_mode ());
858 else
859 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
860 value);
861 }
862
863 /* A comparison function for bp_location AP and BP that is used by
864 bsearch. This comparison function only cares about addresses, unlike
865 the more general bp_location_compare function. */
866
867 static int
868 bp_location_compare_addrs (const void *ap, const void *bp)
869 {
870 struct bp_location *a = *(void **) ap;
871 struct bp_location *b = *(void **) bp;
872
873 if (a->address == b->address)
874 return 0;
875 else
876 return ((a->address > b->address) - (a->address < b->address));
877 }
878
879 /* Helper function to skip all bp_locations with addresses
880 less than ADDRESS. It returns the first bp_location that
881 is greater than or equal to ADDRESS. If none is found, just
882 return NULL. */
883
884 static struct bp_location **
885 get_first_locp_gte_addr (CORE_ADDR address)
886 {
887 struct bp_location dummy_loc;
888 struct bp_location *dummy_locp = &dummy_loc;
889 struct bp_location **locp_found = NULL;
890
891 /* Initialize the dummy location's address field. */
892 memset (&dummy_loc, 0, sizeof (struct bp_location));
893 dummy_loc.address = address;
894
895 /* Find a close match to the first location at ADDRESS. */
896 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
897 sizeof (struct bp_location **),
898 bp_location_compare_addrs);
899
900 /* Nothing was found, nothing left to do. */
901 if (locp_found == NULL)
902 return NULL;
903
904 /* We may have found a location that is at ADDRESS but is not the first in the
905 location's list. Go backwards (if possible) and locate the first one. */
906 while ((locp_found - 1) >= bp_location
907 && (*(locp_found - 1))->address == address)
908 locp_found--;
909
910 return locp_found;
911 }
912
913 void
914 set_breakpoint_condition (struct breakpoint *b, char *exp,
915 int from_tty)
916 {
917 xfree (b->cond_string);
918 b->cond_string = NULL;
919
920 if (is_watchpoint (b))
921 {
922 struct watchpoint *w = (struct watchpoint *) b;
923
924 xfree (w->cond_exp);
925 w->cond_exp = NULL;
926 }
927 else
928 {
929 struct bp_location *loc;
930
931 for (loc = b->loc; loc; loc = loc->next)
932 {
933 xfree (loc->cond);
934 loc->cond = NULL;
935
936 /* No need to free the condition agent expression
937 bytecode (if we have one). We will handle this
938 when we go through update_global_location_list. */
939 }
940 }
941
942 if (*exp == 0)
943 {
944 if (from_tty)
945 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
946 }
947 else
948 {
949 const char *arg = exp;
950
951 /* I don't know if it matters whether this is the string the user
952 typed in or the decompiled expression. */
953 b->cond_string = xstrdup (arg);
954 b->condition_not_parsed = 0;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 innermost_block = NULL;
961 arg = exp;
962 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
963 if (*arg)
964 error (_("Junk at end of expression"));
965 w->cond_exp_valid_block = innermost_block;
966 }
967 else
968 {
969 struct bp_location *loc;
970
971 for (loc = b->loc; loc; loc = loc->next)
972 {
973 arg = exp;
974 loc->cond =
975 parse_exp_1 (&arg, loc->address,
976 block_for_pc (loc->address), 0);
977 if (*arg)
978 error (_("Junk at end of expression"));
979 }
980 }
981 }
982 mark_breakpoint_modified (b);
983
984 observer_notify_breakpoint_modified (b);
985 }
986
987 /* Completion for the "condition" command. */
988
989 static VEC (char_ptr) *
990 condition_completer (struct cmd_list_element *cmd,
991 const char *text, const char *word)
992 {
993 const char *space;
994
995 text = skip_spaces_const (text);
996 space = skip_to_space_const (text);
997 if (*space == '\0')
998 {
999 int len;
1000 struct breakpoint *b;
1001 VEC (char_ptr) *result = NULL;
1002
1003 if (text[0] == '$')
1004 {
1005 /* We don't support completion of history indices. */
1006 if (isdigit (text[1]))
1007 return NULL;
1008 return complete_internalvar (&text[1]);
1009 }
1010
1011 /* We're completing the breakpoint number. */
1012 len = strlen (text);
1013
1014 ALL_BREAKPOINTS (b)
1015 {
1016 char number[50];
1017
1018 xsnprintf (number, sizeof (number), "%d", b->number);
1019
1020 if (strncmp (number, text, len) == 0)
1021 VEC_safe_push (char_ptr, result, xstrdup (number));
1022 }
1023
1024 return result;
1025 }
1026
1027 /* We're completing the expression part. */
1028 text = skip_spaces_const (space);
1029 return expression_completer (cmd, text, word);
1030 }
1031
1032 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1033
1034 static void
1035 condition_command (char *arg, int from_tty)
1036 {
1037 struct breakpoint *b;
1038 char *p;
1039 int bnum;
1040
1041 if (arg == 0)
1042 error_no_arg (_("breakpoint number"));
1043
1044 p = arg;
1045 bnum = get_number (&p);
1046 if (bnum == 0)
1047 error (_("Bad breakpoint argument: '%s'"), arg);
1048
1049 ALL_BREAKPOINTS (b)
1050 if (b->number == bnum)
1051 {
1052 /* Check if this breakpoint has a Python object assigned to
1053 it, and if it has a definition of the "stop"
1054 method. This method and conditions entered into GDB from
1055 the CLI are mutually exclusive. */
1056 if (b->py_bp_object
1057 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1058 error (_("Cannot set a condition where a Python 'stop' "
1059 "method has been defined in the breakpoint."));
1060 set_breakpoint_condition (b, p, from_tty);
1061
1062 if (is_breakpoint (b))
1063 update_global_location_list (1);
1064
1065 return;
1066 }
1067
1068 error (_("No breakpoint number %d."), bnum);
1069 }
1070
1071 /* Check that COMMAND do not contain commands that are suitable
1072 only for tracepoints and not suitable for ordinary breakpoints.
1073 Throw if any such commands is found. */
1074
1075 static void
1076 check_no_tracepoint_commands (struct command_line *commands)
1077 {
1078 struct command_line *c;
1079
1080 for (c = commands; c; c = c->next)
1081 {
1082 int i;
1083
1084 if (c->control_type == while_stepping_control)
1085 error (_("The 'while-stepping' command can "
1086 "only be used for tracepoints"));
1087
1088 for (i = 0; i < c->body_count; ++i)
1089 check_no_tracepoint_commands ((c->body_list)[i]);
1090
1091 /* Not that command parsing removes leading whitespace and comment
1092 lines and also empty lines. So, we only need to check for
1093 command directly. */
1094 if (strstr (c->line, "collect ") == c->line)
1095 error (_("The 'collect' command can only be used for tracepoints"));
1096
1097 if (strstr (c->line, "teval ") == c->line)
1098 error (_("The 'teval' command can only be used for tracepoints"));
1099 }
1100 }
1101
1102 /* Encapsulate tests for different types of tracepoints. */
1103
1104 static int
1105 is_tracepoint_type (enum bptype type)
1106 {
1107 return (type == bp_tracepoint
1108 || type == bp_fast_tracepoint
1109 || type == bp_static_tracepoint);
1110 }
1111
1112 int
1113 is_tracepoint (const struct breakpoint *b)
1114 {
1115 return is_tracepoint_type (b->type);
1116 }
1117
1118 /* A helper function that validates that COMMANDS are valid for a
1119 breakpoint. This function will throw an exception if a problem is
1120 found. */
1121
1122 static void
1123 validate_commands_for_breakpoint (struct breakpoint *b,
1124 struct command_line *commands)
1125 {
1126 if (is_tracepoint (b))
1127 {
1128 struct tracepoint *t = (struct tracepoint *) b;
1129 struct command_line *c;
1130 struct command_line *while_stepping = 0;
1131
1132 /* Reset the while-stepping step count. The previous commands
1133 might have included a while-stepping action, while the new
1134 ones might not. */
1135 t->step_count = 0;
1136
1137 /* We need to verify that each top-level element of commands is
1138 valid for tracepoints, that there's at most one
1139 while-stepping element, and that the while-stepping's body
1140 has valid tracing commands excluding nested while-stepping.
1141 We also need to validate the tracepoint action line in the
1142 context of the tracepoint --- validate_actionline actually
1143 has side effects, like setting the tracepoint's
1144 while-stepping STEP_COUNT, in addition to checking if the
1145 collect/teval actions parse and make sense in the
1146 tracepoint's context. */
1147 for (c = commands; c; c = c->next)
1148 {
1149 if (c->control_type == while_stepping_control)
1150 {
1151 if (b->type == bp_fast_tracepoint)
1152 error (_("The 'while-stepping' command "
1153 "cannot be used for fast tracepoint"));
1154 else if (b->type == bp_static_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for static tracepoint"));
1157
1158 if (while_stepping)
1159 error (_("The 'while-stepping' command "
1160 "can be used only once"));
1161 else
1162 while_stepping = c;
1163 }
1164
1165 validate_actionline (c->line, b);
1166 }
1167 if (while_stepping)
1168 {
1169 struct command_line *c2;
1170
1171 gdb_assert (while_stepping->body_count == 1);
1172 c2 = while_stepping->body_list[0];
1173 for (; c2; c2 = c2->next)
1174 {
1175 if (c2->control_type == while_stepping_control)
1176 error (_("The 'while-stepping' command cannot be nested"));
1177 }
1178 }
1179 }
1180 else
1181 {
1182 check_no_tracepoint_commands (commands);
1183 }
1184 }
1185
1186 /* Return a vector of all the static tracepoints set at ADDR. The
1187 caller is responsible for releasing the vector. */
1188
1189 VEC(breakpoint_p) *
1190 static_tracepoints_here (CORE_ADDR addr)
1191 {
1192 struct breakpoint *b;
1193 VEC(breakpoint_p) *found = 0;
1194 struct bp_location *loc;
1195
1196 ALL_BREAKPOINTS (b)
1197 if (b->type == bp_static_tracepoint)
1198 {
1199 for (loc = b->loc; loc; loc = loc->next)
1200 if (loc->address == addr)
1201 VEC_safe_push(breakpoint_p, found, b);
1202 }
1203
1204 return found;
1205 }
1206
1207 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1208 validate that only allowed commands are included. */
1209
1210 void
1211 breakpoint_set_commands (struct breakpoint *b,
1212 struct command_line *commands)
1213 {
1214 validate_commands_for_breakpoint (b, commands);
1215
1216 decref_counted_command_line (&b->commands);
1217 b->commands = alloc_counted_command_line (commands);
1218 observer_notify_breakpoint_modified (b);
1219 }
1220
1221 /* Set the internal `silent' flag on the breakpoint. Note that this
1222 is not the same as the "silent" that may appear in the breakpoint's
1223 commands. */
1224
1225 void
1226 breakpoint_set_silent (struct breakpoint *b, int silent)
1227 {
1228 int old_silent = b->silent;
1229
1230 b->silent = silent;
1231 if (old_silent != silent)
1232 observer_notify_breakpoint_modified (b);
1233 }
1234
1235 /* Set the thread for this breakpoint. If THREAD is -1, make the
1236 breakpoint work for any thread. */
1237
1238 void
1239 breakpoint_set_thread (struct breakpoint *b, int thread)
1240 {
1241 int old_thread = b->thread;
1242
1243 b->thread = thread;
1244 if (old_thread != thread)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the task for this breakpoint. If TASK is 0, make the
1249 breakpoint work for any task. */
1250
1251 void
1252 breakpoint_set_task (struct breakpoint *b, int task)
1253 {
1254 int old_task = b->task;
1255
1256 b->task = task;
1257 if (old_task != task)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 void
1262 check_tracepoint_command (char *line, void *closure)
1263 {
1264 struct breakpoint *b = closure;
1265
1266 validate_actionline (line, b);
1267 }
1268
1269 /* A structure used to pass information through
1270 map_breakpoint_numbers. */
1271
1272 struct commands_info
1273 {
1274 /* True if the command was typed at a tty. */
1275 int from_tty;
1276
1277 /* The breakpoint range spec. */
1278 char *arg;
1279
1280 /* Non-NULL if the body of the commands are being read from this
1281 already-parsed command. */
1282 struct command_line *control;
1283
1284 /* The command lines read from the user, or NULL if they have not
1285 yet been read. */
1286 struct counted_command_line *cmd;
1287 };
1288
1289 /* A callback for map_breakpoint_numbers that sets the commands for
1290 commands_command. */
1291
1292 static void
1293 do_map_commands_command (struct breakpoint *b, void *data)
1294 {
1295 struct commands_info *info = data;
1296
1297 if (info->cmd == NULL)
1298 {
1299 struct command_line *l;
1300
1301 if (info->control != NULL)
1302 l = copy_command_lines (info->control->body_list[0]);
1303 else
1304 {
1305 struct cleanup *old_chain;
1306 char *str;
1307
1308 str = xstrprintf (_("Type commands for breakpoint(s) "
1309 "%s, one per line."),
1310 info->arg);
1311
1312 old_chain = make_cleanup (xfree, str);
1313
1314 l = read_command_lines (str,
1315 info->from_tty, 1,
1316 (is_tracepoint (b)
1317 ? check_tracepoint_command : 0),
1318 b);
1319
1320 do_cleanups (old_chain);
1321 }
1322
1323 info->cmd = alloc_counted_command_line (l);
1324 }
1325
1326 /* If a breakpoint was on the list more than once, we don't need to
1327 do anything. */
1328 if (b->commands != info->cmd)
1329 {
1330 validate_commands_for_breakpoint (b, info->cmd->commands);
1331 incref_counted_command_line (info->cmd);
1332 decref_counted_command_line (&b->commands);
1333 b->commands = info->cmd;
1334 observer_notify_breakpoint_modified (b);
1335 }
1336 }
1337
1338 static void
1339 commands_command_1 (char *arg, int from_tty,
1340 struct command_line *control)
1341 {
1342 struct cleanup *cleanups;
1343 struct commands_info info;
1344
1345 info.from_tty = from_tty;
1346 info.control = control;
1347 info.cmd = NULL;
1348 /* If we read command lines from the user, then `info' will hold an
1349 extra reference to the commands that we must clean up. */
1350 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1351
1352 if (arg == NULL || !*arg)
1353 {
1354 if (breakpoint_count - prev_breakpoint_count > 1)
1355 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1356 breakpoint_count);
1357 else if (breakpoint_count > 0)
1358 arg = xstrprintf ("%d", breakpoint_count);
1359 else
1360 {
1361 /* So that we don't try to free the incoming non-NULL
1362 argument in the cleanup below. Mapping breakpoint
1363 numbers will fail in this case. */
1364 arg = NULL;
1365 }
1366 }
1367 else
1368 /* The command loop has some static state, so we need to preserve
1369 our argument. */
1370 arg = xstrdup (arg);
1371
1372 if (arg != NULL)
1373 make_cleanup (xfree, arg);
1374
1375 info.arg = arg;
1376
1377 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1378
1379 if (info.cmd == NULL)
1380 error (_("No breakpoints specified."));
1381
1382 do_cleanups (cleanups);
1383 }
1384
1385 static void
1386 commands_command (char *arg, int from_tty)
1387 {
1388 commands_command_1 (arg, from_tty, NULL);
1389 }
1390
1391 /* Like commands_command, but instead of reading the commands from
1392 input stream, takes them from an already parsed command structure.
1393
1394 This is used by cli-script.c to DTRT with breakpoint commands
1395 that are part of if and while bodies. */
1396 enum command_control_type
1397 commands_from_control_command (char *arg, struct command_line *cmd)
1398 {
1399 commands_command_1 (arg, 0, cmd);
1400 return simple_control;
1401 }
1402
1403 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1404
1405 static int
1406 bp_location_has_shadow (struct bp_location *bl)
1407 {
1408 if (bl->loc_type != bp_loc_software_breakpoint)
1409 return 0;
1410 if (!bl->inserted)
1411 return 0;
1412 if (bl->target_info.shadow_len == 0)
1413 /* BL isn't valid, or doesn't shadow memory. */
1414 return 0;
1415 return 1;
1416 }
1417
1418 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1419 by replacing any memory breakpoints with their shadowed contents.
1420
1421 If READBUF is not NULL, this buffer must not overlap with any of
1422 the breakpoint location's shadow_contents buffers. Otherwise,
1423 a failed assertion internal error will be raised.
1424
1425 The range of shadowed area by each bp_location is:
1426 bl->address - bp_location_placed_address_before_address_max
1427 up to bl->address + bp_location_shadow_len_after_address_max
1428 The range we were requested to resolve shadows for is:
1429 memaddr ... memaddr + len
1430 Thus the safe cutoff boundaries for performance optimization are
1431 memaddr + len <= (bl->address
1432 - bp_location_placed_address_before_address_max)
1433 and:
1434 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1435
1436 void
1437 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1438 const gdb_byte *writebuf_org,
1439 ULONGEST memaddr, LONGEST len)
1440 {
1441 /* Left boundary, right boundary and median element of our binary
1442 search. */
1443 unsigned bc_l, bc_r, bc;
1444
1445 /* Find BC_L which is a leftmost element which may affect BUF
1446 content. It is safe to report lower value but a failure to
1447 report higher one. */
1448
1449 bc_l = 0;
1450 bc_r = bp_location_count;
1451 while (bc_l + 1 < bc_r)
1452 {
1453 struct bp_location *bl;
1454
1455 bc = (bc_l + bc_r) / 2;
1456 bl = bp_location[bc];
1457
1458 /* Check first BL->ADDRESS will not overflow due to the added
1459 constant. Then advance the left boundary only if we are sure
1460 the BC element can in no way affect the BUF content (MEMADDR
1461 to MEMADDR + LEN range).
1462
1463 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1464 offset so that we cannot miss a breakpoint with its shadow
1465 range tail still reaching MEMADDR. */
1466
1467 if ((bl->address + bp_location_shadow_len_after_address_max
1468 >= bl->address)
1469 && (bl->address + bp_location_shadow_len_after_address_max
1470 <= memaddr))
1471 bc_l = bc;
1472 else
1473 bc_r = bc;
1474 }
1475
1476 /* Due to the binary search above, we need to make sure we pick the
1477 first location that's at BC_L's address. E.g., if there are
1478 multiple locations at the same address, BC_L may end up pointing
1479 at a duplicate location, and miss the "master"/"inserted"
1480 location. Say, given locations L1, L2 and L3 at addresses A and
1481 B:
1482
1483 L1@A, L2@A, L3@B, ...
1484
1485 BC_L could end up pointing at location L2, while the "master"
1486 location could be L1. Since the `loc->inserted' flag is only set
1487 on "master" locations, we'd forget to restore the shadow of L1
1488 and L2. */
1489 while (bc_l > 0
1490 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1491 bc_l--;
1492
1493 /* Now do full processing of the found relevant range of elements. */
1494
1495 for (bc = bc_l; bc < bp_location_count; bc++)
1496 {
1497 struct bp_location *bl = bp_location[bc];
1498 CORE_ADDR bp_addr = 0;
1499 int bp_size = 0;
1500 int bptoffset = 0;
1501
1502 /* bp_location array has BL->OWNER always non-NULL. */
1503 if (bl->owner->type == bp_none)
1504 warning (_("reading through apparently deleted breakpoint #%d?"),
1505 bl->owner->number);
1506
1507 /* Performance optimization: any further element can no longer affect BUF
1508 content. */
1509
1510 if (bl->address >= bp_location_placed_address_before_address_max
1511 && memaddr + len <= (bl->address
1512 - bp_location_placed_address_before_address_max))
1513 break;
1514
1515 if (!bp_location_has_shadow (bl))
1516 continue;
1517 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1518 current_program_space->aspace, 0))
1519 continue;
1520
1521 /* Addresses and length of the part of the breakpoint that
1522 we need to copy. */
1523 bp_addr = bl->target_info.placed_address;
1524 bp_size = bl->target_info.shadow_len;
1525
1526 if (bp_addr + bp_size <= memaddr)
1527 /* The breakpoint is entirely before the chunk of memory we
1528 are reading. */
1529 continue;
1530
1531 if (bp_addr >= memaddr + len)
1532 /* The breakpoint is entirely after the chunk of memory we are
1533 reading. */
1534 continue;
1535
1536 /* Offset within shadow_contents. */
1537 if (bp_addr < memaddr)
1538 {
1539 /* Only copy the second part of the breakpoint. */
1540 bp_size -= memaddr - bp_addr;
1541 bptoffset = memaddr - bp_addr;
1542 bp_addr = memaddr;
1543 }
1544
1545 if (bp_addr + bp_size > memaddr + len)
1546 {
1547 /* Only copy the first part of the breakpoint. */
1548 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1549 }
1550
1551 if (readbuf != NULL)
1552 {
1553 /* Verify that the readbuf buffer does not overlap with
1554 the shadow_contents buffer. */
1555 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1556 || readbuf >= (bl->target_info.shadow_contents
1557 + bl->target_info.shadow_len));
1558
1559 /* Update the read buffer with this inserted breakpoint's
1560 shadow. */
1561 memcpy (readbuf + bp_addr - memaddr,
1562 bl->target_info.shadow_contents + bptoffset, bp_size);
1563 }
1564 else
1565 {
1566 struct gdbarch *gdbarch = bl->gdbarch;
1567 const unsigned char *bp;
1568 CORE_ADDR placed_address = bl->target_info.placed_address;
1569 int placed_size = bl->target_info.placed_size;
1570
1571 /* Update the shadow with what we want to write to memory. */
1572 memcpy (bl->target_info.shadow_contents + bptoffset,
1573 writebuf_org + bp_addr - memaddr, bp_size);
1574
1575 /* Determine appropriate breakpoint contents and size for this
1576 address. */
1577 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1578
1579 /* Update the final write buffer with this inserted
1580 breakpoint's INSN. */
1581 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1582 }
1583 }
1584 }
1585 \f
1586
1587 /* Return true if BPT is either a software breakpoint or a hardware
1588 breakpoint. */
1589
1590 int
1591 is_breakpoint (const struct breakpoint *bpt)
1592 {
1593 return (bpt->type == bp_breakpoint
1594 || bpt->type == bp_hardware_breakpoint
1595 || bpt->type == bp_dprintf);
1596 }
1597
1598 /* Return true if BPT is of any hardware watchpoint kind. */
1599
1600 static int
1601 is_hardware_watchpoint (const struct breakpoint *bpt)
1602 {
1603 return (bpt->type == bp_hardware_watchpoint
1604 || bpt->type == bp_read_watchpoint
1605 || bpt->type == bp_access_watchpoint);
1606 }
1607
1608 /* Return true if BPT is of any watchpoint kind, hardware or
1609 software. */
1610
1611 int
1612 is_watchpoint (const struct breakpoint *bpt)
1613 {
1614 return (is_hardware_watchpoint (bpt)
1615 || bpt->type == bp_watchpoint);
1616 }
1617
1618 /* Returns true if the current thread and its running state are safe
1619 to evaluate or update watchpoint B. Watchpoints on local
1620 expressions need to be evaluated in the context of the thread that
1621 was current when the watchpoint was created, and, that thread needs
1622 to be stopped to be able to select the correct frame context.
1623 Watchpoints on global expressions can be evaluated on any thread,
1624 and in any state. It is presently left to the target allowing
1625 memory accesses when threads are running. */
1626
1627 static int
1628 watchpoint_in_thread_scope (struct watchpoint *b)
1629 {
1630 return (b->base.pspace == current_program_space
1631 && (ptid_equal (b->watchpoint_thread, null_ptid)
1632 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1633 && !is_executing (inferior_ptid))));
1634 }
1635
1636 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1637 associated bp_watchpoint_scope breakpoint. */
1638
1639 static void
1640 watchpoint_del_at_next_stop (struct watchpoint *w)
1641 {
1642 struct breakpoint *b = &w->base;
1643
1644 if (b->related_breakpoint != b)
1645 {
1646 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1647 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1648 b->related_breakpoint->disposition = disp_del_at_next_stop;
1649 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1650 b->related_breakpoint = b;
1651 }
1652 b->disposition = disp_del_at_next_stop;
1653 }
1654
1655 /* Assuming that B is a watchpoint:
1656 - Reparse watchpoint expression, if REPARSE is non-zero
1657 - Evaluate expression and store the result in B->val
1658 - Evaluate the condition if there is one, and store the result
1659 in b->loc->cond.
1660 - Update the list of values that must be watched in B->loc.
1661
1662 If the watchpoint disposition is disp_del_at_next_stop, then do
1663 nothing. If this is local watchpoint that is out of scope, delete
1664 it.
1665
1666 Even with `set breakpoint always-inserted on' the watchpoints are
1667 removed + inserted on each stop here. Normal breakpoints must
1668 never be removed because they might be missed by a running thread
1669 when debugging in non-stop mode. On the other hand, hardware
1670 watchpoints (is_hardware_watchpoint; processed here) are specific
1671 to each LWP since they are stored in each LWP's hardware debug
1672 registers. Therefore, such LWP must be stopped first in order to
1673 be able to modify its hardware watchpoints.
1674
1675 Hardware watchpoints must be reset exactly once after being
1676 presented to the user. It cannot be done sooner, because it would
1677 reset the data used to present the watchpoint hit to the user. And
1678 it must not be done later because it could display the same single
1679 watchpoint hit during multiple GDB stops. Note that the latter is
1680 relevant only to the hardware watchpoint types bp_read_watchpoint
1681 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1682 not user-visible - its hit is suppressed if the memory content has
1683 not changed.
1684
1685 The following constraints influence the location where we can reset
1686 hardware watchpoints:
1687
1688 * target_stopped_by_watchpoint and target_stopped_data_address are
1689 called several times when GDB stops.
1690
1691 [linux]
1692 * Multiple hardware watchpoints can be hit at the same time,
1693 causing GDB to stop. GDB only presents one hardware watchpoint
1694 hit at a time as the reason for stopping, and all the other hits
1695 are presented later, one after the other, each time the user
1696 requests the execution to be resumed. Execution is not resumed
1697 for the threads still having pending hit event stored in
1698 LWP_INFO->STATUS. While the watchpoint is already removed from
1699 the inferior on the first stop the thread hit event is kept being
1700 reported from its cached value by linux_nat_stopped_data_address
1701 until the real thread resume happens after the watchpoint gets
1702 presented and thus its LWP_INFO->STATUS gets reset.
1703
1704 Therefore the hardware watchpoint hit can get safely reset on the
1705 watchpoint removal from inferior. */
1706
1707 static void
1708 update_watchpoint (struct watchpoint *b, int reparse)
1709 {
1710 int within_current_scope;
1711 struct frame_id saved_frame_id;
1712 int frame_saved;
1713
1714 /* If this is a local watchpoint, we only want to check if the
1715 watchpoint frame is in scope if the current thread is the thread
1716 that was used to create the watchpoint. */
1717 if (!watchpoint_in_thread_scope (b))
1718 return;
1719
1720 if (b->base.disposition == disp_del_at_next_stop)
1721 return;
1722
1723 frame_saved = 0;
1724
1725 /* Determine if the watchpoint is within scope. */
1726 if (b->exp_valid_block == NULL)
1727 within_current_scope = 1;
1728 else
1729 {
1730 struct frame_info *fi = get_current_frame ();
1731 struct gdbarch *frame_arch = get_frame_arch (fi);
1732 CORE_ADDR frame_pc = get_frame_pc (fi);
1733
1734 /* If we're in a function epilogue, unwinding may not work
1735 properly, so do not attempt to recreate locations at this
1736 point. See similar comments in watchpoint_check. */
1737 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1738 return;
1739
1740 /* Save the current frame's ID so we can restore it after
1741 evaluating the watchpoint expression on its own frame. */
1742 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1743 took a frame parameter, so that we didn't have to change the
1744 selected frame. */
1745 frame_saved = 1;
1746 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1747
1748 fi = frame_find_by_id (b->watchpoint_frame);
1749 within_current_scope = (fi != NULL);
1750 if (within_current_scope)
1751 select_frame (fi);
1752 }
1753
1754 /* We don't free locations. They are stored in the bp_location array
1755 and update_global_location_list will eventually delete them and
1756 remove breakpoints if needed. */
1757 b->base.loc = NULL;
1758
1759 if (within_current_scope && reparse)
1760 {
1761 const char *s;
1762
1763 if (b->exp)
1764 {
1765 xfree (b->exp);
1766 b->exp = NULL;
1767 }
1768 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1769 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1770 /* If the meaning of expression itself changed, the old value is
1771 no longer relevant. We don't want to report a watchpoint hit
1772 to the user when the old value and the new value may actually
1773 be completely different objects. */
1774 value_free (b->val);
1775 b->val = NULL;
1776 b->val_valid = 0;
1777
1778 /* Note that unlike with breakpoints, the watchpoint's condition
1779 expression is stored in the breakpoint object, not in the
1780 locations (re)created below. */
1781 if (b->base.cond_string != NULL)
1782 {
1783 if (b->cond_exp != NULL)
1784 {
1785 xfree (b->cond_exp);
1786 b->cond_exp = NULL;
1787 }
1788
1789 s = b->base.cond_string;
1790 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1791 }
1792 }
1793
1794 /* If we failed to parse the expression, for example because
1795 it refers to a global variable in a not-yet-loaded shared library,
1796 don't try to insert watchpoint. We don't automatically delete
1797 such watchpoint, though, since failure to parse expression
1798 is different from out-of-scope watchpoint. */
1799 if ( !target_has_execution)
1800 {
1801 /* Without execution, memory can't change. No use to try and
1802 set watchpoint locations. The watchpoint will be reset when
1803 the target gains execution, through breakpoint_re_set. */
1804 }
1805 else if (within_current_scope && b->exp)
1806 {
1807 int pc = 0;
1808 struct value *val_chain, *v, *result, *next;
1809 struct program_space *frame_pspace;
1810
1811 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1812
1813 /* Avoid setting b->val if it's already set. The meaning of
1814 b->val is 'the last value' user saw, and we should update
1815 it only if we reported that last value to user. As it
1816 happens, the code that reports it updates b->val directly.
1817 We don't keep track of the memory value for masked
1818 watchpoints. */
1819 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1820 {
1821 b->val = v;
1822 b->val_valid = 1;
1823 }
1824
1825 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1826
1827 /* Look at each value on the value chain. */
1828 for (v = val_chain; v; v = value_next (v))
1829 {
1830 /* If it's a memory location, and GDB actually needed
1831 its contents to evaluate the expression, then we
1832 must watch it. If the first value returned is
1833 still lazy, that means an error occurred reading it;
1834 watch it anyway in case it becomes readable. */
1835 if (VALUE_LVAL (v) == lval_memory
1836 && (v == val_chain || ! value_lazy (v)))
1837 {
1838 struct type *vtype = check_typedef (value_type (v));
1839
1840 /* We only watch structs and arrays if user asked
1841 for it explicitly, never if they just happen to
1842 appear in the middle of some value chain. */
1843 if (v == result
1844 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1845 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1846 {
1847 CORE_ADDR addr;
1848 int type;
1849 struct bp_location *loc, **tmp;
1850
1851 addr = value_address (v);
1852 type = hw_write;
1853 if (b->base.type == bp_read_watchpoint)
1854 type = hw_read;
1855 else if (b->base.type == bp_access_watchpoint)
1856 type = hw_access;
1857
1858 loc = allocate_bp_location (&b->base);
1859 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1860 ;
1861 *tmp = loc;
1862 loc->gdbarch = get_type_arch (value_type (v));
1863
1864 loc->pspace = frame_pspace;
1865 loc->address = addr;
1866 loc->length = TYPE_LENGTH (value_type (v));
1867 loc->watchpoint_type = type;
1868 }
1869 }
1870 }
1871
1872 /* Change the type of breakpoint between hardware assisted or
1873 an ordinary watchpoint depending on the hardware support
1874 and free hardware slots. REPARSE is set when the inferior
1875 is started. */
1876 if (reparse)
1877 {
1878 int reg_cnt;
1879 enum bp_loc_type loc_type;
1880 struct bp_location *bl;
1881
1882 reg_cnt = can_use_hardware_watchpoint (val_chain);
1883
1884 if (reg_cnt)
1885 {
1886 int i, target_resources_ok, other_type_used;
1887 enum bptype type;
1888
1889 /* Use an exact watchpoint when there's only one memory region to be
1890 watched, and only one debug register is needed to watch it. */
1891 b->exact = target_exact_watchpoints && reg_cnt == 1;
1892
1893 /* We need to determine how many resources are already
1894 used for all other hardware watchpoints plus this one
1895 to see if we still have enough resources to also fit
1896 this watchpoint in as well. */
1897
1898 /* If this is a software watchpoint, we try to turn it
1899 to a hardware one -- count resources as if B was of
1900 hardware watchpoint type. */
1901 type = b->base.type;
1902 if (type == bp_watchpoint)
1903 type = bp_hardware_watchpoint;
1904
1905 /* This watchpoint may or may not have been placed on
1906 the list yet at this point (it won't be in the list
1907 if we're trying to create it for the first time,
1908 through watch_command), so always account for it
1909 manually. */
1910
1911 /* Count resources used by all watchpoints except B. */
1912 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1913
1914 /* Add in the resources needed for B. */
1915 i += hw_watchpoint_use_count (&b->base);
1916
1917 target_resources_ok
1918 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1919 if (target_resources_ok <= 0)
1920 {
1921 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1922
1923 if (target_resources_ok == 0 && !sw_mode)
1924 error (_("Target does not support this type of "
1925 "hardware watchpoint."));
1926 else if (target_resources_ok < 0 && !sw_mode)
1927 error (_("There are not enough available hardware "
1928 "resources for this watchpoint."));
1929
1930 /* Downgrade to software watchpoint. */
1931 b->base.type = bp_watchpoint;
1932 }
1933 else
1934 {
1935 /* If this was a software watchpoint, we've just
1936 found we have enough resources to turn it to a
1937 hardware watchpoint. Otherwise, this is a
1938 nop. */
1939 b->base.type = type;
1940 }
1941 }
1942 else if (!b->base.ops->works_in_software_mode (&b->base))
1943 error (_("Expression cannot be implemented with "
1944 "read/access watchpoint."));
1945 else
1946 b->base.type = bp_watchpoint;
1947
1948 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1949 : bp_loc_hardware_watchpoint);
1950 for (bl = b->base.loc; bl; bl = bl->next)
1951 bl->loc_type = loc_type;
1952 }
1953
1954 for (v = val_chain; v; v = next)
1955 {
1956 next = value_next (v);
1957 if (v != b->val)
1958 value_free (v);
1959 }
1960
1961 /* If a software watchpoint is not watching any memory, then the
1962 above left it without any location set up. But,
1963 bpstat_stop_status requires a location to be able to report
1964 stops, so make sure there's at least a dummy one. */
1965 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1966 {
1967 struct breakpoint *base = &b->base;
1968 base->loc = allocate_bp_location (base);
1969 base->loc->pspace = frame_pspace;
1970 base->loc->address = -1;
1971 base->loc->length = -1;
1972 base->loc->watchpoint_type = -1;
1973 }
1974 }
1975 else if (!within_current_scope)
1976 {
1977 printf_filtered (_("\
1978 Watchpoint %d deleted because the program has left the block\n\
1979 in which its expression is valid.\n"),
1980 b->base.number);
1981 watchpoint_del_at_next_stop (b);
1982 }
1983
1984 /* Restore the selected frame. */
1985 if (frame_saved)
1986 select_frame (frame_find_by_id (saved_frame_id));
1987 }
1988
1989
1990 /* Returns 1 iff breakpoint location should be
1991 inserted in the inferior. We don't differentiate the type of BL's owner
1992 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1993 breakpoint_ops is not defined, because in insert_bp_location,
1994 tracepoint's insert_location will not be called. */
1995 static int
1996 should_be_inserted (struct bp_location *bl)
1997 {
1998 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1999 return 0;
2000
2001 if (bl->owner->disposition == disp_del_at_next_stop)
2002 return 0;
2003
2004 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2005 return 0;
2006
2007 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2008 return 0;
2009
2010 /* This is set for example, when we're attached to the parent of a
2011 vfork, and have detached from the child. The child is running
2012 free, and we expect it to do an exec or exit, at which point the
2013 OS makes the parent schedulable again (and the target reports
2014 that the vfork is done). Until the child is done with the shared
2015 memory region, do not insert breakpoints in the parent, otherwise
2016 the child could still trip on the parent's breakpoints. Since
2017 the parent is blocked anyway, it won't miss any breakpoint. */
2018 if (bl->pspace->breakpoints_not_allowed)
2019 return 0;
2020
2021 return 1;
2022 }
2023
2024 /* Same as should_be_inserted but does the check assuming
2025 that the location is not duplicated. */
2026
2027 static int
2028 unduplicated_should_be_inserted (struct bp_location *bl)
2029 {
2030 int result;
2031 const int save_duplicate = bl->duplicate;
2032
2033 bl->duplicate = 0;
2034 result = should_be_inserted (bl);
2035 bl->duplicate = save_duplicate;
2036 return result;
2037 }
2038
2039 /* Parses a conditional described by an expression COND into an
2040 agent expression bytecode suitable for evaluation
2041 by the bytecode interpreter. Return NULL if there was
2042 any error during parsing. */
2043
2044 static struct agent_expr *
2045 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2046 {
2047 struct agent_expr *aexpr = NULL;
2048 volatile struct gdb_exception ex;
2049
2050 if (!cond)
2051 return NULL;
2052
2053 /* We don't want to stop processing, so catch any errors
2054 that may show up. */
2055 TRY_CATCH (ex, RETURN_MASK_ERROR)
2056 {
2057 aexpr = gen_eval_for_expr (scope, cond);
2058 }
2059
2060 if (ex.reason < 0)
2061 {
2062 /* If we got here, it means the condition could not be parsed to a valid
2063 bytecode expression and thus can't be evaluated on the target's side.
2064 It's no use iterating through the conditions. */
2065 return NULL;
2066 }
2067
2068 /* We have a valid agent expression. */
2069 return aexpr;
2070 }
2071
2072 /* Based on location BL, create a list of breakpoint conditions to be
2073 passed on to the target. If we have duplicated locations with different
2074 conditions, we will add such conditions to the list. The idea is that the
2075 target will evaluate the list of conditions and will only notify GDB when
2076 one of them is true. */
2077
2078 static void
2079 build_target_condition_list (struct bp_location *bl)
2080 {
2081 struct bp_location **locp = NULL, **loc2p;
2082 int null_condition_or_parse_error = 0;
2083 int modified = bl->needs_update;
2084 struct bp_location *loc;
2085
2086 /* This is only meaningful if the target is
2087 evaluating conditions and if the user has
2088 opted for condition evaluation on the target's
2089 side. */
2090 if (gdb_evaluates_breakpoint_condition_p ()
2091 || !target_supports_evaluation_of_breakpoint_conditions ())
2092 return;
2093
2094 /* Do a first pass to check for locations with no assigned
2095 conditions or conditions that fail to parse to a valid agent expression
2096 bytecode. If any of these happen, then it's no use to send conditions
2097 to the target since this location will always trigger and generate a
2098 response back to GDB. */
2099 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2100 {
2101 loc = (*loc2p);
2102 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2103 {
2104 if (modified)
2105 {
2106 struct agent_expr *aexpr;
2107
2108 /* Re-parse the conditions since something changed. In that
2109 case we already freed the condition bytecodes (see
2110 force_breakpoint_reinsertion). We just
2111 need to parse the condition to bytecodes again. */
2112 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2113 loc->cond_bytecode = aexpr;
2114
2115 /* Check if we managed to parse the conditional expression
2116 correctly. If not, we will not send this condition
2117 to the target. */
2118 if (aexpr)
2119 continue;
2120 }
2121
2122 /* If we have a NULL bytecode expression, it means something
2123 went wrong or we have a null condition expression. */
2124 if (!loc->cond_bytecode)
2125 {
2126 null_condition_or_parse_error = 1;
2127 break;
2128 }
2129 }
2130 }
2131
2132 /* If any of these happened, it means we will have to evaluate the conditions
2133 for the location's address on gdb's side. It is no use keeping bytecodes
2134 for all the other duplicate locations, thus we free all of them here.
2135
2136 This is so we have a finer control over which locations' conditions are
2137 being evaluated by GDB or the remote stub. */
2138 if (null_condition_or_parse_error)
2139 {
2140 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2141 {
2142 loc = (*loc2p);
2143 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2144 {
2145 /* Only go as far as the first NULL bytecode is
2146 located. */
2147 if (!loc->cond_bytecode)
2148 return;
2149
2150 free_agent_expr (loc->cond_bytecode);
2151 loc->cond_bytecode = NULL;
2152 }
2153 }
2154 }
2155
2156 /* No NULL conditions or failed bytecode generation. Build a condition list
2157 for this location's address. */
2158 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2159 {
2160 loc = (*loc2p);
2161 if (loc->cond
2162 && is_breakpoint (loc->owner)
2163 && loc->pspace->num == bl->pspace->num
2164 && loc->owner->enable_state == bp_enabled
2165 && loc->enabled)
2166 /* Add the condition to the vector. This will be used later to send the
2167 conditions to the target. */
2168 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2169 loc->cond_bytecode);
2170 }
2171
2172 return;
2173 }
2174
2175 /* Parses a command described by string CMD into an agent expression
2176 bytecode suitable for evaluation by the bytecode interpreter.
2177 Return NULL if there was any error during parsing. */
2178
2179 static struct agent_expr *
2180 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2181 {
2182 struct cleanup *old_cleanups = 0;
2183 struct expression *expr, **argvec;
2184 struct agent_expr *aexpr = NULL;
2185 volatile struct gdb_exception ex;
2186 const char *cmdrest;
2187 const char *format_start, *format_end;
2188 struct format_piece *fpieces;
2189 int nargs;
2190 struct gdbarch *gdbarch = get_current_arch ();
2191
2192 if (!cmd)
2193 return NULL;
2194
2195 cmdrest = cmd;
2196
2197 if (*cmdrest == ',')
2198 ++cmdrest;
2199 cmdrest = skip_spaces_const (cmdrest);
2200
2201 if (*cmdrest++ != '"')
2202 error (_("No format string following the location"));
2203
2204 format_start = cmdrest;
2205
2206 fpieces = parse_format_string (&cmdrest);
2207
2208 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2209
2210 format_end = cmdrest;
2211
2212 if (*cmdrest++ != '"')
2213 error (_("Bad format string, non-terminated '\"'."));
2214
2215 cmdrest = skip_spaces_const (cmdrest);
2216
2217 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2218 error (_("Invalid argument syntax"));
2219
2220 if (*cmdrest == ',')
2221 cmdrest++;
2222 cmdrest = skip_spaces_const (cmdrest);
2223
2224 /* For each argument, make an expression. */
2225
2226 argvec = (struct expression **) alloca (strlen (cmd)
2227 * sizeof (struct expression *));
2228
2229 nargs = 0;
2230 while (*cmdrest != '\0')
2231 {
2232 const char *cmd1;
2233
2234 cmd1 = cmdrest;
2235 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2236 argvec[nargs++] = expr;
2237 cmdrest = cmd1;
2238 if (*cmdrest == ',')
2239 ++cmdrest;
2240 }
2241
2242 /* We don't want to stop processing, so catch any errors
2243 that may show up. */
2244 TRY_CATCH (ex, RETURN_MASK_ERROR)
2245 {
2246 aexpr = gen_printf (scope, gdbarch, 0, 0,
2247 format_start, format_end - format_start,
2248 fpieces, nargs, argvec);
2249 }
2250
2251 if (ex.reason < 0)
2252 {
2253 /* If we got here, it means the command could not be parsed to a valid
2254 bytecode expression and thus can't be evaluated on the target's side.
2255 It's no use iterating through the other commands. */
2256 return NULL;
2257 }
2258
2259 do_cleanups (old_cleanups);
2260
2261 /* We have a valid agent expression, return it. */
2262 return aexpr;
2263 }
2264
2265 /* Based on location BL, create a list of breakpoint commands to be
2266 passed on to the target. If we have duplicated locations with
2267 different commands, we will add any such to the list. */
2268
2269 static void
2270 build_target_command_list (struct bp_location *bl)
2271 {
2272 struct bp_location **locp = NULL, **loc2p;
2273 int null_command_or_parse_error = 0;
2274 int modified = bl->needs_update;
2275 struct bp_location *loc;
2276
2277 /* For now, limit to agent-style dprintf breakpoints. */
2278 if (bl->owner->type != bp_dprintf
2279 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2280 return;
2281
2282 if (!target_can_run_breakpoint_commands ())
2283 return;
2284
2285 /* Do a first pass to check for locations with no assigned
2286 conditions or conditions that fail to parse to a valid agent expression
2287 bytecode. If any of these happen, then it's no use to send conditions
2288 to the target since this location will always trigger and generate a
2289 response back to GDB. */
2290 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2291 {
2292 loc = (*loc2p);
2293 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2294 {
2295 if (modified)
2296 {
2297 struct agent_expr *aexpr;
2298
2299 /* Re-parse the commands since something changed. In that
2300 case we already freed the command bytecodes (see
2301 force_breakpoint_reinsertion). We just
2302 need to parse the command to bytecodes again. */
2303 aexpr = parse_cmd_to_aexpr (bl->address,
2304 loc->owner->extra_string);
2305 loc->cmd_bytecode = aexpr;
2306
2307 if (!aexpr)
2308 continue;
2309 }
2310
2311 /* If we have a NULL bytecode expression, it means something
2312 went wrong or we have a null command expression. */
2313 if (!loc->cmd_bytecode)
2314 {
2315 null_command_or_parse_error = 1;
2316 break;
2317 }
2318 }
2319 }
2320
2321 /* If anything failed, then we're not doing target-side commands,
2322 and so clean up. */
2323 if (null_command_or_parse_error)
2324 {
2325 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2326 {
2327 loc = (*loc2p);
2328 if (is_breakpoint (loc->owner)
2329 && loc->pspace->num == bl->pspace->num)
2330 {
2331 /* Only go as far as the first NULL bytecode is
2332 located. */
2333 if (loc->cmd_bytecode == NULL)
2334 return;
2335
2336 free_agent_expr (loc->cmd_bytecode);
2337 loc->cmd_bytecode = NULL;
2338 }
2339 }
2340 }
2341
2342 /* No NULL commands or failed bytecode generation. Build a command list
2343 for this location's address. */
2344 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2345 {
2346 loc = (*loc2p);
2347 if (loc->owner->extra_string
2348 && is_breakpoint (loc->owner)
2349 && loc->pspace->num == bl->pspace->num
2350 && loc->owner->enable_state == bp_enabled
2351 && loc->enabled)
2352 /* Add the command to the vector. This will be used later
2353 to send the commands to the target. */
2354 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2355 loc->cmd_bytecode);
2356 }
2357
2358 bl->target_info.persist = 0;
2359 /* Maybe flag this location as persistent. */
2360 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2361 bl->target_info.persist = 1;
2362 }
2363
2364 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2365 location. Any error messages are printed to TMP_ERROR_STREAM; and
2366 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2367 Returns 0 for success, 1 if the bp_location type is not supported or
2368 -1 for failure.
2369
2370 NOTE drow/2003-09-09: This routine could be broken down to an
2371 object-style method for each breakpoint or catchpoint type. */
2372 static int
2373 insert_bp_location (struct bp_location *bl,
2374 struct ui_file *tmp_error_stream,
2375 int *disabled_breaks,
2376 int *hw_breakpoint_error,
2377 int *hw_bp_error_explained_already)
2378 {
2379 int val = 0;
2380 char *hw_bp_err_string = NULL;
2381 struct gdb_exception e;
2382
2383 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2384 return 0;
2385
2386 /* Note we don't initialize bl->target_info, as that wipes out
2387 the breakpoint location's shadow_contents if the breakpoint
2388 is still inserted at that location. This in turn breaks
2389 target_read_memory which depends on these buffers when
2390 a memory read is requested at the breakpoint location:
2391 Once the target_info has been wiped, we fail to see that
2392 we have a breakpoint inserted at that address and thus
2393 read the breakpoint instead of returning the data saved in
2394 the breakpoint location's shadow contents. */
2395 bl->target_info.placed_address = bl->address;
2396 bl->target_info.placed_address_space = bl->pspace->aspace;
2397 bl->target_info.length = bl->length;
2398
2399 /* When working with target-side conditions, we must pass all the conditions
2400 for the same breakpoint address down to the target since GDB will not
2401 insert those locations. With a list of breakpoint conditions, the target
2402 can decide when to stop and notify GDB. */
2403
2404 if (is_breakpoint (bl->owner))
2405 {
2406 build_target_condition_list (bl);
2407 build_target_command_list (bl);
2408 /* Reset the modification marker. */
2409 bl->needs_update = 0;
2410 }
2411
2412 if (bl->loc_type == bp_loc_software_breakpoint
2413 || bl->loc_type == bp_loc_hardware_breakpoint)
2414 {
2415 if (bl->owner->type != bp_hardware_breakpoint)
2416 {
2417 /* If the explicitly specified breakpoint type
2418 is not hardware breakpoint, check the memory map to see
2419 if the breakpoint address is in read only memory or not.
2420
2421 Two important cases are:
2422 - location type is not hardware breakpoint, memory
2423 is readonly. We change the type of the location to
2424 hardware breakpoint.
2425 - location type is hardware breakpoint, memory is
2426 read-write. This means we've previously made the
2427 location hardware one, but then the memory map changed,
2428 so we undo.
2429
2430 When breakpoints are removed, remove_breakpoints will use
2431 location types we've just set here, the only possible
2432 problem is that memory map has changed during running
2433 program, but it's not going to work anyway with current
2434 gdb. */
2435 struct mem_region *mr
2436 = lookup_mem_region (bl->target_info.placed_address);
2437
2438 if (mr)
2439 {
2440 if (automatic_hardware_breakpoints)
2441 {
2442 enum bp_loc_type new_type;
2443
2444 if (mr->attrib.mode != MEM_RW)
2445 new_type = bp_loc_hardware_breakpoint;
2446 else
2447 new_type = bp_loc_software_breakpoint;
2448
2449 if (new_type != bl->loc_type)
2450 {
2451 static int said = 0;
2452
2453 bl->loc_type = new_type;
2454 if (!said)
2455 {
2456 fprintf_filtered (gdb_stdout,
2457 _("Note: automatically using "
2458 "hardware breakpoints for "
2459 "read-only addresses.\n"));
2460 said = 1;
2461 }
2462 }
2463 }
2464 else if (bl->loc_type == bp_loc_software_breakpoint
2465 && mr->attrib.mode != MEM_RW)
2466 warning (_("cannot set software breakpoint "
2467 "at readonly address %s"),
2468 paddress (bl->gdbarch, bl->address));
2469 }
2470 }
2471
2472 /* First check to see if we have to handle an overlay. */
2473 if (overlay_debugging == ovly_off
2474 || bl->section == NULL
2475 || !(section_is_overlay (bl->section)))
2476 {
2477 /* No overlay handling: just set the breakpoint. */
2478 TRY_CATCH (e, RETURN_MASK_ALL)
2479 {
2480 val = bl->owner->ops->insert_location (bl);
2481 }
2482 if (e.reason < 0)
2483 {
2484 val = 1;
2485 hw_bp_err_string = (char *) e.message;
2486 }
2487 }
2488 else
2489 {
2490 /* This breakpoint is in an overlay section.
2491 Shall we set a breakpoint at the LMA? */
2492 if (!overlay_events_enabled)
2493 {
2494 /* Yes -- overlay event support is not active,
2495 so we must try to set a breakpoint at the LMA.
2496 This will not work for a hardware breakpoint. */
2497 if (bl->loc_type == bp_loc_hardware_breakpoint)
2498 warning (_("hardware breakpoint %d not supported in overlay!"),
2499 bl->owner->number);
2500 else
2501 {
2502 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2503 bl->section);
2504 /* Set a software (trap) breakpoint at the LMA. */
2505 bl->overlay_target_info = bl->target_info;
2506 bl->overlay_target_info.placed_address = addr;
2507 val = target_insert_breakpoint (bl->gdbarch,
2508 &bl->overlay_target_info);
2509 if (val != 0)
2510 fprintf_unfiltered (tmp_error_stream,
2511 "Overlay breakpoint %d "
2512 "failed: in ROM?\n",
2513 bl->owner->number);
2514 }
2515 }
2516 /* Shall we set a breakpoint at the VMA? */
2517 if (section_is_mapped (bl->section))
2518 {
2519 /* Yes. This overlay section is mapped into memory. */
2520 TRY_CATCH (e, RETURN_MASK_ALL)
2521 {
2522 val = bl->owner->ops->insert_location (bl);
2523 }
2524 if (e.reason < 0)
2525 {
2526 val = 1;
2527 hw_bp_err_string = (char *) e.message;
2528 }
2529 }
2530 else
2531 {
2532 /* No. This breakpoint will not be inserted.
2533 No error, but do not mark the bp as 'inserted'. */
2534 return 0;
2535 }
2536 }
2537
2538 if (val)
2539 {
2540 /* Can't set the breakpoint. */
2541 if (solib_name_from_address (bl->pspace, bl->address))
2542 {
2543 /* See also: disable_breakpoints_in_shlibs. */
2544 val = 0;
2545 bl->shlib_disabled = 1;
2546 observer_notify_breakpoint_modified (bl->owner);
2547 if (!*disabled_breaks)
2548 {
2549 fprintf_unfiltered (tmp_error_stream,
2550 "Cannot insert breakpoint %d.\n",
2551 bl->owner->number);
2552 fprintf_unfiltered (tmp_error_stream,
2553 "Temporarily disabling shared "
2554 "library breakpoints:\n");
2555 }
2556 *disabled_breaks = 1;
2557 fprintf_unfiltered (tmp_error_stream,
2558 "breakpoint #%d\n", bl->owner->number);
2559 }
2560 else
2561 {
2562 if (bl->loc_type == bp_loc_hardware_breakpoint)
2563 {
2564 *hw_breakpoint_error = 1;
2565 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2566 fprintf_unfiltered (tmp_error_stream,
2567 "Cannot insert hardware breakpoint %d%s",
2568 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2569 if (hw_bp_err_string)
2570 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2571 }
2572 else
2573 {
2574 fprintf_unfiltered (tmp_error_stream,
2575 "Cannot insert breakpoint %d.\n",
2576 bl->owner->number);
2577 fprintf_filtered (tmp_error_stream,
2578 "Error accessing memory address ");
2579 fputs_filtered (paddress (bl->gdbarch, bl->address),
2580 tmp_error_stream);
2581 fprintf_filtered (tmp_error_stream, ": %s.\n",
2582 safe_strerror (val));
2583 }
2584
2585 }
2586 }
2587 else
2588 bl->inserted = 1;
2589
2590 return val;
2591 }
2592
2593 else if (bl->loc_type == bp_loc_hardware_watchpoint
2594 /* NOTE drow/2003-09-08: This state only exists for removing
2595 watchpoints. It's not clear that it's necessary... */
2596 && bl->owner->disposition != disp_del_at_next_stop)
2597 {
2598 gdb_assert (bl->owner->ops != NULL
2599 && bl->owner->ops->insert_location != NULL);
2600
2601 val = bl->owner->ops->insert_location (bl);
2602
2603 /* If trying to set a read-watchpoint, and it turns out it's not
2604 supported, try emulating one with an access watchpoint. */
2605 if (val == 1 && bl->watchpoint_type == hw_read)
2606 {
2607 struct bp_location *loc, **loc_temp;
2608
2609 /* But don't try to insert it, if there's already another
2610 hw_access location that would be considered a duplicate
2611 of this one. */
2612 ALL_BP_LOCATIONS (loc, loc_temp)
2613 if (loc != bl
2614 && loc->watchpoint_type == hw_access
2615 && watchpoint_locations_match (bl, loc))
2616 {
2617 bl->duplicate = 1;
2618 bl->inserted = 1;
2619 bl->target_info = loc->target_info;
2620 bl->watchpoint_type = hw_access;
2621 val = 0;
2622 break;
2623 }
2624
2625 if (val == 1)
2626 {
2627 bl->watchpoint_type = hw_access;
2628 val = bl->owner->ops->insert_location (bl);
2629
2630 if (val)
2631 /* Back to the original value. */
2632 bl->watchpoint_type = hw_read;
2633 }
2634 }
2635
2636 bl->inserted = (val == 0);
2637 }
2638
2639 else if (bl->owner->type == bp_catchpoint)
2640 {
2641 gdb_assert (bl->owner->ops != NULL
2642 && bl->owner->ops->insert_location != NULL);
2643
2644 val = bl->owner->ops->insert_location (bl);
2645 if (val)
2646 {
2647 bl->owner->enable_state = bp_disabled;
2648
2649 if (val == 1)
2650 warning (_("\
2651 Error inserting catchpoint %d: Your system does not support this type\n\
2652 of catchpoint."), bl->owner->number);
2653 else
2654 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2655 }
2656
2657 bl->inserted = (val == 0);
2658
2659 /* We've already printed an error message if there was a problem
2660 inserting this catchpoint, and we've disabled the catchpoint,
2661 so just return success. */
2662 return 0;
2663 }
2664
2665 return 0;
2666 }
2667
2668 /* This function is called when program space PSPACE is about to be
2669 deleted. It takes care of updating breakpoints to not reference
2670 PSPACE anymore. */
2671
2672 void
2673 breakpoint_program_space_exit (struct program_space *pspace)
2674 {
2675 struct breakpoint *b, *b_temp;
2676 struct bp_location *loc, **loc_temp;
2677
2678 /* Remove any breakpoint that was set through this program space. */
2679 ALL_BREAKPOINTS_SAFE (b, b_temp)
2680 {
2681 if (b->pspace == pspace)
2682 delete_breakpoint (b);
2683 }
2684
2685 /* Breakpoints set through other program spaces could have locations
2686 bound to PSPACE as well. Remove those. */
2687 ALL_BP_LOCATIONS (loc, loc_temp)
2688 {
2689 struct bp_location *tmp;
2690
2691 if (loc->pspace == pspace)
2692 {
2693 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2694 if (loc->owner->loc == loc)
2695 loc->owner->loc = loc->next;
2696 else
2697 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2698 if (tmp->next == loc)
2699 {
2700 tmp->next = loc->next;
2701 break;
2702 }
2703 }
2704 }
2705
2706 /* Now update the global location list to permanently delete the
2707 removed locations above. */
2708 update_global_location_list (0);
2709 }
2710
2711 /* Make sure all breakpoints are inserted in inferior.
