Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70
71 /* readline include files */
72 #include "readline/readline.h"
73 #include "readline/history.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80
81 /* Enums for exception-handling support. */
82 enum exception_event_kind
83 {
84 EX_EVENT_THROW,
85 EX_EVENT_RETHROW,
86 EX_EVENT_CATCH
87 };
88
89 /* Prototypes for local functions. */
90
91 static void enable_delete_command (char *, int);
92
93 static void enable_once_command (char *, int);
94
95 static void enable_count_command (char *, int);
96
97 static void disable_command (char *, int);
98
99 static void enable_command (char *, int);
100
101 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
102 void *),
103 void *);
104
105 static void ignore_command (char *, int);
106
107 static int breakpoint_re_set_one (void *);
108
109 static void breakpoint_re_set_default (struct breakpoint *);
110
111 static void create_sals_from_address_default (char **,
112 struct linespec_result *,
113 enum bptype, char *,
114 char **);
115
116 static void create_breakpoints_sal_default (struct gdbarch *,
117 struct linespec_result *,
118 char *, char *, enum bptype,
119 enum bpdisp, int, int,
120 int,
121 const struct breakpoint_ops *,
122 int, int, int, unsigned);
123
124 static void decode_linespec_default (struct breakpoint *, char **,
125 struct symtabs_and_lines *);
126
127 static void clear_command (char *, int);
128
129 static void catch_command (char *, int);
130
131 static int can_use_hardware_watchpoint (struct value *);
132
133 static void break_command_1 (char *, int, int);
134
135 static void mention (struct breakpoint *);
136
137 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
138 enum bptype,
139 const struct breakpoint_ops *);
140 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
141 const struct symtab_and_line *);
142
143 /* This function is used in gdbtk sources and thus can not be made
144 static. */
145 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
146 struct symtab_and_line,
147 enum bptype,
148 const struct breakpoint_ops *);
149
150 static struct breakpoint *
151 momentary_breakpoint_from_master (struct breakpoint *orig,
152 enum bptype type,
153 const struct breakpoint_ops *ops,
154 int loc_enabled);
155
156 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
157
158 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
159 CORE_ADDR bpaddr,
160 enum bptype bptype);
161
162 static void describe_other_breakpoints (struct gdbarch *,
163 struct program_space *, CORE_ADDR,
164 struct obj_section *, int);
165
166 static int watchpoint_locations_match (struct bp_location *loc1,
167 struct bp_location *loc2);
168
169 static int breakpoint_location_address_match (struct bp_location *bl,
170 struct address_space *aspace,
171 CORE_ADDR addr);
172
173 static void breakpoints_info (char *, int);
174
175 static void watchpoints_info (char *, int);
176
177 static int breakpoint_1 (char *, int,
178 int (*) (const struct breakpoint *));
179
180 static int breakpoint_cond_eval (void *);
181
182 static void cleanup_executing_breakpoints (void *);
183
184 static void commands_command (char *, int);
185
186 static void condition_command (char *, int);
187
188 typedef enum
189 {
190 mark_inserted,
191 mark_uninserted
192 }
193 insertion_state_t;
194
195 static int remove_breakpoint (struct bp_location *, insertion_state_t);
196 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
197
198 static enum print_stop_action print_bp_stop_message (bpstat bs);
199
200 static int watchpoint_check (void *);
201
202 static void maintenance_info_breakpoints (char *, int);
203
204 static int hw_breakpoint_used_count (void);
205
206 static int hw_watchpoint_use_count (struct breakpoint *);
207
208 static int hw_watchpoint_used_count_others (struct breakpoint *except,
209 enum bptype type,
210 int *other_type_used);
211
212 static void hbreak_command (char *, int);
213
214 static void thbreak_command (char *, int);
215
216 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
217 int count);
218
219 static void stop_command (char *arg, int from_tty);
220
221 static void stopin_command (char *arg, int from_tty);
222
223 static void stopat_command (char *arg, int from_tty);
224
225 static void tcatch_command (char *arg, int from_tty);
226
227 static void free_bp_location (struct bp_location *loc);
228 static void incref_bp_location (struct bp_location *loc);
229 static void decref_bp_location (struct bp_location **loc);
230
231 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
232
233 /* update_global_location_list's modes of operation wrt to whether to
234 insert locations now. */
235 enum ugll_insert_mode
236 {
237 /* Don't insert any breakpoint locations into the inferior, only
238 remove already-inserted locations that no longer should be
239 inserted. Functions that delete a breakpoint or breakpoints
240 should specify this mode, so that deleting a breakpoint doesn't
241 have the side effect of inserting the locations of other
242 breakpoints that are marked not-inserted, but should_be_inserted
243 returns true on them.
244
245 This behavior is useful is situations close to tear-down -- e.g.,
246 after an exec, while the target still has execution, but
247 breakpoint shadows of the previous executable image should *NOT*
248 be restored to the new image; or before detaching, where the
249 target still has execution and wants to delete breakpoints from
250 GDB's lists, and all breakpoints had already been removed from
251 the inferior. */
252 UGLL_DONT_INSERT,
253
254 /* May insert breakpoints iff breakpoints_should_be_inserted_now
255 claims breakpoints should be inserted now. */
256 UGLL_MAY_INSERT,
257
258 /* Insert locations now, irrespective of
259 breakpoints_should_be_inserted_now. E.g., say all threads are
260 stopped right now, and the user did "continue". We need to
261 insert breakpoints _before_ resuming the target, but
262 UGLL_MAY_INSERT wouldn't insert them, because
263 breakpoints_should_be_inserted_now returns false at that point,
264 as no thread is running yet. */
265 UGLL_INSERT
266 };
267
268 static void update_global_location_list (enum ugll_insert_mode);
269
270 static void update_global_location_list_nothrow (enum ugll_insert_mode);
271
272 static int is_hardware_watchpoint (const struct breakpoint *bpt);
273
274 static void insert_breakpoint_locations (void);
275
276 static void tracepoints_info (char *, int);
277
278 static void delete_trace_command (char *, int);
279
280 static void enable_trace_command (char *, int);
281
282 static void disable_trace_command (char *, int);
283
284 static void trace_pass_command (char *, int);
285
286 static void set_tracepoint_count (int num);
287
288 static int is_masked_watchpoint (const struct breakpoint *b);
289
290 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
291
292 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
293 otherwise. */
294
295 static int strace_marker_p (struct breakpoint *b);
296
297 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
298 that are implemented on top of software or hardware breakpoints
299 (user breakpoints, internal and momentary breakpoints, etc.). */
300 static struct breakpoint_ops bkpt_base_breakpoint_ops;
301
302 /* Internal breakpoints class type. */
303 static struct breakpoint_ops internal_breakpoint_ops;
304
305 /* Momentary breakpoints class type. */
306 static struct breakpoint_ops momentary_breakpoint_ops;
307
308 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
309 static struct breakpoint_ops longjmp_breakpoint_ops;
310
311 /* The breakpoint_ops structure to be used in regular user created
312 breakpoints. */
313 struct breakpoint_ops bkpt_breakpoint_ops;
314
315 /* Breakpoints set on probes. */
316 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
317
318 /* Dynamic printf class type. */
319 struct breakpoint_ops dprintf_breakpoint_ops;
320
321 /* The style in which to perform a dynamic printf. This is a user
322 option because different output options have different tradeoffs;
323 if GDB does the printing, there is better error handling if there
324 is a problem with any of the arguments, but using an inferior
325 function lets you have special-purpose printers and sending of
326 output to the same place as compiled-in print functions. */
327
328 static const char dprintf_style_gdb[] = "gdb";
329 static const char dprintf_style_call[] = "call";
330 static const char dprintf_style_agent[] = "agent";
331 static const char *const dprintf_style_enums[] = {
332 dprintf_style_gdb,
333 dprintf_style_call,
334 dprintf_style_agent,
335 NULL
336 };
337 static const char *dprintf_style = dprintf_style_gdb;
338
339 /* The function to use for dynamic printf if the preferred style is to
340 call into the inferior. The value is simply a string that is
341 copied into the command, so it can be anything that GDB can
342 evaluate to a callable address, not necessarily a function name. */
343
344 static char *dprintf_function = "";
345
346 /* The channel to use for dynamic printf if the preferred style is to
347 call into the inferior; if a nonempty string, it will be passed to
348 the call as the first argument, with the format string as the
349 second. As with the dprintf function, this can be anything that
350 GDB knows how to evaluate, so in addition to common choices like
351 "stderr", this could be an app-specific expression like
352 "mystreams[curlogger]". */
353
354 static char *dprintf_channel = "";
355
356 /* True if dprintf commands should continue to operate even if GDB
357 has disconnected. */
358 static int disconnected_dprintf = 1;
359
360 /* A reference-counted struct command_line. This lets multiple
361 breakpoints share a single command list. */
362 struct counted_command_line
363 {
364 /* The reference count. */
365 int refc;
366
367 /* The command list. */
368 struct command_line *commands;
369 };
370
371 struct command_line *
372 breakpoint_commands (struct breakpoint *b)
373 {
374 return b->commands ? b->commands->commands : NULL;
375 }
376
377 /* Flag indicating that a command has proceeded the inferior past the
378 current breakpoint. */
379
380 static int breakpoint_proceeded;
381
382 const char *
383 bpdisp_text (enum bpdisp disp)
384 {
385 /* NOTE: the following values are a part of MI protocol and
386 represent values of 'disp' field returned when inferior stops at
387 a breakpoint. */
388 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
389
390 return bpdisps[(int) disp];
391 }
392
393 /* Prototypes for exported functions. */
394 /* If FALSE, gdb will not use hardware support for watchpoints, even
395 if such is available. */
396 static int can_use_hw_watchpoints;
397
398 static void
399 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's willingness to use "
405 "watchpoint hardware is %s.\n"),
406 value);
407 }
408
409 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
410 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
411 for unrecognized breakpoint locations.
