* common/linux-ptrace.c (linux_fork_to_function): Push #
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if ( !target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 }
1804 else if (within_current_scope && b->exp)
1805 {
1806 int pc = 0;
1807 struct value *val_chain, *v, *result, *next;
1808 struct program_space *frame_pspace;
1809
1810 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1811
1812 /* Avoid setting b->val if it's already set. The meaning of
1813 b->val is 'the last value' user saw, and we should update
1814 it only if we reported that last value to user. As it
1815 happens, the code that reports it updates b->val directly.
1816 We don't keep track of the memory value for masked
1817 watchpoints. */
1818 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1819 {
1820 b->val = v;
1821 b->val_valid = 1;
1822 }
1823
1824 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1825
1826 /* Look at each value on the value chain. */
1827 for (v = val_chain; v; v = value_next (v))
1828 {
1829 /* If it's a memory location, and GDB actually needed
1830 its contents to evaluate the expression, then we
1831 must watch it. If the first value returned is
1832 still lazy, that means an error occurred reading it;
1833 watch it anyway in case it becomes readable. */
1834 if (VALUE_LVAL (v) == lval_memory
1835 && (v == val_chain || ! value_lazy (v)))
1836 {
1837 struct type *vtype = check_typedef (value_type (v));
1838
1839 /* We only watch structs and arrays if user asked
1840 for it explicitly, never if they just happen to
1841 appear in the middle of some value chain. */
1842 if (v == result
1843 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1844 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1845 {
1846 CORE_ADDR addr;
1847 int type;
1848 struct bp_location *loc, **tmp;
1849
1850 addr = value_address (v);
1851 type = hw_write;
1852 if (b->base.type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->base.type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (&b->base);
1858 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = addr;
1865 loc->length = TYPE_LENGTH (value_type (v));
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->base.type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (&b->base);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->base.type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->base.type = type;
1939 }
1940 }
1941 else if (!b->base.ops->works_in_software_mode (&b->base))
1942 error (_("Expression cannot be implemented with "
1943 "read/access watchpoint."));
1944 else
1945 b->base.type = bp_watchpoint;
1946
1947 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1948 : bp_loc_hardware_watchpoint);
1949 for (bl = b->base.loc; bl; bl = bl->next)
1950 bl->loc_type = loc_type;
1951 }
1952
1953 for (v = val_chain; v; v = next)
1954 {
1955 next = value_next (v);
1956 if (v != b->val)
1957 value_free (v);
1958 }
1959
1960 /* If a software watchpoint is not watching any memory, then the
1961 above left it without any location set up. But,
1962 bpstat_stop_status requires a location to be able to report
1963 stops, so make sure there's at least a dummy one. */
1964 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1965 {
1966 struct breakpoint *base = &b->base;
1967 base->loc = allocate_bp_location (base);
1968 base->loc->pspace = frame_pspace;
1969 base->loc->address = -1;
1970 base->loc->length = -1;
1971 base->loc->watchpoint_type = -1;
1972 }
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->base.number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 return 1;
2021 }
2022
2023 /* Same as should_be_inserted but does the check assuming
2024 that the location is not duplicated. */
2025
2026 static int
2027 unduplicated_should_be_inserted (struct bp_location *bl)
2028 {
2029 int result;
2030 const int save_duplicate = bl->duplicate;
2031
2032 bl->duplicate = 0;
2033 result = should_be_inserted (bl);
2034 bl->duplicate = save_duplicate;
2035 return result;
2036 }
2037
2038 /* Parses a conditional described by an expression COND into an
2039 agent expression bytecode suitable for evaluation
2040 by the bytecode interpreter. Return NULL if there was
2041 any error during parsing. */
2042
2043 static struct agent_expr *
2044 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2045 {
2046 struct agent_expr *aexpr = NULL;
2047 volatile struct gdb_exception ex;
2048
2049 if (!cond)
2050 return NULL;
2051
2052 /* We don't want to stop processing, so catch any errors
2053 that may show up. */
2054 TRY_CATCH (ex, RETURN_MASK_ERROR)
2055 {
2056 aexpr = gen_eval_for_expr (scope, cond);
2057 }
2058
2059 if (ex.reason < 0)
2060 {
2061 /* If we got here, it means the condition could not be parsed to a valid
2062 bytecode expression and thus can't be evaluated on the target's side.
2063 It's no use iterating through the conditions. */
2064 return NULL;
2065 }
2066
2067 /* We have a valid agent expression. */
2068 return aexpr;
2069 }
2070
2071 /* Based on location BL, create a list of breakpoint conditions to be
2072 passed on to the target. If we have duplicated locations with different
2073 conditions, we will add such conditions to the list. The idea is that the
2074 target will evaluate the list of conditions and will only notify GDB when
2075 one of them is true. */
2076
2077 static void
2078 build_target_condition_list (struct bp_location *bl)
2079 {
2080 struct bp_location **locp = NULL, **loc2p;
2081 int null_condition_or_parse_error = 0;
2082 int modified = bl->needs_update;
2083 struct bp_location *loc;
2084
2085 /* This is only meaningful if the target is
2086 evaluating conditions and if the user has
2087 opted for condition evaluation on the target's
2088 side. */
2089 if (gdb_evaluates_breakpoint_condition_p ()
2090 || !target_supports_evaluation_of_breakpoint_conditions ())
2091 return;
2092
2093 /* Do a first pass to check for locations with no assigned
2094 conditions or conditions that fail to parse to a valid agent expression
2095 bytecode. If any of these happen, then it's no use to send conditions
2096 to the target since this location will always trigger and generate a
2097 response back to GDB. */
2098 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2099 {
2100 loc = (*loc2p);
2101 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2102 {
2103 if (modified)
2104 {
2105 struct agent_expr *aexpr;
2106
2107 /* Re-parse the conditions since something changed. In that
2108 case we already freed the condition bytecodes (see
2109 force_breakpoint_reinsertion). We just
2110 need to parse the condition to bytecodes again. */
2111 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2112 loc->cond_bytecode = aexpr;
2113
2114 /* Check if we managed to parse the conditional expression
2115 correctly. If not, we will not send this condition
2116 to the target. */
2117 if (aexpr)
2118 continue;
2119 }
2120
2121 /* If we have a NULL bytecode expression, it means something
2122 went wrong or we have a null condition expression. */
2123 if (!loc->cond_bytecode)
2124 {
2125 null_condition_or_parse_error = 1;
2126 break;
2127 }
2128 }
2129 }
2130
2131 /* If any of these happened, it means we will have to evaluate the conditions
2132 for the location's address on gdb's side. It is no use keeping bytecodes
2133 for all the other duplicate locations, thus we free all of them here.
2134
2135 This is so we have a finer control over which locations' conditions are
2136 being evaluated by GDB or the remote stub. */
2137 if (null_condition_or_parse_error)
2138 {
2139 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2140 {
2141 loc = (*loc2p);
2142 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2143 {
2144 /* Only go as far as the first NULL bytecode is
2145 located. */
2146 if (!loc->cond_bytecode)
2147 return;
2148
2149 free_agent_expr (loc->cond_bytecode);
2150 loc->cond_bytecode = NULL;
2151 }
2152 }
2153 }
2154
2155 /* No NULL conditions or failed bytecode generation. Build a condition list
2156 for this location's address. */
2157 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2158 {
2159 loc = (*loc2p);
2160 if (loc->cond
2161 && is_breakpoint (loc->owner)
2162 && loc->pspace->num == bl->pspace->num
2163 && loc->owner->enable_state == bp_enabled
2164 && loc->enabled)
2165 /* Add the condition to the vector. This will be used later to send the
2166 conditions to the target. */
2167 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2168 loc->cond_bytecode);
2169 }
2170
2171 return;
2172 }
2173
2174 /* Parses a command described by string CMD into an agent expression
2175 bytecode suitable for evaluation by the bytecode interpreter.
2176 Return NULL if there was any error during parsing. */
2177
2178 static struct agent_expr *
2179 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2180 {
2181 struct cleanup *old_cleanups = 0;
2182 struct expression *expr, **argvec;
2183 struct agent_expr *aexpr = NULL;
2184 volatile struct gdb_exception ex;
2185 const char *cmdrest;
2186 const char *format_start, *format_end;
2187 struct format_piece *fpieces;
2188 int nargs;
2189 struct gdbarch *gdbarch = get_current_arch ();
2190
2191 if (!cmd)
2192 return NULL;
2193
2194 cmdrest = cmd;
2195
2196 if (*cmdrest == ',')
2197 ++cmdrest;
2198 cmdrest = skip_spaces_const (cmdrest);
2199
2200 if (*cmdrest++ != '"')
2201 error (_("No format string following the location"));
2202
2203 format_start = cmdrest;
2204
2205 fpieces = parse_format_string (&cmdrest);
2206
2207 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2208
2209 format_end = cmdrest;
2210
2211 if (*cmdrest++ != '"')
2212 error (_("Bad format string, non-terminated '\"'."));
2213
2214 cmdrest = skip_spaces_const (cmdrest);
2215
2216 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2217 error (_("Invalid argument syntax"));
2218
2219 if (*cmdrest == ',')
2220 cmdrest++;
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 /* For each argument, make an expression. */
2224
2225 argvec = (struct expression **) alloca (strlen (cmd)
2226 * sizeof (struct expression *));
2227
2228 nargs = 0;
2229 while (*cmdrest != '\0')
2230 {
2231 const char *cmd1;
2232
2233 cmd1 = cmdrest;
2234 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2235 argvec[nargs++] = expr;
2236 cmdrest = cmd1;
2237 if (*cmdrest == ',')
2238 ++cmdrest;
2239 }
2240
2241 /* We don't want to stop processing, so catch any errors
2242 that may show up. */
2243 TRY_CATCH (ex, RETURN_MASK_ERROR)
2244 {
2245 aexpr = gen_printf (scope, gdbarch, 0, 0,
2246 format_start, format_end - format_start,
2247 fpieces, nargs, argvec);
2248 }
2249
2250 do_cleanups (old_cleanups);
2251
2252 if (ex.reason < 0)
2253 {
2254 /* If we got here, it means the command could not be parsed to a valid
2255 bytecode expression and thus can't be evaluated on the target's side.
2256 It's no use iterating through the other commands. */
2257 return NULL;
2258 }
2259
2260 /* We have a valid agent expression, return it. */
2261 return aexpr;
2262 }
2263
2264 /* Based on location BL, create a list of breakpoint commands to be
2265 passed on to the target. If we have duplicated locations with
2266 different commands, we will add any such to the list. */
2267
2268 static void
2269 build_target_command_list (struct bp_location *bl)
2270 {
2271 struct bp_location **locp = NULL, **loc2p;
2272 int null_command_or_parse_error = 0;
2273 int modified = bl->needs_update;
2274 struct bp_location *loc;
2275
2276 /* For now, limit to agent-style dprintf breakpoints. */
2277 if (bl->owner->type != bp_dprintf
2278 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2279 return;
2280
2281 if (!target_can_run_breakpoint_commands ())
2282 return;
2283
2284 /* Do a first pass to check for locations with no assigned
2285 conditions or conditions that fail to parse to a valid agent expression
2286 bytecode. If any of these happen, then it's no use to send conditions
2287 to the target since this location will always trigger and generate a
2288 response back to GDB. */
2289 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2290 {
2291 loc = (*loc2p);
2292 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2293 {
2294 if (modified)
2295 {
2296 struct agent_expr *aexpr;
2297
2298 /* Re-parse the commands since something changed. In that
2299 case we already freed the command bytecodes (see
2300 force_breakpoint_reinsertion). We just
2301 need to parse the command to bytecodes again. */
2302 aexpr = parse_cmd_to_aexpr (bl->address,
2303 loc->owner->extra_string);
2304 loc->cmd_bytecode = aexpr;
2305
2306 if (!aexpr)
2307 continue;
2308 }
2309
2310 /* If we have a NULL bytecode expression, it means something
2311 went wrong or we have a null command expression. */
2312 if (!loc->cmd_bytecode)
2313 {
2314 null_command_or_parse_error = 1;
2315 break;
2316 }
2317 }
2318 }
2319
2320 /* If anything failed, then we're not doing target-side commands,
2321 and so clean up. */
2322 if (null_command_or_parse_error)
2323 {
2324 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2325 {
2326 loc = (*loc2p);
2327 if (is_breakpoint (loc->owner)
2328 && loc->pspace->num == bl->pspace->num)
2329 {
2330 /* Only go as far as the first NULL bytecode is
2331 located. */
2332 if (loc->cmd_bytecode == NULL)
2333 return;
2334
2335 free_agent_expr (loc->cmd_bytecode);
2336 loc->cmd_bytecode = NULL;
2337 }
2338 }
2339 }
2340
2341 /* No NULL commands or failed bytecode generation. Build a command list
2342 for this location's address. */
2343 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2344 {
2345 loc = (*loc2p);
2346 if (loc->owner->extra_string
2347 && is_breakpoint (loc->owner)
2348 && loc->pspace->num == bl->pspace->num
2349 && loc->owner->enable_state == bp_enabled
2350 && loc->enabled)
2351 /* Add the command to the vector. This will be used later
2352 to send the commands to the target. */
2353 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2354 loc->cmd_bytecode);
2355 }
2356
2357 bl->target_info.persist = 0;
2358 /* Maybe flag this location as persistent. */
2359 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2360 bl->target_info.persist = 1;
2361 }
2362
2363 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2364 location. Any error messages are printed to TMP_ERROR_STREAM; and
2365 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2366 Returns 0 for success, 1 if the bp_location type is not supported or
2367 -1 for failure.
2368
2369 NOTE drow/2003-09-09: This routine could be broken down to an
2370 object-style method for each breakpoint or catchpoint type. */
2371 static int
2372 insert_bp_location (struct bp_location *bl,
2373 struct ui_file *tmp_error_stream,
2374 int *disabled_breaks,
2375 int *hw_breakpoint_error,
2376 int *hw_bp_error_explained_already)
2377 {
2378 int val = 0;
2379 char *hw_bp_err_string = NULL;
2380 struct gdb_exception e;
2381
2382 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2383 return 0;
2384
2385 /* Note we don't initialize bl->target_info, as that wipes out
2386 the breakpoint location's shadow_contents if the breakpoint
2387 is still inserted at that location. This in turn breaks
2388 target_read_memory which depends on these buffers when
2389 a memory read is requested at the breakpoint location:
2390 Once the target_info has been wiped, we fail to see that
2391 we have a breakpoint inserted at that address and thus
2392 read the breakpoint instead of returning the data saved in
2393 the breakpoint location's shadow contents. */
2394 bl->target_info.placed_address = bl->address;
2395 bl->target_info.placed_address_space = bl->pspace->aspace;
2396 bl->target_info.length = bl->length;
2397
2398 /* When working with target-side conditions, we must pass all the conditions
2399 for the same breakpoint address down to the target since GDB will not
2400 insert those locations. With a list of breakpoint conditions, the target
2401 can decide when to stop and notify GDB. */
2402
2403 if (is_breakpoint (bl->owner))
2404 {
2405 build_target_condition_list (bl);
2406 build_target_command_list (bl);
2407 /* Reset the modification marker. */
2408 bl->needs_update = 0;
2409 }
2410
2411 if (bl->loc_type == bp_loc_software_breakpoint
2412 || bl->loc_type == bp_loc_hardware_breakpoint)
2413 {
2414 if (bl->owner->type != bp_hardware_breakpoint)
2415 {
2416 /* If the explicitly specified breakpoint type
2417 is not hardware breakpoint, check the memory map to see
2418 if the breakpoint address is in read only memory or not.
2419
2420 Two important cases are:
2421 - location type is not hardware breakpoint, memory
2422 is readonly. We change the type of the location to
2423 hardware breakpoint.
2424 - location type is hardware breakpoint, memory is
2425 read-write. This means we've previously made the
2426 location hardware one, but then the memory map changed,
2427 so we undo.
2428
2429 When breakpoints are removed, remove_breakpoints will use
2430 location types we've just set here, the only possible
2431 problem is that memory map has changed during running
2432 program, but it's not going to work anyway with current
2433 gdb. */
2434 struct mem_region *mr
2435 = lookup_mem_region (bl->target_info.placed_address);
2436
2437 if (mr)
2438 {
2439 if (automatic_hardware_breakpoints)
2440 {
2441 enum bp_loc_type new_type;
2442
2443 if (mr->attrib.mode != MEM_RW)
2444 new_type = bp_loc_hardware_breakpoint;
2445 else
2446 new_type = bp_loc_software_breakpoint;
2447
2448 if (new_type != bl->loc_type)
2449 {
2450 static int said = 0;
2451
2452 bl->loc_type = new_type;
2453 if (!said)
2454 {
2455 fprintf_filtered (gdb_stdout,
2456 _("Note: automatically using "
2457 "hardware breakpoints for "
2458 "read-only addresses.\n"));
2459 said = 1;
2460 }
2461 }
2462 }
2463 else if (bl->loc_type == bp_loc_software_breakpoint
2464 && mr->attrib.mode != MEM_RW)
2465 warning (_("cannot set software breakpoint "
2466 "at readonly address %s"),
2467 paddress (bl->gdbarch, bl->address));
2468 }
2469 }
2470
2471 /* First check to see if we have to handle an overlay. */
2472 if (overlay_debugging == ovly_off
2473 || bl->section == NULL
2474 || !(section_is_overlay (bl->section)))
2475 {
2476 /* No overlay handling: just set the breakpoint. */
2477 TRY_CATCH (e, RETURN_MASK_ALL)
2478 {
2479 val = bl->owner->ops->insert_location (bl);
2480 }
2481 if (e.reason < 0)
2482 {
2483 val = 1;
2484 hw_bp_err_string = (char *) e.message;
2485 }
2486 }
2487 else
2488 {
2489 /* This breakpoint is in an overlay section.
2490 Shall we set a breakpoint at the LMA? */
2491 if (!overlay_events_enabled)
2492 {
2493 /* Yes -- overlay event support is not active,
2494 so we must try to set a breakpoint at the LMA.
2495 This will not work for a hardware breakpoint. */
2496 if (bl->loc_type == bp_loc_hardware_breakpoint)
2497 warning (_("hardware breakpoint %d not supported in overlay!"),
2498 bl->owner->number);
2499 else
2500 {
2501 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2502 bl->section);
2503 /* Set a software (trap) breakpoint at the LMA. */
2504 bl->overlay_target_info = bl->target_info;
2505 bl->overlay_target_info.placed_address = addr;
2506 val = target_insert_breakpoint (bl->gdbarch,
2507 &bl->overlay_target_info);
2508 if (val != 0)
2509 fprintf_unfiltered (tmp_error_stream,
2510 "Overlay breakpoint %d "
2511 "failed: in ROM?\n",
2512 bl->owner->number);
2513 }
2514 }
2515 /* Shall we set a breakpoint at the VMA? */
2516 if (section_is_mapped (bl->section))
2517 {
2518 /* Yes. This overlay section is mapped into memory. */
2519 TRY_CATCH (e, RETURN_MASK_ALL)
2520 {
2521 val = bl->owner->ops->insert_location (bl);
2522 }
2523 if (e.reason < 0)
2524 {
2525 val = 1;
2526 hw_bp_err_string = (char *) e.message;
2527 }
2528 }
2529 else
2530 {
2531 /* No. This breakpoint will not be inserted.
2532 No error, but do not mark the bp as 'inserted'. */
2533 return 0;
2534 }
2535 }
2536
2537 if (val)
2538 {
2539 /* Can't set the breakpoint. */
2540 if (solib_name_from_address (bl->pspace, bl->address))
2541 {
2542 /* See also: disable_breakpoints_in_shlibs. */
2543 val = 0;
2544 bl->shlib_disabled = 1;
2545 observer_notify_breakpoint_modified (bl->owner);
2546 if (!*disabled_breaks)
2547 {
2548 fprintf_unfiltered (tmp_error_stream,
2549 "Cannot insert breakpoint %d.\n",
2550 bl->owner->number);
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Temporarily disabling shared "
2553 "library breakpoints:\n");
2554 }
2555 *disabled_breaks = 1;
2556 fprintf_unfiltered (tmp_error_stream,
2557 "breakpoint #%d\n", bl->owner->number);
2558 }
2559 else
2560 {
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 {
2563 *hw_breakpoint_error = 1;
2564 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Cannot insert hardware breakpoint %d%s",
2567 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2568 if (hw_bp_err_string)
2569 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2570 }
2571 else
2572 {
2573 fprintf_unfiltered (tmp_error_stream,
2574 "Cannot insert breakpoint %d.\n",
2575 bl->owner->number);
2576 fprintf_filtered (tmp_error_stream,
2577 "Error accessing memory address ");
2578 fputs_filtered (paddress (bl->gdbarch, bl->address),
2579 tmp_error_stream);
2580 fprintf_filtered (tmp_error_stream, ": %s.\n",
2581 safe_strerror (val));
2582 }
2583
2584 }
2585 }
2586 else
2587 bl->inserted = 1;
2588
2589 return val;
2590 }
2591
2592 else if (bl->loc_type == bp_loc_hardware_watchpoint
2593 /* NOTE drow/2003-09-08: This state only exists for removing
2594 watchpoints. It's not clear that it's necessary... */
2595 && bl->owner->disposition != disp_del_at_next_stop)
2596 {
2597 gdb_assert (bl->owner->ops != NULL
2598 && bl->owner->ops->insert_location != NULL);
2599
2600 val = bl->owner->ops->insert_location (bl);
2601
2602 /* If trying to set a read-watchpoint, and it turns out it's not
2603 supported, try emulating one with an access watchpoint. */
2604 if (val == 1 && bl->watchpoint_type == hw_read)
2605 {
2606 struct bp_location *loc, **loc_temp;
2607
2608 /* But don't try to insert it, if there's already another
2609 hw_access location that would be considered a duplicate
2610 of this one. */
2611 ALL_BP_LOCATIONS (loc, loc_temp)
2612 if (loc != bl
2613 && loc->watchpoint_type == hw_access
2614 && watchpoint_locations_match (bl, loc))
2615 {
2616 bl->duplicate = 1;
2617 bl->inserted = 1;
2618 bl->target_info = loc->target_info;
2619 bl->watchpoint_type = hw_access;
2620 val = 0;
2621 break;
2622 }
2623
2624 if (val == 1)
2625 {
2626 bl->watchpoint_type = hw_access;
2627 val = bl->owner->ops->insert_location (bl);
2628
2629 if (val)
2630 /* Back to the original value. */
2631 bl->watchpoint_type = hw_read;
2632 }
2633 }
2634
2635 bl->inserted = (val == 0);
2636 }
2637
2638 else if (bl->owner->type == bp_catchpoint)
2639 {
2640 gdb_assert (bl->owner->ops != NULL
2641 && bl->owner->ops->insert_location != NULL);
2642
2643 val = bl->owner->ops->insert_location (bl);
2644 if (val)
2645 {
2646 bl->owner->enable_state = bp_disabled;
2647
2648 if (val == 1)
2649 warning (_("\
2650 Error inserting catchpoint %d: Your system does not support this type\n\
2651 of catchpoint."), bl->owner->number);
2652 else
2653 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2654 }
2655
2656 bl->inserted = (val == 0);
2657
2658 /* We've already printed an error message if there was a problem
2659 inserting this catchpoint, and we've disabled the catchpoint,
2660 so just return success. */
2661 return 0;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /* This function is called when program space PSPACE is about to be
2668 deleted. It takes care of updating breakpoints to not reference
2669 PSPACE anymore. */
2670
2671 void
2672 breakpoint_program_space_exit (struct program_space *pspace)
2673 {
2674 struct breakpoint *b, *b_temp;
2675 struct bp_location *loc, **loc_temp;
2676
2677 /* Remove any breakpoint that was set through this program space. */
2678 ALL_BREAKPOINTS_SAFE (b, b_temp)
2679 {
2680 if (b->pspace == pspace)
2681 delete_breakpoint (b);
2682 }
2683
2684 /* Breakpoints set through other program spaces could have locations
2685 bound to PSPACE as well. Remove those. */
2686 ALL_BP_LOCATIONS (loc, loc_temp)
2687 {
2688 struct bp_location *tmp;
2689
2690 if (loc->pspace == pspace)
2691 {
2692 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2693 if (loc->owner->loc == loc)
2694 loc->owner->loc = loc->next;
2695 else
2696 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2697 if (tmp->next == loc)
2698 {
2699 tmp->next = loc->next;
2700 break;
2701 }
2702 }
2703 }
2704
2705 /* Now update the global location list to permanently delete the
2706 removed locations above. */
2707 update_global_location_list (0);
2708 }
2709
2710 /* Make sure all breakpoints are inserted in inferior.
2711 Throws exception on any error.
2712 A breakpoint that is already inserted won't be inserted
2713 again, so calling this function twice is safe. */
2714 void
2715 insert_breakpoints (void)
2716 {
2717 struct breakpoint *bpt;
2718
2719 ALL_BREAKPOINTS (bpt)
2720 if (is_hardware_watchpoint (bpt))
2721 {
2722 struct watchpoint *w = (struct watchpoint *) bpt;
2723
2724 update_watchpoint (w, 0 /* don't reparse. */);
2725 }
2726
2727 update_global_location_list (1);
2728
2729 /* update_global_location_list does not insert breakpoints when
2730 always_inserted_mode is not enabled. Explicitly insert them
2731 now. */
2732 if (!breakpoints_always_inserted_mode ())
2733 insert_breakpoint_locations ();
2734 }
2735
2736 /* Invoke CALLBACK for each of bp_location. */
2737
2738 void
2739 iterate_over_bp_locations (walk_bp_location_callback callback)
2740 {
2741 struct bp_location *loc, **loc_tmp;
2742
2743 ALL_BP_LOCATIONS (loc, loc_tmp)
2744 {
2745 callback (loc, NULL);
2746 }
2747 }
2748
2749 /* This is used when we need to synch breakpoint conditions between GDB and the
2750 target. It is the case with deleting and disabling of breakpoints when using
2751 always-inserted mode. */
2752
2753 static void
2754 update_inserted_breakpoint_locations (void)
2755 {
2756 struct bp_location *bl, **blp_tmp;
2757 int error_flag = 0;
2758 int val = 0;
2759 int disabled_breaks = 0;
2760 int hw_breakpoint_error = 0;
2761 int hw_bp_details_reported = 0;
2762
2763 struct ui_file *tmp_error_stream = mem_fileopen ();
2764 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2765
2766 /* Explicitly mark the warning -- this will only be printed if
2767 there was an error. */
2768 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2769
2770 save_current_space_and_thread ();
2771
2772 ALL_BP_LOCATIONS (bl, blp_tmp)
2773 {
2774 /* We only want to update software breakpoints and hardware
2775 breakpoints. */
2776 if (!is_breakpoint (bl->owner))
2777 continue;
2778
2779 /* We only want to update locations that are already inserted
2780 and need updating. This is to avoid unwanted insertion during
2781 deletion of breakpoints. */
2782 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2783 continue;
2784
2785 switch_to_program_space_and_thread (bl->pspace);
2786
2787 /* For targets that support global breakpoints, there's no need
2788 to select an inferior to insert breakpoint to. In fact, even
2789 if we aren't attached to any process yet, we should still
2790 insert breakpoints. */
2791 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2792 && ptid_equal (inferior_ptid, null_ptid))
2793 continue;
2794
2795 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2796 &hw_breakpoint_error, &hw_bp_details_reported);
2797 if (val)
2798 error_flag = val;
2799 }
2800
2801 if (error_flag)
2802 {
2803 target_terminal_ours_for_output ();
2804 error_stream (tmp_error_stream);
2805 }
2806
2807 do_cleanups (cleanups);
2808 }
2809
2810 /* Used when starting or continuing the program. */
2811
2812 static void
2813 insert_breakpoint_locations (void)
2814 {
2815 struct breakpoint *bpt;
2816 struct bp_location *bl, **blp_tmp;
2817 int error_flag = 0;
2818 int val = 0;
2819 int disabled_breaks = 0;
2820 int hw_breakpoint_error = 0;
2821 int hw_bp_error_explained_already = 0;
2822
2823 struct ui_file *tmp_error_stream = mem_fileopen ();
2824 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2825
2826 /* Explicitly mark the warning -- this will only be printed if
2827 there was an error. */
2828 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2829
2830 save_current_space_and_thread ();
2831
2832 ALL_BP_LOCATIONS (bl, blp_tmp)
2833 {
2834 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2835 continue;
2836
2837 /* There is no point inserting thread-specific breakpoints if
2838 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2839 has BL->OWNER always non-NULL. */
2840 if (bl->owner->thread != -1
2841 && !valid_thread_id (bl->owner->thread))
2842 continue;
2843
2844 switch_to_program_space_and_thread (bl->pspace);
2845
2846 /* For targets that support global breakpoints, there's no need
2847 to select an inferior to insert breakpoint to. In fact, even
2848 if we aren't attached to any process yet, we should still
2849 insert breakpoints. */
2850 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2851 && ptid_equal (inferior_ptid, null_ptid))
2852 continue;
2853
2854 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2855 &hw_breakpoint_error, &hw_bp_error_explained_already);
2856 if (val)
2857 error_flag = val;
2858 }
2859
2860 /* If we failed to insert all locations of a watchpoint, remove
2861 them, as half-inserted watchpoint is of limited use. */
2862 ALL_BREAKPOINTS (bpt)
2863 {
2864 int some_failed = 0;
2865 struct bp_location *loc;
2866
2867 if (!is_hardware_watchpoint (bpt))
2868 continue;
2869
2870 if (!breakpoint_enabled (bpt))
2871 continue;
2872
2873 if (bpt->disposition == disp_del_at_next_stop)
2874 continue;
2875
2876 for (loc = bpt->loc; loc; loc = loc->next)
2877 if (!loc->inserted && should_be_inserted (loc))
2878 {
2879 some_failed = 1;
2880 break;
2881 }
2882 if (some_failed)
2883 {
2884 for (loc = bpt->loc; loc; loc = loc->next)
2885 if (loc->inserted)
2886 remove_breakpoint (loc, mark_uninserted);
2887
2888 hw_breakpoint_error = 1;
2889 fprintf_unfiltered (tmp_error_stream,
2890 "Could not insert hardware watchpoint %d.\n",
2891 bpt->number);
2892 error_flag = -1;
2893 }
2894 }
2895
2896 if (error_flag)
2897 {
2898 /* If a hardware breakpoint or watchpoint was inserted, add a
2899 message about possibly exhausted resources. */
2900 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2901 {
2902 fprintf_unfiltered (tmp_error_stream,
2903 "Could not insert hardware breakpoints:\n\
2904 You may have requested too many hardware breakpoints/watchpoints.\n");
2905 }
2906 target_terminal_ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909
2910 do_cleanups (cleanups);
2911 }
2912
2913 /* Used when the program stops.
2914 Returns zero if successful, or non-zero if there was a problem
2915 removing a breakpoint location. */
2916
2917 int
2918 remove_breakpoints (void)
2919 {
2920 struct bp_location *bl, **blp_tmp;
2921 int val = 0;
2922
2923 ALL_BP_LOCATIONS (bl, blp_tmp)
2924 {
2925 if (bl->inserted && !is_tracepoint (bl->owner))
2926 val |= remove_breakpoint (bl, mark_uninserted);
2927 }
2928 return val;
2929 }
2930
2931 /* Remove breakpoints of process PID. */
2932
2933 int
2934 remove_breakpoints_pid (int pid)
2935 {
2936 struct bp_location *bl, **blp_tmp;
2937 int val;
2938 struct inferior *inf = find_inferior_pid (pid);
2939
2940 ALL_BP_LOCATIONS (bl, blp_tmp)
2941 {
2942 if (bl->pspace != inf->pspace)
2943 continue;
2944
2945 if (bl->owner->type == bp_dprintf)
2946 continue;
2947
2948 if (bl->inserted)
2949 {
2950 val = remove_breakpoint (bl, mark_uninserted);
2951 if (val != 0)
2952 return val;
2953 }
2954 }
2955 return 0;
2956 }
2957
2958 int
2959 reattach_breakpoints (int pid)
2960 {
2961 struct cleanup *old_chain;
2962 struct bp_location *bl, **blp_tmp;
2963 int val;
2964 struct ui_file *tmp_error_stream;
2965 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2966 struct inferior *inf;
2967 struct thread_info *tp;
2968
2969 tp = any_live_thread_of_process (pid);
2970 if (tp == NULL)
2971 return 1;
2972
2973 inf = find_inferior_pid (pid);
2974 old_chain = save_inferior_ptid ();
2975
2976 inferior_ptid = tp->ptid;
2977
2978 tmp_error_stream = mem_fileopen ();
2979 make_cleanup_ui_file_delete (tmp_error_stream);
2980
2981 ALL_BP_LOCATIONS (bl, blp_tmp)
2982 {
2983 if (bl->pspace != inf->pspace)
2984 continue;
2985
2986 if (bl->inserted)
2987 {
2988 bl->inserted = 0;
2989 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2990 if (val != 0)
2991 {
2992 do_cleanups (old_chain);
2993 return val;
2994 }
2995 }
2996 }
2997 do_cleanups (old_chain);
2998 return 0;
2999 }
3000
3001 static int internal_breakpoint_number = -1;
3002
3003 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3004 If INTERNAL is non-zero, the breakpoint number will be populated
3005 from internal_breakpoint_number and that variable decremented.
3006 Otherwise the breakpoint number will be populated from
3007 breakpoint_count and that value incremented. Internal breakpoints
3008 do not set the internal var bpnum. */
3009 static void
3010 set_breakpoint_number (int internal, struct breakpoint *b)
3011 {
3012 if (internal)
3013 b->number = internal_breakpoint_number--;
3014 else
3015 {
3016 set_breakpoint_count (breakpoint_count + 1);
3017 b->number = breakpoint_count;
3018 }
3019 }
3020
3021 static struct breakpoint *
3022 create_internal_breakpoint (struct gdbarch *gdbarch,
3023 CORE_ADDR address, enum bptype type,
3024 const struct breakpoint_ops *ops)
3025 {
3026 struct symtab_and_line sal;
3027 struct breakpoint *b;
3028
3029 init_sal (&sal); /* Initialize to zeroes. */
3030
3031 sal.pc = address;
3032 sal.section = find_pc_overlay (sal.pc);
3033 sal.pspace = current_program_space;
3034
3035 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3036 b->number = internal_breakpoint_number--;
3037 b->disposition = disp_donttouch;
3038
3039 return b;
3040 }
3041
3042 static const char *const longjmp_names[] =
3043 {
3044 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3045 };
3046 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3047
3048 /* Per-objfile data private to breakpoint.c. */
3049 struct breakpoint_objfile_data
3050 {
3051 /* Minimal symbol for "_ovly_debug_event" (if any). */
3052 struct minimal_symbol *overlay_msym;
3053
3054 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3055 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3056
3057 /* True if we have looked for longjmp probes. */
3058 int longjmp_searched;
3059
3060 /* SystemTap probe points for longjmp (if any). */
3061 VEC (probe_p) *longjmp_probes;
3062
3063 /* Minimal symbol for "std::terminate()" (if any). */
3064 struct minimal_symbol *terminate_msym;
3065
3066 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3067 struct minimal_symbol *exception_msym;
3068
3069 /* True if we have looked for exception probes. */
3070 int exception_searched;
3071
3072 /* SystemTap probe points for unwinding (if any). */
3073 VEC (probe_p) *exception_probes;
3074 };
3075
3076 static const struct objfile_data *breakpoint_objfile_key;
3077
3078 /* Minimal symbol not found sentinel. */
3079 static struct minimal_symbol msym_not_found;
3080
3081 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3082
3083 static int
3084 msym_not_found_p (const struct minimal_symbol *msym)
3085 {
3086 return msym == &msym_not_found;
3087 }
3088
3089 /* Return per-objfile data needed by breakpoint.c.
3090 Allocate the data if necessary. */
3091
3092 static struct breakpoint_objfile_data *
3093 get_breakpoint_objfile_data (struct objfile *objfile)
3094 {
3095 struct breakpoint_objfile_data *bp_objfile_data;
3096
3097 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3098 if (bp_objfile_data == NULL)
3099 {
3100 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3101 sizeof (*bp_objfile_data));
3102
3103 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3104 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3105 }
3106 return bp_objfile_data;
3107 }
3108
3109 static void
3110 free_breakpoint_probes (struct objfile *obj, void *data)
3111 {
3112 struct breakpoint_objfile_data *bp_objfile_data = data;
3113
3114 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3115 VEC_free (probe_p, bp_objfile_data->exception_probes);
3116 }
3117
3118 static void
3119 create_overlay_event_breakpoint (void)
3120 {
3121 struct objfile *objfile;
3122 const char *const func_name = "_ovly_debug_event";
3123
3124 ALL_OBJFILES (objfile)
3125 {
3126 struct breakpoint *b;
3127 struct breakpoint_objfile_data *bp_objfile_data;
3128 CORE_ADDR addr;
3129
3130 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3131
3132 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3133 continue;
3134
3135 if (bp_objfile_data->overlay_msym == NULL)
3136 {
3137 struct minimal_symbol *m;
3138
3139 m = lookup_minimal_symbol_text (func_name, objfile);
3140 if (m == NULL)
3141 {
3142 /* Avoid future lookups in this objfile. */
3143 bp_objfile_data->overlay_msym = &msym_not_found;
3144 continue;
3145 }
3146 bp_objfile_data->overlay_msym = m;
3147 }
3148
3149 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3150 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3151 bp_overlay_event,
3152 &internal_breakpoint_ops);
3153 b->addr_string = xstrdup (func_name);
3154
3155 if (overlay_debugging == ovly_auto)
3156 {
3157 b->enable_state = bp_enabled;
3158 overlay_events_enabled = 1;
3159 }
3160 else
3161 {
3162 b->enable_state = bp_disabled;
3163 overlay_events_enabled = 0;
3164 }
3165 }
3166 update_global_location_list (1);
3167 }
3168
3169 static void
3170 create_longjmp_master_breakpoint (void)
3171 {
3172 struct program_space *pspace;
3173 struct cleanup *old_chain;
3174
3175 old_chain = save_current_program_space ();
3176
3177 ALL_PSPACES (pspace)
3178 {
3179 struct objfile *objfile;
3180
3181 set_current_program_space (pspace);
3182
3183 ALL_OBJFILES (objfile)
3184 {
3185 int i;
3186 struct gdbarch *gdbarch;
3187 struct breakpoint_objfile_data *bp_objfile_data;
3188
3189 gdbarch = get_objfile_arch (objfile);
3190 if (!gdbarch_get_longjmp_target_p (gdbarch))
3191 continue;
3192
3193 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3194
3195 if (!bp_objfile_data->longjmp_searched)
3196 {
3197 VEC (probe_p) *ret;
3198
3199 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3200 if (ret != NULL)
3201 {
3202 /* We are only interested in checking one element. */
3203 struct probe *p = VEC_index (probe_p, ret, 0);
3204
3205 if (!can_evaluate_probe_arguments (p))
3206 {
3207 /* We cannot use the probe interface here, because it does
3208 not know how to evaluate arguments. */
3209 VEC_free (probe_p, ret);
3210 ret = NULL;
3211 }
3212 }
3213 bp_objfile_data->longjmp_probes = ret;
3214 bp_objfile_data->longjmp_searched = 1;
3215 }
3216
3217 if (bp_objfile_data->longjmp_probes != NULL)
3218 {
3219 int i;
3220 struct probe *probe;
3221 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3222
3223 for (i = 0;
3224 VEC_iterate (probe_p,
3225 bp_objfile_data->longjmp_probes,
3226 i, probe);
3227 ++i)
3228 {
3229 struct breakpoint *b;
3230
3231 b = create_internal_breakpoint (gdbarch, probe->address,
3232 bp_longjmp_master,
3233 &internal_breakpoint_ops);
3234 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3235 b->enable_state = bp_disabled;
3236 }
3237
3238 continue;
3239 }
3240
3241 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3242 {
3243 struct breakpoint *b;
3244 const char *func_name;
3245 CORE_ADDR addr;
3246
3247 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3248 continue;
3249
3250 func_name = longjmp_names[i];
3251 if (bp_objfile_data->longjmp_msym[i] == NULL)
3252 {
3253 struct minimal_symbol *m;
3254
3255 m = lookup_minimal_symbol_text (func_name, objfile);
3256 if (m == NULL)
3257 {
3258 /* Prevent future lookups in this objfile. */
3259 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3260 continue;
3261 }
3262 bp_objfile_data->longjmp_msym[i] = m;
3263 }
3264
3265 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3266 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3267 &internal_breakpoint_ops);
3268 b->addr_string = xstrdup (func_name);
3269 b->enable_state = bp_disabled;
3270 }
3271 }
3272 }
3273 update_global_location_list (1);
3274
3275 do_cleanups (old_chain);
3276 }
3277
3278 /* Create a master std::terminate breakpoint. */
3279 static void
3280 create_std_terminate_master_breakpoint (void)
3281 {
3282 struct program_space *pspace;
3283 struct cleanup *old_chain;
3284 const char *const func_name = "std::terminate()";
3285
3286 old_chain = save_current_program_space ();
3287
3288 ALL_PSPACES (pspace)
3289 {
3290 struct objfile *objfile;
3291 CORE_ADDR addr;
3292
3293 set_current_program_space (pspace);
3294
3295 ALL_OBJFILES (objfile)
3296 {
3297 struct breakpoint *b;
3298 struct breakpoint_objfile_data *bp_objfile_data;
3299
3300 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3301
3302 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3303 continue;
3304
3305 if (bp_objfile_data->terminate_msym == NULL)
3306 {
3307 struct minimal_symbol *m;
3308
3309 m = lookup_minimal_symbol (func_name, NULL, objfile);
3310 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3311 && MSYMBOL_TYPE (m) != mst_file_text))
3312 {
3313 /* Prevent future lookups in this objfile. */
3314 bp_objfile_data->terminate_msym = &msym_not_found;
3315 continue;
3316 }
3317 bp_objfile_data->terminate_msym = m;
3318 }
3319
3320 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3321 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3322 bp_std_terminate_master,
3323 &internal_breakpoint_ops);
3324 b->addr_string = xstrdup (func_name);
3325 b->enable_state = bp_disabled;
3326 }
3327 }
3328
3329 update_global_location_list (1);
3330
3331 do_cleanups (old_chain);
3332 }
3333
3334 /* Install a master breakpoint on the unwinder's debug hook. */
3335
3336 static void
3337 create_exception_master_breakpoint (void)
3338 {
3339 struct objfile *objfile;
3340 const char *const func_name = "_Unwind_DebugHook";
3341
3342 ALL_OBJFILES (objfile)
3343 {
3344 struct breakpoint *b;
3345 struct gdbarch *gdbarch;
3346 struct breakpoint_objfile_data *bp_objfile_data;
3347 CORE_ADDR addr;
3348
3349 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3350
3351 /* We prefer the SystemTap probe point if it exists. */
3352 if (!bp_objfile_data->exception_searched)
3353 {
3354 VEC (probe_p) *ret;
3355
3356 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3357
3358 if (ret != NULL)
3359 {
3360 /* We are only interested in checking one element. */
3361 struct probe *p = VEC_index (probe_p, ret, 0);
3362
3363 if (!can_evaluate_probe_arguments (p))
3364 {
3365 /* We cannot use the probe interface here, because it does
3366 not know how to evaluate arguments. */
3367 VEC_free (probe_p, ret);
3368 ret = NULL;
3369 }
3370 }
3371 bp_objfile_data->exception_probes = ret;
3372 bp_objfile_data->exception_searched = 1;
3373 }
3374
3375 if (bp_objfile_data->exception_probes != NULL)
3376 {
3377 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3378 int i;
3379 struct probe *probe;
3380
3381 for (i = 0;
3382 VEC_iterate (probe_p,
3383 bp_objfile_data->exception_probes,
3384 i, probe);
3385 ++i)
3386 {
3387 struct breakpoint *b;
3388
3389 b = create_internal_breakpoint (gdbarch, probe->address,
3390 bp_exception_master,
3391 &internal_breakpoint_ops);
3392 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3393 b->enable_state = bp_disabled;
3394 }
3395
3396 continue;
3397 }
3398
3399 /* Otherwise, try the hook function. */
3400
3401 if (msym_not_found_p (bp_objfile_data->exception_msym))
3402 continue;
3403
3404 gdbarch = get_objfile_arch (objfile);
3405
3406 if (bp_objfile_data->exception_msym == NULL)
3407 {
3408 struct minimal_symbol *debug_hook;
3409
3410 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3411 if (debug_hook == NULL)
3412 {
3413 bp_objfile_data->exception_msym = &msym_not_found;
3414 continue;
3415 }
3416
3417 bp_objfile_data->exception_msym = debug_hook;
3418 }
3419
3420 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3421 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3422 &current_target);
3423 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3424 &internal_breakpoint_ops);
3425 b->addr_string = xstrdup (func_name);
3426 b->enable_state = bp_disabled;
3427 }
3428
3429 update_global_location_list (1);
3430 }
3431
3432 void
3433 update_breakpoints_after_exec (void)
3434 {
3435 struct breakpoint *b, *b_tmp;
3436 struct bp_location *bploc, **bplocp_tmp;
3437
3438 /* We're about to delete breakpoints from GDB's lists. If the
3439 INSERTED flag is true, GDB will try to lift the breakpoints by
3440 writing the breakpoints' "shadow contents" back into memory. The
3441 "shadow contents" are NOT valid after an exec, so GDB should not
3442 do that. Instead, the target is responsible from marking
3443 breakpoints out as soon as it detects an exec. We don't do that
3444 here instead, because there may be other attempts to delete
3445 breakpoints after detecting an exec and before reaching here. */
3446 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3447 if (bploc->pspace == current_program_space)
3448 gdb_assert (!bploc->inserted);
3449
3450 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3451 {
3452 if (b->pspace != current_program_space)
3453 continue;
3454
3455 /* Solib breakpoints must be explicitly reset after an exec(). */
3456 if (b->type == bp_shlib_event)
3457 {
3458 delete_breakpoint (b);
3459 continue;
3460 }
3461
3462 /* JIT breakpoints must be explicitly reset after an exec(). */
3463 if (b->type == bp_jit_event)
3464 {
3465 delete_breakpoint (b);
3466 continue;
3467 }
3468
3469 /* Thread event breakpoints must be set anew after an exec(),
3470 as must overlay event and longjmp master breakpoints. */
3471 if (b->type == bp_thread_event || b->type == bp_overlay_event
3472 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3473 || b->type == bp_exception_master)
3474 {
3475 delete_breakpoint (b);
3476 continue;
3477 }
3478
3479 /* Step-resume breakpoints are meaningless after an exec(). */
3480 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3481 {
3482 delete_breakpoint (b);
3483 continue;
3484 }
3485
3486 /* Longjmp and longjmp-resume breakpoints are also meaningless
3487 after an exec. */
3488 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3489 || b->type == bp_longjmp_call_dummy
3490 || b->type == bp_exception || b->type == bp_exception_resume)
3491 {
3492 delete_breakpoint (b);
3493 continue;
3494 }
3495
3496 if (b->type == bp_catchpoint)
3497 {
3498 /* For now, none of the bp_catchpoint breakpoints need to
3499 do anything at this point. In the future, if some of
3500 the catchpoints need to something, we will need to add
3501 a new method, and call this method from here. */
3502 continue;
3503 }
3504
3505 /* bp_finish is a special case. The only way we ought to be able
3506 to see one of these when an exec() has happened, is if the user
3507 caught a vfork, and then said "finish". Ordinarily a finish just
3508 carries them to the call-site of the current callee, by setting
3509 a temporary bp there and resuming. But in this case, the finish
3510 will carry them entirely through the vfork & exec.
3511
3512 We don't want to allow a bp_finish to remain inserted now. But
3513 we can't safely delete it, 'cause finish_command has a handle to
3514 the bp on a bpstat, and will later want to delete it. There's a
3515 chance (and I've seen it happen) that if we delete the bp_finish
3516 here, that its storage will get reused by the time finish_command
3517 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3518 We really must allow finish_command to delete a bp_finish.
3519
3520 In the absence of a general solution for the "how do we know
3521 it's safe to delete something others may have handles to?"
3522 problem, what we'll do here is just uninsert the bp_finish, and
3523 let finish_command delete it.
3524
3525 (We know the bp_finish is "doomed" in the sense that it's
3526 momentary, and will be deleted as soon as finish_command sees
3527 the inferior stopped. So it doesn't matter that the bp's
3528 address is probably bogus in the new a.out, unlike e.g., the
3529 solib breakpoints.) */
3530
3531 if (b->type == bp_finish)
3532 {
3533 continue;
3534 }
3535
3536 /* Without a symbolic address, we have little hope of the
3537 pre-exec() address meaning the same thing in the post-exec()
3538 a.out. */
3539 if (b->addr_string == NULL)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544 }
3545 /* FIXME what about longjmp breakpoints? Re-create them here? */
3546 create_overlay_event_breakpoint ();
3547 create_longjmp_master_breakpoint ();
3548 create_std_terminate_master_breakpoint ();
3549 create_exception_master_breakpoint ();
3550 }
3551
3552 int
3553 detach_breakpoints (ptid_t ptid)
3554 {
3555 struct bp_location *bl, **blp_tmp;
3556 int val = 0;
3557 struct cleanup *old_chain = save_inferior_ptid ();
3558 struct inferior *inf = current_inferior ();
3559
3560 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3561 error (_("Cannot detach breakpoints of inferior_ptid"));
3562
3563 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3564 inferior_ptid = ptid;
3565 ALL_BP_LOCATIONS (bl, blp_tmp)
3566 {
3567 if (bl->pspace != inf->pspace)
3568 continue;
3569
3570 /* This function must physically remove breakpoints locations
3571 from the specified ptid, without modifying the breakpoint
3572 package's state. Locations of type bp_loc_other are only
3573 maintained at GDB side. So, there is no need to remove
3574 these bp_loc_other locations. Moreover, removing these
3575 would modify the breakpoint package's state. */
3576 if (bl->loc_type == bp_loc_other)
3577 continue;
3578
3579 if (bl->inserted)
3580 val |= remove_breakpoint_1 (bl, mark_inserted);
3581 }
3582
3583 /* Detach single-step breakpoints as well. */
3584 detach_single_step_breakpoints ();
3585
3586 do_cleanups (old_chain);
3587 return val;
3588 }
3589
3590 /* Remove the breakpoint location BL from the current address space.
3591 Note that this is used to detach breakpoints from a child fork.
3592 When we get here, the child isn't in the inferior list, and neither
3593 do we have objects to represent its address space --- we should
3594 *not* look at bl->pspace->aspace here. */
3595
3596 static int
3597 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3598 {
3599 int val;
3600
3601 /* BL is never in moribund_locations by our callers. */
3602 gdb_assert (bl->owner != NULL);
3603
3604 if (bl->owner->enable_state == bp_permanent)
3605 /* Permanent breakpoints cannot be inserted or removed. */
3606 return 0;
3607
3608 /* The type of none suggests that owner is actually deleted.
3609 This should not ever happen. */
3610 gdb_assert (bl->owner->type != bp_none);
3611
3612 if (bl->loc_type == bp_loc_software_breakpoint
3613 || bl->loc_type == bp_loc_hardware_breakpoint)
3614 {
3615 /* "Normal" instruction breakpoint: either the standard
3616 trap-instruction bp (bp_breakpoint), or a
3617 bp_hardware_breakpoint. */
3618
3619 /* First check to see if we have to handle an overlay. */
3620 if (overlay_debugging == ovly_off
3621 || bl->section == NULL
3622 || !(section_is_overlay (bl->section)))
3623 {
3624 /* No overlay handling: just remove the breakpoint. */
3625 val = bl->owner->ops->remove_location (bl);
3626 }
3627 else
3628 {
3629 /* This breakpoint is in an overlay section.
3630 Did we set a breakpoint at the LMA? */
3631 if (!overlay_events_enabled)
3632 {
3633 /* Yes -- overlay event support is not active, so we
3634 should have set a breakpoint at the LMA. Remove it.
3635 */
3636 /* Ignore any failures: if the LMA is in ROM, we will
3637 have already warned when we failed to insert it. */
3638 if (bl->loc_type == bp_loc_hardware_breakpoint)
3639 target_remove_hw_breakpoint (bl->gdbarch,
3640 &bl->overlay_target_info);
3641 else
3642 target_remove_breakpoint (bl->gdbarch,
3643 &bl->overlay_target_info);
3644 }
3645 /* Did we set a breakpoint at the VMA?
3646 If so, we will have marked the breakpoint 'inserted'. */
3647 if (bl->inserted)
3648 {
3649 /* Yes -- remove it. Previously we did not bother to
3650 remove the breakpoint if the section had been
3651 unmapped, but let's not rely on that being safe. We
3652 don't know what the overlay manager might do. */
3653
3654 /* However, we should remove *software* breakpoints only
3655 if the section is still mapped, or else we overwrite
3656 wrong code with the saved shadow contents. */
3657 if (bl->loc_type == bp_loc_hardware_breakpoint
3658 || section_is_mapped (bl->section))
3659 val = bl->owner->ops->remove_location (bl);
3660 else
3661 val = 0;
3662 }
3663 else
3664 {
3665 /* No -- not inserted, so no need to remove. No error. */
3666 val = 0;
3667 }
3668 }
3669
3670 /* In some cases, we might not be able to remove a breakpoint
3671 in a shared library that has already been removed, but we
3672 have not yet processed the shlib unload event. */
3673 if (val && solib_name_from_address (bl->pspace, bl->address))
3674 val = 0;
3675
3676 if (val)
3677 return val;
3678 bl->inserted = (is == mark_inserted);
3679 }
3680 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3681 {
3682 gdb_assert (bl->owner->ops != NULL
3683 && bl->owner->ops->remove_location != NULL);
3684
3685 bl->inserted = (is == mark_inserted);
3686 bl->owner->ops->remove_location (bl);
3687
3688 /* Failure to remove any of the hardware watchpoints comes here. */
3689 if ((is == mark_uninserted) && (bl->inserted))
3690 warning (_("Could not remove hardware watchpoint %d."),
3691 bl->owner->number);
3692 }
3693 else if (bl->owner->type == bp_catchpoint
3694 && breakpoint_enabled (bl->owner)
3695 && !bl->duplicate)
3696 {
3697 gdb_assert (bl->owner->ops != NULL
3698 && bl->owner->ops->remove_location != NULL);
3699
3700 val = bl->owner->ops->remove_location (bl);
3701 if (val)
3702 return val;
3703
3704 bl->inserted = (is == mark_inserted);
3705 }
3706
3707 return 0;
3708 }
3709
3710 static int
3711 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3712 {
3713 int ret;
3714 struct cleanup *old_chain;
3715
3716 /* BL is never in moribund_locations by our callers. */
3717 gdb_assert (bl->owner != NULL);
3718
3719 if (bl->owner->enable_state == bp_permanent)
3720 /* Permanent breakpoints cannot be inserted or removed. */
3721 return 0;
3722
3723 /* The type of none suggests that owner is actually deleted.
3724 This should not ever happen. */
3725 gdb_assert (bl->owner->type != bp_none);
3726
3727 old_chain = save_current_space_and_thread ();
3728
3729 switch_to_program_space_and_thread (bl->pspace);
3730
3731 ret = remove_breakpoint_1 (bl, is);
3732
3733 do_cleanups (old_chain);
3734 return ret;
3735 }
3736
3737 /* Clear the "inserted" flag in all breakpoints. */
3738
3739 void
3740 mark_breakpoints_out (void)
3741 {
3742 struct bp_location *bl, **blp_tmp;
3743
3744 ALL_BP_LOCATIONS (bl, blp_tmp)
3745 if (bl->pspace == current_program_space)
3746 bl->inserted = 0;
3747 }
3748
3749 /* Clear the "inserted" flag in all breakpoints and delete any
3750 breakpoints which should go away between runs of the program.
3751
3752 Plus other such housekeeping that has to be done for breakpoints
3753 between runs.
3754
3755 Note: this function gets called at the end of a run (by
3756 generic_mourn_inferior) and when a run begins (by
3757 init_wait_for_inferior). */
3758
3759
3760
3761 void
3762 breakpoint_init_inferior (enum inf_context context)
3763 {
3764 struct breakpoint *b, *b_tmp;
3765 struct bp_location *bl, **blp_tmp;
3766 int ix;
3767 struct program_space *pspace = current_program_space;
3768
3769 /* If breakpoint locations are shared across processes, then there's
3770 nothing to do. */
3771 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3772 return;
3773
3774 ALL_BP_LOCATIONS (bl, blp_tmp)
3775 {
3776 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3777 if (bl->pspace == pspace
3778 && bl->owner->enable_state != bp_permanent)
3779 bl->inserted = 0;
3780 }
3781
3782 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3783 {
3784 if (b->loc && b->loc->pspace != pspace)
3785 continue;
3786
3787 switch (b->type)
3788 {
3789 case bp_call_dummy:
3790 case bp_longjmp_call_dummy:
3791
3792 /* If the call dummy breakpoint is at the entry point it will
3793 cause problems when the inferior is rerun, so we better get
3794 rid of it. */
3795
3796 case bp_watchpoint_scope:
3797
3798 /* Also get rid of scope breakpoints. */
3799
3800 case bp_shlib_event:
3801
3802 /* Also remove solib event breakpoints. Their addresses may
3803 have changed since the last time we ran the program.
