Add -mevexrcig={rne|rd|ru|rz} option to x86 assembler.
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "exceptions.h"
55 #include "memattr.h"
56 #include "ada-lang.h"
57 #include "top.h"
58 #include "valprint.h"
59 #include "jit.h"
60 #include "xml-syscall.h"
61 #include "parser-defs.h"
62 #include "gdb_regex.h"
63 #include "probe.h"
64 #include "cli/cli-utils.h"
65 #include "continuations.h"
66 #include "stack.h"
67 #include "skip.h"
68 #include "ax-gdb.h"
69 #include "dummy-frame.h"
70
71 #include "format.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82
83 /* Enums for exception-handling support. */
84 enum exception_event_kind
85 {
86 EX_EVENT_THROW,
87 EX_EVENT_RETHROW,
88 EX_EVENT_CATCH
89 };
90
91 /* Prototypes for local functions. */
92
93 static void enable_delete_command (char *, int);
94
95 static void enable_once_command (char *, int);
96
97 static void enable_count_command (char *, int);
98
99 static void disable_command (char *, int);
100
101 static void enable_command (char *, int);
102
103 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
104 void *),
105 void *);
106
107 static void ignore_command (char *, int);
108
109 static int breakpoint_re_set_one (void *);
110
111 static void breakpoint_re_set_default (struct breakpoint *);
112
113 static void create_sals_from_address_default (char **,
114 struct linespec_result *,
115 enum bptype, char *,
116 char **);
117
118 static void create_breakpoints_sal_default (struct gdbarch *,
119 struct linespec_result *,
120 char *, char *, enum bptype,
121 enum bpdisp, int, int,
122 int,
123 const struct breakpoint_ops *,
124 int, int, int, unsigned);
125
126 static void decode_linespec_default (struct breakpoint *, char **,
127 struct symtabs_and_lines *);
128
129 static void clear_command (char *, int);
130
131 static void catch_command (char *, int);
132
133 static int can_use_hardware_watchpoint (struct value *);
134
135 static void break_command_1 (char *, int, int);
136
137 static void mention (struct breakpoint *);
138
139 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
140 enum bptype,
141 const struct breakpoint_ops *);
142 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
143 const struct symtab_and_line *);
144
145 /* This function is used in gdbtk sources and thus can not be made
146 static. */
147 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
148 struct symtab_and_line,
149 enum bptype,
150 const struct breakpoint_ops *);
151
152 static struct breakpoint *
153 momentary_breakpoint_from_master (struct breakpoint *orig,
154 enum bptype type,
155 const struct breakpoint_ops *ops,
156 int loc_enabled);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static int find_single_step_breakpoint (struct address_space *aspace,
232 CORE_ADDR pc);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 static void update_global_location_list (int);
241
242 static void update_global_location_list_nothrow (int);
243
244 static int is_hardware_watchpoint (const struct breakpoint *bpt);
245
246 static void insert_breakpoint_locations (void);
247
248 static int syscall_catchpoint_p (struct breakpoint *b);
249
250 static void tracepoints_info (char *, int);
251
252 static void delete_trace_command (char *, int);
253
254 static void enable_trace_command (char *, int);
255
256 static void disable_trace_command (char *, int);
257
258 static void trace_pass_command (char *, int);
259
260 static void set_tracepoint_count (int num);
261
262 static int is_masked_watchpoint (const struct breakpoint *b);
263
264 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
265
266 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
267 otherwise. */
268
269 static int strace_marker_p (struct breakpoint *b);
270
271 /* The abstract base class all breakpoint_ops structures inherit
272 from. */
273 struct breakpoint_ops base_breakpoint_ops;
274
275 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
276 that are implemented on top of software or hardware breakpoints
277 (user breakpoints, internal and momentary breakpoints, etc.). */
278 static struct breakpoint_ops bkpt_base_breakpoint_ops;
279
280 /* Internal breakpoints class type. */
281 static struct breakpoint_ops internal_breakpoint_ops;
282
283 /* Momentary breakpoints class type. */
284 static struct breakpoint_ops momentary_breakpoint_ops;
285
286 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
287 static struct breakpoint_ops longjmp_breakpoint_ops;
288
289 /* The breakpoint_ops structure to be used in regular user created
290 breakpoints. */
291 struct breakpoint_ops bkpt_breakpoint_ops;
292
293 /* Breakpoints set on probes. */
294 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
295
296 /* Dynamic printf class type. */
297 struct breakpoint_ops dprintf_breakpoint_ops;
298
299 /* One (or perhaps two) breakpoints used for software single
300 stepping. */
301
302 static void *single_step_breakpoints[2];
303 static struct gdbarch *single_step_gdbarch[2];
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a "stop" method implemented in an
1052 extension language. This method and conditions entered into GDB
1053 from the CLI are mutually exclusive. */
1054 const struct extension_language_defn *extlang
1055 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1056
1057 if (extlang != NULL)
1058 {
1059 error (_("Only one stop condition allowed. There is currently"
1060 " a %s stop condition defined for this breakpoint."),
1061 ext_lang_capitalized_name (extlang));
1062 }
1063 set_breakpoint_condition (b, p, from_tty);
1064
1065 if (is_breakpoint (b))
1066 update_global_location_list (1);
1067
1068 return;
1069 }
1070
1071 error (_("No breakpoint number %d."), bnum);
1072 }
1073
1074 /* Check that COMMAND do not contain commands that are suitable
1075 only for tracepoints and not suitable for ordinary breakpoints.
1076 Throw if any such commands is found. */
1077
1078 static void
1079 check_no_tracepoint_commands (struct command_line *commands)
1080 {
1081 struct command_line *c;
1082
1083 for (c = commands; c; c = c->next)
1084 {
1085 int i;
1086
1087 if (c->control_type == while_stepping_control)
1088 error (_("The 'while-stepping' command can "
1089 "only be used for tracepoints"));
1090
1091 for (i = 0; i < c->body_count; ++i)
1092 check_no_tracepoint_commands ((c->body_list)[i]);
1093
1094 /* Not that command parsing removes leading whitespace and comment
1095 lines and also empty lines. So, we only need to check for
1096 command directly. */
1097 if (strstr (c->line, "collect ") == c->line)
1098 error (_("The 'collect' command can only be used for tracepoints"));
1099
1100 if (strstr (c->line, "teval ") == c->line)
1101 error (_("The 'teval' command can only be used for tracepoints"));
1102 }
1103 }
1104
1105 /* Encapsulate tests for different types of tracepoints. */
1106
1107 static int
1108 is_tracepoint_type (enum bptype type)
1109 {
1110 return (type == bp_tracepoint
1111 || type == bp_fast_tracepoint
1112 || type == bp_static_tracepoint);
1113 }
1114
1115 int
1116 is_tracepoint (const struct breakpoint *b)
1117 {
1118 return is_tracepoint_type (b->type);
1119 }
1120
1121 /* A helper function that validates that COMMANDS are valid for a
1122 breakpoint. This function will throw an exception if a problem is
1123 found. */
1124
1125 static void
1126 validate_commands_for_breakpoint (struct breakpoint *b,
1127 struct command_line *commands)
1128 {
1129 if (is_tracepoint (b))
1130 {
1131 struct tracepoint *t = (struct tracepoint *) b;
1132 struct command_line *c;
1133 struct command_line *while_stepping = 0;
1134
1135 /* Reset the while-stepping step count. The previous commands
1136 might have included a while-stepping action, while the new
1137 ones might not. */
1138 t->step_count = 0;
1139
1140 /* We need to verify that each top-level element of commands is
1141 valid for tracepoints, that there's at most one
1142 while-stepping element, and that the while-stepping's body
1143 has valid tracing commands excluding nested while-stepping.
1144 We also need to validate the tracepoint action line in the
1145 context of the tracepoint --- validate_actionline actually
1146 has side effects, like setting the tracepoint's
1147 while-stepping STEP_COUNT, in addition to checking if the
1148 collect/teval actions parse and make sense in the
1149 tracepoint's context. */
1150 for (c = commands; c; c = c->next)
1151 {
1152 if (c->control_type == while_stepping_control)
1153 {
1154 if (b->type == bp_fast_tracepoint)
1155 error (_("The 'while-stepping' command "
1156 "cannot be used for fast tracepoint"));
1157 else if (b->type == bp_static_tracepoint)
1158 error (_("The 'while-stepping' command "
1159 "cannot be used for static tracepoint"));
1160
1161 if (while_stepping)
1162 error (_("The 'while-stepping' command "
1163 "can be used only once"));
1164 else
1165 while_stepping = c;
1166 }
1167
1168 validate_actionline (c->line, b);
1169 }
1170 if (while_stepping)
1171 {
1172 struct command_line *c2;
1173
1174 gdb_assert (while_stepping->body_count == 1);
1175 c2 = while_stepping->body_list[0];
1176 for (; c2; c2 = c2->next)
1177 {
1178 if (c2->control_type == while_stepping_control)
1179 error (_("The 'while-stepping' command cannot be nested"));
1180 }
1181 }
1182 }
1183 else
1184 {
1185 check_no_tracepoint_commands (commands);
1186 }
1187 }
1188
1189 /* Return a vector of all the static tracepoints set at ADDR. The
1190 caller is responsible for releasing the vector. */
1191
1192 VEC(breakpoint_p) *
1193 static_tracepoints_here (CORE_ADDR addr)
1194 {
1195 struct breakpoint *b;
1196 VEC(breakpoint_p) *found = 0;
1197 struct bp_location *loc;
1198
1199 ALL_BREAKPOINTS (b)
1200 if (b->type == bp_static_tracepoint)
1201 {
1202 for (loc = b->loc; loc; loc = loc->next)
1203 if (loc->address == addr)
1204 VEC_safe_push(breakpoint_p, found, b);
1205 }
1206
1207 return found;
1208 }
1209
1210 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1211 validate that only allowed commands are included. */
1212
1213 void
1214 breakpoint_set_commands (struct breakpoint *b,
1215 struct command_line *commands)
1216 {
1217 validate_commands_for_breakpoint (b, commands);
1218
1219 decref_counted_command_line (&b->commands);
1220 b->commands = alloc_counted_command_line (commands);
1221 observer_notify_breakpoint_modified (b);
1222 }
1223
1224 /* Set the internal `silent' flag on the breakpoint. Note that this
1225 is not the same as the "silent" that may appear in the breakpoint's
1226 commands. */
1227
1228 void
1229 breakpoint_set_silent (struct breakpoint *b, int silent)
1230 {
1231 int old_silent = b->silent;
1232
1233 b->silent = silent;
1234 if (old_silent != silent)
1235 observer_notify_breakpoint_modified (b);
1236 }
1237
1238 /* Set the thread for this breakpoint. If THREAD is -1, make the
1239 breakpoint work for any thread. */
1240
1241 void
1242 breakpoint_set_thread (struct breakpoint *b, int thread)
1243 {
1244 int old_thread = b->thread;
1245
1246 b->thread = thread;
1247 if (old_thread != thread)
1248 observer_notify_breakpoint_modified (b);
1249 }
1250
1251 /* Set the task for this breakpoint. If TASK is 0, make the
1252 breakpoint work for any task. */
1253
1254 void
1255 breakpoint_set_task (struct breakpoint *b, int task)
1256 {
1257 int old_task = b->task;
1258
1259 b->task = task;
1260 if (old_task != task)
1261 observer_notify_breakpoint_modified (b);
1262 }
1263
1264 void
1265 check_tracepoint_command (char *line, void *closure)
1266 {
1267 struct breakpoint *b = closure;
1268
1269 validate_actionline (line, b);
1270 }
1271
1272 /* A structure used to pass information through
1273 map_breakpoint_numbers. */
1274
1275 struct commands_info
1276 {
1277 /* True if the command was typed at a tty. */
1278 int from_tty;
1279
1280 /* The breakpoint range spec. */
1281 char *arg;
1282
1283 /* Non-NULL if the body of the commands are being read from this
1284 already-parsed command. */
1285 struct command_line *control;
1286
1287 /* The command lines read from the user, or NULL if they have not
1288 yet been read. */
1289 struct counted_command_line *cmd;
1290 };
1291
1292 /* A callback for map_breakpoint_numbers that sets the commands for
1293 commands_command. */
1294
1295 static void
1296 do_map_commands_command (struct breakpoint *b, void *data)
1297 {
1298 struct commands_info *info = data;
1299
1300 if (info->cmd == NULL)
1301 {
1302 struct command_line *l;
1303
1304 if (info->control != NULL)
1305 l = copy_command_lines (info->control->body_list[0]);
1306 else
1307 {
1308 struct cleanup *old_chain;
1309 char *str;
1310
1311 str = xstrprintf (_("Type commands for breakpoint(s) "
1312 "%s, one per line."),
1313 info->arg);
1314
1315 old_chain = make_cleanup (xfree, str);
1316
1317 l = read_command_lines (str,
1318 info->from_tty, 1,
1319 (is_tracepoint (b)
1320 ? check_tracepoint_command : 0),
1321 b);
1322
1323 do_cleanups (old_chain);
1324 }
1325
1326 info->cmd = alloc_counted_command_line (l);
1327 }
1328
1329 /* If a breakpoint was on the list more than once, we don't need to
1330 do anything. */
1331 if (b->commands != info->cmd)
1332 {
1333 validate_commands_for_breakpoint (b, info->cmd->commands);
1334 incref_counted_command_line (info->cmd);
1335 decref_counted_command_line (&b->commands);
1336 b->commands = info->cmd;
1337 observer_notify_breakpoint_modified (b);
1338 }
1339 }
1340
1341 static void
1342 commands_command_1 (char *arg, int from_tty,
1343 struct command_line *control)
1344 {
1345 struct cleanup *cleanups;
1346 struct commands_info info;
1347
1348 info.from_tty = from_tty;
1349 info.control = control;
1350 info.cmd = NULL;
1351 /* If we read command lines from the user, then `info' will hold an
1352 extra reference to the commands that we must clean up. */
1353 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1354
1355 if (arg == NULL || !*arg)
1356 {
1357 if (breakpoint_count - prev_breakpoint_count > 1)
1358 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1359 breakpoint_count);
1360 else if (breakpoint_count > 0)
1361 arg = xstrprintf ("%d", breakpoint_count);
1362 else
1363 {
1364 /* So that we don't try to free the incoming non-NULL
1365 argument in the cleanup below. Mapping breakpoint
1366 numbers will fail in this case. */
1367 arg = NULL;
1368 }
1369 }
1370 else
1371 /* The command loop has some static state, so we need to preserve
1372 our argument. */
1373 arg = xstrdup (arg);
1374
1375 if (arg != NULL)
1376 make_cleanup (xfree, arg);
1377
1378 info.arg = arg;
1379
1380 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1381
1382 if (info.cmd == NULL)
1383 error (_("No breakpoints specified."));
1384
1385 do_cleanups (cleanups);
1386 }
1387
1388 static void
1389 commands_command (char *arg, int from_tty)
1390 {
1391 commands_command_1 (arg, from_tty, NULL);
1392 }
1393
1394 /* Like commands_command, but instead of reading the commands from
1395 input stream, takes them from an already parsed command structure.
1396
1397 This is used by cli-script.c to DTRT with breakpoint commands
1398 that are part of if and while bodies. */
1399 enum command_control_type
1400 commands_from_control_command (char *arg, struct command_line *cmd)
1401 {
1402 commands_command_1 (arg, 0, cmd);
1403 return simple_control;
1404 }
1405
1406 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1407
1408 static int
1409 bp_location_has_shadow (struct bp_location *bl)
1410 {
1411 if (bl->loc_type != bp_loc_software_breakpoint)
1412 return 0;
1413 if (!bl->inserted)
1414 return 0;
1415 if (bl->target_info.shadow_len == 0)
1416 /* BL isn't valid, or doesn't shadow memory. */
1417 return 0;
1418 return 1;
1419 }
1420
1421 /* Update BUF, which is LEN bytes read from the target address
1422 MEMADDR, by replacing a memory breakpoint with its shadowed
1423 contents.
1424
1425 If READBUF is not NULL, this buffer must not overlap with the of
1426 the breakpoint location's shadow_contents buffer. Otherwise, a
1427 failed assertion internal error will be raised. */
1428
1429 static void
1430 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1431 const gdb_byte *writebuf_org,
1432 ULONGEST memaddr, LONGEST len,
1433 struct bp_target_info *target_info,
1434 struct gdbarch *gdbarch)
1435 {
1436 /* Now do full processing of the found relevant range of elements. */
1437 CORE_ADDR bp_addr = 0;
1438 int bp_size = 0;
1439 int bptoffset = 0;
1440
1441 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1442 current_program_space->aspace, 0))
1443 {
1444 /* The breakpoint is inserted in a different address space. */
1445 return;
1446 }
1447
1448 /* Addresses and length of the part of the breakpoint that
1449 we need to copy. */
1450 bp_addr = target_info->placed_address;
1451 bp_size = target_info->shadow_len;
1452
1453 if (bp_addr + bp_size <= memaddr)
1454 {
1455 /* The breakpoint is entirely before the chunk of memory we are
1456 reading. */
1457 return;
1458 }
1459
1460 if (bp_addr >= memaddr + len)
1461 {
1462 /* The breakpoint is entirely after the chunk of memory we are
1463 reading. */
1464 return;
1465 }
1466
1467 /* Offset within shadow_contents. */
1468 if (bp_addr < memaddr)
1469 {
1470 /* Only copy the second part of the breakpoint. */
1471 bp_size -= memaddr - bp_addr;
1472 bptoffset = memaddr - bp_addr;
1473 bp_addr = memaddr;
1474 }
1475
1476 if (bp_addr + bp_size > memaddr + len)
1477 {
1478 /* Only copy the first part of the breakpoint. */
1479 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1480 }
1481
1482 if (readbuf != NULL)
1483 {
1484 /* Verify that the readbuf buffer does not overlap with the
1485 shadow_contents buffer. */
1486 gdb_assert (target_info->shadow_contents >= readbuf + len
1487 || readbuf >= (target_info->shadow_contents
1488 + target_info->shadow_len));
1489
1490 /* Update the read buffer with this inserted breakpoint's
1491 shadow. */
1492 memcpy (readbuf + bp_addr - memaddr,
1493 target_info->shadow_contents + bptoffset, bp_size);
1494 }
1495 else
1496 {
1497 const unsigned char *bp;
1498 CORE_ADDR placed_address = target_info->placed_address;
1499 int placed_size = target_info->placed_size;
1500
1501 /* Update the shadow with what we want to write to memory. */
1502 memcpy (target_info->shadow_contents + bptoffset,
1503 writebuf_org + bp_addr - memaddr, bp_size);
1504
1505 /* Determine appropriate breakpoint contents and size for this
1506 address. */
1507 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1508
1509 /* Update the final write buffer with this inserted
1510 breakpoint's INSN. */
1511 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1512 }
1513 }
1514
1515 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1516 by replacing any memory breakpoints with their shadowed contents.
1517
1518 If READBUF is not NULL, this buffer must not overlap with any of
1519 the breakpoint location's shadow_contents buffers. Otherwise,
1520 a failed assertion internal error will be raised.
1521
1522 The range of shadowed area by each bp_location is:
1523 bl->address - bp_location_placed_address_before_address_max
1524 up to bl->address + bp_location_shadow_len_after_address_max
1525 The range we were requested to resolve shadows for is:
1526 memaddr ... memaddr + len
1527 Thus the safe cutoff boundaries for performance optimization are
1528 memaddr + len <= (bl->address
1529 - bp_location_placed_address_before_address_max)
1530 and:
1531 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1532
1533 void
1534 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1535 const gdb_byte *writebuf_org,
1536 ULONGEST memaddr, LONGEST len)
1537 {
1538 /* Left boundary, right boundary and median element of our binary
1539 search. */
1540 unsigned bc_l, bc_r, bc;
1541 size_t i;
1542
1543 /* Find BC_L which is a leftmost element which may affect BUF
1544 content. It is safe to report lower value but a failure to
1545 report higher one. */
1546
1547 bc_l = 0;
1548 bc_r = bp_location_count;
1549 while (bc_l + 1 < bc_r)
1550 {
1551 struct bp_location *bl;
1552
1553 bc = (bc_l + bc_r) / 2;
1554 bl = bp_location[bc];
1555
1556 /* Check first BL->ADDRESS will not overflow due to the added
1557 constant. Then advance the left boundary only if we are sure
1558 the BC element can in no way affect the BUF content (MEMADDR
1559 to MEMADDR + LEN range).
1560
1561 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1562 offset so that we cannot miss a breakpoint with its shadow
1563 range tail still reaching MEMADDR. */
1564
1565 if ((bl->address + bp_location_shadow_len_after_address_max
1566 >= bl->address)
1567 && (bl->address + bp_location_shadow_len_after_address_max
1568 <= memaddr))
1569 bc_l = bc;
1570 else
1571 bc_r = bc;
1572 }
1573
1574 /* Due to the binary search above, we need to make sure we pick the
1575 first location that's at BC_L's address. E.g., if there are
1576 multiple locations at the same address, BC_L may end up pointing
1577 at a duplicate location, and miss the "master"/"inserted"
1578 location. Say, given locations L1, L2 and L3 at addresses A and
1579 B:
1580
1581 L1@A, L2@A, L3@B, ...
1582
1583 BC_L could end up pointing at location L2, while the "master"
1584 location could be L1. Since the `loc->inserted' flag is only set
1585 on "master" locations, we'd forget to restore the shadow of L1
1586 and L2. */
1587 while (bc_l > 0
1588 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1589 bc_l--;
1590
1591 /* Now do full processing of the found relevant range of elements. */
1592
1593 for (bc = bc_l; bc < bp_location_count; bc++)
1594 {
1595 struct bp_location *bl = bp_location[bc];
1596 CORE_ADDR bp_addr = 0;
1597 int bp_size = 0;
1598 int bptoffset = 0;
1599
1600 /* bp_location array has BL->OWNER always non-NULL. */
1601 if (bl->owner->type == bp_none)
1602 warning (_("reading through apparently deleted breakpoint #%d?"),
1603 bl->owner->number);
1604
1605 /* Performance optimization: any further element can no longer affect BUF
1606 content. */
1607
1608 if (bl->address >= bp_location_placed_address_before_address_max
1609 && memaddr + len <= (bl->address
1610 - bp_location_placed_address_before_address_max))
1611 break;
1612
1613 if (!bp_location_has_shadow (bl))
1614 continue;
1615
1616 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1617 memaddr, len, &bl->target_info, bl->gdbarch);
1618 }
1619
1620 /* Now process single-step breakpoints. These are not found in the
1621 bp_location array. */
1622 for (i = 0; i < 2; i++)
1623 {
1624 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1625
1626 if (bp_tgt != NULL)
1627 {
1628 struct gdbarch *gdbarch = single_step_gdbarch[i];
1629
1630 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1631 memaddr, len, bp_tgt, gdbarch);
1632 }
1633 }
1634 }
1635
1636 \f
1637
1638 /* Return true if BPT is either a software breakpoint or a hardware
1639 breakpoint. */
1640
1641 int
1642 is_breakpoint (const struct breakpoint *bpt)
1643 {
1644 return (bpt->type == bp_breakpoint
1645 || bpt->type == bp_hardware_breakpoint
1646 || bpt->type == bp_dprintf);
1647 }
1648
1649 /* Return true if BPT is of any hardware watchpoint kind. */
1650
1651 static int
1652 is_hardware_watchpoint (const struct breakpoint *bpt)
1653 {
1654 return (bpt->type == bp_hardware_watchpoint
1655 || bpt->type == bp_read_watchpoint
1656 || bpt->type == bp_access_watchpoint);
1657 }
1658
1659 /* Return true if BPT is of any watchpoint kind, hardware or
1660 software. */
1661
1662 int
1663 is_watchpoint (const struct breakpoint *bpt)
1664 {
1665 return (is_hardware_watchpoint (bpt)
1666 || bpt->type == bp_watchpoint);
1667 }
1668
1669 /* Returns true if the current thread and its running state are safe
1670 to evaluate or update watchpoint B. Watchpoints on local
1671 expressions need to be evaluated in the context of the thread that
1672 was current when the watchpoint was created, and, that thread needs
1673 to be stopped to be able to select the correct frame context.
1674 Watchpoints on global expressions can be evaluated on any thread,
1675 and in any state. It is presently left to the target allowing
1676 memory accesses when threads are running. */
1677
1678 static int
1679 watchpoint_in_thread_scope (struct watchpoint *b)
1680 {
1681 return (b->base.pspace == current_program_space
1682 && (ptid_equal (b->watchpoint_thread, null_ptid)
1683 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1684 && !is_executing (inferior_ptid))));
1685 }
1686
1687 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1688 associated bp_watchpoint_scope breakpoint. */
1689
1690 static void
1691 watchpoint_del_at_next_stop (struct watchpoint *w)
1692 {
1693 struct breakpoint *b = &w->base;
1694
1695 if (b->related_breakpoint != b)
1696 {
1697 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1698 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1699 b->related_breakpoint->disposition = disp_del_at_next_stop;
1700 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1701 b->related_breakpoint = b;
1702 }
1703 b->disposition = disp_del_at_next_stop;
1704 }
1705
1706 /* Assuming that B is a watchpoint:
1707 - Reparse watchpoint expression, if REPARSE is non-zero
1708 - Evaluate expression and store the result in B->val
1709 - Evaluate the condition if there is one, and store the result
1710 in b->loc->cond.
1711 - Update the list of values that must be watched in B->loc.
1712
1713 If the watchpoint disposition is disp_del_at_next_stop, then do
1714 nothing. If this is local watchpoint that is out of scope, delete
1715 it.
1716
1717 Even with `set breakpoint always-inserted on' the watchpoints are
1718 removed + inserted on each stop here. Normal breakpoints must
1719 never be removed because they might be missed by a running thread
1720 when debugging in non-stop mode. On the other hand, hardware
1721 watchpoints (is_hardware_watchpoint; processed here) are specific
1722 to each LWP since they are stored in each LWP's hardware debug
1723 registers. Therefore, such LWP must be stopped first in order to
1724 be able to modify its hardware watchpoints.
1725
1726 Hardware watchpoints must be reset exactly once after being
1727 presented to the user. It cannot be done sooner, because it would
1728 reset the data used to present the watchpoint hit to the user. And
1729 it must not be done later because it could display the same single
1730 watchpoint hit during multiple GDB stops. Note that the latter is
1731 relevant only to the hardware watchpoint types bp_read_watchpoint
1732 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1733 not user-visible - its hit is suppressed if the memory content has
1734 not changed.
1735
1736 The following constraints influence the location where we can reset
1737 hardware watchpoints:
1738
1739 * target_stopped_by_watchpoint and target_stopped_data_address are
1740 called several times when GDB stops.
1741
1742 [linux]
1743 * Multiple hardware watchpoints can be hit at the same time,
1744 causing GDB to stop. GDB only presents one hardware watchpoint
1745 hit at a time as the reason for stopping, and all the other hits
1746 are presented later, one after the other, each time the user
1747 requests the execution to be resumed. Execution is not resumed
1748 for the threads still having pending hit event stored in
1749 LWP_INFO->STATUS. While the watchpoint is already removed from
1750 the inferior on the first stop the thread hit event is kept being
1751 reported from its cached value by linux_nat_stopped_data_address
1752 until the real thread resume happens after the watchpoint gets
1753 presented and thus its LWP_INFO->STATUS gets reset.
1754
1755 Therefore the hardware watchpoint hit can get safely reset on the
1756 watchpoint removal from inferior. */
1757
1758 static void
1759 update_watchpoint (struct watchpoint *b, int reparse)
1760 {
1761 int within_current_scope;
1762 struct frame_id saved_frame_id;
1763 int frame_saved;
1764
1765 /* If this is a local watchpoint, we only want to check if the
1766 watchpoint frame is in scope if the current thread is the thread
1767 that was used to create the watchpoint. */
1768 if (!watchpoint_in_thread_scope (b))
1769 return;
1770
1771 if (b->base.disposition == disp_del_at_next_stop)
1772 return;
1773
1774 frame_saved = 0;
1775
1776 /* Determine if the watchpoint is within scope. */
1777 if (b->exp_valid_block == NULL)
1778 within_current_scope = 1;
1779 else
1780 {
1781 struct frame_info *fi = get_current_frame ();
1782 struct gdbarch *frame_arch = get_frame_arch (fi);
1783 CORE_ADDR frame_pc = get_frame_pc (fi);
1784
1785 /* If we're in a function epilogue, unwinding may not work
1786 properly, so do not attempt to recreate locations at this
1787 point. See similar comments in watchpoint_check. */
1788 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1789 return;
1790
1791 /* Save the current frame's ID so we can restore it after
1792 evaluating the watchpoint expression on its own frame. */
1793 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1794 took a frame parameter, so that we didn't have to change the
1795 selected frame. */
1796 frame_saved = 1;
1797 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1798
1799 fi = frame_find_by_id (b->watchpoint_frame);
1800 within_current_scope = (fi != NULL);
1801 if (within_current_scope)
1802 select_frame (fi);
1803 }
1804
1805 /* We don't free locations. They are stored in the bp_location array
1806 and update_global_location_list will eventually delete them and
1807 remove breakpoints if needed. */
1808 b->base.loc = NULL;
1809
1810 if (within_current_scope && reparse)
1811 {
1812 const char *s;
1813
1814 if (b->exp)
1815 {
1816 xfree (b->exp);
1817 b->exp = NULL;
1818 }
1819 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1820 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1821 /* If the meaning of expression itself changed, the old value is
1822 no longer relevant. We don't want to report a watchpoint hit
1823 to the user when the old value and the new value may actually
1824 be completely different objects. */
1825 value_free (b->val);
1826 b->val = NULL;
1827 b->val_valid = 0;
1828
1829 /* Note that unlike with breakpoints, the watchpoint's condition
1830 expression is stored in the breakpoint object, not in the
1831 locations (re)created below. */
1832 if (b->base.cond_string != NULL)
1833 {
1834 if (b->cond_exp != NULL)
1835 {
1836 xfree (b->cond_exp);
1837 b->cond_exp = NULL;
1838 }
1839
1840 s = b->base.cond_string;
1841 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1842 }
1843 }
1844
1845 /* If we failed to parse the expression, for example because
1846 it refers to a global variable in a not-yet-loaded shared library,
1847 don't try to insert watchpoint. We don't automatically delete
1848 such watchpoint, though, since failure to parse expression
1849 is different from out-of-scope watchpoint. */
1850 if (!target_has_execution)
1851 {
1852 /* Without execution, memory can't change. No use to try and
1853 set watchpoint locations. The watchpoint will be reset when
1854 the target gains execution, through breakpoint_re_set. */
1855 if (!can_use_hw_watchpoints)
1856 {
1857 if (b->base.ops->works_in_software_mode (&b->base))
1858 b->base.type = bp_watchpoint;
1859 else
1860 error (_("Can't set read/access watchpoint when "
1861 "hardware watchpoints are disabled."));
1862 }
1863 }
1864 else if (within_current_scope && b->exp)
1865 {
1866 int pc = 0;
1867 struct value *val_chain, *v, *result, *next;
1868 struct program_space *frame_pspace;
1869
1870 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1871
1872 /* Avoid setting b->val if it's already set. The meaning of
1873 b->val is 'the last value' user saw, and we should update
1874 it only if we reported that last value to user. As it
1875 happens, the code that reports it updates b->val directly.
1876 We don't keep track of the memory value for masked
1877 watchpoints. */
1878 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1879 {
1880 b->val = v;
1881 b->val_valid = 1;
1882 }
1883
1884 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1885
1886 /* Look at each value on the value chain. */
1887 for (v = val_chain; v; v = value_next (v))
1888 {
1889 /* If it's a memory location, and GDB actually needed
1890 its contents to evaluate the expression, then we
1891 must watch it. If the first value returned is
1892 still lazy, that means an error occurred reading it;
1893 watch it anyway in case it becomes readable. */
1894 if (VALUE_LVAL (v) == lval_memory
1895 && (v == val_chain || ! value_lazy (v)))
1896 {
1897 struct type *vtype = check_typedef (value_type (v));
1898
1899 /* We only watch structs and arrays if user asked
1900 for it explicitly, never if they just happen to
1901 appear in the middle of some value chain. */
1902 if (v == result
1903 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1904 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1905 {
1906 CORE_ADDR addr;
1907 int type;
1908 struct bp_location *loc, **tmp;
1909
1910 addr = value_address (v);
1911 type = hw_write;
1912 if (b->base.type == bp_read_watchpoint)
1913 type = hw_read;
1914 else if (b->base.type == bp_access_watchpoint)
1915 type = hw_access;
1916
1917 loc = allocate_bp_location (&b->base);
1918 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1919 ;
1920 *tmp = loc;
1921 loc->gdbarch = get_type_arch (value_type (v));
1922
1923 loc->pspace = frame_pspace;
1924 loc->address = addr;
1925 loc->length = TYPE_LENGTH (value_type (v));
1926 loc->watchpoint_type = type;
1927 }
1928 }
1929 }
1930
1931 /* Change the type of breakpoint between hardware assisted or
1932 an ordinary watchpoint depending on the hardware support
1933 and free hardware slots. REPARSE is set when the inferior
1934 is started. */
1935 if (reparse)
1936 {
1937 int reg_cnt;
1938 enum bp_loc_type loc_type;
1939 struct bp_location *bl;
1940
1941 reg_cnt = can_use_hardware_watchpoint (val_chain);
1942
1943 if (reg_cnt)
1944 {
1945 int i, target_resources_ok, other_type_used;
1946 enum bptype type;
1947
1948 /* Use an exact watchpoint when there's only one memory region to be
1949 watched, and only one debug register is needed to watch it. */
1950 b->exact = target_exact_watchpoints && reg_cnt == 1;
1951
1952 /* We need to determine how many resources are already
1953 used for all other hardware watchpoints plus this one
1954 to see if we still have enough resources to also fit
1955 this watchpoint in as well. */
1956
1957 /* If this is a software watchpoint, we try to turn it
1958 to a hardware one -- count resources as if B was of
1959 hardware watchpoint type. */
1960 type = b->base.type;
1961 if (type == bp_watchpoint)
1962 type = bp_hardware_watchpoint;
1963
1964 /* This watchpoint may or may not have been placed on
1965 the list yet at this point (it won't be in the list
1966 if we're trying to create it for the first time,
1967 through watch_command), so always account for it
1968 manually. */
1969
1970 /* Count resources used by all watchpoints except B. */
1971 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1972
1973 /* Add in the resources needed for B. */
1974 i += hw_watchpoint_use_count (&b->base);
1975
1976 target_resources_ok
1977 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1978 if (target_resources_ok <= 0)
1979 {
1980 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1981
1982 if (target_resources_ok == 0 && !sw_mode)
1983 error (_("Target does not support this type of "
1984 "hardware watchpoint."));
1985 else if (target_resources_ok < 0 && !sw_mode)
1986 error (_("There are not enough available hardware "
1987 "resources for this watchpoint."));
1988
1989 /* Downgrade to software watchpoint. */
1990 b->base.type = bp_watchpoint;
1991 }
1992 else
1993 {
1994 /* If this was a software watchpoint, we've just
1995 found we have enough resources to turn it to a
1996 hardware watchpoint. Otherwise, this is a
1997 nop. */
1998 b->base.type = type;
1999 }
2000 }
2001 else if (!b->base.ops->works_in_software_mode (&b->base))
2002 {
2003 if (!can_use_hw_watchpoints)
2004 error (_("Can't set read/access watchpoint when "
2005 "hardware watchpoints are disabled."));
2006 else
2007 error (_("Expression cannot be implemented with "
2008 "read/access watchpoint."));
2009 }
2010 else
2011 b->base.type = bp_watchpoint;
2012
2013 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2014 : bp_loc_hardware_watchpoint);
2015 for (bl = b->base.loc; bl; bl = bl->next)
2016 bl->loc_type = loc_type;
2017 }
2018
2019 for (v = val_chain; v; v = next)
2020 {
2021 next = value_next (v);
2022 if (v != b->val)
2023 value_free (v);
2024 }
2025
2026 /* If a software watchpoint is not watching any memory, then the
2027 above left it without any location set up. But,
2028 bpstat_stop_status requires a location to be able to report
2029 stops, so make sure there's at least a dummy one. */
2030 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2031 {
2032 struct breakpoint *base = &b->base;
2033 base->loc = allocate_bp_location (base);
2034 base->loc->pspace = frame_pspace;
2035 base->loc->address = -1;
2036 base->loc->length = -1;
2037 base->loc->watchpoint_type = -1;
2038 }
2039 }
2040 else if (!within_current_scope)
2041 {
2042 printf_filtered (_("\
2043 Watchpoint %d deleted because the program has left the block\n\
2044 in which its expression is valid.\n"),
2045 b->base.number);
2046 watchpoint_del_at_next_stop (b);
2047 }
2048
2049 /* Restore the selected frame. */
2050 if (frame_saved)
2051 select_frame (frame_find_by_id (saved_frame_id));
2052 }
2053
2054
2055 /* Returns 1 iff breakpoint location should be
2056 inserted in the inferior. We don't differentiate the type of BL's owner
2057 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2058 breakpoint_ops is not defined, because in insert_bp_location,
2059 tracepoint's insert_location will not be called. */
2060 static int
2061 should_be_inserted (struct bp_location *bl)
2062 {
2063 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2064 return 0;
2065
2066 if (bl->owner->disposition == disp_del_at_next_stop)
2067 return 0;
2068
2069 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2070 return 0;
2071
2072 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2073 return 0;
2074
2075 /* This is set for example, when we're attached to the parent of a
2076 vfork, and have detached from the child. The child is running
2077 free, and we expect it to do an exec or exit, at which point the
2078 OS makes the parent schedulable again (and the target reports
2079 that the vfork is done). Until the child is done with the shared
2080 memory region, do not insert breakpoints in the parent, otherwise
2081 the child could still trip on the parent's breakpoints. Since
2082 the parent is blocked anyway, it won't miss any breakpoint. */
2083 if (bl->pspace->breakpoints_not_allowed)
2084 return 0;
2085
2086 /* Don't insert a breakpoint if we're trying to step past its
2087 location. */
2088 if ((bl->loc_type == bp_loc_software_breakpoint
2089 || bl->loc_type == bp_loc_hardware_breakpoint)
2090 && stepping_past_instruction_at (bl->pspace->aspace,
2091 bl->address))
2092 return 0;
2093
2094 return 1;
2095 }
2096
2097 /* Same as should_be_inserted but does the check assuming
2098 that the location is not duplicated. */
2099
2100 static int
2101 unduplicated_should_be_inserted (struct bp_location *bl)
2102 {
2103 int result;
2104 const int save_duplicate = bl->duplicate;
2105
2106 bl->duplicate = 0;
2107 result = should_be_inserted (bl);
2108 bl->duplicate = save_duplicate;
2109 return result;
2110 }
2111
2112 /* Parses a conditional described by an expression COND into an
2113 agent expression bytecode suitable for evaluation
2114 by the bytecode interpreter. Return NULL if there was
2115 any error during parsing. */
2116
2117 static struct agent_expr *
2118 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2119 {
2120 struct agent_expr *aexpr = NULL;
2121 volatile struct gdb_exception ex;
2122
2123 if (!cond)
2124 return NULL;
2125
2126 /* We don't want to stop processing, so catch any errors
2127 that may show up. */
2128 TRY_CATCH (ex, RETURN_MASK_ERROR)
2129 {
2130 aexpr = gen_eval_for_expr (scope, cond);
2131 }
2132
2133 if (ex.reason < 0)
2134 {
2135 /* If we got here, it means the condition could not be parsed to a valid
2136 bytecode expression and thus can't be evaluated on the target's side.
2137 It's no use iterating through the conditions. */
2138 return NULL;
2139 }
2140
2141 /* We have a valid agent expression. */
2142 return aexpr;
2143 }
2144
2145 /* Based on location BL, create a list of breakpoint conditions to be
2146 passed on to the target. If we have duplicated locations with different
2147 conditions, we will add such conditions to the list. The idea is that the
2148 target will evaluate the list of conditions and will only notify GDB when
2149 one of them is true. */
2150
2151 static void
2152 build_target_condition_list (struct bp_location *bl)
2153 {
2154 struct bp_location **locp = NULL, **loc2p;
2155 int null_condition_or_parse_error = 0;
2156 int modified = bl->needs_update;
2157 struct bp_location *loc;
2158
2159 /* Release conditions left over from a previous insert. */
2160 VEC_free (agent_expr_p, bl->target_info.conditions);
2161
2162 /* This is only meaningful if the target is
2163 evaluating conditions and if the user has
2164 opted for condition evaluation on the target's
2165 side. */
2166 if (gdb_evaluates_breakpoint_condition_p ()
2167 || !target_supports_evaluation_of_breakpoint_conditions ())
2168 return;
2169
2170 /* Do a first pass to check for locations with no assigned
2171 conditions or conditions that fail to parse to a valid agent expression
2172 bytecode. If any of these happen, then it's no use to send conditions
2173 to the target since this location will always trigger and generate a
2174 response back to GDB. */
2175 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2176 {
2177 loc = (*loc2p);
2178 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2179 {
2180 if (modified)
2181 {
2182 struct agent_expr *aexpr;
2183
2184 /* Re-parse the conditions since something changed. In that
2185 case we already freed the condition bytecodes (see
2186 force_breakpoint_reinsertion). We just
2187 need to parse the condition to bytecodes again. */
2188 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2189 loc->cond_bytecode = aexpr;
2190
2191 /* Check if we managed to parse the conditional expression
2192 correctly. If not, we will not send this condition
2193 to the target. */
2194 if (aexpr)
2195 continue;
2196 }
2197
2198 /* If we have a NULL bytecode expression, it means something
2199 went wrong or we have a null condition expression. */
2200 if (!loc->cond_bytecode)
2201 {
2202 null_condition_or_parse_error = 1;
2203 break;
2204 }
2205 }
2206 }
2207
2208 /* If any of these happened, it means we will have to evaluate the conditions
2209 for the location's address on gdb's side. It is no use keeping bytecodes
2210 for all the other duplicate locations, thus we free all of them here.
2211
2212 This is so we have a finer control over which locations' conditions are
2213 being evaluated by GDB or the remote stub. */
2214 if (null_condition_or_parse_error)
2215 {
2216 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2217 {
2218 loc = (*loc2p);
2219 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2220 {
2221 /* Only go as far as the first NULL bytecode is
2222 located. */
2223 if (!loc->cond_bytecode)
2224 return;
2225
2226 free_agent_expr (loc->cond_bytecode);
2227 loc->cond_bytecode = NULL;
2228 }
2229 }
2230 }
2231
2232 /* No NULL conditions or failed bytecode generation. Build a condition list
2233 for this location's address. */
2234 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2235 {
2236 loc = (*loc2p);
2237 if (loc->cond
2238 && is_breakpoint (loc->owner)
2239 && loc->pspace->num == bl->pspace->num
2240 && loc->owner->enable_state == bp_enabled
2241 && loc->enabled)
2242 /* Add the condition to the vector. This will be used later to send the
2243 conditions to the target. */
2244 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2245 loc->cond_bytecode);
2246 }
2247
2248 return;
2249 }
2250
2251 /* Parses a command described by string CMD into an agent expression
2252 bytecode suitable for evaluation by the bytecode interpreter.
2253 Return NULL if there was any error during parsing. */
2254
2255 static struct agent_expr *
2256 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2257 {
2258 struct cleanup *old_cleanups = 0;
2259 struct expression *expr, **argvec;
2260 struct agent_expr *aexpr = NULL;
2261 volatile struct gdb_exception ex;
2262 const char *cmdrest;
2263 const char *format_start, *format_end;
2264 struct format_piece *fpieces;
2265 int nargs;
2266 struct gdbarch *gdbarch = get_current_arch ();
2267
2268 if (!cmd)
2269 return NULL;
2270
2271 cmdrest = cmd;
2272
2273 if (*cmdrest == ',')
2274 ++cmdrest;
2275 cmdrest = skip_spaces_const (cmdrest);
2276
2277 if (*cmdrest++ != '"')
2278 error (_("No format string following the location"));
2279
2280 format_start = cmdrest;
2281
2282 fpieces = parse_format_string (&cmdrest);
2283
2284 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2285
2286 format_end = cmdrest;
2287
2288 if (*cmdrest++ != '"')
2289 error (_("Bad format string, non-terminated '\"'."));
2290
2291 cmdrest = skip_spaces_const (cmdrest);
2292
2293 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2294 error (_("Invalid argument syntax"));
2295
2296 if (*cmdrest == ',')
2297 cmdrest++;
2298 cmdrest = skip_spaces_const (cmdrest);
2299
2300 /* For each argument, make an expression. */
2301
2302 argvec = (struct expression **) alloca (strlen (cmd)
2303 * sizeof (struct expression *));
2304
2305 nargs = 0;
2306 while (*cmdrest != '\0')
2307 {
2308 const char *cmd1;
2309
2310 cmd1 = cmdrest;
2311 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2312 argvec[nargs++] = expr;
2313 cmdrest = cmd1;
2314 if (*cmdrest == ',')
2315 ++cmdrest;
2316 }
2317
2318 /* We don't want to stop processing, so catch any errors
2319 that may show up. */
2320 TRY_CATCH (ex, RETURN_MASK_ERROR)
2321 {
2322 aexpr = gen_printf (scope, gdbarch, 0, 0,
2323 format_start, format_end - format_start,
2324 fpieces, nargs, argvec);
2325 }
2326
2327 do_cleanups (old_cleanups);
2328
2329 if (ex.reason < 0)
2330 {
2331 /* If we got here, it means the command could not be parsed to a valid
2332 bytecode expression and thus can't be evaluated on the target's side.
2333 It's no use iterating through the other commands. */
2334 return NULL;
2335 }
2336
2337 /* We have a valid agent expression, return it. */
2338 return aexpr;
2339 }
2340
2341 /* Based on location BL, create a list of breakpoint commands to be
2342 passed on to the target. If we have duplicated locations with
2343 different commands, we will add any such to the list. */
2344
2345 static void
2346 build_target_command_list (struct bp_location *bl)
2347 {
2348 struct bp_location **locp = NULL, **loc2p;
2349 int null_command_or_parse_error = 0;
2350 int modified = bl->needs_update;
2351 struct bp_location *loc;
2352
2353 /* Release commands left over from a previous insert. */
2354 VEC_free (agent_expr_p, bl->target_info.tcommands);
2355
2356 if (!target_can_run_breakpoint_commands ())
2357 return;
2358
2359 /* For now, limit to agent-style dprintf breakpoints. */
2360 if (dprintf_style != dprintf_style_agent)
2361 return;
2362
2363 /* For now, if we have any duplicate location that isn't a dprintf,
2364 don't install the target-side commands, as that would make the
2365 breakpoint not be reported to the core, and we'd lose
2366 control. */
2367 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2368 {
2369 loc = (*loc2p);
2370 if (is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->type != bp_dprintf)
2373 return;
2374 }
2375
2376 /* Do a first pass to check for locations with no assigned
2377 conditions or conditions that fail to parse to a valid agent expression
2378 bytecode. If any of these happen, then it's no use to send conditions
2379 to the target since this location will always trigger and generate a
2380 response back to GDB. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2385 {
2386 if (modified)
2387 {
2388 struct agent_expr *aexpr;
2389
2390 /* Re-parse the commands since something changed. In that
2391 case we already freed the command bytecodes (see
2392 force_breakpoint_reinsertion). We just
2393 need to parse the command to bytecodes again. */
2394 aexpr = parse_cmd_to_aexpr (bl->address,
2395 loc->owner->extra_string);
2396 loc->cmd_bytecode = aexpr;
2397
2398 if (!aexpr)
2399 continue;
2400 }
2401
2402 /* If we have a NULL bytecode expression, it means something
2403 went wrong or we have a null command expression. */
2404 if (!loc->cmd_bytecode)
2405 {
2406 null_command_or_parse_error = 1;
2407 break;
2408 }
2409 }
2410 }
2411
2412 /* If anything failed, then we're not doing target-side commands,
2413 and so clean up. */
2414 if (null_command_or_parse_error)
2415 {
2416 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2417 {
2418 loc = (*loc2p);
2419 if (is_breakpoint (loc->owner)
2420 && loc->pspace->num == bl->pspace->num)
2421 {
2422 /* Only go as far as the first NULL bytecode is
2423 located. */
2424 if (loc->cmd_bytecode == NULL)
2425 return;
2426
2427 free_agent_expr (loc->cmd_bytecode);
2428 loc->cmd_bytecode = NULL;
2429 }
2430 }
2431 }
2432
2433 /* No NULL commands or failed bytecode generation. Build a command list
2434 for this location's address. */
2435 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2436 {
2437 loc = (*loc2p);
2438 if (loc->owner->extra_string
2439 && is_breakpoint (loc->owner)
2440 && loc->pspace->num == bl->pspace->num
2441 && loc->owner->enable_state == bp_enabled
2442 && loc->enabled)
2443 /* Add the command to the vector. This will be used later
2444 to send the commands to the target. */
2445 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2446 loc->cmd_bytecode);
2447 }
2448
2449 bl->target_info.persist = 0;
2450 /* Maybe flag this location as persistent. */
2451 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2452 bl->target_info.persist = 1;
2453 }
2454
2455 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2456 location. Any error messages are printed to TMP_ERROR_STREAM; and
2457 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2458 Returns 0 for success, 1 if the bp_location type is not supported or
2459 -1 for failure.
2460
2461 NOTE drow/2003-09-09: This routine could be broken down to an
2462 object-style method for each breakpoint or catchpoint type. */
2463 static int
2464 insert_bp_location (struct bp_location *bl,
2465 struct ui_file *tmp_error_stream,
2466 int *disabled_breaks,
2467 int *hw_breakpoint_error,
2468 int *hw_bp_error_explained_already)
2469 {
2470 enum errors bp_err = GDB_NO_ERROR;
2471 const char *bp_err_message = NULL;
2472 volatile struct gdb_exception e;
2473
2474 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2475 return 0;
2476
2477 /* Note we don't initialize bl->target_info, as that wipes out
2478 the breakpoint location's shadow_contents if the breakpoint
2479 is still inserted at that location. This in turn breaks
2480 target_read_memory which depends on these buffers when
2481 a memory read is requested at the breakpoint location:
2482 Once the target_info has been wiped, we fail to see that
2483 we have a breakpoint inserted at that address and thus
2484 read the breakpoint instead of returning the data saved in
2485 the breakpoint location's shadow contents. */
2486 bl->target_info.placed_address = bl->address;
2487 bl->target_info.placed_address_space = bl->pspace->aspace;
2488 bl->target_info.length = bl->length;
2489
2490 /* When working with target-side conditions, we must pass all the conditions
2491 for the same breakpoint address down to the target since GDB will not
2492 insert those locations. With a list of breakpoint conditions, the target
2493 can decide when to stop and notify GDB. */
2494
2495 if (is_breakpoint (bl->owner))
2496 {
2497 build_target_condition_list (bl);
2498 build_target_command_list (bl);
2499 /* Reset the modification marker. */
2500 bl->needs_update = 0;
2501 }
2502
2503 if (bl->loc_type == bp_loc_software_breakpoint
2504 || bl->loc_type == bp_loc_hardware_breakpoint)
2505 {
2506 if (bl->owner->type != bp_hardware_breakpoint)
2507 {
2508 /* If the explicitly specified breakpoint type
2509 is not hardware breakpoint, check the memory map to see
2510 if the breakpoint address is in read only memory or not.
2511
2512 Two important cases are:
2513 - location type is not hardware breakpoint, memory
2514 is readonly. We change the type of the location to
2515 hardware breakpoint.
2516 - location type is hardware breakpoint, memory is
2517 read-write. This means we've previously made the
2518 location hardware one, but then the memory map changed,
2519 so we undo.
2520
2521 When breakpoints are removed, remove_breakpoints will use
2522 location types we've just set here, the only possible
2523 problem is that memory map has changed during running
2524 program, but it's not going to work anyway with current
2525 gdb. */
2526 struct mem_region *mr
2527 = lookup_mem_region (bl->target_info.placed_address);
2528
2529 if (mr)
2530 {
2531 if (automatic_hardware_breakpoints)
2532 {
2533 enum bp_loc_type new_type;
2534
2535 if (mr->attrib.mode != MEM_RW)
2536 new_type = bp_loc_hardware_breakpoint;
2537 else
2538 new_type = bp_loc_software_breakpoint;
2539
2540 if (new_type != bl->loc_type)
2541 {
2542 static int said = 0;
2543
2544 bl->loc_type = new_type;
2545 if (!said)
2546 {
2547 fprintf_filtered (gdb_stdout,
2548 _("Note: automatically using "
2549 "hardware breakpoints for "
2550 "read-only addresses.\n"));
2551 said = 1;
2552 }
2553 }
2554 }
2555 else if (bl->loc_type == bp_loc_software_breakpoint
2556 && mr->attrib.mode != MEM_RW)
2557 warning (_("cannot set software breakpoint "
2558 "at readonly address %s"),
2559 paddress (bl->gdbarch, bl->address));
2560 }
2561 }
2562
2563 /* First check to see if we have to handle an overlay. */
2564 if (overlay_debugging == ovly_off
2565 || bl->section == NULL
2566 || !(section_is_overlay (bl->section)))
2567 {
2568 /* No overlay handling: just set the breakpoint. */
2569 TRY_CATCH (e, RETURN_MASK_ALL)
2570 {
2571 int val;
2572
2573 val = bl->owner->ops->insert_location (bl);
2574 if (val)
2575 bp_err = GENERIC_ERROR;
2576 }
2577 if (e.reason < 0)
2578 {
2579 bp_err = e.error;
2580 bp_err_message = e.message;
2581 }
2582 }
2583 else
2584 {
2585 /* This breakpoint is in an overlay section.
2586 Shall we set a breakpoint at the LMA? */
2587 if (!overlay_events_enabled)
2588 {
2589 /* Yes -- overlay event support is not active,
2590 so we must try to set a breakpoint at the LMA.
2591 This will not work for a hardware breakpoint. */
2592 if (bl->loc_type == bp_loc_hardware_breakpoint)
2593 warning (_("hardware breakpoint %d not supported in overlay!"),
2594 bl->owner->number);
2595 else
2596 {
2597 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2598 bl->section);
2599 /* Set a software (trap) breakpoint at the LMA. */
2600 bl->overlay_target_info = bl->target_info;
2601 bl->overlay_target_info.placed_address = addr;
2602
2603 /* No overlay handling: just set the breakpoint. */
2604 TRY_CATCH (e, RETURN_MASK_ALL)
2605 {
2606 int val;
2607
2608 val = target_insert_breakpoint (bl->gdbarch,
2609 &bl->overlay_target_info);
2610 if (val)
2611 bp_err = GENERIC_ERROR;
2612 }
2613 if (e.reason < 0)
2614 {
2615 bp_err = e.error;
2616 bp_err_message = e.message;
2617 }
2618
2619 if (bp_err != GDB_NO_ERROR)
2620 fprintf_unfiltered (tmp_error_stream,
2621 "Overlay breakpoint %d "
2622 "failed: in ROM?\n",
2623 bl->owner->number);
2624 }
2625 }
2626 /* Shall we set a breakpoint at the VMA? */
2627 if (section_is_mapped (bl->section))
2628 {
2629 /* Yes. This overlay section is mapped into memory. */
2630 TRY_CATCH (e, RETURN_MASK_ALL)
2631 {
2632 int val;
2633
2634 val = bl->owner->ops->insert_location (bl);
2635 if (val)
2636 bp_err = GENERIC_ERROR;
2637 }
2638 if (e.reason < 0)
2639 {
2640 bp_err = e.error;
2641 bp_err_message = e.message;
2642 }
2643 }
2644 else
2645 {
2646 /* No. This breakpoint will not be inserted.
2647 No error, but do not mark the bp as 'inserted'. */
2648 return 0;
2649 }
2650 }
2651
2652 if (bp_err != GDB_NO_ERROR)
2653 {
2654 /* Can't set the breakpoint. */
2655
2656 /* In some cases, we might not be able to insert a
2657 breakpoint in a shared library that has already been
2658 removed, but we have not yet processed the shlib unload
2659 event. Unfortunately, some targets that implement
2660 breakpoint insertion themselves can't tell why the
2661 breakpoint insertion failed (e.g., the remote target
2662 doesn't define error codes), so we must treat generic
2663 errors as memory errors. */
2664 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2665 && bl->loc_type == bp_loc_software_breakpoint
2666 && (solib_name_from_address (bl->pspace, bl->address)
2667 || shared_objfile_contains_address_p (bl->pspace,
2668 bl->address)))
2669 {
2670 /* See also: disable_breakpoints_in_shlibs. */
2671 bl->shlib_disabled = 1;
2672 observer_notify_breakpoint_modified (bl->owner);
2673 if (!*disabled_breaks)
2674 {
2675 fprintf_unfiltered (tmp_error_stream,
2676 "Cannot insert breakpoint %d.\n",
2677 bl->owner->number);
2678 fprintf_unfiltered (tmp_error_stream,
2679 "Temporarily disabling shared "
2680 "library breakpoints:\n");
2681 }
2682 *disabled_breaks = 1;
2683 fprintf_unfiltered (tmp_error_stream,
2684 "breakpoint #%d\n", bl->owner->number);
2685 return 0;
2686 }
2687 else
2688 {
2689 if (bl->loc_type == bp_loc_hardware_breakpoint)
2690 {
2691 *hw_breakpoint_error = 1;
2692 *hw_bp_error_explained_already = bp_err_message != NULL;
2693 fprintf_unfiltered (tmp_error_stream,
2694 "Cannot insert hardware breakpoint %d%s",
2695 bl->owner->number, bp_err_message ? ":" : ".\n");
2696 if (bp_err_message != NULL)
2697 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2698 }
2699 else
2700 {
2701 if (bp_err_message == NULL)
2702 {
2703 char *message
2704 = memory_error_message (TARGET_XFER_E_IO,
2705 bl->gdbarch, bl->address);
2706 struct cleanup *old_chain = make_cleanup (xfree, message);
2707
2708 fprintf_unfiltered (tmp_error_stream,
2709 "Cannot insert breakpoint %d.\n"
2710 "%s\n",
2711 bl->owner->number, message);
2712 do_cleanups (old_chain);
2713 }
2714 else
2715 {
2716 fprintf_unfiltered (tmp_error_stream,
2717 "Cannot insert breakpoint %d: %s\n",
2718 bl->owner->number,
2719 bp_err_message);
2720 }
2721 }
2722 return 1;
2723
2724 }
2725 }
2726 else
2727 bl->inserted = 1;
2728
2729 return 0;
2730 }
2731
2732 else if (bl->loc_type == bp_loc_hardware_watchpoint
2733 /* NOTE drow/2003-09-08: This state only exists for removing
2734 watchpoints. It's not clear that it's necessary... */
2735 && bl->owner->disposition != disp_del_at_next_stop)
2736 {
2737 int val;
2738
2739 gdb_assert (bl->owner->ops != NULL
2740 && bl->owner->ops->insert_location != NULL);
2741
2742 val = bl->owner->ops->insert_location (bl);
2743
2744 /* If trying to set a read-watchpoint, and it turns out it's not
2745 supported, try emulating one with an access watchpoint. */
2746 if (val == 1 && bl->watchpoint_type == hw_read)
2747 {
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* But don't try to insert it, if there's already another
2751 hw_access location that would be considered a duplicate
2752 of this one. */
2753 ALL_BP_LOCATIONS (loc, loc_temp)
2754 if (loc != bl
2755 && loc->watchpoint_type == hw_access
2756 && watchpoint_locations_match (bl, loc))
2757 {
2758 bl->duplicate = 1;
2759 bl->inserted = 1;
2760 bl->target_info = loc->target_info;
2761 bl->watchpoint_type = hw_access;
2762 val = 0;
2763 break;
2764 }
2765
2766 if (val == 1)
2767 {
2768 bl->watchpoint_type = hw_access;
2769 val = bl->owner->ops->insert_location (bl);
2770
2771 if (val)
2772 /* Back to the original value. */
2773 bl->watchpoint_type = hw_read;
2774 }
2775 }
2776
2777 bl->inserted = (val == 0);
2778 }
2779
2780 else if (bl->owner->type == bp_catchpoint)
2781 {
2782 int val;
2783
2784 gdb_assert (bl->owner->ops != NULL
2785 && bl->owner->ops->insert_location != NULL);
2786
2787 val = bl->owner->ops->insert_location (bl);
2788 if (val)
2789 {
2790 bl->owner->enable_state = bp_disabled;
2791
2792 if (val == 1)
2793 warning (_("\
2794 Error inserting catchpoint %d: Your system does not support this type\n\
2795 of catchpoint."), bl->owner->number);
2796 else
2797 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2798 }
2799
2800 bl->inserted = (val == 0);
2801
2802 /* We've already printed an error message if there was a problem
2803 inserting this catchpoint, and we've disabled the catchpoint,
2804 so just return success. */
2805 return 0;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* This function is called when program space PSPACE is about to be
2812 deleted. It takes care of updating breakpoints to not reference
2813 PSPACE anymore. */
2814
2815 void
2816 breakpoint_program_space_exit (struct program_space *pspace)
2817 {
2818 struct breakpoint *b, *b_temp;
2819 struct bp_location *loc, **loc_temp;
2820
2821 /* Remove any breakpoint that was set through this program space. */
2822 ALL_BREAKPOINTS_SAFE (b, b_temp)
2823 {
2824 if (b->pspace == pspace)
2825 delete_breakpoint (b);
2826 }
2827
2828 /* Breakpoints set through other program spaces could have locations
2829 bound to PSPACE as well. Remove those. */
2830 ALL_BP_LOCATIONS (loc, loc_temp)
2831 {
2832 struct bp_location *tmp;
2833
2834 if (loc->pspace == pspace)
2835 {
2836 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2837 if (loc->owner->loc == loc)
2838 loc->owner->loc = loc->next;
2839 else
2840 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2841 if (tmp->next == loc)
2842 {
2843 tmp->next = loc->next;
2844 break;
2845 }
2846 }
2847 }
2848
2849 /* Now update the global location list to permanently delete the
2850 removed locations above. */
2851 update_global_location_list (0);
2852 }
2853
2854 /* Make sure all breakpoints are inserted in inferior.
