Constify add_com
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static void info_watchpoints_command (char *, int);
165
166 static int remove_breakpoint (struct bp_location *);
167 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
168
169 static enum print_stop_action print_bp_stop_message (bpstat bs);
170
171 static int hw_breakpoint_used_count (void);
172
173 static int hw_watchpoint_use_count (struct breakpoint *);
174
175 static int hw_watchpoint_used_count_others (struct breakpoint *except,
176 enum bptype type,
177 int *other_type_used);
178
179 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
180 int count);
181
182 static void free_bp_location (struct bp_location *loc);
183 static void incref_bp_location (struct bp_location *loc);
184 static void decref_bp_location (struct bp_location **loc);
185
186 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
187
188 /* update_global_location_list's modes of operation wrt to whether to
189 insert locations now. */
190 enum ugll_insert_mode
191 {
192 /* Don't insert any breakpoint locations into the inferior, only
193 remove already-inserted locations that no longer should be
194 inserted. Functions that delete a breakpoint or breakpoints
195 should specify this mode, so that deleting a breakpoint doesn't
196 have the side effect of inserting the locations of other
197 breakpoints that are marked not-inserted, but should_be_inserted
198 returns true on them.
199
200 This behavior is useful is situations close to tear-down -- e.g.,
201 after an exec, while the target still has execution, but
202 breakpoint shadows of the previous executable image should *NOT*
203 be restored to the new image; or before detaching, where the
204 target still has execution and wants to delete breakpoints from
205 GDB's lists, and all breakpoints had already been removed from
206 the inferior. */
207 UGLL_DONT_INSERT,
208
209 /* May insert breakpoints iff breakpoints_should_be_inserted_now
210 claims breakpoints should be inserted now. */
211 UGLL_MAY_INSERT,
212
213 /* Insert locations now, irrespective of
214 breakpoints_should_be_inserted_now. E.g., say all threads are
215 stopped right now, and the user did "continue". We need to
216 insert breakpoints _before_ resuming the target, but
217 UGLL_MAY_INSERT wouldn't insert them, because
218 breakpoints_should_be_inserted_now returns false at that point,
219 as no thread is running yet. */
220 UGLL_INSERT
221 };
222
223 static void update_global_location_list (enum ugll_insert_mode);
224
225 static void update_global_location_list_nothrow (enum ugll_insert_mode);
226
227 static int is_hardware_watchpoint (const struct breakpoint *bpt);
228
229 static void insert_breakpoint_locations (void);
230
231 static void info_tracepoints_command (char *, int);
232
233 static void enable_trace_command (char *, int);
234
235 static void disable_trace_command (char *, int);
236
237 static void trace_pass_command (const char *, int);
238
239 static void set_tracepoint_count (int num);
240
241 static int is_masked_watchpoint (const struct breakpoint *b);
242
243 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
244
245 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
246 otherwise. */
247
248 static int strace_marker_p (struct breakpoint *b);
249
250 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
251 that are implemented on top of software or hardware breakpoints
252 (user breakpoints, internal and momentary breakpoints, etc.). */
253 static struct breakpoint_ops bkpt_base_breakpoint_ops;
254
255 /* Internal breakpoints class type. */
256 static struct breakpoint_ops internal_breakpoint_ops;
257
258 /* Momentary breakpoints class type. */
259 static struct breakpoint_ops momentary_breakpoint_ops;
260
261 /* The breakpoint_ops structure to be used in regular user created
262 breakpoints. */
263 struct breakpoint_ops bkpt_breakpoint_ops;
264
265 /* Breakpoints set on probes. */
266 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
267
268 /* Dynamic printf class type. */
269 struct breakpoint_ops dprintf_breakpoint_ops;
270
271 /* The style in which to perform a dynamic printf. This is a user
272 option because different output options have different tradeoffs;
273 if GDB does the printing, there is better error handling if there
274 is a problem with any of the arguments, but using an inferior
275 function lets you have special-purpose printers and sending of
276 output to the same place as compiled-in print functions. */
277
278 static const char dprintf_style_gdb[] = "gdb";
279 static const char dprintf_style_call[] = "call";
280 static const char dprintf_style_agent[] = "agent";
281 static const char *const dprintf_style_enums[] = {
282 dprintf_style_gdb,
283 dprintf_style_call,
284 dprintf_style_agent,
285 NULL
286 };
287 static const char *dprintf_style = dprintf_style_gdb;
288
289 /* The function to use for dynamic printf if the preferred style is to
290 call into the inferior. The value is simply a string that is
291 copied into the command, so it can be anything that GDB can
292 evaluate to a callable address, not necessarily a function name. */
293
294 static char *dprintf_function;
295
296 /* The channel to use for dynamic printf if the preferred style is to
297 call into the inferior; if a nonempty string, it will be passed to
298 the call as the first argument, with the format string as the
299 second. As with the dprintf function, this can be anything that
300 GDB knows how to evaluate, so in addition to common choices like
301 "stderr", this could be an app-specific expression like
302 "mystreams[curlogger]". */
303
304 static char *dprintf_channel;
305
306 /* True if dprintf commands should continue to operate even if GDB
307 has disconnected. */
308 static int disconnected_dprintf = 1;
309
310 struct command_line *
311 breakpoint_commands (struct breakpoint *b)
312 {
313 return b->commands ? b->commands.get () : NULL;
314 }
315
316 /* Flag indicating that a command has proceeded the inferior past the
317 current breakpoint. */
318
319 static int breakpoint_proceeded;
320
321 const char *
322 bpdisp_text (enum bpdisp disp)
323 {
324 /* NOTE: the following values are a part of MI protocol and
325 represent values of 'disp' field returned when inferior stops at
326 a breakpoint. */
327 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
328
329 return bpdisps[(int) disp];
330 }
331
332 /* Prototypes for exported functions. */
333 /* If FALSE, gdb will not use hardware support for watchpoints, even
334 if such is available. */
335 static int can_use_hw_watchpoints;
336
337 static void
338 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
339 struct cmd_list_element *c,
340 const char *value)
341 {
342 fprintf_filtered (file,
343 _("Debugger's willingness to use "
344 "watchpoint hardware is %s.\n"),
345 value);
346 }
347
348 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
349 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
350 for unrecognized breakpoint locations.
351 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
352 static enum auto_boolean pending_break_support;
353 static void
354 show_pending_break_support (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c,
356 const char *value)
357 {
358 fprintf_filtered (file,
359 _("Debugger's behavior regarding "
360 "pending breakpoints is %s.\n"),
361 value);
362 }
363
364 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
365 set with "break" but falling in read-only memory.
366 If 0, gdb will warn about such breakpoints, but won't automatically
367 use hardware breakpoints. */
368 static int automatic_hardware_breakpoints;
369 static void
370 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c,
372 const char *value)
373 {
374 fprintf_filtered (file,
375 _("Automatic usage of hardware breakpoints is %s.\n"),
376 value);
377 }
378
379 /* If on, GDB keeps breakpoints inserted even if the inferior is
380 stopped, and immediately inserts any new breakpoints as soon as
381 they're created. If off (default), GDB keeps breakpoints off of
382 the target as long as possible. That is, it delays inserting
383 breakpoints until the next resume, and removes them again when the
384 target fully stops. This is a bit safer in case GDB crashes while
385 processing user input. */
386 static int always_inserted_mode = 0;
387
388 static void
389 show_always_inserted_mode (struct ui_file *file, int from_tty,
390 struct cmd_list_element *c, const char *value)
391 {
392 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
393 value);
394 }
395
396 /* See breakpoint.h. */
397
398 int
399 breakpoints_should_be_inserted_now (void)
400 {
401 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
402 {
403 /* If breakpoints are global, they should be inserted even if no
404 thread under gdb's control is running, or even if there are
405 no threads under GDB's control yet. */
406 return 1;
407 }
408 else if (target_has_execution)
409 {
410 struct thread_info *tp;
411
412 if (always_inserted_mode)
413 {
414 /* The user wants breakpoints inserted even if all threads
415 are stopped. */
416 return 1;
417 }
418
419 if (threads_are_executing ())
420 return 1;
421
422 /* Don't remove breakpoints yet if, even though all threads are
423 stopped, we still have events to process. */
424 ALL_NON_EXITED_THREADS (tp)
425 if (tp->resumed
426 && tp->suspend.waitstatus_pending_p)
427 return 1;
428 }
429 return 0;
430 }
431
432 static const char condition_evaluation_both[] = "host or target";
433
434 /* Modes for breakpoint condition evaluation. */
435 static const char condition_evaluation_auto[] = "auto";
436 static const char condition_evaluation_host[] = "host";
437 static const char condition_evaluation_target[] = "target";
438 static const char *const condition_evaluation_enums[] = {
439 condition_evaluation_auto,
440 condition_evaluation_host,
441 condition_evaluation_target,
442 NULL
443 };
444
445 /* Global that holds the current mode for breakpoint condition evaluation. */
446 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
447
448 /* Global that we use to display information to the user (gets its value from
449 condition_evaluation_mode_1. */
450 static const char *condition_evaluation_mode = condition_evaluation_auto;
451
452 /* Translate a condition evaluation mode MODE into either "host"
453 or "target". This is used mostly to translate from "auto" to the
454 real setting that is being used. It returns the translated
455 evaluation mode. */
456
457 static const char *
458 translate_condition_evaluation_mode (const char *mode)
459 {
460 if (mode == condition_evaluation_auto)
461 {
462 if (target_supports_evaluation_of_breakpoint_conditions ())
463 return condition_evaluation_target;
464 else
465 return condition_evaluation_host;
466 }
467 else
468 return mode;
469 }
470
471 /* Discovers what condition_evaluation_auto translates to. */
472
473 static const char *
474 breakpoint_condition_evaluation_mode (void)
475 {
476 return translate_condition_evaluation_mode (condition_evaluation_mode);
477 }
478
479 /* Return true if GDB should evaluate breakpoint conditions or false
480 otherwise. */
481
482 static int
483 gdb_evaluates_breakpoint_condition_p (void)
484 {
485 const char *mode = breakpoint_condition_evaluation_mode ();
486
487 return (mode == condition_evaluation_host);
488 }
489
490 /* Are we executing breakpoint commands? */
491 static int executing_breakpoint_commands;
492
493 /* Are overlay event breakpoints enabled? */
494 static int overlay_events_enabled;
495
496 /* See description in breakpoint.h. */
497 int target_exact_watchpoints = 0;
498
499 /* Walk the following statement or block through all breakpoints.
500 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
501 current breakpoint. */
502
503 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
504
505 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
506 for (B = breakpoint_chain; \
507 B ? (TMP=B->next, 1): 0; \
508 B = TMP)
509
510 /* Similar iterator for the low-level breakpoints. SAFE variant is
511 not provided so update_global_location_list must not be called
512 while executing the block of ALL_BP_LOCATIONS. */
513
514 #define ALL_BP_LOCATIONS(B,BP_TMP) \
515 for (BP_TMP = bp_locations; \
516 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
517 BP_TMP++)
518
519 /* Iterates through locations with address ADDRESS for the currently selected
520 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
521 to where the loop should start from.
522 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
523 appropriate location to start with. */
524
525 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
526 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
527 BP_LOCP_TMP = BP_LOCP_START; \
528 BP_LOCP_START \
529 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
530 && (*BP_LOCP_TMP)->address == ADDRESS); \
531 BP_LOCP_TMP++)
532
533 /* Iterator for tracepoints only. */
534
535 #define ALL_TRACEPOINTS(B) \
536 for (B = breakpoint_chain; B; B = B->next) \
537 if (is_tracepoint (B))
538
539 /* Chains of all breakpoints defined. */
540
541 struct breakpoint *breakpoint_chain;
542
543 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
544
545 static struct bp_location **bp_locations;
546
547 /* Number of elements of BP_LOCATIONS. */
548
549 static unsigned bp_locations_count;
550
551 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
552 ADDRESS for the current elements of BP_LOCATIONS which get a valid
553 result from bp_location_has_shadow. You can use it for roughly
554 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
555 an address you need to read. */
556
557 static CORE_ADDR bp_locations_placed_address_before_address_max;
558
559 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
560 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
561 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
562 You can use it for roughly limiting the subrange of BP_LOCATIONS to
563 scan for shadow bytes for an address you need to read. */
564
565 static CORE_ADDR bp_locations_shadow_len_after_address_max;
566
567 /* The locations that no longer correspond to any breakpoint, unlinked
568 from the bp_locations array, but for which a hit may still be
569 reported by a target. */
570 VEC(bp_location_p) *moribund_locations = NULL;
571
572 /* Number of last breakpoint made. */
573
574 static int breakpoint_count;
575
576 /* The value of `breakpoint_count' before the last command that
577 created breakpoints. If the last (break-like) command created more
578 than one breakpoint, then the difference between BREAKPOINT_COUNT
579 and PREV_BREAKPOINT_COUNT is more than one. */
580 static int prev_breakpoint_count;
581
582 /* Number of last tracepoint made. */
583
584 static int tracepoint_count;
585
586 static struct cmd_list_element *breakpoint_set_cmdlist;
587 static struct cmd_list_element *breakpoint_show_cmdlist;
588 struct cmd_list_element *save_cmdlist;
589
590 /* See declaration at breakpoint.h. */
591
592 struct breakpoint *
593 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
594 void *user_data)
595 {
596 struct breakpoint *b = NULL;
597
598 ALL_BREAKPOINTS (b)
599 {
600 if (func (b, user_data) != 0)
601 break;
602 }
603
604 return b;
605 }
606
607 /* Return whether a breakpoint is an active enabled breakpoint. */
608 static int
609 breakpoint_enabled (struct breakpoint *b)
610 {
611 return (b->enable_state == bp_enabled);
612 }
613
614 /* Set breakpoint count to NUM. */
615
616 static void
617 set_breakpoint_count (int num)
618 {
619 prev_breakpoint_count = breakpoint_count;
620 breakpoint_count = num;
621 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
622 }
623
624 /* Used by `start_rbreak_breakpoints' below, to record the current
625 breakpoint count before "rbreak" creates any breakpoint. */
626 static int rbreak_start_breakpoint_count;
627
628 /* Called at the start an "rbreak" command to record the first
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
632 {
633 rbreak_start_breakpoint_count = breakpoint_count;
634 }
635
636 /* Called at the end of an "rbreak" command to record the last
637 breakpoint made. */
638
639 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
640 {
641 prev_breakpoint_count = rbreak_start_breakpoint_count;
642 }
643
644 /* Used in run_command to zero the hit count when a new run starts. */
645
646 void
647 clear_breakpoint_hit_counts (void)
648 {
649 struct breakpoint *b;
650
651 ALL_BREAKPOINTS (b)
652 b->hit_count = 0;
653 }
654
655 \f
656 /* Return the breakpoint with the specified number, or NULL
657 if the number does not refer to an existing breakpoint. */
658
659 struct breakpoint *
660 get_breakpoint (int num)
661 {
662 struct breakpoint *b;
663
664 ALL_BREAKPOINTS (b)
665 if (b->number == num)
666 return b;
667
668 return NULL;
669 }
670
671 \f
672
673 /* Mark locations as "conditions have changed" in case the target supports
674 evaluating conditions on its side. */
675
676 static void
677 mark_breakpoint_modified (struct breakpoint *b)
678 {
679 struct bp_location *loc;
680
681 /* This is only meaningful if the target is
682 evaluating conditions and if the user has
683 opted for condition evaluation on the target's
684 side. */
685 if (gdb_evaluates_breakpoint_condition_p ()
686 || !target_supports_evaluation_of_breakpoint_conditions ())
687 return;
688
689 if (!is_breakpoint (b))
690 return;
691
692 for (loc = b->loc; loc; loc = loc->next)
693 loc->condition_changed = condition_modified;
694 }
695
696 /* Mark location as "conditions have changed" in case the target supports
697 evaluating conditions on its side. */
698
699 static void
700 mark_breakpoint_location_modified (struct bp_location *loc)
701 {
702 /* This is only meaningful if the target is
703 evaluating conditions and if the user has
704 opted for condition evaluation on the target's
705 side. */
706 if (gdb_evaluates_breakpoint_condition_p ()
707 || !target_supports_evaluation_of_breakpoint_conditions ())
708
709 return;
710
711 if (!is_breakpoint (loc->owner))
712 return;
713
714 loc->condition_changed = condition_modified;
715 }
716
717 /* Sets the condition-evaluation mode using the static global
718 condition_evaluation_mode. */
719
720 static void
721 set_condition_evaluation_mode (char *args, int from_tty,
722 struct cmd_list_element *c)
723 {
724 const char *old_mode, *new_mode;
725
726 if ((condition_evaluation_mode_1 == condition_evaluation_target)
727 && !target_supports_evaluation_of_breakpoint_conditions ())
728 {
729 condition_evaluation_mode_1 = condition_evaluation_mode;
730 warning (_("Target does not support breakpoint condition evaluation.\n"
731 "Using host evaluation mode instead."));
732 return;
733 }
734
735 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
736 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
737
738 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
739 settings was "auto". */
740 condition_evaluation_mode = condition_evaluation_mode_1;
741
742 /* Only update the mode if the user picked a different one. */
743 if (new_mode != old_mode)
744 {
745 struct bp_location *loc, **loc_tmp;
746 /* If the user switched to a different evaluation mode, we
747 need to synch the changes with the target as follows:
748
749 "host" -> "target": Send all (valid) conditions to the target.
750 "target" -> "host": Remove all the conditions from the target.
751 */
752
753 if (new_mode == condition_evaluation_target)
754 {
755 /* Mark everything modified and synch conditions with the
756 target. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 mark_breakpoint_location_modified (loc);
759 }
760 else
761 {
762 /* Manually mark non-duplicate locations to synch conditions
763 with the target. We do this to remove all the conditions the
764 target knows about. */
765 ALL_BP_LOCATIONS (loc, loc_tmp)
766 if (is_breakpoint (loc->owner) && loc->inserted)
767 loc->needs_update = 1;
768 }
769
770 /* Do the update. */
771 update_global_location_list (UGLL_MAY_INSERT);
772 }
773
774 return;
775 }
776
777 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
778 what "auto" is translating to. */
779
780 static void
781 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
782 struct cmd_list_element *c, const char *value)
783 {
784 if (condition_evaluation_mode == condition_evaluation_auto)
785 fprintf_filtered (file,
786 _("Breakpoint condition evaluation "
787 "mode is %s (currently %s).\n"),
788 value,
789 breakpoint_condition_evaluation_mode ());
790 else
791 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
792 value);
793 }
794
795 /* A comparison function for bp_location AP and BP that is used by
796 bsearch. This comparison function only cares about addresses, unlike
797 the more general bp_locations_compare function. */
798
799 static int
800 bp_locations_compare_addrs (const void *ap, const void *bp)
801 {
802 const struct bp_location *a = *(const struct bp_location **) ap;
803 const struct bp_location *b = *(const struct bp_location **) bp;
804
805 if (a->address == b->address)
806 return 0;
807 else
808 return ((a->address > b->address) - (a->address < b->address));
809 }
810
811 /* Helper function to skip all bp_locations with addresses
812 less than ADDRESS. It returns the first bp_location that
813 is greater than or equal to ADDRESS. If none is found, just
814 return NULL. */
815
816 static struct bp_location **
817 get_first_locp_gte_addr (CORE_ADDR address)
818 {
819 struct bp_location dummy_loc;
820 struct bp_location *dummy_locp = &dummy_loc;
821 struct bp_location **locp_found = NULL;
822
823 /* Initialize the dummy location's address field. */
824 dummy_loc.address = address;
825
826 /* Find a close match to the first location at ADDRESS. */
827 locp_found = ((struct bp_location **)
828 bsearch (&dummy_locp, bp_locations, bp_locations_count,
829 sizeof (struct bp_location **),
830 bp_locations_compare_addrs));
831
832 /* Nothing was found, nothing left to do. */
833 if (locp_found == NULL)
834 return NULL;
835
836 /* We may have found a location that is at ADDRESS but is not the first in the
837 location's list. Go backwards (if possible) and locate the first one. */
838 while ((locp_found - 1) >= bp_locations
839 && (*(locp_found - 1))->address == address)
840 locp_found--;
841
842 return locp_found;
843 }
844
845 void
846 set_breakpoint_condition (struct breakpoint *b, const char *exp,
847 int from_tty)
848 {
849 xfree (b->cond_string);
850 b->cond_string = NULL;
851
852 if (is_watchpoint (b))
853 {
854 struct watchpoint *w = (struct watchpoint *) b;
855
856 w->cond_exp.reset ();
857 }
858 else
859 {
860 struct bp_location *loc;
861
862 for (loc = b->loc; loc; loc = loc->next)
863 {
864 loc->cond.reset ();
865
866 /* No need to free the condition agent expression
867 bytecode (if we have one). We will handle this
868 when we go through update_global_location_list. */
869 }
870 }
871
872 if (*exp == 0)
873 {
874 if (from_tty)
875 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
876 }
877 else
878 {
879 const char *arg = exp;
880
881 /* I don't know if it matters whether this is the string the user
882 typed in or the decompiled expression. */
883 b->cond_string = xstrdup (arg);
884 b->condition_not_parsed = 0;
885
886 if (is_watchpoint (b))
887 {
888 struct watchpoint *w = (struct watchpoint *) b;
889
890 innermost_block = NULL;
891 arg = exp;
892 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
893 if (*arg)
894 error (_("Junk at end of expression"));
895 w->cond_exp_valid_block = innermost_block;
896 }
897 else
898 {
899 struct bp_location *loc;
900
901 for (loc = b->loc; loc; loc = loc->next)
902 {
903 arg = exp;
904 loc->cond =
905 parse_exp_1 (&arg, loc->address,
906 block_for_pc (loc->address), 0);
907 if (*arg)
908 error (_("Junk at end of expression"));
909 }
910 }
911 }
912 mark_breakpoint_modified (b);
913
914 observer_notify_breakpoint_modified (b);
915 }
916
917 /* Completion for the "condition" command. */
918
919 static void
920 condition_completer (struct cmd_list_element *cmd,
921 completion_tracker &tracker,
922 const char *text, const char *word)
923 {
924 const char *space;
925
926 text = skip_spaces (text);
927 space = skip_to_space (text);
928 if (*space == '\0')
929 {
930 int len;
931 struct breakpoint *b;
932 VEC (char_ptr) *result = NULL;
933
934 if (text[0] == '$')
935 {
936 /* We don't support completion of history indices. */
937 if (!isdigit (text[1]))
938 complete_internalvar (tracker, &text[1]);
939 return;
940 }
941
942 /* We're completing the breakpoint number. */
943 len = strlen (text);
944
945 ALL_BREAKPOINTS (b)
946 {
947 char number[50];
948
949 xsnprintf (number, sizeof (number), "%d", b->number);
950
951 if (strncmp (number, text, len) == 0)
952 {
953 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
954 tracker.add_completion (std::move (copy));
955 }
956 }
957
958 return;
959 }
960
961 /* We're completing the expression part. */
962 text = skip_spaces (space);
963 expression_completer (cmd, tracker, text, word);
964 }
965
966 /* condition N EXP -- set break condition of breakpoint N to EXP. */
967
968 static void
969 condition_command (const char *arg, int from_tty)
970 {
971 struct breakpoint *b;
972 const char *p;
973 int bnum;
974
975 if (arg == 0)
976 error_no_arg (_("breakpoint number"));
977
978 p = arg;
979 bnum = get_number (&p);
980 if (bnum == 0)
981 error (_("Bad breakpoint argument: '%s'"), arg);
982
983 ALL_BREAKPOINTS (b)
984 if (b->number == bnum)
985 {
986 /* Check if this breakpoint has a "stop" method implemented in an
987 extension language. This method and conditions entered into GDB
988 from the CLI are mutually exclusive. */
989 const struct extension_language_defn *extlang
990 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
991
992 if (extlang != NULL)
993 {
994 error (_("Only one stop condition allowed. There is currently"
995 " a %s stop condition defined for this breakpoint."),
996 ext_lang_capitalized_name (extlang));
997 }
998 set_breakpoint_condition (b, p, from_tty);
999
1000 if (is_breakpoint (b))
1001 update_global_location_list (UGLL_MAY_INSERT);
1002
1003 return;
1004 }
1005
1006 error (_("No breakpoint number %d."), bnum);
1007 }
1008
1009 /* Check that COMMAND do not contain commands that are suitable
1010 only for tracepoints and not suitable for ordinary breakpoints.
1011 Throw if any such commands is found. */
1012
1013 static void
1014 check_no_tracepoint_commands (struct command_line *commands)
1015 {
1016 struct command_line *c;
1017
1018 for (c = commands; c; c = c->next)
1019 {
1020 int i;
1021
1022 if (c->control_type == while_stepping_control)
1023 error (_("The 'while-stepping' command can "
1024 "only be used for tracepoints"));
1025
1026 for (i = 0; i < c->body_count; ++i)
1027 check_no_tracepoint_commands ((c->body_list)[i]);
1028
1029 /* Not that command parsing removes leading whitespace and comment
1030 lines and also empty lines. So, we only need to check for
1031 command directly. */
1032 if (strstr (c->line, "collect ") == c->line)
1033 error (_("The 'collect' command can only be used for tracepoints"));
1034
1035 if (strstr (c->line, "teval ") == c->line)
1036 error (_("The 'teval' command can only be used for tracepoints"));
1037 }
1038 }
1039
1040 struct longjmp_breakpoint : public breakpoint
1041 {
1042 ~longjmp_breakpoint () override;
1043 };
1044
1045 /* Encapsulate tests for different types of tracepoints. */
1046
1047 static bool
1048 is_tracepoint_type (bptype type)
1049 {
1050 return (type == bp_tracepoint
1051 || type == bp_fast_tracepoint
1052 || type == bp_static_tracepoint);
1053 }
1054
1055 static bool
1056 is_longjmp_type (bptype type)
1057 {
1058 return type == bp_longjmp || type == bp_exception;
1059 }
1060
1061 int
1062 is_tracepoint (const struct breakpoint *b)
1063 {
1064 return is_tracepoint_type (b->type);
1065 }
1066
1067 /* Factory function to create an appropriate instance of breakpoint given
1068 TYPE. */
1069
1070 static std::unique_ptr<breakpoint>
1071 new_breakpoint_from_type (bptype type)
1072 {
1073 breakpoint *b;
1074
1075 if (is_tracepoint_type (type))
1076 b = new tracepoint ();
1077 else if (is_longjmp_type (type))
1078 b = new longjmp_breakpoint ();
1079 else
1080 b = new breakpoint ();
1081
1082 return std::unique_ptr<breakpoint> (b);
1083 }
1084
1085 /* A helper function that validates that COMMANDS are valid for a
1086 breakpoint. This function will throw an exception if a problem is
1087 found. */
1088
1089 static void
1090 validate_commands_for_breakpoint (struct breakpoint *b,
1091 struct command_line *commands)
1092 {
1093 if (is_tracepoint (b))
1094 {
1095 struct tracepoint *t = (struct tracepoint *) b;
1096 struct command_line *c;
1097 struct command_line *while_stepping = 0;
1098
1099 /* Reset the while-stepping step count. The previous commands
1100 might have included a while-stepping action, while the new
1101 ones might not. */
1102 t->step_count = 0;
1103
1104 /* We need to verify that each top-level element of commands is
1105 valid for tracepoints, that there's at most one
1106 while-stepping element, and that the while-stepping's body
1107 has valid tracing commands excluding nested while-stepping.
1108 We also need to validate the tracepoint action line in the
1109 context of the tracepoint --- validate_actionline actually
1110 has side effects, like setting the tracepoint's
1111 while-stepping STEP_COUNT, in addition to checking if the
1112 collect/teval actions parse and make sense in the
1113 tracepoint's context. */
1114 for (c = commands; c; c = c->next)
1115 {
1116 if (c->control_type == while_stepping_control)
1117 {
1118 if (b->type == bp_fast_tracepoint)
1119 error (_("The 'while-stepping' command "
1120 "cannot be used for fast tracepoint"));
1121 else if (b->type == bp_static_tracepoint)
1122 error (_("The 'while-stepping' command "
1123 "cannot be used for static tracepoint"));
1124
1125 if (while_stepping)
1126 error (_("The 'while-stepping' command "
1127 "can be used only once"));
1128 else
1129 while_stepping = c;
1130 }
1131
1132 validate_actionline (c->line, b);
1133 }
1134 if (while_stepping)
1135 {
1136 struct command_line *c2;
1137
1138 gdb_assert (while_stepping->body_count == 1);
1139 c2 = while_stepping->body_list[0];
1140 for (; c2; c2 = c2->next)
1141 {
1142 if (c2->control_type == while_stepping_control)
1143 error (_("The 'while-stepping' command cannot be nested"));
1144 }
1145 }
1146 }
1147 else
1148 {
1149 check_no_tracepoint_commands (commands);
1150 }
1151 }
1152
1153 /* Return a vector of all the static tracepoints set at ADDR. The
1154 caller is responsible for releasing the vector. */
1155
1156 VEC(breakpoint_p) *
1157 static_tracepoints_here (CORE_ADDR addr)
1158 {
1159 struct breakpoint *b;
1160 VEC(breakpoint_p) *found = 0;
1161 struct bp_location *loc;
1162
1163 ALL_BREAKPOINTS (b)
1164 if (b->type == bp_static_tracepoint)
1165 {
1166 for (loc = b->loc; loc; loc = loc->next)
1167 if (loc->address == addr)
1168 VEC_safe_push(breakpoint_p, found, b);
1169 }
1170
1171 return found;
1172 }
1173
1174 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1175 validate that only allowed commands are included. */
1176
1177 void
1178 breakpoint_set_commands (struct breakpoint *b,
1179 command_line_up &&commands)
1180 {
1181 validate_commands_for_breakpoint (b, commands.get ());
1182
1183 b->commands = std::move (commands);
1184 observer_notify_breakpoint_modified (b);
1185 }
1186
1187 /* Set the internal `silent' flag on the breakpoint. Note that this
1188 is not the same as the "silent" that may appear in the breakpoint's
1189 commands. */
1190
1191 void
1192 breakpoint_set_silent (struct breakpoint *b, int silent)
1193 {
1194 int old_silent = b->silent;
1195
1196 b->silent = silent;
1197 if (old_silent != silent)
1198 observer_notify_breakpoint_modified (b);
1199 }
1200
1201 /* Set the thread for this breakpoint. If THREAD is -1, make the
1202 breakpoint work for any thread. */
1203
1204 void
1205 breakpoint_set_thread (struct breakpoint *b, int thread)
1206 {
1207 int old_thread = b->thread;
1208
1209 b->thread = thread;
1210 if (old_thread != thread)
1211 observer_notify_breakpoint_modified (b);
1212 }
1213
1214 /* Set the task for this breakpoint. If TASK is 0, make the
1215 breakpoint work for any task. */
1216
1217 void
1218 breakpoint_set_task (struct breakpoint *b, int task)
1219 {
1220 int old_task = b->task;
1221
1222 b->task = task;
1223 if (old_task != task)
1224 observer_notify_breakpoint_modified (b);
1225 }
1226
1227 void
1228 check_tracepoint_command (char *line, void *closure)
1229 {
1230 struct breakpoint *b = (struct breakpoint *) closure;
1231
1232 validate_actionline (line, b);
1233 }
1234
1235 static void
1236 commands_command_1 (const char *arg, int from_tty,
1237 struct command_line *control)
1238 {
1239 counted_command_line cmd;
1240
1241 std::string new_arg;
1242
1243 if (arg == NULL || !*arg)
1244 {
1245 if (breakpoint_count - prev_breakpoint_count > 1)
1246 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1247 breakpoint_count);
1248 else if (breakpoint_count > 0)
1249 new_arg = string_printf ("%d", breakpoint_count);
1250 arg = new_arg.c_str ();
1251 }
1252
1253 map_breakpoint_numbers
1254 (arg, [&] (breakpoint *b)
1255 {
1256 if (cmd == NULL)
1257 {
1258 if (control != NULL)
1259 cmd = copy_command_lines (control->body_list[0]);
1260 else
1261 {
1262 std::string str
1263 = string_printf (_("Type commands for breakpoint(s) "
1264 "%s, one per line."),
1265 arg);
1266
1267 cmd = read_command_lines (&str[0],
1268 from_tty, 1,
1269 (is_tracepoint (b)
1270 ? check_tracepoint_command : 0),
1271 b);
1272 }
1273 }
1274
1275 /* If a breakpoint was on the list more than once, we don't need to
1276 do anything. */
1277 if (b->commands != cmd)
1278 {
1279 validate_commands_for_breakpoint (b, cmd.get ());
1280 b->commands = cmd;
1281 observer_notify_breakpoint_modified (b);
1282 }
1283 });
1284
1285 if (cmd == NULL)
1286 error (_("No breakpoints specified."));
1287 }
1288
1289 static void
1290 commands_command (const char *arg, int from_tty)
1291 {
1292 commands_command_1 (arg, from_tty, NULL);
1293 }
1294
1295 /* Like commands_command, but instead of reading the commands from
1296 input stream, takes them from an already parsed command structure.
1297
1298 This is used by cli-script.c to DTRT with breakpoint commands
1299 that are part of if and while bodies. */
1300 enum command_control_type
1301 commands_from_control_command (const char *arg, struct command_line *cmd)
1302 {
1303 commands_command_1 (arg, 0, cmd);
1304 return simple_control;
1305 }
1306
1307 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1308
1309 static int
1310 bp_location_has_shadow (struct bp_location *bl)
1311 {
1312 if (bl->loc_type != bp_loc_software_breakpoint)
1313 return 0;
1314 if (!bl->inserted)
1315 return 0;
1316 if (bl->target_info.shadow_len == 0)
1317 /* BL isn't valid, or doesn't shadow memory. */
1318 return 0;
1319 return 1;
1320 }
1321
1322 /* Update BUF, which is LEN bytes read from the target address
1323 MEMADDR, by replacing a memory breakpoint with its shadowed
1324 contents.
1325
1326 If READBUF is not NULL, this buffer must not overlap with the of
1327 the breakpoint location's shadow_contents buffer. Otherwise, a
1328 failed assertion internal error will be raised. */
1329
1330 static void
1331 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1332 const gdb_byte *writebuf_org,
1333 ULONGEST memaddr, LONGEST len,
1334 struct bp_target_info *target_info,
1335 struct gdbarch *gdbarch)
1336 {
1337 /* Now do full processing of the found relevant range of elements. */
1338 CORE_ADDR bp_addr = 0;
1339 int bp_size = 0;
1340 int bptoffset = 0;
1341
1342 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1343 current_program_space->aspace, 0))
1344 {
1345 /* The breakpoint is inserted in a different address space. */
1346 return;
1347 }
1348
1349 /* Addresses and length of the part of the breakpoint that
1350 we need to copy. */
1351 bp_addr = target_info->placed_address;
1352 bp_size = target_info->shadow_len;
1353
1354 if (bp_addr + bp_size <= memaddr)
1355 {
1356 /* The breakpoint is entirely before the chunk of memory we are
1357 reading. */
1358 return;
1359 }
1360
1361 if (bp_addr >= memaddr + len)
1362 {
1363 /* The breakpoint is entirely after the chunk of memory we are
1364 reading. */
1365 return;
1366 }
1367
1368 /* Offset within shadow_contents. */
1369 if (bp_addr < memaddr)
1370 {
1371 /* Only copy the second part of the breakpoint. */
1372 bp_size -= memaddr - bp_addr;
1373 bptoffset = memaddr - bp_addr;
1374 bp_addr = memaddr;
1375 }
1376
1377 if (bp_addr + bp_size > memaddr + len)
1378 {
1379 /* Only copy the first part of the breakpoint. */
1380 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1381 }
1382
1383 if (readbuf != NULL)
1384 {
1385 /* Verify that the readbuf buffer does not overlap with the
1386 shadow_contents buffer. */
1387 gdb_assert (target_info->shadow_contents >= readbuf + len
1388 || readbuf >= (target_info->shadow_contents
1389 + target_info->shadow_len));
1390
1391 /* Update the read buffer with this inserted breakpoint's
1392 shadow. */
1393 memcpy (readbuf + bp_addr - memaddr,
1394 target_info->shadow_contents + bptoffset, bp_size);
1395 }
1396 else
1397 {
1398 const unsigned char *bp;
1399 CORE_ADDR addr = target_info->reqstd_address;
1400 int placed_size;
1401
1402 /* Update the shadow with what we want to write to memory. */
1403 memcpy (target_info->shadow_contents + bptoffset,
1404 writebuf_org + bp_addr - memaddr, bp_size);
1405
1406 /* Determine appropriate breakpoint contents and size for this
1407 address. */
1408 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1409
1410 /* Update the final write buffer with this inserted
1411 breakpoint's INSN. */
1412 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1413 }
1414 }
1415
1416 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1417 by replacing any memory breakpoints with their shadowed contents.
1418
1419 If READBUF is not NULL, this buffer must not overlap with any of
1420 the breakpoint location's shadow_contents buffers. Otherwise,
1421 a failed assertion internal error will be raised.
1422
1423 The range of shadowed area by each bp_location is:
1424 bl->address - bp_locations_placed_address_before_address_max
1425 up to bl->address + bp_locations_shadow_len_after_address_max
1426 The range we were requested to resolve shadows for is:
1427 memaddr ... memaddr + len
1428 Thus the safe cutoff boundaries for performance optimization are
1429 memaddr + len <= (bl->address
1430 - bp_locations_placed_address_before_address_max)
1431 and:
1432 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1433
1434 void
1435 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1436 const gdb_byte *writebuf_org,
1437 ULONGEST memaddr, LONGEST len)
1438 {
1439 /* Left boundary, right boundary and median element of our binary
1440 search. */
1441 unsigned bc_l, bc_r, bc;
1442
1443 /* Find BC_L which is a leftmost element which may affect BUF
1444 content. It is safe to report lower value but a failure to
1445 report higher one. */
1446
1447 bc_l = 0;
1448 bc_r = bp_locations_count;
1449 while (bc_l + 1 < bc_r)
1450 {
1451 struct bp_location *bl;
1452
1453 bc = (bc_l + bc_r) / 2;
1454 bl = bp_locations[bc];
1455
1456 /* Check first BL->ADDRESS will not overflow due to the added
1457 constant. Then advance the left boundary only if we are sure
1458 the BC element can in no way affect the BUF content (MEMADDR
1459 to MEMADDR + LEN range).
1460
1461 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1462 offset so that we cannot miss a breakpoint with its shadow
1463 range tail still reaching MEMADDR. */
1464
1465 if ((bl->address + bp_locations_shadow_len_after_address_max
1466 >= bl->address)
1467 && (bl->address + bp_locations_shadow_len_after_address_max
1468 <= memaddr))
1469 bc_l = bc;
1470 else
1471 bc_r = bc;
1472 }
1473
1474 /* Due to the binary search above, we need to make sure we pick the
1475 first location that's at BC_L's address. E.g., if there are
1476 multiple locations at the same address, BC_L may end up pointing
1477 at a duplicate location, and miss the "master"/"inserted"
1478 location. Say, given locations L1, L2 and L3 at addresses A and
1479 B:
1480
1481 L1@A, L2@A, L3@B, ...
1482
1483 BC_L could end up pointing at location L2, while the "master"
1484 location could be L1. Since the `loc->inserted' flag is only set
1485 on "master" locations, we'd forget to restore the shadow of L1
1486 and L2. */
1487 while (bc_l > 0
1488 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1489 bc_l--;
1490
1491 /* Now do full processing of the found relevant range of elements. */
1492
1493 for (bc = bc_l; bc < bp_locations_count; bc++)
1494 {
1495 struct bp_location *bl = bp_locations[bc];
1496
1497 /* bp_location array has BL->OWNER always non-NULL. */
1498 if (bl->owner->type == bp_none)
1499 warning (_("reading through apparently deleted breakpoint #%d?"),
1500 bl->owner->number);
1501
1502 /* Performance optimization: any further element can no longer affect BUF
1503 content. */
1504
1505 if (bl->address >= bp_locations_placed_address_before_address_max
1506 && memaddr + len <= (bl->address
1507 - bp_locations_placed_address_before_address_max))
1508 break;
1509
1510 if (!bp_location_has_shadow (bl))
1511 continue;
1512
1513 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1514 memaddr, len, &bl->target_info, bl->gdbarch);
1515 }
1516 }
1517
1518 \f
1519
1520 /* Return true if BPT is either a software breakpoint or a hardware
1521 breakpoint. */
1522
1523 int
1524 is_breakpoint (const struct breakpoint *bpt)
1525 {
1526 return (bpt->type == bp_breakpoint
1527 || bpt->type == bp_hardware_breakpoint
1528 || bpt->type == bp_dprintf);
1529 }
1530
1531 /* Return true if BPT is of any hardware watchpoint kind. */
1532
1533 static int
1534 is_hardware_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (bpt->type == bp_hardware_watchpoint
1537 || bpt->type == bp_read_watchpoint
1538 || bpt->type == bp_access_watchpoint);
1539 }
1540
1541 /* Return true if BPT is of any watchpoint kind, hardware or
1542 software. */
1543
1544 int
1545 is_watchpoint (const struct breakpoint *bpt)
1546 {
1547 return (is_hardware_watchpoint (bpt)
1548 || bpt->type == bp_watchpoint);
1549 }
1550
1551 /* Returns true if the current thread and its running state are safe
1552 to evaluate or update watchpoint B. Watchpoints on local
1553 expressions need to be evaluated in the context of the thread that
1554 was current when the watchpoint was created, and, that thread needs
1555 to be stopped to be able to select the correct frame context.
1556 Watchpoints on global expressions can be evaluated on any thread,
1557 and in any state. It is presently left to the target allowing
1558 memory accesses when threads are running. */
1559
1560 static int
1561 watchpoint_in_thread_scope (struct watchpoint *b)
1562 {
1563 return (b->pspace == current_program_space
1564 && (ptid_equal (b->watchpoint_thread, null_ptid)
1565 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1566 && !is_executing (inferior_ptid))));
1567 }
1568
1569 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1570 associated bp_watchpoint_scope breakpoint. */
1571
1572 static void
1573 watchpoint_del_at_next_stop (struct watchpoint *w)
1574 {
1575 if (w->related_breakpoint != w)
1576 {
1577 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1578 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1579 w->related_breakpoint->disposition = disp_del_at_next_stop;
1580 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1581 w->related_breakpoint = w;
1582 }
1583 w->disposition = disp_del_at_next_stop;
1584 }
1585
1586 /* Extract a bitfield value from value VAL using the bit parameters contained in
1587 watchpoint W. */
1588
1589 static struct value *
1590 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1591 {
1592 struct value *bit_val;
1593
1594 if (val == NULL)
1595 return NULL;
1596
1597 bit_val = allocate_value (value_type (val));
1598
1599 unpack_value_bitfield (bit_val,
1600 w->val_bitpos,
1601 w->val_bitsize,
1602 value_contents_for_printing (val),
1603 value_offset (val),
1604 val);
1605
1606 return bit_val;
1607 }
1608
1609 /* Allocate a dummy location and add it to B, which must be a software
1610 watchpoint. This is required because even if a software watchpoint
1611 is not watching any memory, bpstat_stop_status requires a location
1612 to be able to report stops. */
1613
1614 static void
1615 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1616 struct program_space *pspace)
1617 {
1618 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1619
1620 b->loc = allocate_bp_location (b);
1621 b->loc->pspace = pspace;
1622 b->loc->address = -1;
1623 b->loc->length = -1;
1624 }
1625
1626 /* Returns true if B is a software watchpoint that is not watching any
1627 memory (e.g., "watch $pc"). */
1628
1629 static int
1630 is_no_memory_software_watchpoint (struct breakpoint *b)
1631 {
1632 return (b->type == bp_watchpoint
1633 && b->loc != NULL
1634 && b->loc->next == NULL
1635 && b->loc->address == -1
1636 && b->loc->length == -1);
1637 }
1638
1639 /* Assuming that B is a watchpoint:
1640 - Reparse watchpoint expression, if REPARSE is non-zero
1641 - Evaluate expression and store the result in B->val
1642 - Evaluate the condition if there is one, and store the result
1643 in b->loc->cond.
1644 - Update the list of values that must be watched in B->loc.
1645
1646 If the watchpoint disposition is disp_del_at_next_stop, then do
1647 nothing. If this is local watchpoint that is out of scope, delete
1648 it.
1649
1650 Even with `set breakpoint always-inserted on' the watchpoints are
1651 removed + inserted on each stop here. Normal breakpoints must
1652 never be removed because they might be missed by a running thread
1653 when debugging in non-stop mode. On the other hand, hardware
1654 watchpoints (is_hardware_watchpoint; processed here) are specific
1655 to each LWP since they are stored in each LWP's hardware debug
1656 registers. Therefore, such LWP must be stopped first in order to
1657 be able to modify its hardware watchpoints.
1658
1659 Hardware watchpoints must be reset exactly once after being
1660 presented to the user. It cannot be done sooner, because it would
1661 reset the data used to present the watchpoint hit to the user. And
1662 it must not be done later because it could display the same single
1663 watchpoint hit during multiple GDB stops. Note that the latter is
1664 relevant only to the hardware watchpoint types bp_read_watchpoint
1665 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1666 not user-visible - its hit is suppressed if the memory content has
1667 not changed.
1668
1669 The following constraints influence the location where we can reset
1670 hardware watchpoints:
1671
1672 * target_stopped_by_watchpoint and target_stopped_data_address are
1673 called several times when GDB stops.
1674
1675 [linux]
1676 * Multiple hardware watchpoints can be hit at the same time,
1677 causing GDB to stop. GDB only presents one hardware watchpoint
1678 hit at a time as the reason for stopping, and all the other hits
1679 are presented later, one after the other, each time the user
1680 requests the execution to be resumed. Execution is not resumed
1681 for the threads still having pending hit event stored in
1682 LWP_INFO->STATUS. While the watchpoint is already removed from
1683 the inferior on the first stop the thread hit event is kept being
1684 reported from its cached value by linux_nat_stopped_data_address
1685 until the real thread resume happens after the watchpoint gets
1686 presented and thus its LWP_INFO->STATUS gets reset.
1687
1688 Therefore the hardware watchpoint hit can get safely reset on the
1689 watchpoint removal from inferior. */
1690
1691 static void
1692 update_watchpoint (struct watchpoint *b, int reparse)
1693 {
1694 int within_current_scope;
1695 struct frame_id saved_frame_id;
1696 int frame_saved;
1697
1698 /* If this is a local watchpoint, we only want to check if the
1699 watchpoint frame is in scope if the current thread is the thread
1700 that was used to create the watchpoint. */
1701 if (!watchpoint_in_thread_scope (b))
1702 return;
1703
1704 if (b->disposition == disp_del_at_next_stop)
1705 return;
1706
1707 frame_saved = 0;
1708
1709 /* Determine if the watchpoint is within scope. */
1710 if (b->exp_valid_block == NULL)
1711 within_current_scope = 1;
1712 else
1713 {
1714 struct frame_info *fi = get_current_frame ();
1715 struct gdbarch *frame_arch = get_frame_arch (fi);
1716 CORE_ADDR frame_pc = get_frame_pc (fi);
1717
1718 /* If we're at a point where the stack has been destroyed
1719 (e.g. in a function epilogue), unwinding may not work
1720 properly. Do not attempt to recreate locations at this
1721 point. See similar comments in watchpoint_check. */
1722 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1723 return;
1724
1725 /* Save the current frame's ID so we can restore it after
1726 evaluating the watchpoint expression on its own frame. */
1727 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1728 took a frame parameter, so that we didn't have to change the
1729 selected frame. */
1730 frame_saved = 1;
1731 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1732
1733 fi = frame_find_by_id (b->watchpoint_frame);
1734 within_current_scope = (fi != NULL);
1735 if (within_current_scope)
1736 select_frame (fi);
1737 }
1738
1739 /* We don't free locations. They are stored in the bp_location array
1740 and update_global_location_list will eventually delete them and
1741 remove breakpoints if needed. */
1742 b->loc = NULL;
1743
1744 if (within_current_scope && reparse)
1745 {
1746 const char *s;
1747
1748 b->exp.reset ();
1749 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1750 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1751 /* If the meaning of expression itself changed, the old value is
1752 no longer relevant. We don't want to report a watchpoint hit
1753 to the user when the old value and the new value may actually
1754 be completely different objects. */
1755 value_free (b->val);
1756 b->val = NULL;
1757 b->val_valid = 0;
1758
1759 /* Note that unlike with breakpoints, the watchpoint's condition
1760 expression is stored in the breakpoint object, not in the
1761 locations (re)created below. */
1762 if (b->cond_string != NULL)
1763 {
1764 b->cond_exp.reset ();
1765
1766 s = b->cond_string;
1767 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1768 }
1769 }
1770
1771 /* If we failed to parse the expression, for example because
1772 it refers to a global variable in a not-yet-loaded shared library,
1773 don't try to insert watchpoint. We don't automatically delete
1774 such watchpoint, though, since failure to parse expression
1775 is different from out-of-scope watchpoint. */
1776 if (!target_has_execution)
1777 {
1778 /* Without execution, memory can't change. No use to try and
1779 set watchpoint locations. The watchpoint will be reset when
1780 the target gains execution, through breakpoint_re_set. */
1781 if (!can_use_hw_watchpoints)
1782 {
1783 if (b->ops->works_in_software_mode (b))
1784 b->type = bp_watchpoint;
1785 else
1786 error (_("Can't set read/access watchpoint when "
1787 "hardware watchpoints are disabled."));
1788 }
1789 }
1790 else if (within_current_scope && b->exp)
1791 {
1792 int pc = 0;
1793 struct value *val_chain, *v, *result, *next;
1794 struct program_space *frame_pspace;
1795
1796 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1797
1798 /* Avoid setting b->val if it's already set. The meaning of
1799 b->val is 'the last value' user saw, and we should update
1800 it only if we reported that last value to user. As it
1801 happens, the code that reports it updates b->val directly.
1802 We don't keep track of the memory value for masked
1803 watchpoints. */
1804 if (!b->val_valid && !is_masked_watchpoint (b))
1805 {
1806 if (b->val_bitsize != 0)
1807 {
1808 v = extract_bitfield_from_watchpoint_value (b, v);
1809 if (v != NULL)
1810 release_value (v);
1811 }
1812 b->val = v;
1813 b->val_valid = 1;
1814 }
1815
1816 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1817
1818 /* Look at each value on the value chain. */
1819 for (v = val_chain; v; v = value_next (v))
1820 {
1821 /* If it's a memory location, and GDB actually needed
1822 its contents to evaluate the expression, then we
1823 must watch it. If the first value returned is
1824 still lazy, that means an error occurred reading it;
1825 watch it anyway in case it becomes readable. */
1826 if (VALUE_LVAL (v) == lval_memory
1827 && (v == val_chain || ! value_lazy (v)))
1828 {
1829 struct type *vtype = check_typedef (value_type (v));
1830
1831 /* We only watch structs and arrays if user asked
1832 for it explicitly, never if they just happen to
1833 appear in the middle of some value chain. */
1834 if (v == result
1835 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1836 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1837 {
1838 CORE_ADDR addr;
1839 enum target_hw_bp_type type;
1840 struct bp_location *loc, **tmp;
1841 int bitpos = 0, bitsize = 0;
1842
1843 if (value_bitsize (v) != 0)
1844 {
1845 /* Extract the bit parameters out from the bitfield
1846 sub-expression. */
1847 bitpos = value_bitpos (v);
1848 bitsize = value_bitsize (v);
1849 }
1850 else if (v == result && b->val_bitsize != 0)
1851 {
1852 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1853 lvalue whose bit parameters are saved in the fields
1854 VAL_BITPOS and VAL_BITSIZE. */
1855 bitpos = b->val_bitpos;
1856 bitsize = b->val_bitsize;
1857 }
1858
1859 addr = value_address (v);
1860 if (bitsize != 0)
1861 {
1862 /* Skip the bytes that don't contain the bitfield. */
1863 addr += bitpos / 8;
1864 }
1865
1866 type = hw_write;
1867 if (b->type == bp_read_watchpoint)
1868 type = hw_read;
1869 else if (b->type == bp_access_watchpoint)
1870 type = hw_access;
1871
1872 loc = allocate_bp_location (b);
1873 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1874 ;
1875 *tmp = loc;
1876 loc->gdbarch = get_type_arch (value_type (v));
1877
1878 loc->pspace = frame_pspace;
1879 loc->address = addr;
1880
1881 if (bitsize != 0)
1882 {
1883 /* Just cover the bytes that make up the bitfield. */
1884 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1885 }
1886 else
1887 loc->length = TYPE_LENGTH (value_type (v));
1888
1889 loc->watchpoint_type = type;
1890 }
1891 }
1892 }
1893
1894 /* Change the type of breakpoint between hardware assisted or
1895 an ordinary watchpoint depending on the hardware support
1896 and free hardware slots. REPARSE is set when the inferior
1897 is started. */
1898 if (reparse)
1899 {
1900 int reg_cnt;
1901 enum bp_loc_type loc_type;
1902 struct bp_location *bl;
1903
1904 reg_cnt = can_use_hardware_watchpoint (val_chain);
1905
1906 if (reg_cnt)
1907 {
1908 int i, target_resources_ok, other_type_used;
1909 enum bptype type;
1910
1911 /* Use an exact watchpoint when there's only one memory region to be
1912 watched, and only one debug register is needed to watch it. */
1913 b->exact = target_exact_watchpoints && reg_cnt == 1;
1914
1915 /* We need to determine how many resources are already
1916 used for all other hardware watchpoints plus this one
1917 to see if we still have enough resources to also fit
1918 this watchpoint in as well. */
1919
1920 /* If this is a software watchpoint, we try to turn it
1921 to a hardware one -- count resources as if B was of
1922 hardware watchpoint type. */
1923 type = b->type;
1924 if (type == bp_watchpoint)
1925 type = bp_hardware_watchpoint;
1926
1927 /* This watchpoint may or may not have been placed on
1928 the list yet at this point (it won't be in the list
1929 if we're trying to create it for the first time,
1930 through watch_command), so always account for it
1931 manually. */
1932
1933 /* Count resources used by all watchpoints except B. */
1934 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1935
1936 /* Add in the resources needed for B. */
1937 i += hw_watchpoint_use_count (b);
1938
1939 target_resources_ok
1940 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1941 if (target_resources_ok <= 0)
1942 {
1943 int sw_mode = b->ops->works_in_software_mode (b);
1944
1945 if (target_resources_ok == 0 && !sw_mode)
1946 error (_("Target does not support this type of "
1947 "hardware watchpoint."));
1948 else if (target_resources_ok < 0 && !sw_mode)
1949 error (_("There are not enough available hardware "
1950 "resources for this watchpoint."));
1951
1952 /* Downgrade to software watchpoint. */
1953 b->type = bp_watchpoint;
1954 }
1955 else
1956 {
1957 /* If this was a software watchpoint, we've just
1958 found we have enough resources to turn it to a
1959 hardware watchpoint. Otherwise, this is a
1960 nop. */
1961 b->type = type;
1962 }
1963 }
1964 else if (!b->ops->works_in_software_mode (b))
1965 {
1966 if (!can_use_hw_watchpoints)
1967 error (_("Can't set read/access watchpoint when "
1968 "hardware watchpoints are disabled."));
1969 else
1970 error (_("Expression cannot be implemented with "
1971 "read/access watchpoint."));
1972 }
1973 else
1974 b->type = bp_watchpoint;
1975
1976 loc_type = (b->type == bp_watchpoint? bp_loc_other
1977 : bp_loc_hardware_watchpoint);
1978 for (bl = b->loc; bl; bl = bl->next)
1979 bl->loc_type = loc_type;
1980 }
1981
1982 for (v = val_chain; v; v = next)
1983 {
1984 next = value_next (v);
1985 if (v != b->val)
1986 value_free (v);
1987 }
1988
1989 /* If a software watchpoint is not watching any memory, then the
1990 above left it without any location set up. But,
1991 bpstat_stop_status requires a location to be able to report
1992 stops, so make sure there's at least a dummy one. */
1993 if (b->type == bp_watchpoint && b->loc == NULL)
1994 software_watchpoint_add_no_memory_location (b, frame_pspace);
1995 }
1996 else if (!within_current_scope)
1997 {
1998 printf_filtered (_("\
1999 Watchpoint %d deleted because the program has left the block\n\
2000 in which its expression is valid.\n"),
2001 b->number);
2002 watchpoint_del_at_next_stop (b);
2003 }
2004
2005 /* Restore the selected frame. */
2006 if (frame_saved)
2007 select_frame (frame_find_by_id (saved_frame_id));
2008 }
2009
2010
2011 /* Returns 1 iff breakpoint location should be
2012 inserted in the inferior. We don't differentiate the type of BL's owner
2013 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2014 breakpoint_ops is not defined, because in insert_bp_location,
2015 tracepoint's insert_location will not be called. */
2016 static int
2017 should_be_inserted (struct bp_location *bl)
2018 {
2019 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2020 return 0;
2021
2022 if (bl->owner->disposition == disp_del_at_next_stop)
2023 return 0;
2024
2025 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2026 return 0;
2027
2028 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2029 return 0;
2030
2031 /* This is set for example, when we're attached to the parent of a
2032 vfork, and have detached from the child. The child is running
2033 free, and we expect it to do an exec or exit, at which point the
2034 OS makes the parent schedulable again (and the target reports
2035 that the vfork is done). Until the child is done with the shared
2036 memory region, do not insert breakpoints in the parent, otherwise
2037 the child could still trip on the parent's breakpoints. Since
2038 the parent is blocked anyway, it won't miss any breakpoint. */
2039 if (bl->pspace->breakpoints_not_allowed)
2040 return 0;
2041
2042 /* Don't insert a breakpoint if we're trying to step past its
2043 location, except if the breakpoint is a single-step breakpoint,
2044 and the breakpoint's thread is the thread which is stepping past
2045 a breakpoint. */
2046 if ((bl->loc_type == bp_loc_software_breakpoint
2047 || bl->loc_type == bp_loc_hardware_breakpoint)
2048 && stepping_past_instruction_at (bl->pspace->aspace,
2049 bl->address)
2050 /* The single-step breakpoint may be inserted at the location
2051 we're trying to step if the instruction branches to itself.
2052 However, the instruction won't be executed at all and it may
2053 break the semantics of the instruction, for example, the
2054 instruction is a conditional branch or updates some flags.
2055 We can't fix it unless GDB is able to emulate the instruction
2056 or switch to displaced stepping. */
2057 && !(bl->owner->type == bp_single_step
2058 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2059 {
2060 if (debug_infrun)
2061 {
2062 fprintf_unfiltered (gdb_stdlog,
2063 "infrun: skipping breakpoint: "
2064 "stepping past insn at: %s\n",
2065 paddress (bl->gdbarch, bl->address));
2066 }
2067 return 0;
2068 }
2069
2070 /* Don't insert watchpoints if we're trying to step past the
2071 instruction that triggered one. */
2072 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2073 && stepping_past_nonsteppable_watchpoint ())
2074 {
2075 if (debug_infrun)
2076 {
2077 fprintf_unfiltered (gdb_stdlog,
2078 "infrun: stepping past non-steppable watchpoint. "
2079 "skipping watchpoint at %s:%d\n",
2080 paddress (bl->gdbarch, bl->address),
2081 bl->length);
2082 }
2083 return 0;
2084 }
2085
2086 return 1;
2087 }
2088
2089 /* Same as should_be_inserted but does the check assuming
2090 that the location is not duplicated. */
2091
2092 static int
2093 unduplicated_should_be_inserted (struct bp_location *bl)
2094 {
2095 int result;
2096 const int save_duplicate = bl->duplicate;
2097
2098 bl->duplicate = 0;
2099 result = should_be_inserted (bl);
2100 bl->duplicate = save_duplicate;
2101 return result;
2102 }
2103
2104 /* Parses a conditional described by an expression COND into an
2105 agent expression bytecode suitable for evaluation
2106 by the bytecode interpreter. Return NULL if there was
2107 any error during parsing. */
2108
2109 static agent_expr_up
2110 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2111 {
2112 if (cond == NULL)
2113 return NULL;
2114
2115 agent_expr_up aexpr;
2116
2117 /* We don't want to stop processing, so catch any errors
2118 that may show up. */
2119 TRY
2120 {
2121 aexpr = gen_eval_for_expr (scope, cond);
2122 }
2123
2124 CATCH (ex, RETURN_MASK_ERROR)
2125 {
2126 /* If we got here, it means the condition could not be parsed to a valid
2127 bytecode expression and thus can't be evaluated on the target's side.
2128 It's no use iterating through the conditions. */
2129 }
2130 END_CATCH
2131
2132 /* We have a valid agent expression. */
2133 return aexpr;
2134 }
2135
2136 /* Based on location BL, create a list of breakpoint conditions to be
2137 passed on to the target. If we have duplicated locations with different
2138 conditions, we will add such conditions to the list. The idea is that the
2139 target will evaluate the list of conditions and will only notify GDB when
2140 one of them is true. */
2141
2142 static void
2143 build_target_condition_list (struct bp_location *bl)
2144 {
2145 struct bp_location **locp = NULL, **loc2p;
2146 int null_condition_or_parse_error = 0;
2147 int modified = bl->needs_update;
2148 struct bp_location *loc;
2149
2150 /* Release conditions left over from a previous insert. */
2151 bl->target_info.conditions.clear ();
2152
2153 /* This is only meaningful if the target is
2154 evaluating conditions and if the user has
2155 opted for condition evaluation on the target's
2156 side. */
2157 if (gdb_evaluates_breakpoint_condition_p ()
2158 || !target_supports_evaluation_of_breakpoint_conditions ())
2159 return;
2160
2161 /* Do a first pass to check for locations with no assigned
2162 conditions or conditions that fail to parse to a valid agent expression
2163 bytecode. If any of these happen, then it's no use to send conditions
2164 to the target since this location will always trigger and generate a
2165 response back to GDB. */
2166 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2167 {
2168 loc = (*loc2p);
2169 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2170 {
2171 if (modified)
2172 {
2173 /* Re-parse the conditions since something changed. In that
2174 case we already freed the condition bytecodes (see
2175 force_breakpoint_reinsertion). We just
2176 need to parse the condition to bytecodes again. */
2177 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2178 loc->cond.get ());
2179 }
2180
2181 /* If we have a NULL bytecode expression, it means something
2182 went wrong or we have a null condition expression. */
2183 if (!loc->cond_bytecode)
2184 {
2185 null_condition_or_parse_error = 1;
2186 break;
2187 }
2188 }
2189 }
2190
2191 /* If any of these happened, it means we will have to evaluate the conditions
2192 for the location's address on gdb's side. It is no use keeping bytecodes
2193 for all the other duplicate locations, thus we free all of them here.