2712 Throws exception on any error.
2713 A breakpoint that is already inserted won't be inserted
2714 again, so calling this function twice is safe. */
2715 void
2716 insert_breakpoints (void)
2717 {
2718 struct breakpoint *bpt;
2719
2720 ALL_BREAKPOINTS (bpt)
2721 if (is_hardware_watchpoint (bpt))
2722 {
2723 struct watchpoint *w = (struct watchpoint *) bpt;
2724
2725 update_watchpoint (w, 0 /* don't reparse. */);
2726 }
2727
2728 update_global_location_list (1);
2729
2730 /* update_global_location_list does not insert breakpoints when
2731 always_inserted_mode is not enabled. Explicitly insert them
2732 now. */
2733 if (!breakpoints_always_inserted_mode ())
2734 insert_breakpoint_locations ();
2735 }
2736
2737 /* Invoke CALLBACK for each of bp_location. */
2738
2739 void
2740 iterate_over_bp_locations (walk_bp_location_callback callback)
2741 {
2742 struct bp_location *loc, **loc_tmp;
2743
2744 ALL_BP_LOCATIONS (loc, loc_tmp)
2745 {
2746 callback (loc, NULL);
2747 }
2748 }
2749
2750 /* This is used when we need to synch breakpoint conditions between GDB and the
2751 target. It is the case with deleting and disabling of breakpoints when using
2752 always-inserted mode. */
2753
2754 static void
2755 update_inserted_breakpoint_locations (void)
2756 {
2757 struct bp_location *bl, **blp_tmp;
2758 int error_flag = 0;
2759 int val = 0;
2760 int disabled_breaks = 0;
2761 int hw_breakpoint_error = 0;
2762 int hw_bp_details_reported = 0;
2763
2764 struct ui_file *tmp_error_stream = mem_fileopen ();
2765 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2766
2767 /* Explicitly mark the warning -- this will only be printed if
2768 there was an error. */
2769 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2770
2771 save_current_space_and_thread ();
2772
2773 ALL_BP_LOCATIONS (bl, blp_tmp)
2774 {
2775 /* We only want to update software breakpoints and hardware
2776 breakpoints. */
2777 if (!is_breakpoint (bl->owner))
2778 continue;
2779
2780 /* We only want to update locations that are already inserted
2781 and need updating. This is to avoid unwanted insertion during
2782 deletion of breakpoints. */
2783 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2784 continue;
2785
2786 switch_to_program_space_and_thread (bl->pspace);
2787
2788 /* For targets that support global breakpoints, there's no need
2789 to select an inferior to insert breakpoint to. In fact, even
2790 if we aren't attached to any process yet, we should still
2791 insert breakpoints. */
2792 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2793 && ptid_equal (inferior_ptid, null_ptid))
2794 continue;
2795
2796 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2797 &hw_breakpoint_error, &hw_bp_details_reported);
2798 if (val)
2799 error_flag = val;
2800 }
2801
2802 if (error_flag)
2803 {
2804 target_terminal_ours_for_output ();
2805 error_stream (tmp_error_stream);
2806 }
2807
2808 do_cleanups (cleanups);
2809 }
2810
2811 /* Used when starting or continuing the program. */
2812
2813 static void
2814 insert_breakpoint_locations (void)
2815 {
2816 struct breakpoint *bpt;
2817 struct bp_location *bl, **blp_tmp;
2818 int error_flag = 0;
2819 int val = 0;
2820 int disabled_breaks = 0;
2821 int hw_breakpoint_error = 0;
2822 int hw_bp_error_explained_already = 0;
2823
2824 struct ui_file *tmp_error_stream = mem_fileopen ();
2825 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2826
2827 /* Explicitly mark the warning -- this will only be printed if
2828 there was an error. */
2829 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2830
2831 save_current_space_and_thread ();
2832
2833 ALL_BP_LOCATIONS (bl, blp_tmp)
2834 {
2835 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2836 continue;
2837
2838 /* There is no point inserting thread-specific breakpoints if
2839 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2840 has BL->OWNER always non-NULL. */
2841 if (bl->owner->thread != -1
2842 && !valid_thread_id (bl->owner->thread))
2843 continue;
2844
2845 switch_to_program_space_and_thread (bl->pspace);
2846
2847 /* For targets that support global breakpoints, there's no need
2848 to select an inferior to insert breakpoint to. In fact, even
2849 if we aren't attached to any process yet, we should still
2850 insert breakpoints. */
2851 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2852 && ptid_equal (inferior_ptid, null_ptid))
2853 continue;
2854
2855 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2856 &hw_breakpoint_error, &hw_bp_error_explained_already);
2857 if (val)
2858 error_flag = val;
2859 }
2860
2861 /* If we failed to insert all locations of a watchpoint, remove
2862 them, as half-inserted watchpoint is of limited use. */
2863 ALL_BREAKPOINTS (bpt)
2864 {
2865 int some_failed = 0;
2866 struct bp_location *loc;
2867
2868 if (!is_hardware_watchpoint (bpt))
2869 continue;
2870
2871 if (!breakpoint_enabled (bpt))
2872 continue;
2873
2874 if (bpt->disposition == disp_del_at_next_stop)
2875 continue;
2876
2877 for (loc = bpt->loc; loc; loc = loc->next)
2878 if (!loc->inserted && should_be_inserted (loc))
2879 {
2880 some_failed = 1;
2881 break;
2882 }
2883 if (some_failed)
2884 {
2885 for (loc = bpt->loc; loc; loc = loc->next)
2886 if (loc->inserted)
2887 remove_breakpoint (loc, mark_uninserted);
2888
2889 hw_breakpoint_error = 1;
2890 fprintf_unfiltered (tmp_error_stream,
2891 "Could not insert hardware watchpoint %d.\n",
2892 bpt->number);
2893 error_flag = -1;
2894 }
2895 }
2896
2897 if (error_flag)
2898 {
2899 /* If a hardware breakpoint or watchpoint was inserted, add a
2900 message about possibly exhausted resources. */
2901 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2902 {
2903 fprintf_unfiltered (tmp_error_stream,
2904 "Could not insert hardware breakpoints:\n\
2905 You may have requested too many hardware breakpoints/watchpoints.\n");
2906 }
2907 target_terminal_ours_for_output ();
2908 error_stream (tmp_error_stream);
2909 }
2910
2911 do_cleanups (cleanups);
2912 }
2913
2914 /* Used when the program stops.
2915 Returns zero if successful, or non-zero if there was a problem
2916 removing a breakpoint location. */
2917
2918 int
2919 remove_breakpoints (void)
2920 {
2921 struct bp_location *bl, **blp_tmp;
2922 int val = 0;
2923
2924 ALL_BP_LOCATIONS (bl, blp_tmp)
2925 {
2926 if (bl->inserted && !is_tracepoint (bl->owner))
2927 val |= remove_breakpoint (bl, mark_uninserted);
2928 }
2929 return val;
2930 }
2931
2932 /* Remove breakpoints of process PID. */
2933
2934 int
2935 remove_breakpoints_pid (int pid)
2936 {
2937 struct bp_location *bl, **blp_tmp;
2938 int val;
2939 struct inferior *inf = find_inferior_pid (pid);
2940
2941 ALL_BP_LOCATIONS (bl, blp_tmp)
2942 {
2943 if (bl->pspace != inf->pspace)
2944 continue;
2945
2946 if (bl->owner->type == bp_dprintf)
2947 continue;
2948
2949 if (bl->inserted)
2950 {
2951 val = remove_breakpoint (bl, mark_uninserted);
2952 if (val != 0)
2953 return val;
2954 }
2955 }
2956 return 0;
2957 }
2958
2959 int
2960 reattach_breakpoints (int pid)
2961 {
2962 struct cleanup *old_chain;
2963 struct bp_location *bl, **blp_tmp;
2964 int val;
2965 struct ui_file *tmp_error_stream;
2966 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2967 struct inferior *inf;
2968 struct thread_info *tp;
2969
2970 tp = any_live_thread_of_process (pid);
2971 if (tp == NULL)
2972 return 1;
2973
2974 inf = find_inferior_pid (pid);
2975 old_chain = save_inferior_ptid ();
2976
2977 inferior_ptid = tp->ptid;
2978
2979 tmp_error_stream = mem_fileopen ();
2980 make_cleanup_ui_file_delete (tmp_error_stream);
2981
2982 ALL_BP_LOCATIONS (bl, blp_tmp)
2983 {
2984 if (bl->pspace != inf->pspace)
2985 continue;
2986
2987 if (bl->inserted)
2988 {
2989 bl->inserted = 0;
2990 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2991 if (val != 0)
2992 {
2993 do_cleanups (old_chain);
2994 return val;
2995 }
2996 }
2997 }
2998 do_cleanups (old_chain);
2999 return 0;
3000 }
3001
3002 static int internal_breakpoint_number = -1;
3003
3004 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3005 If INTERNAL is non-zero, the breakpoint number will be populated
3006 from internal_breakpoint_number and that variable decremented.
3007 Otherwise the breakpoint number will be populated from
3008 breakpoint_count and that value incremented. Internal breakpoints
3009 do not set the internal var bpnum. */
3010 static void
3011 set_breakpoint_number (int internal, struct breakpoint *b)
3012 {
3013 if (internal)
3014 b->number = internal_breakpoint_number--;
3015 else
3016 {
3017 set_breakpoint_count (breakpoint_count + 1);
3018 b->number = breakpoint_count;
3019 }
3020 }
3021
3022 static struct breakpoint *
3023 create_internal_breakpoint (struct gdbarch *gdbarch,
3024 CORE_ADDR address, enum bptype type,
3025 const struct breakpoint_ops *ops)
3026 {
3027 struct symtab_and_line sal;
3028 struct breakpoint *b;
3029
3030 init_sal (&sal); /* Initialize to zeroes. */
3031
3032 sal.pc = address;
3033 sal.section = find_pc_overlay (sal.pc);
3034 sal.pspace = current_program_space;
3035
3036 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3037 b->number = internal_breakpoint_number--;
3038 b->disposition = disp_donttouch;
3039
3040 return b;
3041 }
3042
3043 static const char *const longjmp_names[] =
3044 {
3045 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3046 };
3047 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3048
3049 /* Per-objfile data private to breakpoint.c. */
3050 struct breakpoint_objfile_data
3051 {
3052 /* Minimal symbol for "_ovly_debug_event" (if any). */
3053 struct minimal_symbol *overlay_msym;
3054
3055 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3056 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3057
3058 /* True if we have looked for longjmp probes. */
3059 int longjmp_searched;
3060
3061 /* SystemTap probe points for longjmp (if any). */
3062 VEC (probe_p) *longjmp_probes;
3063
3064 /* Minimal symbol for "std::terminate()" (if any). */
3065 struct minimal_symbol *terminate_msym;
3066
3067 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3068 struct minimal_symbol *exception_msym;
3069
3070 /* True if we have looked for exception probes. */
3071 int exception_searched;
3072
3073 /* SystemTap probe points for unwinding (if any). */
3074 VEC (probe_p) *exception_probes;
3075 };
3076
3077 static const struct objfile_data *breakpoint_objfile_key;
3078
3079 /* Minimal symbol not found sentinel. */
3080 static struct minimal_symbol msym_not_found;
3081
3082 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3083
3084 static int
3085 msym_not_found_p (const struct minimal_symbol *msym)
3086 {
3087 return msym == &msym_not_found;
3088 }
3089
3090 /* Return per-objfile data needed by breakpoint.c.
3091 Allocate the data if necessary. */
3092
3093 static struct breakpoint_objfile_data *
3094 get_breakpoint_objfile_data (struct objfile *objfile)
3095 {
3096 struct breakpoint_objfile_data *bp_objfile_data;
3097
3098 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3099 if (bp_objfile_data == NULL)
3100 {
3101 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3102 sizeof (*bp_objfile_data));
3103
3104 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3105 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3106 }
3107 return bp_objfile_data;
3108 }
3109
3110 static void
3111 free_breakpoint_probes (struct objfile *obj, void *data)
3112 {
3113 struct breakpoint_objfile_data *bp_objfile_data = data;
3114
3115 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3116 VEC_free (probe_p, bp_objfile_data->exception_probes);
3117 }
3118
3119 static void
3120 create_overlay_event_breakpoint (void)
3121 {
3122 struct objfile *objfile;
3123 const char *const func_name = "_ovly_debug_event";
3124
3125 ALL_OBJFILES (objfile)
3126 {
3127 struct breakpoint *b;
3128 struct breakpoint_objfile_data *bp_objfile_data;
3129 CORE_ADDR addr;
3130
3131 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3132
3133 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3134 continue;
3135
3136 if (bp_objfile_data->overlay_msym == NULL)
3137 {
3138 struct minimal_symbol *m;
3139
3140 m = lookup_minimal_symbol_text (func_name, objfile);
3141 if (m == NULL)
3142 {
3143 /* Avoid future lookups in this objfile. */
3144 bp_objfile_data->overlay_msym = &msym_not_found;
3145 continue;
3146 }
3147 bp_objfile_data->overlay_msym = m;
3148 }
3149
3150 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3151 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3152 bp_overlay_event,
3153 &internal_breakpoint_ops);
3154 b->addr_string = xstrdup (func_name);
3155
3156 if (overlay_debugging == ovly_auto)
3157 {
3158 b->enable_state = bp_enabled;
3159 overlay_events_enabled = 1;
3160 }
3161 else
3162 {
3163 b->enable_state = bp_disabled;
3164 overlay_events_enabled = 0;
3165 }
3166 }
3167 update_global_location_list (1);
3168 }
3169
3170 static void
3171 create_longjmp_master_breakpoint (void)
3172 {
3173 struct program_space *pspace;
3174 struct cleanup *old_chain;
3175
3176 old_chain = save_current_program_space ();
3177
3178 ALL_PSPACES (pspace)
3179 {
3180 struct objfile *objfile;
3181
3182 set_current_program_space (pspace);
3183
3184 ALL_OBJFILES (objfile)
3185 {
3186 int i;
3187 struct gdbarch *gdbarch;
3188 struct breakpoint_objfile_data *bp_objfile_data;
3189
3190 gdbarch = get_objfile_arch (objfile);
3191 if (!gdbarch_get_longjmp_target_p (gdbarch))
3192 continue;
3193
3194 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3195
3196 if (!bp_objfile_data->longjmp_searched)
3197 {
3198 bp_objfile_data->longjmp_probes
3199 = find_probes_in_objfile (objfile, "libc", "longjmp");
3200 bp_objfile_data->longjmp_searched = 1;
3201 }
3202
3203 if (bp_objfile_data->longjmp_probes != NULL)
3204 {
3205 int i;
3206 struct probe *probe;
3207 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3208
3209 for (i = 0;
3210 VEC_iterate (probe_p,
3211 bp_objfile_data->longjmp_probes,
3212 i, probe);
3213 ++i)
3214 {
3215 struct breakpoint *b;
3216
3217 b = create_internal_breakpoint (gdbarch, probe->address,
3218 bp_longjmp_master,
3219 &internal_breakpoint_ops);
3220 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3221 b->enable_state = bp_disabled;
3222 }
3223
3224 continue;
3225 }
3226
3227 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3228 {
3229 struct breakpoint *b;
3230 const char *func_name;
3231 CORE_ADDR addr;
3232
3233 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3234 continue;
3235
3236 func_name = longjmp_names[i];
3237 if (bp_objfile_data->longjmp_msym[i] == NULL)
3238 {
3239 struct minimal_symbol *m;
3240
3241 m = lookup_minimal_symbol_text (func_name, objfile);
3242 if (m == NULL)
3243 {
3244 /* Prevent future lookups in this objfile. */
3245 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3246 continue;
3247 }
3248 bp_objfile_data->longjmp_msym[i] = m;
3249 }
3250
3251 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3252 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3253 &internal_breakpoint_ops);
3254 b->addr_string = xstrdup (func_name);
3255 b->enable_state = bp_disabled;
3256 }
3257 }
3258 }
3259 update_global_location_list (1);
3260
3261 do_cleanups (old_chain);
3262 }
3263
3264 /* Create a master std::terminate breakpoint. */
3265 static void
3266 create_std_terminate_master_breakpoint (void)
3267 {
3268 struct program_space *pspace;
3269 struct cleanup *old_chain;
3270 const char *const func_name = "std::terminate()";
3271
3272 old_chain = save_current_program_space ();
3273
3274 ALL_PSPACES (pspace)
3275 {
3276 struct objfile *objfile;
3277 CORE_ADDR addr;
3278
3279 set_current_program_space (pspace);
3280
3281 ALL_OBJFILES (objfile)
3282 {
3283 struct breakpoint *b;
3284 struct breakpoint_objfile_data *bp_objfile_data;
3285
3286 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3287
3288 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3289 continue;
3290
3291 if (bp_objfile_data->terminate_msym == NULL)
3292 {
3293 struct minimal_symbol *m;
3294
3295 m = lookup_minimal_symbol (func_name, NULL, objfile);
3296 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3297 && MSYMBOL_TYPE (m) != mst_file_text))
3298 {
3299 /* Prevent future lookups in this objfile. */
3300 bp_objfile_data->terminate_msym = &msym_not_found;
3301 continue;
3302 }
3303 bp_objfile_data->terminate_msym = m;
3304 }
3305
3306 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3307 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3308 bp_std_terminate_master,
3309 &internal_breakpoint_ops);
3310 b->addr_string = xstrdup (func_name);
3311 b->enable_state = bp_disabled;
3312 }
3313 }
3314
3315 update_global_location_list (1);
3316
3317 do_cleanups (old_chain);
3318 }
3319
3320 /* Install a master breakpoint on the unwinder's debug hook. */
3321
3322 static void
3323 create_exception_master_breakpoint (void)
3324 {
3325 struct objfile *objfile;
3326 const char *const func_name = "_Unwind_DebugHook";
3327
3328 ALL_OBJFILES (objfile)
3329 {
3330 struct breakpoint *b;
3331 struct gdbarch *gdbarch;
3332 struct breakpoint_objfile_data *bp_objfile_data;
3333 CORE_ADDR addr;
3334
3335 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3336
3337 /* We prefer the SystemTap probe point if it exists. */
3338 if (!bp_objfile_data->exception_searched)
3339 {
3340 bp_objfile_data->exception_probes
3341 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3342 bp_objfile_data->exception_searched = 1;
3343 }
3344
3345 if (bp_objfile_data->exception_probes != NULL)
3346 {
3347 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3348 int i;
3349 struct probe *probe;
3350
3351 for (i = 0;
3352 VEC_iterate (probe_p,
3353 bp_objfile_data->exception_probes,
3354 i, probe);
3355 ++i)
3356 {
3357 struct breakpoint *b;
3358
3359 b = create_internal_breakpoint (gdbarch, probe->address,
3360 bp_exception_master,
3361 &internal_breakpoint_ops);
3362 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3363 b->enable_state = bp_disabled;
3364 }
3365
3366 continue;
3367 }
3368
3369 /* Otherwise, try the hook function. */
3370
3371 if (msym_not_found_p (bp_objfile_data->exception_msym))
3372 continue;
3373
3374 gdbarch = get_objfile_arch (objfile);
3375
3376 if (bp_objfile_data->exception_msym == NULL)
3377 {
3378 struct minimal_symbol *debug_hook;
3379
3380 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3381 if (debug_hook == NULL)
3382 {
3383 bp_objfile_data->exception_msym = &msym_not_found;
3384 continue;
3385 }
3386
3387 bp_objfile_data->exception_msym = debug_hook;
3388 }
3389
3390 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3391 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3392 &current_target);
3393 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3394 &internal_breakpoint_ops);
3395 b->addr_string = xstrdup (func_name);
3396 b->enable_state = bp_disabled;
3397 }
3398
3399 update_global_location_list (1);
3400 }
3401
3402 void
3403 update_breakpoints_after_exec (void)
3404 {
3405 struct breakpoint *b, *b_tmp;
3406 struct bp_location *bploc, **bplocp_tmp;
3407
3408 /* We're about to delete breakpoints from GDB's lists. If the
3409 INSERTED flag is true, GDB will try to lift the breakpoints by
3410 writing the breakpoints' "shadow contents" back into memory. The
3411 "shadow contents" are NOT valid after an exec, so GDB should not
3412 do that. Instead, the target is responsible from marking
3413 breakpoints out as soon as it detects an exec. We don't do that
3414 here instead, because there may be other attempts to delete
3415 breakpoints after detecting an exec and before reaching here. */
3416 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3417 if (bploc->pspace == current_program_space)
3418 gdb_assert (!bploc->inserted);
3419
3420 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3421 {
3422 if (b->pspace != current_program_space)
3423 continue;
3424
3425 /* Solib breakpoints must be explicitly reset after an exec(). */
3426 if (b->type == bp_shlib_event)
3427 {
3428 delete_breakpoint (b);
3429 continue;
3430 }
3431
3432 /* JIT breakpoints must be explicitly reset after an exec(). */
3433 if (b->type == bp_jit_event)
3434 {
3435 delete_breakpoint (b);
3436 continue;
3437 }
3438
3439 /* Thread event breakpoints must be set anew after an exec(),
3440 as must overlay event and longjmp master breakpoints. */
3441 if (b->type == bp_thread_event || b->type == bp_overlay_event
3442 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3443 || b->type == bp_exception_master)
3444 {
3445 delete_breakpoint (b);
3446 continue;
3447 }
3448
3449 /* Step-resume breakpoints are meaningless after an exec(). */
3450 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3451 {
3452 delete_breakpoint (b);
3453 continue;
3454 }
3455
3456 /* Longjmp and longjmp-resume breakpoints are also meaningless
3457 after an exec. */
3458 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3459 || b->type == bp_longjmp_call_dummy
3460 || b->type == bp_exception || b->type == bp_exception_resume)
3461 {
3462 delete_breakpoint (b);
3463 continue;
3464 }
3465
3466 if (b->type == bp_catchpoint)
3467 {
3468 /* For now, none of the bp_catchpoint breakpoints need to
3469 do anything at this point. In the future, if some of
3470 the catchpoints need to something, we will need to add
3471 a new method, and call this method from here. */
3472 continue;
3473 }
3474
3475 /* bp_finish is a special case. The only way we ought to be able
3476 to see one of these when an exec() has happened, is if the user
3477 caught a vfork, and then said "finish". Ordinarily a finish just
3478 carries them to the call-site of the current callee, by setting
3479 a temporary bp there and resuming. But in this case, the finish
3480 will carry them entirely through the vfork & exec.
3481
3482 We don't want to allow a bp_finish to remain inserted now. But
3483 we can't safely delete it, 'cause finish_command has a handle to
3484 the bp on a bpstat, and will later want to delete it. There's a
3485 chance (and I've seen it happen) that if we delete the bp_finish
3486 here, that its storage will get reused by the time finish_command
3487 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3488 We really must allow finish_command to delete a bp_finish.
3489
3490 In the absence of a general solution for the "how do we know
3491 it's safe to delete something others may have handles to?"
3492 problem, what we'll do here is just uninsert the bp_finish, and
3493 let finish_command delete it.
3494
3495 (We know the bp_finish is "doomed" in the sense that it's
3496 momentary, and will be deleted as soon as finish_command sees
3497 the inferior stopped. So it doesn't matter that the bp's
3498 address is probably bogus in the new a.out, unlike e.g., the
3499 solib breakpoints.) */
3500
3501 if (b->type == bp_finish)
3502 {
3503 continue;
3504 }
3505
3506 /* Without a symbolic address, we have little hope of the
3507 pre-exec() address meaning the same thing in the post-exec()
3508 a.out. */
3509 if (b->addr_string == NULL)
3510 {
3511 delete_breakpoint (b);
3512 continue;
3513 }
3514 }
3515 /* FIXME what about longjmp breakpoints? Re-create them here? */
3516 create_overlay_event_breakpoint ();
3517 create_longjmp_master_breakpoint ();
3518 create_std_terminate_master_breakpoint ();
3519 create_exception_master_breakpoint ();
3520 }
3521
3522 int
3523 detach_breakpoints (ptid_t ptid)
3524 {
3525 struct bp_location *bl, **blp_tmp;
3526 int val = 0;
3527 struct cleanup *old_chain = save_inferior_ptid ();
3528 struct inferior *inf = current_inferior ();
3529
3530 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3531 error (_("Cannot detach breakpoints of inferior_ptid"));
3532
3533 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3534 inferior_ptid = ptid;
3535 ALL_BP_LOCATIONS (bl, blp_tmp)
3536 {
3537 if (bl->pspace != inf->pspace)
3538 continue;
3539
3540 if (bl->inserted)
3541 val |= remove_breakpoint_1 (bl, mark_inserted);
3542 }
3543
3544 /* Detach single-step breakpoints as well. */
3545 detach_single_step_breakpoints ();
3546
3547 do_cleanups (old_chain);
3548 return val;
3549 }
3550
3551 /* Remove the breakpoint location BL from the current address space.
3552 Note that this is used to detach breakpoints from a child fork.
3553 When we get here, the child isn't in the inferior list, and neither
3554 do we have objects to represent its address space --- we should
3555 *not* look at bl->pspace->aspace here. */
3556
3557 static int
3558 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3559 {
3560 int val;
3561
3562 /* BL is never in moribund_locations by our callers. */
3563 gdb_assert (bl->owner != NULL);
3564
3565 if (bl->owner->enable_state == bp_permanent)
3566 /* Permanent breakpoints cannot be inserted or removed. */
3567 return 0;
3568
3569 /* The type of none suggests that owner is actually deleted.
3570 This should not ever happen. */
3571 gdb_assert (bl->owner->type != bp_none);
3572
3573 if (bl->loc_type == bp_loc_software_breakpoint
3574 || bl->loc_type == bp_loc_hardware_breakpoint)
3575 {
3576 /* "Normal" instruction breakpoint: either the standard
3577 trap-instruction bp (bp_breakpoint), or a
3578 bp_hardware_breakpoint. */
3579
3580 /* First check to see if we have to handle an overlay. */
3581 if (overlay_debugging == ovly_off
3582 || bl->section == NULL
3583 || !(section_is_overlay (bl->section)))
3584 {
3585 /* No overlay handling: just remove the breakpoint. */
3586 val = bl->owner->ops->remove_location (bl);
3587 }
3588 else
3589 {
3590 /* This breakpoint is in an overlay section.
3591 Did we set a breakpoint at the LMA? */
3592 if (!overlay_events_enabled)
3593 {
3594 /* Yes -- overlay event support is not active, so we
3595 should have set a breakpoint at the LMA. Remove it.
3596 */
3597 /* Ignore any failures: if the LMA is in ROM, we will
3598 have already warned when we failed to insert it. */
3599 if (bl->loc_type == bp_loc_hardware_breakpoint)
3600 target_remove_hw_breakpoint (bl->gdbarch,
3601 &bl->overlay_target_info);
3602 else
3603 target_remove_breakpoint (bl->gdbarch,
3604 &bl->overlay_target_info);
3605 }
3606 /* Did we set a breakpoint at the VMA?
3607 If so, we will have marked the breakpoint 'inserted'. */
3608 if (bl->inserted)
3609 {
3610 /* Yes -- remove it. Previously we did not bother to
3611 remove the breakpoint if the section had been
3612 unmapped, but let's not rely on that being safe. We
3613 don't know what the overlay manager might do. */
3614
3615 /* However, we should remove *software* breakpoints only
3616 if the section is still mapped, or else we overwrite
3617 wrong code with the saved shadow contents. */
3618 if (bl->loc_type == bp_loc_hardware_breakpoint
3619 || section_is_mapped (bl->section))
3620 val = bl->owner->ops->remove_location (bl);
3621 else
3622 val = 0;
3623 }
3624 else
3625 {
3626 /* No -- not inserted, so no need to remove. No error. */
3627 val = 0;
3628 }
3629 }
3630
3631 /* In some cases, we might not be able to remove a breakpoint
3632 in a shared library that has already been removed, but we
3633 have not yet processed the shlib unload event. */
3634 if (val && solib_name_from_address (bl->pspace, bl->address))
3635 val = 0;
3636
3637 if (val)
3638 return val;
3639 bl->inserted = (is == mark_inserted);
3640 }
3641 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3642 {
3643 gdb_assert (bl->owner->ops != NULL
3644 && bl->owner->ops->remove_location != NULL);
3645
3646 bl->inserted = (is == mark_inserted);
3647 bl->owner->ops->remove_location (bl);
3648
3649 /* Failure to remove any of the hardware watchpoints comes here. */
3650 if ((is == mark_uninserted) && (bl->inserted))
3651 warning (_("Could not remove hardware watchpoint %d."),
3652 bl->owner->number);
3653 }
3654 else if (bl->owner->type == bp_catchpoint
3655 && breakpoint_enabled (bl->owner)
3656 && !bl->duplicate)
3657 {
3658 gdb_assert (bl->owner->ops != NULL
3659 && bl->owner->ops->remove_location != NULL);
3660
3661 val = bl->owner->ops->remove_location (bl);
3662 if (val)
3663 return val;
3664
3665 bl->inserted = (is == mark_inserted);
3666 }
3667
3668 return 0;
3669 }
3670
3671 static int
3672 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3673 {
3674 int ret;
3675 struct cleanup *old_chain;
3676
3677 /* BL is never in moribund_locations by our callers. */
3678 gdb_assert (bl->owner != NULL);
3679
3680 if (bl->owner->enable_state == bp_permanent)
3681 /* Permanent breakpoints cannot be inserted or removed. */
3682 return 0;
3683
3684 /* The type of none suggests that owner is actually deleted.
3685 This should not ever happen. */
3686 gdb_assert (bl->owner->type != bp_none);
3687
3688 old_chain = save_current_space_and_thread ();
3689
3690 switch_to_program_space_and_thread (bl->pspace);
3691
3692 ret = remove_breakpoint_1 (bl, is);
3693
3694 do_cleanups (old_chain);
3695 return ret;
3696 }
3697
3698 /* Clear the "inserted" flag in all breakpoints. */
3699
3700 void
3701 mark_breakpoints_out (void)
3702 {
3703 struct bp_location *bl, **blp_tmp;
3704
3705 ALL_BP_LOCATIONS (bl, blp_tmp)
3706 if (bl->pspace == current_program_space)
3707 bl->inserted = 0;
3708 }
3709
3710 /* Clear the "inserted" flag in all breakpoints and delete any
3711 breakpoints which should go away between runs of the program.
3712
3713 Plus other such housekeeping that has to be done for breakpoints
3714 between runs.
3715
3716 Note: this function gets called at the end of a run (by
3717 generic_mourn_inferior) and when a run begins (by
3718 init_wait_for_inferior). */
3719
3720
3721
3722 void
3723 breakpoint_init_inferior (enum inf_context context)
3724 {
3725 struct breakpoint *b, *b_tmp;
3726 struct bp_location *bl, **blp_tmp;
3727 int ix;
3728 struct program_space *pspace = current_program_space;
3729
3730 /* If breakpoint locations are shared across processes, then there's
3731 nothing to do. */
3732 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3733 return;
3734
3735 ALL_BP_LOCATIONS (bl, blp_tmp)
3736 {
3737 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3738 if (bl->pspace == pspace
3739 && bl->owner->enable_state != bp_permanent)
3740 bl->inserted = 0;
3741 }
3742
3743 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3744 {
3745 if (b->loc && b->loc->pspace != pspace)
3746 continue;
3747
3748 switch (b->type)
3749 {
3750 case bp_call_dummy:
3751 case bp_longjmp_call_dummy:
3752
3753 /* If the call dummy breakpoint is at the entry point it will
3754 cause problems when the inferior is rerun, so we better get
3755 rid of it. */
3756
3757 case bp_watchpoint_scope:
3758
3759 /* Also get rid of scope breakpoints. */
3760
3761 case bp_shlib_event:
3762
3763 /* Also remove solib event breakpoints. Their addresses may
3764 have changed since the last time we ran the program.
3765 Actually we may now be debugging against different target;
3766 and so the solib backend that installed this breakpoint may
3767 not be used in by the target. E.g.,
3768
3769 (gdb) file prog-linux
3770 (gdb) run # native linux target
3771 ...
3772 (gdb) kill
3773 (gdb) file prog-win.exe
3774 (gdb) tar rem :9999 # remote Windows gdbserver.
3775 */
3776
3777 case bp_step_resume:
3778
3779 /* Also remove step-resume breakpoints. */
3780
3781 delete_breakpoint (b);
3782 break;
3783
3784 case bp_watchpoint:
3785 case bp_hardware_watchpoint:
3786 case bp_read_watchpoint:
3787 case bp_access_watchpoint:
3788 {
3789 struct watchpoint *w = (struct watchpoint *) b;
3790
3791 /* Likewise for watchpoints on local expressions. */
3792 if (w->exp_valid_block != NULL)
3793 delete_breakpoint (b);
3794 else if (context == inf_starting)
3795 {
3796 /* Reset val field to force reread of starting value in
3797 insert_breakpoints. */
3798 if (w->val)
3799 value_free (w->val);
3800 w->val = NULL;
3801 w->val_valid = 0;
3802 }
3803 }
3804 break;
3805 default:
3806 break;
3807 }
3808 }
3809
3810 /* Get rid of the moribund locations. */
3811 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3812 decref_bp_location (&bl);
3813 VEC_free (bp_location_p, moribund_locations);
3814 }
3815
3816 /* These functions concern about actual breakpoints inserted in the
3817 target --- to e.g. check if we need to do decr_pc adjustment or if
3818 we need to hop over the bkpt --- so we check for address space
3819 match, not program space. */
3820
3821 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3822 exists at PC. It returns ordinary_breakpoint_here if it's an
3823 ordinary breakpoint, or permanent_breakpoint_here if it's a
3824 permanent breakpoint.
3825 - When continuing from a location with an ordinary breakpoint, we
3826 actually single step once before calling insert_breakpoints.
3827 - When continuing from a location with a permanent breakpoint, we
3828 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3829 the target, to advance the PC past the breakpoint. */
3830
3831 enum breakpoint_here
3832 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3833 {
3834 struct bp_location *bl, **blp_tmp;
3835 int any_breakpoint_here = 0;
3836
3837 ALL_BP_LOCATIONS (bl, blp_tmp)
3838 {
3839 if (bl->loc_type != bp_loc_software_breakpoint
3840 && bl->loc_type != bp_loc_hardware_breakpoint)
3841 continue;
3842
3843 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3844 if ((breakpoint_enabled (bl->owner)
3845 || bl->owner->enable_state == bp_permanent)
3846 && breakpoint_location_address_match (bl, aspace, pc))
3847 {
3848 if (overlay_debugging
3849 && section_is_overlay (bl->section)
3850 && !section_is_mapped (bl->section))
3851 continue; /* unmapped overlay -- can't be a match */
3852 else if (bl->owner->enable_state == bp_permanent)
3853 return permanent_breakpoint_here;
3854 else
3855 any_breakpoint_here = 1;
3856 }
3857 }
3858
3859 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3860 }
3861
3862 /* Return true if there's a moribund breakpoint at PC. */
3863
3864 int
3865 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3866 {
3867 struct bp_location *loc;
3868 int ix;
3869
3870 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3871 if (breakpoint_location_address_match (loc, aspace, pc))
3872 return 1;
3873
3874 return 0;
3875 }
3876
3877 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3878 inserted using regular breakpoint_chain / bp_location array
3879 mechanism. This does not check for single-step breakpoints, which
3880 are inserted and removed using direct target manipulation. */
3881
3882 int
3883 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3884 CORE_ADDR pc)
3885 {
3886 struct bp_location *bl, **blp_tmp;
3887
3888 ALL_BP_LOCATIONS (bl, blp_tmp)
3889 {
3890 if (bl->loc_type != bp_loc_software_breakpoint
3891 && bl->loc_type != bp_loc_hardware_breakpoint)
3892 continue;
3893
3894 if (bl->inserted
3895 && breakpoint_location_address_match (bl, aspace, pc))
3896 {
3897 if (overlay_debugging
3898 && section_is_overlay (bl->section)
3899 && !section_is_mapped (bl->section))
3900 continue; /* unmapped overlay -- can't be a match */
3901 else
3902 return 1;
3903 }
3904 }
3905 return 0;
3906 }
3907
3908 /* Returns non-zero iff there's either regular breakpoint
3909 or a single step breakpoint inserted at PC. */
3910
3911 int
3912 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3913 {
3914 if (regular_breakpoint_inserted_here_p (aspace, pc))
3915 return 1;
3916
3917 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3918 return 1;
3919
3920 return 0;
3921 }
3922
3923 /* This function returns non-zero iff there is a software breakpoint
3924 inserted at PC. */
3925
3926 int
3927 software_breakpoint_inserted_here_p (struct address_space *aspace,
3928 CORE_ADDR pc)
3929 {
3930 struct bp_location *bl, **blp_tmp;
3931
3932 ALL_BP_LOCATIONS (bl, blp_tmp)
3933 {
3934 if (bl->loc_type != bp_loc_software_breakpoint)
3935 continue;
3936
3937 if (bl->inserted
3938 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3939 aspace, pc))
3940 {
3941 if (overlay_debugging
3942 && section_is_overlay (bl->section)
3943 && !section_is_mapped (bl->section))
3944 continue; /* unmapped overlay -- can't be a match */
3945 else
3946 return 1;
3947 }
3948 }
3949
3950 /* Also check for software single-step breakpoints. */
3951 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3952 return 1;
3953
3954 return 0;
3955 }
3956
3957 int
3958 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3959 CORE_ADDR addr, ULONGEST len)
3960 {
3961 struct breakpoint *bpt;
3962
3963 ALL_BREAKPOINTS (bpt)
3964 {
3965 struct bp_location *loc;
3966
3967 if (bpt->type != bp_hardware_watchpoint
3968 && bpt->type != bp_access_watchpoint)
3969 continue;
3970
3971 if (!breakpoint_enabled (bpt))
3972 continue;
3973
3974 for (loc = bpt->loc; loc; loc = loc->next)
3975 if (loc->pspace->aspace == aspace && loc->inserted)
3976 {
3977 CORE_ADDR l, h;
3978
3979 /* Check for intersection. */
3980 l = max (loc->address, addr);
3981 h = min (loc->address + loc->length, addr + len);
3982 if (l < h)
3983 return 1;
3984 }
3985 }
3986 return 0;
3987 }
3988
3989 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3990 PC is valid for process/thread PTID. */
3991
3992 int
3993 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
3994 ptid_t ptid)
3995 {
3996 struct bp_location *bl, **blp_tmp;
3997 /* The thread and task IDs associated to PTID, computed lazily. */
3998 int thread = -1;
3999 int task = 0;
4000
4001 ALL_BP_LOCATIONS (bl, blp_tmp)
4002 {
4003 if (bl->loc_type != bp_loc_software_breakpoint
4004 && bl->loc_type != bp_loc_hardware_breakpoint)
4005 continue;
4006
4007 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4008 if (!breakpoint_enabled (bl->owner)
4009 && bl->owner->enable_state != bp_permanent)
4010 continue;
4011
4012 if (!breakpoint_location_address_match (bl, aspace, pc))
4013 continue;
4014
4015 if (bl->owner->thread != -1)
4016 {
4017 /* This is a thread-specific breakpoint. Check that ptid
4018 matches that thread. If thread hasn't been computed yet,
4019 it is now time to do so. */
4020 if (thread == -1)
4021 thread = pid_to_thread_id (ptid);
4022 if (bl->owner->thread != thread)
4023 continue;
4024 }
4025
4026 if (bl->owner->task != 0)
4027 {
4028 /* This is a task-specific breakpoint. Check that ptid
4029 matches that task. If task hasn't been computed yet,
4030 it is now time to do so. */
4031 if (task == 0)
4032 task = ada_get_task_number (ptid);
4033 if (bl->owner->task != task)
4034 continue;
4035 }
4036
4037 if (overlay_debugging
4038 && section_is_overlay (bl->section)
4039 && !section_is_mapped (bl->section))
4040 continue; /* unmapped overlay -- can't be a match */
4041
4042 return 1;
4043 }
4044
4045 return 0;
4046 }
4047 \f
4048
4049 /* bpstat stuff. External routines' interfaces are documented
4050 in breakpoint.h. */
4051
4052 int
4053 is_catchpoint (struct breakpoint *ep)
4054 {
4055 return (ep->type == bp_catchpoint);
4056 }
4057
4058 /* Frees any storage that is part of a bpstat. Does not walk the
4059 'next' chain. */
4060
4061 static void
4062 bpstat_free (bpstat bs)
4063 {
4064 if (bs->old_val != NULL)
4065 value_free (bs->old_val);
4066 decref_counted_command_line (&bs->commands);
4067 decref_bp_location (&bs->bp_location_at);
4068 xfree (bs);
4069 }
4070
4071 /* Clear a bpstat so that it says we are not at any breakpoint.
4072 Also free any storage that is part of a bpstat. */
4073
4074 void
4075 bpstat_clear (bpstat *bsp)
4076 {
4077 bpstat p;
4078 bpstat q;
4079
4080 if (bsp == 0)
4081 return;
4082 p = *bsp;
4083 while (p != NULL)
4084 {
4085 q = p->next;
4086 bpstat_free (p);
4087 p = q;
4088 }
4089 *bsp = NULL;
4090 }
4091
4092 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4093 is part of the bpstat is copied as well. */
4094
4095 bpstat
4096 bpstat_copy (bpstat bs)
4097 {
4098 bpstat p = NULL;
4099 bpstat tmp;
4100 bpstat retval = NULL;
4101
4102 if (bs == NULL)
4103 return bs;
4104
4105 for (; bs != NULL; bs = bs->next)
4106 {
4107 tmp = (bpstat) xmalloc (sizeof (*tmp));
4108 memcpy (tmp, bs, sizeof (*tmp));
4109 incref_counted_command_line (tmp->commands);
4110 incref_bp_location (tmp->bp_location_at);
4111 if (bs->old_val != NULL)
4112 {
4113 tmp->old_val = value_copy (bs->old_val);
4114 release_value (tmp->old_val);
4115 }
4116
4117 if (p == NULL)
4118 /* This is the first thing in the chain. */
4119 retval = tmp;
4120 else
4121 p->next = tmp;
4122 p = tmp;
4123 }
4124 p->next = NULL;
4125 return retval;
4126 }
4127
4128 /* Find the bpstat associated with this breakpoint. */
4129
4130 bpstat
4131 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4132 {
4133 if (bsp == NULL)
4134 return NULL;
4135
4136 for (; bsp != NULL; bsp = bsp->next)
4137 {
4138 if (bsp->breakpoint_at == breakpoint)
4139 return bsp;
4140 }
4141 return NULL;
4142 }
4143
4144 /* See breakpoint.h. */
4145
4146 enum bpstat_signal_value
4147 bpstat_explains_signal (bpstat bsp)
4148 {
4149 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4150
4151 for (; bsp != NULL; bsp = bsp->next)
4152 {
4153 /* Ensure that, if we ever entered this loop, then we at least
4154 return BPSTAT_SIGNAL_HIDE. */
4155 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4156
4157 if (bsp->breakpoint_at != NULL)
4158 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4159
4160 if (newval > result)
4161 result = newval;
4162 }
4163
4164 return result;
4165 }
4166
4167 /* Put in *NUM the breakpoint number of the first breakpoint we are
4168 stopped at. *BSP upon return is a bpstat which points to the
4169 remaining breakpoints stopped at (but which is not guaranteed to be
4170 good for anything but further calls to bpstat_num).
4171
4172 Return 0 if passed a bpstat which does not indicate any breakpoints.
4173 Return -1 if stopped at a breakpoint that has been deleted since
4174 we set it.
4175 Return 1 otherwise. */
4176
4177 int
4178 bpstat_num (bpstat *bsp, int *num)
4179 {
4180 struct breakpoint *b;
4181
4182 if ((*bsp) == NULL)
4183 return 0; /* No more breakpoint values */
4184
4185 /* We assume we'll never have several bpstats that correspond to a
4186 single breakpoint -- otherwise, this function might return the
4187 same number more than once and this will look ugly. */
4188 b = (*bsp)->breakpoint_at;
4189 *bsp = (*bsp)->next;
4190 if (b == NULL)
4191 return -1; /* breakpoint that's been deleted since */
4192
4193 *num = b->number; /* We have its number */
4194 return 1;
4195 }
4196
4197 /* See breakpoint.h. */
4198
4199 void
4200 bpstat_clear_actions (void)
4201 {
4202 struct thread_info *tp;
4203 bpstat bs;
4204
4205 if (ptid_equal (inferior_ptid, null_ptid))
4206 return;
4207
4208 tp = find_thread_ptid (inferior_ptid);
4209 if (tp == NULL)
4210 return;
4211
4212 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4213 {
4214 decref_counted_command_line (&bs->commands);
4215
4216 if (bs->old_val != NULL)
4217 {
4218 value_free (bs->old_val);
4219 bs->old_val = NULL;
4220 }
4221 }
4222 }
4223
4224 /* Called when a command is about to proceed the inferior. */
4225
4226 static void
4227 breakpoint_about_to_proceed (void)
4228 {
4229 if (!ptid_equal (inferior_ptid, null_ptid))
4230 {
4231 struct thread_info *tp = inferior_thread ();
4232
4233 /* Allow inferior function calls in breakpoint commands to not
4234 interrupt the command list. When the call finishes
4235 successfully, the inferior will be standing at the same
4236 breakpoint as if nothing happened. */
4237 if (tp->control.in_infcall)
4238 return;
4239 }
4240
4241 breakpoint_proceeded = 1;
4242 }
4243
4244 /* Stub for cleaning up our state if we error-out of a breakpoint
4245 command. */
4246 static void
4247 cleanup_executing_breakpoints (void *ignore)
4248 {
4249 executing_breakpoint_commands = 0;
4250 }
4251
4252 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4253 or its equivalent. */
4254
4255 static int
4256 command_line_is_silent (struct command_line *cmd)
4257 {
4258 return cmd && (strcmp ("silent", cmd->line) == 0
4259 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4260 }
4261
4262 /* Execute all the commands associated with all the breakpoints at
4263 this location. Any of these commands could cause the process to
4264 proceed beyond this point, etc. We look out for such changes by
4265 checking the global "breakpoint_proceeded" after each command.
4266
4267 Returns true if a breakpoint command resumed the inferior. In that
4268 case, it is the caller's responsibility to recall it again with the
4269 bpstat of the current thread. */
4270
4271 static int
4272 bpstat_do_actions_1 (bpstat *bsp)
4273 {
4274 bpstat bs;
4275 struct cleanup *old_chain;
4276 int again = 0;
4277
4278 /* Avoid endless recursion if a `source' command is contained
4279 in bs->commands. */
4280 if (executing_breakpoint_commands)
4281 return 0;
4282
4283 executing_breakpoint_commands = 1;
4284 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4285
4286 prevent_dont_repeat ();
4287
4288 /* This pointer will iterate over the list of bpstat's. */
4289 bs = *bsp;
4290
4291 breakpoint_proceeded = 0;
4292 for (; bs != NULL; bs = bs->next)
4293 {
4294 struct counted_command_line *ccmd;
4295 struct command_line *cmd;
4296 struct cleanup *this_cmd_tree_chain;
4297
4298 /* Take ownership of the BSP's command tree, if it has one.
4299
4300 The command tree could legitimately contain commands like
4301 'step' and 'next', which call clear_proceed_status, which
4302 frees stop_bpstat's command tree. To make sure this doesn't
4303 free the tree we're executing out from under us, we need to
4304 take ownership of the tree ourselves. Since a given bpstat's
4305 commands are only executed once, we don't need to copy it; we
4306 can clear the pointer in the bpstat, and make sure we free
4307 the tree when we're done. */
4308 ccmd = bs->commands;
4309 bs->commands = NULL;
4310 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4311 cmd = ccmd ? ccmd->commands : NULL;
4312 if (command_line_is_silent (cmd))
4313 {
4314 /* The action has been already done by bpstat_stop_status. */
4315 cmd = cmd->next;
4316 }
4317
4318 while (cmd != NULL)
4319 {
4320 execute_control_command (cmd);
4321
4322 if (breakpoint_proceeded)
4323 break;
4324 else
4325 cmd = cmd->next;
4326 }
4327
4328 /* We can free this command tree now. */
4329 do_cleanups (this_cmd_tree_chain);
4330
4331 if (breakpoint_proceeded)
4332 {
4333 if (target_can_async_p ())
4334 /* If we are in async mode, then the target might be still
4335 running, not stopped at any breakpoint, so nothing for
4336 us to do here -- just return to the event loop. */
4337 ;
4338 else
4339 /* In sync mode, when execute_control_command returns
4340 we're already standing on the next breakpoint.
4341 Breakpoint commands for that stop were not run, since
4342 execute_command does not run breakpoint commands --
4343 only command_line_handler does, but that one is not
4344 involved in execution of breakpoint commands. So, we
4345 can now execute breakpoint commands. It should be
4346 noted that making execute_command do bpstat actions is
4347 not an option -- in this case we'll have recursive
4348 invocation of bpstat for each breakpoint with a
4349 command, and can easily blow up GDB stack. Instead, we
4350 return true, which will trigger the caller to recall us
4351 with the new stop_bpstat. */
4352 again = 1;
4353 break;
4354 }
4355 }
4356 do_cleanups (old_chain);
4357 return again;
4358 }
4359
4360 void
4361 bpstat_do_actions (void)
4362 {
4363 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4364
4365 /* Do any commands attached to breakpoint we are stopped at. */
4366 while (!ptid_equal (inferior_ptid, null_ptid)
4367 && target_has_execution
4368 && !is_exited (inferior_ptid)
4369 && !is_executing (inferior_ptid))
4370 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4371 and only return when it is stopped at the next breakpoint, we
4372 keep doing breakpoint actions until it returns false to
4373 indicate the inferior was not resumed. */
4374 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4375 break;
4376
4377 discard_cleanups (cleanup_if_error);
4378 }
4379
4380 /* Print out the (old or new) value associated with a watchpoint. */
4381
4382 static void
4383 watchpoint_value_print (struct value *val, struct ui_file *stream)
4384 {
4385 if (val == NULL)
4386 fprintf_unfiltered (stream, _("<unreadable>"));
4387 else
4388 {
4389 struct value_print_options opts;
4390 get_user_print_options (&opts);
4391 value_print (val, stream, &opts);
4392 }
4393 }
4394
4395 /* Generic routine for printing messages indicating why we
4396 stopped. The behavior of this function depends on the value
4397 'print_it' in the bpstat structure. Under some circumstances we
4398 may decide not to print anything here and delegate the task to
4399 normal_stop(). */
4400
4401 static enum print_stop_action
4402 print_bp_stop_message (bpstat bs)
4403 {
4404 switch (bs->print_it)
4405 {
4406 case print_it_noop:
4407 /* Nothing should be printed for this bpstat entry. */
4408 return PRINT_UNKNOWN;
4409 break;
4410
4411 case print_it_done:
4412 /* We still want to print the frame, but we already printed the
4413 relevant messages. */
4414 return PRINT_SRC_AND_LOC;
4415 break;
4416
4417 case print_it_normal:
4418 {
4419 struct breakpoint *b = bs->breakpoint_at;
4420
4421 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4422 which has since been deleted. */
4423 if (b == NULL)
4424 return PRINT_UNKNOWN;
4425
4426 /* Normal case. Call the breakpoint's print_it method. */
4427 return b->ops->print_it (bs);
4428 }
4429 break;
4430
4431 default:
4432 internal_error (__FILE__, __LINE__,
4433 _("print_bp_stop_message: unrecognized enum value"));
4434 break;
4435 }
4436 }
4437
4438 /* A helper function that prints a shared library stopped event. */
4439
4440 static void
4441 print_solib_event (int is_catchpoint)
4442 {
4443 int any_deleted
4444 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4445 int any_added
4446 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4447
4448 if (!is_catchpoint)
4449 {
4450 if (any_added || any_deleted)
4451 ui_out_text (current_uiout,
4452 _("Stopped due to shared library event:\n"));
4453 else
4454 ui_out_text (current_uiout,
4455 _("Stopped due to shared library event (no "
4456 "libraries added or removed)\n"));
4457 }
4458
4459 if (ui_out_is_mi_like_p (current_uiout))
4460 ui_out_field_string (current_uiout, "reason",
4461 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4462
4463 if (any_deleted)
4464 {
4465 struct cleanup *cleanup;
4466 char *name;
4467 int ix;
4468
4469 ui_out_text (current_uiout, _(" Inferior unloaded "));
4470 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4471 "removed");
4472 for (ix = 0;
4473 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4474 ix, name);
4475 ++ix)
4476 {
4477 if (ix > 0)
4478 ui_out_text (current_uiout, " ");
4479 ui_out_field_string (current_uiout, "library", name);
4480 ui_out_text (current_uiout, "\n");
4481 }
4482
4483 do_cleanups (cleanup);
4484 }
4485
4486 if (any_added)
4487 {
4488 struct so_list *iter;
4489 int ix;
4490 struct cleanup *cleanup;
4491
4492 ui_out_text (current_uiout, _(" Inferior loaded "));
4493 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4494 "added");
4495 for (ix = 0;
4496 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4497 ix, iter);
4498 ++ix)
4499 {
4500 if (ix > 0)
4501 ui_out_text (current_uiout, " ");
4502 ui_out_field_string (current_uiout, "library", iter->so_name);
4503 ui_out_text (current_uiout, "\n");
4504 }
4505
4506 do_cleanups (cleanup);
4507 }
4508 }
4509
4510 /* Print a message indicating what happened. This is called from
4511 normal_stop(). The input to this routine is the head of the bpstat
4512 list - a list of the eventpoints that caused this stop. KIND is
4513 the target_waitkind for the stopping event. This
4514 routine calls the generic print routine for printing a message
4515 about reasons for stopping. This will print (for example) the
4516 "Breakpoint n," part of the output. The return value of this
4517 routine is one of:
4518
4519 PRINT_UNKNOWN: Means we printed nothing.
4520 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4521 code to print the location. An example is
4522 "Breakpoint 1, " which should be followed by
4523 the location.
4524 PRINT_SRC_ONLY: Means we printed something, but there is no need
4525 to also print the location part of the message.
4526 An example is the catch/throw messages, which
4527 don't require a location appended to the end.
4528 PRINT_NOTHING: We have done some printing and we don't need any
4529 further info to be printed. */
4530
4531 enum print_stop_action
4532 bpstat_print (bpstat bs, int kind)
4533 {
4534 int val;
4535
4536 /* Maybe another breakpoint in the chain caused us to stop.
4537 (Currently all watchpoints go on the bpstat whether hit or not.
4538 That probably could (should) be changed, provided care is taken
4539 with respect to bpstat_explains_signal). */
4540 for (; bs; bs = bs->next)
4541 {
4542 val = print_bp_stop_message (bs);
4543 if (val == PRINT_SRC_ONLY
4544 || val == PRINT_SRC_AND_LOC
4545 || val == PRINT_NOTHING)
4546 return val;
4547 }
4548
4549 /* If we had hit a shared library event breakpoint,
4550 print_bp_stop_message would print out this message. If we hit an
4551 OS-level shared library event, do the same thing. */
4552 if (kind == TARGET_WAITKIND_LOADED)
4553 {
4554 print_solib_event (0);
4555 return PRINT_NOTHING;
4556 }
4557
4558 /* We reached the end of the chain, or we got a null BS to start
4559 with and nothing was printed. */
4560 return PRINT_UNKNOWN;
4561 }
4562
4563 /* Evaluate the expression EXP and return 1 if value is zero. This is
4564 used inside a catch_errors to evaluate the breakpoint condition.
4565 The argument is a "struct expression *" that has been cast to a
4566 "char *" to make it pass through catch_errors. */
4567
4568 static int
4569 breakpoint_cond_eval (void *exp)
4570 {
4571 struct value *mark = value_mark ();
4572 int i = !value_true (evaluate_expression ((struct expression *) exp));
4573
4574 value_free_to_mark (mark);
4575 return i;
4576 }
4577
4578 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4579
4580 static bpstat
4581 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4582 {
4583 bpstat bs;
4584
4585 bs = (bpstat) xmalloc (sizeof (*bs));
4586 bs->next = NULL;
4587 **bs_link_pointer = bs;
4588 *bs_link_pointer = &bs->next;
4589 bs->breakpoint_at = bl->owner;
4590 bs->bp_location_at = bl;
4591 incref_bp_location (bl);
4592 /* If the condition is false, etc., don't do the commands. */
4593 bs->commands = NULL;
4594 bs->old_val = NULL;
4595 bs->print_it = print_it_normal;
4596 return bs;
4597 }
4598 \f
4599 /* The target has stopped with waitstatus WS. Check if any hardware
4600 watchpoints have triggered, according to the target. */
4601
4602 int
4603 watchpoints_triggered (struct target_waitstatus *ws)
4604 {
4605 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4606 CORE_ADDR addr;
4607 struct breakpoint *b;
4608
4609 if (!stopped_by_watchpoint)
4610 {
4611 /* We were not stopped by a watchpoint. Mark all watchpoints
4612 as not triggered. */
4613 ALL_BREAKPOINTS (b)
4614 if (is_hardware_watchpoint (b))
4615 {
4616 struct watchpoint *w = (struct watchpoint *) b;
4617
4618 w->watchpoint_triggered = watch_triggered_no;
4619 }
4620
4621 return 0;
4622 }
4623
4624 if (!target_stopped_data_address (&current_target, &addr))
4625 {
4626 /* We were stopped by a watchpoint, but we don't know where.
4627 Mark all watchpoints as unknown. */
4628 ALL_BREAKPOINTS (b)
4629 if (is_hardware_watchpoint (b))
4630 {
4631 struct watchpoint *w = (struct watchpoint *) b;
4632
4633 w->watchpoint_triggered = watch_triggered_unknown;
4634 }
4635
4636 return stopped_by_watchpoint;
4637 }
4638
4639 /* The target could report the data address. Mark watchpoints
4640 affected by this data address as triggered, and all others as not
4641 triggered. */
4642
4643 ALL_BREAKPOINTS (b)
4644 if (is_hardware_watchpoint (b))
4645 {
4646 struct watchpoint *w = (struct watchpoint *) b;
4647 struct bp_location *loc;
4648
4649 w->watchpoint_triggered = watch_triggered_no;
4650 for (loc = b->loc; loc; loc = loc->next)
4651 {
4652 if (is_masked_watchpoint (b))
4653 {
4654 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4655 CORE_ADDR start = loc->address & w->hw_wp_mask;
4656
4657 if (newaddr == start)
4658 {
4659 w->watchpoint_triggered = watch_triggered_yes;
4660 break;
4661 }
4662 }
4663 /* Exact match not required. Within range is sufficient. */
4664 else if (target_watchpoint_addr_within_range (&current_target,
4665 addr, loc->address,
4666 loc->length))
4667 {
4668 w->watchpoint_triggered = watch_triggered_yes;
4669 break;
4670 }
4671 }
4672 }
4673
4674 return 1;
4675 }
4676
4677 /* Possible return values for watchpoint_check (this can't be an enum
4678 because of check_errors). */
4679 /* The watchpoint has been deleted. */
4680 #define WP_DELETED 1
4681 /* The value has changed. */
4682 #define WP_VALUE_CHANGED 2
4683 /* The value has not changed. */
4684 #define WP_VALUE_NOT_CHANGED 3
4685 /* Ignore this watchpoint, no matter if the value changed or not. */
4686 #define WP_IGNORE 4
4687
4688 #define BP_TEMPFLAG 1
4689 #define BP_HARDWAREFLAG 2
4690
4691 /* Evaluate watchpoint condition expression and check if its value
4692 changed.
4693
4694 P should be a pointer to struct bpstat, but is defined as a void *
4695 in order for this function to be usable with catch_errors. */
4696
4697 static int
4698 watchpoint_check (void *p)
4699 {
4700 bpstat bs = (bpstat) p;
4701 struct watchpoint *b;
4702 struct frame_info *fr;
4703 int within_current_scope;
4704
4705 /* BS is built from an existing struct breakpoint. */
4706 gdb_assert (bs->breakpoint_at != NULL);
4707 b = (struct watchpoint *) bs->breakpoint_at;
4708
4709 /* If this is a local watchpoint, we only want to check if the
4710 watchpoint frame is in scope if the current thread is the thread
4711 that was used to create the watchpoint. */
4712 if (!watchpoint_in_thread_scope (b))
4713 return WP_IGNORE;
4714
4715 if (b->exp_valid_block == NULL)
4716 within_current_scope = 1;
4717 else
4718 {
4719 struct frame_info *frame = get_current_frame ();
4720 struct gdbarch *frame_arch = get_frame_arch (frame);
4721 CORE_ADDR frame_pc = get_frame_pc (frame);
4722
4723 /* in_function_epilogue_p() returns a non-zero value if we're
4724 still in the function but the stack frame has already been
4725 invalidated. Since we can't rely on the values of local
4726 variables after the stack has been destroyed, we are treating
4727 the watchpoint in that state as `not changed' without further
4728 checking. Don't mark watchpoints as changed if the current
4729 frame is in an epilogue - even if they are in some other
4730 frame, our view of the stack is likely to be wrong and
4731 frame_find_by_id could error out. */
4732 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4733 return WP_IGNORE;
4734
4735 fr = frame_find_by_id (b->watchpoint_frame);
4736 within_current_scope = (fr != NULL);
4737
4738 /* If we've gotten confused in the unwinder, we might have
4739 returned a frame that can't describe this variable. */
4740 if (within_current_scope)
4741 {
4742 struct symbol *function;
4743
4744 function = get_frame_function (fr);
4745 if (function == NULL
4746 || !contained_in (b->exp_valid_block,
4747 SYMBOL_BLOCK_VALUE (function)))
4748 within_current_scope = 0;
4749 }
4750
4751 if (within_current_scope)
4752 /* If we end up stopping, the current frame will get selected
4753 in normal_stop. So this call to select_frame won't affect
4754 the user. */
4755 select_frame (fr);
4756 }
4757
4758 if (within_current_scope)
4759 {
4760 /* We use value_{,free_to_}mark because it could be a *long*
4761 time before we return to the command level and call
4762 free_all_values. We can't call free_all_values because we
4763 might be in the middle of evaluating a function call. */
4764
4765 int pc = 0;
4766 struct value *mark;
4767 struct value *new_val;
4768
4769 if (is_masked_watchpoint (&b->base))
4770 /* Since we don't know the exact trigger address (from
4771 stopped_data_address), just tell the user we've triggered
4772 a mask watchpoint. */
4773 return WP_VALUE_CHANGED;
4774
4775 mark = value_mark ();
4776 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4777
4778 /* We use value_equal_contents instead of value_equal because
4779 the latter coerces an array to a pointer, thus comparing just
4780 the address of the array instead of its contents. This is
4781 not what we want. */
4782 if ((b->val != NULL) != (new_val != NULL)
4783 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4784 {
4785 if (new_val != NULL)
4786 {
4787 release_value (new_val);
4788 value_free_to_mark (mark);
4789 }
4790 bs->old_val = b->val;
4791 b->val = new_val;
4792 b->val_valid = 1;
4793 return WP_VALUE_CHANGED;
4794 }
4795 else
4796 {
4797 /* Nothing changed. */
4798 value_free_to_mark (mark);
4799 return WP_VALUE_NOT_CHANGED;
4800 }
4801 }
4802 else
4803 {
4804 struct ui_out *uiout = current_uiout;
4805
4806 /* This seems like the only logical thing to do because
4807 if we temporarily ignored the watchpoint, then when
4808 we reenter the block in which it is valid it contains
4809 garbage (in the case of a function, it may have two
4810 garbage values, one before and one after the prologue).