2855 Throws exception on any error.
2856 A breakpoint that is already inserted won't be inserted
2857 again, so calling this function twice is safe. */
2858 void
2859 insert_breakpoints (void)
2860 {
2861 struct breakpoint *bpt;
2862
2863 ALL_BREAKPOINTS (bpt)
2864 if (is_hardware_watchpoint (bpt))
2865 {
2866 struct watchpoint *w = (struct watchpoint *) bpt;
2867
2868 update_watchpoint (w, 0 /* don't reparse. */);
2869 }
2870
2871 update_global_location_list (1);
2872
2873 /* update_global_location_list does not insert breakpoints when
2874 always_inserted_mode is not enabled. Explicitly insert them
2875 now. */
2876 if (!breakpoints_always_inserted_mode ())
2877 insert_breakpoint_locations ();
2878 }
2879
2880 /* Invoke CALLBACK for each of bp_location. */
2881
2882 void
2883 iterate_over_bp_locations (walk_bp_location_callback callback)
2884 {
2885 struct bp_location *loc, **loc_tmp;
2886
2887 ALL_BP_LOCATIONS (loc, loc_tmp)
2888 {
2889 callback (loc, NULL);
2890 }
2891 }
2892
2893 /* This is used when we need to synch breakpoint conditions between GDB and the
2894 target. It is the case with deleting and disabling of breakpoints when using
2895 always-inserted mode. */
2896
2897 static void
2898 update_inserted_breakpoint_locations (void)
2899 {
2900 struct bp_location *bl, **blp_tmp;
2901 int error_flag = 0;
2902 int val = 0;
2903 int disabled_breaks = 0;
2904 int hw_breakpoint_error = 0;
2905 int hw_bp_details_reported = 0;
2906
2907 struct ui_file *tmp_error_stream = mem_fileopen ();
2908 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2909
2910 /* Explicitly mark the warning -- this will only be printed if
2911 there was an error. */
2912 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2913
2914 save_current_space_and_thread ();
2915
2916 ALL_BP_LOCATIONS (bl, blp_tmp)
2917 {
2918 /* We only want to update software breakpoints and hardware
2919 breakpoints. */
2920 if (!is_breakpoint (bl->owner))
2921 continue;
2922
2923 /* We only want to update locations that are already inserted
2924 and need updating. This is to avoid unwanted insertion during
2925 deletion of breakpoints. */
2926 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2927 continue;
2928
2929 switch_to_program_space_and_thread (bl->pspace);
2930
2931 /* For targets that support global breakpoints, there's no need
2932 to select an inferior to insert breakpoint to. In fact, even
2933 if we aren't attached to any process yet, we should still
2934 insert breakpoints. */
2935 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2936 && ptid_equal (inferior_ptid, null_ptid))
2937 continue;
2938
2939 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2940 &hw_breakpoint_error, &hw_bp_details_reported);
2941 if (val)
2942 error_flag = val;
2943 }
2944
2945 if (error_flag)
2946 {
2947 target_terminal_ours_for_output ();
2948 error_stream (tmp_error_stream);
2949 }
2950
2951 do_cleanups (cleanups);
2952 }
2953
2954 /* Used when starting or continuing the program. */
2955
2956 static void
2957 insert_breakpoint_locations (void)
2958 {
2959 struct breakpoint *bpt;
2960 struct bp_location *bl, **blp_tmp;
2961 int error_flag = 0;
2962 int val = 0;
2963 int disabled_breaks = 0;
2964 int hw_breakpoint_error = 0;
2965 int hw_bp_error_explained_already = 0;
2966
2967 struct ui_file *tmp_error_stream = mem_fileopen ();
2968 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2969
2970 /* Explicitly mark the warning -- this will only be printed if
2971 there was an error. */
2972 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2973
2974 save_current_space_and_thread ();
2975
2976 ALL_BP_LOCATIONS (bl, blp_tmp)
2977 {
2978 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2979 continue;
2980
2981 /* There is no point inserting thread-specific breakpoints if
2982 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2983 has BL->OWNER always non-NULL. */
2984 if (bl->owner->thread != -1
2985 && !valid_thread_id (bl->owner->thread))
2986 continue;
2987
2988 switch_to_program_space_and_thread (bl->pspace);
2989
2990 /* For targets that support global breakpoints, there's no need
2991 to select an inferior to insert breakpoint to. In fact, even
2992 if we aren't attached to any process yet, we should still
2993 insert breakpoints. */
2994 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2995 && ptid_equal (inferior_ptid, null_ptid))
2996 continue;
2997
2998 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2999 &hw_breakpoint_error, &hw_bp_error_explained_already);
3000 if (val)
3001 error_flag = val;
3002 }
3003
3004 /* If we failed to insert all locations of a watchpoint, remove
3005 them, as half-inserted watchpoint is of limited use. */
3006 ALL_BREAKPOINTS (bpt)
3007 {
3008 int some_failed = 0;
3009 struct bp_location *loc;
3010
3011 if (!is_hardware_watchpoint (bpt))
3012 continue;
3013
3014 if (!breakpoint_enabled (bpt))
3015 continue;
3016
3017 if (bpt->disposition == disp_del_at_next_stop)
3018 continue;
3019
3020 for (loc = bpt->loc; loc; loc = loc->next)
3021 if (!loc->inserted && should_be_inserted (loc))
3022 {
3023 some_failed = 1;
3024 break;
3025 }
3026 if (some_failed)
3027 {
3028 for (loc = bpt->loc; loc; loc = loc->next)
3029 if (loc->inserted)
3030 remove_breakpoint (loc, mark_uninserted);
3031
3032 hw_breakpoint_error = 1;
3033 fprintf_unfiltered (tmp_error_stream,
3034 "Could not insert hardware watchpoint %d.\n",
3035 bpt->number);
3036 error_flag = -1;
3037 }
3038 }
3039
3040 if (error_flag)
3041 {
3042 /* If a hardware breakpoint or watchpoint was inserted, add a
3043 message about possibly exhausted resources. */
3044 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3045 {
3046 fprintf_unfiltered (tmp_error_stream,
3047 "Could not insert hardware breakpoints:\n\
3048 You may have requested too many hardware breakpoints/watchpoints.\n");
3049 }
3050 target_terminal_ours_for_output ();
3051 error_stream (tmp_error_stream);
3052 }
3053
3054 do_cleanups (cleanups);
3055 }
3056
3057 /* Used when the program stops.
3058 Returns zero if successful, or non-zero if there was a problem
3059 removing a breakpoint location. */
3060
3061 int
3062 remove_breakpoints (void)
3063 {
3064 struct bp_location *bl, **blp_tmp;
3065 int val = 0;
3066
3067 ALL_BP_LOCATIONS (bl, blp_tmp)
3068 {
3069 if (bl->inserted && !is_tracepoint (bl->owner))
3070 val |= remove_breakpoint (bl, mark_uninserted);
3071 }
3072 return val;
3073 }
3074
3075 /* When a thread exits, remove breakpoints that are related to
3076 that thread. */
3077
3078 static void
3079 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3080 {
3081 struct breakpoint *b, *b_tmp;
3082
3083 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3084 {
3085 if (b->thread == tp->num && user_breakpoint_p (b))
3086 {
3087 b->disposition = disp_del_at_next_stop;
3088
3089 printf_filtered (_("\
3090 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3091 b->number, tp->num);
3092
3093 /* Hide it from the user. */
3094 b->number = 0;
3095 }
3096 }
3097 }
3098
3099 /* Remove breakpoints of process PID. */
3100
3101 int
3102 remove_breakpoints_pid (int pid)
3103 {
3104 struct bp_location *bl, **blp_tmp;
3105 int val;
3106 struct inferior *inf = find_inferior_pid (pid);
3107
3108 ALL_BP_LOCATIONS (bl, blp_tmp)
3109 {
3110 if (bl->pspace != inf->pspace)
3111 continue;
3112
3113 if (bl->owner->type == bp_dprintf)
3114 continue;
3115
3116 if (bl->inserted)
3117 {
3118 val = remove_breakpoint (bl, mark_uninserted);
3119 if (val != 0)
3120 return val;
3121 }
3122 }
3123 return 0;
3124 }
3125
3126 int
3127 reattach_breakpoints (int pid)
3128 {
3129 struct cleanup *old_chain;
3130 struct bp_location *bl, **blp_tmp;
3131 int val;
3132 struct ui_file *tmp_error_stream;
3133 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3134 struct inferior *inf;
3135 struct thread_info *tp;
3136
3137 tp = any_live_thread_of_process (pid);
3138 if (tp == NULL)
3139 return 1;
3140
3141 inf = find_inferior_pid (pid);
3142 old_chain = save_inferior_ptid ();
3143
3144 inferior_ptid = tp->ptid;
3145
3146 tmp_error_stream = mem_fileopen ();
3147 make_cleanup_ui_file_delete (tmp_error_stream);
3148
3149 ALL_BP_LOCATIONS (bl, blp_tmp)
3150 {
3151 if (bl->pspace != inf->pspace)
3152 continue;
3153
3154 if (bl->inserted)
3155 {
3156 bl->inserted = 0;
3157 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3158 if (val != 0)
3159 {
3160 do_cleanups (old_chain);
3161 return val;
3162 }
3163 }
3164 }
3165 do_cleanups (old_chain);
3166 return 0;
3167 }
3168
3169 static int internal_breakpoint_number = -1;
3170
3171 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3172 If INTERNAL is non-zero, the breakpoint number will be populated
3173 from internal_breakpoint_number and that variable decremented.
3174 Otherwise the breakpoint number will be populated from
3175 breakpoint_count and that value incremented. Internal breakpoints
3176 do not set the internal var bpnum. */
3177 static void
3178 set_breakpoint_number (int internal, struct breakpoint *b)
3179 {
3180 if (internal)
3181 b->number = internal_breakpoint_number--;
3182 else
3183 {
3184 set_breakpoint_count (breakpoint_count + 1);
3185 b->number = breakpoint_count;
3186 }
3187 }
3188
3189 static struct breakpoint *
3190 create_internal_breakpoint (struct gdbarch *gdbarch,
3191 CORE_ADDR address, enum bptype type,
3192 const struct breakpoint_ops *ops)
3193 {
3194 struct symtab_and_line sal;
3195 struct breakpoint *b;
3196
3197 init_sal (&sal); /* Initialize to zeroes. */
3198
3199 sal.pc = address;
3200 sal.section = find_pc_overlay (sal.pc);
3201 sal.pspace = current_program_space;
3202
3203 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3204 b->number = internal_breakpoint_number--;
3205 b->disposition = disp_donttouch;
3206
3207 return b;
3208 }
3209
3210 static const char *const longjmp_names[] =
3211 {
3212 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3213 };
3214 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3215
3216 /* Per-objfile data private to breakpoint.c. */
3217 struct breakpoint_objfile_data
3218 {
3219 /* Minimal symbol for "_ovly_debug_event" (if any). */
3220 struct bound_minimal_symbol overlay_msym;
3221
3222 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3223 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3224
3225 /* True if we have looked for longjmp probes. */
3226 int longjmp_searched;
3227
3228 /* SystemTap probe points for longjmp (if any). */
3229 VEC (probe_p) *longjmp_probes;
3230
3231 /* Minimal symbol for "std::terminate()" (if any). */
3232 struct bound_minimal_symbol terminate_msym;
3233
3234 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3235 struct bound_minimal_symbol exception_msym;
3236
3237 /* True if we have looked for exception probes. */
3238 int exception_searched;
3239
3240 /* SystemTap probe points for unwinding (if any). */
3241 VEC (probe_p) *exception_probes;
3242 };
3243
3244 static const struct objfile_data *breakpoint_objfile_key;
3245
3246 /* Minimal symbol not found sentinel. */
3247 static struct minimal_symbol msym_not_found;
3248
3249 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3250
3251 static int
3252 msym_not_found_p (const struct minimal_symbol *msym)
3253 {
3254 return msym == &msym_not_found;
3255 }
3256
3257 /* Return per-objfile data needed by breakpoint.c.
3258 Allocate the data if necessary. */
3259
3260 static struct breakpoint_objfile_data *
3261 get_breakpoint_objfile_data (struct objfile *objfile)
3262 {
3263 struct breakpoint_objfile_data *bp_objfile_data;
3264
3265 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3266 if (bp_objfile_data == NULL)
3267 {
3268 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3269 sizeof (*bp_objfile_data));
3270
3271 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3272 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3273 }
3274 return bp_objfile_data;
3275 }
3276
3277 static void
3278 free_breakpoint_probes (struct objfile *obj, void *data)
3279 {
3280 struct breakpoint_objfile_data *bp_objfile_data = data;
3281
3282 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3283 VEC_free (probe_p, bp_objfile_data->exception_probes);
3284 }
3285
3286 static void
3287 create_overlay_event_breakpoint (void)
3288 {
3289 struct objfile *objfile;
3290 const char *const func_name = "_ovly_debug_event";
3291
3292 ALL_OBJFILES (objfile)
3293 {
3294 struct breakpoint *b;
3295 struct breakpoint_objfile_data *bp_objfile_data;
3296 CORE_ADDR addr;
3297
3298 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3299
3300 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3301 continue;
3302
3303 if (bp_objfile_data->overlay_msym.minsym == NULL)
3304 {
3305 struct bound_minimal_symbol m;
3306
3307 m = lookup_minimal_symbol_text (func_name, objfile);
3308 if (m.minsym == NULL)
3309 {
3310 /* Avoid future lookups in this objfile. */
3311 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3312 continue;
3313 }
3314 bp_objfile_data->overlay_msym = m;
3315 }
3316
3317 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3318 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3319 bp_overlay_event,
3320 &internal_breakpoint_ops);
3321 b->addr_string = xstrdup (func_name);
3322
3323 if (overlay_debugging == ovly_auto)
3324 {
3325 b->enable_state = bp_enabled;
3326 overlay_events_enabled = 1;
3327 }
3328 else
3329 {
3330 b->enable_state = bp_disabled;
3331 overlay_events_enabled = 0;
3332 }
3333 }
3334 update_global_location_list (1);
3335 }
3336
3337 static void
3338 create_longjmp_master_breakpoint (void)
3339 {
3340 struct program_space *pspace;
3341 struct cleanup *old_chain;
3342
3343 old_chain = save_current_program_space ();
3344
3345 ALL_PSPACES (pspace)
3346 {
3347 struct objfile *objfile;
3348
3349 set_current_program_space (pspace);
3350
3351 ALL_OBJFILES (objfile)
3352 {
3353 int i;
3354 struct gdbarch *gdbarch;
3355 struct breakpoint_objfile_data *bp_objfile_data;
3356
3357 gdbarch = get_objfile_arch (objfile);
3358
3359 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3360
3361 if (!bp_objfile_data->longjmp_searched)
3362 {
3363 VEC (probe_p) *ret;
3364
3365 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3366 if (ret != NULL)
3367 {
3368 /* We are only interested in checking one element. */
3369 struct probe *p = VEC_index (probe_p, ret, 0);
3370
3371 if (!can_evaluate_probe_arguments (p))
3372 {
3373 /* We cannot use the probe interface here, because it does
3374 not know how to evaluate arguments. */
3375 VEC_free (probe_p, ret);
3376 ret = NULL;
3377 }
3378 }
3379 bp_objfile_data->longjmp_probes = ret;
3380 bp_objfile_data->longjmp_searched = 1;
3381 }
3382
3383 if (bp_objfile_data->longjmp_probes != NULL)
3384 {
3385 int i;
3386 struct probe *probe;
3387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3388
3389 for (i = 0;
3390 VEC_iterate (probe_p,
3391 bp_objfile_data->longjmp_probes,
3392 i, probe);
3393 ++i)
3394 {
3395 struct breakpoint *b;
3396
3397 b = create_internal_breakpoint (gdbarch,
3398 get_probe_address (probe,
3399 objfile),
3400 bp_longjmp_master,
3401 &internal_breakpoint_ops);
3402 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3403 b->enable_state = bp_disabled;
3404 }
3405
3406 continue;
3407 }
3408
3409 if (!gdbarch_get_longjmp_target_p (gdbarch))
3410 continue;
3411
3412 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3413 {
3414 struct breakpoint *b;
3415 const char *func_name;
3416 CORE_ADDR addr;
3417
3418 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3419 continue;
3420
3421 func_name = longjmp_names[i];
3422 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3423 {
3424 struct bound_minimal_symbol m;
3425
3426 m = lookup_minimal_symbol_text (func_name, objfile);
3427 if (m.minsym == NULL)
3428 {
3429 /* Prevent future lookups in this objfile. */
3430 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3431 continue;
3432 }
3433 bp_objfile_data->longjmp_msym[i] = m;
3434 }
3435
3436 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3437 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3438 &internal_breakpoint_ops);
3439 b->addr_string = xstrdup (func_name);
3440 b->enable_state = bp_disabled;
3441 }
3442 }
3443 }
3444 update_global_location_list (1);
3445
3446 do_cleanups (old_chain);
3447 }
3448
3449 /* Create a master std::terminate breakpoint. */
3450 static void
3451 create_std_terminate_master_breakpoint (void)
3452 {
3453 struct program_space *pspace;
3454 struct cleanup *old_chain;
3455 const char *const func_name = "std::terminate()";
3456
3457 old_chain = save_current_program_space ();
3458
3459 ALL_PSPACES (pspace)
3460 {
3461 struct objfile *objfile;
3462 CORE_ADDR addr;
3463
3464 set_current_program_space (pspace);
3465
3466 ALL_OBJFILES (objfile)
3467 {
3468 struct breakpoint *b;
3469 struct breakpoint_objfile_data *bp_objfile_data;
3470
3471 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3472
3473 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3474 continue;
3475
3476 if (bp_objfile_data->terminate_msym.minsym == NULL)
3477 {
3478 struct bound_minimal_symbol m;
3479
3480 m = lookup_minimal_symbol (func_name, NULL, objfile);
3481 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3482 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3483 {
3484 /* Prevent future lookups in this objfile. */
3485 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3486 continue;
3487 }
3488 bp_objfile_data->terminate_msym = m;
3489 }
3490
3491 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3492 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3493 bp_std_terminate_master,
3494 &internal_breakpoint_ops);
3495 b->addr_string = xstrdup (func_name);
3496 b->enable_state = bp_disabled;
3497 }
3498 }
3499
3500 update_global_location_list (1);
3501
3502 do_cleanups (old_chain);
3503 }
3504
3505 /* Install a master breakpoint on the unwinder's debug hook. */
3506
3507 static void
3508 create_exception_master_breakpoint (void)
3509 {
3510 struct objfile *objfile;
3511 const char *const func_name = "_Unwind_DebugHook";
3512
3513 ALL_OBJFILES (objfile)
3514 {
3515 struct breakpoint *b;
3516 struct gdbarch *gdbarch;
3517 struct breakpoint_objfile_data *bp_objfile_data;
3518 CORE_ADDR addr;
3519
3520 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3521
3522 /* We prefer the SystemTap probe point if it exists. */
3523 if (!bp_objfile_data->exception_searched)
3524 {
3525 VEC (probe_p) *ret;
3526
3527 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3528
3529 if (ret != NULL)
3530 {
3531 /* We are only interested in checking one element. */
3532 struct probe *p = VEC_index (probe_p, ret, 0);
3533
3534 if (!can_evaluate_probe_arguments (p))
3535 {
3536 /* We cannot use the probe interface here, because it does
3537 not know how to evaluate arguments. */
3538 VEC_free (probe_p, ret);
3539 ret = NULL;
3540 }
3541 }
3542 bp_objfile_data->exception_probes = ret;
3543 bp_objfile_data->exception_searched = 1;
3544 }
3545
3546 if (bp_objfile_data->exception_probes != NULL)
3547 {
3548 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3549 int i;
3550 struct probe *probe;
3551
3552 for (i = 0;
3553 VEC_iterate (probe_p,
3554 bp_objfile_data->exception_probes,
3555 i, probe);
3556 ++i)
3557 {
3558 struct breakpoint *b;
3559
3560 b = create_internal_breakpoint (gdbarch,
3561 get_probe_address (probe,
3562 objfile),
3563 bp_exception_master,
3564 &internal_breakpoint_ops);
3565 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3566 b->enable_state = bp_disabled;
3567 }
3568
3569 continue;
3570 }
3571
3572 /* Otherwise, try the hook function. */
3573
3574 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3575 continue;
3576
3577 gdbarch = get_objfile_arch (objfile);
3578
3579 if (bp_objfile_data->exception_msym.minsym == NULL)
3580 {
3581 struct bound_minimal_symbol debug_hook;
3582
3583 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3584 if (debug_hook.minsym == NULL)
3585 {
3586 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3587 continue;
3588 }
3589
3590 bp_objfile_data->exception_msym = debug_hook;
3591 }
3592
3593 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3594 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3595 &current_target);
3596 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3597 &internal_breakpoint_ops);
3598 b->addr_string = xstrdup (func_name);
3599 b->enable_state = bp_disabled;
3600 }
3601
3602 update_global_location_list (1);
3603 }
3604
3605 void
3606 update_breakpoints_after_exec (void)
3607 {
3608 struct breakpoint *b, *b_tmp;
3609 struct bp_location *bploc, **bplocp_tmp;
3610
3611 /* We're about to delete breakpoints from GDB's lists. If the
3612 INSERTED flag is true, GDB will try to lift the breakpoints by
3613 writing the breakpoints' "shadow contents" back into memory. The
3614 "shadow contents" are NOT valid after an exec, so GDB should not
3615 do that. Instead, the target is responsible from marking
3616 breakpoints out as soon as it detects an exec. We don't do that
3617 here instead, because there may be other attempts to delete
3618 breakpoints after detecting an exec and before reaching here. */
3619 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3620 if (bploc->pspace == current_program_space)
3621 gdb_assert (!bploc->inserted);
3622
3623 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3624 {
3625 if (b->pspace != current_program_space)
3626 continue;
3627
3628 /* Solib breakpoints must be explicitly reset after an exec(). */
3629 if (b->type == bp_shlib_event)
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634
3635 /* JIT breakpoints must be explicitly reset after an exec(). */
3636 if (b->type == bp_jit_event)
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641
3642 /* Thread event breakpoints must be set anew after an exec(),
3643 as must overlay event and longjmp master breakpoints. */
3644 if (b->type == bp_thread_event || b->type == bp_overlay_event
3645 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3646 || b->type == bp_exception_master)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 /* Step-resume breakpoints are meaningless after an exec(). */
3653 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3654 {
3655 delete_breakpoint (b);
3656 continue;
3657 }
3658
3659 /* Longjmp and longjmp-resume breakpoints are also meaningless
3660 after an exec. */
3661 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3662 || b->type == bp_longjmp_call_dummy
3663 || b->type == bp_exception || b->type == bp_exception_resume)
3664 {
3665 delete_breakpoint (b);
3666 continue;
3667 }
3668
3669 if (b->type == bp_catchpoint)
3670 {
3671 /* For now, none of the bp_catchpoint breakpoints need to
3672 do anything at this point. In the future, if some of
3673 the catchpoints need to something, we will need to add
3674 a new method, and call this method from here. */
3675 continue;
3676 }
3677
3678 /* bp_finish is a special case. The only way we ought to be able
3679 to see one of these when an exec() has happened, is if the user
3680 caught a vfork, and then said "finish". Ordinarily a finish just
3681 carries them to the call-site of the current callee, by setting
3682 a temporary bp there and resuming. But in this case, the finish
3683 will carry them entirely through the vfork & exec.
3684
3685 We don't want to allow a bp_finish to remain inserted now. But
3686 we can't safely delete it, 'cause finish_command has a handle to
3687 the bp on a bpstat, and will later want to delete it. There's a
3688 chance (and I've seen it happen) that if we delete the bp_finish
3689 here, that its storage will get reused by the time finish_command
3690 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3691 We really must allow finish_command to delete a bp_finish.
3692
3693 In the absence of a general solution for the "how do we know
3694 it's safe to delete something others may have handles to?"
3695 problem, what we'll do here is just uninsert the bp_finish, and
3696 let finish_command delete it.
3697
3698 (We know the bp_finish is "doomed" in the sense that it's
3699 momentary, and will be deleted as soon as finish_command sees
3700 the inferior stopped. So it doesn't matter that the bp's
3701 address is probably bogus in the new a.out, unlike e.g., the
3702 solib breakpoints.) */
3703
3704 if (b->type == bp_finish)
3705 {
3706 continue;
3707 }
3708
3709 /* Without a symbolic address, we have little hope of the
3710 pre-exec() address meaning the same thing in the post-exec()
3711 a.out. */
3712 if (b->addr_string == NULL)
3713 {
3714 delete_breakpoint (b);
3715 continue;
3716 }
3717 }
3718 /* FIXME what about longjmp breakpoints? Re-create them here? */
3719 create_overlay_event_breakpoint ();
3720 create_longjmp_master_breakpoint ();
3721 create_std_terminate_master_breakpoint ();
3722 create_exception_master_breakpoint ();
3723 }
3724
3725 int
3726 detach_breakpoints (ptid_t ptid)
3727 {
3728 struct bp_location *bl, **blp_tmp;
3729 int val = 0;
3730 struct cleanup *old_chain = save_inferior_ptid ();
3731 struct inferior *inf = current_inferior ();
3732
3733 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3734 error (_("Cannot detach breakpoints of inferior_ptid"));
3735
3736 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3737 inferior_ptid = ptid;
3738 ALL_BP_LOCATIONS (bl, blp_tmp)
3739 {
3740 if (bl->pspace != inf->pspace)
3741 continue;
3742
3743 /* This function must physically remove breakpoints locations
3744 from the specified ptid, without modifying the breakpoint
3745 package's state. Locations of type bp_loc_other are only
3746 maintained at GDB side. So, there is no need to remove
3747 these bp_loc_other locations. Moreover, removing these
3748 would modify the breakpoint package's state. */
3749 if (bl->loc_type == bp_loc_other)
3750 continue;
3751
3752 if (bl->inserted)
3753 val |= remove_breakpoint_1 (bl, mark_inserted);
3754 }
3755
3756 /* Detach single-step breakpoints as well. */
3757 detach_single_step_breakpoints ();
3758
3759 do_cleanups (old_chain);
3760 return val;
3761 }
3762
3763 /* Remove the breakpoint location BL from the current address space.
3764 Note that this is used to detach breakpoints from a child fork.
3765 When we get here, the child isn't in the inferior list, and neither
3766 do we have objects to represent its address space --- we should
3767 *not* look at bl->pspace->aspace here. */
3768
3769 static int
3770 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3771 {
3772 int val;
3773
3774 /* BL is never in moribund_locations by our callers. */
3775 gdb_assert (bl->owner != NULL);
3776
3777 if (bl->owner->enable_state == bp_permanent)
3778 /* Permanent breakpoints cannot be inserted or removed. */
3779 return 0;
3780
3781 /* The type of none suggests that owner is actually deleted.
3782 This should not ever happen. */
3783 gdb_assert (bl->owner->type != bp_none);
3784
3785 if (bl->loc_type == bp_loc_software_breakpoint
3786 || bl->loc_type == bp_loc_hardware_breakpoint)
3787 {
3788 /* "Normal" instruction breakpoint: either the standard
3789 trap-instruction bp (bp_breakpoint), or a
3790 bp_hardware_breakpoint. */
3791
3792 /* First check to see if we have to handle an overlay. */
3793 if (overlay_debugging == ovly_off
3794 || bl->section == NULL
3795 || !(section_is_overlay (bl->section)))
3796 {
3797 /* No overlay handling: just remove the breakpoint. */
3798
3799 /* If we're trying to uninsert a memory breakpoint that we
3800 know is set in a dynamic object that is marked
3801 shlib_disabled, then either the dynamic object was
3802 removed with "remove-symbol-file" or with
3803 "nosharedlibrary". In the former case, we don't know
3804 whether another dynamic object might have loaded over the
3805 breakpoint's address -- the user might well let us know
3806 about it next with add-symbol-file (the whole point of
3807 add-symbol-file is letting the user manually maintain a
3808 list of dynamically loaded objects). If we have the
3809 breakpoint's shadow memory, that is, this is a software
3810 breakpoint managed by GDB, check whether the breakpoint
3811 is still inserted in memory, to avoid overwriting wrong
3812 code with stale saved shadow contents. Note that HW
3813 breakpoints don't have shadow memory, as they're
3814 implemented using a mechanism that is not dependent on
3815 being able to modify the target's memory, and as such
3816 they should always be removed. */
3817 if (bl->shlib_disabled
3818 && bl->target_info.shadow_len != 0
3819 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3820 val = 0;
3821 else
3822 val = bl->owner->ops->remove_location (bl);
3823 }
3824 else
3825 {
3826 /* This breakpoint is in an overlay section.
3827 Did we set a breakpoint at the LMA? */
3828 if (!overlay_events_enabled)
3829 {
3830 /* Yes -- overlay event support is not active, so we
3831 should have set a breakpoint at the LMA. Remove it.
3832 */
3833 /* Ignore any failures: if the LMA is in ROM, we will
3834 have already warned when we failed to insert it. */
3835 if (bl->loc_type == bp_loc_hardware_breakpoint)
3836 target_remove_hw_breakpoint (bl->gdbarch,
3837 &bl->overlay_target_info);
3838 else
3839 target_remove_breakpoint (bl->gdbarch,
3840 &bl->overlay_target_info);
3841 }
3842 /* Did we set a breakpoint at the VMA?
3843 If so, we will have marked the breakpoint 'inserted'. */
3844 if (bl->inserted)
3845 {
3846 /* Yes -- remove it. Previously we did not bother to
3847 remove the breakpoint if the section had been
3848 unmapped, but let's not rely on that being safe. We
3849 don't know what the overlay manager might do. */
3850
3851 /* However, we should remove *software* breakpoints only
3852 if the section is still mapped, or else we overwrite
3853 wrong code with the saved shadow contents. */
3854 if (bl->loc_type == bp_loc_hardware_breakpoint
3855 || section_is_mapped (bl->section))
3856 val = bl->owner->ops->remove_location (bl);
3857 else
3858 val = 0;
3859 }
3860 else
3861 {
3862 /* No -- not inserted, so no need to remove. No error. */
3863 val = 0;
3864 }
3865 }
3866
3867 /* In some cases, we might not be able to remove a breakpoint in
3868 a shared library that has already been removed, but we have
3869 not yet processed the shlib unload event. Similarly for an
3870 unloaded add-symbol-file object - the user might not yet have
3871 had the chance to remove-symbol-file it. shlib_disabled will
3872 be set if the library/object has already been removed, but
3873 the breakpoint hasn't been uninserted yet, e.g., after
3874 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3875 always-inserted mode. */
3876 if (val
3877 && (bl->loc_type == bp_loc_software_breakpoint
3878 && (bl->shlib_disabled
3879 || solib_name_from_address (bl->pspace, bl->address)
3880 || shared_objfile_contains_address_p (bl->pspace,
3881 bl->address))))
3882 val = 0;
3883
3884 if (val)
3885 return val;
3886 bl->inserted = (is == mark_inserted);
3887 }
3888 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3889 {
3890 gdb_assert (bl->owner->ops != NULL
3891 && bl->owner->ops->remove_location != NULL);
3892
3893 bl->inserted = (is == mark_inserted);
3894 bl->owner->ops->remove_location (bl);
3895
3896 /* Failure to remove any of the hardware watchpoints comes here. */
3897 if ((is == mark_uninserted) && (bl->inserted))
3898 warning (_("Could not remove hardware watchpoint %d."),
3899 bl->owner->number);
3900 }
3901 else if (bl->owner->type == bp_catchpoint
3902 && breakpoint_enabled (bl->owner)
3903 && !bl->duplicate)
3904 {
3905 gdb_assert (bl->owner->ops != NULL
3906 && bl->owner->ops->remove_location != NULL);
3907
3908 val = bl->owner->ops->remove_location (bl);
3909 if (val)
3910 return val;
3911
3912 bl->inserted = (is == mark_inserted);
3913 }
3914
3915 return 0;
3916 }
3917
3918 static int
3919 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3920 {
3921 int ret;
3922 struct cleanup *old_chain;
3923
3924 /* BL is never in moribund_locations by our callers. */
3925 gdb_assert (bl->owner != NULL);
3926
3927 if (bl->owner->enable_state == bp_permanent)
3928 /* Permanent breakpoints cannot be inserted or removed. */
3929 return 0;
3930
3931 /* The type of none suggests that owner is actually deleted.
3932 This should not ever happen. */
3933 gdb_assert (bl->owner->type != bp_none);
3934
3935 old_chain = save_current_space_and_thread ();
3936
3937 switch_to_program_space_and_thread (bl->pspace);
3938
3939 ret = remove_breakpoint_1 (bl, is);
3940
3941 do_cleanups (old_chain);
3942 return ret;
3943 }
3944
3945 /* Clear the "inserted" flag in all breakpoints. */
3946
3947 void
3948 mark_breakpoints_out (void)
3949 {
3950 struct bp_location *bl, **blp_tmp;
3951
3952 ALL_BP_LOCATIONS (bl, blp_tmp)
3953 if (bl->pspace == current_program_space)
3954 bl->inserted = 0;
3955 }
3956
3957 /* Clear the "inserted" flag in all breakpoints and delete any
3958 breakpoints which should go away between runs of the program.
3959
3960 Plus other such housekeeping that has to be done for breakpoints
3961 between runs.
3962
3963 Note: this function gets called at the end of a run (by
3964 generic_mourn_inferior) and when a run begins (by
3965 init_wait_for_inferior). */
3966
3967
3968
3969 void
3970 breakpoint_init_inferior (enum inf_context context)
3971 {
3972 struct breakpoint *b, *b_tmp;
3973 struct bp_location *bl, **blp_tmp;
3974 int ix;
3975 struct program_space *pspace = current_program_space;
3976
3977 /* If breakpoint locations are shared across processes, then there's
3978 nothing to do. */
3979 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3980 return;
3981
3982 ALL_BP_LOCATIONS (bl, blp_tmp)
3983 {
3984 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3985 if (bl->pspace == pspace
3986 && bl->owner->enable_state != bp_permanent)
3987 bl->inserted = 0;
3988 }
3989
3990 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3991 {
3992 if (b->loc && b->loc->pspace != pspace)
3993 continue;
3994
3995 switch (b->type)
3996 {
3997 case bp_call_dummy:
3998 case bp_longjmp_call_dummy:
3999
4000 /* If the call dummy breakpoint is at the entry point it will
4001 cause problems when the inferior is rerun, so we better get
4002 rid of it. */
4003
4004 case bp_watchpoint_scope:
4005
4006 /* Also get rid of scope breakpoints. */
4007
4008 case bp_shlib_event:
4009
4010 /* Also remove solib event breakpoints. Their addresses may
4011 have changed since the last time we ran the program.
4012 Actually we may now be debugging against different target;
4013 and so the solib backend that installed this breakpoint may
4014 not be used in by the target. E.g.,
4015
4016 (gdb) file prog-linux
4017 (gdb) run # native linux target
4018 ...
4019 (gdb) kill
4020 (gdb) file prog-win.exe
4021 (gdb) tar rem :9999 # remote Windows gdbserver.
4022 */
4023
4024 case bp_step_resume:
4025
4026 /* Also remove step-resume breakpoints. */
4027
4028 delete_breakpoint (b);
4029 break;
4030
4031 case bp_watchpoint:
4032 case bp_hardware_watchpoint:
4033 case bp_read_watchpoint:
4034 case bp_access_watchpoint:
4035 {
4036 struct watchpoint *w = (struct watchpoint *) b;
4037
4038 /* Likewise for watchpoints on local expressions. */
4039 if (w->exp_valid_block != NULL)
4040 delete_breakpoint (b);
4041 else if (context == inf_starting)
4042 {
4043 /* Reset val field to force reread of starting value in
4044 insert_breakpoints. */
4045 if (w->val)
4046 value_free (w->val);
4047 w->val = NULL;
4048 w->val_valid = 0;
4049 }
4050 }
4051 break;
4052 default:
4053 break;
4054 }
4055 }
4056
4057 /* Get rid of the moribund locations. */
4058 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4059 decref_bp_location (&bl);
4060 VEC_free (bp_location_p, moribund_locations);
4061 }
4062
4063 /* These functions concern about actual breakpoints inserted in the
4064 target --- to e.g. check if we need to do decr_pc adjustment or if
4065 we need to hop over the bkpt --- so we check for address space
4066 match, not program space. */
4067
4068 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4069 exists at PC. It returns ordinary_breakpoint_here if it's an
4070 ordinary breakpoint, or permanent_breakpoint_here if it's a
4071 permanent breakpoint.
4072 - When continuing from a location with an ordinary breakpoint, we
4073 actually single step once before calling insert_breakpoints.
4074 - When continuing from a location with a permanent breakpoint, we
4075 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4076 the target, to advance the PC past the breakpoint. */
4077
4078 enum breakpoint_here
4079 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4080 {
4081 struct bp_location *bl, **blp_tmp;
4082 int any_breakpoint_here = 0;
4083
4084 ALL_BP_LOCATIONS (bl, blp_tmp)
4085 {
4086 if (bl->loc_type != bp_loc_software_breakpoint
4087 && bl->loc_type != bp_loc_hardware_breakpoint)
4088 continue;
4089
4090 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4091 if ((breakpoint_enabled (bl->owner)
4092 || bl->owner->enable_state == bp_permanent)
4093 && breakpoint_location_address_match (bl, aspace, pc))
4094 {
4095 if (overlay_debugging
4096 && section_is_overlay (bl->section)
4097 && !section_is_mapped (bl->section))
4098 continue; /* unmapped overlay -- can't be a match */
4099 else if (bl->owner->enable_state == bp_permanent)
4100 return permanent_breakpoint_here;
4101 else
4102 any_breakpoint_here = 1;
4103 }
4104 }
4105
4106 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4107 }
4108
4109 /* Return true if there's a moribund breakpoint at PC. */
4110
4111 int
4112 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4113 {
4114 struct bp_location *loc;
4115 int ix;
4116
4117 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4118 if (breakpoint_location_address_match (loc, aspace, pc))
4119 return 1;
4120
4121 return 0;
4122 }
4123
4124 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4125 inserted using regular breakpoint_chain / bp_location array
4126 mechanism. This does not check for single-step breakpoints, which
4127 are inserted and removed using direct target manipulation. */
4128
4129 int
4130 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4131 CORE_ADDR pc)
4132 {
4133 struct bp_location *bl, **blp_tmp;
4134
4135 ALL_BP_LOCATIONS (bl, blp_tmp)
4136 {
4137 if (bl->loc_type != bp_loc_software_breakpoint
4138 && bl->loc_type != bp_loc_hardware_breakpoint)
4139 continue;
4140
4141 if (bl->inserted
4142 && breakpoint_location_address_match (bl, aspace, pc))
4143 {
4144 if (overlay_debugging
4145 && section_is_overlay (bl->section)
4146 && !section_is_mapped (bl->section))
4147 continue; /* unmapped overlay -- can't be a match */
4148 else
4149 return 1;
4150 }
4151 }
4152 return 0;
4153 }
4154
4155 /* Returns non-zero iff there's either regular breakpoint
4156 or a single step breakpoint inserted at PC. */
4157
4158 int
4159 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4160 {
4161 if (regular_breakpoint_inserted_here_p (aspace, pc))
4162 return 1;
4163
4164 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4165 return 1;
4166
4167 return 0;
4168 }
4169
4170 /* Ignoring deprecated raw breakpoints, return non-zero iff there is a
4171 software breakpoint inserted at PC. */
4172
4173 static struct bp_location *
4174 find_non_raw_software_breakpoint_inserted_here (struct address_space *aspace,
4175 CORE_ADDR pc)
4176 {
4177 struct bp_location *bl, **blp_tmp;
4178
4179 ALL_BP_LOCATIONS (bl, blp_tmp)
4180 {
4181 if (bl->loc_type != bp_loc_software_breakpoint)
4182 continue;
4183
4184 if (bl->inserted
4185 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4186 aspace, pc))
4187 {
4188 if (overlay_debugging
4189 && section_is_overlay (bl->section)
4190 && !section_is_mapped (bl->section))
4191 continue; /* unmapped overlay -- can't be a match */
4192 else
4193 return bl;
4194 }
4195 }
4196
4197 return NULL;
4198 }
4199
4200 /* This function returns non-zero iff there is a software breakpoint
4201 inserted at PC. */
4202
4203 int
4204 software_breakpoint_inserted_here_p (struct address_space *aspace,
4205 CORE_ADDR pc)
4206 {
4207 if (find_non_raw_software_breakpoint_inserted_here (aspace, pc) != NULL)
4208 return 1;
4209
4210 /* Also check for software single-step breakpoints. */
4211 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4212 return 1;
4213
4214 return 0;
4215 }
4216
4217 int
4218 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4219 CORE_ADDR addr, ULONGEST len)
4220 {
4221 struct breakpoint *bpt;
4222
4223 ALL_BREAKPOINTS (bpt)
4224 {
4225 struct bp_location *loc;
4226
4227 if (bpt->type != bp_hardware_watchpoint
4228 && bpt->type != bp_access_watchpoint)
4229 continue;
4230
4231 if (!breakpoint_enabled (bpt))
4232 continue;
4233
4234 for (loc = bpt->loc; loc; loc = loc->next)
4235 if (loc->pspace->aspace == aspace && loc->inserted)
4236 {
4237 CORE_ADDR l, h;
4238
4239 /* Check for intersection. */
4240 l = max (loc->address, addr);
4241 h = min (loc->address + loc->length, addr + len);
4242 if (l < h)
4243 return 1;
4244 }
4245 }
4246 return 0;
4247 }
4248
4249 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4250 PC is valid for process/thread PTID. */
4251
4252 int
4253 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4254 ptid_t ptid)
4255 {
4256 struct bp_location *bl, **blp_tmp;
4257 /* The thread and task IDs associated to PTID, computed lazily. */
4258 int thread = -1;
4259 int task = 0;
4260
4261 ALL_BP_LOCATIONS (bl, blp_tmp)
4262 {
4263 if (bl->loc_type != bp_loc_software_breakpoint
4264 && bl->loc_type != bp_loc_hardware_breakpoint)
4265 continue;
4266
4267 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4268 if (!breakpoint_enabled (bl->owner)
4269 && bl->owner->enable_state != bp_permanent)
4270 continue;
4271
4272 if (!breakpoint_location_address_match (bl, aspace, pc))
4273 continue;
4274
4275 if (bl->owner->thread != -1)
4276 {
4277 /* This is a thread-specific breakpoint. Check that ptid
4278 matches that thread. If thread hasn't been computed yet,
4279 it is now time to do so. */
4280 if (thread == -1)
4281 thread = pid_to_thread_id (ptid);
4282 if (bl->owner->thread != thread)
4283 continue;
4284 }
4285
4286 if (bl->owner->task != 0)
4287 {
4288 /* This is a task-specific breakpoint. Check that ptid
4289 matches that task. If task hasn't been computed yet,
4290 it is now time to do so. */
4291 if (task == 0)
4292 task = ada_get_task_number (ptid);
4293 if (bl->owner->task != task)
4294 continue;
4295 }
4296
4297 if (overlay_debugging
4298 && section_is_overlay (bl->section)
4299 && !section_is_mapped (bl->section))
4300 continue; /* unmapped overlay -- can't be a match */
4301
4302 return 1;
4303 }
4304
4305 return 0;
4306 }
4307 \f
4308
4309 /* bpstat stuff. External routines' interfaces are documented
4310 in breakpoint.h. */
4311
4312 int
4313 is_catchpoint (struct breakpoint *ep)
4314 {
4315 return (ep->type == bp_catchpoint);
4316 }
4317
4318 /* Frees any storage that is part of a bpstat. Does not walk the
4319 'next' chain. */
4320
4321 static void
4322 bpstat_free (bpstat bs)
4323 {
4324 if (bs->old_val != NULL)
4325 value_free (bs->old_val);
4326 decref_counted_command_line (&bs->commands);
4327 decref_bp_location (&bs->bp_location_at);
4328 xfree (bs);
4329 }
4330
4331 /* Clear a bpstat so that it says we are not at any breakpoint.
4332 Also free any storage that is part of a bpstat. */
4333
4334 void
4335 bpstat_clear (bpstat *bsp)
4336 {
4337 bpstat p;
4338 bpstat q;
4339
4340 if (bsp == 0)
4341 return;
4342 p = *bsp;
4343 while (p != NULL)
4344 {
4345 q = p->next;
4346 bpstat_free (p);
4347 p = q;
4348 }
4349 *bsp = NULL;
4350 }
4351
4352 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4353 is part of the bpstat is copied as well. */
4354
4355 bpstat
4356 bpstat_copy (bpstat bs)
4357 {
4358 bpstat p = NULL;
4359 bpstat tmp;
4360 bpstat retval = NULL;
4361
4362 if (bs == NULL)
4363 return bs;
4364
4365 for (; bs != NULL; bs = bs->next)
4366 {
4367 tmp = (bpstat) xmalloc (sizeof (*tmp));
4368 memcpy (tmp, bs, sizeof (*tmp));
4369 incref_counted_command_line (tmp->commands);
4370 incref_bp_location (tmp->bp_location_at);
4371 if (bs->old_val != NULL)
4372 {
4373 tmp->old_val = value_copy (bs->old_val);
4374 release_value (tmp->old_val);
4375 }
4376
4377 if (p == NULL)
4378 /* This is the first thing in the chain. */
4379 retval = tmp;
4380 else
4381 p->next = tmp;
4382 p = tmp;
4383 }
4384 p->next = NULL;
4385 return retval;
4386 }
4387
4388 /* Find the bpstat associated with this breakpoint. */
4389
4390 bpstat
4391 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4392 {
4393 if (bsp == NULL)
4394 return NULL;
4395
4396 for (; bsp != NULL; bsp = bsp->next)
4397 {
4398 if (bsp->breakpoint_at == breakpoint)
4399 return bsp;
4400 }
4401 return NULL;
4402 }
4403
4404 /* See breakpoint.h. */
4405
4406 int
4407 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4408 {
4409 for (; bsp != NULL; bsp = bsp->next)
4410 {
4411 if (bsp->breakpoint_at == NULL)
4412 {
4413 /* A moribund location can never explain a signal other than
4414 GDB_SIGNAL_TRAP. */
4415 if (sig == GDB_SIGNAL_TRAP)
4416 return 1;
4417 }
4418 else
4419 {
4420 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4421 sig))
4422 return 1;
4423 }
4424 }
4425
4426 return 0;
4427 }
4428
4429 /* Put in *NUM the breakpoint number of the first breakpoint we are
4430 stopped at. *BSP upon return is a bpstat which points to the
4431 remaining breakpoints stopped at (but which is not guaranteed to be
4432 good for anything but further calls to bpstat_num).
4433
4434 Return 0 if passed a bpstat which does not indicate any breakpoints.
4435 Return -1 if stopped at a breakpoint that has been deleted since
4436 we set it.
4437 Return 1 otherwise. */
4438
4439 int
4440 bpstat_num (bpstat *bsp, int *num)
4441 {
4442 struct breakpoint *b;
4443
4444 if ((*bsp) == NULL)
4445 return 0; /* No more breakpoint values */
4446
4447 /* We assume we'll never have several bpstats that correspond to a
4448 single breakpoint -- otherwise, this function might return the
4449 same number more than once and this will look ugly. */
4450 b = (*bsp)->breakpoint_at;
4451 *bsp = (*bsp)->next;
4452 if (b == NULL)
4453 return -1; /* breakpoint that's been deleted since */
4454
4455 *num = b->number; /* We have its number */
4456 return 1;
4457 }
4458
4459 /* See breakpoint.h. */
4460
4461 void
4462 bpstat_clear_actions (void)
4463 {
4464 struct thread_info *tp;
4465 bpstat bs;
4466
4467 if (ptid_equal (inferior_ptid, null_ptid))
4468 return;
4469
4470 tp = find_thread_ptid (inferior_ptid);
4471 if (tp == NULL)
4472 return;
4473
4474 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4475 {
4476 decref_counted_command_line (&bs->commands);
4477
4478 if (bs->old_val != NULL)
4479 {
4480 value_free (bs->old_val);
4481 bs->old_val = NULL;
4482 }
4483 }
4484 }
4485
4486 /* Called when a command is about to proceed the inferior. */
4487
4488 static void
4489 breakpoint_about_to_proceed (void)
4490 {
4491 if (!ptid_equal (inferior_ptid, null_ptid))
4492 {
4493 struct thread_info *tp = inferior_thread ();
4494
4495 /* Allow inferior function calls in breakpoint commands to not
4496 interrupt the command list. When the call finishes
4497 successfully, the inferior will be standing at the same
4498 breakpoint as if nothing happened. */
4499 if (tp->control.in_infcall)
4500 return;
4501 }
4502
4503 breakpoint_proceeded = 1;
4504 }
4505
4506 /* Stub for cleaning up our state if we error-out of a breakpoint
4507 command. */
4508 static void
4509 cleanup_executing_breakpoints (void *ignore)
4510 {
4511 executing_breakpoint_commands = 0;
4512 }
4513
4514 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4515 or its equivalent. */
4516
4517 static int
4518 command_line_is_silent (struct command_line *cmd)
4519 {
4520 return cmd && (strcmp ("silent", cmd->line) == 0
4521 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4522 }
4523
4524 /* Execute all the commands associated with all the breakpoints at
4525 this location. Any of these commands could cause the process to
4526 proceed beyond this point, etc. We look out for such changes by
4527 checking the global "breakpoint_proceeded" after each command.
4528
4529 Returns true if a breakpoint command resumed the inferior. In that
4530 case, it is the caller's responsibility to recall it again with the
4531 bpstat of the current thread. */
4532
4533 static int
4534 bpstat_do_actions_1 (bpstat *bsp)
4535 {
4536 bpstat bs;
4537 struct cleanup *old_chain;
4538 int again = 0;
4539
4540 /* Avoid endless recursion if a `source' command is contained
4541 in bs->commands. */
4542 if (executing_breakpoint_commands)
4543 return 0;
4544
4545 executing_breakpoint_commands = 1;
4546 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4547
4548 prevent_dont_repeat ();
4549
4550 /* This pointer will iterate over the list of bpstat's. */
4551 bs = *bsp;
4552
4553 breakpoint_proceeded = 0;
4554 for (; bs != NULL; bs = bs->next)
4555 {
4556 struct counted_command_line *ccmd;
4557 struct command_line *cmd;
4558 struct cleanup *this_cmd_tree_chain;
4559
4560 /* Take ownership of the BSP's command tree, if it has one.
4561
4562 The command tree could legitimately contain commands like
4563 'step' and 'next', which call clear_proceed_status, which
4564 frees stop_bpstat's command tree. To make sure this doesn't
4565 free the tree we're executing out from under us, we need to
4566 take ownership of the tree ourselves. Since a given bpstat's
4567 commands are only executed once, we don't need to copy it; we
4568 can clear the pointer in the bpstat, and make sure we free
4569 the tree when we're done. */
4570 ccmd = bs->commands;
4571 bs->commands = NULL;
4572 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4573 cmd = ccmd ? ccmd->commands : NULL;
4574 if (command_line_is_silent (cmd))
4575 {
4576 /* The action has been already done by bpstat_stop_status. */
4577 cmd = cmd->next;
4578 }
4579
4580 while (cmd != NULL)
4581 {
4582 execute_control_command (cmd);
4583
4584 if (breakpoint_proceeded)
4585 break;
4586 else
4587 cmd = cmd->next;
4588 }
4589
4590 /* We can free this command tree now. */
4591 do_cleanups (this_cmd_tree_chain);
4592
4593 if (breakpoint_proceeded)
4594 {
4595 if (target_can_async_p ())
4596 /* If we are in async mode, then the target might be still
4597 running, not stopped at any breakpoint, so nothing for
4598 us to do here -- just return to the event loop. */
4599 ;
4600 else
4601 /* In sync mode, when execute_control_command returns
4602 we're already standing on the next breakpoint.
4603 Breakpoint commands for that stop were not run, since
4604 execute_command does not run breakpoint commands --
4605 only command_line_handler does, but that one is not
4606 involved in execution of breakpoint commands. So, we
4607 can now execute breakpoint commands. It should be
4608 noted that making execute_command do bpstat actions is
4609 not an option -- in this case we'll have recursive
4610 invocation of bpstat for each breakpoint with a
4611 command, and can easily blow up GDB stack. Instead, we
4612 return true, which will trigger the caller to recall us
4613 with the new stop_bpstat. */
4614 again = 1;
4615 break;
4616 }
4617 }
4618 do_cleanups (old_chain);
4619 return again;
4620 }
4621
4622 void
4623 bpstat_do_actions (void)
4624 {
4625 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4626
4627 /* Do any commands attached to breakpoint we are stopped at. */
4628 while (!ptid_equal (inferior_ptid, null_ptid)
4629 && target_has_execution
4630 && !is_exited (inferior_ptid)
4631 && !is_executing (inferior_ptid))
4632 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4633 and only return when it is stopped at the next breakpoint, we
4634 keep doing breakpoint actions until it returns false to
4635 indicate the inferior was not resumed. */
4636 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4637 break;
4638
4639 discard_cleanups (cleanup_if_error);
4640 }
4641
4642 /* Print out the (old or new) value associated with a watchpoint. */
4643
4644 static void
4645 watchpoint_value_print (struct value *val, struct ui_file *stream)
4646 {
4647 if (val == NULL)
4648 fprintf_unfiltered (stream, _("<unreadable>"));
4649 else
4650 {
4651 struct value_print_options opts;
4652 get_user_print_options (&opts);
4653 value_print (val, stream, &opts);
4654 }
4655 }
4656
4657 /* Generic routine for printing messages indicating why we
4658 stopped. The behavior of this function depends on the value
4659 'print_it' in the bpstat structure. Under some circumstances we
4660 may decide not to print anything here and delegate the task to
4661 normal_stop(). */
4662
4663 static enum print_stop_action
4664 print_bp_stop_message (bpstat bs)
4665 {
4666 switch (bs->print_it)
4667 {
4668 case print_it_noop:
4669 /* Nothing should be printed for this bpstat entry. */
4670 return PRINT_UNKNOWN;
4671 break;
4672
4673 case print_it_done:
4674 /* We still want to print the frame, but we already printed the
4675 relevant messages. */
4676 return PRINT_SRC_AND_LOC;
4677 break;
4678
4679 case print_it_normal:
4680 {
4681 struct breakpoint *b = bs->breakpoint_at;
4682
4683 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4684 which has since been deleted. */
4685 if (b == NULL)
4686 return PRINT_UNKNOWN;
4687
4688 /* Normal case. Call the breakpoint's print_it method. */
4689 return b->ops->print_it (bs);
4690 }
4691 break;
4692
4693 default:
4694 internal_error (__FILE__, __LINE__,
4695 _("print_bp_stop_message: unrecognized enum value"));
4696 break;
4697 }
4698 }
4699
4700 /* A helper function that prints a shared library stopped event. */
4701
4702 static void
4703 print_solib_event (int is_catchpoint)
4704 {
4705 int any_deleted
4706 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4707 int any_added
4708 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4709
4710 if (!is_catchpoint)
4711 {
4712 if (any_added || any_deleted)
4713 ui_out_text (current_uiout,
4714 _("Stopped due to shared library event:\n"));
4715 else
4716 ui_out_text (current_uiout,
4717 _("Stopped due to shared library event (no "
4718 "libraries added or removed)\n"));
4719 }
4720
4721 if (ui_out_is_mi_like_p (current_uiout))
4722 ui_out_field_string (current_uiout, "reason",
4723 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4724
4725 if (any_deleted)
4726 {
4727 struct cleanup *cleanup;
4728 char *name;
4729 int ix;
4730
4731 ui_out_text (current_uiout, _(" Inferior unloaded "));
4732 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4733 "removed");
4734 for (ix = 0;
4735 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4736 ix, name);
4737 ++ix)
4738 {
4739 if (ix > 0)
4740 ui_out_text (current_uiout, " ");
4741 ui_out_field_string (current_uiout, "library", name);
4742 ui_out_text (current_uiout, "\n");
4743 }
4744
4745 do_cleanups (cleanup);
4746 }
4747
4748 if (any_added)
4749 {
4750 struct so_list *iter;
4751 int ix;
4752 struct cleanup *cleanup;
4753
4754 ui_out_text (current_uiout, _(" Inferior loaded "));
4755 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4756 "added");
4757 for (ix = 0;
4758 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4759 ix, iter);
4760 ++ix)
4761 {
4762 if (ix > 0)
4763 ui_out_text (current_uiout, " ");
4764 ui_out_field_string (current_uiout, "library", iter->so_name);
4765 ui_out_text (current_uiout, "\n");
4766 }
4767
4768 do_cleanups (cleanup);
4769 }
4770 }
4771
4772 /* Print a message indicating what happened. This is called from
4773 normal_stop(). The input to this routine is the head of the bpstat
4774 list - a list of the eventpoints that caused this stop. KIND is
4775 the target_waitkind for the stopping event. This
4776 routine calls the generic print routine for printing a message
4777 about reasons for stopping. This will print (for example) the
4778 "Breakpoint n," part of the output. The return value of this
4779 routine is one of:
4780
4781 PRINT_UNKNOWN: Means we printed nothing.
4782 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4783 code to print the location. An example is
4784 "Breakpoint 1, " which should be followed by
4785 the location.
4786 PRINT_SRC_ONLY: Means we printed something, but there is no need
4787 to also print the location part of the message.
4788 An example is the catch/throw messages, which
4789 don't require a location appended to the end.
4790 PRINT_NOTHING: We have done some printing and we don't need any
4791 further info to be printed. */
4792
4793 enum print_stop_action
4794 bpstat_print (bpstat bs, int kind)
4795 {
4796 int val;
4797
4798 /* Maybe another breakpoint in the chain caused us to stop.
4799 (Currently all watchpoints go on the bpstat whether hit or not.
4800 That probably could (should) be changed, provided care is taken
4801 with respect to bpstat_explains_signal). */
4802 for (; bs; bs = bs->next)
4803 {
4804 val = print_bp_stop_message (bs);
4805 if (val == PRINT_SRC_ONLY
4806 || val == PRINT_SRC_AND_LOC
4807 || val == PRINT_NOTHING)
4808 return val;
4809 }
4810
4811 /* If we had hit a shared library event breakpoint,
4812 print_bp_stop_message would print out this message. If we hit an
4813 OS-level shared library event, do the same thing. */
4814 if (kind == TARGET_WAITKIND_LOADED)
4815 {
4816 print_solib_event (0);
4817 return PRINT_NOTHING;
4818 }
4819
4820 /* We reached the end of the chain, or we got a null BS to start
4821 with and nothing was printed. */
4822 return PRINT_UNKNOWN;
4823 }
4824
4825 /* Evaluate the expression EXP and return 1 if value is zero.
4826 This returns the inverse of the condition because it is called
4827 from catch_errors which returns 0 if an exception happened, and if an
4828 exception happens we want execution to stop.
4829 The argument is a "struct expression *" that has been cast to a
4830 "void *" to make it pass through catch_errors. */
4831
4832 static int
4833 breakpoint_cond_eval (void *exp)
4834 {
4835 struct value *mark = value_mark ();
4836 int i = !value_true (evaluate_expression ((struct expression *) exp));
4837
4838 value_free_to_mark (mark);
4839 return i;
4840 }
4841
4842 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4843
4844 static bpstat
4845 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4846 {
4847 bpstat bs;
4848
4849 bs = (bpstat) xmalloc (sizeof (*bs));
4850 bs->next = NULL;
4851 **bs_link_pointer = bs;
4852 *bs_link_pointer = &bs->next;
4853 bs->breakpoint_at = bl->owner;
4854 bs->bp_location_at = bl;
4855 incref_bp_location (bl);
4856 /* If the condition is false, etc., don't do the commands. */
4857 bs->commands = NULL;
4858 bs->old_val = NULL;
4859 bs->print_it = print_it_normal;
4860 return bs;
4861 }
4862 \f
4863 /* The target has stopped with waitstatus WS. Check if any hardware
4864 watchpoints have triggered, according to the target. */
4865
4866 int
4867 watchpoints_triggered (struct target_waitstatus *ws)
4868 {
4869 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4870 CORE_ADDR addr;
4871 struct breakpoint *b;
4872
4873 if (!stopped_by_watchpoint)
4874 {
4875 /* We were not stopped by a watchpoint. Mark all watchpoints
4876 as not triggered. */
4877 ALL_BREAKPOINTS (b)
4878 if (is_hardware_watchpoint (b))
4879 {
4880 struct watchpoint *w = (struct watchpoint *) b;
4881
4882 w->watchpoint_triggered = watch_triggered_no;
4883 }
4884
4885 return 0;
4886 }
4887
4888 if (!target_stopped_data_address (&current_target, &addr))
4889 {
4890 /* We were stopped by a watchpoint, but we don't know where.
4891 Mark all watchpoints as unknown. */
4892 ALL_BREAKPOINTS (b)
4893 if (is_hardware_watchpoint (b))
4894 {
4895 struct watchpoint *w = (struct watchpoint *) b;
4896
4897 w->watchpoint_triggered = watch_triggered_unknown;
4898 }
4899
4900 return 1;
4901 }
4902
4903 /* The target could report the data address. Mark watchpoints
4904 affected by this data address as triggered, and all others as not
4905 triggered. */
4906
4907 ALL_BREAKPOINTS (b)
4908 if (is_hardware_watchpoint (b))
4909 {
4910 struct watchpoint *w = (struct watchpoint *) b;
4911 struct bp_location *loc;
4912
4913 w->watchpoint_triggered = watch_triggered_no;
4914 for (loc = b->loc; loc; loc = loc->next)
4915 {
4916 if (is_masked_watchpoint (b))
4917 {
4918 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4919 CORE_ADDR start = loc->address & w->hw_wp_mask;
4920
4921 if (newaddr == start)
4922 {
4923 w->watchpoint_triggered = watch_triggered_yes;
4924 break;
4925 }
4926 }
4927 /* Exact match not required. Within range is sufficient. */
4928 else if (target_watchpoint_addr_within_range (&current_target,
4929 addr, loc->address,
4930 loc->length))
4931 {
4932 w->watchpoint_triggered = watch_triggered_yes;
4933 break;
4934 }
4935 }
4936 }
4937
4938 return 1;
4939 }
4940
4941 /* Possible return values for watchpoint_check (this can't be an enum
4942 because of check_errors). */
4943 /* The watchpoint has been deleted. */
4944 #define WP_DELETED 1
4945 /* The value has changed. */
4946 #define WP_VALUE_CHANGED 2
4947 /* The value has not changed. */
4948 #define WP_VALUE_NOT_CHANGED 3
4949 /* Ignore this watchpoint, no matter if the value changed or not. */
4950 #define WP_IGNORE 4
4951
4952 #define BP_TEMPFLAG 1
4953 #define BP_HARDWAREFLAG 2
4954
4955 /* Evaluate watchpoint condition expression and check if its value
4956 changed.