2194
2195 This is so we have a finer control over which locations' conditions are
2196 being evaluated by GDB or the remote stub. */
2197 if (null_condition_or_parse_error)
2198 {
2199 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2200 {
2201 loc = (*loc2p);
2202 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2203 {
2204 /* Only go as far as the first NULL bytecode is
2205 located. */
2206 if (!loc->cond_bytecode)
2207 return;
2208
2209 loc->cond_bytecode.reset ();
2210 }
2211 }
2212 }
2213
2214 /* No NULL conditions or failed bytecode generation. Build a condition list
2215 for this location's address. */
2216 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2217 {
2218 loc = (*loc2p);
2219 if (loc->cond
2220 && is_breakpoint (loc->owner)
2221 && loc->pspace->num == bl->pspace->num
2222 && loc->owner->enable_state == bp_enabled
2223 && loc->enabled)
2224 {
2225 /* Add the condition to the vector. This will be used later
2226 to send the conditions to the target. */
2227 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2228 }
2229 }
2230
2231 return;
2232 }
2233
2234 /* Parses a command described by string CMD into an agent expression
2235 bytecode suitable for evaluation by the bytecode interpreter.
2236 Return NULL if there was any error during parsing. */
2237
2238 static agent_expr_up
2239 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2240 {
2241 struct cleanup *old_cleanups = 0;
2242 struct expression **argvec;
2243 const char *cmdrest;
2244 const char *format_start, *format_end;
2245 struct format_piece *fpieces;
2246 int nargs;
2247 struct gdbarch *gdbarch = get_current_arch ();
2248
2249 if (cmd == NULL)
2250 return NULL;
2251
2252 cmdrest = cmd;
2253
2254 if (*cmdrest == ',')
2255 ++cmdrest;
2256 cmdrest = skip_spaces (cmdrest);
2257
2258 if (*cmdrest++ != '"')
2259 error (_("No format string following the location"));
2260
2261 format_start = cmdrest;
2262
2263 fpieces = parse_format_string (&cmdrest);
2264
2265 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2266
2267 format_end = cmdrest;
2268
2269 if (*cmdrest++ != '"')
2270 error (_("Bad format string, non-terminated '\"'."));
2271
2272 cmdrest = skip_spaces (cmdrest);
2273
2274 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2275 error (_("Invalid argument syntax"));
2276
2277 if (*cmdrest == ',')
2278 cmdrest++;
2279 cmdrest = skip_spaces (cmdrest);
2280
2281 /* For each argument, make an expression. */
2282
2283 argvec = (struct expression **) alloca (strlen (cmd)
2284 * sizeof (struct expression *));
2285
2286 nargs = 0;
2287 while (*cmdrest != '\0')
2288 {
2289 const char *cmd1;
2290
2291 cmd1 = cmdrest;
2292 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2293 argvec[nargs++] = expr.release ();
2294 cmdrest = cmd1;
2295 if (*cmdrest == ',')
2296 ++cmdrest;
2297 }
2298
2299 agent_expr_up aexpr;
2300
2301 /* We don't want to stop processing, so catch any errors
2302 that may show up. */
2303 TRY
2304 {
2305 aexpr = gen_printf (scope, gdbarch, 0, 0,
2306 format_start, format_end - format_start,
2307 fpieces, nargs, argvec);
2308 }
2309 CATCH (ex, RETURN_MASK_ERROR)
2310 {
2311 /* If we got here, it means the command could not be parsed to a valid
2312 bytecode expression and thus can't be evaluated on the target's side.
2313 It's no use iterating through the other commands. */
2314 }
2315 END_CATCH
2316
2317 do_cleanups (old_cleanups);
2318
2319 /* We have a valid agent expression, return it. */
2320 return aexpr;
2321 }
2322
2323 /* Based on location BL, create a list of breakpoint commands to be
2324 passed on to the target. If we have duplicated locations with
2325 different commands, we will add any such to the list. */
2326
2327 static void
2328 build_target_command_list (struct bp_location *bl)
2329 {
2330 struct bp_location **locp = NULL, **loc2p;
2331 int null_command_or_parse_error = 0;
2332 int modified = bl->needs_update;
2333 struct bp_location *loc;
2334
2335 /* Clear commands left over from a previous insert. */
2336 bl->target_info.tcommands.clear ();
2337
2338 if (!target_can_run_breakpoint_commands ())
2339 return;
2340
2341 /* For now, limit to agent-style dprintf breakpoints. */
2342 if (dprintf_style != dprintf_style_agent)
2343 return;
2344
2345 /* For now, if we have any duplicate location that isn't a dprintf,
2346 don't install the target-side commands, as that would make the
2347 breakpoint not be reported to the core, and we'd lose
2348 control. */
2349 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2350 {
2351 loc = (*loc2p);
2352 if (is_breakpoint (loc->owner)
2353 && loc->pspace->num == bl->pspace->num
2354 && loc->owner->type != bp_dprintf)
2355 return;
2356 }
2357
2358 /* Do a first pass to check for locations with no assigned
2359 conditions or conditions that fail to parse to a valid agent expression
2360 bytecode. If any of these happen, then it's no use to send conditions
2361 to the target since this location will always trigger and generate a
2362 response back to GDB. */
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2367 {
2368 if (modified)
2369 {
2370 /* Re-parse the commands since something changed. In that
2371 case we already freed the command bytecodes (see
2372 force_breakpoint_reinsertion). We just
2373 need to parse the command to bytecodes again. */
2374 loc->cmd_bytecode
2375 = parse_cmd_to_aexpr (bl->address,
2376 loc->owner->extra_string);
2377 }
2378
2379 /* If we have a NULL bytecode expression, it means something
2380 went wrong or we have a null command expression. */
2381 if (!loc->cmd_bytecode)
2382 {
2383 null_command_or_parse_error = 1;
2384 break;
2385 }
2386 }
2387 }
2388
2389 /* If anything failed, then we're not doing target-side commands,
2390 and so clean up. */
2391 if (null_command_or_parse_error)
2392 {
2393 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2394 {
2395 loc = (*loc2p);
2396 if (is_breakpoint (loc->owner)
2397 && loc->pspace->num == bl->pspace->num)
2398 {
2399 /* Only go as far as the first NULL bytecode is
2400 located. */
2401 if (loc->cmd_bytecode == NULL)
2402 return;
2403
2404 loc->cmd_bytecode.reset ();
2405 }
2406 }
2407 }
2408
2409 /* No NULL commands or failed bytecode generation. Build a command list
2410 for this location's address. */
2411 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2412 {
2413 loc = (*loc2p);
2414 if (loc->owner->extra_string
2415 && is_breakpoint (loc->owner)
2416 && loc->pspace->num == bl->pspace->num
2417 && loc->owner->enable_state == bp_enabled
2418 && loc->enabled)
2419 {
2420 /* Add the command to the vector. This will be used later
2421 to send the commands to the target. */
2422 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2423 }
2424 }
2425
2426 bl->target_info.persist = 0;
2427 /* Maybe flag this location as persistent. */
2428 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2429 bl->target_info.persist = 1;
2430 }
2431
2432 /* Return the kind of breakpoint on address *ADDR. Get the kind
2433 of breakpoint according to ADDR except single-step breakpoint.
2434 Get the kind of single-step breakpoint according to the current
2435 registers state. */
2436
2437 static int
2438 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2439 {
2440 if (bl->owner->type == bp_single_step)
2441 {
2442 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2443 struct regcache *regcache;
2444
2445 regcache = get_thread_regcache (thr->ptid);
2446
2447 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2448 regcache, addr);
2449 }
2450 else
2451 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2452 }
2453
2454 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2455 location. Any error messages are printed to TMP_ERROR_STREAM; and
2456 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2457 Returns 0 for success, 1 if the bp_location type is not supported or
2458 -1 for failure.
2459
2460 NOTE drow/2003-09-09: This routine could be broken down to an
2461 object-style method for each breakpoint or catchpoint type. */
2462 static int
2463 insert_bp_location (struct bp_location *bl,
2464 struct ui_file *tmp_error_stream,
2465 int *disabled_breaks,
2466 int *hw_breakpoint_error,
2467 int *hw_bp_error_explained_already)
2468 {
2469 enum errors bp_err = GDB_NO_ERROR;
2470 const char *bp_err_message = NULL;
2471
2472 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2473 return 0;
2474
2475 /* Note we don't initialize bl->target_info, as that wipes out
2476 the breakpoint location's shadow_contents if the breakpoint
2477 is still inserted at that location. This in turn breaks
2478 target_read_memory which depends on these buffers when
2479 a memory read is requested at the breakpoint location:
2480 Once the target_info has been wiped, we fail to see that
2481 we have a breakpoint inserted at that address and thus
2482 read the breakpoint instead of returning the data saved in
2483 the breakpoint location's shadow contents. */
2484 bl->target_info.reqstd_address = bl->address;
2485 bl->target_info.placed_address_space = bl->pspace->aspace;
2486 bl->target_info.length = bl->length;
2487
2488 /* When working with target-side conditions, we must pass all the conditions
2489 for the same breakpoint address down to the target since GDB will not
2490 insert those locations. With a list of breakpoint conditions, the target
2491 can decide when to stop and notify GDB. */
2492
2493 if (is_breakpoint (bl->owner))
2494 {
2495 build_target_condition_list (bl);
2496 build_target_command_list (bl);
2497 /* Reset the modification marker. */
2498 bl->needs_update = 0;
2499 }
2500
2501 if (bl->loc_type == bp_loc_software_breakpoint
2502 || bl->loc_type == bp_loc_hardware_breakpoint)
2503 {
2504 if (bl->owner->type != bp_hardware_breakpoint)
2505 {
2506 /* If the explicitly specified breakpoint type
2507 is not hardware breakpoint, check the memory map to see
2508 if the breakpoint address is in read only memory or not.
2509
2510 Two important cases are:
2511 - location type is not hardware breakpoint, memory
2512 is readonly. We change the type of the location to
2513 hardware breakpoint.
2514 - location type is hardware breakpoint, memory is
2515 read-write. This means we've previously made the
2516 location hardware one, but then the memory map changed,
2517 so we undo.
2518
2519 When breakpoints are removed, remove_breakpoints will use
2520 location types we've just set here, the only possible
2521 problem is that memory map has changed during running
2522 program, but it's not going to work anyway with current
2523 gdb. */
2524 struct mem_region *mr
2525 = lookup_mem_region (bl->target_info.reqstd_address);
2526
2527 if (mr)
2528 {
2529 if (automatic_hardware_breakpoints)
2530 {
2531 enum bp_loc_type new_type;
2532
2533 if (mr->attrib.mode != MEM_RW)
2534 new_type = bp_loc_hardware_breakpoint;
2535 else
2536 new_type = bp_loc_software_breakpoint;
2537
2538 if (new_type != bl->loc_type)
2539 {
2540 static int said = 0;
2541
2542 bl->loc_type = new_type;
2543 if (!said)
2544 {
2545 fprintf_filtered (gdb_stdout,
2546 _("Note: automatically using "
2547 "hardware breakpoints for "
2548 "read-only addresses.\n"));
2549 said = 1;
2550 }
2551 }
2552 }
2553 else if (bl->loc_type == bp_loc_software_breakpoint
2554 && mr->attrib.mode != MEM_RW)
2555 {
2556 fprintf_unfiltered (tmp_error_stream,
2557 _("Cannot insert breakpoint %d.\n"
2558 "Cannot set software breakpoint "
2559 "at read-only address %s\n"),
2560 bl->owner->number,
2561 paddress (bl->gdbarch, bl->address));
2562 return 1;
2563 }
2564 }
2565 }
2566
2567 /* First check to see if we have to handle an overlay. */
2568 if (overlay_debugging == ovly_off
2569 || bl->section == NULL
2570 || !(section_is_overlay (bl->section)))
2571 {
2572 /* No overlay handling: just set the breakpoint. */
2573 TRY
2574 {
2575 int val;
2576
2577 val = bl->owner->ops->insert_location (bl);
2578 if (val)
2579 bp_err = GENERIC_ERROR;
2580 }
2581 CATCH (e, RETURN_MASK_ALL)
2582 {
2583 bp_err = e.error;
2584 bp_err_message = e.message;
2585 }
2586 END_CATCH
2587 }
2588 else
2589 {
2590 /* This breakpoint is in an overlay section.
2591 Shall we set a breakpoint at the LMA? */
2592 if (!overlay_events_enabled)
2593 {
2594 /* Yes -- overlay event support is not active,
2595 so we must try to set a breakpoint at the LMA.
2596 This will not work for a hardware breakpoint. */
2597 if (bl->loc_type == bp_loc_hardware_breakpoint)
2598 warning (_("hardware breakpoint %d not supported in overlay!"),
2599 bl->owner->number);
2600 else
2601 {
2602 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2603 bl->section);
2604 /* Set a software (trap) breakpoint at the LMA. */
2605 bl->overlay_target_info = bl->target_info;
2606 bl->overlay_target_info.reqstd_address = addr;
2607
2608 /* No overlay handling: just set the breakpoint. */
2609 TRY
2610 {
2611 int val;
2612
2613 bl->overlay_target_info.kind
2614 = breakpoint_kind (bl, &addr);
2615 bl->overlay_target_info.placed_address = addr;
2616 val = target_insert_breakpoint (bl->gdbarch,
2617 &bl->overlay_target_info);
2618 if (val)
2619 bp_err = GENERIC_ERROR;
2620 }
2621 CATCH (e, RETURN_MASK_ALL)
2622 {
2623 bp_err = e.error;
2624 bp_err_message = e.message;
2625 }
2626 END_CATCH
2627
2628 if (bp_err != GDB_NO_ERROR)
2629 fprintf_unfiltered (tmp_error_stream,
2630 "Overlay breakpoint %d "
2631 "failed: in ROM?\n",
2632 bl->owner->number);
2633 }
2634 }
2635 /* Shall we set a breakpoint at the VMA? */
2636 if (section_is_mapped (bl->section))
2637 {
2638 /* Yes. This overlay section is mapped into memory. */
2639 TRY
2640 {
2641 int val;
2642
2643 val = bl->owner->ops->insert_location (bl);
2644 if (val)
2645 bp_err = GENERIC_ERROR;
2646 }
2647 CATCH (e, RETURN_MASK_ALL)
2648 {
2649 bp_err = e.error;
2650 bp_err_message = e.message;
2651 }
2652 END_CATCH
2653 }
2654 else
2655 {
2656 /* No. This breakpoint will not be inserted.
2657 No error, but do not mark the bp as 'inserted'. */
2658 return 0;
2659 }
2660 }
2661
2662 if (bp_err != GDB_NO_ERROR)
2663 {
2664 /* Can't set the breakpoint. */
2665
2666 /* In some cases, we might not be able to insert a
2667 breakpoint in a shared library that has already been
2668 removed, but we have not yet processed the shlib unload
2669 event. Unfortunately, some targets that implement
2670 breakpoint insertion themselves can't tell why the
2671 breakpoint insertion failed (e.g., the remote target
2672 doesn't define error codes), so we must treat generic
2673 errors as memory errors. */
2674 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2675 && bl->loc_type == bp_loc_software_breakpoint
2676 && (solib_name_from_address (bl->pspace, bl->address)
2677 || shared_objfile_contains_address_p (bl->pspace,
2678 bl->address)))
2679 {
2680 /* See also: disable_breakpoints_in_shlibs. */
2681 bl->shlib_disabled = 1;
2682 observer_notify_breakpoint_modified (bl->owner);
2683 if (!*disabled_breaks)
2684 {
2685 fprintf_unfiltered (tmp_error_stream,
2686 "Cannot insert breakpoint %d.\n",
2687 bl->owner->number);
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Temporarily disabling shared "
2690 "library breakpoints:\n");
2691 }
2692 *disabled_breaks = 1;
2693 fprintf_unfiltered (tmp_error_stream,
2694 "breakpoint #%d\n", bl->owner->number);
2695 return 0;
2696 }
2697 else
2698 {
2699 if (bl->loc_type == bp_loc_hardware_breakpoint)
2700 {
2701 *hw_breakpoint_error = 1;
2702 *hw_bp_error_explained_already = bp_err_message != NULL;
2703 fprintf_unfiltered (tmp_error_stream,
2704 "Cannot insert hardware breakpoint %d%s",
2705 bl->owner->number, bp_err_message ? ":" : ".\n");
2706 if (bp_err_message != NULL)
2707 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2708 }
2709 else
2710 {
2711 if (bp_err_message == NULL)
2712 {
2713 std::string message
2714 = memory_error_message (TARGET_XFER_E_IO,
2715 bl->gdbarch, bl->address);
2716
2717 fprintf_unfiltered (tmp_error_stream,
2718 "Cannot insert breakpoint %d.\n"
2719 "%s\n",
2720 bl->owner->number, message.c_str ());
2721 }
2722 else
2723 {
2724 fprintf_unfiltered (tmp_error_stream,
2725 "Cannot insert breakpoint %d: %s\n",
2726 bl->owner->number,
2727 bp_err_message);
2728 }
2729 }
2730 return 1;
2731
2732 }
2733 }
2734 else
2735 bl->inserted = 1;
2736
2737 return 0;
2738 }
2739
2740 else if (bl->loc_type == bp_loc_hardware_watchpoint
2741 /* NOTE drow/2003-09-08: This state only exists for removing
2742 watchpoints. It's not clear that it's necessary... */
2743 && bl->owner->disposition != disp_del_at_next_stop)
2744 {
2745 int val;
2746
2747 gdb_assert (bl->owner->ops != NULL
2748 && bl->owner->ops->insert_location != NULL);
2749
2750 val = bl->owner->ops->insert_location (bl);
2751
2752 /* If trying to set a read-watchpoint, and it turns out it's not
2753 supported, try emulating one with an access watchpoint. */
2754 if (val == 1 && bl->watchpoint_type == hw_read)
2755 {
2756 struct bp_location *loc, **loc_temp;
2757
2758 /* But don't try to insert it, if there's already another
2759 hw_access location that would be considered a duplicate
2760 of this one. */
2761 ALL_BP_LOCATIONS (loc, loc_temp)
2762 if (loc != bl
2763 && loc->watchpoint_type == hw_access
2764 && watchpoint_locations_match (bl, loc))
2765 {
2766 bl->duplicate = 1;
2767 bl->inserted = 1;
2768 bl->target_info = loc->target_info;
2769 bl->watchpoint_type = hw_access;
2770 val = 0;
2771 break;
2772 }
2773
2774 if (val == 1)
2775 {
2776 bl->watchpoint_type = hw_access;
2777 val = bl->owner->ops->insert_location (bl);
2778
2779 if (val)
2780 /* Back to the original value. */
2781 bl->watchpoint_type = hw_read;
2782 }
2783 }
2784
2785 bl->inserted = (val == 0);
2786 }
2787
2788 else if (bl->owner->type == bp_catchpoint)
2789 {
2790 int val;
2791
2792 gdb_assert (bl->owner->ops != NULL
2793 && bl->owner->ops->insert_location != NULL);
2794
2795 val = bl->owner->ops->insert_location (bl);
2796 if (val)
2797 {
2798 bl->owner->enable_state = bp_disabled;
2799
2800 if (val == 1)
2801 warning (_("\
2802 Error inserting catchpoint %d: Your system does not support this type\n\
2803 of catchpoint."), bl->owner->number);
2804 else
2805 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2806 }
2807
2808 bl->inserted = (val == 0);
2809
2810 /* We've already printed an error message if there was a problem
2811 inserting this catchpoint, and we've disabled the catchpoint,
2812 so just return success. */
2813 return 0;
2814 }
2815
2816 return 0;
2817 }
2818
2819 /* This function is called when program space PSPACE is about to be
2820 deleted. It takes care of updating breakpoints to not reference
2821 PSPACE anymore. */
2822
2823 void
2824 breakpoint_program_space_exit (struct program_space *pspace)
2825 {
2826 struct breakpoint *b, *b_temp;
2827 struct bp_location *loc, **loc_temp;
2828
2829 /* Remove any breakpoint that was set through this program space. */
2830 ALL_BREAKPOINTS_SAFE (b, b_temp)
2831 {
2832 if (b->pspace == pspace)
2833 delete_breakpoint (b);
2834 }
2835
2836 /* Breakpoints set through other program spaces could have locations
2837 bound to PSPACE as well. Remove those. */
2838 ALL_BP_LOCATIONS (loc, loc_temp)
2839 {
2840 struct bp_location *tmp;
2841
2842 if (loc->pspace == pspace)
2843 {
2844 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2845 if (loc->owner->loc == loc)
2846 loc->owner->loc = loc->next;
2847 else
2848 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2849 if (tmp->next == loc)
2850 {
2851 tmp->next = loc->next;
2852 break;
2853 }
2854 }
2855 }
2856
2857 /* Now update the global location list to permanently delete the
2858 removed locations above. */
2859 update_global_location_list (UGLL_DONT_INSERT);
2860 }
2861
2862 /* Make sure all breakpoints are inserted in inferior.
2863 Throws exception on any error.
2864 A breakpoint that is already inserted won't be inserted
2865 again, so calling this function twice is safe. */
2866 void
2867 insert_breakpoints (void)
2868 {
2869 struct breakpoint *bpt;
2870
2871 ALL_BREAKPOINTS (bpt)
2872 if (is_hardware_watchpoint (bpt))
2873 {
2874 struct watchpoint *w = (struct watchpoint *) bpt;
2875
2876 update_watchpoint (w, 0 /* don't reparse. */);
2877 }
2878
2879 /* Updating watchpoints creates new locations, so update the global
2880 location list. Explicitly tell ugll to insert locations and
2881 ignore breakpoints_always_inserted_mode. */
2882 update_global_location_list (UGLL_INSERT);
2883 }
2884
2885 /* Invoke CALLBACK for each of bp_location. */
2886
2887 void
2888 iterate_over_bp_locations (walk_bp_location_callback callback)
2889 {
2890 struct bp_location *loc, **loc_tmp;
2891
2892 ALL_BP_LOCATIONS (loc, loc_tmp)
2893 {
2894 callback (loc, NULL);
2895 }
2896 }
2897
2898 /* This is used when we need to synch breakpoint conditions between GDB and the
2899 target. It is the case with deleting and disabling of breakpoints when using
2900 always-inserted mode. */
2901
2902 static void
2903 update_inserted_breakpoint_locations (void)
2904 {
2905 struct bp_location *bl, **blp_tmp;
2906 int error_flag = 0;
2907 int val = 0;
2908 int disabled_breaks = 0;
2909 int hw_breakpoint_error = 0;
2910 int hw_bp_details_reported = 0;
2911
2912 string_file tmp_error_stream;
2913
2914 /* Explicitly mark the warning -- this will only be printed if
2915 there was an error. */
2916 tmp_error_stream.puts ("Warning:\n");
2917
2918 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2919
2920 ALL_BP_LOCATIONS (bl, blp_tmp)
2921 {
2922 /* We only want to update software breakpoints and hardware
2923 breakpoints. */
2924 if (!is_breakpoint (bl->owner))
2925 continue;
2926
2927 /* We only want to update locations that are already inserted
2928 and need updating. This is to avoid unwanted insertion during
2929 deletion of breakpoints. */
2930 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2931 continue;
2932
2933 switch_to_program_space_and_thread (bl->pspace);
2934
2935 /* For targets that support global breakpoints, there's no need
2936 to select an inferior to insert breakpoint to. In fact, even
2937 if we aren't attached to any process yet, we should still
2938 insert breakpoints. */
2939 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2940 && ptid_equal (inferior_ptid, null_ptid))
2941 continue;
2942
2943 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2944 &hw_breakpoint_error, &hw_bp_details_reported);
2945 if (val)
2946 error_flag = val;
2947 }
2948
2949 if (error_flag)
2950 {
2951 target_terminal::ours_for_output ();
2952 error_stream (tmp_error_stream);
2953 }
2954 }
2955
2956 /* Used when starting or continuing the program. */
2957
2958 static void
2959 insert_breakpoint_locations (void)
2960 {
2961 struct breakpoint *bpt;
2962 struct bp_location *bl, **blp_tmp;
2963 int error_flag = 0;
2964 int val = 0;
2965 int disabled_breaks = 0;
2966 int hw_breakpoint_error = 0;
2967 int hw_bp_error_explained_already = 0;
2968
2969 string_file tmp_error_stream;
2970
2971 /* Explicitly mark the warning -- this will only be printed if
2972 there was an error. */
2973 tmp_error_stream.puts ("Warning:\n");
2974
2975 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2976
2977 ALL_BP_LOCATIONS (bl, blp_tmp)
2978 {
2979 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2980 continue;
2981
2982 /* There is no point inserting thread-specific breakpoints if
2983 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2984 has BL->OWNER always non-NULL. */
2985 if (bl->owner->thread != -1
2986 && !valid_global_thread_id (bl->owner->thread))
2987 continue;
2988
2989 switch_to_program_space_and_thread (bl->pspace);
2990
2991 /* For targets that support global breakpoints, there's no need
2992 to select an inferior to insert breakpoint to. In fact, even
2993 if we aren't attached to any process yet, we should still
2994 insert breakpoints. */
2995 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2996 && ptid_equal (inferior_ptid, null_ptid))
2997 continue;
2998
2999 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3000 &hw_breakpoint_error, &hw_bp_error_explained_already);
3001 if (val)
3002 error_flag = val;
3003 }
3004
3005 /* If we failed to insert all locations of a watchpoint, remove
3006 them, as half-inserted watchpoint is of limited use. */
3007 ALL_BREAKPOINTS (bpt)
3008 {
3009 int some_failed = 0;
3010 struct bp_location *loc;
3011
3012 if (!is_hardware_watchpoint (bpt))
3013 continue;
3014
3015 if (!breakpoint_enabled (bpt))
3016 continue;
3017
3018 if (bpt->disposition == disp_del_at_next_stop)
3019 continue;
3020
3021 for (loc = bpt->loc; loc; loc = loc->next)
3022 if (!loc->inserted && should_be_inserted (loc))
3023 {
3024 some_failed = 1;
3025 break;
3026 }
3027 if (some_failed)
3028 {
3029 for (loc = bpt->loc; loc; loc = loc->next)
3030 if (loc->inserted)
3031 remove_breakpoint (loc);
3032
3033 hw_breakpoint_error = 1;
3034 tmp_error_stream.printf ("Could not insert "
3035 "hardware watchpoint %d.\n",
3036 bpt->number);
3037 error_flag = -1;
3038 }
3039 }
3040
3041 if (error_flag)
3042 {
3043 /* If a hardware breakpoint or watchpoint was inserted, add a
3044 message about possibly exhausted resources. */
3045 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3046 {
3047 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3048 You may have requested too many hardware breakpoints/watchpoints.\n");
3049 }
3050 target_terminal::ours_for_output ();
3051 error_stream (tmp_error_stream);
3052 }
3053 }
3054
3055 /* Used when the program stops.
3056 Returns zero if successful, or non-zero if there was a problem
3057 removing a breakpoint location. */
3058
3059 int
3060 remove_breakpoints (void)
3061 {
3062 struct bp_location *bl, **blp_tmp;
3063 int val = 0;
3064
3065 ALL_BP_LOCATIONS (bl, blp_tmp)
3066 {
3067 if (bl->inserted && !is_tracepoint (bl->owner))
3068 val |= remove_breakpoint (bl);
3069 }
3070 return val;
3071 }
3072
3073 /* When a thread exits, remove breakpoints that are related to
3074 that thread. */
3075
3076 static void
3077 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3078 {
3079 struct breakpoint *b, *b_tmp;
3080
3081 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3082 {
3083 if (b->thread == tp->global_num && user_breakpoint_p (b))
3084 {
3085 b->disposition = disp_del_at_next_stop;
3086
3087 printf_filtered (_("\
3088 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3089 b->number, print_thread_id (tp));
3090
3091 /* Hide it from the user. */
3092 b->number = 0;
3093 }
3094 }
3095 }
3096
3097 /* Remove breakpoints of process PID. */
3098
3099 int
3100 remove_breakpoints_pid (int pid)
3101 {
3102 struct bp_location *bl, **blp_tmp;
3103 int val;
3104 struct inferior *inf = find_inferior_pid (pid);
3105
3106 ALL_BP_LOCATIONS (bl, blp_tmp)
3107 {
3108 if (bl->pspace != inf->pspace)
3109 continue;
3110
3111 if (bl->inserted && !bl->target_info.persist)
3112 {
3113 val = remove_breakpoint (bl);
3114 if (val != 0)
3115 return val;
3116 }
3117 }
3118 return 0;
3119 }
3120
3121 static int internal_breakpoint_number = -1;
3122
3123 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3124 If INTERNAL is non-zero, the breakpoint number will be populated
3125 from internal_breakpoint_number and that variable decremented.
3126 Otherwise the breakpoint number will be populated from
3127 breakpoint_count and that value incremented. Internal breakpoints
3128 do not set the internal var bpnum. */
3129 static void
3130 set_breakpoint_number (int internal, struct breakpoint *b)
3131 {
3132 if (internal)
3133 b->number = internal_breakpoint_number--;
3134 else
3135 {
3136 set_breakpoint_count (breakpoint_count + 1);
3137 b->number = breakpoint_count;
3138 }
3139 }
3140
3141 static struct breakpoint *
3142 create_internal_breakpoint (struct gdbarch *gdbarch,
3143 CORE_ADDR address, enum bptype type,
3144 const struct breakpoint_ops *ops)
3145 {
3146 symtab_and_line sal;
3147 sal.pc = address;
3148 sal.section = find_pc_overlay (sal.pc);
3149 sal.pspace = current_program_space;
3150
3151 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3152 b->number = internal_breakpoint_number--;
3153 b->disposition = disp_donttouch;
3154
3155 return b;
3156 }
3157
3158 static const char *const longjmp_names[] =
3159 {
3160 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3161 };
3162 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3163
3164 /* Per-objfile data private to breakpoint.c. */
3165 struct breakpoint_objfile_data
3166 {
3167 /* Minimal symbol for "_ovly_debug_event" (if any). */
3168 struct bound_minimal_symbol overlay_msym {};
3169
3170 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3171 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3172
3173 /* True if we have looked for longjmp probes. */
3174 int longjmp_searched = 0;
3175
3176 /* SystemTap probe points for longjmp (if any). These are non-owning
3177 references. */
3178 std::vector<probe *> longjmp_probes;
3179
3180 /* Minimal symbol for "std::terminate()" (if any). */
3181 struct bound_minimal_symbol terminate_msym {};
3182
3183 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3184 struct bound_minimal_symbol exception_msym {};
3185
3186 /* True if we have looked for exception probes. */
3187 int exception_searched = 0;
3188
3189 /* SystemTap probe points for unwinding (if any). These are non-owning
3190 references. */
3191 std::vector<probe *> exception_probes;
3192 };
3193
3194 static const struct objfile_data *breakpoint_objfile_key;
3195
3196 /* Minimal symbol not found sentinel. */
3197 static struct minimal_symbol msym_not_found;
3198
3199 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3200
3201 static int
3202 msym_not_found_p (const struct minimal_symbol *msym)
3203 {
3204 return msym == &msym_not_found;
3205 }
3206
3207 /* Return per-objfile data needed by breakpoint.c.
3208 Allocate the data if necessary. */
3209
3210 static struct breakpoint_objfile_data *
3211 get_breakpoint_objfile_data (struct objfile *objfile)
3212 {
3213 struct breakpoint_objfile_data *bp_objfile_data;
3214
3215 bp_objfile_data = ((struct breakpoint_objfile_data *)
3216 objfile_data (objfile, breakpoint_objfile_key));
3217 if (bp_objfile_data == NULL)
3218 {
3219 bp_objfile_data = new breakpoint_objfile_data ();
3220 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3221 }
3222 return bp_objfile_data;
3223 }
3224
3225 static void
3226 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3227 {
3228 struct breakpoint_objfile_data *bp_objfile_data
3229 = (struct breakpoint_objfile_data *) data;
3230
3231 delete bp_objfile_data;
3232 }
3233
3234 static void
3235 create_overlay_event_breakpoint (void)
3236 {
3237 struct objfile *objfile;
3238 const char *const func_name = "_ovly_debug_event";
3239
3240 ALL_OBJFILES (objfile)
3241 {
3242 struct breakpoint *b;
3243 struct breakpoint_objfile_data *bp_objfile_data;
3244 CORE_ADDR addr;
3245 struct explicit_location explicit_loc;
3246
3247 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3248
3249 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3250 continue;
3251
3252 if (bp_objfile_data->overlay_msym.minsym == NULL)
3253 {
3254 struct bound_minimal_symbol m;
3255
3256 m = lookup_minimal_symbol_text (func_name, objfile);
3257 if (m.minsym == NULL)
3258 {
3259 /* Avoid future lookups in this objfile. */
3260 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3261 continue;
3262 }
3263 bp_objfile_data->overlay_msym = m;
3264 }
3265
3266 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3267 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3268 bp_overlay_event,
3269 &internal_breakpoint_ops);
3270 initialize_explicit_location (&explicit_loc);
3271 explicit_loc.function_name = ASTRDUP (func_name);
3272 b->location = new_explicit_location (&explicit_loc);
3273
3274 if (overlay_debugging == ovly_auto)
3275 {
3276 b->enable_state = bp_enabled;
3277 overlay_events_enabled = 1;
3278 }
3279 else
3280 {
3281 b->enable_state = bp_disabled;
3282 overlay_events_enabled = 0;
3283 }
3284 }
3285 }
3286
3287 static void
3288 create_longjmp_master_breakpoint (void)
3289 {
3290 struct program_space *pspace;
3291
3292 scoped_restore_current_program_space restore_pspace;
3293
3294 ALL_PSPACES (pspace)
3295 {
3296 struct objfile *objfile;
3297
3298 set_current_program_space (pspace);
3299
3300 ALL_OBJFILES (objfile)
3301 {
3302 int i;
3303 struct gdbarch *gdbarch;
3304 struct breakpoint_objfile_data *bp_objfile_data;
3305
3306 gdbarch = get_objfile_arch (objfile);
3307
3308 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3309
3310 if (!bp_objfile_data->longjmp_searched)
3311 {
3312 std::vector<probe *> ret
3313 = find_probes_in_objfile (objfile, "libc", "longjmp");
3314
3315 if (!ret.empty ())
3316 {
3317 /* We are only interested in checking one element. */
3318 probe *p = ret[0];
3319
3320 if (!can_evaluate_probe_arguments (p))
3321 {
3322 /* We cannot use the probe interface here, because it does
3323 not know how to evaluate arguments. */
3324 ret.clear ();
3325 }
3326 }
3327 bp_objfile_data->longjmp_probes = ret;
3328 bp_objfile_data->longjmp_searched = 1;
3329 }
3330
3331 if (!bp_objfile_data->longjmp_probes.empty ())
3332 {
3333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3334
3335 for (probe *p : bp_objfile_data->longjmp_probes)
3336 {
3337 struct breakpoint *b;
3338
3339 b = create_internal_breakpoint (gdbarch,
3340 get_probe_address (p, objfile),
3341 bp_longjmp_master,
3342 &internal_breakpoint_ops);
3343 b->location = new_probe_location ("-probe-stap libc:longjmp");
3344 b->enable_state = bp_disabled;
3345 }
3346
3347 continue;
3348 }
3349
3350 if (!gdbarch_get_longjmp_target_p (gdbarch))
3351 continue;
3352
3353 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3354 {
3355 struct breakpoint *b;
3356 const char *func_name;
3357 CORE_ADDR addr;
3358 struct explicit_location explicit_loc;
3359
3360 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3361 continue;
3362
3363 func_name = longjmp_names[i];
3364 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3365 {
3366 struct bound_minimal_symbol m;
3367
3368 m = lookup_minimal_symbol_text (func_name, objfile);
3369 if (m.minsym == NULL)
3370 {
3371 /* Prevent future lookups in this objfile. */
3372 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3373 continue;
3374 }
3375 bp_objfile_data->longjmp_msym[i] = m;
3376 }
3377
3378 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3379 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3380 &internal_breakpoint_ops);
3381 initialize_explicit_location (&explicit_loc);
3382 explicit_loc.function_name = ASTRDUP (func_name);
3383 b->location = new_explicit_location (&explicit_loc);
3384 b->enable_state = bp_disabled;
3385 }
3386 }
3387 }
3388 }
3389
3390 /* Create a master std::terminate breakpoint. */
3391 static void
3392 create_std_terminate_master_breakpoint (void)
3393 {
3394 struct program_space *pspace;
3395 const char *const func_name = "std::terminate()";
3396
3397 scoped_restore_current_program_space restore_pspace;
3398
3399 ALL_PSPACES (pspace)
3400 {
3401 struct objfile *objfile;
3402 CORE_ADDR addr;
3403
3404 set_current_program_space (pspace);
3405
3406 ALL_OBJFILES (objfile)
3407 {
3408 struct breakpoint *b;
3409 struct breakpoint_objfile_data *bp_objfile_data;
3410 struct explicit_location explicit_loc;
3411
3412 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3413
3414 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3415 continue;
3416
3417 if (bp_objfile_data->terminate_msym.minsym == NULL)
3418 {
3419 struct bound_minimal_symbol m;
3420
3421 m = lookup_minimal_symbol (func_name, NULL, objfile);
3422 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3423 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3424 {
3425 /* Prevent future lookups in this objfile. */
3426 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3427 continue;
3428 }
3429 bp_objfile_data->terminate_msym = m;
3430 }
3431
3432 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3433 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3434 bp_std_terminate_master,
3435 &internal_breakpoint_ops);
3436 initialize_explicit_location (&explicit_loc);
3437 explicit_loc.function_name = ASTRDUP (func_name);
3438 b->location = new_explicit_location (&explicit_loc);
3439 b->enable_state = bp_disabled;
3440 }
3441 }
3442 }
3443
3444 /* Install a master breakpoint on the unwinder's debug hook. */
3445
3446 static void
3447 create_exception_master_breakpoint (void)
3448 {
3449 struct objfile *objfile;
3450 const char *const func_name = "_Unwind_DebugHook";
3451
3452 ALL_OBJFILES (objfile)
3453 {
3454 struct breakpoint *b;
3455 struct gdbarch *gdbarch;
3456 struct breakpoint_objfile_data *bp_objfile_data;
3457 CORE_ADDR addr;
3458 struct explicit_location explicit_loc;
3459
3460 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3461
3462 /* We prefer the SystemTap probe point if it exists. */
3463 if (!bp_objfile_data->exception_searched)
3464 {
3465 std::vector<probe *> ret
3466 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3467
3468 if (!ret.empty ())
3469 {
3470 /* We are only interested in checking one element. */
3471 probe *p = ret[0];
3472
3473 if (!can_evaluate_probe_arguments (p))
3474 {
3475 /* We cannot use the probe interface here, because it does
3476 not know how to evaluate arguments. */
3477 ret.clear ();
3478 }
3479 }
3480 bp_objfile_data->exception_probes = ret;
3481 bp_objfile_data->exception_searched = 1;
3482 }
3483
3484 if (!bp_objfile_data->exception_probes.empty ())
3485 {
3486 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3487
3488 for (probe *p : bp_objfile_data->exception_probes)
3489 {
3490 struct breakpoint *b;
3491
3492 b = create_internal_breakpoint (gdbarch,
3493 get_probe_address (p, objfile),
3494 bp_exception_master,
3495 &internal_breakpoint_ops);
3496 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3497 b->enable_state = bp_disabled;
3498 }
3499
3500 continue;
3501 }
3502
3503 /* Otherwise, try the hook function. */
3504
3505 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3506 continue;
3507
3508 gdbarch = get_objfile_arch (objfile);
3509
3510 if (bp_objfile_data->exception_msym.minsym == NULL)
3511 {
3512 struct bound_minimal_symbol debug_hook;
3513
3514 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3515 if (debug_hook.minsym == NULL)
3516 {
3517 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3518 continue;
3519 }
3520
3521 bp_objfile_data->exception_msym = debug_hook;
3522 }
3523
3524 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3525 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3526 &current_target);
3527 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3528 &internal_breakpoint_ops);
3529 initialize_explicit_location (&explicit_loc);
3530 explicit_loc.function_name = ASTRDUP (func_name);
3531 b->location = new_explicit_location (&explicit_loc);
3532 b->enable_state = bp_disabled;
3533 }
3534 }
3535
3536 /* Does B have a location spec? */
3537
3538 static int
3539 breakpoint_event_location_empty_p (const struct breakpoint *b)
3540 {
3541 return b->location != NULL && event_location_empty_p (b->location.get ());
3542 }
3543
3544 void
3545 update_breakpoints_after_exec (void)
3546 {
3547 struct breakpoint *b, *b_tmp;
3548 struct bp_location *bploc, **bplocp_tmp;
3549
3550 /* We're about to delete breakpoints from GDB's lists. If the
3551 INSERTED flag is true, GDB will try to lift the breakpoints by
3552 writing the breakpoints' "shadow contents" back into memory. The
3553 "shadow contents" are NOT valid after an exec, so GDB should not
3554 do that. Instead, the target is responsible from marking
3555 breakpoints out as soon as it detects an exec. We don't do that
3556 here instead, because there may be other attempts to delete
3557 breakpoints after detecting an exec and before reaching here. */
3558 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3559 if (bploc->pspace == current_program_space)
3560 gdb_assert (!bploc->inserted);
3561
3562 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3563 {
3564 if (b->pspace != current_program_space)
3565 continue;
3566
3567 /* Solib breakpoints must be explicitly reset after an exec(). */
3568 if (b->type == bp_shlib_event)
3569 {
3570 delete_breakpoint (b);
3571 continue;
3572 }
3573
3574 /* JIT breakpoints must be explicitly reset after an exec(). */
3575 if (b->type == bp_jit_event)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 /* Thread event breakpoints must be set anew after an exec(),
3582 as must overlay event and longjmp master breakpoints. */
3583 if (b->type == bp_thread_event || b->type == bp_overlay_event
3584 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3585 || b->type == bp_exception_master)
3586 {
3587 delete_breakpoint (b);
3588 continue;
3589 }
3590
3591 /* Step-resume breakpoints are meaningless after an exec(). */
3592 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3593 {
3594 delete_breakpoint (b);
3595 continue;
3596 }
3597
3598 /* Just like single-step breakpoints. */
3599 if (b->type == bp_single_step)
3600 {
3601 delete_breakpoint (b);
3602 continue;
3603 }
3604
3605 /* Longjmp and longjmp-resume breakpoints are also meaningless
3606 after an exec. */
3607 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3608 || b->type == bp_longjmp_call_dummy
3609 || b->type == bp_exception || b->type == bp_exception_resume)
3610 {
3611 delete_breakpoint (b);
3612 continue;
3613 }
3614
3615 if (b->type == bp_catchpoint)
3616 {
3617 /* For now, none of the bp_catchpoint breakpoints need to
3618 do anything at this point. In the future, if some of
3619 the catchpoints need to something, we will need to add
3620 a new method, and call this method from here. */
3621 continue;
3622 }
3623
3624 /* bp_finish is a special case. The only way we ought to be able
3625 to see one of these when an exec() has happened, is if the user
3626 caught a vfork, and then said "finish". Ordinarily a finish just
3627 carries them to the call-site of the current callee, by setting
3628 a temporary bp there and resuming. But in this case, the finish
3629 will carry them entirely through the vfork & exec.
3630
3631 We don't want to allow a bp_finish to remain inserted now. But
3632 we can't safely delete it, 'cause finish_command has a handle to
3633 the bp on a bpstat, and will later want to delete it. There's a
3634 chance (and I've seen it happen) that if we delete the bp_finish
3635 here, that its storage will get reused by the time finish_command
3636 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3637 We really must allow finish_command to delete a bp_finish.
3638
3639 In the absence of a general solution for the "how do we know
3640 it's safe to delete something others may have handles to?"
3641 problem, what we'll do here is just uninsert the bp_finish, and
3642 let finish_command delete it.
3643
3644 (We know the bp_finish is "doomed" in the sense that it's
3645 momentary, and will be deleted as soon as finish_command sees
3646 the inferior stopped. So it doesn't matter that the bp's
3647 address is probably bogus in the new a.out, unlike e.g., the
3648 solib breakpoints.) */
3649
3650 if (b->type == bp_finish)
3651 {
3652 continue;
3653 }
3654
3655 /* Without a symbolic address, we have little hope of the
3656 pre-exec() address meaning the same thing in the post-exec()
3657 a.out. */
3658 if (breakpoint_event_location_empty_p (b))
3659 {
3660 delete_breakpoint (b);
3661 continue;
3662 }
3663 }
3664 }
3665
3666 int
3667 detach_breakpoints (ptid_t ptid)
3668 {
3669 struct bp_location *bl, **blp_tmp;
3670 int val = 0;
3671 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3672 struct inferior *inf = current_inferior ();
3673
3674 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3675 error (_("Cannot detach breakpoints of inferior_ptid"));
3676
3677 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3678 inferior_ptid = ptid;
3679 ALL_BP_LOCATIONS (bl, blp_tmp)
3680 {
3681 if (bl->pspace != inf->pspace)
3682 continue;
3683
3684 /* This function must physically remove breakpoints locations
3685 from the specified ptid, without modifying the breakpoint
3686 package's state. Locations of type bp_loc_other are only
3687 maintained at GDB side. So, there is no need to remove
3688 these bp_loc_other locations. Moreover, removing these
3689 would modify the breakpoint package's state. */
3690 if (bl->loc_type == bp_loc_other)
3691 continue;
3692
3693 if (bl->inserted)
3694 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3695 }
3696
3697 return val;
3698 }
3699
3700 /* Remove the breakpoint location BL from the current address space.
3701 Note that this is used to detach breakpoints from a child fork.
3702 When we get here, the child isn't in the inferior list, and neither
3703 do we have objects to represent its address space --- we should
3704 *not* look at bl->pspace->aspace here. */
3705
3706 static int
3707 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3708 {
3709 int val;
3710
3711 /* BL is never in moribund_locations by our callers. */
3712 gdb_assert (bl->owner != NULL);
3713
3714 /* The type of none suggests that owner is actually deleted.
3715 This should not ever happen. */
3716 gdb_assert (bl->owner->type != bp_none);
3717
3718 if (bl->loc_type == bp_loc_software_breakpoint
3719 || bl->loc_type == bp_loc_hardware_breakpoint)
3720 {
3721 /* "Normal" instruction breakpoint: either the standard
3722 trap-instruction bp (bp_breakpoint), or a
3723 bp_hardware_breakpoint. */
3724
3725 /* First check to see if we have to handle an overlay. */
3726 if (overlay_debugging == ovly_off
3727 || bl->section == NULL
3728 || !(section_is_overlay (bl->section)))
3729 {
3730 /* No overlay handling: just remove the breakpoint. */
3731
3732 /* If we're trying to uninsert a memory breakpoint that we
3733 know is set in a dynamic object that is marked
3734 shlib_disabled, then either the dynamic object was
3735 removed with "remove-symbol-file" or with
3736 "nosharedlibrary". In the former case, we don't know
3737 whether another dynamic object might have loaded over the
3738 breakpoint's address -- the user might well let us know
3739 about it next with add-symbol-file (the whole point of
3740 add-symbol-file is letting the user manually maintain a
3741 list of dynamically loaded objects). If we have the
3742 breakpoint's shadow memory, that is, this is a software
3743 breakpoint managed by GDB, check whether the breakpoint
3744 is still inserted in memory, to avoid overwriting wrong
3745 code with stale saved shadow contents. Note that HW
3746 breakpoints don't have shadow memory, as they're
3747 implemented using a mechanism that is not dependent on
3748 being able to modify the target's memory, and as such
3749 they should always be removed. */
3750 if (bl->shlib_disabled
3751 && bl->target_info.shadow_len != 0
3752 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3753 val = 0;
3754 else
3755 val = bl->owner->ops->remove_location (bl, reason);
3756 }
3757 else
3758 {
3759 /* This breakpoint is in an overlay section.
3760 Did we set a breakpoint at the LMA? */
3761 if (!overlay_events_enabled)
3762 {
3763 /* Yes -- overlay event support is not active, so we
3764 should have set a breakpoint at the LMA. Remove it.
3765 */
3766 /* Ignore any failures: if the LMA is in ROM, we will
3767 have already warned when we failed to insert it. */
3768 if (bl->loc_type == bp_loc_hardware_breakpoint)
3769 target_remove_hw_breakpoint (bl->gdbarch,
3770 &bl->overlay_target_info);
3771 else
3772 target_remove_breakpoint (bl->gdbarch,
3773 &bl->overlay_target_info,
3774 reason);
3775 }
3776 /* Did we set a breakpoint at the VMA?
3777 If so, we will have marked the breakpoint 'inserted'. */
3778 if (bl->inserted)
3779 {
3780 /* Yes -- remove it. Previously we did not bother to
3781 remove the breakpoint if the section had been
3782 unmapped, but let's not rely on that being safe. We
3783 don't know what the overlay manager might do. */
3784
3785 /* However, we should remove *software* breakpoints only
3786 if the section is still mapped, or else we overwrite
3787 wrong code with the saved shadow contents. */
3788 if (bl->loc_type == bp_loc_hardware_breakpoint
3789 || section_is_mapped (bl->section))
3790 val = bl->owner->ops->remove_location (bl, reason);
3791 else
3792 val = 0;
3793 }
3794 else
3795 {
3796 /* No -- not inserted, so no need to remove. No error. */
3797 val = 0;
3798 }
3799 }
3800
3801 /* In some cases, we might not be able to remove a breakpoint in
3802 a shared library that has already been removed, but we have
3803 not yet processed the shlib unload event. Similarly for an
3804 unloaded add-symbol-file object - the user might not yet have
3805 had the chance to remove-symbol-file it. shlib_disabled will
3806 be set if the library/object has already been removed, but
3807 the breakpoint hasn't been uninserted yet, e.g., after
3808 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3809 always-inserted mode. */
3810 if (val
3811 && (bl->loc_type == bp_loc_software_breakpoint
3812 && (bl->shlib_disabled
3813 || solib_name_from_address (bl->pspace, bl->address)
3814 || shared_objfile_contains_address_p (bl->pspace,
3815 bl->address))))
3816 val = 0;
3817
3818 if (val)
3819 return val;
3820 bl->inserted = (reason == DETACH_BREAKPOINT);
3821 }
3822 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3823 {
3824 gdb_assert (bl->owner->ops != NULL
3825 && bl->owner->ops->remove_location != NULL);
3826
3827 bl->inserted = (reason == DETACH_BREAKPOINT);
3828 bl->owner->ops->remove_location (bl, reason);
3829
3830 /* Failure to remove any of the hardware watchpoints comes here. */
3831 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3832 warning (_("Could not remove hardware watchpoint %d."),
3833 bl->owner->number);
3834 }
3835 else if (bl->owner->type == bp_catchpoint
3836 && breakpoint_enabled (bl->owner)
3837 && !bl->duplicate)
3838 {
3839 gdb_assert (bl->owner->ops != NULL
3840 && bl->owner->ops->remove_location != NULL);
3841
3842 val = bl->owner->ops->remove_location (bl, reason);
3843 if (val)
3844 return val;
3845
3846 bl->inserted = (reason == DETACH_BREAKPOINT);
3847 }
3848
3849 return 0;
3850 }
3851
3852 static int
3853 remove_breakpoint (struct bp_location *bl)
3854 {
3855 /* BL is never in moribund_locations by our callers. */
3856 gdb_assert (bl->owner != NULL);
3857
3858 /* The type of none suggests that owner is actually deleted.
3859 This should not ever happen. */
3860 gdb_assert (bl->owner->type != bp_none);
3861
3862 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3863
3864 switch_to_program_space_and_thread (bl->pspace);
3865
3866 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3867 }
3868
3869 /* Clear the "inserted" flag in all breakpoints. */
3870
3871 void
3872 mark_breakpoints_out (void)
3873 {
3874 struct bp_location *bl, **blp_tmp;
3875
3876 ALL_BP_LOCATIONS (bl, blp_tmp)
3877 if (bl->pspace == current_program_space)
3878 bl->inserted = 0;
3879 }
3880
3881 /* Clear the "inserted" flag in all breakpoints and delete any
3882 breakpoints which should go away between runs of the program.
3883
3884 Plus other such housekeeping that has to be done for breakpoints
3885 between runs.
3886
3887 Note: this function gets called at the end of a run (by
3888 generic_mourn_inferior) and when a run begins (by
3889 init_wait_for_inferior). */
3890
3891
3892
3893 void
3894 breakpoint_init_inferior (enum inf_context context)
3895 {
3896 struct breakpoint *b, *b_tmp;
3897 struct bp_location *bl;
3898 int ix;
3899 struct program_space *pspace = current_program_space;
3900
3901 /* If breakpoint locations are shared across processes, then there's
3902 nothing to do. */
3903 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3904 return;
3905
3906 mark_breakpoints_out ();
3907
3908 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3909 {
3910 if (b->loc && b->loc->pspace != pspace)
3911 continue;
3912
3913 switch (b->type)
3914 {
3915 case bp_call_dummy:
3916 case bp_longjmp_call_dummy:
3917
3918 /* If the call dummy breakpoint is at the entry point it will
3919 cause problems when the inferior is rerun, so we better get
3920 rid of it. */
3921
3922 case bp_watchpoint_scope:
3923
3924 /* Also get rid of scope breakpoints. */
3925
3926 case bp_shlib_event:
3927
3928 /* Also remove solib event breakpoints. Their addresses may
3929 have changed since the last time we ran the program.
3930 Actually we may now be debugging against different target;
3931 and so the solib backend that installed this breakpoint may
3932 not be used in by the target. E.g.,
3933
3934 (gdb) file prog-linux
3935 (gdb) run # native linux target
3936 ...
3937 (gdb) kill
3938 (gdb) file prog-win.exe
3939 (gdb) tar rem :9999 # remote Windows gdbserver.
3940 */
3941
3942 case bp_step_resume:
3943
3944 /* Also remove step-resume breakpoints. */
3945
3946 case bp_single_step:
3947
3948 /* Also remove single-step breakpoints. */
3949
3950 delete_breakpoint (b);
3951 break;
3952
3953 case bp_watchpoint:
3954 case bp_hardware_watchpoint:
3955 case bp_read_watchpoint:
3956 case bp_access_watchpoint:
3957 {
3958 struct watchpoint *w = (struct watchpoint *) b;
3959
3960 /* Likewise for watchpoints on local expressions. */
3961 if (w->exp_valid_block != NULL)
3962 delete_breakpoint (b);
3963 else
3964 {
3965 /* Get rid of existing locations, which are no longer
3966 valid. New ones will be created in
3967 update_watchpoint, when the inferior is restarted.
3968 The next update_global_location_list call will
3969 garbage collect them. */
3970 b->loc = NULL;
3971
3972 if (context == inf_starting)
3973 {
3974 /* Reset val field to force reread of starting value in
3975 insert_breakpoints. */
3976 if (w->val)
3977 value_free (w->val);
3978 w->val = NULL;
3979 w->val_valid = 0;
3980 }
3981 }
3982 }
3983 break;
3984 default:
3985 break;
3986 }
3987 }
3988
3989 /* Get rid of the moribund locations. */
3990 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3991 decref_bp_location (&bl);
3992 VEC_free (bp_location_p, moribund_locations);
3993 }
3994
3995 /* These functions concern about actual breakpoints inserted in the
3996 target --- to e.g. check if we need to do decr_pc adjustment or if
3997 we need to hop over the bkpt --- so we check for address space
3998 match, not program space. */
3999
4000 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4001 exists at PC. It returns ordinary_breakpoint_here if it's an
4002 ordinary breakpoint, or permanent_breakpoint_here if it's a
4003 permanent breakpoint.
4004 - When continuing from a location with an ordinary breakpoint, we
4005 actually single step once before calling insert_breakpoints.
4006 - When continuing from a location with a permanent breakpoint, we
4007 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4008 the target, to advance the PC past the breakpoint. */
4009
4010 enum breakpoint_here
4011 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4012 {
4013 struct bp_location *bl, **blp_tmp;
4014 int any_breakpoint_here = 0;
4015
4016 ALL_BP_LOCATIONS (bl, blp_tmp)
4017 {
4018 if (bl->loc_type != bp_loc_software_breakpoint
4019 && bl->loc_type != bp_loc_hardware_breakpoint)
4020 continue;
4021
4022 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4023 if ((breakpoint_enabled (bl->owner)
4024 || bl->permanent)
4025 && breakpoint_location_address_match (bl, aspace, pc))
4026 {
4027 if (overlay_debugging
4028 && section_is_overlay (bl->section)
4029 && !section_is_mapped (bl->section))
4030 continue; /* unmapped overlay -- can't be a match */
4031 else if (bl->permanent)
4032 return permanent_breakpoint_here;
4033 else
4034 any_breakpoint_here = 1;
4035 }
4036 }
4037
4038 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4039 }
4040
4041 /* See breakpoint.h. */
4042
4043 int
4044 breakpoint_in_range_p (const address_space *aspace,
4045 CORE_ADDR addr, ULONGEST len)
4046 {
4047 struct bp_location *bl, **blp_tmp;
4048
4049 ALL_BP_LOCATIONS (bl, blp_tmp)
4050 {
4051 if (bl->loc_type != bp_loc_software_breakpoint
4052 && bl->loc_type != bp_loc_hardware_breakpoint)
4053 continue;
4054
4055 if ((breakpoint_enabled (bl->owner)
4056 || bl->permanent)
4057 && breakpoint_location_address_range_overlap (bl, aspace,
4058 addr, len))
4059 {
4060 if (overlay_debugging
4061 && section_is_overlay (bl->section)
4062 && !section_is_mapped (bl->section))
4063 {
4064 /* Unmapped overlay -- can't be a match. */
4065 continue;
4066 }
4067
4068 return 1;
4069 }
4070 }
4071
4072 return 0;
4073 }
4074
4075 /* Return true if there's a moribund breakpoint at PC. */
4076
4077 int
4078 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4079 {
4080 struct bp_location *loc;
4081 int ix;
4082
4083 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4084 if (breakpoint_location_address_match (loc, aspace, pc))
4085 return 1;
4086
4087 return 0;
4088 }
4089
4090 /* Returns non-zero iff BL is inserted at PC, in address space
4091 ASPACE. */
4092
4093 static int
4094 bp_location_inserted_here_p (struct bp_location *bl,
4095 const address_space *aspace, CORE_ADDR pc)
4096 {
4097 if (bl->inserted
4098 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4099 aspace, pc))
4100 {
4101 if (overlay_debugging
4102 && section_is_overlay (bl->section)
4103 && !section_is_mapped (bl->section))
4104 return 0; /* unmapped overlay -- can't be a match */
4105 else
4106 return 1;
4107 }
4108 return 0;
4109 }
4110
4111 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4112
4113 int
4114 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4115 {
4116 struct bp_location **blp, **blp_tmp = NULL;
4117
4118 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4119 {
4120 struct bp_location *bl = *blp;
4121
4122 if (bl->loc_type != bp_loc_software_breakpoint
4123 && bl->loc_type != bp_loc_hardware_breakpoint)
4124 continue;
4125
4126 if (bp_location_inserted_here_p (bl, aspace, pc))
4127 return 1;
4128 }
4129 return 0;
4130 }
4131
4132 /* This function returns non-zero iff there is a software breakpoint
4133 inserted at PC. */
4134
4135 int
4136 software_breakpoint_inserted_here_p (const address_space *aspace,
4137 CORE_ADDR pc)
4138 {
4139 struct bp_location **blp, **blp_tmp = NULL;
4140
4141 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4142 {
4143 struct bp_location *bl = *blp;
4144
4145 if (bl->loc_type != bp_loc_software_breakpoint)
4146 continue;
4147
4148 if (bp_location_inserted_here_p (bl, aspace, pc))
4149 return 1;
4150 }
4151
4152 return 0;
4153 }
4154
4155 /* See breakpoint.h. */
4156
4157 int
4158 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4159 CORE_ADDR pc)
4160 {
4161 struct bp_location **blp, **blp_tmp = NULL;
4162
4163 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4164 {
4165 struct bp_location *bl = *blp;
4166
4167 if (bl->loc_type != bp_loc_hardware_breakpoint)
4168 continue;
4169
4170 if (bp_location_inserted_here_p (bl, aspace, pc))
4171 return 1;
4172 }
4173
4174 return 0;
4175 }
4176
4177 int
4178 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4179 CORE_ADDR addr, ULONGEST len)
4180 {
4181 struct breakpoint *bpt;
4182
4183 ALL_BREAKPOINTS (bpt)
4184 {
4185 struct bp_location *loc;
4186
4187 if (bpt->type != bp_hardware_watchpoint
4188 && bpt->type != bp_access_watchpoint)
4189 continue;
4190
4191 if (!breakpoint_enabled (bpt))
4192 continue;
4193
4194 for (loc = bpt->loc; loc; loc = loc->next)
4195 if (loc->pspace->aspace == aspace && loc->inserted)
4196 {
4197 CORE_ADDR l, h;
4198
4199 /* Check for intersection. */
4200 l = std::max<CORE_ADDR> (loc->address, addr);
4201 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4202 if (l < h)
4203 return 1;
4204 }
4205 }
4206 return 0;
4207 }
4208 \f
4209
4210 /* bpstat stuff. External routines' interfaces are documented
4211 in breakpoint.h. */
4212
4213 int
4214 is_catchpoint (struct breakpoint *ep)
4215 {
4216 return (ep->type == bp_catchpoint);
4217 }
4218
4219 /* Frees any storage that is part of a bpstat. Does not walk the
4220 'next' chain. */
4221
4222 bpstats::~bpstats ()
4223 {
4224 if (old_val != NULL)
4225 value_free (old_val);
4226 if (bp_location_at != NULL)
4227 decref_bp_location (&bp_location_at);
4228 }
4229
4230 /* Clear a bpstat so that it says we are not at any breakpoint.