4811 So we can't even detect the first assignment to it and
4812 watch after that (since the garbage may or may not equal
4813 the first value assigned). */
4814 /* We print all the stop information in
4815 breakpoint_ops->print_it, but in this case, by the time we
4816 call breakpoint_ops->print_it this bp will be deleted
4817 already. So we have no choice but print the information
4818 here. */
4819 if (ui_out_is_mi_like_p (uiout))
4820 ui_out_field_string
4821 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4822 ui_out_text (uiout, "\nWatchpoint ");
4823 ui_out_field_int (uiout, "wpnum", b->base.number);
4824 ui_out_text (uiout,
4825 " deleted because the program has left the block in\n\
4826 which its expression is valid.\n");
4827
4828 /* Make sure the watchpoint's commands aren't executed. */
4829 decref_counted_command_line (&b->base.commands);
4830 watchpoint_del_at_next_stop (b);
4831
4832 return WP_DELETED;
4833 }
4834 }
4835
4836 /* Return true if it looks like target has stopped due to hitting
4837 breakpoint location BL. This function does not check if we should
4838 stop, only if BL explains the stop. */
4839
4840 static int
4841 bpstat_check_location (const struct bp_location *bl,
4842 struct address_space *aspace, CORE_ADDR bp_addr,
4843 const struct target_waitstatus *ws)
4844 {
4845 struct breakpoint *b = bl->owner;
4846
4847 /* BL is from an existing breakpoint. */
4848 gdb_assert (b != NULL);
4849
4850 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4851 }
4852
4853 /* Determine if the watched values have actually changed, and we
4854 should stop. If not, set BS->stop to 0. */
4855
4856 static void
4857 bpstat_check_watchpoint (bpstat bs)
4858 {
4859 const struct bp_location *bl;
4860 struct watchpoint *b;
4861
4862 /* BS is built for existing struct breakpoint. */
4863 bl = bs->bp_location_at;
4864 gdb_assert (bl != NULL);
4865 b = (struct watchpoint *) bs->breakpoint_at;
4866 gdb_assert (b != NULL);
4867
4868 {
4869 int must_check_value = 0;
4870
4871 if (b->base.type == bp_watchpoint)
4872 /* For a software watchpoint, we must always check the
4873 watched value. */
4874 must_check_value = 1;
4875 else if (b->watchpoint_triggered == watch_triggered_yes)
4876 /* We have a hardware watchpoint (read, write, or access)
4877 and the target earlier reported an address watched by
4878 this watchpoint. */
4879 must_check_value = 1;
4880 else if (b->watchpoint_triggered == watch_triggered_unknown
4881 && b->base.type == bp_hardware_watchpoint)
4882 /* We were stopped by a hardware watchpoint, but the target could
4883 not report the data address. We must check the watchpoint's
4884 value. Access and read watchpoints are out of luck; without
4885 a data address, we can't figure it out. */
4886 must_check_value = 1;
4887
4888 if (must_check_value)
4889 {
4890 char *message
4891 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4892 b->base.number);
4893 struct cleanup *cleanups = make_cleanup (xfree, message);
4894 int e = catch_errors (watchpoint_check, bs, message,
4895 RETURN_MASK_ALL);
4896 do_cleanups (cleanups);
4897 switch (e)
4898 {
4899 case WP_DELETED:
4900 /* We've already printed what needs to be printed. */
4901 bs->print_it = print_it_done;
4902 /* Stop. */
4903 break;
4904 case WP_IGNORE:
4905 bs->print_it = print_it_noop;
4906 bs->stop = 0;
4907 break;
4908 case WP_VALUE_CHANGED:
4909 if (b->base.type == bp_read_watchpoint)
4910 {
4911 /* There are two cases to consider here:
4912
4913 1. We're watching the triggered memory for reads.
4914 In that case, trust the target, and always report
4915 the watchpoint hit to the user. Even though
4916 reads don't cause value changes, the value may
4917 have changed since the last time it was read, and
4918 since we're not trapping writes, we will not see
4919 those, and as such we should ignore our notion of
4920 old value.
4921
4922 2. We're watching the triggered memory for both
4923 reads and writes. There are two ways this may
4924 happen:
4925
4926 2.1. This is a target that can't break on data
4927 reads only, but can break on accesses (reads or
4928 writes), such as e.g., x86. We detect this case
4929 at the time we try to insert read watchpoints.
4930
4931 2.2. Otherwise, the target supports read
4932 watchpoints, but, the user set an access or write
4933 watchpoint watching the same memory as this read
4934 watchpoint.
4935
4936 If we're watching memory writes as well as reads,
4937 ignore watchpoint hits when we find that the
4938 value hasn't changed, as reads don't cause
4939 changes. This still gives false positives when
4940 the program writes the same value to memory as
4941 what there was already in memory (we will confuse
4942 it for a read), but it's much better than
4943 nothing. */
4944
4945 int other_write_watchpoint = 0;
4946
4947 if (bl->watchpoint_type == hw_read)
4948 {
4949 struct breakpoint *other_b;
4950
4951 ALL_BREAKPOINTS (other_b)
4952 if (other_b->type == bp_hardware_watchpoint
4953 || other_b->type == bp_access_watchpoint)
4954 {
4955 struct watchpoint *other_w =
4956 (struct watchpoint *) other_b;
4957
4958 if (other_w->watchpoint_triggered
4959 == watch_triggered_yes)
4960 {
4961 other_write_watchpoint = 1;
4962 break;
4963 }
4964 }
4965 }
4966
4967 if (other_write_watchpoint
4968 || bl->watchpoint_type == hw_access)
4969 {
4970 /* We're watching the same memory for writes,
4971 and the value changed since the last time we
4972 updated it, so this trap must be for a write.
4973 Ignore it. */
4974 bs->print_it = print_it_noop;
4975 bs->stop = 0;
4976 }
4977 }
4978 break;
4979 case WP_VALUE_NOT_CHANGED:
4980 if (b->base.type == bp_hardware_watchpoint
4981 || b->base.type == bp_watchpoint)
4982 {
4983 /* Don't stop: write watchpoints shouldn't fire if
4984 the value hasn't changed. */
4985 bs->print_it = print_it_noop;
4986 bs->stop = 0;
4987 }
4988 /* Stop. */
4989 break;
4990 default:
4991 /* Can't happen. */
4992 case 0:
4993 /* Error from catch_errors. */
4994 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
4995 watchpoint_del_at_next_stop (b);
4996 /* We've already printed what needs to be printed. */
4997 bs->print_it = print_it_done;
4998 break;
4999 }
5000 }
5001 else /* must_check_value == 0 */
5002 {
5003 /* This is a case where some watchpoint(s) triggered, but
5004 not at the address of this watchpoint, or else no
5005 watchpoint triggered after all. So don't print
5006 anything for this watchpoint. */
5007 bs->print_it = print_it_noop;
5008 bs->stop = 0;
5009 }
5010 }
5011 }
5012
5013
5014 /* Check conditions (condition proper, frame, thread and ignore count)
5015 of breakpoint referred to by BS. If we should not stop for this
5016 breakpoint, set BS->stop to 0. */
5017
5018 static void
5019 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5020 {
5021 int thread_id = pid_to_thread_id (ptid);
5022 const struct bp_location *bl;
5023 struct breakpoint *b;
5024
5025 /* BS is built for existing struct breakpoint. */
5026 bl = bs->bp_location_at;
5027 gdb_assert (bl != NULL);
5028 b = bs->breakpoint_at;
5029 gdb_assert (b != NULL);
5030
5031 /* Even if the target evaluated the condition on its end and notified GDB, we
5032 need to do so again since GDB does not know if we stopped due to a
5033 breakpoint or a single step breakpoint. */
5034
5035 if (frame_id_p (b->frame_id)
5036 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5037 bs->stop = 0;
5038 else if (bs->stop)
5039 {
5040 int value_is_zero = 0;
5041 struct expression *cond;
5042
5043 /* Evaluate Python breakpoints that have a "stop"
5044 method implemented. */
5045 if (b->py_bp_object)
5046 bs->stop = gdbpy_should_stop (b->py_bp_object);
5047
5048 if (is_watchpoint (b))
5049 {
5050 struct watchpoint *w = (struct watchpoint *) b;
5051
5052 cond = w->cond_exp;
5053 }
5054 else
5055 cond = bl->cond;
5056
5057 if (cond && b->disposition != disp_del_at_next_stop)
5058 {
5059 int within_current_scope = 1;
5060 struct watchpoint * w;
5061
5062 /* We use value_mark and value_free_to_mark because it could
5063 be a long time before we return to the command level and
5064 call free_all_values. We can't call free_all_values
5065 because we might be in the middle of evaluating a
5066 function call. */
5067 struct value *mark = value_mark ();
5068
5069 if (is_watchpoint (b))
5070 w = (struct watchpoint *) b;
5071 else
5072 w = NULL;
5073
5074 /* Need to select the frame, with all that implies so that
5075 the conditions will have the right context. Because we
5076 use the frame, we will not see an inlined function's
5077 variables when we arrive at a breakpoint at the start
5078 of the inlined function; the current frame will be the
5079 call site. */
5080 if (w == NULL || w->cond_exp_valid_block == NULL)
5081 select_frame (get_current_frame ());
5082 else
5083 {
5084 struct frame_info *frame;
5085
5086 /* For local watchpoint expressions, which particular
5087 instance of a local is being watched matters, so we
5088 keep track of the frame to evaluate the expression
5089 in. To evaluate the condition however, it doesn't
5090 really matter which instantiation of the function
5091 where the condition makes sense triggers the
5092 watchpoint. This allows an expression like "watch
5093 global if q > 10" set in `func', catch writes to
5094 global on all threads that call `func', or catch
5095 writes on all recursive calls of `func' by a single
5096 thread. We simply always evaluate the condition in
5097 the innermost frame that's executing where it makes
5098 sense to evaluate the condition. It seems
5099 intuitive. */
5100 frame = block_innermost_frame (w->cond_exp_valid_block);
5101 if (frame != NULL)
5102 select_frame (frame);
5103 else
5104 within_current_scope = 0;
5105 }
5106 if (within_current_scope)
5107 value_is_zero
5108 = catch_errors (breakpoint_cond_eval, cond,
5109 "Error in testing breakpoint condition:\n",
5110 RETURN_MASK_ALL);
5111 else
5112 {
5113 warning (_("Watchpoint condition cannot be tested "
5114 "in the current scope"));
5115 /* If we failed to set the right context for this
5116 watchpoint, unconditionally report it. */
5117 value_is_zero = 0;
5118 }
5119 /* FIXME-someday, should give breakpoint #. */
5120 value_free_to_mark (mark);
5121 }
5122
5123 if (cond && value_is_zero)
5124 {
5125 bs->stop = 0;
5126 }
5127 else if (b->thread != -1 && b->thread != thread_id)
5128 {
5129 bs->stop = 0;
5130 }
5131 else if (b->ignore_count > 0)
5132 {
5133 b->ignore_count--;
5134 bs->stop = 0;
5135 /* Increase the hit count even though we don't stop. */
5136 ++(b->hit_count);
5137 observer_notify_breakpoint_modified (b);
5138 }
5139 }
5140 }
5141
5142
5143 /* Get a bpstat associated with having just stopped at address
5144 BP_ADDR in thread PTID.
5145
5146 Determine whether we stopped at a breakpoint, etc, or whether we
5147 don't understand this stop. Result is a chain of bpstat's such
5148 that:
5149
5150 if we don't understand the stop, the result is a null pointer.
5151
5152 if we understand why we stopped, the result is not null.
5153
5154 Each element of the chain refers to a particular breakpoint or
5155 watchpoint at which we have stopped. (We may have stopped for
5156 several reasons concurrently.)
5157
5158 Each element of the chain has valid next, breakpoint_at,
5159 commands, FIXME??? fields. */
5160
5161 bpstat
5162 bpstat_stop_status (struct address_space *aspace,
5163 CORE_ADDR bp_addr, ptid_t ptid,
5164 const struct target_waitstatus *ws)
5165 {
5166 struct breakpoint *b = NULL;
5167 struct bp_location *bl;
5168 struct bp_location *loc;
5169 /* First item of allocated bpstat's. */
5170 bpstat bs_head = NULL, *bs_link = &bs_head;
5171 /* Pointer to the last thing in the chain currently. */
5172 bpstat bs;
5173 int ix;
5174 int need_remove_insert;
5175 int removed_any;
5176
5177 /* First, build the bpstat chain with locations that explain a
5178 target stop, while being careful to not set the target running,
5179 as that may invalidate locations (in particular watchpoint
5180 locations are recreated). Resuming will happen here with
5181 breakpoint conditions or watchpoint expressions that include
5182 inferior function calls. */
5183
5184 ALL_BREAKPOINTS (b)
5185 {
5186 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5187 continue;
5188
5189 for (bl = b->loc; bl != NULL; bl = bl->next)
5190 {
5191 /* For hardware watchpoints, we look only at the first
5192 location. The watchpoint_check function will work on the
5193 entire expression, not the individual locations. For
5194 read watchpoints, the watchpoints_triggered function has
5195 checked all locations already. */
5196 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5197 break;
5198
5199 if (!bl->enabled || bl->shlib_disabled)
5200 continue;
5201
5202 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5203 continue;
5204
5205 /* Come here if it's a watchpoint, or if the break address
5206 matches. */
5207
5208 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5209 explain stop. */
5210
5211 /* Assume we stop. Should we find a watchpoint that is not
5212 actually triggered, or if the condition of the breakpoint
5213 evaluates as false, we'll reset 'stop' to 0. */
5214 bs->stop = 1;
5215 bs->print = 1;
5216
5217 /* If this is a scope breakpoint, mark the associated
5218 watchpoint as triggered so that we will handle the
5219 out-of-scope event. We'll get to the watchpoint next
5220 iteration. */
5221 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5222 {
5223 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5224
5225 w->watchpoint_triggered = watch_triggered_yes;
5226 }
5227 }
5228 }
5229
5230 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5231 {
5232 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5233 {
5234 bs = bpstat_alloc (loc, &bs_link);
5235 /* For hits of moribund locations, we should just proceed. */
5236 bs->stop = 0;
5237 bs->print = 0;
5238 bs->print_it = print_it_noop;
5239 }
5240 }
5241
5242 /* A bit of special processing for shlib breakpoints. We need to
5243 process solib loading here, so that the lists of loaded and
5244 unloaded libraries are correct before we handle "catch load" and
5245 "catch unload". */
5246 for (bs = bs_head; bs != NULL; bs = bs->next)
5247 {
5248 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5249 {
5250 handle_solib_event ();
5251 break;
5252 }
5253 }
5254
5255 /* Now go through the locations that caused the target to stop, and
5256 check whether we're interested in reporting this stop to higher
5257 layers, or whether we should resume the target transparently. */
5258
5259 removed_any = 0;
5260
5261 for (bs = bs_head; bs != NULL; bs = bs->next)
5262 {
5263 if (!bs->stop)
5264 continue;
5265
5266 b = bs->breakpoint_at;
5267 b->ops->check_status (bs);
5268 if (bs->stop)
5269 {
5270 bpstat_check_breakpoint_conditions (bs, ptid);
5271
5272 if (bs->stop)
5273 {
5274 ++(b->hit_count);
5275 observer_notify_breakpoint_modified (b);
5276
5277 /* We will stop here. */
5278 if (b->disposition == disp_disable)
5279 {
5280 --(b->enable_count);
5281 if (b->enable_count <= 0
5282 && b->enable_state != bp_permanent)
5283 b->enable_state = bp_disabled;
5284 removed_any = 1;
5285 }
5286 if (b->silent)
5287 bs->print = 0;
5288 bs->commands = b->commands;
5289 incref_counted_command_line (bs->commands);
5290 if (command_line_is_silent (bs->commands
5291 ? bs->commands->commands : NULL))
5292 bs->print = 0;
5293 }
5294
5295 }
5296
5297 /* Print nothing for this entry if we don't stop or don't
5298 print. */
5299 if (!bs->stop || !bs->print)
5300 bs->print_it = print_it_noop;
5301 }
5302
5303 /* If we aren't stopping, the value of some hardware watchpoint may
5304 not have changed, but the intermediate memory locations we are
5305 watching may have. Don't bother if we're stopping; this will get
5306 done later. */
5307 need_remove_insert = 0;
5308 if (! bpstat_causes_stop (bs_head))
5309 for (bs = bs_head; bs != NULL; bs = bs->next)
5310 if (!bs->stop
5311 && bs->breakpoint_at
5312 && is_hardware_watchpoint (bs->breakpoint_at))
5313 {
5314 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5315
5316 update_watchpoint (w, 0 /* don't reparse. */);
5317 need_remove_insert = 1;
5318 }
5319
5320 if (need_remove_insert)
5321 update_global_location_list (1);
5322 else if (removed_any)
5323 update_global_location_list (0);
5324
5325 return bs_head;
5326 }
5327
5328 static void
5329 handle_jit_event (void)
5330 {
5331 struct frame_info *frame;
5332 struct gdbarch *gdbarch;
5333
5334 /* Switch terminal for any messages produced by
5335 breakpoint_re_set. */
5336 target_terminal_ours_for_output ();
5337
5338 frame = get_current_frame ();
5339 gdbarch = get_frame_arch (frame);
5340
5341 jit_event_handler (gdbarch);
5342
5343 target_terminal_inferior ();
5344 }
5345
5346 /* Handle an solib event by calling solib_add. */
5347
5348 void
5349 handle_solib_event (void)
5350 {
5351 clear_program_space_solib_cache (current_inferior ()->pspace);
5352
5353 /* Check for any newly added shared libraries if we're supposed to
5354 be adding them automatically. Switch terminal for any messages
5355 produced by breakpoint_re_set. */
5356 target_terminal_ours_for_output ();
5357 solib_add (NULL, 0, &current_target, auto_solib_add);
5358 target_terminal_inferior ();
5359 }
5360
5361 /* Prepare WHAT final decision for infrun. */
5362
5363 /* Decide what infrun needs to do with this bpstat. */
5364
5365 struct bpstat_what
5366 bpstat_what (bpstat bs_head)
5367 {
5368 struct bpstat_what retval;
5369 int jit_event = 0;
5370 bpstat bs;
5371
5372 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5373 retval.call_dummy = STOP_NONE;
5374 retval.is_longjmp = 0;
5375
5376 for (bs = bs_head; bs != NULL; bs = bs->next)
5377 {
5378 /* Extract this BS's action. After processing each BS, we check
5379 if its action overrides all we've seem so far. */
5380 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5381 enum bptype bptype;
5382
5383 if (bs->breakpoint_at == NULL)
5384 {
5385 /* I suspect this can happen if it was a momentary
5386 breakpoint which has since been deleted. */
5387 bptype = bp_none;
5388 }
5389 else
5390 bptype = bs->breakpoint_at->type;
5391
5392 switch (bptype)
5393 {
5394 case bp_none:
5395 break;
5396 case bp_breakpoint:
5397 case bp_hardware_breakpoint:
5398 case bp_until:
5399 case bp_finish:
5400 case bp_shlib_event:
5401 if (bs->stop)
5402 {
5403 if (bs->print)
5404 this_action = BPSTAT_WHAT_STOP_NOISY;
5405 else
5406 this_action = BPSTAT_WHAT_STOP_SILENT;
5407 }
5408 else
5409 this_action = BPSTAT_WHAT_SINGLE;
5410 break;
5411 case bp_watchpoint:
5412 case bp_hardware_watchpoint:
5413 case bp_read_watchpoint:
5414 case bp_access_watchpoint:
5415 if (bs->stop)
5416 {
5417 if (bs->print)
5418 this_action = BPSTAT_WHAT_STOP_NOISY;
5419 else
5420 this_action = BPSTAT_WHAT_STOP_SILENT;
5421 }
5422 else
5423 {
5424 /* There was a watchpoint, but we're not stopping.
5425 This requires no further action. */
5426 }
5427 break;
5428 case bp_longjmp:
5429 case bp_longjmp_call_dummy:
5430 case bp_exception:
5431 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5432 retval.is_longjmp = bptype != bp_exception;
5433 break;
5434 case bp_longjmp_resume:
5435 case bp_exception_resume:
5436 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5437 retval.is_longjmp = bptype == bp_longjmp_resume;
5438 break;
5439 case bp_step_resume:
5440 if (bs->stop)
5441 this_action = BPSTAT_WHAT_STEP_RESUME;
5442 else
5443 {
5444 /* It is for the wrong frame. */
5445 this_action = BPSTAT_WHAT_SINGLE;
5446 }
5447 break;
5448 case bp_hp_step_resume:
5449 if (bs->stop)
5450 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5451 else
5452 {
5453 /* It is for the wrong frame. */
5454 this_action = BPSTAT_WHAT_SINGLE;
5455 }
5456 break;
5457 case bp_watchpoint_scope:
5458 case bp_thread_event:
5459 case bp_overlay_event:
5460 case bp_longjmp_master:
5461 case bp_std_terminate_master:
5462 case bp_exception_master:
5463 this_action = BPSTAT_WHAT_SINGLE;
5464 break;
5465 case bp_catchpoint:
5466 if (bs->stop)
5467 {
5468 if (bs->print)
5469 this_action = BPSTAT_WHAT_STOP_NOISY;
5470 else
5471 this_action = BPSTAT_WHAT_STOP_SILENT;
5472 }
5473 else
5474 {
5475 /* There was a catchpoint, but we're not stopping.
5476 This requires no further action. */
5477 }
5478 break;
5479 case bp_jit_event:
5480 jit_event = 1;
5481 this_action = BPSTAT_WHAT_SINGLE;
5482 break;
5483 case bp_call_dummy:
5484 /* Make sure the action is stop (silent or noisy),
5485 so infrun.c pops the dummy frame. */
5486 retval.call_dummy = STOP_STACK_DUMMY;
5487 this_action = BPSTAT_WHAT_STOP_SILENT;
5488 break;
5489 case bp_std_terminate:
5490 /* Make sure the action is stop (silent or noisy),
5491 so infrun.c pops the dummy frame. */
5492 retval.call_dummy = STOP_STD_TERMINATE;
5493 this_action = BPSTAT_WHAT_STOP_SILENT;
5494 break;
5495 case bp_tracepoint:
5496 case bp_fast_tracepoint:
5497 case bp_static_tracepoint:
5498 /* Tracepoint hits should not be reported back to GDB, and
5499 if one got through somehow, it should have been filtered
5500 out already. */
5501 internal_error (__FILE__, __LINE__,
5502 _("bpstat_what: tracepoint encountered"));
5503 break;
5504 case bp_gnu_ifunc_resolver:
5505 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5506 this_action = BPSTAT_WHAT_SINGLE;
5507 break;
5508 case bp_gnu_ifunc_resolver_return:
5509 /* The breakpoint will be removed, execution will restart from the
5510 PC of the former breakpoint. */
5511 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5512 break;
5513
5514 case bp_dprintf:
5515 if (bs->stop)
5516 this_action = BPSTAT_WHAT_STOP_SILENT;
5517 else
5518 this_action = BPSTAT_WHAT_SINGLE;
5519 break;
5520
5521 default:
5522 internal_error (__FILE__, __LINE__,
5523 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5524 }
5525
5526 retval.main_action = max (retval.main_action, this_action);
5527 }
5528
5529 /* These operations may affect the bs->breakpoint_at state so they are
5530 delayed after MAIN_ACTION is decided above. */
5531
5532 if (jit_event)
5533 {
5534 if (debug_infrun)
5535 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5536
5537 handle_jit_event ();
5538 }
5539
5540 for (bs = bs_head; bs != NULL; bs = bs->next)
5541 {
5542 struct breakpoint *b = bs->breakpoint_at;
5543
5544 if (b == NULL)
5545 continue;
5546 switch (b->type)
5547 {
5548 case bp_gnu_ifunc_resolver:
5549 gnu_ifunc_resolver_stop (b);
5550 break;
5551 case bp_gnu_ifunc_resolver_return:
5552 gnu_ifunc_resolver_return_stop (b);
5553 break;
5554 }
5555 }
5556
5557 return retval;
5558 }
5559
5560 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5561 without hardware support). This isn't related to a specific bpstat,
5562 just to things like whether watchpoints are set. */
5563
5564 int
5565 bpstat_should_step (void)
5566 {
5567 struct breakpoint *b;
5568
5569 ALL_BREAKPOINTS (b)
5570 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5571 return 1;
5572 return 0;
5573 }
5574
5575 int
5576 bpstat_causes_stop (bpstat bs)
5577 {
5578 for (; bs != NULL; bs = bs->next)
5579 if (bs->stop)
5580 return 1;
5581
5582 return 0;
5583 }
5584
5585 \f
5586
5587 /* Compute a string of spaces suitable to indent the next line
5588 so it starts at the position corresponding to the table column
5589 named COL_NAME in the currently active table of UIOUT. */
5590
5591 static char *
5592 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5593 {
5594 static char wrap_indent[80];
5595 int i, total_width, width, align;
5596 char *text;
5597
5598 total_width = 0;
5599 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5600 {
5601 if (strcmp (text, col_name) == 0)
5602 {
5603 gdb_assert (total_width < sizeof wrap_indent);
5604 memset (wrap_indent, ' ', total_width);
5605 wrap_indent[total_width] = 0;
5606
5607 return wrap_indent;
5608 }
5609
5610 total_width += width + 1;
5611 }
5612
5613 return NULL;
5614 }
5615
5616 /* Determine if the locations of this breakpoint will have their conditions
5617 evaluated by the target, host or a mix of both. Returns the following:
5618
5619 "host": Host evals condition.
5620 "host or target": Host or Target evals condition.
5621 "target": Target evals condition.
5622 */
5623
5624 static const char *
5625 bp_condition_evaluator (struct breakpoint *b)
5626 {
5627 struct bp_location *bl;
5628 char host_evals = 0;
5629 char target_evals = 0;
5630
5631 if (!b)
5632 return NULL;
5633
5634 if (!is_breakpoint (b))
5635 return NULL;
5636
5637 if (gdb_evaluates_breakpoint_condition_p ()
5638 || !target_supports_evaluation_of_breakpoint_conditions ())
5639 return condition_evaluation_host;
5640
5641 for (bl = b->loc; bl; bl = bl->next)
5642 {
5643 if (bl->cond_bytecode)
5644 target_evals++;
5645 else
5646 host_evals++;
5647 }
5648
5649 if (host_evals && target_evals)
5650 return condition_evaluation_both;
5651 else if (target_evals)
5652 return condition_evaluation_target;
5653 else
5654 return condition_evaluation_host;
5655 }
5656
5657 /* Determine the breakpoint location's condition evaluator. This is
5658 similar to bp_condition_evaluator, but for locations. */
5659
5660 static const char *
5661 bp_location_condition_evaluator (struct bp_location *bl)
5662 {
5663 if (bl && !is_breakpoint (bl->owner))
5664 return NULL;
5665
5666 if (gdb_evaluates_breakpoint_condition_p ()
5667 || !target_supports_evaluation_of_breakpoint_conditions ())
5668 return condition_evaluation_host;
5669
5670 if (bl && bl->cond_bytecode)
5671 return condition_evaluation_target;
5672 else
5673 return condition_evaluation_host;
5674 }
5675
5676 /* Print the LOC location out of the list of B->LOC locations. */
5677
5678 static void
5679 print_breakpoint_location (struct breakpoint *b,
5680 struct bp_location *loc)
5681 {
5682 struct ui_out *uiout = current_uiout;
5683 struct cleanup *old_chain = save_current_program_space ();
5684
5685 if (loc != NULL && loc->shlib_disabled)
5686 loc = NULL;
5687
5688 if (loc != NULL)
5689 set_current_program_space (loc->pspace);
5690
5691 if (b->display_canonical)
5692 ui_out_field_string (uiout, "what", b->addr_string);
5693 else if (loc && loc->symtab)
5694 {
5695 struct symbol *sym
5696 = find_pc_sect_function (loc->address, loc->section);
5697 if (sym)
5698 {
5699 ui_out_text (uiout, "in ");
5700 ui_out_field_string (uiout, "func",
5701 SYMBOL_PRINT_NAME (sym));
5702 ui_out_text (uiout, " ");
5703 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5704 ui_out_text (uiout, "at ");
5705 }
5706 ui_out_field_string (uiout, "file",
5707 symtab_to_filename_for_display (loc->symtab));
5708 ui_out_text (uiout, ":");
5709
5710 if (ui_out_is_mi_like_p (uiout))
5711 ui_out_field_string (uiout, "fullname",
5712 symtab_to_fullname (loc->symtab));
5713
5714 ui_out_field_int (uiout, "line", loc->line_number);
5715 }
5716 else if (loc)
5717 {
5718 struct ui_file *stb = mem_fileopen ();
5719 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5720
5721 print_address_symbolic (loc->gdbarch, loc->address, stb,
5722 demangle, "");
5723 ui_out_field_stream (uiout, "at", stb);
5724
5725 do_cleanups (stb_chain);
5726 }
5727 else
5728 ui_out_field_string (uiout, "pending", b->addr_string);
5729
5730 if (loc && is_breakpoint (b)
5731 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5732 && bp_condition_evaluator (b) == condition_evaluation_both)
5733 {
5734 ui_out_text (uiout, " (");
5735 ui_out_field_string (uiout, "evaluated-by",
5736 bp_location_condition_evaluator (loc));
5737 ui_out_text (uiout, ")");
5738 }
5739
5740 do_cleanups (old_chain);
5741 }
5742
5743 static const char *
5744 bptype_string (enum bptype type)
5745 {
5746 struct ep_type_description
5747 {
5748 enum bptype type;
5749 char *description;
5750 };
5751 static struct ep_type_description bptypes[] =
5752 {
5753 {bp_none, "?deleted?"},
5754 {bp_breakpoint, "breakpoint"},
5755 {bp_hardware_breakpoint, "hw breakpoint"},
5756 {bp_until, "until"},
5757 {bp_finish, "finish"},
5758 {bp_watchpoint, "watchpoint"},
5759 {bp_hardware_watchpoint, "hw watchpoint"},
5760 {bp_read_watchpoint, "read watchpoint"},
5761 {bp_access_watchpoint, "acc watchpoint"},
5762 {bp_longjmp, "longjmp"},
5763 {bp_longjmp_resume, "longjmp resume"},
5764 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5765 {bp_exception, "exception"},
5766 {bp_exception_resume, "exception resume"},
5767 {bp_step_resume, "step resume"},
5768 {bp_hp_step_resume, "high-priority step resume"},
5769 {bp_watchpoint_scope, "watchpoint scope"},
5770 {bp_call_dummy, "call dummy"},
5771 {bp_std_terminate, "std::terminate"},
5772 {bp_shlib_event, "shlib events"},
5773 {bp_thread_event, "thread events"},
5774 {bp_overlay_event, "overlay events"},
5775 {bp_longjmp_master, "longjmp master"},
5776 {bp_std_terminate_master, "std::terminate master"},
5777 {bp_exception_master, "exception master"},
5778 {bp_catchpoint, "catchpoint"},
5779 {bp_tracepoint, "tracepoint"},
5780 {bp_fast_tracepoint, "fast tracepoint"},
5781 {bp_static_tracepoint, "static tracepoint"},
5782 {bp_dprintf, "dprintf"},
5783 {bp_jit_event, "jit events"},
5784 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5785 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5786 };
5787
5788 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5789 || ((int) type != bptypes[(int) type].type))
5790 internal_error (__FILE__, __LINE__,
5791 _("bptypes table does not describe type #%d."),
5792 (int) type);
5793
5794 return bptypes[(int) type].description;
5795 }
5796
5797 DEF_VEC_I(int);
5798
5799 /* For MI, output a field named 'thread-groups' with a list as the value.
5800 For CLI, prefix the list with the string 'inf'. */
5801
5802 static void
5803 output_thread_groups (struct ui_out *uiout,
5804 const char *field_name,
5805 VEC(int) *inf_num,
5806 int mi_only)
5807 {
5808 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
5809 field_name);
5810 int is_mi = ui_out_is_mi_like_p (uiout);
5811 int inf;
5812 int i;
5813
5814 /* For backward compatibility, don't display inferiors in CLI unless
5815 there are several. Always display them for MI. */
5816 if (!is_mi && mi_only)
5817 return;
5818
5819 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5820 {
5821 if (is_mi)
5822 {
5823 char mi_group[10];
5824
5825 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5826 ui_out_field_string (uiout, NULL, mi_group);
5827 }
5828 else
5829 {
5830 if (i == 0)
5831 ui_out_text (uiout, " inf ");
5832 else
5833 ui_out_text (uiout, ", ");
5834
5835 ui_out_text (uiout, plongest (inf));
5836 }
5837 }
5838
5839 do_cleanups (back_to);
5840 }
5841
5842 /* Print B to gdb_stdout. */
5843
5844 static void
5845 print_one_breakpoint_location (struct breakpoint *b,
5846 struct bp_location *loc,
5847 int loc_number,
5848 struct bp_location **last_loc,
5849 int allflag)
5850 {
5851 struct command_line *l;
5852 static char bpenables[] = "nynny";
5853
5854 struct ui_out *uiout = current_uiout;
5855 int header_of_multiple = 0;
5856 int part_of_multiple = (loc != NULL);
5857 struct value_print_options opts;
5858
5859 get_user_print_options (&opts);
5860
5861 gdb_assert (!loc || loc_number != 0);
5862 /* See comment in print_one_breakpoint concerning treatment of
5863 breakpoints with single disabled location. */
5864 if (loc == NULL
5865 && (b->loc != NULL
5866 && (b->loc->next != NULL || !b->loc->enabled)))
5867 header_of_multiple = 1;
5868 if (loc == NULL)
5869 loc = b->loc;
5870
5871 annotate_record ();
5872
5873 /* 1 */
5874 annotate_field (0);
5875 if (part_of_multiple)
5876 {
5877 char *formatted;
5878 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5879 ui_out_field_string (uiout, "number", formatted);
5880 xfree (formatted);
5881 }
5882 else
5883 {
5884 ui_out_field_int (uiout, "number", b->number);
5885 }
5886
5887 /* 2 */
5888 annotate_field (1);
5889 if (part_of_multiple)
5890 ui_out_field_skip (uiout, "type");
5891 else
5892 ui_out_field_string (uiout, "type", bptype_string (b->type));
5893
5894 /* 3 */
5895 annotate_field (2);
5896 if (part_of_multiple)
5897 ui_out_field_skip (uiout, "disp");
5898 else
5899 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5900
5901
5902 /* 4 */
5903 annotate_field (3);
5904 if (part_of_multiple)
5905 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5906 else
5907 ui_out_field_fmt (uiout, "enabled", "%c",
5908 bpenables[(int) b->enable_state]);
5909 ui_out_spaces (uiout, 2);
5910
5911
5912 /* 5 and 6 */
5913 if (b->ops != NULL && b->ops->print_one != NULL)
5914 {
5915 /* Although the print_one can possibly print all locations,
5916 calling it here is not likely to get any nice result. So,
5917 make sure there's just one location. */
5918 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5919 b->ops->print_one (b, last_loc);
5920 }
5921 else
5922 switch (b->type)
5923 {
5924 case bp_none:
5925 internal_error (__FILE__, __LINE__,
5926 _("print_one_breakpoint: bp_none encountered\n"));
5927 break;
5928
5929 case bp_watchpoint:
5930 case bp_hardware_watchpoint:
5931 case bp_read_watchpoint:
5932 case bp_access_watchpoint:
5933 {
5934 struct watchpoint *w = (struct watchpoint *) b;
5935
5936 /* Field 4, the address, is omitted (which makes the columns
5937 not line up too nicely with the headers, but the effect
5938 is relatively readable). */
5939 if (opts.addressprint)
5940 ui_out_field_skip (uiout, "addr");
5941 annotate_field (5);
5942 ui_out_field_string (uiout, "what", w->exp_string);
5943 }
5944 break;
5945
5946 case bp_breakpoint:
5947 case bp_hardware_breakpoint:
5948 case bp_until:
5949 case bp_finish:
5950 case bp_longjmp:
5951 case bp_longjmp_resume:
5952 case bp_longjmp_call_dummy:
5953 case bp_exception:
5954 case bp_exception_resume:
5955 case bp_step_resume:
5956 case bp_hp_step_resume:
5957 case bp_watchpoint_scope:
5958 case bp_call_dummy:
5959 case bp_std_terminate:
5960 case bp_shlib_event:
5961 case bp_thread_event:
5962 case bp_overlay_event:
5963 case bp_longjmp_master:
5964 case bp_std_terminate_master:
5965 case bp_exception_master:
5966 case bp_tracepoint:
5967 case bp_fast_tracepoint:
5968 case bp_static_tracepoint:
5969 case bp_dprintf:
5970 case bp_jit_event:
5971 case bp_gnu_ifunc_resolver:
5972 case bp_gnu_ifunc_resolver_return:
5973 if (opts.addressprint)
5974 {
5975 annotate_field (4);
5976 if (header_of_multiple)
5977 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5978 else if (b->loc == NULL || loc->shlib_disabled)
5979 ui_out_field_string (uiout, "addr", "<PENDING>");
5980 else
5981 ui_out_field_core_addr (uiout, "addr",
5982 loc->gdbarch, loc->address);
5983 }
5984 annotate_field (5);
5985 if (!header_of_multiple)
5986 print_breakpoint_location (b, loc);
5987 if (b->loc)
5988 *last_loc = b->loc;
5989 break;
5990 }
5991
5992
5993 if (loc != NULL && !header_of_multiple)
5994 {
5995 struct inferior *inf;
5996 VEC(int) *inf_num = NULL;
5997 int mi_only = 1;
5998
5999 ALL_INFERIORS (inf)
6000 {
6001 if (inf->pspace == loc->pspace)
6002 VEC_safe_push (int, inf_num, inf->num);
6003 }
6004
6005 /* For backward compatibility, don't display inferiors in CLI unless
6006 there are several. Always display for MI. */
6007 if (allflag
6008 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6009 && (number_of_program_spaces () > 1
6010 || number_of_inferiors () > 1)
6011 /* LOC is for existing B, it cannot be in
6012 moribund_locations and thus having NULL OWNER. */
6013 && loc->owner->type != bp_catchpoint))
6014 mi_only = 0;
6015 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6016 VEC_free (int, inf_num);
6017 }
6018
6019 if (!part_of_multiple)
6020 {
6021 if (b->thread != -1)
6022 {
6023 /* FIXME: This seems to be redundant and lost here; see the
6024 "stop only in" line a little further down. */
6025 ui_out_text (uiout, " thread ");
6026 ui_out_field_int (uiout, "thread", b->thread);
6027 }
6028 else if (b->task != 0)
6029 {
6030 ui_out_text (uiout, " task ");
6031 ui_out_field_int (uiout, "task", b->task);
6032 }
6033 }
6034
6035 ui_out_text (uiout, "\n");
6036
6037 if (!part_of_multiple)
6038 b->ops->print_one_detail (b, uiout);
6039
6040 if (part_of_multiple && frame_id_p (b->frame_id))
6041 {
6042 annotate_field (6);
6043 ui_out_text (uiout, "\tstop only in stack frame at ");
6044 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6045 the frame ID. */
6046 ui_out_field_core_addr (uiout, "frame",
6047 b->gdbarch, b->frame_id.stack_addr);
6048 ui_out_text (uiout, "\n");
6049 }
6050
6051 if (!part_of_multiple && b->cond_string)
6052 {
6053 annotate_field (7);
6054 if (is_tracepoint (b))
6055 ui_out_text (uiout, "\ttrace only if ");
6056 else
6057 ui_out_text (uiout, "\tstop only if ");
6058 ui_out_field_string (uiout, "cond", b->cond_string);
6059
6060 /* Print whether the target is doing the breakpoint's condition
6061 evaluation. If GDB is doing the evaluation, don't print anything. */
6062 if (is_breakpoint (b)
6063 && breakpoint_condition_evaluation_mode ()
6064 == condition_evaluation_target)
6065 {
6066 ui_out_text (uiout, " (");
6067 ui_out_field_string (uiout, "evaluated-by",
6068 bp_condition_evaluator (b));
6069 ui_out_text (uiout, " evals)");
6070 }
6071 ui_out_text (uiout, "\n");
6072 }
6073
6074 if (!part_of_multiple && b->thread != -1)
6075 {
6076 /* FIXME should make an annotation for this. */
6077 ui_out_text (uiout, "\tstop only in thread ");
6078 ui_out_field_int (uiout, "thread", b->thread);
6079 ui_out_text (uiout, "\n");
6080 }
6081
6082 if (!part_of_multiple)
6083 {
6084 if (b->hit_count)
6085 {
6086 /* FIXME should make an annotation for this. */
6087 if (is_catchpoint (b))
6088 ui_out_text (uiout, "\tcatchpoint");
6089 else if (is_tracepoint (b))
6090 ui_out_text (uiout, "\ttracepoint");
6091 else
6092 ui_out_text (uiout, "\tbreakpoint");
6093 ui_out_text (uiout, " already hit ");
6094 ui_out_field_int (uiout, "times", b->hit_count);
6095 if (b->hit_count == 1)
6096 ui_out_text (uiout, " time\n");
6097 else
6098 ui_out_text (uiout, " times\n");
6099 }
6100 else
6101 {
6102 /* Output the count also if it is zero, but only if this is mi. */
6103 if (ui_out_is_mi_like_p (uiout))
6104 ui_out_field_int (uiout, "times", b->hit_count);
6105 }
6106 }
6107
6108 if (!part_of_multiple && b->ignore_count)
6109 {
6110 annotate_field (8);
6111 ui_out_text (uiout, "\tignore next ");
6112 ui_out_field_int (uiout, "ignore", b->ignore_count);
6113 ui_out_text (uiout, " hits\n");
6114 }
6115
6116 /* Note that an enable count of 1 corresponds to "enable once"
6117 behavior, which is reported by the combination of enablement and
6118 disposition, so we don't need to mention it here. */
6119 if (!part_of_multiple && b->enable_count > 1)
6120 {
6121 annotate_field (8);
6122 ui_out_text (uiout, "\tdisable after ");
6123 /* Tweak the wording to clarify that ignore and enable counts
6124 are distinct, and have additive effect. */
6125 if (b->ignore_count)
6126 ui_out_text (uiout, "additional ");
6127 else
6128 ui_out_text (uiout, "next ");
6129 ui_out_field_int (uiout, "enable", b->enable_count);
6130 ui_out_text (uiout, " hits\n");
6131 }
6132
6133 if (!part_of_multiple && is_tracepoint (b))
6134 {
6135 struct tracepoint *tp = (struct tracepoint *) b;
6136
6137 if (tp->traceframe_usage)
6138 {
6139 ui_out_text (uiout, "\ttrace buffer usage ");
6140 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6141 ui_out_text (uiout, " bytes\n");
6142 }
6143 }
6144
6145 l = b->commands ? b->commands->commands : NULL;
6146 if (!part_of_multiple && l)
6147 {
6148 struct cleanup *script_chain;
6149
6150 annotate_field (9);
6151 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6152 print_command_lines (uiout, l, 4);
6153 do_cleanups (script_chain);
6154 }
6155
6156 if (is_tracepoint (b))
6157 {
6158 struct tracepoint *t = (struct tracepoint *) b;
6159
6160 if (!part_of_multiple && t->pass_count)
6161 {
6162 annotate_field (10);
6163 ui_out_text (uiout, "\tpass count ");
6164 ui_out_field_int (uiout, "pass", t->pass_count);
6165 ui_out_text (uiout, " \n");
6166 }
6167
6168 /* Don't display it when tracepoint or tracepoint location is
6169 pending. */
6170 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6171 {
6172 annotate_field (11);
6173
6174 if (ui_out_is_mi_like_p (uiout))
6175 ui_out_field_string (uiout, "installed",
6176 loc->inserted ? "y" : "n");
6177 else
6178 {
6179 if (loc->inserted)
6180 ui_out_text (uiout, "\t");
6181 else
6182 ui_out_text (uiout, "\tnot ");
6183 ui_out_text (uiout, "installed on target\n");
6184 }
6185 }
6186 }
6187
6188 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6189 {
6190 if (is_watchpoint (b))
6191 {
6192 struct watchpoint *w = (struct watchpoint *) b;
6193
6194 ui_out_field_string (uiout, "original-location", w->exp_string);
6195 }
6196 else if (b->addr_string)
6197 ui_out_field_string (uiout, "original-location", b->addr_string);
6198 }
6199 }
6200
6201 static void
6202 print_one_breakpoint (struct breakpoint *b,
6203 struct bp_location **last_loc,
6204 int allflag)
6205 {
6206 struct cleanup *bkpt_chain;
6207 struct ui_out *uiout = current_uiout;
6208
6209 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6210
6211 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6212 do_cleanups (bkpt_chain);
6213
6214 /* If this breakpoint has custom print function,
6215 it's already printed. Otherwise, print individual
6216 locations, if any. */
6217 if (b->ops == NULL || b->ops->print_one == NULL)
6218 {
6219 /* If breakpoint has a single location that is disabled, we
6220 print it as if it had several locations, since otherwise it's
6221 hard to represent "breakpoint enabled, location disabled"
6222 situation.
6223
6224 Note that while hardware watchpoints have several locations
6225 internally, that's not a property exposed to user. */
6226 if (b->loc
6227 && !is_hardware_watchpoint (b)
6228 && (b->loc->next || !b->loc->enabled))
6229 {
6230 struct bp_location *loc;
6231 int n = 1;
6232
6233 for (loc = b->loc; loc; loc = loc->next, ++n)
6234 {
6235 struct cleanup *inner2 =
6236 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6237 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6238 do_cleanups (inner2);
6239 }
6240 }
6241 }
6242 }
6243
6244 static int
6245 breakpoint_address_bits (struct breakpoint *b)
6246 {
6247 int print_address_bits = 0;
6248 struct bp_location *loc;
6249
6250 for (loc = b->loc; loc; loc = loc->next)
6251 {
6252 int addr_bit;
6253
6254 /* Software watchpoints that aren't watching memory don't have
6255 an address to print. */
6256 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6257 continue;
6258
6259 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6260 if (addr_bit > print_address_bits)
6261 print_address_bits = addr_bit;
6262 }
6263
6264 return print_address_bits;
6265 }
6266
6267 struct captured_breakpoint_query_args
6268 {
6269 int bnum;
6270 };
6271
6272 static int
6273 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6274 {
6275 struct captured_breakpoint_query_args *args = data;
6276 struct breakpoint *b;
6277 struct bp_location *dummy_loc = NULL;
6278
6279 ALL_BREAKPOINTS (b)
6280 {
6281 if (args->bnum == b->number)
6282 {
6283 print_one_breakpoint (b, &dummy_loc, 0);
6284 return GDB_RC_OK;
6285 }
6286 }
6287 return GDB_RC_NONE;
6288 }
6289
6290 enum gdb_rc
6291 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6292 char **error_message)
6293 {
6294 struct captured_breakpoint_query_args args;
6295
6296 args.bnum = bnum;
6297 /* For the moment we don't trust print_one_breakpoint() to not throw
6298 an error. */
6299 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6300 error_message, RETURN_MASK_ALL) < 0)
6301 return GDB_RC_FAIL;
6302 else
6303 return GDB_RC_OK;
6304 }
6305
6306 /* Return true if this breakpoint was set by the user, false if it is
6307 internal or momentary. */
6308
6309 int
6310 user_breakpoint_p (struct breakpoint *b)
6311 {
6312 return b->number > 0;
6313 }
6314
6315 /* Print information on user settable breakpoint (watchpoint, etc)
6316 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6317 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6318 FILTER is non-NULL, call it on each breakpoint and only include the
6319 ones for which it returns non-zero. Return the total number of
6320 breakpoints listed. */
6321
6322 static int
6323 breakpoint_1 (char *args, int allflag,
6324 int (*filter) (const struct breakpoint *))
6325 {
6326 struct breakpoint *b;
6327 struct bp_location *last_loc = NULL;
6328 int nr_printable_breakpoints;
6329 struct cleanup *bkpttbl_chain;
6330 struct value_print_options opts;
6331 int print_address_bits = 0;
6332 int print_type_col_width = 14;
6333 struct ui_out *uiout = current_uiout;
6334
6335 get_user_print_options (&opts);
6336
6337 /* Compute the number of rows in the table, as well as the size
6338 required for address fields. */
6339 nr_printable_breakpoints = 0;
6340 ALL_BREAKPOINTS (b)
6341 {
6342 /* If we have a filter, only list the breakpoints it accepts. */
6343 if (filter && !filter (b))
6344 continue;
6345
6346 /* If we have an "args" string, it is a list of breakpoints to
6347 accept. Skip the others. */
6348 if (args != NULL && *args != '\0')
6349 {
6350 if (allflag && parse_and_eval_long (args) != b->number)
6351 continue;
6352 if (!allflag && !number_is_in_list (args, b->number))
6353 continue;
6354 }
6355
6356 if (allflag || user_breakpoint_p (b))
6357 {
6358 int addr_bit, type_len;
6359
6360 addr_bit = breakpoint_address_bits (b);
6361 if (addr_bit > print_address_bits)
6362 print_address_bits = addr_bit;
6363
6364 type_len = strlen (bptype_string (b->type));
6365 if (type_len > print_type_col_width)
6366 print_type_col_width = type_len;
6367
6368 nr_printable_breakpoints++;
6369 }
6370 }
6371
6372 if (opts.addressprint)
6373 bkpttbl_chain
6374 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6375 nr_printable_breakpoints,
6376 "BreakpointTable");
6377 else
6378 bkpttbl_chain
6379 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6380 nr_printable_breakpoints,
6381 "BreakpointTable");
6382
6383 if (nr_printable_breakpoints > 0)
6384 annotate_breakpoints_headers ();
6385 if (nr_printable_breakpoints > 0)
6386 annotate_field (0);
6387 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6388 if (nr_printable_breakpoints > 0)
6389 annotate_field (1);
6390 ui_out_table_header (uiout, print_type_col_width, ui_left,
6391 "type", "Type"); /* 2 */
6392 if (nr_printable_breakpoints > 0)
6393 annotate_field (2);
6394 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6395 if (nr_printable_breakpoints > 0)
6396 annotate_field (3);
6397 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6398 if (opts.addressprint)
6399 {
6400 if (nr_printable_breakpoints > 0)
6401 annotate_field (4);
6402 if (print_address_bits <= 32)
6403 ui_out_table_header (uiout, 10, ui_left,
6404 "addr", "Address"); /* 5 */
6405 else
6406 ui_out_table_header (uiout, 18, ui_left,
6407 "addr", "Address"); /* 5 */
6408 }
6409 if (nr_printable_breakpoints > 0)
6410 annotate_field (5);
6411 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6412 ui_out_table_body (uiout);
6413 if (nr_printable_breakpoints > 0)
6414 annotate_breakpoints_table ();
6415
6416 ALL_BREAKPOINTS (b)
6417 {
6418 QUIT;
6419 /* If we have a filter, only list the breakpoints it accepts. */
6420 if (filter && !filter (b))
6421 continue;
6422
6423 /* If we have an "args" string, it is a list of breakpoints to
6424 accept. Skip the others. */
6425
6426 if (args != NULL && *args != '\0')
6427 {
6428 if (allflag) /* maintenance info breakpoint */
6429 {
6430 if (parse_and_eval_long (args) != b->number)
6431 continue;
6432 }
6433 else /* all others */
6434 {
6435 if (!number_is_in_list (args, b->number))
6436 continue;
6437 }
6438 }
6439 /* We only print out user settable breakpoints unless the
6440 allflag is set. */
6441 if (allflag || user_breakpoint_p (b))
6442 print_one_breakpoint (b, &last_loc, allflag);
6443 }
6444
6445 do_cleanups (bkpttbl_chain);
6446
6447 if (nr_printable_breakpoints == 0)
6448 {
6449 /* If there's a filter, let the caller decide how to report
6450 empty list. */
6451 if (!filter)
6452 {
6453 if (args == NULL || *args == '\0')
6454 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6455 else
6456 ui_out_message (uiout, 0,
6457 "No breakpoint or watchpoint matching '%s'.\n",
6458 args);
6459 }
6460 }
6461 else
6462 {
6463 if (last_loc && !server_command)
6464 set_next_address (last_loc->gdbarch, last_loc->address);
6465 }
6466
6467 /* FIXME? Should this be moved up so that it is only called when
6468 there have been breakpoints? */
6469 annotate_breakpoints_table_end ();
6470
6471 return nr_printable_breakpoints;
6472 }
6473
6474 /* Display the value of default-collect in a way that is generally
6475 compatible with the breakpoint list. */
6476
6477 static void
6478 default_collect_info (void)
6479 {
6480 struct ui_out *uiout = current_uiout;
6481
6482 /* If it has no value (which is frequently the case), say nothing; a
6483 message like "No default-collect." gets in user's face when it's
6484 not wanted. */
6485 if (!*default_collect)
6486 return;
6487
6488 /* The following phrase lines up nicely with per-tracepoint collect
6489 actions. */
6490 ui_out_text (uiout, "default collect ");
6491 ui_out_field_string (uiout, "default-collect", default_collect);
6492 ui_out_text (uiout, " \n");
6493 }
6494
6495 static void
6496 breakpoints_info (char *args, int from_tty)
6497 {
6498 breakpoint_1 (args, 0, NULL);
6499
6500 default_collect_info ();
6501 }
6502
6503 static void
6504 watchpoints_info (char *args, int from_tty)
6505 {
6506 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6507 struct ui_out *uiout = current_uiout;
6508
6509 if (num_printed == 0)
6510 {
6511 if (args == NULL || *args == '\0')
6512 ui_out_message (uiout, 0, "No watchpoints.\n");
6513 else
6514 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6515 }
6516 }
6517
6518 static void
6519 maintenance_info_breakpoints (char *args, int from_tty)
6520 {
6521 breakpoint_1 (args, 1, NULL);
6522
6523 default_collect_info ();
6524 }
6525
6526 static int
6527 breakpoint_has_pc (struct breakpoint *b,
6528 struct program_space *pspace,
6529 CORE_ADDR pc, struct obj_section *section)
6530 {
6531 struct bp_location *bl = b->loc;
6532
6533 for (; bl; bl = bl->next)
6534 {
6535 if (bl->pspace == pspace
6536 && bl->address == pc
6537 && (!overlay_debugging || bl->section == section))
6538 return 1;
6539 }
6540 return 0;
6541 }
6542
6543 /* Print a message describing any user-breakpoints set at PC. This
6544 concerns with logical breakpoints, so we match program spaces, not
6545 address spaces. */
6546
6547 static void
6548 describe_other_breakpoints (struct gdbarch *gdbarch,
6549 struct program_space *pspace, CORE_ADDR pc,
6550 struct obj_section *section, int thread)
6551 {
6552 int others = 0;
6553 struct breakpoint *b;
6554
6555 ALL_BREAKPOINTS (b)
6556 others += (user_breakpoint_p (b)
6557 && breakpoint_has_pc (b, pspace, pc, section));
6558 if (others > 0)
6559 {
6560 if (others == 1)
6561 printf_filtered (_("Note: breakpoint "));
6562 else /* if (others == ???) */
6563 printf_filtered (_("Note: breakpoints "));
6564 ALL_BREAKPOINTS (b)
6565 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6566 {
6567 others--;
6568 printf_filtered ("%d", b->number);
6569 if (b->thread == -1 && thread != -1)
6570 printf_filtered (" (all threads)");
6571 else if (b->thread != -1)
6572 printf_filtered (" (thread %d)", b->thread);
6573 printf_filtered ("%s%s ",
6574 ((b->enable_state == bp_disabled
6575 || b->enable_state == bp_call_disabled)
6576 ? " (disabled)"
6577 : b->enable_state == bp_permanent
6578 ? " (permanent)"
6579 : ""),
6580 (others > 1) ? ","
6581 : ((others == 1) ? " and" : ""));
6582 }
6583 printf_filtered (_("also set at pc "));
6584 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6585 printf_filtered (".\n");
6586 }
6587 }
6588 \f
6589
6590 /* Return true iff it is meaningful to use the address member of
6591 BPT. For some breakpoint types, the address member is irrelevant
6592 and it makes no sense to attempt to compare it to other addresses
6593 (or use it for any other purpose either).
6594
6595 More specifically, each of the following breakpoint types will
6596 always have a zero valued address and we don't want to mark
6597 breakpoints of any of these types to be a duplicate of an actual
6598 breakpoint at address zero:
6599
6600 bp_watchpoint
6601 bp_catchpoint
6602
6603 */
6604
6605 static int
6606 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6607 {
6608 enum bptype type = bpt->type;
6609
6610 return (type != bp_watchpoint && type != bp_catchpoint);
6611 }
6612
6613 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6614 true if LOC1 and LOC2 represent the same watchpoint location. */
6615
6616 static int
6617 watchpoint_locations_match (struct bp_location *loc1,
6618 struct bp_location *loc2)
6619 {
6620 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6621 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6622
6623 /* Both of them must exist. */
6624 gdb_assert (w1 != NULL);
6625 gdb_assert (w2 != NULL);
6626
6627 /* If the target can evaluate the condition expression in hardware,
6628 then we we need to insert both watchpoints even if they are at
6629 the same place. Otherwise the watchpoint will only trigger when
6630 the condition of whichever watchpoint was inserted evaluates to
6631 true, not giving a chance for GDB to check the condition of the
6632 other watchpoint. */
6633 if ((w1->cond_exp
6634 && target_can_accel_watchpoint_condition (loc1->address,
6635 loc1->length,
6636 loc1->watchpoint_type,
6637 w1->cond_exp))
6638 || (w2->cond_exp
6639 && target_can_accel_watchpoint_condition (loc2->address,
6640 loc2->length,
6641 loc2->watchpoint_type,
6642 w2->cond_exp)))
6643 return 0;
6644
6645 /* Note that this checks the owner's type, not the location's. In
6646 case the target does not support read watchpoints, but does
6647 support access watchpoints, we'll have bp_read_watchpoint
6648 watchpoints with hw_access locations. Those should be considered
6649 duplicates of hw_read locations. The hw_read locations will
6650 become hw_access locations later. */
6651 return (loc1->owner->type == loc2->owner->type
6652 && loc1->pspace->aspace == loc2->pspace->aspace
6653 && loc1->address == loc2->address
6654 && loc1->length == loc2->length);
6655 }
6656
6657 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6658 same breakpoint location. In most targets, this can only be true
6659 if ASPACE1 matches ASPACE2. On targets that have global
6660 breakpoints, the address space doesn't really matter. */
6661
6662 static int
6663 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6664 struct address_space *aspace2, CORE_ADDR addr2)
6665 {
6666 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6667 || aspace1 == aspace2)
6668 && addr1 == addr2);
6669 }
6670
6671 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6672 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6673 matches ASPACE2. On targets that have global breakpoints, the address
6674 space doesn't really matter. */
6675
6676 static int
6677 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6678 int len1, struct address_space *aspace2,
6679 CORE_ADDR addr2)
6680 {
6681 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6682 || aspace1 == aspace2)
6683 && addr2 >= addr1 && addr2 < addr1 + len1);
6684 }
6685
6686 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6687 a ranged breakpoint. In most targets, a match happens only if ASPACE
6688 matches the breakpoint's address space. On targets that have global
6689 breakpoints, the address space doesn't really matter. */
6690
6691 static int
6692 breakpoint_location_address_match (struct bp_location *bl,
6693 struct address_space *aspace,
6694 CORE_ADDR addr)
6695 {
6696 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6697 aspace, addr)
6698 || (bl->length
6699 && breakpoint_address_match_range (bl->pspace->aspace,
6700 bl->address, bl->length,
6701 aspace, addr)));
6702 }
6703
6704 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6705 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6706 true, otherwise returns false. */
6707
6708 static int
6709 tracepoint_locations_match (struct bp_location *loc1,
6710 struct bp_location *loc2)
6711 {
6712 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6713 /* Since tracepoint locations are never duplicated with others', tracepoint
6714 locations at the same address of different tracepoints are regarded as
6715 different locations. */
6716 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6717 else
6718 return 0;
6719 }
6720
6721 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6722 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6723 represent the same location. */
6724
6725 static int
6726 breakpoint_locations_match (struct bp_location *loc1,
6727 struct bp_location *loc2)
6728 {
6729 int hw_point1, hw_point2;
6730
6731 /* Both of them must not be in moribund_locations. */
6732 gdb_assert (loc1->owner != NULL);
6733 gdb_assert (loc2->owner != NULL);
6734
6735 hw_point1 = is_hardware_watchpoint (loc1->owner);
6736 hw_point2 = is_hardware_watchpoint (loc2->owner);
6737
6738 if (hw_point1 != hw_point2)
6739 return 0;
6740 else if (hw_point1)
6741 return watchpoint_locations_match (loc1, loc2);
6742 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6743 return tracepoint_locations_match (loc1, loc2);
6744 else
6745 /* We compare bp_location.length in order to cover ranged breakpoints. */
6746 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6747 loc2->pspace->aspace, loc2->address)
6748 && loc1->length == loc2->length);
6749 }
6750
6751 static void
6752 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6753 int bnum, int have_bnum)
6754 {
6755 /* The longest string possibly returned by hex_string_custom
6756 is 50 chars. These must be at least that big for safety. */
6757 char astr1[64];
6758 char astr2[64];
6759
6760 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6761 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6762 if (have_bnum)
6763 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6764 bnum, astr1, astr2);
6765 else
6766 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6767 }
6768
6769 /* Adjust a breakpoint's address to account for architectural
6770 constraints on breakpoint placement. Return the adjusted address.
