breakpoint shadowing, take single-step breakpoints into account.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static void free_bp_location (struct bp_location *loc);
232 static void incref_bp_location (struct bp_location *loc);
233 static void decref_bp_location (struct bp_location **loc);
234
235 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
236
237 static void update_global_location_list (int);
238
239 static void update_global_location_list_nothrow (int);
240
241 static int is_hardware_watchpoint (const struct breakpoint *bpt);
242
243 static void insert_breakpoint_locations (void);
244
245 static int syscall_catchpoint_p (struct breakpoint *b);
246
247 static void tracepoints_info (char *, int);
248
249 static void delete_trace_command (char *, int);
250
251 static void enable_trace_command (char *, int);
252
253 static void disable_trace_command (char *, int);
254
255 static void trace_pass_command (char *, int);
256
257 static void set_tracepoint_count (int num);
258
259 static int is_masked_watchpoint (const struct breakpoint *b);
260
261 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
262
263 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
264 otherwise. */
265
266 static int strace_marker_p (struct breakpoint *b);
267
268 /* The abstract base class all breakpoint_ops structures inherit
269 from. */
270 struct breakpoint_ops base_breakpoint_ops;
271
272 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
273 that are implemented on top of software or hardware breakpoints
274 (user breakpoints, internal and momentary breakpoints, etc.). */
275 static struct breakpoint_ops bkpt_base_breakpoint_ops;
276
277 /* Internal breakpoints class type. */
278 static struct breakpoint_ops internal_breakpoint_ops;
279
280 /* Momentary breakpoints class type. */
281 static struct breakpoint_ops momentary_breakpoint_ops;
282
283 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
284 static struct breakpoint_ops longjmp_breakpoint_ops;
285
286 /* The breakpoint_ops structure to be used in regular user created
287 breakpoints. */
288 struct breakpoint_ops bkpt_breakpoint_ops;
289
290 /* Breakpoints set on probes. */
291 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
292
293 /* Dynamic printf class type. */
294 struct breakpoint_ops dprintf_breakpoint_ops;
295
296 /* One (or perhaps two) breakpoints used for software single
297 stepping. */
298
299 static void *single_step_breakpoints[2];
300 static struct gdbarch *single_step_gdbarch[2];
301
302 /* The style in which to perform a dynamic printf. This is a user
303 option because different output options have different tradeoffs;
304 if GDB does the printing, there is better error handling if there
305 is a problem with any of the arguments, but using an inferior
306 function lets you have special-purpose printers and sending of
307 output to the same place as compiled-in print functions. */
308
309 static const char dprintf_style_gdb[] = "gdb";
310 static const char dprintf_style_call[] = "call";
311 static const char dprintf_style_agent[] = "agent";
312 static const char *const dprintf_style_enums[] = {
313 dprintf_style_gdb,
314 dprintf_style_call,
315 dprintf_style_agent,
316 NULL
317 };
318 static const char *dprintf_style = dprintf_style_gdb;
319
320 /* The function to use for dynamic printf if the preferred style is to
321 call into the inferior. The value is simply a string that is
322 copied into the command, so it can be anything that GDB can
323 evaluate to a callable address, not necessarily a function name. */
324
325 static char *dprintf_function = "";
326
327 /* The channel to use for dynamic printf if the preferred style is to
328 call into the inferior; if a nonempty string, it will be passed to
329 the call as the first argument, with the format string as the
330 second. As with the dprintf function, this can be anything that
331 GDB knows how to evaluate, so in addition to common choices like
332 "stderr", this could be an app-specific expression like
333 "mystreams[curlogger]". */
334
335 static char *dprintf_channel = "";
336
337 /* True if dprintf commands should continue to operate even if GDB
338 has disconnected. */
339 static int disconnected_dprintf = 1;
340
341 /* A reference-counted struct command_line. This lets multiple
342 breakpoints share a single command list. */
343 struct counted_command_line
344 {
345 /* The reference count. */
346 int refc;
347
348 /* The command list. */
349 struct command_line *commands;
350 };
351
352 struct command_line *
353 breakpoint_commands (struct breakpoint *b)
354 {
355 return b->commands ? b->commands->commands : NULL;
356 }
357
358 /* Flag indicating that a command has proceeded the inferior past the
359 current breakpoint. */
360
361 static int breakpoint_proceeded;
362
363 const char *
364 bpdisp_text (enum bpdisp disp)
365 {
366 /* NOTE: the following values are a part of MI protocol and
367 represent values of 'disp' field returned when inferior stops at
368 a breakpoint. */
369 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
370
371 return bpdisps[(int) disp];
372 }
373
374 /* Prototypes for exported functions. */
375 /* If FALSE, gdb will not use hardware support for watchpoints, even
376 if such is available. */
377 static int can_use_hw_watchpoints;
378
379 static void
380 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c,
382 const char *value)
383 {
384 fprintf_filtered (file,
385 _("Debugger's willingness to use "
386 "watchpoint hardware is %s.\n"),
387 value);
388 }
389
390 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
391 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
392 for unrecognized breakpoint locations.
393 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
394 static enum auto_boolean pending_break_support;
395 static void
396 show_pending_break_support (struct ui_file *file, int from_tty,
397 struct cmd_list_element *c,
398 const char *value)
399 {
400 fprintf_filtered (file,
401 _("Debugger's behavior regarding "
402 "pending breakpoints is %s.\n"),
403 value);
404 }
405
406 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
407 set with "break" but falling in read-only memory.
408 If 0, gdb will warn about such breakpoints, but won't automatically
409 use hardware breakpoints. */
410 static int automatic_hardware_breakpoints;
411 static void
412 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c,
414 const char *value)
415 {
416 fprintf_filtered (file,
417 _("Automatic usage of hardware breakpoints is %s.\n"),
418 value);
419 }
420
421 /* If on, gdb will keep breakpoints inserted even as inferior is
422 stopped, and immediately insert any new breakpoints. If off, gdb
423 will insert breakpoints into inferior only when resuming it, and
424 will remove breakpoints upon stop. If auto, GDB will behave as ON
425 if in non-stop mode, and as OFF if all-stop mode.*/
426
427 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
428
429 static void
430 show_always_inserted_mode (struct ui_file *file, int from_tty,
431 struct cmd_list_element *c, const char *value)
432 {
433 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
434 fprintf_filtered (file,
435 _("Always inserted breakpoint "
436 "mode is %s (currently %s).\n"),
437 value,
438 breakpoints_always_inserted_mode () ? "on" : "off");
439 else
440 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
441 value);
442 }
443
444 int
445 breakpoints_always_inserted_mode (void)
446 {
447 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
448 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
449 }
450
451 static const char condition_evaluation_both[] = "host or target";
452
453 /* Modes for breakpoint condition evaluation. */
454 static const char condition_evaluation_auto[] = "auto";
455 static const char condition_evaluation_host[] = "host";
456 static const char condition_evaluation_target[] = "target";
457 static const char *const condition_evaluation_enums[] = {
458 condition_evaluation_auto,
459 condition_evaluation_host,
460 condition_evaluation_target,
461 NULL
462 };
463
464 /* Global that holds the current mode for breakpoint condition evaluation. */
465 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
466
467 /* Global that we use to display information to the user (gets its value from
468 condition_evaluation_mode_1. */
469 static const char *condition_evaluation_mode = condition_evaluation_auto;
470
471 /* Translate a condition evaluation mode MODE into either "host"
472 or "target". This is used mostly to translate from "auto" to the
473 real setting that is being used. It returns the translated
474 evaluation mode. */
475
476 static const char *
477 translate_condition_evaluation_mode (const char *mode)
478 {
479 if (mode == condition_evaluation_auto)
480 {
481 if (target_supports_evaluation_of_breakpoint_conditions ())
482 return condition_evaluation_target;
483 else
484 return condition_evaluation_host;
485 }
486 else
487 return mode;
488 }
489
490 /* Discovers what condition_evaluation_auto translates to. */
491
492 static const char *
493 breakpoint_condition_evaluation_mode (void)
494 {
495 return translate_condition_evaluation_mode (condition_evaluation_mode);
496 }
497
498 /* Return true if GDB should evaluate breakpoint conditions or false
499 otherwise. */
500
501 static int
502 gdb_evaluates_breakpoint_condition_p (void)
503 {
504 const char *mode = breakpoint_condition_evaluation_mode ();
505
506 return (mode == condition_evaluation_host);
507 }
508
509 void _initialize_breakpoint (void);
510
511 /* Are we executing breakpoint commands? */
512 static int executing_breakpoint_commands;
513
514 /* Are overlay event breakpoints enabled? */
515 static int overlay_events_enabled;
516
517 /* See description in breakpoint.h. */
518 int target_exact_watchpoints = 0;
519
520 /* Walk the following statement or block through all breakpoints.
521 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
522 current breakpoint. */
523
524 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
525
526 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
527 for (B = breakpoint_chain; \
528 B ? (TMP=B->next, 1): 0; \
529 B = TMP)
530
531 /* Similar iterator for the low-level breakpoints. SAFE variant is
532 not provided so update_global_location_list must not be called
533 while executing the block of ALL_BP_LOCATIONS. */
534
535 #define ALL_BP_LOCATIONS(B,BP_TMP) \
536 for (BP_TMP = bp_location; \
537 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
538 BP_TMP++)
539
540 /* Iterates through locations with address ADDRESS for the currently selected
541 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
542 to where the loop should start from.
543 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
544 appropriate location to start with. */
545
546 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
547 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
548 BP_LOCP_TMP = BP_LOCP_START; \
549 BP_LOCP_START \
550 && (BP_LOCP_TMP < bp_location + bp_location_count \
551 && (*BP_LOCP_TMP)->address == ADDRESS); \
552 BP_LOCP_TMP++)
553
554 /* Iterator for tracepoints only. */
555
556 #define ALL_TRACEPOINTS(B) \
557 for (B = breakpoint_chain; B; B = B->next) \
558 if (is_tracepoint (B))
559
560 /* Chains of all breakpoints defined. */
561
562 struct breakpoint *breakpoint_chain;
563
564 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
565
566 static struct bp_location **bp_location;
567
568 /* Number of elements of BP_LOCATION. */
569
570 static unsigned bp_location_count;
571
572 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
573 ADDRESS for the current elements of BP_LOCATION which get a valid
574 result from bp_location_has_shadow. You can use it for roughly
575 limiting the subrange of BP_LOCATION to scan for shadow bytes for
576 an address you need to read. */
577
578 static CORE_ADDR bp_location_placed_address_before_address_max;
579
580 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
581 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
582 BP_LOCATION which get a valid result from bp_location_has_shadow.
583 You can use it for roughly limiting the subrange of BP_LOCATION to
584 scan for shadow bytes for an address you need to read. */
585
586 static CORE_ADDR bp_location_shadow_len_after_address_max;
587
588 /* The locations that no longer correspond to any breakpoint, unlinked
589 from bp_location array, but for which a hit may still be reported
590 by a target. */
591 VEC(bp_location_p) *moribund_locations = NULL;
592
593 /* Number of last breakpoint made. */
594
595 static int breakpoint_count;
596
597 /* The value of `breakpoint_count' before the last command that
598 created breakpoints. If the last (break-like) command created more
599 than one breakpoint, then the difference between BREAKPOINT_COUNT
600 and PREV_BREAKPOINT_COUNT is more than one. */
601 static int prev_breakpoint_count;
602
603 /* Number of last tracepoint made. */
604
605 static int tracepoint_count;
606
607 static struct cmd_list_element *breakpoint_set_cmdlist;
608 static struct cmd_list_element *breakpoint_show_cmdlist;
609 struct cmd_list_element *save_cmdlist;
610
611 /* Return whether a breakpoint is an active enabled breakpoint. */
612 static int
613 breakpoint_enabled (struct breakpoint *b)
614 {
615 return (b->enable_state == bp_enabled);
616 }
617
618 /* Set breakpoint count to NUM. */
619
620 static void
621 set_breakpoint_count (int num)
622 {
623 prev_breakpoint_count = breakpoint_count;
624 breakpoint_count = num;
625 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
626 }
627
628 /* Used by `start_rbreak_breakpoints' below, to record the current
629 breakpoint count before "rbreak" creates any breakpoint. */
630 static int rbreak_start_breakpoint_count;
631
632 /* Called at the start an "rbreak" command to record the first
633 breakpoint made. */
634
635 void
636 start_rbreak_breakpoints (void)
637 {
638 rbreak_start_breakpoint_count = breakpoint_count;
639 }
640
641 /* Called at the end of an "rbreak" command to record the last
642 breakpoint made. */
643
644 void
645 end_rbreak_breakpoints (void)
646 {
647 prev_breakpoint_count = rbreak_start_breakpoint_count;
648 }
649
650 /* Used in run_command to zero the hit count when a new run starts. */
651
652 void
653 clear_breakpoint_hit_counts (void)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 b->hit_count = 0;
659 }
660
661 /* Allocate a new counted_command_line with reference count of 1.
662 The new structure owns COMMANDS. */
663
664 static struct counted_command_line *
665 alloc_counted_command_line (struct command_line *commands)
666 {
667 struct counted_command_line *result
668 = xmalloc (sizeof (struct counted_command_line));
669
670 result->refc = 1;
671 result->commands = commands;
672 return result;
673 }
674
675 /* Increment reference count. This does nothing if CMD is NULL. */
676
677 static void
678 incref_counted_command_line (struct counted_command_line *cmd)
679 {
680 if (cmd)
681 ++cmd->refc;
682 }
683
684 /* Decrement reference count. If the reference count reaches 0,
685 destroy the counted_command_line. Sets *CMDP to NULL. This does
686 nothing if *CMDP is NULL. */
687
688 static void
689 decref_counted_command_line (struct counted_command_line **cmdp)
690 {
691 if (*cmdp)
692 {
693 if (--(*cmdp)->refc == 0)
694 {
695 free_command_lines (&(*cmdp)->commands);
696 xfree (*cmdp);
697 }
698 *cmdp = NULL;
699 }
700 }
701
702 /* A cleanup function that calls decref_counted_command_line. */
703
704 static void
705 do_cleanup_counted_command_line (void *arg)
706 {
707 decref_counted_command_line (arg);
708 }
709
710 /* Create a cleanup that calls decref_counted_command_line on the
711 argument. */
712
713 static struct cleanup *
714 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
715 {
716 return make_cleanup (do_cleanup_counted_command_line, cmdp);
717 }
718
719 \f
720 /* Return the breakpoint with the specified number, or NULL
721 if the number does not refer to an existing breakpoint. */
722
723 struct breakpoint *
724 get_breakpoint (int num)
725 {
726 struct breakpoint *b;
727
728 ALL_BREAKPOINTS (b)
729 if (b->number == num)
730 return b;
731
732 return NULL;
733 }
734
735 \f
736
737 /* Mark locations as "conditions have changed" in case the target supports
738 evaluating conditions on its side. */
739
740 static void
741 mark_breakpoint_modified (struct breakpoint *b)
742 {
743 struct bp_location *loc;
744
745 /* This is only meaningful if the target is
746 evaluating conditions and if the user has
747 opted for condition evaluation on the target's
748 side. */
749 if (gdb_evaluates_breakpoint_condition_p ()
750 || !target_supports_evaluation_of_breakpoint_conditions ())
751 return;
752
753 if (!is_breakpoint (b))
754 return;
755
756 for (loc = b->loc; loc; loc = loc->next)
757 loc->condition_changed = condition_modified;
758 }
759
760 /* Mark location as "conditions have changed" in case the target supports
761 evaluating conditions on its side. */
762
763 static void
764 mark_breakpoint_location_modified (struct bp_location *loc)
765 {
766 /* This is only meaningful if the target is
767 evaluating conditions and if the user has
768 opted for condition evaluation on the target's
769 side. */
770 if (gdb_evaluates_breakpoint_condition_p ()
771 || !target_supports_evaluation_of_breakpoint_conditions ())
772
773 return;
774
775 if (!is_breakpoint (loc->owner))
776 return;
777
778 loc->condition_changed = condition_modified;
779 }
780
781 /* Sets the condition-evaluation mode using the static global
782 condition_evaluation_mode. */
783
784 static void
785 set_condition_evaluation_mode (char *args, int from_tty,
786 struct cmd_list_element *c)
787 {
788 const char *old_mode, *new_mode;
789
790 if ((condition_evaluation_mode_1 == condition_evaluation_target)
791 && !target_supports_evaluation_of_breakpoint_conditions ())
792 {
793 condition_evaluation_mode_1 = condition_evaluation_mode;
794 warning (_("Target does not support breakpoint condition evaluation.\n"
795 "Using host evaluation mode instead."));
796 return;
797 }
798
799 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
800 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
801
802 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
803 settings was "auto". */
804 condition_evaluation_mode = condition_evaluation_mode_1;
805
806 /* Only update the mode if the user picked a different one. */
807 if (new_mode != old_mode)
808 {
809 struct bp_location *loc, **loc_tmp;
810 /* If the user switched to a different evaluation mode, we
811 need to synch the changes with the target as follows:
812
813 "host" -> "target": Send all (valid) conditions to the target.
814 "target" -> "host": Remove all the conditions from the target.
815 */
816
817 if (new_mode == condition_evaluation_target)
818 {
819 /* Mark everything modified and synch conditions with the
820 target. */
821 ALL_BP_LOCATIONS (loc, loc_tmp)
822 mark_breakpoint_location_modified (loc);
823 }
824 else
825 {
826 /* Manually mark non-duplicate locations to synch conditions
827 with the target. We do this to remove all the conditions the
828 target knows about. */
829 ALL_BP_LOCATIONS (loc, loc_tmp)
830 if (is_breakpoint (loc->owner) && loc->inserted)
831 loc->needs_update = 1;
832 }
833
834 /* Do the update. */
835 update_global_location_list (1);
836 }
837
838 return;
839 }
840
841 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
842 what "auto" is translating to. */
843
844 static void
845 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c, const char *value)
847 {
848 if (condition_evaluation_mode == condition_evaluation_auto)
849 fprintf_filtered (file,
850 _("Breakpoint condition evaluation "
851 "mode is %s (currently %s).\n"),
852 value,
853 breakpoint_condition_evaluation_mode ());
854 else
855 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
856 value);
857 }
858
859 /* A comparison function for bp_location AP and BP that is used by
860 bsearch. This comparison function only cares about addresses, unlike
861 the more general bp_location_compare function. */
862
863 static int
864 bp_location_compare_addrs (const void *ap, const void *bp)
865 {
866 struct bp_location *a = *(void **) ap;
867 struct bp_location *b = *(void **) bp;
868
869 if (a->address == b->address)
870 return 0;
871 else
872 return ((a->address > b->address) - (a->address < b->address));
873 }
874
875 /* Helper function to skip all bp_locations with addresses
876 less than ADDRESS. It returns the first bp_location that
877 is greater than or equal to ADDRESS. If none is found, just
878 return NULL. */
879
880 static struct bp_location **
881 get_first_locp_gte_addr (CORE_ADDR address)
882 {
883 struct bp_location dummy_loc;
884 struct bp_location *dummy_locp = &dummy_loc;
885 struct bp_location **locp_found = NULL;
886
887 /* Initialize the dummy location's address field. */
888 memset (&dummy_loc, 0, sizeof (struct bp_location));
889 dummy_loc.address = address;
890
891 /* Find a close match to the first location at ADDRESS. */
892 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
893 sizeof (struct bp_location **),
894 bp_location_compare_addrs);
895
896 /* Nothing was found, nothing left to do. */
897 if (locp_found == NULL)
898 return NULL;
899
900 /* We may have found a location that is at ADDRESS but is not the first in the
901 location's list. Go backwards (if possible) and locate the first one. */
902 while ((locp_found - 1) >= bp_location
903 && (*(locp_found - 1))->address == address)
904 locp_found--;
905
906 return locp_found;
907 }
908
909 void
910 set_breakpoint_condition (struct breakpoint *b, char *exp,
911 int from_tty)
912 {
913 xfree (b->cond_string);
914 b->cond_string = NULL;
915
916 if (is_watchpoint (b))
917 {
918 struct watchpoint *w = (struct watchpoint *) b;
919
920 xfree (w->cond_exp);
921 w->cond_exp = NULL;
922 }
923 else
924 {
925 struct bp_location *loc;
926
927 for (loc = b->loc; loc; loc = loc->next)
928 {
929 xfree (loc->cond);
930 loc->cond = NULL;
931
932 /* No need to free the condition agent expression
933 bytecode (if we have one). We will handle this
934 when we go through update_global_location_list. */
935 }
936 }
937
938 if (*exp == 0)
939 {
940 if (from_tty)
941 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
942 }
943 else
944 {
945 const char *arg = exp;
946
947 /* I don't know if it matters whether this is the string the user
948 typed in or the decompiled expression. */
949 b->cond_string = xstrdup (arg);
950 b->condition_not_parsed = 0;
951
952 if (is_watchpoint (b))
953 {
954 struct watchpoint *w = (struct watchpoint *) b;
955
956 innermost_block = NULL;
957 arg = exp;
958 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
959 if (*arg)
960 error (_("Junk at end of expression"));
961 w->cond_exp_valid_block = innermost_block;
962 }
963 else
964 {
965 struct bp_location *loc;
966
967 for (loc = b->loc; loc; loc = loc->next)
968 {
969 arg = exp;
970 loc->cond =
971 parse_exp_1 (&arg, loc->address,
972 block_for_pc (loc->address), 0);
973 if (*arg)
974 error (_("Junk at end of expression"));
975 }
976 }
977 }
978 mark_breakpoint_modified (b);
979
980 observer_notify_breakpoint_modified (b);
981 }
982
983 /* Completion for the "condition" command. */
984
985 static VEC (char_ptr) *
986 condition_completer (struct cmd_list_element *cmd,
987 const char *text, const char *word)
988 {
989 const char *space;
990
991 text = skip_spaces_const (text);
992 space = skip_to_space_const (text);
993 if (*space == '\0')
994 {
995 int len;
996 struct breakpoint *b;
997 VEC (char_ptr) *result = NULL;
998
999 if (text[0] == '$')
1000 {
1001 /* We don't support completion of history indices. */
1002 if (isdigit (text[1]))
1003 return NULL;
1004 return complete_internalvar (&text[1]);
1005 }
1006
1007 /* We're completing the breakpoint number. */
1008 len = strlen (text);
1009
1010 ALL_BREAKPOINTS (b)
1011 {
1012 char number[50];
1013
1014 xsnprintf (number, sizeof (number), "%d", b->number);
1015
1016 if (strncmp (number, text, len) == 0)
1017 VEC_safe_push (char_ptr, result, xstrdup (number));
1018 }
1019
1020 return result;
1021 }
1022
1023 /* We're completing the expression part. */
1024 text = skip_spaces_const (space);
1025 return expression_completer (cmd, text, word);
1026 }
1027
1028 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1029
1030 static void
1031 condition_command (char *arg, int from_tty)
1032 {
1033 struct breakpoint *b;
1034 char *p;
1035 int bnum;
1036
1037 if (arg == 0)
1038 error_no_arg (_("breakpoint number"));
1039
1040 p = arg;
1041 bnum = get_number (&p);
1042 if (bnum == 0)
1043 error (_("Bad breakpoint argument: '%s'"), arg);
1044
1045 ALL_BREAKPOINTS (b)
1046 if (b->number == bnum)
1047 {
1048 /* Check if this breakpoint has a "stop" method implemented in an
1049 extension language. This method and conditions entered into GDB
1050 from the CLI are mutually exclusive. */
1051 const struct extension_language_defn *extlang
1052 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1053
1054 if (extlang != NULL)
1055 {
1056 error (_("Only one stop condition allowed. There is currently"
1057 " a %s stop condition defined for this breakpoint."),
1058 ext_lang_capitalized_name (extlang));
1059 }
1060 set_breakpoint_condition (b, p, from_tty);
1061
1062 if (is_breakpoint (b))
1063 update_global_location_list (1);
1064
1065 return;
1066 }
1067
1068 error (_("No breakpoint number %d."), bnum);
1069 }
1070
1071 /* Check that COMMAND do not contain commands that are suitable
1072 only for tracepoints and not suitable for ordinary breakpoints.
1073 Throw if any such commands is found. */
1074
1075 static void
1076 check_no_tracepoint_commands (struct command_line *commands)
1077 {
1078 struct command_line *c;
1079
1080 for (c = commands; c; c = c->next)
1081 {
1082 int i;
1083
1084 if (c->control_type == while_stepping_control)
1085 error (_("The 'while-stepping' command can "
1086 "only be used for tracepoints"));
1087
1088 for (i = 0; i < c->body_count; ++i)
1089 check_no_tracepoint_commands ((c->body_list)[i]);
1090
1091 /* Not that command parsing removes leading whitespace and comment
1092 lines and also empty lines. So, we only need to check for
1093 command directly. */
1094 if (strstr (c->line, "collect ") == c->line)
1095 error (_("The 'collect' command can only be used for tracepoints"));
1096
1097 if (strstr (c->line, "teval ") == c->line)
1098 error (_("The 'teval' command can only be used for tracepoints"));
1099 }
1100 }
1101
1102 /* Encapsulate tests for different types of tracepoints. */
1103
1104 static int
1105 is_tracepoint_type (enum bptype type)
1106 {
1107 return (type == bp_tracepoint
1108 || type == bp_fast_tracepoint
1109 || type == bp_static_tracepoint);
1110 }
1111
1112 int
1113 is_tracepoint (const struct breakpoint *b)
1114 {
1115 return is_tracepoint_type (b->type);
1116 }
1117
1118 /* A helper function that validates that COMMANDS are valid for a
1119 breakpoint. This function will throw an exception if a problem is
1120 found. */
1121
1122 static void
1123 validate_commands_for_breakpoint (struct breakpoint *b,
1124 struct command_line *commands)
1125 {
1126 if (is_tracepoint (b))
1127 {
1128 struct tracepoint *t = (struct tracepoint *) b;
1129 struct command_line *c;
1130 struct command_line *while_stepping = 0;
1131
1132 /* Reset the while-stepping step count. The previous commands
1133 might have included a while-stepping action, while the new
1134 ones might not. */
1135 t->step_count = 0;
1136
1137 /* We need to verify that each top-level element of commands is
1138 valid for tracepoints, that there's at most one
1139 while-stepping element, and that the while-stepping's body
1140 has valid tracing commands excluding nested while-stepping.
1141 We also need to validate the tracepoint action line in the
1142 context of the tracepoint --- validate_actionline actually
1143 has side effects, like setting the tracepoint's
1144 while-stepping STEP_COUNT, in addition to checking if the
1145 collect/teval actions parse and make sense in the
1146 tracepoint's context. */
1147 for (c = commands; c; c = c->next)
1148 {
1149 if (c->control_type == while_stepping_control)
1150 {
1151 if (b->type == bp_fast_tracepoint)
1152 error (_("The 'while-stepping' command "
1153 "cannot be used for fast tracepoint"));
1154 else if (b->type == bp_static_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for static tracepoint"));
1157
1158 if (while_stepping)
1159 error (_("The 'while-stepping' command "
1160 "can be used only once"));
1161 else
1162 while_stepping = c;
1163 }
1164
1165 validate_actionline (c->line, b);
1166 }
1167 if (while_stepping)
1168 {
1169 struct command_line *c2;
1170
1171 gdb_assert (while_stepping->body_count == 1);
1172 c2 = while_stepping->body_list[0];
1173 for (; c2; c2 = c2->next)
1174 {
1175 if (c2->control_type == while_stepping_control)
1176 error (_("The 'while-stepping' command cannot be nested"));
1177 }
1178 }
1179 }
1180 else
1181 {
1182 check_no_tracepoint_commands (commands);
1183 }
1184 }
1185
1186 /* Return a vector of all the static tracepoints set at ADDR. The
1187 caller is responsible for releasing the vector. */
1188
1189 VEC(breakpoint_p) *
1190 static_tracepoints_here (CORE_ADDR addr)
1191 {
1192 struct breakpoint *b;
1193 VEC(breakpoint_p) *found = 0;
1194 struct bp_location *loc;
1195
1196 ALL_BREAKPOINTS (b)
1197 if (b->type == bp_static_tracepoint)
1198 {
1199 for (loc = b->loc; loc; loc = loc->next)
1200 if (loc->address == addr)
1201 VEC_safe_push(breakpoint_p, found, b);
1202 }
1203
1204 return found;
1205 }
1206
1207 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1208 validate that only allowed commands are included. */
1209
1210 void
1211 breakpoint_set_commands (struct breakpoint *b,
1212 struct command_line *commands)
1213 {
1214 validate_commands_for_breakpoint (b, commands);
1215
1216 decref_counted_command_line (&b->commands);
1217 b->commands = alloc_counted_command_line (commands);
1218 observer_notify_breakpoint_modified (b);
1219 }
1220
1221 /* Set the internal `silent' flag on the breakpoint. Note that this
1222 is not the same as the "silent" that may appear in the breakpoint's
1223 commands. */
1224
1225 void
1226 breakpoint_set_silent (struct breakpoint *b, int silent)
1227 {
1228 int old_silent = b->silent;
1229
1230 b->silent = silent;
1231 if (old_silent != silent)
1232 observer_notify_breakpoint_modified (b);
1233 }
1234
1235 /* Set the thread for this breakpoint. If THREAD is -1, make the
1236 breakpoint work for any thread. */
1237
1238 void
1239 breakpoint_set_thread (struct breakpoint *b, int thread)
1240 {
1241 int old_thread = b->thread;
1242
1243 b->thread = thread;
1244 if (old_thread != thread)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the task for this breakpoint. If TASK is 0, make the
1249 breakpoint work for any task. */
1250
1251 void
1252 breakpoint_set_task (struct breakpoint *b, int task)
1253 {
1254 int old_task = b->task;
1255
1256 b->task = task;
1257 if (old_task != task)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 void
1262 check_tracepoint_command (char *line, void *closure)
1263 {
1264 struct breakpoint *b = closure;
1265
1266 validate_actionline (line, b);
1267 }
1268
1269 /* A structure used to pass information through
1270 map_breakpoint_numbers. */
1271
1272 struct commands_info
1273 {
1274 /* True if the command was typed at a tty. */
1275 int from_tty;
1276
1277 /* The breakpoint range spec. */
1278 char *arg;
1279
1280 /* Non-NULL if the body of the commands are being read from this
1281 already-parsed command. */
1282 struct command_line *control;
1283
1284 /* The command lines read from the user, or NULL if they have not
1285 yet been read. */
1286 struct counted_command_line *cmd;
1287 };
1288
1289 /* A callback for map_breakpoint_numbers that sets the commands for
1290 commands_command. */
1291
1292 static void
1293 do_map_commands_command (struct breakpoint *b, void *data)
1294 {
1295 struct commands_info *info = data;
1296
1297 if (info->cmd == NULL)
1298 {
1299 struct command_line *l;
1300
1301 if (info->control != NULL)
1302 l = copy_command_lines (info->control->body_list[0]);
1303 else
1304 {
1305 struct cleanup *old_chain;
1306 char *str;
1307
1308 str = xstrprintf (_("Type commands for breakpoint(s) "
1309 "%s, one per line."),
1310 info->arg);
1311
1312 old_chain = make_cleanup (xfree, str);
1313
1314 l = read_command_lines (str,
1315 info->from_tty, 1,
1316 (is_tracepoint (b)
1317 ? check_tracepoint_command : 0),
1318 b);
1319
1320 do_cleanups (old_chain);
1321 }
1322
1323 info->cmd = alloc_counted_command_line (l);
1324 }
1325
1326 /* If a breakpoint was on the list more than once, we don't need to
1327 do anything. */
1328 if (b->commands != info->cmd)
1329 {
1330 validate_commands_for_breakpoint (b, info->cmd->commands);
1331 incref_counted_command_line (info->cmd);
1332 decref_counted_command_line (&b->commands);
1333 b->commands = info->cmd;
1334 observer_notify_breakpoint_modified (b);
1335 }
1336 }
1337
1338 static void
1339 commands_command_1 (char *arg, int from_tty,
1340 struct command_line *control)
1341 {
1342 struct cleanup *cleanups;
1343 struct commands_info info;
1344
1345 info.from_tty = from_tty;
1346 info.control = control;
1347 info.cmd = NULL;
1348 /* If we read command lines from the user, then `info' will hold an
1349 extra reference to the commands that we must clean up. */
1350 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1351
1352 if (arg == NULL || !*arg)
1353 {
1354 if (breakpoint_count - prev_breakpoint_count > 1)
1355 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1356 breakpoint_count);
1357 else if (breakpoint_count > 0)
1358 arg = xstrprintf ("%d", breakpoint_count);
1359 else
1360 {
1361 /* So that we don't try to free the incoming non-NULL
1362 argument in the cleanup below. Mapping breakpoint
1363 numbers will fail in this case. */
1364 arg = NULL;
1365 }
1366 }
1367 else
1368 /* The command loop has some static state, so we need to preserve
1369 our argument. */
1370 arg = xstrdup (arg);
1371
1372 if (arg != NULL)
1373 make_cleanup (xfree, arg);
1374
1375 info.arg = arg;
1376
1377 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1378
1379 if (info.cmd == NULL)
1380 error (_("No breakpoints specified."));
1381
1382 do_cleanups (cleanups);
1383 }
1384
1385 static void
1386 commands_command (char *arg, int from_tty)
1387 {
1388 commands_command_1 (arg, from_tty, NULL);
1389 }
1390
1391 /* Like commands_command, but instead of reading the commands from
1392 input stream, takes them from an already parsed command structure.
1393
1394 This is used by cli-script.c to DTRT with breakpoint commands
1395 that are part of if and while bodies. */
1396 enum command_control_type
1397 commands_from_control_command (char *arg, struct command_line *cmd)
1398 {
1399 commands_command_1 (arg, 0, cmd);
1400 return simple_control;
1401 }
1402
1403 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1404
1405 static int
1406 bp_location_has_shadow (struct bp_location *bl)
1407 {
1408 if (bl->loc_type != bp_loc_software_breakpoint)
1409 return 0;
1410 if (!bl->inserted)
1411 return 0;
1412 if (bl->target_info.shadow_len == 0)
1413 /* BL isn't valid, or doesn't shadow memory. */
1414 return 0;
1415 return 1;
1416 }
1417
1418 /* Update BUF, which is LEN bytes read from the target address
1419 MEMADDR, by replacing a memory breakpoint with its shadowed
1420 contents.
1421
1422 If READBUF is not NULL, this buffer must not overlap with the of
1423 the breakpoint location's shadow_contents buffer. Otherwise, a
1424 failed assertion internal error will be raised. */
1425
1426 static void
1427 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1428 const gdb_byte *writebuf_org,
1429 ULONGEST memaddr, LONGEST len,
1430 struct bp_target_info *target_info,
1431 struct gdbarch *gdbarch)
1432 {
1433 /* Now do full processing of the found relevant range of elements. */
1434 CORE_ADDR bp_addr = 0;
1435 int bp_size = 0;
1436 int bptoffset = 0;
1437
1438 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1439 current_program_space->aspace, 0))
1440 {
1441 /* The breakpoint is inserted in a different address space. */
1442 return;
1443 }
1444
1445 /* Addresses and length of the part of the breakpoint that
1446 we need to copy. */
1447 bp_addr = target_info->placed_address;
1448 bp_size = target_info->shadow_len;
1449
1450 if (bp_addr + bp_size <= memaddr)
1451 {
1452 /* The breakpoint is entirely before the chunk of memory we are
1453 reading. */
1454 return;
1455 }
1456
1457 if (bp_addr >= memaddr + len)
1458 {
1459 /* The breakpoint is entirely after the chunk of memory we are
1460 reading. */
1461 return;
1462 }
1463
1464 /* Offset within shadow_contents. */
1465 if (bp_addr < memaddr)
1466 {
1467 /* Only copy the second part of the breakpoint. */
1468 bp_size -= memaddr - bp_addr;
1469 bptoffset = memaddr - bp_addr;
1470 bp_addr = memaddr;
1471 }
1472
1473 if (bp_addr + bp_size > memaddr + len)
1474 {
1475 /* Only copy the first part of the breakpoint. */
1476 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1477 }
1478
1479 if (readbuf != NULL)
1480 {
1481 /* Verify that the readbuf buffer does not overlap with the
1482 shadow_contents buffer. */
1483 gdb_assert (target_info->shadow_contents >= readbuf + len
1484 || readbuf >= (target_info->shadow_contents
1485 + target_info->shadow_len));
1486
1487 /* Update the read buffer with this inserted breakpoint's
1488 shadow. */
1489 memcpy (readbuf + bp_addr - memaddr,
1490 target_info->shadow_contents + bptoffset, bp_size);
1491 }
1492 else
1493 {
1494 const unsigned char *bp;
1495 CORE_ADDR placed_address = target_info->placed_address;
1496 int placed_size = target_info->placed_size;
1497
1498 /* Update the shadow with what we want to write to memory. */
1499 memcpy (target_info->shadow_contents + bptoffset,
1500 writebuf_org + bp_addr - memaddr, bp_size);
1501
1502 /* Determine appropriate breakpoint contents and size for this
1503 address. */
1504 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1505
1506 /* Update the final write buffer with this inserted
1507 breakpoint's INSN. */
1508 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1509 }
1510 }
1511
1512 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1513 by replacing any memory breakpoints with their shadowed contents.
1514
1515 If READBUF is not NULL, this buffer must not overlap with any of
1516 the breakpoint location's shadow_contents buffers. Otherwise,
1517 a failed assertion internal error will be raised.
1518
1519 The range of shadowed area by each bp_location is:
1520 bl->address - bp_location_placed_address_before_address_max
1521 up to bl->address + bp_location_shadow_len_after_address_max
1522 The range we were requested to resolve shadows for is:
1523 memaddr ... memaddr + len
1524 Thus the safe cutoff boundaries for performance optimization are
1525 memaddr + len <= (bl->address
1526 - bp_location_placed_address_before_address_max)
1527 and:
1528 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1529
1530 void
1531 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1532 const gdb_byte *writebuf_org,
1533 ULONGEST memaddr, LONGEST len)
1534 {
1535 /* Left boundary, right boundary and median element of our binary
1536 search. */
1537 unsigned bc_l, bc_r, bc;
1538 size_t i;
1539
1540 /* Find BC_L which is a leftmost element which may affect BUF
1541 content. It is safe to report lower value but a failure to
1542 report higher one. */
1543
1544 bc_l = 0;
1545 bc_r = bp_location_count;
1546 while (bc_l + 1 < bc_r)
1547 {
1548 struct bp_location *bl;
1549
1550 bc = (bc_l + bc_r) / 2;
1551 bl = bp_location[bc];
1552
1553 /* Check first BL->ADDRESS will not overflow due to the added
1554 constant. Then advance the left boundary only if we are sure
1555 the BC element can in no way affect the BUF content (MEMADDR
1556 to MEMADDR + LEN range).
1557
1558 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1559 offset so that we cannot miss a breakpoint with its shadow
1560 range tail still reaching MEMADDR. */
1561
1562 if ((bl->address + bp_location_shadow_len_after_address_max
1563 >= bl->address)
1564 && (bl->address + bp_location_shadow_len_after_address_max
1565 <= memaddr))
1566 bc_l = bc;
1567 else
1568 bc_r = bc;
1569 }
1570
1571 /* Due to the binary search above, we need to make sure we pick the
1572 first location that's at BC_L's address. E.g., if there are
1573 multiple locations at the same address, BC_L may end up pointing
1574 at a duplicate location, and miss the "master"/"inserted"
1575 location. Say, given locations L1, L2 and L3 at addresses A and
1576 B:
1577
1578 L1@A, L2@A, L3@B, ...
1579
1580 BC_L could end up pointing at location L2, while the "master"
1581 location could be L1. Since the `loc->inserted' flag is only set
1582 on "master" locations, we'd forget to restore the shadow of L1
1583 and L2. */
1584 while (bc_l > 0
1585 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1586 bc_l--;
1587
1588 /* Now do full processing of the found relevant range of elements. */
1589
1590 for (bc = bc_l; bc < bp_location_count; bc++)
1591 {
1592 struct bp_location *bl = bp_location[bc];
1593 CORE_ADDR bp_addr = 0;
1594 int bp_size = 0;
1595 int bptoffset = 0;
1596
1597 /* bp_location array has BL->OWNER always non-NULL. */
1598 if (bl->owner->type == bp_none)
1599 warning (_("reading through apparently deleted breakpoint #%d?"),
1600 bl->owner->number);
1601
1602 /* Performance optimization: any further element can no longer affect BUF
1603 content. */
1604
1605 if (bl->address >= bp_location_placed_address_before_address_max
1606 && memaddr + len <= (bl->address
1607 - bp_location_placed_address_before_address_max))
1608 break;
1609
1610 if (!bp_location_has_shadow (bl))
1611 continue;
1612
1613 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1614 memaddr, len, &bl->target_info, bl->gdbarch);
1615 }
1616
1617 /* Now process single-step breakpoints. These are not found in the
1618 bp_location array. */
1619 for (i = 0; i < 2; i++)
1620 {
1621 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1622
1623 if (bp_tgt != NULL)
1624 {
1625 struct gdbarch *gdbarch = single_step_gdbarch[i];
1626
1627 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1628 memaddr, len, bp_tgt, gdbarch);
1629 }
1630 }
1631 }
1632
1633 \f
1634
1635 /* Return true if BPT is either a software breakpoint or a hardware
1636 breakpoint. */
1637
1638 int
1639 is_breakpoint (const struct breakpoint *bpt)
1640 {
1641 return (bpt->type == bp_breakpoint
1642 || bpt->type == bp_hardware_breakpoint
1643 || bpt->type == bp_dprintf);
1644 }
1645
1646 /* Return true if BPT is of any hardware watchpoint kind. */
1647
1648 static int
1649 is_hardware_watchpoint (const struct breakpoint *bpt)
1650 {
1651 return (bpt->type == bp_hardware_watchpoint
1652 || bpt->type == bp_read_watchpoint
1653 || bpt->type == bp_access_watchpoint);
1654 }
1655
1656 /* Return true if BPT is of any watchpoint kind, hardware or
1657 software. */
1658
1659 int
1660 is_watchpoint (const struct breakpoint *bpt)
1661 {
1662 return (is_hardware_watchpoint (bpt)
1663 || bpt->type == bp_watchpoint);
1664 }
1665
1666 /* Returns true if the current thread and its running state are safe
1667 to evaluate or update watchpoint B. Watchpoints on local
1668 expressions need to be evaluated in the context of the thread that
1669 was current when the watchpoint was created, and, that thread needs
1670 to be stopped to be able to select the correct frame context.
1671 Watchpoints on global expressions can be evaluated on any thread,
1672 and in any state. It is presently left to the target allowing
1673 memory accesses when threads are running. */
1674
1675 static int
1676 watchpoint_in_thread_scope (struct watchpoint *b)
1677 {
1678 return (b->base.pspace == current_program_space
1679 && (ptid_equal (b->watchpoint_thread, null_ptid)
1680 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1681 && !is_executing (inferior_ptid))));
1682 }
1683
1684 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1685 associated bp_watchpoint_scope breakpoint. */
1686
1687 static void
1688 watchpoint_del_at_next_stop (struct watchpoint *w)
1689 {
1690 struct breakpoint *b = &w->base;
1691
1692 if (b->related_breakpoint != b)
1693 {
1694 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1695 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1696 b->related_breakpoint->disposition = disp_del_at_next_stop;
1697 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1698 b->related_breakpoint = b;
1699 }
1700 b->disposition = disp_del_at_next_stop;
1701 }
1702
1703 /* Assuming that B is a watchpoint:
1704 - Reparse watchpoint expression, if REPARSE is non-zero
1705 - Evaluate expression and store the result in B->val
1706 - Evaluate the condition if there is one, and store the result
1707 in b->loc->cond.
1708 - Update the list of values that must be watched in B->loc.
1709
1710 If the watchpoint disposition is disp_del_at_next_stop, then do
1711 nothing. If this is local watchpoint that is out of scope, delete
1712 it.
1713
1714 Even with `set breakpoint always-inserted on' the watchpoints are
1715 removed + inserted on each stop here. Normal breakpoints must
1716 never be removed because they might be missed by a running thread
1717 when debugging in non-stop mode. On the other hand, hardware
1718 watchpoints (is_hardware_watchpoint; processed here) are specific
1719 to each LWP since they are stored in each LWP's hardware debug
1720 registers. Therefore, such LWP must be stopped first in order to
1721 be able to modify its hardware watchpoints.
1722
1723 Hardware watchpoints must be reset exactly once after being
1724 presented to the user. It cannot be done sooner, because it would
1725 reset the data used to present the watchpoint hit to the user. And
1726 it must not be done later because it could display the same single
1727 watchpoint hit during multiple GDB stops. Note that the latter is
1728 relevant only to the hardware watchpoint types bp_read_watchpoint
1729 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1730 not user-visible - its hit is suppressed if the memory content has
1731 not changed.
1732
1733 The following constraints influence the location where we can reset
1734 hardware watchpoints:
1735
1736 * target_stopped_by_watchpoint and target_stopped_data_address are
1737 called several times when GDB stops.
1738
1739 [linux]
1740 * Multiple hardware watchpoints can be hit at the same time,
1741 causing GDB to stop. GDB only presents one hardware watchpoint
1742 hit at a time as the reason for stopping, and all the other hits
1743 are presented later, one after the other, each time the user
1744 requests the execution to be resumed. Execution is not resumed
1745 for the threads still having pending hit event stored in
1746 LWP_INFO->STATUS. While the watchpoint is already removed from
1747 the inferior on the first stop the thread hit event is kept being
1748 reported from its cached value by linux_nat_stopped_data_address
1749 until the real thread resume happens after the watchpoint gets
1750 presented and thus its LWP_INFO->STATUS gets reset.
1751
1752 Therefore the hardware watchpoint hit can get safely reset on the
1753 watchpoint removal from inferior. */
1754
1755 static void
1756 update_watchpoint (struct watchpoint *b, int reparse)
1757 {
1758 int within_current_scope;
1759 struct frame_id saved_frame_id;
1760 int frame_saved;
1761
1762 /* If this is a local watchpoint, we only want to check if the
1763 watchpoint frame is in scope if the current thread is the thread
1764 that was used to create the watchpoint. */
1765 if (!watchpoint_in_thread_scope (b))
1766 return;
1767
1768 if (b->base.disposition == disp_del_at_next_stop)
1769 return;
1770
1771 frame_saved = 0;
1772
1773 /* Determine if the watchpoint is within scope. */
1774 if (b->exp_valid_block == NULL)
1775 within_current_scope = 1;
1776 else
1777 {
1778 struct frame_info *fi = get_current_frame ();
1779 struct gdbarch *frame_arch = get_frame_arch (fi);
1780 CORE_ADDR frame_pc = get_frame_pc (fi);
1781
1782 /* If we're in a function epilogue, unwinding may not work
1783 properly, so do not attempt to recreate locations at this
1784 point. See similar comments in watchpoint_check. */
1785 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1786 return;
1787
1788 /* Save the current frame's ID so we can restore it after
1789 evaluating the watchpoint expression on its own frame. */
1790 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1791 took a frame parameter, so that we didn't have to change the
1792 selected frame. */
1793 frame_saved = 1;
1794 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1795
1796 fi = frame_find_by_id (b->watchpoint_frame);
1797 within_current_scope = (fi != NULL);
1798 if (within_current_scope)
1799 select_frame (fi);
1800 }
1801
1802 /* We don't free locations. They are stored in the bp_location array
1803 and update_global_location_list will eventually delete them and
1804 remove breakpoints if needed. */
1805 b->base.loc = NULL;
1806
1807 if (within_current_scope && reparse)
1808 {
1809 const char *s;
1810
1811 if (b->exp)
1812 {
1813 xfree (b->exp);
1814 b->exp = NULL;
1815 }
1816 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1817 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1818 /* If the meaning of expression itself changed, the old value is
1819 no longer relevant. We don't want to report a watchpoint hit
1820 to the user when the old value and the new value may actually
1821 be completely different objects. */
1822 value_free (b->val);
1823 b->val = NULL;
1824 b->val_valid = 0;
1825
1826 /* Note that unlike with breakpoints, the watchpoint's condition
1827 expression is stored in the breakpoint object, not in the
1828 locations (re)created below. */
1829 if (b->base.cond_string != NULL)
1830 {
1831 if (b->cond_exp != NULL)
1832 {
1833 xfree (b->cond_exp);
1834 b->cond_exp = NULL;
1835 }
1836
1837 s = b->base.cond_string;
1838 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1839 }
1840 }
1841
1842 /* If we failed to parse the expression, for example because
1843 it refers to a global variable in a not-yet-loaded shared library,
1844 don't try to insert watchpoint. We don't automatically delete
1845 such watchpoint, though, since failure to parse expression
1846 is different from out-of-scope watchpoint. */
1847 if (!target_has_execution)
1848 {
1849 /* Without execution, memory can't change. No use to try and
1850 set watchpoint locations. The watchpoint will be reset when
1851 the target gains execution, through breakpoint_re_set. */
1852 if (!can_use_hw_watchpoints)
1853 {
1854 if (b->base.ops->works_in_software_mode (&b->base))
1855 b->base.type = bp_watchpoint;
1856 else
1857 error (_("Can't set read/access watchpoint when "
1858 "hardware watchpoints are disabled."));
1859 }
1860 }
1861 else if (within_current_scope && b->exp)
1862 {
1863 int pc = 0;
1864 struct value *val_chain, *v, *result, *next;
1865 struct program_space *frame_pspace;
1866
1867 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1868
1869 /* Avoid setting b->val if it's already set. The meaning of
1870 b->val is 'the last value' user saw, and we should update
1871 it only if we reported that last value to user. As it
1872 happens, the code that reports it updates b->val directly.
1873 We don't keep track of the memory value for masked
1874 watchpoints. */
1875 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1876 {
1877 b->val = v;
1878 b->val_valid = 1;
1879 }
1880
1881 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1882
1883 /* Look at each value on the value chain. */
1884 for (v = val_chain; v; v = value_next (v))
1885 {
1886 /* If it's a memory location, and GDB actually needed
1887 its contents to evaluate the expression, then we
1888 must watch it. If the first value returned is
1889 still lazy, that means an error occurred reading it;
1890 watch it anyway in case it becomes readable. */
1891 if (VALUE_LVAL (v) == lval_memory
1892 && (v == val_chain || ! value_lazy (v)))
1893 {
1894 struct type *vtype = check_typedef (value_type (v));
1895
1896 /* We only watch structs and arrays if user asked
1897 for it explicitly, never if they just happen to
1898 appear in the middle of some value chain. */
1899 if (v == result
1900 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1901 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1902 {
1903 CORE_ADDR addr;
1904 int type;
1905 struct bp_location *loc, **tmp;
1906
1907 addr = value_address (v);
1908 type = hw_write;
1909 if (b->base.type == bp_read_watchpoint)
1910 type = hw_read;
1911 else if (b->base.type == bp_access_watchpoint)
1912 type = hw_access;
1913
1914 loc = allocate_bp_location (&b->base);
1915 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1916 ;
1917 *tmp = loc;
1918 loc->gdbarch = get_type_arch (value_type (v));
1919
1920 loc->pspace = frame_pspace;
1921 loc->address = addr;
1922 loc->length = TYPE_LENGTH (value_type (v));
1923 loc->watchpoint_type = type;
1924 }
1925 }
1926 }
1927
1928 /* Change the type of breakpoint between hardware assisted or
1929 an ordinary watchpoint depending on the hardware support
1930 and free hardware slots. REPARSE is set when the inferior
1931 is started. */
1932 if (reparse)
1933 {
1934 int reg_cnt;
1935 enum bp_loc_type loc_type;
1936 struct bp_location *bl;
1937
1938 reg_cnt = can_use_hardware_watchpoint (val_chain);
1939
1940 if (reg_cnt)
1941 {
1942 int i, target_resources_ok, other_type_used;
1943 enum bptype type;
1944
1945 /* Use an exact watchpoint when there's only one memory region to be
1946 watched, and only one debug register is needed to watch it. */
1947 b->exact = target_exact_watchpoints && reg_cnt == 1;
1948
1949 /* We need to determine how many resources are already
1950 used for all other hardware watchpoints plus this one
1951 to see if we still have enough resources to also fit
1952 this watchpoint in as well. */
1953
1954 /* If this is a software watchpoint, we try to turn it
1955 to a hardware one -- count resources as if B was of
1956 hardware watchpoint type. */
1957 type = b->base.type;
1958 if (type == bp_watchpoint)
1959 type = bp_hardware_watchpoint;
1960
1961 /* This watchpoint may or may not have been placed on
1962 the list yet at this point (it won't be in the list
1963 if we're trying to create it for the first time,
1964 through watch_command), so always account for it
1965 manually. */
1966
1967 /* Count resources used by all watchpoints except B. */
1968 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1969
1970 /* Add in the resources needed for B. */
1971 i += hw_watchpoint_use_count (&b->base);
1972
1973 target_resources_ok
1974 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1975 if (target_resources_ok <= 0)
1976 {
1977 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1978
1979 if (target_resources_ok == 0 && !sw_mode)
1980 error (_("Target does not support this type of "
1981 "hardware watchpoint."));
1982 else if (target_resources_ok < 0 && !sw_mode)
1983 error (_("There are not enough available hardware "
1984 "resources for this watchpoint."));
1985
1986 /* Downgrade to software watchpoint. */
1987 b->base.type = bp_watchpoint;
1988 }
1989 else
1990 {
1991 /* If this was a software watchpoint, we've just
1992 found we have enough resources to turn it to a
1993 hardware watchpoint. Otherwise, this is a
1994 nop. */
1995 b->base.type = type;
1996 }
1997 }
1998 else if (!b->base.ops->works_in_software_mode (&b->base))
1999 {
2000 if (!can_use_hw_watchpoints)
2001 error (_("Can't set read/access watchpoint when "
2002 "hardware watchpoints are disabled."));
2003 else
2004 error (_("Expression cannot be implemented with "
2005 "read/access watchpoint."));
2006 }
2007 else
2008 b->base.type = bp_watchpoint;
2009
2010 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2011 : bp_loc_hardware_watchpoint);
2012 for (bl = b->base.loc; bl; bl = bl->next)
2013 bl->loc_type = loc_type;
2014 }
2015
2016 for (v = val_chain; v; v = next)
2017 {
2018 next = value_next (v);
2019 if (v != b->val)
2020 value_free (v);
2021 }
2022
2023 /* If a software watchpoint is not watching any memory, then the
2024 above left it without any location set up. But,
2025 bpstat_stop_status requires a location to be able to report
2026 stops, so make sure there's at least a dummy one. */
2027 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2028 {
2029 struct breakpoint *base = &b->base;
2030 base->loc = allocate_bp_location (base);
2031 base->loc->pspace = frame_pspace;
2032 base->loc->address = -1;
2033 base->loc->length = -1;
2034 base->loc->watchpoint_type = -1;
2035 }
2036 }
2037 else if (!within_current_scope)
2038 {
2039 printf_filtered (_("\
2040 Watchpoint %d deleted because the program has left the block\n\
2041 in which its expression is valid.\n"),
2042 b->base.number);
2043 watchpoint_del_at_next_stop (b);
2044 }
2045
2046 /* Restore the selected frame. */
2047 if (frame_saved)
2048 select_frame (frame_find_by_id (saved_frame_id));
2049 }
2050
2051
2052 /* Returns 1 iff breakpoint location should be
2053 inserted in the inferior. We don't differentiate the type of BL's owner
2054 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2055 breakpoint_ops is not defined, because in insert_bp_location,
2056 tracepoint's insert_location will not be called. */
2057 static int
2058 should_be_inserted (struct bp_location *bl)
2059 {
2060 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2061 return 0;
2062
2063 if (bl->owner->disposition == disp_del_at_next_stop)
2064 return 0;
2065
2066 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2067 return 0;
2068
2069 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2070 return 0;
2071
2072 /* This is set for example, when we're attached to the parent of a
2073 vfork, and have detached from the child. The child is running
2074 free, and we expect it to do an exec or exit, at which point the
2075 OS makes the parent schedulable again (and the target reports
2076 that the vfork is done). Until the child is done with the shared
2077 memory region, do not insert breakpoints in the parent, otherwise
2078 the child could still trip on the parent's breakpoints. Since
2079 the parent is blocked anyway, it won't miss any breakpoint. */
2080 if (bl->pspace->breakpoints_not_allowed)
2081 return 0;
2082
2083 /* Don't insert a breakpoint if we're trying to step past its
2084 location. */
2085 if ((bl->loc_type == bp_loc_software_breakpoint
2086 || bl->loc_type == bp_loc_hardware_breakpoint)
2087 && stepping_past_instruction_at (bl->pspace->aspace,
2088 bl->address))
2089 return 0;
2090
2091 return 1;
2092 }
2093
2094 /* Same as should_be_inserted but does the check assuming
2095 that the location is not duplicated. */
2096
2097 static int
2098 unduplicated_should_be_inserted (struct bp_location *bl)
2099 {
2100 int result;
2101 const int save_duplicate = bl->duplicate;
2102
2103 bl->duplicate = 0;
2104 result = should_be_inserted (bl);
2105 bl->duplicate = save_duplicate;
2106 return result;
2107 }
2108
2109 /* Parses a conditional described by an expression COND into an
2110 agent expression bytecode suitable for evaluation
2111 by the bytecode interpreter. Return NULL if there was
2112 any error during parsing. */
2113
2114 static struct agent_expr *
2115 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2116 {
2117 struct agent_expr *aexpr = NULL;
2118 volatile struct gdb_exception ex;
2119
2120 if (!cond)
2121 return NULL;
2122
2123 /* We don't want to stop processing, so catch any errors
2124 that may show up. */
2125 TRY_CATCH (ex, RETURN_MASK_ERROR)
2126 {
2127 aexpr = gen_eval_for_expr (scope, cond);
2128 }
2129
2130 if (ex.reason < 0)
2131 {
2132 /* If we got here, it means the condition could not be parsed to a valid
2133 bytecode expression and thus can't be evaluated on the target's side.
2134 It's no use iterating through the conditions. */
2135 return NULL;
2136 }
2137
2138 /* We have a valid agent expression. */
2139 return aexpr;
2140 }
2141
2142 /* Based on location BL, create a list of breakpoint conditions to be
2143 passed on to the target. If we have duplicated locations with different
2144 conditions, we will add such conditions to the list. The idea is that the
2145 target will evaluate the list of conditions and will only notify GDB when
2146 one of them is true. */
2147
2148 static void
2149 build_target_condition_list (struct bp_location *bl)
2150 {
2151 struct bp_location **locp = NULL, **loc2p;
2152 int null_condition_or_parse_error = 0;
2153 int modified = bl->needs_update;
2154 struct bp_location *loc;
2155
2156 /* Release conditions left over from a previous insert. */
2157 VEC_free (agent_expr_p, bl->target_info.conditions);
2158
2159 /* This is only meaningful if the target is
2160 evaluating conditions and if the user has
2161 opted for condition evaluation on the target's
2162 side. */
2163 if (gdb_evaluates_breakpoint_condition_p ()
2164 || !target_supports_evaluation_of_breakpoint_conditions ())
2165 return;
2166
2167 /* Do a first pass to check for locations with no assigned
2168 conditions or conditions that fail to parse to a valid agent expression
2169 bytecode. If any of these happen, then it's no use to send conditions
2170 to the target since this location will always trigger and generate a
2171 response back to GDB. */
2172 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2173 {
2174 loc = (*loc2p);
2175 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2176 {
2177 if (modified)
2178 {
2179 struct agent_expr *aexpr;
2180
2181 /* Re-parse the conditions since something changed. In that
2182 case we already freed the condition bytecodes (see
2183 force_breakpoint_reinsertion). We just
2184 need to parse the condition to bytecodes again. */
2185 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2186 loc->cond_bytecode = aexpr;
2187
2188 /* Check if we managed to parse the conditional expression
2189 correctly. If not, we will not send this condition
2190 to the target. */
2191 if (aexpr)
2192 continue;
2193 }
2194
2195 /* If we have a NULL bytecode expression, it means something
2196 went wrong or we have a null condition expression. */
2197 if (!loc->cond_bytecode)
2198 {
2199 null_condition_or_parse_error = 1;
2200 break;
2201 }
2202 }
2203 }
2204
2205 /* If any of these happened, it means we will have to evaluate the conditions
2206 for the location's address on gdb's side. It is no use keeping bytecodes
2207 for all the other duplicate locations, thus we free all of them here.
2208
2209 This is so we have a finer control over which locations' conditions are
2210 being evaluated by GDB or the remote stub. */
2211 if (null_condition_or_parse_error)
2212 {
2213 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2214 {
2215 loc = (*loc2p);
2216 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2217 {
2218 /* Only go as far as the first NULL bytecode is
2219 located. */
2220 if (!loc->cond_bytecode)
2221 return;
2222
2223 free_agent_expr (loc->cond_bytecode);
2224 loc->cond_bytecode = NULL;
2225 }
2226 }
2227 }
2228
2229 /* No NULL conditions or failed bytecode generation. Build a condition list
2230 for this location's address. */
2231 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2232 {
2233 loc = (*loc2p);
2234 if (loc->cond
2235 && is_breakpoint (loc->owner)
2236 && loc->pspace->num == bl->pspace->num
2237 && loc->owner->enable_state == bp_enabled
2238 && loc->enabled)
2239 /* Add the condition to the vector. This will be used later to send the
2240 conditions to the target. */
2241 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2242 loc->cond_bytecode);
2243 }
2244
2245 return;
2246 }
2247
2248 /* Parses a command described by string CMD into an agent expression
2249 bytecode suitable for evaluation by the bytecode interpreter.
2250 Return NULL if there was any error during parsing. */
2251
2252 static struct agent_expr *
2253 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2254 {
2255 struct cleanup *old_cleanups = 0;
2256 struct expression *expr, **argvec;
2257 struct agent_expr *aexpr = NULL;
2258 volatile struct gdb_exception ex;
2259 const char *cmdrest;
2260 const char *format_start, *format_end;
2261 struct format_piece *fpieces;
2262 int nargs;
2263 struct gdbarch *gdbarch = get_current_arch ();
2264
2265 if (!cmd)
2266 return NULL;
2267
2268 cmdrest = cmd;
2269
2270 if (*cmdrest == ',')
2271 ++cmdrest;
2272 cmdrest = skip_spaces_const (cmdrest);
2273
2274 if (*cmdrest++ != '"')
2275 error (_("No format string following the location"));
2276
2277 format_start = cmdrest;
2278
2279 fpieces = parse_format_string (&cmdrest);
2280
2281 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2282
2283 format_end = cmdrest;
2284
2285 if (*cmdrest++ != '"')
2286 error (_("Bad format string, non-terminated '\"'."));
2287
2288 cmdrest = skip_spaces_const (cmdrest);
2289
2290 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2291 error (_("Invalid argument syntax"));
2292
2293 if (*cmdrest == ',')
2294 cmdrest++;
2295 cmdrest = skip_spaces_const (cmdrest);
2296
2297 /* For each argument, make an expression. */
2298
2299 argvec = (struct expression **) alloca (strlen (cmd)
2300 * sizeof (struct expression *));
2301
2302 nargs = 0;
2303 while (*cmdrest != '\0')
2304 {
2305 const char *cmd1;
2306
2307 cmd1 = cmdrest;
2308 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2309 argvec[nargs++] = expr;
2310 cmdrest = cmd1;
2311 if (*cmdrest == ',')
2312 ++cmdrest;
2313 }
2314
2315 /* We don't want to stop processing, so catch any errors
2316 that may show up. */
2317 TRY_CATCH (ex, RETURN_MASK_ERROR)
2318 {
2319 aexpr = gen_printf (scope, gdbarch, 0, 0,
2320 format_start, format_end - format_start,
2321 fpieces, nargs, argvec);
2322 }
2323
2324 do_cleanups (old_cleanups);
2325
2326 if (ex.reason < 0)
2327 {
2328 /* If we got here, it means the command could not be parsed to a valid
2329 bytecode expression and thus can't be evaluated on the target's side.