4231 Also free any storage that is part of a bpstat. */
4232
4233 void
4234 bpstat_clear (bpstat *bsp)
4235 {
4236 bpstat p;
4237 bpstat q;
4238
4239 if (bsp == 0)
4240 return;
4241 p = *bsp;
4242 while (p != NULL)
4243 {
4244 q = p->next;
4245 delete p;
4246 p = q;
4247 }
4248 *bsp = NULL;
4249 }
4250
4251 bpstats::bpstats (const bpstats &other)
4252 : next (NULL),
4253 bp_location_at (other.bp_location_at),
4254 breakpoint_at (other.breakpoint_at),
4255 commands (other.commands),
4256 old_val (other.old_val),
4257 print (other.print),
4258 stop (other.stop),
4259 print_it (other.print_it)
4260 {
4261 if (old_val != NULL)
4262 {
4263 old_val = value_copy (old_val);
4264 release_value (old_val);
4265 }
4266 incref_bp_location (bp_location_at);
4267 }
4268
4269 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4270 is part of the bpstat is copied as well. */
4271
4272 bpstat
4273 bpstat_copy (bpstat bs)
4274 {
4275 bpstat p = NULL;
4276 bpstat tmp;
4277 bpstat retval = NULL;
4278
4279 if (bs == NULL)
4280 return bs;
4281
4282 for (; bs != NULL; bs = bs->next)
4283 {
4284 tmp = new bpstats (*bs);
4285
4286 if (p == NULL)
4287 /* This is the first thing in the chain. */
4288 retval = tmp;
4289 else
4290 p->next = tmp;
4291 p = tmp;
4292 }
4293 p->next = NULL;
4294 return retval;
4295 }
4296
4297 /* Find the bpstat associated with this breakpoint. */
4298
4299 bpstat
4300 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4301 {
4302 if (bsp == NULL)
4303 return NULL;
4304
4305 for (; bsp != NULL; bsp = bsp->next)
4306 {
4307 if (bsp->breakpoint_at == breakpoint)
4308 return bsp;
4309 }
4310 return NULL;
4311 }
4312
4313 /* See breakpoint.h. */
4314
4315 int
4316 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4317 {
4318 for (; bsp != NULL; bsp = bsp->next)
4319 {
4320 if (bsp->breakpoint_at == NULL)
4321 {
4322 /* A moribund location can never explain a signal other than
4323 GDB_SIGNAL_TRAP. */
4324 if (sig == GDB_SIGNAL_TRAP)
4325 return 1;
4326 }
4327 else
4328 {
4329 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4330 sig))
4331 return 1;
4332 }
4333 }
4334
4335 return 0;
4336 }
4337
4338 /* Put in *NUM the breakpoint number of the first breakpoint we are
4339 stopped at. *BSP upon return is a bpstat which points to the
4340 remaining breakpoints stopped at (but which is not guaranteed to be
4341 good for anything but further calls to bpstat_num).
4342
4343 Return 0 if passed a bpstat which does not indicate any breakpoints.
4344 Return -1 if stopped at a breakpoint that has been deleted since
4345 we set it.
4346 Return 1 otherwise. */
4347
4348 int
4349 bpstat_num (bpstat *bsp, int *num)
4350 {
4351 struct breakpoint *b;
4352
4353 if ((*bsp) == NULL)
4354 return 0; /* No more breakpoint values */
4355
4356 /* We assume we'll never have several bpstats that correspond to a
4357 single breakpoint -- otherwise, this function might return the
4358 same number more than once and this will look ugly. */
4359 b = (*bsp)->breakpoint_at;
4360 *bsp = (*bsp)->next;
4361 if (b == NULL)
4362 return -1; /* breakpoint that's been deleted since */
4363
4364 *num = b->number; /* We have its number */
4365 return 1;
4366 }
4367
4368 /* See breakpoint.h. */
4369
4370 void
4371 bpstat_clear_actions (void)
4372 {
4373 struct thread_info *tp;
4374 bpstat bs;
4375
4376 if (ptid_equal (inferior_ptid, null_ptid))
4377 return;
4378
4379 tp = find_thread_ptid (inferior_ptid);
4380 if (tp == NULL)
4381 return;
4382
4383 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4384 {
4385 bs->commands = NULL;
4386
4387 if (bs->old_val != NULL)
4388 {
4389 value_free (bs->old_val);
4390 bs->old_val = NULL;
4391 }
4392 }
4393 }
4394
4395 /* Called when a command is about to proceed the inferior. */
4396
4397 static void
4398 breakpoint_about_to_proceed (void)
4399 {
4400 if (!ptid_equal (inferior_ptid, null_ptid))
4401 {
4402 struct thread_info *tp = inferior_thread ();
4403
4404 /* Allow inferior function calls in breakpoint commands to not
4405 interrupt the command list. When the call finishes
4406 successfully, the inferior will be standing at the same
4407 breakpoint as if nothing happened. */
4408 if (tp->control.in_infcall)
4409 return;
4410 }
4411
4412 breakpoint_proceeded = 1;
4413 }
4414
4415 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4416 or its equivalent. */
4417
4418 static int
4419 command_line_is_silent (struct command_line *cmd)
4420 {
4421 return cmd && (strcmp ("silent", cmd->line) == 0);
4422 }
4423
4424 /* Execute all the commands associated with all the breakpoints at
4425 this location. Any of these commands could cause the process to
4426 proceed beyond this point, etc. We look out for such changes by
4427 checking the global "breakpoint_proceeded" after each command.
4428
4429 Returns true if a breakpoint command resumed the inferior. In that
4430 case, it is the caller's responsibility to recall it again with the
4431 bpstat of the current thread. */
4432
4433 static int
4434 bpstat_do_actions_1 (bpstat *bsp)
4435 {
4436 bpstat bs;
4437 int again = 0;
4438
4439 /* Avoid endless recursion if a `source' command is contained
4440 in bs->commands. */
4441 if (executing_breakpoint_commands)
4442 return 0;
4443
4444 scoped_restore save_executing
4445 = make_scoped_restore (&executing_breakpoint_commands, 1);
4446
4447 scoped_restore preventer = prevent_dont_repeat ();
4448
4449 /* This pointer will iterate over the list of bpstat's. */
4450 bs = *bsp;
4451
4452 breakpoint_proceeded = 0;
4453 for (; bs != NULL; bs = bs->next)
4454 {
4455 struct command_line *cmd = NULL;
4456
4457 /* Take ownership of the BSP's command tree, if it has one.
4458
4459 The command tree could legitimately contain commands like
4460 'step' and 'next', which call clear_proceed_status, which
4461 frees stop_bpstat's command tree. To make sure this doesn't
4462 free the tree we're executing out from under us, we need to
4463 take ownership of the tree ourselves. Since a given bpstat's
4464 commands are only executed once, we don't need to copy it; we
4465 can clear the pointer in the bpstat, and make sure we free
4466 the tree when we're done. */
4467 counted_command_line ccmd = bs->commands;
4468 bs->commands = NULL;
4469 if (ccmd != NULL)
4470 cmd = ccmd.get ();
4471 if (command_line_is_silent (cmd))
4472 {
4473 /* The action has been already done by bpstat_stop_status. */
4474 cmd = cmd->next;
4475 }
4476
4477 while (cmd != NULL)
4478 {
4479 execute_control_command (cmd);
4480
4481 if (breakpoint_proceeded)
4482 break;
4483 else
4484 cmd = cmd->next;
4485 }
4486
4487 if (breakpoint_proceeded)
4488 {
4489 if (current_ui->async)
4490 /* If we are in async mode, then the target might be still
4491 running, not stopped at any breakpoint, so nothing for
4492 us to do here -- just return to the event loop. */
4493 ;
4494 else
4495 /* In sync mode, when execute_control_command returns
4496 we're already standing on the next breakpoint.
4497 Breakpoint commands for that stop were not run, since
4498 execute_command does not run breakpoint commands --
4499 only command_line_handler does, but that one is not
4500 involved in execution of breakpoint commands. So, we
4501 can now execute breakpoint commands. It should be
4502 noted that making execute_command do bpstat actions is
4503 not an option -- in this case we'll have recursive
4504 invocation of bpstat for each breakpoint with a
4505 command, and can easily blow up GDB stack. Instead, we
4506 return true, which will trigger the caller to recall us
4507 with the new stop_bpstat. */
4508 again = 1;
4509 break;
4510 }
4511 }
4512 return again;
4513 }
4514
4515 void
4516 bpstat_do_actions (void)
4517 {
4518 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4519
4520 /* Do any commands attached to breakpoint we are stopped at. */
4521 while (!ptid_equal (inferior_ptid, null_ptid)
4522 && target_has_execution
4523 && !is_exited (inferior_ptid)
4524 && !is_executing (inferior_ptid))
4525 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4526 and only return when it is stopped at the next breakpoint, we
4527 keep doing breakpoint actions until it returns false to
4528 indicate the inferior was not resumed. */
4529 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4530 break;
4531
4532 discard_cleanups (cleanup_if_error);
4533 }
4534
4535 /* Print out the (old or new) value associated with a watchpoint. */
4536
4537 static void
4538 watchpoint_value_print (struct value *val, struct ui_file *stream)
4539 {
4540 if (val == NULL)
4541 fprintf_unfiltered (stream, _("<unreadable>"));
4542 else
4543 {
4544 struct value_print_options opts;
4545 get_user_print_options (&opts);
4546 value_print (val, stream, &opts);
4547 }
4548 }
4549
4550 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4551 debugging multiple threads. */
4552
4553 void
4554 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4555 {
4556 if (uiout->is_mi_like_p ())
4557 return;
4558
4559 uiout->text ("\n");
4560
4561 if (show_thread_that_caused_stop ())
4562 {
4563 const char *name;
4564 struct thread_info *thr = inferior_thread ();
4565
4566 uiout->text ("Thread ");
4567 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4568
4569 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4570 if (name != NULL)
4571 {
4572 uiout->text (" \"");
4573 uiout->field_fmt ("name", "%s", name);
4574 uiout->text ("\"");
4575 }
4576
4577 uiout->text (" hit ");
4578 }
4579 }
4580
4581 /* Generic routine for printing messages indicating why we
4582 stopped. The behavior of this function depends on the value
4583 'print_it' in the bpstat structure. Under some circumstances we
4584 may decide not to print anything here and delegate the task to
4585 normal_stop(). */
4586
4587 static enum print_stop_action
4588 print_bp_stop_message (bpstat bs)
4589 {
4590 switch (bs->print_it)
4591 {
4592 case print_it_noop:
4593 /* Nothing should be printed for this bpstat entry. */
4594 return PRINT_UNKNOWN;
4595 break;
4596
4597 case print_it_done:
4598 /* We still want to print the frame, but we already printed the
4599 relevant messages. */
4600 return PRINT_SRC_AND_LOC;
4601 break;
4602
4603 case print_it_normal:
4604 {
4605 struct breakpoint *b = bs->breakpoint_at;
4606
4607 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4608 which has since been deleted. */
4609 if (b == NULL)
4610 return PRINT_UNKNOWN;
4611
4612 /* Normal case. Call the breakpoint's print_it method. */
4613 return b->ops->print_it (bs);
4614 }
4615 break;
4616
4617 default:
4618 internal_error (__FILE__, __LINE__,
4619 _("print_bp_stop_message: unrecognized enum value"));
4620 break;
4621 }
4622 }
4623
4624 /* A helper function that prints a shared library stopped event. */
4625
4626 static void
4627 print_solib_event (int is_catchpoint)
4628 {
4629 int any_deleted
4630 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4631 int any_added
4632 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4633
4634 if (!is_catchpoint)
4635 {
4636 if (any_added || any_deleted)
4637 current_uiout->text (_("Stopped due to shared library event:\n"));
4638 else
4639 current_uiout->text (_("Stopped due to shared library event (no "
4640 "libraries added or removed)\n"));
4641 }
4642
4643 if (current_uiout->is_mi_like_p ())
4644 current_uiout->field_string ("reason",
4645 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4646
4647 if (any_deleted)
4648 {
4649 char *name;
4650 int ix;
4651
4652 current_uiout->text (_(" Inferior unloaded "));
4653 ui_out_emit_list list_emitter (current_uiout, "removed");
4654 for (ix = 0;
4655 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4656 ix, name);
4657 ++ix)
4658 {
4659 if (ix > 0)
4660 current_uiout->text (" ");
4661 current_uiout->field_string ("library", name);
4662 current_uiout->text ("\n");
4663 }
4664 }
4665
4666 if (any_added)
4667 {
4668 struct so_list *iter;
4669 int ix;
4670
4671 current_uiout->text (_(" Inferior loaded "));
4672 ui_out_emit_list list_emitter (current_uiout, "added");
4673 for (ix = 0;
4674 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4675 ix, iter);
4676 ++ix)
4677 {
4678 if (ix > 0)
4679 current_uiout->text (" ");
4680 current_uiout->field_string ("library", iter->so_name);
4681 current_uiout->text ("\n");
4682 }
4683 }
4684 }
4685
4686 /* Print a message indicating what happened. This is called from
4687 normal_stop(). The input to this routine is the head of the bpstat
4688 list - a list of the eventpoints that caused this stop. KIND is
4689 the target_waitkind for the stopping event. This
4690 routine calls the generic print routine for printing a message
4691 about reasons for stopping. This will print (for example) the
4692 "Breakpoint n," part of the output. The return value of this
4693 routine is one of:
4694
4695 PRINT_UNKNOWN: Means we printed nothing.
4696 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4697 code to print the location. An example is
4698 "Breakpoint 1, " which should be followed by
4699 the location.
4700 PRINT_SRC_ONLY: Means we printed something, but there is no need
4701 to also print the location part of the message.
4702 An example is the catch/throw messages, which
4703 don't require a location appended to the end.
4704 PRINT_NOTHING: We have done some printing and we don't need any
4705 further info to be printed. */
4706
4707 enum print_stop_action
4708 bpstat_print (bpstat bs, int kind)
4709 {
4710 enum print_stop_action val;
4711
4712 /* Maybe another breakpoint in the chain caused us to stop.
4713 (Currently all watchpoints go on the bpstat whether hit or not.
4714 That probably could (should) be changed, provided care is taken
4715 with respect to bpstat_explains_signal). */
4716 for (; bs; bs = bs->next)
4717 {
4718 val = print_bp_stop_message (bs);
4719 if (val == PRINT_SRC_ONLY
4720 || val == PRINT_SRC_AND_LOC
4721 || val == PRINT_NOTHING)
4722 return val;
4723 }
4724
4725 /* If we had hit a shared library event breakpoint,
4726 print_bp_stop_message would print out this message. If we hit an
4727 OS-level shared library event, do the same thing. */
4728 if (kind == TARGET_WAITKIND_LOADED)
4729 {
4730 print_solib_event (0);
4731 return PRINT_NOTHING;
4732 }
4733
4734 /* We reached the end of the chain, or we got a null BS to start
4735 with and nothing was printed. */
4736 return PRINT_UNKNOWN;
4737 }
4738
4739 /* Evaluate the boolean expression EXP and return the result. */
4740
4741 static bool
4742 breakpoint_cond_eval (expression *exp)
4743 {
4744 struct value *mark = value_mark ();
4745 bool res = value_true (evaluate_expression (exp));
4746
4747 value_free_to_mark (mark);
4748 return res;
4749 }
4750
4751 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4752
4753 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4754 : next (NULL),
4755 bp_location_at (bl),
4756 breakpoint_at (bl->owner),
4757 commands (NULL),
4758 old_val (NULL),
4759 print (0),
4760 stop (0),
4761 print_it (print_it_normal)
4762 {
4763 incref_bp_location (bl);
4764 **bs_link_pointer = this;
4765 *bs_link_pointer = &next;
4766 }
4767
4768 bpstats::bpstats ()
4769 : next (NULL),
4770 bp_location_at (NULL),
4771 breakpoint_at (NULL),
4772 commands (NULL),
4773 old_val (NULL),
4774 print (0),
4775 stop (0),
4776 print_it (print_it_normal)
4777 {
4778 }
4779 \f
4780 /* The target has stopped with waitstatus WS. Check if any hardware
4781 watchpoints have triggered, according to the target. */
4782
4783 int
4784 watchpoints_triggered (struct target_waitstatus *ws)
4785 {
4786 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4787 CORE_ADDR addr;
4788 struct breakpoint *b;
4789
4790 if (!stopped_by_watchpoint)
4791 {
4792 /* We were not stopped by a watchpoint. Mark all watchpoints
4793 as not triggered. */
4794 ALL_BREAKPOINTS (b)
4795 if (is_hardware_watchpoint (b))
4796 {
4797 struct watchpoint *w = (struct watchpoint *) b;
4798
4799 w->watchpoint_triggered = watch_triggered_no;
4800 }
4801
4802 return 0;
4803 }
4804
4805 if (!target_stopped_data_address (&current_target, &addr))
4806 {
4807 /* We were stopped by a watchpoint, but we don't know where.
4808 Mark all watchpoints as unknown. */
4809 ALL_BREAKPOINTS (b)
4810 if (is_hardware_watchpoint (b))
4811 {
4812 struct watchpoint *w = (struct watchpoint *) b;
4813
4814 w->watchpoint_triggered = watch_triggered_unknown;
4815 }
4816
4817 return 1;
4818 }
4819
4820 /* The target could report the data address. Mark watchpoints
4821 affected by this data address as triggered, and all others as not
4822 triggered. */
4823
4824 ALL_BREAKPOINTS (b)
4825 if (is_hardware_watchpoint (b))
4826 {
4827 struct watchpoint *w = (struct watchpoint *) b;
4828 struct bp_location *loc;
4829
4830 w->watchpoint_triggered = watch_triggered_no;
4831 for (loc = b->loc; loc; loc = loc->next)
4832 {
4833 if (is_masked_watchpoint (b))
4834 {
4835 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4836 CORE_ADDR start = loc->address & w->hw_wp_mask;
4837
4838 if (newaddr == start)
4839 {
4840 w->watchpoint_triggered = watch_triggered_yes;
4841 break;
4842 }
4843 }
4844 /* Exact match not required. Within range is sufficient. */
4845 else if (target_watchpoint_addr_within_range (&current_target,
4846 addr, loc->address,
4847 loc->length))
4848 {
4849 w->watchpoint_triggered = watch_triggered_yes;
4850 break;
4851 }
4852 }
4853 }
4854
4855 return 1;
4856 }
4857
4858 /* Possible return values for watchpoint_check. */
4859 enum wp_check_result
4860 {
4861 /* The watchpoint has been deleted. */
4862 WP_DELETED = 1,
4863
4864 /* The value has changed. */
4865 WP_VALUE_CHANGED = 2,
4866
4867 /* The value has not changed. */
4868 WP_VALUE_NOT_CHANGED = 3,
4869
4870 /* Ignore this watchpoint, no matter if the value changed or not. */
4871 WP_IGNORE = 4,
4872 };
4873
4874 #define BP_TEMPFLAG 1
4875 #define BP_HARDWAREFLAG 2
4876
4877 /* Evaluate watchpoint condition expression and check if its value
4878 changed. */
4879
4880 static wp_check_result
4881 watchpoint_check (bpstat bs)
4882 {
4883 struct watchpoint *b;
4884 struct frame_info *fr;
4885 int within_current_scope;
4886
4887 /* BS is built from an existing struct breakpoint. */
4888 gdb_assert (bs->breakpoint_at != NULL);
4889 b = (struct watchpoint *) bs->breakpoint_at;
4890
4891 /* If this is a local watchpoint, we only want to check if the
4892 watchpoint frame is in scope if the current thread is the thread
4893 that was used to create the watchpoint. */
4894 if (!watchpoint_in_thread_scope (b))
4895 return WP_IGNORE;
4896
4897 if (b->exp_valid_block == NULL)
4898 within_current_scope = 1;
4899 else
4900 {
4901 struct frame_info *frame = get_current_frame ();
4902 struct gdbarch *frame_arch = get_frame_arch (frame);
4903 CORE_ADDR frame_pc = get_frame_pc (frame);
4904
4905 /* stack_frame_destroyed_p() returns a non-zero value if we're
4906 still in the function but the stack frame has already been
4907 invalidated. Since we can't rely on the values of local
4908 variables after the stack has been destroyed, we are treating
4909 the watchpoint in that state as `not changed' without further
4910 checking. Don't mark watchpoints as changed if the current
4911 frame is in an epilogue - even if they are in some other
4912 frame, our view of the stack is likely to be wrong and
4913 frame_find_by_id could error out. */
4914 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4915 return WP_IGNORE;
4916
4917 fr = frame_find_by_id (b->watchpoint_frame);
4918 within_current_scope = (fr != NULL);
4919
4920 /* If we've gotten confused in the unwinder, we might have
4921 returned a frame that can't describe this variable. */
4922 if (within_current_scope)
4923 {
4924 struct symbol *function;
4925
4926 function = get_frame_function (fr);
4927 if (function == NULL
4928 || !contained_in (b->exp_valid_block,
4929 SYMBOL_BLOCK_VALUE (function)))
4930 within_current_scope = 0;
4931 }
4932
4933 if (within_current_scope)
4934 /* If we end up stopping, the current frame will get selected
4935 in normal_stop. So this call to select_frame won't affect
4936 the user. */
4937 select_frame (fr);
4938 }
4939
4940 if (within_current_scope)
4941 {
4942 /* We use value_{,free_to_}mark because it could be a *long*
4943 time before we return to the command level and call
4944 free_all_values. We can't call free_all_values because we
4945 might be in the middle of evaluating a function call. */
4946
4947 int pc = 0;
4948 struct value *mark;
4949 struct value *new_val;
4950
4951 if (is_masked_watchpoint (b))
4952 /* Since we don't know the exact trigger address (from
4953 stopped_data_address), just tell the user we've triggered
4954 a mask watchpoint. */
4955 return WP_VALUE_CHANGED;
4956
4957 mark = value_mark ();
4958 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4959
4960 if (b->val_bitsize != 0)
4961 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4962
4963 /* We use value_equal_contents instead of value_equal because
4964 the latter coerces an array to a pointer, thus comparing just
4965 the address of the array instead of its contents. This is
4966 not what we want. */
4967 if ((b->val != NULL) != (new_val != NULL)
4968 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4969 {
4970 if (new_val != NULL)
4971 {
4972 release_value (new_val);
4973 value_free_to_mark (mark);
4974 }
4975 bs->old_val = b->val;
4976 b->val = new_val;
4977 b->val_valid = 1;
4978 return WP_VALUE_CHANGED;
4979 }
4980 else
4981 {
4982 /* Nothing changed. */
4983 value_free_to_mark (mark);
4984 return WP_VALUE_NOT_CHANGED;
4985 }
4986 }
4987 else
4988 {
4989 /* This seems like the only logical thing to do because
4990 if we temporarily ignored the watchpoint, then when
4991 we reenter the block in which it is valid it contains
4992 garbage (in the case of a function, it may have two
4993 garbage values, one before and one after the prologue).
4994 So we can't even detect the first assignment to it and
4995 watch after that (since the garbage may or may not equal
4996 the first value assigned). */
4997 /* We print all the stop information in
4998 breakpoint_ops->print_it, but in this case, by the time we
4999 call breakpoint_ops->print_it this bp will be deleted
5000 already. So we have no choice but print the information
5001 here. */
5002
5003 SWITCH_THRU_ALL_UIS ()
5004 {
5005 struct ui_out *uiout = current_uiout;
5006
5007 if (uiout->is_mi_like_p ())
5008 uiout->field_string
5009 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5010 uiout->text ("\nWatchpoint ");
5011 uiout->field_int ("wpnum", b->number);
5012 uiout->text (" deleted because the program has left the block in\n"
5013 "which its expression is valid.\n");
5014 }
5015
5016 /* Make sure the watchpoint's commands aren't executed. */
5017 b->commands = NULL;
5018 watchpoint_del_at_next_stop (b);
5019
5020 return WP_DELETED;
5021 }
5022 }
5023
5024 /* Return true if it looks like target has stopped due to hitting
5025 breakpoint location BL. This function does not check if we should
5026 stop, only if BL explains the stop. */
5027
5028 static int
5029 bpstat_check_location (const struct bp_location *bl,
5030 const address_space *aspace, CORE_ADDR bp_addr,
5031 const struct target_waitstatus *ws)
5032 {
5033 struct breakpoint *b = bl->owner;
5034
5035 /* BL is from an existing breakpoint. */
5036 gdb_assert (b != NULL);
5037
5038 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5039 }
5040
5041 /* Determine if the watched values have actually changed, and we
5042 should stop. If not, set BS->stop to 0. */
5043
5044 static void
5045 bpstat_check_watchpoint (bpstat bs)
5046 {
5047 const struct bp_location *bl;
5048 struct watchpoint *b;
5049
5050 /* BS is built for existing struct breakpoint. */
5051 bl = bs->bp_location_at;
5052 gdb_assert (bl != NULL);
5053 b = (struct watchpoint *) bs->breakpoint_at;
5054 gdb_assert (b != NULL);
5055
5056 {
5057 int must_check_value = 0;
5058
5059 if (b->type == bp_watchpoint)
5060 /* For a software watchpoint, we must always check the
5061 watched value. */
5062 must_check_value = 1;
5063 else if (b->watchpoint_triggered == watch_triggered_yes)
5064 /* We have a hardware watchpoint (read, write, or access)
5065 and the target earlier reported an address watched by
5066 this watchpoint. */
5067 must_check_value = 1;
5068 else if (b->watchpoint_triggered == watch_triggered_unknown
5069 && b->type == bp_hardware_watchpoint)
5070 /* We were stopped by a hardware watchpoint, but the target could
5071 not report the data address. We must check the watchpoint's
5072 value. Access and read watchpoints are out of luck; without
5073 a data address, we can't figure it out. */
5074 must_check_value = 1;
5075
5076 if (must_check_value)
5077 {
5078 wp_check_result e;
5079
5080 TRY
5081 {
5082 e = watchpoint_check (bs);
5083 }
5084 CATCH (ex, RETURN_MASK_ALL)
5085 {
5086 exception_fprintf (gdb_stderr, ex,
5087 "Error evaluating expression "
5088 "for watchpoint %d\n",
5089 b->number);
5090
5091 SWITCH_THRU_ALL_UIS ()
5092 {
5093 printf_filtered (_("Watchpoint %d deleted.\n"),
5094 b->number);
5095 }
5096 watchpoint_del_at_next_stop (b);
5097 e = WP_DELETED;
5098 }
5099 END_CATCH
5100
5101 switch (e)
5102 {
5103 case WP_DELETED:
5104 /* We've already printed what needs to be printed. */
5105 bs->print_it = print_it_done;
5106 /* Stop. */
5107 break;
5108 case WP_IGNORE:
5109 bs->print_it = print_it_noop;
5110 bs->stop = 0;
5111 break;
5112 case WP_VALUE_CHANGED:
5113 if (b->type == bp_read_watchpoint)
5114 {
5115 /* There are two cases to consider here:
5116
5117 1. We're watching the triggered memory for reads.
5118 In that case, trust the target, and always report
5119 the watchpoint hit to the user. Even though
5120 reads don't cause value changes, the value may
5121 have changed since the last time it was read, and
5122 since we're not trapping writes, we will not see
5123 those, and as such we should ignore our notion of
5124 old value.
5125
5126 2. We're watching the triggered memory for both
5127 reads and writes. There are two ways this may
5128 happen:
5129
5130 2.1. This is a target that can't break on data
5131 reads only, but can break on accesses (reads or
5132 writes), such as e.g., x86. We detect this case
5133 at the time we try to insert read watchpoints.
5134
5135 2.2. Otherwise, the target supports read
5136 watchpoints, but, the user set an access or write
5137 watchpoint watching the same memory as this read
5138 watchpoint.
5139
5140 If we're watching memory writes as well as reads,
5141 ignore watchpoint hits when we find that the
5142 value hasn't changed, as reads don't cause
5143 changes. This still gives false positives when
5144 the program writes the same value to memory as
5145 what there was already in memory (we will confuse
5146 it for a read), but it's much better than
5147 nothing. */
5148
5149 int other_write_watchpoint = 0;
5150
5151 if (bl->watchpoint_type == hw_read)
5152 {
5153 struct breakpoint *other_b;
5154
5155 ALL_BREAKPOINTS (other_b)
5156 if (other_b->type == bp_hardware_watchpoint
5157 || other_b->type == bp_access_watchpoint)
5158 {
5159 struct watchpoint *other_w =
5160 (struct watchpoint *) other_b;
5161
5162 if (other_w->watchpoint_triggered
5163 == watch_triggered_yes)
5164 {
5165 other_write_watchpoint = 1;
5166 break;
5167 }
5168 }
5169 }
5170
5171 if (other_write_watchpoint
5172 || bl->watchpoint_type == hw_access)
5173 {
5174 /* We're watching the same memory for writes,
5175 and the value changed since the last time we
5176 updated it, so this trap must be for a write.
5177 Ignore it. */
5178 bs->print_it = print_it_noop;
5179 bs->stop = 0;
5180 }
5181 }
5182 break;
5183 case WP_VALUE_NOT_CHANGED:
5184 if (b->type == bp_hardware_watchpoint
5185 || b->type == bp_watchpoint)
5186 {
5187 /* Don't stop: write watchpoints shouldn't fire if
5188 the value hasn't changed. */
5189 bs->print_it = print_it_noop;
5190 bs->stop = 0;
5191 }
5192 /* Stop. */
5193 break;
5194 default:
5195 /* Can't happen. */
5196 break;
5197 }
5198 }
5199 else /* must_check_value == 0 */
5200 {
5201 /* This is a case where some watchpoint(s) triggered, but
5202 not at the address of this watchpoint, or else no
5203 watchpoint triggered after all. So don't print
5204 anything for this watchpoint. */
5205 bs->print_it = print_it_noop;
5206 bs->stop = 0;
5207 }
5208 }
5209 }
5210
5211 /* For breakpoints that are currently marked as telling gdb to stop,
5212 check conditions (condition proper, frame, thread and ignore count)
5213 of breakpoint referred to by BS. If we should not stop for this
5214 breakpoint, set BS->stop to 0. */
5215
5216 static void
5217 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5218 {
5219 const struct bp_location *bl;
5220 struct breakpoint *b;
5221 /* Assume stop. */
5222 bool condition_result = true;
5223 struct expression *cond;
5224
5225 gdb_assert (bs->stop);
5226
5227 /* BS is built for existing struct breakpoint. */
5228 bl = bs->bp_location_at;
5229 gdb_assert (bl != NULL);
5230 b = bs->breakpoint_at;
5231 gdb_assert (b != NULL);
5232
5233 /* Even if the target evaluated the condition on its end and notified GDB, we
5234 need to do so again since GDB does not know if we stopped due to a
5235 breakpoint or a single step breakpoint. */
5236
5237 if (frame_id_p (b->frame_id)
5238 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5239 {
5240 bs->stop = 0;
5241 return;
5242 }
5243
5244 /* If this is a thread/task-specific breakpoint, don't waste cpu
5245 evaluating the condition if this isn't the specified
5246 thread/task. */
5247 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5248 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5249
5250 {
5251 bs->stop = 0;
5252 return;
5253 }
5254
5255 /* Evaluate extension language breakpoints that have a "stop" method
5256 implemented. */
5257 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5258
5259 if (is_watchpoint (b))
5260 {
5261 struct watchpoint *w = (struct watchpoint *) b;
5262
5263 cond = w->cond_exp.get ();
5264 }
5265 else
5266 cond = bl->cond.get ();
5267
5268 if (cond && b->disposition != disp_del_at_next_stop)
5269 {
5270 int within_current_scope = 1;
5271 struct watchpoint * w;
5272
5273 /* We use value_mark and value_free_to_mark because it could
5274 be a long time before we return to the command level and
5275 call free_all_values. We can't call free_all_values
5276 because we might be in the middle of evaluating a
5277 function call. */
5278 struct value *mark = value_mark ();
5279
5280 if (is_watchpoint (b))
5281 w = (struct watchpoint *) b;
5282 else
5283 w = NULL;
5284
5285 /* Need to select the frame, with all that implies so that
5286 the conditions will have the right context. Because we
5287 use the frame, we will not see an inlined function's
5288 variables when we arrive at a breakpoint at the start
5289 of the inlined function; the current frame will be the
5290 call site. */
5291 if (w == NULL || w->cond_exp_valid_block == NULL)
5292 select_frame (get_current_frame ());
5293 else
5294 {
5295 struct frame_info *frame;
5296
5297 /* For local watchpoint expressions, which particular
5298 instance of a local is being watched matters, so we
5299 keep track of the frame to evaluate the expression
5300 in. To evaluate the condition however, it doesn't
5301 really matter which instantiation of the function
5302 where the condition makes sense triggers the
5303 watchpoint. This allows an expression like "watch
5304 global if q > 10" set in `func', catch writes to
5305 global on all threads that call `func', or catch
5306 writes on all recursive calls of `func' by a single
5307 thread. We simply always evaluate the condition in
5308 the innermost frame that's executing where it makes
5309 sense to evaluate the condition. It seems
5310 intuitive. */
5311 frame = block_innermost_frame (w->cond_exp_valid_block);
5312 if (frame != NULL)
5313 select_frame (frame);
5314 else
5315 within_current_scope = 0;
5316 }
5317 if (within_current_scope)
5318 {
5319 TRY
5320 {
5321 condition_result = breakpoint_cond_eval (cond);
5322 }
5323 CATCH (ex, RETURN_MASK_ALL)
5324 {
5325 exception_fprintf (gdb_stderr, ex,
5326 "Error in testing breakpoint condition:\n");
5327 }
5328 END_CATCH
5329 }
5330 else
5331 {
5332 warning (_("Watchpoint condition cannot be tested "
5333 "in the current scope"));
5334 /* If we failed to set the right context for this
5335 watchpoint, unconditionally report it. */
5336 }
5337 /* FIXME-someday, should give breakpoint #. */
5338 value_free_to_mark (mark);
5339 }
5340
5341 if (cond && !condition_result)
5342 {
5343 bs->stop = 0;
5344 }
5345 else if (b->ignore_count > 0)
5346 {
5347 b->ignore_count--;
5348 bs->stop = 0;
5349 /* Increase the hit count even though we don't stop. */
5350 ++(b->hit_count);
5351 observer_notify_breakpoint_modified (b);
5352 }
5353 }
5354
5355 /* Returns true if we need to track moribund locations of LOC's type
5356 on the current target. */
5357
5358 static int
5359 need_moribund_for_location_type (struct bp_location *loc)
5360 {
5361 return ((loc->loc_type == bp_loc_software_breakpoint
5362 && !target_supports_stopped_by_sw_breakpoint ())
5363 || (loc->loc_type == bp_loc_hardware_breakpoint
5364 && !target_supports_stopped_by_hw_breakpoint ()));
5365 }
5366
5367
5368 /* Get a bpstat associated with having just stopped at address
5369 BP_ADDR in thread PTID.
5370
5371 Determine whether we stopped at a breakpoint, etc, or whether we
5372 don't understand this stop. Result is a chain of bpstat's such
5373 that:
5374
5375 if we don't understand the stop, the result is a null pointer.
5376
5377 if we understand why we stopped, the result is not null.
5378
5379 Each element of the chain refers to a particular breakpoint or
5380 watchpoint at which we have stopped. (We may have stopped for
5381 several reasons concurrently.)
5382
5383 Each element of the chain has valid next, breakpoint_at,
5384 commands, FIXME??? fields. */
5385
5386 bpstat
5387 bpstat_stop_status (const address_space *aspace,
5388 CORE_ADDR bp_addr, ptid_t ptid,
5389 const struct target_waitstatus *ws)
5390 {
5391 struct breakpoint *b = NULL;
5392 struct bp_location *bl;
5393 struct bp_location *loc;
5394 /* First item of allocated bpstat's. */
5395 bpstat bs_head = NULL, *bs_link = &bs_head;
5396 /* Pointer to the last thing in the chain currently. */
5397 bpstat bs;
5398 int ix;
5399 int need_remove_insert;
5400 int removed_any;
5401
5402 /* First, build the bpstat chain with locations that explain a
5403 target stop, while being careful to not set the target running,
5404 as that may invalidate locations (in particular watchpoint
5405 locations are recreated). Resuming will happen here with
5406 breakpoint conditions or watchpoint expressions that include
5407 inferior function calls. */
5408
5409 ALL_BREAKPOINTS (b)
5410 {
5411 if (!breakpoint_enabled (b))
5412 continue;
5413
5414 for (bl = b->loc; bl != NULL; bl = bl->next)
5415 {
5416 /* For hardware watchpoints, we look only at the first
5417 location. The watchpoint_check function will work on the
5418 entire expression, not the individual locations. For
5419 read watchpoints, the watchpoints_triggered function has
5420 checked all locations already. */
5421 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5422 break;
5423
5424 if (!bl->enabled || bl->shlib_disabled)
5425 continue;
5426
5427 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5428 continue;
5429
5430 /* Come here if it's a watchpoint, or if the break address
5431 matches. */
5432
5433 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5434 explain stop. */
5435
5436 /* Assume we stop. Should we find a watchpoint that is not
5437 actually triggered, or if the condition of the breakpoint
5438 evaluates as false, we'll reset 'stop' to 0. */
5439 bs->stop = 1;
5440 bs->print = 1;
5441
5442 /* If this is a scope breakpoint, mark the associated
5443 watchpoint as triggered so that we will handle the
5444 out-of-scope event. We'll get to the watchpoint next
5445 iteration. */
5446 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5447 {
5448 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5449
5450 w->watchpoint_triggered = watch_triggered_yes;
5451 }
5452 }
5453 }
5454
5455 /* Check if a moribund breakpoint explains the stop. */
5456 if (!target_supports_stopped_by_sw_breakpoint ()
5457 || !target_supports_stopped_by_hw_breakpoint ())
5458 {
5459 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5460 {
5461 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5462 && need_moribund_for_location_type (loc))
5463 {
5464 bs = new bpstats (loc, &bs_link);
5465 /* For hits of moribund locations, we should just proceed. */
5466 bs->stop = 0;
5467 bs->print = 0;
5468 bs->print_it = print_it_noop;
5469 }
5470 }
5471 }
5472
5473 /* A bit of special processing for shlib breakpoints. We need to
5474 process solib loading here, so that the lists of loaded and
5475 unloaded libraries are correct before we handle "catch load" and
5476 "catch unload". */
5477 for (bs = bs_head; bs != NULL; bs = bs->next)
5478 {
5479 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5480 {
5481 handle_solib_event ();
5482 break;
5483 }
5484 }
5485
5486 /* Now go through the locations that caused the target to stop, and
5487 check whether we're interested in reporting this stop to higher
5488 layers, or whether we should resume the target transparently. */
5489
5490 removed_any = 0;
5491
5492 for (bs = bs_head; bs != NULL; bs = bs->next)
5493 {
5494 if (!bs->stop)
5495 continue;
5496
5497 b = bs->breakpoint_at;
5498 b->ops->check_status (bs);
5499 if (bs->stop)
5500 {
5501 bpstat_check_breakpoint_conditions (bs, ptid);
5502
5503 if (bs->stop)
5504 {
5505 ++(b->hit_count);
5506 observer_notify_breakpoint_modified (b);
5507
5508 /* We will stop here. */
5509 if (b->disposition == disp_disable)
5510 {
5511 --(b->enable_count);
5512 if (b->enable_count <= 0)
5513 b->enable_state = bp_disabled;
5514 removed_any = 1;
5515 }
5516 if (b->silent)
5517 bs->print = 0;
5518 bs->commands = b->commands;
5519 if (command_line_is_silent (bs->commands
5520 ? bs->commands.get () : NULL))
5521 bs->print = 0;
5522
5523 b->ops->after_condition_true (bs);
5524 }
5525
5526 }
5527
5528 /* Print nothing for this entry if we don't stop or don't
5529 print. */
5530 if (!bs->stop || !bs->print)
5531 bs->print_it = print_it_noop;
5532 }
5533
5534 /* If we aren't stopping, the value of some hardware watchpoint may
5535 not have changed, but the intermediate memory locations we are
5536 watching may have. Don't bother if we're stopping; this will get
5537 done later. */
5538 need_remove_insert = 0;
5539 if (! bpstat_causes_stop (bs_head))
5540 for (bs = bs_head; bs != NULL; bs = bs->next)
5541 if (!bs->stop
5542 && bs->breakpoint_at
5543 && is_hardware_watchpoint (bs->breakpoint_at))
5544 {
5545 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5546
5547 update_watchpoint (w, 0 /* don't reparse. */);
5548 need_remove_insert = 1;
5549 }
5550
5551 if (need_remove_insert)
5552 update_global_location_list (UGLL_MAY_INSERT);
5553 else if (removed_any)
5554 update_global_location_list (UGLL_DONT_INSERT);
5555
5556 return bs_head;
5557 }
5558
5559 static void
5560 handle_jit_event (void)
5561 {
5562 struct frame_info *frame;
5563 struct gdbarch *gdbarch;
5564
5565 if (debug_infrun)
5566 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5567
5568 /* Switch terminal for any messages produced by
5569 breakpoint_re_set. */
5570 target_terminal::ours_for_output ();
5571
5572 frame = get_current_frame ();
5573 gdbarch = get_frame_arch (frame);
5574
5575 jit_event_handler (gdbarch);
5576
5577 target_terminal::inferior ();
5578 }
5579
5580 /* Prepare WHAT final decision for infrun. */
5581
5582 /* Decide what infrun needs to do with this bpstat. */
5583
5584 struct bpstat_what
5585 bpstat_what (bpstat bs_head)
5586 {
5587 struct bpstat_what retval;
5588 bpstat bs;
5589
5590 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5591 retval.call_dummy = STOP_NONE;
5592 retval.is_longjmp = 0;
5593
5594 for (bs = bs_head; bs != NULL; bs = bs->next)
5595 {
5596 /* Extract this BS's action. After processing each BS, we check
5597 if its action overrides all we've seem so far. */
5598 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5599 enum bptype bptype;
5600
5601 if (bs->breakpoint_at == NULL)
5602 {
5603 /* I suspect this can happen if it was a momentary
5604 breakpoint which has since been deleted. */
5605 bptype = bp_none;
5606 }
5607 else
5608 bptype = bs->breakpoint_at->type;
5609
5610 switch (bptype)
5611 {
5612 case bp_none:
5613 break;
5614 case bp_breakpoint:
5615 case bp_hardware_breakpoint:
5616 case bp_single_step:
5617 case bp_until:
5618 case bp_finish:
5619 case bp_shlib_event:
5620 if (bs->stop)
5621 {
5622 if (bs->print)
5623 this_action = BPSTAT_WHAT_STOP_NOISY;
5624 else
5625 this_action = BPSTAT_WHAT_STOP_SILENT;
5626 }
5627 else
5628 this_action = BPSTAT_WHAT_SINGLE;
5629 break;
5630 case bp_watchpoint:
5631 case bp_hardware_watchpoint:
5632 case bp_read_watchpoint:
5633 case bp_access_watchpoint:
5634 if (bs->stop)
5635 {
5636 if (bs->print)
5637 this_action = BPSTAT_WHAT_STOP_NOISY;
5638 else
5639 this_action = BPSTAT_WHAT_STOP_SILENT;
5640 }
5641 else
5642 {
5643 /* There was a watchpoint, but we're not stopping.
5644 This requires no further action. */
5645 }
5646 break;
5647 case bp_longjmp:
5648 case bp_longjmp_call_dummy:
5649 case bp_exception:
5650 if (bs->stop)
5651 {
5652 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5653 retval.is_longjmp = bptype != bp_exception;
5654 }
5655 else
5656 this_action = BPSTAT_WHAT_SINGLE;
5657 break;
5658 case bp_longjmp_resume:
5659 case bp_exception_resume:
5660 if (bs->stop)
5661 {
5662 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5663 retval.is_longjmp = bptype == bp_longjmp_resume;
5664 }
5665 else
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 break;
5668 case bp_step_resume:
5669 if (bs->stop)
5670 this_action = BPSTAT_WHAT_STEP_RESUME;
5671 else
5672 {
5673 /* It is for the wrong frame. */
5674 this_action = BPSTAT_WHAT_SINGLE;
5675 }
5676 break;
5677 case bp_hp_step_resume:
5678 if (bs->stop)
5679 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5680 else
5681 {
5682 /* It is for the wrong frame. */
5683 this_action = BPSTAT_WHAT_SINGLE;
5684 }
5685 break;
5686 case bp_watchpoint_scope:
5687 case bp_thread_event:
5688 case bp_overlay_event:
5689 case bp_longjmp_master:
5690 case bp_std_terminate_master:
5691 case bp_exception_master:
5692 this_action = BPSTAT_WHAT_SINGLE;
5693 break;
5694 case bp_catchpoint:
5695 if (bs->stop)
5696 {
5697 if (bs->print)
5698 this_action = BPSTAT_WHAT_STOP_NOISY;
5699 else
5700 this_action = BPSTAT_WHAT_STOP_SILENT;
5701 }
5702 else
5703 {
5704 /* There was a catchpoint, but we're not stopping.
5705 This requires no further action. */
5706 }
5707 break;
5708 case bp_jit_event:
5709 this_action = BPSTAT_WHAT_SINGLE;
5710 break;
5711 case bp_call_dummy:
5712 /* Make sure the action is stop (silent or noisy),
5713 so infrun.c pops the dummy frame. */
5714 retval.call_dummy = STOP_STACK_DUMMY;
5715 this_action = BPSTAT_WHAT_STOP_SILENT;
5716 break;
5717 case bp_std_terminate:
5718 /* Make sure the action is stop (silent or noisy),
5719 so infrun.c pops the dummy frame. */
5720 retval.call_dummy = STOP_STD_TERMINATE;
5721 this_action = BPSTAT_WHAT_STOP_SILENT;
5722 break;
5723 case bp_tracepoint:
5724 case bp_fast_tracepoint:
5725 case bp_static_tracepoint:
5726 /* Tracepoint hits should not be reported back to GDB, and
5727 if one got through somehow, it should have been filtered
5728 out already. */
5729 internal_error (__FILE__, __LINE__,
5730 _("bpstat_what: tracepoint encountered"));
5731 break;
5732 case bp_gnu_ifunc_resolver:
5733 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5734 this_action = BPSTAT_WHAT_SINGLE;
5735 break;
5736 case bp_gnu_ifunc_resolver_return:
5737 /* The breakpoint will be removed, execution will restart from the
5738 PC of the former breakpoint. */
5739 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5740 break;
5741
5742 case bp_dprintf:
5743 if (bs->stop)
5744 this_action = BPSTAT_WHAT_STOP_SILENT;
5745 else
5746 this_action = BPSTAT_WHAT_SINGLE;
5747 break;
5748
5749 default:
5750 internal_error (__FILE__, __LINE__,
5751 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5752 }
5753
5754 retval.main_action = std::max (retval.main_action, this_action);
5755 }
5756
5757 return retval;
5758 }
5759
5760 void
5761 bpstat_run_callbacks (bpstat bs_head)
5762 {
5763 bpstat bs;
5764
5765 for (bs = bs_head; bs != NULL; bs = bs->next)
5766 {
5767 struct breakpoint *b = bs->breakpoint_at;
5768
5769 if (b == NULL)
5770 continue;
5771 switch (b->type)
5772 {
5773 case bp_jit_event:
5774 handle_jit_event ();
5775 break;
5776 case bp_gnu_ifunc_resolver:
5777 gnu_ifunc_resolver_stop (b);
5778 break;
5779 case bp_gnu_ifunc_resolver_return:
5780 gnu_ifunc_resolver_return_stop (b);
5781 break;
5782 }
5783 }
5784 }
5785
5786 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5787 without hardware support). This isn't related to a specific bpstat,
5788 just to things like whether watchpoints are set. */
5789
5790 int
5791 bpstat_should_step (void)
5792 {
5793 struct breakpoint *b;
5794
5795 ALL_BREAKPOINTS (b)
5796 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5797 return 1;
5798 return 0;
5799 }
5800
5801 int
5802 bpstat_causes_stop (bpstat bs)
5803 {
5804 for (; bs != NULL; bs = bs->next)
5805 if (bs->stop)
5806 return 1;
5807
5808 return 0;
5809 }
5810
5811 \f
5812
5813 /* Compute a string of spaces suitable to indent the next line
5814 so it starts at the position corresponding to the table column
5815 named COL_NAME in the currently active table of UIOUT. */
5816
5817 static char *
5818 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5819 {
5820 static char wrap_indent[80];
5821 int i, total_width, width, align;
5822 const char *text;
5823
5824 total_width = 0;
5825 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5826 {
5827 if (strcmp (text, col_name) == 0)
5828 {
5829 gdb_assert (total_width < sizeof wrap_indent);
5830 memset (wrap_indent, ' ', total_width);
5831 wrap_indent[total_width] = 0;
5832
5833 return wrap_indent;
5834 }
5835
5836 total_width += width + 1;
5837 }
5838
5839 return NULL;
5840 }
5841
5842 /* Determine if the locations of this breakpoint will have their conditions
5843 evaluated by the target, host or a mix of both. Returns the following:
5844
5845 "host": Host evals condition.
5846 "host or target": Host or Target evals condition.
5847 "target": Target evals condition.
5848 */
5849
5850 static const char *
5851 bp_condition_evaluator (struct breakpoint *b)
5852 {
5853 struct bp_location *bl;
5854 char host_evals = 0;
5855 char target_evals = 0;
5856
5857 if (!b)
5858 return NULL;
5859
5860 if (!is_breakpoint (b))
5861 return NULL;
5862
5863 if (gdb_evaluates_breakpoint_condition_p ()
5864 || !target_supports_evaluation_of_breakpoint_conditions ())
5865 return condition_evaluation_host;
5866
5867 for (bl = b->loc; bl; bl = bl->next)
5868 {
5869 if (bl->cond_bytecode)
5870 target_evals++;
5871 else
5872 host_evals++;
5873 }
5874
5875 if (host_evals && target_evals)
5876 return condition_evaluation_both;
5877 else if (target_evals)
5878 return condition_evaluation_target;
5879 else
5880 return condition_evaluation_host;
5881 }
5882
5883 /* Determine the breakpoint location's condition evaluator. This is
5884 similar to bp_condition_evaluator, but for locations. */
5885
5886 static const char *
5887 bp_location_condition_evaluator (struct bp_location *bl)
5888 {
5889 if (bl && !is_breakpoint (bl->owner))
5890 return NULL;
5891
5892 if (gdb_evaluates_breakpoint_condition_p ()
5893 || !target_supports_evaluation_of_breakpoint_conditions ())
5894 return condition_evaluation_host;
5895
5896 if (bl && bl->cond_bytecode)
5897 return condition_evaluation_target;
5898 else
5899 return condition_evaluation_host;
5900 }
5901
5902 /* Print the LOC location out of the list of B->LOC locations. */
5903
5904 static void
5905 print_breakpoint_location (struct breakpoint *b,
5906 struct bp_location *loc)
5907 {
5908 struct ui_out *uiout = current_uiout;
5909
5910 scoped_restore_current_program_space restore_pspace;
5911
5912 if (loc != NULL && loc->shlib_disabled)
5913 loc = NULL;
5914
5915 if (loc != NULL)
5916 set_current_program_space (loc->pspace);
5917
5918 if (b->display_canonical)
5919 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5920 else if (loc && loc->symtab)
5921 {
5922 const struct symbol *sym = loc->symbol;
5923
5924 if (sym == NULL)
5925 sym = find_pc_sect_function (loc->address, loc->section);
5926
5927 if (sym)
5928 {
5929 uiout->text ("in ");
5930 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5931 uiout->text (" ");
5932 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5933 uiout->text ("at ");
5934 }
5935 uiout->field_string ("file",
5936 symtab_to_filename_for_display (loc->symtab));
5937 uiout->text (":");
5938
5939 if (uiout->is_mi_like_p ())
5940 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5941
5942 uiout->field_int ("line", loc->line_number);
5943 }
5944 else if (loc)
5945 {
5946 string_file stb;
5947
5948 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5949 demangle, "");
5950 uiout->field_stream ("at", stb);
5951 }
5952 else
5953 {
5954 uiout->field_string ("pending",
5955 event_location_to_string (b->location.get ()));
5956 /* If extra_string is available, it could be holding a condition
5957 or dprintf arguments. In either case, make sure it is printed,
5958 too, but only for non-MI streams. */
5959 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5960 {
5961 if (b->type == bp_dprintf)
5962 uiout->text (",");
5963 else
5964 uiout->text (" ");
5965 uiout->text (b->extra_string);
5966 }
5967 }
5968
5969 if (loc && is_breakpoint (b)
5970 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5971 && bp_condition_evaluator (b) == condition_evaluation_both)
5972 {
5973 uiout->text (" (");
5974 uiout->field_string ("evaluated-by",
5975 bp_location_condition_evaluator (loc));
5976 uiout->text (")");
5977 }
5978 }
5979
5980 static const char *
5981 bptype_string (enum bptype type)
5982 {
5983 struct ep_type_description
5984 {
5985 enum bptype type;
5986 const char *description;
5987 };
5988 static struct ep_type_description bptypes[] =
5989 {
5990 {bp_none, "?deleted?"},
5991 {bp_breakpoint, "breakpoint"},
5992 {bp_hardware_breakpoint, "hw breakpoint"},
5993 {bp_single_step, "sw single-step"},
5994 {bp_until, "until"},
5995 {bp_finish, "finish"},
5996 {bp_watchpoint, "watchpoint"},
5997 {bp_hardware_watchpoint, "hw watchpoint"},
5998 {bp_read_watchpoint, "read watchpoint"},
5999 {bp_access_watchpoint, "acc watchpoint"},
6000 {bp_longjmp, "longjmp"},
6001 {bp_longjmp_resume, "longjmp resume"},
6002 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6003 {bp_exception, "exception"},
6004 {bp_exception_resume, "exception resume"},
6005 {bp_step_resume, "step resume"},
6006 {bp_hp_step_resume, "high-priority step resume"},
6007 {bp_watchpoint_scope, "watchpoint scope"},
6008 {bp_call_dummy, "call dummy"},
6009 {bp_std_terminate, "std::terminate"},
6010 {bp_shlib_event, "shlib events"},
6011 {bp_thread_event, "thread events"},
6012 {bp_overlay_event, "overlay events"},
6013 {bp_longjmp_master, "longjmp master"},
6014 {bp_std_terminate_master, "std::terminate master"},
6015 {bp_exception_master, "exception master"},
6016 {bp_catchpoint, "catchpoint"},
6017 {bp_tracepoint, "tracepoint"},
6018 {bp_fast_tracepoint, "fast tracepoint"},
6019 {bp_static_tracepoint, "static tracepoint"},
6020 {bp_dprintf, "dprintf"},
6021 {bp_jit_event, "jit events"},
6022 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6023 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6024 };
6025
6026 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6027 || ((int) type != bptypes[(int) type].type))
6028 internal_error (__FILE__, __LINE__,
6029 _("bptypes table does not describe type #%d."),
6030 (int) type);
6031
6032 return bptypes[(int) type].description;
6033 }
6034
6035 /* For MI, output a field named 'thread-groups' with a list as the value.
6036 For CLI, prefix the list with the string 'inf'. */
6037
6038 static void
6039 output_thread_groups (struct ui_out *uiout,
6040 const char *field_name,
6041 VEC(int) *inf_num,
6042 int mi_only)
6043 {
6044 int is_mi = uiout->is_mi_like_p ();
6045 int inf;
6046 int i;
6047
6048 /* For backward compatibility, don't display inferiors in CLI unless
6049 there are several. Always display them for MI. */
6050 if (!is_mi && mi_only)
6051 return;
6052
6053 ui_out_emit_list list_emitter (uiout, field_name);
6054
6055 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6056 {
6057 if (is_mi)
6058 {
6059 char mi_group[10];
6060
6061 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6062 uiout->field_string (NULL, mi_group);
6063 }
6064 else
6065 {
6066 if (i == 0)
6067 uiout->text (" inf ");
6068 else
6069 uiout->text (", ");
6070
6071 uiout->text (plongest (inf));
6072 }
6073 }
6074 }
6075
6076 /* Print B to gdb_stdout. */
6077
6078 static void
6079 print_one_breakpoint_location (struct breakpoint *b,
6080 struct bp_location *loc,
6081 int loc_number,
6082 struct bp_location **last_loc,
6083 int allflag)
6084 {
6085 struct command_line *l;
6086 static char bpenables[] = "nynny";
6087
6088 struct ui_out *uiout = current_uiout;
6089 int header_of_multiple = 0;
6090 int part_of_multiple = (loc != NULL);
6091 struct value_print_options opts;
6092
6093 get_user_print_options (&opts);
6094
6095 gdb_assert (!loc || loc_number != 0);
6096 /* See comment in print_one_breakpoint concerning treatment of
6097 breakpoints with single disabled location. */
6098 if (loc == NULL
6099 && (b->loc != NULL
6100 && (b->loc->next != NULL || !b->loc->enabled)))
6101 header_of_multiple = 1;
6102 if (loc == NULL)
6103 loc = b->loc;
6104
6105 annotate_record ();
6106
6107 /* 1 */
6108 annotate_field (0);
6109 if (part_of_multiple)
6110 {
6111 char *formatted;
6112 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6113 uiout->field_string ("number", formatted);
6114 xfree (formatted);
6115 }
6116 else
6117 {
6118 uiout->field_int ("number", b->number);
6119 }
6120
6121 /* 2 */
6122 annotate_field (1);
6123 if (part_of_multiple)
6124 uiout->field_skip ("type");
6125 else
6126 uiout->field_string ("type", bptype_string (b->type));
6127
6128 /* 3 */
6129 annotate_field (2);
6130 if (part_of_multiple)
6131 uiout->field_skip ("disp");
6132 else
6133 uiout->field_string ("disp", bpdisp_text (b->disposition));
6134
6135
6136 /* 4 */
6137 annotate_field (3);
6138 if (part_of_multiple)
6139 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6140 else
6141 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6142 uiout->spaces (2);
6143
6144
6145 /* 5 and 6 */
6146 if (b->ops != NULL && b->ops->print_one != NULL)
6147 {
6148 /* Although the print_one can possibly print all locations,
6149 calling it here is not likely to get any nice result. So,
6150 make sure there's just one location. */
6151 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6152 b->ops->print_one (b, last_loc);
6153 }
6154 else
6155 switch (b->type)
6156 {
6157 case bp_none:
6158 internal_error (__FILE__, __LINE__,
6159 _("print_one_breakpoint: bp_none encountered\n"));
6160 break;
6161
6162 case bp_watchpoint:
6163 case bp_hardware_watchpoint:
6164 case bp_read_watchpoint:
6165 case bp_access_watchpoint:
6166 {
6167 struct watchpoint *w = (struct watchpoint *) b;
6168
6169 /* Field 4, the address, is omitted (which makes the columns
6170 not line up too nicely with the headers, but the effect
6171 is relatively readable). */
6172 if (opts.addressprint)
6173 uiout->field_skip ("addr");
6174 annotate_field (5);
6175 uiout->field_string ("what", w->exp_string);
6176 }
6177 break;
6178
6179 case bp_breakpoint:
6180 case bp_hardware_breakpoint:
6181 case bp_single_step:
6182 case bp_until:
6183 case bp_finish:
6184 case bp_longjmp:
6185 case bp_longjmp_resume:
6186 case bp_longjmp_call_dummy:
6187 case bp_exception:
6188 case bp_exception_resume:
6189 case bp_step_resume:
6190 case bp_hp_step_resume:
6191 case bp_watchpoint_scope:
6192 case bp_call_dummy:
6193 case bp_std_terminate:
6194 case bp_shlib_event:
6195 case bp_thread_event:
6196 case bp_overlay_event:
6197 case bp_longjmp_master:
6198 case bp_std_terminate_master:
6199 case bp_exception_master:
6200 case bp_tracepoint:
6201 case bp_fast_tracepoint:
6202 case bp_static_tracepoint:
6203 case bp_dprintf:
6204 case bp_jit_event:
6205 case bp_gnu_ifunc_resolver:
6206 case bp_gnu_ifunc_resolver_return:
6207 if (opts.addressprint)
6208 {
6209 annotate_field (4);
6210 if (header_of_multiple)
6211 uiout->field_string ("addr", "<MULTIPLE>");
6212 else if (b->loc == NULL || loc->shlib_disabled)
6213 uiout->field_string ("addr", "<PENDING>");
6214 else
6215 uiout->field_core_addr ("addr",
6216 loc->gdbarch, loc->address);
6217 }
6218 annotate_field (5);
6219 if (!header_of_multiple)
6220 print_breakpoint_location (b, loc);
6221 if (b->loc)
6222 *last_loc = b->loc;
6223 break;
6224 }
6225
6226
6227 if (loc != NULL && !header_of_multiple)
6228 {
6229 struct inferior *inf;
6230 VEC(int) *inf_num = NULL;
6231 int mi_only = 1;
6232
6233 ALL_INFERIORS (inf)
6234 {
6235 if (inf->pspace == loc->pspace)
6236 VEC_safe_push (int, inf_num, inf->num);
6237 }
6238
6239 /* For backward compatibility, don't display inferiors in CLI unless
6240 there are several. Always display for MI. */
6241 if (allflag
6242 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6243 && (number_of_program_spaces () > 1
6244 || number_of_inferiors () > 1)
6245 /* LOC is for existing B, it cannot be in
6246 moribund_locations and thus having NULL OWNER. */
6247 && loc->owner->type != bp_catchpoint))
6248 mi_only = 0;
6249 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6250 VEC_free (int, inf_num);
6251 }
6252
6253 if (!part_of_multiple)
6254 {
6255 if (b->thread != -1)
6256 {
6257 /* FIXME: This seems to be redundant and lost here; see the
6258 "stop only in" line a little further down. */
6259 uiout->text (" thread ");
6260 uiout->field_int ("thread", b->thread);
6261 }
6262 else if (b->task != 0)
6263 {
6264 uiout->text (" task ");
6265 uiout->field_int ("task", b->task);
6266 }
6267 }
6268
6269 uiout->text ("\n");
6270
6271 if (!part_of_multiple)
6272 b->ops->print_one_detail (b, uiout);
6273
6274 if (part_of_multiple && frame_id_p (b->frame_id))
6275 {
6276 annotate_field (6);
6277 uiout->text ("\tstop only in stack frame at ");
6278 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6279 the frame ID. */
6280 uiout->field_core_addr ("frame",
6281 b->gdbarch, b->frame_id.stack_addr);
6282 uiout->text ("\n");
6283 }
6284
6285 if (!part_of_multiple && b->cond_string)
6286 {
6287 annotate_field (7);
6288 if (is_tracepoint (b))
6289 uiout->text ("\ttrace only if ");
6290 else
6291 uiout->text ("\tstop only if ");
6292 uiout->field_string ("cond", b->cond_string);
6293
6294 /* Print whether the target is doing the breakpoint's condition
6295 evaluation. If GDB is doing the evaluation, don't print anything. */
6296 if (is_breakpoint (b)
6297 && breakpoint_condition_evaluation_mode ()
6298 == condition_evaluation_target)
6299 {
6300 uiout->text (" (");
6301 uiout->field_string ("evaluated-by",
6302 bp_condition_evaluator (b));
6303 uiout->text (" evals)");
6304 }
6305 uiout->text ("\n");
6306 }
6307
6308 if (!part_of_multiple && b->thread != -1)
6309 {
6310 /* FIXME should make an annotation for this. */
6311 uiout->text ("\tstop only in thread ");
6312 if (uiout->is_mi_like_p ())
6313 uiout->field_int ("thread", b->thread);
6314 else
6315 {
6316 struct thread_info *thr = find_thread_global_id (b->thread);
6317
6318 uiout->field_string ("thread", print_thread_id (thr));
6319 }
6320 uiout->text ("\n");
6321 }
6322
6323 if (!part_of_multiple)
6324 {
6325 if (b->hit_count)
6326 {
6327 /* FIXME should make an annotation for this. */
6328 if (is_catchpoint (b))
6329 uiout->text ("\tcatchpoint");
6330 else if (is_tracepoint (b))
6331 uiout->text ("\ttracepoint");
6332 else
6333 uiout->text ("\tbreakpoint");
6334 uiout->text (" already hit ");
6335 uiout->field_int ("times", b->hit_count);
6336 if (b->hit_count == 1)
6337 uiout->text (" time\n");
6338 else
6339 uiout->text (" times\n");
6340 }
6341 else
6342 {
6343 /* Output the count also if it is zero, but only if this is mi. */
6344 if (uiout->is_mi_like_p ())
6345 uiout->field_int ("times", b->hit_count);
6346 }
6347 }
6348
6349 if (!part_of_multiple && b->ignore_count)
6350 {
6351 annotate_field (8);
6352 uiout->text ("\tignore next ");
6353 uiout->field_int ("ignore", b->ignore_count);
6354 uiout->text (" hits\n");
6355 }
6356
6357 /* Note that an enable count of 1 corresponds to "enable once"
6358 behavior, which is reported by the combination of enablement and
6359 disposition, so we don't need to mention it here. */
6360 if (!part_of_multiple && b->enable_count > 1)
6361 {
6362 annotate_field (8);
6363 uiout->text ("\tdisable after ");
6364 /* Tweak the wording to clarify that ignore and enable counts
6365 are distinct, and have additive effect. */
6366 if (b->ignore_count)
6367 uiout->text ("additional ");
6368 else
6369 uiout->text ("next ");
6370 uiout->field_int ("enable", b->enable_count);
6371 uiout->text (" hits\n");
6372 }
6373
6374 if (!part_of_multiple && is_tracepoint (b))
6375 {
6376 struct tracepoint *tp = (struct tracepoint *) b;
6377
6378 if (tp->traceframe_usage)
6379 {
6380 uiout->text ("\ttrace buffer usage ");
6381 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6382 uiout->text (" bytes\n");
6383 }
6384 }
6385
6386 l = b->commands ? b->commands.get () : NULL;
6387 if (!part_of_multiple && l)
6388 {
6389 annotate_field (9);
6390 ui_out_emit_tuple tuple_emitter (uiout, "script");
6391 print_command_lines (uiout, l, 4);
6392 }
6393
6394 if (is_tracepoint (b))
6395 {
6396 struct tracepoint *t = (struct tracepoint *) b;
6397
6398 if (!part_of_multiple && t->pass_count)
6399 {
6400 annotate_field (10);
6401 uiout->text ("\tpass count ");
6402 uiout->field_int ("pass", t->pass_count);
6403 uiout->text (" \n");
6404 }
6405
6406 /* Don't display it when tracepoint or tracepoint location is
6407 pending. */
6408 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6409 {
6410 annotate_field (11);
6411
6412 if (uiout->is_mi_like_p ())
6413 uiout->field_string ("installed",
6414 loc->inserted ? "y" : "n");
6415 else
6416 {
6417 if (loc->inserted)
6418 uiout->text ("\t");
6419 else
6420 uiout->text ("\tnot ");
6421 uiout->text ("installed on target\n");
6422 }
6423 }
6424 }
6425
6426 if (uiout->is_mi_like_p () && !part_of_multiple)
6427 {
6428 if (is_watchpoint (b))
6429 {
6430 struct watchpoint *w = (struct watchpoint *) b;
6431
6432 uiout->field_string ("original-location", w->exp_string);
6433 }
6434 else if (b->location != NULL
6435 && event_location_to_string (b->location.get ()) != NULL)
6436 uiout->field_string ("original-location",
6437 event_location_to_string (b->location.get ()));
6438 }
6439 }
6440
6441 static void
6442 print_one_breakpoint (struct breakpoint *b,
6443 struct bp_location **last_loc,
6444 int allflag)
6445 {
6446 struct ui_out *uiout = current_uiout;
6447
6448 {
6449 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6450
6451 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6452 }
6453
6454 /* If this breakpoint has custom print function,
6455 it's already printed. Otherwise, print individual
6456 locations, if any. */
6457 if (b->ops == NULL || b->ops->print_one == NULL)
6458 {
6459 /* If breakpoint has a single location that is disabled, we
6460 print it as if it had several locations, since otherwise it's
6461 hard to represent "breakpoint enabled, location disabled"
6462 situation.