3804 Actually we may now be debugging against different target;
3805 and so the solib backend that installed this breakpoint may
3806 not be used in by the target. E.g.,
3807
3808 (gdb) file prog-linux
3809 (gdb) run # native linux target
3810 ...
3811 (gdb) kill
3812 (gdb) file prog-win.exe
3813 (gdb) tar rem :9999 # remote Windows gdbserver.
3814 */
3815
3816 case bp_step_resume:
3817
3818 /* Also remove step-resume breakpoints. */
3819
3820 delete_breakpoint (b);
3821 break;
3822
3823 case bp_watchpoint:
3824 case bp_hardware_watchpoint:
3825 case bp_read_watchpoint:
3826 case bp_access_watchpoint:
3827 {
3828 struct watchpoint *w = (struct watchpoint *) b;
3829
3830 /* Likewise for watchpoints on local expressions. */
3831 if (w->exp_valid_block != NULL)
3832 delete_breakpoint (b);
3833 else if (context == inf_starting)
3834 {
3835 /* Reset val field to force reread of starting value in
3836 insert_breakpoints. */
3837 if (w->val)
3838 value_free (w->val);
3839 w->val = NULL;
3840 w->val_valid = 0;
3841 }
3842 }
3843 break;
3844 default:
3845 break;
3846 }
3847 }
3848
3849 /* Get rid of the moribund locations. */
3850 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3851 decref_bp_location (&bl);
3852 VEC_free (bp_location_p, moribund_locations);
3853 }
3854
3855 /* These functions concern about actual breakpoints inserted in the
3856 target --- to e.g. check if we need to do decr_pc adjustment or if
3857 we need to hop over the bkpt --- so we check for address space
3858 match, not program space. */
3859
3860 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3861 exists at PC. It returns ordinary_breakpoint_here if it's an
3862 ordinary breakpoint, or permanent_breakpoint_here if it's a
3863 permanent breakpoint.
3864 - When continuing from a location with an ordinary breakpoint, we
3865 actually single step once before calling insert_breakpoints.
3866 - When continuing from a location with a permanent breakpoint, we
3867 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3868 the target, to advance the PC past the breakpoint. */
3869
3870 enum breakpoint_here
3871 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3872 {
3873 struct bp_location *bl, **blp_tmp;
3874 int any_breakpoint_here = 0;
3875
3876 ALL_BP_LOCATIONS (bl, blp_tmp)
3877 {
3878 if (bl->loc_type != bp_loc_software_breakpoint
3879 && bl->loc_type != bp_loc_hardware_breakpoint)
3880 continue;
3881
3882 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3883 if ((breakpoint_enabled (bl->owner)
3884 || bl->owner->enable_state == bp_permanent)
3885 && breakpoint_location_address_match (bl, aspace, pc))
3886 {
3887 if (overlay_debugging
3888 && section_is_overlay (bl->section)
3889 && !section_is_mapped (bl->section))
3890 continue; /* unmapped overlay -- can't be a match */
3891 else if (bl->owner->enable_state == bp_permanent)
3892 return permanent_breakpoint_here;
3893 else
3894 any_breakpoint_here = 1;
3895 }
3896 }
3897
3898 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3899 }
3900
3901 /* Return true if there's a moribund breakpoint at PC. */
3902
3903 int
3904 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3905 {
3906 struct bp_location *loc;
3907 int ix;
3908
3909 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3910 if (breakpoint_location_address_match (loc, aspace, pc))
3911 return 1;
3912
3913 return 0;
3914 }
3915
3916 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3917 inserted using regular breakpoint_chain / bp_location array
3918 mechanism. This does not check for single-step breakpoints, which
3919 are inserted and removed using direct target manipulation. */
3920
3921 int
3922 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3923 CORE_ADDR pc)
3924 {
3925 struct bp_location *bl, **blp_tmp;
3926
3927 ALL_BP_LOCATIONS (bl, blp_tmp)
3928 {
3929 if (bl->loc_type != bp_loc_software_breakpoint
3930 && bl->loc_type != bp_loc_hardware_breakpoint)
3931 continue;
3932
3933 if (bl->inserted
3934 && breakpoint_location_address_match (bl, aspace, pc))
3935 {
3936 if (overlay_debugging
3937 && section_is_overlay (bl->section)
3938 && !section_is_mapped (bl->section))
3939 continue; /* unmapped overlay -- can't be a match */
3940 else
3941 return 1;
3942 }
3943 }
3944 return 0;
3945 }
3946
3947 /* Returns non-zero iff there's either regular breakpoint
3948 or a single step breakpoint inserted at PC. */
3949
3950 int
3951 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3952 {
3953 if (regular_breakpoint_inserted_here_p (aspace, pc))
3954 return 1;
3955
3956 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3957 return 1;
3958
3959 return 0;
3960 }
3961
3962 /* This function returns non-zero iff there is a software breakpoint
3963 inserted at PC. */
3964
3965 int
3966 software_breakpoint_inserted_here_p (struct address_space *aspace,
3967 CORE_ADDR pc)
3968 {
3969 struct bp_location *bl, **blp_tmp;
3970
3971 ALL_BP_LOCATIONS (bl, blp_tmp)
3972 {
3973 if (bl->loc_type != bp_loc_software_breakpoint)
3974 continue;
3975
3976 if (bl->inserted
3977 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3978 aspace, pc))
3979 {
3980 if (overlay_debugging
3981 && section_is_overlay (bl->section)
3982 && !section_is_mapped (bl->section))
3983 continue; /* unmapped overlay -- can't be a match */
3984 else
3985 return 1;
3986 }
3987 }
3988
3989 /* Also check for software single-step breakpoints. */
3990 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3991 return 1;
3992
3993 return 0;
3994 }
3995
3996 int
3997 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3998 CORE_ADDR addr, ULONGEST len)
3999 {
4000 struct breakpoint *bpt;
4001
4002 ALL_BREAKPOINTS (bpt)
4003 {
4004 struct bp_location *loc;
4005
4006 if (bpt->type != bp_hardware_watchpoint
4007 && bpt->type != bp_access_watchpoint)
4008 continue;
4009
4010 if (!breakpoint_enabled (bpt))
4011 continue;
4012
4013 for (loc = bpt->loc; loc; loc = loc->next)
4014 if (loc->pspace->aspace == aspace && loc->inserted)
4015 {
4016 CORE_ADDR l, h;
4017
4018 /* Check for intersection. */
4019 l = max (loc->address, addr);
4020 h = min (loc->address + loc->length, addr + len);
4021 if (l < h)
4022 return 1;
4023 }
4024 }
4025 return 0;
4026 }
4027
4028 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4029 PC is valid for process/thread PTID. */
4030
4031 int
4032 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4033 ptid_t ptid)
4034 {
4035 struct bp_location *bl, **blp_tmp;
4036 /* The thread and task IDs associated to PTID, computed lazily. */
4037 int thread = -1;
4038 int task = 0;
4039
4040 ALL_BP_LOCATIONS (bl, blp_tmp)
4041 {
4042 if (bl->loc_type != bp_loc_software_breakpoint
4043 && bl->loc_type != bp_loc_hardware_breakpoint)
4044 continue;
4045
4046 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4047 if (!breakpoint_enabled (bl->owner)
4048 && bl->owner->enable_state != bp_permanent)
4049 continue;
4050
4051 if (!breakpoint_location_address_match (bl, aspace, pc))
4052 continue;
4053
4054 if (bl->owner->thread != -1)
4055 {
4056 /* This is a thread-specific breakpoint. Check that ptid
4057 matches that thread. If thread hasn't been computed yet,
4058 it is now time to do so. */
4059 if (thread == -1)
4060 thread = pid_to_thread_id (ptid);
4061 if (bl->owner->thread != thread)
4062 continue;
4063 }
4064
4065 if (bl->owner->task != 0)
4066 {
4067 /* This is a task-specific breakpoint. Check that ptid
4068 matches that task. If task hasn't been computed yet,
4069 it is now time to do so. */
4070 if (task == 0)
4071 task = ada_get_task_number (ptid);
4072 if (bl->owner->task != task)
4073 continue;
4074 }
4075
4076 if (overlay_debugging
4077 && section_is_overlay (bl->section)
4078 && !section_is_mapped (bl->section))
4079 continue; /* unmapped overlay -- can't be a match */
4080
4081 return 1;
4082 }
4083
4084 return 0;
4085 }
4086 \f
4087
4088 /* bpstat stuff. External routines' interfaces are documented
4089 in breakpoint.h. */
4090
4091 int
4092 is_catchpoint (struct breakpoint *ep)
4093 {
4094 return (ep->type == bp_catchpoint);
4095 }
4096
4097 /* Frees any storage that is part of a bpstat. Does not walk the
4098 'next' chain. */
4099
4100 static void
4101 bpstat_free (bpstat bs)
4102 {
4103 if (bs->old_val != NULL)
4104 value_free (bs->old_val);
4105 decref_counted_command_line (&bs->commands);
4106 decref_bp_location (&bs->bp_location_at);
4107 xfree (bs);
4108 }
4109
4110 /* Clear a bpstat so that it says we are not at any breakpoint.
4111 Also free any storage that is part of a bpstat. */
4112
4113 void
4114 bpstat_clear (bpstat *bsp)
4115 {
4116 bpstat p;
4117 bpstat q;
4118
4119 if (bsp == 0)
4120 return;
4121 p = *bsp;
4122 while (p != NULL)
4123 {
4124 q = p->next;
4125 bpstat_free (p);
4126 p = q;
4127 }
4128 *bsp = NULL;
4129 }
4130
4131 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4132 is part of the bpstat is copied as well. */
4133
4134 bpstat
4135 bpstat_copy (bpstat bs)
4136 {
4137 bpstat p = NULL;
4138 bpstat tmp;
4139 bpstat retval = NULL;
4140
4141 if (bs == NULL)
4142 return bs;
4143
4144 for (; bs != NULL; bs = bs->next)
4145 {
4146 tmp = (bpstat) xmalloc (sizeof (*tmp));
4147 memcpy (tmp, bs, sizeof (*tmp));
4148 incref_counted_command_line (tmp->commands);
4149 incref_bp_location (tmp->bp_location_at);
4150 if (bs->old_val != NULL)
4151 {
4152 tmp->old_val = value_copy (bs->old_val);
4153 release_value (tmp->old_val);
4154 }
4155
4156 if (p == NULL)
4157 /* This is the first thing in the chain. */
4158 retval = tmp;
4159 else
4160 p->next = tmp;
4161 p = tmp;
4162 }
4163 p->next = NULL;
4164 return retval;
4165 }
4166
4167 /* Find the bpstat associated with this breakpoint. */
4168
4169 bpstat
4170 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4171 {
4172 if (bsp == NULL)
4173 return NULL;
4174
4175 for (; bsp != NULL; bsp = bsp->next)
4176 {
4177 if (bsp->breakpoint_at == breakpoint)
4178 return bsp;
4179 }
4180 return NULL;
4181 }
4182
4183 /* See breakpoint.h. */
4184
4185 enum bpstat_signal_value
4186 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4187 {
4188 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4189
4190 for (; bsp != NULL; bsp = bsp->next)
4191 {
4192 /* Ensure that, if we ever entered this loop, then we at least
4193 return BPSTAT_SIGNAL_HIDE. */
4194 enum bpstat_signal_value newval;
4195
4196 if (bsp->breakpoint_at == NULL)
4197 {
4198 /* A moribund location can never explain a signal other than
4199 GDB_SIGNAL_TRAP. */
4200 if (sig == GDB_SIGNAL_TRAP)
4201 newval = BPSTAT_SIGNAL_HIDE;
4202 else
4203 newval = BPSTAT_SIGNAL_NO;
4204 }
4205 else
4206 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4207 sig);
4208
4209 if (newval > result)
4210 result = newval;
4211 }
4212
4213 return result;
4214 }
4215
4216 /* Put in *NUM the breakpoint number of the first breakpoint we are
4217 stopped at. *BSP upon return is a bpstat which points to the
4218 remaining breakpoints stopped at (but which is not guaranteed to be
4219 good for anything but further calls to bpstat_num).
4220
4221 Return 0 if passed a bpstat which does not indicate any breakpoints.
4222 Return -1 if stopped at a breakpoint that has been deleted since
4223 we set it.
4224 Return 1 otherwise. */
4225
4226 int
4227 bpstat_num (bpstat *bsp, int *num)
4228 {
4229 struct breakpoint *b;
4230
4231 if ((*bsp) == NULL)
4232 return 0; /* No more breakpoint values */
4233
4234 /* We assume we'll never have several bpstats that correspond to a
4235 single breakpoint -- otherwise, this function might return the
4236 same number more than once and this will look ugly. */
4237 b = (*bsp)->breakpoint_at;
4238 *bsp = (*bsp)->next;
4239 if (b == NULL)
4240 return -1; /* breakpoint that's been deleted since */
4241
4242 *num = b->number; /* We have its number */
4243 return 1;
4244 }
4245
4246 /* See breakpoint.h. */
4247
4248 void
4249 bpstat_clear_actions (void)
4250 {
4251 struct thread_info *tp;
4252 bpstat bs;
4253
4254 if (ptid_equal (inferior_ptid, null_ptid))
4255 return;
4256
4257 tp = find_thread_ptid (inferior_ptid);
4258 if (tp == NULL)
4259 return;
4260
4261 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4262 {
4263 decref_counted_command_line (&bs->commands);
4264
4265 if (bs->old_val != NULL)
4266 {
4267 value_free (bs->old_val);
4268 bs->old_val = NULL;
4269 }
4270 }
4271 }
4272
4273 /* Called when a command is about to proceed the inferior. */
4274
4275 static void
4276 breakpoint_about_to_proceed (void)
4277 {
4278 if (!ptid_equal (inferior_ptid, null_ptid))
4279 {
4280 struct thread_info *tp = inferior_thread ();
4281
4282 /* Allow inferior function calls in breakpoint commands to not
4283 interrupt the command list. When the call finishes
4284 successfully, the inferior will be standing at the same
4285 breakpoint as if nothing happened. */
4286 if (tp->control.in_infcall)
4287 return;
4288 }
4289
4290 breakpoint_proceeded = 1;
4291 }
4292
4293 /* Stub for cleaning up our state if we error-out of a breakpoint
4294 command. */
4295 static void
4296 cleanup_executing_breakpoints (void *ignore)
4297 {
4298 executing_breakpoint_commands = 0;
4299 }
4300
4301 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4302 or its equivalent. */
4303
4304 static int
4305 command_line_is_silent (struct command_line *cmd)
4306 {
4307 return cmd && (strcmp ("silent", cmd->line) == 0
4308 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4309 }
4310
4311 /* Execute all the commands associated with all the breakpoints at
4312 this location. Any of these commands could cause the process to
4313 proceed beyond this point, etc. We look out for such changes by
4314 checking the global "breakpoint_proceeded" after each command.
4315
4316 Returns true if a breakpoint command resumed the inferior. In that
4317 case, it is the caller's responsibility to recall it again with the
4318 bpstat of the current thread. */
4319
4320 static int
4321 bpstat_do_actions_1 (bpstat *bsp)
4322 {
4323 bpstat bs;
4324 struct cleanup *old_chain;
4325 int again = 0;
4326
4327 /* Avoid endless recursion if a `source' command is contained
4328 in bs->commands. */
4329 if (executing_breakpoint_commands)
4330 return 0;
4331
4332 executing_breakpoint_commands = 1;
4333 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4334
4335 prevent_dont_repeat ();
4336
4337 /* This pointer will iterate over the list of bpstat's. */
4338 bs = *bsp;
4339
4340 breakpoint_proceeded = 0;
4341 for (; bs != NULL; bs = bs->next)
4342 {
4343 struct counted_command_line *ccmd;
4344 struct command_line *cmd;
4345 struct cleanup *this_cmd_tree_chain;
4346
4347 /* Take ownership of the BSP's command tree, if it has one.
4348
4349 The command tree could legitimately contain commands like
4350 'step' and 'next', which call clear_proceed_status, which
4351 frees stop_bpstat's command tree. To make sure this doesn't
4352 free the tree we're executing out from under us, we need to
4353 take ownership of the tree ourselves. Since a given bpstat's
4354 commands are only executed once, we don't need to copy it; we
4355 can clear the pointer in the bpstat, and make sure we free
4356 the tree when we're done. */
4357 ccmd = bs->commands;
4358 bs->commands = NULL;
4359 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4360 cmd = ccmd ? ccmd->commands : NULL;
4361 if (command_line_is_silent (cmd))
4362 {
4363 /* The action has been already done by bpstat_stop_status. */
4364 cmd = cmd->next;
4365 }
4366
4367 while (cmd != NULL)
4368 {
4369 execute_control_command (cmd);
4370
4371 if (breakpoint_proceeded)
4372 break;
4373 else
4374 cmd = cmd->next;
4375 }
4376
4377 /* We can free this command tree now. */
4378 do_cleanups (this_cmd_tree_chain);
4379
4380 if (breakpoint_proceeded)
4381 {
4382 if (target_can_async_p ())
4383 /* If we are in async mode, then the target might be still
4384 running, not stopped at any breakpoint, so nothing for
4385 us to do here -- just return to the event loop. */
4386 ;
4387 else
4388 /* In sync mode, when execute_control_command returns
4389 we're already standing on the next breakpoint.
4390 Breakpoint commands for that stop were not run, since
4391 execute_command does not run breakpoint commands --
4392 only command_line_handler does, but that one is not
4393 involved in execution of breakpoint commands. So, we
4394 can now execute breakpoint commands. It should be
4395 noted that making execute_command do bpstat actions is
4396 not an option -- in this case we'll have recursive
4397 invocation of bpstat for each breakpoint with a
4398 command, and can easily blow up GDB stack. Instead, we
4399 return true, which will trigger the caller to recall us
4400 with the new stop_bpstat. */
4401 again = 1;
4402 break;
4403 }
4404 }
4405 do_cleanups (old_chain);
4406 return again;
4407 }
4408
4409 void
4410 bpstat_do_actions (void)
4411 {
4412 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4413
4414 /* Do any commands attached to breakpoint we are stopped at. */
4415 while (!ptid_equal (inferior_ptid, null_ptid)
4416 && target_has_execution
4417 && !is_exited (inferior_ptid)
4418 && !is_executing (inferior_ptid))
4419 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4420 and only return when it is stopped at the next breakpoint, we
4421 keep doing breakpoint actions until it returns false to
4422 indicate the inferior was not resumed. */
4423 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4424 break;
4425
4426 discard_cleanups (cleanup_if_error);
4427 }
4428
4429 /* Print out the (old or new) value associated with a watchpoint. */
4430
4431 static void
4432 watchpoint_value_print (struct value *val, struct ui_file *stream)
4433 {
4434 if (val == NULL)
4435 fprintf_unfiltered (stream, _("<unreadable>"));
4436 else
4437 {
4438 struct value_print_options opts;
4439 get_user_print_options (&opts);
4440 value_print (val, stream, &opts);
4441 }
4442 }
4443
4444 /* Generic routine for printing messages indicating why we
4445 stopped. The behavior of this function depends on the value
4446 'print_it' in the bpstat structure. Under some circumstances we
4447 may decide not to print anything here and delegate the task to
4448 normal_stop(). */
4449
4450 static enum print_stop_action
4451 print_bp_stop_message (bpstat bs)
4452 {
4453 switch (bs->print_it)
4454 {
4455 case print_it_noop:
4456 /* Nothing should be printed for this bpstat entry. */
4457 return PRINT_UNKNOWN;
4458 break;
4459
4460 case print_it_done:
4461 /* We still want to print the frame, but we already printed the
4462 relevant messages. */
4463 return PRINT_SRC_AND_LOC;
4464 break;
4465
4466 case print_it_normal:
4467 {
4468 struct breakpoint *b = bs->breakpoint_at;
4469
4470 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4471 which has since been deleted. */
4472 if (b == NULL)
4473 return PRINT_UNKNOWN;
4474
4475 /* Normal case. Call the breakpoint's print_it method. */
4476 return b->ops->print_it (bs);
4477 }
4478 break;
4479
4480 default:
4481 internal_error (__FILE__, __LINE__,
4482 _("print_bp_stop_message: unrecognized enum value"));
4483 break;
4484 }
4485 }
4486
4487 /* A helper function that prints a shared library stopped event. */
4488
4489 static void
4490 print_solib_event (int is_catchpoint)
4491 {
4492 int any_deleted
4493 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4494 int any_added
4495 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4496
4497 if (!is_catchpoint)
4498 {
4499 if (any_added || any_deleted)
4500 ui_out_text (current_uiout,
4501 _("Stopped due to shared library event:\n"));
4502 else
4503 ui_out_text (current_uiout,
4504 _("Stopped due to shared library event (no "
4505 "libraries added or removed)\n"));
4506 }
4507
4508 if (ui_out_is_mi_like_p (current_uiout))
4509 ui_out_field_string (current_uiout, "reason",
4510 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4511
4512 if (any_deleted)
4513 {
4514 struct cleanup *cleanup;
4515 char *name;
4516 int ix;
4517
4518 ui_out_text (current_uiout, _(" Inferior unloaded "));
4519 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4520 "removed");
4521 for (ix = 0;
4522 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4523 ix, name);
4524 ++ix)
4525 {
4526 if (ix > 0)
4527 ui_out_text (current_uiout, " ");
4528 ui_out_field_string (current_uiout, "library", name);
4529 ui_out_text (current_uiout, "\n");
4530 }
4531
4532 do_cleanups (cleanup);
4533 }
4534
4535 if (any_added)
4536 {
4537 struct so_list *iter;
4538 int ix;
4539 struct cleanup *cleanup;
4540
4541 ui_out_text (current_uiout, _(" Inferior loaded "));
4542 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4543 "added");
4544 for (ix = 0;
4545 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4546 ix, iter);
4547 ++ix)
4548 {
4549 if (ix > 0)
4550 ui_out_text (current_uiout, " ");
4551 ui_out_field_string (current_uiout, "library", iter->so_name);
4552 ui_out_text (current_uiout, "\n");
4553 }
4554
4555 do_cleanups (cleanup);
4556 }
4557 }
4558
4559 /* Print a message indicating what happened. This is called from
4560 normal_stop(). The input to this routine is the head of the bpstat
4561 list - a list of the eventpoints that caused this stop. KIND is
4562 the target_waitkind for the stopping event. This
4563 routine calls the generic print routine for printing a message
4564 about reasons for stopping. This will print (for example) the
4565 "Breakpoint n," part of the output. The return value of this
4566 routine is one of:
4567
4568 PRINT_UNKNOWN: Means we printed nothing.
4569 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4570 code to print the location. An example is
4571 "Breakpoint 1, " which should be followed by
4572 the location.
4573 PRINT_SRC_ONLY: Means we printed something, but there is no need
4574 to also print the location part of the message.
4575 An example is the catch/throw messages, which
4576 don't require a location appended to the end.
4577 PRINT_NOTHING: We have done some printing and we don't need any
4578 further info to be printed. */
4579
4580 enum print_stop_action
4581 bpstat_print (bpstat bs, int kind)
4582 {
4583 int val;
4584
4585 /* Maybe another breakpoint in the chain caused us to stop.
4586 (Currently all watchpoints go on the bpstat whether hit or not.
4587 That probably could (should) be changed, provided care is taken
4588 with respect to bpstat_explains_signal). */
4589 for (; bs; bs = bs->next)
4590 {
4591 val = print_bp_stop_message (bs);
4592 if (val == PRINT_SRC_ONLY
4593 || val == PRINT_SRC_AND_LOC
4594 || val == PRINT_NOTHING)
4595 return val;
4596 }
4597
4598 /* If we had hit a shared library event breakpoint,
4599 print_bp_stop_message would print out this message. If we hit an
4600 OS-level shared library event, do the same thing. */
4601 if (kind == TARGET_WAITKIND_LOADED)
4602 {
4603 print_solib_event (0);
4604 return PRINT_NOTHING;
4605 }
4606
4607 /* We reached the end of the chain, or we got a null BS to start
4608 with and nothing was printed. */
4609 return PRINT_UNKNOWN;
4610 }
4611
4612 /* Evaluate the expression EXP and return 1 if value is zero. This is
4613 used inside a catch_errors to evaluate the breakpoint condition.
4614 The argument is a "struct expression *" that has been cast to a
4615 "char *" to make it pass through catch_errors. */
4616
4617 static int
4618 breakpoint_cond_eval (void *exp)
4619 {
4620 struct value *mark = value_mark ();
4621 int i = !value_true (evaluate_expression ((struct expression *) exp));
4622
4623 value_free_to_mark (mark);
4624 return i;
4625 }
4626
4627 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4628
4629 static bpstat
4630 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4631 {
4632 bpstat bs;
4633
4634 bs = (bpstat) xmalloc (sizeof (*bs));
4635 bs->next = NULL;
4636 **bs_link_pointer = bs;
4637 *bs_link_pointer = &bs->next;
4638 bs->breakpoint_at = bl->owner;
4639 bs->bp_location_at = bl;
4640 incref_bp_location (bl);
4641 /* If the condition is false, etc., don't do the commands. */
4642 bs->commands = NULL;
4643 bs->old_val = NULL;
4644 bs->print_it = print_it_normal;
4645 return bs;
4646 }
4647 \f
4648 /* The target has stopped with waitstatus WS. Check if any hardware
4649 watchpoints have triggered, according to the target. */
4650
4651 int
4652 watchpoints_triggered (struct target_waitstatus *ws)
4653 {
4654 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4655 CORE_ADDR addr;
4656 struct breakpoint *b;
4657
4658 if (!stopped_by_watchpoint)
4659 {
4660 /* We were not stopped by a watchpoint. Mark all watchpoints
4661 as not triggered. */
4662 ALL_BREAKPOINTS (b)
4663 if (is_hardware_watchpoint (b))
4664 {
4665 struct watchpoint *w = (struct watchpoint *) b;
4666
4667 w->watchpoint_triggered = watch_triggered_no;
4668 }
4669
4670 return 0;
4671 }
4672
4673 if (!target_stopped_data_address (&current_target, &addr))
4674 {
4675 /* We were stopped by a watchpoint, but we don't know where.
4676 Mark all watchpoints as unknown. */
4677 ALL_BREAKPOINTS (b)
4678 if (is_hardware_watchpoint (b))
4679 {
4680 struct watchpoint *w = (struct watchpoint *) b;
4681
4682 w->watchpoint_triggered = watch_triggered_unknown;
4683 }
4684
4685 return stopped_by_watchpoint;
4686 }
4687
4688 /* The target could report the data address. Mark watchpoints
4689 affected by this data address as triggered, and all others as not
4690 triggered. */
4691
4692 ALL_BREAKPOINTS (b)
4693 if (is_hardware_watchpoint (b))
4694 {
4695 struct watchpoint *w = (struct watchpoint *) b;
4696 struct bp_location *loc;
4697
4698 w->watchpoint_triggered = watch_triggered_no;
4699 for (loc = b->loc; loc; loc = loc->next)
4700 {
4701 if (is_masked_watchpoint (b))
4702 {
4703 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4704 CORE_ADDR start = loc->address & w->hw_wp_mask;
4705
4706 if (newaddr == start)
4707 {
4708 w->watchpoint_triggered = watch_triggered_yes;
4709 break;
4710 }
4711 }
4712 /* Exact match not required. Within range is sufficient. */
4713 else if (target_watchpoint_addr_within_range (&current_target,
4714 addr, loc->address,
4715 loc->length))
4716 {
4717 w->watchpoint_triggered = watch_triggered_yes;
4718 break;
4719 }
4720 }
4721 }
4722
4723 return 1;
4724 }
4725
4726 /* Possible return values for watchpoint_check (this can't be an enum
4727 because of check_errors). */
4728 /* The watchpoint has been deleted. */
4729 #define WP_DELETED 1
4730 /* The value has changed. */
4731 #define WP_VALUE_CHANGED 2
4732 /* The value has not changed. */
4733 #define WP_VALUE_NOT_CHANGED 3
4734 /* Ignore this watchpoint, no matter if the value changed or not. */
4735 #define WP_IGNORE 4
4736
4737 #define BP_TEMPFLAG 1
4738 #define BP_HARDWAREFLAG 2
4739
4740 /* Evaluate watchpoint condition expression and check if its value
4741 changed.
4742
4743 P should be a pointer to struct bpstat, but is defined as a void *
4744 in order for this function to be usable with catch_errors. */
4745
4746 static int
4747 watchpoint_check (void *p)
4748 {
4749 bpstat bs = (bpstat) p;
4750 struct watchpoint *b;
4751 struct frame_info *fr;
4752 int within_current_scope;
4753
4754 /* BS is built from an existing struct breakpoint. */
4755 gdb_assert (bs->breakpoint_at != NULL);
4756 b = (struct watchpoint *) bs->breakpoint_at;
4757
4758 /* If this is a local watchpoint, we only want to check if the
4759 watchpoint frame is in scope if the current thread is the thread
4760 that was used to create the watchpoint. */
4761 if (!watchpoint_in_thread_scope (b))
4762 return WP_IGNORE;
4763
4764 if (b->exp_valid_block == NULL)
4765 within_current_scope = 1;
4766 else
4767 {
4768 struct frame_info *frame = get_current_frame ();
4769 struct gdbarch *frame_arch = get_frame_arch (frame);
4770 CORE_ADDR frame_pc = get_frame_pc (frame);
4771
4772 /* in_function_epilogue_p() returns a non-zero value if we're
4773 still in the function but the stack frame has already been
4774 invalidated. Since we can't rely on the values of local
4775 variables after the stack has been destroyed, we are treating
4776 the watchpoint in that state as `not changed' without further
4777 checking. Don't mark watchpoints as changed if the current
4778 frame is in an epilogue - even if they are in some other
4779 frame, our view of the stack is likely to be wrong and
4780 frame_find_by_id could error out. */
4781 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4782 return WP_IGNORE;
4783
4784 fr = frame_find_by_id (b->watchpoint_frame);
4785 within_current_scope = (fr != NULL);
4786
4787 /* If we've gotten confused in the unwinder, we might have
4788 returned a frame that can't describe this variable. */
4789 if (within_current_scope)
4790 {
4791 struct symbol *function;
4792
4793 function = get_frame_function (fr);
4794 if (function == NULL
4795 || !contained_in (b->exp_valid_block,
4796 SYMBOL_BLOCK_VALUE (function)))
4797 within_current_scope = 0;
4798 }
4799
4800 if (within_current_scope)
4801 /* If we end up stopping, the current frame will get selected
4802 in normal_stop. So this call to select_frame won't affect
4803 the user. */
4804 select_frame (fr);
4805 }
4806
4807 if (within_current_scope)
4808 {
4809 /* We use value_{,free_to_}mark because it could be a *long*
4810 time before we return to the command level and call
4811 free_all_values. We can't call free_all_values because we
4812 might be in the middle of evaluating a function call. */
4813
4814 int pc = 0;
4815 struct value *mark;
4816 struct value *new_val;
4817
4818 if (is_masked_watchpoint (&b->base))
4819 /* Since we don't know the exact trigger address (from
4820 stopped_data_address), just tell the user we've triggered
4821 a mask watchpoint. */
4822 return WP_VALUE_CHANGED;
4823
4824 mark = value_mark ();
4825 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4826
4827 /* We use value_equal_contents instead of value_equal because
4828 the latter coerces an array to a pointer, thus comparing just
4829 the address of the array instead of its contents. This is
4830 not what we want. */
4831 if ((b->val != NULL) != (new_val != NULL)
4832 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4833 {
4834 if (new_val != NULL)
4835 {
4836 release_value (new_val);
4837 value_free_to_mark (mark);
4838 }
4839 bs->old_val = b->val;
4840 b->val = new_val;
4841 b->val_valid = 1;
4842 return WP_VALUE_CHANGED;
4843 }
4844 else
4845 {
4846 /* Nothing changed. */
4847 value_free_to_mark (mark);
4848 return WP_VALUE_NOT_CHANGED;
4849 }
4850 }
4851 else
4852 {
4853 struct ui_out *uiout = current_uiout;
4854
4855 /* This seems like the only logical thing to do because
4856 if we temporarily ignored the watchpoint, then when
4857 we reenter the block in which it is valid it contains
4858 garbage (in the case of a function, it may have two
4859 garbage values, one before and one after the prologue).
4860 So we can't even detect the first assignment to it and
4861 watch after that (since the garbage may or may not equal
4862 the first value assigned). */
4863 /* We print all the stop information in
4864 breakpoint_ops->print_it, but in this case, by the time we
4865 call breakpoint_ops->print_it this bp will be deleted
4866 already. So we have no choice but print the information
4867 here. */
4868 if (ui_out_is_mi_like_p (uiout))
4869 ui_out_field_string
4870 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4871 ui_out_text (uiout, "\nWatchpoint ");
4872 ui_out_field_int (uiout, "wpnum", b->base.number);
4873 ui_out_text (uiout,
4874 " deleted because the program has left the block in\n\
4875 which its expression is valid.\n");
4876
4877 /* Make sure the watchpoint's commands aren't executed. */
4878 decref_counted_command_line (&b->base.commands);
4879 watchpoint_del_at_next_stop (b);
4880
4881 return WP_DELETED;
4882 }
4883 }
4884
4885 /* Return true if it looks like target has stopped due to hitting
4886 breakpoint location BL. This function does not check if we should
4887 stop, only if BL explains the stop. */
4888
4889 static int
4890 bpstat_check_location (const struct bp_location *bl,
4891 struct address_space *aspace, CORE_ADDR bp_addr,
4892 const struct target_waitstatus *ws)
4893 {
4894 struct breakpoint *b = bl->owner;
4895
4896 /* BL is from an existing breakpoint. */
4897 gdb_assert (b != NULL);
4898
4899 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4900 }
4901
4902 /* Determine if the watched values have actually changed, and we
4903 should stop. If not, set BS->stop to 0. */
4904
4905 static void
4906 bpstat_check_watchpoint (bpstat bs)
4907 {
4908 const struct bp_location *bl;
4909 struct watchpoint *b;
4910
4911 /* BS is built for existing struct breakpoint. */
4912 bl = bs->bp_location_at;
4913 gdb_assert (bl != NULL);
4914 b = (struct watchpoint *) bs->breakpoint_at;
4915 gdb_assert (b != NULL);
4916
4917 {
4918 int must_check_value = 0;
4919
4920 if (b->base.type == bp_watchpoint)
4921 /* For a software watchpoint, we must always check the
4922 watched value. */
4923 must_check_value = 1;
4924 else if (b->watchpoint_triggered == watch_triggered_yes)
4925 /* We have a hardware watchpoint (read, write, or access)
4926 and the target earlier reported an address watched by
4927 this watchpoint. */
4928 must_check_value = 1;
4929 else if (b->watchpoint_triggered == watch_triggered_unknown
4930 && b->base.type == bp_hardware_watchpoint)
4931 /* We were stopped by a hardware watchpoint, but the target could
4932 not report the data address. We must check the watchpoint's
4933 value. Access and read watchpoints are out of luck; without
4934 a data address, we can't figure it out. */
4935 must_check_value = 1;
4936
4937 if (must_check_value)
4938 {
4939 char *message
4940 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4941 b->base.number);
4942 struct cleanup *cleanups = make_cleanup (xfree, message);
4943 int e = catch_errors (watchpoint_check, bs, message,
4944 RETURN_MASK_ALL);
4945 do_cleanups (cleanups);
4946 switch (e)
4947 {
4948 case WP_DELETED:
4949 /* We've already printed what needs to be printed. */
4950 bs->print_it = print_it_done;
4951 /* Stop. */
4952 break;
4953 case WP_IGNORE:
4954 bs->print_it = print_it_noop;
4955 bs->stop = 0;
4956 break;
4957 case WP_VALUE_CHANGED:
4958 if (b->base.type == bp_read_watchpoint)
4959 {
4960 /* There are two cases to consider here:
4961
4962 1. We're watching the triggered memory for reads.
4963 In that case, trust the target, and always report
4964 the watchpoint hit to the user. Even though
4965 reads don't cause value changes, the value may
4966 have changed since the last time it was read, and
4967 since we're not trapping writes, we will not see
4968 those, and as such we should ignore our notion of
4969 old value.
4970
4971 2. We're watching the triggered memory for both
4972 reads and writes. There are two ways this may
4973 happen:
4974
4975 2.1. This is a target that can't break on data
4976 reads only, but can break on accesses (reads or
4977 writes), such as e.g., x86. We detect this case
4978 at the time we try to insert read watchpoints.
4979
4980 2.2. Otherwise, the target supports read
4981 watchpoints, but, the user set an access or write
4982 watchpoint watching the same memory as this read
4983 watchpoint.
4984
4985 If we're watching memory writes as well as reads,
4986 ignore watchpoint hits when we find that the
4987 value hasn't changed, as reads don't cause
4988 changes. This still gives false positives when
4989 the program writes the same value to memory as
4990 what there was already in memory (we will confuse
4991 it for a read), but it's much better than
4992 nothing. */
4993
4994 int other_write_watchpoint = 0;
4995
4996 if (bl->watchpoint_type == hw_read)
4997 {
4998 struct breakpoint *other_b;
4999
5000 ALL_BREAKPOINTS (other_b)
5001 if (other_b->type == bp_hardware_watchpoint
5002 || other_b->type == bp_access_watchpoint)
5003 {
5004 struct watchpoint *other_w =
5005 (struct watchpoint *) other_b;
5006
5007 if (other_w->watchpoint_triggered
5008 == watch_triggered_yes)
5009 {
5010 other_write_watchpoint = 1;
5011 break;
5012 }
5013 }
5014 }
5015
5016 if (other_write_watchpoint
5017 || bl->watchpoint_type == hw_access)
5018 {
5019 /* We're watching the same memory for writes,
5020 and the value changed since the last time we
5021 updated it, so this trap must be for a write.
5022 Ignore it. */
5023 bs->print_it = print_it_noop;
5024 bs->stop = 0;
5025 }
5026 }
5027 break;
5028 case WP_VALUE_NOT_CHANGED:
5029 if (b->base.type == bp_hardware_watchpoint
5030 || b->base.type == bp_watchpoint)
5031 {
5032 /* Don't stop: write watchpoints shouldn't fire if
5033 the value hasn't changed. */
5034 bs->print_it = print_it_noop;
5035 bs->stop = 0;
5036 }
5037 /* Stop. */
5038 break;
5039 default:
5040 /* Can't happen. */
5041 case 0:
5042 /* Error from catch_errors. */
5043 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5044 watchpoint_del_at_next_stop (b);
5045 /* We've already printed what needs to be printed. */
5046 bs->print_it = print_it_done;
5047 break;
5048 }
5049 }
5050 else /* must_check_value == 0 */
5051 {
5052 /* This is a case where some watchpoint(s) triggered, but
5053 not at the address of this watchpoint, or else no
5054 watchpoint triggered after all. So don't print
5055 anything for this watchpoint. */
5056 bs->print_it = print_it_noop;
5057 bs->stop = 0;
5058 }
5059 }
5060 }
5061
5062
5063 /* Check conditions (condition proper, frame, thread and ignore count)
5064 of breakpoint referred to by BS. If we should not stop for this
5065 breakpoint, set BS->stop to 0. */
5066
5067 static void
5068 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5069 {
5070 int thread_id = pid_to_thread_id (ptid);
5071 const struct bp_location *bl;
5072 struct breakpoint *b;
5073
5074 /* BS is built for existing struct breakpoint. */
5075 bl = bs->bp_location_at;
5076 gdb_assert (bl != NULL);
5077 b = bs->breakpoint_at;
5078 gdb_assert (b != NULL);
5079
5080 /* Even if the target evaluated the condition on its end and notified GDB, we
5081 need to do so again since GDB does not know if we stopped due to a
5082 breakpoint or a single step breakpoint. */
5083
5084 if (frame_id_p (b->frame_id)
5085 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5086 bs->stop = 0;
5087 else if (bs->stop)
5088 {
5089 int value_is_zero = 0;
5090 struct expression *cond;
5091
5092 /* Evaluate Python breakpoints that have a "stop"
5093 method implemented. */
5094 if (b->py_bp_object)
5095 bs->stop = gdbpy_should_stop (b->py_bp_object);
5096
5097 if (is_watchpoint (b))
5098 {
5099 struct watchpoint *w = (struct watchpoint *) b;
5100
5101 cond = w->cond_exp;
5102 }
5103 else
5104 cond = bl->cond;
5105
5106 if (cond && b->disposition != disp_del_at_next_stop)
5107 {
5108 int within_current_scope = 1;
5109 struct watchpoint * w;
5110
5111 /* We use value_mark and value_free_to_mark because it could
5112 be a long time before we return to the command level and
5113 call free_all_values. We can't call free_all_values
5114 because we might be in the middle of evaluating a
5115 function call. */
5116 struct value *mark = value_mark ();
5117
5118 if (is_watchpoint (b))
5119 w = (struct watchpoint *) b;
5120 else
5121 w = NULL;
5122
5123 /* Need to select the frame, with all that implies so that
5124 the conditions will have the right context. Because we
5125 use the frame, we will not see an inlined function's
5126 variables when we arrive at a breakpoint at the start
5127 of the inlined function; the current frame will be the
5128 call site. */
5129 if (w == NULL || w->cond_exp_valid_block == NULL)
5130 select_frame (get_current_frame ());
5131 else
5132 {
5133 struct frame_info *frame;
5134
5135 /* For local watchpoint expressions, which particular
5136 instance of a local is being watched matters, so we
5137 keep track of the frame to evaluate the expression
5138 in. To evaluate the condition however, it doesn't
5139 really matter which instantiation of the function
5140 where the condition makes sense triggers the
5141 watchpoint. This allows an expression like "watch
5142 global if q > 10" set in `func', catch writes to
5143 global on all threads that call `func', or catch
5144 writes on all recursive calls of `func' by a single
5145 thread. We simply always evaluate the condition in
5146 the innermost frame that's executing where it makes
5147 sense to evaluate the condition. It seems
5148 intuitive. */
5149 frame = block_innermost_frame (w->cond_exp_valid_block);
5150 if (frame != NULL)
5151 select_frame (frame);
5152 else
5153 within_current_scope = 0;
5154 }
5155 if (within_current_scope)
5156 value_is_zero
5157 = catch_errors (breakpoint_cond_eval, cond,
5158 "Error in testing breakpoint condition:\n",
5159 RETURN_MASK_ALL);
5160 else
5161 {
5162 warning (_("Watchpoint condition cannot be tested "
5163 "in the current scope"));
5164 /* If we failed to set the right context for this
5165 watchpoint, unconditionally report it. */
5166 value_is_zero = 0;
5167 }
5168 /* FIXME-someday, should give breakpoint #. */
5169 value_free_to_mark (mark);
5170 }
5171
5172 if (cond && value_is_zero)
5173 {
5174 bs->stop = 0;
5175 }
5176 else if (b->thread != -1 && b->thread != thread_id)
5177 {
5178 bs->stop = 0;
5179 }
5180 else if (b->ignore_count > 0)
5181 {
5182 b->ignore_count--;
5183 bs->stop = 0;
5184 /* Increase the hit count even though we don't stop. */
5185 ++(b->hit_count);
5186 observer_notify_breakpoint_modified (b);
5187 }
5188 }
5189 }
5190
5191
5192 /* Get a bpstat associated with having just stopped at address
5193 BP_ADDR in thread PTID.
5194
5195 Determine whether we stopped at a breakpoint, etc, or whether we
5196 don't understand this stop. Result is a chain of bpstat's such
5197 that:
5198
5199 if we don't understand the stop, the result is a null pointer.
5200
5201 if we understand why we stopped, the result is not null.
5202
5203 Each element of the chain refers to a particular breakpoint or
5204 watchpoint at which we have stopped. (We may have stopped for
5205 several reasons concurrently.)
5206
5207 Each element of the chain has valid next, breakpoint_at,
5208 commands, FIXME??? fields. */
5209
5210 bpstat
5211 bpstat_stop_status (struct address_space *aspace,
5212 CORE_ADDR bp_addr, ptid_t ptid,
5213 const struct target_waitstatus *ws)
5214 {
5215 struct breakpoint *b = NULL;
5216 struct bp_location *bl;
5217 struct bp_location *loc;
5218 /* First item of allocated bpstat's. */
5219 bpstat bs_head = NULL, *bs_link = &bs_head;
5220 /* Pointer to the last thing in the chain currently. */
5221 bpstat bs;
5222 int ix;
5223 int need_remove_insert;
5224 int removed_any;
5225
5226 /* First, build the bpstat chain with locations that explain a
5227 target stop, while being careful to not set the target running,
5228 as that may invalidate locations (in particular watchpoint
5229 locations are recreated). Resuming will happen here with
5230 breakpoint conditions or watchpoint expressions that include
5231 inferior function calls. */
5232
5233 ALL_BREAKPOINTS (b)
5234 {
5235 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5236 continue;
5237
5238 for (bl = b->loc; bl != NULL; bl = bl->next)
5239 {
5240 /* For hardware watchpoints, we look only at the first
5241 location. The watchpoint_check function will work on the
5242 entire expression, not the individual locations. For
5243 read watchpoints, the watchpoints_triggered function has
5244 checked all locations already. */
5245 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5246 break;
5247
5248 if (!bl->enabled || bl->shlib_disabled)
5249 continue;
5250
5251 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5252 continue;
5253
5254 /* Come here if it's a watchpoint, or if the break address
5255 matches. */
5256
5257 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5258 explain stop. */
5259
5260 /* Assume we stop. Should we find a watchpoint that is not
5261 actually triggered, or if the condition of the breakpoint
5262 evaluates as false, we'll reset 'stop' to 0. */
5263 bs->stop = 1;
5264 bs->print = 1;
5265
5266 /* If this is a scope breakpoint, mark the associated
5267 watchpoint as triggered so that we will handle the
5268 out-of-scope event. We'll get to the watchpoint next
5269 iteration. */
5270 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5271 {
5272 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5273
5274 w->watchpoint_triggered = watch_triggered_yes;
5275 }
5276 }
5277 }
5278
5279 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5280 {
5281 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5282 {
5283 bs = bpstat_alloc (loc, &bs_link);
5284 /* For hits of moribund locations, we should just proceed. */
5285 bs->stop = 0;
5286 bs->print = 0;
5287 bs->print_it = print_it_noop;
5288 }
5289 }
5290
5291 /* A bit of special processing for shlib breakpoints. We need to
5292 process solib loading here, so that the lists of loaded and
5293 unloaded libraries are correct before we handle "catch load" and
5294 "catch unload". */
5295 for (bs = bs_head; bs != NULL; bs = bs->next)
5296 {
5297 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5298 {
5299 handle_solib_event ();
5300 break;
5301 }
5302 }
5303
5304 /* Now go through the locations that caused the target to stop, and
5305 check whether we're interested in reporting this stop to higher
5306 layers, or whether we should resume the target transparently. */
5307
5308 removed_any = 0;
5309
5310 for (bs = bs_head; bs != NULL; bs = bs->next)
5311 {
5312 if (!bs->stop)
5313 continue;
5314
5315 b = bs->breakpoint_at;
5316 b->ops->check_status (bs);
5317 if (bs->stop)
5318 {
5319 bpstat_check_breakpoint_conditions (bs, ptid);
5320
5321 if (bs->stop)
5322 {
5323 ++(b->hit_count);
5324 observer_notify_breakpoint_modified (b);
5325
5326 /* We will stop here. */
5327 if (b->disposition == disp_disable)
5328 {
5329 --(b->enable_count);
5330 if (b->enable_count <= 0
5331 && b->enable_state != bp_permanent)
5332 b->enable_state = bp_disabled;
5333 removed_any = 1;
5334 }
5335 if (b->silent)
5336 bs->print = 0;
5337 bs->commands = b->commands;
5338 incref_counted_command_line (bs->commands);
5339 if (command_line_is_silent (bs->commands
5340 ? bs->commands->commands : NULL))
5341 bs->print = 0;
5342
5343 b->ops->after_condition_true (bs);
5344 }
5345
5346 }
5347
5348 /* Print nothing for this entry if we don't stop or don't
5349 print. */
5350 if (!bs->stop || !bs->print)
5351 bs->print_it = print_it_noop;
5352 }
5353
5354 /* If we aren't stopping, the value of some hardware watchpoint may
5355 not have changed, but the intermediate memory locations we are
5356 watching may have. Don't bother if we're stopping; this will get
5357 done later. */
5358 need_remove_insert = 0;
5359 if (! bpstat_causes_stop (bs_head))
5360 for (bs = bs_head; bs != NULL; bs = bs->next)
5361 if (!bs->stop
5362 && bs->breakpoint_at
5363 && is_hardware_watchpoint (bs->breakpoint_at))
5364 {
5365 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5366
5367 update_watchpoint (w, 0 /* don't reparse. */);
5368 need_remove_insert = 1;
5369 }
5370
5371 if (need_remove_insert)
5372 update_global_location_list (1);
5373 else if (removed_any)
5374 update_global_location_list (0);
5375
5376 return bs_head;
5377 }
5378
5379 static void
5380 handle_jit_event (void)
5381 {
5382 struct frame_info *frame;
5383 struct gdbarch *gdbarch;
5384
5385 /* Switch terminal for any messages produced by
5386 breakpoint_re_set. */
5387 target_terminal_ours_for_output ();
5388
5389 frame = get_current_frame ();
5390 gdbarch = get_frame_arch (frame);
5391
5392 jit_event_handler (gdbarch);
5393
5394 target_terminal_inferior ();
5395 }
5396
5397 /* Prepare WHAT final decision for infrun. */
5398
5399 /* Decide what infrun needs to do with this bpstat. */
5400
5401 struct bpstat_what
5402 bpstat_what (bpstat bs_head)
5403 {
5404 struct bpstat_what retval;
5405 int jit_event = 0;
5406 bpstat bs;
5407
5408 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5409 retval.call_dummy = STOP_NONE;
5410 retval.is_longjmp = 0;
5411
5412 for (bs = bs_head; bs != NULL; bs = bs->next)
5413 {
5414 /* Extract this BS's action. After processing each BS, we check
5415 if its action overrides all we've seem so far. */
5416 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5417 enum bptype bptype;
5418
5419 if (bs->breakpoint_at == NULL)
5420 {
5421 /* I suspect this can happen if it was a momentary
5422 breakpoint which has since been deleted. */
5423 bptype = bp_none;
5424 }
5425 else
5426 bptype = bs->breakpoint_at->type;
5427
5428 switch (bptype)
5429 {
5430 case bp_none:
5431 break;
5432 case bp_breakpoint:
5433 case bp_hardware_breakpoint:
5434 case bp_until:
5435 case bp_finish:
5436 case bp_shlib_event:
5437 if (bs->stop)
5438 {
5439 if (bs->print)
5440 this_action = BPSTAT_WHAT_STOP_NOISY;
5441 else
5442 this_action = BPSTAT_WHAT_STOP_SILENT;
5443 }
5444 else
5445 this_action = BPSTAT_WHAT_SINGLE;
5446 break;
5447 case bp_watchpoint:
5448 case bp_hardware_watchpoint:
5449 case bp_read_watchpoint:
5450 case bp_access_watchpoint:
5451 if (bs->stop)
5452 {
5453 if (bs->print)
5454 this_action = BPSTAT_WHAT_STOP_NOISY;
5455 else
5456 this_action = BPSTAT_WHAT_STOP_SILENT;
5457 }
5458 else
5459 {
5460 /* There was a watchpoint, but we're not stopping.
5461 This requires no further action. */
5462 }
5463 break;
5464 case bp_longjmp:
5465 case bp_longjmp_call_dummy:
5466 case bp_exception:
5467 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5468 retval.is_longjmp = bptype != bp_exception;
5469 break;
5470 case bp_longjmp_resume:
5471 case bp_exception_resume:
5472 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5473 retval.is_longjmp = bptype == bp_longjmp_resume;
5474 break;
5475 case bp_step_resume:
5476 if (bs->stop)
5477 this_action = BPSTAT_WHAT_STEP_RESUME;
5478 else
5479 {
5480 /* It is for the wrong frame. */
5481 this_action = BPSTAT_WHAT_SINGLE;
5482 }
5483 break;
5484 case bp_hp_step_resume:
5485 if (bs->stop)
5486 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5487 else
5488 {
5489 /* It is for the wrong frame. */
5490 this_action = BPSTAT_WHAT_SINGLE;
5491 }
5492 break;
5493 case bp_watchpoint_scope:
5494 case bp_thread_event:
5495 case bp_overlay_event:
5496 case bp_longjmp_master:
5497 case bp_std_terminate_master:
5498 case bp_exception_master:
5499 this_action = BPSTAT_WHAT_SINGLE;
5500 break;
5501 case bp_catchpoint:
5502 if (bs->stop)
5503 {
5504 if (bs->print)
5505 this_action = BPSTAT_WHAT_STOP_NOISY;
5506 else
5507 this_action = BPSTAT_WHAT_STOP_SILENT;
5508 }
5509 else
5510 {
5511 /* There was a catchpoint, but we're not stopping.
5512 This requires no further action. */
5513 }
5514 break;
5515 case bp_jit_event:
5516 jit_event = 1;
5517 this_action = BPSTAT_WHAT_SINGLE;
5518 break;
5519 case bp_call_dummy:
5520 /* Make sure the action is stop (silent or noisy),
5521 so infrun.c pops the dummy frame. */
5522 retval.call_dummy = STOP_STACK_DUMMY;
5523 this_action = BPSTAT_WHAT_STOP_SILENT;
5524 break;
5525 case bp_std_terminate:
5526 /* Make sure the action is stop (silent or noisy),
5527 so infrun.c pops the dummy frame. */
5528 retval.call_dummy = STOP_STD_TERMINATE;
5529 this_action = BPSTAT_WHAT_STOP_SILENT;
5530 break;
5531 case bp_tracepoint:
5532 case bp_fast_tracepoint:
5533 case bp_static_tracepoint:
5534 /* Tracepoint hits should not be reported back to GDB, and
5535 if one got through somehow, it should have been filtered
5536 out already. */
5537 internal_error (__FILE__, __LINE__,
5538 _("bpstat_what: tracepoint encountered"));
5539 break;
5540 case bp_gnu_ifunc_resolver:
5541 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5542 this_action = BPSTAT_WHAT_SINGLE;
5543 break;
5544 case bp_gnu_ifunc_resolver_return:
5545 /* The breakpoint will be removed, execution will restart from the
5546 PC of the former breakpoint. */
5547 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5548 break;
5549
5550 case bp_dprintf:
5551 if (bs->stop)
5552 this_action = BPSTAT_WHAT_STOP_SILENT;
5553 else
5554 this_action = BPSTAT_WHAT_SINGLE;
5555 break;
5556
5557 default:
5558 internal_error (__FILE__, __LINE__,
5559 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5560 }
5561
5562 retval.main_action = max (retval.main_action, this_action);
5563 }
5564
5565 /* These operations may affect the bs->breakpoint_at state so they are
5566 delayed after MAIN_ACTION is decided above. */
5567
5568 if (jit_event)
5569 {
5570 if (debug_infrun)
5571 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5572
5573 handle_jit_event ();
5574 }
5575
5576 for (bs = bs_head; bs != NULL; bs = bs->next)
5577 {
5578 struct breakpoint *b = bs->breakpoint_at;
5579
5580 if (b == NULL)
5581 continue;
5582 switch (b->type)
5583 {
5584 case bp_gnu_ifunc_resolver:
5585 gnu_ifunc_resolver_stop (b);
5586 break;
5587 case bp_gnu_ifunc_resolver_return:
5588 gnu_ifunc_resolver_return_stop (b);
5589 break;
5590 }
5591 }
5592
5593 return retval;
5594 }
5595
5596 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5597 without hardware support). This isn't related to a specific bpstat,
5598 just to things like whether watchpoints are set. */
5599
5600 int
5601 bpstat_should_step (void)
5602 {
5603 struct breakpoint *b;
5604
5605 ALL_BREAKPOINTS (b)
5606 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5607 return 1;
5608 return 0;
5609 }
5610
5611 int
5612 bpstat_causes_stop (bpstat bs)
5613 {
5614 for (; bs != NULL; bs = bs->next)
5615 if (bs->stop)
5616 return 1;
5617
5618 return 0;
5619 }
5620
5621 \f
5622
5623 /* Compute a string of spaces suitable to indent the next line
5624 so it starts at the position corresponding to the table column
5625 named COL_NAME in the currently active table of UIOUT. */
5626
5627 static char *
5628 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5629 {
5630 static char wrap_indent[80];
5631 int i, total_width, width, align;
5632 char *text;
5633
5634 total_width = 0;
5635 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5636 {
5637 if (strcmp (text, col_name) == 0)
5638 {
5639 gdb_assert (total_width < sizeof wrap_indent);
5640 memset (wrap_indent, ' ', total_width);
5641 wrap_indent[total_width] = 0;
5642
5643 return wrap_indent;
5644 }
5645
5646 total_width += width + 1;
5647 }
5648
5649 return NULL;
5650 }
5651
5652 /* Determine if the locations of this breakpoint will have their conditions
5653 evaluated by the target, host or a mix of both. Returns the following:
5654
5655 "host": Host evals condition.