6771 Note: Very few targets require this kind of adjustment. For most
6772 targets, this function is simply the identity function. */
6773
6774 static CORE_ADDR
6775 adjust_breakpoint_address (struct gdbarch *gdbarch,
6776 CORE_ADDR bpaddr, enum bptype bptype)
6777 {
6778 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6779 {
6780 /* Very few targets need any kind of breakpoint adjustment. */
6781 return bpaddr;
6782 }
6783 else if (bptype == bp_watchpoint
6784 || bptype == bp_hardware_watchpoint
6785 || bptype == bp_read_watchpoint
6786 || bptype == bp_access_watchpoint
6787 || bptype == bp_catchpoint)
6788 {
6789 /* Watchpoints and the various bp_catch_* eventpoints should not
6790 have their addresses modified. */
6791 return bpaddr;
6792 }
6793 else
6794 {
6795 CORE_ADDR adjusted_bpaddr;
6796
6797 /* Some targets have architectural constraints on the placement
6798 of breakpoint instructions. Obtain the adjusted address. */
6799 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6800
6801 /* An adjusted breakpoint address can significantly alter
6802 a user's expectations. Print a warning if an adjustment
6803 is required. */
6804 if (adjusted_bpaddr != bpaddr)
6805 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6806
6807 return adjusted_bpaddr;
6808 }
6809 }
6810
6811 void
6812 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6813 struct breakpoint *owner)
6814 {
6815 memset (loc, 0, sizeof (*loc));
6816
6817 gdb_assert (ops != NULL);
6818
6819 loc->ops = ops;
6820 loc->owner = owner;
6821 loc->cond = NULL;
6822 loc->cond_bytecode = NULL;
6823 loc->shlib_disabled = 0;
6824 loc->enabled = 1;
6825
6826 switch (owner->type)
6827 {
6828 case bp_breakpoint:
6829 case bp_until:
6830 case bp_finish:
6831 case bp_longjmp:
6832 case bp_longjmp_resume:
6833 case bp_longjmp_call_dummy:
6834 case bp_exception:
6835 case bp_exception_resume:
6836 case bp_step_resume:
6837 case bp_hp_step_resume:
6838 case bp_watchpoint_scope:
6839 case bp_call_dummy:
6840 case bp_std_terminate:
6841 case bp_shlib_event:
6842 case bp_thread_event:
6843 case bp_overlay_event:
6844 case bp_jit_event:
6845 case bp_longjmp_master:
6846 case bp_std_terminate_master:
6847 case bp_exception_master:
6848 case bp_gnu_ifunc_resolver:
6849 case bp_gnu_ifunc_resolver_return:
6850 case bp_dprintf:
6851 loc->loc_type = bp_loc_software_breakpoint;
6852 mark_breakpoint_location_modified (loc);
6853 break;
6854 case bp_hardware_breakpoint:
6855 loc->loc_type = bp_loc_hardware_breakpoint;
6856 mark_breakpoint_location_modified (loc);
6857 break;
6858 case bp_hardware_watchpoint:
6859 case bp_read_watchpoint:
6860 case bp_access_watchpoint:
6861 loc->loc_type = bp_loc_hardware_watchpoint;
6862 break;
6863 case bp_watchpoint:
6864 case bp_catchpoint:
6865 case bp_tracepoint:
6866 case bp_fast_tracepoint:
6867 case bp_static_tracepoint:
6868 loc->loc_type = bp_loc_other;
6869 break;
6870 default:
6871 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6872 }
6873
6874 loc->refc = 1;
6875 }
6876
6877 /* Allocate a struct bp_location. */
6878
6879 static struct bp_location *
6880 allocate_bp_location (struct breakpoint *bpt)
6881 {
6882 return bpt->ops->allocate_location (bpt);
6883 }
6884
6885 static void
6886 free_bp_location (struct bp_location *loc)
6887 {
6888 loc->ops->dtor (loc);
6889 xfree (loc);
6890 }
6891
6892 /* Increment reference count. */
6893
6894 static void
6895 incref_bp_location (struct bp_location *bl)
6896 {
6897 ++bl->refc;
6898 }
6899
6900 /* Decrement reference count. If the reference count reaches 0,
6901 destroy the bp_location. Sets *BLP to NULL. */
6902
6903 static void
6904 decref_bp_location (struct bp_location **blp)
6905 {
6906 gdb_assert ((*blp)->refc > 0);
6907
6908 if (--(*blp)->refc == 0)
6909 free_bp_location (*blp);
6910 *blp = NULL;
6911 }
6912
6913 /* Add breakpoint B at the end of the global breakpoint chain. */
6914
6915 static void
6916 add_to_breakpoint_chain (struct breakpoint *b)
6917 {
6918 struct breakpoint *b1;
6919
6920 /* Add this breakpoint to the end of the chain so that a list of
6921 breakpoints will come out in order of increasing numbers. */
6922
6923 b1 = breakpoint_chain;
6924 if (b1 == 0)
6925 breakpoint_chain = b;
6926 else
6927 {
6928 while (b1->next)
6929 b1 = b1->next;
6930 b1->next = b;
6931 }
6932 }
6933
6934 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6935
6936 static void
6937 init_raw_breakpoint_without_location (struct breakpoint *b,
6938 struct gdbarch *gdbarch,
6939 enum bptype bptype,
6940 const struct breakpoint_ops *ops)
6941 {
6942 memset (b, 0, sizeof (*b));
6943
6944 gdb_assert (ops != NULL);
6945
6946 b->ops = ops;
6947 b->type = bptype;
6948 b->gdbarch = gdbarch;
6949 b->language = current_language->la_language;
6950 b->input_radix = input_radix;
6951 b->thread = -1;
6952 b->enable_state = bp_enabled;
6953 b->next = 0;
6954 b->silent = 0;
6955 b->ignore_count = 0;
6956 b->commands = NULL;
6957 b->frame_id = null_frame_id;
6958 b->condition_not_parsed = 0;
6959 b->py_bp_object = NULL;
6960 b->related_breakpoint = b;
6961 }
6962
6963 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6964 that has type BPTYPE and has no locations as yet. */
6965
6966 static struct breakpoint *
6967 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6968 enum bptype bptype,
6969 const struct breakpoint_ops *ops)
6970 {
6971 struct breakpoint *b = XNEW (struct breakpoint);
6972
6973 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6974 add_to_breakpoint_chain (b);
6975 return b;
6976 }
6977
6978 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6979 resolutions should be made as the user specified the location explicitly
6980 enough. */
6981
6982 static void
6983 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6984 {
6985 gdb_assert (loc->owner != NULL);
6986
6987 if (loc->owner->type == bp_breakpoint
6988 || loc->owner->type == bp_hardware_breakpoint
6989 || is_tracepoint (loc->owner))
6990 {
6991 int is_gnu_ifunc;
6992 const char *function_name;
6993 CORE_ADDR func_addr;
6994
6995 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
6996 &func_addr, NULL, &is_gnu_ifunc);
6997
6998 if (is_gnu_ifunc && !explicit_loc)
6999 {
7000 struct breakpoint *b = loc->owner;
7001
7002 gdb_assert (loc->pspace == current_program_space);
7003 if (gnu_ifunc_resolve_name (function_name,
7004 &loc->requested_address))
7005 {
7006 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7007 loc->address = adjust_breakpoint_address (loc->gdbarch,
7008 loc->requested_address,
7009 b->type);
7010 }
7011 else if (b->type == bp_breakpoint && b->loc == loc
7012 && loc->next == NULL && b->related_breakpoint == b)
7013 {
7014 /* Create only the whole new breakpoint of this type but do not
7015 mess more complicated breakpoints with multiple locations. */
7016 b->type = bp_gnu_ifunc_resolver;
7017 /* Remember the resolver's address for use by the return
7018 breakpoint. */
7019 loc->related_address = func_addr;
7020 }
7021 }
7022
7023 if (function_name)
7024 loc->function_name = xstrdup (function_name);
7025 }
7026 }
7027
7028 /* Attempt to determine architecture of location identified by SAL. */
7029 struct gdbarch *
7030 get_sal_arch (struct symtab_and_line sal)
7031 {
7032 if (sal.section)
7033 return get_objfile_arch (sal.section->objfile);
7034 if (sal.symtab)
7035 return get_objfile_arch (sal.symtab->objfile);
7036
7037 return NULL;
7038 }
7039
7040 /* Low level routine for partially initializing a breakpoint of type
7041 BPTYPE. The newly created breakpoint's address, section, source
7042 file name, and line number are provided by SAL.
7043
7044 It is expected that the caller will complete the initialization of
7045 the newly created breakpoint struct as well as output any status
7046 information regarding the creation of a new breakpoint. */
7047
7048 static void
7049 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7050 struct symtab_and_line sal, enum bptype bptype,
7051 const struct breakpoint_ops *ops)
7052 {
7053 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7054
7055 add_location_to_breakpoint (b, &sal);
7056
7057 if (bptype != bp_catchpoint)
7058 gdb_assert (sal.pspace != NULL);
7059
7060 /* Store the program space that was used to set the breakpoint,
7061 except for ordinary breakpoints, which are independent of the
7062 program space. */
7063 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7064 b->pspace = sal.pspace;
7065 }
7066
7067 /* set_raw_breakpoint is a low level routine for allocating and
7068 partially initializing a breakpoint of type BPTYPE. The newly
7069 created breakpoint's address, section, source file name, and line
7070 number are provided by SAL. The newly created and partially
7071 initialized breakpoint is added to the breakpoint chain and
7072 is also returned as the value of this function.
7073
7074 It is expected that the caller will complete the initialization of
7075 the newly created breakpoint struct as well as output any status
7076 information regarding the creation of a new breakpoint. In
7077 particular, set_raw_breakpoint does NOT set the breakpoint
7078 number! Care should be taken to not allow an error to occur
7079 prior to completing the initialization of the breakpoint. If this
7080 should happen, a bogus breakpoint will be left on the chain. */
7081
7082 struct breakpoint *
7083 set_raw_breakpoint (struct gdbarch *gdbarch,
7084 struct symtab_and_line sal, enum bptype bptype,
7085 const struct breakpoint_ops *ops)
7086 {
7087 struct breakpoint *b = XNEW (struct breakpoint);
7088
7089 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7090 add_to_breakpoint_chain (b);
7091 return b;
7092 }
7093
7094
7095 /* Note that the breakpoint object B describes a permanent breakpoint
7096 instruction, hard-wired into the inferior's code. */
7097 void
7098 make_breakpoint_permanent (struct breakpoint *b)
7099 {
7100 struct bp_location *bl;
7101
7102 b->enable_state = bp_permanent;
7103
7104 /* By definition, permanent breakpoints are already present in the
7105 code. Mark all locations as inserted. For now,
7106 make_breakpoint_permanent is called in just one place, so it's
7107 hard to say if it's reasonable to have permanent breakpoint with
7108 multiple locations or not, but it's easy to implement. */
7109 for (bl = b->loc; bl; bl = bl->next)
7110 bl->inserted = 1;
7111 }
7112
7113 /* Call this routine when stepping and nexting to enable a breakpoint
7114 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7115 initiated the operation. */
7116
7117 void
7118 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7119 {
7120 struct breakpoint *b, *b_tmp;
7121 int thread = tp->num;
7122
7123 /* To avoid having to rescan all objfile symbols at every step,
7124 we maintain a list of continually-inserted but always disabled
7125 longjmp "master" breakpoints. Here, we simply create momentary
7126 clones of those and enable them for the requested thread. */
7127 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7128 if (b->pspace == current_program_space
7129 && (b->type == bp_longjmp_master
7130 || b->type == bp_exception_master))
7131 {
7132 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7133 struct breakpoint *clone;
7134
7135 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7136 after their removal. */
7137 clone = momentary_breakpoint_from_master (b, type,
7138 &longjmp_breakpoint_ops);
7139 clone->thread = thread;
7140 }
7141
7142 tp->initiating_frame = frame;
7143 }
7144
7145 /* Delete all longjmp breakpoints from THREAD. */
7146 void
7147 delete_longjmp_breakpoint (int thread)
7148 {
7149 struct breakpoint *b, *b_tmp;
7150
7151 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7152 if (b->type == bp_longjmp || b->type == bp_exception)
7153 {
7154 if (b->thread == thread)
7155 delete_breakpoint (b);
7156 }
7157 }
7158
7159 void
7160 delete_longjmp_breakpoint_at_next_stop (int thread)
7161 {
7162 struct breakpoint *b, *b_tmp;
7163
7164 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7165 if (b->type == bp_longjmp || b->type == bp_exception)
7166 {
7167 if (b->thread == thread)
7168 b->disposition = disp_del_at_next_stop;
7169 }
7170 }
7171
7172 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7173 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7174 pointer to any of them. Return NULL if this system cannot place longjmp
7175 breakpoints. */
7176
7177 struct breakpoint *
7178 set_longjmp_breakpoint_for_call_dummy (void)
7179 {
7180 struct breakpoint *b, *retval = NULL;
7181
7182 ALL_BREAKPOINTS (b)
7183 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7184 {
7185 struct breakpoint *new_b;
7186
7187 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7188 &momentary_breakpoint_ops);
7189 new_b->thread = pid_to_thread_id (inferior_ptid);
7190
7191 /* Link NEW_B into the chain of RETVAL breakpoints. */
7192
7193 gdb_assert (new_b->related_breakpoint == new_b);
7194 if (retval == NULL)
7195 retval = new_b;
7196 new_b->related_breakpoint = retval;
7197 while (retval->related_breakpoint != new_b->related_breakpoint)
7198 retval = retval->related_breakpoint;
7199 retval->related_breakpoint = new_b;
7200 }
7201
7202 return retval;
7203 }
7204
7205 /* Verify all existing dummy frames and their associated breakpoints for
7206 THREAD. Remove those which can no longer be found in the current frame
7207 stack.
7208
7209 You should call this function only at places where it is safe to currently
7210 unwind the whole stack. Failed stack unwind would discard live dummy
7211 frames. */
7212
7213 void
7214 check_longjmp_breakpoint_for_call_dummy (int thread)
7215 {
7216 struct breakpoint *b, *b_tmp;
7217
7218 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7219 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7220 {
7221 struct breakpoint *dummy_b = b->related_breakpoint;
7222
7223 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7224 dummy_b = dummy_b->related_breakpoint;
7225 if (dummy_b->type != bp_call_dummy
7226 || frame_find_by_id (dummy_b->frame_id) != NULL)
7227 continue;
7228
7229 dummy_frame_discard (dummy_b->frame_id);
7230
7231 while (b->related_breakpoint != b)
7232 {
7233 if (b_tmp == b->related_breakpoint)
7234 b_tmp = b->related_breakpoint->next;
7235 delete_breakpoint (b->related_breakpoint);
7236 }
7237 delete_breakpoint (b);
7238 }
7239 }
7240
7241 void
7242 enable_overlay_breakpoints (void)
7243 {
7244 struct breakpoint *b;
7245
7246 ALL_BREAKPOINTS (b)
7247 if (b->type == bp_overlay_event)
7248 {
7249 b->enable_state = bp_enabled;
7250 update_global_location_list (1);
7251 overlay_events_enabled = 1;
7252 }
7253 }
7254
7255 void
7256 disable_overlay_breakpoints (void)
7257 {
7258 struct breakpoint *b;
7259
7260 ALL_BREAKPOINTS (b)
7261 if (b->type == bp_overlay_event)
7262 {
7263 b->enable_state = bp_disabled;
7264 update_global_location_list (0);
7265 overlay_events_enabled = 0;
7266 }
7267 }
7268
7269 /* Set an active std::terminate breakpoint for each std::terminate
7270 master breakpoint. */
7271 void
7272 set_std_terminate_breakpoint (void)
7273 {
7274 struct breakpoint *b, *b_tmp;
7275
7276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7277 if (b->pspace == current_program_space
7278 && b->type == bp_std_terminate_master)
7279 {
7280 momentary_breakpoint_from_master (b, bp_std_terminate,
7281 &momentary_breakpoint_ops);
7282 }
7283 }
7284
7285 /* Delete all the std::terminate breakpoints. */
7286 void
7287 delete_std_terminate_breakpoint (void)
7288 {
7289 struct breakpoint *b, *b_tmp;
7290
7291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7292 if (b->type == bp_std_terminate)
7293 delete_breakpoint (b);
7294 }
7295
7296 struct breakpoint *
7297 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7298 {
7299 struct breakpoint *b;
7300
7301 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7302 &internal_breakpoint_ops);
7303
7304 b->enable_state = bp_enabled;
7305 /* addr_string has to be used or breakpoint_re_set will delete me. */
7306 b->addr_string
7307 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7308
7309 update_global_location_list_nothrow (1);
7310
7311 return b;
7312 }
7313
7314 void
7315 remove_thread_event_breakpoints (void)
7316 {
7317 struct breakpoint *b, *b_tmp;
7318
7319 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7320 if (b->type == bp_thread_event
7321 && b->loc->pspace == current_program_space)
7322 delete_breakpoint (b);
7323 }
7324
7325 struct lang_and_radix
7326 {
7327 enum language lang;
7328 int radix;
7329 };
7330
7331 /* Create a breakpoint for JIT code registration and unregistration. */
7332
7333 struct breakpoint *
7334 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7335 {
7336 struct breakpoint *b;
7337
7338 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7339 &internal_breakpoint_ops);
7340 update_global_location_list_nothrow (1);
7341 return b;
7342 }
7343
7344 /* Remove JIT code registration and unregistration breakpoint(s). */
7345
7346 void
7347 remove_jit_event_breakpoints (void)
7348 {
7349 struct breakpoint *b, *b_tmp;
7350
7351 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7352 if (b->type == bp_jit_event
7353 && b->loc->pspace == current_program_space)
7354 delete_breakpoint (b);
7355 }
7356
7357 void
7358 remove_solib_event_breakpoints (void)
7359 {
7360 struct breakpoint *b, *b_tmp;
7361
7362 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7363 if (b->type == bp_shlib_event
7364 && b->loc->pspace == current_program_space)
7365 delete_breakpoint (b);
7366 }
7367
7368 struct breakpoint *
7369 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7370 {
7371 struct breakpoint *b;
7372
7373 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7374 &internal_breakpoint_ops);
7375 update_global_location_list_nothrow (1);
7376 return b;
7377 }
7378
7379 /* Disable any breakpoints that are on code in shared libraries. Only
7380 apply to enabled breakpoints, disabled ones can just stay disabled. */
7381
7382 void
7383 disable_breakpoints_in_shlibs (void)
7384 {
7385 struct bp_location *loc, **locp_tmp;
7386
7387 ALL_BP_LOCATIONS (loc, locp_tmp)
7388 {
7389 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7390 struct breakpoint *b = loc->owner;
7391
7392 /* We apply the check to all breakpoints, including disabled for
7393 those with loc->duplicate set. This is so that when breakpoint
7394 becomes enabled, or the duplicate is removed, gdb will try to
7395 insert all breakpoints. If we don't set shlib_disabled here,
7396 we'll try to insert those breakpoints and fail. */
7397 if (((b->type == bp_breakpoint)
7398 || (b->type == bp_jit_event)
7399 || (b->type == bp_hardware_breakpoint)
7400 || (is_tracepoint (b)))
7401 && loc->pspace == current_program_space
7402 && !loc->shlib_disabled
7403 && solib_name_from_address (loc->pspace, loc->address)
7404 )
7405 {
7406 loc->shlib_disabled = 1;
7407 }
7408 }
7409 }
7410
7411 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7412 library. Only apply to enabled breakpoints, disabled ones can just stay
7413 disabled. */
7414
7415 static void
7416 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7417 {
7418 struct bp_location *loc, **locp_tmp;
7419 int disabled_shlib_breaks = 0;
7420
7421 /* SunOS a.out shared libraries are always mapped, so do not
7422 disable breakpoints; they will only be reported as unloaded
7423 through clear_solib when GDB discards its shared library
7424 list. See clear_solib for more information. */
7425 if (exec_bfd != NULL
7426 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7427 return;
7428
7429 ALL_BP_LOCATIONS (loc, locp_tmp)
7430 {
7431 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7432 struct breakpoint *b = loc->owner;
7433
7434 if (solib->pspace == loc->pspace
7435 && !loc->shlib_disabled
7436 && (((b->type == bp_breakpoint
7437 || b->type == bp_jit_event
7438 || b->type == bp_hardware_breakpoint)
7439 && (loc->loc_type == bp_loc_hardware_breakpoint
7440 || loc->loc_type == bp_loc_software_breakpoint))
7441 || is_tracepoint (b))
7442 && solib_contains_address_p (solib, loc->address))
7443 {
7444 loc->shlib_disabled = 1;
7445 /* At this point, we cannot rely on remove_breakpoint
7446 succeeding so we must mark the breakpoint as not inserted
7447 to prevent future errors occurring in remove_breakpoints. */
7448 loc->inserted = 0;
7449
7450 /* This may cause duplicate notifications for the same breakpoint. */
7451 observer_notify_breakpoint_modified (b);
7452
7453 if (!disabled_shlib_breaks)
7454 {
7455 target_terminal_ours_for_output ();
7456 warning (_("Temporarily disabling breakpoints "
7457 "for unloaded shared library \"%s\""),
7458 solib->so_name);
7459 }
7460 disabled_shlib_breaks = 1;
7461 }
7462 }
7463 }
7464
7465 /* FORK & VFORK catchpoints. */
7466
7467 /* An instance of this type is used to represent a fork or vfork
7468 catchpoint. It includes a "struct breakpoint" as a kind of base
7469 class; users downcast to "struct breakpoint *" when needed. A
7470 breakpoint is really of this type iff its ops pointer points to
7471 CATCH_FORK_BREAKPOINT_OPS. */
7472
7473 struct fork_catchpoint
7474 {
7475 /* The base class. */
7476 struct breakpoint base;
7477
7478 /* Process id of a child process whose forking triggered this
7479 catchpoint. This field is only valid immediately after this
7480 catchpoint has triggered. */
7481 ptid_t forked_inferior_pid;
7482 };
7483
7484 /* Implement the "insert" breakpoint_ops method for fork
7485 catchpoints. */
7486
7487 static int
7488 insert_catch_fork (struct bp_location *bl)
7489 {
7490 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7491 }
7492
7493 /* Implement the "remove" breakpoint_ops method for fork
7494 catchpoints. */
7495
7496 static int
7497 remove_catch_fork (struct bp_location *bl)
7498 {
7499 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7500 }
7501
7502 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7503 catchpoints. */
7504
7505 static int
7506 breakpoint_hit_catch_fork (const struct bp_location *bl,
7507 struct address_space *aspace, CORE_ADDR bp_addr,
7508 const struct target_waitstatus *ws)
7509 {
7510 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7511
7512 if (ws->kind != TARGET_WAITKIND_FORKED)
7513 return 0;
7514
7515 c->forked_inferior_pid = ws->value.related_pid;
7516 return 1;
7517 }
7518
7519 /* Implement the "print_it" breakpoint_ops method for fork
7520 catchpoints. */
7521
7522 static enum print_stop_action
7523 print_it_catch_fork (bpstat bs)
7524 {
7525 struct ui_out *uiout = current_uiout;
7526 struct breakpoint *b = bs->breakpoint_at;
7527 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7528
7529 annotate_catchpoint (b->number);
7530 if (b->disposition == disp_del)
7531 ui_out_text (uiout, "\nTemporary catchpoint ");
7532 else
7533 ui_out_text (uiout, "\nCatchpoint ");
7534 if (ui_out_is_mi_like_p (uiout))
7535 {
7536 ui_out_field_string (uiout, "reason",
7537 async_reason_lookup (EXEC_ASYNC_FORK));
7538 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7539 }
7540 ui_out_field_int (uiout, "bkptno", b->number);
7541 ui_out_text (uiout, " (forked process ");
7542 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7543 ui_out_text (uiout, "), ");
7544 return PRINT_SRC_AND_LOC;
7545 }
7546
7547 /* Implement the "print_one" breakpoint_ops method for fork
7548 catchpoints. */
7549
7550 static void
7551 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7552 {
7553 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7554 struct value_print_options opts;
7555 struct ui_out *uiout = current_uiout;
7556
7557 get_user_print_options (&opts);
7558
7559 /* Field 4, the address, is omitted (which makes the columns not
7560 line up too nicely with the headers, but the effect is relatively
7561 readable). */
7562 if (opts.addressprint)
7563 ui_out_field_skip (uiout, "addr");
7564 annotate_field (5);
7565 ui_out_text (uiout, "fork");
7566 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7567 {
7568 ui_out_text (uiout, ", process ");
7569 ui_out_field_int (uiout, "what",
7570 ptid_get_pid (c->forked_inferior_pid));
7571 ui_out_spaces (uiout, 1);
7572 }
7573
7574 if (ui_out_is_mi_like_p (uiout))
7575 ui_out_field_string (uiout, "catch-type", "fork");
7576 }
7577
7578 /* Implement the "print_mention" breakpoint_ops method for fork
7579 catchpoints. */
7580
7581 static void
7582 print_mention_catch_fork (struct breakpoint *b)
7583 {
7584 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7585 }
7586
7587 /* Implement the "print_recreate" breakpoint_ops method for fork
7588 catchpoints. */
7589
7590 static void
7591 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7592 {
7593 fprintf_unfiltered (fp, "catch fork");
7594 print_recreate_thread (b, fp);
7595 }
7596
7597 /* The breakpoint_ops structure to be used in fork catchpoints. */
7598
7599 static struct breakpoint_ops catch_fork_breakpoint_ops;
7600
7601 /* Implement the "insert" breakpoint_ops method for vfork
7602 catchpoints. */
7603
7604 static int
7605 insert_catch_vfork (struct bp_location *bl)
7606 {
7607 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7608 }
7609
7610 /* Implement the "remove" breakpoint_ops method for vfork
7611 catchpoints. */
7612
7613 static int
7614 remove_catch_vfork (struct bp_location *bl)
7615 {
7616 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7617 }
7618
7619 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7620 catchpoints. */
7621
7622 static int
7623 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7624 struct address_space *aspace, CORE_ADDR bp_addr,
7625 const struct target_waitstatus *ws)
7626 {
7627 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7628
7629 if (ws->kind != TARGET_WAITKIND_VFORKED)
7630 return 0;
7631
7632 c->forked_inferior_pid = ws->value.related_pid;
7633 return 1;
7634 }
7635
7636 /* Implement the "print_it" breakpoint_ops method for vfork
7637 catchpoints. */
7638
7639 static enum print_stop_action
7640 print_it_catch_vfork (bpstat bs)
7641 {
7642 struct ui_out *uiout = current_uiout;
7643 struct breakpoint *b = bs->breakpoint_at;
7644 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7645
7646 annotate_catchpoint (b->number);
7647 if (b->disposition == disp_del)
7648 ui_out_text (uiout, "\nTemporary catchpoint ");
7649 else
7650 ui_out_text (uiout, "\nCatchpoint ");
7651 if (ui_out_is_mi_like_p (uiout))
7652 {
7653 ui_out_field_string (uiout, "reason",
7654 async_reason_lookup (EXEC_ASYNC_VFORK));
7655 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7656 }
7657 ui_out_field_int (uiout, "bkptno", b->number);
7658 ui_out_text (uiout, " (vforked process ");
7659 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7660 ui_out_text (uiout, "), ");
7661 return PRINT_SRC_AND_LOC;
7662 }
7663
7664 /* Implement the "print_one" breakpoint_ops method for vfork
7665 catchpoints. */
7666
7667 static void
7668 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7669 {
7670 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7671 struct value_print_options opts;
7672 struct ui_out *uiout = current_uiout;
7673
7674 get_user_print_options (&opts);
7675 /* Field 4, the address, is omitted (which makes the columns not
7676 line up too nicely with the headers, but the effect is relatively
7677 readable). */
7678 if (opts.addressprint)
7679 ui_out_field_skip (uiout, "addr");
7680 annotate_field (5);
7681 ui_out_text (uiout, "vfork");
7682 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7683 {
7684 ui_out_text (uiout, ", process ");
7685 ui_out_field_int (uiout, "what",
7686 ptid_get_pid (c->forked_inferior_pid));
7687 ui_out_spaces (uiout, 1);
7688 }
7689
7690 if (ui_out_is_mi_like_p (uiout))
7691 ui_out_field_string (uiout, "catch-type", "vfork");
7692 }
7693
7694 /* Implement the "print_mention" breakpoint_ops method for vfork
7695 catchpoints. */
7696
7697 static void
7698 print_mention_catch_vfork (struct breakpoint *b)
7699 {
7700 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7701 }
7702
7703 /* Implement the "print_recreate" breakpoint_ops method for vfork
7704 catchpoints. */
7705
7706 static void
7707 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7708 {
7709 fprintf_unfiltered (fp, "catch vfork");
7710 print_recreate_thread (b, fp);
7711 }
7712
7713 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7714
7715 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7716
7717 /* An instance of this type is used to represent an solib catchpoint.
7718 It includes a "struct breakpoint" as a kind of base class; users
7719 downcast to "struct breakpoint *" when needed. A breakpoint is
7720 really of this type iff its ops pointer points to
7721 CATCH_SOLIB_BREAKPOINT_OPS. */
7722
7723 struct solib_catchpoint
7724 {
7725 /* The base class. */
7726 struct breakpoint base;
7727
7728 /* True for "catch load", false for "catch unload". */
7729 unsigned char is_load;
7730
7731 /* Regular expression to match, if any. COMPILED is only valid when
7732 REGEX is non-NULL. */
7733 char *regex;
7734 regex_t compiled;
7735 };
7736
7737 static void
7738 dtor_catch_solib (struct breakpoint *b)
7739 {
7740 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7741
7742 if (self->regex)
7743 regfree (&self->compiled);
7744 xfree (self->regex);
7745
7746 base_breakpoint_ops.dtor (b);
7747 }
7748
7749 static int
7750 insert_catch_solib (struct bp_location *ignore)
7751 {
7752 return 0;
7753 }
7754
7755 static int
7756 remove_catch_solib (struct bp_location *ignore)
7757 {
7758 return 0;
7759 }
7760
7761 static int
7762 breakpoint_hit_catch_solib (const struct bp_location *bl,
7763 struct address_space *aspace,
7764 CORE_ADDR bp_addr,
7765 const struct target_waitstatus *ws)
7766 {
7767 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7768 struct breakpoint *other;
7769
7770 if (ws->kind == TARGET_WAITKIND_LOADED)
7771 return 1;
7772
7773 ALL_BREAKPOINTS (other)
7774 {
7775 struct bp_location *other_bl;
7776
7777 if (other == bl->owner)
7778 continue;
7779
7780 if (other->type != bp_shlib_event)
7781 continue;
7782
7783 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7784 continue;
7785
7786 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7787 {
7788 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7789 return 1;
7790 }
7791 }
7792
7793 return 0;
7794 }
7795
7796 static void
7797 check_status_catch_solib (struct bpstats *bs)
7798 {
7799 struct solib_catchpoint *self
7800 = (struct solib_catchpoint *) bs->breakpoint_at;
7801 int ix;
7802
7803 if (self->is_load)
7804 {
7805 struct so_list *iter;
7806
7807 for (ix = 0;
7808 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7809 ix, iter);
7810 ++ix)
7811 {
7812 if (!self->regex
7813 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7814 return;
7815 }
7816 }
7817 else
7818 {
7819 char *iter;
7820
7821 for (ix = 0;
7822 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7823 ix, iter);
7824 ++ix)
7825 {
7826 if (!self->regex
7827 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7828 return;
7829 }
7830 }
7831
7832 bs->stop = 0;
7833 bs->print_it = print_it_noop;
7834 }
7835
7836 static enum print_stop_action
7837 print_it_catch_solib (bpstat bs)
7838 {
7839 struct breakpoint *b = bs->breakpoint_at;
7840 struct ui_out *uiout = current_uiout;
7841
7842 annotate_catchpoint (b->number);
7843 if (b->disposition == disp_del)
7844 ui_out_text (uiout, "\nTemporary catchpoint ");
7845 else
7846 ui_out_text (uiout, "\nCatchpoint ");
7847 ui_out_field_int (uiout, "bkptno", b->number);
7848 ui_out_text (uiout, "\n");
7849 if (ui_out_is_mi_like_p (uiout))
7850 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7851 print_solib_event (1);
7852 return PRINT_SRC_AND_LOC;
7853 }
7854
7855 static void
7856 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7857 {
7858 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7859 struct value_print_options opts;
7860 struct ui_out *uiout = current_uiout;
7861 char *msg;
7862
7863 get_user_print_options (&opts);
7864 /* Field 4, the address, is omitted (which makes the columns not
7865 line up too nicely with the headers, but the effect is relatively
7866 readable). */
7867 if (opts.addressprint)
7868 {
7869 annotate_field (4);
7870 ui_out_field_skip (uiout, "addr");
7871 }
7872
7873 annotate_field (5);
7874 if (self->is_load)
7875 {
7876 if (self->regex)
7877 msg = xstrprintf (_("load of library matching %s"), self->regex);
7878 else
7879 msg = xstrdup (_("load of library"));
7880 }
7881 else
7882 {
7883 if (self->regex)
7884 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7885 else
7886 msg = xstrdup (_("unload of library"));
7887 }
7888 ui_out_field_string (uiout, "what", msg);
7889 xfree (msg);
7890
7891 if (ui_out_is_mi_like_p (uiout))
7892 ui_out_field_string (uiout, "catch-type",
7893 self->is_load ? "load" : "unload");
7894 }
7895
7896 static void
7897 print_mention_catch_solib (struct breakpoint *b)
7898 {
7899 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7900
7901 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7902 self->is_load ? "load" : "unload");
7903 }
7904
7905 static void
7906 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7907 {
7908 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7909
7910 fprintf_unfiltered (fp, "%s %s",
7911 b->disposition == disp_del ? "tcatch" : "catch",
7912 self->is_load ? "load" : "unload");
7913 if (self->regex)
7914 fprintf_unfiltered (fp, " %s", self->regex);
7915 fprintf_unfiltered (fp, "\n");
7916 }
7917
7918 static struct breakpoint_ops catch_solib_breakpoint_ops;
7919
7920 /* Shared helper function (MI and CLI) for creating and installing
7921 a shared object event catchpoint. If IS_LOAD is non-zero then
7922 the events to be caught are load events, otherwise they are
7923 unload events. If IS_TEMP is non-zero the catchpoint is a
7924 temporary one. If ENABLED is non-zero the catchpoint is
7925 created in an enabled state. */
7926
7927 void
7928 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7929 {
7930 struct solib_catchpoint *c;
7931 struct gdbarch *gdbarch = get_current_arch ();
7932 struct cleanup *cleanup;
7933
7934 if (!arg)
7935 arg = "";
7936 arg = skip_spaces (arg);
7937
7938 c = XCNEW (struct solib_catchpoint);
7939 cleanup = make_cleanup (xfree, c);
7940
7941 if (*arg != '\0')
7942 {
7943 int errcode;
7944
7945 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7946 if (errcode != 0)
7947 {
7948 char *err = get_regcomp_error (errcode, &c->compiled);
7949
7950 make_cleanup (xfree, err);
7951 error (_("Invalid regexp (%s): %s"), err, arg);
7952 }
7953 c->regex = xstrdup (arg);
7954 }
7955
7956 c->is_load = is_load;
7957 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7958 &catch_solib_breakpoint_ops);
7959
7960 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7961
7962 discard_cleanups (cleanup);
7963 install_breakpoint (0, &c->base, 1);
7964 }
7965
7966 /* A helper function that does all the work for "catch load" and
7967 "catch unload". */
7968
7969 static void
7970 catch_load_or_unload (char *arg, int from_tty, int is_load,
7971 struct cmd_list_element *command)
7972 {
7973 int tempflag;
7974 const int enabled = 1;
7975
7976 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7977
7978 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7979 }
7980
7981 static void
7982 catch_load_command_1 (char *arg, int from_tty,
7983 struct cmd_list_element *command)
7984 {
7985 catch_load_or_unload (arg, from_tty, 1, command);
7986 }
7987
7988 static void
7989 catch_unload_command_1 (char *arg, int from_tty,
7990 struct cmd_list_element *command)
7991 {
7992 catch_load_or_unload (arg, from_tty, 0, command);
7993 }
7994
7995 /* An instance of this type is used to represent a syscall catchpoint.
7996 It includes a "struct breakpoint" as a kind of base class; users
7997 downcast to "struct breakpoint *" when needed. A breakpoint is
7998 really of this type iff its ops pointer points to
7999 CATCH_SYSCALL_BREAKPOINT_OPS. */
8000
8001 struct syscall_catchpoint
8002 {
8003 /* The base class. */
8004 struct breakpoint base;
8005
8006 /* Syscall numbers used for the 'catch syscall' feature. If no
8007 syscall has been specified for filtering, its value is NULL.
8008 Otherwise, it holds a list of all syscalls to be caught. The
8009 list elements are allocated with xmalloc. */
8010 VEC(int) *syscalls_to_be_caught;
8011 };
8012
8013 /* Implement the "dtor" breakpoint_ops method for syscall
8014 catchpoints. */
8015
8016 static void
8017 dtor_catch_syscall (struct breakpoint *b)
8018 {
8019 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8020
8021 VEC_free (int, c->syscalls_to_be_caught);
8022
8023 base_breakpoint_ops.dtor (b);
8024 }
8025
8026 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8027
8028 struct catch_syscall_inferior_data
8029 {
8030 /* We keep a count of the number of times the user has requested a
8031 particular syscall to be tracked, and pass this information to the
8032 target. This lets capable targets implement filtering directly. */
8033
8034 /* Number of times that "any" syscall is requested. */
8035 int any_syscall_count;
8036
8037 /* Count of each system call. */
8038 VEC(int) *syscalls_counts;
8039
8040 /* This counts all syscall catch requests, so we can readily determine
8041 if any catching is necessary. */
8042 int total_syscalls_count;
8043 };
8044
8045 static struct catch_syscall_inferior_data*
8046 get_catch_syscall_inferior_data (struct inferior *inf)
8047 {
8048 struct catch_syscall_inferior_data *inf_data;
8049
8050 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8051 if (inf_data == NULL)
8052 {
8053 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8054 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8055 }
8056
8057 return inf_data;
8058 }
8059
8060 static void
8061 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8062 {
8063 xfree (arg);
8064 }
8065
8066
8067 /* Implement the "insert" breakpoint_ops method for syscall
8068 catchpoints. */
8069
8070 static int
8071 insert_catch_syscall (struct bp_location *bl)
8072 {
8073 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8074 struct inferior *inf = current_inferior ();
8075 struct catch_syscall_inferior_data *inf_data
8076 = get_catch_syscall_inferior_data (inf);
8077
8078 ++inf_data->total_syscalls_count;
8079 if (!c->syscalls_to_be_caught)
8080 ++inf_data->any_syscall_count;
8081 else
8082 {
8083 int i, iter;
8084
8085 for (i = 0;
8086 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8087 i++)
8088 {
8089 int elem;
8090
8091 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8092 {
8093 int old_size = VEC_length (int, inf_data->syscalls_counts);
8094 uintptr_t vec_addr_offset
8095 = old_size * ((uintptr_t) sizeof (int));
8096 uintptr_t vec_addr;
8097 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8098 vec_addr = ((uintptr_t) VEC_address (int,
8099 inf_data->syscalls_counts)
8100 + vec_addr_offset);
8101 memset ((void *) vec_addr, 0,
8102 (iter + 1 - old_size) * sizeof (int));
8103 }
8104 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8105 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8106 }
8107 }
8108
8109 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8110 inf_data->total_syscalls_count != 0,
8111 inf_data->any_syscall_count,
8112 VEC_length (int,
8113 inf_data->syscalls_counts),
8114 VEC_address (int,
8115 inf_data->syscalls_counts));
8116 }
8117
8118 /* Implement the "remove" breakpoint_ops method for syscall
8119 catchpoints. */
8120
8121 static int
8122 remove_catch_syscall (struct bp_location *bl)
8123 {
8124 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8125 struct inferior *inf = current_inferior ();
8126 struct catch_syscall_inferior_data *inf_data
8127 = get_catch_syscall_inferior_data (inf);
8128
8129 --inf_data->total_syscalls_count;
8130 if (!c->syscalls_to_be_caught)
8131 --inf_data->any_syscall_count;
8132 else
8133 {
8134 int i, iter;
8135
8136 for (i = 0;
8137 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8138 i++)
8139 {
8140 int elem;
8141 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8142 /* Shouldn't happen. */
8143 continue;
8144 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8145 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8146 }
8147 }
8148
8149 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8150 inf_data->total_syscalls_count != 0,
8151 inf_data->any_syscall_count,
8152 VEC_length (int,
8153 inf_data->syscalls_counts),
8154 VEC_address (int,
8155 inf_data->syscalls_counts));
8156 }
8157
8158 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8159 catchpoints. */
8160
8161 static int
8162 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8163 struct address_space *aspace, CORE_ADDR bp_addr,
8164 const struct target_waitstatus *ws)
8165 {
8166 /* We must check if we are catching specific syscalls in this
8167 breakpoint. If we are, then we must guarantee that the called
8168 syscall is the same syscall we are catching. */
8169 int syscall_number = 0;
8170 const struct syscall_catchpoint *c
8171 = (const struct syscall_catchpoint *) bl->owner;
8172
8173 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8174 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8175 return 0;
8176
8177 syscall_number = ws->value.syscall_number;
8178
8179 /* Now, checking if the syscall is the same. */
8180 if (c->syscalls_to_be_caught)
8181 {
8182 int i, iter;
8183
8184 for (i = 0;
8185 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8186 i++)
8187 if (syscall_number == iter)
8188 break;
8189 /* Not the same. */
8190 if (!iter)
8191 return 0;
8192 }
8193
8194 return 1;
8195 }
8196
8197 /* Implement the "print_it" breakpoint_ops method for syscall
8198 catchpoints. */
8199
8200 static enum print_stop_action
8201 print_it_catch_syscall (bpstat bs)
8202 {
8203 struct ui_out *uiout = current_uiout;
8204 struct breakpoint *b = bs->breakpoint_at;
8205 /* These are needed because we want to know in which state a
8206 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8207 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8208 must print "called syscall" or "returned from syscall". */
8209 ptid_t ptid;
8210 struct target_waitstatus last;
8211 struct syscall s;
8212
8213 get_last_target_status (&ptid, &last);
8214
8215 get_syscall_by_number (last.value.syscall_number, &s);
8216
8217 annotate_catchpoint (b->number);
8218
8219 if (b->disposition == disp_del)
8220 ui_out_text (uiout, "\nTemporary catchpoint ");
8221 else
8222 ui_out_text (uiout, "\nCatchpoint ");
8223 if (ui_out_is_mi_like_p (uiout))
8224 {
8225 ui_out_field_string (uiout, "reason",
8226 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8227 ? EXEC_ASYNC_SYSCALL_ENTRY
8228 : EXEC_ASYNC_SYSCALL_RETURN));
8229 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8230 }
8231 ui_out_field_int (uiout, "bkptno", b->number);
8232
8233 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8234 ui_out_text (uiout, " (call to syscall ");
8235 else
8236 ui_out_text (uiout, " (returned from syscall ");
8237
8238 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8239 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8240 if (s.name != NULL)
8241 ui_out_field_string (uiout, "syscall-name", s.name);
8242
8243 ui_out_text (uiout, "), ");
8244
8245 return PRINT_SRC_AND_LOC;
8246 }
8247
8248 /* Implement the "print_one" breakpoint_ops method for syscall
8249 catchpoints. */
8250
8251 static void
8252 print_one_catch_syscall (struct breakpoint *b,
8253 struct bp_location **last_loc)
8254 {
8255 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8256 struct value_print_options opts;
8257 struct ui_out *uiout = current_uiout;
8258
8259 get_user_print_options (&opts);
8260 /* Field 4, the address, is omitted (which makes the columns not
8261 line up too nicely with the headers, but the effect is relatively
8262 readable). */
8263 if (opts.addressprint)
8264 ui_out_field_skip (uiout, "addr");
8265 annotate_field (5);
8266
8267 if (c->syscalls_to_be_caught
8268 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8269 ui_out_text (uiout, "syscalls \"");
8270 else
8271 ui_out_text (uiout, "syscall \"");
8272
8273 if (c->syscalls_to_be_caught)
8274 {
8275 int i, iter;
8276 char *text = xstrprintf ("%s", "");
8277
8278 for (i = 0;
8279 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8280 i++)
8281 {
8282 char *x = text;
8283 struct syscall s;
8284 get_syscall_by_number (iter, &s);
8285
8286 if (s.name != NULL)
8287 text = xstrprintf ("%s%s, ", text, s.name);
8288 else
8289 text = xstrprintf ("%s%d, ", text, iter);
8290
8291 /* We have to xfree the last 'text' (now stored at 'x')
8292 because xstrprintf dynamically allocates new space for it
8293 on every call. */
8294 xfree (x);
8295 }
8296 /* Remove the last comma. */
8297 text[strlen (text) - 2] = '\0';
8298 ui_out_field_string (uiout, "what", text);
8299 }
8300 else
8301 ui_out_field_string (uiout, "what", "<any syscall>");
8302 ui_out_text (uiout, "\" ");
8303
8304 if (ui_out_is_mi_like_p (uiout))
8305 ui_out_field_string (uiout, "catch-type", "syscall");
8306 }
8307
8308 /* Implement the "print_mention" breakpoint_ops method for syscall
8309 catchpoints. */
8310
8311 static void
8312 print_mention_catch_syscall (struct breakpoint *b)
8313 {
8314 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8315
8316 if (c->syscalls_to_be_caught)
8317 {
8318 int i, iter;
8319
8320 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8321 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8322 else
8323 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8324
8325 for (i = 0;
8326 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8327 i++)
8328 {
8329 struct syscall s;
8330 get_syscall_by_number (iter, &s);
8331
8332 if (s.name)
8333 printf_filtered (" '%s' [%d]", s.name, s.number);
8334 else
8335 printf_filtered (" %d", s.number);
8336 }
8337 printf_filtered (")");
8338 }
8339 else
8340 printf_filtered (_("Catchpoint %d (any syscall)"),
8341 b->number);
8342 }
8343
8344 /* Implement the "print_recreate" breakpoint_ops method for syscall
8345 catchpoints. */
8346
8347 static void
8348 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8349 {
8350 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8351
8352 fprintf_unfiltered (fp, "catch syscall");
8353
8354 if (c->syscalls_to_be_caught)
8355 {
8356 int i, iter;
8357
8358 for (i = 0;
8359 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8360 i++)
8361 {
8362 struct syscall s;
8363
8364 get_syscall_by_number (iter, &s);
8365 if (s.name)
8366 fprintf_unfiltered (fp, " %s", s.name);
8367 else
8368 fprintf_unfiltered (fp, " %d", s.number);
8369 }
8370 }
8371 print_recreate_thread (b, fp);
8372 }
8373
8374 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8375
8376 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8377
8378 /* Returns non-zero if 'b' is a syscall catchpoint. */
8379
8380 static int
8381 syscall_catchpoint_p (struct breakpoint *b)
8382 {
8383 return (b->ops == &catch_syscall_breakpoint_ops);
8384 }
8385
8386 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8387 is non-zero, then make the breakpoint temporary. If COND_STRING is
8388 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8389 the breakpoint_ops structure associated to the catchpoint. */
8390
8391 void
8392 init_catchpoint (struct breakpoint *b,
8393 struct gdbarch *gdbarch, int tempflag,
8394 char *cond_string,
8395 const struct breakpoint_ops *ops)
8396 {
8397 struct symtab_and_line sal;
8398
8399 init_sal (&sal);
8400 sal.pspace = current_program_space;
8401
8402 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8403
8404 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8405 b->disposition = tempflag ? disp_del : disp_donttouch;
8406 }
8407
8408 void
8409 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8410 {
8411 add_to_breakpoint_chain (b);
8412 set_breakpoint_number (internal, b);
8413 if (is_tracepoint (b))
8414 set_tracepoint_count (breakpoint_count);
8415 if (!internal)
8416 mention (b);
8417 observer_notify_breakpoint_created (b);
8418
8419 if (update_gll)
8420 update_global_location_list (1);
8421 }
8422
8423 static void
8424 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8425 int tempflag, char *cond_string,
8426 const struct breakpoint_ops *ops)
8427 {
8428 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8429
8430 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8431
8432 c->forked_inferior_pid = null_ptid;
8433
8434 install_breakpoint (0, &c->base, 1);
8435 }
8436
8437 /* Exec catchpoints. */
8438
8439 /* An instance of this type is used to represent an exec catchpoint.
8440 It includes a "struct breakpoint" as a kind of base class; users
8441 downcast to "struct breakpoint *" when needed. A breakpoint is
8442 really of this type iff its ops pointer points to
8443 CATCH_EXEC_BREAKPOINT_OPS. */
8444
8445 struct exec_catchpoint
8446 {
8447 /* The base class. */
8448 struct breakpoint base;
8449
8450 /* Filename of a program whose exec triggered this catchpoint.
8451 This field is only valid immediately after this catchpoint has
8452 triggered. */
8453 char *exec_pathname;
8454 };
8455
8456 /* Implement the "dtor" breakpoint_ops method for exec
8457 catchpoints. */
8458
8459 static void
8460 dtor_catch_exec (struct breakpoint *b)
8461 {
8462 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8463
8464 xfree (c->exec_pathname);
8465
8466 base_breakpoint_ops.dtor (b);
8467 }
8468
8469 static int
8470 insert_catch_exec (struct bp_location *bl)
8471 {
8472 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8473 }
8474
8475 static int
8476 remove_catch_exec (struct bp_location *bl)
8477 {
8478 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8479 }
8480
8481 static int
8482 breakpoint_hit_catch_exec (const struct bp_location *bl,
8483 struct address_space *aspace, CORE_ADDR bp_addr,
8484 const struct target_waitstatus *ws)
8485 {
8486 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8487
8488 if (ws->kind != TARGET_WAITKIND_EXECD)
8489 return 0;
8490
8491 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8492 return 1;
8493 }
8494
8495 static enum print_stop_action
8496 print_it_catch_exec (bpstat bs)
8497 {
8498 struct ui_out *uiout = current_uiout;
8499 struct breakpoint *b = bs->breakpoint_at;
8500 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8501
8502 annotate_catchpoint (b->number);
8503 if (b->disposition == disp_del)
8504 ui_out_text (uiout, "\nTemporary catchpoint ");
8505 else
8506 ui_out_text (uiout, "\nCatchpoint ");
8507 if (ui_out_is_mi_like_p (uiout))
8508 {
8509 ui_out_field_string (uiout, "reason",
8510 async_reason_lookup (EXEC_ASYNC_EXEC));
8511 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8512 }
8513 ui_out_field_int (uiout, "bkptno", b->number);
8514 ui_out_text (uiout, " (exec'd ");
8515 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8516 ui_out_text (uiout, "), ");
8517
8518 return PRINT_SRC_AND_LOC;
8519 }
8520
8521 static void
8522 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8523 {
8524 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8525 struct value_print_options opts;
8526 struct ui_out *uiout = current_uiout;
8527
8528 get_user_print_options (&opts);
8529
8530 /* Field 4, the address, is omitted (which makes the columns
8531 not line up too nicely with the headers, but the effect
8532 is relatively readable). */
8533 if (opts.addressprint)
8534 ui_out_field_skip (uiout, "addr");
8535 annotate_field (5);
8536 ui_out_text (uiout, "exec");
8537 if (c->exec_pathname != NULL)
8538 {
8539 ui_out_text (uiout, ", program \"");
8540 ui_out_field_string (uiout, "what", c->exec_pathname);
8541 ui_out_text (uiout, "\" ");
8542 }
8543
8544 if (ui_out_is_mi_like_p (uiout))
8545 ui_out_field_string (uiout, "catch-type", "exec");
8546 }
8547
8548 static void
8549 print_mention_catch_exec (struct breakpoint *b)
8550 {
8551 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8552 }
8553
8554 /* Implement the "print_recreate" breakpoint_ops method for exec
8555 catchpoints. */
8556
8557 static void
8558 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8559 {
8560 fprintf_unfiltered (fp, "catch exec");
8561 print_recreate_thread (b, fp);
8562 }
8563
8564 static struct breakpoint_ops catch_exec_breakpoint_ops;
8565
8566 static void
8567 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8568 const struct breakpoint_ops *ops)
8569 {
8570 struct syscall_catchpoint *c;
8571 struct gdbarch *gdbarch = get_current_arch ();
8572
8573 c = XNEW (struct syscall_catchpoint);
8574 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8575 c->syscalls_to_be_caught = filter;
8576
8577 install_breakpoint (0, &c->base, 1);
8578 }
8579
8580 static int
8581 hw_breakpoint_used_count (void)
8582 {
8583 int i = 0;
8584 struct breakpoint *b;
8585 struct bp_location *bl;
8586
8587 ALL_BREAKPOINTS (b)
8588 {
8589 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8590 for (bl = b->loc; bl; bl = bl->next)
8591 {
8592 /* Special types of hardware breakpoints may use more than
8593 one register. */
8594 i += b->ops->resources_needed (bl);
8595 }
8596 }
8597
8598 return i;
8599 }
8600
8601 /* Returns the resources B would use if it were a hardware
8602 watchpoint. */
8603
8604 static int
8605 hw_watchpoint_use_count (struct breakpoint *b)
8606 {
8607 int i = 0;
8608 struct bp_location *bl;
8609
8610 if (!breakpoint_enabled (b))
8611 return 0;
8612
8613 for (bl = b->loc; bl; bl = bl->next)
8614 {
8615 /* Special types of hardware watchpoints may use more than
8616 one register. */
8617 i += b->ops->resources_needed (bl);
8618 }
8619
8620 return i;
8621 }
8622
8623 /* Returns the sum the used resources of all hardware watchpoints of
8624 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8625 the sum of the used resources of all hardware watchpoints of other
8626 types _not_ TYPE. */
8627
8628 static int
8629 hw_watchpoint_used_count_others (struct breakpoint *except,
8630 enum bptype type, int *other_type_used)
8631 {
8632 int i = 0;
8633 struct breakpoint *b;
8634
8635 *other_type_used = 0;
8636 ALL_BREAKPOINTS (b)
8637 {
8638 if (b == except)
8639 continue;
8640 if (!breakpoint_enabled (b))
8641 continue;
8642
8643 if (b->type == type)
8644 i += hw_watchpoint_use_count (b);
8645 else if (is_hardware_watchpoint (b))
8646 *other_type_used = 1;
8647 }
8648
8649 return i;
8650 }
8651
8652 void
8653 disable_watchpoints_before_interactive_call_start (void)
8654 {
8655 struct breakpoint *b;
8656
8657 ALL_BREAKPOINTS (b)
8658 {
8659 if (is_watchpoint (b) && breakpoint_enabled (b))
8660 {
8661 b->enable_state = bp_call_disabled;
8662 update_global_location_list (0);
8663 }
8664 }
8665 }
8666
8667 void
8668 enable_watchpoints_after_interactive_call_stop (void)
8669 {
8670 struct breakpoint *b;
8671
8672 ALL_BREAKPOINTS (b)
8673 {
8674 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8675 {
8676 b->enable_state = bp_enabled;
8677 update_global_location_list (1);
8678 }
8679 }
8680 }
8681
8682 void
8683 disable_breakpoints_before_startup (void)
8684 {
8685 current_program_space->executing_startup = 1;
8686 update_global_location_list (0);
8687 }
8688
8689 void
8690 enable_breakpoints_after_startup (void)
8691 {
8692 current_program_space->executing_startup = 0;
8693 breakpoint_re_set ();
8694 }
8695
8696
8697 /* Set a breakpoint that will evaporate an end of command
8698 at address specified by SAL.
8699 Restrict it to frame FRAME if FRAME is nonzero. */
8700
8701 struct breakpoint *
8702 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8703 struct frame_id frame_id, enum bptype type)
8704 {
8705 struct breakpoint *b;
8706
8707 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8708 tail-called one. */
8709 gdb_assert (!frame_id_artificial_p (frame_id));
8710
8711 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8712 b->enable_state = bp_enabled;
8713 b->disposition = disp_donttouch;
8714 b->frame_id = frame_id;
8715
8716 /* If we're debugging a multi-threaded program, then we want
8717 momentary breakpoints to be active in only a single thread of
8718 control. */
8719 if (in_thread_list (inferior_ptid))
8720 b->thread = pid_to_thread_id (inferior_ptid);
8721
8722 update_global_location_list_nothrow (1);
8723
8724 return b;
8725 }
8726
8727 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8728 The new breakpoint will have type TYPE, and use OPS as it
8729 breakpoint_ops. */
8730
8731 static struct breakpoint *
8732 momentary_breakpoint_from_master (struct breakpoint *orig,
8733 enum bptype type,
8734 const struct breakpoint_ops *ops)
8735 {
8736 struct breakpoint *copy;
8737
8738 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8739 copy->loc = allocate_bp_location (copy);
8740 set_breakpoint_location_function (copy->loc, 1);
8741
8742 copy->loc->gdbarch = orig->loc->gdbarch;
8743 copy->loc->requested_address = orig->loc->requested_address;
8744 copy->loc->address = orig->loc->address;
8745 copy->loc->section = orig->loc->section;
8746 copy->loc->pspace = orig->loc->pspace;
8747 copy->loc->probe = orig->loc->probe;
8748 copy->loc->line_number = orig->loc->line_number;
8749 copy->loc->symtab = orig->loc->symtab;
8750 copy->frame_id = orig->frame_id;
8751 copy->thread = orig->thread;
8752 copy->pspace = orig->pspace;
8753
8754 copy->enable_state = bp_enabled;
8755 copy->disposition = disp_donttouch;
8756 copy->number = internal_breakpoint_number--;
8757
8758 update_global_location_list_nothrow (0);
8759 return copy;
8760 }
8761
8762 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8763 ORIG is NULL. */
8764
8765 struct breakpoint *
8766 clone_momentary_breakpoint (struct breakpoint *orig)
8767 {
8768 /* If there's nothing to clone, then return nothing. */
8769 if (orig == NULL)
8770 return NULL;
8771
8772 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8773 }
8774
8775 struct breakpoint *
8776 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8777 enum bptype type)
8778 {
8779 struct symtab_and_line sal;
8780
8781 sal = find_pc_line (pc, 0);
8782 sal.pc = pc;
8783 sal.section = find_pc_overlay (pc);
8784 sal.explicit_pc = 1;
8785
8786 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8787 }
8788 \f
8789
8790 /* Tell the user we have just set a breakpoint B. */
8791
8792 static void
8793 mention (struct breakpoint *b)
8794 {
8795 b->ops->print_mention (b);
8796 if (ui_out_is_mi_like_p (current_uiout))
8797 return;
8798 printf_filtered ("\n");
8799 }
8800 \f
8801
8802 static struct bp_location *
8803 add_location_to_breakpoint (struct breakpoint *b,
8804 const struct symtab_and_line *sal)
8805 {
8806 struct bp_location *loc, **tmp;
8807 CORE_ADDR adjusted_address;
8808 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8809
8810 if (loc_gdbarch == NULL)
8811 loc_gdbarch = b->gdbarch;
8812
8813 /* Adjust the breakpoint's address prior to allocating a location.