6463
6464 Note that while hardware watchpoints have several locations
6465 internally, that's not a property exposed to user. */
6466 if (b->loc
6467 && !is_hardware_watchpoint (b)
6468 && (b->loc->next || !b->loc->enabled))
6469 {
6470 struct bp_location *loc;
6471 int n = 1;
6472
6473 for (loc = b->loc; loc; loc = loc->next, ++n)
6474 {
6475 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6476 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6477 }
6478 }
6479 }
6480 }
6481
6482 static int
6483 breakpoint_address_bits (struct breakpoint *b)
6484 {
6485 int print_address_bits = 0;
6486 struct bp_location *loc;
6487
6488 /* Software watchpoints that aren't watching memory don't have an
6489 address to print. */
6490 if (is_no_memory_software_watchpoint (b))
6491 return 0;
6492
6493 for (loc = b->loc; loc; loc = loc->next)
6494 {
6495 int addr_bit;
6496
6497 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6498 if (addr_bit > print_address_bits)
6499 print_address_bits = addr_bit;
6500 }
6501
6502 return print_address_bits;
6503 }
6504
6505 /* See breakpoint.h. */
6506
6507 void
6508 print_breakpoint (breakpoint *b)
6509 {
6510 struct bp_location *dummy_loc = NULL;
6511 print_one_breakpoint (b, &dummy_loc, 0);
6512 }
6513
6514 /* Return true if this breakpoint was set by the user, false if it is
6515 internal or momentary. */
6516
6517 int
6518 user_breakpoint_p (struct breakpoint *b)
6519 {
6520 return b->number > 0;
6521 }
6522
6523 /* See breakpoint.h. */
6524
6525 int
6526 pending_breakpoint_p (struct breakpoint *b)
6527 {
6528 return b->loc == NULL;
6529 }
6530
6531 /* Print information on user settable breakpoint (watchpoint, etc)
6532 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6533 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6534 FILTER is non-NULL, call it on each breakpoint and only include the
6535 ones for which it returns non-zero. Return the total number of
6536 breakpoints listed. */
6537
6538 static int
6539 breakpoint_1 (const char *args, int allflag,
6540 int (*filter) (const struct breakpoint *))
6541 {
6542 struct breakpoint *b;
6543 struct bp_location *last_loc = NULL;
6544 int nr_printable_breakpoints;
6545 struct value_print_options opts;
6546 int print_address_bits = 0;
6547 int print_type_col_width = 14;
6548 struct ui_out *uiout = current_uiout;
6549
6550 get_user_print_options (&opts);
6551
6552 /* Compute the number of rows in the table, as well as the size
6553 required for address fields. */
6554 nr_printable_breakpoints = 0;
6555 ALL_BREAKPOINTS (b)
6556 {
6557 /* If we have a filter, only list the breakpoints it accepts. */
6558 if (filter && !filter (b))
6559 continue;
6560
6561 /* If we have an "args" string, it is a list of breakpoints to
6562 accept. Skip the others. */
6563 if (args != NULL && *args != '\0')
6564 {
6565 if (allflag && parse_and_eval_long (args) != b->number)
6566 continue;
6567 if (!allflag && !number_is_in_list (args, b->number))
6568 continue;
6569 }
6570
6571 if (allflag || user_breakpoint_p (b))
6572 {
6573 int addr_bit, type_len;
6574
6575 addr_bit = breakpoint_address_bits (b);
6576 if (addr_bit > print_address_bits)
6577 print_address_bits = addr_bit;
6578
6579 type_len = strlen (bptype_string (b->type));
6580 if (type_len > print_type_col_width)
6581 print_type_col_width = type_len;
6582
6583 nr_printable_breakpoints++;
6584 }
6585 }
6586
6587 {
6588 ui_out_emit_table table_emitter (uiout,
6589 opts.addressprint ? 6 : 5,
6590 nr_printable_breakpoints,
6591 "BreakpointTable");
6592
6593 if (nr_printable_breakpoints > 0)
6594 annotate_breakpoints_headers ();
6595 if (nr_printable_breakpoints > 0)
6596 annotate_field (0);
6597 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6598 if (nr_printable_breakpoints > 0)
6599 annotate_field (1);
6600 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6601 if (nr_printable_breakpoints > 0)
6602 annotate_field (2);
6603 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6604 if (nr_printable_breakpoints > 0)
6605 annotate_field (3);
6606 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6607 if (opts.addressprint)
6608 {
6609 if (nr_printable_breakpoints > 0)
6610 annotate_field (4);
6611 if (print_address_bits <= 32)
6612 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6613 else
6614 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6615 }
6616 if (nr_printable_breakpoints > 0)
6617 annotate_field (5);
6618 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6619 uiout->table_body ();
6620 if (nr_printable_breakpoints > 0)
6621 annotate_breakpoints_table ();
6622
6623 ALL_BREAKPOINTS (b)
6624 {
6625 QUIT;
6626 /* If we have a filter, only list the breakpoints it accepts. */
6627 if (filter && !filter (b))
6628 continue;
6629
6630 /* If we have an "args" string, it is a list of breakpoints to
6631 accept. Skip the others. */
6632
6633 if (args != NULL && *args != '\0')
6634 {
6635 if (allflag) /* maintenance info breakpoint */
6636 {
6637 if (parse_and_eval_long (args) != b->number)
6638 continue;
6639 }
6640 else /* all others */
6641 {
6642 if (!number_is_in_list (args, b->number))
6643 continue;
6644 }
6645 }
6646 /* We only print out user settable breakpoints unless the
6647 allflag is set. */
6648 if (allflag || user_breakpoint_p (b))
6649 print_one_breakpoint (b, &last_loc, allflag);
6650 }
6651 }
6652
6653 if (nr_printable_breakpoints == 0)
6654 {
6655 /* If there's a filter, let the caller decide how to report
6656 empty list. */
6657 if (!filter)
6658 {
6659 if (args == NULL || *args == '\0')
6660 uiout->message ("No breakpoints or watchpoints.\n");
6661 else
6662 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6663 args);
6664 }
6665 }
6666 else
6667 {
6668 if (last_loc && !server_command)
6669 set_next_address (last_loc->gdbarch, last_loc->address);
6670 }
6671
6672 /* FIXME? Should this be moved up so that it is only called when
6673 there have been breakpoints? */
6674 annotate_breakpoints_table_end ();
6675
6676 return nr_printable_breakpoints;
6677 }
6678
6679 /* Display the value of default-collect in a way that is generally
6680 compatible with the breakpoint list. */
6681
6682 static void
6683 default_collect_info (void)
6684 {
6685 struct ui_out *uiout = current_uiout;
6686
6687 /* If it has no value (which is frequently the case), say nothing; a
6688 message like "No default-collect." gets in user's face when it's
6689 not wanted. */
6690 if (!*default_collect)
6691 return;
6692
6693 /* The following phrase lines up nicely with per-tracepoint collect
6694 actions. */
6695 uiout->text ("default collect ");
6696 uiout->field_string ("default-collect", default_collect);
6697 uiout->text (" \n");
6698 }
6699
6700 static void
6701 info_breakpoints_command (const char *args, int from_tty)
6702 {
6703 breakpoint_1 (args, 0, NULL);
6704
6705 default_collect_info ();
6706 }
6707
6708 /* Temporary non-const overload. */
6709
6710 static void
6711 info_breakpoints_command (char *args, int from_tty)
6712 {
6713 info_breakpoints_command ((const char *) args, from_tty);
6714 }
6715
6716 static void
6717 info_watchpoints_command (char *args, int from_tty)
6718 {
6719 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6720 struct ui_out *uiout = current_uiout;
6721
6722 if (num_printed == 0)
6723 {
6724 if (args == NULL || *args == '\0')
6725 uiout->message ("No watchpoints.\n");
6726 else
6727 uiout->message ("No watchpoint matching '%s'.\n", args);
6728 }
6729 }
6730
6731 static void
6732 maintenance_info_breakpoints (const char *args, int from_tty)
6733 {
6734 breakpoint_1 (args, 1, NULL);
6735
6736 default_collect_info ();
6737 }
6738
6739 static int
6740 breakpoint_has_pc (struct breakpoint *b,
6741 struct program_space *pspace,
6742 CORE_ADDR pc, struct obj_section *section)
6743 {
6744 struct bp_location *bl = b->loc;
6745
6746 for (; bl; bl = bl->next)
6747 {
6748 if (bl->pspace == pspace
6749 && bl->address == pc
6750 && (!overlay_debugging || bl->section == section))
6751 return 1;
6752 }
6753 return 0;
6754 }
6755
6756 /* Print a message describing any user-breakpoints set at PC. This
6757 concerns with logical breakpoints, so we match program spaces, not
6758 address spaces. */
6759
6760 static void
6761 describe_other_breakpoints (struct gdbarch *gdbarch,
6762 struct program_space *pspace, CORE_ADDR pc,
6763 struct obj_section *section, int thread)
6764 {
6765 int others = 0;
6766 struct breakpoint *b;
6767
6768 ALL_BREAKPOINTS (b)
6769 others += (user_breakpoint_p (b)
6770 && breakpoint_has_pc (b, pspace, pc, section));
6771 if (others > 0)
6772 {
6773 if (others == 1)
6774 printf_filtered (_("Note: breakpoint "));
6775 else /* if (others == ???) */
6776 printf_filtered (_("Note: breakpoints "));
6777 ALL_BREAKPOINTS (b)
6778 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6779 {
6780 others--;
6781 printf_filtered ("%d", b->number);
6782 if (b->thread == -1 && thread != -1)
6783 printf_filtered (" (all threads)");
6784 else if (b->thread != -1)
6785 printf_filtered (" (thread %d)", b->thread);
6786 printf_filtered ("%s%s ",
6787 ((b->enable_state == bp_disabled
6788 || b->enable_state == bp_call_disabled)
6789 ? " (disabled)"
6790 : ""),
6791 (others > 1) ? ","
6792 : ((others == 1) ? " and" : ""));
6793 }
6794 printf_filtered (_("also set at pc "));
6795 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6796 printf_filtered (".\n");
6797 }
6798 }
6799 \f
6800
6801 /* Return true iff it is meaningful to use the address member of
6802 BPT locations. For some breakpoint types, the locations' address members
6803 are irrelevant and it makes no sense to attempt to compare them to other
6804 addresses (or use them for any other purpose either).
6805
6806 More specifically, each of the following breakpoint types will
6807 always have a zero valued location address and we don't want to mark
6808 breakpoints of any of these types to be a duplicate of an actual
6809 breakpoint location at address zero:
6810
6811 bp_watchpoint
6812 bp_catchpoint
6813
6814 */
6815
6816 static int
6817 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6818 {
6819 enum bptype type = bpt->type;
6820
6821 return (type != bp_watchpoint && type != bp_catchpoint);
6822 }
6823
6824 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6825 true if LOC1 and LOC2 represent the same watchpoint location. */
6826
6827 static int
6828 watchpoint_locations_match (struct bp_location *loc1,
6829 struct bp_location *loc2)
6830 {
6831 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6832 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6833
6834 /* Both of them must exist. */
6835 gdb_assert (w1 != NULL);
6836 gdb_assert (w2 != NULL);
6837
6838 /* If the target can evaluate the condition expression in hardware,
6839 then we we need to insert both watchpoints even if they are at
6840 the same place. Otherwise the watchpoint will only trigger when
6841 the condition of whichever watchpoint was inserted evaluates to
6842 true, not giving a chance for GDB to check the condition of the
6843 other watchpoint. */
6844 if ((w1->cond_exp
6845 && target_can_accel_watchpoint_condition (loc1->address,
6846 loc1->length,
6847 loc1->watchpoint_type,
6848 w1->cond_exp.get ()))
6849 || (w2->cond_exp
6850 && target_can_accel_watchpoint_condition (loc2->address,
6851 loc2->length,
6852 loc2->watchpoint_type,
6853 w2->cond_exp.get ())))
6854 return 0;
6855
6856 /* Note that this checks the owner's type, not the location's. In
6857 case the target does not support read watchpoints, but does
6858 support access watchpoints, we'll have bp_read_watchpoint
6859 watchpoints with hw_access locations. Those should be considered
6860 duplicates of hw_read locations. The hw_read locations will
6861 become hw_access locations later. */
6862 return (loc1->owner->type == loc2->owner->type
6863 && loc1->pspace->aspace == loc2->pspace->aspace
6864 && loc1->address == loc2->address
6865 && loc1->length == loc2->length);
6866 }
6867
6868 /* See breakpoint.h. */
6869
6870 int
6871 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6872 const address_space *aspace2, CORE_ADDR addr2)
6873 {
6874 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6875 || aspace1 == aspace2)
6876 && addr1 == addr2);
6877 }
6878
6879 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6880 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6881 matches ASPACE2. On targets that have global breakpoints, the address
6882 space doesn't really matter. */
6883
6884 static int
6885 breakpoint_address_match_range (const address_space *aspace1,
6886 CORE_ADDR addr1,
6887 int len1, const address_space *aspace2,
6888 CORE_ADDR addr2)
6889 {
6890 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6891 || aspace1 == aspace2)
6892 && addr2 >= addr1 && addr2 < addr1 + len1);
6893 }
6894
6895 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6896 a ranged breakpoint. In most targets, a match happens only if ASPACE
6897 matches the breakpoint's address space. On targets that have global
6898 breakpoints, the address space doesn't really matter. */
6899
6900 static int
6901 breakpoint_location_address_match (struct bp_location *bl,
6902 const address_space *aspace,
6903 CORE_ADDR addr)
6904 {
6905 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6906 aspace, addr)
6907 || (bl->length
6908 && breakpoint_address_match_range (bl->pspace->aspace,
6909 bl->address, bl->length,
6910 aspace, addr)));
6911 }
6912
6913 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6914 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6915 match happens only if ASPACE matches the breakpoint's address
6916 space. On targets that have global breakpoints, the address space
6917 doesn't really matter. */
6918
6919 static int
6920 breakpoint_location_address_range_overlap (struct bp_location *bl,
6921 const address_space *aspace,
6922 CORE_ADDR addr, int len)
6923 {
6924 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6925 || bl->pspace->aspace == aspace)
6926 {
6927 int bl_len = bl->length != 0 ? bl->length : 1;
6928
6929 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6930 return 1;
6931 }
6932 return 0;
6933 }
6934
6935 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6936 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6937 true, otherwise returns false. */
6938
6939 static int
6940 tracepoint_locations_match (struct bp_location *loc1,
6941 struct bp_location *loc2)
6942 {
6943 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6944 /* Since tracepoint locations are never duplicated with others', tracepoint
6945 locations at the same address of different tracepoints are regarded as
6946 different locations. */
6947 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6948 else
6949 return 0;
6950 }
6951
6952 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6953 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6954 represent the same location. */
6955
6956 static int
6957 breakpoint_locations_match (struct bp_location *loc1,
6958 struct bp_location *loc2)
6959 {
6960 int hw_point1, hw_point2;
6961
6962 /* Both of them must not be in moribund_locations. */
6963 gdb_assert (loc1->owner != NULL);
6964 gdb_assert (loc2->owner != NULL);
6965
6966 hw_point1 = is_hardware_watchpoint (loc1->owner);
6967 hw_point2 = is_hardware_watchpoint (loc2->owner);
6968
6969 if (hw_point1 != hw_point2)
6970 return 0;
6971 else if (hw_point1)
6972 return watchpoint_locations_match (loc1, loc2);
6973 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6974 return tracepoint_locations_match (loc1, loc2);
6975 else
6976 /* We compare bp_location.length in order to cover ranged breakpoints. */
6977 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6978 loc2->pspace->aspace, loc2->address)
6979 && loc1->length == loc2->length);
6980 }
6981
6982 static void
6983 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6984 int bnum, int have_bnum)
6985 {
6986 /* The longest string possibly returned by hex_string_custom
6987 is 50 chars. These must be at least that big for safety. */
6988 char astr1[64];
6989 char astr2[64];
6990
6991 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6992 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6993 if (have_bnum)
6994 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6995 bnum, astr1, astr2);
6996 else
6997 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6998 }
6999
7000 /* Adjust a breakpoint's address to account for architectural
7001 constraints on breakpoint placement. Return the adjusted address.
7002 Note: Very few targets require this kind of adjustment. For most
7003 targets, this function is simply the identity function. */
7004
7005 static CORE_ADDR
7006 adjust_breakpoint_address (struct gdbarch *gdbarch,
7007 CORE_ADDR bpaddr, enum bptype bptype)
7008 {
7009 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7010 {
7011 /* Very few targets need any kind of breakpoint adjustment. */
7012 return bpaddr;
7013 }
7014 else if (bptype == bp_watchpoint
7015 || bptype == bp_hardware_watchpoint
7016 || bptype == bp_read_watchpoint
7017 || bptype == bp_access_watchpoint
7018 || bptype == bp_catchpoint)
7019 {
7020 /* Watchpoints and the various bp_catch_* eventpoints should not
7021 have their addresses modified. */
7022 return bpaddr;
7023 }
7024 else if (bptype == bp_single_step)
7025 {
7026 /* Single-step breakpoints should not have their addresses
7027 modified. If there's any architectural constrain that
7028 applies to this address, then it should have already been
7029 taken into account when the breakpoint was created in the
7030 first place. If we didn't do this, stepping through e.g.,
7031 Thumb-2 IT blocks would break. */
7032 return bpaddr;
7033 }
7034 else
7035 {
7036 CORE_ADDR adjusted_bpaddr;
7037
7038 /* Some targets have architectural constraints on the placement
7039 of breakpoint instructions. Obtain the adjusted address. */
7040 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7041
7042 /* An adjusted breakpoint address can significantly alter
7043 a user's expectations. Print a warning if an adjustment
7044 is required. */
7045 if (adjusted_bpaddr != bpaddr)
7046 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7047
7048 return adjusted_bpaddr;
7049 }
7050 }
7051
7052 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7053 {
7054 bp_location *loc = this;
7055
7056 gdb_assert (ops != NULL);
7057
7058 loc->ops = ops;
7059 loc->owner = owner;
7060 loc->cond_bytecode = NULL;
7061 loc->shlib_disabled = 0;
7062 loc->enabled = 1;
7063
7064 switch (owner->type)
7065 {
7066 case bp_breakpoint:
7067 case bp_single_step:
7068 case bp_until:
7069 case bp_finish:
7070 case bp_longjmp:
7071 case bp_longjmp_resume:
7072 case bp_longjmp_call_dummy:
7073 case bp_exception:
7074 case bp_exception_resume:
7075 case bp_step_resume:
7076 case bp_hp_step_resume:
7077 case bp_watchpoint_scope:
7078 case bp_call_dummy:
7079 case bp_std_terminate:
7080 case bp_shlib_event:
7081 case bp_thread_event:
7082 case bp_overlay_event:
7083 case bp_jit_event:
7084 case bp_longjmp_master:
7085 case bp_std_terminate_master:
7086 case bp_exception_master:
7087 case bp_gnu_ifunc_resolver:
7088 case bp_gnu_ifunc_resolver_return:
7089 case bp_dprintf:
7090 loc->loc_type = bp_loc_software_breakpoint;
7091 mark_breakpoint_location_modified (loc);
7092 break;
7093 case bp_hardware_breakpoint:
7094 loc->loc_type = bp_loc_hardware_breakpoint;
7095 mark_breakpoint_location_modified (loc);
7096 break;
7097 case bp_hardware_watchpoint:
7098 case bp_read_watchpoint:
7099 case bp_access_watchpoint:
7100 loc->loc_type = bp_loc_hardware_watchpoint;
7101 break;
7102 case bp_watchpoint:
7103 case bp_catchpoint:
7104 case bp_tracepoint:
7105 case bp_fast_tracepoint:
7106 case bp_static_tracepoint:
7107 loc->loc_type = bp_loc_other;
7108 break;
7109 default:
7110 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7111 }
7112
7113 loc->refc = 1;
7114 }
7115
7116 /* Allocate a struct bp_location. */
7117
7118 static struct bp_location *
7119 allocate_bp_location (struct breakpoint *bpt)
7120 {
7121 return bpt->ops->allocate_location (bpt);
7122 }
7123
7124 static void
7125 free_bp_location (struct bp_location *loc)
7126 {
7127 loc->ops->dtor (loc);
7128 delete loc;
7129 }
7130
7131 /* Increment reference count. */
7132
7133 static void
7134 incref_bp_location (struct bp_location *bl)
7135 {
7136 ++bl->refc;
7137 }
7138
7139 /* Decrement reference count. If the reference count reaches 0,
7140 destroy the bp_location. Sets *BLP to NULL. */
7141
7142 static void
7143 decref_bp_location (struct bp_location **blp)
7144 {
7145 gdb_assert ((*blp)->refc > 0);
7146
7147 if (--(*blp)->refc == 0)
7148 free_bp_location (*blp);
7149 *blp = NULL;
7150 }
7151
7152 /* Add breakpoint B at the end of the global breakpoint chain. */
7153
7154 static breakpoint *
7155 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7156 {
7157 struct breakpoint *b1;
7158 struct breakpoint *result = b.get ();
7159
7160 /* Add this breakpoint to the end of the chain so that a list of
7161 breakpoints will come out in order of increasing numbers. */
7162
7163 b1 = breakpoint_chain;
7164 if (b1 == 0)
7165 breakpoint_chain = b.release ();
7166 else
7167 {
7168 while (b1->next)
7169 b1 = b1->next;
7170 b1->next = b.release ();
7171 }
7172
7173 return result;
7174 }
7175
7176 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7177
7178 static void
7179 init_raw_breakpoint_without_location (struct breakpoint *b,
7180 struct gdbarch *gdbarch,
7181 enum bptype bptype,
7182 const struct breakpoint_ops *ops)
7183 {
7184 gdb_assert (ops != NULL);
7185
7186 b->ops = ops;
7187 b->type = bptype;
7188 b->gdbarch = gdbarch;
7189 b->language = current_language->la_language;
7190 b->input_radix = input_radix;
7191 b->related_breakpoint = b;
7192 }
7193
7194 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7195 that has type BPTYPE and has no locations as yet. */
7196
7197 static struct breakpoint *
7198 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7199 enum bptype bptype,
7200 const struct breakpoint_ops *ops)
7201 {
7202 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7203
7204 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7205 return add_to_breakpoint_chain (std::move (b));
7206 }
7207
7208 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7209 resolutions should be made as the user specified the location explicitly
7210 enough. */
7211
7212 static void
7213 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7214 {
7215 gdb_assert (loc->owner != NULL);
7216
7217 if (loc->owner->type == bp_breakpoint
7218 || loc->owner->type == bp_hardware_breakpoint
7219 || is_tracepoint (loc->owner))
7220 {
7221 int is_gnu_ifunc;
7222 const char *function_name;
7223 CORE_ADDR func_addr;
7224
7225 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7226 &func_addr, NULL, &is_gnu_ifunc);
7227
7228 if (is_gnu_ifunc && !explicit_loc)
7229 {
7230 struct breakpoint *b = loc->owner;
7231
7232 gdb_assert (loc->pspace == current_program_space);
7233 if (gnu_ifunc_resolve_name (function_name,
7234 &loc->requested_address))
7235 {
7236 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7237 loc->address = adjust_breakpoint_address (loc->gdbarch,
7238 loc->requested_address,
7239 b->type);
7240 }
7241 else if (b->type == bp_breakpoint && b->loc == loc
7242 && loc->next == NULL && b->related_breakpoint == b)
7243 {
7244 /* Create only the whole new breakpoint of this type but do not
7245 mess more complicated breakpoints with multiple locations. */
7246 b->type = bp_gnu_ifunc_resolver;
7247 /* Remember the resolver's address for use by the return
7248 breakpoint. */
7249 loc->related_address = func_addr;
7250 }
7251 }
7252
7253 if (function_name)
7254 loc->function_name = xstrdup (function_name);
7255 }
7256 }
7257
7258 /* Attempt to determine architecture of location identified by SAL. */
7259 struct gdbarch *
7260 get_sal_arch (struct symtab_and_line sal)
7261 {
7262 if (sal.section)
7263 return get_objfile_arch (sal.section->objfile);
7264 if (sal.symtab)
7265 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7266
7267 return NULL;
7268 }
7269
7270 /* Low level routine for partially initializing a breakpoint of type
7271 BPTYPE. The newly created breakpoint's address, section, source
7272 file name, and line number are provided by SAL.
7273
7274 It is expected that the caller will complete the initialization of
7275 the newly created breakpoint struct as well as output any status
7276 information regarding the creation of a new breakpoint. */
7277
7278 static void
7279 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7280 struct symtab_and_line sal, enum bptype bptype,
7281 const struct breakpoint_ops *ops)
7282 {
7283 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7284
7285 add_location_to_breakpoint (b, &sal);
7286
7287 if (bptype != bp_catchpoint)
7288 gdb_assert (sal.pspace != NULL);
7289
7290 /* Store the program space that was used to set the breakpoint,
7291 except for ordinary breakpoints, which are independent of the
7292 program space. */
7293 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7294 b->pspace = sal.pspace;
7295 }
7296
7297 /* set_raw_breakpoint is a low level routine for allocating and
7298 partially initializing a breakpoint of type BPTYPE. The newly
7299 created breakpoint's address, section, source file name, and line
7300 number are provided by SAL. The newly created and partially
7301 initialized breakpoint is added to the breakpoint chain and
7302 is also returned as the value of this function.
7303
7304 It is expected that the caller will complete the initialization of
7305 the newly created breakpoint struct as well as output any status
7306 information regarding the creation of a new breakpoint. In
7307 particular, set_raw_breakpoint does NOT set the breakpoint
7308 number! Care should be taken to not allow an error to occur
7309 prior to completing the initialization of the breakpoint. If this
7310 should happen, a bogus breakpoint will be left on the chain. */
7311
7312 struct breakpoint *
7313 set_raw_breakpoint (struct gdbarch *gdbarch,
7314 struct symtab_and_line sal, enum bptype bptype,
7315 const struct breakpoint_ops *ops)
7316 {
7317 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7318
7319 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7320 return add_to_breakpoint_chain (std::move (b));
7321 }
7322
7323 /* Call this routine when stepping and nexting to enable a breakpoint
7324 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7325 initiated the operation. */
7326
7327 void
7328 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7329 {
7330 struct breakpoint *b, *b_tmp;
7331 int thread = tp->global_num;
7332
7333 /* To avoid having to rescan all objfile symbols at every step,
7334 we maintain a list of continually-inserted but always disabled
7335 longjmp "master" breakpoints. Here, we simply create momentary
7336 clones of those and enable them for the requested thread. */
7337 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7338 if (b->pspace == current_program_space
7339 && (b->type == bp_longjmp_master
7340 || b->type == bp_exception_master))
7341 {
7342 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7343 struct breakpoint *clone;
7344
7345 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7346 after their removal. */
7347 clone = momentary_breakpoint_from_master (b, type,
7348 &momentary_breakpoint_ops, 1);
7349 clone->thread = thread;
7350 }
7351
7352 tp->initiating_frame = frame;
7353 }
7354
7355 /* Delete all longjmp breakpoints from THREAD. */
7356 void
7357 delete_longjmp_breakpoint (int thread)
7358 {
7359 struct breakpoint *b, *b_tmp;
7360
7361 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7362 if (b->type == bp_longjmp || b->type == bp_exception)
7363 {
7364 if (b->thread == thread)
7365 delete_breakpoint (b);
7366 }
7367 }
7368
7369 void
7370 delete_longjmp_breakpoint_at_next_stop (int thread)
7371 {
7372 struct breakpoint *b, *b_tmp;
7373
7374 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7375 if (b->type == bp_longjmp || b->type == bp_exception)
7376 {
7377 if (b->thread == thread)
7378 b->disposition = disp_del_at_next_stop;
7379 }
7380 }
7381
7382 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7383 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7384 pointer to any of them. Return NULL if this system cannot place longjmp
7385 breakpoints. */
7386
7387 struct breakpoint *
7388 set_longjmp_breakpoint_for_call_dummy (void)
7389 {
7390 struct breakpoint *b, *retval = NULL;
7391
7392 ALL_BREAKPOINTS (b)
7393 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7394 {
7395 struct breakpoint *new_b;
7396
7397 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7398 &momentary_breakpoint_ops,
7399 1);
7400 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7401
7402 /* Link NEW_B into the chain of RETVAL breakpoints. */
7403
7404 gdb_assert (new_b->related_breakpoint == new_b);
7405 if (retval == NULL)
7406 retval = new_b;
7407 new_b->related_breakpoint = retval;
7408 while (retval->related_breakpoint != new_b->related_breakpoint)
7409 retval = retval->related_breakpoint;
7410 retval->related_breakpoint = new_b;
7411 }
7412
7413 return retval;
7414 }
7415
7416 /* Verify all existing dummy frames and their associated breakpoints for
7417 TP. Remove those which can no longer be found in the current frame
7418 stack.
7419
7420 You should call this function only at places where it is safe to currently
7421 unwind the whole stack. Failed stack unwind would discard live dummy
7422 frames. */
7423
7424 void
7425 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7426 {
7427 struct breakpoint *b, *b_tmp;
7428
7429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7430 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7431 {
7432 struct breakpoint *dummy_b = b->related_breakpoint;
7433
7434 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7435 dummy_b = dummy_b->related_breakpoint;
7436 if (dummy_b->type != bp_call_dummy
7437 || frame_find_by_id (dummy_b->frame_id) != NULL)
7438 continue;
7439
7440 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7441
7442 while (b->related_breakpoint != b)
7443 {
7444 if (b_tmp == b->related_breakpoint)
7445 b_tmp = b->related_breakpoint->next;
7446 delete_breakpoint (b->related_breakpoint);
7447 }
7448 delete_breakpoint (b);
7449 }
7450 }
7451
7452 void
7453 enable_overlay_breakpoints (void)
7454 {
7455 struct breakpoint *b;
7456
7457 ALL_BREAKPOINTS (b)
7458 if (b->type == bp_overlay_event)
7459 {
7460 b->enable_state = bp_enabled;
7461 update_global_location_list (UGLL_MAY_INSERT);
7462 overlay_events_enabled = 1;
7463 }
7464 }
7465
7466 void
7467 disable_overlay_breakpoints (void)
7468 {
7469 struct breakpoint *b;
7470
7471 ALL_BREAKPOINTS (b)
7472 if (b->type == bp_overlay_event)
7473 {
7474 b->enable_state = bp_disabled;
7475 update_global_location_list (UGLL_DONT_INSERT);
7476 overlay_events_enabled = 0;
7477 }
7478 }
7479
7480 /* Set an active std::terminate breakpoint for each std::terminate
7481 master breakpoint. */
7482 void
7483 set_std_terminate_breakpoint (void)
7484 {
7485 struct breakpoint *b, *b_tmp;
7486
7487 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7488 if (b->pspace == current_program_space
7489 && b->type == bp_std_terminate_master)
7490 {
7491 momentary_breakpoint_from_master (b, bp_std_terminate,
7492 &momentary_breakpoint_ops, 1);
7493 }
7494 }
7495
7496 /* Delete all the std::terminate breakpoints. */
7497 void
7498 delete_std_terminate_breakpoint (void)
7499 {
7500 struct breakpoint *b, *b_tmp;
7501
7502 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7503 if (b->type == bp_std_terminate)
7504 delete_breakpoint (b);
7505 }
7506
7507 struct breakpoint *
7508 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7509 {
7510 struct breakpoint *b;
7511
7512 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7513 &internal_breakpoint_ops);
7514
7515 b->enable_state = bp_enabled;
7516 /* location has to be used or breakpoint_re_set will delete me. */
7517 b->location = new_address_location (b->loc->address, NULL, 0);
7518
7519 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7520
7521 return b;
7522 }
7523
7524 struct lang_and_radix
7525 {
7526 enum language lang;
7527 int radix;
7528 };
7529
7530 /* Create a breakpoint for JIT code registration and unregistration. */
7531
7532 struct breakpoint *
7533 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7534 {
7535 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7536 &internal_breakpoint_ops);
7537 }
7538
7539 /* Remove JIT code registration and unregistration breakpoint(s). */
7540
7541 void
7542 remove_jit_event_breakpoints (void)
7543 {
7544 struct breakpoint *b, *b_tmp;
7545
7546 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7547 if (b->type == bp_jit_event
7548 && b->loc->pspace == current_program_space)
7549 delete_breakpoint (b);
7550 }
7551
7552 void
7553 remove_solib_event_breakpoints (void)
7554 {
7555 struct breakpoint *b, *b_tmp;
7556
7557 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7558 if (b->type == bp_shlib_event
7559 && b->loc->pspace == current_program_space)
7560 delete_breakpoint (b);
7561 }
7562
7563 /* See breakpoint.h. */
7564
7565 void
7566 remove_solib_event_breakpoints_at_next_stop (void)
7567 {
7568 struct breakpoint *b, *b_tmp;
7569
7570 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7571 if (b->type == bp_shlib_event
7572 && b->loc->pspace == current_program_space)
7573 b->disposition = disp_del_at_next_stop;
7574 }
7575
7576 /* Helper for create_solib_event_breakpoint /
7577 create_and_insert_solib_event_breakpoint. Allows specifying which
7578 INSERT_MODE to pass through to update_global_location_list. */
7579
7580 static struct breakpoint *
7581 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7582 enum ugll_insert_mode insert_mode)
7583 {
7584 struct breakpoint *b;
7585
7586 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7587 &internal_breakpoint_ops);
7588 update_global_location_list_nothrow (insert_mode);
7589 return b;
7590 }
7591
7592 struct breakpoint *
7593 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7594 {
7595 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7596 }
7597
7598 /* See breakpoint.h. */
7599
7600 struct breakpoint *
7601 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7602 {
7603 struct breakpoint *b;
7604
7605 /* Explicitly tell update_global_location_list to insert
7606 locations. */
7607 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7608 if (!b->loc->inserted)
7609 {
7610 delete_breakpoint (b);
7611 return NULL;
7612 }
7613 return b;
7614 }
7615
7616 /* Disable any breakpoints that are on code in shared libraries. Only
7617 apply to enabled breakpoints, disabled ones can just stay disabled. */
7618
7619 void
7620 disable_breakpoints_in_shlibs (void)
7621 {
7622 struct bp_location *loc, **locp_tmp;
7623
7624 ALL_BP_LOCATIONS (loc, locp_tmp)
7625 {
7626 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7627 struct breakpoint *b = loc->owner;
7628
7629 /* We apply the check to all breakpoints, including disabled for
7630 those with loc->duplicate set. This is so that when breakpoint
7631 becomes enabled, or the duplicate is removed, gdb will try to
7632 insert all breakpoints. If we don't set shlib_disabled here,
7633 we'll try to insert those breakpoints and fail. */
7634 if (((b->type == bp_breakpoint)
7635 || (b->type == bp_jit_event)
7636 || (b->type == bp_hardware_breakpoint)
7637 || (is_tracepoint (b)))
7638 && loc->pspace == current_program_space
7639 && !loc->shlib_disabled
7640 && solib_name_from_address (loc->pspace, loc->address)
7641 )
7642 {
7643 loc->shlib_disabled = 1;
7644 }
7645 }
7646 }
7647
7648 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7649 notification of unloaded_shlib. Only apply to enabled breakpoints,
7650 disabled ones can just stay disabled. */
7651
7652 static void
7653 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7654 {
7655 struct bp_location *loc, **locp_tmp;
7656 int disabled_shlib_breaks = 0;
7657
7658 ALL_BP_LOCATIONS (loc, locp_tmp)
7659 {
7660 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7661 struct breakpoint *b = loc->owner;
7662
7663 if (solib->pspace == loc->pspace
7664 && !loc->shlib_disabled
7665 && (((b->type == bp_breakpoint
7666 || b->type == bp_jit_event
7667 || b->type == bp_hardware_breakpoint)
7668 && (loc->loc_type == bp_loc_hardware_breakpoint
7669 || loc->loc_type == bp_loc_software_breakpoint))
7670 || is_tracepoint (b))
7671 && solib_contains_address_p (solib, loc->address))
7672 {
7673 loc->shlib_disabled = 1;
7674 /* At this point, we cannot rely on remove_breakpoint
7675 succeeding so we must mark the breakpoint as not inserted
7676 to prevent future errors occurring in remove_breakpoints. */
7677 loc->inserted = 0;
7678
7679 /* This may cause duplicate notifications for the same breakpoint. */
7680 observer_notify_breakpoint_modified (b);
7681
7682 if (!disabled_shlib_breaks)
7683 {
7684 target_terminal::ours_for_output ();
7685 warning (_("Temporarily disabling breakpoints "
7686 "for unloaded shared library \"%s\""),
7687 solib->so_name);
7688 }
7689 disabled_shlib_breaks = 1;
7690 }
7691 }
7692 }
7693
7694 /* Disable any breakpoints and tracepoints in OBJFILE upon
7695 notification of free_objfile. Only apply to enabled breakpoints,
7696 disabled ones can just stay disabled. */
7697
7698 static void
7699 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7700 {
7701 struct breakpoint *b;
7702
7703 if (objfile == NULL)
7704 return;
7705
7706 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7707 managed by the user with add-symbol-file/remove-symbol-file.
7708 Similarly to how breakpoints in shared libraries are handled in
7709 response to "nosharedlibrary", mark breakpoints in such modules
7710 shlib_disabled so they end up uninserted on the next global
7711 location list update. Shared libraries not loaded by the user
7712 aren't handled here -- they're already handled in
7713 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7714 solib_unloaded observer. We skip objfiles that are not
7715 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7716 main objfile). */
7717 if ((objfile->flags & OBJF_SHARED) == 0
7718 || (objfile->flags & OBJF_USERLOADED) == 0)
7719 return;
7720
7721 ALL_BREAKPOINTS (b)
7722 {
7723 struct bp_location *loc;
7724 int bp_modified = 0;
7725
7726 if (!is_breakpoint (b) && !is_tracepoint (b))
7727 continue;
7728
7729 for (loc = b->loc; loc != NULL; loc = loc->next)
7730 {
7731 CORE_ADDR loc_addr = loc->address;
7732
7733 if (loc->loc_type != bp_loc_hardware_breakpoint
7734 && loc->loc_type != bp_loc_software_breakpoint)
7735 continue;
7736
7737 if (loc->shlib_disabled != 0)
7738 continue;
7739
7740 if (objfile->pspace != loc->pspace)
7741 continue;
7742
7743 if (loc->loc_type != bp_loc_hardware_breakpoint
7744 && loc->loc_type != bp_loc_software_breakpoint)
7745 continue;
7746
7747 if (is_addr_in_objfile (loc_addr, objfile))
7748 {
7749 loc->shlib_disabled = 1;
7750 /* At this point, we don't know whether the object was
7751 unmapped from the inferior or not, so leave the
7752 inserted flag alone. We'll handle failure to
7753 uninsert quietly, in case the object was indeed
7754 unmapped. */
7755
7756 mark_breakpoint_location_modified (loc);
7757
7758 bp_modified = 1;
7759 }
7760 }
7761
7762 if (bp_modified)
7763 observer_notify_breakpoint_modified (b);
7764 }
7765 }
7766
7767 /* FORK & VFORK catchpoints. */
7768
7769 /* An instance of this type is used to represent a fork or vfork
7770 catchpoint. A breakpoint is really of this type iff its ops pointer points
7771 to CATCH_FORK_BREAKPOINT_OPS. */
7772
7773 struct fork_catchpoint : public breakpoint
7774 {
7775 /* Process id of a child process whose forking triggered this
7776 catchpoint. This field is only valid immediately after this
7777 catchpoint has triggered. */
7778 ptid_t forked_inferior_pid;
7779 };
7780
7781 /* Implement the "insert" breakpoint_ops method for fork
7782 catchpoints. */
7783
7784 static int
7785 insert_catch_fork (struct bp_location *bl)
7786 {
7787 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7788 }
7789
7790 /* Implement the "remove" breakpoint_ops method for fork
7791 catchpoints. */
7792
7793 static int
7794 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7795 {
7796 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7797 }
7798
7799 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7800 catchpoints. */
7801
7802 static int
7803 breakpoint_hit_catch_fork (const struct bp_location *bl,
7804 const address_space *aspace, CORE_ADDR bp_addr,
7805 const struct target_waitstatus *ws)
7806 {
7807 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7808
7809 if (ws->kind != TARGET_WAITKIND_FORKED)
7810 return 0;
7811
7812 c->forked_inferior_pid = ws->value.related_pid;
7813 return 1;
7814 }
7815
7816 /* Implement the "print_it" breakpoint_ops method for fork
7817 catchpoints. */
7818
7819 static enum print_stop_action
7820 print_it_catch_fork (bpstat bs)
7821 {
7822 struct ui_out *uiout = current_uiout;
7823 struct breakpoint *b = bs->breakpoint_at;
7824 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7825
7826 annotate_catchpoint (b->number);
7827 maybe_print_thread_hit_breakpoint (uiout);
7828 if (b->disposition == disp_del)
7829 uiout->text ("Temporary catchpoint ");
7830 else
7831 uiout->text ("Catchpoint ");
7832 if (uiout->is_mi_like_p ())
7833 {
7834 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7835 uiout->field_string ("disp", bpdisp_text (b->disposition));
7836 }
7837 uiout->field_int ("bkptno", b->number);
7838 uiout->text (" (forked process ");
7839 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7840 uiout->text ("), ");
7841 return PRINT_SRC_AND_LOC;
7842 }
7843
7844 /* Implement the "print_one" breakpoint_ops method for fork
7845 catchpoints. */
7846
7847 static void
7848 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7849 {
7850 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7851 struct value_print_options opts;
7852 struct ui_out *uiout = current_uiout;
7853
7854 get_user_print_options (&opts);
7855
7856 /* Field 4, the address, is omitted (which makes the columns not
7857 line up too nicely with the headers, but the effect is relatively
7858 readable). */
7859 if (opts.addressprint)
7860 uiout->field_skip ("addr");
7861 annotate_field (5);
7862 uiout->text ("fork");
7863 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7864 {
7865 uiout->text (", process ");
7866 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7867 uiout->spaces (1);
7868 }
7869
7870 if (uiout->is_mi_like_p ())
7871 uiout->field_string ("catch-type", "fork");
7872 }
7873
7874 /* Implement the "print_mention" breakpoint_ops method for fork
7875 catchpoints. */
7876
7877 static void
7878 print_mention_catch_fork (struct breakpoint *b)
7879 {
7880 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7881 }
7882
7883 /* Implement the "print_recreate" breakpoint_ops method for fork
7884 catchpoints. */
7885
7886 static void
7887 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7888 {
7889 fprintf_unfiltered (fp, "catch fork");
7890 print_recreate_thread (b, fp);
7891 }
7892
7893 /* The breakpoint_ops structure to be used in fork catchpoints. */
7894
7895 static struct breakpoint_ops catch_fork_breakpoint_ops;
7896
7897 /* Implement the "insert" breakpoint_ops method for vfork
7898 catchpoints. */
7899
7900 static int
7901 insert_catch_vfork (struct bp_location *bl)
7902 {
7903 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7904 }
7905
7906 /* Implement the "remove" breakpoint_ops method for vfork
7907 catchpoints. */
7908
7909 static int
7910 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7911 {
7912 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7913 }
7914
7915 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7916 catchpoints. */
7917
7918 static int
7919 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7920 const address_space *aspace, CORE_ADDR bp_addr,
7921 const struct target_waitstatus *ws)
7922 {
7923 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7924
7925 if (ws->kind != TARGET_WAITKIND_VFORKED)
7926 return 0;
7927
7928 c->forked_inferior_pid = ws->value.related_pid;
7929 return 1;
7930 }
7931
7932 /* Implement the "print_it" breakpoint_ops method for vfork
7933 catchpoints. */
7934
7935 static enum print_stop_action
7936 print_it_catch_vfork (bpstat bs)
7937 {
7938 struct ui_out *uiout = current_uiout;
7939 struct breakpoint *b = bs->breakpoint_at;
7940 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7941
7942 annotate_catchpoint (b->number);
7943 maybe_print_thread_hit_breakpoint (uiout);
7944 if (b->disposition == disp_del)
7945 uiout->text ("Temporary catchpoint ");
7946 else
7947 uiout->text ("Catchpoint ");
7948 if (uiout->is_mi_like_p ())
7949 {
7950 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7951 uiout->field_string ("disp", bpdisp_text (b->disposition));
7952 }
7953 uiout->field_int ("bkptno", b->number);
7954 uiout->text (" (vforked process ");
7955 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7956 uiout->text ("), ");
7957 return PRINT_SRC_AND_LOC;
7958 }
7959
7960 /* Implement the "print_one" breakpoint_ops method for vfork
7961 catchpoints. */
7962
7963 static void
7964 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7965 {
7966 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7967 struct value_print_options opts;
7968 struct ui_out *uiout = current_uiout;
7969
7970 get_user_print_options (&opts);
7971 /* Field 4, the address, is omitted (which makes the columns not
7972 line up too nicely with the headers, but the effect is relatively
7973 readable). */
7974 if (opts.addressprint)
7975 uiout->field_skip ("addr");
7976 annotate_field (5);
7977 uiout->text ("vfork");
7978 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7979 {
7980 uiout->text (", process ");
7981 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7982 uiout->spaces (1);
7983 }
7984
7985 if (uiout->is_mi_like_p ())
7986 uiout->field_string ("catch-type", "vfork");
7987 }
7988
7989 /* Implement the "print_mention" breakpoint_ops method for vfork
7990 catchpoints. */
7991
7992 static void
7993 print_mention_catch_vfork (struct breakpoint *b)
7994 {
7995 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7996 }
7997
7998 /* Implement the "print_recreate" breakpoint_ops method for vfork
7999 catchpoints. */
8000
8001 static void
8002 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8003 {
8004 fprintf_unfiltered (fp, "catch vfork");
8005 print_recreate_thread (b, fp);
8006 }
8007
8008 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8009
8010 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8011
8012 /* An instance of this type is used to represent an solib catchpoint.
8013 A breakpoint is really of this type iff its ops pointer points to
8014 CATCH_SOLIB_BREAKPOINT_OPS. */
8015
8016 struct solib_catchpoint : public breakpoint
8017 {
8018 ~solib_catchpoint () override;
8019
8020 /* True for "catch load", false for "catch unload". */
8021 unsigned char is_load;
8022
8023 /* Regular expression to match, if any. COMPILED is only valid when
8024 REGEX is non-NULL. */
8025 char *regex;
8026 std::unique_ptr<compiled_regex> compiled;
8027 };
8028
8029 solib_catchpoint::~solib_catchpoint ()
8030 {
8031 xfree (this->regex);
8032 }
8033
8034 static int
8035 insert_catch_solib (struct bp_location *ignore)
8036 {
8037 return 0;
8038 }
8039
8040 static int
8041 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8042 {
8043 return 0;
8044 }
8045
8046 static int
8047 breakpoint_hit_catch_solib (const struct bp_location *bl,
8048 const address_space *aspace,
8049 CORE_ADDR bp_addr,
8050 const struct target_waitstatus *ws)
8051 {
8052 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8053 struct breakpoint *other;
8054
8055 if (ws->kind == TARGET_WAITKIND_LOADED)
8056 return 1;
8057
8058 ALL_BREAKPOINTS (other)
8059 {
8060 struct bp_location *other_bl;
8061
8062 if (other == bl->owner)
8063 continue;
8064
8065 if (other->type != bp_shlib_event)
8066 continue;
8067
8068 if (self->pspace != NULL && other->pspace != self->pspace)
8069 continue;
8070
8071 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8072 {
8073 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8074 return 1;
8075 }
8076 }
8077
8078 return 0;
8079 }
8080
8081 static void
8082 check_status_catch_solib (struct bpstats *bs)
8083 {
8084 struct solib_catchpoint *self
8085 = (struct solib_catchpoint *) bs->breakpoint_at;
8086 int ix;
8087
8088 if (self->is_load)
8089 {
8090 struct so_list *iter;
8091
8092 for (ix = 0;
8093 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8094 ix, iter);
8095 ++ix)
8096 {
8097 if (!self->regex
8098 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8099 return;
8100 }
8101 }
8102 else
8103 {
8104 char *iter;
8105
8106 for (ix = 0;
8107 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8108 ix, iter);
8109 ++ix)
8110 {
8111 if (!self->regex
8112 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8113 return;
8114 }
8115 }
8116
8117 bs->stop = 0;
8118 bs->print_it = print_it_noop;
8119 }
8120
8121 static enum print_stop_action
8122 print_it_catch_solib (bpstat bs)
8123 {
8124 struct breakpoint *b = bs->breakpoint_at;
8125 struct ui_out *uiout = current_uiout;
8126
8127 annotate_catchpoint (b->number);
8128 maybe_print_thread_hit_breakpoint (uiout);
8129 if (b->disposition == disp_del)
8130 uiout->text ("Temporary catchpoint ");
8131 else
8132 uiout->text ("Catchpoint ");
8133 uiout->field_int ("bkptno", b->number);
8134 uiout->text ("\n");
8135 if (uiout->is_mi_like_p ())
8136 uiout->field_string ("disp", bpdisp_text (b->disposition));
8137 print_solib_event (1);
8138 return PRINT_SRC_AND_LOC;
8139 }
8140
8141 static void
8142 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8143 {
8144 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8145 struct value_print_options opts;
8146 struct ui_out *uiout = current_uiout;
8147 char *msg;
8148
8149 get_user_print_options (&opts);
8150 /* Field 4, the address, is omitted (which makes the columns not
8151 line up too nicely with the headers, but the effect is relatively
8152 readable). */
8153 if (opts.addressprint)
8154 {
8155 annotate_field (4);
8156 uiout->field_skip ("addr");
8157 }
8158
8159 annotate_field (5);
8160 if (self->is_load)
8161 {
8162 if (self->regex)
8163 msg = xstrprintf (_("load of library matching %s"), self->regex);
8164 else
8165 msg = xstrdup (_("load of library"));
8166 }
8167 else
8168 {
8169 if (self->regex)
8170 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8171 else
8172 msg = xstrdup (_("unload of library"));
8173 }
8174 uiout->field_string ("what", msg);
8175 xfree (msg);
8176
8177 if (uiout->is_mi_like_p ())
8178 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8179 }
8180
8181 static void
8182 print_mention_catch_solib (struct breakpoint *b)
8183 {
8184 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8185
8186 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8187 self->is_load ? "load" : "unload");
8188 }
8189
8190 static void
8191 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8192 {
8193 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8194
8195 fprintf_unfiltered (fp, "%s %s",
8196 b->disposition == disp_del ? "tcatch" : "catch",
8197 self->is_load ? "load" : "unload");
8198 if (self->regex)
8199 fprintf_unfiltered (fp, " %s", self->regex);
8200 fprintf_unfiltered (fp, "\n");
8201 }
8202
8203 static struct breakpoint_ops catch_solib_breakpoint_ops;
8204
8205 /* Shared helper function (MI and CLI) for creating and installing
8206 a shared object event catchpoint. If IS_LOAD is non-zero then
8207 the events to be caught are load events, otherwise they are
8208 unload events. If IS_TEMP is non-zero the catchpoint is a
8209 temporary one. If ENABLED is non-zero the catchpoint is
8210 created in an enabled state. */
8211
8212 void
8213 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8214 {
8215 struct gdbarch *gdbarch = get_current_arch ();
8216
8217 if (!arg)
8218 arg = "";
8219 arg = skip_spaces (arg);
8220
8221 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8222
8223 if (*arg != '\0')
8224 {
8225 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8226 _("Invalid regexp")));
8227 c->regex = xstrdup (arg);
8228 }
8229
8230 c->is_load = is_load;
8231 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8232 &catch_solib_breakpoint_ops);
8233
8234 c->enable_state = enabled ? bp_enabled : bp_disabled;
8235
8236 install_breakpoint (0, std::move (c), 1);
8237 }
8238
8239 /* A helper function that does all the work for "catch load" and
8240 "catch unload". */
8241
8242 static void
8243 catch_load_or_unload (char *arg, int from_tty, int is_load,
8244 struct cmd_list_element *command)
8245 {
8246 int tempflag;
8247 const int enabled = 1;
8248
8249 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8250
8251 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8252 }
8253
8254 static void
8255 catch_load_command_1 (char *arg, int from_tty,
8256 struct cmd_list_element *command)
8257 {
8258 catch_load_or_unload (arg, from_tty, 1, command);
8259 }
8260
8261 static void
8262 catch_unload_command_1 (char *arg, int from_tty,
8263 struct cmd_list_element *command)
8264 {
8265 catch_load_or_unload (arg, from_tty, 0, command);
8266 }
8267
8268 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8269 is non-zero, then make the breakpoint temporary. If COND_STRING is
8270 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8271 the breakpoint_ops structure associated to the catchpoint. */
8272
8273 void
8274 init_catchpoint (struct breakpoint *b,
8275 struct gdbarch *gdbarch, int tempflag,
8276 const char *cond_string,
8277 const struct breakpoint_ops *ops)
8278 {
8279 symtab_and_line sal;
8280 sal.pspace = current_program_space;
8281
8282 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8283
8284 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8285 b->disposition = tempflag ? disp_del : disp_donttouch;
8286 }
8287
8288 void
8289 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8290 {
8291 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8292 set_breakpoint_number (internal, b);
8293 if (is_tracepoint (b))
8294 set_tracepoint_count (breakpoint_count);
8295 if (!internal)
8296 mention (b);
8297 observer_notify_breakpoint_created (b);
8298
8299 if (update_gll)
8300 update_global_location_list (UGLL_MAY_INSERT);
8301 }
8302
8303 static void
8304 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8305 int tempflag, const char *cond_string,
8306 const struct breakpoint_ops *ops)
8307 {
8308 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8309
8310 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8311
8312 c->forked_inferior_pid = null_ptid;
8313
8314 install_breakpoint (0, std::move (c), 1);
8315 }
8316
8317 /* Exec catchpoints. */
8318
8319 /* An instance of this type is used to represent an exec catchpoint.
8320 A breakpoint is really of this type iff its ops pointer points to
8321 CATCH_EXEC_BREAKPOINT_OPS. */
8322
8323 struct exec_catchpoint : public breakpoint
8324 {
8325 ~exec_catchpoint () override;
8326
8327 /* Filename of a program whose exec triggered this catchpoint.