5656 "host or target": Host or Target evals condition.
5657 "target": Target evals condition.
5658 */
5659
5660 static const char *
5661 bp_condition_evaluator (struct breakpoint *b)
5662 {
5663 struct bp_location *bl;
5664 char host_evals = 0;
5665 char target_evals = 0;
5666
5667 if (!b)
5668 return NULL;
5669
5670 if (!is_breakpoint (b))
5671 return NULL;
5672
5673 if (gdb_evaluates_breakpoint_condition_p ()
5674 || !target_supports_evaluation_of_breakpoint_conditions ())
5675 return condition_evaluation_host;
5676
5677 for (bl = b->loc; bl; bl = bl->next)
5678 {
5679 if (bl->cond_bytecode)
5680 target_evals++;
5681 else
5682 host_evals++;
5683 }
5684
5685 if (host_evals && target_evals)
5686 return condition_evaluation_both;
5687 else if (target_evals)
5688 return condition_evaluation_target;
5689 else
5690 return condition_evaluation_host;
5691 }
5692
5693 /* Determine the breakpoint location's condition evaluator. This is
5694 similar to bp_condition_evaluator, but for locations. */
5695
5696 static const char *
5697 bp_location_condition_evaluator (struct bp_location *bl)
5698 {
5699 if (bl && !is_breakpoint (bl->owner))
5700 return NULL;
5701
5702 if (gdb_evaluates_breakpoint_condition_p ()
5703 || !target_supports_evaluation_of_breakpoint_conditions ())
5704 return condition_evaluation_host;
5705
5706 if (bl && bl->cond_bytecode)
5707 return condition_evaluation_target;
5708 else
5709 return condition_evaluation_host;
5710 }
5711
5712 /* Print the LOC location out of the list of B->LOC locations. */
5713
5714 static void
5715 print_breakpoint_location (struct breakpoint *b,
5716 struct bp_location *loc)
5717 {
5718 struct ui_out *uiout = current_uiout;
5719 struct cleanup *old_chain = save_current_program_space ();
5720
5721 if (loc != NULL && loc->shlib_disabled)
5722 loc = NULL;
5723
5724 if (loc != NULL)
5725 set_current_program_space (loc->pspace);
5726
5727 if (b->display_canonical)
5728 ui_out_field_string (uiout, "what", b->addr_string);
5729 else if (loc && loc->symtab)
5730 {
5731 struct symbol *sym
5732 = find_pc_sect_function (loc->address, loc->section);
5733 if (sym)
5734 {
5735 ui_out_text (uiout, "in ");
5736 ui_out_field_string (uiout, "func",
5737 SYMBOL_PRINT_NAME (sym));
5738 ui_out_text (uiout, " ");
5739 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5740 ui_out_text (uiout, "at ");
5741 }
5742 ui_out_field_string (uiout, "file",
5743 symtab_to_filename_for_display (loc->symtab));
5744 ui_out_text (uiout, ":");
5745
5746 if (ui_out_is_mi_like_p (uiout))
5747 ui_out_field_string (uiout, "fullname",
5748 symtab_to_fullname (loc->symtab));
5749
5750 ui_out_field_int (uiout, "line", loc->line_number);
5751 }
5752 else if (loc)
5753 {
5754 struct ui_file *stb = mem_fileopen ();
5755 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5756
5757 print_address_symbolic (loc->gdbarch, loc->address, stb,
5758 demangle, "");
5759 ui_out_field_stream (uiout, "at", stb);
5760
5761 do_cleanups (stb_chain);
5762 }
5763 else
5764 ui_out_field_string (uiout, "pending", b->addr_string);
5765
5766 if (loc && is_breakpoint (b)
5767 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5768 && bp_condition_evaluator (b) == condition_evaluation_both)
5769 {
5770 ui_out_text (uiout, " (");
5771 ui_out_field_string (uiout, "evaluated-by",
5772 bp_location_condition_evaluator (loc));
5773 ui_out_text (uiout, ")");
5774 }
5775
5776 do_cleanups (old_chain);
5777 }
5778
5779 static const char *
5780 bptype_string (enum bptype type)
5781 {
5782 struct ep_type_description
5783 {
5784 enum bptype type;
5785 char *description;
5786 };
5787 static struct ep_type_description bptypes[] =
5788 {
5789 {bp_none, "?deleted?"},
5790 {bp_breakpoint, "breakpoint"},
5791 {bp_hardware_breakpoint, "hw breakpoint"},
5792 {bp_until, "until"},
5793 {bp_finish, "finish"},
5794 {bp_watchpoint, "watchpoint"},
5795 {bp_hardware_watchpoint, "hw watchpoint"},
5796 {bp_read_watchpoint, "read watchpoint"},
5797 {bp_access_watchpoint, "acc watchpoint"},
5798 {bp_longjmp, "longjmp"},
5799 {bp_longjmp_resume, "longjmp resume"},
5800 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5801 {bp_exception, "exception"},
5802 {bp_exception_resume, "exception resume"},
5803 {bp_step_resume, "step resume"},
5804 {bp_hp_step_resume, "high-priority step resume"},
5805 {bp_watchpoint_scope, "watchpoint scope"},
5806 {bp_call_dummy, "call dummy"},
5807 {bp_std_terminate, "std::terminate"},
5808 {bp_shlib_event, "shlib events"},
5809 {bp_thread_event, "thread events"},
5810 {bp_overlay_event, "overlay events"},
5811 {bp_longjmp_master, "longjmp master"},
5812 {bp_std_terminate_master, "std::terminate master"},
5813 {bp_exception_master, "exception master"},
5814 {bp_catchpoint, "catchpoint"},
5815 {bp_tracepoint, "tracepoint"},
5816 {bp_fast_tracepoint, "fast tracepoint"},
5817 {bp_static_tracepoint, "static tracepoint"},
5818 {bp_dprintf, "dprintf"},
5819 {bp_jit_event, "jit events"},
5820 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5821 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5822 };
5823
5824 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5825 || ((int) type != bptypes[(int) type].type))
5826 internal_error (__FILE__, __LINE__,
5827 _("bptypes table does not describe type #%d."),
5828 (int) type);
5829
5830 return bptypes[(int) type].description;
5831 }
5832
5833 /* For MI, output a field named 'thread-groups' with a list as the value.
5834 For CLI, prefix the list with the string 'inf'. */
5835
5836 static void
5837 output_thread_groups (struct ui_out *uiout,
5838 const char *field_name,
5839 VEC(int) *inf_num,
5840 int mi_only)
5841 {
5842 struct cleanup *back_to;
5843 int is_mi = ui_out_is_mi_like_p (uiout);
5844 int inf;
5845 int i;
5846
5847 /* For backward compatibility, don't display inferiors in CLI unless
5848 there are several. Always display them for MI. */
5849 if (!is_mi && mi_only)
5850 return;
5851
5852 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5853
5854 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5855 {
5856 if (is_mi)
5857 {
5858 char mi_group[10];
5859
5860 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5861 ui_out_field_string (uiout, NULL, mi_group);
5862 }
5863 else
5864 {
5865 if (i == 0)
5866 ui_out_text (uiout, " inf ");
5867 else
5868 ui_out_text (uiout, ", ");
5869
5870 ui_out_text (uiout, plongest (inf));
5871 }
5872 }
5873
5874 do_cleanups (back_to);
5875 }
5876
5877 /* Print B to gdb_stdout. */
5878
5879 static void
5880 print_one_breakpoint_location (struct breakpoint *b,
5881 struct bp_location *loc,
5882 int loc_number,
5883 struct bp_location **last_loc,
5884 int allflag)
5885 {
5886 struct command_line *l;
5887 static char bpenables[] = "nynny";
5888
5889 struct ui_out *uiout = current_uiout;
5890 int header_of_multiple = 0;
5891 int part_of_multiple = (loc != NULL);
5892 struct value_print_options opts;
5893
5894 get_user_print_options (&opts);
5895
5896 gdb_assert (!loc || loc_number != 0);
5897 /* See comment in print_one_breakpoint concerning treatment of
5898 breakpoints with single disabled location. */
5899 if (loc == NULL
5900 && (b->loc != NULL
5901 && (b->loc->next != NULL || !b->loc->enabled)))
5902 header_of_multiple = 1;
5903 if (loc == NULL)
5904 loc = b->loc;
5905
5906 annotate_record ();
5907
5908 /* 1 */
5909 annotate_field (0);
5910 if (part_of_multiple)
5911 {
5912 char *formatted;
5913 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5914 ui_out_field_string (uiout, "number", formatted);
5915 xfree (formatted);
5916 }
5917 else
5918 {
5919 ui_out_field_int (uiout, "number", b->number);
5920 }
5921
5922 /* 2 */
5923 annotate_field (1);
5924 if (part_of_multiple)
5925 ui_out_field_skip (uiout, "type");
5926 else
5927 ui_out_field_string (uiout, "type", bptype_string (b->type));
5928
5929 /* 3 */
5930 annotate_field (2);
5931 if (part_of_multiple)
5932 ui_out_field_skip (uiout, "disp");
5933 else
5934 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5935
5936
5937 /* 4 */
5938 annotate_field (3);
5939 if (part_of_multiple)
5940 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5941 else
5942 ui_out_field_fmt (uiout, "enabled", "%c",
5943 bpenables[(int) b->enable_state]);
5944 ui_out_spaces (uiout, 2);
5945
5946
5947 /* 5 and 6 */
5948 if (b->ops != NULL && b->ops->print_one != NULL)
5949 {
5950 /* Although the print_one can possibly print all locations,
5951 calling it here is not likely to get any nice result. So,
5952 make sure there's just one location. */
5953 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5954 b->ops->print_one (b, last_loc);
5955 }
5956 else
5957 switch (b->type)
5958 {
5959 case bp_none:
5960 internal_error (__FILE__, __LINE__,
5961 _("print_one_breakpoint: bp_none encountered\n"));
5962 break;
5963
5964 case bp_watchpoint:
5965 case bp_hardware_watchpoint:
5966 case bp_read_watchpoint:
5967 case bp_access_watchpoint:
5968 {
5969 struct watchpoint *w = (struct watchpoint *) b;
5970
5971 /* Field 4, the address, is omitted (which makes the columns
5972 not line up too nicely with the headers, but the effect
5973 is relatively readable). */
5974 if (opts.addressprint)
5975 ui_out_field_skip (uiout, "addr");
5976 annotate_field (5);
5977 ui_out_field_string (uiout, "what", w->exp_string);
5978 }
5979 break;
5980
5981 case bp_breakpoint:
5982 case bp_hardware_breakpoint:
5983 case bp_until:
5984 case bp_finish:
5985 case bp_longjmp:
5986 case bp_longjmp_resume:
5987 case bp_longjmp_call_dummy:
5988 case bp_exception:
5989 case bp_exception_resume:
5990 case bp_step_resume:
5991 case bp_hp_step_resume:
5992 case bp_watchpoint_scope:
5993 case bp_call_dummy:
5994 case bp_std_terminate:
5995 case bp_shlib_event:
5996 case bp_thread_event:
5997 case bp_overlay_event:
5998 case bp_longjmp_master:
5999 case bp_std_terminate_master:
6000 case bp_exception_master:
6001 case bp_tracepoint:
6002 case bp_fast_tracepoint:
6003 case bp_static_tracepoint:
6004 case bp_dprintf:
6005 case bp_jit_event:
6006 case bp_gnu_ifunc_resolver:
6007 case bp_gnu_ifunc_resolver_return:
6008 if (opts.addressprint)
6009 {
6010 annotate_field (4);
6011 if (header_of_multiple)
6012 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6013 else if (b->loc == NULL || loc->shlib_disabled)
6014 ui_out_field_string (uiout, "addr", "<PENDING>");
6015 else
6016 ui_out_field_core_addr (uiout, "addr",
6017 loc->gdbarch, loc->address);
6018 }
6019 annotate_field (5);
6020 if (!header_of_multiple)
6021 print_breakpoint_location (b, loc);
6022 if (b->loc)
6023 *last_loc = b->loc;
6024 break;
6025 }
6026
6027
6028 if (loc != NULL && !header_of_multiple)
6029 {
6030 struct inferior *inf;
6031 VEC(int) *inf_num = NULL;
6032 int mi_only = 1;
6033
6034 ALL_INFERIORS (inf)
6035 {
6036 if (inf->pspace == loc->pspace)
6037 VEC_safe_push (int, inf_num, inf->num);
6038 }
6039
6040 /* For backward compatibility, don't display inferiors in CLI unless
6041 there are several. Always display for MI. */
6042 if (allflag
6043 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6044 && (number_of_program_spaces () > 1
6045 || number_of_inferiors () > 1)
6046 /* LOC is for existing B, it cannot be in
6047 moribund_locations and thus having NULL OWNER. */
6048 && loc->owner->type != bp_catchpoint))
6049 mi_only = 0;
6050 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6051 VEC_free (int, inf_num);
6052 }
6053
6054 if (!part_of_multiple)
6055 {
6056 if (b->thread != -1)
6057 {
6058 /* FIXME: This seems to be redundant and lost here; see the
6059 "stop only in" line a little further down. */
6060 ui_out_text (uiout, " thread ");
6061 ui_out_field_int (uiout, "thread", b->thread);
6062 }
6063 else if (b->task != 0)
6064 {
6065 ui_out_text (uiout, " task ");
6066 ui_out_field_int (uiout, "task", b->task);
6067 }
6068 }
6069
6070 ui_out_text (uiout, "\n");
6071
6072 if (!part_of_multiple)
6073 b->ops->print_one_detail (b, uiout);
6074
6075 if (part_of_multiple && frame_id_p (b->frame_id))
6076 {
6077 annotate_field (6);
6078 ui_out_text (uiout, "\tstop only in stack frame at ");
6079 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6080 the frame ID. */
6081 ui_out_field_core_addr (uiout, "frame",
6082 b->gdbarch, b->frame_id.stack_addr);
6083 ui_out_text (uiout, "\n");
6084 }
6085
6086 if (!part_of_multiple && b->cond_string)
6087 {
6088 annotate_field (7);
6089 if (is_tracepoint (b))
6090 ui_out_text (uiout, "\ttrace only if ");
6091 else
6092 ui_out_text (uiout, "\tstop only if ");
6093 ui_out_field_string (uiout, "cond", b->cond_string);
6094
6095 /* Print whether the target is doing the breakpoint's condition
6096 evaluation. If GDB is doing the evaluation, don't print anything. */
6097 if (is_breakpoint (b)
6098 && breakpoint_condition_evaluation_mode ()
6099 == condition_evaluation_target)
6100 {
6101 ui_out_text (uiout, " (");
6102 ui_out_field_string (uiout, "evaluated-by",
6103 bp_condition_evaluator (b));
6104 ui_out_text (uiout, " evals)");
6105 }
6106 ui_out_text (uiout, "\n");
6107 }
6108
6109 if (!part_of_multiple && b->thread != -1)
6110 {
6111 /* FIXME should make an annotation for this. */
6112 ui_out_text (uiout, "\tstop only in thread ");
6113 ui_out_field_int (uiout, "thread", b->thread);
6114 ui_out_text (uiout, "\n");
6115 }
6116
6117 if (!part_of_multiple)
6118 {
6119 if (b->hit_count)
6120 {
6121 /* FIXME should make an annotation for this. */
6122 if (is_catchpoint (b))
6123 ui_out_text (uiout, "\tcatchpoint");
6124 else if (is_tracepoint (b))
6125 ui_out_text (uiout, "\ttracepoint");
6126 else
6127 ui_out_text (uiout, "\tbreakpoint");
6128 ui_out_text (uiout, " already hit ");
6129 ui_out_field_int (uiout, "times", b->hit_count);
6130 if (b->hit_count == 1)
6131 ui_out_text (uiout, " time\n");
6132 else
6133 ui_out_text (uiout, " times\n");
6134 }
6135 else
6136 {
6137 /* Output the count also if it is zero, but only if this is mi. */
6138 if (ui_out_is_mi_like_p (uiout))
6139 ui_out_field_int (uiout, "times", b->hit_count);
6140 }
6141 }
6142
6143 if (!part_of_multiple && b->ignore_count)
6144 {
6145 annotate_field (8);
6146 ui_out_text (uiout, "\tignore next ");
6147 ui_out_field_int (uiout, "ignore", b->ignore_count);
6148 ui_out_text (uiout, " hits\n");
6149 }
6150
6151 /* Note that an enable count of 1 corresponds to "enable once"
6152 behavior, which is reported by the combination of enablement and
6153 disposition, so we don't need to mention it here. */
6154 if (!part_of_multiple && b->enable_count > 1)
6155 {
6156 annotate_field (8);
6157 ui_out_text (uiout, "\tdisable after ");
6158 /* Tweak the wording to clarify that ignore and enable counts
6159 are distinct, and have additive effect. */
6160 if (b->ignore_count)
6161 ui_out_text (uiout, "additional ");
6162 else
6163 ui_out_text (uiout, "next ");
6164 ui_out_field_int (uiout, "enable", b->enable_count);
6165 ui_out_text (uiout, " hits\n");
6166 }
6167
6168 if (!part_of_multiple && is_tracepoint (b))
6169 {
6170 struct tracepoint *tp = (struct tracepoint *) b;
6171
6172 if (tp->traceframe_usage)
6173 {
6174 ui_out_text (uiout, "\ttrace buffer usage ");
6175 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6176 ui_out_text (uiout, " bytes\n");
6177 }
6178 }
6179
6180 l = b->commands ? b->commands->commands : NULL;
6181 if (!part_of_multiple && l)
6182 {
6183 struct cleanup *script_chain;
6184
6185 annotate_field (9);
6186 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6187 print_command_lines (uiout, l, 4);
6188 do_cleanups (script_chain);
6189 }
6190
6191 if (is_tracepoint (b))
6192 {
6193 struct tracepoint *t = (struct tracepoint *) b;
6194
6195 if (!part_of_multiple && t->pass_count)
6196 {
6197 annotate_field (10);
6198 ui_out_text (uiout, "\tpass count ");
6199 ui_out_field_int (uiout, "pass", t->pass_count);
6200 ui_out_text (uiout, " \n");
6201 }
6202
6203 /* Don't display it when tracepoint or tracepoint location is
6204 pending. */
6205 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6206 {
6207 annotate_field (11);
6208
6209 if (ui_out_is_mi_like_p (uiout))
6210 ui_out_field_string (uiout, "installed",
6211 loc->inserted ? "y" : "n");
6212 else
6213 {
6214 if (loc->inserted)
6215 ui_out_text (uiout, "\t");
6216 else
6217 ui_out_text (uiout, "\tnot ");
6218 ui_out_text (uiout, "installed on target\n");
6219 }
6220 }
6221 }
6222
6223 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6224 {
6225 if (is_watchpoint (b))
6226 {
6227 struct watchpoint *w = (struct watchpoint *) b;
6228
6229 ui_out_field_string (uiout, "original-location", w->exp_string);
6230 }
6231 else if (b->addr_string)
6232 ui_out_field_string (uiout, "original-location", b->addr_string);
6233 }
6234 }
6235
6236 static void
6237 print_one_breakpoint (struct breakpoint *b,
6238 struct bp_location **last_loc,
6239 int allflag)
6240 {
6241 struct cleanup *bkpt_chain;
6242 struct ui_out *uiout = current_uiout;
6243
6244 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6245
6246 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6247 do_cleanups (bkpt_chain);
6248
6249 /* If this breakpoint has custom print function,
6250 it's already printed. Otherwise, print individual
6251 locations, if any. */
6252 if (b->ops == NULL || b->ops->print_one == NULL)
6253 {
6254 /* If breakpoint has a single location that is disabled, we
6255 print it as if it had several locations, since otherwise it's
6256 hard to represent "breakpoint enabled, location disabled"
6257 situation.
6258
6259 Note that while hardware watchpoints have several locations
6260 internally, that's not a property exposed to user. */
6261 if (b->loc
6262 && !is_hardware_watchpoint (b)
6263 && (b->loc->next || !b->loc->enabled))
6264 {
6265 struct bp_location *loc;
6266 int n = 1;
6267
6268 for (loc = b->loc; loc; loc = loc->next, ++n)
6269 {
6270 struct cleanup *inner2 =
6271 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6272 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6273 do_cleanups (inner2);
6274 }
6275 }
6276 }
6277 }
6278
6279 static int
6280 breakpoint_address_bits (struct breakpoint *b)
6281 {
6282 int print_address_bits = 0;
6283 struct bp_location *loc;
6284
6285 for (loc = b->loc; loc; loc = loc->next)
6286 {
6287 int addr_bit;
6288
6289 /* Software watchpoints that aren't watching memory don't have
6290 an address to print. */
6291 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6292 continue;
6293
6294 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6295 if (addr_bit > print_address_bits)
6296 print_address_bits = addr_bit;
6297 }
6298
6299 return print_address_bits;
6300 }
6301
6302 struct captured_breakpoint_query_args
6303 {
6304 int bnum;
6305 };
6306
6307 static int
6308 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6309 {
6310 struct captured_breakpoint_query_args *args = data;
6311 struct breakpoint *b;
6312 struct bp_location *dummy_loc = NULL;
6313
6314 ALL_BREAKPOINTS (b)
6315 {
6316 if (args->bnum == b->number)
6317 {
6318 print_one_breakpoint (b, &dummy_loc, 0);
6319 return GDB_RC_OK;
6320 }
6321 }
6322 return GDB_RC_NONE;
6323 }
6324
6325 enum gdb_rc
6326 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6327 char **error_message)
6328 {
6329 struct captured_breakpoint_query_args args;
6330
6331 args.bnum = bnum;
6332 /* For the moment we don't trust print_one_breakpoint() to not throw
6333 an error. */
6334 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6335 error_message, RETURN_MASK_ALL) < 0)
6336 return GDB_RC_FAIL;
6337 else
6338 return GDB_RC_OK;
6339 }
6340
6341 /* Return true if this breakpoint was set by the user, false if it is
6342 internal or momentary. */
6343
6344 int
6345 user_breakpoint_p (struct breakpoint *b)
6346 {
6347 return b->number > 0;
6348 }
6349
6350 /* Print information on user settable breakpoint (watchpoint, etc)
6351 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6352 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6353 FILTER is non-NULL, call it on each breakpoint and only include the
6354 ones for which it returns non-zero. Return the total number of
6355 breakpoints listed. */
6356
6357 static int
6358 breakpoint_1 (char *args, int allflag,
6359 int (*filter) (const struct breakpoint *))
6360 {
6361 struct breakpoint *b;
6362 struct bp_location *last_loc = NULL;
6363 int nr_printable_breakpoints;
6364 struct cleanup *bkpttbl_chain;
6365 struct value_print_options opts;
6366 int print_address_bits = 0;
6367 int print_type_col_width = 14;
6368 struct ui_out *uiout = current_uiout;
6369
6370 get_user_print_options (&opts);
6371
6372 /* Compute the number of rows in the table, as well as the size
6373 required for address fields. */
6374 nr_printable_breakpoints = 0;
6375 ALL_BREAKPOINTS (b)
6376 {
6377 /* If we have a filter, only list the breakpoints it accepts. */
6378 if (filter && !filter (b))
6379 continue;
6380
6381 /* If we have an "args" string, it is a list of breakpoints to
6382 accept. Skip the others. */
6383 if (args != NULL && *args != '\0')
6384 {
6385 if (allflag && parse_and_eval_long (args) != b->number)
6386 continue;
6387 if (!allflag && !number_is_in_list (args, b->number))
6388 continue;
6389 }
6390
6391 if (allflag || user_breakpoint_p (b))
6392 {
6393 int addr_bit, type_len;
6394
6395 addr_bit = breakpoint_address_bits (b);
6396 if (addr_bit > print_address_bits)
6397 print_address_bits = addr_bit;
6398
6399 type_len = strlen (bptype_string (b->type));
6400 if (type_len > print_type_col_width)
6401 print_type_col_width = type_len;
6402
6403 nr_printable_breakpoints++;
6404 }
6405 }
6406
6407 if (opts.addressprint)
6408 bkpttbl_chain
6409 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6410 nr_printable_breakpoints,
6411 "BreakpointTable");
6412 else
6413 bkpttbl_chain
6414 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6415 nr_printable_breakpoints,
6416 "BreakpointTable");
6417
6418 if (nr_printable_breakpoints > 0)
6419 annotate_breakpoints_headers ();
6420 if (nr_printable_breakpoints > 0)
6421 annotate_field (0);
6422 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6423 if (nr_printable_breakpoints > 0)
6424 annotate_field (1);
6425 ui_out_table_header (uiout, print_type_col_width, ui_left,
6426 "type", "Type"); /* 2 */
6427 if (nr_printable_breakpoints > 0)
6428 annotate_field (2);
6429 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6430 if (nr_printable_breakpoints > 0)
6431 annotate_field (3);
6432 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6433 if (opts.addressprint)
6434 {
6435 if (nr_printable_breakpoints > 0)
6436 annotate_field (4);
6437 if (print_address_bits <= 32)
6438 ui_out_table_header (uiout, 10, ui_left,
6439 "addr", "Address"); /* 5 */
6440 else
6441 ui_out_table_header (uiout, 18, ui_left,
6442 "addr", "Address"); /* 5 */
6443 }
6444 if (nr_printable_breakpoints > 0)
6445 annotate_field (5);
6446 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6447 ui_out_table_body (uiout);
6448 if (nr_printable_breakpoints > 0)
6449 annotate_breakpoints_table ();
6450
6451 ALL_BREAKPOINTS (b)
6452 {
6453 QUIT;
6454 /* If we have a filter, only list the breakpoints it accepts. */
6455 if (filter && !filter (b))
6456 continue;
6457
6458 /* If we have an "args" string, it is a list of breakpoints to
6459 accept. Skip the others. */
6460
6461 if (args != NULL && *args != '\0')
6462 {
6463 if (allflag) /* maintenance info breakpoint */
6464 {
6465 if (parse_and_eval_long (args) != b->number)
6466 continue;
6467 }
6468 else /* all others */
6469 {
6470 if (!number_is_in_list (args, b->number))
6471 continue;
6472 }
6473 }
6474 /* We only print out user settable breakpoints unless the
6475 allflag is set. */
6476 if (allflag || user_breakpoint_p (b))
6477 print_one_breakpoint (b, &last_loc, allflag);
6478 }
6479
6480 do_cleanups (bkpttbl_chain);
6481
6482 if (nr_printable_breakpoints == 0)
6483 {
6484 /* If there's a filter, let the caller decide how to report
6485 empty list. */
6486 if (!filter)
6487 {
6488 if (args == NULL || *args == '\0')
6489 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6490 else
6491 ui_out_message (uiout, 0,
6492 "No breakpoint or watchpoint matching '%s'.\n",
6493 args);
6494 }
6495 }
6496 else
6497 {
6498 if (last_loc && !server_command)
6499 set_next_address (last_loc->gdbarch, last_loc->address);
6500 }
6501
6502 /* FIXME? Should this be moved up so that it is only called when
6503 there have been breakpoints? */
6504 annotate_breakpoints_table_end ();
6505
6506 return nr_printable_breakpoints;
6507 }
6508
6509 /* Display the value of default-collect in a way that is generally
6510 compatible with the breakpoint list. */
6511
6512 static void
6513 default_collect_info (void)
6514 {
6515 struct ui_out *uiout = current_uiout;
6516
6517 /* If it has no value (which is frequently the case), say nothing; a
6518 message like "No default-collect." gets in user's face when it's
6519 not wanted. */
6520 if (!*default_collect)
6521 return;
6522
6523 /* The following phrase lines up nicely with per-tracepoint collect
6524 actions. */
6525 ui_out_text (uiout, "default collect ");
6526 ui_out_field_string (uiout, "default-collect", default_collect);
6527 ui_out_text (uiout, " \n");
6528 }
6529
6530 static void
6531 breakpoints_info (char *args, int from_tty)
6532 {
6533 breakpoint_1 (args, 0, NULL);
6534
6535 default_collect_info ();
6536 }
6537
6538 static void
6539 watchpoints_info (char *args, int from_tty)
6540 {
6541 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6542 struct ui_out *uiout = current_uiout;
6543
6544 if (num_printed == 0)
6545 {
6546 if (args == NULL || *args == '\0')
6547 ui_out_message (uiout, 0, "No watchpoints.\n");
6548 else
6549 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6550 }
6551 }
6552
6553 static void
6554 maintenance_info_breakpoints (char *args, int from_tty)
6555 {
6556 breakpoint_1 (args, 1, NULL);
6557
6558 default_collect_info ();
6559 }
6560
6561 static int
6562 breakpoint_has_pc (struct breakpoint *b,
6563 struct program_space *pspace,
6564 CORE_ADDR pc, struct obj_section *section)
6565 {
6566 struct bp_location *bl = b->loc;
6567
6568 for (; bl; bl = bl->next)
6569 {
6570 if (bl->pspace == pspace
6571 && bl->address == pc
6572 && (!overlay_debugging || bl->section == section))
6573 return 1;
6574 }
6575 return 0;
6576 }
6577
6578 /* Print a message describing any user-breakpoints set at PC. This
6579 concerns with logical breakpoints, so we match program spaces, not
6580 address spaces. */
6581
6582 static void
6583 describe_other_breakpoints (struct gdbarch *gdbarch,
6584 struct program_space *pspace, CORE_ADDR pc,
6585 struct obj_section *section, int thread)
6586 {
6587 int others = 0;
6588 struct breakpoint *b;
6589
6590 ALL_BREAKPOINTS (b)
6591 others += (user_breakpoint_p (b)
6592 && breakpoint_has_pc (b, pspace, pc, section));
6593 if (others > 0)
6594 {
6595 if (others == 1)
6596 printf_filtered (_("Note: breakpoint "));
6597 else /* if (others == ???) */
6598 printf_filtered (_("Note: breakpoints "));
6599 ALL_BREAKPOINTS (b)
6600 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6601 {
6602 others--;
6603 printf_filtered ("%d", b->number);
6604 if (b->thread == -1 && thread != -1)
6605 printf_filtered (" (all threads)");
6606 else if (b->thread != -1)
6607 printf_filtered (" (thread %d)", b->thread);
6608 printf_filtered ("%s%s ",
6609 ((b->enable_state == bp_disabled
6610 || b->enable_state == bp_call_disabled)
6611 ? " (disabled)"
6612 : b->enable_state == bp_permanent
6613 ? " (permanent)"
6614 : ""),
6615 (others > 1) ? ","
6616 : ((others == 1) ? " and" : ""));
6617 }
6618 printf_filtered (_("also set at pc "));
6619 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6620 printf_filtered (".\n");
6621 }
6622 }
6623 \f
6624
6625 /* Return true iff it is meaningful to use the address member of
6626 BPT. For some breakpoint types, the address member is irrelevant
6627 and it makes no sense to attempt to compare it to other addresses
6628 (or use it for any other purpose either).
6629
6630 More specifically, each of the following breakpoint types will
6631 always have a zero valued address and we don't want to mark
6632 breakpoints of any of these types to be a duplicate of an actual
6633 breakpoint at address zero:
6634
6635 bp_watchpoint
6636 bp_catchpoint
6637
6638 */
6639
6640 static int
6641 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6642 {
6643 enum bptype type = bpt->type;
6644
6645 return (type != bp_watchpoint && type != bp_catchpoint);
6646 }
6647
6648 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6649 true if LOC1 and LOC2 represent the same watchpoint location. */
6650
6651 static int
6652 watchpoint_locations_match (struct bp_location *loc1,
6653 struct bp_location *loc2)
6654 {
6655 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6656 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6657
6658 /* Both of them must exist. */
6659 gdb_assert (w1 != NULL);
6660 gdb_assert (w2 != NULL);
6661
6662 /* If the target can evaluate the condition expression in hardware,
6663 then we we need to insert both watchpoints even if they are at
6664 the same place. Otherwise the watchpoint will only trigger when
6665 the condition of whichever watchpoint was inserted evaluates to
6666 true, not giving a chance for GDB to check the condition of the
6667 other watchpoint. */
6668 if ((w1->cond_exp
6669 && target_can_accel_watchpoint_condition (loc1->address,
6670 loc1->length,
6671 loc1->watchpoint_type,
6672 w1->cond_exp))
6673 || (w2->cond_exp
6674 && target_can_accel_watchpoint_condition (loc2->address,
6675 loc2->length,
6676 loc2->watchpoint_type,
6677 w2->cond_exp)))
6678 return 0;
6679
6680 /* Note that this checks the owner's type, not the location's. In
6681 case the target does not support read watchpoints, but does
6682 support access watchpoints, we'll have bp_read_watchpoint
6683 watchpoints with hw_access locations. Those should be considered
6684 duplicates of hw_read locations. The hw_read locations will
6685 become hw_access locations later. */
6686 return (loc1->owner->type == loc2->owner->type
6687 && loc1->pspace->aspace == loc2->pspace->aspace
6688 && loc1->address == loc2->address
6689 && loc1->length == loc2->length);
6690 }
6691
6692 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6693 same breakpoint location. In most targets, this can only be true
6694 if ASPACE1 matches ASPACE2. On targets that have global
6695 breakpoints, the address space doesn't really matter. */
6696
6697 static int
6698 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6699 struct address_space *aspace2, CORE_ADDR addr2)
6700 {
6701 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6702 || aspace1 == aspace2)
6703 && addr1 == addr2);
6704 }
6705
6706 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6707 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6708 matches ASPACE2. On targets that have global breakpoints, the address
6709 space doesn't really matter. */
6710
6711 static int
6712 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6713 int len1, struct address_space *aspace2,
6714 CORE_ADDR addr2)
6715 {
6716 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6717 || aspace1 == aspace2)
6718 && addr2 >= addr1 && addr2 < addr1 + len1);
6719 }
6720
6721 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6722 a ranged breakpoint. In most targets, a match happens only if ASPACE
6723 matches the breakpoint's address space. On targets that have global
6724 breakpoints, the address space doesn't really matter. */
6725
6726 static int
6727 breakpoint_location_address_match (struct bp_location *bl,
6728 struct address_space *aspace,
6729 CORE_ADDR addr)
6730 {
6731 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6732 aspace, addr)
6733 || (bl->length
6734 && breakpoint_address_match_range (bl->pspace->aspace,
6735 bl->address, bl->length,
6736 aspace, addr)));
6737 }
6738
6739 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6740 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6741 true, otherwise returns false. */
6742
6743 static int
6744 tracepoint_locations_match (struct bp_location *loc1,
6745 struct bp_location *loc2)
6746 {
6747 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6748 /* Since tracepoint locations are never duplicated with others', tracepoint
6749 locations at the same address of different tracepoints are regarded as
6750 different locations. */
6751 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6752 else
6753 return 0;
6754 }
6755
6756 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6757 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6758 represent the same location. */
6759
6760 static int
6761 breakpoint_locations_match (struct bp_location *loc1,
6762 struct bp_location *loc2)
6763 {
6764 int hw_point1, hw_point2;
6765
6766 /* Both of them must not be in moribund_locations. */
6767 gdb_assert (loc1->owner != NULL);
6768 gdb_assert (loc2->owner != NULL);
6769
6770 hw_point1 = is_hardware_watchpoint (loc1->owner);
6771 hw_point2 = is_hardware_watchpoint (loc2->owner);
6772
6773 if (hw_point1 != hw_point2)
6774 return 0;
6775 else if (hw_point1)
6776 return watchpoint_locations_match (loc1, loc2);
6777 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6778 return tracepoint_locations_match (loc1, loc2);
6779 else
6780 /* We compare bp_location.length in order to cover ranged breakpoints. */
6781 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6782 loc2->pspace->aspace, loc2->address)
6783 && loc1->length == loc2->length);
6784 }
6785
6786 static void
6787 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6788 int bnum, int have_bnum)
6789 {
6790 /* The longest string possibly returned by hex_string_custom
6791 is 50 chars. These must be at least that big for safety. */
6792 char astr1[64];
6793 char astr2[64];
6794
6795 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6796 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6797 if (have_bnum)
6798 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6799 bnum, astr1, astr2);
6800 else
6801 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6802 }
6803
6804 /* Adjust a breakpoint's address to account for architectural
6805 constraints on breakpoint placement. Return the adjusted address.
6806 Note: Very few targets require this kind of adjustment. For most
6807 targets, this function is simply the identity function. */
6808
6809 static CORE_ADDR
6810 adjust_breakpoint_address (struct gdbarch *gdbarch,
6811 CORE_ADDR bpaddr, enum bptype bptype)
6812 {
6813 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6814 {
6815 /* Very few targets need any kind of breakpoint adjustment. */
6816 return bpaddr;
6817 }
6818 else if (bptype == bp_watchpoint
6819 || bptype == bp_hardware_watchpoint
6820 || bptype == bp_read_watchpoint
6821 || bptype == bp_access_watchpoint
6822 || bptype == bp_catchpoint)
6823 {
6824 /* Watchpoints and the various bp_catch_* eventpoints should not
6825 have their addresses modified. */
6826 return bpaddr;
6827 }
6828 else
6829 {
6830 CORE_ADDR adjusted_bpaddr;
6831
6832 /* Some targets have architectural constraints on the placement
6833 of breakpoint instructions. Obtain the adjusted address. */
6834 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6835
6836 /* An adjusted breakpoint address can significantly alter
6837 a user's expectations. Print a warning if an adjustment
6838 is required. */
6839 if (adjusted_bpaddr != bpaddr)
6840 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6841
6842 return adjusted_bpaddr;
6843 }
6844 }
6845
6846 void
6847 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6848 struct breakpoint *owner)
6849 {
6850 memset (loc, 0, sizeof (*loc));
6851
6852 gdb_assert (ops != NULL);
6853
6854 loc->ops = ops;
6855 loc->owner = owner;
6856 loc->cond = NULL;
6857 loc->cond_bytecode = NULL;
6858 loc->shlib_disabled = 0;
6859 loc->enabled = 1;
6860
6861 switch (owner->type)
6862 {
6863 case bp_breakpoint:
6864 case bp_until:
6865 case bp_finish:
6866 case bp_longjmp:
6867 case bp_longjmp_resume:
6868 case bp_longjmp_call_dummy:
6869 case bp_exception:
6870 case bp_exception_resume:
6871 case bp_step_resume:
6872 case bp_hp_step_resume:
6873 case bp_watchpoint_scope:
6874 case bp_call_dummy:
6875 case bp_std_terminate:
6876 case bp_shlib_event:
6877 case bp_thread_event:
6878 case bp_overlay_event:
6879 case bp_jit_event:
6880 case bp_longjmp_master:
6881 case bp_std_terminate_master:
6882 case bp_exception_master:
6883 case bp_gnu_ifunc_resolver:
6884 case bp_gnu_ifunc_resolver_return:
6885 case bp_dprintf:
6886 loc->loc_type = bp_loc_software_breakpoint;
6887 mark_breakpoint_location_modified (loc);
6888 break;
6889 case bp_hardware_breakpoint:
6890 loc->loc_type = bp_loc_hardware_breakpoint;
6891 mark_breakpoint_location_modified (loc);
6892 break;
6893 case bp_hardware_watchpoint:
6894 case bp_read_watchpoint:
6895 case bp_access_watchpoint:
6896 loc->loc_type = bp_loc_hardware_watchpoint;
6897 break;
6898 case bp_watchpoint:
6899 case bp_catchpoint:
6900 case bp_tracepoint:
6901 case bp_fast_tracepoint:
6902 case bp_static_tracepoint:
6903 loc->loc_type = bp_loc_other;
6904 break;
6905 default:
6906 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6907 }
6908
6909 loc->refc = 1;
6910 }
6911
6912 /* Allocate a struct bp_location. */
6913
6914 static struct bp_location *
6915 allocate_bp_location (struct breakpoint *bpt)
6916 {
6917 return bpt->ops->allocate_location (bpt);
6918 }
6919
6920 static void
6921 free_bp_location (struct bp_location *loc)
6922 {
6923 loc->ops->dtor (loc);
6924 xfree (loc);
6925 }
6926
6927 /* Increment reference count. */
6928
6929 static void
6930 incref_bp_location (struct bp_location *bl)
6931 {
6932 ++bl->refc;
6933 }
6934
6935 /* Decrement reference count. If the reference count reaches 0,
6936 destroy the bp_location. Sets *BLP to NULL. */
6937
6938 static void
6939 decref_bp_location (struct bp_location **blp)
6940 {
6941 gdb_assert ((*blp)->refc > 0);
6942
6943 if (--(*blp)->refc == 0)
6944 free_bp_location (*blp);
6945 *blp = NULL;
6946 }
6947
6948 /* Add breakpoint B at the end of the global breakpoint chain. */
6949
6950 static void
6951 add_to_breakpoint_chain (struct breakpoint *b)
6952 {
6953 struct breakpoint *b1;
6954
6955 /* Add this breakpoint to the end of the chain so that a list of
6956 breakpoints will come out in order of increasing numbers. */
6957
6958 b1 = breakpoint_chain;
6959 if (b1 == 0)
6960 breakpoint_chain = b;
6961 else
6962 {
6963 while (b1->next)
6964 b1 = b1->next;
6965 b1->next = b;
6966 }
6967 }
6968
6969 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6970
6971 static void
6972 init_raw_breakpoint_without_location (struct breakpoint *b,
6973 struct gdbarch *gdbarch,
6974 enum bptype bptype,
6975 const struct breakpoint_ops *ops)
6976 {
6977 memset (b, 0, sizeof (*b));
6978
6979 gdb_assert (ops != NULL);
6980
6981 b->ops = ops;
6982 b->type = bptype;
6983 b->gdbarch = gdbarch;
6984 b->language = current_language->la_language;
6985 b->input_radix = input_radix;
6986 b->thread = -1;
6987 b->enable_state = bp_enabled;
6988 b->next = 0;
6989 b->silent = 0;
6990 b->ignore_count = 0;
6991 b->commands = NULL;
6992 b->frame_id = null_frame_id;
6993 b->condition_not_parsed = 0;
6994 b->py_bp_object = NULL;
6995 b->related_breakpoint = b;
6996 }
6997
6998 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6999 that has type BPTYPE and has no locations as yet. */
7000
7001 static struct breakpoint *
7002 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7003 enum bptype bptype,
7004 const struct breakpoint_ops *ops)
7005 {
7006 struct breakpoint *b = XNEW (struct breakpoint);
7007
7008 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7009 add_to_breakpoint_chain (b);
7010 return b;
7011 }
7012
7013 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7014 resolutions should be made as the user specified the location explicitly
7015 enough. */
7016
7017 static void
7018 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7019 {
7020 gdb_assert (loc->owner != NULL);
7021
7022 if (loc->owner->type == bp_breakpoint
7023 || loc->owner->type == bp_hardware_breakpoint
7024 || is_tracepoint (loc->owner))
7025 {
7026 int is_gnu_ifunc;
7027 const char *function_name;
7028 CORE_ADDR func_addr;
7029
7030 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7031 &func_addr, NULL, &is_gnu_ifunc);
7032
7033 if (is_gnu_ifunc && !explicit_loc)
7034 {
7035 struct breakpoint *b = loc->owner;
7036
7037 gdb_assert (loc->pspace == current_program_space);
7038 if (gnu_ifunc_resolve_name (function_name,
7039 &loc->requested_address))
7040 {
7041 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7042 loc->address = adjust_breakpoint_address (loc->gdbarch,
7043 loc->requested_address,
7044 b->type);
7045 }
7046 else if (b->type == bp_breakpoint && b->loc == loc
7047 && loc->next == NULL && b->related_breakpoint == b)
7048 {
7049 /* Create only the whole new breakpoint of this type but do not
7050 mess more complicated breakpoints with multiple locations. */
7051 b->type = bp_gnu_ifunc_resolver;
7052 /* Remember the resolver's address for use by the return
7053 breakpoint. */
7054 loc->related_address = func_addr;
7055 }
7056 }
7057
7058 if (function_name)
7059 loc->function_name = xstrdup (function_name);
7060 }
7061 }
7062
7063 /* Attempt to determine architecture of location identified by SAL. */
7064 struct gdbarch *
7065 get_sal_arch (struct symtab_and_line sal)
7066 {
7067 if (sal.section)
7068 return get_objfile_arch (sal.section->objfile);
7069 if (sal.symtab)
7070 return get_objfile_arch (sal.symtab->objfile);
7071
7072 return NULL;
7073 }
7074
7075 /* Low level routine for partially initializing a breakpoint of type
7076 BPTYPE. The newly created breakpoint's address, section, source
7077 file name, and line number are provided by SAL.
7078
7079 It is expected that the caller will complete the initialization of
7080 the newly created breakpoint struct as well as output any status
7081 information regarding the creation of a new breakpoint. */
7082
7083 static void
7084 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7085 struct symtab_and_line sal, enum bptype bptype,
7086 const struct breakpoint_ops *ops)
7087 {
7088 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7089
7090 add_location_to_breakpoint (b, &sal);
7091
7092 if (bptype != bp_catchpoint)
7093 gdb_assert (sal.pspace != NULL);
7094
7095 /* Store the program space that was used to set the breakpoint,
7096 except for ordinary breakpoints, which are independent of the
7097 program space. */
7098 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7099 b->pspace = sal.pspace;
7100 }
7101
7102 /* set_raw_breakpoint is a low level routine for allocating and
7103 partially initializing a breakpoint of type BPTYPE. The newly
7104 created breakpoint's address, section, source file name, and line
7105 number are provided by SAL. The newly created and partially
7106 initialized breakpoint is added to the breakpoint chain and
7107 is also returned as the value of this function.
7108
7109 It is expected that the caller will complete the initialization of
7110 the newly created breakpoint struct as well as output any status
7111 information regarding the creation of a new breakpoint. In
7112 particular, set_raw_breakpoint does NOT set the breakpoint
7113 number! Care should be taken to not allow an error to occur
7114 prior to completing the initialization of the breakpoint. If this
7115 should happen, a bogus breakpoint will be left on the chain. */
7116
7117 struct breakpoint *
7118 set_raw_breakpoint (struct gdbarch *gdbarch,
7119 struct symtab_and_line sal, enum bptype bptype,
7120 const struct breakpoint_ops *ops)
7121 {
7122 struct breakpoint *b = XNEW (struct breakpoint);
7123
7124 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7125 add_to_breakpoint_chain (b);
7126 return b;
7127 }
7128
7129
7130 /* Note that the breakpoint object B describes a permanent breakpoint
7131 instruction, hard-wired into the inferior's code. */
7132 void
7133 make_breakpoint_permanent (struct breakpoint *b)
7134 {
7135 struct bp_location *bl;
7136
7137 b->enable_state = bp_permanent;
7138
7139 /* By definition, permanent breakpoints are already present in the
7140 code. Mark all locations as inserted. For now,
7141 make_breakpoint_permanent is called in just one place, so it's
7142 hard to say if it's reasonable to have permanent breakpoint with
7143 multiple locations or not, but it's easy to implement. */
7144 for (bl = b->loc; bl; bl = bl->next)
7145 bl->inserted = 1;
7146 }
7147
7148 /* Call this routine when stepping and nexting to enable a breakpoint
7149 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7150 initiated the operation. */
7151
7152 void
7153 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7154 {
7155 struct breakpoint *b, *b_tmp;
7156 int thread = tp->num;
7157
7158 /* To avoid having to rescan all objfile symbols at every step,
7159 we maintain a list of continually-inserted but always disabled
7160 longjmp "master" breakpoints. Here, we simply create momentary
7161 clones of those and enable them for the requested thread. */
7162 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7163 if (b->pspace == current_program_space
7164 && (b->type == bp_longjmp_master
7165 || b->type == bp_exception_master))
7166 {
7167 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7168 struct breakpoint *clone;
7169
7170 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7171 after their removal. */
7172 clone = momentary_breakpoint_from_master (b, type,
7173 &longjmp_breakpoint_ops);
7174 clone->thread = thread;
7175 }
7176
7177 tp->initiating_frame = frame;
7178 }
7179
7180 /* Delete all longjmp breakpoints from THREAD. */
7181 void
7182 delete_longjmp_breakpoint (int thread)
7183 {
7184 struct breakpoint *b, *b_tmp;
7185
7186 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7187 if (b->type == bp_longjmp || b->type == bp_exception)
7188 {
7189 if (b->thread == thread)
7190 delete_breakpoint (b);
7191 }
7192 }
7193
7194 void
7195 delete_longjmp_breakpoint_at_next_stop (int thread)
7196 {
7197 struct breakpoint *b, *b_tmp;
7198
7199 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7200 if (b->type == bp_longjmp || b->type == bp_exception)
7201 {
7202 if (b->thread == thread)
7203 b->disposition = disp_del_at_next_stop;
7204 }
7205 }
7206
7207 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7208 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7209 pointer to any of them. Return NULL if this system cannot place longjmp
7210 breakpoints. */
7211
7212 struct breakpoint *
7213 set_longjmp_breakpoint_for_call_dummy (void)
7214 {
7215 struct breakpoint *b, *retval = NULL;
7216
7217 ALL_BREAKPOINTS (b)
7218 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7219 {
7220 struct breakpoint *new_b;
7221
7222 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7223 &momentary_breakpoint_ops);
7224 new_b->thread = pid_to_thread_id (inferior_ptid);
7225
7226 /* Link NEW_B into the chain of RETVAL breakpoints. */
7227
7228 gdb_assert (new_b->related_breakpoint == new_b);
7229 if (retval == NULL)
7230 retval = new_b;
7231 new_b->related_breakpoint = retval;
7232 while (retval->related_breakpoint != new_b->related_breakpoint)
7233 retval = retval->related_breakpoint;
7234 retval->related_breakpoint = new_b;
7235 }
7236
7237 return retval;
7238 }
7239
7240 /* Verify all existing dummy frames and their associated breakpoints for
7241 THREAD. Remove those which can no longer be found in the current frame
7242 stack.