4957
4958 P should be a pointer to struct bpstat, but is defined as a void *
4959 in order for this function to be usable with catch_errors. */
4960
4961 static int
4962 watchpoint_check (void *p)
4963 {
4964 bpstat bs = (bpstat) p;
4965 struct watchpoint *b;
4966 struct frame_info *fr;
4967 int within_current_scope;
4968
4969 /* BS is built from an existing struct breakpoint. */
4970 gdb_assert (bs->breakpoint_at != NULL);
4971 b = (struct watchpoint *) bs->breakpoint_at;
4972
4973 /* If this is a local watchpoint, we only want to check if the
4974 watchpoint frame is in scope if the current thread is the thread
4975 that was used to create the watchpoint. */
4976 if (!watchpoint_in_thread_scope (b))
4977 return WP_IGNORE;
4978
4979 if (b->exp_valid_block == NULL)
4980 within_current_scope = 1;
4981 else
4982 {
4983 struct frame_info *frame = get_current_frame ();
4984 struct gdbarch *frame_arch = get_frame_arch (frame);
4985 CORE_ADDR frame_pc = get_frame_pc (frame);
4986
4987 /* in_function_epilogue_p() returns a non-zero value if we're
4988 still in the function but the stack frame has already been
4989 invalidated. Since we can't rely on the values of local
4990 variables after the stack has been destroyed, we are treating
4991 the watchpoint in that state as `not changed' without further
4992 checking. Don't mark watchpoints as changed if the current
4993 frame is in an epilogue - even if they are in some other
4994 frame, our view of the stack is likely to be wrong and
4995 frame_find_by_id could error out. */
4996 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4997 return WP_IGNORE;
4998
4999 fr = frame_find_by_id (b->watchpoint_frame);
5000 within_current_scope = (fr != NULL);
5001
5002 /* If we've gotten confused in the unwinder, we might have
5003 returned a frame that can't describe this variable. */
5004 if (within_current_scope)
5005 {
5006 struct symbol *function;
5007
5008 function = get_frame_function (fr);
5009 if (function == NULL
5010 || !contained_in (b->exp_valid_block,
5011 SYMBOL_BLOCK_VALUE (function)))
5012 within_current_scope = 0;
5013 }
5014
5015 if (within_current_scope)
5016 /* If we end up stopping, the current frame will get selected
5017 in normal_stop. So this call to select_frame won't affect
5018 the user. */
5019 select_frame (fr);
5020 }
5021
5022 if (within_current_scope)
5023 {
5024 /* We use value_{,free_to_}mark because it could be a *long*
5025 time before we return to the command level and call
5026 free_all_values. We can't call free_all_values because we
5027 might be in the middle of evaluating a function call. */
5028
5029 int pc = 0;
5030 struct value *mark;
5031 struct value *new_val;
5032
5033 if (is_masked_watchpoint (&b->base))
5034 /* Since we don't know the exact trigger address (from
5035 stopped_data_address), just tell the user we've triggered
5036 a mask watchpoint. */
5037 return WP_VALUE_CHANGED;
5038
5039 mark = value_mark ();
5040 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5041
5042 /* We use value_equal_contents instead of value_equal because
5043 the latter coerces an array to a pointer, thus comparing just
5044 the address of the array instead of its contents. This is
5045 not what we want. */
5046 if ((b->val != NULL) != (new_val != NULL)
5047 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5048 {
5049 if (new_val != NULL)
5050 {
5051 release_value (new_val);
5052 value_free_to_mark (mark);
5053 }
5054 bs->old_val = b->val;
5055 b->val = new_val;
5056 b->val_valid = 1;
5057 return WP_VALUE_CHANGED;
5058 }
5059 else
5060 {
5061 /* Nothing changed. */
5062 value_free_to_mark (mark);
5063 return WP_VALUE_NOT_CHANGED;
5064 }
5065 }
5066 else
5067 {
5068 struct ui_out *uiout = current_uiout;
5069
5070 /* This seems like the only logical thing to do because
5071 if we temporarily ignored the watchpoint, then when
5072 we reenter the block in which it is valid it contains
5073 garbage (in the case of a function, it may have two
5074 garbage values, one before and one after the prologue).
5075 So we can't even detect the first assignment to it and
5076 watch after that (since the garbage may or may not equal
5077 the first value assigned). */
5078 /* We print all the stop information in
5079 breakpoint_ops->print_it, but in this case, by the time we
5080 call breakpoint_ops->print_it this bp will be deleted
5081 already. So we have no choice but print the information
5082 here. */
5083 if (ui_out_is_mi_like_p (uiout))
5084 ui_out_field_string
5085 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5086 ui_out_text (uiout, "\nWatchpoint ");
5087 ui_out_field_int (uiout, "wpnum", b->base.number);
5088 ui_out_text (uiout,
5089 " deleted because the program has left the block in\n\
5090 which its expression is valid.\n");
5091
5092 /* Make sure the watchpoint's commands aren't executed. */
5093 decref_counted_command_line (&b->base.commands);
5094 watchpoint_del_at_next_stop (b);
5095
5096 return WP_DELETED;
5097 }
5098 }
5099
5100 /* Return true if it looks like target has stopped due to hitting
5101 breakpoint location BL. This function does not check if we should
5102 stop, only if BL explains the stop. */
5103
5104 static int
5105 bpstat_check_location (const struct bp_location *bl,
5106 struct address_space *aspace, CORE_ADDR bp_addr,
5107 const struct target_waitstatus *ws)
5108 {
5109 struct breakpoint *b = bl->owner;
5110
5111 /* BL is from an existing breakpoint. */
5112 gdb_assert (b != NULL);
5113
5114 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5115 }
5116
5117 /* Determine if the watched values have actually changed, and we
5118 should stop. If not, set BS->stop to 0. */
5119
5120 static void
5121 bpstat_check_watchpoint (bpstat bs)
5122 {
5123 const struct bp_location *bl;
5124 struct watchpoint *b;
5125
5126 /* BS is built for existing struct breakpoint. */
5127 bl = bs->bp_location_at;
5128 gdb_assert (bl != NULL);
5129 b = (struct watchpoint *) bs->breakpoint_at;
5130 gdb_assert (b != NULL);
5131
5132 {
5133 int must_check_value = 0;
5134
5135 if (b->base.type == bp_watchpoint)
5136 /* For a software watchpoint, we must always check the
5137 watched value. */
5138 must_check_value = 1;
5139 else if (b->watchpoint_triggered == watch_triggered_yes)
5140 /* We have a hardware watchpoint (read, write, or access)
5141 and the target earlier reported an address watched by
5142 this watchpoint. */
5143 must_check_value = 1;
5144 else if (b->watchpoint_triggered == watch_triggered_unknown
5145 && b->base.type == bp_hardware_watchpoint)
5146 /* We were stopped by a hardware watchpoint, but the target could
5147 not report the data address. We must check the watchpoint's
5148 value. Access and read watchpoints are out of luck; without
5149 a data address, we can't figure it out. */
5150 must_check_value = 1;
5151
5152 if (must_check_value)
5153 {
5154 char *message
5155 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5156 b->base.number);
5157 struct cleanup *cleanups = make_cleanup (xfree, message);
5158 int e = catch_errors (watchpoint_check, bs, message,
5159 RETURN_MASK_ALL);
5160 do_cleanups (cleanups);
5161 switch (e)
5162 {
5163 case WP_DELETED:
5164 /* We've already printed what needs to be printed. */
5165 bs->print_it = print_it_done;
5166 /* Stop. */
5167 break;
5168 case WP_IGNORE:
5169 bs->print_it = print_it_noop;
5170 bs->stop = 0;
5171 break;
5172 case WP_VALUE_CHANGED:
5173 if (b->base.type == bp_read_watchpoint)
5174 {
5175 /* There are two cases to consider here:
5176
5177 1. We're watching the triggered memory for reads.
5178 In that case, trust the target, and always report
5179 the watchpoint hit to the user. Even though
5180 reads don't cause value changes, the value may
5181 have changed since the last time it was read, and
5182 since we're not trapping writes, we will not see
5183 those, and as such we should ignore our notion of
5184 old value.
5185
5186 2. We're watching the triggered memory for both
5187 reads and writes. There are two ways this may
5188 happen:
5189
5190 2.1. This is a target that can't break on data
5191 reads only, but can break on accesses (reads or
5192 writes), such as e.g., x86. We detect this case
5193 at the time we try to insert read watchpoints.
5194
5195 2.2. Otherwise, the target supports read
5196 watchpoints, but, the user set an access or write
5197 watchpoint watching the same memory as this read
5198 watchpoint.
5199
5200 If we're watching memory writes as well as reads,
5201 ignore watchpoint hits when we find that the
5202 value hasn't changed, as reads don't cause
5203 changes. This still gives false positives when
5204 the program writes the same value to memory as
5205 what there was already in memory (we will confuse
5206 it for a read), but it's much better than
5207 nothing. */
5208
5209 int other_write_watchpoint = 0;
5210
5211 if (bl->watchpoint_type == hw_read)
5212 {
5213 struct breakpoint *other_b;
5214
5215 ALL_BREAKPOINTS (other_b)
5216 if (other_b->type == bp_hardware_watchpoint
5217 || other_b->type == bp_access_watchpoint)
5218 {
5219 struct watchpoint *other_w =
5220 (struct watchpoint *) other_b;
5221
5222 if (other_w->watchpoint_triggered
5223 == watch_triggered_yes)
5224 {
5225 other_write_watchpoint = 1;
5226 break;
5227 }
5228 }
5229 }
5230
5231 if (other_write_watchpoint
5232 || bl->watchpoint_type == hw_access)
5233 {
5234 /* We're watching the same memory for writes,
5235 and the value changed since the last time we
5236 updated it, so this trap must be for a write.
5237 Ignore it. */
5238 bs->print_it = print_it_noop;
5239 bs->stop = 0;
5240 }
5241 }
5242 break;
5243 case WP_VALUE_NOT_CHANGED:
5244 if (b->base.type == bp_hardware_watchpoint
5245 || b->base.type == bp_watchpoint)
5246 {
5247 /* Don't stop: write watchpoints shouldn't fire if
5248 the value hasn't changed. */
5249 bs->print_it = print_it_noop;
5250 bs->stop = 0;
5251 }
5252 /* Stop. */
5253 break;
5254 default:
5255 /* Can't happen. */
5256 case 0:
5257 /* Error from catch_errors. */
5258 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5259 watchpoint_del_at_next_stop (b);
5260 /* We've already printed what needs to be printed. */
5261 bs->print_it = print_it_done;
5262 break;
5263 }
5264 }
5265 else /* must_check_value == 0 */
5266 {
5267 /* This is a case where some watchpoint(s) triggered, but
5268 not at the address of this watchpoint, or else no
5269 watchpoint triggered after all. So don't print
5270 anything for this watchpoint. */
5271 bs->print_it = print_it_noop;
5272 bs->stop = 0;
5273 }
5274 }
5275 }
5276
5277 /* For breakpoints that are currently marked as telling gdb to stop,
5278 check conditions (condition proper, frame, thread and ignore count)
5279 of breakpoint referred to by BS. If we should not stop for this
5280 breakpoint, set BS->stop to 0. */
5281
5282 static void
5283 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5284 {
5285 const struct bp_location *bl;
5286 struct breakpoint *b;
5287 int value_is_zero = 0;
5288 struct expression *cond;
5289
5290 gdb_assert (bs->stop);
5291
5292 /* BS is built for existing struct breakpoint. */
5293 bl = bs->bp_location_at;
5294 gdb_assert (bl != NULL);
5295 b = bs->breakpoint_at;
5296 gdb_assert (b != NULL);
5297
5298 /* Even if the target evaluated the condition on its end and notified GDB, we
5299 need to do so again since GDB does not know if we stopped due to a
5300 breakpoint or a single step breakpoint. */
5301
5302 if (frame_id_p (b->frame_id)
5303 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5304 {
5305 bs->stop = 0;
5306 return;
5307 }
5308
5309 /* If this is a thread/task-specific breakpoint, don't waste cpu
5310 evaluating the condition if this isn't the specified
5311 thread/task. */
5312 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5313 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5314
5315 {
5316 bs->stop = 0;
5317 return;
5318 }
5319
5320 /* Evaluate extension language breakpoints that have a "stop" method
5321 implemented. */
5322 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5323
5324 if (is_watchpoint (b))
5325 {
5326 struct watchpoint *w = (struct watchpoint *) b;
5327
5328 cond = w->cond_exp;
5329 }
5330 else
5331 cond = bl->cond;
5332
5333 if (cond && b->disposition != disp_del_at_next_stop)
5334 {
5335 int within_current_scope = 1;
5336 struct watchpoint * w;
5337
5338 /* We use value_mark and value_free_to_mark because it could
5339 be a long time before we return to the command level and
5340 call free_all_values. We can't call free_all_values
5341 because we might be in the middle of evaluating a
5342 function call. */
5343 struct value *mark = value_mark ();
5344
5345 if (is_watchpoint (b))
5346 w = (struct watchpoint *) b;
5347 else
5348 w = NULL;
5349
5350 /* Need to select the frame, with all that implies so that
5351 the conditions will have the right context. Because we
5352 use the frame, we will not see an inlined function's
5353 variables when we arrive at a breakpoint at the start
5354 of the inlined function; the current frame will be the
5355 call site. */
5356 if (w == NULL || w->cond_exp_valid_block == NULL)
5357 select_frame (get_current_frame ());
5358 else
5359 {
5360 struct frame_info *frame;
5361
5362 /* For local watchpoint expressions, which particular
5363 instance of a local is being watched matters, so we
5364 keep track of the frame to evaluate the expression
5365 in. To evaluate the condition however, it doesn't
5366 really matter which instantiation of the function
5367 where the condition makes sense triggers the
5368 watchpoint. This allows an expression like "watch
5369 global if q > 10" set in `func', catch writes to
5370 global on all threads that call `func', or catch
5371 writes on all recursive calls of `func' by a single
5372 thread. We simply always evaluate the condition in
5373 the innermost frame that's executing where it makes
5374 sense to evaluate the condition. It seems
5375 intuitive. */
5376 frame = block_innermost_frame (w->cond_exp_valid_block);
5377 if (frame != NULL)
5378 select_frame (frame);
5379 else
5380 within_current_scope = 0;
5381 }
5382 if (within_current_scope)
5383 value_is_zero
5384 = catch_errors (breakpoint_cond_eval, cond,
5385 "Error in testing breakpoint condition:\n",
5386 RETURN_MASK_ALL);
5387 else
5388 {
5389 warning (_("Watchpoint condition cannot be tested "
5390 "in the current scope"));
5391 /* If we failed to set the right context for this
5392 watchpoint, unconditionally report it. */
5393 value_is_zero = 0;
5394 }
5395 /* FIXME-someday, should give breakpoint #. */
5396 value_free_to_mark (mark);
5397 }
5398
5399 if (cond && value_is_zero)
5400 {
5401 bs->stop = 0;
5402 }
5403 else if (b->ignore_count > 0)
5404 {
5405 b->ignore_count--;
5406 bs->stop = 0;
5407 /* Increase the hit count even though we don't stop. */
5408 ++(b->hit_count);
5409 observer_notify_breakpoint_modified (b);
5410 }
5411 }
5412
5413
5414 /* Get a bpstat associated with having just stopped at address
5415 BP_ADDR in thread PTID.
5416
5417 Determine whether we stopped at a breakpoint, etc, or whether we
5418 don't understand this stop. Result is a chain of bpstat's such
5419 that:
5420
5421 if we don't understand the stop, the result is a null pointer.
5422
5423 if we understand why we stopped, the result is not null.
5424
5425 Each element of the chain refers to a particular breakpoint or
5426 watchpoint at which we have stopped. (We may have stopped for
5427 several reasons concurrently.)
5428
5429 Each element of the chain has valid next, breakpoint_at,
5430 commands, FIXME??? fields. */
5431
5432 bpstat
5433 bpstat_stop_status (struct address_space *aspace,
5434 CORE_ADDR bp_addr, ptid_t ptid,
5435 const struct target_waitstatus *ws)
5436 {
5437 struct breakpoint *b = NULL;
5438 struct bp_location *bl;
5439 struct bp_location *loc;
5440 /* First item of allocated bpstat's. */
5441 bpstat bs_head = NULL, *bs_link = &bs_head;
5442 /* Pointer to the last thing in the chain currently. */
5443 bpstat bs;
5444 int ix;
5445 int need_remove_insert;
5446 int removed_any;
5447
5448 /* First, build the bpstat chain with locations that explain a
5449 target stop, while being careful to not set the target running,
5450 as that may invalidate locations (in particular watchpoint
5451 locations are recreated). Resuming will happen here with
5452 breakpoint conditions or watchpoint expressions that include
5453 inferior function calls. */
5454
5455 ALL_BREAKPOINTS (b)
5456 {
5457 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5458 continue;
5459
5460 for (bl = b->loc; bl != NULL; bl = bl->next)
5461 {
5462 /* For hardware watchpoints, we look only at the first
5463 location. The watchpoint_check function will work on the
5464 entire expression, not the individual locations. For
5465 read watchpoints, the watchpoints_triggered function has
5466 checked all locations already. */
5467 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5468 break;
5469
5470 if (!bl->enabled || bl->shlib_disabled)
5471 continue;
5472
5473 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5474 continue;
5475
5476 /* Come here if it's a watchpoint, or if the break address
5477 matches. */
5478
5479 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5480 explain stop. */
5481
5482 /* Assume we stop. Should we find a watchpoint that is not
5483 actually triggered, or if the condition of the breakpoint
5484 evaluates as false, we'll reset 'stop' to 0. */
5485 bs->stop = 1;
5486 bs->print = 1;
5487
5488 /* If this is a scope breakpoint, mark the associated
5489 watchpoint as triggered so that we will handle the
5490 out-of-scope event. We'll get to the watchpoint next
5491 iteration. */
5492 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5493 {
5494 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5495
5496 w->watchpoint_triggered = watch_triggered_yes;
5497 }
5498 }
5499 }
5500
5501 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5502 {
5503 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5504 {
5505 bs = bpstat_alloc (loc, &bs_link);
5506 /* For hits of moribund locations, we should just proceed. */
5507 bs->stop = 0;
5508 bs->print = 0;
5509 bs->print_it = print_it_noop;
5510 }
5511 }
5512
5513 /* A bit of special processing for shlib breakpoints. We need to
5514 process solib loading here, so that the lists of loaded and
5515 unloaded libraries are correct before we handle "catch load" and
5516 "catch unload". */
5517 for (bs = bs_head; bs != NULL; bs = bs->next)
5518 {
5519 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5520 {
5521 handle_solib_event ();
5522 break;
5523 }
5524 }
5525
5526 /* Now go through the locations that caused the target to stop, and
5527 check whether we're interested in reporting this stop to higher
5528 layers, or whether we should resume the target transparently. */
5529
5530 removed_any = 0;
5531
5532 for (bs = bs_head; bs != NULL; bs = bs->next)
5533 {
5534 if (!bs->stop)
5535 continue;
5536
5537 b = bs->breakpoint_at;
5538 b->ops->check_status (bs);
5539 if (bs->stop)
5540 {
5541 bpstat_check_breakpoint_conditions (bs, ptid);
5542
5543 if (bs->stop)
5544 {
5545 ++(b->hit_count);
5546 observer_notify_breakpoint_modified (b);
5547
5548 /* We will stop here. */
5549 if (b->disposition == disp_disable)
5550 {
5551 --(b->enable_count);
5552 if (b->enable_count <= 0
5553 && b->enable_state != bp_permanent)
5554 b->enable_state = bp_disabled;
5555 removed_any = 1;
5556 }
5557 if (b->silent)
5558 bs->print = 0;
5559 bs->commands = b->commands;
5560 incref_counted_command_line (bs->commands);
5561 if (command_line_is_silent (bs->commands
5562 ? bs->commands->commands : NULL))
5563 bs->print = 0;
5564
5565 b->ops->after_condition_true (bs);
5566 }
5567
5568 }
5569
5570 /* Print nothing for this entry if we don't stop or don't
5571 print. */
5572 if (!bs->stop || !bs->print)
5573 bs->print_it = print_it_noop;
5574 }
5575
5576 /* If we aren't stopping, the value of some hardware watchpoint may
5577 not have changed, but the intermediate memory locations we are
5578 watching may have. Don't bother if we're stopping; this will get
5579 done later. */
5580 need_remove_insert = 0;
5581 if (! bpstat_causes_stop (bs_head))
5582 for (bs = bs_head; bs != NULL; bs = bs->next)
5583 if (!bs->stop
5584 && bs->breakpoint_at
5585 && is_hardware_watchpoint (bs->breakpoint_at))
5586 {
5587 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5588
5589 update_watchpoint (w, 0 /* don't reparse. */);
5590 need_remove_insert = 1;
5591 }
5592
5593 if (need_remove_insert)
5594 update_global_location_list (1);
5595 else if (removed_any)
5596 update_global_location_list (0);
5597
5598 return bs_head;
5599 }
5600
5601 static void
5602 handle_jit_event (void)
5603 {
5604 struct frame_info *frame;
5605 struct gdbarch *gdbarch;
5606
5607 /* Switch terminal for any messages produced by
5608 breakpoint_re_set. */
5609 target_terminal_ours_for_output ();
5610
5611 frame = get_current_frame ();
5612 gdbarch = get_frame_arch (frame);
5613
5614 jit_event_handler (gdbarch);
5615
5616 target_terminal_inferior ();
5617 }
5618
5619 /* Prepare WHAT final decision for infrun. */
5620
5621 /* Decide what infrun needs to do with this bpstat. */
5622
5623 struct bpstat_what
5624 bpstat_what (bpstat bs_head)
5625 {
5626 struct bpstat_what retval;
5627 int jit_event = 0;
5628 bpstat bs;
5629
5630 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5631 retval.call_dummy = STOP_NONE;
5632 retval.is_longjmp = 0;
5633
5634 for (bs = bs_head; bs != NULL; bs = bs->next)
5635 {
5636 /* Extract this BS's action. After processing each BS, we check
5637 if its action overrides all we've seem so far. */
5638 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5639 enum bptype bptype;
5640
5641 if (bs->breakpoint_at == NULL)
5642 {
5643 /* I suspect this can happen if it was a momentary
5644 breakpoint which has since been deleted. */
5645 bptype = bp_none;
5646 }
5647 else
5648 bptype = bs->breakpoint_at->type;
5649
5650 switch (bptype)
5651 {
5652 case bp_none:
5653 break;
5654 case bp_breakpoint:
5655 case bp_hardware_breakpoint:
5656 case bp_until:
5657 case bp_finish:
5658 case bp_shlib_event:
5659 if (bs->stop)
5660 {
5661 if (bs->print)
5662 this_action = BPSTAT_WHAT_STOP_NOISY;
5663 else
5664 this_action = BPSTAT_WHAT_STOP_SILENT;
5665 }
5666 else
5667 this_action = BPSTAT_WHAT_SINGLE;
5668 break;
5669 case bp_watchpoint:
5670 case bp_hardware_watchpoint:
5671 case bp_read_watchpoint:
5672 case bp_access_watchpoint:
5673 if (bs->stop)
5674 {
5675 if (bs->print)
5676 this_action = BPSTAT_WHAT_STOP_NOISY;
5677 else
5678 this_action = BPSTAT_WHAT_STOP_SILENT;
5679 }
5680 else
5681 {
5682 /* There was a watchpoint, but we're not stopping.
5683 This requires no further action. */
5684 }
5685 break;
5686 case bp_longjmp:
5687 case bp_longjmp_call_dummy:
5688 case bp_exception:
5689 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5690 retval.is_longjmp = bptype != bp_exception;
5691 break;
5692 case bp_longjmp_resume:
5693 case bp_exception_resume:
5694 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5695 retval.is_longjmp = bptype == bp_longjmp_resume;
5696 break;
5697 case bp_step_resume:
5698 if (bs->stop)
5699 this_action = BPSTAT_WHAT_STEP_RESUME;
5700 else
5701 {
5702 /* It is for the wrong frame. */
5703 this_action = BPSTAT_WHAT_SINGLE;
5704 }
5705 break;
5706 case bp_hp_step_resume:
5707 if (bs->stop)
5708 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5709 else
5710 {
5711 /* It is for the wrong frame. */
5712 this_action = BPSTAT_WHAT_SINGLE;
5713 }
5714 break;
5715 case bp_watchpoint_scope:
5716 case bp_thread_event:
5717 case bp_overlay_event:
5718 case bp_longjmp_master:
5719 case bp_std_terminate_master:
5720 case bp_exception_master:
5721 this_action = BPSTAT_WHAT_SINGLE;
5722 break;
5723 case bp_catchpoint:
5724 if (bs->stop)
5725 {
5726 if (bs->print)
5727 this_action = BPSTAT_WHAT_STOP_NOISY;
5728 else
5729 this_action = BPSTAT_WHAT_STOP_SILENT;
5730 }
5731 else
5732 {
5733 /* There was a catchpoint, but we're not stopping.
5734 This requires no further action. */
5735 }
5736 break;
5737 case bp_jit_event:
5738 jit_event = 1;
5739 this_action = BPSTAT_WHAT_SINGLE;
5740 break;
5741 case bp_call_dummy:
5742 /* Make sure the action is stop (silent or noisy),
5743 so infrun.c pops the dummy frame. */
5744 retval.call_dummy = STOP_STACK_DUMMY;
5745 this_action = BPSTAT_WHAT_STOP_SILENT;
5746 break;
5747 case bp_std_terminate:
5748 /* Make sure the action is stop (silent or noisy),
5749 so infrun.c pops the dummy frame. */
5750 retval.call_dummy = STOP_STD_TERMINATE;
5751 this_action = BPSTAT_WHAT_STOP_SILENT;
5752 break;
5753 case bp_tracepoint:
5754 case bp_fast_tracepoint:
5755 case bp_static_tracepoint:
5756 /* Tracepoint hits should not be reported back to GDB, and
5757 if one got through somehow, it should have been filtered
5758 out already. */
5759 internal_error (__FILE__, __LINE__,
5760 _("bpstat_what: tracepoint encountered"));
5761 break;
5762 case bp_gnu_ifunc_resolver:
5763 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5764 this_action = BPSTAT_WHAT_SINGLE;
5765 break;
5766 case bp_gnu_ifunc_resolver_return:
5767 /* The breakpoint will be removed, execution will restart from the
5768 PC of the former breakpoint. */
5769 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5770 break;
5771
5772 case bp_dprintf:
5773 if (bs->stop)
5774 this_action = BPSTAT_WHAT_STOP_SILENT;
5775 else
5776 this_action = BPSTAT_WHAT_SINGLE;
5777 break;
5778
5779 default:
5780 internal_error (__FILE__, __LINE__,
5781 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5782 }
5783
5784 retval.main_action = max (retval.main_action, this_action);
5785 }
5786
5787 /* These operations may affect the bs->breakpoint_at state so they are
5788 delayed after MAIN_ACTION is decided above. */
5789
5790 if (jit_event)
5791 {
5792 if (debug_infrun)
5793 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5794
5795 handle_jit_event ();
5796 }
5797
5798 for (bs = bs_head; bs != NULL; bs = bs->next)
5799 {
5800 struct breakpoint *b = bs->breakpoint_at;
5801
5802 if (b == NULL)
5803 continue;
5804 switch (b->type)
5805 {
5806 case bp_gnu_ifunc_resolver:
5807 gnu_ifunc_resolver_stop (b);
5808 break;
5809 case bp_gnu_ifunc_resolver_return:
5810 gnu_ifunc_resolver_return_stop (b);
5811 break;
5812 }
5813 }
5814
5815 return retval;
5816 }
5817
5818 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5819 without hardware support). This isn't related to a specific bpstat,
5820 just to things like whether watchpoints are set. */
5821
5822 int
5823 bpstat_should_step (void)
5824 {
5825 struct breakpoint *b;
5826
5827 ALL_BREAKPOINTS (b)
5828 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5829 return 1;
5830 return 0;
5831 }
5832
5833 int
5834 bpstat_causes_stop (bpstat bs)
5835 {
5836 for (; bs != NULL; bs = bs->next)
5837 if (bs->stop)
5838 return 1;
5839
5840 return 0;
5841 }
5842
5843 \f
5844
5845 /* Compute a string of spaces suitable to indent the next line
5846 so it starts at the position corresponding to the table column
5847 named COL_NAME in the currently active table of UIOUT. */
5848
5849 static char *
5850 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5851 {
5852 static char wrap_indent[80];
5853 int i, total_width, width, align;
5854 char *text;
5855
5856 total_width = 0;
5857 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5858 {
5859 if (strcmp (text, col_name) == 0)
5860 {
5861 gdb_assert (total_width < sizeof wrap_indent);
5862 memset (wrap_indent, ' ', total_width);
5863 wrap_indent[total_width] = 0;
5864
5865 return wrap_indent;
5866 }
5867
5868 total_width += width + 1;
5869 }
5870
5871 return NULL;
5872 }
5873
5874 /* Determine if the locations of this breakpoint will have their conditions
5875 evaluated by the target, host or a mix of both. Returns the following:
5876
5877 "host": Host evals condition.
5878 "host or target": Host or Target evals condition.
5879 "target": Target evals condition.
5880 */
5881
5882 static const char *
5883 bp_condition_evaluator (struct breakpoint *b)
5884 {
5885 struct bp_location *bl;
5886 char host_evals = 0;
5887 char target_evals = 0;
5888
5889 if (!b)
5890 return NULL;
5891
5892 if (!is_breakpoint (b))
5893 return NULL;
5894
5895 if (gdb_evaluates_breakpoint_condition_p ()
5896 || !target_supports_evaluation_of_breakpoint_conditions ())
5897 return condition_evaluation_host;
5898
5899 for (bl = b->loc; bl; bl = bl->next)
5900 {
5901 if (bl->cond_bytecode)
5902 target_evals++;
5903 else
5904 host_evals++;
5905 }
5906
5907 if (host_evals && target_evals)
5908 return condition_evaluation_both;
5909 else if (target_evals)
5910 return condition_evaluation_target;
5911 else
5912 return condition_evaluation_host;
5913 }
5914
5915 /* Determine the breakpoint location's condition evaluator. This is
5916 similar to bp_condition_evaluator, but for locations. */
5917
5918 static const char *
5919 bp_location_condition_evaluator (struct bp_location *bl)
5920 {
5921 if (bl && !is_breakpoint (bl->owner))
5922 return NULL;
5923
5924 if (gdb_evaluates_breakpoint_condition_p ()
5925 || !target_supports_evaluation_of_breakpoint_conditions ())
5926 return condition_evaluation_host;
5927
5928 if (bl && bl->cond_bytecode)
5929 return condition_evaluation_target;
5930 else
5931 return condition_evaluation_host;
5932 }
5933
5934 /* Print the LOC location out of the list of B->LOC locations. */
5935
5936 static void
5937 print_breakpoint_location (struct breakpoint *b,
5938 struct bp_location *loc)
5939 {
5940 struct ui_out *uiout = current_uiout;
5941 struct cleanup *old_chain = save_current_program_space ();
5942
5943 if (loc != NULL && loc->shlib_disabled)
5944 loc = NULL;
5945
5946 if (loc != NULL)
5947 set_current_program_space (loc->pspace);
5948
5949 if (b->display_canonical)
5950 ui_out_field_string (uiout, "what", b->addr_string);
5951 else if (loc && loc->symtab)
5952 {
5953 struct symbol *sym
5954 = find_pc_sect_function (loc->address, loc->section);
5955 if (sym)
5956 {
5957 ui_out_text (uiout, "in ");
5958 ui_out_field_string (uiout, "func",
5959 SYMBOL_PRINT_NAME (sym));
5960 ui_out_text (uiout, " ");
5961 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5962 ui_out_text (uiout, "at ");
5963 }
5964 ui_out_field_string (uiout, "file",
5965 symtab_to_filename_for_display (loc->symtab));
5966 ui_out_text (uiout, ":");
5967
5968 if (ui_out_is_mi_like_p (uiout))
5969 ui_out_field_string (uiout, "fullname",
5970 symtab_to_fullname (loc->symtab));
5971
5972 ui_out_field_int (uiout, "line", loc->line_number);
5973 }
5974 else if (loc)
5975 {
5976 struct ui_file *stb = mem_fileopen ();
5977 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5978
5979 print_address_symbolic (loc->gdbarch, loc->address, stb,
5980 demangle, "");
5981 ui_out_field_stream (uiout, "at", stb);
5982
5983 do_cleanups (stb_chain);
5984 }
5985 else
5986 ui_out_field_string (uiout, "pending", b->addr_string);
5987
5988 if (loc && is_breakpoint (b)
5989 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5990 && bp_condition_evaluator (b) == condition_evaluation_both)
5991 {
5992 ui_out_text (uiout, " (");
5993 ui_out_field_string (uiout, "evaluated-by",
5994 bp_location_condition_evaluator (loc));
5995 ui_out_text (uiout, ")");
5996 }
5997
5998 do_cleanups (old_chain);
5999 }
6000
6001 static const char *
6002 bptype_string (enum bptype type)
6003 {
6004 struct ep_type_description
6005 {
6006 enum bptype type;
6007 char *description;
6008 };
6009 static struct ep_type_description bptypes[] =
6010 {
6011 {bp_none, "?deleted?"},
6012 {bp_breakpoint, "breakpoint"},
6013 {bp_hardware_breakpoint, "hw breakpoint"},
6014 {bp_until, "until"},
6015 {bp_finish, "finish"},
6016 {bp_watchpoint, "watchpoint"},
6017 {bp_hardware_watchpoint, "hw watchpoint"},
6018 {bp_read_watchpoint, "read watchpoint"},
6019 {bp_access_watchpoint, "acc watchpoint"},
6020 {bp_longjmp, "longjmp"},
6021 {bp_longjmp_resume, "longjmp resume"},
6022 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6023 {bp_exception, "exception"},
6024 {bp_exception_resume, "exception resume"},
6025 {bp_step_resume, "step resume"},
6026 {bp_hp_step_resume, "high-priority step resume"},
6027 {bp_watchpoint_scope, "watchpoint scope"},
6028 {bp_call_dummy, "call dummy"},
6029 {bp_std_terminate, "std::terminate"},
6030 {bp_shlib_event, "shlib events"},
6031 {bp_thread_event, "thread events"},
6032 {bp_overlay_event, "overlay events"},
6033 {bp_longjmp_master, "longjmp master"},
6034 {bp_std_terminate_master, "std::terminate master"},
6035 {bp_exception_master, "exception master"},
6036 {bp_catchpoint, "catchpoint"},
6037 {bp_tracepoint, "tracepoint"},
6038 {bp_fast_tracepoint, "fast tracepoint"},
6039 {bp_static_tracepoint, "static tracepoint"},
6040 {bp_dprintf, "dprintf"},
6041 {bp_jit_event, "jit events"},
6042 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6043 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6044 };
6045
6046 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6047 || ((int) type != bptypes[(int) type].type))
6048 internal_error (__FILE__, __LINE__,
6049 _("bptypes table does not describe type #%d."),
6050 (int) type);
6051
6052 return bptypes[(int) type].description;
6053 }
6054
6055 /* For MI, output a field named 'thread-groups' with a list as the value.
6056 For CLI, prefix the list with the string 'inf'. */
6057
6058 static void
6059 output_thread_groups (struct ui_out *uiout,
6060 const char *field_name,
6061 VEC(int) *inf_num,
6062 int mi_only)
6063 {
6064 struct cleanup *back_to;
6065 int is_mi = ui_out_is_mi_like_p (uiout);
6066 int inf;
6067 int i;
6068
6069 /* For backward compatibility, don't display inferiors in CLI unless
6070 there are several. Always display them for MI. */
6071 if (!is_mi && mi_only)
6072 return;
6073
6074 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6075
6076 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6077 {
6078 if (is_mi)
6079 {
6080 char mi_group[10];
6081
6082 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6083 ui_out_field_string (uiout, NULL, mi_group);
6084 }
6085 else
6086 {
6087 if (i == 0)
6088 ui_out_text (uiout, " inf ");
6089 else
6090 ui_out_text (uiout, ", ");
6091
6092 ui_out_text (uiout, plongest (inf));
6093 }
6094 }
6095
6096 do_cleanups (back_to);
6097 }
6098
6099 /* Print B to gdb_stdout. */
6100
6101 static void
6102 print_one_breakpoint_location (struct breakpoint *b,
6103 struct bp_location *loc,
6104 int loc_number,
6105 struct bp_location **last_loc,
6106 int allflag)
6107 {
6108 struct command_line *l;
6109 static char bpenables[] = "nynny";
6110
6111 struct ui_out *uiout = current_uiout;
6112 int header_of_multiple = 0;
6113 int part_of_multiple = (loc != NULL);
6114 struct value_print_options opts;
6115
6116 get_user_print_options (&opts);
6117
6118 gdb_assert (!loc || loc_number != 0);
6119 /* See comment in print_one_breakpoint concerning treatment of
6120 breakpoints with single disabled location. */
6121 if (loc == NULL
6122 && (b->loc != NULL
6123 && (b->loc->next != NULL || !b->loc->enabled)))
6124 header_of_multiple = 1;
6125 if (loc == NULL)
6126 loc = b->loc;
6127
6128 annotate_record ();
6129
6130 /* 1 */
6131 annotate_field (0);
6132 if (part_of_multiple)
6133 {
6134 char *formatted;
6135 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6136 ui_out_field_string (uiout, "number", formatted);
6137 xfree (formatted);
6138 }
6139 else
6140 {
6141 ui_out_field_int (uiout, "number", b->number);
6142 }
6143
6144 /* 2 */
6145 annotate_field (1);
6146 if (part_of_multiple)
6147 ui_out_field_skip (uiout, "type");
6148 else
6149 ui_out_field_string (uiout, "type", bptype_string (b->type));
6150
6151 /* 3 */
6152 annotate_field (2);
6153 if (part_of_multiple)
6154 ui_out_field_skip (uiout, "disp");
6155 else
6156 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6157
6158
6159 /* 4 */
6160 annotate_field (3);
6161 if (part_of_multiple)
6162 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6163 else
6164 ui_out_field_fmt (uiout, "enabled", "%c",
6165 bpenables[(int) b->enable_state]);
6166 ui_out_spaces (uiout, 2);
6167
6168
6169 /* 5 and 6 */
6170 if (b->ops != NULL && b->ops->print_one != NULL)
6171 {
6172 /* Although the print_one can possibly print all locations,
6173 calling it here is not likely to get any nice result. So,
6174 make sure there's just one location. */
6175 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6176 b->ops->print_one (b, last_loc);
6177 }
6178 else
6179 switch (b->type)
6180 {
6181 case bp_none:
6182 internal_error (__FILE__, __LINE__,
6183 _("print_one_breakpoint: bp_none encountered\n"));
6184 break;
6185
6186 case bp_watchpoint:
6187 case bp_hardware_watchpoint:
6188 case bp_read_watchpoint:
6189 case bp_access_watchpoint:
6190 {
6191 struct watchpoint *w = (struct watchpoint *) b;
6192
6193 /* Field 4, the address, is omitted (which makes the columns
6194 not line up too nicely with the headers, but the effect
6195 is relatively readable). */
6196 if (opts.addressprint)
6197 ui_out_field_skip (uiout, "addr");
6198 annotate_field (5);
6199 ui_out_field_string (uiout, "what", w->exp_string);
6200 }
6201 break;
6202
6203 case bp_breakpoint:
6204 case bp_hardware_breakpoint:
6205 case bp_until:
6206 case bp_finish:
6207 case bp_longjmp:
6208 case bp_longjmp_resume:
6209 case bp_longjmp_call_dummy:
6210 case bp_exception:
6211 case bp_exception_resume:
6212 case bp_step_resume:
6213 case bp_hp_step_resume:
6214 case bp_watchpoint_scope:
6215 case bp_call_dummy:
6216 case bp_std_terminate:
6217 case bp_shlib_event:
6218 case bp_thread_event:
6219 case bp_overlay_event:
6220 case bp_longjmp_master:
6221 case bp_std_terminate_master:
6222 case bp_exception_master:
6223 case bp_tracepoint:
6224 case bp_fast_tracepoint:
6225 case bp_static_tracepoint:
6226 case bp_dprintf:
6227 case bp_jit_event:
6228 case bp_gnu_ifunc_resolver:
6229 case bp_gnu_ifunc_resolver_return:
6230 if (opts.addressprint)
6231 {
6232 annotate_field (4);
6233 if (header_of_multiple)
6234 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6235 else if (b->loc == NULL || loc->shlib_disabled)
6236 ui_out_field_string (uiout, "addr", "<PENDING>");
6237 else
6238 ui_out_field_core_addr (uiout, "addr",
6239 loc->gdbarch, loc->address);
6240 }
6241 annotate_field (5);
6242 if (!header_of_multiple)
6243 print_breakpoint_location (b, loc);
6244 if (b->loc)
6245 *last_loc = b->loc;
6246 break;
6247 }
6248
6249
6250 if (loc != NULL && !header_of_multiple)
6251 {
6252 struct inferior *inf;
6253 VEC(int) *inf_num = NULL;
6254 int mi_only = 1;
6255
6256 ALL_INFERIORS (inf)
6257 {
6258 if (inf->pspace == loc->pspace)
6259 VEC_safe_push (int, inf_num, inf->num);
6260 }
6261
6262 /* For backward compatibility, don't display inferiors in CLI unless
6263 there are several. Always display for MI. */
6264 if (allflag
6265 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6266 && (number_of_program_spaces () > 1
6267 || number_of_inferiors () > 1)
6268 /* LOC is for existing B, it cannot be in
6269 moribund_locations and thus having NULL OWNER. */
6270 && loc->owner->type != bp_catchpoint))
6271 mi_only = 0;
6272 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6273 VEC_free (int, inf_num);
6274 }
6275
6276 if (!part_of_multiple)
6277 {
6278 if (b->thread != -1)
6279 {
6280 /* FIXME: This seems to be redundant and lost here; see the
6281 "stop only in" line a little further down. */
6282 ui_out_text (uiout, " thread ");
6283 ui_out_field_int (uiout, "thread", b->thread);
6284 }
6285 else if (b->task != 0)
6286 {
6287 ui_out_text (uiout, " task ");
6288 ui_out_field_int (uiout, "task", b->task);
6289 }
6290 }
6291
6292 ui_out_text (uiout, "\n");
6293
6294 if (!part_of_multiple)
6295 b->ops->print_one_detail (b, uiout);
6296
6297 if (part_of_multiple && frame_id_p (b->frame_id))
6298 {
6299 annotate_field (6);
6300 ui_out_text (uiout, "\tstop only in stack frame at ");
6301 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6302 the frame ID. */
6303 ui_out_field_core_addr (uiout, "frame",
6304 b->gdbarch, b->frame_id.stack_addr);
6305 ui_out_text (uiout, "\n");
6306 }
6307
6308 if (!part_of_multiple && b->cond_string)
6309 {
6310 annotate_field (7);
6311 if (is_tracepoint (b))
6312 ui_out_text (uiout, "\ttrace only if ");
6313 else
6314 ui_out_text (uiout, "\tstop only if ");
6315 ui_out_field_string (uiout, "cond", b->cond_string);
6316
6317 /* Print whether the target is doing the breakpoint's condition
6318 evaluation. If GDB is doing the evaluation, don't print anything. */
6319 if (is_breakpoint (b)
6320 && breakpoint_condition_evaluation_mode ()
6321 == condition_evaluation_target)
6322 {
6323 ui_out_text (uiout, " (");
6324 ui_out_field_string (uiout, "evaluated-by",
6325 bp_condition_evaluator (b));
6326 ui_out_text (uiout, " evals)");
6327 }
6328 ui_out_text (uiout, "\n");
6329 }
6330
6331 if (!part_of_multiple && b->thread != -1)
6332 {
6333 /* FIXME should make an annotation for this. */
6334 ui_out_text (uiout, "\tstop only in thread ");
6335 ui_out_field_int (uiout, "thread", b->thread);
6336 ui_out_text (uiout, "\n");
6337 }
6338
6339 if (!part_of_multiple)
6340 {
6341 if (b->hit_count)
6342 {
6343 /* FIXME should make an annotation for this. */
6344 if (is_catchpoint (b))
6345 ui_out_text (uiout, "\tcatchpoint");
6346 else if (is_tracepoint (b))
6347 ui_out_text (uiout, "\ttracepoint");
6348 else
6349 ui_out_text (uiout, "\tbreakpoint");
6350 ui_out_text (uiout, " already hit ");
6351 ui_out_field_int (uiout, "times", b->hit_count);
6352 if (b->hit_count == 1)
6353 ui_out_text (uiout, " time\n");
6354 else
6355 ui_out_text (uiout, " times\n");
6356 }
6357 else
6358 {
6359 /* Output the count also if it is zero, but only if this is mi. */
6360 if (ui_out_is_mi_like_p (uiout))
6361 ui_out_field_int (uiout, "times", b->hit_count);
6362 }
6363 }
6364
6365 if (!part_of_multiple && b->ignore_count)
6366 {
6367 annotate_field (8);
6368 ui_out_text (uiout, "\tignore next ");
6369 ui_out_field_int (uiout, "ignore", b->ignore_count);
6370 ui_out_text (uiout, " hits\n");
6371 }
6372
6373 /* Note that an enable count of 1 corresponds to "enable once"
6374 behavior, which is reported by the combination of enablement and
6375 disposition, so we don't need to mention it here. */
6376 if (!part_of_multiple && b->enable_count > 1)
6377 {
6378 annotate_field (8);
6379 ui_out_text (uiout, "\tdisable after ");
6380 /* Tweak the wording to clarify that ignore and enable counts
6381 are distinct, and have additive effect. */
6382 if (b->ignore_count)
6383 ui_out_text (uiout, "additional ");
6384 else
6385 ui_out_text (uiout, "next ");
6386 ui_out_field_int (uiout, "enable", b->enable_count);
6387 ui_out_text (uiout, " hits\n");
6388 }
6389
6390 if (!part_of_multiple && is_tracepoint (b))
6391 {
6392 struct tracepoint *tp = (struct tracepoint *) b;
6393
6394 if (tp->traceframe_usage)
6395 {
6396 ui_out_text (uiout, "\ttrace buffer usage ");
6397 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6398 ui_out_text (uiout, " bytes\n");
6399 }
6400 }
6401
6402 l = b->commands ? b->commands->commands : NULL;
6403 if (!part_of_multiple && l)
6404 {
6405 struct cleanup *script_chain;
6406
6407 annotate_field (9);
6408 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6409 print_command_lines (uiout, l, 4);
6410 do_cleanups (script_chain);
6411 }
6412
6413 if (is_tracepoint (b))
6414 {
6415 struct tracepoint *t = (struct tracepoint *) b;
6416
6417 if (!part_of_multiple && t->pass_count)
6418 {
6419 annotate_field (10);
6420 ui_out_text (uiout, "\tpass count ");
6421 ui_out_field_int (uiout, "pass", t->pass_count);
6422 ui_out_text (uiout, " \n");
6423 }
6424
6425 /* Don't display it when tracepoint or tracepoint location is
6426 pending. */
6427 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6428 {
6429 annotate_field (11);
6430
6431 if (ui_out_is_mi_like_p (uiout))
6432 ui_out_field_string (uiout, "installed",
6433 loc->inserted ? "y" : "n");
6434 else
6435 {
6436 if (loc->inserted)
6437 ui_out_text (uiout, "\t");
6438 else
6439 ui_out_text (uiout, "\tnot ");
6440 ui_out_text (uiout, "installed on target\n");
6441 }
6442 }
6443 }
6444
6445 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6446 {
6447 if (is_watchpoint (b))
6448 {
6449 struct watchpoint *w = (struct watchpoint *) b;
6450
6451 ui_out_field_string (uiout, "original-location", w->exp_string);
6452 }
6453 else if (b->addr_string)
6454 ui_out_field_string (uiout, "original-location", b->addr_string);
6455 }
6456 }
6457
6458 static void
6459 print_one_breakpoint (struct breakpoint *b,
6460 struct bp_location **last_loc,
6461 int allflag)
6462 {
6463 struct cleanup *bkpt_chain;
6464 struct ui_out *uiout = current_uiout;
6465
6466 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6467
6468 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6469 do_cleanups (bkpt_chain);
6470
6471 /* If this breakpoint has custom print function,
6472 it's already printed. Otherwise, print individual
6473 locations, if any. */
6474 if (b->ops == NULL || b->ops->print_one == NULL)
6475 {
6476 /* If breakpoint has a single location that is disabled, we
6477 print it as if it had several locations, since otherwise it's
6478 hard to represent "breakpoint enabled, location disabled"
6479 situation.
6480
6481 Note that while hardware watchpoints have several locations
6482 internally, that's not a property exposed to user. */
6483 if (b->loc
6484 && !is_hardware_watchpoint (b)
6485 && (b->loc->next || !b->loc->enabled))
6486 {
6487 struct bp_location *loc;
6488 int n = 1;
6489
6490 for (loc = b->loc; loc; loc = loc->next, ++n)
6491 {
6492 struct cleanup *inner2 =
6493 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6494 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6495 do_cleanups (inner2);
6496 }
6497 }
6498 }
6499 }
6500
6501 static int
6502 breakpoint_address_bits (struct breakpoint *b)
6503 {
6504 int print_address_bits = 0;
6505 struct bp_location *loc;
6506
6507 for (loc = b->loc; loc; loc = loc->next)
6508 {
6509 int addr_bit;
6510
6511 /* Software watchpoints that aren't watching memory don't have
6512 an address to print. */
6513 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6514 continue;
6515
6516 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6517 if (addr_bit > print_address_bits)
6518 print_address_bits = addr_bit;
6519 }
6520
6521 return print_address_bits;
6522 }
6523
6524 struct captured_breakpoint_query_args
6525 {
6526 int bnum;
6527 };
6528
6529 static int
6530 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6531 {
6532 struct captured_breakpoint_query_args *args = data;
6533 struct breakpoint *b;
6534 struct bp_location *dummy_loc = NULL;
6535
6536 ALL_BREAKPOINTS (b)
6537 {
6538 if (args->bnum == b->number)
6539 {
6540 print_one_breakpoint (b, &dummy_loc, 0);
6541 return GDB_RC_OK;
6542 }
6543 }
6544 return GDB_RC_NONE;
6545 }
6546
6547 enum gdb_rc
6548 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6549 char **error_message)
6550 {
6551 struct captured_breakpoint_query_args args;
6552
6553 args.bnum = bnum;
6554 /* For the moment we don't trust print_one_breakpoint() to not throw
6555 an error. */
6556 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6557 error_message, RETURN_MASK_ALL) < 0)
6558 return GDB_RC_FAIL;
6559 else
6560 return GDB_RC_OK;
6561 }
6562
6563 /* Return true if this breakpoint was set by the user, false if it is
6564 internal or momentary. */
6565
6566 int
6567 user_breakpoint_p (struct breakpoint *b)
6568 {
6569 return b->number > 0;
6570 }
6571
6572 /* Print information on user settable breakpoint (watchpoint, etc)
6573 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6574 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6575 FILTER is non-NULL, call it on each breakpoint and only include the
6576 ones for which it returns non-zero. Return the total number of
6577 breakpoints listed. */
6578
6579 static int
6580 breakpoint_1 (char *args, int allflag,
6581 int (*filter) (const struct breakpoint *))
6582 {
6583 struct breakpoint *b;
6584 struct bp_location *last_loc = NULL;
6585 int nr_printable_breakpoints;
6586 struct cleanup *bkpttbl_chain;
6587 struct value_print_options opts;
6588 int print_address_bits = 0;
6589 int print_type_col_width = 14;
6590 struct ui_out *uiout = current_uiout;
6591
6592 get_user_print_options (&opts);
6593
6594 /* Compute the number of rows in the table, as well as the size
6595 required for address fields. */
6596 nr_printable_breakpoints = 0;
6597 ALL_BREAKPOINTS (b)
6598 {
6599 /* If we have a filter, only list the breakpoints it accepts. */
6600 if (filter && !filter (b))
6601 continue;
6602
6603 /* If we have an "args" string, it is a list of breakpoints to
6604 accept. Skip the others. */
6605 if (args != NULL && *args != '\0')
6606 {
6607 if (allflag && parse_and_eval_long (args) != b->number)
6608 continue;
6609 if (!allflag && !number_is_in_list (args, b->number))
6610 continue;
6611 }
6612
6613 if (allflag || user_breakpoint_p (b))
6614 {
6615 int addr_bit, type_len;
6616
6617 addr_bit = breakpoint_address_bits (b);
6618 if (addr_bit > print_address_bits)
6619 print_address_bits = addr_bit;
6620
6621 type_len = strlen (bptype_string (b->type));
6622 if (type_len > print_type_col_width)
6623 print_type_col_width = type_len;
6624
6625 nr_printable_breakpoints++;
6626 }
6627 }
6628
6629 if (opts.addressprint)
6630 bkpttbl_chain
6631 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6632 nr_printable_breakpoints,
6633 "BreakpointTable");
6634 else
6635 bkpttbl_chain
6636 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6637 nr_printable_breakpoints,
6638 "BreakpointTable");
6639
6640 if (nr_printable_breakpoints > 0)
6641 annotate_breakpoints_headers ();
6642 if (nr_printable_breakpoints > 0)
6643 annotate_field (0);
6644 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6645 if (nr_printable_breakpoints > 0)
6646 annotate_field (1);
6647 ui_out_table_header (uiout, print_type_col_width, ui_left,
6648 "type", "Type"); /* 2 */
6649 if (nr_printable_breakpoints > 0)
6650 annotate_field (2);
6651 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6652 if (nr_printable_breakpoints > 0)
6653 annotate_field (3);
6654 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6655 if (opts.addressprint)
6656 {
6657 if (nr_printable_breakpoints > 0)
6658 annotate_field (4);
6659 if (print_address_bits <= 32)
6660 ui_out_table_header (uiout, 10, ui_left,
6661 "addr", "Address"); /* 5 */
6662 else
6663 ui_out_table_header (uiout, 18, ui_left,
6664 "addr", "Address"); /* 5 */
6665 }
6666 if (nr_printable_breakpoints > 0)
6667 annotate_field (5);
6668 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6669 ui_out_table_body (uiout);
6670 if (nr_printable_breakpoints > 0)
6671 annotate_breakpoints_table ();
6672
6673 ALL_BREAKPOINTS (b)
6674 {
6675 QUIT;
6676 /* If we have a filter, only list the breakpoints it accepts. */
6677 if (filter && !filter (b))
6678 continue;
6679
6680 /* If we have an "args" string, it is a list of breakpoints to
6681 accept. Skip the others. */
6682
6683 if (args != NULL && *args != '\0')
6684 {
6685 if (allflag) /* maintenance info breakpoint */
6686 {
6687 if (parse_and_eval_long (args) != b->number)
6688 continue;
6689 }
6690 else /* all others */
6691 {
6692 if (!number_is_in_list (args, b->number))
6693 continue;
6694 }
6695 }
6696 /* We only print out user settable breakpoints unless the
6697 allflag is set. */
6698 if (allflag || user_breakpoint_p (b))
6699 print_one_breakpoint (b, &last_loc, allflag);
6700 }
6701
6702 do_cleanups (bkpttbl_chain);
6703
6704 if (nr_printable_breakpoints == 0)
6705 {
6706 /* If there's a filter, let the caller decide how to report
6707 empty list. */
6708 if (!filter)
6709 {
6710 if (args == NULL || *args == '\0')
6711 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6712 else
6713 ui_out_message (uiout, 0,
6714 "No breakpoint or watchpoint matching '%s'.\n",
6715 args);
6716 }
6717 }
6718 else
6719 {
6720 if (last_loc && !server_command)
6721 set_next_address (last_loc->gdbarch, last_loc->address);
6722 }
6723
6724 /* FIXME? Should this be moved up so that it is only called when
6725 there have been breakpoints? */
6726 annotate_breakpoints_table_end ();
6727
6728 return nr_printable_breakpoints;
6729 }
6730
6731 /* Display the value of default-collect in a way that is generally
6732 compatible with the breakpoint list. */
6733
6734 static void
6735 default_collect_info (void)
6736 {
6737 struct ui_out *uiout = current_uiout;
6738
6739 /* If it has no value (which is frequently the case), say nothing; a
6740 message like "No default-collect." gets in user's face when it's
6741 not wanted. */
6742 if (!*default_collect)
6743 return;
6744
6745 /* The following phrase lines up nicely with per-tracepoint collect
6746 actions. */
6747 ui_out_text (uiout, "default collect ");
6748 ui_out_field_string (uiout, "default-collect", default_collect);
6749 ui_out_text (uiout, " \n");
6750 }
6751
6752 static void
6753 breakpoints_info (char *args, int from_tty)
6754 {
6755 breakpoint_1 (args, 0, NULL);
6756
6757 default_collect_info ();
6758 }
6759
6760 static void
6761 watchpoints_info (char *args, int from_tty)
6762 {
6763 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6764 struct ui_out *uiout = current_uiout;
6765
6766 if (num_printed == 0)
6767 {
6768 if (args == NULL || *args == '\0')
6769 ui_out_message (uiout, 0, "No watchpoints.\n");
6770 else
6771 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6772 }
6773 }
6774
6775 static void
6776 maintenance_info_breakpoints (char *args, int from_tty)
6777 {
6778 breakpoint_1 (args, 1, NULL);
6779
6780 default_collect_info ();
6781 }
6782
6783 static int
6784 breakpoint_has_pc (struct breakpoint *b,
6785 struct program_space *pspace,
6786 CORE_ADDR pc, struct obj_section *section)
6787 {
6788 struct bp_location *bl = b->loc;
6789
6790 for (; bl; bl = bl->next)
6791 {
6792 if (bl->pspace == pspace
6793 && bl->address == pc
6794 && (!overlay_debugging || bl->section == section))
6795 return 1;
6796 }
6797 return 0;
6798 }
6799
6800 /* Print a message describing any user-breakpoints set at PC. This
6801 concerns with logical breakpoints, so we match program spaces, not
6802 address spaces. */
6803
6804 static void
6805 describe_other_breakpoints (struct gdbarch *gdbarch,
6806 struct program_space *pspace, CORE_ADDR pc,
6807 struct obj_section *section, int thread)
6808 {
6809 int others = 0;
6810 struct breakpoint *b;
6811
6812 ALL_BREAKPOINTS (b)
6813 others += (user_breakpoint_p (b)
6814 && breakpoint_has_pc (b, pspace, pc, section));
6815 if (others > 0)
6816 {
6817 if (others == 1)
6818 printf_filtered (_("Note: breakpoint "));
6819 else /* if (others == ???) */
6820 printf_filtered (_("Note: breakpoints "));
6821 ALL_BREAKPOINTS (b)
6822 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6823 {
6824 others--;
6825 printf_filtered ("%d", b->number);
6826 if (b->thread == -1 && thread != -1)
6827 printf_filtered (" (all threads)");
6828 else if (b->thread != -1)
6829 printf_filtered (" (thread %d)", b->thread);
6830 printf_filtered ("%s%s ",
6831 ((b->enable_state == bp_disabled
6832 || b->enable_state == bp_call_disabled)
6833 ? " (disabled)"
6834 : b->enable_state == bp_permanent
6835 ? " (permanent)"
6836 : ""),
6837 (others > 1) ? ","
6838 : ((others == 1) ? " and" : ""));
6839 }
6840 printf_filtered (_("also set at pc "));
6841 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6842 printf_filtered (".\n");
6843 }
6844 }
6845 \f
6846
6847 /* Return true iff it is meaningful to use the address member of
6848 BPT. For some breakpoint types, the address member is irrelevant
6849 and it makes no sense to attempt to compare it to other addresses
6850 (or use it for any other purpose either).
6851
6852 More specifically, each of the following breakpoint types will
6853 always have a zero valued address and we don't want to mark
6854 breakpoints of any of these types to be a duplicate of an actual
6855 breakpoint at address zero:
6856
6857 bp_watchpoint
6858 bp_catchpoint
6859
6860 */
6861
6862 static int
6863 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6864 {
6865 enum bptype type = bpt->type;
6866
6867 return (type != bp_watchpoint && type != bp_catchpoint);
6868 }
6869
6870 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6871 true if LOC1 and LOC2 represent the same watchpoint location. */
6872
6873 static int
6874 watchpoint_locations_match (struct bp_location *loc1,
6875 struct bp_location *loc2)
6876 {
6877 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6878 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6879
6880 /* Both of them must exist. */
6881 gdb_assert (w1 != NULL);
6882 gdb_assert (w2 != NULL);
6883
6884 /* If the target can evaluate the condition expression in hardware,
6885 then we we need to insert both watchpoints even if they are at
6886 the same place. Otherwise the watchpoint will only trigger when
6887 the condition of whichever watchpoint was inserted evaluates to
6888 true, not giving a chance for GDB to check the condition of the
6889 other watchpoint. */
6890 if ((w1->cond_exp
6891 && target_can_accel_watchpoint_condition (loc1->address,
6892 loc1->length,
6893 loc1->watchpoint_type,
6894 w1->cond_exp))
6895 || (w2->cond_exp
6896 && target_can_accel_watchpoint_condition (loc2->address,
6897 loc2->length,
6898 loc2->watchpoint_type,
6899 w2->cond_exp)))
6900 return 0;
6901
6902 /* Note that this checks the owner's type, not the location's. In
6903 case the target does not support read watchpoints, but does
6904 support access watchpoints, we'll have bp_read_watchpoint
6905 watchpoints with hw_access locations. Those should be considered
6906 duplicates of hw_read locations. The hw_read locations will
6907 become hw_access locations later. */
6908 return (loc1->owner->type == loc2->owner->type
6909 && loc1->pspace->aspace == loc2->pspace->aspace
6910 && loc1->address == loc2->address
6911 && loc1->length == loc2->length);
6912 }
6913
6914 /* See breakpoint.h. */
6915
6916 int
6917 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6918 struct address_space *aspace2, CORE_ADDR addr2)
6919 {
6920 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6921 || aspace1 == aspace2)
6922 && addr1 == addr2);
6923 }
6924
6925 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6926 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6927 matches ASPACE2. On targets that have global breakpoints, the address
6928 space doesn't really matter. */
6929
6930 static int
6931 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6932 int len1, struct address_space *aspace2,
6933 CORE_ADDR addr2)
6934 {
6935 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6936 || aspace1 == aspace2)
6937 && addr2 >= addr1 && addr2 < addr1 + len1);
6938 }
6939
6940 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6941 a ranged breakpoint. In most targets, a match happens only if ASPACE
6942 matches the breakpoint's address space. On targets that have global
6943 breakpoints, the address space doesn't really matter. */
6944
6945 static int
6946 breakpoint_location_address_match (struct bp_location *bl,
6947 struct address_space *aspace,
6948 CORE_ADDR addr)
6949 {
6950 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6951 aspace, addr)
6952 || (bl->length
6953 && breakpoint_address_match_range (bl->pspace->aspace,
6954 bl->address, bl->length,
6955 aspace, addr)));
6956 }
6957
6958 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6959 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6960 true, otherwise returns false. */
6961
6962 static int
6963 tracepoint_locations_match (struct bp_location *loc1,
6964 struct bp_location *loc2)
6965 {
6966 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6967 /* Since tracepoint locations are never duplicated with others', tracepoint
6968 locations at the same address of different tracepoints are regarded as
6969 different locations. */
6970 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6971 else
6972 return 0;
6973 }
6974
6975 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6976 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6977 represent the same location. */
6978
6979 static int
6980 breakpoint_locations_match (struct bp_location *loc1,
6981 struct bp_location *loc2)
6982 {
6983 int hw_point1, hw_point2;
6984
6985 /* Both of them must not be in moribund_locations. */
6986 gdb_assert (loc1->owner != NULL);
6987 gdb_assert (loc2->owner != NULL);
6988
6989 hw_point1 = is_hardware_watchpoint (loc1->owner);
6990 hw_point2 = is_hardware_watchpoint (loc2->owner);
6991
6992 if (hw_point1 != hw_point2)
6993 return 0;
6994 else if (hw_point1)
6995 return watchpoint_locations_match (loc1, loc2);
6996 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6997 return tracepoint_locations_match (loc1, loc2);
6998 else
6999 /* We compare bp_location.length in order to cover ranged breakpoints. */
7000 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7001 loc2->pspace->aspace, loc2->address)
7002 && loc1->length == loc2->length);
7003 }
7004
7005 static void
7006 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7007 int bnum, int have_bnum)
7008 {
7009 /* The longest string possibly returned by hex_string_custom
7010 is 50 chars. These must be at least that big for safety. */
7011 char astr1[64];
7012 char astr2[64];
7013
7014 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7015 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7016 if (have_bnum)
7017 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7018 bnum, astr1, astr2);
7019 else
7020 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7021 }
7022
7023 /* Adjust a breakpoint's address to account for architectural
7024 constraints on breakpoint placement. Return the adjusted address.