8328 This field is only valid immediately after this catchpoint has
8329 triggered. */
8330 char *exec_pathname;
8331 };
8332
8333 /* Exec catchpoint destructor. */
8334
8335 exec_catchpoint::~exec_catchpoint ()
8336 {
8337 xfree (this->exec_pathname);
8338 }
8339
8340 static int
8341 insert_catch_exec (struct bp_location *bl)
8342 {
8343 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8344 }
8345
8346 static int
8347 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8348 {
8349 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8350 }
8351
8352 static int
8353 breakpoint_hit_catch_exec (const struct bp_location *bl,
8354 const address_space *aspace, CORE_ADDR bp_addr,
8355 const struct target_waitstatus *ws)
8356 {
8357 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8358
8359 if (ws->kind != TARGET_WAITKIND_EXECD)
8360 return 0;
8361
8362 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8363 return 1;
8364 }
8365
8366 static enum print_stop_action
8367 print_it_catch_exec (bpstat bs)
8368 {
8369 struct ui_out *uiout = current_uiout;
8370 struct breakpoint *b = bs->breakpoint_at;
8371 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8372
8373 annotate_catchpoint (b->number);
8374 maybe_print_thread_hit_breakpoint (uiout);
8375 if (b->disposition == disp_del)
8376 uiout->text ("Temporary catchpoint ");
8377 else
8378 uiout->text ("Catchpoint ");
8379 if (uiout->is_mi_like_p ())
8380 {
8381 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8382 uiout->field_string ("disp", bpdisp_text (b->disposition));
8383 }
8384 uiout->field_int ("bkptno", b->number);
8385 uiout->text (" (exec'd ");
8386 uiout->field_string ("new-exec", c->exec_pathname);
8387 uiout->text ("), ");
8388
8389 return PRINT_SRC_AND_LOC;
8390 }
8391
8392 static void
8393 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8394 {
8395 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8396 struct value_print_options opts;
8397 struct ui_out *uiout = current_uiout;
8398
8399 get_user_print_options (&opts);
8400
8401 /* Field 4, the address, is omitted (which makes the columns
8402 not line up too nicely with the headers, but the effect
8403 is relatively readable). */
8404 if (opts.addressprint)
8405 uiout->field_skip ("addr");
8406 annotate_field (5);
8407 uiout->text ("exec");
8408 if (c->exec_pathname != NULL)
8409 {
8410 uiout->text (", program \"");
8411 uiout->field_string ("what", c->exec_pathname);
8412 uiout->text ("\" ");
8413 }
8414
8415 if (uiout->is_mi_like_p ())
8416 uiout->field_string ("catch-type", "exec");
8417 }
8418
8419 static void
8420 print_mention_catch_exec (struct breakpoint *b)
8421 {
8422 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8423 }
8424
8425 /* Implement the "print_recreate" breakpoint_ops method for exec
8426 catchpoints. */
8427
8428 static void
8429 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8430 {
8431 fprintf_unfiltered (fp, "catch exec");
8432 print_recreate_thread (b, fp);
8433 }
8434
8435 static struct breakpoint_ops catch_exec_breakpoint_ops;
8436
8437 static int
8438 hw_breakpoint_used_count (void)
8439 {
8440 int i = 0;
8441 struct breakpoint *b;
8442 struct bp_location *bl;
8443
8444 ALL_BREAKPOINTS (b)
8445 {
8446 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8447 for (bl = b->loc; bl; bl = bl->next)
8448 {
8449 /* Special types of hardware breakpoints may use more than
8450 one register. */
8451 i += b->ops->resources_needed (bl);
8452 }
8453 }
8454
8455 return i;
8456 }
8457
8458 /* Returns the resources B would use if it were a hardware
8459 watchpoint. */
8460
8461 static int
8462 hw_watchpoint_use_count (struct breakpoint *b)
8463 {
8464 int i = 0;
8465 struct bp_location *bl;
8466
8467 if (!breakpoint_enabled (b))
8468 return 0;
8469
8470 for (bl = b->loc; bl; bl = bl->next)
8471 {
8472 /* Special types of hardware watchpoints may use more than
8473 one register. */
8474 i += b->ops->resources_needed (bl);
8475 }
8476
8477 return i;
8478 }
8479
8480 /* Returns the sum the used resources of all hardware watchpoints of
8481 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8482 the sum of the used resources of all hardware watchpoints of other
8483 types _not_ TYPE. */
8484
8485 static int
8486 hw_watchpoint_used_count_others (struct breakpoint *except,
8487 enum bptype type, int *other_type_used)
8488 {
8489 int i = 0;
8490 struct breakpoint *b;
8491
8492 *other_type_used = 0;
8493 ALL_BREAKPOINTS (b)
8494 {
8495 if (b == except)
8496 continue;
8497 if (!breakpoint_enabled (b))
8498 continue;
8499
8500 if (b->type == type)
8501 i += hw_watchpoint_use_count (b);
8502 else if (is_hardware_watchpoint (b))
8503 *other_type_used = 1;
8504 }
8505
8506 return i;
8507 }
8508
8509 void
8510 disable_watchpoints_before_interactive_call_start (void)
8511 {
8512 struct breakpoint *b;
8513
8514 ALL_BREAKPOINTS (b)
8515 {
8516 if (is_watchpoint (b) && breakpoint_enabled (b))
8517 {
8518 b->enable_state = bp_call_disabled;
8519 update_global_location_list (UGLL_DONT_INSERT);
8520 }
8521 }
8522 }
8523
8524 void
8525 enable_watchpoints_after_interactive_call_stop (void)
8526 {
8527 struct breakpoint *b;
8528
8529 ALL_BREAKPOINTS (b)
8530 {
8531 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8532 {
8533 b->enable_state = bp_enabled;
8534 update_global_location_list (UGLL_MAY_INSERT);
8535 }
8536 }
8537 }
8538
8539 void
8540 disable_breakpoints_before_startup (void)
8541 {
8542 current_program_space->executing_startup = 1;
8543 update_global_location_list (UGLL_DONT_INSERT);
8544 }
8545
8546 void
8547 enable_breakpoints_after_startup (void)
8548 {
8549 current_program_space->executing_startup = 0;
8550 breakpoint_re_set ();
8551 }
8552
8553 /* Create a new single-step breakpoint for thread THREAD, with no
8554 locations. */
8555
8556 static struct breakpoint *
8557 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8558 {
8559 std::unique_ptr<breakpoint> b (new breakpoint ());
8560
8561 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8562 &momentary_breakpoint_ops);
8563
8564 b->disposition = disp_donttouch;
8565 b->frame_id = null_frame_id;
8566
8567 b->thread = thread;
8568 gdb_assert (b->thread != 0);
8569
8570 return add_to_breakpoint_chain (std::move (b));
8571 }
8572
8573 /* Set a momentary breakpoint of type TYPE at address specified by
8574 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8575 frame. */
8576
8577 breakpoint_up
8578 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8579 struct frame_id frame_id, enum bptype type)
8580 {
8581 struct breakpoint *b;
8582
8583 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8584 tail-called one. */
8585 gdb_assert (!frame_id_artificial_p (frame_id));
8586
8587 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8588 b->enable_state = bp_enabled;
8589 b->disposition = disp_donttouch;
8590 b->frame_id = frame_id;
8591
8592 /* If we're debugging a multi-threaded program, then we want
8593 momentary breakpoints to be active in only a single thread of
8594 control. */
8595 if (in_thread_list (inferior_ptid))
8596 b->thread = ptid_to_global_thread_id (inferior_ptid);
8597
8598 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8599
8600 return breakpoint_up (b);
8601 }
8602
8603 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8604 The new breakpoint will have type TYPE, use OPS as its
8605 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8606
8607 static struct breakpoint *
8608 momentary_breakpoint_from_master (struct breakpoint *orig,
8609 enum bptype type,
8610 const struct breakpoint_ops *ops,
8611 int loc_enabled)
8612 {
8613 struct breakpoint *copy;
8614
8615 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8616 copy->loc = allocate_bp_location (copy);
8617 set_breakpoint_location_function (copy->loc, 1);
8618
8619 copy->loc->gdbarch = orig->loc->gdbarch;
8620 copy->loc->requested_address = orig->loc->requested_address;
8621 copy->loc->address = orig->loc->address;
8622 copy->loc->section = orig->loc->section;
8623 copy->loc->pspace = orig->loc->pspace;
8624 copy->loc->probe = orig->loc->probe;
8625 copy->loc->line_number = orig->loc->line_number;
8626 copy->loc->symtab = orig->loc->symtab;
8627 copy->loc->enabled = loc_enabled;
8628 copy->frame_id = orig->frame_id;
8629 copy->thread = orig->thread;
8630 copy->pspace = orig->pspace;
8631
8632 copy->enable_state = bp_enabled;
8633 copy->disposition = disp_donttouch;
8634 copy->number = internal_breakpoint_number--;
8635
8636 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8637 return copy;
8638 }
8639
8640 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8641 ORIG is NULL. */
8642
8643 struct breakpoint *
8644 clone_momentary_breakpoint (struct breakpoint *orig)
8645 {
8646 /* If there's nothing to clone, then return nothing. */
8647 if (orig == NULL)
8648 return NULL;
8649
8650 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8651 }
8652
8653 breakpoint_up
8654 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8655 enum bptype type)
8656 {
8657 struct symtab_and_line sal;
8658
8659 sal = find_pc_line (pc, 0);
8660 sal.pc = pc;
8661 sal.section = find_pc_overlay (pc);
8662 sal.explicit_pc = 1;
8663
8664 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8665 }
8666 \f
8667
8668 /* Tell the user we have just set a breakpoint B. */
8669
8670 static void
8671 mention (struct breakpoint *b)
8672 {
8673 b->ops->print_mention (b);
8674 if (current_uiout->is_mi_like_p ())
8675 return;
8676 printf_filtered ("\n");
8677 }
8678 \f
8679
8680 static int bp_loc_is_permanent (struct bp_location *loc);
8681
8682 static struct bp_location *
8683 add_location_to_breakpoint (struct breakpoint *b,
8684 const struct symtab_and_line *sal)
8685 {
8686 struct bp_location *loc, **tmp;
8687 CORE_ADDR adjusted_address;
8688 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8689
8690 if (loc_gdbarch == NULL)
8691 loc_gdbarch = b->gdbarch;
8692
8693 /* Adjust the breakpoint's address prior to allocating a location.
8694 Once we call allocate_bp_location(), that mostly uninitialized
8695 location will be placed on the location chain. Adjustment of the
8696 breakpoint may cause target_read_memory() to be called and we do
8697 not want its scan of the location chain to find a breakpoint and
8698 location that's only been partially initialized. */
8699 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8700 sal->pc, b->type);
8701
8702 /* Sort the locations by their ADDRESS. */
8703 loc = allocate_bp_location (b);
8704 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8705 tmp = &((*tmp)->next))
8706 ;
8707 loc->next = *tmp;
8708 *tmp = loc;
8709
8710 loc->requested_address = sal->pc;
8711 loc->address = adjusted_address;
8712 loc->pspace = sal->pspace;
8713 loc->probe.probe = sal->probe;
8714 loc->probe.objfile = sal->objfile;
8715 gdb_assert (loc->pspace != NULL);
8716 loc->section = sal->section;
8717 loc->gdbarch = loc_gdbarch;
8718 loc->line_number = sal->line;
8719 loc->symtab = sal->symtab;
8720 loc->symbol = sal->symbol;
8721
8722 set_breakpoint_location_function (loc,
8723 sal->explicit_pc || sal->explicit_line);
8724
8725 /* While by definition, permanent breakpoints are already present in the
8726 code, we don't mark the location as inserted. Normally one would expect
8727 that GDB could rely on that breakpoint instruction to stop the program,
8728 thus removing the need to insert its own breakpoint, except that executing
8729 the breakpoint instruction can kill the target instead of reporting a
8730 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8731 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8732 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8733 breakpoint be inserted normally results in QEMU knowing about the GDB
8734 breakpoint, and thus trap before the breakpoint instruction is executed.
8735 (If GDB later needs to continue execution past the permanent breakpoint,
8736 it manually increments the PC, thus avoiding executing the breakpoint
8737 instruction.) */
8738 if (bp_loc_is_permanent (loc))
8739 loc->permanent = 1;
8740
8741 return loc;
8742 }
8743 \f
8744
8745 /* See breakpoint.h. */
8746
8747 int
8748 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8749 {
8750 int len;
8751 CORE_ADDR addr;
8752 const gdb_byte *bpoint;
8753 gdb_byte *target_mem;
8754
8755 addr = address;
8756 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8757
8758 /* Software breakpoints unsupported? */
8759 if (bpoint == NULL)
8760 return 0;
8761
8762 target_mem = (gdb_byte *) alloca (len);
8763
8764 /* Enable the automatic memory restoration from breakpoints while
8765 we read the memory. Otherwise we could say about our temporary
8766 breakpoints they are permanent. */
8767 scoped_restore restore_memory
8768 = make_scoped_restore_show_memory_breakpoints (0);
8769
8770 if (target_read_memory (address, target_mem, len) == 0
8771 && memcmp (target_mem, bpoint, len) == 0)
8772 return 1;
8773
8774 return 0;
8775 }
8776
8777 /* Return 1 if LOC is pointing to a permanent breakpoint,
8778 return 0 otherwise. */
8779
8780 static int
8781 bp_loc_is_permanent (struct bp_location *loc)
8782 {
8783 gdb_assert (loc != NULL);
8784
8785 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8786 attempt to read from the addresses the locations of these breakpoint types
8787 point to. program_breakpoint_here_p, below, will attempt to read
8788 memory. */
8789 if (!breakpoint_address_is_meaningful (loc->owner))
8790 return 0;
8791
8792 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8793 switch_to_program_space_and_thread (loc->pspace);
8794 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8795 }
8796
8797 /* Build a command list for the dprintf corresponding to the current
8798 settings of the dprintf style options. */
8799
8800 static void
8801 update_dprintf_command_list (struct breakpoint *b)
8802 {
8803 char *dprintf_args = b->extra_string;
8804 char *printf_line = NULL;
8805
8806 if (!dprintf_args)
8807 return;
8808
8809 dprintf_args = skip_spaces (dprintf_args);
8810
8811 /* Allow a comma, as it may have terminated a location, but don't
8812 insist on it. */
8813 if (*dprintf_args == ',')
8814 ++dprintf_args;
8815 dprintf_args = skip_spaces (dprintf_args);
8816
8817 if (*dprintf_args != '"')
8818 error (_("Bad format string, missing '\"'."));
8819
8820 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8821 printf_line = xstrprintf ("printf %s", dprintf_args);
8822 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8823 {
8824 if (!dprintf_function)
8825 error (_("No function supplied for dprintf call"));
8826
8827 if (dprintf_channel && strlen (dprintf_channel) > 0)
8828 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8829 dprintf_function,
8830 dprintf_channel,
8831 dprintf_args);
8832 else
8833 printf_line = xstrprintf ("call (void) %s (%s)",
8834 dprintf_function,
8835 dprintf_args);
8836 }
8837 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8838 {
8839 if (target_can_run_breakpoint_commands ())
8840 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8841 else
8842 {
8843 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8844 printf_line = xstrprintf ("printf %s", dprintf_args);
8845 }
8846 }
8847 else
8848 internal_error (__FILE__, __LINE__,
8849 _("Invalid dprintf style."));
8850
8851 gdb_assert (printf_line != NULL);
8852 /* Manufacture a printf sequence. */
8853 {
8854 struct command_line *printf_cmd_line = XNEW (struct command_line);
8855
8856 printf_cmd_line->control_type = simple_control;
8857 printf_cmd_line->body_count = 0;
8858 printf_cmd_line->body_list = NULL;
8859 printf_cmd_line->next = NULL;
8860 printf_cmd_line->line = printf_line;
8861
8862 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8863 }
8864 }
8865
8866 /* Update all dprintf commands, making their command lists reflect
8867 current style settings. */
8868
8869 static void
8870 update_dprintf_commands (char *args, int from_tty,
8871 struct cmd_list_element *c)
8872 {
8873 struct breakpoint *b;
8874
8875 ALL_BREAKPOINTS (b)
8876 {
8877 if (b->type == bp_dprintf)
8878 update_dprintf_command_list (b);
8879 }
8880 }
8881
8882 /* Create a breakpoint with SAL as location. Use LOCATION
8883 as a description of the location, and COND_STRING
8884 as condition expression. If LOCATION is NULL then create an
8885 "address location" from the address in the SAL. */
8886
8887 static void
8888 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8889 gdb::array_view<const symtab_and_line> sals,
8890 event_location_up &&location,
8891 gdb::unique_xmalloc_ptr<char> filter,
8892 gdb::unique_xmalloc_ptr<char> cond_string,
8893 gdb::unique_xmalloc_ptr<char> extra_string,
8894 enum bptype type, enum bpdisp disposition,
8895 int thread, int task, int ignore_count,
8896 const struct breakpoint_ops *ops, int from_tty,
8897 int enabled, int internal, unsigned flags,
8898 int display_canonical)
8899 {
8900 int i;
8901
8902 if (type == bp_hardware_breakpoint)
8903 {
8904 int target_resources_ok;
8905
8906 i = hw_breakpoint_used_count ();
8907 target_resources_ok =
8908 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8909 i + 1, 0);
8910 if (target_resources_ok == 0)
8911 error (_("No hardware breakpoint support in the target."));
8912 else if (target_resources_ok < 0)
8913 error (_("Hardware breakpoints used exceeds limit."));
8914 }
8915
8916 gdb_assert (!sals.empty ());
8917
8918 for (const auto &sal : sals)
8919 {
8920 struct bp_location *loc;
8921
8922 if (from_tty)
8923 {
8924 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8925 if (!loc_gdbarch)
8926 loc_gdbarch = gdbarch;
8927
8928 describe_other_breakpoints (loc_gdbarch,
8929 sal.pspace, sal.pc, sal.section, thread);
8930 }
8931
8932 if (&sal == &sals[0])
8933 {
8934 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8935 b->thread = thread;
8936 b->task = task;
8937
8938 b->cond_string = cond_string.release ();
8939 b->extra_string = extra_string.release ();
8940 b->ignore_count = ignore_count;
8941 b->enable_state = enabled ? bp_enabled : bp_disabled;
8942 b->disposition = disposition;
8943
8944 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8945 b->loc->inserted = 1;
8946
8947 if (type == bp_static_tracepoint)
8948 {
8949 struct tracepoint *t = (struct tracepoint *) b;
8950 struct static_tracepoint_marker marker;
8951
8952 if (strace_marker_p (b))
8953 {
8954 /* We already know the marker exists, otherwise, we
8955 wouldn't see a sal for it. */
8956 const char *p
8957 = &event_location_to_string (b->location.get ())[3];
8958 const char *endp;
8959 char *marker_str;
8960
8961 p = skip_spaces (p);
8962
8963 endp = skip_to_space (p);
8964
8965 marker_str = savestring (p, endp - p);
8966 t->static_trace_marker_id = marker_str;
8967
8968 printf_filtered (_("Probed static tracepoint "
8969 "marker \"%s\"\n"),
8970 t->static_trace_marker_id);
8971 }
8972 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8973 {
8974 t->static_trace_marker_id = xstrdup (marker.str_id);
8975 release_static_tracepoint_marker (&marker);
8976
8977 printf_filtered (_("Probed static tracepoint "
8978 "marker \"%s\"\n"),
8979 t->static_trace_marker_id);
8980 }
8981 else
8982 warning (_("Couldn't determine the static "
8983 "tracepoint marker to probe"));
8984 }
8985
8986 loc = b->loc;
8987 }
8988 else
8989 {
8990 loc = add_location_to_breakpoint (b, &sal);
8991 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8992 loc->inserted = 1;
8993 }
8994
8995 if (b->cond_string)
8996 {
8997 const char *arg = b->cond_string;
8998
8999 loc->cond = parse_exp_1 (&arg, loc->address,
9000 block_for_pc (loc->address), 0);
9001 if (*arg)
9002 error (_("Garbage '%s' follows condition"), arg);
9003 }
9004
9005 /* Dynamic printf requires and uses additional arguments on the
9006 command line, otherwise it's an error. */
9007 if (type == bp_dprintf)
9008 {
9009 if (b->extra_string)
9010 update_dprintf_command_list (b);
9011 else
9012 error (_("Format string required"));
9013 }
9014 else if (b->extra_string)
9015 error (_("Garbage '%s' at end of command"), b->extra_string);
9016 }
9017
9018 b->display_canonical = display_canonical;
9019 if (location != NULL)
9020 b->location = std::move (location);
9021 else
9022 b->location = new_address_location (b->loc->address, NULL, 0);
9023 b->filter = filter.release ();
9024 }
9025
9026 static void
9027 create_breakpoint_sal (struct gdbarch *gdbarch,
9028 gdb::array_view<const symtab_and_line> sals,
9029 event_location_up &&location,
9030 gdb::unique_xmalloc_ptr<char> filter,
9031 gdb::unique_xmalloc_ptr<char> cond_string,
9032 gdb::unique_xmalloc_ptr<char> extra_string,
9033 enum bptype type, enum bpdisp disposition,
9034 int thread, int task, int ignore_count,
9035 const struct breakpoint_ops *ops, int from_tty,
9036 int enabled, int internal, unsigned flags,
9037 int display_canonical)
9038 {
9039 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9040
9041 init_breakpoint_sal (b.get (), gdbarch,
9042 sals, std::move (location),
9043 std::move (filter),
9044 std::move (cond_string),
9045 std::move (extra_string),
9046 type, disposition,
9047 thread, task, ignore_count,
9048 ops, from_tty,
9049 enabled, internal, flags,
9050 display_canonical);
9051
9052 install_breakpoint (internal, std::move (b), 0);
9053 }
9054
9055 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9056 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9057 value. COND_STRING, if not NULL, specified the condition to be
9058 used for all breakpoints. Essentially the only case where
9059 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9060 function. In that case, it's still not possible to specify
9061 separate conditions for different overloaded functions, so
9062 we take just a single condition string.
9063
9064 NOTE: If the function succeeds, the caller is expected to cleanup
9065 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9066 array contents). If the function fails (error() is called), the
9067 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9068 COND and SALS arrays and each of those arrays contents. */
9069
9070 static void
9071 create_breakpoints_sal (struct gdbarch *gdbarch,
9072 struct linespec_result *canonical,
9073 gdb::unique_xmalloc_ptr<char> cond_string,
9074 gdb::unique_xmalloc_ptr<char> extra_string,
9075 enum bptype type, enum bpdisp disposition,
9076 int thread, int task, int ignore_count,
9077 const struct breakpoint_ops *ops, int from_tty,
9078 int enabled, int internal, unsigned flags)
9079 {
9080 if (canonical->pre_expanded)
9081 gdb_assert (canonical->lsals.size () == 1);
9082
9083 for (const auto &lsal : canonical->lsals)
9084 {
9085 /* Note that 'location' can be NULL in the case of a plain
9086 'break', without arguments. */
9087 event_location_up location
9088 = (canonical->location != NULL
9089 ? copy_event_location (canonical->location.get ()) : NULL);
9090 gdb::unique_xmalloc_ptr<char> filter_string
9091 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9092
9093 create_breakpoint_sal (gdbarch, lsal.sals,
9094 std::move (location),
9095 std::move (filter_string),
9096 std::move (cond_string),
9097 std::move (extra_string),
9098 type, disposition,
9099 thread, task, ignore_count, ops,
9100 from_tty, enabled, internal, flags,
9101 canonical->special_display);
9102 }
9103 }
9104
9105 /* Parse LOCATION which is assumed to be a SAL specification possibly
9106 followed by conditionals. On return, SALS contains an array of SAL
9107 addresses found. LOCATION points to the end of the SAL (for
9108 linespec locations).
9109
9110 The array and the line spec strings are allocated on the heap, it is
9111 the caller's responsibility to free them. */
9112
9113 static void
9114 parse_breakpoint_sals (const struct event_location *location,
9115 struct linespec_result *canonical)
9116 {
9117 struct symtab_and_line cursal;
9118
9119 if (event_location_type (location) == LINESPEC_LOCATION)
9120 {
9121 const char *address = get_linespec_location (location);
9122
9123 if (address == NULL)
9124 {
9125 /* The last displayed codepoint, if it's valid, is our default
9126 breakpoint address. */
9127 if (last_displayed_sal_is_valid ())
9128 {
9129 /* Set sal's pspace, pc, symtab, and line to the values
9130 corresponding to the last call to print_frame_info.
9131 Be sure to reinitialize LINE with NOTCURRENT == 0
9132 as the breakpoint line number is inappropriate otherwise.
9133 find_pc_line would adjust PC, re-set it back. */
9134 symtab_and_line sal = get_last_displayed_sal ();
9135 CORE_ADDR pc = sal.pc;
9136
9137 sal = find_pc_line (pc, 0);
9138
9139 /* "break" without arguments is equivalent to "break *PC"
9140 where PC is the last displayed codepoint's address. So
9141 make sure to set sal.explicit_pc to prevent GDB from
9142 trying to expand the list of sals to include all other
9143 instances with the same symtab and line. */
9144 sal.pc = pc;
9145 sal.explicit_pc = 1;
9146
9147 struct linespec_sals lsal;
9148 lsal.sals = {sal};
9149 lsal.canonical = NULL;
9150
9151 canonical->lsals.push_back (std::move (lsal));
9152 return;
9153 }
9154 else
9155 error (_("No default breakpoint address now."));
9156 }
9157 }
9158
9159 /* Force almost all breakpoints to be in terms of the
9160 current_source_symtab (which is decode_line_1's default).
9161 This should produce the results we want almost all of the
9162 time while leaving default_breakpoint_* alone.
9163
9164 ObjC: However, don't match an Objective-C method name which
9165 may have a '+' or '-' succeeded by a '['. */
9166 cursal = get_current_source_symtab_and_line ();
9167 if (last_displayed_sal_is_valid ())
9168 {
9169 const char *address = NULL;
9170
9171 if (event_location_type (location) == LINESPEC_LOCATION)
9172 address = get_linespec_location (location);
9173
9174 if (!cursal.symtab
9175 || (address != NULL
9176 && strchr ("+-", address[0]) != NULL
9177 && address[1] != '['))
9178 {
9179 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9180 get_last_displayed_symtab (),
9181 get_last_displayed_line (),
9182 canonical, NULL, NULL);
9183 return;
9184 }
9185 }
9186
9187 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9188 cursal.symtab, cursal.line, canonical, NULL, NULL);
9189 }
9190
9191
9192 /* Convert each SAL into a real PC. Verify that the PC can be
9193 inserted as a breakpoint. If it can't throw an error. */
9194
9195 static void
9196 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9197 {
9198 for (auto &sal : sals)
9199 resolve_sal_pc (&sal);
9200 }
9201
9202 /* Fast tracepoints may have restrictions on valid locations. For
9203 instance, a fast tracepoint using a jump instead of a trap will
9204 likely have to overwrite more bytes than a trap would, and so can
9205 only be placed where the instruction is longer than the jump, or a
9206 multi-instruction sequence does not have a jump into the middle of
9207 it, etc. */
9208
9209 static void
9210 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9211 gdb::array_view<const symtab_and_line> sals)
9212 {
9213 int rslt;
9214 char *msg;
9215 struct cleanup *old_chain;
9216
9217 for (const auto &sal : sals)
9218 {
9219 struct gdbarch *sarch;
9220
9221 sarch = get_sal_arch (sal);
9222 /* We fall back to GDBARCH if there is no architecture
9223 associated with SAL. */
9224 if (sarch == NULL)
9225 sarch = gdbarch;
9226 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9227 old_chain = make_cleanup (xfree, msg);
9228
9229 if (!rslt)
9230 error (_("May not have a fast tracepoint at %s%s"),
9231 paddress (sarch, sal.pc), (msg ? msg : ""));
9232
9233 do_cleanups (old_chain);
9234 }
9235 }
9236
9237 /* Given TOK, a string specification of condition and thread, as
9238 accepted by the 'break' command, extract the condition
9239 string and thread number and set *COND_STRING and *THREAD.
9240 PC identifies the context at which the condition should be parsed.
9241 If no condition is found, *COND_STRING is set to NULL.
9242 If no thread is found, *THREAD is set to -1. */
9243
9244 static void
9245 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9246 char **cond_string, int *thread, int *task,
9247 char **rest)
9248 {
9249 *cond_string = NULL;
9250 *thread = -1;
9251 *task = 0;
9252 *rest = NULL;
9253
9254 while (tok && *tok)
9255 {
9256 const char *end_tok;
9257 int toklen;
9258 const char *cond_start = NULL;
9259 const char *cond_end = NULL;
9260
9261 tok = skip_spaces (tok);
9262
9263 if ((*tok == '"' || *tok == ',') && rest)
9264 {
9265 *rest = savestring (tok, strlen (tok));
9266 return;
9267 }
9268
9269 end_tok = skip_to_space (tok);
9270
9271 toklen = end_tok - tok;
9272
9273 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9274 {
9275 tok = cond_start = end_tok + 1;
9276 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9277 cond_end = tok;
9278 *cond_string = savestring (cond_start, cond_end - cond_start);
9279 }
9280 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9281 {
9282 const char *tmptok;
9283 struct thread_info *thr;
9284
9285 tok = end_tok + 1;
9286 thr = parse_thread_id (tok, &tmptok);
9287 if (tok == tmptok)
9288 error (_("Junk after thread keyword."));
9289 *thread = thr->global_num;
9290 tok = tmptok;
9291 }
9292 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9293 {
9294 char *tmptok;
9295
9296 tok = end_tok + 1;
9297 *task = strtol (tok, &tmptok, 0);
9298 if (tok == tmptok)
9299 error (_("Junk after task keyword."));
9300 if (!valid_task_id (*task))
9301 error (_("Unknown task %d."), *task);
9302 tok = tmptok;
9303 }
9304 else if (rest)
9305 {
9306 *rest = savestring (tok, strlen (tok));
9307 return;
9308 }
9309 else
9310 error (_("Junk at end of arguments."));
9311 }
9312 }
9313
9314 /* Decode a static tracepoint marker spec. */
9315
9316 static std::vector<symtab_and_line>
9317 decode_static_tracepoint_spec (const char **arg_p)
9318 {
9319 VEC(static_tracepoint_marker_p) *markers = NULL;
9320 const char *p = &(*arg_p)[3];
9321 const char *endp;
9322 int i;
9323
9324 p = skip_spaces (p);
9325
9326 endp = skip_to_space (p);
9327
9328 std::string marker_str (p, endp - p);
9329
9330 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9331 if (VEC_empty(static_tracepoint_marker_p, markers))
9332 error (_("No known static tracepoint marker named %s"),
9333 marker_str.c_str ());
9334
9335 std::vector<symtab_and_line> sals;
9336 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9337
9338 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9339 {
9340 struct static_tracepoint_marker *marker;
9341
9342 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9343
9344 symtab_and_line sal = find_pc_line (marker->address, 0);
9345 sal.pc = marker->address;
9346 sals.push_back (sal);
9347
9348 release_static_tracepoint_marker (marker);
9349 }
9350
9351 *arg_p = endp;
9352 return sals;
9353 }
9354
9355 /* See breakpoint.h. */
9356
9357 int
9358 create_breakpoint (struct gdbarch *gdbarch,
9359 const struct event_location *location,
9360 const char *cond_string,
9361 int thread, const char *extra_string,
9362 int parse_extra,
9363 int tempflag, enum bptype type_wanted,
9364 int ignore_count,
9365 enum auto_boolean pending_break_support,
9366 const struct breakpoint_ops *ops,
9367 int from_tty, int enabled, int internal,
9368 unsigned flags)
9369 {
9370 struct linespec_result canonical;
9371 struct cleanup *bkpt_chain = NULL;
9372 int pending = 0;
9373 int task = 0;
9374 int prev_bkpt_count = breakpoint_count;
9375
9376 gdb_assert (ops != NULL);
9377
9378 /* If extra_string isn't useful, set it to NULL. */
9379 if (extra_string != NULL && *extra_string == '\0')
9380 extra_string = NULL;
9381
9382 TRY
9383 {
9384 ops->create_sals_from_location (location, &canonical, type_wanted);
9385 }
9386 CATCH (e, RETURN_MASK_ERROR)
9387 {
9388 /* If caller is interested in rc value from parse, set
9389 value. */
9390 if (e.error == NOT_FOUND_ERROR)
9391 {
9392 /* If pending breakpoint support is turned off, throw
9393 error. */
9394
9395 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9396 throw_exception (e);
9397
9398 exception_print (gdb_stderr, e);
9399
9400 /* If pending breakpoint support is auto query and the user
9401 selects no, then simply return the error code. */
9402 if (pending_break_support == AUTO_BOOLEAN_AUTO
9403 && !nquery (_("Make %s pending on future shared library load? "),
9404 bptype_string (type_wanted)))
9405 return 0;
9406
9407 /* At this point, either the user was queried about setting
9408 a pending breakpoint and selected yes, or pending
9409 breakpoint behavior is on and thus a pending breakpoint
9410 is defaulted on behalf of the user. */
9411 pending = 1;
9412 }
9413 else
9414 throw_exception (e);
9415 }
9416 END_CATCH
9417
9418 if (!pending && canonical.lsals.empty ())
9419 return 0;
9420
9421 /* ----------------------------- SNIP -----------------------------
9422 Anything added to the cleanup chain beyond this point is assumed
9423 to be part of a breakpoint. If the breakpoint create succeeds
9424 then the memory is not reclaimed. */
9425 bkpt_chain = make_cleanup (null_cleanup, 0);
9426
9427 /* Resolve all line numbers to PC's and verify that the addresses
9428 are ok for the target. */
9429 if (!pending)
9430 {
9431 for (auto &lsal : canonical.lsals)
9432 breakpoint_sals_to_pc (lsal.sals);
9433 }
9434
9435 /* Fast tracepoints may have additional restrictions on location. */
9436 if (!pending && type_wanted == bp_fast_tracepoint)
9437 {
9438 for (const auto &lsal : canonical.lsals)
9439 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9440 }
9441
9442 /* Verify that condition can be parsed, before setting any
9443 breakpoints. Allocate a separate condition expression for each
9444 breakpoint. */
9445 if (!pending)
9446 {
9447 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9448 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9449
9450 if (parse_extra)
9451 {
9452 char *rest;
9453 char *cond;
9454
9455 const linespec_sals &lsal = canonical.lsals[0];
9456
9457 /* Here we only parse 'arg' to separate condition
9458 from thread number, so parsing in context of first
9459 sal is OK. When setting the breakpoint we'll
9460 re-parse it in context of each sal. */
9461
9462 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9463 &cond, &thread, &task, &rest);
9464 cond_string_copy.reset (cond);
9465 extra_string_copy.reset (rest);
9466 }
9467 else
9468 {
9469 if (type_wanted != bp_dprintf
9470 && extra_string != NULL && *extra_string != '\0')
9471 error (_("Garbage '%s' at end of location"), extra_string);
9472
9473 /* Create a private copy of condition string. */
9474 if (cond_string)
9475 cond_string_copy.reset (xstrdup (cond_string));
9476 /* Create a private copy of any extra string. */
9477 if (extra_string)
9478 extra_string_copy.reset (xstrdup (extra_string));
9479 }
9480
9481 ops->create_breakpoints_sal (gdbarch, &canonical,
9482 std::move (cond_string_copy),
9483 std::move (extra_string_copy),
9484 type_wanted,
9485 tempflag ? disp_del : disp_donttouch,
9486 thread, task, ignore_count, ops,
9487 from_tty, enabled, internal, flags);
9488 }
9489 else
9490 {
9491 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9492
9493 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9494 b->location = copy_event_location (location);
9495
9496 if (parse_extra)
9497 b->cond_string = NULL;
9498 else
9499 {
9500 /* Create a private copy of condition string. */
9501 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9502 b->thread = thread;
9503 }
9504
9505 /* Create a private copy of any extra string. */
9506 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9507 b->ignore_count = ignore_count;
9508 b->disposition = tempflag ? disp_del : disp_donttouch;
9509 b->condition_not_parsed = 1;
9510 b->enable_state = enabled ? bp_enabled : bp_disabled;
9511 if ((type_wanted != bp_breakpoint
9512 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9513 b->pspace = current_program_space;
9514
9515 install_breakpoint (internal, std::move (b), 0);
9516 }
9517
9518 if (canonical.lsals.size () > 1)
9519 {
9520 warning (_("Multiple breakpoints were set.\nUse the "
9521 "\"delete\" command to delete unwanted breakpoints."));
9522 prev_breakpoint_count = prev_bkpt_count;
9523 }
9524
9525 /* That's it. Discard the cleanups for data inserted into the
9526 breakpoint. */
9527 discard_cleanups (bkpt_chain);
9528
9529 /* error call may happen here - have BKPT_CHAIN already discarded. */
9530 update_global_location_list (UGLL_MAY_INSERT);
9531
9532 return 1;
9533 }
9534
9535 /* Set a breakpoint.
9536 ARG is a string describing breakpoint address,
9537 condition, and thread.
9538 FLAG specifies if a breakpoint is hardware on,
9539 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9540 and BP_TEMPFLAG. */
9541
9542 static void
9543 break_command_1 (const char *arg, int flag, int from_tty)
9544 {
9545 int tempflag = flag & BP_TEMPFLAG;
9546 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9547 ? bp_hardware_breakpoint
9548 : bp_breakpoint);
9549 struct breakpoint_ops *ops;
9550
9551 event_location_up location = string_to_event_location (&arg, current_language);
9552
9553 /* Matching breakpoints on probes. */
9554 if (location != NULL
9555 && event_location_type (location.get ()) == PROBE_LOCATION)
9556 ops = &bkpt_probe_breakpoint_ops;
9557 else
9558 ops = &bkpt_breakpoint_ops;
9559
9560 create_breakpoint (get_current_arch (),
9561 location.get (),
9562 NULL, 0, arg, 1 /* parse arg */,
9563 tempflag, type_wanted,
9564 0 /* Ignore count */,
9565 pending_break_support,
9566 ops,
9567 from_tty,
9568 1 /* enabled */,
9569 0 /* internal */,
9570 0);
9571 }
9572
9573 /* Helper function for break_command_1 and disassemble_command. */
9574
9575 void
9576 resolve_sal_pc (struct symtab_and_line *sal)
9577 {
9578 CORE_ADDR pc;
9579
9580 if (sal->pc == 0 && sal->symtab != NULL)
9581 {
9582 if (!find_line_pc (sal->symtab, sal->line, &pc))
9583 error (_("No line %d in file \"%s\"."),
9584 sal->line, symtab_to_filename_for_display (sal->symtab));
9585 sal->pc = pc;
9586
9587 /* If this SAL corresponds to a breakpoint inserted using a line
9588 number, then skip the function prologue if necessary. */
9589 if (sal->explicit_line)
9590 skip_prologue_sal (sal);
9591 }
9592
9593 if (sal->section == 0 && sal->symtab != NULL)
9594 {
9595 const struct blockvector *bv;
9596 const struct block *b;
9597 struct symbol *sym;
9598
9599 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9600 SYMTAB_COMPUNIT (sal->symtab));
9601 if (bv != NULL)
9602 {
9603 sym = block_linkage_function (b);
9604 if (sym != NULL)
9605 {
9606 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9607 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9608 sym);
9609 }
9610 else
9611 {
9612 /* It really is worthwhile to have the section, so we'll
9613 just have to look harder. This case can be executed
9614 if we have line numbers but no functions (as can
9615 happen in assembly source). */
9616
9617 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9618 switch_to_program_space_and_thread (sal->pspace);
9619
9620 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9621 if (msym.minsym)
9622 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9623 }
9624 }
9625 }
9626 }
9627
9628 void
9629 break_command (const char *arg, int from_tty)
9630 {
9631 break_command_1 (arg, 0, from_tty);
9632 }
9633
9634 void
9635 tbreak_command (const char *arg, int from_tty)
9636 {
9637 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9638 }
9639
9640 static void
9641 hbreak_command (const char *arg, int from_tty)
9642 {
9643 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9644 }
9645
9646 static void
9647 thbreak_command (const char *arg, int from_tty)
9648 {
9649 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9650 }
9651
9652 static void
9653 stop_command (const char *arg, int from_tty)
9654 {
9655 printf_filtered (_("Specify the type of breakpoint to set.\n\
9656 Usage: stop in <function | address>\n\
9657 stop at <line>\n"));
9658 }
9659
9660 static void
9661 stopin_command (const char *arg, int from_tty)
9662 {
9663 int badInput = 0;
9664
9665 if (arg == (char *) NULL)
9666 badInput = 1;
9667 else if (*arg != '*')
9668 {
9669 const char *argptr = arg;
9670 int hasColon = 0;
9671
9672 /* Look for a ':'. If this is a line number specification, then
9673 say it is bad, otherwise, it should be an address or
9674 function/method name. */
9675 while (*argptr && !hasColon)
9676 {
9677 hasColon = (*argptr == ':');
9678 argptr++;
9679 }
9680
9681 if (hasColon)
9682 badInput = (*argptr != ':'); /* Not a class::method */
9683 else
9684 badInput = isdigit (*arg); /* a simple line number */
9685 }
9686
9687 if (badInput)
9688 printf_filtered (_("Usage: stop in <function | address>\n"));
9689 else
9690 break_command_1 (arg, 0, from_tty);
9691 }
9692
9693 static void
9694 stopat_command (const char *arg, int from_tty)
9695 {
9696 int badInput = 0;
9697
9698 if (arg == (char *) NULL || *arg == '*') /* no line number */
9699 badInput = 1;
9700 else
9701 {
9702 const char *argptr = arg;
9703 int hasColon = 0;
9704
9705 /* Look for a ':'. If there is a '::' then get out, otherwise
9706 it is probably a line number. */
9707 while (*argptr && !hasColon)
9708 {
9709 hasColon = (*argptr == ':');
9710 argptr++;
9711 }
9712
9713 if (hasColon)
9714 badInput = (*argptr == ':'); /* we have class::method */
9715 else
9716 badInput = !isdigit (*arg); /* not a line number */
9717 }
9718
9719 if (badInput)
9720 printf_filtered (_("Usage: stop at <line>\n"));
9721 else
9722 break_command_1 (arg, 0, from_tty);
9723 }
9724
9725 /* The dynamic printf command is mostly like a regular breakpoint, but
9726 with a prewired command list consisting of a single output command,
9727 built from extra arguments supplied on the dprintf command
9728 line. */
9729
9730 static void
9731 dprintf_command (const char *arg, int from_tty)
9732 {
9733 event_location_up location = string_to_event_location (&arg, current_language);
9734
9735 /* If non-NULL, ARG should have been advanced past the location;
9736 the next character must be ','. */
9737 if (arg != NULL)
9738 {
9739 if (arg[0] != ',' || arg[1] == '\0')
9740 error (_("Format string required"));
9741 else
9742 {
9743 /* Skip the comma. */
9744 ++arg;
9745 }
9746 }
9747
9748 create_breakpoint (get_current_arch (),
9749 location.get (),
9750 NULL, 0, arg, 1 /* parse arg */,
9751 0, bp_dprintf,
9752 0 /* Ignore count */,
9753 pending_break_support,
9754 &dprintf_breakpoint_ops,
9755 from_tty,
9756 1 /* enabled */,
9757 0 /* internal */,
9758 0);
9759 }
9760
9761 static void
9762 agent_printf_command (const char *arg, int from_tty)
9763 {
9764 error (_("May only run agent-printf on the target"));
9765 }
9766
9767 /* Implement the "breakpoint_hit" breakpoint_ops method for
9768 ranged breakpoints. */
9769
9770 static int
9771 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9772 const address_space *aspace,
9773 CORE_ADDR bp_addr,
9774 const struct target_waitstatus *ws)
9775 {
9776 if (ws->kind != TARGET_WAITKIND_STOPPED
9777 || ws->value.sig != GDB_SIGNAL_TRAP)
9778 return 0;
9779
9780 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9781 bl->length, aspace, bp_addr);
9782 }
9783
9784 /* Implement the "resources_needed" breakpoint_ops method for
9785 ranged breakpoints. */
9786
9787 static int
9788 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9789 {
9790 return target_ranged_break_num_registers ();
9791 }
9792
9793 /* Implement the "print_it" breakpoint_ops method for
9794 ranged breakpoints. */
9795
9796 static enum print_stop_action
9797 print_it_ranged_breakpoint (bpstat bs)
9798 {
9799 struct breakpoint *b = bs->breakpoint_at;
9800 struct bp_location *bl = b->loc;
9801 struct ui_out *uiout = current_uiout;
9802
9803 gdb_assert (b->type == bp_hardware_breakpoint);
9804
9805 /* Ranged breakpoints have only one location. */
9806 gdb_assert (bl && bl->next == NULL);
9807
9808 annotate_breakpoint (b->number);
9809
9810 maybe_print_thread_hit_breakpoint (uiout);
9811
9812 if (b->disposition == disp_del)
9813 uiout->text ("Temporary ranged breakpoint ");
9814 else
9815 uiout->text ("Ranged breakpoint ");
9816 if (uiout->is_mi_like_p ())
9817 {
9818 uiout->field_string ("reason",
9819 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9820 uiout->field_string ("disp", bpdisp_text (b->disposition));
9821 }
9822 uiout->field_int ("bkptno", b->number);
9823 uiout->text (", ");
9824
9825 return PRINT_SRC_AND_LOC;
9826 }
9827
9828 /* Implement the "print_one" breakpoint_ops method for
9829 ranged breakpoints. */
9830
9831 static void
9832 print_one_ranged_breakpoint (struct breakpoint *b,
9833 struct bp_location **last_loc)
9834 {
9835 struct bp_location *bl = b->loc;
9836 struct value_print_options opts;
9837 struct ui_out *uiout = current_uiout;
9838
9839 /* Ranged breakpoints have only one location. */
9840 gdb_assert (bl && bl->next == NULL);
9841
9842 get_user_print_options (&opts);
9843
9844 if (opts.addressprint)
9845 /* We don't print the address range here, it will be printed later
9846 by print_one_detail_ranged_breakpoint. */
9847 uiout->field_skip ("addr");
9848 annotate_field (5);
9849 print_breakpoint_location (b, bl);
9850 *last_loc = bl;
9851 }
9852
9853 /* Implement the "print_one_detail" breakpoint_ops method for
9854 ranged breakpoints. */
9855
9856 static void
9857 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9858 struct ui_out *uiout)
9859 {
9860 CORE_ADDR address_start, address_end;
9861 struct bp_location *bl = b->loc;
9862 string_file stb;
9863
9864 gdb_assert (bl);
9865
9866 address_start = bl->address;
9867 address_end = address_start + bl->length - 1;
9868
9869 uiout->text ("\taddress range: ");
9870 stb.printf ("[%s, %s]",
9871 print_core_address (bl->gdbarch, address_start),
9872 print_core_address (bl->gdbarch, address_end));
9873 uiout->field_stream ("addr", stb);
9874 uiout->text ("\n");
9875 }
9876
9877 /* Implement the "print_mention" breakpoint_ops method for
9878 ranged breakpoints. */
9879
9880 static void
9881 print_mention_ranged_breakpoint (struct breakpoint *b)
9882 {
9883 struct bp_location *bl = b->loc;
9884 struct ui_out *uiout = current_uiout;
9885
9886 gdb_assert (bl);
9887 gdb_assert (b->type == bp_hardware_breakpoint);
9888
9889 if (uiout->is_mi_like_p ())
9890 return;
9891
9892 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9893 b->number, paddress (bl->gdbarch, bl->address),
9894 paddress (bl->gdbarch, bl->address + bl->length - 1));
9895 }
9896
9897 /* Implement the "print_recreate" breakpoint_ops method for
9898 ranged breakpoints. */
9899
9900 static void
9901 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9902 {
9903 fprintf_unfiltered (fp, "break-range %s, %s",
9904 event_location_to_string (b->location.get ()),
9905 event_location_to_string (b->location_range_end.get ()));
9906 print_recreate_thread (b, fp);
9907 }
9908
9909 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9910
9911 static struct breakpoint_ops ranged_breakpoint_ops;
9912
9913 /* Find the address where the end of the breakpoint range should be
9914 placed, given the SAL of the end of the range. This is so that if
9915 the user provides a line number, the end of the range is set to the
9916 last instruction of the given line. */
9917
9918 static CORE_ADDR
9919 find_breakpoint_range_end (struct symtab_and_line sal)
9920 {
9921 CORE_ADDR end;
9922
9923 /* If the user provided a PC value, use it. Otherwise,
9924 find the address of the end of the given location. */
9925 if (sal.explicit_pc)
9926 end = sal.pc;
9927 else
9928 {
9929 int ret;
9930 CORE_ADDR start;
9931
9932 ret = find_line_pc_range (sal, &start, &end);
9933 if (!ret)
9934 error (_("Could not find location of the end of the range."));
9935
9936 /* find_line_pc_range returns the start of the next line. */
9937 end--;
9938 }
9939
9940 return end;
9941 }
9942
9943 /* Implement the "break-range" CLI command. */
9944
9945 static void
9946 break_range_command (const char *arg, int from_tty)
9947 {
9948 const char *arg_start;
9949 struct linespec_result canonical_start, canonical_end;
9950 int bp_count, can_use_bp, length;
9951 CORE_ADDR end;
9952 struct breakpoint *b;
9953
9954 /* We don't support software ranged breakpoints. */
9955 if (target_ranged_break_num_registers () < 0)
9956 error (_("This target does not support hardware ranged breakpoints."));
9957
9958 bp_count = hw_breakpoint_used_count ();
9959 bp_count += target_ranged_break_num_registers ();
9960 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9961 bp_count, 0);
9962 if (can_use_bp < 0)
9963 error (_("Hardware breakpoints used exceeds limit."));
9964
9965 arg = skip_spaces (arg);
9966 if (arg == NULL || arg[0] == '\0')
9967 error(_("No address range specified."));
9968
9969 arg_start = arg;
9970 event_location_up start_location = string_to_event_location (&arg,
9971 current_language);
9972 parse_breakpoint_sals (start_location.get (), &canonical_start);
9973
9974 if (arg[0] != ',')
9975 error (_("Too few arguments."));
9976 else if (canonical_start.lsals.empty ())
9977 error (_("Could not find location of the beginning of the range."));
9978
9979 const linespec_sals &lsal_start = canonical_start.lsals[0];
9980
9981 if (canonical_start.lsals.size () > 1
9982 || lsal_start.sals.size () != 1)
9983 error (_("Cannot create a ranged breakpoint with multiple locations."));
9984
9985 const symtab_and_line &sal_start = lsal_start.sals[0];
9986 std::string addr_string_start (arg_start, arg - arg_start);
9987
9988 arg++; /* Skip the comma. */
9989 arg = skip_spaces (arg);
9990
9991 /* Parse the end location. */
9992
9993 arg_start = arg;
9994
9995 /* We call decode_line_full directly here instead of using
9996 parse_breakpoint_sals because we need to specify the start location's
9997 symtab and line as the default symtab and line for the end of the
9998 range. This makes it possible to have ranges like "foo.c:27, +14",
9999 where +14 means 14 lines from the start location. */
10000 event_location_up end_location = string_to_event_location (&arg,
10001 current_language);
10002 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10003 sal_start.symtab, sal_start.line,
10004 &canonical_end, NULL, NULL);
10005
10006 if (canonical_end.lsals.empty ())
10007 error (_("Could not find location of the end of the range."));
10008
10009 const linespec_sals &lsal_end = canonical_end.lsals[0];
10010 if (canonical_end.lsals.size () > 1
10011 || lsal_end.sals.size () != 1)
10012 error (_("Cannot create a ranged breakpoint with multiple locations."));
10013
10014 const symtab_and_line &sal_end = lsal_end.sals[0];
10015
10016 end = find_breakpoint_range_end (sal_end);
10017 if (sal_start.pc > end)
10018 error (_("Invalid address range, end precedes start."));
10019
10020 length = end - sal_start.pc + 1;
10021 if (length < 0)
10022 /* Length overflowed. */
10023 error (_("Address range too large."));
10024 else if (length == 1)
10025 {
10026 /* This range is simple enough to be handled by
10027 the `hbreak' command. */
10028 hbreak_command (&addr_string_start[0], 1);
10029
10030 return;
10031 }
10032
10033 /* Now set up the breakpoint. */
10034 b = set_raw_breakpoint (get_current_arch (), sal_start,
10035 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10036 set_breakpoint_count (breakpoint_count + 1);
10037 b->number = breakpoint_count;
10038 b->disposition = disp_donttouch;
10039 b->location = std::move (start_location);
10040 b->location_range_end = std::move (end_location);
10041 b->loc->length = length;
10042
10043 mention (b);
10044 observer_notify_breakpoint_created (b);
10045 update_global_location_list (UGLL_MAY_INSERT);
10046 }
10047
10048 /* Return non-zero if EXP is verified as constant. Returned zero
10049 means EXP is variable. Also the constant detection may fail for
10050 some constant expressions and in such case still falsely return
10051 zero. */
10052
10053 static int
10054 watchpoint_exp_is_const (const struct expression *exp)
10055 {
10056 int i = exp->nelts;
10057
10058 while (i > 0)
10059 {
10060 int oplenp, argsp;
10061
10062 /* We are only interested in the descriptor of each element. */
10063 operator_length (exp, i, &oplenp, &argsp);
10064 i -= oplenp;
10065
10066 switch (exp->elts[i].opcode)
10067 {
10068 case BINOP_ADD:
10069 case BINOP_SUB:
10070 case BINOP_MUL:
10071 case BINOP_DIV:
10072 case BINOP_REM:
10073 case BINOP_MOD:
10074 case BINOP_LSH:
10075 case BINOP_RSH:
10076 case BINOP_LOGICAL_AND:
10077 case BINOP_LOGICAL_OR:
10078 case BINOP_BITWISE_AND:
10079 case BINOP_BITWISE_IOR:
10080 case BINOP_BITWISE_XOR:
10081 case BINOP_EQUAL:
10082 case BINOP_NOTEQUAL:
10083 case BINOP_LESS:
10084 case BINOP_GTR:
10085 case BINOP_LEQ:
10086 case BINOP_GEQ:
10087 case BINOP_REPEAT:
10088 case BINOP_COMMA:
10089 case BINOP_EXP:
10090 case BINOP_MIN:
10091 case BINOP_MAX:
10092 case BINOP_INTDIV:
10093 case BINOP_CONCAT:
10094 case TERNOP_COND:
10095 case TERNOP_SLICE:
10096
10097 case OP_LONG:
10098 case OP_FLOAT:
10099 case OP_LAST:
10100 case OP_COMPLEX:
10101 case OP_STRING:
10102 case OP_ARRAY:
10103 case OP_TYPE:
10104 case OP_TYPEOF:
10105 case OP_DECLTYPE:
10106 case OP_TYPEID:
10107 case OP_NAME:
10108 case OP_OBJC_NSSTRING:
10109
10110 case UNOP_NEG:
10111 case UNOP_LOGICAL_NOT:
10112 case UNOP_COMPLEMENT:
10113 case UNOP_ADDR:
10114 case UNOP_HIGH:
10115 case UNOP_CAST:
10116
10117 case UNOP_CAST_TYPE:
10118 case UNOP_REINTERPRET_CAST:
10119 case UNOP_DYNAMIC_CAST:
10120 /* Unary, binary and ternary operators: We have to check
10121 their operands. If they are constant, then so is the
10122 result of that operation. For instance, if A and B are
10123 determined to be constants, then so is "A + B".
10124
10125 UNOP_IND is one exception to the rule above, because the
10126 value of *ADDR is not necessarily a constant, even when
10127 ADDR is. */
10128 break;
10129
10130 case OP_VAR_VALUE:
10131 /* Check whether the associated symbol is a constant.
10132
10133 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10134 possible that a buggy compiler could mark a variable as
10135 constant even when it is not, and TYPE_CONST would return
10136 true in this case, while SYMBOL_CLASS wouldn't.
10137
10138 We also have to check for function symbols because they
10139 are always constant. */
10140 {
10141 struct symbol *s = exp->elts[i + 2].symbol;
10142
10143 if (SYMBOL_CLASS (s) != LOC_BLOCK
10144 && SYMBOL_CLASS (s) != LOC_CONST
10145 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10146 return 0;
10147 break;
10148 }
10149
10150 /* The default action is to return 0 because we are using
10151 the optimistic approach here: If we don't know something,
10152 then it is not a constant. */
10153 default:
10154 return 0;
10155 }
10156 }
10157
10158 return 1;
10159 }
10160
10161 /* Watchpoint destructor. */
10162
10163 watchpoint::~watchpoint ()
10164 {
10165 xfree (this->exp_string);
10166 xfree (this->exp_string_reparse);
10167 value_free (this->val);
10168 }
10169
10170 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10171
10172 static void
10173 re_set_watchpoint (struct breakpoint *b)
10174 {
10175 struct watchpoint *w = (struct watchpoint *) b;
10176
10177 /* Watchpoint can be either on expression using entirely global
10178 variables, or it can be on local variables.
10179
10180 Watchpoints of the first kind are never auto-deleted, and even
10181 persist across program restarts. Since they can use variables
10182 from shared libraries, we need to reparse expression as libraries
10183 are loaded and unloaded.
10184
10185 Watchpoints on local variables can also change meaning as result
10186 of solib event. For example, if a watchpoint uses both a local
10187 and a global variables in expression, it's a local watchpoint,
10188 but unloading of a shared library will make the expression
10189 invalid. This is not a very common use case, but we still
10190 re-evaluate expression, to avoid surprises to the user.
10191
10192 Note that for local watchpoints, we re-evaluate it only if
10193 watchpoints frame id is still valid. If it's not, it means the
10194 watchpoint is out of scope and will be deleted soon. In fact,
10195 I'm not sure we'll ever be called in this case.
10196
10197 If a local watchpoint's frame id is still valid, then
10198 w->exp_valid_block is likewise valid, and we can safely use it.