7243
7244 You should call this function only at places where it is safe to currently
7245 unwind the whole stack. Failed stack unwind would discard live dummy
7246 frames. */
7247
7248 void
7249 check_longjmp_breakpoint_for_call_dummy (int thread)
7250 {
7251 struct breakpoint *b, *b_tmp;
7252
7253 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7254 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7255 {
7256 struct breakpoint *dummy_b = b->related_breakpoint;
7257
7258 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7259 dummy_b = dummy_b->related_breakpoint;
7260 if (dummy_b->type != bp_call_dummy
7261 || frame_find_by_id (dummy_b->frame_id) != NULL)
7262 continue;
7263
7264 dummy_frame_discard (dummy_b->frame_id);
7265
7266 while (b->related_breakpoint != b)
7267 {
7268 if (b_tmp == b->related_breakpoint)
7269 b_tmp = b->related_breakpoint->next;
7270 delete_breakpoint (b->related_breakpoint);
7271 }
7272 delete_breakpoint (b);
7273 }
7274 }
7275
7276 void
7277 enable_overlay_breakpoints (void)
7278 {
7279 struct breakpoint *b;
7280
7281 ALL_BREAKPOINTS (b)
7282 if (b->type == bp_overlay_event)
7283 {
7284 b->enable_state = bp_enabled;
7285 update_global_location_list (1);
7286 overlay_events_enabled = 1;
7287 }
7288 }
7289
7290 void
7291 disable_overlay_breakpoints (void)
7292 {
7293 struct breakpoint *b;
7294
7295 ALL_BREAKPOINTS (b)
7296 if (b->type == bp_overlay_event)
7297 {
7298 b->enable_state = bp_disabled;
7299 update_global_location_list (0);
7300 overlay_events_enabled = 0;
7301 }
7302 }
7303
7304 /* Set an active std::terminate breakpoint for each std::terminate
7305 master breakpoint. */
7306 void
7307 set_std_terminate_breakpoint (void)
7308 {
7309 struct breakpoint *b, *b_tmp;
7310
7311 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7312 if (b->pspace == current_program_space
7313 && b->type == bp_std_terminate_master)
7314 {
7315 momentary_breakpoint_from_master (b, bp_std_terminate,
7316 &momentary_breakpoint_ops);
7317 }
7318 }
7319
7320 /* Delete all the std::terminate breakpoints. */
7321 void
7322 delete_std_terminate_breakpoint (void)
7323 {
7324 struct breakpoint *b, *b_tmp;
7325
7326 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7327 if (b->type == bp_std_terminate)
7328 delete_breakpoint (b);
7329 }
7330
7331 struct breakpoint *
7332 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7333 {
7334 struct breakpoint *b;
7335
7336 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7337 &internal_breakpoint_ops);
7338
7339 b->enable_state = bp_enabled;
7340 /* addr_string has to be used or breakpoint_re_set will delete me. */
7341 b->addr_string
7342 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7343
7344 update_global_location_list_nothrow (1);
7345
7346 return b;
7347 }
7348
7349 void
7350 remove_thread_event_breakpoints (void)
7351 {
7352 struct breakpoint *b, *b_tmp;
7353
7354 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7355 if (b->type == bp_thread_event
7356 && b->loc->pspace == current_program_space)
7357 delete_breakpoint (b);
7358 }
7359
7360 struct lang_and_radix
7361 {
7362 enum language lang;
7363 int radix;
7364 };
7365
7366 /* Create a breakpoint for JIT code registration and unregistration. */
7367
7368 struct breakpoint *
7369 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7370 {
7371 struct breakpoint *b;
7372
7373 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7374 &internal_breakpoint_ops);
7375 update_global_location_list_nothrow (1);
7376 return b;
7377 }
7378
7379 /* Remove JIT code registration and unregistration breakpoint(s). */
7380
7381 void
7382 remove_jit_event_breakpoints (void)
7383 {
7384 struct breakpoint *b, *b_tmp;
7385
7386 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7387 if (b->type == bp_jit_event
7388 && b->loc->pspace == current_program_space)
7389 delete_breakpoint (b);
7390 }
7391
7392 void
7393 remove_solib_event_breakpoints (void)
7394 {
7395 struct breakpoint *b, *b_tmp;
7396
7397 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7398 if (b->type == bp_shlib_event
7399 && b->loc->pspace == current_program_space)
7400 delete_breakpoint (b);
7401 }
7402
7403 struct breakpoint *
7404 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7405 {
7406 struct breakpoint *b;
7407
7408 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7409 &internal_breakpoint_ops);
7410 update_global_location_list_nothrow (1);
7411 return b;
7412 }
7413
7414 /* Disable any breakpoints that are on code in shared libraries. Only
7415 apply to enabled breakpoints, disabled ones can just stay disabled. */
7416
7417 void
7418 disable_breakpoints_in_shlibs (void)
7419 {
7420 struct bp_location *loc, **locp_tmp;
7421
7422 ALL_BP_LOCATIONS (loc, locp_tmp)
7423 {
7424 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7425 struct breakpoint *b = loc->owner;
7426
7427 /* We apply the check to all breakpoints, including disabled for
7428 those with loc->duplicate set. This is so that when breakpoint
7429 becomes enabled, or the duplicate is removed, gdb will try to
7430 insert all breakpoints. If we don't set shlib_disabled here,
7431 we'll try to insert those breakpoints and fail. */
7432 if (((b->type == bp_breakpoint)
7433 || (b->type == bp_jit_event)
7434 || (b->type == bp_hardware_breakpoint)
7435 || (is_tracepoint (b)))
7436 && loc->pspace == current_program_space
7437 && !loc->shlib_disabled
7438 && solib_name_from_address (loc->pspace, loc->address)
7439 )
7440 {
7441 loc->shlib_disabled = 1;
7442 }
7443 }
7444 }
7445
7446 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7447 library. Only apply to enabled breakpoints, disabled ones can just stay
7448 disabled. */
7449
7450 static void
7451 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7452 {
7453 struct bp_location *loc, **locp_tmp;
7454 int disabled_shlib_breaks = 0;
7455
7456 /* SunOS a.out shared libraries are always mapped, so do not
7457 disable breakpoints; they will only be reported as unloaded
7458 through clear_solib when GDB discards its shared library
7459 list. See clear_solib for more information. */
7460 if (exec_bfd != NULL
7461 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7462 return;
7463
7464 ALL_BP_LOCATIONS (loc, locp_tmp)
7465 {
7466 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7467 struct breakpoint *b = loc->owner;
7468
7469 if (solib->pspace == loc->pspace
7470 && !loc->shlib_disabled
7471 && (((b->type == bp_breakpoint
7472 || b->type == bp_jit_event
7473 || b->type == bp_hardware_breakpoint)
7474 && (loc->loc_type == bp_loc_hardware_breakpoint
7475 || loc->loc_type == bp_loc_software_breakpoint))
7476 || is_tracepoint (b))
7477 && solib_contains_address_p (solib, loc->address))
7478 {
7479 loc->shlib_disabled = 1;
7480 /* At this point, we cannot rely on remove_breakpoint
7481 succeeding so we must mark the breakpoint as not inserted
7482 to prevent future errors occurring in remove_breakpoints. */
7483 loc->inserted = 0;
7484
7485 /* This may cause duplicate notifications for the same breakpoint. */
7486 observer_notify_breakpoint_modified (b);
7487
7488 if (!disabled_shlib_breaks)
7489 {
7490 target_terminal_ours_for_output ();
7491 warning (_("Temporarily disabling breakpoints "
7492 "for unloaded shared library \"%s\""),
7493 solib->so_name);
7494 }
7495 disabled_shlib_breaks = 1;
7496 }
7497 }
7498 }
7499
7500 /* FORK & VFORK catchpoints. */
7501
7502 /* An instance of this type is used to represent a fork or vfork
7503 catchpoint. It includes a "struct breakpoint" as a kind of base
7504 class; users downcast to "struct breakpoint *" when needed. A
7505 breakpoint is really of this type iff its ops pointer points to
7506 CATCH_FORK_BREAKPOINT_OPS. */
7507
7508 struct fork_catchpoint
7509 {
7510 /* The base class. */
7511 struct breakpoint base;
7512
7513 /* Process id of a child process whose forking triggered this
7514 catchpoint. This field is only valid immediately after this
7515 catchpoint has triggered. */
7516 ptid_t forked_inferior_pid;
7517 };
7518
7519 /* Implement the "insert" breakpoint_ops method for fork
7520 catchpoints. */
7521
7522 static int
7523 insert_catch_fork (struct bp_location *bl)
7524 {
7525 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7526 }
7527
7528 /* Implement the "remove" breakpoint_ops method for fork
7529 catchpoints. */
7530
7531 static int
7532 remove_catch_fork (struct bp_location *bl)
7533 {
7534 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7535 }
7536
7537 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7538 catchpoints. */
7539
7540 static int
7541 breakpoint_hit_catch_fork (const struct bp_location *bl,
7542 struct address_space *aspace, CORE_ADDR bp_addr,
7543 const struct target_waitstatus *ws)
7544 {
7545 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7546
7547 if (ws->kind != TARGET_WAITKIND_FORKED)
7548 return 0;
7549
7550 c->forked_inferior_pid = ws->value.related_pid;
7551 return 1;
7552 }
7553
7554 /* Implement the "print_it" breakpoint_ops method for fork
7555 catchpoints. */
7556
7557 static enum print_stop_action
7558 print_it_catch_fork (bpstat bs)
7559 {
7560 struct ui_out *uiout = current_uiout;
7561 struct breakpoint *b = bs->breakpoint_at;
7562 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7563
7564 annotate_catchpoint (b->number);
7565 if (b->disposition == disp_del)
7566 ui_out_text (uiout, "\nTemporary catchpoint ");
7567 else
7568 ui_out_text (uiout, "\nCatchpoint ");
7569 if (ui_out_is_mi_like_p (uiout))
7570 {
7571 ui_out_field_string (uiout, "reason",
7572 async_reason_lookup (EXEC_ASYNC_FORK));
7573 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7574 }
7575 ui_out_field_int (uiout, "bkptno", b->number);
7576 ui_out_text (uiout, " (forked process ");
7577 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7578 ui_out_text (uiout, "), ");
7579 return PRINT_SRC_AND_LOC;
7580 }
7581
7582 /* Implement the "print_one" breakpoint_ops method for fork
7583 catchpoints. */
7584
7585 static void
7586 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7587 {
7588 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7589 struct value_print_options opts;
7590 struct ui_out *uiout = current_uiout;
7591
7592 get_user_print_options (&opts);
7593
7594 /* Field 4, the address, is omitted (which makes the columns not
7595 line up too nicely with the headers, but the effect is relatively
7596 readable). */
7597 if (opts.addressprint)
7598 ui_out_field_skip (uiout, "addr");
7599 annotate_field (5);
7600 ui_out_text (uiout, "fork");
7601 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7602 {
7603 ui_out_text (uiout, ", process ");
7604 ui_out_field_int (uiout, "what",
7605 ptid_get_pid (c->forked_inferior_pid));
7606 ui_out_spaces (uiout, 1);
7607 }
7608
7609 if (ui_out_is_mi_like_p (uiout))
7610 ui_out_field_string (uiout, "catch-type", "fork");
7611 }
7612
7613 /* Implement the "print_mention" breakpoint_ops method for fork
7614 catchpoints. */
7615
7616 static void
7617 print_mention_catch_fork (struct breakpoint *b)
7618 {
7619 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7620 }
7621
7622 /* Implement the "print_recreate" breakpoint_ops method for fork
7623 catchpoints. */
7624
7625 static void
7626 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7627 {
7628 fprintf_unfiltered (fp, "catch fork");
7629 print_recreate_thread (b, fp);
7630 }
7631
7632 /* The breakpoint_ops structure to be used in fork catchpoints. */
7633
7634 static struct breakpoint_ops catch_fork_breakpoint_ops;
7635
7636 /* Implement the "insert" breakpoint_ops method for vfork
7637 catchpoints. */
7638
7639 static int
7640 insert_catch_vfork (struct bp_location *bl)
7641 {
7642 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7643 }
7644
7645 /* Implement the "remove" breakpoint_ops method for vfork
7646 catchpoints. */
7647
7648 static int
7649 remove_catch_vfork (struct bp_location *bl)
7650 {
7651 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7652 }
7653
7654 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7655 catchpoints. */
7656
7657 static int
7658 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7659 struct address_space *aspace, CORE_ADDR bp_addr,
7660 const struct target_waitstatus *ws)
7661 {
7662 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7663
7664 if (ws->kind != TARGET_WAITKIND_VFORKED)
7665 return 0;
7666
7667 c->forked_inferior_pid = ws->value.related_pid;
7668 return 1;
7669 }
7670
7671 /* Implement the "print_it" breakpoint_ops method for vfork
7672 catchpoints. */
7673
7674 static enum print_stop_action
7675 print_it_catch_vfork (bpstat bs)
7676 {
7677 struct ui_out *uiout = current_uiout;
7678 struct breakpoint *b = bs->breakpoint_at;
7679 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7680
7681 annotate_catchpoint (b->number);
7682 if (b->disposition == disp_del)
7683 ui_out_text (uiout, "\nTemporary catchpoint ");
7684 else
7685 ui_out_text (uiout, "\nCatchpoint ");
7686 if (ui_out_is_mi_like_p (uiout))
7687 {
7688 ui_out_field_string (uiout, "reason",
7689 async_reason_lookup (EXEC_ASYNC_VFORK));
7690 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7691 }
7692 ui_out_field_int (uiout, "bkptno", b->number);
7693 ui_out_text (uiout, " (vforked process ");
7694 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7695 ui_out_text (uiout, "), ");
7696 return PRINT_SRC_AND_LOC;
7697 }
7698
7699 /* Implement the "print_one" breakpoint_ops method for vfork
7700 catchpoints. */
7701
7702 static void
7703 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7704 {
7705 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7706 struct value_print_options opts;
7707 struct ui_out *uiout = current_uiout;
7708
7709 get_user_print_options (&opts);
7710 /* Field 4, the address, is omitted (which makes the columns not
7711 line up too nicely with the headers, but the effect is relatively
7712 readable). */
7713 if (opts.addressprint)
7714 ui_out_field_skip (uiout, "addr");
7715 annotate_field (5);
7716 ui_out_text (uiout, "vfork");
7717 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7718 {
7719 ui_out_text (uiout, ", process ");
7720 ui_out_field_int (uiout, "what",
7721 ptid_get_pid (c->forked_inferior_pid));
7722 ui_out_spaces (uiout, 1);
7723 }
7724
7725 if (ui_out_is_mi_like_p (uiout))
7726 ui_out_field_string (uiout, "catch-type", "vfork");
7727 }
7728
7729 /* Implement the "print_mention" breakpoint_ops method for vfork
7730 catchpoints. */
7731
7732 static void
7733 print_mention_catch_vfork (struct breakpoint *b)
7734 {
7735 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7736 }
7737
7738 /* Implement the "print_recreate" breakpoint_ops method for vfork
7739 catchpoints. */
7740
7741 static void
7742 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7743 {
7744 fprintf_unfiltered (fp, "catch vfork");
7745 print_recreate_thread (b, fp);
7746 }
7747
7748 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7749
7750 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7751
7752 /* An instance of this type is used to represent an solib catchpoint.
7753 It includes a "struct breakpoint" as a kind of base class; users
7754 downcast to "struct breakpoint *" when needed. A breakpoint is
7755 really of this type iff its ops pointer points to
7756 CATCH_SOLIB_BREAKPOINT_OPS. */
7757
7758 struct solib_catchpoint
7759 {
7760 /* The base class. */
7761 struct breakpoint base;
7762
7763 /* True for "catch load", false for "catch unload". */
7764 unsigned char is_load;
7765
7766 /* Regular expression to match, if any. COMPILED is only valid when
7767 REGEX is non-NULL. */
7768 char *regex;
7769 regex_t compiled;
7770 };
7771
7772 static void
7773 dtor_catch_solib (struct breakpoint *b)
7774 {
7775 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7776
7777 if (self->regex)
7778 regfree (&self->compiled);
7779 xfree (self->regex);
7780
7781 base_breakpoint_ops.dtor (b);
7782 }
7783
7784 static int
7785 insert_catch_solib (struct bp_location *ignore)
7786 {
7787 return 0;
7788 }
7789
7790 static int
7791 remove_catch_solib (struct bp_location *ignore)
7792 {
7793 return 0;
7794 }
7795
7796 static int
7797 breakpoint_hit_catch_solib (const struct bp_location *bl,
7798 struct address_space *aspace,
7799 CORE_ADDR bp_addr,
7800 const struct target_waitstatus *ws)
7801 {
7802 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7803 struct breakpoint *other;
7804
7805 if (ws->kind == TARGET_WAITKIND_LOADED)
7806 return 1;
7807
7808 ALL_BREAKPOINTS (other)
7809 {
7810 struct bp_location *other_bl;
7811
7812 if (other == bl->owner)
7813 continue;
7814
7815 if (other->type != bp_shlib_event)
7816 continue;
7817
7818 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7819 continue;
7820
7821 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7822 {
7823 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7824 return 1;
7825 }
7826 }
7827
7828 return 0;
7829 }
7830
7831 static void
7832 check_status_catch_solib (struct bpstats *bs)
7833 {
7834 struct solib_catchpoint *self
7835 = (struct solib_catchpoint *) bs->breakpoint_at;
7836 int ix;
7837
7838 if (self->is_load)
7839 {
7840 struct so_list *iter;
7841
7842 for (ix = 0;
7843 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7844 ix, iter);
7845 ++ix)
7846 {
7847 if (!self->regex
7848 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7849 return;
7850 }
7851 }
7852 else
7853 {
7854 char *iter;
7855
7856 for (ix = 0;
7857 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7858 ix, iter);
7859 ++ix)
7860 {
7861 if (!self->regex
7862 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7863 return;
7864 }
7865 }
7866
7867 bs->stop = 0;
7868 bs->print_it = print_it_noop;
7869 }
7870
7871 static enum print_stop_action
7872 print_it_catch_solib (bpstat bs)
7873 {
7874 struct breakpoint *b = bs->breakpoint_at;
7875 struct ui_out *uiout = current_uiout;
7876
7877 annotate_catchpoint (b->number);
7878 if (b->disposition == disp_del)
7879 ui_out_text (uiout, "\nTemporary catchpoint ");
7880 else
7881 ui_out_text (uiout, "\nCatchpoint ");
7882 ui_out_field_int (uiout, "bkptno", b->number);
7883 ui_out_text (uiout, "\n");
7884 if (ui_out_is_mi_like_p (uiout))
7885 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7886 print_solib_event (1);
7887 return PRINT_SRC_AND_LOC;
7888 }
7889
7890 static void
7891 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7892 {
7893 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7894 struct value_print_options opts;
7895 struct ui_out *uiout = current_uiout;
7896 char *msg;
7897
7898 get_user_print_options (&opts);
7899 /* Field 4, the address, is omitted (which makes the columns not
7900 line up too nicely with the headers, but the effect is relatively
7901 readable). */
7902 if (opts.addressprint)
7903 {
7904 annotate_field (4);
7905 ui_out_field_skip (uiout, "addr");
7906 }
7907
7908 annotate_field (5);
7909 if (self->is_load)
7910 {
7911 if (self->regex)
7912 msg = xstrprintf (_("load of library matching %s"), self->regex);
7913 else
7914 msg = xstrdup (_("load of library"));
7915 }
7916 else
7917 {
7918 if (self->regex)
7919 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7920 else
7921 msg = xstrdup (_("unload of library"));
7922 }
7923 ui_out_field_string (uiout, "what", msg);
7924 xfree (msg);
7925
7926 if (ui_out_is_mi_like_p (uiout))
7927 ui_out_field_string (uiout, "catch-type",
7928 self->is_load ? "load" : "unload");
7929 }
7930
7931 static void
7932 print_mention_catch_solib (struct breakpoint *b)
7933 {
7934 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7935
7936 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7937 self->is_load ? "load" : "unload");
7938 }
7939
7940 static void
7941 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7942 {
7943 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7944
7945 fprintf_unfiltered (fp, "%s %s",
7946 b->disposition == disp_del ? "tcatch" : "catch",
7947 self->is_load ? "load" : "unload");
7948 if (self->regex)
7949 fprintf_unfiltered (fp, " %s", self->regex);
7950 fprintf_unfiltered (fp, "\n");
7951 }
7952
7953 static struct breakpoint_ops catch_solib_breakpoint_ops;
7954
7955 /* Shared helper function (MI and CLI) for creating and installing
7956 a shared object event catchpoint. If IS_LOAD is non-zero then
7957 the events to be caught are load events, otherwise they are
7958 unload events. If IS_TEMP is non-zero the catchpoint is a
7959 temporary one. If ENABLED is non-zero the catchpoint is
7960 created in an enabled state. */
7961
7962 void
7963 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7964 {
7965 struct solib_catchpoint *c;
7966 struct gdbarch *gdbarch = get_current_arch ();
7967 struct cleanup *cleanup;
7968
7969 if (!arg)
7970 arg = "";
7971 arg = skip_spaces (arg);
7972
7973 c = XCNEW (struct solib_catchpoint);
7974 cleanup = make_cleanup (xfree, c);
7975
7976 if (*arg != '\0')
7977 {
7978 int errcode;
7979
7980 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7981 if (errcode != 0)
7982 {
7983 char *err = get_regcomp_error (errcode, &c->compiled);
7984
7985 make_cleanup (xfree, err);
7986 error (_("Invalid regexp (%s): %s"), err, arg);
7987 }
7988 c->regex = xstrdup (arg);
7989 }
7990
7991 c->is_load = is_load;
7992 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7993 &catch_solib_breakpoint_ops);
7994
7995 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7996
7997 discard_cleanups (cleanup);
7998 install_breakpoint (0, &c->base, 1);
7999 }
8000
8001 /* A helper function that does all the work for "catch load" and
8002 "catch unload". */
8003
8004 static void
8005 catch_load_or_unload (char *arg, int from_tty, int is_load,
8006 struct cmd_list_element *command)
8007 {
8008 int tempflag;
8009 const int enabled = 1;
8010
8011 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8012
8013 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8014 }
8015
8016 static void
8017 catch_load_command_1 (char *arg, int from_tty,
8018 struct cmd_list_element *command)
8019 {
8020 catch_load_or_unload (arg, from_tty, 1, command);
8021 }
8022
8023 static void
8024 catch_unload_command_1 (char *arg, int from_tty,
8025 struct cmd_list_element *command)
8026 {
8027 catch_load_or_unload (arg, from_tty, 0, command);
8028 }
8029
8030 /* An instance of this type is used to represent a syscall catchpoint.
8031 It includes a "struct breakpoint" as a kind of base class; users
8032 downcast to "struct breakpoint *" when needed. A breakpoint is
8033 really of this type iff its ops pointer points to
8034 CATCH_SYSCALL_BREAKPOINT_OPS. */
8035
8036 struct syscall_catchpoint
8037 {
8038 /* The base class. */
8039 struct breakpoint base;
8040
8041 /* Syscall numbers used for the 'catch syscall' feature. If no
8042 syscall has been specified for filtering, its value is NULL.
8043 Otherwise, it holds a list of all syscalls to be caught. The
8044 list elements are allocated with xmalloc. */
8045 VEC(int) *syscalls_to_be_caught;
8046 };
8047
8048 /* Implement the "dtor" breakpoint_ops method for syscall
8049 catchpoints. */
8050
8051 static void
8052 dtor_catch_syscall (struct breakpoint *b)
8053 {
8054 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8055
8056 VEC_free (int, c->syscalls_to_be_caught);
8057
8058 base_breakpoint_ops.dtor (b);
8059 }
8060
8061 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8062
8063 struct catch_syscall_inferior_data
8064 {
8065 /* We keep a count of the number of times the user has requested a
8066 particular syscall to be tracked, and pass this information to the
8067 target. This lets capable targets implement filtering directly. */
8068
8069 /* Number of times that "any" syscall is requested. */
8070 int any_syscall_count;
8071
8072 /* Count of each system call. */
8073 VEC(int) *syscalls_counts;
8074
8075 /* This counts all syscall catch requests, so we can readily determine
8076 if any catching is necessary. */
8077 int total_syscalls_count;
8078 };
8079
8080 static struct catch_syscall_inferior_data*
8081 get_catch_syscall_inferior_data (struct inferior *inf)
8082 {
8083 struct catch_syscall_inferior_data *inf_data;
8084
8085 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8086 if (inf_data == NULL)
8087 {
8088 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8089 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8090 }
8091
8092 return inf_data;
8093 }
8094
8095 static void
8096 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8097 {
8098 xfree (arg);
8099 }
8100
8101
8102 /* Implement the "insert" breakpoint_ops method for syscall
8103 catchpoints. */
8104
8105 static int
8106 insert_catch_syscall (struct bp_location *bl)
8107 {
8108 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8109 struct inferior *inf = current_inferior ();
8110 struct catch_syscall_inferior_data *inf_data
8111 = get_catch_syscall_inferior_data (inf);
8112
8113 ++inf_data->total_syscalls_count;
8114 if (!c->syscalls_to_be_caught)
8115 ++inf_data->any_syscall_count;
8116 else
8117 {
8118 int i, iter;
8119
8120 for (i = 0;
8121 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8122 i++)
8123 {
8124 int elem;
8125
8126 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8127 {
8128 int old_size = VEC_length (int, inf_data->syscalls_counts);
8129 uintptr_t vec_addr_offset
8130 = old_size * ((uintptr_t) sizeof (int));
8131 uintptr_t vec_addr;
8132 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8133 vec_addr = ((uintptr_t) VEC_address (int,
8134 inf_data->syscalls_counts)
8135 + vec_addr_offset);
8136 memset ((void *) vec_addr, 0,
8137 (iter + 1 - old_size) * sizeof (int));
8138 }
8139 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8140 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8141 }
8142 }
8143
8144 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8145 inf_data->total_syscalls_count != 0,
8146 inf_data->any_syscall_count,
8147 VEC_length (int,
8148 inf_data->syscalls_counts),
8149 VEC_address (int,
8150 inf_data->syscalls_counts));
8151 }
8152
8153 /* Implement the "remove" breakpoint_ops method for syscall
8154 catchpoints. */
8155
8156 static int
8157 remove_catch_syscall (struct bp_location *bl)
8158 {
8159 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8160 struct inferior *inf = current_inferior ();
8161 struct catch_syscall_inferior_data *inf_data
8162 = get_catch_syscall_inferior_data (inf);
8163
8164 --inf_data->total_syscalls_count;
8165 if (!c->syscalls_to_be_caught)
8166 --inf_data->any_syscall_count;
8167 else
8168 {
8169 int i, iter;
8170
8171 for (i = 0;
8172 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8173 i++)
8174 {
8175 int elem;
8176 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8177 /* Shouldn't happen. */
8178 continue;
8179 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8180 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8181 }
8182 }
8183
8184 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8185 inf_data->total_syscalls_count != 0,
8186 inf_data->any_syscall_count,
8187 VEC_length (int,
8188 inf_data->syscalls_counts),
8189 VEC_address (int,
8190 inf_data->syscalls_counts));
8191 }
8192
8193 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8194 catchpoints. */
8195
8196 static int
8197 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8198 struct address_space *aspace, CORE_ADDR bp_addr,
8199 const struct target_waitstatus *ws)
8200 {
8201 /* We must check if we are catching specific syscalls in this
8202 breakpoint. If we are, then we must guarantee that the called
8203 syscall is the same syscall we are catching. */
8204 int syscall_number = 0;
8205 const struct syscall_catchpoint *c
8206 = (const struct syscall_catchpoint *) bl->owner;
8207
8208 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8209 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8210 return 0;
8211
8212 syscall_number = ws->value.syscall_number;
8213
8214 /* Now, checking if the syscall is the same. */
8215 if (c->syscalls_to_be_caught)
8216 {
8217 int i, iter;
8218
8219 for (i = 0;
8220 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8221 i++)
8222 if (syscall_number == iter)
8223 break;
8224 /* Not the same. */
8225 if (!iter)
8226 return 0;
8227 }
8228
8229 return 1;
8230 }
8231
8232 /* Implement the "print_it" breakpoint_ops method for syscall
8233 catchpoints. */
8234
8235 static enum print_stop_action
8236 print_it_catch_syscall (bpstat bs)
8237 {
8238 struct ui_out *uiout = current_uiout;
8239 struct breakpoint *b = bs->breakpoint_at;
8240 /* These are needed because we want to know in which state a
8241 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8242 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8243 must print "called syscall" or "returned from syscall". */
8244 ptid_t ptid;
8245 struct target_waitstatus last;
8246 struct syscall s;
8247
8248 get_last_target_status (&ptid, &last);
8249
8250 get_syscall_by_number (last.value.syscall_number, &s);
8251
8252 annotate_catchpoint (b->number);
8253
8254 if (b->disposition == disp_del)
8255 ui_out_text (uiout, "\nTemporary catchpoint ");
8256 else
8257 ui_out_text (uiout, "\nCatchpoint ");
8258 if (ui_out_is_mi_like_p (uiout))
8259 {
8260 ui_out_field_string (uiout, "reason",
8261 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8262 ? EXEC_ASYNC_SYSCALL_ENTRY
8263 : EXEC_ASYNC_SYSCALL_RETURN));
8264 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8265 }
8266 ui_out_field_int (uiout, "bkptno", b->number);
8267
8268 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8269 ui_out_text (uiout, " (call to syscall ");
8270 else
8271 ui_out_text (uiout, " (returned from syscall ");
8272
8273 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8274 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8275 if (s.name != NULL)
8276 ui_out_field_string (uiout, "syscall-name", s.name);
8277
8278 ui_out_text (uiout, "), ");
8279
8280 return PRINT_SRC_AND_LOC;
8281 }
8282
8283 /* Implement the "print_one" breakpoint_ops method for syscall
8284 catchpoints. */
8285
8286 static void
8287 print_one_catch_syscall (struct breakpoint *b,
8288 struct bp_location **last_loc)
8289 {
8290 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8291 struct value_print_options opts;
8292 struct ui_out *uiout = current_uiout;
8293
8294 get_user_print_options (&opts);
8295 /* Field 4, the address, is omitted (which makes the columns not
8296 line up too nicely with the headers, but the effect is relatively
8297 readable). */
8298 if (opts.addressprint)
8299 ui_out_field_skip (uiout, "addr");
8300 annotate_field (5);
8301
8302 if (c->syscalls_to_be_caught
8303 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8304 ui_out_text (uiout, "syscalls \"");
8305 else
8306 ui_out_text (uiout, "syscall \"");
8307
8308 if (c->syscalls_to_be_caught)
8309 {
8310 int i, iter;
8311 char *text = xstrprintf ("%s", "");
8312
8313 for (i = 0;
8314 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8315 i++)
8316 {
8317 char *x = text;
8318 struct syscall s;
8319 get_syscall_by_number (iter, &s);
8320
8321 if (s.name != NULL)
8322 text = xstrprintf ("%s%s, ", text, s.name);
8323 else
8324 text = xstrprintf ("%s%d, ", text, iter);
8325
8326 /* We have to xfree the last 'text' (now stored at 'x')
8327 because xstrprintf dynamically allocates new space for it
8328 on every call. */
8329 xfree (x);
8330 }
8331 /* Remove the last comma. */
8332 text[strlen (text) - 2] = '\0';
8333 ui_out_field_string (uiout, "what", text);
8334 }
8335 else
8336 ui_out_field_string (uiout, "what", "<any syscall>");
8337 ui_out_text (uiout, "\" ");
8338
8339 if (ui_out_is_mi_like_p (uiout))
8340 ui_out_field_string (uiout, "catch-type", "syscall");
8341 }
8342
8343 /* Implement the "print_mention" breakpoint_ops method for syscall
8344 catchpoints. */
8345
8346 static void
8347 print_mention_catch_syscall (struct breakpoint *b)
8348 {
8349 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8350
8351 if (c->syscalls_to_be_caught)
8352 {
8353 int i, iter;
8354
8355 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8356 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8357 else
8358 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8359
8360 for (i = 0;
8361 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8362 i++)
8363 {
8364 struct syscall s;
8365 get_syscall_by_number (iter, &s);
8366
8367 if (s.name)
8368 printf_filtered (" '%s' [%d]", s.name, s.number);
8369 else
8370 printf_filtered (" %d", s.number);
8371 }
8372 printf_filtered (")");
8373 }
8374 else
8375 printf_filtered (_("Catchpoint %d (any syscall)"),
8376 b->number);
8377 }
8378
8379 /* Implement the "print_recreate" breakpoint_ops method for syscall
8380 catchpoints. */
8381
8382 static void
8383 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8384 {
8385 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8386
8387 fprintf_unfiltered (fp, "catch syscall");
8388
8389 if (c->syscalls_to_be_caught)
8390 {
8391 int i, iter;
8392
8393 for (i = 0;
8394 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8395 i++)
8396 {
8397 struct syscall s;
8398
8399 get_syscall_by_number (iter, &s);
8400 if (s.name)
8401 fprintf_unfiltered (fp, " %s", s.name);
8402 else
8403 fprintf_unfiltered (fp, " %d", s.number);
8404 }
8405 }
8406 print_recreate_thread (b, fp);
8407 }
8408
8409 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8410
8411 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8412
8413 /* Returns non-zero if 'b' is a syscall catchpoint. */
8414
8415 static int
8416 syscall_catchpoint_p (struct breakpoint *b)
8417 {
8418 return (b->ops == &catch_syscall_breakpoint_ops);
8419 }
8420
8421 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8422 is non-zero, then make the breakpoint temporary. If COND_STRING is
8423 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8424 the breakpoint_ops structure associated to the catchpoint. */
8425
8426 void
8427 init_catchpoint (struct breakpoint *b,
8428 struct gdbarch *gdbarch, int tempflag,
8429 char *cond_string,
8430 const struct breakpoint_ops *ops)
8431 {
8432 struct symtab_and_line sal;
8433
8434 init_sal (&sal);
8435 sal.pspace = current_program_space;
8436
8437 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8438
8439 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8440 b->disposition = tempflag ? disp_del : disp_donttouch;
8441 }
8442
8443 void
8444 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8445 {
8446 add_to_breakpoint_chain (b);
8447 set_breakpoint_number (internal, b);
8448 if (is_tracepoint (b))
8449 set_tracepoint_count (breakpoint_count);
8450 if (!internal)
8451 mention (b);
8452 observer_notify_breakpoint_created (b);
8453
8454 if (update_gll)
8455 update_global_location_list (1);
8456 }
8457
8458 static void
8459 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8460 int tempflag, char *cond_string,
8461 const struct breakpoint_ops *ops)
8462 {
8463 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8464
8465 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8466
8467 c->forked_inferior_pid = null_ptid;
8468
8469 install_breakpoint (0, &c->base, 1);
8470 }
8471
8472 /* Exec catchpoints. */
8473
8474 /* An instance of this type is used to represent an exec catchpoint.
8475 It includes a "struct breakpoint" as a kind of base class; users
8476 downcast to "struct breakpoint *" when needed. A breakpoint is
8477 really of this type iff its ops pointer points to
8478 CATCH_EXEC_BREAKPOINT_OPS. */
8479
8480 struct exec_catchpoint
8481 {
8482 /* The base class. */
8483 struct breakpoint base;
8484
8485 /* Filename of a program whose exec triggered this catchpoint.
8486 This field is only valid immediately after this catchpoint has
8487 triggered. */
8488 char *exec_pathname;
8489 };
8490
8491 /* Implement the "dtor" breakpoint_ops method for exec
8492 catchpoints. */
8493
8494 static void
8495 dtor_catch_exec (struct breakpoint *b)
8496 {
8497 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8498
8499 xfree (c->exec_pathname);
8500
8501 base_breakpoint_ops.dtor (b);
8502 }
8503
8504 static int
8505 insert_catch_exec (struct bp_location *bl)
8506 {
8507 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8508 }
8509
8510 static int
8511 remove_catch_exec (struct bp_location *bl)
8512 {
8513 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8514 }
8515
8516 static int
8517 breakpoint_hit_catch_exec (const struct bp_location *bl,
8518 struct address_space *aspace, CORE_ADDR bp_addr,
8519 const struct target_waitstatus *ws)
8520 {
8521 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8522
8523 if (ws->kind != TARGET_WAITKIND_EXECD)
8524 return 0;
8525
8526 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8527 return 1;
8528 }
8529
8530 static enum print_stop_action
8531 print_it_catch_exec (bpstat bs)
8532 {
8533 struct ui_out *uiout = current_uiout;
8534 struct breakpoint *b = bs->breakpoint_at;
8535 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8536
8537 annotate_catchpoint (b->number);
8538 if (b->disposition == disp_del)
8539 ui_out_text (uiout, "\nTemporary catchpoint ");
8540 else
8541 ui_out_text (uiout, "\nCatchpoint ");
8542 if (ui_out_is_mi_like_p (uiout))
8543 {
8544 ui_out_field_string (uiout, "reason",
8545 async_reason_lookup (EXEC_ASYNC_EXEC));
8546 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8547 }
8548 ui_out_field_int (uiout, "bkptno", b->number);
8549 ui_out_text (uiout, " (exec'd ");
8550 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8551 ui_out_text (uiout, "), ");
8552
8553 return PRINT_SRC_AND_LOC;
8554 }
8555
8556 static void
8557 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8558 {
8559 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8560 struct value_print_options opts;
8561 struct ui_out *uiout = current_uiout;
8562
8563 get_user_print_options (&opts);
8564
8565 /* Field 4, the address, is omitted (which makes the columns
8566 not line up too nicely with the headers, but the effect
8567 is relatively readable). */
8568 if (opts.addressprint)
8569 ui_out_field_skip (uiout, "addr");
8570 annotate_field (5);
8571 ui_out_text (uiout, "exec");
8572 if (c->exec_pathname != NULL)
8573 {
8574 ui_out_text (uiout, ", program \"");
8575 ui_out_field_string (uiout, "what", c->exec_pathname);
8576 ui_out_text (uiout, "\" ");
8577 }
8578
8579 if (ui_out_is_mi_like_p (uiout))
8580 ui_out_field_string (uiout, "catch-type", "exec");
8581 }
8582
8583 static void
8584 print_mention_catch_exec (struct breakpoint *b)
8585 {
8586 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8587 }
8588
8589 /* Implement the "print_recreate" breakpoint_ops method for exec
8590 catchpoints. */
8591
8592 static void
8593 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8594 {
8595 fprintf_unfiltered (fp, "catch exec");
8596 print_recreate_thread (b, fp);
8597 }
8598
8599 static struct breakpoint_ops catch_exec_breakpoint_ops;
8600
8601 static void
8602 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8603 const struct breakpoint_ops *ops)
8604 {
8605 struct syscall_catchpoint *c;
8606 struct gdbarch *gdbarch = get_current_arch ();
8607
8608 c = XNEW (struct syscall_catchpoint);
8609 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8610 c->syscalls_to_be_caught = filter;
8611
8612 install_breakpoint (0, &c->base, 1);
8613 }
8614
8615 static int
8616 hw_breakpoint_used_count (void)
8617 {
8618 int i = 0;
8619 struct breakpoint *b;
8620 struct bp_location *bl;
8621
8622 ALL_BREAKPOINTS (b)
8623 {
8624 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8625 for (bl = b->loc; bl; bl = bl->next)
8626 {
8627 /* Special types of hardware breakpoints may use more than
8628 one register. */
8629 i += b->ops->resources_needed (bl);
8630 }
8631 }
8632
8633 return i;
8634 }
8635
8636 /* Returns the resources B would use if it were a hardware
8637 watchpoint. */
8638
8639 static int
8640 hw_watchpoint_use_count (struct breakpoint *b)
8641 {
8642 int i = 0;
8643 struct bp_location *bl;
8644
8645 if (!breakpoint_enabled (b))
8646 return 0;
8647
8648 for (bl = b->loc; bl; bl = bl->next)
8649 {
8650 /* Special types of hardware watchpoints may use more than
8651 one register. */
8652 i += b->ops->resources_needed (bl);
8653 }
8654
8655 return i;
8656 }
8657
8658 /* Returns the sum the used resources of all hardware watchpoints of
8659 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8660 the sum of the used resources of all hardware watchpoints of other
8661 types _not_ TYPE. */
8662
8663 static int
8664 hw_watchpoint_used_count_others (struct breakpoint *except,
8665 enum bptype type, int *other_type_used)
8666 {
8667 int i = 0;
8668 struct breakpoint *b;
8669
8670 *other_type_used = 0;
8671 ALL_BREAKPOINTS (b)
8672 {
8673 if (b == except)
8674 continue;
8675 if (!breakpoint_enabled (b))
8676 continue;
8677
8678 if (b->type == type)
8679 i += hw_watchpoint_use_count (b);
8680 else if (is_hardware_watchpoint (b))
8681 *other_type_used = 1;
8682 }
8683
8684 return i;
8685 }
8686
8687 void
8688 disable_watchpoints_before_interactive_call_start (void)
8689 {
8690 struct breakpoint *b;
8691
8692 ALL_BREAKPOINTS (b)
8693 {
8694 if (is_watchpoint (b) && breakpoint_enabled (b))
8695 {
8696 b->enable_state = bp_call_disabled;
8697 update_global_location_list (0);
8698 }
8699 }
8700 }
8701
8702 void
8703 enable_watchpoints_after_interactive_call_stop (void)
8704 {
8705 struct breakpoint *b;
8706
8707 ALL_BREAKPOINTS (b)
8708 {
8709 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8710 {
8711 b->enable_state = bp_enabled;
8712 update_global_location_list (1);
8713 }
8714 }
8715 }
8716
8717 void
8718 disable_breakpoints_before_startup (void)
8719 {
8720 current_program_space->executing_startup = 1;
8721 update_global_location_list (0);
8722 }
8723
8724 void
8725 enable_breakpoints_after_startup (void)
8726 {
8727 current_program_space->executing_startup = 0;
8728 breakpoint_re_set ();
8729 }
8730
8731
8732 /* Set a breakpoint that will evaporate an end of command
8733 at address specified by SAL.
8734 Restrict it to frame FRAME if FRAME is nonzero. */
8735
8736 struct breakpoint *
8737 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8738 struct frame_id frame_id, enum bptype type)
8739 {
8740 struct breakpoint *b;
8741
8742 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8743 tail-called one. */
8744 gdb_assert (!frame_id_artificial_p (frame_id));
8745
8746 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8747 b->enable_state = bp_enabled;
8748 b->disposition = disp_donttouch;
8749 b->frame_id = frame_id;
8750
8751 /* If we're debugging a multi-threaded program, then we want
8752 momentary breakpoints to be active in only a single thread of
8753 control. */
8754 if (in_thread_list (inferior_ptid))
8755 b->thread = pid_to_thread_id (inferior_ptid);
8756
8757 update_global_location_list_nothrow (1);
8758
8759 return b;
8760 }
8761
8762 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8763 The new breakpoint will have type TYPE, and use OPS as it
8764 breakpoint_ops. */
8765
8766 static struct breakpoint *
8767 momentary_breakpoint_from_master (struct breakpoint *orig,
8768 enum bptype type,
8769 const struct breakpoint_ops *ops)
8770 {
8771 struct breakpoint *copy;
8772
8773 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8774 copy->loc = allocate_bp_location (copy);
8775 set_breakpoint_location_function (copy->loc, 1);
8776
8777 copy->loc->gdbarch = orig->loc->gdbarch;
8778 copy->loc->requested_address = orig->loc->requested_address;
8779 copy->loc->address = orig->loc->address;
8780 copy->loc->section = orig->loc->section;
8781 copy->loc->pspace = orig->loc->pspace;
8782 copy->loc->probe = orig->loc->probe;
8783 copy->loc->line_number = orig->loc->line_number;
8784 copy->loc->symtab = orig->loc->symtab;
8785 copy->frame_id = orig->frame_id;
8786 copy->thread = orig->thread;
8787 copy->pspace = orig->pspace;
8788
8789 copy->enable_state = bp_enabled;
8790 copy->disposition = disp_donttouch;
8791 copy->number = internal_breakpoint_number--;
8792
8793 update_global_location_list_nothrow (0);
8794 return copy;
8795 }
8796
8797 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8798 ORIG is NULL. */
8799
8800 struct breakpoint *
8801 clone_momentary_breakpoint (struct breakpoint *orig)
8802 {
8803 /* If there's nothing to clone, then return nothing. */
8804 if (orig == NULL)
8805 return NULL;
8806
8807 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8808 }
8809
8810 struct breakpoint *
8811 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8812 enum bptype type)
8813 {
8814 struct symtab_and_line sal;
8815
8816 sal = find_pc_line (pc, 0);
8817 sal.pc = pc;
8818 sal.section = find_pc_overlay (pc);
8819 sal.explicit_pc = 1;
8820
8821 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8822 }
8823 \f
8824
8825 /* Tell the user we have just set a breakpoint B. */
8826
8827 static void
8828 mention (struct breakpoint *b)
8829 {
8830 b->ops->print_mention (b);
8831 if (ui_out_is_mi_like_p (current_uiout))
8832 return;
8833 printf_filtered ("\n");
8834 }
8835 \f
8836
8837 static struct bp_location *
8838 add_location_to_breakpoint (struct breakpoint *b,
8839 const struct symtab_and_line *sal)
8840 {
8841 struct bp_location *loc, **tmp;
8842 CORE_ADDR adjusted_address;
8843 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8844
8845 if (loc_gdbarch == NULL)
8846 loc_gdbarch = b->gdbarch;
8847
8848 /* Adjust the breakpoint's address prior to allocating a location.
8849 Once we call allocate_bp_location(), that mostly uninitialized
8850 location will be placed on the location chain. Adjustment of the
8851 breakpoint may cause target_read_memory() to be called and we do
8852 not want its scan of the location chain to find a breakpoint and
8853 location that's only been partially initialized. */
8854 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8855 sal->pc, b->type);
8856
8857 /* Sort the locations by their ADDRESS. */
8858 loc = allocate_bp_location (b);
8859 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8860 tmp = &((*tmp)->next))
8861 ;
8862 loc->next = *tmp;
8863 *tmp = loc;
8864
8865 loc->requested_address = sal->pc;
8866 loc->address = adjusted_address;
8867 loc->pspace = sal->pspace;
8868 loc->probe = sal->probe;
8869 gdb_assert (loc->pspace != NULL);
8870 loc->section = sal->section;
8871 loc->gdbarch = loc_gdbarch;
8872 loc->line_number = sal->line;
8873 loc->symtab = sal->symtab;
8874
8875 set_breakpoint_location_function (loc,
8876 sal->explicit_pc || sal->explicit_line);
8877 return loc;
8878 }
8879 \f
8880
8881 /* Return 1 if LOC is pointing to a permanent breakpoint,
8882 return 0 otherwise. */
8883
8884 static int
8885 bp_loc_is_permanent (struct bp_location *loc)
8886 {
8887 int len;
8888 CORE_ADDR addr;
8889 const gdb_byte *bpoint;
8890 gdb_byte *target_mem;
8891 struct cleanup *cleanup;
8892 int retval = 0;
8893
8894 gdb_assert (loc != NULL);
8895
8896 addr = loc->address;
8897 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8898
8899 /* Software breakpoints unsupported? */
8900 if (bpoint == NULL)
8901 return 0;
8902
8903 target_mem = alloca (len);
8904
8905 /* Enable the automatic memory restoration from breakpoints while
8906 we read the memory. Otherwise we could say about our temporary
8907 breakpoints they are permanent. */
8908 cleanup = save_current_space_and_thread ();
8909
8910 switch_to_program_space_and_thread (loc->pspace);
8911 make_show_memory_breakpoints_cleanup (0);
8912
8913 if (target_read_memory (loc->address, target_mem, len) == 0
8914 && memcmp (target_mem, bpoint, len) == 0)
8915 retval = 1;
8916
8917 do_cleanups (cleanup);
8918
8919 return retval;
8920 }
8921
8922 /* Build a command list for the dprintf corresponding to the current
8923 settings of the dprintf style options. */
8924
8925 static void
8926 update_dprintf_command_list (struct breakpoint *b)
8927 {
8928 char *dprintf_args = b->extra_string;
8929 char *printf_line = NULL;
8930
8931 if (!dprintf_args)
8932 return;
8933
8934 dprintf_args = skip_spaces (dprintf_args);
8935
8936 /* Allow a comma, as it may have terminated a location, but don't
8937 insist on it. */
8938 if (*dprintf_args == ',')
8939 ++dprintf_args;
8940 dprintf_args = skip_spaces (dprintf_args);
8941
8942 if (*dprintf_args != '"')
8943 error (_("Bad format string, missing '\"'."));
8944
8945 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8946 printf_line = xstrprintf ("printf %s", dprintf_args);
8947 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8948 {
8949 if (!dprintf_function)
8950 error (_("No function supplied for dprintf call"));
8951
8952 if (dprintf_channel && strlen (dprintf_channel) > 0)
8953 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8954 dprintf_function,
8955 dprintf_channel,
8956 dprintf_args);
8957 else
8958 printf_line = xstrprintf ("call (void) %s (%s)",
8959 dprintf_function,
8960 dprintf_args);
8961 }
8962 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8963 {
8964 if (target_can_run_breakpoint_commands ())
8965 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8966 else
8967 {
8968 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8969 printf_line = xstrprintf ("printf %s", dprintf_args);
8970 }
8971 }
8972 else
8973 internal_error (__FILE__, __LINE__,
8974 _("Invalid dprintf style."));
8975
8976 gdb_assert (printf_line != NULL);
8977 /* Manufacture a printf sequence. */
8978 {
8979 struct command_line *printf_cmd_line
8980 = xmalloc (sizeof (struct command_line));
8981
8982 printf_cmd_line = xmalloc (sizeof (struct command_line));
8983 printf_cmd_line->control_type = simple_control;
8984 printf_cmd_line->body_count = 0;
8985 printf_cmd_line->body_list = NULL;
8986 printf_cmd_line->next = NULL;
8987 printf_cmd_line->line = printf_line;
8988
8989 breakpoint_set_commands (b, printf_cmd_line);
8990 }
8991 }
8992
8993 /* Update all dprintf commands, making their command lists reflect
8994 current style settings. */
8995
8996 static void
8997 update_dprintf_commands (char *args, int from_tty,
8998 struct cmd_list_element *c)
8999 {
9000 struct breakpoint *b;
9001
9002 ALL_BREAKPOINTS (b)
9003 {
9004 if (b->type == bp_dprintf)
9005 update_dprintf_command_list (b);
9006 }
9007 }
9008
9009 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9010 as textual description of the location, and COND_STRING
9011 as condition expression. */
9012
9013 static void
9014 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9015 struct symtabs_and_lines sals, char *addr_string,
9016 char *filter, char *cond_string,
9017 char *extra_string,
9018 enum bptype type, enum bpdisp disposition,
9019 int thread, int task, int ignore_count,
9020 const struct breakpoint_ops *ops, int from_tty,
9021 int enabled, int internal, unsigned flags,
9022 int display_canonical)
9023 {
9024 int i;
9025
9026 if (type == bp_hardware_breakpoint)
9027 {
9028 int target_resources_ok;
9029
9030 i = hw_breakpoint_used_count ();
9031 target_resources_ok =
9032 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9033 i + 1, 0);
9034 if (target_resources_ok == 0)
9035 error (_("No hardware breakpoint support in the target."));
9036 else if (target_resources_ok < 0)
9037 error (_("Hardware breakpoints used exceeds limit."));
9038 }
9039
9040 gdb_assert (sals.nelts > 0);
9041
9042 for (i = 0; i < sals.nelts; ++i)
9043 {
9044 struct symtab_and_line sal = sals.sals[i];
9045 struct bp_location *loc;
9046
9047 if (from_tty)
9048 {
9049 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9050 if (!loc_gdbarch)
9051 loc_gdbarch = gdbarch;
9052
9053 describe_other_breakpoints (loc_gdbarch,
9054 sal.pspace, sal.pc, sal.section, thread);
9055 }
9056
9057 if (i == 0)
9058 {
9059 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9060 b->thread = thread;
9061 b->task = task;
9062
9063 b->cond_string = cond_string;
9064 b->extra_string = extra_string;
9065 b->ignore_count = ignore_count;
9066 b->enable_state = enabled ? bp_enabled : bp_disabled;
9067 b->disposition = disposition;
9068
9069 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9070 b->loc->inserted = 1;
9071
9072 if (type == bp_static_tracepoint)
9073 {
9074 struct tracepoint *t = (struct tracepoint *) b;
9075 struct static_tracepoint_marker marker;
9076
9077 if (strace_marker_p (b))
9078 {
9079 /* We already know the marker exists, otherwise, we
9080 wouldn't see a sal for it. */
9081 char *p = &addr_string[3];
9082 char *endp;
9083 char *marker_str;
9084
9085 p = skip_spaces (p);
9086
9087 endp = skip_to_space (p);
9088
9089 marker_str = savestring (p, endp - p);
9090 t->static_trace_marker_id = marker_str;
9091
9092 printf_filtered (_("Probed static tracepoint "
9093 "marker \"%s\"\n"),
9094 t->static_trace_marker_id);
9095 }
9096 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9097 {
9098 t->static_trace_marker_id = xstrdup (marker.str_id);
9099 release_static_tracepoint_marker (&marker);
9100
9101 printf_filtered (_("Probed static tracepoint "
9102 "marker \"%s\"\n"),
9103 t->static_trace_marker_id);
9104 }
9105 else
9106 warning (_("Couldn't determine the static "
9107 "tracepoint marker to probe"));
9108 }
9109
9110 loc = b->loc;
9111 }
9112 else
9113 {
9114 loc = add_location_to_breakpoint (b, &sal);
9115 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9116 loc->inserted = 1;
9117 }
9118
9119 if (bp_loc_is_permanent (loc))
9120 make_breakpoint_permanent (b);
9121
9122 if (b->cond_string)
9123 {
9124 const char *arg = b->cond_string;
9125
9126 loc->cond = parse_exp_1 (&arg, loc->address,
9127 block_for_pc (loc->address), 0);
9128 if (*arg)
9129 error (_("Garbage '%s' follows condition"), arg);
9130 }
9131
9132 /* Dynamic printf requires and uses additional arguments on the
9133 command line, otherwise it's an error. */
9134 if (type == bp_dprintf)
9135 {
9136 if (b->extra_string)
9137 update_dprintf_command_list (b);
9138 else
9139 error (_("Format string required"));
9140 }
9141 else if (b->extra_string)
9142 error (_("Garbage '%s' at end of command"), b->extra_string);
9143 }
9144
9145 b->display_canonical = display_canonical;
9146 if (addr_string)
9147 b->addr_string = addr_string;
9148 else
9149 /* addr_string has to be used or breakpoint_re_set will delete
9150 me. */
9151 b->addr_string
9152 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9153 b->filter = filter;
9154 }
9155
9156 static void
9157 create_breakpoint_sal (struct gdbarch *gdbarch,
9158 struct symtabs_and_lines sals, char *addr_string,
9159 char *filter, char *cond_string,
9160 char *extra_string,
9161 enum bptype type, enum bpdisp disposition,
9162 int thread, int task, int ignore_count,
9163 const struct breakpoint_ops *ops, int from_tty,
9164 int enabled, int internal, unsigned flags,
9165 int display_canonical)
9166 {
9167 struct breakpoint *b;
9168 struct cleanup *old_chain;
9169
9170 if (is_tracepoint_type (type))
9171 {
9172 struct tracepoint *t;
9173
9174 t = XCNEW (struct tracepoint);
9175 b = &t->base;
9176 }
9177 else
9178 b = XNEW (struct breakpoint);
9179
9180 old_chain = make_cleanup (xfree, b);
9181
9182 init_breakpoint_sal (b, gdbarch,
9183 sals, addr_string,
9184 filter, cond_string, extra_string,
9185 type, disposition,
9186 thread, task, ignore_count,
9187 ops, from_tty,
9188 enabled, internal, flags,
9189 display_canonical);
9190 discard_cleanups (old_chain);
9191
9192 install_breakpoint (internal, b, 0);
9193 }
9194
9195 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9196 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9197 value. COND_STRING, if not NULL, specified the condition to be
9198 used for all breakpoints. Essentially the only case where
9199 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9200 function. In that case, it's still not possible to specify
9201 separate conditions for different overloaded functions, so
9202 we take just a single condition string.
9203
9204 NOTE: If the function succeeds, the caller is expected to cleanup
9205 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9206 array contents). If the function fails (error() is called), the
9207 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9208 COND and SALS arrays and each of those arrays contents. */
9209
9210 static void
9211 create_breakpoints_sal (struct gdbarch *gdbarch,
9212 struct linespec_result *canonical,
9213 char *cond_string, char *extra_string,
9214 enum bptype type, enum bpdisp disposition,
9215 int thread, int task, int ignore_count,
9216 const struct breakpoint_ops *ops, int from_tty,
9217 int enabled, int internal, unsigned flags)
9218 {
9219 int i;
9220 struct linespec_sals *lsal;
9221
9222 if (canonical->pre_expanded)
9223 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9224
9225 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9226 {
9227 /* Note that 'addr_string' can be NULL in the case of a plain
9228 'break', without arguments. */
9229 char *addr_string = (canonical->addr_string
9230 ? xstrdup (canonical->addr_string)
9231 : NULL);
9232 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9233 struct cleanup *inner = make_cleanup (xfree, addr_string);
9234
9235 make_cleanup (xfree, filter_string);
9236 create_breakpoint_sal (gdbarch, lsal->sals,
9237 addr_string,
9238 filter_string,
9239 cond_string, extra_string,
9240 type, disposition,
9241 thread, task, ignore_count, ops,
9242 from_tty, enabled, internal, flags,
9243 canonical->special_display);
9244 discard_cleanups (inner);
9245 }
9246 }
9247
9248 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9249 followed by conditionals. On return, SALS contains an array of SAL
9250 addresses found. ADDR_STRING contains a vector of (canonical)
9251 address strings. ADDRESS points to the end of the SAL.
9252
9253 The array and the line spec strings are allocated on the heap, it is
9254 the caller's responsibility to free them. */
9255
9256 static void
9257 parse_breakpoint_sals (char **address,
9258 struct linespec_result *canonical)
9259 {
9260 /* If no arg given, or if first arg is 'if ', use the default
9261 breakpoint. */
9262 if ((*address) == NULL
9263 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9264 {
9265 /* The last displayed codepoint, if it's valid, is our default breakpoint
9266 address. */
9267 if (last_displayed_sal_is_valid ())
9268 {
9269 struct linespec_sals lsal;
9270 struct symtab_and_line sal;
9271 CORE_ADDR pc;
9272
9273 init_sal (&sal); /* Initialize to zeroes. */
9274 lsal.sals.sals = (struct symtab_and_line *)
9275 xmalloc (sizeof (struct symtab_and_line));
9276
9277 /* Set sal's pspace, pc, symtab, and line to the values
9278 corresponding to the last call to print_frame_info.
9279 Be sure to reinitialize LINE with NOTCURRENT == 0
9280 as the breakpoint line number is inappropriate otherwise.
9281 find_pc_line would adjust PC, re-set it back. */
9282 get_last_displayed_sal (&sal);
9283 pc = sal.pc;
9284 sal = find_pc_line (pc, 0);
9285
9286 /* "break" without arguments is equivalent to "break *PC"
9287 where PC is the last displayed codepoint's address. So
9288 make sure to set sal.explicit_pc to prevent GDB from
9289 trying to expand the list of sals to include all other
9290 instances with the same symtab and line. */
9291 sal.pc = pc;
9292 sal.explicit_pc = 1;
9293
9294 lsal.sals.sals[0] = sal;
9295 lsal.sals.nelts = 1;
9296 lsal.canonical = NULL;
9297
9298 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9299 }
9300 else
9301 error (_("No default breakpoint address now."));
9302 }
9303 else
9304 {
9305 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9306
9307 /* Force almost all breakpoints to be in terms of the
9308 current_source_symtab (which is decode_line_1's default).
9309 This should produce the results we want almost all of the
9310 time while leaving default_breakpoint_* alone.
9311
9312 ObjC: However, don't match an Objective-C method name which
9313 may have a '+' or '-' succeeded by a '['. */
9314 if (last_displayed_sal_is_valid ()
9315 && (!cursal.symtab
9316 || ((strchr ("+-", (*address)[0]) != NULL)
9317 && ((*address)[1] != '['))))
9318 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9319 get_last_displayed_symtab (),
9320 get_last_displayed_line (),
9321 canonical, NULL, NULL);
9322 else
9323 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9324 cursal.symtab, cursal.line, canonical, NULL, NULL);
9325 }
9326 }
9327
9328
9329 /* Convert each SAL into a real PC. Verify that the PC can be
9330 inserted as a breakpoint. If it can't throw an error. */
9331
9332 static void
9333 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9334 {
9335 int i;
9336
9337 for (i = 0; i < sals->nelts; i++)
9338 resolve_sal_pc (&sals->sals[i]);
9339 }
9340
9341 /* Fast tracepoints may have restrictions on valid locations. For
9342 instance, a fast tracepoint using a jump instead of a trap will
9343 likely have to overwrite more bytes than a trap would, and so can
9344 only be placed where the instruction is longer than the jump, or a
9345 multi-instruction sequence does not have a jump into the middle of
9346 it, etc. */
9347
9348 static void
9349 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9350 struct symtabs_and_lines *sals)
9351 {
9352 int i, rslt;
9353 struct symtab_and_line *sal;
9354 char *msg;
9355 struct cleanup *old_chain;
9356
9357 for (i = 0; i < sals->nelts; i++)
9358 {
9359 struct gdbarch *sarch;
9360
9361 sal = &sals->sals[i];
9362
9363 sarch = get_sal_arch (*sal);
9364 /* We fall back to GDBARCH if there is no architecture
9365 associated with SAL. */
9366 if (sarch == NULL)
9367 sarch = gdbarch;
9368 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9369 NULL, &msg);
9370 old_chain = make_cleanup (xfree, msg);
9371
9372 if (!rslt)
9373 error (_("May not have a fast tracepoint at 0x%s%s"),
9374 paddress (sarch, sal->pc), (msg ? msg : ""));
9375
9376 do_cleanups (old_chain);
9377 }
9378 }
9379
9380 /* Issue an invalid thread ID error. */
9381
9382 static void ATTRIBUTE_NORETURN
9383 invalid_thread_id_error (int id)
9384 {
9385 error (_("Unknown thread %d."), id);
9386 }
9387
9388 /* Given TOK, a string specification of condition and thread, as
9389 accepted by the 'break' command, extract the condition
9390 string and thread number and set *COND_STRING and *THREAD.