412 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
413 static enum auto_boolean pending_break_support;
414 static void
415 show_pending_break_support (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger's behavior regarding "
421 "pending breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
426 set with "break" but falling in read-only memory.
427 If 0, gdb will warn about such breakpoints, but won't automatically
428 use hardware breakpoints. */
429 static int automatic_hardware_breakpoints;
430 static void
431 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
432 struct cmd_list_element *c,
433 const char *value)
434 {
435 fprintf_filtered (file,
436 _("Automatic usage of hardware breakpoints is %s.\n"),
437 value);
438 }
439
440 /* If on, GDB keeps breakpoints inserted even if the inferior is
441 stopped, and immediately inserts any new breakpoints as soon as
442 they're created. If off (default), GDB keeps breakpoints off of
443 the target as long as possible. That is, it delays inserting
444 breakpoints until the next resume, and removes them again when the
445 target fully stops. This is a bit safer in case GDB crashes while
446 processing user input. */
447 static int always_inserted_mode = 0;
448
449 static void
450 show_always_inserted_mode (struct ui_file *file, int from_tty,
451 struct cmd_list_element *c, const char *value)
452 {
453 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
454 value);
455 }
456
457 /* See breakpoint.h. */
458
459 int
460 breakpoints_should_be_inserted_now (void)
461 {
462 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
463 {
464 /* If breakpoints are global, they should be inserted even if no
465 thread under gdb's control is running, or even if there are
466 no threads under GDB's control yet. */
467 return 1;
468 }
469 else if (target_has_execution)
470 {
471 if (always_inserted_mode)
472 {
473 /* The user wants breakpoints inserted even if all threads
474 are stopped. */
475 return 1;
476 }
477
478 if (threads_are_executing ())
479 return 1;
480 }
481 return 0;
482 }
483
484 static const char condition_evaluation_both[] = "host or target";
485
486 /* Modes for breakpoint condition evaluation. */
487 static const char condition_evaluation_auto[] = "auto";
488 static const char condition_evaluation_host[] = "host";
489 static const char condition_evaluation_target[] = "target";
490 static const char *const condition_evaluation_enums[] = {
491 condition_evaluation_auto,
492 condition_evaluation_host,
493 condition_evaluation_target,
494 NULL
495 };
496
497 /* Global that holds the current mode for breakpoint condition evaluation. */
498 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
499
500 /* Global that we use to display information to the user (gets its value from
501 condition_evaluation_mode_1. */
502 static const char *condition_evaluation_mode = condition_evaluation_auto;
503
504 /* Translate a condition evaluation mode MODE into either "host"
505 or "target". This is used mostly to translate from "auto" to the
506 real setting that is being used. It returns the translated
507 evaluation mode. */
508
509 static const char *
510 translate_condition_evaluation_mode (const char *mode)
511 {
512 if (mode == condition_evaluation_auto)
513 {
514 if (target_supports_evaluation_of_breakpoint_conditions ())
515 return condition_evaluation_target;
516 else
517 return condition_evaluation_host;
518 }
519 else
520 return mode;
521 }
522
523 /* Discovers what condition_evaluation_auto translates to. */
524
525 static const char *
526 breakpoint_condition_evaluation_mode (void)
527 {
528 return translate_condition_evaluation_mode (condition_evaluation_mode);
529 }
530
531 /* Return true if GDB should evaluate breakpoint conditions or false
532 otherwise. */
533
534 static int
535 gdb_evaluates_breakpoint_condition_p (void)
536 {
537 const char *mode = breakpoint_condition_evaluation_mode ();
538
539 return (mode == condition_evaluation_host);
540 }
541
542 void _initialize_breakpoint (void);
543
544 /* Are we executing breakpoint commands? */
545 static int executing_breakpoint_commands;
546
547 /* Are overlay event breakpoints enabled? */
548 static int overlay_events_enabled;
549
550 /* See description in breakpoint.h. */
551 int target_exact_watchpoints = 0;
552
553 /* Walk the following statement or block through all breakpoints.
554 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
555 current breakpoint. */
556
557 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
558
559 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
560 for (B = breakpoint_chain; \
561 B ? (TMP=B->next, 1): 0; \
562 B = TMP)
563
564 /* Similar iterator for the low-level breakpoints. SAFE variant is
565 not provided so update_global_location_list must not be called
566 while executing the block of ALL_BP_LOCATIONS. */
567
568 #define ALL_BP_LOCATIONS(B,BP_TMP) \
569 for (BP_TMP = bp_location; \
570 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
571 BP_TMP++)
572
573 /* Iterates through locations with address ADDRESS for the currently selected
574 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
575 to where the loop should start from.
576 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
577 appropriate location to start with. */
578
579 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
580 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
581 BP_LOCP_TMP = BP_LOCP_START; \
582 BP_LOCP_START \
583 && (BP_LOCP_TMP < bp_location + bp_location_count \
584 && (*BP_LOCP_TMP)->address == ADDRESS); \
585 BP_LOCP_TMP++)
586
587 /* Iterator for tracepoints only. */
588
589 #define ALL_TRACEPOINTS(B) \
590 for (B = breakpoint_chain; B; B = B->next) \
591 if (is_tracepoint (B))
592
593 /* Chains of all breakpoints defined. */
594
595 struct breakpoint *breakpoint_chain;
596
597 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
598
599 static struct bp_location **bp_location;
600
601 /* Number of elements of BP_LOCATION. */
602
603 static unsigned bp_location_count;
604
605 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
606 ADDRESS for the current elements of BP_LOCATION which get a valid
607 result from bp_location_has_shadow. You can use it for roughly
608 limiting the subrange of BP_LOCATION to scan for shadow bytes for
609 an address you need to read. */
610
611 static CORE_ADDR bp_location_placed_address_before_address_max;
