PR17431: following execs with "breakpoint always-inserted on"
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "exceptions.h"
55 #include "memattr.h"
56 #include "ada-lang.h"
57 #include "top.h"
58 #include "valprint.h"
59 #include "jit.h"
60 #include "xml-syscall.h"
61 #include "parser-defs.h"
62 #include "gdb_regex.h"
63 #include "probe.h"
64 #include "cli/cli-utils.h"
65 #include "continuations.h"
66 #include "stack.h"
67 #include "skip.h"
68 #include "ax-gdb.h"
69 #include "dummy-frame.h"
70
71 #include "format.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82
83 /* Enums for exception-handling support. */
84 enum exception_event_kind
85 {
86 EX_EVENT_THROW,
87 EX_EVENT_RETHROW,
88 EX_EVENT_CATCH
89 };
90
91 /* Prototypes for local functions. */
92
93 static void enable_delete_command (char *, int);
94
95 static void enable_once_command (char *, int);
96
97 static void enable_count_command (char *, int);
98
99 static void disable_command (char *, int);
100
101 static void enable_command (char *, int);
102
103 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
104 void *),
105 void *);
106
107 static void ignore_command (char *, int);
108
109 static int breakpoint_re_set_one (void *);
110
111 static void breakpoint_re_set_default (struct breakpoint *);
112
113 static void create_sals_from_address_default (char **,
114 struct linespec_result *,
115 enum bptype, char *,
116 char **);
117
118 static void create_breakpoints_sal_default (struct gdbarch *,
119 struct linespec_result *,
120 char *, char *, enum bptype,
121 enum bpdisp, int, int,
122 int,
123 const struct breakpoint_ops *,
124 int, int, int, unsigned);
125
126 static void decode_linespec_default (struct breakpoint *, char **,
127 struct symtabs_and_lines *);
128
129 static void clear_command (char *, int);
130
131 static void catch_command (char *, int);
132
133 static int can_use_hardware_watchpoint (struct value *);
134
135 static void break_command_1 (char *, int, int);
136
137 static void mention (struct breakpoint *);
138
139 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
140 enum bptype,
141 const struct breakpoint_ops *);
142 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
143 const struct symtab_and_line *);
144
145 /* This function is used in gdbtk sources and thus can not be made
146 static. */
147 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
148 struct symtab_and_line,
149 enum bptype,
150 const struct breakpoint_ops *);
151
152 static struct breakpoint *
153 momentary_breakpoint_from_master (struct breakpoint *orig,
154 enum bptype type,
155 const struct breakpoint_ops *ops,
156 int loc_enabled);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static int find_single_step_breakpoint (struct address_space *aspace,
232 CORE_ADDR pc);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 /* update_global_location_list's modes of operation wrt to whether to
241 insert locations now. */
242 enum ugll_insert_mode
243 {
244 /* Don't insert any breakpoint locations into the inferior, only
245 remove already-inserted locations that no longer should be
246 inserted. Functions that delete a breakpoint or breakpoints
247 should specify this mode, so that deleting a breakpoint doesn't
248 have the side effect of inserting the locations of other
249 breakpoints that are marked not-inserted, but should_be_inserted
250 returns true on them.
251
252 This behavior is useful is situations close to tear-down -- e.g.,
253 after an exec, while the target still has execution, but
254 breakpoint shadows of the previous executable image should *NOT*
255 be restored to the new image; or before detaching, where the
256 target still has execution and wants to delete breakpoints from
257 GDB's lists, and all breakpoints had already been removed from
258 the inferior. */
259 UGLL_DONT_INSERT,
260
261 /* May insert breakpoints iff breakpoints_should_be_inserted_now
262 claims breakpoints should be inserted now. */
263 UGLL_MAY_INSERT,
264
265 /* Insert locations now, irrespective of
266 breakpoints_should_be_inserted_now. E.g., say all threads are
267 stopped right now, and the user did "continue". We need to
268 insert breakpoints _before_ resuming the target, but
269 UGLL_MAY_INSERT wouldn't insert them, because
270 breakpoints_should_be_inserted_now returns false at that point,
271 as no thread is running yet. */
272 UGLL_INSERT
273 };
274
275 static void update_global_location_list (enum ugll_insert_mode);
276
277 static void update_global_location_list_nothrow (enum ugll_insert_mode);
278
279 static int is_hardware_watchpoint (const struct breakpoint *bpt);
280
281 static void insert_breakpoint_locations (void);
282
283 static int syscall_catchpoint_p (struct breakpoint *b);
284
285 static void tracepoints_info (char *, int);
286
287 static void delete_trace_command (char *, int);
288
289 static void enable_trace_command (char *, int);
290
291 static void disable_trace_command (char *, int);
292
293 static void trace_pass_command (char *, int);
294
295 static void set_tracepoint_count (int num);
296
297 static int is_masked_watchpoint (const struct breakpoint *b);
298
299 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
300
301 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
302 otherwise. */
303
304 static int strace_marker_p (struct breakpoint *b);
305
306 /* The abstract base class all breakpoint_ops structures inherit
307 from. */
308 struct breakpoint_ops base_breakpoint_ops;
309
310 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
311 that are implemented on top of software or hardware breakpoints
312 (user breakpoints, internal and momentary breakpoints, etc.). */
313 static struct breakpoint_ops bkpt_base_breakpoint_ops;
314
315 /* Internal breakpoints class type. */
316 static struct breakpoint_ops internal_breakpoint_ops;
317
318 /* Momentary breakpoints class type. */
319 static struct breakpoint_ops momentary_breakpoint_ops;
320
321 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
322 static struct breakpoint_ops longjmp_breakpoint_ops;
323
324 /* The breakpoint_ops structure to be used in regular user created
325 breakpoints. */
326 struct breakpoint_ops bkpt_breakpoint_ops;
327
328 /* Breakpoints set on probes. */
329 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
330
331 /* Dynamic printf class type. */
332 struct breakpoint_ops dprintf_breakpoint_ops;
333
334 /* One (or perhaps two) breakpoints used for software single
335 stepping. */
336
337 static void *single_step_breakpoints[2];
338 static struct gdbarch *single_step_gdbarch[2];
339
340 /* The style in which to perform a dynamic printf. This is a user
341 option because different output options have different tradeoffs;
342 if GDB does the printing, there is better error handling if there
343 is a problem with any of the arguments, but using an inferior
344 function lets you have special-purpose printers and sending of
345 output to the same place as compiled-in print functions. */
346
347 static const char dprintf_style_gdb[] = "gdb";
348 static const char dprintf_style_call[] = "call";
349 static const char dprintf_style_agent[] = "agent";
350 static const char *const dprintf_style_enums[] = {
351 dprintf_style_gdb,
352 dprintf_style_call,
353 dprintf_style_agent,
354 NULL
355 };
356 static const char *dprintf_style = dprintf_style_gdb;
357
358 /* The function to use for dynamic printf if the preferred style is to
359 call into the inferior. The value is simply a string that is
360 copied into the command, so it can be anything that GDB can
361 evaluate to a callable address, not necessarily a function name. */
362
363 static char *dprintf_function = "";
364
365 /* The channel to use for dynamic printf if the preferred style is to
366 call into the inferior; if a nonempty string, it will be passed to
367 the call as the first argument, with the format string as the
368 second. As with the dprintf function, this can be anything that
369 GDB knows how to evaluate, so in addition to common choices like
370 "stderr", this could be an app-specific expression like
371 "mystreams[curlogger]". */
372
373 static char *dprintf_channel = "";
374
375 /* True if dprintf commands should continue to operate even if GDB
376 has disconnected. */
377 static int disconnected_dprintf = 1;
378
379 /* A reference-counted struct command_line. This lets multiple
380 breakpoints share a single command list. */
381 struct counted_command_line
382 {
383 /* The reference count. */
384 int refc;
385
386 /* The command list. */
387 struct command_line *commands;
388 };
389
390 struct command_line *
391 breakpoint_commands (struct breakpoint *b)
392 {
393 return b->commands ? b->commands->commands : NULL;
394 }
395
396 /* Flag indicating that a command has proceeded the inferior past the
397 current breakpoint. */
398
399 static int breakpoint_proceeded;
400
401 const char *
402 bpdisp_text (enum bpdisp disp)
403 {
404 /* NOTE: the following values are a part of MI protocol and
405 represent values of 'disp' field returned when inferior stops at
406 a breakpoint. */
407 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
408
409 return bpdisps[(int) disp];
410 }
411
412 /* Prototypes for exported functions. */
413 /* If FALSE, gdb will not use hardware support for watchpoints, even
414 if such is available. */
415 static int can_use_hw_watchpoints;
416
417 static void
418 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's willingness to use "
424 "watchpoint hardware is %s.\n"),
425 value);
426 }
427
428 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
429 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
430 for unrecognized breakpoint locations.
431 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
432 static enum auto_boolean pending_break_support;
433 static void
434 show_pending_break_support (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Debugger's behavior regarding "
440 "pending breakpoints is %s.\n"),
441 value);
442 }
443
444 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
445 set with "break" but falling in read-only memory.
446 If 0, gdb will warn about such breakpoints, but won't automatically
447 use hardware breakpoints. */
448 static int automatic_hardware_breakpoints;
449 static void
450 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
451 struct cmd_list_element *c,
452 const char *value)
453 {
454 fprintf_filtered (file,
455 _("Automatic usage of hardware breakpoints is %s.\n"),
456 value);
457 }
458
459 /* If on, GDB keeps breakpoints inserted even if the inferior is
460 stopped, and immediately inserts any new breakpoints as soon as
461 they're created. If off (default), GDB keeps breakpoints off of
462 the target as long as possible. That is, it delays inserting
463 breakpoints until the next resume, and removes them again when the
464 target fully stops. This is a bit safer in case GDB crashes while
465 processing user input. */
466 static int always_inserted_mode = 0;
467
468 static void
469 show_always_inserted_mode (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c, const char *value)
471 {
472 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
473 value);
474 }
475
476 int
477 breakpoints_should_be_inserted_now (void)
478 {
479 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
480 {
481 /* If breakpoints are global, they should be inserted even if no
482 thread under gdb's control is running, or even if there are
483 no threads under GDB's control yet. */
484 return 1;
485 }
486 else if (target_has_execution)
487 {
488 struct thread_info *tp;
489
490 if (always_inserted_mode)
491 {
492 /* The user wants breakpoints inserted even if all threads
493 are stopped. */
494 return 1;
495 }
496
497 ALL_NON_EXITED_THREADS (tp)
498 {
499 if (tp->executing)
500 return 1;
501 }
502 }
503 return 0;
504 }
505
506 static const char condition_evaluation_both[] = "host or target";
507
508 /* Modes for breakpoint condition evaluation. */
509 static const char condition_evaluation_auto[] = "auto";
510 static const char condition_evaluation_host[] = "host";
511 static const char condition_evaluation_target[] = "target";
512 static const char *const condition_evaluation_enums[] = {
513 condition_evaluation_auto,
514 condition_evaluation_host,
515 condition_evaluation_target,
516 NULL
517 };
518
519 /* Global that holds the current mode for breakpoint condition evaluation. */
520 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
521
522 /* Global that we use to display information to the user (gets its value from
523 condition_evaluation_mode_1. */
524 static const char *condition_evaluation_mode = condition_evaluation_auto;
525
526 /* Translate a condition evaluation mode MODE into either "host"
527 or "target". This is used mostly to translate from "auto" to the
528 real setting that is being used. It returns the translated
529 evaluation mode. */
530
531 static const char *
532 translate_condition_evaluation_mode (const char *mode)
533 {
534 if (mode == condition_evaluation_auto)
535 {
536 if (target_supports_evaluation_of_breakpoint_conditions ())
537 return condition_evaluation_target;
538 else
539 return condition_evaluation_host;
540 }
541 else
542 return mode;
543 }
544
545 /* Discovers what condition_evaluation_auto translates to. */
546
547 static const char *
548 breakpoint_condition_evaluation_mode (void)
549 {
550 return translate_condition_evaluation_mode (condition_evaluation_mode);
551 }
552
553 /* Return true if GDB should evaluate breakpoint conditions or false
554 otherwise. */
555
556 static int
557 gdb_evaluates_breakpoint_condition_p (void)
558 {
559 const char *mode = breakpoint_condition_evaluation_mode ();
560
561 return (mode == condition_evaluation_host);
562 }
563
564 void _initialize_breakpoint (void);
565
566 /* Are we executing breakpoint commands? */
567 static int executing_breakpoint_commands;
568
569 /* Are overlay event breakpoints enabled? */
570 static int overlay_events_enabled;
571
572 /* See description in breakpoint.h. */
573 int target_exact_watchpoints = 0;
574
575 /* Walk the following statement or block through all breakpoints.
576 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
577 current breakpoint. */
578
579 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
580
581 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
582 for (B = breakpoint_chain; \
583 B ? (TMP=B->next, 1): 0; \
584 B = TMP)
585
586 /* Similar iterator for the low-level breakpoints. SAFE variant is
587 not provided so update_global_location_list must not be called
588 while executing the block of ALL_BP_LOCATIONS. */
589
590 #define ALL_BP_LOCATIONS(B,BP_TMP) \
591 for (BP_TMP = bp_location; \
592 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
593 BP_TMP++)
594
595 /* Iterates through locations with address ADDRESS for the currently selected
596 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
597 to where the loop should start from.
598 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
599 appropriate location to start with. */
600
601 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
602 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
603 BP_LOCP_TMP = BP_LOCP_START; \
604 BP_LOCP_START \
605 && (BP_LOCP_TMP < bp_location + bp_location_count \
606 && (*BP_LOCP_TMP)->address == ADDRESS); \
607 BP_LOCP_TMP++)
608
609 /* Iterator for tracepoints only. */
610
611 #define ALL_TRACEPOINTS(B) \
612 for (B = breakpoint_chain; B; B = B->next) \
613 if (is_tracepoint (B))
614
615 /* Chains of all breakpoints defined. */
616
617 struct breakpoint *breakpoint_chain;
618
619 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
620
621 static struct bp_location **bp_location;
622
623 /* Number of elements of BP_LOCATION. */
624
625 static unsigned bp_location_count;
626
627 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
628 ADDRESS for the current elements of BP_LOCATION which get a valid
629 result from bp_location_has_shadow. You can use it for roughly
630 limiting the subrange of BP_LOCATION to scan for shadow bytes for
631 an address you need to read. */
632
633 static CORE_ADDR bp_location_placed_address_before_address_max;
634
635 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
636 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
637 BP_LOCATION which get a valid result from bp_location_has_shadow.
638 You can use it for roughly limiting the subrange of BP_LOCATION to
639 scan for shadow bytes for an address you need to read. */
640
641 static CORE_ADDR bp_location_shadow_len_after_address_max;
642
643 /* The locations that no longer correspond to any breakpoint, unlinked
644 from bp_location array, but for which a hit may still be reported
645 by a target. */
646 VEC(bp_location_p) *moribund_locations = NULL;
647
648 /* Number of last breakpoint made. */
649
650 static int breakpoint_count;
651
652 /* The value of `breakpoint_count' before the last command that
653 created breakpoints. If the last (break-like) command created more
654 than one breakpoint, then the difference between BREAKPOINT_COUNT
655 and PREV_BREAKPOINT_COUNT is more than one. */
656 static int prev_breakpoint_count;
657
658 /* Number of last tracepoint made. */
659
660 static int tracepoint_count;
661
662 static struct cmd_list_element *breakpoint_set_cmdlist;
663 static struct cmd_list_element *breakpoint_show_cmdlist;
664 struct cmd_list_element *save_cmdlist;
665
666 /* Return whether a breakpoint is an active enabled breakpoint. */
667 static int
668 breakpoint_enabled (struct breakpoint *b)
669 {
670 return (b->enable_state == bp_enabled);
671 }
672
673 /* Set breakpoint count to NUM. */
674
675 static void
676 set_breakpoint_count (int num)
677 {
678 prev_breakpoint_count = breakpoint_count;
679 breakpoint_count = num;
680 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
681 }
682
683 /* Used by `start_rbreak_breakpoints' below, to record the current
684 breakpoint count before "rbreak" creates any breakpoint. */
685 static int rbreak_start_breakpoint_count;
686
687 /* Called at the start an "rbreak" command to record the first
688 breakpoint made. */
689
690 void
691 start_rbreak_breakpoints (void)
692 {
693 rbreak_start_breakpoint_count = breakpoint_count;
694 }
695
696 /* Called at the end of an "rbreak" command to record the last
697 breakpoint made. */
698
699 void
700 end_rbreak_breakpoints (void)
701 {
702 prev_breakpoint_count = rbreak_start_breakpoint_count;
703 }
704
705 /* Used in run_command to zero the hit count when a new run starts. */
706
707 void
708 clear_breakpoint_hit_counts (void)
709 {
710 struct breakpoint *b;
711
712 ALL_BREAKPOINTS (b)
713 b->hit_count = 0;
714 }
715
716 /* Allocate a new counted_command_line with reference count of 1.
717 The new structure owns COMMANDS. */
718
719 static struct counted_command_line *
720 alloc_counted_command_line (struct command_line *commands)
721 {
722 struct counted_command_line *result
723 = xmalloc (sizeof (struct counted_command_line));
724
725 result->refc = 1;
726 result->commands = commands;
727 return result;
728 }
729
730 /* Increment reference count. This does nothing if CMD is NULL. */
731
732 static void
733 incref_counted_command_line (struct counted_command_line *cmd)
734 {
735 if (cmd)
736 ++cmd->refc;
737 }
738
739 /* Decrement reference count. If the reference count reaches 0,
740 destroy the counted_command_line. Sets *CMDP to NULL. This does
741 nothing if *CMDP is NULL. */
742
743 static void
744 decref_counted_command_line (struct counted_command_line **cmdp)
745 {
746 if (*cmdp)
747 {
748 if (--(*cmdp)->refc == 0)
749 {
750 free_command_lines (&(*cmdp)->commands);
751 xfree (*cmdp);
752 }
753 *cmdp = NULL;
754 }
755 }
756
757 /* A cleanup function that calls decref_counted_command_line. */
758
759 static void
760 do_cleanup_counted_command_line (void *arg)
761 {
762 decref_counted_command_line (arg);
763 }
764
765 /* Create a cleanup that calls decref_counted_command_line on the
766 argument. */
767
768 static struct cleanup *
769 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
770 {
771 return make_cleanup (do_cleanup_counted_command_line, cmdp);
772 }
773
774 \f
775 /* Return the breakpoint with the specified number, or NULL
776 if the number does not refer to an existing breakpoint. */
777
778 struct breakpoint *
779 get_breakpoint (int num)
780 {
781 struct breakpoint *b;
782
783 ALL_BREAKPOINTS (b)
784 if (b->number == num)
785 return b;
786
787 return NULL;
788 }
789
790 \f
791
792 /* Mark locations as "conditions have changed" in case the target supports
793 evaluating conditions on its side. */
794
795 static void
796 mark_breakpoint_modified (struct breakpoint *b)
797 {
798 struct bp_location *loc;
799
800 /* This is only meaningful if the target is
801 evaluating conditions and if the user has
802 opted for condition evaluation on the target's
803 side. */
804 if (gdb_evaluates_breakpoint_condition_p ()
805 || !target_supports_evaluation_of_breakpoint_conditions ())
806 return;
807
808 if (!is_breakpoint (b))
809 return;
810
811 for (loc = b->loc; loc; loc = loc->next)
812 loc->condition_changed = condition_modified;
813 }
814
815 /* Mark location as "conditions have changed" in case the target supports
816 evaluating conditions on its side. */
817
818 static void
819 mark_breakpoint_location_modified (struct bp_location *loc)
820 {
821 /* This is only meaningful if the target is
822 evaluating conditions and if the user has
823 opted for condition evaluation on the target's
824 side. */
825 if (gdb_evaluates_breakpoint_condition_p ()
826 || !target_supports_evaluation_of_breakpoint_conditions ())
827
828 return;
829
830 if (!is_breakpoint (loc->owner))
831 return;
832
833 loc->condition_changed = condition_modified;
834 }
835
836 /* Sets the condition-evaluation mode using the static global
837 condition_evaluation_mode. */
838
839 static void
840 set_condition_evaluation_mode (char *args, int from_tty,
841 struct cmd_list_element *c)
842 {
843 const char *old_mode, *new_mode;
844
845 if ((condition_evaluation_mode_1 == condition_evaluation_target)
846 && !target_supports_evaluation_of_breakpoint_conditions ())
847 {
848 condition_evaluation_mode_1 = condition_evaluation_mode;
849 warning (_("Target does not support breakpoint condition evaluation.\n"
850 "Using host evaluation mode instead."));
851 return;
852 }
853
854 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
855 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
856
857 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
858 settings was "auto". */
859 condition_evaluation_mode = condition_evaluation_mode_1;
860
861 /* Only update the mode if the user picked a different one. */
862 if (new_mode != old_mode)
863 {
864 struct bp_location *loc, **loc_tmp;
865 /* If the user switched to a different evaluation mode, we
866 need to synch the changes with the target as follows:
867
868 "host" -> "target": Send all (valid) conditions to the target.
869 "target" -> "host": Remove all the conditions from the target.
870 */
871
872 if (new_mode == condition_evaluation_target)
873 {
874 /* Mark everything modified and synch conditions with the
875 target. */
876 ALL_BP_LOCATIONS (loc, loc_tmp)
877 mark_breakpoint_location_modified (loc);
878 }
879 else
880 {
881 /* Manually mark non-duplicate locations to synch conditions
882 with the target. We do this to remove all the conditions the
883 target knows about. */
884 ALL_BP_LOCATIONS (loc, loc_tmp)
885 if (is_breakpoint (loc->owner) && loc->inserted)
886 loc->needs_update = 1;
887 }
888
889 /* Do the update. */
890 update_global_location_list (UGLL_MAY_INSERT);
891 }
892
893 return;
894 }
895
896 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
897 what "auto" is translating to. */
898
899 static void
900 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
901 struct cmd_list_element *c, const char *value)
902 {
903 if (condition_evaluation_mode == condition_evaluation_auto)
904 fprintf_filtered (file,
905 _("Breakpoint condition evaluation "
906 "mode is %s (currently %s).\n"),
907 value,
908 breakpoint_condition_evaluation_mode ());
909 else
910 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
911 value);
912 }
913
914 /* A comparison function for bp_location AP and BP that is used by
915 bsearch. This comparison function only cares about addresses, unlike
916 the more general bp_location_compare function. */
917
918 static int
919 bp_location_compare_addrs (const void *ap, const void *bp)
920 {
921 struct bp_location *a = *(void **) ap;
922 struct bp_location *b = *(void **) bp;
923
924 if (a->address == b->address)
925 return 0;
926 else
927 return ((a->address > b->address) - (a->address < b->address));
928 }
929
930 /* Helper function to skip all bp_locations with addresses
931 less than ADDRESS. It returns the first bp_location that
932 is greater than or equal to ADDRESS. If none is found, just
933 return NULL. */
934
935 static struct bp_location **
936 get_first_locp_gte_addr (CORE_ADDR address)
937 {
938 struct bp_location dummy_loc;
939 struct bp_location *dummy_locp = &dummy_loc;
940 struct bp_location **locp_found = NULL;
941
942 /* Initialize the dummy location's address field. */
943 memset (&dummy_loc, 0, sizeof (struct bp_location));
944 dummy_loc.address = address;
945
946 /* Find a close match to the first location at ADDRESS. */
947 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
948 sizeof (struct bp_location **),
949 bp_location_compare_addrs);
950
951 /* Nothing was found, nothing left to do. */
952 if (locp_found == NULL)
953 return NULL;
954
955 /* We may have found a location that is at ADDRESS but is not the first in the
956 location's list. Go backwards (if possible) and locate the first one. */
957 while ((locp_found - 1) >= bp_location
958 && (*(locp_found - 1))->address == address)
959 locp_found--;
960
961 return locp_found;
962 }
963
964 void
965 set_breakpoint_condition (struct breakpoint *b, char *exp,
966 int from_tty)
967 {
968 xfree (b->cond_string);
969 b->cond_string = NULL;
970
971 if (is_watchpoint (b))
972 {
973 struct watchpoint *w = (struct watchpoint *) b;
974
975 xfree (w->cond_exp);
976 w->cond_exp = NULL;
977 }
978 else
979 {
980 struct bp_location *loc;
981
982 for (loc = b->loc; loc; loc = loc->next)
983 {
984 xfree (loc->cond);
985 loc->cond = NULL;
986
987 /* No need to free the condition agent expression
988 bytecode (if we have one). We will handle this
989 when we go through update_global_location_list. */
990 }
991 }
992
993 if (*exp == 0)
994 {
995 if (from_tty)
996 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
997 }
998 else
999 {
1000 const char *arg = exp;
1001
1002 /* I don't know if it matters whether this is the string the user
1003 typed in or the decompiled expression. */
1004 b->cond_string = xstrdup (arg);
1005 b->condition_not_parsed = 0;
1006
1007 if (is_watchpoint (b))
1008 {
1009 struct watchpoint *w = (struct watchpoint *) b;
1010
1011 innermost_block = NULL;
1012 arg = exp;
1013 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1014 if (*arg)
1015 error (_("Junk at end of expression"));
1016 w->cond_exp_valid_block = innermost_block;
1017 }
1018 else
1019 {
1020 struct bp_location *loc;
1021
1022 for (loc = b->loc; loc; loc = loc->next)
1023 {
1024 arg = exp;
1025 loc->cond =
1026 parse_exp_1 (&arg, loc->address,
1027 block_for_pc (loc->address), 0);
1028 if (*arg)
1029 error (_("Junk at end of expression"));
1030 }
1031 }
1032 }
1033 mark_breakpoint_modified (b);
1034
1035 observer_notify_breakpoint_modified (b);
1036 }
1037
1038 /* Completion for the "condition" command. */
1039
1040 static VEC (char_ptr) *
1041 condition_completer (struct cmd_list_element *cmd,
1042 const char *text, const char *word)
1043 {
1044 const char *space;
1045
1046 text = skip_spaces_const (text);
1047 space = skip_to_space_const (text);
1048 if (*space == '\0')
1049 {
1050 int len;
1051 struct breakpoint *b;
1052 VEC (char_ptr) *result = NULL;
1053
1054 if (text[0] == '$')
1055 {
1056 /* We don't support completion of history indices. */
1057 if (isdigit (text[1]))
1058 return NULL;
1059 return complete_internalvar (&text[1]);
1060 }
1061
1062 /* We're completing the breakpoint number. */
1063 len = strlen (text);
1064
1065 ALL_BREAKPOINTS (b)
1066 {
1067 char number[50];
1068
1069 xsnprintf (number, sizeof (number), "%d", b->number);
1070
1071 if (strncmp (number, text, len) == 0)
1072 VEC_safe_push (char_ptr, result, xstrdup (number));
1073 }
1074
1075 return result;
1076 }
1077
1078 /* We're completing the expression part. */
1079 text = skip_spaces_const (space);
1080 return expression_completer (cmd, text, word);
1081 }
1082
1083 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1084
1085 static void
1086 condition_command (char *arg, int from_tty)
1087 {
1088 struct breakpoint *b;
1089 char *p;
1090 int bnum;
1091
1092 if (arg == 0)
1093 error_no_arg (_("breakpoint number"));
1094
1095 p = arg;
1096 bnum = get_number (&p);
1097 if (bnum == 0)
1098 error (_("Bad breakpoint argument: '%s'"), arg);
1099
1100 ALL_BREAKPOINTS (b)
1101 if (b->number == bnum)
1102 {
1103 /* Check if this breakpoint has a "stop" method implemented in an
1104 extension language. This method and conditions entered into GDB
1105 from the CLI are mutually exclusive. */
1106 const struct extension_language_defn *extlang
1107 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1108
1109 if (extlang != NULL)
1110 {
1111 error (_("Only one stop condition allowed. There is currently"
1112 " a %s stop condition defined for this breakpoint."),
1113 ext_lang_capitalized_name (extlang));
1114 }
1115 set_breakpoint_condition (b, p, from_tty);
1116
1117 if (is_breakpoint (b))
1118 update_global_location_list (UGLL_MAY_INSERT);
1119
1120 return;
1121 }
1122
1123 error (_("No breakpoint number %d."), bnum);
1124 }
1125
1126 /* Check that COMMAND do not contain commands that are suitable
1127 only for tracepoints and not suitable for ordinary breakpoints.
1128 Throw if any such commands is found. */
1129
1130 static void
1131 check_no_tracepoint_commands (struct command_line *commands)
1132 {
1133 struct command_line *c;
1134
1135 for (c = commands; c; c = c->next)
1136 {
1137 int i;
1138
1139 if (c->control_type == while_stepping_control)
1140 error (_("The 'while-stepping' command can "
1141 "only be used for tracepoints"));
1142
1143 for (i = 0; i < c->body_count; ++i)
1144 check_no_tracepoint_commands ((c->body_list)[i]);
1145
1146 /* Not that command parsing removes leading whitespace and comment
1147 lines and also empty lines. So, we only need to check for
1148 command directly. */
1149 if (strstr (c->line, "collect ") == c->line)
1150 error (_("The 'collect' command can only be used for tracepoints"));
1151
1152 if (strstr (c->line, "teval ") == c->line)
1153 error (_("The 'teval' command can only be used for tracepoints"));
1154 }
1155 }
1156
1157 /* Encapsulate tests for different types of tracepoints. */
1158
1159 static int
1160 is_tracepoint_type (enum bptype type)
1161 {
1162 return (type == bp_tracepoint
1163 || type == bp_fast_tracepoint
1164 || type == bp_static_tracepoint);
1165 }
1166
1167 int
1168 is_tracepoint (const struct breakpoint *b)
1169 {
1170 return is_tracepoint_type (b->type);
1171 }
1172
1173 /* A helper function that validates that COMMANDS are valid for a
1174 breakpoint. This function will throw an exception if a problem is
1175 found. */
1176
1177 static void
1178 validate_commands_for_breakpoint (struct breakpoint *b,
1179 struct command_line *commands)
1180 {
1181 if (is_tracepoint (b))
1182 {
1183 struct tracepoint *t = (struct tracepoint *) b;
1184 struct command_line *c;
1185 struct command_line *while_stepping = 0;
1186
1187 /* Reset the while-stepping step count. The previous commands
1188 might have included a while-stepping action, while the new
1189 ones might not. */
1190 t->step_count = 0;
1191
1192 /* We need to verify that each top-level element of commands is
1193 valid for tracepoints, that there's at most one
1194 while-stepping element, and that the while-stepping's body
1195 has valid tracing commands excluding nested while-stepping.
1196 We also need to validate the tracepoint action line in the
1197 context of the tracepoint --- validate_actionline actually
1198 has side effects, like setting the tracepoint's
1199 while-stepping STEP_COUNT, in addition to checking if the
1200 collect/teval actions parse and make sense in the
1201 tracepoint's context. */
1202 for (c = commands; c; c = c->next)
1203 {
1204 if (c->control_type == while_stepping_control)
1205 {
1206 if (b->type == bp_fast_tracepoint)
1207 error (_("The 'while-stepping' command "
1208 "cannot be used for fast tracepoint"));
1209 else if (b->type == bp_static_tracepoint)
1210 error (_("The 'while-stepping' command "
1211 "cannot be used for static tracepoint"));
1212
1213 if (while_stepping)
1214 error (_("The 'while-stepping' command "
1215 "can be used only once"));
1216 else
1217 while_stepping = c;
1218 }
1219
1220 validate_actionline (c->line, b);
1221 }
1222 if (while_stepping)
1223 {
1224 struct command_line *c2;
1225
1226 gdb_assert (while_stepping->body_count == 1);
1227 c2 = while_stepping->body_list[0];
1228 for (; c2; c2 = c2->next)
1229 {
1230 if (c2->control_type == while_stepping_control)
1231 error (_("The 'while-stepping' command cannot be nested"));
1232 }
1233 }
1234 }
1235 else
1236 {
1237 check_no_tracepoint_commands (commands);
1238 }
1239 }
1240
1241 /* Return a vector of all the static tracepoints set at ADDR. The
1242 caller is responsible for releasing the vector. */
1243
1244 VEC(breakpoint_p) *
1245 static_tracepoints_here (CORE_ADDR addr)
1246 {
1247 struct breakpoint *b;
1248 VEC(breakpoint_p) *found = 0;
1249 struct bp_location *loc;
1250
1251 ALL_BREAKPOINTS (b)
1252 if (b->type == bp_static_tracepoint)
1253 {
1254 for (loc = b->loc; loc; loc = loc->next)
1255 if (loc->address == addr)
1256 VEC_safe_push(breakpoint_p, found, b);
1257 }
1258
1259 return found;
1260 }
1261
1262 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1263 validate that only allowed commands are included. */
1264
1265 void
1266 breakpoint_set_commands (struct breakpoint *b,
1267 struct command_line *commands)
1268 {
1269 validate_commands_for_breakpoint (b, commands);
1270
1271 decref_counted_command_line (&b->commands);
1272 b->commands = alloc_counted_command_line (commands);
1273 observer_notify_breakpoint_modified (b);
1274 }
1275
1276 /* Set the internal `silent' flag on the breakpoint. Note that this
1277 is not the same as the "silent" that may appear in the breakpoint's
1278 commands. */
1279
1280 void
1281 breakpoint_set_silent (struct breakpoint *b, int silent)
1282 {
1283 int old_silent = b->silent;
1284
1285 b->silent = silent;
1286 if (old_silent != silent)
1287 observer_notify_breakpoint_modified (b);
1288 }
1289
1290 /* Set the thread for this breakpoint. If THREAD is -1, make the
1291 breakpoint work for any thread. */
1292
1293 void
1294 breakpoint_set_thread (struct breakpoint *b, int thread)
1295 {
1296 int old_thread = b->thread;
1297
1298 b->thread = thread;
1299 if (old_thread != thread)
1300 observer_notify_breakpoint_modified (b);
1301 }
1302
1303 /* Set the task for this breakpoint. If TASK is 0, make the
1304 breakpoint work for any task. */
1305
1306 void
1307 breakpoint_set_task (struct breakpoint *b, int task)
1308 {
1309 int old_task = b->task;
1310
1311 b->task = task;
1312 if (old_task != task)
1313 observer_notify_breakpoint_modified (b);
1314 }
1315
1316 void
1317 check_tracepoint_command (char *line, void *closure)
1318 {
1319 struct breakpoint *b = closure;
1320
1321 validate_actionline (line, b);
1322 }
1323
1324 /* A structure used to pass information through
1325 map_breakpoint_numbers. */
1326
1327 struct commands_info
1328 {
1329 /* True if the command was typed at a tty. */
1330 int from_tty;
1331
1332 /* The breakpoint range spec. */
1333 char *arg;
1334
1335 /* Non-NULL if the body of the commands are being read from this
1336 already-parsed command. */
1337 struct command_line *control;
1338
1339 /* The command lines read from the user, or NULL if they have not
1340 yet been read. */
1341 struct counted_command_line *cmd;
1342 };
1343
1344 /* A callback for map_breakpoint_numbers that sets the commands for
1345 commands_command. */
1346
1347 static void
1348 do_map_commands_command (struct breakpoint *b, void *data)
1349 {
1350 struct commands_info *info = data;
1351
1352 if (info->cmd == NULL)
1353 {
1354 struct command_line *l;
1355
1356 if (info->control != NULL)
1357 l = copy_command_lines (info->control->body_list[0]);
1358 else
1359 {
1360 struct cleanup *old_chain;
1361 char *str;
1362
1363 str = xstrprintf (_("Type commands for breakpoint(s) "
1364 "%s, one per line."),
1365 info->arg);
1366
1367 old_chain = make_cleanup (xfree, str);
1368
1369 l = read_command_lines (str,
1370 info->from_tty, 1,
1371 (is_tracepoint (b)
1372 ? check_tracepoint_command : 0),
1373 b);
1374
1375 do_cleanups (old_chain);
1376 }
1377
1378 info->cmd = alloc_counted_command_line (l);
1379 }
1380
1381 /* If a breakpoint was on the list more than once, we don't need to
1382 do anything. */
1383 if (b->commands != info->cmd)
1384 {
1385 validate_commands_for_breakpoint (b, info->cmd->commands);
1386 incref_counted_command_line (info->cmd);
1387 decref_counted_command_line (&b->commands);
1388 b->commands = info->cmd;
1389 observer_notify_breakpoint_modified (b);
1390 }
1391 }
1392
1393 static void
1394 commands_command_1 (char *arg, int from_tty,
1395 struct command_line *control)
1396 {
1397 struct cleanup *cleanups;
1398 struct commands_info info;
1399
1400 info.from_tty = from_tty;
1401 info.control = control;
1402 info.cmd = NULL;
1403 /* If we read command lines from the user, then `info' will hold an
1404 extra reference to the commands that we must clean up. */
1405 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1406
1407 if (arg == NULL || !*arg)
1408 {
1409 if (breakpoint_count - prev_breakpoint_count > 1)
1410 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1411 breakpoint_count);
1412 else if (breakpoint_count > 0)
1413 arg = xstrprintf ("%d", breakpoint_count);
1414 else
1415 {
1416 /* So that we don't try to free the incoming non-NULL
1417 argument in the cleanup below. Mapping breakpoint
1418 numbers will fail in this case. */
1419 arg = NULL;
1420 }
1421 }
1422 else
1423 /* The command loop has some static state, so we need to preserve
1424 our argument. */
1425 arg = xstrdup (arg);
1426
1427 if (arg != NULL)
1428 make_cleanup (xfree, arg);
1429
1430 info.arg = arg;
1431
1432 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1433
1434 if (info.cmd == NULL)
1435 error (_("No breakpoints specified."));
1436
1437 do_cleanups (cleanups);
1438 }
1439
1440 static void
1441 commands_command (char *arg, int from_tty)
1442 {
1443 commands_command_1 (arg, from_tty, NULL);
1444 }
1445
1446 /* Like commands_command, but instead of reading the commands from
1447 input stream, takes them from an already parsed command structure.
1448
1449 This is used by cli-script.c to DTRT with breakpoint commands
1450 that are part of if and while bodies. */
1451 enum command_control_type
1452 commands_from_control_command (char *arg, struct command_line *cmd)
1453 {
1454 commands_command_1 (arg, 0, cmd);
1455 return simple_control;
1456 }
1457
1458 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1459
1460 static int
1461 bp_location_has_shadow (struct bp_location *bl)
1462 {
1463 if (bl->loc_type != bp_loc_software_breakpoint)
1464 return 0;
1465 if (!bl->inserted)
1466 return 0;
1467 if (bl->target_info.shadow_len == 0)
1468 /* BL isn't valid, or doesn't shadow memory. */
1469 return 0;
1470 return 1;
1471 }
1472
1473 /* Update BUF, which is LEN bytes read from the target address
1474 MEMADDR, by replacing a memory breakpoint with its shadowed
1475 contents.
1476
1477 If READBUF is not NULL, this buffer must not overlap with the of
1478 the breakpoint location's shadow_contents buffer. Otherwise, a
1479 failed assertion internal error will be raised. */
1480
1481 static void
1482 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1483 const gdb_byte *writebuf_org,
1484 ULONGEST memaddr, LONGEST len,
1485 struct bp_target_info *target_info,
1486 struct gdbarch *gdbarch)
1487 {
1488 /* Now do full processing of the found relevant range of elements. */
1489 CORE_ADDR bp_addr = 0;
1490 int bp_size = 0;
1491 int bptoffset = 0;
1492
1493 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1494 current_program_space->aspace, 0))
1495 {
1496 /* The breakpoint is inserted in a different address space. */
1497 return;
1498 }
1499
1500 /* Addresses and length of the part of the breakpoint that
1501 we need to copy. */
1502 bp_addr = target_info->placed_address;
1503 bp_size = target_info->shadow_len;
1504
1505 if (bp_addr + bp_size <= memaddr)
1506 {
1507 /* The breakpoint is entirely before the chunk of memory we are
1508 reading. */
1509 return;
1510 }
1511
1512 if (bp_addr >= memaddr + len)
1513 {
1514 /* The breakpoint is entirely after the chunk of memory we are
1515 reading. */
1516 return;
1517 }
1518
1519 /* Offset within shadow_contents. */
1520 if (bp_addr < memaddr)
1521 {
1522 /* Only copy the second part of the breakpoint. */
1523 bp_size -= memaddr - bp_addr;
1524 bptoffset = memaddr - bp_addr;
1525 bp_addr = memaddr;
1526 }
1527
1528 if (bp_addr + bp_size > memaddr + len)
1529 {
1530 /* Only copy the first part of the breakpoint. */
1531 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1532 }
1533
1534 if (readbuf != NULL)
1535 {
1536 /* Verify that the readbuf buffer does not overlap with the
1537 shadow_contents buffer. */
1538 gdb_assert (target_info->shadow_contents >= readbuf + len
1539 || readbuf >= (target_info->shadow_contents
1540 + target_info->shadow_len));
1541
1542 /* Update the read buffer with this inserted breakpoint's
1543 shadow. */
1544 memcpy (readbuf + bp_addr - memaddr,
1545 target_info->shadow_contents + bptoffset, bp_size);
1546 }
1547 else
1548 {
1549 const unsigned char *bp;
1550 CORE_ADDR placed_address = target_info->placed_address;
1551 int placed_size = target_info->placed_size;
1552
1553 /* Update the shadow with what we want to write to memory. */
1554 memcpy (target_info->shadow_contents + bptoffset,
1555 writebuf_org + bp_addr - memaddr, bp_size);
1556
1557 /* Determine appropriate breakpoint contents and size for this
1558 address. */
1559 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1560
1561 /* Update the final write buffer with this inserted
1562 breakpoint's INSN. */
1563 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1564 }
1565 }
1566
1567 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1568 by replacing any memory breakpoints with their shadowed contents.
1569
1570 If READBUF is not NULL, this buffer must not overlap with any of
1571 the breakpoint location's shadow_contents buffers. Otherwise,
1572 a failed assertion internal error will be raised.
1573
1574 The range of shadowed area by each bp_location is:
1575 bl->address - bp_location_placed_address_before_address_max
1576 up to bl->address + bp_location_shadow_len_after_address_max
1577 The range we were requested to resolve shadows for is:
1578 memaddr ... memaddr + len
1579 Thus the safe cutoff boundaries for performance optimization are
1580 memaddr + len <= (bl->address
1581 - bp_location_placed_address_before_address_max)
1582 and:
1583 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1584
1585 void
1586 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1587 const gdb_byte *writebuf_org,
1588 ULONGEST memaddr, LONGEST len)
1589 {
1590 /* Left boundary, right boundary and median element of our binary
1591 search. */
1592 unsigned bc_l, bc_r, bc;
1593 size_t i;
1594
1595 /* Find BC_L which is a leftmost element which may affect BUF
1596 content. It is safe to report lower value but a failure to
1597 report higher one. */
1598
1599 bc_l = 0;
1600 bc_r = bp_location_count;
1601 while (bc_l + 1 < bc_r)
1602 {
1603 struct bp_location *bl;
1604
1605 bc = (bc_l + bc_r) / 2;
1606 bl = bp_location[bc];
1607
1608 /* Check first BL->ADDRESS will not overflow due to the added
1609 constant. Then advance the left boundary only if we are sure
1610 the BC element can in no way affect the BUF content (MEMADDR
1611 to MEMADDR + LEN range).
1612
1613 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1614 offset so that we cannot miss a breakpoint with its shadow
1615 range tail still reaching MEMADDR. */
1616
1617 if ((bl->address + bp_location_shadow_len_after_address_max
1618 >= bl->address)
1619 && (bl->address + bp_location_shadow_len_after_address_max
1620 <= memaddr))
1621 bc_l = bc;
1622 else
1623 bc_r = bc;
1624 }
1625
1626 /* Due to the binary search above, we need to make sure we pick the
1627 first location that's at BC_L's address. E.g., if there are
1628 multiple locations at the same address, BC_L may end up pointing
1629 at a duplicate location, and miss the "master"/"inserted"
1630 location. Say, given locations L1, L2 and L3 at addresses A and
1631 B:
1632
1633 L1@A, L2@A, L3@B, ...
1634
1635 BC_L could end up pointing at location L2, while the "master"
1636 location could be L1. Since the `loc->inserted' flag is only set
1637 on "master" locations, we'd forget to restore the shadow of L1
1638 and L2. */
1639 while (bc_l > 0
1640 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1641 bc_l--;
1642
1643 /* Now do full processing of the found relevant range of elements. */
1644
1645 for (bc = bc_l; bc < bp_location_count; bc++)
1646 {
1647 struct bp_location *bl = bp_location[bc];
1648 CORE_ADDR bp_addr = 0;
1649 int bp_size = 0;
1650 int bptoffset = 0;
1651
1652 /* bp_location array has BL->OWNER always non-NULL. */
1653 if (bl->owner->type == bp_none)
1654 warning (_("reading through apparently deleted breakpoint #%d?"),
1655 bl->owner->number);
1656
1657 /* Performance optimization: any further element can no longer affect BUF
1658 content. */
1659
1660 if (bl->address >= bp_location_placed_address_before_address_max
1661 && memaddr + len <= (bl->address
1662 - bp_location_placed_address_before_address_max))
1663 break;
1664
1665 if (!bp_location_has_shadow (bl))
1666 continue;
1667
1668 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1669 memaddr, len, &bl->target_info, bl->gdbarch);
1670 }
1671
1672 /* Now process single-step breakpoints. These are not found in the
1673 bp_location array. */
1674 for (i = 0; i < 2; i++)
1675 {
1676 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
1677
1678 if (bp_tgt != NULL)
1679 {
1680 struct gdbarch *gdbarch = single_step_gdbarch[i];
1681
1682 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1683 memaddr, len, bp_tgt, gdbarch);
1684 }
1685 }
1686 }
1687
1688 \f
1689
1690 /* Return true if BPT is either a software breakpoint or a hardware
1691 breakpoint. */
1692
1693 int
1694 is_breakpoint (const struct breakpoint *bpt)
1695 {
1696 return (bpt->type == bp_breakpoint
1697 || bpt->type == bp_hardware_breakpoint
1698 || bpt->type == bp_dprintf);
1699 }
1700
1701 /* Return true if BPT is of any hardware watchpoint kind. */
1702
1703 static int
1704 is_hardware_watchpoint (const struct breakpoint *bpt)
1705 {
1706 return (bpt->type == bp_hardware_watchpoint
1707 || bpt->type == bp_read_watchpoint
1708 || bpt->type == bp_access_watchpoint);
1709 }
1710
1711 /* Return true if BPT is of any watchpoint kind, hardware or
1712 software. */
1713
1714 int
1715 is_watchpoint (const struct breakpoint *bpt)
1716 {
1717 return (is_hardware_watchpoint (bpt)
1718 || bpt->type == bp_watchpoint);
1719 }
1720
1721 /* Returns true if the current thread and its running state are safe
1722 to evaluate or update watchpoint B. Watchpoints on local
1723 expressions need to be evaluated in the context of the thread that
1724 was current when the watchpoint was created, and, that thread needs
1725 to be stopped to be able to select the correct frame context.
1726 Watchpoints on global expressions can be evaluated on any thread,
1727 and in any state. It is presently left to the target allowing
1728 memory accesses when threads are running. */
1729
1730 static int
1731 watchpoint_in_thread_scope (struct watchpoint *b)
1732 {
1733 return (b->base.pspace == current_program_space
1734 && (ptid_equal (b->watchpoint_thread, null_ptid)
1735 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1736 && !is_executing (inferior_ptid))));
1737 }
1738
1739 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1740 associated bp_watchpoint_scope breakpoint. */
1741
1742 static void
1743 watchpoint_del_at_next_stop (struct watchpoint *w)
1744 {
1745 struct breakpoint *b = &w->base;
1746
1747 if (b->related_breakpoint != b)
1748 {
1749 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1750 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1751 b->related_breakpoint->disposition = disp_del_at_next_stop;
1752 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1753 b->related_breakpoint = b;
1754 }
1755 b->disposition = disp_del_at_next_stop;
1756 }
1757
1758 /* Extract a bitfield value from value VAL using the bit parameters contained in
1759 watchpoint W. */
1760
1761 static struct value *
1762 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1763 {
1764 struct value *bit_val;
1765
1766 if (val == NULL)
1767 return NULL;
1768
1769 bit_val = allocate_value (value_type (val));
1770
1771 unpack_value_bitfield (bit_val,
1772 w->val_bitpos,
1773 w->val_bitsize,
1774 value_contents_for_printing (val),
1775 value_offset (val),
1776 val);
1777
1778 return bit_val;
1779 }
1780
1781 /* Assuming that B is a watchpoint:
1782 - Reparse watchpoint expression, if REPARSE is non-zero
1783 - Evaluate expression and store the result in B->val
1784 - Evaluate the condition if there is one, and store the result
1785 in b->loc->cond.
1786 - Update the list of values that must be watched in B->loc.
1787
1788 If the watchpoint disposition is disp_del_at_next_stop, then do
1789 nothing. If this is local watchpoint that is out of scope, delete
1790 it.
1791
1792 Even with `set breakpoint always-inserted on' the watchpoints are
1793 removed + inserted on each stop here. Normal breakpoints must
1794 never be removed because they might be missed by a running thread
1795 when debugging in non-stop mode. On the other hand, hardware
1796 watchpoints (is_hardware_watchpoint; processed here) are specific
1797 to each LWP since they are stored in each LWP's hardware debug
1798 registers. Therefore, such LWP must be stopped first in order to
1799 be able to modify its hardware watchpoints.
1800
1801 Hardware watchpoints must be reset exactly once after being
1802 presented to the user. It cannot be done sooner, because it would
1803 reset the data used to present the watchpoint hit to the user. And
1804 it must not be done later because it could display the same single
1805 watchpoint hit during multiple GDB stops. Note that the latter is
1806 relevant only to the hardware watchpoint types bp_read_watchpoint
1807 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1808 not user-visible - its hit is suppressed if the memory content has
1809 not changed.
1810
1811 The following constraints influence the location where we can reset
1812 hardware watchpoints:
1813
1814 * target_stopped_by_watchpoint and target_stopped_data_address are
1815 called several times when GDB stops.
1816
1817 [linux]
1818 * Multiple hardware watchpoints can be hit at the same time,
1819 causing GDB to stop. GDB only presents one hardware watchpoint
1820 hit at a time as the reason for stopping, and all the other hits
1821 are presented later, one after the other, each time the user
1822 requests the execution to be resumed. Execution is not resumed
1823 for the threads still having pending hit event stored in
1824 LWP_INFO->STATUS. While the watchpoint is already removed from
1825 the inferior on the first stop the thread hit event is kept being
1826 reported from its cached value by linux_nat_stopped_data_address
1827 until the real thread resume happens after the watchpoint gets
1828 presented and thus its LWP_INFO->STATUS gets reset.
1829
1830 Therefore the hardware watchpoint hit can get safely reset on the
1831 watchpoint removal from inferior. */
1832
1833 static void
1834 update_watchpoint (struct watchpoint *b, int reparse)
1835 {
1836 int within_current_scope;
1837 struct frame_id saved_frame_id;
1838 int frame_saved;
1839
1840 /* If this is a local watchpoint, we only want to check if the
1841 watchpoint frame is in scope if the current thread is the thread
1842 that was used to create the watchpoint. */
1843 if (!watchpoint_in_thread_scope (b))
1844 return;
1845
1846 if (b->base.disposition == disp_del_at_next_stop)
1847 return;
1848
1849 frame_saved = 0;
1850
1851 /* Determine if the watchpoint is within scope. */
1852 if (b->exp_valid_block == NULL)
1853 within_current_scope = 1;
1854 else
1855 {
1856 struct frame_info *fi = get_current_frame ();
1857 struct gdbarch *frame_arch = get_frame_arch (fi);
1858 CORE_ADDR frame_pc = get_frame_pc (fi);
1859
1860 /* If we're in a function epilogue, unwinding may not work
1861 properly, so do not attempt to recreate locations at this
1862 point. See similar comments in watchpoint_check. */
1863 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1864 return;
1865
1866 /* Save the current frame's ID so we can restore it after
1867 evaluating the watchpoint expression on its own frame. */
1868 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1869 took a frame parameter, so that we didn't have to change the
1870 selected frame. */
1871 frame_saved = 1;
1872 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1873
1874 fi = frame_find_by_id (b->watchpoint_frame);
1875 within_current_scope = (fi != NULL);
1876 if (within_current_scope)
1877 select_frame (fi);
1878 }
1879
1880 /* We don't free locations. They are stored in the bp_location array
1881 and update_global_location_list will eventually delete them and
1882 remove breakpoints if needed. */
1883 b->base.loc = NULL;
1884
1885 if (within_current_scope && reparse)
1886 {
1887 const char *s;
1888
1889 if (b->exp)
1890 {
1891 xfree (b->exp);
1892 b->exp = NULL;
1893 }
1894 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1895 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1896 /* If the meaning of expression itself changed, the old value is
1897 no longer relevant. We don't want to report a watchpoint hit
1898 to the user when the old value and the new value may actually
1899 be completely different objects. */
1900 value_free (b->val);
1901 b->val = NULL;
1902 b->val_valid = 0;
1903
1904 /* Note that unlike with breakpoints, the watchpoint's condition
1905 expression is stored in the breakpoint object, not in the
1906 locations (re)created below. */
1907 if (b->base.cond_string != NULL)
1908 {
1909 if (b->cond_exp != NULL)
1910 {
1911 xfree (b->cond_exp);
1912 b->cond_exp = NULL;
1913 }
1914
1915 s = b->base.cond_string;
1916 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1917 }
1918 }
1919
1920 /* If we failed to parse the expression, for example because
1921 it refers to a global variable in a not-yet-loaded shared library,
1922 don't try to insert watchpoint. We don't automatically delete
1923 such watchpoint, though, since failure to parse expression
1924 is different from out-of-scope watchpoint. */
1925 if (!target_has_execution)
1926 {
1927 /* Without execution, memory can't change. No use to try and
1928 set watchpoint locations. The watchpoint will be reset when
1929 the target gains execution, through breakpoint_re_set. */
1930 if (!can_use_hw_watchpoints)
1931 {
1932 if (b->base.ops->works_in_software_mode (&b->base))
1933 b->base.type = bp_watchpoint;
1934 else
1935 error (_("Can't set read/access watchpoint when "
1936 "hardware watchpoints are disabled."));
1937 }
1938 }
1939 else if (within_current_scope && b->exp)
1940 {
1941 int pc = 0;
1942 struct value *val_chain, *v, *result, *next;
1943 struct program_space *frame_pspace;
1944
1945 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1946
1947 /* Avoid setting b->val if it's already set. The meaning of
1948 b->val is 'the last value' user saw, and we should update
1949 it only if we reported that last value to user. As it
1950 happens, the code that reports it updates b->val directly.
1951 We don't keep track of the memory value for masked
1952 watchpoints. */
1953 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1954 {
1955 if (b->val_bitsize != 0)
1956 {
1957 v = extract_bitfield_from_watchpoint_value (b, v);
1958 if (v != NULL)
1959 release_value (v);
1960 }
1961 b->val = v;
1962 b->val_valid = 1;
1963 }
1964
1965 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1966
1967 /* Look at each value on the value chain. */
1968 for (v = val_chain; v; v = value_next (v))
1969 {
1970 /* If it's a memory location, and GDB actually needed
1971 its contents to evaluate the expression, then we
1972 must watch it. If the first value returned is
1973 still lazy, that means an error occurred reading it;
1974 watch it anyway in case it becomes readable. */
1975 if (VALUE_LVAL (v) == lval_memory
1976 && (v == val_chain || ! value_lazy (v)))
1977 {
1978 struct type *vtype = check_typedef (value_type (v));
1979
1980 /* We only watch structs and arrays if user asked
1981 for it explicitly, never if they just happen to
1982 appear in the middle of some value chain. */
1983 if (v == result
1984 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1985 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1986 {
1987 CORE_ADDR addr;
1988 int type;
1989 struct bp_location *loc, **tmp;
1990 int bitpos = 0, bitsize = 0;
1991
1992 if (value_bitsize (v) != 0)
1993 {
1994 /* Extract the bit parameters out from the bitfield
1995 sub-expression. */
1996 bitpos = value_bitpos (v);
1997 bitsize = value_bitsize (v);
1998 }
1999 else if (v == result && b->val_bitsize != 0)
2000 {
2001 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2002 lvalue whose bit parameters are saved in the fields
2003 VAL_BITPOS and VAL_BITSIZE. */
2004 bitpos = b->val_bitpos;
2005 bitsize = b->val_bitsize;
2006 }
2007
2008 addr = value_address (v);
2009 if (bitsize != 0)
2010 {
2011 /* Skip the bytes that don't contain the bitfield. */
2012 addr += bitpos / 8;
2013 }
2014
2015 type = hw_write;
2016 if (b->base.type == bp_read_watchpoint)
2017 type = hw_read;
2018 else if (b->base.type == bp_access_watchpoint)
2019 type = hw_access;
2020
2021 loc = allocate_bp_location (&b->base);
2022 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2023 ;
2024 *tmp = loc;
2025 loc->gdbarch = get_type_arch (value_type (v));
2026
2027 loc->pspace = frame_pspace;
2028 loc->address = addr;
2029
2030 if (bitsize != 0)
2031 {
2032 /* Just cover the bytes that make up the bitfield. */
2033 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2034 }
2035 else
2036 loc->length = TYPE_LENGTH (value_type (v));
2037
2038 loc->watchpoint_type = type;
2039 }
2040 }
2041 }
2042
2043 /* Change the type of breakpoint between hardware assisted or
2044 an ordinary watchpoint depending on the hardware support
2045 and free hardware slots. REPARSE is set when the inferior
2046 is started. */
2047 if (reparse)
2048 {
2049 int reg_cnt;
2050 enum bp_loc_type loc_type;
2051 struct bp_location *bl;
2052
2053 reg_cnt = can_use_hardware_watchpoint (val_chain);
2054
2055 if (reg_cnt)
2056 {
2057 int i, target_resources_ok, other_type_used;
2058 enum bptype type;
2059
2060 /* Use an exact watchpoint when there's only one memory region to be
2061 watched, and only one debug register is needed to watch it. */
2062 b->exact = target_exact_watchpoints && reg_cnt == 1;
2063
2064 /* We need to determine how many resources are already
2065 used for all other hardware watchpoints plus this one
2066 to see if we still have enough resources to also fit
2067 this watchpoint in as well. */
2068
2069 /* If this is a software watchpoint, we try to turn it
2070 to a hardware one -- count resources as if B was of
2071 hardware watchpoint type. */
2072 type = b->base.type;
2073 if (type == bp_watchpoint)
2074 type = bp_hardware_watchpoint;
2075
2076 /* This watchpoint may or may not have been placed on
2077 the list yet at this point (it won't be in the list
2078 if we're trying to create it for the first time,
2079 through watch_command), so always account for it
2080 manually. */
2081
2082 /* Count resources used by all watchpoints except B. */
2083 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2084
2085 /* Add in the resources needed for B. */
2086 i += hw_watchpoint_use_count (&b->base);
2087
2088 target_resources_ok
2089 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2090 if (target_resources_ok <= 0)
2091 {
2092 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2093
2094 if (target_resources_ok == 0 && !sw_mode)
2095 error (_("Target does not support this type of "
2096 "hardware watchpoint."));
2097 else if (target_resources_ok < 0 && !sw_mode)
2098 error (_("There are not enough available hardware "
2099 "resources for this watchpoint."));
2100
2101 /* Downgrade to software watchpoint. */
2102 b->base.type = bp_watchpoint;
2103 }
2104 else
2105 {
2106 /* If this was a software watchpoint, we've just
2107 found we have enough resources to turn it to a
2108 hardware watchpoint. Otherwise, this is a
2109 nop. */
2110 b->base.type = type;
2111 }
2112 }
2113 else if (!b->base.ops->works_in_software_mode (&b->base))
2114 {
2115 if (!can_use_hw_watchpoints)
2116 error (_("Can't set read/access watchpoint when "
2117 "hardware watchpoints are disabled."));
2118 else
2119 error (_("Expression cannot be implemented with "
2120 "read/access watchpoint."));
2121 }
2122 else
2123 b->base.type = bp_watchpoint;
2124
2125 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2126 : bp_loc_hardware_watchpoint);
2127 for (bl = b->base.loc; bl; bl = bl->next)
2128 bl->loc_type = loc_type;
2129 }
2130
2131 for (v = val_chain; v; v = next)
2132 {
2133 next = value_next (v);
2134 if (v != b->val)
2135 value_free (v);
2136 }
2137
2138 /* If a software watchpoint is not watching any memory, then the
2139 above left it without any location set up. But,
2140 bpstat_stop_status requires a location to be able to report
2141 stops, so make sure there's at least a dummy one. */
2142 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2143 {
2144 struct breakpoint *base = &b->base;
2145 base->loc = allocate_bp_location (base);
2146 base->loc->pspace = frame_pspace;
2147 base->loc->address = -1;
2148 base->loc->length = -1;
2149 base->loc->watchpoint_type = -1;
2150 }
2151 }
2152 else if (!within_current_scope)
2153 {
2154 printf_filtered (_("\
2155 Watchpoint %d deleted because the program has left the block\n\
2156 in which its expression is valid.\n"),
2157 b->base.number);
2158 watchpoint_del_at_next_stop (b);
2159 }
2160
2161 /* Restore the selected frame. */
2162 if (frame_saved)
2163 select_frame (frame_find_by_id (saved_frame_id));
2164 }
2165
2166
2167 /* Returns 1 iff breakpoint location should be
2168 inserted in the inferior. We don't differentiate the type of BL's owner
2169 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2170 breakpoint_ops is not defined, because in insert_bp_location,
2171 tracepoint's insert_location will not be called. */
2172 static int
2173 should_be_inserted (struct bp_location *bl)
2174 {
2175 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2176 return 0;
2177
2178 if (bl->owner->disposition == disp_del_at_next_stop)
2179 return 0;
2180
2181 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2182 return 0;
2183
2184 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2185 return 0;
2186
2187 /* This is set for example, when we're attached to the parent of a
2188 vfork, and have detached from the child. The child is running
2189 free, and we expect it to do an exec or exit, at which point the
2190 OS makes the parent schedulable again (and the target reports
2191 that the vfork is done). Until the child is done with the shared
2192 memory region, do not insert breakpoints in the parent, otherwise
2193 the child could still trip on the parent's breakpoints. Since
2194 the parent is blocked anyway, it won't miss any breakpoint. */
2195 if (bl->pspace->breakpoints_not_allowed)
2196 return 0;
2197
2198 /* Don't insert a breakpoint if we're trying to step past its
2199 location. */
2200 if ((bl->loc_type == bp_loc_software_breakpoint
2201 || bl->loc_type == bp_loc_hardware_breakpoint)
2202 && stepping_past_instruction_at (bl->pspace->aspace,
2203 bl->address))
2204 {
2205 if (debug_infrun)
2206 {
2207 fprintf_unfiltered (gdb_stdlog,
2208 "infrun: skipping breakpoint: "
2209 "stepping past insn at: %s\n",
2210 paddress (bl->gdbarch, bl->address));
2211 }
2212 return 0;
2213 }
2214
2215 return 1;
2216 }
2217
2218 /* Same as should_be_inserted but does the check assuming
2219 that the location is not duplicated. */
2220
2221 static int
2222 unduplicated_should_be_inserted (struct bp_location *bl)
2223 {
2224 int result;
2225 const int save_duplicate = bl->duplicate;
2226
2227 bl->duplicate = 0;
2228 result = should_be_inserted (bl);
2229 bl->duplicate = save_duplicate;
2230 return result;
2231 }
2232
2233 /* Parses a conditional described by an expression COND into an
2234 agent expression bytecode suitable for evaluation
2235 by the bytecode interpreter. Return NULL if there was
2236 any error during parsing. */
2237
2238 static struct agent_expr *
2239 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2240 {
2241 struct agent_expr *aexpr = NULL;
2242 volatile struct gdb_exception ex;
2243
2244 if (!cond)
2245 return NULL;
2246
2247 /* We don't want to stop processing, so catch any errors
2248 that may show up. */
2249 TRY_CATCH (ex, RETURN_MASK_ERROR)
2250 {
2251 aexpr = gen_eval_for_expr (scope, cond);
2252 }
2253
2254 if (ex.reason < 0)
2255 {
2256 /* If we got here, it means the condition could not be parsed to a valid
2257 bytecode expression and thus can't be evaluated on the target's side.
2258 It's no use iterating through the conditions. */
2259 return NULL;
2260 }
2261
2262 /* We have a valid agent expression. */
2263 return aexpr;
2264 }
2265
2266 /* Based on location BL, create a list of breakpoint conditions to be
2267 passed on to the target. If we have duplicated locations with different
2268 conditions, we will add such conditions to the list. The idea is that the
2269 target will evaluate the list of conditions and will only notify GDB when
2270 one of them is true. */
2271
2272 static void
2273 build_target_condition_list (struct bp_location *bl)
2274 {
2275 struct bp_location **locp = NULL, **loc2p;
2276 int null_condition_or_parse_error = 0;
2277 int modified = bl->needs_update;
2278 struct bp_location *loc;
2279
2280 /* Release conditions left over from a previous insert. */
2281 VEC_free (agent_expr_p, bl->target_info.conditions);
2282
2283 /* This is only meaningful if the target is
2284 evaluating conditions and if the user has
2285 opted for condition evaluation on the target's
2286 side. */
2287 if (gdb_evaluates_breakpoint_condition_p ()
2288 || !target_supports_evaluation_of_breakpoint_conditions ())
2289 return;
2290
2291 /* Do a first pass to check for locations with no assigned
2292 conditions or conditions that fail to parse to a valid agent expression
2293 bytecode. If any of these happen, then it's no use to send conditions
2294 to the target since this location will always trigger and generate a
2295 response back to GDB. */
2296 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2297 {
2298 loc = (*loc2p);
2299 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2300 {
2301 if (modified)
2302 {
2303 struct agent_expr *aexpr;
2304
2305 /* Re-parse the conditions since something changed. In that
2306 case we already freed the condition bytecodes (see
2307 force_breakpoint_reinsertion). We just
2308 need to parse the condition to bytecodes again. */
2309 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2310 loc->cond_bytecode = aexpr;
2311
2312 /* Check if we managed to parse the conditional expression
2313 correctly. If not, we will not send this condition
2314 to the target. */
2315 if (aexpr)
2316 continue;
2317 }
2318
2319 /* If we have a NULL bytecode expression, it means something
2320 went wrong or we have a null condition expression. */
2321 if (!loc->cond_bytecode)
2322 {
2323 null_condition_or_parse_error = 1;
2324 break;
2325 }
2326 }
2327 }
2328
2329 /* If any of these happened, it means we will have to evaluate the conditions
2330 for the location's address on gdb's side. It is no use keeping bytecodes
2331 for all the other duplicate locations, thus we free all of them here.