9391 PC identifies the context at which the condition should be parsed.
9392 If no condition is found, *COND_STRING is set to NULL.
9393 If no thread is found, *THREAD is set to -1. */
9394
9395 static void
9396 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9397 char **cond_string, int *thread, int *task,
9398 char **rest)
9399 {
9400 *cond_string = NULL;
9401 *thread = -1;
9402 *task = 0;
9403 *rest = NULL;
9404
9405 while (tok && *tok)
9406 {
9407 const char *end_tok;
9408 int toklen;
9409 const char *cond_start = NULL;
9410 const char *cond_end = NULL;
9411
9412 tok = skip_spaces_const (tok);
9413
9414 if ((*tok == '"' || *tok == ',') && rest)
9415 {
9416 *rest = savestring (tok, strlen (tok));
9417 return;
9418 }
9419
9420 end_tok = skip_to_space_const (tok);
9421
9422 toklen = end_tok - tok;
9423
9424 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9425 {
9426 struct expression *expr;
9427
9428 tok = cond_start = end_tok + 1;
9429 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9430 xfree (expr);
9431 cond_end = tok;
9432 *cond_string = savestring (cond_start, cond_end - cond_start);
9433 }
9434 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9435 {
9436 char *tmptok;
9437
9438 tok = end_tok + 1;
9439 *thread = strtol (tok, &tmptok, 0);
9440 if (tok == tmptok)
9441 error (_("Junk after thread keyword."));
9442 if (!valid_thread_id (*thread))
9443 invalid_thread_id_error (*thread);
9444 tok = tmptok;
9445 }
9446 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9447 {
9448 char *tmptok;
9449
9450 tok = end_tok + 1;
9451 *task = strtol (tok, &tmptok, 0);
9452 if (tok == tmptok)
9453 error (_("Junk after task keyword."));
9454 if (!valid_task_id (*task))
9455 error (_("Unknown task %d."), *task);
9456 tok = tmptok;
9457 }
9458 else if (rest)
9459 {
9460 *rest = savestring (tok, strlen (tok));
9461 return;
9462 }
9463 else
9464 error (_("Junk at end of arguments."));
9465 }
9466 }
9467
9468 /* Decode a static tracepoint marker spec. */
9469
9470 static struct symtabs_and_lines
9471 decode_static_tracepoint_spec (char **arg_p)
9472 {
9473 VEC(static_tracepoint_marker_p) *markers = NULL;
9474 struct symtabs_and_lines sals;
9475 struct cleanup *old_chain;
9476 char *p = &(*arg_p)[3];
9477 char *endp;
9478 char *marker_str;
9479 int i;
9480
9481 p = skip_spaces (p);
9482
9483 endp = skip_to_space (p);
9484
9485 marker_str = savestring (p, endp - p);
9486 old_chain = make_cleanup (xfree, marker_str);
9487
9488 markers = target_static_tracepoint_markers_by_strid (marker_str);
9489 if (VEC_empty(static_tracepoint_marker_p, markers))
9490 error (_("No known static tracepoint marker named %s"), marker_str);
9491
9492 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9493 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9494
9495 for (i = 0; i < sals.nelts; i++)
9496 {
9497 struct static_tracepoint_marker *marker;
9498
9499 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9500
9501 init_sal (&sals.sals[i]);
9502
9503 sals.sals[i] = find_pc_line (marker->address, 0);
9504 sals.sals[i].pc = marker->address;
9505
9506 release_static_tracepoint_marker (marker);
9507 }
9508
9509 do_cleanups (old_chain);
9510
9511 *arg_p = endp;
9512 return sals;
9513 }
9514
9515 /* Set a breakpoint. This function is shared between CLI and MI
9516 functions for setting a breakpoint. This function has two major
9517 modes of operations, selected by the PARSE_ARG parameter. If
9518 non-zero, the function will parse ARG, extracting location,
9519 condition, thread and extra string. Otherwise, ARG is just the
9520 breakpoint's location, with condition, thread, and extra string
9521 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9522 If INTERNAL is non-zero, the breakpoint number will be allocated
9523 from the internal breakpoint count. Returns true if any breakpoint
9524 was created; false otherwise. */
9525
9526 int
9527 create_breakpoint (struct gdbarch *gdbarch,
9528 char *arg, char *cond_string,
9529 int thread, char *extra_string,
9530 int parse_arg,
9531 int tempflag, enum bptype type_wanted,
9532 int ignore_count,
9533 enum auto_boolean pending_break_support,
9534 const struct breakpoint_ops *ops,
9535 int from_tty, int enabled, int internal,
9536 unsigned flags)
9537 {
9538 volatile struct gdb_exception e;
9539 char *copy_arg = NULL;
9540 char *addr_start = arg;
9541 struct linespec_result canonical;
9542 struct cleanup *old_chain;
9543 struct cleanup *bkpt_chain = NULL;
9544 int pending = 0;
9545 int task = 0;
9546 int prev_bkpt_count = breakpoint_count;
9547
9548 gdb_assert (ops != NULL);
9549
9550 init_linespec_result (&canonical);
9551
9552 TRY_CATCH (e, RETURN_MASK_ALL)
9553 {
9554 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9555 addr_start, &copy_arg);
9556 }
9557
9558 /* If caller is interested in rc value from parse, set value. */
9559 switch (e.reason)
9560 {
9561 case GDB_NO_ERROR:
9562 if (VEC_empty (linespec_sals, canonical.sals))
9563 return 0;
9564 break;
9565 case RETURN_ERROR:
9566 switch (e.error)
9567 {
9568 case NOT_FOUND_ERROR:
9569
9570 /* If pending breakpoint support is turned off, throw
9571 error. */
9572
9573 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9574 throw_exception (e);
9575
9576 exception_print (gdb_stderr, e);
9577
9578 /* If pending breakpoint support is auto query and the user
9579 selects no, then simply return the error code. */
9580 if (pending_break_support == AUTO_BOOLEAN_AUTO
9581 && !nquery (_("Make %s pending on future shared library load? "),
9582 bptype_string (type_wanted)))
9583 return 0;
9584
9585 /* At this point, either the user was queried about setting
9586 a pending breakpoint and selected yes, or pending
9587 breakpoint behavior is on and thus a pending breakpoint
9588 is defaulted on behalf of the user. */
9589 {
9590 struct linespec_sals lsal;
9591
9592 copy_arg = xstrdup (addr_start);
9593 lsal.canonical = xstrdup (copy_arg);
9594 lsal.sals.nelts = 1;
9595 lsal.sals.sals = XNEW (struct symtab_and_line);
9596 init_sal (&lsal.sals.sals[0]);
9597 pending = 1;
9598 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9599 }
9600 break;
9601 default:
9602 throw_exception (e);
9603 }
9604 break;
9605 default:
9606 throw_exception (e);
9607 }
9608
9609 /* Create a chain of things that always need to be cleaned up. */
9610 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9611
9612 /* ----------------------------- SNIP -----------------------------
9613 Anything added to the cleanup chain beyond this point is assumed
9614 to be part of a breakpoint. If the breakpoint create succeeds
9615 then the memory is not reclaimed. */
9616 bkpt_chain = make_cleanup (null_cleanup, 0);
9617
9618 /* Resolve all line numbers to PC's and verify that the addresses
9619 are ok for the target. */
9620 if (!pending)
9621 {
9622 int ix;
9623 struct linespec_sals *iter;
9624
9625 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9626 breakpoint_sals_to_pc (&iter->sals);
9627 }
9628
9629 /* Fast tracepoints may have additional restrictions on location. */
9630 if (!pending && type_wanted == bp_fast_tracepoint)
9631 {
9632 int ix;
9633 struct linespec_sals *iter;
9634
9635 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9636 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9637 }
9638
9639 /* Verify that condition can be parsed, before setting any
9640 breakpoints. Allocate a separate condition expression for each
9641 breakpoint. */
9642 if (!pending)
9643 {
9644 if (parse_arg)
9645 {
9646 char *rest;
9647 struct linespec_sals *lsal;
9648
9649 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9650
9651 /* Here we only parse 'arg' to separate condition
9652 from thread number, so parsing in context of first
9653 sal is OK. When setting the breakpoint we'll
9654 re-parse it in context of each sal. */
9655
9656 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9657 &thread, &task, &rest);
9658 if (cond_string)
9659 make_cleanup (xfree, cond_string);
9660 if (rest)
9661 make_cleanup (xfree, rest);
9662 if (rest)
9663 extra_string = rest;
9664 }
9665 else
9666 {
9667 if (*arg != '\0')
9668 error (_("Garbage '%s' at end of location"), arg);
9669
9670 /* Create a private copy of condition string. */
9671 if (cond_string)
9672 {
9673 cond_string = xstrdup (cond_string);
9674 make_cleanup (xfree, cond_string);
9675 }
9676 /* Create a private copy of any extra string. */
9677 if (extra_string)
9678 {
9679 extra_string = xstrdup (extra_string);
9680 make_cleanup (xfree, extra_string);
9681 }
9682 }
9683
9684 ops->create_breakpoints_sal (gdbarch, &canonical,
9685 cond_string, extra_string, type_wanted,
9686 tempflag ? disp_del : disp_donttouch,
9687 thread, task, ignore_count, ops,
9688 from_tty, enabled, internal, flags);
9689 }
9690 else
9691 {
9692 struct breakpoint *b;
9693
9694 make_cleanup (xfree, copy_arg);
9695
9696 if (is_tracepoint_type (type_wanted))
9697 {
9698 struct tracepoint *t;
9699
9700 t = XCNEW (struct tracepoint);
9701 b = &t->base;
9702 }
9703 else
9704 b = XNEW (struct breakpoint);
9705
9706 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9707
9708 b->addr_string = copy_arg;
9709 if (parse_arg)
9710 b->cond_string = NULL;
9711 else
9712 {
9713 /* Create a private copy of condition string. */
9714 if (cond_string)
9715 {
9716 cond_string = xstrdup (cond_string);
9717 make_cleanup (xfree, cond_string);
9718 }
9719 b->cond_string = cond_string;
9720 }
9721 b->extra_string = NULL;
9722 b->ignore_count = ignore_count;
9723 b->disposition = tempflag ? disp_del : disp_donttouch;
9724 b->condition_not_parsed = 1;
9725 b->enable_state = enabled ? bp_enabled : bp_disabled;
9726 if ((type_wanted != bp_breakpoint
9727 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9728 b->pspace = current_program_space;
9729
9730 install_breakpoint (internal, b, 0);
9731 }
9732
9733 if (VEC_length (linespec_sals, canonical.sals) > 1)
9734 {
9735 warning (_("Multiple breakpoints were set.\nUse the "
9736 "\"delete\" command to delete unwanted breakpoints."));
9737 prev_breakpoint_count = prev_bkpt_count;
9738 }
9739
9740 /* That's it. Discard the cleanups for data inserted into the
9741 breakpoint. */
9742 discard_cleanups (bkpt_chain);
9743 /* But cleanup everything else. */
9744 do_cleanups (old_chain);
9745
9746 /* error call may happen here - have BKPT_CHAIN already discarded. */
9747 update_global_location_list (1);
9748
9749 return 1;
9750 }
9751
9752 /* Set a breakpoint.
9753 ARG is a string describing breakpoint address,
9754 condition, and thread.
9755 FLAG specifies if a breakpoint is hardware on,
9756 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9757 and BP_TEMPFLAG. */
9758
9759 static void
9760 break_command_1 (char *arg, int flag, int from_tty)
9761 {
9762 int tempflag = flag & BP_TEMPFLAG;
9763 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9764 ? bp_hardware_breakpoint
9765 : bp_breakpoint);
9766 struct breakpoint_ops *ops;
9767 const char *arg_cp = arg;
9768
9769 /* Matching breakpoints on probes. */
9770 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9771 ops = &bkpt_probe_breakpoint_ops;
9772 else
9773 ops = &bkpt_breakpoint_ops;
9774
9775 create_breakpoint (get_current_arch (),
9776 arg,
9777 NULL, 0, NULL, 1 /* parse arg */,
9778 tempflag, type_wanted,
9779 0 /* Ignore count */,
9780 pending_break_support,
9781 ops,
9782 from_tty,
9783 1 /* enabled */,
9784 0 /* internal */,
9785 0);
9786 }
9787
9788 /* Helper function for break_command_1 and disassemble_command. */
9789
9790 void
9791 resolve_sal_pc (struct symtab_and_line *sal)
9792 {
9793 CORE_ADDR pc;
9794
9795 if (sal->pc == 0 && sal->symtab != NULL)
9796 {
9797 if (!find_line_pc (sal->symtab, sal->line, &pc))
9798 error (_("No line %d in file \"%s\"."),
9799 sal->line, symtab_to_filename_for_display (sal->symtab));
9800 sal->pc = pc;
9801
9802 /* If this SAL corresponds to a breakpoint inserted using a line
9803 number, then skip the function prologue if necessary. */
9804 if (sal->explicit_line)
9805 skip_prologue_sal (sal);
9806 }
9807
9808 if (sal->section == 0 && sal->symtab != NULL)
9809 {
9810 struct blockvector *bv;
9811 struct block *b;
9812 struct symbol *sym;
9813
9814 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9815 if (bv != NULL)
9816 {
9817 sym = block_linkage_function (b);
9818 if (sym != NULL)
9819 {
9820 fixup_symbol_section (sym, sal->symtab->objfile);
9821 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9822 }
9823 else
9824 {
9825 /* It really is worthwhile to have the section, so we'll
9826 just have to look harder. This case can be executed
9827 if we have line numbers but no functions (as can
9828 happen in assembly source). */
9829
9830 struct bound_minimal_symbol msym;
9831 struct cleanup *old_chain = save_current_space_and_thread ();
9832
9833 switch_to_program_space_and_thread (sal->pspace);
9834
9835 msym = lookup_minimal_symbol_by_pc (sal->pc);
9836 if (msym.minsym)
9837 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9838
9839 do_cleanups (old_chain);
9840 }
9841 }
9842 }
9843 }
9844
9845 void
9846 break_command (char *arg, int from_tty)
9847 {
9848 break_command_1 (arg, 0, from_tty);
9849 }
9850
9851 void
9852 tbreak_command (char *arg, int from_tty)
9853 {
9854 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9855 }
9856
9857 static void
9858 hbreak_command (char *arg, int from_tty)
9859 {
9860 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9861 }
9862
9863 static void
9864 thbreak_command (char *arg, int from_tty)
9865 {
9866 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9867 }
9868
9869 static void
9870 stop_command (char *arg, int from_tty)
9871 {
9872 printf_filtered (_("Specify the type of breakpoint to set.\n\
9873 Usage: stop in <function | address>\n\
9874 stop at <line>\n"));
9875 }
9876
9877 static void
9878 stopin_command (char *arg, int from_tty)
9879 {
9880 int badInput = 0;
9881
9882 if (arg == (char *) NULL)
9883 badInput = 1;
9884 else if (*arg != '*')
9885 {
9886 char *argptr = arg;
9887 int hasColon = 0;
9888
9889 /* Look for a ':'. If this is a line number specification, then
9890 say it is bad, otherwise, it should be an address or
9891 function/method name. */
9892 while (*argptr && !hasColon)
9893 {
9894 hasColon = (*argptr == ':');
9895 argptr++;
9896 }
9897
9898 if (hasColon)
9899 badInput = (*argptr != ':'); /* Not a class::method */
9900 else
9901 badInput = isdigit (*arg); /* a simple line number */
9902 }
9903
9904 if (badInput)
9905 printf_filtered (_("Usage: stop in <function | address>\n"));
9906 else
9907 break_command_1 (arg, 0, from_tty);
9908 }
9909
9910 static void
9911 stopat_command (char *arg, int from_tty)
9912 {
9913 int badInput = 0;
9914
9915 if (arg == (char *) NULL || *arg == '*') /* no line number */
9916 badInput = 1;
9917 else
9918 {
9919 char *argptr = arg;
9920 int hasColon = 0;
9921
9922 /* Look for a ':'. If there is a '::' then get out, otherwise
9923 it is probably a line number. */
9924 while (*argptr && !hasColon)
9925 {
9926 hasColon = (*argptr == ':');
9927 argptr++;
9928 }
9929
9930 if (hasColon)
9931 badInput = (*argptr == ':'); /* we have class::method */
9932 else
9933 badInput = !isdigit (*arg); /* not a line number */
9934 }
9935
9936 if (badInput)
9937 printf_filtered (_("Usage: stop at <line>\n"));
9938 else
9939 break_command_1 (arg, 0, from_tty);
9940 }
9941
9942 /* The dynamic printf command is mostly like a regular breakpoint, but
9943 with a prewired command list consisting of a single output command,
9944 built from extra arguments supplied on the dprintf command
9945 line. */
9946
9947 static void
9948 dprintf_command (char *arg, int from_tty)
9949 {
9950 create_breakpoint (get_current_arch (),
9951 arg,
9952 NULL, 0, NULL, 1 /* parse arg */,
9953 0, bp_dprintf,
9954 0 /* Ignore count */,
9955 pending_break_support,
9956 &dprintf_breakpoint_ops,
9957 from_tty,
9958 1 /* enabled */,
9959 0 /* internal */,
9960 0);
9961 }
9962
9963 static void
9964 agent_printf_command (char *arg, int from_tty)
9965 {
9966 error (_("May only run agent-printf on the target"));
9967 }
9968
9969 /* Implement the "breakpoint_hit" breakpoint_ops method for
9970 ranged breakpoints. */
9971
9972 static int
9973 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9974 struct address_space *aspace,
9975 CORE_ADDR bp_addr,
9976 const struct target_waitstatus *ws)
9977 {
9978 if (ws->kind != TARGET_WAITKIND_STOPPED
9979 || ws->value.sig != GDB_SIGNAL_TRAP)
9980 return 0;
9981
9982 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9983 bl->length, aspace, bp_addr);
9984 }
9985
9986 /* Implement the "resources_needed" breakpoint_ops method for
9987 ranged breakpoints. */
9988
9989 static int
9990 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9991 {
9992 return target_ranged_break_num_registers ();
9993 }
9994
9995 /* Implement the "print_it" breakpoint_ops method for
9996 ranged breakpoints. */
9997
9998 static enum print_stop_action
9999 print_it_ranged_breakpoint (bpstat bs)
10000 {
10001 struct breakpoint *b = bs->breakpoint_at;
10002 struct bp_location *bl = b->loc;
10003 struct ui_out *uiout = current_uiout;
10004
10005 gdb_assert (b->type == bp_hardware_breakpoint);
10006
10007 /* Ranged breakpoints have only one location. */
10008 gdb_assert (bl && bl->next == NULL);
10009
10010 annotate_breakpoint (b->number);
10011 if (b->disposition == disp_del)
10012 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10013 else
10014 ui_out_text (uiout, "\nRanged breakpoint ");
10015 if (ui_out_is_mi_like_p (uiout))
10016 {
10017 ui_out_field_string (uiout, "reason",
10018 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10019 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10020 }
10021 ui_out_field_int (uiout, "bkptno", b->number);
10022 ui_out_text (uiout, ", ");
10023
10024 return PRINT_SRC_AND_LOC;
10025 }
10026
10027 /* Implement the "print_one" breakpoint_ops method for
10028 ranged breakpoints. */
10029
10030 static void
10031 print_one_ranged_breakpoint (struct breakpoint *b,
10032 struct bp_location **last_loc)
10033 {
10034 struct bp_location *bl = b->loc;
10035 struct value_print_options opts;
10036 struct ui_out *uiout = current_uiout;
10037
10038 /* Ranged breakpoints have only one location. */
10039 gdb_assert (bl && bl->next == NULL);
10040
10041 get_user_print_options (&opts);
10042
10043 if (opts.addressprint)
10044 /* We don't print the address range here, it will be printed later
10045 by print_one_detail_ranged_breakpoint. */
10046 ui_out_field_skip (uiout, "addr");
10047 annotate_field (5);
10048 print_breakpoint_location (b, bl);
10049 *last_loc = bl;
10050 }
10051
10052 /* Implement the "print_one_detail" breakpoint_ops method for
10053 ranged breakpoints. */
10054
10055 static void
10056 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10057 struct ui_out *uiout)
10058 {
10059 CORE_ADDR address_start, address_end;
10060 struct bp_location *bl = b->loc;
10061 struct ui_file *stb = mem_fileopen ();
10062 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10063
10064 gdb_assert (bl);
10065
10066 address_start = bl->address;
10067 address_end = address_start + bl->length - 1;
10068
10069 ui_out_text (uiout, "\taddress range: ");
10070 fprintf_unfiltered (stb, "[%s, %s]",
10071 print_core_address (bl->gdbarch, address_start),
10072 print_core_address (bl->gdbarch, address_end));
10073 ui_out_field_stream (uiout, "addr", stb);
10074 ui_out_text (uiout, "\n");
10075
10076 do_cleanups (cleanup);
10077 }
10078
10079 /* Implement the "print_mention" breakpoint_ops method for
10080 ranged breakpoints. */
10081
10082 static void
10083 print_mention_ranged_breakpoint (struct breakpoint *b)
10084 {
10085 struct bp_location *bl = b->loc;
10086 struct ui_out *uiout = current_uiout;
10087
10088 gdb_assert (bl);
10089 gdb_assert (b->type == bp_hardware_breakpoint);
10090
10091 if (ui_out_is_mi_like_p (uiout))
10092 return;
10093
10094 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10095 b->number, paddress (bl->gdbarch, bl->address),
10096 paddress (bl->gdbarch, bl->address + bl->length - 1));
10097 }
10098
10099 /* Implement the "print_recreate" breakpoint_ops method for
10100 ranged breakpoints. */
10101
10102 static void
10103 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10104 {
10105 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10106 b->addr_string_range_end);
10107 print_recreate_thread (b, fp);
10108 }
10109
10110 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10111
10112 static struct breakpoint_ops ranged_breakpoint_ops;
10113
10114 /* Find the address where the end of the breakpoint range should be
10115 placed, given the SAL of the end of the range. This is so that if
10116 the user provides a line number, the end of the range is set to the
10117 last instruction of the given line. */
10118
10119 static CORE_ADDR
10120 find_breakpoint_range_end (struct symtab_and_line sal)
10121 {
10122 CORE_ADDR end;
10123
10124 /* If the user provided a PC value, use it. Otherwise,
10125 find the address of the end of the given location. */
10126 if (sal.explicit_pc)
10127 end = sal.pc;
10128 else
10129 {
10130 int ret;
10131 CORE_ADDR start;
10132
10133 ret = find_line_pc_range (sal, &start, &end);
10134 if (!ret)
10135 error (_("Could not find location of the end of the range."));
10136
10137 /* find_line_pc_range returns the start of the next line. */
10138 end--;
10139 }
10140
10141 return end;
10142 }
10143
10144 /* Implement the "break-range" CLI command. */
10145
10146 static void
10147 break_range_command (char *arg, int from_tty)
10148 {
10149 char *arg_start, *addr_string_start, *addr_string_end;
10150 struct linespec_result canonical_start, canonical_end;
10151 int bp_count, can_use_bp, length;
10152 CORE_ADDR end;
10153 struct breakpoint *b;
10154 struct symtab_and_line sal_start, sal_end;
10155 struct cleanup *cleanup_bkpt;
10156 struct linespec_sals *lsal_start, *lsal_end;
10157
10158 /* We don't support software ranged breakpoints. */
10159 if (target_ranged_break_num_registers () < 0)
10160 error (_("This target does not support hardware ranged breakpoints."));
10161
10162 bp_count = hw_breakpoint_used_count ();
10163 bp_count += target_ranged_break_num_registers ();
10164 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10165 bp_count, 0);
10166 if (can_use_bp < 0)
10167 error (_("Hardware breakpoints used exceeds limit."));
10168
10169 arg = skip_spaces (arg);
10170 if (arg == NULL || arg[0] == '\0')
10171 error(_("No address range specified."));
10172
10173 init_linespec_result (&canonical_start);
10174
10175 arg_start = arg;
10176 parse_breakpoint_sals (&arg, &canonical_start);
10177
10178 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10179
10180 if (arg[0] != ',')
10181 error (_("Too few arguments."));
10182 else if (VEC_empty (linespec_sals, canonical_start.sals))
10183 error (_("Could not find location of the beginning of the range."));
10184
10185 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10186
10187 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10188 || lsal_start->sals.nelts != 1)
10189 error (_("Cannot create a ranged breakpoint with multiple locations."));
10190
10191 sal_start = lsal_start->sals.sals[0];
10192 addr_string_start = savestring (arg_start, arg - arg_start);
10193 make_cleanup (xfree, addr_string_start);
10194
10195 arg++; /* Skip the comma. */
10196 arg = skip_spaces (arg);
10197
10198 /* Parse the end location. */
10199
10200 init_linespec_result (&canonical_end);
10201 arg_start = arg;
10202
10203 /* We call decode_line_full directly here instead of using
10204 parse_breakpoint_sals because we need to specify the start location's
10205 symtab and line as the default symtab and line for the end of the
10206 range. This makes it possible to have ranges like "foo.c:27, +14",
10207 where +14 means 14 lines from the start location. */
10208 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10209 sal_start.symtab, sal_start.line,
10210 &canonical_end, NULL, NULL);
10211
10212 make_cleanup_destroy_linespec_result (&canonical_end);
10213
10214 if (VEC_empty (linespec_sals, canonical_end.sals))
10215 error (_("Could not find location of the end of the range."));
10216
10217 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10218 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10219 || lsal_end->sals.nelts != 1)
10220 error (_("Cannot create a ranged breakpoint with multiple locations."));
10221
10222 sal_end = lsal_end->sals.sals[0];
10223 addr_string_end = savestring (arg_start, arg - arg_start);
10224 make_cleanup (xfree, addr_string_end);
10225
10226 end = find_breakpoint_range_end (sal_end);
10227 if (sal_start.pc > end)
10228 error (_("Invalid address range, end precedes start."));
10229
10230 length = end - sal_start.pc + 1;
10231 if (length < 0)
10232 /* Length overflowed. */
10233 error (_("Address range too large."));
10234 else if (length == 1)
10235 {
10236 /* This range is simple enough to be handled by
10237 the `hbreak' command. */
10238 hbreak_command (addr_string_start, 1);
10239
10240 do_cleanups (cleanup_bkpt);
10241
10242 return;
10243 }
10244
10245 /* Now set up the breakpoint. */
10246 b = set_raw_breakpoint (get_current_arch (), sal_start,
10247 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10248 set_breakpoint_count (breakpoint_count + 1);
10249 b->number = breakpoint_count;
10250 b->disposition = disp_donttouch;
10251 b->addr_string = xstrdup (addr_string_start);
10252 b->addr_string_range_end = xstrdup (addr_string_end);
10253 b->loc->length = length;
10254
10255 do_cleanups (cleanup_bkpt);
10256
10257 mention (b);
10258 observer_notify_breakpoint_created (b);
10259 update_global_location_list (1);
10260 }
10261
10262 /* Return non-zero if EXP is verified as constant. Returned zero
10263 means EXP is variable. Also the constant detection may fail for
10264 some constant expressions and in such case still falsely return
10265 zero. */
10266
10267 static int
10268 watchpoint_exp_is_const (const struct expression *exp)
10269 {
10270 int i = exp->nelts;
10271
10272 while (i > 0)
10273 {
10274 int oplenp, argsp;
10275
10276 /* We are only interested in the descriptor of each element. */
10277 operator_length (exp, i, &oplenp, &argsp);
10278 i -= oplenp;
10279
10280 switch (exp->elts[i].opcode)
10281 {
10282 case BINOP_ADD:
10283 case BINOP_SUB:
10284 case BINOP_MUL:
10285 case BINOP_DIV:
10286 case BINOP_REM:
10287 case BINOP_MOD:
10288 case BINOP_LSH:
10289 case BINOP_RSH:
10290 case BINOP_LOGICAL_AND:
10291 case BINOP_LOGICAL_OR:
10292 case BINOP_BITWISE_AND:
10293 case BINOP_BITWISE_IOR:
10294 case BINOP_BITWISE_XOR:
10295 case BINOP_EQUAL:
10296 case BINOP_NOTEQUAL:
10297 case BINOP_LESS:
10298 case BINOP_GTR:
10299 case BINOP_LEQ:
10300 case BINOP_GEQ:
10301 case BINOP_REPEAT:
10302 case BINOP_COMMA:
10303 case BINOP_EXP:
10304 case BINOP_MIN:
10305 case BINOP_MAX:
10306 case BINOP_INTDIV:
10307 case BINOP_CONCAT:
10308 case BINOP_IN:
10309 case BINOP_RANGE:
10310 case TERNOP_COND:
10311 case TERNOP_SLICE:
10312
10313 case OP_LONG:
10314 case OP_DOUBLE:
10315 case OP_DECFLOAT:
10316 case OP_LAST:
10317 case OP_COMPLEX:
10318 case OP_STRING:
10319 case OP_ARRAY:
10320 case OP_TYPE:
10321 case OP_TYPEOF:
10322 case OP_DECLTYPE:
10323 case OP_TYPEID:
10324 case OP_NAME:
10325 case OP_OBJC_NSSTRING:
10326
10327 case UNOP_NEG:
10328 case UNOP_LOGICAL_NOT:
10329 case UNOP_COMPLEMENT:
10330 case UNOP_ADDR:
10331 case UNOP_HIGH:
10332 case UNOP_CAST:
10333
10334 case UNOP_CAST_TYPE:
10335 case UNOP_REINTERPRET_CAST:
10336 case UNOP_DYNAMIC_CAST:
10337 /* Unary, binary and ternary operators: We have to check
10338 their operands. If they are constant, then so is the
10339 result of that operation. For instance, if A and B are
10340 determined to be constants, then so is "A + B".
10341
10342 UNOP_IND is one exception to the rule above, because the
10343 value of *ADDR is not necessarily a constant, even when
10344 ADDR is. */
10345 break;
10346
10347 case OP_VAR_VALUE:
10348 /* Check whether the associated symbol is a constant.
10349
10350 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10351 possible that a buggy compiler could mark a variable as
10352 constant even when it is not, and TYPE_CONST would return
10353 true in this case, while SYMBOL_CLASS wouldn't.
10354
10355 We also have to check for function symbols because they
10356 are always constant. */
10357 {
10358 struct symbol *s = exp->elts[i + 2].symbol;
10359
10360 if (SYMBOL_CLASS (s) != LOC_BLOCK
10361 && SYMBOL_CLASS (s) != LOC_CONST
10362 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10363 return 0;
10364 break;
10365 }
10366
10367 /* The default action is to return 0 because we are using
10368 the optimistic approach here: If we don't know something,
10369 then it is not a constant. */
10370 default:
10371 return 0;
10372 }
10373 }
10374
10375 return 1;
10376 }
10377
10378 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10379
10380 static void
10381 dtor_watchpoint (struct breakpoint *self)
10382 {
10383 struct watchpoint *w = (struct watchpoint *) self;
10384
10385 xfree (w->cond_exp);
10386 xfree (w->exp);
10387 xfree (w->exp_string);
10388 xfree (w->exp_string_reparse);
10389 value_free (w->val);
10390
10391 base_breakpoint_ops.dtor (self);
10392 }
10393
10394 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10395
10396 static void
10397 re_set_watchpoint (struct breakpoint *b)
10398 {
10399 struct watchpoint *w = (struct watchpoint *) b;
10400
10401 /* Watchpoint can be either on expression using entirely global
10402 variables, or it can be on local variables.
10403
10404 Watchpoints of the first kind are never auto-deleted, and even
10405 persist across program restarts. Since they can use variables
10406 from shared libraries, we need to reparse expression as libraries
10407 are loaded and unloaded.
10408
10409 Watchpoints on local variables can also change meaning as result
10410 of solib event. For example, if a watchpoint uses both a local
10411 and a global variables in expression, it's a local watchpoint,
10412 but unloading of a shared library will make the expression
10413 invalid. This is not a very common use case, but we still
10414 re-evaluate expression, to avoid surprises to the user.
10415
10416 Note that for local watchpoints, we re-evaluate it only if
10417 watchpoints frame id is still valid. If it's not, it means the
10418 watchpoint is out of scope and will be deleted soon. In fact,
10419 I'm not sure we'll ever be called in this case.
10420
10421 If a local watchpoint's frame id is still valid, then
10422 w->exp_valid_block is likewise valid, and we can safely use it.
10423
10424 Don't do anything about disabled watchpoints, since they will be
10425 reevaluated again when enabled. */
10426 update_watchpoint (w, 1 /* reparse */);
10427 }
10428
10429 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10430
10431 static int
10432 insert_watchpoint (struct bp_location *bl)
10433 {
10434 struct watchpoint *w = (struct watchpoint *) bl->owner;
10435 int length = w->exact ? 1 : bl->length;
10436
10437 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10438 w->cond_exp);
10439 }
10440
10441 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10442
10443 static int
10444 remove_watchpoint (struct bp_location *bl)
10445 {
10446 struct watchpoint *w = (struct watchpoint *) bl->owner;
10447 int length = w->exact ? 1 : bl->length;
10448
10449 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10450 w->cond_exp);
10451 }
10452
10453 static int
10454 breakpoint_hit_watchpoint (const struct bp_location *bl,
10455 struct address_space *aspace, CORE_ADDR bp_addr,
10456 const struct target_waitstatus *ws)
10457 {
10458 struct breakpoint *b = bl->owner;
10459 struct watchpoint *w = (struct watchpoint *) b;
10460
10461 /* Continuable hardware watchpoints are treated as non-existent if the
10462 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10463 some data address). Otherwise gdb won't stop on a break instruction
10464 in the code (not from a breakpoint) when a hardware watchpoint has
10465 been defined. Also skip watchpoints which we know did not trigger
10466 (did not match the data address). */
10467 if (is_hardware_watchpoint (b)
10468 && w->watchpoint_triggered == watch_triggered_no)
10469 return 0;
10470
10471 return 1;
10472 }
10473
10474 static void
10475 check_status_watchpoint (bpstat bs)
10476 {
10477 gdb_assert (is_watchpoint (bs->breakpoint_at));
10478
10479 bpstat_check_watchpoint (bs);
10480 }
10481
10482 /* Implement the "resources_needed" breakpoint_ops method for
10483 hardware watchpoints. */
10484
10485 static int
10486 resources_needed_watchpoint (const struct bp_location *bl)
10487 {
10488 struct watchpoint *w = (struct watchpoint *) bl->owner;
10489 int length = w->exact? 1 : bl->length;
10490
10491 return target_region_ok_for_hw_watchpoint (bl->address, length);
10492 }
10493
10494 /* Implement the "works_in_software_mode" breakpoint_ops method for
10495 hardware watchpoints. */
10496
10497 static int
10498 works_in_software_mode_watchpoint (const struct breakpoint *b)
10499 {
10500 /* Read and access watchpoints only work with hardware support. */
10501 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10502 }
10503
10504 static enum print_stop_action
10505 print_it_watchpoint (bpstat bs)
10506 {
10507 struct cleanup *old_chain;
10508 struct breakpoint *b;
10509 struct ui_file *stb;
10510 enum print_stop_action result;
10511 struct watchpoint *w;
10512 struct ui_out *uiout = current_uiout;
10513
10514 gdb_assert (bs->bp_location_at != NULL);
10515
10516 b = bs->breakpoint_at;
10517 w = (struct watchpoint *) b;
10518
10519 stb = mem_fileopen ();
10520 old_chain = make_cleanup_ui_file_delete (stb);
10521
10522 switch (b->type)
10523 {
10524 case bp_watchpoint:
10525 case bp_hardware_watchpoint:
10526 annotate_watchpoint (b->number);
10527 if (ui_out_is_mi_like_p (uiout))
10528 ui_out_field_string
10529 (uiout, "reason",
10530 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10531 mention (b);
10532 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10533 ui_out_text (uiout, "\nOld value = ");
10534 watchpoint_value_print (bs->old_val, stb);
10535 ui_out_field_stream (uiout, "old", stb);
10536 ui_out_text (uiout, "\nNew value = ");
10537 watchpoint_value_print (w->val, stb);
10538 ui_out_field_stream (uiout, "new", stb);
10539 ui_out_text (uiout, "\n");
10540 /* More than one watchpoint may have been triggered. */
10541 result = PRINT_UNKNOWN;
10542 break;
10543
10544 case bp_read_watchpoint:
10545 if (ui_out_is_mi_like_p (uiout))
10546 ui_out_field_string
10547 (uiout, "reason",
10548 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10549 mention (b);
10550 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10551 ui_out_text (uiout, "\nValue = ");
10552 watchpoint_value_print (w->val, stb);
10553 ui_out_field_stream (uiout, "value", stb);
10554 ui_out_text (uiout, "\n");
10555 result = PRINT_UNKNOWN;
10556 break;
10557
10558 case bp_access_watchpoint:
10559 if (bs->old_val != NULL)
10560 {
10561 annotate_watchpoint (b->number);
10562 if (ui_out_is_mi_like_p (uiout))
10563 ui_out_field_string
10564 (uiout, "reason",
10565 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10566 mention (b);
10567 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10568 ui_out_text (uiout, "\nOld value = ");
10569 watchpoint_value_print (bs->old_val, stb);
10570 ui_out_field_stream (uiout, "old", stb);
10571 ui_out_text (uiout, "\nNew value = ");
10572 }
10573 else
10574 {
10575 mention (b);
10576 if (ui_out_is_mi_like_p (uiout))
10577 ui_out_field_string
10578 (uiout, "reason",
10579 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10580 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10581 ui_out_text (uiout, "\nValue = ");
10582 }
10583 watchpoint_value_print (w->val, stb);
10584 ui_out_field_stream (uiout, "new", stb);
10585 ui_out_text (uiout, "\n");
10586 result = PRINT_UNKNOWN;
10587 break;
10588 default:
10589 result = PRINT_UNKNOWN;
10590 }
10591
10592 do_cleanups (old_chain);
10593 return result;
10594 }
10595
10596 /* Implement the "print_mention" breakpoint_ops method for hardware
10597 watchpoints. */
10598
10599 static void
10600 print_mention_watchpoint (struct breakpoint *b)
10601 {
10602 struct cleanup *ui_out_chain;
10603 struct watchpoint *w = (struct watchpoint *) b;
10604 struct ui_out *uiout = current_uiout;
10605
10606 switch (b->type)
10607 {
10608 case bp_watchpoint:
10609 ui_out_text (uiout, "Watchpoint ");
10610 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10611 break;
10612 case bp_hardware_watchpoint:
10613 ui_out_text (uiout, "Hardware watchpoint ");
10614 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10615 break;
10616 case bp_read_watchpoint:
10617 ui_out_text (uiout, "Hardware read watchpoint ");
10618 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10619 break;
10620 case bp_access_watchpoint:
10621 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10622 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10623 break;
10624 default:
10625 internal_error (__FILE__, __LINE__,
10626 _("Invalid hardware watchpoint type."));
10627 }
10628
10629 ui_out_field_int (uiout, "number", b->number);
10630 ui_out_text (uiout, ": ");
10631 ui_out_field_string (uiout, "exp", w->exp_string);
10632 do_cleanups (ui_out_chain);
10633 }
10634
10635 /* Implement the "print_recreate" breakpoint_ops method for
10636 watchpoints. */
10637
10638 static void
10639 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10640 {
10641 struct watchpoint *w = (struct watchpoint *) b;
10642
10643 switch (b->type)
10644 {
10645 case bp_watchpoint:
10646 case bp_hardware_watchpoint:
10647 fprintf_unfiltered (fp, "watch");
10648 break;
10649 case bp_read_watchpoint:
10650 fprintf_unfiltered (fp, "rwatch");
10651 break;
10652 case bp_access_watchpoint:
10653 fprintf_unfiltered (fp, "awatch");
10654 break;
10655 default:
10656 internal_error (__FILE__, __LINE__,
10657 _("Invalid watchpoint type."));
10658 }
10659
10660 fprintf_unfiltered (fp, " %s", w->exp_string);
10661 print_recreate_thread (b, fp);
10662 }
10663
10664 /* Implement the "explains_signal" breakpoint_ops method for
10665 watchpoints. */
10666
10667 static enum bpstat_signal_value
10668 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10669 {
10670 /* A software watchpoint cannot cause a signal other than
10671 GDB_SIGNAL_TRAP. */
10672 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10673 return BPSTAT_SIGNAL_NO;
10674
10675 return BPSTAT_SIGNAL_HIDE;
10676 }
10677
10678 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10679
10680 static struct breakpoint_ops watchpoint_breakpoint_ops;
10681
10682 /* Implement the "insert" breakpoint_ops method for
10683 masked hardware watchpoints. */
10684
10685 static int
10686 insert_masked_watchpoint (struct bp_location *bl)
10687 {
10688 struct watchpoint *w = (struct watchpoint *) bl->owner;
10689
10690 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10691 bl->watchpoint_type);
10692 }
10693
10694 /* Implement the "remove" breakpoint_ops method for
10695 masked hardware watchpoints. */
10696
10697 static int
10698 remove_masked_watchpoint (struct bp_location *bl)
10699 {
10700 struct watchpoint *w = (struct watchpoint *) bl->owner;
10701
10702 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10703 bl->watchpoint_type);
10704 }
10705
10706 /* Implement the "resources_needed" breakpoint_ops method for
10707 masked hardware watchpoints. */
10708
10709 static int
10710 resources_needed_masked_watchpoint (const struct bp_location *bl)
10711 {
10712 struct watchpoint *w = (struct watchpoint *) bl->owner;
10713
10714 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10715 }
10716
10717 /* Implement the "works_in_software_mode" breakpoint_ops method for
10718 masked hardware watchpoints. */
10719
10720 static int
10721 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10722 {
10723 return 0;
10724 }
10725
10726 /* Implement the "print_it" breakpoint_ops method for
10727 masked hardware watchpoints. */
10728
10729 static enum print_stop_action
10730 print_it_masked_watchpoint (bpstat bs)
10731 {
10732 struct breakpoint *b = bs->breakpoint_at;
10733 struct ui_out *uiout = current_uiout;
10734
10735 /* Masked watchpoints have only one location. */
10736 gdb_assert (b->loc && b->loc->next == NULL);
10737
10738 switch (b->type)
10739 {
10740 case bp_hardware_watchpoint:
10741 annotate_watchpoint (b->number);
10742 if (ui_out_is_mi_like_p (uiout))
10743 ui_out_field_string
10744 (uiout, "reason",
10745 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10746 break;
10747
10748 case bp_read_watchpoint:
10749 if (ui_out_is_mi_like_p (uiout))
10750 ui_out_field_string
10751 (uiout, "reason",
10752 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10753 break;
10754
10755 case bp_access_watchpoint:
10756 if (ui_out_is_mi_like_p (uiout))
10757 ui_out_field_string
10758 (uiout, "reason",
10759 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10760 break;
10761 default:
10762 internal_error (__FILE__, __LINE__,
10763 _("Invalid hardware watchpoint type."));
10764 }
10765
10766 mention (b);
10767 ui_out_text (uiout, _("\n\
10768 Check the underlying instruction at PC for the memory\n\
10769 address and value which triggered this watchpoint.\n"));
10770 ui_out_text (uiout, "\n");
10771
10772 /* More than one watchpoint may have been triggered. */
10773 return PRINT_UNKNOWN;
10774 }
10775
10776 /* Implement the "print_one_detail" breakpoint_ops method for
10777 masked hardware watchpoints. */
10778
10779 static void
10780 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10781 struct ui_out *uiout)
10782 {
10783 struct watchpoint *w = (struct watchpoint *) b;
10784
10785 /* Masked watchpoints have only one location. */
10786 gdb_assert (b->loc && b->loc->next == NULL);
10787
10788 ui_out_text (uiout, "\tmask ");
10789 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10790 ui_out_text (uiout, "\n");
10791 }
10792
10793 /* Implement the "print_mention" breakpoint_ops method for
10794 masked hardware watchpoints. */
10795
10796 static void
10797 print_mention_masked_watchpoint (struct breakpoint *b)
10798 {
10799 struct watchpoint *w = (struct watchpoint *) b;
10800 struct ui_out *uiout = current_uiout;
10801 struct cleanup *ui_out_chain;
10802
10803 switch (b->type)
10804 {
10805 case bp_hardware_watchpoint:
10806 ui_out_text (uiout, "Masked hardware watchpoint ");
10807 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10808 break;
10809 case bp_read_watchpoint:
10810 ui_out_text (uiout, "Masked hardware read watchpoint ");
10811 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10812 break;
10813 case bp_access_watchpoint:
10814 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10815 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10816 break;
10817 default:
10818 internal_error (__FILE__, __LINE__,
10819 _("Invalid hardware watchpoint type."));
10820 }
10821
10822 ui_out_field_int (uiout, "number", b->number);
10823 ui_out_text (uiout, ": ");
10824 ui_out_field_string (uiout, "exp", w->exp_string);
10825 do_cleanups (ui_out_chain);
10826 }
10827
10828 /* Implement the "print_recreate" breakpoint_ops method for
10829 masked hardware watchpoints. */
10830
10831 static void
10832 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10833 {
10834 struct watchpoint *w = (struct watchpoint *) b;
10835 char tmp[40];
10836
10837 switch (b->type)
10838 {
10839 case bp_hardware_watchpoint:
10840 fprintf_unfiltered (fp, "watch");
10841 break;
10842 case bp_read_watchpoint:
10843 fprintf_unfiltered (fp, "rwatch");
10844 break;
10845 case bp_access_watchpoint:
10846 fprintf_unfiltered (fp, "awatch");
10847 break;
10848 default:
10849 internal_error (__FILE__, __LINE__,
10850 _("Invalid hardware watchpoint type."));
10851 }
10852
10853 sprintf_vma (tmp, w->hw_wp_mask);
10854 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10855 print_recreate_thread (b, fp);
10856 }
10857
10858 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10859
10860 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10861
10862 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10863
10864 static int
10865 is_masked_watchpoint (const struct breakpoint *b)
10866 {
10867 return b->ops == &masked_watchpoint_breakpoint_ops;
10868 }
10869
10870 /* accessflag: hw_write: watch write,
10871 hw_read: watch read,
10872 hw_access: watch access (read or write) */
10873 static void
10874 watch_command_1 (const char *arg, int accessflag, int from_tty,
10875 int just_location, int internal)
10876 {
10877 volatile struct gdb_exception e;
10878 struct breakpoint *b, *scope_breakpoint = NULL;
10879 struct expression *exp;
10880 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10881 struct value *val, *mark, *result;
10882 struct frame_info *frame;
10883 const char *exp_start = NULL;
10884 const char *exp_end = NULL;
10885 const char *tok, *end_tok;
10886 int toklen = -1;
10887 const char *cond_start = NULL;
10888 const char *cond_end = NULL;
10889 enum bptype bp_type;
10890 int thread = -1;
10891 int pc = 0;
10892 /* Flag to indicate whether we are going to use masks for
10893 the hardware watchpoint. */
10894 int use_mask = 0;
10895 CORE_ADDR mask = 0;
10896 struct watchpoint *w;
10897 char *expression;
10898 struct cleanup *back_to;
10899
10900 /* Make sure that we actually have parameters to parse. */
10901 if (arg != NULL && arg[0] != '\0')
10902 {
10903 const char *value_start;
10904
10905 exp_end = arg + strlen (arg);
10906
10907 /* Look for "parameter value" pairs at the end
10908 of the arguments string. */
10909 for (tok = exp_end - 1; tok > arg; tok--)
10910 {
10911 /* Skip whitespace at the end of the argument list. */
10912 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10913 tok--;
10914
10915 /* Find the beginning of the last token.
10916 This is the value of the parameter. */
10917 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10918 tok--;
10919 value_start = tok + 1;
10920
10921 /* Skip whitespace. */
10922 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10923 tok--;
10924
10925 end_tok = tok;
10926
10927 /* Find the beginning of the second to last token.
10928 This is the parameter itself. */
10929 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10930 tok--;
10931 tok++;
10932 toklen = end_tok - tok + 1;
10933
10934 if (toklen == 6 && !strncmp (tok, "thread", 6))
10935 {
10936 /* At this point we've found a "thread" token, which means
10937 the user is trying to set a watchpoint that triggers
10938 only in a specific thread. */
10939 char *endp;
10940
10941 if (thread != -1)
10942 error(_("You can specify only one thread."));
10943
10944 /* Extract the thread ID from the next token. */
10945 thread = strtol (value_start, &endp, 0);
10946
10947 /* Check if the user provided a valid numeric value for the
10948 thread ID. */
10949 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10950 error (_("Invalid thread ID specification %s."), value_start);
10951
10952 /* Check if the thread actually exists. */
10953 if (!valid_thread_id (thread))
10954 invalid_thread_id_error (thread);
10955 }
10956 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10957 {
10958 /* We've found a "mask" token, which means the user wants to
10959 create a hardware watchpoint that is going to have the mask
10960 facility. */
10961 struct value *mask_value, *mark;
10962
10963 if (use_mask)
10964 error(_("You can specify only one mask."));
10965
10966 use_mask = just_location = 1;
10967
10968 mark = value_mark ();
10969 mask_value = parse_to_comma_and_eval (&value_start);
10970 mask = value_as_address (mask_value);
10971 value_free_to_mark (mark);
10972 }
10973 else
10974 /* We didn't recognize what we found. We should stop here. */
10975 break;
10976
10977 /* Truncate the string and get rid of the "parameter value" pair before
10978 the arguments string is parsed by the parse_exp_1 function. */
10979 exp_end = tok;
10980 }
10981 }
10982 else
10983 exp_end = arg;
10984
10985 /* Parse the rest of the arguments. From here on out, everything
10986 is in terms of a newly allocated string instead of the original
10987 ARG. */
10988 innermost_block = NULL;
10989 expression = savestring (arg, exp_end - arg);
10990 back_to = make_cleanup (xfree, expression);
10991 exp_start = arg = expression;
10992 exp = parse_exp_1 (&arg, 0, 0, 0);
10993 exp_end = arg;
10994 /* Remove trailing whitespace from the expression before saving it.
10995 This makes the eventual display of the expression string a bit
10996 prettier. */
10997 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10998 --exp_end;
10999
11000 /* Checking if the expression is not constant. */
11001 if (watchpoint_exp_is_const (exp))
11002 {
11003 int len;
11004
11005 len = exp_end - exp_start;
11006 while (len > 0 && isspace (exp_start[len - 1]))
11007 len--;
11008 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11009 }
11010
11011 exp_valid_block = innermost_block;
11012 mark = value_mark ();
11013 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11014
11015 if (just_location)
11016 {
11017 int ret;
11018
11019 exp_valid_block = NULL;
11020 val = value_addr (result);
11021 release_value (val);
11022 value_free_to_mark (mark);
11023
11024 if (use_mask)
11025 {
11026 ret = target_masked_watch_num_registers (value_as_address (val),
11027 mask);
11028 if (ret == -1)
11029 error (_("This target does not support masked watchpoints."));
11030 else if (ret == -2)
11031 error (_("Invalid mask or memory region."));
11032 }
11033 }
11034 else if (val != NULL)
11035 release_value (val);
11036
11037 tok = skip_spaces_const (arg);
11038 end_tok = skip_to_space_const (tok);
11039
11040 toklen = end_tok - tok;
11041 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11042 {
11043 struct expression *cond;
11044
11045 innermost_block = NULL;
11046 tok = cond_start = end_tok + 1;
11047 cond = parse_exp_1 (&tok, 0, 0, 0);
11048
11049 /* The watchpoint expression may not be local, but the condition
11050 may still be. E.g.: `watch global if local > 0'. */
11051 cond_exp_valid_block = innermost_block;
11052
11053 xfree (cond);
11054 cond_end = tok;
11055 }
11056 if (*tok)
11057 error (_("Junk at end of command."));
11058
11059 if (accessflag == hw_read)
11060 bp_type = bp_read_watchpoint;
11061 else if (accessflag == hw_access)
11062 bp_type = bp_access_watchpoint;
11063 else
11064 bp_type = bp_hardware_watchpoint;
11065
11066 frame = block_innermost_frame (exp_valid_block);
11067
11068 /* If the expression is "local", then set up a "watchpoint scope"
11069 breakpoint at the point where we've left the scope of the watchpoint
11070 expression. Create the scope breakpoint before the watchpoint, so
11071 that we will encounter it first in bpstat_stop_status. */
11072 if (exp_valid_block && frame)
11073 {
11074 if (frame_id_p (frame_unwind_caller_id (frame)))
11075 {
11076 scope_breakpoint
11077 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11078 frame_unwind_caller_pc (frame),
11079 bp_watchpoint_scope,
11080 &momentary_breakpoint_ops);
11081
11082 scope_breakpoint->enable_state = bp_enabled;
11083
11084 /* Automatically delete the breakpoint when it hits. */
11085 scope_breakpoint->disposition = disp_del;
11086
11087 /* Only break in the proper frame (help with recursion). */
11088 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11089
11090 /* Set the address at which we will stop. */
11091 scope_breakpoint->loc->gdbarch
11092 = frame_unwind_caller_arch (frame);
11093 scope_breakpoint->loc->requested_address
11094 = frame_unwind_caller_pc (frame);
11095 scope_breakpoint->loc->address
11096 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11097 scope_breakpoint->loc->requested_address,
11098 scope_breakpoint->type);
11099 }
11100 }
11101
11102 /* Now set up the breakpoint. */
11103
11104 w = XCNEW (struct watchpoint);
11105 b = &w->base;
11106 if (use_mask)
11107 init_raw_breakpoint_without_location (b, NULL, bp_type,
11108 &masked_watchpoint_breakpoint_ops);
11109 else
11110 init_raw_breakpoint_without_location (b, NULL, bp_type,
11111 &watchpoint_breakpoint_ops);
11112 b->thread = thread;
11113 b->disposition = disp_donttouch;
11114 b->pspace = current_program_space;
11115 w->exp = exp;
11116 w->exp_valid_block = exp_valid_block;
11117 w->cond_exp_valid_block = cond_exp_valid_block;
11118 if (just_location)
11119 {
11120 struct type *t = value_type (val);
11121 CORE_ADDR addr = value_as_address (val);
11122 char *name;
11123
11124 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11125 name = type_to_string (t);
11126
11127 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11128 core_addr_to_string (addr));
11129 xfree (name);
11130
11131 w->exp_string = xstrprintf ("-location %.*s",
11132 (int) (exp_end - exp_start), exp_start);
11133
11134 /* The above expression is in C. */
11135 b->language = language_c;
11136 }
11137 else
11138 w->exp_string = savestring (exp_start, exp_end - exp_start);
11139
11140 if (use_mask)
11141 {
11142 w->hw_wp_mask = mask;
11143 }
11144 else
11145 {
11146 w->val = val;
11147 w->val_valid = 1;
11148 }
11149
11150 if (cond_start)
11151 b->cond_string = savestring (cond_start, cond_end - cond_start);
11152 else
11153 b->cond_string = 0;
11154
11155 if (frame)
11156 {
11157 w->watchpoint_frame = get_frame_id (frame);
11158 w->watchpoint_thread = inferior_ptid;
11159 }
11160 else
11161 {
11162 w->watchpoint_frame = null_frame_id;
11163 w->watchpoint_thread = null_ptid;
11164 }
11165
11166 if (scope_breakpoint != NULL)
11167 {
11168 /* The scope breakpoint is related to the watchpoint. We will
11169 need to act on them together. */
11170 b->related_breakpoint = scope_breakpoint;
11171 scope_breakpoint->related_breakpoint = b;
11172 }
11173
11174 if (!just_location)
11175 value_free_to_mark (mark);
11176
11177 TRY_CATCH (e, RETURN_MASK_ALL)
11178 {
11179 /* Finally update the new watchpoint. This creates the locations
11180 that should be inserted. */
11181 update_watchpoint (w, 1);
11182 }
11183 if (e.reason < 0)
11184 {
11185 delete_breakpoint (b);
11186 throw_exception (e);
11187 }
11188
11189 install_breakpoint (internal, b, 1);
11190 do_cleanups (back_to);
11191 }
11192
11193 /* Return count of debug registers needed to watch the given expression.
11194 If the watchpoint cannot be handled in hardware return zero. */
11195
11196 static int
11197 can_use_hardware_watchpoint (struct value *v)
11198 {
11199 int found_memory_cnt = 0;
11200 struct value *head = v;
11201
11202 /* Did the user specifically forbid us to use hardware watchpoints? */
11203 if (!can_use_hw_watchpoints)
11204 return 0;
11205
11206 /* Make sure that the value of the expression depends only upon
11207 memory contents, and values computed from them within GDB. If we
11208 find any register references or function calls, we can't use a
11209 hardware watchpoint.
11210
11211 The idea here is that evaluating an expression generates a series
11212 of values, one holding the value of every subexpression. (The
11213 expression a*b+c has five subexpressions: a, b, a*b, c, and
11214 a*b+c.) GDB's values hold almost enough information to establish
11215 the criteria given above --- they identify memory lvalues,
11216 register lvalues, computed values, etcetera. So we can evaluate
11217 the expression, and then scan the chain of values that leaves
11218 behind to decide whether we can detect any possible change to the
11219 expression's final value using only hardware watchpoints.