612
613 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
614 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
615 BP_LOCATION which get a valid result from bp_location_has_shadow.
616 You can use it for roughly limiting the subrange of BP_LOCATION to
617 scan for shadow bytes for an address you need to read. */
618
619 static CORE_ADDR bp_location_shadow_len_after_address_max;
620
621 /* The locations that no longer correspond to any breakpoint, unlinked
622 from bp_location array, but for which a hit may still be reported
623 by a target. */
624 VEC(bp_location_p) *moribund_locations = NULL;
625
626 /* Number of last breakpoint made. */
627
628 static int breakpoint_count;
629
630 /* The value of `breakpoint_count' before the last command that
631 created breakpoints. If the last (break-like) command created more
632 than one breakpoint, then the difference between BREAKPOINT_COUNT
633 and PREV_BREAKPOINT_COUNT is more than one. */
634 static int prev_breakpoint_count;
635
636 /* Number of last tracepoint made. */
637
638 static int tracepoint_count;
639
640 static struct cmd_list_element *breakpoint_set_cmdlist;
641 static struct cmd_list_element *breakpoint_show_cmdlist;
642 struct cmd_list_element *save_cmdlist;
643
644 /* See declaration at breakpoint.h. */
645
646 struct breakpoint *
647 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
648 void *user_data)
649 {
650 struct breakpoint *b = NULL;
651
652 ALL_BREAKPOINTS (b)
653 {
654 if (func (b, user_data) != 0)
655 break;
656 }
657
658 return b;
659 }
660
661 /* Return whether a breakpoint is an active enabled breakpoint. */
662 static int
663 breakpoint_enabled (struct breakpoint *b)
664 {
665 return (b->enable_state == bp_enabled);
666 }
667
668 /* Set breakpoint count to NUM. */
669
670 static void
671 set_breakpoint_count (int num)
672 {
673 prev_breakpoint_count = breakpoint_count;
674 breakpoint_count = num;
675 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
676 }
677
678 /* Used by `start_rbreak_breakpoints' below, to record the current
679 breakpoint count before "rbreak" creates any breakpoint. */
680 static int rbreak_start_breakpoint_count;
681
682 /* Called at the start an "rbreak" command to record the first
683 breakpoint made. */
684
685 void
686 start_rbreak_breakpoints (void)
687 {
688 rbreak_start_breakpoint_count = breakpoint_count;
689 }
690
691 /* Called at the end of an "rbreak" command to record the last
692 breakpoint made. */
693
694 void
695 end_rbreak_breakpoints (void)
696 {
697 prev_breakpoint_count = rbreak_start_breakpoint_count;
698 }
699
700 /* Used in run_command to zero the hit count when a new run starts. */
701
702 void
703 clear_breakpoint_hit_counts (void)
704 {
705 struct breakpoint *b;
706
707 ALL_BREAKPOINTS (b)
708 b->hit_count = 0;
709 }
710
711 /* Allocate a new counted_command_line with reference count of 1.
712 The new structure owns COMMANDS. */
713
714 static struct counted_command_line *
715 alloc_counted_command_line (struct command_line *commands)
716 {
717 struct counted_command_line *result
718 = xmalloc (sizeof (struct counted_command_line));
719
720 result->refc = 1;
721 result->commands = commands;
722 return result;
723 }
724
725 /* Increment reference count. This does nothing if CMD is NULL. */
726
727 static void
728 incref_counted_command_line (struct counted_command_line *cmd)
729 {
730 if (cmd)
731 ++cmd->refc;
732 }
733
734 /* Decrement reference count. If the reference count reaches 0,
735 destroy the counted_command_line. Sets *CMDP to NULL. This does
736 nothing if *CMDP is NULL. */
737
738 static void
739 decref_counted_command_line (struct counted_command_line **cmdp)
740 {
741 if (*cmdp)
742 {
743 if (--(*cmdp)->refc == 0)
744 {
745 free_command_lines (&(*cmdp)->commands);
746 xfree (*cmdp);
747 }
748 *cmdp = NULL;
749 }
750 }
751
752 /* A cleanup function that calls decref_counted_command_line. */
753
754 static void
755 do_cleanup_counted_command_line (void *arg)
756 {
757 decref_counted_command_line (arg);
758 }
759
760 /* Create a cleanup that calls decref_counted_command_line on the
761 argument. */
762
763 static struct cleanup *
764 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
765 {
766 return make_cleanup (do_cleanup_counted_command_line, cmdp);
767 }
768
769 \f
770 /* Return the breakpoint with the specified number, or NULL
771 if the number does not refer to an existing breakpoint. */
772
773 struct breakpoint *
774 get_breakpoint (int num)
775 {
776 struct breakpoint *b;
777
778 ALL_BREAKPOINTS (b)
779 if (b->number == num)
780 return b;
781
782 return NULL;
783 }
784
785 \f
786
787 /* Mark locations as "conditions have changed" in case the target supports
788 evaluating conditions on its side. */
789
790 static void
791 mark_breakpoint_modified (struct breakpoint *b)
792 {
793 struct bp_location *loc;
794
795 /* This is only meaningful if the target is
796 evaluating conditions and if the user has
797 opted for condition evaluation on the target's
798 side. */
799 if (gdb_evaluates_breakpoint_condition_p ()
800 || !target_supports_evaluation_of_breakpoint_conditions ())
801 return;
802
803 if (!is_breakpoint (b))
804 return;
805
806 for (loc = b->loc; loc; loc = loc->next)
807 loc->condition_changed = condition_modified;
808 }
809
810 /* Mark location as "conditions have changed" in case the target supports
811 evaluating conditions on its side. */
812
813 static void
814 mark_breakpoint_location_modified (struct bp_location *loc)
815 {
816 /* This is only meaningful if the target is
817 evaluating conditions and if the user has
818 opted for condition evaluation on the target's
819 side. */
820 if (gdb_evaluates_breakpoint_condition_p ()
821 || !target_supports_evaluation_of_breakpoint_conditions ())
822
823 return;
824
825 if (!is_breakpoint (loc->owner))
826 return;
827
828 loc->condition_changed = condition_modified;
829 }
830
831 /* Sets the condition-evaluation mode using the static global
832 condition_evaluation_mode. */
833
834 static void
835 set_condition_evaluation_mode (char *args, int from_tty,
836 struct cmd_list_element *c)
837 {
838 const char *old_mode, *new_mode;
839
840 if ((condition_evaluation_mode_1 == condition_evaluation_target)
841 && !target_supports_evaluation_of_breakpoint_conditions ())
842 {
843 condition_evaluation_mode_1 = condition_evaluation_mode;
844 warning (_("Target does not support breakpoint condition evaluation.\n"
845 "Using host evaluation mode instead."));
846 return;
847 }
848
849 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
850 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
851
852 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
853 settings was "auto". */
854 condition_evaluation_mode = condition_evaluation_mode_1;
855
856 /* Only update the mode if the user picked a different one. */
857 if (new_mode != old_mode)
858 {
859 struct bp_location *loc, **loc_tmp;
860 /* If the user switched to a different evaluation mode, we
861 need to synch the changes with the target as follows:
862
863 "host" -> "target": Send all (valid) conditions to the target.
864 "target" -> "host": Remove all the conditions from the target.