10199
10200 Don't do anything about disabled watchpoints, since they will be
10201 reevaluated again when enabled. */
10202 update_watchpoint (w, 1 /* reparse */);
10203 }
10204
10205 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10206
10207 static int
10208 insert_watchpoint (struct bp_location *bl)
10209 {
10210 struct watchpoint *w = (struct watchpoint *) bl->owner;
10211 int length = w->exact ? 1 : bl->length;
10212
10213 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10214 w->cond_exp.get ());
10215 }
10216
10217 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10218
10219 static int
10220 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10221 {
10222 struct watchpoint *w = (struct watchpoint *) bl->owner;
10223 int length = w->exact ? 1 : bl->length;
10224
10225 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10226 w->cond_exp.get ());
10227 }
10228
10229 static int
10230 breakpoint_hit_watchpoint (const struct bp_location *bl,
10231 const address_space *aspace, CORE_ADDR bp_addr,
10232 const struct target_waitstatus *ws)
10233 {
10234 struct breakpoint *b = bl->owner;
10235 struct watchpoint *w = (struct watchpoint *) b;
10236
10237 /* Continuable hardware watchpoints are treated as non-existent if the
10238 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10239 some data address). Otherwise gdb won't stop on a break instruction
10240 in the code (not from a breakpoint) when a hardware watchpoint has
10241 been defined. Also skip watchpoints which we know did not trigger
10242 (did not match the data address). */
10243 if (is_hardware_watchpoint (b)
10244 && w->watchpoint_triggered == watch_triggered_no)
10245 return 0;
10246
10247 return 1;
10248 }
10249
10250 static void
10251 check_status_watchpoint (bpstat bs)
10252 {
10253 gdb_assert (is_watchpoint (bs->breakpoint_at));
10254
10255 bpstat_check_watchpoint (bs);
10256 }
10257
10258 /* Implement the "resources_needed" breakpoint_ops method for
10259 hardware watchpoints. */
10260
10261 static int
10262 resources_needed_watchpoint (const struct bp_location *bl)
10263 {
10264 struct watchpoint *w = (struct watchpoint *) bl->owner;
10265 int length = w->exact? 1 : bl->length;
10266
10267 return target_region_ok_for_hw_watchpoint (bl->address, length);
10268 }
10269
10270 /* Implement the "works_in_software_mode" breakpoint_ops method for
10271 hardware watchpoints. */
10272
10273 static int
10274 works_in_software_mode_watchpoint (const struct breakpoint *b)
10275 {
10276 /* Read and access watchpoints only work with hardware support. */
10277 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10278 }
10279
10280 static enum print_stop_action
10281 print_it_watchpoint (bpstat bs)
10282 {
10283 struct breakpoint *b;
10284 enum print_stop_action result;
10285 struct watchpoint *w;
10286 struct ui_out *uiout = current_uiout;
10287
10288 gdb_assert (bs->bp_location_at != NULL);
10289
10290 b = bs->breakpoint_at;
10291 w = (struct watchpoint *) b;
10292
10293 annotate_watchpoint (b->number);
10294 maybe_print_thread_hit_breakpoint (uiout);
10295
10296 string_file stb;
10297
10298 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10299 switch (b->type)
10300 {
10301 case bp_watchpoint:
10302 case bp_hardware_watchpoint:
10303 if (uiout->is_mi_like_p ())
10304 uiout->field_string
10305 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10306 mention (b);
10307 tuple_emitter.emplace (uiout, "value");
10308 uiout->text ("\nOld value = ");
10309 watchpoint_value_print (bs->old_val, &stb);
10310 uiout->field_stream ("old", stb);
10311 uiout->text ("\nNew value = ");
10312 watchpoint_value_print (w->val, &stb);
10313 uiout->field_stream ("new", stb);
10314 uiout->text ("\n");
10315 /* More than one watchpoint may have been triggered. */
10316 result = PRINT_UNKNOWN;
10317 break;
10318
10319 case bp_read_watchpoint:
10320 if (uiout->is_mi_like_p ())
10321 uiout->field_string
10322 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10323 mention (b);
10324 tuple_emitter.emplace (uiout, "value");
10325 uiout->text ("\nValue = ");
10326 watchpoint_value_print (w->val, &stb);
10327 uiout->field_stream ("value", stb);
10328 uiout->text ("\n");
10329 result = PRINT_UNKNOWN;
10330 break;
10331
10332 case bp_access_watchpoint:
10333 if (bs->old_val != NULL)
10334 {
10335 if (uiout->is_mi_like_p ())
10336 uiout->field_string
10337 ("reason",
10338 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10339 mention (b);
10340 tuple_emitter.emplace (uiout, "value");
10341 uiout->text ("\nOld value = ");
10342 watchpoint_value_print (bs->old_val, &stb);
10343 uiout->field_stream ("old", stb);
10344 uiout->text ("\nNew value = ");
10345 }
10346 else
10347 {
10348 mention (b);
10349 if (uiout->is_mi_like_p ())
10350 uiout->field_string
10351 ("reason",
10352 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10353 tuple_emitter.emplace (uiout, "value");
10354 uiout->text ("\nValue = ");
10355 }
10356 watchpoint_value_print (w->val, &stb);
10357 uiout->field_stream ("new", stb);
10358 uiout->text ("\n");
10359 result = PRINT_UNKNOWN;
10360 break;
10361 default:
10362 result = PRINT_UNKNOWN;
10363 }
10364
10365 return result;
10366 }
10367
10368 /* Implement the "print_mention" breakpoint_ops method for hardware
10369 watchpoints. */
10370
10371 static void
10372 print_mention_watchpoint (struct breakpoint *b)
10373 {
10374 struct watchpoint *w = (struct watchpoint *) b;
10375 struct ui_out *uiout = current_uiout;
10376 const char *tuple_name;
10377
10378 switch (b->type)
10379 {
10380 case bp_watchpoint:
10381 uiout->text ("Watchpoint ");
10382 tuple_name = "wpt";
10383 break;
10384 case bp_hardware_watchpoint:
10385 uiout->text ("Hardware watchpoint ");
10386 tuple_name = "wpt";
10387 break;
10388 case bp_read_watchpoint:
10389 uiout->text ("Hardware read watchpoint ");
10390 tuple_name = "hw-rwpt";
10391 break;
10392 case bp_access_watchpoint:
10393 uiout->text ("Hardware access (read/write) watchpoint ");
10394 tuple_name = "hw-awpt";
10395 break;
10396 default:
10397 internal_error (__FILE__, __LINE__,
10398 _("Invalid hardware watchpoint type."));
10399 }
10400
10401 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10402 uiout->field_int ("number", b->number);
10403 uiout->text (": ");
10404 uiout->field_string ("exp", w->exp_string);
10405 }
10406
10407 /* Implement the "print_recreate" breakpoint_ops method for
10408 watchpoints. */
10409
10410 static void
10411 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10412 {
10413 struct watchpoint *w = (struct watchpoint *) b;
10414
10415 switch (b->type)
10416 {
10417 case bp_watchpoint:
10418 case bp_hardware_watchpoint:
10419 fprintf_unfiltered (fp, "watch");
10420 break;
10421 case bp_read_watchpoint:
10422 fprintf_unfiltered (fp, "rwatch");
10423 break;
10424 case bp_access_watchpoint:
10425 fprintf_unfiltered (fp, "awatch");
10426 break;
10427 default:
10428 internal_error (__FILE__, __LINE__,
10429 _("Invalid watchpoint type."));
10430 }
10431
10432 fprintf_unfiltered (fp, " %s", w->exp_string);
10433 print_recreate_thread (b, fp);
10434 }
10435
10436 /* Implement the "explains_signal" breakpoint_ops method for
10437 watchpoints. */
10438
10439 static int
10440 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10441 {
10442 /* A software watchpoint cannot cause a signal other than
10443 GDB_SIGNAL_TRAP. */
10444 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10445 return 0;
10446
10447 return 1;
10448 }
10449
10450 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10451
10452 static struct breakpoint_ops watchpoint_breakpoint_ops;
10453
10454 /* Implement the "insert" breakpoint_ops method for
10455 masked hardware watchpoints. */
10456
10457 static int
10458 insert_masked_watchpoint (struct bp_location *bl)
10459 {
10460 struct watchpoint *w = (struct watchpoint *) bl->owner;
10461
10462 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10463 bl->watchpoint_type);
10464 }
10465
10466 /* Implement the "remove" breakpoint_ops method for
10467 masked hardware watchpoints. */
10468
10469 static int
10470 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10471 {
10472 struct watchpoint *w = (struct watchpoint *) bl->owner;
10473
10474 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10475 bl->watchpoint_type);
10476 }
10477
10478 /* Implement the "resources_needed" breakpoint_ops method for
10479 masked hardware watchpoints. */
10480
10481 static int
10482 resources_needed_masked_watchpoint (const struct bp_location *bl)
10483 {
10484 struct watchpoint *w = (struct watchpoint *) bl->owner;
10485
10486 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10487 }
10488
10489 /* Implement the "works_in_software_mode" breakpoint_ops method for
10490 masked hardware watchpoints. */
10491
10492 static int
10493 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10494 {
10495 return 0;
10496 }
10497
10498 /* Implement the "print_it" breakpoint_ops method for
10499 masked hardware watchpoints. */
10500
10501 static enum print_stop_action
10502 print_it_masked_watchpoint (bpstat bs)
10503 {
10504 struct breakpoint *b = bs->breakpoint_at;
10505 struct ui_out *uiout = current_uiout;
10506
10507 /* Masked watchpoints have only one location. */
10508 gdb_assert (b->loc && b->loc->next == NULL);
10509
10510 annotate_watchpoint (b->number);
10511 maybe_print_thread_hit_breakpoint (uiout);
10512
10513 switch (b->type)
10514 {
10515 case bp_hardware_watchpoint:
10516 if (uiout->is_mi_like_p ())
10517 uiout->field_string
10518 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10519 break;
10520
10521 case bp_read_watchpoint:
10522 if (uiout->is_mi_like_p ())
10523 uiout->field_string
10524 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10525 break;
10526
10527 case bp_access_watchpoint:
10528 if (uiout->is_mi_like_p ())
10529 uiout->field_string
10530 ("reason",
10531 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10532 break;
10533 default:
10534 internal_error (__FILE__, __LINE__,
10535 _("Invalid hardware watchpoint type."));
10536 }
10537
10538 mention (b);
10539 uiout->text (_("\n\
10540 Check the underlying instruction at PC for the memory\n\
10541 address and value which triggered this watchpoint.\n"));
10542 uiout->text ("\n");
10543
10544 /* More than one watchpoint may have been triggered. */
10545 return PRINT_UNKNOWN;
10546 }
10547
10548 /* Implement the "print_one_detail" breakpoint_ops method for
10549 masked hardware watchpoints. */
10550
10551 static void
10552 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10553 struct ui_out *uiout)
10554 {
10555 struct watchpoint *w = (struct watchpoint *) b;
10556
10557 /* Masked watchpoints have only one location. */
10558 gdb_assert (b->loc && b->loc->next == NULL);
10559
10560 uiout->text ("\tmask ");
10561 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10562 uiout->text ("\n");
10563 }
10564
10565 /* Implement the "print_mention" breakpoint_ops method for
10566 masked hardware watchpoints. */
10567
10568 static void
10569 print_mention_masked_watchpoint (struct breakpoint *b)
10570 {
10571 struct watchpoint *w = (struct watchpoint *) b;
10572 struct ui_out *uiout = current_uiout;
10573 const char *tuple_name;
10574
10575 switch (b->type)
10576 {
10577 case bp_hardware_watchpoint:
10578 uiout->text ("Masked hardware watchpoint ");
10579 tuple_name = "wpt";
10580 break;
10581 case bp_read_watchpoint:
10582 uiout->text ("Masked hardware read watchpoint ");
10583 tuple_name = "hw-rwpt";
10584 break;
10585 case bp_access_watchpoint:
10586 uiout->text ("Masked hardware access (read/write) watchpoint ");
10587 tuple_name = "hw-awpt";
10588 break;
10589 default:
10590 internal_error (__FILE__, __LINE__,
10591 _("Invalid hardware watchpoint type."));
10592 }
10593
10594 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10595 uiout->field_int ("number", b->number);
10596 uiout->text (": ");
10597 uiout->field_string ("exp", w->exp_string);
10598 }
10599
10600 /* Implement the "print_recreate" breakpoint_ops method for
10601 masked hardware watchpoints. */
10602
10603 static void
10604 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10605 {
10606 struct watchpoint *w = (struct watchpoint *) b;
10607 char tmp[40];
10608
10609 switch (b->type)
10610 {
10611 case bp_hardware_watchpoint:
10612 fprintf_unfiltered (fp, "watch");
10613 break;
10614 case bp_read_watchpoint:
10615 fprintf_unfiltered (fp, "rwatch");
10616 break;
10617 case bp_access_watchpoint:
10618 fprintf_unfiltered (fp, "awatch");
10619 break;
10620 default:
10621 internal_error (__FILE__, __LINE__,
10622 _("Invalid hardware watchpoint type."));
10623 }
10624
10625 sprintf_vma (tmp, w->hw_wp_mask);
10626 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10627 print_recreate_thread (b, fp);
10628 }
10629
10630 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10631
10632 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10633
10634 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10635
10636 static int
10637 is_masked_watchpoint (const struct breakpoint *b)
10638 {
10639 return b->ops == &masked_watchpoint_breakpoint_ops;
10640 }
10641
10642 /* accessflag: hw_write: watch write,
10643 hw_read: watch read,
10644 hw_access: watch access (read or write) */
10645 static void
10646 watch_command_1 (const char *arg, int accessflag, int from_tty,
10647 int just_location, int internal)
10648 {
10649 struct breakpoint *scope_breakpoint = NULL;
10650 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10651 struct value *val, *mark, *result;
10652 int saved_bitpos = 0, saved_bitsize = 0;
10653 const char *exp_start = NULL;
10654 const char *exp_end = NULL;
10655 const char *tok, *end_tok;
10656 int toklen = -1;
10657 const char *cond_start = NULL;
10658 const char *cond_end = NULL;
10659 enum bptype bp_type;
10660 int thread = -1;
10661 int pc = 0;
10662 /* Flag to indicate whether we are going to use masks for
10663 the hardware watchpoint. */
10664 int use_mask = 0;
10665 CORE_ADDR mask = 0;
10666
10667 /* Make sure that we actually have parameters to parse. */
10668 if (arg != NULL && arg[0] != '\0')
10669 {
10670 const char *value_start;
10671
10672 exp_end = arg + strlen (arg);
10673
10674 /* Look for "parameter value" pairs at the end
10675 of the arguments string. */
10676 for (tok = exp_end - 1; tok > arg; tok--)
10677 {
10678 /* Skip whitespace at the end of the argument list. */
10679 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10680 tok--;
10681
10682 /* Find the beginning of the last token.
10683 This is the value of the parameter. */
10684 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10685 tok--;
10686 value_start = tok + 1;
10687
10688 /* Skip whitespace. */
10689 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10690 tok--;
10691
10692 end_tok = tok;
10693
10694 /* Find the beginning of the second to last token.
10695 This is the parameter itself. */
10696 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10697 tok--;
10698 tok++;
10699 toklen = end_tok - tok + 1;
10700
10701 if (toklen == 6 && startswith (tok, "thread"))
10702 {
10703 struct thread_info *thr;
10704 /* At this point we've found a "thread" token, which means
10705 the user is trying to set a watchpoint that triggers
10706 only in a specific thread. */
10707 const char *endp;
10708
10709 if (thread != -1)
10710 error(_("You can specify only one thread."));
10711
10712 /* Extract the thread ID from the next token. */
10713 thr = parse_thread_id (value_start, &endp);
10714
10715 /* Check if the user provided a valid thread ID. */
10716 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10717 invalid_thread_id_error (value_start);
10718
10719 thread = thr->global_num;
10720 }
10721 else if (toklen == 4 && startswith (tok, "mask"))
10722 {
10723 /* We've found a "mask" token, which means the user wants to
10724 create a hardware watchpoint that is going to have the mask
10725 facility. */
10726 struct value *mask_value, *mark;
10727
10728 if (use_mask)
10729 error(_("You can specify only one mask."));
10730
10731 use_mask = just_location = 1;
10732
10733 mark = value_mark ();
10734 mask_value = parse_to_comma_and_eval (&value_start);
10735 mask = value_as_address (mask_value);
10736 value_free_to_mark (mark);
10737 }
10738 else
10739 /* We didn't recognize what we found. We should stop here. */
10740 break;
10741
10742 /* Truncate the string and get rid of the "parameter value" pair before
10743 the arguments string is parsed by the parse_exp_1 function. */
10744 exp_end = tok;
10745 }
10746 }
10747 else
10748 exp_end = arg;
10749
10750 /* Parse the rest of the arguments. From here on out, everything
10751 is in terms of a newly allocated string instead of the original
10752 ARG. */
10753 innermost_block = NULL;
10754 std::string expression (arg, exp_end - arg);
10755 exp_start = arg = expression.c_str ();
10756 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10757 exp_end = arg;
10758 /* Remove trailing whitespace from the expression before saving it.
10759 This makes the eventual display of the expression string a bit
10760 prettier. */
10761 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10762 --exp_end;
10763
10764 /* Checking if the expression is not constant. */
10765 if (watchpoint_exp_is_const (exp.get ()))
10766 {
10767 int len;
10768
10769 len = exp_end - exp_start;
10770 while (len > 0 && isspace (exp_start[len - 1]))
10771 len--;
10772 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10773 }
10774
10775 exp_valid_block = innermost_block;
10776 mark = value_mark ();
10777 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10778
10779 if (val != NULL && just_location)
10780 {
10781 saved_bitpos = value_bitpos (val);
10782 saved_bitsize = value_bitsize (val);
10783 }
10784
10785 if (just_location)
10786 {
10787 int ret;
10788
10789 exp_valid_block = NULL;
10790 val = value_addr (result);
10791 release_value (val);
10792 value_free_to_mark (mark);
10793
10794 if (use_mask)
10795 {
10796 ret = target_masked_watch_num_registers (value_as_address (val),
10797 mask);
10798 if (ret == -1)
10799 error (_("This target does not support masked watchpoints."));
10800 else if (ret == -2)
10801 error (_("Invalid mask or memory region."));
10802 }
10803 }
10804 else if (val != NULL)
10805 release_value (val);
10806
10807 tok = skip_spaces (arg);
10808 end_tok = skip_to_space (tok);
10809
10810 toklen = end_tok - tok;
10811 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10812 {
10813 innermost_block = NULL;
10814 tok = cond_start = end_tok + 1;
10815 parse_exp_1 (&tok, 0, 0, 0);
10816
10817 /* The watchpoint expression may not be local, but the condition
10818 may still be. E.g.: `watch global if local > 0'. */
10819 cond_exp_valid_block = innermost_block;
10820
10821 cond_end = tok;
10822 }
10823 if (*tok)
10824 error (_("Junk at end of command."));
10825
10826 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10827
10828 /* Save this because create_internal_breakpoint below invalidates
10829 'wp_frame'. */
10830 frame_id watchpoint_frame = get_frame_id (wp_frame);
10831
10832 /* If the expression is "local", then set up a "watchpoint scope"
10833 breakpoint at the point where we've left the scope of the watchpoint
10834 expression. Create the scope breakpoint before the watchpoint, so
10835 that we will encounter it first in bpstat_stop_status. */
10836 if (exp_valid_block != NULL && wp_frame != NULL)
10837 {
10838 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10839
10840 if (frame_id_p (caller_frame_id))
10841 {
10842 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10843 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10844
10845 scope_breakpoint
10846 = create_internal_breakpoint (caller_arch, caller_pc,
10847 bp_watchpoint_scope,
10848 &momentary_breakpoint_ops);
10849
10850 /* create_internal_breakpoint could invalidate WP_FRAME. */
10851 wp_frame = NULL;
10852
10853 scope_breakpoint->enable_state = bp_enabled;
10854
10855 /* Automatically delete the breakpoint when it hits. */
10856 scope_breakpoint->disposition = disp_del;
10857
10858 /* Only break in the proper frame (help with recursion). */
10859 scope_breakpoint->frame_id = caller_frame_id;
10860
10861 /* Set the address at which we will stop. */
10862 scope_breakpoint->loc->gdbarch = caller_arch;
10863 scope_breakpoint->loc->requested_address = caller_pc;
10864 scope_breakpoint->loc->address
10865 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10866 scope_breakpoint->loc->requested_address,
10867 scope_breakpoint->type);
10868 }
10869 }
10870
10871 /* Now set up the breakpoint. We create all watchpoints as hardware
10872 watchpoints here even if hardware watchpoints are turned off, a call
10873 to update_watchpoint later in this function will cause the type to
10874 drop back to bp_watchpoint (software watchpoint) if required. */
10875
10876 if (accessflag == hw_read)
10877 bp_type = bp_read_watchpoint;
10878 else if (accessflag == hw_access)
10879 bp_type = bp_access_watchpoint;
10880 else
10881 bp_type = bp_hardware_watchpoint;
10882
10883 std::unique_ptr<watchpoint> w (new watchpoint ());
10884
10885 if (use_mask)
10886 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10887 &masked_watchpoint_breakpoint_ops);
10888 else
10889 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10890 &watchpoint_breakpoint_ops);
10891 w->thread = thread;
10892 w->disposition = disp_donttouch;
10893 w->pspace = current_program_space;
10894 w->exp = std::move (exp);
10895 w->exp_valid_block = exp_valid_block;
10896 w->cond_exp_valid_block = cond_exp_valid_block;
10897 if (just_location)
10898 {
10899 struct type *t = value_type (val);
10900 CORE_ADDR addr = value_as_address (val);
10901
10902 w->exp_string_reparse
10903 = current_language->la_watch_location_expression (t, addr).release ();
10904
10905 w->exp_string = xstrprintf ("-location %.*s",
10906 (int) (exp_end - exp_start), exp_start);
10907 }
10908 else
10909 w->exp_string = savestring (exp_start, exp_end - exp_start);
10910
10911 if (use_mask)
10912 {
10913 w->hw_wp_mask = mask;
10914 }
10915 else
10916 {
10917 w->val = val;
10918 w->val_bitpos = saved_bitpos;
10919 w->val_bitsize = saved_bitsize;
10920 w->val_valid = 1;
10921 }
10922
10923 if (cond_start)
10924 w->cond_string = savestring (cond_start, cond_end - cond_start);
10925 else
10926 w->cond_string = 0;
10927
10928 if (frame_id_p (watchpoint_frame))
10929 {
10930 w->watchpoint_frame = watchpoint_frame;
10931 w->watchpoint_thread = inferior_ptid;
10932 }
10933 else
10934 {
10935 w->watchpoint_frame = null_frame_id;
10936 w->watchpoint_thread = null_ptid;
10937 }
10938
10939 if (scope_breakpoint != NULL)
10940 {
10941 /* The scope breakpoint is related to the watchpoint. We will
10942 need to act on them together. */
10943 w->related_breakpoint = scope_breakpoint;
10944 scope_breakpoint->related_breakpoint = w.get ();
10945 }
10946
10947 if (!just_location)
10948 value_free_to_mark (mark);
10949
10950 /* Finally update the new watchpoint. This creates the locations
10951 that should be inserted. */
10952 update_watchpoint (w.get (), 1);
10953
10954 install_breakpoint (internal, std::move (w), 1);
10955 }
10956
10957 /* Return count of debug registers needed to watch the given expression.
10958 If the watchpoint cannot be handled in hardware return zero. */
10959
10960 static int
10961 can_use_hardware_watchpoint (struct value *v)
10962 {
10963 int found_memory_cnt = 0;
10964 struct value *head = v;
10965
10966 /* Did the user specifically forbid us to use hardware watchpoints? */
10967 if (!can_use_hw_watchpoints)
10968 return 0;
10969
10970 /* Make sure that the value of the expression depends only upon
10971 memory contents, and values computed from them within GDB. If we
10972 find any register references or function calls, we can't use a
10973 hardware watchpoint.
10974
10975 The idea here is that evaluating an expression generates a series
10976 of values, one holding the value of every subexpression. (The
10977 expression a*b+c has five subexpressions: a, b, a*b, c, and
10978 a*b+c.) GDB's values hold almost enough information to establish
10979 the criteria given above --- they identify memory lvalues,
10980 register lvalues, computed values, etcetera. So we can evaluate
10981 the expression, and then scan the chain of values that leaves
10982 behind to decide whether we can detect any possible change to the
10983 expression's final value using only hardware watchpoints.
10984
10985 However, I don't think that the values returned by inferior
10986 function calls are special in any way. So this function may not
10987 notice that an expression involving an inferior function call
10988 can't be watched with hardware watchpoints. FIXME. */
10989 for (; v; v = value_next (v))
10990 {
10991 if (VALUE_LVAL (v) == lval_memory)
10992 {
10993 if (v != head && value_lazy (v))
10994 /* A lazy memory lvalue in the chain is one that GDB never
10995 needed to fetch; we either just used its address (e.g.,
10996 `a' in `a.b') or we never needed it at all (e.g., `a'
10997 in `a,b'). This doesn't apply to HEAD; if that is
10998 lazy then it was not readable, but watch it anyway. */
10999 ;
11000 else
11001 {
11002 /* Ahh, memory we actually used! Check if we can cover
11003 it with hardware watchpoints. */
11004 struct type *vtype = check_typedef (value_type (v));
11005
11006 /* We only watch structs and arrays if user asked for it
11007 explicitly, never if they just happen to appear in a
11008 middle of some value chain. */
11009 if (v == head
11010 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11011 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11012 {
11013 CORE_ADDR vaddr = value_address (v);
11014 int len;
11015 int num_regs;
11016
11017 len = (target_exact_watchpoints
11018 && is_scalar_type_recursive (vtype))?
11019 1 : TYPE_LENGTH (value_type (v));
11020
11021 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11022 if (!num_regs)
11023 return 0;
11024 else
11025 found_memory_cnt += num_regs;
11026 }
11027 }
11028 }
11029 else if (VALUE_LVAL (v) != not_lval
11030 && deprecated_value_modifiable (v) == 0)
11031 return 0; /* These are values from the history (e.g., $1). */
11032 else if (VALUE_LVAL (v) == lval_register)
11033 return 0; /* Cannot watch a register with a HW watchpoint. */
11034 }
11035
11036 /* The expression itself looks suitable for using a hardware
11037 watchpoint, but give the target machine a chance to reject it. */
11038 return found_memory_cnt;
11039 }
11040
11041 void
11042 watch_command_wrapper (const char *arg, int from_tty, int internal)
11043 {
11044 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11045 }
11046
11047 /* A helper function that looks for the "-location" argument and then
11048 calls watch_command_1. */
11049
11050 static void
11051 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11052 {
11053 int just_location = 0;
11054
11055 if (arg
11056 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11057 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11058 {
11059 arg = skip_spaces (arg);
11060 just_location = 1;
11061 }
11062
11063 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11064 }
11065
11066 static void
11067 watch_command (const char *arg, int from_tty)
11068 {
11069 watch_maybe_just_location (arg, hw_write, from_tty);
11070 }
11071
11072 void
11073 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11074 {
11075 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11076 }
11077
11078 static void
11079 rwatch_command (const char *arg, int from_tty)
11080 {
11081 watch_maybe_just_location (arg, hw_read, from_tty);
11082 }
11083
11084 void
11085 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11086 {
11087 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11088 }
11089
11090 static void
11091 awatch_command (const char *arg, int from_tty)
11092 {
11093 watch_maybe_just_location (arg, hw_access, from_tty);
11094 }
11095 \f
11096
11097 /* Data for the FSM that manages the until(location)/advance commands
11098 in infcmd.c. Here because it uses the mechanisms of
11099 breakpoints. */
11100
11101 struct until_break_fsm
11102 {
11103 /* The base class. */
11104 struct thread_fsm thread_fsm;
11105
11106 /* The thread that as current when the command was executed. */
11107 int thread;
11108
11109 /* The breakpoint set at the destination location. */
11110 struct breakpoint *location_breakpoint;
11111
11112 /* Breakpoint set at the return address in the caller frame. May be
11113 NULL. */
11114 struct breakpoint *caller_breakpoint;
11115 };
11116
11117 static void until_break_fsm_clean_up (struct thread_fsm *self,
11118 struct thread_info *thread);
11119 static int until_break_fsm_should_stop (struct thread_fsm *self,
11120 struct thread_info *thread);
11121 static enum async_reply_reason
11122 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11123
11124 /* until_break_fsm's vtable. */
11125
11126 static struct thread_fsm_ops until_break_fsm_ops =
11127 {
11128 NULL, /* dtor */
11129 until_break_fsm_clean_up,
11130 until_break_fsm_should_stop,
11131 NULL, /* return_value */
11132 until_break_fsm_async_reply_reason,
11133 };
11134
11135 /* Allocate a new until_break_command_fsm. */
11136
11137 static struct until_break_fsm *
11138 new_until_break_fsm (struct interp *cmd_interp, int thread,
11139 breakpoint_up &&location_breakpoint,
11140 breakpoint_up &&caller_breakpoint)
11141 {
11142 struct until_break_fsm *sm;
11143
11144 sm = XCNEW (struct until_break_fsm);
11145 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11146
11147 sm->thread = thread;
11148 sm->location_breakpoint = location_breakpoint.release ();
11149 sm->caller_breakpoint = caller_breakpoint.release ();
11150
11151 return sm;
11152 }
11153
11154 /* Implementation of the 'should_stop' FSM method for the
11155 until(location)/advance commands. */
11156
11157 static int
11158 until_break_fsm_should_stop (struct thread_fsm *self,
11159 struct thread_info *tp)
11160 {
11161 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11162
11163 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11164 sm->location_breakpoint) != NULL
11165 || (sm->caller_breakpoint != NULL
11166 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11167 sm->caller_breakpoint) != NULL))
11168 thread_fsm_set_finished (self);
11169
11170 return 1;
11171 }
11172
11173 /* Implementation of the 'clean_up' FSM method for the
11174 until(location)/advance commands. */
11175
11176 static void
11177 until_break_fsm_clean_up (struct thread_fsm *self,
11178 struct thread_info *thread)
11179 {
11180 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11181
11182 /* Clean up our temporary breakpoints. */
11183 if (sm->location_breakpoint != NULL)
11184 {
11185 delete_breakpoint (sm->location_breakpoint);
11186 sm->location_breakpoint = NULL;
11187 }
11188 if (sm->caller_breakpoint != NULL)
11189 {
11190 delete_breakpoint (sm->caller_breakpoint);
11191 sm->caller_breakpoint = NULL;
11192 }
11193 delete_longjmp_breakpoint (sm->thread);
11194 }
11195
11196 /* Implementation of the 'async_reply_reason' FSM method for the
11197 until(location)/advance commands. */
11198
11199 static enum async_reply_reason
11200 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11201 {
11202 return EXEC_ASYNC_LOCATION_REACHED;
11203 }
11204
11205 void
11206 until_break_command (const char *arg, int from_tty, int anywhere)
11207 {
11208 struct frame_info *frame;
11209 struct gdbarch *frame_gdbarch;
11210 struct frame_id stack_frame_id;
11211 struct frame_id caller_frame_id;
11212 struct cleanup *old_chain;
11213 int thread;
11214 struct thread_info *tp;
11215 struct until_break_fsm *sm;
11216
11217 clear_proceed_status (0);
11218
11219 /* Set a breakpoint where the user wants it and at return from
11220 this function. */
11221
11222 event_location_up location = string_to_event_location (&arg, current_language);
11223
11224 std::vector<symtab_and_line> sals
11225 = (last_displayed_sal_is_valid ()
11226 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11227 get_last_displayed_symtab (),
11228 get_last_displayed_line ())
11229 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11230 NULL, (struct symtab *) NULL, 0));
11231
11232 if (sals.size () != 1)
11233 error (_("Couldn't get information on specified line."));
11234
11235 symtab_and_line &sal = sals[0];
11236
11237 if (*arg)
11238 error (_("Junk at end of arguments."));
11239
11240 resolve_sal_pc (&sal);
11241
11242 tp = inferior_thread ();
11243 thread = tp->global_num;
11244
11245 old_chain = make_cleanup (null_cleanup, NULL);
11246
11247 /* Note linespec handling above invalidates the frame chain.
11248 Installing a breakpoint also invalidates the frame chain (as it
11249 may need to switch threads), so do any frame handling before
11250 that. */
11251
11252 frame = get_selected_frame (NULL);
11253 frame_gdbarch = get_frame_arch (frame);
11254 stack_frame_id = get_stack_frame_id (frame);
11255 caller_frame_id = frame_unwind_caller_id (frame);
11256
11257 /* Keep within the current frame, or in frames called by the current
11258 one. */
11259
11260 breakpoint_up caller_breakpoint;
11261 if (frame_id_p (caller_frame_id))
11262 {
11263 struct symtab_and_line sal2;
11264 struct gdbarch *caller_gdbarch;
11265
11266 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11267 sal2.pc = frame_unwind_caller_pc (frame);
11268 caller_gdbarch = frame_unwind_caller_arch (frame);
11269 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11270 sal2,
11271 caller_frame_id,
11272 bp_until);
11273
11274 set_longjmp_breakpoint (tp, caller_frame_id);
11275 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11276 }
11277
11278 /* set_momentary_breakpoint could invalidate FRAME. */
11279 frame = NULL;
11280
11281 breakpoint_up location_breakpoint;
11282 if (anywhere)
11283 /* If the user told us to continue until a specified location,
11284 we don't specify a frame at which we need to stop. */
11285 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11286 null_frame_id, bp_until);
11287 else
11288 /* Otherwise, specify the selected frame, because we want to stop
11289 only at the very same frame. */
11290 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11291 stack_frame_id, bp_until);
11292
11293 sm = new_until_break_fsm (command_interp (), tp->global_num,
11294 std::move (location_breakpoint),
11295 std::move (caller_breakpoint));
11296 tp->thread_fsm = &sm->thread_fsm;
11297
11298 discard_cleanups (old_chain);
11299
11300 proceed (-1, GDB_SIGNAL_DEFAULT);
11301 }
11302
11303 /* This function attempts to parse an optional "if <cond>" clause
11304 from the arg string. If one is not found, it returns NULL.
11305
11306 Else, it returns a pointer to the condition string. (It does not
11307 attempt to evaluate the string against a particular block.) And,
11308 it updates arg to point to the first character following the parsed
11309 if clause in the arg string. */
11310
11311 const char *
11312 ep_parse_optional_if_clause (const char **arg)
11313 {
11314 const char *cond_string;
11315
11316 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11317 return NULL;
11318
11319 /* Skip the "if" keyword. */
11320 (*arg) += 2;
11321
11322 /* Skip any extra leading whitespace, and record the start of the
11323 condition string. */
11324 *arg = skip_spaces (*arg);
11325 cond_string = *arg;
11326
11327 /* Assume that the condition occupies the remainder of the arg
11328 string. */
11329 (*arg) += strlen (cond_string);
11330
11331 return cond_string;
11332 }
11333
11334 /* Commands to deal with catching events, such as signals, exceptions,
11335 process start/exit, etc. */
11336
11337 typedef enum
11338 {
11339 catch_fork_temporary, catch_vfork_temporary,
11340 catch_fork_permanent, catch_vfork_permanent
11341 }
11342 catch_fork_kind;
11343
11344 static void
11345 catch_fork_command_1 (char *arg_entry, int from_tty,
11346 struct cmd_list_element *command)
11347 {
11348 const char *arg = arg_entry;
11349 struct gdbarch *gdbarch = get_current_arch ();
11350 const char *cond_string = NULL;
11351 catch_fork_kind fork_kind;
11352 int tempflag;
11353
11354 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11355 tempflag = (fork_kind == catch_fork_temporary
11356 || fork_kind == catch_vfork_temporary);
11357
11358 if (!arg)
11359 arg = "";
11360 arg = skip_spaces (arg);
11361
11362 /* The allowed syntax is:
11363 catch [v]fork
11364 catch [v]fork if <cond>
11365
11366 First, check if there's an if clause. */
11367 cond_string = ep_parse_optional_if_clause (&arg);
11368
11369 if ((*arg != '\0') && !isspace (*arg))
11370 error (_("Junk at end of arguments."));
11371
11372 /* If this target supports it, create a fork or vfork catchpoint
11373 and enable reporting of such events. */
11374 switch (fork_kind)
11375 {
11376 case catch_fork_temporary:
11377 case catch_fork_permanent:
11378 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11379 &catch_fork_breakpoint_ops);
11380 break;
11381 case catch_vfork_temporary:
11382 case catch_vfork_permanent:
11383 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11384 &catch_vfork_breakpoint_ops);
11385 break;
11386 default:
11387 error (_("unsupported or unknown fork kind; cannot catch it"));
11388 break;
11389 }
11390 }
11391
11392 static void
11393 catch_exec_command_1 (char *arg_entry, int from_tty,
11394 struct cmd_list_element *command)
11395 {
11396 const char *arg = arg_entry;
11397 struct gdbarch *gdbarch = get_current_arch ();
11398 int tempflag;
11399 const char *cond_string = NULL;
11400
11401 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11402
11403 if (!arg)
11404 arg = "";
11405 arg = skip_spaces (arg);
11406
11407 /* The allowed syntax is:
11408 catch exec
11409 catch exec if <cond>
11410
11411 First, check if there's an if clause. */
11412 cond_string = ep_parse_optional_if_clause (&arg);
11413
11414 if ((*arg != '\0') && !isspace (*arg))
11415 error (_("Junk at end of arguments."));
11416
11417 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11418 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11419 &catch_exec_breakpoint_ops);
11420 c->exec_pathname = NULL;
11421
11422 install_breakpoint (0, std::move (c), 1);
11423 }
11424
11425 void
11426 init_ada_exception_breakpoint (struct breakpoint *b,
11427 struct gdbarch *gdbarch,
11428 struct symtab_and_line sal,
11429 const char *addr_string,
11430 const struct breakpoint_ops *ops,
11431 int tempflag,
11432 int enabled,
11433 int from_tty)
11434 {
11435 if (from_tty)
11436 {
11437 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11438 if (!loc_gdbarch)
11439 loc_gdbarch = gdbarch;
11440
11441 describe_other_breakpoints (loc_gdbarch,
11442 sal.pspace, sal.pc, sal.section, -1);
11443 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11444 version for exception catchpoints, because two catchpoints
11445 used for different exception names will use the same address.
11446 In this case, a "breakpoint ... also set at..." warning is
11447 unproductive. Besides, the warning phrasing is also a bit
11448 inappropriate, we should use the word catchpoint, and tell
11449 the user what type of catchpoint it is. The above is good
11450 enough for now, though. */
11451 }
11452
11453 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11454
11455 b->enable_state = enabled ? bp_enabled : bp_disabled;
11456 b->disposition = tempflag ? disp_del : disp_donttouch;
11457 b->location = string_to_event_location (&addr_string,
11458 language_def (language_ada));
11459 b->language = language_ada;
11460 }
11461
11462 static void
11463 catch_command (const char *arg, int from_tty)
11464 {
11465 error (_("Catch requires an event name."));
11466 }
11467 \f
11468
11469 static void
11470 tcatch_command (const char *arg, int from_tty)
11471 {
11472 error (_("Catch requires an event name."));
11473 }
11474
11475 /* Compare two breakpoints and return a strcmp-like result. */
11476
11477 static int
11478 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11479 {
11480 uintptr_t ua = (uintptr_t) a;
11481 uintptr_t ub = (uintptr_t) b;
11482
11483 if (a->number < b->number)
11484 return -1;
11485 else if (a->number > b->number)
11486 return 1;
11487
11488 /* Now sort by address, in case we see, e..g, two breakpoints with
11489 the number 0. */
11490 if (ua < ub)
11491 return -1;
11492 return ua > ub ? 1 : 0;
11493 }
11494
11495 /* Delete breakpoints by address or line. */
11496
11497 static void
11498 clear_command (const char *arg, int from_tty)
11499 {
11500 struct breakpoint *b;
11501 int default_match;
11502 int i;
11503
11504 std::vector<symtab_and_line> decoded_sals;
11505 symtab_and_line last_sal;
11506 gdb::array_view<symtab_and_line> sals;
11507 if (arg)
11508 {
11509 decoded_sals
11510 = decode_line_with_current_source (arg,
11511 (DECODE_LINE_FUNFIRSTLINE
11512 | DECODE_LINE_LIST_MODE));
11513 default_match = 0;
11514 sals = decoded_sals;
11515 }
11516 else
11517 {
11518 /* Set sal's line, symtab, pc, and pspace to the values
11519 corresponding to the last call to print_frame_info. If the
11520 codepoint is not valid, this will set all the fields to 0. */
11521 last_sal = get_last_displayed_sal ();
11522 if (last_sal.symtab == 0)
11523 error (_("No source file specified."));
11524
11525 default_match = 1;
11526 sals = last_sal;
11527 }
11528
11529 /* We don't call resolve_sal_pc here. That's not as bad as it
11530 seems, because all existing breakpoints typically have both
11531 file/line and pc set. So, if clear is given file/line, we can
11532 match this to existing breakpoint without obtaining pc at all.
11533
11534 We only support clearing given the address explicitly
11535 present in breakpoint table. Say, we've set breakpoint
11536 at file:line. There were several PC values for that file:line,
11537 due to optimization, all in one block.
11538
11539 We've picked one PC value. If "clear" is issued with another
11540 PC corresponding to the same file:line, the breakpoint won't
11541 be cleared. We probably can still clear the breakpoint, but
11542 since the other PC value is never presented to user, user
11543 can only find it by guessing, and it does not seem important
11544 to support that. */
11545
11546 /* For each line spec given, delete bps which correspond to it. Do
11547 it in two passes, solely to preserve the current behavior that
11548 from_tty is forced true if we delete more than one
11549 breakpoint. */
11550
11551 std::vector<struct breakpoint *> found;
11552 for (const auto &sal : sals)
11553 {
11554 const char *sal_fullname;
11555
11556 /* If exact pc given, clear bpts at that pc.
11557 If line given (pc == 0), clear all bpts on specified line.
11558 If defaulting, clear all bpts on default line
11559 or at default pc.
11560
11561 defaulting sal.pc != 0 tests to do
11562
11563 0 1 pc
11564 1 1 pc _and_ line
11565 0 0 line
11566 1 0 <can't happen> */
11567
11568 sal_fullname = (sal.symtab == NULL
11569 ? NULL : symtab_to_fullname (sal.symtab));
11570
11571 /* Find all matching breakpoints and add them to 'found'. */
11572 ALL_BREAKPOINTS (b)
11573 {
11574 int match = 0;
11575 /* Are we going to delete b? */
11576 if (b->type != bp_none && !is_watchpoint (b))
11577 {
11578 struct bp_location *loc = b->loc;
11579 for (; loc; loc = loc->next)
11580 {
11581 /* If the user specified file:line, don't allow a PC
11582 match. This matches historical gdb behavior. */
11583 int pc_match = (!sal.explicit_line
11584 && sal.pc
11585 && (loc->pspace == sal.pspace)
11586 && (loc->address == sal.pc)
11587 && (!section_is_overlay (loc->section)
11588 || loc->section == sal.section));
11589 int line_match = 0;
11590
11591 if ((default_match || sal.explicit_line)
11592 && loc->symtab != NULL
11593 && sal_fullname != NULL
11594 && sal.pspace == loc->pspace
11595 && loc->line_number == sal.line
11596 && filename_cmp (symtab_to_fullname (loc->symtab),
11597 sal_fullname) == 0)
11598 line_match = 1;
11599
11600 if (pc_match || line_match)
11601 {
11602 match = 1;
11603 break;
11604 }
11605 }
11606 }
11607
11608 if (match)
11609 found.push_back (b);
11610 }
11611 }
11612
11613 /* Now go thru the 'found' chain and delete them. */
11614 if (found.empty ())
11615 {
11616 if (arg)
11617 error (_("No breakpoint at %s."), arg);
11618 else
11619 error (_("No breakpoint at this line."));
11620 }
11621
11622 /* Remove duplicates from the vec. */
11623 std::sort (found.begin (), found.end (),
11624 [] (const breakpoint *a, const breakpoint *b)
11625 {
11626 return compare_breakpoints (a, b) < 0;
11627 });
11628 found.erase (std::unique (found.begin (), found.end (),
11629 [] (const breakpoint *a, const breakpoint *b)
11630 {
11631 return compare_breakpoints (a, b) == 0;
11632 }),
11633 found.end ());
11634
11635 if (found.size () > 1)
11636 from_tty = 1; /* Always report if deleted more than one. */
11637 if (from_tty)
11638 {
11639 if (found.size () == 1)
11640 printf_unfiltered (_("Deleted breakpoint "));
11641 else
11642 printf_unfiltered (_("Deleted breakpoints "));
11643 }
11644
11645 for (breakpoint *iter : found)
11646 {
11647 if (from_tty)
11648 printf_unfiltered ("%d ", iter->number);
11649 delete_breakpoint (iter);
11650 }
11651 if (from_tty)
11652 putchar_unfiltered ('\n');
11653 }
11654 \f
11655 /* Delete breakpoint in BS if they are `delete' breakpoints and
11656 all breakpoints that are marked for deletion, whether hit or not.
11657 This is called after any breakpoint is hit, or after errors. */
11658
11659 void
11660 breakpoint_auto_delete (bpstat bs)
11661 {
11662 struct breakpoint *b, *b_tmp;
11663
11664 for (; bs; bs = bs->next)
11665 if (bs->breakpoint_at
11666 && bs->breakpoint_at->disposition == disp_del
11667 && bs->stop)
11668 delete_breakpoint (bs->breakpoint_at);
11669
11670 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11671 {
11672 if (b->disposition == disp_del_at_next_stop)
11673 delete_breakpoint (b);
11674 }
11675 }
11676
11677 /* A comparison function for bp_location AP and BP being interfaced to
11678 qsort. Sort elements primarily by their ADDRESS (no matter what
11679 does breakpoint_address_is_meaningful say for its OWNER),
11680 secondarily by ordering first permanent elements and
11681 terciarily just ensuring the array is sorted stable way despite
11682 qsort being an unstable algorithm. */
11683
11684 static int
11685 bp_locations_compare (const void *ap, const void *bp)
11686 {
11687 const struct bp_location *a = *(const struct bp_location **) ap;
11688 const struct bp_location *b = *(const struct bp_location **) bp;
11689
11690 if (a->address != b->address)
11691 return (a->address > b->address) - (a->address < b->address);
11692
11693 /* Sort locations at the same address by their pspace number, keeping
11694 locations of the same inferior (in a multi-inferior environment)
11695 grouped. */
11696
11697 if (a->pspace->num != b->pspace->num)
11698 return ((a->pspace->num > b->pspace->num)
11699 - (a->pspace->num < b->pspace->num));
11700
11701 /* Sort permanent breakpoints first. */
11702 if (a->permanent != b->permanent)
11703 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11704
11705 /* Make the internal GDB representation stable across GDB runs
11706 where A and B memory inside GDB can differ. Breakpoint locations of
11707 the same type at the same address can be sorted in arbitrary order. */
11708
11709 if (a->owner->number != b->owner->number)
11710 return ((a->owner->number > b->owner->number)
11711 - (a->owner->number < b->owner->number));
11712
11713 return (a > b) - (a < b);
11714 }
11715
11716 /* Set bp_locations_placed_address_before_address_max and
11717 bp_locations_shadow_len_after_address_max according to the current
11718 content of the bp_locations array. */
11719
11720 static void
11721 bp_locations_target_extensions_update (void)
11722 {
11723 struct bp_location *bl, **blp_tmp;
11724
11725 bp_locations_placed_address_before_address_max = 0;
11726 bp_locations_shadow_len_after_address_max = 0;
11727
11728 ALL_BP_LOCATIONS (bl, blp_tmp)
11729 {
11730 CORE_ADDR start, end, addr;
11731
11732 if (!bp_location_has_shadow (bl))
11733 continue;
11734
11735 start = bl->target_info.placed_address;
11736 end = start + bl->target_info.shadow_len;
11737
11738 gdb_assert (bl->address >= start);
11739 addr = bl->address - start;
11740 if (addr > bp_locations_placed_address_before_address_max)
11741 bp_locations_placed_address_before_address_max = addr;
11742
11743 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11744
11745 gdb_assert (bl->address < end);
11746 addr = end - bl->address;
11747 if (addr > bp_locations_shadow_len_after_address_max)
11748 bp_locations_shadow_len_after_address_max = addr;
11749 }
11750 }
11751
11752 /* Download tracepoint locations if they haven't been. */
11753
11754 static void
11755 download_tracepoint_locations (void)
11756 {
11757 struct breakpoint *b;
11758 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11759
11760 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11761
11762 ALL_TRACEPOINTS (b)
11763 {
11764 struct bp_location *bl;
11765 struct tracepoint *t;
11766 int bp_location_downloaded = 0;
11767
11768 if ((b->type == bp_fast_tracepoint
11769 ? !may_insert_fast_tracepoints
11770 : !may_insert_tracepoints))
11771 continue;
11772
11773 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11774 {
11775 if (target_can_download_tracepoint ())
11776 can_download_tracepoint = TRIBOOL_TRUE;
11777 else
11778 can_download_tracepoint = TRIBOOL_FALSE;
11779 }
11780
11781 if (can_download_tracepoint == TRIBOOL_FALSE)
11782 break;
11783
11784 for (bl = b->loc; bl; bl = bl->next)
11785 {
11786 /* In tracepoint, locations are _never_ duplicated, so
11787 should_be_inserted is equivalent to
11788 unduplicated_should_be_inserted. */
11789 if (!should_be_inserted (bl) || bl->inserted)
11790 continue;
11791
11792 switch_to_program_space_and_thread (bl->pspace);
11793
11794 target_download_tracepoint (bl);
11795
11796 bl->inserted = 1;
11797 bp_location_downloaded = 1;
11798 }
11799 t = (struct tracepoint *) b;
11800 t->number_on_target = b->number;
11801 if (bp_location_downloaded)
11802 observer_notify_breakpoint_modified (b);
11803 }
11804 }
11805
11806 /* Swap the insertion/duplication state between two locations. */
11807
11808 static void
11809 swap_insertion (struct bp_location *left, struct bp_location *right)
11810 {
11811 const int left_inserted = left->inserted;
11812 const int left_duplicate = left->duplicate;
11813 const int left_needs_update = left->needs_update;
11814 const struct bp_target_info left_target_info = left->target_info;
11815
11816 /* Locations of tracepoints can never be duplicated. */
11817 if (is_tracepoint (left->owner))
11818 gdb_assert (!left->duplicate);
11819 if (is_tracepoint (right->owner))
11820 gdb_assert (!right->duplicate);
11821
11822 left->inserted = right->inserted;
11823 left->duplicate = right->duplicate;
11824 left->needs_update = right->needs_update;
11825 left->target_info = right->target_info;
11826 right->inserted = left_inserted;
11827 right->duplicate = left_duplicate;
11828 right->needs_update = left_needs_update;
11829 right->target_info = left_target_info;
11830 }
11831
11832 /* Force the re-insertion of the locations at ADDRESS. This is called
11833 once a new/deleted/modified duplicate location is found and we are evaluating
11834 conditions on the target's side. Such conditions need to be updated on
11835 the target. */
11836
11837 static void
11838 force_breakpoint_reinsertion (struct bp_location *bl)
11839 {
11840 struct bp_location **locp = NULL, **loc2p;
11841 struct bp_location *loc;
11842 CORE_ADDR address = 0;
11843 int pspace_num;
11844
11845 address = bl->address;
11846 pspace_num = bl->pspace->num;
11847
11848 /* This is only meaningful if the target is
11849 evaluating conditions and if the user has
11850 opted for condition evaluation on the target's
11851 side. */
11852 if (gdb_evaluates_breakpoint_condition_p ()
11853 || !target_supports_evaluation_of_breakpoint_conditions ())
11854 return;
11855
11856 /* Flag all breakpoint locations with this address and
11857 the same program space as the location
11858 as "its condition has changed". We need to
11859 update the conditions on the target's side. */
11860 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11861 {
11862 loc = *loc2p;
11863
11864 if (!is_breakpoint (loc->owner)
11865 || pspace_num != loc->pspace->num)
11866 continue;
11867
11868 /* Flag the location appropriately. We use a different state to
11869 let everyone know that we already updated the set of locations
11870 with addr bl->address and program space bl->pspace. This is so
11871 we don't have to keep calling these functions just to mark locations
11872 that have already been marked. */
11873 loc->condition_changed = condition_updated;
11874
11875 /* Free the agent expression bytecode as well. We will compute
11876 it later on. */
11877 loc->cond_bytecode.reset ();
11878 }
11879 }
11880 /* Called whether new breakpoints are created, or existing breakpoints
11881 deleted, to update the global location list and recompute which
11882 locations are duplicate of which.
11883
11884 The INSERT_MODE flag determines whether locations may not, may, or
11885 shall be inserted now. See 'enum ugll_insert_mode' for more
11886 info. */
11887
11888 static void
11889 update_global_location_list (enum ugll_insert_mode insert_mode)
11890 {
11891 struct breakpoint *b;
11892 struct bp_location **locp, *loc;
11893 /* Last breakpoint location address that was marked for update. */
11894 CORE_ADDR last_addr = 0;
11895 /* Last breakpoint location program space that was marked for update. */
11896 int last_pspace_num = -1;
11897
11898 /* Used in the duplicates detection below. When iterating over all
11899 bp_locations, points to the first bp_location of a given address.
11900 Breakpoints and watchpoints of different types are never
11901 duplicates of each other. Keep one pointer for each type of
11902 breakpoint/watchpoint, so we only need to loop over all locations
11903 once. */
11904 struct bp_location *bp_loc_first; /* breakpoint */
11905 struct bp_location *wp_loc_first; /* hardware watchpoint */
11906 struct bp_location *awp_loc_first; /* access watchpoint */
11907 struct bp_location *rwp_loc_first; /* read watchpoint */
11908
11909 /* Saved former bp_locations array which we compare against the newly
11910 built bp_locations from the current state of ALL_BREAKPOINTS. */
11911 struct bp_location **old_locp;
11912 unsigned old_locations_count;
11913 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11914
11915 old_locations_count = bp_locations_count;
11916 bp_locations = NULL;
11917 bp_locations_count = 0;
11918
11919 ALL_BREAKPOINTS (b)
11920 for (loc = b->loc; loc; loc = loc->next)
11921 bp_locations_count++;
11922
11923 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11924 locp = bp_locations;
11925 ALL_BREAKPOINTS (b)
11926 for (loc = b->loc; loc; loc = loc->next)
11927 *locp++ = loc;
11928 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11929 bp_locations_compare);
11930
11931 bp_locations_target_extensions_update ();
11932
11933 /* Identify bp_location instances that are no longer present in the
11934 new list, and therefore should be freed. Note that it's not
11935 necessary that those locations should be removed from inferior --
11936 if there's another location at the same address (previously
11937 marked as duplicate), we don't need to remove/insert the
11938 location.
11939
11940 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11941 and former bp_location array state respectively. */
11942
11943 locp = bp_locations;
11944 for (old_locp = old_locations.get ();
11945 old_locp < old_locations.get () + old_locations_count;
11946 old_locp++)
11947 {
11948 struct bp_location *old_loc = *old_locp;
11949 struct bp_location **loc2p;
11950
11951 /* Tells if 'old_loc' is found among the new locations. If
11952 not, we have to free it. */
11953 int found_object = 0;
11954 /* Tells if the location should remain inserted in the target. */
11955 int keep_in_target = 0;
11956 int removed = 0;
11957
11958 /* Skip LOCP entries which will definitely never be needed.
11959 Stop either at or being the one matching OLD_LOC. */
11960 while (locp < bp_locations + bp_locations_count
11961 && (*locp)->address < old_loc->address)
11962 locp++;
11963
11964 for (loc2p = locp;
11965 (loc2p < bp_locations + bp_locations_count
11966 && (*loc2p)->address == old_loc->address);
11967 loc2p++)
11968 {
11969 /* Check if this is a new/duplicated location or a duplicated
11970 location that had its condition modified. If so, we want to send
11971 its condition to the target if evaluation of conditions is taking
11972 place there. */
11973 if ((*loc2p)->condition_changed == condition_modified
11974 && (last_addr != old_loc->address
11975 || last_pspace_num != old_loc->pspace->num))
11976 {
11977 force_breakpoint_reinsertion (*loc2p);
11978 last_pspace_num = old_loc->pspace->num;
11979 }
11980
11981 if (*loc2p == old_loc)
11982 found_object = 1;
11983 }
11984
11985 /* We have already handled this address, update it so that we don't
11986 have to go through updates again. */
11987 last_addr = old_loc->address;
11988
11989 /* Target-side condition evaluation: Handle deleted locations. */
11990 if (!found_object)
11991 force_breakpoint_reinsertion (old_loc);
11992
11993 /* If this location is no longer present, and inserted, look if
11994 there's maybe a new location at the same address. If so,
11995 mark that one inserted, and don't remove this one. This is
11996 needed so that we don't have a time window where a breakpoint
11997 at certain location is not inserted. */
11998
11999 if (old_loc->inserted)
12000 {
12001 /* If the location is inserted now, we might have to remove
12002 it. */
12003
12004 if (found_object && should_be_inserted (old_loc))
12005 {
12006 /* The location is still present in the location list,
12007 and still should be inserted. Don't do anything. */
12008 keep_in_target = 1;
12009 }
12010 else
12011 {
12012 /* This location still exists, but it won't be kept in the
12013 target since it may have been disabled. We proceed to
12014 remove its target-side condition. */
12015
12016 /* The location is either no longer present, or got
12017 disabled. See if there's another location at the
12018 same address, in which case we don't need to remove
12019 this one from the target. */
12020
12021 /* OLD_LOC comes from existing struct breakpoint. */
12022 if (breakpoint_address_is_meaningful (old_loc->owner))
12023 {
12024 for (loc2p = locp;
12025 (loc2p < bp_locations + bp_locations_count
12026 && (*loc2p)->address == old_loc->address);
12027 loc2p++)
12028 {
12029 struct bp_location *loc2 = *loc2p;
12030
12031 if (breakpoint_locations_match (loc2, old_loc))
12032 {
12033 /* Read watchpoint locations are switched to
12034 access watchpoints, if the former are not
12035 supported, but the latter are. */
12036 if (is_hardware_watchpoint (old_loc->owner))
12037 {
12038 gdb_assert (is_hardware_watchpoint (loc2->owner));
12039 loc2->watchpoint_type = old_loc->watchpoint_type;
12040 }
12041
12042 /* loc2 is a duplicated location. We need to check
12043 if it should be inserted in case it will be
12044 unduplicated. */
12045 if (loc2 != old_loc
12046 && unduplicated_should_be_inserted (loc2))
12047 {
12048 swap_insertion (old_loc, loc2);
12049 keep_in_target = 1;
12050 break;
12051 }
12052 }
12053 }
12054 }
12055 }
12056
12057 if (!keep_in_target)
12058 {
12059 if (remove_breakpoint (old_loc))
12060 {
12061 /* This is just about all we can do. We could keep
12062 this location on the global list, and try to
12063 remove it next time, but there's no particular
12064 reason why we will succeed next time.
12065
12066 Note that at this point, old_loc->owner is still
12067 valid, as delete_breakpoint frees the breakpoint
12068 only after calling us. */
12069 printf_filtered (_("warning: Error removing "
12070 "breakpoint %d\n"),
12071 old_loc->owner->number);
12072 }
12073 removed = 1;
12074 }
12075 }
12076
12077 if (!found_object)
12078 {
12079 if (removed && target_is_non_stop_p ()
12080 && need_moribund_for_location_type (old_loc))
12081 {
12082 /* This location was removed from the target. In
12083 non-stop mode, a race condition is possible where
12084 we've removed a breakpoint, but stop events for that
12085 breakpoint are already queued and will arrive later.
12086 We apply an heuristic to be able to distinguish such
12087 SIGTRAPs from other random SIGTRAPs: we keep this
12088 breakpoint location for a bit, and will retire it
12089 after we see some number of events. The theory here
12090 is that reporting of events should, "on the average",
12091 be fair, so after a while we'll see events from all
12092 threads that have anything of interest, and no longer
12093 need to keep this breakpoint location around. We
12094 don't hold locations forever so to reduce chances of
12095 mistaking a non-breakpoint SIGTRAP for a breakpoint
12096 SIGTRAP.
12097
12098 The heuristic failing can be disastrous on
12099 decr_pc_after_break targets.
12100
12101 On decr_pc_after_break targets, like e.g., x86-linux,
12102 if we fail to recognize a late breakpoint SIGTRAP,
12103 because events_till_retirement has reached 0 too
12104 soon, we'll fail to do the PC adjustment, and report
12105 a random SIGTRAP to the user. When the user resumes
12106 the inferior, it will most likely immediately crash
12107 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12108 corrupted, because of being resumed e.g., in the
12109 middle of a multi-byte instruction, or skipped a
12110 one-byte instruction. This was actually seen happen
12111 on native x86-linux, and should be less rare on
12112 targets that do not support new thread events, like
12113 remote, due to the heuristic depending on
12114 thread_count.
12115
12116 Mistaking a random SIGTRAP for a breakpoint trap
12117 causes similar symptoms (PC adjustment applied when
12118 it shouldn't), but then again, playing with SIGTRAPs
12119 behind the debugger's back is asking for trouble.
12120
12121 Since hardware watchpoint traps are always
12122 distinguishable from other traps, so we don't need to
12123 apply keep hardware watchpoint moribund locations
12124 around. We simply always ignore hardware watchpoint
12125 traps we can no longer explain. */
12126
12127 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12128 old_loc->owner = NULL;
12129
12130 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12131 }
12132 else
12133 {
12134 old_loc->owner = NULL;
12135 decref_bp_location (&old_loc);
12136 }
12137 }
12138 }
12139
12140 /* Rescan breakpoints at the same address and section, marking the
12141 first one as "first" and any others as "duplicates". This is so
12142 that the bpt instruction is only inserted once. If we have a
12143 permanent breakpoint at the same place as BPT, make that one the
12144 official one, and the rest as duplicates. Permanent breakpoints
12145 are sorted first for the same address.
12146
12147 Do the same for hardware watchpoints, but also considering the
12148 watchpoint's type (regular/access/read) and length. */
12149
12150 bp_loc_first = NULL;
12151 wp_loc_first = NULL;
12152 awp_loc_first = NULL;
12153 rwp_loc_first = NULL;
12154 ALL_BP_LOCATIONS (loc, locp)
12155 {
12156 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12157 non-NULL. */
12158 struct bp_location **loc_first_p;
12159 b = loc->owner;
12160
12161 if (!unduplicated_should_be_inserted (loc)
12162 || !breakpoint_address_is_meaningful (b)
12163 /* Don't detect duplicate for tracepoint locations because they are
12164 never duplicated. See the comments in field `duplicate' of
12165 `struct bp_location'. */
12166 || is_tracepoint (b))
12167 {
12168 /* Clear the condition modification flag. */
12169 loc->condition_changed = condition_unchanged;
12170 continue;
12171 }
12172
12173 if (b->type == bp_hardware_watchpoint)
12174 loc_first_p = &wp_loc_first;
12175 else if (b->type == bp_read_watchpoint)
12176 loc_first_p = &rwp_loc_first;
12177 else if (b->type == bp_access_watchpoint)
12178 loc_first_p = &awp_loc_first;
12179 else
12180 loc_first_p = &bp_loc_first;
12181
12182 if (*loc_first_p == NULL
12183 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12184 || !breakpoint_locations_match (loc, *loc_first_p))
12185 {
12186 *loc_first_p = loc;
12187 loc->duplicate = 0;
12188
12189 if (is_breakpoint (loc->owner) && loc->condition_changed)
12190 {
12191 loc->needs_update = 1;
12192 /* Clear the condition modification flag. */
12193 loc->condition_changed = condition_unchanged;
12194 }
12195 continue;
12196 }
12197
12198
12199 /* This and the above ensure the invariant that the first location
12200 is not duplicated, and is the inserted one.