8814 Once we call allocate_bp_location(), that mostly uninitialized
8815 location will be placed on the location chain. Adjustment of the
8816 breakpoint may cause target_read_memory() to be called and we do
8817 not want its scan of the location chain to find a breakpoint and
8818 location that's only been partially initialized. */
8819 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8820 sal->pc, b->type);
8821
8822 /* Sort the locations by their ADDRESS. */
8823 loc = allocate_bp_location (b);
8824 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8825 tmp = &((*tmp)->next))
8826 ;
8827 loc->next = *tmp;
8828 *tmp = loc;
8829
8830 loc->requested_address = sal->pc;
8831 loc->address = adjusted_address;
8832 loc->pspace = sal->pspace;
8833 loc->probe = sal->probe;
8834 gdb_assert (loc->pspace != NULL);
8835 loc->section = sal->section;
8836 loc->gdbarch = loc_gdbarch;
8837 loc->line_number = sal->line;
8838 loc->symtab = sal->symtab;
8839
8840 set_breakpoint_location_function (loc,
8841 sal->explicit_pc || sal->explicit_line);
8842 return loc;
8843 }
8844 \f
8845
8846 /* Return 1 if LOC is pointing to a permanent breakpoint,
8847 return 0 otherwise. */
8848
8849 static int
8850 bp_loc_is_permanent (struct bp_location *loc)
8851 {
8852 int len;
8853 CORE_ADDR addr;
8854 const gdb_byte *bpoint;
8855 gdb_byte *target_mem;
8856 struct cleanup *cleanup;
8857 int retval = 0;
8858
8859 gdb_assert (loc != NULL);
8860
8861 addr = loc->address;
8862 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8863
8864 /* Software breakpoints unsupported? */
8865 if (bpoint == NULL)
8866 return 0;
8867
8868 target_mem = alloca (len);
8869
8870 /* Enable the automatic memory restoration from breakpoints while
8871 we read the memory. Otherwise we could say about our temporary
8872 breakpoints they are permanent. */
8873 cleanup = save_current_space_and_thread ();
8874
8875 switch_to_program_space_and_thread (loc->pspace);
8876 make_show_memory_breakpoints_cleanup (0);
8877
8878 if (target_read_memory (loc->address, target_mem, len) == 0
8879 && memcmp (target_mem, bpoint, len) == 0)
8880 retval = 1;
8881
8882 do_cleanups (cleanup);
8883
8884 return retval;
8885 }
8886
8887 /* Build a command list for the dprintf corresponding to the current
8888 settings of the dprintf style options. */
8889
8890 static void
8891 update_dprintf_command_list (struct breakpoint *b)
8892 {
8893 char *dprintf_args = b->extra_string;
8894 char *printf_line = NULL;
8895
8896 if (!dprintf_args)
8897 return;
8898
8899 dprintf_args = skip_spaces (dprintf_args);
8900
8901 /* Allow a comma, as it may have terminated a location, but don't
8902 insist on it. */
8903 if (*dprintf_args == ',')
8904 ++dprintf_args;
8905 dprintf_args = skip_spaces (dprintf_args);
8906
8907 if (*dprintf_args != '"')
8908 error (_("Bad format string, missing '\"'."));
8909
8910 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8911 printf_line = xstrprintf ("printf %s", dprintf_args);
8912 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8913 {
8914 if (!dprintf_function)
8915 error (_("No function supplied for dprintf call"));
8916
8917 if (dprintf_channel && strlen (dprintf_channel) > 0)
8918 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8919 dprintf_function,
8920 dprintf_channel,
8921 dprintf_args);
8922 else
8923 printf_line = xstrprintf ("call (void) %s (%s)",
8924 dprintf_function,
8925 dprintf_args);
8926 }
8927 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8928 {
8929 if (target_can_run_breakpoint_commands ())
8930 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8931 else
8932 {
8933 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8934 printf_line = xstrprintf ("printf %s", dprintf_args);
8935 }
8936 }
8937 else
8938 internal_error (__FILE__, __LINE__,
8939 _("Invalid dprintf style."));
8940
8941 gdb_assert (printf_line != NULL);
8942 /* Manufacture a printf/continue sequence. */
8943 {
8944 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8945
8946 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8947 {
8948 cont_cmd_line = xmalloc (sizeof (struct command_line));
8949 cont_cmd_line->control_type = simple_control;
8950 cont_cmd_line->body_count = 0;
8951 cont_cmd_line->body_list = NULL;
8952 cont_cmd_line->next = NULL;
8953 cont_cmd_line->line = xstrdup ("continue");
8954 }
8955
8956 printf_cmd_line = xmalloc (sizeof (struct command_line));
8957 printf_cmd_line->control_type = simple_control;
8958 printf_cmd_line->body_count = 0;
8959 printf_cmd_line->body_list = NULL;
8960 printf_cmd_line->next = cont_cmd_line;
8961 printf_cmd_line->line = printf_line;
8962
8963 breakpoint_set_commands (b, printf_cmd_line);
8964 }
8965 }
8966
8967 /* Update all dprintf commands, making their command lists reflect
8968 current style settings. */
8969
8970 static void
8971 update_dprintf_commands (char *args, int from_tty,
8972 struct cmd_list_element *c)
8973 {
8974 struct breakpoint *b;
8975
8976 ALL_BREAKPOINTS (b)
8977 {
8978 if (b->type == bp_dprintf)
8979 update_dprintf_command_list (b);
8980 }
8981 }
8982
8983 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8984 as textual description of the location, and COND_STRING
8985 as condition expression. */
8986
8987 static void
8988 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8989 struct symtabs_and_lines sals, char *addr_string,
8990 char *filter, char *cond_string,
8991 char *extra_string,
8992 enum bptype type, enum bpdisp disposition,
8993 int thread, int task, int ignore_count,
8994 const struct breakpoint_ops *ops, int from_tty,
8995 int enabled, int internal, unsigned flags,
8996 int display_canonical)
8997 {
8998 int i;
8999
9000 if (type == bp_hardware_breakpoint)
9001 {
9002 int target_resources_ok;
9003
9004 i = hw_breakpoint_used_count ();
9005 target_resources_ok =
9006 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9007 i + 1, 0);
9008 if (target_resources_ok == 0)
9009 error (_("No hardware breakpoint support in the target."));
9010 else if (target_resources_ok < 0)
9011 error (_("Hardware breakpoints used exceeds limit."));
9012 }
9013
9014 gdb_assert (sals.nelts > 0);
9015
9016 for (i = 0; i < sals.nelts; ++i)
9017 {
9018 struct symtab_and_line sal = sals.sals[i];
9019 struct bp_location *loc;
9020
9021 if (from_tty)
9022 {
9023 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9024 if (!loc_gdbarch)
9025 loc_gdbarch = gdbarch;
9026
9027 describe_other_breakpoints (loc_gdbarch,
9028 sal.pspace, sal.pc, sal.section, thread);
9029 }
9030
9031 if (i == 0)
9032 {
9033 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9034 b->thread = thread;
9035 b->task = task;
9036
9037 b->cond_string = cond_string;
9038 b->extra_string = extra_string;
9039 b->ignore_count = ignore_count;
9040 b->enable_state = enabled ? bp_enabled : bp_disabled;
9041 b->disposition = disposition;
9042
9043 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9044 b->loc->inserted = 1;
9045
9046 if (type == bp_static_tracepoint)
9047 {
9048 struct tracepoint *t = (struct tracepoint *) b;
9049 struct static_tracepoint_marker marker;
9050
9051 if (strace_marker_p (b))
9052 {
9053 /* We already know the marker exists, otherwise, we
9054 wouldn't see a sal for it. */
9055 char *p = &addr_string[3];
9056 char *endp;
9057 char *marker_str;
9058
9059 p = skip_spaces (p);
9060
9061 endp = skip_to_space (p);
9062
9063 marker_str = savestring (p, endp - p);
9064 t->static_trace_marker_id = marker_str;
9065
9066 printf_filtered (_("Probed static tracepoint "
9067 "marker \"%s\"\n"),
9068 t->static_trace_marker_id);
9069 }
9070 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9071 {
9072 t->static_trace_marker_id = xstrdup (marker.str_id);
9073 release_static_tracepoint_marker (&marker);
9074
9075 printf_filtered (_("Probed static tracepoint "
9076 "marker \"%s\"\n"),
9077 t->static_trace_marker_id);
9078 }
9079 else
9080 warning (_("Couldn't determine the static "
9081 "tracepoint marker to probe"));
9082 }
9083
9084 loc = b->loc;
9085 }
9086 else
9087 {
9088 loc = add_location_to_breakpoint (b, &sal);
9089 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9090 loc->inserted = 1;
9091 }
9092
9093 if (bp_loc_is_permanent (loc))
9094 make_breakpoint_permanent (b);
9095
9096 if (b->cond_string)
9097 {
9098 const char *arg = b->cond_string;
9099
9100 loc->cond = parse_exp_1 (&arg, loc->address,
9101 block_for_pc (loc->address), 0);
9102 if (*arg)
9103 error (_("Garbage '%s' follows condition"), arg);
9104 }
9105
9106 /* Dynamic printf requires and uses additional arguments on the
9107 command line, otherwise it's an error. */
9108 if (type == bp_dprintf)
9109 {
9110 if (b->extra_string)
9111 update_dprintf_command_list (b);
9112 else
9113 error (_("Format string required"));
9114 }
9115 else if (b->extra_string)
9116 error (_("Garbage '%s' at end of command"), b->extra_string);
9117 }
9118
9119 b->display_canonical = display_canonical;
9120 if (addr_string)
9121 b->addr_string = addr_string;
9122 else
9123 /* addr_string has to be used or breakpoint_re_set will delete
9124 me. */
9125 b->addr_string
9126 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9127 b->filter = filter;
9128 }
9129
9130 static void
9131 create_breakpoint_sal (struct gdbarch *gdbarch,
9132 struct symtabs_and_lines sals, char *addr_string,
9133 char *filter, char *cond_string,
9134 char *extra_string,
9135 enum bptype type, enum bpdisp disposition,
9136 int thread, int task, int ignore_count,
9137 const struct breakpoint_ops *ops, int from_tty,
9138 int enabled, int internal, unsigned flags,
9139 int display_canonical)
9140 {
9141 struct breakpoint *b;
9142 struct cleanup *old_chain;
9143
9144 if (is_tracepoint_type (type))
9145 {
9146 struct tracepoint *t;
9147
9148 t = XCNEW (struct tracepoint);
9149 b = &t->base;
9150 }
9151 else
9152 b = XNEW (struct breakpoint);
9153
9154 old_chain = make_cleanup (xfree, b);
9155
9156 init_breakpoint_sal (b, gdbarch,
9157 sals, addr_string,
9158 filter, cond_string, extra_string,
9159 type, disposition,
9160 thread, task, ignore_count,
9161 ops, from_tty,
9162 enabled, internal, flags,
9163 display_canonical);
9164 discard_cleanups (old_chain);
9165
9166 install_breakpoint (internal, b, 0);
9167 }
9168
9169 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9170 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9171 value. COND_STRING, if not NULL, specified the condition to be
9172 used for all breakpoints. Essentially the only case where
9173 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9174 function. In that case, it's still not possible to specify
9175 separate conditions for different overloaded functions, so
9176 we take just a single condition string.
9177
9178 NOTE: If the function succeeds, the caller is expected to cleanup
9179 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9180 array contents). If the function fails (error() is called), the
9181 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9182 COND and SALS arrays and each of those arrays contents. */
9183
9184 static void
9185 create_breakpoints_sal (struct gdbarch *gdbarch,
9186 struct linespec_result *canonical,
9187 char *cond_string, char *extra_string,
9188 enum bptype type, enum bpdisp disposition,
9189 int thread, int task, int ignore_count,
9190 const struct breakpoint_ops *ops, int from_tty,
9191 int enabled, int internal, unsigned flags)
9192 {
9193 int i;
9194 struct linespec_sals *lsal;
9195
9196 if (canonical->pre_expanded)
9197 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9198
9199 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9200 {
9201 /* Note that 'addr_string' can be NULL in the case of a plain
9202 'break', without arguments. */
9203 char *addr_string = (canonical->addr_string
9204 ? xstrdup (canonical->addr_string)
9205 : NULL);
9206 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9207 struct cleanup *inner = make_cleanup (xfree, addr_string);
9208
9209 make_cleanup (xfree, filter_string);
9210 create_breakpoint_sal (gdbarch, lsal->sals,
9211 addr_string,
9212 filter_string,
9213 cond_string, extra_string,
9214 type, disposition,
9215 thread, task, ignore_count, ops,
9216 from_tty, enabled, internal, flags,
9217 canonical->special_display);
9218 discard_cleanups (inner);
9219 }
9220 }
9221
9222 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9223 followed by conditionals. On return, SALS contains an array of SAL
9224 addresses found. ADDR_STRING contains a vector of (canonical)
9225 address strings. ADDRESS points to the end of the SAL.
9226
9227 The array and the line spec strings are allocated on the heap, it is
9228 the caller's responsibility to free them. */
9229
9230 static void
9231 parse_breakpoint_sals (char **address,
9232 struct linespec_result *canonical)
9233 {
9234 /* If no arg given, or if first arg is 'if ', use the default
9235 breakpoint. */
9236 if ((*address) == NULL
9237 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9238 {
9239 /* The last displayed codepoint, if it's valid, is our default breakpoint
9240 address. */
9241 if (last_displayed_sal_is_valid ())
9242 {
9243 struct linespec_sals lsal;
9244 struct symtab_and_line sal;
9245 CORE_ADDR pc;
9246
9247 init_sal (&sal); /* Initialize to zeroes. */
9248 lsal.sals.sals = (struct symtab_and_line *)
9249 xmalloc (sizeof (struct symtab_and_line));
9250
9251 /* Set sal's pspace, pc, symtab, and line to the values
9252 corresponding to the last call to print_frame_info.
9253 Be sure to reinitialize LINE with NOTCURRENT == 0
9254 as the breakpoint line number is inappropriate otherwise.
9255 find_pc_line would adjust PC, re-set it back. */
9256 get_last_displayed_sal (&sal);
9257 pc = sal.pc;
9258 sal = find_pc_line (pc, 0);
9259
9260 /* "break" without arguments is equivalent to "break *PC"
9261 where PC is the last displayed codepoint's address. So
9262 make sure to set sal.explicit_pc to prevent GDB from
9263 trying to expand the list of sals to include all other
9264 instances with the same symtab and line. */
9265 sal.pc = pc;
9266 sal.explicit_pc = 1;
9267
9268 lsal.sals.sals[0] = sal;
9269 lsal.sals.nelts = 1;
9270 lsal.canonical = NULL;
9271
9272 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9273 }
9274 else
9275 error (_("No default breakpoint address now."));
9276 }
9277 else
9278 {
9279 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9280
9281 /* Force almost all breakpoints to be in terms of the
9282 current_source_symtab (which is decode_line_1's default).
9283 This should produce the results we want almost all of the
9284 time while leaving default_breakpoint_* alone.
9285
9286 ObjC: However, don't match an Objective-C method name which
9287 may have a '+' or '-' succeeded by a '['. */
9288 if (last_displayed_sal_is_valid ()
9289 && (!cursal.symtab
9290 || ((strchr ("+-", (*address)[0]) != NULL)
9291 && ((*address)[1] != '['))))
9292 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9293 get_last_displayed_symtab (),
9294 get_last_displayed_line (),
9295 canonical, NULL, NULL);
9296 else
9297 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9298 cursal.symtab, cursal.line, canonical, NULL, NULL);
9299 }
9300 }
9301
9302
9303 /* Convert each SAL into a real PC. Verify that the PC can be
9304 inserted as a breakpoint. If it can't throw an error. */
9305
9306 static void
9307 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9308 {
9309 int i;
9310
9311 for (i = 0; i < sals->nelts; i++)
9312 resolve_sal_pc (&sals->sals[i]);
9313 }
9314
9315 /* Fast tracepoints may have restrictions on valid locations. For
9316 instance, a fast tracepoint using a jump instead of a trap will
9317 likely have to overwrite more bytes than a trap would, and so can
9318 only be placed where the instruction is longer than the jump, or a
9319 multi-instruction sequence does not have a jump into the middle of
9320 it, etc. */
9321
9322 static void
9323 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9324 struct symtabs_and_lines *sals)
9325 {
9326 int i, rslt;
9327 struct symtab_and_line *sal;
9328 char *msg;
9329 struct cleanup *old_chain;
9330
9331 for (i = 0; i < sals->nelts; i++)
9332 {
9333 struct gdbarch *sarch;
9334
9335 sal = &sals->sals[i];
9336
9337 sarch = get_sal_arch (*sal);
9338 /* We fall back to GDBARCH if there is no architecture
9339 associated with SAL. */
9340 if (sarch == NULL)
9341 sarch = gdbarch;
9342 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9343 NULL, &msg);
9344 old_chain = make_cleanup (xfree, msg);
9345
9346 if (!rslt)
9347 error (_("May not have a fast tracepoint at 0x%s%s"),
9348 paddress (sarch, sal->pc), (msg ? msg : ""));
9349
9350 do_cleanups (old_chain);
9351 }
9352 }
9353
9354 /* Issue an invalid thread ID error. */
9355
9356 static void ATTRIBUTE_NORETURN
9357 invalid_thread_id_error (int id)
9358 {
9359 error (_("Unknown thread %d."), id);
9360 }
9361
9362 /* Given TOK, a string specification of condition and thread, as
9363 accepted by the 'break' command, extract the condition
9364 string and thread number and set *COND_STRING and *THREAD.
9365 PC identifies the context at which the condition should be parsed.
9366 If no condition is found, *COND_STRING is set to NULL.
9367 If no thread is found, *THREAD is set to -1. */
9368
9369 static void
9370 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9371 char **cond_string, int *thread, int *task,
9372 char **rest)
9373 {
9374 *cond_string = NULL;
9375 *thread = -1;
9376 *task = 0;
9377 *rest = NULL;
9378
9379 while (tok && *tok)
9380 {
9381 const char *end_tok;
9382 int toklen;
9383 const char *cond_start = NULL;
9384 const char *cond_end = NULL;
9385
9386 tok = skip_spaces_const (tok);
9387
9388 if ((*tok == '"' || *tok == ',') && rest)
9389 {
9390 *rest = savestring (tok, strlen (tok));
9391 return;
9392 }
9393
9394 end_tok = skip_to_space_const (tok);
9395
9396 toklen = end_tok - tok;
9397
9398 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9399 {
9400 struct expression *expr;
9401
9402 tok = cond_start = end_tok + 1;
9403 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9404 xfree (expr);
9405 cond_end = tok;
9406 *cond_string = savestring (cond_start, cond_end - cond_start);
9407 }
9408 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9409 {
9410 char *tmptok;
9411
9412 tok = end_tok + 1;
9413 *thread = strtol (tok, &tmptok, 0);
9414 if (tok == tmptok)
9415 error (_("Junk after thread keyword."));
9416 if (!valid_thread_id (*thread))
9417 invalid_thread_id_error (*thread);
9418 tok = tmptok;
9419 }
9420 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9421 {
9422 char *tmptok;
9423
9424 tok = end_tok + 1;
9425 *task = strtol (tok, &tmptok, 0);
9426 if (tok == tmptok)
9427 error (_("Junk after task keyword."));
9428 if (!valid_task_id (*task))
9429 error (_("Unknown task %d."), *task);
9430 tok = tmptok;
9431 }
9432 else if (rest)
9433 {
9434 *rest = savestring (tok, strlen (tok));
9435 return;
9436 }
9437 else
9438 error (_("Junk at end of arguments."));
9439 }
9440 }
9441
9442 /* Decode a static tracepoint marker spec. */
9443
9444 static struct symtabs_and_lines
9445 decode_static_tracepoint_spec (char **arg_p)
9446 {
9447 VEC(static_tracepoint_marker_p) *markers = NULL;
9448 struct symtabs_and_lines sals;
9449 struct cleanup *old_chain;
9450 char *p = &(*arg_p)[3];
9451 char *endp;
9452 char *marker_str;
9453 int i;
9454
9455 p = skip_spaces (p);
9456
9457 endp = skip_to_space (p);
9458
9459 marker_str = savestring (p, endp - p);
9460 old_chain = make_cleanup (xfree, marker_str);
9461
9462 markers = target_static_tracepoint_markers_by_strid (marker_str);
9463 if (VEC_empty(static_tracepoint_marker_p, markers))
9464 error (_("No known static tracepoint marker named %s"), marker_str);
9465
9466 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9467 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9468
9469 for (i = 0; i < sals.nelts; i++)
9470 {
9471 struct static_tracepoint_marker *marker;
9472
9473 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9474
9475 init_sal (&sals.sals[i]);
9476
9477 sals.sals[i] = find_pc_line (marker->address, 0);
9478 sals.sals[i].pc = marker->address;
9479
9480 release_static_tracepoint_marker (marker);
9481 }
9482
9483 do_cleanups (old_chain);
9484
9485 *arg_p = endp;
9486 return sals;
9487 }
9488
9489 /* Set a breakpoint. This function is shared between CLI and MI
9490 functions for setting a breakpoint. This function has two major
9491 modes of operations, selected by the PARSE_ARG parameter. If
9492 non-zero, the function will parse ARG, extracting location,
9493 condition, thread and extra string. Otherwise, ARG is just the
9494 breakpoint's location, with condition, thread, and extra string
9495 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9496 If INTERNAL is non-zero, the breakpoint number will be allocated
9497 from the internal breakpoint count. Returns true if any breakpoint
9498 was created; false otherwise. */
9499
9500 int
9501 create_breakpoint (struct gdbarch *gdbarch,
9502 char *arg, char *cond_string,
9503 int thread, char *extra_string,
9504 int parse_arg,
9505 int tempflag, enum bptype type_wanted,
9506 int ignore_count,
9507 enum auto_boolean pending_break_support,
9508 const struct breakpoint_ops *ops,
9509 int from_tty, int enabled, int internal,
9510 unsigned flags)
9511 {
9512 volatile struct gdb_exception e;
9513 char *copy_arg = NULL;
9514 char *addr_start = arg;
9515 struct linespec_result canonical;
9516 struct cleanup *old_chain;
9517 struct cleanup *bkpt_chain = NULL;
9518 int pending = 0;
9519 int task = 0;
9520 int prev_bkpt_count = breakpoint_count;
9521
9522 gdb_assert (ops != NULL);
9523
9524 init_linespec_result (&canonical);
9525
9526 TRY_CATCH (e, RETURN_MASK_ALL)
9527 {
9528 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9529 addr_start, &copy_arg);
9530 }
9531
9532 /* If caller is interested in rc value from parse, set value. */
9533 switch (e.reason)
9534 {
9535 case GDB_NO_ERROR:
9536 if (VEC_empty (linespec_sals, canonical.sals))
9537 return 0;
9538 break;
9539 case RETURN_ERROR:
9540 switch (e.error)
9541 {
9542 case NOT_FOUND_ERROR:
9543
9544 /* If pending breakpoint support is turned off, throw
9545 error. */
9546
9547 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9548 throw_exception (e);
9549
9550 exception_print (gdb_stderr, e);
9551
9552 /* If pending breakpoint support is auto query and the user
9553 selects no, then simply return the error code. */
9554 if (pending_break_support == AUTO_BOOLEAN_AUTO
9555 && !nquery (_("Make %s pending on future shared library load? "),
9556 bptype_string (type_wanted)))
9557 return 0;
9558
9559 /* At this point, either the user was queried about setting
9560 a pending breakpoint and selected yes, or pending
9561 breakpoint behavior is on and thus a pending breakpoint
9562 is defaulted on behalf of the user. */
9563 {
9564 struct linespec_sals lsal;
9565
9566 copy_arg = xstrdup (addr_start);
9567 lsal.canonical = xstrdup (copy_arg);
9568 lsal.sals.nelts = 1;
9569 lsal.sals.sals = XNEW (struct symtab_and_line);
9570 init_sal (&lsal.sals.sals[0]);
9571 pending = 1;
9572 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9573 }
9574 break;
9575 default:
9576 throw_exception (e);
9577 }
9578 break;
9579 default:
9580 throw_exception (e);
9581 }
9582
9583 /* Create a chain of things that always need to be cleaned up. */
9584 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9585
9586 /* ----------------------------- SNIP -----------------------------
9587 Anything added to the cleanup chain beyond this point is assumed
9588 to be part of a breakpoint. If the breakpoint create succeeds
9589 then the memory is not reclaimed. */
9590 bkpt_chain = make_cleanup (null_cleanup, 0);
9591
9592 /* Resolve all line numbers to PC's and verify that the addresses
9593 are ok for the target. */
9594 if (!pending)
9595 {
9596 int ix;
9597 struct linespec_sals *iter;
9598
9599 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9600 breakpoint_sals_to_pc (&iter->sals);
9601 }
9602
9603 /* Fast tracepoints may have additional restrictions on location. */
9604 if (!pending && type_wanted == bp_fast_tracepoint)
9605 {
9606 int ix;
9607 struct linespec_sals *iter;
9608
9609 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9610 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9611 }
9612
9613 /* Verify that condition can be parsed, before setting any
9614 breakpoints. Allocate a separate condition expression for each
9615 breakpoint. */
9616 if (!pending)
9617 {
9618 struct linespec_sals *lsal;
9619
9620 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9621
9622 if (parse_arg)
9623 {
9624 char *rest;
9625 /* Here we only parse 'arg' to separate condition
9626 from thread number, so parsing in context of first
9627 sal is OK. When setting the breakpoint we'll
9628 re-parse it in context of each sal. */
9629
9630 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9631 &thread, &task, &rest);
9632 if (cond_string)
9633 make_cleanup (xfree, cond_string);
9634 if (rest)
9635 make_cleanup (xfree, rest);
9636 if (rest)
9637 extra_string = rest;
9638 }
9639 else
9640 {
9641 if (*arg != '\0')
9642 error (_("Garbage '%s' at end of location"), arg);
9643
9644 /* Create a private copy of condition string. */
9645 if (cond_string)
9646 {
9647 cond_string = xstrdup (cond_string);
9648 make_cleanup (xfree, cond_string);
9649 }
9650 /* Create a private copy of any extra string. */
9651 if (extra_string)
9652 {
9653 extra_string = xstrdup (extra_string);
9654 make_cleanup (xfree, extra_string);
9655 }
9656 }
9657
9658 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9659 cond_string, extra_string, type_wanted,
9660 tempflag ? disp_del : disp_donttouch,
9661 thread, task, ignore_count, ops,
9662 from_tty, enabled, internal, flags);
9663 }
9664 else
9665 {
9666 struct breakpoint *b;
9667
9668 make_cleanup (xfree, copy_arg);
9669
9670 if (is_tracepoint_type (type_wanted))
9671 {
9672 struct tracepoint *t;
9673
9674 t = XCNEW (struct tracepoint);
9675 b = &t->base;
9676 }
9677 else
9678 b = XNEW (struct breakpoint);
9679
9680 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9681
9682 b->addr_string = copy_arg;
9683 if (parse_arg)
9684 b->cond_string = NULL;
9685 else
9686 {
9687 /* Create a private copy of condition string. */
9688 if (cond_string)
9689 {
9690 cond_string = xstrdup (cond_string);
9691 make_cleanup (xfree, cond_string);
9692 }
9693 b->cond_string = cond_string;
9694 }
9695 b->extra_string = NULL;
9696 b->ignore_count = ignore_count;
9697 b->disposition = tempflag ? disp_del : disp_donttouch;
9698 b->condition_not_parsed = 1;
9699 b->enable_state = enabled ? bp_enabled : bp_disabled;
9700 if ((type_wanted != bp_breakpoint
9701 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9702 b->pspace = current_program_space;
9703
9704 install_breakpoint (internal, b, 0);
9705 }
9706
9707 if (VEC_length (linespec_sals, canonical.sals) > 1)
9708 {
9709 warning (_("Multiple breakpoints were set.\nUse the "
9710 "\"delete\" command to delete unwanted breakpoints."));
9711 prev_breakpoint_count = prev_bkpt_count;
9712 }
9713
9714 /* That's it. Discard the cleanups for data inserted into the
9715 breakpoint. */
9716 discard_cleanups (bkpt_chain);
9717 /* But cleanup everything else. */
9718 do_cleanups (old_chain);
9719
9720 /* error call may happen here - have BKPT_CHAIN already discarded. */
9721 update_global_location_list (1);
9722
9723 return 1;
9724 }
9725
9726 /* Set a breakpoint.
9727 ARG is a string describing breakpoint address,
9728 condition, and thread.
9729 FLAG specifies if a breakpoint is hardware on,
9730 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9731 and BP_TEMPFLAG. */
9732
9733 static void
9734 break_command_1 (char *arg, int flag, int from_tty)
9735 {
9736 int tempflag = flag & BP_TEMPFLAG;
9737 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9738 ? bp_hardware_breakpoint
9739 : bp_breakpoint);
9740 struct breakpoint_ops *ops;
9741 const char *arg_cp = arg;
9742
9743 /* Matching breakpoints on probes. */
9744 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9745 ops = &bkpt_probe_breakpoint_ops;
9746 else
9747 ops = &bkpt_breakpoint_ops;
9748
9749 create_breakpoint (get_current_arch (),
9750 arg,
9751 NULL, 0, NULL, 1 /* parse arg */,
9752 tempflag, type_wanted,
9753 0 /* Ignore count */,
9754 pending_break_support,
9755 ops,
9756 from_tty,
9757 1 /* enabled */,
9758 0 /* internal */,
9759 0);
9760 }
9761
9762 /* Helper function for break_command_1 and disassemble_command. */
9763
9764 void
9765 resolve_sal_pc (struct symtab_and_line *sal)
9766 {
9767 CORE_ADDR pc;
9768
9769 if (sal->pc == 0 && sal->symtab != NULL)
9770 {
9771 if (!find_line_pc (sal->symtab, sal->line, &pc))
9772 error (_("No line %d in file \"%s\"."),
9773 sal->line, symtab_to_filename_for_display (sal->symtab));
9774 sal->pc = pc;
9775
9776 /* If this SAL corresponds to a breakpoint inserted using a line
9777 number, then skip the function prologue if necessary. */
9778 if (sal->explicit_line)
9779 skip_prologue_sal (sal);
9780 }
9781
9782 if (sal->section == 0 && sal->symtab != NULL)
9783 {
9784 struct blockvector *bv;
9785 struct block *b;
9786 struct symbol *sym;
9787
9788 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9789 if (bv != NULL)
9790 {
9791 sym = block_linkage_function (b);
9792 if (sym != NULL)
9793 {
9794 fixup_symbol_section (sym, sal->symtab->objfile);
9795 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9796 }
9797 else
9798 {
9799 /* It really is worthwhile to have the section, so we'll
9800 just have to look harder. This case can be executed
9801 if we have line numbers but no functions (as can
9802 happen in assembly source). */
9803
9804 struct bound_minimal_symbol msym;
9805 struct cleanup *old_chain = save_current_space_and_thread ();
9806
9807 switch_to_program_space_and_thread (sal->pspace);
9808
9809 msym = lookup_minimal_symbol_by_pc (sal->pc);
9810 if (msym.minsym)
9811 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9812
9813 do_cleanups (old_chain);
9814 }
9815 }
9816 }
9817 }
9818
9819 void
9820 break_command (char *arg, int from_tty)
9821 {
9822 break_command_1 (arg, 0, from_tty);
9823 }
9824
9825 void
9826 tbreak_command (char *arg, int from_tty)
9827 {
9828 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9829 }
9830
9831 static void
9832 hbreak_command (char *arg, int from_tty)
9833 {
9834 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9835 }
9836
9837 static void
9838 thbreak_command (char *arg, int from_tty)
9839 {
9840 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9841 }
9842
9843 static void
9844 stop_command (char *arg, int from_tty)
9845 {
9846 printf_filtered (_("Specify the type of breakpoint to set.\n\
9847 Usage: stop in <function | address>\n\
9848 stop at <line>\n"));
9849 }
9850
9851 static void
9852 stopin_command (char *arg, int from_tty)
9853 {
9854 int badInput = 0;
9855
9856 if (arg == (char *) NULL)
9857 badInput = 1;
9858 else if (*arg != '*')
9859 {
9860 char *argptr = arg;
9861 int hasColon = 0;
9862
9863 /* Look for a ':'. If this is a line number specification, then
9864 say it is bad, otherwise, it should be an address or
9865 function/method name. */
9866 while (*argptr && !hasColon)
9867 {
9868 hasColon = (*argptr == ':');
9869 argptr++;
9870 }
9871
9872 if (hasColon)
9873 badInput = (*argptr != ':'); /* Not a class::method */
9874 else
9875 badInput = isdigit (*arg); /* a simple line number */
9876 }
9877
9878 if (badInput)
9879 printf_filtered (_("Usage: stop in <function | address>\n"));
9880 else
9881 break_command_1 (arg, 0, from_tty);
9882 }
9883
9884 static void
9885 stopat_command (char *arg, int from_tty)
9886 {
9887 int badInput = 0;
9888
9889 if (arg == (char *) NULL || *arg == '*') /* no line number */
9890 badInput = 1;
9891 else
9892 {
9893 char *argptr = arg;
9894 int hasColon = 0;
9895
9896 /* Look for a ':'. If there is a '::' then get out, otherwise
9897 it is probably a line number. */
9898 while (*argptr && !hasColon)
9899 {
9900 hasColon = (*argptr == ':');
9901 argptr++;
9902 }
9903
9904 if (hasColon)
9905 badInput = (*argptr == ':'); /* we have class::method */
9906 else
9907 badInput = !isdigit (*arg); /* not a line number */
9908 }
9909
9910 if (badInput)
9911 printf_filtered (_("Usage: stop at <line>\n"));
9912 else
9913 break_command_1 (arg, 0, from_tty);
9914 }
9915
9916 /* The dynamic printf command is mostly like a regular breakpoint, but
9917 with a prewired command list consisting of a single output command,
9918 built from extra arguments supplied on the dprintf command
9919 line. */
9920
9921 static void
9922 dprintf_command (char *arg, int from_tty)
9923 {
9924 create_breakpoint (get_current_arch (),
9925 arg,
9926 NULL, 0, NULL, 1 /* parse arg */,
9927 0, bp_dprintf,
9928 0 /* Ignore count */,
9929 pending_break_support,
9930 &dprintf_breakpoint_ops,
9931 from_tty,
9932 1 /* enabled */,
9933 0 /* internal */,
9934 0);
9935 }
9936
9937 static void
9938 agent_printf_command (char *arg, int from_tty)
9939 {
9940 error (_("May only run agent-printf on the target"));
9941 }
9942
9943 /* Implement the "breakpoint_hit" breakpoint_ops method for
9944 ranged breakpoints. */
9945
9946 static int
9947 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9948 struct address_space *aspace,
9949 CORE_ADDR bp_addr,
9950 const struct target_waitstatus *ws)
9951 {
9952 if (ws->kind != TARGET_WAITKIND_STOPPED
9953 || ws->value.sig != GDB_SIGNAL_TRAP)
9954 return 0;
9955
9956 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9957 bl->length, aspace, bp_addr);
9958 }
9959
9960 /* Implement the "resources_needed" breakpoint_ops method for
9961 ranged breakpoints. */
9962
9963 static int
9964 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9965 {
9966 return target_ranged_break_num_registers ();
9967 }
9968
9969 /* Implement the "print_it" breakpoint_ops method for
9970 ranged breakpoints. */
9971
9972 static enum print_stop_action
9973 print_it_ranged_breakpoint (bpstat bs)
9974 {
9975 struct breakpoint *b = bs->breakpoint_at;
9976 struct bp_location *bl = b->loc;
9977 struct ui_out *uiout = current_uiout;
9978
9979 gdb_assert (b->type == bp_hardware_breakpoint);
9980
9981 /* Ranged breakpoints have only one location. */
9982 gdb_assert (bl && bl->next == NULL);
9983
9984 annotate_breakpoint (b->number);
9985 if (b->disposition == disp_del)
9986 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9987 else
9988 ui_out_text (uiout, "\nRanged breakpoint ");
9989 if (ui_out_is_mi_like_p (uiout))
9990 {
9991 ui_out_field_string (uiout, "reason",
9992 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9993 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9994 }
9995 ui_out_field_int (uiout, "bkptno", b->number);
9996 ui_out_text (uiout, ", ");
9997
9998 return PRINT_SRC_AND_LOC;
9999 }
10000
10001 /* Implement the "print_one" breakpoint_ops method for
10002 ranged breakpoints. */
10003
10004 static void
10005 print_one_ranged_breakpoint (struct breakpoint *b,
10006 struct bp_location **last_loc)
10007 {
10008 struct bp_location *bl = b->loc;
10009 struct value_print_options opts;
10010 struct ui_out *uiout = current_uiout;
10011
10012 /* Ranged breakpoints have only one location. */
10013 gdb_assert (bl && bl->next == NULL);
10014
10015 get_user_print_options (&opts);
10016
10017 if (opts.addressprint)
10018 /* We don't print the address range here, it will be printed later
10019 by print_one_detail_ranged_breakpoint. */
10020 ui_out_field_skip (uiout, "addr");
10021 annotate_field (5);
10022 print_breakpoint_location (b, bl);
10023 *last_loc = bl;
10024 }
10025
10026 /* Implement the "print_one_detail" breakpoint_ops method for
10027 ranged breakpoints. */
10028
10029 static void
10030 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10031 struct ui_out *uiout)
10032 {
10033 CORE_ADDR address_start, address_end;
10034 struct bp_location *bl = b->loc;
10035 struct ui_file *stb = mem_fileopen ();
10036 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10037
10038 gdb_assert (bl);
10039
10040 address_start = bl->address;
10041 address_end = address_start + bl->length - 1;
10042
10043 ui_out_text (uiout, "\taddress range: ");
10044 fprintf_unfiltered (stb, "[%s, %s]",
10045 print_core_address (bl->gdbarch, address_start),
10046 print_core_address (bl->gdbarch, address_end));
10047 ui_out_field_stream (uiout, "addr", stb);
10048 ui_out_text (uiout, "\n");
10049
10050 do_cleanups (cleanup);
10051 }
10052
10053 /* Implement the "print_mention" breakpoint_ops method for
10054 ranged breakpoints. */
10055
10056 static void
10057 print_mention_ranged_breakpoint (struct breakpoint *b)
10058 {
10059 struct bp_location *bl = b->loc;
10060 struct ui_out *uiout = current_uiout;
10061
10062 gdb_assert (bl);
10063 gdb_assert (b->type == bp_hardware_breakpoint);
10064
10065 if (ui_out_is_mi_like_p (uiout))
10066 return;
10067
10068 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10069 b->number, paddress (bl->gdbarch, bl->address),
10070 paddress (bl->gdbarch, bl->address + bl->length - 1));
10071 }
10072
10073 /* Implement the "print_recreate" breakpoint_ops method for
10074 ranged breakpoints. */
10075
10076 static void
10077 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10078 {
10079 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10080 b->addr_string_range_end);
10081 print_recreate_thread (b, fp);
10082 }
10083
10084 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10085
10086 static struct breakpoint_ops ranged_breakpoint_ops;
10087
10088 /* Find the address where the end of the breakpoint range should be
10089 placed, given the SAL of the end of the range. This is so that if
10090 the user provides a line number, the end of the range is set to the
10091 last instruction of the given line. */
10092
10093 static CORE_ADDR
10094 find_breakpoint_range_end (struct symtab_and_line sal)
10095 {
10096 CORE_ADDR end;
10097
10098 /* If the user provided a PC value, use it. Otherwise,
10099 find the address of the end of the given location. */
10100 if (sal.explicit_pc)
10101 end = sal.pc;
10102 else
10103 {
10104 int ret;
10105 CORE_ADDR start;
10106
10107 ret = find_line_pc_range (sal, &start, &end);
10108 if (!ret)
10109 error (_("Could not find location of the end of the range."));
10110
10111 /* find_line_pc_range returns the start of the next line. */
10112 end--;
10113 }
10114
10115 return end;
10116 }
10117
10118 /* Implement the "break-range" CLI command. */
10119
10120 static void
10121 break_range_command (char *arg, int from_tty)
10122 {
10123 char *arg_start, *addr_string_start, *addr_string_end;
10124 struct linespec_result canonical_start, canonical_end;
10125 int bp_count, can_use_bp, length;
10126 CORE_ADDR end;
10127 struct breakpoint *b;
10128 struct symtab_and_line sal_start, sal_end;
10129 struct cleanup *cleanup_bkpt;
10130 struct linespec_sals *lsal_start, *lsal_end;
10131
10132 /* We don't support software ranged breakpoints. */
10133 if (target_ranged_break_num_registers () < 0)
10134 error (_("This target does not support hardware ranged breakpoints."));
10135
10136 bp_count = hw_breakpoint_used_count ();
10137 bp_count += target_ranged_break_num_registers ();
10138 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10139 bp_count, 0);
10140 if (can_use_bp < 0)
10141 error (_("Hardware breakpoints used exceeds limit."));
10142
10143 arg = skip_spaces (arg);
10144 if (arg == NULL || arg[0] == '\0')
10145 error(_("No address range specified."));
10146
10147 init_linespec_result (&canonical_start);
10148
10149 arg_start = arg;
10150 parse_breakpoint_sals (&arg, &canonical_start);
10151
10152 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10153
10154 if (arg[0] != ',')
10155 error (_("Too few arguments."));
10156 else if (VEC_empty (linespec_sals, canonical_start.sals))
10157 error (_("Could not find location of the beginning of the range."));
10158
10159 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10160
10161 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10162 || lsal_start->sals.nelts != 1)
10163 error (_("Cannot create a ranged breakpoint with multiple locations."));
10164
10165 sal_start = lsal_start->sals.sals[0];
10166 addr_string_start = savestring (arg_start, arg - arg_start);
10167 make_cleanup (xfree, addr_string_start);
10168
10169 arg++; /* Skip the comma. */
10170 arg = skip_spaces (arg);
10171
10172 /* Parse the end location. */
10173
10174 init_linespec_result (&canonical_end);
10175 arg_start = arg;
10176
10177 /* We call decode_line_full directly here instead of using
10178 parse_breakpoint_sals because we need to specify the start location's
10179 symtab and line as the default symtab and line for the end of the
10180 range. This makes it possible to have ranges like "foo.c:27, +14",
10181 where +14 means 14 lines from the start location. */
10182 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10183 sal_start.symtab, sal_start.line,
10184 &canonical_end, NULL, NULL);
10185
10186 make_cleanup_destroy_linespec_result (&canonical_end);
10187
10188 if (VEC_empty (linespec_sals, canonical_end.sals))
10189 error (_("Could not find location of the end of the range."));
10190
10191 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10192 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10193 || lsal_end->sals.nelts != 1)
10194 error (_("Cannot create a ranged breakpoint with multiple locations."));
10195
10196 sal_end = lsal_end->sals.sals[0];
10197 addr_string_end = savestring (arg_start, arg - arg_start);
10198 make_cleanup (xfree, addr_string_end);
10199
10200 end = find_breakpoint_range_end (sal_end);
10201 if (sal_start.pc > end)
10202 error (_("Invalid address range, end precedes start."));
10203
10204 length = end - sal_start.pc + 1;
10205 if (length < 0)
10206 /* Length overflowed. */
10207 error (_("Address range too large."));
10208 else if (length == 1)
10209 {
10210 /* This range is simple enough to be handled by
10211 the `hbreak' command. */
10212 hbreak_command (addr_string_start, 1);
10213
10214 do_cleanups (cleanup_bkpt);
10215
10216 return;
10217 }
10218
10219 /* Now set up the breakpoint. */
10220 b = set_raw_breakpoint (get_current_arch (), sal_start,
10221 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10222 set_breakpoint_count (breakpoint_count + 1);
10223 b->number = breakpoint_count;
10224 b->disposition = disp_donttouch;
10225 b->addr_string = xstrdup (addr_string_start);
10226 b->addr_string_range_end = xstrdup (addr_string_end);
10227 b->loc->length = length;
10228
10229 do_cleanups (cleanup_bkpt);
10230
10231 mention (b);
10232 observer_notify_breakpoint_created (b);
10233 update_global_location_list (1);
10234 }
10235
10236 /* Return non-zero if EXP is verified as constant. Returned zero
10237 means EXP is variable. Also the constant detection may fail for
10238 some constant expressions and in such case still falsely return
10239 zero. */
10240
10241 static int
10242 watchpoint_exp_is_const (const struct expression *exp)
10243 {
10244 int i = exp->nelts;
10245
10246 while (i > 0)
10247 {
10248 int oplenp, argsp;
10249
10250 /* We are only interested in the descriptor of each element. */
10251 operator_length (exp, i, &oplenp, &argsp);
10252 i -= oplenp;
10253
10254 switch (exp->elts[i].opcode)
10255 {
10256 case BINOP_ADD:
10257 case BINOP_SUB:
10258 case BINOP_MUL:
10259 case BINOP_DIV:
10260 case BINOP_REM:
10261 case BINOP_MOD:
10262 case BINOP_LSH:
10263 case BINOP_RSH:
10264 case BINOP_LOGICAL_AND:
10265 case BINOP_LOGICAL_OR:
10266 case BINOP_BITWISE_AND:
10267 case BINOP_BITWISE_IOR:
10268 case BINOP_BITWISE_XOR:
10269 case BINOP_EQUAL:
10270 case BINOP_NOTEQUAL:
10271 case BINOP_LESS:
10272 case BINOP_GTR:
10273 case BINOP_LEQ:
10274 case BINOP_GEQ:
10275 case BINOP_REPEAT:
10276 case BINOP_COMMA:
10277 case BINOP_EXP:
10278 case BINOP_MIN:
10279 case BINOP_MAX:
10280 case BINOP_INTDIV:
10281 case BINOP_CONCAT:
10282 case BINOP_IN:
10283 case BINOP_RANGE:
10284 case TERNOP_COND:
10285 case TERNOP_SLICE:
10286
10287 case OP_LONG:
10288 case OP_DOUBLE:
10289 case OP_DECFLOAT:
10290 case OP_LAST:
10291 case OP_COMPLEX:
10292 case OP_STRING:
10293 case OP_ARRAY:
10294 case OP_TYPE:
10295 case OP_TYPEOF:
10296 case OP_DECLTYPE:
10297 case OP_TYPEID:
10298 case OP_NAME:
10299 case OP_OBJC_NSSTRING:
10300
10301 case UNOP_NEG:
10302 case UNOP_LOGICAL_NOT:
10303 case UNOP_COMPLEMENT:
10304 case UNOP_ADDR:
10305 case UNOP_HIGH:
10306 case UNOP_CAST:
10307
10308 case UNOP_CAST_TYPE:
10309 case UNOP_REINTERPRET_CAST:
10310 case UNOP_DYNAMIC_CAST:
10311 /* Unary, binary and ternary operators: We have to check
10312 their operands. If they are constant, then so is the
10313 result of that operation. For instance, if A and B are
10314 determined to be constants, then so is "A + B".
10315
10316 UNOP_IND is one exception to the rule above, because the
10317 value of *ADDR is not necessarily a constant, even when
10318 ADDR is. */
10319 break;
10320
10321 case OP_VAR_VALUE:
10322 /* Check whether the associated symbol is a constant.
10323
10324 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10325 possible that a buggy compiler could mark a variable as
10326 constant even when it is not, and TYPE_CONST would return
10327 true in this case, while SYMBOL_CLASS wouldn't.
10328
10329 We also have to check for function symbols because they
10330 are always constant. */
10331 {
10332 struct symbol *s = exp->elts[i + 2].symbol;
10333
10334 if (SYMBOL_CLASS (s) != LOC_BLOCK
10335 && SYMBOL_CLASS (s) != LOC_CONST
10336 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10337 return 0;
10338 break;
10339 }
10340
10341 /* The default action is to return 0 because we are using
10342 the optimistic approach here: If we don't know something,
10343 then it is not a constant. */
10344 default:
10345 return 0;
10346 }
10347 }
10348
10349 return 1;
10350 }
10351
10352 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10353
10354 static void
10355 dtor_watchpoint (struct breakpoint *self)
10356 {
10357 struct watchpoint *w = (struct watchpoint *) self;
10358
10359 xfree (w->cond_exp);
10360 xfree (w->exp);
10361 xfree (w->exp_string);
10362 xfree (w->exp_string_reparse);
10363 value_free (w->val);
10364
10365 base_breakpoint_ops.dtor (self);
10366 }
10367
10368 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10369
10370 static void
10371 re_set_watchpoint (struct breakpoint *b)
10372 {
10373 struct watchpoint *w = (struct watchpoint *) b;
10374
10375 /* Watchpoint can be either on expression using entirely global
10376 variables, or it can be on local variables.
10377
10378 Watchpoints of the first kind are never auto-deleted, and even
10379 persist across program restarts. Since they can use variables
10380 from shared libraries, we need to reparse expression as libraries
10381 are loaded and unloaded.
10382
10383 Watchpoints on local variables can also change meaning as result
10384 of solib event. For example, if a watchpoint uses both a local
10385 and a global variables in expression, it's a local watchpoint,
10386 but unloading of a shared library will make the expression
10387 invalid. This is not a very common use case, but we still
10388 re-evaluate expression, to avoid surprises to the user.
10389
10390 Note that for local watchpoints, we re-evaluate it only if
10391 watchpoints frame id is still valid. If it's not, it means the
10392 watchpoint is out of scope and will be deleted soon. In fact,
10393 I'm not sure we'll ever be called in this case.
10394
10395 If a local watchpoint's frame id is still valid, then
10396 w->exp_valid_block is likewise valid, and we can safely use it.
10397
10398 Don't do anything about disabled watchpoints, since they will be
10399 reevaluated again when enabled. */
10400 update_watchpoint (w, 1 /* reparse */);
10401 }
10402
10403 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10404
10405 static int
10406 insert_watchpoint (struct bp_location *bl)
10407 {
10408 struct watchpoint *w = (struct watchpoint *) bl->owner;
10409 int length = w->exact ? 1 : bl->length;
10410
10411 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10412 w->cond_exp);
10413 }
10414
10415 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10416
10417 static int
10418 remove_watchpoint (struct bp_location *bl)
10419 {
10420 struct watchpoint *w = (struct watchpoint *) bl->owner;
10421 int length = w->exact ? 1 : bl->length;
10422
10423 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10424 w->cond_exp);
10425 }
10426
10427 static int
10428 breakpoint_hit_watchpoint (const struct bp_location *bl,
10429 struct address_space *aspace, CORE_ADDR bp_addr,
10430 const struct target_waitstatus *ws)
10431 {
10432 struct breakpoint *b = bl->owner;
10433 struct watchpoint *w = (struct watchpoint *) b;
10434
10435 /* Continuable hardware watchpoints are treated as non-existent if the
10436 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10437 some data address). Otherwise gdb won't stop on a break instruction
10438 in the code (not from a breakpoint) when a hardware watchpoint has
10439 been defined. Also skip watchpoints which we know did not trigger
10440 (did not match the data address). */
10441 if (is_hardware_watchpoint (b)
10442 && w->watchpoint_triggered == watch_triggered_no)
10443 return 0;
10444
10445 return 1;
10446 }
10447
10448 static void
10449 check_status_watchpoint (bpstat bs)
10450 {
10451 gdb_assert (is_watchpoint (bs->breakpoint_at));
10452
10453 bpstat_check_watchpoint (bs);
10454 }
10455
10456 /* Implement the "resources_needed" breakpoint_ops method for
10457 hardware watchpoints. */
10458
10459 static int
10460 resources_needed_watchpoint (const struct bp_location *bl)
10461 {
10462 struct watchpoint *w = (struct watchpoint *) bl->owner;
10463 int length = w->exact? 1 : bl->length;
10464
10465 return target_region_ok_for_hw_watchpoint (bl->address, length);
10466 }
10467
10468 /* Implement the "works_in_software_mode" breakpoint_ops method for
10469 hardware watchpoints. */
10470
10471 static int
10472 works_in_software_mode_watchpoint (const struct breakpoint *b)
10473 {
10474 /* Read and access watchpoints only work with hardware support. */
10475 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10476 }
10477
10478 static enum print_stop_action
10479 print_it_watchpoint (bpstat bs)
10480 {
10481 struct cleanup *old_chain;
10482 struct breakpoint *b;
10483 struct ui_file *stb;
10484 enum print_stop_action result;
10485 struct watchpoint *w;
10486 struct ui_out *uiout = current_uiout;
10487
10488 gdb_assert (bs->bp_location_at != NULL);
10489
10490 b = bs->breakpoint_at;
10491 w = (struct watchpoint *) b;
10492
10493 stb = mem_fileopen ();
10494 old_chain = make_cleanup_ui_file_delete (stb);
10495
10496 switch (b->type)
10497 {
10498 case bp_watchpoint:
10499 case bp_hardware_watchpoint:
10500 annotate_watchpoint (b->number);
10501 if (ui_out_is_mi_like_p (uiout))
10502 ui_out_field_string
10503 (uiout, "reason",
10504 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10505 mention (b);
10506 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10507 ui_out_text (uiout, "\nOld value = ");
10508 watchpoint_value_print (bs->old_val, stb);
10509 ui_out_field_stream (uiout, "old", stb);
10510 ui_out_text (uiout, "\nNew value = ");
10511 watchpoint_value_print (w->val, stb);
10512 ui_out_field_stream (uiout, "new", stb);
10513 ui_out_text (uiout, "\n");
10514 /* More than one watchpoint may have been triggered. */
10515 result = PRINT_UNKNOWN;
10516 break;
10517
10518 case bp_read_watchpoint:
10519 if (ui_out_is_mi_like_p (uiout))
10520 ui_out_field_string
10521 (uiout, "reason",
10522 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10523 mention (b);
10524 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10525 ui_out_text (uiout, "\nValue = ");
10526 watchpoint_value_print (w->val, stb);
10527 ui_out_field_stream (uiout, "value", stb);
10528 ui_out_text (uiout, "\n");
10529 result = PRINT_UNKNOWN;
10530 break;
10531
10532 case bp_access_watchpoint:
10533 if (bs->old_val != NULL)
10534 {
10535 annotate_watchpoint (b->number);
10536 if (ui_out_is_mi_like_p (uiout))
10537 ui_out_field_string
10538 (uiout, "reason",
10539 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10540 mention (b);
10541 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10542 ui_out_text (uiout, "\nOld value = ");
10543 watchpoint_value_print (bs->old_val, stb);
10544 ui_out_field_stream (uiout, "old", stb);
10545 ui_out_text (uiout, "\nNew value = ");
10546 }
10547 else
10548 {
10549 mention (b);
10550 if (ui_out_is_mi_like_p (uiout))
10551 ui_out_field_string
10552 (uiout, "reason",
10553 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10554 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10555 ui_out_text (uiout, "\nValue = ");
10556 }
10557 watchpoint_value_print (w->val, stb);
10558 ui_out_field_stream (uiout, "new", stb);
10559 ui_out_text (uiout, "\n");
10560 result = PRINT_UNKNOWN;
10561 break;
10562 default:
10563 result = PRINT_UNKNOWN;
10564 }
10565
10566 do_cleanups (old_chain);
10567 return result;
10568 }
10569
10570 /* Implement the "print_mention" breakpoint_ops method for hardware
10571 watchpoints. */
10572
10573 static void
10574 print_mention_watchpoint (struct breakpoint *b)
10575 {
10576 struct cleanup *ui_out_chain;
10577 struct watchpoint *w = (struct watchpoint *) b;
10578 struct ui_out *uiout = current_uiout;
10579
10580 switch (b->type)
10581 {
10582 case bp_watchpoint:
10583 ui_out_text (uiout, "Watchpoint ");
10584 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10585 break;
10586 case bp_hardware_watchpoint:
10587 ui_out_text (uiout, "Hardware watchpoint ");
10588 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10589 break;
10590 case bp_read_watchpoint:
10591 ui_out_text (uiout, "Hardware read watchpoint ");
10592 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10593 break;
10594 case bp_access_watchpoint:
10595 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10596 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10597 break;
10598 default:
10599 internal_error (__FILE__, __LINE__,
10600 _("Invalid hardware watchpoint type."));
10601 }
10602
10603 ui_out_field_int (uiout, "number", b->number);
10604 ui_out_text (uiout, ": ");
10605 ui_out_field_string (uiout, "exp", w->exp_string);
10606 do_cleanups (ui_out_chain);
10607 }
10608
10609 /* Implement the "print_recreate" breakpoint_ops method for
10610 watchpoints. */
10611
10612 static void
10613 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10614 {
10615 struct watchpoint *w = (struct watchpoint *) b;
10616
10617 switch (b->type)
10618 {
10619 case bp_watchpoint:
10620 case bp_hardware_watchpoint:
10621 fprintf_unfiltered (fp, "watch");
10622 break;
10623 case bp_read_watchpoint:
10624 fprintf_unfiltered (fp, "rwatch");
10625 break;
10626 case bp_access_watchpoint:
10627 fprintf_unfiltered (fp, "awatch");
10628 break;
10629 default:
10630 internal_error (__FILE__, __LINE__,
10631 _("Invalid watchpoint type."));
10632 }
10633
10634 fprintf_unfiltered (fp, " %s", w->exp_string);
10635 print_recreate_thread (b, fp);
10636 }
10637
10638 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10639
10640 static struct breakpoint_ops watchpoint_breakpoint_ops;
10641
10642 /* Implement the "insert" breakpoint_ops method for
10643 masked hardware watchpoints. */
10644
10645 static int
10646 insert_masked_watchpoint (struct bp_location *bl)
10647 {
10648 struct watchpoint *w = (struct watchpoint *) bl->owner;
10649
10650 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10651 bl->watchpoint_type);
10652 }
10653
10654 /* Implement the "remove" breakpoint_ops method for
10655 masked hardware watchpoints. */
10656
10657 static int
10658 remove_masked_watchpoint (struct bp_location *bl)
10659 {
10660 struct watchpoint *w = (struct watchpoint *) bl->owner;
10661
10662 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10663 bl->watchpoint_type);
10664 }
10665
10666 /* Implement the "resources_needed" breakpoint_ops method for
10667 masked hardware watchpoints. */
10668
10669 static int
10670 resources_needed_masked_watchpoint (const struct bp_location *bl)
10671 {
10672 struct watchpoint *w = (struct watchpoint *) bl->owner;
10673
10674 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10675 }
10676
10677 /* Implement the "works_in_software_mode" breakpoint_ops method for
10678 masked hardware watchpoints. */
10679
10680 static int
10681 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10682 {
10683 return 0;
10684 }
10685
10686 /* Implement the "print_it" breakpoint_ops method for
10687 masked hardware watchpoints. */
10688
10689 static enum print_stop_action
10690 print_it_masked_watchpoint (bpstat bs)
10691 {
10692 struct breakpoint *b = bs->breakpoint_at;
10693 struct ui_out *uiout = current_uiout;
10694
10695 /* Masked watchpoints have only one location. */
10696 gdb_assert (b->loc && b->loc->next == NULL);
10697
10698 switch (b->type)
10699 {
10700 case bp_hardware_watchpoint:
10701 annotate_watchpoint (b->number);
10702 if (ui_out_is_mi_like_p (uiout))
10703 ui_out_field_string
10704 (uiout, "reason",
10705 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10706 break;
10707
10708 case bp_read_watchpoint:
10709 if (ui_out_is_mi_like_p (uiout))
10710 ui_out_field_string
10711 (uiout, "reason",
10712 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10713 break;
10714
10715 case bp_access_watchpoint:
10716 if (ui_out_is_mi_like_p (uiout))
10717 ui_out_field_string
10718 (uiout, "reason",
10719 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10720 break;
10721 default:
10722 internal_error (__FILE__, __LINE__,
10723 _("Invalid hardware watchpoint type."));
10724 }
10725
10726 mention (b);
10727 ui_out_text (uiout, _("\n\
10728 Check the underlying instruction at PC for the memory\n\
10729 address and value which triggered this watchpoint.\n"));
10730 ui_out_text (uiout, "\n");
10731
10732 /* More than one watchpoint may have been triggered. */
10733 return PRINT_UNKNOWN;
10734 }
10735
10736 /* Implement the "print_one_detail" breakpoint_ops method for
10737 masked hardware watchpoints. */
10738
10739 static void
10740 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10741 struct ui_out *uiout)
10742 {
10743 struct watchpoint *w = (struct watchpoint *) b;
10744
10745 /* Masked watchpoints have only one location. */
10746 gdb_assert (b->loc && b->loc->next == NULL);
10747
10748 ui_out_text (uiout, "\tmask ");
10749 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10750 ui_out_text (uiout, "\n");
10751 }
10752
10753 /* Implement the "print_mention" breakpoint_ops method for
10754 masked hardware watchpoints. */
10755
10756 static void
10757 print_mention_masked_watchpoint (struct breakpoint *b)
10758 {
10759 struct watchpoint *w = (struct watchpoint *) b;
10760 struct ui_out *uiout = current_uiout;
10761 struct cleanup *ui_out_chain;
10762
10763 switch (b->type)
10764 {
10765 case bp_hardware_watchpoint:
10766 ui_out_text (uiout, "Masked hardware watchpoint ");
10767 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10768 break;
10769 case bp_read_watchpoint:
10770 ui_out_text (uiout, "Masked hardware read watchpoint ");
10771 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10772 break;
10773 case bp_access_watchpoint:
10774 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10775 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10776 break;
10777 default:
10778 internal_error (__FILE__, __LINE__,
10779 _("Invalid hardware watchpoint type."));
10780 }
10781
10782 ui_out_field_int (uiout, "number", b->number);
10783 ui_out_text (uiout, ": ");
10784 ui_out_field_string (uiout, "exp", w->exp_string);
10785 do_cleanups (ui_out_chain);
10786 }
10787
10788 /* Implement the "print_recreate" breakpoint_ops method for
10789 masked hardware watchpoints. */
10790
10791 static void
10792 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10793 {
10794 struct watchpoint *w = (struct watchpoint *) b;
10795 char tmp[40];
10796
10797 switch (b->type)
10798 {
10799 case bp_hardware_watchpoint:
10800 fprintf_unfiltered (fp, "watch");
10801 break;
10802 case bp_read_watchpoint:
10803 fprintf_unfiltered (fp, "rwatch");
10804 break;
10805 case bp_access_watchpoint:
10806 fprintf_unfiltered (fp, "awatch");
10807 break;
10808 default:
10809 internal_error (__FILE__, __LINE__,
10810 _("Invalid hardware watchpoint type."));
10811 }
10812
10813 sprintf_vma (tmp, w->hw_wp_mask);
10814 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10815 print_recreate_thread (b, fp);
10816 }
10817
10818 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10819
10820 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10821
10822 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10823
10824 static int
10825 is_masked_watchpoint (const struct breakpoint *b)
10826 {
10827 return b->ops == &masked_watchpoint_breakpoint_ops;
10828 }
10829
10830 /* accessflag: hw_write: watch write,
10831 hw_read: watch read,
10832 hw_access: watch access (read or write) */
10833 static void
10834 watch_command_1 (const char *arg, int accessflag, int from_tty,
10835 int just_location, int internal)
10836 {
10837 volatile struct gdb_exception e;
10838 struct breakpoint *b, *scope_breakpoint = NULL;
10839 struct expression *exp;
10840 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10841 struct value *val, *mark, *result;
10842 struct frame_info *frame;
10843 const char *exp_start = NULL;
10844 const char *exp_end = NULL;
10845 const char *tok, *end_tok;
10846 int toklen = -1;
10847 const char *cond_start = NULL;
10848 const char *cond_end = NULL;
10849 enum bptype bp_type;
10850 int thread = -1;
10851 int pc = 0;
10852 /* Flag to indicate whether we are going to use masks for
10853 the hardware watchpoint. */
10854 int use_mask = 0;
10855 CORE_ADDR mask = 0;
10856 struct watchpoint *w;
10857 char *expression;
10858 struct cleanup *back_to;
10859
10860 /* Make sure that we actually have parameters to parse. */
10861 if (arg != NULL && arg[0] != '\0')
10862 {
10863 const char *value_start;
10864
10865 exp_end = arg + strlen (arg);
10866
10867 /* Look for "parameter value" pairs at the end
10868 of the arguments string. */
10869 for (tok = exp_end - 1; tok > arg; tok--)
10870 {
10871 /* Skip whitespace at the end of the argument list. */
10872 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10873 tok--;
10874
10875 /* Find the beginning of the last token.