7025 Note: Very few targets require this kind of adjustment. For most
7026 targets, this function is simply the identity function. */
7027
7028 static CORE_ADDR
7029 adjust_breakpoint_address (struct gdbarch *gdbarch,
7030 CORE_ADDR bpaddr, enum bptype bptype)
7031 {
7032 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7033 {
7034 /* Very few targets need any kind of breakpoint adjustment. */
7035 return bpaddr;
7036 }
7037 else if (bptype == bp_watchpoint
7038 || bptype == bp_hardware_watchpoint
7039 || bptype == bp_read_watchpoint
7040 || bptype == bp_access_watchpoint
7041 || bptype == bp_catchpoint)
7042 {
7043 /* Watchpoints and the various bp_catch_* eventpoints should not
7044 have their addresses modified. */
7045 return bpaddr;
7046 }
7047 else
7048 {
7049 CORE_ADDR adjusted_bpaddr;
7050
7051 /* Some targets have architectural constraints on the placement
7052 of breakpoint instructions. Obtain the adjusted address. */
7053 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7054
7055 /* An adjusted breakpoint address can significantly alter
7056 a user's expectations. Print a warning if an adjustment
7057 is required. */
7058 if (adjusted_bpaddr != bpaddr)
7059 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7060
7061 return adjusted_bpaddr;
7062 }
7063 }
7064
7065 void
7066 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7067 struct breakpoint *owner)
7068 {
7069 memset (loc, 0, sizeof (*loc));
7070
7071 gdb_assert (ops != NULL);
7072
7073 loc->ops = ops;
7074 loc->owner = owner;
7075 loc->cond = NULL;
7076 loc->cond_bytecode = NULL;
7077 loc->shlib_disabled = 0;
7078 loc->enabled = 1;
7079
7080 switch (owner->type)
7081 {
7082 case bp_breakpoint:
7083 case bp_until:
7084 case bp_finish:
7085 case bp_longjmp:
7086 case bp_longjmp_resume:
7087 case bp_longjmp_call_dummy:
7088 case bp_exception:
7089 case bp_exception_resume:
7090 case bp_step_resume:
7091 case bp_hp_step_resume:
7092 case bp_watchpoint_scope:
7093 case bp_call_dummy:
7094 case bp_std_terminate:
7095 case bp_shlib_event:
7096 case bp_thread_event:
7097 case bp_overlay_event:
7098 case bp_jit_event:
7099 case bp_longjmp_master:
7100 case bp_std_terminate_master:
7101 case bp_exception_master:
7102 case bp_gnu_ifunc_resolver:
7103 case bp_gnu_ifunc_resolver_return:
7104 case bp_dprintf:
7105 loc->loc_type = bp_loc_software_breakpoint;
7106 mark_breakpoint_location_modified (loc);
7107 break;
7108 case bp_hardware_breakpoint:
7109 loc->loc_type = bp_loc_hardware_breakpoint;
7110 mark_breakpoint_location_modified (loc);
7111 break;
7112 case bp_hardware_watchpoint:
7113 case bp_read_watchpoint:
7114 case bp_access_watchpoint:
7115 loc->loc_type = bp_loc_hardware_watchpoint;
7116 break;
7117 case bp_watchpoint:
7118 case bp_catchpoint:
7119 case bp_tracepoint:
7120 case bp_fast_tracepoint:
7121 case bp_static_tracepoint:
7122 loc->loc_type = bp_loc_other;
7123 break;
7124 default:
7125 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7126 }
7127
7128 loc->refc = 1;
7129 }
7130
7131 /* Allocate a struct bp_location. */
7132
7133 static struct bp_location *
7134 allocate_bp_location (struct breakpoint *bpt)
7135 {
7136 return bpt->ops->allocate_location (bpt);
7137 }
7138
7139 static void
7140 free_bp_location (struct bp_location *loc)
7141 {
7142 loc->ops->dtor (loc);
7143 xfree (loc);
7144 }
7145
7146 /* Increment reference count. */
7147
7148 static void
7149 incref_bp_location (struct bp_location *bl)
7150 {
7151 ++bl->refc;
7152 }
7153
7154 /* Decrement reference count. If the reference count reaches 0,
7155 destroy the bp_location. Sets *BLP to NULL. */
7156
7157 static void
7158 decref_bp_location (struct bp_location **blp)
7159 {
7160 gdb_assert ((*blp)->refc > 0);
7161
7162 if (--(*blp)->refc == 0)
7163 free_bp_location (*blp);
7164 *blp = NULL;
7165 }
7166
7167 /* Add breakpoint B at the end of the global breakpoint chain. */
7168
7169 static void
7170 add_to_breakpoint_chain (struct breakpoint *b)
7171 {
7172 struct breakpoint *b1;
7173
7174 /* Add this breakpoint to the end of the chain so that a list of
7175 breakpoints will come out in order of increasing numbers. */
7176
7177 b1 = breakpoint_chain;
7178 if (b1 == 0)
7179 breakpoint_chain = b;
7180 else
7181 {
7182 while (b1->next)
7183 b1 = b1->next;
7184 b1->next = b;
7185 }
7186 }
7187
7188 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7189
7190 static void
7191 init_raw_breakpoint_without_location (struct breakpoint *b,
7192 struct gdbarch *gdbarch,
7193 enum bptype bptype,
7194 const struct breakpoint_ops *ops)
7195 {
7196 memset (b, 0, sizeof (*b));
7197
7198 gdb_assert (ops != NULL);
7199
7200 b->ops = ops;
7201 b->type = bptype;
7202 b->gdbarch = gdbarch;
7203 b->language = current_language->la_language;
7204 b->input_radix = input_radix;
7205 b->thread = -1;
7206 b->enable_state = bp_enabled;
7207 b->next = 0;
7208 b->silent = 0;
7209 b->ignore_count = 0;
7210 b->commands = NULL;
7211 b->frame_id = null_frame_id;
7212 b->condition_not_parsed = 0;
7213 b->py_bp_object = NULL;
7214 b->related_breakpoint = b;
7215 }
7216
7217 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7218 that has type BPTYPE and has no locations as yet. */
7219
7220 static struct breakpoint *
7221 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7222 enum bptype bptype,
7223 const struct breakpoint_ops *ops)
7224 {
7225 struct breakpoint *b = XNEW (struct breakpoint);
7226
7227 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7228 add_to_breakpoint_chain (b);
7229 return b;
7230 }
7231
7232 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7233 resolutions should be made as the user specified the location explicitly
7234 enough. */
7235
7236 static void
7237 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7238 {
7239 gdb_assert (loc->owner != NULL);
7240
7241 if (loc->owner->type == bp_breakpoint
7242 || loc->owner->type == bp_hardware_breakpoint
7243 || is_tracepoint (loc->owner))
7244 {
7245 int is_gnu_ifunc;
7246 const char *function_name;
7247 CORE_ADDR func_addr;
7248
7249 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7250 &func_addr, NULL, &is_gnu_ifunc);
7251
7252 if (is_gnu_ifunc && !explicit_loc)
7253 {
7254 struct breakpoint *b = loc->owner;
7255
7256 gdb_assert (loc->pspace == current_program_space);
7257 if (gnu_ifunc_resolve_name (function_name,
7258 &loc->requested_address))
7259 {
7260 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7261 loc->address = adjust_breakpoint_address (loc->gdbarch,
7262 loc->requested_address,
7263 b->type);
7264 }
7265 else if (b->type == bp_breakpoint && b->loc == loc
7266 && loc->next == NULL && b->related_breakpoint == b)
7267 {
7268 /* Create only the whole new breakpoint of this type but do not
7269 mess more complicated breakpoints with multiple locations. */
7270 b->type = bp_gnu_ifunc_resolver;
7271 /* Remember the resolver's address for use by the return
7272 breakpoint. */
7273 loc->related_address = func_addr;
7274 }
7275 }
7276
7277 if (function_name)
7278 loc->function_name = xstrdup (function_name);
7279 }
7280 }
7281
7282 /* Attempt to determine architecture of location identified by SAL. */
7283 struct gdbarch *
7284 get_sal_arch (struct symtab_and_line sal)
7285 {
7286 if (sal.section)
7287 return get_objfile_arch (sal.section->objfile);
7288 if (sal.symtab)
7289 return get_objfile_arch (sal.symtab->objfile);
7290
7291 return NULL;
7292 }
7293
7294 /* Low level routine for partially initializing a breakpoint of type
7295 BPTYPE. The newly created breakpoint's address, section, source
7296 file name, and line number are provided by SAL.
7297
7298 It is expected that the caller will complete the initialization of
7299 the newly created breakpoint struct as well as output any status
7300 information regarding the creation of a new breakpoint. */
7301
7302 static void
7303 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7304 struct symtab_and_line sal, enum bptype bptype,
7305 const struct breakpoint_ops *ops)
7306 {
7307 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7308
7309 add_location_to_breakpoint (b, &sal);
7310
7311 if (bptype != bp_catchpoint)
7312 gdb_assert (sal.pspace != NULL);
7313
7314 /* Store the program space that was used to set the breakpoint,
7315 except for ordinary breakpoints, which are independent of the
7316 program space. */
7317 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7318 b->pspace = sal.pspace;
7319 }
7320
7321 /* set_raw_breakpoint is a low level routine for allocating and
7322 partially initializing a breakpoint of type BPTYPE. The newly
7323 created breakpoint's address, section, source file name, and line
7324 number are provided by SAL. The newly created and partially
7325 initialized breakpoint is added to the breakpoint chain and
7326 is also returned as the value of this function.
7327
7328 It is expected that the caller will complete the initialization of
7329 the newly created breakpoint struct as well as output any status
7330 information regarding the creation of a new breakpoint. In
7331 particular, set_raw_breakpoint does NOT set the breakpoint
7332 number! Care should be taken to not allow an error to occur
7333 prior to completing the initialization of the breakpoint. If this
7334 should happen, a bogus breakpoint will be left on the chain. */
7335
7336 struct breakpoint *
7337 set_raw_breakpoint (struct gdbarch *gdbarch,
7338 struct symtab_and_line sal, enum bptype bptype,
7339 const struct breakpoint_ops *ops)
7340 {
7341 struct breakpoint *b = XNEW (struct breakpoint);
7342
7343 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7344 add_to_breakpoint_chain (b);
7345 return b;
7346 }
7347
7348
7349 /* Note that the breakpoint object B describes a permanent breakpoint
7350 instruction, hard-wired into the inferior's code. */
7351 void
7352 make_breakpoint_permanent (struct breakpoint *b)
7353 {
7354 struct bp_location *bl;
7355
7356 b->enable_state = bp_permanent;
7357
7358 /* By definition, permanent breakpoints are already present in the
7359 code. Mark all locations as inserted. For now,
7360 make_breakpoint_permanent is called in just one place, so it's
7361 hard to say if it's reasonable to have permanent breakpoint with
7362 multiple locations or not, but it's easy to implement. */
7363 for (bl = b->loc; bl; bl = bl->next)
7364 bl->inserted = 1;
7365 }
7366
7367 /* Call this routine when stepping and nexting to enable a breakpoint
7368 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7369 initiated the operation. */
7370
7371 void
7372 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7373 {
7374 struct breakpoint *b, *b_tmp;
7375 int thread = tp->num;
7376
7377 /* To avoid having to rescan all objfile symbols at every step,
7378 we maintain a list of continually-inserted but always disabled
7379 longjmp "master" breakpoints. Here, we simply create momentary
7380 clones of those and enable them for the requested thread. */
7381 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7382 if (b->pspace == current_program_space
7383 && (b->type == bp_longjmp_master
7384 || b->type == bp_exception_master))
7385 {
7386 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7387 struct breakpoint *clone;
7388
7389 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7390 after their removal. */
7391 clone = momentary_breakpoint_from_master (b, type,
7392 &longjmp_breakpoint_ops, 1);
7393 clone->thread = thread;
7394 }
7395
7396 tp->initiating_frame = frame;
7397 }
7398
7399 /* Delete all longjmp breakpoints from THREAD. */
7400 void
7401 delete_longjmp_breakpoint (int thread)
7402 {
7403 struct breakpoint *b, *b_tmp;
7404
7405 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7406 if (b->type == bp_longjmp || b->type == bp_exception)
7407 {
7408 if (b->thread == thread)
7409 delete_breakpoint (b);
7410 }
7411 }
7412
7413 void
7414 delete_longjmp_breakpoint_at_next_stop (int thread)
7415 {
7416 struct breakpoint *b, *b_tmp;
7417
7418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7419 if (b->type == bp_longjmp || b->type == bp_exception)
7420 {
7421 if (b->thread == thread)
7422 b->disposition = disp_del_at_next_stop;
7423 }
7424 }
7425
7426 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7427 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7428 pointer to any of them. Return NULL if this system cannot place longjmp
7429 breakpoints. */
7430
7431 struct breakpoint *
7432 set_longjmp_breakpoint_for_call_dummy (void)
7433 {
7434 struct breakpoint *b, *retval = NULL;
7435
7436 ALL_BREAKPOINTS (b)
7437 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7438 {
7439 struct breakpoint *new_b;
7440
7441 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7442 &momentary_breakpoint_ops,
7443 1);
7444 new_b->thread = pid_to_thread_id (inferior_ptid);
7445
7446 /* Link NEW_B into the chain of RETVAL breakpoints. */
7447
7448 gdb_assert (new_b->related_breakpoint == new_b);
7449 if (retval == NULL)
7450 retval = new_b;
7451 new_b->related_breakpoint = retval;
7452 while (retval->related_breakpoint != new_b->related_breakpoint)
7453 retval = retval->related_breakpoint;
7454 retval->related_breakpoint = new_b;
7455 }
7456
7457 return retval;
7458 }
7459
7460 /* Verify all existing dummy frames and their associated breakpoints for
7461 TP. Remove those which can no longer be found in the current frame
7462 stack.
7463
7464 You should call this function only at places where it is safe to currently
7465 unwind the whole stack. Failed stack unwind would discard live dummy
7466 frames. */
7467
7468 void
7469 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7470 {
7471 struct breakpoint *b, *b_tmp;
7472
7473 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7474 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7475 {
7476 struct breakpoint *dummy_b = b->related_breakpoint;
7477
7478 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7479 dummy_b = dummy_b->related_breakpoint;
7480 if (dummy_b->type != bp_call_dummy
7481 || frame_find_by_id (dummy_b->frame_id) != NULL)
7482 continue;
7483
7484 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7485
7486 while (b->related_breakpoint != b)
7487 {
7488 if (b_tmp == b->related_breakpoint)
7489 b_tmp = b->related_breakpoint->next;
7490 delete_breakpoint (b->related_breakpoint);
7491 }
7492 delete_breakpoint (b);
7493 }
7494 }
7495
7496 void
7497 enable_overlay_breakpoints (void)
7498 {
7499 struct breakpoint *b;
7500
7501 ALL_BREAKPOINTS (b)
7502 if (b->type == bp_overlay_event)
7503 {
7504 b->enable_state = bp_enabled;
7505 update_global_location_list (1);
7506 overlay_events_enabled = 1;
7507 }
7508 }
7509
7510 void
7511 disable_overlay_breakpoints (void)
7512 {
7513 struct breakpoint *b;
7514
7515 ALL_BREAKPOINTS (b)
7516 if (b->type == bp_overlay_event)
7517 {
7518 b->enable_state = bp_disabled;
7519 update_global_location_list (0);
7520 overlay_events_enabled = 0;
7521 }
7522 }
7523
7524 /* Set an active std::terminate breakpoint for each std::terminate
7525 master breakpoint. */
7526 void
7527 set_std_terminate_breakpoint (void)
7528 {
7529 struct breakpoint *b, *b_tmp;
7530
7531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7532 if (b->pspace == current_program_space
7533 && b->type == bp_std_terminate_master)
7534 {
7535 momentary_breakpoint_from_master (b, bp_std_terminate,
7536 &momentary_breakpoint_ops, 1);
7537 }
7538 }
7539
7540 /* Delete all the std::terminate breakpoints. */
7541 void
7542 delete_std_terminate_breakpoint (void)
7543 {
7544 struct breakpoint *b, *b_tmp;
7545
7546 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7547 if (b->type == bp_std_terminate)
7548 delete_breakpoint (b);
7549 }
7550
7551 struct breakpoint *
7552 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7553 {
7554 struct breakpoint *b;
7555
7556 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7557 &internal_breakpoint_ops);
7558
7559 b->enable_state = bp_enabled;
7560 /* addr_string has to be used or breakpoint_re_set will delete me. */
7561 b->addr_string
7562 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7563
7564 update_global_location_list_nothrow (1);
7565
7566 return b;
7567 }
7568
7569 void
7570 remove_thread_event_breakpoints (void)
7571 {
7572 struct breakpoint *b, *b_tmp;
7573
7574 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7575 if (b->type == bp_thread_event
7576 && b->loc->pspace == current_program_space)
7577 delete_breakpoint (b);
7578 }
7579
7580 struct lang_and_radix
7581 {
7582 enum language lang;
7583 int radix;
7584 };
7585
7586 /* Create a breakpoint for JIT code registration and unregistration. */
7587
7588 struct breakpoint *
7589 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7590 {
7591 struct breakpoint *b;
7592
7593 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7594 &internal_breakpoint_ops);
7595 update_global_location_list_nothrow (1);
7596 return b;
7597 }
7598
7599 /* Remove JIT code registration and unregistration breakpoint(s). */
7600
7601 void
7602 remove_jit_event_breakpoints (void)
7603 {
7604 struct breakpoint *b, *b_tmp;
7605
7606 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7607 if (b->type == bp_jit_event
7608 && b->loc->pspace == current_program_space)
7609 delete_breakpoint (b);
7610 }
7611
7612 void
7613 remove_solib_event_breakpoints (void)
7614 {
7615 struct breakpoint *b, *b_tmp;
7616
7617 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7618 if (b->type == bp_shlib_event
7619 && b->loc->pspace == current_program_space)
7620 delete_breakpoint (b);
7621 }
7622
7623 /* See breakpoint.h. */
7624
7625 void
7626 remove_solib_event_breakpoints_at_next_stop (void)
7627 {
7628 struct breakpoint *b, *b_tmp;
7629
7630 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7631 if (b->type == bp_shlib_event
7632 && b->loc->pspace == current_program_space)
7633 b->disposition = disp_del_at_next_stop;
7634 }
7635
7636 struct breakpoint *
7637 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7638 {
7639 struct breakpoint *b;
7640
7641 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7642 &internal_breakpoint_ops);
7643 update_global_location_list_nothrow (1);
7644 return b;
7645 }
7646
7647 /* See breakpoint.h. */
7648
7649 struct breakpoint *
7650 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7651 {
7652 struct breakpoint *b;
7653
7654 b = create_solib_event_breakpoint (gdbarch, address);
7655 if (!breakpoints_always_inserted_mode ())
7656 insert_breakpoint_locations ();
7657 if (!b->loc->inserted)
7658 {
7659 delete_breakpoint (b);
7660 return NULL;
7661 }
7662 return b;
7663 }
7664
7665 /* Disable any breakpoints that are on code in shared libraries. Only
7666 apply to enabled breakpoints, disabled ones can just stay disabled. */
7667
7668 void
7669 disable_breakpoints_in_shlibs (void)
7670 {
7671 struct bp_location *loc, **locp_tmp;
7672
7673 ALL_BP_LOCATIONS (loc, locp_tmp)
7674 {
7675 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7676 struct breakpoint *b = loc->owner;
7677
7678 /* We apply the check to all breakpoints, including disabled for
7679 those with loc->duplicate set. This is so that when breakpoint
7680 becomes enabled, or the duplicate is removed, gdb will try to
7681 insert all breakpoints. If we don't set shlib_disabled here,
7682 we'll try to insert those breakpoints and fail. */
7683 if (((b->type == bp_breakpoint)
7684 || (b->type == bp_jit_event)
7685 || (b->type == bp_hardware_breakpoint)
7686 || (is_tracepoint (b)))
7687 && loc->pspace == current_program_space
7688 && !loc->shlib_disabled
7689 && solib_name_from_address (loc->pspace, loc->address)
7690 )
7691 {
7692 loc->shlib_disabled = 1;
7693 }
7694 }
7695 }
7696
7697 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7698 notification of unloaded_shlib. Only apply to enabled breakpoints,
7699 disabled ones can just stay disabled. */
7700
7701 static void
7702 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7703 {
7704 struct bp_location *loc, **locp_tmp;
7705 int disabled_shlib_breaks = 0;
7706
7707 /* SunOS a.out shared libraries are always mapped, so do not
7708 disable breakpoints; they will only be reported as unloaded
7709 through clear_solib when GDB discards its shared library
7710 list. See clear_solib for more information. */
7711 if (exec_bfd != NULL
7712 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7713 return;
7714
7715 ALL_BP_LOCATIONS (loc, locp_tmp)
7716 {
7717 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7718 struct breakpoint *b = loc->owner;
7719
7720 if (solib->pspace == loc->pspace
7721 && !loc->shlib_disabled
7722 && (((b->type == bp_breakpoint
7723 || b->type == bp_jit_event
7724 || b->type == bp_hardware_breakpoint)
7725 && (loc->loc_type == bp_loc_hardware_breakpoint
7726 || loc->loc_type == bp_loc_software_breakpoint))
7727 || is_tracepoint (b))
7728 && solib_contains_address_p (solib, loc->address))
7729 {
7730 loc->shlib_disabled = 1;
7731 /* At this point, we cannot rely on remove_breakpoint
7732 succeeding so we must mark the breakpoint as not inserted
7733 to prevent future errors occurring in remove_breakpoints. */
7734 loc->inserted = 0;
7735
7736 /* This may cause duplicate notifications for the same breakpoint. */
7737 observer_notify_breakpoint_modified (b);
7738
7739 if (!disabled_shlib_breaks)
7740 {
7741 target_terminal_ours_for_output ();
7742 warning (_("Temporarily disabling breakpoints "
7743 "for unloaded shared library \"%s\""),
7744 solib->so_name);
7745 }
7746 disabled_shlib_breaks = 1;
7747 }
7748 }
7749 }
7750
7751 /* Disable any breakpoints and tracepoints in OBJFILE upon
7752 notification of free_objfile. Only apply to enabled breakpoints,
7753 disabled ones can just stay disabled. */
7754
7755 static void
7756 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7757 {
7758 struct breakpoint *b;
7759
7760 if (objfile == NULL)
7761 return;
7762
7763 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7764 managed by the user with add-symbol-file/remove-symbol-file.
7765 Similarly to how breakpoints in shared libraries are handled in
7766 response to "nosharedlibrary", mark breakpoints in such modules
7767 shlib_disabled so they end up uninserted on the next global
7768 location list update. Shared libraries not loaded by the user
7769 aren't handled here -- they're already handled in
7770 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7771 solib_unloaded observer. We skip objfiles that are not
7772 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7773 main objfile). */
7774 if ((objfile->flags & OBJF_SHARED) == 0
7775 || (objfile->flags & OBJF_USERLOADED) == 0)
7776 return;
7777
7778 ALL_BREAKPOINTS (b)
7779 {
7780 struct bp_location *loc;
7781 int bp_modified = 0;
7782
7783 if (!is_breakpoint (b) && !is_tracepoint (b))
7784 continue;
7785
7786 for (loc = b->loc; loc != NULL; loc = loc->next)
7787 {
7788 CORE_ADDR loc_addr = loc->address;
7789
7790 if (loc->loc_type != bp_loc_hardware_breakpoint
7791 && loc->loc_type != bp_loc_software_breakpoint)
7792 continue;
7793
7794 if (loc->shlib_disabled != 0)
7795 continue;
7796
7797 if (objfile->pspace != loc->pspace)
7798 continue;
7799
7800 if (loc->loc_type != bp_loc_hardware_breakpoint
7801 && loc->loc_type != bp_loc_software_breakpoint)
7802 continue;
7803
7804 if (is_addr_in_objfile (loc_addr, objfile))
7805 {
7806 loc->shlib_disabled = 1;
7807 /* At this point, we don't know whether the object was
7808 unmapped from the inferior or not, so leave the
7809 inserted flag alone. We'll handle failure to
7810 uninsert quietly, in case the object was indeed
7811 unmapped. */
7812
7813 mark_breakpoint_location_modified (loc);
7814
7815 bp_modified = 1;
7816 }
7817 }
7818
7819 if (bp_modified)
7820 observer_notify_breakpoint_modified (b);
7821 }
7822 }
7823
7824 /* FORK & VFORK catchpoints. */
7825
7826 /* An instance of this type is used to represent a fork or vfork
7827 catchpoint. It includes a "struct breakpoint" as a kind of base
7828 class; users downcast to "struct breakpoint *" when needed. A
7829 breakpoint is really of this type iff its ops pointer points to
7830 CATCH_FORK_BREAKPOINT_OPS. */
7831
7832 struct fork_catchpoint
7833 {
7834 /* The base class. */
7835 struct breakpoint base;
7836
7837 /* Process id of a child process whose forking triggered this
7838 catchpoint. This field is only valid immediately after this
7839 catchpoint has triggered. */
7840 ptid_t forked_inferior_pid;
7841 };
7842
7843 /* Implement the "insert" breakpoint_ops method for fork
7844 catchpoints. */
7845
7846 static int
7847 insert_catch_fork (struct bp_location *bl)
7848 {
7849 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7850 }
7851
7852 /* Implement the "remove" breakpoint_ops method for fork
7853 catchpoints. */
7854
7855 static int
7856 remove_catch_fork (struct bp_location *bl)
7857 {
7858 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7859 }
7860
7861 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7862 catchpoints. */
7863
7864 static int
7865 breakpoint_hit_catch_fork (const struct bp_location *bl,
7866 struct address_space *aspace, CORE_ADDR bp_addr,
7867 const struct target_waitstatus *ws)
7868 {
7869 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7870
7871 if (ws->kind != TARGET_WAITKIND_FORKED)
7872 return 0;
7873
7874 c->forked_inferior_pid = ws->value.related_pid;
7875 return 1;
7876 }
7877
7878 /* Implement the "print_it" breakpoint_ops method for fork
7879 catchpoints. */
7880
7881 static enum print_stop_action
7882 print_it_catch_fork (bpstat bs)
7883 {
7884 struct ui_out *uiout = current_uiout;
7885 struct breakpoint *b = bs->breakpoint_at;
7886 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7887
7888 annotate_catchpoint (b->number);
7889 if (b->disposition == disp_del)
7890 ui_out_text (uiout, "\nTemporary catchpoint ");
7891 else
7892 ui_out_text (uiout, "\nCatchpoint ");
7893 if (ui_out_is_mi_like_p (uiout))
7894 {
7895 ui_out_field_string (uiout, "reason",
7896 async_reason_lookup (EXEC_ASYNC_FORK));
7897 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7898 }
7899 ui_out_field_int (uiout, "bkptno", b->number);
7900 ui_out_text (uiout, " (forked process ");
7901 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7902 ui_out_text (uiout, "), ");
7903 return PRINT_SRC_AND_LOC;
7904 }
7905
7906 /* Implement the "print_one" breakpoint_ops method for fork
7907 catchpoints. */
7908
7909 static void
7910 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7911 {
7912 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7913 struct value_print_options opts;
7914 struct ui_out *uiout = current_uiout;
7915
7916 get_user_print_options (&opts);
7917
7918 /* Field 4, the address, is omitted (which makes the columns not
7919 line up too nicely with the headers, but the effect is relatively
7920 readable). */
7921 if (opts.addressprint)
7922 ui_out_field_skip (uiout, "addr");
7923 annotate_field (5);
7924 ui_out_text (uiout, "fork");
7925 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7926 {
7927 ui_out_text (uiout, ", process ");
7928 ui_out_field_int (uiout, "what",
7929 ptid_get_pid (c->forked_inferior_pid));
7930 ui_out_spaces (uiout, 1);
7931 }
7932
7933 if (ui_out_is_mi_like_p (uiout))
7934 ui_out_field_string (uiout, "catch-type", "fork");
7935 }
7936
7937 /* Implement the "print_mention" breakpoint_ops method for fork
7938 catchpoints. */
7939
7940 static void
7941 print_mention_catch_fork (struct breakpoint *b)
7942 {
7943 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7944 }
7945
7946 /* Implement the "print_recreate" breakpoint_ops method for fork
7947 catchpoints. */
7948
7949 static void
7950 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7951 {
7952 fprintf_unfiltered (fp, "catch fork");
7953 print_recreate_thread (b, fp);
7954 }
7955
7956 /* The breakpoint_ops structure to be used in fork catchpoints. */
7957
7958 static struct breakpoint_ops catch_fork_breakpoint_ops;
7959
7960 /* Implement the "insert" breakpoint_ops method for vfork
7961 catchpoints. */
7962
7963 static int
7964 insert_catch_vfork (struct bp_location *bl)
7965 {
7966 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7967 }
7968
7969 /* Implement the "remove" breakpoint_ops method for vfork
7970 catchpoints. */
7971
7972 static int
7973 remove_catch_vfork (struct bp_location *bl)
7974 {
7975 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7976 }
7977
7978 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7979 catchpoints. */
7980
7981 static int
7982 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7983 struct address_space *aspace, CORE_ADDR bp_addr,
7984 const struct target_waitstatus *ws)
7985 {
7986 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7987
7988 if (ws->kind != TARGET_WAITKIND_VFORKED)
7989 return 0;
7990
7991 c->forked_inferior_pid = ws->value.related_pid;
7992 return 1;
7993 }
7994
7995 /* Implement the "print_it" breakpoint_ops method for vfork
7996 catchpoints. */
7997
7998 static enum print_stop_action
7999 print_it_catch_vfork (bpstat bs)
8000 {
8001 struct ui_out *uiout = current_uiout;
8002 struct breakpoint *b = bs->breakpoint_at;
8003 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8004
8005 annotate_catchpoint (b->number);
8006 if (b->disposition == disp_del)
8007 ui_out_text (uiout, "\nTemporary catchpoint ");
8008 else
8009 ui_out_text (uiout, "\nCatchpoint ");
8010 if (ui_out_is_mi_like_p (uiout))
8011 {
8012 ui_out_field_string (uiout, "reason",
8013 async_reason_lookup (EXEC_ASYNC_VFORK));
8014 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8015 }
8016 ui_out_field_int (uiout, "bkptno", b->number);
8017 ui_out_text (uiout, " (vforked process ");
8018 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8019 ui_out_text (uiout, "), ");
8020 return PRINT_SRC_AND_LOC;
8021 }
8022
8023 /* Implement the "print_one" breakpoint_ops method for vfork
8024 catchpoints. */
8025
8026 static void
8027 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8028 {
8029 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8030 struct value_print_options opts;
8031 struct ui_out *uiout = current_uiout;
8032
8033 get_user_print_options (&opts);
8034 /* Field 4, the address, is omitted (which makes the columns not
8035 line up too nicely with the headers, but the effect is relatively
8036 readable). */
8037 if (opts.addressprint)
8038 ui_out_field_skip (uiout, "addr");
8039 annotate_field (5);
8040 ui_out_text (uiout, "vfork");
8041 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8042 {
8043 ui_out_text (uiout, ", process ");
8044 ui_out_field_int (uiout, "what",
8045 ptid_get_pid (c->forked_inferior_pid));
8046 ui_out_spaces (uiout, 1);
8047 }
8048
8049 if (ui_out_is_mi_like_p (uiout))
8050 ui_out_field_string (uiout, "catch-type", "vfork");
8051 }
8052
8053 /* Implement the "print_mention" breakpoint_ops method for vfork
8054 catchpoints. */
8055
8056 static void
8057 print_mention_catch_vfork (struct breakpoint *b)
8058 {
8059 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8060 }
8061
8062 /* Implement the "print_recreate" breakpoint_ops method for vfork
8063 catchpoints. */
8064
8065 static void
8066 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8067 {
8068 fprintf_unfiltered (fp, "catch vfork");
8069 print_recreate_thread (b, fp);
8070 }
8071
8072 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8073
8074 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8075
8076 /* An instance of this type is used to represent an solib catchpoint.
8077 It includes a "struct breakpoint" as a kind of base class; users
8078 downcast to "struct breakpoint *" when needed. A breakpoint is
8079 really of this type iff its ops pointer points to
8080 CATCH_SOLIB_BREAKPOINT_OPS. */
8081
8082 struct solib_catchpoint
8083 {
8084 /* The base class. */
8085 struct breakpoint base;
8086
8087 /* True for "catch load", false for "catch unload". */
8088 unsigned char is_load;
8089
8090 /* Regular expression to match, if any. COMPILED is only valid when
8091 REGEX is non-NULL. */
8092 char *regex;
8093 regex_t compiled;
8094 };
8095
8096 static void
8097 dtor_catch_solib (struct breakpoint *b)
8098 {
8099 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8100
8101 if (self->regex)
8102 regfree (&self->compiled);
8103 xfree (self->regex);
8104
8105 base_breakpoint_ops.dtor (b);
8106 }
8107
8108 static int
8109 insert_catch_solib (struct bp_location *ignore)
8110 {
8111 return 0;
8112 }
8113
8114 static int
8115 remove_catch_solib (struct bp_location *ignore)
8116 {
8117 return 0;
8118 }
8119
8120 static int
8121 breakpoint_hit_catch_solib (const struct bp_location *bl,
8122 struct address_space *aspace,
8123 CORE_ADDR bp_addr,
8124 const struct target_waitstatus *ws)
8125 {
8126 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8127 struct breakpoint *other;
8128
8129 if (ws->kind == TARGET_WAITKIND_LOADED)
8130 return 1;
8131
8132 ALL_BREAKPOINTS (other)
8133 {
8134 struct bp_location *other_bl;
8135
8136 if (other == bl->owner)
8137 continue;
8138
8139 if (other->type != bp_shlib_event)
8140 continue;
8141
8142 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8143 continue;
8144
8145 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8146 {
8147 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8148 return 1;
8149 }
8150 }
8151
8152 return 0;
8153 }
8154
8155 static void
8156 check_status_catch_solib (struct bpstats *bs)
8157 {
8158 struct solib_catchpoint *self
8159 = (struct solib_catchpoint *) bs->breakpoint_at;
8160 int ix;
8161
8162 if (self->is_load)
8163 {
8164 struct so_list *iter;
8165
8166 for (ix = 0;
8167 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8168 ix, iter);
8169 ++ix)
8170 {
8171 if (!self->regex
8172 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8173 return;
8174 }
8175 }
8176 else
8177 {
8178 char *iter;
8179
8180 for (ix = 0;
8181 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8182 ix, iter);
8183 ++ix)
8184 {
8185 if (!self->regex
8186 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8187 return;
8188 }
8189 }
8190
8191 bs->stop = 0;
8192 bs->print_it = print_it_noop;
8193 }
8194
8195 static enum print_stop_action
8196 print_it_catch_solib (bpstat bs)
8197 {
8198 struct breakpoint *b = bs->breakpoint_at;
8199 struct ui_out *uiout = current_uiout;
8200
8201 annotate_catchpoint (b->number);
8202 if (b->disposition == disp_del)
8203 ui_out_text (uiout, "\nTemporary catchpoint ");
8204 else
8205 ui_out_text (uiout, "\nCatchpoint ");
8206 ui_out_field_int (uiout, "bkptno", b->number);
8207 ui_out_text (uiout, "\n");
8208 if (ui_out_is_mi_like_p (uiout))
8209 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8210 print_solib_event (1);
8211 return PRINT_SRC_AND_LOC;
8212 }
8213
8214 static void
8215 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8216 {
8217 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8218 struct value_print_options opts;
8219 struct ui_out *uiout = current_uiout;
8220 char *msg;
8221
8222 get_user_print_options (&opts);
8223 /* Field 4, the address, is omitted (which makes the columns not
8224 line up too nicely with the headers, but the effect is relatively
8225 readable). */
8226 if (opts.addressprint)
8227 {
8228 annotate_field (4);
8229 ui_out_field_skip (uiout, "addr");
8230 }
8231
8232 annotate_field (5);
8233 if (self->is_load)
8234 {
8235 if (self->regex)
8236 msg = xstrprintf (_("load of library matching %s"), self->regex);
8237 else
8238 msg = xstrdup (_("load of library"));
8239 }
8240 else
8241 {
8242 if (self->regex)
8243 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8244 else
8245 msg = xstrdup (_("unload of library"));
8246 }
8247 ui_out_field_string (uiout, "what", msg);
8248 xfree (msg);
8249
8250 if (ui_out_is_mi_like_p (uiout))
8251 ui_out_field_string (uiout, "catch-type",
8252 self->is_load ? "load" : "unload");
8253 }
8254
8255 static void
8256 print_mention_catch_solib (struct breakpoint *b)
8257 {
8258 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8259
8260 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8261 self->is_load ? "load" : "unload");
8262 }
8263
8264 static void
8265 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8266 {
8267 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8268
8269 fprintf_unfiltered (fp, "%s %s",
8270 b->disposition == disp_del ? "tcatch" : "catch",
8271 self->is_load ? "load" : "unload");
8272 if (self->regex)
8273 fprintf_unfiltered (fp, " %s", self->regex);
8274 fprintf_unfiltered (fp, "\n");
8275 }
8276
8277 static struct breakpoint_ops catch_solib_breakpoint_ops;
8278
8279 /* Shared helper function (MI and CLI) for creating and installing
8280 a shared object event catchpoint. If IS_LOAD is non-zero then
8281 the events to be caught are load events, otherwise they are
8282 unload events. If IS_TEMP is non-zero the catchpoint is a
8283 temporary one. If ENABLED is non-zero the catchpoint is
8284 created in an enabled state. */
8285
8286 void
8287 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8288 {
8289 struct solib_catchpoint *c;
8290 struct gdbarch *gdbarch = get_current_arch ();
8291 struct cleanup *cleanup;
8292
8293 if (!arg)
8294 arg = "";
8295 arg = skip_spaces (arg);
8296
8297 c = XCNEW (struct solib_catchpoint);
8298 cleanup = make_cleanup (xfree, c);
8299
8300 if (*arg != '\0')
8301 {
8302 int errcode;
8303
8304 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8305 if (errcode != 0)
8306 {
8307 char *err = get_regcomp_error (errcode, &c->compiled);
8308
8309 make_cleanup (xfree, err);
8310 error (_("Invalid regexp (%s): %s"), err, arg);
8311 }
8312 c->regex = xstrdup (arg);
8313 }
8314
8315 c->is_load = is_load;
8316 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8317 &catch_solib_breakpoint_ops);
8318
8319 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8320
8321 discard_cleanups (cleanup);
8322 install_breakpoint (0, &c->base, 1);
8323 }
8324
8325 /* A helper function that does all the work for "catch load" and
8326 "catch unload". */
8327
8328 static void
8329 catch_load_or_unload (char *arg, int from_tty, int is_load,
8330 struct cmd_list_element *command)
8331 {
8332 int tempflag;
8333 const int enabled = 1;
8334
8335 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8336
8337 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8338 }
8339
8340 static void
8341 catch_load_command_1 (char *arg, int from_tty,
8342 struct cmd_list_element *command)
8343 {
8344 catch_load_or_unload (arg, from_tty, 1, command);
8345 }
8346
8347 static void
8348 catch_unload_command_1 (char *arg, int from_tty,
8349 struct cmd_list_element *command)
8350 {
8351 catch_load_or_unload (arg, from_tty, 0, command);
8352 }
8353
8354 /* An instance of this type is used to represent a syscall catchpoint.
8355 It includes a "struct breakpoint" as a kind of base class; users
8356 downcast to "struct breakpoint *" when needed. A breakpoint is
8357 really of this type iff its ops pointer points to
8358 CATCH_SYSCALL_BREAKPOINT_OPS. */
8359
8360 struct syscall_catchpoint
8361 {
8362 /* The base class. */
8363 struct breakpoint base;
8364
8365 /* Syscall numbers used for the 'catch syscall' feature. If no
8366 syscall has been specified for filtering, its value is NULL.
8367 Otherwise, it holds a list of all syscalls to be caught. The
8368 list elements are allocated with xmalloc. */
8369 VEC(int) *syscalls_to_be_caught;
8370 };
8371
8372 /* Implement the "dtor" breakpoint_ops method for syscall
8373 catchpoints. */
8374
8375 static void
8376 dtor_catch_syscall (struct breakpoint *b)
8377 {
8378 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8379
8380 VEC_free (int, c->syscalls_to_be_caught);
8381
8382 base_breakpoint_ops.dtor (b);
8383 }
8384
8385 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8386
8387 struct catch_syscall_inferior_data
8388 {
8389 /* We keep a count of the number of times the user has requested a
8390 particular syscall to be tracked, and pass this information to the
8391 target. This lets capable targets implement filtering directly. */
8392
8393 /* Number of times that "any" syscall is requested. */
8394 int any_syscall_count;
8395
8396 /* Count of each system call. */
8397 VEC(int) *syscalls_counts;
8398
8399 /* This counts all syscall catch requests, so we can readily determine
8400 if any catching is necessary. */
8401 int total_syscalls_count;
8402 };
8403
8404 static struct catch_syscall_inferior_data*
8405 get_catch_syscall_inferior_data (struct inferior *inf)
8406 {
8407 struct catch_syscall_inferior_data *inf_data;
8408
8409 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8410 if (inf_data == NULL)
8411 {
8412 inf_data = XCNEW (struct catch_syscall_inferior_data);
8413 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8414 }
8415
8416 return inf_data;
8417 }
8418
8419 static void
8420 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8421 {
8422 xfree (arg);
8423 }
8424
8425
8426 /* Implement the "insert" breakpoint_ops method for syscall
8427 catchpoints. */
8428
8429 static int
8430 insert_catch_syscall (struct bp_location *bl)
8431 {
8432 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8433 struct inferior *inf = current_inferior ();
8434 struct catch_syscall_inferior_data *inf_data
8435 = get_catch_syscall_inferior_data (inf);
8436
8437 ++inf_data->total_syscalls_count;
8438 if (!c->syscalls_to_be_caught)
8439 ++inf_data->any_syscall_count;
8440 else
8441 {
8442 int i, iter;
8443
8444 for (i = 0;
8445 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8446 i++)
8447 {
8448 int elem;
8449
8450 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8451 {
8452 int old_size = VEC_length (int, inf_data->syscalls_counts);
8453 uintptr_t vec_addr_offset
8454 = old_size * ((uintptr_t) sizeof (int));
8455 uintptr_t vec_addr;
8456 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8457 vec_addr = ((uintptr_t) VEC_address (int,
8458 inf_data->syscalls_counts)
8459 + vec_addr_offset);
8460 memset ((void *) vec_addr, 0,
8461 (iter + 1 - old_size) * sizeof (int));
8462 }
8463 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8464 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8465 }
8466 }
8467
8468 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8469 inf_data->total_syscalls_count != 0,
8470 inf_data->any_syscall_count,
8471 VEC_length (int,
8472 inf_data->syscalls_counts),
8473 VEC_address (int,
8474 inf_data->syscalls_counts));
8475 }
8476
8477 /* Implement the "remove" breakpoint_ops method for syscall
8478 catchpoints. */
8479
8480 static int
8481 remove_catch_syscall (struct bp_location *bl)
8482 {
8483 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8484 struct inferior *inf = current_inferior ();
8485 struct catch_syscall_inferior_data *inf_data
8486 = get_catch_syscall_inferior_data (inf);
8487
8488 --inf_data->total_syscalls_count;
8489 if (!c->syscalls_to_be_caught)
8490 --inf_data->any_syscall_count;
8491 else
8492 {
8493 int i, iter;
8494
8495 for (i = 0;
8496 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8497 i++)
8498 {
8499 int elem;
8500 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8501 /* Shouldn't happen. */
8502 continue;
8503 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8504 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8505 }
8506 }
8507
8508 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8509 inf_data->total_syscalls_count != 0,
8510 inf_data->any_syscall_count,
8511 VEC_length (int,
8512 inf_data->syscalls_counts),
8513 VEC_address (int,
8514 inf_data->syscalls_counts));
8515 }
8516
8517 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8518 catchpoints. */
8519
8520 static int
8521 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8522 struct address_space *aspace, CORE_ADDR bp_addr,
8523 const struct target_waitstatus *ws)
8524 {
8525 /* We must check if we are catching specific syscalls in this
8526 breakpoint. If we are, then we must guarantee that the called
8527 syscall is the same syscall we are catching. */
8528 int syscall_number = 0;
8529 const struct syscall_catchpoint *c
8530 = (const struct syscall_catchpoint *) bl->owner;
8531
8532 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8533 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8534 return 0;
8535
8536 syscall_number = ws->value.syscall_number;
8537
8538 /* Now, checking if the syscall is the same. */
8539 if (c->syscalls_to_be_caught)
8540 {
8541 int i, iter;
8542
8543 for (i = 0;
8544 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8545 i++)
8546 if (syscall_number == iter)
8547 return 1;
8548
8549 return 0;
8550 }
8551
8552 return 1;
8553 }
8554
8555 /* Implement the "print_it" breakpoint_ops method for syscall
8556 catchpoints. */
8557
8558 static enum print_stop_action
8559 print_it_catch_syscall (bpstat bs)
8560 {
8561 struct ui_out *uiout = current_uiout;
8562 struct breakpoint *b = bs->breakpoint_at;
8563 /* These are needed because we want to know in which state a
8564 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8565 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8566 must print "called syscall" or "returned from syscall". */
8567 ptid_t ptid;
8568 struct target_waitstatus last;
8569 struct syscall s;
8570
8571 get_last_target_status (&ptid, &last);
8572
8573 get_syscall_by_number (last.value.syscall_number, &s);
8574
8575 annotate_catchpoint (b->number);
8576
8577 if (b->disposition == disp_del)
8578 ui_out_text (uiout, "\nTemporary catchpoint ");
8579 else
8580 ui_out_text (uiout, "\nCatchpoint ");
8581 if (ui_out_is_mi_like_p (uiout))
8582 {
8583 ui_out_field_string (uiout, "reason",
8584 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8585 ? EXEC_ASYNC_SYSCALL_ENTRY
8586 : EXEC_ASYNC_SYSCALL_RETURN));
8587 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8588 }
8589 ui_out_field_int (uiout, "bkptno", b->number);
8590
8591 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8592 ui_out_text (uiout, " (call to syscall ");
8593 else
8594 ui_out_text (uiout, " (returned from syscall ");
8595
8596 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8597 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8598 if (s.name != NULL)
8599 ui_out_field_string (uiout, "syscall-name", s.name);
8600
8601 ui_out_text (uiout, "), ");
8602
8603 return PRINT_SRC_AND_LOC;
8604 }
8605
8606 /* Implement the "print_one" breakpoint_ops method for syscall
8607 catchpoints. */
8608
8609 static void
8610 print_one_catch_syscall (struct breakpoint *b,
8611 struct bp_location **last_loc)
8612 {
8613 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8614 struct value_print_options opts;
8615 struct ui_out *uiout = current_uiout;
8616
8617 get_user_print_options (&opts);
8618 /* Field 4, the address, is omitted (which makes the columns not
8619 line up too nicely with the headers, but the effect is relatively
8620 readable). */
8621 if (opts.addressprint)
8622 ui_out_field_skip (uiout, "addr");
8623 annotate_field (5);
8624
8625 if (c->syscalls_to_be_caught
8626 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8627 ui_out_text (uiout, "syscalls \"");
8628 else
8629 ui_out_text (uiout, "syscall \"");
8630
8631 if (c->syscalls_to_be_caught)
8632 {
8633 int i, iter;
8634 char *text = xstrprintf ("%s", "");
8635
8636 for (i = 0;
8637 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8638 i++)
8639 {
8640 char *x = text;
8641 struct syscall s;
8642 get_syscall_by_number (iter, &s);
8643
8644 if (s.name != NULL)
8645 text = xstrprintf ("%s%s, ", text, s.name);
8646 else
8647 text = xstrprintf ("%s%d, ", text, iter);
8648
8649 /* We have to xfree the last 'text' (now stored at 'x')
8650 because xstrprintf dynamically allocates new space for it
8651 on every call. */
8652 xfree (x);
8653 }
8654 /* Remove the last comma. */
8655 text[strlen (text) - 2] = '\0';
8656 ui_out_field_string (uiout, "what", text);
8657 }
8658 else
8659 ui_out_field_string (uiout, "what", "<any syscall>");
8660 ui_out_text (uiout, "\" ");
8661
8662 if (ui_out_is_mi_like_p (uiout))
8663 ui_out_field_string (uiout, "catch-type", "syscall");
8664 }
8665
8666 /* Implement the "print_mention" breakpoint_ops method for syscall
8667 catchpoints. */
8668
8669 static void
8670 print_mention_catch_syscall (struct breakpoint *b)
8671 {
8672 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8673
8674 if (c->syscalls_to_be_caught)
8675 {
8676 int i, iter;
8677
8678 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8679 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8680 else
8681 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8682
8683 for (i = 0;
8684 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8685 i++)
8686 {
8687 struct syscall s;
8688 get_syscall_by_number (iter, &s);
8689
8690 if (s.name)
8691 printf_filtered (" '%s' [%d]", s.name, s.number);
8692 else
8693 printf_filtered (" %d", s.number);
8694 }
8695 printf_filtered (")");
8696 }
8697 else
8698 printf_filtered (_("Catchpoint %d (any syscall)"),
8699 b->number);
8700 }
8701
8702 /* Implement the "print_recreate" breakpoint_ops method for syscall
8703 catchpoints. */
8704
8705 static void
8706 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8707 {
8708 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8709
8710 fprintf_unfiltered (fp, "catch syscall");
8711
8712 if (c->syscalls_to_be_caught)
8713 {
8714 int i, iter;
8715
8716 for (i = 0;
8717 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8718 i++)
8719 {
8720 struct syscall s;
8721
8722 get_syscall_by_number (iter, &s);
8723 if (s.name)
8724 fprintf_unfiltered (fp, " %s", s.name);
8725 else
8726 fprintf_unfiltered (fp, " %d", s.number);
8727 }
8728 }
8729 print_recreate_thread (b, fp);
8730 }
8731
8732 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8733
8734 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8735
8736 /* Returns non-zero if 'b' is a syscall catchpoint. */
8737
8738 static int
8739 syscall_catchpoint_p (struct breakpoint *b)
8740 {
8741 return (b->ops == &catch_syscall_breakpoint_ops);
8742 }
8743
8744 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8745 is non-zero, then make the breakpoint temporary. If COND_STRING is
8746 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8747 the breakpoint_ops structure associated to the catchpoint. */
8748
8749 void
8750 init_catchpoint (struct breakpoint *b,
8751 struct gdbarch *gdbarch, int tempflag,
8752 char *cond_string,
8753 const struct breakpoint_ops *ops)
8754 {
8755 struct symtab_and_line sal;
8756
8757 init_sal (&sal);
8758 sal.pspace = current_program_space;
8759
8760 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8761
8762 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8763 b->disposition = tempflag ? disp_del : disp_donttouch;
8764 }
8765
8766 void
8767 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8768 {
8769 add_to_breakpoint_chain (b);
8770 set_breakpoint_number (internal, b);
8771 if (is_tracepoint (b))
8772 set_tracepoint_count (breakpoint_count);
8773 if (!internal)
8774 mention (b);
8775 observer_notify_breakpoint_created (b);
8776
8777 if (update_gll)
8778 update_global_location_list (1);
8779 }
8780
8781 static void
8782 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8783 int tempflag, char *cond_string,
8784 const struct breakpoint_ops *ops)
8785 {
8786 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8787
8788 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8789
8790 c->forked_inferior_pid = null_ptid;
8791
8792 install_breakpoint (0, &c->base, 1);
8793 }
8794
8795 /* Exec catchpoints. */
8796
8797 /* An instance of this type is used to represent an exec catchpoint.
8798 It includes a "struct breakpoint" as a kind of base class; users
8799 downcast to "struct breakpoint *" when needed. A breakpoint is
8800 really of this type iff its ops pointer points to
8801 CATCH_EXEC_BREAKPOINT_OPS. */
8802
8803 struct exec_catchpoint
8804 {
8805 /* The base class. */
8806 struct breakpoint base;
8807
8808 /* Filename of a program whose exec triggered this catchpoint.
8809 This field is only valid immediately after this catchpoint has
8810 triggered. */
8811 char *exec_pathname;
8812 };
8813
8814 /* Implement the "dtor" breakpoint_ops method for exec
8815 catchpoints. */
8816
8817 static void
8818 dtor_catch_exec (struct breakpoint *b)
8819 {
8820 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8821
8822 xfree (c->exec_pathname);
8823
8824 base_breakpoint_ops.dtor (b);
8825 }
8826
8827 static int
8828 insert_catch_exec (struct bp_location *bl)
8829 {
8830 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8831 }
8832
8833 static int
8834 remove_catch_exec (struct bp_location *bl)
8835 {
8836 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8837 }
8838
8839 static int
8840 breakpoint_hit_catch_exec (const struct bp_location *bl,
8841 struct address_space *aspace, CORE_ADDR bp_addr,
8842 const struct target_waitstatus *ws)
8843 {
8844 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8845
8846 if (ws->kind != TARGET_WAITKIND_EXECD)
8847 return 0;
8848
8849 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8850 return 1;
8851 }
8852
8853 static enum print_stop_action
8854 print_it_catch_exec (bpstat bs)
8855 {
8856 struct ui_out *uiout = current_uiout;
8857 struct breakpoint *b = bs->breakpoint_at;
8858 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8859
8860 annotate_catchpoint (b->number);
8861 if (b->disposition == disp_del)
8862 ui_out_text (uiout, "\nTemporary catchpoint ");
8863 else
8864 ui_out_text (uiout, "\nCatchpoint ");
8865 if (ui_out_is_mi_like_p (uiout))
8866 {
8867 ui_out_field_string (uiout, "reason",
8868 async_reason_lookup (EXEC_ASYNC_EXEC));
8869 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8870 }
8871 ui_out_field_int (uiout, "bkptno", b->number);
8872 ui_out_text (uiout, " (exec'd ");
8873 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8874 ui_out_text (uiout, "), ");
8875
8876 return PRINT_SRC_AND_LOC;
8877 }
8878
8879 static void
8880 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8881 {
8882 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8883 struct value_print_options opts;
8884 struct ui_out *uiout = current_uiout;
8885
8886 get_user_print_options (&opts);
8887
8888 /* Field 4, the address, is omitted (which makes the columns
8889 not line up too nicely with the headers, but the effect
8890 is relatively readable). */
8891 if (opts.addressprint)
8892 ui_out_field_skip (uiout, "addr");
8893 annotate_field (5);
8894 ui_out_text (uiout, "exec");
8895 if (c->exec_pathname != NULL)
8896 {
8897 ui_out_text (uiout, ", program \"");
8898 ui_out_field_string (uiout, "what", c->exec_pathname);
8899 ui_out_text (uiout, "\" ");
8900 }
8901
8902 if (ui_out_is_mi_like_p (uiout))
8903 ui_out_field_string (uiout, "catch-type", "exec");
8904 }
8905
8906 static void
8907 print_mention_catch_exec (struct breakpoint *b)
8908 {
8909 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8910 }
8911
8912 /* Implement the "print_recreate" breakpoint_ops method for exec
8913 catchpoints. */
8914
8915 static void
8916 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8917 {
8918 fprintf_unfiltered (fp, "catch exec");
8919 print_recreate_thread (b, fp);
8920 }
8921
8922 static struct breakpoint_ops catch_exec_breakpoint_ops;
8923
8924 static void
8925 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8926 const struct breakpoint_ops *ops)
8927 {
8928 struct syscall_catchpoint *c;
8929 struct gdbarch *gdbarch = get_current_arch ();
8930
8931 c = XNEW (struct syscall_catchpoint);
8932 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8933 c->syscalls_to_be_caught = filter;
8934
8935 install_breakpoint (0, &c->base, 1);
8936 }
8937
8938 static int
8939 hw_breakpoint_used_count (void)
8940 {
8941 int i = 0;
8942 struct breakpoint *b;
8943 struct bp_location *bl;
8944
8945 ALL_BREAKPOINTS (b)
8946 {
8947 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8948 for (bl = b->loc; bl; bl = bl->next)
8949 {
8950 /* Special types of hardware breakpoints may use more than
8951 one register. */
8952 i += b->ops->resources_needed (bl);
8953 }
8954 }
8955
8956 return i;
8957 }
8958
8959 /* Returns the resources B would use if it were a hardware
8960 watchpoint. */
8961
8962 static int
8963 hw_watchpoint_use_count (struct breakpoint *b)
8964 {
8965 int i = 0;
8966 struct bp_location *bl;
8967
8968 if (!breakpoint_enabled (b))
8969 return 0;
8970
8971 for (bl = b->loc; bl; bl = bl->next)
8972 {
8973 /* Special types of hardware watchpoints may use more than
8974 one register. */
8975 i += b->ops->resources_needed (bl);
8976 }
8977
8978 return i;
8979 }
8980
8981 /* Returns the sum the used resources of all hardware watchpoints of
8982 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8983 the sum of the used resources of all hardware watchpoints of other
8984 types _not_ TYPE. */
8985
8986 static int
8987 hw_watchpoint_used_count_others (struct breakpoint *except,
8988 enum bptype type, int *other_type_used)
8989 {
8990 int i = 0;
8991 struct breakpoint *b;
8992
8993 *other_type_used = 0;
8994 ALL_BREAKPOINTS (b)
8995 {
8996 if (b == except)
8997 continue;
8998 if (!breakpoint_enabled (b))
8999 continue;
9000
9001 if (b->type == type)
9002 i += hw_watchpoint_use_count (b);
9003 else if (is_hardware_watchpoint (b))
9004 *other_type_used = 1;
9005 }
9006
9007 return i;
9008 }
9009
9010 void
9011 disable_watchpoints_before_interactive_call_start (void)
9012 {
9013 struct breakpoint *b;
9014
9015 ALL_BREAKPOINTS (b)
9016 {
9017 if (is_watchpoint (b) && breakpoint_enabled (b))
9018 {
9019 b->enable_state = bp_call_disabled;
9020 update_global_location_list (0);
9021 }
9022 }
9023 }
9024
9025 void
9026 enable_watchpoints_after_interactive_call_stop (void)
9027 {
9028 struct breakpoint *b;
9029
9030 ALL_BREAKPOINTS (b)
9031 {
9032 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
9033 {
9034 b->enable_state = bp_enabled;
9035 update_global_location_list (1);
9036 }
9037 }
9038 }
9039
9040 void
9041 disable_breakpoints_before_startup (void)
9042 {
9043 current_program_space->executing_startup = 1;
9044 update_global_location_list (0);
9045 }
9046
9047 void
9048 enable_breakpoints_after_startup (void)
9049 {
9050 current_program_space->executing_startup = 0;
9051 breakpoint_re_set ();
9052 }
9053
9054
9055 /* Set a breakpoint that will evaporate an end of command
9056 at address specified by SAL.
9057 Restrict it to frame FRAME if FRAME is nonzero. */
9058
9059 struct breakpoint *
9060 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9061 struct frame_id frame_id, enum bptype type)
9062 {
9063 struct breakpoint *b;
9064
9065 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9066 tail-called one. */
9067 gdb_assert (!frame_id_artificial_p (frame_id));
9068
9069 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9070 b->enable_state = bp_enabled;
9071 b->disposition = disp_donttouch;
9072 b->frame_id = frame_id;
9073
9074 /* If we're debugging a multi-threaded program, then we want
9075 momentary breakpoints to be active in only a single thread of
9076 control. */
9077 if (in_thread_list (inferior_ptid))
9078 b->thread = pid_to_thread_id (inferior_ptid);
9079
9080 update_global_location_list_nothrow (1);
9081
9082 return b;
9083 }
9084
9085 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9086 The new breakpoint will have type TYPE, use OPS as its
9087 breakpoint_ops, and will set enabled to LOC_ENABLED. */
9088
9089 static struct breakpoint *
9090 momentary_breakpoint_from_master (struct breakpoint *orig,
9091 enum bptype type,
9092 const struct breakpoint_ops *ops,
9093 int loc_enabled)
9094 {
9095 struct breakpoint *copy;
9096
9097 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9098 copy->loc = allocate_bp_location (copy);
9099 set_breakpoint_location_function (copy->loc, 1);
9100
9101 copy->loc->gdbarch = orig->loc->gdbarch;
9102 copy->loc->requested_address = orig->loc->requested_address;
9103 copy->loc->address = orig->loc->address;
9104 copy->loc->section = orig->loc->section;
9105 copy->loc->pspace = orig->loc->pspace;
9106 copy->loc->probe = orig->loc->probe;
9107 copy->loc->line_number = orig->loc->line_number;
9108 copy->loc->symtab = orig->loc->symtab;
9109 copy->loc->enabled = loc_enabled;
9110 copy->frame_id = orig->frame_id;
9111 copy->thread = orig->thread;
9112 copy->pspace = orig->pspace;
9113
9114 copy->enable_state = bp_enabled;
9115 copy->disposition = disp_donttouch;
9116 copy->number = internal_breakpoint_number--;
9117
9118 update_global_location_list_nothrow (0);
9119 return copy;
9120 }
9121
9122 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9123 ORIG is NULL. */
9124
9125 struct breakpoint *
9126 clone_momentary_breakpoint (struct breakpoint *orig)
9127 {
9128 /* If there's nothing to clone, then return nothing. */
9129 if (orig == NULL)
9130 return NULL;
9131
9132 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
9133 }
9134
9135 struct breakpoint *
9136 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9137 enum bptype type)
9138 {
9139 struct symtab_and_line sal;
9140
9141 sal = find_pc_line (pc, 0);
9142 sal.pc = pc;
9143 sal.section = find_pc_overlay (pc);
9144 sal.explicit_pc = 1;
9145
9146 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9147 }
9148 \f
9149
9150 /* Tell the user we have just set a breakpoint B. */
9151
9152 static void
9153 mention (struct breakpoint *b)
9154 {
9155 b->ops->print_mention (b);
9156 if (ui_out_is_mi_like_p (current_uiout))
9157 return;
9158 printf_filtered ("\n");
9159 }
9160 \f
9161
9162 static struct bp_location *
9163 add_location_to_breakpoint (struct breakpoint *b,
9164 const struct symtab_and_line *sal)
9165 {
9166 struct bp_location *loc, **tmp;
9167 CORE_ADDR adjusted_address;
9168 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9169
9170 if (loc_gdbarch == NULL)
9171 loc_gdbarch = b->gdbarch;
9172
9173 /* Adjust the breakpoint's address prior to allocating a location.