865 */
866
867 if (new_mode == condition_evaluation_target)
868 {
869 /* Mark everything modified and synch conditions with the
870 target. */
871 ALL_BP_LOCATIONS (loc, loc_tmp)
872 mark_breakpoint_location_modified (loc);
873 }
874 else
875 {
876 /* Manually mark non-duplicate locations to synch conditions
877 with the target. We do this to remove all the conditions the
878 target knows about. */
879 ALL_BP_LOCATIONS (loc, loc_tmp)
880 if (is_breakpoint (loc->owner) && loc->inserted)
881 loc->needs_update = 1;
882 }
883
884 /* Do the update. */
885 update_global_location_list (UGLL_MAY_INSERT);
886 }
887
888 return;
889 }
890
891 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
892 what "auto" is translating to. */
893
894 static void
895 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
896 struct cmd_list_element *c, const char *value)
897 {
898 if (condition_evaluation_mode == condition_evaluation_auto)
899 fprintf_filtered (file,
900 _("Breakpoint condition evaluation "
901 "mode is %s (currently %s).\n"),
902 value,
903 breakpoint_condition_evaluation_mode ());
904 else
905 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
906 value);
907 }
908
909 /* A comparison function for bp_location AP and BP that is used by
910 bsearch. This comparison function only cares about addresses, unlike
911 the more general bp_location_compare function. */
912
913 static int
914 bp_location_compare_addrs (const void *ap, const void *bp)
915 {
916 struct bp_location *a = *(void **) ap;
917 struct bp_location *b = *(void **) bp;
918
919 if (a->address == b->address)
920 return 0;
921 else
922 return ((a->address > b->address) - (a->address < b->address));
923 }
924
925 /* Helper function to skip all bp_locations with addresses
926 less than ADDRESS. It returns the first bp_location that
927 is greater than or equal to ADDRESS. If none is found, just
928 return NULL. */
929
930 static struct bp_location **
931 get_first_locp_gte_addr (CORE_ADDR address)
932 {
933 struct bp_location dummy_loc;
934 struct bp_location *dummy_locp = &dummy_loc;
935 struct bp_location **locp_found = NULL;
936
937 /* Initialize the dummy location's address field. */
938 memset (&dummy_loc, 0, sizeof (struct bp_location));
939 dummy_loc.address = address;
940
941 /* Find a close match to the first location at ADDRESS. */
942 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
943 sizeof (struct bp_location **),
944 bp_location_compare_addrs);
945
946 /* Nothing was found, nothing left to do. */
947 if (locp_found == NULL)
948 return NULL;
949
950 /* We may have found a location that is at ADDRESS but is not the first in the
951 location's list. Go backwards (if possible) and locate the first one. */
952 while ((locp_found - 1) >= bp_location
953 && (*(locp_found - 1))->address == address)
954 locp_found--;
955
956 return locp_found;
957 }
958
959 void
960 set_breakpoint_condition (struct breakpoint *b, const char *exp,
961 int from_tty)
962 {
963 xfree (b->cond_string);
964 b->cond_string = NULL;
965
966 if (is_watchpoint (b))
967 {
968 struct watchpoint *w = (struct watchpoint *) b;
969
970 xfree (w->cond_exp);
971 w->cond_exp = NULL;
972 }
973 else
974 {
975 struct bp_location *loc;
976
977 for (loc = b->loc; loc; loc = loc->next)
978 {
979 xfree (loc->cond);
980 loc->cond = NULL;
981
982 /* No need to free the condition agent expression
983 bytecode (if we have one). We will handle this
984 when we go through update_global_location_list. */
985 }
986 }
987
988 if (*exp == 0)
989 {
990 if (from_tty)
991 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
992 }
993 else
994 {
995 const char *arg = exp;
996
997 /* I don't know if it matters whether this is the string the user
998 typed in or the decompiled expression. */
999 b->cond_string = xstrdup (arg);
1000 b->condition_not_parsed = 0;
1001
1002 if (is_watchpoint (b))
1003 {
1004 struct watchpoint *w = (struct watchpoint *) b;
1005
1006 innermost_block = NULL;
1007 arg = exp;
1008 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1009 if (*arg)
1010 error (_("Junk at end of expression"));
1011 w->cond_exp_valid_block = innermost_block;
1012 }
1013 else
1014 {
1015 struct bp_location *loc;
1016
1017 for (loc = b->loc; loc; loc = loc->next)
1018 {
1019 arg = exp;
1020 loc->cond =
1021 parse_exp_1 (&arg, loc->address,
1022 block_for_pc (loc->address), 0);
1023 if (*arg)
1024 error (_("Junk at end of expression"));
1025 }
1026 }
1027 }
1028 mark_breakpoint_modified (b);
1029
1030 observer_notify_breakpoint_modified (b);
1031 }
1032
1033 /* Completion for the "condition" command. */
1034
1035 static VEC (char_ptr) *
1036 condition_completer (struct cmd_list_element *cmd,
1037 const char *text, const char *word)
1038 {
1039 const char *space;
1040
1041 text = skip_spaces_const (text);
1042 space = skip_to_space_const (text);
1043 if (*space == '\0')
1044 {
1045 int len;
1046 struct breakpoint *b;
1047 VEC (char_ptr) *result = NULL;
1048
1049 if (text[0] == '$')
1050 {
1051 /* We don't support completion of history indices. */
1052 if (isdigit (text[1]))
1053 return NULL;
1054 return complete_internalvar (&text[1]);
1055 }
1056
1057 /* We're completing the breakpoint number. */
1058 len = strlen (text);
1059
1060 ALL_BREAKPOINTS (b)
1061 {
1062 char number[50];
1063
1064 xsnprintf (number, sizeof (number), "%d", b->number);
1065
1066 if (strncmp (number, text, len) == 0)
1067 VEC_safe_push (char_ptr, result, xstrdup (number));
1068 }
1069
1070 return result;
1071 }
1072
1073 /* We're completing the expression part. */
1074 text = skip_spaces_const (space);
1075 return expression_completer (cmd, text, word);
1076 }
1077
1078 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1079
1080 static void
1081 condition_command (char *arg, int from_tty)
1082 {
1083 struct breakpoint *b;
1084 char *p;
1085 int bnum;
1086
1087 if (arg == 0)
1088 error_no_arg (_("breakpoint number"));
1089
1090 p = arg;
1091 bnum = get_number (&p);
1092 if (bnum == 0)
1093 error (_("Bad breakpoint argument: '%s'"), arg);
1094
1095 ALL_BREAKPOINTS (b)
1096 if (b->number == bnum)
1097 {
1098 /* Check if this breakpoint has a "stop" method implemented in an
1099 extension language. This method and conditions entered into GDB
1100 from the CLI are mutually exclusive. */
1101 const struct extension_language_defn *extlang
1102 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1103
1104 if (extlang != NULL)
1105 {
1106 error (_("Only one stop condition allowed. There is currently"
1107 " a %s stop condition defined for this breakpoint."),
1108 ext_lang_capitalized_name (extlang));
1109 }
1110 set_breakpoint_condition (b, p, from_tty);
1111
1112 if (is_breakpoint (b))
1113 update_global_location_list (UGLL_MAY_INSERT);
1114
1115 return;
1116 }
1117
1118 error (_("No breakpoint number %d."), bnum);
1119 }
1120
1121 /* Check that COMMAND do not contain commands that are suitable
1122 only for tracepoints and not suitable for ordinary breakpoints.
1123 Throw if any such commands is found. */
1124
1125 static void
1126 check_no_tracepoint_commands (struct command_line *commands)
1127 {
1128 struct command_line *c;
1129
1130 for (c = commands; c; c = c->next)
1131 {
1132 int i;
1133
1134 if (c->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command can "
1136 "only be used for tracepoints"));
1137
1138 for (i = 0; i < c->body_count; ++i)
1139 check_no_tracepoint_commands ((c->body_list)[i]);
1140
1141 /* Not that command parsing removes leading whitespace and comment
1142 lines and also empty lines. So, we only need to check for
1143 command directly. */
1144 if (strstr (c->line, "collect ") == c->line)
1145 error (_("The 'collect' command can only be used for tracepoints"));
1146
1147 if (strstr (c->line, "teval ") == c->line)
1148 error (_("The 'teval' command can only be used for tracepoints"));
1149 }
1150 }
1151
1152 /* Encapsulate tests for different types of tracepoints. */
1153
1154 static int
1155 is_tracepoint_type (enum bptype type)
1156 {
1157 return (type == bp_tracepoint
1158 || type == bp_fast_tracepoint
1159 || type == bp_static_tracepoint);
1160 }
1161
1162 int
1163 is_tracepoint (const struct breakpoint *b)
1164 {
1165 return is_tracepoint_type (b->type);
1166 }
1167
1168 /* A helper function that validates that COMMANDS are valid for a
1169 breakpoint. This function will throw an exception if a problem is
1170 found. */
1171
1172 static void
1173 validate_commands_for_breakpoint (struct breakpoint *b,
1174 struct command_line *commands)
1175 {
1176 if (is_tracepoint (b))
1177 {
1178 struct tracepoint *t = (struct tracepoint *) b;
1179 struct command_line *c;
1180 struct command_line *while_stepping = 0;
1181
1182 /* Reset the while-stepping step count. The previous commands
1183 might have included a while-stepping action, while the new
1184 ones might not. */
1185 t->step_count = 0;
1186
1187 /* We need to verify that each top-level element of commands is
1188 valid for tracepoints, that there's at most one
1189 while-stepping element, and that the while-stepping's body
1190 has valid tracing commands excluding nested while-stepping.