2332
2333 This is so we have a finer control over which locations' conditions are
2334 being evaluated by GDB or the remote stub. */
2335 if (null_condition_or_parse_error)
2336 {
2337 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2338 {
2339 loc = (*loc2p);
2340 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2341 {
2342 /* Only go as far as the first NULL bytecode is
2343 located. */
2344 if (!loc->cond_bytecode)
2345 return;
2346
2347 free_agent_expr (loc->cond_bytecode);
2348 loc->cond_bytecode = NULL;
2349 }
2350 }
2351 }
2352
2353 /* No NULL conditions or failed bytecode generation. Build a condition list
2354 for this location's address. */
2355 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2356 {
2357 loc = (*loc2p);
2358 if (loc->cond
2359 && is_breakpoint (loc->owner)
2360 && loc->pspace->num == bl->pspace->num
2361 && loc->owner->enable_state == bp_enabled
2362 && loc->enabled)
2363 /* Add the condition to the vector. This will be used later to send the
2364 conditions to the target. */
2365 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2366 loc->cond_bytecode);
2367 }
2368
2369 return;
2370 }
2371
2372 /* Parses a command described by string CMD into an agent expression
2373 bytecode suitable for evaluation by the bytecode interpreter.
2374 Return NULL if there was any error during parsing. */
2375
2376 static struct agent_expr *
2377 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2378 {
2379 struct cleanup *old_cleanups = 0;
2380 struct expression *expr, **argvec;
2381 struct agent_expr *aexpr = NULL;
2382 volatile struct gdb_exception ex;
2383 const char *cmdrest;
2384 const char *format_start, *format_end;
2385 struct format_piece *fpieces;
2386 int nargs;
2387 struct gdbarch *gdbarch = get_current_arch ();
2388
2389 if (!cmd)
2390 return NULL;
2391
2392 cmdrest = cmd;
2393
2394 if (*cmdrest == ',')
2395 ++cmdrest;
2396 cmdrest = skip_spaces_const (cmdrest);
2397
2398 if (*cmdrest++ != '"')
2399 error (_("No format string following the location"));
2400
2401 format_start = cmdrest;
2402
2403 fpieces = parse_format_string (&cmdrest);
2404
2405 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2406
2407 format_end = cmdrest;
2408
2409 if (*cmdrest++ != '"')
2410 error (_("Bad format string, non-terminated '\"'."));
2411
2412 cmdrest = skip_spaces_const (cmdrest);
2413
2414 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2415 error (_("Invalid argument syntax"));
2416
2417 if (*cmdrest == ',')
2418 cmdrest++;
2419 cmdrest = skip_spaces_const (cmdrest);
2420
2421 /* For each argument, make an expression. */
2422
2423 argvec = (struct expression **) alloca (strlen (cmd)
2424 * sizeof (struct expression *));
2425
2426 nargs = 0;
2427 while (*cmdrest != '\0')
2428 {
2429 const char *cmd1;
2430
2431 cmd1 = cmdrest;
2432 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2433 argvec[nargs++] = expr;
2434 cmdrest = cmd1;
2435 if (*cmdrest == ',')
2436 ++cmdrest;
2437 }
2438
2439 /* We don't want to stop processing, so catch any errors
2440 that may show up. */
2441 TRY_CATCH (ex, RETURN_MASK_ERROR)
2442 {
2443 aexpr = gen_printf (scope, gdbarch, 0, 0,
2444 format_start, format_end - format_start,
2445 fpieces, nargs, argvec);
2446 }
2447
2448 do_cleanups (old_cleanups);
2449
2450 if (ex.reason < 0)
2451 {
2452 /* If we got here, it means the command could not be parsed to a valid
2453 bytecode expression and thus can't be evaluated on the target's side.
2454 It's no use iterating through the other commands. */
2455 return NULL;
2456 }
2457
2458 /* We have a valid agent expression, return it. */
2459 return aexpr;
2460 }
2461
2462 /* Based on location BL, create a list of breakpoint commands to be
2463 passed on to the target. If we have duplicated locations with
2464 different commands, we will add any such to the list. */
2465
2466 static void
2467 build_target_command_list (struct bp_location *bl)
2468 {
2469 struct bp_location **locp = NULL, **loc2p;
2470 int null_command_or_parse_error = 0;
2471 int modified = bl->needs_update;
2472 struct bp_location *loc;
2473
2474 /* Release commands left over from a previous insert. */
2475 VEC_free (agent_expr_p, bl->target_info.tcommands);
2476
2477 if (!target_can_run_breakpoint_commands ())
2478 return;
2479
2480 /* For now, limit to agent-style dprintf breakpoints. */
2481 if (dprintf_style != dprintf_style_agent)
2482 return;
2483
2484 /* For now, if we have any duplicate location that isn't a dprintf,
2485 don't install the target-side commands, as that would make the
2486 breakpoint not be reported to the core, and we'd lose
2487 control. */
2488 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2489 {
2490 loc = (*loc2p);
2491 if (is_breakpoint (loc->owner)
2492 && loc->pspace->num == bl->pspace->num
2493 && loc->owner->type != bp_dprintf)
2494 return;
2495 }
2496
2497 /* Do a first pass to check for locations with no assigned
2498 conditions or conditions that fail to parse to a valid agent expression
2499 bytecode. If any of these happen, then it's no use to send conditions
2500 to the target since this location will always trigger and generate a
2501 response back to GDB. */
2502 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2503 {
2504 loc = (*loc2p);
2505 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2506 {
2507 if (modified)
2508 {
2509 struct agent_expr *aexpr;
2510
2511 /* Re-parse the commands since something changed. In that
2512 case we already freed the command bytecodes (see
2513 force_breakpoint_reinsertion). We just
2514 need to parse the command to bytecodes again. */
2515 aexpr = parse_cmd_to_aexpr (bl->address,
2516 loc->owner->extra_string);
2517 loc->cmd_bytecode = aexpr;
2518
2519 if (!aexpr)
2520 continue;
2521 }
2522
2523 /* If we have a NULL bytecode expression, it means something
2524 went wrong or we have a null command expression. */
2525 if (!loc->cmd_bytecode)
2526 {
2527 null_command_or_parse_error = 1;
2528 break;
2529 }
2530 }
2531 }
2532
2533 /* If anything failed, then we're not doing target-side commands,
2534 and so clean up. */
2535 if (null_command_or_parse_error)
2536 {
2537 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2538 {
2539 loc = (*loc2p);
2540 if (is_breakpoint (loc->owner)
2541 && loc->pspace->num == bl->pspace->num)
2542 {
2543 /* Only go as far as the first NULL bytecode is
2544 located. */
2545 if (loc->cmd_bytecode == NULL)
2546 return;
2547
2548 free_agent_expr (loc->cmd_bytecode);
2549 loc->cmd_bytecode = NULL;
2550 }
2551 }
2552 }
2553
2554 /* No NULL commands or failed bytecode generation. Build a command list
2555 for this location's address. */
2556 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2557 {
2558 loc = (*loc2p);
2559 if (loc->owner->extra_string
2560 && is_breakpoint (loc->owner)
2561 && loc->pspace->num == bl->pspace->num
2562 && loc->owner->enable_state == bp_enabled
2563 && loc->enabled)
2564 /* Add the command to the vector. This will be used later
2565 to send the commands to the target. */
2566 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2567 loc->cmd_bytecode);
2568 }
2569
2570 bl->target_info.persist = 0;
2571 /* Maybe flag this location as persistent. */
2572 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2573 bl->target_info.persist = 1;
2574 }
2575
2576 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2577 location. Any error messages are printed to TMP_ERROR_STREAM; and
2578 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2579 Returns 0 for success, 1 if the bp_location type is not supported or
2580 -1 for failure.
2581
2582 NOTE drow/2003-09-09: This routine could be broken down to an
2583 object-style method for each breakpoint or catchpoint type. */
2584 static int
2585 insert_bp_location (struct bp_location *bl,
2586 struct ui_file *tmp_error_stream,
2587 int *disabled_breaks,
2588 int *hw_breakpoint_error,
2589 int *hw_bp_error_explained_already)
2590 {
2591 enum errors bp_err = GDB_NO_ERROR;
2592 const char *bp_err_message = NULL;
2593 volatile struct gdb_exception e;
2594
2595 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2596 return 0;
2597
2598 /* Note we don't initialize bl->target_info, as that wipes out
2599 the breakpoint location's shadow_contents if the breakpoint
2600 is still inserted at that location. This in turn breaks
2601 target_read_memory which depends on these buffers when
2602 a memory read is requested at the breakpoint location:
2603 Once the target_info has been wiped, we fail to see that
2604 we have a breakpoint inserted at that address and thus
2605 read the breakpoint instead of returning the data saved in
2606 the breakpoint location's shadow contents. */
2607 bl->target_info.placed_address = bl->address;
2608 bl->target_info.placed_address_space = bl->pspace->aspace;
2609 bl->target_info.length = bl->length;
2610
2611 /* When working with target-side conditions, we must pass all the conditions
2612 for the same breakpoint address down to the target since GDB will not
2613 insert those locations. With a list of breakpoint conditions, the target
2614 can decide when to stop and notify GDB. */
2615
2616 if (is_breakpoint (bl->owner))
2617 {
2618 build_target_condition_list (bl);
2619 build_target_command_list (bl);
2620 /* Reset the modification marker. */
2621 bl->needs_update = 0;
2622 }
2623
2624 if (bl->loc_type == bp_loc_software_breakpoint
2625 || bl->loc_type == bp_loc_hardware_breakpoint)
2626 {
2627 if (bl->owner->type != bp_hardware_breakpoint)
2628 {
2629 /* If the explicitly specified breakpoint type
2630 is not hardware breakpoint, check the memory map to see
2631 if the breakpoint address is in read only memory or not.
2632
2633 Two important cases are:
2634 - location type is not hardware breakpoint, memory
2635 is readonly. We change the type of the location to
2636 hardware breakpoint.
2637 - location type is hardware breakpoint, memory is
2638 read-write. This means we've previously made the
2639 location hardware one, but then the memory map changed,
2640 so we undo.
2641
2642 When breakpoints are removed, remove_breakpoints will use
2643 location types we've just set here, the only possible
2644 problem is that memory map has changed during running
2645 program, but it's not going to work anyway with current
2646 gdb. */
2647 struct mem_region *mr
2648 = lookup_mem_region (bl->target_info.placed_address);
2649
2650 if (mr)
2651 {
2652 if (automatic_hardware_breakpoints)
2653 {
2654 enum bp_loc_type new_type;
2655
2656 if (mr->attrib.mode != MEM_RW)
2657 new_type = bp_loc_hardware_breakpoint;
2658 else
2659 new_type = bp_loc_software_breakpoint;
2660
2661 if (new_type != bl->loc_type)
2662 {
2663 static int said = 0;
2664
2665 bl->loc_type = new_type;
2666 if (!said)
2667 {
2668 fprintf_filtered (gdb_stdout,
2669 _("Note: automatically using "
2670 "hardware breakpoints for "
2671 "read-only addresses.\n"));
2672 said = 1;
2673 }
2674 }
2675 }
2676 else if (bl->loc_type == bp_loc_software_breakpoint
2677 && mr->attrib.mode != MEM_RW)
2678 {
2679 fprintf_unfiltered (tmp_error_stream,
2680 _("Cannot insert breakpoint %d.\n"
2681 "Cannot set software breakpoint "
2682 "at read-only address %s\n"),
2683 bl->owner->number,
2684 paddress (bl->gdbarch, bl->address));
2685 return 1;
2686 }
2687 }
2688 }
2689
2690 /* First check to see if we have to handle an overlay. */
2691 if (overlay_debugging == ovly_off
2692 || bl->section == NULL
2693 || !(section_is_overlay (bl->section)))
2694 {
2695 /* No overlay handling: just set the breakpoint. */
2696 TRY_CATCH (e, RETURN_MASK_ALL)
2697 {
2698 int val;
2699
2700 val = bl->owner->ops->insert_location (bl);
2701 if (val)
2702 bp_err = GENERIC_ERROR;
2703 }
2704 if (e.reason < 0)
2705 {
2706 bp_err = e.error;
2707 bp_err_message = e.message;
2708 }
2709 }
2710 else
2711 {
2712 /* This breakpoint is in an overlay section.
2713 Shall we set a breakpoint at the LMA? */
2714 if (!overlay_events_enabled)
2715 {
2716 /* Yes -- overlay event support is not active,
2717 so we must try to set a breakpoint at the LMA.
2718 This will not work for a hardware breakpoint. */
2719 if (bl->loc_type == bp_loc_hardware_breakpoint)
2720 warning (_("hardware breakpoint %d not supported in overlay!"),
2721 bl->owner->number);
2722 else
2723 {
2724 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2725 bl->section);
2726 /* Set a software (trap) breakpoint at the LMA. */
2727 bl->overlay_target_info = bl->target_info;
2728 bl->overlay_target_info.placed_address = addr;
2729
2730 /* No overlay handling: just set the breakpoint. */
2731 TRY_CATCH (e, RETURN_MASK_ALL)
2732 {
2733 int val;
2734
2735 val = target_insert_breakpoint (bl->gdbarch,
2736 &bl->overlay_target_info);
2737 if (val)
2738 bp_err = GENERIC_ERROR;
2739 }
2740 if (e.reason < 0)
2741 {
2742 bp_err = e.error;
2743 bp_err_message = e.message;
2744 }
2745
2746 if (bp_err != GDB_NO_ERROR)
2747 fprintf_unfiltered (tmp_error_stream,
2748 "Overlay breakpoint %d "
2749 "failed: in ROM?\n",
2750 bl->owner->number);
2751 }
2752 }
2753 /* Shall we set a breakpoint at the VMA? */
2754 if (section_is_mapped (bl->section))
2755 {
2756 /* Yes. This overlay section is mapped into memory. */
2757 TRY_CATCH (e, RETURN_MASK_ALL)
2758 {
2759 int val;
2760
2761 val = bl->owner->ops->insert_location (bl);
2762 if (val)
2763 bp_err = GENERIC_ERROR;
2764 }
2765 if (e.reason < 0)
2766 {
2767 bp_err = e.error;
2768 bp_err_message = e.message;
2769 }
2770 }
2771 else
2772 {
2773 /* No. This breakpoint will not be inserted.
2774 No error, but do not mark the bp as 'inserted'. */
2775 return 0;
2776 }
2777 }
2778
2779 if (bp_err != GDB_NO_ERROR)
2780 {
2781 /* Can't set the breakpoint. */
2782
2783 /* In some cases, we might not be able to insert a
2784 breakpoint in a shared library that has already been
2785 removed, but we have not yet processed the shlib unload
2786 event. Unfortunately, some targets that implement
2787 breakpoint insertion themselves can't tell why the
2788 breakpoint insertion failed (e.g., the remote target
2789 doesn't define error codes), so we must treat generic
2790 errors as memory errors. */
2791 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2792 && bl->loc_type == bp_loc_software_breakpoint
2793 && (solib_name_from_address (bl->pspace, bl->address)
2794 || shared_objfile_contains_address_p (bl->pspace,
2795 bl->address)))
2796 {
2797 /* See also: disable_breakpoints_in_shlibs. */
2798 bl->shlib_disabled = 1;
2799 observer_notify_breakpoint_modified (bl->owner);
2800 if (!*disabled_breaks)
2801 {
2802 fprintf_unfiltered (tmp_error_stream,
2803 "Cannot insert breakpoint %d.\n",
2804 bl->owner->number);
2805 fprintf_unfiltered (tmp_error_stream,
2806 "Temporarily disabling shared "
2807 "library breakpoints:\n");
2808 }
2809 *disabled_breaks = 1;
2810 fprintf_unfiltered (tmp_error_stream,
2811 "breakpoint #%d\n", bl->owner->number);
2812 return 0;
2813 }
2814 else
2815 {
2816 if (bl->loc_type == bp_loc_hardware_breakpoint)
2817 {
2818 *hw_breakpoint_error = 1;
2819 *hw_bp_error_explained_already = bp_err_message != NULL;
2820 fprintf_unfiltered (tmp_error_stream,
2821 "Cannot insert hardware breakpoint %d%s",
2822 bl->owner->number, bp_err_message ? ":" : ".\n");
2823 if (bp_err_message != NULL)
2824 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2825 }
2826 else
2827 {
2828 if (bp_err_message == NULL)
2829 {
2830 char *message
2831 = memory_error_message (TARGET_XFER_E_IO,
2832 bl->gdbarch, bl->address);
2833 struct cleanup *old_chain = make_cleanup (xfree, message);
2834
2835 fprintf_unfiltered (tmp_error_stream,
2836 "Cannot insert breakpoint %d.\n"
2837 "%s\n",
2838 bl->owner->number, message);
2839 do_cleanups (old_chain);
2840 }
2841 else
2842 {
2843 fprintf_unfiltered (tmp_error_stream,
2844 "Cannot insert breakpoint %d: %s\n",
2845 bl->owner->number,
2846 bp_err_message);
2847 }
2848 }
2849 return 1;
2850
2851 }
2852 }
2853 else
2854 bl->inserted = 1;
2855
2856 return 0;
2857 }
2858
2859 else if (bl->loc_type == bp_loc_hardware_watchpoint
2860 /* NOTE drow/2003-09-08: This state only exists for removing
2861 watchpoints. It's not clear that it's necessary... */
2862 && bl->owner->disposition != disp_del_at_next_stop)
2863 {
2864 int val;
2865
2866 gdb_assert (bl->owner->ops != NULL
2867 && bl->owner->ops->insert_location != NULL);
2868
2869 val = bl->owner->ops->insert_location (bl);
2870
2871 /* If trying to set a read-watchpoint, and it turns out it's not
2872 supported, try emulating one with an access watchpoint. */
2873 if (val == 1 && bl->watchpoint_type == hw_read)
2874 {
2875 struct bp_location *loc, **loc_temp;
2876
2877 /* But don't try to insert it, if there's already another
2878 hw_access location that would be considered a duplicate
2879 of this one. */
2880 ALL_BP_LOCATIONS (loc, loc_temp)
2881 if (loc != bl
2882 && loc->watchpoint_type == hw_access
2883 && watchpoint_locations_match (bl, loc))
2884 {
2885 bl->duplicate = 1;
2886 bl->inserted = 1;
2887 bl->target_info = loc->target_info;
2888 bl->watchpoint_type = hw_access;
2889 val = 0;
2890 break;
2891 }
2892
2893 if (val == 1)
2894 {
2895 bl->watchpoint_type = hw_access;
2896 val = bl->owner->ops->insert_location (bl);
2897
2898 if (val)
2899 /* Back to the original value. */
2900 bl->watchpoint_type = hw_read;
2901 }
2902 }
2903
2904 bl->inserted = (val == 0);
2905 }
2906
2907 else if (bl->owner->type == bp_catchpoint)
2908 {
2909 int val;
2910
2911 gdb_assert (bl->owner->ops != NULL
2912 && bl->owner->ops->insert_location != NULL);
2913
2914 val = bl->owner->ops->insert_location (bl);
2915 if (val)
2916 {
2917 bl->owner->enable_state = bp_disabled;
2918
2919 if (val == 1)
2920 warning (_("\
2921 Error inserting catchpoint %d: Your system does not support this type\n\
2922 of catchpoint."), bl->owner->number);
2923 else
2924 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2925 }
2926
2927 bl->inserted = (val == 0);
2928
2929 /* We've already printed an error message if there was a problem
2930 inserting this catchpoint, and we've disabled the catchpoint,
2931 so just return success. */
2932 return 0;
2933 }
2934
2935 return 0;
2936 }
2937
2938 /* This function is called when program space PSPACE is about to be
2939 deleted. It takes care of updating breakpoints to not reference
2940 PSPACE anymore. */
2941
2942 void
2943 breakpoint_program_space_exit (struct program_space *pspace)
2944 {
2945 struct breakpoint *b, *b_temp;
2946 struct bp_location *loc, **loc_temp;
2947
2948 /* Remove any breakpoint that was set through this program space. */
2949 ALL_BREAKPOINTS_SAFE (b, b_temp)
2950 {
2951 if (b->pspace == pspace)
2952 delete_breakpoint (b);
2953 }
2954
2955 /* Breakpoints set through other program spaces could have locations
2956 bound to PSPACE as well. Remove those. */
2957 ALL_BP_LOCATIONS (loc, loc_temp)
2958 {
2959 struct bp_location *tmp;
2960
2961 if (loc->pspace == pspace)
2962 {
2963 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2964 if (loc->owner->loc == loc)
2965 loc->owner->loc = loc->next;
2966 else
2967 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2968 if (tmp->next == loc)
2969 {
2970 tmp->next = loc->next;
2971 break;
2972 }
2973 }
2974 }
2975
2976 /* Now update the global location list to permanently delete the
2977 removed locations above. */
2978 update_global_location_list (UGLL_DONT_INSERT);
2979 }
2980
2981 /* Make sure all breakpoints are inserted in inferior.
2982 Throws exception on any error.
2983 A breakpoint that is already inserted won't be inserted
2984 again, so calling this function twice is safe. */
2985 void
2986 insert_breakpoints (void)
2987 {
2988 struct breakpoint *bpt;
2989
2990 ALL_BREAKPOINTS (bpt)
2991 if (is_hardware_watchpoint (bpt))
2992 {
2993 struct watchpoint *w = (struct watchpoint *) bpt;
2994
2995 update_watchpoint (w, 0 /* don't reparse. */);
2996 }
2997
2998 /* Updating watchpoints creates new locations, so update the global
2999 location list. Explicitly tell ugll to insert locations and
3000 ignore breakpoints_always_inserted_mode. */
3001 update_global_location_list (UGLL_INSERT);
3002 }
3003
3004 /* Invoke CALLBACK for each of bp_location. */
3005
3006 void
3007 iterate_over_bp_locations (walk_bp_location_callback callback)
3008 {
3009 struct bp_location *loc, **loc_tmp;
3010
3011 ALL_BP_LOCATIONS (loc, loc_tmp)
3012 {
3013 callback (loc, NULL);
3014 }
3015 }
3016
3017 /* This is used when we need to synch breakpoint conditions between GDB and the
3018 target. It is the case with deleting and disabling of breakpoints when using
3019 always-inserted mode. */
3020
3021 static void
3022 update_inserted_breakpoint_locations (void)
3023 {
3024 struct bp_location *bl, **blp_tmp;
3025 int error_flag = 0;
3026 int val = 0;
3027 int disabled_breaks = 0;
3028 int hw_breakpoint_error = 0;
3029 int hw_bp_details_reported = 0;
3030
3031 struct ui_file *tmp_error_stream = mem_fileopen ();
3032 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3033
3034 /* Explicitly mark the warning -- this will only be printed if
3035 there was an error. */
3036 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3037
3038 save_current_space_and_thread ();
3039
3040 ALL_BP_LOCATIONS (bl, blp_tmp)
3041 {
3042 /* We only want to update software breakpoints and hardware
3043 breakpoints. */
3044 if (!is_breakpoint (bl->owner))
3045 continue;
3046
3047 /* We only want to update locations that are already inserted
3048 and need updating. This is to avoid unwanted insertion during
3049 deletion of breakpoints. */
3050 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3051 continue;
3052
3053 switch_to_program_space_and_thread (bl->pspace);
3054
3055 /* For targets that support global breakpoints, there's no need
3056 to select an inferior to insert breakpoint to. In fact, even
3057 if we aren't attached to any process yet, we should still
3058 insert breakpoints. */
3059 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3060 && ptid_equal (inferior_ptid, null_ptid))
3061 continue;
3062
3063 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3064 &hw_breakpoint_error, &hw_bp_details_reported);
3065 if (val)
3066 error_flag = val;
3067 }
3068
3069 if (error_flag)
3070 {
3071 target_terminal_ours_for_output ();
3072 error_stream (tmp_error_stream);
3073 }
3074
3075 do_cleanups (cleanups);
3076 }
3077
3078 /* Used when starting or continuing the program. */
3079
3080 static void
3081 insert_breakpoint_locations (void)
3082 {
3083 struct breakpoint *bpt;
3084 struct bp_location *bl, **blp_tmp;
3085 int error_flag = 0;
3086 int val = 0;
3087 int disabled_breaks = 0;
3088 int hw_breakpoint_error = 0;
3089 int hw_bp_error_explained_already = 0;
3090
3091 struct ui_file *tmp_error_stream = mem_fileopen ();
3092 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3093
3094 /* Explicitly mark the warning -- this will only be printed if
3095 there was an error. */
3096 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3097
3098 save_current_space_and_thread ();
3099
3100 ALL_BP_LOCATIONS (bl, blp_tmp)
3101 {
3102 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3103 continue;
3104
3105 /* There is no point inserting thread-specific breakpoints if
3106 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3107 has BL->OWNER always non-NULL. */
3108 if (bl->owner->thread != -1
3109 && !valid_thread_id (bl->owner->thread))
3110 continue;
3111
3112 switch_to_program_space_and_thread (bl->pspace);
3113
3114 /* For targets that support global breakpoints, there's no need
3115 to select an inferior to insert breakpoint to. In fact, even
3116 if we aren't attached to any process yet, we should still
3117 insert breakpoints. */
3118 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3119 && ptid_equal (inferior_ptid, null_ptid))
3120 continue;
3121
3122 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3123 &hw_breakpoint_error, &hw_bp_error_explained_already);
3124 if (val)
3125 error_flag = val;
3126 }
3127
3128 /* If we failed to insert all locations of a watchpoint, remove
3129 them, as half-inserted watchpoint is of limited use. */
3130 ALL_BREAKPOINTS (bpt)
3131 {
3132 int some_failed = 0;
3133 struct bp_location *loc;
3134
3135 if (!is_hardware_watchpoint (bpt))
3136 continue;
3137
3138 if (!breakpoint_enabled (bpt))
3139 continue;
3140
3141 if (bpt->disposition == disp_del_at_next_stop)
3142 continue;
3143
3144 for (loc = bpt->loc; loc; loc = loc->next)
3145 if (!loc->inserted && should_be_inserted (loc))
3146 {
3147 some_failed = 1;
3148 break;
3149 }
3150 if (some_failed)
3151 {
3152 for (loc = bpt->loc; loc; loc = loc->next)
3153 if (loc->inserted)
3154 remove_breakpoint (loc, mark_uninserted);
3155
3156 hw_breakpoint_error = 1;
3157 fprintf_unfiltered (tmp_error_stream,
3158 "Could not insert hardware watchpoint %d.\n",
3159 bpt->number);
3160 error_flag = -1;
3161 }
3162 }
3163
3164 if (error_flag)
3165 {
3166 /* If a hardware breakpoint or watchpoint was inserted, add a
3167 message about possibly exhausted resources. */
3168 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3169 {
3170 fprintf_unfiltered (tmp_error_stream,
3171 "Could not insert hardware breakpoints:\n\
3172 You may have requested too many hardware breakpoints/watchpoints.\n");
3173 }
3174 target_terminal_ours_for_output ();
3175 error_stream (tmp_error_stream);
3176 }
3177
3178 do_cleanups (cleanups);
3179 }
3180
3181 /* Used when the program stops.
3182 Returns zero if successful, or non-zero if there was a problem
3183 removing a breakpoint location. */
3184
3185 int
3186 remove_breakpoints (void)
3187 {
3188 struct bp_location *bl, **blp_tmp;
3189 int val = 0;
3190
3191 ALL_BP_LOCATIONS (bl, blp_tmp)
3192 {
3193 if (bl->inserted && !is_tracepoint (bl->owner))
3194 val |= remove_breakpoint (bl, mark_uninserted);
3195 }
3196 return val;
3197 }
3198
3199 /* When a thread exits, remove breakpoints that are related to
3200 that thread. */
3201
3202 static void
3203 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3204 {
3205 struct breakpoint *b, *b_tmp;
3206
3207 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3208 {
3209 if (b->thread == tp->num && user_breakpoint_p (b))
3210 {
3211 b->disposition = disp_del_at_next_stop;
3212
3213 printf_filtered (_("\
3214 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3215 b->number, tp->num);
3216
3217 /* Hide it from the user. */
3218 b->number = 0;
3219 }
3220 }
3221 }
3222
3223 /* Remove breakpoints of process PID. */
3224
3225 int
3226 remove_breakpoints_pid (int pid)
3227 {
3228 struct bp_location *bl, **blp_tmp;
3229 int val;
3230 struct inferior *inf = find_inferior_pid (pid);
3231
3232 ALL_BP_LOCATIONS (bl, blp_tmp)
3233 {
3234 if (bl->pspace != inf->pspace)
3235 continue;
3236
3237 if (bl->owner->type == bp_dprintf)
3238 continue;
3239
3240 if (bl->inserted)
3241 {
3242 val = remove_breakpoint (bl, mark_uninserted);
3243 if (val != 0)
3244 return val;
3245 }
3246 }
3247 return 0;
3248 }
3249
3250 int
3251 reattach_breakpoints (int pid)
3252 {
3253 struct cleanup *old_chain;
3254 struct bp_location *bl, **blp_tmp;
3255 int val;
3256 struct ui_file *tmp_error_stream;
3257 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3258 struct inferior *inf;
3259 struct thread_info *tp;
3260
3261 tp = any_live_thread_of_process (pid);
3262 if (tp == NULL)
3263 return 1;
3264
3265 inf = find_inferior_pid (pid);
3266 old_chain = save_inferior_ptid ();
3267
3268 inferior_ptid = tp->ptid;
3269
3270 tmp_error_stream = mem_fileopen ();
3271 make_cleanup_ui_file_delete (tmp_error_stream);
3272
3273 ALL_BP_LOCATIONS (bl, blp_tmp)
3274 {
3275 if (bl->pspace != inf->pspace)
3276 continue;
3277
3278 if (bl->inserted)
3279 {
3280 bl->inserted = 0;
3281 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3282 if (val != 0)
3283 {
3284 do_cleanups (old_chain);
3285 return val;
3286 }
3287 }
3288 }
3289 do_cleanups (old_chain);
3290 return 0;
3291 }
3292
3293 static int internal_breakpoint_number = -1;
3294
3295 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3296 If INTERNAL is non-zero, the breakpoint number will be populated
3297 from internal_breakpoint_number and that variable decremented.
3298 Otherwise the breakpoint number will be populated from
3299 breakpoint_count and that value incremented. Internal breakpoints
3300 do not set the internal var bpnum. */
3301 static void
3302 set_breakpoint_number (int internal, struct breakpoint *b)
3303 {
3304 if (internal)
3305 b->number = internal_breakpoint_number--;
3306 else
3307 {
3308 set_breakpoint_count (breakpoint_count + 1);
3309 b->number = breakpoint_count;
3310 }
3311 }
3312
3313 static struct breakpoint *
3314 create_internal_breakpoint (struct gdbarch *gdbarch,
3315 CORE_ADDR address, enum bptype type,
3316 const struct breakpoint_ops *ops)
3317 {
3318 struct symtab_and_line sal;
3319 struct breakpoint *b;
3320
3321 init_sal (&sal); /* Initialize to zeroes. */
3322
3323 sal.pc = address;
3324 sal.section = find_pc_overlay (sal.pc);
3325 sal.pspace = current_program_space;
3326
3327 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3328 b->number = internal_breakpoint_number--;
3329 b->disposition = disp_donttouch;
3330
3331 return b;
3332 }
3333
3334 static const char *const longjmp_names[] =
3335 {
3336 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3337 };
3338 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3339
3340 /* Per-objfile data private to breakpoint.c. */
3341 struct breakpoint_objfile_data
3342 {
3343 /* Minimal symbol for "_ovly_debug_event" (if any). */
3344 struct bound_minimal_symbol overlay_msym;
3345
3346 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3347 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3348
3349 /* True if we have looked for longjmp probes. */
3350 int longjmp_searched;
3351
3352 /* SystemTap probe points for longjmp (if any). */
3353 VEC (probe_p) *longjmp_probes;
3354
3355 /* Minimal symbol for "std::terminate()" (if any). */
3356 struct bound_minimal_symbol terminate_msym;
3357
3358 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3359 struct bound_minimal_symbol exception_msym;
3360
3361 /* True if we have looked for exception probes. */
3362 int exception_searched;
3363
3364 /* SystemTap probe points for unwinding (if any). */
3365 VEC (probe_p) *exception_probes;
3366 };
3367
3368 static const struct objfile_data *breakpoint_objfile_key;
3369
3370 /* Minimal symbol not found sentinel. */
3371 static struct minimal_symbol msym_not_found;
3372
3373 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3374
3375 static int
3376 msym_not_found_p (const struct minimal_symbol *msym)
3377 {
3378 return msym == &msym_not_found;
3379 }
3380
3381 /* Return per-objfile data needed by breakpoint.c.
3382 Allocate the data if necessary. */
3383
3384 static struct breakpoint_objfile_data *
3385 get_breakpoint_objfile_data (struct objfile *objfile)
3386 {
3387 struct breakpoint_objfile_data *bp_objfile_data;
3388
3389 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3390 if (bp_objfile_data == NULL)
3391 {
3392 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3393 sizeof (*bp_objfile_data));
3394
3395 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3396 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3397 }
3398 return bp_objfile_data;
3399 }
3400
3401 static void
3402 free_breakpoint_probes (struct objfile *obj, void *data)
3403 {
3404 struct breakpoint_objfile_data *bp_objfile_data = data;
3405
3406 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3407 VEC_free (probe_p, bp_objfile_data->exception_probes);
3408 }
3409
3410 static void
3411 create_overlay_event_breakpoint (void)
3412 {
3413 struct objfile *objfile;
3414 const char *const func_name = "_ovly_debug_event";
3415
3416 ALL_OBJFILES (objfile)
3417 {
3418 struct breakpoint *b;
3419 struct breakpoint_objfile_data *bp_objfile_data;
3420 CORE_ADDR addr;
3421
3422 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3423
3424 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3425 continue;
3426
3427 if (bp_objfile_data->overlay_msym.minsym == NULL)
3428 {
3429 struct bound_minimal_symbol m;
3430
3431 m = lookup_minimal_symbol_text (func_name, objfile);
3432 if (m.minsym == NULL)
3433 {
3434 /* Avoid future lookups in this objfile. */
3435 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3436 continue;
3437 }
3438 bp_objfile_data->overlay_msym = m;
3439 }
3440
3441 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3442 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3443 bp_overlay_event,
3444 &internal_breakpoint_ops);
3445 b->addr_string = xstrdup (func_name);
3446
3447 if (overlay_debugging == ovly_auto)
3448 {
3449 b->enable_state = bp_enabled;
3450 overlay_events_enabled = 1;
3451 }
3452 else
3453 {
3454 b->enable_state = bp_disabled;
3455 overlay_events_enabled = 0;
3456 }
3457 }
3458 update_global_location_list (UGLL_MAY_INSERT);
3459 }
3460
3461 static void
3462 create_longjmp_master_breakpoint (void)
3463 {
3464 struct program_space *pspace;
3465 struct cleanup *old_chain;
3466
3467 old_chain = save_current_program_space ();
3468
3469 ALL_PSPACES (pspace)
3470 {
3471 struct objfile *objfile;
3472
3473 set_current_program_space (pspace);
3474
3475 ALL_OBJFILES (objfile)
3476 {
3477 int i;
3478 struct gdbarch *gdbarch;
3479 struct breakpoint_objfile_data *bp_objfile_data;
3480
3481 gdbarch = get_objfile_arch (objfile);
3482
3483 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3484
3485 if (!bp_objfile_data->longjmp_searched)
3486 {
3487 VEC (probe_p) *ret;
3488
3489 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3490 if (ret != NULL)
3491 {
3492 /* We are only interested in checking one element. */
3493 struct probe *p = VEC_index (probe_p, ret, 0);
3494
3495 if (!can_evaluate_probe_arguments (p))
3496 {
3497 /* We cannot use the probe interface here, because it does
3498 not know how to evaluate arguments. */
3499 VEC_free (probe_p, ret);
3500 ret = NULL;
3501 }
3502 }
3503 bp_objfile_data->longjmp_probes = ret;
3504 bp_objfile_data->longjmp_searched = 1;
3505 }
3506
3507 if (bp_objfile_data->longjmp_probes != NULL)
3508 {
3509 int i;
3510 struct probe *probe;
3511 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3512
3513 for (i = 0;
3514 VEC_iterate (probe_p,
3515 bp_objfile_data->longjmp_probes,
3516 i, probe);
3517 ++i)
3518 {
3519 struct breakpoint *b;
3520
3521 b = create_internal_breakpoint (gdbarch,
3522 get_probe_address (probe,
3523 objfile),
3524 bp_longjmp_master,
3525 &internal_breakpoint_ops);
3526 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3527 b->enable_state = bp_disabled;
3528 }
3529
3530 continue;
3531 }
3532
3533 if (!gdbarch_get_longjmp_target_p (gdbarch))
3534 continue;
3535
3536 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3537 {
3538 struct breakpoint *b;
3539 const char *func_name;
3540 CORE_ADDR addr;
3541
3542 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3543 continue;
3544
3545 func_name = longjmp_names[i];
3546 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3547 {
3548 struct bound_minimal_symbol m;
3549
3550 m = lookup_minimal_symbol_text (func_name, objfile);
3551 if (m.minsym == NULL)
3552 {
3553 /* Prevent future lookups in this objfile. */
3554 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3555 continue;
3556 }
3557 bp_objfile_data->longjmp_msym[i] = m;
3558 }
3559
3560 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3561 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3562 &internal_breakpoint_ops);
3563 b->addr_string = xstrdup (func_name);
3564 b->enable_state = bp_disabled;
3565 }
3566 }
3567 }
3568 update_global_location_list (UGLL_MAY_INSERT);
3569
3570 do_cleanups (old_chain);
3571 }
3572
3573 /* Create a master std::terminate breakpoint. */
3574 static void
3575 create_std_terminate_master_breakpoint (void)
3576 {
3577 struct program_space *pspace;
3578 struct cleanup *old_chain;
3579 const char *const func_name = "std::terminate()";
3580
3581 old_chain = save_current_program_space ();
3582
3583 ALL_PSPACES (pspace)
3584 {
3585 struct objfile *objfile;
3586 CORE_ADDR addr;
3587
3588 set_current_program_space (pspace);
3589
3590 ALL_OBJFILES (objfile)
3591 {
3592 struct breakpoint *b;
3593 struct breakpoint_objfile_data *bp_objfile_data;
3594
3595 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3596
3597 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3598 continue;
3599
3600 if (bp_objfile_data->terminate_msym.minsym == NULL)
3601 {
3602 struct bound_minimal_symbol m;
3603
3604 m = lookup_minimal_symbol (func_name, NULL, objfile);
3605 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3606 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3607 {
3608 /* Prevent future lookups in this objfile. */
3609 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3610 continue;
3611 }
3612 bp_objfile_data->terminate_msym = m;
3613 }
3614
3615 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3616 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3617 bp_std_terminate_master,
3618 &internal_breakpoint_ops);
3619 b->addr_string = xstrdup (func_name);
3620 b->enable_state = bp_disabled;
3621 }
3622 }
3623
3624 update_global_location_list (UGLL_MAY_INSERT);
3625
3626 do_cleanups (old_chain);
3627 }
3628
3629 /* Install a master breakpoint on the unwinder's debug hook. */
3630
3631 static void
3632 create_exception_master_breakpoint (void)
3633 {
3634 struct objfile *objfile;
3635 const char *const func_name = "_Unwind_DebugHook";
3636
3637 ALL_OBJFILES (objfile)
3638 {
3639 struct breakpoint *b;
3640 struct gdbarch *gdbarch;
3641 struct breakpoint_objfile_data *bp_objfile_data;
3642 CORE_ADDR addr;
3643
3644 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3645
3646 /* We prefer the SystemTap probe point if it exists. */
3647 if (!bp_objfile_data->exception_searched)
3648 {
3649 VEC (probe_p) *ret;
3650
3651 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3652
3653 if (ret != NULL)
3654 {
3655 /* We are only interested in checking one element. */
3656 struct probe *p = VEC_index (probe_p, ret, 0);
3657
3658 if (!can_evaluate_probe_arguments (p))
3659 {
3660 /* We cannot use the probe interface here, because it does
3661 not know how to evaluate arguments. */
3662 VEC_free (probe_p, ret);
3663 ret = NULL;
3664 }
3665 }
3666 bp_objfile_data->exception_probes = ret;
3667 bp_objfile_data->exception_searched = 1;
3668 }
3669
3670 if (bp_objfile_data->exception_probes != NULL)
3671 {
3672 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3673 int i;
3674 struct probe *probe;
3675
3676 for (i = 0;
3677 VEC_iterate (probe_p,
3678 bp_objfile_data->exception_probes,
3679 i, probe);
3680 ++i)
3681 {
3682 struct breakpoint *b;
3683
3684 b = create_internal_breakpoint (gdbarch,
3685 get_probe_address (probe,
3686 objfile),
3687 bp_exception_master,
3688 &internal_breakpoint_ops);
3689 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3690 b->enable_state = bp_disabled;
3691 }
3692
3693 continue;
3694 }
3695
3696 /* Otherwise, try the hook function. */
3697
3698 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3699 continue;
3700
3701 gdbarch = get_objfile_arch (objfile);
3702
3703 if (bp_objfile_data->exception_msym.minsym == NULL)
3704 {
3705 struct bound_minimal_symbol debug_hook;
3706
3707 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3708 if (debug_hook.minsym == NULL)
3709 {
3710 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3711 continue;
3712 }
3713
3714 bp_objfile_data->exception_msym = debug_hook;
3715 }
3716
3717 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3718 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3719 &current_target);
3720 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3721 &internal_breakpoint_ops);
3722 b->addr_string = xstrdup (func_name);
3723 b->enable_state = bp_disabled;
3724 }
3725
3726 update_global_location_list (UGLL_MAY_INSERT);
3727 }
3728
3729 void
3730 update_breakpoints_after_exec (void)
3731 {
3732 struct breakpoint *b, *b_tmp;
3733 struct bp_location *bploc, **bplocp_tmp;
3734
3735 /* We're about to delete breakpoints from GDB's lists. If the
3736 INSERTED flag is true, GDB will try to lift the breakpoints by
3737 writing the breakpoints' "shadow contents" back into memory. The
3738 "shadow contents" are NOT valid after an exec, so GDB should not
3739 do that. Instead, the target is responsible from marking
3740 breakpoints out as soon as it detects an exec. We don't do that
3741 here instead, because there may be other attempts to delete
3742 breakpoints after detecting an exec and before reaching here. */
3743 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3744 if (bploc->pspace == current_program_space)
3745 gdb_assert (!bploc->inserted);
3746
3747 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3748 {
3749 if (b->pspace != current_program_space)
3750 continue;
3751
3752 /* Solib breakpoints must be explicitly reset after an exec(). */
3753 if (b->type == bp_shlib_event)
3754 {
3755 delete_breakpoint (b);
3756 continue;
3757 }
3758
3759 /* JIT breakpoints must be explicitly reset after an exec(). */
3760 if (b->type == bp_jit_event)
3761 {
3762 delete_breakpoint (b);
3763 continue;
3764 }
3765
3766 /* Thread event breakpoints must be set anew after an exec(),
3767 as must overlay event and longjmp master breakpoints. */
3768 if (b->type == bp_thread_event || b->type == bp_overlay_event
3769 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3770 || b->type == bp_exception_master)
3771 {
3772 delete_breakpoint (b);
3773 continue;
3774 }
3775
3776 /* Step-resume breakpoints are meaningless after an exec(). */
3777 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3778 {
3779 delete_breakpoint (b);
3780 continue;
3781 }
3782
3783 /* Longjmp and longjmp-resume breakpoints are also meaningless
3784 after an exec. */
3785 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3786 || b->type == bp_longjmp_call_dummy
3787 || b->type == bp_exception || b->type == bp_exception_resume)
3788 {
3789 delete_breakpoint (b);
3790 continue;
3791 }
3792
3793 if (b->type == bp_catchpoint)
3794 {
3795 /* For now, none of the bp_catchpoint breakpoints need to
3796 do anything at this point. In the future, if some of
3797 the catchpoints need to something, we will need to add
3798 a new method, and call this method from here. */
3799 continue;
3800 }
3801
3802 /* bp_finish is a special case. The only way we ought to be able
3803 to see one of these when an exec() has happened, is if the user
3804 caught a vfork, and then said "finish". Ordinarily a finish just
3805 carries them to the call-site of the current callee, by setting
3806 a temporary bp there and resuming. But in this case, the finish
3807 will carry them entirely through the vfork & exec.
3808
3809 We don't want to allow a bp_finish to remain inserted now. But
3810 we can't safely delete it, 'cause finish_command has a handle to
3811 the bp on a bpstat, and will later want to delete it. There's a
3812 chance (and I've seen it happen) that if we delete the bp_finish
3813 here, that its storage will get reused by the time finish_command
3814 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3815 We really must allow finish_command to delete a bp_finish.
3816
3817 In the absence of a general solution for the "how do we know
3818 it's safe to delete something others may have handles to?"
3819 problem, what we'll do here is just uninsert the bp_finish, and
3820 let finish_command delete it.
3821
3822 (We know the bp_finish is "doomed" in the sense that it's
3823 momentary, and will be deleted as soon as finish_command sees
3824 the inferior stopped. So it doesn't matter that the bp's
3825 address is probably bogus in the new a.out, unlike e.g., the
3826 solib breakpoints.) */
3827
3828 if (b->type == bp_finish)
3829 {
3830 continue;
3831 }
3832
3833 /* Without a symbolic address, we have little hope of the
3834 pre-exec() address meaning the same thing in the post-exec()
3835 a.out. */
3836 if (b->addr_string == NULL)
3837 {
3838 delete_breakpoint (b);
3839 continue;
3840 }
3841 }
3842 }
3843
3844 int
3845 detach_breakpoints (ptid_t ptid)
3846 {
3847 struct bp_location *bl, **blp_tmp;
3848 int val = 0;
3849 struct cleanup *old_chain = save_inferior_ptid ();
3850 struct inferior *inf = current_inferior ();
3851
3852 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3853 error (_("Cannot detach breakpoints of inferior_ptid"));
3854
3855 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3856 inferior_ptid = ptid;
3857 ALL_BP_LOCATIONS (bl, blp_tmp)
3858 {
3859 if (bl->pspace != inf->pspace)
3860 continue;
3861
3862 /* This function must physically remove breakpoints locations
3863 from the specified ptid, without modifying the breakpoint
3864 package's state. Locations of type bp_loc_other are only
3865 maintained at GDB side. So, there is no need to remove
3866 these bp_loc_other locations. Moreover, removing these
3867 would modify the breakpoint package's state. */
3868 if (bl->loc_type == bp_loc_other)
3869 continue;
3870
3871 if (bl->inserted)
3872 val |= remove_breakpoint_1 (bl, mark_inserted);
3873 }
3874
3875 /* Detach single-step breakpoints as well. */
3876 detach_single_step_breakpoints ();
3877
3878 do_cleanups (old_chain);
3879 return val;
3880 }
3881
3882 /* Remove the breakpoint location BL from the current address space.
3883 Note that this is used to detach breakpoints from a child fork.
3884 When we get here, the child isn't in the inferior list, and neither
3885 do we have objects to represent its address space --- we should
3886 *not* look at bl->pspace->aspace here. */
3887
3888 static int
3889 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3890 {
3891 int val;
3892
3893 /* BL is never in moribund_locations by our callers. */
3894 gdb_assert (bl->owner != NULL);
3895
3896 if (bl->owner->enable_state == bp_permanent)
3897 /* Permanent breakpoints cannot be inserted or removed. */
3898 return 0;
3899
3900 /* The type of none suggests that owner is actually deleted.
3901 This should not ever happen. */
3902 gdb_assert (bl->owner->type != bp_none);
3903
3904 if (bl->loc_type == bp_loc_software_breakpoint
3905 || bl->loc_type == bp_loc_hardware_breakpoint)
3906 {
3907 /* "Normal" instruction breakpoint: either the standard
3908 trap-instruction bp (bp_breakpoint), or a
3909 bp_hardware_breakpoint. */
3910
3911 /* First check to see if we have to handle an overlay. */
3912 if (overlay_debugging == ovly_off
3913 || bl->section == NULL
3914 || !(section_is_overlay (bl->section)))
3915 {
3916 /* No overlay handling: just remove the breakpoint. */
3917
3918 /* If we're trying to uninsert a memory breakpoint that we
3919 know is set in a dynamic object that is marked
3920 shlib_disabled, then either the dynamic object was
3921 removed with "remove-symbol-file" or with
3922 "nosharedlibrary". In the former case, we don't know
3923 whether another dynamic object might have loaded over the
3924 breakpoint's address -- the user might well let us know
3925 about it next with add-symbol-file (the whole point of
3926 add-symbol-file is letting the user manually maintain a
3927 list of dynamically loaded objects). If we have the
3928 breakpoint's shadow memory, that is, this is a software
3929 breakpoint managed by GDB, check whether the breakpoint
3930 is still inserted in memory, to avoid overwriting wrong
3931 code with stale saved shadow contents. Note that HW
3932 breakpoints don't have shadow memory, as they're
3933 implemented using a mechanism that is not dependent on
3934 being able to modify the target's memory, and as such
3935 they should always be removed. */
3936 if (bl->shlib_disabled
3937 && bl->target_info.shadow_len != 0
3938 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3939 val = 0;
3940 else
3941 val = bl->owner->ops->remove_location (bl);
3942 }
3943 else
3944 {
3945 /* This breakpoint is in an overlay section.
3946 Did we set a breakpoint at the LMA? */
3947 if (!overlay_events_enabled)
3948 {
3949 /* Yes -- overlay event support is not active, so we
3950 should have set a breakpoint at the LMA. Remove it.
3951 */
3952 /* Ignore any failures: if the LMA is in ROM, we will
3953 have already warned when we failed to insert it. */
3954 if (bl->loc_type == bp_loc_hardware_breakpoint)
3955 target_remove_hw_breakpoint (bl->gdbarch,
3956 &bl->overlay_target_info);
3957 else
3958 target_remove_breakpoint (bl->gdbarch,
3959 &bl->overlay_target_info);
3960 }
3961 /* Did we set a breakpoint at the VMA?
3962 If so, we will have marked the breakpoint 'inserted'. */
3963 if (bl->inserted)
3964 {
3965 /* Yes -- remove it. Previously we did not bother to
3966 remove the breakpoint if the section had been
3967 unmapped, but let's not rely on that being safe. We
3968 don't know what the overlay manager might do. */
3969
3970 /* However, we should remove *software* breakpoints only
3971 if the section is still mapped, or else we overwrite
3972 wrong code with the saved shadow contents. */
3973 if (bl->loc_type == bp_loc_hardware_breakpoint
3974 || section_is_mapped (bl->section))
3975 val = bl->owner->ops->remove_location (bl);
3976 else
3977 val = 0;
3978 }
3979 else
3980 {
3981 /* No -- not inserted, so no need to remove. No error. */
3982 val = 0;
3983 }
3984 }
3985
3986 /* In some cases, we might not be able to remove a breakpoint in
3987 a shared library that has already been removed, but we have
3988 not yet processed the shlib unload event. Similarly for an
3989 unloaded add-symbol-file object - the user might not yet have
3990 had the chance to remove-symbol-file it. shlib_disabled will
3991 be set if the library/object has already been removed, but
3992 the breakpoint hasn't been uninserted yet, e.g., after
3993 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3994 always-inserted mode. */
3995 if (val
3996 && (bl->loc_type == bp_loc_software_breakpoint
3997 && (bl->shlib_disabled
3998 || solib_name_from_address (bl->pspace, bl->address)
3999 || shared_objfile_contains_address_p (bl->pspace,
4000 bl->address))))
4001 val = 0;
4002
4003 if (val)
4004 return val;
4005 bl->inserted = (is == mark_inserted);
4006 }
4007 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4008 {
4009 gdb_assert (bl->owner->ops != NULL
4010 && bl->owner->ops->remove_location != NULL);
4011
4012 bl->inserted = (is == mark_inserted);
4013 bl->owner->ops->remove_location (bl);
4014
4015 /* Failure to remove any of the hardware watchpoints comes here. */
4016 if ((is == mark_uninserted) && (bl->inserted))
4017 warning (_("Could not remove hardware watchpoint %d."),
4018 bl->owner->number);
4019 }
4020 else if (bl->owner->type == bp_catchpoint
4021 && breakpoint_enabled (bl->owner)
4022 && !bl->duplicate)
4023 {
4024 gdb_assert (bl->owner->ops != NULL
4025 && bl->owner->ops->remove_location != NULL);
4026
4027 val = bl->owner->ops->remove_location (bl);
4028 if (val)
4029 return val;
4030
4031 bl->inserted = (is == mark_inserted);
4032 }
4033
4034 return 0;
4035 }
4036
4037 static int
4038 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4039 {
4040 int ret;
4041 struct cleanup *old_chain;
4042
4043 /* BL is never in moribund_locations by our callers. */
4044 gdb_assert (bl->owner != NULL);
4045
4046 if (bl->owner->enable_state == bp_permanent)
4047 /* Permanent breakpoints cannot be inserted or removed. */
4048 return 0;
4049
4050 /* The type of none suggests that owner is actually deleted.
4051 This should not ever happen. */
4052 gdb_assert (bl->owner->type != bp_none);
4053
4054 old_chain = save_current_space_and_thread ();
4055
4056 switch_to_program_space_and_thread (bl->pspace);
4057
4058 ret = remove_breakpoint_1 (bl, is);
4059
4060 do_cleanups (old_chain);
4061 return ret;
4062 }
4063
4064 /* Clear the "inserted" flag in all breakpoints. */
4065
4066 void
4067 mark_breakpoints_out (void)
4068 {
4069 struct bp_location *bl, **blp_tmp;
4070
4071 ALL_BP_LOCATIONS (bl, blp_tmp)
4072 if (bl->pspace == current_program_space)
4073 bl->inserted = 0;
4074 }
4075
4076 /* Clear the "inserted" flag in all breakpoints and delete any
4077 breakpoints which should go away between runs of the program.
4078
4079 Plus other such housekeeping that has to be done for breakpoints
4080 between runs.
4081
4082 Note: this function gets called at the end of a run (by
4083 generic_mourn_inferior) and when a run begins (by
4084 init_wait_for_inferior). */
4085
4086
4087
4088 void
4089 breakpoint_init_inferior (enum inf_context context)
4090 {
4091 struct breakpoint *b, *b_tmp;
4092 struct bp_location *bl, **blp_tmp;
4093 int ix;
4094 struct program_space *pspace = current_program_space;
4095
4096 /* If breakpoint locations are shared across processes, then there's
4097 nothing to do. */
4098 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4099 return;
4100
4101 ALL_BP_LOCATIONS (bl, blp_tmp)
4102 {
4103 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4104 if (bl->pspace == pspace
4105 && bl->owner->enable_state != bp_permanent)
4106 bl->inserted = 0;
4107 }
4108
4109 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4110 {
4111 if (b->loc && b->loc->pspace != pspace)
4112 continue;
4113
4114 switch (b->type)
4115 {
4116 case bp_call_dummy:
4117 case bp_longjmp_call_dummy:
4118
4119 /* If the call dummy breakpoint is at the entry point it will
4120 cause problems when the inferior is rerun, so we better get
4121 rid of it. */
4122
4123 case bp_watchpoint_scope:
4124
4125 /* Also get rid of scope breakpoints. */
4126
4127 case bp_shlib_event:
4128
4129 /* Also remove solib event breakpoints. Their addresses may
4130 have changed since the last time we ran the program.
4131 Actually we may now be debugging against different target;
4132 and so the solib backend that installed this breakpoint may
4133 not be used in by the target. E.g.,
4134
4135 (gdb) file prog-linux
4136 (gdb) run # native linux target
4137 ...
4138 (gdb) kill
4139 (gdb) file prog-win.exe
4140 (gdb) tar rem :9999 # remote Windows gdbserver.
4141 */
4142
4143 case bp_step_resume:
4144
4145 /* Also remove step-resume breakpoints. */
4146
4147 delete_breakpoint (b);
4148 break;
4149
4150 case bp_watchpoint:
4151 case bp_hardware_watchpoint:
4152 case bp_read_watchpoint:
4153 case bp_access_watchpoint:
4154 {
4155 struct watchpoint *w = (struct watchpoint *) b;
4156
4157 /* Likewise for watchpoints on local expressions. */
4158 if (w->exp_valid_block != NULL)
4159 delete_breakpoint (b);
4160 else if (context == inf_starting)
4161 {
4162 /* Reset val field to force reread of starting value in
4163 insert_breakpoints. */
4164 if (w->val)
4165 value_free (w->val);
4166 w->val = NULL;
4167 w->val_valid = 0;
4168 }
4169 }
4170 break;
4171 default:
4172 break;
4173 }
4174 }
4175
4176 /* Get rid of the moribund locations. */
4177 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4178 decref_bp_location (&bl);
4179 VEC_free (bp_location_p, moribund_locations);
4180 }
4181
4182 /* These functions concern about actual breakpoints inserted in the
4183 target --- to e.g. check if we need to do decr_pc adjustment or if
4184 we need to hop over the bkpt --- so we check for address space
4185 match, not program space. */
4186
4187 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4188 exists at PC. It returns ordinary_breakpoint_here if it's an
4189 ordinary breakpoint, or permanent_breakpoint_here if it's a
4190 permanent breakpoint.
4191 - When continuing from a location with an ordinary breakpoint, we
4192 actually single step once before calling insert_breakpoints.
4193 - When continuing from a location with a permanent breakpoint, we
4194 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4195 the target, to advance the PC past the breakpoint. */
4196
4197 enum breakpoint_here
4198 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4199 {
4200 struct bp_location *bl, **blp_tmp;
4201 int any_breakpoint_here = 0;
4202
4203 ALL_BP_LOCATIONS (bl, blp_tmp)
4204 {
4205 if (bl->loc_type != bp_loc_software_breakpoint
4206 && bl->loc_type != bp_loc_hardware_breakpoint)
4207 continue;
4208
4209 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4210 if ((breakpoint_enabled (bl->owner)
4211 || bl->owner->enable_state == bp_permanent)
4212 && breakpoint_location_address_match (bl, aspace, pc))
4213 {
4214 if (overlay_debugging
4215 && section_is_overlay (bl->section)
4216 && !section_is_mapped (bl->section))
4217 continue; /* unmapped overlay -- can't be a match */
4218 else if (bl->owner->enable_state == bp_permanent)
4219 return permanent_breakpoint_here;
4220 else
4221 any_breakpoint_here = 1;
4222 }
4223 }
4224
4225 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4226 }
4227
4228 /* Return true if there's a moribund breakpoint at PC. */
4229
4230 int
4231 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4232 {
4233 struct bp_location *loc;
4234 int ix;
4235
4236 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4237 if (breakpoint_location_address_match (loc, aspace, pc))
4238 return 1;
4239
4240 return 0;
4241 }
4242
4243 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4244 inserted using regular breakpoint_chain / bp_location array
4245 mechanism. This does not check for single-step breakpoints, which
4246 are inserted and removed using direct target manipulation. */
4247
4248 int
4249 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4250 CORE_ADDR pc)
4251 {
4252 struct bp_location *bl, **blp_tmp;
4253
4254 ALL_BP_LOCATIONS (bl, blp_tmp)
4255 {
4256 if (bl->loc_type != bp_loc_software_breakpoint
4257 && bl->loc_type != bp_loc_hardware_breakpoint)
4258 continue;
4259
4260 if (bl->inserted
4261 && breakpoint_location_address_match (bl, aspace, pc))
4262 {
4263 if (overlay_debugging
4264 && section_is_overlay (bl->section)
4265 && !section_is_mapped (bl->section))
4266 continue; /* unmapped overlay -- can't be a match */
4267 else
4268 return 1;
4269 }
4270 }
4271 return 0;
4272 }
4273
4274 /* Returns non-zero iff there's either regular breakpoint
4275 or a single step breakpoint inserted at PC. */
4276
4277 int
4278 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4279 {
4280 if (regular_breakpoint_inserted_here_p (aspace, pc))
4281 return 1;
4282
4283 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4284 return 1;
4285
4286 return 0;
4287 }
4288
4289 /* Ignoring deprecated raw breakpoints, return non-zero iff there is a
4290 software breakpoint inserted at PC. */
4291
4292 static struct bp_location *
4293 find_non_raw_software_breakpoint_inserted_here (struct address_space *aspace,
4294 CORE_ADDR pc)
4295 {
4296 struct bp_location *bl, **blp_tmp;
4297
4298 ALL_BP_LOCATIONS (bl, blp_tmp)
4299 {
4300 if (bl->loc_type != bp_loc_software_breakpoint)
4301 continue;
4302
4303 if (bl->inserted
4304 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4305 aspace, pc))
4306 {
4307 if (overlay_debugging
4308 && section_is_overlay (bl->section)
4309 && !section_is_mapped (bl->section))
4310 continue; /* unmapped overlay -- can't be a match */
4311 else
4312 return bl;
4313 }
4314 }
4315
4316 return NULL;
4317 }
4318
4319 /* This function returns non-zero iff there is a software breakpoint
4320 inserted at PC. */
4321
4322 int
4323 software_breakpoint_inserted_here_p (struct address_space *aspace,
4324 CORE_ADDR pc)
4325 {
4326 if (find_non_raw_software_breakpoint_inserted_here (aspace, pc) != NULL)
4327 return 1;
4328
4329 /* Also check for software single-step breakpoints. */
4330 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4331 return 1;
4332
4333 return 0;
4334 }
4335
4336 int
4337 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4338 CORE_ADDR addr, ULONGEST len)
4339 {
4340 struct breakpoint *bpt;
4341
4342 ALL_BREAKPOINTS (bpt)
4343 {
4344 struct bp_location *loc;
4345
4346 if (bpt->type != bp_hardware_watchpoint
4347 && bpt->type != bp_access_watchpoint)
4348 continue;
4349
4350 if (!breakpoint_enabled (bpt))
4351 continue;
4352
4353 for (loc = bpt->loc; loc; loc = loc->next)
4354 if (loc->pspace->aspace == aspace && loc->inserted)
4355 {
4356 CORE_ADDR l, h;
4357
4358 /* Check for intersection. */
4359 l = max (loc->address, addr);
4360 h = min (loc->address + loc->length, addr + len);
4361 if (l < h)
4362 return 1;
4363 }
4364 }
4365 return 0;
4366 }
4367
4368 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4369 PC is valid for process/thread PTID. */
4370
4371 int
4372 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4373 ptid_t ptid)
4374 {
4375 struct bp_location *bl, **blp_tmp;
4376 /* The thread and task IDs associated to PTID, computed lazily. */
4377 int thread = -1;
4378 int task = 0;
4379
4380 ALL_BP_LOCATIONS (bl, blp_tmp)
4381 {
4382 if (bl->loc_type != bp_loc_software_breakpoint
4383 && bl->loc_type != bp_loc_hardware_breakpoint)
4384 continue;
4385
4386 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4387 if (!breakpoint_enabled (bl->owner)
4388 && bl->owner->enable_state != bp_permanent)
4389 continue;
4390
4391 if (!breakpoint_location_address_match (bl, aspace, pc))
4392 continue;
4393
4394 if (bl->owner->thread != -1)
4395 {
4396 /* This is a thread-specific breakpoint. Check that ptid
4397 matches that thread. If thread hasn't been computed yet,
4398 it is now time to do so. */
4399 if (thread == -1)
4400 thread = pid_to_thread_id (ptid);
4401 if (bl->owner->thread != thread)
4402 continue;
4403 }
4404
4405 if (bl->owner->task != 0)
4406 {
4407 /* This is a task-specific breakpoint. Check that ptid
4408 matches that task. If task hasn't been computed yet,
4409 it is now time to do so. */
4410 if (task == 0)
4411 task = ada_get_task_number (ptid);
4412 if (bl->owner->task != task)
4413 continue;
4414 }
4415
4416 if (overlay_debugging
4417 && section_is_overlay (bl->section)
4418 && !section_is_mapped (bl->section))
4419 continue; /* unmapped overlay -- can't be a match */
4420
4421 return 1;
4422 }
4423
4424 return 0;
4425 }
4426 \f
4427
4428 /* bpstat stuff. External routines' interfaces are documented
4429 in breakpoint.h. */
4430
4431 int
4432 is_catchpoint (struct breakpoint *ep)
4433 {
4434 return (ep->type == bp_catchpoint);
4435 }
4436
4437 /* Frees any storage that is part of a bpstat. Does not walk the
4438 'next' chain. */
4439
4440 static void
4441 bpstat_free (bpstat bs)
4442 {
4443 if (bs->old_val != NULL)
4444 value_free (bs->old_val);
4445 decref_counted_command_line (&bs->commands);
4446 decref_bp_location (&bs->bp_location_at);
4447 xfree (bs);
4448 }
4449
4450 /* Clear a bpstat so that it says we are not at any breakpoint.