2330 It's no use iterating through the other commands. */
2331 return NULL;
2332 }
2333
2334 /* We have a valid agent expression, return it. */
2335 return aexpr;
2336 }
2337
2338 /* Based on location BL, create a list of breakpoint commands to be
2339 passed on to the target. If we have duplicated locations with
2340 different commands, we will add any such to the list. */
2341
2342 static void
2343 build_target_command_list (struct bp_location *bl)
2344 {
2345 struct bp_location **locp = NULL, **loc2p;
2346 int null_command_or_parse_error = 0;
2347 int modified = bl->needs_update;
2348 struct bp_location *loc;
2349
2350 /* Release commands left over from a previous insert. */
2351 VEC_free (agent_expr_p, bl->target_info.tcommands);
2352
2353 /* For now, limit to agent-style dprintf breakpoints. */
2354 if (bl->owner->type != bp_dprintf
2355 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2356 return;
2357
2358 if (!target_can_run_breakpoint_commands ())
2359 return;
2360
2361 /* Do a first pass to check for locations with no assigned
2362 conditions or conditions that fail to parse to a valid agent expression
2363 bytecode. If any of these happen, then it's no use to send conditions
2364 to the target since this location will always trigger and generate a
2365 response back to GDB. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2370 {
2371 if (modified)
2372 {
2373 struct agent_expr *aexpr;
2374
2375 /* Re-parse the commands since something changed. In that
2376 case we already freed the command bytecodes (see
2377 force_breakpoint_reinsertion). We just
2378 need to parse the command to bytecodes again. */
2379 aexpr = parse_cmd_to_aexpr (bl->address,
2380 loc->owner->extra_string);
2381 loc->cmd_bytecode = aexpr;
2382
2383 if (!aexpr)
2384 continue;
2385 }
2386
2387 /* If we have a NULL bytecode expression, it means something
2388 went wrong or we have a null command expression. */
2389 if (!loc->cmd_bytecode)
2390 {
2391 null_command_or_parse_error = 1;
2392 break;
2393 }
2394 }
2395 }
2396
2397 /* If anything failed, then we're not doing target-side commands,
2398 and so clean up. */
2399 if (null_command_or_parse_error)
2400 {
2401 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2402 {
2403 loc = (*loc2p);
2404 if (is_breakpoint (loc->owner)
2405 && loc->pspace->num == bl->pspace->num)
2406 {
2407 /* Only go as far as the first NULL bytecode is
2408 located. */
2409 if (loc->cmd_bytecode == NULL)
2410 return;
2411
2412 free_agent_expr (loc->cmd_bytecode);
2413 loc->cmd_bytecode = NULL;
2414 }
2415 }
2416 }
2417
2418 /* No NULL commands or failed bytecode generation. Build a command list
2419 for this location's address. */
2420 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2421 {
2422 loc = (*loc2p);
2423 if (loc->owner->extra_string
2424 && is_breakpoint (loc->owner)
2425 && loc->pspace->num == bl->pspace->num
2426 && loc->owner->enable_state == bp_enabled
2427 && loc->enabled)
2428 /* Add the command to the vector. This will be used later
2429 to send the commands to the target. */
2430 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2431 loc->cmd_bytecode);
2432 }
2433
2434 bl->target_info.persist = 0;
2435 /* Maybe flag this location as persistent. */
2436 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2437 bl->target_info.persist = 1;
2438 }
2439
2440 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2441 location. Any error messages are printed to TMP_ERROR_STREAM; and
2442 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2443 Returns 0 for success, 1 if the bp_location type is not supported or
2444 -1 for failure.
2445
2446 NOTE drow/2003-09-09: This routine could be broken down to an
2447 object-style method for each breakpoint or catchpoint type. */
2448 static int
2449 insert_bp_location (struct bp_location *bl,
2450 struct ui_file *tmp_error_stream,
2451 int *disabled_breaks,
2452 int *hw_breakpoint_error,
2453 int *hw_bp_error_explained_already)
2454 {
2455 enum errors bp_err = GDB_NO_ERROR;
2456 const char *bp_err_message = NULL;
2457 volatile struct gdb_exception e;
2458
2459 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2460 return 0;
2461
2462 /* Note we don't initialize bl->target_info, as that wipes out
2463 the breakpoint location's shadow_contents if the breakpoint
2464 is still inserted at that location. This in turn breaks
2465 target_read_memory which depends on these buffers when
2466 a memory read is requested at the breakpoint location:
2467 Once the target_info has been wiped, we fail to see that
2468 we have a breakpoint inserted at that address and thus
2469 read the breakpoint instead of returning the data saved in
2470 the breakpoint location's shadow contents. */
2471 bl->target_info.placed_address = bl->address;
2472 bl->target_info.placed_address_space = bl->pspace->aspace;
2473 bl->target_info.length = bl->length;
2474
2475 /* When working with target-side conditions, we must pass all the conditions
2476 for the same breakpoint address down to the target since GDB will not
2477 insert those locations. With a list of breakpoint conditions, the target
2478 can decide when to stop and notify GDB. */
2479
2480 if (is_breakpoint (bl->owner))
2481 {
2482 build_target_condition_list (bl);
2483 build_target_command_list (bl);
2484 /* Reset the modification marker. */
2485 bl->needs_update = 0;
2486 }
2487
2488 if (bl->loc_type == bp_loc_software_breakpoint
2489 || bl->loc_type == bp_loc_hardware_breakpoint)
2490 {
2491 if (bl->owner->type != bp_hardware_breakpoint)
2492 {
2493 /* If the explicitly specified breakpoint type
2494 is not hardware breakpoint, check the memory map to see
2495 if the breakpoint address is in read only memory or not.
2496
2497 Two important cases are:
2498 - location type is not hardware breakpoint, memory
2499 is readonly. We change the type of the location to
2500 hardware breakpoint.
2501 - location type is hardware breakpoint, memory is
2502 read-write. This means we've previously made the
2503 location hardware one, but then the memory map changed,
2504 so we undo.
2505
2506 When breakpoints are removed, remove_breakpoints will use
2507 location types we've just set here, the only possible
2508 problem is that memory map has changed during running
2509 program, but it's not going to work anyway with current
2510 gdb. */
2511 struct mem_region *mr
2512 = lookup_mem_region (bl->target_info.placed_address);
2513
2514 if (mr)
2515 {
2516 if (automatic_hardware_breakpoints)
2517 {
2518 enum bp_loc_type new_type;
2519
2520 if (mr->attrib.mode != MEM_RW)
2521 new_type = bp_loc_hardware_breakpoint;
2522 else
2523 new_type = bp_loc_software_breakpoint;
2524
2525 if (new_type != bl->loc_type)
2526 {
2527 static int said = 0;
2528
2529 bl->loc_type = new_type;
2530 if (!said)
2531 {
2532 fprintf_filtered (gdb_stdout,
2533 _("Note: automatically using "
2534 "hardware breakpoints for "
2535 "read-only addresses.\n"));
2536 said = 1;
2537 }
2538 }
2539 }
2540 else if (bl->loc_type == bp_loc_software_breakpoint
2541 && mr->attrib.mode != MEM_RW)
2542 warning (_("cannot set software breakpoint "
2543 "at readonly address %s"),
2544 paddress (bl->gdbarch, bl->address));
2545 }
2546 }
2547
2548 /* First check to see if we have to handle an overlay. */
2549 if (overlay_debugging == ovly_off
2550 || bl->section == NULL
2551 || !(section_is_overlay (bl->section)))
2552 {
2553 /* No overlay handling: just set the breakpoint. */
2554 TRY_CATCH (e, RETURN_MASK_ALL)
2555 {
2556 int val;
2557
2558 val = bl->owner->ops->insert_location (bl);
2559 if (val)
2560 bp_err = GENERIC_ERROR;
2561 }
2562 if (e.reason < 0)
2563 {
2564 bp_err = e.error;
2565 bp_err_message = e.message;
2566 }
2567 }
2568 else
2569 {
2570 /* This breakpoint is in an overlay section.
2571 Shall we set a breakpoint at the LMA? */
2572 if (!overlay_events_enabled)
2573 {
2574 /* Yes -- overlay event support is not active,
2575 so we must try to set a breakpoint at the LMA.
2576 This will not work for a hardware breakpoint. */
2577 if (bl->loc_type == bp_loc_hardware_breakpoint)
2578 warning (_("hardware breakpoint %d not supported in overlay!"),
2579 bl->owner->number);
2580 else
2581 {
2582 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2583 bl->section);
2584 /* Set a software (trap) breakpoint at the LMA. */
2585 bl->overlay_target_info = bl->target_info;
2586 bl->overlay_target_info.placed_address = addr;
2587
2588 /* No overlay handling: just set the breakpoint. */
2589 TRY_CATCH (e, RETURN_MASK_ALL)
2590 {
2591 int val;
2592
2593 val = target_insert_breakpoint (bl->gdbarch,
2594 &bl->overlay_target_info);
2595 if (val)
2596 bp_err = GENERIC_ERROR;
2597 }
2598 if (e.reason < 0)
2599 {
2600 bp_err = e.error;
2601 bp_err_message = e.message;
2602 }
2603
2604 if (bp_err != GDB_NO_ERROR)
2605 fprintf_unfiltered (tmp_error_stream,
2606 "Overlay breakpoint %d "
2607 "failed: in ROM?\n",
2608 bl->owner->number);
2609 }
2610 }
2611 /* Shall we set a breakpoint at the VMA? */
2612 if (section_is_mapped (bl->section))
2613 {
2614 /* Yes. This overlay section is mapped into memory. */
2615 TRY_CATCH (e, RETURN_MASK_ALL)
2616 {
2617 int val;
2618
2619 val = bl->owner->ops->insert_location (bl);
2620 if (val)
2621 bp_err = GENERIC_ERROR;
2622 }
2623 if (e.reason < 0)
2624 {
2625 bp_err = e.error;
2626 bp_err_message = e.message;
2627 }
2628 }
2629 else
2630 {
2631 /* No. This breakpoint will not be inserted.
2632 No error, but do not mark the bp as 'inserted'. */
2633 return 0;
2634 }
2635 }
2636
2637 if (bp_err != GDB_NO_ERROR)
2638 {
2639 /* Can't set the breakpoint. */
2640
2641 /* In some cases, we might not be able to insert a
2642 breakpoint in a shared library that has already been
2643 removed, but we have not yet processed the shlib unload
2644 event. Unfortunately, some targets that implement
2645 breakpoint insertion themselves (necessary if this is a
2646 HW breakpoint, but SW breakpoints likewise) can't tell
2647 why the breakpoint insertion failed (e.g., the remote
2648 target doesn't define error codes), so we must treat
2649 generic errors as memory errors. */
2650 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2651 && solib_name_from_address (bl->pspace, bl->address))
2652 {
2653 /* See also: disable_breakpoints_in_shlibs. */
2654 bl->shlib_disabled = 1;
2655 observer_notify_breakpoint_modified (bl->owner);
2656 if (!*disabled_breaks)
2657 {
2658 fprintf_unfiltered (tmp_error_stream,
2659 "Cannot insert breakpoint %d.\n",
2660 bl->owner->number);
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Temporarily disabling shared "
2663 "library breakpoints:\n");
2664 }
2665 *disabled_breaks = 1;
2666 fprintf_unfiltered (tmp_error_stream,
2667 "breakpoint #%d\n", bl->owner->number);
2668 return 0;
2669 }
2670 else
2671 {
2672 if (bl->loc_type == bp_loc_hardware_breakpoint)
2673 {
2674 *hw_breakpoint_error = 1;
2675 *hw_bp_error_explained_already = bp_err_message != NULL;
2676 fprintf_unfiltered (tmp_error_stream,
2677 "Cannot insert hardware breakpoint %d%s",
2678 bl->owner->number, bp_err_message ? ":" : ".\n");
2679 if (bp_err_message != NULL)
2680 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2681 }
2682 else
2683 {
2684 if (bp_err_message == NULL)
2685 {
2686 char *message
2687 = memory_error_message (TARGET_XFER_E_IO,
2688 bl->gdbarch, bl->address);
2689 struct cleanup *old_chain = make_cleanup (xfree, message);
2690
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert breakpoint %d.\n"
2693 "%s\n",
2694 bl->owner->number, message);
2695 do_cleanups (old_chain);
2696 }
2697 else
2698 {
2699 fprintf_unfiltered (tmp_error_stream,
2700 "Cannot insert breakpoint %d: %s\n",
2701 bl->owner->number,
2702 bp_err_message);
2703 }
2704 }
2705 return 1;
2706
2707 }
2708 }
2709 else
2710 bl->inserted = 1;
2711
2712 return 0;
2713 }
2714
2715 else if (bl->loc_type == bp_loc_hardware_watchpoint
2716 /* NOTE drow/2003-09-08: This state only exists for removing
2717 watchpoints. It's not clear that it's necessary... */
2718 && bl->owner->disposition != disp_del_at_next_stop)
2719 {
2720 int val;
2721
2722 gdb_assert (bl->owner->ops != NULL
2723 && bl->owner->ops->insert_location != NULL);
2724
2725 val = bl->owner->ops->insert_location (bl);
2726
2727 /* If trying to set a read-watchpoint, and it turns out it's not
2728 supported, try emulating one with an access watchpoint. */
2729 if (val == 1 && bl->watchpoint_type == hw_read)
2730 {
2731 struct bp_location *loc, **loc_temp;
2732
2733 /* But don't try to insert it, if there's already another
2734 hw_access location that would be considered a duplicate
2735 of this one. */
2736 ALL_BP_LOCATIONS (loc, loc_temp)
2737 if (loc != bl
2738 && loc->watchpoint_type == hw_access
2739 && watchpoint_locations_match (bl, loc))
2740 {
2741 bl->duplicate = 1;
2742 bl->inserted = 1;
2743 bl->target_info = loc->target_info;
2744 bl->watchpoint_type = hw_access;
2745 val = 0;
2746 break;
2747 }
2748
2749 if (val == 1)
2750 {
2751 bl->watchpoint_type = hw_access;
2752 val = bl->owner->ops->insert_location (bl);
2753
2754 if (val)
2755 /* Back to the original value. */
2756 bl->watchpoint_type = hw_read;
2757 }
2758 }
2759
2760 bl->inserted = (val == 0);
2761 }
2762
2763 else if (bl->owner->type == bp_catchpoint)
2764 {
2765 int val;
2766
2767 gdb_assert (bl->owner->ops != NULL
2768 && bl->owner->ops->insert_location != NULL);
2769
2770 val = bl->owner->ops->insert_location (bl);
2771 if (val)
2772 {
2773 bl->owner->enable_state = bp_disabled;
2774
2775 if (val == 1)
2776 warning (_("\
2777 Error inserting catchpoint %d: Your system does not support this type\n\
2778 of catchpoint."), bl->owner->number);
2779 else
2780 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2781 }
2782
2783 bl->inserted = (val == 0);
2784
2785 /* We've already printed an error message if there was a problem
2786 inserting this catchpoint, and we've disabled the catchpoint,
2787 so just return success. */
2788 return 0;
2789 }
2790
2791 return 0;
2792 }
2793
2794 /* This function is called when program space PSPACE is about to be
2795 deleted. It takes care of updating breakpoints to not reference
2796 PSPACE anymore. */
2797
2798 void
2799 breakpoint_program_space_exit (struct program_space *pspace)
2800 {
2801 struct breakpoint *b, *b_temp;
2802 struct bp_location *loc, **loc_temp;
2803
2804 /* Remove any breakpoint that was set through this program space. */
2805 ALL_BREAKPOINTS_SAFE (b, b_temp)
2806 {
2807 if (b->pspace == pspace)
2808 delete_breakpoint (b);
2809 }
2810
2811 /* Breakpoints set through other program spaces could have locations
2812 bound to PSPACE as well. Remove those. */
2813 ALL_BP_LOCATIONS (loc, loc_temp)
2814 {
2815 struct bp_location *tmp;
2816
2817 if (loc->pspace == pspace)
2818 {
2819 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2820 if (loc->owner->loc == loc)
2821 loc->owner->loc = loc->next;
2822 else
2823 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2824 if (tmp->next == loc)
2825 {
2826 tmp->next = loc->next;
2827 break;
2828 }
2829 }
2830 }
2831
2832 /* Now update the global location list to permanently delete the
2833 removed locations above. */
2834 update_global_location_list (0);
2835 }
2836
2837 /* Make sure all breakpoints are inserted in inferior.
2838 Throws exception on any error.
2839 A breakpoint that is already inserted won't be inserted
2840 again, so calling this function twice is safe. */
2841 void
2842 insert_breakpoints (void)
2843 {
2844 struct breakpoint *bpt;
2845
2846 ALL_BREAKPOINTS (bpt)
2847 if (is_hardware_watchpoint (bpt))
2848 {
2849 struct watchpoint *w = (struct watchpoint *) bpt;
2850
2851 update_watchpoint (w, 0 /* don't reparse. */);
2852 }
2853
2854 update_global_location_list (1);
2855
2856 /* update_global_location_list does not insert breakpoints when
2857 always_inserted_mode is not enabled. Explicitly insert them
2858 now. */
2859 if (!breakpoints_always_inserted_mode ())
2860 insert_breakpoint_locations ();
2861 }
2862
2863 /* Invoke CALLBACK for each of bp_location. */
2864
2865 void
2866 iterate_over_bp_locations (walk_bp_location_callback callback)
2867 {
2868 struct bp_location *loc, **loc_tmp;
2869
2870 ALL_BP_LOCATIONS (loc, loc_tmp)
2871 {
2872 callback (loc, NULL);
2873 }
2874 }
2875
2876 /* This is used when we need to synch breakpoint conditions between GDB and the
2877 target. It is the case with deleting and disabling of breakpoints when using
2878 always-inserted mode. */
2879
2880 static void
2881 update_inserted_breakpoint_locations (void)
2882 {
2883 struct bp_location *bl, **blp_tmp;
2884 int error_flag = 0;
2885 int val = 0;
2886 int disabled_breaks = 0;
2887 int hw_breakpoint_error = 0;
2888 int hw_bp_details_reported = 0;
2889
2890 struct ui_file *tmp_error_stream = mem_fileopen ();
2891 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2892
2893 /* Explicitly mark the warning -- this will only be printed if
2894 there was an error. */
2895 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2896
2897 save_current_space_and_thread ();
2898
2899 ALL_BP_LOCATIONS (bl, blp_tmp)
2900 {
2901 /* We only want to update software breakpoints and hardware
2902 breakpoints. */
2903 if (!is_breakpoint (bl->owner))
2904 continue;
2905
2906 /* We only want to update locations that are already inserted
2907 and need updating. This is to avoid unwanted insertion during
2908 deletion of breakpoints. */
2909 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2910 continue;
2911
2912 switch_to_program_space_and_thread (bl->pspace);
2913
2914 /* For targets that support global breakpoints, there's no need
2915 to select an inferior to insert breakpoint to. In fact, even
2916 if we aren't attached to any process yet, we should still
2917 insert breakpoints. */
2918 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2919 && ptid_equal (inferior_ptid, null_ptid))
2920 continue;
2921
2922 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2923 &hw_breakpoint_error, &hw_bp_details_reported);
2924 if (val)
2925 error_flag = val;
2926 }
2927
2928 if (error_flag)
2929 {
2930 target_terminal_ours_for_output ();
2931 error_stream (tmp_error_stream);
2932 }
2933
2934 do_cleanups (cleanups);
2935 }
2936
2937 /* Used when starting or continuing the program. */
2938
2939 static void
2940 insert_breakpoint_locations (void)
2941 {
2942 struct breakpoint *bpt;
2943 struct bp_location *bl, **blp_tmp;
2944 int error_flag = 0;
2945 int val = 0;
2946 int disabled_breaks = 0;
2947 int hw_breakpoint_error = 0;
2948 int hw_bp_error_explained_already = 0;
2949
2950 struct ui_file *tmp_error_stream = mem_fileopen ();
2951 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2952
2953 /* Explicitly mark the warning -- this will only be printed if
2954 there was an error. */
2955 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2956
2957 save_current_space_and_thread ();
2958
2959 ALL_BP_LOCATIONS (bl, blp_tmp)
2960 {
2961 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2962 continue;
2963
2964 /* There is no point inserting thread-specific breakpoints if
2965 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2966 has BL->OWNER always non-NULL. */
2967 if (bl->owner->thread != -1
2968 && !valid_thread_id (bl->owner->thread))
2969 continue;
2970
2971 switch_to_program_space_and_thread (bl->pspace);
2972
2973 /* For targets that support global breakpoints, there's no need
2974 to select an inferior to insert breakpoint to. In fact, even
2975 if we aren't attached to any process yet, we should still
2976 insert breakpoints. */
2977 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2978 && ptid_equal (inferior_ptid, null_ptid))
2979 continue;
2980
2981 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2982 &hw_breakpoint_error, &hw_bp_error_explained_already);
2983 if (val)
2984 error_flag = val;
2985 }
2986
2987 /* If we failed to insert all locations of a watchpoint, remove
2988 them, as half-inserted watchpoint is of limited use. */
2989 ALL_BREAKPOINTS (bpt)
2990 {
2991 int some_failed = 0;
2992 struct bp_location *loc;
2993
2994 if (!is_hardware_watchpoint (bpt))
2995 continue;
2996
2997 if (!breakpoint_enabled (bpt))
2998 continue;
2999
3000 if (bpt->disposition == disp_del_at_next_stop)
3001 continue;
3002
3003 for (loc = bpt->loc; loc; loc = loc->next)
3004 if (!loc->inserted && should_be_inserted (loc))
3005 {
3006 some_failed = 1;
3007 break;
3008 }
3009 if (some_failed)
3010 {
3011 for (loc = bpt->loc; loc; loc = loc->next)
3012 if (loc->inserted)
3013 remove_breakpoint (loc, mark_uninserted);
3014
3015 hw_breakpoint_error = 1;
3016 fprintf_unfiltered (tmp_error_stream,
3017 "Could not insert hardware watchpoint %d.\n",
3018 bpt->number);
3019 error_flag = -1;
3020 }
3021 }
3022
3023 if (error_flag)
3024 {
3025 /* If a hardware breakpoint or watchpoint was inserted, add a
3026 message about possibly exhausted resources. */
3027 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3028 {
3029 fprintf_unfiltered (tmp_error_stream,
3030 "Could not insert hardware breakpoints:\n\
3031 You may have requested too many hardware breakpoints/watchpoints.\n");
3032 }
3033 target_terminal_ours_for_output ();
3034 error_stream (tmp_error_stream);
3035 }
3036
3037 do_cleanups (cleanups);
3038 }
3039
3040 /* Used when the program stops.
3041 Returns zero if successful, or non-zero if there was a problem
3042 removing a breakpoint location. */
3043
3044 int
3045 remove_breakpoints (void)
3046 {
3047 struct bp_location *bl, **blp_tmp;
3048 int val = 0;
3049
3050 ALL_BP_LOCATIONS (bl, blp_tmp)
3051 {
3052 if (bl->inserted && !is_tracepoint (bl->owner))
3053 val |= remove_breakpoint (bl, mark_uninserted);
3054 }
3055 return val;
3056 }
3057
3058 /* When a thread exits, remove breakpoints that are related to
3059 that thread. */
3060
3061 static void
3062 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3063 {
3064 struct breakpoint *b, *b_tmp;
3065
3066 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3067 {
3068 if (b->thread == tp->num && user_breakpoint_p (b))
3069 {
3070 b->disposition = disp_del_at_next_stop;
3071
3072 printf_filtered (_("\
3073 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3074 b->number, tp->num);
3075
3076 /* Hide it from the user. */
3077 b->number = 0;
3078 }
3079 }
3080 }
3081
3082 /* Remove breakpoints of process PID. */
3083
3084 int
3085 remove_breakpoints_pid (int pid)
3086 {
3087 struct bp_location *bl, **blp_tmp;
3088 int val;
3089 struct inferior *inf = find_inferior_pid (pid);
3090
3091 ALL_BP_LOCATIONS (bl, blp_tmp)
3092 {
3093 if (bl->pspace != inf->pspace)
3094 continue;
3095
3096 if (bl->owner->type == bp_dprintf)
3097 continue;
3098
3099 if (bl->inserted)
3100 {
3101 val = remove_breakpoint (bl, mark_uninserted);
3102 if (val != 0)
3103 return val;
3104 }
3105 }
3106 return 0;
3107 }
3108
3109 int
3110 reattach_breakpoints (int pid)
3111 {
3112 struct cleanup *old_chain;
3113 struct bp_location *bl, **blp_tmp;
3114 int val;
3115 struct ui_file *tmp_error_stream;
3116 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3117 struct inferior *inf;
3118 struct thread_info *tp;
3119
3120 tp = any_live_thread_of_process (pid);
3121 if (tp == NULL)
3122 return 1;
3123
3124 inf = find_inferior_pid (pid);
3125 old_chain = save_inferior_ptid ();
3126
3127 inferior_ptid = tp->ptid;
3128
3129 tmp_error_stream = mem_fileopen ();
3130 make_cleanup_ui_file_delete (tmp_error_stream);
3131
3132 ALL_BP_LOCATIONS (bl, blp_tmp)
3133 {
3134 if (bl->pspace != inf->pspace)
3135 continue;
3136
3137 if (bl->inserted)
3138 {
3139 bl->inserted = 0;
3140 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3141 if (val != 0)
3142 {
3143 do_cleanups (old_chain);
3144 return val;
3145 }
3146 }
3147 }
3148 do_cleanups (old_chain);
3149 return 0;
3150 }
3151
3152 static int internal_breakpoint_number = -1;
3153
3154 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3155 If INTERNAL is non-zero, the breakpoint number will be populated
3156 from internal_breakpoint_number and that variable decremented.
3157 Otherwise the breakpoint number will be populated from
3158 breakpoint_count and that value incremented. Internal breakpoints
3159 do not set the internal var bpnum. */
3160 static void
3161 set_breakpoint_number (int internal, struct breakpoint *b)
3162 {
3163 if (internal)
3164 b->number = internal_breakpoint_number--;
3165 else
3166 {
3167 set_breakpoint_count (breakpoint_count + 1);
3168 b->number = breakpoint_count;
3169 }
3170 }
3171
3172 static struct breakpoint *
3173 create_internal_breakpoint (struct gdbarch *gdbarch,
3174 CORE_ADDR address, enum bptype type,
3175 const struct breakpoint_ops *ops)
3176 {
3177 struct symtab_and_line sal;
3178 struct breakpoint *b;
3179
3180 init_sal (&sal); /* Initialize to zeroes. */
3181
3182 sal.pc = address;
3183 sal.section = find_pc_overlay (sal.pc);
3184 sal.pspace = current_program_space;
3185
3186 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3187 b->number = internal_breakpoint_number--;
3188 b->disposition = disp_donttouch;
3189
3190 return b;
3191 }
3192
3193 static const char *const longjmp_names[] =
3194 {
3195 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3196 };
3197 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3198
3199 /* Per-objfile data private to breakpoint.c. */
3200 struct breakpoint_objfile_data
3201 {
3202 /* Minimal symbol for "_ovly_debug_event" (if any). */
3203 struct bound_minimal_symbol overlay_msym;
3204
3205 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3206 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3207
3208 /* True if we have looked for longjmp probes. */
3209 int longjmp_searched;
3210
3211 /* SystemTap probe points for longjmp (if any). */
3212 VEC (probe_p) *longjmp_probes;
3213
3214 /* Minimal symbol for "std::terminate()" (if any). */
3215 struct bound_minimal_symbol terminate_msym;
3216
3217 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3218 struct bound_minimal_symbol exception_msym;
3219
3220 /* True if we have looked for exception probes. */
3221 int exception_searched;
3222
3223 /* SystemTap probe points for unwinding (if any). */
3224 VEC (probe_p) *exception_probes;
3225 };
3226
3227 static const struct objfile_data *breakpoint_objfile_key;
3228
3229 /* Minimal symbol not found sentinel. */
3230 static struct minimal_symbol msym_not_found;
3231
3232 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3233
3234 static int
3235 msym_not_found_p (const struct minimal_symbol *msym)
3236 {
3237 return msym == &msym_not_found;
3238 }
3239
3240 /* Return per-objfile data needed by breakpoint.c.
3241 Allocate the data if necessary. */
3242
3243 static struct breakpoint_objfile_data *
3244 get_breakpoint_objfile_data (struct objfile *objfile)
3245 {
3246 struct breakpoint_objfile_data *bp_objfile_data;
3247
3248 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3249 if (bp_objfile_data == NULL)
3250 {
3251 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3252 sizeof (*bp_objfile_data));
3253
3254 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3255 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3256 }
3257 return bp_objfile_data;
3258 }
3259
3260 static void
3261 free_breakpoint_probes (struct objfile *obj, void *data)
3262 {
3263 struct breakpoint_objfile_data *bp_objfile_data = data;
3264
3265 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3266 VEC_free (probe_p, bp_objfile_data->exception_probes);
3267 }
3268
3269 static void
3270 create_overlay_event_breakpoint (void)
3271 {
3272 struct objfile *objfile;
3273 const char *const func_name = "_ovly_debug_event";
3274
3275 ALL_OBJFILES (objfile)
3276 {
3277 struct breakpoint *b;
3278 struct breakpoint_objfile_data *bp_objfile_data;
3279 CORE_ADDR addr;
3280
3281 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3282
3283 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3284 continue;
3285
3286 if (bp_objfile_data->overlay_msym.minsym == NULL)
3287 {
3288 struct bound_minimal_symbol m;
3289
3290 m = lookup_minimal_symbol_text (func_name, objfile);
3291 if (m.minsym == NULL)
3292 {
3293 /* Avoid future lookups in this objfile. */
3294 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3295 continue;
3296 }
3297 bp_objfile_data->overlay_msym = m;
3298 }
3299
3300 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3301 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3302 bp_overlay_event,
3303 &internal_breakpoint_ops);
3304 b->addr_string = xstrdup (func_name);
3305
3306 if (overlay_debugging == ovly_auto)
3307 {
3308 b->enable_state = bp_enabled;
3309 overlay_events_enabled = 1;
3310 }
3311 else
3312 {
3313 b->enable_state = bp_disabled;
3314 overlay_events_enabled = 0;
3315 }
3316 }
3317 update_global_location_list (1);
3318 }
3319
3320 static void
3321 create_longjmp_master_breakpoint (void)
3322 {
3323 struct program_space *pspace;
3324 struct cleanup *old_chain;
3325
3326 old_chain = save_current_program_space ();
3327
3328 ALL_PSPACES (pspace)
3329 {
3330 struct objfile *objfile;
3331
3332 set_current_program_space (pspace);
3333
3334 ALL_OBJFILES (objfile)
3335 {
3336 int i;
3337 struct gdbarch *gdbarch;
3338 struct breakpoint_objfile_data *bp_objfile_data;
3339
3340 gdbarch = get_objfile_arch (objfile);
3341
3342 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3343
3344 if (!bp_objfile_data->longjmp_searched)
3345 {
3346 VEC (probe_p) *ret;
3347
3348 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3349 if (ret != NULL)
3350 {
3351 /* We are only interested in checking one element. */
3352 struct probe *p = VEC_index (probe_p, ret, 0);
3353
3354 if (!can_evaluate_probe_arguments (p))
3355 {
3356 /* We cannot use the probe interface here, because it does
3357 not know how to evaluate arguments. */
3358 VEC_free (probe_p, ret);
3359 ret = NULL;
3360 }
3361 }
3362 bp_objfile_data->longjmp_probes = ret;
3363 bp_objfile_data->longjmp_searched = 1;
3364 }
3365
3366 if (bp_objfile_data->longjmp_probes != NULL)
3367 {
3368 int i;
3369 struct probe *probe;
3370 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3371
3372 for (i = 0;
3373 VEC_iterate (probe_p,
3374 bp_objfile_data->longjmp_probes,
3375 i, probe);
3376 ++i)
3377 {
3378 struct breakpoint *b;
3379
3380 b = create_internal_breakpoint (gdbarch,
3381 get_probe_address (probe,
3382 objfile),
3383 bp_longjmp_master,
3384 &internal_breakpoint_ops);
3385 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3386 b->enable_state = bp_disabled;
3387 }
3388
3389 continue;
3390 }
3391
3392 if (!gdbarch_get_longjmp_target_p (gdbarch))
3393 continue;
3394
3395 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3396 {
3397 struct breakpoint *b;
3398 const char *func_name;
3399 CORE_ADDR addr;
3400
3401 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3402 continue;
3403
3404 func_name = longjmp_names[i];
3405 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3406 {
3407 struct bound_minimal_symbol m;
3408
3409 m = lookup_minimal_symbol_text (func_name, objfile);
3410 if (m.minsym == NULL)
3411 {
3412 /* Prevent future lookups in this objfile. */
3413 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3414 continue;
3415 }
3416 bp_objfile_data->longjmp_msym[i] = m;
3417 }
3418
3419 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3420 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3421 &internal_breakpoint_ops);
3422 b->addr_string = xstrdup (func_name);
3423 b->enable_state = bp_disabled;
3424 }
3425 }
3426 }
3427 update_global_location_list (1);
3428
3429 do_cleanups (old_chain);
3430 }
3431
3432 /* Create a master std::terminate breakpoint. */
3433 static void
3434 create_std_terminate_master_breakpoint (void)
3435 {
3436 struct program_space *pspace;
3437 struct cleanup *old_chain;
3438 const char *const func_name = "std::terminate()";
3439
3440 old_chain = save_current_program_space ();
3441
3442 ALL_PSPACES (pspace)
3443 {
3444 struct objfile *objfile;
3445 CORE_ADDR addr;
3446
3447 set_current_program_space (pspace);
3448
3449 ALL_OBJFILES (objfile)
3450 {
3451 struct breakpoint *b;
3452 struct breakpoint_objfile_data *bp_objfile_data;
3453
3454 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3455
3456 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3457 continue;
3458
3459 if (bp_objfile_data->terminate_msym.minsym == NULL)
3460 {
3461 struct bound_minimal_symbol m;
3462
3463 m = lookup_minimal_symbol (func_name, NULL, objfile);
3464 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3465 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3466 {
3467 /* Prevent future lookups in this objfile. */
3468 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3469 continue;
3470 }
3471 bp_objfile_data->terminate_msym = m;
3472 }
3473
3474 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3475 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3476 bp_std_terminate_master,
3477 &internal_breakpoint_ops);
3478 b->addr_string = xstrdup (func_name);
3479 b->enable_state = bp_disabled;
3480 }
3481 }
3482
3483 update_global_location_list (1);
3484
3485 do_cleanups (old_chain);
3486 }
3487
3488 /* Install a master breakpoint on the unwinder's debug hook. */
3489
3490 static void
3491 create_exception_master_breakpoint (void)
3492 {
3493 struct objfile *objfile;
3494 const char *const func_name = "_Unwind_DebugHook";
3495
3496 ALL_OBJFILES (objfile)
3497 {
3498 struct breakpoint *b;
3499 struct gdbarch *gdbarch;
3500 struct breakpoint_objfile_data *bp_objfile_data;
3501 CORE_ADDR addr;
3502
3503 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3504
3505 /* We prefer the SystemTap probe point if it exists. */
3506 if (!bp_objfile_data->exception_searched)
3507 {
3508 VEC (probe_p) *ret;
3509
3510 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3511
3512 if (ret != NULL)
3513 {
3514 /* We are only interested in checking one element. */
3515 struct probe *p = VEC_index (probe_p, ret, 0);
3516
3517 if (!can_evaluate_probe_arguments (p))
3518 {
3519 /* We cannot use the probe interface here, because it does
3520 not know how to evaluate arguments. */
3521 VEC_free (probe_p, ret);
3522 ret = NULL;
3523 }
3524 }
3525 bp_objfile_data->exception_probes = ret;
3526 bp_objfile_data->exception_searched = 1;
3527 }
3528
3529 if (bp_objfile_data->exception_probes != NULL)
3530 {
3531 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3532 int i;
3533 struct probe *probe;
3534
3535 for (i = 0;
3536 VEC_iterate (probe_p,
3537 bp_objfile_data->exception_probes,
3538 i, probe);
3539 ++i)
3540 {
3541 struct breakpoint *b;
3542
3543 b = create_internal_breakpoint (gdbarch,
3544 get_probe_address (probe,
3545 objfile),
3546 bp_exception_master,
3547 &internal_breakpoint_ops);
3548 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3549 b->enable_state = bp_disabled;
3550 }
3551
3552 continue;
3553 }
3554
3555 /* Otherwise, try the hook function. */
3556
3557 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3558 continue;
3559
3560 gdbarch = get_objfile_arch (objfile);
3561
3562 if (bp_objfile_data->exception_msym.minsym == NULL)
3563 {
3564 struct bound_minimal_symbol debug_hook;
3565
3566 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3567 if (debug_hook.minsym == NULL)
3568 {
3569 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3570 continue;
3571 }
3572
3573 bp_objfile_data->exception_msym = debug_hook;
3574 }
3575
3576 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3577 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3578 &current_target);
3579 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3580 &internal_breakpoint_ops);
3581 b->addr_string = xstrdup (func_name);
3582 b->enable_state = bp_disabled;
3583 }
3584
3585 update_global_location_list (1);
3586 }
3587
3588 void
3589 update_breakpoints_after_exec (void)
3590 {
3591 struct breakpoint *b, *b_tmp;
3592 struct bp_location *bploc, **bplocp_tmp;
3593
3594 /* We're about to delete breakpoints from GDB's lists. If the
3595 INSERTED flag is true, GDB will try to lift the breakpoints by
3596 writing the breakpoints' "shadow contents" back into memory. The
3597 "shadow contents" are NOT valid after an exec, so GDB should not
3598 do that. Instead, the target is responsible from marking
3599 breakpoints out as soon as it detects an exec. We don't do that
3600 here instead, because there may be other attempts to delete
3601 breakpoints after detecting an exec and before reaching here. */
3602 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3603 if (bploc->pspace == current_program_space)
3604 gdb_assert (!bploc->inserted);
3605
3606 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3607 {
3608 if (b->pspace != current_program_space)
3609 continue;
3610
3611 /* Solib breakpoints must be explicitly reset after an exec(). */
3612 if (b->type == bp_shlib_event)
3613 {
3614 delete_breakpoint (b);
3615 continue;
3616 }
3617
3618 /* JIT breakpoints must be explicitly reset after an exec(). */
3619 if (b->type == bp_jit_event)
3620 {
3621 delete_breakpoint (b);
3622 continue;
3623 }
3624
3625 /* Thread event breakpoints must be set anew after an exec(),
3626 as must overlay event and longjmp master breakpoints. */
3627 if (b->type == bp_thread_event || b->type == bp_overlay_event
3628 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3629 || b->type == bp_exception_master)
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634
3635 /* Step-resume breakpoints are meaningless after an exec(). */
3636 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641
3642 /* Longjmp and longjmp-resume breakpoints are also meaningless
3643 after an exec. */
3644 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3645 || b->type == bp_longjmp_call_dummy
3646 || b->type == bp_exception || b->type == bp_exception_resume)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 if (b->type == bp_catchpoint)
3653 {
3654 /* For now, none of the bp_catchpoint breakpoints need to
3655 do anything at this point. In the future, if some of
3656 the catchpoints need to something, we will need to add
3657 a new method, and call this method from here. */
3658 continue;
3659 }
3660
3661 /* bp_finish is a special case. The only way we ought to be able
3662 to see one of these when an exec() has happened, is if the user
3663 caught a vfork, and then said "finish". Ordinarily a finish just
3664 carries them to the call-site of the current callee, by setting
3665 a temporary bp there and resuming. But in this case, the finish
3666 will carry them entirely through the vfork & exec.
3667
3668 We don't want to allow a bp_finish to remain inserted now. But
3669 we can't safely delete it, 'cause finish_command has a handle to
3670 the bp on a bpstat, and will later want to delete it. There's a
3671 chance (and I've seen it happen) that if we delete the bp_finish
3672 here, that its storage will get reused by the time finish_command
3673 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3674 We really must allow finish_command to delete a bp_finish.
3675
3676 In the absence of a general solution for the "how do we know
3677 it's safe to delete something others may have handles to?"
3678 problem, what we'll do here is just uninsert the bp_finish, and
3679 let finish_command delete it.
3680
3681 (We know the bp_finish is "doomed" in the sense that it's
3682 momentary, and will be deleted as soon as finish_command sees
3683 the inferior stopped. So it doesn't matter that the bp's
3684 address is probably bogus in the new a.out, unlike e.g., the
3685 solib breakpoints.) */
3686
3687 if (b->type == bp_finish)
3688 {
3689 continue;
3690 }
3691
3692 /* Without a symbolic address, we have little hope of the
3693 pre-exec() address meaning the same thing in the post-exec()
3694 a.out. */
3695 if (b->addr_string == NULL)
3696 {
3697 delete_breakpoint (b);
3698 continue;
3699 }
3700 }
3701 /* FIXME what about longjmp breakpoints? Re-create them here? */
3702 create_overlay_event_breakpoint ();
3703 create_longjmp_master_breakpoint ();
3704 create_std_terminate_master_breakpoint ();
3705 create_exception_master_breakpoint ();
3706 }
3707
3708 int
3709 detach_breakpoints (ptid_t ptid)
3710 {
3711 struct bp_location *bl, **blp_tmp;
3712 int val = 0;
3713 struct cleanup *old_chain = save_inferior_ptid ();
3714 struct inferior *inf = current_inferior ();
3715
3716 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3717 error (_("Cannot detach breakpoints of inferior_ptid"));
3718
3719 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3720 inferior_ptid = ptid;
3721 ALL_BP_LOCATIONS (bl, blp_tmp)
3722 {
3723 if (bl->pspace != inf->pspace)
3724 continue;
3725
3726 /* This function must physically remove breakpoints locations
3727 from the specified ptid, without modifying the breakpoint
3728 package's state. Locations of type bp_loc_other are only
3729 maintained at GDB side. So, there is no need to remove
3730 these bp_loc_other locations. Moreover, removing these
3731 would modify the breakpoint package's state. */
3732 if (bl->loc_type == bp_loc_other)
3733 continue;
3734
3735 if (bl->inserted)
3736 val |= remove_breakpoint_1 (bl, mark_inserted);
3737 }
3738
3739 /* Detach single-step breakpoints as well. */
3740 detach_single_step_breakpoints ();
3741
3742 do_cleanups (old_chain);
3743 return val;
3744 }
3745
3746 /* Remove the breakpoint location BL from the current address space.
3747 Note that this is used to detach breakpoints from a child fork.
3748 When we get here, the child isn't in the inferior list, and neither
3749 do we have objects to represent its address space --- we should
3750 *not* look at bl->pspace->aspace here. */
3751
3752 static int
3753 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3754 {
3755 int val;
3756
3757 /* BL is never in moribund_locations by our callers. */
3758 gdb_assert (bl->owner != NULL);
3759
3760 if (bl->owner->enable_state == bp_permanent)
3761 /* Permanent breakpoints cannot be inserted or removed. */
3762 return 0;
3763
3764 /* The type of none suggests that owner is actually deleted.
3765 This should not ever happen. */
3766 gdb_assert (bl->owner->type != bp_none);
3767
3768 if (bl->loc_type == bp_loc_software_breakpoint
3769 || bl->loc_type == bp_loc_hardware_breakpoint)
3770 {
3771 /* "Normal" instruction breakpoint: either the standard
3772 trap-instruction bp (bp_breakpoint), or a
3773 bp_hardware_breakpoint. */
3774
3775 /* First check to see if we have to handle an overlay. */
3776 if (overlay_debugging == ovly_off
3777 || bl->section == NULL
3778 || !(section_is_overlay (bl->section)))
3779 {
3780 /* No overlay handling: just remove the breakpoint. */
3781 val = bl->owner->ops->remove_location (bl);
3782 }
3783 else
3784 {
3785 /* This breakpoint is in an overlay section.
3786 Did we set a breakpoint at the LMA? */
3787 if (!overlay_events_enabled)
3788 {
3789 /* Yes -- overlay event support is not active, so we
3790 should have set a breakpoint at the LMA. Remove it.
3791 */
3792 /* Ignore any failures: if the LMA is in ROM, we will
3793 have already warned when we failed to insert it. */
3794 if (bl->loc_type == bp_loc_hardware_breakpoint)
3795 target_remove_hw_breakpoint (bl->gdbarch,
3796 &bl->overlay_target_info);
3797 else
3798 target_remove_breakpoint (bl->gdbarch,
3799 &bl->overlay_target_info);
3800 }
3801 /* Did we set a breakpoint at the VMA?
3802 If so, we will have marked the breakpoint 'inserted'. */
3803 if (bl->inserted)
3804 {
3805 /* Yes -- remove it. Previously we did not bother to
3806 remove the breakpoint if the section had been
3807 unmapped, but let's not rely on that being safe. We
3808 don't know what the overlay manager might do. */
3809
3810 /* However, we should remove *software* breakpoints only
3811 if the section is still mapped, or else we overwrite
3812 wrong code with the saved shadow contents. */
3813 if (bl->loc_type == bp_loc_hardware_breakpoint
3814 || section_is_mapped (bl->section))
3815 val = bl->owner->ops->remove_location (bl);
3816 else
3817 val = 0;
3818 }
3819 else
3820 {
3821 /* No -- not inserted, so no need to remove. No error. */
3822 val = 0;
3823 }
3824 }
3825
3826 /* In some cases, we might not be able to remove a breakpoint
3827 in a shared library that has already been removed, but we
3828 have not yet processed the shlib unload event. */
3829 if (val && solib_name_from_address (bl->pspace, bl->address))
3830 val = 0;
3831
3832 if (val)
3833 return val;
3834 bl->inserted = (is == mark_inserted);
3835 }
3836 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3837 {
3838 gdb_assert (bl->owner->ops != NULL
3839 && bl->owner->ops->remove_location != NULL);
3840
3841 bl->inserted = (is == mark_inserted);
3842 bl->owner->ops->remove_location (bl);
3843
3844 /* Failure to remove any of the hardware watchpoints comes here. */
3845 if ((is == mark_uninserted) && (bl->inserted))
3846 warning (_("Could not remove hardware watchpoint %d."),
3847 bl->owner->number);
3848 }
3849 else if (bl->owner->type == bp_catchpoint
3850 && breakpoint_enabled (bl->owner)
3851 && !bl->duplicate)
3852 {
3853 gdb_assert (bl->owner->ops != NULL
3854 && bl->owner->ops->remove_location != NULL);
3855
3856 val = bl->owner->ops->remove_location (bl);
3857 if (val)
3858 return val;
3859
3860 bl->inserted = (is == mark_inserted);
3861 }
3862
3863 return 0;
3864 }
3865
3866 static int
3867 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3868 {
3869 int ret;
3870 struct cleanup *old_chain;
3871
3872 /* BL is never in moribund_locations by our callers. */
3873 gdb_assert (bl->owner != NULL);
3874
3875 if (bl->owner->enable_state == bp_permanent)
3876 /* Permanent breakpoints cannot be inserted or removed. */
3877 return 0;
3878
3879 /* The type of none suggests that owner is actually deleted.
3880 This should not ever happen. */
3881 gdb_assert (bl->owner->type != bp_none);
3882
3883 old_chain = save_current_space_and_thread ();
3884
3885 switch_to_program_space_and_thread (bl->pspace);
3886
3887 ret = remove_breakpoint_1 (bl, is);
3888
3889 do_cleanups (old_chain);
3890 return ret;
3891 }
3892
3893 /* Clear the "inserted" flag in all breakpoints. */
3894
3895 void
3896 mark_breakpoints_out (void)
3897 {
3898 struct bp_location *bl, **blp_tmp;
3899
3900 ALL_BP_LOCATIONS (bl, blp_tmp)
3901 if (bl->pspace == current_program_space)
3902 bl->inserted = 0;
3903 }
3904
3905 /* Clear the "inserted" flag in all breakpoints and delete any
3906 breakpoints which should go away between runs of the program.
3907
3908 Plus other such housekeeping that has to be done for breakpoints
3909 between runs.
3910
3911 Note: this function gets called at the end of a run (by
3912 generic_mourn_inferior) and when a run begins (by
3913 init_wait_for_inferior). */
3914
3915
3916
3917 void
3918 breakpoint_init_inferior (enum inf_context context)
3919 {
3920 struct breakpoint *b, *b_tmp;
3921 struct bp_location *bl, **blp_tmp;
3922 int ix;
3923 struct program_space *pspace = current_program_space;
3924
3925 /* If breakpoint locations are shared across processes, then there's
3926 nothing to do. */
3927 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3928 return;
3929
3930 ALL_BP_LOCATIONS (bl, blp_tmp)
3931 {
3932 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3933 if (bl->pspace == pspace
3934 && bl->owner->enable_state != bp_permanent)
3935 bl->inserted = 0;
3936 }
3937
3938 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3939 {
3940 if (b->loc && b->loc->pspace != pspace)
3941 continue;
3942
3943 switch (b->type)
3944 {
3945 case bp_call_dummy:
3946 case bp_longjmp_call_dummy:
3947
3948 /* If the call dummy breakpoint is at the entry point it will
3949 cause problems when the inferior is rerun, so we better get
3950 rid of it. */
3951
3952 case bp_watchpoint_scope:
3953
3954 /* Also get rid of scope breakpoints. */
3955
3956 case bp_shlib_event:
3957
3958 /* Also remove solib event breakpoints. Their addresses may
3959 have changed since the last time we ran the program.
3960 Actually we may now be debugging against different target;
3961 and so the solib backend that installed this breakpoint may
3962 not be used in by the target. E.g.,
3963
3964 (gdb) file prog-linux
3965 (gdb) run # native linux target
3966 ...
3967 (gdb) kill
3968 (gdb) file prog-win.exe
3969 (gdb) tar rem :9999 # remote Windows gdbserver.
3970 */
3971
3972 case bp_step_resume:
3973
3974 /* Also remove step-resume breakpoints. */
3975
3976 delete_breakpoint (b);
3977 break;
3978
3979 case bp_watchpoint:
3980 case bp_hardware_watchpoint:
3981 case bp_read_watchpoint:
3982 case bp_access_watchpoint:
3983 {
3984 struct watchpoint *w = (struct watchpoint *) b;
3985
3986 /* Likewise for watchpoints on local expressions. */
3987 if (w->exp_valid_block != NULL)
3988 delete_breakpoint (b);
3989 else if (context == inf_starting)
3990 {
3991 /* Reset val field to force reread of starting value in
3992 insert_breakpoints. */
3993 if (w->val)
3994 value_free (w->val);
3995 w->val = NULL;
3996 w->val_valid = 0;
3997 }
3998 }
3999 break;
4000 default:
4001 break;
4002 }
4003 }
4004
4005 /* Get rid of the moribund locations. */
4006 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4007 decref_bp_location (&bl);
4008 VEC_free (bp_location_p, moribund_locations);
4009 }
4010
4011 /* These functions concern about actual breakpoints inserted in the
4012 target --- to e.g. check if we need to do decr_pc adjustment or if
4013 we need to hop over the bkpt --- so we check for address space
4014 match, not program space. */
4015
4016 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4017 exists at PC. It returns ordinary_breakpoint_here if it's an
4018 ordinary breakpoint, or permanent_breakpoint_here if it's a
4019 permanent breakpoint.
4020 - When continuing from a location with an ordinary breakpoint, we
4021 actually single step once before calling insert_breakpoints.
4022 - When continuing from a location with a permanent breakpoint, we
4023 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4024 the target, to advance the PC past the breakpoint. */
4025
4026 enum breakpoint_here
4027 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4028 {
4029 struct bp_location *bl, **blp_tmp;
4030 int any_breakpoint_here = 0;
4031
4032 ALL_BP_LOCATIONS (bl, blp_tmp)
4033 {
4034 if (bl->loc_type != bp_loc_software_breakpoint
4035 && bl->loc_type != bp_loc_hardware_breakpoint)
4036 continue;
4037
4038 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4039 if ((breakpoint_enabled (bl->owner)
4040 || bl->owner->enable_state == bp_permanent)
4041 && breakpoint_location_address_match (bl, aspace, pc))
4042 {
4043 if (overlay_debugging
4044 && section_is_overlay (bl->section)
4045 && !section_is_mapped (bl->section))
4046 continue; /* unmapped overlay -- can't be a match */
4047 else if (bl->owner->enable_state == bp_permanent)
4048 return permanent_breakpoint_here;
4049 else
4050 any_breakpoint_here = 1;
4051 }
4052 }
4053
4054 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4055 }
4056
4057 /* Return true if there's a moribund breakpoint at PC. */
4058
4059 int
4060 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4061 {
4062 struct bp_location *loc;
4063 int ix;
4064
4065 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4066 if (breakpoint_location_address_match (loc, aspace, pc))
4067 return 1;
4068
4069 return 0;
4070 }
4071
4072 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4073 inserted using regular breakpoint_chain / bp_location array
4074 mechanism. This does not check for single-step breakpoints, which
4075 are inserted and removed using direct target manipulation. */
4076
4077 int
4078 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4079 CORE_ADDR pc)
4080 {
4081 struct bp_location *bl, **blp_tmp;
4082
4083 ALL_BP_LOCATIONS (bl, blp_tmp)
4084 {
4085 if (bl->loc_type != bp_loc_software_breakpoint
4086 && bl->loc_type != bp_loc_hardware_breakpoint)
4087 continue;
4088
4089 if (bl->inserted
4090 && breakpoint_location_address_match (bl, aspace, pc))
4091 {
4092 if (overlay_debugging
4093 && section_is_overlay (bl->section)
4094 && !section_is_mapped (bl->section))
4095 continue; /* unmapped overlay -- can't be a match */
4096 else
4097 return 1;
4098 }
4099 }
4100 return 0;
4101 }
4102
4103 /* Returns non-zero iff there's either regular breakpoint
4104 or a single step breakpoint inserted at PC. */
4105
4106 int
4107 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4108 {
4109 if (regular_breakpoint_inserted_here_p (aspace, pc))
4110 return 1;
4111
4112 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4113 return 1;
4114
4115 return 0;
4116 }
4117
4118 /* This function returns non-zero iff there is a software breakpoint
4119 inserted at PC. */
4120
4121 int
4122 software_breakpoint_inserted_here_p (struct address_space *aspace,
4123 CORE_ADDR pc)
4124 {
4125 struct bp_location *bl, **blp_tmp;
4126
4127 ALL_BP_LOCATIONS (bl, blp_tmp)
4128 {
4129 if (bl->loc_type != bp_loc_software_breakpoint)
4130 continue;
4131
4132 if (bl->inserted
4133 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4134 aspace, pc))
4135 {
4136 if (overlay_debugging
4137 && section_is_overlay (bl->section)
4138 && !section_is_mapped (bl->section))
4139 continue; /* unmapped overlay -- can't be a match */
4140 else
4141 return 1;
4142 }
4143 }
4144
4145 /* Also check for software single-step breakpoints. */
4146 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4147 return 1;
4148
4149 return 0;
4150 }
4151
4152 int
4153 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4154 CORE_ADDR addr, ULONGEST len)
4155 {
4156 struct breakpoint *bpt;
4157
4158 ALL_BREAKPOINTS (bpt)
4159 {
4160 struct bp_location *loc;
4161
4162 if (bpt->type != bp_hardware_watchpoint
4163 && bpt->type != bp_access_watchpoint)
4164 continue;
4165
4166 if (!breakpoint_enabled (bpt))
4167 continue;
4168
4169 for (loc = bpt->loc; loc; loc = loc->next)
4170 if (loc->pspace->aspace == aspace && loc->inserted)
4171 {
4172 CORE_ADDR l, h;
4173
4174 /* Check for intersection. */
4175 l = max (loc->address, addr);
4176 h = min (loc->address + loc->length, addr + len);
4177 if (l < h)
4178 return 1;
4179 }
4180 }
4181 return 0;
4182 }
4183
4184 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4185 PC is valid for process/thread PTID. */
4186
4187 int
4188 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4189 ptid_t ptid)
4190 {
4191 struct bp_location *bl, **blp_tmp;
4192 /* The thread and task IDs associated to PTID, computed lazily. */
4193 int thread = -1;
4194 int task = 0;
4195
4196 ALL_BP_LOCATIONS (bl, blp_tmp)
4197 {
4198 if (bl->loc_type != bp_loc_software_breakpoint
4199 && bl->loc_type != bp_loc_hardware_breakpoint)
4200 continue;
4201
4202 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4203 if (!breakpoint_enabled (bl->owner)
4204 && bl->owner->enable_state != bp_permanent)
4205 continue;
4206
4207 if (!breakpoint_location_address_match (bl, aspace, pc))
4208 continue;
4209
4210 if (bl->owner->thread != -1)
4211 {
4212 /* This is a thread-specific breakpoint. Check that ptid
4213 matches that thread. If thread hasn't been computed yet,
4214 it is now time to do so. */
4215 if (thread == -1)
4216 thread = pid_to_thread_id (ptid);
4217 if (bl->owner->thread != thread)
4218 continue;
4219 }
4220
4221 if (bl->owner->task != 0)
4222 {
4223 /* This is a task-specific breakpoint. Check that ptid
4224 matches that task. If task hasn't been computed yet,
4225 it is now time to do so. */
4226 if (task == 0)
4227 task = ada_get_task_number (ptid);
4228 if (bl->owner->task != task)
4229 continue;
4230 }
4231
4232 if (overlay_debugging
4233 && section_is_overlay (bl->section)
4234 && !section_is_mapped (bl->section))
4235 continue; /* unmapped overlay -- can't be a match */
4236
4237 return 1;
4238 }
4239
4240 return 0;
4241 }
4242 \f
4243
4244 /* bpstat stuff. External routines' interfaces are documented
4245 in breakpoint.h. */
4246
4247 int
4248 is_catchpoint (struct breakpoint *ep)
4249 {
4250 return (ep->type == bp_catchpoint);
4251 }
4252
4253 /* Frees any storage that is part of a bpstat. Does not walk the
4254 'next' chain. */
4255
4256 static void
4257 bpstat_free (bpstat bs)
4258 {
4259 if (bs->old_val != NULL)
4260 value_free (bs->old_val);
4261 decref_counted_command_line (&bs->commands);
4262 decref_bp_location (&bs->bp_location_at);
4263 xfree (bs);
4264 }
4265
4266 /* Clear a bpstat so that it says we are not at any breakpoint.
4267 Also free any storage that is part of a bpstat. */
4268
4269 void
4270 bpstat_clear (bpstat *bsp)
4271 {
4272 bpstat p;
4273 bpstat q;
4274
4275 if (bsp == 0)
4276 return;
4277 p = *bsp;
4278 while (p != NULL)
4279 {
4280 q = p->next;
4281 bpstat_free (p);
4282 p = q;
4283 }
4284 *bsp = NULL;
4285 }
4286
4287 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4288 is part of the bpstat is copied as well. */
4289
4290 bpstat
4291 bpstat_copy (bpstat bs)
4292 {
4293 bpstat p = NULL;
4294 bpstat tmp;
4295 bpstat retval = NULL;
4296
4297 if (bs == NULL)
4298 return bs;
4299
4300 for (; bs != NULL; bs = bs->next)
4301 {
4302 tmp = (bpstat) xmalloc (sizeof (*tmp));
4303 memcpy (tmp, bs, sizeof (*tmp));
4304 incref_counted_command_line (tmp->commands);
4305 incref_bp_location (tmp->bp_location_at);
4306 if (bs->old_val != NULL)
4307 {
4308 tmp->old_val = value_copy (bs->old_val);
4309 release_value (tmp->old_val);
4310 }
4311
4312 if (p == NULL)
4313 /* This is the first thing in the chain. */
4314 retval = tmp;
4315 else
4316 p->next = tmp;
4317 p = tmp;
4318 }
4319 p->next = NULL;
4320 return retval;
4321 }
4322
4323 /* Find the bpstat associated with this breakpoint. */
4324
4325 bpstat
4326 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4327 {
4328 if (bsp == NULL)
4329 return NULL;
4330
4331 for (; bsp != NULL; bsp = bsp->next)
4332 {
4333 if (bsp->breakpoint_at == breakpoint)
4334 return bsp;
4335 }
4336 return NULL;
4337 }
4338
4339 /* See breakpoint.h. */
4340
4341 int
4342 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4343 {
4344 for (; bsp != NULL; bsp = bsp->next)
4345 {
4346 if (bsp->breakpoint_at == NULL)
4347 {
4348 /* A moribund location can never explain a signal other than
4349 GDB_SIGNAL_TRAP. */
4350 if (sig == GDB_SIGNAL_TRAP)
4351 return 1;
4352 }
4353 else
4354 {
4355 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4356 sig))
4357 return 1;
4358 }
4359 }
4360
4361 return 0;
4362 }
4363
4364 /* Put in *NUM the breakpoint number of the first breakpoint we are
4365 stopped at. *BSP upon return is a bpstat which points to the
4366 remaining breakpoints stopped at (but which is not guaranteed to be
4367 good for anything but further calls to bpstat_num).
4368
4369 Return 0 if passed a bpstat which does not indicate any breakpoints.
4370 Return -1 if stopped at a breakpoint that has been deleted since
4371 we set it.
4372 Return 1 otherwise. */
4373
4374 int
4375 bpstat_num (bpstat *bsp, int *num)
4376 {
4377 struct breakpoint *b;
4378
4379 if ((*bsp) == NULL)
4380 return 0; /* No more breakpoint values */
4381
4382 /* We assume we'll never have several bpstats that correspond to a
4383 single breakpoint -- otherwise, this function might return the
4384 same number more than once and this will look ugly. */
4385 b = (*bsp)->breakpoint_at;
4386 *bsp = (*bsp)->next;
4387 if (b == NULL)
4388 return -1; /* breakpoint that's been deleted since */
4389
4390 *num = b->number; /* We have its number */
4391 return 1;
4392 }
4393
4394 /* See breakpoint.h. */
4395
4396 void
4397 bpstat_clear_actions (void)
4398 {
4399 struct thread_info *tp;
4400 bpstat bs;
4401
4402 if (ptid_equal (inferior_ptid, null_ptid))
4403 return;
4404
4405 tp = find_thread_ptid (inferior_ptid);
4406 if (tp == NULL)
4407 return;
4408
4409 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4410 {
4411 decref_counted_command_line (&bs->commands);
4412
4413 if (bs->old_val != NULL)
4414 {
4415 value_free (bs->old_val);
4416 bs->old_val = NULL;
4417 }
4418 }
4419 }
4420
4421 /* Called when a command is about to proceed the inferior. */
4422
4423 static void
4424 breakpoint_about_to_proceed (void)
4425 {
4426 if (!ptid_equal (inferior_ptid, null_ptid))
4427 {
4428 struct thread_info *tp = inferior_thread ();
4429
4430 /* Allow inferior function calls in breakpoint commands to not
4431 interrupt the command list. When the call finishes
4432 successfully, the inferior will be standing at the same
4433 breakpoint as if nothing happened. */
4434 if (tp->control.in_infcall)
4435 return;
4436 }
4437
4438 breakpoint_proceeded = 1;
4439 }
4440
4441 /* Stub for cleaning up our state if we error-out of a breakpoint
4442 command. */
4443 static void
4444 cleanup_executing_breakpoints (void *ignore)
4445 {
4446 executing_breakpoint_commands = 0;
4447 }
4448
4449 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4450 or its equivalent. */
4451
4452 static int
4453 command_line_is_silent (struct command_line *cmd)
4454 {
4455 return cmd && (strcmp ("silent", cmd->line) == 0
4456 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4457 }
4458
4459 /* Execute all the commands associated with all the breakpoints at
4460 this location. Any of these commands could cause the process to
4461 proceed beyond this point, etc. We look out for such changes by
4462 checking the global "breakpoint_proceeded" after each command.