1191 We also need to validate the tracepoint action line in the
1192 context of the tracepoint --- validate_actionline actually
1193 has side effects, like setting the tracepoint's
1194 while-stepping STEP_COUNT, in addition to checking if the
1195 collect/teval actions parse and make sense in the
1196 tracepoint's context. */
1197 for (c = commands; c; c = c->next)
1198 {
1199 if (c->control_type == while_stepping_control)
1200 {
1201 if (b->type == bp_fast_tracepoint)
1202 error (_("The 'while-stepping' command "
1203 "cannot be used for fast tracepoint"));
1204 else if (b->type == bp_static_tracepoint)
1205 error (_("The 'while-stepping' command "
1206 "cannot be used for static tracepoint"));
1207
1208 if (while_stepping)
1209 error (_("The 'while-stepping' command "
1210 "can be used only once"));
1211 else
1212 while_stepping = c;
1213 }
1214
1215 validate_actionline (c->line, b);
1216 }
1217 if (while_stepping)
1218 {
1219 struct command_line *c2;
1220
1221 gdb_assert (while_stepping->body_count == 1);
1222 c2 = while_stepping->body_list[0];
1223 for (; c2; c2 = c2->next)
1224 {
1225 if (c2->control_type == while_stepping_control)
1226 error (_("The 'while-stepping' command cannot be nested"));
1227 }
1228 }
1229 }
1230 else
1231 {
1232 check_no_tracepoint_commands (commands);
1233 }
1234 }
1235
1236 /* Return a vector of all the static tracepoints set at ADDR. The
1237 caller is responsible for releasing the vector. */
1238
1239 VEC(breakpoint_p) *
1240 static_tracepoints_here (CORE_ADDR addr)
1241 {
1242 struct breakpoint *b;
1243 VEC(breakpoint_p) *found = 0;
1244 struct bp_location *loc;
1245
1246 ALL_BREAKPOINTS (b)
1247 if (b->type == bp_static_tracepoint)
1248 {
1249 for (loc = b->loc; loc; loc = loc->next)
1250 if (loc->address == addr)
1251 VEC_safe_push(breakpoint_p, found, b);
1252 }
1253
1254 return found;
1255 }
1256
1257 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1258 validate that only allowed commands are included. */
1259
1260 void
1261 breakpoint_set_commands (struct breakpoint *b,
1262 struct command_line *commands)
1263 {
1264 validate_commands_for_breakpoint (b, commands);
1265
1266 decref_counted_command_line (&b->commands);
1267 b->commands = alloc_counted_command_line (commands);
1268 observer_notify_breakpoint_modified (b);
1269 }
1270
1271 /* Set the internal `silent' flag on the breakpoint. Note that this
1272 is not the same as the "silent" that may appear in the breakpoint's
1273 commands. */
1274
1275 void
1276 breakpoint_set_silent (struct breakpoint *b, int silent)
1277 {
1278 int old_silent = b->silent;
1279
1280 b->silent = silent;
1281 if (old_silent != silent)
1282 observer_notify_breakpoint_modified (b);
1283 }
1284
1285 /* Set the thread for this breakpoint. If THREAD is -1, make the
1286 breakpoint work for any thread. */
1287
1288 void
1289 breakpoint_set_thread (struct breakpoint *b, int thread)
1290 {
1291 int old_thread = b->thread;
1292
1293 b->thread = thread;
1294 if (old_thread != thread)
1295 observer_notify_breakpoint_modified (b);
1296 }
1297
1298 /* Set the task for this breakpoint. If TASK is 0, make the
1299 breakpoint work for any task. */
1300
1301 void
1302 breakpoint_set_task (struct breakpoint *b, int task)
1303 {
1304 int old_task = b->task;
1305
1306 b->task = task;
1307 if (old_task != task)
1308 observer_notify_breakpoint_modified (b);
1309 }
1310
1311 void
1312 check_tracepoint_command (char *line, void *closure)
1313 {
1314 struct breakpoint *b = closure;
1315
1316 validate_actionline (line, b);
1317 }
1318
1319 /* A structure used to pass information through
1320 map_breakpoint_numbers. */
1321
1322 struct commands_info
1323 {
1324 /* True if the command was typed at a tty. */
1325 int from_tty;
1326
1327 /* The breakpoint range spec. */
1328 char *arg;
1329
1330 /* Non-NULL if the body of the commands are being read from this
1331 already-parsed command. */
1332 struct command_line *control;
1333
1334 /* The command lines read from the user, or NULL if they have not
1335 yet been read. */
1336 struct counted_command_line *cmd;
1337 };
1338
1339 /* A callback for map_breakpoint_numbers that sets the commands for
1340 commands_command. */
1341
1342 static void
1343 do_map_commands_command (struct breakpoint *b, void *data)
1344 {
1345 struct commands_info *info = data;
1346
1347 if (info->cmd == NULL)
1348 {
1349 struct command_line *l;
1350
1351 if (info->control != NULL)
1352 l = copy_command_lines (info->control->body_list[0]);
1353 else
1354 {
1355 struct cleanup *old_chain;
1356 char *str;
1357
1358 str = xstrprintf (_("Type commands for breakpoint(s) "
1359 "%s, one per line."),
1360 info->arg);
1361
1362 old_chain = make_cleanup (xfree, str);
1363
1364 l = read_command_lines (str,
1365 info->from_tty, 1,
1366 (is_tracepoint (b)
1367 ? check_tracepoint_command : 0),
1368 b);
1369
1370 do_cleanups (old_chain);
1371 }
1372
1373 info->cmd = alloc_counted_command_line (l);
1374 }
1375
1376 /* If a breakpoint was on the list more than once, we don't need to
1377 do anything. */
1378 if (b->commands != info->cmd)
1379 {
1380 validate_commands_for_breakpoint (b, info->cmd->commands);
1381 incref_counted_command_line (info->cmd);
1382 decref_counted_command_line (&b->commands);
1383 b->commands = info->cmd;
1384 observer_notify_breakpoint_modified (b);
1385 }
1386 }
1387
1388 static void
1389 commands_command_1 (char *arg, int from_tty,
1390 struct command_line *control)
1391 {
1392 struct cleanup *cleanups;
1393 struct commands_info info;
1394
1395 info.from_tty = from_tty;
1396 info.control = control;
1397 info.cmd = NULL;
1398 /* If we read command lines from the user, then `info' will hold an
1399 extra reference to the commands that we must clean up. */
1400 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1401
1402 if (arg == NULL || !*arg)
1403 {
1404 if (breakpoint_count - prev_breakpoint_count > 1)
1405 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1406 breakpoint_count);
1407 else if (breakpoint_count > 0)
1408 arg = xstrprintf ("%d", breakpoint_count);
1409 else
1410 {
1411 /* So that we don't try to free the incoming non-NULL
1412 argument in the cleanup below. Mapping breakpoint
1413 numbers will fail in this case. */
1414 arg = NULL;
1415 }
1416 }
1417 else
1418 /* The command loop has some static state, so we need to preserve
1419 our argument. */
1420 arg = xstrdup (arg);
1421
1422 if (arg != NULL)
1423 make_cleanup (xfree, arg);
1424
1425 info.arg = arg;
1426
1427 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1428
1429 if (info.cmd == NULL)
1430 error (_("No breakpoints specified."));
1431
1432 do_cleanups (cleanups);
1433 }
1434
1435 static void
1436 commands_command (char *arg, int from_tty)
1437 {
1438 commands_command_1 (arg, from_tty, NULL);
1439 }
1440
1441 /* Like commands_command, but instead of reading the commands from
1442 input stream, takes them from an already parsed command structure.
1443
1444 This is used by cli-script.c to DTRT with breakpoint commands
1445 that are part of if and while bodies. */
1446 enum command_control_type
1447 commands_from_control_command (char *arg, struct command_line *cmd)
1448 {
1449 commands_command_1 (arg, 0, cmd);
1450 return simple_control;
1451 }
1452
1453 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1454
1455 static int
1456 bp_location_has_shadow (struct bp_location *bl)
1457 {
1458 if (bl->loc_type != bp_loc_software_breakpoint)
1459 return 0;
1460 if (!bl->inserted)
1461 return 0;
1462 if (bl->target_info.shadow_len == 0)
1463 /* BL isn't valid, or doesn't shadow memory. */
1464 return 0;
1465 return 1;
1466 }
1467
1468 /* Update BUF, which is LEN bytes read from the target address
1469 MEMADDR, by replacing a memory breakpoint with its shadowed
1470 contents.