11220
11221 However, I don't think that the values returned by inferior
11222 function calls are special in any way. So this function may not
11223 notice that an expression involving an inferior function call
11224 can't be watched with hardware watchpoints. FIXME. */
11225 for (; v; v = value_next (v))
11226 {
11227 if (VALUE_LVAL (v) == lval_memory)
11228 {
11229 if (v != head && value_lazy (v))
11230 /* A lazy memory lvalue in the chain is one that GDB never
11231 needed to fetch; we either just used its address (e.g.,
11232 `a' in `a.b') or we never needed it at all (e.g., `a'
11233 in `a,b'). This doesn't apply to HEAD; if that is
11234 lazy then it was not readable, but watch it anyway. */
11235 ;
11236 else
11237 {
11238 /* Ahh, memory we actually used! Check if we can cover
11239 it with hardware watchpoints. */
11240 struct type *vtype = check_typedef (value_type (v));
11241
11242 /* We only watch structs and arrays if user asked for it
11243 explicitly, never if they just happen to appear in a
11244 middle of some value chain. */
11245 if (v == head
11246 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11247 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11248 {
11249 CORE_ADDR vaddr = value_address (v);
11250 int len;
11251 int num_regs;
11252
11253 len = (target_exact_watchpoints
11254 && is_scalar_type_recursive (vtype))?
11255 1 : TYPE_LENGTH (value_type (v));
11256
11257 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11258 if (!num_regs)
11259 return 0;
11260 else
11261 found_memory_cnt += num_regs;
11262 }
11263 }
11264 }
11265 else if (VALUE_LVAL (v) != not_lval
11266 && deprecated_value_modifiable (v) == 0)
11267 return 0; /* These are values from the history (e.g., $1). */
11268 else if (VALUE_LVAL (v) == lval_register)
11269 return 0; /* Cannot watch a register with a HW watchpoint. */
11270 }
11271
11272 /* The expression itself looks suitable for using a hardware
11273 watchpoint, but give the target machine a chance to reject it. */
11274 return found_memory_cnt;
11275 }
11276
11277 void
11278 watch_command_wrapper (char *arg, int from_tty, int internal)
11279 {
11280 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11281 }
11282
11283 /* A helper function that looks for the "-location" argument and then
11284 calls watch_command_1. */
11285
11286 static void
11287 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11288 {
11289 int just_location = 0;
11290
11291 if (arg
11292 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11293 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11294 {
11295 arg = skip_spaces (arg);
11296 just_location = 1;
11297 }
11298
11299 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11300 }
11301
11302 static void
11303 watch_command (char *arg, int from_tty)
11304 {
11305 watch_maybe_just_location (arg, hw_write, from_tty);
11306 }
11307
11308 void
11309 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11310 {
11311 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11312 }
11313
11314 static void
11315 rwatch_command (char *arg, int from_tty)
11316 {
11317 watch_maybe_just_location (arg, hw_read, from_tty);
11318 }
11319
11320 void
11321 awatch_command_wrapper (char *arg, int from_tty, int internal)
11322 {
11323 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11324 }
11325
11326 static void
11327 awatch_command (char *arg, int from_tty)
11328 {
11329 watch_maybe_just_location (arg, hw_access, from_tty);
11330 }
11331 \f
11332
11333 /* Helper routines for the until_command routine in infcmd.c. Here
11334 because it uses the mechanisms of breakpoints. */
11335
11336 struct until_break_command_continuation_args
11337 {
11338 struct breakpoint *breakpoint;
11339 struct breakpoint *breakpoint2;
11340 int thread_num;
11341 };
11342
11343 /* This function is called by fetch_inferior_event via the
11344 cmd_continuation pointer, to complete the until command. It takes
11345 care of cleaning up the temporary breakpoints set up by the until
11346 command. */
11347 static void
11348 until_break_command_continuation (void *arg, int err)
11349 {
11350 struct until_break_command_continuation_args *a = arg;
11351
11352 delete_breakpoint (a->breakpoint);
11353 if (a->breakpoint2)
11354 delete_breakpoint (a->breakpoint2);
11355 delete_longjmp_breakpoint (a->thread_num);
11356 }
11357
11358 void
11359 until_break_command (char *arg, int from_tty, int anywhere)
11360 {
11361 struct symtabs_and_lines sals;
11362 struct symtab_and_line sal;
11363 struct frame_info *frame;
11364 struct gdbarch *frame_gdbarch;
11365 struct frame_id stack_frame_id;
11366 struct frame_id caller_frame_id;
11367 struct breakpoint *breakpoint;
11368 struct breakpoint *breakpoint2 = NULL;
11369 struct cleanup *old_chain;
11370 int thread;
11371 struct thread_info *tp;
11372
11373 clear_proceed_status ();
11374
11375 /* Set a breakpoint where the user wants it and at return from
11376 this function. */
11377
11378 if (last_displayed_sal_is_valid ())
11379 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11380 get_last_displayed_symtab (),
11381 get_last_displayed_line ());
11382 else
11383 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11384 (struct symtab *) NULL, 0);
11385
11386 if (sals.nelts != 1)
11387 error (_("Couldn't get information on specified line."));
11388
11389 sal = sals.sals[0];
11390 xfree (sals.sals); /* malloc'd, so freed. */
11391
11392 if (*arg)
11393 error (_("Junk at end of arguments."));
11394
11395 resolve_sal_pc (&sal);
11396
11397 tp = inferior_thread ();
11398 thread = tp->num;
11399
11400 old_chain = make_cleanup (null_cleanup, NULL);
11401
11402 /* Note linespec handling above invalidates the frame chain.
11403 Installing a breakpoint also invalidates the frame chain (as it
11404 may need to switch threads), so do any frame handling before
11405 that. */
11406
11407 frame = get_selected_frame (NULL);
11408 frame_gdbarch = get_frame_arch (frame);
11409 stack_frame_id = get_stack_frame_id (frame);
11410 caller_frame_id = frame_unwind_caller_id (frame);
11411
11412 /* Keep within the current frame, or in frames called by the current
11413 one. */
11414
11415 if (frame_id_p (caller_frame_id))
11416 {
11417 struct symtab_and_line sal2;
11418
11419 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11420 sal2.pc = frame_unwind_caller_pc (frame);
11421 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11422 sal2,
11423 caller_frame_id,
11424 bp_until);
11425 make_cleanup_delete_breakpoint (breakpoint2);
11426
11427 set_longjmp_breakpoint (tp, caller_frame_id);
11428 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11429 }
11430
11431 /* set_momentary_breakpoint could invalidate FRAME. */
11432 frame = NULL;
11433
11434 if (anywhere)
11435 /* If the user told us to continue until a specified location,
11436 we don't specify a frame at which we need to stop. */
11437 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11438 null_frame_id, bp_until);
11439 else
11440 /* Otherwise, specify the selected frame, because we want to stop
11441 only at the very same frame. */
11442 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11443 stack_frame_id, bp_until);
11444 make_cleanup_delete_breakpoint (breakpoint);
11445
11446 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11447
11448 /* If we are running asynchronously, and proceed call above has
11449 actually managed to start the target, arrange for breakpoints to
11450 be deleted when the target stops. Otherwise, we're already
11451 stopped and delete breakpoints via cleanup chain. */
11452
11453 if (target_can_async_p () && is_running (inferior_ptid))
11454 {
11455 struct until_break_command_continuation_args *args;
11456 args = xmalloc (sizeof (*args));
11457
11458 args->breakpoint = breakpoint;
11459 args->breakpoint2 = breakpoint2;
11460 args->thread_num = thread;
11461
11462 discard_cleanups (old_chain);
11463 add_continuation (inferior_thread (),
11464 until_break_command_continuation, args,
11465 xfree);
11466 }
11467 else
11468 do_cleanups (old_chain);
11469 }
11470
11471 /* This function attempts to parse an optional "if <cond>" clause
11472 from the arg string. If one is not found, it returns NULL.
11473
11474 Else, it returns a pointer to the condition string. (It does not
11475 attempt to evaluate the string against a particular block.) And,
11476 it updates arg to point to the first character following the parsed
11477 if clause in the arg string. */
11478
11479 char *
11480 ep_parse_optional_if_clause (char **arg)
11481 {
11482 char *cond_string;
11483
11484 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11485 return NULL;
11486
11487 /* Skip the "if" keyword. */
11488 (*arg) += 2;
11489
11490 /* Skip any extra leading whitespace, and record the start of the
11491 condition string. */
11492 *arg = skip_spaces (*arg);
11493 cond_string = *arg;
11494
11495 /* Assume that the condition occupies the remainder of the arg
11496 string. */
11497 (*arg) += strlen (cond_string);
11498
11499 return cond_string;
11500 }
11501
11502 /* Commands to deal with catching events, such as signals, exceptions,
11503 process start/exit, etc. */
11504
11505 typedef enum
11506 {
11507 catch_fork_temporary, catch_vfork_temporary,
11508 catch_fork_permanent, catch_vfork_permanent
11509 }
11510 catch_fork_kind;
11511
11512 static void
11513 catch_fork_command_1 (char *arg, int from_tty,
11514 struct cmd_list_element *command)
11515 {
11516 struct gdbarch *gdbarch = get_current_arch ();
11517 char *cond_string = NULL;
11518 catch_fork_kind fork_kind;
11519 int tempflag;
11520
11521 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11522 tempflag = (fork_kind == catch_fork_temporary
11523 || fork_kind == catch_vfork_temporary);
11524
11525 if (!arg)
11526 arg = "";
11527 arg = skip_spaces (arg);
11528
11529 /* The allowed syntax is:
11530 catch [v]fork
11531 catch [v]fork if <cond>
11532
11533 First, check if there's an if clause. */
11534 cond_string = ep_parse_optional_if_clause (&arg);
11535
11536 if ((*arg != '\0') && !isspace (*arg))
11537 error (_("Junk at end of arguments."));
11538
11539 /* If this target supports it, create a fork or vfork catchpoint
11540 and enable reporting of such events. */
11541 switch (fork_kind)
11542 {
11543 case catch_fork_temporary:
11544 case catch_fork_permanent:
11545 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11546 &catch_fork_breakpoint_ops);
11547 break;
11548 case catch_vfork_temporary:
11549 case catch_vfork_permanent:
11550 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11551 &catch_vfork_breakpoint_ops);
11552 break;
11553 default:
11554 error (_("unsupported or unknown fork kind; cannot catch it"));
11555 break;
11556 }
11557 }
11558
11559 static void
11560 catch_exec_command_1 (char *arg, int from_tty,
11561 struct cmd_list_element *command)
11562 {
11563 struct exec_catchpoint *c;
11564 struct gdbarch *gdbarch = get_current_arch ();
11565 int tempflag;
11566 char *cond_string = NULL;
11567
11568 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11569
11570 if (!arg)
11571 arg = "";
11572 arg = skip_spaces (arg);
11573
11574 /* The allowed syntax is:
11575 catch exec
11576 catch exec if <cond>
11577
11578 First, check if there's an if clause. */
11579 cond_string = ep_parse_optional_if_clause (&arg);
11580
11581 if ((*arg != '\0') && !isspace (*arg))
11582 error (_("Junk at end of arguments."));
11583
11584 c = XNEW (struct exec_catchpoint);
11585 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11586 &catch_exec_breakpoint_ops);
11587 c->exec_pathname = NULL;
11588
11589 install_breakpoint (0, &c->base, 1);
11590 }
11591
11592 void
11593 init_ada_exception_breakpoint (struct breakpoint *b,
11594 struct gdbarch *gdbarch,
11595 struct symtab_and_line sal,
11596 char *addr_string,
11597 const struct breakpoint_ops *ops,
11598 int tempflag,
11599 int from_tty)
11600 {
11601 if (from_tty)
11602 {
11603 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11604 if (!loc_gdbarch)
11605 loc_gdbarch = gdbarch;
11606
11607 describe_other_breakpoints (loc_gdbarch,
11608 sal.pspace, sal.pc, sal.section, -1);
11609 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11610 version for exception catchpoints, because two catchpoints
11611 used for different exception names will use the same address.
11612 In this case, a "breakpoint ... also set at..." warning is
11613 unproductive. Besides, the warning phrasing is also a bit
11614 inappropriate, we should use the word catchpoint, and tell
11615 the user what type of catchpoint it is. The above is good
11616 enough for now, though. */
11617 }
11618
11619 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11620
11621 b->enable_state = bp_enabled;
11622 b->disposition = tempflag ? disp_del : disp_donttouch;
11623 b->addr_string = addr_string;
11624 b->language = language_ada;
11625 }
11626
11627 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11628 filter list, or NULL if no filtering is required. */
11629 static VEC(int) *
11630 catch_syscall_split_args (char *arg)
11631 {
11632 VEC(int) *result = NULL;
11633 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11634
11635 while (*arg != '\0')
11636 {
11637 int i, syscall_number;
11638 char *endptr;
11639 char cur_name[128];
11640 struct syscall s;
11641
11642 /* Skip whitespace. */
11643 arg = skip_spaces (arg);
11644
11645 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11646 cur_name[i] = arg[i];
11647 cur_name[i] = '\0';
11648 arg += i;
11649
11650 /* Check if the user provided a syscall name or a number. */
11651 syscall_number = (int) strtol (cur_name, &endptr, 0);
11652 if (*endptr == '\0')
11653 get_syscall_by_number (syscall_number, &s);
11654 else
11655 {
11656 /* We have a name. Let's check if it's valid and convert it
11657 to a number. */
11658 get_syscall_by_name (cur_name, &s);
11659
11660 if (s.number == UNKNOWN_SYSCALL)
11661 /* Here we have to issue an error instead of a warning,
11662 because GDB cannot do anything useful if there's no
11663 syscall number to be caught. */
11664 error (_("Unknown syscall name '%s'."), cur_name);
11665 }
11666
11667 /* Ok, it's valid. */
11668 VEC_safe_push (int, result, s.number);
11669 }
11670
11671 discard_cleanups (cleanup);
11672 return result;
11673 }
11674
11675 /* Implement the "catch syscall" command. */
11676
11677 static void
11678 catch_syscall_command_1 (char *arg, int from_tty,
11679 struct cmd_list_element *command)
11680 {
11681 int tempflag;
11682 VEC(int) *filter;
11683 struct syscall s;
11684 struct gdbarch *gdbarch = get_current_arch ();
11685
11686 /* Checking if the feature if supported. */
11687 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11688 error (_("The feature 'catch syscall' is not supported on \
11689 this architecture yet."));
11690
11691 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11692
11693 arg = skip_spaces (arg);
11694
11695 /* We need to do this first "dummy" translation in order
11696 to get the syscall XML file loaded or, most important,
11697 to display a warning to the user if there's no XML file
11698 for his/her architecture. */
11699 get_syscall_by_number (0, &s);
11700
11701 /* The allowed syntax is:
11702 catch syscall
11703 catch syscall <name | number> [<name | number> ... <name | number>]
11704
11705 Let's check if there's a syscall name. */
11706
11707 if (arg != NULL)
11708 filter = catch_syscall_split_args (arg);
11709 else
11710 filter = NULL;
11711
11712 create_syscall_event_catchpoint (tempflag, filter,
11713 &catch_syscall_breakpoint_ops);
11714 }
11715
11716 static void
11717 catch_command (char *arg, int from_tty)
11718 {
11719 error (_("Catch requires an event name."));
11720 }
11721 \f
11722
11723 static void
11724 tcatch_command (char *arg, int from_tty)
11725 {
11726 error (_("Catch requires an event name."));
11727 }
11728
11729 /* A qsort comparison function that sorts breakpoints in order. */
11730
11731 static int
11732 compare_breakpoints (const void *a, const void *b)
11733 {
11734 const breakpoint_p *ba = a;
11735 uintptr_t ua = (uintptr_t) *ba;
11736 const breakpoint_p *bb = b;
11737 uintptr_t ub = (uintptr_t) *bb;
11738
11739 if ((*ba)->number < (*bb)->number)
11740 return -1;
11741 else if ((*ba)->number > (*bb)->number)
11742 return 1;
11743
11744 /* Now sort by address, in case we see, e..g, two breakpoints with
11745 the number 0. */
11746 if (ua < ub)
11747 return -1;
11748 return ua > ub ? 1 : 0;
11749 }
11750
11751 /* Delete breakpoints by address or line. */
11752
11753 static void
11754 clear_command (char *arg, int from_tty)
11755 {
11756 struct breakpoint *b, *prev;
11757 VEC(breakpoint_p) *found = 0;
11758 int ix;
11759 int default_match;
11760 struct symtabs_and_lines sals;
11761 struct symtab_and_line sal;
11762 int i;
11763 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11764
11765 if (arg)
11766 {
11767 sals = decode_line_with_current_source (arg,
11768 (DECODE_LINE_FUNFIRSTLINE
11769 | DECODE_LINE_LIST_MODE));
11770 make_cleanup (xfree, sals.sals);
11771 default_match = 0;
11772 }
11773 else
11774 {
11775 sals.sals = (struct symtab_and_line *)
11776 xmalloc (sizeof (struct symtab_and_line));
11777 make_cleanup (xfree, sals.sals);
11778 init_sal (&sal); /* Initialize to zeroes. */
11779
11780 /* Set sal's line, symtab, pc, and pspace to the values
11781 corresponding to the last call to print_frame_info. If the
11782 codepoint is not valid, this will set all the fields to 0. */
11783 get_last_displayed_sal (&sal);
11784 if (sal.symtab == 0)
11785 error (_("No source file specified."));
11786
11787 sals.sals[0] = sal;
11788 sals.nelts = 1;
11789
11790 default_match = 1;
11791 }
11792
11793 /* We don't call resolve_sal_pc here. That's not as bad as it
11794 seems, because all existing breakpoints typically have both
11795 file/line and pc set. So, if clear is given file/line, we can
11796 match this to existing breakpoint without obtaining pc at all.
11797
11798 We only support clearing given the address explicitly
11799 present in breakpoint table. Say, we've set breakpoint
11800 at file:line. There were several PC values for that file:line,
11801 due to optimization, all in one block.
11802
11803 We've picked one PC value. If "clear" is issued with another
11804 PC corresponding to the same file:line, the breakpoint won't
11805 be cleared. We probably can still clear the breakpoint, but
11806 since the other PC value is never presented to user, user
11807 can only find it by guessing, and it does not seem important
11808 to support that. */
11809
11810 /* For each line spec given, delete bps which correspond to it. Do
11811 it in two passes, solely to preserve the current behavior that
11812 from_tty is forced true if we delete more than one
11813 breakpoint. */
11814
11815 found = NULL;
11816 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11817 for (i = 0; i < sals.nelts; i++)
11818 {
11819 const char *sal_fullname;
11820
11821 /* If exact pc given, clear bpts at that pc.
11822 If line given (pc == 0), clear all bpts on specified line.
11823 If defaulting, clear all bpts on default line
11824 or at default pc.
11825
11826 defaulting sal.pc != 0 tests to do
11827
11828 0 1 pc
11829 1 1 pc _and_ line
11830 0 0 line
11831 1 0 <can't happen> */
11832
11833 sal = sals.sals[i];
11834 sal_fullname = (sal.symtab == NULL
11835 ? NULL : symtab_to_fullname (sal.symtab));
11836
11837 /* Find all matching breakpoints and add them to 'found'. */
11838 ALL_BREAKPOINTS (b)
11839 {
11840 int match = 0;
11841 /* Are we going to delete b? */
11842 if (b->type != bp_none && !is_watchpoint (b))
11843 {
11844 struct bp_location *loc = b->loc;
11845 for (; loc; loc = loc->next)
11846 {
11847 /* If the user specified file:line, don't allow a PC
11848 match. This matches historical gdb behavior. */
11849 int pc_match = (!sal.explicit_line
11850 && sal.pc
11851 && (loc->pspace == sal.pspace)
11852 && (loc->address == sal.pc)
11853 && (!section_is_overlay (loc->section)
11854 || loc->section == sal.section));
11855 int line_match = 0;
11856
11857 if ((default_match || sal.explicit_line)
11858 && loc->symtab != NULL
11859 && sal_fullname != NULL
11860 && sal.pspace == loc->pspace
11861 && loc->line_number == sal.line
11862 && filename_cmp (symtab_to_fullname (loc->symtab),
11863 sal_fullname) == 0)
11864 line_match = 1;
11865
11866 if (pc_match || line_match)
11867 {
11868 match = 1;
11869 break;
11870 }
11871 }
11872 }
11873
11874 if (match)
11875 VEC_safe_push(breakpoint_p, found, b);
11876 }
11877 }
11878
11879 /* Now go thru the 'found' chain and delete them. */
11880 if (VEC_empty(breakpoint_p, found))
11881 {
11882 if (arg)
11883 error (_("No breakpoint at %s."), arg);
11884 else
11885 error (_("No breakpoint at this line."));
11886 }
11887
11888 /* Remove duplicates from the vec. */
11889 qsort (VEC_address (breakpoint_p, found),
11890 VEC_length (breakpoint_p, found),
11891 sizeof (breakpoint_p),
11892 compare_breakpoints);
11893 prev = VEC_index (breakpoint_p, found, 0);
11894 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11895 {
11896 if (b == prev)
11897 {
11898 VEC_ordered_remove (breakpoint_p, found, ix);
11899 --ix;
11900 }
11901 }
11902
11903 if (VEC_length(breakpoint_p, found) > 1)
11904 from_tty = 1; /* Always report if deleted more than one. */
11905 if (from_tty)
11906 {
11907 if (VEC_length(breakpoint_p, found) == 1)
11908 printf_unfiltered (_("Deleted breakpoint "));
11909 else
11910 printf_unfiltered (_("Deleted breakpoints "));
11911 }
11912
11913 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11914 {
11915 if (from_tty)
11916 printf_unfiltered ("%d ", b->number);
11917 delete_breakpoint (b);
11918 }
11919 if (from_tty)
11920 putchar_unfiltered ('\n');
11921
11922 do_cleanups (cleanups);
11923 }
11924 \f
11925 /* Delete breakpoint in BS if they are `delete' breakpoints and
11926 all breakpoints that are marked for deletion, whether hit or not.
11927 This is called after any breakpoint is hit, or after errors. */
11928
11929 void
11930 breakpoint_auto_delete (bpstat bs)
11931 {
11932 struct breakpoint *b, *b_tmp;
11933
11934 for (; bs; bs = bs->next)
11935 if (bs->breakpoint_at
11936 && bs->breakpoint_at->disposition == disp_del
11937 && bs->stop)
11938 delete_breakpoint (bs->breakpoint_at);
11939
11940 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11941 {
11942 if (b->disposition == disp_del_at_next_stop)
11943 delete_breakpoint (b);
11944 }
11945 }
11946
11947 /* A comparison function for bp_location AP and BP being interfaced to
11948 qsort. Sort elements primarily by their ADDRESS (no matter what
11949 does breakpoint_address_is_meaningful say for its OWNER),
11950 secondarily by ordering first bp_permanent OWNERed elements and
11951 terciarily just ensuring the array is sorted stable way despite
11952 qsort being an unstable algorithm. */
11953
11954 static int
11955 bp_location_compare (const void *ap, const void *bp)
11956 {
11957 struct bp_location *a = *(void **) ap;
11958 struct bp_location *b = *(void **) bp;
11959 /* A and B come from existing breakpoints having non-NULL OWNER. */
11960 int a_perm = a->owner->enable_state == bp_permanent;
11961 int b_perm = b->owner->enable_state == bp_permanent;
11962
11963 if (a->address != b->address)
11964 return (a->address > b->address) - (a->address < b->address);
11965
11966 /* Sort locations at the same address by their pspace number, keeping
11967 locations of the same inferior (in a multi-inferior environment)
11968 grouped. */
11969
11970 if (a->pspace->num != b->pspace->num)
11971 return ((a->pspace->num > b->pspace->num)
11972 - (a->pspace->num < b->pspace->num));
11973
11974 /* Sort permanent breakpoints first. */
11975 if (a_perm != b_perm)
11976 return (a_perm < b_perm) - (a_perm > b_perm);
11977
11978 /* Make the internal GDB representation stable across GDB runs
11979 where A and B memory inside GDB can differ. Breakpoint locations of
11980 the same type at the same address can be sorted in arbitrary order. */
11981
11982 if (a->owner->number != b->owner->number)
11983 return ((a->owner->number > b->owner->number)
11984 - (a->owner->number < b->owner->number));
11985
11986 return (a > b) - (a < b);
11987 }
11988
11989 /* Set bp_location_placed_address_before_address_max and
11990 bp_location_shadow_len_after_address_max according to the current
11991 content of the bp_location array. */
11992
11993 static void
11994 bp_location_target_extensions_update (void)
11995 {
11996 struct bp_location *bl, **blp_tmp;
11997
11998 bp_location_placed_address_before_address_max = 0;
11999 bp_location_shadow_len_after_address_max = 0;
12000
12001 ALL_BP_LOCATIONS (bl, blp_tmp)
12002 {
12003 CORE_ADDR start, end, addr;
12004
12005 if (!bp_location_has_shadow (bl))
12006 continue;
12007
12008 start = bl->target_info.placed_address;
12009 end = start + bl->target_info.shadow_len;
12010
12011 gdb_assert (bl->address >= start);
12012 addr = bl->address - start;
12013 if (addr > bp_location_placed_address_before_address_max)
12014 bp_location_placed_address_before_address_max = addr;
12015
12016 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12017
12018 gdb_assert (bl->address < end);
12019 addr = end - bl->address;
12020 if (addr > bp_location_shadow_len_after_address_max)
12021 bp_location_shadow_len_after_address_max = addr;
12022 }
12023 }
12024
12025 /* Download tracepoint locations if they haven't been. */
12026
12027 static void
12028 download_tracepoint_locations (void)
12029 {
12030 struct breakpoint *b;
12031 struct cleanup *old_chain;
12032
12033 if (!target_can_download_tracepoint ())
12034 return;
12035
12036 old_chain = save_current_space_and_thread ();
12037
12038 ALL_TRACEPOINTS (b)
12039 {
12040 struct bp_location *bl;
12041 struct tracepoint *t;
12042 int bp_location_downloaded = 0;
12043
12044 if ((b->type == bp_fast_tracepoint
12045 ? !may_insert_fast_tracepoints
12046 : !may_insert_tracepoints))
12047 continue;
12048
12049 for (bl = b->loc; bl; bl = bl->next)
12050 {
12051 /* In tracepoint, locations are _never_ duplicated, so
12052 should_be_inserted is equivalent to
12053 unduplicated_should_be_inserted. */
12054 if (!should_be_inserted (bl) || bl->inserted)
12055 continue;
12056
12057 switch_to_program_space_and_thread (bl->pspace);
12058
12059 target_download_tracepoint (bl);
12060
12061 bl->inserted = 1;
12062 bp_location_downloaded = 1;
12063 }
12064 t = (struct tracepoint *) b;
12065 t->number_on_target = b->number;
12066 if (bp_location_downloaded)
12067 observer_notify_breakpoint_modified (b);
12068 }
12069
12070 do_cleanups (old_chain);
12071 }
12072
12073 /* Swap the insertion/duplication state between two locations. */
12074
12075 static void
12076 swap_insertion (struct bp_location *left, struct bp_location *right)
12077 {
12078 const int left_inserted = left->inserted;
12079 const int left_duplicate = left->duplicate;
12080 const int left_needs_update = left->needs_update;
12081 const struct bp_target_info left_target_info = left->target_info;
12082
12083 /* Locations of tracepoints can never be duplicated. */
12084 if (is_tracepoint (left->owner))
12085 gdb_assert (!left->duplicate);
12086 if (is_tracepoint (right->owner))
12087 gdb_assert (!right->duplicate);
12088
12089 left->inserted = right->inserted;
12090 left->duplicate = right->duplicate;
12091 left->needs_update = right->needs_update;
12092 left->target_info = right->target_info;
12093 right->inserted = left_inserted;
12094 right->duplicate = left_duplicate;
12095 right->needs_update = left_needs_update;
12096 right->target_info = left_target_info;
12097 }
12098
12099 /* Force the re-insertion of the locations at ADDRESS. This is called
12100 once a new/deleted/modified duplicate location is found and we are evaluating
12101 conditions on the target's side. Such conditions need to be updated on
12102 the target. */
12103
12104 static void
12105 force_breakpoint_reinsertion (struct bp_location *bl)
12106 {
12107 struct bp_location **locp = NULL, **loc2p;
12108 struct bp_location *loc;
12109 CORE_ADDR address = 0;
12110 int pspace_num;
12111
12112 address = bl->address;
12113 pspace_num = bl->pspace->num;
12114
12115 /* This is only meaningful if the target is
12116 evaluating conditions and if the user has
12117 opted for condition evaluation on the target's
12118 side. */
12119 if (gdb_evaluates_breakpoint_condition_p ()
12120 || !target_supports_evaluation_of_breakpoint_conditions ())
12121 return;
12122
12123 /* Flag all breakpoint locations with this address and
12124 the same program space as the location
12125 as "its condition has changed". We need to
12126 update the conditions on the target's side. */
12127 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12128 {
12129 loc = *loc2p;
12130
12131 if (!is_breakpoint (loc->owner)
12132 || pspace_num != loc->pspace->num)
12133 continue;
12134
12135 /* Flag the location appropriately. We use a different state to
12136 let everyone know that we already updated the set of locations
12137 with addr bl->address and program space bl->pspace. This is so
12138 we don't have to keep calling these functions just to mark locations
12139 that have already been marked. */
12140 loc->condition_changed = condition_updated;
12141
12142 /* Free the agent expression bytecode as well. We will compute
12143 it later on. */
12144 if (loc->cond_bytecode)
12145 {
12146 free_agent_expr (loc->cond_bytecode);
12147 loc->cond_bytecode = NULL;
12148 }
12149 }
12150 }
12151
12152 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12153 into the inferior, only remove already-inserted locations that no
12154 longer should be inserted. Functions that delete a breakpoint or
12155 breakpoints should pass false, so that deleting a breakpoint
12156 doesn't have the side effect of inserting the locations of other
12157 breakpoints that are marked not-inserted, but should_be_inserted
12158 returns true on them.
12159
12160 This behaviour is useful is situations close to tear-down -- e.g.,
12161 after an exec, while the target still has execution, but breakpoint
12162 shadows of the previous executable image should *NOT* be restored
12163 to the new image; or before detaching, where the target still has
12164 execution and wants to delete breakpoints from GDB's lists, and all
12165 breakpoints had already been removed from the inferior. */
12166
12167 static void
12168 update_global_location_list (int should_insert)
12169 {
12170 struct breakpoint *b;
12171 struct bp_location **locp, *loc;
12172 struct cleanup *cleanups;
12173 /* Last breakpoint location address that was marked for update. */
12174 CORE_ADDR last_addr = 0;
12175 /* Last breakpoint location program space that was marked for update. */
12176 int last_pspace_num = -1;
12177
12178 /* Used in the duplicates detection below. When iterating over all
12179 bp_locations, points to the first bp_location of a given address.
12180 Breakpoints and watchpoints of different types are never
12181 duplicates of each other. Keep one pointer for each type of
12182 breakpoint/watchpoint, so we only need to loop over all locations
12183 once. */
12184 struct bp_location *bp_loc_first; /* breakpoint */
12185 struct bp_location *wp_loc_first; /* hardware watchpoint */
12186 struct bp_location *awp_loc_first; /* access watchpoint */
12187 struct bp_location *rwp_loc_first; /* read watchpoint */
12188
12189 /* Saved former bp_location array which we compare against the newly
12190 built bp_location from the current state of ALL_BREAKPOINTS. */
12191 struct bp_location **old_location, **old_locp;
12192 unsigned old_location_count;
12193
12194 old_location = bp_location;
12195 old_location_count = bp_location_count;
12196 bp_location = NULL;
12197 bp_location_count = 0;
12198 cleanups = make_cleanup (xfree, old_location);
12199
12200 ALL_BREAKPOINTS (b)
12201 for (loc = b->loc; loc; loc = loc->next)
12202 bp_location_count++;
12203
12204 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12205 locp = bp_location;
12206 ALL_BREAKPOINTS (b)
12207 for (loc = b->loc; loc; loc = loc->next)
12208 *locp++ = loc;
12209 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12210 bp_location_compare);
12211
12212 bp_location_target_extensions_update ();
12213
12214 /* Identify bp_location instances that are no longer present in the
12215 new list, and therefore should be freed. Note that it's not
12216 necessary that those locations should be removed from inferior --
12217 if there's another location at the same address (previously
12218 marked as duplicate), we don't need to remove/insert the
12219 location.
12220
12221 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12222 and former bp_location array state respectively. */
12223
12224 locp = bp_location;
12225 for (old_locp = old_location; old_locp < old_location + old_location_count;
12226 old_locp++)
12227 {
12228 struct bp_location *old_loc = *old_locp;
12229 struct bp_location **loc2p;
12230
12231 /* Tells if 'old_loc' is found among the new locations. If
12232 not, we have to free it. */
12233 int found_object = 0;
12234 /* Tells if the location should remain inserted in the target. */
12235 int keep_in_target = 0;
12236 int removed = 0;
12237
12238 /* Skip LOCP entries which will definitely never be needed.
12239 Stop either at or being the one matching OLD_LOC. */
12240 while (locp < bp_location + bp_location_count
12241 && (*locp)->address < old_loc->address)
12242 locp++;
12243
12244 for (loc2p = locp;
12245 (loc2p < bp_location + bp_location_count
12246 && (*loc2p)->address == old_loc->address);
12247 loc2p++)
12248 {
12249 /* Check if this is a new/duplicated location or a duplicated
12250 location that had its condition modified. If so, we want to send
12251 its condition to the target if evaluation of conditions is taking
12252 place there. */
12253 if ((*loc2p)->condition_changed == condition_modified
12254 && (last_addr != old_loc->address
12255 || last_pspace_num != old_loc->pspace->num))
12256 {
12257 force_breakpoint_reinsertion (*loc2p);
12258 last_pspace_num = old_loc->pspace->num;
12259 }
12260
12261 if (*loc2p == old_loc)
12262 found_object = 1;
12263 }
12264
12265 /* We have already handled this address, update it so that we don't
12266 have to go through updates again. */
12267 last_addr = old_loc->address;
12268
12269 /* Target-side condition evaluation: Handle deleted locations. */
12270 if (!found_object)
12271 force_breakpoint_reinsertion (old_loc);
12272
12273 /* If this location is no longer present, and inserted, look if
12274 there's maybe a new location at the same address. If so,
12275 mark that one inserted, and don't remove this one. This is
12276 needed so that we don't have a time window where a breakpoint
12277 at certain location is not inserted. */
12278
12279 if (old_loc->inserted)
12280 {
12281 /* If the location is inserted now, we might have to remove
12282 it. */
12283
12284 if (found_object && should_be_inserted (old_loc))
12285 {
12286 /* The location is still present in the location list,
12287 and still should be inserted. Don't do anything. */
12288 keep_in_target = 1;
12289 }
12290 else
12291 {
12292 /* This location still exists, but it won't be kept in the
12293 target since it may have been disabled. We proceed to
12294 remove its target-side condition. */
12295
12296 /* The location is either no longer present, or got
12297 disabled. See if there's another location at the
12298 same address, in which case we don't need to remove
12299 this one from the target. */
12300
12301 /* OLD_LOC comes from existing struct breakpoint. */
12302 if (breakpoint_address_is_meaningful (old_loc->owner))
12303 {
12304 for (loc2p = locp;
12305 (loc2p < bp_location + bp_location_count
12306 && (*loc2p)->address == old_loc->address);
12307 loc2p++)
12308 {
12309 struct bp_location *loc2 = *loc2p;
12310
12311 if (breakpoint_locations_match (loc2, old_loc))
12312 {
12313 /* Read watchpoint locations are switched to
12314 access watchpoints, if the former are not
12315 supported, but the latter are. */
12316 if (is_hardware_watchpoint (old_loc->owner))
12317 {
12318 gdb_assert (is_hardware_watchpoint (loc2->owner));
12319 loc2->watchpoint_type = old_loc->watchpoint_type;
12320 }
12321
12322 /* loc2 is a duplicated location. We need to check
12323 if it should be inserted in case it will be
12324 unduplicated. */
12325 if (loc2 != old_loc
12326 && unduplicated_should_be_inserted (loc2))
12327 {
12328 swap_insertion (old_loc, loc2);
12329 keep_in_target = 1;
12330 break;
12331 }
12332 }
12333 }
12334 }
12335 }
12336
12337 if (!keep_in_target)
12338 {
12339 if (remove_breakpoint (old_loc, mark_uninserted))
12340 {
12341 /* This is just about all we can do. We could keep
12342 this location on the global list, and try to
12343 remove it next time, but there's no particular
12344 reason why we will succeed next time.
12345
12346 Note that at this point, old_loc->owner is still
12347 valid, as delete_breakpoint frees the breakpoint
12348 only after calling us. */
12349 printf_filtered (_("warning: Error removing "
12350 "breakpoint %d\n"),
12351 old_loc->owner->number);
12352 }
12353 removed = 1;
12354 }
12355 }
12356
12357 if (!found_object)
12358 {
12359 if (removed && non_stop
12360 && breakpoint_address_is_meaningful (old_loc->owner)
12361 && !is_hardware_watchpoint (old_loc->owner))
12362 {
12363 /* This location was removed from the target. In
12364 non-stop mode, a race condition is possible where
12365 we've removed a breakpoint, but stop events for that
12366 breakpoint are already queued and will arrive later.
12367 We apply an heuristic to be able to distinguish such
12368 SIGTRAPs from other random SIGTRAPs: we keep this
12369 breakpoint location for a bit, and will retire it
12370 after we see some number of events. The theory here
12371 is that reporting of events should, "on the average",
12372 be fair, so after a while we'll see events from all
12373 threads that have anything of interest, and no longer
12374 need to keep this breakpoint location around. We
12375 don't hold locations forever so to reduce chances of
12376 mistaking a non-breakpoint SIGTRAP for a breakpoint
12377 SIGTRAP.
12378
12379 The heuristic failing can be disastrous on
12380 decr_pc_after_break targets.
12381
12382 On decr_pc_after_break targets, like e.g., x86-linux,
12383 if we fail to recognize a late breakpoint SIGTRAP,
12384 because events_till_retirement has reached 0 too
12385 soon, we'll fail to do the PC adjustment, and report
12386 a random SIGTRAP to the user. When the user resumes
12387 the inferior, it will most likely immediately crash
12388 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12389 corrupted, because of being resumed e.g., in the
12390 middle of a multi-byte instruction, or skipped a
12391 one-byte instruction. This was actually seen happen
12392 on native x86-linux, and should be less rare on
12393 targets that do not support new thread events, like
12394 remote, due to the heuristic depending on
12395 thread_count.
12396
12397 Mistaking a random SIGTRAP for a breakpoint trap
12398 causes similar symptoms (PC adjustment applied when
12399 it shouldn't), but then again, playing with SIGTRAPs
12400 behind the debugger's back is asking for trouble.
12401
12402 Since hardware watchpoint traps are always
12403 distinguishable from other traps, so we don't need to
12404 apply keep hardware watchpoint moribund locations
12405 around. We simply always ignore hardware watchpoint
12406 traps we can no longer explain. */
12407
12408 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12409 old_loc->owner = NULL;
12410
12411 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12412 }
12413 else
12414 {
12415 old_loc->owner = NULL;
12416 decref_bp_location (&old_loc);
12417 }
12418 }
12419 }
12420
12421 /* Rescan breakpoints at the same address and section, marking the
12422 first one as "first" and any others as "duplicates". This is so
12423 that the bpt instruction is only inserted once. If we have a
12424 permanent breakpoint at the same place as BPT, make that one the
12425 official one, and the rest as duplicates. Permanent breakpoints
12426 are sorted first for the same address.
12427
12428 Do the same for hardware watchpoints, but also considering the
12429 watchpoint's type (regular/access/read) and length. */
12430
12431 bp_loc_first = NULL;
12432 wp_loc_first = NULL;
12433 awp_loc_first = NULL;
12434 rwp_loc_first = NULL;
12435 ALL_BP_LOCATIONS (loc, locp)
12436 {
12437 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12438 non-NULL. */
12439 struct bp_location **loc_first_p;
12440 b = loc->owner;
12441
12442 if (!unduplicated_should_be_inserted (loc)
12443 || !breakpoint_address_is_meaningful (b)
12444 /* Don't detect duplicate for tracepoint locations because they are
12445 never duplicated. See the comments in field `duplicate' of
12446 `struct bp_location'. */
12447 || is_tracepoint (b))
12448 {
12449 /* Clear the condition modification flag. */
12450 loc->condition_changed = condition_unchanged;
12451 continue;
12452 }
12453
12454 /* Permanent breakpoint should always be inserted. */
12455 if (b->enable_state == bp_permanent && ! loc->inserted)
12456 internal_error (__FILE__, __LINE__,
12457 _("allegedly permanent breakpoint is not "
12458 "actually inserted"));
12459
12460 if (b->type == bp_hardware_watchpoint)
12461 loc_first_p = &wp_loc_first;
12462 else if (b->type == bp_read_watchpoint)
12463 loc_first_p = &rwp_loc_first;
12464 else if (b->type == bp_access_watchpoint)
12465 loc_first_p = &awp_loc_first;
12466 else
12467 loc_first_p = &bp_loc_first;
12468
12469 if (*loc_first_p == NULL
12470 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12471 || !breakpoint_locations_match (loc, *loc_first_p))
12472 {
12473 *loc_first_p = loc;
12474 loc->duplicate = 0;
12475
12476 if (is_breakpoint (loc->owner) && loc->condition_changed)
12477 {
12478 loc->needs_update = 1;
12479 /* Clear the condition modification flag. */
12480 loc->condition_changed = condition_unchanged;
12481 }
12482 continue;
12483 }
12484
12485
12486 /* This and the above ensure the invariant that the first location
12487 is not duplicated, and is the inserted one.
12488 All following are marked as duplicated, and are not inserted. */
12489 if (loc->inserted)
12490 swap_insertion (loc, *loc_first_p);
12491 loc->duplicate = 1;
12492
12493 /* Clear the condition modification flag. */
12494 loc->condition_changed = condition_unchanged;
12495
12496 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12497 && b->enable_state != bp_permanent)
12498 internal_error (__FILE__, __LINE__,
12499 _("another breakpoint was inserted on top of "
12500 "a permanent breakpoint"));
12501 }
12502
12503 if (breakpoints_always_inserted_mode ()
12504 && (have_live_inferiors ()
12505 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12506 {
12507 if (should_insert)
12508 insert_breakpoint_locations ();
12509 else
12510 {
12511 /* Though should_insert is false, we may need to update conditions
12512 on the target's side if it is evaluating such conditions. We
12513 only update conditions for locations that are marked
12514 "needs_update". */
12515 update_inserted_breakpoint_locations ();
12516 }
12517 }
12518
12519 if (should_insert)
12520 download_tracepoint_locations ();
12521
12522 do_cleanups (cleanups);
12523 }
12524
12525 void
12526 breakpoint_retire_moribund (void)
12527 {
12528 struct bp_location *loc;
12529 int ix;
12530
12531 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12532 if (--(loc->events_till_retirement) == 0)
12533 {
12534 decref_bp_location (&loc);
12535 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12536 --ix;
12537 }
12538 }
12539
12540 static void
12541 update_global_location_list_nothrow (int inserting)
12542 {
12543 volatile struct gdb_exception e;
12544
12545 TRY_CATCH (e, RETURN_MASK_ERROR)
12546 update_global_location_list (inserting);
12547 }
12548
12549 /* Clear BKP from a BPS. */
12550
12551 static void
12552 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12553 {
12554 bpstat bs;
12555
12556 for (bs = bps; bs; bs = bs->next)
12557 if (bs->breakpoint_at == bpt)
12558 {
12559 bs->breakpoint_at = NULL;
12560 bs->old_val = NULL;
12561 /* bs->commands will be freed later. */
12562 }
12563 }
12564
12565 /* Callback for iterate_over_threads. */
12566 static int
12567 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12568 {
12569 struct breakpoint *bpt = data;
12570
12571 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12572 return 0;
12573 }
12574
12575 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12576 callbacks. */
12577
12578 static void
12579 say_where (struct breakpoint *b)
12580 {
12581 struct value_print_options opts;
12582
12583 get_user_print_options (&opts);
12584
12585 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12586 single string. */
12587 if (b->loc == NULL)
12588 {
12589 printf_filtered (_(" (%s) pending."), b->addr_string);
12590 }
12591 else
12592 {
12593 if (opts.addressprint || b->loc->symtab == NULL)
12594 {
12595 printf_filtered (" at ");
12596 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12597 gdb_stdout);
12598 }
12599 if (b->loc->symtab != NULL)
12600 {
12601 /* If there is a single location, we can print the location
12602 more nicely. */
12603 if (b->loc->next == NULL)
12604 printf_filtered (": file %s, line %d.",
12605 symtab_to_filename_for_display (b->loc->symtab),
12606 b->loc->line_number);
12607 else
12608 /* This is not ideal, but each location may have a
12609 different file name, and this at least reflects the
12610 real situation somewhat. */
12611 printf_filtered (": %s.", b->addr_string);
12612 }
12613
12614 if (b->loc->next)
12615 {
12616 struct bp_location *loc = b->loc;
12617 int n = 0;
12618 for (; loc; loc = loc->next)
12619 ++n;
12620 printf_filtered (" (%d locations)", n);
12621 }
12622 }
12623 }
12624
12625 /* Default bp_location_ops methods. */
12626
12627 static void
12628 bp_location_dtor (struct bp_location *self)
12629 {
12630 xfree (self->cond);
12631 if (self->cond_bytecode)
12632 free_agent_expr (self->cond_bytecode);
12633 xfree (self->function_name);
12634 }
12635
12636 static const struct bp_location_ops bp_location_ops =
12637 {
12638 bp_location_dtor
12639 };
12640
12641 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12642 inherit from. */
12643
12644 static void
12645 base_breakpoint_dtor (struct breakpoint *self)
12646 {
12647 decref_counted_command_line (&self->commands);
12648 xfree (self->cond_string);
12649 xfree (self->extra_string);
12650 xfree (self->addr_string);
12651 xfree (self->filter);
12652 xfree (self->addr_string_range_end);
12653 }
12654
12655 static struct bp_location *
12656 base_breakpoint_allocate_location (struct breakpoint *self)
12657 {
12658 struct bp_location *loc;
12659
12660 loc = XNEW (struct bp_location);
12661 init_bp_location (loc, &bp_location_ops, self);
12662 return loc;
12663 }
12664
12665 static void
12666 base_breakpoint_re_set (struct breakpoint *b)
12667 {
12668 /* Nothing to re-set. */
12669 }
12670
12671 #define internal_error_pure_virtual_called() \
12672 gdb_assert_not_reached ("pure virtual function called")
12673
12674 static int
12675 base_breakpoint_insert_location (struct bp_location *bl)
12676 {
12677 internal_error_pure_virtual_called ();
12678 }
12679
12680 static int
12681 base_breakpoint_remove_location (struct bp_location *bl)
12682 {
12683 internal_error_pure_virtual_called ();
12684 }
12685
12686 static int
12687 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12688 struct address_space *aspace,
12689 CORE_ADDR bp_addr,
12690 const struct target_waitstatus *ws)
12691 {
12692 internal_error_pure_virtual_called ();
12693 }
12694
12695 static void
12696 base_breakpoint_check_status (bpstat bs)
12697 {
12698 /* Always stop. */
12699 }
12700
12701 /* A "works_in_software_mode" breakpoint_ops method that just internal
12702 errors. */
12703
12704 static int
12705 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12706 {
12707 internal_error_pure_virtual_called ();
12708 }
12709
12710 /* A "resources_needed" breakpoint_ops method that just internal
12711 errors. */
12712
12713 static int
12714 base_breakpoint_resources_needed (const struct bp_location *bl)
12715 {
12716 internal_error_pure_virtual_called ();
12717 }
12718
12719 static enum print_stop_action
12720 base_breakpoint_print_it (bpstat bs)
12721 {
12722 internal_error_pure_virtual_called ();
12723 }
12724
12725 static void
12726 base_breakpoint_print_one_detail (const struct breakpoint *self,
12727 struct ui_out *uiout)
12728 {
12729 /* nothing */
12730 }
12731
12732 static void
12733 base_breakpoint_print_mention (struct breakpoint *b)
12734 {
12735 internal_error_pure_virtual_called ();
12736 }
12737
12738 static void
12739 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12740 {
12741 internal_error_pure_virtual_called ();
12742 }
12743
12744 static void
12745 base_breakpoint_create_sals_from_address (char **arg,
12746 struct linespec_result *canonical,
12747 enum bptype type_wanted,
12748 char *addr_start,
12749 char **copy_arg)
12750 {
12751 internal_error_pure_virtual_called ();
12752 }
12753
12754 static void
12755 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12756 struct linespec_result *c,
12757 char *cond_string,
12758 char *extra_string,
12759 enum bptype type_wanted,
12760 enum bpdisp disposition,
12761 int thread,
12762 int task, int ignore_count,
12763 const struct breakpoint_ops *o,
12764 int from_tty, int enabled,
12765 int internal, unsigned flags)
12766 {
12767 internal_error_pure_virtual_called ();
12768 }
12769
12770 static void
12771 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12772 struct symtabs_and_lines *sals)
12773 {
12774 internal_error_pure_virtual_called ();
12775 }
12776
12777 /* The default 'explains_signal' method. */
12778
12779 static enum bpstat_signal_value
12780 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12781 {
12782 return BPSTAT_SIGNAL_HIDE;
12783 }
12784
12785 /* The default "after_condition_true" method. */
12786
12787 static void
12788 base_breakpoint_after_condition_true (struct bpstats *bs)
12789 {
12790 /* Nothing to do. */
12791 }
12792
12793 struct breakpoint_ops base_breakpoint_ops =
12794 {
12795 base_breakpoint_dtor,
12796 base_breakpoint_allocate_location,
12797 base_breakpoint_re_set,
12798 base_breakpoint_insert_location,
12799 base_breakpoint_remove_location,
12800 base_breakpoint_breakpoint_hit,
12801 base_breakpoint_check_status,
12802 base_breakpoint_resources_needed,
12803 base_breakpoint_works_in_software_mode,
12804 base_breakpoint_print_it,
12805 NULL,
12806 base_breakpoint_print_one_detail,
12807 base_breakpoint_print_mention,
12808 base_breakpoint_print_recreate,
12809 base_breakpoint_create_sals_from_address,
12810 base_breakpoint_create_breakpoints_sal,
12811 base_breakpoint_decode_linespec,
12812 base_breakpoint_explains_signal,
12813 base_breakpoint_after_condition_true,
12814 };
12815
12816 /* Default breakpoint_ops methods. */
12817
12818 static void
12819 bkpt_re_set (struct breakpoint *b)
12820 {
12821 /* FIXME: is this still reachable? */
12822 if (b->addr_string == NULL)
12823 {
12824 /* Anything without a string can't be re-set. */
12825 delete_breakpoint (b);
12826 return;
12827 }
12828
12829 breakpoint_re_set_default (b);
12830 }
12831
12832 static int
12833 bkpt_insert_location (struct bp_location *bl)
12834 {
12835 if (bl->loc_type == bp_loc_hardware_breakpoint)
12836 return target_insert_hw_breakpoint (bl->gdbarch,
12837 &bl->target_info);
12838 else
12839 return target_insert_breakpoint (bl->gdbarch,
12840 &bl->target_info);
12841 }
12842
12843 static int
12844 bkpt_remove_location (struct bp_location *bl)
12845 {
12846 if (bl->loc_type == bp_loc_hardware_breakpoint)
12847 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12848 else
12849 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12850 }
12851
12852 static int
12853 bkpt_breakpoint_hit (const struct bp_location *bl,
12854 struct address_space *aspace, CORE_ADDR bp_addr,
12855 const struct target_waitstatus *ws)
12856 {
12857 if (ws->kind != TARGET_WAITKIND_STOPPED
12858 || ws->value.sig != GDB_SIGNAL_TRAP)
12859 return 0;
12860
12861 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12862 aspace, bp_addr))
12863 return 0;
12864
12865 if (overlay_debugging /* unmapped overlay section */
12866 && section_is_overlay (bl->section)
12867 && !section_is_mapped (bl->section))
12868 return 0;
12869
12870 return 1;
12871 }
12872
12873 static int
12874 bkpt_resources_needed (const struct bp_location *bl)
12875 {
12876 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12877
12878 return 1;
12879 }
12880
12881 static enum print_stop_action
12882 bkpt_print_it (bpstat bs)
12883 {
12884 struct breakpoint *b;
12885 const struct bp_location *bl;
12886 int bp_temp;
12887 struct ui_out *uiout = current_uiout;
12888
12889 gdb_assert (bs->bp_location_at != NULL);
12890
12891 bl = bs->bp_location_at;
12892 b = bs->breakpoint_at;
12893
12894 bp_temp = b->disposition == disp_del;
12895 if (bl->address != bl->requested_address)
12896 breakpoint_adjustment_warning (bl->requested_address,
12897 bl->address,
12898 b->number, 1);
12899 annotate_breakpoint (b->number);
12900 if (bp_temp)
12901 ui_out_text (uiout, "\nTemporary breakpoint ");
12902 else
12903 ui_out_text (uiout, "\nBreakpoint ");
12904 if (ui_out_is_mi_like_p (uiout))
12905 {
12906 ui_out_field_string (uiout, "reason",
12907 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12908 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12909 }
12910 ui_out_field_int (uiout, "bkptno", b->number);
12911 ui_out_text (uiout, ", ");
12912
12913 return PRINT_SRC_AND_LOC;
12914 }
12915
12916 static void
12917 bkpt_print_mention (struct breakpoint *b)
12918 {
12919 if (ui_out_is_mi_like_p (current_uiout))
12920 return;
12921
12922 switch (b->type)
12923 {
12924 case bp_breakpoint:
12925 case bp_gnu_ifunc_resolver:
12926 if (b->disposition == disp_del)
12927 printf_filtered (_("Temporary breakpoint"));
12928 else
12929 printf_filtered (_("Breakpoint"));
12930 printf_filtered (_(" %d"), b->number);
12931 if (b->type == bp_gnu_ifunc_resolver)
12932 printf_filtered (_(" at gnu-indirect-function resolver"));
12933 break;
12934 case bp_hardware_breakpoint:
12935 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12936 break;
12937 case bp_dprintf:
12938 printf_filtered (_("Dprintf %d"), b->number);
12939 break;
12940 }
12941
12942 say_where (b);
12943 }
12944
12945 static void
12946 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12947 {
12948 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12949 fprintf_unfiltered (fp, "tbreak");
12950 else if (tp->type == bp_breakpoint)
12951 fprintf_unfiltered (fp, "break");
12952 else if (tp->type == bp_hardware_breakpoint
12953 && tp->disposition == disp_del)
12954 fprintf_unfiltered (fp, "thbreak");
12955 else if (tp->type == bp_hardware_breakpoint)
12956 fprintf_unfiltered (fp, "hbreak");
12957 else
12958 internal_error (__FILE__, __LINE__,
12959 _("unhandled breakpoint type %d"), (int) tp->type);
12960
12961 fprintf_unfiltered (fp, " %s", tp->addr_string);
12962 print_recreate_thread (tp, fp);
12963 }
12964
12965 static void
12966 bkpt_create_sals_from_address (char **arg,
12967 struct linespec_result *canonical,
12968 enum bptype type_wanted,
12969 char *addr_start, char **copy_arg)
12970 {
12971 create_sals_from_address_default (arg, canonical, type_wanted,
12972 addr_start, copy_arg);
12973 }
12974
12975 static void
12976 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12977 struct linespec_result *canonical,
12978 char *cond_string,
12979 char *extra_string,
12980 enum bptype type_wanted,
12981 enum bpdisp disposition,
12982 int thread,
12983 int task, int ignore_count,
12984 const struct breakpoint_ops *ops,
12985 int from_tty, int enabled,
12986 int internal, unsigned flags)
12987 {
12988 create_breakpoints_sal_default (gdbarch, canonical,
12989 cond_string, extra_string,
12990 type_wanted,
12991 disposition, thread, task,
12992 ignore_count, ops, from_tty,
12993 enabled, internal, flags);
12994 }
12995
12996 static void
12997 bkpt_decode_linespec (struct breakpoint *b, char **s,
12998 struct symtabs_and_lines *sals)
12999 {
13000 decode_linespec_default (b, s, sals);
13001 }
13002
13003 /* Virtual table for internal breakpoints. */
13004
13005 static void
13006 internal_bkpt_re_set (struct breakpoint *b)
13007 {
13008 switch (b->type)
13009 {
13010 /* Delete overlay event and longjmp master breakpoints; they
13011 will be reset later by breakpoint_re_set. */
13012 case bp_overlay_event:
13013 case bp_longjmp_master:
13014 case bp_std_terminate_master:
13015 case bp_exception_master:
13016 delete_breakpoint (b);
13017 break;
13018
13019 /* This breakpoint is special, it's set up when the inferior
13020 starts and we really don't want to touch it. */
13021 case bp_shlib_event:
13022
13023 /* Like bp_shlib_event, this breakpoint type is special. Once
13024 it is set up, we do not want to touch it. */
13025 case bp_thread_event:
13026 break;
13027 }
13028 }
13029
13030 static void
13031 internal_bkpt_check_status (bpstat bs)
13032 {
13033 if (bs->breakpoint_at->type == bp_shlib_event)
13034 {
13035 /* If requested, stop when the dynamic linker notifies GDB of
13036 events. This allows the user to get control and place
13037 breakpoints in initializer routines for dynamically loaded
13038 objects (among other things). */
13039 bs->stop = stop_on_solib_events;
13040 bs->print = stop_on_solib_events;
13041 }
13042 else
13043 bs->stop = 0;
13044 }
13045
13046 static enum print_stop_action
13047 internal_bkpt_print_it (bpstat bs)
13048 {
13049 struct breakpoint *b;
13050
13051 b = bs->breakpoint_at;
13052
13053 switch (b->type)
13054 {
13055 case bp_shlib_event:
13056 /* Did we stop because the user set the stop_on_solib_events
13057 variable? (If so, we report this as a generic, "Stopped due
13058 to shlib event" message.) */
13059 print_solib_event (0);
13060 break;
13061
13062 case bp_thread_event:
13063 /* Not sure how we will get here.