12201 All following are marked as duplicated, and are not inserted. */
12202 if (loc->inserted)
12203 swap_insertion (loc, *loc_first_p);
12204 loc->duplicate = 1;
12205
12206 /* Clear the condition modification flag. */
12207 loc->condition_changed = condition_unchanged;
12208 }
12209
12210 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12211 {
12212 if (insert_mode != UGLL_DONT_INSERT)
12213 insert_breakpoint_locations ();
12214 else
12215 {
12216 /* Even though the caller told us to not insert new
12217 locations, we may still need to update conditions on the
12218 target's side of breakpoints that were already inserted
12219 if the target is evaluating breakpoint conditions. We
12220 only update conditions for locations that are marked
12221 "needs_update". */
12222 update_inserted_breakpoint_locations ();
12223 }
12224 }
12225
12226 if (insert_mode != UGLL_DONT_INSERT)
12227 download_tracepoint_locations ();
12228 }
12229
12230 void
12231 breakpoint_retire_moribund (void)
12232 {
12233 struct bp_location *loc;
12234 int ix;
12235
12236 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12237 if (--(loc->events_till_retirement) == 0)
12238 {
12239 decref_bp_location (&loc);
12240 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12241 --ix;
12242 }
12243 }
12244
12245 static void
12246 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12247 {
12248
12249 TRY
12250 {
12251 update_global_location_list (insert_mode);
12252 }
12253 CATCH (e, RETURN_MASK_ERROR)
12254 {
12255 }
12256 END_CATCH
12257 }
12258
12259 /* Clear BKP from a BPS. */
12260
12261 static void
12262 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12263 {
12264 bpstat bs;
12265
12266 for (bs = bps; bs; bs = bs->next)
12267 if (bs->breakpoint_at == bpt)
12268 {
12269 bs->breakpoint_at = NULL;
12270 bs->old_val = NULL;
12271 /* bs->commands will be freed later. */
12272 }
12273 }
12274
12275 /* Callback for iterate_over_threads. */
12276 static int
12277 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12278 {
12279 struct breakpoint *bpt = (struct breakpoint *) data;
12280
12281 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12282 return 0;
12283 }
12284
12285 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12286 callbacks. */
12287
12288 static void
12289 say_where (struct breakpoint *b)
12290 {
12291 struct value_print_options opts;
12292
12293 get_user_print_options (&opts);
12294
12295 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12296 single string. */
12297 if (b->loc == NULL)
12298 {
12299 /* For pending locations, the output differs slightly based
12300 on b->extra_string. If this is non-NULL, it contains either
12301 a condition or dprintf arguments. */
12302 if (b->extra_string == NULL)
12303 {
12304 printf_filtered (_(" (%s) pending."),
12305 event_location_to_string (b->location.get ()));
12306 }
12307 else if (b->type == bp_dprintf)
12308 {
12309 printf_filtered (_(" (%s,%s) pending."),
12310 event_location_to_string (b->location.get ()),
12311 b->extra_string);
12312 }
12313 else
12314 {
12315 printf_filtered (_(" (%s %s) pending."),
12316 event_location_to_string (b->location.get ()),
12317 b->extra_string);
12318 }
12319 }
12320 else
12321 {
12322 if (opts.addressprint || b->loc->symtab == NULL)
12323 {
12324 printf_filtered (" at ");
12325 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12326 gdb_stdout);
12327 }
12328 if (b->loc->symtab != NULL)
12329 {
12330 /* If there is a single location, we can print the location
12331 more nicely. */
12332 if (b->loc->next == NULL)
12333 printf_filtered (": file %s, line %d.",
12334 symtab_to_filename_for_display (b->loc->symtab),
12335 b->loc->line_number);
12336 else
12337 /* This is not ideal, but each location may have a
12338 different file name, and this at least reflects the
12339 real situation somewhat. */
12340 printf_filtered (": %s.",
12341 event_location_to_string (b->location.get ()));
12342 }
12343
12344 if (b->loc->next)
12345 {
12346 struct bp_location *loc = b->loc;
12347 int n = 0;
12348 for (; loc; loc = loc->next)
12349 ++n;
12350 printf_filtered (" (%d locations)", n);
12351 }
12352 }
12353 }
12354
12355 /* Default bp_location_ops methods. */
12356
12357 static void
12358 bp_location_dtor (struct bp_location *self)
12359 {
12360 xfree (self->function_name);
12361 }
12362
12363 static const struct bp_location_ops bp_location_ops =
12364 {
12365 bp_location_dtor
12366 };
12367
12368 /* Destructor for the breakpoint base class. */
12369
12370 breakpoint::~breakpoint ()
12371 {
12372 xfree (this->cond_string);
12373 xfree (this->extra_string);
12374 xfree (this->filter);
12375 }
12376
12377 static struct bp_location *
12378 base_breakpoint_allocate_location (struct breakpoint *self)
12379 {
12380 return new bp_location (&bp_location_ops, self);
12381 }
12382
12383 static void
12384 base_breakpoint_re_set (struct breakpoint *b)
12385 {
12386 /* Nothing to re-set. */
12387 }
12388
12389 #define internal_error_pure_virtual_called() \
12390 gdb_assert_not_reached ("pure virtual function called")
12391
12392 static int
12393 base_breakpoint_insert_location (struct bp_location *bl)
12394 {
12395 internal_error_pure_virtual_called ();
12396 }
12397
12398 static int
12399 base_breakpoint_remove_location (struct bp_location *bl,
12400 enum remove_bp_reason reason)
12401 {
12402 internal_error_pure_virtual_called ();
12403 }
12404
12405 static int
12406 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12407 const address_space *aspace,
12408 CORE_ADDR bp_addr,
12409 const struct target_waitstatus *ws)
12410 {
12411 internal_error_pure_virtual_called ();
12412 }
12413
12414 static void
12415 base_breakpoint_check_status (bpstat bs)
12416 {
12417 /* Always stop. */
12418 }
12419
12420 /* A "works_in_software_mode" breakpoint_ops method that just internal
12421 errors. */
12422
12423 static int
12424 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12425 {
12426 internal_error_pure_virtual_called ();
12427 }
12428
12429 /* A "resources_needed" breakpoint_ops method that just internal
12430 errors. */
12431
12432 static int
12433 base_breakpoint_resources_needed (const struct bp_location *bl)
12434 {
12435 internal_error_pure_virtual_called ();
12436 }
12437
12438 static enum print_stop_action
12439 base_breakpoint_print_it (bpstat bs)
12440 {
12441 internal_error_pure_virtual_called ();
12442 }
12443
12444 static void
12445 base_breakpoint_print_one_detail (const struct breakpoint *self,
12446 struct ui_out *uiout)
12447 {
12448 /* nothing */
12449 }
12450
12451 static void
12452 base_breakpoint_print_mention (struct breakpoint *b)
12453 {
12454 internal_error_pure_virtual_called ();
12455 }
12456
12457 static void
12458 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12459 {
12460 internal_error_pure_virtual_called ();
12461 }
12462
12463 static void
12464 base_breakpoint_create_sals_from_location
12465 (const struct event_location *location,
12466 struct linespec_result *canonical,
12467 enum bptype type_wanted)
12468 {
12469 internal_error_pure_virtual_called ();
12470 }
12471
12472 static void
12473 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12474 struct linespec_result *c,
12475 gdb::unique_xmalloc_ptr<char> cond_string,
12476 gdb::unique_xmalloc_ptr<char> extra_string,
12477 enum bptype type_wanted,
12478 enum bpdisp disposition,
12479 int thread,
12480 int task, int ignore_count,
12481 const struct breakpoint_ops *o,
12482 int from_tty, int enabled,
12483 int internal, unsigned flags)
12484 {
12485 internal_error_pure_virtual_called ();
12486 }
12487
12488 static std::vector<symtab_and_line>
12489 base_breakpoint_decode_location (struct breakpoint *b,
12490 const struct event_location *location,
12491 struct program_space *search_pspace)
12492 {
12493 internal_error_pure_virtual_called ();
12494 }
12495
12496 /* The default 'explains_signal' method. */
12497
12498 static int
12499 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12500 {
12501 return 1;
12502 }
12503
12504 /* The default "after_condition_true" method. */
12505
12506 static void
12507 base_breakpoint_after_condition_true (struct bpstats *bs)
12508 {
12509 /* Nothing to do. */
12510 }
12511
12512 struct breakpoint_ops base_breakpoint_ops =
12513 {
12514 base_breakpoint_allocate_location,
12515 base_breakpoint_re_set,
12516 base_breakpoint_insert_location,
12517 base_breakpoint_remove_location,
12518 base_breakpoint_breakpoint_hit,
12519 base_breakpoint_check_status,
12520 base_breakpoint_resources_needed,
12521 base_breakpoint_works_in_software_mode,
12522 base_breakpoint_print_it,
12523 NULL,
12524 base_breakpoint_print_one_detail,
12525 base_breakpoint_print_mention,
12526 base_breakpoint_print_recreate,
12527 base_breakpoint_create_sals_from_location,
12528 base_breakpoint_create_breakpoints_sal,
12529 base_breakpoint_decode_location,
12530 base_breakpoint_explains_signal,
12531 base_breakpoint_after_condition_true,
12532 };
12533
12534 /* Default breakpoint_ops methods. */
12535
12536 static void
12537 bkpt_re_set (struct breakpoint *b)
12538 {
12539 /* FIXME: is this still reachable? */
12540 if (breakpoint_event_location_empty_p (b))
12541 {
12542 /* Anything without a location can't be re-set. */
12543 delete_breakpoint (b);
12544 return;
12545 }
12546
12547 breakpoint_re_set_default (b);
12548 }
12549
12550 static int
12551 bkpt_insert_location (struct bp_location *bl)
12552 {
12553 CORE_ADDR addr = bl->target_info.reqstd_address;
12554
12555 bl->target_info.kind = breakpoint_kind (bl, &addr);
12556 bl->target_info.placed_address = addr;
12557
12558 if (bl->loc_type == bp_loc_hardware_breakpoint)
12559 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12560 else
12561 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12562 }
12563
12564 static int
12565 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12566 {
12567 if (bl->loc_type == bp_loc_hardware_breakpoint)
12568 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12569 else
12570 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12571 }
12572
12573 static int
12574 bkpt_breakpoint_hit (const struct bp_location *bl,
12575 const address_space *aspace, CORE_ADDR bp_addr,
12576 const struct target_waitstatus *ws)
12577 {
12578 if (ws->kind != TARGET_WAITKIND_STOPPED
12579 || ws->value.sig != GDB_SIGNAL_TRAP)
12580 return 0;
12581
12582 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12583 aspace, bp_addr))
12584 return 0;
12585
12586 if (overlay_debugging /* unmapped overlay section */
12587 && section_is_overlay (bl->section)
12588 && !section_is_mapped (bl->section))
12589 return 0;
12590
12591 return 1;
12592 }
12593
12594 static int
12595 dprintf_breakpoint_hit (const struct bp_location *bl,
12596 const address_space *aspace, CORE_ADDR bp_addr,
12597 const struct target_waitstatus *ws)
12598 {
12599 if (dprintf_style == dprintf_style_agent
12600 && target_can_run_breakpoint_commands ())
12601 {
12602 /* An agent-style dprintf never causes a stop. If we see a trap
12603 for this address it must be for a breakpoint that happens to
12604 be set at the same address. */
12605 return 0;
12606 }
12607
12608 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12609 }
12610
12611 static int
12612 bkpt_resources_needed (const struct bp_location *bl)
12613 {
12614 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12615
12616 return 1;
12617 }
12618
12619 static enum print_stop_action
12620 bkpt_print_it (bpstat bs)
12621 {
12622 struct breakpoint *b;
12623 const struct bp_location *bl;
12624 int bp_temp;
12625 struct ui_out *uiout = current_uiout;
12626
12627 gdb_assert (bs->bp_location_at != NULL);
12628
12629 bl = bs->bp_location_at;
12630 b = bs->breakpoint_at;
12631
12632 bp_temp = b->disposition == disp_del;
12633 if (bl->address != bl->requested_address)
12634 breakpoint_adjustment_warning (bl->requested_address,
12635 bl->address,
12636 b->number, 1);
12637 annotate_breakpoint (b->number);
12638 maybe_print_thread_hit_breakpoint (uiout);
12639
12640 if (bp_temp)
12641 uiout->text ("Temporary breakpoint ");
12642 else
12643 uiout->text ("Breakpoint ");
12644 if (uiout->is_mi_like_p ())
12645 {
12646 uiout->field_string ("reason",
12647 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12648 uiout->field_string ("disp", bpdisp_text (b->disposition));
12649 }
12650 uiout->field_int ("bkptno", b->number);
12651 uiout->text (", ");
12652
12653 return PRINT_SRC_AND_LOC;
12654 }
12655
12656 static void
12657 bkpt_print_mention (struct breakpoint *b)
12658 {
12659 if (current_uiout->is_mi_like_p ())
12660 return;
12661
12662 switch (b->type)
12663 {
12664 case bp_breakpoint:
12665 case bp_gnu_ifunc_resolver:
12666 if (b->disposition == disp_del)
12667 printf_filtered (_("Temporary breakpoint"));
12668 else
12669 printf_filtered (_("Breakpoint"));
12670 printf_filtered (_(" %d"), b->number);
12671 if (b->type == bp_gnu_ifunc_resolver)
12672 printf_filtered (_(" at gnu-indirect-function resolver"));
12673 break;
12674 case bp_hardware_breakpoint:
12675 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12676 break;
12677 case bp_dprintf:
12678 printf_filtered (_("Dprintf %d"), b->number);
12679 break;
12680 }
12681
12682 say_where (b);
12683 }
12684
12685 static void
12686 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12687 {
12688 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12689 fprintf_unfiltered (fp, "tbreak");
12690 else if (tp->type == bp_breakpoint)
12691 fprintf_unfiltered (fp, "break");
12692 else if (tp->type == bp_hardware_breakpoint
12693 && tp->disposition == disp_del)
12694 fprintf_unfiltered (fp, "thbreak");
12695 else if (tp->type == bp_hardware_breakpoint)
12696 fprintf_unfiltered (fp, "hbreak");
12697 else
12698 internal_error (__FILE__, __LINE__,
12699 _("unhandled breakpoint type %d"), (int) tp->type);
12700
12701 fprintf_unfiltered (fp, " %s",
12702 event_location_to_string (tp->location.get ()));
12703
12704 /* Print out extra_string if this breakpoint is pending. It might
12705 contain, for example, conditions that were set by the user. */
12706 if (tp->loc == NULL && tp->extra_string != NULL)
12707 fprintf_unfiltered (fp, " %s", tp->extra_string);
12708
12709 print_recreate_thread (tp, fp);
12710 }
12711
12712 static void
12713 bkpt_create_sals_from_location (const struct event_location *location,
12714 struct linespec_result *canonical,
12715 enum bptype type_wanted)
12716 {
12717 create_sals_from_location_default (location, canonical, type_wanted);
12718 }
12719
12720 static void
12721 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12722 struct linespec_result *canonical,
12723 gdb::unique_xmalloc_ptr<char> cond_string,
12724 gdb::unique_xmalloc_ptr<char> extra_string,
12725 enum bptype type_wanted,
12726 enum bpdisp disposition,
12727 int thread,
12728 int task, int ignore_count,
12729 const struct breakpoint_ops *ops,
12730 int from_tty, int enabled,
12731 int internal, unsigned flags)
12732 {
12733 create_breakpoints_sal_default (gdbarch, canonical,
12734 std::move (cond_string),
12735 std::move (extra_string),
12736 type_wanted,
12737 disposition, thread, task,
12738 ignore_count, ops, from_tty,
12739 enabled, internal, flags);
12740 }
12741
12742 static std::vector<symtab_and_line>
12743 bkpt_decode_location (struct breakpoint *b,
12744 const struct event_location *location,
12745 struct program_space *search_pspace)
12746 {
12747 return decode_location_default (b, location, search_pspace);
12748 }
12749
12750 /* Virtual table for internal breakpoints. */
12751
12752 static void
12753 internal_bkpt_re_set (struct breakpoint *b)
12754 {
12755 switch (b->type)
12756 {
12757 /* Delete overlay event and longjmp master breakpoints; they
12758 will be reset later by breakpoint_re_set. */
12759 case bp_overlay_event:
12760 case bp_longjmp_master:
12761 case bp_std_terminate_master:
12762 case bp_exception_master:
12763 delete_breakpoint (b);
12764 break;
12765
12766 /* This breakpoint is special, it's set up when the inferior
12767 starts and we really don't want to touch it. */
12768 case bp_shlib_event:
12769
12770 /* Like bp_shlib_event, this breakpoint type is special. Once
12771 it is set up, we do not want to touch it. */
12772 case bp_thread_event:
12773 break;
12774 }
12775 }
12776
12777 static void
12778 internal_bkpt_check_status (bpstat bs)
12779 {
12780 if (bs->breakpoint_at->type == bp_shlib_event)
12781 {
12782 /* If requested, stop when the dynamic linker notifies GDB of
12783 events. This allows the user to get control and place
12784 breakpoints in initializer routines for dynamically loaded
12785 objects (among other things). */
12786 bs->stop = stop_on_solib_events;
12787 bs->print = stop_on_solib_events;
12788 }
12789 else
12790 bs->stop = 0;
12791 }
12792
12793 static enum print_stop_action
12794 internal_bkpt_print_it (bpstat bs)
12795 {
12796 struct breakpoint *b;
12797
12798 b = bs->breakpoint_at;
12799
12800 switch (b->type)
12801 {
12802 case bp_shlib_event:
12803 /* Did we stop because the user set the stop_on_solib_events
12804 variable? (If so, we report this as a generic, "Stopped due
12805 to shlib event" message.) */
12806 print_solib_event (0);
12807 break;
12808
12809 case bp_thread_event:
12810 /* Not sure how we will get here.
12811 GDB should not stop for these breakpoints. */
12812 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12813 break;
12814
12815 case bp_overlay_event:
12816 /* By analogy with the thread event, GDB should not stop for these. */
12817 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12818 break;
12819
12820 case bp_longjmp_master:
12821 /* These should never be enabled. */
12822 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12823 break;
12824
12825 case bp_std_terminate_master:
12826 /* These should never be enabled. */
12827 printf_filtered (_("std::terminate Master Breakpoint: "
12828 "gdb should not stop!\n"));
12829 break;
12830
12831 case bp_exception_master:
12832 /* These should never be enabled. */
12833 printf_filtered (_("Exception Master Breakpoint: "
12834 "gdb should not stop!\n"));
12835 break;
12836 }
12837
12838 return PRINT_NOTHING;
12839 }
12840
12841 static void
12842 internal_bkpt_print_mention (struct breakpoint *b)
12843 {
12844 /* Nothing to mention. These breakpoints are internal. */
12845 }
12846
12847 /* Virtual table for momentary breakpoints */
12848
12849 static void
12850 momentary_bkpt_re_set (struct breakpoint *b)
12851 {
12852 /* Keep temporary breakpoints, which can be encountered when we step
12853 over a dlopen call and solib_add is resetting the breakpoints.
12854 Otherwise these should have been blown away via the cleanup chain
12855 or by breakpoint_init_inferior when we rerun the executable. */
12856 }
12857
12858 static void
12859 momentary_bkpt_check_status (bpstat bs)
12860 {
12861 /* Nothing. The point of these breakpoints is causing a stop. */
12862 }
12863
12864 static enum print_stop_action
12865 momentary_bkpt_print_it (bpstat bs)
12866 {
12867 return PRINT_UNKNOWN;
12868 }
12869
12870 static void
12871 momentary_bkpt_print_mention (struct breakpoint *b)
12872 {
12873 /* Nothing to mention. These breakpoints are internal. */
12874 }
12875
12876 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12877
12878 It gets cleared already on the removal of the first one of such placed
12879 breakpoints. This is OK as they get all removed altogether. */
12880
12881 longjmp_breakpoint::~longjmp_breakpoint ()
12882 {
12883 thread_info *tp = find_thread_global_id (this->thread);
12884
12885 if (tp != NULL)
12886 tp->initiating_frame = null_frame_id;
12887 }
12888
12889 /* Specific methods for probe breakpoints. */
12890
12891 static int
12892 bkpt_probe_insert_location (struct bp_location *bl)
12893 {
12894 int v = bkpt_insert_location (bl);
12895
12896 if (v == 0)
12897 {
12898 /* The insertion was successful, now let's set the probe's semaphore
12899 if needed. */
12900 if (bl->probe.probe->pops->set_semaphore != NULL)
12901 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
12902 bl->probe.objfile,
12903 bl->gdbarch);
12904 }
12905
12906 return v;
12907 }
12908
12909 static int
12910 bkpt_probe_remove_location (struct bp_location *bl,
12911 enum remove_bp_reason reason)
12912 {
12913 /* Let's clear the semaphore before removing the location. */
12914 if (bl->probe.probe->pops->clear_semaphore != NULL)
12915 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
12916 bl->probe.objfile,
12917 bl->gdbarch);
12918
12919 return bkpt_remove_location (bl, reason);
12920 }
12921
12922 static void
12923 bkpt_probe_create_sals_from_location (const struct event_location *location,
12924 struct linespec_result *canonical,
12925 enum bptype type_wanted)
12926 {
12927 struct linespec_sals lsal;
12928
12929 lsal.sals = parse_probes (location, NULL, canonical);
12930 lsal.canonical
12931 = xstrdup (event_location_to_string (canonical->location.get ()));
12932 canonical->lsals.push_back (std::move (lsal));
12933 }
12934
12935 static std::vector<symtab_and_line>
12936 bkpt_probe_decode_location (struct breakpoint *b,
12937 const struct event_location *location,
12938 struct program_space *search_pspace)
12939 {
12940 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12941 if (sals.empty ())
12942 error (_("probe not found"));
12943 return sals;
12944 }
12945
12946 /* The breakpoint_ops structure to be used in tracepoints. */
12947
12948 static void
12949 tracepoint_re_set (struct breakpoint *b)
12950 {
12951 breakpoint_re_set_default (b);
12952 }
12953
12954 static int
12955 tracepoint_breakpoint_hit (const struct bp_location *bl,
12956 const address_space *aspace, CORE_ADDR bp_addr,
12957 const struct target_waitstatus *ws)
12958 {
12959 /* By definition, the inferior does not report stops at
12960 tracepoints. */
12961 return 0;
12962 }
12963
12964 static void
12965 tracepoint_print_one_detail (const struct breakpoint *self,
12966 struct ui_out *uiout)
12967 {
12968 struct tracepoint *tp = (struct tracepoint *) self;
12969 if (tp->static_trace_marker_id)
12970 {
12971 gdb_assert (self->type == bp_static_tracepoint);
12972
12973 uiout->text ("\tmarker id is ");
12974 uiout->field_string ("static-tracepoint-marker-string-id",
12975 tp->static_trace_marker_id);
12976 uiout->text ("\n");
12977 }
12978 }
12979
12980 static void
12981 tracepoint_print_mention (struct breakpoint *b)
12982 {
12983 if (current_uiout->is_mi_like_p ())
12984 return;
12985
12986 switch (b->type)
12987 {
12988 case bp_tracepoint:
12989 printf_filtered (_("Tracepoint"));
12990 printf_filtered (_(" %d"), b->number);
12991 break;
12992 case bp_fast_tracepoint:
12993 printf_filtered (_("Fast tracepoint"));
12994 printf_filtered (_(" %d"), b->number);
12995 break;
12996 case bp_static_tracepoint:
12997 printf_filtered (_("Static tracepoint"));
12998 printf_filtered (_(" %d"), b->number);
12999 break;
13000 default:
13001 internal_error (__FILE__, __LINE__,
13002 _("unhandled tracepoint type %d"), (int) b->type);
13003 }
13004
13005 say_where (b);
13006 }
13007
13008 static void
13009 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13010 {
13011 struct tracepoint *tp = (struct tracepoint *) self;
13012
13013 if (self->type == bp_fast_tracepoint)
13014 fprintf_unfiltered (fp, "ftrace");
13015 else if (self->type == bp_static_tracepoint)
13016 fprintf_unfiltered (fp, "strace");
13017 else if (self->type == bp_tracepoint)
13018 fprintf_unfiltered (fp, "trace");
13019 else
13020 internal_error (__FILE__, __LINE__,
13021 _("unhandled tracepoint type %d"), (int) self->type);
13022
13023 fprintf_unfiltered (fp, " %s",
13024 event_location_to_string (self->location.get ()));
13025 print_recreate_thread (self, fp);
13026
13027 if (tp->pass_count)
13028 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13029 }
13030
13031 static void
13032 tracepoint_create_sals_from_location (const struct event_location *location,
13033 struct linespec_result *canonical,
13034 enum bptype type_wanted)
13035 {
13036 create_sals_from_location_default (location, canonical, type_wanted);
13037 }
13038
13039 static void
13040 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13041 struct linespec_result *canonical,
13042 gdb::unique_xmalloc_ptr<char> cond_string,
13043 gdb::unique_xmalloc_ptr<char> extra_string,
13044 enum bptype type_wanted,
13045 enum bpdisp disposition,
13046 int thread,
13047 int task, int ignore_count,
13048 const struct breakpoint_ops *ops,
13049 int from_tty, int enabled,
13050 int internal, unsigned flags)
13051 {
13052 create_breakpoints_sal_default (gdbarch, canonical,
13053 std::move (cond_string),
13054 std::move (extra_string),
13055 type_wanted,
13056 disposition, thread, task,
13057 ignore_count, ops, from_tty,
13058 enabled, internal, flags);
13059 }
13060
13061 static std::vector<symtab_and_line>
13062 tracepoint_decode_location (struct breakpoint *b,
13063 const struct event_location *location,
13064 struct program_space *search_pspace)
13065 {
13066 return decode_location_default (b, location, search_pspace);
13067 }
13068
13069 struct breakpoint_ops tracepoint_breakpoint_ops;
13070
13071 /* The breakpoint_ops structure to be use on tracepoints placed in a
13072 static probe. */
13073
13074 static void
13075 tracepoint_probe_create_sals_from_location
13076 (const struct event_location *location,
13077 struct linespec_result *canonical,
13078 enum bptype type_wanted)
13079 {
13080 /* We use the same method for breakpoint on probes. */
13081 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13082 }
13083
13084 static std::vector<symtab_and_line>
13085 tracepoint_probe_decode_location (struct breakpoint *b,
13086 const struct event_location *location,
13087 struct program_space *search_pspace)
13088 {
13089 /* We use the same method for breakpoint on probes. */
13090 return bkpt_probe_decode_location (b, location, search_pspace);
13091 }
13092
13093 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13094
13095 /* Dprintf breakpoint_ops methods. */
13096
13097 static void
13098 dprintf_re_set (struct breakpoint *b)
13099 {
13100 breakpoint_re_set_default (b);
13101
13102 /* extra_string should never be non-NULL for dprintf. */
13103 gdb_assert (b->extra_string != NULL);
13104
13105 /* 1 - connect to target 1, that can run breakpoint commands.
13106 2 - create a dprintf, which resolves fine.
13107 3 - disconnect from target 1
13108 4 - connect to target 2, that can NOT run breakpoint commands.
13109
13110 After steps #3/#4, you'll want the dprintf command list to
13111 be updated, because target 1 and 2 may well return different
13112 answers for target_can_run_breakpoint_commands().
13113 Given absence of finer grained resetting, we get to do
13114 it all the time. */
13115 if (b->extra_string != NULL)
13116 update_dprintf_command_list (b);
13117 }
13118
13119 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13120
13121 static void
13122 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13123 {
13124 fprintf_unfiltered (fp, "dprintf %s,%s",
13125 event_location_to_string (tp->location.get ()),
13126 tp->extra_string);
13127 print_recreate_thread (tp, fp);
13128 }
13129
13130 /* Implement the "after_condition_true" breakpoint_ops method for
13131 dprintf.
13132
13133 dprintf's are implemented with regular commands in their command
13134 list, but we run the commands here instead of before presenting the
13135 stop to the user, as dprintf's don't actually cause a stop. This
13136 also makes it so that the commands of multiple dprintfs at the same
13137 address are all handled. */
13138
13139 static void
13140 dprintf_after_condition_true (struct bpstats *bs)
13141 {
13142 struct bpstats tmp_bs;
13143 struct bpstats *tmp_bs_p = &tmp_bs;
13144
13145 /* dprintf's never cause a stop. This wasn't set in the
13146 check_status hook instead because that would make the dprintf's
13147 condition not be evaluated. */
13148 bs->stop = 0;
13149
13150 /* Run the command list here. Take ownership of it instead of
13151 copying. We never want these commands to run later in
13152 bpstat_do_actions, if a breakpoint that causes a stop happens to
13153 be set at same address as this dprintf, or even if running the
13154 commands here throws. */
13155 tmp_bs.commands = bs->commands;
13156 bs->commands = NULL;
13157
13158 bpstat_do_actions_1 (&tmp_bs_p);
13159
13160 /* 'tmp_bs.commands' will usually be NULL by now, but
13161 bpstat_do_actions_1 may return early without processing the whole
13162 list. */
13163 }
13164
13165 /* The breakpoint_ops structure to be used on static tracepoints with
13166 markers (`-m'). */
13167
13168 static void
13169 strace_marker_create_sals_from_location (const struct event_location *location,
13170 struct linespec_result *canonical,
13171 enum bptype type_wanted)
13172 {
13173 struct linespec_sals lsal;
13174 const char *arg_start, *arg;
13175
13176 arg = arg_start = get_linespec_location (location);
13177 lsal.sals = decode_static_tracepoint_spec (&arg);
13178
13179 std::string str (arg_start, arg - arg_start);
13180 const char *ptr = str.c_str ();
13181 canonical->location = new_linespec_location (&ptr);
13182
13183 lsal.canonical
13184 = xstrdup (event_location_to_string (canonical->location.get ()));
13185 canonical->lsals.push_back (std::move (lsal));
13186 }
13187
13188 static void
13189 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13190 struct linespec_result *canonical,
13191 gdb::unique_xmalloc_ptr<char> cond_string,
13192 gdb::unique_xmalloc_ptr<char> extra_string,
13193 enum bptype type_wanted,
13194 enum bpdisp disposition,
13195 int thread,
13196 int task, int ignore_count,
13197 const struct breakpoint_ops *ops,
13198 int from_tty, int enabled,
13199 int internal, unsigned flags)
13200 {
13201 const linespec_sals &lsal = canonical->lsals[0];
13202
13203 /* If the user is creating a static tracepoint by marker id
13204 (strace -m MARKER_ID), then store the sals index, so that
13205 breakpoint_re_set can try to match up which of the newly
13206 found markers corresponds to this one, and, don't try to
13207 expand multiple locations for each sal, given than SALS
13208 already should contain all sals for MARKER_ID. */
13209
13210 for (size_t i = 0; i < lsal.sals.size (); i++)
13211 {
13212 event_location_up location
13213 = copy_event_location (canonical->location.get ());
13214
13215 std::unique_ptr<tracepoint> tp (new tracepoint ());
13216 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13217 std::move (location), NULL,
13218 std::move (cond_string),
13219 std::move (extra_string),
13220 type_wanted, disposition,
13221 thread, task, ignore_count, ops,
13222 from_tty, enabled, internal, flags,
13223 canonical->special_display);
13224 /* Given that its possible to have multiple markers with
13225 the same string id, if the user is creating a static
13226 tracepoint by marker id ("strace -m MARKER_ID"), then
13227 store the sals index, so that breakpoint_re_set can
13228 try to match up which of the newly found markers
13229 corresponds to this one */
13230 tp->static_trace_marker_id_idx = i;
13231
13232 install_breakpoint (internal, std::move (tp), 0);
13233 }
13234 }
13235
13236 static std::vector<symtab_and_line>
13237 strace_marker_decode_location (struct breakpoint *b,
13238 const struct event_location *location,
13239 struct program_space *search_pspace)
13240 {
13241 struct tracepoint *tp = (struct tracepoint *) b;
13242 const char *s = get_linespec_location (location);
13243
13244 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13245 if (sals.size () > tp->static_trace_marker_id_idx)
13246 {
13247 sals[0] = sals[tp->static_trace_marker_id_idx];
13248 sals.resize (1);
13249 return sals;
13250 }
13251 else
13252 error (_("marker %s not found"), tp->static_trace_marker_id);
13253 }
13254
13255 static struct breakpoint_ops strace_marker_breakpoint_ops;
13256
13257 static int
13258 strace_marker_p (struct breakpoint *b)
13259 {
13260 return b->ops == &strace_marker_breakpoint_ops;
13261 }
13262
13263 /* Delete a breakpoint and clean up all traces of it in the data
13264 structures. */
13265
13266 void
13267 delete_breakpoint (struct breakpoint *bpt)
13268 {
13269 struct breakpoint *b;
13270
13271 gdb_assert (bpt != NULL);
13272
13273 /* Has this bp already been deleted? This can happen because
13274 multiple lists can hold pointers to bp's. bpstat lists are
13275 especial culprits.
13276
13277 One example of this happening is a watchpoint's scope bp. When
13278 the scope bp triggers, we notice that the watchpoint is out of
13279 scope, and delete it. We also delete its scope bp. But the
13280 scope bp is marked "auto-deleting", and is already on a bpstat.
13281 That bpstat is then checked for auto-deleting bp's, which are
13282 deleted.
13283
13284 A real solution to this problem might involve reference counts in
13285 bp's, and/or giving them pointers back to their referencing
13286 bpstat's, and teaching delete_breakpoint to only free a bp's
13287 storage when no more references were extent. A cheaper bandaid
13288 was chosen. */
13289 if (bpt->type == bp_none)
13290 return;
13291
13292 /* At least avoid this stale reference until the reference counting
13293 of breakpoints gets resolved. */
13294 if (bpt->related_breakpoint != bpt)
13295 {
13296 struct breakpoint *related;
13297 struct watchpoint *w;
13298
13299 if (bpt->type == bp_watchpoint_scope)
13300 w = (struct watchpoint *) bpt->related_breakpoint;
13301 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13302 w = (struct watchpoint *) bpt;
13303 else
13304 w = NULL;
13305 if (w != NULL)
13306 watchpoint_del_at_next_stop (w);
13307
13308 /* Unlink bpt from the bpt->related_breakpoint ring. */
13309 for (related = bpt; related->related_breakpoint != bpt;
13310 related = related->related_breakpoint);
13311 related->related_breakpoint = bpt->related_breakpoint;
13312 bpt->related_breakpoint = bpt;
13313 }
13314
13315 /* watch_command_1 creates a watchpoint but only sets its number if
13316 update_watchpoint succeeds in creating its bp_locations. If there's
13317 a problem in that process, we'll be asked to delete the half-created
13318 watchpoint. In that case, don't announce the deletion. */
13319 if (bpt->number)
13320 observer_notify_breakpoint_deleted (bpt);
13321
13322 if (breakpoint_chain == bpt)
13323 breakpoint_chain = bpt->next;
13324
13325 ALL_BREAKPOINTS (b)
13326 if (b->next == bpt)
13327 {
13328 b->next = bpt->next;
13329 break;
13330 }
13331
13332 /* Be sure no bpstat's are pointing at the breakpoint after it's
13333 been freed. */
13334 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13335 in all threads for now. Note that we cannot just remove bpstats
13336 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13337 commands are associated with the bpstat; if we remove it here,
13338 then the later call to bpstat_do_actions (&stop_bpstat); in
13339 event-top.c won't do anything, and temporary breakpoints with
13340 commands won't work. */
13341
13342 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13343
13344 /* Now that breakpoint is removed from breakpoint list, update the
13345 global location list. This will remove locations that used to
13346 belong to this breakpoint. Do this before freeing the breakpoint
13347 itself, since remove_breakpoint looks at location's owner. It
13348 might be better design to have location completely
13349 self-contained, but it's not the case now. */
13350 update_global_location_list (UGLL_DONT_INSERT);
13351
13352 /* On the chance that someone will soon try again to delete this
13353 same bp, we mark it as deleted before freeing its storage. */
13354 bpt->type = bp_none;
13355 delete bpt;
13356 }
13357
13358 /* Iterator function to call a user-provided callback function once
13359 for each of B and its related breakpoints. */
13360
13361 static void
13362 iterate_over_related_breakpoints (struct breakpoint *b,
13363 gdb::function_view<void (breakpoint *)> function)
13364 {
13365 struct breakpoint *related;
13366
13367 related = b;
13368 do
13369 {
13370 struct breakpoint *next;
13371
13372 /* FUNCTION may delete RELATED. */
13373 next = related->related_breakpoint;
13374
13375 if (next == related)
13376 {
13377 /* RELATED is the last ring entry. */
13378 function (related);
13379
13380 /* FUNCTION may have deleted it, so we'd never reach back to
13381 B. There's nothing left to do anyway, so just break
13382 out. */
13383 break;
13384 }
13385 else
13386 function (related);
13387
13388 related = next;
13389 }
13390 while (related != b);
13391 }
13392
13393 static void
13394 delete_command (const char *arg, int from_tty)
13395 {
13396 struct breakpoint *b, *b_tmp;
13397
13398 dont_repeat ();
13399
13400 if (arg == 0)
13401 {
13402 int breaks_to_delete = 0;
13403
13404 /* Delete all breakpoints if no argument. Do not delete
13405 internal breakpoints, these have to be deleted with an
13406 explicit breakpoint number argument. */
13407 ALL_BREAKPOINTS (b)
13408 if (user_breakpoint_p (b))
13409 {
13410 breaks_to_delete = 1;
13411 break;
13412 }
13413
13414 /* Ask user only if there are some breakpoints to delete. */
13415 if (!from_tty
13416 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13417 {
13418 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13419 if (user_breakpoint_p (b))
13420 delete_breakpoint (b);
13421 }
13422 }
13423 else
13424 map_breakpoint_numbers
13425 (arg, [&] (breakpoint *b)
13426 {
13427 iterate_over_related_breakpoints (b, delete_breakpoint);
13428 });
13429 }
13430
13431 /* Return true if all locations of B bound to PSPACE are pending. If
13432 PSPACE is NULL, all locations of all program spaces are
13433 considered. */
13434
13435 static int
13436 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13437 {
13438 struct bp_location *loc;
13439
13440 for (loc = b->loc; loc != NULL; loc = loc->next)
13441 if ((pspace == NULL
13442 || loc->pspace == pspace)
13443 && !loc->shlib_disabled
13444 && !loc->pspace->executing_startup)
13445 return 0;
13446 return 1;
13447 }
13448
13449 /* Subroutine of update_breakpoint_locations to simplify it.
13450 Return non-zero if multiple fns in list LOC have the same name.
13451 Null names are ignored. */
13452
13453 static int
13454 ambiguous_names_p (struct bp_location *loc)
13455 {
13456 struct bp_location *l;
13457 htab_t htab = htab_create_alloc (13, htab_hash_string,
13458 (int (*) (const void *,
13459 const void *)) streq,
13460 NULL, xcalloc, xfree);
13461
13462 for (l = loc; l != NULL; l = l->next)
13463 {
13464 const char **slot;
13465 const char *name = l->function_name;
13466
13467 /* Allow for some names to be NULL, ignore them. */
13468 if (name == NULL)
13469 continue;
13470
13471 slot = (const char **) htab_find_slot (htab, (const void *) name,
13472 INSERT);
13473 /* NOTE: We can assume slot != NULL here because xcalloc never
13474 returns NULL. */
13475 if (*slot != NULL)
13476 {
13477 htab_delete (htab);
13478 return 1;
13479 }
13480 *slot = name;
13481 }
13482
13483 htab_delete (htab);
13484 return 0;
13485 }
13486
13487 /* When symbols change, it probably means the sources changed as well,
13488 and it might mean the static tracepoint markers are no longer at
13489 the same address or line numbers they used to be at last we
13490 checked. Losing your static tracepoints whenever you rebuild is
13491 undesirable. This function tries to resync/rematch gdb static
13492 tracepoints with the markers on the target, for static tracepoints
13493 that have not been set by marker id. Static tracepoint that have
13494 been set by marker id are reset by marker id in breakpoint_re_set.
13495 The heuristic is:
13496
13497 1) For a tracepoint set at a specific address, look for a marker at
13498 the old PC. If one is found there, assume to be the same marker.
13499 If the name / string id of the marker found is different from the
13500 previous known name, assume that means the user renamed the marker
13501 in the sources, and output a warning.
13502
13503 2) For a tracepoint set at a given line number, look for a marker
13504 at the new address of the old line number. If one is found there,
13505 assume to be the same marker. If the name / string id of the
13506 marker found is different from the previous known name, assume that
13507 means the user renamed the marker in the sources, and output a
13508 warning.
13509
13510 3) If a marker is no longer found at the same address or line, it
13511 may mean the marker no longer exists. But it may also just mean
13512 the code changed a bit. Maybe the user added a few lines of code
13513 that made the marker move up or down (in line number terms). Ask
13514 the target for info about the marker with the string id as we knew
13515 it. If found, update line number and address in the matching
13516 static tracepoint. This will get confused if there's more than one
13517 marker with the same ID (possible in UST, although unadvised
13518 precisely because it confuses tools). */
13519
13520 static struct symtab_and_line
13521 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13522 {
13523 struct tracepoint *tp = (struct tracepoint *) b;
13524 struct static_tracepoint_marker marker;
13525 CORE_ADDR pc;
13526
13527 pc = sal.pc;
13528 if (sal.line)
13529 find_line_pc (sal.symtab, sal.line, &pc);
13530
13531 if (target_static_tracepoint_marker_at (pc, &marker))
13532 {
13533 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13534 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13535 b->number,
13536 tp->static_trace_marker_id, marker.str_id);
13537
13538 xfree (tp->static_trace_marker_id);
13539 tp->static_trace_marker_id = xstrdup (marker.str_id);
13540 release_static_tracepoint_marker (&marker);
13541
13542 return sal;
13543 }
13544
13545 /* Old marker wasn't found on target at lineno. Try looking it up
13546 by string ID. */
13547 if (!sal.explicit_pc
13548 && sal.line != 0
13549 && sal.symtab != NULL
13550 && tp->static_trace_marker_id != NULL)
13551 {
13552 VEC(static_tracepoint_marker_p) *markers;
13553
13554 markers
13555 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13556
13557 if (!VEC_empty(static_tracepoint_marker_p, markers))
13558 {
13559 struct symbol *sym;
13560 struct static_tracepoint_marker *tpmarker;
13561 struct ui_out *uiout = current_uiout;
13562 struct explicit_location explicit_loc;
13563
13564 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13565
13566 xfree (tp->static_trace_marker_id);
13567 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13568
13569 warning (_("marker for static tracepoint %d (%s) not "
13570 "found at previous line number"),
13571 b->number, tp->static_trace_marker_id);
13572
13573 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13574 sym = find_pc_sect_function (tpmarker->address, NULL);
13575 uiout->text ("Now in ");
13576 if (sym)
13577 {
13578 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13579 uiout->text (" at ");
13580 }
13581 uiout->field_string ("file",
13582 symtab_to_filename_for_display (sal2.symtab));
13583 uiout->text (":");
13584
13585 if (uiout->is_mi_like_p ())
13586 {
13587 const char *fullname = symtab_to_fullname (sal2.symtab);
13588
13589 uiout->field_string ("fullname", fullname);
13590 }
13591
13592 uiout->field_int ("line", sal2.line);
13593 uiout->text ("\n");
13594
13595 b->loc->line_number = sal2.line;
13596 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13597
13598 b->location.reset (NULL);
13599 initialize_explicit_location (&explicit_loc);
13600 explicit_loc.source_filename
13601 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13602 explicit_loc.line_offset.offset = b->loc->line_number;
13603 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13604 b->location = new_explicit_location (&explicit_loc);
13605
13606 /* Might be nice to check if function changed, and warn if
13607 so. */
13608
13609 release_static_tracepoint_marker (tpmarker);
13610 }
13611 }
13612 return sal;
13613 }
13614
13615 /* Returns 1 iff locations A and B are sufficiently same that
13616 we don't need to report breakpoint as changed. */
13617
13618 static int
13619 locations_are_equal (struct bp_location *a, struct bp_location *b)
13620 {
13621 while (a && b)
13622 {
13623 if (a->address != b->address)
13624 return 0;
13625
13626 if (a->shlib_disabled != b->shlib_disabled)
13627 return 0;
13628
13629 if (a->enabled != b->enabled)
13630 return 0;
13631
13632 a = a->next;
13633 b = b->next;
13634 }
13635
13636 if ((a == NULL) != (b == NULL))
13637 return 0;
13638
13639 return 1;
13640 }
13641
13642 /* Split all locations of B that are bound to PSPACE out of B's
13643 location list to a separate list and return that list's head. If
13644 PSPACE is NULL, hoist out all locations of B. */
13645
13646 static struct bp_location *
13647 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13648 {
13649 struct bp_location head;
13650 struct bp_location *i = b->loc;
13651 struct bp_location **i_link = &b->loc;
13652 struct bp_location *hoisted = &head;
13653
13654 if (pspace == NULL)
13655 {
13656 i = b->loc;
13657 b->loc = NULL;
13658 return i;
13659 }
13660
13661 head.next = NULL;
13662
13663 while (i != NULL)
13664 {
13665 if (i->pspace == pspace)
13666 {
13667 *i_link = i->next;
13668 i->next = NULL;
13669 hoisted->next = i;
13670 hoisted = i;
13671 }
13672 else
13673 i_link = &i->next;
13674 i = *i_link;
13675 }
13676
13677 return head.next;
13678 }
13679
13680 /* Create new breakpoint locations for B (a hardware or software
13681 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13682 zero, then B is a ranged breakpoint. Only recreates locations for
13683 FILTER_PSPACE. Locations of other program spaces are left
13684 untouched. */
13685
13686 void
13687 update_breakpoint_locations (struct breakpoint *b,
13688 struct program_space *filter_pspace,
13689 gdb::array_view<const symtab_and_line> sals,
13690 gdb::array_view<const symtab_and_line> sals_end)
13691 {
13692 int i;
13693 struct bp_location *existing_locations;
13694
13695 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13696 {
13697 /* Ranged breakpoints have only one start location and one end
13698 location. */
13699 b->enable_state = bp_disabled;
13700 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13701 "multiple locations found\n"),
13702 b->number);
13703 return;
13704 }
13705
13706 /* If there's no new locations, and all existing locations are
13707 pending, don't do anything. This optimizes the common case where
13708 all locations are in the same shared library, that was unloaded.
13709 We'd like to retain the location, so that when the library is
13710 loaded again, we don't loose the enabled/disabled status of the
13711 individual locations. */
13712 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13713 return;
13714
13715 existing_locations = hoist_existing_locations (b, filter_pspace);
13716
13717 for (const auto &sal : sals)
13718 {
13719 struct bp_location *new_loc;
13720
13721 switch_to_program_space_and_thread (sal.pspace);
13722
13723 new_loc = add_location_to_breakpoint (b, &sal);
13724
13725 /* Reparse conditions, they might contain references to the
13726 old symtab. */
13727 if (b->cond_string != NULL)
13728 {
13729 const char *s;
13730
13731 s = b->cond_string;
13732 TRY
13733 {
13734 new_loc->cond = parse_exp_1 (&s, sal.pc,
13735 block_for_pc (sal.pc),
13736 0);
13737 }
13738 CATCH (e, RETURN_MASK_ERROR)
13739 {
13740 warning (_("failed to reevaluate condition "
13741 "for breakpoint %d: %s"),
13742 b->number, e.message);
13743 new_loc->enabled = 0;
13744 }
13745 END_CATCH
13746 }
13747
13748 if (!sals_end.empty ())
13749 {
13750 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13751
13752 new_loc->length = end - sals[0].pc + 1;
13753 }
13754 }
13755
13756 /* If possible, carry over 'disable' status from existing
13757 breakpoints. */
13758 {
13759 struct bp_location *e = existing_locations;
13760 /* If there are multiple breakpoints with the same function name,
13761 e.g. for inline functions, comparing function names won't work.
13762 Instead compare pc addresses; this is just a heuristic as things
13763 may have moved, but in practice it gives the correct answer
13764 often enough until a better solution is found. */
13765 int have_ambiguous_names = ambiguous_names_p (b->loc);
13766
13767 for (; e; e = e->next)
13768 {
13769 if (!e->enabled && e->function_name)
13770 {
13771 struct bp_location *l = b->loc;
13772 if (have_ambiguous_names)
13773 {
13774 for (; l; l = l->next)
13775 if (breakpoint_locations_match (e, l))
13776 {
13777 l->enabled = 0;
13778 break;
13779 }
13780 }
13781 else
13782 {
13783 for (; l; l = l->next)
13784 if (l->function_name
13785 && strcmp (e->function_name, l->function_name) == 0)
13786 {
13787 l->enabled = 0;
13788 break;
13789 }
13790 }
13791 }
13792 }
13793 }
13794
13795 if (!locations_are_equal (existing_locations, b->loc))
13796 observer_notify_breakpoint_modified (b);
13797 }
13798
13799 /* Find the SaL locations corresponding to the given LOCATION.
13800 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13801
13802 static std::vector<symtab_and_line>
13803 location_to_sals (struct breakpoint *b, struct event_location *location,
13804 struct program_space *search_pspace, int *found)
13805 {
13806 struct gdb_exception exception = exception_none;
13807
13808 gdb_assert (b->ops != NULL);
13809
13810 std::vector<symtab_and_line> sals;
13811
13812 TRY
13813 {
13814 sals = b->ops->decode_location (b, location, search_pspace);
13815 }
13816 CATCH (e, RETURN_MASK_ERROR)
13817 {
13818 int not_found_and_ok = 0;
13819
13820 exception = e;
13821
13822 /* For pending breakpoints, it's expected that parsing will
13823 fail until the right shared library is loaded. User has
13824 already told to create pending breakpoints and don't need
13825 extra messages. If breakpoint is in bp_shlib_disabled
13826 state, then user already saw the message about that
13827 breakpoint being disabled, and don't want to see more
13828 errors. */
13829 if (e.error == NOT_FOUND_ERROR
13830 && (b->condition_not_parsed
13831 || (b->loc != NULL
13832 && search_pspace != NULL
13833 && b->loc->pspace != search_pspace)
13834 || (b->loc && b->loc->shlib_disabled)
13835 || (b->loc && b->loc->pspace->executing_startup)
13836 || b->enable_state == bp_disabled))
13837 not_found_and_ok = 1;
13838
13839 if (!not_found_and_ok)
13840 {
13841 /* We surely don't want to warn about the same breakpoint
13842 10 times. One solution, implemented here, is disable
13843 the breakpoint on error. Another solution would be to
13844 have separate 'warning emitted' flag. Since this
13845 happens only when a binary has changed, I don't know
13846 which approach is better. */
13847 b->enable_state = bp_disabled;
13848 throw_exception (e);
13849 }
13850 }
13851 END_CATCH
13852
13853 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13854 {
13855 for (auto &sal : sals)
13856 resolve_sal_pc (&sal);
13857 if (b->condition_not_parsed && b->extra_string != NULL)
13858 {
13859 char *cond_string, *extra_string;
13860 int thread, task;
13861
13862 find_condition_and_thread (b->extra_string, sals[0].pc,
13863 &cond_string, &thread, &task,
13864 &extra_string);
13865 gdb_assert (b->cond_string == NULL);
13866 if (cond_string)
13867 b->cond_string = cond_string;
13868 b->thread = thread;
13869 b->task = task;
13870 if (extra_string)
13871 {
13872 xfree (b->extra_string);
13873 b->extra_string = extra_string;
13874 }
13875 b->condition_not_parsed = 0;
13876 }
13877
13878 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13879 sals[0] = update_static_tracepoint (b, sals[0]);
13880
13881 *found = 1;
13882 }
13883 else
13884 *found = 0;
13885
13886 return sals;
13887 }
13888
13889 /* The default re_set method, for typical hardware or software
13890 breakpoints. Reevaluate the breakpoint and recreate its
13891 locations. */
13892
13893 static void
13894 breakpoint_re_set_default (struct breakpoint *b)
13895 {
13896 struct program_space *filter_pspace = current_program_space;
13897 std::vector<symtab_and_line> expanded, expanded_end;
13898
13899 int found;
13900 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13901 filter_pspace, &found);
13902 if (found)
13903 expanded = std::move (sals);
13904
13905 if (b->location_range_end != NULL)
13906 {
13907 std::vector<symtab_and_line> sals_end
13908 = location_to_sals (b, b->location_range_end.get (),
13909 filter_pspace, &found);
13910 if (found)
13911 expanded_end = std::move (sals_end);
13912 }
13913
13914 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13915 }
13916
13917 /* Default method for creating SALs from an address string. It basically
13918 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13919
13920 static void
13921 create_sals_from_location_default (const struct event_location *location,
13922 struct linespec_result *canonical,
13923 enum bptype type_wanted)
13924 {
13925 parse_breakpoint_sals (location, canonical);
13926 }
13927
13928 /* Call create_breakpoints_sal for the given arguments. This is the default
13929 function for the `create_breakpoints_sal' method of
13930 breakpoint_ops. */
13931
13932 static void
13933 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13934 struct linespec_result *canonical,
13935 gdb::unique_xmalloc_ptr<char> cond_string,
13936 gdb::unique_xmalloc_ptr<char> extra_string,
13937 enum bptype type_wanted,
13938 enum bpdisp disposition,
13939 int thread,
13940 int task, int ignore_count,
13941 const struct breakpoint_ops *ops,
13942 int from_tty, int enabled,
13943 int internal, unsigned flags)
13944 {
13945 create_breakpoints_sal (gdbarch, canonical,
13946 std::move (cond_string),
13947 std::move (extra_string),
13948 type_wanted, disposition,
13949 thread, task, ignore_count, ops, from_tty,
13950 enabled, internal, flags);
13951 }
13952
13953 /* Decode the line represented by S by calling decode_line_full. This is the
13954 default function for the `decode_location' method of breakpoint_ops. */
13955
13956 static std::vector<symtab_and_line>
13957 decode_location_default (struct breakpoint *b,
13958 const struct event_location *location,
13959 struct program_space *search_pspace)
13960 {
13961 struct linespec_result canonical;
13962
13963 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13964 (struct symtab *) NULL, 0,
13965 &canonical, multiple_symbols_all,
13966 b->filter);
13967
13968 /* We should get 0 or 1 resulting SALs. */
13969 gdb_assert (canonical.lsals.size () < 2);
13970
13971 if (!canonical.lsals.empty ())
13972 {
13973 const linespec_sals &lsal = canonical.lsals[0];
13974 return std::move (lsal.sals);
13975 }
13976 return {};
13977 }
13978
13979 /* Reset a breakpoint. */
13980
13981 static void
13982 breakpoint_re_set_one (breakpoint *b)
13983 {
13984 input_radix = b->input_radix;
13985 set_language (b->language);
13986
13987 b->ops->re_set (b);
13988 }
13989
13990 /* Re-set breakpoint locations for the current program space.
13991 Locations bound to other program spaces are left untouched. */
13992
13993 void
13994 breakpoint_re_set (void)
13995 {
13996 struct breakpoint *b, *b_tmp;
13997
13998 {
13999 scoped_restore_current_language save_language;
14000 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
14001 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14002
14003 /* Note: we must not try to insert locations until after all
14004 breakpoints have been re-set. Otherwise, e.g., when re-setting
14005 breakpoint 1, we'd insert the locations of breakpoint 2, which
14006 hadn't been re-set yet, and thus may have stale locations. */
14007
14008 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14009 {
14010 TRY
14011 {
14012 breakpoint_re_set_one (b);
14013 }
14014 CATCH (ex, RETURN_MASK_ALL)
14015 {
14016 exception_fprintf (gdb_stderr, ex,
14017 "Error in re-setting breakpoint %d: ",
14018 b->number);
14019 }
14020 END_CATCH
14021 }
14022
14023 jit_breakpoint_re_set ();
14024 }
14025
14026 create_overlay_event_breakpoint ();
14027 create_longjmp_master_breakpoint ();
14028 create_std_terminate_master_breakpoint ();
14029 create_exception_master_breakpoint ();
14030
14031 /* Now we can insert. */
14032 update_global_location_list (UGLL_MAY_INSERT);
14033 }
14034 \f
14035 /* Reset the thread number of this breakpoint:
14036
14037 - If the breakpoint is for all threads, leave it as-is.
14038 - Else, reset it to the current thread for inferior_ptid. */
14039 void
14040 breakpoint_re_set_thread (struct breakpoint *b)
14041 {
14042 if (b->thread != -1)
14043 {
14044 if (in_thread_list (inferior_ptid))
14045 b->thread = ptid_to_global_thread_id (inferior_ptid);
14046
14047 /* We're being called after following a fork. The new fork is
14048 selected as current, and unless this was a vfork will have a
14049 different program space from the original thread. Reset that
14050 as well. */
14051 b->loc->pspace = current_program_space;
14052 }
14053 }
14054
14055 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14056 If from_tty is nonzero, it prints a message to that effect,
14057 which ends with a period (no newline). */
14058
14059 void
14060 set_ignore_count (int bptnum, int count, int from_tty)
14061 {
14062 struct breakpoint *b;
14063
14064 if (count < 0)
14065 count = 0;
14066
14067 ALL_BREAKPOINTS (b)
14068 if (b->number == bptnum)
14069 {
14070 if (is_tracepoint (b))
14071 {
14072 if (from_tty && count != 0)
14073 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14074 bptnum);
14075 return;
14076 }
14077
14078 b->ignore_count = count;
14079 if (from_tty)
14080 {
14081 if (count == 0)
14082 printf_filtered (_("Will stop next time "
14083 "breakpoint %d is reached."),
14084 bptnum);
14085 else if (count == 1)
14086 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14087 bptnum);
14088 else
14089 printf_filtered (_("Will ignore next %d "
14090 "crossings of breakpoint %d."),
14091 count, bptnum);
14092 }
14093 observer_notify_breakpoint_modified (b);
14094 return;
14095 }
14096
14097 error (_("No breakpoint number %d."), bptnum);
14098 }
14099
14100 /* Command to set ignore-count of breakpoint N to COUNT. */
14101
14102 static void
14103 ignore_command (const char *args, int from_tty)
14104 {
14105 const char *p = args;
14106 int num;
14107
14108 if (p == 0)
14109 error_no_arg (_("a breakpoint number"));
14110
14111 num = get_number (&p);
14112 if (num == 0)
14113 error (_("bad breakpoint number: '%s'"), args);
14114 if (*p == 0)
14115 error (_("Second argument (specified ignore-count) is missing."));
14116
14117 set_ignore_count (num,
14118 longest_to_int (value_as_long (parse_and_eval (p))),
14119 from_tty);
14120 if (from_tty)
14121 printf_filtered ("\n");
14122 }
14123 \f
14124
14125 /* Call FUNCTION on each of the breakpoints with numbers in the range
14126 defined by BP_NUM_RANGE (an inclusive range). */
14127
14128 static void
14129 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14130 gdb::function_view<void (breakpoint *)> function)
14131 {
14132 if (bp_num_range.first == 0)
14133 {
14134 warning (_("bad breakpoint number at or near '%d'"),
14135 bp_num_range.first);
14136 }
14137 else
14138 {
14139 struct breakpoint *b, *tmp;
14140
14141 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14142 {
14143 bool match = false;
14144
14145 ALL_BREAKPOINTS_SAFE (b, tmp)
14146 if (b->number == i)
14147 {
14148 match = true;
14149 function (b);
14150 break;
14151 }
14152 if (!match)
14153 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14154 }
14155 }
14156 }
14157
14158 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14159 ARGS. */
14160
14161 static void
14162 map_breakpoint_numbers (const char *args,
14163 gdb::function_view<void (breakpoint *)> function)
14164 {
14165 if (args == NULL || *args == '\0')
14166 error_no_arg (_("one or more breakpoint numbers"));
14167
14168 number_or_range_parser parser (args);
14169
14170 while (!parser.finished ())
14171 {
14172 int num = parser.get_number ();
14173 map_breakpoint_number_range (std::make_pair (num, num), function);
14174 }
14175 }
14176
14177 /* Return the breakpoint location structure corresponding to the
14178 BP_NUM and LOC_NUM values. */
14179
14180 static struct bp_location *
14181 find_location_by_number (int bp_num, int loc_num)
14182 {
14183 struct breakpoint *b;
14184
14185 ALL_BREAKPOINTS (b)
14186 if (b->number == bp_num)
14187 {
14188 break;
14189 }
14190
14191 if (!b || b->number != bp_num)
14192 error (_("Bad breakpoint number '%d'"), bp_num);
14193
14194 if (loc_num == 0)
14195 error (_("Bad breakpoint location number '%d'"), loc_num);
14196
14197 int n = 0;
14198 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14199 if (++n == loc_num)
14200 return loc;
14201
14202 error (_("Bad breakpoint location number '%d'"), loc_num);
14203 }
14204
14205 /* Modes of operation for extract_bp_num. */
14206 enum class extract_bp_kind
14207 {
14208 /* Extracting a breakpoint number. */
14209 bp,
14210
14211 /* Extracting a location number. */
14212 loc,
14213 };
14214
14215 /* Extract a breakpoint or location number (as determined by KIND)
14216 from the string starting at START. TRAILER is a character which
14217 can be found after the number. If you don't want a trailer, use
14218 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14219 string. This always returns a positive integer. */
14220
14221 static int
14222 extract_bp_num (extract_bp_kind kind, const char *start,
14223 int trailer, const char **end_out = NULL)
14224 {
14225 const char *end = start;
14226 int num = get_number_trailer (&end, trailer);
14227 if (num < 0)
14228 error (kind == extract_bp_kind::bp
14229 ? _("Negative breakpoint number '%.*s'")
14230 : _("Negative breakpoint location number '%.*s'"),
14231 int (end - start), start);
14232 if (num == 0)
14233 error (kind == extract_bp_kind::bp
14234 ? _("Bad breakpoint number '%.*s'")
14235 : _("Bad breakpoint location number '%.*s'"),
14236 int (end - start), start);
14237
14238 if (end_out != NULL)
14239 *end_out = end;
14240 return num;
14241 }
14242
14243 /* Extract a breakpoint or location range (as determined by KIND) in
14244 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14245 representing the (inclusive) range. The returned pair's elements
14246 are always positive integers. */
14247
14248 static std::pair<int, int>
14249 extract_bp_or_bp_range (extract_bp_kind kind,
14250 const std::string &arg,
14251 std::string::size_type arg_offset)
14252 {
14253 std::pair<int, int> range;
14254 const char *bp_loc = &arg[arg_offset];
14255 std::string::size_type dash = arg.find ('-', arg_offset);
14256 if (dash != std::string::npos)
14257 {
14258 /* bp_loc is a range (x-z). */
14259 if (arg.length () == dash + 1)
14260 error (kind == extract_bp_kind::bp
14261 ? _("Bad breakpoint number at or near: '%s'")
14262 : _("Bad breakpoint location number at or near: '%s'"),
14263 bp_loc);
14264
14265 const char *end;
14266 const char *start_first = bp_loc;
14267 const char *start_second = &arg[dash + 1];
14268 range.first = extract_bp_num (kind, start_first, '-');
14269 range.second = extract_bp_num (kind, start_second, '\0', &end);
14270
14271 if (range.first > range.second)
14272 error (kind == extract_bp_kind::bp
14273 ? _("Inverted breakpoint range at '%.*s'")
14274 : _("Inverted breakpoint location range at '%.*s'"),
14275 int (end - start_first), start_first);
14276 }
14277 else
14278 {
14279 /* bp_loc is a single value. */
14280 range.first = extract_bp_num (kind, bp_loc, '\0');
14281 range.second = range.first;
14282 }
14283 return range;
14284 }
14285
14286 /* Extract the breakpoint/location range specified by ARG. Returns
14287 the breakpoint range in BP_NUM_RANGE, and the location range in
14288 BP_LOC_RANGE.
14289
14290 ARG may be in any of the following forms:
14291
14292 x where 'x' is a breakpoint number.
14293 x-y where 'x' and 'y' specify a breakpoint numbers range.
14294 x.y where 'x' is a breakpoint number and 'y' a location number.
14295 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14296 location number range.