10876 This is the value of the parameter. */
10877 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10878 tok--;
10879 value_start = tok + 1;
10880
10881 /* Skip whitespace. */
10882 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10883 tok--;
10884
10885 end_tok = tok;
10886
10887 /* Find the beginning of the second to last token.
10888 This is the parameter itself. */
10889 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10890 tok--;
10891 tok++;
10892 toklen = end_tok - tok + 1;
10893
10894 if (toklen == 6 && !strncmp (tok, "thread", 6))
10895 {
10896 /* At this point we've found a "thread" token, which means
10897 the user is trying to set a watchpoint that triggers
10898 only in a specific thread. */
10899 char *endp;
10900
10901 if (thread != -1)
10902 error(_("You can specify only one thread."));
10903
10904 /* Extract the thread ID from the next token. */
10905 thread = strtol (value_start, &endp, 0);
10906
10907 /* Check if the user provided a valid numeric value for the
10908 thread ID. */
10909 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10910 error (_("Invalid thread ID specification %s."), value_start);
10911
10912 /* Check if the thread actually exists. */
10913 if (!valid_thread_id (thread))
10914 invalid_thread_id_error (thread);
10915 }
10916 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10917 {
10918 /* We've found a "mask" token, which means the user wants to
10919 create a hardware watchpoint that is going to have the mask
10920 facility. */
10921 struct value *mask_value, *mark;
10922
10923 if (use_mask)
10924 error(_("You can specify only one mask."));
10925
10926 use_mask = just_location = 1;
10927
10928 mark = value_mark ();
10929 mask_value = parse_to_comma_and_eval (&value_start);
10930 mask = value_as_address (mask_value);
10931 value_free_to_mark (mark);
10932 }
10933 else
10934 /* We didn't recognize what we found. We should stop here. */
10935 break;
10936
10937 /* Truncate the string and get rid of the "parameter value" pair before
10938 the arguments string is parsed by the parse_exp_1 function. */
10939 exp_end = tok;
10940 }
10941 }
10942 else
10943 exp_end = arg;
10944
10945 /* Parse the rest of the arguments. From here on out, everything
10946 is in terms of a newly allocated string instead of the original
10947 ARG. */
10948 innermost_block = NULL;
10949 expression = savestring (arg, exp_end - arg);
10950 back_to = make_cleanup (xfree, expression);
10951 exp_start = arg = expression;
10952 exp = parse_exp_1 (&arg, 0, 0, 0);
10953 exp_end = arg;
10954 /* Remove trailing whitespace from the expression before saving it.
10955 This makes the eventual display of the expression string a bit
10956 prettier. */
10957 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10958 --exp_end;
10959
10960 /* Checking if the expression is not constant. */
10961 if (watchpoint_exp_is_const (exp))
10962 {
10963 int len;
10964
10965 len = exp_end - exp_start;
10966 while (len > 0 && isspace (exp_start[len - 1]))
10967 len--;
10968 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10969 }
10970
10971 exp_valid_block = innermost_block;
10972 mark = value_mark ();
10973 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10974
10975 if (just_location)
10976 {
10977 int ret;
10978
10979 exp_valid_block = NULL;
10980 val = value_addr (result);
10981 release_value (val);
10982 value_free_to_mark (mark);
10983
10984 if (use_mask)
10985 {
10986 ret = target_masked_watch_num_registers (value_as_address (val),
10987 mask);
10988 if (ret == -1)
10989 error (_("This target does not support masked watchpoints."));
10990 else if (ret == -2)
10991 error (_("Invalid mask or memory region."));
10992 }
10993 }
10994 else if (val != NULL)
10995 release_value (val);
10996
10997 tok = skip_spaces_const (arg);
10998 end_tok = skip_to_space_const (tok);
10999
11000 toklen = end_tok - tok;
11001 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11002 {
11003 struct expression *cond;
11004
11005 innermost_block = NULL;
11006 tok = cond_start = end_tok + 1;
11007 cond = parse_exp_1 (&tok, 0, 0, 0);
11008
11009 /* The watchpoint expression may not be local, but the condition
11010 may still be. E.g.: `watch global if local > 0'. */
11011 cond_exp_valid_block = innermost_block;
11012
11013 xfree (cond);
11014 cond_end = tok;
11015 }
11016 if (*tok)
11017 error (_("Junk at end of command."));
11018
11019 if (accessflag == hw_read)
11020 bp_type = bp_read_watchpoint;
11021 else if (accessflag == hw_access)
11022 bp_type = bp_access_watchpoint;
11023 else
11024 bp_type = bp_hardware_watchpoint;
11025
11026 frame = block_innermost_frame (exp_valid_block);
11027
11028 /* If the expression is "local", then set up a "watchpoint scope"
11029 breakpoint at the point where we've left the scope of the watchpoint
11030 expression. Create the scope breakpoint before the watchpoint, so
11031 that we will encounter it first in bpstat_stop_status. */
11032 if (exp_valid_block && frame)
11033 {
11034 if (frame_id_p (frame_unwind_caller_id (frame)))
11035 {
11036 scope_breakpoint
11037 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11038 frame_unwind_caller_pc (frame),
11039 bp_watchpoint_scope,
11040 &momentary_breakpoint_ops);
11041
11042 scope_breakpoint->enable_state = bp_enabled;
11043
11044 /* Automatically delete the breakpoint when it hits. */
11045 scope_breakpoint->disposition = disp_del;
11046
11047 /* Only break in the proper frame (help with recursion). */
11048 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11049
11050 /* Set the address at which we will stop. */
11051 scope_breakpoint->loc->gdbarch
11052 = frame_unwind_caller_arch (frame);
11053 scope_breakpoint->loc->requested_address
11054 = frame_unwind_caller_pc (frame);
11055 scope_breakpoint->loc->address
11056 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11057 scope_breakpoint->loc->requested_address,
11058 scope_breakpoint->type);
11059 }
11060 }
11061
11062 /* Now set up the breakpoint. */
11063
11064 w = XCNEW (struct watchpoint);
11065 b = &w->base;
11066 if (use_mask)
11067 init_raw_breakpoint_without_location (b, NULL, bp_type,
11068 &masked_watchpoint_breakpoint_ops);
11069 else
11070 init_raw_breakpoint_without_location (b, NULL, bp_type,
11071 &watchpoint_breakpoint_ops);
11072 b->thread = thread;
11073 b->disposition = disp_donttouch;
11074 b->pspace = current_program_space;
11075 w->exp = exp;
11076 w->exp_valid_block = exp_valid_block;
11077 w->cond_exp_valid_block = cond_exp_valid_block;
11078 if (just_location)
11079 {
11080 struct type *t = value_type (val);
11081 CORE_ADDR addr = value_as_address (val);
11082 char *name;
11083
11084 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11085 name = type_to_string (t);
11086
11087 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11088 core_addr_to_string (addr));
11089 xfree (name);
11090
11091 w->exp_string = xstrprintf ("-location %.*s",
11092 (int) (exp_end - exp_start), exp_start);
11093
11094 /* The above expression is in C. */
11095 b->language = language_c;
11096 }
11097 else
11098 w->exp_string = savestring (exp_start, exp_end - exp_start);
11099
11100 if (use_mask)
11101 {
11102 w->hw_wp_mask = mask;
11103 }
11104 else
11105 {
11106 w->val = val;
11107 w->val_valid = 1;
11108 }
11109
11110 if (cond_start)
11111 b->cond_string = savestring (cond_start, cond_end - cond_start);
11112 else
11113 b->cond_string = 0;
11114
11115 if (frame)
11116 {
11117 w->watchpoint_frame = get_frame_id (frame);
11118 w->watchpoint_thread = inferior_ptid;
11119 }
11120 else
11121 {
11122 w->watchpoint_frame = null_frame_id;
11123 w->watchpoint_thread = null_ptid;
11124 }
11125
11126 if (scope_breakpoint != NULL)
11127 {
11128 /* The scope breakpoint is related to the watchpoint. We will
11129 need to act on them together. */
11130 b->related_breakpoint = scope_breakpoint;
11131 scope_breakpoint->related_breakpoint = b;
11132 }
11133
11134 if (!just_location)
11135 value_free_to_mark (mark);
11136
11137 TRY_CATCH (e, RETURN_MASK_ALL)
11138 {
11139 /* Finally update the new watchpoint. This creates the locations
11140 that should be inserted. */
11141 update_watchpoint (w, 1);
11142 }
11143 if (e.reason < 0)
11144 {
11145 delete_breakpoint (b);
11146 throw_exception (e);
11147 }
11148
11149 install_breakpoint (internal, b, 1);
11150 do_cleanups (back_to);
11151 }
11152
11153 /* Return count of debug registers needed to watch the given expression.
11154 If the watchpoint cannot be handled in hardware return zero. */
11155
11156 static int
11157 can_use_hardware_watchpoint (struct value *v)
11158 {
11159 int found_memory_cnt = 0;
11160 struct value *head = v;
11161
11162 /* Did the user specifically forbid us to use hardware watchpoints? */
11163 if (!can_use_hw_watchpoints)
11164 return 0;
11165
11166 /* Make sure that the value of the expression depends only upon
11167 memory contents, and values computed from them within GDB. If we
11168 find any register references or function calls, we can't use a
11169 hardware watchpoint.
11170
11171 The idea here is that evaluating an expression generates a series
11172 of values, one holding the value of every subexpression. (The
11173 expression a*b+c has five subexpressions: a, b, a*b, c, and
11174 a*b+c.) GDB's values hold almost enough information to establish
11175 the criteria given above --- they identify memory lvalues,
11176 register lvalues, computed values, etcetera. So we can evaluate
11177 the expression, and then scan the chain of values that leaves
11178 behind to decide whether we can detect any possible change to the
11179 expression's final value using only hardware watchpoints.
11180
11181 However, I don't think that the values returned by inferior
11182 function calls are special in any way. So this function may not
11183 notice that an expression involving an inferior function call
11184 can't be watched with hardware watchpoints. FIXME. */
11185 for (; v; v = value_next (v))
11186 {
11187 if (VALUE_LVAL (v) == lval_memory)
11188 {
11189 if (v != head && value_lazy (v))
11190 /* A lazy memory lvalue in the chain is one that GDB never
11191 needed to fetch; we either just used its address (e.g.,
11192 `a' in `a.b') or we never needed it at all (e.g., `a'
11193 in `a,b'). This doesn't apply to HEAD; if that is
11194 lazy then it was not readable, but watch it anyway. */
11195 ;
11196 else
11197 {
11198 /* Ahh, memory we actually used! Check if we can cover
11199 it with hardware watchpoints. */
11200 struct type *vtype = check_typedef (value_type (v));
11201
11202 /* We only watch structs and arrays if user asked for it
11203 explicitly, never if they just happen to appear in a
11204 middle of some value chain. */
11205 if (v == head
11206 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11207 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11208 {
11209 CORE_ADDR vaddr = value_address (v);
11210 int len;
11211 int num_regs;
11212
11213 len = (target_exact_watchpoints
11214 && is_scalar_type_recursive (vtype))?
11215 1 : TYPE_LENGTH (value_type (v));
11216
11217 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11218 if (!num_regs)
11219 return 0;
11220 else
11221 found_memory_cnt += num_regs;
11222 }
11223 }
11224 }
11225 else if (VALUE_LVAL (v) != not_lval
11226 && deprecated_value_modifiable (v) == 0)
11227 return 0; /* These are values from the history (e.g., $1). */
11228 else if (VALUE_LVAL (v) == lval_register)
11229 return 0; /* Cannot watch a register with a HW watchpoint. */
11230 }
11231
11232 /* The expression itself looks suitable for using a hardware
11233 watchpoint, but give the target machine a chance to reject it. */
11234 return found_memory_cnt;
11235 }
11236
11237 void
11238 watch_command_wrapper (char *arg, int from_tty, int internal)
11239 {
11240 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11241 }
11242
11243 /* A helper function that looks for the "-location" argument and then
11244 calls watch_command_1. */
11245
11246 static void
11247 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11248 {
11249 int just_location = 0;
11250
11251 if (arg
11252 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11253 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11254 {
11255 arg = skip_spaces (arg);
11256 just_location = 1;
11257 }
11258
11259 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11260 }
11261
11262 static void
11263 watch_command (char *arg, int from_tty)
11264 {
11265 watch_maybe_just_location (arg, hw_write, from_tty);
11266 }
11267
11268 void
11269 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11270 {
11271 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11272 }
11273
11274 static void
11275 rwatch_command (char *arg, int from_tty)
11276 {
11277 watch_maybe_just_location (arg, hw_read, from_tty);
11278 }
11279
11280 void
11281 awatch_command_wrapper (char *arg, int from_tty, int internal)
11282 {
11283 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11284 }
11285
11286 static void
11287 awatch_command (char *arg, int from_tty)
11288 {
11289 watch_maybe_just_location (arg, hw_access, from_tty);
11290 }
11291 \f
11292
11293 /* Helper routines for the until_command routine in infcmd.c. Here
11294 because it uses the mechanisms of breakpoints. */
11295
11296 struct until_break_command_continuation_args
11297 {
11298 struct breakpoint *breakpoint;
11299 struct breakpoint *breakpoint2;
11300 int thread_num;
11301 };
11302
11303 /* This function is called by fetch_inferior_event via the
11304 cmd_continuation pointer, to complete the until command. It takes
11305 care of cleaning up the temporary breakpoints set up by the until
11306 command. */
11307 static void
11308 until_break_command_continuation (void *arg, int err)
11309 {
11310 struct until_break_command_continuation_args *a = arg;
11311
11312 delete_breakpoint (a->breakpoint);
11313 if (a->breakpoint2)
11314 delete_breakpoint (a->breakpoint2);
11315 delete_longjmp_breakpoint (a->thread_num);
11316 }
11317
11318 void
11319 until_break_command (char *arg, int from_tty, int anywhere)
11320 {
11321 struct symtabs_and_lines sals;
11322 struct symtab_and_line sal;
11323 struct frame_info *frame;
11324 struct gdbarch *frame_gdbarch;
11325 struct frame_id stack_frame_id;
11326 struct frame_id caller_frame_id;
11327 struct breakpoint *breakpoint;
11328 struct breakpoint *breakpoint2 = NULL;
11329 struct cleanup *old_chain;
11330 int thread;
11331 struct thread_info *tp;
11332
11333 clear_proceed_status ();
11334
11335 /* Set a breakpoint where the user wants it and at return from
11336 this function. */
11337
11338 if (last_displayed_sal_is_valid ())
11339 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11340 get_last_displayed_symtab (),
11341 get_last_displayed_line ());
11342 else
11343 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11344 (struct symtab *) NULL, 0);
11345
11346 if (sals.nelts != 1)
11347 error (_("Couldn't get information on specified line."));
11348
11349 sal = sals.sals[0];
11350 xfree (sals.sals); /* malloc'd, so freed. */
11351
11352 if (*arg)
11353 error (_("Junk at end of arguments."));
11354
11355 resolve_sal_pc (&sal);
11356
11357 tp = inferior_thread ();
11358 thread = tp->num;
11359
11360 old_chain = make_cleanup (null_cleanup, NULL);
11361
11362 /* Note linespec handling above invalidates the frame chain.
11363 Installing a breakpoint also invalidates the frame chain (as it
11364 may need to switch threads), so do any frame handling before
11365 that. */
11366
11367 frame = get_selected_frame (NULL);
11368 frame_gdbarch = get_frame_arch (frame);
11369 stack_frame_id = get_stack_frame_id (frame);
11370 caller_frame_id = frame_unwind_caller_id (frame);
11371
11372 /* Keep within the current frame, or in frames called by the current
11373 one. */
11374
11375 if (frame_id_p (caller_frame_id))
11376 {
11377 struct symtab_and_line sal2;
11378
11379 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11380 sal2.pc = frame_unwind_caller_pc (frame);
11381 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11382 sal2,
11383 caller_frame_id,
11384 bp_until);
11385 make_cleanup_delete_breakpoint (breakpoint2);
11386
11387 set_longjmp_breakpoint (tp, caller_frame_id);
11388 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11389 }
11390
11391 /* set_momentary_breakpoint could invalidate FRAME. */
11392 frame = NULL;
11393
11394 if (anywhere)
11395 /* If the user told us to continue until a specified location,
11396 we don't specify a frame at which we need to stop. */
11397 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11398 null_frame_id, bp_until);
11399 else
11400 /* Otherwise, specify the selected frame, because we want to stop
11401 only at the very same frame. */
11402 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11403 stack_frame_id, bp_until);
11404 make_cleanup_delete_breakpoint (breakpoint);
11405
11406 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11407
11408 /* If we are running asynchronously, and proceed call above has
11409 actually managed to start the target, arrange for breakpoints to
11410 be deleted when the target stops. Otherwise, we're already
11411 stopped and delete breakpoints via cleanup chain. */
11412
11413 if (target_can_async_p () && is_running (inferior_ptid))
11414 {
11415 struct until_break_command_continuation_args *args;
11416 args = xmalloc (sizeof (*args));
11417
11418 args->breakpoint = breakpoint;
11419 args->breakpoint2 = breakpoint2;
11420 args->thread_num = thread;
11421
11422 discard_cleanups (old_chain);
11423 add_continuation (inferior_thread (),
11424 until_break_command_continuation, args,
11425 xfree);
11426 }
11427 else
11428 do_cleanups (old_chain);
11429 }
11430
11431 /* This function attempts to parse an optional "if <cond>" clause
11432 from the arg string. If one is not found, it returns NULL.
11433
11434 Else, it returns a pointer to the condition string. (It does not
11435 attempt to evaluate the string against a particular block.) And,
11436 it updates arg to point to the first character following the parsed
11437 if clause in the arg string. */
11438
11439 char *
11440 ep_parse_optional_if_clause (char **arg)
11441 {
11442 char *cond_string;
11443
11444 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11445 return NULL;
11446
11447 /* Skip the "if" keyword. */
11448 (*arg) += 2;
11449
11450 /* Skip any extra leading whitespace, and record the start of the
11451 condition string. */
11452 *arg = skip_spaces (*arg);
11453 cond_string = *arg;
11454
11455 /* Assume that the condition occupies the remainder of the arg
11456 string. */
11457 (*arg) += strlen (cond_string);
11458
11459 return cond_string;
11460 }
11461
11462 /* Commands to deal with catching events, such as signals, exceptions,
11463 process start/exit, etc. */
11464
11465 typedef enum
11466 {
11467 catch_fork_temporary, catch_vfork_temporary,
11468 catch_fork_permanent, catch_vfork_permanent
11469 }
11470 catch_fork_kind;
11471
11472 static void
11473 catch_fork_command_1 (char *arg, int from_tty,
11474 struct cmd_list_element *command)
11475 {
11476 struct gdbarch *gdbarch = get_current_arch ();
11477 char *cond_string = NULL;
11478 catch_fork_kind fork_kind;
11479 int tempflag;
11480
11481 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11482 tempflag = (fork_kind == catch_fork_temporary
11483 || fork_kind == catch_vfork_temporary);
11484
11485 if (!arg)
11486 arg = "";
11487 arg = skip_spaces (arg);
11488
11489 /* The allowed syntax is:
11490 catch [v]fork
11491 catch [v]fork if <cond>
11492
11493 First, check if there's an if clause. */
11494 cond_string = ep_parse_optional_if_clause (&arg);
11495
11496 if ((*arg != '\0') && !isspace (*arg))
11497 error (_("Junk at end of arguments."));
11498
11499 /* If this target supports it, create a fork or vfork catchpoint
11500 and enable reporting of such events. */
11501 switch (fork_kind)
11502 {
11503 case catch_fork_temporary:
11504 case catch_fork_permanent:
11505 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11506 &catch_fork_breakpoint_ops);
11507 break;
11508 case catch_vfork_temporary:
11509 case catch_vfork_permanent:
11510 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11511 &catch_vfork_breakpoint_ops);
11512 break;
11513 default:
11514 error (_("unsupported or unknown fork kind; cannot catch it"));
11515 break;
11516 }
11517 }
11518
11519 static void
11520 catch_exec_command_1 (char *arg, int from_tty,
11521 struct cmd_list_element *command)
11522 {
11523 struct exec_catchpoint *c;
11524 struct gdbarch *gdbarch = get_current_arch ();
11525 int tempflag;
11526 char *cond_string = NULL;
11527
11528 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11529
11530 if (!arg)
11531 arg = "";
11532 arg = skip_spaces (arg);
11533
11534 /* The allowed syntax is:
11535 catch exec
11536 catch exec if <cond>
11537
11538 First, check if there's an if clause. */
11539 cond_string = ep_parse_optional_if_clause (&arg);
11540
11541 if ((*arg != '\0') && !isspace (*arg))
11542 error (_("Junk at end of arguments."));
11543
11544 c = XNEW (struct exec_catchpoint);
11545 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11546 &catch_exec_breakpoint_ops);
11547 c->exec_pathname = NULL;
11548
11549 install_breakpoint (0, &c->base, 1);
11550 }
11551
11552 void
11553 init_ada_exception_breakpoint (struct breakpoint *b,
11554 struct gdbarch *gdbarch,
11555 struct symtab_and_line sal,
11556 char *addr_string,
11557 const struct breakpoint_ops *ops,
11558 int tempflag,
11559 int from_tty)
11560 {
11561 if (from_tty)
11562 {
11563 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11564 if (!loc_gdbarch)
11565 loc_gdbarch = gdbarch;
11566
11567 describe_other_breakpoints (loc_gdbarch,
11568 sal.pspace, sal.pc, sal.section, -1);
11569 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11570 version for exception catchpoints, because two catchpoints
11571 used for different exception names will use the same address.
11572 In this case, a "breakpoint ... also set at..." warning is
11573 unproductive. Besides, the warning phrasing is also a bit
11574 inappropriate, we should use the word catchpoint, and tell
11575 the user what type of catchpoint it is. The above is good
11576 enough for now, though. */
11577 }
11578
11579 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11580
11581 b->enable_state = bp_enabled;
11582 b->disposition = tempflag ? disp_del : disp_donttouch;
11583 b->addr_string = addr_string;
11584 b->language = language_ada;
11585 }
11586
11587 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11588 filter list, or NULL if no filtering is required. */
11589 static VEC(int) *
11590 catch_syscall_split_args (char *arg)
11591 {
11592 VEC(int) *result = NULL;
11593 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11594
11595 while (*arg != '\0')
11596 {
11597 int i, syscall_number;
11598 char *endptr;
11599 char cur_name[128];
11600 struct syscall s;
11601
11602 /* Skip whitespace. */
11603 arg = skip_spaces (arg);
11604
11605 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11606 cur_name[i] = arg[i];
11607 cur_name[i] = '\0';
11608 arg += i;
11609
11610 /* Check if the user provided a syscall name or a number. */
11611 syscall_number = (int) strtol (cur_name, &endptr, 0);
11612 if (*endptr == '\0')
11613 get_syscall_by_number (syscall_number, &s);
11614 else
11615 {
11616 /* We have a name. Let's check if it's valid and convert it
11617 to a number. */
11618 get_syscall_by_name (cur_name, &s);
11619
11620 if (s.number == UNKNOWN_SYSCALL)
11621 /* Here we have to issue an error instead of a warning,
11622 because GDB cannot do anything useful if there's no
11623 syscall number to be caught. */
11624 error (_("Unknown syscall name '%s'."), cur_name);
11625 }
11626
11627 /* Ok, it's valid. */
11628 VEC_safe_push (int, result, s.number);
11629 }
11630
11631 discard_cleanups (cleanup);
11632 return result;
11633 }
11634
11635 /* Implement the "catch syscall" command. */
11636
11637 static void
11638 catch_syscall_command_1 (char *arg, int from_tty,
11639 struct cmd_list_element *command)
11640 {
11641 int tempflag;
11642 VEC(int) *filter;
11643 struct syscall s;
11644 struct gdbarch *gdbarch = get_current_arch ();
11645
11646 /* Checking if the feature if supported. */
11647 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11648 error (_("The feature 'catch syscall' is not supported on \
11649 this architecture yet."));
11650
11651 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11652
11653 arg = skip_spaces (arg);
11654
11655 /* We need to do this first "dummy" translation in order
11656 to get the syscall XML file loaded or, most important,
11657 to display a warning to the user if there's no XML file
11658 for his/her architecture. */
11659 get_syscall_by_number (0, &s);
11660
11661 /* The allowed syntax is:
11662 catch syscall
11663 catch syscall <name | number> [<name | number> ... <name | number>]
11664
11665 Let's check if there's a syscall name. */
11666
11667 if (arg != NULL)
11668 filter = catch_syscall_split_args (arg);
11669 else
11670 filter = NULL;
11671
11672 create_syscall_event_catchpoint (tempflag, filter,
11673 &catch_syscall_breakpoint_ops);
11674 }
11675
11676 static void
11677 catch_command (char *arg, int from_tty)
11678 {
11679 error (_("Catch requires an event name."));
11680 }
11681 \f
11682
11683 static void
11684 tcatch_command (char *arg, int from_tty)
11685 {
11686 error (_("Catch requires an event name."));
11687 }
11688
11689 /* A qsort comparison function that sorts breakpoints in order. */
11690
11691 static int
11692 compare_breakpoints (const void *a, const void *b)
11693 {
11694 const breakpoint_p *ba = a;
11695 uintptr_t ua = (uintptr_t) *ba;
11696 const breakpoint_p *bb = b;
11697 uintptr_t ub = (uintptr_t) *bb;
11698
11699 if ((*ba)->number < (*bb)->number)
11700 return -1;
11701 else if ((*ba)->number > (*bb)->number)
11702 return 1;
11703
11704 /* Now sort by address, in case we see, e..g, two breakpoints with
11705 the number 0. */
11706 if (ua < ub)
11707 return -1;
11708 return ua > ub ? 1 : 0;
11709 }
11710
11711 /* Delete breakpoints by address or line. */
11712
11713 static void
11714 clear_command (char *arg, int from_tty)
11715 {
11716 struct breakpoint *b, *prev;
11717 VEC(breakpoint_p) *found = 0;
11718 int ix;
11719 int default_match;
11720 struct symtabs_and_lines sals;
11721 struct symtab_and_line sal;
11722 int i;
11723 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11724
11725 if (arg)
11726 {
11727 sals = decode_line_with_current_source (arg,
11728 (DECODE_LINE_FUNFIRSTLINE
11729 | DECODE_LINE_LIST_MODE));
11730 make_cleanup (xfree, sals.sals);
11731 default_match = 0;
11732 }
11733 else
11734 {
11735 sals.sals = (struct symtab_and_line *)
11736 xmalloc (sizeof (struct symtab_and_line));
11737 make_cleanup (xfree, sals.sals);
11738 init_sal (&sal); /* Initialize to zeroes. */
11739
11740 /* Set sal's line, symtab, pc, and pspace to the values
11741 corresponding to the last call to print_frame_info. If the
11742 codepoint is not valid, this will set all the fields to 0. */
11743 get_last_displayed_sal (&sal);
11744 if (sal.symtab == 0)
11745 error (_("No source file specified."));
11746
11747 sals.sals[0] = sal;
11748 sals.nelts = 1;
11749
11750 default_match = 1;
11751 }
11752
11753 /* We don't call resolve_sal_pc here. That's not as bad as it
11754 seems, because all existing breakpoints typically have both
11755 file/line and pc set. So, if clear is given file/line, we can
11756 match this to existing breakpoint without obtaining pc at all.
11757
11758 We only support clearing given the address explicitly
11759 present in breakpoint table. Say, we've set breakpoint
11760 at file:line. There were several PC values for that file:line,
11761 due to optimization, all in one block.
11762
11763 We've picked one PC value. If "clear" is issued with another
11764 PC corresponding to the same file:line, the breakpoint won't
11765 be cleared. We probably can still clear the breakpoint, but
11766 since the other PC value is never presented to user, user
11767 can only find it by guessing, and it does not seem important
11768 to support that. */
11769
11770 /* For each line spec given, delete bps which correspond to it. Do
11771 it in two passes, solely to preserve the current behavior that
11772 from_tty is forced true if we delete more than one
11773 breakpoint. */
11774
11775 found = NULL;
11776 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11777 for (i = 0; i < sals.nelts; i++)
11778 {
11779 const char *sal_fullname;
11780
11781 /* If exact pc given, clear bpts at that pc.
11782 If line given (pc == 0), clear all bpts on specified line.
11783 If defaulting, clear all bpts on default line
11784 or at default pc.
11785
11786 defaulting sal.pc != 0 tests to do
11787
11788 0 1 pc
11789 1 1 pc _and_ line
11790 0 0 line
11791 1 0 <can't happen> */
11792
11793 sal = sals.sals[i];
11794 sal_fullname = (sal.symtab == NULL
11795 ? NULL : symtab_to_fullname (sal.symtab));
11796
11797 /* Find all matching breakpoints and add them to 'found'. */
11798 ALL_BREAKPOINTS (b)
11799 {
11800 int match = 0;
11801 /* Are we going to delete b? */
11802 if (b->type != bp_none && !is_watchpoint (b))
11803 {
11804 struct bp_location *loc = b->loc;
11805 for (; loc; loc = loc->next)
11806 {
11807 /* If the user specified file:line, don't allow a PC
11808 match. This matches historical gdb behavior. */
11809 int pc_match = (!sal.explicit_line
11810 && sal.pc
11811 && (loc->pspace == sal.pspace)
11812 && (loc->address == sal.pc)
11813 && (!section_is_overlay (loc->section)
11814 || loc->section == sal.section));
11815 int line_match = 0;
11816
11817 if ((default_match || sal.explicit_line)
11818 && loc->symtab != NULL
11819 && sal_fullname != NULL
11820 && sal.pspace == loc->pspace
11821 && loc->line_number == sal.line
11822 && filename_cmp (symtab_to_fullname (loc->symtab),
11823 sal_fullname) == 0)
11824 line_match = 1;
11825
11826 if (pc_match || line_match)
11827 {
11828 match = 1;
11829 break;
11830 }
11831 }
11832 }
11833
11834 if (match)
11835 VEC_safe_push(breakpoint_p, found, b);
11836 }
11837 }
11838
11839 /* Now go thru the 'found' chain and delete them. */
11840 if (VEC_empty(breakpoint_p, found))
11841 {
11842 if (arg)
11843 error (_("No breakpoint at %s."), arg);
11844 else
11845 error (_("No breakpoint at this line."));
11846 }
11847
11848 /* Remove duplicates from the vec. */
11849 qsort (VEC_address (breakpoint_p, found),
11850 VEC_length (breakpoint_p, found),
11851 sizeof (breakpoint_p),
11852 compare_breakpoints);
11853 prev = VEC_index (breakpoint_p, found, 0);
11854 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11855 {
11856 if (b == prev)
11857 {
11858 VEC_ordered_remove (breakpoint_p, found, ix);
11859 --ix;
11860 }
11861 }
11862
11863 if (VEC_length(breakpoint_p, found) > 1)
11864 from_tty = 1; /* Always report if deleted more than one. */
11865 if (from_tty)
11866 {
11867 if (VEC_length(breakpoint_p, found) == 1)
11868 printf_unfiltered (_("Deleted breakpoint "));
11869 else
11870 printf_unfiltered (_("Deleted breakpoints "));
11871 }
11872
11873 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11874 {
11875 if (from_tty)
11876 printf_unfiltered ("%d ", b->number);
11877 delete_breakpoint (b);
11878 }
11879 if (from_tty)
11880 putchar_unfiltered ('\n');
11881
11882 do_cleanups (cleanups);
11883 }
11884 \f
11885 /* Delete breakpoint in BS if they are `delete' breakpoints and
11886 all breakpoints that are marked for deletion, whether hit or not.
11887 This is called after any breakpoint is hit, or after errors. */
11888
11889 void
11890 breakpoint_auto_delete (bpstat bs)
11891 {
11892 struct breakpoint *b, *b_tmp;
11893
11894 for (; bs; bs = bs->next)
11895 if (bs->breakpoint_at
11896 && bs->breakpoint_at->disposition == disp_del
11897 && bs->stop)
11898 delete_breakpoint (bs->breakpoint_at);
11899
11900 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11901 {
11902 if (b->disposition == disp_del_at_next_stop)
11903 delete_breakpoint (b);
11904 }
11905 }
11906
11907 /* A comparison function for bp_location AP and BP being interfaced to
11908 qsort. Sort elements primarily by their ADDRESS (no matter what
11909 does breakpoint_address_is_meaningful say for its OWNER),
11910 secondarily by ordering first bp_permanent OWNERed elements and
11911 terciarily just ensuring the array is sorted stable way despite
11912 qsort being an unstable algorithm. */
11913
11914 static int
11915 bp_location_compare (const void *ap, const void *bp)
11916 {
11917 struct bp_location *a = *(void **) ap;
11918 struct bp_location *b = *(void **) bp;
11919 /* A and B come from existing breakpoints having non-NULL OWNER. */
11920 int a_perm = a->owner->enable_state == bp_permanent;
11921 int b_perm = b->owner->enable_state == bp_permanent;
11922
11923 if (a->address != b->address)
11924 return (a->address > b->address) - (a->address < b->address);
11925
11926 /* Sort locations at the same address by their pspace number, keeping
11927 locations of the same inferior (in a multi-inferior environment)
11928 grouped. */
11929
11930 if (a->pspace->num != b->pspace->num)
11931 return ((a->pspace->num > b->pspace->num)
11932 - (a->pspace->num < b->pspace->num));
11933
11934 /* Sort permanent breakpoints first. */
11935 if (a_perm != b_perm)
11936 return (a_perm < b_perm) - (a_perm > b_perm);
11937
11938 /* Make the internal GDB representation stable across GDB runs
11939 where A and B memory inside GDB can differ. Breakpoint locations of
11940 the same type at the same address can be sorted in arbitrary order. */
11941
11942 if (a->owner->number != b->owner->number)
11943 return ((a->owner->number > b->owner->number)
11944 - (a->owner->number < b->owner->number));
11945
11946 return (a > b) - (a < b);
11947 }
11948
11949 /* Set bp_location_placed_address_before_address_max and
11950 bp_location_shadow_len_after_address_max according to the current
11951 content of the bp_location array. */
11952
11953 static void
11954 bp_location_target_extensions_update (void)
11955 {
11956 struct bp_location *bl, **blp_tmp;
11957
11958 bp_location_placed_address_before_address_max = 0;
11959 bp_location_shadow_len_after_address_max = 0;
11960
11961 ALL_BP_LOCATIONS (bl, blp_tmp)
11962 {
11963 CORE_ADDR start, end, addr;
11964
11965 if (!bp_location_has_shadow (bl))
11966 continue;
11967
11968 start = bl->target_info.placed_address;
11969 end = start + bl->target_info.shadow_len;
11970
11971 gdb_assert (bl->address >= start);
11972 addr = bl->address - start;
11973 if (addr > bp_location_placed_address_before_address_max)
11974 bp_location_placed_address_before_address_max = addr;
11975
11976 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11977
11978 gdb_assert (bl->address < end);
11979 addr = end - bl->address;
11980 if (addr > bp_location_shadow_len_after_address_max)
11981 bp_location_shadow_len_after_address_max = addr;
11982 }
11983 }
11984
11985 /* Download tracepoint locations if they haven't been. */
11986
11987 static void
11988 download_tracepoint_locations (void)
11989 {
11990 struct breakpoint *b;
11991 struct cleanup *old_chain;
11992
11993 if (!target_can_download_tracepoint ())
11994 return;
11995
11996 old_chain = save_current_space_and_thread ();
11997
11998 ALL_TRACEPOINTS (b)
11999 {
12000 struct bp_location *bl;
12001 struct tracepoint *t;
12002 int bp_location_downloaded = 0;
12003
12004 if ((b->type == bp_fast_tracepoint
12005 ? !may_insert_fast_tracepoints
12006 : !may_insert_tracepoints))
12007 continue;
12008
12009 for (bl = b->loc; bl; bl = bl->next)
12010 {
12011 /* In tracepoint, locations are _never_ duplicated, so
12012 should_be_inserted is equivalent to
12013 unduplicated_should_be_inserted. */
12014 if (!should_be_inserted (bl) || bl->inserted)
12015 continue;
12016
12017 switch_to_program_space_and_thread (bl->pspace);
12018
12019 target_download_tracepoint (bl);
12020
12021 bl->inserted = 1;
12022 bp_location_downloaded = 1;
12023 }
12024 t = (struct tracepoint *) b;
12025 t->number_on_target = b->number;
12026 if (bp_location_downloaded)
12027 observer_notify_breakpoint_modified (b);
12028 }
12029
12030 do_cleanups (old_chain);
12031 }
12032
12033 /* Swap the insertion/duplication state between two locations. */
12034
12035 static void
12036 swap_insertion (struct bp_location *left, struct bp_location *right)
12037 {
12038 const int left_inserted = left->inserted;
12039 const int left_duplicate = left->duplicate;
12040 const int left_needs_update = left->needs_update;
12041 const struct bp_target_info left_target_info = left->target_info;
12042
12043 /* Locations of tracepoints can never be duplicated. */
12044 if (is_tracepoint (left->owner))
12045 gdb_assert (!left->duplicate);
12046 if (is_tracepoint (right->owner))
12047 gdb_assert (!right->duplicate);
12048
12049 left->inserted = right->inserted;
12050 left->duplicate = right->duplicate;
12051 left->needs_update = right->needs_update;
12052 left->target_info = right->target_info;
12053 right->inserted = left_inserted;
12054 right->duplicate = left_duplicate;
12055 right->needs_update = left_needs_update;
12056 right->target_info = left_target_info;
12057 }
12058
12059 /* Force the re-insertion of the locations at ADDRESS. This is called
12060 once a new/deleted/modified duplicate location is found and we are evaluating
12061 conditions on the target's side. Such conditions need to be updated on
12062 the target. */
12063
12064 static void
12065 force_breakpoint_reinsertion (struct bp_location *bl)
12066 {
12067 struct bp_location **locp = NULL, **loc2p;
12068 struct bp_location *loc;
12069 CORE_ADDR address = 0;
12070 int pspace_num;
12071
12072 address = bl->address;
12073 pspace_num = bl->pspace->num;
12074
12075 /* This is only meaningful if the target is
12076 evaluating conditions and if the user has
12077 opted for condition evaluation on the target's
12078 side. */
12079 if (gdb_evaluates_breakpoint_condition_p ()
12080 || !target_supports_evaluation_of_breakpoint_conditions ())
12081 return;
12082
12083 /* Flag all breakpoint locations with this address and
12084 the same program space as the location
12085 as "its condition has changed". We need to
12086 update the conditions on the target's side. */
12087 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12088 {
12089 loc = *loc2p;
12090
12091 if (!is_breakpoint (loc->owner)
12092 || pspace_num != loc->pspace->num)
12093 continue;
12094
12095 /* Flag the location appropriately. We use a different state to
12096 let everyone know that we already updated the set of locations
12097 with addr bl->address and program space bl->pspace. This is so
12098 we don't have to keep calling these functions just to mark locations
12099 that have already been marked. */
12100 loc->condition_changed = condition_updated;
12101
12102 /* Free the agent expression bytecode as well. We will compute
12103 it later on. */
12104 if (loc->cond_bytecode)
12105 {
12106 free_agent_expr (loc->cond_bytecode);
12107 loc->cond_bytecode = NULL;
12108 }
12109 }
12110 }
12111
12112 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12113 into the inferior, only remove already-inserted locations that no
12114 longer should be inserted. Functions that delete a breakpoint or
12115 breakpoints should pass false, so that deleting a breakpoint
12116 doesn't have the side effect of inserting the locations of other
12117 breakpoints that are marked not-inserted, but should_be_inserted
12118 returns true on them.
12119
12120 This behaviour is useful is situations close to tear-down -- e.g.,
12121 after an exec, while the target still has execution, but breakpoint
12122 shadows of the previous executable image should *NOT* be restored
12123 to the new image; or before detaching, where the target still has
12124 execution and wants to delete breakpoints from GDB's lists, and all
12125 breakpoints had already been removed from the inferior. */
12126
12127 static void
12128 update_global_location_list (int should_insert)
12129 {
12130 struct breakpoint *b;
12131 struct bp_location **locp, *loc;
12132 struct cleanup *cleanups;
12133 /* Last breakpoint location address that was marked for update. */
12134 CORE_ADDR last_addr = 0;
12135 /* Last breakpoint location program space that was marked for update. */
12136 int last_pspace_num = -1;
12137
12138 /* Used in the duplicates detection below. When iterating over all
12139 bp_locations, points to the first bp_location of a given address.
12140 Breakpoints and watchpoints of different types are never
12141 duplicates of each other. Keep one pointer for each type of
12142 breakpoint/watchpoint, so we only need to loop over all locations
12143 once. */
12144 struct bp_location *bp_loc_first; /* breakpoint */
12145 struct bp_location *wp_loc_first; /* hardware watchpoint */
12146 struct bp_location *awp_loc_first; /* access watchpoint */
12147 struct bp_location *rwp_loc_first; /* read watchpoint */
12148
12149 /* Saved former bp_location array which we compare against the newly
12150 built bp_location from the current state of ALL_BREAKPOINTS. */
12151 struct bp_location **old_location, **old_locp;
12152 unsigned old_location_count;
12153
12154 old_location = bp_location;
12155 old_location_count = bp_location_count;
12156 bp_location = NULL;
12157 bp_location_count = 0;
12158 cleanups = make_cleanup (xfree, old_location);
12159
12160 ALL_BREAKPOINTS (b)
12161 for (loc = b->loc; loc; loc = loc->next)
12162 bp_location_count++;
12163
12164 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12165 locp = bp_location;
12166 ALL_BREAKPOINTS (b)
12167 for (loc = b->loc; loc; loc = loc->next)
12168 *locp++ = loc;
12169 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12170 bp_location_compare);
12171
12172 bp_location_target_extensions_update ();
12173
12174 /* Identify bp_location instances that are no longer present in the
12175 new list, and therefore should be freed. Note that it's not
12176 necessary that those locations should be removed from inferior --
12177 if there's another location at the same address (previously
12178 marked as duplicate), we don't need to remove/insert the
12179 location.
12180
12181 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12182 and former bp_location array state respectively. */
12183
12184 locp = bp_location;
12185 for (old_locp = old_location; old_locp < old_location + old_location_count;
12186 old_locp++)
12187 {
12188 struct bp_location *old_loc = *old_locp;
12189 struct bp_location **loc2p;
12190
12191 /* Tells if 'old_loc' is found among the new locations. If
12192 not, we have to free it. */
12193 int found_object = 0;
12194 /* Tells if the location should remain inserted in the target. */
12195 int keep_in_target = 0;
12196 int removed = 0;
12197
12198 /* Skip LOCP entries which will definitely never be needed.
12199 Stop either at or being the one matching OLD_LOC. */
12200 while (locp < bp_location + bp_location_count
12201 && (*locp)->address < old_loc->address)
12202 locp++;
12203
12204 for (loc2p = locp;
12205 (loc2p < bp_location + bp_location_count
12206 && (*loc2p)->address == old_loc->address);
12207 loc2p++)
12208 {
12209 /* Check if this is a new/duplicated location or a duplicated
12210 location that had its condition modified. If so, we want to send
12211 its condition to the target if evaluation of conditions is taking
12212 place there. */
12213 if ((*loc2p)->condition_changed == condition_modified
12214 && (last_addr != old_loc->address
12215 || last_pspace_num != old_loc->pspace->num))
12216 {
12217 force_breakpoint_reinsertion (*loc2p);
12218 last_pspace_num = old_loc->pspace->num;
12219 }
12220
12221 if (*loc2p == old_loc)
12222 found_object = 1;
12223 }
12224
12225 /* We have already handled this address, update it so that we don't
12226 have to go through updates again. */
12227 last_addr = old_loc->address;
12228
12229 /* Target-side condition evaluation: Handle deleted locations. */
12230 if (!found_object)
12231 force_breakpoint_reinsertion (old_loc);
12232
12233 /* If this location is no longer present, and inserted, look if
12234 there's maybe a new location at the same address. If so,
12235 mark that one inserted, and don't remove this one. This is
12236 needed so that we don't have a time window where a breakpoint
12237 at certain location is not inserted. */
12238
12239 if (old_loc->inserted)
12240 {
12241 /* If the location is inserted now, we might have to remove
12242 it. */
12243
12244 if (found_object && should_be_inserted (old_loc))
12245 {
12246 /* The location is still present in the location list,
12247 and still should be inserted. Don't do anything. */
12248 keep_in_target = 1;
12249 }
12250 else
12251 {
12252 /* This location still exists, but it won't be kept in the
12253 target since it may have been disabled. We proceed to
12254 remove its target-side condition. */
12255
12256 /* The location is either no longer present, or got
12257 disabled. See if there's another location at the
12258 same address, in which case we don't need to remove
12259 this one from the target. */
12260
12261 /* OLD_LOC comes from existing struct breakpoint. */
12262 if (breakpoint_address_is_meaningful (old_loc->owner))
12263 {
12264 for (loc2p = locp;
12265 (loc2p < bp_location + bp_location_count
12266 && (*loc2p)->address == old_loc->address);
12267 loc2p++)
12268 {
12269 struct bp_location *loc2 = *loc2p;
12270
12271 if (breakpoint_locations_match (loc2, old_loc))
12272 {
12273 /* Read watchpoint locations are switched to
12274 access watchpoints, if the former are not
12275 supported, but the latter are. */
12276 if (is_hardware_watchpoint (old_loc->owner))
12277 {
12278 gdb_assert (is_hardware_watchpoint (loc2->owner));
12279 loc2->watchpoint_type = old_loc->watchpoint_type;
12280 }
12281
12282 /* loc2 is a duplicated location. We need to check
12283 if it should be inserted in case it will be
12284 unduplicated. */
12285 if (loc2 != old_loc
12286 && unduplicated_should_be_inserted (loc2))
12287 {
12288 swap_insertion (old_loc, loc2);
12289 keep_in_target = 1;
12290 break;
12291 }
12292 }
12293 }
12294 }
12295 }
12296
12297 if (!keep_in_target)
12298 {
12299 if (remove_breakpoint (old_loc, mark_uninserted))
12300 {
12301 /* This is just about all we can do. We could keep
12302 this location on the global list, and try to
12303 remove it next time, but there's no particular
12304 reason why we will succeed next time.
12305
12306 Note that at this point, old_loc->owner is still
12307 valid, as delete_breakpoint frees the breakpoint
12308 only after calling us. */
12309 printf_filtered (_("warning: Error removing "
12310 "breakpoint %d\n"),
12311 old_loc->owner->number);
12312 }
12313 removed = 1;
12314 }
12315 }
12316
12317 if (!found_object)
12318 {
12319 if (removed && non_stop
12320 && breakpoint_address_is_meaningful (old_loc->owner)
12321 && !is_hardware_watchpoint (old_loc->owner))
12322 {
12323 /* This location was removed from the target. In
12324 non-stop mode, a race condition is possible where
12325 we've removed a breakpoint, but stop events for that
12326 breakpoint are already queued and will arrive later.
12327 We apply an heuristic to be able to distinguish such
12328 SIGTRAPs from other random SIGTRAPs: we keep this
12329 breakpoint location for a bit, and will retire it
12330 after we see some number of events. The theory here
12331 is that reporting of events should, "on the average",
12332 be fair, so after a while we'll see events from all
12333 threads that have anything of interest, and no longer
12334 need to keep this breakpoint location around. We
12335 don't hold locations forever so to reduce chances of
12336 mistaking a non-breakpoint SIGTRAP for a breakpoint
12337 SIGTRAP.
12338
12339 The heuristic failing can be disastrous on
12340 decr_pc_after_break targets.
12341
12342 On decr_pc_after_break targets, like e.g., x86-linux,
12343 if we fail to recognize a late breakpoint SIGTRAP,
12344 because events_till_retirement has reached 0 too
12345 soon, we'll fail to do the PC adjustment, and report
12346 a random SIGTRAP to the user. When the user resumes
12347 the inferior, it will most likely immediately crash
12348 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12349 corrupted, because of being resumed e.g., in the
12350 middle of a multi-byte instruction, or skipped a
12351 one-byte instruction. This was actually seen happen
12352 on native x86-linux, and should be less rare on
12353 targets that do not support new thread events, like
12354 remote, due to the heuristic depending on
12355 thread_count.
12356
12357 Mistaking a random SIGTRAP for a breakpoint trap
12358 causes similar symptoms (PC adjustment applied when
12359 it shouldn't), but then again, playing with SIGTRAPs
12360 behind the debugger's back is asking for trouble.
12361
12362 Since hardware watchpoint traps are always
12363 distinguishable from other traps, so we don't need to
12364 apply keep hardware watchpoint moribund locations
12365 around. We simply always ignore hardware watchpoint
12366 traps we can no longer explain. */
12367
12368 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12369 old_loc->owner = NULL;
12370
12371 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12372 }
12373 else
12374 {
12375 old_loc->owner = NULL;
12376 decref_bp_location (&old_loc);
12377 }
12378 }
12379 }
12380
12381 /* Rescan breakpoints at the same address and section, marking the
12382 first one as "first" and any others as "duplicates". This is so
12383 that the bpt instruction is only inserted once. If we have a
12384 permanent breakpoint at the same place as BPT, make that one the
12385 official one, and the rest as duplicates. Permanent breakpoints
12386 are sorted first for the same address.
12387
12388 Do the same for hardware watchpoints, but also considering the
12389 watchpoint's type (regular/access/read) and length. */
12390
12391 bp_loc_first = NULL;
12392 wp_loc_first = NULL;
12393 awp_loc_first = NULL;
12394 rwp_loc_first = NULL;
12395 ALL_BP_LOCATIONS (loc, locp)
12396 {
12397 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12398 non-NULL. */
12399 struct bp_location **loc_first_p;
12400 b = loc->owner;
12401
12402 if (!unduplicated_should_be_inserted (loc)
12403 || !breakpoint_address_is_meaningful (b)
12404 /* Don't detect duplicate for tracepoint locations because they are
12405 never duplicated. See the comments in field `duplicate' of
12406 `struct bp_location'. */
12407 || is_tracepoint (b))
12408 {
12409 /* Clear the condition modification flag. */
12410 loc->condition_changed = condition_unchanged;
12411 continue;
12412 }
12413
12414 /* Permanent breakpoint should always be inserted. */
12415 if (b->enable_state == bp_permanent && ! loc->inserted)
12416 internal_error (__FILE__, __LINE__,
12417 _("allegedly permanent breakpoint is not "
12418 "actually inserted"));
12419
12420 if (b->type == bp_hardware_watchpoint)
12421 loc_first_p = &wp_loc_first;
12422 else if (b->type == bp_read_watchpoint)
12423 loc_first_p = &rwp_loc_first;
12424 else if (b->type == bp_access_watchpoint)
12425 loc_first_p = &awp_loc_first;
12426 else
12427 loc_first_p = &bp_loc_first;
12428
12429 if (*loc_first_p == NULL
12430 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12431 || !breakpoint_locations_match (loc, *loc_first_p))
12432 {
12433 *loc_first_p = loc;
12434 loc->duplicate = 0;
12435
12436 if (is_breakpoint (loc->owner) && loc->condition_changed)
12437 {
12438 loc->needs_update = 1;
12439 /* Clear the condition modification flag. */
12440 loc->condition_changed = condition_unchanged;
12441 }
12442 continue;
12443 }
12444
12445
12446 /* This and the above ensure the invariant that the first location
12447 is not duplicated, and is the inserted one.