4463
4464 Returns true if a breakpoint command resumed the inferior. In that
4465 case, it is the caller's responsibility to recall it again with the
4466 bpstat of the current thread. */
4467
4468 static int
4469 bpstat_do_actions_1 (bpstat *bsp)
4470 {
4471 bpstat bs;
4472 struct cleanup *old_chain;
4473 int again = 0;
4474
4475 /* Avoid endless recursion if a `source' command is contained
4476 in bs->commands. */
4477 if (executing_breakpoint_commands)
4478 return 0;
4479
4480 executing_breakpoint_commands = 1;
4481 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4482
4483 prevent_dont_repeat ();
4484
4485 /* This pointer will iterate over the list of bpstat's. */
4486 bs = *bsp;
4487
4488 breakpoint_proceeded = 0;
4489 for (; bs != NULL; bs = bs->next)
4490 {
4491 struct counted_command_line *ccmd;
4492 struct command_line *cmd;
4493 struct cleanup *this_cmd_tree_chain;
4494
4495 /* Take ownership of the BSP's command tree, if it has one.
4496
4497 The command tree could legitimately contain commands like
4498 'step' and 'next', which call clear_proceed_status, which
4499 frees stop_bpstat's command tree. To make sure this doesn't
4500 free the tree we're executing out from under us, we need to
4501 take ownership of the tree ourselves. Since a given bpstat's
4502 commands are only executed once, we don't need to copy it; we
4503 can clear the pointer in the bpstat, and make sure we free
4504 the tree when we're done. */
4505 ccmd = bs->commands;
4506 bs->commands = NULL;
4507 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4508 cmd = ccmd ? ccmd->commands : NULL;
4509 if (command_line_is_silent (cmd))
4510 {
4511 /* The action has been already done by bpstat_stop_status. */
4512 cmd = cmd->next;
4513 }
4514
4515 while (cmd != NULL)
4516 {
4517 execute_control_command (cmd);
4518
4519 if (breakpoint_proceeded)
4520 break;
4521 else
4522 cmd = cmd->next;
4523 }
4524
4525 /* We can free this command tree now. */
4526 do_cleanups (this_cmd_tree_chain);
4527
4528 if (breakpoint_proceeded)
4529 {
4530 if (target_can_async_p ())
4531 /* If we are in async mode, then the target might be still
4532 running, not stopped at any breakpoint, so nothing for
4533 us to do here -- just return to the event loop. */
4534 ;
4535 else
4536 /* In sync mode, when execute_control_command returns
4537 we're already standing on the next breakpoint.
4538 Breakpoint commands for that stop were not run, since
4539 execute_command does not run breakpoint commands --
4540 only command_line_handler does, but that one is not
4541 involved in execution of breakpoint commands. So, we
4542 can now execute breakpoint commands. It should be
4543 noted that making execute_command do bpstat actions is
4544 not an option -- in this case we'll have recursive
4545 invocation of bpstat for each breakpoint with a
4546 command, and can easily blow up GDB stack. Instead, we
4547 return true, which will trigger the caller to recall us
4548 with the new stop_bpstat. */
4549 again = 1;
4550 break;
4551 }
4552 }
4553 do_cleanups (old_chain);
4554 return again;
4555 }
4556
4557 void
4558 bpstat_do_actions (void)
4559 {
4560 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4561
4562 /* Do any commands attached to breakpoint we are stopped at. */
4563 while (!ptid_equal (inferior_ptid, null_ptid)
4564 && target_has_execution
4565 && !is_exited (inferior_ptid)
4566 && !is_executing (inferior_ptid))
4567 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4568 and only return when it is stopped at the next breakpoint, we
4569 keep doing breakpoint actions until it returns false to
4570 indicate the inferior was not resumed. */
4571 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4572 break;
4573
4574 discard_cleanups (cleanup_if_error);
4575 }
4576
4577 /* Print out the (old or new) value associated with a watchpoint. */
4578
4579 static void
4580 watchpoint_value_print (struct value *val, struct ui_file *stream)
4581 {
4582 if (val == NULL)
4583 fprintf_unfiltered (stream, _("<unreadable>"));
4584 else
4585 {
4586 struct value_print_options opts;
4587 get_user_print_options (&opts);
4588 value_print (val, stream, &opts);
4589 }
4590 }
4591
4592 /* Generic routine for printing messages indicating why we
4593 stopped. The behavior of this function depends on the value
4594 'print_it' in the bpstat structure. Under some circumstances we
4595 may decide not to print anything here and delegate the task to
4596 normal_stop(). */
4597
4598 static enum print_stop_action
4599 print_bp_stop_message (bpstat bs)
4600 {
4601 switch (bs->print_it)
4602 {
4603 case print_it_noop:
4604 /* Nothing should be printed for this bpstat entry. */
4605 return PRINT_UNKNOWN;
4606 break;
4607
4608 case print_it_done:
4609 /* We still want to print the frame, but we already printed the
4610 relevant messages. */
4611 return PRINT_SRC_AND_LOC;
4612 break;
4613
4614 case print_it_normal:
4615 {
4616 struct breakpoint *b = bs->breakpoint_at;
4617
4618 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4619 which has since been deleted. */
4620 if (b == NULL)
4621 return PRINT_UNKNOWN;
4622
4623 /* Normal case. Call the breakpoint's print_it method. */
4624 return b->ops->print_it (bs);
4625 }
4626 break;
4627
4628 default:
4629 internal_error (__FILE__, __LINE__,
4630 _("print_bp_stop_message: unrecognized enum value"));
4631 break;
4632 }
4633 }
4634
4635 /* A helper function that prints a shared library stopped event. */
4636
4637 static void
4638 print_solib_event (int is_catchpoint)
4639 {
4640 int any_deleted
4641 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4642 int any_added
4643 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4644
4645 if (!is_catchpoint)
4646 {
4647 if (any_added || any_deleted)
4648 ui_out_text (current_uiout,
4649 _("Stopped due to shared library event:\n"));
4650 else
4651 ui_out_text (current_uiout,
4652 _("Stopped due to shared library event (no "
4653 "libraries added or removed)\n"));
4654 }
4655
4656 if (ui_out_is_mi_like_p (current_uiout))
4657 ui_out_field_string (current_uiout, "reason",
4658 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4659
4660 if (any_deleted)
4661 {
4662 struct cleanup *cleanup;
4663 char *name;
4664 int ix;
4665
4666 ui_out_text (current_uiout, _(" Inferior unloaded "));
4667 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4668 "removed");
4669 for (ix = 0;
4670 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4671 ix, name);
4672 ++ix)
4673 {
4674 if (ix > 0)
4675 ui_out_text (current_uiout, " ");
4676 ui_out_field_string (current_uiout, "library", name);
4677 ui_out_text (current_uiout, "\n");
4678 }
4679
4680 do_cleanups (cleanup);
4681 }
4682
4683 if (any_added)
4684 {
4685 struct so_list *iter;
4686 int ix;
4687 struct cleanup *cleanup;
4688
4689 ui_out_text (current_uiout, _(" Inferior loaded "));
4690 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4691 "added");
4692 for (ix = 0;
4693 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4694 ix, iter);
4695 ++ix)
4696 {
4697 if (ix > 0)
4698 ui_out_text (current_uiout, " ");
4699 ui_out_field_string (current_uiout, "library", iter->so_name);
4700 ui_out_text (current_uiout, "\n");
4701 }
4702
4703 do_cleanups (cleanup);
4704 }
4705 }
4706
4707 /* Print a message indicating what happened. This is called from
4708 normal_stop(). The input to this routine is the head of the bpstat
4709 list - a list of the eventpoints that caused this stop. KIND is
4710 the target_waitkind for the stopping event. This
4711 routine calls the generic print routine for printing a message
4712 about reasons for stopping. This will print (for example) the
4713 "Breakpoint n," part of the output. The return value of this
4714 routine is one of:
4715
4716 PRINT_UNKNOWN: Means we printed nothing.
4717 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4718 code to print the location. An example is
4719 "Breakpoint 1, " which should be followed by
4720 the location.
4721 PRINT_SRC_ONLY: Means we printed something, but there is no need
4722 to also print the location part of the message.
4723 An example is the catch/throw messages, which
4724 don't require a location appended to the end.
4725 PRINT_NOTHING: We have done some printing and we don't need any
4726 further info to be printed. */
4727
4728 enum print_stop_action
4729 bpstat_print (bpstat bs, int kind)
4730 {
4731 int val;
4732
4733 /* Maybe another breakpoint in the chain caused us to stop.
4734 (Currently all watchpoints go on the bpstat whether hit or not.
4735 That probably could (should) be changed, provided care is taken
4736 with respect to bpstat_explains_signal). */
4737 for (; bs; bs = bs->next)
4738 {
4739 val = print_bp_stop_message (bs);
4740 if (val == PRINT_SRC_ONLY
4741 || val == PRINT_SRC_AND_LOC
4742 || val == PRINT_NOTHING)
4743 return val;
4744 }
4745
4746 /* If we had hit a shared library event breakpoint,
4747 print_bp_stop_message would print out this message. If we hit an
4748 OS-level shared library event, do the same thing. */
4749 if (kind == TARGET_WAITKIND_LOADED)
4750 {
4751 print_solib_event (0);
4752 return PRINT_NOTHING;
4753 }
4754
4755 /* We reached the end of the chain, or we got a null BS to start
4756 with and nothing was printed. */
4757 return PRINT_UNKNOWN;
4758 }
4759
4760 /* Evaluate the expression EXP and return 1 if value is zero.
4761 This returns the inverse of the condition because it is called
4762 from catch_errors which returns 0 if an exception happened, and if an
4763 exception happens we want execution to stop.
4764 The argument is a "struct expression *" that has been cast to a
4765 "void *" to make it pass through catch_errors. */
4766
4767 static int
4768 breakpoint_cond_eval (void *exp)
4769 {
4770 struct value *mark = value_mark ();
4771 int i = !value_true (evaluate_expression ((struct expression *) exp));
4772
4773 value_free_to_mark (mark);
4774 return i;
4775 }
4776
4777 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4778
4779 static bpstat
4780 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4781 {
4782 bpstat bs;
4783
4784 bs = (bpstat) xmalloc (sizeof (*bs));
4785 bs->next = NULL;
4786 **bs_link_pointer = bs;
4787 *bs_link_pointer = &bs->next;
4788 bs->breakpoint_at = bl->owner;
4789 bs->bp_location_at = bl;
4790 incref_bp_location (bl);
4791 /* If the condition is false, etc., don't do the commands. */
4792 bs->commands = NULL;
4793 bs->old_val = NULL;
4794 bs->print_it = print_it_normal;
4795 return bs;
4796 }
4797 \f
4798 /* The target has stopped with waitstatus WS. Check if any hardware
4799 watchpoints have triggered, according to the target. */
4800
4801 int
4802 watchpoints_triggered (struct target_waitstatus *ws)
4803 {
4804 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4805 CORE_ADDR addr;
4806 struct breakpoint *b;
4807
4808 if (!stopped_by_watchpoint)
4809 {
4810 /* We were not stopped by a watchpoint. Mark all watchpoints
4811 as not triggered. */
4812 ALL_BREAKPOINTS (b)
4813 if (is_hardware_watchpoint (b))
4814 {
4815 struct watchpoint *w = (struct watchpoint *) b;
4816
4817 w->watchpoint_triggered = watch_triggered_no;
4818 }
4819
4820 return 0;
4821 }
4822
4823 if (!target_stopped_data_address (&current_target, &addr))
4824 {
4825 /* We were stopped by a watchpoint, but we don't know where.
4826 Mark all watchpoints as unknown. */
4827 ALL_BREAKPOINTS (b)
4828 if (is_hardware_watchpoint (b))
4829 {
4830 struct watchpoint *w = (struct watchpoint *) b;
4831
4832 w->watchpoint_triggered = watch_triggered_unknown;
4833 }
4834
4835 return 1;
4836 }
4837
4838 /* The target could report the data address. Mark watchpoints
4839 affected by this data address as triggered, and all others as not
4840 triggered. */
4841
4842 ALL_BREAKPOINTS (b)
4843 if (is_hardware_watchpoint (b))
4844 {
4845 struct watchpoint *w = (struct watchpoint *) b;
4846 struct bp_location *loc;
4847
4848 w->watchpoint_triggered = watch_triggered_no;
4849 for (loc = b->loc; loc; loc = loc->next)
4850 {
4851 if (is_masked_watchpoint (b))
4852 {
4853 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4854 CORE_ADDR start = loc->address & w->hw_wp_mask;
4855
4856 if (newaddr == start)
4857 {
4858 w->watchpoint_triggered = watch_triggered_yes;
4859 break;
4860 }
4861 }
4862 /* Exact match not required. Within range is sufficient. */
4863 else if (target_watchpoint_addr_within_range (&current_target,
4864 addr, loc->address,
4865 loc->length))
4866 {
4867 w->watchpoint_triggered = watch_triggered_yes;
4868 break;
4869 }
4870 }
4871 }
4872
4873 return 1;
4874 }
4875
4876 /* Possible return values for watchpoint_check (this can't be an enum
4877 because of check_errors). */
4878 /* The watchpoint has been deleted. */
4879 #define WP_DELETED 1
4880 /* The value has changed. */
4881 #define WP_VALUE_CHANGED 2
4882 /* The value has not changed. */
4883 #define WP_VALUE_NOT_CHANGED 3
4884 /* Ignore this watchpoint, no matter if the value changed or not. */
4885 #define WP_IGNORE 4
4886
4887 #define BP_TEMPFLAG 1
4888 #define BP_HARDWAREFLAG 2
4889
4890 /* Evaluate watchpoint condition expression and check if its value
4891 changed.
4892
4893 P should be a pointer to struct bpstat, but is defined as a void *
4894 in order for this function to be usable with catch_errors. */
4895
4896 static int
4897 watchpoint_check (void *p)
4898 {
4899 bpstat bs = (bpstat) p;
4900 struct watchpoint *b;
4901 struct frame_info *fr;
4902 int within_current_scope;
4903
4904 /* BS is built from an existing struct breakpoint. */
4905 gdb_assert (bs->breakpoint_at != NULL);
4906 b = (struct watchpoint *) bs->breakpoint_at;
4907
4908 /* If this is a local watchpoint, we only want to check if the
4909 watchpoint frame is in scope if the current thread is the thread
4910 that was used to create the watchpoint. */
4911 if (!watchpoint_in_thread_scope (b))
4912 return WP_IGNORE;
4913
4914 if (b->exp_valid_block == NULL)
4915 within_current_scope = 1;
4916 else
4917 {
4918 struct frame_info *frame = get_current_frame ();
4919 struct gdbarch *frame_arch = get_frame_arch (frame);
4920 CORE_ADDR frame_pc = get_frame_pc (frame);
4921
4922 /* in_function_epilogue_p() returns a non-zero value if we're
4923 still in the function but the stack frame has already been
4924 invalidated. Since we can't rely on the values of local
4925 variables after the stack has been destroyed, we are treating
4926 the watchpoint in that state as `not changed' without further
4927 checking. Don't mark watchpoints as changed if the current
4928 frame is in an epilogue - even if they are in some other
4929 frame, our view of the stack is likely to be wrong and
4930 frame_find_by_id could error out. */
4931 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4932 return WP_IGNORE;
4933
4934 fr = frame_find_by_id (b->watchpoint_frame);
4935 within_current_scope = (fr != NULL);
4936
4937 /* If we've gotten confused in the unwinder, we might have
4938 returned a frame that can't describe this variable. */
4939 if (within_current_scope)
4940 {
4941 struct symbol *function;
4942
4943 function = get_frame_function (fr);
4944 if (function == NULL
4945 || !contained_in (b->exp_valid_block,
4946 SYMBOL_BLOCK_VALUE (function)))
4947 within_current_scope = 0;
4948 }
4949
4950 if (within_current_scope)
4951 /* If we end up stopping, the current frame will get selected
4952 in normal_stop. So this call to select_frame won't affect
4953 the user. */
4954 select_frame (fr);
4955 }
4956
4957 if (within_current_scope)
4958 {
4959 /* We use value_{,free_to_}mark because it could be a *long*
4960 time before we return to the command level and call
4961 free_all_values. We can't call free_all_values because we
4962 might be in the middle of evaluating a function call. */
4963
4964 int pc = 0;
4965 struct value *mark;
4966 struct value *new_val;
4967
4968 if (is_masked_watchpoint (&b->base))
4969 /* Since we don't know the exact trigger address (from
4970 stopped_data_address), just tell the user we've triggered
4971 a mask watchpoint. */
4972 return WP_VALUE_CHANGED;
4973
4974 mark = value_mark ();
4975 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4976
4977 /* We use value_equal_contents instead of value_equal because
4978 the latter coerces an array to a pointer, thus comparing just
4979 the address of the array instead of its contents. This is
4980 not what we want. */
4981 if ((b->val != NULL) != (new_val != NULL)
4982 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4983 {
4984 if (new_val != NULL)
4985 {
4986 release_value (new_val);
4987 value_free_to_mark (mark);
4988 }
4989 bs->old_val = b->val;
4990 b->val = new_val;
4991 b->val_valid = 1;
4992 return WP_VALUE_CHANGED;
4993 }
4994 else
4995 {
4996 /* Nothing changed. */
4997 value_free_to_mark (mark);
4998 return WP_VALUE_NOT_CHANGED;
4999 }
5000 }
5001 else
5002 {
5003 struct ui_out *uiout = current_uiout;
5004
5005 /* This seems like the only logical thing to do because
5006 if we temporarily ignored the watchpoint, then when
5007 we reenter the block in which it is valid it contains
5008 garbage (in the case of a function, it may have two
5009 garbage values, one before and one after the prologue).
5010 So we can't even detect the first assignment to it and
5011 watch after that (since the garbage may or may not equal
5012 the first value assigned). */
5013 /* We print all the stop information in
5014 breakpoint_ops->print_it, but in this case, by the time we
5015 call breakpoint_ops->print_it this bp will be deleted
5016 already. So we have no choice but print the information
5017 here. */
5018 if (ui_out_is_mi_like_p (uiout))
5019 ui_out_field_string
5020 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5021 ui_out_text (uiout, "\nWatchpoint ");
5022 ui_out_field_int (uiout, "wpnum", b->base.number);
5023 ui_out_text (uiout,
5024 " deleted because the program has left the block in\n\
5025 which its expression is valid.\n");
5026
5027 /* Make sure the watchpoint's commands aren't executed. */
5028 decref_counted_command_line (&b->base.commands);
5029 watchpoint_del_at_next_stop (b);
5030
5031 return WP_DELETED;
5032 }
5033 }
5034
5035 /* Return true if it looks like target has stopped due to hitting
5036 breakpoint location BL. This function does not check if we should
5037 stop, only if BL explains the stop. */
5038
5039 static int
5040 bpstat_check_location (const struct bp_location *bl,
5041 struct address_space *aspace, CORE_ADDR bp_addr,
5042 const struct target_waitstatus *ws)
5043 {
5044 struct breakpoint *b = bl->owner;
5045
5046 /* BL is from an existing breakpoint. */
5047 gdb_assert (b != NULL);
5048
5049 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5050 }
5051
5052 /* Determine if the watched values have actually changed, and we
5053 should stop. If not, set BS->stop to 0. */
5054
5055 static void
5056 bpstat_check_watchpoint (bpstat bs)
5057 {
5058 const struct bp_location *bl;
5059 struct watchpoint *b;
5060
5061 /* BS is built for existing struct breakpoint. */
5062 bl = bs->bp_location_at;
5063 gdb_assert (bl != NULL);
5064 b = (struct watchpoint *) bs->breakpoint_at;
5065 gdb_assert (b != NULL);
5066
5067 {
5068 int must_check_value = 0;
5069
5070 if (b->base.type == bp_watchpoint)
5071 /* For a software watchpoint, we must always check the
5072 watched value. */
5073 must_check_value = 1;
5074 else if (b->watchpoint_triggered == watch_triggered_yes)
5075 /* We have a hardware watchpoint (read, write, or access)
5076 and the target earlier reported an address watched by
5077 this watchpoint. */
5078 must_check_value = 1;
5079 else if (b->watchpoint_triggered == watch_triggered_unknown
5080 && b->base.type == bp_hardware_watchpoint)
5081 /* We were stopped by a hardware watchpoint, but the target could
5082 not report the data address. We must check the watchpoint's
5083 value. Access and read watchpoints are out of luck; without
5084 a data address, we can't figure it out. */
5085 must_check_value = 1;
5086
5087 if (must_check_value)
5088 {
5089 char *message
5090 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5091 b->base.number);
5092 struct cleanup *cleanups = make_cleanup (xfree, message);
5093 int e = catch_errors (watchpoint_check, bs, message,
5094 RETURN_MASK_ALL);
5095 do_cleanups (cleanups);
5096 switch (e)
5097 {
5098 case WP_DELETED:
5099 /* We've already printed what needs to be printed. */
5100 bs->print_it = print_it_done;
5101 /* Stop. */
5102 break;
5103 case WP_IGNORE:
5104 bs->print_it = print_it_noop;
5105 bs->stop = 0;
5106 break;
5107 case WP_VALUE_CHANGED:
5108 if (b->base.type == bp_read_watchpoint)
5109 {
5110 /* There are two cases to consider here:
5111
5112 1. We're watching the triggered memory for reads.
5113 In that case, trust the target, and always report
5114 the watchpoint hit to the user. Even though
5115 reads don't cause value changes, the value may
5116 have changed since the last time it was read, and
5117 since we're not trapping writes, we will not see
5118 those, and as such we should ignore our notion of
5119 old value.
5120
5121 2. We're watching the triggered memory for both
5122 reads and writes. There are two ways this may
5123 happen:
5124
5125 2.1. This is a target that can't break on data
5126 reads only, but can break on accesses (reads or
5127 writes), such as e.g., x86. We detect this case
5128 at the time we try to insert read watchpoints.
5129
5130 2.2. Otherwise, the target supports read
5131 watchpoints, but, the user set an access or write
5132 watchpoint watching the same memory as this read
5133 watchpoint.
5134
5135 If we're watching memory writes as well as reads,
5136 ignore watchpoint hits when we find that the
5137 value hasn't changed, as reads don't cause
5138 changes. This still gives false positives when
5139 the program writes the same value to memory as
5140 what there was already in memory (we will confuse
5141 it for a read), but it's much better than
5142 nothing. */
5143
5144 int other_write_watchpoint = 0;
5145
5146 if (bl->watchpoint_type == hw_read)
5147 {
5148 struct breakpoint *other_b;
5149
5150 ALL_BREAKPOINTS (other_b)
5151 if (other_b->type == bp_hardware_watchpoint
5152 || other_b->type == bp_access_watchpoint)
5153 {
5154 struct watchpoint *other_w =
5155 (struct watchpoint *) other_b;
5156
5157 if (other_w->watchpoint_triggered
5158 == watch_triggered_yes)
5159 {
5160 other_write_watchpoint = 1;
5161 break;
5162 }
5163 }
5164 }
5165
5166 if (other_write_watchpoint
5167 || bl->watchpoint_type == hw_access)
5168 {
5169 /* We're watching the same memory for writes,
5170 and the value changed since the last time we
5171 updated it, so this trap must be for a write.
5172 Ignore it. */
5173 bs->print_it = print_it_noop;
5174 bs->stop = 0;
5175 }
5176 }
5177 break;
5178 case WP_VALUE_NOT_CHANGED:
5179 if (b->base.type == bp_hardware_watchpoint
5180 || b->base.type == bp_watchpoint)
5181 {
5182 /* Don't stop: write watchpoints shouldn't fire if
5183 the value hasn't changed. */
5184 bs->print_it = print_it_noop;
5185 bs->stop = 0;
5186 }
5187 /* Stop. */
5188 break;
5189 default:
5190 /* Can't happen. */
5191 case 0:
5192 /* Error from catch_errors. */
5193 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5194 watchpoint_del_at_next_stop (b);
5195 /* We've already printed what needs to be printed. */
5196 bs->print_it = print_it_done;
5197 break;
5198 }
5199 }
5200 else /* must_check_value == 0 */
5201 {
5202 /* This is a case where some watchpoint(s) triggered, but
5203 not at the address of this watchpoint, or else no
5204 watchpoint triggered after all. So don't print
5205 anything for this watchpoint. */
5206 bs->print_it = print_it_noop;
5207 bs->stop = 0;
5208 }
5209 }
5210 }
5211
5212 /* For breakpoints that are currently marked as telling gdb to stop,
5213 check conditions (condition proper, frame, thread and ignore count)
5214 of breakpoint referred to by BS. If we should not stop for this
5215 breakpoint, set BS->stop to 0. */
5216
5217 static void
5218 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5219 {
5220 const struct bp_location *bl;
5221 struct breakpoint *b;
5222 int value_is_zero = 0;
5223 struct expression *cond;
5224
5225 gdb_assert (bs->stop);
5226
5227 /* BS is built for existing struct breakpoint. */
5228 bl = bs->bp_location_at;
5229 gdb_assert (bl != NULL);
5230 b = bs->breakpoint_at;
5231 gdb_assert (b != NULL);
5232
5233 /* Even if the target evaluated the condition on its end and notified GDB, we
5234 need to do so again since GDB does not know if we stopped due to a
5235 breakpoint or a single step breakpoint. */
5236
5237 if (frame_id_p (b->frame_id)
5238 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5239 {
5240 bs->stop = 0;
5241 return;
5242 }
5243
5244 /* If this is a thread/task-specific breakpoint, don't waste cpu
5245 evaluating the condition if this isn't the specified
5246 thread/task. */
5247 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5248 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5249
5250 {
5251 bs->stop = 0;
5252 return;
5253 }
5254
5255 /* Evaluate extension language breakpoints that have a "stop" method
5256 implemented. */
5257 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5258
5259 if (is_watchpoint (b))
5260 {
5261 struct watchpoint *w = (struct watchpoint *) b;
5262
5263 cond = w->cond_exp;
5264 }
5265 else
5266 cond = bl->cond;
5267
5268 if (cond && b->disposition != disp_del_at_next_stop)
5269 {
5270 int within_current_scope = 1;
5271 struct watchpoint * w;
5272
5273 /* We use value_mark and value_free_to_mark because it could
5274 be a long time before we return to the command level and
5275 call free_all_values. We can't call free_all_values
5276 because we might be in the middle of evaluating a
5277 function call. */
5278 struct value *mark = value_mark ();
5279
5280 if (is_watchpoint (b))
5281 w = (struct watchpoint *) b;
5282 else
5283 w = NULL;
5284
5285 /* Need to select the frame, with all that implies so that
5286 the conditions will have the right context. Because we
5287 use the frame, we will not see an inlined function's
5288 variables when we arrive at a breakpoint at the start
5289 of the inlined function; the current frame will be the
5290 call site. */
5291 if (w == NULL || w->cond_exp_valid_block == NULL)
5292 select_frame (get_current_frame ());
5293 else
5294 {
5295 struct frame_info *frame;
5296
5297 /* For local watchpoint expressions, which particular
5298 instance of a local is being watched matters, so we
5299 keep track of the frame to evaluate the expression
5300 in. To evaluate the condition however, it doesn't
5301 really matter which instantiation of the function
5302 where the condition makes sense triggers the
5303 watchpoint. This allows an expression like "watch
5304 global if q > 10" set in `func', catch writes to
5305 global on all threads that call `func', or catch
5306 writes on all recursive calls of `func' by a single
5307 thread. We simply always evaluate the condition in
5308 the innermost frame that's executing where it makes
5309 sense to evaluate the condition. It seems
5310 intuitive. */
5311 frame = block_innermost_frame (w->cond_exp_valid_block);
5312 if (frame != NULL)
5313 select_frame (frame);
5314 else
5315 within_current_scope = 0;
5316 }
5317 if (within_current_scope)
5318 value_is_zero
5319 = catch_errors (breakpoint_cond_eval, cond,
5320 "Error in testing breakpoint condition:\n",
5321 RETURN_MASK_ALL);
5322 else
5323 {
5324 warning (_("Watchpoint condition cannot be tested "
5325 "in the current scope"));
5326 /* If we failed to set the right context for this
5327 watchpoint, unconditionally report it. */
5328 value_is_zero = 0;
5329 }
5330 /* FIXME-someday, should give breakpoint #. */
5331 value_free_to_mark (mark);
5332 }
5333
5334 if (cond && value_is_zero)
5335 {
5336 bs->stop = 0;
5337 }
5338 else if (b->ignore_count > 0)
5339 {
5340 b->ignore_count--;
5341 bs->stop = 0;
5342 /* Increase the hit count even though we don't stop. */
5343 ++(b->hit_count);
5344 observer_notify_breakpoint_modified (b);
5345 }
5346 }
5347
5348
5349 /* Get a bpstat associated with having just stopped at address
5350 BP_ADDR in thread PTID.
5351
5352 Determine whether we stopped at a breakpoint, etc, or whether we
5353 don't understand this stop. Result is a chain of bpstat's such
5354 that:
5355
5356 if we don't understand the stop, the result is a null pointer.
5357
5358 if we understand why we stopped, the result is not null.
5359
5360 Each element of the chain refers to a particular breakpoint or
5361 watchpoint at which we have stopped. (We may have stopped for
5362 several reasons concurrently.)
5363
5364 Each element of the chain has valid next, breakpoint_at,
5365 commands, FIXME??? fields. */
5366
5367 bpstat
5368 bpstat_stop_status (struct address_space *aspace,
5369 CORE_ADDR bp_addr, ptid_t ptid,
5370 const struct target_waitstatus *ws)
5371 {
5372 struct breakpoint *b = NULL;
5373 struct bp_location *bl;
5374 struct bp_location *loc;
5375 /* First item of allocated bpstat's. */
5376 bpstat bs_head = NULL, *bs_link = &bs_head;
5377 /* Pointer to the last thing in the chain currently. */
5378 bpstat bs;
5379 int ix;
5380 int need_remove_insert;
5381 int removed_any;
5382
5383 /* First, build the bpstat chain with locations that explain a
5384 target stop, while being careful to not set the target running,
5385 as that may invalidate locations (in particular watchpoint
5386 locations are recreated). Resuming will happen here with
5387 breakpoint conditions or watchpoint expressions that include
5388 inferior function calls. */
5389
5390 ALL_BREAKPOINTS (b)
5391 {
5392 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5393 continue;
5394
5395 for (bl = b->loc; bl != NULL; bl = bl->next)
5396 {
5397 /* For hardware watchpoints, we look only at the first
5398 location. The watchpoint_check function will work on the
5399 entire expression, not the individual locations. For
5400 read watchpoints, the watchpoints_triggered function has
5401 checked all locations already. */
5402 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5403 break;
5404
5405 if (!bl->enabled || bl->shlib_disabled)
5406 continue;
5407
5408 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5409 continue;
5410
5411 /* Come here if it's a watchpoint, or if the break address
5412 matches. */
5413
5414 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5415 explain stop. */
5416
5417 /* Assume we stop. Should we find a watchpoint that is not
5418 actually triggered, or if the condition of the breakpoint
5419 evaluates as false, we'll reset 'stop' to 0. */
5420 bs->stop = 1;
5421 bs->print = 1;
5422
5423 /* If this is a scope breakpoint, mark the associated
5424 watchpoint as triggered so that we will handle the
5425 out-of-scope event. We'll get to the watchpoint next
5426 iteration. */
5427 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5428 {
5429 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5430
5431 w->watchpoint_triggered = watch_triggered_yes;
5432 }
5433 }
5434 }
5435
5436 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5437 {
5438 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5439 {
5440 bs = bpstat_alloc (loc, &bs_link);
5441 /* For hits of moribund locations, we should just proceed. */
5442 bs->stop = 0;
5443 bs->print = 0;
5444 bs->print_it = print_it_noop;
5445 }
5446 }
5447
5448 /* A bit of special processing for shlib breakpoints. We need to
5449 process solib loading here, so that the lists of loaded and
5450 unloaded libraries are correct before we handle "catch load" and
5451 "catch unload". */
5452 for (bs = bs_head; bs != NULL; bs = bs->next)
5453 {
5454 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5455 {
5456 handle_solib_event ();
5457 break;
5458 }
5459 }
5460
5461 /* Now go through the locations that caused the target to stop, and
5462 check whether we're interested in reporting this stop to higher
5463 layers, or whether we should resume the target transparently. */
5464
5465 removed_any = 0;
5466
5467 for (bs = bs_head; bs != NULL; bs = bs->next)
5468 {
5469 if (!bs->stop)
5470 continue;
5471
5472 b = bs->breakpoint_at;
5473 b->ops->check_status (bs);
5474 if (bs->stop)
5475 {
5476 bpstat_check_breakpoint_conditions (bs, ptid);
5477
5478 if (bs->stop)
5479 {
5480 ++(b->hit_count);
5481 observer_notify_breakpoint_modified (b);
5482
5483 /* We will stop here. */
5484 if (b->disposition == disp_disable)
5485 {
5486 --(b->enable_count);
5487 if (b->enable_count <= 0
5488 && b->enable_state != bp_permanent)
5489 b->enable_state = bp_disabled;
5490 removed_any = 1;
5491 }
5492 if (b->silent)
5493 bs->print = 0;
5494 bs->commands = b->commands;
5495 incref_counted_command_line (bs->commands);
5496 if (command_line_is_silent (bs->commands
5497 ? bs->commands->commands : NULL))
5498 bs->print = 0;
5499
5500 b->ops->after_condition_true (bs);
5501 }
5502
5503 }
5504
5505 /* Print nothing for this entry if we don't stop or don't
5506 print. */
5507 if (!bs->stop || !bs->print)
5508 bs->print_it = print_it_noop;
5509 }
5510
5511 /* If we aren't stopping, the value of some hardware watchpoint may
5512 not have changed, but the intermediate memory locations we are
5513 watching may have. Don't bother if we're stopping; this will get
5514 done later. */
5515 need_remove_insert = 0;
5516 if (! bpstat_causes_stop (bs_head))
5517 for (bs = bs_head; bs != NULL; bs = bs->next)
5518 if (!bs->stop
5519 && bs->breakpoint_at
5520 && is_hardware_watchpoint (bs->breakpoint_at))
5521 {
5522 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5523
5524 update_watchpoint (w, 0 /* don't reparse. */);
5525 need_remove_insert = 1;
5526 }
5527
5528 if (need_remove_insert)
5529 update_global_location_list (1);
5530 else if (removed_any)
5531 update_global_location_list (0);
5532
5533 return bs_head;
5534 }
5535
5536 static void
5537 handle_jit_event (void)
5538 {
5539 struct frame_info *frame;
5540 struct gdbarch *gdbarch;
5541
5542 /* Switch terminal for any messages produced by
5543 breakpoint_re_set. */
5544 target_terminal_ours_for_output ();
5545
5546 frame = get_current_frame ();
5547 gdbarch = get_frame_arch (frame);
5548
5549 jit_event_handler (gdbarch);
5550
5551 target_terminal_inferior ();
5552 }
5553
5554 /* Prepare WHAT final decision for infrun. */
5555
5556 /* Decide what infrun needs to do with this bpstat. */
5557
5558 struct bpstat_what
5559 bpstat_what (bpstat bs_head)
5560 {
5561 struct bpstat_what retval;
5562 int jit_event = 0;
5563 bpstat bs;
5564
5565 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5566 retval.call_dummy = STOP_NONE;
5567 retval.is_longjmp = 0;
5568
5569 for (bs = bs_head; bs != NULL; bs = bs->next)
5570 {
5571 /* Extract this BS's action. After processing each BS, we check
5572 if its action overrides all we've seem so far. */
5573 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5574 enum bptype bptype;
5575
5576 if (bs->breakpoint_at == NULL)
5577 {
5578 /* I suspect this can happen if it was a momentary
5579 breakpoint which has since been deleted. */
5580 bptype = bp_none;
5581 }
5582 else
5583 bptype = bs->breakpoint_at->type;
5584
5585 switch (bptype)
5586 {
5587 case bp_none:
5588 break;
5589 case bp_breakpoint:
5590 case bp_hardware_breakpoint:
5591 case bp_until:
5592 case bp_finish:
5593 case bp_shlib_event:
5594 if (bs->stop)
5595 {
5596 if (bs->print)
5597 this_action = BPSTAT_WHAT_STOP_NOISY;
5598 else
5599 this_action = BPSTAT_WHAT_STOP_SILENT;
5600 }
5601 else
5602 this_action = BPSTAT_WHAT_SINGLE;
5603 break;
5604 case bp_watchpoint:
5605 case bp_hardware_watchpoint:
5606 case bp_read_watchpoint:
5607 case bp_access_watchpoint:
5608 if (bs->stop)
5609 {
5610 if (bs->print)
5611 this_action = BPSTAT_WHAT_STOP_NOISY;
5612 else
5613 this_action = BPSTAT_WHAT_STOP_SILENT;
5614 }
5615 else
5616 {
5617 /* There was a watchpoint, but we're not stopping.
5618 This requires no further action. */
5619 }
5620 break;
5621 case bp_longjmp:
5622 case bp_longjmp_call_dummy:
5623 case bp_exception:
5624 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5625 retval.is_longjmp = bptype != bp_exception;
5626 break;
5627 case bp_longjmp_resume:
5628 case bp_exception_resume:
5629 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5630 retval.is_longjmp = bptype == bp_longjmp_resume;
5631 break;
5632 case bp_step_resume:
5633 if (bs->stop)
5634 this_action = BPSTAT_WHAT_STEP_RESUME;
5635 else
5636 {
5637 /* It is for the wrong frame. */
5638 this_action = BPSTAT_WHAT_SINGLE;
5639 }
5640 break;
5641 case bp_hp_step_resume:
5642 if (bs->stop)
5643 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5644 else
5645 {
5646 /* It is for the wrong frame. */
5647 this_action = BPSTAT_WHAT_SINGLE;
5648 }
5649 break;
5650 case bp_watchpoint_scope:
5651 case bp_thread_event:
5652 case bp_overlay_event:
5653 case bp_longjmp_master:
5654 case bp_std_terminate_master:
5655 case bp_exception_master:
5656 this_action = BPSTAT_WHAT_SINGLE;
5657 break;
5658 case bp_catchpoint:
5659 if (bs->stop)
5660 {
5661 if (bs->print)
5662 this_action = BPSTAT_WHAT_STOP_NOISY;
5663 else
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 }
5666 else
5667 {
5668 /* There was a catchpoint, but we're not stopping.
5669 This requires no further action. */
5670 }
5671 break;
5672 case bp_jit_event:
5673 jit_event = 1;
5674 this_action = BPSTAT_WHAT_SINGLE;
5675 break;
5676 case bp_call_dummy:
5677 /* Make sure the action is stop (silent or noisy),
5678 so infrun.c pops the dummy frame. */
5679 retval.call_dummy = STOP_STACK_DUMMY;
5680 this_action = BPSTAT_WHAT_STOP_SILENT;
5681 break;
5682 case bp_std_terminate:
5683 /* Make sure the action is stop (silent or noisy),
5684 so infrun.c pops the dummy frame. */
5685 retval.call_dummy = STOP_STD_TERMINATE;
5686 this_action = BPSTAT_WHAT_STOP_SILENT;
5687 break;
5688 case bp_tracepoint:
5689 case bp_fast_tracepoint:
5690 case bp_static_tracepoint:
5691 /* Tracepoint hits should not be reported back to GDB, and
5692 if one got through somehow, it should have been filtered
5693 out already. */
5694 internal_error (__FILE__, __LINE__,
5695 _("bpstat_what: tracepoint encountered"));
5696 break;
5697 case bp_gnu_ifunc_resolver:
5698 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5699 this_action = BPSTAT_WHAT_SINGLE;
5700 break;
5701 case bp_gnu_ifunc_resolver_return:
5702 /* The breakpoint will be removed, execution will restart from the
5703 PC of the former breakpoint. */
5704 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5705 break;
5706
5707 case bp_dprintf:
5708 if (bs->stop)
5709 this_action = BPSTAT_WHAT_STOP_SILENT;
5710 else
5711 this_action = BPSTAT_WHAT_SINGLE;
5712 break;
5713
5714 default:
5715 internal_error (__FILE__, __LINE__,
5716 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5717 }
5718
5719 retval.main_action = max (retval.main_action, this_action);
5720 }
5721
5722 /* These operations may affect the bs->breakpoint_at state so they are
5723 delayed after MAIN_ACTION is decided above. */
5724
5725 if (jit_event)
5726 {
5727 if (debug_infrun)
5728 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5729
5730 handle_jit_event ();
5731 }
5732
5733 for (bs = bs_head; bs != NULL; bs = bs->next)
5734 {
5735 struct breakpoint *b = bs->breakpoint_at;
5736
5737 if (b == NULL)
5738 continue;
5739 switch (b->type)
5740 {
5741 case bp_gnu_ifunc_resolver:
5742 gnu_ifunc_resolver_stop (b);
5743 break;
5744 case bp_gnu_ifunc_resolver_return:
5745 gnu_ifunc_resolver_return_stop (b);
5746 break;
5747 }
5748 }
5749
5750 return retval;
5751 }
5752
5753 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5754 without hardware support). This isn't related to a specific bpstat,
5755 just to things like whether watchpoints are set. */
5756
5757 int
5758 bpstat_should_step (void)
5759 {
5760 struct breakpoint *b;
5761
5762 ALL_BREAKPOINTS (b)
5763 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5764 return 1;
5765 return 0;
5766 }
5767
5768 int
5769 bpstat_causes_stop (bpstat bs)
5770 {
5771 for (; bs != NULL; bs = bs->next)
5772 if (bs->stop)
5773 return 1;
5774
5775 return 0;
5776 }
5777
5778 \f
5779
5780 /* Compute a string of spaces suitable to indent the next line
5781 so it starts at the position corresponding to the table column
5782 named COL_NAME in the currently active table of UIOUT. */
5783
5784 static char *
5785 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5786 {
5787 static char wrap_indent[80];
5788 int i, total_width, width, align;
5789 char *text;
5790
5791 total_width = 0;
5792 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5793 {
5794 if (strcmp (text, col_name) == 0)
5795 {
5796 gdb_assert (total_width < sizeof wrap_indent);
5797 memset (wrap_indent, ' ', total_width);
5798 wrap_indent[total_width] = 0;
5799
5800 return wrap_indent;
5801 }
5802
5803 total_width += width + 1;
5804 }
5805
5806 return NULL;
5807 }
5808
5809 /* Determine if the locations of this breakpoint will have their conditions
5810 evaluated by the target, host or a mix of both. Returns the following:
5811
5812 "host": Host evals condition.
5813 "host or target": Host or Target evals condition.
5814 "target": Target evals condition.
5815 */
5816
5817 static const char *
5818 bp_condition_evaluator (struct breakpoint *b)
5819 {
5820 struct bp_location *bl;
5821 char host_evals = 0;
5822 char target_evals = 0;
5823
5824 if (!b)
5825 return NULL;
5826
5827 if (!is_breakpoint (b))
5828 return NULL;
5829
5830 if (gdb_evaluates_breakpoint_condition_p ()
5831 || !target_supports_evaluation_of_breakpoint_conditions ())
5832 return condition_evaluation_host;
5833
5834 for (bl = b->loc; bl; bl = bl->next)
5835 {
5836 if (bl->cond_bytecode)
5837 target_evals++;
5838 else
5839 host_evals++;
5840 }
5841
5842 if (host_evals && target_evals)
5843 return condition_evaluation_both;
5844 else if (target_evals)
5845 return condition_evaluation_target;
5846 else
5847 return condition_evaluation_host;
5848 }
5849
5850 /* Determine the breakpoint location's condition evaluator. This is
5851 similar to bp_condition_evaluator, but for locations. */
5852
5853 static const char *
5854 bp_location_condition_evaluator (struct bp_location *bl)
5855 {
5856 if (bl && !is_breakpoint (bl->owner))
5857 return NULL;
5858
5859 if (gdb_evaluates_breakpoint_condition_p ()
5860 || !target_supports_evaluation_of_breakpoint_conditions ())
5861 return condition_evaluation_host;
5862
5863 if (bl && bl->cond_bytecode)
5864 return condition_evaluation_target;
5865 else
5866 return condition_evaluation_host;
5867 }
5868
5869 /* Print the LOC location out of the list of B->LOC locations. */
5870
5871 static void
5872 print_breakpoint_location (struct breakpoint *b,
5873 struct bp_location *loc)
5874 {
5875 struct ui_out *uiout = current_uiout;
5876 struct cleanup *old_chain = save_current_program_space ();
5877
5878 if (loc != NULL && loc->shlib_disabled)
5879 loc = NULL;
5880
5881 if (loc != NULL)
5882 set_current_program_space (loc->pspace);
5883
5884 if (b->display_canonical)
5885 ui_out_field_string (uiout, "what", b->addr_string);
5886 else if (loc && loc->symtab)
5887 {
5888 struct symbol *sym
5889 = find_pc_sect_function (loc->address, loc->section);
5890 if (sym)
5891 {
5892 ui_out_text (uiout, "in ");
5893 ui_out_field_string (uiout, "func",
5894 SYMBOL_PRINT_NAME (sym));
5895 ui_out_text (uiout, " ");
5896 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5897 ui_out_text (uiout, "at ");
5898 }
5899 ui_out_field_string (uiout, "file",
5900 symtab_to_filename_for_display (loc->symtab));
5901 ui_out_text (uiout, ":");
5902
5903 if (ui_out_is_mi_like_p (uiout))
5904 ui_out_field_string (uiout, "fullname",
5905 symtab_to_fullname (loc->symtab));
5906
5907 ui_out_field_int (uiout, "line", loc->line_number);
5908 }
5909 else if (loc)
5910 {
5911 struct ui_file *stb = mem_fileopen ();
5912 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5913
5914 print_address_symbolic (loc->gdbarch, loc->address, stb,
5915 demangle, "");
5916 ui_out_field_stream (uiout, "at", stb);
5917
5918 do_cleanups (stb_chain);
5919 }
5920 else
5921 ui_out_field_string (uiout, "pending", b->addr_string);
5922
5923 if (loc && is_breakpoint (b)
5924 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5925 && bp_condition_evaluator (b) == condition_evaluation_both)
5926 {
5927 ui_out_text (uiout, " (");
5928 ui_out_field_string (uiout, "evaluated-by",
5929 bp_location_condition_evaluator (loc));
5930 ui_out_text (uiout, ")");
5931 }
5932
5933 do_cleanups (old_chain);
5934 }
5935
5936 static const char *
5937 bptype_string (enum bptype type)
5938 {
5939 struct ep_type_description
5940 {
5941 enum bptype type;
5942 char *description;
5943 };
5944 static struct ep_type_description bptypes[] =
5945 {
5946 {bp_none, "?deleted?"},
5947 {bp_breakpoint, "breakpoint"},
5948 {bp_hardware_breakpoint, "hw breakpoint"},
5949 {bp_until, "until"},
5950 {bp_finish, "finish"},
5951 {bp_watchpoint, "watchpoint"},
5952 {bp_hardware_watchpoint, "hw watchpoint"},
5953 {bp_read_watchpoint, "read watchpoint"},
5954 {bp_access_watchpoint, "acc watchpoint"},
5955 {bp_longjmp, "longjmp"},
5956 {bp_longjmp_resume, "longjmp resume"},
5957 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5958 {bp_exception, "exception"},
5959 {bp_exception_resume, "exception resume"},
5960 {bp_step_resume, "step resume"},
5961 {bp_hp_step_resume, "high-priority step resume"},
5962 {bp_watchpoint_scope, "watchpoint scope"},
5963 {bp_call_dummy, "call dummy"},
5964 {bp_std_terminate, "std::terminate"},
5965 {bp_shlib_event, "shlib events"},
5966 {bp_thread_event, "thread events"},
5967 {bp_overlay_event, "overlay events"},
5968 {bp_longjmp_master, "longjmp master"},
5969 {bp_std_terminate_master, "std::terminate master"},
5970 {bp_exception_master, "exception master"},
5971 {bp_catchpoint, "catchpoint"},
5972 {bp_tracepoint, "tracepoint"},
5973 {bp_fast_tracepoint, "fast tracepoint"},
5974 {bp_static_tracepoint, "static tracepoint"},
5975 {bp_dprintf, "dprintf"},
5976 {bp_jit_event, "jit events"},
5977 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5978 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5979 };
5980
5981 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5982 || ((int) type != bptypes[(int) type].type))
5983 internal_error (__FILE__, __LINE__,
5984 _("bptypes table does not describe type #%d."),
5985 (int) type);
5986
5987 return bptypes[(int) type].description;
5988 }
5989
5990 /* For MI, output a field named 'thread-groups' with a list as the value.
5991 For CLI, prefix the list with the string 'inf'. */
5992
5993 static void
5994 output_thread_groups (struct ui_out *uiout,
5995 const char *field_name,
5996 VEC(int) *inf_num,
5997 int mi_only)
5998 {
5999 struct cleanup *back_to;
6000 int is_mi = ui_out_is_mi_like_p (uiout);
6001 int inf;
6002 int i;
6003
6004 /* For backward compatibility, don't display inferiors in CLI unless
6005 there are several. Always display them for MI. */
6006 if (!is_mi && mi_only)
6007 return;
6008
6009 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6010
6011 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6012 {
6013 if (is_mi)
6014 {
6015 char mi_group[10];
6016
6017 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6018 ui_out_field_string (uiout, NULL, mi_group);
6019 }
6020 else
6021 {
6022 if (i == 0)
6023 ui_out_text (uiout, " inf ");
6024 else
6025 ui_out_text (uiout, ", ");
6026
6027 ui_out_text (uiout, plongest (inf));
6028 }
6029 }
6030
6031 do_cleanups (back_to);
6032 }
6033
6034 /* Print B to gdb_stdout. */
6035
6036 static void
6037 print_one_breakpoint_location (struct breakpoint *b,
6038 struct bp_location *loc,
6039 int loc_number,
6040 struct bp_location **last_loc,
6041 int allflag)
6042 {
6043 struct command_line *l;
6044 static char bpenables[] = "nynny";
6045
6046 struct ui_out *uiout = current_uiout;
6047 int header_of_multiple = 0;
6048 int part_of_multiple = (loc != NULL);
6049 struct value_print_options opts;
6050
6051 get_user_print_options (&opts);
6052
6053 gdb_assert (!loc || loc_number != 0);
6054 /* See comment in print_one_breakpoint concerning treatment of
6055 breakpoints with single disabled location. */
6056 if (loc == NULL
6057 && (b->loc != NULL
6058 && (b->loc->next != NULL || !b->loc->enabled)))
6059 header_of_multiple = 1;
6060 if (loc == NULL)
6061 loc = b->loc;
6062
6063 annotate_record ();
6064
6065 /* 1 */
6066 annotate_field (0);
6067 if (part_of_multiple)
6068 {
6069 char *formatted;
6070 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6071 ui_out_field_string (uiout, "number", formatted);
6072 xfree (formatted);
6073 }
6074 else
6075 {
6076 ui_out_field_int (uiout, "number", b->number);
6077 }
6078
6079 /* 2 */
6080 annotate_field (1);
6081 if (part_of_multiple)
6082 ui_out_field_skip (uiout, "type");
6083 else
6084 ui_out_field_string (uiout, "type", bptype_string (b->type));
6085
6086 /* 3 */
6087 annotate_field (2);
6088 if (part_of_multiple)
6089 ui_out_field_skip (uiout, "disp");
6090 else
6091 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6092
6093
6094 /* 4 */
6095 annotate_field (3);
6096 if (part_of_multiple)
6097 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6098 else
6099 ui_out_field_fmt (uiout, "enabled", "%c",
6100 bpenables[(int) b->enable_state]);
6101 ui_out_spaces (uiout, 2);
6102
6103
6104 /* 5 and 6 */
6105 if (b->ops != NULL && b->ops->print_one != NULL)
6106 {
6107 /* Although the print_one can possibly print all locations,
6108 calling it here is not likely to get any nice result. So,
6109 make sure there's just one location. */
6110 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6111 b->ops->print_one (b, last_loc);
6112 }
6113 else
6114 switch (b->type)
6115 {
6116 case bp_none:
6117 internal_error (__FILE__, __LINE__,
6118 _("print_one_breakpoint: bp_none encountered\n"));
6119 break;
6120
6121 case bp_watchpoint:
6122 case bp_hardware_watchpoint:
6123 case bp_read_watchpoint:
6124 case bp_access_watchpoint:
6125 {
6126 struct watchpoint *w = (struct watchpoint *) b;
6127
6128 /* Field 4, the address, is omitted (which makes the columns
6129 not line up too nicely with the headers, but the effect
6130 is relatively readable). */
6131 if (opts.addressprint)
6132 ui_out_field_skip (uiout, "addr");
6133 annotate_field (5);
6134 ui_out_field_string (uiout, "what", w->exp_string);
6135 }
6136 break;
6137
6138 case bp_breakpoint:
6139 case bp_hardware_breakpoint:
6140 case bp_until:
6141 case bp_finish:
6142 case bp_longjmp:
6143 case bp_longjmp_resume:
6144 case bp_longjmp_call_dummy:
6145 case bp_exception:
6146 case bp_exception_resume:
6147 case bp_step_resume:
6148 case bp_hp_step_resume:
6149 case bp_watchpoint_scope:
6150 case bp_call_dummy:
6151 case bp_std_terminate:
6152 case bp_shlib_event:
6153 case bp_thread_event:
6154 case bp_overlay_event:
6155 case bp_longjmp_master:
6156 case bp_std_terminate_master:
6157 case bp_exception_master:
6158 case bp_tracepoint:
6159 case bp_fast_tracepoint:
6160 case bp_static_tracepoint:
6161 case bp_dprintf:
6162 case bp_jit_event:
6163 case bp_gnu_ifunc_resolver:
6164 case bp_gnu_ifunc_resolver_return:
6165 if (opts.addressprint)
6166 {
6167 annotate_field (4);
6168 if (header_of_multiple)
6169 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6170 else if (b->loc == NULL || loc->shlib_disabled)
6171 ui_out_field_string (uiout, "addr", "<PENDING>");
6172 else
6173 ui_out_field_core_addr (uiout, "addr",
6174 loc->gdbarch, loc->address);
6175 }
6176 annotate_field (5);
6177 if (!header_of_multiple)
6178 print_breakpoint_location (b, loc);
6179 if (b->loc)
6180 *last_loc = b->loc;
6181 break;
6182 }
6183
6184
6185 if (loc != NULL && !header_of_multiple)
6186 {
6187 struct inferior *inf;
6188 VEC(int) *inf_num = NULL;
6189 int mi_only = 1;
6190
6191 ALL_INFERIORS (inf)
6192 {
6193 if (inf->pspace == loc->pspace)
6194 VEC_safe_push (int, inf_num, inf->num);
6195 }
6196
6197 /* For backward compatibility, don't display inferiors in CLI unless
6198 there are several. Always display for MI. */
6199 if (allflag
6200 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6201 && (number_of_program_spaces () > 1
6202 || number_of_inferiors () > 1)
6203 /* LOC is for existing B, it cannot be in
6204 moribund_locations and thus having NULL OWNER. */
6205 && loc->owner->type != bp_catchpoint))
6206 mi_only = 0;
6207 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6208 VEC_free (int, inf_num);
6209 }
6210
6211 if (!part_of_multiple)
6212 {
6213 if (b->thread != -1)
6214 {
6215 /* FIXME: This seems to be redundant and lost here; see the
6216 "stop only in" line a little further down. */
6217 ui_out_text (uiout, " thread ");
6218 ui_out_field_int (uiout, "thread", b->thread);
6219 }
6220 else if (b->task != 0)
6221 {
6222 ui_out_text (uiout, " task ");
6223 ui_out_field_int (uiout, "task", b->task);
6224 }
6225 }
6226
6227 ui_out_text (uiout, "\n");
6228
6229 if (!part_of_multiple)
6230 b->ops->print_one_detail (b, uiout);
6231
6232 if (part_of_multiple && frame_id_p (b->frame_id))
6233 {
6234 annotate_field (6);
6235 ui_out_text (uiout, "\tstop only in stack frame at ");
6236 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6237 the frame ID. */
6238 ui_out_field_core_addr (uiout, "frame",
6239 b->gdbarch, b->frame_id.stack_addr);
6240 ui_out_text (uiout, "\n");
6241 }
6242
6243 if (!part_of_multiple && b->cond_string)
6244 {
6245 annotate_field (7);
6246 if (is_tracepoint (b))
6247 ui_out_text (uiout, "\ttrace only if ");
6248 else
6249 ui_out_text (uiout, "\tstop only if ");
6250 ui_out_field_string (uiout, "cond", b->cond_string);
6251
6252 /* Print whether the target is doing the breakpoint's condition
6253 evaluation. If GDB is doing the evaluation, don't print anything. */
6254 if (is_breakpoint (b)
6255 && breakpoint_condition_evaluation_mode ()
6256 == condition_evaluation_target)
6257 {
6258 ui_out_text (uiout, " (");
6259 ui_out_field_string (uiout, "evaluated-by",
6260 bp_condition_evaluator (b));
6261 ui_out_text (uiout, " evals)");
6262 }
6263 ui_out_text (uiout, "\n");
6264 }
6265
6266 if (!part_of_multiple && b->thread != -1)
6267 {
6268 /* FIXME should make an annotation for this. */
6269 ui_out_text (uiout, "\tstop only in thread ");
6270 ui_out_field_int (uiout, "thread", b->thread);
6271 ui_out_text (uiout, "\n");
6272 }
6273
6274 if (!part_of_multiple)
6275 {
6276 if (b->hit_count)
6277 {
6278 /* FIXME should make an annotation for this. */
6279 if (is_catchpoint (b))
6280 ui_out_text (uiout, "\tcatchpoint");
6281 else if (is_tracepoint (b))
6282 ui_out_text (uiout, "\ttracepoint");
6283 else
6284 ui_out_text (uiout, "\tbreakpoint");
6285 ui_out_text (uiout, " already hit ");
6286 ui_out_field_int (uiout, "times", b->hit_count);
6287 if (b->hit_count == 1)
6288 ui_out_text (uiout, " time\n");
6289 else
6290 ui_out_text (uiout, " times\n");
6291 }
6292 else
6293 {
6294 /* Output the count also if it is zero, but only if this is mi. */
6295 if (ui_out_is_mi_like_p (uiout))
6296 ui_out_field_int (uiout, "times", b->hit_count);
6297 }
6298 }
6299
6300 if (!part_of_multiple && b->ignore_count)
6301 {
6302 annotate_field (8);
6303 ui_out_text (uiout, "\tignore next ");
6304 ui_out_field_int (uiout, "ignore", b->ignore_count);
6305 ui_out_text (uiout, " hits\n");
6306 }
6307
6308 /* Note that an enable count of 1 corresponds to "enable once"
6309 behavior, which is reported by the combination of enablement and
6310 disposition, so we don't need to mention it here. */
6311 if (!part_of_multiple && b->enable_count > 1)
6312 {
6313 annotate_field (8);
6314 ui_out_text (uiout, "\tdisable after ");
6315 /* Tweak the wording to clarify that ignore and enable counts
6316 are distinct, and have additive effect. */
6317 if (b->ignore_count)
6318 ui_out_text (uiout, "additional ");
6319 else
6320 ui_out_text (uiout, "next ");
6321 ui_out_field_int (uiout, "enable", b->enable_count);
6322 ui_out_text (uiout, " hits\n");
6323 }
6324
6325 if (!part_of_multiple && is_tracepoint (b))
6326 {
6327 struct tracepoint *tp = (struct tracepoint *) b;
6328
6329 if (tp->traceframe_usage)
6330 {
6331 ui_out_text (uiout, "\ttrace buffer usage ");
6332 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6333 ui_out_text (uiout, " bytes\n");
6334 }
6335 }
6336
6337 l = b->commands ? b->commands->commands : NULL;
6338 if (!part_of_multiple && l)
6339 {
6340 struct cleanup *script_chain;
6341
6342 annotate_field (9);
6343 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6344 print_command_lines (uiout, l, 4);
6345 do_cleanups (script_chain);
6346 }
6347
6348 if (is_tracepoint (b))
6349 {
6350 struct tracepoint *t = (struct tracepoint *) b;
6351
6352 if (!part_of_multiple && t->pass_count)
6353 {
6354 annotate_field (10);
6355 ui_out_text (uiout, "\tpass count ");
6356 ui_out_field_int (uiout, "pass", t->pass_count);
6357 ui_out_text (uiout, " \n");
6358 }
6359
6360 /* Don't display it when tracepoint or tracepoint location is
6361 pending. */
6362 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6363 {
6364 annotate_field (11);
6365
6366 if (ui_out_is_mi_like_p (uiout))
6367 ui_out_field_string (uiout, "installed",
6368 loc->inserted ? "y" : "n");
6369 else
6370 {
6371 if (loc->inserted)
6372 ui_out_text (uiout, "\t");
6373 else
6374 ui_out_text (uiout, "\tnot ");
6375 ui_out_text (uiout, "installed on target\n");
6376 }
6377 }
6378 }
6379
6380 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6381 {
6382 if (is_watchpoint (b))
6383 {
6384 struct watchpoint *w = (struct watchpoint *) b;
6385
6386 ui_out_field_string (uiout, "original-location", w->exp_string);
6387 }
6388 else if (b->addr_string)
6389 ui_out_field_string (uiout, "original-location", b->addr_string);
6390 }
6391 }
6392
6393 static void
6394 print_one_breakpoint (struct breakpoint *b,
6395 struct bp_location **last_loc,
6396 int allflag)
6397 {
6398 struct cleanup *bkpt_chain;
6399 struct ui_out *uiout = current_uiout;
6400
6401 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6402
6403 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6404 do_cleanups (bkpt_chain);
6405
6406 /* If this breakpoint has custom print function,
6407 it's already printed. Otherwise, print individual
6408 locations, if any. */
6409 if (b->ops == NULL || b->ops->print_one == NULL)
6410 {
6411 /* If breakpoint has a single location that is disabled, we
6412 print it as if it had several locations, since otherwise it's
6413 hard to represent "breakpoint enabled, location disabled"
6414 situation.