9174 Once we call allocate_bp_location(), that mostly uninitialized
9175 location will be placed on the location chain. Adjustment of the
9176 breakpoint may cause target_read_memory() to be called and we do
9177 not want its scan of the location chain to find a breakpoint and
9178 location that's only been partially initialized. */
9179 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9180 sal->pc, b->type);
9181
9182 /* Sort the locations by their ADDRESS. */
9183 loc = allocate_bp_location (b);
9184 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9185 tmp = &((*tmp)->next))
9186 ;
9187 loc->next = *tmp;
9188 *tmp = loc;
9189
9190 loc->requested_address = sal->pc;
9191 loc->address = adjusted_address;
9192 loc->pspace = sal->pspace;
9193 loc->probe.probe = sal->probe;
9194 loc->probe.objfile = sal->objfile;
9195 gdb_assert (loc->pspace != NULL);
9196 loc->section = sal->section;
9197 loc->gdbarch = loc_gdbarch;
9198 loc->line_number = sal->line;
9199 loc->symtab = sal->symtab;
9200
9201 set_breakpoint_location_function (loc,
9202 sal->explicit_pc || sal->explicit_line);
9203 return loc;
9204 }
9205 \f
9206
9207 /* Return 1 if LOC is pointing to a permanent breakpoint,
9208 return 0 otherwise. */
9209
9210 static int
9211 bp_loc_is_permanent (struct bp_location *loc)
9212 {
9213 int len;
9214 CORE_ADDR addr;
9215 const gdb_byte *bpoint;
9216 gdb_byte *target_mem;
9217 struct cleanup *cleanup;
9218 int retval = 0;
9219
9220 gdb_assert (loc != NULL);
9221
9222 addr = loc->address;
9223 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9224
9225 /* Software breakpoints unsupported? */
9226 if (bpoint == NULL)
9227 return 0;
9228
9229 target_mem = alloca (len);
9230
9231 /* Enable the automatic memory restoration from breakpoints while
9232 we read the memory. Otherwise we could say about our temporary
9233 breakpoints they are permanent. */
9234 cleanup = save_current_space_and_thread ();
9235
9236 switch_to_program_space_and_thread (loc->pspace);
9237 make_show_memory_breakpoints_cleanup (0);
9238
9239 if (target_read_memory (loc->address, target_mem, len) == 0
9240 && memcmp (target_mem, bpoint, len) == 0)
9241 retval = 1;
9242
9243 do_cleanups (cleanup);
9244
9245 return retval;
9246 }
9247
9248 /* Build a command list for the dprintf corresponding to the current
9249 settings of the dprintf style options. */
9250
9251 static void
9252 update_dprintf_command_list (struct breakpoint *b)
9253 {
9254 char *dprintf_args = b->extra_string;
9255 char *printf_line = NULL;
9256
9257 if (!dprintf_args)
9258 return;
9259
9260 dprintf_args = skip_spaces (dprintf_args);
9261
9262 /* Allow a comma, as it may have terminated a location, but don't
9263 insist on it. */
9264 if (*dprintf_args == ',')
9265 ++dprintf_args;
9266 dprintf_args = skip_spaces (dprintf_args);
9267
9268 if (*dprintf_args != '"')
9269 error (_("Bad format string, missing '\"'."));
9270
9271 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9272 printf_line = xstrprintf ("printf %s", dprintf_args);
9273 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9274 {
9275 if (!dprintf_function)
9276 error (_("No function supplied for dprintf call"));
9277
9278 if (dprintf_channel && strlen (dprintf_channel) > 0)
9279 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9280 dprintf_function,
9281 dprintf_channel,
9282 dprintf_args);
9283 else
9284 printf_line = xstrprintf ("call (void) %s (%s)",
9285 dprintf_function,
9286 dprintf_args);
9287 }
9288 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9289 {
9290 if (target_can_run_breakpoint_commands ())
9291 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9292 else
9293 {
9294 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9295 printf_line = xstrprintf ("printf %s", dprintf_args);
9296 }
9297 }
9298 else
9299 internal_error (__FILE__, __LINE__,
9300 _("Invalid dprintf style."));
9301
9302 gdb_assert (printf_line != NULL);
9303 /* Manufacture a printf sequence. */
9304 {
9305 struct command_line *printf_cmd_line
9306 = xmalloc (sizeof (struct command_line));
9307
9308 printf_cmd_line = xmalloc (sizeof (struct command_line));
9309 printf_cmd_line->control_type = simple_control;
9310 printf_cmd_line->body_count = 0;
9311 printf_cmd_line->body_list = NULL;
9312 printf_cmd_line->next = NULL;
9313 printf_cmd_line->line = printf_line;
9314
9315 breakpoint_set_commands (b, printf_cmd_line);
9316 }
9317 }
9318
9319 /* Update all dprintf commands, making their command lists reflect
9320 current style settings. */
9321
9322 static void
9323 update_dprintf_commands (char *args, int from_tty,
9324 struct cmd_list_element *c)
9325 {
9326 struct breakpoint *b;
9327
9328 ALL_BREAKPOINTS (b)
9329 {
9330 if (b->type == bp_dprintf)
9331 update_dprintf_command_list (b);
9332 }
9333 }
9334
9335 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9336 as textual description of the location, and COND_STRING
9337 as condition expression. */
9338
9339 static void
9340 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9341 struct symtabs_and_lines sals, char *addr_string,
9342 char *filter, char *cond_string,
9343 char *extra_string,
9344 enum bptype type, enum bpdisp disposition,
9345 int thread, int task, int ignore_count,
9346 const struct breakpoint_ops *ops, int from_tty,
9347 int enabled, int internal, unsigned flags,
9348 int display_canonical)
9349 {
9350 int i;
9351
9352 if (type == bp_hardware_breakpoint)
9353 {
9354 int target_resources_ok;
9355
9356 i = hw_breakpoint_used_count ();
9357 target_resources_ok =
9358 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9359 i + 1, 0);
9360 if (target_resources_ok == 0)
9361 error (_("No hardware breakpoint support in the target."));
9362 else if (target_resources_ok < 0)
9363 error (_("Hardware breakpoints used exceeds limit."));
9364 }
9365
9366 gdb_assert (sals.nelts > 0);
9367
9368 for (i = 0; i < sals.nelts; ++i)
9369 {
9370 struct symtab_and_line sal = sals.sals[i];
9371 struct bp_location *loc;
9372
9373 if (from_tty)
9374 {
9375 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9376 if (!loc_gdbarch)
9377 loc_gdbarch = gdbarch;
9378
9379 describe_other_breakpoints (loc_gdbarch,
9380 sal.pspace, sal.pc, sal.section, thread);
9381 }
9382
9383 if (i == 0)
9384 {
9385 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9386 b->thread = thread;
9387 b->task = task;
9388
9389 b->cond_string = cond_string;
9390 b->extra_string = extra_string;
9391 b->ignore_count = ignore_count;
9392 b->enable_state = enabled ? bp_enabled : bp_disabled;
9393 b->disposition = disposition;
9394
9395 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9396 b->loc->inserted = 1;
9397
9398 if (type == bp_static_tracepoint)
9399 {
9400 struct tracepoint *t = (struct tracepoint *) b;
9401 struct static_tracepoint_marker marker;
9402
9403 if (strace_marker_p (b))
9404 {
9405 /* We already know the marker exists, otherwise, we
9406 wouldn't see a sal for it. */
9407 char *p = &addr_string[3];
9408 char *endp;
9409 char *marker_str;
9410
9411 p = skip_spaces (p);
9412
9413 endp = skip_to_space (p);
9414
9415 marker_str = savestring (p, endp - p);
9416 t->static_trace_marker_id = marker_str;
9417
9418 printf_filtered (_("Probed static tracepoint "
9419 "marker \"%s\"\n"),
9420 t->static_trace_marker_id);
9421 }
9422 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9423 {
9424 t->static_trace_marker_id = xstrdup (marker.str_id);
9425 release_static_tracepoint_marker (&marker);
9426
9427 printf_filtered (_("Probed static tracepoint "
9428 "marker \"%s\"\n"),
9429 t->static_trace_marker_id);
9430 }
9431 else
9432 warning (_("Couldn't determine the static "
9433 "tracepoint marker to probe"));
9434 }
9435
9436 loc = b->loc;
9437 }
9438 else
9439 {
9440 loc = add_location_to_breakpoint (b, &sal);
9441 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9442 loc->inserted = 1;
9443 }
9444
9445 if (bp_loc_is_permanent (loc))
9446 make_breakpoint_permanent (b);
9447
9448 if (b->cond_string)
9449 {
9450 const char *arg = b->cond_string;
9451
9452 loc->cond = parse_exp_1 (&arg, loc->address,
9453 block_for_pc (loc->address), 0);
9454 if (*arg)
9455 error (_("Garbage '%s' follows condition"), arg);
9456 }
9457
9458 /* Dynamic printf requires and uses additional arguments on the
9459 command line, otherwise it's an error. */
9460 if (type == bp_dprintf)
9461 {
9462 if (b->extra_string)
9463 update_dprintf_command_list (b);
9464 else
9465 error (_("Format string required"));
9466 }
9467 else if (b->extra_string)
9468 error (_("Garbage '%s' at end of command"), b->extra_string);
9469 }
9470
9471 b->display_canonical = display_canonical;
9472 if (addr_string)
9473 b->addr_string = addr_string;
9474 else
9475 /* addr_string has to be used or breakpoint_re_set will delete
9476 me. */
9477 b->addr_string
9478 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9479 b->filter = filter;
9480 }
9481
9482 static void
9483 create_breakpoint_sal (struct gdbarch *gdbarch,
9484 struct symtabs_and_lines sals, char *addr_string,
9485 char *filter, char *cond_string,
9486 char *extra_string,
9487 enum bptype type, enum bpdisp disposition,
9488 int thread, int task, int ignore_count,
9489 const struct breakpoint_ops *ops, int from_tty,
9490 int enabled, int internal, unsigned flags,
9491 int display_canonical)
9492 {
9493 struct breakpoint *b;
9494 struct cleanup *old_chain;
9495
9496 if (is_tracepoint_type (type))
9497 {
9498 struct tracepoint *t;
9499
9500 t = XCNEW (struct tracepoint);
9501 b = &t->base;
9502 }
9503 else
9504 b = XNEW (struct breakpoint);
9505
9506 old_chain = make_cleanup (xfree, b);
9507
9508 init_breakpoint_sal (b, gdbarch,
9509 sals, addr_string,
9510 filter, cond_string, extra_string,
9511 type, disposition,
9512 thread, task, ignore_count,
9513 ops, from_tty,
9514 enabled, internal, flags,
9515 display_canonical);
9516 discard_cleanups (old_chain);
9517
9518 install_breakpoint (internal, b, 0);
9519 }
9520
9521 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9522 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9523 value. COND_STRING, if not NULL, specified the condition to be
9524 used for all breakpoints. Essentially the only case where
9525 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9526 function. In that case, it's still not possible to specify
9527 separate conditions for different overloaded functions, so
9528 we take just a single condition string.
9529
9530 NOTE: If the function succeeds, the caller is expected to cleanup
9531 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9532 array contents). If the function fails (error() is called), the
9533 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9534 COND and SALS arrays and each of those arrays contents. */
9535
9536 static void
9537 create_breakpoints_sal (struct gdbarch *gdbarch,
9538 struct linespec_result *canonical,
9539 char *cond_string, char *extra_string,
9540 enum bptype type, enum bpdisp disposition,
9541 int thread, int task, int ignore_count,
9542 const struct breakpoint_ops *ops, int from_tty,
9543 int enabled, int internal, unsigned flags)
9544 {
9545 int i;
9546 struct linespec_sals *lsal;
9547
9548 if (canonical->pre_expanded)
9549 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9550
9551 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9552 {
9553 /* Note that 'addr_string' can be NULL in the case of a plain
9554 'break', without arguments. */
9555 char *addr_string = (canonical->addr_string
9556 ? xstrdup (canonical->addr_string)
9557 : NULL);
9558 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9559 struct cleanup *inner = make_cleanup (xfree, addr_string);
9560
9561 make_cleanup (xfree, filter_string);
9562 create_breakpoint_sal (gdbarch, lsal->sals,
9563 addr_string,
9564 filter_string,
9565 cond_string, extra_string,
9566 type, disposition,
9567 thread, task, ignore_count, ops,
9568 from_tty, enabled, internal, flags,
9569 canonical->special_display);
9570 discard_cleanups (inner);
9571 }
9572 }
9573
9574 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9575 followed by conditionals. On return, SALS contains an array of SAL
9576 addresses found. ADDR_STRING contains a vector of (canonical)
9577 address strings. ADDRESS points to the end of the SAL.
9578
9579 The array and the line spec strings are allocated on the heap, it is
9580 the caller's responsibility to free them. */
9581
9582 static void
9583 parse_breakpoint_sals (char **address,
9584 struct linespec_result *canonical)
9585 {
9586 /* If no arg given, or if first arg is 'if ', use the default
9587 breakpoint. */
9588 if ((*address) == NULL
9589 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9590 {
9591 /* The last displayed codepoint, if it's valid, is our default breakpoint
9592 address. */
9593 if (last_displayed_sal_is_valid ())
9594 {
9595 struct linespec_sals lsal;
9596 struct symtab_and_line sal;
9597 CORE_ADDR pc;
9598
9599 init_sal (&sal); /* Initialize to zeroes. */
9600 lsal.sals.sals = (struct symtab_and_line *)
9601 xmalloc (sizeof (struct symtab_and_line));
9602
9603 /* Set sal's pspace, pc, symtab, and line to the values
9604 corresponding to the last call to print_frame_info.
9605 Be sure to reinitialize LINE with NOTCURRENT == 0
9606 as the breakpoint line number is inappropriate otherwise.
9607 find_pc_line would adjust PC, re-set it back. */
9608 get_last_displayed_sal (&sal);
9609 pc = sal.pc;
9610 sal = find_pc_line (pc, 0);
9611
9612 /* "break" without arguments is equivalent to "break *PC"
9613 where PC is the last displayed codepoint's address. So
9614 make sure to set sal.explicit_pc to prevent GDB from
9615 trying to expand the list of sals to include all other
9616 instances with the same symtab and line. */
9617 sal.pc = pc;
9618 sal.explicit_pc = 1;
9619
9620 lsal.sals.sals[0] = sal;
9621 lsal.sals.nelts = 1;
9622 lsal.canonical = NULL;
9623
9624 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9625 }
9626 else
9627 error (_("No default breakpoint address now."));
9628 }
9629 else
9630 {
9631 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9632
9633 /* Force almost all breakpoints to be in terms of the
9634 current_source_symtab (which is decode_line_1's default).
9635 This should produce the results we want almost all of the
9636 time while leaving default_breakpoint_* alone.
9637
9638 ObjC: However, don't match an Objective-C method name which
9639 may have a '+' or '-' succeeded by a '['. */
9640 if (last_displayed_sal_is_valid ()
9641 && (!cursal.symtab
9642 || ((strchr ("+-", (*address)[0]) != NULL)
9643 && ((*address)[1] != '['))))
9644 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9645 get_last_displayed_symtab (),
9646 get_last_displayed_line (),
9647 canonical, NULL, NULL);
9648 else
9649 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9650 cursal.symtab, cursal.line, canonical, NULL, NULL);
9651 }
9652 }
9653
9654
9655 /* Convert each SAL into a real PC. Verify that the PC can be
9656 inserted as a breakpoint. If it can't throw an error. */
9657
9658 static void
9659 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9660 {
9661 int i;
9662
9663 for (i = 0; i < sals->nelts; i++)
9664 resolve_sal_pc (&sals->sals[i]);
9665 }
9666
9667 /* Fast tracepoints may have restrictions on valid locations. For
9668 instance, a fast tracepoint using a jump instead of a trap will
9669 likely have to overwrite more bytes than a trap would, and so can
9670 only be placed where the instruction is longer than the jump, or a
9671 multi-instruction sequence does not have a jump into the middle of
9672 it, etc. */
9673
9674 static void
9675 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9676 struct symtabs_and_lines *sals)
9677 {
9678 int i, rslt;
9679 struct symtab_and_line *sal;
9680 char *msg;
9681 struct cleanup *old_chain;
9682
9683 for (i = 0; i < sals->nelts; i++)
9684 {
9685 struct gdbarch *sarch;
9686
9687 sal = &sals->sals[i];
9688
9689 sarch = get_sal_arch (*sal);
9690 /* We fall back to GDBARCH if there is no architecture
9691 associated with SAL. */
9692 if (sarch == NULL)
9693 sarch = gdbarch;
9694 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9695 NULL, &msg);
9696 old_chain = make_cleanup (xfree, msg);
9697
9698 if (!rslt)
9699 error (_("May not have a fast tracepoint at 0x%s%s"),
9700 paddress (sarch, sal->pc), (msg ? msg : ""));
9701
9702 do_cleanups (old_chain);
9703 }
9704 }
9705
9706 /* Issue an invalid thread ID error. */
9707
9708 static void ATTRIBUTE_NORETURN
9709 invalid_thread_id_error (int id)
9710 {
9711 error (_("Unknown thread %d."), id);
9712 }
9713
9714 /* Given TOK, a string specification of condition and thread, as
9715 accepted by the 'break' command, extract the condition
9716 string and thread number and set *COND_STRING and *THREAD.
9717 PC identifies the context at which the condition should be parsed.
9718 If no condition is found, *COND_STRING is set to NULL.
9719 If no thread is found, *THREAD is set to -1. */
9720
9721 static void
9722 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9723 char **cond_string, int *thread, int *task,
9724 char **rest)
9725 {
9726 *cond_string = NULL;
9727 *thread = -1;
9728 *task = 0;
9729 *rest = NULL;
9730
9731 while (tok && *tok)
9732 {
9733 const char *end_tok;
9734 int toklen;
9735 const char *cond_start = NULL;
9736 const char *cond_end = NULL;
9737
9738 tok = skip_spaces_const (tok);
9739
9740 if ((*tok == '"' || *tok == ',') && rest)
9741 {
9742 *rest = savestring (tok, strlen (tok));
9743 return;
9744 }
9745
9746 end_tok = skip_to_space_const (tok);
9747
9748 toklen = end_tok - tok;
9749
9750 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9751 {
9752 struct expression *expr;
9753
9754 tok = cond_start = end_tok + 1;
9755 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9756 xfree (expr);
9757 cond_end = tok;
9758 *cond_string = savestring (cond_start, cond_end - cond_start);
9759 }
9760 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9761 {
9762 char *tmptok;
9763
9764 tok = end_tok + 1;
9765 *thread = strtol (tok, &tmptok, 0);
9766 if (tok == tmptok)
9767 error (_("Junk after thread keyword."));
9768 if (!valid_thread_id (*thread))
9769 invalid_thread_id_error (*thread);
9770 tok = tmptok;
9771 }
9772 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9773 {
9774 char *tmptok;
9775
9776 tok = end_tok + 1;
9777 *task = strtol (tok, &tmptok, 0);
9778 if (tok == tmptok)
9779 error (_("Junk after task keyword."));
9780 if (!valid_task_id (*task))
9781 error (_("Unknown task %d."), *task);
9782 tok = tmptok;
9783 }
9784 else if (rest)
9785 {
9786 *rest = savestring (tok, strlen (tok));
9787 return;
9788 }
9789 else
9790 error (_("Junk at end of arguments."));
9791 }
9792 }
9793
9794 /* Decode a static tracepoint marker spec. */
9795
9796 static struct symtabs_and_lines
9797 decode_static_tracepoint_spec (char **arg_p)
9798 {
9799 VEC(static_tracepoint_marker_p) *markers = NULL;
9800 struct symtabs_and_lines sals;
9801 struct cleanup *old_chain;
9802 char *p = &(*arg_p)[3];
9803 char *endp;
9804 char *marker_str;
9805 int i;
9806
9807 p = skip_spaces (p);
9808
9809 endp = skip_to_space (p);
9810
9811 marker_str = savestring (p, endp - p);
9812 old_chain = make_cleanup (xfree, marker_str);
9813
9814 markers = target_static_tracepoint_markers_by_strid (marker_str);
9815 if (VEC_empty(static_tracepoint_marker_p, markers))
9816 error (_("No known static tracepoint marker named %s"), marker_str);
9817
9818 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9819 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9820
9821 for (i = 0; i < sals.nelts; i++)
9822 {
9823 struct static_tracepoint_marker *marker;
9824
9825 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9826
9827 init_sal (&sals.sals[i]);
9828
9829 sals.sals[i] = find_pc_line (marker->address, 0);
9830 sals.sals[i].pc = marker->address;
9831
9832 release_static_tracepoint_marker (marker);
9833 }
9834
9835 do_cleanups (old_chain);
9836
9837 *arg_p = endp;
9838 return sals;
9839 }
9840
9841 /* Set a breakpoint. This function is shared between CLI and MI
9842 functions for setting a breakpoint. This function has two major
9843 modes of operations, selected by the PARSE_ARG parameter. If
9844 non-zero, the function will parse ARG, extracting location,
9845 condition, thread and extra string. Otherwise, ARG is just the
9846 breakpoint's location, with condition, thread, and extra string
9847 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9848 If INTERNAL is non-zero, the breakpoint number will be allocated
9849 from the internal breakpoint count. Returns true if any breakpoint
9850 was created; false otherwise. */
9851
9852 int
9853 create_breakpoint (struct gdbarch *gdbarch,
9854 char *arg, char *cond_string,
9855 int thread, char *extra_string,
9856 int parse_arg,
9857 int tempflag, enum bptype type_wanted,
9858 int ignore_count,
9859 enum auto_boolean pending_break_support,
9860 const struct breakpoint_ops *ops,
9861 int from_tty, int enabled, int internal,
9862 unsigned flags)
9863 {
9864 volatile struct gdb_exception e;
9865 char *copy_arg = NULL;
9866 char *addr_start = arg;
9867 struct linespec_result canonical;
9868 struct cleanup *old_chain;
9869 struct cleanup *bkpt_chain = NULL;
9870 int pending = 0;
9871 int task = 0;
9872 int prev_bkpt_count = breakpoint_count;
9873
9874 gdb_assert (ops != NULL);
9875
9876 init_linespec_result (&canonical);
9877
9878 TRY_CATCH (e, RETURN_MASK_ALL)
9879 {
9880 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9881 addr_start, &copy_arg);
9882 }
9883
9884 /* If caller is interested in rc value from parse, set value. */
9885 switch (e.reason)
9886 {
9887 case GDB_NO_ERROR:
9888 if (VEC_empty (linespec_sals, canonical.sals))
9889 return 0;
9890 break;
9891 case RETURN_ERROR:
9892 switch (e.error)
9893 {
9894 case NOT_FOUND_ERROR:
9895
9896 /* If pending breakpoint support is turned off, throw
9897 error. */
9898
9899 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9900 throw_exception (e);
9901
9902 exception_print (gdb_stderr, e);
9903
9904 /* If pending breakpoint support is auto query and the user
9905 selects no, then simply return the error code. */
9906 if (pending_break_support == AUTO_BOOLEAN_AUTO
9907 && !nquery (_("Make %s pending on future shared library load? "),
9908 bptype_string (type_wanted)))
9909 return 0;
9910
9911 /* At this point, either the user was queried about setting
9912 a pending breakpoint and selected yes, or pending
9913 breakpoint behavior is on and thus a pending breakpoint
9914 is defaulted on behalf of the user. */
9915 {
9916 struct linespec_sals lsal;
9917
9918 copy_arg = xstrdup (addr_start);
9919 lsal.canonical = xstrdup (copy_arg);
9920 lsal.sals.nelts = 1;
9921 lsal.sals.sals = XNEW (struct symtab_and_line);
9922 init_sal (&lsal.sals.sals[0]);
9923 pending = 1;
9924 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9925 }
9926 break;
9927 default:
9928 throw_exception (e);
9929 }
9930 break;
9931 default:
9932 throw_exception (e);
9933 }
9934
9935 /* Create a chain of things that always need to be cleaned up. */
9936 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9937
9938 /* ----------------------------- SNIP -----------------------------
9939 Anything added to the cleanup chain beyond this point is assumed
9940 to be part of a breakpoint. If the breakpoint create succeeds
9941 then the memory is not reclaimed. */
9942 bkpt_chain = make_cleanup (null_cleanup, 0);
9943
9944 /* Resolve all line numbers to PC's and verify that the addresses
9945 are ok for the target. */
9946 if (!pending)
9947 {
9948 int ix;
9949 struct linespec_sals *iter;
9950
9951 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9952 breakpoint_sals_to_pc (&iter->sals);
9953 }
9954
9955 /* Fast tracepoints may have additional restrictions on location. */
9956 if (!pending && type_wanted == bp_fast_tracepoint)
9957 {
9958 int ix;
9959 struct linespec_sals *iter;
9960
9961 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9962 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9963 }
9964
9965 /* Verify that condition can be parsed, before setting any
9966 breakpoints. Allocate a separate condition expression for each
9967 breakpoint. */
9968 if (!pending)
9969 {
9970 if (parse_arg)
9971 {
9972 char *rest;
9973 struct linespec_sals *lsal;
9974
9975 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9976
9977 /* Here we only parse 'arg' to separate condition
9978 from thread number, so parsing in context of first
9979 sal is OK. When setting the breakpoint we'll
9980 re-parse it in context of each sal. */
9981
9982 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9983 &thread, &task, &rest);
9984 if (cond_string)
9985 make_cleanup (xfree, cond_string);
9986 if (rest)
9987 make_cleanup (xfree, rest);
9988 if (rest)
9989 extra_string = rest;
9990 }
9991 else
9992 {
9993 if (*arg != '\0')
9994 error (_("Garbage '%s' at end of location"), arg);
9995
9996 /* Create a private copy of condition string. */
9997 if (cond_string)
9998 {
9999 cond_string = xstrdup (cond_string);
10000 make_cleanup (xfree, cond_string);
10001 }
10002 /* Create a private copy of any extra string. */
10003 if (extra_string)
10004 {
10005 extra_string = xstrdup (extra_string);
10006 make_cleanup (xfree, extra_string);
10007 }
10008 }
10009
10010 ops->create_breakpoints_sal (gdbarch, &canonical,
10011 cond_string, extra_string, type_wanted,
10012 tempflag ? disp_del : disp_donttouch,
10013 thread, task, ignore_count, ops,
10014 from_tty, enabled, internal, flags);
10015 }
10016 else
10017 {
10018 struct breakpoint *b;
10019
10020 make_cleanup (xfree, copy_arg);
10021
10022 if (is_tracepoint_type (type_wanted))
10023 {
10024 struct tracepoint *t;
10025
10026 t = XCNEW (struct tracepoint);
10027 b = &t->base;
10028 }
10029 else
10030 b = XNEW (struct breakpoint);
10031
10032 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
10033
10034 b->addr_string = copy_arg;
10035 if (parse_arg)
10036 b->cond_string = NULL;
10037 else
10038 {
10039 /* Create a private copy of condition string. */
10040 if (cond_string)
10041 {
10042 cond_string = xstrdup (cond_string);
10043 make_cleanup (xfree, cond_string);
10044 }
10045 b->cond_string = cond_string;
10046 }
10047 b->extra_string = NULL;
10048 b->ignore_count = ignore_count;
10049 b->disposition = tempflag ? disp_del : disp_donttouch;
10050 b->condition_not_parsed = 1;
10051 b->enable_state = enabled ? bp_enabled : bp_disabled;
10052 if ((type_wanted != bp_breakpoint
10053 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10054 b->pspace = current_program_space;
10055
10056 install_breakpoint (internal, b, 0);
10057 }
10058
10059 if (VEC_length (linespec_sals, canonical.sals) > 1)
10060 {
10061 warning (_("Multiple breakpoints were set.\nUse the "
10062 "\"delete\" command to delete unwanted breakpoints."));
10063 prev_breakpoint_count = prev_bkpt_count;
10064 }
10065
10066 /* That's it. Discard the cleanups for data inserted into the
10067 breakpoint. */
10068 discard_cleanups (bkpt_chain);
10069 /* But cleanup everything else. */
10070 do_cleanups (old_chain);
10071
10072 /* error call may happen here - have BKPT_CHAIN already discarded. */
10073 update_global_location_list (1);
10074
10075 return 1;
10076 }
10077
10078 /* Set a breakpoint.
10079 ARG is a string describing breakpoint address,
10080 condition, and thread.
10081 FLAG specifies if a breakpoint is hardware on,
10082 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10083 and BP_TEMPFLAG. */
10084
10085 static void
10086 break_command_1 (char *arg, int flag, int from_tty)
10087 {
10088 int tempflag = flag & BP_TEMPFLAG;
10089 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10090 ? bp_hardware_breakpoint
10091 : bp_breakpoint);
10092 struct breakpoint_ops *ops;
10093 const char *arg_cp = arg;
10094
10095 /* Matching breakpoints on probes. */
10096 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10097 ops = &bkpt_probe_breakpoint_ops;
10098 else
10099 ops = &bkpt_breakpoint_ops;
10100
10101 create_breakpoint (get_current_arch (),
10102 arg,
10103 NULL, 0, NULL, 1 /* parse arg */,
10104 tempflag, type_wanted,
10105 0 /* Ignore count */,
10106 pending_break_support,
10107 ops,
10108 from_tty,
10109 1 /* enabled */,
10110 0 /* internal */,
10111 0);
10112 }
10113
10114 /* Helper function for break_command_1 and disassemble_command. */
10115
10116 void
10117 resolve_sal_pc (struct symtab_and_line *sal)
10118 {
10119 CORE_ADDR pc;
10120
10121 if (sal->pc == 0 && sal->symtab != NULL)
10122 {
10123 if (!find_line_pc (sal->symtab, sal->line, &pc))
10124 error (_("No line %d in file \"%s\"."),
10125 sal->line, symtab_to_filename_for_display (sal->symtab));
10126 sal->pc = pc;
10127
10128 /* If this SAL corresponds to a breakpoint inserted using a line
10129 number, then skip the function prologue if necessary. */
10130 if (sal->explicit_line)
10131 skip_prologue_sal (sal);
10132 }
10133
10134 if (sal->section == 0 && sal->symtab != NULL)
10135 {
10136 const struct blockvector *bv;
10137 const struct block *b;
10138 struct symbol *sym;
10139
10140 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10141 if (bv != NULL)
10142 {
10143 sym = block_linkage_function (b);
10144 if (sym != NULL)
10145 {
10146 fixup_symbol_section (sym, sal->symtab->objfile);
10147 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10148 }
10149 else
10150 {
10151 /* It really is worthwhile to have the section, so we'll
10152 just have to look harder. This case can be executed
10153 if we have line numbers but no functions (as can
10154 happen in assembly source). */
10155
10156 struct bound_minimal_symbol msym;
10157 struct cleanup *old_chain = save_current_space_and_thread ();
10158
10159 switch_to_program_space_and_thread (sal->pspace);
10160
10161 msym = lookup_minimal_symbol_by_pc (sal->pc);
10162 if (msym.minsym)
10163 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10164
10165 do_cleanups (old_chain);
10166 }
10167 }
10168 }
10169 }
10170
10171 void
10172 break_command (char *arg, int from_tty)
10173 {
10174 break_command_1 (arg, 0, from_tty);
10175 }
10176
10177 void
10178 tbreak_command (char *arg, int from_tty)
10179 {
10180 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10181 }
10182
10183 static void
10184 hbreak_command (char *arg, int from_tty)
10185 {
10186 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10187 }
10188
10189 static void
10190 thbreak_command (char *arg, int from_tty)
10191 {
10192 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10193 }
10194
10195 static void
10196 stop_command (char *arg, int from_tty)
10197 {
10198 printf_filtered (_("Specify the type of breakpoint to set.\n\
10199 Usage: stop in <function | address>\n\
10200 stop at <line>\n"));
10201 }
10202
10203 static void
10204 stopin_command (char *arg, int from_tty)
10205 {
10206 int badInput = 0;
10207
10208 if (arg == (char *) NULL)
10209 badInput = 1;
10210 else if (*arg != '*')
10211 {
10212 char *argptr = arg;
10213 int hasColon = 0;
10214
10215 /* Look for a ':'. If this is a line number specification, then
10216 say it is bad, otherwise, it should be an address or
10217 function/method name. */
10218 while (*argptr && !hasColon)
10219 {
10220 hasColon = (*argptr == ':');
10221 argptr++;
10222 }
10223
10224 if (hasColon)
10225 badInput = (*argptr != ':'); /* Not a class::method */
10226 else
10227 badInput = isdigit (*arg); /* a simple line number */
10228 }
10229
10230 if (badInput)
10231 printf_filtered (_("Usage: stop in <function | address>\n"));
10232 else
10233 break_command_1 (arg, 0, from_tty);
10234 }
10235
10236 static void
10237 stopat_command (char *arg, int from_tty)
10238 {
10239 int badInput = 0;
10240
10241 if (arg == (char *) NULL || *arg == '*') /* no line number */
10242 badInput = 1;
10243 else
10244 {
10245 char *argptr = arg;
10246 int hasColon = 0;
10247
10248 /* Look for a ':'. If there is a '::' then get out, otherwise
10249 it is probably a line number. */
10250 while (*argptr && !hasColon)
10251 {
10252 hasColon = (*argptr == ':');
10253 argptr++;
10254 }
10255
10256 if (hasColon)
10257 badInput = (*argptr == ':'); /* we have class::method */
10258 else
10259 badInput = !isdigit (*arg); /* not a line number */
10260 }
10261
10262 if (badInput)
10263 printf_filtered (_("Usage: stop at <line>\n"));
10264 else
10265 break_command_1 (arg, 0, from_tty);
10266 }
10267
10268 /* The dynamic printf command is mostly like a regular breakpoint, but
10269 with a prewired command list consisting of a single output command,
10270 built from extra arguments supplied on the dprintf command
10271 line. */
10272
10273 static void
10274 dprintf_command (char *arg, int from_tty)
10275 {
10276 create_breakpoint (get_current_arch (),
10277 arg,
10278 NULL, 0, NULL, 1 /* parse arg */,
10279 0, bp_dprintf,
10280 0 /* Ignore count */,
10281 pending_break_support,
10282 &dprintf_breakpoint_ops,
10283 from_tty,
10284 1 /* enabled */,
10285 0 /* internal */,
10286 0);
10287 }
10288
10289 static void
10290 agent_printf_command (char *arg, int from_tty)
10291 {
10292 error (_("May only run agent-printf on the target"));
10293 }
10294
10295 /* Implement the "breakpoint_hit" breakpoint_ops method for
10296 ranged breakpoints. */
10297
10298 static int
10299 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10300 struct address_space *aspace,
10301 CORE_ADDR bp_addr,
10302 const struct target_waitstatus *ws)
10303 {
10304 if (ws->kind != TARGET_WAITKIND_STOPPED
10305 || ws->value.sig != GDB_SIGNAL_TRAP)
10306 return 0;
10307
10308 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10309 bl->length, aspace, bp_addr);
10310 }
10311
10312 /* Implement the "resources_needed" breakpoint_ops method for
10313 ranged breakpoints. */
10314
10315 static int
10316 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10317 {
10318 return target_ranged_break_num_registers ();
10319 }
10320
10321 /* Implement the "print_it" breakpoint_ops method for
10322 ranged breakpoints. */
10323
10324 static enum print_stop_action
10325 print_it_ranged_breakpoint (bpstat bs)
10326 {
10327 struct breakpoint *b = bs->breakpoint_at;
10328 struct bp_location *bl = b->loc;
10329 struct ui_out *uiout = current_uiout;
10330
10331 gdb_assert (b->type == bp_hardware_breakpoint);
10332
10333 /* Ranged breakpoints have only one location. */
10334 gdb_assert (bl && bl->next == NULL);
10335
10336 annotate_breakpoint (b->number);
10337 if (b->disposition == disp_del)
10338 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10339 else
10340 ui_out_text (uiout, "\nRanged breakpoint ");
10341 if (ui_out_is_mi_like_p (uiout))
10342 {
10343 ui_out_field_string (uiout, "reason",
10344 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10345 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10346 }
10347 ui_out_field_int (uiout, "bkptno", b->number);
10348 ui_out_text (uiout, ", ");
10349
10350 return PRINT_SRC_AND_LOC;
10351 }
10352
10353 /* Implement the "print_one" breakpoint_ops method for
10354 ranged breakpoints. */
10355
10356 static void
10357 print_one_ranged_breakpoint (struct breakpoint *b,
10358 struct bp_location **last_loc)
10359 {
10360 struct bp_location *bl = b->loc;
10361 struct value_print_options opts;
10362 struct ui_out *uiout = current_uiout;
10363
10364 /* Ranged breakpoints have only one location. */
10365 gdb_assert (bl && bl->next == NULL);
10366
10367 get_user_print_options (&opts);
10368
10369 if (opts.addressprint)
10370 /* We don't print the address range here, it will be printed later
10371 by print_one_detail_ranged_breakpoint. */
10372 ui_out_field_skip (uiout, "addr");
10373 annotate_field (5);
10374 print_breakpoint_location (b, bl);
10375 *last_loc = bl;
10376 }
10377
10378 /* Implement the "print_one_detail" breakpoint_ops method for
10379 ranged breakpoints. */
10380
10381 static void
10382 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10383 struct ui_out *uiout)
10384 {
10385 CORE_ADDR address_start, address_end;
10386 struct bp_location *bl = b->loc;
10387 struct ui_file *stb = mem_fileopen ();
10388 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10389
10390 gdb_assert (bl);
10391
10392 address_start = bl->address;
10393 address_end = address_start + bl->length - 1;
10394
10395 ui_out_text (uiout, "\taddress range: ");
10396 fprintf_unfiltered (stb, "[%s, %s]",
10397 print_core_address (bl->gdbarch, address_start),
10398 print_core_address (bl->gdbarch, address_end));
10399 ui_out_field_stream (uiout, "addr", stb);
10400 ui_out_text (uiout, "\n");
10401
10402 do_cleanups (cleanup);
10403 }
10404
10405 /* Implement the "print_mention" breakpoint_ops method for
10406 ranged breakpoints. */
10407
10408 static void
10409 print_mention_ranged_breakpoint (struct breakpoint *b)
10410 {
10411 struct bp_location *bl = b->loc;
10412 struct ui_out *uiout = current_uiout;
10413
10414 gdb_assert (bl);
10415 gdb_assert (b->type == bp_hardware_breakpoint);
10416
10417 if (ui_out_is_mi_like_p (uiout))
10418 return;
10419
10420 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10421 b->number, paddress (bl->gdbarch, bl->address),
10422 paddress (bl->gdbarch, bl->address + bl->length - 1));
10423 }
10424
10425 /* Implement the "print_recreate" breakpoint_ops method for
10426 ranged breakpoints. */
10427
10428 static void
10429 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10430 {
10431 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10432 b->addr_string_range_end);
10433 print_recreate_thread (b, fp);
10434 }
10435
10436 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10437
10438 static struct breakpoint_ops ranged_breakpoint_ops;
10439
10440 /* Find the address where the end of the breakpoint range should be
10441 placed, given the SAL of the end of the range. This is so that if
10442 the user provides a line number, the end of the range is set to the
10443 last instruction of the given line. */
10444
10445 static CORE_ADDR
10446 find_breakpoint_range_end (struct symtab_and_line sal)
10447 {
10448 CORE_ADDR end;
10449
10450 /* If the user provided a PC value, use it. Otherwise,
10451 find the address of the end of the given location. */
10452 if (sal.explicit_pc)
10453 end = sal.pc;
10454 else
10455 {
10456 int ret;
10457 CORE_ADDR start;
10458
10459 ret = find_line_pc_range (sal, &start, &end);
10460 if (!ret)
10461 error (_("Could not find location of the end of the range."));
10462
10463 /* find_line_pc_range returns the start of the next line. */
10464 end--;
10465 }
10466
10467 return end;
10468 }
10469
10470 /* Implement the "break-range" CLI command. */
10471
10472 static void
10473 break_range_command (char *arg, int from_tty)
10474 {
10475 char *arg_start, *addr_string_start, *addr_string_end;
10476 struct linespec_result canonical_start, canonical_end;
10477 int bp_count, can_use_bp, length;
10478 CORE_ADDR end;
10479 struct breakpoint *b;
10480 struct symtab_and_line sal_start, sal_end;
10481 struct cleanup *cleanup_bkpt;
10482 struct linespec_sals *lsal_start, *lsal_end;
10483
10484 /* We don't support software ranged breakpoints. */
10485 if (target_ranged_break_num_registers () < 0)
10486 error (_("This target does not support hardware ranged breakpoints."));
10487
10488 bp_count = hw_breakpoint_used_count ();
10489 bp_count += target_ranged_break_num_registers ();
10490 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10491 bp_count, 0);
10492 if (can_use_bp < 0)
10493 error (_("Hardware breakpoints used exceeds limit."));
10494
10495 arg = skip_spaces (arg);
10496 if (arg == NULL || arg[0] == '\0')
10497 error(_("No address range specified."));
10498
10499 init_linespec_result (&canonical_start);
10500
10501 arg_start = arg;
10502 parse_breakpoint_sals (&arg, &canonical_start);
10503
10504 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10505
10506 if (arg[0] != ',')
10507 error (_("Too few arguments."));
10508 else if (VEC_empty (linespec_sals, canonical_start.sals))
10509 error (_("Could not find location of the beginning of the range."));
10510
10511 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10512
10513 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10514 || lsal_start->sals.nelts != 1)
10515 error (_("Cannot create a ranged breakpoint with multiple locations."));
10516
10517 sal_start = lsal_start->sals.sals[0];
10518 addr_string_start = savestring (arg_start, arg - arg_start);
10519 make_cleanup (xfree, addr_string_start);
10520
10521 arg++; /* Skip the comma. */
10522 arg = skip_spaces (arg);
10523
10524 /* Parse the end location. */
10525
10526 init_linespec_result (&canonical_end);
10527 arg_start = arg;
10528
10529 /* We call decode_line_full directly here instead of using
10530 parse_breakpoint_sals because we need to specify the start location's
10531 symtab and line as the default symtab and line for the end of the
10532 range. This makes it possible to have ranges like "foo.c:27, +14",
10533 where +14 means 14 lines from the start location. */
10534 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10535 sal_start.symtab, sal_start.line,
10536 &canonical_end, NULL, NULL);
10537
10538 make_cleanup_destroy_linespec_result (&canonical_end);
10539
10540 if (VEC_empty (linespec_sals, canonical_end.sals))
10541 error (_("Could not find location of the end of the range."));
10542
10543 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10544 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10545 || lsal_end->sals.nelts != 1)
10546 error (_("Cannot create a ranged breakpoint with multiple locations."));
10547
10548 sal_end = lsal_end->sals.sals[0];
10549 addr_string_end = savestring (arg_start, arg - arg_start);
10550 make_cleanup (xfree, addr_string_end);
10551
10552 end = find_breakpoint_range_end (sal_end);
10553 if (sal_start.pc > end)
10554 error (_("Invalid address range, end precedes start."));
10555
10556 length = end - sal_start.pc + 1;
10557 if (length < 0)
10558 /* Length overflowed. */
10559 error (_("Address range too large."));
10560 else if (length == 1)
10561 {
10562 /* This range is simple enough to be handled by
10563 the `hbreak' command. */
10564 hbreak_command (addr_string_start, 1);
10565
10566 do_cleanups (cleanup_bkpt);
10567
10568 return;
10569 }
10570
10571 /* Now set up the breakpoint. */
10572 b = set_raw_breakpoint (get_current_arch (), sal_start,
10573 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10574 set_breakpoint_count (breakpoint_count + 1);
10575 b->number = breakpoint_count;
10576 b->disposition = disp_donttouch;
10577 b->addr_string = xstrdup (addr_string_start);
10578 b->addr_string_range_end = xstrdup (addr_string_end);
10579 b->loc->length = length;
10580
10581 do_cleanups (cleanup_bkpt);
10582
10583 mention (b);
10584 observer_notify_breakpoint_created (b);
10585 update_global_location_list (1);
10586 }
10587
10588 /* Return non-zero if EXP is verified as constant. Returned zero
10589 means EXP is variable. Also the constant detection may fail for
10590 some constant expressions and in such case still falsely return
10591 zero. */
10592
10593 static int
10594 watchpoint_exp_is_const (const struct expression *exp)
10595 {
10596 int i = exp->nelts;
10597
10598 while (i > 0)
10599 {
10600 int oplenp, argsp;
10601
10602 /* We are only interested in the descriptor of each element. */
10603 operator_length (exp, i, &oplenp, &argsp);
10604 i -= oplenp;
10605
10606 switch (exp->elts[i].opcode)
10607 {
10608 case BINOP_ADD:
10609 case BINOP_SUB:
10610 case BINOP_MUL:
10611 case BINOP_DIV:
10612 case BINOP_REM:
10613 case BINOP_MOD:
10614 case BINOP_LSH:
10615 case BINOP_RSH:
10616 case BINOP_LOGICAL_AND:
10617 case BINOP_LOGICAL_OR:
10618 case BINOP_BITWISE_AND:
10619 case BINOP_BITWISE_IOR:
10620 case BINOP_BITWISE_XOR:
10621 case BINOP_EQUAL:
10622 case BINOP_NOTEQUAL:
10623 case BINOP_LESS:
10624 case BINOP_GTR:
10625 case BINOP_LEQ:
10626 case BINOP_GEQ:
10627 case BINOP_REPEAT:
10628 case BINOP_COMMA:
10629 case BINOP_EXP:
10630 case BINOP_MIN:
10631 case BINOP_MAX:
10632 case BINOP_INTDIV:
10633 case BINOP_CONCAT:
10634 case TERNOP_COND:
10635 case TERNOP_SLICE:
10636
10637 case OP_LONG:
10638 case OP_DOUBLE:
10639 case OP_DECFLOAT:
10640 case OP_LAST:
10641 case OP_COMPLEX:
10642 case OP_STRING:
10643 case OP_ARRAY:
10644 case OP_TYPE:
10645 case OP_TYPEOF:
10646 case OP_DECLTYPE:
10647 case OP_TYPEID:
10648 case OP_NAME:
10649 case OP_OBJC_NSSTRING:
10650
10651 case UNOP_NEG:
10652 case UNOP_LOGICAL_NOT:
10653 case UNOP_COMPLEMENT:
10654 case UNOP_ADDR:
10655 case UNOP_HIGH:
10656 case UNOP_CAST:
10657
10658 case UNOP_CAST_TYPE:
10659 case UNOP_REINTERPRET_CAST:
10660 case UNOP_DYNAMIC_CAST:
10661 /* Unary, binary and ternary operators: We have to check
10662 their operands. If they are constant, then so is the
10663 result of that operation. For instance, if A and B are
10664 determined to be constants, then so is "A + B".
10665
10666 UNOP_IND is one exception to the rule above, because the
10667 value of *ADDR is not necessarily a constant, even when
10668 ADDR is. */
10669 break;
10670
10671 case OP_VAR_VALUE:
10672 /* Check whether the associated symbol is a constant.
10673
10674 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10675 possible that a buggy compiler could mark a variable as
10676 constant even when it is not, and TYPE_CONST would return
10677 true in this case, while SYMBOL_CLASS wouldn't.
10678
10679 We also have to check for function symbols because they
10680 are always constant. */
10681 {
10682 struct symbol *s = exp->elts[i + 2].symbol;
10683
10684 if (SYMBOL_CLASS (s) != LOC_BLOCK
10685 && SYMBOL_CLASS (s) != LOC_CONST
10686 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10687 return 0;
10688 break;
10689 }
10690
10691 /* The default action is to return 0 because we are using
10692 the optimistic approach here: If we don't know something,
10693 then it is not a constant. */
10694 default:
10695 return 0;
10696 }
10697 }
10698
10699 return 1;
10700 }
10701
10702 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10703
10704 static void
10705 dtor_watchpoint (struct breakpoint *self)
10706 {
10707 struct watchpoint *w = (struct watchpoint *) self;
10708
10709 xfree (w->cond_exp);
10710 xfree (w->exp);
10711 xfree (w->exp_string);
10712 xfree (w->exp_string_reparse);
10713 value_free (w->val);
10714
10715 base_breakpoint_ops.dtor (self);
10716 }
10717
10718 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10719
10720 static void
10721 re_set_watchpoint (struct breakpoint *b)
10722 {
10723 struct watchpoint *w = (struct watchpoint *) b;
10724
10725 /* Watchpoint can be either on expression using entirely global
10726 variables, or it can be on local variables.
10727
10728 Watchpoints of the first kind are never auto-deleted, and even
10729 persist across program restarts. Since they can use variables
10730 from shared libraries, we need to reparse expression as libraries
10731 are loaded and unloaded.
10732
10733 Watchpoints on local variables can also change meaning as result
10734 of solib event. For example, if a watchpoint uses both a local
10735 and a global variables in expression, it's a local watchpoint,
10736 but unloading of a shared library will make the expression
10737 invalid. This is not a very common use case, but we still
10738 re-evaluate expression, to avoid surprises to the user.
10739
10740 Note that for local watchpoints, we re-evaluate it only if
10741 watchpoints frame id is still valid. If it's not, it means the
10742 watchpoint is out of scope and will be deleted soon. In fact,
10743 I'm not sure we'll ever be called in this case.
10744
10745 If a local watchpoint's frame id is still valid, then
10746 w->exp_valid_block is likewise valid, and we can safely use it.
10747
10748 Don't do anything about disabled watchpoints, since they will be
10749 reevaluated again when enabled. */
10750 update_watchpoint (w, 1 /* reparse */);
10751 }
10752
10753 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10754
10755 static int
10756 insert_watchpoint (struct bp_location *bl)
10757 {
10758 struct watchpoint *w = (struct watchpoint *) bl->owner;
10759 int length = w->exact ? 1 : bl->length;
10760
10761 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10762 w->cond_exp);
10763 }
10764
10765 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10766
10767 static int
10768 remove_watchpoint (struct bp_location *bl)
10769 {
10770 struct watchpoint *w = (struct watchpoint *) bl->owner;
10771 int length = w->exact ? 1 : bl->length;
10772
10773 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10774 w->cond_exp);
10775 }
10776
10777 static int
10778 breakpoint_hit_watchpoint (const struct bp_location *bl,
10779 struct address_space *aspace, CORE_ADDR bp_addr,
10780 const struct target_waitstatus *ws)
10781 {
10782 struct breakpoint *b = bl->owner;
10783 struct watchpoint *w = (struct watchpoint *) b;
10784
10785 /* Continuable hardware watchpoints are treated as non-existent if the
10786 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10787 some data address). Otherwise gdb won't stop on a break instruction
10788 in the code (not from a breakpoint) when a hardware watchpoint has
10789 been defined. Also skip watchpoints which we know did not trigger
10790 (did not match the data address). */
10791 if (is_hardware_watchpoint (b)
10792 && w->watchpoint_triggered == watch_triggered_no)
10793 return 0;
10794
10795 return 1;
10796 }
10797
10798 static void
10799 check_status_watchpoint (bpstat bs)
10800 {
10801 gdb_assert (is_watchpoint (bs->breakpoint_at));
10802
10803 bpstat_check_watchpoint (bs);
10804 }
10805
10806 /* Implement the "resources_needed" breakpoint_ops method for
10807 hardware watchpoints. */
10808
10809 static int
10810 resources_needed_watchpoint (const struct bp_location *bl)
10811 {
10812 struct watchpoint *w = (struct watchpoint *) bl->owner;
10813 int length = w->exact? 1 : bl->length;
10814
10815 return target_region_ok_for_hw_watchpoint (bl->address, length);
10816 }
10817
10818 /* Implement the "works_in_software_mode" breakpoint_ops method for
10819 hardware watchpoints. */
10820
10821 static int
10822 works_in_software_mode_watchpoint (const struct breakpoint *b)
10823 {
10824 /* Read and access watchpoints only work with hardware support. */
10825 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10826 }
10827
10828 static enum print_stop_action
10829 print_it_watchpoint (bpstat bs)
10830 {
10831 struct cleanup *old_chain;
10832 struct breakpoint *b;
10833 struct ui_file *stb;
10834 enum print_stop_action result;
10835 struct watchpoint *w;
10836 struct ui_out *uiout = current_uiout;
10837
10838 gdb_assert (bs->bp_location_at != NULL);
10839
10840 b = bs->breakpoint_at;
10841 w = (struct watchpoint *) b;
10842
10843 stb = mem_fileopen ();
10844 old_chain = make_cleanup_ui_file_delete (stb);
10845
10846 switch (b->type)
10847 {
10848 case bp_watchpoint:
10849 case bp_hardware_watchpoint:
10850 annotate_watchpoint (b->number);
10851 if (ui_out_is_mi_like_p (uiout))
10852 ui_out_field_string
10853 (uiout, "reason",
10854 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10855 mention (b);
10856 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10857 ui_out_text (uiout, "\nOld value = ");
10858 watchpoint_value_print (bs->old_val, stb);
10859 ui_out_field_stream (uiout, "old", stb);
10860 ui_out_text (uiout, "\nNew value = ");
10861 watchpoint_value_print (w->val, stb);
10862 ui_out_field_stream (uiout, "new", stb);
10863 ui_out_text (uiout, "\n");
10864 /* More than one watchpoint may have been triggered. */
10865 result = PRINT_UNKNOWN;
10866 break;
10867
10868 case bp_read_watchpoint:
10869 if (ui_out_is_mi_like_p (uiout))
10870 ui_out_field_string
10871 (uiout, "reason",
10872 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10873 mention (b);
10874 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10875 ui_out_text (uiout, "\nValue = ");
10876 watchpoint_value_print (w->val, stb);
10877 ui_out_field_stream (uiout, "value", stb);
10878 ui_out_text (uiout, "\n");
10879 result = PRINT_UNKNOWN;
10880 break;
10881
10882 case bp_access_watchpoint:
10883 if (bs->old_val != NULL)
10884 {
10885 annotate_watchpoint (b->number);
10886 if (ui_out_is_mi_like_p (uiout))
10887 ui_out_field_string
10888 (uiout, "reason",
10889 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10890 mention (b);
10891 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10892 ui_out_text (uiout, "\nOld value = ");
10893 watchpoint_value_print (bs->old_val, stb);
10894 ui_out_field_stream (uiout, "old", stb);
10895 ui_out_text (uiout, "\nNew value = ");
10896 }
10897 else
10898 {
10899 mention (b);
10900 if (ui_out_is_mi_like_p (uiout))
10901 ui_out_field_string
10902 (uiout, "reason",
10903 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10904 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10905 ui_out_text (uiout, "\nValue = ");
10906 }
10907 watchpoint_value_print (w->val, stb);
10908 ui_out_field_stream (uiout, "new", stb);
10909 ui_out_text (uiout, "\n");
10910 result = PRINT_UNKNOWN;
10911 break;
10912 default:
10913 result = PRINT_UNKNOWN;
10914 }
10915
10916 do_cleanups (old_chain);
10917 return result;
10918 }
10919
10920 /* Implement the "print_mention" breakpoint_ops method for hardware
10921 watchpoints. */
10922
10923 static void
10924 print_mention_watchpoint (struct breakpoint *b)
10925 {
10926 struct cleanup *ui_out_chain;
10927 struct watchpoint *w = (struct watchpoint *) b;
10928 struct ui_out *uiout = current_uiout;
10929
10930 switch (b->type)
10931 {
10932 case bp_watchpoint:
10933 ui_out_text (uiout, "Watchpoint ");
10934 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10935 break;
10936 case bp_hardware_watchpoint:
10937 ui_out_text (uiout, "Hardware watchpoint ");
10938 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10939 break;
10940 case bp_read_watchpoint:
10941 ui_out_text (uiout, "Hardware read watchpoint ");
10942 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10943 break;
10944 case bp_access_watchpoint:
10945 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10946 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10947 break;
10948 default:
10949 internal_error (__FILE__, __LINE__,
10950 _("Invalid hardware watchpoint type."));
10951 }
10952
10953 ui_out_field_int (uiout, "number", b->number);
10954 ui_out_text (uiout, ": ");
10955 ui_out_field_string (uiout, "exp", w->exp_string);
10956 do_cleanups (ui_out_chain);
10957 }
10958
10959 /* Implement the "print_recreate" breakpoint_ops method for
10960 watchpoints. */
10961
10962 static void
10963 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10964 {
10965 struct watchpoint *w = (struct watchpoint *) b;
10966
10967 switch (b->type)
10968 {
10969 case bp_watchpoint:
10970 case bp_hardware_watchpoint:
10971 fprintf_unfiltered (fp, "watch");
10972 break;
10973 case bp_read_watchpoint:
10974 fprintf_unfiltered (fp, "rwatch");
10975 break;
10976 case bp_access_watchpoint:
10977 fprintf_unfiltered (fp, "awatch");
10978 break;
10979 default:
10980 internal_error (__FILE__, __LINE__,
10981 _("Invalid watchpoint type."));
10982 }
10983
10984 fprintf_unfiltered (fp, " %s", w->exp_string);
10985 print_recreate_thread (b, fp);
10986 }
10987
10988 /* Implement the "explains_signal" breakpoint_ops method for
10989 watchpoints. */
10990
10991 static int
10992 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10993 {
10994 /* A software watchpoint cannot cause a signal other than
10995 GDB_SIGNAL_TRAP. */
10996 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10997 return 0;
10998
10999 return 1;
11000 }
11001
11002 /* The breakpoint_ops structure to be used in hardware watchpoints. */
11003
11004 static struct breakpoint_ops watchpoint_breakpoint_ops;
11005
11006 /* Implement the "insert" breakpoint_ops method for
11007 masked hardware watchpoints. */
11008
11009 static int
11010 insert_masked_watchpoint (struct bp_location *bl)
11011 {
11012 struct watchpoint *w = (struct watchpoint *) bl->owner;
11013
11014 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
11015 bl->watchpoint_type);
11016 }
11017
11018 /* Implement the "remove" breakpoint_ops method for
11019 masked hardware watchpoints. */
11020
11021 static int
11022 remove_masked_watchpoint (struct bp_location *bl)
11023 {
11024 struct watchpoint *w = (struct watchpoint *) bl->owner;
11025
11026 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
11027 bl->watchpoint_type);
11028 }
11029
11030 /* Implement the "resources_needed" breakpoint_ops method for
11031 masked hardware watchpoints. */
11032
11033 static int
11034 resources_needed_masked_watchpoint (const struct bp_location *bl)
11035 {
11036 struct watchpoint *w = (struct watchpoint *) bl->owner;
11037
11038 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
11039 }
11040
11041 /* Implement the "works_in_software_mode" breakpoint_ops method for
11042 masked hardware watchpoints. */
11043
11044 static int
11045 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
11046 {
11047 return 0;
11048 }
11049
11050 /* Implement the "print_it" breakpoint_ops method for
11051 masked hardware watchpoints. */
11052
11053 static enum print_stop_action
11054 print_it_masked_watchpoint (bpstat bs)
11055 {
11056 struct breakpoint *b = bs->breakpoint_at;
11057 struct ui_out *uiout = current_uiout;
11058
11059 /* Masked watchpoints have only one location. */
11060 gdb_assert (b->loc && b->loc->next == NULL);
11061
11062 switch (b->type)
11063 {
11064 case bp_hardware_watchpoint:
11065 annotate_watchpoint (b->number);
11066 if (ui_out_is_mi_like_p (uiout))
11067 ui_out_field_string
11068 (uiout, "reason",
11069 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11070 break;
11071
11072 case bp_read_watchpoint:
11073 if (ui_out_is_mi_like_p (uiout))
11074 ui_out_field_string
11075 (uiout, "reason",
11076 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11077 break;
11078
11079 case bp_access_watchpoint:
11080 if (ui_out_is_mi_like_p (uiout))
11081 ui_out_field_string
11082 (uiout, "reason",
11083 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11084 break;
11085 default:
11086 internal_error (__FILE__, __LINE__,
11087 _("Invalid hardware watchpoint type."));
11088 }
11089
11090 mention (b);
11091 ui_out_text (uiout, _("\n\
11092 Check the underlying instruction at PC for the memory\n\
11093 address and value which triggered this watchpoint.\n"));
11094 ui_out_text (uiout, "\n");
11095
11096 /* More than one watchpoint may have been triggered. */
11097 return PRINT_UNKNOWN;
11098 }
11099
11100 /* Implement the "print_one_detail" breakpoint_ops method for
11101 masked hardware watchpoints. */
11102
11103 static void
11104 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11105 struct ui_out *uiout)
11106 {
11107 struct watchpoint *w = (struct watchpoint *) b;
11108
11109 /* Masked watchpoints have only one location. */
11110 gdb_assert (b->loc && b->loc->next == NULL);
11111
11112 ui_out_text (uiout, "\tmask ");
11113 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11114 ui_out_text (uiout, "\n");
11115 }
11116
11117 /* Implement the "print_mention" breakpoint_ops method for
11118 masked hardware watchpoints. */
11119
11120 static void
11121 print_mention_masked_watchpoint (struct breakpoint *b)
11122 {
11123 struct watchpoint *w = (struct watchpoint *) b;
11124 struct ui_out *uiout = current_uiout;
11125 struct cleanup *ui_out_chain;
11126
11127 switch (b->type)
11128 {
11129 case bp_hardware_watchpoint:
11130 ui_out_text (uiout, "Masked hardware watchpoint ");
11131 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11132 break;
11133 case bp_read_watchpoint:
11134 ui_out_text (uiout, "Masked hardware read watchpoint ");
11135 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11136 break;
11137 case bp_access_watchpoint:
11138 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11139 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11140 break;
11141 default:
11142 internal_error (__FILE__, __LINE__,
11143 _("Invalid hardware watchpoint type."));
11144 }
11145
11146 ui_out_field_int (uiout, "number", b->number);
11147 ui_out_text (uiout, ": ");
11148 ui_out_field_string (uiout, "exp", w->exp_string);
11149 do_cleanups (ui_out_chain);
11150 }
11151
11152 /* Implement the "print_recreate" breakpoint_ops method for
11153 masked hardware watchpoints. */
11154
11155 static void
11156 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11157 {
11158 struct watchpoint *w = (struct watchpoint *) b;
11159 char tmp[40];
11160
11161 switch (b->type)
11162 {
11163 case bp_hardware_watchpoint:
11164 fprintf_unfiltered (fp, "watch");
11165 break;
11166 case bp_read_watchpoint:
11167 fprintf_unfiltered (fp, "rwatch");
11168 break;
11169 case bp_access_watchpoint:
11170 fprintf_unfiltered (fp, "awatch");
11171 break;
11172 default:
11173 internal_error (__FILE__, __LINE__,
11174 _("Invalid hardware watchpoint type."));
11175 }
11176
11177 sprintf_vma (tmp, w->hw_wp_mask);
11178 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11179 print_recreate_thread (b, fp);
11180 }
11181
11182 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11183
11184 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11185
11186 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11187
11188 static int
11189 is_masked_watchpoint (const struct breakpoint *b)
11190 {
11191 return b->ops == &masked_watchpoint_breakpoint_ops;
11192 }
11193
11194 /* accessflag: hw_write: watch write,
11195 hw_read: watch read,
11196 hw_access: watch access (read or write) */
11197 static void
11198 watch_command_1 (const char *arg, int accessflag, int from_tty,
11199 int just_location, int internal)
11200 {
11201 volatile struct gdb_exception e;
11202 struct breakpoint *b, *scope_breakpoint = NULL;
11203 struct expression *exp;
11204 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11205 struct value *val, *mark, *result;
11206 struct frame_info *frame;
11207 const char *exp_start = NULL;
11208 const char *exp_end = NULL;
11209 const char *tok, *end_tok;
11210 int toklen = -1;
11211 const char *cond_start = NULL;
11212 const char *cond_end = NULL;
11213 enum bptype bp_type;
11214 int thread = -1;
11215 int pc = 0;
11216 /* Flag to indicate whether we are going to use masks for
11217 the hardware watchpoint. */
11218 int use_mask = 0;
11219 CORE_ADDR mask = 0;
11220 struct watchpoint *w;
11221 char *expression;
11222 struct cleanup *back_to;
11223
11224 /* Make sure that we actually have parameters to parse. */
11225 if (arg != NULL && arg[0] != '\0')
11226 {
11227 const char *value_start;
11228
11229 exp_end = arg + strlen (arg);
11230
11231 /* Look for "parameter value" pairs at the end
11232 of the arguments string. */
11233 for (tok = exp_end - 1; tok > arg; tok--)
11234 {
11235 /* Skip whitespace at the end of the argument list. */
11236 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11237 tok--;
11238
11239 /* Find the beginning of the last token.