4451 Also free any storage that is part of a bpstat. */
4452
4453 void
4454 bpstat_clear (bpstat *bsp)
4455 {
4456 bpstat p;
4457 bpstat q;
4458
4459 if (bsp == 0)
4460 return;
4461 p = *bsp;
4462 while (p != NULL)
4463 {
4464 q = p->next;
4465 bpstat_free (p);
4466 p = q;
4467 }
4468 *bsp = NULL;
4469 }
4470
4471 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4472 is part of the bpstat is copied as well. */
4473
4474 bpstat
4475 bpstat_copy (bpstat bs)
4476 {
4477 bpstat p = NULL;
4478 bpstat tmp;
4479 bpstat retval = NULL;
4480
4481 if (bs == NULL)
4482 return bs;
4483
4484 for (; bs != NULL; bs = bs->next)
4485 {
4486 tmp = (bpstat) xmalloc (sizeof (*tmp));
4487 memcpy (tmp, bs, sizeof (*tmp));
4488 incref_counted_command_line (tmp->commands);
4489 incref_bp_location (tmp->bp_location_at);
4490 if (bs->old_val != NULL)
4491 {
4492 tmp->old_val = value_copy (bs->old_val);
4493 release_value (tmp->old_val);
4494 }
4495
4496 if (p == NULL)
4497 /* This is the first thing in the chain. */
4498 retval = tmp;
4499 else
4500 p->next = tmp;
4501 p = tmp;
4502 }
4503 p->next = NULL;
4504 return retval;
4505 }
4506
4507 /* Find the bpstat associated with this breakpoint. */
4508
4509 bpstat
4510 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4511 {
4512 if (bsp == NULL)
4513 return NULL;
4514
4515 for (; bsp != NULL; bsp = bsp->next)
4516 {
4517 if (bsp->breakpoint_at == breakpoint)
4518 return bsp;
4519 }
4520 return NULL;
4521 }
4522
4523 /* See breakpoint.h. */
4524
4525 int
4526 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4527 {
4528 for (; bsp != NULL; bsp = bsp->next)
4529 {
4530 if (bsp->breakpoint_at == NULL)
4531 {
4532 /* A moribund location can never explain a signal other than
4533 GDB_SIGNAL_TRAP. */
4534 if (sig == GDB_SIGNAL_TRAP)
4535 return 1;
4536 }
4537 else
4538 {
4539 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4540 sig))
4541 return 1;
4542 }
4543 }
4544
4545 return 0;
4546 }
4547
4548 /* Put in *NUM the breakpoint number of the first breakpoint we are
4549 stopped at. *BSP upon return is a bpstat which points to the
4550 remaining breakpoints stopped at (but which is not guaranteed to be
4551 good for anything but further calls to bpstat_num).
4552
4553 Return 0 if passed a bpstat which does not indicate any breakpoints.
4554 Return -1 if stopped at a breakpoint that has been deleted since
4555 we set it.
4556 Return 1 otherwise. */
4557
4558 int
4559 bpstat_num (bpstat *bsp, int *num)
4560 {
4561 struct breakpoint *b;
4562
4563 if ((*bsp) == NULL)
4564 return 0; /* No more breakpoint values */
4565
4566 /* We assume we'll never have several bpstats that correspond to a
4567 single breakpoint -- otherwise, this function might return the
4568 same number more than once and this will look ugly. */
4569 b = (*bsp)->breakpoint_at;
4570 *bsp = (*bsp)->next;
4571 if (b == NULL)
4572 return -1; /* breakpoint that's been deleted since */
4573
4574 *num = b->number; /* We have its number */
4575 return 1;
4576 }
4577
4578 /* See breakpoint.h. */
4579
4580 void
4581 bpstat_clear_actions (void)
4582 {
4583 struct thread_info *tp;
4584 bpstat bs;
4585
4586 if (ptid_equal (inferior_ptid, null_ptid))
4587 return;
4588
4589 tp = find_thread_ptid (inferior_ptid);
4590 if (tp == NULL)
4591 return;
4592
4593 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4594 {
4595 decref_counted_command_line (&bs->commands);
4596
4597 if (bs->old_val != NULL)
4598 {
4599 value_free (bs->old_val);
4600 bs->old_val = NULL;
4601 }
4602 }
4603 }
4604
4605 /* Called when a command is about to proceed the inferior. */
4606
4607 static void
4608 breakpoint_about_to_proceed (void)
4609 {
4610 if (!ptid_equal (inferior_ptid, null_ptid))
4611 {
4612 struct thread_info *tp = inferior_thread ();
4613
4614 /* Allow inferior function calls in breakpoint commands to not
4615 interrupt the command list. When the call finishes
4616 successfully, the inferior will be standing at the same
4617 breakpoint as if nothing happened. */
4618 if (tp->control.in_infcall)
4619 return;
4620 }
4621
4622 breakpoint_proceeded = 1;
4623 }
4624
4625 /* Stub for cleaning up our state if we error-out of a breakpoint
4626 command. */
4627 static void
4628 cleanup_executing_breakpoints (void *ignore)
4629 {
4630 executing_breakpoint_commands = 0;
4631 }
4632
4633 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4634 or its equivalent. */
4635
4636 static int
4637 command_line_is_silent (struct command_line *cmd)
4638 {
4639 return cmd && (strcmp ("silent", cmd->line) == 0
4640 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4641 }
4642
4643 /* Execute all the commands associated with all the breakpoints at
4644 this location. Any of these commands could cause the process to
4645 proceed beyond this point, etc. We look out for such changes by
4646 checking the global "breakpoint_proceeded" after each command.
4647
4648 Returns true if a breakpoint command resumed the inferior. In that
4649 case, it is the caller's responsibility to recall it again with the
4650 bpstat of the current thread. */
4651
4652 static int
4653 bpstat_do_actions_1 (bpstat *bsp)
4654 {
4655 bpstat bs;
4656 struct cleanup *old_chain;
4657 int again = 0;
4658
4659 /* Avoid endless recursion if a `source' command is contained
4660 in bs->commands. */
4661 if (executing_breakpoint_commands)
4662 return 0;
4663
4664 executing_breakpoint_commands = 1;
4665 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4666
4667 prevent_dont_repeat ();
4668
4669 /* This pointer will iterate over the list of bpstat's. */
4670 bs = *bsp;
4671
4672 breakpoint_proceeded = 0;
4673 for (; bs != NULL; bs = bs->next)
4674 {
4675 struct counted_command_line *ccmd;
4676 struct command_line *cmd;
4677 struct cleanup *this_cmd_tree_chain;
4678
4679 /* Take ownership of the BSP's command tree, if it has one.
4680
4681 The command tree could legitimately contain commands like
4682 'step' and 'next', which call clear_proceed_status, which
4683 frees stop_bpstat's command tree. To make sure this doesn't
4684 free the tree we're executing out from under us, we need to
4685 take ownership of the tree ourselves. Since a given bpstat's
4686 commands are only executed once, we don't need to copy it; we
4687 can clear the pointer in the bpstat, and make sure we free
4688 the tree when we're done. */
4689 ccmd = bs->commands;
4690 bs->commands = NULL;
4691 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4692 cmd = ccmd ? ccmd->commands : NULL;
4693 if (command_line_is_silent (cmd))
4694 {
4695 /* The action has been already done by bpstat_stop_status. */
4696 cmd = cmd->next;
4697 }
4698
4699 while (cmd != NULL)
4700 {
4701 execute_control_command (cmd);
4702
4703 if (breakpoint_proceeded)
4704 break;
4705 else
4706 cmd = cmd->next;
4707 }
4708
4709 /* We can free this command tree now. */
4710 do_cleanups (this_cmd_tree_chain);
4711
4712 if (breakpoint_proceeded)
4713 {
4714 if (target_can_async_p ())
4715 /* If we are in async mode, then the target might be still
4716 running, not stopped at any breakpoint, so nothing for
4717 us to do here -- just return to the event loop. */
4718 ;
4719 else
4720 /* In sync mode, when execute_control_command returns
4721 we're already standing on the next breakpoint.
4722 Breakpoint commands for that stop were not run, since
4723 execute_command does not run breakpoint commands --
4724 only command_line_handler does, but that one is not
4725 involved in execution of breakpoint commands. So, we
4726 can now execute breakpoint commands. It should be
4727 noted that making execute_command do bpstat actions is
4728 not an option -- in this case we'll have recursive
4729 invocation of bpstat for each breakpoint with a
4730 command, and can easily blow up GDB stack. Instead, we
4731 return true, which will trigger the caller to recall us
4732 with the new stop_bpstat. */
4733 again = 1;
4734 break;
4735 }
4736 }
4737 do_cleanups (old_chain);
4738 return again;
4739 }
4740
4741 void
4742 bpstat_do_actions (void)
4743 {
4744 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4745
4746 /* Do any commands attached to breakpoint we are stopped at. */
4747 while (!ptid_equal (inferior_ptid, null_ptid)
4748 && target_has_execution
4749 && !is_exited (inferior_ptid)
4750 && !is_executing (inferior_ptid))
4751 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4752 and only return when it is stopped at the next breakpoint, we
4753 keep doing breakpoint actions until it returns false to
4754 indicate the inferior was not resumed. */
4755 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4756 break;
4757
4758 discard_cleanups (cleanup_if_error);
4759 }
4760
4761 /* Print out the (old or new) value associated with a watchpoint. */
4762
4763 static void
4764 watchpoint_value_print (struct value *val, struct ui_file *stream)
4765 {
4766 if (val == NULL)
4767 fprintf_unfiltered (stream, _("<unreadable>"));
4768 else
4769 {
4770 struct value_print_options opts;
4771 get_user_print_options (&opts);
4772 value_print (val, stream, &opts);
4773 }
4774 }
4775
4776 /* Generic routine for printing messages indicating why we
4777 stopped. The behavior of this function depends on the value
4778 'print_it' in the bpstat structure. Under some circumstances we
4779 may decide not to print anything here and delegate the task to
4780 normal_stop(). */
4781
4782 static enum print_stop_action
4783 print_bp_stop_message (bpstat bs)
4784 {
4785 switch (bs->print_it)
4786 {
4787 case print_it_noop:
4788 /* Nothing should be printed for this bpstat entry. */
4789 return PRINT_UNKNOWN;
4790 break;
4791
4792 case print_it_done:
4793 /* We still want to print the frame, but we already printed the
4794 relevant messages. */
4795 return PRINT_SRC_AND_LOC;
4796 break;
4797
4798 case print_it_normal:
4799 {
4800 struct breakpoint *b = bs->breakpoint_at;
4801
4802 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4803 which has since been deleted. */
4804 if (b == NULL)
4805 return PRINT_UNKNOWN;
4806
4807 /* Normal case. Call the breakpoint's print_it method. */
4808 return b->ops->print_it (bs);
4809 }
4810 break;
4811
4812 default:
4813 internal_error (__FILE__, __LINE__,
4814 _("print_bp_stop_message: unrecognized enum value"));
4815 break;
4816 }
4817 }
4818
4819 /* A helper function that prints a shared library stopped event. */
4820
4821 static void
4822 print_solib_event (int is_catchpoint)
4823 {
4824 int any_deleted
4825 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4826 int any_added
4827 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4828
4829 if (!is_catchpoint)
4830 {
4831 if (any_added || any_deleted)
4832 ui_out_text (current_uiout,
4833 _("Stopped due to shared library event:\n"));
4834 else
4835 ui_out_text (current_uiout,
4836 _("Stopped due to shared library event (no "
4837 "libraries added or removed)\n"));
4838 }
4839
4840 if (ui_out_is_mi_like_p (current_uiout))
4841 ui_out_field_string (current_uiout, "reason",
4842 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4843
4844 if (any_deleted)
4845 {
4846 struct cleanup *cleanup;
4847 char *name;
4848 int ix;
4849
4850 ui_out_text (current_uiout, _(" Inferior unloaded "));
4851 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4852 "removed");
4853 for (ix = 0;
4854 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4855 ix, name);
4856 ++ix)
4857 {
4858 if (ix > 0)
4859 ui_out_text (current_uiout, " ");
4860 ui_out_field_string (current_uiout, "library", name);
4861 ui_out_text (current_uiout, "\n");
4862 }
4863
4864 do_cleanups (cleanup);
4865 }
4866
4867 if (any_added)
4868 {
4869 struct so_list *iter;
4870 int ix;
4871 struct cleanup *cleanup;
4872
4873 ui_out_text (current_uiout, _(" Inferior loaded "));
4874 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4875 "added");
4876 for (ix = 0;
4877 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4878 ix, iter);
4879 ++ix)
4880 {
4881 if (ix > 0)
4882 ui_out_text (current_uiout, " ");
4883 ui_out_field_string (current_uiout, "library", iter->so_name);
4884 ui_out_text (current_uiout, "\n");
4885 }
4886
4887 do_cleanups (cleanup);
4888 }
4889 }
4890
4891 /* Print a message indicating what happened. This is called from
4892 normal_stop(). The input to this routine is the head of the bpstat
4893 list - a list of the eventpoints that caused this stop. KIND is
4894 the target_waitkind for the stopping event. This
4895 routine calls the generic print routine for printing a message
4896 about reasons for stopping. This will print (for example) the
4897 "Breakpoint n," part of the output. The return value of this
4898 routine is one of:
4899
4900 PRINT_UNKNOWN: Means we printed nothing.
4901 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4902 code to print the location. An example is
4903 "Breakpoint 1, " which should be followed by
4904 the location.
4905 PRINT_SRC_ONLY: Means we printed something, but there is no need
4906 to also print the location part of the message.
4907 An example is the catch/throw messages, which
4908 don't require a location appended to the end.
4909 PRINT_NOTHING: We have done some printing and we don't need any
4910 further info to be printed. */
4911
4912 enum print_stop_action
4913 bpstat_print (bpstat bs, int kind)
4914 {
4915 int val;
4916
4917 /* Maybe another breakpoint in the chain caused us to stop.
4918 (Currently all watchpoints go on the bpstat whether hit or not.
4919 That probably could (should) be changed, provided care is taken
4920 with respect to bpstat_explains_signal). */
4921 for (; bs; bs = bs->next)
4922 {
4923 val = print_bp_stop_message (bs);
4924 if (val == PRINT_SRC_ONLY
4925 || val == PRINT_SRC_AND_LOC
4926 || val == PRINT_NOTHING)
4927 return val;
4928 }
4929
4930 /* If we had hit a shared library event breakpoint,
4931 print_bp_stop_message would print out this message. If we hit an
4932 OS-level shared library event, do the same thing. */
4933 if (kind == TARGET_WAITKIND_LOADED)
4934 {
4935 print_solib_event (0);
4936 return PRINT_NOTHING;
4937 }
4938
4939 /* We reached the end of the chain, or we got a null BS to start
4940 with and nothing was printed. */
4941 return PRINT_UNKNOWN;
4942 }
4943
4944 /* Evaluate the expression EXP and return 1 if value is zero.
4945 This returns the inverse of the condition because it is called
4946 from catch_errors which returns 0 if an exception happened, and if an
4947 exception happens we want execution to stop.
4948 The argument is a "struct expression *" that has been cast to a
4949 "void *" to make it pass through catch_errors. */
4950
4951 static int
4952 breakpoint_cond_eval (void *exp)
4953 {
4954 struct value *mark = value_mark ();
4955 int i = !value_true (evaluate_expression ((struct expression *) exp));
4956
4957 value_free_to_mark (mark);
4958 return i;
4959 }
4960
4961 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4962
4963 static bpstat
4964 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4965 {
4966 bpstat bs;
4967
4968 bs = (bpstat) xmalloc (sizeof (*bs));
4969 bs->next = NULL;
4970 **bs_link_pointer = bs;
4971 *bs_link_pointer = &bs->next;
4972 bs->breakpoint_at = bl->owner;
4973 bs->bp_location_at = bl;
4974 incref_bp_location (bl);
4975 /* If the condition is false, etc., don't do the commands. */
4976 bs->commands = NULL;
4977 bs->old_val = NULL;
4978 bs->print_it = print_it_normal;
4979 return bs;
4980 }
4981 \f
4982 /* The target has stopped with waitstatus WS. Check if any hardware
4983 watchpoints have triggered, according to the target. */
4984
4985 int
4986 watchpoints_triggered (struct target_waitstatus *ws)
4987 {
4988 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4989 CORE_ADDR addr;
4990 struct breakpoint *b;
4991
4992 if (!stopped_by_watchpoint)
4993 {
4994 /* We were not stopped by a watchpoint. Mark all watchpoints
4995 as not triggered. */
4996 ALL_BREAKPOINTS (b)
4997 if (is_hardware_watchpoint (b))
4998 {
4999 struct watchpoint *w = (struct watchpoint *) b;
5000
5001 w->watchpoint_triggered = watch_triggered_no;
5002 }
5003
5004 return 0;
5005 }
5006
5007 if (!target_stopped_data_address (&current_target, &addr))
5008 {
5009 /* We were stopped by a watchpoint, but we don't know where.
5010 Mark all watchpoints as unknown. */
5011 ALL_BREAKPOINTS (b)
5012 if (is_hardware_watchpoint (b))
5013 {
5014 struct watchpoint *w = (struct watchpoint *) b;
5015
5016 w->watchpoint_triggered = watch_triggered_unknown;
5017 }
5018
5019 return 1;
5020 }
5021
5022 /* The target could report the data address. Mark watchpoints
5023 affected by this data address as triggered, and all others as not
5024 triggered. */
5025
5026 ALL_BREAKPOINTS (b)
5027 if (is_hardware_watchpoint (b))
5028 {
5029 struct watchpoint *w = (struct watchpoint *) b;
5030 struct bp_location *loc;
5031
5032 w->watchpoint_triggered = watch_triggered_no;
5033 for (loc = b->loc; loc; loc = loc->next)
5034 {
5035 if (is_masked_watchpoint (b))
5036 {
5037 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5038 CORE_ADDR start = loc->address & w->hw_wp_mask;
5039
5040 if (newaddr == start)
5041 {
5042 w->watchpoint_triggered = watch_triggered_yes;
5043 break;
5044 }
5045 }
5046 /* Exact match not required. Within range is sufficient. */
5047 else if (target_watchpoint_addr_within_range (&current_target,
5048 addr, loc->address,
5049 loc->length))
5050 {
5051 w->watchpoint_triggered = watch_triggered_yes;
5052 break;
5053 }
5054 }
5055 }
5056
5057 return 1;
5058 }
5059
5060 /* Possible return values for watchpoint_check (this can't be an enum
5061 because of check_errors). */
5062 /* The watchpoint has been deleted. */
5063 #define WP_DELETED 1
5064 /* The value has changed. */
5065 #define WP_VALUE_CHANGED 2
5066 /* The value has not changed. */
5067 #define WP_VALUE_NOT_CHANGED 3
5068 /* Ignore this watchpoint, no matter if the value changed or not. */
5069 #define WP_IGNORE 4
5070
5071 #define BP_TEMPFLAG 1
5072 #define BP_HARDWAREFLAG 2
5073
5074 /* Evaluate watchpoint condition expression and check if its value
5075 changed.
5076
5077 P should be a pointer to struct bpstat, but is defined as a void *
5078 in order for this function to be usable with catch_errors. */
5079
5080 static int
5081 watchpoint_check (void *p)
5082 {
5083 bpstat bs = (bpstat) p;
5084 struct watchpoint *b;
5085 struct frame_info *fr;
5086 int within_current_scope;
5087
5088 /* BS is built from an existing struct breakpoint. */
5089 gdb_assert (bs->breakpoint_at != NULL);
5090 b = (struct watchpoint *) bs->breakpoint_at;
5091
5092 /* If this is a local watchpoint, we only want to check if the
5093 watchpoint frame is in scope if the current thread is the thread
5094 that was used to create the watchpoint. */
5095 if (!watchpoint_in_thread_scope (b))
5096 return WP_IGNORE;
5097
5098 if (b->exp_valid_block == NULL)
5099 within_current_scope = 1;
5100 else
5101 {
5102 struct frame_info *frame = get_current_frame ();
5103 struct gdbarch *frame_arch = get_frame_arch (frame);
5104 CORE_ADDR frame_pc = get_frame_pc (frame);
5105
5106 /* in_function_epilogue_p() returns a non-zero value if we're
5107 still in the function but the stack frame has already been
5108 invalidated. Since we can't rely on the values of local
5109 variables after the stack has been destroyed, we are treating
5110 the watchpoint in that state as `not changed' without further
5111 checking. Don't mark watchpoints as changed if the current
5112 frame is in an epilogue - even if they are in some other
5113 frame, our view of the stack is likely to be wrong and
5114 frame_find_by_id could error out. */
5115 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
5116 return WP_IGNORE;
5117
5118 fr = frame_find_by_id (b->watchpoint_frame);
5119 within_current_scope = (fr != NULL);
5120
5121 /* If we've gotten confused in the unwinder, we might have
5122 returned a frame that can't describe this variable. */
5123 if (within_current_scope)
5124 {
5125 struct symbol *function;
5126
5127 function = get_frame_function (fr);
5128 if (function == NULL
5129 || !contained_in (b->exp_valid_block,
5130 SYMBOL_BLOCK_VALUE (function)))
5131 within_current_scope = 0;
5132 }
5133
5134 if (within_current_scope)
5135 /* If we end up stopping, the current frame will get selected
5136 in normal_stop. So this call to select_frame won't affect
5137 the user. */
5138 select_frame (fr);
5139 }
5140
5141 if (within_current_scope)
5142 {
5143 /* We use value_{,free_to_}mark because it could be a *long*
5144 time before we return to the command level and call
5145 free_all_values. We can't call free_all_values because we
5146 might be in the middle of evaluating a function call. */
5147
5148 int pc = 0;
5149 struct value *mark;
5150 struct value *new_val;
5151
5152 if (is_masked_watchpoint (&b->base))
5153 /* Since we don't know the exact trigger address (from
5154 stopped_data_address), just tell the user we've triggered
5155 a mask watchpoint. */
5156 return WP_VALUE_CHANGED;
5157
5158 mark = value_mark ();
5159 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5160
5161 if (b->val_bitsize != 0)
5162 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5163
5164 /* We use value_equal_contents instead of value_equal because
5165 the latter coerces an array to a pointer, thus comparing just
5166 the address of the array instead of its contents. This is
5167 not what we want. */
5168 if ((b->val != NULL) != (new_val != NULL)
5169 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5170 {
5171 if (new_val != NULL)
5172 {
5173 release_value (new_val);
5174 value_free_to_mark (mark);
5175 }
5176 bs->old_val = b->val;
5177 b->val = new_val;
5178 b->val_valid = 1;
5179 return WP_VALUE_CHANGED;
5180 }
5181 else
5182 {
5183 /* Nothing changed. */
5184 value_free_to_mark (mark);
5185 return WP_VALUE_NOT_CHANGED;
5186 }
5187 }
5188 else
5189 {
5190 struct ui_out *uiout = current_uiout;
5191
5192 /* This seems like the only logical thing to do because
5193 if we temporarily ignored the watchpoint, then when
5194 we reenter the block in which it is valid it contains
5195 garbage (in the case of a function, it may have two
5196 garbage values, one before and one after the prologue).
5197 So we can't even detect the first assignment to it and
5198 watch after that (since the garbage may or may not equal
5199 the first value assigned). */
5200 /* We print all the stop information in
5201 breakpoint_ops->print_it, but in this case, by the time we
5202 call breakpoint_ops->print_it this bp will be deleted
5203 already. So we have no choice but print the information
5204 here. */
5205 if (ui_out_is_mi_like_p (uiout))
5206 ui_out_field_string
5207 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5208 ui_out_text (uiout, "\nWatchpoint ");
5209 ui_out_field_int (uiout, "wpnum", b->base.number);
5210 ui_out_text (uiout,
5211 " deleted because the program has left the block in\n\
5212 which its expression is valid.\n");
5213
5214 /* Make sure the watchpoint's commands aren't executed. */
5215 decref_counted_command_line (&b->base.commands);
5216 watchpoint_del_at_next_stop (b);
5217
5218 return WP_DELETED;
5219 }
5220 }
5221
5222 /* Return true if it looks like target has stopped due to hitting
5223 breakpoint location BL. This function does not check if we should
5224 stop, only if BL explains the stop. */
5225
5226 static int
5227 bpstat_check_location (const struct bp_location *bl,
5228 struct address_space *aspace, CORE_ADDR bp_addr,
5229 const struct target_waitstatus *ws)
5230 {
5231 struct breakpoint *b = bl->owner;
5232
5233 /* BL is from an existing breakpoint. */
5234 gdb_assert (b != NULL);
5235
5236 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5237 }
5238
5239 /* Determine if the watched values have actually changed, and we
5240 should stop. If not, set BS->stop to 0. */
5241
5242 static void
5243 bpstat_check_watchpoint (bpstat bs)
5244 {
5245 const struct bp_location *bl;
5246 struct watchpoint *b;
5247
5248 /* BS is built for existing struct breakpoint. */
5249 bl = bs->bp_location_at;
5250 gdb_assert (bl != NULL);
5251 b = (struct watchpoint *) bs->breakpoint_at;
5252 gdb_assert (b != NULL);
5253
5254 {
5255 int must_check_value = 0;
5256
5257 if (b->base.type == bp_watchpoint)
5258 /* For a software watchpoint, we must always check the
5259 watched value. */
5260 must_check_value = 1;
5261 else if (b->watchpoint_triggered == watch_triggered_yes)
5262 /* We have a hardware watchpoint (read, write, or access)
5263 and the target earlier reported an address watched by
5264 this watchpoint. */
5265 must_check_value = 1;
5266 else if (b->watchpoint_triggered == watch_triggered_unknown
5267 && b->base.type == bp_hardware_watchpoint)
5268 /* We were stopped by a hardware watchpoint, but the target could
5269 not report the data address. We must check the watchpoint's
5270 value. Access and read watchpoints are out of luck; without
5271 a data address, we can't figure it out. */
5272 must_check_value = 1;
5273
5274 if (must_check_value)
5275 {
5276 char *message
5277 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5278 b->base.number);
5279 struct cleanup *cleanups = make_cleanup (xfree, message);
5280 int e = catch_errors (watchpoint_check, bs, message,
5281 RETURN_MASK_ALL);
5282 do_cleanups (cleanups);
5283 switch (e)
5284 {
5285 case WP_DELETED:
5286 /* We've already printed what needs to be printed. */
5287 bs->print_it = print_it_done;
5288 /* Stop. */
5289 break;
5290 case WP_IGNORE:
5291 bs->print_it = print_it_noop;
5292 bs->stop = 0;
5293 break;
5294 case WP_VALUE_CHANGED:
5295 if (b->base.type == bp_read_watchpoint)
5296 {
5297 /* There are two cases to consider here:
5298
5299 1. We're watching the triggered memory for reads.
5300 In that case, trust the target, and always report
5301 the watchpoint hit to the user. Even though
5302 reads don't cause value changes, the value may
5303 have changed since the last time it was read, and
5304 since we're not trapping writes, we will not see
5305 those, and as such we should ignore our notion of
5306 old value.
5307
5308 2. We're watching the triggered memory for both
5309 reads and writes. There are two ways this may
5310 happen:
5311
5312 2.1. This is a target that can't break on data
5313 reads only, but can break on accesses (reads or
5314 writes), such as e.g., x86. We detect this case
5315 at the time we try to insert read watchpoints.
5316
5317 2.2. Otherwise, the target supports read
5318 watchpoints, but, the user set an access or write
5319 watchpoint watching the same memory as this read
5320 watchpoint.
5321
5322 If we're watching memory writes as well as reads,
5323 ignore watchpoint hits when we find that the
5324 value hasn't changed, as reads don't cause
5325 changes. This still gives false positives when
5326 the program writes the same value to memory as
5327 what there was already in memory (we will confuse
5328 it for a read), but it's much better than
5329 nothing. */
5330
5331 int other_write_watchpoint = 0;
5332
5333 if (bl->watchpoint_type == hw_read)
5334 {
5335 struct breakpoint *other_b;
5336
5337 ALL_BREAKPOINTS (other_b)
5338 if (other_b->type == bp_hardware_watchpoint
5339 || other_b->type == bp_access_watchpoint)
5340 {
5341 struct watchpoint *other_w =
5342 (struct watchpoint *) other_b;
5343
5344 if (other_w->watchpoint_triggered
5345 == watch_triggered_yes)
5346 {
5347 other_write_watchpoint = 1;
5348 break;
5349 }
5350 }
5351 }
5352
5353 if (other_write_watchpoint
5354 || bl->watchpoint_type == hw_access)
5355 {
5356 /* We're watching the same memory for writes,
5357 and the value changed since the last time we
5358 updated it, so this trap must be for a write.
5359 Ignore it. */
5360 bs->print_it = print_it_noop;
5361 bs->stop = 0;
5362 }
5363 }
5364 break;
5365 case WP_VALUE_NOT_CHANGED:
5366 if (b->base.type == bp_hardware_watchpoint
5367 || b->base.type == bp_watchpoint)
5368 {
5369 /* Don't stop: write watchpoints shouldn't fire if
5370 the value hasn't changed. */
5371 bs->print_it = print_it_noop;
5372 bs->stop = 0;
5373 }
5374 /* Stop. */
5375 break;
5376 default:
5377 /* Can't happen. */
5378 case 0:
5379 /* Error from catch_errors. */
5380 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5381 watchpoint_del_at_next_stop (b);
5382 /* We've already printed what needs to be printed. */
5383 bs->print_it = print_it_done;
5384 break;
5385 }
5386 }
5387 else /* must_check_value == 0 */
5388 {
5389 /* This is a case where some watchpoint(s) triggered, but
5390 not at the address of this watchpoint, or else no
5391 watchpoint triggered after all. So don't print
5392 anything for this watchpoint. */
5393 bs->print_it = print_it_noop;
5394 bs->stop = 0;
5395 }
5396 }
5397 }
5398
5399 /* For breakpoints that are currently marked as telling gdb to stop,
5400 check conditions (condition proper, frame, thread and ignore count)
5401 of breakpoint referred to by BS. If we should not stop for this
5402 breakpoint, set BS->stop to 0. */
5403
5404 static void
5405 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5406 {
5407 const struct bp_location *bl;
5408 struct breakpoint *b;
5409 int value_is_zero = 0;
5410 struct expression *cond;
5411
5412 gdb_assert (bs->stop);
5413
5414 /* BS is built for existing struct breakpoint. */
5415 bl = bs->bp_location_at;
5416 gdb_assert (bl != NULL);
5417 b = bs->breakpoint_at;
5418 gdb_assert (b != NULL);
5419
5420 /* Even if the target evaluated the condition on its end and notified GDB, we
5421 need to do so again since GDB does not know if we stopped due to a
5422 breakpoint or a single step breakpoint. */
5423
5424 if (frame_id_p (b->frame_id)
5425 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5426 {
5427 bs->stop = 0;
5428 return;
5429 }
5430
5431 /* If this is a thread/task-specific breakpoint, don't waste cpu
5432 evaluating the condition if this isn't the specified
5433 thread/task. */
5434 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5435 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5436
5437 {
5438 bs->stop = 0;
5439 return;
5440 }
5441
5442 /* Evaluate extension language breakpoints that have a "stop" method
5443 implemented. */
5444 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5445
5446 if (is_watchpoint (b))
5447 {
5448 struct watchpoint *w = (struct watchpoint *) b;
5449
5450 cond = w->cond_exp;
5451 }
5452 else
5453 cond = bl->cond;
5454
5455 if (cond && b->disposition != disp_del_at_next_stop)
5456 {
5457 int within_current_scope = 1;
5458 struct watchpoint * w;
5459
5460 /* We use value_mark and value_free_to_mark because it could
5461 be a long time before we return to the command level and
5462 call free_all_values. We can't call free_all_values
5463 because we might be in the middle of evaluating a
5464 function call. */
5465 struct value *mark = value_mark ();
5466
5467 if (is_watchpoint (b))
5468 w = (struct watchpoint *) b;
5469 else
5470 w = NULL;
5471
5472 /* Need to select the frame, with all that implies so that
5473 the conditions will have the right context. Because we
5474 use the frame, we will not see an inlined function's
5475 variables when we arrive at a breakpoint at the start
5476 of the inlined function; the current frame will be the
5477 call site. */
5478 if (w == NULL || w->cond_exp_valid_block == NULL)
5479 select_frame (get_current_frame ());
5480 else
5481 {
5482 struct frame_info *frame;
5483
5484 /* For local watchpoint expressions, which particular
5485 instance of a local is being watched matters, so we
5486 keep track of the frame to evaluate the expression
5487 in. To evaluate the condition however, it doesn't
5488 really matter which instantiation of the function
5489 where the condition makes sense triggers the
5490 watchpoint. This allows an expression like "watch
5491 global if q > 10" set in `func', catch writes to
5492 global on all threads that call `func', or catch
5493 writes on all recursive calls of `func' by a single
5494 thread. We simply always evaluate the condition in
5495 the innermost frame that's executing where it makes
5496 sense to evaluate the condition. It seems
5497 intuitive. */
5498 frame = block_innermost_frame (w->cond_exp_valid_block);
5499 if (frame != NULL)
5500 select_frame (frame);
5501 else
5502 within_current_scope = 0;
5503 }
5504 if (within_current_scope)
5505 value_is_zero
5506 = catch_errors (breakpoint_cond_eval, cond,
5507 "Error in testing breakpoint condition:\n",
5508 RETURN_MASK_ALL);
5509 else
5510 {
5511 warning (_("Watchpoint condition cannot be tested "
5512 "in the current scope"));
5513 /* If we failed to set the right context for this
5514 watchpoint, unconditionally report it. */
5515 value_is_zero = 0;
5516 }
5517 /* FIXME-someday, should give breakpoint #. */
5518 value_free_to_mark (mark);
5519 }
5520
5521 if (cond && value_is_zero)
5522 {
5523 bs->stop = 0;
5524 }
5525 else if (b->ignore_count > 0)
5526 {
5527 b->ignore_count--;
5528 bs->stop = 0;
5529 /* Increase the hit count even though we don't stop. */
5530 ++(b->hit_count);
5531 observer_notify_breakpoint_modified (b);
5532 }
5533 }
5534
5535
5536 /* Get a bpstat associated with having just stopped at address
5537 BP_ADDR in thread PTID.
5538
5539 Determine whether we stopped at a breakpoint, etc, or whether we
5540 don't understand this stop. Result is a chain of bpstat's such
5541 that:
5542
5543 if we don't understand the stop, the result is a null pointer.
5544
5545 if we understand why we stopped, the result is not null.
5546
5547 Each element of the chain refers to a particular breakpoint or
5548 watchpoint at which we have stopped. (We may have stopped for
5549 several reasons concurrently.)
5550
5551 Each element of the chain has valid next, breakpoint_at,
5552 commands, FIXME??? fields. */
5553
5554 bpstat
5555 bpstat_stop_status (struct address_space *aspace,
5556 CORE_ADDR bp_addr, ptid_t ptid,
5557 const struct target_waitstatus *ws)
5558 {
5559 struct breakpoint *b = NULL;
5560 struct bp_location *bl;
5561 struct bp_location *loc;
5562 /* First item of allocated bpstat's. */
5563 bpstat bs_head = NULL, *bs_link = &bs_head;
5564 /* Pointer to the last thing in the chain currently. */
5565 bpstat bs;
5566 int ix;
5567 int need_remove_insert;
5568 int removed_any;
5569
5570 /* First, build the bpstat chain with locations that explain a
5571 target stop, while being careful to not set the target running,
5572 as that may invalidate locations (in particular watchpoint
5573 locations are recreated). Resuming will happen here with
5574 breakpoint conditions or watchpoint expressions that include
5575 inferior function calls. */
5576
5577 ALL_BREAKPOINTS (b)
5578 {
5579 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5580 continue;
5581
5582 for (bl = b->loc; bl != NULL; bl = bl->next)
5583 {
5584 /* For hardware watchpoints, we look only at the first
5585 location. The watchpoint_check function will work on the
5586 entire expression, not the individual locations. For
5587 read watchpoints, the watchpoints_triggered function has
5588 checked all locations already. */
5589 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5590 break;
5591
5592 if (!bl->enabled || bl->shlib_disabled)
5593 continue;
5594
5595 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5596 continue;
5597
5598 /* Come here if it's a watchpoint, or if the break address
5599 matches. */
5600
5601 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5602 explain stop. */
5603
5604 /* Assume we stop. Should we find a watchpoint that is not
5605 actually triggered, or if the condition of the breakpoint
5606 evaluates as false, we'll reset 'stop' to 0. */
5607 bs->stop = 1;
5608 bs->print = 1;
5609
5610 /* If this is a scope breakpoint, mark the associated
5611 watchpoint as triggered so that we will handle the
5612 out-of-scope event. We'll get to the watchpoint next
5613 iteration. */
5614 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5615 {
5616 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5617
5618 w->watchpoint_triggered = watch_triggered_yes;
5619 }
5620 }
5621 }
5622
5623 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5624 {
5625 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5626 {
5627 bs = bpstat_alloc (loc, &bs_link);
5628 /* For hits of moribund locations, we should just proceed. */
5629 bs->stop = 0;
5630 bs->print = 0;
5631 bs->print_it = print_it_noop;
5632 }
5633 }
5634
5635 /* A bit of special processing for shlib breakpoints. We need to
5636 process solib loading here, so that the lists of loaded and
5637 unloaded libraries are correct before we handle "catch load" and
5638 "catch unload". */
5639 for (bs = bs_head; bs != NULL; bs = bs->next)
5640 {
5641 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5642 {
5643 handle_solib_event ();
5644 break;
5645 }
5646 }
5647
5648 /* Now go through the locations that caused the target to stop, and
5649 check whether we're interested in reporting this stop to higher
5650 layers, or whether we should resume the target transparently. */
5651
5652 removed_any = 0;
5653
5654 for (bs = bs_head; bs != NULL; bs = bs->next)
5655 {
5656 if (!bs->stop)
5657 continue;
5658
5659 b = bs->breakpoint_at;
5660 b->ops->check_status (bs);
5661 if (bs->stop)
5662 {
5663 bpstat_check_breakpoint_conditions (bs, ptid);
5664
5665 if (bs->stop)
5666 {
5667 ++(b->hit_count);
5668 observer_notify_breakpoint_modified (b);
5669
5670 /* We will stop here. */
5671 if (b->disposition == disp_disable)
5672 {
5673 --(b->enable_count);
5674 if (b->enable_count <= 0
5675 && b->enable_state != bp_permanent)
5676 b->enable_state = bp_disabled;
5677 removed_any = 1;
5678 }
5679 if (b->silent)
5680 bs->print = 0;
5681 bs->commands = b->commands;
5682 incref_counted_command_line (bs->commands);
5683 if (command_line_is_silent (bs->commands
5684 ? bs->commands->commands : NULL))
5685 bs->print = 0;
5686
5687 b->ops->after_condition_true (bs);
5688 }
5689
5690 }
5691
5692 /* Print nothing for this entry if we don't stop or don't
5693 print. */
5694 if (!bs->stop || !bs->print)
5695 bs->print_it = print_it_noop;
5696 }
5697
5698 /* If we aren't stopping, the value of some hardware watchpoint may
5699 not have changed, but the intermediate memory locations we are
5700 watching may have. Don't bother if we're stopping; this will get
5701 done later. */
5702 need_remove_insert = 0;
5703 if (! bpstat_causes_stop (bs_head))
5704 for (bs = bs_head; bs != NULL; bs = bs->next)
5705 if (!bs->stop
5706 && bs->breakpoint_at
5707 && is_hardware_watchpoint (bs->breakpoint_at))
5708 {
5709 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5710
5711 update_watchpoint (w, 0 /* don't reparse. */);
5712 need_remove_insert = 1;
5713 }
5714
5715 if (need_remove_insert)
5716 update_global_location_list (UGLL_MAY_INSERT);
5717 else if (removed_any)
5718 update_global_location_list (UGLL_DONT_INSERT);
5719
5720 return bs_head;
5721 }
5722
5723 static void
5724 handle_jit_event (void)
5725 {
5726 struct frame_info *frame;
5727 struct gdbarch *gdbarch;
5728
5729 /* Switch terminal for any messages produced by
5730 breakpoint_re_set. */
5731 target_terminal_ours_for_output ();
5732
5733 frame = get_current_frame ();
5734 gdbarch = get_frame_arch (frame);
5735
5736 jit_event_handler (gdbarch);
5737
5738 target_terminal_inferior ();
5739 }
5740
5741 /* Prepare WHAT final decision for infrun. */
5742
5743 /* Decide what infrun needs to do with this bpstat. */
5744
5745 struct bpstat_what
5746 bpstat_what (bpstat bs_head)
5747 {
5748 struct bpstat_what retval;
5749 int jit_event = 0;
5750 bpstat bs;
5751
5752 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5753 retval.call_dummy = STOP_NONE;
5754 retval.is_longjmp = 0;
5755
5756 for (bs = bs_head; bs != NULL; bs = bs->next)
5757 {
5758 /* Extract this BS's action. After processing each BS, we check
5759 if its action overrides all we've seem so far. */
5760 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5761 enum bptype bptype;
5762
5763 if (bs->breakpoint_at == NULL)
5764 {
5765 /* I suspect this can happen if it was a momentary
5766 breakpoint which has since been deleted. */
5767 bptype = bp_none;
5768 }
5769 else
5770 bptype = bs->breakpoint_at->type;
5771
5772 switch (bptype)
5773 {
5774 case bp_none:
5775 break;
5776 case bp_breakpoint:
5777 case bp_hardware_breakpoint:
5778 case bp_until:
5779 case bp_finish:
5780 case bp_shlib_event:
5781 if (bs->stop)
5782 {
5783 if (bs->print)
5784 this_action = BPSTAT_WHAT_STOP_NOISY;
5785 else
5786 this_action = BPSTAT_WHAT_STOP_SILENT;
5787 }
5788 else
5789 this_action = BPSTAT_WHAT_SINGLE;
5790 break;
5791 case bp_watchpoint:
5792 case bp_hardware_watchpoint:
5793 case bp_read_watchpoint:
5794 case bp_access_watchpoint:
5795 if (bs->stop)
5796 {
5797 if (bs->print)
5798 this_action = BPSTAT_WHAT_STOP_NOISY;
5799 else
5800 this_action = BPSTAT_WHAT_STOP_SILENT;
5801 }
5802 else
5803 {
5804 /* There was a watchpoint, but we're not stopping.
5805 This requires no further action. */
5806 }
5807 break;
5808 case bp_longjmp:
5809 case bp_longjmp_call_dummy:
5810 case bp_exception:
5811 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5812 retval.is_longjmp = bptype != bp_exception;
5813 break;
5814 case bp_longjmp_resume:
5815 case bp_exception_resume:
5816 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5817 retval.is_longjmp = bptype == bp_longjmp_resume;
5818 break;
5819 case bp_step_resume:
5820 if (bs->stop)
5821 this_action = BPSTAT_WHAT_STEP_RESUME;
5822 else
5823 {
5824 /* It is for the wrong frame. */
5825 this_action = BPSTAT_WHAT_SINGLE;
5826 }
5827 break;
5828 case bp_hp_step_resume:
5829 if (bs->stop)
5830 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5831 else
5832 {
5833 /* It is for the wrong frame. */
5834 this_action = BPSTAT_WHAT_SINGLE;
5835 }
5836 break;
5837 case bp_watchpoint_scope:
5838 case bp_thread_event:
5839 case bp_overlay_event:
5840 case bp_longjmp_master:
5841 case bp_std_terminate_master:
5842 case bp_exception_master:
5843 this_action = BPSTAT_WHAT_SINGLE;
5844 break;
5845 case bp_catchpoint:
5846 if (bs->stop)
5847 {
5848 if (bs->print)
5849 this_action = BPSTAT_WHAT_STOP_NOISY;
5850 else
5851 this_action = BPSTAT_WHAT_STOP_SILENT;
5852 }
5853 else
5854 {
5855 /* There was a catchpoint, but we're not stopping.
5856 This requires no further action. */
5857 }
5858 break;
5859 case bp_jit_event:
5860 jit_event = 1;
5861 this_action = BPSTAT_WHAT_SINGLE;
5862 break;
5863 case bp_call_dummy:
5864 /* Make sure the action is stop (silent or noisy),
5865 so infrun.c pops the dummy frame. */
5866 retval.call_dummy = STOP_STACK_DUMMY;
5867 this_action = BPSTAT_WHAT_STOP_SILENT;
5868 break;
5869 case bp_std_terminate:
5870 /* Make sure the action is stop (silent or noisy),
5871 so infrun.c pops the dummy frame. */
5872 retval.call_dummy = STOP_STD_TERMINATE;
5873 this_action = BPSTAT_WHAT_STOP_SILENT;
5874 break;
5875 case bp_tracepoint:
5876 case bp_fast_tracepoint:
5877 case bp_static_tracepoint:
5878 /* Tracepoint hits should not be reported back to GDB, and
5879 if one got through somehow, it should have been filtered
5880 out already. */
5881 internal_error (__FILE__, __LINE__,
5882 _("bpstat_what: tracepoint encountered"));
5883 break;
5884 case bp_gnu_ifunc_resolver:
5885 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5886 this_action = BPSTAT_WHAT_SINGLE;
5887 break;
5888 case bp_gnu_ifunc_resolver_return:
5889 /* The breakpoint will be removed, execution will restart from the
5890 PC of the former breakpoint. */
5891 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5892 break;
5893
5894 case bp_dprintf:
5895 if (bs->stop)
5896 this_action = BPSTAT_WHAT_STOP_SILENT;
5897 else
5898 this_action = BPSTAT_WHAT_SINGLE;
5899 break;
5900
5901 default:
5902 internal_error (__FILE__, __LINE__,
5903 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5904 }
5905
5906 retval.main_action = max (retval.main_action, this_action);
5907 }
5908
5909 /* These operations may affect the bs->breakpoint_at state so they are
5910 delayed after MAIN_ACTION is decided above. */
5911
5912 if (jit_event)
5913 {
5914 if (debug_infrun)
5915 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5916
5917 handle_jit_event ();
5918 }
5919
5920 for (bs = bs_head; bs != NULL; bs = bs->next)
5921 {
5922 struct breakpoint *b = bs->breakpoint_at;
5923
5924 if (b == NULL)
5925 continue;
5926 switch (b->type)
5927 {
5928 case bp_gnu_ifunc_resolver:
5929 gnu_ifunc_resolver_stop (b);
5930 break;
5931 case bp_gnu_ifunc_resolver_return:
5932 gnu_ifunc_resolver_return_stop (b);
5933 break;
5934 }
5935 }
5936
5937 return retval;
5938 }
5939
5940 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5941 without hardware support). This isn't related to a specific bpstat,
5942 just to things like whether watchpoints are set. */
5943
5944 int
5945 bpstat_should_step (void)
5946 {
5947 struct breakpoint *b;
5948
5949 ALL_BREAKPOINTS (b)
5950 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5951 return 1;
5952 return 0;
5953 }
5954
5955 int
5956 bpstat_causes_stop (bpstat bs)
5957 {
5958 for (; bs != NULL; bs = bs->next)
5959 if (bs->stop)
5960 return 1;
5961
5962 return 0;
5963 }
5964
5965 \f
5966
5967 /* Compute a string of spaces suitable to indent the next line
5968 so it starts at the position corresponding to the table column
5969 named COL_NAME in the currently active table of UIOUT. */
5970
5971 static char *
5972 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5973 {
5974 static char wrap_indent[80];
5975 int i, total_width, width, align;
5976 char *text;
5977
5978 total_width = 0;
5979 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5980 {
5981 if (strcmp (text, col_name) == 0)
5982 {
5983 gdb_assert (total_width < sizeof wrap_indent);
5984 memset (wrap_indent, ' ', total_width);
5985 wrap_indent[total_width] = 0;
5986
5987 return wrap_indent;
5988 }
5989
5990 total_width += width + 1;
5991 }
5992
5993 return NULL;
5994 }
5995
5996 /* Determine if the locations of this breakpoint will have their conditions
5997 evaluated by the target, host or a mix of both. Returns the following:
5998
5999 "host": Host evals condition.
6000 "host or target": Host or Target evals condition.
6001 "target": Target evals condition.
6002 */
6003
6004 static const char *
6005 bp_condition_evaluator (struct breakpoint *b)
6006 {
6007 struct bp_location *bl;
6008 char host_evals = 0;
6009 char target_evals = 0;
6010
6011 if (!b)
6012 return NULL;
6013
6014 if (!is_breakpoint (b))
6015 return NULL;
6016
6017 if (gdb_evaluates_breakpoint_condition_p ()
6018 || !target_supports_evaluation_of_breakpoint_conditions ())
6019 return condition_evaluation_host;
6020
6021 for (bl = b->loc; bl; bl = bl->next)
6022 {
6023 if (bl->cond_bytecode)
6024 target_evals++;
6025 else
6026 host_evals++;
6027 }
6028
6029 if (host_evals && target_evals)
6030 return condition_evaluation_both;
6031 else if (target_evals)
6032 return condition_evaluation_target;
6033 else
6034 return condition_evaluation_host;
6035 }
6036
6037 /* Determine the breakpoint location's condition evaluator. This is
6038 similar to bp_condition_evaluator, but for locations. */
6039
6040 static const char *
6041 bp_location_condition_evaluator (struct bp_location *bl)
6042 {
6043 if (bl && !is_breakpoint (bl->owner))
6044 return NULL;
6045
6046 if (gdb_evaluates_breakpoint_condition_p ()
6047 || !target_supports_evaluation_of_breakpoint_conditions ())
6048 return condition_evaluation_host;
6049
6050 if (bl && bl->cond_bytecode)
6051 return condition_evaluation_target;
6052 else
6053 return condition_evaluation_host;
6054 }
6055
6056 /* Print the LOC location out of the list of B->LOC locations. */
6057
6058 static void
6059 print_breakpoint_location (struct breakpoint *b,
6060 struct bp_location *loc)
6061 {
6062 struct ui_out *uiout = current_uiout;
6063 struct cleanup *old_chain = save_current_program_space ();
6064
6065 if (loc != NULL && loc->shlib_disabled)
6066 loc = NULL;
6067
6068 if (loc != NULL)
6069 set_current_program_space (loc->pspace);
6070
6071 if (b->display_canonical)
6072 ui_out_field_string (uiout, "what", b->addr_string);
6073 else if (loc && loc->symtab)
6074 {
6075 struct symbol *sym
6076 = find_pc_sect_function (loc->address, loc->section);
6077 if (sym)
6078 {
6079 ui_out_text (uiout, "in ");
6080 ui_out_field_string (uiout, "func",
6081 SYMBOL_PRINT_NAME (sym));
6082 ui_out_text (uiout, " ");
6083 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6084 ui_out_text (uiout, "at ");
6085 }
6086 ui_out_field_string (uiout, "file",
6087 symtab_to_filename_for_display (loc->symtab));
6088 ui_out_text (uiout, ":");
6089
6090 if (ui_out_is_mi_like_p (uiout))
6091 ui_out_field_string (uiout, "fullname",
6092 symtab_to_fullname (loc->symtab));
6093
6094 ui_out_field_int (uiout, "line", loc->line_number);
6095 }
6096 else if (loc)
6097 {
6098 struct ui_file *stb = mem_fileopen ();
6099 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6100
6101 print_address_symbolic (loc->gdbarch, loc->address, stb,
6102 demangle, "");
6103 ui_out_field_stream (uiout, "at", stb);
6104
6105 do_cleanups (stb_chain);
6106 }
6107 else
6108 ui_out_field_string (uiout, "pending", b->addr_string);
6109
6110 if (loc && is_breakpoint (b)
6111 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6112 && bp_condition_evaluator (b) == condition_evaluation_both)
6113 {
6114 ui_out_text (uiout, " (");
6115 ui_out_field_string (uiout, "evaluated-by",
6116 bp_location_condition_evaluator (loc));
6117 ui_out_text (uiout, ")");
6118 }
6119
6120 do_cleanups (old_chain);
6121 }
6122
6123 static const char *
6124 bptype_string (enum bptype type)
6125 {
6126 struct ep_type_description
6127 {
6128 enum bptype type;
6129 char *description;
6130 };
6131 static struct ep_type_description bptypes[] =
6132 {
6133 {bp_none, "?deleted?"},
6134 {bp_breakpoint, "breakpoint"},
6135 {bp_hardware_breakpoint, "hw breakpoint"},
6136 {bp_until, "until"},
6137 {bp_finish, "finish"},
6138 {bp_watchpoint, "watchpoint"},
6139 {bp_hardware_watchpoint, "hw watchpoint"},
6140 {bp_read_watchpoint, "read watchpoint"},
6141 {bp_access_watchpoint, "acc watchpoint"},
6142 {bp_longjmp, "longjmp"},
6143 {bp_longjmp_resume, "longjmp resume"},
6144 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6145 {bp_exception, "exception"},
6146 {bp_exception_resume, "exception resume"},
6147 {bp_step_resume, "step resume"},
6148 {bp_hp_step_resume, "high-priority step resume"},
6149 {bp_watchpoint_scope, "watchpoint scope"},
6150 {bp_call_dummy, "call dummy"},
6151 {bp_std_terminate, "std::terminate"},
6152 {bp_shlib_event, "shlib events"},
6153 {bp_thread_event, "thread events"},
6154 {bp_overlay_event, "overlay events"},
6155 {bp_longjmp_master, "longjmp master"},
6156 {bp_std_terminate_master, "std::terminate master"},
6157 {bp_exception_master, "exception master"},
6158 {bp_catchpoint, "catchpoint"},
6159 {bp_tracepoint, "tracepoint"},
6160 {bp_fast_tracepoint, "fast tracepoint"},
6161 {bp_static_tracepoint, "static tracepoint"},
6162 {bp_dprintf, "dprintf"},
6163 {bp_jit_event, "jit events"},
6164 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6165 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6166 };
6167
6168 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6169 || ((int) type != bptypes[(int) type].type))
6170 internal_error (__FILE__, __LINE__,
6171 _("bptypes table does not describe type #%d."),
6172 (int) type);
6173
6174 return bptypes[(int) type].description;
6175 }
6176
6177 /* For MI, output a field named 'thread-groups' with a list as the value.
6178 For CLI, prefix the list with the string 'inf'. */
6179
6180 static void
6181 output_thread_groups (struct ui_out *uiout,
6182 const char *field_name,
6183 VEC(int) *inf_num,
6184 int mi_only)
6185 {
6186 struct cleanup *back_to;
6187 int is_mi = ui_out_is_mi_like_p (uiout);
6188 int inf;
6189 int i;
6190
6191 /* For backward compatibility, don't display inferiors in CLI unless
6192 there are several. Always display them for MI. */
6193 if (!is_mi && mi_only)
6194 return;
6195
6196 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6197
6198 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6199 {
6200 if (is_mi)
6201 {
6202 char mi_group[10];
6203
6204 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6205 ui_out_field_string (uiout, NULL, mi_group);
6206 }
6207 else
6208 {
6209 if (i == 0)
6210 ui_out_text (uiout, " inf ");
6211 else
6212 ui_out_text (uiout, ", ");
6213
6214 ui_out_text (uiout, plongest (inf));
6215 }
6216 }
6217
6218 do_cleanups (back_to);
6219 }
6220
6221 /* Print B to gdb_stdout. */
6222
6223 static void
6224 print_one_breakpoint_location (struct breakpoint *b,
6225 struct bp_location *loc,
6226 int loc_number,
6227 struct bp_location **last_loc,
6228 int allflag)
6229 {
6230 struct command_line *l;
6231 static char bpenables[] = "nynny";
6232
6233 struct ui_out *uiout = current_uiout;
6234 int header_of_multiple = 0;
6235 int part_of_multiple = (loc != NULL);
6236 struct value_print_options opts;
6237
6238 get_user_print_options (&opts);
6239
6240 gdb_assert (!loc || loc_number != 0);
6241 /* See comment in print_one_breakpoint concerning treatment of
6242 breakpoints with single disabled location. */
6243 if (loc == NULL
6244 && (b->loc != NULL
6245 && (b->loc->next != NULL || !b->loc->enabled)))
6246 header_of_multiple = 1;
6247 if (loc == NULL)
6248 loc = b->loc;
6249
6250 annotate_record ();
6251
6252 /* 1 */
6253 annotate_field (0);
6254 if (part_of_multiple)
6255 {
6256 char *formatted;
6257 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6258 ui_out_field_string (uiout, "number", formatted);
6259 xfree (formatted);
6260 }
6261 else
6262 {
6263 ui_out_field_int (uiout, "number", b->number);
6264 }
6265
6266 /* 2 */
6267 annotate_field (1);
6268 if (part_of_multiple)
6269 ui_out_field_skip (uiout, "type");
6270 else
6271 ui_out_field_string (uiout, "type", bptype_string (b->type));
6272
6273 /* 3 */
6274 annotate_field (2);
6275 if (part_of_multiple)
6276 ui_out_field_skip (uiout, "disp");
6277 else
6278 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6279
6280
6281 /* 4 */
6282 annotate_field (3);
6283 if (part_of_multiple)
6284 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6285 else
6286 ui_out_field_fmt (uiout, "enabled", "%c",
6287 bpenables[(int) b->enable_state]);
6288 ui_out_spaces (uiout, 2);
6289
6290
6291 /* 5 and 6 */
6292 if (b->ops != NULL && b->ops->print_one != NULL)
6293 {
6294 /* Although the print_one can possibly print all locations,
6295 calling it here is not likely to get any nice result. So,
6296 make sure there's just one location. */
6297 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6298 b->ops->print_one (b, last_loc);
6299 }
6300 else
6301 switch (b->type)
6302 {
6303 case bp_none:
6304 internal_error (__FILE__, __LINE__,
6305 _("print_one_breakpoint: bp_none encountered\n"));
6306 break;
6307
6308 case bp_watchpoint:
6309 case bp_hardware_watchpoint:
6310 case bp_read_watchpoint:
6311 case bp_access_watchpoint:
6312 {
6313 struct watchpoint *w = (struct watchpoint *) b;
6314
6315 /* Field 4, the address, is omitted (which makes the columns
6316 not line up too nicely with the headers, but the effect
6317 is relatively readable). */
6318 if (opts.addressprint)
6319 ui_out_field_skip (uiout, "addr");
6320 annotate_field (5);
6321 ui_out_field_string (uiout, "what", w->exp_string);
6322 }
6323 break;
6324
6325 case bp_breakpoint:
6326 case bp_hardware_breakpoint:
6327 case bp_until:
6328 case bp_finish:
6329 case bp_longjmp:
6330 case bp_longjmp_resume:
6331 case bp_longjmp_call_dummy:
6332 case bp_exception:
6333 case bp_exception_resume:
6334 case bp_step_resume:
6335 case bp_hp_step_resume:
6336 case bp_watchpoint_scope:
6337 case bp_call_dummy:
6338 case bp_std_terminate:
6339 case bp_shlib_event:
6340 case bp_thread_event:
6341 case bp_overlay_event:
6342 case bp_longjmp_master:
6343 case bp_std_terminate_master:
6344 case bp_exception_master:
6345 case bp_tracepoint:
6346 case bp_fast_tracepoint:
6347 case bp_static_tracepoint:
6348 case bp_dprintf:
6349 case bp_jit_event:
6350 case bp_gnu_ifunc_resolver:
6351 case bp_gnu_ifunc_resolver_return:
6352 if (opts.addressprint)
6353 {
6354 annotate_field (4);
6355 if (header_of_multiple)
6356 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6357 else if (b->loc == NULL || loc->shlib_disabled)
6358 ui_out_field_string (uiout, "addr", "<PENDING>");
6359 else
6360 ui_out_field_core_addr (uiout, "addr",
6361 loc->gdbarch, loc->address);
6362 }
6363 annotate_field (5);
6364 if (!header_of_multiple)
6365 print_breakpoint_location (b, loc);
6366 if (b->loc)
6367 *last_loc = b->loc;
6368 break;
6369 }
6370
6371
6372 if (loc != NULL && !header_of_multiple)
6373 {
6374 struct inferior *inf;
6375 VEC(int) *inf_num = NULL;
6376 int mi_only = 1;
6377
6378 ALL_INFERIORS (inf)
6379 {
6380 if (inf->pspace == loc->pspace)
6381 VEC_safe_push (int, inf_num, inf->num);
6382 }
6383
6384 /* For backward compatibility, don't display inferiors in CLI unless
6385 there are several. Always display for MI. */
6386 if (allflag
6387 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6388 && (number_of_program_spaces () > 1
6389 || number_of_inferiors () > 1)
6390 /* LOC is for existing B, it cannot be in
6391 moribund_locations and thus having NULL OWNER. */
6392 && loc->owner->type != bp_catchpoint))
6393 mi_only = 0;
6394 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6395 VEC_free (int, inf_num);
6396 }
6397
6398 if (!part_of_multiple)
6399 {
6400 if (b->thread != -1)
6401 {
6402 /* FIXME: This seems to be redundant and lost here; see the
6403 "stop only in" line a little further down. */
6404 ui_out_text (uiout, " thread ");
6405 ui_out_field_int (uiout, "thread", b->thread);
6406 }
6407 else if (b->task != 0)
6408 {
6409 ui_out_text (uiout, " task ");
6410 ui_out_field_int (uiout, "task", b->task);
6411 }
6412 }
6413
6414 ui_out_text (uiout, "\n");
6415
6416 if (!part_of_multiple)
6417 b->ops->print_one_detail (b, uiout);
6418
6419 if (part_of_multiple && frame_id_p (b->frame_id))
6420 {
6421 annotate_field (6);
6422 ui_out_text (uiout, "\tstop only in stack frame at ");
6423 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6424 the frame ID. */
6425 ui_out_field_core_addr (uiout, "frame",
6426 b->gdbarch, b->frame_id.stack_addr);
6427 ui_out_text (uiout, "\n");
6428 }
6429
6430 if (!part_of_multiple && b->cond_string)
6431 {
6432 annotate_field (7);
6433 if (is_tracepoint (b))
6434 ui_out_text (uiout, "\ttrace only if ");
6435 else
6436 ui_out_text (uiout, "\tstop only if ");
6437 ui_out_field_string (uiout, "cond", b->cond_string);
6438
6439 /* Print whether the target is doing the breakpoint's condition
6440 evaluation. If GDB is doing the evaluation, don't print anything. */
6441 if (is_breakpoint (b)
6442 && breakpoint_condition_evaluation_mode ()
6443 == condition_evaluation_target)
6444 {
6445 ui_out_text (uiout, " (");
6446 ui_out_field_string (uiout, "evaluated-by",
6447 bp_condition_evaluator (b));
6448 ui_out_text (uiout, " evals)");
6449 }
6450 ui_out_text (uiout, "\n");
6451 }
6452
6453 if (!part_of_multiple && b->thread != -1)
6454 {
6455 /* FIXME should make an annotation for this. */
6456 ui_out_text (uiout, "\tstop only in thread ");
6457 ui_out_field_int (uiout, "thread", b->thread);
6458 ui_out_text (uiout, "\n");
6459 }
6460
6461 if (!part_of_multiple)
6462 {
6463 if (b->hit_count)
6464 {
6465 /* FIXME should make an annotation for this. */
6466 if (is_catchpoint (b))
6467 ui_out_text (uiout, "\tcatchpoint");
6468 else if (is_tracepoint (b))
6469 ui_out_text (uiout, "\ttracepoint");
6470 else
6471 ui_out_text (uiout, "\tbreakpoint");
6472 ui_out_text (uiout, " already hit ");
6473 ui_out_field_int (uiout, "times", b->hit_count);
6474 if (b->hit_count == 1)
6475 ui_out_text (uiout, " time\n");
6476 else
6477 ui_out_text (uiout, " times\n");
6478 }
6479 else
6480 {
6481 /* Output the count also if it is zero, but only if this is mi. */
6482 if (ui_out_is_mi_like_p (uiout))
6483 ui_out_field_int (uiout, "times", b->hit_count);
6484 }
6485 }
6486
6487 if (!part_of_multiple && b->ignore_count)
6488 {
6489 annotate_field (8);
6490 ui_out_text (uiout, "\tignore next ");
6491 ui_out_field_int (uiout, "ignore", b->ignore_count);
6492 ui_out_text (uiout, " hits\n");
6493 }
6494
6495 /* Note that an enable count of 1 corresponds to "enable once"
6496 behavior, which is reported by the combination of enablement and
6497 disposition, so we don't need to mention it here. */
6498 if (!part_of_multiple && b->enable_count > 1)
6499 {
6500 annotate_field (8);
6501 ui_out_text (uiout, "\tdisable after ");
6502 /* Tweak the wording to clarify that ignore and enable counts
6503 are distinct, and have additive effect. */
6504 if (b->ignore_count)
6505 ui_out_text (uiout, "additional ");
6506 else
6507 ui_out_text (uiout, "next ");
6508 ui_out_field_int (uiout, "enable", b->enable_count);
6509 ui_out_text (uiout, " hits\n");
6510 }
6511
6512 if (!part_of_multiple && is_tracepoint (b))
6513 {
6514 struct tracepoint *tp = (struct tracepoint *) b;
6515
6516 if (tp->traceframe_usage)
6517 {
6518 ui_out_text (uiout, "\ttrace buffer usage ");
6519 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6520 ui_out_text (uiout, " bytes\n");
6521 }
6522 }
6523
6524 l = b->commands ? b->commands->commands : NULL;
6525 if (!part_of_multiple && l)
6526 {
6527 struct cleanup *script_chain;
6528
6529 annotate_field (9);
6530 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6531 print_command_lines (uiout, l, 4);
6532 do_cleanups (script_chain);
6533 }
6534
6535 if (is_tracepoint (b))
6536 {
6537 struct tracepoint *t = (struct tracepoint *) b;
6538
6539 if (!part_of_multiple && t->pass_count)
6540 {
6541 annotate_field (10);
6542 ui_out_text (uiout, "\tpass count ");
6543 ui_out_field_int (uiout, "pass", t->pass_count);
6544 ui_out_text (uiout, " \n");
6545 }
6546
6547 /* Don't display it when tracepoint or tracepoint location is
6548 pending. */
6549 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6550 {
6551 annotate_field (11);
6552
6553 if (ui_out_is_mi_like_p (uiout))
6554 ui_out_field_string (uiout, "installed",
6555 loc->inserted ? "y" : "n");
6556 else
6557 {
6558 if (loc->inserted)
6559 ui_out_text (uiout, "\t");
6560 else
6561 ui_out_text (uiout, "\tnot ");
6562 ui_out_text (uiout, "installed on target\n");
6563 }
6564 }
6565 }
6566
6567 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6568 {
6569 if (is_watchpoint (b))
6570 {
6571 struct watchpoint *w = (struct watchpoint *) b;
6572
6573 ui_out_field_string (uiout, "original-location", w->exp_string);
6574 }
6575 else if (b->addr_string)
6576 ui_out_field_string (uiout, "original-location", b->addr_string);
6577 }
6578 }
6579
6580 static void
6581 print_one_breakpoint (struct breakpoint *b,
6582 struct bp_location **last_loc,
6583 int allflag)
6584 {
6585 struct cleanup *bkpt_chain;
6586 struct ui_out *uiout = current_uiout;
6587
6588 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6589
6590 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6591 do_cleanups (bkpt_chain);
6592
6593 /* If this breakpoint has custom print function,
6594 it's already printed. Otherwise, print individual
6595 locations, if any. */
6596 if (b->ops == NULL || b->ops->print_one == NULL)
6597 {
6598 /* If breakpoint has a single location that is disabled, we
6599 print it as if it had several locations, since otherwise it's
6600 hard to represent "breakpoint enabled, location disabled"
6601 situation.