6415
6416 Note that while hardware watchpoints have several locations
6417 internally, that's not a property exposed to user. */
6418 if (b->loc
6419 && !is_hardware_watchpoint (b)
6420 && (b->loc->next || !b->loc->enabled))
6421 {
6422 struct bp_location *loc;
6423 int n = 1;
6424
6425 for (loc = b->loc; loc; loc = loc->next, ++n)
6426 {
6427 struct cleanup *inner2 =
6428 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6429 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6430 do_cleanups (inner2);
6431 }
6432 }
6433 }
6434 }
6435
6436 static int
6437 breakpoint_address_bits (struct breakpoint *b)
6438 {
6439 int print_address_bits = 0;
6440 struct bp_location *loc;
6441
6442 for (loc = b->loc; loc; loc = loc->next)
6443 {
6444 int addr_bit;
6445
6446 /* Software watchpoints that aren't watching memory don't have
6447 an address to print. */
6448 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6449 continue;
6450
6451 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6452 if (addr_bit > print_address_bits)
6453 print_address_bits = addr_bit;
6454 }
6455
6456 return print_address_bits;
6457 }
6458
6459 struct captured_breakpoint_query_args
6460 {
6461 int bnum;
6462 };
6463
6464 static int
6465 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6466 {
6467 struct captured_breakpoint_query_args *args = data;
6468 struct breakpoint *b;
6469 struct bp_location *dummy_loc = NULL;
6470
6471 ALL_BREAKPOINTS (b)
6472 {
6473 if (args->bnum == b->number)
6474 {
6475 print_one_breakpoint (b, &dummy_loc, 0);
6476 return GDB_RC_OK;
6477 }
6478 }
6479 return GDB_RC_NONE;
6480 }
6481
6482 enum gdb_rc
6483 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6484 char **error_message)
6485 {
6486 struct captured_breakpoint_query_args args;
6487
6488 args.bnum = bnum;
6489 /* For the moment we don't trust print_one_breakpoint() to not throw
6490 an error. */
6491 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6492 error_message, RETURN_MASK_ALL) < 0)
6493 return GDB_RC_FAIL;
6494 else
6495 return GDB_RC_OK;
6496 }
6497
6498 /* Return true if this breakpoint was set by the user, false if it is
6499 internal or momentary. */
6500
6501 int
6502 user_breakpoint_p (struct breakpoint *b)
6503 {
6504 return b->number > 0;
6505 }
6506
6507 /* Print information on user settable breakpoint (watchpoint, etc)
6508 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6509 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6510 FILTER is non-NULL, call it on each breakpoint and only include the
6511 ones for which it returns non-zero. Return the total number of
6512 breakpoints listed. */
6513
6514 static int
6515 breakpoint_1 (char *args, int allflag,
6516 int (*filter) (const struct breakpoint *))
6517 {
6518 struct breakpoint *b;
6519 struct bp_location *last_loc = NULL;
6520 int nr_printable_breakpoints;
6521 struct cleanup *bkpttbl_chain;
6522 struct value_print_options opts;
6523 int print_address_bits = 0;
6524 int print_type_col_width = 14;
6525 struct ui_out *uiout = current_uiout;
6526
6527 get_user_print_options (&opts);
6528
6529 /* Compute the number of rows in the table, as well as the size
6530 required for address fields. */
6531 nr_printable_breakpoints = 0;
6532 ALL_BREAKPOINTS (b)
6533 {
6534 /* If we have a filter, only list the breakpoints it accepts. */
6535 if (filter && !filter (b))
6536 continue;
6537
6538 /* If we have an "args" string, it is a list of breakpoints to
6539 accept. Skip the others. */
6540 if (args != NULL && *args != '\0')
6541 {
6542 if (allflag && parse_and_eval_long (args) != b->number)
6543 continue;
6544 if (!allflag && !number_is_in_list (args, b->number))
6545 continue;
6546 }
6547
6548 if (allflag || user_breakpoint_p (b))
6549 {
6550 int addr_bit, type_len;
6551
6552 addr_bit = breakpoint_address_bits (b);
6553 if (addr_bit > print_address_bits)
6554 print_address_bits = addr_bit;
6555
6556 type_len = strlen (bptype_string (b->type));
6557 if (type_len > print_type_col_width)
6558 print_type_col_width = type_len;
6559
6560 nr_printable_breakpoints++;
6561 }
6562 }
6563
6564 if (opts.addressprint)
6565 bkpttbl_chain
6566 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6567 nr_printable_breakpoints,
6568 "BreakpointTable");
6569 else
6570 bkpttbl_chain
6571 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6572 nr_printable_breakpoints,
6573 "BreakpointTable");
6574
6575 if (nr_printable_breakpoints > 0)
6576 annotate_breakpoints_headers ();
6577 if (nr_printable_breakpoints > 0)
6578 annotate_field (0);
6579 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6580 if (nr_printable_breakpoints > 0)
6581 annotate_field (1);
6582 ui_out_table_header (uiout, print_type_col_width, ui_left,
6583 "type", "Type"); /* 2 */
6584 if (nr_printable_breakpoints > 0)
6585 annotate_field (2);
6586 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6587 if (nr_printable_breakpoints > 0)
6588 annotate_field (3);
6589 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6590 if (opts.addressprint)
6591 {
6592 if (nr_printable_breakpoints > 0)
6593 annotate_field (4);
6594 if (print_address_bits <= 32)
6595 ui_out_table_header (uiout, 10, ui_left,
6596 "addr", "Address"); /* 5 */
6597 else
6598 ui_out_table_header (uiout, 18, ui_left,
6599 "addr", "Address"); /* 5 */
6600 }
6601 if (nr_printable_breakpoints > 0)
6602 annotate_field (5);
6603 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6604 ui_out_table_body (uiout);
6605 if (nr_printable_breakpoints > 0)
6606 annotate_breakpoints_table ();
6607
6608 ALL_BREAKPOINTS (b)
6609 {
6610 QUIT;
6611 /* If we have a filter, only list the breakpoints it accepts. */
6612 if (filter && !filter (b))
6613 continue;
6614
6615 /* If we have an "args" string, it is a list of breakpoints to
6616 accept. Skip the others. */
6617
6618 if (args != NULL && *args != '\0')
6619 {
6620 if (allflag) /* maintenance info breakpoint */
6621 {
6622 if (parse_and_eval_long (args) != b->number)
6623 continue;
6624 }
6625 else /* all others */
6626 {
6627 if (!number_is_in_list (args, b->number))
6628 continue;
6629 }
6630 }
6631 /* We only print out user settable breakpoints unless the
6632 allflag is set. */
6633 if (allflag || user_breakpoint_p (b))
6634 print_one_breakpoint (b, &last_loc, allflag);
6635 }
6636
6637 do_cleanups (bkpttbl_chain);
6638
6639 if (nr_printable_breakpoints == 0)
6640 {
6641 /* If there's a filter, let the caller decide how to report
6642 empty list. */
6643 if (!filter)
6644 {
6645 if (args == NULL || *args == '\0')
6646 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6647 else
6648 ui_out_message (uiout, 0,
6649 "No breakpoint or watchpoint matching '%s'.\n",
6650 args);
6651 }
6652 }
6653 else
6654 {
6655 if (last_loc && !server_command)
6656 set_next_address (last_loc->gdbarch, last_loc->address);
6657 }
6658
6659 /* FIXME? Should this be moved up so that it is only called when
6660 there have been breakpoints? */
6661 annotate_breakpoints_table_end ();
6662
6663 return nr_printable_breakpoints;
6664 }
6665
6666 /* Display the value of default-collect in a way that is generally
6667 compatible with the breakpoint list. */
6668
6669 static void
6670 default_collect_info (void)
6671 {
6672 struct ui_out *uiout = current_uiout;
6673
6674 /* If it has no value (which is frequently the case), say nothing; a
6675 message like "No default-collect." gets in user's face when it's
6676 not wanted. */
6677 if (!*default_collect)
6678 return;
6679
6680 /* The following phrase lines up nicely with per-tracepoint collect
6681 actions. */
6682 ui_out_text (uiout, "default collect ");
6683 ui_out_field_string (uiout, "default-collect", default_collect);
6684 ui_out_text (uiout, " \n");
6685 }
6686
6687 static void
6688 breakpoints_info (char *args, int from_tty)
6689 {
6690 breakpoint_1 (args, 0, NULL);
6691
6692 default_collect_info ();
6693 }
6694
6695 static void
6696 watchpoints_info (char *args, int from_tty)
6697 {
6698 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6699 struct ui_out *uiout = current_uiout;
6700
6701 if (num_printed == 0)
6702 {
6703 if (args == NULL || *args == '\0')
6704 ui_out_message (uiout, 0, "No watchpoints.\n");
6705 else
6706 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6707 }
6708 }
6709
6710 static void
6711 maintenance_info_breakpoints (char *args, int from_tty)
6712 {
6713 breakpoint_1 (args, 1, NULL);
6714
6715 default_collect_info ();
6716 }
6717
6718 static int
6719 breakpoint_has_pc (struct breakpoint *b,
6720 struct program_space *pspace,
6721 CORE_ADDR pc, struct obj_section *section)
6722 {
6723 struct bp_location *bl = b->loc;
6724
6725 for (; bl; bl = bl->next)
6726 {
6727 if (bl->pspace == pspace
6728 && bl->address == pc
6729 && (!overlay_debugging || bl->section == section))
6730 return 1;
6731 }
6732 return 0;
6733 }
6734
6735 /* Print a message describing any user-breakpoints set at PC. This
6736 concerns with logical breakpoints, so we match program spaces, not
6737 address spaces. */
6738
6739 static void
6740 describe_other_breakpoints (struct gdbarch *gdbarch,
6741 struct program_space *pspace, CORE_ADDR pc,
6742 struct obj_section *section, int thread)
6743 {
6744 int others = 0;
6745 struct breakpoint *b;
6746
6747 ALL_BREAKPOINTS (b)
6748 others += (user_breakpoint_p (b)
6749 && breakpoint_has_pc (b, pspace, pc, section));
6750 if (others > 0)
6751 {
6752 if (others == 1)
6753 printf_filtered (_("Note: breakpoint "));
6754 else /* if (others == ???) */
6755 printf_filtered (_("Note: breakpoints "));
6756 ALL_BREAKPOINTS (b)
6757 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6758 {
6759 others--;
6760 printf_filtered ("%d", b->number);
6761 if (b->thread == -1 && thread != -1)
6762 printf_filtered (" (all threads)");
6763 else if (b->thread != -1)
6764 printf_filtered (" (thread %d)", b->thread);
6765 printf_filtered ("%s%s ",
6766 ((b->enable_state == bp_disabled
6767 || b->enable_state == bp_call_disabled)
6768 ? " (disabled)"
6769 : b->enable_state == bp_permanent
6770 ? " (permanent)"
6771 : ""),
6772 (others > 1) ? ","
6773 : ((others == 1) ? " and" : ""));
6774 }
6775 printf_filtered (_("also set at pc "));
6776 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6777 printf_filtered (".\n");
6778 }
6779 }
6780 \f
6781
6782 /* Return true iff it is meaningful to use the address member of
6783 BPT. For some breakpoint types, the address member is irrelevant
6784 and it makes no sense to attempt to compare it to other addresses
6785 (or use it for any other purpose either).
6786
6787 More specifically, each of the following breakpoint types will
6788 always have a zero valued address and we don't want to mark
6789 breakpoints of any of these types to be a duplicate of an actual
6790 breakpoint at address zero:
6791
6792 bp_watchpoint
6793 bp_catchpoint
6794
6795 */
6796
6797 static int
6798 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6799 {
6800 enum bptype type = bpt->type;
6801
6802 return (type != bp_watchpoint && type != bp_catchpoint);
6803 }
6804
6805 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6806 true if LOC1 and LOC2 represent the same watchpoint location. */
6807
6808 static int
6809 watchpoint_locations_match (struct bp_location *loc1,
6810 struct bp_location *loc2)
6811 {
6812 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6813 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6814
6815 /* Both of them must exist. */
6816 gdb_assert (w1 != NULL);
6817 gdb_assert (w2 != NULL);
6818
6819 /* If the target can evaluate the condition expression in hardware,
6820 then we we need to insert both watchpoints even if they are at
6821 the same place. Otherwise the watchpoint will only trigger when
6822 the condition of whichever watchpoint was inserted evaluates to
6823 true, not giving a chance for GDB to check the condition of the
6824 other watchpoint. */
6825 if ((w1->cond_exp
6826 && target_can_accel_watchpoint_condition (loc1->address,
6827 loc1->length,
6828 loc1->watchpoint_type,
6829 w1->cond_exp))
6830 || (w2->cond_exp
6831 && target_can_accel_watchpoint_condition (loc2->address,
6832 loc2->length,
6833 loc2->watchpoint_type,
6834 w2->cond_exp)))
6835 return 0;
6836
6837 /* Note that this checks the owner's type, not the location's. In
6838 case the target does not support read watchpoints, but does
6839 support access watchpoints, we'll have bp_read_watchpoint
6840 watchpoints with hw_access locations. Those should be considered
6841 duplicates of hw_read locations. The hw_read locations will
6842 become hw_access locations later. */
6843 return (loc1->owner->type == loc2->owner->type
6844 && loc1->pspace->aspace == loc2->pspace->aspace
6845 && loc1->address == loc2->address
6846 && loc1->length == loc2->length);
6847 }
6848
6849 /* See breakpoint.h. */
6850
6851 int
6852 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6853 struct address_space *aspace2, CORE_ADDR addr2)
6854 {
6855 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6856 || aspace1 == aspace2)
6857 && addr1 == addr2);
6858 }
6859
6860 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6861 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6862 matches ASPACE2. On targets that have global breakpoints, the address
6863 space doesn't really matter. */
6864
6865 static int
6866 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6867 int len1, struct address_space *aspace2,
6868 CORE_ADDR addr2)
6869 {
6870 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6871 || aspace1 == aspace2)
6872 && addr2 >= addr1 && addr2 < addr1 + len1);
6873 }
6874
6875 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6876 a ranged breakpoint. In most targets, a match happens only if ASPACE
6877 matches the breakpoint's address space. On targets that have global
6878 breakpoints, the address space doesn't really matter. */
6879
6880 static int
6881 breakpoint_location_address_match (struct bp_location *bl,
6882 struct address_space *aspace,
6883 CORE_ADDR addr)
6884 {
6885 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6886 aspace, addr)
6887 || (bl->length
6888 && breakpoint_address_match_range (bl->pspace->aspace,
6889 bl->address, bl->length,
6890 aspace, addr)));
6891 }
6892
6893 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6894 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6895 true, otherwise returns false. */
6896
6897 static int
6898 tracepoint_locations_match (struct bp_location *loc1,
6899 struct bp_location *loc2)
6900 {
6901 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6902 /* Since tracepoint locations are never duplicated with others', tracepoint
6903 locations at the same address of different tracepoints are regarded as
6904 different locations. */
6905 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6906 else
6907 return 0;
6908 }
6909
6910 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6911 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6912 represent the same location. */
6913
6914 static int
6915 breakpoint_locations_match (struct bp_location *loc1,
6916 struct bp_location *loc2)
6917 {
6918 int hw_point1, hw_point2;
6919
6920 /* Both of them must not be in moribund_locations. */
6921 gdb_assert (loc1->owner != NULL);
6922 gdb_assert (loc2->owner != NULL);
6923
6924 hw_point1 = is_hardware_watchpoint (loc1->owner);
6925 hw_point2 = is_hardware_watchpoint (loc2->owner);
6926
6927 if (hw_point1 != hw_point2)
6928 return 0;
6929 else if (hw_point1)
6930 return watchpoint_locations_match (loc1, loc2);
6931 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6932 return tracepoint_locations_match (loc1, loc2);
6933 else
6934 /* We compare bp_location.length in order to cover ranged breakpoints. */
6935 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6936 loc2->pspace->aspace, loc2->address)
6937 && loc1->length == loc2->length);
6938 }
6939
6940 static void
6941 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6942 int bnum, int have_bnum)
6943 {
6944 /* The longest string possibly returned by hex_string_custom
6945 is 50 chars. These must be at least that big for safety. */
6946 char astr1[64];
6947 char astr2[64];
6948
6949 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6950 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6951 if (have_bnum)
6952 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6953 bnum, astr1, astr2);
6954 else
6955 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6956 }
6957
6958 /* Adjust a breakpoint's address to account for architectural
6959 constraints on breakpoint placement. Return the adjusted address.
6960 Note: Very few targets require this kind of adjustment. For most
6961 targets, this function is simply the identity function. */
6962
6963 static CORE_ADDR
6964 adjust_breakpoint_address (struct gdbarch *gdbarch,
6965 CORE_ADDR bpaddr, enum bptype bptype)
6966 {
6967 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6968 {
6969 /* Very few targets need any kind of breakpoint adjustment. */
6970 return bpaddr;
6971 }
6972 else if (bptype == bp_watchpoint
6973 || bptype == bp_hardware_watchpoint
6974 || bptype == bp_read_watchpoint
6975 || bptype == bp_access_watchpoint
6976 || bptype == bp_catchpoint)
6977 {
6978 /* Watchpoints and the various bp_catch_* eventpoints should not
6979 have their addresses modified. */
6980 return bpaddr;
6981 }
6982 else
6983 {
6984 CORE_ADDR adjusted_bpaddr;
6985
6986 /* Some targets have architectural constraints on the placement
6987 of breakpoint instructions. Obtain the adjusted address. */
6988 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6989
6990 /* An adjusted breakpoint address can significantly alter
6991 a user's expectations. Print a warning if an adjustment
6992 is required. */
6993 if (adjusted_bpaddr != bpaddr)
6994 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6995
6996 return adjusted_bpaddr;
6997 }
6998 }
6999
7000 void
7001 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7002 struct breakpoint *owner)
7003 {
7004 memset (loc, 0, sizeof (*loc));
7005
7006 gdb_assert (ops != NULL);
7007
7008 loc->ops = ops;
7009 loc->owner = owner;
7010 loc->cond = NULL;
7011 loc->cond_bytecode = NULL;
7012 loc->shlib_disabled = 0;
7013 loc->enabled = 1;
7014
7015 switch (owner->type)
7016 {
7017 case bp_breakpoint:
7018 case bp_until:
7019 case bp_finish:
7020 case bp_longjmp:
7021 case bp_longjmp_resume:
7022 case bp_longjmp_call_dummy:
7023 case bp_exception:
7024 case bp_exception_resume:
7025 case bp_step_resume:
7026 case bp_hp_step_resume:
7027 case bp_watchpoint_scope:
7028 case bp_call_dummy:
7029 case bp_std_terminate:
7030 case bp_shlib_event:
7031 case bp_thread_event:
7032 case bp_overlay_event:
7033 case bp_jit_event:
7034 case bp_longjmp_master:
7035 case bp_std_terminate_master:
7036 case bp_exception_master:
7037 case bp_gnu_ifunc_resolver:
7038 case bp_gnu_ifunc_resolver_return:
7039 case bp_dprintf:
7040 loc->loc_type = bp_loc_software_breakpoint;
7041 mark_breakpoint_location_modified (loc);
7042 break;
7043 case bp_hardware_breakpoint:
7044 loc->loc_type = bp_loc_hardware_breakpoint;
7045 mark_breakpoint_location_modified (loc);
7046 break;
7047 case bp_hardware_watchpoint:
7048 case bp_read_watchpoint:
7049 case bp_access_watchpoint:
7050 loc->loc_type = bp_loc_hardware_watchpoint;
7051 break;
7052 case bp_watchpoint:
7053 case bp_catchpoint:
7054 case bp_tracepoint:
7055 case bp_fast_tracepoint:
7056 case bp_static_tracepoint:
7057 loc->loc_type = bp_loc_other;
7058 break;
7059 default:
7060 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7061 }
7062
7063 loc->refc = 1;
7064 }
7065
7066 /* Allocate a struct bp_location. */
7067
7068 static struct bp_location *
7069 allocate_bp_location (struct breakpoint *bpt)
7070 {
7071 return bpt->ops->allocate_location (bpt);
7072 }
7073
7074 static void
7075 free_bp_location (struct bp_location *loc)
7076 {
7077 loc->ops->dtor (loc);
7078 xfree (loc);
7079 }
7080
7081 /* Increment reference count. */
7082
7083 static void
7084 incref_bp_location (struct bp_location *bl)
7085 {
7086 ++bl->refc;
7087 }
7088
7089 /* Decrement reference count. If the reference count reaches 0,
7090 destroy the bp_location. Sets *BLP to NULL. */
7091
7092 static void
7093 decref_bp_location (struct bp_location **blp)
7094 {
7095 gdb_assert ((*blp)->refc > 0);
7096
7097 if (--(*blp)->refc == 0)
7098 free_bp_location (*blp);
7099 *blp = NULL;
7100 }
7101
7102 /* Add breakpoint B at the end of the global breakpoint chain. */
7103
7104 static void
7105 add_to_breakpoint_chain (struct breakpoint *b)
7106 {
7107 struct breakpoint *b1;
7108
7109 /* Add this breakpoint to the end of the chain so that a list of
7110 breakpoints will come out in order of increasing numbers. */
7111
7112 b1 = breakpoint_chain;
7113 if (b1 == 0)
7114 breakpoint_chain = b;
7115 else
7116 {
7117 while (b1->next)
7118 b1 = b1->next;
7119 b1->next = b;
7120 }
7121 }
7122
7123 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7124
7125 static void
7126 init_raw_breakpoint_without_location (struct breakpoint *b,
7127 struct gdbarch *gdbarch,
7128 enum bptype bptype,
7129 const struct breakpoint_ops *ops)
7130 {
7131 memset (b, 0, sizeof (*b));
7132
7133 gdb_assert (ops != NULL);
7134
7135 b->ops = ops;
7136 b->type = bptype;
7137 b->gdbarch = gdbarch;
7138 b->language = current_language->la_language;
7139 b->input_radix = input_radix;
7140 b->thread = -1;
7141 b->enable_state = bp_enabled;
7142 b->next = 0;
7143 b->silent = 0;
7144 b->ignore_count = 0;
7145 b->commands = NULL;
7146 b->frame_id = null_frame_id;
7147 b->condition_not_parsed = 0;
7148 b->py_bp_object = NULL;
7149 b->related_breakpoint = b;
7150 }
7151
7152 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7153 that has type BPTYPE and has no locations as yet. */
7154
7155 static struct breakpoint *
7156 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7157 enum bptype bptype,
7158 const struct breakpoint_ops *ops)
7159 {
7160 struct breakpoint *b = XNEW (struct breakpoint);
7161
7162 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7163 add_to_breakpoint_chain (b);
7164 return b;
7165 }
7166
7167 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7168 resolutions should be made as the user specified the location explicitly
7169 enough. */
7170
7171 static void
7172 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7173 {
7174 gdb_assert (loc->owner != NULL);
7175
7176 if (loc->owner->type == bp_breakpoint
7177 || loc->owner->type == bp_hardware_breakpoint
7178 || is_tracepoint (loc->owner))
7179 {
7180 int is_gnu_ifunc;
7181 const char *function_name;
7182 CORE_ADDR func_addr;
7183
7184 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7185 &func_addr, NULL, &is_gnu_ifunc);
7186
7187 if (is_gnu_ifunc && !explicit_loc)
7188 {
7189 struct breakpoint *b = loc->owner;
7190
7191 gdb_assert (loc->pspace == current_program_space);
7192 if (gnu_ifunc_resolve_name (function_name,
7193 &loc->requested_address))
7194 {
7195 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7196 loc->address = adjust_breakpoint_address (loc->gdbarch,
7197 loc->requested_address,
7198 b->type);
7199 }
7200 else if (b->type == bp_breakpoint && b->loc == loc
7201 && loc->next == NULL && b->related_breakpoint == b)
7202 {
7203 /* Create only the whole new breakpoint of this type but do not
7204 mess more complicated breakpoints with multiple locations. */
7205 b->type = bp_gnu_ifunc_resolver;
7206 /* Remember the resolver's address for use by the return
7207 breakpoint. */
7208 loc->related_address = func_addr;
7209 }
7210 }
7211
7212 if (function_name)
7213 loc->function_name = xstrdup (function_name);
7214 }
7215 }
7216
7217 /* Attempt to determine architecture of location identified by SAL. */
7218 struct gdbarch *
7219 get_sal_arch (struct symtab_and_line sal)
7220 {
7221 if (sal.section)
7222 return get_objfile_arch (sal.section->objfile);
7223 if (sal.symtab)
7224 return get_objfile_arch (sal.symtab->objfile);
7225
7226 return NULL;
7227 }
7228
7229 /* Low level routine for partially initializing a breakpoint of type
7230 BPTYPE. The newly created breakpoint's address, section, source
7231 file name, and line number are provided by SAL.
7232
7233 It is expected that the caller will complete the initialization of
7234 the newly created breakpoint struct as well as output any status
7235 information regarding the creation of a new breakpoint. */
7236
7237 static void
7238 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7239 struct symtab_and_line sal, enum bptype bptype,
7240 const struct breakpoint_ops *ops)
7241 {
7242 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7243
7244 add_location_to_breakpoint (b, &sal);
7245
7246 if (bptype != bp_catchpoint)
7247 gdb_assert (sal.pspace != NULL);
7248
7249 /* Store the program space that was used to set the breakpoint,
7250 except for ordinary breakpoints, which are independent of the
7251 program space. */
7252 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7253 b->pspace = sal.pspace;
7254 }
7255
7256 /* set_raw_breakpoint is a low level routine for allocating and
7257 partially initializing a breakpoint of type BPTYPE. The newly
7258 created breakpoint's address, section, source file name, and line
7259 number are provided by SAL. The newly created and partially
7260 initialized breakpoint is added to the breakpoint chain and
7261 is also returned as the value of this function.
7262
7263 It is expected that the caller will complete the initialization of
7264 the newly created breakpoint struct as well as output any status
7265 information regarding the creation of a new breakpoint. In
7266 particular, set_raw_breakpoint does NOT set the breakpoint
7267 number! Care should be taken to not allow an error to occur
7268 prior to completing the initialization of the breakpoint. If this
7269 should happen, a bogus breakpoint will be left on the chain. */
7270
7271 struct breakpoint *
7272 set_raw_breakpoint (struct gdbarch *gdbarch,
7273 struct symtab_and_line sal, enum bptype bptype,
7274 const struct breakpoint_ops *ops)
7275 {
7276 struct breakpoint *b = XNEW (struct breakpoint);
7277
7278 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7279 add_to_breakpoint_chain (b);
7280 return b;
7281 }
7282
7283
7284 /* Note that the breakpoint object B describes a permanent breakpoint
7285 instruction, hard-wired into the inferior's code. */
7286 void
7287 make_breakpoint_permanent (struct breakpoint *b)
7288 {
7289 struct bp_location *bl;
7290
7291 b->enable_state = bp_permanent;
7292
7293 /* By definition, permanent breakpoints are already present in the
7294 code. Mark all locations as inserted. For now,
7295 make_breakpoint_permanent is called in just one place, so it's
7296 hard to say if it's reasonable to have permanent breakpoint with
7297 multiple locations or not, but it's easy to implement. */
7298 for (bl = b->loc; bl; bl = bl->next)
7299 bl->inserted = 1;
7300 }
7301
7302 /* Call this routine when stepping and nexting to enable a breakpoint
7303 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7304 initiated the operation. */
7305
7306 void
7307 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7308 {
7309 struct breakpoint *b, *b_tmp;
7310 int thread = tp->num;
7311
7312 /* To avoid having to rescan all objfile symbols at every step,
7313 we maintain a list of continually-inserted but always disabled
7314 longjmp "master" breakpoints. Here, we simply create momentary
7315 clones of those and enable them for the requested thread. */
7316 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7317 if (b->pspace == current_program_space
7318 && (b->type == bp_longjmp_master
7319 || b->type == bp_exception_master))
7320 {
7321 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7322 struct breakpoint *clone;
7323
7324 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7325 after their removal. */
7326 clone = momentary_breakpoint_from_master (b, type,
7327 &longjmp_breakpoint_ops);
7328 clone->thread = thread;
7329 }
7330
7331 tp->initiating_frame = frame;
7332 }
7333
7334 /* Delete all longjmp breakpoints from THREAD. */
7335 void
7336 delete_longjmp_breakpoint (int thread)
7337 {
7338 struct breakpoint *b, *b_tmp;
7339
7340 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7341 if (b->type == bp_longjmp || b->type == bp_exception)
7342 {
7343 if (b->thread == thread)
7344 delete_breakpoint (b);
7345 }
7346 }
7347
7348 void
7349 delete_longjmp_breakpoint_at_next_stop (int thread)
7350 {
7351 struct breakpoint *b, *b_tmp;
7352
7353 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7354 if (b->type == bp_longjmp || b->type == bp_exception)
7355 {
7356 if (b->thread == thread)
7357 b->disposition = disp_del_at_next_stop;
7358 }
7359 }
7360
7361 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7362 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7363 pointer to any of them. Return NULL if this system cannot place longjmp
7364 breakpoints. */
7365
7366 struct breakpoint *
7367 set_longjmp_breakpoint_for_call_dummy (void)
7368 {
7369 struct breakpoint *b, *retval = NULL;
7370
7371 ALL_BREAKPOINTS (b)
7372 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7373 {
7374 struct breakpoint *new_b;
7375
7376 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7377 &momentary_breakpoint_ops);
7378 new_b->thread = pid_to_thread_id (inferior_ptid);
7379
7380 /* Link NEW_B into the chain of RETVAL breakpoints. */
7381
7382 gdb_assert (new_b->related_breakpoint == new_b);
7383 if (retval == NULL)
7384 retval = new_b;
7385 new_b->related_breakpoint = retval;
7386 while (retval->related_breakpoint != new_b->related_breakpoint)
7387 retval = retval->related_breakpoint;
7388 retval->related_breakpoint = new_b;
7389 }
7390
7391 return retval;
7392 }
7393
7394 /* Verify all existing dummy frames and their associated breakpoints for
7395 THREAD. Remove those which can no longer be found in the current frame
7396 stack.
7397
7398 You should call this function only at places where it is safe to currently
7399 unwind the whole stack. Failed stack unwind would discard live dummy
7400 frames. */
7401
7402 void
7403 check_longjmp_breakpoint_for_call_dummy (int thread)
7404 {
7405 struct breakpoint *b, *b_tmp;
7406
7407 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7408 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7409 {
7410 struct breakpoint *dummy_b = b->related_breakpoint;
7411
7412 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7413 dummy_b = dummy_b->related_breakpoint;
7414 if (dummy_b->type != bp_call_dummy
7415 || frame_find_by_id (dummy_b->frame_id) != NULL)
7416 continue;
7417
7418 dummy_frame_discard (dummy_b->frame_id);
7419
7420 while (b->related_breakpoint != b)
7421 {
7422 if (b_tmp == b->related_breakpoint)
7423 b_tmp = b->related_breakpoint->next;
7424 delete_breakpoint (b->related_breakpoint);
7425 }
7426 delete_breakpoint (b);
7427 }
7428 }
7429
7430 void
7431 enable_overlay_breakpoints (void)
7432 {
7433 struct breakpoint *b;
7434
7435 ALL_BREAKPOINTS (b)
7436 if (b->type == bp_overlay_event)
7437 {
7438 b->enable_state = bp_enabled;
7439 update_global_location_list (1);
7440 overlay_events_enabled = 1;
7441 }
7442 }
7443
7444 void
7445 disable_overlay_breakpoints (void)
7446 {
7447 struct breakpoint *b;
7448
7449 ALL_BREAKPOINTS (b)
7450 if (b->type == bp_overlay_event)
7451 {
7452 b->enable_state = bp_disabled;
7453 update_global_location_list (0);
7454 overlay_events_enabled = 0;
7455 }
7456 }
7457
7458 /* Set an active std::terminate breakpoint for each std::terminate
7459 master breakpoint. */
7460 void
7461 set_std_terminate_breakpoint (void)
7462 {
7463 struct breakpoint *b, *b_tmp;
7464
7465 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7466 if (b->pspace == current_program_space
7467 && b->type == bp_std_terminate_master)
7468 {
7469 momentary_breakpoint_from_master (b, bp_std_terminate,
7470 &momentary_breakpoint_ops);
7471 }
7472 }
7473
7474 /* Delete all the std::terminate breakpoints. */
7475 void
7476 delete_std_terminate_breakpoint (void)
7477 {
7478 struct breakpoint *b, *b_tmp;
7479
7480 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7481 if (b->type == bp_std_terminate)
7482 delete_breakpoint (b);
7483 }
7484
7485 struct breakpoint *
7486 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7487 {
7488 struct breakpoint *b;
7489
7490 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7491 &internal_breakpoint_ops);
7492
7493 b->enable_state = bp_enabled;
7494 /* addr_string has to be used or breakpoint_re_set will delete me. */
7495 b->addr_string
7496 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7497
7498 update_global_location_list_nothrow (1);
7499
7500 return b;
7501 }
7502
7503 void
7504 remove_thread_event_breakpoints (void)
7505 {
7506 struct breakpoint *b, *b_tmp;
7507
7508 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7509 if (b->type == bp_thread_event
7510 && b->loc->pspace == current_program_space)
7511 delete_breakpoint (b);
7512 }
7513
7514 struct lang_and_radix
7515 {
7516 enum language lang;
7517 int radix;
7518 };
7519
7520 /* Create a breakpoint for JIT code registration and unregistration. */
7521
7522 struct breakpoint *
7523 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7524 {
7525 struct breakpoint *b;
7526
7527 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7528 &internal_breakpoint_ops);
7529 update_global_location_list_nothrow (1);
7530 return b;
7531 }
7532
7533 /* Remove JIT code registration and unregistration breakpoint(s). */
7534
7535 void
7536 remove_jit_event_breakpoints (void)
7537 {
7538 struct breakpoint *b, *b_tmp;
7539
7540 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7541 if (b->type == bp_jit_event
7542 && b->loc->pspace == current_program_space)
7543 delete_breakpoint (b);
7544 }
7545
7546 void
7547 remove_solib_event_breakpoints (void)
7548 {
7549 struct breakpoint *b, *b_tmp;
7550
7551 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7552 if (b->type == bp_shlib_event
7553 && b->loc->pspace == current_program_space)
7554 delete_breakpoint (b);
7555 }
7556
7557 struct breakpoint *
7558 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7559 {
7560 struct breakpoint *b;
7561
7562 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7563 &internal_breakpoint_ops);
7564 update_global_location_list_nothrow (1);
7565 return b;
7566 }
7567
7568 /* Disable any breakpoints that are on code in shared libraries. Only
7569 apply to enabled breakpoints, disabled ones can just stay disabled. */
7570
7571 void
7572 disable_breakpoints_in_shlibs (void)
7573 {
7574 struct bp_location *loc, **locp_tmp;
7575
7576 ALL_BP_LOCATIONS (loc, locp_tmp)
7577 {
7578 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7579 struct breakpoint *b = loc->owner;
7580
7581 /* We apply the check to all breakpoints, including disabled for
7582 those with loc->duplicate set. This is so that when breakpoint
7583 becomes enabled, or the duplicate is removed, gdb will try to
7584 insert all breakpoints. If we don't set shlib_disabled here,
7585 we'll try to insert those breakpoints and fail. */
7586 if (((b->type == bp_breakpoint)
7587 || (b->type == bp_jit_event)
7588 || (b->type == bp_hardware_breakpoint)
7589 || (is_tracepoint (b)))
7590 && loc->pspace == current_program_space
7591 && !loc->shlib_disabled
7592 && solib_name_from_address (loc->pspace, loc->address)
7593 )
7594 {
7595 loc->shlib_disabled = 1;
7596 }
7597 }
7598 }
7599
7600 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7601 notification of unloaded_shlib. Only apply to enabled breakpoints,
7602 disabled ones can just stay disabled. */
7603
7604 static void
7605 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7606 {
7607 struct bp_location *loc, **locp_tmp;
7608 int disabled_shlib_breaks = 0;
7609
7610 /* SunOS a.out shared libraries are always mapped, so do not
7611 disable breakpoints; they will only be reported as unloaded
7612 through clear_solib when GDB discards its shared library
7613 list. See clear_solib for more information. */
7614 if (exec_bfd != NULL
7615 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7616 return;
7617
7618 ALL_BP_LOCATIONS (loc, locp_tmp)
7619 {
7620 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7621 struct breakpoint *b = loc->owner;
7622
7623 if (solib->pspace == loc->pspace
7624 && !loc->shlib_disabled
7625 && (((b->type == bp_breakpoint
7626 || b->type == bp_jit_event
7627 || b->type == bp_hardware_breakpoint)
7628 && (loc->loc_type == bp_loc_hardware_breakpoint
7629 || loc->loc_type == bp_loc_software_breakpoint))
7630 || is_tracepoint (b))
7631 && solib_contains_address_p (solib, loc->address))
7632 {
7633 loc->shlib_disabled = 1;
7634 /* At this point, we cannot rely on remove_breakpoint
7635 succeeding so we must mark the breakpoint as not inserted
7636 to prevent future errors occurring in remove_breakpoints. */
7637 loc->inserted = 0;
7638
7639 /* This may cause duplicate notifications for the same breakpoint. */
7640 observer_notify_breakpoint_modified (b);
7641
7642 if (!disabled_shlib_breaks)
7643 {
7644 target_terminal_ours_for_output ();
7645 warning (_("Temporarily disabling breakpoints "
7646 "for unloaded shared library \"%s\""),
7647 solib->so_name);
7648 }
7649 disabled_shlib_breaks = 1;
7650 }
7651 }
7652 }
7653
7654 /* Disable any breakpoints and tracepoints in OBJFILE upon
7655 notification of free_objfile. Only apply to enabled breakpoints,
7656 disabled ones can just stay disabled. */
7657
7658 static void
7659 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7660 {
7661 struct breakpoint *b;
7662
7663 if (objfile == NULL)
7664 return;
7665
7666 /* If the file is a shared library not loaded by the user then
7667 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7668 was called. In that case there is no need to take action again. */
7669 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7670 return;
7671
7672 ALL_BREAKPOINTS (b)
7673 {
7674 struct bp_location *loc;
7675 int bp_modified = 0;
7676
7677 if (!is_breakpoint (b) && !is_tracepoint (b))
7678 continue;
7679
7680 for (loc = b->loc; loc != NULL; loc = loc->next)
7681 {
7682 CORE_ADDR loc_addr = loc->address;
7683
7684 if (loc->loc_type != bp_loc_hardware_breakpoint
7685 && loc->loc_type != bp_loc_software_breakpoint)
7686 continue;
7687
7688 if (loc->shlib_disabled != 0)
7689 continue;
7690
7691 if (objfile->pspace != loc->pspace)
7692 continue;
7693
7694 if (loc->loc_type != bp_loc_hardware_breakpoint
7695 && loc->loc_type != bp_loc_software_breakpoint)
7696 continue;
7697
7698 if (is_addr_in_objfile (loc_addr, objfile))
7699 {
7700 loc->shlib_disabled = 1;
7701 loc->inserted = 0;
7702
7703 mark_breakpoint_location_modified (loc);
7704
7705 bp_modified = 1;
7706 }
7707 }
7708
7709 if (bp_modified)
7710 observer_notify_breakpoint_modified (b);
7711 }
7712 }
7713
7714 /* FORK & VFORK catchpoints. */
7715
7716 /* An instance of this type is used to represent a fork or vfork
7717 catchpoint. It includes a "struct breakpoint" as a kind of base
7718 class; users downcast to "struct breakpoint *" when needed. A
7719 breakpoint is really of this type iff its ops pointer points to
7720 CATCH_FORK_BREAKPOINT_OPS. */
7721
7722 struct fork_catchpoint
7723 {
7724 /* The base class. */
7725 struct breakpoint base;
7726
7727 /* Process id of a child process whose forking triggered this
7728 catchpoint. This field is only valid immediately after this
7729 catchpoint has triggered. */
7730 ptid_t forked_inferior_pid;
7731 };
7732
7733 /* Implement the "insert" breakpoint_ops method for fork
7734 catchpoints. */
7735
7736 static int
7737 insert_catch_fork (struct bp_location *bl)
7738 {
7739 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7740 }
7741
7742 /* Implement the "remove" breakpoint_ops method for fork
7743 catchpoints. */
7744
7745 static int
7746 remove_catch_fork (struct bp_location *bl)
7747 {
7748 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7749 }
7750
7751 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7752 catchpoints. */
7753
7754 static int
7755 breakpoint_hit_catch_fork (const struct bp_location *bl,
7756 struct address_space *aspace, CORE_ADDR bp_addr,
7757 const struct target_waitstatus *ws)
7758 {
7759 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7760
7761 if (ws->kind != TARGET_WAITKIND_FORKED)
7762 return 0;
7763
7764 c->forked_inferior_pid = ws->value.related_pid;
7765 return 1;
7766 }
7767
7768 /* Implement the "print_it" breakpoint_ops method for fork
7769 catchpoints. */
7770
7771 static enum print_stop_action
7772 print_it_catch_fork (bpstat bs)
7773 {
7774 struct ui_out *uiout = current_uiout;
7775 struct breakpoint *b = bs->breakpoint_at;
7776 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7777
7778 annotate_catchpoint (b->number);
7779 if (b->disposition == disp_del)
7780 ui_out_text (uiout, "\nTemporary catchpoint ");
7781 else
7782 ui_out_text (uiout, "\nCatchpoint ");
7783 if (ui_out_is_mi_like_p (uiout))
7784 {
7785 ui_out_field_string (uiout, "reason",
7786 async_reason_lookup (EXEC_ASYNC_FORK));
7787 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7788 }
7789 ui_out_field_int (uiout, "bkptno", b->number);
7790 ui_out_text (uiout, " (forked process ");
7791 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7792 ui_out_text (uiout, "), ");
7793 return PRINT_SRC_AND_LOC;
7794 }
7795
7796 /* Implement the "print_one" breakpoint_ops method for fork
7797 catchpoints. */
7798
7799 static void
7800 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7801 {
7802 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7803 struct value_print_options opts;
7804 struct ui_out *uiout = current_uiout;
7805
7806 get_user_print_options (&opts);
7807
7808 /* Field 4, the address, is omitted (which makes the columns not
7809 line up too nicely with the headers, but the effect is relatively
7810 readable). */
7811 if (opts.addressprint)
7812 ui_out_field_skip (uiout, "addr");
7813 annotate_field (5);
7814 ui_out_text (uiout, "fork");
7815 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7816 {
7817 ui_out_text (uiout, ", process ");
7818 ui_out_field_int (uiout, "what",
7819 ptid_get_pid (c->forked_inferior_pid));
7820 ui_out_spaces (uiout, 1);
7821 }
7822
7823 if (ui_out_is_mi_like_p (uiout))
7824 ui_out_field_string (uiout, "catch-type", "fork");
7825 }
7826
7827 /* Implement the "print_mention" breakpoint_ops method for fork
7828 catchpoints. */
7829
7830 static void
7831 print_mention_catch_fork (struct breakpoint *b)
7832 {
7833 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7834 }
7835
7836 /* Implement the "print_recreate" breakpoint_ops method for fork
7837 catchpoints. */
7838
7839 static void
7840 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7841 {
7842 fprintf_unfiltered (fp, "catch fork");
7843 print_recreate_thread (b, fp);
7844 }
7845
7846 /* The breakpoint_ops structure to be used in fork catchpoints. */
7847
7848 static struct breakpoint_ops catch_fork_breakpoint_ops;
7849
7850 /* Implement the "insert" breakpoint_ops method for vfork
7851 catchpoints. */
7852
7853 static int
7854 insert_catch_vfork (struct bp_location *bl)
7855 {
7856 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7857 }
7858
7859 /* Implement the "remove" breakpoint_ops method for vfork
7860 catchpoints. */
7861
7862 static int
7863 remove_catch_vfork (struct bp_location *bl)
7864 {
7865 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7866 }
7867
7868 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7869 catchpoints. */
7870
7871 static int
7872 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7873 struct address_space *aspace, CORE_ADDR bp_addr,
7874 const struct target_waitstatus *ws)
7875 {
7876 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7877
7878 if (ws->kind != TARGET_WAITKIND_VFORKED)
7879 return 0;
7880
7881 c->forked_inferior_pid = ws->value.related_pid;
7882 return 1;
7883 }
7884
7885 /* Implement the "print_it" breakpoint_ops method for vfork
7886 catchpoints. */
7887
7888 static enum print_stop_action
7889 print_it_catch_vfork (bpstat bs)
7890 {
7891 struct ui_out *uiout = current_uiout;
7892 struct breakpoint *b = bs->breakpoint_at;
7893 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7894
7895 annotate_catchpoint (b->number);
7896 if (b->disposition == disp_del)
7897 ui_out_text (uiout, "\nTemporary catchpoint ");
7898 else
7899 ui_out_text (uiout, "\nCatchpoint ");
7900 if (ui_out_is_mi_like_p (uiout))
7901 {
7902 ui_out_field_string (uiout, "reason",
7903 async_reason_lookup (EXEC_ASYNC_VFORK));
7904 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7905 }
7906 ui_out_field_int (uiout, "bkptno", b->number);
7907 ui_out_text (uiout, " (vforked process ");
7908 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7909 ui_out_text (uiout, "), ");
7910 return PRINT_SRC_AND_LOC;
7911 }
7912
7913 /* Implement the "print_one" breakpoint_ops method for vfork
7914 catchpoints. */
7915
7916 static void
7917 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7918 {
7919 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7920 struct value_print_options opts;
7921 struct ui_out *uiout = current_uiout;
7922
7923 get_user_print_options (&opts);
7924 /* Field 4, the address, is omitted (which makes the columns not
7925 line up too nicely with the headers, but the effect is relatively
7926 readable). */
7927 if (opts.addressprint)
7928 ui_out_field_skip (uiout, "addr");
7929 annotate_field (5);
7930 ui_out_text (uiout, "vfork");
7931 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7932 {
7933 ui_out_text (uiout, ", process ");
7934 ui_out_field_int (uiout, "what",
7935 ptid_get_pid (c->forked_inferior_pid));
7936 ui_out_spaces (uiout, 1);
7937 }
7938
7939 if (ui_out_is_mi_like_p (uiout))
7940 ui_out_field_string (uiout, "catch-type", "vfork");
7941 }
7942
7943 /* Implement the "print_mention" breakpoint_ops method for vfork
7944 catchpoints. */
7945
7946 static void
7947 print_mention_catch_vfork (struct breakpoint *b)
7948 {
7949 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7950 }
7951
7952 /* Implement the "print_recreate" breakpoint_ops method for vfork
7953 catchpoints. */
7954
7955 static void
7956 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7957 {
7958 fprintf_unfiltered (fp, "catch vfork");
7959 print_recreate_thread (b, fp);
7960 }
7961
7962 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7963
7964 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7965
7966 /* An instance of this type is used to represent an solib catchpoint.
7967 It includes a "struct breakpoint" as a kind of base class; users
7968 downcast to "struct breakpoint *" when needed. A breakpoint is
7969 really of this type iff its ops pointer points to
7970 CATCH_SOLIB_BREAKPOINT_OPS. */
7971
7972 struct solib_catchpoint
7973 {
7974 /* The base class. */
7975 struct breakpoint base;
7976
7977 /* True for "catch load", false for "catch unload". */
7978 unsigned char is_load;
7979
7980 /* Regular expression to match, if any. COMPILED is only valid when
7981 REGEX is non-NULL. */
7982 char *regex;
7983 regex_t compiled;
7984 };
7985
7986 static void
7987 dtor_catch_solib (struct breakpoint *b)
7988 {
7989 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7990
7991 if (self->regex)
7992 regfree (&self->compiled);
7993 xfree (self->regex);
7994
7995 base_breakpoint_ops.dtor (b);
7996 }
7997
7998 static int
7999 insert_catch_solib (struct bp_location *ignore)
8000 {
8001 return 0;
8002 }
8003
8004 static int
8005 remove_catch_solib (struct bp_location *ignore)
8006 {
8007 return 0;
8008 }
8009
8010 static int
8011 breakpoint_hit_catch_solib (const struct bp_location *bl,
8012 struct address_space *aspace,
8013 CORE_ADDR bp_addr,
8014 const struct target_waitstatus *ws)
8015 {
8016 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8017 struct breakpoint *other;
8018
8019 if (ws->kind == TARGET_WAITKIND_LOADED)
8020 return 1;
8021
8022 ALL_BREAKPOINTS (other)
8023 {
8024 struct bp_location *other_bl;
8025
8026 if (other == bl->owner)
8027 continue;
8028
8029 if (other->type != bp_shlib_event)
8030 continue;
8031
8032 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8033 continue;
8034
8035 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8036 {
8037 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8038 return 1;
8039 }
8040 }
8041
8042 return 0;
8043 }
8044
8045 static void
8046 check_status_catch_solib (struct bpstats *bs)
8047 {
8048 struct solib_catchpoint *self
8049 = (struct solib_catchpoint *) bs->breakpoint_at;
8050 int ix;
8051
8052 if (self->is_load)
8053 {
8054 struct so_list *iter;
8055
8056 for (ix = 0;
8057 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8058 ix, iter);
8059 ++ix)
8060 {
8061 if (!self->regex
8062 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8063 return;
8064 }
8065 }
8066 else
8067 {
8068 char *iter;
8069
8070 for (ix = 0;
8071 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8072 ix, iter);
8073 ++ix)
8074 {
8075 if (!self->regex
8076 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8077 return;
8078 }
8079 }
8080
8081 bs->stop = 0;
8082 bs->print_it = print_it_noop;
8083 }
8084
8085 static enum print_stop_action
8086 print_it_catch_solib (bpstat bs)
8087 {
8088 struct breakpoint *b = bs->breakpoint_at;
8089 struct ui_out *uiout = current_uiout;
8090
8091 annotate_catchpoint (b->number);
8092 if (b->disposition == disp_del)
8093 ui_out_text (uiout, "\nTemporary catchpoint ");
8094 else
8095 ui_out_text (uiout, "\nCatchpoint ");
8096 ui_out_field_int (uiout, "bkptno", b->number);
8097 ui_out_text (uiout, "\n");
8098 if (ui_out_is_mi_like_p (uiout))
8099 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8100 print_solib_event (1);
8101 return PRINT_SRC_AND_LOC;
8102 }
8103
8104 static void
8105 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8106 {
8107 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8108 struct value_print_options opts;
8109 struct ui_out *uiout = current_uiout;
8110 char *msg;
8111
8112 get_user_print_options (&opts);
8113 /* Field 4, the address, is omitted (which makes the columns not
8114 line up too nicely with the headers, but the effect is relatively
8115 readable). */
8116 if (opts.addressprint)
8117 {
8118 annotate_field (4);
8119 ui_out_field_skip (uiout, "addr");
8120 }
8121
8122 annotate_field (5);
8123 if (self->is_load)
8124 {
8125 if (self->regex)
8126 msg = xstrprintf (_("load of library matching %s"), self->regex);
8127 else
8128 msg = xstrdup (_("load of library"));
8129 }
8130 else
8131 {
8132 if (self->regex)
8133 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8134 else
8135 msg = xstrdup (_("unload of library"));
8136 }
8137 ui_out_field_string (uiout, "what", msg);
8138 xfree (msg);
8139
8140 if (ui_out_is_mi_like_p (uiout))
8141 ui_out_field_string (uiout, "catch-type",
8142 self->is_load ? "load" : "unload");
8143 }
8144
8145 static void
8146 print_mention_catch_solib (struct breakpoint *b)
8147 {
8148 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8149
8150 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8151 self->is_load ? "load" : "unload");
8152 }
8153
8154 static void
8155 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8156 {
8157 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8158
8159 fprintf_unfiltered (fp, "%s %s",
8160 b->disposition == disp_del ? "tcatch" : "catch",
8161 self->is_load ? "load" : "unload");
8162 if (self->regex)
8163 fprintf_unfiltered (fp, " %s", self->regex);
8164 fprintf_unfiltered (fp, "\n");
8165 }
8166
8167 static struct breakpoint_ops catch_solib_breakpoint_ops;
8168
8169 /* Shared helper function (MI and CLI) for creating and installing
8170 a shared object event catchpoint. If IS_LOAD is non-zero then
8171 the events to be caught are load events, otherwise they are
8172 unload events. If IS_TEMP is non-zero the catchpoint is a
8173 temporary one. If ENABLED is non-zero the catchpoint is
8174 created in an enabled state. */
8175
8176 void
8177 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8178 {
8179 struct solib_catchpoint *c;
8180 struct gdbarch *gdbarch = get_current_arch ();
8181 struct cleanup *cleanup;
8182
8183 if (!arg)
8184 arg = "";
8185 arg = skip_spaces (arg);
8186
8187 c = XCNEW (struct solib_catchpoint);
8188 cleanup = make_cleanup (xfree, c);
8189
8190 if (*arg != '\0')
8191 {
8192 int errcode;
8193
8194 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8195 if (errcode != 0)
8196 {
8197 char *err = get_regcomp_error (errcode, &c->compiled);
8198
8199 make_cleanup (xfree, err);
8200 error (_("Invalid regexp (%s): %s"), err, arg);
8201 }
8202 c->regex = xstrdup (arg);
8203 }
8204
8205 c->is_load = is_load;
8206 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8207 &catch_solib_breakpoint_ops);
8208
8209 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8210
8211 discard_cleanups (cleanup);
8212 install_breakpoint (0, &c->base, 1);
8213 }
8214
8215 /* A helper function that does all the work for "catch load" and
8216 "catch unload". */
8217
8218 static void
8219 catch_load_or_unload (char *arg, int from_tty, int is_load,
8220 struct cmd_list_element *command)
8221 {
8222 int tempflag;
8223 const int enabled = 1;
8224
8225 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8226
8227 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8228 }
8229
8230 static void
8231 catch_load_command_1 (char *arg, int from_tty,
8232 struct cmd_list_element *command)
8233 {
8234 catch_load_or_unload (arg, from_tty, 1, command);
8235 }
8236
8237 static void
8238 catch_unload_command_1 (char *arg, int from_tty,
8239 struct cmd_list_element *command)
8240 {
8241 catch_load_or_unload (arg, from_tty, 0, command);
8242 }
8243
8244 /* An instance of this type is used to represent a syscall catchpoint.
8245 It includes a "struct breakpoint" as a kind of base class; users
8246 downcast to "struct breakpoint *" when needed. A breakpoint is
8247 really of this type iff its ops pointer points to
8248 CATCH_SYSCALL_BREAKPOINT_OPS. */
8249
8250 struct syscall_catchpoint
8251 {
8252 /* The base class. */
8253 struct breakpoint base;
8254
8255 /* Syscall numbers used for the 'catch syscall' feature. If no
8256 syscall has been specified for filtering, its value is NULL.
8257 Otherwise, it holds a list of all syscalls to be caught. The
8258 list elements are allocated with xmalloc. */
8259 VEC(int) *syscalls_to_be_caught;
8260 };
8261
8262 /* Implement the "dtor" breakpoint_ops method for syscall
8263 catchpoints. */
8264
8265 static void
8266 dtor_catch_syscall (struct breakpoint *b)
8267 {
8268 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8269
8270 VEC_free (int, c->syscalls_to_be_caught);
8271
8272 base_breakpoint_ops.dtor (b);
8273 }
8274
8275 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8276
8277 struct catch_syscall_inferior_data
8278 {
8279 /* We keep a count of the number of times the user has requested a
8280 particular syscall to be tracked, and pass this information to the
8281 target. This lets capable targets implement filtering directly. */
8282
8283 /* Number of times that "any" syscall is requested. */
8284 int any_syscall_count;
8285
8286 /* Count of each system call. */
8287 VEC(int) *syscalls_counts;
8288
8289 /* This counts all syscall catch requests, so we can readily determine
8290 if any catching is necessary. */
8291 int total_syscalls_count;
8292 };
8293
8294 static struct catch_syscall_inferior_data*
8295 get_catch_syscall_inferior_data (struct inferior *inf)
8296 {
8297 struct catch_syscall_inferior_data *inf_data;
8298
8299 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8300 if (inf_data == NULL)
8301 {
8302 inf_data = XCNEW (struct catch_syscall_inferior_data);
8303 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8304 }
8305
8306 return inf_data;
8307 }
8308
8309 static void
8310 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8311 {
8312 xfree (arg);
8313 }
8314
8315
8316 /* Implement the "insert" breakpoint_ops method for syscall
8317 catchpoints. */
8318
8319 static int
8320 insert_catch_syscall (struct bp_location *bl)
8321 {
8322 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8323 struct inferior *inf = current_inferior ();
8324 struct catch_syscall_inferior_data *inf_data
8325 = get_catch_syscall_inferior_data (inf);
8326
8327 ++inf_data->total_syscalls_count;
8328 if (!c->syscalls_to_be_caught)
8329 ++inf_data->any_syscall_count;
8330 else
8331 {
8332 int i, iter;
8333
8334 for (i = 0;
8335 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8336 i++)
8337 {
8338 int elem;
8339
8340 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8341 {
8342 int old_size = VEC_length (int, inf_data->syscalls_counts);
8343 uintptr_t vec_addr_offset
8344 = old_size * ((uintptr_t) sizeof (int));
8345 uintptr_t vec_addr;
8346 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8347 vec_addr = ((uintptr_t) VEC_address (int,
8348 inf_data->syscalls_counts)
8349 + vec_addr_offset);
8350 memset ((void *) vec_addr, 0,
8351 (iter + 1 - old_size) * sizeof (int));
8352 }
8353 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8354 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8355 }
8356 }
8357
8358 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8359 inf_data->total_syscalls_count != 0,
8360 inf_data->any_syscall_count,
8361 VEC_length (int,
8362 inf_data->syscalls_counts),
8363 VEC_address (int,
8364 inf_data->syscalls_counts));
8365 }
8366
8367 /* Implement the "remove" breakpoint_ops method for syscall
8368 catchpoints. */
8369
8370 static int
8371 remove_catch_syscall (struct bp_location *bl)
8372 {
8373 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8374 struct inferior *inf = current_inferior ();
8375 struct catch_syscall_inferior_data *inf_data
8376 = get_catch_syscall_inferior_data (inf);
8377
8378 --inf_data->total_syscalls_count;
8379 if (!c->syscalls_to_be_caught)
8380 --inf_data->any_syscall_count;
8381 else
8382 {
8383 int i, iter;
8384
8385 for (i = 0;
8386 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8387 i++)
8388 {
8389 int elem;
8390 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8391 /* Shouldn't happen. */
8392 continue;
8393 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8394 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8395 }
8396 }
8397
8398 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8399 inf_data->total_syscalls_count != 0,
8400 inf_data->any_syscall_count,
8401 VEC_length (int,
8402 inf_data->syscalls_counts),
8403 VEC_address (int,
8404 inf_data->syscalls_counts));
8405 }
8406
8407 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8408 catchpoints. */
8409
8410 static int
8411 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8412 struct address_space *aspace, CORE_ADDR bp_addr,
8413 const struct target_waitstatus *ws)
8414 {
8415 /* We must check if we are catching specific syscalls in this
8416 breakpoint. If we are, then we must guarantee that the called
8417 syscall is the same syscall we are catching. */
8418 int syscall_number = 0;
8419 const struct syscall_catchpoint *c
8420 = (const struct syscall_catchpoint *) bl->owner;
8421
8422 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8423 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8424 return 0;
8425
8426 syscall_number = ws->value.syscall_number;
8427
8428 /* Now, checking if the syscall is the same. */
8429 if (c->syscalls_to_be_caught)
8430 {
8431 int i, iter;
8432
8433 for (i = 0;
8434 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8435 i++)
8436 if (syscall_number == iter)
8437 return 1;
8438
8439 return 0;
8440 }
8441
8442 return 1;
8443 }
8444
8445 /* Implement the "print_it" breakpoint_ops method for syscall
8446 catchpoints. */
8447
8448 static enum print_stop_action
8449 print_it_catch_syscall (bpstat bs)
8450 {
8451 struct ui_out *uiout = current_uiout;
8452 struct breakpoint *b = bs->breakpoint_at;
8453 /* These are needed because we want to know in which state a
8454 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8455 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8456 must print "called syscall" or "returned from syscall". */
8457 ptid_t ptid;
8458 struct target_waitstatus last;
8459 struct syscall s;
8460
8461 get_last_target_status (&ptid, &last);
8462
8463 get_syscall_by_number (last.value.syscall_number, &s);
8464
8465 annotate_catchpoint (b->number);
8466
8467 if (b->disposition == disp_del)
8468 ui_out_text (uiout, "\nTemporary catchpoint ");
8469 else
8470 ui_out_text (uiout, "\nCatchpoint ");
8471 if (ui_out_is_mi_like_p (uiout))
8472 {
8473 ui_out_field_string (uiout, "reason",
8474 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8475 ? EXEC_ASYNC_SYSCALL_ENTRY
8476 : EXEC_ASYNC_SYSCALL_RETURN));
8477 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8478 }
8479 ui_out_field_int (uiout, "bkptno", b->number);
8480
8481 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8482 ui_out_text (uiout, " (call to syscall ");
8483 else
8484 ui_out_text (uiout, " (returned from syscall ");
8485
8486 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8487 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8488 if (s.name != NULL)
8489 ui_out_field_string (uiout, "syscall-name", s.name);
8490
8491 ui_out_text (uiout, "), ");
8492
8493 return PRINT_SRC_AND_LOC;
8494 }
8495
8496 /* Implement the "print_one" breakpoint_ops method for syscall
8497 catchpoints. */
8498
8499 static void
8500 print_one_catch_syscall (struct breakpoint *b,
8501 struct bp_location **last_loc)
8502 {
8503 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8504 struct value_print_options opts;
8505 struct ui_out *uiout = current_uiout;
8506
8507 get_user_print_options (&opts);
8508 /* Field 4, the address, is omitted (which makes the columns not
8509 line up too nicely with the headers, but the effect is relatively
8510 readable). */
8511 if (opts.addressprint)
8512 ui_out_field_skip (uiout, "addr");
8513 annotate_field (5);
8514
8515 if (c->syscalls_to_be_caught
8516 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8517 ui_out_text (uiout, "syscalls \"");
8518 else
8519 ui_out_text (uiout, "syscall \"");
8520
8521 if (c->syscalls_to_be_caught)
8522 {
8523 int i, iter;
8524 char *text = xstrprintf ("%s", "");
8525
8526 for (i = 0;
8527 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8528 i++)
8529 {
8530 char *x = text;
8531 struct syscall s;
8532 get_syscall_by_number (iter, &s);
8533
8534 if (s.name != NULL)
8535 text = xstrprintf ("%s%s, ", text, s.name);
8536 else
8537 text = xstrprintf ("%s%d, ", text, iter);
8538
8539 /* We have to xfree the last 'text' (now stored at 'x')
8540 because xstrprintf dynamically allocates new space for it
8541 on every call. */
8542 xfree (x);
8543 }
8544 /* Remove the last comma. */
8545 text[strlen (text) - 2] = '\0';
8546 ui_out_field_string (uiout, "what", text);
8547 }
8548 else
8549 ui_out_field_string (uiout, "what", "<any syscall>");
8550 ui_out_text (uiout, "\" ");
8551
8552 if (ui_out_is_mi_like_p (uiout))
8553 ui_out_field_string (uiout, "catch-type", "syscall");
8554 }
8555
8556 /* Implement the "print_mention" breakpoint_ops method for syscall
8557 catchpoints. */
8558
8559 static void
8560 print_mention_catch_syscall (struct breakpoint *b)
8561 {
8562 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8563
8564 if (c->syscalls_to_be_caught)
8565 {
8566 int i, iter;
8567
8568 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8569 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8570 else
8571 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8572
8573 for (i = 0;
8574 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8575 i++)
8576 {
8577 struct syscall s;
8578 get_syscall_by_number (iter, &s);
8579
8580 if (s.name)
8581 printf_filtered (" '%s' [%d]", s.name, s.number);
8582 else
8583 printf_filtered (" %d", s.number);
8584 }
8585 printf_filtered (")");
8586 }
8587 else
8588 printf_filtered (_("Catchpoint %d (any syscall)"),
8589 b->number);
8590 }
8591
8592 /* Implement the "print_recreate" breakpoint_ops method for syscall
8593 catchpoints. */
8594
8595 static void
8596 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8597 {
8598 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8599
8600 fprintf_unfiltered (fp, "catch syscall");
8601
8602 if (c->syscalls_to_be_caught)
8603 {
8604 int i, iter;
8605
8606 for (i = 0;
8607 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8608 i++)
8609 {
8610 struct syscall s;
8611
8612 get_syscall_by_number (iter, &s);
8613 if (s.name)
8614 fprintf_unfiltered (fp, " %s", s.name);
8615 else
8616 fprintf_unfiltered (fp, " %d", s.number);
8617 }
8618 }
8619 print_recreate_thread (b, fp);
8620 }
8621
8622 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8623
8624 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8625
8626 /* Returns non-zero if 'b' is a syscall catchpoint. */
8627
8628 static int
8629 syscall_catchpoint_p (struct breakpoint *b)
8630 {
8631 return (b->ops == &catch_syscall_breakpoint_ops);
8632 }
8633
8634 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8635 is non-zero, then make the breakpoint temporary. If COND_STRING is
8636 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8637 the breakpoint_ops structure associated to the catchpoint. */
8638
8639 void
8640 init_catchpoint (struct breakpoint *b,
8641 struct gdbarch *gdbarch, int tempflag,
8642 char *cond_string,
8643 const struct breakpoint_ops *ops)
8644 {
8645 struct symtab_and_line sal;
8646
8647 init_sal (&sal);
8648 sal.pspace = current_program_space;
8649
8650 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8651
8652 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8653 b->disposition = tempflag ? disp_del : disp_donttouch;
8654 }
8655
8656 void
8657 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8658 {
8659 add_to_breakpoint_chain (b);
8660 set_breakpoint_number (internal, b);
8661 if (is_tracepoint (b))
8662 set_tracepoint_count (breakpoint_count);
8663 if (!internal)
8664 mention (b);
8665 observer_notify_breakpoint_created (b);
8666
8667 if (update_gll)
8668 update_global_location_list (1);
8669 }
8670
8671 static void
8672 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8673 int tempflag, char *cond_string,
8674 const struct breakpoint_ops *ops)
8675 {
8676 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8677
8678 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8679
8680 c->forked_inferior_pid = null_ptid;
8681
8682 install_breakpoint (0, &c->base, 1);
8683 }
8684
8685 /* Exec catchpoints. */
8686
8687 /* An instance of this type is used to represent an exec catchpoint.