11240 This is the value of the parameter. */
11241 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11242 tok--;
11243 value_start = tok + 1;
11244
11245 /* Skip whitespace. */
11246 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11247 tok--;
11248
11249 end_tok = tok;
11250
11251 /* Find the beginning of the second to last token.
11252 This is the parameter itself. */
11253 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11254 tok--;
11255 tok++;
11256 toklen = end_tok - tok + 1;
11257
11258 if (toklen == 6 && !strncmp (tok, "thread", 6))
11259 {
11260 /* At this point we've found a "thread" token, which means
11261 the user is trying to set a watchpoint that triggers
11262 only in a specific thread. */
11263 char *endp;
11264
11265 if (thread != -1)
11266 error(_("You can specify only one thread."));
11267
11268 /* Extract the thread ID from the next token. */
11269 thread = strtol (value_start, &endp, 0);
11270
11271 /* Check if the user provided a valid numeric value for the
11272 thread ID. */
11273 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11274 error (_("Invalid thread ID specification %s."), value_start);
11275
11276 /* Check if the thread actually exists. */
11277 if (!valid_thread_id (thread))
11278 invalid_thread_id_error (thread);
11279 }
11280 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11281 {
11282 /* We've found a "mask" token, which means the user wants to
11283 create a hardware watchpoint that is going to have the mask
11284 facility. */
11285 struct value *mask_value, *mark;
11286
11287 if (use_mask)
11288 error(_("You can specify only one mask."));
11289
11290 use_mask = just_location = 1;
11291
11292 mark = value_mark ();
11293 mask_value = parse_to_comma_and_eval (&value_start);
11294 mask = value_as_address (mask_value);
11295 value_free_to_mark (mark);
11296 }
11297 else
11298 /* We didn't recognize what we found. We should stop here. */
11299 break;
11300
11301 /* Truncate the string and get rid of the "parameter value" pair before
11302 the arguments string is parsed by the parse_exp_1 function. */
11303 exp_end = tok;
11304 }
11305 }
11306 else
11307 exp_end = arg;
11308
11309 /* Parse the rest of the arguments. From here on out, everything
11310 is in terms of a newly allocated string instead of the original
11311 ARG. */
11312 innermost_block = NULL;
11313 expression = savestring (arg, exp_end - arg);
11314 back_to = make_cleanup (xfree, expression);
11315 exp_start = arg = expression;
11316 exp = parse_exp_1 (&arg, 0, 0, 0);
11317 exp_end = arg;
11318 /* Remove trailing whitespace from the expression before saving it.
11319 This makes the eventual display of the expression string a bit
11320 prettier. */
11321 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11322 --exp_end;
11323
11324 /* Checking if the expression is not constant. */
11325 if (watchpoint_exp_is_const (exp))
11326 {
11327 int len;
11328
11329 len = exp_end - exp_start;
11330 while (len > 0 && isspace (exp_start[len - 1]))
11331 len--;
11332 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11333 }
11334
11335 exp_valid_block = innermost_block;
11336 mark = value_mark ();
11337 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11338
11339 if (just_location)
11340 {
11341 int ret;
11342
11343 exp_valid_block = NULL;
11344 val = value_addr (result);
11345 release_value (val);
11346 value_free_to_mark (mark);
11347
11348 if (use_mask)
11349 {
11350 ret = target_masked_watch_num_registers (value_as_address (val),
11351 mask);
11352 if (ret == -1)
11353 error (_("This target does not support masked watchpoints."));
11354 else if (ret == -2)
11355 error (_("Invalid mask or memory region."));
11356 }
11357 }
11358 else if (val != NULL)
11359 release_value (val);
11360
11361 tok = skip_spaces_const (arg);
11362 end_tok = skip_to_space_const (tok);
11363
11364 toklen = end_tok - tok;
11365 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11366 {
11367 struct expression *cond;
11368
11369 innermost_block = NULL;
11370 tok = cond_start = end_tok + 1;
11371 cond = parse_exp_1 (&tok, 0, 0, 0);
11372
11373 /* The watchpoint expression may not be local, but the condition
11374 may still be. E.g.: `watch global if local > 0'. */
11375 cond_exp_valid_block = innermost_block;
11376
11377 xfree (cond);
11378 cond_end = tok;
11379 }
11380 if (*tok)
11381 error (_("Junk at end of command."));
11382
11383 frame = block_innermost_frame (exp_valid_block);
11384
11385 /* If the expression is "local", then set up a "watchpoint scope"
11386 breakpoint at the point where we've left the scope of the watchpoint
11387 expression. Create the scope breakpoint before the watchpoint, so
11388 that we will encounter it first in bpstat_stop_status. */
11389 if (exp_valid_block && frame)
11390 {
11391 if (frame_id_p (frame_unwind_caller_id (frame)))
11392 {
11393 scope_breakpoint
11394 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11395 frame_unwind_caller_pc (frame),
11396 bp_watchpoint_scope,
11397 &momentary_breakpoint_ops);
11398
11399 scope_breakpoint->enable_state = bp_enabled;
11400
11401 /* Automatically delete the breakpoint when it hits. */
11402 scope_breakpoint->disposition = disp_del;
11403
11404 /* Only break in the proper frame (help with recursion). */
11405 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11406
11407 /* Set the address at which we will stop. */
11408 scope_breakpoint->loc->gdbarch
11409 = frame_unwind_caller_arch (frame);
11410 scope_breakpoint->loc->requested_address
11411 = frame_unwind_caller_pc (frame);
11412 scope_breakpoint->loc->address
11413 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11414 scope_breakpoint->loc->requested_address,
11415 scope_breakpoint->type);
11416 }
11417 }
11418
11419 /* Now set up the breakpoint. We create all watchpoints as hardware
11420 watchpoints here even if hardware watchpoints are turned off, a call
11421 to update_watchpoint later in this function will cause the type to
11422 drop back to bp_watchpoint (software watchpoint) if required. */
11423
11424 if (accessflag == hw_read)
11425 bp_type = bp_read_watchpoint;
11426 else if (accessflag == hw_access)
11427 bp_type = bp_access_watchpoint;
11428 else
11429 bp_type = bp_hardware_watchpoint;
11430
11431 w = XCNEW (struct watchpoint);
11432 b = &w->base;
11433 if (use_mask)
11434 init_raw_breakpoint_without_location (b, NULL, bp_type,
11435 &masked_watchpoint_breakpoint_ops);
11436 else
11437 init_raw_breakpoint_without_location (b, NULL, bp_type,
11438 &watchpoint_breakpoint_ops);
11439 b->thread = thread;
11440 b->disposition = disp_donttouch;
11441 b->pspace = current_program_space;
11442 w->exp = exp;
11443 w->exp_valid_block = exp_valid_block;
11444 w->cond_exp_valid_block = cond_exp_valid_block;
11445 if (just_location)
11446 {
11447 struct type *t = value_type (val);
11448 CORE_ADDR addr = value_as_address (val);
11449 char *name;
11450
11451 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11452 name = type_to_string (t);
11453
11454 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11455 core_addr_to_string (addr));
11456 xfree (name);
11457
11458 w->exp_string = xstrprintf ("-location %.*s",
11459 (int) (exp_end - exp_start), exp_start);
11460
11461 /* The above expression is in C. */
11462 b->language = language_c;
11463 }
11464 else
11465 w->exp_string = savestring (exp_start, exp_end - exp_start);
11466
11467 if (use_mask)
11468 {
11469 w->hw_wp_mask = mask;
11470 }
11471 else
11472 {
11473 w->val = val;
11474 w->val_valid = 1;
11475 }
11476
11477 if (cond_start)
11478 b->cond_string = savestring (cond_start, cond_end - cond_start);
11479 else
11480 b->cond_string = 0;
11481
11482 if (frame)
11483 {
11484 w->watchpoint_frame = get_frame_id (frame);
11485 w->watchpoint_thread = inferior_ptid;
11486 }
11487 else
11488 {
11489 w->watchpoint_frame = null_frame_id;
11490 w->watchpoint_thread = null_ptid;
11491 }
11492
11493 if (scope_breakpoint != NULL)
11494 {
11495 /* The scope breakpoint is related to the watchpoint. We will
11496 need to act on them together. */
11497 b->related_breakpoint = scope_breakpoint;
11498 scope_breakpoint->related_breakpoint = b;
11499 }
11500
11501 if (!just_location)
11502 value_free_to_mark (mark);
11503
11504 TRY_CATCH (e, RETURN_MASK_ALL)
11505 {
11506 /* Finally update the new watchpoint. This creates the locations
11507 that should be inserted. */
11508 update_watchpoint (w, 1);
11509 }
11510 if (e.reason < 0)
11511 {
11512 delete_breakpoint (b);
11513 throw_exception (e);
11514 }
11515
11516 install_breakpoint (internal, b, 1);
11517 do_cleanups (back_to);
11518 }
11519
11520 /* Return count of debug registers needed to watch the given expression.
11521 If the watchpoint cannot be handled in hardware return zero. */
11522
11523 static int
11524 can_use_hardware_watchpoint (struct value *v)
11525 {
11526 int found_memory_cnt = 0;
11527 struct value *head = v;
11528
11529 /* Did the user specifically forbid us to use hardware watchpoints? */
11530 if (!can_use_hw_watchpoints)
11531 return 0;
11532
11533 /* Make sure that the value of the expression depends only upon
11534 memory contents, and values computed from them within GDB. If we
11535 find any register references or function calls, we can't use a
11536 hardware watchpoint.
11537
11538 The idea here is that evaluating an expression generates a series
11539 of values, one holding the value of every subexpression. (The
11540 expression a*b+c has five subexpressions: a, b, a*b, c, and
11541 a*b+c.) GDB's values hold almost enough information to establish
11542 the criteria given above --- they identify memory lvalues,
11543 register lvalues, computed values, etcetera. So we can evaluate
11544 the expression, and then scan the chain of values that leaves
11545 behind to decide whether we can detect any possible change to the
11546 expression's final value using only hardware watchpoints.
11547
11548 However, I don't think that the values returned by inferior
11549 function calls are special in any way. So this function may not
11550 notice that an expression involving an inferior function call
11551 can't be watched with hardware watchpoints. FIXME. */
11552 for (; v; v = value_next (v))
11553 {
11554 if (VALUE_LVAL (v) == lval_memory)
11555 {
11556 if (v != head && value_lazy (v))
11557 /* A lazy memory lvalue in the chain is one that GDB never
11558 needed to fetch; we either just used its address (e.g.,
11559 `a' in `a.b') or we never needed it at all (e.g., `a'
11560 in `a,b'). This doesn't apply to HEAD; if that is
11561 lazy then it was not readable, but watch it anyway. */
11562 ;
11563 else
11564 {
11565 /* Ahh, memory we actually used! Check if we can cover
11566 it with hardware watchpoints. */
11567 struct type *vtype = check_typedef (value_type (v));
11568
11569 /* We only watch structs and arrays if user asked for it
11570 explicitly, never if they just happen to appear in a
11571 middle of some value chain. */
11572 if (v == head
11573 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11574 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11575 {
11576 CORE_ADDR vaddr = value_address (v);
11577 int len;
11578 int num_regs;
11579
11580 len = (target_exact_watchpoints
11581 && is_scalar_type_recursive (vtype))?
11582 1 : TYPE_LENGTH (value_type (v));
11583
11584 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11585 if (!num_regs)
11586 return 0;
11587 else
11588 found_memory_cnt += num_regs;
11589 }
11590 }
11591 }
11592 else if (VALUE_LVAL (v) != not_lval
11593 && deprecated_value_modifiable (v) == 0)
11594 return 0; /* These are values from the history (e.g., $1). */
11595 else if (VALUE_LVAL (v) == lval_register)
11596 return 0; /* Cannot watch a register with a HW watchpoint. */
11597 }
11598
11599 /* The expression itself looks suitable for using a hardware
11600 watchpoint, but give the target machine a chance to reject it. */
11601 return found_memory_cnt;
11602 }
11603
11604 void
11605 watch_command_wrapper (char *arg, int from_tty, int internal)
11606 {
11607 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11608 }
11609
11610 /* A helper function that looks for the "-location" argument and then
11611 calls watch_command_1. */
11612
11613 static void
11614 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11615 {
11616 int just_location = 0;
11617
11618 if (arg
11619 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11620 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11621 {
11622 arg = skip_spaces (arg);
11623 just_location = 1;
11624 }
11625
11626 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11627 }
11628
11629 static void
11630 watch_command (char *arg, int from_tty)
11631 {
11632 watch_maybe_just_location (arg, hw_write, from_tty);
11633 }
11634
11635 void
11636 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11637 {
11638 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11639 }
11640
11641 static void
11642 rwatch_command (char *arg, int from_tty)
11643 {
11644 watch_maybe_just_location (arg, hw_read, from_tty);
11645 }
11646
11647 void
11648 awatch_command_wrapper (char *arg, int from_tty, int internal)
11649 {
11650 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11651 }
11652
11653 static void
11654 awatch_command (char *arg, int from_tty)
11655 {
11656 watch_maybe_just_location (arg, hw_access, from_tty);
11657 }
11658 \f
11659
11660 /* Helper routines for the until_command routine in infcmd.c. Here
11661 because it uses the mechanisms of breakpoints. */
11662
11663 struct until_break_command_continuation_args
11664 {
11665 struct breakpoint *breakpoint;
11666 struct breakpoint *breakpoint2;
11667 int thread_num;
11668 };
11669
11670 /* This function is called by fetch_inferior_event via the
11671 cmd_continuation pointer, to complete the until command. It takes
11672 care of cleaning up the temporary breakpoints set up by the until
11673 command. */
11674 static void
11675 until_break_command_continuation (void *arg, int err)
11676 {
11677 struct until_break_command_continuation_args *a = arg;
11678
11679 delete_breakpoint (a->breakpoint);
11680 if (a->breakpoint2)
11681 delete_breakpoint (a->breakpoint2);
11682 delete_longjmp_breakpoint (a->thread_num);
11683 }
11684
11685 void
11686 until_break_command (char *arg, int from_tty, int anywhere)
11687 {
11688 struct symtabs_and_lines sals;
11689 struct symtab_and_line sal;
11690 struct frame_info *frame;
11691 struct gdbarch *frame_gdbarch;
11692 struct frame_id stack_frame_id;
11693 struct frame_id caller_frame_id;
11694 struct breakpoint *breakpoint;
11695 struct breakpoint *breakpoint2 = NULL;
11696 struct cleanup *old_chain;
11697 int thread;
11698 struct thread_info *tp;
11699
11700 clear_proceed_status (0);
11701
11702 /* Set a breakpoint where the user wants it and at return from
11703 this function. */
11704
11705 if (last_displayed_sal_is_valid ())
11706 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11707 get_last_displayed_symtab (),
11708 get_last_displayed_line ());
11709 else
11710 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11711 (struct symtab *) NULL, 0);
11712
11713 if (sals.nelts != 1)
11714 error (_("Couldn't get information on specified line."));
11715
11716 sal = sals.sals[0];
11717 xfree (sals.sals); /* malloc'd, so freed. */
11718
11719 if (*arg)
11720 error (_("Junk at end of arguments."));
11721
11722 resolve_sal_pc (&sal);
11723
11724 tp = inferior_thread ();
11725 thread = tp->num;
11726
11727 old_chain = make_cleanup (null_cleanup, NULL);
11728
11729 /* Note linespec handling above invalidates the frame chain.
11730 Installing a breakpoint also invalidates the frame chain (as it
11731 may need to switch threads), so do any frame handling before
11732 that. */
11733
11734 frame = get_selected_frame (NULL);
11735 frame_gdbarch = get_frame_arch (frame);
11736 stack_frame_id = get_stack_frame_id (frame);
11737 caller_frame_id = frame_unwind_caller_id (frame);
11738
11739 /* Keep within the current frame, or in frames called by the current
11740 one. */
11741
11742 if (frame_id_p (caller_frame_id))
11743 {
11744 struct symtab_and_line sal2;
11745
11746 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11747 sal2.pc = frame_unwind_caller_pc (frame);
11748 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11749 sal2,
11750 caller_frame_id,
11751 bp_until);
11752 make_cleanup_delete_breakpoint (breakpoint2);
11753
11754 set_longjmp_breakpoint (tp, caller_frame_id);
11755 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11756 }
11757
11758 /* set_momentary_breakpoint could invalidate FRAME. */
11759 frame = NULL;
11760
11761 if (anywhere)
11762 /* If the user told us to continue until a specified location,
11763 we don't specify a frame at which we need to stop. */
11764 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11765 null_frame_id, bp_until);
11766 else
11767 /* Otherwise, specify the selected frame, because we want to stop
11768 only at the very same frame. */
11769 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11770 stack_frame_id, bp_until);
11771 make_cleanup_delete_breakpoint (breakpoint);
11772
11773 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11774
11775 /* If we are running asynchronously, and proceed call above has
11776 actually managed to start the target, arrange for breakpoints to
11777 be deleted when the target stops. Otherwise, we're already
11778 stopped and delete breakpoints via cleanup chain. */
11779
11780 if (target_can_async_p () && is_running (inferior_ptid))
11781 {
11782 struct until_break_command_continuation_args *args;
11783 args = xmalloc (sizeof (*args));
11784
11785 args->breakpoint = breakpoint;
11786 args->breakpoint2 = breakpoint2;
11787 args->thread_num = thread;
11788
11789 discard_cleanups (old_chain);
11790 add_continuation (inferior_thread (),
11791 until_break_command_continuation, args,
11792 xfree);
11793 }
11794 else
11795 do_cleanups (old_chain);
11796 }
11797
11798 /* This function attempts to parse an optional "if <cond>" clause
11799 from the arg string. If one is not found, it returns NULL.
11800
11801 Else, it returns a pointer to the condition string. (It does not
11802 attempt to evaluate the string against a particular block.) And,
11803 it updates arg to point to the first character following the parsed
11804 if clause in the arg string. */
11805
11806 char *
11807 ep_parse_optional_if_clause (char **arg)
11808 {
11809 char *cond_string;
11810
11811 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11812 return NULL;
11813
11814 /* Skip the "if" keyword. */
11815 (*arg) += 2;
11816
11817 /* Skip any extra leading whitespace, and record the start of the
11818 condition string. */
11819 *arg = skip_spaces (*arg);
11820 cond_string = *arg;
11821
11822 /* Assume that the condition occupies the remainder of the arg
11823 string. */
11824 (*arg) += strlen (cond_string);
11825
11826 return cond_string;
11827 }
11828
11829 /* Commands to deal with catching events, such as signals, exceptions,
11830 process start/exit, etc. */
11831
11832 typedef enum
11833 {
11834 catch_fork_temporary, catch_vfork_temporary,
11835 catch_fork_permanent, catch_vfork_permanent
11836 }
11837 catch_fork_kind;
11838
11839 static void
11840 catch_fork_command_1 (char *arg, int from_tty,
11841 struct cmd_list_element *command)
11842 {
11843 struct gdbarch *gdbarch = get_current_arch ();
11844 char *cond_string = NULL;
11845 catch_fork_kind fork_kind;
11846 int tempflag;
11847
11848 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11849 tempflag = (fork_kind == catch_fork_temporary
11850 || fork_kind == catch_vfork_temporary);
11851
11852 if (!arg)
11853 arg = "";
11854 arg = skip_spaces (arg);
11855
11856 /* The allowed syntax is:
11857 catch [v]fork
11858 catch [v]fork if <cond>
11859
11860 First, check if there's an if clause. */
11861 cond_string = ep_parse_optional_if_clause (&arg);
11862
11863 if ((*arg != '\0') && !isspace (*arg))
11864 error (_("Junk at end of arguments."));
11865
11866 /* If this target supports it, create a fork or vfork catchpoint
11867 and enable reporting of such events. */
11868 switch (fork_kind)
11869 {
11870 case catch_fork_temporary:
11871 case catch_fork_permanent:
11872 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11873 &catch_fork_breakpoint_ops);
11874 break;
11875 case catch_vfork_temporary:
11876 case catch_vfork_permanent:
11877 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11878 &catch_vfork_breakpoint_ops);
11879 break;
11880 default:
11881 error (_("unsupported or unknown fork kind; cannot catch it"));
11882 break;
11883 }
11884 }
11885
11886 static void
11887 catch_exec_command_1 (char *arg, int from_tty,
11888 struct cmd_list_element *command)
11889 {
11890 struct exec_catchpoint *c;
11891 struct gdbarch *gdbarch = get_current_arch ();
11892 int tempflag;
11893 char *cond_string = NULL;
11894
11895 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11896
11897 if (!arg)
11898 arg = "";
11899 arg = skip_spaces (arg);
11900
11901 /* The allowed syntax is:
11902 catch exec
11903 catch exec if <cond>
11904
11905 First, check if there's an if clause. */
11906 cond_string = ep_parse_optional_if_clause (&arg);
11907
11908 if ((*arg != '\0') && !isspace (*arg))
11909 error (_("Junk at end of arguments."));
11910
11911 c = XNEW (struct exec_catchpoint);
11912 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11913 &catch_exec_breakpoint_ops);
11914 c->exec_pathname = NULL;
11915
11916 install_breakpoint (0, &c->base, 1);
11917 }
11918
11919 void
11920 init_ada_exception_breakpoint (struct breakpoint *b,
11921 struct gdbarch *gdbarch,
11922 struct symtab_and_line sal,
11923 char *addr_string,
11924 const struct breakpoint_ops *ops,
11925 int tempflag,
11926 int enabled,
11927 int from_tty)
11928 {
11929 if (from_tty)
11930 {
11931 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11932 if (!loc_gdbarch)
11933 loc_gdbarch = gdbarch;
11934
11935 describe_other_breakpoints (loc_gdbarch,
11936 sal.pspace, sal.pc, sal.section, -1);
11937 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11938 version for exception catchpoints, because two catchpoints
11939 used for different exception names will use the same address.
11940 In this case, a "breakpoint ... also set at..." warning is
11941 unproductive. Besides, the warning phrasing is also a bit
11942 inappropriate, we should use the word catchpoint, and tell
11943 the user what type of catchpoint it is. The above is good
11944 enough for now, though. */
11945 }
11946
11947 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11948
11949 b->enable_state = enabled ? bp_enabled : bp_disabled;
11950 b->disposition = tempflag ? disp_del : disp_donttouch;
11951 b->addr_string = addr_string;
11952 b->language = language_ada;
11953 }
11954
11955 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11956 filter list, or NULL if no filtering is required. */
11957 static VEC(int) *
11958 catch_syscall_split_args (char *arg)
11959 {
11960 VEC(int) *result = NULL;
11961 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11962
11963 while (*arg != '\0')
11964 {
11965 int i, syscall_number;
11966 char *endptr;
11967 char cur_name[128];
11968 struct syscall s;
11969
11970 /* Skip whitespace. */
11971 arg = skip_spaces (arg);
11972
11973 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11974 cur_name[i] = arg[i];
11975 cur_name[i] = '\0';
11976 arg += i;
11977
11978 /* Check if the user provided a syscall name or a number. */
11979 syscall_number = (int) strtol (cur_name, &endptr, 0);
11980 if (*endptr == '\0')
11981 get_syscall_by_number (syscall_number, &s);
11982 else
11983 {
11984 /* We have a name. Let's check if it's valid and convert it
11985 to a number. */
11986 get_syscall_by_name (cur_name, &s);
11987
11988 if (s.number == UNKNOWN_SYSCALL)
11989 /* Here we have to issue an error instead of a warning,
11990 because GDB cannot do anything useful if there's no
11991 syscall number to be caught. */
11992 error (_("Unknown syscall name '%s'."), cur_name);
11993 }
11994
11995 /* Ok, it's valid. */
11996 VEC_safe_push (int, result, s.number);
11997 }
11998
11999 discard_cleanups (cleanup);
12000 return result;
12001 }
12002
12003 /* Implement the "catch syscall" command. */
12004
12005 static void
12006 catch_syscall_command_1 (char *arg, int from_tty,
12007 struct cmd_list_element *command)
12008 {
12009 int tempflag;
12010 VEC(int) *filter;
12011 struct syscall s;
12012 struct gdbarch *gdbarch = get_current_arch ();
12013
12014 /* Checking if the feature if supported. */
12015 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
12016 error (_("The feature 'catch syscall' is not supported on \
12017 this architecture yet."));
12018
12019 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12020
12021 arg = skip_spaces (arg);
12022
12023 /* We need to do this first "dummy" translation in order
12024 to get the syscall XML file loaded or, most important,
12025 to display a warning to the user if there's no XML file
12026 for his/her architecture. */
12027 get_syscall_by_number (0, &s);
12028
12029 /* The allowed syntax is:
12030 catch syscall
12031 catch syscall <name | number> [<name | number> ... <name | number>]
12032
12033 Let's check if there's a syscall name. */
12034
12035 if (arg != NULL)
12036 filter = catch_syscall_split_args (arg);
12037 else
12038 filter = NULL;
12039
12040 create_syscall_event_catchpoint (tempflag, filter,
12041 &catch_syscall_breakpoint_ops);
12042 }
12043
12044 static void
12045 catch_command (char *arg, int from_tty)
12046 {
12047 error (_("Catch requires an event name."));
12048 }
12049 \f
12050
12051 static void
12052 tcatch_command (char *arg, int from_tty)
12053 {
12054 error (_("Catch requires an event name."));
12055 }
12056
12057 /* A qsort comparison function that sorts breakpoints in order. */
12058
12059 static int
12060 compare_breakpoints (const void *a, const void *b)
12061 {
12062 const breakpoint_p *ba = a;
12063 uintptr_t ua = (uintptr_t) *ba;
12064 const breakpoint_p *bb = b;
12065 uintptr_t ub = (uintptr_t) *bb;
12066
12067 if ((*ba)->number < (*bb)->number)
12068 return -1;
12069 else if ((*ba)->number > (*bb)->number)
12070 return 1;
12071
12072 /* Now sort by address, in case we see, e..g, two breakpoints with
12073 the number 0. */
12074 if (ua < ub)
12075 return -1;
12076 return ua > ub ? 1 : 0;
12077 }
12078
12079 /* Delete breakpoints by address or line. */
12080
12081 static void
12082 clear_command (char *arg, int from_tty)
12083 {
12084 struct breakpoint *b, *prev;
12085 VEC(breakpoint_p) *found = 0;
12086 int ix;
12087 int default_match;
12088 struct symtabs_and_lines sals;
12089 struct symtab_and_line sal;
12090 int i;
12091 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12092
12093 if (arg)
12094 {
12095 sals = decode_line_with_current_source (arg,
12096 (DECODE_LINE_FUNFIRSTLINE
12097 | DECODE_LINE_LIST_MODE));
12098 make_cleanup (xfree, sals.sals);
12099 default_match = 0;
12100 }
12101 else
12102 {
12103 sals.sals = (struct symtab_and_line *)
12104 xmalloc (sizeof (struct symtab_and_line));
12105 make_cleanup (xfree, sals.sals);
12106 init_sal (&sal); /* Initialize to zeroes. */
12107
12108 /* Set sal's line, symtab, pc, and pspace to the values
12109 corresponding to the last call to print_frame_info. If the
12110 codepoint is not valid, this will set all the fields to 0. */
12111 get_last_displayed_sal (&sal);
12112 if (sal.symtab == 0)
12113 error (_("No source file specified."));
12114
12115 sals.sals[0] = sal;
12116 sals.nelts = 1;
12117
12118 default_match = 1;
12119 }
12120
12121 /* We don't call resolve_sal_pc here. That's not as bad as it
12122 seems, because all existing breakpoints typically have both
12123 file/line and pc set. So, if clear is given file/line, we can
12124 match this to existing breakpoint without obtaining pc at all.
12125
12126 We only support clearing given the address explicitly
12127 present in breakpoint table. Say, we've set breakpoint
12128 at file:line. There were several PC values for that file:line,
12129 due to optimization, all in one block.
12130
12131 We've picked one PC value. If "clear" is issued with another
12132 PC corresponding to the same file:line, the breakpoint won't
12133 be cleared. We probably can still clear the breakpoint, but
12134 since the other PC value is never presented to user, user
12135 can only find it by guessing, and it does not seem important
12136 to support that. */
12137
12138 /* For each line spec given, delete bps which correspond to it. Do
12139 it in two passes, solely to preserve the current behavior that
12140 from_tty is forced true if we delete more than one
12141 breakpoint. */
12142
12143 found = NULL;
12144 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12145 for (i = 0; i < sals.nelts; i++)
12146 {
12147 const char *sal_fullname;
12148
12149 /* If exact pc given, clear bpts at that pc.
12150 If line given (pc == 0), clear all bpts on specified line.
12151 If defaulting, clear all bpts on default line
12152 or at default pc.
12153
12154 defaulting sal.pc != 0 tests to do
12155
12156 0 1 pc
12157 1 1 pc _and_ line
12158 0 0 line
12159 1 0 <can't happen> */
12160
12161 sal = sals.sals[i];
12162 sal_fullname = (sal.symtab == NULL
12163 ? NULL : symtab_to_fullname (sal.symtab));
12164
12165 /* Find all matching breakpoints and add them to 'found'. */
12166 ALL_BREAKPOINTS (b)
12167 {
12168 int match = 0;
12169 /* Are we going to delete b? */
12170 if (b->type != bp_none && !is_watchpoint (b))
12171 {
12172 struct bp_location *loc = b->loc;
12173 for (; loc; loc = loc->next)
12174 {
12175 /* If the user specified file:line, don't allow a PC
12176 match. This matches historical gdb behavior. */
12177 int pc_match = (!sal.explicit_line
12178 && sal.pc
12179 && (loc->pspace == sal.pspace)
12180 && (loc->address == sal.pc)
12181 && (!section_is_overlay (loc->section)
12182 || loc->section == sal.section));
12183 int line_match = 0;
12184
12185 if ((default_match || sal.explicit_line)
12186 && loc->symtab != NULL
12187 && sal_fullname != NULL
12188 && sal.pspace == loc->pspace
12189 && loc->line_number == sal.line
12190 && filename_cmp (symtab_to_fullname (loc->symtab),
12191 sal_fullname) == 0)
12192 line_match = 1;
12193
12194 if (pc_match || line_match)
12195 {
12196 match = 1;
12197 break;
12198 }
12199 }
12200 }
12201
12202 if (match)
12203 VEC_safe_push(breakpoint_p, found, b);
12204 }
12205 }
12206
12207 /* Now go thru the 'found' chain and delete them. */
12208 if (VEC_empty(breakpoint_p, found))
12209 {
12210 if (arg)
12211 error (_("No breakpoint at %s."), arg);
12212 else
12213 error (_("No breakpoint at this line."));
12214 }
12215
12216 /* Remove duplicates from the vec. */
12217 qsort (VEC_address (breakpoint_p, found),
12218 VEC_length (breakpoint_p, found),
12219 sizeof (breakpoint_p),
12220 compare_breakpoints);
12221 prev = VEC_index (breakpoint_p, found, 0);
12222 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12223 {
12224 if (b == prev)
12225 {
12226 VEC_ordered_remove (breakpoint_p, found, ix);
12227 --ix;
12228 }
12229 }
12230
12231 if (VEC_length(breakpoint_p, found) > 1)
12232 from_tty = 1; /* Always report if deleted more than one. */
12233 if (from_tty)
12234 {
12235 if (VEC_length(breakpoint_p, found) == 1)
12236 printf_unfiltered (_("Deleted breakpoint "));
12237 else
12238 printf_unfiltered (_("Deleted breakpoints "));
12239 }
12240
12241 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12242 {
12243 if (from_tty)
12244 printf_unfiltered ("%d ", b->number);
12245 delete_breakpoint (b);
12246 }
12247 if (from_tty)
12248 putchar_unfiltered ('\n');
12249
12250 do_cleanups (cleanups);
12251 }
12252 \f
12253 /* Delete breakpoint in BS if they are `delete' breakpoints and
12254 all breakpoints that are marked for deletion, whether hit or not.
12255 This is called after any breakpoint is hit, or after errors. */
12256
12257 void
12258 breakpoint_auto_delete (bpstat bs)
12259 {
12260 struct breakpoint *b, *b_tmp;
12261
12262 for (; bs; bs = bs->next)
12263 if (bs->breakpoint_at
12264 && bs->breakpoint_at->disposition == disp_del
12265 && bs->stop)
12266 delete_breakpoint (bs->breakpoint_at);
12267
12268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12269 {
12270 if (b->disposition == disp_del_at_next_stop)
12271 delete_breakpoint (b);
12272 }
12273 }
12274
12275 /* A comparison function for bp_location AP and BP being interfaced to
12276 qsort. Sort elements primarily by their ADDRESS (no matter what
12277 does breakpoint_address_is_meaningful say for its OWNER),
12278 secondarily by ordering first bp_permanent OWNERed elements and
12279 terciarily just ensuring the array is sorted stable way despite
12280 qsort being an unstable algorithm. */
12281
12282 static int
12283 bp_location_compare (const void *ap, const void *bp)
12284 {
12285 struct bp_location *a = *(void **) ap;
12286 struct bp_location *b = *(void **) bp;
12287 /* A and B come from existing breakpoints having non-NULL OWNER. */
12288 int a_perm = a->owner->enable_state == bp_permanent;
12289 int b_perm = b->owner->enable_state == bp_permanent;
12290
12291 if (a->address != b->address)
12292 return (a->address > b->address) - (a->address < b->address);
12293
12294 /* Sort locations at the same address by their pspace number, keeping
12295 locations of the same inferior (in a multi-inferior environment)
12296 grouped. */
12297
12298 if (a->pspace->num != b->pspace->num)
12299 return ((a->pspace->num > b->pspace->num)
12300 - (a->pspace->num < b->pspace->num));
12301
12302 /* Sort permanent breakpoints first. */
12303 if (a_perm != b_perm)
12304 return (a_perm < b_perm) - (a_perm > b_perm);
12305
12306 /* Make the internal GDB representation stable across GDB runs
12307 where A and B memory inside GDB can differ. Breakpoint locations of
12308 the same type at the same address can be sorted in arbitrary order. */
12309
12310 if (a->owner->number != b->owner->number)
12311 return ((a->owner->number > b->owner->number)
12312 - (a->owner->number < b->owner->number));
12313
12314 return (a > b) - (a < b);
12315 }
12316
12317 /* Set bp_location_placed_address_before_address_max and
12318 bp_location_shadow_len_after_address_max according to the current
12319 content of the bp_location array. */
12320
12321 static void
12322 bp_location_target_extensions_update (void)
12323 {
12324 struct bp_location *bl, **blp_tmp;
12325
12326 bp_location_placed_address_before_address_max = 0;
12327 bp_location_shadow_len_after_address_max = 0;
12328
12329 ALL_BP_LOCATIONS (bl, blp_tmp)
12330 {
12331 CORE_ADDR start, end, addr;
12332
12333 if (!bp_location_has_shadow (bl))
12334 continue;
12335
12336 start = bl->target_info.placed_address;
12337 end = start + bl->target_info.shadow_len;
12338
12339 gdb_assert (bl->address >= start);
12340 addr = bl->address - start;
12341 if (addr > bp_location_placed_address_before_address_max)
12342 bp_location_placed_address_before_address_max = addr;
12343
12344 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12345
12346 gdb_assert (bl->address < end);
12347 addr = end - bl->address;
12348 if (addr > bp_location_shadow_len_after_address_max)
12349 bp_location_shadow_len_after_address_max = addr;
12350 }
12351 }
12352
12353 /* Download tracepoint locations if they haven't been. */
12354
12355 static void
12356 download_tracepoint_locations (void)
12357 {
12358 struct breakpoint *b;
12359 struct cleanup *old_chain;
12360
12361 if (!target_can_download_tracepoint ())
12362 return;
12363
12364 old_chain = save_current_space_and_thread ();
12365
12366 ALL_TRACEPOINTS (b)
12367 {
12368 struct bp_location *bl;
12369 struct tracepoint *t;
12370 int bp_location_downloaded = 0;
12371
12372 if ((b->type == bp_fast_tracepoint
12373 ? !may_insert_fast_tracepoints
12374 : !may_insert_tracepoints))
12375 continue;
12376
12377 for (bl = b->loc; bl; bl = bl->next)
12378 {
12379 /* In tracepoint, locations are _never_ duplicated, so
12380 should_be_inserted is equivalent to
12381 unduplicated_should_be_inserted. */
12382 if (!should_be_inserted (bl) || bl->inserted)
12383 continue;
12384
12385 switch_to_program_space_and_thread (bl->pspace);
12386
12387 target_download_tracepoint (bl);
12388
12389 bl->inserted = 1;
12390 bp_location_downloaded = 1;
12391 }
12392 t = (struct tracepoint *) b;
12393 t->number_on_target = b->number;
12394 if (bp_location_downloaded)
12395 observer_notify_breakpoint_modified (b);
12396 }
12397
12398 do_cleanups (old_chain);
12399 }
12400
12401 /* Swap the insertion/duplication state between two locations. */
12402
12403 static void
12404 swap_insertion (struct bp_location *left, struct bp_location *right)
12405 {
12406 const int left_inserted = left->inserted;
12407 const int left_duplicate = left->duplicate;
12408 const int left_needs_update = left->needs_update;
12409 const struct bp_target_info left_target_info = left->target_info;
12410
12411 /* Locations of tracepoints can never be duplicated. */
12412 if (is_tracepoint (left->owner))
12413 gdb_assert (!left->duplicate);
12414 if (is_tracepoint (right->owner))
12415 gdb_assert (!right->duplicate);
12416
12417 left->inserted = right->inserted;
12418 left->duplicate = right->duplicate;
12419 left->needs_update = right->needs_update;
12420 left->target_info = right->target_info;
12421 right->inserted = left_inserted;
12422 right->duplicate = left_duplicate;
12423 right->needs_update = left_needs_update;
12424 right->target_info = left_target_info;
12425 }
12426
12427 /* Force the re-insertion of the locations at ADDRESS. This is called
12428 once a new/deleted/modified duplicate location is found and we are evaluating
12429 conditions on the target's side. Such conditions need to be updated on
12430 the target. */
12431
12432 static void
12433 force_breakpoint_reinsertion (struct bp_location *bl)
12434 {
12435 struct bp_location **locp = NULL, **loc2p;
12436 struct bp_location *loc;
12437 CORE_ADDR address = 0;
12438 int pspace_num;
12439
12440 address = bl->address;
12441 pspace_num = bl->pspace->num;
12442
12443 /* This is only meaningful if the target is
12444 evaluating conditions and if the user has
12445 opted for condition evaluation on the target's
12446 side. */
12447 if (gdb_evaluates_breakpoint_condition_p ()
12448 || !target_supports_evaluation_of_breakpoint_conditions ())
12449 return;
12450
12451 /* Flag all breakpoint locations with this address and
12452 the same program space as the location
12453 as "its condition has changed". We need to
12454 update the conditions on the target's side. */
12455 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12456 {
12457 loc = *loc2p;
12458
12459 if (!is_breakpoint (loc->owner)
12460 || pspace_num != loc->pspace->num)
12461 continue;
12462
12463 /* Flag the location appropriately. We use a different state to
12464 let everyone know that we already updated the set of locations
12465 with addr bl->address and program space bl->pspace. This is so
12466 we don't have to keep calling these functions just to mark locations
12467 that have already been marked. */
12468 loc->condition_changed = condition_updated;
12469
12470 /* Free the agent expression bytecode as well. We will compute
12471 it later on. */
12472 if (loc->cond_bytecode)
12473 {
12474 free_agent_expr (loc->cond_bytecode);
12475 loc->cond_bytecode = NULL;
12476 }
12477 }
12478 }
12479
12480 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12481 into the inferior, only remove already-inserted locations that no
12482 longer should be inserted. Functions that delete a breakpoint or
12483 breakpoints should pass false, so that deleting a breakpoint
12484 doesn't have the side effect of inserting the locations of other
12485 breakpoints that are marked not-inserted, but should_be_inserted
12486 returns true on them.
12487
12488 This behaviour is useful is situations close to tear-down -- e.g.,
12489 after an exec, while the target still has execution, but breakpoint
12490 shadows of the previous executable image should *NOT* be restored
12491 to the new image; or before detaching, where the target still has
12492 execution and wants to delete breakpoints from GDB's lists, and all
12493 breakpoints had already been removed from the inferior. */
12494
12495 static void
12496 update_global_location_list (int should_insert)
12497 {
12498 struct breakpoint *b;
12499 struct bp_location **locp, *loc;
12500 struct cleanup *cleanups;
12501 /* Last breakpoint location address that was marked for update. */
12502 CORE_ADDR last_addr = 0;
12503 /* Last breakpoint location program space that was marked for update. */
12504 int last_pspace_num = -1;
12505
12506 /* Used in the duplicates detection below. When iterating over all
12507 bp_locations, points to the first bp_location of a given address.
12508 Breakpoints and watchpoints of different types are never
12509 duplicates of each other. Keep one pointer for each type of
12510 breakpoint/watchpoint, so we only need to loop over all locations
12511 once. */
12512 struct bp_location *bp_loc_first; /* breakpoint */
12513 struct bp_location *wp_loc_first; /* hardware watchpoint */
12514 struct bp_location *awp_loc_first; /* access watchpoint */
12515 struct bp_location *rwp_loc_first; /* read watchpoint */
12516
12517 /* Saved former bp_location array which we compare against the newly
12518 built bp_location from the current state of ALL_BREAKPOINTS. */
12519 struct bp_location **old_location, **old_locp;
12520 unsigned old_location_count;
12521
12522 old_location = bp_location;
12523 old_location_count = bp_location_count;
12524 bp_location = NULL;
12525 bp_location_count = 0;
12526 cleanups = make_cleanup (xfree, old_location);
12527
12528 ALL_BREAKPOINTS (b)
12529 for (loc = b->loc; loc; loc = loc->next)
12530 bp_location_count++;
12531
12532 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12533 locp = bp_location;
12534 ALL_BREAKPOINTS (b)
12535 for (loc = b->loc; loc; loc = loc->next)
12536 *locp++ = loc;
12537 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12538 bp_location_compare);
12539
12540 bp_location_target_extensions_update ();
12541
12542 /* Identify bp_location instances that are no longer present in the
12543 new list, and therefore should be freed. Note that it's not
12544 necessary that those locations should be removed from inferior --
12545 if there's another location at the same address (previously
12546 marked as duplicate), we don't need to remove/insert the
12547 location.
12548
12549 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12550 and former bp_location array state respectively. */
12551
12552 locp = bp_location;
12553 for (old_locp = old_location; old_locp < old_location + old_location_count;
12554 old_locp++)
12555 {
12556 struct bp_location *old_loc = *old_locp;
12557 struct bp_location **loc2p;
12558
12559 /* Tells if 'old_loc' is found among the new locations. If
12560 not, we have to free it. */
12561 int found_object = 0;
12562 /* Tells if the location should remain inserted in the target. */
12563 int keep_in_target = 0;
12564 int removed = 0;
12565
12566 /* Skip LOCP entries which will definitely never be needed.
12567 Stop either at or being the one matching OLD_LOC. */
12568 while (locp < bp_location + bp_location_count
12569 && (*locp)->address < old_loc->address)
12570 locp++;
12571
12572 for (loc2p = locp;
12573 (loc2p < bp_location + bp_location_count
12574 && (*loc2p)->address == old_loc->address);
12575 loc2p++)
12576 {
12577 /* Check if this is a new/duplicated location or a duplicated
12578 location that had its condition modified. If so, we want to send
12579 its condition to the target if evaluation of conditions is taking
12580 place there. */
12581 if ((*loc2p)->condition_changed == condition_modified
12582 && (last_addr != old_loc->address
12583 || last_pspace_num != old_loc->pspace->num))
12584 {
12585 force_breakpoint_reinsertion (*loc2p);
12586 last_pspace_num = old_loc->pspace->num;
12587 }
12588
12589 if (*loc2p == old_loc)
12590 found_object = 1;
12591 }
12592
12593 /* We have already handled this address, update it so that we don't
12594 have to go through updates again. */
12595 last_addr = old_loc->address;
12596
12597 /* Target-side condition evaluation: Handle deleted locations. */
12598 if (!found_object)
12599 force_breakpoint_reinsertion (old_loc);
12600
12601 /* If this location is no longer present, and inserted, look if
12602 there's maybe a new location at the same address. If so,
12603 mark that one inserted, and don't remove this one. This is
12604 needed so that we don't have a time window where a breakpoint
12605 at certain location is not inserted. */
12606
12607 if (old_loc->inserted)
12608 {
12609 /* If the location is inserted now, we might have to remove
12610 it. */
12611
12612 if (found_object && should_be_inserted (old_loc))
12613 {
12614 /* The location is still present in the location list,
12615 and still should be inserted. Don't do anything. */
12616 keep_in_target = 1;
12617 }
12618 else
12619 {
12620 /* This location still exists, but it won't be kept in the
12621 target since it may have been disabled. We proceed to
12622 remove its target-side condition. */
12623
12624 /* The location is either no longer present, or got
12625 disabled. See if there's another location at the
12626 same address, in which case we don't need to remove
12627 this one from the target. */
12628
12629 /* OLD_LOC comes from existing struct breakpoint. */
12630 if (breakpoint_address_is_meaningful (old_loc->owner))
12631 {
12632 for (loc2p = locp;
12633 (loc2p < bp_location + bp_location_count
12634 && (*loc2p)->address == old_loc->address);
12635 loc2p++)
12636 {
12637 struct bp_location *loc2 = *loc2p;
12638
12639 if (breakpoint_locations_match (loc2, old_loc))
12640 {
12641 /* Read watchpoint locations are switched to
12642 access watchpoints, if the former are not
12643 supported, but the latter are. */
12644 if (is_hardware_watchpoint (old_loc->owner))
12645 {
12646 gdb_assert (is_hardware_watchpoint (loc2->owner));
12647 loc2->watchpoint_type = old_loc->watchpoint_type;
12648 }
12649
12650 /* loc2 is a duplicated location. We need to check
12651 if it should be inserted in case it will be
12652 unduplicated. */
12653 if (loc2 != old_loc
12654 && unduplicated_should_be_inserted (loc2))
12655 {
12656 swap_insertion (old_loc, loc2);
12657 keep_in_target = 1;
12658 break;
12659 }
12660 }
12661 }
12662 }
12663 }
12664
12665 if (!keep_in_target)
12666 {
12667 if (remove_breakpoint (old_loc, mark_uninserted))
12668 {
12669 /* This is just about all we can do. We could keep
12670 this location on the global list, and try to
12671 remove it next time, but there's no particular
12672 reason why we will succeed next time.
12673
12674 Note that at this point, old_loc->owner is still
12675 valid, as delete_breakpoint frees the breakpoint
12676 only after calling us. */
12677 printf_filtered (_("warning: Error removing "
12678 "breakpoint %d\n"),
12679 old_loc->owner->number);
12680 }
12681 removed = 1;
12682 }
12683 }
12684
12685 if (!found_object)
12686 {
12687 if (removed && non_stop
12688 && breakpoint_address_is_meaningful (old_loc->owner)
12689 && !is_hardware_watchpoint (old_loc->owner))
12690 {
12691 /* This location was removed from the target. In
12692 non-stop mode, a race condition is possible where
12693 we've removed a breakpoint, but stop events for that
12694 breakpoint are already queued and will arrive later.
12695 We apply an heuristic to be able to distinguish such
12696 SIGTRAPs from other random SIGTRAPs: we keep this
12697 breakpoint location for a bit, and will retire it
12698 after we see some number of events. The theory here
12699 is that reporting of events should, "on the average",
12700 be fair, so after a while we'll see events from all
12701 threads that have anything of interest, and no longer
12702 need to keep this breakpoint location around. We
12703 don't hold locations forever so to reduce chances of
12704 mistaking a non-breakpoint SIGTRAP for a breakpoint
12705 SIGTRAP.
12706
12707 The heuristic failing can be disastrous on
12708 decr_pc_after_break targets.
12709
12710 On decr_pc_after_break targets, like e.g., x86-linux,
12711 if we fail to recognize a late breakpoint SIGTRAP,
12712 because events_till_retirement has reached 0 too
12713 soon, we'll fail to do the PC adjustment, and report
12714 a random SIGTRAP to the user. When the user resumes
12715 the inferior, it will most likely immediately crash
12716 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12717 corrupted, because of being resumed e.g., in the
12718 middle of a multi-byte instruction, or skipped a
12719 one-byte instruction. This was actually seen happen
12720 on native x86-linux, and should be less rare on
12721 targets that do not support new thread events, like
12722 remote, due to the heuristic depending on
12723 thread_count.
12724
12725 Mistaking a random SIGTRAP for a breakpoint trap
12726 causes similar symptoms (PC adjustment applied when
12727 it shouldn't), but then again, playing with SIGTRAPs
12728 behind the debugger's back is asking for trouble.
12729
12730 Since hardware watchpoint traps are always
12731 distinguishable from other traps, so we don't need to
12732 apply keep hardware watchpoint moribund locations
12733 around. We simply always ignore hardware watchpoint
12734 traps we can no longer explain. */
12735
12736 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12737 old_loc->owner = NULL;
12738
12739 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12740 }
12741 else
12742 {
12743 old_loc->owner = NULL;
12744 decref_bp_location (&old_loc);
12745 }
12746 }
12747 }
12748
12749 /* Rescan breakpoints at the same address and section, marking the
12750 first one as "first" and any others as "duplicates". This is so
12751 that the bpt instruction is only inserted once. If we have a
12752 permanent breakpoint at the same place as BPT, make that one the
12753 official one, and the rest as duplicates. Permanent breakpoints
12754 are sorted first for the same address.
12755
12756 Do the same for hardware watchpoints, but also considering the
12757 watchpoint's type (regular/access/read) and length. */
12758
12759 bp_loc_first = NULL;
12760 wp_loc_first = NULL;
12761 awp_loc_first = NULL;
12762 rwp_loc_first = NULL;
12763 ALL_BP_LOCATIONS (loc, locp)
12764 {
12765 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12766 non-NULL. */
12767 struct bp_location **loc_first_p;
12768 b = loc->owner;
12769
12770 if (!unduplicated_should_be_inserted (loc)
12771 || !breakpoint_address_is_meaningful (b)
12772 /* Don't detect duplicate for tracepoint locations because they are
12773 never duplicated. See the comments in field `duplicate' of
12774 `struct bp_location'. */
12775 || is_tracepoint (b))
12776 {
12777 /* Clear the condition modification flag. */
12778 loc->condition_changed = condition_unchanged;
12779 continue;
12780 }
12781
12782 /* Permanent breakpoint should always be inserted. */
12783 if (b->enable_state == bp_permanent && ! loc->inserted)
12784 internal_error (__FILE__, __LINE__,
12785 _("allegedly permanent breakpoint is not "
12786 "actually inserted"));
12787
12788 if (b->type == bp_hardware_watchpoint)
12789 loc_first_p = &wp_loc_first;
12790 else if (b->type == bp_read_watchpoint)
12791 loc_first_p = &rwp_loc_first;
12792 else if (b->type == bp_access_watchpoint)
12793 loc_first_p = &awp_loc_first;
12794 else
12795 loc_first_p = &bp_loc_first;
12796
12797 if (*loc_first_p == NULL
12798 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12799 || !breakpoint_locations_match (loc, *loc_first_p))
12800 {
12801 *loc_first_p = loc;
12802 loc->duplicate = 0;
12803
12804 if (is_breakpoint (loc->owner) && loc->condition_changed)
12805 {
12806 loc->needs_update = 1;
12807 /* Clear the condition modification flag. */
12808 loc->condition_changed = condition_unchanged;
12809 }
12810 continue;
12811 }
12812
12813
12814 /* This and the above ensure the invariant that the first location
12815 is not duplicated, and is the inserted one.