6602
6603 Note that while hardware watchpoints have several locations
6604 internally, that's not a property exposed to user. */
6605 if (b->loc
6606 && !is_hardware_watchpoint (b)
6607 && (b->loc->next || !b->loc->enabled))
6608 {
6609 struct bp_location *loc;
6610 int n = 1;
6611
6612 for (loc = b->loc; loc; loc = loc->next, ++n)
6613 {
6614 struct cleanup *inner2 =
6615 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6616 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6617 do_cleanups (inner2);
6618 }
6619 }
6620 }
6621 }
6622
6623 static int
6624 breakpoint_address_bits (struct breakpoint *b)
6625 {
6626 int print_address_bits = 0;
6627 struct bp_location *loc;
6628
6629 for (loc = b->loc; loc; loc = loc->next)
6630 {
6631 int addr_bit;
6632
6633 /* Software watchpoints that aren't watching memory don't have
6634 an address to print. */
6635 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6636 continue;
6637
6638 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6639 if (addr_bit > print_address_bits)
6640 print_address_bits = addr_bit;
6641 }
6642
6643 return print_address_bits;
6644 }
6645
6646 struct captured_breakpoint_query_args
6647 {
6648 int bnum;
6649 };
6650
6651 static int
6652 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6653 {
6654 struct captured_breakpoint_query_args *args = data;
6655 struct breakpoint *b;
6656 struct bp_location *dummy_loc = NULL;
6657
6658 ALL_BREAKPOINTS (b)
6659 {
6660 if (args->bnum == b->number)
6661 {
6662 print_one_breakpoint (b, &dummy_loc, 0);
6663 return GDB_RC_OK;
6664 }
6665 }
6666 return GDB_RC_NONE;
6667 }
6668
6669 enum gdb_rc
6670 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6671 char **error_message)
6672 {
6673 struct captured_breakpoint_query_args args;
6674
6675 args.bnum = bnum;
6676 /* For the moment we don't trust print_one_breakpoint() to not throw
6677 an error. */
6678 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6679 error_message, RETURN_MASK_ALL) < 0)
6680 return GDB_RC_FAIL;
6681 else
6682 return GDB_RC_OK;
6683 }
6684
6685 /* Return true if this breakpoint was set by the user, false if it is
6686 internal or momentary. */
6687
6688 int
6689 user_breakpoint_p (struct breakpoint *b)
6690 {
6691 return b->number > 0;
6692 }
6693
6694 /* Print information on user settable breakpoint (watchpoint, etc)
6695 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6696 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6697 FILTER is non-NULL, call it on each breakpoint and only include the
6698 ones for which it returns non-zero. Return the total number of
6699 breakpoints listed. */
6700
6701 static int
6702 breakpoint_1 (char *args, int allflag,
6703 int (*filter) (const struct breakpoint *))
6704 {
6705 struct breakpoint *b;
6706 struct bp_location *last_loc = NULL;
6707 int nr_printable_breakpoints;
6708 struct cleanup *bkpttbl_chain;
6709 struct value_print_options opts;
6710 int print_address_bits = 0;
6711 int print_type_col_width = 14;
6712 struct ui_out *uiout = current_uiout;
6713
6714 get_user_print_options (&opts);
6715
6716 /* Compute the number of rows in the table, as well as the size
6717 required for address fields. */
6718 nr_printable_breakpoints = 0;
6719 ALL_BREAKPOINTS (b)
6720 {
6721 /* If we have a filter, only list the breakpoints it accepts. */
6722 if (filter && !filter (b))
6723 continue;
6724
6725 /* If we have an "args" string, it is a list of breakpoints to
6726 accept. Skip the others. */
6727 if (args != NULL && *args != '\0')
6728 {
6729 if (allflag && parse_and_eval_long (args) != b->number)
6730 continue;
6731 if (!allflag && !number_is_in_list (args, b->number))
6732 continue;
6733 }
6734
6735 if (allflag || user_breakpoint_p (b))
6736 {
6737 int addr_bit, type_len;
6738
6739 addr_bit = breakpoint_address_bits (b);
6740 if (addr_bit > print_address_bits)
6741 print_address_bits = addr_bit;
6742
6743 type_len = strlen (bptype_string (b->type));
6744 if (type_len > print_type_col_width)
6745 print_type_col_width = type_len;
6746
6747 nr_printable_breakpoints++;
6748 }
6749 }
6750
6751 if (opts.addressprint)
6752 bkpttbl_chain
6753 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6754 nr_printable_breakpoints,
6755 "BreakpointTable");
6756 else
6757 bkpttbl_chain
6758 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6759 nr_printable_breakpoints,
6760 "BreakpointTable");
6761
6762 if (nr_printable_breakpoints > 0)
6763 annotate_breakpoints_headers ();
6764 if (nr_printable_breakpoints > 0)
6765 annotate_field (0);
6766 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6767 if (nr_printable_breakpoints > 0)
6768 annotate_field (1);
6769 ui_out_table_header (uiout, print_type_col_width, ui_left,
6770 "type", "Type"); /* 2 */
6771 if (nr_printable_breakpoints > 0)
6772 annotate_field (2);
6773 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6774 if (nr_printable_breakpoints > 0)
6775 annotate_field (3);
6776 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6777 if (opts.addressprint)
6778 {
6779 if (nr_printable_breakpoints > 0)
6780 annotate_field (4);
6781 if (print_address_bits <= 32)
6782 ui_out_table_header (uiout, 10, ui_left,
6783 "addr", "Address"); /* 5 */
6784 else
6785 ui_out_table_header (uiout, 18, ui_left,
6786 "addr", "Address"); /* 5 */
6787 }
6788 if (nr_printable_breakpoints > 0)
6789 annotate_field (5);
6790 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6791 ui_out_table_body (uiout);
6792 if (nr_printable_breakpoints > 0)
6793 annotate_breakpoints_table ();
6794
6795 ALL_BREAKPOINTS (b)
6796 {
6797 QUIT;
6798 /* If we have a filter, only list the breakpoints it accepts. */
6799 if (filter && !filter (b))
6800 continue;
6801
6802 /* If we have an "args" string, it is a list of breakpoints to
6803 accept. Skip the others. */
6804
6805 if (args != NULL && *args != '\0')
6806 {
6807 if (allflag) /* maintenance info breakpoint */
6808 {
6809 if (parse_and_eval_long (args) != b->number)
6810 continue;
6811 }
6812 else /* all others */
6813 {
6814 if (!number_is_in_list (args, b->number))
6815 continue;
6816 }
6817 }
6818 /* We only print out user settable breakpoints unless the
6819 allflag is set. */
6820 if (allflag || user_breakpoint_p (b))
6821 print_one_breakpoint (b, &last_loc, allflag);
6822 }
6823
6824 do_cleanups (bkpttbl_chain);
6825
6826 if (nr_printable_breakpoints == 0)
6827 {
6828 /* If there's a filter, let the caller decide how to report
6829 empty list. */
6830 if (!filter)
6831 {
6832 if (args == NULL || *args == '\0')
6833 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6834 else
6835 ui_out_message (uiout, 0,
6836 "No breakpoint or watchpoint matching '%s'.\n",
6837 args);
6838 }
6839 }
6840 else
6841 {
6842 if (last_loc && !server_command)
6843 set_next_address (last_loc->gdbarch, last_loc->address);
6844 }
6845
6846 /* FIXME? Should this be moved up so that it is only called when
6847 there have been breakpoints? */
6848 annotate_breakpoints_table_end ();
6849
6850 return nr_printable_breakpoints;
6851 }
6852
6853 /* Display the value of default-collect in a way that is generally
6854 compatible with the breakpoint list. */
6855
6856 static void
6857 default_collect_info (void)
6858 {
6859 struct ui_out *uiout = current_uiout;
6860
6861 /* If it has no value (which is frequently the case), say nothing; a
6862 message like "No default-collect." gets in user's face when it's
6863 not wanted. */
6864 if (!*default_collect)
6865 return;
6866
6867 /* The following phrase lines up nicely with per-tracepoint collect
6868 actions. */
6869 ui_out_text (uiout, "default collect ");
6870 ui_out_field_string (uiout, "default-collect", default_collect);
6871 ui_out_text (uiout, " \n");
6872 }
6873
6874 static void
6875 breakpoints_info (char *args, int from_tty)
6876 {
6877 breakpoint_1 (args, 0, NULL);
6878
6879 default_collect_info ();
6880 }
6881
6882 static void
6883 watchpoints_info (char *args, int from_tty)
6884 {
6885 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6886 struct ui_out *uiout = current_uiout;
6887
6888 if (num_printed == 0)
6889 {
6890 if (args == NULL || *args == '\0')
6891 ui_out_message (uiout, 0, "No watchpoints.\n");
6892 else
6893 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6894 }
6895 }
6896
6897 static void
6898 maintenance_info_breakpoints (char *args, int from_tty)
6899 {
6900 breakpoint_1 (args, 1, NULL);
6901
6902 default_collect_info ();
6903 }
6904
6905 static int
6906 breakpoint_has_pc (struct breakpoint *b,
6907 struct program_space *pspace,
6908 CORE_ADDR pc, struct obj_section *section)
6909 {
6910 struct bp_location *bl = b->loc;
6911
6912 for (; bl; bl = bl->next)
6913 {
6914 if (bl->pspace == pspace
6915 && bl->address == pc
6916 && (!overlay_debugging || bl->section == section))
6917 return 1;
6918 }
6919 return 0;
6920 }
6921
6922 /* Print a message describing any user-breakpoints set at PC. This
6923 concerns with logical breakpoints, so we match program spaces, not
6924 address spaces. */
6925
6926 static void
6927 describe_other_breakpoints (struct gdbarch *gdbarch,
6928 struct program_space *pspace, CORE_ADDR pc,
6929 struct obj_section *section, int thread)
6930 {
6931 int others = 0;
6932 struct breakpoint *b;
6933
6934 ALL_BREAKPOINTS (b)
6935 others += (user_breakpoint_p (b)
6936 && breakpoint_has_pc (b, pspace, pc, section));
6937 if (others > 0)
6938 {
6939 if (others == 1)
6940 printf_filtered (_("Note: breakpoint "));
6941 else /* if (others == ???) */
6942 printf_filtered (_("Note: breakpoints "));
6943 ALL_BREAKPOINTS (b)
6944 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6945 {
6946 others--;
6947 printf_filtered ("%d", b->number);
6948 if (b->thread == -1 && thread != -1)
6949 printf_filtered (" (all threads)");
6950 else if (b->thread != -1)
6951 printf_filtered (" (thread %d)", b->thread);
6952 printf_filtered ("%s%s ",
6953 ((b->enable_state == bp_disabled
6954 || b->enable_state == bp_call_disabled)
6955 ? " (disabled)"
6956 : b->enable_state == bp_permanent
6957 ? " (permanent)"
6958 : ""),
6959 (others > 1) ? ","
6960 : ((others == 1) ? " and" : ""));
6961 }
6962 printf_filtered (_("also set at pc "));
6963 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6964 printf_filtered (".\n");
6965 }
6966 }
6967 \f
6968
6969 /* Return true iff it is meaningful to use the address member of
6970 BPT. For some breakpoint types, the address member is irrelevant
6971 and it makes no sense to attempt to compare it to other addresses
6972 (or use it for any other purpose either).
6973
6974 More specifically, each of the following breakpoint types will
6975 always have a zero valued address and we don't want to mark
6976 breakpoints of any of these types to be a duplicate of an actual
6977 breakpoint at address zero:
6978
6979 bp_watchpoint
6980 bp_catchpoint
6981
6982 */
6983
6984 static int
6985 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6986 {
6987 enum bptype type = bpt->type;
6988
6989 return (type != bp_watchpoint && type != bp_catchpoint);
6990 }
6991
6992 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6993 true if LOC1 and LOC2 represent the same watchpoint location. */
6994
6995 static int
6996 watchpoint_locations_match (struct bp_location *loc1,
6997 struct bp_location *loc2)
6998 {
6999 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7000 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7001
7002 /* Both of them must exist. */
7003 gdb_assert (w1 != NULL);
7004 gdb_assert (w2 != NULL);
7005
7006 /* If the target can evaluate the condition expression in hardware,
7007 then we we need to insert both watchpoints even if they are at
7008 the same place. Otherwise the watchpoint will only trigger when
7009 the condition of whichever watchpoint was inserted evaluates to
7010 true, not giving a chance for GDB to check the condition of the
7011 other watchpoint. */
7012 if ((w1->cond_exp
7013 && target_can_accel_watchpoint_condition (loc1->address,
7014 loc1->length,
7015 loc1->watchpoint_type,
7016 w1->cond_exp))
7017 || (w2->cond_exp
7018 && target_can_accel_watchpoint_condition (loc2->address,
7019 loc2->length,
7020 loc2->watchpoint_type,
7021 w2->cond_exp)))
7022 return 0;
7023
7024 /* Note that this checks the owner's type, not the location's. In
7025 case the target does not support read watchpoints, but does
7026 support access watchpoints, we'll have bp_read_watchpoint
7027 watchpoints with hw_access locations. Those should be considered
7028 duplicates of hw_read locations. The hw_read locations will
7029 become hw_access locations later. */
7030 return (loc1->owner->type == loc2->owner->type
7031 && loc1->pspace->aspace == loc2->pspace->aspace
7032 && loc1->address == loc2->address
7033 && loc1->length == loc2->length);
7034 }
7035
7036 /* See breakpoint.h. */
7037
7038 int
7039 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7040 struct address_space *aspace2, CORE_ADDR addr2)
7041 {
7042 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7043 || aspace1 == aspace2)
7044 && addr1 == addr2);
7045 }
7046
7047 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7048 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7049 matches ASPACE2. On targets that have global breakpoints, the address
7050 space doesn't really matter. */
7051
7052 static int
7053 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7054 int len1, struct address_space *aspace2,
7055 CORE_ADDR addr2)
7056 {
7057 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7058 || aspace1 == aspace2)
7059 && addr2 >= addr1 && addr2 < addr1 + len1);
7060 }
7061
7062 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7063 a ranged breakpoint. In most targets, a match happens only if ASPACE
7064 matches the breakpoint's address space. On targets that have global
7065 breakpoints, the address space doesn't really matter. */
7066
7067 static int
7068 breakpoint_location_address_match (struct bp_location *bl,
7069 struct address_space *aspace,
7070 CORE_ADDR addr)
7071 {
7072 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7073 aspace, addr)
7074 || (bl->length
7075 && breakpoint_address_match_range (bl->pspace->aspace,
7076 bl->address, bl->length,
7077 aspace, addr)));
7078 }
7079
7080 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7081 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7082 true, otherwise returns false. */
7083
7084 static int
7085 tracepoint_locations_match (struct bp_location *loc1,
7086 struct bp_location *loc2)
7087 {
7088 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7089 /* Since tracepoint locations are never duplicated with others', tracepoint
7090 locations at the same address of different tracepoints are regarded as
7091 different locations. */
7092 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7093 else
7094 return 0;
7095 }
7096
7097 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7098 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7099 represent the same location. */
7100
7101 static int
7102 breakpoint_locations_match (struct bp_location *loc1,
7103 struct bp_location *loc2)
7104 {
7105 int hw_point1, hw_point2;
7106
7107 /* Both of them must not be in moribund_locations. */
7108 gdb_assert (loc1->owner != NULL);
7109 gdb_assert (loc2->owner != NULL);
7110
7111 hw_point1 = is_hardware_watchpoint (loc1->owner);
7112 hw_point2 = is_hardware_watchpoint (loc2->owner);
7113
7114 if (hw_point1 != hw_point2)
7115 return 0;
7116 else if (hw_point1)
7117 return watchpoint_locations_match (loc1, loc2);
7118 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7119 return tracepoint_locations_match (loc1, loc2);
7120 else
7121 /* We compare bp_location.length in order to cover ranged breakpoints. */
7122 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7123 loc2->pspace->aspace, loc2->address)
7124 && loc1->length == loc2->length);
7125 }
7126
7127 static void
7128 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7129 int bnum, int have_bnum)
7130 {
7131 /* The longest string possibly returned by hex_string_custom
7132 is 50 chars. These must be at least that big for safety. */
7133 char astr1[64];
7134 char astr2[64];
7135
7136 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7137 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7138 if (have_bnum)
7139 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7140 bnum, astr1, astr2);
7141 else
7142 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7143 }
7144
7145 /* Adjust a breakpoint's address to account for architectural
7146 constraints on breakpoint placement. Return the adjusted address.
7147 Note: Very few targets require this kind of adjustment. For most
7148 targets, this function is simply the identity function. */
7149
7150 static CORE_ADDR
7151 adjust_breakpoint_address (struct gdbarch *gdbarch,
7152 CORE_ADDR bpaddr, enum bptype bptype)
7153 {
7154 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7155 {
7156 /* Very few targets need any kind of breakpoint adjustment. */
7157 return bpaddr;
7158 }
7159 else if (bptype == bp_watchpoint
7160 || bptype == bp_hardware_watchpoint
7161 || bptype == bp_read_watchpoint
7162 || bptype == bp_access_watchpoint
7163 || bptype == bp_catchpoint)
7164 {
7165 /* Watchpoints and the various bp_catch_* eventpoints should not
7166 have their addresses modified. */
7167 return bpaddr;
7168 }
7169 else
7170 {
7171 CORE_ADDR adjusted_bpaddr;
7172
7173 /* Some targets have architectural constraints on the placement
7174 of breakpoint instructions. Obtain the adjusted address. */
7175 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7176
7177 /* An adjusted breakpoint address can significantly alter
7178 a user's expectations. Print a warning if an adjustment
7179 is required. */
7180 if (adjusted_bpaddr != bpaddr)
7181 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7182
7183 return adjusted_bpaddr;
7184 }
7185 }
7186
7187 void
7188 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7189 struct breakpoint *owner)
7190 {
7191 memset (loc, 0, sizeof (*loc));
7192
7193 gdb_assert (ops != NULL);
7194
7195 loc->ops = ops;
7196 loc->owner = owner;
7197 loc->cond = NULL;
7198 loc->cond_bytecode = NULL;
7199 loc->shlib_disabled = 0;
7200 loc->enabled = 1;
7201
7202 switch (owner->type)
7203 {
7204 case bp_breakpoint:
7205 case bp_until:
7206 case bp_finish:
7207 case bp_longjmp:
7208 case bp_longjmp_resume:
7209 case bp_longjmp_call_dummy:
7210 case bp_exception:
7211 case bp_exception_resume:
7212 case bp_step_resume:
7213 case bp_hp_step_resume:
7214 case bp_watchpoint_scope:
7215 case bp_call_dummy:
7216 case bp_std_terminate:
7217 case bp_shlib_event:
7218 case bp_thread_event:
7219 case bp_overlay_event:
7220 case bp_jit_event:
7221 case bp_longjmp_master:
7222 case bp_std_terminate_master:
7223 case bp_exception_master:
7224 case bp_gnu_ifunc_resolver:
7225 case bp_gnu_ifunc_resolver_return:
7226 case bp_dprintf:
7227 loc->loc_type = bp_loc_software_breakpoint;
7228 mark_breakpoint_location_modified (loc);
7229 break;
7230 case bp_hardware_breakpoint:
7231 loc->loc_type = bp_loc_hardware_breakpoint;
7232 mark_breakpoint_location_modified (loc);
7233 break;
7234 case bp_hardware_watchpoint:
7235 case bp_read_watchpoint:
7236 case bp_access_watchpoint:
7237 loc->loc_type = bp_loc_hardware_watchpoint;
7238 break;
7239 case bp_watchpoint:
7240 case bp_catchpoint:
7241 case bp_tracepoint:
7242 case bp_fast_tracepoint:
7243 case bp_static_tracepoint:
7244 loc->loc_type = bp_loc_other;
7245 break;
7246 default:
7247 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7248 }
7249
7250 loc->refc = 1;
7251 }
7252
7253 /* Allocate a struct bp_location. */
7254
7255 static struct bp_location *
7256 allocate_bp_location (struct breakpoint *bpt)
7257 {
7258 return bpt->ops->allocate_location (bpt);
7259 }
7260
7261 static void
7262 free_bp_location (struct bp_location *loc)
7263 {
7264 loc->ops->dtor (loc);
7265 xfree (loc);
7266 }
7267
7268 /* Increment reference count. */
7269
7270 static void
7271 incref_bp_location (struct bp_location *bl)
7272 {
7273 ++bl->refc;
7274 }
7275
7276 /* Decrement reference count. If the reference count reaches 0,
7277 destroy the bp_location. Sets *BLP to NULL. */
7278
7279 static void
7280 decref_bp_location (struct bp_location **blp)
7281 {
7282 gdb_assert ((*blp)->refc > 0);
7283
7284 if (--(*blp)->refc == 0)
7285 free_bp_location (*blp);
7286 *blp = NULL;
7287 }
7288
7289 /* Add breakpoint B at the end of the global breakpoint chain. */
7290
7291 static void
7292 add_to_breakpoint_chain (struct breakpoint *b)
7293 {
7294 struct breakpoint *b1;
7295
7296 /* Add this breakpoint to the end of the chain so that a list of
7297 breakpoints will come out in order of increasing numbers. */
7298
7299 b1 = breakpoint_chain;
7300 if (b1 == 0)
7301 breakpoint_chain = b;
7302 else
7303 {
7304 while (b1->next)
7305 b1 = b1->next;
7306 b1->next = b;
7307 }
7308 }
7309
7310 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7311
7312 static void
7313 init_raw_breakpoint_without_location (struct breakpoint *b,
7314 struct gdbarch *gdbarch,
7315 enum bptype bptype,
7316 const struct breakpoint_ops *ops)
7317 {
7318 memset (b, 0, sizeof (*b));
7319
7320 gdb_assert (ops != NULL);
7321
7322 b->ops = ops;
7323 b->type = bptype;
7324 b->gdbarch = gdbarch;
7325 b->language = current_language->la_language;
7326 b->input_radix = input_radix;
7327 b->thread = -1;
7328 b->enable_state = bp_enabled;
7329 b->next = 0;
7330 b->silent = 0;
7331 b->ignore_count = 0;
7332 b->commands = NULL;
7333 b->frame_id = null_frame_id;
7334 b->condition_not_parsed = 0;
7335 b->py_bp_object = NULL;
7336 b->related_breakpoint = b;
7337 }
7338
7339 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7340 that has type BPTYPE and has no locations as yet. */
7341
7342 static struct breakpoint *
7343 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7344 enum bptype bptype,
7345 const struct breakpoint_ops *ops)
7346 {
7347 struct breakpoint *b = XNEW (struct breakpoint);
7348
7349 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7350 add_to_breakpoint_chain (b);
7351 return b;
7352 }
7353
7354 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7355 resolutions should be made as the user specified the location explicitly
7356 enough. */
7357
7358 static void
7359 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7360 {
7361 gdb_assert (loc->owner != NULL);
7362
7363 if (loc->owner->type == bp_breakpoint
7364 || loc->owner->type == bp_hardware_breakpoint
7365 || is_tracepoint (loc->owner))
7366 {
7367 int is_gnu_ifunc;
7368 const char *function_name;
7369 CORE_ADDR func_addr;
7370
7371 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7372 &func_addr, NULL, &is_gnu_ifunc);
7373
7374 if (is_gnu_ifunc && !explicit_loc)
7375 {
7376 struct breakpoint *b = loc->owner;
7377
7378 gdb_assert (loc->pspace == current_program_space);
7379 if (gnu_ifunc_resolve_name (function_name,
7380 &loc->requested_address))
7381 {
7382 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7383 loc->address = adjust_breakpoint_address (loc->gdbarch,
7384 loc->requested_address,
7385 b->type);
7386 }
7387 else if (b->type == bp_breakpoint && b->loc == loc
7388 && loc->next == NULL && b->related_breakpoint == b)
7389 {
7390 /* Create only the whole new breakpoint of this type but do not
7391 mess more complicated breakpoints with multiple locations. */
7392 b->type = bp_gnu_ifunc_resolver;
7393 /* Remember the resolver's address for use by the return
7394 breakpoint. */
7395 loc->related_address = func_addr;
7396 }
7397 }
7398
7399 if (function_name)
7400 loc->function_name = xstrdup (function_name);
7401 }
7402 }
7403
7404 /* Attempt to determine architecture of location identified by SAL. */
7405 struct gdbarch *
7406 get_sal_arch (struct symtab_and_line sal)
7407 {
7408 if (sal.section)
7409 return get_objfile_arch (sal.section->objfile);
7410 if (sal.symtab)
7411 return get_objfile_arch (sal.symtab->objfile);
7412
7413 return NULL;
7414 }
7415
7416 /* Low level routine for partially initializing a breakpoint of type
7417 BPTYPE. The newly created breakpoint's address, section, source
7418 file name, and line number are provided by SAL.
7419
7420 It is expected that the caller will complete the initialization of
7421 the newly created breakpoint struct as well as output any status
7422 information regarding the creation of a new breakpoint. */
7423
7424 static void
7425 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7426 struct symtab_and_line sal, enum bptype bptype,
7427 const struct breakpoint_ops *ops)
7428 {
7429 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7430
7431 add_location_to_breakpoint (b, &sal);
7432
7433 if (bptype != bp_catchpoint)
7434 gdb_assert (sal.pspace != NULL);
7435
7436 /* Store the program space that was used to set the breakpoint,
7437 except for ordinary breakpoints, which are independent of the
7438 program space. */
7439 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7440 b->pspace = sal.pspace;
7441 }
7442
7443 /* set_raw_breakpoint is a low level routine for allocating and
7444 partially initializing a breakpoint of type BPTYPE. The newly
7445 created breakpoint's address, section, source file name, and line
7446 number are provided by SAL. The newly created and partially
7447 initialized breakpoint is added to the breakpoint chain and
7448 is also returned as the value of this function.
7449
7450 It is expected that the caller will complete the initialization of
7451 the newly created breakpoint struct as well as output any status
7452 information regarding the creation of a new breakpoint. In
7453 particular, set_raw_breakpoint does NOT set the breakpoint
7454 number! Care should be taken to not allow an error to occur
7455 prior to completing the initialization of the breakpoint. If this
7456 should happen, a bogus breakpoint will be left on the chain. */
7457
7458 struct breakpoint *
7459 set_raw_breakpoint (struct gdbarch *gdbarch,
7460 struct symtab_and_line sal, enum bptype bptype,
7461 const struct breakpoint_ops *ops)
7462 {
7463 struct breakpoint *b = XNEW (struct breakpoint);
7464
7465 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7466 add_to_breakpoint_chain (b);
7467 return b;
7468 }
7469
7470
7471 /* Note that the breakpoint object B describes a permanent breakpoint
7472 instruction, hard-wired into the inferior's code. */
7473 void
7474 make_breakpoint_permanent (struct breakpoint *b)
7475 {
7476 struct bp_location *bl;
7477
7478 b->enable_state = bp_permanent;
7479
7480 /* By definition, permanent breakpoints are already present in the
7481 code. Mark all locations as inserted. For now,
7482 make_breakpoint_permanent is called in just one place, so it's
7483 hard to say if it's reasonable to have permanent breakpoint with
7484 multiple locations or not, but it's easy to implement. */
7485 for (bl = b->loc; bl; bl = bl->next)
7486 bl->inserted = 1;
7487 }
7488
7489 /* Call this routine when stepping and nexting to enable a breakpoint
7490 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7491 initiated the operation. */
7492
7493 void
7494 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7495 {
7496 struct breakpoint *b, *b_tmp;
7497 int thread = tp->num;
7498
7499 /* To avoid having to rescan all objfile symbols at every step,
7500 we maintain a list of continually-inserted but always disabled
7501 longjmp "master" breakpoints. Here, we simply create momentary
7502 clones of those and enable them for the requested thread. */
7503 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7504 if (b->pspace == current_program_space
7505 && (b->type == bp_longjmp_master
7506 || b->type == bp_exception_master))
7507 {
7508 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7509 struct breakpoint *clone;
7510
7511 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7512 after their removal. */
7513 clone = momentary_breakpoint_from_master (b, type,
7514 &longjmp_breakpoint_ops, 1);
7515 clone->thread = thread;
7516 }
7517
7518 tp->initiating_frame = frame;
7519 }
7520
7521 /* Delete all longjmp breakpoints from THREAD. */
7522 void
7523 delete_longjmp_breakpoint (int thread)
7524 {
7525 struct breakpoint *b, *b_tmp;
7526
7527 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7528 if (b->type == bp_longjmp || b->type == bp_exception)
7529 {
7530 if (b->thread == thread)
7531 delete_breakpoint (b);
7532 }
7533 }
7534
7535 void
7536 delete_longjmp_breakpoint_at_next_stop (int thread)
7537 {
7538 struct breakpoint *b, *b_tmp;
7539
7540 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7541 if (b->type == bp_longjmp || b->type == bp_exception)
7542 {
7543 if (b->thread == thread)
7544 b->disposition = disp_del_at_next_stop;
7545 }
7546 }
7547
7548 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7549 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7550 pointer to any of them. Return NULL if this system cannot place longjmp
7551 breakpoints. */
7552
7553 struct breakpoint *
7554 set_longjmp_breakpoint_for_call_dummy (void)
7555 {
7556 struct breakpoint *b, *retval = NULL;
7557
7558 ALL_BREAKPOINTS (b)
7559 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7560 {
7561 struct breakpoint *new_b;
7562
7563 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7564 &momentary_breakpoint_ops,
7565 1);
7566 new_b->thread = pid_to_thread_id (inferior_ptid);
7567
7568 /* Link NEW_B into the chain of RETVAL breakpoints. */
7569
7570 gdb_assert (new_b->related_breakpoint == new_b);
7571 if (retval == NULL)
7572 retval = new_b;
7573 new_b->related_breakpoint = retval;
7574 while (retval->related_breakpoint != new_b->related_breakpoint)
7575 retval = retval->related_breakpoint;
7576 retval->related_breakpoint = new_b;
7577 }
7578
7579 return retval;
7580 }
7581
7582 /* Verify all existing dummy frames and their associated breakpoints for
7583 TP. Remove those which can no longer be found in the current frame
7584 stack.
7585
7586 You should call this function only at places where it is safe to currently
7587 unwind the whole stack. Failed stack unwind would discard live dummy
7588 frames. */
7589
7590 void
7591 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7592 {
7593 struct breakpoint *b, *b_tmp;
7594
7595 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7596 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7597 {
7598 struct breakpoint *dummy_b = b->related_breakpoint;
7599
7600 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7601 dummy_b = dummy_b->related_breakpoint;
7602 if (dummy_b->type != bp_call_dummy
7603 || frame_find_by_id (dummy_b->frame_id) != NULL)
7604 continue;
7605
7606 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7607
7608 while (b->related_breakpoint != b)
7609 {
7610 if (b_tmp == b->related_breakpoint)
7611 b_tmp = b->related_breakpoint->next;
7612 delete_breakpoint (b->related_breakpoint);
7613 }
7614 delete_breakpoint (b);
7615 }
7616 }
7617
7618 void
7619 enable_overlay_breakpoints (void)
7620 {
7621 struct breakpoint *b;
7622
7623 ALL_BREAKPOINTS (b)
7624 if (b->type == bp_overlay_event)
7625 {
7626 b->enable_state = bp_enabled;
7627 update_global_location_list (UGLL_MAY_INSERT);
7628 overlay_events_enabled = 1;
7629 }
7630 }
7631
7632 void
7633 disable_overlay_breakpoints (void)
7634 {
7635 struct breakpoint *b;
7636
7637 ALL_BREAKPOINTS (b)
7638 if (b->type == bp_overlay_event)
7639 {
7640 b->enable_state = bp_disabled;
7641 update_global_location_list (UGLL_DONT_INSERT);
7642 overlay_events_enabled = 0;
7643 }
7644 }
7645
7646 /* Set an active std::terminate breakpoint for each std::terminate
7647 master breakpoint. */
7648 void
7649 set_std_terminate_breakpoint (void)
7650 {
7651 struct breakpoint *b, *b_tmp;
7652
7653 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7654 if (b->pspace == current_program_space
7655 && b->type == bp_std_terminate_master)
7656 {
7657 momentary_breakpoint_from_master (b, bp_std_terminate,
7658 &momentary_breakpoint_ops, 1);
7659 }
7660 }
7661
7662 /* Delete all the std::terminate breakpoints. */
7663 void
7664 delete_std_terminate_breakpoint (void)
7665 {
7666 struct breakpoint *b, *b_tmp;
7667
7668 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7669 if (b->type == bp_std_terminate)
7670 delete_breakpoint (b);
7671 }
7672
7673 struct breakpoint *
7674 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7675 {
7676 struct breakpoint *b;
7677
7678 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7679 &internal_breakpoint_ops);
7680
7681 b->enable_state = bp_enabled;
7682 /* addr_string has to be used or breakpoint_re_set will delete me. */
7683 b->addr_string
7684 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7685
7686 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7687
7688 return b;
7689 }
7690
7691 void
7692 remove_thread_event_breakpoints (void)
7693 {
7694 struct breakpoint *b, *b_tmp;
7695
7696 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7697 if (b->type == bp_thread_event
7698 && b->loc->pspace == current_program_space)
7699 delete_breakpoint (b);
7700 }
7701
7702 struct lang_and_radix
7703 {
7704 enum language lang;
7705 int radix;
7706 };
7707
7708 /* Create a breakpoint for JIT code registration and unregistration. */
7709
7710 struct breakpoint *
7711 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7712 {
7713 struct breakpoint *b;
7714
7715 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7716 &internal_breakpoint_ops);
7717 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7718 return b;
7719 }
7720
7721 /* Remove JIT code registration and unregistration breakpoint(s). */
7722
7723 void
7724 remove_jit_event_breakpoints (void)
7725 {
7726 struct breakpoint *b, *b_tmp;
7727
7728 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7729 if (b->type == bp_jit_event
7730 && b->loc->pspace == current_program_space)
7731 delete_breakpoint (b);
7732 }
7733
7734 void
7735 remove_solib_event_breakpoints (void)
7736 {
7737 struct breakpoint *b, *b_tmp;
7738
7739 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7740 if (b->type == bp_shlib_event
7741 && b->loc->pspace == current_program_space)
7742 delete_breakpoint (b);
7743 }
7744
7745 /* See breakpoint.h. */
7746
7747 void
7748 remove_solib_event_breakpoints_at_next_stop (void)
7749 {
7750 struct breakpoint *b, *b_tmp;
7751
7752 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7753 if (b->type == bp_shlib_event
7754 && b->loc->pspace == current_program_space)
7755 b->disposition = disp_del_at_next_stop;
7756 }
7757
7758 /* Helper for create_solib_event_breakpoint /
7759 create_and_insert_solib_event_breakpoint. Allows specifying which
7760 INSERT_MODE to pass through to update_global_location_list. */
7761
7762 static struct breakpoint *
7763 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7764 enum ugll_insert_mode insert_mode)
7765 {
7766 struct breakpoint *b;
7767
7768 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7769 &internal_breakpoint_ops);
7770 update_global_location_list_nothrow (insert_mode);
7771 return b;
7772 }
7773
7774 struct breakpoint *
7775 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7776 {
7777 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7778 }
7779
7780 /* See breakpoint.h. */
7781
7782 struct breakpoint *
7783 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7784 {
7785 struct breakpoint *b;
7786
7787 /* Explicitly tell update_global_location_list to insert
7788 locations. */
7789 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7790 if (!b->loc->inserted)
7791 {
7792 delete_breakpoint (b);
7793 return NULL;
7794 }
7795 return b;
7796 }
7797
7798 /* Disable any breakpoints that are on code in shared libraries. Only
7799 apply to enabled breakpoints, disabled ones can just stay disabled. */
7800
7801 void
7802 disable_breakpoints_in_shlibs (void)
7803 {
7804 struct bp_location *loc, **locp_tmp;
7805
7806 ALL_BP_LOCATIONS (loc, locp_tmp)
7807 {
7808 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7809 struct breakpoint *b = loc->owner;
7810
7811 /* We apply the check to all breakpoints, including disabled for
7812 those with loc->duplicate set. This is so that when breakpoint
7813 becomes enabled, or the duplicate is removed, gdb will try to
7814 insert all breakpoints. If we don't set shlib_disabled here,
7815 we'll try to insert those breakpoints and fail. */
7816 if (((b->type == bp_breakpoint)
7817 || (b->type == bp_jit_event)
7818 || (b->type == bp_hardware_breakpoint)
7819 || (is_tracepoint (b)))
7820 && loc->pspace == current_program_space
7821 && !loc->shlib_disabled
7822 && solib_name_from_address (loc->pspace, loc->address)
7823 )
7824 {
7825 loc->shlib_disabled = 1;
7826 }
7827 }
7828 }
7829
7830 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7831 notification of unloaded_shlib. Only apply to enabled breakpoints,
7832 disabled ones can just stay disabled. */
7833
7834 static void
7835 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7836 {
7837 struct bp_location *loc, **locp_tmp;
7838 int disabled_shlib_breaks = 0;
7839
7840 /* SunOS a.out shared libraries are always mapped, so do not
7841 disable breakpoints; they will only be reported as unloaded
7842 through clear_solib when GDB discards its shared library
7843 list. See clear_solib for more information. */
7844 if (exec_bfd != NULL
7845 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7846 return;
7847
7848 ALL_BP_LOCATIONS (loc, locp_tmp)
7849 {
7850 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7851 struct breakpoint *b = loc->owner;
7852
7853 if (solib->pspace == loc->pspace
7854 && !loc->shlib_disabled
7855 && (((b->type == bp_breakpoint
7856 || b->type == bp_jit_event
7857 || b->type == bp_hardware_breakpoint)
7858 && (loc->loc_type == bp_loc_hardware_breakpoint
7859 || loc->loc_type == bp_loc_software_breakpoint))
7860 || is_tracepoint (b))
7861 && solib_contains_address_p (solib, loc->address))
7862 {
7863 loc->shlib_disabled = 1;
7864 /* At this point, we cannot rely on remove_breakpoint
7865 succeeding so we must mark the breakpoint as not inserted
7866 to prevent future errors occurring in remove_breakpoints. */
7867 loc->inserted = 0;
7868
7869 /* This may cause duplicate notifications for the same breakpoint. */
7870 observer_notify_breakpoint_modified (b);
7871
7872 if (!disabled_shlib_breaks)
7873 {
7874 target_terminal_ours_for_output ();
7875 warning (_("Temporarily disabling breakpoints "
7876 "for unloaded shared library \"%s\""),
7877 solib->so_name);
7878 }
7879 disabled_shlib_breaks = 1;
7880 }
7881 }
7882 }
7883
7884 /* Disable any breakpoints and tracepoints in OBJFILE upon
7885 notification of free_objfile. Only apply to enabled breakpoints,
7886 disabled ones can just stay disabled. */
7887
7888 static void
7889 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7890 {
7891 struct breakpoint *b;
7892
7893 if (objfile == NULL)
7894 return;
7895
7896 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7897 managed by the user with add-symbol-file/remove-symbol-file.
7898 Similarly to how breakpoints in shared libraries are handled in
7899 response to "nosharedlibrary", mark breakpoints in such modules
7900 shlib_disabled so they end up uninserted on the next global
7901 location list update. Shared libraries not loaded by the user
7902 aren't handled here -- they're already handled in
7903 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7904 solib_unloaded observer. We skip objfiles that are not
7905 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7906 main objfile). */
7907 if ((objfile->flags & OBJF_SHARED) == 0
7908 || (objfile->flags & OBJF_USERLOADED) == 0)
7909 return;
7910
7911 ALL_BREAKPOINTS (b)
7912 {
7913 struct bp_location *loc;
7914 int bp_modified = 0;
7915
7916 if (!is_breakpoint (b) && !is_tracepoint (b))
7917 continue;
7918
7919 for (loc = b->loc; loc != NULL; loc = loc->next)
7920 {
7921 CORE_ADDR loc_addr = loc->address;
7922
7923 if (loc->loc_type != bp_loc_hardware_breakpoint
7924 && loc->loc_type != bp_loc_software_breakpoint)
7925 continue;
7926
7927 if (loc->shlib_disabled != 0)
7928 continue;
7929
7930 if (objfile->pspace != loc->pspace)
7931 continue;
7932
7933 if (loc->loc_type != bp_loc_hardware_breakpoint
7934 && loc->loc_type != bp_loc_software_breakpoint)
7935 continue;
7936
7937 if (is_addr_in_objfile (loc_addr, objfile))
7938 {
7939 loc->shlib_disabled = 1;
7940 /* At this point, we don't know whether the object was
7941 unmapped from the inferior or not, so leave the
7942 inserted flag alone. We'll handle failure to
7943 uninsert quietly, in case the object was indeed
7944 unmapped. */
7945
7946 mark_breakpoint_location_modified (loc);
7947
7948 bp_modified = 1;
7949 }
7950 }
7951
7952 if (bp_modified)
7953 observer_notify_breakpoint_modified (b);
7954 }
7955 }
7956
7957 /* FORK & VFORK catchpoints. */
7958
7959 /* An instance of this type is used to represent a fork or vfork
7960 catchpoint. It includes a "struct breakpoint" as a kind of base
7961 class; users downcast to "struct breakpoint *" when needed. A
7962 breakpoint is really of this type iff its ops pointer points to
7963 CATCH_FORK_BREAKPOINT_OPS. */
7964
7965 struct fork_catchpoint
7966 {
7967 /* The base class. */
7968 struct breakpoint base;
7969
7970 /* Process id of a child process whose forking triggered this
7971 catchpoint. This field is only valid immediately after this
7972 catchpoint has triggered. */
7973 ptid_t forked_inferior_pid;
7974 };
7975
7976 /* Implement the "insert" breakpoint_ops method for fork
7977 catchpoints. */
7978
7979 static int
7980 insert_catch_fork (struct bp_location *bl)
7981 {
7982 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7983 }
7984
7985 /* Implement the "remove" breakpoint_ops method for fork
7986 catchpoints. */
7987
7988 static int
7989 remove_catch_fork (struct bp_location *bl)
7990 {
7991 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7992 }
7993
7994 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7995 catchpoints. */
7996
7997 static int
7998 breakpoint_hit_catch_fork (const struct bp_location *bl,
7999 struct address_space *aspace, CORE_ADDR bp_addr,
8000 const struct target_waitstatus *ws)
8001 {
8002 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8003
8004 if (ws->kind != TARGET_WAITKIND_FORKED)
8005 return 0;
8006
8007 c->forked_inferior_pid = ws->value.related_pid;
8008 return 1;
8009 }
8010
8011 /* Implement the "print_it" breakpoint_ops method for fork
8012 catchpoints. */
8013
8014 static enum print_stop_action
8015 print_it_catch_fork (bpstat bs)
8016 {
8017 struct ui_out *uiout = current_uiout;
8018 struct breakpoint *b = bs->breakpoint_at;
8019 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8020
8021 annotate_catchpoint (b->number);
8022 if (b->disposition == disp_del)
8023 ui_out_text (uiout, "\nTemporary catchpoint ");
8024 else
8025 ui_out_text (uiout, "\nCatchpoint ");
8026 if (ui_out_is_mi_like_p (uiout))
8027 {
8028 ui_out_field_string (uiout, "reason",
8029 async_reason_lookup (EXEC_ASYNC_FORK));
8030 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8031 }
8032 ui_out_field_int (uiout, "bkptno", b->number);
8033 ui_out_text (uiout, " (forked process ");
8034 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8035 ui_out_text (uiout, "), ");
8036 return PRINT_SRC_AND_LOC;
8037 }
8038
8039 /* Implement the "print_one" breakpoint_ops method for fork
8040 catchpoints. */
8041
8042 static void
8043 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8044 {
8045 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8046 struct value_print_options opts;
8047 struct ui_out *uiout = current_uiout;
8048
8049 get_user_print_options (&opts);
8050
8051 /* Field 4, the address, is omitted (which makes the columns not
8052 line up too nicely with the headers, but the effect is relatively
8053 readable). */
8054 if (opts.addressprint)
8055 ui_out_field_skip (uiout, "addr");
8056 annotate_field (5);
8057 ui_out_text (uiout, "fork");
8058 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8059 {
8060 ui_out_text (uiout, ", process ");
8061 ui_out_field_int (uiout, "what",
8062 ptid_get_pid (c->forked_inferior_pid));
8063 ui_out_spaces (uiout, 1);
8064 }
8065
8066 if (ui_out_is_mi_like_p (uiout))
8067 ui_out_field_string (uiout, "catch-type", "fork");
8068 }
8069
8070 /* Implement the "print_mention" breakpoint_ops method for fork
8071 catchpoints. */
8072
8073 static void
8074 print_mention_catch_fork (struct breakpoint *b)
8075 {
8076 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8077 }
8078
8079 /* Implement the "print_recreate" breakpoint_ops method for fork
8080 catchpoints. */
8081
8082 static void
8083 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8084 {
8085 fprintf_unfiltered (fp, "catch fork");
8086 print_recreate_thread (b, fp);
8087 }
8088
8089 /* The breakpoint_ops structure to be used in fork catchpoints. */
8090
8091 static struct breakpoint_ops catch_fork_breakpoint_ops;
8092
8093 /* Implement the "insert" breakpoint_ops method for vfork
8094 catchpoints. */
8095
8096 static int
8097 insert_catch_vfork (struct bp_location *bl)
8098 {
8099 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8100 }
8101
8102 /* Implement the "remove" breakpoint_ops method for vfork
8103 catchpoints. */
8104
8105 static int
8106 remove_catch_vfork (struct bp_location *bl)
8107 {
8108 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8109 }
8110
8111 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8112 catchpoints. */
8113
8114 static int
8115 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8116 struct address_space *aspace, CORE_ADDR bp_addr,
8117 const struct target_waitstatus *ws)
8118 {
8119 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8120
8121 if (ws->kind != TARGET_WAITKIND_VFORKED)
8122 return 0;
8123
8124 c->forked_inferior_pid = ws->value.related_pid;
8125 return 1;
8126 }
8127
8128 /* Implement the "print_it" breakpoint_ops method for vfork
8129 catchpoints. */
8130
8131 static enum print_stop_action
8132 print_it_catch_vfork (bpstat bs)
8133 {
8134 struct ui_out *uiout = current_uiout;
8135 struct breakpoint *b = bs->breakpoint_at;
8136 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8137
8138 annotate_catchpoint (b->number);
8139 if (b->disposition == disp_del)
8140 ui_out_text (uiout, "\nTemporary catchpoint ");
8141 else
8142 ui_out_text (uiout, "\nCatchpoint ");
8143 if (ui_out_is_mi_like_p (uiout))
8144 {
8145 ui_out_field_string (uiout, "reason",
8146 async_reason_lookup (EXEC_ASYNC_VFORK));
8147 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8148 }
8149 ui_out_field_int (uiout, "bkptno", b->number);
8150 ui_out_text (uiout, " (vforked process ");
8151 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8152 ui_out_text (uiout, "), ");
8153 return PRINT_SRC_AND_LOC;
8154 }
8155
8156 /* Implement the "print_one" breakpoint_ops method for vfork
8157 catchpoints. */
8158
8159 static void
8160 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8161 {
8162 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8163 struct value_print_options opts;
8164 struct ui_out *uiout = current_uiout;
8165
8166 get_user_print_options (&opts);
8167 /* Field 4, the address, is omitted (which makes the columns not
8168 line up too nicely with the headers, but the effect is relatively
8169 readable). */
8170 if (opts.addressprint)
8171 ui_out_field_skip (uiout, "addr");
8172 annotate_field (5);
8173 ui_out_text (uiout, "vfork");
8174 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8175 {
8176 ui_out_text (uiout, ", process ");
8177 ui_out_field_int (uiout, "what",
8178 ptid_get_pid (c->forked_inferior_pid));
8179 ui_out_spaces (uiout, 1);
8180 }
8181
8182 if (ui_out_is_mi_like_p (uiout))
8183 ui_out_field_string (uiout, "catch-type", "vfork");
8184 }
8185
8186 /* Implement the "print_mention" breakpoint_ops method for vfork
8187 catchpoints. */
8188
8189 static void
8190 print_mention_catch_vfork (struct breakpoint *b)
8191 {
8192 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8193 }
8194
8195 /* Implement the "print_recreate" breakpoint_ops method for vfork
8196 catchpoints. */
8197
8198 static void
8199 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8200 {
8201 fprintf_unfiltered (fp, "catch vfork");
8202 print_recreate_thread (b, fp);
8203 }
8204
8205 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8206
8207 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8208
8209 /* An instance of this type is used to represent an solib catchpoint.
8210 It includes a "struct breakpoint" as a kind of base class; users
8211 downcast to "struct breakpoint *" when needed. A breakpoint is
8212 really of this type iff its ops pointer points to
8213 CATCH_SOLIB_BREAKPOINT_OPS. */
8214
8215 struct solib_catchpoint
8216 {
8217 /* The base class. */
8218 struct breakpoint base;
8219
8220 /* True for "catch load", false for "catch unload". */
8221 unsigned char is_load;
8222
8223 /* Regular expression to match, if any. COMPILED is only valid when
8224 REGEX is non-NULL. */
8225 char *regex;
8226 regex_t compiled;
8227 };
8228
8229 static void
8230 dtor_catch_solib (struct breakpoint *b)
8231 {
8232 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8233
8234 if (self->regex)
8235 regfree (&self->compiled);
8236 xfree (self->regex);
8237
8238 base_breakpoint_ops.dtor (b);
8239 }
8240
8241 static int
8242 insert_catch_solib (struct bp_location *ignore)
8243 {
8244 return 0;
8245 }
8246
8247 static int
8248 remove_catch_solib (struct bp_location *ignore)
8249 {
8250 return 0;
8251 }
8252
8253 static int
8254 breakpoint_hit_catch_solib (const struct bp_location *bl,
8255 struct address_space *aspace,
8256 CORE_ADDR bp_addr,
8257 const struct target_waitstatus *ws)
8258 {
8259 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8260 struct breakpoint *other;
8261
8262 if (ws->kind == TARGET_WAITKIND_LOADED)
8263 return 1;
8264
8265 ALL_BREAKPOINTS (other)
8266 {
8267 struct bp_location *other_bl;
8268
8269 if (other == bl->owner)
8270 continue;
8271
8272 if (other->type != bp_shlib_event)
8273 continue;
8274
8275 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8276 continue;
8277
8278 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8279 {
8280 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8281 return 1;
8282 }
8283 }
8284
8285 return 0;
8286 }
8287
8288 static void
8289 check_status_catch_solib (struct bpstats *bs)
8290 {
8291 struct solib_catchpoint *self
8292 = (struct solib_catchpoint *) bs->breakpoint_at;
8293 int ix;
8294
8295 if (self->is_load)
8296 {
8297 struct so_list *iter;
8298
8299 for (ix = 0;
8300 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8301 ix, iter);
8302 ++ix)
8303 {
8304 if (!self->regex
8305 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8306 return;
8307 }
8308 }
8309 else
8310 {
8311 char *iter;
8312
8313 for (ix = 0;
8314 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8315 ix, iter);
8316 ++ix)
8317 {
8318 if (!self->regex
8319 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8320 return;
8321 }
8322 }
8323
8324 bs->stop = 0;
8325 bs->print_it = print_it_noop;
8326 }
8327
8328 static enum print_stop_action
8329 print_it_catch_solib (bpstat bs)
8330 {
8331 struct breakpoint *b = bs->breakpoint_at;
8332 struct ui_out *uiout = current_uiout;
8333
8334 annotate_catchpoint (b->number);
8335 if (b->disposition == disp_del)
8336 ui_out_text (uiout, "\nTemporary catchpoint ");
8337 else
8338 ui_out_text (uiout, "\nCatchpoint ");
8339 ui_out_field_int (uiout, "bkptno", b->number);
8340 ui_out_text (uiout, "\n");
8341 if (ui_out_is_mi_like_p (uiout))
8342 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8343 print_solib_event (1);
8344 return PRINT_SRC_AND_LOC;
8345 }
8346
8347 static void
8348 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8349 {
8350 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8351 struct value_print_options opts;
8352 struct ui_out *uiout = current_uiout;
8353 char *msg;
8354
8355 get_user_print_options (&opts);
8356 /* Field 4, the address, is omitted (which makes the columns not
8357 line up too nicely with the headers, but the effect is relatively
8358 readable). */
8359 if (opts.addressprint)
8360 {
8361 annotate_field (4);
8362 ui_out_field_skip (uiout, "addr");
8363 }
8364
8365 annotate_field (5);
8366 if (self->is_load)
8367 {
8368 if (self->regex)
8369 msg = xstrprintf (_("load of library matching %s"), self->regex);
8370 else
8371 msg = xstrdup (_("load of library"));
8372 }
8373 else
8374 {
8375 if (self->regex)
8376 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8377 else
8378 msg = xstrdup (_("unload of library"));
8379 }
8380 ui_out_field_string (uiout, "what", msg);
8381 xfree (msg);
8382
8383 if (ui_out_is_mi_like_p (uiout))
8384 ui_out_field_string (uiout, "catch-type",
8385 self->is_load ? "load" : "unload");
8386 }
8387
8388 static void
8389 print_mention_catch_solib (struct breakpoint *b)
8390 {
8391 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8392
8393 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8394 self->is_load ? "load" : "unload");
8395 }
8396
8397 static void
8398 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8399 {
8400 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8401
8402 fprintf_unfiltered (fp, "%s %s",
8403 b->disposition == disp_del ? "tcatch" : "catch",
8404 self->is_load ? "load" : "unload");
8405 if (self->regex)
8406 fprintf_unfiltered (fp, " %s", self->regex);
8407 fprintf_unfiltered (fp, "\n");
8408 }
8409
8410 static struct breakpoint_ops catch_solib_breakpoint_ops;
8411
8412 /* Shared helper function (MI and CLI) for creating and installing
8413 a shared object event catchpoint. If IS_LOAD is non-zero then
8414 the events to be caught are load events, otherwise they are
8415 unload events. If IS_TEMP is non-zero the catchpoint is a
8416 temporary one. If ENABLED is non-zero the catchpoint is
8417 created in an enabled state. */
8418
8419 void
8420 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8421 {
8422 struct solib_catchpoint *c;
8423 struct gdbarch *gdbarch = get_current_arch ();
8424 struct cleanup *cleanup;
8425
8426 if (!arg)
8427 arg = "";
8428 arg = skip_spaces (arg);
8429
8430 c = XCNEW (struct solib_catchpoint);
8431 cleanup = make_cleanup (xfree, c);
8432
8433 if (*arg != '\0')
8434 {
8435 int errcode;
8436
8437 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8438 if (errcode != 0)
8439 {
8440 char *err = get_regcomp_error (errcode, &c->compiled);
8441
8442 make_cleanup (xfree, err);
8443 error (_("Invalid regexp (%s): %s"), err, arg);
8444 }
8445 c->regex = xstrdup (arg);
8446 }
8447
8448 c->is_load = is_load;
8449 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8450 &catch_solib_breakpoint_ops);
8451
8452 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8453
8454 discard_cleanups (cleanup);
8455 install_breakpoint (0, &c->base, 1);
8456 }
8457
8458 /* A helper function that does all the work for "catch load" and
8459 "catch unload". */
8460
8461 static void
8462 catch_load_or_unload (char *arg, int from_tty, int is_load,
8463 struct cmd_list_element *command)
8464 {
8465 int tempflag;
8466 const int enabled = 1;
8467
8468 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8469
8470 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8471 }
8472
8473 static void
8474 catch_load_command_1 (char *arg, int from_tty,
8475 struct cmd_list_element *command)
8476 {
8477 catch_load_or_unload (arg, from_tty, 1, command);
8478 }
8479
8480 static void
8481 catch_unload_command_1 (char *arg, int from_tty,
8482 struct cmd_list_element *command)
8483 {
8484 catch_load_or_unload (arg, from_tty, 0, command);
8485 }
8486
8487 /* An instance of this type is used to represent a syscall catchpoint.
8488 It includes a "struct breakpoint" as a kind of base class; users
8489 downcast to "struct breakpoint *" when needed. A breakpoint is
8490 really of this type iff its ops pointer points to
8491 CATCH_SYSCALL_BREAKPOINT_OPS. */
8492
8493 struct syscall_catchpoint
8494 {
8495 /* The base class. */
8496 struct breakpoint base;
8497
8498 /* Syscall numbers used for the 'catch syscall' feature. If no
8499 syscall has been specified for filtering, its value is NULL.
8500 Otherwise, it holds a list of all syscalls to be caught. The
8501 list elements are allocated with xmalloc. */
8502 VEC(int) *syscalls_to_be_caught;
8503 };
8504
8505 /* Implement the "dtor" breakpoint_ops method for syscall
8506 catchpoints. */
8507
8508 static void
8509 dtor_catch_syscall (struct breakpoint *b)
8510 {
8511 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8512
8513 VEC_free (int, c->syscalls_to_be_caught);
8514
8515 base_breakpoint_ops.dtor (b);
8516 }
8517
8518 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8519
8520 struct catch_syscall_inferior_data
8521 {
8522 /* We keep a count of the number of times the user has requested a
8523 particular syscall to be tracked, and pass this information to the
8524 target. This lets capable targets implement filtering directly. */
8525
8526 /* Number of times that "any" syscall is requested. */
8527 int any_syscall_count;
8528
8529 /* Count of each system call. */
8530 VEC(int) *syscalls_counts;
8531
8532 /* This counts all syscall catch requests, so we can readily determine
8533 if any catching is necessary. */
8534 int total_syscalls_count;
8535 };
8536
8537 static struct catch_syscall_inferior_data*
8538 get_catch_syscall_inferior_data (struct inferior *inf)
8539 {
8540 struct catch_syscall_inferior_data *inf_data;
8541
8542 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8543 if (inf_data == NULL)
8544 {
8545 inf_data = XCNEW (struct catch_syscall_inferior_data);
8546 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8547 }
8548
8549 return inf_data;
8550 }
8551
8552 static void
8553 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8554 {
8555 xfree (arg);
8556 }
8557
8558
8559 /* Implement the "insert" breakpoint_ops method for syscall
8560 catchpoints. */
8561
8562 static int
8563 insert_catch_syscall (struct bp_location *bl)
8564 {
8565 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8566 struct inferior *inf = current_inferior ();
8567 struct catch_syscall_inferior_data *inf_data
8568 = get_catch_syscall_inferior_data (inf);
8569
8570 ++inf_data->total_syscalls_count;
8571 if (!c->syscalls_to_be_caught)
8572 ++inf_data->any_syscall_count;
8573 else
8574 {
8575 int i, iter;
8576
8577 for (i = 0;
8578 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8579 i++)
8580 {
8581 int elem;
8582
8583 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8584 {
8585 int old_size = VEC_length (int, inf_data->syscalls_counts);
8586 uintptr_t vec_addr_offset
8587 = old_size * ((uintptr_t) sizeof (int));
8588 uintptr_t vec_addr;
8589 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8590 vec_addr = ((uintptr_t) VEC_address (int,
8591 inf_data->syscalls_counts)
8592 + vec_addr_offset);
8593 memset ((void *) vec_addr, 0,
8594 (iter + 1 - old_size) * sizeof (int));
8595 }
8596 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8597 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8598 }
8599 }
8600
8601 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8602 inf_data->total_syscalls_count != 0,
8603 inf_data->any_syscall_count,
8604 VEC_length (int,
8605 inf_data->syscalls_counts),
8606 VEC_address (int,
8607 inf_data->syscalls_counts));
8608 }
8609
8610 /* Implement the "remove" breakpoint_ops method for syscall
8611 catchpoints. */
8612
8613 static int
8614 remove_catch_syscall (struct bp_location *bl)
8615 {
8616 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8617 struct inferior *inf = current_inferior ();
8618 struct catch_syscall_inferior_data *inf_data
8619 = get_catch_syscall_inferior_data (inf);
8620
8621 --inf_data->total_syscalls_count;
8622 if (!c->syscalls_to_be_caught)
8623 --inf_data->any_syscall_count;
8624 else
8625 {
8626 int i, iter;
8627
8628 for (i = 0;
8629 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8630 i++)
8631 {
8632 int elem;
8633 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8634 /* Shouldn't happen. */
8635 continue;
8636 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8637 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8638 }
8639 }
8640
8641 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8642 inf_data->total_syscalls_count != 0,
8643 inf_data->any_syscall_count,
8644 VEC_length (int,
8645 inf_data->syscalls_counts),
8646 VEC_address (int,
8647 inf_data->syscalls_counts));
8648 }
8649
8650 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8651 catchpoints. */
8652
8653 static int
8654 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8655 struct address_space *aspace, CORE_ADDR bp_addr,
8656 const struct target_waitstatus *ws)
8657 {
8658 /* We must check if we are catching specific syscalls in this
8659 breakpoint. If we are, then we must guarantee that the called
8660 syscall is the same syscall we are catching. */
8661 int syscall_number = 0;
8662 const struct syscall_catchpoint *c
8663 = (const struct syscall_catchpoint *) bl->owner;
8664
8665 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8666 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8667 return 0;
8668
8669 syscall_number = ws->value.syscall_number;
8670
8671 /* Now, checking if the syscall is the same. */
8672 if (c->syscalls_to_be_caught)
8673 {
8674 int i, iter;
8675
8676 for (i = 0;
8677 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8678 i++)
8679 if (syscall_number == iter)
8680 return 1;
8681
8682 return 0;
8683 }
8684
8685 return 1;
8686 }
8687
8688 /* Implement the "print_it" breakpoint_ops method for syscall
8689 catchpoints. */
8690
8691 static enum print_stop_action
8692 print_it_catch_syscall (bpstat bs)
8693 {
8694 struct ui_out *uiout = current_uiout;
8695 struct breakpoint *b = bs->breakpoint_at;
8696 /* These are needed because we want to know in which state a
8697 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8698 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8699 must print "called syscall" or "returned from syscall". */
8700 ptid_t ptid;
8701 struct target_waitstatus last;
8702 struct syscall s;
8703
8704 get_last_target_status (&ptid, &last);
8705
8706 get_syscall_by_number (last.value.syscall_number, &s);
8707
8708 annotate_catchpoint (b->number);
8709
8710 if (b->disposition == disp_del)
8711 ui_out_text (uiout, "\nTemporary catchpoint ");
8712 else
8713 ui_out_text (uiout, "\nCatchpoint ");
8714 if (ui_out_is_mi_like_p (uiout))
8715 {
8716 ui_out_field_string (uiout, "reason",
8717 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8718 ? EXEC_ASYNC_SYSCALL_ENTRY
8719 : EXEC_ASYNC_SYSCALL_RETURN));
8720 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8721 }
8722 ui_out_field_int (uiout, "bkptno", b->number);
8723
8724 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8725 ui_out_text (uiout, " (call to syscall ");
8726 else
8727 ui_out_text (uiout, " (returned from syscall ");
8728
8729 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8730 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8731 if (s.name != NULL)
8732 ui_out_field_string (uiout, "syscall-name", s.name);
8733
8734 ui_out_text (uiout, "), ");
8735
8736 return PRINT_SRC_AND_LOC;
8737 }
8738
8739 /* Implement the "print_one" breakpoint_ops method for syscall
8740 catchpoints. */
8741
8742 static void
8743 print_one_catch_syscall (struct breakpoint *b,
8744 struct bp_location **last_loc)
8745 {
8746 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8747 struct value_print_options opts;
8748 struct ui_out *uiout = current_uiout;
8749
8750 get_user_print_options (&opts);
8751 /* Field 4, the address, is omitted (which makes the columns not
8752 line up too nicely with the headers, but the effect is relatively
8753 readable). */
8754 if (opts.addressprint)
8755 ui_out_field_skip (uiout, "addr");
8756 annotate_field (5);
8757
8758 if (c->syscalls_to_be_caught
8759 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8760 ui_out_text (uiout, "syscalls \"");
8761 else
8762 ui_out_text (uiout, "syscall \"");
8763
8764 if (c->syscalls_to_be_caught)
8765 {
8766 int i, iter;
8767 char *text = xstrprintf ("%s", "");
8768
8769 for (i = 0;
8770 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8771 i++)
8772 {
8773 char *x = text;
8774 struct syscall s;
8775 get_syscall_by_number (iter, &s);
8776
8777 if (s.name != NULL)
8778 text = xstrprintf ("%s%s, ", text, s.name);
8779 else
8780 text = xstrprintf ("%s%d, ", text, iter);
8781
8782 /* We have to xfree the last 'text' (now stored at 'x')
8783 because xstrprintf dynamically allocates new space for it
8784 on every call. */
8785 xfree (x);
8786 }
8787 /* Remove the last comma. */
8788 text[strlen (text) - 2] = '\0';
8789 ui_out_field_string (uiout, "what", text);
8790 }
8791 else
8792 ui_out_field_string (uiout, "what", "<any syscall>");
8793 ui_out_text (uiout, "\" ");
8794
8795 if (ui_out_is_mi_like_p (uiout))
8796 ui_out_field_string (uiout, "catch-type", "syscall");
8797 }
8798
8799 /* Implement the "print_mention" breakpoint_ops method for syscall
8800 catchpoints. */
8801
8802 static void
8803 print_mention_catch_syscall (struct breakpoint *b)
8804 {
8805 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8806
8807 if (c->syscalls_to_be_caught)
8808 {
8809 int i, iter;
8810
8811 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8812 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8813 else
8814 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8815
8816 for (i = 0;
8817 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8818 i++)
8819 {
8820 struct syscall s;
8821 get_syscall_by_number (iter, &s);
8822
8823 if (s.name)
8824 printf_filtered (" '%s' [%d]", s.name, s.number);
8825 else
8826 printf_filtered (" %d", s.number);
8827 }
8828 printf_filtered (")");
8829 }
8830 else
8831 printf_filtered (_("Catchpoint %d (any syscall)"),
8832 b->number);
8833 }
8834
8835 /* Implement the "print_recreate" breakpoint_ops method for syscall
8836 catchpoints. */
8837
8838 static void
8839 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8840 {
8841 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8842
8843 fprintf_unfiltered (fp, "catch syscall");
8844
8845 if (c->syscalls_to_be_caught)
8846 {
8847 int i, iter;
8848
8849 for (i = 0;
8850 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8851 i++)
8852 {
8853 struct syscall s;
8854
8855 get_syscall_by_number (iter, &s);
8856 if (s.name)
8857 fprintf_unfiltered (fp, " %s", s.name);
8858 else
8859 fprintf_unfiltered (fp, " %d", s.number);
8860 }
8861 }
8862 print_recreate_thread (b, fp);
8863 }
8864
8865 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8866
8867 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8868
8869 /* Returns non-zero if 'b' is a syscall catchpoint. */
8870
8871 static int
8872 syscall_catchpoint_p (struct breakpoint *b)
8873 {
8874 return (b->ops == &catch_syscall_breakpoint_ops);
8875 }
8876
8877 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8878 is non-zero, then make the breakpoint temporary. If COND_STRING is
8879 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8880 the breakpoint_ops structure associated to the catchpoint. */
8881
8882 void
8883 init_catchpoint (struct breakpoint *b,
8884 struct gdbarch *gdbarch, int tempflag,
8885 char *cond_string,
8886 const struct breakpoint_ops *ops)
8887 {
8888 struct symtab_and_line sal;
8889
8890 init_sal (&sal);
8891 sal.pspace = current_program_space;
8892
8893 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8894
8895 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8896 b->disposition = tempflag ? disp_del : disp_donttouch;
8897 }
8898
8899 void
8900 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8901 {
8902 add_to_breakpoint_chain (b);
8903 set_breakpoint_number (internal, b);
8904 if (is_tracepoint (b))
8905 set_tracepoint_count (breakpoint_count);
8906 if (!internal)
8907 mention (b);
8908 observer_notify_breakpoint_created (b);
8909
8910 if (update_gll)
8911 update_global_location_list (UGLL_MAY_INSERT);
8912 }
8913
8914 static void
8915 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8916 int tempflag, char *cond_string,
8917 const struct breakpoint_ops *ops)
8918 {
8919 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8920
8921 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8922
8923 c->forked_inferior_pid = null_ptid;
8924
8925 install_breakpoint (0, &c->base, 1);
8926 }
8927
8928 /* Exec catchpoints. */
8929
8930 /* An instance of this type is used to represent an exec catchpoint.