12448 All following are marked as duplicated, and are not inserted. */
12449 if (loc->inserted)
12450 swap_insertion (loc, *loc_first_p);
12451 loc->duplicate = 1;
12452
12453 /* Clear the condition modification flag. */
12454 loc->condition_changed = condition_unchanged;
12455
12456 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12457 && b->enable_state != bp_permanent)
12458 internal_error (__FILE__, __LINE__,
12459 _("another breakpoint was inserted on top of "
12460 "a permanent breakpoint"));
12461 }
12462
12463 if (breakpoints_always_inserted_mode ()
12464 && (have_live_inferiors ()
12465 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12466 {
12467 if (should_insert)
12468 insert_breakpoint_locations ();
12469 else
12470 {
12471 /* Though should_insert is false, we may need to update conditions
12472 on the target's side if it is evaluating such conditions. We
12473 only update conditions for locations that are marked
12474 "needs_update". */
12475 update_inserted_breakpoint_locations ();
12476 }
12477 }
12478
12479 if (should_insert)
12480 download_tracepoint_locations ();
12481
12482 do_cleanups (cleanups);
12483 }
12484
12485 void
12486 breakpoint_retire_moribund (void)
12487 {
12488 struct bp_location *loc;
12489 int ix;
12490
12491 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12492 if (--(loc->events_till_retirement) == 0)
12493 {
12494 decref_bp_location (&loc);
12495 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12496 --ix;
12497 }
12498 }
12499
12500 static void
12501 update_global_location_list_nothrow (int inserting)
12502 {
12503 volatile struct gdb_exception e;
12504
12505 TRY_CATCH (e, RETURN_MASK_ERROR)
12506 update_global_location_list (inserting);
12507 }
12508
12509 /* Clear BKP from a BPS. */
12510
12511 static void
12512 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12513 {
12514 bpstat bs;
12515
12516 for (bs = bps; bs; bs = bs->next)
12517 if (bs->breakpoint_at == bpt)
12518 {
12519 bs->breakpoint_at = NULL;
12520 bs->old_val = NULL;
12521 /* bs->commands will be freed later. */
12522 }
12523 }
12524
12525 /* Callback for iterate_over_threads. */
12526 static int
12527 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12528 {
12529 struct breakpoint *bpt = data;
12530
12531 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12532 return 0;
12533 }
12534
12535 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12536 callbacks. */
12537
12538 static void
12539 say_where (struct breakpoint *b)
12540 {
12541 struct value_print_options opts;
12542
12543 get_user_print_options (&opts);
12544
12545 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12546 single string. */
12547 if (b->loc == NULL)
12548 {
12549 printf_filtered (_(" (%s) pending."), b->addr_string);
12550 }
12551 else
12552 {
12553 if (opts.addressprint || b->loc->symtab == NULL)
12554 {
12555 printf_filtered (" at ");
12556 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12557 gdb_stdout);
12558 }
12559 if (b->loc->symtab != NULL)
12560 {
12561 /* If there is a single location, we can print the location
12562 more nicely. */
12563 if (b->loc->next == NULL)
12564 printf_filtered (": file %s, line %d.",
12565 symtab_to_filename_for_display (b->loc->symtab),
12566 b->loc->line_number);
12567 else
12568 /* This is not ideal, but each location may have a
12569 different file name, and this at least reflects the
12570 real situation somewhat. */
12571 printf_filtered (": %s.", b->addr_string);
12572 }
12573
12574 if (b->loc->next)
12575 {
12576 struct bp_location *loc = b->loc;
12577 int n = 0;
12578 for (; loc; loc = loc->next)
12579 ++n;
12580 printf_filtered (" (%d locations)", n);
12581 }
12582 }
12583 }
12584
12585 /* Default bp_location_ops methods. */
12586
12587 static void
12588 bp_location_dtor (struct bp_location *self)
12589 {
12590 xfree (self->cond);
12591 if (self->cond_bytecode)
12592 free_agent_expr (self->cond_bytecode);
12593 xfree (self->function_name);
12594 }
12595
12596 static const struct bp_location_ops bp_location_ops =
12597 {
12598 bp_location_dtor
12599 };
12600
12601 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12602 inherit from. */
12603
12604 static void
12605 base_breakpoint_dtor (struct breakpoint *self)
12606 {
12607 decref_counted_command_line (&self->commands);
12608 xfree (self->cond_string);
12609 xfree (self->extra_string);
12610 xfree (self->addr_string);
12611 xfree (self->filter);
12612 xfree (self->addr_string_range_end);
12613 }
12614
12615 static struct bp_location *
12616 base_breakpoint_allocate_location (struct breakpoint *self)
12617 {
12618 struct bp_location *loc;
12619
12620 loc = XNEW (struct bp_location);
12621 init_bp_location (loc, &bp_location_ops, self);
12622 return loc;
12623 }
12624
12625 static void
12626 base_breakpoint_re_set (struct breakpoint *b)
12627 {
12628 /* Nothing to re-set. */
12629 }
12630
12631 #define internal_error_pure_virtual_called() \
12632 gdb_assert_not_reached ("pure virtual function called")
12633
12634 static int
12635 base_breakpoint_insert_location (struct bp_location *bl)
12636 {
12637 internal_error_pure_virtual_called ();
12638 }
12639
12640 static int
12641 base_breakpoint_remove_location (struct bp_location *bl)
12642 {
12643 internal_error_pure_virtual_called ();
12644 }
12645
12646 static int
12647 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12648 struct address_space *aspace,
12649 CORE_ADDR bp_addr,
12650 const struct target_waitstatus *ws)
12651 {
12652 internal_error_pure_virtual_called ();
12653 }
12654
12655 static void
12656 base_breakpoint_check_status (bpstat bs)
12657 {
12658 /* Always stop. */
12659 }
12660
12661 /* A "works_in_software_mode" breakpoint_ops method that just internal
12662 errors. */
12663
12664 static int
12665 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12666 {
12667 internal_error_pure_virtual_called ();
12668 }
12669
12670 /* A "resources_needed" breakpoint_ops method that just internal
12671 errors. */
12672
12673 static int
12674 base_breakpoint_resources_needed (const struct bp_location *bl)
12675 {
12676 internal_error_pure_virtual_called ();
12677 }
12678
12679 static enum print_stop_action
12680 base_breakpoint_print_it (bpstat bs)
12681 {
12682 internal_error_pure_virtual_called ();
12683 }
12684
12685 static void
12686 base_breakpoint_print_one_detail (const struct breakpoint *self,
12687 struct ui_out *uiout)
12688 {
12689 /* nothing */
12690 }
12691
12692 static void
12693 base_breakpoint_print_mention (struct breakpoint *b)
12694 {
12695 internal_error_pure_virtual_called ();
12696 }
12697
12698 static void
12699 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12700 {
12701 internal_error_pure_virtual_called ();
12702 }
12703
12704 static void
12705 base_breakpoint_create_sals_from_address (char **arg,
12706 struct linespec_result *canonical,
12707 enum bptype type_wanted,
12708 char *addr_start,
12709 char **copy_arg)
12710 {
12711 internal_error_pure_virtual_called ();
12712 }
12713
12714 static void
12715 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12716 struct linespec_result *c,
12717 struct linespec_sals *lsal,
12718 char *cond_string,
12719 char *extra_string,
12720 enum bptype type_wanted,
12721 enum bpdisp disposition,
12722 int thread,
12723 int task, int ignore_count,
12724 const struct breakpoint_ops *o,
12725 int from_tty, int enabled,
12726 int internal, unsigned flags)
12727 {
12728 internal_error_pure_virtual_called ();
12729 }
12730
12731 static void
12732 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12733 struct symtabs_and_lines *sals)
12734 {
12735 internal_error_pure_virtual_called ();
12736 }
12737
12738 /* The default 'explains_signal' method. */
12739
12740 static enum bpstat_signal_value
12741 base_breakpoint_explains_signal (struct breakpoint *b)
12742 {
12743 return BPSTAT_SIGNAL_HIDE;
12744 }
12745
12746 struct breakpoint_ops base_breakpoint_ops =
12747 {
12748 base_breakpoint_dtor,
12749 base_breakpoint_allocate_location,
12750 base_breakpoint_re_set,
12751 base_breakpoint_insert_location,
12752 base_breakpoint_remove_location,
12753 base_breakpoint_breakpoint_hit,
12754 base_breakpoint_check_status,
12755 base_breakpoint_resources_needed,
12756 base_breakpoint_works_in_software_mode,
12757 base_breakpoint_print_it,
12758 NULL,
12759 base_breakpoint_print_one_detail,
12760 base_breakpoint_print_mention,
12761 base_breakpoint_print_recreate,
12762 base_breakpoint_create_sals_from_address,
12763 base_breakpoint_create_breakpoints_sal,
12764 base_breakpoint_decode_linespec,
12765 base_breakpoint_explains_signal
12766 };
12767
12768 /* Default breakpoint_ops methods. */
12769
12770 static void
12771 bkpt_re_set (struct breakpoint *b)
12772 {
12773 /* FIXME: is this still reachable? */
12774 if (b->addr_string == NULL)
12775 {
12776 /* Anything without a string can't be re-set. */
12777 delete_breakpoint (b);
12778 return;
12779 }
12780
12781 breakpoint_re_set_default (b);
12782 }
12783
12784 static int
12785 bkpt_insert_location (struct bp_location *bl)
12786 {
12787 if (bl->loc_type == bp_loc_hardware_breakpoint)
12788 return target_insert_hw_breakpoint (bl->gdbarch,
12789 &bl->target_info);
12790 else
12791 return target_insert_breakpoint (bl->gdbarch,
12792 &bl->target_info);
12793 }
12794
12795 static int
12796 bkpt_remove_location (struct bp_location *bl)
12797 {
12798 if (bl->loc_type == bp_loc_hardware_breakpoint)
12799 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12800 else
12801 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12802 }
12803
12804 static int
12805 bkpt_breakpoint_hit (const struct bp_location *bl,
12806 struct address_space *aspace, CORE_ADDR bp_addr,
12807 const struct target_waitstatus *ws)
12808 {
12809 if (ws->kind != TARGET_WAITKIND_STOPPED
12810 || ws->value.sig != GDB_SIGNAL_TRAP)
12811 return 0;
12812
12813 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12814 aspace, bp_addr))
12815 return 0;
12816
12817 if (overlay_debugging /* unmapped overlay section */
12818 && section_is_overlay (bl->section)
12819 && !section_is_mapped (bl->section))
12820 return 0;
12821
12822 return 1;
12823 }
12824
12825 static int
12826 bkpt_resources_needed (const struct bp_location *bl)
12827 {
12828 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12829
12830 return 1;
12831 }
12832
12833 static enum print_stop_action
12834 bkpt_print_it (bpstat bs)
12835 {
12836 struct breakpoint *b;
12837 const struct bp_location *bl;
12838 int bp_temp;
12839 struct ui_out *uiout = current_uiout;
12840
12841 gdb_assert (bs->bp_location_at != NULL);
12842
12843 bl = bs->bp_location_at;
12844 b = bs->breakpoint_at;
12845
12846 bp_temp = b->disposition == disp_del;
12847 if (bl->address != bl->requested_address)
12848 breakpoint_adjustment_warning (bl->requested_address,
12849 bl->address,
12850 b->number, 1);
12851 annotate_breakpoint (b->number);
12852 if (bp_temp)
12853 ui_out_text (uiout, "\nTemporary breakpoint ");
12854 else
12855 ui_out_text (uiout, "\nBreakpoint ");
12856 if (ui_out_is_mi_like_p (uiout))
12857 {
12858 ui_out_field_string (uiout, "reason",
12859 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12860 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12861 }
12862 ui_out_field_int (uiout, "bkptno", b->number);
12863 ui_out_text (uiout, ", ");
12864
12865 return PRINT_SRC_AND_LOC;
12866 }
12867
12868 static void
12869 bkpt_print_mention (struct breakpoint *b)
12870 {
12871 if (ui_out_is_mi_like_p (current_uiout))
12872 return;
12873
12874 switch (b->type)
12875 {
12876 case bp_breakpoint:
12877 case bp_gnu_ifunc_resolver:
12878 if (b->disposition == disp_del)
12879 printf_filtered (_("Temporary breakpoint"));
12880 else
12881 printf_filtered (_("Breakpoint"));
12882 printf_filtered (_(" %d"), b->number);
12883 if (b->type == bp_gnu_ifunc_resolver)
12884 printf_filtered (_(" at gnu-indirect-function resolver"));
12885 break;
12886 case bp_hardware_breakpoint:
12887 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12888 break;
12889 case bp_dprintf:
12890 printf_filtered (_("Dprintf %d"), b->number);
12891 break;
12892 }
12893
12894 say_where (b);
12895 }
12896
12897 static void
12898 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12899 {
12900 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12901 fprintf_unfiltered (fp, "tbreak");
12902 else if (tp->type == bp_breakpoint)
12903 fprintf_unfiltered (fp, "break");
12904 else if (tp->type == bp_hardware_breakpoint
12905 && tp->disposition == disp_del)
12906 fprintf_unfiltered (fp, "thbreak");
12907 else if (tp->type == bp_hardware_breakpoint)
12908 fprintf_unfiltered (fp, "hbreak");
12909 else
12910 internal_error (__FILE__, __LINE__,
12911 _("unhandled breakpoint type %d"), (int) tp->type);
12912
12913 fprintf_unfiltered (fp, " %s", tp->addr_string);
12914 print_recreate_thread (tp, fp);
12915 }
12916
12917 static void
12918 bkpt_create_sals_from_address (char **arg,
12919 struct linespec_result *canonical,
12920 enum bptype type_wanted,
12921 char *addr_start, char **copy_arg)
12922 {
12923 create_sals_from_address_default (arg, canonical, type_wanted,
12924 addr_start, copy_arg);
12925 }
12926
12927 static void
12928 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12929 struct linespec_result *canonical,
12930 struct linespec_sals *lsal,
12931 char *cond_string,
12932 char *extra_string,
12933 enum bptype type_wanted,
12934 enum bpdisp disposition,
12935 int thread,
12936 int task, int ignore_count,
12937 const struct breakpoint_ops *ops,
12938 int from_tty, int enabled,
12939 int internal, unsigned flags)
12940 {
12941 create_breakpoints_sal_default (gdbarch, canonical, lsal,
12942 cond_string, extra_string,
12943 type_wanted,
12944 disposition, thread, task,
12945 ignore_count, ops, from_tty,
12946 enabled, internal, flags);
12947 }
12948
12949 static void
12950 bkpt_decode_linespec (struct breakpoint *b, char **s,
12951 struct symtabs_and_lines *sals)
12952 {
12953 decode_linespec_default (b, s, sals);
12954 }
12955
12956 /* Virtual table for internal breakpoints. */
12957
12958 static void
12959 internal_bkpt_re_set (struct breakpoint *b)
12960 {
12961 switch (b->type)
12962 {
12963 /* Delete overlay event and longjmp master breakpoints; they
12964 will be reset later by breakpoint_re_set. */
12965 case bp_overlay_event:
12966 case bp_longjmp_master:
12967 case bp_std_terminate_master:
12968 case bp_exception_master:
12969 delete_breakpoint (b);
12970 break;
12971
12972 /* This breakpoint is special, it's set up when the inferior
12973 starts and we really don't want to touch it. */
12974 case bp_shlib_event:
12975
12976 /* Like bp_shlib_event, this breakpoint type is special. Once
12977 it is set up, we do not want to touch it. */
12978 case bp_thread_event:
12979 break;
12980 }
12981 }
12982
12983 static void
12984 internal_bkpt_check_status (bpstat bs)
12985 {
12986 if (bs->breakpoint_at->type == bp_shlib_event)
12987 {
12988 /* If requested, stop when the dynamic linker notifies GDB of
12989 events. This allows the user to get control and place
12990 breakpoints in initializer routines for dynamically loaded
12991 objects (among other things). */
12992 bs->stop = stop_on_solib_events;
12993 bs->print = stop_on_solib_events;
12994 }
12995 else
12996 bs->stop = 0;
12997 }
12998
12999 static enum print_stop_action
13000 internal_bkpt_print_it (bpstat bs)
13001 {
13002 struct breakpoint *b;
13003
13004 b = bs->breakpoint_at;
13005
13006 switch (b->type)
13007 {
13008 case bp_shlib_event:
13009 /* Did we stop because the user set the stop_on_solib_events
13010 variable? (If so, we report this as a generic, "Stopped due
13011 to shlib event" message.) */
13012 print_solib_event (0);
13013 break;
13014
13015 case bp_thread_event:
13016 /* Not sure how we will get here.
13017 GDB should not stop for these breakpoints. */
13018 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13019 break;
13020
13021 case bp_overlay_event:
13022 /* By analogy with the thread event, GDB should not stop for these. */
13023 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13024 break;
13025
13026 case bp_longjmp_master:
13027 /* These should never be enabled. */
13028 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13029 break;
13030
13031 case bp_std_terminate_master:
13032 /* These should never be enabled. */
13033 printf_filtered (_("std::terminate Master Breakpoint: "
13034 "gdb should not stop!\n"));
13035 break;
13036
13037 case bp_exception_master:
13038 /* These should never be enabled. */
13039 printf_filtered (_("Exception Master Breakpoint: "
13040 "gdb should not stop!\n"));
13041 break;
13042 }
13043
13044 return PRINT_NOTHING;
13045 }
13046
13047 static void
13048 internal_bkpt_print_mention (struct breakpoint *b)
13049 {
13050 /* Nothing to mention. These breakpoints are internal. */
13051 }
13052
13053 /* Virtual table for momentary breakpoints */
13054
13055 static void
13056 momentary_bkpt_re_set (struct breakpoint *b)
13057 {
13058 /* Keep temporary breakpoints, which can be encountered when we step
13059 over a dlopen call and solib_add is resetting the breakpoints.
13060 Otherwise these should have been blown away via the cleanup chain
13061 or by breakpoint_init_inferior when we rerun the executable. */
13062 }
13063
13064 static void
13065 momentary_bkpt_check_status (bpstat bs)
13066 {
13067 /* Nothing. The point of these breakpoints is causing a stop. */
13068 }
13069
13070 static enum print_stop_action
13071 momentary_bkpt_print_it (bpstat bs)
13072 {
13073 struct ui_out *uiout = current_uiout;
13074
13075 if (ui_out_is_mi_like_p (uiout))
13076 {
13077 struct breakpoint *b = bs->breakpoint_at;
13078
13079 switch (b->type)
13080 {
13081 case bp_finish:
13082 ui_out_field_string
13083 (uiout, "reason",
13084 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13085 break;
13086
13087 case bp_until:
13088 ui_out_field_string
13089 (uiout, "reason",
13090 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13091 break;
13092 }
13093 }
13094
13095 return PRINT_UNKNOWN;
13096 }
13097
13098 static void
13099 momentary_bkpt_print_mention (struct breakpoint *b)
13100 {
13101 /* Nothing to mention. These breakpoints are internal. */
13102 }
13103
13104 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13105
13106 It gets cleared already on the removal of the first one of such placed
13107 breakpoints. This is OK as they get all removed altogether. */
13108
13109 static void
13110 longjmp_bkpt_dtor (struct breakpoint *self)
13111 {
13112 struct thread_info *tp = find_thread_id (self->thread);
13113
13114 if (tp)
13115 tp->initiating_frame = null_frame_id;
13116
13117 momentary_breakpoint_ops.dtor (self);
13118 }
13119
13120 /* Specific methods for probe breakpoints. */
13121
13122 static int
13123 bkpt_probe_insert_location (struct bp_location *bl)
13124 {
13125 int v = bkpt_insert_location (bl);
13126
13127 if (v == 0)
13128 {
13129 /* The insertion was successful, now let's set the probe's semaphore
13130 if needed. */
13131 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13132 }
13133
13134 return v;
13135 }
13136
13137 static int
13138 bkpt_probe_remove_location (struct bp_location *bl)
13139 {
13140 /* Let's clear the semaphore before removing the location. */
13141 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13142
13143 return bkpt_remove_location (bl);
13144 }
13145
13146 static void
13147 bkpt_probe_create_sals_from_address (char **arg,
13148 struct linespec_result *canonical,
13149 enum bptype type_wanted,
13150 char *addr_start, char **copy_arg)
13151 {
13152 struct linespec_sals lsal;
13153
13154 lsal.sals = parse_probes (arg, canonical);
13155
13156 *copy_arg = xstrdup (canonical->addr_string);
13157 lsal.canonical = xstrdup (*copy_arg);
13158
13159 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13160 }
13161
13162 static void
13163 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13164 struct symtabs_and_lines *sals)
13165 {
13166 *sals = parse_probes (s, NULL);
13167 if (!sals->sals)
13168 error (_("probe not found"));
13169 }
13170
13171 /* The breakpoint_ops structure to be used in tracepoints. */
13172
13173 static void
13174 tracepoint_re_set (struct breakpoint *b)
13175 {
13176 breakpoint_re_set_default (b);
13177 }
13178
13179 static int
13180 tracepoint_breakpoint_hit (const struct bp_location *bl,
13181 struct address_space *aspace, CORE_ADDR bp_addr,
13182 const struct target_waitstatus *ws)
13183 {
13184 /* By definition, the inferior does not report stops at
13185 tracepoints. */
13186 return 0;
13187 }
13188
13189 static void
13190 tracepoint_print_one_detail (const struct breakpoint *self,
13191 struct ui_out *uiout)
13192 {
13193 struct tracepoint *tp = (struct tracepoint *) self;
13194 if (tp->static_trace_marker_id)
13195 {
13196 gdb_assert (self->type == bp_static_tracepoint);
13197
13198 ui_out_text (uiout, "\tmarker id is ");
13199 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13200 tp->static_trace_marker_id);
13201 ui_out_text (uiout, "\n");
13202 }
13203 }
13204
13205 static void
13206 tracepoint_print_mention (struct breakpoint *b)
13207 {
13208 if (ui_out_is_mi_like_p (current_uiout))
13209 return;
13210
13211 switch (b->type)
13212 {
13213 case bp_tracepoint:
13214 printf_filtered (_("Tracepoint"));
13215 printf_filtered (_(" %d"), b->number);
13216 break;
13217 case bp_fast_tracepoint:
13218 printf_filtered (_("Fast tracepoint"));
13219 printf_filtered (_(" %d"), b->number);
13220 break;
13221 case bp_static_tracepoint:
13222 printf_filtered (_("Static tracepoint"));
13223 printf_filtered (_(" %d"), b->number);
13224 break;
13225 default:
13226 internal_error (__FILE__, __LINE__,
13227 _("unhandled tracepoint type %d"), (int) b->type);
13228 }
13229
13230 say_where (b);
13231 }
13232
13233 static void
13234 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13235 {
13236 struct tracepoint *tp = (struct tracepoint *) self;
13237
13238 if (self->type == bp_fast_tracepoint)
13239 fprintf_unfiltered (fp, "ftrace");
13240 if (self->type == bp_static_tracepoint)
13241 fprintf_unfiltered (fp, "strace");
13242 else if (self->type == bp_tracepoint)
13243 fprintf_unfiltered (fp, "trace");
13244 else
13245 internal_error (__FILE__, __LINE__,
13246 _("unhandled tracepoint type %d"), (int) self->type);
13247
13248 fprintf_unfiltered (fp, " %s", self->addr_string);
13249 print_recreate_thread (self, fp);
13250
13251 if (tp->pass_count)
13252 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13253 }
13254
13255 static void
13256 tracepoint_create_sals_from_address (char **arg,
13257 struct linespec_result *canonical,
13258 enum bptype type_wanted,
13259 char *addr_start, char **copy_arg)
13260 {
13261 create_sals_from_address_default (arg, canonical, type_wanted,
13262 addr_start, copy_arg);
13263 }
13264
13265 static void
13266 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13267 struct linespec_result *canonical,
13268 struct linespec_sals *lsal,
13269 char *cond_string,
13270 char *extra_string,
13271 enum bptype type_wanted,
13272 enum bpdisp disposition,
13273 int thread,
13274 int task, int ignore_count,
13275 const struct breakpoint_ops *ops,
13276 int from_tty, int enabled,
13277 int internal, unsigned flags)
13278 {
13279 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13280 cond_string, extra_string,
13281 type_wanted,
13282 disposition, thread, task,
13283 ignore_count, ops, from_tty,
13284 enabled, internal, flags);
13285 }
13286
13287 static void
13288 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13289 struct symtabs_and_lines *sals)
13290 {
13291 decode_linespec_default (b, s, sals);
13292 }
13293
13294 struct breakpoint_ops tracepoint_breakpoint_ops;
13295
13296 /* The breakpoint_ops structure to be use on tracepoints placed in a
13297 static probe. */
13298
13299 static void
13300 tracepoint_probe_create_sals_from_address (char **arg,
13301 struct linespec_result *canonical,
13302 enum bptype type_wanted,
13303 char *addr_start, char **copy_arg)
13304 {
13305 /* We use the same method for breakpoint on probes. */
13306 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13307 addr_start, copy_arg);
13308 }
13309
13310 static void
13311 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13312 struct symtabs_and_lines *sals)
13313 {
13314 /* We use the same method for breakpoint on probes. */
13315 bkpt_probe_decode_linespec (b, s, sals);
13316 }
13317
13318 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13319
13320 /* Dprintf breakpoint_ops methods. */
13321
13322 static void
13323 dprintf_re_set (struct breakpoint *b)
13324 {
13325 breakpoint_re_set_default (b);
13326
13327 /* This breakpoint could have been pending, and be resolved now, and
13328 if so, we should now have the extra string. If we don't, the
13329 dprintf was malformed when created, but we couldn't tell because
13330 we can't extract the extra string until the location is
13331 resolved. */
13332 if (b->loc != NULL && b->extra_string == NULL)
13333 error (_("Format string required"));
13334
13335 /* 1 - connect to target 1, that can run breakpoint commands.
13336 2 - create a dprintf, which resolves fine.
13337 3 - disconnect from target 1
13338 4 - connect to target 2, that can NOT run breakpoint commands.
13339
13340 After steps #3/#4, you'll want the dprintf command list to
13341 be updated, because target 1 and 2 may well return different
13342 answers for target_can_run_breakpoint_commands().
13343 Given absence of finer grained resetting, we get to do
13344 it all the time. */
13345 if (b->extra_string != NULL)
13346 update_dprintf_command_list (b);
13347 }
13348
13349 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13350
13351 static void
13352 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13353 {
13354 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13355 tp->extra_string);
13356 print_recreate_thread (tp, fp);
13357 }
13358
13359 /* The breakpoint_ops structure to be used on static tracepoints with
13360 markers (`-m'). */
13361
13362 static void
13363 strace_marker_create_sals_from_address (char **arg,
13364 struct linespec_result *canonical,
13365 enum bptype type_wanted,
13366 char *addr_start, char **copy_arg)
13367 {
13368 struct linespec_sals lsal;
13369
13370 lsal.sals = decode_static_tracepoint_spec (arg);
13371
13372 *copy_arg = savestring (addr_start, *arg - addr_start);
13373
13374 canonical->addr_string = xstrdup (*copy_arg);
13375 lsal.canonical = xstrdup (*copy_arg);
13376 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13377 }
13378
13379 static void
13380 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13381 struct linespec_result *canonical,
13382 struct linespec_sals *lsal,
13383 char *cond_string,
13384 char *extra_string,
13385 enum bptype type_wanted,
13386 enum bpdisp disposition,
13387 int thread,
13388 int task, int ignore_count,
13389 const struct breakpoint_ops *ops,
13390 int from_tty, int enabled,
13391 int internal, unsigned flags)
13392 {
13393 int i;
13394
13395 /* If the user is creating a static tracepoint by marker id
13396 (strace -m MARKER_ID), then store the sals index, so that
13397 breakpoint_re_set can try to match up which of the newly
13398 found markers corresponds to this one, and, don't try to
13399 expand multiple locations for each sal, given than SALS
13400 already should contain all sals for MARKER_ID. */
13401
13402 for (i = 0; i < lsal->sals.nelts; ++i)
13403 {
13404 struct symtabs_and_lines expanded;
13405 struct tracepoint *tp;
13406 struct cleanup *old_chain;
13407 char *addr_string;
13408
13409 expanded.nelts = 1;
13410 expanded.sals = &lsal->sals.sals[i];
13411
13412 addr_string = xstrdup (canonical->addr_string);
13413 old_chain = make_cleanup (xfree, addr_string);
13414
13415 tp = XCNEW (struct tracepoint);
13416 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13417 addr_string, NULL,
13418 cond_string, extra_string,
13419 type_wanted, disposition,
13420 thread, task, ignore_count, ops,
13421 from_tty, enabled, internal, flags,
13422 canonical->special_display);
13423 /* Given that its possible to have multiple markers with
13424 the same string id, if the user is creating a static
13425 tracepoint by marker id ("strace -m MARKER_ID"), then
13426 store the sals index, so that breakpoint_re_set can
13427 try to match up which of the newly found markers
13428 corresponds to this one */
13429 tp->static_trace_marker_id_idx = i;
13430
13431 install_breakpoint (internal, &tp->base, 0);
13432
13433 discard_cleanups (old_chain);
13434 }
13435 }
13436
13437 static void
13438 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13439 struct symtabs_and_lines *sals)
13440 {
13441 struct tracepoint *tp = (struct tracepoint *) b;
13442
13443 *sals = decode_static_tracepoint_spec (s);
13444 if (sals->nelts > tp->static_trace_marker_id_idx)
13445 {
13446 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13447 sals->nelts = 1;
13448 }
13449 else
13450 error (_("marker %s not found"), tp->static_trace_marker_id);
13451 }
13452
13453 static struct breakpoint_ops strace_marker_breakpoint_ops;
13454
13455 static int
13456 strace_marker_p (struct breakpoint *b)
13457 {
13458 return b->ops == &strace_marker_breakpoint_ops;
13459 }
13460
13461 /* Delete a breakpoint and clean up all traces of it in the data
13462 structures. */
13463
13464 void
13465 delete_breakpoint (struct breakpoint *bpt)
13466 {
13467 struct breakpoint *b;
13468
13469 gdb_assert (bpt != NULL);
13470
13471 /* Has this bp already been deleted? This can happen because
13472 multiple lists can hold pointers to bp's. bpstat lists are
13473 especial culprits.
13474
13475 One example of this happening is a watchpoint's scope bp. When
13476 the scope bp triggers, we notice that the watchpoint is out of
13477 scope, and delete it. We also delete its scope bp. But the
13478 scope bp is marked "auto-deleting", and is already on a bpstat.
13479 That bpstat is then checked for auto-deleting bp's, which are
13480 deleted.
13481
13482 A real solution to this problem might involve reference counts in
13483 bp's, and/or giving them pointers back to their referencing
13484 bpstat's, and teaching delete_breakpoint to only free a bp's
13485 storage when no more references were extent. A cheaper bandaid
13486 was chosen. */
13487 if (bpt->type == bp_none)
13488 return;
13489
13490 /* At least avoid this stale reference until the reference counting
13491 of breakpoints gets resolved. */
13492 if (bpt->related_breakpoint != bpt)
13493 {
13494 struct breakpoint *related;
13495 struct watchpoint *w;
13496
13497 if (bpt->type == bp_watchpoint_scope)
13498 w = (struct watchpoint *) bpt->related_breakpoint;
13499 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13500 w = (struct watchpoint *) bpt;
13501 else
13502 w = NULL;
13503 if (w != NULL)
13504 watchpoint_del_at_next_stop (w);
13505
13506 /* Unlink bpt from the bpt->related_breakpoint ring. */
13507 for (related = bpt; related->related_breakpoint != bpt;
13508 related = related->related_breakpoint);
13509 related->related_breakpoint = bpt->related_breakpoint;
13510 bpt->related_breakpoint = bpt;
13511 }
13512
13513 /* watch_command_1 creates a watchpoint but only sets its number if
13514 update_watchpoint succeeds in creating its bp_locations. If there's
13515 a problem in that process, we'll be asked to delete the half-created
13516 watchpoint. In that case, don't announce the deletion. */
13517 if (bpt->number)
13518 observer_notify_breakpoint_deleted (bpt);
13519
13520 if (breakpoint_chain == bpt)
13521 breakpoint_chain = bpt->next;
13522
13523 ALL_BREAKPOINTS (b)
13524 if (b->next == bpt)
13525 {
13526 b->next = bpt->next;
13527 break;
13528 }
13529
13530 /* Be sure no bpstat's are pointing at the breakpoint after it's
13531 been freed. */
13532 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13533 in all threads for now. Note that we cannot just remove bpstats
13534 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13535 commands are associated with the bpstat; if we remove it here,
13536 then the later call to bpstat_do_actions (&stop_bpstat); in
13537 event-top.c won't do anything, and temporary breakpoints with
13538 commands won't work. */
13539
13540 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13541
13542 /* Now that breakpoint is removed from breakpoint list, update the
13543 global location list. This will remove locations that used to
13544 belong to this breakpoint. Do this before freeing the breakpoint
13545 itself, since remove_breakpoint looks at location's owner. It
13546 might be better design to have location completely
13547 self-contained, but it's not the case now. */
13548 update_global_location_list (0);
13549
13550 bpt->ops->dtor (bpt);
13551 /* On the chance that someone will soon try again to delete this
13552 same bp, we mark it as deleted before freeing its storage. */
13553 bpt->type = bp_none;
13554 xfree (bpt);
13555 }
13556
13557 static void
13558 do_delete_breakpoint_cleanup (void *b)
13559 {
13560 delete_breakpoint (b);
13561 }
13562
13563 struct cleanup *
13564 make_cleanup_delete_breakpoint (struct breakpoint *b)
13565 {
13566 return make_cleanup (do_delete_breakpoint_cleanup, b);
13567 }
13568
13569 /* Iterator function to call a user-provided callback function once
13570 for each of B and its related breakpoints. */
13571
13572 static void
13573 iterate_over_related_breakpoints (struct breakpoint *b,
13574 void (*function) (struct breakpoint *,
13575 void *),
13576 void *data)
13577 {
13578 struct breakpoint *related;
13579
13580 related = b;
13581 do
13582 {
13583 struct breakpoint *next;
13584
13585 /* FUNCTION may delete RELATED. */
13586 next = related->related_breakpoint;
13587
13588 if (next == related)
13589 {
13590 /* RELATED is the last ring entry. */
13591 function (related, data);
13592
13593 /* FUNCTION may have deleted it, so we'd never reach back to
13594 B. There's nothing left to do anyway, so just break
13595 out. */
13596 break;
13597 }
13598 else
13599 function (related, data);
13600
13601 related = next;
13602 }
13603 while (related != b);
13604 }
13605
13606 static void
13607 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13608 {
13609 delete_breakpoint (b);
13610 }
13611
13612 /* A callback for map_breakpoint_numbers that calls
13613 delete_breakpoint. */
13614
13615 static void
13616 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13617 {
13618 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13619 }
13620
13621 void
13622 delete_command (char *arg, int from_tty)
13623 {
13624 struct breakpoint *b, *b_tmp;
13625
13626 dont_repeat ();
13627
13628 if (arg == 0)
13629 {
13630 int breaks_to_delete = 0;
13631
13632 /* Delete all breakpoints if no argument. Do not delete
13633 internal breakpoints, these have to be deleted with an
13634 explicit breakpoint number argument. */
13635 ALL_BREAKPOINTS (b)
13636 if (user_breakpoint_p (b))
13637 {
13638 breaks_to_delete = 1;
13639 break;
13640 }
13641
13642 /* Ask user only if there are some breakpoints to delete. */
13643 if (!from_tty
13644 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13645 {
13646 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13647 if (user_breakpoint_p (b))
13648 delete_breakpoint (b);
13649 }
13650 }
13651 else
13652 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13653 }
13654
13655 static int
13656 all_locations_are_pending (struct bp_location *loc)
13657 {
13658 for (; loc; loc = loc->next)
13659 if (!loc->shlib_disabled
13660 && !loc->pspace->executing_startup)
13661 return 0;
13662 return 1;
13663 }
13664
13665 /* Subroutine of update_breakpoint_locations to simplify it.
13666 Return non-zero if multiple fns in list LOC have the same name.
13667 Null names are ignored. */
13668
13669 static int
13670 ambiguous_names_p (struct bp_location *loc)
13671 {
13672 struct bp_location *l;
13673 htab_t htab = htab_create_alloc (13, htab_hash_string,
13674 (int (*) (const void *,
13675 const void *)) streq,
13676 NULL, xcalloc, xfree);
13677
13678 for (l = loc; l != NULL; l = l->next)
13679 {
13680 const char **slot;
13681 const char *name = l->function_name;
13682
13683 /* Allow for some names to be NULL, ignore them. */
13684 if (name == NULL)
13685 continue;
13686
13687 slot = (const char **) htab_find_slot (htab, (const void *) name,
13688 INSERT);
13689 /* NOTE: We can assume slot != NULL here because xcalloc never
13690 returns NULL. */
13691 if (*slot != NULL)
13692 {
13693 htab_delete (htab);
13694 return 1;
13695 }
13696 *slot = name;
13697 }
13698
13699 htab_delete (htab);
13700 return 0;
13701 }
13702
13703 /* When symbols change, it probably means the sources changed as well,
13704 and it might mean the static tracepoint markers are no longer at
13705 the same address or line numbers they used to be at last we
13706 checked. Losing your static tracepoints whenever you rebuild is
13707 undesirable. This function tries to resync/rematch gdb static
13708 tracepoints with the markers on the target, for static tracepoints
13709 that have not been set by marker id. Static tracepoint that have
13710 been set by marker id are reset by marker id in breakpoint_re_set.
13711 The heuristic is:
13712
13713 1) For a tracepoint set at a specific address, look for a marker at
13714 the old PC. If one is found there, assume to be the same marker.
13715 If the name / string id of the marker found is different from the
13716 previous known name, assume that means the user renamed the marker
13717 in the sources, and output a warning.
13718
13719 2) For a tracepoint set at a given line number, look for a marker
13720 at the new address of the old line number. If one is found there,
13721 assume to be the same marker. If the name / string id of the
13722 marker found is different from the previous known name, assume that
13723 means the user renamed the marker in the sources, and output a
13724 warning.
13725
13726 3) If a marker is no longer found at the same address or line, it
13727 may mean the marker no longer exists. But it may also just mean
13728 the code changed a bit. Maybe the user added a few lines of code
13729 that made the marker move up or down (in line number terms). Ask
13730 the target for info about the marker with the string id as we knew
13731 it. If found, update line number and address in the matching
13732 static tracepoint. This will get confused if there's more than one
13733 marker with the same ID (possible in UST, although unadvised
13734 precisely because it confuses tools). */
13735
13736 static struct symtab_and_line
13737 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13738 {
13739 struct tracepoint *tp = (struct tracepoint *) b;
13740 struct static_tracepoint_marker marker;
13741 CORE_ADDR pc;
13742
13743 pc = sal.pc;
13744 if (sal.line)
13745 find_line_pc (sal.symtab, sal.line, &pc);
13746
13747 if (target_static_tracepoint_marker_at (pc, &marker))
13748 {
13749 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13750 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13751 b->number,
13752 tp->static_trace_marker_id, marker.str_id);
13753
13754 xfree (tp->static_trace_marker_id);
13755 tp->static_trace_marker_id = xstrdup (marker.str_id);
13756 release_static_tracepoint_marker (&marker);
13757
13758 return sal;
13759 }
13760
13761 /* Old marker wasn't found on target at lineno. Try looking it up
13762 by string ID. */
13763 if (!sal.explicit_pc
13764 && sal.line != 0
13765 && sal.symtab != NULL
13766 && tp->static_trace_marker_id != NULL)
13767 {
13768 VEC(static_tracepoint_marker_p) *markers;
13769
13770 markers
13771 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13772
13773 if (!VEC_empty(static_tracepoint_marker_p, markers))
13774 {
13775 struct symtab_and_line sal2;
13776 struct symbol *sym;
13777 struct static_tracepoint_marker *tpmarker;
13778 struct ui_out *uiout = current_uiout;
13779
13780 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13781
13782 xfree (tp->static_trace_marker_id);
13783 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13784
13785 warning (_("marker for static tracepoint %d (%s) not "
13786 "found at previous line number"),
13787 b->number, tp->static_trace_marker_id);
13788
13789 init_sal (&sal2);
13790
13791 sal2.pc = tpmarker->address;
13792
13793 sal2 = find_pc_line (tpmarker->address, 0);
13794 sym = find_pc_sect_function (tpmarker->address, NULL);
13795 ui_out_text (uiout, "Now in ");
13796 if (sym)
13797 {
13798 ui_out_field_string (uiout, "func",
13799 SYMBOL_PRINT_NAME (sym));
13800 ui_out_text (uiout, " at ");
13801 }
13802 ui_out_field_string (uiout, "file",
13803 symtab_to_filename_for_display (sal2.symtab));
13804 ui_out_text (uiout, ":");
13805
13806 if (ui_out_is_mi_like_p (uiout))
13807 {
13808 const char *fullname = symtab_to_fullname (sal2.symtab);
13809
13810 ui_out_field_string (uiout, "fullname", fullname);
13811 }
13812
13813 ui_out_field_int (uiout, "line", sal2.line);
13814 ui_out_text (uiout, "\n");
13815
13816 b->loc->line_number = sal2.line;
13817 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13818
13819 xfree (b->addr_string);
13820 b->addr_string = xstrprintf ("%s:%d",
13821 symtab_to_filename_for_display (sal2.symtab),
13822 b->loc->line_number);
13823
13824 /* Might be nice to check if function changed, and warn if
13825 so. */
13826
13827 release_static_tracepoint_marker (tpmarker);
13828 }
13829 }
13830 return sal;
13831 }
13832
13833 /* Returns 1 iff locations A and B are sufficiently same that
13834 we don't need to report breakpoint as changed. */
13835
13836 static int
13837 locations_are_equal (struct bp_location *a, struct bp_location *b)
13838 {
13839 while (a && b)
13840 {
13841 if (a->address != b->address)
13842 return 0;
13843
13844 if (a->shlib_disabled != b->shlib_disabled)
13845 return 0;
13846
13847 if (a->enabled != b->enabled)
13848 return 0;
13849
13850 a = a->next;
13851 b = b->next;
13852 }
13853
13854 if ((a == NULL) != (b == NULL))
13855 return 0;
13856
13857 return 1;
13858 }
13859
13860 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13861 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13862 a ranged breakpoint. */
13863
13864 void
13865 update_breakpoint_locations (struct breakpoint *b,
13866 struct symtabs_and_lines sals,
13867 struct symtabs_and_lines sals_end)
13868 {
13869 int i;
13870 struct bp_location *existing_locations = b->loc;
13871
13872 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13873 {
13874 /* Ranged breakpoints have only one start location and one end
13875 location. */
13876 b->enable_state = bp_disabled;
13877 update_global_location_list (1);
13878 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13879 "multiple locations found\n"),
13880 b->number);
13881 return;
13882 }
13883
13884 /* If there's no new locations, and all existing locations are
13885 pending, don't do anything. This optimizes the common case where
13886 all locations are in the same shared library, that was unloaded.
13887 We'd like to retain the location, so that when the library is
13888 loaded again, we don't loose the enabled/disabled status of the
13889 individual locations. */
13890 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13891 return;
13892
13893 b->loc = NULL;
13894
13895 for (i = 0; i < sals.nelts; ++i)
13896 {
13897 struct bp_location *new_loc;
13898
13899 switch_to_program_space_and_thread (sals.sals[i].pspace);
13900
13901 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13902
13903 /* Reparse conditions, they might contain references to the
13904 old symtab. */
13905 if (b->cond_string != NULL)
13906 {
13907 const char *s;
13908 volatile struct gdb_exception e;
13909
13910 s = b->cond_string;
13911 TRY_CATCH (e, RETURN_MASK_ERROR)
13912 {
13913 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13914 block_for_pc (sals.sals[i].pc),
13915 0);
13916 }
13917 if (e.reason < 0)
13918 {
13919 warning (_("failed to reevaluate condition "
13920 "for breakpoint %d: %s"),
13921 b->number, e.message);
13922 new_loc->enabled = 0;
13923 }
13924 }
13925
13926 if (sals_end.nelts)
13927 {
13928 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13929
13930 new_loc->length = end - sals.sals[0].pc + 1;
13931 }
13932 }
13933
13934 /* Update locations of permanent breakpoints. */
13935 if (b->enable_state == bp_permanent)
13936 make_breakpoint_permanent (b);
13937
13938 /* If possible, carry over 'disable' status from existing
13939 breakpoints. */
13940 {
13941 struct bp_location *e = existing_locations;
13942 /* If there are multiple breakpoints with the same function name,
13943 e.g. for inline functions, comparing function names won't work.
13944 Instead compare pc addresses; this is just a heuristic as things
13945 may have moved, but in practice it gives the correct answer
13946 often enough until a better solution is found. */
13947 int have_ambiguous_names = ambiguous_names_p (b->loc);
13948
13949 for (; e; e = e->next)
13950 {
13951 if (!e->enabled && e->function_name)
13952 {
13953 struct bp_location *l = b->loc;
13954 if (have_ambiguous_names)
13955 {
13956 for (; l; l = l->next)
13957 if (breakpoint_locations_match (e, l))
13958 {
13959 l->enabled = 0;
13960 break;
13961 }
13962 }
13963 else
13964 {
13965 for (; l; l = l->next)
13966 if (l->function_name
13967 && strcmp (e->function_name, l->function_name) == 0)
13968 {
13969 l->enabled = 0;
13970 break;
13971 }
13972 }
13973 }
13974 }
13975 }
13976
13977 if (!locations_are_equal (existing_locations, b->loc))
13978 observer_notify_breakpoint_modified (b);
13979
13980 update_global_location_list (1);
13981 }
13982
13983 /* Find the SaL locations corresponding to the given ADDR_STRING.
13984 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13985
13986 static struct symtabs_and_lines
13987 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
13988 {
13989 char *s;
13990 struct symtabs_and_lines sals = {0};
13991 volatile struct gdb_exception e;
13992
13993 gdb_assert (b->ops != NULL);
13994 s = addr_string;
13995
13996 TRY_CATCH (e, RETURN_MASK_ERROR)
13997 {
13998 b->ops->decode_linespec (b, &s, &sals);
13999 }
14000 if (e.reason < 0)
14001 {
14002 int not_found_and_ok = 0;
14003 /* For pending breakpoints, it's expected that parsing will
14004 fail until the right shared library is loaded. User has
14005 already told to create pending breakpoints and don't need
14006 extra messages. If breakpoint is in bp_shlib_disabled
14007 state, then user already saw the message about that
14008 breakpoint being disabled, and don't want to see more
14009 errors. */
14010 if (e.error == NOT_FOUND_ERROR
14011 && (b->condition_not_parsed
14012 || (b->loc && b->loc->shlib_disabled)
14013 || (b->loc && b->loc->pspace->executing_startup)
14014 || b->enable_state == bp_disabled))
14015 not_found_and_ok = 1;
14016
14017 if (!not_found_and_ok)
14018 {
14019 /* We surely don't want to warn about the same breakpoint
14020 10 times. One solution, implemented here, is disable
14021 the breakpoint on error. Another solution would be to
14022 have separate 'warning emitted' flag. Since this
14023 happens only when a binary has changed, I don't know
14024 which approach is better. */
14025 b->enable_state = bp_disabled;
14026 throw_exception (e);
14027 }
14028 }
14029
14030 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14031 {
14032 int i;
14033
14034 for (i = 0; i < sals.nelts; ++i)
14035 resolve_sal_pc (&sals.sals[i]);
14036 if (b->condition_not_parsed && s && s[0])
14037 {
14038 char *cond_string, *extra_string;
14039 int thread, task;
14040
14041 find_condition_and_thread (s, sals.sals[0].pc,
14042 &cond_string, &thread, &task,
14043 &extra_string);
14044 if (cond_string)
14045 b->cond_string = cond_string;
14046 b->thread = thread;
14047 b->task = task;
14048 if (extra_string)
14049 b->extra_string = extra_string;
14050 b->condition_not_parsed = 0;
14051 }
14052
14053 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14054 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14055
14056 *found = 1;
14057 }
14058 else
14059 *found = 0;
14060
14061 return sals;
14062 }
14063
14064 /* The default re_set method, for typical hardware or software
14065 breakpoints. Reevaluate the breakpoint and recreate its
14066 locations. */
14067
14068 static void
14069 breakpoint_re_set_default (struct breakpoint *b)
14070 {
14071 int found;
14072 struct symtabs_and_lines sals, sals_end;
14073 struct symtabs_and_lines expanded = {0};
14074 struct symtabs_and_lines expanded_end = {0};
14075
14076 sals = addr_string_to_sals (b, b->addr_string, &found);
14077 if (found)
14078 {
14079 make_cleanup (xfree, sals.sals);
14080 expanded = sals;
14081 }
14082
14083 if (b->addr_string_range_end)
14084 {
14085 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14086 if (found)
14087 {
14088 make_cleanup (xfree, sals_end.sals);
14089 expanded_end = sals_end;
14090 }
14091 }
14092
14093 update_breakpoint_locations (b, expanded, expanded_end);
14094 }
14095
14096 /* Default method for creating SALs from an address string. It basically
14097 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14098
14099 static void
14100 create_sals_from_address_default (char **arg,
14101 struct linespec_result *canonical,
14102 enum bptype type_wanted,
14103 char *addr_start, char **copy_arg)
14104 {
14105 parse_breakpoint_sals (arg, canonical);
14106 }
14107
14108 /* Call create_breakpoints_sal for the given arguments. This is the default
14109 function for the `create_breakpoints_sal' method of
14110 breakpoint_ops. */
14111
14112 static void
14113 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14114 struct linespec_result *canonical,
14115 struct linespec_sals *lsal,
14116 char *cond_string,
14117 char *extra_string,
14118 enum bptype type_wanted,
14119 enum bpdisp disposition,
14120 int thread,
14121 int task, int ignore_count,
14122 const struct breakpoint_ops *ops,
14123 int from_tty, int enabled,
14124 int internal, unsigned flags)
14125 {
14126 create_breakpoints_sal (gdbarch, canonical, cond_string,
14127 extra_string,
14128 type_wanted, disposition,
14129 thread, task, ignore_count, ops, from_tty,
14130 enabled, internal, flags);
14131 }
14132
14133 /* Decode the line represented by S by calling decode_line_full. This is the
14134 default function for the `decode_linespec' method of breakpoint_ops. */
14135
14136 static void
14137 decode_linespec_default (struct breakpoint *b, char **s,
14138 struct symtabs_and_lines *sals)
14139 {
14140 struct linespec_result canonical;
14141
14142 init_linespec_result (&canonical);
14143 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14144 (struct symtab *) NULL, 0,
14145 &canonical, multiple_symbols_all,
14146 b->filter);
14147
14148 /* We should get 0 or 1 resulting SALs. */
14149 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14150
14151 if (VEC_length (linespec_sals, canonical.sals) > 0)
14152 {
14153 struct linespec_sals *lsal;
14154
14155 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14156 *sals = lsal->sals;
14157 /* Arrange it so the destructor does not free the
14158 contents. */
14159 lsal->sals.sals = NULL;
14160 }
14161
14162 destroy_linespec_result (&canonical);
14163 }
14164
14165 /* Prepare the global context for a re-set of breakpoint B. */
14166
14167 static struct cleanup *
14168 prepare_re_set_context (struct breakpoint *b)
14169 {
14170 struct cleanup *cleanups;
14171
14172 input_radix = b->input_radix;
14173 cleanups = save_current_space_and_thread ();
14174 if (b->pspace != NULL)
14175 switch_to_program_space_and_thread (b->pspace);
14176 set_language (b->language);
14177
14178 return cleanups;
14179 }
14180
14181 /* Reset a breakpoint given it's struct breakpoint * BINT.
14182 The value we return ends up being the return value from catch_errors.
14183 Unused in this case. */
14184
14185 static int
14186 breakpoint_re_set_one (void *bint)
14187 {
14188 /* Get past catch_errs. */
14189 struct breakpoint *b = (struct breakpoint *) bint;
14190 struct cleanup *cleanups;
14191
14192 cleanups = prepare_re_set_context (b);
14193 b->ops->re_set (b);
14194 do_cleanups (cleanups);
14195 return 0;
14196 }
14197
14198 /* Re-set all breakpoints after symbols have been re-loaded. */
14199 void
14200 breakpoint_re_set (void)
14201 {
14202 struct breakpoint *b, *b_tmp;
14203 enum language save_language;
14204 int save_input_radix;
14205 struct cleanup *old_chain;
14206
14207 save_language = current_language->la_language;
14208 save_input_radix = input_radix;
14209 old_chain = save_current_program_space ();
14210
14211 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14212 {
14213 /* Format possible error msg. */
14214 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14215 b->number);
14216 struct cleanup *cleanups = make_cleanup (xfree, message);
14217 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14218 do_cleanups (cleanups);
14219 }
14220 set_language (save_language);
14221 input_radix = save_input_radix;
14222
14223 jit_breakpoint_re_set ();
14224
14225 do_cleanups (old_chain);
14226
14227 create_overlay_event_breakpoint ();
14228 create_longjmp_master_breakpoint ();
14229 create_std_terminate_master_breakpoint ();
14230 create_exception_master_breakpoint ();
14231 }
14232 \f
14233 /* Reset the thread number of this breakpoint:
14234
14235 - If the breakpoint is for all threads, leave it as-is.
14236 - Else, reset it to the current thread for inferior_ptid. */
14237 void
14238 breakpoint_re_set_thread (struct breakpoint *b)
14239 {
14240 if (b->thread != -1)
14241 {
14242 if (in_thread_list (inferior_ptid))
14243 b->thread = pid_to_thread_id (inferior_ptid);
14244
14245 /* We're being called after following a fork. The new fork is
14246 selected as current, and unless this was a vfork will have a
14247 different program space from the original thread. Reset that
14248 as well. */
14249 b->loc->pspace = current_program_space;
14250 }
14251 }
14252
14253 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14254 If from_tty is nonzero, it prints a message to that effect,
14255 which ends with a period (no newline). */
14256
14257 void
14258 set_ignore_count (int bptnum, int count, int from_tty)
14259 {
14260 struct breakpoint *b;
14261
14262 if (count < 0)
14263 count = 0;
14264
14265 ALL_BREAKPOINTS (b)
14266 if (b->number == bptnum)
14267 {
14268 if (is_tracepoint (b))
14269 {
14270 if (from_tty && count != 0)
14271 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14272 bptnum);
14273 return;
14274 }
14275
14276 b->ignore_count = count;
14277 if (from_tty)
14278 {
14279 if (count == 0)
14280 printf_filtered (_("Will stop next time "
14281 "breakpoint %d is reached."),
14282 bptnum);
14283 else if (count == 1)
14284 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14285 bptnum);
14286 else
14287 printf_filtered (_("Will ignore next %d "
14288 "crossings of breakpoint %d."),
14289 count, bptnum);
14290 }
14291 observer_notify_breakpoint_modified (b);
14292 return;
14293 }
14294
14295 error (_("No breakpoint number %d."), bptnum);
14296 }
14297
14298 /* Command to set ignore-count of breakpoint N to COUNT. */
14299
14300 static void
14301 ignore_command (char *args, int from_tty)
14302 {
14303 char *p = args;
14304 int num;
14305
14306 if (p == 0)
14307 error_no_arg (_("a breakpoint number"));
14308
14309 num = get_number (&p);
14310 if (num == 0)
14311 error (_("bad breakpoint number: '%s'"), args);
14312 if (*p == 0)
14313 error (_("Second argument (specified ignore-count) is missing."));
14314
14315 set_ignore_count (num,
14316 longest_to_int (value_as_long (parse_and_eval (p))),
14317 from_tty);
14318 if (from_tty)
14319 printf_filtered ("\n");
14320 }
14321 \f
14322 /* Call FUNCTION on each of the breakpoints
14323 whose numbers are given in ARGS. */
14324
14325 static void
14326 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14327 void *),
14328 void *data)
14329 {
14330 int num;
14331 struct breakpoint *b, *tmp;
14332 int match;
14333 struct get_number_or_range_state state;
14334
14335 if (args == 0)
14336 error_no_arg (_("one or more breakpoint numbers"));
14337
14338 init_number_or_range (&state, args);
14339
14340 while (!state.finished)
14341 {
14342 char *p = state.string;
14343
14344 match = 0;
14345
14346 num = get_number_or_range (&state);
14347 if (num == 0)
14348 {
14349 warning (_("bad breakpoint number at or near '%s'"), p);
14350 }
14351 else
14352 {
14353 ALL_BREAKPOINTS_SAFE (b, tmp)
14354 if (b->number == num)
14355 {
14356 match = 1;
14357 function (b, data);
14358 break;
14359 }
14360 if (match == 0)
14361 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14362 }
14363 }
14364 }
14365
14366 static struct bp_location *
14367 find_location_by_number (char *number)
14368 {
14369 char *dot = strchr (number, '.');
14370 char *p1;
14371 int bp_num;
14372 int loc_num;
14373 struct breakpoint *b;
14374 struct bp_location *loc;
14375
14376 *dot = '\0';
14377
14378 p1 = number;
14379 bp_num = get_number (&p1);
14380 if (bp_num == 0)
14381 error (_("Bad breakpoint number '%s'"), number);
14382
14383 ALL_BREAKPOINTS (b)
14384 if (b->number == bp_num)
14385 {
14386 break;
14387 }
14388
14389 if (!b || b->number != bp_num)
14390 error (_("Bad breakpoint number '%s'"), number);
14391
14392 p1 = dot+1;
14393 loc_num = get_number (&p1);
14394 if (loc_num == 0)
14395 error (_("Bad breakpoint location number '%s'"), number);
14396
14397 --loc_num;
14398 loc = b->loc;
14399 for (;loc_num && loc; --loc_num, loc = loc->next)
14400 ;
14401 if (!loc)
14402 error (_("Bad breakpoint location number '%s'"), dot+1);
14403
14404 return loc;
14405 }
14406
14407
14408 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14409 If from_tty is nonzero, it prints a message to that effect,
14410 which ends with a period (no newline). */
14411
14412 void
14413 disable_breakpoint (struct breakpoint *bpt)
14414 {
14415 /* Never disable a watchpoint scope breakpoint; we want to
14416 hit them when we leave scope so we can delete both the
14417 watchpoint and its scope breakpoint at that time. */
14418 if (bpt->type == bp_watchpoint_scope)
14419 return;
14420
14421 /* You can't disable permanent breakpoints. */
14422 if (bpt->enable_state == bp_permanent)
14423 return;
14424
14425 bpt->enable_state = bp_disabled;
14426
14427 /* Mark breakpoint locations modified. */
14428 mark_breakpoint_modified (bpt);
14429
14430 if (target_supports_enable_disable_tracepoint ()
14431 && current_trace_status ()->running && is_tracepoint (bpt))
14432 {
14433 struct bp_location *location;
14434
14435 for (location = bpt->loc; location; location = location->next)
14436 target_disable_tracepoint (location);
14437 }
14438
14439 update_global_location_list (0);
14440
14441 observer_notify_breakpoint_modified (bpt);
14442 }
14443
14444 /* A callback for iterate_over_related_breakpoints. */
14445
14446 static void
14447 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14448 {
14449 disable_breakpoint (b);
14450 }
14451
14452 /* A callback for map_breakpoint_numbers that calls
14453 disable_breakpoint. */
14454
14455 static void
14456 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14457 {
14458 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14459 }
14460
14461 static void
14462 disable_command (char *args, int from_tty)
14463 {
14464 if (args == 0)
14465 {
14466 struct breakpoint *bpt;
14467
14468 ALL_BREAKPOINTS (bpt)
14469 if (user_breakpoint_p (bpt))
14470 disable_breakpoint (bpt);
14471 }
14472 else if (strchr (args, '.'))
14473 {
14474 struct bp_location *loc = find_location_by_number (args);
14475 if (loc)
14476 {
14477 if (loc->enabled)
14478 {
14479 loc->enabled = 0;
14480 mark_breakpoint_location_modified (loc);
14481 }
14482 if (target_supports_enable_disable_tracepoint ()
14483 && current_trace_status ()->running && loc->owner
14484 && is_tracepoint (loc->owner))
14485 target_disable_tracepoint (loc);
14486 }
14487 update_global_location_list (0);
14488 }
14489 else
14490 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14491 }
14492
14493 static void
14494 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14495 int count)
14496 {
14497 int target_resources_ok;
14498
14499 if (bpt->type == bp_hardware_breakpoint)
14500 {
14501 int i;
14502 i = hw_breakpoint_used_count ();
14503 target_resources_ok =
14504 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14505 i + 1, 0);
14506 if (target_resources_ok == 0)
14507 error (_("No hardware breakpoint support in the target."));
14508 else if (target_resources_ok < 0)
14509 error (_("Hardware breakpoints used exceeds limit."));
14510 }
14511
14512 if (is_watchpoint (bpt))
14513 {
14514 /* Initialize it just to avoid a GCC false warning. */
14515 enum enable_state orig_enable_state = 0;
14516 volatile struct gdb_exception e;
14517
14518 TRY_CATCH (e, RETURN_MASK_ALL)
14519 {
14520 struct watchpoint *w = (struct watchpoint *) bpt;
14521
14522 orig_enable_state = bpt->enable_state;
14523 bpt->enable_state = bp_enabled;
14524 update_watchpoint (w, 1 /* reparse */);
14525 }
14526 if (e.reason < 0)
14527 {
14528 bpt->enable_state = orig_enable_state;
14529 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14530 bpt->number);
14531 return;
14532 }
14533 }
14534
14535 if (bpt->enable_state != bp_permanent)
14536 bpt->enable_state = bp_enabled;
14537
14538 bpt->enable_state = bp_enabled;
14539
14540 /* Mark breakpoint locations modified. */
14541 mark_breakpoint_modified (bpt);
14542
14543 if (target_supports_enable_disable_tracepoint ()
14544 && current_trace_status ()->running && is_tracepoint (bpt))
14545 {
14546 struct bp_location *location;
14547
14548 for (location = bpt->loc; location; location = location->next)
14549 target_enable_tracepoint (location);
14550 }
14551
14552 bpt->disposition = disposition;
14553 bpt->enable_count = count;
14554 update_global_location_list (1);
14555
14556 observer_notify_breakpoint_modified (bpt);
14557 }
14558
14559
14560 void
14561 enable_breakpoint (struct breakpoint *bpt)
14562 {
14563 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14564 }
14565
14566 static void
14567 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14568 {
14569 enable_breakpoint (bpt);
14570 }
14571
14572 /* A callback for map_breakpoint_numbers that calls
14573 enable_breakpoint. */
14574
14575 static void
14576 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14577 {
14578 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14579 }
14580
14581 /* The enable command enables the specified breakpoints (or all defined
14582 breakpoints) so they once again become (or continue to be) effective
14583 in stopping the inferior. */
14584
14585 static void
14586 enable_command (char *args, int from_tty)
14587 {
14588 if (args == 0)
14589 {
14590 struct breakpoint *bpt;
14591
14592 ALL_BREAKPOINTS (bpt)
14593 if (user_breakpoint_p (bpt))
14594 enable_breakpoint (bpt);
14595 }
14596 else if (strchr (args, '.'))
14597 {
14598 struct bp_location *loc = find_location_by_number (args);
14599 if (loc)
14600 {
14601 if (!loc->enabled)
14602 {
14603 loc->enabled = 1;
14604 mark_breakpoint_location_modified (loc);
14605 }
14606 if (target_supports_enable_disable_tracepoint ()
14607 && current_trace_status ()->running && loc->owner
14608 && is_tracepoint (loc->owner))
14609 target_enable_tracepoint (loc);
14610 }
14611 update_global_location_list (1);
14612 }
14613 else
14614 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14615 }
14616
14617 /* This struct packages up disposition data for application to multiple
14618 breakpoints. */
14619
14620 struct disp_data
14621 {
14622 enum bpdisp disp;
14623 int count;
14624 };
14625
14626 static void
14627 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14628 {
14629 struct disp_data disp_data = *(struct disp_data *) arg;
14630
14631 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14632 }
14633
14634 static void
14635 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14636 {
14637 struct disp_data disp = { disp_disable, 1 };
14638
14639 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14640 }
14641
14642 static void
14643 enable_once_command (char *args, int from_tty)
14644 {
14645 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14646 }
14647
14648 static void
14649 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14650 {
14651 struct disp_data disp = { disp_disable, *(int *) countptr };
14652
14653 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14654 }
14655
14656 static void
14657 enable_count_command (char *args, int from_tty)
14658 {
14659 int count = get_number (&args);
14660
14661 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14662 }
14663
14664 static void
14665 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14666 {
14667 struct disp_data disp = { disp_del, 1 };
14668
14669 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14670 }
14671
14672 static void
14673 enable_delete_command (char *args, int from_tty)
14674 {
14675 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14676 }
14677 \f
14678 static void
14679 set_breakpoint_cmd (char *args, int from_tty)
14680 {
14681 }
14682
14683 static void
14684 show_breakpoint_cmd (char *args, int from_tty)
14685 {
14686 }
14687
14688 /* Invalidate last known value of any hardware watchpoint if
14689 the memory which that value represents has been written to by
14690 GDB itself. */
14691
14692 static void
14693 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14694 CORE_ADDR addr, ssize_t len,
14695 const bfd_byte *data)
14696 {
14697 struct breakpoint *bp;
14698
14699 ALL_BREAKPOINTS (bp)
14700 if (bp->enable_state == bp_enabled
14701 && bp->type == bp_hardware_watchpoint)
14702 {
14703 struct watchpoint *wp = (struct watchpoint *) bp;
14704
14705 if (wp->val_valid && wp->val)
14706 {
14707 struct bp_location *loc;
14708
14709 for (loc = bp->loc; loc != NULL; loc = loc->next)
14710 if (loc->loc_type == bp_loc_hardware_watchpoint
14711 && loc->address + loc->length > addr
14712 && addr + len > loc->address)
14713 {
14714 value_free (wp->val);
14715 wp->val = NULL;
14716 wp->val_valid = 0;
14717 }
14718 }
14719 }
14720 }
14721
14722 /* Create and insert a raw software breakpoint at PC. Return an
14723 identifier, which should be used to remove the breakpoint later.