12816 All following are marked as duplicated, and are not inserted. */
12817 if (loc->inserted)
12818 swap_insertion (loc, *loc_first_p);
12819 loc->duplicate = 1;
12820
12821 /* Clear the condition modification flag. */
12822 loc->condition_changed = condition_unchanged;
12823
12824 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12825 && b->enable_state != bp_permanent)
12826 internal_error (__FILE__, __LINE__,
12827 _("another breakpoint was inserted on top of "
12828 "a permanent breakpoint"));
12829 }
12830
12831 if (breakpoints_always_inserted_mode ()
12832 && (have_live_inferiors ()
12833 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12834 {
12835 if (should_insert)
12836 insert_breakpoint_locations ();
12837 else
12838 {
12839 /* Though should_insert is false, we may need to update conditions
12840 on the target's side if it is evaluating such conditions. We
12841 only update conditions for locations that are marked
12842 "needs_update". */
12843 update_inserted_breakpoint_locations ();
12844 }
12845 }
12846
12847 if (should_insert)
12848 download_tracepoint_locations ();
12849
12850 do_cleanups (cleanups);
12851 }
12852
12853 void
12854 breakpoint_retire_moribund (void)
12855 {
12856 struct bp_location *loc;
12857 int ix;
12858
12859 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12860 if (--(loc->events_till_retirement) == 0)
12861 {
12862 decref_bp_location (&loc);
12863 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12864 --ix;
12865 }
12866 }
12867
12868 static void
12869 update_global_location_list_nothrow (int inserting)
12870 {
12871 volatile struct gdb_exception e;
12872
12873 TRY_CATCH (e, RETURN_MASK_ERROR)
12874 update_global_location_list (inserting);
12875 }
12876
12877 /* Clear BKP from a BPS. */
12878
12879 static void
12880 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12881 {
12882 bpstat bs;
12883
12884 for (bs = bps; bs; bs = bs->next)
12885 if (bs->breakpoint_at == bpt)
12886 {
12887 bs->breakpoint_at = NULL;
12888 bs->old_val = NULL;
12889 /* bs->commands will be freed later. */
12890 }
12891 }
12892
12893 /* Callback for iterate_over_threads. */
12894 static int
12895 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12896 {
12897 struct breakpoint *bpt = data;
12898
12899 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12900 return 0;
12901 }
12902
12903 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12904 callbacks. */
12905
12906 static void
12907 say_where (struct breakpoint *b)
12908 {
12909 struct value_print_options opts;
12910
12911 get_user_print_options (&opts);
12912
12913 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12914 single string. */
12915 if (b->loc == NULL)
12916 {
12917 printf_filtered (_(" (%s) pending."), b->addr_string);
12918 }
12919 else
12920 {
12921 if (opts.addressprint || b->loc->symtab == NULL)
12922 {
12923 printf_filtered (" at ");
12924 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12925 gdb_stdout);
12926 }
12927 if (b->loc->symtab != NULL)
12928 {
12929 /* If there is a single location, we can print the location
12930 more nicely. */
12931 if (b->loc->next == NULL)
12932 printf_filtered (": file %s, line %d.",
12933 symtab_to_filename_for_display (b->loc->symtab),
12934 b->loc->line_number);
12935 else
12936 /* This is not ideal, but each location may have a
12937 different file name, and this at least reflects the
12938 real situation somewhat. */
12939 printf_filtered (": %s.", b->addr_string);
12940 }
12941
12942 if (b->loc->next)
12943 {
12944 struct bp_location *loc = b->loc;
12945 int n = 0;
12946 for (; loc; loc = loc->next)
12947 ++n;
12948 printf_filtered (" (%d locations)", n);
12949 }
12950 }
12951 }
12952
12953 /* Default bp_location_ops methods. */
12954
12955 static void
12956 bp_location_dtor (struct bp_location *self)
12957 {
12958 xfree (self->cond);
12959 if (self->cond_bytecode)
12960 free_agent_expr (self->cond_bytecode);
12961 xfree (self->function_name);
12962
12963 VEC_free (agent_expr_p, self->target_info.conditions);
12964 VEC_free (agent_expr_p, self->target_info.tcommands);
12965 }
12966
12967 static const struct bp_location_ops bp_location_ops =
12968 {
12969 bp_location_dtor
12970 };
12971
12972 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12973 inherit from. */
12974
12975 static void
12976 base_breakpoint_dtor (struct breakpoint *self)
12977 {
12978 decref_counted_command_line (&self->commands);
12979 xfree (self->cond_string);
12980 xfree (self->extra_string);
12981 xfree (self->addr_string);
12982 xfree (self->filter);
12983 xfree (self->addr_string_range_end);
12984 }
12985
12986 static struct bp_location *
12987 base_breakpoint_allocate_location (struct breakpoint *self)
12988 {
12989 struct bp_location *loc;
12990
12991 loc = XNEW (struct bp_location);
12992 init_bp_location (loc, &bp_location_ops, self);
12993 return loc;
12994 }
12995
12996 static void
12997 base_breakpoint_re_set (struct breakpoint *b)
12998 {
12999 /* Nothing to re-set. */
13000 }
13001
13002 #define internal_error_pure_virtual_called() \
13003 gdb_assert_not_reached ("pure virtual function called")
13004
13005 static int
13006 base_breakpoint_insert_location (struct bp_location *bl)
13007 {
13008 internal_error_pure_virtual_called ();
13009 }
13010
13011 static int
13012 base_breakpoint_remove_location (struct bp_location *bl)
13013 {
13014 internal_error_pure_virtual_called ();
13015 }
13016
13017 static int
13018 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
13019 struct address_space *aspace,
13020 CORE_ADDR bp_addr,
13021 const struct target_waitstatus *ws)
13022 {
13023 internal_error_pure_virtual_called ();
13024 }
13025
13026 static void
13027 base_breakpoint_check_status (bpstat bs)
13028 {
13029 /* Always stop. */
13030 }
13031
13032 /* A "works_in_software_mode" breakpoint_ops method that just internal
13033 errors. */
13034
13035 static int
13036 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
13037 {
13038 internal_error_pure_virtual_called ();
13039 }
13040
13041 /* A "resources_needed" breakpoint_ops method that just internal
13042 errors. */
13043
13044 static int
13045 base_breakpoint_resources_needed (const struct bp_location *bl)
13046 {
13047 internal_error_pure_virtual_called ();
13048 }
13049
13050 static enum print_stop_action
13051 base_breakpoint_print_it (bpstat bs)
13052 {
13053 internal_error_pure_virtual_called ();
13054 }
13055
13056 static void
13057 base_breakpoint_print_one_detail (const struct breakpoint *self,
13058 struct ui_out *uiout)
13059 {
13060 /* nothing */
13061 }
13062
13063 static void
13064 base_breakpoint_print_mention (struct breakpoint *b)
13065 {
13066 internal_error_pure_virtual_called ();
13067 }
13068
13069 static void
13070 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13071 {
13072 internal_error_pure_virtual_called ();
13073 }
13074
13075 static void
13076 base_breakpoint_create_sals_from_address (char **arg,
13077 struct linespec_result *canonical,
13078 enum bptype type_wanted,
13079 char *addr_start,
13080 char **copy_arg)
13081 {
13082 internal_error_pure_virtual_called ();
13083 }
13084
13085 static void
13086 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13087 struct linespec_result *c,
13088 char *cond_string,
13089 char *extra_string,
13090 enum bptype type_wanted,
13091 enum bpdisp disposition,
13092 int thread,
13093 int task, int ignore_count,
13094 const struct breakpoint_ops *o,
13095 int from_tty, int enabled,
13096 int internal, unsigned flags)
13097 {
13098 internal_error_pure_virtual_called ();
13099 }
13100
13101 static void
13102 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13103 struct symtabs_and_lines *sals)
13104 {
13105 internal_error_pure_virtual_called ();
13106 }
13107
13108 /* The default 'explains_signal' method. */
13109
13110 static int
13111 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13112 {
13113 return 1;
13114 }
13115
13116 /* The default "after_condition_true" method. */
13117
13118 static void
13119 base_breakpoint_after_condition_true (struct bpstats *bs)
13120 {
13121 /* Nothing to do. */
13122 }
13123
13124 struct breakpoint_ops base_breakpoint_ops =
13125 {
13126 base_breakpoint_dtor,
13127 base_breakpoint_allocate_location,
13128 base_breakpoint_re_set,
13129 base_breakpoint_insert_location,
13130 base_breakpoint_remove_location,
13131 base_breakpoint_breakpoint_hit,
13132 base_breakpoint_check_status,
13133 base_breakpoint_resources_needed,
13134 base_breakpoint_works_in_software_mode,
13135 base_breakpoint_print_it,
13136 NULL,
13137 base_breakpoint_print_one_detail,
13138 base_breakpoint_print_mention,
13139 base_breakpoint_print_recreate,
13140 base_breakpoint_create_sals_from_address,
13141 base_breakpoint_create_breakpoints_sal,
13142 base_breakpoint_decode_linespec,
13143 base_breakpoint_explains_signal,
13144 base_breakpoint_after_condition_true,
13145 };
13146
13147 /* Default breakpoint_ops methods. */
13148
13149 static void
13150 bkpt_re_set (struct breakpoint *b)
13151 {
13152 /* FIXME: is this still reachable? */
13153 if (b->addr_string == NULL)
13154 {
13155 /* Anything without a string can't be re-set. */
13156 delete_breakpoint (b);
13157 return;
13158 }
13159
13160 breakpoint_re_set_default (b);
13161 }
13162
13163 /* Copy SRC's shadow buffer and whatever else we'd set if we actually
13164 inserted DEST, so we can remove it later, in case SRC is removed
13165 first. */
13166
13167 static void
13168 bp_target_info_copy_insertion_state (struct bp_target_info *dest,
13169 const struct bp_target_info *src)
13170 {
13171 dest->shadow_len = src->shadow_len;
13172 memcpy (dest->shadow_contents, src->shadow_contents, src->shadow_len);
13173 dest->placed_size = src->placed_size;
13174 }
13175
13176 static int
13177 bkpt_insert_location (struct bp_location *bl)
13178 {
13179 if (bl->loc_type == bp_loc_hardware_breakpoint)
13180 return target_insert_hw_breakpoint (bl->gdbarch,
13181 &bl->target_info);
13182 else
13183 {
13184 struct bp_target_info *bp_tgt = &bl->target_info;
13185 int ret;
13186 int sss_slot;
13187
13188 /* There is no need to insert a breakpoint if an unconditional
13189 raw/sss breakpoint is already inserted at that location. */
13190 sss_slot = find_single_step_breakpoint (bp_tgt->placed_address_space,
13191 bp_tgt->placed_address);
13192 if (sss_slot >= 0)
13193 {
13194 struct bp_target_info *sss_bp_tgt = single_step_breakpoints[sss_slot];
13195
13196 bp_target_info_copy_insertion_state (bp_tgt, sss_bp_tgt);
13197 return 0;
13198 }
13199
13200 return target_insert_breakpoint (bl->gdbarch, bp_tgt);
13201 }
13202 }
13203
13204 static int
13205 bkpt_remove_location (struct bp_location *bl)
13206 {
13207 if (bl->loc_type == bp_loc_hardware_breakpoint)
13208 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13209 else
13210 {
13211 struct bp_target_info *bp_tgt = &bl->target_info;
13212 struct address_space *aspace = bp_tgt->placed_address_space;
13213 CORE_ADDR address = bp_tgt->placed_address;
13214
13215 /* Only remove the breakpoint if there is no raw/sss breakpoint
13216 still inserted at this location. Otherwise, we would be
13217 effectively disabling the raw/sss breakpoint. */
13218 if (single_step_breakpoint_inserted_here_p (aspace, address))
13219 return 0;
13220
13221 return target_remove_breakpoint (bl->gdbarch, bp_tgt);
13222 }
13223 }
13224
13225 static int
13226 bkpt_breakpoint_hit (const struct bp_location *bl,
13227 struct address_space *aspace, CORE_ADDR bp_addr,
13228 const struct target_waitstatus *ws)
13229 {
13230 if (ws->kind != TARGET_WAITKIND_STOPPED
13231 || ws->value.sig != GDB_SIGNAL_TRAP)
13232 return 0;
13233
13234 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13235 aspace, bp_addr))
13236 return 0;
13237
13238 if (overlay_debugging /* unmapped overlay section */
13239 && section_is_overlay (bl->section)
13240 && !section_is_mapped (bl->section))
13241 return 0;
13242
13243 return 1;
13244 }
13245
13246 static int
13247 dprintf_breakpoint_hit (const struct bp_location *bl,
13248 struct address_space *aspace, CORE_ADDR bp_addr,
13249 const struct target_waitstatus *ws)
13250 {
13251 if (dprintf_style == dprintf_style_agent
13252 && target_can_run_breakpoint_commands ())
13253 {
13254 /* An agent-style dprintf never causes a stop. If we see a trap
13255 for this address it must be for a breakpoint that happens to
13256 be set at the same address. */
13257 return 0;
13258 }
13259
13260 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13261 }
13262
13263 static int
13264 bkpt_resources_needed (const struct bp_location *bl)
13265 {
13266 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13267
13268 return 1;
13269 }
13270
13271 static enum print_stop_action
13272 bkpt_print_it (bpstat bs)
13273 {
13274 struct breakpoint *b;
13275 const struct bp_location *bl;
13276 int bp_temp;
13277 struct ui_out *uiout = current_uiout;
13278
13279 gdb_assert (bs->bp_location_at != NULL);
13280
13281 bl = bs->bp_location_at;
13282 b = bs->breakpoint_at;
13283
13284 bp_temp = b->disposition == disp_del;
13285 if (bl->address != bl->requested_address)
13286 breakpoint_adjustment_warning (bl->requested_address,
13287 bl->address,
13288 b->number, 1);
13289 annotate_breakpoint (b->number);
13290 if (bp_temp)
13291 ui_out_text (uiout, "\nTemporary breakpoint ");
13292 else
13293 ui_out_text (uiout, "\nBreakpoint ");
13294 if (ui_out_is_mi_like_p (uiout))
13295 {
13296 ui_out_field_string (uiout, "reason",
13297 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13298 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13299 }
13300 ui_out_field_int (uiout, "bkptno", b->number);
13301 ui_out_text (uiout, ", ");
13302
13303 return PRINT_SRC_AND_LOC;
13304 }
13305
13306 static void
13307 bkpt_print_mention (struct breakpoint *b)
13308 {
13309 if (ui_out_is_mi_like_p (current_uiout))
13310 return;
13311
13312 switch (b->type)
13313 {
13314 case bp_breakpoint:
13315 case bp_gnu_ifunc_resolver:
13316 if (b->disposition == disp_del)
13317 printf_filtered (_("Temporary breakpoint"));
13318 else
13319 printf_filtered (_("Breakpoint"));
13320 printf_filtered (_(" %d"), b->number);
13321 if (b->type == bp_gnu_ifunc_resolver)
13322 printf_filtered (_(" at gnu-indirect-function resolver"));
13323 break;
13324 case bp_hardware_breakpoint:
13325 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13326 break;
13327 case bp_dprintf:
13328 printf_filtered (_("Dprintf %d"), b->number);
13329 break;
13330 }
13331
13332 say_where (b);
13333 }
13334
13335 static void
13336 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13337 {
13338 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13339 fprintf_unfiltered (fp, "tbreak");
13340 else if (tp->type == bp_breakpoint)
13341 fprintf_unfiltered (fp, "break");
13342 else if (tp->type == bp_hardware_breakpoint
13343 && tp->disposition == disp_del)
13344 fprintf_unfiltered (fp, "thbreak");
13345 else if (tp->type == bp_hardware_breakpoint)
13346 fprintf_unfiltered (fp, "hbreak");
13347 else
13348 internal_error (__FILE__, __LINE__,
13349 _("unhandled breakpoint type %d"), (int) tp->type);
13350
13351 fprintf_unfiltered (fp, " %s", tp->addr_string);
13352 print_recreate_thread (tp, fp);
13353 }
13354
13355 static void
13356 bkpt_create_sals_from_address (char **arg,
13357 struct linespec_result *canonical,
13358 enum bptype type_wanted,
13359 char *addr_start, char **copy_arg)
13360 {
13361 create_sals_from_address_default (arg, canonical, type_wanted,
13362 addr_start, copy_arg);
13363 }
13364
13365 static void
13366 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13367 struct linespec_result *canonical,
13368 char *cond_string,
13369 char *extra_string,
13370 enum bptype type_wanted,
13371 enum bpdisp disposition,
13372 int thread,
13373 int task, int ignore_count,
13374 const struct breakpoint_ops *ops,
13375 int from_tty, int enabled,
13376 int internal, unsigned flags)
13377 {
13378 create_breakpoints_sal_default (gdbarch, canonical,
13379 cond_string, extra_string,
13380 type_wanted,
13381 disposition, thread, task,
13382 ignore_count, ops, from_tty,
13383 enabled, internal, flags);
13384 }
13385
13386 static void
13387 bkpt_decode_linespec (struct breakpoint *b, char **s,
13388 struct symtabs_and_lines *sals)
13389 {
13390 decode_linespec_default (b, s, sals);
13391 }
13392
13393 /* Virtual table for internal breakpoints. */
13394
13395 static void
13396 internal_bkpt_re_set (struct breakpoint *b)
13397 {
13398 switch (b->type)
13399 {
13400 /* Delete overlay event and longjmp master breakpoints; they
13401 will be reset later by breakpoint_re_set. */
13402 case bp_overlay_event:
13403 case bp_longjmp_master:
13404 case bp_std_terminate_master:
13405 case bp_exception_master:
13406 delete_breakpoint (b);
13407 break;
13408
13409 /* This breakpoint is special, it's set up when the inferior
13410 starts and we really don't want to touch it. */
13411 case bp_shlib_event:
13412
13413 /* Like bp_shlib_event, this breakpoint type is special. Once
13414 it is set up, we do not want to touch it. */
13415 case bp_thread_event:
13416 break;
13417 }
13418 }
13419
13420 static void
13421 internal_bkpt_check_status (bpstat bs)
13422 {
13423 if (bs->breakpoint_at->type == bp_shlib_event)
13424 {
13425 /* If requested, stop when the dynamic linker notifies GDB of
13426 events. This allows the user to get control and place
13427 breakpoints in initializer routines for dynamically loaded
13428 objects (among other things). */
13429 bs->stop = stop_on_solib_events;
13430 bs->print = stop_on_solib_events;
13431 }
13432 else
13433 bs->stop = 0;
13434 }
13435
13436 static enum print_stop_action
13437 internal_bkpt_print_it (bpstat bs)
13438 {
13439 struct breakpoint *b;
13440
13441 b = bs->breakpoint_at;
13442
13443 switch (b->type)
13444 {
13445 case bp_shlib_event:
13446 /* Did we stop because the user set the stop_on_solib_events
13447 variable? (If so, we report this as a generic, "Stopped due
13448 to shlib event" message.) */
13449 print_solib_event (0);
13450 break;
13451
13452 case bp_thread_event:
13453 /* Not sure how we will get here.
13454 GDB should not stop for these breakpoints. */
13455 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13456 break;
13457
13458 case bp_overlay_event:
13459 /* By analogy with the thread event, GDB should not stop for these. */
13460 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13461 break;
13462
13463 case bp_longjmp_master:
13464 /* These should never be enabled. */
13465 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13466 break;
13467
13468 case bp_std_terminate_master:
13469 /* These should never be enabled. */
13470 printf_filtered (_("std::terminate Master Breakpoint: "
13471 "gdb should not stop!\n"));
13472 break;
13473
13474 case bp_exception_master:
13475 /* These should never be enabled. */
13476 printf_filtered (_("Exception Master Breakpoint: "
13477 "gdb should not stop!\n"));
13478 break;
13479 }
13480
13481 return PRINT_NOTHING;
13482 }
13483
13484 static void
13485 internal_bkpt_print_mention (struct breakpoint *b)
13486 {
13487 /* Nothing to mention. These breakpoints are internal. */
13488 }
13489
13490 /* Virtual table for momentary breakpoints */
13491
13492 static void
13493 momentary_bkpt_re_set (struct breakpoint *b)
13494 {
13495 /* Keep temporary breakpoints, which can be encountered when we step
13496 over a dlopen call and solib_add is resetting the breakpoints.
13497 Otherwise these should have been blown away via the cleanup chain
13498 or by breakpoint_init_inferior when we rerun the executable. */
13499 }
13500
13501 static void
13502 momentary_bkpt_check_status (bpstat bs)
13503 {
13504 /* Nothing. The point of these breakpoints is causing a stop. */
13505 }
13506
13507 static enum print_stop_action
13508 momentary_bkpt_print_it (bpstat bs)
13509 {
13510 struct ui_out *uiout = current_uiout;
13511
13512 if (ui_out_is_mi_like_p (uiout))
13513 {
13514 struct breakpoint *b = bs->breakpoint_at;
13515
13516 switch (b->type)
13517 {
13518 case bp_finish:
13519 ui_out_field_string
13520 (uiout, "reason",
13521 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13522 break;
13523
13524 case bp_until:
13525 ui_out_field_string
13526 (uiout, "reason",
13527 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13528 break;
13529 }
13530 }
13531
13532 return PRINT_UNKNOWN;
13533 }
13534
13535 static void
13536 momentary_bkpt_print_mention (struct breakpoint *b)
13537 {
13538 /* Nothing to mention. These breakpoints are internal. */
13539 }
13540
13541 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13542
13543 It gets cleared already on the removal of the first one of such placed
13544 breakpoints. This is OK as they get all removed altogether. */
13545
13546 static void
13547 longjmp_bkpt_dtor (struct breakpoint *self)
13548 {
13549 struct thread_info *tp = find_thread_id (self->thread);
13550
13551 if (tp)
13552 tp->initiating_frame = null_frame_id;
13553
13554 momentary_breakpoint_ops.dtor (self);
13555 }
13556
13557 /* Specific methods for probe breakpoints. */
13558
13559 static int
13560 bkpt_probe_insert_location (struct bp_location *bl)
13561 {
13562 int v = bkpt_insert_location (bl);
13563
13564 if (v == 0)
13565 {
13566 /* The insertion was successful, now let's set the probe's semaphore
13567 if needed. */
13568 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13569 bl->probe.objfile,
13570 bl->gdbarch);
13571 }
13572
13573 return v;
13574 }
13575
13576 static int
13577 bkpt_probe_remove_location (struct bp_location *bl)
13578 {
13579 /* Let's clear the semaphore before removing the location. */
13580 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13581 bl->probe.objfile,
13582 bl->gdbarch);
13583
13584 return bkpt_remove_location (bl);
13585 }
13586
13587 static void
13588 bkpt_probe_create_sals_from_address (char **arg,
13589 struct linespec_result *canonical,
13590 enum bptype type_wanted,
13591 char *addr_start, char **copy_arg)
13592 {
13593 struct linespec_sals lsal;
13594
13595 lsal.sals = parse_probes (arg, canonical);
13596
13597 *copy_arg = xstrdup (canonical->addr_string);
13598 lsal.canonical = xstrdup (*copy_arg);
13599
13600 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13601 }
13602
13603 static void
13604 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13605 struct symtabs_and_lines *sals)
13606 {
13607 *sals = parse_probes (s, NULL);
13608 if (!sals->sals)
13609 error (_("probe not found"));
13610 }
13611
13612 /* The breakpoint_ops structure to be used in tracepoints. */
13613
13614 static void
13615 tracepoint_re_set (struct breakpoint *b)
13616 {
13617 breakpoint_re_set_default (b);
13618 }
13619
13620 static int
13621 tracepoint_breakpoint_hit (const struct bp_location *bl,
13622 struct address_space *aspace, CORE_ADDR bp_addr,
13623 const struct target_waitstatus *ws)
13624 {
13625 /* By definition, the inferior does not report stops at
13626 tracepoints. */
13627 return 0;
13628 }
13629
13630 static void
13631 tracepoint_print_one_detail (const struct breakpoint *self,
13632 struct ui_out *uiout)
13633 {
13634 struct tracepoint *tp = (struct tracepoint *) self;
13635 if (tp->static_trace_marker_id)
13636 {
13637 gdb_assert (self->type == bp_static_tracepoint);
13638
13639 ui_out_text (uiout, "\tmarker id is ");
13640 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13641 tp->static_trace_marker_id);
13642 ui_out_text (uiout, "\n");
13643 }
13644 }
13645
13646 static void
13647 tracepoint_print_mention (struct breakpoint *b)
13648 {
13649 if (ui_out_is_mi_like_p (current_uiout))
13650 return;
13651
13652 switch (b->type)
13653 {
13654 case bp_tracepoint:
13655 printf_filtered (_("Tracepoint"));
13656 printf_filtered (_(" %d"), b->number);
13657 break;
13658 case bp_fast_tracepoint:
13659 printf_filtered (_("Fast tracepoint"));
13660 printf_filtered (_(" %d"), b->number);
13661 break;
13662 case bp_static_tracepoint:
13663 printf_filtered (_("Static tracepoint"));
13664 printf_filtered (_(" %d"), b->number);
13665 break;
13666 default:
13667 internal_error (__FILE__, __LINE__,
13668 _("unhandled tracepoint type %d"), (int) b->type);
13669 }
13670
13671 say_where (b);
13672 }
13673
13674 static void
13675 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13676 {
13677 struct tracepoint *tp = (struct tracepoint *) self;
13678
13679 if (self->type == bp_fast_tracepoint)
13680 fprintf_unfiltered (fp, "ftrace");
13681 if (self->type == bp_static_tracepoint)
13682 fprintf_unfiltered (fp, "strace");
13683 else if (self->type == bp_tracepoint)
13684 fprintf_unfiltered (fp, "trace");
13685 else
13686 internal_error (__FILE__, __LINE__,
13687 _("unhandled tracepoint type %d"), (int) self->type);
13688
13689 fprintf_unfiltered (fp, " %s", self->addr_string);
13690 print_recreate_thread (self, fp);
13691
13692 if (tp->pass_count)
13693 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13694 }
13695
13696 static void
13697 tracepoint_create_sals_from_address (char **arg,
13698 struct linespec_result *canonical,
13699 enum bptype type_wanted,
13700 char *addr_start, char **copy_arg)
13701 {
13702 create_sals_from_address_default (arg, canonical, type_wanted,
13703 addr_start, copy_arg);
13704 }
13705
13706 static void
13707 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13708 struct linespec_result *canonical,
13709 char *cond_string,
13710 char *extra_string,
13711 enum bptype type_wanted,
13712 enum bpdisp disposition,
13713 int thread,
13714 int task, int ignore_count,
13715 const struct breakpoint_ops *ops,
13716 int from_tty, int enabled,
13717 int internal, unsigned flags)
13718 {
13719 create_breakpoints_sal_default (gdbarch, canonical,
13720 cond_string, extra_string,
13721 type_wanted,
13722 disposition, thread, task,
13723 ignore_count, ops, from_tty,
13724 enabled, internal, flags);
13725 }
13726
13727 static void
13728 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13729 struct symtabs_and_lines *sals)
13730 {
13731 decode_linespec_default (b, s, sals);
13732 }
13733
13734 struct breakpoint_ops tracepoint_breakpoint_ops;
13735
13736 /* The breakpoint_ops structure to be use on tracepoints placed in a
13737 static probe. */
13738
13739 static void
13740 tracepoint_probe_create_sals_from_address (char **arg,
13741 struct linespec_result *canonical,
13742 enum bptype type_wanted,
13743 char *addr_start, char **copy_arg)
13744 {
13745 /* We use the same method for breakpoint on probes. */
13746 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13747 addr_start, copy_arg);
13748 }
13749
13750 static void
13751 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13752 struct symtabs_and_lines *sals)
13753 {
13754 /* We use the same method for breakpoint on probes. */
13755 bkpt_probe_decode_linespec (b, s, sals);
13756 }
13757
13758 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13759
13760 /* Dprintf breakpoint_ops methods. */
13761
13762 static void
13763 dprintf_re_set (struct breakpoint *b)
13764 {
13765 breakpoint_re_set_default (b);
13766
13767 /* This breakpoint could have been pending, and be resolved now, and
13768 if so, we should now have the extra string. If we don't, the
13769 dprintf was malformed when created, but we couldn't tell because
13770 we can't extract the extra string until the location is
13771 resolved. */
13772 if (b->loc != NULL && b->extra_string == NULL)
13773 error (_("Format string required"));
13774
13775 /* 1 - connect to target 1, that can run breakpoint commands.
13776 2 - create a dprintf, which resolves fine.
13777 3 - disconnect from target 1
13778 4 - connect to target 2, that can NOT run breakpoint commands.
13779
13780 After steps #3/#4, you'll want the dprintf command list to
13781 be updated, because target 1 and 2 may well return different
13782 answers for target_can_run_breakpoint_commands().
13783 Given absence of finer grained resetting, we get to do
13784 it all the time. */
13785 if (b->extra_string != NULL)
13786 update_dprintf_command_list (b);
13787 }
13788
13789 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13790
13791 static void
13792 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13793 {
13794 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13795 tp->extra_string);
13796 print_recreate_thread (tp, fp);
13797 }
13798
13799 /* Implement the "after_condition_true" breakpoint_ops method for
13800 dprintf.
13801
13802 dprintf's are implemented with regular commands in their command
13803 list, but we run the commands here instead of before presenting the
13804 stop to the user, as dprintf's don't actually cause a stop. This
13805 also makes it so that the commands of multiple dprintfs at the same
13806 address are all handled. */
13807
13808 static void
13809 dprintf_after_condition_true (struct bpstats *bs)
13810 {
13811 struct cleanup *old_chain;
13812 struct bpstats tmp_bs = { NULL };
13813 struct bpstats *tmp_bs_p = &tmp_bs;
13814
13815 /* dprintf's never cause a stop. This wasn't set in the
13816 check_status hook instead because that would make the dprintf's
13817 condition not be evaluated. */
13818 bs->stop = 0;
13819
13820 /* Run the command list here. Take ownership of it instead of
13821 copying. We never want these commands to run later in
13822 bpstat_do_actions, if a breakpoint that causes a stop happens to
13823 be set at same address as this dprintf, or even if running the
13824 commands here throws. */
13825 tmp_bs.commands = bs->commands;
13826 bs->commands = NULL;
13827 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13828
13829 bpstat_do_actions_1 (&tmp_bs_p);
13830
13831 /* 'tmp_bs.commands' will usually be NULL by now, but
13832 bpstat_do_actions_1 may return early without processing the whole
13833 list. */
13834 do_cleanups (old_chain);
13835 }
13836
13837 /* The breakpoint_ops structure to be used on static tracepoints with
13838 markers (`-m'). */
13839
13840 static void
13841 strace_marker_create_sals_from_address (char **arg,
13842 struct linespec_result *canonical,
13843 enum bptype type_wanted,
13844 char *addr_start, char **copy_arg)
13845 {
13846 struct linespec_sals lsal;
13847
13848 lsal.sals = decode_static_tracepoint_spec (arg);
13849
13850 *copy_arg = savestring (addr_start, *arg - addr_start);
13851
13852 canonical->addr_string = xstrdup (*copy_arg);
13853 lsal.canonical = xstrdup (*copy_arg);
13854 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13855 }
13856
13857 static void
13858 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13859 struct linespec_result *canonical,
13860 char *cond_string,
13861 char *extra_string,
13862 enum bptype type_wanted,
13863 enum bpdisp disposition,
13864 int thread,
13865 int task, int ignore_count,
13866 const struct breakpoint_ops *ops,
13867 int from_tty, int enabled,
13868 int internal, unsigned flags)
13869 {
13870 int i;
13871 struct linespec_sals *lsal = VEC_index (linespec_sals,
13872 canonical->sals, 0);
13873
13874 /* If the user is creating a static tracepoint by marker id
13875 (strace -m MARKER_ID), then store the sals index, so that
13876 breakpoint_re_set can try to match up which of the newly
13877 found markers corresponds to this one, and, don't try to
13878 expand multiple locations for each sal, given than SALS
13879 already should contain all sals for MARKER_ID. */
13880
13881 for (i = 0; i < lsal->sals.nelts; ++i)
13882 {
13883 struct symtabs_and_lines expanded;
13884 struct tracepoint *tp;
13885 struct cleanup *old_chain;
13886 char *addr_string;
13887
13888 expanded.nelts = 1;
13889 expanded.sals = &lsal->sals.sals[i];
13890
13891 addr_string = xstrdup (canonical->addr_string);
13892 old_chain = make_cleanup (xfree, addr_string);
13893
13894 tp = XCNEW (struct tracepoint);
13895 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13896 addr_string, NULL,
13897 cond_string, extra_string,
13898 type_wanted, disposition,
13899 thread, task, ignore_count, ops,
13900 from_tty, enabled, internal, flags,
13901 canonical->special_display);
13902 /* Given that its possible to have multiple markers with
13903 the same string id, if the user is creating a static
13904 tracepoint by marker id ("strace -m MARKER_ID"), then
13905 store the sals index, so that breakpoint_re_set can
13906 try to match up which of the newly found markers
13907 corresponds to this one */
13908 tp->static_trace_marker_id_idx = i;
13909
13910 install_breakpoint (internal, &tp->base, 0);
13911
13912 discard_cleanups (old_chain);
13913 }
13914 }
13915
13916 static void
13917 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13918 struct symtabs_and_lines *sals)
13919 {
13920 struct tracepoint *tp = (struct tracepoint *) b;
13921
13922 *sals = decode_static_tracepoint_spec (s);
13923 if (sals->nelts > tp->static_trace_marker_id_idx)
13924 {
13925 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13926 sals->nelts = 1;
13927 }
13928 else
13929 error (_("marker %s not found"), tp->static_trace_marker_id);
13930 }
13931
13932 static struct breakpoint_ops strace_marker_breakpoint_ops;
13933
13934 static int
13935 strace_marker_p (struct breakpoint *b)
13936 {
13937 return b->ops == &strace_marker_breakpoint_ops;
13938 }
13939
13940 /* Delete a breakpoint and clean up all traces of it in the data
13941 structures. */
13942
13943 void
13944 delete_breakpoint (struct breakpoint *bpt)
13945 {
13946 struct breakpoint *b;
13947
13948 gdb_assert (bpt != NULL);
13949
13950 /* Has this bp already been deleted? This can happen because
13951 multiple lists can hold pointers to bp's. bpstat lists are
13952 especial culprits.
13953
13954 One example of this happening is a watchpoint's scope bp. When
13955 the scope bp triggers, we notice that the watchpoint is out of
13956 scope, and delete it. We also delete its scope bp. But the
13957 scope bp is marked "auto-deleting", and is already on a bpstat.
13958 That bpstat is then checked for auto-deleting bp's, which are
13959 deleted.
13960
13961 A real solution to this problem might involve reference counts in
13962 bp's, and/or giving them pointers back to their referencing
13963 bpstat's, and teaching delete_breakpoint to only free a bp's
13964 storage when no more references were extent. A cheaper bandaid
13965 was chosen. */
13966 if (bpt->type == bp_none)
13967 return;
13968
13969 /* At least avoid this stale reference until the reference counting
13970 of breakpoints gets resolved. */
13971 if (bpt->related_breakpoint != bpt)
13972 {
13973 struct breakpoint *related;
13974 struct watchpoint *w;
13975
13976 if (bpt->type == bp_watchpoint_scope)
13977 w = (struct watchpoint *) bpt->related_breakpoint;
13978 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13979 w = (struct watchpoint *) bpt;
13980 else
13981 w = NULL;
13982 if (w != NULL)
13983 watchpoint_del_at_next_stop (w);
13984
13985 /* Unlink bpt from the bpt->related_breakpoint ring. */
13986 for (related = bpt; related->related_breakpoint != bpt;
13987 related = related->related_breakpoint);
13988 related->related_breakpoint = bpt->related_breakpoint;
13989 bpt->related_breakpoint = bpt;
13990 }
13991
13992 /* watch_command_1 creates a watchpoint but only sets its number if
13993 update_watchpoint succeeds in creating its bp_locations. If there's
13994 a problem in that process, we'll be asked to delete the half-created
13995 watchpoint. In that case, don't announce the deletion. */
13996 if (bpt->number)
13997 observer_notify_breakpoint_deleted (bpt);
13998
13999 if (breakpoint_chain == bpt)
14000 breakpoint_chain = bpt->next;
14001
14002 ALL_BREAKPOINTS (b)
14003 if (b->next == bpt)
14004 {
14005 b->next = bpt->next;
14006 break;
14007 }
14008
14009 /* Be sure no bpstat's are pointing at the breakpoint after it's
14010 been freed. */
14011 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
14012 in all threads for now. Note that we cannot just remove bpstats
14013 pointing at bpt from the stop_bpstat list entirely, as breakpoint
14014 commands are associated with the bpstat; if we remove it here,
14015 then the later call to bpstat_do_actions (&stop_bpstat); in
14016 event-top.c won't do anything, and temporary breakpoints with
14017 commands won't work. */
14018
14019 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
14020
14021 /* Now that breakpoint is removed from breakpoint list, update the
14022 global location list. This will remove locations that used to
14023 belong to this breakpoint. Do this before freeing the breakpoint
14024 itself, since remove_breakpoint looks at location's owner. It
14025 might be better design to have location completely
14026 self-contained, but it's not the case now. */
14027 update_global_location_list (0);
14028
14029 bpt->ops->dtor (bpt);
14030 /* On the chance that someone will soon try again to delete this
14031 same bp, we mark it as deleted before freeing its storage. */
14032 bpt->type = bp_none;
14033 xfree (bpt);
14034 }
14035
14036 static void
14037 do_delete_breakpoint_cleanup (void *b)
14038 {
14039 delete_breakpoint (b);
14040 }
14041
14042 struct cleanup *
14043 make_cleanup_delete_breakpoint (struct breakpoint *b)
14044 {
14045 return make_cleanup (do_delete_breakpoint_cleanup, b);
14046 }
14047
14048 /* Iterator function to call a user-provided callback function once
14049 for each of B and its related breakpoints. */
14050
14051 static void
14052 iterate_over_related_breakpoints (struct breakpoint *b,
14053 void (*function) (struct breakpoint *,
14054 void *),
14055 void *data)
14056 {
14057 struct breakpoint *related;
14058
14059 related = b;
14060 do
14061 {
14062 struct breakpoint *next;
14063
14064 /* FUNCTION may delete RELATED. */
14065 next = related->related_breakpoint;
14066
14067 if (next == related)
14068 {
14069 /* RELATED is the last ring entry. */
14070 function (related, data);
14071
14072 /* FUNCTION may have deleted it, so we'd never reach back to
14073 B. There's nothing left to do anyway, so just break
14074 out. */
14075 break;
14076 }
14077 else
14078 function (related, data);
14079
14080 related = next;
14081 }
14082 while (related != b);
14083 }
14084
14085 static void
14086 do_delete_breakpoint (struct breakpoint *b, void *ignore)
14087 {
14088 delete_breakpoint (b);
14089 }
14090
14091 /* A callback for map_breakpoint_numbers that calls
14092 delete_breakpoint. */
14093
14094 static void
14095 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14096 {
14097 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14098 }
14099
14100 void
14101 delete_command (char *arg, int from_tty)
14102 {
14103 struct breakpoint *b, *b_tmp;
14104
14105 dont_repeat ();
14106
14107 if (arg == 0)
14108 {
14109 int breaks_to_delete = 0;
14110
14111 /* Delete all breakpoints if no argument. Do not delete
14112 internal breakpoints, these have to be deleted with an
14113 explicit breakpoint number argument. */
14114 ALL_BREAKPOINTS (b)
14115 if (user_breakpoint_p (b))
14116 {
14117 breaks_to_delete = 1;
14118 break;
14119 }
14120
14121 /* Ask user only if there are some breakpoints to delete. */
14122 if (!from_tty
14123 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14124 {
14125 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14126 if (user_breakpoint_p (b))
14127 delete_breakpoint (b);
14128 }
14129 }
14130 else
14131 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14132 }
14133
14134 static int
14135 all_locations_are_pending (struct bp_location *loc)
14136 {
14137 for (; loc; loc = loc->next)
14138 if (!loc->shlib_disabled
14139 && !loc->pspace->executing_startup)
14140 return 0;
14141 return 1;
14142 }
14143
14144 /* Subroutine of update_breakpoint_locations to simplify it.
14145 Return non-zero if multiple fns in list LOC have the same name.
14146 Null names are ignored. */
14147
14148 static int
14149 ambiguous_names_p (struct bp_location *loc)
14150 {
14151 struct bp_location *l;
14152 htab_t htab = htab_create_alloc (13, htab_hash_string,
14153 (int (*) (const void *,
14154 const void *)) streq,
14155 NULL, xcalloc, xfree);
14156
14157 for (l = loc; l != NULL; l = l->next)
14158 {
14159 const char **slot;
14160 const char *name = l->function_name;
14161
14162 /* Allow for some names to be NULL, ignore them. */
14163 if (name == NULL)
14164 continue;
14165
14166 slot = (const char **) htab_find_slot (htab, (const void *) name,
14167 INSERT);
14168 /* NOTE: We can assume slot != NULL here because xcalloc never
14169 returns NULL. */
14170 if (*slot != NULL)
14171 {
14172 htab_delete (htab);
14173 return 1;
14174 }
14175 *slot = name;
14176 }
14177
14178 htab_delete (htab);
14179 return 0;
14180 }
14181
14182 /* When symbols change, it probably means the sources changed as well,
14183 and it might mean the static tracepoint markers are no longer at
14184 the same address or line numbers they used to be at last we
14185 checked. Losing your static tracepoints whenever you rebuild is
14186 undesirable. This function tries to resync/rematch gdb static
14187 tracepoints with the markers on the target, for static tracepoints
14188 that have not been set by marker id. Static tracepoint that have
14189 been set by marker id are reset by marker id in breakpoint_re_set.
14190 The heuristic is:
14191
14192 1) For a tracepoint set at a specific address, look for a marker at
14193 the old PC. If one is found there, assume to be the same marker.
14194 If the name / string id of the marker found is different from the
14195 previous known name, assume that means the user renamed the marker
14196 in the sources, and output a warning.
14197
14198 2) For a tracepoint set at a given line number, look for a marker
14199 at the new address of the old line number. If one is found there,
14200 assume to be the same marker. If the name / string id of the
14201 marker found is different from the previous known name, assume that
14202 means the user renamed the marker in the sources, and output a
14203 warning.
14204
14205 3) If a marker is no longer found at the same address or line, it
14206 may mean the marker no longer exists. But it may also just mean
14207 the code changed a bit. Maybe the user added a few lines of code
14208 that made the marker move up or down (in line number terms). Ask
14209 the target for info about the marker with the string id as we knew
14210 it. If found, update line number and address in the matching
14211 static tracepoint. This will get confused if there's more than one
14212 marker with the same ID (possible in UST, although unadvised
14213 precisely because it confuses tools). */
14214
14215 static struct symtab_and_line
14216 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14217 {
14218 struct tracepoint *tp = (struct tracepoint *) b;
14219 struct static_tracepoint_marker marker;
14220 CORE_ADDR pc;
14221
14222 pc = sal.pc;
14223 if (sal.line)
14224 find_line_pc (sal.symtab, sal.line, &pc);
14225
14226 if (target_static_tracepoint_marker_at (pc, &marker))
14227 {
14228 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14229 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14230 b->number,
14231 tp->static_trace_marker_id, marker.str_id);
14232
14233 xfree (tp->static_trace_marker_id);
14234 tp->static_trace_marker_id = xstrdup (marker.str_id);
14235 release_static_tracepoint_marker (&marker);
14236
14237 return sal;
14238 }
14239
14240 /* Old marker wasn't found on target at lineno. Try looking it up
14241 by string ID. */
14242 if (!sal.explicit_pc
14243 && sal.line != 0
14244 && sal.symtab != NULL
14245 && tp->static_trace_marker_id != NULL)
14246 {
14247 VEC(static_tracepoint_marker_p) *markers;
14248
14249 markers
14250 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14251
14252 if (!VEC_empty(static_tracepoint_marker_p, markers))
14253 {
14254 struct symtab_and_line sal2;
14255 struct symbol *sym;
14256 struct static_tracepoint_marker *tpmarker;
14257 struct ui_out *uiout = current_uiout;
14258
14259 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14260
14261 xfree (tp->static_trace_marker_id);
14262 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14263
14264 warning (_("marker for static tracepoint %d (%s) not "
14265 "found at previous line number"),
14266 b->number, tp->static_trace_marker_id);
14267
14268 init_sal (&sal2);
14269
14270 sal2.pc = tpmarker->address;
14271
14272 sal2 = find_pc_line (tpmarker->address, 0);
14273 sym = find_pc_sect_function (tpmarker->address, NULL);
14274 ui_out_text (uiout, "Now in ");
14275 if (sym)
14276 {
14277 ui_out_field_string (uiout, "func",
14278 SYMBOL_PRINT_NAME (sym));
14279 ui_out_text (uiout, " at ");
14280 }
14281 ui_out_field_string (uiout, "file",
14282 symtab_to_filename_for_display (sal2.symtab));
14283 ui_out_text (uiout, ":");
14284
14285 if (ui_out_is_mi_like_p (uiout))
14286 {
14287 const char *fullname = symtab_to_fullname (sal2.symtab);
14288
14289 ui_out_field_string (uiout, "fullname", fullname);
14290 }
14291
14292 ui_out_field_int (uiout, "line", sal2.line);
14293 ui_out_text (uiout, "\n");
14294
14295 b->loc->line_number = sal2.line;
14296 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14297
14298 xfree (b->addr_string);
14299 b->addr_string = xstrprintf ("%s:%d",
14300 symtab_to_filename_for_display (sal2.symtab),
14301 b->loc->line_number);
14302
14303 /* Might be nice to check if function changed, and warn if
14304 so. */
14305
14306 release_static_tracepoint_marker (tpmarker);
14307 }
14308 }
14309 return sal;
14310 }
14311
14312 /* Returns 1 iff locations A and B are sufficiently same that
14313 we don't need to report breakpoint as changed. */
14314
14315 static int
14316 locations_are_equal (struct bp_location *a, struct bp_location *b)
14317 {
14318 while (a && b)
14319 {
14320 if (a->address != b->address)
14321 return 0;
14322
14323 if (a->shlib_disabled != b->shlib_disabled)
14324 return 0;
14325
14326 if (a->enabled != b->enabled)
14327 return 0;
14328
14329 a = a->next;
14330 b = b->next;
14331 }
14332
14333 if ((a == NULL) != (b == NULL))
14334 return 0;
14335
14336 return 1;
14337 }
14338
14339 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14340 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14341 a ranged breakpoint. */
14342
14343 void
14344 update_breakpoint_locations (struct breakpoint *b,
14345 struct symtabs_and_lines sals,
14346 struct symtabs_and_lines sals_end)
14347 {
14348 int i;
14349 struct bp_location *existing_locations = b->loc;
14350
14351 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14352 {
14353 /* Ranged breakpoints have only one start location and one end
14354 location. */
14355 b->enable_state = bp_disabled;
14356 update_global_location_list (1);
14357 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14358 "multiple locations found\n"),
14359 b->number);
14360 return;
14361 }
14362
14363 /* If there's no new locations, and all existing locations are
14364 pending, don't do anything. This optimizes the common case where
14365 all locations are in the same shared library, that was unloaded.
14366 We'd like to retain the location, so that when the library is
14367 loaded again, we don't loose the enabled/disabled status of the
14368 individual locations. */
14369 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14370 return;
14371
14372 b->loc = NULL;
14373
14374 for (i = 0; i < sals.nelts; ++i)
14375 {
14376 struct bp_location *new_loc;
14377
14378 switch_to_program_space_and_thread (sals.sals[i].pspace);
14379
14380 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14381
14382 /* Reparse conditions, they might contain references to the
14383 old symtab. */
14384 if (b->cond_string != NULL)
14385 {
14386 const char *s;
14387 volatile struct gdb_exception e;
14388
14389 s = b->cond_string;
14390 TRY_CATCH (e, RETURN_MASK_ERROR)
14391 {
14392 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14393 block_for_pc (sals.sals[i].pc),
14394 0);
14395 }
14396 if (e.reason < 0)
14397 {
14398 warning (_("failed to reevaluate condition "
14399 "for breakpoint %d: %s"),
14400 b->number, e.message);
14401 new_loc->enabled = 0;
14402 }
14403 }
14404
14405 if (sals_end.nelts)
14406 {
14407 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14408
14409 new_loc->length = end - sals.sals[0].pc + 1;
14410 }
14411 }
14412
14413 /* Update locations of permanent breakpoints. */
14414 if (b->enable_state == bp_permanent)
14415 make_breakpoint_permanent (b);
14416
14417 /* If possible, carry over 'disable' status from existing
14418 breakpoints. */
14419 {
14420 struct bp_location *e = existing_locations;
14421 /* If there are multiple breakpoints with the same function name,
14422 e.g. for inline functions, comparing function names won't work.
14423 Instead compare pc addresses; this is just a heuristic as things
14424 may have moved, but in practice it gives the correct answer
14425 often enough until a better solution is found. */
14426 int have_ambiguous_names = ambiguous_names_p (b->loc);
14427
14428 for (; e; e = e->next)
14429 {
14430 if (!e->enabled && e->function_name)
14431 {
14432 struct bp_location *l = b->loc;
14433 if (have_ambiguous_names)
14434 {
14435 for (; l; l = l->next)
14436 if (breakpoint_locations_match (e, l))
14437 {
14438 l->enabled = 0;
14439 break;
14440 }
14441 }
14442 else
14443 {
14444 for (; l; l = l->next)
14445 if (l->function_name
14446 && strcmp (e->function_name, l->function_name) == 0)
14447 {
14448 l->enabled = 0;
14449 break;
14450 }
14451 }
14452 }
14453 }
14454 }
14455
14456 if (!locations_are_equal (existing_locations, b->loc))
14457 observer_notify_breakpoint_modified (b);
14458
14459 update_global_location_list (1);
14460 }
14461
14462 /* Find the SaL locations corresponding to the given ADDR_STRING.
14463 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14464
14465 static struct symtabs_and_lines
14466 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14467 {
14468 char *s;
14469 struct symtabs_and_lines sals = {0};
14470 volatile struct gdb_exception e;
14471
14472 gdb_assert (b->ops != NULL);
14473 s = addr_string;
14474
14475 TRY_CATCH (e, RETURN_MASK_ERROR)
14476 {
14477 b->ops->decode_linespec (b, &s, &sals);
14478 }
14479 if (e.reason < 0)
14480 {
14481 int not_found_and_ok = 0;
14482 /* For pending breakpoints, it's expected that parsing will
14483 fail until the right shared library is loaded. User has
14484 already told to create pending breakpoints and don't need
14485 extra messages. If breakpoint is in bp_shlib_disabled
14486 state, then user already saw the message about that
14487 breakpoint being disabled, and don't want to see more
14488 errors. */
14489 if (e.error == NOT_FOUND_ERROR
14490 && (b->condition_not_parsed
14491 || (b->loc && b->loc->shlib_disabled)
14492 || (b->loc && b->loc->pspace->executing_startup)
14493 || b->enable_state == bp_disabled))
14494 not_found_and_ok = 1;
14495
14496 if (!not_found_and_ok)
14497 {
14498 /* We surely don't want to warn about the same breakpoint
14499 10 times. One solution, implemented here, is disable
14500 the breakpoint on error. Another solution would be to
14501 have separate 'warning emitted' flag. Since this
14502 happens only when a binary has changed, I don't know
14503 which approach is better. */
14504 b->enable_state = bp_disabled;
14505 throw_exception (e);
14506 }
14507 }
14508
14509 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14510 {
14511 int i;
14512
14513 for (i = 0; i < sals.nelts; ++i)
14514 resolve_sal_pc (&sals.sals[i]);
14515 if (b->condition_not_parsed && s && s[0])
14516 {
14517 char *cond_string, *extra_string;
14518 int thread, task;
14519
14520 find_condition_and_thread (s, sals.sals[0].pc,
14521 &cond_string, &thread, &task,
14522 &extra_string);
14523 if (cond_string)
14524 b->cond_string = cond_string;
14525 b->thread = thread;
14526 b->task = task;
14527 if (extra_string)
14528 b->extra_string = extra_string;
14529 b->condition_not_parsed = 0;
14530 }
14531
14532 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14533 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14534
14535 *found = 1;
14536 }
14537 else
14538 *found = 0;
14539
14540 return sals;
14541 }
14542
14543 /* The default re_set method, for typical hardware or software
14544 breakpoints. Reevaluate the breakpoint and recreate its
14545 locations. */
14546
14547 static void
14548 breakpoint_re_set_default (struct breakpoint *b)
14549 {
14550 int found;
14551 struct symtabs_and_lines sals, sals_end;
14552 struct symtabs_and_lines expanded = {0};
14553 struct symtabs_and_lines expanded_end = {0};
14554
14555 sals = addr_string_to_sals (b, b->addr_string, &found);
14556 if (found)
14557 {
14558 make_cleanup (xfree, sals.sals);
14559 expanded = sals;
14560 }
14561
14562 if (b->addr_string_range_end)
14563 {
14564 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14565 if (found)
14566 {
14567 make_cleanup (xfree, sals_end.sals);
14568 expanded_end = sals_end;
14569 }
14570 }
14571
14572 update_breakpoint_locations (b, expanded, expanded_end);
14573 }
14574
14575 /* Default method for creating SALs from an address string. It basically
14576 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14577
14578 static void
14579 create_sals_from_address_default (char **arg,
14580 struct linespec_result *canonical,
14581 enum bptype type_wanted,
14582 char *addr_start, char **copy_arg)
14583 {
14584 parse_breakpoint_sals (arg, canonical);
14585 }
14586
14587 /* Call create_breakpoints_sal for the given arguments. This is the default
14588 function for the `create_breakpoints_sal' method of
14589 breakpoint_ops. */
14590
14591 static void
14592 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14593 struct linespec_result *canonical,
14594 char *cond_string,
14595 char *extra_string,
14596 enum bptype type_wanted,
14597 enum bpdisp disposition,
14598 int thread,
14599 int task, int ignore_count,
14600 const struct breakpoint_ops *ops,
14601 int from_tty, int enabled,
14602 int internal, unsigned flags)
14603 {
14604 create_breakpoints_sal (gdbarch, canonical, cond_string,
14605 extra_string,
14606 type_wanted, disposition,
14607 thread, task, ignore_count, ops, from_tty,
14608 enabled, internal, flags);
14609 }
14610
14611 /* Decode the line represented by S by calling decode_line_full. This is the
14612 default function for the `decode_linespec' method of breakpoint_ops. */
14613
14614 static void
14615 decode_linespec_default (struct breakpoint *b, char **s,
14616 struct symtabs_and_lines *sals)
14617 {
14618 struct linespec_result canonical;
14619
14620 init_linespec_result (&canonical);
14621 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14622 (struct symtab *) NULL, 0,
14623 &canonical, multiple_symbols_all,
14624 b->filter);
14625
14626 /* We should get 0 or 1 resulting SALs. */
14627 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14628
14629 if (VEC_length (linespec_sals, canonical.sals) > 0)
14630 {
14631 struct linespec_sals *lsal;
14632
14633 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14634 *sals = lsal->sals;
14635 /* Arrange it so the destructor does not free the
14636 contents. */
14637 lsal->sals.sals = NULL;
14638 }
14639
14640 destroy_linespec_result (&canonical);
14641 }
14642
14643 /* Prepare the global context for a re-set of breakpoint B. */
14644
14645 static struct cleanup *
14646 prepare_re_set_context (struct breakpoint *b)
14647 {
14648 struct cleanup *cleanups;
14649
14650 input_radix = b->input_radix;
14651 cleanups = save_current_space_and_thread ();
14652 if (b->pspace != NULL)
14653 switch_to_program_space_and_thread (b->pspace);
14654 set_language (b->language);
14655
14656 return cleanups;
14657 }
14658
14659 /* Reset a breakpoint given it's struct breakpoint * BINT.
14660 The value we return ends up being the return value from catch_errors.
14661 Unused in this case. */
14662
14663 static int
14664 breakpoint_re_set_one (void *bint)
14665 {
14666 /* Get past catch_errs. */
14667 struct breakpoint *b = (struct breakpoint *) bint;
14668 struct cleanup *cleanups;
14669
14670 cleanups = prepare_re_set_context (b);
14671 b->ops->re_set (b);
14672 do_cleanups (cleanups);
14673 return 0;
14674 }
14675
14676 /* Re-set all breakpoints after symbols have been re-loaded. */
14677 void
14678 breakpoint_re_set (void)
14679 {
14680 struct breakpoint *b, *b_tmp;
14681 enum language save_language;
14682 int save_input_radix;
14683 struct cleanup *old_chain;
14684
14685 save_language = current_language->la_language;
14686 save_input_radix = input_radix;
14687 old_chain = save_current_program_space ();
14688
14689 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14690 {
14691 /* Format possible error msg. */
14692 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14693 b->number);
14694 struct cleanup *cleanups = make_cleanup (xfree, message);
14695 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14696 do_cleanups (cleanups);
14697 }
14698 set_language (save_language);
14699 input_radix = save_input_radix;
14700
14701 jit_breakpoint_re_set ();
14702
14703 do_cleanups (old_chain);
14704
14705 create_overlay_event_breakpoint ();
14706 create_longjmp_master_breakpoint ();
14707 create_std_terminate_master_breakpoint ();
14708 create_exception_master_breakpoint ();
14709 }
14710 \f
14711 /* Reset the thread number of this breakpoint:
14712
14713 - If the breakpoint is for all threads, leave it as-is.
14714 - Else, reset it to the current thread for inferior_ptid. */
14715 void
14716 breakpoint_re_set_thread (struct breakpoint *b)
14717 {
14718 if (b->thread != -1)
14719 {
14720 if (in_thread_list (inferior_ptid))
14721 b->thread = pid_to_thread_id (inferior_ptid);
14722
14723 /* We're being called after following a fork. The new fork is
14724 selected as current, and unless this was a vfork will have a
14725 different program space from the original thread. Reset that
14726 as well. */
14727 b->loc->pspace = current_program_space;
14728 }
14729 }
14730
14731 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14732 If from_tty is nonzero, it prints a message to that effect,
14733 which ends with a period (no newline). */
14734
14735 void
14736 set_ignore_count (int bptnum, int count, int from_tty)
14737 {
14738 struct breakpoint *b;
14739
14740 if (count < 0)
14741 count = 0;
14742
14743 ALL_BREAKPOINTS (b)
14744 if (b->number == bptnum)
14745 {
14746 if (is_tracepoint (b))
14747 {
14748 if (from_tty && count != 0)
14749 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14750 bptnum);
14751 return;
14752 }
14753
14754 b->ignore_count = count;
14755 if (from_tty)
14756 {
14757 if (count == 0)
14758 printf_filtered (_("Will stop next time "
14759 "breakpoint %d is reached."),
14760 bptnum);
14761 else if (count == 1)
14762 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14763 bptnum);
14764 else
14765 printf_filtered (_("Will ignore next %d "
14766 "crossings of breakpoint %d."),
14767 count, bptnum);
14768 }
14769 observer_notify_breakpoint_modified (b);
14770 return;
14771 }
14772
14773 error (_("No breakpoint number %d."), bptnum);
14774 }
14775
14776 /* Command to set ignore-count of breakpoint N to COUNT. */
14777
14778 static void
14779 ignore_command (char *args, int from_tty)
14780 {
14781 char *p = args;
14782 int num;
14783
14784 if (p == 0)
14785 error_no_arg (_("a breakpoint number"));
14786
14787 num = get_number (&p);
14788 if (num == 0)
14789 error (_("bad breakpoint number: '%s'"), args);
14790 if (*p == 0)
14791 error (_("Second argument (specified ignore-count) is missing."));
14792
14793 set_ignore_count (num,
14794 longest_to_int (value_as_long (parse_and_eval (p))),
14795 from_tty);
14796 if (from_tty)
14797 printf_filtered ("\n");
14798 }
14799 \f
14800 /* Call FUNCTION on each of the breakpoints
14801 whose numbers are given in ARGS. */
14802
14803 static void
14804 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14805 void *),
14806 void *data)
14807 {
14808 int num;
14809 struct breakpoint *b, *tmp;
14810 int match;
14811 struct get_number_or_range_state state;
14812
14813 if (args == 0)
14814 error_no_arg (_("one or more breakpoint numbers"));
14815
14816 init_number_or_range (&state, args);
14817
14818 while (!state.finished)
14819 {
14820 const char *p = state.string;
14821
14822 match = 0;
14823
14824 num = get_number_or_range (&state);
14825 if (num == 0)
14826 {
14827 warning (_("bad breakpoint number at or near '%s'"), p);
14828 }
14829 else
14830 {
14831 ALL_BREAKPOINTS_SAFE (b, tmp)
14832 if (b->number == num)
14833 {
14834 match = 1;
14835 function (b, data);
14836 break;
14837 }
14838 if (match == 0)
14839 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14840 }
14841 }
14842 }
14843
14844 static struct bp_location *
14845 find_location_by_number (char *number)
14846 {
14847 char *dot = strchr (number, '.');
14848 char *p1;
14849 int bp_num;
14850 int loc_num;
14851 struct breakpoint *b;
14852 struct bp_location *loc;
14853
14854 *dot = '\0';
14855
14856 p1 = number;
14857 bp_num = get_number (&p1);
14858 if (bp_num == 0)
14859 error (_("Bad breakpoint number '%s'"), number);
14860
14861 ALL_BREAKPOINTS (b)
14862 if (b->number == bp_num)
14863 {
14864 break;
14865 }
14866
14867 if (!b || b->number != bp_num)
14868 error (_("Bad breakpoint number '%s'"), number);
14869
14870 p1 = dot+1;
14871 loc_num = get_number (&p1);
14872 if (loc_num == 0)
14873 error (_("Bad breakpoint location number '%s'"), number);
14874
14875 --loc_num;
14876 loc = b->loc;
14877 for (;loc_num && loc; --loc_num, loc = loc->next)
14878 ;
14879 if (!loc)
14880 error (_("Bad breakpoint location number '%s'"), dot+1);
14881
14882 return loc;
14883 }
14884
14885
14886 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14887 If from_tty is nonzero, it prints a message to that effect,
14888 which ends with a period (no newline). */
14889
14890 void
14891 disable_breakpoint (struct breakpoint *bpt)
14892 {
14893 /* Never disable a watchpoint scope breakpoint; we want to
14894 hit them when we leave scope so we can delete both the
14895 watchpoint and its scope breakpoint at that time. */
14896 if (bpt->type == bp_watchpoint_scope)
14897 return;
14898
14899 /* You can't disable permanent breakpoints. */
14900 if (bpt->enable_state == bp_permanent)
14901 return;
14902
14903 bpt->enable_state = bp_disabled;
14904
14905 /* Mark breakpoint locations modified. */
14906 mark_breakpoint_modified (bpt);
14907
14908 if (target_supports_enable_disable_tracepoint ()
14909 && current_trace_status ()->running && is_tracepoint (bpt))
14910 {
14911 struct bp_location *location;
14912
14913 for (location = bpt->loc; location; location = location->next)
14914 target_disable_tracepoint (location);
14915 }
14916
14917 update_global_location_list (0);
14918
14919 observer_notify_breakpoint_modified (bpt);
14920 }
14921
14922 /* A callback for iterate_over_related_breakpoints. */
14923
14924 static void
14925 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14926 {
14927 disable_breakpoint (b);
14928 }
14929
14930 /* A callback for map_breakpoint_numbers that calls
14931 disable_breakpoint. */
14932
14933 static void
14934 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14935 {
14936 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14937 }
14938
14939 static void
14940 disable_command (char *args, int from_tty)
14941 {
14942 if (args == 0)
14943 {
14944 struct breakpoint *bpt;
14945
14946 ALL_BREAKPOINTS (bpt)
14947 if (user_breakpoint_p (bpt))
14948 disable_breakpoint (bpt);
14949 }
14950 else
14951 {
14952 char *num = extract_arg (&args);
14953
14954 while (num)
14955 {
14956 if (strchr (num, '.'))
14957 {
14958 struct bp_location *loc = find_location_by_number (num);
14959
14960 if (loc)
14961 {
14962 if (loc->enabled)
14963 {
14964 loc->enabled = 0;
14965 mark_breakpoint_location_modified (loc);
14966 }
14967 if (target_supports_enable_disable_tracepoint ()
14968 && current_trace_status ()->running && loc->owner
14969 && is_tracepoint (loc->owner))
14970 target_disable_tracepoint (loc);
14971 }
14972 update_global_location_list (0);
14973 }
14974 else
14975 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14976 num = extract_arg (&args);
14977 }
14978 }
14979 }
14980
14981 static void
14982 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14983 int count)
14984 {
14985 int target_resources_ok;
14986
14987 if (bpt->type == bp_hardware_breakpoint)
14988 {
14989 int i;
14990 i = hw_breakpoint_used_count ();
14991 target_resources_ok =
14992 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14993 i + 1, 0);
14994 if (target_resources_ok == 0)
14995 error (_("No hardware breakpoint support in the target."));
14996 else if (target_resources_ok < 0)
14997 error (_("Hardware breakpoints used exceeds limit."));
14998 }
14999
15000 if (is_watchpoint (bpt))
15001 {
15002 /* Initialize it just to avoid a GCC false warning. */
15003 enum enable_state orig_enable_state = 0;
15004 volatile struct gdb_exception e;
15005
15006 TRY_CATCH (e, RETURN_MASK_ALL)
15007 {
15008 struct watchpoint *w = (struct watchpoint *) bpt;
15009
15010 orig_enable_state = bpt->enable_state;
15011 bpt->enable_state = bp_enabled;
15012 update_watchpoint (w, 1 /* reparse */);
15013 }
15014 if (e.reason < 0)
15015 {
15016 bpt->enable_state = orig_enable_state;
15017 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
15018 bpt->number);
15019 return;
15020 }
15021 }
15022
15023 if (bpt->enable_state != bp_permanent)
15024 bpt->enable_state = bp_enabled;
15025
15026 bpt->enable_state = bp_enabled;
15027
15028 /* Mark breakpoint locations modified. */
15029 mark_breakpoint_modified (bpt);
15030
15031 if (target_supports_enable_disable_tracepoint ()
15032 && current_trace_status ()->running && is_tracepoint (bpt))
15033 {
15034 struct bp_location *location;
15035
15036 for (location = bpt->loc; location; location = location->next)
15037 target_enable_tracepoint (location);
15038 }
15039
15040 bpt->disposition = disposition;
15041 bpt->enable_count = count;
15042 update_global_location_list (1);
15043
15044 observer_notify_breakpoint_modified (bpt);
15045 }
15046
15047
15048 void
15049 enable_breakpoint (struct breakpoint *bpt)
15050 {
15051 enable_breakpoint_disp (bpt, bpt->disposition, 0);
15052 }
15053
15054 static void
15055 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
15056 {
15057 enable_breakpoint (bpt);
15058 }
15059
15060 /* A callback for map_breakpoint_numbers that calls
15061 enable_breakpoint. */
15062
15063 static void
15064 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15065 {
15066 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15067 }
15068
15069 /* The enable command enables the specified breakpoints (or all defined
15070 breakpoints) so they once again become (or continue to be) effective
15071 in stopping the inferior. */
15072
15073 static void
15074 enable_command (char *args, int from_tty)
15075 {
15076 if (args == 0)
15077 {
15078 struct breakpoint *bpt;
15079
15080 ALL_BREAKPOINTS (bpt)
15081 if (user_breakpoint_p (bpt))
15082 enable_breakpoint (bpt);
15083 }
15084 else
15085 {
15086 char *num = extract_arg (&args);
15087
15088 while (num)
15089 {
15090 if (strchr (num, '.'))
15091 {
15092 struct bp_location *loc = find_location_by_number (num);
15093
15094 if (loc)
15095 {
15096 if (!loc->enabled)
15097 {
15098 loc->enabled = 1;
15099 mark_breakpoint_location_modified (loc);
15100 }
15101 if (target_supports_enable_disable_tracepoint ()
15102 && current_trace_status ()->running && loc->owner
15103 && is_tracepoint (loc->owner))
15104 target_enable_tracepoint (loc);
15105 }
15106 update_global_location_list (1);
15107 }
15108 else
15109 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15110 num = extract_arg (&args);
15111 }
15112 }
15113 }
15114
15115 /* This struct packages up disposition data for application to multiple
15116 breakpoints. */
15117
15118 struct disp_data
15119 {
15120 enum bpdisp disp;
15121 int count;
15122 };
15123
15124 static void
15125 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15126 {
15127 struct disp_data disp_data = *(struct disp_data *) arg;
15128
15129 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15130 }
15131
15132 static void
15133 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15134 {
15135 struct disp_data disp = { disp_disable, 1 };
15136
15137 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15138 }
15139
15140 static void
15141 enable_once_command (char *args, int from_tty)
15142 {
15143 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15144 }
15145
15146 static void
15147 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15148 {
15149 struct disp_data disp = { disp_disable, *(int *) countptr };
15150
15151 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15152 }
15153
15154 static void
15155 enable_count_command (char *args, int from_tty)
15156 {
15157 int count = get_number (&args);
15158
15159 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15160 }
15161
15162 static void
15163 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15164 {
15165 struct disp_data disp = { disp_del, 1 };
15166
15167 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15168 }
15169
15170 static void
15171 enable_delete_command (char *args, int from_tty)
15172 {
15173 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15174 }
15175 \f
15176 static void
15177 set_breakpoint_cmd (char *args, int from_tty)
15178 {
15179 }
15180
15181 static void
15182 show_breakpoint_cmd (char *args, int from_tty)
15183 {
15184 }
15185
15186 /* Invalidate last known value of any hardware watchpoint if
15187 the memory which that value represents has been written to by
15188 GDB itself. */
15189
15190 static void
15191 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15192 CORE_ADDR addr, ssize_t len,
15193 const bfd_byte *data)
15194 {
15195 struct breakpoint *bp;
15196
15197 ALL_BREAKPOINTS (bp)
15198 if (bp->enable_state == bp_enabled
15199 && bp->type == bp_hardware_watchpoint)
15200 {
15201 struct watchpoint *wp = (struct watchpoint *) bp;
15202
15203 if (wp->val_valid && wp->val)
15204 {
15205 struct bp_location *loc;
15206
15207 for (loc = bp->loc; loc != NULL; loc = loc->next)
15208 if (loc->loc_type == bp_loc_hardware_watchpoint
15209 && loc->address + loc->length > addr
15210 && addr + len > loc->address)
15211 {
15212 value_free (wp->val);
15213 wp->val = NULL;
15214 wp->val_valid = 0;
15215 }
15216 }
15217 }
15218 }
15219
15220 /* Create and insert a raw software breakpoint at PC. Return an
15221 identifier, which should be used to remove the breakpoint later.