1471
1472 If READBUF is not NULL, this buffer must not overlap with the of
1473 the breakpoint location's shadow_contents buffer. Otherwise, a
1474 failed assertion internal error will be raised. */
1475
1476 static void
1477 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1478 const gdb_byte *writebuf_org,
1479 ULONGEST memaddr, LONGEST len,
1480 struct bp_target_info *target_info,
1481 struct gdbarch *gdbarch)
1482 {
1483 /* Now do full processing of the found relevant range of elements. */
1484 CORE_ADDR bp_addr = 0;
1485 int bp_size = 0;
1486 int bptoffset = 0;
1487
1488 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1489 current_program_space->aspace, 0))
1490 {
1491 /* The breakpoint is inserted in a different address space. */
1492 return;
1493 }
1494
1495 /* Addresses and length of the part of the breakpoint that
1496 we need to copy. */
1497 bp_addr = target_info->placed_address;
1498 bp_size = target_info->shadow_len;
1499
1500 if (bp_addr + bp_size <= memaddr)
1501 {
1502 /* The breakpoint is entirely before the chunk of memory we are
1503 reading. */
1504 return;
1505 }
1506
1507 if (bp_addr >= memaddr + len)
1508 {
1509 /* The breakpoint is entirely after the chunk of memory we are
1510 reading. */
1511 return;
1512 }
1513
1514 /* Offset within shadow_contents. */
1515 if (bp_addr < memaddr)
1516 {
1517 /* Only copy the second part of the breakpoint. */
1518 bp_size -= memaddr - bp_addr;
1519 bptoffset = memaddr - bp_addr;
1520 bp_addr = memaddr;
1521 }
1522
1523 if (bp_addr + bp_size > memaddr + len)
1524 {
1525 /* Only copy the first part of the breakpoint. */
1526 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1527 }
1528
1529 if (readbuf != NULL)
1530 {
1531 /* Verify that the readbuf buffer does not overlap with the
1532 shadow_contents buffer. */
1533 gdb_assert (target_info->shadow_contents >= readbuf + len
1534 || readbuf >= (target_info->shadow_contents
1535 + target_info->shadow_len));
1536
1537 /* Update the read buffer with this inserted breakpoint's
1538 shadow. */
1539 memcpy (readbuf + bp_addr - memaddr,
1540 target_info->shadow_contents + bptoffset, bp_size);
1541 }
1542 else
1543 {
1544 const unsigned char *bp;
1545 CORE_ADDR addr = target_info->reqstd_address;
1546 int placed_size;
1547
1548 /* Update the shadow with what we want to write to memory. */
1549 memcpy (target_info->shadow_contents + bptoffset,
1550 writebuf_org + bp_addr - memaddr, bp_size);
1551
1552 /* Determine appropriate breakpoint contents and size for this
1553 address. */
1554 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1555
1556 /* Update the final write buffer with this inserted
1557 breakpoint's INSN. */
1558 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1559 }
1560 }
1561
1562 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1563 by replacing any memory breakpoints with their shadowed contents.
1564
1565 If READBUF is not NULL, this buffer must not overlap with any of
1566 the breakpoint location's shadow_contents buffers. Otherwise,
1567 a failed assertion internal error will be raised.
1568
1569 The range of shadowed area by each bp_location is:
1570 bl->address - bp_location_placed_address_before_address_max
1571 up to bl->address + bp_location_shadow_len_after_address_max
1572 The range we were requested to resolve shadows for is:
1573 memaddr ... memaddr + len
1574 Thus the safe cutoff boundaries for performance optimization are
1575 memaddr + len <= (bl->address
1576 - bp_location_placed_address_before_address_max)
1577 and:
1578 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1579
1580 void
1581 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1582 const gdb_byte *writebuf_org,
1583 ULONGEST memaddr, LONGEST len)
1584 {
1585 /* Left boundary, right boundary and median element of our binary
1586 search. */
1587 unsigned bc_l, bc_r, bc;
1588 size_t i;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_location_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_location[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_location_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_location_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_location_count; bc++)
1641 {
1642 struct bp_location *bl = bp_location[bc];
1643 CORE_ADDR bp_addr = 0;
1644 int bp_size = 0;
1645 int bptoffset = 0;
1646
1647 /* bp_location array has BL->OWNER always non-NULL. */
1648 if (bl->owner->type == bp_none)
1649 warning (_("reading through apparently deleted breakpoint #%d?"),
1650 bl->owner->number);
1651
1652 /* Performance optimization: any further element can no longer affect BUF
1653 content. */
1654
1655 if (bl->address >= bp_location_placed_address_before_address_max
1656 && memaddr + len <= (bl->address
1657 - bp_location_placed_address_before_address_max))
1658 break;
1659
1660 if (!bp_location_has_shadow (bl))
1661 continue;
1662
1663 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1664 memaddr, len, &bl->target_info, bl->gdbarch);
1665 }
1666 }
1667
1668 \f
1669
1670 /* Return true if BPT is either a software breakpoint or a hardware
1671 breakpoint. */
1672
1673 int
1674 is_breakpoint (const struct breakpoint *bpt)
1675 {
1676 return (bpt->type == bp_breakpoint
1677 || bpt->type == bp_hardware_breakpoint
1678 || bpt->type == bp_dprintf);
1679 }
1680
1681 /* Return true if BPT is of any hardware watchpoint kind. */
1682
1683 static int
1684 is_hardware_watchpoint (const struct breakpoint *bpt)
1685 {
1686 return (bpt->type == bp_hardware_watchpoint
1687 || bpt->type == bp_read_watchpoint
1688 || bpt->type == bp_access_watchpoint);
1689 }
1690
1691 /* Return true if BPT is of any watchpoint kind, hardware or
1692 software. */
1693
1694 int
1695 is_watchpoint (const struct breakpoint *bpt)
1696 {
1697 return (is_hardware_watchpoint (bpt)
1698 || bpt->type == bp_watchpoint);
1699 }
1700
1701 /* Returns true if the current thread and its running state are safe
1702 to evaluate or update watchpoint B. Watchpoints on local
1703 expressions need to be evaluated in the context of the thread that
1704 was current when the watchpoint was created, and, that thread needs
1705 to be stopped to be able to select the correct frame context.
1706 Watchpoints on global expressions can be evaluated on any thread,
1707 and in any state. It is presently left to the target allowing
1708 memory accesses when threads are running. */
1709
1710 static int
1711 watchpoint_in_thread_scope (struct watchpoint *b)
1712 {
1713 return (b->base.pspace == current_program_space
1714 && (ptid_equal (b->watchpoint_thread, null_ptid)
1715 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1716 && !is_executing (inferior_ptid))));
1717 }
1718
1719 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1720 associated bp_watchpoint_scope breakpoint. */
1721
1722 static void
1723 watchpoint_del_at_next_stop (struct watchpoint *w)
1724 {
1725 struct breakpoint *b = &w->base;
1726
1727 if (b->related_breakpoint != b)
1728 {
1729 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1730 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1731 b->related_breakpoint->disposition = disp_del_at_next_stop;
1732 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1733 b->related_breakpoint = b;
1734 }
1735 b->disposition = disp_del_at_next_stop;
1736 }
1737
1738 /* Extract a bitfield value from value VAL using the bit parameters contained in
1739 watchpoint W. */
1740
1741 static struct value *
1742 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1743 {
1744 struct value *bit_val;
1745
1746 if (val == NULL)
1747 return NULL;
1748
1749 bit_val = allocate_value (value_type (val));
1750
1751 unpack_value_bitfield (bit_val,
1752 w->val_bitpos,
1753 w->val_bitsize,
1754 value_contents_for_printing (val),
1755 value_offset (val),
1756 val);
1757
1758 return bit_val;
1759 }
1760
1761 /* Assuming that B is a watchpoint:
1762 - Reparse watchpoint expression, if REPARSE is non-zero
1763 - Evaluate expression and store the result in B->val
1764 - Evaluate the condition if there is one, and store the result
1765 in b->loc->cond.
1766 - Update the list of values that must be watched in B->loc.
1767
1768 If the watchpoint disposition is disp_del_at_next_stop, then do
1769 nothing. If this is local watchpoint that is out of scope, delete
1770 it.