13064 GDB should not stop for these breakpoints. */
13065 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13066 break;
13067
13068 case bp_overlay_event:
13069 /* By analogy with the thread event, GDB should not stop for these. */
13070 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13071 break;
13072
13073 case bp_longjmp_master:
13074 /* These should never be enabled. */
13075 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13076 break;
13077
13078 case bp_std_terminate_master:
13079 /* These should never be enabled. */
13080 printf_filtered (_("std::terminate Master Breakpoint: "
13081 "gdb should not stop!\n"));
13082 break;
13083
13084 case bp_exception_master:
13085 /* These should never be enabled. */
13086 printf_filtered (_("Exception Master Breakpoint: "
13087 "gdb should not stop!\n"));
13088 break;
13089 }
13090
13091 return PRINT_NOTHING;
13092 }
13093
13094 static void
13095 internal_bkpt_print_mention (struct breakpoint *b)
13096 {
13097 /* Nothing to mention. These breakpoints are internal. */
13098 }
13099
13100 /* Virtual table for momentary breakpoints */
13101
13102 static void
13103 momentary_bkpt_re_set (struct breakpoint *b)
13104 {
13105 /* Keep temporary breakpoints, which can be encountered when we step
13106 over a dlopen call and solib_add is resetting the breakpoints.
13107 Otherwise these should have been blown away via the cleanup chain
13108 or by breakpoint_init_inferior when we rerun the executable. */
13109 }
13110
13111 static void
13112 momentary_bkpt_check_status (bpstat bs)
13113 {
13114 /* Nothing. The point of these breakpoints is causing a stop. */
13115 }
13116
13117 static enum print_stop_action
13118 momentary_bkpt_print_it (bpstat bs)
13119 {
13120 struct ui_out *uiout = current_uiout;
13121
13122 if (ui_out_is_mi_like_p (uiout))
13123 {
13124 struct breakpoint *b = bs->breakpoint_at;
13125
13126 switch (b->type)
13127 {
13128 case bp_finish:
13129 ui_out_field_string
13130 (uiout, "reason",
13131 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13132 break;
13133
13134 case bp_until:
13135 ui_out_field_string
13136 (uiout, "reason",
13137 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13138 break;
13139 }
13140 }
13141
13142 return PRINT_UNKNOWN;
13143 }
13144
13145 static void
13146 momentary_bkpt_print_mention (struct breakpoint *b)
13147 {
13148 /* Nothing to mention. These breakpoints are internal. */
13149 }
13150
13151 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13152
13153 It gets cleared already on the removal of the first one of such placed
13154 breakpoints. This is OK as they get all removed altogether. */
13155
13156 static void
13157 longjmp_bkpt_dtor (struct breakpoint *self)
13158 {
13159 struct thread_info *tp = find_thread_id (self->thread);
13160
13161 if (tp)
13162 tp->initiating_frame = null_frame_id;
13163
13164 momentary_breakpoint_ops.dtor (self);
13165 }
13166
13167 /* Specific methods for probe breakpoints. */
13168
13169 static int
13170 bkpt_probe_insert_location (struct bp_location *bl)
13171 {
13172 int v = bkpt_insert_location (bl);
13173
13174 if (v == 0)
13175 {
13176 /* The insertion was successful, now let's set the probe's semaphore
13177 if needed. */
13178 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13179 }
13180
13181 return v;
13182 }
13183
13184 static int
13185 bkpt_probe_remove_location (struct bp_location *bl)
13186 {
13187 /* Let's clear the semaphore before removing the location. */
13188 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13189
13190 return bkpt_remove_location (bl);
13191 }
13192
13193 static void
13194 bkpt_probe_create_sals_from_address (char **arg,
13195 struct linespec_result *canonical,
13196 enum bptype type_wanted,
13197 char *addr_start, char **copy_arg)
13198 {
13199 struct linespec_sals lsal;
13200
13201 lsal.sals = parse_probes (arg, canonical);
13202
13203 *copy_arg = xstrdup (canonical->addr_string);
13204 lsal.canonical = xstrdup (*copy_arg);
13205
13206 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13207 }
13208
13209 static void
13210 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13211 struct symtabs_and_lines *sals)
13212 {
13213 *sals = parse_probes (s, NULL);
13214 if (!sals->sals)
13215 error (_("probe not found"));
13216 }
13217
13218 /* The breakpoint_ops structure to be used in tracepoints. */
13219
13220 static void
13221 tracepoint_re_set (struct breakpoint *b)
13222 {
13223 breakpoint_re_set_default (b);
13224 }
13225
13226 static int
13227 tracepoint_breakpoint_hit (const struct bp_location *bl,
13228 struct address_space *aspace, CORE_ADDR bp_addr,
13229 const struct target_waitstatus *ws)
13230 {
13231 /* By definition, the inferior does not report stops at
13232 tracepoints. */
13233 return 0;
13234 }
13235
13236 static void
13237 tracepoint_print_one_detail (const struct breakpoint *self,
13238 struct ui_out *uiout)
13239 {
13240 struct tracepoint *tp = (struct tracepoint *) self;
13241 if (tp->static_trace_marker_id)
13242 {
13243 gdb_assert (self->type == bp_static_tracepoint);
13244
13245 ui_out_text (uiout, "\tmarker id is ");
13246 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13247 tp->static_trace_marker_id);
13248 ui_out_text (uiout, "\n");
13249 }
13250 }
13251
13252 static void
13253 tracepoint_print_mention (struct breakpoint *b)
13254 {
13255 if (ui_out_is_mi_like_p (current_uiout))
13256 return;
13257
13258 switch (b->type)
13259 {
13260 case bp_tracepoint:
13261 printf_filtered (_("Tracepoint"));
13262 printf_filtered (_(" %d"), b->number);
13263 break;
13264 case bp_fast_tracepoint:
13265 printf_filtered (_("Fast tracepoint"));
13266 printf_filtered (_(" %d"), b->number);
13267 break;
13268 case bp_static_tracepoint:
13269 printf_filtered (_("Static tracepoint"));
13270 printf_filtered (_(" %d"), b->number);
13271 break;
13272 default:
13273 internal_error (__FILE__, __LINE__,
13274 _("unhandled tracepoint type %d"), (int) b->type);
13275 }
13276
13277 say_where (b);
13278 }
13279
13280 static void
13281 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13282 {
13283 struct tracepoint *tp = (struct tracepoint *) self;
13284
13285 if (self->type == bp_fast_tracepoint)
13286 fprintf_unfiltered (fp, "ftrace");
13287 if (self->type == bp_static_tracepoint)
13288 fprintf_unfiltered (fp, "strace");
13289 else if (self->type == bp_tracepoint)
13290 fprintf_unfiltered (fp, "trace");
13291 else
13292 internal_error (__FILE__, __LINE__,
13293 _("unhandled tracepoint type %d"), (int) self->type);
13294
13295 fprintf_unfiltered (fp, " %s", self->addr_string);
13296 print_recreate_thread (self, fp);
13297
13298 if (tp->pass_count)
13299 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13300 }
13301
13302 static void
13303 tracepoint_create_sals_from_address (char **arg,
13304 struct linespec_result *canonical,
13305 enum bptype type_wanted,
13306 char *addr_start, char **copy_arg)
13307 {
13308 create_sals_from_address_default (arg, canonical, type_wanted,
13309 addr_start, copy_arg);
13310 }
13311
13312 static void
13313 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13314 struct linespec_result *canonical,
13315 char *cond_string,
13316 char *extra_string,
13317 enum bptype type_wanted,
13318 enum bpdisp disposition,
13319 int thread,
13320 int task, int ignore_count,
13321 const struct breakpoint_ops *ops,
13322 int from_tty, int enabled,
13323 int internal, unsigned flags)
13324 {
13325 create_breakpoints_sal_default (gdbarch, canonical,
13326 cond_string, extra_string,
13327 type_wanted,
13328 disposition, thread, task,
13329 ignore_count, ops, from_tty,
13330 enabled, internal, flags);
13331 }
13332
13333 static void
13334 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13335 struct symtabs_and_lines *sals)
13336 {
13337 decode_linespec_default (b, s, sals);
13338 }
13339
13340 struct breakpoint_ops tracepoint_breakpoint_ops;
13341
13342 /* The breakpoint_ops structure to be use on tracepoints placed in a
13343 static probe. */
13344
13345 static void
13346 tracepoint_probe_create_sals_from_address (char **arg,
13347 struct linespec_result *canonical,
13348 enum bptype type_wanted,
13349 char *addr_start, char **copy_arg)
13350 {
13351 /* We use the same method for breakpoint on probes. */
13352 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13353 addr_start, copy_arg);
13354 }
13355
13356 static void
13357 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13358 struct symtabs_and_lines *sals)
13359 {
13360 /* We use the same method for breakpoint on probes. */
13361 bkpt_probe_decode_linespec (b, s, sals);
13362 }
13363
13364 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13365
13366 /* Dprintf breakpoint_ops methods. */
13367
13368 static void
13369 dprintf_re_set (struct breakpoint *b)
13370 {
13371 breakpoint_re_set_default (b);
13372
13373 /* This breakpoint could have been pending, and be resolved now, and
13374 if so, we should now have the extra string. If we don't, the
13375 dprintf was malformed when created, but we couldn't tell because
13376 we can't extract the extra string until the location is
13377 resolved. */
13378 if (b->loc != NULL && b->extra_string == NULL)
13379 error (_("Format string required"));
13380
13381 /* 1 - connect to target 1, that can run breakpoint commands.
13382 2 - create a dprintf, which resolves fine.
13383 3 - disconnect from target 1
13384 4 - connect to target 2, that can NOT run breakpoint commands.
13385
13386 After steps #3/#4, you'll want the dprintf command list to
13387 be updated, because target 1 and 2 may well return different
13388 answers for target_can_run_breakpoint_commands().
13389 Given absence of finer grained resetting, we get to do
13390 it all the time. */
13391 if (b->extra_string != NULL)
13392 update_dprintf_command_list (b);
13393 }
13394
13395 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13396
13397 static void
13398 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13399 {
13400 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13401 tp->extra_string);
13402 print_recreate_thread (tp, fp);
13403 }
13404
13405 /* Implement the "after_condition_true" breakpoint_ops method for
13406 dprintf.
13407
13408 dprintf's are implemented with regular commands in their command
13409 list, but we run the commands here instead of before presenting the
13410 stop to the user, as dprintf's don't actually cause a stop. This
13411 also makes it so that the commands of multiple dprintfs at the same
13412 address are all handled. */
13413
13414 static void
13415 dprintf_after_condition_true (struct bpstats *bs)
13416 {
13417 struct cleanup *old_chain;
13418 struct bpstats tmp_bs = { NULL };
13419 struct bpstats *tmp_bs_p = &tmp_bs;
13420
13421 /* dprintf's never cause a stop. This wasn't set in the
13422 check_status hook instead because that would make the dprintf's
13423 condition not be evaluated. */
13424 bs->stop = 0;
13425
13426 /* Run the command list here. Take ownership of it instead of
13427 copying. We never want these commands to run later in
13428 bpstat_do_actions, if a breakpoint that causes a stop happens to
13429 be set at same address as this dprintf, or even if running the
13430 commands here throws. */
13431 tmp_bs.commands = bs->commands;
13432 bs->commands = NULL;
13433 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13434
13435 bpstat_do_actions_1 (&tmp_bs_p);
13436
13437 /* 'tmp_bs.commands' will usually be NULL by now, but
13438 bpstat_do_actions_1 may return early without processing the whole
13439 list. */
13440 do_cleanups (old_chain);
13441 }
13442
13443 /* The breakpoint_ops structure to be used on static tracepoints with
13444 markers (`-m'). */
13445
13446 static void
13447 strace_marker_create_sals_from_address (char **arg,
13448 struct linespec_result *canonical,
13449 enum bptype type_wanted,
13450 char *addr_start, char **copy_arg)
13451 {
13452 struct linespec_sals lsal;
13453
13454 lsal.sals = decode_static_tracepoint_spec (arg);
13455
13456 *copy_arg = savestring (addr_start, *arg - addr_start);
13457
13458 canonical->addr_string = xstrdup (*copy_arg);
13459 lsal.canonical = xstrdup (*copy_arg);
13460 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13461 }
13462
13463 static void
13464 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13465 struct linespec_result *canonical,
13466 char *cond_string,
13467 char *extra_string,
13468 enum bptype type_wanted,
13469 enum bpdisp disposition,
13470 int thread,
13471 int task, int ignore_count,
13472 const struct breakpoint_ops *ops,
13473 int from_tty, int enabled,
13474 int internal, unsigned flags)
13475 {
13476 int i;
13477 struct linespec_sals *lsal = VEC_index (linespec_sals,
13478 canonical->sals, 0);
13479
13480 /* If the user is creating a static tracepoint by marker id
13481 (strace -m MARKER_ID), then store the sals index, so that
13482 breakpoint_re_set can try to match up which of the newly
13483 found markers corresponds to this one, and, don't try to
13484 expand multiple locations for each sal, given than SALS
13485 already should contain all sals for MARKER_ID. */
13486
13487 for (i = 0; i < lsal->sals.nelts; ++i)
13488 {
13489 struct symtabs_and_lines expanded;
13490 struct tracepoint *tp;
13491 struct cleanup *old_chain;
13492 char *addr_string;
13493
13494 expanded.nelts = 1;
13495 expanded.sals = &lsal->sals.sals[i];
13496
13497 addr_string = xstrdup (canonical->addr_string);
13498 old_chain = make_cleanup (xfree, addr_string);
13499
13500 tp = XCNEW (struct tracepoint);
13501 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13502 addr_string, NULL,
13503 cond_string, extra_string,
13504 type_wanted, disposition,
13505 thread, task, ignore_count, ops,
13506 from_tty, enabled, internal, flags,
13507 canonical->special_display);
13508 /* Given that its possible to have multiple markers with
13509 the same string id, if the user is creating a static
13510 tracepoint by marker id ("strace -m MARKER_ID"), then
13511 store the sals index, so that breakpoint_re_set can
13512 try to match up which of the newly found markers
13513 corresponds to this one */
13514 tp->static_trace_marker_id_idx = i;
13515
13516 install_breakpoint (internal, &tp->base, 0);
13517
13518 discard_cleanups (old_chain);
13519 }
13520 }
13521
13522 static void
13523 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13524 struct symtabs_and_lines *sals)
13525 {
13526 struct tracepoint *tp = (struct tracepoint *) b;
13527
13528 *sals = decode_static_tracepoint_spec (s);
13529 if (sals->nelts > tp->static_trace_marker_id_idx)
13530 {
13531 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13532 sals->nelts = 1;
13533 }
13534 else
13535 error (_("marker %s not found"), tp->static_trace_marker_id);
13536 }
13537
13538 static struct breakpoint_ops strace_marker_breakpoint_ops;
13539
13540 static int
13541 strace_marker_p (struct breakpoint *b)
13542 {
13543 return b->ops == &strace_marker_breakpoint_ops;
13544 }
13545
13546 /* Delete a breakpoint and clean up all traces of it in the data
13547 structures. */
13548
13549 void
13550 delete_breakpoint (struct breakpoint *bpt)
13551 {
13552 struct breakpoint *b;
13553
13554 gdb_assert (bpt != NULL);
13555
13556 /* Has this bp already been deleted? This can happen because
13557 multiple lists can hold pointers to bp's. bpstat lists are
13558 especial culprits.
13559
13560 One example of this happening is a watchpoint's scope bp. When
13561 the scope bp triggers, we notice that the watchpoint is out of
13562 scope, and delete it. We also delete its scope bp. But the
13563 scope bp is marked "auto-deleting", and is already on a bpstat.
13564 That bpstat is then checked for auto-deleting bp's, which are
13565 deleted.
13566
13567 A real solution to this problem might involve reference counts in
13568 bp's, and/or giving them pointers back to their referencing
13569 bpstat's, and teaching delete_breakpoint to only free a bp's
13570 storage when no more references were extent. A cheaper bandaid
13571 was chosen. */
13572 if (bpt->type == bp_none)
13573 return;
13574
13575 /* At least avoid this stale reference until the reference counting
13576 of breakpoints gets resolved. */
13577 if (bpt->related_breakpoint != bpt)
13578 {
13579 struct breakpoint *related;
13580 struct watchpoint *w;
13581
13582 if (bpt->type == bp_watchpoint_scope)
13583 w = (struct watchpoint *) bpt->related_breakpoint;
13584 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13585 w = (struct watchpoint *) bpt;
13586 else
13587 w = NULL;
13588 if (w != NULL)
13589 watchpoint_del_at_next_stop (w);
13590
13591 /* Unlink bpt from the bpt->related_breakpoint ring. */
13592 for (related = bpt; related->related_breakpoint != bpt;
13593 related = related->related_breakpoint);
13594 related->related_breakpoint = bpt->related_breakpoint;
13595 bpt->related_breakpoint = bpt;
13596 }
13597
13598 /* watch_command_1 creates a watchpoint but only sets its number if
13599 update_watchpoint succeeds in creating its bp_locations. If there's
13600 a problem in that process, we'll be asked to delete the half-created
13601 watchpoint. In that case, don't announce the deletion. */
13602 if (bpt->number)
13603 observer_notify_breakpoint_deleted (bpt);
13604
13605 if (breakpoint_chain == bpt)
13606 breakpoint_chain = bpt->next;
13607
13608 ALL_BREAKPOINTS (b)
13609 if (b->next == bpt)
13610 {
13611 b->next = bpt->next;
13612 break;
13613 }
13614
13615 /* Be sure no bpstat's are pointing at the breakpoint after it's
13616 been freed. */
13617 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13618 in all threads for now. Note that we cannot just remove bpstats
13619 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13620 commands are associated with the bpstat; if we remove it here,
13621 then the later call to bpstat_do_actions (&stop_bpstat); in
13622 event-top.c won't do anything, and temporary breakpoints with
13623 commands won't work. */
13624
13625 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13626
13627 /* Now that breakpoint is removed from breakpoint list, update the
13628 global location list. This will remove locations that used to
13629 belong to this breakpoint. Do this before freeing the breakpoint
13630 itself, since remove_breakpoint looks at location's owner. It
13631 might be better design to have location completely
13632 self-contained, but it's not the case now. */
13633 update_global_location_list (0);
13634
13635 bpt->ops->dtor (bpt);
13636 /* On the chance that someone will soon try again to delete this
13637 same bp, we mark it as deleted before freeing its storage. */
13638 bpt->type = bp_none;
13639 xfree (bpt);
13640 }
13641
13642 static void
13643 do_delete_breakpoint_cleanup (void *b)
13644 {
13645 delete_breakpoint (b);
13646 }
13647
13648 struct cleanup *
13649 make_cleanup_delete_breakpoint (struct breakpoint *b)
13650 {
13651 return make_cleanup (do_delete_breakpoint_cleanup, b);
13652 }
13653
13654 /* Iterator function to call a user-provided callback function once
13655 for each of B and its related breakpoints. */
13656
13657 static void
13658 iterate_over_related_breakpoints (struct breakpoint *b,
13659 void (*function) (struct breakpoint *,
13660 void *),
13661 void *data)
13662 {
13663 struct breakpoint *related;
13664
13665 related = b;
13666 do
13667 {
13668 struct breakpoint *next;
13669
13670 /* FUNCTION may delete RELATED. */
13671 next = related->related_breakpoint;
13672
13673 if (next == related)
13674 {
13675 /* RELATED is the last ring entry. */
13676 function (related, data);
13677
13678 /* FUNCTION may have deleted it, so we'd never reach back to
13679 B. There's nothing left to do anyway, so just break
13680 out. */
13681 break;
13682 }
13683 else
13684 function (related, data);
13685
13686 related = next;
13687 }
13688 while (related != b);
13689 }
13690
13691 static void
13692 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13693 {
13694 delete_breakpoint (b);
13695 }
13696
13697 /* A callback for map_breakpoint_numbers that calls
13698 delete_breakpoint. */
13699
13700 static void
13701 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13702 {
13703 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13704 }
13705
13706 void
13707 delete_command (char *arg, int from_tty)
13708 {
13709 struct breakpoint *b, *b_tmp;
13710
13711 dont_repeat ();
13712
13713 if (arg == 0)
13714 {
13715 int breaks_to_delete = 0;
13716
13717 /* Delete all breakpoints if no argument. Do not delete
13718 internal breakpoints, these have to be deleted with an
13719 explicit breakpoint number argument. */
13720 ALL_BREAKPOINTS (b)
13721 if (user_breakpoint_p (b))
13722 {
13723 breaks_to_delete = 1;
13724 break;
13725 }
13726
13727 /* Ask user only if there are some breakpoints to delete. */
13728 if (!from_tty
13729 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13730 {
13731 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13732 if (user_breakpoint_p (b))
13733 delete_breakpoint (b);
13734 }
13735 }
13736 else
13737 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13738 }
13739
13740 static int
13741 all_locations_are_pending (struct bp_location *loc)
13742 {
13743 for (; loc; loc = loc->next)
13744 if (!loc->shlib_disabled
13745 && !loc->pspace->executing_startup)
13746 return 0;
13747 return 1;
13748 }
13749
13750 /* Subroutine of update_breakpoint_locations to simplify it.
13751 Return non-zero if multiple fns in list LOC have the same name.
13752 Null names are ignored. */
13753
13754 static int
13755 ambiguous_names_p (struct bp_location *loc)
13756 {
13757 struct bp_location *l;
13758 htab_t htab = htab_create_alloc (13, htab_hash_string,
13759 (int (*) (const void *,
13760 const void *)) streq,
13761 NULL, xcalloc, xfree);
13762
13763 for (l = loc; l != NULL; l = l->next)
13764 {
13765 const char **slot;
13766 const char *name = l->function_name;
13767
13768 /* Allow for some names to be NULL, ignore them. */
13769 if (name == NULL)
13770 continue;
13771
13772 slot = (const char **) htab_find_slot (htab, (const void *) name,
13773 INSERT);
13774 /* NOTE: We can assume slot != NULL here because xcalloc never
13775 returns NULL. */
13776 if (*slot != NULL)
13777 {
13778 htab_delete (htab);
13779 return 1;
13780 }
13781 *slot = name;
13782 }
13783
13784 htab_delete (htab);
13785 return 0;
13786 }
13787
13788 /* When symbols change, it probably means the sources changed as well,
13789 and it might mean the static tracepoint markers are no longer at
13790 the same address or line numbers they used to be at last we
13791 checked. Losing your static tracepoints whenever you rebuild is
13792 undesirable. This function tries to resync/rematch gdb static
13793 tracepoints with the markers on the target, for static tracepoints
13794 that have not been set by marker id. Static tracepoint that have
13795 been set by marker id are reset by marker id in breakpoint_re_set.
13796 The heuristic is:
13797
13798 1) For a tracepoint set at a specific address, look for a marker at
13799 the old PC. If one is found there, assume to be the same marker.
13800 If the name / string id of the marker found is different from the
13801 previous known name, assume that means the user renamed the marker
13802 in the sources, and output a warning.
13803
13804 2) For a tracepoint set at a given line number, look for a marker
13805 at the new address of the old line number. If one is found there,
13806 assume to be the same marker. If the name / string id of the
13807 marker found is different from the previous known name, assume that
13808 means the user renamed the marker in the sources, and output a
13809 warning.
13810
13811 3) If a marker is no longer found at the same address or line, it
13812 may mean the marker no longer exists. But it may also just mean
13813 the code changed a bit. Maybe the user added a few lines of code
13814 that made the marker move up or down (in line number terms). Ask
13815 the target for info about the marker with the string id as we knew
13816 it. If found, update line number and address in the matching
13817 static tracepoint. This will get confused if there's more than one
13818 marker with the same ID (possible in UST, although unadvised
13819 precisely because it confuses tools). */
13820
13821 static struct symtab_and_line
13822 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13823 {
13824 struct tracepoint *tp = (struct tracepoint *) b;
13825 struct static_tracepoint_marker marker;
13826 CORE_ADDR pc;
13827
13828 pc = sal.pc;
13829 if (sal.line)
13830 find_line_pc (sal.symtab, sal.line, &pc);
13831
13832 if (target_static_tracepoint_marker_at (pc, &marker))
13833 {
13834 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13835 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13836 b->number,
13837 tp->static_trace_marker_id, marker.str_id);
13838
13839 xfree (tp->static_trace_marker_id);
13840 tp->static_trace_marker_id = xstrdup (marker.str_id);
13841 release_static_tracepoint_marker (&marker);
13842
13843 return sal;
13844 }
13845
13846 /* Old marker wasn't found on target at lineno. Try looking it up
13847 by string ID. */
13848 if (!sal.explicit_pc
13849 && sal.line != 0
13850 && sal.symtab != NULL
13851 && tp->static_trace_marker_id != NULL)
13852 {
13853 VEC(static_tracepoint_marker_p) *markers;
13854
13855 markers
13856 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13857
13858 if (!VEC_empty(static_tracepoint_marker_p, markers))
13859 {
13860 struct symtab_and_line sal2;
13861 struct symbol *sym;
13862 struct static_tracepoint_marker *tpmarker;
13863 struct ui_out *uiout = current_uiout;
13864
13865 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13866
13867 xfree (tp->static_trace_marker_id);
13868 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13869
13870 warning (_("marker for static tracepoint %d (%s) not "
13871 "found at previous line number"),
13872 b->number, tp->static_trace_marker_id);
13873
13874 init_sal (&sal2);
13875
13876 sal2.pc = tpmarker->address;
13877
13878 sal2 = find_pc_line (tpmarker->address, 0);
13879 sym = find_pc_sect_function (tpmarker->address, NULL);
13880 ui_out_text (uiout, "Now in ");
13881 if (sym)
13882 {
13883 ui_out_field_string (uiout, "func",
13884 SYMBOL_PRINT_NAME (sym));
13885 ui_out_text (uiout, " at ");
13886 }
13887 ui_out_field_string (uiout, "file",
13888 symtab_to_filename_for_display (sal2.symtab));
13889 ui_out_text (uiout, ":");
13890
13891 if (ui_out_is_mi_like_p (uiout))
13892 {
13893 const char *fullname = symtab_to_fullname (sal2.symtab);
13894
13895 ui_out_field_string (uiout, "fullname", fullname);
13896 }
13897
13898 ui_out_field_int (uiout, "line", sal2.line);
13899 ui_out_text (uiout, "\n");
13900
13901 b->loc->line_number = sal2.line;
13902 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13903
13904 xfree (b->addr_string);
13905 b->addr_string = xstrprintf ("%s:%d",
13906 symtab_to_filename_for_display (sal2.symtab),
13907 b->loc->line_number);
13908
13909 /* Might be nice to check if function changed, and warn if
13910 so. */
13911
13912 release_static_tracepoint_marker (tpmarker);
13913 }
13914 }
13915 return sal;
13916 }
13917
13918 /* Returns 1 iff locations A and B are sufficiently same that
13919 we don't need to report breakpoint as changed. */
13920
13921 static int
13922 locations_are_equal (struct bp_location *a, struct bp_location *b)
13923 {
13924 while (a && b)
13925 {
13926 if (a->address != b->address)
13927 return 0;
13928
13929 if (a->shlib_disabled != b->shlib_disabled)
13930 return 0;
13931
13932 if (a->enabled != b->enabled)
13933 return 0;
13934
13935 a = a->next;
13936 b = b->next;
13937 }
13938
13939 if ((a == NULL) != (b == NULL))
13940 return 0;
13941
13942 return 1;
13943 }
13944
13945 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13946 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13947 a ranged breakpoint. */
13948
13949 void
13950 update_breakpoint_locations (struct breakpoint *b,
13951 struct symtabs_and_lines sals,
13952 struct symtabs_and_lines sals_end)
13953 {
13954 int i;
13955 struct bp_location *existing_locations = b->loc;
13956
13957 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13958 {
13959 /* Ranged breakpoints have only one start location and one end
13960 location. */
13961 b->enable_state = bp_disabled;
13962 update_global_location_list (1);
13963 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13964 "multiple locations found\n"),
13965 b->number);
13966 return;
13967 }
13968
13969 /* If there's no new locations, and all existing locations are
13970 pending, don't do anything. This optimizes the common case where
13971 all locations are in the same shared library, that was unloaded.
13972 We'd like to retain the location, so that when the library is
13973 loaded again, we don't loose the enabled/disabled status of the
13974 individual locations. */
13975 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13976 return;
13977
13978 b->loc = NULL;
13979
13980 for (i = 0; i < sals.nelts; ++i)
13981 {
13982 struct bp_location *new_loc;
13983
13984 switch_to_program_space_and_thread (sals.sals[i].pspace);
13985
13986 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13987
13988 /* Reparse conditions, they might contain references to the
13989 old symtab. */
13990 if (b->cond_string != NULL)
13991 {
13992 const char *s;
13993 volatile struct gdb_exception e;
13994
13995 s = b->cond_string;
13996 TRY_CATCH (e, RETURN_MASK_ERROR)
13997 {
13998 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13999 block_for_pc (sals.sals[i].pc),
14000 0);
14001 }
14002 if (e.reason < 0)
14003 {
14004 warning (_("failed to reevaluate condition "
14005 "for breakpoint %d: %s"),
14006 b->number, e.message);
14007 new_loc->enabled = 0;
14008 }
14009 }
14010
14011 if (sals_end.nelts)
14012 {
14013 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14014
14015 new_loc->length = end - sals.sals[0].pc + 1;
14016 }
14017 }
14018
14019 /* Update locations of permanent breakpoints. */
14020 if (b->enable_state == bp_permanent)
14021 make_breakpoint_permanent (b);
14022
14023 /* If possible, carry over 'disable' status from existing
14024 breakpoints. */
14025 {
14026 struct bp_location *e = existing_locations;
14027 /* If there are multiple breakpoints with the same function name,
14028 e.g. for inline functions, comparing function names won't work.
14029 Instead compare pc addresses; this is just a heuristic as things
14030 may have moved, but in practice it gives the correct answer
14031 often enough until a better solution is found. */
14032 int have_ambiguous_names = ambiguous_names_p (b->loc);
14033
14034 for (; e; e = e->next)
14035 {
14036 if (!e->enabled && e->function_name)
14037 {
14038 struct bp_location *l = b->loc;
14039 if (have_ambiguous_names)
14040 {
14041 for (; l; l = l->next)
14042 if (breakpoint_locations_match (e, l))
14043 {
14044 l->enabled = 0;
14045 break;
14046 }
14047 }
14048 else
14049 {
14050 for (; l; l = l->next)
14051 if (l->function_name
14052 && strcmp (e->function_name, l->function_name) == 0)
14053 {
14054 l->enabled = 0;
14055 break;
14056 }
14057 }
14058 }
14059 }
14060 }
14061
14062 if (!locations_are_equal (existing_locations, b->loc))
14063 observer_notify_breakpoint_modified (b);
14064
14065 update_global_location_list (1);
14066 }
14067
14068 /* Find the SaL locations corresponding to the given ADDR_STRING.
14069 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14070
14071 static struct symtabs_and_lines
14072 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14073 {
14074 char *s;
14075 struct symtabs_and_lines sals = {0};
14076 volatile struct gdb_exception e;
14077
14078 gdb_assert (b->ops != NULL);
14079 s = addr_string;
14080
14081 TRY_CATCH (e, RETURN_MASK_ERROR)
14082 {
14083 b->ops->decode_linespec (b, &s, &sals);
14084 }
14085 if (e.reason < 0)
14086 {
14087 int not_found_and_ok = 0;
14088 /* For pending breakpoints, it's expected that parsing will
14089 fail until the right shared library is loaded. User has
14090 already told to create pending breakpoints and don't need
14091 extra messages. If breakpoint is in bp_shlib_disabled
14092 state, then user already saw the message about that
14093 breakpoint being disabled, and don't want to see more
14094 errors. */
14095 if (e.error == NOT_FOUND_ERROR
14096 && (b->condition_not_parsed
14097 || (b->loc && b->loc->shlib_disabled)
14098 || (b->loc && b->loc->pspace->executing_startup)
14099 || b->enable_state == bp_disabled))
14100 not_found_and_ok = 1;
14101
14102 if (!not_found_and_ok)
14103 {
14104 /* We surely don't want to warn about the same breakpoint
14105 10 times. One solution, implemented here, is disable
14106 the breakpoint on error. Another solution would be to
14107 have separate 'warning emitted' flag. Since this
14108 happens only when a binary has changed, I don't know
14109 which approach is better. */
14110 b->enable_state = bp_disabled;
14111 throw_exception (e);
14112 }
14113 }
14114
14115 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14116 {
14117 int i;
14118
14119 for (i = 0; i < sals.nelts; ++i)
14120 resolve_sal_pc (&sals.sals[i]);
14121 if (b->condition_not_parsed && s && s[0])
14122 {
14123 char *cond_string, *extra_string;
14124 int thread, task;
14125
14126 find_condition_and_thread (s, sals.sals[0].pc,
14127 &cond_string, &thread, &task,
14128 &extra_string);
14129 if (cond_string)
14130 b->cond_string = cond_string;
14131 b->thread = thread;
14132 b->task = task;
14133 if (extra_string)
14134 b->extra_string = extra_string;
14135 b->condition_not_parsed = 0;
14136 }
14137
14138 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14139 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14140
14141 *found = 1;
14142 }
14143 else
14144 *found = 0;
14145
14146 return sals;
14147 }
14148
14149 /* The default re_set method, for typical hardware or software
14150 breakpoints. Reevaluate the breakpoint and recreate its
14151 locations. */
14152
14153 static void
14154 breakpoint_re_set_default (struct breakpoint *b)
14155 {
14156 int found;
14157 struct symtabs_and_lines sals, sals_end;
14158 struct symtabs_and_lines expanded = {0};
14159 struct symtabs_and_lines expanded_end = {0};
14160
14161 sals = addr_string_to_sals (b, b->addr_string, &found);
14162 if (found)
14163 {
14164 make_cleanup (xfree, sals.sals);
14165 expanded = sals;
14166 }
14167
14168 if (b->addr_string_range_end)
14169 {
14170 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14171 if (found)
14172 {
14173 make_cleanup (xfree, sals_end.sals);
14174 expanded_end = sals_end;
14175 }
14176 }
14177
14178 update_breakpoint_locations (b, expanded, expanded_end);
14179 }
14180
14181 /* Default method for creating SALs from an address string. It basically
14182 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14183
14184 static void
14185 create_sals_from_address_default (char **arg,
14186 struct linespec_result *canonical,
14187 enum bptype type_wanted,
14188 char *addr_start, char **copy_arg)
14189 {
14190 parse_breakpoint_sals (arg, canonical);
14191 }
14192
14193 /* Call create_breakpoints_sal for the given arguments. This is the default
14194 function for the `create_breakpoints_sal' method of
14195 breakpoint_ops. */
14196
14197 static void
14198 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14199 struct linespec_result *canonical,
14200 char *cond_string,
14201 char *extra_string,
14202 enum bptype type_wanted,
14203 enum bpdisp disposition,
14204 int thread,
14205 int task, int ignore_count,
14206 const struct breakpoint_ops *ops,
14207 int from_tty, int enabled,
14208 int internal, unsigned flags)
14209 {
14210 create_breakpoints_sal (gdbarch, canonical, cond_string,
14211 extra_string,
14212 type_wanted, disposition,
14213 thread, task, ignore_count, ops, from_tty,
14214 enabled, internal, flags);
14215 }
14216
14217 /* Decode the line represented by S by calling decode_line_full. This is the
14218 default function for the `decode_linespec' method of breakpoint_ops. */
14219
14220 static void
14221 decode_linespec_default (struct breakpoint *b, char **s,
14222 struct symtabs_and_lines *sals)
14223 {
14224 struct linespec_result canonical;
14225
14226 init_linespec_result (&canonical);
14227 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14228 (struct symtab *) NULL, 0,
14229 &canonical, multiple_symbols_all,
14230 b->filter);
14231
14232 /* We should get 0 or 1 resulting SALs. */
14233 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14234
14235 if (VEC_length (linespec_sals, canonical.sals) > 0)
14236 {
14237 struct linespec_sals *lsal;
14238
14239 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14240 *sals = lsal->sals;
14241 /* Arrange it so the destructor does not free the
14242 contents. */
14243 lsal->sals.sals = NULL;
14244 }
14245
14246 destroy_linespec_result (&canonical);
14247 }
14248
14249 /* Prepare the global context for a re-set of breakpoint B. */
14250
14251 static struct cleanup *
14252 prepare_re_set_context (struct breakpoint *b)
14253 {
14254 struct cleanup *cleanups;
14255
14256 input_radix = b->input_radix;
14257 cleanups = save_current_space_and_thread ();
14258 if (b->pspace != NULL)
14259 switch_to_program_space_and_thread (b->pspace);
14260 set_language (b->language);
14261
14262 return cleanups;
14263 }
14264
14265 /* Reset a breakpoint given it's struct breakpoint * BINT.
14266 The value we return ends up being the return value from catch_errors.
14267 Unused in this case. */
14268
14269 static int
14270 breakpoint_re_set_one (void *bint)
14271 {
14272 /* Get past catch_errs. */
14273 struct breakpoint *b = (struct breakpoint *) bint;
14274 struct cleanup *cleanups;
14275
14276 cleanups = prepare_re_set_context (b);
14277 b->ops->re_set (b);
14278 do_cleanups (cleanups);
14279 return 0;
14280 }
14281
14282 /* Re-set all breakpoints after symbols have been re-loaded. */
14283 void
14284 breakpoint_re_set (void)
14285 {
14286 struct breakpoint *b, *b_tmp;
14287 enum language save_language;
14288 int save_input_radix;
14289 struct cleanup *old_chain;
14290
14291 save_language = current_language->la_language;
14292 save_input_radix = input_radix;
14293 old_chain = save_current_program_space ();
14294
14295 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14296 {
14297 /* Format possible error msg. */
14298 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14299 b->number);
14300 struct cleanup *cleanups = make_cleanup (xfree, message);
14301 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14302 do_cleanups (cleanups);
14303 }
14304 set_language (save_language);
14305 input_radix = save_input_radix;
14306
14307 jit_breakpoint_re_set ();
14308
14309 do_cleanups (old_chain);
14310
14311 create_overlay_event_breakpoint ();
14312 create_longjmp_master_breakpoint ();
14313 create_std_terminate_master_breakpoint ();
14314 create_exception_master_breakpoint ();
14315 }
14316 \f
14317 /* Reset the thread number of this breakpoint:
14318
14319 - If the breakpoint is for all threads, leave it as-is.
14320 - Else, reset it to the current thread for inferior_ptid. */
14321 void
14322 breakpoint_re_set_thread (struct breakpoint *b)
14323 {
14324 if (b->thread != -1)
14325 {
14326 if (in_thread_list (inferior_ptid))
14327 b->thread = pid_to_thread_id (inferior_ptid);
14328
14329 /* We're being called after following a fork. The new fork is
14330 selected as current, and unless this was a vfork will have a
14331 different program space from the original thread. Reset that
14332 as well. */
14333 b->loc->pspace = current_program_space;
14334 }
14335 }
14336
14337 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14338 If from_tty is nonzero, it prints a message to that effect,
14339 which ends with a period (no newline). */
14340
14341 void
14342 set_ignore_count (int bptnum, int count, int from_tty)
14343 {
14344 struct breakpoint *b;
14345
14346 if (count < 0)
14347 count = 0;
14348
14349 ALL_BREAKPOINTS (b)
14350 if (b->number == bptnum)
14351 {
14352 if (is_tracepoint (b))
14353 {
14354 if (from_tty && count != 0)
14355 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14356 bptnum);
14357 return;
14358 }
14359
14360 b->ignore_count = count;
14361 if (from_tty)
14362 {
14363 if (count == 0)
14364 printf_filtered (_("Will stop next time "
14365 "breakpoint %d is reached."),
14366 bptnum);
14367 else if (count == 1)
14368 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14369 bptnum);
14370 else
14371 printf_filtered (_("Will ignore next %d "
14372 "crossings of breakpoint %d."),
14373 count, bptnum);
14374 }
14375 observer_notify_breakpoint_modified (b);
14376 return;
14377 }
14378
14379 error (_("No breakpoint number %d."), bptnum);
14380 }
14381
14382 /* Command to set ignore-count of breakpoint N to COUNT. */
14383
14384 static void
14385 ignore_command (char *args, int from_tty)
14386 {
14387 char *p = args;
14388 int num;
14389
14390 if (p == 0)
14391 error_no_arg (_("a breakpoint number"));
14392
14393 num = get_number (&p);
14394 if (num == 0)
14395 error (_("bad breakpoint number: '%s'"), args);
14396 if (*p == 0)
14397 error (_("Second argument (specified ignore-count) is missing."));
14398
14399 set_ignore_count (num,
14400 longest_to_int (value_as_long (parse_and_eval (p))),
14401 from_tty);
14402 if (from_tty)
14403 printf_filtered ("\n");
14404 }
14405 \f
14406 /* Call FUNCTION on each of the breakpoints
14407 whose numbers are given in ARGS. */
14408
14409 static void
14410 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14411 void *),
14412 void *data)
14413 {
14414 int num;
14415 struct breakpoint *b, *tmp;
14416 int match;
14417 struct get_number_or_range_state state;
14418
14419 if (args == 0)
14420 error_no_arg (_("one or more breakpoint numbers"));
14421
14422 init_number_or_range (&state, args);
14423
14424 while (!state.finished)
14425 {
14426 char *p = state.string;
14427
14428 match = 0;
14429
14430 num = get_number_or_range (&state);
14431 if (num == 0)
14432 {
14433 warning (_("bad breakpoint number at or near '%s'"), p);
14434 }
14435 else
14436 {
14437 ALL_BREAKPOINTS_SAFE (b, tmp)
14438 if (b->number == num)
14439 {
14440 match = 1;
14441 function (b, data);
14442 break;
14443 }
14444 if (match == 0)
14445 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14446 }
14447 }
14448 }
14449
14450 static struct bp_location *
14451 find_location_by_number (char *number)
14452 {
14453 char *dot = strchr (number, '.');
14454 char *p1;
14455 int bp_num;
14456 int loc_num;
14457 struct breakpoint *b;
14458 struct bp_location *loc;
14459
14460 *dot = '\0';
14461
14462 p1 = number;
14463 bp_num = get_number (&p1);
14464 if (bp_num == 0)
14465 error (_("Bad breakpoint number '%s'"), number);
14466
14467 ALL_BREAKPOINTS (b)
14468 if (b->number == bp_num)
14469 {
14470 break;
14471 }
14472
14473 if (!b || b->number != bp_num)
14474 error (_("Bad breakpoint number '%s'"), number);
14475
14476 p1 = dot+1;
14477 loc_num = get_number (&p1);
14478 if (loc_num == 0)
14479 error (_("Bad breakpoint location number '%s'"), number);
14480
14481 --loc_num;
14482 loc = b->loc;
14483 for (;loc_num && loc; --loc_num, loc = loc->next)
14484 ;
14485 if (!loc)
14486 error (_("Bad breakpoint location number '%s'"), dot+1);
14487
14488 return loc;
14489 }
14490
14491
14492 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14493 If from_tty is nonzero, it prints a message to that effect,
14494 which ends with a period (no newline). */
14495
14496 void
14497 disable_breakpoint (struct breakpoint *bpt)
14498 {
14499 /* Never disable a watchpoint scope breakpoint; we want to
14500 hit them when we leave scope so we can delete both the
14501 watchpoint and its scope breakpoint at that time. */
14502 if (bpt->type == bp_watchpoint_scope)
14503 return;
14504
14505 /* You can't disable permanent breakpoints. */
14506 if (bpt->enable_state == bp_permanent)
14507 return;
14508
14509 bpt->enable_state = bp_disabled;
14510
14511 /* Mark breakpoint locations modified. */
14512 mark_breakpoint_modified (bpt);
14513
14514 if (target_supports_enable_disable_tracepoint ()
14515 && current_trace_status ()->running && is_tracepoint (bpt))
14516 {
14517 struct bp_location *location;
14518
14519 for (location = bpt->loc; location; location = location->next)
14520 target_disable_tracepoint (location);
14521 }
14522
14523 update_global_location_list (0);
14524
14525 observer_notify_breakpoint_modified (bpt);
14526 }
14527
14528 /* A callback for iterate_over_related_breakpoints. */
14529
14530 static void
14531 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14532 {
14533 disable_breakpoint (b);
14534 }
14535
14536 /* A callback for map_breakpoint_numbers that calls
14537 disable_breakpoint. */
14538
14539 static void
14540 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14541 {
14542 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14543 }
14544
14545 static void
14546 disable_command (char *args, int from_tty)
14547 {
14548 if (args == 0)
14549 {
14550 struct breakpoint *bpt;
14551
14552 ALL_BREAKPOINTS (bpt)
14553 if (user_breakpoint_p (bpt))
14554 disable_breakpoint (bpt);
14555 }
14556 else if (strchr (args, '.'))
14557 {
14558 struct bp_location *loc = find_location_by_number (args);
14559 if (loc)
14560 {
14561 if (loc->enabled)
14562 {
14563 loc->enabled = 0;
14564 mark_breakpoint_location_modified (loc);
14565 }
14566 if (target_supports_enable_disable_tracepoint ()
14567 && current_trace_status ()->running && loc->owner
14568 && is_tracepoint (loc->owner))
14569 target_disable_tracepoint (loc);
14570 }
14571 update_global_location_list (0);
14572 }
14573 else
14574 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14575 }
14576
14577 static void
14578 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14579 int count)
14580 {
14581 int target_resources_ok;
14582
14583 if (bpt->type == bp_hardware_breakpoint)
14584 {
14585 int i;
14586 i = hw_breakpoint_used_count ();
14587 target_resources_ok =
14588 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14589 i + 1, 0);
14590 if (target_resources_ok == 0)
14591 error (_("No hardware breakpoint support in the target."));
14592 else if (target_resources_ok < 0)
14593 error (_("Hardware breakpoints used exceeds limit."));
14594 }
14595
14596 if (is_watchpoint (bpt))
14597 {
14598 /* Initialize it just to avoid a GCC false warning. */
14599 enum enable_state orig_enable_state = 0;
14600 volatile struct gdb_exception e;
14601
14602 TRY_CATCH (e, RETURN_MASK_ALL)
14603 {
14604 struct watchpoint *w = (struct watchpoint *) bpt;
14605
14606 orig_enable_state = bpt->enable_state;
14607 bpt->enable_state = bp_enabled;
14608 update_watchpoint (w, 1 /* reparse */);
14609 }
14610 if (e.reason < 0)
14611 {
14612 bpt->enable_state = orig_enable_state;
14613 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14614 bpt->number);
14615 return;
14616 }
14617 }
14618
14619 if (bpt->enable_state != bp_permanent)
14620 bpt->enable_state = bp_enabled;
14621
14622 bpt->enable_state = bp_enabled;
14623
14624 /* Mark breakpoint locations modified. */
14625 mark_breakpoint_modified (bpt);
14626
14627 if (target_supports_enable_disable_tracepoint ()
14628 && current_trace_status ()->running && is_tracepoint (bpt))
14629 {
14630 struct bp_location *location;
14631
14632 for (location = bpt->loc; location; location = location->next)
14633 target_enable_tracepoint (location);
14634 }
14635
14636 bpt->disposition = disposition;
14637 bpt->enable_count = count;
14638 update_global_location_list (1);
14639
14640 observer_notify_breakpoint_modified (bpt);
14641 }
14642
14643
14644 void
14645 enable_breakpoint (struct breakpoint *bpt)
14646 {
14647 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14648 }
14649
14650 static void
14651 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14652 {
14653 enable_breakpoint (bpt);
14654 }
14655
14656 /* A callback for map_breakpoint_numbers that calls
14657 enable_breakpoint. */
14658
14659 static void
14660 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14661 {
14662 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14663 }
14664
14665 /* The enable command enables the specified breakpoints (or all defined
14666 breakpoints) so they once again become (or continue to be) effective
14667 in stopping the inferior. */
14668
14669 static void
14670 enable_command (char *args, int from_tty)
14671 {
14672 if (args == 0)
14673 {
14674 struct breakpoint *bpt;
14675
14676 ALL_BREAKPOINTS (bpt)
14677 if (user_breakpoint_p (bpt))
14678 enable_breakpoint (bpt);
14679 }
14680 else if (strchr (args, '.'))
14681 {
14682 struct bp_location *loc = find_location_by_number (args);
14683 if (loc)
14684 {
14685 if (!loc->enabled)
14686 {
14687 loc->enabled = 1;
14688 mark_breakpoint_location_modified (loc);
14689 }
14690 if (target_supports_enable_disable_tracepoint ()
14691 && current_trace_status ()->running && loc->owner
14692 && is_tracepoint (loc->owner))
14693 target_enable_tracepoint (loc);
14694 }
14695 update_global_location_list (1);
14696 }
14697 else
14698 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14699 }
14700
14701 /* This struct packages up disposition data for application to multiple
14702 breakpoints. */
14703
14704 struct disp_data
14705 {
14706 enum bpdisp disp;
14707 int count;
14708 };
14709
14710 static void
14711 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14712 {
14713 struct disp_data disp_data = *(struct disp_data *) arg;
14714
14715 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14716 }
14717
14718 static void
14719 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14720 {
14721 struct disp_data disp = { disp_disable, 1 };
14722
14723 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14724 }
14725
14726 static void
14727 enable_once_command (char *args, int from_tty)
14728 {
14729 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14730 }
14731
14732 static void
14733 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14734 {
14735 struct disp_data disp = { disp_disable, *(int *) countptr };
14736
14737 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14738 }
14739
14740 static void
14741 enable_count_command (char *args, int from_tty)
14742 {
14743 int count = get_number (&args);
14744
14745 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14746 }
14747
14748 static void
14749 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14750 {
14751 struct disp_data disp = { disp_del, 1 };
14752
14753 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14754 }
14755
14756 static void
14757 enable_delete_command (char *args, int from_tty)
14758 {
14759 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14760 }
14761 \f
14762 static void
14763 set_breakpoint_cmd (char *args, int from_tty)
14764 {
14765 }
14766
14767 static void
14768 show_breakpoint_cmd (char *args, int from_tty)
14769 {
14770 }
14771
14772 /* Invalidate last known value of any hardware watchpoint if
14773 the memory which that value represents has been written to by
14774 GDB itself. */
14775
14776 static void
14777 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14778 CORE_ADDR addr, ssize_t len,
14779 const bfd_byte *data)
14780 {
14781 struct breakpoint *bp;
14782
14783 ALL_BREAKPOINTS (bp)
14784 if (bp->enable_state == bp_enabled
14785 && bp->type == bp_hardware_watchpoint)
14786 {
14787 struct watchpoint *wp = (struct watchpoint *) bp;
14788
14789 if (wp->val_valid && wp->val)
14790 {
14791 struct bp_location *loc;
14792
14793 for (loc = bp->loc; loc != NULL; loc = loc->next)
14794 if (loc->loc_type == bp_loc_hardware_watchpoint
14795 && loc->address + loc->length > addr
14796 && addr + len > loc->address)
14797 {
14798 value_free (wp->val);
14799 wp->val = NULL;
14800 wp->val_valid = 0;
14801 }
14802 }
14803 }
14804 }
14805
14806 /* Create and insert a raw software breakpoint at PC. Return an
14807 identifier, which should be used to remove the breakpoint later.
14808 In general, places which call this should be using something on the
14809 breakpoint chain instead; this function should be eliminated
14810 someday. */
14811
14812 void *
14813 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14814 struct address_space *aspace, CORE_ADDR pc)
14815 {
14816 struct bp_target_info *bp_tgt;
14817
14818 bp_tgt = XZALLOC (struct bp_target_info);
14819
14820 bp_tgt->placed_address_space = aspace;
14821 bp_tgt->placed_address = pc;
14822
14823 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14824 {
14825 /* Could not insert the breakpoint. */
14826 xfree (bp_tgt);
14827 return NULL;
14828 }
14829
14830 return bp_tgt;
14831 }
14832
14833 /* Remove a breakpoint BP inserted by
14834 deprecated_insert_raw_breakpoint. */
14835
14836 int
14837 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14838 {
14839 struct bp_target_info *bp_tgt = bp;
14840 int ret;
14841
14842 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14843 xfree (bp_tgt);
14844
14845 return ret;
14846 }
14847
14848 /* One (or perhaps two) breakpoints used for software single
14849 stepping. */
14850
14851 static void *single_step_breakpoints[2];
14852 static struct gdbarch *single_step_gdbarch[2];
14853
14854 /* Create and insert a breakpoint for software single step. */
14855
14856 void
14857 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14858 struct address_space *aspace,
14859 CORE_ADDR next_pc)
14860 {
14861 void **bpt_p;
14862
14863 if (single_step_breakpoints[0] == NULL)
14864 {
14865 bpt_p = &single_step_breakpoints[0];
14866 single_step_gdbarch[0] = gdbarch;
14867 }
14868 else
14869 {
14870 gdb_assert (single_step_breakpoints[1] == NULL);
14871 bpt_p = &single_step_breakpoints[1];
14872 single_step_gdbarch[1] = gdbarch;
14873 }
14874
14875 /* NOTE drow/2006-04-11: A future improvement to this function would
14876 be to only create the breakpoints once, and actually put them on
14877 the breakpoint chain. That would let us use set_raw_breakpoint.