8688 It includes a "struct breakpoint" as a kind of base class; users
8689 downcast to "struct breakpoint *" when needed. A breakpoint is
8690 really of this type iff its ops pointer points to
8691 CATCH_EXEC_BREAKPOINT_OPS. */
8692
8693 struct exec_catchpoint
8694 {
8695 /* The base class. */
8696 struct breakpoint base;
8697
8698 /* Filename of a program whose exec triggered this catchpoint.
8699 This field is only valid immediately after this catchpoint has
8700 triggered. */
8701 char *exec_pathname;
8702 };
8703
8704 /* Implement the "dtor" breakpoint_ops method for exec
8705 catchpoints. */
8706
8707 static void
8708 dtor_catch_exec (struct breakpoint *b)
8709 {
8710 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8711
8712 xfree (c->exec_pathname);
8713
8714 base_breakpoint_ops.dtor (b);
8715 }
8716
8717 static int
8718 insert_catch_exec (struct bp_location *bl)
8719 {
8720 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8721 }
8722
8723 static int
8724 remove_catch_exec (struct bp_location *bl)
8725 {
8726 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8727 }
8728
8729 static int
8730 breakpoint_hit_catch_exec (const struct bp_location *bl,
8731 struct address_space *aspace, CORE_ADDR bp_addr,
8732 const struct target_waitstatus *ws)
8733 {
8734 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8735
8736 if (ws->kind != TARGET_WAITKIND_EXECD)
8737 return 0;
8738
8739 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8740 return 1;
8741 }
8742
8743 static enum print_stop_action
8744 print_it_catch_exec (bpstat bs)
8745 {
8746 struct ui_out *uiout = current_uiout;
8747 struct breakpoint *b = bs->breakpoint_at;
8748 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8749
8750 annotate_catchpoint (b->number);
8751 if (b->disposition == disp_del)
8752 ui_out_text (uiout, "\nTemporary catchpoint ");
8753 else
8754 ui_out_text (uiout, "\nCatchpoint ");
8755 if (ui_out_is_mi_like_p (uiout))
8756 {
8757 ui_out_field_string (uiout, "reason",
8758 async_reason_lookup (EXEC_ASYNC_EXEC));
8759 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8760 }
8761 ui_out_field_int (uiout, "bkptno", b->number);
8762 ui_out_text (uiout, " (exec'd ");
8763 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8764 ui_out_text (uiout, "), ");
8765
8766 return PRINT_SRC_AND_LOC;
8767 }
8768
8769 static void
8770 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8771 {
8772 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8773 struct value_print_options opts;
8774 struct ui_out *uiout = current_uiout;
8775
8776 get_user_print_options (&opts);
8777
8778 /* Field 4, the address, is omitted (which makes the columns
8779 not line up too nicely with the headers, but the effect
8780 is relatively readable). */
8781 if (opts.addressprint)
8782 ui_out_field_skip (uiout, "addr");
8783 annotate_field (5);
8784 ui_out_text (uiout, "exec");
8785 if (c->exec_pathname != NULL)
8786 {
8787 ui_out_text (uiout, ", program \"");
8788 ui_out_field_string (uiout, "what", c->exec_pathname);
8789 ui_out_text (uiout, "\" ");
8790 }
8791
8792 if (ui_out_is_mi_like_p (uiout))
8793 ui_out_field_string (uiout, "catch-type", "exec");
8794 }
8795
8796 static void
8797 print_mention_catch_exec (struct breakpoint *b)
8798 {
8799 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8800 }
8801
8802 /* Implement the "print_recreate" breakpoint_ops method for exec
8803 catchpoints. */
8804
8805 static void
8806 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8807 {
8808 fprintf_unfiltered (fp, "catch exec");
8809 print_recreate_thread (b, fp);
8810 }
8811
8812 static struct breakpoint_ops catch_exec_breakpoint_ops;
8813
8814 static void
8815 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8816 const struct breakpoint_ops *ops)
8817 {
8818 struct syscall_catchpoint *c;
8819 struct gdbarch *gdbarch = get_current_arch ();
8820
8821 c = XNEW (struct syscall_catchpoint);
8822 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8823 c->syscalls_to_be_caught = filter;
8824
8825 install_breakpoint (0, &c->base, 1);
8826 }
8827
8828 static int
8829 hw_breakpoint_used_count (void)
8830 {
8831 int i = 0;
8832 struct breakpoint *b;
8833 struct bp_location *bl;
8834
8835 ALL_BREAKPOINTS (b)
8836 {
8837 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8838 for (bl = b->loc; bl; bl = bl->next)
8839 {
8840 /* Special types of hardware breakpoints may use more than
8841 one register. */
8842 i += b->ops->resources_needed (bl);
8843 }
8844 }
8845
8846 return i;
8847 }
8848
8849 /* Returns the resources B would use if it were a hardware
8850 watchpoint. */
8851
8852 static int
8853 hw_watchpoint_use_count (struct breakpoint *b)
8854 {
8855 int i = 0;
8856 struct bp_location *bl;
8857
8858 if (!breakpoint_enabled (b))
8859 return 0;
8860
8861 for (bl = b->loc; bl; bl = bl->next)
8862 {
8863 /* Special types of hardware watchpoints may use more than
8864 one register. */
8865 i += b->ops->resources_needed (bl);
8866 }
8867
8868 return i;
8869 }
8870
8871 /* Returns the sum the used resources of all hardware watchpoints of
8872 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8873 the sum of the used resources of all hardware watchpoints of other
8874 types _not_ TYPE. */
8875
8876 static int
8877 hw_watchpoint_used_count_others (struct breakpoint *except,
8878 enum bptype type, int *other_type_used)
8879 {
8880 int i = 0;
8881 struct breakpoint *b;
8882
8883 *other_type_used = 0;
8884 ALL_BREAKPOINTS (b)
8885 {
8886 if (b == except)
8887 continue;
8888 if (!breakpoint_enabled (b))
8889 continue;
8890
8891 if (b->type == type)
8892 i += hw_watchpoint_use_count (b);
8893 else if (is_hardware_watchpoint (b))
8894 *other_type_used = 1;
8895 }
8896
8897 return i;
8898 }
8899
8900 void
8901 disable_watchpoints_before_interactive_call_start (void)
8902 {
8903 struct breakpoint *b;
8904
8905 ALL_BREAKPOINTS (b)
8906 {
8907 if (is_watchpoint (b) && breakpoint_enabled (b))
8908 {
8909 b->enable_state = bp_call_disabled;
8910 update_global_location_list (0);
8911 }
8912 }
8913 }
8914
8915 void
8916 enable_watchpoints_after_interactive_call_stop (void)
8917 {
8918 struct breakpoint *b;
8919
8920 ALL_BREAKPOINTS (b)
8921 {
8922 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8923 {
8924 b->enable_state = bp_enabled;
8925 update_global_location_list (1);
8926 }
8927 }
8928 }
8929
8930 void
8931 disable_breakpoints_before_startup (void)
8932 {
8933 current_program_space->executing_startup = 1;
8934 update_global_location_list (0);
8935 }
8936
8937 void
8938 enable_breakpoints_after_startup (void)
8939 {
8940 current_program_space->executing_startup = 0;
8941 breakpoint_re_set ();
8942 }
8943
8944
8945 /* Set a breakpoint that will evaporate an end of command
8946 at address specified by SAL.
8947 Restrict it to frame FRAME if FRAME is nonzero. */
8948
8949 struct breakpoint *
8950 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8951 struct frame_id frame_id, enum bptype type)
8952 {
8953 struct breakpoint *b;
8954
8955 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8956 tail-called one. */
8957 gdb_assert (!frame_id_artificial_p (frame_id));
8958
8959 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8960 b->enable_state = bp_enabled;
8961 b->disposition = disp_donttouch;
8962 b->frame_id = frame_id;
8963
8964 /* If we're debugging a multi-threaded program, then we want
8965 momentary breakpoints to be active in only a single thread of
8966 control. */
8967 if (in_thread_list (inferior_ptid))
8968 b->thread = pid_to_thread_id (inferior_ptid);
8969
8970 update_global_location_list_nothrow (1);
8971
8972 return b;
8973 }
8974
8975 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8976 The new breakpoint will have type TYPE, and use OPS as it
8977 breakpoint_ops. */
8978
8979 static struct breakpoint *
8980 momentary_breakpoint_from_master (struct breakpoint *orig,
8981 enum bptype type,
8982 const struct breakpoint_ops *ops)
8983 {
8984 struct breakpoint *copy;
8985
8986 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8987 copy->loc = allocate_bp_location (copy);
8988 set_breakpoint_location_function (copy->loc, 1);
8989
8990 copy->loc->gdbarch = orig->loc->gdbarch;
8991 copy->loc->requested_address = orig->loc->requested_address;
8992 copy->loc->address = orig->loc->address;
8993 copy->loc->section = orig->loc->section;
8994 copy->loc->pspace = orig->loc->pspace;
8995 copy->loc->probe = orig->loc->probe;
8996 copy->loc->line_number = orig->loc->line_number;
8997 copy->loc->symtab = orig->loc->symtab;
8998 copy->frame_id = orig->frame_id;
8999 copy->thread = orig->thread;
9000 copy->pspace = orig->pspace;
9001
9002 copy->enable_state = bp_enabled;
9003 copy->disposition = disp_donttouch;
9004 copy->number = internal_breakpoint_number--;
9005
9006 update_global_location_list_nothrow (0);
9007 return copy;
9008 }
9009
9010 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9011 ORIG is NULL. */
9012
9013 struct breakpoint *
9014 clone_momentary_breakpoint (struct breakpoint *orig)
9015 {
9016 /* If there's nothing to clone, then return nothing. */
9017 if (orig == NULL)
9018 return NULL;
9019
9020 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
9021 }
9022
9023 struct breakpoint *
9024 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9025 enum bptype type)
9026 {
9027 struct symtab_and_line sal;
9028
9029 sal = find_pc_line (pc, 0);
9030 sal.pc = pc;
9031 sal.section = find_pc_overlay (pc);
9032 sal.explicit_pc = 1;
9033
9034 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9035 }
9036 \f
9037
9038 /* Tell the user we have just set a breakpoint B. */
9039
9040 static void
9041 mention (struct breakpoint *b)
9042 {
9043 b->ops->print_mention (b);
9044 if (ui_out_is_mi_like_p (current_uiout))
9045 return;
9046 printf_filtered ("\n");
9047 }
9048 \f
9049
9050 static struct bp_location *
9051 add_location_to_breakpoint (struct breakpoint *b,
9052 const struct symtab_and_line *sal)
9053 {
9054 struct bp_location *loc, **tmp;
9055 CORE_ADDR adjusted_address;
9056 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9057
9058 if (loc_gdbarch == NULL)
9059 loc_gdbarch = b->gdbarch;
9060
9061 /* Adjust the breakpoint's address prior to allocating a location.
9062 Once we call allocate_bp_location(), that mostly uninitialized
9063 location will be placed on the location chain. Adjustment of the
9064 breakpoint may cause target_read_memory() to be called and we do
9065 not want its scan of the location chain to find a breakpoint and
9066 location that's only been partially initialized. */
9067 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9068 sal->pc, b->type);
9069
9070 /* Sort the locations by their ADDRESS. */
9071 loc = allocate_bp_location (b);
9072 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9073 tmp = &((*tmp)->next))
9074 ;
9075 loc->next = *tmp;
9076 *tmp = loc;
9077
9078 loc->requested_address = sal->pc;
9079 loc->address = adjusted_address;
9080 loc->pspace = sal->pspace;
9081 loc->probe.probe = sal->probe;
9082 loc->probe.objfile = sal->objfile;
9083 gdb_assert (loc->pspace != NULL);
9084 loc->section = sal->section;
9085 loc->gdbarch = loc_gdbarch;
9086 loc->line_number = sal->line;
9087 loc->symtab = sal->symtab;
9088
9089 set_breakpoint_location_function (loc,
9090 sal->explicit_pc || sal->explicit_line);
9091 return loc;
9092 }
9093 \f
9094
9095 /* Return 1 if LOC is pointing to a permanent breakpoint,
9096 return 0 otherwise. */
9097
9098 static int
9099 bp_loc_is_permanent (struct bp_location *loc)
9100 {
9101 int len;
9102 CORE_ADDR addr;
9103 const gdb_byte *bpoint;
9104 gdb_byte *target_mem;
9105 struct cleanup *cleanup;
9106 int retval = 0;
9107
9108 gdb_assert (loc != NULL);
9109
9110 addr = loc->address;
9111 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9112
9113 /* Software breakpoints unsupported? */
9114 if (bpoint == NULL)
9115 return 0;
9116
9117 target_mem = alloca (len);
9118
9119 /* Enable the automatic memory restoration from breakpoints while
9120 we read the memory. Otherwise we could say about our temporary
9121 breakpoints they are permanent. */
9122 cleanup = save_current_space_and_thread ();
9123
9124 switch_to_program_space_and_thread (loc->pspace);
9125 make_show_memory_breakpoints_cleanup (0);
9126
9127 if (target_read_memory (loc->address, target_mem, len) == 0
9128 && memcmp (target_mem, bpoint, len) == 0)
9129 retval = 1;
9130
9131 do_cleanups (cleanup);
9132
9133 return retval;
9134 }
9135
9136 /* Build a command list for the dprintf corresponding to the current
9137 settings of the dprintf style options. */
9138
9139 static void
9140 update_dprintf_command_list (struct breakpoint *b)
9141 {
9142 char *dprintf_args = b->extra_string;
9143 char *printf_line = NULL;
9144
9145 if (!dprintf_args)
9146 return;
9147
9148 dprintf_args = skip_spaces (dprintf_args);
9149
9150 /* Allow a comma, as it may have terminated a location, but don't
9151 insist on it. */
9152 if (*dprintf_args == ',')
9153 ++dprintf_args;
9154 dprintf_args = skip_spaces (dprintf_args);
9155
9156 if (*dprintf_args != '"')
9157 error (_("Bad format string, missing '\"'."));
9158
9159 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9160 printf_line = xstrprintf ("printf %s", dprintf_args);
9161 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9162 {
9163 if (!dprintf_function)
9164 error (_("No function supplied for dprintf call"));
9165
9166 if (dprintf_channel && strlen (dprintf_channel) > 0)
9167 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9168 dprintf_function,
9169 dprintf_channel,
9170 dprintf_args);
9171 else
9172 printf_line = xstrprintf ("call (void) %s (%s)",
9173 dprintf_function,
9174 dprintf_args);
9175 }
9176 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9177 {
9178 if (target_can_run_breakpoint_commands ())
9179 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9180 else
9181 {
9182 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9183 printf_line = xstrprintf ("printf %s", dprintf_args);
9184 }
9185 }
9186 else
9187 internal_error (__FILE__, __LINE__,
9188 _("Invalid dprintf style."));
9189
9190 gdb_assert (printf_line != NULL);
9191 /* Manufacture a printf sequence. */
9192 {
9193 struct command_line *printf_cmd_line
9194 = xmalloc (sizeof (struct command_line));
9195
9196 printf_cmd_line = xmalloc (sizeof (struct command_line));
9197 printf_cmd_line->control_type = simple_control;
9198 printf_cmd_line->body_count = 0;
9199 printf_cmd_line->body_list = NULL;
9200 printf_cmd_line->next = NULL;
9201 printf_cmd_line->line = printf_line;
9202
9203 breakpoint_set_commands (b, printf_cmd_line);
9204 }
9205 }
9206
9207 /* Update all dprintf commands, making their command lists reflect
9208 current style settings. */
9209
9210 static void
9211 update_dprintf_commands (char *args, int from_tty,
9212 struct cmd_list_element *c)
9213 {
9214 struct breakpoint *b;
9215
9216 ALL_BREAKPOINTS (b)
9217 {
9218 if (b->type == bp_dprintf)
9219 update_dprintf_command_list (b);
9220 }
9221 }
9222
9223 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9224 as textual description of the location, and COND_STRING
9225 as condition expression. */
9226
9227 static void
9228 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9229 struct symtabs_and_lines sals, char *addr_string,
9230 char *filter, char *cond_string,
9231 char *extra_string,
9232 enum bptype type, enum bpdisp disposition,
9233 int thread, int task, int ignore_count,
9234 const struct breakpoint_ops *ops, int from_tty,
9235 int enabled, int internal, unsigned flags,
9236 int display_canonical)
9237 {
9238 int i;
9239
9240 if (type == bp_hardware_breakpoint)
9241 {
9242 int target_resources_ok;
9243
9244 i = hw_breakpoint_used_count ();
9245 target_resources_ok =
9246 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9247 i + 1, 0);
9248 if (target_resources_ok == 0)
9249 error (_("No hardware breakpoint support in the target."));
9250 else if (target_resources_ok < 0)
9251 error (_("Hardware breakpoints used exceeds limit."));
9252 }
9253
9254 gdb_assert (sals.nelts > 0);
9255
9256 for (i = 0; i < sals.nelts; ++i)
9257 {
9258 struct symtab_and_line sal = sals.sals[i];
9259 struct bp_location *loc;
9260
9261 if (from_tty)
9262 {
9263 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9264 if (!loc_gdbarch)
9265 loc_gdbarch = gdbarch;
9266
9267 describe_other_breakpoints (loc_gdbarch,
9268 sal.pspace, sal.pc, sal.section, thread);
9269 }
9270
9271 if (i == 0)
9272 {
9273 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9274 b->thread = thread;
9275 b->task = task;
9276
9277 b->cond_string = cond_string;
9278 b->extra_string = extra_string;
9279 b->ignore_count = ignore_count;
9280 b->enable_state = enabled ? bp_enabled : bp_disabled;
9281 b->disposition = disposition;
9282
9283 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9284 b->loc->inserted = 1;
9285
9286 if (type == bp_static_tracepoint)
9287 {
9288 struct tracepoint *t = (struct tracepoint *) b;
9289 struct static_tracepoint_marker marker;
9290
9291 if (strace_marker_p (b))
9292 {
9293 /* We already know the marker exists, otherwise, we
9294 wouldn't see a sal for it. */
9295 char *p = &addr_string[3];
9296 char *endp;
9297 char *marker_str;
9298
9299 p = skip_spaces (p);
9300
9301 endp = skip_to_space (p);
9302
9303 marker_str = savestring (p, endp - p);
9304 t->static_trace_marker_id = marker_str;
9305
9306 printf_filtered (_("Probed static tracepoint "
9307 "marker \"%s\"\n"),
9308 t->static_trace_marker_id);
9309 }
9310 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9311 {
9312 t->static_trace_marker_id = xstrdup (marker.str_id);
9313 release_static_tracepoint_marker (&marker);
9314
9315 printf_filtered (_("Probed static tracepoint "
9316 "marker \"%s\"\n"),
9317 t->static_trace_marker_id);
9318 }
9319 else
9320 warning (_("Couldn't determine the static "
9321 "tracepoint marker to probe"));
9322 }
9323
9324 loc = b->loc;
9325 }
9326 else
9327 {
9328 loc = add_location_to_breakpoint (b, &sal);
9329 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9330 loc->inserted = 1;
9331 }
9332
9333 if (bp_loc_is_permanent (loc))
9334 make_breakpoint_permanent (b);
9335
9336 if (b->cond_string)
9337 {
9338 const char *arg = b->cond_string;
9339
9340 loc->cond = parse_exp_1 (&arg, loc->address,
9341 block_for_pc (loc->address), 0);
9342 if (*arg)
9343 error (_("Garbage '%s' follows condition"), arg);
9344 }
9345
9346 /* Dynamic printf requires and uses additional arguments on the
9347 command line, otherwise it's an error. */
9348 if (type == bp_dprintf)
9349 {
9350 if (b->extra_string)
9351 update_dprintf_command_list (b);
9352 else
9353 error (_("Format string required"));
9354 }
9355 else if (b->extra_string)
9356 error (_("Garbage '%s' at end of command"), b->extra_string);
9357 }
9358
9359 b->display_canonical = display_canonical;
9360 if (addr_string)
9361 b->addr_string = addr_string;
9362 else
9363 /* addr_string has to be used or breakpoint_re_set will delete
9364 me. */
9365 b->addr_string
9366 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9367 b->filter = filter;
9368 }
9369
9370 static void
9371 create_breakpoint_sal (struct gdbarch *gdbarch,
9372 struct symtabs_and_lines sals, char *addr_string,
9373 char *filter, char *cond_string,
9374 char *extra_string,
9375 enum bptype type, enum bpdisp disposition,
9376 int thread, int task, int ignore_count,
9377 const struct breakpoint_ops *ops, int from_tty,
9378 int enabled, int internal, unsigned flags,
9379 int display_canonical)
9380 {
9381 struct breakpoint *b;
9382 struct cleanup *old_chain;
9383
9384 if (is_tracepoint_type (type))
9385 {
9386 struct tracepoint *t;
9387
9388 t = XCNEW (struct tracepoint);
9389 b = &t->base;
9390 }
9391 else
9392 b = XNEW (struct breakpoint);
9393
9394 old_chain = make_cleanup (xfree, b);
9395
9396 init_breakpoint_sal (b, gdbarch,
9397 sals, addr_string,
9398 filter, cond_string, extra_string,
9399 type, disposition,
9400 thread, task, ignore_count,
9401 ops, from_tty,
9402 enabled, internal, flags,
9403 display_canonical);
9404 discard_cleanups (old_chain);
9405
9406 install_breakpoint (internal, b, 0);
9407 }
9408
9409 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9410 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9411 value. COND_STRING, if not NULL, specified the condition to be
9412 used for all breakpoints. Essentially the only case where
9413 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9414 function. In that case, it's still not possible to specify
9415 separate conditions for different overloaded functions, so
9416 we take just a single condition string.
9417
9418 NOTE: If the function succeeds, the caller is expected to cleanup
9419 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9420 array contents). If the function fails (error() is called), the
9421 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9422 COND and SALS arrays and each of those arrays contents. */
9423
9424 static void
9425 create_breakpoints_sal (struct gdbarch *gdbarch,
9426 struct linespec_result *canonical,
9427 char *cond_string, char *extra_string,
9428 enum bptype type, enum bpdisp disposition,
9429 int thread, int task, int ignore_count,
9430 const struct breakpoint_ops *ops, int from_tty,
9431 int enabled, int internal, unsigned flags)
9432 {
9433 int i;
9434 struct linespec_sals *lsal;
9435
9436 if (canonical->pre_expanded)
9437 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9438
9439 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9440 {
9441 /* Note that 'addr_string' can be NULL in the case of a plain
9442 'break', without arguments. */
9443 char *addr_string = (canonical->addr_string
9444 ? xstrdup (canonical->addr_string)
9445 : NULL);
9446 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9447 struct cleanup *inner = make_cleanup (xfree, addr_string);
9448
9449 make_cleanup (xfree, filter_string);
9450 create_breakpoint_sal (gdbarch, lsal->sals,
9451 addr_string,
9452 filter_string,
9453 cond_string, extra_string,
9454 type, disposition,
9455 thread, task, ignore_count, ops,
9456 from_tty, enabled, internal, flags,
9457 canonical->special_display);
9458 discard_cleanups (inner);
9459 }
9460 }
9461
9462 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9463 followed by conditionals. On return, SALS contains an array of SAL
9464 addresses found. ADDR_STRING contains a vector of (canonical)
9465 address strings. ADDRESS points to the end of the SAL.
9466
9467 The array and the line spec strings are allocated on the heap, it is
9468 the caller's responsibility to free them. */
9469
9470 static void
9471 parse_breakpoint_sals (char **address,
9472 struct linespec_result *canonical)
9473 {
9474 /* If no arg given, or if first arg is 'if ', use the default
9475 breakpoint. */
9476 if ((*address) == NULL
9477 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9478 {
9479 /* The last displayed codepoint, if it's valid, is our default breakpoint
9480 address. */
9481 if (last_displayed_sal_is_valid ())
9482 {
9483 struct linespec_sals lsal;
9484 struct symtab_and_line sal;
9485 CORE_ADDR pc;
9486
9487 init_sal (&sal); /* Initialize to zeroes. */
9488 lsal.sals.sals = (struct symtab_and_line *)
9489 xmalloc (sizeof (struct symtab_and_line));
9490
9491 /* Set sal's pspace, pc, symtab, and line to the values
9492 corresponding to the last call to print_frame_info.
9493 Be sure to reinitialize LINE with NOTCURRENT == 0
9494 as the breakpoint line number is inappropriate otherwise.
9495 find_pc_line would adjust PC, re-set it back. */
9496 get_last_displayed_sal (&sal);
9497 pc = sal.pc;
9498 sal = find_pc_line (pc, 0);
9499
9500 /* "break" without arguments is equivalent to "break *PC"
9501 where PC is the last displayed codepoint's address. So
9502 make sure to set sal.explicit_pc to prevent GDB from
9503 trying to expand the list of sals to include all other
9504 instances with the same symtab and line. */
9505 sal.pc = pc;
9506 sal.explicit_pc = 1;
9507
9508 lsal.sals.sals[0] = sal;
9509 lsal.sals.nelts = 1;
9510 lsal.canonical = NULL;
9511
9512 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9513 }
9514 else
9515 error (_("No default breakpoint address now."));
9516 }
9517 else
9518 {
9519 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9520
9521 /* Force almost all breakpoints to be in terms of the
9522 current_source_symtab (which is decode_line_1's default).
9523 This should produce the results we want almost all of the
9524 time while leaving default_breakpoint_* alone.
9525
9526 ObjC: However, don't match an Objective-C method name which
9527 may have a '+' or '-' succeeded by a '['. */
9528 if (last_displayed_sal_is_valid ()
9529 && (!cursal.symtab
9530 || ((strchr ("+-", (*address)[0]) != NULL)
9531 && ((*address)[1] != '['))))
9532 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9533 get_last_displayed_symtab (),
9534 get_last_displayed_line (),
9535 canonical, NULL, NULL);
9536 else
9537 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9538 cursal.symtab, cursal.line, canonical, NULL, NULL);
9539 }
9540 }
9541
9542
9543 /* Convert each SAL into a real PC. Verify that the PC can be
9544 inserted as a breakpoint. If it can't throw an error. */
9545
9546 static void
9547 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9548 {
9549 int i;
9550
9551 for (i = 0; i < sals->nelts; i++)
9552 resolve_sal_pc (&sals->sals[i]);
9553 }
9554
9555 /* Fast tracepoints may have restrictions on valid locations. For
9556 instance, a fast tracepoint using a jump instead of a trap will
9557 likely have to overwrite more bytes than a trap would, and so can
9558 only be placed where the instruction is longer than the jump, or a
9559 multi-instruction sequence does not have a jump into the middle of
9560 it, etc. */
9561
9562 static void
9563 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9564 struct symtabs_and_lines *sals)
9565 {
9566 int i, rslt;
9567 struct symtab_and_line *sal;
9568 char *msg;
9569 struct cleanup *old_chain;
9570
9571 for (i = 0; i < sals->nelts; i++)
9572 {
9573 struct gdbarch *sarch;
9574
9575 sal = &sals->sals[i];
9576
9577 sarch = get_sal_arch (*sal);
9578 /* We fall back to GDBARCH if there is no architecture
9579 associated with SAL. */
9580 if (sarch == NULL)
9581 sarch = gdbarch;
9582 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9583 NULL, &msg);
9584 old_chain = make_cleanup (xfree, msg);
9585
9586 if (!rslt)
9587 error (_("May not have a fast tracepoint at 0x%s%s"),
9588 paddress (sarch, sal->pc), (msg ? msg : ""));
9589
9590 do_cleanups (old_chain);
9591 }
9592 }
9593
9594 /* Issue an invalid thread ID error. */
9595
9596 static void ATTRIBUTE_NORETURN
9597 invalid_thread_id_error (int id)
9598 {
9599 error (_("Unknown thread %d."), id);
9600 }
9601
9602 /* Given TOK, a string specification of condition and thread, as
9603 accepted by the 'break' command, extract the condition
9604 string and thread number and set *COND_STRING and *THREAD.
9605 PC identifies the context at which the condition should be parsed.
9606 If no condition is found, *COND_STRING is set to NULL.
9607 If no thread is found, *THREAD is set to -1. */
9608
9609 static void
9610 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9611 char **cond_string, int *thread, int *task,
9612 char **rest)
9613 {
9614 *cond_string = NULL;
9615 *thread = -1;
9616 *task = 0;
9617 *rest = NULL;
9618
9619 while (tok && *tok)
9620 {
9621 const char *end_tok;
9622 int toklen;
9623 const char *cond_start = NULL;
9624 const char *cond_end = NULL;
9625
9626 tok = skip_spaces_const (tok);
9627
9628 if ((*tok == '"' || *tok == ',') && rest)
9629 {
9630 *rest = savestring (tok, strlen (tok));
9631 return;
9632 }
9633
9634 end_tok = skip_to_space_const (tok);
9635
9636 toklen = end_tok - tok;
9637
9638 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9639 {
9640 struct expression *expr;
9641
9642 tok = cond_start = end_tok + 1;
9643 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9644 xfree (expr);
9645 cond_end = tok;
9646 *cond_string = savestring (cond_start, cond_end - cond_start);
9647 }
9648 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9649 {
9650 char *tmptok;
9651
9652 tok = end_tok + 1;
9653 *thread = strtol (tok, &tmptok, 0);
9654 if (tok == tmptok)
9655 error (_("Junk after thread keyword."));
9656 if (!valid_thread_id (*thread))
9657 invalid_thread_id_error (*thread);
9658 tok = tmptok;
9659 }
9660 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9661 {
9662 char *tmptok;
9663
9664 tok = end_tok + 1;
9665 *task = strtol (tok, &tmptok, 0);
9666 if (tok == tmptok)
9667 error (_("Junk after task keyword."));
9668 if (!valid_task_id (*task))
9669 error (_("Unknown task %d."), *task);
9670 tok = tmptok;
9671 }
9672 else if (rest)
9673 {
9674 *rest = savestring (tok, strlen (tok));
9675 return;
9676 }
9677 else
9678 error (_("Junk at end of arguments."));
9679 }
9680 }
9681
9682 /* Decode a static tracepoint marker spec. */
9683
9684 static struct symtabs_and_lines
9685 decode_static_tracepoint_spec (char **arg_p)
9686 {
9687 VEC(static_tracepoint_marker_p) *markers = NULL;
9688 struct symtabs_and_lines sals;
9689 struct cleanup *old_chain;
9690 char *p = &(*arg_p)[3];
9691 char *endp;
9692 char *marker_str;
9693 int i;
9694
9695 p = skip_spaces (p);
9696
9697 endp = skip_to_space (p);
9698
9699 marker_str = savestring (p, endp - p);
9700 old_chain = make_cleanup (xfree, marker_str);
9701
9702 markers = target_static_tracepoint_markers_by_strid (marker_str);
9703 if (VEC_empty(static_tracepoint_marker_p, markers))
9704 error (_("No known static tracepoint marker named %s"), marker_str);
9705
9706 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9707 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9708
9709 for (i = 0; i < sals.nelts; i++)
9710 {
9711 struct static_tracepoint_marker *marker;
9712
9713 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9714
9715 init_sal (&sals.sals[i]);
9716
9717 sals.sals[i] = find_pc_line (marker->address, 0);
9718 sals.sals[i].pc = marker->address;
9719
9720 release_static_tracepoint_marker (marker);
9721 }
9722
9723 do_cleanups (old_chain);
9724
9725 *arg_p = endp;
9726 return sals;
9727 }
9728
9729 /* Set a breakpoint. This function is shared between CLI and MI
9730 functions for setting a breakpoint. This function has two major
9731 modes of operations, selected by the PARSE_ARG parameter. If
9732 non-zero, the function will parse ARG, extracting location,
9733 condition, thread and extra string. Otherwise, ARG is just the
9734 breakpoint's location, with condition, thread, and extra string
9735 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9736 If INTERNAL is non-zero, the breakpoint number will be allocated
9737 from the internal breakpoint count. Returns true if any breakpoint
9738 was created; false otherwise. */
9739
9740 int
9741 create_breakpoint (struct gdbarch *gdbarch,
9742 char *arg, char *cond_string,
9743 int thread, char *extra_string,
9744 int parse_arg,
9745 int tempflag, enum bptype type_wanted,
9746 int ignore_count,
9747 enum auto_boolean pending_break_support,
9748 const struct breakpoint_ops *ops,
9749 int from_tty, int enabled, int internal,
9750 unsigned flags)
9751 {
9752 volatile struct gdb_exception e;
9753 char *copy_arg = NULL;
9754 char *addr_start = arg;
9755 struct linespec_result canonical;
9756 struct cleanup *old_chain;
9757 struct cleanup *bkpt_chain = NULL;
9758 int pending = 0;
9759 int task = 0;
9760 int prev_bkpt_count = breakpoint_count;
9761
9762 gdb_assert (ops != NULL);
9763
9764 init_linespec_result (&canonical);
9765
9766 TRY_CATCH (e, RETURN_MASK_ALL)
9767 {
9768 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9769 addr_start, &copy_arg);
9770 }
9771
9772 /* If caller is interested in rc value from parse, set value. */
9773 switch (e.reason)
9774 {
9775 case GDB_NO_ERROR:
9776 if (VEC_empty (linespec_sals, canonical.sals))
9777 return 0;
9778 break;
9779 case RETURN_ERROR:
9780 switch (e.error)
9781 {
9782 case NOT_FOUND_ERROR:
9783
9784 /* If pending breakpoint support is turned off, throw
9785 error. */
9786
9787 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9788 throw_exception (e);
9789
9790 exception_print (gdb_stderr, e);
9791
9792 /* If pending breakpoint support is auto query and the user
9793 selects no, then simply return the error code. */
9794 if (pending_break_support == AUTO_BOOLEAN_AUTO
9795 && !nquery (_("Make %s pending on future shared library load? "),
9796 bptype_string (type_wanted)))
9797 return 0;
9798
9799 /* At this point, either the user was queried about setting
9800 a pending breakpoint and selected yes, or pending
9801 breakpoint behavior is on and thus a pending breakpoint
9802 is defaulted on behalf of the user. */
9803 {
9804 struct linespec_sals lsal;
9805
9806 copy_arg = xstrdup (addr_start);
9807 lsal.canonical = xstrdup (copy_arg);
9808 lsal.sals.nelts = 1;
9809 lsal.sals.sals = XNEW (struct symtab_and_line);
9810 init_sal (&lsal.sals.sals[0]);
9811 pending = 1;
9812 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9813 }
9814 break;
9815 default:
9816 throw_exception (e);
9817 }
9818 break;
9819 default:
9820 throw_exception (e);
9821 }
9822
9823 /* Create a chain of things that always need to be cleaned up. */
9824 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9825
9826 /* ----------------------------- SNIP -----------------------------
9827 Anything added to the cleanup chain beyond this point is assumed
9828 to be part of a breakpoint. If the breakpoint create succeeds
9829 then the memory is not reclaimed. */
9830 bkpt_chain = make_cleanup (null_cleanup, 0);
9831
9832 /* Resolve all line numbers to PC's and verify that the addresses
9833 are ok for the target. */
9834 if (!pending)
9835 {
9836 int ix;
9837 struct linespec_sals *iter;
9838
9839 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9840 breakpoint_sals_to_pc (&iter->sals);
9841 }
9842
9843 /* Fast tracepoints may have additional restrictions on location. */
9844 if (!pending && type_wanted == bp_fast_tracepoint)
9845 {
9846 int ix;
9847 struct linespec_sals *iter;
9848
9849 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9850 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9851 }
9852
9853 /* Verify that condition can be parsed, before setting any
9854 breakpoints. Allocate a separate condition expression for each
9855 breakpoint. */
9856 if (!pending)
9857 {
9858 if (parse_arg)
9859 {
9860 char *rest;
9861 struct linespec_sals *lsal;
9862
9863 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9864
9865 /* Here we only parse 'arg' to separate condition
9866 from thread number, so parsing in context of first
9867 sal is OK. When setting the breakpoint we'll
9868 re-parse it in context of each sal. */
9869
9870 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9871 &thread, &task, &rest);
9872 if (cond_string)
9873 make_cleanup (xfree, cond_string);
9874 if (rest)
9875 make_cleanup (xfree, rest);
9876 if (rest)
9877 extra_string = rest;
9878 }
9879 else
9880 {
9881 if (*arg != '\0')
9882 error (_("Garbage '%s' at end of location"), arg);
9883
9884 /* Create a private copy of condition string. */
9885 if (cond_string)
9886 {
9887 cond_string = xstrdup (cond_string);
9888 make_cleanup (xfree, cond_string);
9889 }
9890 /* Create a private copy of any extra string. */
9891 if (extra_string)
9892 {
9893 extra_string = xstrdup (extra_string);
9894 make_cleanup (xfree, extra_string);
9895 }
9896 }
9897
9898 ops->create_breakpoints_sal (gdbarch, &canonical,
9899 cond_string, extra_string, type_wanted,
9900 tempflag ? disp_del : disp_donttouch,
9901 thread, task, ignore_count, ops,
9902 from_tty, enabled, internal, flags);
9903 }
9904 else
9905 {
9906 struct breakpoint *b;
9907
9908 make_cleanup (xfree, copy_arg);
9909
9910 if (is_tracepoint_type (type_wanted))
9911 {
9912 struct tracepoint *t;
9913
9914 t = XCNEW (struct tracepoint);
9915 b = &t->base;
9916 }
9917 else
9918 b = XNEW (struct breakpoint);
9919
9920 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9921
9922 b->addr_string = copy_arg;
9923 if (parse_arg)
9924 b->cond_string = NULL;
9925 else
9926 {
9927 /* Create a private copy of condition string. */
9928 if (cond_string)
9929 {
9930 cond_string = xstrdup (cond_string);
9931 make_cleanup (xfree, cond_string);
9932 }
9933 b->cond_string = cond_string;
9934 }
9935 b->extra_string = NULL;
9936 b->ignore_count = ignore_count;
9937 b->disposition = tempflag ? disp_del : disp_donttouch;
9938 b->condition_not_parsed = 1;
9939 b->enable_state = enabled ? bp_enabled : bp_disabled;
9940 if ((type_wanted != bp_breakpoint
9941 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9942 b->pspace = current_program_space;
9943
9944 install_breakpoint (internal, b, 0);
9945 }
9946
9947 if (VEC_length (linespec_sals, canonical.sals) > 1)
9948 {
9949 warning (_("Multiple breakpoints were set.\nUse the "
9950 "\"delete\" command to delete unwanted breakpoints."));
9951 prev_breakpoint_count = prev_bkpt_count;
9952 }
9953
9954 /* That's it. Discard the cleanups for data inserted into the
9955 breakpoint. */
9956 discard_cleanups (bkpt_chain);
9957 /* But cleanup everything else. */
9958 do_cleanups (old_chain);
9959
9960 /* error call may happen here - have BKPT_CHAIN already discarded. */
9961 update_global_location_list (1);
9962
9963 return 1;
9964 }
9965
9966 /* Set a breakpoint.
9967 ARG is a string describing breakpoint address,
9968 condition, and thread.
9969 FLAG specifies if a breakpoint is hardware on,
9970 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9971 and BP_TEMPFLAG. */
9972
9973 static void
9974 break_command_1 (char *arg, int flag, int from_tty)
9975 {
9976 int tempflag = flag & BP_TEMPFLAG;
9977 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9978 ? bp_hardware_breakpoint
9979 : bp_breakpoint);
9980 struct breakpoint_ops *ops;
9981 const char *arg_cp = arg;
9982
9983 /* Matching breakpoints on probes. */
9984 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9985 ops = &bkpt_probe_breakpoint_ops;
9986 else
9987 ops = &bkpt_breakpoint_ops;
9988
9989 create_breakpoint (get_current_arch (),
9990 arg,
9991 NULL, 0, NULL, 1 /* parse arg */,
9992 tempflag, type_wanted,
9993 0 /* Ignore count */,
9994 pending_break_support,
9995 ops,
9996 from_tty,
9997 1 /* enabled */,
9998 0 /* internal */,
9999 0);
10000 }
10001
10002 /* Helper function for break_command_1 and disassemble_command. */
10003
10004 void
10005 resolve_sal_pc (struct symtab_and_line *sal)
10006 {
10007 CORE_ADDR pc;
10008
10009 if (sal->pc == 0 && sal->symtab != NULL)
10010 {
10011 if (!find_line_pc (sal->symtab, sal->line, &pc))
10012 error (_("No line %d in file \"%s\"."),
10013 sal->line, symtab_to_filename_for_display (sal->symtab));
10014 sal->pc = pc;
10015
10016 /* If this SAL corresponds to a breakpoint inserted using a line
10017 number, then skip the function prologue if necessary. */
10018 if (sal->explicit_line)
10019 skip_prologue_sal (sal);
10020 }
10021
10022 if (sal->section == 0 && sal->symtab != NULL)
10023 {
10024 struct blockvector *bv;
10025 struct block *b;
10026 struct symbol *sym;
10027
10028 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10029 if (bv != NULL)
10030 {
10031 sym = block_linkage_function (b);
10032 if (sym != NULL)
10033 {
10034 fixup_symbol_section (sym, sal->symtab->objfile);
10035 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10036 }
10037 else
10038 {
10039 /* It really is worthwhile to have the section, so we'll
10040 just have to look harder. This case can be executed
10041 if we have line numbers but no functions (as can
10042 happen in assembly source). */
10043
10044 struct bound_minimal_symbol msym;
10045 struct cleanup *old_chain = save_current_space_and_thread ();
10046
10047 switch_to_program_space_and_thread (sal->pspace);
10048
10049 msym = lookup_minimal_symbol_by_pc (sal->pc);
10050 if (msym.minsym)
10051 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10052
10053 do_cleanups (old_chain);
10054 }
10055 }
10056 }
10057 }
10058
10059 void
10060 break_command (char *arg, int from_tty)
10061 {
10062 break_command_1 (arg, 0, from_tty);
10063 }
10064
10065 void
10066 tbreak_command (char *arg, int from_tty)
10067 {
10068 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10069 }
10070
10071 static void
10072 hbreak_command (char *arg, int from_tty)
10073 {
10074 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10075 }
10076
10077 static void
10078 thbreak_command (char *arg, int from_tty)
10079 {
10080 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10081 }
10082
10083 static void
10084 stop_command (char *arg, int from_tty)
10085 {
10086 printf_filtered (_("Specify the type of breakpoint to set.\n\
10087 Usage: stop in <function | address>\n\
10088 stop at <line>\n"));
10089 }
10090
10091 static void
10092 stopin_command (char *arg, int from_tty)
10093 {
10094 int badInput = 0;
10095
10096 if (arg == (char *) NULL)
10097 badInput = 1;
10098 else if (*arg != '*')
10099 {
10100 char *argptr = arg;
10101 int hasColon = 0;
10102
10103 /* Look for a ':'. If this is a line number specification, then
10104 say it is bad, otherwise, it should be an address or
10105 function/method name. */
10106 while (*argptr && !hasColon)
10107 {
10108 hasColon = (*argptr == ':');
10109 argptr++;
10110 }
10111
10112 if (hasColon)
10113 badInput = (*argptr != ':'); /* Not a class::method */
10114 else
10115 badInput = isdigit (*arg); /* a simple line number */
10116 }
10117
10118 if (badInput)
10119 printf_filtered (_("Usage: stop in <function | address>\n"));
10120 else
10121 break_command_1 (arg, 0, from_tty);
10122 }
10123
10124 static void
10125 stopat_command (char *arg, int from_tty)
10126 {
10127 int badInput = 0;
10128
10129 if (arg == (char *) NULL || *arg == '*') /* no line number */
10130 badInput = 1;
10131 else
10132 {
10133 char *argptr = arg;
10134 int hasColon = 0;
10135
10136 /* Look for a ':'. If there is a '::' then get out, otherwise
10137 it is probably a line number. */
10138 while (*argptr && !hasColon)
10139 {
10140 hasColon = (*argptr == ':');
10141 argptr++;
10142 }
10143
10144 if (hasColon)
10145 badInput = (*argptr == ':'); /* we have class::method */
10146 else
10147 badInput = !isdigit (*arg); /* not a line number */
10148 }
10149
10150 if (badInput)
10151 printf_filtered (_("Usage: stop at <line>\n"));
10152 else
10153 break_command_1 (arg, 0, from_tty);
10154 }
10155
10156 /* The dynamic printf command is mostly like a regular breakpoint, but
10157 with a prewired command list consisting of a single output command,
10158 built from extra arguments supplied on the dprintf command
10159 line. */
10160
10161 static void
10162 dprintf_command (char *arg, int from_tty)
10163 {
10164 create_breakpoint (get_current_arch (),
10165 arg,
10166 NULL, 0, NULL, 1 /* parse arg */,
10167 0, bp_dprintf,
10168 0 /* Ignore count */,
10169 pending_break_support,
10170 &dprintf_breakpoint_ops,
10171 from_tty,
10172 1 /* enabled */,
10173 0 /* internal */,
10174 0);
10175 }
10176
10177 static void
10178 agent_printf_command (char *arg, int from_tty)
10179 {
10180 error (_("May only run agent-printf on the target"));
10181 }
10182
10183 /* Implement the "breakpoint_hit" breakpoint_ops method for
10184 ranged breakpoints. */
10185
10186 static int
10187 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10188 struct address_space *aspace,
10189 CORE_ADDR bp_addr,
10190 const struct target_waitstatus *ws)
10191 {
10192 if (ws->kind != TARGET_WAITKIND_STOPPED
10193 || ws->value.sig != GDB_SIGNAL_TRAP)
10194 return 0;
10195
10196 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10197 bl->length, aspace, bp_addr);
10198 }
10199
10200 /* Implement the "resources_needed" breakpoint_ops method for
10201 ranged breakpoints. */
10202
10203 static int
10204 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10205 {
10206 return target_ranged_break_num_registers ();
10207 }
10208
10209 /* Implement the "print_it" breakpoint_ops method for
10210 ranged breakpoints. */
10211
10212 static enum print_stop_action
10213 print_it_ranged_breakpoint (bpstat bs)
10214 {
10215 struct breakpoint *b = bs->breakpoint_at;
10216 struct bp_location *bl = b->loc;
10217 struct ui_out *uiout = current_uiout;
10218
10219 gdb_assert (b->type == bp_hardware_breakpoint);
10220
10221 /* Ranged breakpoints have only one location. */
10222 gdb_assert (bl && bl->next == NULL);
10223
10224 annotate_breakpoint (b->number);
10225 if (b->disposition == disp_del)
10226 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10227 else
10228 ui_out_text (uiout, "\nRanged breakpoint ");
10229 if (ui_out_is_mi_like_p (uiout))
10230 {
10231 ui_out_field_string (uiout, "reason",
10232 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10233 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10234 }
10235 ui_out_field_int (uiout, "bkptno", b->number);
10236 ui_out_text (uiout, ", ");
10237
10238 return PRINT_SRC_AND_LOC;
10239 }
10240
10241 /* Implement the "print_one" breakpoint_ops method for
10242 ranged breakpoints. */
10243
10244 static void
10245 print_one_ranged_breakpoint (struct breakpoint *b,
10246 struct bp_location **last_loc)
10247 {
10248 struct bp_location *bl = b->loc;
10249 struct value_print_options opts;
10250 struct ui_out *uiout = current_uiout;
10251
10252 /* Ranged breakpoints have only one location. */
10253 gdb_assert (bl && bl->next == NULL);
10254
10255 get_user_print_options (&opts);
10256
10257 if (opts.addressprint)
10258 /* We don't print the address range here, it will be printed later
10259 by print_one_detail_ranged_breakpoint. */
10260 ui_out_field_skip (uiout, "addr");
10261 annotate_field (5);
10262 print_breakpoint_location (b, bl);
10263 *last_loc = bl;
10264 }
10265
10266 /* Implement the "print_one_detail" breakpoint_ops method for
10267 ranged breakpoints. */
10268
10269 static void
10270 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10271 struct ui_out *uiout)
10272 {
10273 CORE_ADDR address_start, address_end;
10274 struct bp_location *bl = b->loc;
10275 struct ui_file *stb = mem_fileopen ();
10276 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10277
10278 gdb_assert (bl);
10279
10280 address_start = bl->address;
10281 address_end = address_start + bl->length - 1;
10282
10283 ui_out_text (uiout, "\taddress range: ");
10284 fprintf_unfiltered (stb, "[%s, %s]",
10285 print_core_address (bl->gdbarch, address_start),
10286 print_core_address (bl->gdbarch, address_end));
10287 ui_out_field_stream (uiout, "addr", stb);
10288 ui_out_text (uiout, "\n");
10289
10290 do_cleanups (cleanup);
10291 }
10292
10293 /* Implement the "print_mention" breakpoint_ops method for
10294 ranged breakpoints. */
10295
10296 static void
10297 print_mention_ranged_breakpoint (struct breakpoint *b)
10298 {
10299 struct bp_location *bl = b->loc;
10300 struct ui_out *uiout = current_uiout;
10301
10302 gdb_assert (bl);
10303 gdb_assert (b->type == bp_hardware_breakpoint);
10304
10305 if (ui_out_is_mi_like_p (uiout))
10306 return;
10307
10308 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10309 b->number, paddress (bl->gdbarch, bl->address),
10310 paddress (bl->gdbarch, bl->address + bl->length - 1));
10311 }
10312
10313 /* Implement the "print_recreate" breakpoint_ops method for
10314 ranged breakpoints. */
10315
10316 static void
10317 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10318 {
10319 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10320 b->addr_string_range_end);
10321 print_recreate_thread (b, fp);
10322 }
10323
10324 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10325
10326 static struct breakpoint_ops ranged_breakpoint_ops;
10327
10328 /* Find the address where the end of the breakpoint range should be
10329 placed, given the SAL of the end of the range. This is so that if
10330 the user provides a line number, the end of the range is set to the
10331 last instruction of the given line. */
10332
10333 static CORE_ADDR
10334 find_breakpoint_range_end (struct symtab_and_line sal)
10335 {
10336 CORE_ADDR end;
10337
10338 /* If the user provided a PC value, use it. Otherwise,
10339 find the address of the end of the given location. */
10340 if (sal.explicit_pc)
10341 end = sal.pc;
10342 else
10343 {
10344 int ret;
10345 CORE_ADDR start;
10346
10347 ret = find_line_pc_range (sal, &start, &end);
10348 if (!ret)
10349 error (_("Could not find location of the end of the range."));
10350
10351 /* find_line_pc_range returns the start of the next line. */
10352 end--;
10353 }
10354
10355 return end;
10356 }
10357
10358 /* Implement the "break-range" CLI command. */
10359
10360 static void
10361 break_range_command (char *arg, int from_tty)
10362 {
10363 char *arg_start, *addr_string_start, *addr_string_end;
10364 struct linespec_result canonical_start, canonical_end;
10365 int bp_count, can_use_bp, length;
10366 CORE_ADDR end;
10367 struct breakpoint *b;
10368 struct symtab_and_line sal_start, sal_end;
10369 struct cleanup *cleanup_bkpt;
10370 struct linespec_sals *lsal_start, *lsal_end;
10371
10372 /* We don't support software ranged breakpoints. */
10373 if (target_ranged_break_num_registers () < 0)
10374 error (_("This target does not support hardware ranged breakpoints."));
10375
10376 bp_count = hw_breakpoint_used_count ();
10377 bp_count += target_ranged_break_num_registers ();
10378 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10379 bp_count, 0);
10380 if (can_use_bp < 0)
10381 error (_("Hardware breakpoints used exceeds limit."));
10382
10383 arg = skip_spaces (arg);
10384 if (arg == NULL || arg[0] == '\0')
10385 error(_("No address range specified."));
10386
10387 init_linespec_result (&canonical_start);
10388
10389 arg_start = arg;
10390 parse_breakpoint_sals (&arg, &canonical_start);
10391
10392 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10393
10394 if (arg[0] != ',')
10395 error (_("Too few arguments."));
10396 else if (VEC_empty (linespec_sals, canonical_start.sals))
10397 error (_("Could not find location of the beginning of the range."));
10398
10399 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10400
10401 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10402 || lsal_start->sals.nelts != 1)
10403 error (_("Cannot create a ranged breakpoint with multiple locations."));
10404
10405 sal_start = lsal_start->sals.sals[0];
10406 addr_string_start = savestring (arg_start, arg - arg_start);
10407 make_cleanup (xfree, addr_string_start);
10408
10409 arg++; /* Skip the comma. */
10410 arg = skip_spaces (arg);
10411
10412 /* Parse the end location. */
10413
10414 init_linespec_result (&canonical_end);
10415 arg_start = arg;
10416
10417 /* We call decode_line_full directly here instead of using
10418 parse_breakpoint_sals because we need to specify the start location's
10419 symtab and line as the default symtab and line for the end of the
10420 range. This makes it possible to have ranges like "foo.c:27, +14",
10421 where +14 means 14 lines from the start location. */
10422 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10423 sal_start.symtab, sal_start.line,
10424 &canonical_end, NULL, NULL);
10425
10426 make_cleanup_destroy_linespec_result (&canonical_end);
10427
10428 if (VEC_empty (linespec_sals, canonical_end.sals))
10429 error (_("Could not find location of the end of the range."));
10430
10431 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10432 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10433 || lsal_end->sals.nelts != 1)
10434 error (_("Cannot create a ranged breakpoint with multiple locations."));
10435
10436 sal_end = lsal_end->sals.sals[0];
10437 addr_string_end = savestring (arg_start, arg - arg_start);
10438 make_cleanup (xfree, addr_string_end);
10439
10440 end = find_breakpoint_range_end (sal_end);
10441 if (sal_start.pc > end)
10442 error (_("Invalid address range, end precedes start."));
10443
10444 length = end - sal_start.pc + 1;
10445 if (length < 0)
10446 /* Length overflowed. */
10447 error (_("Address range too large."));
10448 else if (length == 1)
10449 {
10450 /* This range is simple enough to be handled by
10451 the `hbreak' command. */
10452 hbreak_command (addr_string_start, 1);
10453
10454 do_cleanups (cleanup_bkpt);
10455
10456 return;
10457 }
10458
10459 /* Now set up the breakpoint. */
10460 b = set_raw_breakpoint (get_current_arch (), sal_start,
10461 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10462 set_breakpoint_count (breakpoint_count + 1);
10463 b->number = breakpoint_count;
10464 b->disposition = disp_donttouch;
10465 b->addr_string = xstrdup (addr_string_start);
10466 b->addr_string_range_end = xstrdup (addr_string_end);
10467 b->loc->length = length;
10468
10469 do_cleanups (cleanup_bkpt);
10470
10471 mention (b);
10472 observer_notify_breakpoint_created (b);
10473 update_global_location_list (1);
10474 }
10475
10476 /* Return non-zero if EXP is verified as constant. Returned zero
10477 means EXP is variable. Also the constant detection may fail for
10478 some constant expressions and in such case still falsely return
10479 zero. */
10480
10481 static int
10482 watchpoint_exp_is_const (const struct expression *exp)
10483 {
10484 int i = exp->nelts;
10485
10486 while (i > 0)
10487 {
10488 int oplenp, argsp;
10489
10490 /* We are only interested in the descriptor of each element. */
10491 operator_length (exp, i, &oplenp, &argsp);
10492 i -= oplenp;
10493
10494 switch (exp->elts[i].opcode)
10495 {
10496 case BINOP_ADD:
10497 case BINOP_SUB:
10498 case BINOP_MUL:
10499 case BINOP_DIV:
10500 case BINOP_REM:
10501 case BINOP_MOD:
10502 case BINOP_LSH:
10503 case BINOP_RSH:
10504 case BINOP_LOGICAL_AND:
10505 case BINOP_LOGICAL_OR:
10506 case BINOP_BITWISE_AND:
10507 case BINOP_BITWISE_IOR:
10508 case BINOP_BITWISE_XOR:
10509 case BINOP_EQUAL:
10510 case BINOP_NOTEQUAL:
10511 case BINOP_LESS:
10512 case BINOP_GTR:
10513 case BINOP_LEQ:
10514 case BINOP_GEQ:
10515 case BINOP_REPEAT:
10516 case BINOP_COMMA:
10517 case BINOP_EXP:
10518 case BINOP_MIN:
10519 case BINOP_MAX:
10520 case BINOP_INTDIV:
10521 case BINOP_CONCAT:
10522 case BINOP_IN:
10523 case BINOP_RANGE:
10524 case TERNOP_COND:
10525 case TERNOP_SLICE:
10526
10527 case OP_LONG:
10528 case OP_DOUBLE:
10529 case OP_DECFLOAT:
10530 case OP_LAST:
10531 case OP_COMPLEX:
10532 case OP_STRING:
10533 case OP_ARRAY:
10534 case OP_TYPE:
10535 case OP_TYPEOF:
10536 case OP_DECLTYPE:
10537 case OP_TYPEID:
10538 case OP_NAME:
10539 case OP_OBJC_NSSTRING:
10540
10541 case UNOP_NEG:
10542 case UNOP_LOGICAL_NOT:
10543 case UNOP_COMPLEMENT:
10544 case UNOP_ADDR:
10545 case UNOP_HIGH:
10546 case UNOP_CAST:
10547
10548 case UNOP_CAST_TYPE:
10549 case UNOP_REINTERPRET_CAST:
10550 case UNOP_DYNAMIC_CAST:
10551 /* Unary, binary and ternary operators: We have to check
10552 their operands. If they are constant, then so is the
10553 result of that operation. For instance, if A and B are
10554 determined to be constants, then so is "A + B".
10555
10556 UNOP_IND is one exception to the rule above, because the
10557 value of *ADDR is not necessarily a constant, even when
10558 ADDR is. */
10559 break;
10560
10561 case OP_VAR_VALUE:
10562 /* Check whether the associated symbol is a constant.
10563
10564 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10565 possible that a buggy compiler could mark a variable as
10566 constant even when it is not, and TYPE_CONST would return
10567 true in this case, while SYMBOL_CLASS wouldn't.
10568
10569 We also have to check for function symbols because they
10570 are always constant. */
10571 {
10572 struct symbol *s = exp->elts[i + 2].symbol;
10573
10574 if (SYMBOL_CLASS (s) != LOC_BLOCK
10575 && SYMBOL_CLASS (s) != LOC_CONST
10576 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10577 return 0;
10578 break;
10579 }
10580
10581 /* The default action is to return 0 because we are using
10582 the optimistic approach here: If we don't know something,
10583 then it is not a constant. */
10584 default:
10585 return 0;
10586 }
10587 }
10588
10589 return 1;
10590 }
10591
10592 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10593
10594 static void
10595 dtor_watchpoint (struct breakpoint *self)
10596 {
10597 struct watchpoint *w = (struct watchpoint *) self;
10598
10599 xfree (w->cond_exp);
10600 xfree (w->exp);
10601 xfree (w->exp_string);
10602 xfree (w->exp_string_reparse);
10603 value_free (w->val);
10604
10605 base_breakpoint_ops.dtor (self);
10606 }
10607
10608 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10609
10610 static void
10611 re_set_watchpoint (struct breakpoint *b)
10612 {
10613 struct watchpoint *w = (struct watchpoint *) b;
10614
10615 /* Watchpoint can be either on expression using entirely global
10616 variables, or it can be on local variables.
10617
10618 Watchpoints of the first kind are never auto-deleted, and even
10619 persist across program restarts. Since they can use variables
10620 from shared libraries, we need to reparse expression as libraries
10621 are loaded and unloaded.
10622
10623 Watchpoints on local variables can also change meaning as result
10624 of solib event. For example, if a watchpoint uses both a local
10625 and a global variables in expression, it's a local watchpoint,
10626 but unloading of a shared library will make the expression
10627 invalid. This is not a very common use case, but we still
10628 re-evaluate expression, to avoid surprises to the user.
10629
10630 Note that for local watchpoints, we re-evaluate it only if
10631 watchpoints frame id is still valid. If it's not, it means the
10632 watchpoint is out of scope and will be deleted soon. In fact,
10633 I'm not sure we'll ever be called in this case.
10634
10635 If a local watchpoint's frame id is still valid, then
10636 w->exp_valid_block is likewise valid, and we can safely use it.