1771
1772 Even with `set breakpoint always-inserted on' the watchpoints are
1773 removed + inserted on each stop here. Normal breakpoints must
1774 never be removed because they might be missed by a running thread
1775 when debugging in non-stop mode. On the other hand, hardware
1776 watchpoints (is_hardware_watchpoint; processed here) are specific
1777 to each LWP since they are stored in each LWP's hardware debug
1778 registers. Therefore, such LWP must be stopped first in order to
1779 be able to modify its hardware watchpoints.
1780
1781 Hardware watchpoints must be reset exactly once after being
1782 presented to the user. It cannot be done sooner, because it would
1783 reset the data used to present the watchpoint hit to the user. And
1784 it must not be done later because it could display the same single
1785 watchpoint hit during multiple GDB stops. Note that the latter is
1786 relevant only to the hardware watchpoint types bp_read_watchpoint
1787 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1788 not user-visible - its hit is suppressed if the memory content has
1789 not changed.
1790
1791 The following constraints influence the location where we can reset
1792 hardware watchpoints:
1793
1794 * target_stopped_by_watchpoint and target_stopped_data_address are
1795 called several times when GDB stops.
1796
1797 [linux]
1798 * Multiple hardware watchpoints can be hit at the same time,
1799 causing GDB to stop. GDB only presents one hardware watchpoint
1800 hit at a time as the reason for stopping, and all the other hits
1801 are presented later, one after the other, each time the user
1802 requests the execution to be resumed. Execution is not resumed
1803 for the threads still having pending hit event stored in
1804 LWP_INFO->STATUS. While the watchpoint is already removed from
1805 the inferior on the first stop the thread hit event is kept being
1806 reported from its cached value by linux_nat_stopped_data_address
1807 until the real thread resume happens after the watchpoint gets
1808 presented and thus its LWP_INFO->STATUS gets reset.
1809
1810 Therefore the hardware watchpoint hit can get safely reset on the
1811 watchpoint removal from inferior. */
1812
1813 static void
1814 update_watchpoint (struct watchpoint *b, int reparse)
1815 {
1816 int within_current_scope;
1817 struct frame_id saved_frame_id;
1818 int frame_saved;
1819
1820 /* If this is a local watchpoint, we only want to check if the
1821 watchpoint frame is in scope if the current thread is the thread
1822 that was used to create the watchpoint. */
1823 if (!watchpoint_in_thread_scope (b))
1824 return;
1825
1826 if (b->base.disposition == disp_del_at_next_stop)
1827 return;
1828
1829 frame_saved = 0;
1830
1831 /* Determine if the watchpoint is within scope. */
1832 if (b->exp_valid_block == NULL)
1833 within_current_scope = 1;
1834 else
1835 {
1836 struct frame_info *fi = get_current_frame ();
1837 struct gdbarch *frame_arch = get_frame_arch (fi);
1838 CORE_ADDR frame_pc = get_frame_pc (fi);
1839
1840 /* If we're at a point where the stack has been destroyed
1841 (e.g. in a function epilogue), unwinding may not work
1842 properly. Do not attempt to recreate locations at this
1843 point. See similar comments in watchpoint_check. */
1844 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1845 return;
1846
1847 /* Save the current frame's ID so we can restore it after
1848 evaluating the watchpoint expression on its own frame. */
1849 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1850 took a frame parameter, so that we didn't have to change the
1851 selected frame. */
1852 frame_saved = 1;
1853 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1854
1855 fi = frame_find_by_id (b->watchpoint_frame);
1856 within_current_scope = (fi != NULL);
1857 if (within_current_scope)
1858 select_frame (fi);
1859 }
1860
1861 /* We don't free locations. They are stored in the bp_location array
1862 and update_global_location_list will eventually delete them and
1863 remove breakpoints if needed. */
1864 b->base.loc = NULL;
1865
1866 if (within_current_scope && reparse)
1867 {
1868 const char *s;
1869
1870 if (b->exp)
1871 {
1872 xfree (b->exp);
1873 b->exp = NULL;
1874 }
1875 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1876 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1877 /* If the meaning of expression itself changed, the old value is
1878 no longer relevant. We don't want to report a watchpoint hit
1879 to the user when the old value and the new value may actually
1880 be completely different objects. */
1881 value_free (b->val);
1882 b->val = NULL;
1883 b->val_valid = 0;
1884
1885 /* Note that unlike with breakpoints, the watchpoint's condition
1886 expression is stored in the breakpoint object, not in the
1887 locations (re)created below. */
1888 if (b->base.cond_string != NULL)
1889 {
1890 if (b->cond_exp != NULL)
1891 {
1892 xfree (b->cond_exp);
1893 b->cond_exp = NULL;
1894 }
1895
1896 s = b->base.cond_string;
1897 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1898 }
1899 }
1900
1901 /* If we failed to parse the expression, for example because
1902 it refers to a global variable in a not-yet-loaded shared library,
1903 don't try to insert watchpoint. We don't automatically delete
1904 such watchpoint, though, since failure to parse expression
1905 is different from out-of-scope watchpoint. */
1906 if (!target_has_execution)
1907 {
1908 /* Without execution, memory can't change. No use to try and
1909 set watchpoint locations. The watchpoint will be reset when
1910 the target gains execution, through breakpoint_re_set. */
1911 if (!can_use_hw_watchpoints)
1912 {
1913 if (b->base.ops->works_in_software_mode (&b->base))
1914 b->base.type = bp_watchpoint;
1915 else
1916 error (_("Can't set read/access watchpoint when "
1917 "hardware watchpoints are disabled."));
1918 }
1919 }
1920 else if (within_current_scope && b->exp)
1921 {
1922 int pc = 0;
1923 struct value *val_chain, *v, *result, *next;
1924 struct program_space *frame_pspace;
1925
1926 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1927
1928 /* Avoid setting b->val if it's already set. The meaning of
1929 b->val is 'the last value' user saw, and we should update
1930 it only if we reported that last value to user. As it
1931 happens, the code that reports it updates b->val directly.