8931 It includes a "struct breakpoint" as a kind of base class; users
8932 downcast to "struct breakpoint *" when needed. A breakpoint is
8933 really of this type iff its ops pointer points to
8934 CATCH_EXEC_BREAKPOINT_OPS. */
8935
8936 struct exec_catchpoint
8937 {
8938 /* The base class. */
8939 struct breakpoint base;
8940
8941 /* Filename of a program whose exec triggered this catchpoint.
8942 This field is only valid immediately after this catchpoint has
8943 triggered. */
8944 char *exec_pathname;
8945 };
8946
8947 /* Implement the "dtor" breakpoint_ops method for exec
8948 catchpoints. */
8949
8950 static void
8951 dtor_catch_exec (struct breakpoint *b)
8952 {
8953 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8954
8955 xfree (c->exec_pathname);
8956
8957 base_breakpoint_ops.dtor (b);
8958 }
8959
8960 static int
8961 insert_catch_exec (struct bp_location *bl)
8962 {
8963 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8964 }
8965
8966 static int
8967 remove_catch_exec (struct bp_location *bl)
8968 {
8969 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8970 }
8971
8972 static int
8973 breakpoint_hit_catch_exec (const struct bp_location *bl,
8974 struct address_space *aspace, CORE_ADDR bp_addr,
8975 const struct target_waitstatus *ws)
8976 {
8977 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8978
8979 if (ws->kind != TARGET_WAITKIND_EXECD)
8980 return 0;
8981
8982 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8983 return 1;
8984 }
8985
8986 static enum print_stop_action
8987 print_it_catch_exec (bpstat bs)
8988 {
8989 struct ui_out *uiout = current_uiout;
8990 struct breakpoint *b = bs->breakpoint_at;
8991 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8992
8993 annotate_catchpoint (b->number);
8994 if (b->disposition == disp_del)
8995 ui_out_text (uiout, "\nTemporary catchpoint ");
8996 else
8997 ui_out_text (uiout, "\nCatchpoint ");
8998 if (ui_out_is_mi_like_p (uiout))
8999 {
9000 ui_out_field_string (uiout, "reason",
9001 async_reason_lookup (EXEC_ASYNC_EXEC));
9002 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9003 }
9004 ui_out_field_int (uiout, "bkptno", b->number);
9005 ui_out_text (uiout, " (exec'd ");
9006 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
9007 ui_out_text (uiout, "), ");
9008
9009 return PRINT_SRC_AND_LOC;
9010 }
9011
9012 static void
9013 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
9014 {
9015 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
9016 struct value_print_options opts;
9017 struct ui_out *uiout = current_uiout;
9018
9019 get_user_print_options (&opts);
9020
9021 /* Field 4, the address, is omitted (which makes the columns
9022 not line up too nicely with the headers, but the effect
9023 is relatively readable). */
9024 if (opts.addressprint)
9025 ui_out_field_skip (uiout, "addr");
9026 annotate_field (5);
9027 ui_out_text (uiout, "exec");
9028 if (c->exec_pathname != NULL)
9029 {
9030 ui_out_text (uiout, ", program \"");
9031 ui_out_field_string (uiout, "what", c->exec_pathname);
9032 ui_out_text (uiout, "\" ");
9033 }
9034
9035 if (ui_out_is_mi_like_p (uiout))
9036 ui_out_field_string (uiout, "catch-type", "exec");
9037 }
9038
9039 static void
9040 print_mention_catch_exec (struct breakpoint *b)
9041 {
9042 printf_filtered (_("Catchpoint %d (exec)"), b->number);
9043 }
9044
9045 /* Implement the "print_recreate" breakpoint_ops method for exec
9046 catchpoints. */
9047
9048 static void
9049 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
9050 {
9051 fprintf_unfiltered (fp, "catch exec");
9052 print_recreate_thread (b, fp);
9053 }
9054
9055 static struct breakpoint_ops catch_exec_breakpoint_ops;
9056
9057 static void
9058 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
9059 const struct breakpoint_ops *ops)
9060 {
9061 struct syscall_catchpoint *c;
9062 struct gdbarch *gdbarch = get_current_arch ();
9063
9064 c = XNEW (struct syscall_catchpoint);
9065 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
9066 c->syscalls_to_be_caught = filter;
9067
9068 install_breakpoint (0, &c->base, 1);
9069 }
9070
9071 static int
9072 hw_breakpoint_used_count (void)
9073 {
9074 int i = 0;
9075 struct breakpoint *b;
9076 struct bp_location *bl;
9077
9078 ALL_BREAKPOINTS (b)
9079 {
9080 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
9081 for (bl = b->loc; bl; bl = bl->next)
9082 {
9083 /* Special types of hardware breakpoints may use more than
9084 one register. */
9085 i += b->ops->resources_needed (bl);
9086 }
9087 }
9088
9089 return i;
9090 }
9091
9092 /* Returns the resources B would use if it were a hardware
9093 watchpoint. */
9094
9095 static int
9096 hw_watchpoint_use_count (struct breakpoint *b)
9097 {
9098 int i = 0;
9099 struct bp_location *bl;
9100
9101 if (!breakpoint_enabled (b))
9102 return 0;
9103
9104 for (bl = b->loc; bl; bl = bl->next)
9105 {
9106 /* Special types of hardware watchpoints may use more than
9107 one register. */
9108 i += b->ops->resources_needed (bl);
9109 }
9110
9111 return i;
9112 }
9113
9114 /* Returns the sum the used resources of all hardware watchpoints of
9115 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
9116 the sum of the used resources of all hardware watchpoints of other
9117 types _not_ TYPE. */
9118
9119 static int
9120 hw_watchpoint_used_count_others (struct breakpoint *except,
9121 enum bptype type, int *other_type_used)
9122 {
9123 int i = 0;
9124 struct breakpoint *b;
9125
9126 *other_type_used = 0;
9127 ALL_BREAKPOINTS (b)
9128 {
9129 if (b == except)
9130 continue;
9131 if (!breakpoint_enabled (b))
9132 continue;
9133
9134 if (b->type == type)
9135 i += hw_watchpoint_use_count (b);
9136 else if (is_hardware_watchpoint (b))
9137 *other_type_used = 1;
9138 }
9139
9140 return i;
9141 }
9142
9143 void
9144 disable_watchpoints_before_interactive_call_start (void)
9145 {
9146 struct breakpoint *b;
9147
9148 ALL_BREAKPOINTS (b)
9149 {
9150 if (is_watchpoint (b) && breakpoint_enabled (b))
9151 {
9152 b->enable_state = bp_call_disabled;
9153 update_global_location_list (UGLL_DONT_INSERT);
9154 }
9155 }
9156 }
9157
9158 void
9159 enable_watchpoints_after_interactive_call_stop (void)
9160 {
9161 struct breakpoint *b;
9162
9163 ALL_BREAKPOINTS (b)
9164 {
9165 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
9166 {
9167 b->enable_state = bp_enabled;
9168 update_global_location_list (UGLL_MAY_INSERT);
9169 }
9170 }
9171 }
9172
9173 void
9174 disable_breakpoints_before_startup (void)
9175 {
9176 current_program_space->executing_startup = 1;
9177 update_global_location_list (UGLL_DONT_INSERT);
9178 }
9179
9180 void
9181 enable_breakpoints_after_startup (void)
9182 {
9183 current_program_space->executing_startup = 0;
9184 breakpoint_re_set ();
9185 }
9186
9187
9188 /* Set a breakpoint that will evaporate an end of command
9189 at address specified by SAL.
9190 Restrict it to frame FRAME if FRAME is nonzero. */
9191
9192 struct breakpoint *
9193 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
9194 struct frame_id frame_id, enum bptype type)
9195 {
9196 struct breakpoint *b;
9197
9198 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
9199 tail-called one. */
9200 gdb_assert (!frame_id_artificial_p (frame_id));
9201
9202 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
9203 b->enable_state = bp_enabled;
9204 b->disposition = disp_donttouch;
9205 b->frame_id = frame_id;
9206
9207 /* If we're debugging a multi-threaded program, then we want
9208 momentary breakpoints to be active in only a single thread of
9209 control. */
9210 if (in_thread_list (inferior_ptid))
9211 b->thread = pid_to_thread_id (inferior_ptid);
9212
9213 update_global_location_list_nothrow (UGLL_MAY_INSERT);
9214
9215 return b;
9216 }
9217
9218 /* Make a momentary breakpoint based on the master breakpoint ORIG.
9219 The new breakpoint will have type TYPE, use OPS as its
9220 breakpoint_ops, and will set enabled to LOC_ENABLED. */
9221
9222 static struct breakpoint *
9223 momentary_breakpoint_from_master (struct breakpoint *orig,
9224 enum bptype type,
9225 const struct breakpoint_ops *ops,
9226 int loc_enabled)
9227 {
9228 struct breakpoint *copy;
9229
9230 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
9231 copy->loc = allocate_bp_location (copy);
9232 set_breakpoint_location_function (copy->loc, 1);
9233
9234 copy->loc->gdbarch = orig->loc->gdbarch;
9235 copy->loc->requested_address = orig->loc->requested_address;
9236 copy->loc->address = orig->loc->address;
9237 copy->loc->section = orig->loc->section;
9238 copy->loc->pspace = orig->loc->pspace;
9239 copy->loc->probe = orig->loc->probe;
9240 copy->loc->line_number = orig->loc->line_number;
9241 copy->loc->symtab = orig->loc->symtab;
9242 copy->loc->enabled = loc_enabled;
9243 copy->frame_id = orig->frame_id;
9244 copy->thread = orig->thread;
9245 copy->pspace = orig->pspace;
9246
9247 copy->enable_state = bp_enabled;
9248 copy->disposition = disp_donttouch;
9249 copy->number = internal_breakpoint_number--;
9250
9251 update_global_location_list_nothrow (UGLL_DONT_INSERT);
9252 return copy;
9253 }
9254
9255 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
9256 ORIG is NULL. */
9257
9258 struct breakpoint *
9259 clone_momentary_breakpoint (struct breakpoint *orig)
9260 {
9261 /* If there's nothing to clone, then return nothing. */
9262 if (orig == NULL)
9263 return NULL;
9264
9265 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
9266 }
9267
9268 struct breakpoint *
9269 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
9270 enum bptype type)
9271 {
9272 struct symtab_and_line sal;
9273
9274 sal = find_pc_line (pc, 0);
9275 sal.pc = pc;
9276 sal.section = find_pc_overlay (pc);
9277 sal.explicit_pc = 1;
9278
9279 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
9280 }
9281 \f
9282
9283 /* Tell the user we have just set a breakpoint B. */
9284
9285 static void
9286 mention (struct breakpoint *b)
9287 {
9288 b->ops->print_mention (b);
9289 if (ui_out_is_mi_like_p (current_uiout))
9290 return;
9291 printf_filtered ("\n");
9292 }
9293 \f
9294
9295 static struct bp_location *
9296 add_location_to_breakpoint (struct breakpoint *b,
9297 const struct symtab_and_line *sal)
9298 {
9299 struct bp_location *loc, **tmp;
9300 CORE_ADDR adjusted_address;
9301 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9302
9303 if (loc_gdbarch == NULL)
9304 loc_gdbarch = b->gdbarch;
9305
9306 /* Adjust the breakpoint's address prior to allocating a location.
9307 Once we call allocate_bp_location(), that mostly uninitialized
9308 location will be placed on the location chain. Adjustment of the
9309 breakpoint may cause target_read_memory() to be called and we do
9310 not want its scan of the location chain to find a breakpoint and
9311 location that's only been partially initialized. */
9312 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9313 sal->pc, b->type);
9314
9315 /* Sort the locations by their ADDRESS. */
9316 loc = allocate_bp_location (b);
9317 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9318 tmp = &((*tmp)->next))
9319 ;
9320 loc->next = *tmp;
9321 *tmp = loc;
9322
9323 loc->requested_address = sal->pc;
9324 loc->address = adjusted_address;
9325 loc->pspace = sal->pspace;
9326 loc->probe.probe = sal->probe;
9327 loc->probe.objfile = sal->objfile;
9328 gdb_assert (loc->pspace != NULL);
9329 loc->section = sal->section;
9330 loc->gdbarch = loc_gdbarch;
9331 loc->line_number = sal->line;
9332 loc->symtab = sal->symtab;
9333
9334 set_breakpoint_location_function (loc,
9335 sal->explicit_pc || sal->explicit_line);
9336 return loc;
9337 }
9338 \f
9339
9340 /* Return 1 if LOC is pointing to a permanent breakpoint,
9341 return 0 otherwise. */
9342
9343 static int
9344 bp_loc_is_permanent (struct bp_location *loc)
9345 {
9346 int len;
9347 CORE_ADDR addr;
9348 const gdb_byte *bpoint;
9349 gdb_byte *target_mem;
9350 struct cleanup *cleanup;
9351 int retval = 0;
9352
9353 gdb_assert (loc != NULL);
9354
9355 addr = loc->address;
9356 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9357
9358 /* Software breakpoints unsupported? */
9359 if (bpoint == NULL)
9360 return 0;
9361
9362 target_mem = alloca (len);
9363
9364 /* Enable the automatic memory restoration from breakpoints while
9365 we read the memory. Otherwise we could say about our temporary
9366 breakpoints they are permanent. */
9367 cleanup = save_current_space_and_thread ();
9368
9369 switch_to_program_space_and_thread (loc->pspace);
9370 make_show_memory_breakpoints_cleanup (0);
9371
9372 if (target_read_memory (loc->address, target_mem, len) == 0
9373 && memcmp (target_mem, bpoint, len) == 0)
9374 retval = 1;
9375
9376 do_cleanups (cleanup);
9377
9378 return retval;
9379 }
9380
9381 /* Build a command list for the dprintf corresponding to the current
9382 settings of the dprintf style options. */
9383
9384 static void
9385 update_dprintf_command_list (struct breakpoint *b)
9386 {
9387 char *dprintf_args = b->extra_string;
9388 char *printf_line = NULL;
9389
9390 if (!dprintf_args)
9391 return;
9392
9393 dprintf_args = skip_spaces (dprintf_args);
9394
9395 /* Allow a comma, as it may have terminated a location, but don't
9396 insist on it. */
9397 if (*dprintf_args == ',')
9398 ++dprintf_args;
9399 dprintf_args = skip_spaces (dprintf_args);
9400
9401 if (*dprintf_args != '"')
9402 error (_("Bad format string, missing '\"'."));
9403
9404 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9405 printf_line = xstrprintf ("printf %s", dprintf_args);
9406 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9407 {
9408 if (!dprintf_function)
9409 error (_("No function supplied for dprintf call"));
9410
9411 if (dprintf_channel && strlen (dprintf_channel) > 0)
9412 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9413 dprintf_function,
9414 dprintf_channel,
9415 dprintf_args);
9416 else
9417 printf_line = xstrprintf ("call (void) %s (%s)",
9418 dprintf_function,
9419 dprintf_args);
9420 }
9421 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9422 {
9423 if (target_can_run_breakpoint_commands ())
9424 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9425 else
9426 {
9427 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9428 printf_line = xstrprintf ("printf %s", dprintf_args);
9429 }
9430 }
9431 else
9432 internal_error (__FILE__, __LINE__,
9433 _("Invalid dprintf style."));
9434
9435 gdb_assert (printf_line != NULL);
9436 /* Manufacture a printf sequence. */
9437 {
9438 struct command_line *printf_cmd_line
9439 = xmalloc (sizeof (struct command_line));
9440
9441 printf_cmd_line = xmalloc (sizeof (struct command_line));
9442 printf_cmd_line->control_type = simple_control;
9443 printf_cmd_line->body_count = 0;
9444 printf_cmd_line->body_list = NULL;
9445 printf_cmd_line->next = NULL;
9446 printf_cmd_line->line = printf_line;
9447
9448 breakpoint_set_commands (b, printf_cmd_line);
9449 }
9450 }
9451
9452 /* Update all dprintf commands, making their command lists reflect
9453 current style settings. */
9454
9455 static void
9456 update_dprintf_commands (char *args, int from_tty,
9457 struct cmd_list_element *c)
9458 {
9459 struct breakpoint *b;
9460
9461 ALL_BREAKPOINTS (b)
9462 {
9463 if (b->type == bp_dprintf)
9464 update_dprintf_command_list (b);
9465 }
9466 }
9467
9468 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9469 as textual description of the location, and COND_STRING
9470 as condition expression. */
9471
9472 static void
9473 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9474 struct symtabs_and_lines sals, char *addr_string,
9475 char *filter, char *cond_string,
9476 char *extra_string,
9477 enum bptype type, enum bpdisp disposition,
9478 int thread, int task, int ignore_count,
9479 const struct breakpoint_ops *ops, int from_tty,
9480 int enabled, int internal, unsigned flags,
9481 int display_canonical)
9482 {
9483 int i;
9484
9485 if (type == bp_hardware_breakpoint)
9486 {
9487 int target_resources_ok;
9488
9489 i = hw_breakpoint_used_count ();
9490 target_resources_ok =
9491 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9492 i + 1, 0);
9493 if (target_resources_ok == 0)
9494 error (_("No hardware breakpoint support in the target."));
9495 else if (target_resources_ok < 0)
9496 error (_("Hardware breakpoints used exceeds limit."));
9497 }
9498
9499 gdb_assert (sals.nelts > 0);
9500
9501 for (i = 0; i < sals.nelts; ++i)
9502 {
9503 struct symtab_and_line sal = sals.sals[i];
9504 struct bp_location *loc;
9505
9506 if (from_tty)
9507 {
9508 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9509 if (!loc_gdbarch)
9510 loc_gdbarch = gdbarch;
9511
9512 describe_other_breakpoints (loc_gdbarch,
9513 sal.pspace, sal.pc, sal.section, thread);
9514 }
9515
9516 if (i == 0)
9517 {
9518 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9519 b->thread = thread;
9520 b->task = task;
9521
9522 b->cond_string = cond_string;
9523 b->extra_string = extra_string;
9524 b->ignore_count = ignore_count;
9525 b->enable_state = enabled ? bp_enabled : bp_disabled;
9526 b->disposition = disposition;
9527
9528 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9529 b->loc->inserted = 1;
9530
9531 if (type == bp_static_tracepoint)
9532 {
9533 struct tracepoint *t = (struct tracepoint *) b;
9534 struct static_tracepoint_marker marker;
9535
9536 if (strace_marker_p (b))
9537 {
9538 /* We already know the marker exists, otherwise, we
9539 wouldn't see a sal for it. */
9540 char *p = &addr_string[3];
9541 char *endp;
9542 char *marker_str;
9543
9544 p = skip_spaces (p);
9545
9546 endp = skip_to_space (p);
9547
9548 marker_str = savestring (p, endp - p);
9549 t->static_trace_marker_id = marker_str;
9550
9551 printf_filtered (_("Probed static tracepoint "
9552 "marker \"%s\"\n"),
9553 t->static_trace_marker_id);
9554 }
9555 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9556 {
9557 t->static_trace_marker_id = xstrdup (marker.str_id);
9558 release_static_tracepoint_marker (&marker);
9559
9560 printf_filtered (_("Probed static tracepoint "
9561 "marker \"%s\"\n"),
9562 t->static_trace_marker_id);
9563 }
9564 else
9565 warning (_("Couldn't determine the static "
9566 "tracepoint marker to probe"));
9567 }
9568
9569 loc = b->loc;
9570 }
9571 else
9572 {
9573 loc = add_location_to_breakpoint (b, &sal);
9574 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9575 loc->inserted = 1;
9576 }
9577
9578 if (bp_loc_is_permanent (loc))
9579 make_breakpoint_permanent (b);
9580
9581 if (b->cond_string)
9582 {
9583 const char *arg = b->cond_string;
9584
9585 loc->cond = parse_exp_1 (&arg, loc->address,
9586 block_for_pc (loc->address), 0);
9587 if (*arg)
9588 error (_("Garbage '%s' follows condition"), arg);
9589 }
9590
9591 /* Dynamic printf requires and uses additional arguments on the
9592 command line, otherwise it's an error. */
9593 if (type == bp_dprintf)
9594 {
9595 if (b->extra_string)
9596 update_dprintf_command_list (b);
9597 else
9598 error (_("Format string required"));
9599 }
9600 else if (b->extra_string)
9601 error (_("Garbage '%s' at end of command"), b->extra_string);
9602 }
9603
9604 b->display_canonical = display_canonical;
9605 if (addr_string)
9606 b->addr_string = addr_string;
9607 else
9608 /* addr_string has to be used or breakpoint_re_set will delete
9609 me. */
9610 b->addr_string
9611 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9612 b->filter = filter;
9613 }
9614
9615 static void
9616 create_breakpoint_sal (struct gdbarch *gdbarch,
9617 struct symtabs_and_lines sals, char *addr_string,
9618 char *filter, char *cond_string,
9619 char *extra_string,
9620 enum bptype type, enum bpdisp disposition,
9621 int thread, int task, int ignore_count,
9622 const struct breakpoint_ops *ops, int from_tty,
9623 int enabled, int internal, unsigned flags,
9624 int display_canonical)
9625 {
9626 struct breakpoint *b;
9627 struct cleanup *old_chain;
9628
9629 if (is_tracepoint_type (type))
9630 {
9631 struct tracepoint *t;
9632
9633 t = XCNEW (struct tracepoint);
9634 b = &t->base;
9635 }
9636 else
9637 b = XNEW (struct breakpoint);
9638
9639 old_chain = make_cleanup (xfree, b);
9640
9641 init_breakpoint_sal (b, gdbarch,
9642 sals, addr_string,
9643 filter, cond_string, extra_string,
9644 type, disposition,
9645 thread, task, ignore_count,
9646 ops, from_tty,
9647 enabled, internal, flags,
9648 display_canonical);
9649 discard_cleanups (old_chain);
9650
9651 install_breakpoint (internal, b, 0);
9652 }
9653
9654 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9655 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9656 value. COND_STRING, if not NULL, specified the condition to be
9657 used for all breakpoints. Essentially the only case where
9658 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9659 function. In that case, it's still not possible to specify
9660 separate conditions for different overloaded functions, so
9661 we take just a single condition string.
9662
9663 NOTE: If the function succeeds, the caller is expected to cleanup
9664 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9665 array contents). If the function fails (error() is called), the
9666 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9667 COND and SALS arrays and each of those arrays contents. */
9668
9669 static void
9670 create_breakpoints_sal (struct gdbarch *gdbarch,
9671 struct linespec_result *canonical,
9672 char *cond_string, char *extra_string,
9673 enum bptype type, enum bpdisp disposition,
9674 int thread, int task, int ignore_count,
9675 const struct breakpoint_ops *ops, int from_tty,
9676 int enabled, int internal, unsigned flags)
9677 {
9678 int i;
9679 struct linespec_sals *lsal;
9680
9681 if (canonical->pre_expanded)
9682 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9683
9684 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9685 {
9686 /* Note that 'addr_string' can be NULL in the case of a plain
9687 'break', without arguments. */
9688 char *addr_string = (canonical->addr_string
9689 ? xstrdup (canonical->addr_string)
9690 : NULL);
9691 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9692 struct cleanup *inner = make_cleanup (xfree, addr_string);
9693
9694 make_cleanup (xfree, filter_string);
9695 create_breakpoint_sal (gdbarch, lsal->sals,
9696 addr_string,
9697 filter_string,
9698 cond_string, extra_string,
9699 type, disposition,
9700 thread, task, ignore_count, ops,
9701 from_tty, enabled, internal, flags,
9702 canonical->special_display);
9703 discard_cleanups (inner);
9704 }
9705 }
9706
9707 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9708 followed by conditionals. On return, SALS contains an array of SAL
9709 addresses found. ADDR_STRING contains a vector of (canonical)
9710 address strings. ADDRESS points to the end of the SAL.
9711
9712 The array and the line spec strings are allocated on the heap, it is
9713 the caller's responsibility to free them. */
9714
9715 static void
9716 parse_breakpoint_sals (char **address,
9717 struct linespec_result *canonical)
9718 {
9719 /* If no arg given, or if first arg is 'if ', use the default
9720 breakpoint. */
9721 if ((*address) == NULL
9722 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9723 {
9724 /* The last displayed codepoint, if it's valid, is our default breakpoint
9725 address. */
9726 if (last_displayed_sal_is_valid ())
9727 {
9728 struct linespec_sals lsal;
9729 struct symtab_and_line sal;
9730 CORE_ADDR pc;
9731
9732 init_sal (&sal); /* Initialize to zeroes. */
9733 lsal.sals.sals = (struct symtab_and_line *)
9734 xmalloc (sizeof (struct symtab_and_line));
9735
9736 /* Set sal's pspace, pc, symtab, and line to the values
9737 corresponding to the last call to print_frame_info.
9738 Be sure to reinitialize LINE with NOTCURRENT == 0
9739 as the breakpoint line number is inappropriate otherwise.
9740 find_pc_line would adjust PC, re-set it back. */
9741 get_last_displayed_sal (&sal);
9742 pc = sal.pc;
9743 sal = find_pc_line (pc, 0);
9744
9745 /* "break" without arguments is equivalent to "break *PC"
9746 where PC is the last displayed codepoint's address. So
9747 make sure to set sal.explicit_pc to prevent GDB from
9748 trying to expand the list of sals to include all other
9749 instances with the same symtab and line. */
9750 sal.pc = pc;
9751 sal.explicit_pc = 1;
9752
9753 lsal.sals.sals[0] = sal;
9754 lsal.sals.nelts = 1;
9755 lsal.canonical = NULL;
9756
9757 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9758 }
9759 else
9760 error (_("No default breakpoint address now."));
9761 }
9762 else
9763 {
9764 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9765
9766 /* Force almost all breakpoints to be in terms of the
9767 current_source_symtab (which is decode_line_1's default).
9768 This should produce the results we want almost all of the
9769 time while leaving default_breakpoint_* alone.
9770
9771 ObjC: However, don't match an Objective-C method name which
9772 may have a '+' or '-' succeeded by a '['. */
9773 if (last_displayed_sal_is_valid ()
9774 && (!cursal.symtab
9775 || ((strchr ("+-", (*address)[0]) != NULL)
9776 && ((*address)[1] != '['))))
9777 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9778 get_last_displayed_symtab (),
9779 get_last_displayed_line (),
9780 canonical, NULL, NULL);
9781 else
9782 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9783 cursal.symtab, cursal.line, canonical, NULL, NULL);
9784 }
9785 }
9786
9787
9788 /* Convert each SAL into a real PC. Verify that the PC can be
9789 inserted as a breakpoint. If it can't throw an error. */
9790
9791 static void
9792 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9793 {
9794 int i;
9795
9796 for (i = 0; i < sals->nelts; i++)
9797 resolve_sal_pc (&sals->sals[i]);
9798 }
9799
9800 /* Fast tracepoints may have restrictions on valid locations. For
9801 instance, a fast tracepoint using a jump instead of a trap will
9802 likely have to overwrite more bytes than a trap would, and so can
9803 only be placed where the instruction is longer than the jump, or a
9804 multi-instruction sequence does not have a jump into the middle of
9805 it, etc. */
9806
9807 static void
9808 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9809 struct symtabs_and_lines *sals)
9810 {
9811 int i, rslt;
9812 struct symtab_and_line *sal;
9813 char *msg;
9814 struct cleanup *old_chain;
9815
9816 for (i = 0; i < sals->nelts; i++)
9817 {
9818 struct gdbarch *sarch;
9819
9820 sal = &sals->sals[i];
9821
9822 sarch = get_sal_arch (*sal);
9823 /* We fall back to GDBARCH if there is no architecture
9824 associated with SAL. */
9825 if (sarch == NULL)
9826 sarch = gdbarch;
9827 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9828 NULL, &msg);
9829 old_chain = make_cleanup (xfree, msg);
9830
9831 if (!rslt)
9832 error (_("May not have a fast tracepoint at 0x%s%s"),
9833 paddress (sarch, sal->pc), (msg ? msg : ""));
9834
9835 do_cleanups (old_chain);
9836 }
9837 }
9838
9839 /* Issue an invalid thread ID error. */
9840
9841 static void ATTRIBUTE_NORETURN
9842 invalid_thread_id_error (int id)
9843 {
9844 error (_("Unknown thread %d."), id);
9845 }
9846
9847 /* Given TOK, a string specification of condition and thread, as
9848 accepted by the 'break' command, extract the condition
9849 string and thread number and set *COND_STRING and *THREAD.
9850 PC identifies the context at which the condition should be parsed.
9851 If no condition is found, *COND_STRING is set to NULL.
9852 If no thread is found, *THREAD is set to -1. */
9853
9854 static void
9855 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9856 char **cond_string, int *thread, int *task,
9857 char **rest)
9858 {
9859 *cond_string = NULL;
9860 *thread = -1;
9861 *task = 0;
9862 *rest = NULL;
9863
9864 while (tok && *tok)
9865 {
9866 const char *end_tok;
9867 int toklen;
9868 const char *cond_start = NULL;
9869 const char *cond_end = NULL;
9870
9871 tok = skip_spaces_const (tok);
9872
9873 if ((*tok == '"' || *tok == ',') && rest)
9874 {
9875 *rest = savestring (tok, strlen (tok));
9876 return;
9877 }
9878
9879 end_tok = skip_to_space_const (tok);
9880
9881 toklen = end_tok - tok;
9882
9883 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9884 {
9885 struct expression *expr;
9886
9887 tok = cond_start = end_tok + 1;
9888 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9889 xfree (expr);
9890 cond_end = tok;
9891 *cond_string = savestring (cond_start, cond_end - cond_start);
9892 }
9893 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9894 {
9895 char *tmptok;
9896
9897 tok = end_tok + 1;
9898 *thread = strtol (tok, &tmptok, 0);
9899 if (tok == tmptok)
9900 error (_("Junk after thread keyword."));
9901 if (!valid_thread_id (*thread))
9902 invalid_thread_id_error (*thread);
9903 tok = tmptok;
9904 }
9905 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9906 {
9907 char *tmptok;
9908
9909 tok = end_tok + 1;
9910 *task = strtol (tok, &tmptok, 0);
9911 if (tok == tmptok)
9912 error (_("Junk after task keyword."));
9913 if (!valid_task_id (*task))
9914 error (_("Unknown task %d."), *task);
9915 tok = tmptok;
9916 }
9917 else if (rest)
9918 {
9919 *rest = savestring (tok, strlen (tok));
9920 return;
9921 }
9922 else
9923 error (_("Junk at end of arguments."));
9924 }
9925 }
9926
9927 /* Decode a static tracepoint marker spec. */
9928
9929 static struct symtabs_and_lines
9930 decode_static_tracepoint_spec (char **arg_p)
9931 {
9932 VEC(static_tracepoint_marker_p) *markers = NULL;
9933 struct symtabs_and_lines sals;
9934 struct cleanup *old_chain;
9935 char *p = &(*arg_p)[3];
9936 char *endp;
9937 char *marker_str;
9938 int i;
9939
9940 p = skip_spaces (p);
9941
9942 endp = skip_to_space (p);
9943
9944 marker_str = savestring (p, endp - p);
9945 old_chain = make_cleanup (xfree, marker_str);
9946
9947 markers = target_static_tracepoint_markers_by_strid (marker_str);
9948 if (VEC_empty(static_tracepoint_marker_p, markers))
9949 error (_("No known static tracepoint marker named %s"), marker_str);
9950
9951 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9952 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9953
9954 for (i = 0; i < sals.nelts; i++)
9955 {
9956 struct static_tracepoint_marker *marker;
9957
9958 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9959
9960 init_sal (&sals.sals[i]);
9961
9962 sals.sals[i] = find_pc_line (marker->address, 0);
9963 sals.sals[i].pc = marker->address;
9964
9965 release_static_tracepoint_marker (marker);
9966 }
9967
9968 do_cleanups (old_chain);
9969
9970 *arg_p = endp;
9971 return sals;
9972 }
9973
9974 /* Set a breakpoint. This function is shared between CLI and MI
9975 functions for setting a breakpoint. This function has two major
9976 modes of operations, selected by the PARSE_ARG parameter. If
9977 non-zero, the function will parse ARG, extracting location,
9978 condition, thread and extra string. Otherwise, ARG is just the
9979 breakpoint's location, with condition, thread, and extra string
9980 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9981 If INTERNAL is non-zero, the breakpoint number will be allocated
9982 from the internal breakpoint count. Returns true if any breakpoint
9983 was created; false otherwise. */
9984
9985 int
9986 create_breakpoint (struct gdbarch *gdbarch,
9987 char *arg, char *cond_string,
9988 int thread, char *extra_string,
9989 int parse_arg,
9990 int tempflag, enum bptype type_wanted,
9991 int ignore_count,
9992 enum auto_boolean pending_break_support,
9993 const struct breakpoint_ops *ops,
9994 int from_tty, int enabled, int internal,
9995 unsigned flags)
9996 {
9997 volatile struct gdb_exception e;
9998 char *copy_arg = NULL;
9999 char *addr_start = arg;
10000 struct linespec_result canonical;
10001 struct cleanup *old_chain;
10002 struct cleanup *bkpt_chain = NULL;
10003 int pending = 0;
10004 int task = 0;
10005 int prev_bkpt_count = breakpoint_count;
10006
10007 gdb_assert (ops != NULL);
10008
10009 init_linespec_result (&canonical);
10010
10011 TRY_CATCH (e, RETURN_MASK_ALL)
10012 {
10013 ops->create_sals_from_address (&arg, &canonical, type_wanted,
10014 addr_start, &copy_arg);
10015 }
10016
10017 /* If caller is interested in rc value from parse, set value. */
10018 switch (e.reason)
10019 {
10020 case GDB_NO_ERROR:
10021 if (VEC_empty (linespec_sals, canonical.sals))
10022 return 0;
10023 break;
10024 case RETURN_ERROR:
10025 switch (e.error)
10026 {
10027 case NOT_FOUND_ERROR:
10028
10029 /* If pending breakpoint support is turned off, throw
10030 error. */
10031
10032 if (pending_break_support == AUTO_BOOLEAN_FALSE)
10033 throw_exception (e);
10034
10035 exception_print (gdb_stderr, e);
10036
10037 /* If pending breakpoint support is auto query and the user
10038 selects no, then simply return the error code. */
10039 if (pending_break_support == AUTO_BOOLEAN_AUTO
10040 && !nquery (_("Make %s pending on future shared library load? "),
10041 bptype_string (type_wanted)))
10042 return 0;
10043
10044 /* At this point, either the user was queried about setting
10045 a pending breakpoint and selected yes, or pending
10046 breakpoint behavior is on and thus a pending breakpoint
10047 is defaulted on behalf of the user. */
10048 {
10049 struct linespec_sals lsal;
10050
10051 copy_arg = xstrdup (addr_start);
10052 lsal.canonical = xstrdup (copy_arg);
10053 lsal.sals.nelts = 1;
10054 lsal.sals.sals = XNEW (struct symtab_and_line);
10055 init_sal (&lsal.sals.sals[0]);
10056 pending = 1;
10057 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
10058 }
10059 break;
10060 default:
10061 throw_exception (e);
10062 }
10063 break;
10064 default:
10065 throw_exception (e);
10066 }
10067
10068 /* Create a chain of things that always need to be cleaned up. */
10069 old_chain = make_cleanup_destroy_linespec_result (&canonical);
10070
10071 /* ----------------------------- SNIP -----------------------------
10072 Anything added to the cleanup chain beyond this point is assumed
10073 to be part of a breakpoint. If the breakpoint create succeeds
10074 then the memory is not reclaimed. */
10075 bkpt_chain = make_cleanup (null_cleanup, 0);
10076
10077 /* Resolve all line numbers to PC's and verify that the addresses
10078 are ok for the target. */
10079 if (!pending)
10080 {
10081 int ix;
10082 struct linespec_sals *iter;
10083
10084 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
10085 breakpoint_sals_to_pc (&iter->sals);
10086 }
10087
10088 /* Fast tracepoints may have additional restrictions on location. */
10089 if (!pending && type_wanted == bp_fast_tracepoint)
10090 {
10091 int ix;
10092 struct linespec_sals *iter;
10093
10094 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
10095 check_fast_tracepoint_sals (gdbarch, &iter->sals);
10096 }
10097
10098 /* Verify that condition can be parsed, before setting any
10099 breakpoints. Allocate a separate condition expression for each
10100 breakpoint. */
10101 if (!pending)
10102 {
10103 if (parse_arg)
10104 {
10105 char *rest;
10106 struct linespec_sals *lsal;
10107
10108 lsal = VEC_index (linespec_sals, canonical.sals, 0);
10109
10110 /* Here we only parse 'arg' to separate condition
10111 from thread number, so parsing in context of first
10112 sal is OK. When setting the breakpoint we'll
10113 re-parse it in context of each sal. */
10114
10115 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
10116 &thread, &task, &rest);
10117 if (cond_string)
10118 make_cleanup (xfree, cond_string);
10119 if (rest)
10120 make_cleanup (xfree, rest);
10121 if (rest)
10122 extra_string = rest;
10123 }
10124 else
10125 {
10126 if (*arg != '\0')
10127 error (_("Garbage '%s' at end of location"), arg);
10128
10129 /* Create a private copy of condition string. */
10130 if (cond_string)
10131 {
10132 cond_string = xstrdup (cond_string);
10133 make_cleanup (xfree, cond_string);
10134 }
10135 /* Create a private copy of any extra string. */
10136 if (extra_string)
10137 {
10138 extra_string = xstrdup (extra_string);
10139 make_cleanup (xfree, extra_string);
10140 }
10141 }
10142
10143 ops->create_breakpoints_sal (gdbarch, &canonical,
10144 cond_string, extra_string, type_wanted,
10145 tempflag ? disp_del : disp_donttouch,
10146 thread, task, ignore_count, ops,
10147 from_tty, enabled, internal, flags);
10148 }
10149 else
10150 {
10151 struct breakpoint *b;
10152
10153 make_cleanup (xfree, copy_arg);
10154
10155 if (is_tracepoint_type (type_wanted))
10156 {
10157 struct tracepoint *t;
10158
10159 t = XCNEW (struct tracepoint);
10160 b = &t->base;
10161 }
10162 else
10163 b = XNEW (struct breakpoint);
10164
10165 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
10166
10167 b->addr_string = copy_arg;
10168 if (parse_arg)
10169 b->cond_string = NULL;
10170 else
10171 {
10172 /* Create a private copy of condition string. */
10173 if (cond_string)
10174 {
10175 cond_string = xstrdup (cond_string);
10176 make_cleanup (xfree, cond_string);
10177 }
10178 b->cond_string = cond_string;
10179 }
10180 b->extra_string = NULL;
10181 b->ignore_count = ignore_count;
10182 b->disposition = tempflag ? disp_del : disp_donttouch;
10183 b->condition_not_parsed = 1;
10184 b->enable_state = enabled ? bp_enabled : bp_disabled;
10185 if ((type_wanted != bp_breakpoint
10186 && type_wanted != bp_hardware_breakpoint) || thread != -1)
10187 b->pspace = current_program_space;
10188
10189 install_breakpoint (internal, b, 0);
10190 }
10191
10192 if (VEC_length (linespec_sals, canonical.sals) > 1)
10193 {
10194 warning (_("Multiple breakpoints were set.\nUse the "
10195 "\"delete\" command to delete unwanted breakpoints."));
10196 prev_breakpoint_count = prev_bkpt_count;
10197 }
10198
10199 /* That's it. Discard the cleanups for data inserted into the
10200 breakpoint. */
10201 discard_cleanups (bkpt_chain);
10202 /* But cleanup everything else. */
10203 do_cleanups (old_chain);
10204
10205 /* error call may happen here - have BKPT_CHAIN already discarded. */
10206 update_global_location_list (UGLL_MAY_INSERT);
10207
10208 return 1;
10209 }
10210
10211 /* Set a breakpoint.
10212 ARG is a string describing breakpoint address,
10213 condition, and thread.
10214 FLAG specifies if a breakpoint is hardware on,
10215 and if breakpoint is temporary, using BP_HARDWARE_FLAG
10216 and BP_TEMPFLAG. */
10217
10218 static void
10219 break_command_1 (char *arg, int flag, int from_tty)
10220 {
10221 int tempflag = flag & BP_TEMPFLAG;
10222 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
10223 ? bp_hardware_breakpoint
10224 : bp_breakpoint);
10225 struct breakpoint_ops *ops;
10226 const char *arg_cp = arg;
10227
10228 /* Matching breakpoints on probes. */
10229 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
10230 ops = &bkpt_probe_breakpoint_ops;
10231 else
10232 ops = &bkpt_breakpoint_ops;
10233
10234 create_breakpoint (get_current_arch (),
10235 arg,
10236 NULL, 0, NULL, 1 /* parse arg */,
10237 tempflag, type_wanted,
10238 0 /* Ignore count */,
10239 pending_break_support,
10240 ops,
10241 from_tty,
10242 1 /* enabled */,
10243 0 /* internal */,
10244 0);
10245 }
10246
10247 /* Helper function for break_command_1 and disassemble_command. */
10248
10249 void
10250 resolve_sal_pc (struct symtab_and_line *sal)
10251 {
10252 CORE_ADDR pc;
10253
10254 if (sal->pc == 0 && sal->symtab != NULL)
10255 {
10256 if (!find_line_pc (sal->symtab, sal->line, &pc))
10257 error (_("No line %d in file \"%s\"."),
10258 sal->line, symtab_to_filename_for_display (sal->symtab));
10259 sal->pc = pc;
10260
10261 /* If this SAL corresponds to a breakpoint inserted using a line
10262 number, then skip the function prologue if necessary. */
10263 if (sal->explicit_line)
10264 skip_prologue_sal (sal);
10265 }
10266
10267 if (sal->section == 0 && sal->symtab != NULL)
10268 {
10269 const struct blockvector *bv;
10270 const struct block *b;
10271 struct symbol *sym;
10272
10273 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
10274 if (bv != NULL)
10275 {
10276 sym = block_linkage_function (b);
10277 if (sym != NULL)
10278 {
10279 fixup_symbol_section (sym, sal->symtab->objfile);
10280 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
10281 }
10282 else
10283 {
10284 /* It really is worthwhile to have the section, so we'll
10285 just have to look harder. This case can be executed
10286 if we have line numbers but no functions (as can
10287 happen in assembly source). */
10288
10289 struct bound_minimal_symbol msym;
10290 struct cleanup *old_chain = save_current_space_and_thread ();
10291
10292 switch_to_program_space_and_thread (sal->pspace);
10293
10294 msym = lookup_minimal_symbol_by_pc (sal->pc);
10295 if (msym.minsym)
10296 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10297
10298 do_cleanups (old_chain);
10299 }
10300 }
10301 }
10302 }
10303
10304 void
10305 break_command (char *arg, int from_tty)
10306 {
10307 break_command_1 (arg, 0, from_tty);
10308 }
10309
10310 void
10311 tbreak_command (char *arg, int from_tty)
10312 {
10313 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10314 }
10315
10316 static void
10317 hbreak_command (char *arg, int from_tty)
10318 {
10319 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10320 }
10321
10322 static void
10323 thbreak_command (char *arg, int from_tty)
10324 {
10325 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10326 }
10327
10328 static void
10329 stop_command (char *arg, int from_tty)
10330 {
10331 printf_filtered (_("Specify the type of breakpoint to set.\n\
10332 Usage: stop in <function | address>\n\
10333 stop at <line>\n"));
10334 }
10335
10336 static void
10337 stopin_command (char *arg, int from_tty)
10338 {
10339 int badInput = 0;
10340
10341 if (arg == (char *) NULL)
10342 badInput = 1;
10343 else if (*arg != '*')
10344 {
10345 char *argptr = arg;
10346 int hasColon = 0;
10347
10348 /* Look for a ':'. If this is a line number specification, then
10349 say it is bad, otherwise, it should be an address or
10350 function/method name. */
10351 while (*argptr && !hasColon)
10352 {
10353 hasColon = (*argptr == ':');
10354 argptr++;
10355 }
10356
10357 if (hasColon)
10358 badInput = (*argptr != ':'); /* Not a class::method */
10359 else
10360 badInput = isdigit (*arg); /* a simple line number */
10361 }
10362
10363 if (badInput)
10364 printf_filtered (_("Usage: stop in <function | address>\n"));
10365 else
10366 break_command_1 (arg, 0, from_tty);
10367 }
10368
10369 static void
10370 stopat_command (char *arg, int from_tty)
10371 {
10372 int badInput = 0;
10373
10374 if (arg == (char *) NULL || *arg == '*') /* no line number */
10375 badInput = 1;
10376 else
10377 {
10378 char *argptr = arg;
10379 int hasColon = 0;
10380
10381 /* Look for a ':'. If there is a '::' then get out, otherwise
10382 it is probably a line number. */
10383 while (*argptr && !hasColon)
10384 {
10385 hasColon = (*argptr == ':');
10386 argptr++;
10387 }
10388
10389 if (hasColon)
10390 badInput = (*argptr == ':'); /* we have class::method */
10391 else
10392 badInput = !isdigit (*arg); /* not a line number */
10393 }
10394
10395 if (badInput)
10396 printf_filtered (_("Usage: stop at <line>\n"));
10397 else
10398 break_command_1 (arg, 0, from_tty);
10399 }
10400
10401 /* The dynamic printf command is mostly like a regular breakpoint, but
10402 with a prewired command list consisting of a single output command,
10403 built from extra arguments supplied on the dprintf command
10404 line. */
10405
10406 static void
10407 dprintf_command (char *arg, int from_tty)
10408 {
10409 create_breakpoint (get_current_arch (),
10410 arg,
10411 NULL, 0, NULL, 1 /* parse arg */,
10412 0, bp_dprintf,
10413 0 /* Ignore count */,
10414 pending_break_support,
10415 &dprintf_breakpoint_ops,
10416 from_tty,
10417 1 /* enabled */,
10418 0 /* internal */,
10419 0);
10420 }
10421
10422 static void
10423 agent_printf_command (char *arg, int from_tty)
10424 {
10425 error (_("May only run agent-printf on the target"));
10426 }
10427
10428 /* Implement the "breakpoint_hit" breakpoint_ops method for
10429 ranged breakpoints. */
10430
10431 static int
10432 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10433 struct address_space *aspace,
10434 CORE_ADDR bp_addr,
10435 const struct target_waitstatus *ws)
10436 {
10437 if (ws->kind != TARGET_WAITKIND_STOPPED
10438 || ws->value.sig != GDB_SIGNAL_TRAP)
10439 return 0;
10440
10441 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10442 bl->length, aspace, bp_addr);
10443 }
10444
10445 /* Implement the "resources_needed" breakpoint_ops method for
10446 ranged breakpoints. */
10447
10448 static int
10449 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10450 {
10451 return target_ranged_break_num_registers ();
10452 }
10453
10454 /* Implement the "print_it" breakpoint_ops method for
10455 ranged breakpoints. */
10456
10457 static enum print_stop_action
10458 print_it_ranged_breakpoint (bpstat bs)
10459 {
10460 struct breakpoint *b = bs->breakpoint_at;
10461 struct bp_location *bl = b->loc;
10462 struct ui_out *uiout = current_uiout;
10463
10464 gdb_assert (b->type == bp_hardware_breakpoint);
10465
10466 /* Ranged breakpoints have only one location. */
10467 gdb_assert (bl && bl->next == NULL);
10468
10469 annotate_breakpoint (b->number);
10470 if (b->disposition == disp_del)
10471 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10472 else
10473 ui_out_text (uiout, "\nRanged breakpoint ");
10474 if (ui_out_is_mi_like_p (uiout))
10475 {
10476 ui_out_field_string (uiout, "reason",
10477 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10478 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10479 }
10480 ui_out_field_int (uiout, "bkptno", b->number);
10481 ui_out_text (uiout, ", ");
10482
10483 return PRINT_SRC_AND_LOC;
10484 }
10485
10486 /* Implement the "print_one" breakpoint_ops method for
10487 ranged breakpoints. */
10488
10489 static void
10490 print_one_ranged_breakpoint (struct breakpoint *b,
10491 struct bp_location **last_loc)
10492 {
10493 struct bp_location *bl = b->loc;
10494 struct value_print_options opts;
10495 struct ui_out *uiout = current_uiout;
10496
10497 /* Ranged breakpoints have only one location. */
10498 gdb_assert (bl && bl->next == NULL);
10499
10500 get_user_print_options (&opts);
10501
10502 if (opts.addressprint)
10503 /* We don't print the address range here, it will be printed later
10504 by print_one_detail_ranged_breakpoint. */
10505 ui_out_field_skip (uiout, "addr");
10506 annotate_field (5);
10507 print_breakpoint_location (b, bl);
10508 *last_loc = bl;
10509 }
10510
10511 /* Implement the "print_one_detail" breakpoint_ops method for
10512 ranged breakpoints. */
10513
10514 static void
10515 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10516 struct ui_out *uiout)
10517 {
10518 CORE_ADDR address_start, address_end;
10519 struct bp_location *bl = b->loc;
10520 struct ui_file *stb = mem_fileopen ();
10521 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10522
10523 gdb_assert (bl);
10524
10525 address_start = bl->address;
10526 address_end = address_start + bl->length - 1;
10527
10528 ui_out_text (uiout, "\taddress range: ");
10529 fprintf_unfiltered (stb, "[%s, %s]",
10530 print_core_address (bl->gdbarch, address_start),
10531 print_core_address (bl->gdbarch, address_end));
10532 ui_out_field_stream (uiout, "addr", stb);
10533 ui_out_text (uiout, "\n");
10534
10535 do_cleanups (cleanup);
10536 }
10537
10538 /* Implement the "print_mention" breakpoint_ops method for
10539 ranged breakpoints. */
10540
10541 static void
10542 print_mention_ranged_breakpoint (struct breakpoint *b)
10543 {
10544 struct bp_location *bl = b->loc;
10545 struct ui_out *uiout = current_uiout;
10546
10547 gdb_assert (bl);
10548 gdb_assert (b->type == bp_hardware_breakpoint);
10549
10550 if (ui_out_is_mi_like_p (uiout))
10551 return;
10552
10553 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10554 b->number, paddress (bl->gdbarch, bl->address),
10555 paddress (bl->gdbarch, bl->address + bl->length - 1));
10556 }
10557
10558 /* Implement the "print_recreate" breakpoint_ops method for
10559 ranged breakpoints. */
10560
10561 static void
10562 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10563 {
10564 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10565 b->addr_string_range_end);
10566 print_recreate_thread (b, fp);
10567 }
10568
10569 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10570
10571 static struct breakpoint_ops ranged_breakpoint_ops;
10572
10573 /* Find the address where the end of the breakpoint range should be
10574 placed, given the SAL of the end of the range. This is so that if
10575 the user provides a line number, the end of the range is set to the
10576 last instruction of the given line. */
10577
10578 static CORE_ADDR
10579 find_breakpoint_range_end (struct symtab_and_line sal)
10580 {
10581 CORE_ADDR end;
10582
10583 /* If the user provided a PC value, use it. Otherwise,
10584 find the address of the end of the given location. */
10585 if (sal.explicit_pc)
10586 end = sal.pc;
10587 else
10588 {
10589 int ret;
10590 CORE_ADDR start;
10591
10592 ret = find_line_pc_range (sal, &start, &end);
10593 if (!ret)
10594 error (_("Could not find location of the end of the range."));
10595
10596 /* find_line_pc_range returns the start of the next line. */
10597 end--;
10598 }
10599
10600 return end;
10601 }
10602
10603 /* Implement the "break-range" CLI command. */
10604
10605 static void
10606 break_range_command (char *arg, int from_tty)
10607 {
10608 char *arg_start, *addr_string_start, *addr_string_end;
10609 struct linespec_result canonical_start, canonical_end;
10610 int bp_count, can_use_bp, length;
10611 CORE_ADDR end;
10612 struct breakpoint *b;
10613 struct symtab_and_line sal_start, sal_end;
10614 struct cleanup *cleanup_bkpt;
10615 struct linespec_sals *lsal_start, *lsal_end;
10616
10617 /* We don't support software ranged breakpoints. */
10618 if (target_ranged_break_num_registers () < 0)
10619 error (_("This target does not support hardware ranged breakpoints."));
10620
10621 bp_count = hw_breakpoint_used_count ();
10622 bp_count += target_ranged_break_num_registers ();
10623 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10624 bp_count, 0);
10625 if (can_use_bp < 0)
10626 error (_("Hardware breakpoints used exceeds limit."));
10627
10628 arg = skip_spaces (arg);
10629 if (arg == NULL || arg[0] == '\0')
10630 error(_("No address range specified."));
10631
10632 init_linespec_result (&canonical_start);
10633
10634 arg_start = arg;
10635 parse_breakpoint_sals (&arg, &canonical_start);
10636
10637 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10638
10639 if (arg[0] != ',')
10640 error (_("Too few arguments."));
10641 else if (VEC_empty (linespec_sals, canonical_start.sals))
10642 error (_("Could not find location of the beginning of the range."));
10643
10644 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10645
10646 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10647 || lsal_start->sals.nelts != 1)
10648 error (_("Cannot create a ranged breakpoint with multiple locations."));
10649
10650 sal_start = lsal_start->sals.sals[0];
10651 addr_string_start = savestring (arg_start, arg - arg_start);
10652 make_cleanup (xfree, addr_string_start);
10653
10654 arg++; /* Skip the comma. */
10655 arg = skip_spaces (arg);
10656
10657 /* Parse the end location. */
10658
10659 init_linespec_result (&canonical_end);
10660 arg_start = arg;
10661
10662 /* We call decode_line_full directly here instead of using
10663 parse_breakpoint_sals because we need to specify the start location's
10664 symtab and line as the default symtab and line for the end of the
10665 range. This makes it possible to have ranges like "foo.c:27, +14",
10666 where +14 means 14 lines from the start location. */
10667 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10668 sal_start.symtab, sal_start.line,
10669 &canonical_end, NULL, NULL);
10670
10671 make_cleanup_destroy_linespec_result (&canonical_end);
10672
10673 if (VEC_empty (linespec_sals, canonical_end.sals))
10674 error (_("Could not find location of the end of the range."));
10675
10676 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10677 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10678 || lsal_end->sals.nelts != 1)
10679 error (_("Cannot create a ranged breakpoint with multiple locations."));
10680
10681 sal_end = lsal_end->sals.sals[0];
10682 addr_string_end = savestring (arg_start, arg - arg_start);
10683 make_cleanup (xfree, addr_string_end);
10684
10685 end = find_breakpoint_range_end (sal_end);
10686 if (sal_start.pc > end)
10687 error (_("Invalid address range, end precedes start."));
10688
10689 length = end - sal_start.pc + 1;
10690 if (length < 0)
10691 /* Length overflowed. */
10692 error (_("Address range too large."));
10693 else if (length == 1)
10694 {
10695 /* This range is simple enough to be handled by
10696 the `hbreak' command. */
10697 hbreak_command (addr_string_start, 1);
10698
10699 do_cleanups (cleanup_bkpt);
10700
10701 return;
10702 }
10703
10704 /* Now set up the breakpoint. */
10705 b = set_raw_breakpoint (get_current_arch (), sal_start,
10706 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10707 set_breakpoint_count (breakpoint_count + 1);
10708 b->number = breakpoint_count;
10709 b->disposition = disp_donttouch;
10710 b->addr_string = xstrdup (addr_string_start);
10711 b->addr_string_range_end = xstrdup (addr_string_end);
10712 b->loc->length = length;
10713
10714 do_cleanups (cleanup_bkpt);
10715
10716 mention (b);
10717 observer_notify_breakpoint_created (b);
10718 update_global_location_list (UGLL_MAY_INSERT);
10719 }
10720
10721 /* Return non-zero if EXP is verified as constant. Returned zero
10722 means EXP is variable. Also the constant detection may fail for
10723 some constant expressions and in such case still falsely return
10724 zero. */
10725
10726 static int
10727 watchpoint_exp_is_const (const struct expression *exp)
10728 {
10729 int i = exp->nelts;
10730
10731 while (i > 0)
10732 {
10733 int oplenp, argsp;
10734
10735 /* We are only interested in the descriptor of each element. */
10736 operator_length (exp, i, &oplenp, &argsp);
10737 i -= oplenp;
10738
10739 switch (exp->elts[i].opcode)
10740 {
10741 case BINOP_ADD:
10742 case BINOP_SUB:
10743 case BINOP_MUL:
10744 case BINOP_DIV:
10745 case BINOP_REM:
10746 case BINOP_MOD:
10747 case BINOP_LSH:
10748 case BINOP_RSH:
10749 case BINOP_LOGICAL_AND:
10750 case BINOP_LOGICAL_OR:
10751 case BINOP_BITWISE_AND:
10752 case BINOP_BITWISE_IOR:
10753 case BINOP_BITWISE_XOR:
10754 case BINOP_EQUAL:
10755 case BINOP_NOTEQUAL:
10756 case BINOP_LESS:
10757 case BINOP_GTR:
10758 case BINOP_LEQ:
10759 case BINOP_GEQ:
10760 case BINOP_REPEAT:
10761 case BINOP_COMMA:
10762 case BINOP_EXP:
10763 case BINOP_MIN:
10764 case BINOP_MAX:
10765 case BINOP_INTDIV:
10766 case BINOP_CONCAT:
10767 case TERNOP_COND:
10768 case TERNOP_SLICE:
10769
10770 case OP_LONG:
10771 case OP_DOUBLE:
10772 case OP_DECFLOAT:
10773 case OP_LAST:
10774 case OP_COMPLEX:
10775 case OP_STRING:
10776 case OP_ARRAY:
10777 case OP_TYPE:
10778 case OP_TYPEOF:
10779 case OP_DECLTYPE:
10780 case OP_TYPEID:
10781 case OP_NAME:
10782 case OP_OBJC_NSSTRING:
10783
10784 case UNOP_NEG:
10785 case UNOP_LOGICAL_NOT:
10786 case UNOP_COMPLEMENT:
10787 case UNOP_ADDR:
10788 case UNOP_HIGH:
10789 case UNOP_CAST:
10790
10791 case UNOP_CAST_TYPE:
10792 case UNOP_REINTERPRET_CAST:
10793 case UNOP_DYNAMIC_CAST:
10794 /* Unary, binary and ternary operators: We have to check
10795 their operands. If they are constant, then so is the
10796 result of that operation. For instance, if A and B are
10797 determined to be constants, then so is "A + B".
10798
10799 UNOP_IND is one exception to the rule above, because the
10800 value of *ADDR is not necessarily a constant, even when
10801 ADDR is. */
10802 break;
10803
10804 case OP_VAR_VALUE:
10805 /* Check whether the associated symbol is a constant.
10806
10807 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10808 possible that a buggy compiler could mark a variable as
10809 constant even when it is not, and TYPE_CONST would return
10810 true in this case, while SYMBOL_CLASS wouldn't.
10811
10812 We also have to check for function symbols because they
10813 are always constant. */
10814 {
10815 struct symbol *s = exp->elts[i + 2].symbol;
10816
10817 if (SYMBOL_CLASS (s) != LOC_BLOCK
10818 && SYMBOL_CLASS (s) != LOC_CONST
10819 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10820 return 0;
10821 break;
10822 }
10823
10824 /* The default action is to return 0 because we are using
10825 the optimistic approach here: If we don't know something,
10826 then it is not a constant. */
10827 default:
10828 return 0;
10829 }
10830 }
10831
10832 return 1;
10833 }
10834
10835 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10836
10837 static void
10838 dtor_watchpoint (struct breakpoint *self)
10839 {
10840 struct watchpoint *w = (struct watchpoint *) self;
10841
10842 xfree (w->cond_exp);
10843 xfree (w->exp);
10844 xfree (w->exp_string);
10845 xfree (w->exp_string_reparse);
10846 value_free (w->val);
10847
10848 base_breakpoint_ops.dtor (self);
10849 }
10850
10851 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10852
10853 static void
10854 re_set_watchpoint (struct breakpoint *b)
10855 {
10856 struct watchpoint *w = (struct watchpoint *) b;
10857
10858 /* Watchpoint can be either on expression using entirely global
10859 variables, or it can be on local variables.
10860
10861 Watchpoints of the first kind are never auto-deleted, and even
10862 persist across program restarts. Since they can use variables
10863 from shared libraries, we need to reparse expression as libraries
10864 are loaded and unloaded.
10865
10866 Watchpoints on local variables can also change meaning as result
10867 of solib event. For example, if a watchpoint uses both a local
10868 and a global variables in expression, it's a local watchpoint,
10869 but unloading of a shared library will make the expression
10870 invalid. This is not a very common use case, but we still
10871 re-evaluate expression, to avoid surprises to the user.
10872
10873 Note that for local watchpoints, we re-evaluate it only if
10874 watchpoints frame id is still valid. If it's not, it means the
10875 watchpoint is out of scope and will be deleted soon. In fact,
10876 I'm not sure we'll ever be called in this case.
10877
10878 If a local watchpoint's frame id is still valid, then
10879 w->exp_valid_block is likewise valid, and we can safely use it.