10637
10638 Don't do anything about disabled watchpoints, since they will be
10639 reevaluated again when enabled. */
10640 update_watchpoint (w, 1 /* reparse */);
10641 }
10642
10643 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10644
10645 static int
10646 insert_watchpoint (struct bp_location *bl)
10647 {
10648 struct watchpoint *w = (struct watchpoint *) bl->owner;
10649 int length = w->exact ? 1 : bl->length;
10650
10651 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10652 w->cond_exp);
10653 }
10654
10655 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10656
10657 static int
10658 remove_watchpoint (struct bp_location *bl)
10659 {
10660 struct watchpoint *w = (struct watchpoint *) bl->owner;
10661 int length = w->exact ? 1 : bl->length;
10662
10663 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10664 w->cond_exp);
10665 }
10666
10667 static int
10668 breakpoint_hit_watchpoint (const struct bp_location *bl,
10669 struct address_space *aspace, CORE_ADDR bp_addr,
10670 const struct target_waitstatus *ws)
10671 {
10672 struct breakpoint *b = bl->owner;
10673 struct watchpoint *w = (struct watchpoint *) b;
10674
10675 /* Continuable hardware watchpoints are treated as non-existent if the
10676 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10677 some data address). Otherwise gdb won't stop on a break instruction
10678 in the code (not from a breakpoint) when a hardware watchpoint has
10679 been defined. Also skip watchpoints which we know did not trigger
10680 (did not match the data address). */
10681 if (is_hardware_watchpoint (b)
10682 && w->watchpoint_triggered == watch_triggered_no)
10683 return 0;
10684
10685 return 1;
10686 }
10687
10688 static void
10689 check_status_watchpoint (bpstat bs)
10690 {
10691 gdb_assert (is_watchpoint (bs->breakpoint_at));
10692
10693 bpstat_check_watchpoint (bs);
10694 }
10695
10696 /* Implement the "resources_needed" breakpoint_ops method for
10697 hardware watchpoints. */
10698
10699 static int
10700 resources_needed_watchpoint (const struct bp_location *bl)
10701 {
10702 struct watchpoint *w = (struct watchpoint *) bl->owner;
10703 int length = w->exact? 1 : bl->length;
10704
10705 return target_region_ok_for_hw_watchpoint (bl->address, length);
10706 }
10707
10708 /* Implement the "works_in_software_mode" breakpoint_ops method for
10709 hardware watchpoints. */
10710
10711 static int
10712 works_in_software_mode_watchpoint (const struct breakpoint *b)
10713 {
10714 /* Read and access watchpoints only work with hardware support. */
10715 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10716 }
10717
10718 static enum print_stop_action
10719 print_it_watchpoint (bpstat bs)
10720 {
10721 struct cleanup *old_chain;
10722 struct breakpoint *b;
10723 struct ui_file *stb;
10724 enum print_stop_action result;
10725 struct watchpoint *w;
10726 struct ui_out *uiout = current_uiout;
10727
10728 gdb_assert (bs->bp_location_at != NULL);
10729
10730 b = bs->breakpoint_at;
10731 w = (struct watchpoint *) b;
10732
10733 stb = mem_fileopen ();
10734 old_chain = make_cleanup_ui_file_delete (stb);
10735
10736 switch (b->type)
10737 {
10738 case bp_watchpoint:
10739 case bp_hardware_watchpoint:
10740 annotate_watchpoint (b->number);
10741 if (ui_out_is_mi_like_p (uiout))
10742 ui_out_field_string
10743 (uiout, "reason",
10744 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10745 mention (b);
10746 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10747 ui_out_text (uiout, "\nOld value = ");
10748 watchpoint_value_print (bs->old_val, stb);
10749 ui_out_field_stream (uiout, "old", stb);
10750 ui_out_text (uiout, "\nNew value = ");
10751 watchpoint_value_print (w->val, stb);
10752 ui_out_field_stream (uiout, "new", stb);
10753 ui_out_text (uiout, "\n");
10754 /* More than one watchpoint may have been triggered. */
10755 result = PRINT_UNKNOWN;
10756 break;
10757
10758 case bp_read_watchpoint:
10759 if (ui_out_is_mi_like_p (uiout))
10760 ui_out_field_string
10761 (uiout, "reason",
10762 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10763 mention (b);
10764 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10765 ui_out_text (uiout, "\nValue = ");
10766 watchpoint_value_print (w->val, stb);
10767 ui_out_field_stream (uiout, "value", stb);
10768 ui_out_text (uiout, "\n");
10769 result = PRINT_UNKNOWN;
10770 break;
10771
10772 case bp_access_watchpoint:
10773 if (bs->old_val != NULL)
10774 {
10775 annotate_watchpoint (b->number);
10776 if (ui_out_is_mi_like_p (uiout))
10777 ui_out_field_string
10778 (uiout, "reason",
10779 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10780 mention (b);
10781 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10782 ui_out_text (uiout, "\nOld value = ");
10783 watchpoint_value_print (bs->old_val, stb);
10784 ui_out_field_stream (uiout, "old", stb);
10785 ui_out_text (uiout, "\nNew value = ");
10786 }
10787 else
10788 {
10789 mention (b);
10790 if (ui_out_is_mi_like_p (uiout))
10791 ui_out_field_string
10792 (uiout, "reason",
10793 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10794 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10795 ui_out_text (uiout, "\nValue = ");
10796 }
10797 watchpoint_value_print (w->val, stb);
10798 ui_out_field_stream (uiout, "new", stb);
10799 ui_out_text (uiout, "\n");
10800 result = PRINT_UNKNOWN;
10801 break;
10802 default:
10803 result = PRINT_UNKNOWN;
10804 }
10805
10806 do_cleanups (old_chain);
10807 return result;
10808 }
10809
10810 /* Implement the "print_mention" breakpoint_ops method for hardware
10811 watchpoints. */
10812
10813 static void
10814 print_mention_watchpoint (struct breakpoint *b)
10815 {
10816 struct cleanup *ui_out_chain;
10817 struct watchpoint *w = (struct watchpoint *) b;
10818 struct ui_out *uiout = current_uiout;
10819
10820 switch (b->type)
10821 {
10822 case bp_watchpoint:
10823 ui_out_text (uiout, "Watchpoint ");
10824 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10825 break;
10826 case bp_hardware_watchpoint:
10827 ui_out_text (uiout, "Hardware watchpoint ");
10828 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10829 break;
10830 case bp_read_watchpoint:
10831 ui_out_text (uiout, "Hardware read watchpoint ");
10832 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10833 break;
10834 case bp_access_watchpoint:
10835 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10836 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10837 break;
10838 default:
10839 internal_error (__FILE__, __LINE__,
10840 _("Invalid hardware watchpoint type."));
10841 }
10842
10843 ui_out_field_int (uiout, "number", b->number);
10844 ui_out_text (uiout, ": ");
10845 ui_out_field_string (uiout, "exp", w->exp_string);
10846 do_cleanups (ui_out_chain);
10847 }
10848
10849 /* Implement the "print_recreate" breakpoint_ops method for
10850 watchpoints. */
10851
10852 static void
10853 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10854 {
10855 struct watchpoint *w = (struct watchpoint *) b;
10856
10857 switch (b->type)
10858 {
10859 case bp_watchpoint:
10860 case bp_hardware_watchpoint:
10861 fprintf_unfiltered (fp, "watch");
10862 break;
10863 case bp_read_watchpoint:
10864 fprintf_unfiltered (fp, "rwatch");
10865 break;
10866 case bp_access_watchpoint:
10867 fprintf_unfiltered (fp, "awatch");
10868 break;
10869 default:
10870 internal_error (__FILE__, __LINE__,
10871 _("Invalid watchpoint type."));
10872 }
10873
10874 fprintf_unfiltered (fp, " %s", w->exp_string);
10875 print_recreate_thread (b, fp);
10876 }
10877
10878 /* Implement the "explains_signal" breakpoint_ops method for
10879 watchpoints. */
10880
10881 static int
10882 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10883 {
10884 /* A software watchpoint cannot cause a signal other than
10885 GDB_SIGNAL_TRAP. */
10886 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10887 return 0;
10888
10889 return 1;
10890 }
10891
10892 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10893
10894 static struct breakpoint_ops watchpoint_breakpoint_ops;
10895
10896 /* Implement the "insert" breakpoint_ops method for
10897 masked hardware watchpoints. */
10898
10899 static int
10900 insert_masked_watchpoint (struct bp_location *bl)
10901 {
10902 struct watchpoint *w = (struct watchpoint *) bl->owner;
10903
10904 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10905 bl->watchpoint_type);
10906 }
10907
10908 /* Implement the "remove" breakpoint_ops method for
10909 masked hardware watchpoints. */
10910
10911 static int
10912 remove_masked_watchpoint (struct bp_location *bl)
10913 {
10914 struct watchpoint *w = (struct watchpoint *) bl->owner;
10915
10916 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10917 bl->watchpoint_type);
10918 }
10919
10920 /* Implement the "resources_needed" breakpoint_ops method for
10921 masked hardware watchpoints. */
10922
10923 static int
10924 resources_needed_masked_watchpoint (const struct bp_location *bl)
10925 {
10926 struct watchpoint *w = (struct watchpoint *) bl->owner;
10927
10928 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10929 }
10930
10931 /* Implement the "works_in_software_mode" breakpoint_ops method for
10932 masked hardware watchpoints. */
10933
10934 static int
10935 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10936 {
10937 return 0;
10938 }
10939
10940 /* Implement the "print_it" breakpoint_ops method for
10941 masked hardware watchpoints. */
10942
10943 static enum print_stop_action
10944 print_it_masked_watchpoint (bpstat bs)
10945 {
10946 struct breakpoint *b = bs->breakpoint_at;
10947 struct ui_out *uiout = current_uiout;
10948
10949 /* Masked watchpoints have only one location. */
10950 gdb_assert (b->loc && b->loc->next == NULL);
10951
10952 switch (b->type)
10953 {
10954 case bp_hardware_watchpoint:
10955 annotate_watchpoint (b->number);
10956 if (ui_out_is_mi_like_p (uiout))
10957 ui_out_field_string
10958 (uiout, "reason",
10959 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10960 break;
10961
10962 case bp_read_watchpoint:
10963 if (ui_out_is_mi_like_p (uiout))
10964 ui_out_field_string
10965 (uiout, "reason",
10966 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10967 break;
10968
10969 case bp_access_watchpoint:
10970 if (ui_out_is_mi_like_p (uiout))
10971 ui_out_field_string
10972 (uiout, "reason",
10973 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10974 break;
10975 default:
10976 internal_error (__FILE__, __LINE__,
10977 _("Invalid hardware watchpoint type."));
10978 }
10979
10980 mention (b);
10981 ui_out_text (uiout, _("\n\
10982 Check the underlying instruction at PC for the memory\n\
10983 address and value which triggered this watchpoint.\n"));
10984 ui_out_text (uiout, "\n");
10985
10986 /* More than one watchpoint may have been triggered. */
10987 return PRINT_UNKNOWN;
10988 }
10989
10990 /* Implement the "print_one_detail" breakpoint_ops method for
10991 masked hardware watchpoints. */
10992
10993 static void
10994 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10995 struct ui_out *uiout)
10996 {
10997 struct watchpoint *w = (struct watchpoint *) b;
10998
10999 /* Masked watchpoints have only one location. */
11000 gdb_assert (b->loc && b->loc->next == NULL);
11001
11002 ui_out_text (uiout, "\tmask ");
11003 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11004 ui_out_text (uiout, "\n");
11005 }
11006
11007 /* Implement the "print_mention" breakpoint_ops method for
11008 masked hardware watchpoints. */
11009
11010 static void
11011 print_mention_masked_watchpoint (struct breakpoint *b)
11012 {
11013 struct watchpoint *w = (struct watchpoint *) b;
11014 struct ui_out *uiout = current_uiout;
11015 struct cleanup *ui_out_chain;
11016
11017 switch (b->type)
11018 {
11019 case bp_hardware_watchpoint:
11020 ui_out_text (uiout, "Masked hardware watchpoint ");
11021 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11022 break;
11023 case bp_read_watchpoint:
11024 ui_out_text (uiout, "Masked hardware read watchpoint ");
11025 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11026 break;
11027 case bp_access_watchpoint:
11028 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11029 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11030 break;
11031 default:
11032 internal_error (__FILE__, __LINE__,
11033 _("Invalid hardware watchpoint type."));
11034 }
11035
11036 ui_out_field_int (uiout, "number", b->number);
11037 ui_out_text (uiout, ": ");
11038 ui_out_field_string (uiout, "exp", w->exp_string);
11039 do_cleanups (ui_out_chain);
11040 }
11041
11042 /* Implement the "print_recreate" breakpoint_ops method for
11043 masked hardware watchpoints. */
11044
11045 static void
11046 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11047 {
11048 struct watchpoint *w = (struct watchpoint *) b;
11049 char tmp[40];
11050
11051 switch (b->type)
11052 {
11053 case bp_hardware_watchpoint:
11054 fprintf_unfiltered (fp, "watch");
11055 break;
11056 case bp_read_watchpoint:
11057 fprintf_unfiltered (fp, "rwatch");
11058 break;
11059 case bp_access_watchpoint:
11060 fprintf_unfiltered (fp, "awatch");
11061 break;
11062 default:
11063 internal_error (__FILE__, __LINE__,
11064 _("Invalid hardware watchpoint type."));
11065 }
11066
11067 sprintf_vma (tmp, w->hw_wp_mask);
11068 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11069 print_recreate_thread (b, fp);
11070 }
11071
11072 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11073
11074 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11075
11076 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11077
11078 static int
11079 is_masked_watchpoint (const struct breakpoint *b)
11080 {
11081 return b->ops == &masked_watchpoint_breakpoint_ops;
11082 }
11083
11084 /* accessflag: hw_write: watch write,
11085 hw_read: watch read,
11086 hw_access: watch access (read or write) */
11087 static void
11088 watch_command_1 (const char *arg, int accessflag, int from_tty,
11089 int just_location, int internal)
11090 {
11091 volatile struct gdb_exception e;
11092 struct breakpoint *b, *scope_breakpoint = NULL;
11093 struct expression *exp;
11094 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11095 struct value *val, *mark, *result;
11096 struct frame_info *frame;
11097 const char *exp_start = NULL;
11098 const char *exp_end = NULL;
11099 const char *tok, *end_tok;
11100 int toklen = -1;
11101 const char *cond_start = NULL;
11102 const char *cond_end = NULL;
11103 enum bptype bp_type;
11104 int thread = -1;
11105 int pc = 0;
11106 /* Flag to indicate whether we are going to use masks for
11107 the hardware watchpoint. */
11108 int use_mask = 0;
11109 CORE_ADDR mask = 0;
11110 struct watchpoint *w;
11111 char *expression;
11112 struct cleanup *back_to;
11113
11114 /* Make sure that we actually have parameters to parse. */
11115 if (arg != NULL && arg[0] != '\0')
11116 {
11117 const char *value_start;
11118
11119 exp_end = arg + strlen (arg);
11120
11121 /* Look for "parameter value" pairs at the end
11122 of the arguments string. */
11123 for (tok = exp_end - 1; tok > arg; tok--)
11124 {
11125 /* Skip whitespace at the end of the argument list. */
11126 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11127 tok--;
11128
11129 /* Find the beginning of the last token.
11130 This is the value of the parameter. */
11131 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11132 tok--;
11133 value_start = tok + 1;
11134
11135 /* Skip whitespace. */
11136 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11137 tok--;
11138
11139 end_tok = tok;
11140
11141 /* Find the beginning of the second to last token.
11142 This is the parameter itself. */
11143 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11144 tok--;
11145 tok++;
11146 toklen = end_tok - tok + 1;
11147
11148 if (toklen == 6 && !strncmp (tok, "thread", 6))
11149 {
11150 /* At this point we've found a "thread" token, which means
11151 the user is trying to set a watchpoint that triggers
11152 only in a specific thread. */
11153 char *endp;
11154
11155 if (thread != -1)
11156 error(_("You can specify only one thread."));
11157
11158 /* Extract the thread ID from the next token. */
11159 thread = strtol (value_start, &endp, 0);
11160
11161 /* Check if the user provided a valid numeric value for the
11162 thread ID. */
11163 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11164 error (_("Invalid thread ID specification %s."), value_start);
11165
11166 /* Check if the thread actually exists. */
11167 if (!valid_thread_id (thread))
11168 invalid_thread_id_error (thread);
11169 }
11170 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11171 {
11172 /* We've found a "mask" token, which means the user wants to
11173 create a hardware watchpoint that is going to have the mask
11174 facility. */
11175 struct value *mask_value, *mark;
11176
11177 if (use_mask)
11178 error(_("You can specify only one mask."));
11179
11180 use_mask = just_location = 1;
11181
11182 mark = value_mark ();
11183 mask_value = parse_to_comma_and_eval (&value_start);
11184 mask = value_as_address (mask_value);
11185 value_free_to_mark (mark);
11186 }
11187 else
11188 /* We didn't recognize what we found. We should stop here. */
11189 break;
11190
11191 /* Truncate the string and get rid of the "parameter value" pair before
11192 the arguments string is parsed by the parse_exp_1 function. */
11193 exp_end = tok;
11194 }
11195 }
11196 else
11197 exp_end = arg;
11198
11199 /* Parse the rest of the arguments. From here on out, everything
11200 is in terms of a newly allocated string instead of the original
11201 ARG. */
11202 innermost_block = NULL;
11203 expression = savestring (arg, exp_end - arg);
11204 back_to = make_cleanup (xfree, expression);
11205 exp_start = arg = expression;
11206 exp = parse_exp_1 (&arg, 0, 0, 0);
11207 exp_end = arg;
11208 /* Remove trailing whitespace from the expression before saving it.
11209 This makes the eventual display of the expression string a bit
11210 prettier. */
11211 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11212 --exp_end;
11213
11214 /* Checking if the expression is not constant. */
11215 if (watchpoint_exp_is_const (exp))
11216 {
11217 int len;
11218
11219 len = exp_end - exp_start;
11220 while (len > 0 && isspace (exp_start[len - 1]))
11221 len--;
11222 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11223 }
11224
11225 exp_valid_block = innermost_block;
11226 mark = value_mark ();
11227 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11228
11229 if (just_location)
11230 {
11231 int ret;
11232
11233 exp_valid_block = NULL;
11234 val = value_addr (result);
11235 release_value (val);
11236 value_free_to_mark (mark);
11237
11238 if (use_mask)
11239 {
11240 ret = target_masked_watch_num_registers (value_as_address (val),
11241 mask);
11242 if (ret == -1)
11243 error (_("This target does not support masked watchpoints."));
11244 else if (ret == -2)
11245 error (_("Invalid mask or memory region."));
11246 }
11247 }
11248 else if (val != NULL)
11249 release_value (val);
11250
11251 tok = skip_spaces_const (arg);
11252 end_tok = skip_to_space_const (tok);
11253
11254 toklen = end_tok - tok;
11255 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11256 {
11257 struct expression *cond;
11258
11259 innermost_block = NULL;
11260 tok = cond_start = end_tok + 1;
11261 cond = parse_exp_1 (&tok, 0, 0, 0);
11262
11263 /* The watchpoint expression may not be local, but the condition
11264 may still be. E.g.: `watch global if local > 0'. */
11265 cond_exp_valid_block = innermost_block;
11266
11267 xfree (cond);
11268 cond_end = tok;
11269 }
11270 if (*tok)
11271 error (_("Junk at end of command."));
11272
11273 frame = block_innermost_frame (exp_valid_block);
11274
11275 /* If the expression is "local", then set up a "watchpoint scope"
11276 breakpoint at the point where we've left the scope of the watchpoint
11277 expression. Create the scope breakpoint before the watchpoint, so
11278 that we will encounter it first in bpstat_stop_status. */
11279 if (exp_valid_block && frame)
11280 {
11281 if (frame_id_p (frame_unwind_caller_id (frame)))
11282 {
11283 scope_breakpoint
11284 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11285 frame_unwind_caller_pc (frame),
11286 bp_watchpoint_scope,
11287 &momentary_breakpoint_ops);
11288
11289 scope_breakpoint->enable_state = bp_enabled;
11290
11291 /* Automatically delete the breakpoint when it hits. */
11292 scope_breakpoint->disposition = disp_del;
11293
11294 /* Only break in the proper frame (help with recursion). */
11295 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11296
11297 /* Set the address at which we will stop. */
11298 scope_breakpoint->loc->gdbarch
11299 = frame_unwind_caller_arch (frame);
11300 scope_breakpoint->loc->requested_address
11301 = frame_unwind_caller_pc (frame);
11302 scope_breakpoint->loc->address
11303 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11304 scope_breakpoint->loc->requested_address,
11305 scope_breakpoint->type);
11306 }
11307 }
11308
11309 /* Now set up the breakpoint. We create all watchpoints as hardware
11310 watchpoints here even if hardware watchpoints are turned off, a call
11311 to update_watchpoint later in this function will cause the type to
11312 drop back to bp_watchpoint (software watchpoint) if required. */
11313
11314 if (accessflag == hw_read)
11315 bp_type = bp_read_watchpoint;
11316 else if (accessflag == hw_access)
11317 bp_type = bp_access_watchpoint;
11318 else
11319 bp_type = bp_hardware_watchpoint;
11320
11321 w = XCNEW (struct watchpoint);
11322 b = &w->base;
11323 if (use_mask)
11324 init_raw_breakpoint_without_location (b, NULL, bp_type,
11325 &masked_watchpoint_breakpoint_ops);
11326 else
11327 init_raw_breakpoint_without_location (b, NULL, bp_type,
11328 &watchpoint_breakpoint_ops);
11329 b->thread = thread;
11330 b->disposition = disp_donttouch;
11331 b->pspace = current_program_space;
11332 w->exp = exp;
11333 w->exp_valid_block = exp_valid_block;
11334 w->cond_exp_valid_block = cond_exp_valid_block;
11335 if (just_location)
11336 {
11337 struct type *t = value_type (val);
11338 CORE_ADDR addr = value_as_address (val);
11339 char *name;
11340
11341 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11342 name = type_to_string (t);
11343
11344 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11345 core_addr_to_string (addr));
11346 xfree (name);
11347
11348 w->exp_string = xstrprintf ("-location %.*s",
11349 (int) (exp_end - exp_start), exp_start);
11350
11351 /* The above expression is in C. */
11352 b->language = language_c;
11353 }
11354 else
11355 w->exp_string = savestring (exp_start, exp_end - exp_start);
11356
11357 if (use_mask)
11358 {
11359 w->hw_wp_mask = mask;
11360 }
11361 else
11362 {
11363 w->val = val;
11364 w->val_valid = 1;
11365 }
11366
11367 if (cond_start)
11368 b->cond_string = savestring (cond_start, cond_end - cond_start);
11369 else
11370 b->cond_string = 0;
11371
11372 if (frame)
11373 {
11374 w->watchpoint_frame = get_frame_id (frame);
11375 w->watchpoint_thread = inferior_ptid;
11376 }
11377 else
11378 {
11379 w->watchpoint_frame = null_frame_id;
11380 w->watchpoint_thread = null_ptid;
11381 }
11382
11383 if (scope_breakpoint != NULL)
11384 {
11385 /* The scope breakpoint is related to the watchpoint. We will
11386 need to act on them together. */
11387 b->related_breakpoint = scope_breakpoint;
11388 scope_breakpoint->related_breakpoint = b;
11389 }
11390
11391 if (!just_location)
11392 value_free_to_mark (mark);
11393
11394 TRY_CATCH (e, RETURN_MASK_ALL)
11395 {
11396 /* Finally update the new watchpoint. This creates the locations
11397 that should be inserted. */
11398 update_watchpoint (w, 1);
11399 }
11400 if (e.reason < 0)
11401 {
11402 delete_breakpoint (b);
11403 throw_exception (e);
11404 }
11405
11406 install_breakpoint (internal, b, 1);
11407 do_cleanups (back_to);
11408 }
11409
11410 /* Return count of debug registers needed to watch the given expression.
11411 If the watchpoint cannot be handled in hardware return zero. */
11412
11413 static int
11414 can_use_hardware_watchpoint (struct value *v)
11415 {
11416 int found_memory_cnt = 0;
11417 struct value *head = v;
11418
11419 /* Did the user specifically forbid us to use hardware watchpoints? */
11420 if (!can_use_hw_watchpoints)
11421 return 0;
11422
11423 /* Make sure that the value of the expression depends only upon
11424 memory contents, and values computed from them within GDB. If we
11425 find any register references or function calls, we can't use a
11426 hardware watchpoint.
11427
11428 The idea here is that evaluating an expression generates a series
11429 of values, one holding the value of every subexpression. (The
11430 expression a*b+c has five subexpressions: a, b, a*b, c, and
11431 a*b+c.) GDB's values hold almost enough information to establish
11432 the criteria given above --- they identify memory lvalues,
11433 register lvalues, computed values, etcetera. So we can evaluate
11434 the expression, and then scan the chain of values that leaves
11435 behind to decide whether we can detect any possible change to the
11436 expression's final value using only hardware watchpoints.
11437
11438 However, I don't think that the values returned by inferior
11439 function calls are special in any way. So this function may not
11440 notice that an expression involving an inferior function call
11441 can't be watched with hardware watchpoints. FIXME. */
11442 for (; v; v = value_next (v))
11443 {
11444 if (VALUE_LVAL (v) == lval_memory)
11445 {
11446 if (v != head && value_lazy (v))
11447 /* A lazy memory lvalue in the chain is one that GDB never
11448 needed to fetch; we either just used its address (e.g.,
11449 `a' in `a.b') or we never needed it at all (e.g., `a'
11450 in `a,b'). This doesn't apply to HEAD; if that is
11451 lazy then it was not readable, but watch it anyway. */
11452 ;
11453 else
11454 {
11455 /* Ahh, memory we actually used! Check if we can cover
11456 it with hardware watchpoints. */
11457 struct type *vtype = check_typedef (value_type (v));
11458
11459 /* We only watch structs and arrays if user asked for it
11460 explicitly, never if they just happen to appear in a
11461 middle of some value chain. */
11462 if (v == head
11463 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11464 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11465 {
11466 CORE_ADDR vaddr = value_address (v);
11467 int len;
11468 int num_regs;
11469
11470 len = (target_exact_watchpoints
11471 && is_scalar_type_recursive (vtype))?
11472 1 : TYPE_LENGTH (value_type (v));
11473
11474 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11475 if (!num_regs)
11476 return 0;
11477 else
11478 found_memory_cnt += num_regs;
11479 }
11480 }
11481 }
11482 else if (VALUE_LVAL (v) != not_lval
11483 && deprecated_value_modifiable (v) == 0)
11484 return 0; /* These are values from the history (e.g., $1). */
11485 else if (VALUE_LVAL (v) == lval_register)
11486 return 0; /* Cannot watch a register with a HW watchpoint. */
11487 }
11488
11489 /* The expression itself looks suitable for using a hardware
11490 watchpoint, but give the target machine a chance to reject it. */
11491 return found_memory_cnt;
11492 }
11493
11494 void
11495 watch_command_wrapper (char *arg, int from_tty, int internal)
11496 {
11497 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11498 }
11499
11500 /* A helper function that looks for the "-location" argument and then
11501 calls watch_command_1. */
11502
11503 static void
11504 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11505 {
11506 int just_location = 0;
11507
11508 if (arg
11509 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11510 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11511 {
11512 arg = skip_spaces (arg);
11513 just_location = 1;
11514 }
11515
11516 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11517 }
11518
11519 static void
11520 watch_command (char *arg, int from_tty)
11521 {
11522 watch_maybe_just_location (arg, hw_write, from_tty);
11523 }
11524
11525 void
11526 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11527 {
11528 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11529 }
11530
11531 static void
11532 rwatch_command (char *arg, int from_tty)
11533 {
11534 watch_maybe_just_location (arg, hw_read, from_tty);
11535 }
11536
11537 void
11538 awatch_command_wrapper (char *arg, int from_tty, int internal)
11539 {
11540 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11541 }
11542
11543 static void
11544 awatch_command (char *arg, int from_tty)
11545 {
11546 watch_maybe_just_location (arg, hw_access, from_tty);
11547 }
11548 \f
11549
11550 /* Helper routines for the until_command routine in infcmd.c. Here
11551 because it uses the mechanisms of breakpoints. */
11552
11553 struct until_break_command_continuation_args
11554 {
11555 struct breakpoint *breakpoint;
11556 struct breakpoint *breakpoint2;
11557 int thread_num;
11558 };
11559
11560 /* This function is called by fetch_inferior_event via the
11561 cmd_continuation pointer, to complete the until command. It takes
11562 care of cleaning up the temporary breakpoints set up by the until
11563 command. */
11564 static void
11565 until_break_command_continuation (void *arg, int err)
11566 {
11567 struct until_break_command_continuation_args *a = arg;
11568
11569 delete_breakpoint (a->breakpoint);
11570 if (a->breakpoint2)
11571 delete_breakpoint (a->breakpoint2);
11572 delete_longjmp_breakpoint (a->thread_num);
11573 }
11574
11575 void
11576 until_break_command (char *arg, int from_tty, int anywhere)
11577 {
11578 struct symtabs_and_lines sals;
11579 struct symtab_and_line sal;
11580 struct frame_info *frame;
11581 struct gdbarch *frame_gdbarch;
11582 struct frame_id stack_frame_id;
11583 struct frame_id caller_frame_id;
11584 struct breakpoint *breakpoint;
11585 struct breakpoint *breakpoint2 = NULL;
11586 struct cleanup *old_chain;
11587 int thread;
11588 struct thread_info *tp;
11589
11590 clear_proceed_status ();
11591
11592 /* Set a breakpoint where the user wants it and at return from
11593 this function. */
11594
11595 if (last_displayed_sal_is_valid ())
11596 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11597 get_last_displayed_symtab (),
11598 get_last_displayed_line ());
11599 else
11600 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11601 (struct symtab *) NULL, 0);
11602
11603 if (sals.nelts != 1)
11604 error (_("Couldn't get information on specified line."));
11605
11606 sal = sals.sals[0];
11607 xfree (sals.sals); /* malloc'd, so freed. */
11608
11609 if (*arg)
11610 error (_("Junk at end of arguments."));
11611
11612 resolve_sal_pc (&sal);
11613
11614 tp = inferior_thread ();
11615 thread = tp->num;
11616
11617 old_chain = make_cleanup (null_cleanup, NULL);
11618
11619 /* Note linespec handling above invalidates the frame chain.
11620 Installing a breakpoint also invalidates the frame chain (as it
11621 may need to switch threads), so do any frame handling before
11622 that. */
11623
11624 frame = get_selected_frame (NULL);
11625 frame_gdbarch = get_frame_arch (frame);
11626 stack_frame_id = get_stack_frame_id (frame);
11627 caller_frame_id = frame_unwind_caller_id (frame);
11628
11629 /* Keep within the current frame, or in frames called by the current
11630 one. */
11631
11632 if (frame_id_p (caller_frame_id))
11633 {
11634 struct symtab_and_line sal2;
11635
11636 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11637 sal2.pc = frame_unwind_caller_pc (frame);
11638 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11639 sal2,
11640 caller_frame_id,
11641 bp_until);
11642 make_cleanup_delete_breakpoint (breakpoint2);
11643
11644 set_longjmp_breakpoint (tp, caller_frame_id);
11645 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11646 }
11647
11648 /* set_momentary_breakpoint could invalidate FRAME. */
11649 frame = NULL;
11650
11651 if (anywhere)
11652 /* If the user told us to continue until a specified location,
11653 we don't specify a frame at which we need to stop. */
11654 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11655 null_frame_id, bp_until);
11656 else
11657 /* Otherwise, specify the selected frame, because we want to stop
11658 only at the very same frame. */
11659 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11660 stack_frame_id, bp_until);
11661 make_cleanup_delete_breakpoint (breakpoint);
11662
11663 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11664
11665 /* If we are running asynchronously, and proceed call above has
11666 actually managed to start the target, arrange for breakpoints to
11667 be deleted when the target stops. Otherwise, we're already
11668 stopped and delete breakpoints via cleanup chain. */
11669
11670 if (target_can_async_p () && is_running (inferior_ptid))
11671 {
11672 struct until_break_command_continuation_args *args;
11673 args = xmalloc (sizeof (*args));
11674
11675 args->breakpoint = breakpoint;
11676 args->breakpoint2 = breakpoint2;
11677 args->thread_num = thread;
11678
11679 discard_cleanups (old_chain);
11680 add_continuation (inferior_thread (),
11681 until_break_command_continuation, args,
11682 xfree);
11683 }
11684 else
11685 do_cleanups (old_chain);
11686 }
11687
11688 /* This function attempts to parse an optional "if <cond>" clause
11689 from the arg string. If one is not found, it returns NULL.
11690
11691 Else, it returns a pointer to the condition string. (It does not
11692 attempt to evaluate the string against a particular block.) And,
11693 it updates arg to point to the first character following the parsed
11694 if clause in the arg string. */
11695
11696 char *
11697 ep_parse_optional_if_clause (char **arg)
11698 {
11699 char *cond_string;
11700
11701 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11702 return NULL;
11703
11704 /* Skip the "if" keyword. */
11705 (*arg) += 2;
11706
11707 /* Skip any extra leading whitespace, and record the start of the
11708 condition string. */
11709 *arg = skip_spaces (*arg);
11710 cond_string = *arg;
11711
11712 /* Assume that the condition occupies the remainder of the arg
11713 string. */
11714 (*arg) += strlen (cond_string);
11715
11716 return cond_string;
11717 }
11718
11719 /* Commands to deal with catching events, such as signals, exceptions,
11720 process start/exit, etc. */
11721
11722 typedef enum
11723 {
11724 catch_fork_temporary, catch_vfork_temporary,
11725 catch_fork_permanent, catch_vfork_permanent
11726 }
11727 catch_fork_kind;
11728
11729 static void
11730 catch_fork_command_1 (char *arg, int from_tty,
11731 struct cmd_list_element *command)
11732 {
11733 struct gdbarch *gdbarch = get_current_arch ();
11734 char *cond_string = NULL;
11735 catch_fork_kind fork_kind;
11736 int tempflag;
11737
11738 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11739 tempflag = (fork_kind == catch_fork_temporary
11740 || fork_kind == catch_vfork_temporary);
11741
11742 if (!arg)
11743 arg = "";
11744 arg = skip_spaces (arg);
11745
11746 /* The allowed syntax is:
11747 catch [v]fork
11748 catch [v]fork if <cond>
11749
11750 First, check if there's an if clause. */
11751 cond_string = ep_parse_optional_if_clause (&arg);
11752
11753 if ((*arg != '\0') && !isspace (*arg))
11754 error (_("Junk at end of arguments."));
11755
11756 /* If this target supports it, create a fork or vfork catchpoint
11757 and enable reporting of such events. */
11758 switch (fork_kind)
11759 {
11760 case catch_fork_temporary:
11761 case catch_fork_permanent:
11762 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11763 &catch_fork_breakpoint_ops);
11764 break;
11765 case catch_vfork_temporary:
11766 case catch_vfork_permanent:
11767 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11768 &catch_vfork_breakpoint_ops);
11769 break;
11770 default:
11771 error (_("unsupported or unknown fork kind; cannot catch it"));
11772 break;
11773 }
11774 }
11775
11776 static void
11777 catch_exec_command_1 (char *arg, int from_tty,
11778 struct cmd_list_element *command)
11779 {
11780 struct exec_catchpoint *c;
11781 struct gdbarch *gdbarch = get_current_arch ();
11782 int tempflag;
11783 char *cond_string = NULL;
11784
11785 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11786
11787 if (!arg)
11788 arg = "";
11789 arg = skip_spaces (arg);
11790
11791 /* The allowed syntax is:
11792 catch exec
11793 catch exec if <cond>
11794
11795 First, check if there's an if clause. */
11796 cond_string = ep_parse_optional_if_clause (&arg);
11797
11798 if ((*arg != '\0') && !isspace (*arg))
11799 error (_("Junk at end of arguments."));
11800
11801 c = XNEW (struct exec_catchpoint);
11802 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11803 &catch_exec_breakpoint_ops);
11804 c->exec_pathname = NULL;
11805
11806 install_breakpoint (0, &c->base, 1);
11807 }
11808
11809 void
11810 init_ada_exception_breakpoint (struct breakpoint *b,
11811 struct gdbarch *gdbarch,
11812 struct symtab_and_line sal,
11813 char *addr_string,
11814 const struct breakpoint_ops *ops,
11815 int tempflag,
11816 int enabled,
11817 int from_tty)
11818 {
11819 if (from_tty)
11820 {
11821 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11822 if (!loc_gdbarch)
11823 loc_gdbarch = gdbarch;
11824
11825 describe_other_breakpoints (loc_gdbarch,
11826 sal.pspace, sal.pc, sal.section, -1);
11827 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11828 version for exception catchpoints, because two catchpoints
11829 used for different exception names will use the same address.
11830 In this case, a "breakpoint ... also set at..." warning is
11831 unproductive. Besides, the warning phrasing is also a bit
11832 inappropriate, we should use the word catchpoint, and tell
11833 the user what type of catchpoint it is. The above is good
11834 enough for now, though. */
11835 }
11836
11837 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11838
11839 b->enable_state = enabled ? bp_enabled : bp_disabled;
11840 b->disposition = tempflag ? disp_del : disp_donttouch;
11841 b->addr_string = addr_string;
11842 b->language = language_ada;
11843 }
11844
11845 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11846 filter list, or NULL if no filtering is required. */
11847 static VEC(int) *
11848 catch_syscall_split_args (char *arg)
11849 {
11850 VEC(int) *result = NULL;
11851 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11852
11853 while (*arg != '\0')
11854 {
11855 int i, syscall_number;
11856 char *endptr;
11857 char cur_name[128];
11858 struct syscall s;
11859
11860 /* Skip whitespace. */
11861 arg = skip_spaces (arg);
11862
11863 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11864 cur_name[i] = arg[i];
11865 cur_name[i] = '\0';
11866 arg += i;
11867
11868 /* Check if the user provided a syscall name or a number. */
11869 syscall_number = (int) strtol (cur_name, &endptr, 0);
11870 if (*endptr == '\0')
11871 get_syscall_by_number (syscall_number, &s);
11872 else
11873 {
11874 /* We have a name. Let's check if it's valid and convert it
11875 to a number. */
11876 get_syscall_by_name (cur_name, &s);
11877
11878 if (s.number == UNKNOWN_SYSCALL)
11879 /* Here we have to issue an error instead of a warning,
11880 because GDB cannot do anything useful if there's no
11881 syscall number to be caught. */
11882 error (_("Unknown syscall name '%s'."), cur_name);
11883 }
11884
11885 /* Ok, it's valid. */
11886 VEC_safe_push (int, result, s.number);
11887 }
11888
11889 discard_cleanups (cleanup);
11890 return result;
11891 }
11892
11893 /* Implement the "catch syscall" command. */
11894
11895 static void
11896 catch_syscall_command_1 (char *arg, int from_tty,
11897 struct cmd_list_element *command)
11898 {
11899 int tempflag;
11900 VEC(int) *filter;
11901 struct syscall s;
11902 struct gdbarch *gdbarch = get_current_arch ();
11903
11904 /* Checking if the feature if supported. */
11905 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11906 error (_("The feature 'catch syscall' is not supported on \
11907 this architecture yet."));
11908
11909 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11910
11911 arg = skip_spaces (arg);
11912
11913 /* We need to do this first "dummy" translation in order
11914 to get the syscall XML file loaded or, most important,
11915 to display a warning to the user if there's no XML file
11916 for his/her architecture. */
11917 get_syscall_by_number (0, &s);
11918
11919 /* The allowed syntax is:
11920 catch syscall
11921 catch syscall <name | number> [<name | number> ... <name | number>]
11922
11923 Let's check if there's a syscall name. */
11924
11925 if (arg != NULL)
11926 filter = catch_syscall_split_args (arg);
11927 else
11928 filter = NULL;
11929
11930 create_syscall_event_catchpoint (tempflag, filter,
11931 &catch_syscall_breakpoint_ops);
11932 }
11933
11934 static void
11935 catch_command (char *arg, int from_tty)
11936 {
11937 error (_("Catch requires an event name."));
11938 }
11939 \f
11940
11941 static void
11942 tcatch_command (char *arg, int from_tty)
11943 {
11944 error (_("Catch requires an event name."));
11945 }
11946
11947 /* A qsort comparison function that sorts breakpoints in order. */
11948
11949 static int
11950 compare_breakpoints (const void *a, const void *b)
11951 {
11952 const breakpoint_p *ba = a;
11953 uintptr_t ua = (uintptr_t) *ba;
11954 const breakpoint_p *bb = b;
11955 uintptr_t ub = (uintptr_t) *bb;
11956
11957 if ((*ba)->number < (*bb)->number)
11958 return -1;
11959 else if ((*ba)->number > (*bb)->number)
11960 return 1;
11961
11962 /* Now sort by address, in case we see, e..g, two breakpoints with
11963 the number 0. */
11964 if (ua < ub)
11965 return -1;
11966 return ua > ub ? 1 : 0;
11967 }
11968
11969 /* Delete breakpoints by address or line. */
11970
11971 static void
11972 clear_command (char *arg, int from_tty)
11973 {
11974 struct breakpoint *b, *prev;
11975 VEC(breakpoint_p) *found = 0;
11976 int ix;
11977 int default_match;
11978 struct symtabs_and_lines sals;
11979 struct symtab_and_line sal;
11980 int i;
11981 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11982
11983 if (arg)
11984 {
11985 sals = decode_line_with_current_source (arg,
11986 (DECODE_LINE_FUNFIRSTLINE
11987 | DECODE_LINE_LIST_MODE));
11988 make_cleanup (xfree, sals.sals);
11989 default_match = 0;
11990 }
11991 else
11992 {
11993 sals.sals = (struct symtab_and_line *)
11994 xmalloc (sizeof (struct symtab_and_line));
11995 make_cleanup (xfree, sals.sals);
11996 init_sal (&sal); /* Initialize to zeroes. */
11997
11998 /* Set sal's line, symtab, pc, and pspace to the values
11999 corresponding to the last call to print_frame_info. If the
12000 codepoint is not valid, this will set all the fields to 0. */
12001 get_last_displayed_sal (&sal);
12002 if (sal.symtab == 0)
12003 error (_("No source file specified."));
12004
12005 sals.sals[0] = sal;
12006 sals.nelts = 1;
12007
12008 default_match = 1;
12009 }
12010
12011 /* We don't call resolve_sal_pc here. That's not as bad as it
12012 seems, because all existing breakpoints typically have both
12013 file/line and pc set. So, if clear is given file/line, we can
12014 match this to existing breakpoint without obtaining pc at all.
12015
12016 We only support clearing given the address explicitly
12017 present in breakpoint table. Say, we've set breakpoint
12018 at file:line. There were several PC values for that file:line,
12019 due to optimization, all in one block.
12020
12021 We've picked one PC value. If "clear" is issued with another
12022 PC corresponding to the same file:line, the breakpoint won't
12023 be cleared. We probably can still clear the breakpoint, but
12024 since the other PC value is never presented to user, user
12025 can only find it by guessing, and it does not seem important
12026 to support that. */
12027
12028 /* For each line spec given, delete bps which correspond to it. Do
12029 it in two passes, solely to preserve the current behavior that
12030 from_tty is forced true if we delete more than one
12031 breakpoint. */
12032
12033 found = NULL;
12034 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12035 for (i = 0; i < sals.nelts; i++)
12036 {
12037 const char *sal_fullname;
12038
12039 /* If exact pc given, clear bpts at that pc.
12040 If line given (pc == 0), clear all bpts on specified line.
12041 If defaulting, clear all bpts on default line
12042 or at default pc.
12043
12044 defaulting sal.pc != 0 tests to do
12045
12046 0 1 pc
12047 1 1 pc _and_ line
12048 0 0 line
12049 1 0 <can't happen> */
12050
12051 sal = sals.sals[i];
12052 sal_fullname = (sal.symtab == NULL
12053 ? NULL : symtab_to_fullname (sal.symtab));
12054
12055 /* Find all matching breakpoints and add them to 'found'. */
12056 ALL_BREAKPOINTS (b)
12057 {
12058 int match = 0;
12059 /* Are we going to delete b? */
12060 if (b->type != bp_none && !is_watchpoint (b))
12061 {
12062 struct bp_location *loc = b->loc;
12063 for (; loc; loc = loc->next)
12064 {
12065 /* If the user specified file:line, don't allow a PC
12066 match. This matches historical gdb behavior. */
12067 int pc_match = (!sal.explicit_line
12068 && sal.pc
12069 && (loc->pspace == sal.pspace)
12070 && (loc->address == sal.pc)
12071 && (!section_is_overlay (loc->section)
12072 || loc->section == sal.section));
12073 int line_match = 0;
12074
12075 if ((default_match || sal.explicit_line)
12076 && loc->symtab != NULL
12077 && sal_fullname != NULL
12078 && sal.pspace == loc->pspace
12079 && loc->line_number == sal.line
12080 && filename_cmp (symtab_to_fullname (loc->symtab),
12081 sal_fullname) == 0)
12082 line_match = 1;
12083
12084 if (pc_match || line_match)
12085 {
12086 match = 1;
12087 break;
12088 }
12089 }
12090 }
12091
12092 if (match)
12093 VEC_safe_push(breakpoint_p, found, b);
12094 }
12095 }
12096
12097 /* Now go thru the 'found' chain and delete them. */
12098 if (VEC_empty(breakpoint_p, found))
12099 {
12100 if (arg)
12101 error (_("No breakpoint at %s."), arg);
12102 else
12103 error (_("No breakpoint at this line."));
12104 }
12105
12106 /* Remove duplicates from the vec. */
12107 qsort (VEC_address (breakpoint_p, found),
12108 VEC_length (breakpoint_p, found),
12109 sizeof (breakpoint_p),
12110 compare_breakpoints);
12111 prev = VEC_index (breakpoint_p, found, 0);
12112 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12113 {
12114 if (b == prev)
12115 {
12116 VEC_ordered_remove (breakpoint_p, found, ix);
12117 --ix;
12118 }
12119 }
12120
12121 if (VEC_length(breakpoint_p, found) > 1)
12122 from_tty = 1; /* Always report if deleted more than one. */
12123 if (from_tty)
12124 {
12125 if (VEC_length(breakpoint_p, found) == 1)
12126 printf_unfiltered (_("Deleted breakpoint "));
12127 else
12128 printf_unfiltered (_("Deleted breakpoints "));
12129 }
12130
12131 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12132 {
12133 if (from_tty)
12134 printf_unfiltered ("%d ", b->number);
12135 delete_breakpoint (b);
12136 }
12137 if (from_tty)
12138 putchar_unfiltered ('\n');
12139
12140 do_cleanups (cleanups);
12141 }
12142 \f
12143 /* Delete breakpoint in BS if they are `delete' breakpoints and
12144 all breakpoints that are marked for deletion, whether hit or not.
12145 This is called after any breakpoint is hit, or after errors. */
12146
12147 void
12148 breakpoint_auto_delete (bpstat bs)
12149 {
12150 struct breakpoint *b, *b_tmp;
12151
12152 for (; bs; bs = bs->next)
12153 if (bs->breakpoint_at
12154 && bs->breakpoint_at->disposition == disp_del
12155 && bs->stop)
12156 delete_breakpoint (bs->breakpoint_at);
12157
12158 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12159 {
12160 if (b->disposition == disp_del_at_next_stop)
12161 delete_breakpoint (b);
12162 }
12163 }
12164
12165 /* A comparison function for bp_location AP and BP being interfaced to
12166 qsort. Sort elements primarily by their ADDRESS (no matter what
12167 does breakpoint_address_is_meaningful say for its OWNER),
12168 secondarily by ordering first bp_permanent OWNERed elements and
12169 terciarily just ensuring the array is sorted stable way despite
12170 qsort being an unstable algorithm. */
12171
12172 static int
12173 bp_location_compare (const void *ap, const void *bp)
12174 {
12175 struct bp_location *a = *(void **) ap;
12176 struct bp_location *b = *(void **) bp;
12177 /* A and B come from existing breakpoints having non-NULL OWNER. */
12178 int a_perm = a->owner->enable_state == bp_permanent;
12179 int b_perm = b->owner->enable_state == bp_permanent;
12180
12181 if (a->address != b->address)
12182 return (a->address > b->address) - (a->address < b->address);
12183
12184 /* Sort locations at the same address by their pspace number, keeping
12185 locations of the same inferior (in a multi-inferior environment)
12186 grouped. */
12187
12188 if (a->pspace->num != b->pspace->num)
12189 return ((a->pspace->num > b->pspace->num)
12190 - (a->pspace->num < b->pspace->num));
12191
12192 /* Sort permanent breakpoints first. */
12193 if (a_perm != b_perm)
12194 return (a_perm < b_perm) - (a_perm > b_perm);
12195
12196 /* Make the internal GDB representation stable across GDB runs
12197 where A and B memory inside GDB can differ. Breakpoint locations of
12198 the same type at the same address can be sorted in arbitrary order. */
12199
12200 if (a->owner->number != b->owner->number)
12201 return ((a->owner->number > b->owner->number)
12202 - (a->owner->number < b->owner->number));
12203
12204 return (a > b) - (a < b);
12205 }
12206
12207 /* Set bp_location_placed_address_before_address_max and
12208 bp_location_shadow_len_after_address_max according to the current
12209 content of the bp_location array. */
12210
12211 static void
12212 bp_location_target_extensions_update (void)
12213 {
12214 struct bp_location *bl, **blp_tmp;
12215
12216 bp_location_placed_address_before_address_max = 0;
12217 bp_location_shadow_len_after_address_max = 0;
12218
12219 ALL_BP_LOCATIONS (bl, blp_tmp)
12220 {
12221 CORE_ADDR start, end, addr;
12222
12223 if (!bp_location_has_shadow (bl))
12224 continue;
12225
12226 start = bl->target_info.placed_address;
12227 end = start + bl->target_info.shadow_len;
12228
12229 gdb_assert (bl->address >= start);
12230 addr = bl->address - start;
12231 if (addr > bp_location_placed_address_before_address_max)
12232 bp_location_placed_address_before_address_max = addr;
12233
12234 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12235
12236 gdb_assert (bl->address < end);
12237 addr = end - bl->address;
12238 if (addr > bp_location_shadow_len_after_address_max)
12239 bp_location_shadow_len_after_address_max = addr;
12240 }
12241 }
12242
12243 /* Download tracepoint locations if they haven't been. */
12244
12245 static void
12246 download_tracepoint_locations (void)
12247 {
12248 struct breakpoint *b;
12249 struct cleanup *old_chain;
12250
12251 if (!target_can_download_tracepoint ())
12252 return;
12253
12254 old_chain = save_current_space_and_thread ();
12255
12256 ALL_TRACEPOINTS (b)
12257 {
12258 struct bp_location *bl;
12259 struct tracepoint *t;
12260 int bp_location_downloaded = 0;
12261
12262 if ((b->type == bp_fast_tracepoint
12263 ? !may_insert_fast_tracepoints
12264 : !may_insert_tracepoints))
12265 continue;
12266
12267 for (bl = b->loc; bl; bl = bl->next)
12268 {
12269 /* In tracepoint, locations are _never_ duplicated, so
12270 should_be_inserted is equivalent to
12271 unduplicated_should_be_inserted. */
12272 if (!should_be_inserted (bl) || bl->inserted)
12273 continue;
12274
12275 switch_to_program_space_and_thread (bl->pspace);
12276
12277 target_download_tracepoint (bl);
12278
12279 bl->inserted = 1;
12280 bp_location_downloaded = 1;
12281 }
12282 t = (struct tracepoint *) b;
12283 t->number_on_target = b->number;
12284 if (bp_location_downloaded)
12285 observer_notify_breakpoint_modified (b);
12286 }
12287
12288 do_cleanups (old_chain);
12289 }
12290
12291 /* Swap the insertion/duplication state between two locations. */
12292
12293 static void
12294 swap_insertion (struct bp_location *left, struct bp_location *right)
12295 {
12296 const int left_inserted = left->inserted;
12297 const int left_duplicate = left->duplicate;
12298 const int left_needs_update = left->needs_update;
12299 const struct bp_target_info left_target_info = left->target_info;
12300
12301 /* Locations of tracepoints can never be duplicated. */
12302 if (is_tracepoint (left->owner))
12303 gdb_assert (!left->duplicate);
12304 if (is_tracepoint (right->owner))
12305 gdb_assert (!right->duplicate);
12306
12307 left->inserted = right->inserted;
12308 left->duplicate = right->duplicate;
12309 left->needs_update = right->needs_update;
12310 left->target_info = right->target_info;
12311 right->inserted = left_inserted;
12312 right->duplicate = left_duplicate;
12313 right->needs_update = left_needs_update;
12314 right->target_info = left_target_info;
12315 }
12316
12317 /* Force the re-insertion of the locations at ADDRESS. This is called
12318 once a new/deleted/modified duplicate location is found and we are evaluating
12319 conditions on the target's side. Such conditions need to be updated on
12320 the target. */
12321
12322 static void
12323 force_breakpoint_reinsertion (struct bp_location *bl)
12324 {
12325 struct bp_location **locp = NULL, **loc2p;
12326 struct bp_location *loc;
12327 CORE_ADDR address = 0;
12328 int pspace_num;
12329
12330 address = bl->address;
12331 pspace_num = bl->pspace->num;
12332
12333 /* This is only meaningful if the target is
12334 evaluating conditions and if the user has
12335 opted for condition evaluation on the target's
12336 side. */
12337 if (gdb_evaluates_breakpoint_condition_p ()
12338 || !target_supports_evaluation_of_breakpoint_conditions ())
12339 return;
12340
12341 /* Flag all breakpoint locations with this address and
12342 the same program space as the location
12343 as "its condition has changed". We need to
12344 update the conditions on the target's side. */
12345 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12346 {
12347 loc = *loc2p;
12348
12349 if (!is_breakpoint (loc->owner)
12350 || pspace_num != loc->pspace->num)
12351 continue;
12352
12353 /* Flag the location appropriately. We use a different state to
12354 let everyone know that we already updated the set of locations
12355 with addr bl->address and program space bl->pspace. This is so
12356 we don't have to keep calling these functions just to mark locations
12357 that have already been marked. */
12358 loc->condition_changed = condition_updated;
12359
12360 /* Free the agent expression bytecode as well. We will compute
12361 it later on. */
12362 if (loc->cond_bytecode)
12363 {
12364 free_agent_expr (loc->cond_bytecode);
12365 loc->cond_bytecode = NULL;
12366 }
12367 }
12368 }
12369
12370 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12371 into the inferior, only remove already-inserted locations that no
12372 longer should be inserted. Functions that delete a breakpoint or
12373 breakpoints should pass false, so that deleting a breakpoint
12374 doesn't have the side effect of inserting the locations of other
12375 breakpoints that are marked not-inserted, but should_be_inserted
12376 returns true on them.
12377
12378 This behaviour is useful is situations close to tear-down -- e.g.,
12379 after an exec, while the target still has execution, but breakpoint
12380 shadows of the previous executable image should *NOT* be restored
12381 to the new image; or before detaching, where the target still has
12382 execution and wants to delete breakpoints from GDB's lists, and all
12383 breakpoints had already been removed from the inferior. */
12384
12385 static void
12386 update_global_location_list (int should_insert)
12387 {
12388 struct breakpoint *b;
12389 struct bp_location **locp, *loc;
12390 struct cleanup *cleanups;
12391 /* Last breakpoint location address that was marked for update. */
12392 CORE_ADDR last_addr = 0;
12393 /* Last breakpoint location program space that was marked for update. */
12394 int last_pspace_num = -1;
12395
12396 /* Used in the duplicates detection below. When iterating over all
12397 bp_locations, points to the first bp_location of a given address.
12398 Breakpoints and watchpoints of different types are never
12399 duplicates of each other. Keep one pointer for each type of
12400 breakpoint/watchpoint, so we only need to loop over all locations
12401 once. */
12402 struct bp_location *bp_loc_first; /* breakpoint */
12403 struct bp_location *wp_loc_first; /* hardware watchpoint */
12404 struct bp_location *awp_loc_first; /* access watchpoint */
12405 struct bp_location *rwp_loc_first; /* read watchpoint */
12406
12407 /* Saved former bp_location array which we compare against the newly
12408 built bp_location from the current state of ALL_BREAKPOINTS. */
12409 struct bp_location **old_location, **old_locp;
12410 unsigned old_location_count;
12411
12412 old_location = bp_location;
12413 old_location_count = bp_location_count;
12414 bp_location = NULL;
12415 bp_location_count = 0;
12416 cleanups = make_cleanup (xfree, old_location);
12417
12418 ALL_BREAKPOINTS (b)
12419 for (loc = b->loc; loc; loc = loc->next)
12420 bp_location_count++;
12421
12422 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12423 locp = bp_location;
12424 ALL_BREAKPOINTS (b)
12425 for (loc = b->loc; loc; loc = loc->next)
12426 *locp++ = loc;
12427 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12428 bp_location_compare);
12429
12430 bp_location_target_extensions_update ();
12431
12432 /* Identify bp_location instances that are no longer present in the
12433 new list, and therefore should be freed. Note that it's not
12434 necessary that those locations should be removed from inferior --
12435 if there's another location at the same address (previously
12436 marked as duplicate), we don't need to remove/insert the
12437 location.
12438
12439 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12440 and former bp_location array state respectively. */
12441
12442 locp = bp_location;
12443 for (old_locp = old_location; old_locp < old_location + old_location_count;
12444 old_locp++)
12445 {
12446 struct bp_location *old_loc = *old_locp;
12447 struct bp_location **loc2p;
12448
12449 /* Tells if 'old_loc' is found among the new locations. If
12450 not, we have to free it. */
12451 int found_object = 0;
12452 /* Tells if the location should remain inserted in the target. */
12453 int keep_in_target = 0;
12454 int removed = 0;
12455
12456 /* Skip LOCP entries which will definitely never be needed.
12457 Stop either at or being the one matching OLD_LOC. */
12458 while (locp < bp_location + bp_location_count
12459 && (*locp)->address < old_loc->address)
12460 locp++;
12461
12462 for (loc2p = locp;
12463 (loc2p < bp_location + bp_location_count
12464 && (*loc2p)->address == old_loc->address);
12465 loc2p++)
12466 {
12467 /* Check if this is a new/duplicated location or a duplicated
12468 location that had its condition modified. If so, we want to send
12469 its condition to the target if evaluation of conditions is taking
12470 place there. */
12471 if ((*loc2p)->condition_changed == condition_modified
12472 && (last_addr != old_loc->address
12473 || last_pspace_num != old_loc->pspace->num))
12474 {
12475 force_breakpoint_reinsertion (*loc2p);
12476 last_pspace_num = old_loc->pspace->num;
12477 }
12478
12479 if (*loc2p == old_loc)
12480 found_object = 1;
12481 }
12482
12483 /* We have already handled this address, update it so that we don't
12484 have to go through updates again. */
12485 last_addr = old_loc->address;
12486
12487 /* Target-side condition evaluation: Handle deleted locations. */
12488 if (!found_object)
12489 force_breakpoint_reinsertion (old_loc);
12490
12491 /* If this location is no longer present, and inserted, look if
12492 there's maybe a new location at the same address. If so,
12493 mark that one inserted, and don't remove this one. This is
12494 needed so that we don't have a time window where a breakpoint
12495 at certain location is not inserted. */
12496
12497 if (old_loc->inserted)
12498 {
12499 /* If the location is inserted now, we might have to remove
12500 it. */
12501
12502 if (found_object && should_be_inserted (old_loc))
12503 {
12504 /* The location is still present in the location list,
12505 and still should be inserted. Don't do anything. */
12506 keep_in_target = 1;
12507 }
12508 else
12509 {
12510 /* This location still exists, but it won't be kept in the
12511 target since it may have been disabled. We proceed to
12512 remove its target-side condition. */
12513
12514 /* The location is either no longer present, or got
12515 disabled. See if there's another location at the
12516 same address, in which case we don't need to remove
12517 this one from the target. */
12518
12519 /* OLD_LOC comes from existing struct breakpoint. */
12520 if (breakpoint_address_is_meaningful (old_loc->owner))
12521 {
12522 for (loc2p = locp;
12523 (loc2p < bp_location + bp_location_count
12524 && (*loc2p)->address == old_loc->address);
12525 loc2p++)
12526 {
12527 struct bp_location *loc2 = *loc2p;
12528
12529 if (breakpoint_locations_match (loc2, old_loc))
12530 {
12531 /* Read watchpoint locations are switched to
12532 access watchpoints, if the former are not
12533 supported, but the latter are. */
12534 if (is_hardware_watchpoint (old_loc->owner))
12535 {
12536 gdb_assert (is_hardware_watchpoint (loc2->owner));
12537 loc2->watchpoint_type = old_loc->watchpoint_type;
12538 }
12539
12540 /* loc2 is a duplicated location. We need to check
12541 if it should be inserted in case it will be
12542 unduplicated. */
12543 if (loc2 != old_loc
12544 && unduplicated_should_be_inserted (loc2))
12545 {
12546 swap_insertion (old_loc, loc2);
12547 keep_in_target = 1;
12548 break;
12549 }
12550 }
12551 }
12552 }
12553 }
12554
12555 if (!keep_in_target)
12556 {
12557 if (remove_breakpoint (old_loc, mark_uninserted))
12558 {
12559 /* This is just about all we can do. We could keep
12560 this location on the global list, and try to
12561 remove it next time, but there's no particular
12562 reason why we will succeed next time.
12563
12564 Note that at this point, old_loc->owner is still
12565 valid, as delete_breakpoint frees the breakpoint
12566 only after calling us. */
12567 printf_filtered (_("warning: Error removing "
12568 "breakpoint %d\n"),
12569 old_loc->owner->number);
12570 }
12571 removed = 1;
12572 }
12573 }
12574
12575 if (!found_object)
12576 {
12577 if (removed && non_stop
12578 && breakpoint_address_is_meaningful (old_loc->owner)
12579 && !is_hardware_watchpoint (old_loc->owner))
12580 {
12581 /* This location was removed from the target. In
12582 non-stop mode, a race condition is possible where
12583 we've removed a breakpoint, but stop events for that
12584 breakpoint are already queued and will arrive later.
12585 We apply an heuristic to be able to distinguish such
12586 SIGTRAPs from other random SIGTRAPs: we keep this
12587 breakpoint location for a bit, and will retire it
12588 after we see some number of events. The theory here
12589 is that reporting of events should, "on the average",
12590 be fair, so after a while we'll see events from all
12591 threads that have anything of interest, and no longer
12592 need to keep this breakpoint location around. We
12593 don't hold locations forever so to reduce chances of
12594 mistaking a non-breakpoint SIGTRAP for a breakpoint
12595 SIGTRAP.
12596
12597 The heuristic failing can be disastrous on
12598 decr_pc_after_break targets.
12599
12600 On decr_pc_after_break targets, like e.g., x86-linux,
12601 if we fail to recognize a late breakpoint SIGTRAP,
12602 because events_till_retirement has reached 0 too
12603 soon, we'll fail to do the PC adjustment, and report
12604 a random SIGTRAP to the user. When the user resumes
12605 the inferior, it will most likely immediately crash
12606 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12607 corrupted, because of being resumed e.g., in the
12608 middle of a multi-byte instruction, or skipped a
12609 one-byte instruction. This was actually seen happen
12610 on native x86-linux, and should be less rare on
12611 targets that do not support new thread events, like
12612 remote, due to the heuristic depending on
12613 thread_count.
12614
12615 Mistaking a random SIGTRAP for a breakpoint trap
12616 causes similar symptoms (PC adjustment applied when
12617 it shouldn't), but then again, playing with SIGTRAPs
12618 behind the debugger's back is asking for trouble.
12619
12620 Since hardware watchpoint traps are always
12621 distinguishable from other traps, so we don't need to
12622 apply keep hardware watchpoint moribund locations
12623 around. We simply always ignore hardware watchpoint
12624 traps we can no longer explain. */
12625
12626 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12627 old_loc->owner = NULL;
12628
12629 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12630 }
12631 else
12632 {
12633 old_loc->owner = NULL;
12634 decref_bp_location (&old_loc);
12635 }
12636 }
12637 }
12638
12639 /* Rescan breakpoints at the same address and section, marking the
12640 first one as "first" and any others as "duplicates". This is so
12641 that the bpt instruction is only inserted once. If we have a
12642 permanent breakpoint at the same place as BPT, make that one the
12643 official one, and the rest as duplicates. Permanent breakpoints
12644 are sorted first for the same address.
12645
12646 Do the same for hardware watchpoints, but also considering the
12647 watchpoint's type (regular/access/read) and length. */
12648
12649 bp_loc_first = NULL;
12650 wp_loc_first = NULL;
12651 awp_loc_first = NULL;
12652 rwp_loc_first = NULL;
12653 ALL_BP_LOCATIONS (loc, locp)
12654 {
12655 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12656 non-NULL. */
12657 struct bp_location **loc_first_p;
12658 b = loc->owner;
12659
12660 if (!unduplicated_should_be_inserted (loc)
12661 || !breakpoint_address_is_meaningful (b)
12662 /* Don't detect duplicate for tracepoint locations because they are
12663 never duplicated. See the comments in field `duplicate' of
12664 `struct bp_location'. */
12665 || is_tracepoint (b))
12666 {
12667 /* Clear the condition modification flag. */
12668 loc->condition_changed = condition_unchanged;
12669 continue;
12670 }
12671
12672 /* Permanent breakpoint should always be inserted. */
12673 if (b->enable_state == bp_permanent && ! loc->inserted)
12674 internal_error (__FILE__, __LINE__,
12675 _("allegedly permanent breakpoint is not "
12676 "actually inserted"));
12677
12678 if (b->type == bp_hardware_watchpoint)
12679 loc_first_p = &wp_loc_first;
12680 else if (b->type == bp_read_watchpoint)
12681 loc_first_p = &rwp_loc_first;
12682 else if (b->type == bp_access_watchpoint)
12683 loc_first_p = &awp_loc_first;
12684 else
12685 loc_first_p = &bp_loc_first;
12686
12687 if (*loc_first_p == NULL
12688 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12689 || !breakpoint_locations_match (loc, *loc_first_p))
12690 {
12691 *loc_first_p = loc;
12692 loc->duplicate = 0;
12693
12694 if (is_breakpoint (loc->owner) && loc->condition_changed)
12695 {
12696 loc->needs_update = 1;
12697 /* Clear the condition modification flag. */
12698 loc->condition_changed = condition_unchanged;
12699 }
12700 continue;
12701 }
12702
12703
12704 /* This and the above ensure the invariant that the first location
12705 is not duplicated, and is the inserted one.