14297 */
14298
14299 static void
14300 extract_bp_number_and_location (const std::string &arg,
14301 std::pair<int, int> &bp_num_range,
14302 std::pair<int, int> &bp_loc_range)
14303 {
14304 std::string::size_type dot = arg.find ('.');
14305
14306 if (dot != std::string::npos)
14307 {
14308 /* Handle 'x.y' and 'x.y-z' cases. */
14309
14310 if (arg.length () == dot + 1 || dot == 0)
14311 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14312
14313 bp_num_range.first
14314 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14315 bp_num_range.second = bp_num_range.first;
14316
14317 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14318 arg, dot + 1);
14319 }
14320 else
14321 {
14322 /* Handle x and x-y cases. */
14323
14324 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14325 bp_loc_range.first = 0;
14326 bp_loc_range.second = 0;
14327 }
14328 }
14329
14330 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14331 specifies whether to enable or disable. */
14332
14333 static void
14334 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14335 {
14336 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14337 if (loc != NULL)
14338 {
14339 if (loc->enabled != enable)
14340 {
14341 loc->enabled = enable;
14342 mark_breakpoint_location_modified (loc);
14343 }
14344 if (target_supports_enable_disable_tracepoint ()
14345 && current_trace_status ()->running && loc->owner
14346 && is_tracepoint (loc->owner))
14347 target_disable_tracepoint (loc);
14348 }
14349 update_global_location_list (UGLL_DONT_INSERT);
14350 }
14351
14352 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14353 number of the breakpoint, and BP_LOC_RANGE specifies the
14354 (inclusive) range of location numbers of that breakpoint to
14355 enable/disable. ENABLE specifies whether to enable or disable the
14356 location. */
14357
14358 static void
14359 enable_disable_breakpoint_location_range (int bp_num,
14360 std::pair<int, int> &bp_loc_range,
14361 bool enable)
14362 {
14363 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14364 enable_disable_bp_num_loc (bp_num, i, enable);
14365 }
14366
14367 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14368 If from_tty is nonzero, it prints a message to that effect,
14369 which ends with a period (no newline). */
14370
14371 void
14372 disable_breakpoint (struct breakpoint *bpt)
14373 {
14374 /* Never disable a watchpoint scope breakpoint; we want to
14375 hit them when we leave scope so we can delete both the
14376 watchpoint and its scope breakpoint at that time. */
14377 if (bpt->type == bp_watchpoint_scope)
14378 return;
14379
14380 bpt->enable_state = bp_disabled;
14381
14382 /* Mark breakpoint locations modified. */
14383 mark_breakpoint_modified (bpt);
14384
14385 if (target_supports_enable_disable_tracepoint ()
14386 && current_trace_status ()->running && is_tracepoint (bpt))
14387 {
14388 struct bp_location *location;
14389
14390 for (location = bpt->loc; location; location = location->next)
14391 target_disable_tracepoint (location);
14392 }
14393
14394 update_global_location_list (UGLL_DONT_INSERT);
14395
14396 observer_notify_breakpoint_modified (bpt);
14397 }
14398
14399 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14400 specified in ARGS. ARGS may be in any of the formats handled by
14401 extract_bp_number_and_location. ENABLE specifies whether to enable
14402 or disable the breakpoints/locations. */
14403
14404 static void
14405 enable_disable_command (const char *args, int from_tty, bool enable)
14406 {
14407 if (args == 0)
14408 {
14409 struct breakpoint *bpt;
14410
14411 ALL_BREAKPOINTS (bpt)
14412 if (user_breakpoint_p (bpt))
14413 {
14414 if (enable)
14415 enable_breakpoint (bpt);
14416 else
14417 disable_breakpoint (bpt);
14418 }
14419 }
14420 else
14421 {
14422 std::string num = extract_arg (&args);
14423
14424 while (!num.empty ())
14425 {
14426 std::pair<int, int> bp_num_range, bp_loc_range;
14427
14428 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14429
14430 if (bp_loc_range.first == bp_loc_range.second
14431 && bp_loc_range.first == 0)
14432 {
14433 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14434 map_breakpoint_number_range (bp_num_range,
14435 enable
14436 ? enable_breakpoint
14437 : disable_breakpoint);
14438 }
14439 else
14440 {
14441 /* Handle breakpoint ids with formats 'x.y' or
14442 'x.y-z'. */
14443 enable_disable_breakpoint_location_range
14444 (bp_num_range.first, bp_loc_range, enable);
14445 }
14446 num = extract_arg (&args);
14447 }
14448 }
14449 }
14450
14451 /* The disable command disables the specified breakpoints/locations
14452 (or all defined breakpoints) so they're no longer effective in
14453 stopping the inferior. ARGS may be in any of the forms defined in
14454 extract_bp_number_and_location. */
14455
14456 static void
14457 disable_command (const char *args, int from_tty)
14458 {
14459 enable_disable_command (args, from_tty, false);
14460 }
14461
14462 static void
14463 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14464 int count)
14465 {
14466 int target_resources_ok;
14467
14468 if (bpt->type == bp_hardware_breakpoint)
14469 {
14470 int i;
14471 i = hw_breakpoint_used_count ();
14472 target_resources_ok =
14473 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14474 i + 1, 0);
14475 if (target_resources_ok == 0)
14476 error (_("No hardware breakpoint support in the target."));
14477 else if (target_resources_ok < 0)
14478 error (_("Hardware breakpoints used exceeds limit."));
14479 }
14480
14481 if (is_watchpoint (bpt))
14482 {
14483 /* Initialize it just to avoid a GCC false warning. */
14484 enum enable_state orig_enable_state = bp_disabled;
14485
14486 TRY
14487 {
14488 struct watchpoint *w = (struct watchpoint *) bpt;
14489
14490 orig_enable_state = bpt->enable_state;
14491 bpt->enable_state = bp_enabled;
14492 update_watchpoint (w, 1 /* reparse */);
14493 }
14494 CATCH (e, RETURN_MASK_ALL)
14495 {
14496 bpt->enable_state = orig_enable_state;
14497 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14498 bpt->number);
14499 return;
14500 }
14501 END_CATCH
14502 }
14503
14504 bpt->enable_state = bp_enabled;
14505
14506 /* Mark breakpoint locations modified. */
14507 mark_breakpoint_modified (bpt);
14508
14509 if (target_supports_enable_disable_tracepoint ()
14510 && current_trace_status ()->running && is_tracepoint (bpt))
14511 {
14512 struct bp_location *location;
14513
14514 for (location = bpt->loc; location; location = location->next)
14515 target_enable_tracepoint (location);
14516 }
14517
14518 bpt->disposition = disposition;
14519 bpt->enable_count = count;
14520 update_global_location_list (UGLL_MAY_INSERT);
14521
14522 observer_notify_breakpoint_modified (bpt);
14523 }
14524
14525
14526 void
14527 enable_breakpoint (struct breakpoint *bpt)
14528 {
14529 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14530 }
14531
14532 /* The enable command enables the specified breakpoints/locations (or
14533 all defined breakpoints) so they once again become (or continue to
14534 be) effective in stopping the inferior. ARGS may be in any of the
14535 forms defined in extract_bp_number_and_location. */
14536
14537 static void
14538 enable_command (const char *args, int from_tty)
14539 {
14540 enable_disable_command (args, from_tty, true);
14541 }
14542
14543 static void
14544 enable_once_command (const char *args, int from_tty)
14545 {
14546 map_breakpoint_numbers
14547 (args, [&] (breakpoint *b)
14548 {
14549 iterate_over_related_breakpoints
14550 (b, [&] (breakpoint *bpt)
14551 {
14552 enable_breakpoint_disp (bpt, disp_disable, 1);
14553 });
14554 });
14555 }
14556
14557 static void
14558 enable_count_command (const char *args, int from_tty)
14559 {
14560 int count;
14561
14562 if (args == NULL)
14563 error_no_arg (_("hit count"));
14564
14565 count = get_number (&args);
14566
14567 map_breakpoint_numbers
14568 (args, [&] (breakpoint *b)
14569 {
14570 iterate_over_related_breakpoints
14571 (b, [&] (breakpoint *bpt)
14572 {
14573 enable_breakpoint_disp (bpt, disp_disable, count);
14574 });
14575 });
14576 }
14577
14578 static void
14579 enable_delete_command (const char *args, int from_tty)
14580 {
14581 map_breakpoint_numbers
14582 (args, [&] (breakpoint *b)
14583 {
14584 iterate_over_related_breakpoints
14585 (b, [&] (breakpoint *bpt)
14586 {
14587 enable_breakpoint_disp (bpt, disp_del, 1);
14588 });
14589 });
14590 }
14591 \f
14592 static void
14593 set_breakpoint_cmd (const char *args, int from_tty)
14594 {
14595 }
14596
14597 static void
14598 show_breakpoint_cmd (const char *args, int from_tty)
14599 {
14600 }
14601
14602 /* Invalidate last known value of any hardware watchpoint if
14603 the memory which that value represents has been written to by
14604 GDB itself. */
14605
14606 static void
14607 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14608 CORE_ADDR addr, ssize_t len,
14609 const bfd_byte *data)
14610 {
14611 struct breakpoint *bp;
14612
14613 ALL_BREAKPOINTS (bp)
14614 if (bp->enable_state == bp_enabled
14615 && bp->type == bp_hardware_watchpoint)
14616 {
14617 struct watchpoint *wp = (struct watchpoint *) bp;
14618
14619 if (wp->val_valid && wp->val)
14620 {
14621 struct bp_location *loc;
14622
14623 for (loc = bp->loc; loc != NULL; loc = loc->next)
14624 if (loc->loc_type == bp_loc_hardware_watchpoint
14625 && loc->address + loc->length > addr
14626 && addr + len > loc->address)
14627 {
14628 value_free (wp->val);
14629 wp->val = NULL;
14630 wp->val_valid = 0;
14631 }
14632 }
14633 }
14634 }
14635
14636 /* Create and insert a breakpoint for software single step. */
14637
14638 void
14639 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14640 const address_space *aspace,
14641 CORE_ADDR next_pc)
14642 {
14643 struct thread_info *tp = inferior_thread ();
14644 struct symtab_and_line sal;
14645 CORE_ADDR pc = next_pc;
14646
14647 if (tp->control.single_step_breakpoints == NULL)
14648 {
14649 tp->control.single_step_breakpoints
14650 = new_single_step_breakpoint (tp->global_num, gdbarch);
14651 }
14652
14653 sal = find_pc_line (pc, 0);
14654 sal.pc = pc;
14655 sal.section = find_pc_overlay (pc);
14656 sal.explicit_pc = 1;
14657 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14658
14659 update_global_location_list (UGLL_INSERT);
14660 }
14661
14662 /* Insert single step breakpoints according to the current state. */
14663
14664 int
14665 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14666 {
14667 struct regcache *regcache = get_current_regcache ();
14668 std::vector<CORE_ADDR> next_pcs;
14669
14670 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14671
14672 if (!next_pcs.empty ())
14673 {
14674 struct frame_info *frame = get_current_frame ();
14675 const address_space *aspace = get_frame_address_space (frame);
14676
14677 for (CORE_ADDR pc : next_pcs)
14678 insert_single_step_breakpoint (gdbarch, aspace, pc);
14679
14680 return 1;
14681 }
14682 else
14683 return 0;
14684 }
14685
14686 /* See breakpoint.h. */
14687
14688 int
14689 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14690 const address_space *aspace,
14691 CORE_ADDR pc)
14692 {
14693 struct bp_location *loc;
14694
14695 for (loc = bp->loc; loc != NULL; loc = loc->next)
14696 if (loc->inserted
14697 && breakpoint_location_address_match (loc, aspace, pc))
14698 return 1;
14699
14700 return 0;
14701 }
14702
14703 /* Check whether a software single-step breakpoint is inserted at
14704 PC. */
14705
14706 int
14707 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14708 CORE_ADDR pc)
14709 {
14710 struct breakpoint *bpt;
14711
14712 ALL_BREAKPOINTS (bpt)
14713 {
14714 if (bpt->type == bp_single_step
14715 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14716 return 1;
14717 }
14718 return 0;
14719 }
14720
14721 /* Tracepoint-specific operations. */
14722
14723 /* Set tracepoint count to NUM. */
14724 static void
14725 set_tracepoint_count (int num)
14726 {
14727 tracepoint_count = num;
14728 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14729 }
14730
14731 static void
14732 trace_command (const char *arg, int from_tty)
14733 {
14734 struct breakpoint_ops *ops;
14735
14736 event_location_up location = string_to_event_location (&arg,
14737 current_language);
14738 if (location != NULL
14739 && event_location_type (location.get ()) == PROBE_LOCATION)
14740 ops = &tracepoint_probe_breakpoint_ops;
14741 else
14742 ops = &tracepoint_breakpoint_ops;
14743
14744 create_breakpoint (get_current_arch (),
14745 location.get (),
14746 NULL, 0, arg, 1 /* parse arg */,
14747 0 /* tempflag */,
14748 bp_tracepoint /* type_wanted */,
14749 0 /* Ignore count */,
14750 pending_break_support,
14751 ops,
14752 from_tty,
14753 1 /* enabled */,
14754 0 /* internal */, 0);
14755 }
14756
14757 static void
14758 ftrace_command (const char *arg, int from_tty)
14759 {
14760 event_location_up location = string_to_event_location (&arg,
14761 current_language);
14762 create_breakpoint (get_current_arch (),
14763 location.get (),
14764 NULL, 0, arg, 1 /* parse arg */,
14765 0 /* tempflag */,
14766 bp_fast_tracepoint /* type_wanted */,
14767 0 /* Ignore count */,
14768 pending_break_support,
14769 &tracepoint_breakpoint_ops,
14770 from_tty,
14771 1 /* enabled */,
14772 0 /* internal */, 0);
14773 }
14774
14775 /* strace command implementation. Creates a static tracepoint. */
14776
14777 static void
14778 strace_command (const char *arg, int from_tty)
14779 {
14780 struct breakpoint_ops *ops;
14781 event_location_up location;
14782
14783 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14784 or with a normal static tracepoint. */
14785 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14786 {
14787 ops = &strace_marker_breakpoint_ops;
14788 location = new_linespec_location (&arg);
14789 }
14790 else
14791 {
14792 ops = &tracepoint_breakpoint_ops;
14793 location = string_to_event_location (&arg, current_language);
14794 }
14795
14796 create_breakpoint (get_current_arch (),
14797 location.get (),
14798 NULL, 0, arg, 1 /* parse arg */,
14799 0 /* tempflag */,
14800 bp_static_tracepoint /* type_wanted */,
14801 0 /* Ignore count */,
14802 pending_break_support,
14803 ops,
14804 from_tty,
14805 1 /* enabled */,
14806 0 /* internal */, 0);
14807 }
14808
14809 /* Set up a fake reader function that gets command lines from a linked
14810 list that was acquired during tracepoint uploading. */
14811
14812 static struct uploaded_tp *this_utp;
14813 static int next_cmd;
14814
14815 static char *
14816 read_uploaded_action (void)
14817 {
14818 char *rslt;
14819
14820 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14821
14822 next_cmd++;
14823
14824 return rslt;
14825 }
14826
14827 /* Given information about a tracepoint as recorded on a target (which
14828 can be either a live system or a trace file), attempt to create an
14829 equivalent GDB tracepoint. This is not a reliable process, since
14830 the target does not necessarily have all the information used when
14831 the tracepoint was originally defined. */
14832
14833 struct tracepoint *
14834 create_tracepoint_from_upload (struct uploaded_tp *utp)
14835 {
14836 const char *addr_str;
14837 char small_buf[100];
14838 struct tracepoint *tp;
14839
14840 if (utp->at_string)
14841 addr_str = utp->at_string;
14842 else
14843 {
14844 /* In the absence of a source location, fall back to raw
14845 address. Since there is no way to confirm that the address
14846 means the same thing as when the trace was started, warn the
14847 user. */
14848 warning (_("Uploaded tracepoint %d has no "
14849 "source location, using raw address"),
14850 utp->number);
14851 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14852 addr_str = small_buf;
14853 }
14854
14855 /* There's not much we can do with a sequence of bytecodes. */
14856 if (utp->cond && !utp->cond_string)
14857 warning (_("Uploaded tracepoint %d condition "
14858 "has no source form, ignoring it"),
14859 utp->number);
14860
14861 event_location_up location = string_to_event_location (&addr_str,
14862 current_language);
14863 if (!create_breakpoint (get_current_arch (),
14864 location.get (),
14865 utp->cond_string, -1, addr_str,
14866 0 /* parse cond/thread */,
14867 0 /* tempflag */,
14868 utp->type /* type_wanted */,
14869 0 /* Ignore count */,
14870 pending_break_support,
14871 &tracepoint_breakpoint_ops,
14872 0 /* from_tty */,
14873 utp->enabled /* enabled */,
14874 0 /* internal */,
14875 CREATE_BREAKPOINT_FLAGS_INSERTED))
14876 return NULL;
14877
14878 /* Get the tracepoint we just created. */
14879 tp = get_tracepoint (tracepoint_count);
14880 gdb_assert (tp != NULL);
14881
14882 if (utp->pass > 0)
14883 {
14884 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14885 tp->number);
14886
14887 trace_pass_command (small_buf, 0);
14888 }
14889
14890 /* If we have uploaded versions of the original commands, set up a
14891 special-purpose "reader" function and call the usual command line
14892 reader, then pass the result to the breakpoint command-setting
14893 function. */
14894 if (!VEC_empty (char_ptr, utp->cmd_strings))
14895 {
14896 command_line_up cmd_list;
14897
14898 this_utp = utp;
14899 next_cmd = 0;
14900
14901 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14902
14903 breakpoint_set_commands (tp, std::move (cmd_list));
14904 }
14905 else if (!VEC_empty (char_ptr, utp->actions)
14906 || !VEC_empty (char_ptr, utp->step_actions))
14907 warning (_("Uploaded tracepoint %d actions "
14908 "have no source form, ignoring them"),
14909 utp->number);
14910
14911 /* Copy any status information that might be available. */
14912 tp->hit_count = utp->hit_count;
14913 tp->traceframe_usage = utp->traceframe_usage;
14914
14915 return tp;
14916 }
14917
14918 /* Print information on tracepoint number TPNUM_EXP, or all if
14919 omitted. */
14920
14921 static void
14922 info_tracepoints_command (char *args, int from_tty)
14923 {
14924 struct ui_out *uiout = current_uiout;
14925 int num_printed;
14926
14927 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14928
14929 if (num_printed == 0)
14930 {
14931 if (args == NULL || *args == '\0')
14932 uiout->message ("No tracepoints.\n");
14933 else
14934 uiout->message ("No tracepoint matching '%s'.\n", args);
14935 }
14936
14937 default_collect_info ();
14938 }
14939
14940 /* The 'enable trace' command enables tracepoints.
14941 Not supported by all targets. */
14942 static void
14943 enable_trace_command (char *args, int from_tty)
14944 {
14945 enable_command (args, from_tty);
14946 }
14947
14948 /* The 'disable trace' command disables tracepoints.
14949 Not supported by all targets. */
14950 static void
14951 disable_trace_command (char *args, int from_tty)
14952 {
14953 disable_command (args, from_tty);
14954 }
14955
14956 /* Remove a tracepoint (or all if no argument). */
14957 static void
14958 delete_trace_command (const char *arg, int from_tty)
14959 {
14960 struct breakpoint *b, *b_tmp;
14961
14962 dont_repeat ();
14963
14964 if (arg == 0)
14965 {
14966 int breaks_to_delete = 0;
14967
14968 /* Delete all breakpoints if no argument.
14969 Do not delete internal or call-dummy breakpoints, these
14970 have to be deleted with an explicit breakpoint number
14971 argument. */
14972 ALL_TRACEPOINTS (b)
14973 if (is_tracepoint (b) && user_breakpoint_p (b))
14974 {
14975 breaks_to_delete = 1;
14976 break;
14977 }
14978
14979 /* Ask user only if there are some breakpoints to delete. */
14980 if (!from_tty
14981 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14982 {
14983 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14984 if (is_tracepoint (b) && user_breakpoint_p (b))
14985 delete_breakpoint (b);
14986 }
14987 }
14988 else
14989 map_breakpoint_numbers
14990 (arg, [&] (breakpoint *b)
14991 {
14992 iterate_over_related_breakpoints (b, delete_breakpoint);
14993 });
14994 }
14995
14996 /* Helper function for trace_pass_command. */
14997
14998 static void
14999 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15000 {
15001 tp->pass_count = count;
15002 observer_notify_breakpoint_modified (tp);
15003 if (from_tty)
15004 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15005 tp->number, count);
15006 }
15007
15008 /* Set passcount for tracepoint.
15009
15010 First command argument is passcount, second is tracepoint number.
15011 If tracepoint number omitted, apply to most recently defined.
15012 Also accepts special argument "all". */
15013
15014 static void
15015 trace_pass_command (const char *args, int from_tty)
15016 {
15017 struct tracepoint *t1;
15018 ULONGEST count;
15019
15020 if (args == 0 || *args == 0)
15021 error (_("passcount command requires an "
15022 "argument (count + optional TP num)"));
15023
15024 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
15025
15026 args = skip_spaces (args);
15027 if (*args && strncasecmp (args, "all", 3) == 0)
15028 {
15029 struct breakpoint *b;
15030
15031 args += 3; /* Skip special argument "all". */
15032 if (*args)
15033 error (_("Junk at end of arguments."));
15034
15035 ALL_TRACEPOINTS (b)
15036 {
15037 t1 = (struct tracepoint *) b;
15038 trace_pass_set_count (t1, count, from_tty);
15039 }
15040 }
15041 else if (*args == '\0')
15042 {
15043 t1 = get_tracepoint_by_number (&args, NULL);
15044 if (t1)
15045 trace_pass_set_count (t1, count, from_tty);
15046 }
15047 else
15048 {
15049 number_or_range_parser parser (args);
15050 while (!parser.finished ())
15051 {
15052 t1 = get_tracepoint_by_number (&args, &parser);
15053 if (t1)
15054 trace_pass_set_count (t1, count, from_tty);
15055 }
15056 }
15057 }
15058
15059 struct tracepoint *
15060 get_tracepoint (int num)
15061 {
15062 struct breakpoint *t;
15063
15064 ALL_TRACEPOINTS (t)
15065 if (t->number == num)
15066 return (struct tracepoint *) t;
15067
15068 return NULL;
15069 }
15070
15071 /* Find the tracepoint with the given target-side number (which may be
15072 different from the tracepoint number after disconnecting and
15073 reconnecting). */
15074
15075 struct tracepoint *
15076 get_tracepoint_by_number_on_target (int num)
15077 {
15078 struct breakpoint *b;
15079
15080 ALL_TRACEPOINTS (b)
15081 {
15082 struct tracepoint *t = (struct tracepoint *) b;
15083
15084 if (t->number_on_target == num)
15085 return t;
15086 }
15087
15088 return NULL;
15089 }
15090
15091 /* Utility: parse a tracepoint number and look it up in the list.
15092 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15093 If the argument is missing, the most recent tracepoint
15094 (tracepoint_count) is returned. */
15095
15096 struct tracepoint *
15097 get_tracepoint_by_number (const char **arg,
15098 number_or_range_parser *parser)
15099 {
15100 struct breakpoint *t;
15101 int tpnum;
15102 const char *instring = arg == NULL ? NULL : *arg;
15103
15104 if (parser != NULL)
15105 {
15106 gdb_assert (!parser->finished ());
15107 tpnum = parser->get_number ();
15108 }
15109 else if (arg == NULL || *arg == NULL || ! **arg)
15110 tpnum = tracepoint_count;
15111 else
15112 tpnum = get_number (arg);
15113
15114 if (tpnum <= 0)
15115 {
15116 if (instring && *instring)
15117 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15118 instring);
15119 else
15120 printf_filtered (_("No previous tracepoint\n"));
15121 return NULL;
15122 }
15123
15124 ALL_TRACEPOINTS (t)
15125 if (t->number == tpnum)
15126 {
15127 return (struct tracepoint *) t;
15128 }
15129
15130 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15131 return NULL;
15132 }
15133
15134 void
15135 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15136 {
15137 if (b->thread != -1)
15138 fprintf_unfiltered (fp, " thread %d", b->thread);
15139
15140 if (b->task != 0)
15141 fprintf_unfiltered (fp, " task %d", b->task);
15142
15143 fprintf_unfiltered (fp, "\n");
15144 }
15145
15146 /* Save information on user settable breakpoints (watchpoints, etc) to
15147 a new script file named FILENAME. If FILTER is non-NULL, call it
15148 on each breakpoint and only include the ones for which it returns
15149 non-zero. */
15150
15151 static void
15152 save_breakpoints (const char *filename, int from_tty,
15153 int (*filter) (const struct breakpoint *))
15154 {
15155 struct breakpoint *tp;
15156 int any = 0;
15157 int extra_trace_bits = 0;
15158
15159 if (filename == 0 || *filename == 0)
15160 error (_("Argument required (file name in which to save)"));
15161
15162 /* See if we have anything to save. */
15163 ALL_BREAKPOINTS (tp)
15164 {
15165 /* Skip internal and momentary breakpoints. */
15166 if (!user_breakpoint_p (tp))
15167 continue;
15168
15169 /* If we have a filter, only save the breakpoints it accepts. */
15170 if (filter && !filter (tp))
15171 continue;
15172
15173 any = 1;
15174
15175 if (is_tracepoint (tp))
15176 {
15177 extra_trace_bits = 1;
15178
15179 /* We can stop searching. */
15180 break;
15181 }
15182 }
15183
15184 if (!any)
15185 {
15186 warning (_("Nothing to save."));
15187 return;
15188 }
15189
15190 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15191
15192 stdio_file fp;
15193
15194 if (!fp.open (expanded_filename.get (), "w"))
15195 error (_("Unable to open file '%s' for saving (%s)"),
15196 expanded_filename.get (), safe_strerror (errno));
15197
15198 if (extra_trace_bits)
15199 save_trace_state_variables (&fp);
15200
15201 ALL_BREAKPOINTS (tp)
15202 {
15203 /* Skip internal and momentary breakpoints. */
15204 if (!user_breakpoint_p (tp))
15205 continue;
15206
15207 /* If we have a filter, only save the breakpoints it accepts. */
15208 if (filter && !filter (tp))
15209 continue;
15210
15211 tp->ops->print_recreate (tp, &fp);
15212
15213 /* Note, we can't rely on tp->number for anything, as we can't
15214 assume the recreated breakpoint numbers will match. Use $bpnum
15215 instead. */
15216
15217 if (tp->cond_string)
15218 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15219
15220 if (tp->ignore_count)
15221 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15222
15223 if (tp->type != bp_dprintf && tp->commands)
15224 {
15225 fp.puts (" commands\n");
15226
15227 current_uiout->redirect (&fp);
15228 TRY
15229 {
15230 print_command_lines (current_uiout, tp->commands.get (), 2);
15231 }
15232 CATCH (ex, RETURN_MASK_ALL)
15233 {
15234 current_uiout->redirect (NULL);
15235 throw_exception (ex);
15236 }
15237 END_CATCH
15238
15239 current_uiout->redirect (NULL);
15240 fp.puts (" end\n");
15241 }
15242
15243 if (tp->enable_state == bp_disabled)
15244 fp.puts ("disable $bpnum\n");
15245
15246 /* If this is a multi-location breakpoint, check if the locations
15247 should be individually disabled. Watchpoint locations are
15248 special, and not user visible. */
15249 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15250 {
15251 struct bp_location *loc;
15252 int n = 1;
15253
15254 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15255 if (!loc->enabled)
15256 fp.printf ("disable $bpnum.%d\n", n);
15257 }
15258 }
15259
15260 if (extra_trace_bits && *default_collect)
15261 fp.printf ("set default-collect %s\n", default_collect);
15262
15263 if (from_tty)
15264 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15265 }
15266
15267 /* The `save breakpoints' command. */
15268
15269 static void
15270 save_breakpoints_command (const char *args, int from_tty)
15271 {
15272 save_breakpoints (args, from_tty, NULL);
15273 }
15274
15275 /* The `save tracepoints' command. */
15276
15277 static void
15278 save_tracepoints_command (const char *args, int from_tty)
15279 {
15280 save_breakpoints (args, from_tty, is_tracepoint);
15281 }
15282
15283 /* Create a vector of all tracepoints. */
15284
15285 VEC(breakpoint_p) *
15286 all_tracepoints (void)
15287 {
15288 VEC(breakpoint_p) *tp_vec = 0;
15289 struct breakpoint *tp;
15290
15291 ALL_TRACEPOINTS (tp)
15292 {
15293 VEC_safe_push (breakpoint_p, tp_vec, tp);
15294 }
15295
15296 return tp_vec;
15297 }
15298
15299 \f
15300 /* This help string is used to consolidate all the help string for specifying
15301 locations used by several commands. */
15302
15303 #define LOCATION_HELP_STRING \
15304 "Linespecs are colon-separated lists of location parameters, such as\n\
15305 source filename, function name, label name, and line number.\n\
15306 Example: To specify the start of a label named \"the_top\" in the\n\
15307 function \"fact\" in the file \"factorial.c\", use\n\
15308 \"factorial.c:fact:the_top\".\n\
15309 \n\
15310 Address locations begin with \"*\" and specify an exact address in the\n\
15311 program. Example: To specify the fourth byte past the start function\n\
15312 \"main\", use \"*main + 4\".\n\
15313 \n\
15314 Explicit locations are similar to linespecs but use an option/argument\n\
15315 syntax to specify location parameters.\n\
15316 Example: To specify the start of the label named \"the_top\" in the\n\
15317 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15318 -function fact -label the_top\".\n"
15319
15320 /* This help string is used for the break, hbreak, tbreak and thbreak
15321 commands. It is defined as a macro to prevent duplication.
15322 COMMAND should be a string constant containing the name of the
15323 command. */
15324
15325 #define BREAK_ARGS_HELP(command) \
15326 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15327 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15328 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15329 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15330 `-probe-dtrace' (for a DTrace probe).\n\
15331 LOCATION may be a linespec, address, or explicit location as described\n\
15332 below.\n\
15333 \n\
15334 With no LOCATION, uses current execution address of the selected\n\
15335 stack frame. This is useful for breaking on return to a stack frame.\n\
15336 \n\
15337 THREADNUM is the number from \"info threads\".\n\
15338 CONDITION is a boolean expression.\n\
15339 \n" LOCATION_HELP_STRING "\n\
15340 Multiple breakpoints at one place are permitted, and useful if their\n\
15341 conditions are different.\n\
15342 \n\
15343 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15344
15345 /* List of subcommands for "catch". */
15346 static struct cmd_list_element *catch_cmdlist;
15347
15348 /* List of subcommands for "tcatch". */
15349 static struct cmd_list_element *tcatch_cmdlist;
15350
15351 void
15352 add_catch_command (const char *name, const char *docstring,
15353 cmd_sfunc_ftype *sfunc,
15354 completer_ftype *completer,
15355 void *user_data_catch,
15356 void *user_data_tcatch)
15357 {
15358 struct cmd_list_element *command;
15359
15360 command = add_cmd (name, class_breakpoint, docstring,
15361 &catch_cmdlist);
15362 set_cmd_sfunc (command, sfunc);
15363 set_cmd_context (command, user_data_catch);
15364 set_cmd_completer (command, completer);
15365
15366 command = add_cmd (name, class_breakpoint, docstring,
15367 &tcatch_cmdlist);
15368 set_cmd_sfunc (command, sfunc);
15369 set_cmd_context (command, user_data_tcatch);
15370 set_cmd_completer (command, completer);
15371 }
15372
15373 static void
15374 save_command (const char *arg, int from_tty)
15375 {
15376 printf_unfiltered (_("\"save\" must be followed by "
15377 "the name of a save subcommand.\n"));
15378 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15379 }
15380
15381 struct breakpoint *
15382 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15383 void *data)
15384 {
15385 struct breakpoint *b, *b_tmp;
15386
15387 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15388 {
15389 if ((*callback) (b, data))
15390 return b;
15391 }
15392
15393 return NULL;
15394 }
15395
15396 /* Zero if any of the breakpoint's locations could be a location where
15397 functions have been inlined, nonzero otherwise. */
15398
15399 static int
15400 is_non_inline_function (struct breakpoint *b)
15401 {
15402 /* The shared library event breakpoint is set on the address of a
15403 non-inline function. */
15404 if (b->type == bp_shlib_event)
15405 return 1;
15406
15407 return 0;
15408 }
15409
15410 /* Nonzero if the specified PC cannot be a location where functions
15411 have been inlined. */
15412
15413 int
15414 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15415 const struct target_waitstatus *ws)
15416 {
15417 struct breakpoint *b;
15418 struct bp_location *bl;
15419
15420 ALL_BREAKPOINTS (b)
15421 {
15422 if (!is_non_inline_function (b))
15423 continue;
15424
15425 for (bl = b->loc; bl != NULL; bl = bl->next)
15426 {
15427 if (!bl->shlib_disabled
15428 && bpstat_check_location (bl, aspace, pc, ws))
15429 return 1;
15430 }
15431 }
15432
15433 return 0;
15434 }
15435
15436 /* Remove any references to OBJFILE which is going to be freed. */
15437
15438 void
15439 breakpoint_free_objfile (struct objfile *objfile)
15440 {
15441 struct bp_location **locp, *loc;
15442
15443 ALL_BP_LOCATIONS (loc, locp)
15444 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15445 loc->symtab = NULL;
15446 }
15447
15448 void
15449 initialize_breakpoint_ops (void)
15450 {
15451 static int initialized = 0;
15452
15453 struct breakpoint_ops *ops;
15454
15455 if (initialized)
15456 return;
15457 initialized = 1;
15458
15459 /* The breakpoint_ops structure to be inherit by all kinds of
15460 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15461 internal and momentary breakpoints, etc.). */
15462 ops = &bkpt_base_breakpoint_ops;
15463 *ops = base_breakpoint_ops;
15464 ops->re_set = bkpt_re_set;
15465 ops->insert_location = bkpt_insert_location;
15466 ops->remove_location = bkpt_remove_location;
15467 ops->breakpoint_hit = bkpt_breakpoint_hit;
15468 ops->create_sals_from_location = bkpt_create_sals_from_location;
15469 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15470 ops->decode_location = bkpt_decode_location;
15471
15472 /* The breakpoint_ops structure to be used in regular breakpoints. */
15473 ops = &bkpt_breakpoint_ops;
15474 *ops = bkpt_base_breakpoint_ops;
15475 ops->re_set = bkpt_re_set;
15476 ops->resources_needed = bkpt_resources_needed;
15477 ops->print_it = bkpt_print_it;
15478 ops->print_mention = bkpt_print_mention;
15479 ops->print_recreate = bkpt_print_recreate;
15480
15481 /* Ranged breakpoints. */
15482 ops = &ranged_breakpoint_ops;
15483 *ops = bkpt_breakpoint_ops;
15484 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15485 ops->resources_needed = resources_needed_ranged_breakpoint;
15486 ops->print_it = print_it_ranged_breakpoint;
15487 ops->print_one = print_one_ranged_breakpoint;
15488 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15489 ops->print_mention = print_mention_ranged_breakpoint;
15490 ops->print_recreate = print_recreate_ranged_breakpoint;
15491
15492 /* Internal breakpoints. */
15493 ops = &internal_breakpoint_ops;
15494 *ops = bkpt_base_breakpoint_ops;
15495 ops->re_set = internal_bkpt_re_set;
15496 ops->check_status = internal_bkpt_check_status;
15497 ops->print_it = internal_bkpt_print_it;
15498 ops->print_mention = internal_bkpt_print_mention;
15499
15500 /* Momentary breakpoints. */
15501 ops = &momentary_breakpoint_ops;
15502 *ops = bkpt_base_breakpoint_ops;
15503 ops->re_set = momentary_bkpt_re_set;
15504 ops->check_status = momentary_bkpt_check_status;
15505 ops->print_it = momentary_bkpt_print_it;
15506 ops->print_mention = momentary_bkpt_print_mention;
15507
15508 /* Probe breakpoints. */
15509 ops = &bkpt_probe_breakpoint_ops;
15510 *ops = bkpt_breakpoint_ops;
15511 ops->insert_location = bkpt_probe_insert_location;
15512 ops->remove_location = bkpt_probe_remove_location;
15513 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15514 ops->decode_location = bkpt_probe_decode_location;
15515
15516 /* Watchpoints. */
15517 ops = &watchpoint_breakpoint_ops;
15518 *ops = base_breakpoint_ops;
15519 ops->re_set = re_set_watchpoint;
15520 ops->insert_location = insert_watchpoint;
15521 ops->remove_location = remove_watchpoint;
15522 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15523 ops->check_status = check_status_watchpoint;
15524 ops->resources_needed = resources_needed_watchpoint;
15525 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15526 ops->print_it = print_it_watchpoint;
15527 ops->print_mention = print_mention_watchpoint;
15528 ops->print_recreate = print_recreate_watchpoint;
15529 ops->explains_signal = explains_signal_watchpoint;
15530
15531 /* Masked watchpoints. */
15532 ops = &masked_watchpoint_breakpoint_ops;
15533 *ops = watchpoint_breakpoint_ops;
15534 ops->insert_location = insert_masked_watchpoint;
15535 ops->remove_location = remove_masked_watchpoint;
15536 ops->resources_needed = resources_needed_masked_watchpoint;
15537 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15538 ops->print_it = print_it_masked_watchpoint;
15539 ops->print_one_detail = print_one_detail_masked_watchpoint;
15540 ops->print_mention = print_mention_masked_watchpoint;
15541 ops->print_recreate = print_recreate_masked_watchpoint;
15542
15543 /* Tracepoints. */
15544 ops = &tracepoint_breakpoint_ops;
15545 *ops = base_breakpoint_ops;
15546 ops->re_set = tracepoint_re_set;
15547 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15548 ops->print_one_detail = tracepoint_print_one_detail;
15549 ops->print_mention = tracepoint_print_mention;
15550 ops->print_recreate = tracepoint_print_recreate;
15551 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15552 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15553 ops->decode_location = tracepoint_decode_location;
15554
15555 /* Probe tracepoints. */
15556 ops = &tracepoint_probe_breakpoint_ops;
15557 *ops = tracepoint_breakpoint_ops;
15558 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15559 ops->decode_location = tracepoint_probe_decode_location;
15560
15561 /* Static tracepoints with marker (`-m'). */
15562 ops = &strace_marker_breakpoint_ops;
15563 *ops = tracepoint_breakpoint_ops;
15564 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15565 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15566 ops->decode_location = strace_marker_decode_location;
15567
15568 /* Fork catchpoints. */
15569 ops = &catch_fork_breakpoint_ops;
15570 *ops = base_breakpoint_ops;
15571 ops->insert_location = insert_catch_fork;
15572 ops->remove_location = remove_catch_fork;
15573 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15574 ops->print_it = print_it_catch_fork;
15575 ops->print_one = print_one_catch_fork;
15576 ops->print_mention = print_mention_catch_fork;
15577 ops->print_recreate = print_recreate_catch_fork;
15578
15579 /* Vfork catchpoints. */
15580 ops = &catch_vfork_breakpoint_ops;
15581 *ops = base_breakpoint_ops;
15582 ops->insert_location = insert_catch_vfork;
15583 ops->remove_location = remove_catch_vfork;
15584 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15585 ops->print_it = print_it_catch_vfork;
15586 ops->print_one = print_one_catch_vfork;
15587 ops->print_mention = print_mention_catch_vfork;
15588 ops->print_recreate = print_recreate_catch_vfork;
15589
15590 /* Exec catchpoints. */
15591 ops = &catch_exec_breakpoint_ops;
15592 *ops = base_breakpoint_ops;
15593 ops->insert_location = insert_catch_exec;
15594 ops->remove_location = remove_catch_exec;
15595 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15596 ops->print_it = print_it_catch_exec;
15597 ops->print_one = print_one_catch_exec;
15598 ops->print_mention = print_mention_catch_exec;
15599 ops->print_recreate = print_recreate_catch_exec;
15600
15601 /* Solib-related catchpoints. */
15602 ops = &catch_solib_breakpoint_ops;
15603 *ops = base_breakpoint_ops;
15604 ops->insert_location = insert_catch_solib;
15605 ops->remove_location = remove_catch_solib;
15606 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15607 ops->check_status = check_status_catch_solib;
15608 ops->print_it = print_it_catch_solib;
15609 ops->print_one = print_one_catch_solib;
15610 ops->print_mention = print_mention_catch_solib;
15611 ops->print_recreate = print_recreate_catch_solib;
15612
15613 ops = &dprintf_breakpoint_ops;
15614 *ops = bkpt_base_breakpoint_ops;
15615 ops->re_set = dprintf_re_set;
15616 ops->resources_needed = bkpt_resources_needed;
15617 ops->print_it = bkpt_print_it;
15618 ops->print_mention = bkpt_print_mention;
15619 ops->print_recreate = dprintf_print_recreate;
15620 ops->after_condition_true = dprintf_after_condition_true;
15621 ops->breakpoint_hit = dprintf_breakpoint_hit;
15622 }
15623
15624 /* Chain containing all defined "enable breakpoint" subcommands. */
15625
15626 static struct cmd_list_element *enablebreaklist = NULL;
15627
15628 void
15629 _initialize_breakpoint (void)
15630 {
15631 struct cmd_list_element *c;
15632
15633 initialize_breakpoint_ops ();
15634
15635 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15636 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15637 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15638
15639 breakpoint_objfile_key
15640 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15641
15642 breakpoint_chain = 0;
15643 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15644 before a breakpoint is set. */
15645 breakpoint_count = 0;
15646
15647 tracepoint_count = 0;
15648
15649 add_com ("ignore", class_breakpoint, ignore_command, _("\
15650 Set ignore-count of breakpoint number N to COUNT.\n\
15651 Usage is `ignore N COUNT'."));
15652
15653 add_com ("commands", class_breakpoint, commands_command, _("\
15654 Set commands to be executed when the given breakpoints are hit.\n\
15655 Give a space-separated breakpoint list as argument after \"commands\".\n\
15656 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15657 (e.g. `5-7').\n\
15658 With no argument, the targeted breakpoint is the last one set.\n\
15659 The commands themselves follow starting on the next line.\n\
15660 Type a line containing \"end\" to indicate the end of them.\n\
15661 Give \"silent\" as the first line to make the breakpoint silent;\n\
15662 then no output is printed when it is hit, except what the commands print."));
15663
15664 c = add_com ("condition", class_breakpoint, condition_command, _("\
15665 Specify breakpoint number N to break only if COND is true.\n\
15666 Usage is `condition N COND', where N is an integer and COND is an\n\
15667 expression to be evaluated whenever breakpoint N is reached."));
15668 set_cmd_completer (c, condition_completer);
15669
15670 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15671 Set a temporary breakpoint.\n\
15672 Like \"break\" except the breakpoint is only temporary,\n\
15673 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15674 by using \"enable delete\" on the breakpoint number.\n\
15675 \n"
15676 BREAK_ARGS_HELP ("tbreak")));
15677 set_cmd_completer (c, location_completer);
15678
15679 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15680 Set a hardware assisted breakpoint.\n\
15681 Like \"break\" except the breakpoint requires hardware support,\n\
15682 some target hardware may not have this support.\n\
15683 \n"
15684 BREAK_ARGS_HELP ("hbreak")));
15685 set_cmd_completer (c, location_completer);
15686
15687 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15688 Set a temporary hardware assisted breakpoint.\n\
15689 Like \"hbreak\" except the breakpoint is only temporary,\n\
15690 so it will be deleted when hit.\n\
15691 \n"
15692 BREAK_ARGS_HELP ("thbreak")));
15693 set_cmd_completer (c, location_completer);
15694
15695 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15696 Enable some breakpoints.\n\
15697 Give breakpoint numbers (separated by spaces) as arguments.\n\
15698 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15699 This is used to cancel the effect of the \"disable\" command.\n\
15700 With a subcommand you can enable temporarily."),
15701 &enablelist, "enable ", 1, &cmdlist);
15702
15703 add_com_alias ("en", "enable", class_breakpoint, 1);
15704
15705 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15706 Enable some breakpoints.\n\
15707 Give breakpoint numbers (separated by spaces) as arguments.\n\
15708 This is used to cancel the effect of the \"disable\" command.\n\
15709 May be abbreviated to simply \"enable\".\n"),
15710 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15711
15712 add_cmd ("once", no_class, enable_once_command, _("\
15713 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15714 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15715 &enablebreaklist);
15716
15717 add_cmd ("delete", no_class, enable_delete_command, _("\
15718 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15719 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15720 &enablebreaklist);
15721
15722 add_cmd ("count", no_class, enable_count_command, _("\
15723 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15724 If a breakpoint is hit while enabled in this fashion,\n\
15725 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15726 &enablebreaklist);
15727
15728 add_cmd ("delete", no_class, enable_delete_command, _("\
15729 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15730 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15731 &enablelist);
15732
15733 add_cmd ("once", no_class, enable_once_command, _("\
15734 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15735 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15736 &enablelist);
15737
15738 add_cmd ("count", no_class, enable_count_command, _("\
15739 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15740 If a breakpoint is hit while enabled in this fashion,\n\
15741 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15742 &enablelist);
15743
15744 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15745 Disable some breakpoints.\n\
15746 Arguments are breakpoint numbers with spaces in between.\n\
15747 To disable all breakpoints, give no argument.\n\
15748 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15749 &disablelist, "disable ", 1, &cmdlist);
15750 add_com_alias ("dis", "disable", class_breakpoint, 1);
15751 add_com_alias ("disa", "disable", class_breakpoint, 1);
15752
15753 add_cmd ("breakpoints", class_alias, disable_command, _("\
15754 Disable some breakpoints.\n\
15755 Arguments are breakpoint numbers with spaces in between.\n\
15756 To disable all breakpoints, give no argument.\n\
15757 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15758 This command may be abbreviated \"disable\"."),
15759 &disablelist);
15760
15761 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15762 Delete some breakpoints or auto-display expressions.\n\
15763 Arguments are breakpoint numbers with spaces in between.\n\
15764 To delete all breakpoints, give no argument.\n\
15765 \n\
15766 Also a prefix command for deletion of other GDB objects.\n\
15767 The \"unset\" command is also an alias for \"delete\"."),
15768 &deletelist, "delete ", 1, &cmdlist);
15769 add_com_alias ("d", "delete", class_breakpoint, 1);
15770 add_com_alias ("del", "delete", class_breakpoint, 1);
15771
15772 add_cmd ("breakpoints", class_alias, delete_command, _("\
15773 Delete some breakpoints or auto-display expressions.\n\
15774 Arguments are breakpoint numbers with spaces in between.\n\
15775 To delete all breakpoints, give no argument.\n\
15776 This command may be abbreviated \"delete\"."),
15777 &deletelist);
15778
15779 add_com ("clear", class_breakpoint, clear_command, _("\
15780 Clear breakpoint at specified location.\n\
15781 Argument may be a linespec, explicit, or address location as described below.\n\
15782 \n\
15783 With no argument, clears all breakpoints in the line that the selected frame\n\
15784 is executing in.\n"
15785 "\n" LOCATION_HELP_STRING "\n\
15786 See also the \"delete\" command which clears breakpoints by number."));
15787 add_com_alias ("cl", "clear", class_breakpoint, 1);
15788
15789 c = add_com ("break", class_breakpoint, break_command, _("\
15790 Set breakpoint at specified location.\n"
15791 BREAK_ARGS_HELP ("break")));
15792 set_cmd_completer (c, location_completer);
15793
15794 add_com_alias ("b", "break", class_run, 1);
15795 add_com_alias ("br", "break", class_run, 1);
15796 add_com_alias ("bre", "break", class_run, 1);
15797 add_com_alias ("brea", "break", class_run, 1);
15798
15799 if (dbx_commands)
15800 {
15801 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15802 Break in function/address or break at a line in the current file."),
15803 &stoplist, "stop ", 1, &cmdlist);
15804 add_cmd ("in", class_breakpoint, stopin_command,
15805 _("Break in function or address."), &stoplist);
15806 add_cmd ("at", class_breakpoint, stopat_command,
15807 _("Break at a line in the current file."), &stoplist);
15808 add_com ("status", class_info, info_breakpoints_command, _("\
15809 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15810 The \"Type\" column indicates one of:\n\
15811 \tbreakpoint - normal breakpoint\n\
15812 \twatchpoint - watchpoint\n\
15813 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15814 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15815 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15816 address and file/line number respectively.\n\
15817 \n\
15818 Convenience variable \"$_\" and default examine address for \"x\"\n\
15819 are set to the address of the last breakpoint listed unless the command\n\
15820 is prefixed with \"server \".\n\n\
15821 Convenience variable \"$bpnum\" contains the number of the last\n\
15822 breakpoint set."));
15823 }
15824
15825 add_info ("breakpoints", info_breakpoints_command, _("\
15826 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15827 The \"Type\" column indicates one of:\n\
15828 \tbreakpoint - normal breakpoint\n\
15829 \twatchpoint - watchpoint\n\
15830 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15831 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15832 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15833 address and file/line number respectively.\n\
15834 \n\
15835 Convenience variable \"$_\" and default examine address for \"x\"\n\
15836 are set to the address of the last breakpoint listed unless the command\n\
15837 is prefixed with \"server \".\n\n\
15838 Convenience variable \"$bpnum\" contains the number of the last\n\
15839 breakpoint set."));
15840
15841 add_info_alias ("b", "breakpoints", 1);
15842
15843 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15844 Status of all breakpoints, or breakpoint number NUMBER.\n\
15845 The \"Type\" column indicates one of:\n\
15846 \tbreakpoint - normal breakpoint\n\
15847 \twatchpoint - watchpoint\n\
15848 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15849 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15850 \tuntil - internal breakpoint used by the \"until\" command\n\
15851 \tfinish - internal breakpoint used by the \"finish\" command\n\
15852 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15853 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15854 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15855 address and file/line number respectively.\n\
15856 \n\
15857 Convenience variable \"$_\" and default examine address for \"x\"\n\
15858 are set to the address of the last breakpoint listed unless the command\n\
15859 is prefixed with \"server \".\n\n\
15860 Convenience variable \"$bpnum\" contains the number of the last\n\
15861 breakpoint set."),
15862 &maintenanceinfolist);
15863
15864 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15865 Set catchpoints to catch events."),
15866 &catch_cmdlist, "catch ",
15867 0/*allow-unknown*/, &cmdlist);
15868
15869 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15870 Set temporary catchpoints to catch events."),
15871 &tcatch_cmdlist, "tcatch ",
15872 0/*allow-unknown*/, &cmdlist);
15873
15874 add_catch_command ("fork", _("Catch calls to fork."),
15875 catch_fork_command_1,
15876 NULL,
15877 (void *) (uintptr_t) catch_fork_permanent,
15878 (void *) (uintptr_t) catch_fork_temporary);
15879 add_catch_command ("vfork", _("Catch calls to vfork."),
15880 catch_fork_command_1,
15881 NULL,
15882 (void *) (uintptr_t) catch_vfork_permanent,
15883 (void *) (uintptr_t) catch_vfork_temporary);
15884 add_catch_command ("exec", _("Catch calls to exec."),
15885 catch_exec_command_1,
15886 NULL,
15887 CATCH_PERMANENT,
15888 CATCH_TEMPORARY);
15889 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15890 Usage: catch load [REGEX]\n\
15891 If REGEX is given, only stop for libraries matching the regular expression."),
15892 catch_load_command_1,
15893 NULL,
15894 CATCH_PERMANENT,
15895 CATCH_TEMPORARY);
15896 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15897 Usage: catch unload [REGEX]\n\
15898 If REGEX is given, only stop for libraries matching the regular expression."),
15899 catch_unload_command_1,
15900 NULL,
15901 CATCH_PERMANENT,
15902 CATCH_TEMPORARY);
15903
15904 c = add_com ("watch", class_breakpoint, watch_command, _("\
15905 Set a watchpoint for an expression.\n\
15906 Usage: watch [-l|-location] EXPRESSION\n\
15907 A watchpoint stops execution of your program whenever the value of\n\
15908 an expression changes.\n\
15909 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15910 the memory to which it refers."));
15911 set_cmd_completer (c, expression_completer);
15912
15913 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15914 Set a read watchpoint for an expression.\n\
15915 Usage: rwatch [-l|-location] EXPRESSION\n\
15916 A watchpoint stops execution of your program whenever the value of\n\
15917 an expression is read.\n\
15918 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15919 the memory to which it refers."));
15920 set_cmd_completer (c, expression_completer);
15921
15922 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15923 Set a watchpoint for an expression.\n\
15924 Usage: awatch [-l|-location] EXPRESSION\n\
15925 A watchpoint stops execution of your program whenever the value of\n\
15926 an expression is either read or written.\n\
15927 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15928 the memory to which it refers."));
15929 set_cmd_completer (c, expression_completer);
15930
15931 add_info ("watchpoints", info_watchpoints_command, _("\
15932 Status of specified watchpoints (all watchpoints if no argument)."));
15933
15934 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15935 respond to changes - contrary to the description. */
15936 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15937 &can_use_hw_watchpoints, _("\
15938 Set debugger's willingness to use watchpoint hardware."), _("\
15939 Show debugger's willingness to use watchpoint hardware."), _("\
15940 If zero, gdb will not use hardware for new watchpoints, even if\n\
15941 such is available. (However, any hardware watchpoints that were\n\
15942 created before setting this to nonzero, will continue to use watchpoint\n\
15943 hardware.)"),
15944 NULL,
15945 show_can_use_hw_watchpoints,
15946 &setlist, &showlist);
15947
15948 can_use_hw_watchpoints = 1;
15949
15950 /* Tracepoint manipulation commands. */
15951
15952 c = add_com ("trace", class_breakpoint, trace_command, _("\
15953 Set a tracepoint at specified location.\n\
15954 \n"
15955 BREAK_ARGS_HELP ("trace") "\n\
15956 Do \"help tracepoints\" for info on other tracepoint commands."));
15957 set_cmd_completer (c, location_completer);
15958
15959 add_com_alias ("tp", "trace", class_alias, 0);
15960 add_com_alias ("tr", "trace", class_alias, 1);
15961 add_com_alias ("tra", "trace", class_alias, 1);
15962 add_com_alias ("trac", "trace", class_alias, 1);
15963
15964 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15965 Set a fast tracepoint at specified location.\n\
15966 \n"
15967 BREAK_ARGS_HELP ("ftrace") "\n\
15968 Do \"help tracepoints\" for info on other tracepoint commands."));
15969 set_cmd_completer (c, location_completer);
15970
15971 c = add_com ("strace", class_breakpoint, strace_command, _("\
15972 Set a static tracepoint at location or marker.\n\
15973 \n\
15974 strace [LOCATION] [if CONDITION]\n\
15975 LOCATION may be a linespec, explicit, or address location (described below) \n\
15976 or -m MARKER_ID.\n\n\
15977 If a marker id is specified, probe the marker with that name. With\n\
15978 no LOCATION, uses current execution address of the selected stack frame.\n\
15979 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15980 This collects arbitrary user data passed in the probe point call to the\n\
15981 tracing library. You can inspect it when analyzing the trace buffer,\n\
15982 by printing the $_sdata variable like any other convenience variable.\n\
15983 \n\
15984 CONDITION is a boolean expression.\n\
15985 \n" LOCATION_HELP_STRING "\n\
15986 Multiple tracepoints at one place are permitted, and useful if their\n\
15987 conditions are different.\n\
15988 \n\
15989 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15990 Do \"help tracepoints\" for info on other tracepoint commands."));
15991 set_cmd_completer (c, location_completer);
15992
15993 add_info ("tracepoints", info_tracepoints_command, _("\
15994 Status of specified tracepoints (all tracepoints if no argument).\n\
15995 Convenience variable \"$tpnum\" contains the number of the\n\
15996 last tracepoint set."));
15997
15998 add_info_alias ("tp", "tracepoints", 1);
15999
16000 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16001 Delete specified tracepoints.\n\
16002 Arguments are tracepoint numbers, separated by spaces.\n\
16003 No argument means delete all tracepoints."),
16004 &deletelist);
16005 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16006
16007 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16008 Disable specified tracepoints.\n\
16009 Arguments are tracepoint numbers, separated by spaces.\n\
16010 No argument means disable all tracepoints."),
16011 &disablelist);
16012 deprecate_cmd (c, "disable");
16013
16014 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16015 Enable specified tracepoints.\n\
16016 Arguments are tracepoint numbers, separated by spaces.\n\
16017 No argument means enable all tracepoints."),
16018 &enablelist);
16019 deprecate_cmd (c, "enable");
16020
16021 add_com ("passcount", class_trace, trace_pass_command, _("\
16022 Set the passcount for a tracepoint.\n\
16023 The trace will end when the tracepoint has been passed 'count' times.\n\
16024 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16025 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16026
16027 add_prefix_cmd ("save", class_breakpoint, save_command,
16028 _("Save breakpoint definitions as a script."),
16029 &save_cmdlist, "save ",
16030 0/*allow-unknown*/, &cmdlist);
16031
16032 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16033 Save current breakpoint definitions as a script.\n\
16034 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16035 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16036 session to restore them."),
16037 &save_cmdlist);
16038 set_cmd_completer (c, filename_completer);
16039
16040 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16041 Save current tracepoint definitions as a script.\n\
16042 Use the 'source' command in another debug session to restore them."),
16043 &save_cmdlist);
16044 set_cmd_completer (c, filename_completer);
16045
16046 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16047 deprecate_cmd (c, "save tracepoints");
16048
16049 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16050 Breakpoint specific settings\n\
16051 Configure various breakpoint-specific variables such as\n\
16052 pending breakpoint behavior"),
16053 &breakpoint_set_cmdlist, "set breakpoint ",
16054 0/*allow-unknown*/, &setlist);
16055 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16056 Breakpoint specific settings\n\
16057 Configure various breakpoint-specific variables such as\n\
16058 pending breakpoint behavior"),
16059 &breakpoint_show_cmdlist, "show breakpoint ",
16060 0/*allow-unknown*/, &showlist);
16061
16062 add_setshow_auto_boolean_cmd ("pending", no_class,
16063 &pending_break_support, _("\
16064 Set debugger's behavior regarding pending breakpoints."), _("\
16065 Show debugger's behavior regarding pending breakpoints."), _("\
16066 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16067 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16068 an error. If auto, an unrecognized breakpoint location results in a\n\
16069 user-query to see if a pending breakpoint should be created."),
16070 NULL,
16071 show_pending_break_support,
16072 &breakpoint_set_cmdlist,
16073 &breakpoint_show_cmdlist);
16074
16075 pending_break_support = AUTO_BOOLEAN_AUTO;
16076
16077 add_setshow_boolean_cmd ("auto-hw", no_class,
16078 &automatic_hardware_breakpoints, _("\
16079 Set automatic usage of hardware breakpoints."), _("\
16080 Show automatic usage of hardware breakpoints."), _("\
16081 If set, the debugger will automatically use hardware breakpoints for\n\
16082 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16083 a warning will be emitted for such breakpoints."),
16084 NULL,
16085 show_automatic_hardware_breakpoints,
16086 &breakpoint_set_cmdlist,
16087 &breakpoint_show_cmdlist);
16088
16089 add_setshow_boolean_cmd ("always-inserted", class_support,
16090 &always_inserted_mode, _("\
16091 Set mode for inserting breakpoints."), _("\
16092 Show mode for inserting breakpoints."), _("\
16093 When this mode is on, breakpoints are inserted immediately as soon as\n\
16094 they're created, kept inserted even when execution stops, and removed\n\
16095 only when the user deletes them. When this mode is off (the default),\n\
16096 breakpoints are inserted only when execution continues, and removed\n\
16097 when execution stops."),
16098 NULL,
16099 &show_always_inserted_mode,
16100 &breakpoint_set_cmdlist,
16101 &breakpoint_show_cmdlist);
16102
16103 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16104 condition_evaluation_enums,
16105 &condition_evaluation_mode_1, _("\
16106 Set mode of breakpoint condition evaluation."), _("\
16107 Show mode of breakpoint condition evaluation."), _("\
16108 When this is set to \"host\", breakpoint conditions will be\n\
16109 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16110 breakpoint conditions will be downloaded to the target (if the target\n\
16111 supports such feature) and conditions will be evaluated on the target's side.\n\
16112 If this is set to \"auto\" (default), this will be automatically set to\n\
16113 \"target\" if it supports condition evaluation, otherwise it will\n\
16114 be set to \"gdb\""),
16115 &set_condition_evaluation_mode,
16116 &show_condition_evaluation_mode,
16117 &breakpoint_set_cmdlist,
16118 &breakpoint_show_cmdlist);
16119
16120 add_com ("break-range", class_breakpoint, break_range_command, _("\
16121 Set a breakpoint for an address range.\n\
16122 break-range START-LOCATION, END-LOCATION\n\
16123 where START-LOCATION and END-LOCATION can be one of the following:\n\
16124 LINENUM, for that line in the current file,\n\
16125 FILE:LINENUM, for that line in that file,\n\
16126 +OFFSET, for that number of lines after the current line\n\
16127 or the start of the range\n\
16128 FUNCTION, for the first line in that function,\n\
16129 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16130 *ADDRESS, for the instruction at that address.\n\
16131 \n\
16132 The breakpoint will stop execution of the inferior whenever it executes\n\
16133 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16134 range (including START-LOCATION and END-LOCATION)."));
16135
16136 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16137 Set a dynamic printf at specified location.\n\
16138 dprintf location,format string,arg1,arg2,...\n\
16139 location may be a linespec, explicit, or address location.\n"
16140 "\n" LOCATION_HELP_STRING));
16141 set_cmd_completer (c, location_completer);
16142
16143 add_setshow_enum_cmd ("dprintf-style", class_support,
16144 dprintf_style_enums, &dprintf_style, _("\
16145 Set the style of usage for dynamic printf."), _("\
16146 Show the style of usage for dynamic printf."), _("\
16147 This setting chooses how GDB will do a dynamic printf.\n\
16148 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16149 console, as with the \"printf\" command.\n\
16150 If the value is \"call\", the print is done by calling a function in your\n\
16151 program; by default printf(), but you can choose a different function or\n\
16152 output stream by setting dprintf-function and dprintf-channel."),
16153 update_dprintf_commands, NULL,
16154 &setlist, &showlist);
16155
16156 dprintf_function = xstrdup ("printf");
16157 add_setshow_string_cmd ("dprintf-function", class_support,
16158 &dprintf_function, _("\
16159 Set the function to use for dynamic printf"), _("\
16160 Show the function to use for dynamic printf"), NULL,
16161 update_dprintf_commands, NULL,
16162 &setlist, &showlist);
16163
16164 dprintf_channel = xstrdup ("");
16165 add_setshow_string_cmd ("dprintf-channel", class_support,
16166 &dprintf_channel, _("\
16167 Set the channel to use for dynamic printf"), _("\
16168 Show the channel to use for dynamic printf"), NULL,
16169 update_dprintf_commands, NULL,
16170 &setlist, &showlist);
16171
16172 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16173 &disconnected_dprintf, _("\
16174 Set whether dprintf continues after GDB disconnects."), _("\
16175 Show whether dprintf continues after GDB disconnects."), _("\
16176 Use this to let dprintf commands continue to hit and produce output\n\
16177 even if GDB disconnects or detaches from the target."),
16178 NULL,
16179 NULL,
16180 &setlist, &showlist);
16181
16182 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16183 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16184 (target agent only) This is useful for formatted output in user-defined commands."));
16185
16186 automatic_hardware_breakpoints = 1;
16187
16188 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16189 observer_attach_thread_exit (remove_threaded_breakpoints);
16190 }
This page took 0.409805 seconds and 5 git commands to generate.