10880
10881 Don't do anything about disabled watchpoints, since they will be
10882 reevaluated again when enabled. */
10883 update_watchpoint (w, 1 /* reparse */);
10884 }
10885
10886 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10887
10888 static int
10889 insert_watchpoint (struct bp_location *bl)
10890 {
10891 struct watchpoint *w = (struct watchpoint *) bl->owner;
10892 int length = w->exact ? 1 : bl->length;
10893
10894 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10895 w->cond_exp);
10896 }
10897
10898 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10899
10900 static int
10901 remove_watchpoint (struct bp_location *bl)
10902 {
10903 struct watchpoint *w = (struct watchpoint *) bl->owner;
10904 int length = w->exact ? 1 : bl->length;
10905
10906 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10907 w->cond_exp);
10908 }
10909
10910 static int
10911 breakpoint_hit_watchpoint (const struct bp_location *bl,
10912 struct address_space *aspace, CORE_ADDR bp_addr,
10913 const struct target_waitstatus *ws)
10914 {
10915 struct breakpoint *b = bl->owner;
10916 struct watchpoint *w = (struct watchpoint *) b;
10917
10918 /* Continuable hardware watchpoints are treated as non-existent if the
10919 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10920 some data address). Otherwise gdb won't stop on a break instruction
10921 in the code (not from a breakpoint) when a hardware watchpoint has
10922 been defined. Also skip watchpoints which we know did not trigger
10923 (did not match the data address). */
10924 if (is_hardware_watchpoint (b)
10925 && w->watchpoint_triggered == watch_triggered_no)
10926 return 0;
10927
10928 return 1;
10929 }
10930
10931 static void
10932 check_status_watchpoint (bpstat bs)
10933 {
10934 gdb_assert (is_watchpoint (bs->breakpoint_at));
10935
10936 bpstat_check_watchpoint (bs);
10937 }
10938
10939 /* Implement the "resources_needed" breakpoint_ops method for
10940 hardware watchpoints. */
10941
10942 static int
10943 resources_needed_watchpoint (const struct bp_location *bl)
10944 {
10945 struct watchpoint *w = (struct watchpoint *) bl->owner;
10946 int length = w->exact? 1 : bl->length;
10947
10948 return target_region_ok_for_hw_watchpoint (bl->address, length);
10949 }
10950
10951 /* Implement the "works_in_software_mode" breakpoint_ops method for
10952 hardware watchpoints. */
10953
10954 static int
10955 works_in_software_mode_watchpoint (const struct breakpoint *b)
10956 {
10957 /* Read and access watchpoints only work with hardware support. */
10958 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10959 }
10960
10961 static enum print_stop_action
10962 print_it_watchpoint (bpstat bs)
10963 {
10964 struct cleanup *old_chain;
10965 struct breakpoint *b;
10966 struct ui_file *stb;
10967 enum print_stop_action result;
10968 struct watchpoint *w;
10969 struct ui_out *uiout = current_uiout;
10970
10971 gdb_assert (bs->bp_location_at != NULL);
10972
10973 b = bs->breakpoint_at;
10974 w = (struct watchpoint *) b;
10975
10976 stb = mem_fileopen ();
10977 old_chain = make_cleanup_ui_file_delete (stb);
10978
10979 switch (b->type)
10980 {
10981 case bp_watchpoint:
10982 case bp_hardware_watchpoint:
10983 annotate_watchpoint (b->number);
10984 if (ui_out_is_mi_like_p (uiout))
10985 ui_out_field_string
10986 (uiout, "reason",
10987 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10988 mention (b);
10989 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10990 ui_out_text (uiout, "\nOld value = ");
10991 watchpoint_value_print (bs->old_val, stb);
10992 ui_out_field_stream (uiout, "old", stb);
10993 ui_out_text (uiout, "\nNew value = ");
10994 watchpoint_value_print (w->val, stb);
10995 ui_out_field_stream (uiout, "new", stb);
10996 ui_out_text (uiout, "\n");
10997 /* More than one watchpoint may have been triggered. */
10998 result = PRINT_UNKNOWN;
10999 break;
11000
11001 case bp_read_watchpoint:
11002 if (ui_out_is_mi_like_p (uiout))
11003 ui_out_field_string
11004 (uiout, "reason",
11005 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11006 mention (b);
11007 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
11008 ui_out_text (uiout, "\nValue = ");
11009 watchpoint_value_print (w->val, stb);
11010 ui_out_field_stream (uiout, "value", stb);
11011 ui_out_text (uiout, "\n");
11012 result = PRINT_UNKNOWN;
11013 break;
11014
11015 case bp_access_watchpoint:
11016 if (bs->old_val != NULL)
11017 {
11018 annotate_watchpoint (b->number);
11019 if (ui_out_is_mi_like_p (uiout))
11020 ui_out_field_string
11021 (uiout, "reason",
11022 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11023 mention (b);
11024 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
11025 ui_out_text (uiout, "\nOld value = ");
11026 watchpoint_value_print (bs->old_val, stb);
11027 ui_out_field_stream (uiout, "old", stb);
11028 ui_out_text (uiout, "\nNew value = ");
11029 }
11030 else
11031 {
11032 mention (b);
11033 if (ui_out_is_mi_like_p (uiout))
11034 ui_out_field_string
11035 (uiout, "reason",
11036 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11037 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
11038 ui_out_text (uiout, "\nValue = ");
11039 }
11040 watchpoint_value_print (w->val, stb);
11041 ui_out_field_stream (uiout, "new", stb);
11042 ui_out_text (uiout, "\n");
11043 result = PRINT_UNKNOWN;
11044 break;
11045 default:
11046 result = PRINT_UNKNOWN;
11047 }
11048
11049 do_cleanups (old_chain);
11050 return result;
11051 }
11052
11053 /* Implement the "print_mention" breakpoint_ops method for hardware
11054 watchpoints. */
11055
11056 static void
11057 print_mention_watchpoint (struct breakpoint *b)
11058 {
11059 struct cleanup *ui_out_chain;
11060 struct watchpoint *w = (struct watchpoint *) b;
11061 struct ui_out *uiout = current_uiout;
11062
11063 switch (b->type)
11064 {
11065 case bp_watchpoint:
11066 ui_out_text (uiout, "Watchpoint ");
11067 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11068 break;
11069 case bp_hardware_watchpoint:
11070 ui_out_text (uiout, "Hardware watchpoint ");
11071 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11072 break;
11073 case bp_read_watchpoint:
11074 ui_out_text (uiout, "Hardware read watchpoint ");
11075 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11076 break;
11077 case bp_access_watchpoint:
11078 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
11079 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11080 break;
11081 default:
11082 internal_error (__FILE__, __LINE__,
11083 _("Invalid hardware watchpoint type."));
11084 }
11085
11086 ui_out_field_int (uiout, "number", b->number);
11087 ui_out_text (uiout, ": ");
11088 ui_out_field_string (uiout, "exp", w->exp_string);
11089 do_cleanups (ui_out_chain);
11090 }
11091
11092 /* Implement the "print_recreate" breakpoint_ops method for
11093 watchpoints. */
11094
11095 static void
11096 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
11097 {
11098 struct watchpoint *w = (struct watchpoint *) b;
11099
11100 switch (b->type)
11101 {
11102 case bp_watchpoint:
11103 case bp_hardware_watchpoint:
11104 fprintf_unfiltered (fp, "watch");
11105 break;
11106 case bp_read_watchpoint:
11107 fprintf_unfiltered (fp, "rwatch");
11108 break;
11109 case bp_access_watchpoint:
11110 fprintf_unfiltered (fp, "awatch");
11111 break;
11112 default:
11113 internal_error (__FILE__, __LINE__,
11114 _("Invalid watchpoint type."));
11115 }
11116
11117 fprintf_unfiltered (fp, " %s", w->exp_string);
11118 print_recreate_thread (b, fp);
11119 }
11120
11121 /* Implement the "explains_signal" breakpoint_ops method for
11122 watchpoints. */
11123
11124 static int
11125 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
11126 {
11127 /* A software watchpoint cannot cause a signal other than
11128 GDB_SIGNAL_TRAP. */
11129 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
11130 return 0;
11131
11132 return 1;
11133 }
11134
11135 /* The breakpoint_ops structure to be used in hardware watchpoints. */
11136
11137 static struct breakpoint_ops watchpoint_breakpoint_ops;
11138
11139 /* Implement the "insert" breakpoint_ops method for
11140 masked hardware watchpoints. */
11141
11142 static int
11143 insert_masked_watchpoint (struct bp_location *bl)
11144 {
11145 struct watchpoint *w = (struct watchpoint *) bl->owner;
11146
11147 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
11148 bl->watchpoint_type);
11149 }
11150
11151 /* Implement the "remove" breakpoint_ops method for
11152 masked hardware watchpoints. */
11153
11154 static int
11155 remove_masked_watchpoint (struct bp_location *bl)
11156 {
11157 struct watchpoint *w = (struct watchpoint *) bl->owner;
11158
11159 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
11160 bl->watchpoint_type);
11161 }
11162
11163 /* Implement the "resources_needed" breakpoint_ops method for
11164 masked hardware watchpoints. */
11165
11166 static int
11167 resources_needed_masked_watchpoint (const struct bp_location *bl)
11168 {
11169 struct watchpoint *w = (struct watchpoint *) bl->owner;
11170
11171 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
11172 }
11173
11174 /* Implement the "works_in_software_mode" breakpoint_ops method for
11175 masked hardware watchpoints. */
11176
11177 static int
11178 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
11179 {
11180 return 0;
11181 }
11182
11183 /* Implement the "print_it" breakpoint_ops method for
11184 masked hardware watchpoints. */
11185
11186 static enum print_stop_action
11187 print_it_masked_watchpoint (bpstat bs)
11188 {
11189 struct breakpoint *b = bs->breakpoint_at;
11190 struct ui_out *uiout = current_uiout;
11191
11192 /* Masked watchpoints have only one location. */
11193 gdb_assert (b->loc && b->loc->next == NULL);
11194
11195 switch (b->type)
11196 {
11197 case bp_hardware_watchpoint:
11198 annotate_watchpoint (b->number);
11199 if (ui_out_is_mi_like_p (uiout))
11200 ui_out_field_string
11201 (uiout, "reason",
11202 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
11203 break;
11204
11205 case bp_read_watchpoint:
11206 if (ui_out_is_mi_like_p (uiout))
11207 ui_out_field_string
11208 (uiout, "reason",
11209 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
11210 break;
11211
11212 case bp_access_watchpoint:
11213 if (ui_out_is_mi_like_p (uiout))
11214 ui_out_field_string
11215 (uiout, "reason",
11216 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
11217 break;
11218 default:
11219 internal_error (__FILE__, __LINE__,
11220 _("Invalid hardware watchpoint type."));
11221 }
11222
11223 mention (b);
11224 ui_out_text (uiout, _("\n\
11225 Check the underlying instruction at PC for the memory\n\
11226 address and value which triggered this watchpoint.\n"));
11227 ui_out_text (uiout, "\n");
11228
11229 /* More than one watchpoint may have been triggered. */
11230 return PRINT_UNKNOWN;
11231 }
11232
11233 /* Implement the "print_one_detail" breakpoint_ops method for
11234 masked hardware watchpoints. */
11235
11236 static void
11237 print_one_detail_masked_watchpoint (const struct breakpoint *b,
11238 struct ui_out *uiout)
11239 {
11240 struct watchpoint *w = (struct watchpoint *) b;
11241
11242 /* Masked watchpoints have only one location. */
11243 gdb_assert (b->loc && b->loc->next == NULL);
11244
11245 ui_out_text (uiout, "\tmask ");
11246 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
11247 ui_out_text (uiout, "\n");
11248 }
11249
11250 /* Implement the "print_mention" breakpoint_ops method for
11251 masked hardware watchpoints. */
11252
11253 static void
11254 print_mention_masked_watchpoint (struct breakpoint *b)
11255 {
11256 struct watchpoint *w = (struct watchpoint *) b;
11257 struct ui_out *uiout = current_uiout;
11258 struct cleanup *ui_out_chain;
11259
11260 switch (b->type)
11261 {
11262 case bp_hardware_watchpoint:
11263 ui_out_text (uiout, "Masked hardware watchpoint ");
11264 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
11265 break;
11266 case bp_read_watchpoint:
11267 ui_out_text (uiout, "Masked hardware read watchpoint ");
11268 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
11269 break;
11270 case bp_access_watchpoint:
11271 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
11272 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
11273 break;
11274 default:
11275 internal_error (__FILE__, __LINE__,
11276 _("Invalid hardware watchpoint type."));
11277 }
11278
11279 ui_out_field_int (uiout, "number", b->number);
11280 ui_out_text (uiout, ": ");
11281 ui_out_field_string (uiout, "exp", w->exp_string);
11282 do_cleanups (ui_out_chain);
11283 }
11284
11285 /* Implement the "print_recreate" breakpoint_ops method for
11286 masked hardware watchpoints. */
11287
11288 static void
11289 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11290 {
11291 struct watchpoint *w = (struct watchpoint *) b;
11292 char tmp[40];
11293
11294 switch (b->type)
11295 {
11296 case bp_hardware_watchpoint:
11297 fprintf_unfiltered (fp, "watch");
11298 break;
11299 case bp_read_watchpoint:
11300 fprintf_unfiltered (fp, "rwatch");
11301 break;
11302 case bp_access_watchpoint:
11303 fprintf_unfiltered (fp, "awatch");
11304 break;
11305 default:
11306 internal_error (__FILE__, __LINE__,
11307 _("Invalid hardware watchpoint type."));
11308 }
11309
11310 sprintf_vma (tmp, w->hw_wp_mask);
11311 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11312 print_recreate_thread (b, fp);
11313 }
11314
11315 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11316
11317 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11318
11319 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11320
11321 static int
11322 is_masked_watchpoint (const struct breakpoint *b)
11323 {
11324 return b->ops == &masked_watchpoint_breakpoint_ops;
11325 }
11326
11327 /* accessflag: hw_write: watch write,
11328 hw_read: watch read,
11329 hw_access: watch access (read or write) */
11330 static void
11331 watch_command_1 (const char *arg, int accessflag, int from_tty,
11332 int just_location, int internal)
11333 {
11334 volatile struct gdb_exception e;
11335 struct breakpoint *b, *scope_breakpoint = NULL;
11336 struct expression *exp;
11337 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11338 struct value *val, *mark, *result;
11339 int saved_bitpos = 0, saved_bitsize = 0;
11340 struct frame_info *frame;
11341 const char *exp_start = NULL;
11342 const char *exp_end = NULL;
11343 const char *tok, *end_tok;
11344 int toklen = -1;
11345 const char *cond_start = NULL;
11346 const char *cond_end = NULL;
11347 enum bptype bp_type;
11348 int thread = -1;
11349 int pc = 0;
11350 /* Flag to indicate whether we are going to use masks for
11351 the hardware watchpoint. */
11352 int use_mask = 0;
11353 CORE_ADDR mask = 0;
11354 struct watchpoint *w;
11355 char *expression;
11356 struct cleanup *back_to;
11357
11358 /* Make sure that we actually have parameters to parse. */
11359 if (arg != NULL && arg[0] != '\0')
11360 {
11361 const char *value_start;
11362
11363 exp_end = arg + strlen (arg);
11364
11365 /* Look for "parameter value" pairs at the end
11366 of the arguments string. */
11367 for (tok = exp_end - 1; tok > arg; tok--)
11368 {
11369 /* Skip whitespace at the end of the argument list. */
11370 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11371 tok--;
11372
11373 /* Find the beginning of the last token.
11374 This is the value of the parameter. */
11375 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11376 tok--;
11377 value_start = tok + 1;
11378
11379 /* Skip whitespace. */
11380 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11381 tok--;
11382
11383 end_tok = tok;
11384
11385 /* Find the beginning of the second to last token.
11386 This is the parameter itself. */
11387 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11388 tok--;
11389 tok++;
11390 toklen = end_tok - tok + 1;
11391
11392 if (toklen == 6 && !strncmp (tok, "thread", 6))
11393 {
11394 /* At this point we've found a "thread" token, which means
11395 the user is trying to set a watchpoint that triggers
11396 only in a specific thread. */
11397 char *endp;
11398
11399 if (thread != -1)
11400 error(_("You can specify only one thread."));
11401
11402 /* Extract the thread ID from the next token. */
11403 thread = strtol (value_start, &endp, 0);
11404
11405 /* Check if the user provided a valid numeric value for the
11406 thread ID. */
11407 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11408 error (_("Invalid thread ID specification %s."), value_start);
11409
11410 /* Check if the thread actually exists. */
11411 if (!valid_thread_id (thread))
11412 invalid_thread_id_error (thread);
11413 }
11414 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11415 {
11416 /* We've found a "mask" token, which means the user wants to
11417 create a hardware watchpoint that is going to have the mask
11418 facility. */
11419 struct value *mask_value, *mark;
11420
11421 if (use_mask)
11422 error(_("You can specify only one mask."));
11423
11424 use_mask = just_location = 1;
11425
11426 mark = value_mark ();
11427 mask_value = parse_to_comma_and_eval (&value_start);
11428 mask = value_as_address (mask_value);
11429 value_free_to_mark (mark);
11430 }
11431 else
11432 /* We didn't recognize what we found. We should stop here. */
11433 break;
11434
11435 /* Truncate the string and get rid of the "parameter value" pair before
11436 the arguments string is parsed by the parse_exp_1 function. */
11437 exp_end = tok;
11438 }
11439 }
11440 else
11441 exp_end = arg;
11442
11443 /* Parse the rest of the arguments. From here on out, everything
11444 is in terms of a newly allocated string instead of the original
11445 ARG. */
11446 innermost_block = NULL;
11447 expression = savestring (arg, exp_end - arg);
11448 back_to = make_cleanup (xfree, expression);
11449 exp_start = arg = expression;
11450 exp = parse_exp_1 (&arg, 0, 0, 0);
11451 exp_end = arg;
11452 /* Remove trailing whitespace from the expression before saving it.
11453 This makes the eventual display of the expression string a bit
11454 prettier. */
11455 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11456 --exp_end;
11457
11458 /* Checking if the expression is not constant. */
11459 if (watchpoint_exp_is_const (exp))
11460 {
11461 int len;
11462
11463 len = exp_end - exp_start;
11464 while (len > 0 && isspace (exp_start[len - 1]))
11465 len--;
11466 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11467 }
11468
11469 exp_valid_block = innermost_block;
11470 mark = value_mark ();
11471 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11472
11473 if (val != NULL && just_location)
11474 {
11475 saved_bitpos = value_bitpos (val);
11476 saved_bitsize = value_bitsize (val);
11477 }
11478
11479 if (just_location)
11480 {
11481 int ret;
11482
11483 exp_valid_block = NULL;
11484 val = value_addr (result);
11485 release_value (val);
11486 value_free_to_mark (mark);
11487
11488 if (use_mask)
11489 {
11490 ret = target_masked_watch_num_registers (value_as_address (val),
11491 mask);
11492 if (ret == -1)
11493 error (_("This target does not support masked watchpoints."));
11494 else if (ret == -2)
11495 error (_("Invalid mask or memory region."));
11496 }
11497 }
11498 else if (val != NULL)
11499 release_value (val);
11500
11501 tok = skip_spaces_const (arg);
11502 end_tok = skip_to_space_const (tok);
11503
11504 toklen = end_tok - tok;
11505 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11506 {
11507 struct expression *cond;
11508
11509 innermost_block = NULL;
11510 tok = cond_start = end_tok + 1;
11511 cond = parse_exp_1 (&tok, 0, 0, 0);
11512
11513 /* The watchpoint expression may not be local, but the condition
11514 may still be. E.g.: `watch global if local > 0'. */
11515 cond_exp_valid_block = innermost_block;
11516
11517 xfree (cond);
11518 cond_end = tok;
11519 }
11520 if (*tok)
11521 error (_("Junk at end of command."));
11522
11523 frame = block_innermost_frame (exp_valid_block);
11524
11525 /* If the expression is "local", then set up a "watchpoint scope"
11526 breakpoint at the point where we've left the scope of the watchpoint
11527 expression. Create the scope breakpoint before the watchpoint, so
11528 that we will encounter it first in bpstat_stop_status. */
11529 if (exp_valid_block && frame)
11530 {
11531 if (frame_id_p (frame_unwind_caller_id (frame)))
11532 {
11533 scope_breakpoint
11534 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11535 frame_unwind_caller_pc (frame),
11536 bp_watchpoint_scope,
11537 &momentary_breakpoint_ops);
11538
11539 scope_breakpoint->enable_state = bp_enabled;
11540
11541 /* Automatically delete the breakpoint when it hits. */
11542 scope_breakpoint->disposition = disp_del;
11543
11544 /* Only break in the proper frame (help with recursion). */
11545 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11546
11547 /* Set the address at which we will stop. */
11548 scope_breakpoint->loc->gdbarch
11549 = frame_unwind_caller_arch (frame);
11550 scope_breakpoint->loc->requested_address
11551 = frame_unwind_caller_pc (frame);
11552 scope_breakpoint->loc->address
11553 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11554 scope_breakpoint->loc->requested_address,
11555 scope_breakpoint->type);
11556 }
11557 }
11558
11559 /* Now set up the breakpoint. We create all watchpoints as hardware
11560 watchpoints here even if hardware watchpoints are turned off, a call
11561 to update_watchpoint later in this function will cause the type to
11562 drop back to bp_watchpoint (software watchpoint) if required. */
11563
11564 if (accessflag == hw_read)
11565 bp_type = bp_read_watchpoint;
11566 else if (accessflag == hw_access)
11567 bp_type = bp_access_watchpoint;
11568 else
11569 bp_type = bp_hardware_watchpoint;
11570
11571 w = XCNEW (struct watchpoint);
11572 b = &w->base;
11573 if (use_mask)
11574 init_raw_breakpoint_without_location (b, NULL, bp_type,
11575 &masked_watchpoint_breakpoint_ops);
11576 else
11577 init_raw_breakpoint_without_location (b, NULL, bp_type,
11578 &watchpoint_breakpoint_ops);
11579 b->thread = thread;
11580 b->disposition = disp_donttouch;
11581 b->pspace = current_program_space;
11582 w->exp = exp;
11583 w->exp_valid_block = exp_valid_block;
11584 w->cond_exp_valid_block = cond_exp_valid_block;
11585 if (just_location)
11586 {
11587 struct type *t = value_type (val);
11588 CORE_ADDR addr = value_as_address (val);
11589 char *name;
11590
11591 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11592 name = type_to_string (t);
11593
11594 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11595 core_addr_to_string (addr));
11596 xfree (name);
11597
11598 w->exp_string = xstrprintf ("-location %.*s",
11599 (int) (exp_end - exp_start), exp_start);
11600
11601 /* The above expression is in C. */
11602 b->language = language_c;
11603 }
11604 else
11605 w->exp_string = savestring (exp_start, exp_end - exp_start);
11606
11607 if (use_mask)
11608 {
11609 w->hw_wp_mask = mask;
11610 }
11611 else
11612 {
11613 w->val = val;
11614 w->val_bitpos = saved_bitpos;
11615 w->val_bitsize = saved_bitsize;
11616 w->val_valid = 1;
11617 }
11618
11619 if (cond_start)
11620 b->cond_string = savestring (cond_start, cond_end - cond_start);
11621 else
11622 b->cond_string = 0;
11623
11624 if (frame)
11625 {
11626 w->watchpoint_frame = get_frame_id (frame);
11627 w->watchpoint_thread = inferior_ptid;
11628 }
11629 else
11630 {
11631 w->watchpoint_frame = null_frame_id;
11632 w->watchpoint_thread = null_ptid;
11633 }
11634
11635 if (scope_breakpoint != NULL)
11636 {
11637 /* The scope breakpoint is related to the watchpoint. We will
11638 need to act on them together. */
11639 b->related_breakpoint = scope_breakpoint;
11640 scope_breakpoint->related_breakpoint = b;
11641 }
11642
11643 if (!just_location)
11644 value_free_to_mark (mark);
11645
11646 TRY_CATCH (e, RETURN_MASK_ALL)
11647 {
11648 /* Finally update the new watchpoint. This creates the locations
11649 that should be inserted. */
11650 update_watchpoint (w, 1);
11651 }
11652 if (e.reason < 0)
11653 {
11654 delete_breakpoint (b);
11655 throw_exception (e);
11656 }
11657
11658 install_breakpoint (internal, b, 1);
11659 do_cleanups (back_to);
11660 }
11661
11662 /* Return count of debug registers needed to watch the given expression.
11663 If the watchpoint cannot be handled in hardware return zero. */
11664
11665 static int
11666 can_use_hardware_watchpoint (struct value *v)
11667 {
11668 int found_memory_cnt = 0;
11669 struct value *head = v;
11670
11671 /* Did the user specifically forbid us to use hardware watchpoints? */
11672 if (!can_use_hw_watchpoints)
11673 return 0;
11674
11675 /* Make sure that the value of the expression depends only upon
11676 memory contents, and values computed from them within GDB. If we
11677 find any register references or function calls, we can't use a
11678 hardware watchpoint.
11679
11680 The idea here is that evaluating an expression generates a series
11681 of values, one holding the value of every subexpression. (The
11682 expression a*b+c has five subexpressions: a, b, a*b, c, and
11683 a*b+c.) GDB's values hold almost enough information to establish
11684 the criteria given above --- they identify memory lvalues,
11685 register lvalues, computed values, etcetera. So we can evaluate
11686 the expression, and then scan the chain of values that leaves
11687 behind to decide whether we can detect any possible change to the
11688 expression's final value using only hardware watchpoints.
11689
11690 However, I don't think that the values returned by inferior
11691 function calls are special in any way. So this function may not
11692 notice that an expression involving an inferior function call
11693 can't be watched with hardware watchpoints. FIXME. */
11694 for (; v; v = value_next (v))
11695 {
11696 if (VALUE_LVAL (v) == lval_memory)
11697 {
11698 if (v != head && value_lazy (v))
11699 /* A lazy memory lvalue in the chain is one that GDB never
11700 needed to fetch; we either just used its address (e.g.,
11701 `a' in `a.b') or we never needed it at all (e.g., `a'
11702 in `a,b'). This doesn't apply to HEAD; if that is
11703 lazy then it was not readable, but watch it anyway. */
11704 ;
11705 else
11706 {
11707 /* Ahh, memory we actually used! Check if we can cover
11708 it with hardware watchpoints. */
11709 struct type *vtype = check_typedef (value_type (v));
11710
11711 /* We only watch structs and arrays if user asked for it
11712 explicitly, never if they just happen to appear in a
11713 middle of some value chain. */
11714 if (v == head
11715 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11716 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11717 {
11718 CORE_ADDR vaddr = value_address (v);
11719 int len;
11720 int num_regs;
11721
11722 len = (target_exact_watchpoints
11723 && is_scalar_type_recursive (vtype))?
11724 1 : TYPE_LENGTH (value_type (v));
11725
11726 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11727 if (!num_regs)
11728 return 0;
11729 else
11730 found_memory_cnt += num_regs;
11731 }
11732 }
11733 }
11734 else if (VALUE_LVAL (v) != not_lval
11735 && deprecated_value_modifiable (v) == 0)
11736 return 0; /* These are values from the history (e.g., $1). */
11737 else if (VALUE_LVAL (v) == lval_register)
11738 return 0; /* Cannot watch a register with a HW watchpoint. */
11739 }
11740
11741 /* The expression itself looks suitable for using a hardware
11742 watchpoint, but give the target machine a chance to reject it. */
11743 return found_memory_cnt;
11744 }
11745
11746 void
11747 watch_command_wrapper (char *arg, int from_tty, int internal)
11748 {
11749 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11750 }
11751
11752 /* A helper function that looks for the "-location" argument and then
11753 calls watch_command_1. */
11754
11755 static void
11756 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11757 {
11758 int just_location = 0;
11759
11760 if (arg
11761 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11762 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11763 {
11764 arg = skip_spaces (arg);
11765 just_location = 1;
11766 }
11767
11768 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11769 }
11770
11771 static void
11772 watch_command (char *arg, int from_tty)
11773 {
11774 watch_maybe_just_location (arg, hw_write, from_tty);
11775 }
11776
11777 void
11778 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11779 {
11780 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11781 }
11782
11783 static void
11784 rwatch_command (char *arg, int from_tty)
11785 {
11786 watch_maybe_just_location (arg, hw_read, from_tty);
11787 }
11788
11789 void
11790 awatch_command_wrapper (char *arg, int from_tty, int internal)
11791 {
11792 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11793 }
11794
11795 static void
11796 awatch_command (char *arg, int from_tty)
11797 {
11798 watch_maybe_just_location (arg, hw_access, from_tty);
11799 }
11800 \f
11801
11802 /* Helper routines for the until_command routine in infcmd.c. Here
11803 because it uses the mechanisms of breakpoints. */
11804
11805 struct until_break_command_continuation_args
11806 {
11807 struct breakpoint *breakpoint;
11808 struct breakpoint *breakpoint2;
11809 int thread_num;
11810 };
11811
11812 /* This function is called by fetch_inferior_event via the
11813 cmd_continuation pointer, to complete the until command. It takes
11814 care of cleaning up the temporary breakpoints set up by the until
11815 command. */
11816 static void
11817 until_break_command_continuation (void *arg, int err)
11818 {
11819 struct until_break_command_continuation_args *a = arg;
11820
11821 delete_breakpoint (a->breakpoint);
11822 if (a->breakpoint2)
11823 delete_breakpoint (a->breakpoint2);
11824 delete_longjmp_breakpoint (a->thread_num);
11825 }
11826
11827 void
11828 until_break_command (char *arg, int from_tty, int anywhere)
11829 {
11830 struct symtabs_and_lines sals;
11831 struct symtab_and_line sal;
11832 struct frame_info *frame;
11833 struct gdbarch *frame_gdbarch;
11834 struct frame_id stack_frame_id;
11835 struct frame_id caller_frame_id;
11836 struct breakpoint *breakpoint;
11837 struct breakpoint *breakpoint2 = NULL;
11838 struct cleanup *old_chain;
11839 int thread;
11840 struct thread_info *tp;
11841
11842 clear_proceed_status (0);
11843
11844 /* Set a breakpoint where the user wants it and at return from
11845 this function. */
11846
11847 if (last_displayed_sal_is_valid ())
11848 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11849 get_last_displayed_symtab (),
11850 get_last_displayed_line ());
11851 else
11852 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11853 (struct symtab *) NULL, 0);
11854
11855 if (sals.nelts != 1)
11856 error (_("Couldn't get information on specified line."));
11857
11858 sal = sals.sals[0];
11859 xfree (sals.sals); /* malloc'd, so freed. */
11860
11861 if (*arg)
11862 error (_("Junk at end of arguments."));
11863
11864 resolve_sal_pc (&sal);
11865
11866 tp = inferior_thread ();
11867 thread = tp->num;
11868
11869 old_chain = make_cleanup (null_cleanup, NULL);
11870
11871 /* Note linespec handling above invalidates the frame chain.
11872 Installing a breakpoint also invalidates the frame chain (as it
11873 may need to switch threads), so do any frame handling before
11874 that. */
11875
11876 frame = get_selected_frame (NULL);
11877 frame_gdbarch = get_frame_arch (frame);
11878 stack_frame_id = get_stack_frame_id (frame);
11879 caller_frame_id = frame_unwind_caller_id (frame);
11880
11881 /* Keep within the current frame, or in frames called by the current
11882 one. */
11883
11884 if (frame_id_p (caller_frame_id))
11885 {
11886 struct symtab_and_line sal2;
11887
11888 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11889 sal2.pc = frame_unwind_caller_pc (frame);
11890 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11891 sal2,
11892 caller_frame_id,
11893 bp_until);
11894 make_cleanup_delete_breakpoint (breakpoint2);
11895
11896 set_longjmp_breakpoint (tp, caller_frame_id);
11897 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11898 }
11899
11900 /* set_momentary_breakpoint could invalidate FRAME. */
11901 frame = NULL;
11902
11903 if (anywhere)
11904 /* If the user told us to continue until a specified location,
11905 we don't specify a frame at which we need to stop. */
11906 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11907 null_frame_id, bp_until);
11908 else
11909 /* Otherwise, specify the selected frame, because we want to stop
11910 only at the very same frame. */
11911 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11912 stack_frame_id, bp_until);
11913 make_cleanup_delete_breakpoint (breakpoint);
11914
11915 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11916
11917 /* If we are running asynchronously, and proceed call above has
11918 actually managed to start the target, arrange for breakpoints to
11919 be deleted when the target stops. Otherwise, we're already
11920 stopped and delete breakpoints via cleanup chain. */
11921
11922 if (target_can_async_p () && is_running (inferior_ptid))
11923 {
11924 struct until_break_command_continuation_args *args;
11925 args = xmalloc (sizeof (*args));
11926
11927 args->breakpoint = breakpoint;
11928 args->breakpoint2 = breakpoint2;
11929 args->thread_num = thread;
11930
11931 discard_cleanups (old_chain);
11932 add_continuation (inferior_thread (),
11933 until_break_command_continuation, args,
11934 xfree);
11935 }
11936 else
11937 do_cleanups (old_chain);
11938 }
11939
11940 /* This function attempts to parse an optional "if <cond>" clause
11941 from the arg string. If one is not found, it returns NULL.
11942
11943 Else, it returns a pointer to the condition string. (It does not
11944 attempt to evaluate the string against a particular block.) And,
11945 it updates arg to point to the first character following the parsed
11946 if clause in the arg string. */
11947
11948 char *
11949 ep_parse_optional_if_clause (char **arg)
11950 {
11951 char *cond_string;
11952
11953 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11954 return NULL;
11955
11956 /* Skip the "if" keyword. */
11957 (*arg) += 2;
11958
11959 /* Skip any extra leading whitespace, and record the start of the
11960 condition string. */
11961 *arg = skip_spaces (*arg);
11962 cond_string = *arg;
11963
11964 /* Assume that the condition occupies the remainder of the arg
11965 string. */
11966 (*arg) += strlen (cond_string);
11967
11968 return cond_string;
11969 }
11970
11971 /* Commands to deal with catching events, such as signals, exceptions,
11972 process start/exit, etc. */
11973
11974 typedef enum
11975 {
11976 catch_fork_temporary, catch_vfork_temporary,
11977 catch_fork_permanent, catch_vfork_permanent
11978 }
11979 catch_fork_kind;
11980
11981 static void
11982 catch_fork_command_1 (char *arg, int from_tty,
11983 struct cmd_list_element *command)
11984 {
11985 struct gdbarch *gdbarch = get_current_arch ();
11986 char *cond_string = NULL;
11987 catch_fork_kind fork_kind;
11988 int tempflag;
11989
11990 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11991 tempflag = (fork_kind == catch_fork_temporary
11992 || fork_kind == catch_vfork_temporary);
11993
11994 if (!arg)
11995 arg = "";
11996 arg = skip_spaces (arg);
11997
11998 /* The allowed syntax is:
11999 catch [v]fork
12000 catch [v]fork if <cond>
12001
12002 First, check if there's an if clause. */
12003 cond_string = ep_parse_optional_if_clause (&arg);
12004
12005 if ((*arg != '\0') && !isspace (*arg))
12006 error (_("Junk at end of arguments."));
12007
12008 /* If this target supports it, create a fork or vfork catchpoint
12009 and enable reporting of such events. */
12010 switch (fork_kind)
12011 {
12012 case catch_fork_temporary:
12013 case catch_fork_permanent:
12014 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
12015 &catch_fork_breakpoint_ops);
12016 break;
12017 case catch_vfork_temporary:
12018 case catch_vfork_permanent:
12019 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
12020 &catch_vfork_breakpoint_ops);
12021 break;
12022 default:
12023 error (_("unsupported or unknown fork kind; cannot catch it"));
12024 break;
12025 }
12026 }
12027
12028 static void
12029 catch_exec_command_1 (char *arg, int from_tty,
12030 struct cmd_list_element *command)
12031 {
12032 struct exec_catchpoint *c;
12033 struct gdbarch *gdbarch = get_current_arch ();
12034 int tempflag;
12035 char *cond_string = NULL;
12036
12037 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12038
12039 if (!arg)
12040 arg = "";
12041 arg = skip_spaces (arg);
12042
12043 /* The allowed syntax is:
12044 catch exec
12045 catch exec if <cond>
12046
12047 First, check if there's an if clause. */
12048 cond_string = ep_parse_optional_if_clause (&arg);
12049
12050 if ((*arg != '\0') && !isspace (*arg))
12051 error (_("Junk at end of arguments."));
12052
12053 c = XNEW (struct exec_catchpoint);
12054 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
12055 &catch_exec_breakpoint_ops);
12056 c->exec_pathname = NULL;
12057
12058 install_breakpoint (0, &c->base, 1);
12059 }
12060
12061 void
12062 init_ada_exception_breakpoint (struct breakpoint *b,
12063 struct gdbarch *gdbarch,
12064 struct symtab_and_line sal,
12065 char *addr_string,
12066 const struct breakpoint_ops *ops,
12067 int tempflag,
12068 int enabled,
12069 int from_tty)
12070 {
12071 if (from_tty)
12072 {
12073 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
12074 if (!loc_gdbarch)
12075 loc_gdbarch = gdbarch;
12076
12077 describe_other_breakpoints (loc_gdbarch,
12078 sal.pspace, sal.pc, sal.section, -1);
12079 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
12080 version for exception catchpoints, because two catchpoints
12081 used for different exception names will use the same address.
12082 In this case, a "breakpoint ... also set at..." warning is
12083 unproductive. Besides, the warning phrasing is also a bit
12084 inappropriate, we should use the word catchpoint, and tell
12085 the user what type of catchpoint it is. The above is good
12086 enough for now, though. */
12087 }
12088
12089 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
12090
12091 b->enable_state = enabled ? bp_enabled : bp_disabled;
12092 b->disposition = tempflag ? disp_del : disp_donttouch;
12093 b->addr_string = addr_string;
12094 b->language = language_ada;
12095 }
12096
12097 /* Splits the argument using space as delimiter. Returns an xmalloc'd
12098 filter list, or NULL if no filtering is required. */
12099 static VEC(int) *
12100 catch_syscall_split_args (char *arg)
12101 {
12102 VEC(int) *result = NULL;
12103 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
12104
12105 while (*arg != '\0')
12106 {
12107 int i, syscall_number;
12108 char *endptr;
12109 char cur_name[128];
12110 struct syscall s;
12111
12112 /* Skip whitespace. */
12113 arg = skip_spaces (arg);
12114
12115 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
12116 cur_name[i] = arg[i];
12117 cur_name[i] = '\0';
12118 arg += i;
12119
12120 /* Check if the user provided a syscall name or a number. */
12121 syscall_number = (int) strtol (cur_name, &endptr, 0);
12122 if (*endptr == '\0')
12123 get_syscall_by_number (syscall_number, &s);
12124 else
12125 {
12126 /* We have a name. Let's check if it's valid and convert it
12127 to a number. */
12128 get_syscall_by_name (cur_name, &s);
12129
12130 if (s.number == UNKNOWN_SYSCALL)
12131 /* Here we have to issue an error instead of a warning,
12132 because GDB cannot do anything useful if there's no
12133 syscall number to be caught. */
12134 error (_("Unknown syscall name '%s'."), cur_name);
12135 }
12136
12137 /* Ok, it's valid. */
12138 VEC_safe_push (int, result, s.number);
12139 }
12140
12141 discard_cleanups (cleanup);
12142 return result;
12143 }
12144
12145 /* Implement the "catch syscall" command. */
12146
12147 static void
12148 catch_syscall_command_1 (char *arg, int from_tty,
12149 struct cmd_list_element *command)
12150 {
12151 int tempflag;
12152 VEC(int) *filter;
12153 struct syscall s;
12154 struct gdbarch *gdbarch = get_current_arch ();
12155
12156 /* Checking if the feature if supported. */
12157 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
12158 error (_("The feature 'catch syscall' is not supported on \
12159 this architecture yet."));
12160
12161 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12162
12163 arg = skip_spaces (arg);
12164
12165 /* We need to do this first "dummy" translation in order
12166 to get the syscall XML file loaded or, most important,
12167 to display a warning to the user if there's no XML file
12168 for his/her architecture. */
12169 get_syscall_by_number (0, &s);
12170
12171 /* The allowed syntax is:
12172 catch syscall
12173 catch syscall <name | number> [<name | number> ... <name | number>]
12174
12175 Let's check if there's a syscall name. */
12176
12177 if (arg != NULL)
12178 filter = catch_syscall_split_args (arg);
12179 else
12180 filter = NULL;
12181
12182 create_syscall_event_catchpoint (tempflag, filter,
12183 &catch_syscall_breakpoint_ops);
12184 }
12185
12186 static void
12187 catch_command (char *arg, int from_tty)
12188 {
12189 error (_("Catch requires an event name."));
12190 }
12191 \f
12192
12193 static void
12194 tcatch_command (char *arg, int from_tty)
12195 {
12196 error (_("Catch requires an event name."));
12197 }
12198
12199 /* A qsort comparison function that sorts breakpoints in order. */
12200
12201 static int
12202 compare_breakpoints (const void *a, const void *b)
12203 {
12204 const breakpoint_p *ba = a;
12205 uintptr_t ua = (uintptr_t) *ba;
12206 const breakpoint_p *bb = b;
12207 uintptr_t ub = (uintptr_t) *bb;
12208
12209 if ((*ba)->number < (*bb)->number)
12210 return -1;
12211 else if ((*ba)->number > (*bb)->number)
12212 return 1;
12213
12214 /* Now sort by address, in case we see, e..g, two breakpoints with
12215 the number 0. */
12216 if (ua < ub)
12217 return -1;
12218 return ua > ub ? 1 : 0;
12219 }
12220
12221 /* Delete breakpoints by address or line. */
12222
12223 static void
12224 clear_command (char *arg, int from_tty)
12225 {
12226 struct breakpoint *b, *prev;
12227 VEC(breakpoint_p) *found = 0;
12228 int ix;
12229 int default_match;
12230 struct symtabs_and_lines sals;
12231 struct symtab_and_line sal;
12232 int i;
12233 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
12234
12235 if (arg)
12236 {
12237 sals = decode_line_with_current_source (arg,
12238 (DECODE_LINE_FUNFIRSTLINE
12239 | DECODE_LINE_LIST_MODE));
12240 make_cleanup (xfree, sals.sals);
12241 default_match = 0;
12242 }
12243 else
12244 {
12245 sals.sals = (struct symtab_and_line *)
12246 xmalloc (sizeof (struct symtab_and_line));
12247 make_cleanup (xfree, sals.sals);
12248 init_sal (&sal); /* Initialize to zeroes. */
12249
12250 /* Set sal's line, symtab, pc, and pspace to the values
12251 corresponding to the last call to print_frame_info. If the
12252 codepoint is not valid, this will set all the fields to 0. */
12253 get_last_displayed_sal (&sal);
12254 if (sal.symtab == 0)
12255 error (_("No source file specified."));
12256
12257 sals.sals[0] = sal;
12258 sals.nelts = 1;
12259
12260 default_match = 1;
12261 }
12262
12263 /* We don't call resolve_sal_pc here. That's not as bad as it
12264 seems, because all existing breakpoints typically have both
12265 file/line and pc set. So, if clear is given file/line, we can
12266 match this to existing breakpoint without obtaining pc at all.
12267
12268 We only support clearing given the address explicitly
12269 present in breakpoint table. Say, we've set breakpoint
12270 at file:line. There were several PC values for that file:line,
12271 due to optimization, all in one block.
12272
12273 We've picked one PC value. If "clear" is issued with another
12274 PC corresponding to the same file:line, the breakpoint won't
12275 be cleared. We probably can still clear the breakpoint, but
12276 since the other PC value is never presented to user, user
12277 can only find it by guessing, and it does not seem important
12278 to support that. */
12279
12280 /* For each line spec given, delete bps which correspond to it. Do
12281 it in two passes, solely to preserve the current behavior that
12282 from_tty is forced true if we delete more than one
12283 breakpoint. */
12284
12285 found = NULL;
12286 make_cleanup (VEC_cleanup (breakpoint_p), &found);
12287 for (i = 0; i < sals.nelts; i++)
12288 {
12289 const char *sal_fullname;
12290
12291 /* If exact pc given, clear bpts at that pc.
12292 If line given (pc == 0), clear all bpts on specified line.
12293 If defaulting, clear all bpts on default line
12294 or at default pc.
12295
12296 defaulting sal.pc != 0 tests to do
12297
12298 0 1 pc
12299 1 1 pc _and_ line
12300 0 0 line
12301 1 0 <can't happen> */
12302
12303 sal = sals.sals[i];
12304 sal_fullname = (sal.symtab == NULL
12305 ? NULL : symtab_to_fullname (sal.symtab));
12306
12307 /* Find all matching breakpoints and add them to 'found'. */
12308 ALL_BREAKPOINTS (b)
12309 {
12310 int match = 0;
12311 /* Are we going to delete b? */
12312 if (b->type != bp_none && !is_watchpoint (b))
12313 {
12314 struct bp_location *loc = b->loc;
12315 for (; loc; loc = loc->next)
12316 {
12317 /* If the user specified file:line, don't allow a PC
12318 match. This matches historical gdb behavior. */
12319 int pc_match = (!sal.explicit_line
12320 && sal.pc
12321 && (loc->pspace == sal.pspace)
12322 && (loc->address == sal.pc)
12323 && (!section_is_overlay (loc->section)
12324 || loc->section == sal.section));
12325 int line_match = 0;
12326
12327 if ((default_match || sal.explicit_line)
12328 && loc->symtab != NULL
12329 && sal_fullname != NULL
12330 && sal.pspace == loc->pspace
12331 && loc->line_number == sal.line
12332 && filename_cmp (symtab_to_fullname (loc->symtab),
12333 sal_fullname) == 0)
12334 line_match = 1;
12335
12336 if (pc_match || line_match)
12337 {
12338 match = 1;
12339 break;
12340 }
12341 }
12342 }
12343
12344 if (match)
12345 VEC_safe_push(breakpoint_p, found, b);
12346 }
12347 }
12348
12349 /* Now go thru the 'found' chain and delete them. */
12350 if (VEC_empty(breakpoint_p, found))
12351 {
12352 if (arg)
12353 error (_("No breakpoint at %s."), arg);
12354 else
12355 error (_("No breakpoint at this line."));
12356 }
12357
12358 /* Remove duplicates from the vec. */
12359 qsort (VEC_address (breakpoint_p, found),
12360 VEC_length (breakpoint_p, found),
12361 sizeof (breakpoint_p),
12362 compare_breakpoints);
12363 prev = VEC_index (breakpoint_p, found, 0);
12364 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12365 {
12366 if (b == prev)
12367 {
12368 VEC_ordered_remove (breakpoint_p, found, ix);
12369 --ix;
12370 }
12371 }
12372
12373 if (VEC_length(breakpoint_p, found) > 1)
12374 from_tty = 1; /* Always report if deleted more than one. */
12375 if (from_tty)
12376 {
12377 if (VEC_length(breakpoint_p, found) == 1)
12378 printf_unfiltered (_("Deleted breakpoint "));
12379 else
12380 printf_unfiltered (_("Deleted breakpoints "));
12381 }
12382
12383 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12384 {
12385 if (from_tty)
12386 printf_unfiltered ("%d ", b->number);
12387 delete_breakpoint (b);
12388 }
12389 if (from_tty)
12390 putchar_unfiltered ('\n');
12391
12392 do_cleanups (cleanups);
12393 }
12394 \f
12395 /* Delete breakpoint in BS if they are `delete' breakpoints and
12396 all breakpoints that are marked for deletion, whether hit or not.
12397 This is called after any breakpoint is hit, or after errors. */
12398
12399 void
12400 breakpoint_auto_delete (bpstat bs)
12401 {
12402 struct breakpoint *b, *b_tmp;
12403
12404 for (; bs; bs = bs->next)
12405 if (bs->breakpoint_at
12406 && bs->breakpoint_at->disposition == disp_del
12407 && bs->stop)
12408 delete_breakpoint (bs->breakpoint_at);
12409
12410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12411 {
12412 if (b->disposition == disp_del_at_next_stop)
12413 delete_breakpoint (b);
12414 }
12415 }
12416
12417 /* A comparison function for bp_location AP and BP being interfaced to
12418 qsort. Sort elements primarily by their ADDRESS (no matter what
12419 does breakpoint_address_is_meaningful say for its OWNER),
12420 secondarily by ordering first bp_permanent OWNERed elements and
12421 terciarily just ensuring the array is sorted stable way despite
12422 qsort being an unstable algorithm. */
12423
12424 static int
12425 bp_location_compare (const void *ap, const void *bp)
12426 {
12427 struct bp_location *a = *(void **) ap;
12428 struct bp_location *b = *(void **) bp;
12429 /* A and B come from existing breakpoints having non-NULL OWNER. */
12430 int a_perm = a->owner->enable_state == bp_permanent;
12431 int b_perm = b->owner->enable_state == bp_permanent;
12432
12433 if (a->address != b->address)
12434 return (a->address > b->address) - (a->address < b->address);
12435
12436 /* Sort locations at the same address by their pspace number, keeping
12437 locations of the same inferior (in a multi-inferior environment)
12438 grouped. */
12439
12440 if (a->pspace->num != b->pspace->num)
12441 return ((a->pspace->num > b->pspace->num)
12442 - (a->pspace->num < b->pspace->num));
12443
12444 /* Sort permanent breakpoints first. */
12445 if (a_perm != b_perm)
12446 return (a_perm < b_perm) - (a_perm > b_perm);
12447
12448 /* Make the internal GDB representation stable across GDB runs
12449 where A and B memory inside GDB can differ. Breakpoint locations of
12450 the same type at the same address can be sorted in arbitrary order. */
12451
12452 if (a->owner->number != b->owner->number)
12453 return ((a->owner->number > b->owner->number)
12454 - (a->owner->number < b->owner->number));
12455
12456 return (a > b) - (a < b);
12457 }
12458
12459 /* Set bp_location_placed_address_before_address_max and
12460 bp_location_shadow_len_after_address_max according to the current
12461 content of the bp_location array. */
12462
12463 static void
12464 bp_location_target_extensions_update (void)
12465 {
12466 struct bp_location *bl, **blp_tmp;
12467
12468 bp_location_placed_address_before_address_max = 0;
12469 bp_location_shadow_len_after_address_max = 0;
12470
12471 ALL_BP_LOCATIONS (bl, blp_tmp)
12472 {
12473 CORE_ADDR start, end, addr;
12474
12475 if (!bp_location_has_shadow (bl))
12476 continue;
12477
12478 start = bl->target_info.placed_address;
12479 end = start + bl->target_info.shadow_len;
12480
12481 gdb_assert (bl->address >= start);
12482 addr = bl->address - start;
12483 if (addr > bp_location_placed_address_before_address_max)
12484 bp_location_placed_address_before_address_max = addr;
12485
12486 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12487
12488 gdb_assert (bl->address < end);
12489 addr = end - bl->address;
12490 if (addr > bp_location_shadow_len_after_address_max)
12491 bp_location_shadow_len_after_address_max = addr;
12492 }
12493 }
12494
12495 /* Download tracepoint locations if they haven't been. */
12496
12497 static void
12498 download_tracepoint_locations (void)
12499 {
12500 struct breakpoint *b;
12501 struct cleanup *old_chain;
12502
12503 if (!target_can_download_tracepoint ())
12504 return;
12505
12506 old_chain = save_current_space_and_thread ();
12507
12508 ALL_TRACEPOINTS (b)
12509 {
12510 struct bp_location *bl;
12511 struct tracepoint *t;
12512 int bp_location_downloaded = 0;
12513
12514 if ((b->type == bp_fast_tracepoint
12515 ? !may_insert_fast_tracepoints
12516 : !may_insert_tracepoints))
12517 continue;
12518
12519 for (bl = b->loc; bl; bl = bl->next)
12520 {
12521 /* In tracepoint, locations are _never_ duplicated, so
12522 should_be_inserted is equivalent to
12523 unduplicated_should_be_inserted. */
12524 if (!should_be_inserted (bl) || bl->inserted)
12525 continue;
12526
12527 switch_to_program_space_and_thread (bl->pspace);
12528
12529 target_download_tracepoint (bl);
12530
12531 bl->inserted = 1;
12532 bp_location_downloaded = 1;
12533 }
12534 t = (struct tracepoint *) b;
12535 t->number_on_target = b->number;
12536 if (bp_location_downloaded)
12537 observer_notify_breakpoint_modified (b);
12538 }
12539
12540 do_cleanups (old_chain);
12541 }
12542
12543 /* Swap the insertion/duplication state between two locations. */
12544
12545 static void
12546 swap_insertion (struct bp_location *left, struct bp_location *right)
12547 {
12548 const int left_inserted = left->inserted;
12549 const int left_duplicate = left->duplicate;
12550 const int left_needs_update = left->needs_update;
12551 const struct bp_target_info left_target_info = left->target_info;
12552
12553 /* Locations of tracepoints can never be duplicated. */
12554 if (is_tracepoint (left->owner))
12555 gdb_assert (!left->duplicate);
12556 if (is_tracepoint (right->owner))
12557 gdb_assert (!right->duplicate);
12558
12559 left->inserted = right->inserted;
12560 left->duplicate = right->duplicate;
12561 left->needs_update = right->needs_update;
12562 left->target_info = right->target_info;
12563 right->inserted = left_inserted;
12564 right->duplicate = left_duplicate;
12565 right->needs_update = left_needs_update;
12566 right->target_info = left_target_info;
12567 }
12568
12569 /* Force the re-insertion of the locations at ADDRESS. This is called
12570 once a new/deleted/modified duplicate location is found and we are evaluating
12571 conditions on the target's side. Such conditions need to be updated on
12572 the target. */
12573
12574 static void
12575 force_breakpoint_reinsertion (struct bp_location *bl)
12576 {
12577 struct bp_location **locp = NULL, **loc2p;
12578 struct bp_location *loc;
12579 CORE_ADDR address = 0;
12580 int pspace_num;
12581
12582 address = bl->address;
12583 pspace_num = bl->pspace->num;
12584
12585 /* This is only meaningful if the target is
12586 evaluating conditions and if the user has
12587 opted for condition evaluation on the target's
12588 side. */
12589 if (gdb_evaluates_breakpoint_condition_p ()
12590 || !target_supports_evaluation_of_breakpoint_conditions ())
12591 return;
12592
12593 /* Flag all breakpoint locations with this address and
12594 the same program space as the location
12595 as "its condition has changed". We need to
12596 update the conditions on the target's side. */
12597 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12598 {
12599 loc = *loc2p;
12600
12601 if (!is_breakpoint (loc->owner)
12602 || pspace_num != loc->pspace->num)
12603 continue;
12604
12605 /* Flag the location appropriately. We use a different state to
12606 let everyone know that we already updated the set of locations
12607 with addr bl->address and program space bl->pspace. This is so
12608 we don't have to keep calling these functions just to mark locations
12609 that have already been marked. */
12610 loc->condition_changed = condition_updated;
12611
12612 /* Free the agent expression bytecode as well. We will compute
12613 it later on. */
12614 if (loc->cond_bytecode)
12615 {
12616 free_agent_expr (loc->cond_bytecode);
12617 loc->cond_bytecode = NULL;
12618 }
12619 }
12620 }
12621 /* Called whether new breakpoints are created, or existing breakpoints
12622 deleted, to update the global location list and recompute which
12623 locations are duplicate of which.
12624
12625 The INSERT_MODE flag determines whether locations may not, may, or
12626 shall be inserted now. See 'enum ugll_insert_mode' for more
12627 info. */
12628
12629 static void
12630 update_global_location_list (enum ugll_insert_mode insert_mode)
12631 {
12632 struct breakpoint *b;
12633 struct bp_location **locp, *loc;
12634 struct cleanup *cleanups;
12635 /* Last breakpoint location address that was marked for update. */
12636 CORE_ADDR last_addr = 0;
12637 /* Last breakpoint location program space that was marked for update. */
12638 int last_pspace_num = -1;
12639
12640 /* Used in the duplicates detection below. When iterating over all
12641 bp_locations, points to the first bp_location of a given address.
12642 Breakpoints and watchpoints of different types are never
12643 duplicates of each other. Keep one pointer for each type of
12644 breakpoint/watchpoint, so we only need to loop over all locations
12645 once. */
12646 struct bp_location *bp_loc_first; /* breakpoint */
12647 struct bp_location *wp_loc_first; /* hardware watchpoint */
12648 struct bp_location *awp_loc_first; /* access watchpoint */
12649 struct bp_location *rwp_loc_first; /* read watchpoint */
12650
12651 /* Saved former bp_location array which we compare against the newly
12652 built bp_location from the current state of ALL_BREAKPOINTS. */
12653 struct bp_location **old_location, **old_locp;
12654 unsigned old_location_count;
12655
12656 old_location = bp_location;
12657 old_location_count = bp_location_count;
12658 bp_location = NULL;
12659 bp_location_count = 0;
12660 cleanups = make_cleanup (xfree, old_location);
12661
12662 ALL_BREAKPOINTS (b)
12663 for (loc = b->loc; loc; loc = loc->next)
12664 bp_location_count++;
12665
12666 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12667 locp = bp_location;
12668 ALL_BREAKPOINTS (b)
12669 for (loc = b->loc; loc; loc = loc->next)
12670 *locp++ = loc;
12671 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12672 bp_location_compare);
12673
12674 bp_location_target_extensions_update ();
12675
12676 /* Identify bp_location instances that are no longer present in the
12677 new list, and therefore should be freed. Note that it's not
12678 necessary that those locations should be removed from inferior --
12679 if there's another location at the same address (previously
12680 marked as duplicate), we don't need to remove/insert the
12681 location.
12682
12683 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12684 and former bp_location array state respectively. */
12685
12686 locp = bp_location;
12687 for (old_locp = old_location; old_locp < old_location + old_location_count;
12688 old_locp++)
12689 {
12690 struct bp_location *old_loc = *old_locp;
12691 struct bp_location **loc2p;
12692
12693 /* Tells if 'old_loc' is found among the new locations. If
12694 not, we have to free it. */
12695 int found_object = 0;
12696 /* Tells if the location should remain inserted in the target. */
12697 int keep_in_target = 0;
12698 int removed = 0;
12699
12700 /* Skip LOCP entries which will definitely never be needed.
12701 Stop either at or being the one matching OLD_LOC. */
12702 while (locp < bp_location + bp_location_count
12703 && (*locp)->address < old_loc->address)
12704 locp++;
12705
12706 for (loc2p = locp;
12707 (loc2p < bp_location + bp_location_count
12708 && (*loc2p)->address == old_loc->address);
12709 loc2p++)
12710 {
12711 /* Check if this is a new/duplicated location or a duplicated
12712 location that had its condition modified. If so, we want to send
12713 its condition to the target if evaluation of conditions is taking
12714 place there. */
12715 if ((*loc2p)->condition_changed == condition_modified
12716 && (last_addr != old_loc->address
12717 || last_pspace_num != old_loc->pspace->num))
12718 {
12719 force_breakpoint_reinsertion (*loc2p);
12720 last_pspace_num = old_loc->pspace->num;
12721 }
12722
12723 if (*loc2p == old_loc)
12724 found_object = 1;
12725 }
12726
12727 /* We have already handled this address, update it so that we don't
12728 have to go through updates again. */
12729 last_addr = old_loc->address;
12730
12731 /* Target-side condition evaluation: Handle deleted locations. */
12732 if (!found_object)
12733 force_breakpoint_reinsertion (old_loc);
12734
12735 /* If this location is no longer present, and inserted, look if
12736 there's maybe a new location at the same address. If so,
12737 mark that one inserted, and don't remove this one. This is
12738 needed so that we don't have a time window where a breakpoint
12739 at certain location is not inserted. */
12740
12741 if (old_loc->inserted)
12742 {
12743 /* If the location is inserted now, we might have to remove
12744 it. */
12745
12746 if (found_object && should_be_inserted (old_loc))
12747 {
12748 /* The location is still present in the location list,
12749 and still should be inserted. Don't do anything. */
12750 keep_in_target = 1;
12751 }
12752 else
12753 {
12754 /* This location still exists, but it won't be kept in the
12755 target since it may have been disabled. We proceed to
12756 remove its target-side condition. */
12757
12758 /* The location is either no longer present, or got
12759 disabled. See if there's another location at the
12760 same address, in which case we don't need to remove
12761 this one from the target. */
12762
12763 /* OLD_LOC comes from existing struct breakpoint. */
12764 if (breakpoint_address_is_meaningful (old_loc->owner))
12765 {
12766 for (loc2p = locp;
12767 (loc2p < bp_location + bp_location_count
12768 && (*loc2p)->address == old_loc->address);
12769 loc2p++)
12770 {
12771 struct bp_location *loc2 = *loc2p;
12772
12773 if (breakpoint_locations_match (loc2, old_loc))
12774 {
12775 /* Read watchpoint locations are switched to
12776 access watchpoints, if the former are not
12777 supported, but the latter are. */
12778 if (is_hardware_watchpoint (old_loc->owner))
12779 {
12780 gdb_assert (is_hardware_watchpoint (loc2->owner));
12781 loc2->watchpoint_type = old_loc->watchpoint_type;
12782 }
12783
12784 /* loc2 is a duplicated location. We need to check
12785 if it should be inserted in case it will be
12786 unduplicated. */
12787 if (loc2 != old_loc
12788 && unduplicated_should_be_inserted (loc2))
12789 {
12790 swap_insertion (old_loc, loc2);
12791 keep_in_target = 1;
12792 break;
12793 }
12794 }
12795 }
12796 }
12797 }
12798
12799 if (!keep_in_target)
12800 {
12801 if (remove_breakpoint (old_loc, mark_uninserted))
12802 {
12803 /* This is just about all we can do. We could keep
12804 this location on the global list, and try to
12805 remove it next time, but there's no particular
12806 reason why we will succeed next time.
12807
12808 Note that at this point, old_loc->owner is still
12809 valid, as delete_breakpoint frees the breakpoint
12810 only after calling us. */
12811 printf_filtered (_("warning: Error removing "
12812 "breakpoint %d\n"),
12813 old_loc->owner->number);
12814 }
12815 removed = 1;
12816 }
12817 }
12818
12819 if (!found_object)
12820 {
12821 if (removed && non_stop
12822 && breakpoint_address_is_meaningful (old_loc->owner)
12823 && !is_hardware_watchpoint (old_loc->owner))
12824 {
12825 /* This location was removed from the target. In
12826 non-stop mode, a race condition is possible where
12827 we've removed a breakpoint, but stop events for that
12828 breakpoint are already queued and will arrive later.
12829 We apply an heuristic to be able to distinguish such
12830 SIGTRAPs from other random SIGTRAPs: we keep this
12831 breakpoint location for a bit, and will retire it
12832 after we see some number of events. The theory here
12833 is that reporting of events should, "on the average",
12834 be fair, so after a while we'll see events from all
12835 threads that have anything of interest, and no longer
12836 need to keep this breakpoint location around. We
12837 don't hold locations forever so to reduce chances of
12838 mistaking a non-breakpoint SIGTRAP for a breakpoint
12839 SIGTRAP.
12840
12841 The heuristic failing can be disastrous on
12842 decr_pc_after_break targets.
12843
12844 On decr_pc_after_break targets, like e.g., x86-linux,
12845 if we fail to recognize a late breakpoint SIGTRAP,
12846 because events_till_retirement has reached 0 too
12847 soon, we'll fail to do the PC adjustment, and report
12848 a random SIGTRAP to the user. When the user resumes
12849 the inferior, it will most likely immediately crash
12850 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12851 corrupted, because of being resumed e.g., in the
12852 middle of a multi-byte instruction, or skipped a
12853 one-byte instruction. This was actually seen happen
12854 on native x86-linux, and should be less rare on
12855 targets that do not support new thread events, like
12856 remote, due to the heuristic depending on
12857 thread_count.
12858
12859 Mistaking a random SIGTRAP for a breakpoint trap
12860 causes similar symptoms (PC adjustment applied when
12861 it shouldn't), but then again, playing with SIGTRAPs
12862 behind the debugger's back is asking for trouble.
12863
12864 Since hardware watchpoint traps are always
12865 distinguishable from other traps, so we don't need to
12866 apply keep hardware watchpoint moribund locations
12867 around. We simply always ignore hardware watchpoint
12868 traps we can no longer explain. */
12869
12870 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12871 old_loc->owner = NULL;
12872
12873 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12874 }
12875 else
12876 {
12877 old_loc->owner = NULL;
12878 decref_bp_location (&old_loc);
12879 }
12880 }
12881 }
12882
12883 /* Rescan breakpoints at the same address and section, marking the
12884 first one as "first" and any others as "duplicates". This is so
12885 that the bpt instruction is only inserted once. If we have a
12886 permanent breakpoint at the same place as BPT, make that one the
12887 official one, and the rest as duplicates. Permanent breakpoints
12888 are sorted first for the same address.
12889
12890 Do the same for hardware watchpoints, but also considering the
12891 watchpoint's type (regular/access/read) and length. */
12892
12893 bp_loc_first = NULL;
12894 wp_loc_first = NULL;
12895 awp_loc_first = NULL;
12896 rwp_loc_first = NULL;
12897 ALL_BP_LOCATIONS (loc, locp)
12898 {
12899 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12900 non-NULL. */
12901 struct bp_location **loc_first_p;
12902 b = loc->owner;
12903
12904 if (!unduplicated_should_be_inserted (loc)
12905 || !breakpoint_address_is_meaningful (b)
12906 /* Don't detect duplicate for tracepoint locations because they are
12907 never duplicated. See the comments in field `duplicate' of
12908 `struct bp_location'. */
12909 || is_tracepoint (b))
12910 {
12911 /* Clear the condition modification flag. */
12912 loc->condition_changed = condition_unchanged;
12913 continue;
12914 }
12915
12916 /* Permanent breakpoint should always be inserted. */
12917 if (b->enable_state == bp_permanent && ! loc->inserted)
12918 internal_error (__FILE__, __LINE__,
12919 _("allegedly permanent breakpoint is not "
12920 "actually inserted"));
12921
12922 if (b->type == bp_hardware_watchpoint)
12923 loc_first_p = &wp_loc_first;
12924 else if (b->type == bp_read_watchpoint)
12925 loc_first_p = &rwp_loc_first;
12926 else if (b->type == bp_access_watchpoint)
12927 loc_first_p = &awp_loc_first;
12928 else
12929 loc_first_p = &bp_loc_first;
12930
12931 if (*loc_first_p == NULL
12932 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12933 || !breakpoint_locations_match (loc, *loc_first_p))
12934 {
12935 *loc_first_p = loc;
12936 loc->duplicate = 0;
12937
12938 if (is_breakpoint (loc->owner) && loc->condition_changed)
12939 {
12940 loc->needs_update = 1;
12941 /* Clear the condition modification flag. */
12942 loc->condition_changed = condition_unchanged;
12943 }
12944 continue;
12945 }
12946
12947
12948 /* This and the above ensure the invariant that the first location
12949 is not duplicated, and is the inserted one.