14724 In general, places which call this should be using something on the
14725 breakpoint chain instead; this function should be eliminated
14726 someday. */
14727
14728 void *
14729 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14730 struct address_space *aspace, CORE_ADDR pc)
14731 {
14732 struct bp_target_info *bp_tgt;
14733
14734 bp_tgt = XZALLOC (struct bp_target_info);
14735
14736 bp_tgt->placed_address_space = aspace;
14737 bp_tgt->placed_address = pc;
14738
14739 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14740 {
14741 /* Could not insert the breakpoint. */
14742 xfree (bp_tgt);
14743 return NULL;
14744 }
14745
14746 return bp_tgt;
14747 }
14748
14749 /* Remove a breakpoint BP inserted by
14750 deprecated_insert_raw_breakpoint. */
14751
14752 int
14753 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14754 {
14755 struct bp_target_info *bp_tgt = bp;
14756 int ret;
14757
14758 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14759 xfree (bp_tgt);
14760
14761 return ret;
14762 }
14763
14764 /* One (or perhaps two) breakpoints used for software single
14765 stepping. */
14766
14767 static void *single_step_breakpoints[2];
14768 static struct gdbarch *single_step_gdbarch[2];
14769
14770 /* Create and insert a breakpoint for software single step. */
14771
14772 void
14773 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14774 struct address_space *aspace,
14775 CORE_ADDR next_pc)
14776 {
14777 void **bpt_p;
14778
14779 if (single_step_breakpoints[0] == NULL)
14780 {
14781 bpt_p = &single_step_breakpoints[0];
14782 single_step_gdbarch[0] = gdbarch;
14783 }
14784 else
14785 {
14786 gdb_assert (single_step_breakpoints[1] == NULL);
14787 bpt_p = &single_step_breakpoints[1];
14788 single_step_gdbarch[1] = gdbarch;
14789 }
14790
14791 /* NOTE drow/2006-04-11: A future improvement to this function would
14792 be to only create the breakpoints once, and actually put them on
14793 the breakpoint chain. That would let us use set_raw_breakpoint.
14794 We could adjust the addresses each time they were needed. Doing
14795 this requires corresponding changes elsewhere where single step
14796 breakpoints are handled, however. So, for now, we use this. */
14797
14798 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14799 if (*bpt_p == NULL)
14800 error (_("Could not insert single-step breakpoint at %s"),
14801 paddress (gdbarch, next_pc));
14802 }
14803
14804 /* Check if the breakpoints used for software single stepping
14805 were inserted or not. */
14806
14807 int
14808 single_step_breakpoints_inserted (void)
14809 {
14810 return (single_step_breakpoints[0] != NULL
14811 || single_step_breakpoints[1] != NULL);
14812 }
14813
14814 /* Remove and delete any breakpoints used for software single step. */
14815
14816 void
14817 remove_single_step_breakpoints (void)
14818 {
14819 gdb_assert (single_step_breakpoints[0] != NULL);
14820
14821 /* See insert_single_step_breakpoint for more about this deprecated
14822 call. */
14823 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14824 single_step_breakpoints[0]);
14825 single_step_gdbarch[0] = NULL;
14826 single_step_breakpoints[0] = NULL;
14827
14828 if (single_step_breakpoints[1] != NULL)
14829 {
14830 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14831 single_step_breakpoints[1]);
14832 single_step_gdbarch[1] = NULL;
14833 single_step_breakpoints[1] = NULL;
14834 }
14835 }
14836
14837 /* Delete software single step breakpoints without removing them from
14838 the inferior. This is intended to be used if the inferior's address
14839 space where they were inserted is already gone, e.g. after exit or
14840 exec. */
14841
14842 void
14843 cancel_single_step_breakpoints (void)
14844 {
14845 int i;
14846
14847 for (i = 0; i < 2; i++)
14848 if (single_step_breakpoints[i])
14849 {
14850 xfree (single_step_breakpoints[i]);
14851 single_step_breakpoints[i] = NULL;
14852 single_step_gdbarch[i] = NULL;
14853 }
14854 }
14855
14856 /* Detach software single-step breakpoints from INFERIOR_PTID without
14857 removing them. */
14858
14859 static void
14860 detach_single_step_breakpoints (void)
14861 {
14862 int i;
14863
14864 for (i = 0; i < 2; i++)
14865 if (single_step_breakpoints[i])
14866 target_remove_breakpoint (single_step_gdbarch[i],
14867 single_step_breakpoints[i]);
14868 }
14869
14870 /* Check whether a software single-step breakpoint is inserted at
14871 PC. */
14872
14873 static int
14874 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14875 CORE_ADDR pc)
14876 {
14877 int i;
14878
14879 for (i = 0; i < 2; i++)
14880 {
14881 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14882 if (bp_tgt
14883 && breakpoint_address_match (bp_tgt->placed_address_space,
14884 bp_tgt->placed_address,
14885 aspace, pc))
14886 return 1;
14887 }
14888
14889 return 0;
14890 }
14891
14892 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14893 non-zero otherwise. */
14894 static int
14895 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14896 {
14897 if (syscall_catchpoint_p (bp)
14898 && bp->enable_state != bp_disabled
14899 && bp->enable_state != bp_call_disabled)
14900 return 1;
14901 else
14902 return 0;
14903 }
14904
14905 int
14906 catch_syscall_enabled (void)
14907 {
14908 struct catch_syscall_inferior_data *inf_data
14909 = get_catch_syscall_inferior_data (current_inferior ());
14910
14911 return inf_data->total_syscalls_count != 0;
14912 }
14913
14914 int
14915 catching_syscall_number (int syscall_number)
14916 {
14917 struct breakpoint *bp;
14918
14919 ALL_BREAKPOINTS (bp)
14920 if (is_syscall_catchpoint_enabled (bp))
14921 {
14922 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14923
14924 if (c->syscalls_to_be_caught)
14925 {
14926 int i, iter;
14927 for (i = 0;
14928 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14929 i++)
14930 if (syscall_number == iter)
14931 return 1;
14932 }
14933 else
14934 return 1;
14935 }
14936
14937 return 0;
14938 }
14939
14940 /* Complete syscall names. Used by "catch syscall". */
14941 static VEC (char_ptr) *
14942 catch_syscall_completer (struct cmd_list_element *cmd,
14943 const char *text, const char *word)
14944 {
14945 const char **list = get_syscall_names ();
14946 VEC (char_ptr) *retlist
14947 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
14948
14949 xfree (list);
14950 return retlist;
14951 }
14952
14953 /* Tracepoint-specific operations. */
14954
14955 /* Set tracepoint count to NUM. */
14956 static void
14957 set_tracepoint_count (int num)
14958 {
14959 tracepoint_count = num;
14960 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14961 }
14962
14963 static void
14964 trace_command (char *arg, int from_tty)
14965 {
14966 struct breakpoint_ops *ops;
14967 const char *arg_cp = arg;
14968
14969 if (arg && probe_linespec_to_ops (&arg_cp))
14970 ops = &tracepoint_probe_breakpoint_ops;
14971 else
14972 ops = &tracepoint_breakpoint_ops;
14973
14974 create_breakpoint (get_current_arch (),
14975 arg,
14976 NULL, 0, NULL, 1 /* parse arg */,
14977 0 /* tempflag */,
14978 bp_tracepoint /* type_wanted */,
14979 0 /* Ignore count */,
14980 pending_break_support,
14981 ops,
14982 from_tty,
14983 1 /* enabled */,
14984 0 /* internal */, 0);
14985 }
14986
14987 static void
14988 ftrace_command (char *arg, int from_tty)
14989 {
14990 create_breakpoint (get_current_arch (),
14991 arg,
14992 NULL, 0, NULL, 1 /* parse arg */,
14993 0 /* tempflag */,
14994 bp_fast_tracepoint /* type_wanted */,
14995 0 /* Ignore count */,
14996 pending_break_support,
14997 &tracepoint_breakpoint_ops,
14998 from_tty,
14999 1 /* enabled */,
15000 0 /* internal */, 0);
15001 }
15002
15003 /* strace command implementation. Creates a static tracepoint. */
15004
15005 static void
15006 strace_command (char *arg, int from_tty)
15007 {
15008 struct breakpoint_ops *ops;
15009
15010 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15011 or with a normal static tracepoint. */
15012 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15013 ops = &strace_marker_breakpoint_ops;
15014 else
15015 ops = &tracepoint_breakpoint_ops;
15016
15017 create_breakpoint (get_current_arch (),
15018 arg,
15019 NULL, 0, NULL, 1 /* parse arg */,
15020 0 /* tempflag */,
15021 bp_static_tracepoint /* type_wanted */,
15022 0 /* Ignore count */,
15023 pending_break_support,
15024 ops,
15025 from_tty,
15026 1 /* enabled */,
15027 0 /* internal */, 0);
15028 }
15029
15030 /* Set up a fake reader function that gets command lines from a linked
15031 list that was acquired during tracepoint uploading. */
15032
15033 static struct uploaded_tp *this_utp;
15034 static int next_cmd;
15035
15036 static char *
15037 read_uploaded_action (void)
15038 {
15039 char *rslt;
15040
15041 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15042
15043 next_cmd++;
15044
15045 return rslt;
15046 }
15047
15048 /* Given information about a tracepoint as recorded on a target (which
15049 can be either a live system or a trace file), attempt to create an
15050 equivalent GDB tracepoint. This is not a reliable process, since
15051 the target does not necessarily have all the information used when
15052 the tracepoint was originally defined. */
15053
15054 struct tracepoint *
15055 create_tracepoint_from_upload (struct uploaded_tp *utp)
15056 {
15057 char *addr_str, small_buf[100];
15058 struct tracepoint *tp;
15059
15060 if (utp->at_string)
15061 addr_str = utp->at_string;
15062 else
15063 {
15064 /* In the absence of a source location, fall back to raw
15065 address. Since there is no way to confirm that the address
15066 means the same thing as when the trace was started, warn the
15067 user. */
15068 warning (_("Uploaded tracepoint %d has no "
15069 "source location, using raw address"),
15070 utp->number);
15071 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15072 addr_str = small_buf;
15073 }
15074
15075 /* There's not much we can do with a sequence of bytecodes. */
15076 if (utp->cond && !utp->cond_string)
15077 warning (_("Uploaded tracepoint %d condition "
15078 "has no source form, ignoring it"),
15079 utp->number);
15080
15081 if (!create_breakpoint (get_current_arch (),
15082 addr_str,
15083 utp->cond_string, -1, NULL,
15084 0 /* parse cond/thread */,
15085 0 /* tempflag */,
15086 utp->type /* type_wanted */,
15087 0 /* Ignore count */,
15088 pending_break_support,
15089 &tracepoint_breakpoint_ops,
15090 0 /* from_tty */,
15091 utp->enabled /* enabled */,
15092 0 /* internal */,
15093 CREATE_BREAKPOINT_FLAGS_INSERTED))
15094 return NULL;
15095
15096 /* Get the tracepoint we just created. */
15097 tp = get_tracepoint (tracepoint_count);
15098 gdb_assert (tp != NULL);
15099
15100 if (utp->pass > 0)
15101 {
15102 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15103 tp->base.number);
15104
15105 trace_pass_command (small_buf, 0);
15106 }
15107
15108 /* If we have uploaded versions of the original commands, set up a
15109 special-purpose "reader" function and call the usual command line
15110 reader, then pass the result to the breakpoint command-setting
15111 function. */
15112 if (!VEC_empty (char_ptr, utp->cmd_strings))
15113 {
15114 struct command_line *cmd_list;
15115
15116 this_utp = utp;
15117 next_cmd = 0;
15118
15119 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15120
15121 breakpoint_set_commands (&tp->base, cmd_list);
15122 }
15123 else if (!VEC_empty (char_ptr, utp->actions)
15124 || !VEC_empty (char_ptr, utp->step_actions))
15125 warning (_("Uploaded tracepoint %d actions "
15126 "have no source form, ignoring them"),
15127 utp->number);
15128
15129 /* Copy any status information that might be available. */
15130 tp->base.hit_count = utp->hit_count;
15131 tp->traceframe_usage = utp->traceframe_usage;
15132
15133 return tp;
15134 }
15135
15136 /* Print information on tracepoint number TPNUM_EXP, or all if
15137 omitted. */
15138
15139 static void
15140 tracepoints_info (char *args, int from_tty)
15141 {
15142 struct ui_out *uiout = current_uiout;
15143 int num_printed;
15144
15145 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15146
15147 if (num_printed == 0)
15148 {
15149 if (args == NULL || *args == '\0')
15150 ui_out_message (uiout, 0, "No tracepoints.\n");
15151 else
15152 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15153 }
15154
15155 default_collect_info ();
15156 }
15157
15158 /* The 'enable trace' command enables tracepoints.
15159 Not supported by all targets. */
15160 static void
15161 enable_trace_command (char *args, int from_tty)
15162 {
15163 enable_command (args, from_tty);
15164 }
15165
15166 /* The 'disable trace' command disables tracepoints.
15167 Not supported by all targets. */
15168 static void
15169 disable_trace_command (char *args, int from_tty)
15170 {
15171 disable_command (args, from_tty);
15172 }
15173
15174 /* Remove a tracepoint (or all if no argument). */
15175 static void
15176 delete_trace_command (char *arg, int from_tty)
15177 {
15178 struct breakpoint *b, *b_tmp;
15179
15180 dont_repeat ();
15181
15182 if (arg == 0)
15183 {
15184 int breaks_to_delete = 0;
15185
15186 /* Delete all breakpoints if no argument.
15187 Do not delete internal or call-dummy breakpoints, these
15188 have to be deleted with an explicit breakpoint number
15189 argument. */
15190 ALL_TRACEPOINTS (b)
15191 if (is_tracepoint (b) && user_breakpoint_p (b))
15192 {
15193 breaks_to_delete = 1;
15194 break;
15195 }
15196
15197 /* Ask user only if there are some breakpoints to delete. */
15198 if (!from_tty
15199 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15200 {
15201 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15202 if (is_tracepoint (b) && user_breakpoint_p (b))
15203 delete_breakpoint (b);
15204 }
15205 }
15206 else
15207 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15208 }
15209
15210 /* Helper function for trace_pass_command. */
15211
15212 static void
15213 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15214 {
15215 tp->pass_count = count;
15216 observer_notify_breakpoint_modified (&tp->base);
15217 if (from_tty)
15218 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15219 tp->base.number, count);
15220 }
15221
15222 /* Set passcount for tracepoint.
15223
15224 First command argument is passcount, second is tracepoint number.
15225 If tracepoint number omitted, apply to most recently defined.
15226 Also accepts special argument "all". */
15227
15228 static void
15229 trace_pass_command (char *args, int from_tty)
15230 {
15231 struct tracepoint *t1;
15232 unsigned int count;
15233
15234 if (args == 0 || *args == 0)
15235 error (_("passcount command requires an "
15236 "argument (count + optional TP num)"));
15237
15238 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15239
15240 args = skip_spaces (args);
15241 if (*args && strncasecmp (args, "all", 3) == 0)
15242 {
15243 struct breakpoint *b;
15244
15245 args += 3; /* Skip special argument "all". */
15246 if (*args)
15247 error (_("Junk at end of arguments."));
15248
15249 ALL_TRACEPOINTS (b)
15250 {
15251 t1 = (struct tracepoint *) b;
15252 trace_pass_set_count (t1, count, from_tty);
15253 }
15254 }
15255 else if (*args == '\0')
15256 {
15257 t1 = get_tracepoint_by_number (&args, NULL, 1);
15258 if (t1)
15259 trace_pass_set_count (t1, count, from_tty);
15260 }
15261 else
15262 {
15263 struct get_number_or_range_state state;
15264
15265 init_number_or_range (&state, args);
15266 while (!state.finished)
15267 {
15268 t1 = get_tracepoint_by_number (&args, &state, 1);
15269 if (t1)
15270 trace_pass_set_count (t1, count, from_tty);
15271 }
15272 }
15273 }
15274
15275 struct tracepoint *
15276 get_tracepoint (int num)
15277 {
15278 struct breakpoint *t;
15279
15280 ALL_TRACEPOINTS (t)
15281 if (t->number == num)
15282 return (struct tracepoint *) t;
15283
15284 return NULL;
15285 }
15286
15287 /* Find the tracepoint with the given target-side number (which may be
15288 different from the tracepoint number after disconnecting and
15289 reconnecting). */
15290
15291 struct tracepoint *
15292 get_tracepoint_by_number_on_target (int num)
15293 {
15294 struct breakpoint *b;
15295
15296 ALL_TRACEPOINTS (b)
15297 {
15298 struct tracepoint *t = (struct tracepoint *) b;
15299
15300 if (t->number_on_target == num)
15301 return t;
15302 }
15303
15304 return NULL;
15305 }
15306
15307 /* Utility: parse a tracepoint number and look it up in the list.
15308 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15309 If OPTIONAL_P is true, then if the argument is missing, the most
15310 recent tracepoint (tracepoint_count) is returned. */
15311 struct tracepoint *
15312 get_tracepoint_by_number (char **arg,
15313 struct get_number_or_range_state *state,
15314 int optional_p)
15315 {
15316 struct breakpoint *t;
15317 int tpnum;
15318 char *instring = arg == NULL ? NULL : *arg;
15319
15320 if (state)
15321 {
15322 gdb_assert (!state->finished);
15323 tpnum = get_number_or_range (state);
15324 }
15325 else if (arg == NULL || *arg == NULL || ! **arg)
15326 {
15327 if (optional_p)
15328 tpnum = tracepoint_count;
15329 else
15330 error_no_arg (_("tracepoint number"));
15331 }
15332 else
15333 tpnum = get_number (arg);
15334
15335 if (tpnum <= 0)
15336 {
15337 if (instring && *instring)
15338 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15339 instring);
15340 else
15341 printf_filtered (_("Tracepoint argument missing "
15342 "and no previous tracepoint\n"));
15343 return NULL;
15344 }
15345
15346 ALL_TRACEPOINTS (t)
15347 if (t->number == tpnum)
15348 {
15349 return (struct tracepoint *) t;
15350 }
15351
15352 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15353 return NULL;
15354 }
15355
15356 void
15357 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15358 {
15359 if (b->thread != -1)
15360 fprintf_unfiltered (fp, " thread %d", b->thread);
15361
15362 if (b->task != 0)
15363 fprintf_unfiltered (fp, " task %d", b->task);
15364
15365 fprintf_unfiltered (fp, "\n");
15366 }
15367
15368 /* Save information on user settable breakpoints (watchpoints, etc) to
15369 a new script file named FILENAME. If FILTER is non-NULL, call it
15370 on each breakpoint and only include the ones for which it returns
15371 non-zero. */
15372
15373 static void
15374 save_breakpoints (char *filename, int from_tty,
15375 int (*filter) (const struct breakpoint *))
15376 {
15377 struct breakpoint *tp;
15378 int any = 0;
15379 char *pathname;
15380 struct cleanup *cleanup;
15381 struct ui_file *fp;
15382 int extra_trace_bits = 0;
15383
15384 if (filename == 0 || *filename == 0)
15385 error (_("Argument required (file name in which to save)"));
15386
15387 /* See if we have anything to save. */
15388 ALL_BREAKPOINTS (tp)
15389 {
15390 /* Skip internal and momentary breakpoints. */
15391 if (!user_breakpoint_p (tp))
15392 continue;
15393
15394 /* If we have a filter, only save the breakpoints it accepts. */
15395 if (filter && !filter (tp))
15396 continue;
15397
15398 any = 1;
15399
15400 if (is_tracepoint (tp))
15401 {
15402 extra_trace_bits = 1;
15403
15404 /* We can stop searching. */
15405 break;
15406 }
15407 }
15408
15409 if (!any)
15410 {
15411 warning (_("Nothing to save."));
15412 return;
15413 }
15414
15415 pathname = tilde_expand (filename);
15416 cleanup = make_cleanup (xfree, pathname);
15417 fp = gdb_fopen (pathname, "w");
15418 if (!fp)
15419 error (_("Unable to open file '%s' for saving (%s)"),
15420 filename, safe_strerror (errno));
15421 make_cleanup_ui_file_delete (fp);
15422
15423 if (extra_trace_bits)
15424 save_trace_state_variables (fp);
15425
15426 ALL_BREAKPOINTS (tp)
15427 {
15428 /* Skip internal and momentary breakpoints. */
15429 if (!user_breakpoint_p (tp))
15430 continue;
15431
15432 /* If we have a filter, only save the breakpoints it accepts. */
15433 if (filter && !filter (tp))
15434 continue;
15435
15436 tp->ops->print_recreate (tp, fp);
15437
15438 /* Note, we can't rely on tp->number for anything, as we can't
15439 assume the recreated breakpoint numbers will match. Use $bpnum
15440 instead. */
15441
15442 if (tp->cond_string)
15443 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15444
15445 if (tp->ignore_count)
15446 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15447
15448 if (tp->type != bp_dprintf && tp->commands)
15449 {
15450 volatile struct gdb_exception ex;
15451
15452 fprintf_unfiltered (fp, " commands\n");
15453
15454 ui_out_redirect (current_uiout, fp);
15455 TRY_CATCH (ex, RETURN_MASK_ALL)
15456 {
15457 print_command_lines (current_uiout, tp->commands->commands, 2);
15458 }
15459 ui_out_redirect (current_uiout, NULL);
15460
15461 if (ex.reason < 0)
15462 throw_exception (ex);
15463
15464 fprintf_unfiltered (fp, " end\n");
15465 }
15466
15467 if (tp->enable_state == bp_disabled)
15468 fprintf_unfiltered (fp, "disable\n");
15469
15470 /* If this is a multi-location breakpoint, check if the locations
15471 should be individually disabled. Watchpoint locations are
15472 special, and not user visible. */
15473 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15474 {
15475 struct bp_location *loc;
15476 int n = 1;
15477
15478 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15479 if (!loc->enabled)
15480 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15481 }
15482 }
15483
15484 if (extra_trace_bits && *default_collect)
15485 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15486
15487 do_cleanups (cleanup);
15488 if (from_tty)
15489 printf_filtered (_("Saved to file '%s'.\n"), filename);
15490 }
15491
15492 /* The `save breakpoints' command. */
15493
15494 static void
15495 save_breakpoints_command (char *args, int from_tty)
15496 {
15497 save_breakpoints (args, from_tty, NULL);
15498 }
15499
15500 /* The `save tracepoints' command. */
15501
15502 static void
15503 save_tracepoints_command (char *args, int from_tty)
15504 {
15505 save_breakpoints (args, from_tty, is_tracepoint);
15506 }
15507
15508 /* Create a vector of all tracepoints. */
15509
15510 VEC(breakpoint_p) *
15511 all_tracepoints (void)
15512 {
15513 VEC(breakpoint_p) *tp_vec = 0;
15514 struct breakpoint *tp;
15515
15516 ALL_TRACEPOINTS (tp)
15517 {
15518 VEC_safe_push (breakpoint_p, tp_vec, tp);
15519 }
15520
15521 return tp_vec;
15522 }
15523
15524 \f
15525 /* This help string is used for the break, hbreak, tbreak and thbreak
15526 commands. It is defined as a macro to prevent duplication.
15527 COMMAND should be a string constant containing the name of the
15528 command. */
15529 #define BREAK_ARGS_HELP(command) \
15530 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15531 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15532 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15533 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15534 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15535 If a line number is specified, break at start of code for that line.\n\
15536 If a function is specified, break at start of code for that function.\n\
15537 If an address is specified, break at that exact address.\n\
15538 With no LOCATION, uses current execution address of the selected\n\
15539 stack frame. This is useful for breaking on return to a stack frame.\n\
15540 \n\
15541 THREADNUM is the number from \"info threads\".\n\
15542 CONDITION is a boolean expression.\n\
15543 \n\
15544 Multiple breakpoints at one place are permitted, and useful if their\n\
15545 conditions are different.\n\
15546 \n\
15547 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15548
15549 /* List of subcommands for "catch". */
15550 static struct cmd_list_element *catch_cmdlist;
15551
15552 /* List of subcommands for "tcatch". */
15553 static struct cmd_list_element *tcatch_cmdlist;
15554
15555 void
15556 add_catch_command (char *name, char *docstring,
15557 void (*sfunc) (char *args, int from_tty,
15558 struct cmd_list_element *command),
15559 completer_ftype *completer,
15560 void *user_data_catch,
15561 void *user_data_tcatch)
15562 {
15563 struct cmd_list_element *command;
15564
15565 command = add_cmd (name, class_breakpoint, NULL, docstring,
15566 &catch_cmdlist);
15567 set_cmd_sfunc (command, sfunc);
15568 set_cmd_context (command, user_data_catch);
15569 set_cmd_completer (command, completer);
15570
15571 command = add_cmd (name, class_breakpoint, NULL, docstring,
15572 &tcatch_cmdlist);
15573 set_cmd_sfunc (command, sfunc);
15574 set_cmd_context (command, user_data_tcatch);
15575 set_cmd_completer (command, completer);
15576 }
15577
15578 static void
15579 clear_syscall_counts (struct inferior *inf)
15580 {
15581 struct catch_syscall_inferior_data *inf_data
15582 = get_catch_syscall_inferior_data (inf);
15583
15584 inf_data->total_syscalls_count = 0;
15585 inf_data->any_syscall_count = 0;
15586 VEC_free (int, inf_data->syscalls_counts);
15587 }
15588
15589 static void
15590 save_command (char *arg, int from_tty)
15591 {
15592 printf_unfiltered (_("\"save\" must be followed by "
15593 "the name of a save subcommand.\n"));
15594 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15595 }
15596
15597 struct breakpoint *
15598 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15599 void *data)
15600 {
15601 struct breakpoint *b, *b_tmp;
15602
15603 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15604 {
15605 if ((*callback) (b, data))
15606 return b;
15607 }
15608
15609 return NULL;
15610 }
15611
15612 /* Zero if any of the breakpoint's locations could be a location where
15613 functions have been inlined, nonzero otherwise. */
15614
15615 static int
15616 is_non_inline_function (struct breakpoint *b)
15617 {
15618 /* The shared library event breakpoint is set on the address of a
15619 non-inline function. */
15620 if (b->type == bp_shlib_event)
15621 return 1;
15622
15623 return 0;
15624 }
15625
15626 /* Nonzero if the specified PC cannot be a location where functions
15627 have been inlined. */
15628
15629 int
15630 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15631 const struct target_waitstatus *ws)
15632 {
15633 struct breakpoint *b;
15634 struct bp_location *bl;
15635
15636 ALL_BREAKPOINTS (b)
15637 {
15638 if (!is_non_inline_function (b))
15639 continue;
15640
15641 for (bl = b->loc; bl != NULL; bl = bl->next)
15642 {
15643 if (!bl->shlib_disabled
15644 && bpstat_check_location (bl, aspace, pc, ws))
15645 return 1;
15646 }
15647 }
15648
15649 return 0;
15650 }
15651
15652 /* Remove any references to OBJFILE which is going to be freed. */
15653
15654 void
15655 breakpoint_free_objfile (struct objfile *objfile)
15656 {
15657 struct bp_location **locp, *loc;
15658
15659 ALL_BP_LOCATIONS (loc, locp)
15660 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15661 loc->symtab = NULL;
15662 }
15663
15664 void
15665 initialize_breakpoint_ops (void)
15666 {
15667 static int initialized = 0;
15668
15669 struct breakpoint_ops *ops;
15670
15671 if (initialized)
15672 return;
15673 initialized = 1;
15674
15675 /* The breakpoint_ops structure to be inherit by all kinds of
15676 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15677 internal and momentary breakpoints, etc.). */
15678 ops = &bkpt_base_breakpoint_ops;
15679 *ops = base_breakpoint_ops;
15680 ops->re_set = bkpt_re_set;
15681 ops->insert_location = bkpt_insert_location;
15682 ops->remove_location = bkpt_remove_location;
15683 ops->breakpoint_hit = bkpt_breakpoint_hit;
15684 ops->create_sals_from_address = bkpt_create_sals_from_address;
15685 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15686 ops->decode_linespec = bkpt_decode_linespec;
15687
15688 /* The breakpoint_ops structure to be used in regular breakpoints. */
15689 ops = &bkpt_breakpoint_ops;
15690 *ops = bkpt_base_breakpoint_ops;
15691 ops->re_set = bkpt_re_set;
15692 ops->resources_needed = bkpt_resources_needed;
15693 ops->print_it = bkpt_print_it;
15694 ops->print_mention = bkpt_print_mention;
15695 ops->print_recreate = bkpt_print_recreate;
15696
15697 /* Ranged breakpoints. */
15698 ops = &ranged_breakpoint_ops;
15699 *ops = bkpt_breakpoint_ops;
15700 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15701 ops->resources_needed = resources_needed_ranged_breakpoint;
15702 ops->print_it = print_it_ranged_breakpoint;
15703 ops->print_one = print_one_ranged_breakpoint;
15704 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15705 ops->print_mention = print_mention_ranged_breakpoint;
15706 ops->print_recreate = print_recreate_ranged_breakpoint;
15707
15708 /* Internal breakpoints. */
15709 ops = &internal_breakpoint_ops;
15710 *ops = bkpt_base_breakpoint_ops;
15711 ops->re_set = internal_bkpt_re_set;
15712 ops->check_status = internal_bkpt_check_status;
15713 ops->print_it = internal_bkpt_print_it;
15714 ops->print_mention = internal_bkpt_print_mention;
15715
15716 /* Momentary breakpoints. */
15717 ops = &momentary_breakpoint_ops;
15718 *ops = bkpt_base_breakpoint_ops;
15719 ops->re_set = momentary_bkpt_re_set;
15720 ops->check_status = momentary_bkpt_check_status;
15721 ops->print_it = momentary_bkpt_print_it;
15722 ops->print_mention = momentary_bkpt_print_mention;
15723
15724 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15725 ops = &longjmp_breakpoint_ops;
15726 *ops = momentary_breakpoint_ops;
15727 ops->dtor = longjmp_bkpt_dtor;
15728
15729 /* Probe breakpoints. */
15730 ops = &bkpt_probe_breakpoint_ops;
15731 *ops = bkpt_breakpoint_ops;
15732 ops->insert_location = bkpt_probe_insert_location;
15733 ops->remove_location = bkpt_probe_remove_location;
15734 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15735 ops->decode_linespec = bkpt_probe_decode_linespec;
15736
15737 /* Watchpoints. */
15738 ops = &watchpoint_breakpoint_ops;
15739 *ops = base_breakpoint_ops;
15740 ops->dtor = dtor_watchpoint;
15741 ops->re_set = re_set_watchpoint;
15742 ops->insert_location = insert_watchpoint;
15743 ops->remove_location = remove_watchpoint;
15744 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15745 ops->check_status = check_status_watchpoint;
15746 ops->resources_needed = resources_needed_watchpoint;
15747 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15748 ops->print_it = print_it_watchpoint;
15749 ops->print_mention = print_mention_watchpoint;
15750 ops->print_recreate = print_recreate_watchpoint;
15751
15752 /* Masked watchpoints. */
15753 ops = &masked_watchpoint_breakpoint_ops;
15754 *ops = watchpoint_breakpoint_ops;
15755 ops->insert_location = insert_masked_watchpoint;
15756 ops->remove_location = remove_masked_watchpoint;
15757 ops->resources_needed = resources_needed_masked_watchpoint;
15758 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15759 ops->print_it = print_it_masked_watchpoint;
15760 ops->print_one_detail = print_one_detail_masked_watchpoint;
15761 ops->print_mention = print_mention_masked_watchpoint;
15762 ops->print_recreate = print_recreate_masked_watchpoint;
15763
15764 /* Tracepoints. */
15765 ops = &tracepoint_breakpoint_ops;
15766 *ops = base_breakpoint_ops;
15767 ops->re_set = tracepoint_re_set;
15768 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15769 ops->print_one_detail = tracepoint_print_one_detail;
15770 ops->print_mention = tracepoint_print_mention;
15771 ops->print_recreate = tracepoint_print_recreate;
15772 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15773 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15774 ops->decode_linespec = tracepoint_decode_linespec;
15775
15776 /* Probe tracepoints. */
15777 ops = &tracepoint_probe_breakpoint_ops;
15778 *ops = tracepoint_breakpoint_ops;
15779 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15780 ops->decode_linespec = tracepoint_probe_decode_linespec;
15781
15782 /* Static tracepoints with marker (`-m'). */
15783 ops = &strace_marker_breakpoint_ops;
15784 *ops = tracepoint_breakpoint_ops;
15785 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15786 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15787 ops->decode_linespec = strace_marker_decode_linespec;
15788
15789 /* Fork catchpoints. */
15790 ops = &catch_fork_breakpoint_ops;
15791 *ops = base_breakpoint_ops;
15792 ops->insert_location = insert_catch_fork;
15793 ops->remove_location = remove_catch_fork;
15794 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15795 ops->print_it = print_it_catch_fork;
15796 ops->print_one = print_one_catch_fork;
15797 ops->print_mention = print_mention_catch_fork;
15798 ops->print_recreate = print_recreate_catch_fork;
15799
15800 /* Vfork catchpoints. */
15801 ops = &catch_vfork_breakpoint_ops;
15802 *ops = base_breakpoint_ops;
15803 ops->insert_location = insert_catch_vfork;
15804 ops->remove_location = remove_catch_vfork;
15805 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15806 ops->print_it = print_it_catch_vfork;
15807 ops->print_one = print_one_catch_vfork;
15808 ops->print_mention = print_mention_catch_vfork;
15809 ops->print_recreate = print_recreate_catch_vfork;
15810
15811 /* Exec catchpoints. */
15812 ops = &catch_exec_breakpoint_ops;
15813 *ops = base_breakpoint_ops;
15814 ops->dtor = dtor_catch_exec;
15815 ops->insert_location = insert_catch_exec;
15816 ops->remove_location = remove_catch_exec;
15817 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15818 ops->print_it = print_it_catch_exec;
15819 ops->print_one = print_one_catch_exec;
15820 ops->print_mention = print_mention_catch_exec;
15821 ops->print_recreate = print_recreate_catch_exec;
15822
15823 /* Syscall catchpoints. */
15824 ops = &catch_syscall_breakpoint_ops;
15825 *ops = base_breakpoint_ops;
15826 ops->dtor = dtor_catch_syscall;
15827 ops->insert_location = insert_catch_syscall;
15828 ops->remove_location = remove_catch_syscall;
15829 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15830 ops->print_it = print_it_catch_syscall;
15831 ops->print_one = print_one_catch_syscall;
15832 ops->print_mention = print_mention_catch_syscall;
15833 ops->print_recreate = print_recreate_catch_syscall;
15834
15835 /* Solib-related catchpoints. */
15836 ops = &catch_solib_breakpoint_ops;
15837 *ops = base_breakpoint_ops;
15838 ops->dtor = dtor_catch_solib;
15839 ops->insert_location = insert_catch_solib;
15840 ops->remove_location = remove_catch_solib;
15841 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15842 ops->check_status = check_status_catch_solib;
15843 ops->print_it = print_it_catch_solib;
15844 ops->print_one = print_one_catch_solib;
15845 ops->print_mention = print_mention_catch_solib;
15846 ops->print_recreate = print_recreate_catch_solib;
15847
15848 ops = &dprintf_breakpoint_ops;
15849 *ops = bkpt_base_breakpoint_ops;
15850 ops->re_set = dprintf_re_set;
15851 ops->resources_needed = bkpt_resources_needed;
15852 ops->print_it = bkpt_print_it;
15853 ops->print_mention = bkpt_print_mention;
15854 ops->print_recreate = dprintf_print_recreate;
15855 }
15856
15857 /* Chain containing all defined "enable breakpoint" subcommands. */
15858
15859 static struct cmd_list_element *enablebreaklist = NULL;
15860
15861 void
15862 _initialize_breakpoint (void)
15863 {
15864 struct cmd_list_element *c;
15865
15866 initialize_breakpoint_ops ();
15867
15868 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15869 observer_attach_inferior_exit (clear_syscall_counts);
15870 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15871
15872 breakpoint_objfile_key
15873 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15874
15875 catch_syscall_inferior_data
15876 = register_inferior_data_with_cleanup (NULL,
15877 catch_syscall_inferior_data_cleanup);
15878
15879 breakpoint_chain = 0;
15880 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15881 before a breakpoint is set. */
15882 breakpoint_count = 0;
15883
15884 tracepoint_count = 0;
15885
15886 add_com ("ignore", class_breakpoint, ignore_command, _("\
15887 Set ignore-count of breakpoint number N to COUNT.\n\
15888 Usage is `ignore N COUNT'."));
15889 if (xdb_commands)
15890 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15891
15892 add_com ("commands", class_breakpoint, commands_command, _("\
15893 Set commands to be executed when a breakpoint is hit.\n\
15894 Give breakpoint number as argument after \"commands\".\n\
15895 With no argument, the targeted breakpoint is the last one set.\n\
15896 The commands themselves follow starting on the next line.\n\
15897 Type a line containing \"end\" to indicate the end of them.\n\
15898 Give \"silent\" as the first line to make the breakpoint silent;\n\
15899 then no output is printed when it is hit, except what the commands print."));
15900
15901 c = add_com ("condition", class_breakpoint, condition_command, _("\
15902 Specify breakpoint number N to break only if COND is true.\n\
15903 Usage is `condition N COND', where N is an integer and COND is an\n\
15904 expression to be evaluated whenever breakpoint N is reached."));
15905 set_cmd_completer (c, condition_completer);
15906
15907 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15908 Set a temporary breakpoint.\n\
15909 Like \"break\" except the breakpoint is only temporary,\n\
15910 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15911 by using \"enable delete\" on the breakpoint number.\n\
15912 \n"
15913 BREAK_ARGS_HELP ("tbreak")));
15914 set_cmd_completer (c, location_completer);
15915
15916 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15917 Set a hardware assisted breakpoint.\n\
15918 Like \"break\" except the breakpoint requires hardware support,\n\
15919 some target hardware may not have this support.\n\
15920 \n"
15921 BREAK_ARGS_HELP ("hbreak")));
15922 set_cmd_completer (c, location_completer);
15923
15924 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15925 Set a temporary hardware assisted breakpoint.\n\
15926 Like \"hbreak\" except the breakpoint is only temporary,\n\
15927 so it will be deleted when hit.\n\
15928 \n"
15929 BREAK_ARGS_HELP ("thbreak")));
15930 set_cmd_completer (c, location_completer);
15931
15932 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15933 Enable some breakpoints.\n\
15934 Give breakpoint numbers (separated by spaces) as arguments.\n\
15935 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15936 This is used to cancel the effect of the \"disable\" command.\n\
15937 With a subcommand you can enable temporarily."),
15938 &enablelist, "enable ", 1, &cmdlist);
15939 if (xdb_commands)
15940 add_com ("ab", class_breakpoint, enable_command, _("\
15941 Enable some breakpoints.\n\
15942 Give breakpoint numbers (separated by spaces) as arguments.\n\
15943 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15944 This is used to cancel the effect of the \"disable\" command.\n\
15945 With a subcommand you can enable temporarily."));
15946
15947 add_com_alias ("en", "enable", class_breakpoint, 1);
15948
15949 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15950 Enable some breakpoints.\n\
15951 Give breakpoint numbers (separated by spaces) as arguments.\n\
15952 This is used to cancel the effect of the \"disable\" command.\n\
15953 May be abbreviated to simply \"enable\".\n"),
15954 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15955
15956 add_cmd ("once", no_class, enable_once_command, _("\
15957 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15958 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15959 &enablebreaklist);
15960
15961 add_cmd ("delete", no_class, enable_delete_command, _("\
15962 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15963 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15964 &enablebreaklist);
15965
15966 add_cmd ("count", no_class, enable_count_command, _("\
15967 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15968 If a breakpoint is hit while enabled in this fashion,\n\
15969 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15970 &enablebreaklist);
15971
15972 add_cmd ("delete", no_class, enable_delete_command, _("\
15973 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15974 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15975 &enablelist);
15976
15977 add_cmd ("once", no_class, enable_once_command, _("\
15978 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15979 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15980 &enablelist);
15981
15982 add_cmd ("count", no_class, enable_count_command, _("\
15983 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15984 If a breakpoint is hit while enabled in this fashion,\n\
15985 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15986 &enablelist);
15987
15988 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15989 Disable some breakpoints.\n\
15990 Arguments are breakpoint numbers with spaces in between.\n\
15991 To disable all breakpoints, give no argument.\n\
15992 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15993 &disablelist, "disable ", 1, &cmdlist);
15994 add_com_alias ("dis", "disable", class_breakpoint, 1);
15995 add_com_alias ("disa", "disable", class_breakpoint, 1);
15996 if (xdb_commands)
15997 add_com ("sb", class_breakpoint, disable_command, _("\
15998 Disable some breakpoints.\n\
15999 Arguments are breakpoint numbers with spaces in between.\n\
16000 To disable all breakpoints, give no argument.\n\
16001 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16002
16003 add_cmd ("breakpoints", class_alias, disable_command, _("\
16004 Disable some breakpoints.\n\
16005 Arguments are breakpoint numbers with spaces in between.\n\
16006 To disable all breakpoints, give no argument.\n\
16007 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16008 This command may be abbreviated \"disable\"."),
16009 &disablelist);
16010
16011 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16012 Delete some breakpoints or auto-display expressions.\n\
16013 Arguments are breakpoint numbers with spaces in between.\n\
16014 To delete all breakpoints, give no argument.\n\
16015 \n\
16016 Also a prefix command for deletion of other GDB objects.\n\
16017 The \"unset\" command is also an alias for \"delete\"."),
16018 &deletelist, "delete ", 1, &cmdlist);
16019 add_com_alias ("d", "delete", class_breakpoint, 1);
16020 add_com_alias ("del", "delete", class_breakpoint, 1);
16021 if (xdb_commands)
16022 add_com ("db", class_breakpoint, delete_command, _("\
16023 Delete some breakpoints.\n\
16024 Arguments are breakpoint numbers with spaces in between.\n\
16025 To delete all breakpoints, give no argument.\n"));
16026
16027 add_cmd ("breakpoints", class_alias, delete_command, _("\
16028 Delete some breakpoints or auto-display expressions.\n\
16029 Arguments are breakpoint numbers with spaces in between.\n\
16030 To delete all breakpoints, give no argument.\n\
16031 This command may be abbreviated \"delete\"."),
16032 &deletelist);
16033
16034 add_com ("clear", class_breakpoint, clear_command, _("\
16035 Clear breakpoint at specified line or function.\n\
16036 Argument may be line number, function name, or \"*\" and an address.\n\
16037 If line number is specified, all breakpoints in that line are cleared.\n\
16038 If function is specified, breakpoints at beginning of function are cleared.\n\
16039 If an address is specified, breakpoints at that address are cleared.\n\
16040 \n\
16041 With no argument, clears all breakpoints in the line that the selected frame\n\
16042 is executing in.\n\
16043 \n\
16044 See also the \"delete\" command which clears breakpoints by number."));
16045 add_com_alias ("cl", "clear", class_breakpoint, 1);
16046
16047 c = add_com ("break", class_breakpoint, break_command, _("\
16048 Set breakpoint at specified line or function.\n"
16049 BREAK_ARGS_HELP ("break")));
16050 set_cmd_completer (c, location_completer);
16051
16052 add_com_alias ("b", "break", class_run, 1);
16053 add_com_alias ("br", "break", class_run, 1);
16054 add_com_alias ("bre", "break", class_run, 1);
16055 add_com_alias ("brea", "break", class_run, 1);
16056
16057 if (xdb_commands)
16058 add_com_alias ("ba", "break", class_breakpoint, 1);
16059
16060 if (dbx_commands)
16061 {
16062 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16063 Break in function/address or break at a line in the current file."),
16064 &stoplist, "stop ", 1, &cmdlist);
16065 add_cmd ("in", class_breakpoint, stopin_command,
16066 _("Break in function or address."), &stoplist);
16067 add_cmd ("at", class_breakpoint, stopat_command,
16068 _("Break at a line in the current file."), &stoplist);
16069 add_com ("status", class_info, breakpoints_info, _("\
16070 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16071 The \"Type\" column indicates one of:\n\
16072 \tbreakpoint - normal breakpoint\n\
16073 \twatchpoint - watchpoint\n\
16074 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16075 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16076 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16077 address and file/line number respectively.\n\
16078 \n\
16079 Convenience variable \"$_\" and default examine address for \"x\"\n\
16080 are set to the address of the last breakpoint listed unless the command\n\
16081 is prefixed with \"server \".\n\n\
16082 Convenience variable \"$bpnum\" contains the number of the last\n\
16083 breakpoint set."));
16084 }
16085
16086 add_info ("breakpoints", breakpoints_info, _("\
16087 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16088 The \"Type\" column indicates one of:\n\
16089 \tbreakpoint - normal breakpoint\n\
16090 \twatchpoint - watchpoint\n\
16091 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16092 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16093 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16094 address and file/line number respectively.\n\
16095 \n\
16096 Convenience variable \"$_\" and default examine address for \"x\"\n\
16097 are set to the address of the last breakpoint listed unless the command\n\
16098 is prefixed with \"server \".\n\n\
16099 Convenience variable \"$bpnum\" contains the number of the last\n\
16100 breakpoint set."));
16101
16102 add_info_alias ("b", "breakpoints", 1);
16103
16104 if (xdb_commands)
16105 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16106 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16107 The \"Type\" column indicates one of:\n\
16108 \tbreakpoint - normal breakpoint\n\
16109 \twatchpoint - watchpoint\n\
16110 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16111 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16112 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16113 address and file/line number respectively.\n\
16114 \n\
16115 Convenience variable \"$_\" and default examine address for \"x\"\n\
16116 are set to the address of the last breakpoint listed unless the command\n\
16117 is prefixed with \"server \".\n\n\
16118 Convenience variable \"$bpnum\" contains the number of the last\n\
16119 breakpoint set."));
16120
16121 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16122 Status of all breakpoints, or breakpoint number NUMBER.\n\
16123 The \"Type\" column indicates one of:\n\
16124 \tbreakpoint - normal breakpoint\n\
16125 \twatchpoint - watchpoint\n\
16126 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16127 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16128 \tuntil - internal breakpoint used by the \"until\" command\n\
16129 \tfinish - internal breakpoint used by the \"finish\" command\n\
16130 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16131 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16132 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16133 address and file/line number respectively.\n\
16134 \n\
16135 Convenience variable \"$_\" and default examine address for \"x\"\n\
16136 are set to the address of the last breakpoint listed unless the command\n\
16137 is prefixed with \"server \".\n\n\
16138 Convenience variable \"$bpnum\" contains the number of the last\n\
16139 breakpoint set."),
16140 &maintenanceinfolist);
16141
16142 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16143 Set catchpoints to catch events."),
16144 &catch_cmdlist, "catch ",
16145 0/*allow-unknown*/, &cmdlist);
16146
16147 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16148 Set temporary catchpoints to catch events."),
16149 &tcatch_cmdlist, "tcatch ",
16150 0/*allow-unknown*/, &cmdlist);
16151
16152 add_catch_command ("fork", _("Catch calls to fork."),
16153 catch_fork_command_1,
16154 NULL,
16155 (void *) (uintptr_t) catch_fork_permanent,
16156 (void *) (uintptr_t) catch_fork_temporary);
16157 add_catch_command ("vfork", _("Catch calls to vfork."),
16158 catch_fork_command_1,
16159 NULL,
16160 (void *) (uintptr_t) catch_vfork_permanent,
16161 (void *) (uintptr_t) catch_vfork_temporary);
16162 add_catch_command ("exec", _("Catch calls to exec."),
16163 catch_exec_command_1,
16164 NULL,
16165 CATCH_PERMANENT,
16166 CATCH_TEMPORARY);
16167 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16168 Usage: catch load [REGEX]\n\
16169 If REGEX is given, only stop for libraries matching the regular expression."),
16170 catch_load_command_1,
16171 NULL,
16172 CATCH_PERMANENT,
16173 CATCH_TEMPORARY);
16174 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16175 Usage: catch unload [REGEX]\n\
16176 If REGEX is given, only stop for libraries matching the regular expression."),
16177 catch_unload_command_1,
16178 NULL,
16179 CATCH_PERMANENT,
16180 CATCH_TEMPORARY);
16181 add_catch_command ("syscall", _("\
16182 Catch system calls by their names and/or numbers.\n\
16183 Arguments say which system calls to catch. If no arguments\n\
16184 are given, every system call will be caught.\n\
16185 Arguments, if given, should be one or more system call names\n\
16186 (if your system supports that), or system call numbers."),
16187 catch_syscall_command_1,
16188 catch_syscall_completer,
16189 CATCH_PERMANENT,
16190 CATCH_TEMPORARY);
16191
16192 c = add_com ("watch", class_breakpoint, watch_command, _("\
16193 Set a watchpoint for an expression.\n\
16194 Usage: watch [-l|-location] EXPRESSION\n\
16195 A watchpoint stops execution of your program whenever the value of\n\
16196 an expression changes.\n\
16197 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16198 the memory to which it refers."));
16199 set_cmd_completer (c, expression_completer);
16200
16201 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16202 Set a read watchpoint for an expression.\n\
16203 Usage: rwatch [-l|-location] EXPRESSION\n\
16204 A watchpoint stops execution of your program whenever the value of\n\
16205 an expression is read.\n\
16206 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16207 the memory to which it refers."));
16208 set_cmd_completer (c, expression_completer);
16209
16210 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16211 Set a watchpoint for an expression.\n\
16212 Usage: awatch [-l|-location] EXPRESSION\n\
16213 A watchpoint stops execution of your program whenever the value of\n\
16214 an expression is either read or written.\n\
16215 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16216 the memory to which it refers."));
16217 set_cmd_completer (c, expression_completer);
16218
16219 add_info ("watchpoints", watchpoints_info, _("\
16220 Status of specified watchpoints (all watchpoints if no argument)."));
16221
16222 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16223 respond to changes - contrary to the description. */
16224 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16225 &can_use_hw_watchpoints, _("\
16226 Set debugger's willingness to use watchpoint hardware."), _("\
16227 Show debugger's willingness to use watchpoint hardware."), _("\
16228 If zero, gdb will not use hardware for new watchpoints, even if\n\
16229 such is available. (However, any hardware watchpoints that were\n\
16230 created before setting this to nonzero, will continue to use watchpoint\n\
16231 hardware.)"),
16232 NULL,
16233 show_can_use_hw_watchpoints,
16234 &setlist, &showlist);
16235
16236 can_use_hw_watchpoints = 1;
16237
16238 /* Tracepoint manipulation commands. */
16239
16240 c = add_com ("trace", class_breakpoint, trace_command, _("\
16241 Set a tracepoint at specified line or function.\n\
16242 \n"
16243 BREAK_ARGS_HELP ("trace") "\n\
16244 Do \"help tracepoints\" for info on other tracepoint commands."));
16245 set_cmd_completer (c, location_completer);
16246
16247 add_com_alias ("tp", "trace", class_alias, 0);
16248 add_com_alias ("tr", "trace", class_alias, 1);
16249 add_com_alias ("tra", "trace", class_alias, 1);
16250 add_com_alias ("trac", "trace", class_alias, 1);
16251
16252 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16253 Set a fast tracepoint at specified line or function.\n\
16254 \n"
16255 BREAK_ARGS_HELP ("ftrace") "\n\
16256 Do \"help tracepoints\" for info on other tracepoint commands."));
16257 set_cmd_completer (c, location_completer);
16258
16259 c = add_com ("strace", class_breakpoint, strace_command, _("\
16260 Set a static tracepoint at specified line, function or marker.\n\
16261 \n\
16262 strace [LOCATION] [if CONDITION]\n\
16263 LOCATION may be a line number, function name, \"*\" and an address,\n\
16264 or -m MARKER_ID.\n\
16265 If a line number is specified, probe the marker at start of code\n\
16266 for that line. If a function is specified, probe the marker at start\n\
16267 of code for that function. If an address is specified, probe the marker\n\
16268 at that exact address. If a marker id is specified, probe the marker\n\
16269 with that name. With no LOCATION, uses current execution address of\n\
16270 the selected stack frame.\n\
16271 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16272 This collects arbitrary user data passed in the probe point call to the\n\
16273 tracing library. You can inspect it when analyzing the trace buffer,\n\
16274 by printing the $_sdata variable like any other convenience variable.\n\
16275 \n\
16276 CONDITION is a boolean expression.\n\
16277 \n\
16278 Multiple tracepoints at one place are permitted, and useful if their\n\
16279 conditions are different.\n\
16280 \n\
16281 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16282 Do \"help tracepoints\" for info on other tracepoint commands."));
16283 set_cmd_completer (c, location_completer);
16284
16285 add_info ("tracepoints", tracepoints_info, _("\
16286 Status of specified tracepoints (all tracepoints if no argument).\n\
16287 Convenience variable \"$tpnum\" contains the number of the\n\
16288 last tracepoint set."));
16289
16290 add_info_alias ("tp", "tracepoints", 1);
16291
16292 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16293 Delete specified tracepoints.\n\
16294 Arguments are tracepoint numbers, separated by spaces.\n\
16295 No argument means delete all tracepoints."),
16296 &deletelist);
16297 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16298
16299 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16300 Disable specified tracepoints.\n\
16301 Arguments are tracepoint numbers, separated by spaces.\n\
16302 No argument means disable all tracepoints."),
16303 &disablelist);
16304 deprecate_cmd (c, "disable");
16305
16306 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16307 Enable specified tracepoints.\n\
16308 Arguments are tracepoint numbers, separated by spaces.\n\
16309 No argument means enable all tracepoints."),
16310 &enablelist);
16311 deprecate_cmd (c, "enable");
16312
16313 add_com ("passcount", class_trace, trace_pass_command, _("\
16314 Set the passcount for a tracepoint.\n\
16315 The trace will end when the tracepoint has been passed 'count' times.\n\
16316 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16317 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16318
16319 add_prefix_cmd ("save", class_breakpoint, save_command,
16320 _("Save breakpoint definitions as a script."),
16321 &save_cmdlist, "save ",
16322 0/*allow-unknown*/, &cmdlist);
16323
16324 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16325 Save current breakpoint definitions as a script.\n\
16326 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16327 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16328 session to restore them."),
16329 &save_cmdlist);
16330 set_cmd_completer (c, filename_completer);
16331
16332 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16333 Save current tracepoint definitions as a script.\n\
16334 Use the 'source' command in another debug session to restore them."),
16335 &save_cmdlist);
16336 set_cmd_completer (c, filename_completer);
16337
16338 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16339 deprecate_cmd (c, "save tracepoints");
16340
16341 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16342 Breakpoint specific settings\n\
16343 Configure various breakpoint-specific variables such as\n\
16344 pending breakpoint behavior"),
16345 &breakpoint_set_cmdlist, "set breakpoint ",
16346 0/*allow-unknown*/, &setlist);
16347 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16348 Breakpoint specific settings\n\
16349 Configure various breakpoint-specific variables such as\n\
16350 pending breakpoint behavior"),
16351 &breakpoint_show_cmdlist, "show breakpoint ",
16352 0/*allow-unknown*/, &showlist);
16353
16354 add_setshow_auto_boolean_cmd ("pending", no_class,
16355 &pending_break_support, _("\
16356 Set debugger's behavior regarding pending breakpoints."), _("\
16357 Show debugger's behavior regarding pending breakpoints."), _("\
16358 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16359 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16360 an error. If auto, an unrecognized breakpoint location results in a\n\
16361 user-query to see if a pending breakpoint should be created."),
16362 NULL,
16363 show_pending_break_support,
16364 &breakpoint_set_cmdlist,
16365 &breakpoint_show_cmdlist);
16366
16367 pending_break_support = AUTO_BOOLEAN_AUTO;
16368
16369 add_setshow_boolean_cmd ("auto-hw", no_class,
16370 &automatic_hardware_breakpoints, _("\
16371 Set automatic usage of hardware breakpoints."), _("\
16372 Show automatic usage of hardware breakpoints."), _("\
16373 If set, the debugger will automatically use hardware breakpoints for\n\
16374 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16375 a warning will be emitted for such breakpoints."),
16376 NULL,
16377 show_automatic_hardware_breakpoints,
16378 &breakpoint_set_cmdlist,
16379 &breakpoint_show_cmdlist);
16380
16381 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16382 &always_inserted_mode, _("\
16383 Set mode for inserting breakpoints."), _("\
16384 Show mode for inserting breakpoints."), _("\
16385 When this mode is off, breakpoints are inserted in inferior when it is\n\
16386 resumed, and removed when execution stops. When this mode is on,\n\
16387 breakpoints are inserted immediately and removed only when the user\n\
16388 deletes the breakpoint. When this mode is auto (which is the default),\n\
16389 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16390 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16391 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16392 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16393 NULL,
16394 &show_always_inserted_mode,
16395 &breakpoint_set_cmdlist,
16396 &breakpoint_show_cmdlist);
16397
16398 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16399 condition_evaluation_enums,
16400 &condition_evaluation_mode_1, _("\
16401 Set mode of breakpoint condition evaluation."), _("\
16402 Show mode of breakpoint condition evaluation."), _("\
16403 When this is set to \"host\", breakpoint conditions will be\n\
16404 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16405 breakpoint conditions will be downloaded to the target (if the target\n\
16406 supports such feature) and conditions will be evaluated on the target's side.\n\
16407 If this is set to \"auto\" (default), this will be automatically set to\n\
16408 \"target\" if it supports condition evaluation, otherwise it will\n\
16409 be set to \"gdb\""),
16410 &set_condition_evaluation_mode,
16411 &show_condition_evaluation_mode,
16412 &breakpoint_set_cmdlist,
16413 &breakpoint_show_cmdlist);
16414
16415 add_com ("break-range", class_breakpoint, break_range_command, _("\
16416 Set a breakpoint for an address range.\n\
16417 break-range START-LOCATION, END-LOCATION\n\
16418 where START-LOCATION and END-LOCATION can be one of the following:\n\
16419 LINENUM, for that line in the current file,\n\
16420 FILE:LINENUM, for that line in that file,\n\
16421 +OFFSET, for that number of lines after the current line\n\
16422 or the start of the range\n\
16423 FUNCTION, for the first line in that function,\n\
16424 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16425 *ADDRESS, for the instruction at that address.\n\
16426 \n\
16427 The breakpoint will stop execution of the inferior whenever it executes\n\
16428 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16429 range (including START-LOCATION and END-LOCATION)."));
16430
16431 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16432 Set a dynamic printf at specified line or function.\n\
16433 dprintf location,format string,arg1,arg2,...\n\
16434 location may be a line number, function name, or \"*\" and an address.\n\
16435 If a line number is specified, break at start of code for that line.\n\
16436 If a function is specified, break at start of code for that function.\n\
16437 "));
16438 set_cmd_completer (c, location_completer);
16439
16440 add_setshow_enum_cmd ("dprintf-style", class_support,
16441 dprintf_style_enums, &dprintf_style, _("\
16442 Set the style of usage for dynamic printf."), _("\
16443 Show the style of usage for dynamic printf."), _("\
16444 This setting chooses how GDB will do a dynamic printf.\n\
16445 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16446 console, as with the \"printf\" command.\n\
16447 If the value is \"call\", the print is done by calling a function in your\n\
16448 program; by default printf(), but you can choose a different function or\n\
16449 output stream by setting dprintf-function and dprintf-channel."),
16450 update_dprintf_commands, NULL,
16451 &setlist, &showlist);
16452
16453 dprintf_function = xstrdup ("printf");
16454 add_setshow_string_cmd ("dprintf-function", class_support,
16455 &dprintf_function, _("\
16456 Set the function to use for dynamic printf"), _("\
16457 Show the function to use for dynamic printf"), NULL,
16458 update_dprintf_commands, NULL,
16459 &setlist, &showlist);
16460
16461 dprintf_channel = xstrdup ("");
16462 add_setshow_string_cmd ("dprintf-channel", class_support,
16463 &dprintf_channel, _("\
16464 Set the channel to use for dynamic printf"), _("\
16465 Show the channel to use for dynamic printf"), NULL,
16466 update_dprintf_commands, NULL,
16467 &setlist, &showlist);
16468
16469 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16470 &disconnected_dprintf, _("\
16471 Set whether dprintf continues after GDB disconnects."), _("\
16472 Show whether dprintf continues after GDB disconnects."), _("\
16473 Use this to let dprintf commands continue to hit and produce output\n\
16474 even if GDB disconnects or detaches from the target."),
16475 NULL,
16476 NULL,
16477 &setlist, &showlist);
16478
16479 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16480 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16481 (target agent only) This is useful for formatted output in user-defined commands."));
16482
16483 automatic_hardware_breakpoints = 1;
16484
16485 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16486 }
This page took 0.714917 seconds and 4 git commands to generate.