15222 In general, places which call this should be using something on the
15223 breakpoint chain instead; this function should be eliminated
15224 someday. */
15225
15226 void *
15227 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15228 struct address_space *aspace, CORE_ADDR pc)
15229 {
15230 struct bp_target_info *bp_tgt;
15231 struct bp_location *bl;
15232
15233 bp_tgt = XCNEW (struct bp_target_info);
15234
15235 bp_tgt->placed_address_space = aspace;
15236 bp_tgt->placed_address = pc;
15237
15238 /* If an unconditional non-raw breakpoint is already inserted at
15239 that location, there's no need to insert another. However, with
15240 target-side evaluation of breakpoint conditions, if the
15241 breakpoint that is currently inserted on the target is
15242 conditional, we need to make it unconditional. Note that a
15243 breakpoint with target-side commands is not reported even if
15244 unconditional, so we need to remove the commands from the target
15245 as well. */
15246 bl = find_non_raw_software_breakpoint_inserted_here (aspace, pc);
15247 if (bl != NULL
15248 && VEC_empty (agent_expr_p, bl->target_info.conditions)
15249 && VEC_empty (agent_expr_p, bl->target_info.tcommands))
15250 {
15251 bp_target_info_copy_insertion_state (bp_tgt, &bl->target_info);
15252 return bp_tgt;
15253 }
15254
15255 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15256 {
15257 /* Could not insert the breakpoint. */
15258 xfree (bp_tgt);
15259 return NULL;
15260 }
15261
15262 return bp_tgt;
15263 }
15264
15265 /* Remove a breakpoint BP inserted by
15266 deprecated_insert_raw_breakpoint. */
15267
15268 int
15269 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15270 {
15271 struct bp_target_info *bp_tgt = bp;
15272 struct address_space *aspace = bp_tgt->placed_address_space;
15273 CORE_ADDR address = bp_tgt->placed_address;
15274 struct bp_location *bl;
15275 int ret;
15276
15277 bl = find_non_raw_software_breakpoint_inserted_here (aspace, address);
15278
15279 /* Only remove the raw breakpoint if there are no other non-raw
15280 breakpoints still inserted at this location. Otherwise, we would
15281 be effectively disabling those breakpoints. */
15282 if (bl == NULL)
15283 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15284 else if (!VEC_empty (agent_expr_p, bl->target_info.conditions)
15285 || !VEC_empty (agent_expr_p, bl->target_info.tcommands))
15286 {
15287 /* The target is evaluating conditions, and when we inserted the
15288 software single-step breakpoint, we had made the breakpoint
15289 unconditional and command-less on the target side. Reinsert
15290 to restore the conditions/commands. */
15291 ret = target_insert_breakpoint (bl->gdbarch, &bl->target_info);
15292 }
15293 else
15294 ret = 0;
15295
15296 xfree (bp_tgt);
15297
15298 return ret;
15299 }
15300
15301 /* Create and insert a breakpoint for software single step. */
15302
15303 void
15304 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15305 struct address_space *aspace,
15306 CORE_ADDR next_pc)
15307 {
15308 void **bpt_p;
15309
15310 if (single_step_breakpoints[0] == NULL)
15311 {
15312 bpt_p = &single_step_breakpoints[0];
15313 single_step_gdbarch[0] = gdbarch;
15314 }
15315 else
15316 {
15317 gdb_assert (single_step_breakpoints[1] == NULL);
15318 bpt_p = &single_step_breakpoints[1];
15319 single_step_gdbarch[1] = gdbarch;
15320 }
15321
15322 /* NOTE drow/2006-04-11: A future improvement to this function would
15323 be to only create the breakpoints once, and actually put them on
15324 the breakpoint chain. That would let us use set_raw_breakpoint.
15325 We could adjust the addresses each time they were needed. Doing
15326 this requires corresponding changes elsewhere where single step
15327 breakpoints are handled, however. So, for now, we use this. */
15328
15329 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15330 if (*bpt_p == NULL)
15331 error (_("Could not insert single-step breakpoint at %s"),
15332 paddress (gdbarch, next_pc));
15333 }
15334
15335 /* Check if the breakpoints used for software single stepping
15336 were inserted or not. */
15337
15338 int
15339 single_step_breakpoints_inserted (void)
15340 {
15341 return (single_step_breakpoints[0] != NULL
15342 || single_step_breakpoints[1] != NULL);
15343 }
15344
15345 /* Remove and delete any breakpoints used for software single step. */
15346
15347 void
15348 remove_single_step_breakpoints (void)
15349 {
15350 gdb_assert (single_step_breakpoints[0] != NULL);
15351
15352 /* See insert_single_step_breakpoint for more about this deprecated
15353 call. */
15354 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15355 single_step_breakpoints[0]);
15356 single_step_gdbarch[0] = NULL;
15357 single_step_breakpoints[0] = NULL;
15358
15359 if (single_step_breakpoints[1] != NULL)
15360 {
15361 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15362 single_step_breakpoints[1]);
15363 single_step_gdbarch[1] = NULL;
15364 single_step_breakpoints[1] = NULL;
15365 }
15366 }
15367
15368 /* Delete software single step breakpoints without removing them from
15369 the inferior. This is intended to be used if the inferior's address
15370 space where they were inserted is already gone, e.g. after exit or
15371 exec. */
15372
15373 void
15374 cancel_single_step_breakpoints (void)
15375 {
15376 int i;
15377
15378 for (i = 0; i < 2; i++)
15379 if (single_step_breakpoints[i])
15380 {
15381 xfree (single_step_breakpoints[i]);
15382 single_step_breakpoints[i] = NULL;
15383 single_step_gdbarch[i] = NULL;
15384 }
15385 }
15386
15387 /* Detach software single-step breakpoints from INFERIOR_PTID without
15388 removing them. */
15389
15390 static void
15391 detach_single_step_breakpoints (void)
15392 {
15393 int i;
15394
15395 for (i = 0; i < 2; i++)
15396 if (single_step_breakpoints[i])
15397 target_remove_breakpoint (single_step_gdbarch[i],
15398 single_step_breakpoints[i]);
15399 }
15400
15401 /* Find the software single-step breakpoint that inserted at PC.
15402 Returns its slot if found, and -1 if not found. */
15403
15404 static int
15405 find_single_step_breakpoint (struct address_space *aspace,
15406 CORE_ADDR pc)
15407 {
15408 int i;
15409
15410 for (i = 0; i < 2; i++)
15411 {
15412 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15413 if (bp_tgt
15414 && breakpoint_address_match (bp_tgt->placed_address_space,
15415 bp_tgt->placed_address,
15416 aspace, pc))
15417 return i;
15418 }
15419
15420 return -1;
15421 }
15422
15423 /* Check whether a software single-step breakpoint is inserted at
15424 PC. */
15425
15426 int
15427 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15428 CORE_ADDR pc)
15429 {
15430 return find_single_step_breakpoint (aspace, pc) >= 0;
15431 }
15432
15433 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15434 non-zero otherwise. */
15435 static int
15436 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15437 {
15438 if (syscall_catchpoint_p (bp)
15439 && bp->enable_state != bp_disabled
15440 && bp->enable_state != bp_call_disabled)
15441 return 1;
15442 else
15443 return 0;
15444 }
15445
15446 int
15447 catch_syscall_enabled (void)
15448 {
15449 struct catch_syscall_inferior_data *inf_data
15450 = get_catch_syscall_inferior_data (current_inferior ());
15451
15452 return inf_data->total_syscalls_count != 0;
15453 }
15454
15455 int
15456 catching_syscall_number (int syscall_number)
15457 {
15458 struct breakpoint *bp;
15459
15460 ALL_BREAKPOINTS (bp)
15461 if (is_syscall_catchpoint_enabled (bp))
15462 {
15463 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15464
15465 if (c->syscalls_to_be_caught)
15466 {
15467 int i, iter;
15468 for (i = 0;
15469 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15470 i++)
15471 if (syscall_number == iter)
15472 return 1;
15473 }
15474 else
15475 return 1;
15476 }
15477
15478 return 0;
15479 }
15480
15481 /* Complete syscall names. Used by "catch syscall". */
15482 static VEC (char_ptr) *
15483 catch_syscall_completer (struct cmd_list_element *cmd,
15484 const char *text, const char *word)
15485 {
15486 const char **list = get_syscall_names ();
15487 VEC (char_ptr) *retlist
15488 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15489
15490 xfree (list);
15491 return retlist;
15492 }
15493
15494 /* Tracepoint-specific operations. */
15495
15496 /* Set tracepoint count to NUM. */
15497 static void
15498 set_tracepoint_count (int num)
15499 {
15500 tracepoint_count = num;
15501 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15502 }
15503
15504 static void
15505 trace_command (char *arg, int from_tty)
15506 {
15507 struct breakpoint_ops *ops;
15508 const char *arg_cp = arg;
15509
15510 if (arg && probe_linespec_to_ops (&arg_cp))
15511 ops = &tracepoint_probe_breakpoint_ops;
15512 else
15513 ops = &tracepoint_breakpoint_ops;
15514
15515 create_breakpoint (get_current_arch (),
15516 arg,
15517 NULL, 0, NULL, 1 /* parse arg */,
15518 0 /* tempflag */,
15519 bp_tracepoint /* type_wanted */,
15520 0 /* Ignore count */,
15521 pending_break_support,
15522 ops,
15523 from_tty,
15524 1 /* enabled */,
15525 0 /* internal */, 0);
15526 }
15527
15528 static void
15529 ftrace_command (char *arg, int from_tty)
15530 {
15531 create_breakpoint (get_current_arch (),
15532 arg,
15533 NULL, 0, NULL, 1 /* parse arg */,
15534 0 /* tempflag */,
15535 bp_fast_tracepoint /* type_wanted */,
15536 0 /* Ignore count */,
15537 pending_break_support,
15538 &tracepoint_breakpoint_ops,
15539 from_tty,
15540 1 /* enabled */,
15541 0 /* internal */, 0);
15542 }
15543
15544 /* strace command implementation. Creates a static tracepoint. */
15545
15546 static void
15547 strace_command (char *arg, int from_tty)
15548 {
15549 struct breakpoint_ops *ops;
15550
15551 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15552 or with a normal static tracepoint. */
15553 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15554 ops = &strace_marker_breakpoint_ops;
15555 else
15556 ops = &tracepoint_breakpoint_ops;
15557
15558 create_breakpoint (get_current_arch (),
15559 arg,
15560 NULL, 0, NULL, 1 /* parse arg */,
15561 0 /* tempflag */,
15562 bp_static_tracepoint /* type_wanted */,
15563 0 /* Ignore count */,
15564 pending_break_support,
15565 ops,
15566 from_tty,
15567 1 /* enabled */,
15568 0 /* internal */, 0);
15569 }
15570
15571 /* Set up a fake reader function that gets command lines from a linked
15572 list that was acquired during tracepoint uploading. */
15573
15574 static struct uploaded_tp *this_utp;
15575 static int next_cmd;
15576
15577 static char *
15578 read_uploaded_action (void)
15579 {
15580 char *rslt;
15581
15582 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15583
15584 next_cmd++;
15585
15586 return rslt;
15587 }
15588
15589 /* Given information about a tracepoint as recorded on a target (which
15590 can be either a live system or a trace file), attempt to create an
15591 equivalent GDB tracepoint. This is not a reliable process, since
15592 the target does not necessarily have all the information used when
15593 the tracepoint was originally defined. */
15594
15595 struct tracepoint *
15596 create_tracepoint_from_upload (struct uploaded_tp *utp)
15597 {
15598 char *addr_str, small_buf[100];
15599 struct tracepoint *tp;
15600
15601 if (utp->at_string)
15602 addr_str = utp->at_string;
15603 else
15604 {
15605 /* In the absence of a source location, fall back to raw
15606 address. Since there is no way to confirm that the address
15607 means the same thing as when the trace was started, warn the
15608 user. */
15609 warning (_("Uploaded tracepoint %d has no "
15610 "source location, using raw address"),
15611 utp->number);
15612 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15613 addr_str = small_buf;
15614 }
15615
15616 /* There's not much we can do with a sequence of bytecodes. */
15617 if (utp->cond && !utp->cond_string)
15618 warning (_("Uploaded tracepoint %d condition "
15619 "has no source form, ignoring it"),
15620 utp->number);
15621
15622 if (!create_breakpoint (get_current_arch (),
15623 addr_str,
15624 utp->cond_string, -1, NULL,
15625 0 /* parse cond/thread */,
15626 0 /* tempflag */,
15627 utp->type /* type_wanted */,
15628 0 /* Ignore count */,
15629 pending_break_support,
15630 &tracepoint_breakpoint_ops,
15631 0 /* from_tty */,
15632 utp->enabled /* enabled */,
15633 0 /* internal */,
15634 CREATE_BREAKPOINT_FLAGS_INSERTED))
15635 return NULL;
15636
15637 /* Get the tracepoint we just created. */
15638 tp = get_tracepoint (tracepoint_count);
15639 gdb_assert (tp != NULL);
15640
15641 if (utp->pass > 0)
15642 {
15643 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15644 tp->base.number);
15645
15646 trace_pass_command (small_buf, 0);
15647 }
15648
15649 /* If we have uploaded versions of the original commands, set up a
15650 special-purpose "reader" function and call the usual command line
15651 reader, then pass the result to the breakpoint command-setting
15652 function. */
15653 if (!VEC_empty (char_ptr, utp->cmd_strings))
15654 {
15655 struct command_line *cmd_list;
15656
15657 this_utp = utp;
15658 next_cmd = 0;
15659
15660 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15661
15662 breakpoint_set_commands (&tp->base, cmd_list);
15663 }
15664 else if (!VEC_empty (char_ptr, utp->actions)
15665 || !VEC_empty (char_ptr, utp->step_actions))
15666 warning (_("Uploaded tracepoint %d actions "
15667 "have no source form, ignoring them"),
15668 utp->number);
15669
15670 /* Copy any status information that might be available. */
15671 tp->base.hit_count = utp->hit_count;
15672 tp->traceframe_usage = utp->traceframe_usage;
15673
15674 return tp;
15675 }
15676
15677 /* Print information on tracepoint number TPNUM_EXP, or all if
15678 omitted. */
15679
15680 static void
15681 tracepoints_info (char *args, int from_tty)
15682 {
15683 struct ui_out *uiout = current_uiout;
15684 int num_printed;
15685
15686 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15687
15688 if (num_printed == 0)
15689 {
15690 if (args == NULL || *args == '\0')
15691 ui_out_message (uiout, 0, "No tracepoints.\n");
15692 else
15693 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15694 }
15695
15696 default_collect_info ();
15697 }
15698
15699 /* The 'enable trace' command enables tracepoints.
15700 Not supported by all targets. */
15701 static void
15702 enable_trace_command (char *args, int from_tty)
15703 {
15704 enable_command (args, from_tty);
15705 }
15706
15707 /* The 'disable trace' command disables tracepoints.
15708 Not supported by all targets. */
15709 static void
15710 disable_trace_command (char *args, int from_tty)
15711 {
15712 disable_command (args, from_tty);
15713 }
15714
15715 /* Remove a tracepoint (or all if no argument). */
15716 static void
15717 delete_trace_command (char *arg, int from_tty)
15718 {
15719 struct breakpoint *b, *b_tmp;
15720
15721 dont_repeat ();
15722
15723 if (arg == 0)
15724 {
15725 int breaks_to_delete = 0;
15726
15727 /* Delete all breakpoints if no argument.
15728 Do not delete internal or call-dummy breakpoints, these
15729 have to be deleted with an explicit breakpoint number
15730 argument. */
15731 ALL_TRACEPOINTS (b)
15732 if (is_tracepoint (b) && user_breakpoint_p (b))
15733 {
15734 breaks_to_delete = 1;
15735 break;
15736 }
15737
15738 /* Ask user only if there are some breakpoints to delete. */
15739 if (!from_tty
15740 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15741 {
15742 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15743 if (is_tracepoint (b) && user_breakpoint_p (b))
15744 delete_breakpoint (b);
15745 }
15746 }
15747 else
15748 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15749 }
15750
15751 /* Helper function for trace_pass_command. */
15752
15753 static void
15754 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15755 {
15756 tp->pass_count = count;
15757 observer_notify_breakpoint_modified (&tp->base);
15758 if (from_tty)
15759 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15760 tp->base.number, count);
15761 }
15762
15763 /* Set passcount for tracepoint.
15764
15765 First command argument is passcount, second is tracepoint number.
15766 If tracepoint number omitted, apply to most recently defined.
15767 Also accepts special argument "all". */
15768
15769 static void
15770 trace_pass_command (char *args, int from_tty)
15771 {
15772 struct tracepoint *t1;
15773 unsigned int count;
15774
15775 if (args == 0 || *args == 0)
15776 error (_("passcount command requires an "
15777 "argument (count + optional TP num)"));
15778
15779 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15780
15781 args = skip_spaces (args);
15782 if (*args && strncasecmp (args, "all", 3) == 0)
15783 {
15784 struct breakpoint *b;
15785
15786 args += 3; /* Skip special argument "all". */
15787 if (*args)
15788 error (_("Junk at end of arguments."));
15789
15790 ALL_TRACEPOINTS (b)
15791 {
15792 t1 = (struct tracepoint *) b;
15793 trace_pass_set_count (t1, count, from_tty);
15794 }
15795 }
15796 else if (*args == '\0')
15797 {
15798 t1 = get_tracepoint_by_number (&args, NULL);
15799 if (t1)
15800 trace_pass_set_count (t1, count, from_tty);
15801 }
15802 else
15803 {
15804 struct get_number_or_range_state state;
15805
15806 init_number_or_range (&state, args);
15807 while (!state.finished)
15808 {
15809 t1 = get_tracepoint_by_number (&args, &state);
15810 if (t1)
15811 trace_pass_set_count (t1, count, from_tty);
15812 }
15813 }
15814 }
15815
15816 struct tracepoint *
15817 get_tracepoint (int num)
15818 {
15819 struct breakpoint *t;
15820
15821 ALL_TRACEPOINTS (t)
15822 if (t->number == num)
15823 return (struct tracepoint *) t;
15824
15825 return NULL;
15826 }
15827
15828 /* Find the tracepoint with the given target-side number (which may be
15829 different from the tracepoint number after disconnecting and
15830 reconnecting). */
15831
15832 struct tracepoint *
15833 get_tracepoint_by_number_on_target (int num)
15834 {
15835 struct breakpoint *b;
15836
15837 ALL_TRACEPOINTS (b)
15838 {
15839 struct tracepoint *t = (struct tracepoint *) b;
15840
15841 if (t->number_on_target == num)
15842 return t;
15843 }
15844
15845 return NULL;
15846 }
15847
15848 /* Utility: parse a tracepoint number and look it up in the list.
15849 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15850 If the argument is missing, the most recent tracepoint
15851 (tracepoint_count) is returned. */
15852
15853 struct tracepoint *
15854 get_tracepoint_by_number (char **arg,
15855 struct get_number_or_range_state *state)
15856 {
15857 struct breakpoint *t;
15858 int tpnum;
15859 char *instring = arg == NULL ? NULL : *arg;
15860
15861 if (state)
15862 {
15863 gdb_assert (!state->finished);
15864 tpnum = get_number_or_range (state);
15865 }
15866 else if (arg == NULL || *arg == NULL || ! **arg)
15867 tpnum = tracepoint_count;
15868 else
15869 tpnum = get_number (arg);
15870
15871 if (tpnum <= 0)
15872 {
15873 if (instring && *instring)
15874 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15875 instring);
15876 else
15877 printf_filtered (_("No previous tracepoint\n"));
15878 return NULL;
15879 }
15880
15881 ALL_TRACEPOINTS (t)
15882 if (t->number == tpnum)
15883 {
15884 return (struct tracepoint *) t;
15885 }
15886
15887 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15888 return NULL;
15889 }
15890
15891 void
15892 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15893 {
15894 if (b->thread != -1)
15895 fprintf_unfiltered (fp, " thread %d", b->thread);
15896
15897 if (b->task != 0)
15898 fprintf_unfiltered (fp, " task %d", b->task);
15899
15900 fprintf_unfiltered (fp, "\n");
15901 }
15902
15903 /* Save information on user settable breakpoints (watchpoints, etc) to
15904 a new script file named FILENAME. If FILTER is non-NULL, call it
15905 on each breakpoint and only include the ones for which it returns
15906 non-zero. */
15907
15908 static void
15909 save_breakpoints (char *filename, int from_tty,
15910 int (*filter) (const struct breakpoint *))
15911 {
15912 struct breakpoint *tp;
15913 int any = 0;
15914 struct cleanup *cleanup;
15915 struct ui_file *fp;
15916 int extra_trace_bits = 0;
15917
15918 if (filename == 0 || *filename == 0)
15919 error (_("Argument required (file name in which to save)"));
15920
15921 /* See if we have anything to save. */
15922 ALL_BREAKPOINTS (tp)
15923 {
15924 /* Skip internal and momentary breakpoints. */
15925 if (!user_breakpoint_p (tp))
15926 continue;
15927
15928 /* If we have a filter, only save the breakpoints it accepts. */
15929 if (filter && !filter (tp))
15930 continue;
15931
15932 any = 1;
15933
15934 if (is_tracepoint (tp))
15935 {
15936 extra_trace_bits = 1;
15937
15938 /* We can stop searching. */
15939 break;
15940 }
15941 }
15942
15943 if (!any)
15944 {
15945 warning (_("Nothing to save."));
15946 return;
15947 }
15948
15949 filename = tilde_expand (filename);
15950 cleanup = make_cleanup (xfree, filename);
15951 fp = gdb_fopen (filename, "w");
15952 if (!fp)
15953 error (_("Unable to open file '%s' for saving (%s)"),
15954 filename, safe_strerror (errno));
15955 make_cleanup_ui_file_delete (fp);
15956
15957 if (extra_trace_bits)
15958 save_trace_state_variables (fp);
15959
15960 ALL_BREAKPOINTS (tp)
15961 {
15962 /* Skip internal and momentary breakpoints. */
15963 if (!user_breakpoint_p (tp))
15964 continue;
15965
15966 /* If we have a filter, only save the breakpoints it accepts. */
15967 if (filter && !filter (tp))
15968 continue;
15969
15970 tp->ops->print_recreate (tp, fp);
15971
15972 /* Note, we can't rely on tp->number for anything, as we can't
15973 assume the recreated breakpoint numbers will match. Use $bpnum
15974 instead. */
15975
15976 if (tp->cond_string)
15977 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15978
15979 if (tp->ignore_count)
15980 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15981
15982 if (tp->type != bp_dprintf && tp->commands)
15983 {
15984 volatile struct gdb_exception ex;
15985
15986 fprintf_unfiltered (fp, " commands\n");
15987
15988 ui_out_redirect (current_uiout, fp);
15989 TRY_CATCH (ex, RETURN_MASK_ALL)
15990 {
15991 print_command_lines (current_uiout, tp->commands->commands, 2);
15992 }
15993 ui_out_redirect (current_uiout, NULL);
15994
15995 if (ex.reason < 0)
15996 throw_exception (ex);
15997
15998 fprintf_unfiltered (fp, " end\n");
15999 }
16000
16001 if (tp->enable_state == bp_disabled)
16002 fprintf_unfiltered (fp, "disable\n");
16003
16004 /* If this is a multi-location breakpoint, check if the locations
16005 should be individually disabled. Watchpoint locations are
16006 special, and not user visible. */
16007 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
16008 {
16009 struct bp_location *loc;
16010 int n = 1;
16011
16012 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
16013 if (!loc->enabled)
16014 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
16015 }
16016 }
16017
16018 if (extra_trace_bits && *default_collect)
16019 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
16020
16021 if (from_tty)
16022 printf_filtered (_("Saved to file '%s'.\n"), filename);
16023 do_cleanups (cleanup);
16024 }
16025
16026 /* The `save breakpoints' command. */
16027
16028 static void
16029 save_breakpoints_command (char *args, int from_tty)
16030 {
16031 save_breakpoints (args, from_tty, NULL);
16032 }
16033
16034 /* The `save tracepoints' command. */
16035
16036 static void
16037 save_tracepoints_command (char *args, int from_tty)
16038 {
16039 save_breakpoints (args, from_tty, is_tracepoint);
16040 }
16041
16042 /* Create a vector of all tracepoints. */
16043
16044 VEC(breakpoint_p) *
16045 all_tracepoints (void)
16046 {
16047 VEC(breakpoint_p) *tp_vec = 0;
16048 struct breakpoint *tp;
16049
16050 ALL_TRACEPOINTS (tp)
16051 {
16052 VEC_safe_push (breakpoint_p, tp_vec, tp);
16053 }
16054
16055 return tp_vec;
16056 }
16057
16058 \f
16059 /* This help string is used for the break, hbreak, tbreak and thbreak
16060 commands. It is defined as a macro to prevent duplication.
16061 COMMAND should be a string constant containing the name of the
16062 command. */
16063 #define BREAK_ARGS_HELP(command) \
16064 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
16065 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
16066 probe point. Accepted values are `-probe' (for a generic, automatically\n\
16067 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
16068 LOCATION may be a line number, function name, or \"*\" and an address.\n\
16069 If a line number is specified, break at start of code for that line.\n\
16070 If a function is specified, break at start of code for that function.\n\
16071 If an address is specified, break at that exact address.\n\
16072 With no LOCATION, uses current execution address of the selected\n\
16073 stack frame. This is useful for breaking on return to a stack frame.\n\
16074 \n\
16075 THREADNUM is the number from \"info threads\".\n\
16076 CONDITION is a boolean expression.\n\
16077 \n\
16078 Multiple breakpoints at one place are permitted, and useful if their\n\
16079 conditions are different.\n\
16080 \n\
16081 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
16082
16083 /* List of subcommands for "catch". */
16084 static struct cmd_list_element *catch_cmdlist;
16085
16086 /* List of subcommands for "tcatch". */
16087 static struct cmd_list_element *tcatch_cmdlist;
16088
16089 void
16090 add_catch_command (char *name, char *docstring,
16091 cmd_sfunc_ftype *sfunc,
16092 completer_ftype *completer,
16093 void *user_data_catch,
16094 void *user_data_tcatch)
16095 {
16096 struct cmd_list_element *command;
16097
16098 command = add_cmd (name, class_breakpoint, NULL, docstring,
16099 &catch_cmdlist);
16100 set_cmd_sfunc (command, sfunc);
16101 set_cmd_context (command, user_data_catch);
16102 set_cmd_completer (command, completer);
16103
16104 command = add_cmd (name, class_breakpoint, NULL, docstring,
16105 &tcatch_cmdlist);
16106 set_cmd_sfunc (command, sfunc);
16107 set_cmd_context (command, user_data_tcatch);
16108 set_cmd_completer (command, completer);
16109 }
16110
16111 static void
16112 clear_syscall_counts (struct inferior *inf)
16113 {
16114 struct catch_syscall_inferior_data *inf_data
16115 = get_catch_syscall_inferior_data (inf);
16116
16117 inf_data->total_syscalls_count = 0;
16118 inf_data->any_syscall_count = 0;
16119 VEC_free (int, inf_data->syscalls_counts);
16120 }
16121
16122 static void
16123 save_command (char *arg, int from_tty)
16124 {
16125 printf_unfiltered (_("\"save\" must be followed by "
16126 "the name of a save subcommand.\n"));
16127 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
16128 }
16129
16130 struct breakpoint *
16131 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
16132 void *data)
16133 {
16134 struct breakpoint *b, *b_tmp;
16135
16136 ALL_BREAKPOINTS_SAFE (b, b_tmp)
16137 {
16138 if ((*callback) (b, data))
16139 return b;
16140 }
16141
16142 return NULL;
16143 }
16144
16145 /* Zero if any of the breakpoint's locations could be a location where
16146 functions have been inlined, nonzero otherwise. */
16147
16148 static int
16149 is_non_inline_function (struct breakpoint *b)
16150 {
16151 /* The shared library event breakpoint is set on the address of a
16152 non-inline function. */
16153 if (b->type == bp_shlib_event)
16154 return 1;
16155
16156 return 0;
16157 }
16158
16159 /* Nonzero if the specified PC cannot be a location where functions
16160 have been inlined. */
16161
16162 int
16163 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16164 const struct target_waitstatus *ws)
16165 {
16166 struct breakpoint *b;
16167 struct bp_location *bl;
16168
16169 ALL_BREAKPOINTS (b)
16170 {
16171 if (!is_non_inline_function (b))
16172 continue;
16173
16174 for (bl = b->loc; bl != NULL; bl = bl->next)
16175 {
16176 if (!bl->shlib_disabled
16177 && bpstat_check_location (bl, aspace, pc, ws))
16178 return 1;
16179 }
16180 }
16181
16182 return 0;
16183 }
16184
16185 /* Remove any references to OBJFILE which is going to be freed. */
16186
16187 void
16188 breakpoint_free_objfile (struct objfile *objfile)
16189 {
16190 struct bp_location **locp, *loc;
16191
16192 ALL_BP_LOCATIONS (loc, locp)
16193 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16194 loc->symtab = NULL;
16195 }
16196
16197 void
16198 initialize_breakpoint_ops (void)
16199 {
16200 static int initialized = 0;
16201
16202 struct breakpoint_ops *ops;
16203
16204 if (initialized)
16205 return;
16206 initialized = 1;
16207
16208 /* The breakpoint_ops structure to be inherit by all kinds of
16209 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16210 internal and momentary breakpoints, etc.). */
16211 ops = &bkpt_base_breakpoint_ops;
16212 *ops = base_breakpoint_ops;
16213 ops->re_set = bkpt_re_set;
16214 ops->insert_location = bkpt_insert_location;
16215 ops->remove_location = bkpt_remove_location;
16216 ops->breakpoint_hit = bkpt_breakpoint_hit;
16217 ops->create_sals_from_address = bkpt_create_sals_from_address;
16218 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16219 ops->decode_linespec = bkpt_decode_linespec;
16220
16221 /* The breakpoint_ops structure to be used in regular breakpoints. */
16222 ops = &bkpt_breakpoint_ops;
16223 *ops = bkpt_base_breakpoint_ops;
16224 ops->re_set = bkpt_re_set;
16225 ops->resources_needed = bkpt_resources_needed;
16226 ops->print_it = bkpt_print_it;
16227 ops->print_mention = bkpt_print_mention;
16228 ops->print_recreate = bkpt_print_recreate;
16229
16230 /* Ranged breakpoints. */
16231 ops = &ranged_breakpoint_ops;
16232 *ops = bkpt_breakpoint_ops;
16233 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16234 ops->resources_needed = resources_needed_ranged_breakpoint;
16235 ops->print_it = print_it_ranged_breakpoint;
16236 ops->print_one = print_one_ranged_breakpoint;
16237 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16238 ops->print_mention = print_mention_ranged_breakpoint;
16239 ops->print_recreate = print_recreate_ranged_breakpoint;
16240
16241 /* Internal breakpoints. */
16242 ops = &internal_breakpoint_ops;
16243 *ops = bkpt_base_breakpoint_ops;
16244 ops->re_set = internal_bkpt_re_set;
16245 ops->check_status = internal_bkpt_check_status;
16246 ops->print_it = internal_bkpt_print_it;
16247 ops->print_mention = internal_bkpt_print_mention;
16248
16249 /* Momentary breakpoints. */
16250 ops = &momentary_breakpoint_ops;
16251 *ops = bkpt_base_breakpoint_ops;
16252 ops->re_set = momentary_bkpt_re_set;
16253 ops->check_status = momentary_bkpt_check_status;
16254 ops->print_it = momentary_bkpt_print_it;
16255 ops->print_mention = momentary_bkpt_print_mention;
16256
16257 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16258 ops = &longjmp_breakpoint_ops;
16259 *ops = momentary_breakpoint_ops;
16260 ops->dtor = longjmp_bkpt_dtor;
16261
16262 /* Probe breakpoints. */
16263 ops = &bkpt_probe_breakpoint_ops;
16264 *ops = bkpt_breakpoint_ops;
16265 ops->insert_location = bkpt_probe_insert_location;
16266 ops->remove_location = bkpt_probe_remove_location;
16267 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16268 ops->decode_linespec = bkpt_probe_decode_linespec;
16269
16270 /* Watchpoints. */
16271 ops = &watchpoint_breakpoint_ops;
16272 *ops = base_breakpoint_ops;
16273 ops->dtor = dtor_watchpoint;
16274 ops->re_set = re_set_watchpoint;
16275 ops->insert_location = insert_watchpoint;
16276 ops->remove_location = remove_watchpoint;
16277 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16278 ops->check_status = check_status_watchpoint;
16279 ops->resources_needed = resources_needed_watchpoint;
16280 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16281 ops->print_it = print_it_watchpoint;
16282 ops->print_mention = print_mention_watchpoint;
16283 ops->print_recreate = print_recreate_watchpoint;
16284 ops->explains_signal = explains_signal_watchpoint;
16285
16286 /* Masked watchpoints. */
16287 ops = &masked_watchpoint_breakpoint_ops;
16288 *ops = watchpoint_breakpoint_ops;
16289 ops->insert_location = insert_masked_watchpoint;
16290 ops->remove_location = remove_masked_watchpoint;
16291 ops->resources_needed = resources_needed_masked_watchpoint;
16292 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16293 ops->print_it = print_it_masked_watchpoint;
16294 ops->print_one_detail = print_one_detail_masked_watchpoint;
16295 ops->print_mention = print_mention_masked_watchpoint;
16296 ops->print_recreate = print_recreate_masked_watchpoint;
16297
16298 /* Tracepoints. */
16299 ops = &tracepoint_breakpoint_ops;
16300 *ops = base_breakpoint_ops;
16301 ops->re_set = tracepoint_re_set;
16302 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16303 ops->print_one_detail = tracepoint_print_one_detail;
16304 ops->print_mention = tracepoint_print_mention;
16305 ops->print_recreate = tracepoint_print_recreate;
16306 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16307 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16308 ops->decode_linespec = tracepoint_decode_linespec;
16309
16310 /* Probe tracepoints. */
16311 ops = &tracepoint_probe_breakpoint_ops;
16312 *ops = tracepoint_breakpoint_ops;
16313 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16314 ops->decode_linespec = tracepoint_probe_decode_linespec;
16315
16316 /* Static tracepoints with marker (`-m'). */
16317 ops = &strace_marker_breakpoint_ops;
16318 *ops = tracepoint_breakpoint_ops;
16319 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16320 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16321 ops->decode_linespec = strace_marker_decode_linespec;
16322
16323 /* Fork catchpoints. */
16324 ops = &catch_fork_breakpoint_ops;
16325 *ops = base_breakpoint_ops;
16326 ops->insert_location = insert_catch_fork;
16327 ops->remove_location = remove_catch_fork;
16328 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16329 ops->print_it = print_it_catch_fork;
16330 ops->print_one = print_one_catch_fork;
16331 ops->print_mention = print_mention_catch_fork;
16332 ops->print_recreate = print_recreate_catch_fork;
16333
16334 /* Vfork catchpoints. */
16335 ops = &catch_vfork_breakpoint_ops;
16336 *ops = base_breakpoint_ops;
16337 ops->insert_location = insert_catch_vfork;
16338 ops->remove_location = remove_catch_vfork;
16339 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16340 ops->print_it = print_it_catch_vfork;
16341 ops->print_one = print_one_catch_vfork;
16342 ops->print_mention = print_mention_catch_vfork;
16343 ops->print_recreate = print_recreate_catch_vfork;
16344
16345 /* Exec catchpoints. */
16346 ops = &catch_exec_breakpoint_ops;
16347 *ops = base_breakpoint_ops;
16348 ops->dtor = dtor_catch_exec;
16349 ops->insert_location = insert_catch_exec;
16350 ops->remove_location = remove_catch_exec;
16351 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16352 ops->print_it = print_it_catch_exec;
16353 ops->print_one = print_one_catch_exec;
16354 ops->print_mention = print_mention_catch_exec;
16355 ops->print_recreate = print_recreate_catch_exec;
16356
16357 /* Syscall catchpoints. */
16358 ops = &catch_syscall_breakpoint_ops;
16359 *ops = base_breakpoint_ops;
16360 ops->dtor = dtor_catch_syscall;
16361 ops->insert_location = insert_catch_syscall;
16362 ops->remove_location = remove_catch_syscall;
16363 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16364 ops->print_it = print_it_catch_syscall;
16365 ops->print_one = print_one_catch_syscall;
16366 ops->print_mention = print_mention_catch_syscall;
16367 ops->print_recreate = print_recreate_catch_syscall;
16368
16369 /* Solib-related catchpoints. */
16370 ops = &catch_solib_breakpoint_ops;
16371 *ops = base_breakpoint_ops;
16372 ops->dtor = dtor_catch_solib;
16373 ops->insert_location = insert_catch_solib;
16374 ops->remove_location = remove_catch_solib;
16375 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16376 ops->check_status = check_status_catch_solib;
16377 ops->print_it = print_it_catch_solib;
16378 ops->print_one = print_one_catch_solib;
16379 ops->print_mention = print_mention_catch_solib;
16380 ops->print_recreate = print_recreate_catch_solib;
16381
16382 ops = &dprintf_breakpoint_ops;
16383 *ops = bkpt_base_breakpoint_ops;
16384 ops->re_set = dprintf_re_set;
16385 ops->resources_needed = bkpt_resources_needed;
16386 ops->print_it = bkpt_print_it;
16387 ops->print_mention = bkpt_print_mention;
16388 ops->print_recreate = dprintf_print_recreate;
16389 ops->after_condition_true = dprintf_after_condition_true;
16390 ops->breakpoint_hit = dprintf_breakpoint_hit;
16391 }
16392
16393 /* Chain containing all defined "enable breakpoint" subcommands. */
16394
16395 static struct cmd_list_element *enablebreaklist = NULL;
16396
16397 void
16398 _initialize_breakpoint (void)
16399 {
16400 struct cmd_list_element *c;
16401
16402 initialize_breakpoint_ops ();
16403
16404 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16405 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16406 observer_attach_inferior_exit (clear_syscall_counts);
16407 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16408
16409 breakpoint_objfile_key
16410 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16411
16412 catch_syscall_inferior_data
16413 = register_inferior_data_with_cleanup (NULL,
16414 catch_syscall_inferior_data_cleanup);
16415
16416 breakpoint_chain = 0;
16417 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16418 before a breakpoint is set. */
16419 breakpoint_count = 0;
16420
16421 tracepoint_count = 0;
16422
16423 add_com ("ignore", class_breakpoint, ignore_command, _("\
16424 Set ignore-count of breakpoint number N to COUNT.\n\
16425 Usage is `ignore N COUNT'."));
16426 if (xdb_commands)
16427 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16428
16429 add_com ("commands", class_breakpoint, commands_command, _("\
16430 Set commands to be executed when a breakpoint is hit.\n\
16431 Give breakpoint number as argument after \"commands\".\n\
16432 With no argument, the targeted breakpoint is the last one set.\n\
16433 The commands themselves follow starting on the next line.\n\
16434 Type a line containing \"end\" to indicate the end of them.\n\
16435 Give \"silent\" as the first line to make the breakpoint silent;\n\
16436 then no output is printed when it is hit, except what the commands print."));
16437
16438 c = add_com ("condition", class_breakpoint, condition_command, _("\
16439 Specify breakpoint number N to break only if COND is true.\n\
16440 Usage is `condition N COND', where N is an integer and COND is an\n\
16441 expression to be evaluated whenever breakpoint N is reached."));
16442 set_cmd_completer (c, condition_completer);
16443
16444 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16445 Set a temporary breakpoint.\n\
16446 Like \"break\" except the breakpoint is only temporary,\n\
16447 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16448 by using \"enable delete\" on the breakpoint number.\n\
16449 \n"
16450 BREAK_ARGS_HELP ("tbreak")));
16451 set_cmd_completer (c, location_completer);
16452
16453 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16454 Set a hardware assisted breakpoint.\n\
16455 Like \"break\" except the breakpoint requires hardware support,\n\
16456 some target hardware may not have this support.\n\
16457 \n"
16458 BREAK_ARGS_HELP ("hbreak")));
16459 set_cmd_completer (c, location_completer);
16460
16461 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16462 Set a temporary hardware assisted breakpoint.\n\
16463 Like \"hbreak\" except the breakpoint is only temporary,\n\
16464 so it will be deleted when hit.\n\
16465 \n"
16466 BREAK_ARGS_HELP ("thbreak")));
16467 set_cmd_completer (c, location_completer);
16468
16469 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16470 Enable some breakpoints.\n\
16471 Give breakpoint numbers (separated by spaces) as arguments.\n\
16472 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16473 This is used to cancel the effect of the \"disable\" command.\n\
16474 With a subcommand you can enable temporarily."),
16475 &enablelist, "enable ", 1, &cmdlist);
16476 if (xdb_commands)
16477 add_com ("ab", class_breakpoint, enable_command, _("\
16478 Enable some breakpoints.\n\
16479 Give breakpoint numbers (separated by spaces) as arguments.\n\
16480 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16481 This is used to cancel the effect of the \"disable\" command.\n\
16482 With a subcommand you can enable temporarily."));
16483
16484 add_com_alias ("en", "enable", class_breakpoint, 1);
16485
16486 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16487 Enable some breakpoints.\n\
16488 Give breakpoint numbers (separated by spaces) as arguments.\n\
16489 This is used to cancel the effect of the \"disable\" command.\n\
16490 May be abbreviated to simply \"enable\".\n"),
16491 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16492
16493 add_cmd ("once", no_class, enable_once_command, _("\
16494 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16495 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16496 &enablebreaklist);
16497
16498 add_cmd ("delete", no_class, enable_delete_command, _("\
16499 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16500 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16501 &enablebreaklist);
16502
16503 add_cmd ("count", no_class, enable_count_command, _("\
16504 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16505 If a breakpoint is hit while enabled in this fashion,\n\
16506 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16507 &enablebreaklist);
16508
16509 add_cmd ("delete", no_class, enable_delete_command, _("\
16510 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16511 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16512 &enablelist);
16513
16514 add_cmd ("once", no_class, enable_once_command, _("\
16515 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16516 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16517 &enablelist);
16518
16519 add_cmd ("count", no_class, enable_count_command, _("\
16520 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16521 If a breakpoint is hit while enabled in this fashion,\n\
16522 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16523 &enablelist);
16524
16525 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16526 Disable some breakpoints.\n\
16527 Arguments are breakpoint numbers with spaces in between.\n\
16528 To disable all breakpoints, give no argument.\n\
16529 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16530 &disablelist, "disable ", 1, &cmdlist);
16531 add_com_alias ("dis", "disable", class_breakpoint, 1);
16532 add_com_alias ("disa", "disable", class_breakpoint, 1);
16533 if (xdb_commands)
16534 add_com ("sb", class_breakpoint, disable_command, _("\
16535 Disable some breakpoints.\n\
16536 Arguments are breakpoint numbers with spaces in between.\n\
16537 To disable all breakpoints, give no argument.\n\
16538 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16539
16540 add_cmd ("breakpoints", class_alias, disable_command, _("\
16541 Disable some breakpoints.\n\
16542 Arguments are breakpoint numbers with spaces in between.\n\
16543 To disable all breakpoints, give no argument.\n\
16544 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16545 This command may be abbreviated \"disable\"."),
16546 &disablelist);
16547
16548 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16549 Delete some breakpoints or auto-display expressions.\n\
16550 Arguments are breakpoint numbers with spaces in between.\n\
16551 To delete all breakpoints, give no argument.\n\
16552 \n\
16553 Also a prefix command for deletion of other GDB objects.\n\
16554 The \"unset\" command is also an alias for \"delete\"."),
16555 &deletelist, "delete ", 1, &cmdlist);
16556 add_com_alias ("d", "delete", class_breakpoint, 1);
16557 add_com_alias ("del", "delete", class_breakpoint, 1);
16558 if (xdb_commands)
16559 add_com ("db", class_breakpoint, delete_command, _("\
16560 Delete some breakpoints.\n\
16561 Arguments are breakpoint numbers with spaces in between.\n\
16562 To delete all breakpoints, give no argument.\n"));
16563
16564 add_cmd ("breakpoints", class_alias, delete_command, _("\
16565 Delete some breakpoints or auto-display expressions.\n\
16566 Arguments are breakpoint numbers with spaces in between.\n\
16567 To delete all breakpoints, give no argument.\n\
16568 This command may be abbreviated \"delete\"."),
16569 &deletelist);
16570
16571 add_com ("clear", class_breakpoint, clear_command, _("\
16572 Clear breakpoint at specified line or function.\n\
16573 Argument may be line number, function name, or \"*\" and an address.\n\
16574 If line number is specified, all breakpoints in that line are cleared.\n\
16575 If function is specified, breakpoints at beginning of function are cleared.\n\
16576 If an address is specified, breakpoints at that address are cleared.\n\
16577 \n\
16578 With no argument, clears all breakpoints in the line that the selected frame\n\
16579 is executing in.\n\
16580 \n\
16581 See also the \"delete\" command which clears breakpoints by number."));
16582 add_com_alias ("cl", "clear", class_breakpoint, 1);
16583
16584 c = add_com ("break", class_breakpoint, break_command, _("\
16585 Set breakpoint at specified line or function.\n"
16586 BREAK_ARGS_HELP ("break")));
16587 set_cmd_completer (c, location_completer);
16588
16589 add_com_alias ("b", "break", class_run, 1);
16590 add_com_alias ("br", "break", class_run, 1);
16591 add_com_alias ("bre", "break", class_run, 1);
16592 add_com_alias ("brea", "break", class_run, 1);
16593
16594 if (xdb_commands)
16595 add_com_alias ("ba", "break", class_breakpoint, 1);
16596
16597 if (dbx_commands)
16598 {
16599 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16600 Break in function/address or break at a line in the current file."),
16601 &stoplist, "stop ", 1, &cmdlist);
16602 add_cmd ("in", class_breakpoint, stopin_command,
16603 _("Break in function or address."), &stoplist);
16604 add_cmd ("at", class_breakpoint, stopat_command,
16605 _("Break at a line in the current file."), &stoplist);
16606 add_com ("status", class_info, breakpoints_info, _("\
16607 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16608 The \"Type\" column indicates one of:\n\
16609 \tbreakpoint - normal breakpoint\n\
16610 \twatchpoint - watchpoint\n\
16611 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16612 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16613 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16614 address and file/line number respectively.\n\
16615 \n\
16616 Convenience variable \"$_\" and default examine address for \"x\"\n\
16617 are set to the address of the last breakpoint listed unless the command\n\
16618 is prefixed with \"server \".\n\n\
16619 Convenience variable \"$bpnum\" contains the number of the last\n\
16620 breakpoint set."));
16621 }
16622
16623 add_info ("breakpoints", breakpoints_info, _("\
16624 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16625 The \"Type\" column indicates one of:\n\
16626 \tbreakpoint - normal breakpoint\n\
16627 \twatchpoint - watchpoint\n\
16628 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16629 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16630 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16631 address and file/line number respectively.\n\
16632 \n\
16633 Convenience variable \"$_\" and default examine address for \"x\"\n\
16634 are set to the address of the last breakpoint listed unless the command\n\
16635 is prefixed with \"server \".\n\n\
16636 Convenience variable \"$bpnum\" contains the number of the last\n\
16637 breakpoint set."));
16638
16639 add_info_alias ("b", "breakpoints", 1);
16640
16641 if (xdb_commands)
16642 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16643 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16644 The \"Type\" column indicates one of:\n\
16645 \tbreakpoint - normal breakpoint\n\
16646 \twatchpoint - watchpoint\n\
16647 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16648 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16649 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16650 address and file/line number respectively.\n\
16651 \n\
16652 Convenience variable \"$_\" and default examine address for \"x\"\n\
16653 are set to the address of the last breakpoint listed unless the command\n\
16654 is prefixed with \"server \".\n\n\
16655 Convenience variable \"$bpnum\" contains the number of the last\n\
16656 breakpoint set."));
16657
16658 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16659 Status of all breakpoints, or breakpoint number NUMBER.\n\
16660 The \"Type\" column indicates one of:\n\
16661 \tbreakpoint - normal breakpoint\n\
16662 \twatchpoint - watchpoint\n\
16663 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16664 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16665 \tuntil - internal breakpoint used by the \"until\" command\n\
16666 \tfinish - internal breakpoint used by the \"finish\" command\n\
16667 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16668 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16669 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16670 address and file/line number respectively.\n\
16671 \n\
16672 Convenience variable \"$_\" and default examine address for \"x\"\n\
16673 are set to the address of the last breakpoint listed unless the command\n\
16674 is prefixed with \"server \".\n\n\
16675 Convenience variable \"$bpnum\" contains the number of the last\n\
16676 breakpoint set."),
16677 &maintenanceinfolist);
16678
16679 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16680 Set catchpoints to catch events."),
16681 &catch_cmdlist, "catch ",
16682 0/*allow-unknown*/, &cmdlist);
16683
16684 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16685 Set temporary catchpoints to catch events."),
16686 &tcatch_cmdlist, "tcatch ",
16687 0/*allow-unknown*/, &cmdlist);
16688
16689 add_catch_command ("fork", _("Catch calls to fork."),
16690 catch_fork_command_1,
16691 NULL,
16692 (void *) (uintptr_t) catch_fork_permanent,
16693 (void *) (uintptr_t) catch_fork_temporary);
16694 add_catch_command ("vfork", _("Catch calls to vfork."),
16695 catch_fork_command_1,
16696 NULL,
16697 (void *) (uintptr_t) catch_vfork_permanent,
16698 (void *) (uintptr_t) catch_vfork_temporary);
16699 add_catch_command ("exec", _("Catch calls to exec."),
16700 catch_exec_command_1,
16701 NULL,
16702 CATCH_PERMANENT,
16703 CATCH_TEMPORARY);
16704 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16705 Usage: catch load [REGEX]\n\
16706 If REGEX is given, only stop for libraries matching the regular expression."),
16707 catch_load_command_1,
16708 NULL,
16709 CATCH_PERMANENT,
16710 CATCH_TEMPORARY);
16711 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16712 Usage: catch unload [REGEX]\n\
16713 If REGEX is given, only stop for libraries matching the regular expression."),
16714 catch_unload_command_1,
16715 NULL,
16716 CATCH_PERMANENT,
16717 CATCH_TEMPORARY);
16718 add_catch_command ("syscall", _("\
16719 Catch system calls by their names and/or numbers.\n\
16720 Arguments say which system calls to catch. If no arguments\n\
16721 are given, every system call will be caught.\n\
16722 Arguments, if given, should be one or more system call names\n\
16723 (if your system supports that), or system call numbers."),
16724 catch_syscall_command_1,
16725 catch_syscall_completer,
16726 CATCH_PERMANENT,
16727 CATCH_TEMPORARY);
16728
16729 c = add_com ("watch", class_breakpoint, watch_command, _("\
16730 Set a watchpoint for an expression.\n\
16731 Usage: watch [-l|-location] EXPRESSION\n\
16732 A watchpoint stops execution of your program whenever the value of\n\
16733 an expression changes.\n\
16734 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16735 the memory to which it refers."));
16736 set_cmd_completer (c, expression_completer);
16737
16738 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16739 Set a read watchpoint for an expression.\n\
16740 Usage: rwatch [-l|-location] EXPRESSION\n\
16741 A watchpoint stops execution of your program whenever the value of\n\
16742 an expression is read.\n\
16743 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16744 the memory to which it refers."));
16745 set_cmd_completer (c, expression_completer);
16746
16747 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16748 Set a watchpoint for an expression.\n\
16749 Usage: awatch [-l|-location] EXPRESSION\n\
16750 A watchpoint stops execution of your program whenever the value of\n\
16751 an expression is either read or written.\n\
16752 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16753 the memory to which it refers."));
16754 set_cmd_completer (c, expression_completer);
16755
16756 add_info ("watchpoints", watchpoints_info, _("\
16757 Status of specified watchpoints (all watchpoints if no argument)."));
16758
16759 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16760 respond to changes - contrary to the description. */
16761 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16762 &can_use_hw_watchpoints, _("\
16763 Set debugger's willingness to use watchpoint hardware."), _("\
16764 Show debugger's willingness to use watchpoint hardware."), _("\
16765 If zero, gdb will not use hardware for new watchpoints, even if\n\
16766 such is available. (However, any hardware watchpoints that were\n\
16767 created before setting this to nonzero, will continue to use watchpoint\n\
16768 hardware.)"),
16769 NULL,
16770 show_can_use_hw_watchpoints,
16771 &setlist, &showlist);
16772
16773 can_use_hw_watchpoints = 1;
16774
16775 /* Tracepoint manipulation commands. */
16776
16777 c = add_com ("trace", class_breakpoint, trace_command, _("\
16778 Set a tracepoint at specified line or function.\n\
16779 \n"
16780 BREAK_ARGS_HELP ("trace") "\n\
16781 Do \"help tracepoints\" for info on other tracepoint commands."));
16782 set_cmd_completer (c, location_completer);
16783
16784 add_com_alias ("tp", "trace", class_alias, 0);
16785 add_com_alias ("tr", "trace", class_alias, 1);
16786 add_com_alias ("tra", "trace", class_alias, 1);
16787 add_com_alias ("trac", "trace", class_alias, 1);
16788
16789 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16790 Set a fast tracepoint at specified line or function.\n\
16791 \n"
16792 BREAK_ARGS_HELP ("ftrace") "\n\
16793 Do \"help tracepoints\" for info on other tracepoint commands."));
16794 set_cmd_completer (c, location_completer);
16795
16796 c = add_com ("strace", class_breakpoint, strace_command, _("\
16797 Set a static tracepoint at specified line, function or marker.\n\
16798 \n\
16799 strace [LOCATION] [if CONDITION]\n\
16800 LOCATION may be a line number, function name, \"*\" and an address,\n\
16801 or -m MARKER_ID.\n\
16802 If a line number is specified, probe the marker at start of code\n\
16803 for that line. If a function is specified, probe the marker at start\n\
16804 of code for that function. If an address is specified, probe the marker\n\
16805 at that exact address. If a marker id is specified, probe the marker\n\
16806 with that name. With no LOCATION, uses current execution address of\n\
16807 the selected stack frame.\n\
16808 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16809 This collects arbitrary user data passed in the probe point call to the\n\
16810 tracing library. You can inspect it when analyzing the trace buffer,\n\
16811 by printing the $_sdata variable like any other convenience variable.\n\
16812 \n\
16813 CONDITION is a boolean expression.\n\
16814 \n\
16815 Multiple tracepoints at one place are permitted, and useful if their\n\
16816 conditions are different.\n\
16817 \n\
16818 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16819 Do \"help tracepoints\" for info on other tracepoint commands."));
16820 set_cmd_completer (c, location_completer);
16821
16822 add_info ("tracepoints", tracepoints_info, _("\
16823 Status of specified tracepoints (all tracepoints if no argument).\n\
16824 Convenience variable \"$tpnum\" contains the number of the\n\
16825 last tracepoint set."));
16826
16827 add_info_alias ("tp", "tracepoints", 1);
16828
16829 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16830 Delete specified tracepoints.\n\
16831 Arguments are tracepoint numbers, separated by spaces.\n\
16832 No argument means delete all tracepoints."),
16833 &deletelist);
16834 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16835
16836 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16837 Disable specified tracepoints.\n\
16838 Arguments are tracepoint numbers, separated by spaces.\n\
16839 No argument means disable all tracepoints."),
16840 &disablelist);
16841 deprecate_cmd (c, "disable");
16842
16843 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16844 Enable specified tracepoints.\n\
16845 Arguments are tracepoint numbers, separated by spaces.\n\
16846 No argument means enable all tracepoints."),
16847 &enablelist);
16848 deprecate_cmd (c, "enable");
16849
16850 add_com ("passcount", class_trace, trace_pass_command, _("\
16851 Set the passcount for a tracepoint.\n\
16852 The trace will end when the tracepoint has been passed 'count' times.\n\
16853 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16854 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16855
16856 add_prefix_cmd ("save", class_breakpoint, save_command,
16857 _("Save breakpoint definitions as a script."),
16858 &save_cmdlist, "save ",
16859 0/*allow-unknown*/, &cmdlist);
16860
16861 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16862 Save current breakpoint definitions as a script.\n\
16863 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16864 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16865 session to restore them."),
16866 &save_cmdlist);
16867 set_cmd_completer (c, filename_completer);
16868
16869 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16870 Save current tracepoint definitions as a script.\n\
16871 Use the 'source' command in another debug session to restore them."),
16872 &save_cmdlist);
16873 set_cmd_completer (c, filename_completer);
16874
16875 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16876 deprecate_cmd (c, "save tracepoints");
16877
16878 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16879 Breakpoint specific settings\n\
16880 Configure various breakpoint-specific variables such as\n\
16881 pending breakpoint behavior"),
16882 &breakpoint_set_cmdlist, "set breakpoint ",
16883 0/*allow-unknown*/, &setlist);
16884 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16885 Breakpoint specific settings\n\
16886 Configure various breakpoint-specific variables such as\n\
16887 pending breakpoint behavior"),
16888 &breakpoint_show_cmdlist, "show breakpoint ",
16889 0/*allow-unknown*/, &showlist);
16890
16891 add_setshow_auto_boolean_cmd ("pending", no_class,
16892 &pending_break_support, _("\
16893 Set debugger's behavior regarding pending breakpoints."), _("\
16894 Show debugger's behavior regarding pending breakpoints."), _("\
16895 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16896 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16897 an error. If auto, an unrecognized breakpoint location results in a\n\
16898 user-query to see if a pending breakpoint should be created."),
16899 NULL,
16900 show_pending_break_support,
16901 &breakpoint_set_cmdlist,
16902 &breakpoint_show_cmdlist);
16903
16904 pending_break_support = AUTO_BOOLEAN_AUTO;
16905
16906 add_setshow_boolean_cmd ("auto-hw", no_class,
16907 &automatic_hardware_breakpoints, _("\
16908 Set automatic usage of hardware breakpoints."), _("\
16909 Show automatic usage of hardware breakpoints."), _("\
16910 If set, the debugger will automatically use hardware breakpoints for\n\
16911 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16912 a warning will be emitted for such breakpoints."),
16913 NULL,
16914 show_automatic_hardware_breakpoints,
16915 &breakpoint_set_cmdlist,
16916 &breakpoint_show_cmdlist);
16917
16918 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16919 &always_inserted_mode, _("\
16920 Set mode for inserting breakpoints."), _("\
16921 Show mode for inserting breakpoints."), _("\
16922 When this mode is off, breakpoints are inserted in inferior when it is\n\
16923 resumed, and removed when execution stops. When this mode is on,\n\
16924 breakpoints are inserted immediately and removed only when the user\n\
16925 deletes the breakpoint. When this mode is auto (which is the default),\n\
16926 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16927 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16928 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16929 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16930 NULL,
16931 &show_always_inserted_mode,
16932 &breakpoint_set_cmdlist,
16933 &breakpoint_show_cmdlist);
16934
16935 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16936 condition_evaluation_enums,
16937 &condition_evaluation_mode_1, _("\
16938 Set mode of breakpoint condition evaluation."), _("\
16939 Show mode of breakpoint condition evaluation."), _("\
16940 When this is set to \"host\", breakpoint conditions will be\n\
16941 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16942 breakpoint conditions will be downloaded to the target (if the target\n\
16943 supports such feature) and conditions will be evaluated on the target's side.\n\
16944 If this is set to \"auto\" (default), this will be automatically set to\n\
16945 \"target\" if it supports condition evaluation, otherwise it will\n\
16946 be set to \"gdb\""),
16947 &set_condition_evaluation_mode,
16948 &show_condition_evaluation_mode,
16949 &breakpoint_set_cmdlist,
16950 &breakpoint_show_cmdlist);
16951
16952 add_com ("break-range", class_breakpoint, break_range_command, _("\
16953 Set a breakpoint for an address range.\n\
16954 break-range START-LOCATION, END-LOCATION\n\
16955 where START-LOCATION and END-LOCATION can be one of the following:\n\
16956 LINENUM, for that line in the current file,\n\
16957 FILE:LINENUM, for that line in that file,\n\
16958 +OFFSET, for that number of lines after the current line\n\
16959 or the start of the range\n\
16960 FUNCTION, for the first line in that function,\n\
16961 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16962 *ADDRESS, for the instruction at that address.\n\
16963 \n\
16964 The breakpoint will stop execution of the inferior whenever it executes\n\
16965 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16966 range (including START-LOCATION and END-LOCATION)."));
16967
16968 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16969 Set a dynamic printf at specified line or function.\n\
16970 dprintf location,format string,arg1,arg2,...\n\
16971 location may be a line number, function name, or \"*\" and an address.\n\
16972 If a line number is specified, break at start of code for that line.\n\
16973 If a function is specified, break at start of code for that function."));
16974 set_cmd_completer (c, location_completer);
16975
16976 add_setshow_enum_cmd ("dprintf-style", class_support,
16977 dprintf_style_enums, &dprintf_style, _("\
16978 Set the style of usage for dynamic printf."), _("\
16979 Show the style of usage for dynamic printf."), _("\
16980 This setting chooses how GDB will do a dynamic printf.\n\
16981 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16982 console, as with the \"printf\" command.\n\
16983 If the value is \"call\", the print is done by calling a function in your\n\
16984 program; by default printf(), but you can choose a different function or\n\
16985 output stream by setting dprintf-function and dprintf-channel."),
16986 update_dprintf_commands, NULL,
16987 &setlist, &showlist);
16988
16989 dprintf_function = xstrdup ("printf");
16990 add_setshow_string_cmd ("dprintf-function", class_support,
16991 &dprintf_function, _("\
16992 Set the function to use for dynamic printf"), _("\
16993 Show the function to use for dynamic printf"), NULL,
16994 update_dprintf_commands, NULL,
16995 &setlist, &showlist);
16996
16997 dprintf_channel = xstrdup ("");
16998 add_setshow_string_cmd ("dprintf-channel", class_support,
16999 &dprintf_channel, _("\
17000 Set the channel to use for dynamic printf"), _("\
17001 Show the channel to use for dynamic printf"), NULL,
17002 update_dprintf_commands, NULL,
17003 &setlist, &showlist);
17004
17005 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
17006 &disconnected_dprintf, _("\
17007 Set whether dprintf continues after GDB disconnects."), _("\
17008 Show whether dprintf continues after GDB disconnects."), _("\
17009 Use this to let dprintf commands continue to hit and produce output\n\
17010 even if GDB disconnects or detaches from the target."),
17011 NULL,
17012 NULL,
17013 &setlist, &showlist);
17014
17015 add_com ("agent-printf", class_vars, agent_printf_command, _("\
17016 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
17017 (target agent only) This is useful for formatted output in user-defined commands."));
17018
17019 automatic_hardware_breakpoints = 1;
17020
17021 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
17022 observer_attach_thread_exit (remove_threaded_breakpoints);
17023 }
This page took 0.50236 seconds and 4 git commands to generate.