12950 All following are marked as duplicated, and are not inserted. */
12951 if (loc->inserted)
12952 swap_insertion (loc, *loc_first_p);
12953 loc->duplicate = 1;
12954
12955 /* Clear the condition modification flag. */
12956 loc->condition_changed = condition_unchanged;
12957
12958 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12959 && b->enable_state != bp_permanent)
12960 internal_error (__FILE__, __LINE__,
12961 _("another breakpoint was inserted on top of "
12962 "a permanent breakpoint"));
12963 }
12964
12965 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12966 {
12967 if (insert_mode != UGLL_DONT_INSERT)
12968 insert_breakpoint_locations ();
12969 else
12970 {
12971 /* Even though the caller told us to not insert new
12972 locations, we may still need to update conditions on the
12973 target's side of breakpoints that were already inserted
12974 if the target is evaluating breakpoint conditions. We
12975 only update conditions for locations that are marked
12976 "needs_update". */
12977 update_inserted_breakpoint_locations ();
12978 }
12979 }
12980
12981 if (insert_mode != UGLL_DONT_INSERT)
12982 download_tracepoint_locations ();
12983
12984 do_cleanups (cleanups);
12985 }
12986
12987 void
12988 breakpoint_retire_moribund (void)
12989 {
12990 struct bp_location *loc;
12991 int ix;
12992
12993 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12994 if (--(loc->events_till_retirement) == 0)
12995 {
12996 decref_bp_location (&loc);
12997 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12998 --ix;
12999 }
13000 }
13001
13002 static void
13003 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
13004 {
13005 volatile struct gdb_exception e;
13006
13007 TRY_CATCH (e, RETURN_MASK_ERROR)
13008 update_global_location_list (insert_mode);
13009 }
13010
13011 /* Clear BKP from a BPS. */
13012
13013 static void
13014 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
13015 {
13016 bpstat bs;
13017
13018 for (bs = bps; bs; bs = bs->next)
13019 if (bs->breakpoint_at == bpt)
13020 {
13021 bs->breakpoint_at = NULL;
13022 bs->old_val = NULL;
13023 /* bs->commands will be freed later. */
13024 }
13025 }
13026
13027 /* Callback for iterate_over_threads. */
13028 static int
13029 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
13030 {
13031 struct breakpoint *bpt = data;
13032
13033 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
13034 return 0;
13035 }
13036
13037 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
13038 callbacks. */
13039
13040 static void
13041 say_where (struct breakpoint *b)
13042 {
13043 struct value_print_options opts;
13044
13045 get_user_print_options (&opts);
13046
13047 /* i18n: cagney/2005-02-11: Below needs to be merged into a
13048 single string. */
13049 if (b->loc == NULL)
13050 {
13051 printf_filtered (_(" (%s) pending."), b->addr_string);
13052 }
13053 else
13054 {
13055 if (opts.addressprint || b->loc->symtab == NULL)
13056 {
13057 printf_filtered (" at ");
13058 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
13059 gdb_stdout);
13060 }
13061 if (b->loc->symtab != NULL)
13062 {
13063 /* If there is a single location, we can print the location
13064 more nicely. */
13065 if (b->loc->next == NULL)
13066 printf_filtered (": file %s, line %d.",
13067 symtab_to_filename_for_display (b->loc->symtab),
13068 b->loc->line_number);
13069 else
13070 /* This is not ideal, but each location may have a
13071 different file name, and this at least reflects the
13072 real situation somewhat. */
13073 printf_filtered (": %s.", b->addr_string);
13074 }
13075
13076 if (b->loc->next)
13077 {
13078 struct bp_location *loc = b->loc;
13079 int n = 0;
13080 for (; loc; loc = loc->next)
13081 ++n;
13082 printf_filtered (" (%d locations)", n);
13083 }
13084 }
13085 }
13086
13087 /* Default bp_location_ops methods. */
13088
13089 static void
13090 bp_location_dtor (struct bp_location *self)
13091 {
13092 xfree (self->cond);
13093 if (self->cond_bytecode)
13094 free_agent_expr (self->cond_bytecode);
13095 xfree (self->function_name);
13096
13097 VEC_free (agent_expr_p, self->target_info.conditions);
13098 VEC_free (agent_expr_p, self->target_info.tcommands);
13099 }
13100
13101 static const struct bp_location_ops bp_location_ops =
13102 {
13103 bp_location_dtor
13104 };
13105
13106 /* Default breakpoint_ops methods all breakpoint_ops ultimately
13107 inherit from. */
13108
13109 static void
13110 base_breakpoint_dtor (struct breakpoint *self)
13111 {
13112 decref_counted_command_line (&self->commands);
13113 xfree (self->cond_string);
13114 xfree (self->extra_string);
13115 xfree (self->addr_string);
13116 xfree (self->filter);
13117 xfree (self->addr_string_range_end);
13118 }
13119
13120 static struct bp_location *
13121 base_breakpoint_allocate_location (struct breakpoint *self)
13122 {
13123 struct bp_location *loc;
13124
13125 loc = XNEW (struct bp_location);
13126 init_bp_location (loc, &bp_location_ops, self);
13127 return loc;
13128 }
13129
13130 static void
13131 base_breakpoint_re_set (struct breakpoint *b)
13132 {
13133 /* Nothing to re-set. */
13134 }
13135
13136 #define internal_error_pure_virtual_called() \
13137 gdb_assert_not_reached ("pure virtual function called")
13138
13139 static int
13140 base_breakpoint_insert_location (struct bp_location *bl)
13141 {
13142 internal_error_pure_virtual_called ();
13143 }
13144
13145 static int
13146 base_breakpoint_remove_location (struct bp_location *bl)
13147 {
13148 internal_error_pure_virtual_called ();
13149 }
13150
13151 static int
13152 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
13153 struct address_space *aspace,
13154 CORE_ADDR bp_addr,
13155 const struct target_waitstatus *ws)
13156 {
13157 internal_error_pure_virtual_called ();
13158 }
13159
13160 static void
13161 base_breakpoint_check_status (bpstat bs)
13162 {
13163 /* Always stop. */
13164 }
13165
13166 /* A "works_in_software_mode" breakpoint_ops method that just internal
13167 errors. */
13168
13169 static int
13170 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
13171 {
13172 internal_error_pure_virtual_called ();
13173 }
13174
13175 /* A "resources_needed" breakpoint_ops method that just internal
13176 errors. */
13177
13178 static int
13179 base_breakpoint_resources_needed (const struct bp_location *bl)
13180 {
13181 internal_error_pure_virtual_called ();
13182 }
13183
13184 static enum print_stop_action
13185 base_breakpoint_print_it (bpstat bs)
13186 {
13187 internal_error_pure_virtual_called ();
13188 }
13189
13190 static void
13191 base_breakpoint_print_one_detail (const struct breakpoint *self,
13192 struct ui_out *uiout)
13193 {
13194 /* nothing */
13195 }
13196
13197 static void
13198 base_breakpoint_print_mention (struct breakpoint *b)
13199 {
13200 internal_error_pure_virtual_called ();
13201 }
13202
13203 static void
13204 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
13205 {
13206 internal_error_pure_virtual_called ();
13207 }
13208
13209 static void
13210 base_breakpoint_create_sals_from_address (char **arg,
13211 struct linespec_result *canonical,
13212 enum bptype type_wanted,
13213 char *addr_start,
13214 char **copy_arg)
13215 {
13216 internal_error_pure_virtual_called ();
13217 }
13218
13219 static void
13220 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13221 struct linespec_result *c,
13222 char *cond_string,
13223 char *extra_string,
13224 enum bptype type_wanted,
13225 enum bpdisp disposition,
13226 int thread,
13227 int task, int ignore_count,
13228 const struct breakpoint_ops *o,
13229 int from_tty, int enabled,
13230 int internal, unsigned flags)
13231 {
13232 internal_error_pure_virtual_called ();
13233 }
13234
13235 static void
13236 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
13237 struct symtabs_and_lines *sals)
13238 {
13239 internal_error_pure_virtual_called ();
13240 }
13241
13242 /* The default 'explains_signal' method. */
13243
13244 static int
13245 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
13246 {
13247 return 1;
13248 }
13249
13250 /* The default "after_condition_true" method. */
13251
13252 static void
13253 base_breakpoint_after_condition_true (struct bpstats *bs)
13254 {
13255 /* Nothing to do. */
13256 }
13257
13258 struct breakpoint_ops base_breakpoint_ops =
13259 {
13260 base_breakpoint_dtor,
13261 base_breakpoint_allocate_location,
13262 base_breakpoint_re_set,
13263 base_breakpoint_insert_location,
13264 base_breakpoint_remove_location,
13265 base_breakpoint_breakpoint_hit,
13266 base_breakpoint_check_status,
13267 base_breakpoint_resources_needed,
13268 base_breakpoint_works_in_software_mode,
13269 base_breakpoint_print_it,
13270 NULL,
13271 base_breakpoint_print_one_detail,
13272 base_breakpoint_print_mention,
13273 base_breakpoint_print_recreate,
13274 base_breakpoint_create_sals_from_address,
13275 base_breakpoint_create_breakpoints_sal,
13276 base_breakpoint_decode_linespec,
13277 base_breakpoint_explains_signal,
13278 base_breakpoint_after_condition_true,
13279 };
13280
13281 /* Default breakpoint_ops methods. */
13282
13283 static void
13284 bkpt_re_set (struct breakpoint *b)
13285 {
13286 /* FIXME: is this still reachable? */
13287 if (b->addr_string == NULL)
13288 {
13289 /* Anything without a string can't be re-set. */
13290 delete_breakpoint (b);
13291 return;
13292 }
13293
13294 breakpoint_re_set_default (b);
13295 }
13296
13297 /* Copy SRC's shadow buffer and whatever else we'd set if we actually
13298 inserted DEST, so we can remove it later, in case SRC is removed
13299 first. */
13300
13301 static void
13302 bp_target_info_copy_insertion_state (struct bp_target_info *dest,
13303 const struct bp_target_info *src)
13304 {
13305 dest->shadow_len = src->shadow_len;
13306 memcpy (dest->shadow_contents, src->shadow_contents, src->shadow_len);
13307 dest->placed_size = src->placed_size;
13308 }
13309
13310 static int
13311 bkpt_insert_location (struct bp_location *bl)
13312 {
13313 if (bl->loc_type == bp_loc_hardware_breakpoint)
13314 return target_insert_hw_breakpoint (bl->gdbarch,
13315 &bl->target_info);
13316 else
13317 {
13318 struct bp_target_info *bp_tgt = &bl->target_info;
13319 int ret;
13320 int sss_slot;
13321
13322 /* There is no need to insert a breakpoint if an unconditional
13323 raw/sss breakpoint is already inserted at that location. */
13324 sss_slot = find_single_step_breakpoint (bp_tgt->placed_address_space,
13325 bp_tgt->placed_address);
13326 if (sss_slot >= 0)
13327 {
13328 struct bp_target_info *sss_bp_tgt = single_step_breakpoints[sss_slot];
13329
13330 bp_target_info_copy_insertion_state (bp_tgt, sss_bp_tgt);
13331 return 0;
13332 }
13333
13334 return target_insert_breakpoint (bl->gdbarch, bp_tgt);
13335 }
13336 }
13337
13338 static int
13339 bkpt_remove_location (struct bp_location *bl)
13340 {
13341 if (bl->loc_type == bp_loc_hardware_breakpoint)
13342 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13343 else
13344 {
13345 struct bp_target_info *bp_tgt = &bl->target_info;
13346 struct address_space *aspace = bp_tgt->placed_address_space;
13347 CORE_ADDR address = bp_tgt->placed_address;
13348
13349 /* Only remove the breakpoint if there is no raw/sss breakpoint
13350 still inserted at this location. Otherwise, we would be
13351 effectively disabling the raw/sss breakpoint. */
13352 if (single_step_breakpoint_inserted_here_p (aspace, address))
13353 return 0;
13354
13355 return target_remove_breakpoint (bl->gdbarch, bp_tgt);
13356 }
13357 }
13358
13359 static int
13360 bkpt_breakpoint_hit (const struct bp_location *bl,
13361 struct address_space *aspace, CORE_ADDR bp_addr,
13362 const struct target_waitstatus *ws)
13363 {
13364 if (ws->kind != TARGET_WAITKIND_STOPPED
13365 || ws->value.sig != GDB_SIGNAL_TRAP)
13366 return 0;
13367
13368 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13369 aspace, bp_addr))
13370 return 0;
13371
13372 if (overlay_debugging /* unmapped overlay section */
13373 && section_is_overlay (bl->section)
13374 && !section_is_mapped (bl->section))
13375 return 0;
13376
13377 return 1;
13378 }
13379
13380 static int
13381 dprintf_breakpoint_hit (const struct bp_location *bl,
13382 struct address_space *aspace, CORE_ADDR bp_addr,
13383 const struct target_waitstatus *ws)
13384 {
13385 if (dprintf_style == dprintf_style_agent
13386 && target_can_run_breakpoint_commands ())
13387 {
13388 /* An agent-style dprintf never causes a stop. If we see a trap
13389 for this address it must be for a breakpoint that happens to
13390 be set at the same address. */
13391 return 0;
13392 }
13393
13394 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13395 }
13396
13397 static int
13398 bkpt_resources_needed (const struct bp_location *bl)
13399 {
13400 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13401
13402 return 1;
13403 }
13404
13405 static enum print_stop_action
13406 bkpt_print_it (bpstat bs)
13407 {
13408 struct breakpoint *b;
13409 const struct bp_location *bl;
13410 int bp_temp;
13411 struct ui_out *uiout = current_uiout;
13412
13413 gdb_assert (bs->bp_location_at != NULL);
13414
13415 bl = bs->bp_location_at;
13416 b = bs->breakpoint_at;
13417
13418 bp_temp = b->disposition == disp_del;
13419 if (bl->address != bl->requested_address)
13420 breakpoint_adjustment_warning (bl->requested_address,
13421 bl->address,
13422 b->number, 1);
13423 annotate_breakpoint (b->number);
13424 if (bp_temp)
13425 ui_out_text (uiout, "\nTemporary breakpoint ");
13426 else
13427 ui_out_text (uiout, "\nBreakpoint ");
13428 if (ui_out_is_mi_like_p (uiout))
13429 {
13430 ui_out_field_string (uiout, "reason",
13431 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13432 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13433 }
13434 ui_out_field_int (uiout, "bkptno", b->number);
13435 ui_out_text (uiout, ", ");
13436
13437 return PRINT_SRC_AND_LOC;
13438 }
13439
13440 static void
13441 bkpt_print_mention (struct breakpoint *b)
13442 {
13443 if (ui_out_is_mi_like_p (current_uiout))
13444 return;
13445
13446 switch (b->type)
13447 {
13448 case bp_breakpoint:
13449 case bp_gnu_ifunc_resolver:
13450 if (b->disposition == disp_del)
13451 printf_filtered (_("Temporary breakpoint"));
13452 else
13453 printf_filtered (_("Breakpoint"));
13454 printf_filtered (_(" %d"), b->number);
13455 if (b->type == bp_gnu_ifunc_resolver)
13456 printf_filtered (_(" at gnu-indirect-function resolver"));
13457 break;
13458 case bp_hardware_breakpoint:
13459 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13460 break;
13461 case bp_dprintf:
13462 printf_filtered (_("Dprintf %d"), b->number);
13463 break;
13464 }
13465
13466 say_where (b);
13467 }
13468
13469 static void
13470 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13471 {
13472 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13473 fprintf_unfiltered (fp, "tbreak");
13474 else if (tp->type == bp_breakpoint)
13475 fprintf_unfiltered (fp, "break");
13476 else if (tp->type == bp_hardware_breakpoint
13477 && tp->disposition == disp_del)
13478 fprintf_unfiltered (fp, "thbreak");
13479 else if (tp->type == bp_hardware_breakpoint)
13480 fprintf_unfiltered (fp, "hbreak");
13481 else
13482 internal_error (__FILE__, __LINE__,
13483 _("unhandled breakpoint type %d"), (int) tp->type);
13484
13485 fprintf_unfiltered (fp, " %s", tp->addr_string);
13486 print_recreate_thread (tp, fp);
13487 }
13488
13489 static void
13490 bkpt_create_sals_from_address (char **arg,
13491 struct linespec_result *canonical,
13492 enum bptype type_wanted,
13493 char *addr_start, char **copy_arg)
13494 {
13495 create_sals_from_address_default (arg, canonical, type_wanted,
13496 addr_start, copy_arg);
13497 }
13498
13499 static void
13500 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13501 struct linespec_result *canonical,
13502 char *cond_string,
13503 char *extra_string,
13504 enum bptype type_wanted,
13505 enum bpdisp disposition,
13506 int thread,
13507 int task, int ignore_count,
13508 const struct breakpoint_ops *ops,
13509 int from_tty, int enabled,
13510 int internal, unsigned flags)
13511 {
13512 create_breakpoints_sal_default (gdbarch, canonical,
13513 cond_string, extra_string,
13514 type_wanted,
13515 disposition, thread, task,
13516 ignore_count, ops, from_tty,
13517 enabled, internal, flags);
13518 }
13519
13520 static void
13521 bkpt_decode_linespec (struct breakpoint *b, char **s,
13522 struct symtabs_and_lines *sals)
13523 {
13524 decode_linespec_default (b, s, sals);
13525 }
13526
13527 /* Virtual table for internal breakpoints. */
13528
13529 static void
13530 internal_bkpt_re_set (struct breakpoint *b)
13531 {
13532 switch (b->type)
13533 {
13534 /* Delete overlay event and longjmp master breakpoints; they
13535 will be reset later by breakpoint_re_set. */
13536 case bp_overlay_event:
13537 case bp_longjmp_master:
13538 case bp_std_terminate_master:
13539 case bp_exception_master:
13540 delete_breakpoint (b);
13541 break;
13542
13543 /* This breakpoint is special, it's set up when the inferior
13544 starts and we really don't want to touch it. */
13545 case bp_shlib_event:
13546
13547 /* Like bp_shlib_event, this breakpoint type is special. Once
13548 it is set up, we do not want to touch it. */
13549 case bp_thread_event:
13550 break;
13551 }
13552 }
13553
13554 static void
13555 internal_bkpt_check_status (bpstat bs)
13556 {
13557 if (bs->breakpoint_at->type == bp_shlib_event)
13558 {
13559 /* If requested, stop when the dynamic linker notifies GDB of
13560 events. This allows the user to get control and place
13561 breakpoints in initializer routines for dynamically loaded
13562 objects (among other things). */
13563 bs->stop = stop_on_solib_events;
13564 bs->print = stop_on_solib_events;
13565 }
13566 else
13567 bs->stop = 0;
13568 }
13569
13570 static enum print_stop_action
13571 internal_bkpt_print_it (bpstat bs)
13572 {
13573 struct breakpoint *b;
13574
13575 b = bs->breakpoint_at;
13576
13577 switch (b->type)
13578 {
13579 case bp_shlib_event:
13580 /* Did we stop because the user set the stop_on_solib_events
13581 variable? (If so, we report this as a generic, "Stopped due
13582 to shlib event" message.) */
13583 print_solib_event (0);
13584 break;
13585
13586 case bp_thread_event:
13587 /* Not sure how we will get here.
13588 GDB should not stop for these breakpoints. */
13589 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13590 break;
13591
13592 case bp_overlay_event:
13593 /* By analogy with the thread event, GDB should not stop for these. */
13594 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13595 break;
13596
13597 case bp_longjmp_master:
13598 /* These should never be enabled. */
13599 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13600 break;
13601
13602 case bp_std_terminate_master:
13603 /* These should never be enabled. */
13604 printf_filtered (_("std::terminate Master Breakpoint: "
13605 "gdb should not stop!\n"));
13606 break;
13607
13608 case bp_exception_master:
13609 /* These should never be enabled. */
13610 printf_filtered (_("Exception Master Breakpoint: "
13611 "gdb should not stop!\n"));
13612 break;
13613 }
13614
13615 return PRINT_NOTHING;
13616 }
13617
13618 static void
13619 internal_bkpt_print_mention (struct breakpoint *b)
13620 {
13621 /* Nothing to mention. These breakpoints are internal. */
13622 }
13623
13624 /* Virtual table for momentary breakpoints */
13625
13626 static void
13627 momentary_bkpt_re_set (struct breakpoint *b)
13628 {
13629 /* Keep temporary breakpoints, which can be encountered when we step
13630 over a dlopen call and solib_add is resetting the breakpoints.
13631 Otherwise these should have been blown away via the cleanup chain
13632 or by breakpoint_init_inferior when we rerun the executable. */
13633 }
13634
13635 static void
13636 momentary_bkpt_check_status (bpstat bs)
13637 {
13638 /* Nothing. The point of these breakpoints is causing a stop. */
13639 }
13640
13641 static enum print_stop_action
13642 momentary_bkpt_print_it (bpstat bs)
13643 {
13644 struct ui_out *uiout = current_uiout;
13645
13646 if (ui_out_is_mi_like_p (uiout))
13647 {
13648 struct breakpoint *b = bs->breakpoint_at;
13649
13650 switch (b->type)
13651 {
13652 case bp_finish:
13653 ui_out_field_string
13654 (uiout, "reason",
13655 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13656 break;
13657
13658 case bp_until:
13659 ui_out_field_string
13660 (uiout, "reason",
13661 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13662 break;
13663 }
13664 }
13665
13666 return PRINT_UNKNOWN;
13667 }
13668
13669 static void
13670 momentary_bkpt_print_mention (struct breakpoint *b)
13671 {
13672 /* Nothing to mention. These breakpoints are internal. */
13673 }
13674
13675 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13676
13677 It gets cleared already on the removal of the first one of such placed
13678 breakpoints. This is OK as they get all removed altogether. */
13679
13680 static void
13681 longjmp_bkpt_dtor (struct breakpoint *self)
13682 {
13683 struct thread_info *tp = find_thread_id (self->thread);
13684
13685 if (tp)
13686 tp->initiating_frame = null_frame_id;
13687
13688 momentary_breakpoint_ops.dtor (self);
13689 }
13690
13691 /* Specific methods for probe breakpoints. */
13692
13693 static int
13694 bkpt_probe_insert_location (struct bp_location *bl)
13695 {
13696 int v = bkpt_insert_location (bl);
13697
13698 if (v == 0)
13699 {
13700 /* The insertion was successful, now let's set the probe's semaphore
13701 if needed. */
13702 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13703 bl->probe.objfile,
13704 bl->gdbarch);
13705 }
13706
13707 return v;
13708 }
13709
13710 static int
13711 bkpt_probe_remove_location (struct bp_location *bl)
13712 {
13713 /* Let's clear the semaphore before removing the location. */
13714 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13715 bl->probe.objfile,
13716 bl->gdbarch);
13717
13718 return bkpt_remove_location (bl);
13719 }
13720
13721 static void
13722 bkpt_probe_create_sals_from_address (char **arg,
13723 struct linespec_result *canonical,
13724 enum bptype type_wanted,
13725 char *addr_start, char **copy_arg)
13726 {
13727 struct linespec_sals lsal;
13728
13729 lsal.sals = parse_probes (arg, canonical);
13730
13731 *copy_arg = xstrdup (canonical->addr_string);
13732 lsal.canonical = xstrdup (*copy_arg);
13733
13734 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13735 }
13736
13737 static void
13738 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13739 struct symtabs_and_lines *sals)
13740 {
13741 *sals = parse_probes (s, NULL);
13742 if (!sals->sals)
13743 error (_("probe not found"));
13744 }
13745
13746 /* The breakpoint_ops structure to be used in tracepoints. */
13747
13748 static void
13749 tracepoint_re_set (struct breakpoint *b)
13750 {
13751 breakpoint_re_set_default (b);
13752 }
13753
13754 static int
13755 tracepoint_breakpoint_hit (const struct bp_location *bl,
13756 struct address_space *aspace, CORE_ADDR bp_addr,
13757 const struct target_waitstatus *ws)
13758 {
13759 /* By definition, the inferior does not report stops at
13760 tracepoints. */
13761 return 0;
13762 }
13763
13764 static void
13765 tracepoint_print_one_detail (const struct breakpoint *self,
13766 struct ui_out *uiout)
13767 {
13768 struct tracepoint *tp = (struct tracepoint *) self;
13769 if (tp->static_trace_marker_id)
13770 {
13771 gdb_assert (self->type == bp_static_tracepoint);
13772
13773 ui_out_text (uiout, "\tmarker id is ");
13774 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13775 tp->static_trace_marker_id);
13776 ui_out_text (uiout, "\n");
13777 }
13778 }
13779
13780 static void
13781 tracepoint_print_mention (struct breakpoint *b)
13782 {
13783 if (ui_out_is_mi_like_p (current_uiout))
13784 return;
13785
13786 switch (b->type)
13787 {
13788 case bp_tracepoint:
13789 printf_filtered (_("Tracepoint"));
13790 printf_filtered (_(" %d"), b->number);
13791 break;
13792 case bp_fast_tracepoint:
13793 printf_filtered (_("Fast tracepoint"));
13794 printf_filtered (_(" %d"), b->number);
13795 break;
13796 case bp_static_tracepoint:
13797 printf_filtered (_("Static tracepoint"));
13798 printf_filtered (_(" %d"), b->number);
13799 break;
13800 default:
13801 internal_error (__FILE__, __LINE__,
13802 _("unhandled tracepoint type %d"), (int) b->type);
13803 }
13804
13805 say_where (b);
13806 }
13807
13808 static void
13809 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13810 {
13811 struct tracepoint *tp = (struct tracepoint *) self;
13812
13813 if (self->type == bp_fast_tracepoint)
13814 fprintf_unfiltered (fp, "ftrace");
13815 if (self->type == bp_static_tracepoint)
13816 fprintf_unfiltered (fp, "strace");
13817 else if (self->type == bp_tracepoint)
13818 fprintf_unfiltered (fp, "trace");
13819 else
13820 internal_error (__FILE__, __LINE__,
13821 _("unhandled tracepoint type %d"), (int) self->type);
13822
13823 fprintf_unfiltered (fp, " %s", self->addr_string);
13824 print_recreate_thread (self, fp);
13825
13826 if (tp->pass_count)
13827 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13828 }
13829
13830 static void
13831 tracepoint_create_sals_from_address (char **arg,
13832 struct linespec_result *canonical,
13833 enum bptype type_wanted,
13834 char *addr_start, char **copy_arg)
13835 {
13836 create_sals_from_address_default (arg, canonical, type_wanted,
13837 addr_start, copy_arg);
13838 }
13839
13840 static void
13841 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13842 struct linespec_result *canonical,
13843 char *cond_string,
13844 char *extra_string,
13845 enum bptype type_wanted,
13846 enum bpdisp disposition,
13847 int thread,
13848 int task, int ignore_count,
13849 const struct breakpoint_ops *ops,
13850 int from_tty, int enabled,
13851 int internal, unsigned flags)
13852 {
13853 create_breakpoints_sal_default (gdbarch, canonical,
13854 cond_string, extra_string,
13855 type_wanted,
13856 disposition, thread, task,
13857 ignore_count, ops, from_tty,
13858 enabled, internal, flags);
13859 }
13860
13861 static void
13862 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13863 struct symtabs_and_lines *sals)
13864 {
13865 decode_linespec_default (b, s, sals);
13866 }
13867
13868 struct breakpoint_ops tracepoint_breakpoint_ops;
13869
13870 /* The breakpoint_ops structure to be use on tracepoints placed in a
13871 static probe. */
13872
13873 static void
13874 tracepoint_probe_create_sals_from_address (char **arg,
13875 struct linespec_result *canonical,
13876 enum bptype type_wanted,
13877 char *addr_start, char **copy_arg)
13878 {
13879 /* We use the same method for breakpoint on probes. */
13880 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13881 addr_start, copy_arg);
13882 }
13883
13884 static void
13885 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13886 struct symtabs_and_lines *sals)
13887 {
13888 /* We use the same method for breakpoint on probes. */
13889 bkpt_probe_decode_linespec (b, s, sals);
13890 }
13891
13892 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13893
13894 /* Dprintf breakpoint_ops methods. */
13895
13896 static void
13897 dprintf_re_set (struct breakpoint *b)
13898 {
13899 breakpoint_re_set_default (b);
13900
13901 /* This breakpoint could have been pending, and be resolved now, and
13902 if so, we should now have the extra string. If we don't, the
13903 dprintf was malformed when created, but we couldn't tell because
13904 we can't extract the extra string until the location is
13905 resolved. */
13906 if (b->loc != NULL && b->extra_string == NULL)
13907 error (_("Format string required"));
13908
13909 /* 1 - connect to target 1, that can run breakpoint commands.
13910 2 - create a dprintf, which resolves fine.
13911 3 - disconnect from target 1
13912 4 - connect to target 2, that can NOT run breakpoint commands.
13913
13914 After steps #3/#4, you'll want the dprintf command list to
13915 be updated, because target 1 and 2 may well return different
13916 answers for target_can_run_breakpoint_commands().
13917 Given absence of finer grained resetting, we get to do
13918 it all the time. */
13919 if (b->extra_string != NULL)
13920 update_dprintf_command_list (b);
13921 }
13922
13923 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13924
13925 static void
13926 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13927 {
13928 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13929 tp->extra_string);
13930 print_recreate_thread (tp, fp);
13931 }
13932
13933 /* Implement the "after_condition_true" breakpoint_ops method for
13934 dprintf.
13935
13936 dprintf's are implemented with regular commands in their command
13937 list, but we run the commands here instead of before presenting the
13938 stop to the user, as dprintf's don't actually cause a stop. This
13939 also makes it so that the commands of multiple dprintfs at the same
13940 address are all handled. */
13941
13942 static void
13943 dprintf_after_condition_true (struct bpstats *bs)
13944 {
13945 struct cleanup *old_chain;
13946 struct bpstats tmp_bs = { NULL };
13947 struct bpstats *tmp_bs_p = &tmp_bs;
13948
13949 /* dprintf's never cause a stop. This wasn't set in the
13950 check_status hook instead because that would make the dprintf's
13951 condition not be evaluated. */
13952 bs->stop = 0;
13953
13954 /* Run the command list here. Take ownership of it instead of
13955 copying. We never want these commands to run later in
13956 bpstat_do_actions, if a breakpoint that causes a stop happens to
13957 be set at same address as this dprintf, or even if running the
13958 commands here throws. */
13959 tmp_bs.commands = bs->commands;
13960 bs->commands = NULL;
13961 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13962
13963 bpstat_do_actions_1 (&tmp_bs_p);
13964
13965 /* 'tmp_bs.commands' will usually be NULL by now, but
13966 bpstat_do_actions_1 may return early without processing the whole
13967 list. */
13968 do_cleanups (old_chain);
13969 }
13970
13971 /* The breakpoint_ops structure to be used on static tracepoints with
13972 markers (`-m'). */
13973
13974 static void
13975 strace_marker_create_sals_from_address (char **arg,
13976 struct linespec_result *canonical,
13977 enum bptype type_wanted,
13978 char *addr_start, char **copy_arg)
13979 {
13980 struct linespec_sals lsal;
13981
13982 lsal.sals = decode_static_tracepoint_spec (arg);
13983
13984 *copy_arg = savestring (addr_start, *arg - addr_start);
13985
13986 canonical->addr_string = xstrdup (*copy_arg);
13987 lsal.canonical = xstrdup (*copy_arg);
13988 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13989 }
13990
13991 static void
13992 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13993 struct linespec_result *canonical,
13994 char *cond_string,
13995 char *extra_string,
13996 enum bptype type_wanted,
13997 enum bpdisp disposition,
13998 int thread,
13999 int task, int ignore_count,
14000 const struct breakpoint_ops *ops,
14001 int from_tty, int enabled,
14002 int internal, unsigned flags)
14003 {
14004 int i;
14005 struct linespec_sals *lsal = VEC_index (linespec_sals,
14006 canonical->sals, 0);
14007
14008 /* If the user is creating a static tracepoint by marker id
14009 (strace -m MARKER_ID), then store the sals index, so that
14010 breakpoint_re_set can try to match up which of the newly
14011 found markers corresponds to this one, and, don't try to
14012 expand multiple locations for each sal, given than SALS
14013 already should contain all sals for MARKER_ID. */
14014
14015 for (i = 0; i < lsal->sals.nelts; ++i)
14016 {
14017 struct symtabs_and_lines expanded;
14018 struct tracepoint *tp;
14019 struct cleanup *old_chain;
14020 char *addr_string;
14021
14022 expanded.nelts = 1;
14023 expanded.sals = &lsal->sals.sals[i];
14024
14025 addr_string = xstrdup (canonical->addr_string);
14026 old_chain = make_cleanup (xfree, addr_string);
14027
14028 tp = XCNEW (struct tracepoint);
14029 init_breakpoint_sal (&tp->base, gdbarch, expanded,
14030 addr_string, NULL,
14031 cond_string, extra_string,
14032 type_wanted, disposition,
14033 thread, task, ignore_count, ops,
14034 from_tty, enabled, internal, flags,
14035 canonical->special_display);
14036 /* Given that its possible to have multiple markers with
14037 the same string id, if the user is creating a static
14038 tracepoint by marker id ("strace -m MARKER_ID"), then
14039 store the sals index, so that breakpoint_re_set can
14040 try to match up which of the newly found markers
14041 corresponds to this one */
14042 tp->static_trace_marker_id_idx = i;
14043
14044 install_breakpoint (internal, &tp->base, 0);
14045
14046 discard_cleanups (old_chain);
14047 }
14048 }
14049
14050 static void
14051 strace_marker_decode_linespec (struct breakpoint *b, char **s,
14052 struct symtabs_and_lines *sals)
14053 {
14054 struct tracepoint *tp = (struct tracepoint *) b;
14055
14056 *sals = decode_static_tracepoint_spec (s);
14057 if (sals->nelts > tp->static_trace_marker_id_idx)
14058 {
14059 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
14060 sals->nelts = 1;
14061 }
14062 else
14063 error (_("marker %s not found"), tp->static_trace_marker_id);
14064 }
14065
14066 static struct breakpoint_ops strace_marker_breakpoint_ops;
14067
14068 static int
14069 strace_marker_p (struct breakpoint *b)
14070 {
14071 return b->ops == &strace_marker_breakpoint_ops;
14072 }
14073
14074 /* Delete a breakpoint and clean up all traces of it in the data
14075 structures. */
14076
14077 void
14078 delete_breakpoint (struct breakpoint *bpt)
14079 {
14080 struct breakpoint *b;
14081
14082 gdb_assert (bpt != NULL);
14083
14084 /* Has this bp already been deleted? This can happen because
14085 multiple lists can hold pointers to bp's. bpstat lists are
14086 especial culprits.
14087
14088 One example of this happening is a watchpoint's scope bp. When
14089 the scope bp triggers, we notice that the watchpoint is out of
14090 scope, and delete it. We also delete its scope bp. But the
14091 scope bp is marked "auto-deleting", and is already on a bpstat.
14092 That bpstat is then checked for auto-deleting bp's, which are
14093 deleted.
14094
14095 A real solution to this problem might involve reference counts in
14096 bp's, and/or giving them pointers back to their referencing
14097 bpstat's, and teaching delete_breakpoint to only free a bp's
14098 storage when no more references were extent. A cheaper bandaid
14099 was chosen. */
14100 if (bpt->type == bp_none)
14101 return;
14102
14103 /* At least avoid this stale reference until the reference counting
14104 of breakpoints gets resolved. */
14105 if (bpt->related_breakpoint != bpt)
14106 {
14107 struct breakpoint *related;
14108 struct watchpoint *w;
14109
14110 if (bpt->type == bp_watchpoint_scope)
14111 w = (struct watchpoint *) bpt->related_breakpoint;
14112 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
14113 w = (struct watchpoint *) bpt;
14114 else
14115 w = NULL;
14116 if (w != NULL)
14117 watchpoint_del_at_next_stop (w);
14118
14119 /* Unlink bpt from the bpt->related_breakpoint ring. */
14120 for (related = bpt; related->related_breakpoint != bpt;
14121 related = related->related_breakpoint);
14122 related->related_breakpoint = bpt->related_breakpoint;
14123 bpt->related_breakpoint = bpt;
14124 }
14125
14126 /* watch_command_1 creates a watchpoint but only sets its number if
14127 update_watchpoint succeeds in creating its bp_locations. If there's
14128 a problem in that process, we'll be asked to delete the half-created
14129 watchpoint. In that case, don't announce the deletion. */
14130 if (bpt->number)
14131 observer_notify_breakpoint_deleted (bpt);
14132
14133 if (breakpoint_chain == bpt)
14134 breakpoint_chain = bpt->next;
14135
14136 ALL_BREAKPOINTS (b)
14137 if (b->next == bpt)
14138 {
14139 b->next = bpt->next;
14140 break;
14141 }
14142
14143 /* Be sure no bpstat's are pointing at the breakpoint after it's
14144 been freed. */
14145 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
14146 in all threads for now. Note that we cannot just remove bpstats
14147 pointing at bpt from the stop_bpstat list entirely, as breakpoint
14148 commands are associated with the bpstat; if we remove it here,
14149 then the later call to bpstat_do_actions (&stop_bpstat); in
14150 event-top.c won't do anything, and temporary breakpoints with
14151 commands won't work. */
14152
14153 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
14154
14155 /* Now that breakpoint is removed from breakpoint list, update the
14156 global location list. This will remove locations that used to
14157 belong to this breakpoint. Do this before freeing the breakpoint
14158 itself, since remove_breakpoint looks at location's owner. It
14159 might be better design to have location completely
14160 self-contained, but it's not the case now. */
14161 update_global_location_list (UGLL_DONT_INSERT);
14162
14163 bpt->ops->dtor (bpt);
14164 /* On the chance that someone will soon try again to delete this
14165 same bp, we mark it as deleted before freeing its storage. */
14166 bpt->type = bp_none;
14167 xfree (bpt);
14168 }
14169
14170 static void
14171 do_delete_breakpoint_cleanup (void *b)
14172 {
14173 delete_breakpoint (b);
14174 }
14175
14176 struct cleanup *
14177 make_cleanup_delete_breakpoint (struct breakpoint *b)
14178 {
14179 return make_cleanup (do_delete_breakpoint_cleanup, b);
14180 }
14181
14182 /* Iterator function to call a user-provided callback function once
14183 for each of B and its related breakpoints. */
14184
14185 static void
14186 iterate_over_related_breakpoints (struct breakpoint *b,
14187 void (*function) (struct breakpoint *,
14188 void *),
14189 void *data)
14190 {
14191 struct breakpoint *related;
14192
14193 related = b;
14194 do
14195 {
14196 struct breakpoint *next;
14197
14198 /* FUNCTION may delete RELATED. */
14199 next = related->related_breakpoint;
14200
14201 if (next == related)
14202 {
14203 /* RELATED is the last ring entry. */
14204 function (related, data);
14205
14206 /* FUNCTION may have deleted it, so we'd never reach back to
14207 B. There's nothing left to do anyway, so just break
14208 out. */
14209 break;
14210 }
14211 else
14212 function (related, data);
14213
14214 related = next;
14215 }
14216 while (related != b);
14217 }
14218
14219 static void
14220 do_delete_breakpoint (struct breakpoint *b, void *ignore)
14221 {
14222 delete_breakpoint (b);
14223 }
14224
14225 /* A callback for map_breakpoint_numbers that calls
14226 delete_breakpoint. */
14227
14228 static void
14229 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
14230 {
14231 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
14232 }
14233
14234 void
14235 delete_command (char *arg, int from_tty)
14236 {
14237 struct breakpoint *b, *b_tmp;
14238
14239 dont_repeat ();
14240
14241 if (arg == 0)
14242 {
14243 int breaks_to_delete = 0;
14244
14245 /* Delete all breakpoints if no argument. Do not delete
14246 internal breakpoints, these have to be deleted with an
14247 explicit breakpoint number argument. */
14248 ALL_BREAKPOINTS (b)
14249 if (user_breakpoint_p (b))
14250 {
14251 breaks_to_delete = 1;
14252 break;
14253 }
14254
14255 /* Ask user only if there are some breakpoints to delete. */
14256 if (!from_tty
14257 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
14258 {
14259 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14260 if (user_breakpoint_p (b))
14261 delete_breakpoint (b);
14262 }
14263 }
14264 else
14265 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
14266 }
14267
14268 static int
14269 all_locations_are_pending (struct bp_location *loc)
14270 {
14271 for (; loc; loc = loc->next)
14272 if (!loc->shlib_disabled
14273 && !loc->pspace->executing_startup)
14274 return 0;
14275 return 1;
14276 }
14277
14278 /* Subroutine of update_breakpoint_locations to simplify it.
14279 Return non-zero if multiple fns in list LOC have the same name.
14280 Null names are ignored. */
14281
14282 static int
14283 ambiguous_names_p (struct bp_location *loc)
14284 {
14285 struct bp_location *l;
14286 htab_t htab = htab_create_alloc (13, htab_hash_string,
14287 (int (*) (const void *,
14288 const void *)) streq,
14289 NULL, xcalloc, xfree);
14290
14291 for (l = loc; l != NULL; l = l->next)
14292 {
14293 const char **slot;
14294 const char *name = l->function_name;
14295
14296 /* Allow for some names to be NULL, ignore them. */
14297 if (name == NULL)
14298 continue;
14299
14300 slot = (const char **) htab_find_slot (htab, (const void *) name,
14301 INSERT);
14302 /* NOTE: We can assume slot != NULL here because xcalloc never
14303 returns NULL. */
14304 if (*slot != NULL)
14305 {
14306 htab_delete (htab);
14307 return 1;
14308 }
14309 *slot = name;
14310 }
14311
14312 htab_delete (htab);
14313 return 0;
14314 }
14315
14316 /* When symbols change, it probably means the sources changed as well,
14317 and it might mean the static tracepoint markers are no longer at
14318 the same address or line numbers they used to be at last we
14319 checked. Losing your static tracepoints whenever you rebuild is
14320 undesirable. This function tries to resync/rematch gdb static
14321 tracepoints with the markers on the target, for static tracepoints
14322 that have not been set by marker id. Static tracepoint that have
14323 been set by marker id are reset by marker id in breakpoint_re_set.
14324 The heuristic is:
14325
14326 1) For a tracepoint set at a specific address, look for a marker at
14327 the old PC. If one is found there, assume to be the same marker.
14328 If the name / string id of the marker found is different from the
14329 previous known name, assume that means the user renamed the marker
14330 in the sources, and output a warning.
14331
14332 2) For a tracepoint set at a given line number, look for a marker
14333 at the new address of the old line number. If one is found there,
14334 assume to be the same marker. If the name / string id of the
14335 marker found is different from the previous known name, assume that
14336 means the user renamed the marker in the sources, and output a
14337 warning.
14338
14339 3) If a marker is no longer found at the same address or line, it
14340 may mean the marker no longer exists. But it may also just mean
14341 the code changed a bit. Maybe the user added a few lines of code
14342 that made the marker move up or down (in line number terms). Ask
14343 the target for info about the marker with the string id as we knew
14344 it. If found, update line number and address in the matching
14345 static tracepoint. This will get confused if there's more than one
14346 marker with the same ID (possible in UST, although unadvised
14347 precisely because it confuses tools). */
14348
14349 static struct symtab_and_line
14350 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14351 {
14352 struct tracepoint *tp = (struct tracepoint *) b;
14353 struct static_tracepoint_marker marker;
14354 CORE_ADDR pc;
14355
14356 pc = sal.pc;
14357 if (sal.line)
14358 find_line_pc (sal.symtab, sal.line, &pc);
14359
14360 if (target_static_tracepoint_marker_at (pc, &marker))
14361 {
14362 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14363 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14364 b->number,
14365 tp->static_trace_marker_id, marker.str_id);
14366
14367 xfree (tp->static_trace_marker_id);
14368 tp->static_trace_marker_id = xstrdup (marker.str_id);
14369 release_static_tracepoint_marker (&marker);
14370
14371 return sal;
14372 }
14373
14374 /* Old marker wasn't found on target at lineno. Try looking it up
14375 by string ID. */
14376 if (!sal.explicit_pc
14377 && sal.line != 0
14378 && sal.symtab != NULL
14379 && tp->static_trace_marker_id != NULL)
14380 {
14381 VEC(static_tracepoint_marker_p) *markers;
14382
14383 markers
14384 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14385
14386 if (!VEC_empty(static_tracepoint_marker_p, markers))
14387 {
14388 struct symtab_and_line sal2;
14389 struct symbol *sym;
14390 struct static_tracepoint_marker *tpmarker;
14391 struct ui_out *uiout = current_uiout;
14392
14393 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14394
14395 xfree (tp->static_trace_marker_id);
14396 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14397
14398 warning (_("marker for static tracepoint %d (%s) not "
14399 "found at previous line number"),
14400 b->number, tp->static_trace_marker_id);
14401
14402 init_sal (&sal2);
14403
14404 sal2.pc = tpmarker->address;
14405
14406 sal2 = find_pc_line (tpmarker->address, 0);
14407 sym = find_pc_sect_function (tpmarker->address, NULL);
14408 ui_out_text (uiout, "Now in ");
14409 if (sym)
14410 {
14411 ui_out_field_string (uiout, "func",
14412 SYMBOL_PRINT_NAME (sym));
14413 ui_out_text (uiout, " at ");
14414 }
14415 ui_out_field_string (uiout, "file",
14416 symtab_to_filename_for_display (sal2.symtab));
14417 ui_out_text (uiout, ":");
14418
14419 if (ui_out_is_mi_like_p (uiout))
14420 {
14421 const char *fullname = symtab_to_fullname (sal2.symtab);
14422
14423 ui_out_field_string (uiout, "fullname", fullname);
14424 }
14425
14426 ui_out_field_int (uiout, "line", sal2.line);
14427 ui_out_text (uiout, "\n");
14428
14429 b->loc->line_number = sal2.line;
14430 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14431
14432 xfree (b->addr_string);
14433 b->addr_string = xstrprintf ("%s:%d",
14434 symtab_to_filename_for_display (sal2.symtab),
14435 b->loc->line_number);
14436
14437 /* Might be nice to check if function changed, and warn if
14438 so. */
14439
14440 release_static_tracepoint_marker (tpmarker);
14441 }
14442 }
14443 return sal;
14444 }
14445
14446 /* Returns 1 iff locations A and B are sufficiently same that
14447 we don't need to report breakpoint as changed. */
14448
14449 static int
14450 locations_are_equal (struct bp_location *a, struct bp_location *b)
14451 {
14452 while (a && b)
14453 {
14454 if (a->address != b->address)
14455 return 0;
14456
14457 if (a->shlib_disabled != b->shlib_disabled)
14458 return 0;
14459
14460 if (a->enabled != b->enabled)
14461 return 0;
14462
14463 a = a->next;
14464 b = b->next;
14465 }
14466
14467 if ((a == NULL) != (b == NULL))
14468 return 0;
14469
14470 return 1;
14471 }
14472
14473 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14474 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14475 a ranged breakpoint. */
14476
14477 void
14478 update_breakpoint_locations (struct breakpoint *b,
14479 struct symtabs_and_lines sals,
14480 struct symtabs_and_lines sals_end)
14481 {
14482 int i;
14483 struct bp_location *existing_locations = b->loc;
14484
14485 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14486 {
14487 /* Ranged breakpoints have only one start location and one end
14488 location. */
14489 b->enable_state = bp_disabled;
14490 update_global_location_list (UGLL_MAY_INSERT);
14491 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14492 "multiple locations found\n"),
14493 b->number);
14494 return;
14495 }
14496
14497 /* If there's no new locations, and all existing locations are
14498 pending, don't do anything. This optimizes the common case where
14499 all locations are in the same shared library, that was unloaded.
14500 We'd like to retain the location, so that when the library is
14501 loaded again, we don't loose the enabled/disabled status of the
14502 individual locations. */
14503 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14504 return;
14505
14506 b->loc = NULL;
14507
14508 for (i = 0; i < sals.nelts; ++i)
14509 {
14510 struct bp_location *new_loc;
14511
14512 switch_to_program_space_and_thread (sals.sals[i].pspace);
14513
14514 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14515
14516 /* Reparse conditions, they might contain references to the
14517 old symtab. */
14518 if (b->cond_string != NULL)
14519 {
14520 const char *s;
14521 volatile struct gdb_exception e;
14522
14523 s = b->cond_string;
14524 TRY_CATCH (e, RETURN_MASK_ERROR)
14525 {
14526 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14527 block_for_pc (sals.sals[i].pc),
14528 0);
14529 }
14530 if (e.reason < 0)
14531 {
14532 warning (_("failed to reevaluate condition "
14533 "for breakpoint %d: %s"),
14534 b->number, e.message);
14535 new_loc->enabled = 0;
14536 }
14537 }
14538
14539 if (sals_end.nelts)
14540 {
14541 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14542
14543 new_loc->length = end - sals.sals[0].pc + 1;
14544 }
14545 }
14546
14547 /* Update locations of permanent breakpoints. */
14548 if (b->enable_state == bp_permanent)
14549 make_breakpoint_permanent (b);
14550
14551 /* If possible, carry over 'disable' status from existing
14552 breakpoints. */
14553 {
14554 struct bp_location *e = existing_locations;
14555 /* If there are multiple breakpoints with the same function name,
14556 e.g. for inline functions, comparing function names won't work.
14557 Instead compare pc addresses; this is just a heuristic as things
14558 may have moved, but in practice it gives the correct answer
14559 often enough until a better solution is found. */
14560 int have_ambiguous_names = ambiguous_names_p (b->loc);
14561
14562 for (; e; e = e->next)
14563 {
14564 if (!e->enabled && e->function_name)
14565 {
14566 struct bp_location *l = b->loc;
14567 if (have_ambiguous_names)
14568 {
14569 for (; l; l = l->next)
14570 if (breakpoint_locations_match (e, l))
14571 {
14572 l->enabled = 0;
14573 break;
14574 }
14575 }
14576 else
14577 {
14578 for (; l; l = l->next)
14579 if (l->function_name
14580 && strcmp (e->function_name, l->function_name) == 0)
14581 {
14582 l->enabled = 0;
14583 break;
14584 }
14585 }
14586 }
14587 }
14588 }
14589
14590 if (!locations_are_equal (existing_locations, b->loc))
14591 observer_notify_breakpoint_modified (b);
14592
14593 update_global_location_list (UGLL_MAY_INSERT);
14594 }
14595
14596 /* Find the SaL locations corresponding to the given ADDR_STRING.
14597 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14598
14599 static struct symtabs_and_lines
14600 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14601 {
14602 char *s;
14603 struct symtabs_and_lines sals = {0};
14604 volatile struct gdb_exception e;
14605
14606 gdb_assert (b->ops != NULL);
14607 s = addr_string;
14608
14609 TRY_CATCH (e, RETURN_MASK_ERROR)
14610 {
14611 b->ops->decode_linespec (b, &s, &sals);
14612 }
14613 if (e.reason < 0)
14614 {
14615 int not_found_and_ok = 0;
14616 /* For pending breakpoints, it's expected that parsing will
14617 fail until the right shared library is loaded. User has
14618 already told to create pending breakpoints and don't need
14619 extra messages. If breakpoint is in bp_shlib_disabled
14620 state, then user already saw the message about that
14621 breakpoint being disabled, and don't want to see more
14622 errors. */
14623 if (e.error == NOT_FOUND_ERROR
14624 && (b->condition_not_parsed
14625 || (b->loc && b->loc->shlib_disabled)
14626 || (b->loc && b->loc->pspace->executing_startup)
14627 || b->enable_state == bp_disabled))
14628 not_found_and_ok = 1;
14629
14630 if (!not_found_and_ok)
14631 {
14632 /* We surely don't want to warn about the same breakpoint
14633 10 times. One solution, implemented here, is disable
14634 the breakpoint on error. Another solution would be to
14635 have separate 'warning emitted' flag. Since this
14636 happens only when a binary has changed, I don't know
14637 which approach is better. */
14638 b->enable_state = bp_disabled;
14639 throw_exception (e);
14640 }
14641 }
14642
14643 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14644 {
14645 int i;
14646
14647 for (i = 0; i < sals.nelts; ++i)
14648 resolve_sal_pc (&sals.sals[i]);
14649 if (b->condition_not_parsed && s && s[0])
14650 {
14651 char *cond_string, *extra_string;
14652 int thread, task;
14653
14654 find_condition_and_thread (s, sals.sals[0].pc,
14655 &cond_string, &thread, &task,
14656 &extra_string);
14657 if (cond_string)
14658 b->cond_string = cond_string;
14659 b->thread = thread;
14660 b->task = task;
14661 if (extra_string)
14662 b->extra_string = extra_string;
14663 b->condition_not_parsed = 0;
14664 }
14665
14666 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14667 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14668
14669 *found = 1;
14670 }
14671 else
14672 *found = 0;
14673
14674 return sals;
14675 }
14676
14677 /* The default re_set method, for typical hardware or software
14678 breakpoints. Reevaluate the breakpoint and recreate its
14679 locations. */
14680
14681 static void
14682 breakpoint_re_set_default (struct breakpoint *b)
14683 {
14684 int found;
14685 struct symtabs_and_lines sals, sals_end;
14686 struct symtabs_and_lines expanded = {0};
14687 struct symtabs_and_lines expanded_end = {0};
14688
14689 sals = addr_string_to_sals (b, b->addr_string, &found);
14690 if (found)
14691 {
14692 make_cleanup (xfree, sals.sals);
14693 expanded = sals;
14694 }
14695
14696 if (b->addr_string_range_end)
14697 {
14698 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14699 if (found)
14700 {
14701 make_cleanup (xfree, sals_end.sals);
14702 expanded_end = sals_end;
14703 }
14704 }
14705
14706 update_breakpoint_locations (b, expanded, expanded_end);
14707 }
14708
14709 /* Default method for creating SALs from an address string. It basically
14710 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14711
14712 static void
14713 create_sals_from_address_default (char **arg,
14714 struct linespec_result *canonical,
14715 enum bptype type_wanted,
14716 char *addr_start, char **copy_arg)
14717 {
14718 parse_breakpoint_sals (arg, canonical);
14719 }
14720
14721 /* Call create_breakpoints_sal for the given arguments. This is the default
14722 function for the `create_breakpoints_sal' method of
14723 breakpoint_ops. */
14724
14725 static void
14726 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14727 struct linespec_result *canonical,
14728 char *cond_string,
14729 char *extra_string,
14730 enum bptype type_wanted,
14731 enum bpdisp disposition,
14732 int thread,
14733 int task, int ignore_count,
14734 const struct breakpoint_ops *ops,
14735 int from_tty, int enabled,
14736 int internal, unsigned flags)
14737 {
14738 create_breakpoints_sal (gdbarch, canonical, cond_string,
14739 extra_string,
14740 type_wanted, disposition,
14741 thread, task, ignore_count, ops, from_tty,
14742 enabled, internal, flags);
14743 }
14744
14745 /* Decode the line represented by S by calling decode_line_full. This is the
14746 default function for the `decode_linespec' method of breakpoint_ops. */
14747
14748 static void
14749 decode_linespec_default (struct breakpoint *b, char **s,
14750 struct symtabs_and_lines *sals)
14751 {
14752 struct linespec_result canonical;
14753
14754 init_linespec_result (&canonical);
14755 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14756 (struct symtab *) NULL, 0,
14757 &canonical, multiple_symbols_all,
14758 b->filter);
14759
14760 /* We should get 0 or 1 resulting SALs. */
14761 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14762
14763 if (VEC_length (linespec_sals, canonical.sals) > 0)
14764 {
14765 struct linespec_sals *lsal;
14766
14767 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14768 *sals = lsal->sals;
14769 /* Arrange it so the destructor does not free the
14770 contents. */
14771 lsal->sals.sals = NULL;
14772 }
14773
14774 destroy_linespec_result (&canonical);
14775 }
14776
14777 /* Prepare the global context for a re-set of breakpoint B. */
14778
14779 static struct cleanup *
14780 prepare_re_set_context (struct breakpoint *b)
14781 {
14782 struct cleanup *cleanups;
14783
14784 input_radix = b->input_radix;
14785 cleanups = save_current_space_and_thread ();
14786 if (b->pspace != NULL)
14787 switch_to_program_space_and_thread (b->pspace);
14788 set_language (b->language);
14789
14790 return cleanups;
14791 }
14792
14793 /* Reset a breakpoint given it's struct breakpoint * BINT.
14794 The value we return ends up being the return value from catch_errors.
14795 Unused in this case. */
14796
14797 static int
14798 breakpoint_re_set_one (void *bint)
14799 {
14800 /* Get past catch_errs. */
14801 struct breakpoint *b = (struct breakpoint *) bint;
14802 struct cleanup *cleanups;
14803
14804 cleanups = prepare_re_set_context (b);
14805 b->ops->re_set (b);
14806 do_cleanups (cleanups);
14807 return 0;
14808 }
14809
14810 /* Re-set all breakpoints after symbols have been re-loaded. */
14811 void
14812 breakpoint_re_set (void)
14813 {
14814 struct breakpoint *b, *b_tmp;
14815 enum language save_language;
14816 int save_input_radix;
14817 struct cleanup *old_chain;
14818
14819 save_language = current_language->la_language;
14820 save_input_radix = input_radix;
14821 old_chain = save_current_program_space ();
14822
14823 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14824 {
14825 /* Format possible error msg. */
14826 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14827 b->number);
14828 struct cleanup *cleanups = make_cleanup (xfree, message);
14829 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14830 do_cleanups (cleanups);
14831 }
14832 set_language (save_language);
14833 input_radix = save_input_radix;
14834
14835 jit_breakpoint_re_set ();
14836
14837 do_cleanups (old_chain);
14838
14839 create_overlay_event_breakpoint ();
14840 create_longjmp_master_breakpoint ();
14841 create_std_terminate_master_breakpoint ();
14842 create_exception_master_breakpoint ();
14843 }
14844 \f
14845 /* Reset the thread number of this breakpoint:
14846
14847 - If the breakpoint is for all threads, leave it as-is.
14848 - Else, reset it to the current thread for inferior_ptid. */
14849 void
14850 breakpoint_re_set_thread (struct breakpoint *b)
14851 {
14852 if (b->thread != -1)
14853 {
14854 if (in_thread_list (inferior_ptid))
14855 b->thread = pid_to_thread_id (inferior_ptid);
14856
14857 /* We're being called after following a fork. The new fork is
14858 selected as current, and unless this was a vfork will have a
14859 different program space from the original thread. Reset that
14860 as well. */
14861 b->loc->pspace = current_program_space;
14862 }
14863 }
14864
14865 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14866 If from_tty is nonzero, it prints a message to that effect,
14867 which ends with a period (no newline). */
14868
14869 void
14870 set_ignore_count (int bptnum, int count, int from_tty)
14871 {
14872 struct breakpoint *b;
14873
14874 if (count < 0)
14875 count = 0;
14876
14877 ALL_BREAKPOINTS (b)
14878 if (b->number == bptnum)
14879 {
14880 if (is_tracepoint (b))
14881 {
14882 if (from_tty && count != 0)
14883 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14884 bptnum);
14885 return;
14886 }
14887
14888 b->ignore_count = count;
14889 if (from_tty)
14890 {
14891 if (count == 0)
14892 printf_filtered (_("Will stop next time "
14893 "breakpoint %d is reached."),
14894 bptnum);
14895 else if (count == 1)
14896 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14897 bptnum);
14898 else
14899 printf_filtered (_("Will ignore next %d "
14900 "crossings of breakpoint %d."),
14901 count, bptnum);
14902 }
14903 observer_notify_breakpoint_modified (b);
14904 return;
14905 }
14906
14907 error (_("No breakpoint number %d."), bptnum);
14908 }
14909
14910 /* Command to set ignore-count of breakpoint N to COUNT. */
14911
14912 static void
14913 ignore_command (char *args, int from_tty)
14914 {
14915 char *p = args;
14916 int num;
14917
14918 if (p == 0)
14919 error_no_arg (_("a breakpoint number"));
14920
14921 num = get_number (&p);
14922 if (num == 0)
14923 error (_("bad breakpoint number: '%s'"), args);
14924 if (*p == 0)
14925 error (_("Second argument (specified ignore-count) is missing."));
14926
14927 set_ignore_count (num,
14928 longest_to_int (value_as_long (parse_and_eval (p))),
14929 from_tty);
14930 if (from_tty)
14931 printf_filtered ("\n");
14932 }
14933 \f
14934 /* Call FUNCTION on each of the breakpoints
14935 whose numbers are given in ARGS. */
14936
14937 static void
14938 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14939 void *),
14940 void *data)
14941 {
14942 int num;
14943 struct breakpoint *b, *tmp;
14944 int match;
14945 struct get_number_or_range_state state;
14946
14947 if (args == 0)
14948 error_no_arg (_("one or more breakpoint numbers"));
14949
14950 init_number_or_range (&state, args);
14951
14952 while (!state.finished)
14953 {
14954 const char *p = state.string;
14955
14956 match = 0;
14957
14958 num = get_number_or_range (&state);
14959 if (num == 0)
14960 {
14961 warning (_("bad breakpoint number at or near '%s'"), p);
14962 }
14963 else
14964 {
14965 ALL_BREAKPOINTS_SAFE (b, tmp)
14966 if (b->number == num)
14967 {
14968 match = 1;
14969 function (b, data);
14970 break;
14971 }
14972 if (match == 0)
14973 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14974 }
14975 }
14976 }
14977
14978 static struct bp_location *
14979 find_location_by_number (char *number)
14980 {
14981 char *dot = strchr (number, '.');
14982 char *p1;
14983 int bp_num;
14984 int loc_num;
14985 struct breakpoint *b;
14986 struct bp_location *loc;
14987
14988 *dot = '\0';
14989
14990 p1 = number;
14991 bp_num = get_number (&p1);
14992 if (bp_num == 0)
14993 error (_("Bad breakpoint number '%s'"), number);
14994
14995 ALL_BREAKPOINTS (b)
14996 if (b->number == bp_num)
14997 {
14998 break;
14999 }
15000
15001 if (!b || b->number != bp_num)
15002 error (_("Bad breakpoint number '%s'"), number);
15003
15004 p1 = dot+1;
15005 loc_num = get_number (&p1);
15006 if (loc_num == 0)
15007 error (_("Bad breakpoint location number '%s'"), number);
15008
15009 --loc_num;
15010 loc = b->loc;
15011 for (;loc_num && loc; --loc_num, loc = loc->next)
15012 ;
15013 if (!loc)
15014 error (_("Bad breakpoint location number '%s'"), dot+1);
15015
15016 return loc;
15017 }
15018
15019
15020 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
15021 If from_tty is nonzero, it prints a message to that effect,
15022 which ends with a period (no newline). */
15023
15024 void
15025 disable_breakpoint (struct breakpoint *bpt)
15026 {
15027 /* Never disable a watchpoint scope breakpoint; we want to
15028 hit them when we leave scope so we can delete both the
15029 watchpoint and its scope breakpoint at that time. */
15030 if (bpt->type == bp_watchpoint_scope)
15031 return;
15032
15033 /* You can't disable permanent breakpoints. */
15034 if (bpt->enable_state == bp_permanent)
15035 return;
15036
15037 bpt->enable_state = bp_disabled;
15038
15039 /* Mark breakpoint locations modified. */
15040 mark_breakpoint_modified (bpt);
15041
15042 if (target_supports_enable_disable_tracepoint ()
15043 && current_trace_status ()->running && is_tracepoint (bpt))
15044 {
15045 struct bp_location *location;
15046
15047 for (location = bpt->loc; location; location = location->next)
15048 target_disable_tracepoint (location);
15049 }
15050
15051 update_global_location_list (UGLL_DONT_INSERT);
15052
15053 observer_notify_breakpoint_modified (bpt);
15054 }
15055
15056 /* A callback for iterate_over_related_breakpoints. */
15057
15058 static void
15059 do_disable_breakpoint (struct breakpoint *b, void *ignore)
15060 {
15061 disable_breakpoint (b);
15062 }
15063
15064 /* A callback for map_breakpoint_numbers that calls
15065 disable_breakpoint. */
15066
15067 static void
15068 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
15069 {
15070 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
15071 }
15072
15073 static void
15074 disable_command (char *args, int from_tty)
15075 {
15076 if (args == 0)
15077 {
15078 struct breakpoint *bpt;
15079
15080 ALL_BREAKPOINTS (bpt)
15081 if (user_breakpoint_p (bpt))
15082 disable_breakpoint (bpt);
15083 }
15084 else
15085 {
15086 char *num = extract_arg (&args);
15087
15088 while (num)
15089 {
15090 if (strchr (num, '.'))
15091 {
15092 struct bp_location *loc = find_location_by_number (num);
15093
15094 if (loc)
15095 {
15096 if (loc->enabled)
15097 {
15098 loc->enabled = 0;
15099 mark_breakpoint_location_modified (loc);
15100 }
15101 if (target_supports_enable_disable_tracepoint ()
15102 && current_trace_status ()->running && loc->owner
15103 && is_tracepoint (loc->owner))
15104 target_disable_tracepoint (loc);
15105 }
15106 update_global_location_list (UGLL_DONT_INSERT);
15107 }
15108 else
15109 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
15110 num = extract_arg (&args);
15111 }
15112 }
15113 }
15114
15115 static void
15116 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
15117 int count)
15118 {
15119 int target_resources_ok;
15120
15121 if (bpt->type == bp_hardware_breakpoint)
15122 {
15123 int i;
15124 i = hw_breakpoint_used_count ();
15125 target_resources_ok =
15126 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
15127 i + 1, 0);
15128 if (target_resources_ok == 0)
15129 error (_("No hardware breakpoint support in the target."));
15130 else if (target_resources_ok < 0)
15131 error (_("Hardware breakpoints used exceeds limit."));
15132 }
15133
15134 if (is_watchpoint (bpt))
15135 {
15136 /* Initialize it just to avoid a GCC false warning. */
15137 enum enable_state orig_enable_state = 0;
15138 volatile struct gdb_exception e;
15139
15140 TRY_CATCH (e, RETURN_MASK_ALL)
15141 {
15142 struct watchpoint *w = (struct watchpoint *) bpt;
15143
15144 orig_enable_state = bpt->enable_state;
15145 bpt->enable_state = bp_enabled;
15146 update_watchpoint (w, 1 /* reparse */);
15147 }
15148 if (e.reason < 0)
15149 {
15150 bpt->enable_state = orig_enable_state;
15151 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
15152 bpt->number);
15153 return;
15154 }
15155 }
15156
15157 if (bpt->enable_state != bp_permanent)
15158 bpt->enable_state = bp_enabled;
15159
15160 bpt->enable_state = bp_enabled;
15161
15162 /* Mark breakpoint locations modified. */
15163 mark_breakpoint_modified (bpt);
15164
15165 if (target_supports_enable_disable_tracepoint ()
15166 && current_trace_status ()->running && is_tracepoint (bpt))
15167 {
15168 struct bp_location *location;
15169
15170 for (location = bpt->loc; location; location = location->next)
15171 target_enable_tracepoint (location);
15172 }
15173
15174 bpt->disposition = disposition;
15175 bpt->enable_count = count;
15176 update_global_location_list (UGLL_MAY_INSERT);
15177
15178 observer_notify_breakpoint_modified (bpt);
15179 }
15180
15181
15182 void
15183 enable_breakpoint (struct breakpoint *bpt)
15184 {
15185 enable_breakpoint_disp (bpt, bpt->disposition, 0);
15186 }
15187
15188 static void
15189 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
15190 {
15191 enable_breakpoint (bpt);
15192 }
15193
15194 /* A callback for map_breakpoint_numbers that calls
15195 enable_breakpoint. */
15196
15197 static void
15198 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
15199 {
15200 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
15201 }
15202
15203 /* The enable command enables the specified breakpoints (or all defined
15204 breakpoints) so they once again become (or continue to be) effective
15205 in stopping the inferior. */
15206
15207 static void
15208 enable_command (char *args, int from_tty)
15209 {
15210 if (args == 0)
15211 {
15212 struct breakpoint *bpt;
15213
15214 ALL_BREAKPOINTS (bpt)
15215 if (user_breakpoint_p (bpt))
15216 enable_breakpoint (bpt);
15217 }
15218 else
15219 {
15220 char *num = extract_arg (&args);
15221
15222 while (num)
15223 {
15224 if (strchr (num, '.'))