12706 All following are marked as duplicated, and are not inserted. */
12707 if (loc->inserted)
12708 swap_insertion (loc, *loc_first_p);
12709 loc->duplicate = 1;
12710
12711 /* Clear the condition modification flag. */
12712 loc->condition_changed = condition_unchanged;
12713
12714 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12715 && b->enable_state != bp_permanent)
12716 internal_error (__FILE__, __LINE__,
12717 _("another breakpoint was inserted on top of "
12718 "a permanent breakpoint"));
12719 }
12720
12721 if (breakpoints_always_inserted_mode ()
12722 && (have_live_inferiors ()
12723 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12724 {
12725 if (should_insert)
12726 insert_breakpoint_locations ();
12727 else
12728 {
12729 /* Though should_insert is false, we may need to update conditions
12730 on the target's side if it is evaluating such conditions. We
12731 only update conditions for locations that are marked
12732 "needs_update". */
12733 update_inserted_breakpoint_locations ();
12734 }
12735 }
12736
12737 if (should_insert)
12738 download_tracepoint_locations ();
12739
12740 do_cleanups (cleanups);
12741 }
12742
12743 void
12744 breakpoint_retire_moribund (void)
12745 {
12746 struct bp_location *loc;
12747 int ix;
12748
12749 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12750 if (--(loc->events_till_retirement) == 0)
12751 {
12752 decref_bp_location (&loc);
12753 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12754 --ix;
12755 }
12756 }
12757
12758 static void
12759 update_global_location_list_nothrow (int inserting)
12760 {
12761 volatile struct gdb_exception e;
12762
12763 TRY_CATCH (e, RETURN_MASK_ERROR)
12764 update_global_location_list (inserting);
12765 }
12766
12767 /* Clear BKP from a BPS. */
12768
12769 static void
12770 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12771 {
12772 bpstat bs;
12773
12774 for (bs = bps; bs; bs = bs->next)
12775 if (bs->breakpoint_at == bpt)
12776 {
12777 bs->breakpoint_at = NULL;
12778 bs->old_val = NULL;
12779 /* bs->commands will be freed later. */
12780 }
12781 }
12782
12783 /* Callback for iterate_over_threads. */
12784 static int
12785 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12786 {
12787 struct breakpoint *bpt = data;
12788
12789 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12790 return 0;
12791 }
12792
12793 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12794 callbacks. */
12795
12796 static void
12797 say_where (struct breakpoint *b)
12798 {
12799 struct value_print_options opts;
12800
12801 get_user_print_options (&opts);
12802
12803 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12804 single string. */
12805 if (b->loc == NULL)
12806 {
12807 printf_filtered (_(" (%s) pending."), b->addr_string);
12808 }
12809 else
12810 {
12811 if (opts.addressprint || b->loc->symtab == NULL)
12812 {
12813 printf_filtered (" at ");
12814 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12815 gdb_stdout);
12816 }
12817 if (b->loc->symtab != NULL)
12818 {
12819 /* If there is a single location, we can print the location
12820 more nicely. */
12821 if (b->loc->next == NULL)
12822 printf_filtered (": file %s, line %d.",
12823 symtab_to_filename_for_display (b->loc->symtab),
12824 b->loc->line_number);
12825 else
12826 /* This is not ideal, but each location may have a
12827 different file name, and this at least reflects the
12828 real situation somewhat. */
12829 printf_filtered (": %s.", b->addr_string);
12830 }
12831
12832 if (b->loc->next)
12833 {
12834 struct bp_location *loc = b->loc;
12835 int n = 0;
12836 for (; loc; loc = loc->next)
12837 ++n;
12838 printf_filtered (" (%d locations)", n);
12839 }
12840 }
12841 }
12842
12843 /* Default bp_location_ops methods. */
12844
12845 static void
12846 bp_location_dtor (struct bp_location *self)
12847 {
12848 xfree (self->cond);
12849 if (self->cond_bytecode)
12850 free_agent_expr (self->cond_bytecode);
12851 xfree (self->function_name);
12852
12853 VEC_free (agent_expr_p, self->target_info.conditions);
12854 VEC_free (agent_expr_p, self->target_info.tcommands);
12855 }
12856
12857 static const struct bp_location_ops bp_location_ops =
12858 {
12859 bp_location_dtor
12860 };
12861
12862 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12863 inherit from. */
12864
12865 static void
12866 base_breakpoint_dtor (struct breakpoint *self)
12867 {
12868 decref_counted_command_line (&self->commands);
12869 xfree (self->cond_string);
12870 xfree (self->extra_string);
12871 xfree (self->addr_string);
12872 xfree (self->filter);
12873 xfree (self->addr_string_range_end);
12874 }
12875
12876 static struct bp_location *
12877 base_breakpoint_allocate_location (struct breakpoint *self)
12878 {
12879 struct bp_location *loc;
12880
12881 loc = XNEW (struct bp_location);
12882 init_bp_location (loc, &bp_location_ops, self);
12883 return loc;
12884 }
12885
12886 static void
12887 base_breakpoint_re_set (struct breakpoint *b)
12888 {
12889 /* Nothing to re-set. */
12890 }
12891
12892 #define internal_error_pure_virtual_called() \
12893 gdb_assert_not_reached ("pure virtual function called")
12894
12895 static int
12896 base_breakpoint_insert_location (struct bp_location *bl)
12897 {
12898 internal_error_pure_virtual_called ();
12899 }
12900
12901 static int
12902 base_breakpoint_remove_location (struct bp_location *bl)
12903 {
12904 internal_error_pure_virtual_called ();
12905 }
12906
12907 static int
12908 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12909 struct address_space *aspace,
12910 CORE_ADDR bp_addr,
12911 const struct target_waitstatus *ws)
12912 {
12913 internal_error_pure_virtual_called ();
12914 }
12915
12916 static void
12917 base_breakpoint_check_status (bpstat bs)
12918 {
12919 /* Always stop. */
12920 }
12921
12922 /* A "works_in_software_mode" breakpoint_ops method that just internal
12923 errors. */
12924
12925 static int
12926 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12927 {
12928 internal_error_pure_virtual_called ();
12929 }
12930
12931 /* A "resources_needed" breakpoint_ops method that just internal
12932 errors. */
12933
12934 static int
12935 base_breakpoint_resources_needed (const struct bp_location *bl)
12936 {
12937 internal_error_pure_virtual_called ();
12938 }
12939
12940 static enum print_stop_action
12941 base_breakpoint_print_it (bpstat bs)
12942 {
12943 internal_error_pure_virtual_called ();
12944 }
12945
12946 static void
12947 base_breakpoint_print_one_detail (const struct breakpoint *self,
12948 struct ui_out *uiout)
12949 {
12950 /* nothing */
12951 }
12952
12953 static void
12954 base_breakpoint_print_mention (struct breakpoint *b)
12955 {
12956 internal_error_pure_virtual_called ();
12957 }
12958
12959 static void
12960 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12961 {
12962 internal_error_pure_virtual_called ();
12963 }
12964
12965 static void
12966 base_breakpoint_create_sals_from_address (char **arg,
12967 struct linespec_result *canonical,
12968 enum bptype type_wanted,
12969 char *addr_start,
12970 char **copy_arg)
12971 {
12972 internal_error_pure_virtual_called ();
12973 }
12974
12975 static void
12976 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12977 struct linespec_result *c,
12978 char *cond_string,
12979 char *extra_string,
12980 enum bptype type_wanted,
12981 enum bpdisp disposition,
12982 int thread,
12983 int task, int ignore_count,
12984 const struct breakpoint_ops *o,
12985 int from_tty, int enabled,
12986 int internal, unsigned flags)
12987 {
12988 internal_error_pure_virtual_called ();
12989 }
12990
12991 static void
12992 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12993 struct symtabs_and_lines *sals)
12994 {
12995 internal_error_pure_virtual_called ();
12996 }
12997
12998 /* The default 'explains_signal' method. */
12999
13000 static int
13001 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13002 {
13003 return 1;
13004 }
13005
13006 /* The default "after_condition_true" method. */
13007
13008 static void
13009 base_breakpoint_after_condition_true (struct bpstats *bs)
13010 {
13011 /* Nothing to do. */
13012 }
13013
13014 struct breakpoint_ops base_breakpoint_ops =
13015 {
13016 base_breakpoint_dtor,
13017 base_breakpoint_allocate_location,
13018 base_breakpoint_re_set,
13019 base_breakpoint_insert_location,
13020 base_breakpoint_remove_location,
13021 base_breakpoint_breakpoint_hit,
13022 base_breakpoint_check_status,
13023 base_breakpoint_resources_needed,
13024 base_breakpoint_works_in_software_mode,
13025 base_breakpoint_print_it,
13026 NULL,
13027 base_breakpoint_print_one_detail,
13028 base_breakpoint_print_mention,
13029 base_breakpoint_print_recreate,
13030 base_breakpoint_create_sals_from_address,
13031 base_breakpoint_create_breakpoints_sal,
13032 base_breakpoint_decode_linespec,
13033 base_breakpoint_explains_signal,
13034 base_breakpoint_after_condition_true,
13035 };
13036
13037 /* Default breakpoint_ops methods. */
13038
13039 static void
13040 bkpt_re_set (struct breakpoint *b)
13041 {
13042 /* FIXME: is this still reachable? */
13043 if (b->addr_string == NULL)
13044 {
13045 /* Anything without a string can't be re-set. */
13046 delete_breakpoint (b);
13047 return;
13048 }
13049
13050 breakpoint_re_set_default (b);
13051 }
13052
13053 static int
13054 bkpt_insert_location (struct bp_location *bl)
13055 {
13056 if (bl->loc_type == bp_loc_hardware_breakpoint)
13057 return target_insert_hw_breakpoint (bl->gdbarch,
13058 &bl->target_info);
13059 else
13060 return target_insert_breakpoint (bl->gdbarch,
13061 &bl->target_info);
13062 }
13063
13064 static int
13065 bkpt_remove_location (struct bp_location *bl)
13066 {
13067 if (bl->loc_type == bp_loc_hardware_breakpoint)
13068 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13069 else
13070 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13071 }
13072
13073 static int
13074 bkpt_breakpoint_hit (const struct bp_location *bl,
13075 struct address_space *aspace, CORE_ADDR bp_addr,
13076 const struct target_waitstatus *ws)
13077 {
13078 if (ws->kind != TARGET_WAITKIND_STOPPED
13079 || ws->value.sig != GDB_SIGNAL_TRAP)
13080 return 0;
13081
13082 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13083 aspace, bp_addr))
13084 return 0;
13085
13086 if (overlay_debugging /* unmapped overlay section */
13087 && section_is_overlay (bl->section)
13088 && !section_is_mapped (bl->section))
13089 return 0;
13090
13091 return 1;
13092 }
13093
13094 static int
13095 bkpt_resources_needed (const struct bp_location *bl)
13096 {
13097 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13098
13099 return 1;
13100 }
13101
13102 static enum print_stop_action
13103 bkpt_print_it (bpstat bs)
13104 {
13105 struct breakpoint *b;
13106 const struct bp_location *bl;
13107 int bp_temp;
13108 struct ui_out *uiout = current_uiout;
13109
13110 gdb_assert (bs->bp_location_at != NULL);
13111
13112 bl = bs->bp_location_at;
13113 b = bs->breakpoint_at;
13114
13115 bp_temp = b->disposition == disp_del;
13116 if (bl->address != bl->requested_address)
13117 breakpoint_adjustment_warning (bl->requested_address,
13118 bl->address,
13119 b->number, 1);
13120 annotate_breakpoint (b->number);
13121 if (bp_temp)
13122 ui_out_text (uiout, "\nTemporary breakpoint ");
13123 else
13124 ui_out_text (uiout, "\nBreakpoint ");
13125 if (ui_out_is_mi_like_p (uiout))
13126 {
13127 ui_out_field_string (uiout, "reason",
13128 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13129 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13130 }
13131 ui_out_field_int (uiout, "bkptno", b->number);
13132 ui_out_text (uiout, ", ");
13133
13134 return PRINT_SRC_AND_LOC;
13135 }
13136
13137 static void
13138 bkpt_print_mention (struct breakpoint *b)
13139 {
13140 if (ui_out_is_mi_like_p (current_uiout))
13141 return;
13142
13143 switch (b->type)
13144 {
13145 case bp_breakpoint:
13146 case bp_gnu_ifunc_resolver:
13147 if (b->disposition == disp_del)
13148 printf_filtered (_("Temporary breakpoint"));
13149 else
13150 printf_filtered (_("Breakpoint"));
13151 printf_filtered (_(" %d"), b->number);
13152 if (b->type == bp_gnu_ifunc_resolver)
13153 printf_filtered (_(" at gnu-indirect-function resolver"));
13154 break;
13155 case bp_hardware_breakpoint:
13156 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13157 break;
13158 case bp_dprintf:
13159 printf_filtered (_("Dprintf %d"), b->number);
13160 break;
13161 }
13162
13163 say_where (b);
13164 }
13165
13166 static void
13167 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13168 {
13169 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13170 fprintf_unfiltered (fp, "tbreak");
13171 else if (tp->type == bp_breakpoint)
13172 fprintf_unfiltered (fp, "break");
13173 else if (tp->type == bp_hardware_breakpoint
13174 && tp->disposition == disp_del)
13175 fprintf_unfiltered (fp, "thbreak");
13176 else if (tp->type == bp_hardware_breakpoint)
13177 fprintf_unfiltered (fp, "hbreak");
13178 else
13179 internal_error (__FILE__, __LINE__,
13180 _("unhandled breakpoint type %d"), (int) tp->type);
13181
13182 fprintf_unfiltered (fp, " %s", tp->addr_string);
13183 print_recreate_thread (tp, fp);
13184 }
13185
13186 static void
13187 bkpt_create_sals_from_address (char **arg,
13188 struct linespec_result *canonical,
13189 enum bptype type_wanted,
13190 char *addr_start, char **copy_arg)
13191 {
13192 create_sals_from_address_default (arg, canonical, type_wanted,
13193 addr_start, copy_arg);
13194 }
13195
13196 static void
13197 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13198 struct linespec_result *canonical,
13199 char *cond_string,
13200 char *extra_string,
13201 enum bptype type_wanted,
13202 enum bpdisp disposition,
13203 int thread,
13204 int task, int ignore_count,
13205 const struct breakpoint_ops *ops,
13206 int from_tty, int enabled,
13207 int internal, unsigned flags)
13208 {
13209 create_breakpoints_sal_default (gdbarch, canonical,
13210 cond_string, extra_string,
13211 type_wanted,
13212 disposition, thread, task,
13213 ignore_count, ops, from_tty,
13214 enabled, internal, flags);
13215 }
13216
13217 static void
13218 bkpt_decode_linespec (struct breakpoint *b, char **s,
13219 struct symtabs_and_lines *sals)
13220 {
13221 decode_linespec_default (b, s, sals);
13222 }
13223
13224 /* Virtual table for internal breakpoints. */
13225
13226 static void
13227 internal_bkpt_re_set (struct breakpoint *b)
13228 {
13229 switch (b->type)
13230 {
13231 /* Delete overlay event and longjmp master breakpoints; they
13232 will be reset later by breakpoint_re_set. */
13233 case bp_overlay_event:
13234 case bp_longjmp_master:
13235 case bp_std_terminate_master:
13236 case bp_exception_master:
13237 delete_breakpoint (b);
13238 break;
13239
13240 /* This breakpoint is special, it's set up when the inferior
13241 starts and we really don't want to touch it. */
13242 case bp_shlib_event:
13243
13244 /* Like bp_shlib_event, this breakpoint type is special. Once
13245 it is set up, we do not want to touch it. */
13246 case bp_thread_event:
13247 break;
13248 }
13249 }
13250
13251 static void
13252 internal_bkpt_check_status (bpstat bs)
13253 {
13254 if (bs->breakpoint_at->type == bp_shlib_event)
13255 {
13256 /* If requested, stop when the dynamic linker notifies GDB of
13257 events. This allows the user to get control and place
13258 breakpoints in initializer routines for dynamically loaded
13259 objects (among other things). */
13260 bs->stop = stop_on_solib_events;
13261 bs->print = stop_on_solib_events;
13262 }
13263 else
13264 bs->stop = 0;
13265 }
13266
13267 static enum print_stop_action
13268 internal_bkpt_print_it (bpstat bs)
13269 {
13270 struct breakpoint *b;
13271
13272 b = bs->breakpoint_at;
13273
13274 switch (b->type)
13275 {
13276 case bp_shlib_event:
13277 /* Did we stop because the user set the stop_on_solib_events
13278 variable? (If so, we report this as a generic, "Stopped due
13279 to shlib event" message.) */
13280 print_solib_event (0);
13281 break;
13282
13283 case bp_thread_event:
13284 /* Not sure how we will get here.
13285 GDB should not stop for these breakpoints. */
13286 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13287 break;
13288
13289 case bp_overlay_event:
13290 /* By analogy with the thread event, GDB should not stop for these. */
13291 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13292 break;
13293
13294 case bp_longjmp_master:
13295 /* These should never be enabled. */
13296 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13297 break;
13298
13299 case bp_std_terminate_master:
13300 /* These should never be enabled. */
13301 printf_filtered (_("std::terminate Master Breakpoint: "
13302 "gdb should not stop!\n"));
13303 break;
13304
13305 case bp_exception_master:
13306 /* These should never be enabled. */
13307 printf_filtered (_("Exception Master Breakpoint: "
13308 "gdb should not stop!\n"));
13309 break;
13310 }
13311
13312 return PRINT_NOTHING;
13313 }
13314
13315 static void
13316 internal_bkpt_print_mention (struct breakpoint *b)
13317 {
13318 /* Nothing to mention. These breakpoints are internal. */
13319 }
13320
13321 /* Virtual table for momentary breakpoints */
13322
13323 static void
13324 momentary_bkpt_re_set (struct breakpoint *b)
13325 {
13326 /* Keep temporary breakpoints, which can be encountered when we step
13327 over a dlopen call and solib_add is resetting the breakpoints.
13328 Otherwise these should have been blown away via the cleanup chain
13329 or by breakpoint_init_inferior when we rerun the executable. */
13330 }
13331
13332 static void
13333 momentary_bkpt_check_status (bpstat bs)
13334 {
13335 /* Nothing. The point of these breakpoints is causing a stop. */
13336 }
13337
13338 static enum print_stop_action
13339 momentary_bkpt_print_it (bpstat bs)
13340 {
13341 struct ui_out *uiout = current_uiout;
13342
13343 if (ui_out_is_mi_like_p (uiout))
13344 {
13345 struct breakpoint *b = bs->breakpoint_at;
13346
13347 switch (b->type)
13348 {
13349 case bp_finish:
13350 ui_out_field_string
13351 (uiout, "reason",
13352 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13353 break;
13354
13355 case bp_until:
13356 ui_out_field_string
13357 (uiout, "reason",
13358 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13359 break;
13360 }
13361 }
13362
13363 return PRINT_UNKNOWN;
13364 }
13365
13366 static void
13367 momentary_bkpt_print_mention (struct breakpoint *b)
13368 {
13369 /* Nothing to mention. These breakpoints are internal. */
13370 }
13371
13372 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13373
13374 It gets cleared already on the removal of the first one of such placed
13375 breakpoints. This is OK as they get all removed altogether. */
13376
13377 static void
13378 longjmp_bkpt_dtor (struct breakpoint *self)
13379 {
13380 struct thread_info *tp = find_thread_id (self->thread);
13381
13382 if (tp)
13383 tp->initiating_frame = null_frame_id;
13384
13385 momentary_breakpoint_ops.dtor (self);
13386 }
13387
13388 /* Specific methods for probe breakpoints. */
13389
13390 static int
13391 bkpt_probe_insert_location (struct bp_location *bl)
13392 {
13393 int v = bkpt_insert_location (bl);
13394
13395 if (v == 0)
13396 {
13397 /* The insertion was successful, now let's set the probe's semaphore
13398 if needed. */
13399 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13400 bl->probe.objfile,
13401 bl->gdbarch);
13402 }
13403
13404 return v;
13405 }
13406
13407 static int
13408 bkpt_probe_remove_location (struct bp_location *bl)
13409 {
13410 /* Let's clear the semaphore before removing the location. */
13411 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13412 bl->probe.objfile,
13413 bl->gdbarch);
13414
13415 return bkpt_remove_location (bl);
13416 }
13417
13418 static void
13419 bkpt_probe_create_sals_from_address (char **arg,
13420 struct linespec_result *canonical,
13421 enum bptype type_wanted,
13422 char *addr_start, char **copy_arg)
13423 {
13424 struct linespec_sals lsal;
13425
13426 lsal.sals = parse_probes (arg, canonical);
13427
13428 *copy_arg = xstrdup (canonical->addr_string);
13429 lsal.canonical = xstrdup (*copy_arg);
13430
13431 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13432 }
13433
13434 static void
13435 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13436 struct symtabs_and_lines *sals)
13437 {
13438 *sals = parse_probes (s, NULL);
13439 if (!sals->sals)
13440 error (_("probe not found"));
13441 }
13442
13443 /* The breakpoint_ops structure to be used in tracepoints. */
13444
13445 static void
13446 tracepoint_re_set (struct breakpoint *b)
13447 {
13448 breakpoint_re_set_default (b);
13449 }
13450
13451 static int
13452 tracepoint_breakpoint_hit (const struct bp_location *bl,
13453 struct address_space *aspace, CORE_ADDR bp_addr,
13454 const struct target_waitstatus *ws)
13455 {
13456 /* By definition, the inferior does not report stops at
13457 tracepoints. */
13458 return 0;
13459 }
13460
13461 static void
13462 tracepoint_print_one_detail (const struct breakpoint *self,
13463 struct ui_out *uiout)
13464 {
13465 struct tracepoint *tp = (struct tracepoint *) self;
13466 if (tp->static_trace_marker_id)
13467 {
13468 gdb_assert (self->type == bp_static_tracepoint);
13469
13470 ui_out_text (uiout, "\tmarker id is ");
13471 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13472 tp->static_trace_marker_id);
13473 ui_out_text (uiout, "\n");
13474 }
13475 }
13476
13477 static void
13478 tracepoint_print_mention (struct breakpoint *b)
13479 {
13480 if (ui_out_is_mi_like_p (current_uiout))
13481 return;
13482
13483 switch (b->type)
13484 {
13485 case bp_tracepoint:
13486 printf_filtered (_("Tracepoint"));
13487 printf_filtered (_(" %d"), b->number);
13488 break;
13489 case bp_fast_tracepoint:
13490 printf_filtered (_("Fast tracepoint"));
13491 printf_filtered (_(" %d"), b->number);
13492 break;
13493 case bp_static_tracepoint:
13494 printf_filtered (_("Static tracepoint"));
13495 printf_filtered (_(" %d"), b->number);
13496 break;
13497 default:
13498 internal_error (__FILE__, __LINE__,
13499 _("unhandled tracepoint type %d"), (int) b->type);
13500 }
13501
13502 say_where (b);
13503 }
13504
13505 static void
13506 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13507 {
13508 struct tracepoint *tp = (struct tracepoint *) self;
13509
13510 if (self->type == bp_fast_tracepoint)
13511 fprintf_unfiltered (fp, "ftrace");
13512 if (self->type == bp_static_tracepoint)
13513 fprintf_unfiltered (fp, "strace");
13514 else if (self->type == bp_tracepoint)
13515 fprintf_unfiltered (fp, "trace");
13516 else
13517 internal_error (__FILE__, __LINE__,
13518 _("unhandled tracepoint type %d"), (int) self->type);
13519
13520 fprintf_unfiltered (fp, " %s", self->addr_string);
13521 print_recreate_thread (self, fp);
13522
13523 if (tp->pass_count)
13524 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13525 }
13526
13527 static void
13528 tracepoint_create_sals_from_address (char **arg,
13529 struct linespec_result *canonical,
13530 enum bptype type_wanted,
13531 char *addr_start, char **copy_arg)
13532 {
13533 create_sals_from_address_default (arg, canonical, type_wanted,
13534 addr_start, copy_arg);
13535 }
13536
13537 static void
13538 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13539 struct linespec_result *canonical,
13540 char *cond_string,
13541 char *extra_string,
13542 enum bptype type_wanted,
13543 enum bpdisp disposition,
13544 int thread,
13545 int task, int ignore_count,
13546 const struct breakpoint_ops *ops,
13547 int from_tty, int enabled,
13548 int internal, unsigned flags)
13549 {
13550 create_breakpoints_sal_default (gdbarch, canonical,
13551 cond_string, extra_string,
13552 type_wanted,
13553 disposition, thread, task,
13554 ignore_count, ops, from_tty,
13555 enabled, internal, flags);
13556 }
13557
13558 static void
13559 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13560 struct symtabs_and_lines *sals)
13561 {
13562 decode_linespec_default (b, s, sals);
13563 }
13564
13565 struct breakpoint_ops tracepoint_breakpoint_ops;
13566
13567 /* The breakpoint_ops structure to be use on tracepoints placed in a
13568 static probe. */
13569
13570 static void
13571 tracepoint_probe_create_sals_from_address (char **arg,
13572 struct linespec_result *canonical,
13573 enum bptype type_wanted,
13574 char *addr_start, char **copy_arg)
13575 {
13576 /* We use the same method for breakpoint on probes. */
13577 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13578 addr_start, copy_arg);
13579 }
13580
13581 static void
13582 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13583 struct symtabs_and_lines *sals)
13584 {
13585 /* We use the same method for breakpoint on probes. */
13586 bkpt_probe_decode_linespec (b, s, sals);
13587 }
13588
13589 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13590
13591 /* Dprintf breakpoint_ops methods. */
13592
13593 static void
13594 dprintf_re_set (struct breakpoint *b)
13595 {
13596 breakpoint_re_set_default (b);
13597
13598 /* This breakpoint could have been pending, and be resolved now, and
13599 if so, we should now have the extra string. If we don't, the
13600 dprintf was malformed when created, but we couldn't tell because
13601 we can't extract the extra string until the location is
13602 resolved. */
13603 if (b->loc != NULL && b->extra_string == NULL)
13604 error (_("Format string required"));
13605
13606 /* 1 - connect to target 1, that can run breakpoint commands.
13607 2 - create a dprintf, which resolves fine.
13608 3 - disconnect from target 1
13609 4 - connect to target 2, that can NOT run breakpoint commands.
13610
13611 After steps #3/#4, you'll want the dprintf command list to
13612 be updated, because target 1 and 2 may well return different
13613 answers for target_can_run_breakpoint_commands().
13614 Given absence of finer grained resetting, we get to do
13615 it all the time. */
13616 if (b->extra_string != NULL)
13617 update_dprintf_command_list (b);
13618 }
13619
13620 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13621
13622 static void
13623 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13624 {
13625 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13626 tp->extra_string);
13627 print_recreate_thread (tp, fp);
13628 }
13629
13630 /* Implement the "after_condition_true" breakpoint_ops method for
13631 dprintf.
13632
13633 dprintf's are implemented with regular commands in their command
13634 list, but we run the commands here instead of before presenting the
13635 stop to the user, as dprintf's don't actually cause a stop. This
13636 also makes it so that the commands of multiple dprintfs at the same
13637 address are all handled. */
13638
13639 static void
13640 dprintf_after_condition_true (struct bpstats *bs)
13641 {
13642 struct cleanup *old_chain;
13643 struct bpstats tmp_bs = { NULL };
13644 struct bpstats *tmp_bs_p = &tmp_bs;
13645
13646 /* dprintf's never cause a stop. This wasn't set in the
13647 check_status hook instead because that would make the dprintf's
13648 condition not be evaluated. */
13649 bs->stop = 0;
13650
13651 /* Run the command list here. Take ownership of it instead of
13652 copying. We never want these commands to run later in
13653 bpstat_do_actions, if a breakpoint that causes a stop happens to
13654 be set at same address as this dprintf, or even if running the
13655 commands here throws. */
13656 tmp_bs.commands = bs->commands;
13657 bs->commands = NULL;
13658 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13659
13660 bpstat_do_actions_1 (&tmp_bs_p);
13661
13662 /* 'tmp_bs.commands' will usually be NULL by now, but
13663 bpstat_do_actions_1 may return early without processing the whole
13664 list. */
13665 do_cleanups (old_chain);
13666 }
13667
13668 /* The breakpoint_ops structure to be used on static tracepoints with
13669 markers (`-m'). */
13670
13671 static void
13672 strace_marker_create_sals_from_address (char **arg,
13673 struct linespec_result *canonical,
13674 enum bptype type_wanted,
13675 char *addr_start, char **copy_arg)
13676 {
13677 struct linespec_sals lsal;
13678
13679 lsal.sals = decode_static_tracepoint_spec (arg);
13680
13681 *copy_arg = savestring (addr_start, *arg - addr_start);
13682
13683 canonical->addr_string = xstrdup (*copy_arg);
13684 lsal.canonical = xstrdup (*copy_arg);
13685 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13686 }
13687
13688 static void
13689 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13690 struct linespec_result *canonical,
13691 char *cond_string,
13692 char *extra_string,
13693 enum bptype type_wanted,
13694 enum bpdisp disposition,
13695 int thread,
13696 int task, int ignore_count,
13697 const struct breakpoint_ops *ops,
13698 int from_tty, int enabled,
13699 int internal, unsigned flags)
13700 {
13701 int i;
13702 struct linespec_sals *lsal = VEC_index (linespec_sals,
13703 canonical->sals, 0);
13704
13705 /* If the user is creating a static tracepoint by marker id
13706 (strace -m MARKER_ID), then store the sals index, so that
13707 breakpoint_re_set can try to match up which of the newly
13708 found markers corresponds to this one, and, don't try to
13709 expand multiple locations for each sal, given than SALS
13710 already should contain all sals for MARKER_ID. */
13711
13712 for (i = 0; i < lsal->sals.nelts; ++i)
13713 {
13714 struct symtabs_and_lines expanded;
13715 struct tracepoint *tp;
13716 struct cleanup *old_chain;
13717 char *addr_string;
13718
13719 expanded.nelts = 1;
13720 expanded.sals = &lsal->sals.sals[i];
13721
13722 addr_string = xstrdup (canonical->addr_string);
13723 old_chain = make_cleanup (xfree, addr_string);
13724
13725 tp = XCNEW (struct tracepoint);
13726 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13727 addr_string, NULL,
13728 cond_string, extra_string,
13729 type_wanted, disposition,
13730 thread, task, ignore_count, ops,
13731 from_tty, enabled, internal, flags,
13732 canonical->special_display);
13733 /* Given that its possible to have multiple markers with
13734 the same string id, if the user is creating a static
13735 tracepoint by marker id ("strace -m MARKER_ID"), then
13736 store the sals index, so that breakpoint_re_set can
13737 try to match up which of the newly found markers
13738 corresponds to this one */
13739 tp->static_trace_marker_id_idx = i;
13740
13741 install_breakpoint (internal, &tp->base, 0);
13742
13743 discard_cleanups (old_chain);
13744 }
13745 }
13746
13747 static void
13748 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13749 struct symtabs_and_lines *sals)
13750 {
13751 struct tracepoint *tp = (struct tracepoint *) b;
13752
13753 *sals = decode_static_tracepoint_spec (s);
13754 if (sals->nelts > tp->static_trace_marker_id_idx)
13755 {
13756 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13757 sals->nelts = 1;
13758 }
13759 else
13760 error (_("marker %s not found"), tp->static_trace_marker_id);
13761 }
13762
13763 static struct breakpoint_ops strace_marker_breakpoint_ops;
13764
13765 static int
13766 strace_marker_p (struct breakpoint *b)
13767 {
13768 return b->ops == &strace_marker_breakpoint_ops;
13769 }
13770
13771 /* Delete a breakpoint and clean up all traces of it in the data
13772 structures. */
13773
13774 void
13775 delete_breakpoint (struct breakpoint *bpt)
13776 {
13777 struct breakpoint *b;
13778
13779 gdb_assert (bpt != NULL);
13780
13781 /* Has this bp already been deleted? This can happen because
13782 multiple lists can hold pointers to bp's. bpstat lists are
13783 especial culprits.
13784
13785 One example of this happening is a watchpoint's scope bp. When
13786 the scope bp triggers, we notice that the watchpoint is out of
13787 scope, and delete it. We also delete its scope bp. But the
13788 scope bp is marked "auto-deleting", and is already on a bpstat.
13789 That bpstat is then checked for auto-deleting bp's, which are
13790 deleted.
13791
13792 A real solution to this problem might involve reference counts in
13793 bp's, and/or giving them pointers back to their referencing
13794 bpstat's, and teaching delete_breakpoint to only free a bp's
13795 storage when no more references were extent. A cheaper bandaid
13796 was chosen. */
13797 if (bpt->type == bp_none)
13798 return;
13799
13800 /* At least avoid this stale reference until the reference counting
13801 of breakpoints gets resolved. */
13802 if (bpt->related_breakpoint != bpt)
13803 {
13804 struct breakpoint *related;
13805 struct watchpoint *w;
13806
13807 if (bpt->type == bp_watchpoint_scope)
13808 w = (struct watchpoint *) bpt->related_breakpoint;
13809 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13810 w = (struct watchpoint *) bpt;
13811 else
13812 w = NULL;
13813 if (w != NULL)
13814 watchpoint_del_at_next_stop (w);
13815
13816 /* Unlink bpt from the bpt->related_breakpoint ring. */
13817 for (related = bpt; related->related_breakpoint != bpt;
13818 related = related->related_breakpoint);
13819 related->related_breakpoint = bpt->related_breakpoint;
13820 bpt->related_breakpoint = bpt;
13821 }
13822
13823 /* watch_command_1 creates a watchpoint but only sets its number if
13824 update_watchpoint succeeds in creating its bp_locations. If there's
13825 a problem in that process, we'll be asked to delete the half-created
13826 watchpoint. In that case, don't announce the deletion. */
13827 if (bpt->number)
13828 observer_notify_breakpoint_deleted (bpt);
13829
13830 if (breakpoint_chain == bpt)
13831 breakpoint_chain = bpt->next;
13832
13833 ALL_BREAKPOINTS (b)
13834 if (b->next == bpt)
13835 {
13836 b->next = bpt->next;
13837 break;
13838 }
13839
13840 /* Be sure no bpstat's are pointing at the breakpoint after it's
13841 been freed. */
13842 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13843 in all threads for now. Note that we cannot just remove bpstats
13844 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13845 commands are associated with the bpstat; if we remove it here,
13846 then the later call to bpstat_do_actions (&stop_bpstat); in
13847 event-top.c won't do anything, and temporary breakpoints with
13848 commands won't work. */
13849
13850 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13851
13852 /* Now that breakpoint is removed from breakpoint list, update the
13853 global location list. This will remove locations that used to
13854 belong to this breakpoint. Do this before freeing the breakpoint
13855 itself, since remove_breakpoint looks at location's owner. It
13856 might be better design to have location completely
13857 self-contained, but it's not the case now. */
13858 update_global_location_list (0);
13859
13860 bpt->ops->dtor (bpt);
13861 /* On the chance that someone will soon try again to delete this
13862 same bp, we mark it as deleted before freeing its storage. */
13863 bpt->type = bp_none;
13864 xfree (bpt);
13865 }
13866
13867 static void
13868 do_delete_breakpoint_cleanup (void *b)
13869 {
13870 delete_breakpoint (b);
13871 }
13872
13873 struct cleanup *
13874 make_cleanup_delete_breakpoint (struct breakpoint *b)
13875 {
13876 return make_cleanup (do_delete_breakpoint_cleanup, b);
13877 }
13878
13879 /* Iterator function to call a user-provided callback function once
13880 for each of B and its related breakpoints. */
13881
13882 static void
13883 iterate_over_related_breakpoints (struct breakpoint *b,
13884 void (*function) (struct breakpoint *,
13885 void *),
13886 void *data)
13887 {
13888 struct breakpoint *related;
13889
13890 related = b;
13891 do
13892 {
13893 struct breakpoint *next;
13894
13895 /* FUNCTION may delete RELATED. */
13896 next = related->related_breakpoint;
13897
13898 if (next == related)
13899 {
13900 /* RELATED is the last ring entry. */
13901 function (related, data);
13902
13903 /* FUNCTION may have deleted it, so we'd never reach back to
13904 B. There's nothing left to do anyway, so just break
13905 out. */
13906 break;
13907 }
13908 else
13909 function (related, data);
13910
13911 related = next;
13912 }
13913 while (related != b);
13914 }
13915
13916 static void
13917 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13918 {
13919 delete_breakpoint (b);
13920 }
13921
13922 /* A callback for map_breakpoint_numbers that calls
13923 delete_breakpoint. */
13924
13925 static void
13926 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13927 {
13928 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13929 }
13930
13931 void
13932 delete_command (char *arg, int from_tty)
13933 {
13934 struct breakpoint *b, *b_tmp;
13935
13936 dont_repeat ();
13937
13938 if (arg == 0)
13939 {
13940 int breaks_to_delete = 0;
13941
13942 /* Delete all breakpoints if no argument. Do not delete
13943 internal breakpoints, these have to be deleted with an
13944 explicit breakpoint number argument. */
13945 ALL_BREAKPOINTS (b)
13946 if (user_breakpoint_p (b))
13947 {
13948 breaks_to_delete = 1;
13949 break;
13950 }
13951
13952 /* Ask user only if there are some breakpoints to delete. */
13953 if (!from_tty
13954 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13955 {
13956 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13957 if (user_breakpoint_p (b))
13958 delete_breakpoint (b);
13959 }
13960 }
13961 else
13962 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13963 }
13964
13965 static int
13966 all_locations_are_pending (struct bp_location *loc)
13967 {
13968 for (; loc; loc = loc->next)
13969 if (!loc->shlib_disabled
13970 && !loc->pspace->executing_startup)
13971 return 0;
13972 return 1;
13973 }
13974
13975 /* Subroutine of update_breakpoint_locations to simplify it.
13976 Return non-zero if multiple fns in list LOC have the same name.
13977 Null names are ignored. */
13978
13979 static int
13980 ambiguous_names_p (struct bp_location *loc)
13981 {
13982 struct bp_location *l;
13983 htab_t htab = htab_create_alloc (13, htab_hash_string,
13984 (int (*) (const void *,
13985 const void *)) streq,
13986 NULL, xcalloc, xfree);
13987
13988 for (l = loc; l != NULL; l = l->next)
13989 {
13990 const char **slot;
13991 const char *name = l->function_name;
13992
13993 /* Allow for some names to be NULL, ignore them. */
13994 if (name == NULL)
13995 continue;
13996
13997 slot = (const char **) htab_find_slot (htab, (const void *) name,
13998 INSERT);
13999 /* NOTE: We can assume slot != NULL here because xcalloc never
14000 returns NULL. */
14001 if (*slot != NULL)
14002 {
14003 htab_delete (htab);
14004 return 1;
14005 }
14006 *slot = name;
14007 }
14008
14009 htab_delete (htab);
14010 return 0;
14011 }
14012
14013 /* When symbols change, it probably means the sources changed as well,
14014 and it might mean the static tracepoint markers are no longer at
14015 the same address or line numbers they used to be at last we
14016 checked. Losing your static tracepoints whenever you rebuild is
14017 undesirable. This function tries to resync/rematch gdb static
14018 tracepoints with the markers on the target, for static tracepoints
14019 that have not been set by marker id. Static tracepoint that have
14020 been set by marker id are reset by marker id in breakpoint_re_set.
14021 The heuristic is:
14022
14023 1) For a tracepoint set at a specific address, look for a marker at
14024 the old PC. If one is found there, assume to be the same marker.
14025 If the name / string id of the marker found is different from the
14026 previous known name, assume that means the user renamed the marker
14027 in the sources, and output a warning.
14028
14029 2) For a tracepoint set at a given line number, look for a marker
14030 at the new address of the old line number. If one is found there,
14031 assume to be the same marker. If the name / string id of the
14032 marker found is different from the previous known name, assume that
14033 means the user renamed the marker in the sources, and output a
14034 warning.
14035
14036 3) If a marker is no longer found at the same address or line, it
14037 may mean the marker no longer exists. But it may also just mean
14038 the code changed a bit. Maybe the user added a few lines of code
14039 that made the marker move up or down (in line number terms). Ask
14040 the target for info about the marker with the string id as we knew
14041 it. If found, update line number and address in the matching
14042 static tracepoint. This will get confused if there's more than one
14043 marker with the same ID (possible in UST, although unadvised
14044 precisely because it confuses tools). */
14045
14046 static struct symtab_and_line
14047 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14048 {
14049 struct tracepoint *tp = (struct tracepoint *) b;
14050 struct static_tracepoint_marker marker;
14051 CORE_ADDR pc;
14052
14053 pc = sal.pc;
14054 if (sal.line)
14055 find_line_pc (sal.symtab, sal.line, &pc);
14056
14057 if (target_static_tracepoint_marker_at (pc, &marker))
14058 {
14059 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14060 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14061 b->number,
14062 tp->static_trace_marker_id, marker.str_id);
14063
14064 xfree (tp->static_trace_marker_id);
14065 tp->static_trace_marker_id = xstrdup (marker.str_id);
14066 release_static_tracepoint_marker (&marker);
14067
14068 return sal;
14069 }
14070
14071 /* Old marker wasn't found on target at lineno. Try looking it up
14072 by string ID. */
14073 if (!sal.explicit_pc
14074 && sal.line != 0
14075 && sal.symtab != NULL
14076 && tp->static_trace_marker_id != NULL)
14077 {
14078 VEC(static_tracepoint_marker_p) *markers;
14079
14080 markers
14081 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14082
14083 if (!VEC_empty(static_tracepoint_marker_p, markers))
14084 {
14085 struct symtab_and_line sal2;
14086 struct symbol *sym;
14087 struct static_tracepoint_marker *tpmarker;
14088 struct ui_out *uiout = current_uiout;
14089
14090 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14091
14092 xfree (tp->static_trace_marker_id);
14093 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14094
14095 warning (_("marker for static tracepoint %d (%s) not "
14096 "found at previous line number"),
14097 b->number, tp->static_trace_marker_id);
14098
14099 init_sal (&sal2);
14100
14101 sal2.pc = tpmarker->address;
14102
14103 sal2 = find_pc_line (tpmarker->address, 0);
14104 sym = find_pc_sect_function (tpmarker->address, NULL);
14105 ui_out_text (uiout, "Now in ");
14106 if (sym)
14107 {
14108 ui_out_field_string (uiout, "func",
14109 SYMBOL_PRINT_NAME (sym));
14110 ui_out_text (uiout, " at ");
14111 }
14112 ui_out_field_string (uiout, "file",
14113 symtab_to_filename_for_display (sal2.symtab));
14114 ui_out_text (uiout, ":");
14115
14116 if (ui_out_is_mi_like_p (uiout))
14117 {
14118 const char *fullname = symtab_to_fullname (sal2.symtab);
14119
14120 ui_out_field_string (uiout, "fullname", fullname);
14121 }
14122
14123 ui_out_field_int (uiout, "line", sal2.line);
14124 ui_out_text (uiout, "\n");
14125
14126 b->loc->line_number = sal2.line;
14127 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14128
14129 xfree (b->addr_string);
14130 b->addr_string = xstrprintf ("%s:%d",
14131 symtab_to_filename_for_display (sal2.symtab),
14132 b->loc->line_number);
14133
14134 /* Might be nice to check if function changed, and warn if
14135 so. */
14136
14137 release_static_tracepoint_marker (tpmarker);
14138 }
14139 }
14140 return sal;
14141 }
14142
14143 /* Returns 1 iff locations A and B are sufficiently same that
14144 we don't need to report breakpoint as changed. */
14145
14146 static int
14147 locations_are_equal (struct bp_location *a, struct bp_location *b)
14148 {
14149 while (a && b)
14150 {
14151 if (a->address != b->address)
14152 return 0;
14153
14154 if (a->shlib_disabled != b->shlib_disabled)
14155 return 0;
14156
14157 if (a->enabled != b->enabled)
14158 return 0;
14159
14160 a = a->next;
14161 b = b->next;
14162 }
14163
14164 if ((a == NULL) != (b == NULL))
14165 return 0;
14166
14167 return 1;
14168 }
14169
14170 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14171 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14172 a ranged breakpoint. */
14173
14174 void
14175 update_breakpoint_locations (struct breakpoint *b,
14176 struct symtabs_and_lines sals,
14177 struct symtabs_and_lines sals_end)
14178 {
14179 int i;
14180 struct bp_location *existing_locations = b->loc;
14181
14182 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14183 {
14184 /* Ranged breakpoints have only one start location and one end
14185 location. */
14186 b->enable_state = bp_disabled;
14187 update_global_location_list (1);
14188 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14189 "multiple locations found\n"),
14190 b->number);
14191 return;
14192 }
14193
14194 /* If there's no new locations, and all existing locations are
14195 pending, don't do anything. This optimizes the common case where
14196 all locations are in the same shared library, that was unloaded.
14197 We'd like to retain the location, so that when the library is
14198 loaded again, we don't loose the enabled/disabled status of the
14199 individual locations. */
14200 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14201 return;
14202
14203 b->loc = NULL;
14204
14205 for (i = 0; i < sals.nelts; ++i)
14206 {
14207 struct bp_location *new_loc;
14208
14209 switch_to_program_space_and_thread (sals.sals[i].pspace);
14210
14211 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14212
14213 /* Reparse conditions, they might contain references to the
14214 old symtab. */
14215 if (b->cond_string != NULL)
14216 {
14217 const char *s;
14218 volatile struct gdb_exception e;
14219
14220 s = b->cond_string;
14221 TRY_CATCH (e, RETURN_MASK_ERROR)
14222 {
14223 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14224 block_for_pc (sals.sals[i].pc),
14225 0);
14226 }
14227 if (e.reason < 0)
14228 {
14229 warning (_("failed to reevaluate condition "
14230 "for breakpoint %d: %s"),
14231 b->number, e.message);
14232 new_loc->enabled = 0;
14233 }
14234 }
14235
14236 if (sals_end.nelts)
14237 {
14238 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14239
14240 new_loc->length = end - sals.sals[0].pc + 1;
14241 }
14242 }
14243
14244 /* Update locations of permanent breakpoints. */
14245 if (b->enable_state == bp_permanent)
14246 make_breakpoint_permanent (b);
14247
14248 /* If possible, carry over 'disable' status from existing
14249 breakpoints. */
14250 {
14251 struct bp_location *e = existing_locations;
14252 /* If there are multiple breakpoints with the same function name,
14253 e.g. for inline functions, comparing function names won't work.
14254 Instead compare pc addresses; this is just a heuristic as things
14255 may have moved, but in practice it gives the correct answer
14256 often enough until a better solution is found. */
14257 int have_ambiguous_names = ambiguous_names_p (b->loc);
14258
14259 for (; e; e = e->next)
14260 {
14261 if (!e->enabled && e->function_name)
14262 {
14263 struct bp_location *l = b->loc;
14264 if (have_ambiguous_names)
14265 {
14266 for (; l; l = l->next)
14267 if (breakpoint_locations_match (e, l))
14268 {
14269 l->enabled = 0;
14270 break;
14271 }
14272 }
14273 else
14274 {
14275 for (; l; l = l->next)
14276 if (l->function_name
14277 && strcmp (e->function_name, l->function_name) == 0)
14278 {
14279 l->enabled = 0;
14280 break;
14281 }
14282 }
14283 }
14284 }
14285 }
14286
14287 if (!locations_are_equal (existing_locations, b->loc))
14288 observer_notify_breakpoint_modified (b);
14289
14290 update_global_location_list (1);
14291 }
14292
14293 /* Find the SaL locations corresponding to the given ADDR_STRING.
14294 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14295
14296 static struct symtabs_and_lines
14297 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14298 {
14299 char *s;
14300 struct symtabs_and_lines sals = {0};
14301 volatile struct gdb_exception e;
14302
14303 gdb_assert (b->ops != NULL);
14304 s = addr_string;
14305
14306 TRY_CATCH (e, RETURN_MASK_ERROR)
14307 {
14308 b->ops->decode_linespec (b, &s, &sals);
14309 }
14310 if (e.reason < 0)
14311 {
14312 int not_found_and_ok = 0;
14313 /* For pending breakpoints, it's expected that parsing will
14314 fail until the right shared library is loaded. User has
14315 already told to create pending breakpoints and don't need
14316 extra messages. If breakpoint is in bp_shlib_disabled
14317 state, then user already saw the message about that
14318 breakpoint being disabled, and don't want to see more
14319 errors. */
14320 if (e.error == NOT_FOUND_ERROR
14321 && (b->condition_not_parsed
14322 || (b->loc && b->loc->shlib_disabled)
14323 || (b->loc && b->loc->pspace->executing_startup)
14324 || b->enable_state == bp_disabled))
14325 not_found_and_ok = 1;
14326
14327 if (!not_found_and_ok)
14328 {
14329 /* We surely don't want to warn about the same breakpoint
14330 10 times. One solution, implemented here, is disable
14331 the breakpoint on error. Another solution would be to
14332 have separate 'warning emitted' flag. Since this
14333 happens only when a binary has changed, I don't know
14334 which approach is better. */
14335 b->enable_state = bp_disabled;
14336 throw_exception (e);
14337 }
14338 }
14339
14340 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14341 {
14342 int i;
14343
14344 for (i = 0; i < sals.nelts; ++i)
14345 resolve_sal_pc (&sals.sals[i]);
14346 if (b->condition_not_parsed && s && s[0])
14347 {
14348 char *cond_string, *extra_string;
14349 int thread, task;
14350
14351 find_condition_and_thread (s, sals.sals[0].pc,
14352 &cond_string, &thread, &task,
14353 &extra_string);
14354 if (cond_string)
14355 b->cond_string = cond_string;
14356 b->thread = thread;
14357 b->task = task;
14358 if (extra_string)
14359 b->extra_string = extra_string;
14360 b->condition_not_parsed = 0;
14361 }
14362
14363 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14364 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14365
14366 *found = 1;
14367 }
14368 else
14369 *found = 0;
14370
14371 return sals;
14372 }
14373
14374 /* The default re_set method, for typical hardware or software
14375 breakpoints. Reevaluate the breakpoint and recreate its
14376 locations. */
14377
14378 static void
14379 breakpoint_re_set_default (struct breakpoint *b)
14380 {
14381 int found;
14382 struct symtabs_and_lines sals, sals_end;
14383 struct symtabs_and_lines expanded = {0};
14384 struct symtabs_and_lines expanded_end = {0};
14385
14386 sals = addr_string_to_sals (b, b->addr_string, &found);
14387 if (found)
14388 {
14389 make_cleanup (xfree, sals.sals);
14390 expanded = sals;
14391 }
14392
14393 if (b->addr_string_range_end)
14394 {
14395 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14396 if (found)
14397 {
14398 make_cleanup (xfree, sals_end.sals);
14399 expanded_end = sals_end;
14400 }
14401 }
14402
14403 update_breakpoint_locations (b, expanded, expanded_end);
14404 }
14405
14406 /* Default method for creating SALs from an address string. It basically
14407 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14408
14409 static void
14410 create_sals_from_address_default (char **arg,
14411 struct linespec_result *canonical,
14412 enum bptype type_wanted,
14413 char *addr_start, char **copy_arg)
14414 {
14415 parse_breakpoint_sals (arg, canonical);
14416 }
14417
14418 /* Call create_breakpoints_sal for the given arguments. This is the default
14419 function for the `create_breakpoints_sal' method of
14420 breakpoint_ops. */
14421
14422 static void
14423 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14424 struct linespec_result *canonical,
14425 char *cond_string,
14426 char *extra_string,
14427 enum bptype type_wanted,
14428 enum bpdisp disposition,
14429 int thread,
14430 int task, int ignore_count,
14431 const struct breakpoint_ops *ops,
14432 int from_tty, int enabled,
14433 int internal, unsigned flags)
14434 {
14435 create_breakpoints_sal (gdbarch, canonical, cond_string,
14436 extra_string,
14437 type_wanted, disposition,
14438 thread, task, ignore_count, ops, from_tty,
14439 enabled, internal, flags);
14440 }
14441
14442 /* Decode the line represented by S by calling decode_line_full. This is the
14443 default function for the `decode_linespec' method of breakpoint_ops. */
14444
14445 static void
14446 decode_linespec_default (struct breakpoint *b, char **s,
14447 struct symtabs_and_lines *sals)
14448 {
14449 struct linespec_result canonical;
14450
14451 init_linespec_result (&canonical);
14452 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14453 (struct symtab *) NULL, 0,
14454 &canonical, multiple_symbols_all,
14455 b->filter);
14456
14457 /* We should get 0 or 1 resulting SALs. */
14458 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14459
14460 if (VEC_length (linespec_sals, canonical.sals) > 0)
14461 {
14462 struct linespec_sals *lsal;
14463
14464 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14465 *sals = lsal->sals;
14466 /* Arrange it so the destructor does not free the
14467 contents. */
14468 lsal->sals.sals = NULL;
14469 }
14470
14471 destroy_linespec_result (&canonical);
14472 }
14473
14474 /* Prepare the global context for a re-set of breakpoint B. */
14475
14476 static struct cleanup *
14477 prepare_re_set_context (struct breakpoint *b)
14478 {
14479 struct cleanup *cleanups;
14480
14481 input_radix = b->input_radix;
14482 cleanups = save_current_space_and_thread ();
14483 if (b->pspace != NULL)
14484 switch_to_program_space_and_thread (b->pspace);
14485 set_language (b->language);
14486
14487 return cleanups;
14488 }
14489
14490 /* Reset a breakpoint given it's struct breakpoint * BINT.
14491 The value we return ends up being the return value from catch_errors.
14492 Unused in this case. */
14493
14494 static int
14495 breakpoint_re_set_one (void *bint)
14496 {
14497 /* Get past catch_errs. */
14498 struct breakpoint *b = (struct breakpoint *) bint;
14499 struct cleanup *cleanups;
14500
14501 cleanups = prepare_re_set_context (b);
14502 b->ops->re_set (b);
14503 do_cleanups (cleanups);
14504 return 0;
14505 }
14506
14507 /* Re-set all breakpoints after symbols have been re-loaded. */
14508 void
14509 breakpoint_re_set (void)
14510 {
14511 struct breakpoint *b, *b_tmp;
14512 enum language save_language;
14513 int save_input_radix;
14514 struct cleanup *old_chain;
14515
14516 save_language = current_language->la_language;
14517 save_input_radix = input_radix;
14518 old_chain = save_current_program_space ();
14519
14520 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14521 {
14522 /* Format possible error msg. */
14523 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14524 b->number);
14525 struct cleanup *cleanups = make_cleanup (xfree, message);
14526 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14527 do_cleanups (cleanups);
14528 }
14529 set_language (save_language);
14530 input_radix = save_input_radix;
14531
14532 jit_breakpoint_re_set ();
14533
14534 do_cleanups (old_chain);
14535
14536 create_overlay_event_breakpoint ();
14537 create_longjmp_master_breakpoint ();
14538 create_std_terminate_master_breakpoint ();
14539 create_exception_master_breakpoint ();
14540 }
14541 \f
14542 /* Reset the thread number of this breakpoint:
14543
14544 - If the breakpoint is for all threads, leave it as-is.
14545 - Else, reset it to the current thread for inferior_ptid. */
14546 void
14547 breakpoint_re_set_thread (struct breakpoint *b)
14548 {
14549 if (b->thread != -1)
14550 {
14551 if (in_thread_list (inferior_ptid))
14552 b->thread = pid_to_thread_id (inferior_ptid);
14553
14554 /* We're being called after following a fork. The new fork is
14555 selected as current, and unless this was a vfork will have a
14556 different program space from the original thread. Reset that
14557 as well. */
14558 b->loc->pspace = current_program_space;
14559 }
14560 }
14561
14562 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14563 If from_tty is nonzero, it prints a message to that effect,
14564 which ends with a period (no newline). */
14565
14566 void
14567 set_ignore_count (int bptnum, int count, int from_tty)
14568 {
14569 struct breakpoint *b;
14570
14571 if (count < 0)
14572 count = 0;
14573
14574 ALL_BREAKPOINTS (b)
14575 if (b->number == bptnum)
14576 {
14577 if (is_tracepoint (b))
14578 {
14579 if (from_tty && count != 0)
14580 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14581 bptnum);
14582 return;
14583 }
14584
14585 b->ignore_count = count;
14586 if (from_tty)
14587 {
14588 if (count == 0)
14589 printf_filtered (_("Will stop next time "
14590 "breakpoint %d is reached."),
14591 bptnum);
14592 else if (count == 1)
14593 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14594 bptnum);
14595 else
14596 printf_filtered (_("Will ignore next %d "
14597 "crossings of breakpoint %d."),
14598 count, bptnum);
14599 }
14600 observer_notify_breakpoint_modified (b);
14601 return;
14602 }
14603
14604 error (_("No breakpoint number %d."), bptnum);
14605 }
14606
14607 /* Command to set ignore-count of breakpoint N to COUNT. */
14608
14609 static void
14610 ignore_command (char *args, int from_tty)
14611 {
14612 char *p = args;
14613 int num;
14614
14615 if (p == 0)
14616 error_no_arg (_("a breakpoint number"));
14617
14618 num = get_number (&p);
14619 if (num == 0)
14620 error (_("bad breakpoint number: '%s'"), args);
14621 if (*p == 0)
14622 error (_("Second argument (specified ignore-count) is missing."));
14623
14624 set_ignore_count (num,
14625 longest_to_int (value_as_long (parse_and_eval (p))),
14626 from_tty);
14627 if (from_tty)
14628 printf_filtered ("\n");
14629 }
14630 \f
14631 /* Call FUNCTION on each of the breakpoints
14632 whose numbers are given in ARGS. */
14633
14634 static void
14635 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14636 void *),
14637 void *data)
14638 {
14639 int num;
14640 struct breakpoint *b, *tmp;
14641 int match;
14642 struct get_number_or_range_state state;
14643
14644 if (args == 0)
14645 error_no_arg (_("one or more breakpoint numbers"));
14646
14647 init_number_or_range (&state, args);
14648
14649 while (!state.finished)
14650 {
14651 char *p = state.string;
14652
14653 match = 0;
14654
14655 num = get_number_or_range (&state);
14656 if (num == 0)
14657 {
14658 warning (_("bad breakpoint number at or near '%s'"), p);
14659 }
14660 else
14661 {
14662 ALL_BREAKPOINTS_SAFE (b, tmp)
14663 if (b->number == num)
14664 {
14665 match = 1;
14666 function (b, data);
14667 break;
14668 }
14669 if (match == 0)
14670 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14671 }
14672 }
14673 }
14674
14675 static struct bp_location *
14676 find_location_by_number (char *number)
14677 {
14678 char *dot = strchr (number, '.');
14679 char *p1;
14680 int bp_num;
14681 int loc_num;
14682 struct breakpoint *b;
14683 struct bp_location *loc;
14684
14685 *dot = '\0';
14686
14687 p1 = number;
14688 bp_num = get_number (&p1);
14689 if (bp_num == 0)
14690 error (_("Bad breakpoint number '%s'"), number);
14691
14692 ALL_BREAKPOINTS (b)
14693 if (b->number == bp_num)
14694 {
14695 break;
14696 }
14697
14698 if (!b || b->number != bp_num)
14699 error (_("Bad breakpoint number '%s'"), number);
14700
14701 p1 = dot+1;
14702 loc_num = get_number (&p1);
14703 if (loc_num == 0)
14704 error (_("Bad breakpoint location number '%s'"), number);
14705
14706 --loc_num;
14707 loc = b->loc;
14708 for (;loc_num && loc; --loc_num, loc = loc->next)
14709 ;
14710 if (!loc)
14711 error (_("Bad breakpoint location number '%s'"), dot+1);
14712
14713 return loc;
14714 }
14715
14716
14717 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14718 If from_tty is nonzero, it prints a message to that effect,
14719 which ends with a period (no newline). */
14720
14721 void
14722 disable_breakpoint (struct breakpoint *bpt)
14723 {
14724 /* Never disable a watchpoint scope breakpoint; we want to
14725 hit them when we leave scope so we can delete both the
14726 watchpoint and its scope breakpoint at that time. */
14727 if (bpt->type == bp_watchpoint_scope)
14728 return;
14729
14730 /* You can't disable permanent breakpoints. */
14731 if (bpt->enable_state == bp_permanent)
14732 return;
14733
14734 bpt->enable_state = bp_disabled;
14735
14736 /* Mark breakpoint locations modified. */
14737 mark_breakpoint_modified (bpt);
14738
14739 if (target_supports_enable_disable_tracepoint ()
14740 && current_trace_status ()->running && is_tracepoint (bpt))
14741 {
14742 struct bp_location *location;
14743
14744 for (location = bpt->loc; location; location = location->next)
14745 target_disable_tracepoint (location);
14746 }
14747
14748 update_global_location_list (0);
14749
14750 observer_notify_breakpoint_modified (bpt);
14751 }
14752
14753 /* A callback for iterate_over_related_breakpoints. */
14754
14755 static void
14756 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14757 {
14758 disable_breakpoint (b);
14759 }
14760
14761 /* A callback for map_breakpoint_numbers that calls
14762 disable_breakpoint. */
14763
14764 static void
14765 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14766 {
14767 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14768 }
14769
14770 static void
14771 disable_command (char *args, int from_tty)
14772 {
14773 if (args == 0)
14774 {
14775 struct breakpoint *bpt;
14776
14777 ALL_BREAKPOINTS (bpt)
14778 if (user_breakpoint_p (bpt))
14779 disable_breakpoint (bpt);
14780 }
14781 else
14782 {
14783 char *num = extract_arg (&args);
14784
14785 while (num)
14786 {
14787 if (strchr (num, '.'))
14788 {
14789 struct bp_location *loc = find_location_by_number (num);
14790
14791 if (loc)
14792 {
14793 if (loc->enabled)
14794 {
14795 loc->enabled = 0;
14796 mark_breakpoint_location_modified (loc);
14797 }
14798 if (target_supports_enable_disable_tracepoint ()
14799 && current_trace_status ()->running && loc->owner
14800 && is_tracepoint (loc->owner))
14801 target_disable_tracepoint (loc);
14802 }
14803 update_global_location_list (0);
14804 }
14805 else
14806 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14807 num = extract_arg (&args);
14808 }
14809 }
14810 }
14811
14812 static void
14813 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14814 int count)
14815 {
14816 int target_resources_ok;
14817
14818 if (bpt->type == bp_hardware_breakpoint)
14819 {
14820 int i;
14821 i = hw_breakpoint_used_count ();
14822 target_resources_ok =
14823 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14824 i + 1, 0);
14825 if (target_resources_ok == 0)
14826 error (_("No hardware breakpoint support in the target."));
14827 else if (target_resources_ok < 0)
14828 error (_("Hardware breakpoints used exceeds limit."));
14829 }
14830
14831 if (is_watchpoint (bpt))
14832 {
14833 /* Initialize it just to avoid a GCC false warning. */
14834 enum enable_state orig_enable_state = 0;
14835 volatile struct gdb_exception e;
14836
14837 TRY_CATCH (e, RETURN_MASK_ALL)
14838 {
14839 struct watchpoint *w = (struct watchpoint *) bpt;
14840
14841 orig_enable_state = bpt->enable_state;
14842 bpt->enable_state = bp_enabled;
14843 update_watchpoint (w, 1 /* reparse */);
14844 }
14845 if (e.reason < 0)
14846 {
14847 bpt->enable_state = orig_enable_state;
14848 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14849 bpt->number);
14850 return;
14851 }
14852 }
14853
14854 if (bpt->enable_state != bp_permanent)
14855 bpt->enable_state = bp_enabled;
14856
14857 bpt->enable_state = bp_enabled;
14858
14859 /* Mark breakpoint locations modified. */
14860 mark_breakpoint_modified (bpt);
14861
14862 if (target_supports_enable_disable_tracepoint ()
14863 && current_trace_status ()->running && is_tracepoint (bpt))
14864 {
14865 struct bp_location *location;
14866
14867 for (location = bpt->loc; location; location = location->next)
14868 target_enable_tracepoint (location);
14869 }
14870
14871 bpt->disposition = disposition;
14872 bpt->enable_count = count;
14873 update_global_location_list (1);
14874
14875 observer_notify_breakpoint_modified (bpt);
14876 }
14877
14878
14879 void
14880 enable_breakpoint (struct breakpoint *bpt)
14881 {
14882 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14883 }
14884
14885 static void
14886 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14887 {
14888 enable_breakpoint (bpt);
14889 }
14890
14891 /* A callback for map_breakpoint_numbers that calls
14892 enable_breakpoint. */
14893
14894 static void
14895 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14896 {
14897 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14898 }
14899
14900 /* The enable command enables the specified breakpoints (or all defined
14901 breakpoints) so they once again become (or continue to be) effective
14902 in stopping the inferior. */
14903
14904 static void
14905 enable_command (char *args, int from_tty)
14906 {
14907 if (args == 0)
14908 {
14909 struct breakpoint *bpt;
14910
14911 ALL_BREAKPOINTS (bpt)
14912 if (user_breakpoint_p (bpt))
14913 enable_breakpoint (bpt);
14914 }
14915 else
14916 {
14917 char *num = extract_arg (&args);
14918
14919 while (num)
14920 {
14921 if (strchr (num, '.'))