14878 We could adjust the addresses each time they were needed. Doing
14879 this requires corresponding changes elsewhere where single step
14880 breakpoints are handled, however. So, for now, we use this. */
14881
14882 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14883 if (*bpt_p == NULL)
14884 error (_("Could not insert single-step breakpoint at %s"),
14885 paddress (gdbarch, next_pc));
14886 }
14887
14888 /* Check if the breakpoints used for software single stepping
14889 were inserted or not. */
14890
14891 int
14892 single_step_breakpoints_inserted (void)
14893 {
14894 return (single_step_breakpoints[0] != NULL
14895 || single_step_breakpoints[1] != NULL);
14896 }
14897
14898 /* Remove and delete any breakpoints used for software single step. */
14899
14900 void
14901 remove_single_step_breakpoints (void)
14902 {
14903 gdb_assert (single_step_breakpoints[0] != NULL);
14904
14905 /* See insert_single_step_breakpoint for more about this deprecated
14906 call. */
14907 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14908 single_step_breakpoints[0]);
14909 single_step_gdbarch[0] = NULL;
14910 single_step_breakpoints[0] = NULL;
14911
14912 if (single_step_breakpoints[1] != NULL)
14913 {
14914 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14915 single_step_breakpoints[1]);
14916 single_step_gdbarch[1] = NULL;
14917 single_step_breakpoints[1] = NULL;
14918 }
14919 }
14920
14921 /* Delete software single step breakpoints without removing them from
14922 the inferior. This is intended to be used if the inferior's address
14923 space where they were inserted is already gone, e.g. after exit or
14924 exec. */
14925
14926 void
14927 cancel_single_step_breakpoints (void)
14928 {
14929 int i;
14930
14931 for (i = 0; i < 2; i++)
14932 if (single_step_breakpoints[i])
14933 {
14934 xfree (single_step_breakpoints[i]);
14935 single_step_breakpoints[i] = NULL;
14936 single_step_gdbarch[i] = NULL;
14937 }
14938 }
14939
14940 /* Detach software single-step breakpoints from INFERIOR_PTID without
14941 removing them. */
14942
14943 static void
14944 detach_single_step_breakpoints (void)
14945 {
14946 int i;
14947
14948 for (i = 0; i < 2; i++)
14949 if (single_step_breakpoints[i])
14950 target_remove_breakpoint (single_step_gdbarch[i],
14951 single_step_breakpoints[i]);
14952 }
14953
14954 /* Check whether a software single-step breakpoint is inserted at
14955 PC. */
14956
14957 static int
14958 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14959 CORE_ADDR pc)
14960 {
14961 int i;
14962
14963 for (i = 0; i < 2; i++)
14964 {
14965 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14966 if (bp_tgt
14967 && breakpoint_address_match (bp_tgt->placed_address_space,
14968 bp_tgt->placed_address,
14969 aspace, pc))
14970 return 1;
14971 }
14972
14973 return 0;
14974 }
14975
14976 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14977 non-zero otherwise. */
14978 static int
14979 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14980 {
14981 if (syscall_catchpoint_p (bp)
14982 && bp->enable_state != bp_disabled
14983 && bp->enable_state != bp_call_disabled)
14984 return 1;
14985 else
14986 return 0;
14987 }
14988
14989 int
14990 catch_syscall_enabled (void)
14991 {
14992 struct catch_syscall_inferior_data *inf_data
14993 = get_catch_syscall_inferior_data (current_inferior ());
14994
14995 return inf_data->total_syscalls_count != 0;
14996 }
14997
14998 int
14999 catching_syscall_number (int syscall_number)
15000 {
15001 struct breakpoint *bp;
15002
15003 ALL_BREAKPOINTS (bp)
15004 if (is_syscall_catchpoint_enabled (bp))
15005 {
15006 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15007
15008 if (c->syscalls_to_be_caught)
15009 {
15010 int i, iter;
15011 for (i = 0;
15012 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15013 i++)
15014 if (syscall_number == iter)
15015 return 1;
15016 }
15017 else
15018 return 1;
15019 }
15020
15021 return 0;
15022 }
15023
15024 /* Complete syscall names. Used by "catch syscall". */
15025 static VEC (char_ptr) *
15026 catch_syscall_completer (struct cmd_list_element *cmd,
15027 const char *text, const char *word)
15028 {
15029 const char **list = get_syscall_names ();
15030 VEC (char_ptr) *retlist
15031 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15032
15033 xfree (list);
15034 return retlist;
15035 }
15036
15037 /* Tracepoint-specific operations. */
15038
15039 /* Set tracepoint count to NUM. */
15040 static void
15041 set_tracepoint_count (int num)
15042 {
15043 tracepoint_count = num;
15044 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15045 }
15046
15047 static void
15048 trace_command (char *arg, int from_tty)
15049 {
15050 struct breakpoint_ops *ops;
15051 const char *arg_cp = arg;
15052
15053 if (arg && probe_linespec_to_ops (&arg_cp))
15054 ops = &tracepoint_probe_breakpoint_ops;
15055 else
15056 ops = &tracepoint_breakpoint_ops;
15057
15058 create_breakpoint (get_current_arch (),
15059 arg,
15060 NULL, 0, NULL, 1 /* parse arg */,
15061 0 /* tempflag */,
15062 bp_tracepoint /* type_wanted */,
15063 0 /* Ignore count */,
15064 pending_break_support,
15065 ops,
15066 from_tty,
15067 1 /* enabled */,
15068 0 /* internal */, 0);
15069 }
15070
15071 static void
15072 ftrace_command (char *arg, int from_tty)
15073 {
15074 create_breakpoint (get_current_arch (),
15075 arg,
15076 NULL, 0, NULL, 1 /* parse arg */,
15077 0 /* tempflag */,
15078 bp_fast_tracepoint /* type_wanted */,
15079 0 /* Ignore count */,
15080 pending_break_support,
15081 &tracepoint_breakpoint_ops,
15082 from_tty,
15083 1 /* enabled */,
15084 0 /* internal */, 0);
15085 }
15086
15087 /* strace command implementation. Creates a static tracepoint. */
15088
15089 static void
15090 strace_command (char *arg, int from_tty)
15091 {
15092 struct breakpoint_ops *ops;
15093
15094 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15095 or with a normal static tracepoint. */
15096 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15097 ops = &strace_marker_breakpoint_ops;
15098 else
15099 ops = &tracepoint_breakpoint_ops;
15100
15101 create_breakpoint (get_current_arch (),
15102 arg,
15103 NULL, 0, NULL, 1 /* parse arg */,
15104 0 /* tempflag */,
15105 bp_static_tracepoint /* type_wanted */,
15106 0 /* Ignore count */,
15107 pending_break_support,
15108 ops,
15109 from_tty,
15110 1 /* enabled */,
15111 0 /* internal */, 0);
15112 }
15113
15114 /* Set up a fake reader function that gets command lines from a linked
15115 list that was acquired during tracepoint uploading. */
15116
15117 static struct uploaded_tp *this_utp;
15118 static int next_cmd;
15119
15120 static char *
15121 read_uploaded_action (void)
15122 {
15123 char *rslt;
15124
15125 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15126
15127 next_cmd++;
15128
15129 return rslt;
15130 }
15131
15132 /* Given information about a tracepoint as recorded on a target (which
15133 can be either a live system or a trace file), attempt to create an
15134 equivalent GDB tracepoint. This is not a reliable process, since
15135 the target does not necessarily have all the information used when
15136 the tracepoint was originally defined. */
15137
15138 struct tracepoint *
15139 create_tracepoint_from_upload (struct uploaded_tp *utp)
15140 {
15141 char *addr_str, small_buf[100];
15142 struct tracepoint *tp;
15143
15144 if (utp->at_string)
15145 addr_str = utp->at_string;
15146 else
15147 {
15148 /* In the absence of a source location, fall back to raw
15149 address. Since there is no way to confirm that the address
15150 means the same thing as when the trace was started, warn the
15151 user. */
15152 warning (_("Uploaded tracepoint %d has no "
15153 "source location, using raw address"),
15154 utp->number);
15155 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15156 addr_str = small_buf;
15157 }
15158
15159 /* There's not much we can do with a sequence of bytecodes. */
15160 if (utp->cond && !utp->cond_string)
15161 warning (_("Uploaded tracepoint %d condition "
15162 "has no source form, ignoring it"),
15163 utp->number);
15164
15165 if (!create_breakpoint (get_current_arch (),
15166 addr_str,
15167 utp->cond_string, -1, NULL,
15168 0 /* parse cond/thread */,
15169 0 /* tempflag */,
15170 utp->type /* type_wanted */,
15171 0 /* Ignore count */,
15172 pending_break_support,
15173 &tracepoint_breakpoint_ops,
15174 0 /* from_tty */,
15175 utp->enabled /* enabled */,
15176 0 /* internal */,
15177 CREATE_BREAKPOINT_FLAGS_INSERTED))
15178 return NULL;
15179
15180 /* Get the tracepoint we just created. */
15181 tp = get_tracepoint (tracepoint_count);
15182 gdb_assert (tp != NULL);
15183
15184 if (utp->pass > 0)
15185 {
15186 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15187 tp->base.number);
15188
15189 trace_pass_command (small_buf, 0);
15190 }
15191
15192 /* If we have uploaded versions of the original commands, set up a
15193 special-purpose "reader" function and call the usual command line
15194 reader, then pass the result to the breakpoint command-setting
15195 function. */
15196 if (!VEC_empty (char_ptr, utp->cmd_strings))
15197 {
15198 struct command_line *cmd_list;
15199
15200 this_utp = utp;
15201 next_cmd = 0;
15202
15203 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15204
15205 breakpoint_set_commands (&tp->base, cmd_list);
15206 }
15207 else if (!VEC_empty (char_ptr, utp->actions)
15208 || !VEC_empty (char_ptr, utp->step_actions))
15209 warning (_("Uploaded tracepoint %d actions "
15210 "have no source form, ignoring them"),
15211 utp->number);
15212
15213 /* Copy any status information that might be available. */
15214 tp->base.hit_count = utp->hit_count;
15215 tp->traceframe_usage = utp->traceframe_usage;
15216
15217 return tp;
15218 }
15219
15220 /* Print information on tracepoint number TPNUM_EXP, or all if
15221 omitted. */
15222
15223 static void
15224 tracepoints_info (char *args, int from_tty)
15225 {
15226 struct ui_out *uiout = current_uiout;
15227 int num_printed;
15228
15229 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15230
15231 if (num_printed == 0)
15232 {
15233 if (args == NULL || *args == '\0')
15234 ui_out_message (uiout, 0, "No tracepoints.\n");
15235 else
15236 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15237 }
15238
15239 default_collect_info ();
15240 }
15241
15242 /* The 'enable trace' command enables tracepoints.
15243 Not supported by all targets. */
15244 static void
15245 enable_trace_command (char *args, int from_tty)
15246 {
15247 enable_command (args, from_tty);
15248 }
15249
15250 /* The 'disable trace' command disables tracepoints.
15251 Not supported by all targets. */
15252 static void
15253 disable_trace_command (char *args, int from_tty)
15254 {
15255 disable_command (args, from_tty);
15256 }
15257
15258 /* Remove a tracepoint (or all if no argument). */
15259 static void
15260 delete_trace_command (char *arg, int from_tty)
15261 {
15262 struct breakpoint *b, *b_tmp;
15263
15264 dont_repeat ();
15265
15266 if (arg == 0)
15267 {
15268 int breaks_to_delete = 0;
15269
15270 /* Delete all breakpoints if no argument.
15271 Do not delete internal or call-dummy breakpoints, these
15272 have to be deleted with an explicit breakpoint number
15273 argument. */
15274 ALL_TRACEPOINTS (b)
15275 if (is_tracepoint (b) && user_breakpoint_p (b))
15276 {
15277 breaks_to_delete = 1;
15278 break;
15279 }
15280
15281 /* Ask user only if there are some breakpoints to delete. */
15282 if (!from_tty
15283 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15284 {
15285 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15286 if (is_tracepoint (b) && user_breakpoint_p (b))
15287 delete_breakpoint (b);
15288 }
15289 }
15290 else
15291 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15292 }
15293
15294 /* Helper function for trace_pass_command. */
15295
15296 static void
15297 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15298 {
15299 tp->pass_count = count;
15300 observer_notify_breakpoint_modified (&tp->base);
15301 if (from_tty)
15302 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15303 tp->base.number, count);
15304 }
15305
15306 /* Set passcount for tracepoint.
15307
15308 First command argument is passcount, second is tracepoint number.
15309 If tracepoint number omitted, apply to most recently defined.
15310 Also accepts special argument "all". */
15311
15312 static void
15313 trace_pass_command (char *args, int from_tty)
15314 {
15315 struct tracepoint *t1;
15316 unsigned int count;
15317
15318 if (args == 0 || *args == 0)
15319 error (_("passcount command requires an "
15320 "argument (count + optional TP num)"));
15321
15322 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15323
15324 args = skip_spaces (args);
15325 if (*args && strncasecmp (args, "all", 3) == 0)
15326 {
15327 struct breakpoint *b;
15328
15329 args += 3; /* Skip special argument "all". */
15330 if (*args)
15331 error (_("Junk at end of arguments."));
15332
15333 ALL_TRACEPOINTS (b)
15334 {
15335 t1 = (struct tracepoint *) b;
15336 trace_pass_set_count (t1, count, from_tty);
15337 }
15338 }
15339 else if (*args == '\0')
15340 {
15341 t1 = get_tracepoint_by_number (&args, NULL, 1);
15342 if (t1)
15343 trace_pass_set_count (t1, count, from_tty);
15344 }
15345 else
15346 {
15347 struct get_number_or_range_state state;
15348
15349 init_number_or_range (&state, args);
15350 while (!state.finished)
15351 {
15352 t1 = get_tracepoint_by_number (&args, &state, 1);
15353 if (t1)
15354 trace_pass_set_count (t1, count, from_tty);
15355 }
15356 }
15357 }
15358
15359 struct tracepoint *
15360 get_tracepoint (int num)
15361 {
15362 struct breakpoint *t;
15363
15364 ALL_TRACEPOINTS (t)
15365 if (t->number == num)
15366 return (struct tracepoint *) t;
15367
15368 return NULL;
15369 }
15370
15371 /* Find the tracepoint with the given target-side number (which may be
15372 different from the tracepoint number after disconnecting and
15373 reconnecting). */
15374
15375 struct tracepoint *
15376 get_tracepoint_by_number_on_target (int num)
15377 {
15378 struct breakpoint *b;
15379
15380 ALL_TRACEPOINTS (b)
15381 {
15382 struct tracepoint *t = (struct tracepoint *) b;
15383
15384 if (t->number_on_target == num)
15385 return t;
15386 }
15387
15388 return NULL;
15389 }
15390
15391 /* Utility: parse a tracepoint number and look it up in the list.
15392 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15393 If OPTIONAL_P is true, then if the argument is missing, the most
15394 recent tracepoint (tracepoint_count) is returned. */
15395 struct tracepoint *
15396 get_tracepoint_by_number (char **arg,
15397 struct get_number_or_range_state *state,
15398 int optional_p)
15399 {
15400 struct breakpoint *t;
15401 int tpnum;
15402 char *instring = arg == NULL ? NULL : *arg;
15403
15404 if (state)
15405 {
15406 gdb_assert (!state->finished);
15407 tpnum = get_number_or_range (state);
15408 }
15409 else if (arg == NULL || *arg == NULL || ! **arg)
15410 {
15411 if (optional_p)
15412 tpnum = tracepoint_count;
15413 else
15414 error_no_arg (_("tracepoint number"));
15415 }
15416 else
15417 tpnum = get_number (arg);
15418
15419 if (tpnum <= 0)
15420 {
15421 if (instring && *instring)
15422 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15423 instring);
15424 else
15425 printf_filtered (_("Tracepoint argument missing "
15426 "and no previous tracepoint\n"));
15427 return NULL;
15428 }
15429
15430 ALL_TRACEPOINTS (t)
15431 if (t->number == tpnum)
15432 {
15433 return (struct tracepoint *) t;
15434 }
15435
15436 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15437 return NULL;
15438 }
15439
15440 void
15441 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15442 {
15443 if (b->thread != -1)
15444 fprintf_unfiltered (fp, " thread %d", b->thread);
15445
15446 if (b->task != 0)
15447 fprintf_unfiltered (fp, " task %d", b->task);
15448
15449 fprintf_unfiltered (fp, "\n");
15450 }
15451
15452 /* Save information on user settable breakpoints (watchpoints, etc) to
15453 a new script file named FILENAME. If FILTER is non-NULL, call it
15454 on each breakpoint and only include the ones for which it returns
15455 non-zero. */
15456
15457 static void
15458 save_breakpoints (char *filename, int from_tty,
15459 int (*filter) (const struct breakpoint *))
15460 {
15461 struct breakpoint *tp;
15462 int any = 0;
15463 struct cleanup *cleanup;
15464 struct ui_file *fp;
15465 int extra_trace_bits = 0;
15466
15467 if (filename == 0 || *filename == 0)
15468 error (_("Argument required (file name in which to save)"));
15469
15470 /* See if we have anything to save. */
15471 ALL_BREAKPOINTS (tp)
15472 {
15473 /* Skip internal and momentary breakpoints. */
15474 if (!user_breakpoint_p (tp))
15475 continue;
15476
15477 /* If we have a filter, only save the breakpoints it accepts. */
15478 if (filter && !filter (tp))
15479 continue;
15480
15481 any = 1;
15482
15483 if (is_tracepoint (tp))
15484 {
15485 extra_trace_bits = 1;
15486
15487 /* We can stop searching. */
15488 break;
15489 }
15490 }
15491
15492 if (!any)
15493 {
15494 warning (_("Nothing to save."));
15495 return;
15496 }
15497
15498 filename = tilde_expand (filename);
15499 cleanup = make_cleanup (xfree, filename);
15500 fp = gdb_fopen (filename, "w");
15501 if (!fp)
15502 error (_("Unable to open file '%s' for saving (%s)"),
15503 filename, safe_strerror (errno));
15504 make_cleanup_ui_file_delete (fp);
15505
15506 if (extra_trace_bits)
15507 save_trace_state_variables (fp);
15508
15509 ALL_BREAKPOINTS (tp)
15510 {
15511 /* Skip internal and momentary breakpoints. */
15512 if (!user_breakpoint_p (tp))
15513 continue;
15514
15515 /* If we have a filter, only save the breakpoints it accepts. */
15516 if (filter && !filter (tp))
15517 continue;
15518
15519 tp->ops->print_recreate (tp, fp);
15520
15521 /* Note, we can't rely on tp->number for anything, as we can't
15522 assume the recreated breakpoint numbers will match. Use $bpnum
15523 instead. */
15524
15525 if (tp->cond_string)
15526 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15527
15528 if (tp->ignore_count)
15529 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15530
15531 if (tp->type != bp_dprintf && tp->commands)
15532 {
15533 volatile struct gdb_exception ex;
15534
15535 fprintf_unfiltered (fp, " commands\n");
15536
15537 ui_out_redirect (current_uiout, fp);
15538 TRY_CATCH (ex, RETURN_MASK_ALL)
15539 {
15540 print_command_lines (current_uiout, tp->commands->commands, 2);
15541 }
15542 ui_out_redirect (current_uiout, NULL);
15543
15544 if (ex.reason < 0)
15545 throw_exception (ex);
15546
15547 fprintf_unfiltered (fp, " end\n");
15548 }
15549
15550 if (tp->enable_state == bp_disabled)
15551 fprintf_unfiltered (fp, "disable\n");
15552
15553 /* If this is a multi-location breakpoint, check if the locations
15554 should be individually disabled. Watchpoint locations are
15555 special, and not user visible. */
15556 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15557 {
15558 struct bp_location *loc;
15559 int n = 1;
15560
15561 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15562 if (!loc->enabled)
15563 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15564 }
15565 }
15566
15567 if (extra_trace_bits && *default_collect)
15568 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15569
15570 if (from_tty)
15571 printf_filtered (_("Saved to file '%s'.\n"), filename);
15572 do_cleanups (cleanup);
15573 }
15574
15575 /* The `save breakpoints' command. */
15576
15577 static void
15578 save_breakpoints_command (char *args, int from_tty)
15579 {
15580 save_breakpoints (args, from_tty, NULL);
15581 }
15582
15583 /* The `save tracepoints' command. */
15584
15585 static void
15586 save_tracepoints_command (char *args, int from_tty)
15587 {
15588 save_breakpoints (args, from_tty, is_tracepoint);
15589 }
15590
15591 /* Create a vector of all tracepoints. */
15592
15593 VEC(breakpoint_p) *
15594 all_tracepoints (void)
15595 {
15596 VEC(breakpoint_p) *tp_vec = 0;
15597 struct breakpoint *tp;
15598
15599 ALL_TRACEPOINTS (tp)
15600 {
15601 VEC_safe_push (breakpoint_p, tp_vec, tp);
15602 }
15603
15604 return tp_vec;
15605 }
15606
15607 \f
15608 /* This help string is used for the break, hbreak, tbreak and thbreak
15609 commands. It is defined as a macro to prevent duplication.
15610 COMMAND should be a string constant containing the name of the
15611 command. */
15612 #define BREAK_ARGS_HELP(command) \
15613 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15614 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15615 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15616 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15617 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15618 If a line number is specified, break at start of code for that line.\n\
15619 If a function is specified, break at start of code for that function.\n\
15620 If an address is specified, break at that exact address.\n\
15621 With no LOCATION, uses current execution address of the selected\n\
15622 stack frame. This is useful for breaking on return to a stack frame.\n\
15623 \n\
15624 THREADNUM is the number from \"info threads\".\n\
15625 CONDITION is a boolean expression.\n\
15626 \n\
15627 Multiple breakpoints at one place are permitted, and useful if their\n\
15628 conditions are different.\n\
15629 \n\
15630 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15631
15632 /* List of subcommands for "catch". */
15633 static struct cmd_list_element *catch_cmdlist;
15634
15635 /* List of subcommands for "tcatch". */
15636 static struct cmd_list_element *tcatch_cmdlist;
15637
15638 void
15639 add_catch_command (char *name, char *docstring,
15640 void (*sfunc) (char *args, int from_tty,
15641 struct cmd_list_element *command),
15642 completer_ftype *completer,
15643 void *user_data_catch,
15644 void *user_data_tcatch)
15645 {
15646 struct cmd_list_element *command;
15647
15648 command = add_cmd (name, class_breakpoint, NULL, docstring,
15649 &catch_cmdlist);
15650 set_cmd_sfunc (command, sfunc);
15651 set_cmd_context (command, user_data_catch);
15652 set_cmd_completer (command, completer);
15653
15654 command = add_cmd (name, class_breakpoint, NULL, docstring,
15655 &tcatch_cmdlist);
15656 set_cmd_sfunc (command, sfunc);
15657 set_cmd_context (command, user_data_tcatch);
15658 set_cmd_completer (command, completer);
15659 }
15660
15661 static void
15662 clear_syscall_counts (struct inferior *inf)
15663 {
15664 struct catch_syscall_inferior_data *inf_data
15665 = get_catch_syscall_inferior_data (inf);
15666
15667 inf_data->total_syscalls_count = 0;
15668 inf_data->any_syscall_count = 0;
15669 VEC_free (int, inf_data->syscalls_counts);
15670 }
15671
15672 static void
15673 save_command (char *arg, int from_tty)
15674 {
15675 printf_unfiltered (_("\"save\" must be followed by "
15676 "the name of a save subcommand.\n"));
15677 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15678 }
15679
15680 struct breakpoint *
15681 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15682 void *data)
15683 {
15684 struct breakpoint *b, *b_tmp;
15685
15686 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15687 {
15688 if ((*callback) (b, data))
15689 return b;
15690 }
15691
15692 return NULL;
15693 }
15694
15695 /* Zero if any of the breakpoint's locations could be a location where
15696 functions have been inlined, nonzero otherwise. */
15697
15698 static int
15699 is_non_inline_function (struct breakpoint *b)
15700 {
15701 /* The shared library event breakpoint is set on the address of a
15702 non-inline function. */
15703 if (b->type == bp_shlib_event)
15704 return 1;
15705
15706 return 0;
15707 }
15708
15709 /* Nonzero if the specified PC cannot be a location where functions
15710 have been inlined. */
15711
15712 int
15713 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15714 const struct target_waitstatus *ws)
15715 {
15716 struct breakpoint *b;
15717 struct bp_location *bl;
15718
15719 ALL_BREAKPOINTS (b)
15720 {
15721 if (!is_non_inline_function (b))
15722 continue;
15723
15724 for (bl = b->loc; bl != NULL; bl = bl->next)
15725 {
15726 if (!bl->shlib_disabled
15727 && bpstat_check_location (bl, aspace, pc, ws))
15728 return 1;
15729 }
15730 }
15731
15732 return 0;
15733 }
15734
15735 /* Remove any references to OBJFILE which is going to be freed. */
15736
15737 void
15738 breakpoint_free_objfile (struct objfile *objfile)
15739 {
15740 struct bp_location **locp, *loc;
15741
15742 ALL_BP_LOCATIONS (loc, locp)
15743 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15744 loc->symtab = NULL;
15745 }
15746
15747 void
15748 initialize_breakpoint_ops (void)
15749 {
15750 static int initialized = 0;
15751
15752 struct breakpoint_ops *ops;
15753
15754 if (initialized)
15755 return;
15756 initialized = 1;
15757
15758 /* The breakpoint_ops structure to be inherit by all kinds of
15759 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15760 internal and momentary breakpoints, etc.). */
15761 ops = &bkpt_base_breakpoint_ops;
15762 *ops = base_breakpoint_ops;
15763 ops->re_set = bkpt_re_set;
15764 ops->insert_location = bkpt_insert_location;
15765 ops->remove_location = bkpt_remove_location;
15766 ops->breakpoint_hit = bkpt_breakpoint_hit;
15767 ops->create_sals_from_address = bkpt_create_sals_from_address;
15768 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15769 ops->decode_linespec = bkpt_decode_linespec;
15770
15771 /* The breakpoint_ops structure to be used in regular breakpoints. */
15772 ops = &bkpt_breakpoint_ops;
15773 *ops = bkpt_base_breakpoint_ops;
15774 ops->re_set = bkpt_re_set;
15775 ops->resources_needed = bkpt_resources_needed;
15776 ops->print_it = bkpt_print_it;
15777 ops->print_mention = bkpt_print_mention;
15778 ops->print_recreate = bkpt_print_recreate;
15779
15780 /* Ranged breakpoints. */
15781 ops = &ranged_breakpoint_ops;
15782 *ops = bkpt_breakpoint_ops;
15783 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15784 ops->resources_needed = resources_needed_ranged_breakpoint;
15785 ops->print_it = print_it_ranged_breakpoint;
15786 ops->print_one = print_one_ranged_breakpoint;
15787 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15788 ops->print_mention = print_mention_ranged_breakpoint;
15789 ops->print_recreate = print_recreate_ranged_breakpoint;
15790
15791 /* Internal breakpoints. */
15792 ops = &internal_breakpoint_ops;
15793 *ops = bkpt_base_breakpoint_ops;
15794 ops->re_set = internal_bkpt_re_set;
15795 ops->check_status = internal_bkpt_check_status;
15796 ops->print_it = internal_bkpt_print_it;
15797 ops->print_mention = internal_bkpt_print_mention;
15798
15799 /* Momentary breakpoints. */
15800 ops = &momentary_breakpoint_ops;
15801 *ops = bkpt_base_breakpoint_ops;
15802 ops->re_set = momentary_bkpt_re_set;
15803 ops->check_status = momentary_bkpt_check_status;
15804 ops->print_it = momentary_bkpt_print_it;
15805 ops->print_mention = momentary_bkpt_print_mention;
15806
15807 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15808 ops = &longjmp_breakpoint_ops;
15809 *ops = momentary_breakpoint_ops;
15810 ops->dtor = longjmp_bkpt_dtor;
15811
15812 /* Probe breakpoints. */
15813 ops = &bkpt_probe_breakpoint_ops;
15814 *ops = bkpt_breakpoint_ops;
15815 ops->insert_location = bkpt_probe_insert_location;
15816 ops->remove_location = bkpt_probe_remove_location;
15817 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15818 ops->decode_linespec = bkpt_probe_decode_linespec;
15819
15820 /* Watchpoints. */
15821 ops = &watchpoint_breakpoint_ops;
15822 *ops = base_breakpoint_ops;
15823 ops->dtor = dtor_watchpoint;
15824 ops->re_set = re_set_watchpoint;
15825 ops->insert_location = insert_watchpoint;
15826 ops->remove_location = remove_watchpoint;
15827 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15828 ops->check_status = check_status_watchpoint;
15829 ops->resources_needed = resources_needed_watchpoint;
15830 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15831 ops->print_it = print_it_watchpoint;
15832 ops->print_mention = print_mention_watchpoint;
15833 ops->print_recreate = print_recreate_watchpoint;
15834 ops->explains_signal = explains_signal_watchpoint;
15835
15836 /* Masked watchpoints. */
15837 ops = &masked_watchpoint_breakpoint_ops;
15838 *ops = watchpoint_breakpoint_ops;
15839 ops->insert_location = insert_masked_watchpoint;
15840 ops->remove_location = remove_masked_watchpoint;
15841 ops->resources_needed = resources_needed_masked_watchpoint;
15842 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15843 ops->print_it = print_it_masked_watchpoint;
15844 ops->print_one_detail = print_one_detail_masked_watchpoint;
15845 ops->print_mention = print_mention_masked_watchpoint;
15846 ops->print_recreate = print_recreate_masked_watchpoint;
15847
15848 /* Tracepoints. */
15849 ops = &tracepoint_breakpoint_ops;
15850 *ops = base_breakpoint_ops;
15851 ops->re_set = tracepoint_re_set;
15852 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15853 ops->print_one_detail = tracepoint_print_one_detail;
15854 ops->print_mention = tracepoint_print_mention;
15855 ops->print_recreate = tracepoint_print_recreate;
15856 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15857 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15858 ops->decode_linespec = tracepoint_decode_linespec;
15859
15860 /* Probe tracepoints. */
15861 ops = &tracepoint_probe_breakpoint_ops;
15862 *ops = tracepoint_breakpoint_ops;
15863 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15864 ops->decode_linespec = tracepoint_probe_decode_linespec;
15865
15866 /* Static tracepoints with marker (`-m'). */
15867 ops = &strace_marker_breakpoint_ops;
15868 *ops = tracepoint_breakpoint_ops;
15869 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15870 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15871 ops->decode_linespec = strace_marker_decode_linespec;
15872
15873 /* Fork catchpoints. */
15874 ops = &catch_fork_breakpoint_ops;
15875 *ops = base_breakpoint_ops;
15876 ops->insert_location = insert_catch_fork;
15877 ops->remove_location = remove_catch_fork;
15878 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15879 ops->print_it = print_it_catch_fork;
15880 ops->print_one = print_one_catch_fork;
15881 ops->print_mention = print_mention_catch_fork;
15882 ops->print_recreate = print_recreate_catch_fork;
15883
15884 /* Vfork catchpoints. */
15885 ops = &catch_vfork_breakpoint_ops;
15886 *ops = base_breakpoint_ops;
15887 ops->insert_location = insert_catch_vfork;
15888 ops->remove_location = remove_catch_vfork;
15889 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15890 ops->print_it = print_it_catch_vfork;
15891 ops->print_one = print_one_catch_vfork;
15892 ops->print_mention = print_mention_catch_vfork;
15893 ops->print_recreate = print_recreate_catch_vfork;
15894
15895 /* Exec catchpoints. */
15896 ops = &catch_exec_breakpoint_ops;
15897 *ops = base_breakpoint_ops;
15898 ops->dtor = dtor_catch_exec;
15899 ops->insert_location = insert_catch_exec;
15900 ops->remove_location = remove_catch_exec;
15901 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15902 ops->print_it = print_it_catch_exec;
15903 ops->print_one = print_one_catch_exec;
15904 ops->print_mention = print_mention_catch_exec;
15905 ops->print_recreate = print_recreate_catch_exec;
15906
15907 /* Syscall catchpoints. */
15908 ops = &catch_syscall_breakpoint_ops;
15909 *ops = base_breakpoint_ops;
15910 ops->dtor = dtor_catch_syscall;
15911 ops->insert_location = insert_catch_syscall;
15912 ops->remove_location = remove_catch_syscall;
15913 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15914 ops->print_it = print_it_catch_syscall;
15915 ops->print_one = print_one_catch_syscall;
15916 ops->print_mention = print_mention_catch_syscall;
15917 ops->print_recreate = print_recreate_catch_syscall;
15918
15919 /* Solib-related catchpoints. */
15920 ops = &catch_solib_breakpoint_ops;
15921 *ops = base_breakpoint_ops;
15922 ops->dtor = dtor_catch_solib;
15923 ops->insert_location = insert_catch_solib;
15924 ops->remove_location = remove_catch_solib;
15925 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15926 ops->check_status = check_status_catch_solib;
15927 ops->print_it = print_it_catch_solib;
15928 ops->print_one = print_one_catch_solib;
15929 ops->print_mention = print_mention_catch_solib;
15930 ops->print_recreate = print_recreate_catch_solib;
15931
15932 ops = &dprintf_breakpoint_ops;
15933 *ops = bkpt_base_breakpoint_ops;
15934 ops->re_set = dprintf_re_set;
15935 ops->resources_needed = bkpt_resources_needed;
15936 ops->print_it = bkpt_print_it;
15937 ops->print_mention = bkpt_print_mention;
15938 ops->print_recreate = dprintf_print_recreate;
15939 ops->after_condition_true = dprintf_after_condition_true;
15940 }
15941
15942 /* Chain containing all defined "enable breakpoint" subcommands. */
15943
15944 static struct cmd_list_element *enablebreaklist = NULL;
15945
15946 void
15947 _initialize_breakpoint (void)
15948 {
15949 struct cmd_list_element *c;
15950
15951 initialize_breakpoint_ops ();
15952
15953 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15954 observer_attach_inferior_exit (clear_syscall_counts);
15955 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15956
15957 breakpoint_objfile_key
15958 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15959
15960 catch_syscall_inferior_data
15961 = register_inferior_data_with_cleanup (NULL,
15962 catch_syscall_inferior_data_cleanup);
15963
15964 breakpoint_chain = 0;
15965 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15966 before a breakpoint is set. */
15967 breakpoint_count = 0;
15968
15969 tracepoint_count = 0;
15970
15971 add_com ("ignore", class_breakpoint, ignore_command, _("\
15972 Set ignore-count of breakpoint number N to COUNT.\n\
15973 Usage is `ignore N COUNT'."));
15974 if (xdb_commands)
15975 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15976
15977 add_com ("commands", class_breakpoint, commands_command, _("\
15978 Set commands to be executed when a breakpoint is hit.\n\
15979 Give breakpoint number as argument after \"commands\".\n\
15980 With no argument, the targeted breakpoint is the last one set.\n\
15981 The commands themselves follow starting on the next line.\n\
15982 Type a line containing \"end\" to indicate the end of them.\n\
15983 Give \"silent\" as the first line to make the breakpoint silent;\n\
15984 then no output is printed when it is hit, except what the commands print."));
15985
15986 c = add_com ("condition", class_breakpoint, condition_command, _("\
15987 Specify breakpoint number N to break only if COND is true.\n\
15988 Usage is `condition N COND', where N is an integer and COND is an\n\
15989 expression to be evaluated whenever breakpoint N is reached."));
15990 set_cmd_completer (c, condition_completer);
15991
15992 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15993 Set a temporary breakpoint.\n\
15994 Like \"break\" except the breakpoint is only temporary,\n\
15995 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15996 by using \"enable delete\" on the breakpoint number.\n\
15997 \n"
15998 BREAK_ARGS_HELP ("tbreak")));
15999 set_cmd_completer (c, location_completer);
16000
16001 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16002 Set a hardware assisted breakpoint.\n\
16003 Like \"break\" except the breakpoint requires hardware support,\n\
16004 some target hardware may not have this support.\n\
16005 \n"
16006 BREAK_ARGS_HELP ("hbreak")));
16007 set_cmd_completer (c, location_completer);
16008
16009 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16010 Set a temporary hardware assisted breakpoint.\n\
16011 Like \"hbreak\" except the breakpoint is only temporary,\n\
16012 so it will be deleted when hit.\n\
16013 \n"
16014 BREAK_ARGS_HELP ("thbreak")));
16015 set_cmd_completer (c, location_completer);
16016
16017 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16018 Enable some breakpoints.\n\
16019 Give breakpoint numbers (separated by spaces) as arguments.\n\
16020 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16021 This is used to cancel the effect of the \"disable\" command.\n\
16022 With a subcommand you can enable temporarily."),
16023 &enablelist, "enable ", 1, &cmdlist);
16024 if (xdb_commands)
16025 add_com ("ab", class_breakpoint, enable_command, _("\
16026 Enable some breakpoints.\n\
16027 Give breakpoint numbers (separated by spaces) as arguments.\n\
16028 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16029 This is used to cancel the effect of the \"disable\" command.\n\
16030 With a subcommand you can enable temporarily."));
16031
16032 add_com_alias ("en", "enable", class_breakpoint, 1);
16033
16034 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16035 Enable some breakpoints.\n\
16036 Give breakpoint numbers (separated by spaces) as arguments.\n\
16037 This is used to cancel the effect of the \"disable\" command.\n\
16038 May be abbreviated to simply \"enable\".\n"),
16039 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16040
16041 add_cmd ("once", no_class, enable_once_command, _("\
16042 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16043 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16044 &enablebreaklist);
16045
16046 add_cmd ("delete", no_class, enable_delete_command, _("\
16047 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16048 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16049 &enablebreaklist);
16050
16051 add_cmd ("count", no_class, enable_count_command, _("\
16052 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16053 If a breakpoint is hit while enabled in this fashion,\n\
16054 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16055 &enablebreaklist);
16056
16057 add_cmd ("delete", no_class, enable_delete_command, _("\
16058 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16059 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16060 &enablelist);
16061
16062 add_cmd ("once", no_class, enable_once_command, _("\
16063 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16064 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16065 &enablelist);
16066
16067 add_cmd ("count", no_class, enable_count_command, _("\
16068 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16069 If a breakpoint is hit while enabled in this fashion,\n\
16070 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16071 &enablelist);
16072
16073 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16074 Disable some breakpoints.\n\
16075 Arguments are breakpoint numbers with spaces in between.\n\
16076 To disable all breakpoints, give no argument.\n\
16077 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16078 &disablelist, "disable ", 1, &cmdlist);
16079 add_com_alias ("dis", "disable", class_breakpoint, 1);
16080 add_com_alias ("disa", "disable", class_breakpoint, 1);
16081 if (xdb_commands)
16082 add_com ("sb", class_breakpoint, disable_command, _("\
16083 Disable some breakpoints.\n\
16084 Arguments are breakpoint numbers with spaces in between.\n\
16085 To disable all breakpoints, give no argument.\n\
16086 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16087
16088 add_cmd ("breakpoints", class_alias, disable_command, _("\
16089 Disable some breakpoints.\n\
16090 Arguments are breakpoint numbers with spaces in between.\n\
16091 To disable all breakpoints, give no argument.\n\
16092 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16093 This command may be abbreviated \"disable\"."),
16094 &disablelist);
16095
16096 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16097 Delete some breakpoints or auto-display expressions.\n\
16098 Arguments are breakpoint numbers with spaces in between.\n\
16099 To delete all breakpoints, give no argument.\n\
16100 \n\
16101 Also a prefix command for deletion of other GDB objects.\n\
16102 The \"unset\" command is also an alias for \"delete\"."),
16103 &deletelist, "delete ", 1, &cmdlist);
16104 add_com_alias ("d", "delete", class_breakpoint, 1);
16105 add_com_alias ("del", "delete", class_breakpoint, 1);
16106 if (xdb_commands)
16107 add_com ("db", class_breakpoint, delete_command, _("\
16108 Delete some breakpoints.\n\
16109 Arguments are breakpoint numbers with spaces in between.\n\
16110 To delete all breakpoints, give no argument.\n"));
16111
16112 add_cmd ("breakpoints", class_alias, delete_command, _("\
16113 Delete some breakpoints or auto-display expressions.\n\
16114 Arguments are breakpoint numbers with spaces in between.\n\
16115 To delete all breakpoints, give no argument.\n\
16116 This command may be abbreviated \"delete\"."),
16117 &deletelist);
16118
16119 add_com ("clear", class_breakpoint, clear_command, _("\
16120 Clear breakpoint at specified line or function.\n\
16121 Argument may be line number, function name, or \"*\" and an address.\n\
16122 If line number is specified, all breakpoints in that line are cleared.\n\
16123 If function is specified, breakpoints at beginning of function are cleared.\n\
16124 If an address is specified, breakpoints at that address are cleared.\n\
16125 \n\
16126 With no argument, clears all breakpoints in the line that the selected frame\n\
16127 is executing in.\n\
16128 \n\
16129 See also the \"delete\" command which clears breakpoints by number."));
16130 add_com_alias ("cl", "clear", class_breakpoint, 1);
16131
16132 c = add_com ("break", class_breakpoint, break_command, _("\
16133 Set breakpoint at specified line or function.\n"
16134 BREAK_ARGS_HELP ("break")));
16135 set_cmd_completer (c, location_completer);
16136
16137 add_com_alias ("b", "break", class_run, 1);
16138 add_com_alias ("br", "break", class_run, 1);
16139 add_com_alias ("bre", "break", class_run, 1);
16140 add_com_alias ("brea", "break", class_run, 1);
16141
16142 if (xdb_commands)
16143 add_com_alias ("ba", "break", class_breakpoint, 1);
16144
16145 if (dbx_commands)
16146 {
16147 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16148 Break in function/address or break at a line in the current file."),
16149 &stoplist, "stop ", 1, &cmdlist);
16150 add_cmd ("in", class_breakpoint, stopin_command,
16151 _("Break in function or address."), &stoplist);
16152 add_cmd ("at", class_breakpoint, stopat_command,
16153 _("Break at a line in the current file."), &stoplist);
16154 add_com ("status", class_info, breakpoints_info, _("\
16155 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16156 The \"Type\" column indicates one of:\n\
16157 \tbreakpoint - normal breakpoint\n\
16158 \twatchpoint - watchpoint\n\
16159 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16160 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16161 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16162 address and file/line number respectively.\n\
16163 \n\
16164 Convenience variable \"$_\" and default examine address for \"x\"\n\
16165 are set to the address of the last breakpoint listed unless the command\n\
16166 is prefixed with \"server \".\n\n\
16167 Convenience variable \"$bpnum\" contains the number of the last\n\
16168 breakpoint set."));
16169 }
16170
16171 add_info ("breakpoints", breakpoints_info, _("\
16172 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16173 The \"Type\" column indicates one of:\n\
16174 \tbreakpoint - normal breakpoint\n\
16175 \twatchpoint - watchpoint\n\
16176 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16177 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16178 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16179 address and file/line number respectively.\n\
16180 \n\
16181 Convenience variable \"$_\" and default examine address for \"x\"\n\
16182 are set to the address of the last breakpoint listed unless the command\n\
16183 is prefixed with \"server \".\n\n\
16184 Convenience variable \"$bpnum\" contains the number of the last\n\
16185 breakpoint set."));
16186
16187 add_info_alias ("b", "breakpoints", 1);
16188
16189 if (xdb_commands)
16190 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16191 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16192 The \"Type\" column indicates one of:\n\
16193 \tbreakpoint - normal breakpoint\n\
16194 \twatchpoint - watchpoint\n\
16195 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16196 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16197 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16198 address and file/line number respectively.\n\
16199 \n\
16200 Convenience variable \"$_\" and default examine address for \"x\"\n\
16201 are set to the address of the last breakpoint listed unless the command\n\
16202 is prefixed with \"server \".\n\n\
16203 Convenience variable \"$bpnum\" contains the number of the last\n\
16204 breakpoint set."));
16205
16206 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16207 Status of all breakpoints, or breakpoint number NUMBER.\n\
16208 The \"Type\" column indicates one of:\n\
16209 \tbreakpoint - normal breakpoint\n\
16210 \twatchpoint - watchpoint\n\
16211 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16212 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16213 \tuntil - internal breakpoint used by the \"until\" command\n\
16214 \tfinish - internal breakpoint used by the \"finish\" command\n\
16215 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16216 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16217 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16218 address and file/line number respectively.\n\
16219 \n\
16220 Convenience variable \"$_\" and default examine address for \"x\"\n\
16221 are set to the address of the last breakpoint listed unless the command\n\
16222 is prefixed with \"server \".\n\n\
16223 Convenience variable \"$bpnum\" contains the number of the last\n\
16224 breakpoint set."),
16225 &maintenanceinfolist);
16226
16227 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16228 Set catchpoints to catch events."),
16229 &catch_cmdlist, "catch ",
16230 0/*allow-unknown*/, &cmdlist);
16231
16232 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16233 Set temporary catchpoints to catch events."),
16234 &tcatch_cmdlist, "tcatch ",
16235 0/*allow-unknown*/, &cmdlist);
16236
16237 add_catch_command ("fork", _("Catch calls to fork."),
16238 catch_fork_command_1,
16239 NULL,
16240 (void *) (uintptr_t) catch_fork_permanent,
16241 (void *) (uintptr_t) catch_fork_temporary);
16242 add_catch_command ("vfork", _("Catch calls to vfork."),
16243 catch_fork_command_1,
16244 NULL,
16245 (void *) (uintptr_t) catch_vfork_permanent,
16246 (void *) (uintptr_t) catch_vfork_temporary);
16247 add_catch_command ("exec", _("Catch calls to exec."),
16248 catch_exec_command_1,
16249 NULL,
16250 CATCH_PERMANENT,
16251 CATCH_TEMPORARY);
16252 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16253 Usage: catch load [REGEX]\n\
16254 If REGEX is given, only stop for libraries matching the regular expression."),
16255 catch_load_command_1,
16256 NULL,
16257 CATCH_PERMANENT,
16258 CATCH_TEMPORARY);
16259 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16260 Usage: catch unload [REGEX]\n\
16261 If REGEX is given, only stop for libraries matching the regular expression."),
16262 catch_unload_command_1,
16263 NULL,
16264 CATCH_PERMANENT,
16265 CATCH_TEMPORARY);
16266 add_catch_command ("syscall", _("\
16267 Catch system calls by their names and/or numbers.\n\
16268 Arguments say which system calls to catch. If no arguments\n\
16269 are given, every system call will be caught.\n\
16270 Arguments, if given, should be one or more system call names\n\
16271 (if your system supports that), or system call numbers."),
16272 catch_syscall_command_1,
16273 catch_syscall_completer,
16274 CATCH_PERMANENT,
16275 CATCH_TEMPORARY);
16276
16277 c = add_com ("watch", class_breakpoint, watch_command, _("\
16278 Set a watchpoint for an expression.\n\
16279 Usage: watch [-l|-location] EXPRESSION\n\
16280 A watchpoint stops execution of your program whenever the value of\n\
16281 an expression changes.\n\
16282 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16283 the memory to which it refers."));
16284 set_cmd_completer (c, expression_completer);
16285
16286 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16287 Set a read watchpoint for an expression.\n\
16288 Usage: rwatch [-l|-location] EXPRESSION\n\
16289 A watchpoint stops execution of your program whenever the value of\n\
16290 an expression is read.\n\
16291 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16292 the memory to which it refers."));
16293 set_cmd_completer (c, expression_completer);
16294
16295 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16296 Set a watchpoint for an expression.\n\
16297 Usage: awatch [-l|-location] EXPRESSION\n\
16298 A watchpoint stops execution of your program whenever the value of\n\
16299 an expression is either read or written.\n\
16300 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16301 the memory to which it refers."));
16302 set_cmd_completer (c, expression_completer);
16303
16304 add_info ("watchpoints", watchpoints_info, _("\
16305 Status of specified watchpoints (all watchpoints if no argument)."));
16306
16307 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16308 respond to changes - contrary to the description. */
16309 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16310 &can_use_hw_watchpoints, _("\
16311 Set debugger's willingness to use watchpoint hardware."), _("\
16312 Show debugger's willingness to use watchpoint hardware."), _("\
16313 If zero, gdb will not use hardware for new watchpoints, even if\n\
16314 such is available. (However, any hardware watchpoints that were\n\
16315 created before setting this to nonzero, will continue to use watchpoint\n\
16316 hardware.)"),
16317 NULL,
16318 show_can_use_hw_watchpoints,
16319 &setlist, &showlist);
16320
16321 can_use_hw_watchpoints = 1;
16322
16323 /* Tracepoint manipulation commands. */
16324
16325 c = add_com ("trace", class_breakpoint, trace_command, _("\
16326 Set a tracepoint at specified line or function.\n\
16327 \n"
16328 BREAK_ARGS_HELP ("trace") "\n\
16329 Do \"help tracepoints\" for info on other tracepoint commands."));
16330 set_cmd_completer (c, location_completer);
16331
16332 add_com_alias ("tp", "trace", class_alias, 0);
16333 add_com_alias ("tr", "trace", class_alias, 1);
16334 add_com_alias ("tra", "trace", class_alias, 1);
16335 add_com_alias ("trac", "trace", class_alias, 1);
16336
16337 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16338 Set a fast tracepoint at specified line or function.\n\
16339 \n"
16340 BREAK_ARGS_HELP ("ftrace") "\n\
16341 Do \"help tracepoints\" for info on other tracepoint commands."));
16342 set_cmd_completer (c, location_completer);
16343
16344 c = add_com ("strace", class_breakpoint, strace_command, _("\
16345 Set a static tracepoint at specified line, function or marker.\n\
16346 \n\
16347 strace [LOCATION] [if CONDITION]\n\
16348 LOCATION may be a line number, function name, \"*\" and an address,\n\
16349 or -m MARKER_ID.\n\
16350 If a line number is specified, probe the marker at start of code\n\
16351 for that line. If a function is specified, probe the marker at start\n\
16352 of code for that function. If an address is specified, probe the marker\n\
16353 at that exact address. If a marker id is specified, probe the marker\n\
16354 with that name. With no LOCATION, uses current execution address of\n\
16355 the selected stack frame.\n\
16356 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16357 This collects arbitrary user data passed in the probe point call to the\n\
16358 tracing library. You can inspect it when analyzing the trace buffer,\n\
16359 by printing the $_sdata variable like any other convenience variable.\n\
16360 \n\
16361 CONDITION is a boolean expression.\n\
16362 \n\
16363 Multiple tracepoints at one place are permitted, and useful if their\n\
16364 conditions are different.\n\
16365 \n\
16366 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16367 Do \"help tracepoints\" for info on other tracepoint commands."));
16368 set_cmd_completer (c, location_completer);
16369
16370 add_info ("tracepoints", tracepoints_info, _("\
16371 Status of specified tracepoints (all tracepoints if no argument).\n\
16372 Convenience variable \"$tpnum\" contains the number of the\n\
16373 last tracepoint set."));
16374
16375 add_info_alias ("tp", "tracepoints", 1);
16376
16377 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16378 Delete specified tracepoints.\n\
16379 Arguments are tracepoint numbers, separated by spaces.\n\
16380 No argument means delete all tracepoints."),
16381 &deletelist);
16382 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16383
16384 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16385 Disable specified tracepoints.\n\
16386 Arguments are tracepoint numbers, separated by spaces.\n\
16387 No argument means disable all tracepoints."),
16388 &disablelist);
16389 deprecate_cmd (c, "disable");
16390
16391 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16392 Enable specified tracepoints.\n\
16393 Arguments are tracepoint numbers, separated by spaces.\n\
16394 No argument means enable all tracepoints."),
16395 &enablelist);
16396 deprecate_cmd (c, "enable");
16397
16398 add_com ("passcount", class_trace, trace_pass_command, _("\
16399 Set the passcount for a tracepoint.\n\
16400 The trace will end when the tracepoint has been passed 'count' times.\n\
16401 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16402 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16403
16404 add_prefix_cmd ("save", class_breakpoint, save_command,
16405 _("Save breakpoint definitions as a script."),
16406 &save_cmdlist, "save ",
16407 0/*allow-unknown*/, &cmdlist);
16408
16409 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16410 Save current breakpoint definitions as a script.\n\
16411 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16412 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16413 session to restore them."),
16414 &save_cmdlist);
16415 set_cmd_completer (c, filename_completer);
16416
16417 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16418 Save current tracepoint definitions as a script.\n\
16419 Use the 'source' command in another debug session to restore them."),
16420 &save_cmdlist);
16421 set_cmd_completer (c, filename_completer);
16422
16423 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16424 deprecate_cmd (c, "save tracepoints");
16425
16426 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16427 Breakpoint specific settings\n\
16428 Configure various breakpoint-specific variables such as\n\
16429 pending breakpoint behavior"),
16430 &breakpoint_set_cmdlist, "set breakpoint ",
16431 0/*allow-unknown*/, &setlist);
16432 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16433 Breakpoint specific settings\n\
16434 Configure various breakpoint-specific variables such as\n\
16435 pending breakpoint behavior"),
16436 &breakpoint_show_cmdlist, "show breakpoint ",
16437 0/*allow-unknown*/, &showlist);
16438
16439 add_setshow_auto_boolean_cmd ("pending", no_class,
16440 &pending_break_support, _("\
16441 Set debugger's behavior regarding pending breakpoints."), _("\
16442 Show debugger's behavior regarding pending breakpoints."), _("\
16443 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16444 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16445 an error. If auto, an unrecognized breakpoint location results in a\n\
16446 user-query to see if a pending breakpoint should be created."),
16447 NULL,
16448 show_pending_break_support,
16449 &breakpoint_set_cmdlist,
16450 &breakpoint_show_cmdlist);
16451
16452 pending_break_support = AUTO_BOOLEAN_AUTO;
16453
16454 add_setshow_boolean_cmd ("auto-hw", no_class,
16455 &automatic_hardware_breakpoints, _("\
16456 Set automatic usage of hardware breakpoints."), _("\
16457 Show automatic usage of hardware breakpoints."), _("\
16458 If set, the debugger will automatically use hardware breakpoints for\n\
16459 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16460 a warning will be emitted for such breakpoints."),
16461 NULL,
16462 show_automatic_hardware_breakpoints,
16463 &breakpoint_set_cmdlist,
16464 &breakpoint_show_cmdlist);
16465
16466 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16467 &always_inserted_mode, _("\
16468 Set mode for inserting breakpoints."), _("\
16469 Show mode for inserting breakpoints."), _("\
16470 When this mode is off, breakpoints are inserted in inferior when it is\n\
16471 resumed, and removed when execution stops. When this mode is on,\n\
16472 breakpoints are inserted immediately and removed only when the user\n\
16473 deletes the breakpoint. When this mode is auto (which is the default),\n\
16474 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16475 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16476 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16477 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16478 NULL,
16479 &show_always_inserted_mode,
16480 &breakpoint_set_cmdlist,
16481 &breakpoint_show_cmdlist);
16482
16483 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16484 condition_evaluation_enums,
16485 &condition_evaluation_mode_1, _("\
16486 Set mode of breakpoint condition evaluation."), _("\
16487 Show mode of breakpoint condition evaluation."), _("\
16488 When this is set to \"host\", breakpoint conditions will be\n\
16489 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16490 breakpoint conditions will be downloaded to the target (if the target\n\
16491 supports such feature) and conditions will be evaluated on the target's side.\n\
16492 If this is set to \"auto\" (default), this will be automatically set to\n\
16493 \"target\" if it supports condition evaluation, otherwise it will\n\
16494 be set to \"gdb\""),
16495 &set_condition_evaluation_mode,
16496 &show_condition_evaluation_mode,
16497 &breakpoint_set_cmdlist,
16498 &breakpoint_show_cmdlist);
16499
16500 add_com ("break-range", class_breakpoint, break_range_command, _("\
16501 Set a breakpoint for an address range.\n\
16502 break-range START-LOCATION, END-LOCATION\n\
16503 where START-LOCATION and END-LOCATION can be one of the following:\n\
16504 LINENUM, for that line in the current file,\n\
16505 FILE:LINENUM, for that line in that file,\n\
16506 +OFFSET, for that number of lines after the current line\n\
16507 or the start of the range\n\
16508 FUNCTION, for the first line in that function,\n\
16509 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16510 *ADDRESS, for the instruction at that address.\n\
16511 \n\
16512 The breakpoint will stop execution of the inferior whenever it executes\n\
16513 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16514 range (including START-LOCATION and END-LOCATION)."));
16515
16516 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16517 Set a dynamic printf at specified line or function.\n\
16518 dprintf location,format string,arg1,arg2,...\n\
16519 location may be a line number, function name, or \"*\" and an address.\n\
16520 If a line number is specified, break at start of code for that line.\n\
16521 If a function is specified, break at start of code for that function."));
16522 set_cmd_completer (c, location_completer);
16523
16524 add_setshow_enum_cmd ("dprintf-style", class_support,
16525 dprintf_style_enums, &dprintf_style, _("\
16526 Set the style of usage for dynamic printf."), _("\
16527 Show the style of usage for dynamic printf."), _("\
16528 This setting chooses how GDB will do a dynamic printf.\n\
16529 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16530 console, as with the \"printf\" command.\n\
16531 If the value is \"call\", the print is done by calling a function in your\n\
16532 program; by default printf(), but you can choose a different function or\n\
16533 output stream by setting dprintf-function and dprintf-channel."),
16534 update_dprintf_commands, NULL,
16535 &setlist, &showlist);
16536
16537 dprintf_function = xstrdup ("printf");
16538 add_setshow_string_cmd ("dprintf-function", class_support,
16539 &dprintf_function, _("\
16540 Set the function to use for dynamic printf"), _("\
16541 Show the function to use for dynamic printf"), NULL,
16542 update_dprintf_commands, NULL,
16543 &setlist, &showlist);
16544
16545 dprintf_channel = xstrdup ("");
16546 add_setshow_string_cmd ("dprintf-channel", class_support,
16547 &dprintf_channel, _("\
16548 Set the channel to use for dynamic printf"), _("\
16549 Show the channel to use for dynamic printf"), NULL,
16550 update_dprintf_commands, NULL,
16551 &setlist, &showlist);
16552
16553 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16554 &disconnected_dprintf, _("\
16555 Set whether dprintf continues after GDB disconnects."), _("\
16556 Show whether dprintf continues after GDB disconnects."), _("\
16557 Use this to let dprintf commands continue to hit and produce output\n\
16558 even if GDB disconnects or detaches from the target."),
16559 NULL,
16560 NULL,
16561 &setlist, &showlist);
16562
16563 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16564 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16565 (target agent only) This is useful for formatted output in user-defined commands."));
16566
16567 automatic_hardware_breakpoints = 1;
16568
16569 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16570 }
This page took 0.665064 seconds and 5 git commands to generate.