15225 {
15226 struct bp_location *loc = find_location_by_number (num);
15227
15228 if (loc)
15229 {
15230 if (!loc->enabled)
15231 {
15232 loc->enabled = 1;
15233 mark_breakpoint_location_modified (loc);
15234 }
15235 if (target_supports_enable_disable_tracepoint ()
15236 && current_trace_status ()->running && loc->owner
15237 && is_tracepoint (loc->owner))
15238 target_enable_tracepoint (loc);
15239 }
15240 update_global_location_list (UGLL_MAY_INSERT);
15241 }
15242 else
15243 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
15244 num = extract_arg (&args);
15245 }
15246 }
15247 }
15248
15249 /* This struct packages up disposition data for application to multiple
15250 breakpoints. */
15251
15252 struct disp_data
15253 {
15254 enum bpdisp disp;
15255 int count;
15256 };
15257
15258 static void
15259 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
15260 {
15261 struct disp_data disp_data = *(struct disp_data *) arg;
15262
15263 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
15264 }
15265
15266 static void
15267 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
15268 {
15269 struct disp_data disp = { disp_disable, 1 };
15270
15271 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15272 }
15273
15274 static void
15275 enable_once_command (char *args, int from_tty)
15276 {
15277 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
15278 }
15279
15280 static void
15281 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15282 {
15283 struct disp_data disp = { disp_disable, *(int *) countptr };
15284
15285 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15286 }
15287
15288 static void
15289 enable_count_command (char *args, int from_tty)
15290 {
15291 int count = get_number (&args);
15292
15293 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15294 }
15295
15296 static void
15297 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15298 {
15299 struct disp_data disp = { disp_del, 1 };
15300
15301 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15302 }
15303
15304 static void
15305 enable_delete_command (char *args, int from_tty)
15306 {
15307 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15308 }
15309 \f
15310 static void
15311 set_breakpoint_cmd (char *args, int from_tty)
15312 {
15313 }
15314
15315 static void
15316 show_breakpoint_cmd (char *args, int from_tty)
15317 {
15318 }
15319
15320 /* Invalidate last known value of any hardware watchpoint if
15321 the memory which that value represents has been written to by
15322 GDB itself. */
15323
15324 static void
15325 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15326 CORE_ADDR addr, ssize_t len,
15327 const bfd_byte *data)
15328 {
15329 struct breakpoint *bp;
15330
15331 ALL_BREAKPOINTS (bp)
15332 if (bp->enable_state == bp_enabled
15333 && bp->type == bp_hardware_watchpoint)
15334 {
15335 struct watchpoint *wp = (struct watchpoint *) bp;
15336
15337 if (wp->val_valid && wp->val)
15338 {
15339 struct bp_location *loc;
15340
15341 for (loc = bp->loc; loc != NULL; loc = loc->next)
15342 if (loc->loc_type == bp_loc_hardware_watchpoint
15343 && loc->address + loc->length > addr
15344 && addr + len > loc->address)
15345 {
15346 value_free (wp->val);
15347 wp->val = NULL;
15348 wp->val_valid = 0;
15349 }
15350 }
15351 }
15352 }
15353
15354 /* Create and insert a raw software breakpoint at PC. Return an
15355 identifier, which should be used to remove the breakpoint later.
15356 In general, places which call this should be using something on the
15357 breakpoint chain instead; this function should be eliminated
15358 someday. */
15359
15360 void *
15361 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15362 struct address_space *aspace, CORE_ADDR pc)
15363 {
15364 struct bp_target_info *bp_tgt;
15365 struct bp_location *bl;
15366
15367 bp_tgt = XCNEW (struct bp_target_info);
15368
15369 bp_tgt->placed_address_space = aspace;
15370 bp_tgt->placed_address = pc;
15371
15372 /* If an unconditional non-raw breakpoint is already inserted at
15373 that location, there's no need to insert another. However, with
15374 target-side evaluation of breakpoint conditions, if the
15375 breakpoint that is currently inserted on the target is
15376 conditional, we need to make it unconditional. Note that a
15377 breakpoint with target-side commands is not reported even if
15378 unconditional, so we need to remove the commands from the target
15379 as well. */
15380 bl = find_non_raw_software_breakpoint_inserted_here (aspace, pc);
15381 if (bl != NULL
15382 && VEC_empty (agent_expr_p, bl->target_info.conditions)
15383 && VEC_empty (agent_expr_p, bl->target_info.tcommands))
15384 {
15385 bp_target_info_copy_insertion_state (bp_tgt, &bl->target_info);
15386 return bp_tgt;
15387 }
15388
15389 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15390 {
15391 /* Could not insert the breakpoint. */
15392 xfree (bp_tgt);
15393 return NULL;
15394 }
15395
15396 return bp_tgt;
15397 }
15398
15399 /* Remove a breakpoint BP inserted by
15400 deprecated_insert_raw_breakpoint. */
15401
15402 int
15403 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15404 {
15405 struct bp_target_info *bp_tgt = bp;
15406 struct address_space *aspace = bp_tgt->placed_address_space;
15407 CORE_ADDR address = bp_tgt->placed_address;
15408 struct bp_location *bl;
15409 int ret;
15410
15411 bl = find_non_raw_software_breakpoint_inserted_here (aspace, address);
15412
15413 /* Only remove the raw breakpoint if there are no other non-raw
15414 breakpoints still inserted at this location. Otherwise, we would
15415 be effectively disabling those breakpoints. */
15416 if (bl == NULL)
15417 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15418 else if (!VEC_empty (agent_expr_p, bl->target_info.conditions)
15419 || !VEC_empty (agent_expr_p, bl->target_info.tcommands))
15420 {
15421 /* The target is evaluating conditions, and when we inserted the
15422 software single-step breakpoint, we had made the breakpoint
15423 unconditional and command-less on the target side. Reinsert
15424 to restore the conditions/commands. */
15425 ret = target_insert_breakpoint (bl->gdbarch, &bl->target_info);
15426 }
15427 else
15428 ret = 0;
15429
15430 xfree (bp_tgt);
15431
15432 return ret;
15433 }
15434
15435 /* Create and insert a breakpoint for software single step. */
15436
15437 void
15438 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15439 struct address_space *aspace,
15440 CORE_ADDR next_pc)
15441 {
15442 void **bpt_p;
15443
15444 if (single_step_breakpoints[0] == NULL)
15445 {
15446 bpt_p = &single_step_breakpoints[0];
15447 single_step_gdbarch[0] = gdbarch;
15448 }
15449 else
15450 {
15451 gdb_assert (single_step_breakpoints[1] == NULL);
15452 bpt_p = &single_step_breakpoints[1];
15453 single_step_gdbarch[1] = gdbarch;
15454 }
15455
15456 /* NOTE drow/2006-04-11: A future improvement to this function would
15457 be to only create the breakpoints once, and actually put them on
15458 the breakpoint chain. That would let us use set_raw_breakpoint.
15459 We could adjust the addresses each time they were needed. Doing
15460 this requires corresponding changes elsewhere where single step
15461 breakpoints are handled, however. So, for now, we use this. */
15462
15463 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15464 if (*bpt_p == NULL)
15465 error (_("Could not insert single-step breakpoint at %s"),
15466 paddress (gdbarch, next_pc));
15467 }
15468
15469 /* Check if the breakpoints used for software single stepping
15470 were inserted or not. */
15471
15472 int
15473 single_step_breakpoints_inserted (void)
15474 {
15475 return (single_step_breakpoints[0] != NULL
15476 || single_step_breakpoints[1] != NULL);
15477 }
15478
15479 /* Remove and delete any breakpoints used for software single step. */
15480
15481 void
15482 remove_single_step_breakpoints (void)
15483 {
15484 gdb_assert (single_step_breakpoints[0] != NULL);
15485
15486 /* See insert_single_step_breakpoint for more about this deprecated
15487 call. */
15488 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15489 single_step_breakpoints[0]);
15490 single_step_gdbarch[0] = NULL;
15491 single_step_breakpoints[0] = NULL;
15492
15493 if (single_step_breakpoints[1] != NULL)
15494 {
15495 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15496 single_step_breakpoints[1]);
15497 single_step_gdbarch[1] = NULL;
15498 single_step_breakpoints[1] = NULL;
15499 }
15500 }
15501
15502 /* Delete software single step breakpoints without removing them from
15503 the inferior. This is intended to be used if the inferior's address
15504 space where they were inserted is already gone, e.g. after exit or
15505 exec. */
15506
15507 void
15508 cancel_single_step_breakpoints (void)
15509 {
15510 int i;
15511
15512 for (i = 0; i < 2; i++)
15513 if (single_step_breakpoints[i])
15514 {
15515 xfree (single_step_breakpoints[i]);
15516 single_step_breakpoints[i] = NULL;
15517 single_step_gdbarch[i] = NULL;
15518 }
15519 }
15520
15521 /* Detach software single-step breakpoints from INFERIOR_PTID without
15522 removing them. */
15523
15524 static void
15525 detach_single_step_breakpoints (void)
15526 {
15527 int i;
15528
15529 for (i = 0; i < 2; i++)
15530 if (single_step_breakpoints[i])
15531 target_remove_breakpoint (single_step_gdbarch[i],
15532 single_step_breakpoints[i]);
15533 }
15534
15535 /* Find the software single-step breakpoint that inserted at PC.
15536 Returns its slot if found, and -1 if not found. */
15537
15538 static int
15539 find_single_step_breakpoint (struct address_space *aspace,
15540 CORE_ADDR pc)
15541 {
15542 int i;
15543
15544 for (i = 0; i < 2; i++)
15545 {
15546 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15547 if (bp_tgt
15548 && breakpoint_address_match (bp_tgt->placed_address_space,
15549 bp_tgt->placed_address,
15550 aspace, pc))
15551 return i;
15552 }
15553
15554 return -1;
15555 }
15556
15557 /* Check whether a software single-step breakpoint is inserted at
15558 PC. */
15559
15560 int
15561 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15562 CORE_ADDR pc)
15563 {
15564 return find_single_step_breakpoint (aspace, pc) >= 0;
15565 }
15566
15567 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15568 non-zero otherwise. */
15569 static int
15570 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15571 {
15572 if (syscall_catchpoint_p (bp)
15573 && bp->enable_state != bp_disabled
15574 && bp->enable_state != bp_call_disabled)
15575 return 1;
15576 else
15577 return 0;
15578 }
15579
15580 int
15581 catch_syscall_enabled (void)
15582 {
15583 struct catch_syscall_inferior_data *inf_data
15584 = get_catch_syscall_inferior_data (current_inferior ());
15585
15586 return inf_data->total_syscalls_count != 0;
15587 }
15588
15589 int
15590 catching_syscall_number (int syscall_number)
15591 {
15592 struct breakpoint *bp;
15593
15594 ALL_BREAKPOINTS (bp)
15595 if (is_syscall_catchpoint_enabled (bp))
15596 {
15597 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15598
15599 if (c->syscalls_to_be_caught)
15600 {
15601 int i, iter;
15602 for (i = 0;
15603 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15604 i++)
15605 if (syscall_number == iter)
15606 return 1;
15607 }
15608 else
15609 return 1;
15610 }
15611
15612 return 0;
15613 }
15614
15615 /* Complete syscall names. Used by "catch syscall". */
15616 static VEC (char_ptr) *
15617 catch_syscall_completer (struct cmd_list_element *cmd,
15618 const char *text, const char *word)
15619 {
15620 const char **list = get_syscall_names ();
15621 VEC (char_ptr) *retlist
15622 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15623
15624 xfree (list);
15625 return retlist;
15626 }
15627
15628 /* Tracepoint-specific operations. */
15629
15630 /* Set tracepoint count to NUM. */
15631 static void
15632 set_tracepoint_count (int num)
15633 {
15634 tracepoint_count = num;
15635 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15636 }
15637
15638 static void
15639 trace_command (char *arg, int from_tty)
15640 {
15641 struct breakpoint_ops *ops;
15642 const char *arg_cp = arg;
15643
15644 if (arg && probe_linespec_to_ops (&arg_cp))
15645 ops = &tracepoint_probe_breakpoint_ops;
15646 else
15647 ops = &tracepoint_breakpoint_ops;
15648
15649 create_breakpoint (get_current_arch (),
15650 arg,
15651 NULL, 0, NULL, 1 /* parse arg */,
15652 0 /* tempflag */,
15653 bp_tracepoint /* type_wanted */,
15654 0 /* Ignore count */,
15655 pending_break_support,
15656 ops,
15657 from_tty,
15658 1 /* enabled */,
15659 0 /* internal */, 0);
15660 }
15661
15662 static void
15663 ftrace_command (char *arg, int from_tty)
15664 {
15665 create_breakpoint (get_current_arch (),
15666 arg,
15667 NULL, 0, NULL, 1 /* parse arg */,
15668 0 /* tempflag */,
15669 bp_fast_tracepoint /* type_wanted */,
15670 0 /* Ignore count */,
15671 pending_break_support,
15672 &tracepoint_breakpoint_ops,
15673 from_tty,
15674 1 /* enabled */,
15675 0 /* internal */, 0);
15676 }
15677
15678 /* strace command implementation. Creates a static tracepoint. */
15679
15680 static void
15681 strace_command (char *arg, int from_tty)
15682 {
15683 struct breakpoint_ops *ops;
15684
15685 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15686 or with a normal static tracepoint. */
15687 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15688 ops = &strace_marker_breakpoint_ops;
15689 else
15690 ops = &tracepoint_breakpoint_ops;
15691
15692 create_breakpoint (get_current_arch (),
15693 arg,
15694 NULL, 0, NULL, 1 /* parse arg */,
15695 0 /* tempflag */,
15696 bp_static_tracepoint /* type_wanted */,
15697 0 /* Ignore count */,
15698 pending_break_support,
15699 ops,
15700 from_tty,
15701 1 /* enabled */,
15702 0 /* internal */, 0);
15703 }
15704
15705 /* Set up a fake reader function that gets command lines from a linked
15706 list that was acquired during tracepoint uploading. */
15707
15708 static struct uploaded_tp *this_utp;
15709 static int next_cmd;
15710
15711 static char *
15712 read_uploaded_action (void)
15713 {
15714 char *rslt;
15715
15716 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15717
15718 next_cmd++;
15719
15720 return rslt;
15721 }
15722
15723 /* Given information about a tracepoint as recorded on a target (which
15724 can be either a live system or a trace file), attempt to create an
15725 equivalent GDB tracepoint. This is not a reliable process, since
15726 the target does not necessarily have all the information used when
15727 the tracepoint was originally defined. */
15728
15729 struct tracepoint *
15730 create_tracepoint_from_upload (struct uploaded_tp *utp)
15731 {
15732 char *addr_str, small_buf[100];
15733 struct tracepoint *tp;
15734
15735 if (utp->at_string)
15736 addr_str = utp->at_string;
15737 else
15738 {
15739 /* In the absence of a source location, fall back to raw
15740 address. Since there is no way to confirm that the address
15741 means the same thing as when the trace was started, warn the
15742 user. */
15743 warning (_("Uploaded tracepoint %d has no "
15744 "source location, using raw address"),
15745 utp->number);
15746 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15747 addr_str = small_buf;
15748 }
15749
15750 /* There's not much we can do with a sequence of bytecodes. */
15751 if (utp->cond && !utp->cond_string)
15752 warning (_("Uploaded tracepoint %d condition "
15753 "has no source form, ignoring it"),
15754 utp->number);
15755
15756 if (!create_breakpoint (get_current_arch (),
15757 addr_str,
15758 utp->cond_string, -1, NULL,
15759 0 /* parse cond/thread */,
15760 0 /* tempflag */,
15761 utp->type /* type_wanted */,
15762 0 /* Ignore count */,
15763 pending_break_support,
15764 &tracepoint_breakpoint_ops,
15765 0 /* from_tty */,
15766 utp->enabled /* enabled */,
15767 0 /* internal */,
15768 CREATE_BREAKPOINT_FLAGS_INSERTED))
15769 return NULL;
15770
15771 /* Get the tracepoint we just created. */
15772 tp = get_tracepoint (tracepoint_count);
15773 gdb_assert (tp != NULL);
15774
15775 if (utp->pass > 0)
15776 {
15777 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15778 tp->base.number);
15779
15780 trace_pass_command (small_buf, 0);
15781 }
15782
15783 /* If we have uploaded versions of the original commands, set up a
15784 special-purpose "reader" function and call the usual command line
15785 reader, then pass the result to the breakpoint command-setting
15786 function. */
15787 if (!VEC_empty (char_ptr, utp->cmd_strings))
15788 {
15789 struct command_line *cmd_list;
15790
15791 this_utp = utp;
15792 next_cmd = 0;
15793
15794 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15795
15796 breakpoint_set_commands (&tp->base, cmd_list);
15797 }
15798 else if (!VEC_empty (char_ptr, utp->actions)
15799 || !VEC_empty (char_ptr, utp->step_actions))
15800 warning (_("Uploaded tracepoint %d actions "
15801 "have no source form, ignoring them"),
15802 utp->number);
15803
15804 /* Copy any status information that might be available. */
15805 tp->base.hit_count = utp->hit_count;
15806 tp->traceframe_usage = utp->traceframe_usage;
15807
15808 return tp;
15809 }
15810
15811 /* Print information on tracepoint number TPNUM_EXP, or all if
15812 omitted. */
15813
15814 static void
15815 tracepoints_info (char *args, int from_tty)
15816 {
15817 struct ui_out *uiout = current_uiout;
15818 int num_printed;
15819
15820 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15821
15822 if (num_printed == 0)
15823 {
15824 if (args == NULL || *args == '\0')
15825 ui_out_message (uiout, 0, "No tracepoints.\n");
15826 else
15827 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15828 }
15829
15830 default_collect_info ();
15831 }
15832
15833 /* The 'enable trace' command enables tracepoints.
15834 Not supported by all targets. */
15835 static void
15836 enable_trace_command (char *args, int from_tty)
15837 {
15838 enable_command (args, from_tty);
15839 }
15840
15841 /* The 'disable trace' command disables tracepoints.
15842 Not supported by all targets. */
15843 static void
15844 disable_trace_command (char *args, int from_tty)
15845 {
15846 disable_command (args, from_tty);
15847 }
15848
15849 /* Remove a tracepoint (or all if no argument). */
15850 static void
15851 delete_trace_command (char *arg, int from_tty)
15852 {
15853 struct breakpoint *b, *b_tmp;
15854
15855 dont_repeat ();
15856
15857 if (arg == 0)
15858 {
15859 int breaks_to_delete = 0;
15860
15861 /* Delete all breakpoints if no argument.
15862 Do not delete internal or call-dummy breakpoints, these
15863 have to be deleted with an explicit breakpoint number
15864 argument. */
15865 ALL_TRACEPOINTS (b)
15866 if (is_tracepoint (b) && user_breakpoint_p (b))
15867 {
15868 breaks_to_delete = 1;
15869 break;
15870 }
15871
15872 /* Ask user only if there are some breakpoints to delete. */
15873 if (!from_tty
15874 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15875 {
15876 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15877 if (is_tracepoint (b) && user_breakpoint_p (b))
15878 delete_breakpoint (b);
15879 }
15880 }
15881 else
15882 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15883 }
15884
15885 /* Helper function for trace_pass_command. */
15886
15887 static void
15888 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15889 {
15890 tp->pass_count = count;
15891 observer_notify_breakpoint_modified (&tp->base);
15892 if (from_tty)
15893 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15894 tp->base.number, count);
15895 }
15896
15897 /* Set passcount for tracepoint.
15898
15899 First command argument is passcount, second is tracepoint number.
15900 If tracepoint number omitted, apply to most recently defined.
15901 Also accepts special argument "all". */
15902
15903 static void
15904 trace_pass_command (char *args, int from_tty)
15905 {
15906 struct tracepoint *t1;
15907 unsigned int count;
15908
15909 if (args == 0 || *args == 0)
15910 error (_("passcount command requires an "
15911 "argument (count + optional TP num)"));
15912
15913 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15914
15915 args = skip_spaces (args);
15916 if (*args && strncasecmp (args, "all", 3) == 0)
15917 {
15918 struct breakpoint *b;
15919
15920 args += 3; /* Skip special argument "all". */
15921 if (*args)
15922 error (_("Junk at end of arguments."));
15923
15924 ALL_TRACEPOINTS (b)
15925 {
15926 t1 = (struct tracepoint *) b;
15927 trace_pass_set_count (t1, count, from_tty);
15928 }
15929 }
15930 else if (*args == '\0')
15931 {
15932 t1 = get_tracepoint_by_number (&args, NULL);
15933 if (t1)
15934 trace_pass_set_count (t1, count, from_tty);
15935 }
15936 else
15937 {
15938 struct get_number_or_range_state state;
15939
15940 init_number_or_range (&state, args);
15941 while (!state.finished)
15942 {
15943 t1 = get_tracepoint_by_number (&args, &state);
15944 if (t1)
15945 trace_pass_set_count (t1, count, from_tty);
15946 }
15947 }
15948 }
15949
15950 struct tracepoint *
15951 get_tracepoint (int num)
15952 {
15953 struct breakpoint *t;
15954
15955 ALL_TRACEPOINTS (t)
15956 if (t->number == num)
15957 return (struct tracepoint *) t;
15958
15959 return NULL;
15960 }
15961
15962 /* Find the tracepoint with the given target-side number (which may be
15963 different from the tracepoint number after disconnecting and
15964 reconnecting). */
15965
15966 struct tracepoint *
15967 get_tracepoint_by_number_on_target (int num)
15968 {
15969 struct breakpoint *b;
15970
15971 ALL_TRACEPOINTS (b)
15972 {
15973 struct tracepoint *t = (struct tracepoint *) b;
15974
15975 if (t->number_on_target == num)
15976 return t;
15977 }
15978
15979 return NULL;
15980 }
15981
15982 /* Utility: parse a tracepoint number and look it up in the list.
15983 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15984 If the argument is missing, the most recent tracepoint
15985 (tracepoint_count) is returned. */
15986
15987 struct tracepoint *
15988 get_tracepoint_by_number (char **arg,
15989 struct get_number_or_range_state *state)
15990 {
15991 struct breakpoint *t;
15992 int tpnum;
15993 char *instring = arg == NULL ? NULL : *arg;
15994
15995 if (state)
15996 {
15997 gdb_assert (!state->finished);
15998 tpnum = get_number_or_range (state);
15999 }
16000 else if (arg == NULL || *arg == NULL || ! **arg)
16001 tpnum = tracepoint_count;
16002 else
16003 tpnum = get_number (arg);
16004
16005 if (tpnum <= 0)
16006 {
16007 if (instring && *instring)
16008 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
16009 instring);
16010 else
16011 printf_filtered (_("No previous tracepoint\n"));
16012 return NULL;
16013 }
16014
16015 ALL_TRACEPOINTS (t)
16016 if (t->number == tpnum)
16017 {
16018 return (struct tracepoint *) t;
16019 }
16020
16021 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
16022 return NULL;
16023 }
16024
16025 void
16026 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
16027 {
16028 if (b->thread != -1)
16029 fprintf_unfiltered (fp, " thread %d", b->thread);
16030
16031 if (b->task != 0)
16032 fprintf_unfiltered (fp, " task %d", b->task);
16033
16034 fprintf_unfiltered (fp, "\n");
16035 }
16036
16037 /* Save information on user settable breakpoints (watchpoints, etc) to
16038 a new script file named FILENAME. If FILTER is non-NULL, call it
16039 on each breakpoint and only include the ones for which it returns
16040 non-zero. */
16041
16042 static void
16043 save_breakpoints (char *filename, int from_tty,
16044 int (*filter) (const struct breakpoint *))
16045 {
16046 struct breakpoint *tp;
16047 int any = 0;
16048 struct cleanup *cleanup;
16049 struct ui_file *fp;
16050 int extra_trace_bits = 0;
16051
16052 if (filename == 0 || *filename == 0)
16053 error (_("Argument required (file name in which to save)"));
16054
16055 /* See if we have anything to save. */
16056 ALL_BREAKPOINTS (tp)
16057 {
16058 /* Skip internal and momentary breakpoints. */
16059 if (!user_breakpoint_p (tp))
16060 continue;
16061
16062 /* If we have a filter, only save the breakpoints it accepts. */
16063 if (filter && !filter (tp))
16064 continue;
16065
16066 any = 1;
16067
16068 if (is_tracepoint (tp))
16069 {
16070 extra_trace_bits = 1;
16071
16072 /* We can stop searching. */
16073 break;
16074 }
16075 }
16076
16077 if (!any)
16078 {
16079 warning (_("Nothing to save."));
16080 return;
16081 }
16082
16083 filename = tilde_expand (filename);
16084 cleanup = make_cleanup (xfree, filename);
16085 fp = gdb_fopen (filename, "w");
16086 if (!fp)
16087 error (_("Unable to open file '%s' for saving (%s)"),
16088 filename, safe_strerror (errno));
16089 make_cleanup_ui_file_delete (fp);
16090
16091 if (extra_trace_bits)
16092 save_trace_state_variables (fp);
16093
16094 ALL_BREAKPOINTS (tp)
16095 {
16096 /* Skip internal and momentary breakpoints. */
16097 if (!user_breakpoint_p (tp))
16098 continue;
16099
16100 /* If we have a filter, only save the breakpoints it accepts. */
16101 if (filter && !filter (tp))
16102 continue;
16103
16104 tp->ops->print_recreate (tp, fp);
16105
16106 /* Note, we can't rely on tp->number for anything, as we can't
16107 assume the recreated breakpoint numbers will match. Use $bpnum
16108 instead. */
16109
16110 if (tp->cond_string)
16111 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
16112
16113 if (tp->ignore_count)
16114 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
16115
16116 if (tp->type != bp_dprintf && tp->commands)
16117 {
16118 volatile struct gdb_exception ex;
16119
16120 fprintf_unfiltered (fp, " commands\n");
16121
16122 ui_out_redirect (current_uiout, fp);
16123 TRY_CATCH (ex, RETURN_MASK_ALL)
16124 {
16125 print_command_lines (current_uiout, tp->commands->commands, 2);
16126 }
16127 ui_out_redirect (current_uiout, NULL);
16128
16129 if (ex.reason < 0)
16130 throw_exception (ex);
16131
16132 fprintf_unfiltered (fp, " end\n");
16133 }
16134
16135 if (tp->enable_state == bp_disabled)
16136 fprintf_unfiltered (fp, "disable\n");
16137
16138 /* If this is a multi-location breakpoint, check if the locations
16139 should be individually disabled. Watchpoint locations are
16140 special, and not user visible. */
16141 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
16142 {
16143 struct bp_location *loc;
16144 int n = 1;
16145
16146 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
16147 if (!loc->enabled)
16148 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
16149 }
16150 }
16151
16152 if (extra_trace_bits && *default_collect)
16153 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
16154
16155 if (from_tty)
16156 printf_filtered (_("Saved to file '%s'.\n"), filename);
16157 do_cleanups (cleanup);
16158 }
16159
16160 /* The `save breakpoints' command. */
16161
16162 static void
16163 save_breakpoints_command (char *args, int from_tty)
16164 {
16165 save_breakpoints (args, from_tty, NULL);
16166 }
16167
16168 /* The `save tracepoints' command. */
16169
16170 static void
16171 save_tracepoints_command (char *args, int from_tty)
16172 {
16173 save_breakpoints (args, from_tty, is_tracepoint);
16174 }
16175
16176 /* Create a vector of all tracepoints. */
16177
16178 VEC(breakpoint_p) *
16179 all_tracepoints (void)
16180 {
16181 VEC(breakpoint_p) *tp_vec = 0;
16182 struct breakpoint *tp;
16183
16184 ALL_TRACEPOINTS (tp)
16185 {
16186 VEC_safe_push (breakpoint_p, tp_vec, tp);
16187 }
16188
16189 return tp_vec;
16190 }
16191
16192 \f
16193 /* This help string is used for the break, hbreak, tbreak and thbreak
16194 commands. It is defined as a macro to prevent duplication.
16195 COMMAND should be a string constant containing the name of the
16196 command. */
16197 #define BREAK_ARGS_HELP(command) \
16198 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
16199 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
16200 probe point. Accepted values are `-probe' (for a generic, automatically\n\
16201 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
16202 LOCATION may be a line number, function name, or \"*\" and an address.\n\
16203 If a line number is specified, break at start of code for that line.\n\
16204 If a function is specified, break at start of code for that function.\n\
16205 If an address is specified, break at that exact address.\n\
16206 With no LOCATION, uses current execution address of the selected\n\
16207 stack frame. This is useful for breaking on return to a stack frame.\n\
16208 \n\
16209 THREADNUM is the number from \"info threads\".\n\
16210 CONDITION is a boolean expression.\n\
16211 \n\
16212 Multiple breakpoints at one place are permitted, and useful if their\n\
16213 conditions are different.\n\
16214 \n\
16215 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
16216
16217 /* List of subcommands for "catch". */
16218 static struct cmd_list_element *catch_cmdlist;
16219
16220 /* List of subcommands for "tcatch". */
16221 static struct cmd_list_element *tcatch_cmdlist;
16222
16223 void
16224 add_catch_command (char *name, char *docstring,
16225 cmd_sfunc_ftype *sfunc,
16226 completer_ftype *completer,
16227 void *user_data_catch,
16228 void *user_data_tcatch)
16229 {
16230 struct cmd_list_element *command;
16231
16232 command = add_cmd (name, class_breakpoint, NULL, docstring,
16233 &catch_cmdlist);
16234 set_cmd_sfunc (command, sfunc);
16235 set_cmd_context (command, user_data_catch);
16236 set_cmd_completer (command, completer);
16237
16238 command = add_cmd (name, class_breakpoint, NULL, docstring,
16239 &tcatch_cmdlist);
16240 set_cmd_sfunc (command, sfunc);
16241 set_cmd_context (command, user_data_tcatch);
16242 set_cmd_completer (command, completer);
16243 }
16244
16245 static void
16246 clear_syscall_counts (struct inferior *inf)
16247 {
16248 struct catch_syscall_inferior_data *inf_data
16249 = get_catch_syscall_inferior_data (inf);
16250
16251 inf_data->total_syscalls_count = 0;
16252 inf_data->any_syscall_count = 0;
16253 VEC_free (int, inf_data->syscalls_counts);
16254 }
16255
16256 static void
16257 save_command (char *arg, int from_tty)
16258 {
16259 printf_unfiltered (_("\"save\" must be followed by "
16260 "the name of a save subcommand.\n"));
16261 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
16262 }
16263
16264 struct breakpoint *
16265 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
16266 void *data)
16267 {
16268 struct breakpoint *b, *b_tmp;
16269
16270 ALL_BREAKPOINTS_SAFE (b, b_tmp)
16271 {
16272 if ((*callback) (b, data))
16273 return b;
16274 }
16275
16276 return NULL;
16277 }
16278
16279 /* Zero if any of the breakpoint's locations could be a location where
16280 functions have been inlined, nonzero otherwise. */
16281
16282 static int
16283 is_non_inline_function (struct breakpoint *b)
16284 {
16285 /* The shared library event breakpoint is set on the address of a
16286 non-inline function. */
16287 if (b->type == bp_shlib_event)
16288 return 1;
16289
16290 return 0;
16291 }
16292
16293 /* Nonzero if the specified PC cannot be a location where functions
16294 have been inlined. */
16295
16296 int
16297 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
16298 const struct target_waitstatus *ws)
16299 {
16300 struct breakpoint *b;
16301 struct bp_location *bl;
16302
16303 ALL_BREAKPOINTS (b)
16304 {
16305 if (!is_non_inline_function (b))
16306 continue;
16307
16308 for (bl = b->loc; bl != NULL; bl = bl->next)
16309 {
16310 if (!bl->shlib_disabled
16311 && bpstat_check_location (bl, aspace, pc, ws))
16312 return 1;
16313 }
16314 }
16315
16316 return 0;
16317 }
16318
16319 /* Remove any references to OBJFILE which is going to be freed. */
16320
16321 void
16322 breakpoint_free_objfile (struct objfile *objfile)
16323 {
16324 struct bp_location **locp, *loc;
16325
16326 ALL_BP_LOCATIONS (loc, locp)
16327 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
16328 loc->symtab = NULL;
16329 }
16330
16331 void
16332 initialize_breakpoint_ops (void)
16333 {
16334 static int initialized = 0;
16335
16336 struct breakpoint_ops *ops;
16337
16338 if (initialized)
16339 return;
16340 initialized = 1;
16341
16342 /* The breakpoint_ops structure to be inherit by all kinds of
16343 breakpoints (real breakpoints, i.e., user "break" breakpoints,
16344 internal and momentary breakpoints, etc.). */
16345 ops = &bkpt_base_breakpoint_ops;
16346 *ops = base_breakpoint_ops;
16347 ops->re_set = bkpt_re_set;
16348 ops->insert_location = bkpt_insert_location;
16349 ops->remove_location = bkpt_remove_location;
16350 ops->breakpoint_hit = bkpt_breakpoint_hit;
16351 ops->create_sals_from_address = bkpt_create_sals_from_address;
16352 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
16353 ops->decode_linespec = bkpt_decode_linespec;
16354
16355 /* The breakpoint_ops structure to be used in regular breakpoints. */
16356 ops = &bkpt_breakpoint_ops;
16357 *ops = bkpt_base_breakpoint_ops;
16358 ops->re_set = bkpt_re_set;
16359 ops->resources_needed = bkpt_resources_needed;
16360 ops->print_it = bkpt_print_it;
16361 ops->print_mention = bkpt_print_mention;
16362 ops->print_recreate = bkpt_print_recreate;
16363
16364 /* Ranged breakpoints. */
16365 ops = &ranged_breakpoint_ops;
16366 *ops = bkpt_breakpoint_ops;
16367 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
16368 ops->resources_needed = resources_needed_ranged_breakpoint;
16369 ops->print_it = print_it_ranged_breakpoint;
16370 ops->print_one = print_one_ranged_breakpoint;
16371 ops->print_one_detail = print_one_detail_ranged_breakpoint;
16372 ops->print_mention = print_mention_ranged_breakpoint;
16373 ops->print_recreate = print_recreate_ranged_breakpoint;
16374
16375 /* Internal breakpoints. */
16376 ops = &internal_breakpoint_ops;
16377 *ops = bkpt_base_breakpoint_ops;
16378 ops->re_set = internal_bkpt_re_set;
16379 ops->check_status = internal_bkpt_check_status;
16380 ops->print_it = internal_bkpt_print_it;
16381 ops->print_mention = internal_bkpt_print_mention;
16382
16383 /* Momentary breakpoints. */
16384 ops = &momentary_breakpoint_ops;
16385 *ops = bkpt_base_breakpoint_ops;
16386 ops->re_set = momentary_bkpt_re_set;
16387 ops->check_status = momentary_bkpt_check_status;
16388 ops->print_it = momentary_bkpt_print_it;
16389 ops->print_mention = momentary_bkpt_print_mention;
16390
16391 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16392 ops = &longjmp_breakpoint_ops;
16393 *ops = momentary_breakpoint_ops;
16394 ops->dtor = longjmp_bkpt_dtor;
16395
16396 /* Probe breakpoints. */
16397 ops = &bkpt_probe_breakpoint_ops;
16398 *ops = bkpt_breakpoint_ops;
16399 ops->insert_location = bkpt_probe_insert_location;
16400 ops->remove_location = bkpt_probe_remove_location;
16401 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16402 ops->decode_linespec = bkpt_probe_decode_linespec;
16403
16404 /* Watchpoints. */
16405 ops = &watchpoint_breakpoint_ops;
16406 *ops = base_breakpoint_ops;
16407 ops->dtor = dtor_watchpoint;
16408 ops->re_set = re_set_watchpoint;
16409 ops->insert_location = insert_watchpoint;
16410 ops->remove_location = remove_watchpoint;
16411 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16412 ops->check_status = check_status_watchpoint;
16413 ops->resources_needed = resources_needed_watchpoint;
16414 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16415 ops->print_it = print_it_watchpoint;
16416 ops->print_mention = print_mention_watchpoint;
16417 ops->print_recreate = print_recreate_watchpoint;
16418 ops->explains_signal = explains_signal_watchpoint;
16419
16420 /* Masked watchpoints. */
16421 ops = &masked_watchpoint_breakpoint_ops;
16422 *ops = watchpoint_breakpoint_ops;
16423 ops->insert_location = insert_masked_watchpoint;
16424 ops->remove_location = remove_masked_watchpoint;
16425 ops->resources_needed = resources_needed_masked_watchpoint;
16426 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16427 ops->print_it = print_it_masked_watchpoint;
16428 ops->print_one_detail = print_one_detail_masked_watchpoint;
16429 ops->print_mention = print_mention_masked_watchpoint;
16430 ops->print_recreate = print_recreate_masked_watchpoint;
16431
16432 /* Tracepoints. */
16433 ops = &tracepoint_breakpoint_ops;
16434 *ops = base_breakpoint_ops;
16435 ops->re_set = tracepoint_re_set;
16436 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16437 ops->print_one_detail = tracepoint_print_one_detail;
16438 ops->print_mention = tracepoint_print_mention;
16439 ops->print_recreate = tracepoint_print_recreate;
16440 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16441 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16442 ops->decode_linespec = tracepoint_decode_linespec;
16443
16444 /* Probe tracepoints. */
16445 ops = &tracepoint_probe_breakpoint_ops;
16446 *ops = tracepoint_breakpoint_ops;
16447 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16448 ops->decode_linespec = tracepoint_probe_decode_linespec;
16449
16450 /* Static tracepoints with marker (`-m'). */
16451 ops = &strace_marker_breakpoint_ops;
16452 *ops = tracepoint_breakpoint_ops;
16453 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16454 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16455 ops->decode_linespec = strace_marker_decode_linespec;
16456
16457 /* Fork catchpoints. */
16458 ops = &catch_fork_breakpoint_ops;
16459 *ops = base_breakpoint_ops;
16460 ops->insert_location = insert_catch_fork;
16461 ops->remove_location = remove_catch_fork;
16462 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16463 ops->print_it = print_it_catch_fork;
16464 ops->print_one = print_one_catch_fork;
16465 ops->print_mention = print_mention_catch_fork;
16466 ops->print_recreate = print_recreate_catch_fork;
16467
16468 /* Vfork catchpoints. */
16469 ops = &catch_vfork_breakpoint_ops;
16470 *ops = base_breakpoint_ops;
16471 ops->insert_location = insert_catch_vfork;
16472 ops->remove_location = remove_catch_vfork;
16473 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16474 ops->print_it = print_it_catch_vfork;
16475 ops->print_one = print_one_catch_vfork;
16476 ops->print_mention = print_mention_catch_vfork;
16477 ops->print_recreate = print_recreate_catch_vfork;
16478
16479 /* Exec catchpoints. */
16480 ops = &catch_exec_breakpoint_ops;
16481 *ops = base_breakpoint_ops;
16482 ops->dtor = dtor_catch_exec;
16483 ops->insert_location = insert_catch_exec;
16484 ops->remove_location = remove_catch_exec;
16485 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16486 ops->print_it = print_it_catch_exec;
16487 ops->print_one = print_one_catch_exec;
16488 ops->print_mention = print_mention_catch_exec;
16489 ops->print_recreate = print_recreate_catch_exec;
16490
16491 /* Syscall catchpoints. */
16492 ops = &catch_syscall_breakpoint_ops;
16493 *ops = base_breakpoint_ops;
16494 ops->dtor = dtor_catch_syscall;
16495 ops->insert_location = insert_catch_syscall;
16496 ops->remove_location = remove_catch_syscall;
16497 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16498 ops->print_it = print_it_catch_syscall;
16499 ops->print_one = print_one_catch_syscall;
16500 ops->print_mention = print_mention_catch_syscall;
16501 ops->print_recreate = print_recreate_catch_syscall;
16502
16503 /* Solib-related catchpoints. */
16504 ops = &catch_solib_breakpoint_ops;
16505 *ops = base_breakpoint_ops;
16506 ops->dtor = dtor_catch_solib;
16507 ops->insert_location = insert_catch_solib;
16508 ops->remove_location = remove_catch_solib;
16509 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16510 ops->check_status = check_status_catch_solib;
16511 ops->print_it = print_it_catch_solib;
16512 ops->print_one = print_one_catch_solib;
16513 ops->print_mention = print_mention_catch_solib;
16514 ops->print_recreate = print_recreate_catch_solib;
16515
16516 ops = &dprintf_breakpoint_ops;
16517 *ops = bkpt_base_breakpoint_ops;
16518 ops->re_set = dprintf_re_set;
16519 ops->resources_needed = bkpt_resources_needed;
16520 ops->print_it = bkpt_print_it;
16521 ops->print_mention = bkpt_print_mention;
16522 ops->print_recreate = dprintf_print_recreate;
16523 ops->after_condition_true = dprintf_after_condition_true;
16524 ops->breakpoint_hit = dprintf_breakpoint_hit;
16525 }
16526
16527 /* Chain containing all defined "enable breakpoint" subcommands. */
16528
16529 static struct cmd_list_element *enablebreaklist = NULL;
16530
16531 void
16532 _initialize_breakpoint (void)
16533 {
16534 struct cmd_list_element *c;
16535
16536 initialize_breakpoint_ops ();
16537
16538 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16539 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16540 observer_attach_inferior_exit (clear_syscall_counts);
16541 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16542
16543 breakpoint_objfile_key
16544 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16545
16546 catch_syscall_inferior_data
16547 = register_inferior_data_with_cleanup (NULL,
16548 catch_syscall_inferior_data_cleanup);
16549
16550 breakpoint_chain = 0;
16551 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16552 before a breakpoint is set. */
16553 breakpoint_count = 0;
16554
16555 tracepoint_count = 0;
16556
16557 add_com ("ignore", class_breakpoint, ignore_command, _("\
16558 Set ignore-count of breakpoint number N to COUNT.\n\
16559 Usage is `ignore N COUNT'."));
16560 if (xdb_commands)
16561 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16562
16563 add_com ("commands", class_breakpoint, commands_command, _("\
16564 Set commands to be executed when a breakpoint is hit.\n\
16565 Give breakpoint number as argument after \"commands\".\n\
16566 With no argument, the targeted breakpoint is the last one set.\n\
16567 The commands themselves follow starting on the next line.\n\
16568 Type a line containing \"end\" to indicate the end of them.\n\
16569 Give \"silent\" as the first line to make the breakpoint silent;\n\
16570 then no output is printed when it is hit, except what the commands print."));
16571
16572 c = add_com ("condition", class_breakpoint, condition_command, _("\
16573 Specify breakpoint number N to break only if COND is true.\n\
16574 Usage is `condition N COND', where N is an integer and COND is an\n\
16575 expression to be evaluated whenever breakpoint N is reached."));
16576 set_cmd_completer (c, condition_completer);
16577
16578 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16579 Set a temporary breakpoint.\n\
16580 Like \"break\" except the breakpoint is only temporary,\n\
16581 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16582 by using \"enable delete\" on the breakpoint number.\n\
16583 \n"
16584 BREAK_ARGS_HELP ("tbreak")));
16585 set_cmd_completer (c, location_completer);
16586
16587 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16588 Set a hardware assisted breakpoint.\n\
16589 Like \"break\" except the breakpoint requires hardware support,\n\
16590 some target hardware may not have this support.\n\
16591 \n"
16592 BREAK_ARGS_HELP ("hbreak")));
16593 set_cmd_completer (c, location_completer);
16594
16595 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16596 Set a temporary hardware assisted breakpoint.\n\
16597 Like \"hbreak\" except the breakpoint is only temporary,\n\
16598 so it will be deleted when hit.\n\
16599 \n"
16600 BREAK_ARGS_HELP ("thbreak")));
16601 set_cmd_completer (c, location_completer);
16602
16603 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16604 Enable some breakpoints.\n\
16605 Give breakpoint numbers (separated by spaces) as arguments.\n\
16606 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16607 This is used to cancel the effect of the \"disable\" command.\n\
16608 With a subcommand you can enable temporarily."),
16609 &enablelist, "enable ", 1, &cmdlist);
16610 if (xdb_commands)
16611 add_com ("ab", class_breakpoint, enable_command, _("\
16612 Enable some breakpoints.\n\
16613 Give breakpoint numbers (separated by spaces) as arguments.\n\
16614 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16615 This is used to cancel the effect of the \"disable\" command.\n\
16616 With a subcommand you can enable temporarily."));
16617
16618 add_com_alias ("en", "enable", class_breakpoint, 1);
16619
16620 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16621 Enable some breakpoints.\n\
16622 Give breakpoint numbers (separated by spaces) as arguments.\n\
16623 This is used to cancel the effect of the \"disable\" command.\n\
16624 May be abbreviated to simply \"enable\".\n"),
16625 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16626
16627 add_cmd ("once", no_class, enable_once_command, _("\
16628 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16629 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16630 &enablebreaklist);
16631
16632 add_cmd ("delete", no_class, enable_delete_command, _("\
16633 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16634 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16635 &enablebreaklist);
16636
16637 add_cmd ("count", no_class, enable_count_command, _("\
16638 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16639 If a breakpoint is hit while enabled in this fashion,\n\
16640 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16641 &enablebreaklist);
16642
16643 add_cmd ("delete", no_class, enable_delete_command, _("\
16644 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16645 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16646 &enablelist);
16647
16648 add_cmd ("once", no_class, enable_once_command, _("\
16649 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16650 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16651 &enablelist);
16652
16653 add_cmd ("count", no_class, enable_count_command, _("\
16654 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16655 If a breakpoint is hit while enabled in this fashion,\n\
16656 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16657 &enablelist);
16658
16659 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16660 Disable some breakpoints.\n\
16661 Arguments are breakpoint numbers with spaces in between.\n\
16662 To disable all breakpoints, give no argument.\n\
16663 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16664 &disablelist, "disable ", 1, &cmdlist);
16665 add_com_alias ("dis", "disable", class_breakpoint, 1);
16666 add_com_alias ("disa", "disable", class_breakpoint, 1);
16667 if (xdb_commands)
16668 add_com ("sb", class_breakpoint, disable_command, _("\
16669 Disable some breakpoints.\n\
16670 Arguments are breakpoint numbers with spaces in between.\n\
16671 To disable all breakpoints, give no argument.\n\
16672 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16673
16674 add_cmd ("breakpoints", class_alias, disable_command, _("\
16675 Disable some breakpoints.\n\
16676 Arguments are breakpoint numbers with spaces in between.\n\
16677 To disable all breakpoints, give no argument.\n\
16678 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16679 This command may be abbreviated \"disable\"."),
16680 &disablelist);
16681
16682 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16683 Delete some breakpoints or auto-display expressions.\n\
16684 Arguments are breakpoint numbers with spaces in between.\n\
16685 To delete all breakpoints, give no argument.\n\
16686 \n\
16687 Also a prefix command for deletion of other GDB objects.\n\
16688 The \"unset\" command is also an alias for \"delete\"."),
16689 &deletelist, "delete ", 1, &cmdlist);
16690 add_com_alias ("d", "delete", class_breakpoint, 1);
16691 add_com_alias ("del", "delete", class_breakpoint, 1);
16692 if (xdb_commands)
16693 add_com ("db", class_breakpoint, delete_command, _("\
16694 Delete some breakpoints.\n\
16695 Arguments are breakpoint numbers with spaces in between.\n\
16696 To delete all breakpoints, give no argument.\n"));
16697
16698 add_cmd ("breakpoints", class_alias, delete_command, _("\
16699 Delete some breakpoints or auto-display expressions.\n\
16700 Arguments are breakpoint numbers with spaces in between.\n\
16701 To delete all breakpoints, give no argument.\n\
16702 This command may be abbreviated \"delete\"."),
16703 &deletelist);
16704
16705 add_com ("clear", class_breakpoint, clear_command, _("\
16706 Clear breakpoint at specified line or function.\n\
16707 Argument may be line number, function name, or \"*\" and an address.\n\
16708 If line number is specified, all breakpoints in that line are cleared.\n\
16709 If function is specified, breakpoints at beginning of function are cleared.\n\
16710 If an address is specified, breakpoints at that address are cleared.\n\
16711 \n\
16712 With no argument, clears all breakpoints in the line that the selected frame\n\
16713 is executing in.\n\
16714 \n\
16715 See also the \"delete\" command which clears breakpoints by number."));
16716 add_com_alias ("cl", "clear", class_breakpoint, 1);
16717
16718 c = add_com ("break", class_breakpoint, break_command, _("\
16719 Set breakpoint at specified line or function.\n"
16720 BREAK_ARGS_HELP ("break")));
16721 set_cmd_completer (c, location_completer);
16722
16723 add_com_alias ("b", "break", class_run, 1);
16724 add_com_alias ("br", "break", class_run, 1);
16725 add_com_alias ("bre", "break", class_run, 1);
16726 add_com_alias ("brea", "break", class_run, 1);
16727
16728 if (xdb_commands)
16729 add_com_alias ("ba", "break", class_breakpoint, 1);
16730
16731 if (dbx_commands)
16732 {
16733 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16734 Break in function/address or break at a line in the current file."),
16735 &stoplist, "stop ", 1, &cmdlist);
16736 add_cmd ("in", class_breakpoint, stopin_command,
16737 _("Break in function or address."), &stoplist);
16738 add_cmd ("at", class_breakpoint, stopat_command,
16739 _("Break at a line in the current file."), &stoplist);
16740 add_com ("status", class_info, breakpoints_info, _("\
16741 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16742 The \"Type\" column indicates one of:\n\
16743 \tbreakpoint - normal breakpoint\n\
16744 \twatchpoint - watchpoint\n\
16745 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16746 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16747 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16748 address and file/line number respectively.\n\
16749 \n\
16750 Convenience variable \"$_\" and default examine address for \"x\"\n\
16751 are set to the address of the last breakpoint listed unless the command\n\
16752 is prefixed with \"server \".\n\n\
16753 Convenience variable \"$bpnum\" contains the number of the last\n\
16754 breakpoint set."));
16755 }
16756
16757 add_info ("breakpoints", breakpoints_info, _("\
16758 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16759 The \"Type\" column indicates one of:\n\
16760 \tbreakpoint - normal breakpoint\n\
16761 \twatchpoint - watchpoint\n\
16762 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16763 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16764 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16765 address and file/line number respectively.\n\
16766 \n\
16767 Convenience variable \"$_\" and default examine address for \"x\"\n\
16768 are set to the address of the last breakpoint listed unless the command\n\
16769 is prefixed with \"server \".\n\n\
16770 Convenience variable \"$bpnum\" contains the number of the last\n\
16771 breakpoint set."));
16772
16773 add_info_alias ("b", "breakpoints", 1);
16774
16775 if (xdb_commands)
16776 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16777 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16778 The \"Type\" column indicates one of:\n\
16779 \tbreakpoint - normal breakpoint\n\
16780 \twatchpoint - watchpoint\n\
16781 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16782 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16783 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16784 address and file/line number respectively.\n\
16785 \n\
16786 Convenience variable \"$_\" and default examine address for \"x\"\n\
16787 are set to the address of the last breakpoint listed unless the command\n\
16788 is prefixed with \"server \".\n\n\
16789 Convenience variable \"$bpnum\" contains the number of the last\n\
16790 breakpoint set."));
16791
16792 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16793 Status of all breakpoints, or breakpoint number NUMBER.\n\
16794 The \"Type\" column indicates one of:\n\
16795 \tbreakpoint - normal breakpoint\n\
16796 \twatchpoint - watchpoint\n\
16797 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16798 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16799 \tuntil - internal breakpoint used by the \"until\" command\n\
16800 \tfinish - internal breakpoint used by the \"finish\" command\n\
16801 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16802 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16803 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16804 address and file/line number respectively.\n\
16805 \n\
16806 Convenience variable \"$_\" and default examine address for \"x\"\n\
16807 are set to the address of the last breakpoint listed unless the command\n\
16808 is prefixed with \"server \".\n\n\
16809 Convenience variable \"$bpnum\" contains the number of the last\n\
16810 breakpoint set."),
16811 &maintenanceinfolist);
16812
16813 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16814 Set catchpoints to catch events."),
16815 &catch_cmdlist, "catch ",
16816 0/*allow-unknown*/, &cmdlist);
16817
16818 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16819 Set temporary catchpoints to catch events."),
16820 &tcatch_cmdlist, "tcatch ",
16821 0/*allow-unknown*/, &cmdlist);
16822
16823 add_catch_command ("fork", _("Catch calls to fork."),
16824 catch_fork_command_1,
16825 NULL,
16826 (void *) (uintptr_t) catch_fork_permanent,
16827 (void *) (uintptr_t) catch_fork_temporary);
16828 add_catch_command ("vfork", _("Catch calls to vfork."),
16829 catch_fork_command_1,
16830 NULL,
16831 (void *) (uintptr_t) catch_vfork_permanent,
16832 (void *) (uintptr_t) catch_vfork_temporary);
16833 add_catch_command ("exec", _("Catch calls to exec."),
16834 catch_exec_command_1,
16835 NULL,
16836 CATCH_PERMANENT,
16837 CATCH_TEMPORARY);
16838 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16839 Usage: catch load [REGEX]\n\
16840 If REGEX is given, only stop for libraries matching the regular expression."),
16841 catch_load_command_1,
16842 NULL,
16843 CATCH_PERMANENT,
16844 CATCH_TEMPORARY);
16845 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16846 Usage: catch unload [REGEX]\n\
16847 If REGEX is given, only stop for libraries matching the regular expression."),
16848 catch_unload_command_1,
16849 NULL,
16850 CATCH_PERMANENT,
16851 CATCH_TEMPORARY);
16852 add_catch_command ("syscall", _("\
16853 Catch system calls by their names and/or numbers.\n\
16854 Arguments say which system calls to catch. If no arguments\n\
16855 are given, every system call will be caught.\n\
16856 Arguments, if given, should be one or more system call names\n\
16857 (if your system supports that), or system call numbers."),
16858 catch_syscall_command_1,
16859 catch_syscall_completer,
16860 CATCH_PERMANENT,
16861 CATCH_TEMPORARY);
16862
16863 c = add_com ("watch", class_breakpoint, watch_command, _("\
16864 Set a watchpoint for an expression.\n\
16865 Usage: watch [-l|-location] EXPRESSION\n\
16866 A watchpoint stops execution of your program whenever the value of\n\
16867 an expression changes.\n\
16868 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16869 the memory to which it refers."));
16870 set_cmd_completer (c, expression_completer);
16871
16872 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16873 Set a read watchpoint for an expression.\n\
16874 Usage: rwatch [-l|-location] EXPRESSION\n\
16875 A watchpoint stops execution of your program whenever the value of\n\
16876 an expression is read.\n\
16877 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16878 the memory to which it refers."));
16879 set_cmd_completer (c, expression_completer);
16880
16881 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16882 Set a watchpoint for an expression.\n\
16883 Usage: awatch [-l|-location] EXPRESSION\n\
16884 A watchpoint stops execution of your program whenever the value of\n\
16885 an expression is either read or written.\n\
16886 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16887 the memory to which it refers."));
16888 set_cmd_completer (c, expression_completer);
16889
16890 add_info ("watchpoints", watchpoints_info, _("\
16891 Status of specified watchpoints (all watchpoints if no argument)."));
16892
16893 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16894 respond to changes - contrary to the description. */
16895 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16896 &can_use_hw_watchpoints, _("\
16897 Set debugger's willingness to use watchpoint hardware."), _("\
16898 Show debugger's willingness to use watchpoint hardware."), _("\
16899 If zero, gdb will not use hardware for new watchpoints, even if\n\
16900 such is available. (However, any hardware watchpoints that were\n\
16901 created before setting this to nonzero, will continue to use watchpoint\n\
16902 hardware.)"),
16903 NULL,
16904 show_can_use_hw_watchpoints,
16905 &setlist, &showlist);
16906
16907 can_use_hw_watchpoints = 1;
16908
16909 /* Tracepoint manipulation commands. */
16910
16911 c = add_com ("trace", class_breakpoint, trace_command, _("\
16912 Set a tracepoint at specified line or function.\n\
16913 \n"
16914 BREAK_ARGS_HELP ("trace") "\n\
16915 Do \"help tracepoints\" for info on other tracepoint commands."));
16916 set_cmd_completer (c, location_completer);
16917
16918 add_com_alias ("tp", "trace", class_alias, 0);
16919 add_com_alias ("tr", "trace", class_alias, 1);
16920 add_com_alias ("tra", "trace", class_alias, 1);
16921 add_com_alias ("trac", "trace", class_alias, 1);
16922
16923 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16924 Set a fast tracepoint at specified line or function.\n\
16925 \n"
16926 BREAK_ARGS_HELP ("ftrace") "\n\
16927 Do \"help tracepoints\" for info on other tracepoint commands."));
16928 set_cmd_completer (c, location_completer);
16929
16930 c = add_com ("strace", class_breakpoint, strace_command, _("\
16931 Set a static tracepoint at specified line, function or marker.\n\
16932 \n\
16933 strace [LOCATION] [if CONDITION]\n\
16934 LOCATION may be a line number, function name, \"*\" and an address,\n\
16935 or -m MARKER_ID.\n\
16936 If a line number is specified, probe the marker at start of code\n\
16937 for that line. If a function is specified, probe the marker at start\n\
16938 of code for that function. If an address is specified, probe the marker\n\
16939 at that exact address. If a marker id is specified, probe the marker\n\
16940 with that name. With no LOCATION, uses current execution address of\n\
16941 the selected stack frame.\n\
16942 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16943 This collects arbitrary user data passed in the probe point call to the\n\
16944 tracing library. You can inspect it when analyzing the trace buffer,\n\
16945 by printing the $_sdata variable like any other convenience variable.\n\
16946 \n\
16947 CONDITION is a boolean expression.\n\
16948 \n\
16949 Multiple tracepoints at one place are permitted, and useful if their\n\
16950 conditions are different.\n\
16951 \n\
16952 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16953 Do \"help tracepoints\" for info on other tracepoint commands."));
16954 set_cmd_completer (c, location_completer);
16955
16956 add_info ("tracepoints", tracepoints_info, _("\
16957 Status of specified tracepoints (all tracepoints if no argument).\n\
16958 Convenience variable \"$tpnum\" contains the number of the\n\
16959 last tracepoint set."));
16960
16961 add_info_alias ("tp", "tracepoints", 1);
16962
16963 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16964 Delete specified tracepoints.\n\
16965 Arguments are tracepoint numbers, separated by spaces.\n\
16966 No argument means delete all tracepoints."),
16967 &deletelist);
16968 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16969
16970 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16971 Disable specified tracepoints.\n\
16972 Arguments are tracepoint numbers, separated by spaces.\n\
16973 No argument means disable all tracepoints."),
16974 &disablelist);
16975 deprecate_cmd (c, "disable");
16976
16977 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16978 Enable specified tracepoints.\n\
16979 Arguments are tracepoint numbers, separated by spaces.\n\
16980 No argument means enable all tracepoints."),
16981 &enablelist);
16982 deprecate_cmd (c, "enable");
16983
16984 add_com ("passcount", class_trace, trace_pass_command, _("\
16985 Set the passcount for a tracepoint.\n\
16986 The trace will end when the tracepoint has been passed 'count' times.\n\
16987 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16988 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16989
16990 add_prefix_cmd ("save", class_breakpoint, save_command,
16991 _("Save breakpoint definitions as a script."),
16992 &save_cmdlist, "save ",
16993 0/*allow-unknown*/, &cmdlist);
16994
16995 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16996 Save current breakpoint definitions as a script.\n\
16997 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16998 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16999 session to restore them."),
17000 &save_cmdlist);
17001 set_cmd_completer (c, filename_completer);
17002
17003 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
17004 Save current tracepoint definitions as a script.\n\
17005 Use the 'source' command in another debug session to restore them."),
17006 &save_cmdlist);
17007 set_cmd_completer (c, filename_completer);
17008
17009 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
17010 deprecate_cmd (c, "save tracepoints");
17011
17012 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
17013 Breakpoint specific settings\n\
17014 Configure various breakpoint-specific variables such as\n\
17015 pending breakpoint behavior"),
17016 &breakpoint_set_cmdlist, "set breakpoint ",
17017 0/*allow-unknown*/, &setlist);
17018 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
17019 Breakpoint specific settings\n\
17020 Configure various breakpoint-specific variables such as\n\
17021 pending breakpoint behavior"),
17022 &breakpoint_show_cmdlist, "show breakpoint ",
17023 0/*allow-unknown*/, &showlist);
17024
17025 add_setshow_auto_boolean_cmd ("pending", no_class,
17026 &pending_break_support, _("\
17027 Set debugger's behavior regarding pending breakpoints."), _("\
17028 Show debugger's behavior regarding pending breakpoints."), _("\
17029 If on, an unrecognized breakpoint location will cause gdb to create a\n\
17030 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
17031 an error. If auto, an unrecognized breakpoint location results in a\n\
17032 user-query to see if a pending breakpoint should be created."),
17033 NULL,
17034 show_pending_break_support,
17035 &breakpoint_set_cmdlist,
17036 &breakpoint_show_cmdlist);
17037
17038 pending_break_support = AUTO_BOOLEAN_AUTO;
17039
17040 add_setshow_boolean_cmd ("auto-hw", no_class,
17041 &automatic_hardware_breakpoints, _("\
17042 Set automatic usage of hardware breakpoints."), _("\
17043 Show automatic usage of hardware breakpoints."), _("\
17044 If set, the debugger will automatically use hardware breakpoints for\n\
17045 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
17046 a warning will be emitted for such breakpoints."),
17047 NULL,
17048 show_automatic_hardware_breakpoints,
17049 &breakpoint_set_cmdlist,
17050 &breakpoint_show_cmdlist);
17051
17052 add_setshow_boolean_cmd ("always-inserted", class_support,
17053 &always_inserted_mode, _("\
17054 Set mode for inserting breakpoints."), _("\
17055 Show mode for inserting breakpoints."), _("\
17056 When this mode is on, breakpoints are inserted immediately as soon as\n\
17057 they're created, kept inserted even when execution stops, and removed\n\
17058 only when the user deletes them. When this mode is off (the default),\n\
17059 breakpoints are inserted only when execution continues, and removed\n\
17060 when execution stops."),
17061 NULL,
17062 &show_always_inserted_mode,
17063 &breakpoint_set_cmdlist,
17064 &breakpoint_show_cmdlist);
17065
17066 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
17067 condition_evaluation_enums,
17068 &condition_evaluation_mode_1, _("\
17069 Set mode of breakpoint condition evaluation."), _("\
17070 Show mode of breakpoint condition evaluation."), _("\
17071 When this is set to \"host\", breakpoint conditions will be\n\
17072 evaluated on the host's side by GDB. When it is set to \"target\",\n\
17073 breakpoint conditions will be downloaded to the target (if the target\n\
17074 supports such feature) and conditions will be evaluated on the target's side.\n\
17075 If this is set to \"auto\" (default), this will be automatically set to\n\
17076 \"target\" if it supports condition evaluation, otherwise it will\n\
17077 be set to \"gdb\""),
17078 &set_condition_evaluation_mode,
17079 &show_condition_evaluation_mode,
17080 &breakpoint_set_cmdlist,
17081 &breakpoint_show_cmdlist);
17082
17083 add_com ("break-range", class_breakpoint, break_range_command, _("\
17084 Set a breakpoint for an address range.\n\
17085 break-range START-LOCATION, END-LOCATION\n\
17086 where START-LOCATION and END-LOCATION can be one of the following:\n\
17087 LINENUM, for that line in the current file,\n\
17088 FILE:LINENUM, for that line in that file,\n\
17089 +OFFSET, for that number of lines after the current line\n\
17090 or the start of the range\n\
17091 FUNCTION, for the first line in that function,\n\
17092 FILE:FUNCTION, to distinguish among like-named static functions.\n\
17093 *ADDRESS, for the instruction at that address.\n\
17094 \n\
17095 The breakpoint will stop execution of the inferior whenever it executes\n\
17096 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
17097 range (including START-LOCATION and END-LOCATION)."));
17098
17099 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
17100 Set a dynamic printf at specified line or function.\n\
17101 dprintf location,format string,arg1,arg2,...\n\
17102 location may be a line number, function name, or \"*\" and an address.\n\
17103 If a line number is specified, break at start of code for that line.\n\
17104 If a function is specified, break at start of code for that function."));
17105 set_cmd_completer (c, location_completer);
17106
17107 add_setshow_enum_cmd ("dprintf-style", class_support,
17108 dprintf_style_enums, &dprintf_style, _("\
17109 Set the style of usage for dynamic printf."), _("\
17110 Show the style of usage for dynamic printf."), _("\
17111 This setting chooses how GDB will do a dynamic printf.\n\
17112 If the value is \"gdb\", then the printing is done by GDB to its own\n\
17113 console, as with the \"printf\" command.\n\
17114 If the value is \"call\", the print is done by calling a function in your\n\
17115 program; by default printf(), but you can choose a different function or\n\
17116 output stream by setting dprintf-function and dprintf-channel."),
17117 update_dprintf_commands, NULL,
17118 &setlist, &showlist);
17119
17120 dprintf_function = xstrdup ("printf");
17121 add_setshow_string_cmd ("dprintf-function", class_support,
17122 &dprintf_function, _("\
17123 Set the function to use for dynamic printf"), _("\
17124 Show the function to use for dynamic printf"), NULL,
17125 update_dprintf_commands, NULL,
17126 &setlist, &showlist);
17127
17128 dprintf_channel = xstrdup ("");
17129 add_setshow_string_cmd ("dprintf-channel", class_support,
17130 &dprintf_channel, _("\
17131 Set the channel to use for dynamic printf"), _("\
17132 Show the channel to use for dynamic printf"), NULL,
17133 update_dprintf_commands, NULL,
17134 &setlist, &showlist);
17135
17136 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
17137 &disconnected_dprintf, _("\
17138 Set whether dprintf continues after GDB disconnects."), _("\
17139 Show whether dprintf continues after GDB disconnects."), _("\
17140 Use this to let dprintf commands continue to hit and produce output\n\
17141 even if GDB disconnects or detaches from the target."),
17142 NULL,
17143 NULL,
17144 &setlist, &showlist);
17145
17146 add_com ("agent-printf", class_vars, agent_printf_command, _("\
17147 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
17148 (target agent only) This is useful for formatted output in user-defined commands."));
17149
17150 automatic_hardware_breakpoints = 1;
17151
17152 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
17153 observer_attach_thread_exit (remove_threaded_breakpoints);
17154 }
This page took 0.395694 seconds and 5 git commands to generate.