14922 {
14923 struct bp_location *loc = find_location_by_number (num);
14924
14925 if (loc)
14926 {
14927 if (!loc->enabled)
14928 {
14929 loc->enabled = 1;
14930 mark_breakpoint_location_modified (loc);
14931 }
14932 if (target_supports_enable_disable_tracepoint ()
14933 && current_trace_status ()->running && loc->owner
14934 && is_tracepoint (loc->owner))
14935 target_enable_tracepoint (loc);
14936 }
14937 update_global_location_list (1);
14938 }
14939 else
14940 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14941 num = extract_arg (&args);
14942 }
14943 }
14944 }
14945
14946 /* This struct packages up disposition data for application to multiple
14947 breakpoints. */
14948
14949 struct disp_data
14950 {
14951 enum bpdisp disp;
14952 int count;
14953 };
14954
14955 static void
14956 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14957 {
14958 struct disp_data disp_data = *(struct disp_data *) arg;
14959
14960 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14961 }
14962
14963 static void
14964 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14965 {
14966 struct disp_data disp = { disp_disable, 1 };
14967
14968 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14969 }
14970
14971 static void
14972 enable_once_command (char *args, int from_tty)
14973 {
14974 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14975 }
14976
14977 static void
14978 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14979 {
14980 struct disp_data disp = { disp_disable, *(int *) countptr };
14981
14982 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14983 }
14984
14985 static void
14986 enable_count_command (char *args, int from_tty)
14987 {
14988 int count = get_number (&args);
14989
14990 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14991 }
14992
14993 static void
14994 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14995 {
14996 struct disp_data disp = { disp_del, 1 };
14997
14998 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14999 }
15000
15001 static void
15002 enable_delete_command (char *args, int from_tty)
15003 {
15004 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15005 }
15006 \f
15007 static void
15008 set_breakpoint_cmd (char *args, int from_tty)
15009 {
15010 }
15011
15012 static void
15013 show_breakpoint_cmd (char *args, int from_tty)
15014 {
15015 }
15016
15017 /* Invalidate last known value of any hardware watchpoint if
15018 the memory which that value represents has been written to by
15019 GDB itself. */
15020
15021 static void
15022 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15023 CORE_ADDR addr, ssize_t len,
15024 const bfd_byte *data)
15025 {
15026 struct breakpoint *bp;
15027
15028 ALL_BREAKPOINTS (bp)
15029 if (bp->enable_state == bp_enabled
15030 && bp->type == bp_hardware_watchpoint)
15031 {
15032 struct watchpoint *wp = (struct watchpoint *) bp;
15033
15034 if (wp->val_valid && wp->val)
15035 {
15036 struct bp_location *loc;
15037
15038 for (loc = bp->loc; loc != NULL; loc = loc->next)
15039 if (loc->loc_type == bp_loc_hardware_watchpoint
15040 && loc->address + loc->length > addr
15041 && addr + len > loc->address)
15042 {
15043 value_free (wp->val);
15044 wp->val = NULL;
15045 wp->val_valid = 0;
15046 }
15047 }
15048 }
15049 }
15050
15051 /* Create and insert a raw software breakpoint at PC. Return an
15052 identifier, which should be used to remove the breakpoint later.
15053 In general, places which call this should be using something on the
15054 breakpoint chain instead; this function should be eliminated
15055 someday. */
15056
15057 void *
15058 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15059 struct address_space *aspace, CORE_ADDR pc)
15060 {
15061 struct bp_target_info *bp_tgt;
15062
15063 bp_tgt = XCNEW (struct bp_target_info);
15064
15065 bp_tgt->placed_address_space = aspace;
15066 bp_tgt->placed_address = pc;
15067
15068 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15069 {
15070 /* Could not insert the breakpoint. */
15071 xfree (bp_tgt);
15072 return NULL;
15073 }
15074
15075 return bp_tgt;
15076 }
15077
15078 /* Remove a breakpoint BP inserted by
15079 deprecated_insert_raw_breakpoint. */
15080
15081 int
15082 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15083 {
15084 struct bp_target_info *bp_tgt = bp;
15085 int ret;
15086
15087 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15088 xfree (bp_tgt);
15089
15090 return ret;
15091 }
15092
15093 /* Create and insert a breakpoint for software single step. */
15094
15095 void
15096 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15097 struct address_space *aspace,
15098 CORE_ADDR next_pc)
15099 {
15100 void **bpt_p;
15101
15102 if (single_step_breakpoints[0] == NULL)
15103 {
15104 bpt_p = &single_step_breakpoints[0];
15105 single_step_gdbarch[0] = gdbarch;
15106 }
15107 else
15108 {
15109 gdb_assert (single_step_breakpoints[1] == NULL);
15110 bpt_p = &single_step_breakpoints[1];
15111 single_step_gdbarch[1] = gdbarch;
15112 }
15113
15114 /* NOTE drow/2006-04-11: A future improvement to this function would
15115 be to only create the breakpoints once, and actually put them on
15116 the breakpoint chain. That would let us use set_raw_breakpoint.
15117 We could adjust the addresses each time they were needed. Doing
15118 this requires corresponding changes elsewhere where single step
15119 breakpoints are handled, however. So, for now, we use this. */
15120
15121 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15122 if (*bpt_p == NULL)
15123 error (_("Could not insert single-step breakpoint at %s"),
15124 paddress (gdbarch, next_pc));
15125 }
15126
15127 /* Check if the breakpoints used for software single stepping
15128 were inserted or not. */
15129
15130 int
15131 single_step_breakpoints_inserted (void)
15132 {
15133 return (single_step_breakpoints[0] != NULL
15134 || single_step_breakpoints[1] != NULL);
15135 }
15136
15137 /* Remove and delete any breakpoints used for software single step. */
15138
15139 void
15140 remove_single_step_breakpoints (void)
15141 {
15142 gdb_assert (single_step_breakpoints[0] != NULL);
15143
15144 /* See insert_single_step_breakpoint for more about this deprecated
15145 call. */
15146 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15147 single_step_breakpoints[0]);
15148 single_step_gdbarch[0] = NULL;
15149 single_step_breakpoints[0] = NULL;
15150
15151 if (single_step_breakpoints[1] != NULL)
15152 {
15153 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15154 single_step_breakpoints[1]);
15155 single_step_gdbarch[1] = NULL;
15156 single_step_breakpoints[1] = NULL;
15157 }
15158 }
15159
15160 /* Delete software single step breakpoints without removing them from
15161 the inferior. This is intended to be used if the inferior's address
15162 space where they were inserted is already gone, e.g. after exit or
15163 exec. */
15164
15165 void
15166 cancel_single_step_breakpoints (void)
15167 {
15168 int i;
15169
15170 for (i = 0; i < 2; i++)
15171 if (single_step_breakpoints[i])
15172 {
15173 xfree (single_step_breakpoints[i]);
15174 single_step_breakpoints[i] = NULL;
15175 single_step_gdbarch[i] = NULL;
15176 }
15177 }
15178
15179 /* Detach software single-step breakpoints from INFERIOR_PTID without
15180 removing them. */
15181
15182 static void
15183 detach_single_step_breakpoints (void)
15184 {
15185 int i;
15186
15187 for (i = 0; i < 2; i++)
15188 if (single_step_breakpoints[i])
15189 target_remove_breakpoint (single_step_gdbarch[i],
15190 single_step_breakpoints[i]);
15191 }
15192
15193 /* Check whether a software single-step breakpoint is inserted at
15194 PC. */
15195
15196 int
15197 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15198 CORE_ADDR pc)
15199 {
15200 int i;
15201
15202 for (i = 0; i < 2; i++)
15203 {
15204 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15205 if (bp_tgt
15206 && breakpoint_address_match (bp_tgt->placed_address_space,
15207 bp_tgt->placed_address,
15208 aspace, pc))
15209 return 1;
15210 }
15211
15212 return 0;
15213 }
15214
15215 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15216 non-zero otherwise. */
15217 static int
15218 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15219 {
15220 if (syscall_catchpoint_p (bp)
15221 && bp->enable_state != bp_disabled
15222 && bp->enable_state != bp_call_disabled)
15223 return 1;
15224 else
15225 return 0;
15226 }
15227
15228 int
15229 catch_syscall_enabled (void)
15230 {
15231 struct catch_syscall_inferior_data *inf_data
15232 = get_catch_syscall_inferior_data (current_inferior ());
15233
15234 return inf_data->total_syscalls_count != 0;
15235 }
15236
15237 int
15238 catching_syscall_number (int syscall_number)
15239 {
15240 struct breakpoint *bp;
15241
15242 ALL_BREAKPOINTS (bp)
15243 if (is_syscall_catchpoint_enabled (bp))
15244 {
15245 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15246
15247 if (c->syscalls_to_be_caught)
15248 {
15249 int i, iter;
15250 for (i = 0;
15251 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15252 i++)
15253 if (syscall_number == iter)
15254 return 1;
15255 }
15256 else
15257 return 1;
15258 }
15259
15260 return 0;
15261 }
15262
15263 /* Complete syscall names. Used by "catch syscall". */
15264 static VEC (char_ptr) *
15265 catch_syscall_completer (struct cmd_list_element *cmd,
15266 const char *text, const char *word)
15267 {
15268 const char **list = get_syscall_names ();
15269 VEC (char_ptr) *retlist
15270 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15271
15272 xfree (list);
15273 return retlist;
15274 }
15275
15276 /* Tracepoint-specific operations. */
15277
15278 /* Set tracepoint count to NUM. */
15279 static void
15280 set_tracepoint_count (int num)
15281 {
15282 tracepoint_count = num;
15283 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15284 }
15285
15286 static void
15287 trace_command (char *arg, int from_tty)
15288 {
15289 struct breakpoint_ops *ops;
15290 const char *arg_cp = arg;
15291
15292 if (arg && probe_linespec_to_ops (&arg_cp))
15293 ops = &tracepoint_probe_breakpoint_ops;
15294 else
15295 ops = &tracepoint_breakpoint_ops;
15296
15297 create_breakpoint (get_current_arch (),
15298 arg,
15299 NULL, 0, NULL, 1 /* parse arg */,
15300 0 /* tempflag */,
15301 bp_tracepoint /* type_wanted */,
15302 0 /* Ignore count */,
15303 pending_break_support,
15304 ops,
15305 from_tty,
15306 1 /* enabled */,
15307 0 /* internal */, 0);
15308 }
15309
15310 static void
15311 ftrace_command (char *arg, int from_tty)
15312 {
15313 create_breakpoint (get_current_arch (),
15314 arg,
15315 NULL, 0, NULL, 1 /* parse arg */,
15316 0 /* tempflag */,
15317 bp_fast_tracepoint /* type_wanted */,
15318 0 /* Ignore count */,
15319 pending_break_support,
15320 &tracepoint_breakpoint_ops,
15321 from_tty,
15322 1 /* enabled */,
15323 0 /* internal */, 0);
15324 }
15325
15326 /* strace command implementation. Creates a static tracepoint. */
15327
15328 static void
15329 strace_command (char *arg, int from_tty)
15330 {
15331 struct breakpoint_ops *ops;
15332
15333 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15334 or with a normal static tracepoint. */
15335 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15336 ops = &strace_marker_breakpoint_ops;
15337 else
15338 ops = &tracepoint_breakpoint_ops;
15339
15340 create_breakpoint (get_current_arch (),
15341 arg,
15342 NULL, 0, NULL, 1 /* parse arg */,
15343 0 /* tempflag */,
15344 bp_static_tracepoint /* type_wanted */,
15345 0 /* Ignore count */,
15346 pending_break_support,
15347 ops,
15348 from_tty,
15349 1 /* enabled */,
15350 0 /* internal */, 0);
15351 }
15352
15353 /* Set up a fake reader function that gets command lines from a linked
15354 list that was acquired during tracepoint uploading. */
15355
15356 static struct uploaded_tp *this_utp;
15357 static int next_cmd;
15358
15359 static char *
15360 read_uploaded_action (void)
15361 {
15362 char *rslt;
15363
15364 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15365
15366 next_cmd++;
15367
15368 return rslt;
15369 }
15370
15371 /* Given information about a tracepoint as recorded on a target (which
15372 can be either a live system or a trace file), attempt to create an
15373 equivalent GDB tracepoint. This is not a reliable process, since
15374 the target does not necessarily have all the information used when
15375 the tracepoint was originally defined. */
15376
15377 struct tracepoint *
15378 create_tracepoint_from_upload (struct uploaded_tp *utp)
15379 {
15380 char *addr_str, small_buf[100];
15381 struct tracepoint *tp;
15382
15383 if (utp->at_string)
15384 addr_str = utp->at_string;
15385 else
15386 {
15387 /* In the absence of a source location, fall back to raw
15388 address. Since there is no way to confirm that the address
15389 means the same thing as when the trace was started, warn the
15390 user. */
15391 warning (_("Uploaded tracepoint %d has no "
15392 "source location, using raw address"),
15393 utp->number);
15394 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15395 addr_str = small_buf;
15396 }
15397
15398 /* There's not much we can do with a sequence of bytecodes. */
15399 if (utp->cond && !utp->cond_string)
15400 warning (_("Uploaded tracepoint %d condition "
15401 "has no source form, ignoring it"),
15402 utp->number);
15403
15404 if (!create_breakpoint (get_current_arch (),
15405 addr_str,
15406 utp->cond_string, -1, NULL,
15407 0 /* parse cond/thread */,
15408 0 /* tempflag */,
15409 utp->type /* type_wanted */,
15410 0 /* Ignore count */,
15411 pending_break_support,
15412 &tracepoint_breakpoint_ops,
15413 0 /* from_tty */,
15414 utp->enabled /* enabled */,
15415 0 /* internal */,
15416 CREATE_BREAKPOINT_FLAGS_INSERTED))
15417 return NULL;
15418
15419 /* Get the tracepoint we just created. */
15420 tp = get_tracepoint (tracepoint_count);
15421 gdb_assert (tp != NULL);
15422
15423 if (utp->pass > 0)
15424 {
15425 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15426 tp->base.number);
15427
15428 trace_pass_command (small_buf, 0);
15429 }
15430
15431 /* If we have uploaded versions of the original commands, set up a
15432 special-purpose "reader" function and call the usual command line
15433 reader, then pass the result to the breakpoint command-setting
15434 function. */
15435 if (!VEC_empty (char_ptr, utp->cmd_strings))
15436 {
15437 struct command_line *cmd_list;
15438
15439 this_utp = utp;
15440 next_cmd = 0;
15441
15442 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15443
15444 breakpoint_set_commands (&tp->base, cmd_list);
15445 }
15446 else if (!VEC_empty (char_ptr, utp->actions)
15447 || !VEC_empty (char_ptr, utp->step_actions))
15448 warning (_("Uploaded tracepoint %d actions "
15449 "have no source form, ignoring them"),
15450 utp->number);
15451
15452 /* Copy any status information that might be available. */
15453 tp->base.hit_count = utp->hit_count;
15454 tp->traceframe_usage = utp->traceframe_usage;
15455
15456 return tp;
15457 }
15458
15459 /* Print information on tracepoint number TPNUM_EXP, or all if
15460 omitted. */
15461
15462 static void
15463 tracepoints_info (char *args, int from_tty)
15464 {
15465 struct ui_out *uiout = current_uiout;
15466 int num_printed;
15467
15468 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15469
15470 if (num_printed == 0)
15471 {
15472 if (args == NULL || *args == '\0')
15473 ui_out_message (uiout, 0, "No tracepoints.\n");
15474 else
15475 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15476 }
15477
15478 default_collect_info ();
15479 }
15480
15481 /* The 'enable trace' command enables tracepoints.
15482 Not supported by all targets. */
15483 static void
15484 enable_trace_command (char *args, int from_tty)
15485 {
15486 enable_command (args, from_tty);
15487 }
15488
15489 /* The 'disable trace' command disables tracepoints.
15490 Not supported by all targets. */
15491 static void
15492 disable_trace_command (char *args, int from_tty)
15493 {
15494 disable_command (args, from_tty);
15495 }
15496
15497 /* Remove a tracepoint (or all if no argument). */
15498 static void
15499 delete_trace_command (char *arg, int from_tty)
15500 {
15501 struct breakpoint *b, *b_tmp;
15502
15503 dont_repeat ();
15504
15505 if (arg == 0)
15506 {
15507 int breaks_to_delete = 0;
15508
15509 /* Delete all breakpoints if no argument.
15510 Do not delete internal or call-dummy breakpoints, these
15511 have to be deleted with an explicit breakpoint number
15512 argument. */
15513 ALL_TRACEPOINTS (b)
15514 if (is_tracepoint (b) && user_breakpoint_p (b))
15515 {
15516 breaks_to_delete = 1;
15517 break;
15518 }
15519
15520 /* Ask user only if there are some breakpoints to delete. */
15521 if (!from_tty
15522 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15523 {
15524 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15525 if (is_tracepoint (b) && user_breakpoint_p (b))
15526 delete_breakpoint (b);
15527 }
15528 }
15529 else
15530 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15531 }
15532
15533 /* Helper function for trace_pass_command. */
15534
15535 static void
15536 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15537 {
15538 tp->pass_count = count;
15539 observer_notify_breakpoint_modified (&tp->base);
15540 if (from_tty)
15541 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15542 tp->base.number, count);
15543 }
15544
15545 /* Set passcount for tracepoint.
15546
15547 First command argument is passcount, second is tracepoint number.
15548 If tracepoint number omitted, apply to most recently defined.
15549 Also accepts special argument "all". */
15550
15551 static void
15552 trace_pass_command (char *args, int from_tty)
15553 {
15554 struct tracepoint *t1;
15555 unsigned int count;
15556
15557 if (args == 0 || *args == 0)
15558 error (_("passcount command requires an "
15559 "argument (count + optional TP num)"));
15560
15561 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15562
15563 args = skip_spaces (args);
15564 if (*args && strncasecmp (args, "all", 3) == 0)
15565 {
15566 struct breakpoint *b;
15567
15568 args += 3; /* Skip special argument "all". */
15569 if (*args)
15570 error (_("Junk at end of arguments."));
15571
15572 ALL_TRACEPOINTS (b)
15573 {
15574 t1 = (struct tracepoint *) b;
15575 trace_pass_set_count (t1, count, from_tty);
15576 }
15577 }
15578 else if (*args == '\0')
15579 {
15580 t1 = get_tracepoint_by_number (&args, NULL);
15581 if (t1)
15582 trace_pass_set_count (t1, count, from_tty);
15583 }
15584 else
15585 {
15586 struct get_number_or_range_state state;
15587
15588 init_number_or_range (&state, args);
15589 while (!state.finished)
15590 {
15591 t1 = get_tracepoint_by_number (&args, &state);
15592 if (t1)
15593 trace_pass_set_count (t1, count, from_tty);
15594 }
15595 }
15596 }
15597
15598 struct tracepoint *
15599 get_tracepoint (int num)
15600 {
15601 struct breakpoint *t;
15602
15603 ALL_TRACEPOINTS (t)
15604 if (t->number == num)
15605 return (struct tracepoint *) t;
15606
15607 return NULL;
15608 }
15609
15610 /* Find the tracepoint with the given target-side number (which may be
15611 different from the tracepoint number after disconnecting and
15612 reconnecting). */
15613
15614 struct tracepoint *
15615 get_tracepoint_by_number_on_target (int num)
15616 {
15617 struct breakpoint *b;
15618
15619 ALL_TRACEPOINTS (b)
15620 {
15621 struct tracepoint *t = (struct tracepoint *) b;
15622
15623 if (t->number_on_target == num)
15624 return t;
15625 }
15626
15627 return NULL;
15628 }
15629
15630 /* Utility: parse a tracepoint number and look it up in the list.
15631 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15632 If the argument is missing, the most recent tracepoint
15633 (tracepoint_count) is returned. */
15634
15635 struct tracepoint *
15636 get_tracepoint_by_number (char **arg,
15637 struct get_number_or_range_state *state)
15638 {
15639 struct breakpoint *t;
15640 int tpnum;
15641 char *instring = arg == NULL ? NULL : *arg;
15642
15643 if (state)
15644 {
15645 gdb_assert (!state->finished);
15646 tpnum = get_number_or_range (state);
15647 }
15648 else if (arg == NULL || *arg == NULL || ! **arg)
15649 tpnum = tracepoint_count;
15650 else
15651 tpnum = get_number (arg);
15652
15653 if (tpnum <= 0)
15654 {
15655 if (instring && *instring)
15656 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15657 instring);
15658 else
15659 printf_filtered (_("No previous tracepoint\n"));
15660 return NULL;
15661 }
15662
15663 ALL_TRACEPOINTS (t)
15664 if (t->number == tpnum)
15665 {
15666 return (struct tracepoint *) t;
15667 }
15668
15669 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15670 return NULL;
15671 }
15672
15673 void
15674 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15675 {
15676 if (b->thread != -1)
15677 fprintf_unfiltered (fp, " thread %d", b->thread);
15678
15679 if (b->task != 0)
15680 fprintf_unfiltered (fp, " task %d", b->task);
15681
15682 fprintf_unfiltered (fp, "\n");
15683 }
15684
15685 /* Save information on user settable breakpoints (watchpoints, etc) to
15686 a new script file named FILENAME. If FILTER is non-NULL, call it
15687 on each breakpoint and only include the ones for which it returns
15688 non-zero. */
15689
15690 static void
15691 save_breakpoints (char *filename, int from_tty,
15692 int (*filter) (const struct breakpoint *))
15693 {
15694 struct breakpoint *tp;
15695 int any = 0;
15696 struct cleanup *cleanup;
15697 struct ui_file *fp;
15698 int extra_trace_bits = 0;
15699
15700 if (filename == 0 || *filename == 0)
15701 error (_("Argument required (file name in which to save)"));
15702
15703 /* See if we have anything to save. */
15704 ALL_BREAKPOINTS (tp)
15705 {
15706 /* Skip internal and momentary breakpoints. */
15707 if (!user_breakpoint_p (tp))
15708 continue;
15709
15710 /* If we have a filter, only save the breakpoints it accepts. */
15711 if (filter && !filter (tp))
15712 continue;
15713
15714 any = 1;
15715
15716 if (is_tracepoint (tp))
15717 {
15718 extra_trace_bits = 1;
15719
15720 /* We can stop searching. */
15721 break;
15722 }
15723 }
15724
15725 if (!any)
15726 {
15727 warning (_("Nothing to save."));
15728 return;
15729 }
15730
15731 filename = tilde_expand (filename);
15732 cleanup = make_cleanup (xfree, filename);
15733 fp = gdb_fopen (filename, "w");
15734 if (!fp)
15735 error (_("Unable to open file '%s' for saving (%s)"),
15736 filename, safe_strerror (errno));
15737 make_cleanup_ui_file_delete (fp);
15738
15739 if (extra_trace_bits)
15740 save_trace_state_variables (fp);
15741
15742 ALL_BREAKPOINTS (tp)
15743 {
15744 /* Skip internal and momentary breakpoints. */
15745 if (!user_breakpoint_p (tp))
15746 continue;
15747
15748 /* If we have a filter, only save the breakpoints it accepts. */
15749 if (filter && !filter (tp))
15750 continue;
15751
15752 tp->ops->print_recreate (tp, fp);
15753
15754 /* Note, we can't rely on tp->number for anything, as we can't
15755 assume the recreated breakpoint numbers will match. Use $bpnum
15756 instead. */
15757
15758 if (tp->cond_string)
15759 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15760
15761 if (tp->ignore_count)
15762 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15763
15764 if (tp->type != bp_dprintf && tp->commands)
15765 {
15766 volatile struct gdb_exception ex;
15767
15768 fprintf_unfiltered (fp, " commands\n");
15769
15770 ui_out_redirect (current_uiout, fp);
15771 TRY_CATCH (ex, RETURN_MASK_ALL)
15772 {
15773 print_command_lines (current_uiout, tp->commands->commands, 2);
15774 }
15775 ui_out_redirect (current_uiout, NULL);
15776
15777 if (ex.reason < 0)
15778 throw_exception (ex);
15779
15780 fprintf_unfiltered (fp, " end\n");
15781 }
15782
15783 if (tp->enable_state == bp_disabled)
15784 fprintf_unfiltered (fp, "disable\n");
15785
15786 /* If this is a multi-location breakpoint, check if the locations
15787 should be individually disabled. Watchpoint locations are
15788 special, and not user visible. */
15789 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15790 {
15791 struct bp_location *loc;
15792 int n = 1;
15793
15794 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15795 if (!loc->enabled)
15796 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15797 }
15798 }
15799
15800 if (extra_trace_bits && *default_collect)
15801 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15802
15803 if (from_tty)
15804 printf_filtered (_("Saved to file '%s'.\n"), filename);
15805 do_cleanups (cleanup);
15806 }
15807
15808 /* The `save breakpoints' command. */
15809
15810 static void
15811 save_breakpoints_command (char *args, int from_tty)
15812 {
15813 save_breakpoints (args, from_tty, NULL);
15814 }
15815
15816 /* The `save tracepoints' command. */
15817
15818 static void
15819 save_tracepoints_command (char *args, int from_tty)
15820 {
15821 save_breakpoints (args, from_tty, is_tracepoint);
15822 }
15823
15824 /* Create a vector of all tracepoints. */
15825
15826 VEC(breakpoint_p) *
15827 all_tracepoints (void)
15828 {
15829 VEC(breakpoint_p) *tp_vec = 0;
15830 struct breakpoint *tp;
15831
15832 ALL_TRACEPOINTS (tp)
15833 {
15834 VEC_safe_push (breakpoint_p, tp_vec, tp);
15835 }
15836
15837 return tp_vec;
15838 }
15839
15840 \f
15841 /* This help string is used for the break, hbreak, tbreak and thbreak
15842 commands. It is defined as a macro to prevent duplication.
15843 COMMAND should be a string constant containing the name of the
15844 command. */
15845 #define BREAK_ARGS_HELP(command) \
15846 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15847 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15848 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15849 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15850 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15851 If a line number is specified, break at start of code for that line.\n\
15852 If a function is specified, break at start of code for that function.\n\
15853 If an address is specified, break at that exact address.\n\
15854 With no LOCATION, uses current execution address of the selected\n\
15855 stack frame. This is useful for breaking on return to a stack frame.\n\
15856 \n\
15857 THREADNUM is the number from \"info threads\".\n\
15858 CONDITION is a boolean expression.\n\
15859 \n\
15860 Multiple breakpoints at one place are permitted, and useful if their\n\
15861 conditions are different.\n\
15862 \n\
15863 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15864
15865 /* List of subcommands for "catch". */
15866 static struct cmd_list_element *catch_cmdlist;
15867
15868 /* List of subcommands for "tcatch". */
15869 static struct cmd_list_element *tcatch_cmdlist;
15870
15871 void
15872 add_catch_command (char *name, char *docstring,
15873 void (*sfunc) (char *args, int from_tty,
15874 struct cmd_list_element *command),
15875 completer_ftype *completer,
15876 void *user_data_catch,
15877 void *user_data_tcatch)
15878 {
15879 struct cmd_list_element *command;
15880
15881 command = add_cmd (name, class_breakpoint, NULL, docstring,
15882 &catch_cmdlist);
15883 set_cmd_sfunc (command, sfunc);
15884 set_cmd_context (command, user_data_catch);
15885 set_cmd_completer (command, completer);
15886
15887 command = add_cmd (name, class_breakpoint, NULL, docstring,
15888 &tcatch_cmdlist);
15889 set_cmd_sfunc (command, sfunc);
15890 set_cmd_context (command, user_data_tcatch);
15891 set_cmd_completer (command, completer);
15892 }
15893
15894 static void
15895 clear_syscall_counts (struct inferior *inf)
15896 {
15897 struct catch_syscall_inferior_data *inf_data
15898 = get_catch_syscall_inferior_data (inf);
15899
15900 inf_data->total_syscalls_count = 0;
15901 inf_data->any_syscall_count = 0;
15902 VEC_free (int, inf_data->syscalls_counts);
15903 }
15904
15905 static void
15906 save_command (char *arg, int from_tty)
15907 {
15908 printf_unfiltered (_("\"save\" must be followed by "
15909 "the name of a save subcommand.\n"));
15910 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15911 }
15912
15913 struct breakpoint *
15914 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15915 void *data)
15916 {
15917 struct breakpoint *b, *b_tmp;
15918
15919 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15920 {
15921 if ((*callback) (b, data))
15922 return b;
15923 }
15924
15925 return NULL;
15926 }
15927
15928 /* Zero if any of the breakpoint's locations could be a location where
15929 functions have been inlined, nonzero otherwise. */
15930
15931 static int
15932 is_non_inline_function (struct breakpoint *b)
15933 {
15934 /* The shared library event breakpoint is set on the address of a
15935 non-inline function. */
15936 if (b->type == bp_shlib_event)
15937 return 1;
15938
15939 return 0;
15940 }
15941
15942 /* Nonzero if the specified PC cannot be a location where functions
15943 have been inlined. */
15944
15945 int
15946 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15947 const struct target_waitstatus *ws)
15948 {
15949 struct breakpoint *b;
15950 struct bp_location *bl;
15951
15952 ALL_BREAKPOINTS (b)
15953 {
15954 if (!is_non_inline_function (b))
15955 continue;
15956
15957 for (bl = b->loc; bl != NULL; bl = bl->next)
15958 {
15959 if (!bl->shlib_disabled
15960 && bpstat_check_location (bl, aspace, pc, ws))
15961 return 1;
15962 }
15963 }
15964
15965 return 0;
15966 }
15967
15968 /* Remove any references to OBJFILE which is going to be freed. */
15969
15970 void
15971 breakpoint_free_objfile (struct objfile *objfile)
15972 {
15973 struct bp_location **locp, *loc;
15974
15975 ALL_BP_LOCATIONS (loc, locp)
15976 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15977 loc->symtab = NULL;
15978 }
15979
15980 void
15981 initialize_breakpoint_ops (void)
15982 {
15983 static int initialized = 0;
15984
15985 struct breakpoint_ops *ops;
15986
15987 if (initialized)
15988 return;
15989 initialized = 1;
15990
15991 /* The breakpoint_ops structure to be inherit by all kinds of
15992 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15993 internal and momentary breakpoints, etc.). */
15994 ops = &bkpt_base_breakpoint_ops;
15995 *ops = base_breakpoint_ops;
15996 ops->re_set = bkpt_re_set;
15997 ops->insert_location = bkpt_insert_location;
15998 ops->remove_location = bkpt_remove_location;
15999 ops->breakpoint_hit = bkpt_breakpoint_hit;
16000 ops->create_sals_from_address = bkpt_create_sals_from_address;
16001 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16002 ops->decode_linespec = bkpt_decode_linespec;
16003
16004 /* The breakpoint_ops structure to be used in regular breakpoints. */
16005 ops = &bkpt_breakpoint_ops;
16006 *ops = bkpt_base_breakpoint_ops;
16007 ops->re_set = bkpt_re_set;
16008 ops->resources_needed = bkpt_resources_needed;
16009 ops->print_it = bkpt_print_it;
16010 ops->print_mention = bkpt_print_mention;
16011 ops->print_recreate = bkpt_print_recreate;
16012
16013 /* Ranged breakpoints. */
16014 ops = &ranged_breakpoint_ops;
16015 *ops = bkpt_breakpoint_ops;
16016 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16017 ops->resources_needed = resources_needed_ranged_breakpoint;
16018 ops->print_it = print_it_ranged_breakpoint;
16019 ops->print_one = print_one_ranged_breakpoint;
16020 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16021 ops->print_mention = print_mention_ranged_breakpoint;
16022 ops->print_recreate = print_recreate_ranged_breakpoint;
16023
16024 /* Internal breakpoints. */
16025 ops = &internal_breakpoint_ops;
16026 *ops = bkpt_base_breakpoint_ops;
16027 ops->re_set = internal_bkpt_re_set;
16028 ops->check_status = internal_bkpt_check_status;
16029 ops->print_it = internal_bkpt_print_it;
16030 ops->print_mention = internal_bkpt_print_mention;
16031
16032 /* Momentary breakpoints. */
16033 ops = &momentary_breakpoint_ops;
16034 *ops = bkpt_base_breakpoint_ops;
16035 ops->re_set = momentary_bkpt_re_set;
16036 ops->check_status = momentary_bkpt_check_status;
16037 ops->print_it = momentary_bkpt_print_it;
16038 ops->print_mention = momentary_bkpt_print_mention;
16039
16040 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16041 ops = &longjmp_breakpoint_ops;
16042 *ops = momentary_breakpoint_ops;
16043 ops->dtor = longjmp_bkpt_dtor;
16044
16045 /* Probe breakpoints. */
16046 ops = &bkpt_probe_breakpoint_ops;
16047 *ops = bkpt_breakpoint_ops;
16048 ops->insert_location = bkpt_probe_insert_location;
16049 ops->remove_location = bkpt_probe_remove_location;
16050 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16051 ops->decode_linespec = bkpt_probe_decode_linespec;
16052
16053 /* Watchpoints. */
16054 ops = &watchpoint_breakpoint_ops;
16055 *ops = base_breakpoint_ops;
16056 ops->dtor = dtor_watchpoint;
16057 ops->re_set = re_set_watchpoint;
16058 ops->insert_location = insert_watchpoint;
16059 ops->remove_location = remove_watchpoint;
16060 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16061 ops->check_status = check_status_watchpoint;
16062 ops->resources_needed = resources_needed_watchpoint;
16063 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16064 ops->print_it = print_it_watchpoint;
16065 ops->print_mention = print_mention_watchpoint;
16066 ops->print_recreate = print_recreate_watchpoint;
16067 ops->explains_signal = explains_signal_watchpoint;
16068
16069 /* Masked watchpoints. */
16070 ops = &masked_watchpoint_breakpoint_ops;
16071 *ops = watchpoint_breakpoint_ops;
16072 ops->insert_location = insert_masked_watchpoint;
16073 ops->remove_location = remove_masked_watchpoint;
16074 ops->resources_needed = resources_needed_masked_watchpoint;
16075 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16076 ops->print_it = print_it_masked_watchpoint;
16077 ops->print_one_detail = print_one_detail_masked_watchpoint;
16078 ops->print_mention = print_mention_masked_watchpoint;
16079 ops->print_recreate = print_recreate_masked_watchpoint;
16080
16081 /* Tracepoints. */
16082 ops = &tracepoint_breakpoint_ops;
16083 *ops = base_breakpoint_ops;
16084 ops->re_set = tracepoint_re_set;
16085 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16086 ops->print_one_detail = tracepoint_print_one_detail;
16087 ops->print_mention = tracepoint_print_mention;
16088 ops->print_recreate = tracepoint_print_recreate;
16089 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16090 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16091 ops->decode_linespec = tracepoint_decode_linespec;
16092
16093 /* Probe tracepoints. */
16094 ops = &tracepoint_probe_breakpoint_ops;
16095 *ops = tracepoint_breakpoint_ops;
16096 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16097 ops->decode_linespec = tracepoint_probe_decode_linespec;
16098
16099 /* Static tracepoints with marker (`-m'). */
16100 ops = &strace_marker_breakpoint_ops;
16101 *ops = tracepoint_breakpoint_ops;
16102 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16103 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16104 ops->decode_linespec = strace_marker_decode_linespec;
16105
16106 /* Fork catchpoints. */
16107 ops = &catch_fork_breakpoint_ops;
16108 *ops = base_breakpoint_ops;
16109 ops->insert_location = insert_catch_fork;
16110 ops->remove_location = remove_catch_fork;
16111 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16112 ops->print_it = print_it_catch_fork;
16113 ops->print_one = print_one_catch_fork;
16114 ops->print_mention = print_mention_catch_fork;
16115 ops->print_recreate = print_recreate_catch_fork;
16116
16117 /* Vfork catchpoints. */
16118 ops = &catch_vfork_breakpoint_ops;
16119 *ops = base_breakpoint_ops;
16120 ops->insert_location = insert_catch_vfork;
16121 ops->remove_location = remove_catch_vfork;
16122 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16123 ops->print_it = print_it_catch_vfork;
16124 ops->print_one = print_one_catch_vfork;
16125 ops->print_mention = print_mention_catch_vfork;
16126 ops->print_recreate = print_recreate_catch_vfork;
16127
16128 /* Exec catchpoints. */
16129 ops = &catch_exec_breakpoint_ops;
16130 *ops = base_breakpoint_ops;
16131 ops->dtor = dtor_catch_exec;
16132 ops->insert_location = insert_catch_exec;
16133 ops->remove_location = remove_catch_exec;
16134 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16135 ops->print_it = print_it_catch_exec;
16136 ops->print_one = print_one_catch_exec;
16137 ops->print_mention = print_mention_catch_exec;
16138 ops->print_recreate = print_recreate_catch_exec;
16139
16140 /* Syscall catchpoints. */
16141 ops = &catch_syscall_breakpoint_ops;
16142 *ops = base_breakpoint_ops;
16143 ops->dtor = dtor_catch_syscall;
16144 ops->insert_location = insert_catch_syscall;
16145 ops->remove_location = remove_catch_syscall;
16146 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16147 ops->print_it = print_it_catch_syscall;
16148 ops->print_one = print_one_catch_syscall;
16149 ops->print_mention = print_mention_catch_syscall;
16150 ops->print_recreate = print_recreate_catch_syscall;
16151
16152 /* Solib-related catchpoints. */
16153 ops = &catch_solib_breakpoint_ops;
16154 *ops = base_breakpoint_ops;
16155 ops->dtor = dtor_catch_solib;
16156 ops->insert_location = insert_catch_solib;
16157 ops->remove_location = remove_catch_solib;
16158 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16159 ops->check_status = check_status_catch_solib;
16160 ops->print_it = print_it_catch_solib;
16161 ops->print_one = print_one_catch_solib;
16162 ops->print_mention = print_mention_catch_solib;
16163 ops->print_recreate = print_recreate_catch_solib;
16164
16165 ops = &dprintf_breakpoint_ops;
16166 *ops = bkpt_base_breakpoint_ops;
16167 ops->re_set = dprintf_re_set;
16168 ops->resources_needed = bkpt_resources_needed;
16169 ops->print_it = bkpt_print_it;
16170 ops->print_mention = bkpt_print_mention;
16171 ops->print_recreate = dprintf_print_recreate;
16172 ops->after_condition_true = dprintf_after_condition_true;
16173 }
16174
16175 /* Chain containing all defined "enable breakpoint" subcommands. */
16176
16177 static struct cmd_list_element *enablebreaklist = NULL;
16178
16179 void
16180 _initialize_breakpoint (void)
16181 {
16182 struct cmd_list_element *c;
16183
16184 initialize_breakpoint_ops ();
16185
16186 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16187 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16188 observer_attach_inferior_exit (clear_syscall_counts);
16189 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16190
16191 breakpoint_objfile_key
16192 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16193
16194 catch_syscall_inferior_data
16195 = register_inferior_data_with_cleanup (NULL,
16196 catch_syscall_inferior_data_cleanup);
16197
16198 breakpoint_chain = 0;
16199 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16200 before a breakpoint is set. */
16201 breakpoint_count = 0;
16202
16203 tracepoint_count = 0;
16204
16205 add_com ("ignore", class_breakpoint, ignore_command, _("\
16206 Set ignore-count of breakpoint number N to COUNT.\n\
16207 Usage is `ignore N COUNT'."));
16208 if (xdb_commands)
16209 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16210
16211 add_com ("commands", class_breakpoint, commands_command, _("\
16212 Set commands to be executed when a breakpoint is hit.\n\
16213 Give breakpoint number as argument after \"commands\".\n\
16214 With no argument, the targeted breakpoint is the last one set.\n\
16215 The commands themselves follow starting on the next line.\n\
16216 Type a line containing \"end\" to indicate the end of them.\n\
16217 Give \"silent\" as the first line to make the breakpoint silent;\n\
16218 then no output is printed when it is hit, except what the commands print."));
16219
16220 c = add_com ("condition", class_breakpoint, condition_command, _("\
16221 Specify breakpoint number N to break only if COND is true.\n\
16222 Usage is `condition N COND', where N is an integer and COND is an\n\
16223 expression to be evaluated whenever breakpoint N is reached."));
16224 set_cmd_completer (c, condition_completer);
16225
16226 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16227 Set a temporary breakpoint.\n\
16228 Like \"break\" except the breakpoint is only temporary,\n\
16229 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16230 by using \"enable delete\" on the breakpoint number.\n\
16231 \n"
16232 BREAK_ARGS_HELP ("tbreak")));
16233 set_cmd_completer (c, location_completer);
16234
16235 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16236 Set a hardware assisted breakpoint.\n\
16237 Like \"break\" except the breakpoint requires hardware support,\n\
16238 some target hardware may not have this support.\n\
16239 \n"
16240 BREAK_ARGS_HELP ("hbreak")));
16241 set_cmd_completer (c, location_completer);
16242
16243 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16244 Set a temporary hardware assisted breakpoint.\n\
16245 Like \"hbreak\" except the breakpoint is only temporary,\n\
16246 so it will be deleted when hit.\n\
16247 \n"
16248 BREAK_ARGS_HELP ("thbreak")));
16249 set_cmd_completer (c, location_completer);
16250
16251 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16252 Enable some breakpoints.\n\
16253 Give breakpoint numbers (separated by spaces) as arguments.\n\
16254 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16255 This is used to cancel the effect of the \"disable\" command.\n\
16256 With a subcommand you can enable temporarily."),
16257 &enablelist, "enable ", 1, &cmdlist);
16258 if (xdb_commands)
16259 add_com ("ab", class_breakpoint, enable_command, _("\
16260 Enable some breakpoints.\n\
16261 Give breakpoint numbers (separated by spaces) as arguments.\n\
16262 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16263 This is used to cancel the effect of the \"disable\" command.\n\
16264 With a subcommand you can enable temporarily."));
16265
16266 add_com_alias ("en", "enable", class_breakpoint, 1);
16267
16268 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16269 Enable some breakpoints.\n\
16270 Give breakpoint numbers (separated by spaces) as arguments.\n\
16271 This is used to cancel the effect of the \"disable\" command.\n\
16272 May be abbreviated to simply \"enable\".\n"),
16273 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16274
16275 add_cmd ("once", no_class, enable_once_command, _("\
16276 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16277 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16278 &enablebreaklist);
16279
16280 add_cmd ("delete", no_class, enable_delete_command, _("\
16281 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16282 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16283 &enablebreaklist);
16284
16285 add_cmd ("count", no_class, enable_count_command, _("\
16286 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16287 If a breakpoint is hit while enabled in this fashion,\n\
16288 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16289 &enablebreaklist);
16290
16291 add_cmd ("delete", no_class, enable_delete_command, _("\
16292 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16293 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16294 &enablelist);
16295
16296 add_cmd ("once", no_class, enable_once_command, _("\
16297 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16298 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16299 &enablelist);
16300
16301 add_cmd ("count", no_class, enable_count_command, _("\
16302 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16303 If a breakpoint is hit while enabled in this fashion,\n\
16304 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16305 &enablelist);
16306
16307 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16308 Disable some breakpoints.\n\
16309 Arguments are breakpoint numbers with spaces in between.\n\
16310 To disable all breakpoints, give no argument.\n\
16311 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16312 &disablelist, "disable ", 1, &cmdlist);
16313 add_com_alias ("dis", "disable", class_breakpoint, 1);
16314 add_com_alias ("disa", "disable", class_breakpoint, 1);
16315 if (xdb_commands)
16316 add_com ("sb", class_breakpoint, disable_command, _("\
16317 Disable some breakpoints.\n\
16318 Arguments are breakpoint numbers with spaces in between.\n\
16319 To disable all breakpoints, give no argument.\n\
16320 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16321
16322 add_cmd ("breakpoints", class_alias, disable_command, _("\
16323 Disable some breakpoints.\n\
16324 Arguments are breakpoint numbers with spaces in between.\n\
16325 To disable all breakpoints, give no argument.\n\
16326 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16327 This command may be abbreviated \"disable\"."),
16328 &disablelist);
16329
16330 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16331 Delete some breakpoints or auto-display expressions.\n\
16332 Arguments are breakpoint numbers with spaces in between.\n\
16333 To delete all breakpoints, give no argument.\n\
16334 \n\
16335 Also a prefix command for deletion of other GDB objects.\n\
16336 The \"unset\" command is also an alias for \"delete\"."),
16337 &deletelist, "delete ", 1, &cmdlist);
16338 add_com_alias ("d", "delete", class_breakpoint, 1);
16339 add_com_alias ("del", "delete", class_breakpoint, 1);
16340 if (xdb_commands)
16341 add_com ("db", class_breakpoint, delete_command, _("\
16342 Delete some breakpoints.\n\
16343 Arguments are breakpoint numbers with spaces in between.\n\
16344 To delete all breakpoints, give no argument.\n"));
16345
16346 add_cmd ("breakpoints", class_alias, delete_command, _("\
16347 Delete some breakpoints or auto-display expressions.\n\
16348 Arguments are breakpoint numbers with spaces in between.\n\
16349 To delete all breakpoints, give no argument.\n\
16350 This command may be abbreviated \"delete\"."),
16351 &deletelist);
16352
16353 add_com ("clear", class_breakpoint, clear_command, _("\
16354 Clear breakpoint at specified line or function.\n\
16355 Argument may be line number, function name, or \"*\" and an address.\n\
16356 If line number is specified, all breakpoints in that line are cleared.\n\
16357 If function is specified, breakpoints at beginning of function are cleared.\n\
16358 If an address is specified, breakpoints at that address are cleared.\n\
16359 \n\
16360 With no argument, clears all breakpoints in the line that the selected frame\n\
16361 is executing in.\n\
16362 \n\
16363 See also the \"delete\" command which clears breakpoints by number."));
16364 add_com_alias ("cl", "clear", class_breakpoint, 1);
16365
16366 c = add_com ("break", class_breakpoint, break_command, _("\
16367 Set breakpoint at specified line or function.\n"
16368 BREAK_ARGS_HELP ("break")));
16369 set_cmd_completer (c, location_completer);
16370
16371 add_com_alias ("b", "break", class_run, 1);
16372 add_com_alias ("br", "break", class_run, 1);
16373 add_com_alias ("bre", "break", class_run, 1);
16374 add_com_alias ("brea", "break", class_run, 1);
16375
16376 if (xdb_commands)
16377 add_com_alias ("ba", "break", class_breakpoint, 1);
16378
16379 if (dbx_commands)
16380 {
16381 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16382 Break in function/address or break at a line in the current file."),
16383 &stoplist, "stop ", 1, &cmdlist);
16384 add_cmd ("in", class_breakpoint, stopin_command,
16385 _("Break in function or address."), &stoplist);
16386 add_cmd ("at", class_breakpoint, stopat_command,
16387 _("Break at a line in the current file."), &stoplist);
16388 add_com ("status", class_info, breakpoints_info, _("\
16389 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16390 The \"Type\" column indicates one of:\n\
16391 \tbreakpoint - normal breakpoint\n\
16392 \twatchpoint - watchpoint\n\
16393 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16394 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16395 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16396 address and file/line number respectively.\n\
16397 \n\
16398 Convenience variable \"$_\" and default examine address for \"x\"\n\
16399 are set to the address of the last breakpoint listed unless the command\n\
16400 is prefixed with \"server \".\n\n\
16401 Convenience variable \"$bpnum\" contains the number of the last\n\
16402 breakpoint set."));
16403 }
16404
16405 add_info ("breakpoints", breakpoints_info, _("\
16406 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16407 The \"Type\" column indicates one of:\n\
16408 \tbreakpoint - normal breakpoint\n\
16409 \twatchpoint - watchpoint\n\
16410 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16411 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16412 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16413 address and file/line number respectively.\n\
16414 \n\
16415 Convenience variable \"$_\" and default examine address for \"x\"\n\
16416 are set to the address of the last breakpoint listed unless the command\n\
16417 is prefixed with \"server \".\n\n\
16418 Convenience variable \"$bpnum\" contains the number of the last\n\
16419 breakpoint set."));
16420
16421 add_info_alias ("b", "breakpoints", 1);
16422
16423 if (xdb_commands)
16424 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16425 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16426 The \"Type\" column indicates one of:\n\
16427 \tbreakpoint - normal breakpoint\n\
16428 \twatchpoint - watchpoint\n\
16429 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16430 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16431 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16432 address and file/line number respectively.\n\
16433 \n\
16434 Convenience variable \"$_\" and default examine address for \"x\"\n\
16435 are set to the address of the last breakpoint listed unless the command\n\
16436 is prefixed with \"server \".\n\n\
16437 Convenience variable \"$bpnum\" contains the number of the last\n\
16438 breakpoint set."));
16439
16440 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16441 Status of all breakpoints, or breakpoint number NUMBER.\n\
16442 The \"Type\" column indicates one of:\n\
16443 \tbreakpoint - normal breakpoint\n\
16444 \twatchpoint - watchpoint\n\
16445 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16446 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16447 \tuntil - internal breakpoint used by the \"until\" command\n\
16448 \tfinish - internal breakpoint used by the \"finish\" command\n\
16449 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16450 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16451 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16452 address and file/line number respectively.\n\
16453 \n\
16454 Convenience variable \"$_\" and default examine address for \"x\"\n\
16455 are set to the address of the last breakpoint listed unless the command\n\
16456 is prefixed with \"server \".\n\n\
16457 Convenience variable \"$bpnum\" contains the number of the last\n\
16458 breakpoint set."),
16459 &maintenanceinfolist);
16460
16461 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16462 Set catchpoints to catch events."),
16463 &catch_cmdlist, "catch ",
16464 0/*allow-unknown*/, &cmdlist);
16465
16466 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16467 Set temporary catchpoints to catch events."),
16468 &tcatch_cmdlist, "tcatch ",
16469 0/*allow-unknown*/, &cmdlist);
16470
16471 add_catch_command ("fork", _("Catch calls to fork."),
16472 catch_fork_command_1,
16473 NULL,
16474 (void *) (uintptr_t) catch_fork_permanent,
16475 (void *) (uintptr_t) catch_fork_temporary);
16476 add_catch_command ("vfork", _("Catch calls to vfork."),
16477 catch_fork_command_1,
16478 NULL,
16479 (void *) (uintptr_t) catch_vfork_permanent,
16480 (void *) (uintptr_t) catch_vfork_temporary);
16481 add_catch_command ("exec", _("Catch calls to exec."),
16482 catch_exec_command_1,
16483 NULL,
16484 CATCH_PERMANENT,
16485 CATCH_TEMPORARY);
16486 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16487 Usage: catch load [REGEX]\n\
16488 If REGEX is given, only stop for libraries matching the regular expression."),
16489 catch_load_command_1,
16490 NULL,
16491 CATCH_PERMANENT,
16492 CATCH_TEMPORARY);
16493 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16494 Usage: catch unload [REGEX]\n\
16495 If REGEX is given, only stop for libraries matching the regular expression."),
16496 catch_unload_command_1,
16497 NULL,
16498 CATCH_PERMANENT,
16499 CATCH_TEMPORARY);
16500 add_catch_command ("syscall", _("\
16501 Catch system calls by their names and/or numbers.\n\
16502 Arguments say which system calls to catch. If no arguments\n\
16503 are given, every system call will be caught.\n\
16504 Arguments, if given, should be one or more system call names\n\
16505 (if your system supports that), or system call numbers."),
16506 catch_syscall_command_1,
16507 catch_syscall_completer,
16508 CATCH_PERMANENT,
16509 CATCH_TEMPORARY);
16510
16511 c = add_com ("watch", class_breakpoint, watch_command, _("\
16512 Set a watchpoint for an expression.\n\
16513 Usage: watch [-l|-location] EXPRESSION\n\
16514 A watchpoint stops execution of your program whenever the value of\n\
16515 an expression changes.\n\
16516 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16517 the memory to which it refers."));
16518 set_cmd_completer (c, expression_completer);
16519
16520 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16521 Set a read watchpoint for an expression.\n\
16522 Usage: rwatch [-l|-location] EXPRESSION\n\
16523 A watchpoint stops execution of your program whenever the value of\n\
16524 an expression is read.\n\
16525 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16526 the memory to which it refers."));
16527 set_cmd_completer (c, expression_completer);
16528
16529 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16530 Set a watchpoint for an expression.\n\
16531 Usage: awatch [-l|-location] EXPRESSION\n\
16532 A watchpoint stops execution of your program whenever the value of\n\
16533 an expression is either read or written.\n\
16534 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16535 the memory to which it refers."));
16536 set_cmd_completer (c, expression_completer);
16537
16538 add_info ("watchpoints", watchpoints_info, _("\
16539 Status of specified watchpoints (all watchpoints if no argument)."));
16540
16541 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16542 respond to changes - contrary to the description. */
16543 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16544 &can_use_hw_watchpoints, _("\
16545 Set debugger's willingness to use watchpoint hardware."), _("\
16546 Show debugger's willingness to use watchpoint hardware."), _("\
16547 If zero, gdb will not use hardware for new watchpoints, even if\n\
16548 such is available. (However, any hardware watchpoints that were\n\
16549 created before setting this to nonzero, will continue to use watchpoint\n\
16550 hardware.)"),
16551 NULL,
16552 show_can_use_hw_watchpoints,
16553 &setlist, &showlist);
16554
16555 can_use_hw_watchpoints = 1;
16556
16557 /* Tracepoint manipulation commands. */
16558
16559 c = add_com ("trace", class_breakpoint, trace_command, _("\
16560 Set a tracepoint at specified line or function.\n\
16561 \n"
16562 BREAK_ARGS_HELP ("trace") "\n\
16563 Do \"help tracepoints\" for info on other tracepoint commands."));
16564 set_cmd_completer (c, location_completer);
16565
16566 add_com_alias ("tp", "trace", class_alias, 0);
16567 add_com_alias ("tr", "trace", class_alias, 1);
16568 add_com_alias ("tra", "trace", class_alias, 1);
16569 add_com_alias ("trac", "trace", class_alias, 1);
16570
16571 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16572 Set a fast tracepoint at specified line or function.\n\
16573 \n"
16574 BREAK_ARGS_HELP ("ftrace") "\n\
16575 Do \"help tracepoints\" for info on other tracepoint commands."));
16576 set_cmd_completer (c, location_completer);
16577
16578 c = add_com ("strace", class_breakpoint, strace_command, _("\
16579 Set a static tracepoint at specified line, function or marker.\n\
16580 \n\
16581 strace [LOCATION] [if CONDITION]\n\
16582 LOCATION may be a line number, function name, \"*\" and an address,\n\
16583 or -m MARKER_ID.\n\
16584 If a line number is specified, probe the marker at start of code\n\
16585 for that line. If a function is specified, probe the marker at start\n\
16586 of code for that function. If an address is specified, probe the marker\n\
16587 at that exact address. If a marker id is specified, probe the marker\n\
16588 with that name. With no LOCATION, uses current execution address of\n\
16589 the selected stack frame.\n\
16590 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16591 This collects arbitrary user data passed in the probe point call to the\n\
16592 tracing library. You can inspect it when analyzing the trace buffer,\n\
16593 by printing the $_sdata variable like any other convenience variable.\n\
16594 \n\
16595 CONDITION is a boolean expression.\n\
16596 \n\
16597 Multiple tracepoints at one place are permitted, and useful if their\n\
16598 conditions are different.\n\
16599 \n\
16600 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16601 Do \"help tracepoints\" for info on other tracepoint commands."));
16602 set_cmd_completer (c, location_completer);
16603
16604 add_info ("tracepoints", tracepoints_info, _("\
16605 Status of specified tracepoints (all tracepoints if no argument).\n\
16606 Convenience variable \"$tpnum\" contains the number of the\n\
16607 last tracepoint set."));
16608
16609 add_info_alias ("tp", "tracepoints", 1);
16610
16611 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16612 Delete specified tracepoints.\n\
16613 Arguments are tracepoint numbers, separated by spaces.\n\
16614 No argument means delete all tracepoints."),
16615 &deletelist);
16616 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16617
16618 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16619 Disable specified tracepoints.\n\
16620 Arguments are tracepoint numbers, separated by spaces.\n\
16621 No argument means disable all tracepoints."),
16622 &disablelist);
16623 deprecate_cmd (c, "disable");
16624
16625 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16626 Enable specified tracepoints.\n\
16627 Arguments are tracepoint numbers, separated by spaces.\n\
16628 No argument means enable all tracepoints."),
16629 &enablelist);
16630 deprecate_cmd (c, "enable");
16631
16632 add_com ("passcount", class_trace, trace_pass_command, _("\
16633 Set the passcount for a tracepoint.\n\
16634 The trace will end when the tracepoint has been passed 'count' times.\n\
16635 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16636 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16637
16638 add_prefix_cmd ("save", class_breakpoint, save_command,
16639 _("Save breakpoint definitions as a script."),
16640 &save_cmdlist, "save ",
16641 0/*allow-unknown*/, &cmdlist);
16642
16643 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16644 Save current breakpoint definitions as a script.\n\
16645 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16646 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16647 session to restore them."),
16648 &save_cmdlist);
16649 set_cmd_completer (c, filename_completer);
16650
16651 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16652 Save current tracepoint definitions as a script.\n\
16653 Use the 'source' command in another debug session to restore them."),
16654 &save_cmdlist);
16655 set_cmd_completer (c, filename_completer);
16656
16657 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16658 deprecate_cmd (c, "save tracepoints");
16659
16660 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16661 Breakpoint specific settings\n\
16662 Configure various breakpoint-specific variables such as\n\
16663 pending breakpoint behavior"),
16664 &breakpoint_set_cmdlist, "set breakpoint ",
16665 0/*allow-unknown*/, &setlist);
16666 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16667 Breakpoint specific settings\n\
16668 Configure various breakpoint-specific variables such as\n\
16669 pending breakpoint behavior"),
16670 &breakpoint_show_cmdlist, "show breakpoint ",
16671 0/*allow-unknown*/, &showlist);
16672
16673 add_setshow_auto_boolean_cmd ("pending", no_class,
16674 &pending_break_support, _("\
16675 Set debugger's behavior regarding pending breakpoints."), _("\
16676 Show debugger's behavior regarding pending breakpoints."), _("\
16677 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16678 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16679 an error. If auto, an unrecognized breakpoint location results in a\n\
16680 user-query to see if a pending breakpoint should be created."),
16681 NULL,
16682 show_pending_break_support,
16683 &breakpoint_set_cmdlist,
16684 &breakpoint_show_cmdlist);
16685
16686 pending_break_support = AUTO_BOOLEAN_AUTO;
16687
16688 add_setshow_boolean_cmd ("auto-hw", no_class,
16689 &automatic_hardware_breakpoints, _("\
16690 Set automatic usage of hardware breakpoints."), _("\
16691 Show automatic usage of hardware breakpoints."), _("\
16692 If set, the debugger will automatically use hardware breakpoints for\n\
16693 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16694 a warning will be emitted for such breakpoints."),
16695 NULL,
16696 show_automatic_hardware_breakpoints,
16697 &breakpoint_set_cmdlist,
16698 &breakpoint_show_cmdlist);
16699
16700 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16701 &always_inserted_mode, _("\
16702 Set mode for inserting breakpoints."), _("\
16703 Show mode for inserting breakpoints."), _("\
16704 When this mode is off, breakpoints are inserted in inferior when it is\n\
16705 resumed, and removed when execution stops. When this mode is on,\n\
16706 breakpoints are inserted immediately and removed only when the user\n\
16707 deletes the breakpoint. When this mode is auto (which is the default),\n\
16708 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16709 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16710 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16711 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16712 NULL,
16713 &show_always_inserted_mode,
16714 &breakpoint_set_cmdlist,
16715 &breakpoint_show_cmdlist);
16716
16717 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16718 condition_evaluation_enums,
16719 &condition_evaluation_mode_1, _("\
16720 Set mode of breakpoint condition evaluation."), _("\
16721 Show mode of breakpoint condition evaluation."), _("\
16722 When this is set to \"host\", breakpoint conditions will be\n\
16723 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16724 breakpoint conditions will be downloaded to the target (if the target\n\
16725 supports such feature) and conditions will be evaluated on the target's side.\n\
16726 If this is set to \"auto\" (default), this will be automatically set to\n\
16727 \"target\" if it supports condition evaluation, otherwise it will\n\
16728 be set to \"gdb\""),
16729 &set_condition_evaluation_mode,
16730 &show_condition_evaluation_mode,
16731 &breakpoint_set_cmdlist,
16732 &breakpoint_show_cmdlist);
16733
16734 add_com ("break-range", class_breakpoint, break_range_command, _("\
16735 Set a breakpoint for an address range.\n\
16736 break-range START-LOCATION, END-LOCATION\n\
16737 where START-LOCATION and END-LOCATION can be one of the following:\n\
16738 LINENUM, for that line in the current file,\n\
16739 FILE:LINENUM, for that line in that file,\n\
16740 +OFFSET, for that number of lines after the current line\n\
16741 or the start of the range\n\
16742 FUNCTION, for the first line in that function,\n\
16743 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16744 *ADDRESS, for the instruction at that address.\n\
16745 \n\
16746 The breakpoint will stop execution of the inferior whenever it executes\n\
16747 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16748 range (including START-LOCATION and END-LOCATION)."));
16749
16750 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16751 Set a dynamic printf at specified line or function.\n\
16752 dprintf location,format string,arg1,arg2,...\n\
16753 location may be a line number, function name, or \"*\" and an address.\n\
16754 If a line number is specified, break at start of code for that line.\n\
16755 If a function is specified, break at start of code for that function."));
16756 set_cmd_completer (c, location_completer);
16757
16758 add_setshow_enum_cmd ("dprintf-style", class_support,
16759 dprintf_style_enums, &dprintf_style, _("\
16760 Set the style of usage for dynamic printf."), _("\
16761 Show the style of usage for dynamic printf."), _("\
16762 This setting chooses how GDB will do a dynamic printf.\n\
16763 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16764 console, as with the \"printf\" command.\n\
16765 If the value is \"call\", the print is done by calling a function in your\n\
16766 program; by default printf(), but you can choose a different function or\n\
16767 output stream by setting dprintf-function and dprintf-channel."),
16768 update_dprintf_commands, NULL,
16769 &setlist, &showlist);
16770
16771 dprintf_function = xstrdup ("printf");
16772 add_setshow_string_cmd ("dprintf-function", class_support,
16773 &dprintf_function, _("\
16774 Set the function to use for dynamic printf"), _("\
16775 Show the function to use for dynamic printf"), NULL,
16776 update_dprintf_commands, NULL,
16777 &setlist, &showlist);
16778
16779 dprintf_channel = xstrdup ("");
16780 add_setshow_string_cmd ("dprintf-channel", class_support,
16781 &dprintf_channel, _("\
16782 Set the channel to use for dynamic printf"), _("\
16783 Show the channel to use for dynamic printf"), NULL,
16784 update_dprintf_commands, NULL,
16785 &setlist, &showlist);
16786
16787 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16788 &disconnected_dprintf, _("\
16789 Set whether dprintf continues after GDB disconnects."), _("\
16790 Show whether dprintf continues after GDB disconnects."), _("\
16791 Use this to let dprintf commands continue to hit and produce output\n\
16792 even if GDB disconnects or detaches from the target."),
16793 NULL,
16794 NULL,
16795 &setlist, &showlist);
16796
16797 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16798 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16799 (target agent only) This is useful for formatted output in user-defined commands."));
16800
16801 automatic_hardware_breakpoints = 1;
16802
16803 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16804 observer_attach_thread_exit (remove_threaded_breakpoints);
16805 }
This page took 0.618849 seconds and 4 git commands to generate.