1932 We don't keep track of the memory value for masked
1933 watchpoints. */
1934 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1935 {
1936 if (b->val_bitsize != 0)
1937 {
1938 v = extract_bitfield_from_watchpoint_value (b, v);
1939 if (v != NULL)
1940 release_value (v);
1941 }
1942 b->val = v;
1943 b->val_valid = 1;
1944 }
1945
1946 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1947
1948 /* Look at each value on the value chain. */
1949 for (v = val_chain; v; v = value_next (v))
1950 {
1951 /* If it's a memory location, and GDB actually needed
1952 its contents to evaluate the expression, then we
1953 must watch it. If the first value returned is
1954 still lazy, that means an error occurred reading it;
1955 watch it anyway in case it becomes readable. */
1956 if (VALUE_LVAL (v) == lval_memory
1957 && (v == val_chain || ! value_lazy (v)))
1958 {
1959 struct type *vtype = check_typedef (value_type (v));
1960
1961 /* We only watch structs and arrays if user asked
1962 for it explicitly, never if they just happen to
1963 appear in the middle of some value chain. */
1964 if (v == result
1965 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1966 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1967 {
1968 CORE_ADDR addr;
1969 int type;
1970 struct bp_location *loc, **tmp;
1971 int bitpos = 0, bitsize = 0;
1972
1973 if (value_bitsize (v) != 0)
1974 {
1975 /* Extract the bit parameters out from the bitfield
1976 sub-expression. */
1977 bitpos = value_bitpos (v);
1978 bitsize = value_bitsize (v);
1979 }
1980 else if (v == result && b->val_bitsize != 0)
1981 {
1982 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1983 lvalue whose bit parameters are saved in the fields
1984 VAL_BITPOS and VAL_BITSIZE. */
1985 bitpos = b->val_bitpos;
1986 bitsize = b->val_bitsize;
1987 }
1988
1989 addr = value_address (v);
1990 if (bitsize != 0)
1991 {
1992 /* Skip the bytes that don't contain the bitfield. */
1993 addr += bitpos / 8;
1994 }
1995
1996 type = hw_write;
1997 if (b->base.type == bp_read_watchpoint)
1998 type = hw_read;
1999 else if (b->base.type == bp_access_watchpoint)
2000 type = hw_access;
2001
2002 loc = allocate_bp_location (&b->base);
2003 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2004 ;
2005 *tmp = loc;
2006 loc->gdbarch = get_type_arch (value_type (v));
2007
2008 loc->pspace = frame_pspace;
2009 loc->address = addr;
2010
2011 if (bitsize != 0)
2012 {
2013 /* Just cover the bytes that make up the bitfield. */
2014 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2015 }
2016 else
2017 loc->length = TYPE_LENGTH (value_type (v));
2018
2019 loc->watchpoint_type = type;
2020 }
2021 }
2022 }
2023
2024 /* Change the type of breakpoint between hardware assisted or
2025 an ordinary watchpoint depending on the hardware support
2026 and free hardware slots. REPARSE is set when the inferior
2027 is started. */
2028 if (reparse)
2029 {
2030 int reg_cnt;
2031 enum bp_loc_type loc_type;
2032 struct bp_location *bl;
2033
2034 reg_cnt = can_use_hardware_watchpoint (val_chain);
2035
2036 if (reg_cnt)
2037 {
2038 int i, target_resources_ok, other_type_used;
2039 enum bptype type;
2040
2041 /* Use an exact watchpoint when there's only one memory region to be
2042 watched, and only one debug register is needed to watch it. */
2043 b->exact = target_exact_watchpoints && reg_cnt == 1;
2044
2045 /* We need to determine how many resources are already
2046 used for all other hardware watchpoints plus this one
2047 to see if we still have enough resources to also fit
2048 this watchpoint in as well. */
2049
2050 /* If this is a software watchpoint, we try to turn it
2051 to a hardware one -- count resources as if B was of
2052 hardware watchpoint type. */
2053 type = b->base.type;
2054 if (type == bp_watchpoint)
2055 type = bp_hardware_watchpoint;
2056
2057 /* This watchpoint may or may not have been placed on
2058 the list yet at this point (it won't be in the list
2059 if we're trying to create it for the first time,
2060 through watch_command), so always account for it
2061 manually. */
2062
2063 /* Count resources used by all watchpoints except B. */
2064 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2065
2066 /* Add in the resources needed for B. */
2067 i += hw_watchpoint_use_count (&b->base);
2068
2069 target_resources_ok
2070 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2071 if (target_resources_ok <= 0)
2072 {
2073 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2074
2075 if (target_resources_ok == 0 && !sw_mode)
2076 error (_("Target does not support this type of "
2077 "hardware watchpoint."));
2078 else if (target_resources_ok < 0 && !sw_mode)
2079 error (_("There are not enough available hardware "
2080 "resources for this watchpoint."));
2081
2082 /* Downgrade to software watchpoint. */
2083 b->base.type = bp_watchpoint;
2084 }
2085 else
2086 {
2087 /* If this was a software watchpoint, we've just
2088 found we have enough resources to turn it to a
2089 hardware watchpoint. Otherwise, this is a
2090 nop. */
2091 b->base.type = type;
2092 }
2093 }
2094 else if (!b->base.ops->works_in_software_mode (&b->base))
2095 {
2096 if (!can_use_hw_watchpoints)
2097 error (_("Can't set read/access watchpoint when "
2098 "hardware watchpoints are disabled."));
2099 else
2100 error (_("Expression cannot be implemented with "
2101 "read/access watchpoint."));
2102 }
2103 else
2104 b->base.type = bp_watchpoint;
2105
2106 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2107 : bp_loc_hardware_watchpoint);
2108 for (bl = b->base.loc; bl; bl = bl->next)
2109 bl->loc_type = loc_type;
2110 }
2111
2112 for (v = val_chain; v; v = next)
2113 {
2114 next = value_next (v);
2115 if (v != b->val)
2116 value_free (v);
2117 }
2118
2119 /* If a software watchpoint is not watching any memory, then the
2120 above left it without any location set up. But,
2121 bpstat_stop_status requires a location to be able to report
2122 stops, so make sure there's at least a dummy one. */
2123 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2124 {
2125 struct breakpoint *base = &b->base;
2126 base->loc = allocate_bp_location (base);
2127 base->loc->pspace = frame_pspace;
2128 base->loc->address = -1;
2129 base->loc->length = -1;
2130 base->loc->watchpoint_type = -1;
2131 }
2132 }
2133 else if (!within_current_scope)
2134 {
2135 printf_filtered (_("\
2136 Watchpoint %d deleted because the program has left the block\n\
2137 in which its expression is valid.\n"),
2138 b->base.number);
2139 watchpoint_del_at_next_stop (b);
2140 }
2141
2142 /* Restore the selected frame. */
2143 if (frame_saved)
2144 select_frame (frame_find_by_id (saved_frame_id));
2145 }
2146
2147
2148 /* Returns 1 iff breakpoint location should be
2149 inserted in the inferior. We don't differentiate the type of BL's owner
2150 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2151 breakpoint_ops is not defined, because in insert_bp_location,
2152 tracepoint's insert_location will not be called. */
2153 static int
2154 should_be_inserted (struct bp_location *bl)
2155 {
2156 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2157 return 0;
2158
2159 if (bl->owner->disposition == disp_del_at_next_stop)
2160 return 0;
2161
2162 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2163 return 0;
2164
2165 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2166 return 0;
2167
2168 /* This is set for example, when we're attached to the parent of a
2169 vfork, and have detached from the child. The child is running
2170 free, and we expect it to do an exec or exit, at which point the
2171 OS makes the parent schedulable again (and the target reports
2172 that the vfork is done). Until the child is done with the shared
2173 memory region, do not insert breakpoints in the parent, otherwise
2174 the child could still trip on the parent's breakpoints. Since
2175 the parent is blocked anyway, it won't miss any breakpoint. */
2176 if (bl->pspace->breakpoints_not_allowed)
2177 return 0;
2178
2179 /* Don't insert a breakpoint if we're trying to step past its
2180 location. */
2181 if ((bl->loc_type == bp_loc_software_breakpoint
2182 || bl->loc_type == bp_loc_hardware_breakpoint)
2183 && stepping_past_instruction_at (bl->pspace->aspace,
2184 bl->address))
2185 {
2186 if (debug_infrun)
2187 {
2188 fprintf_unfiltered (gdb_stdlog,
2189 "infrun: skipping breakpoint: "
2190 "stepping past insn at: %s\n",
2191 paddress (bl->gdbarch, bl->address));
2192 }
2193 return 0;
2194 }
2195
2196 /* Don't insert watchpoints if we're trying to step past the
2197 instruction that triggered one. */
2198 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2199 && stepping_past_nonsteppable_watchpoint ())
2200 {
2201 if (debug_infrun)
2202 {
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: stepping past non-steppable watchpoint. "
2205 "skipping watchpoint at %s:%d\n",
2206 paddress (bl->gdbarch, bl->address),
2207 bl->length);
2208 }
2209 return 0;
2210 }
2211
2212 return 1;
2213 }
2214
2215 /* Same as should_be_inserted but does the check assuming
2216 that the location is not duplicated. */
2217
2218 static int
2219 unduplicated_should_be_inserted (struct bp_location *bl)
2220 {
2221 int result;
2222 const int save_duplicate = bl->duplicate;
2223
2224 bl->duplicate = 0;
2225 result = should_be_inserted (bl);
2226 bl->duplicate = save_duplicate;
2227 return result;
2228 }
2229
2230 /* Parses a conditional described by an expression COND into an
2231 agent expression bytecode suitable for evaluation
2232 by the bytecode interpreter. Return NULL if there was
2233 any error during parsing. */
2234
2235 static struct agent_expr *
2236 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2237 {
2238 struct agent_expr *aexpr = NULL;
2239
2240 if (!cond)
2241 return NULL;
2242
2243 /* We don't want to stop processing, so catch any errors
2244 that may show up. */
2245 TRY
2246 {
2247 aexpr = gen_eval_for_expr (scope, cond);
2248 }
2249
2250 CATCH (ex, RETURN_MASK_ERROR)
2251 {
2252 /* If we got here, it means the condition could not be parsed to a valid
2253 bytecode expression and thus can't be evaluated on the target's side.
2254 It's no use iterating through the conditions. */
2255 return NULL;
2256 }
2257 END_CATCH
2258
2259 /* We have a valid agent expression. */
2260 return aexpr;
2261 }
2262
2263 /* Based on location BL, create a list of breakpoint conditions to be
2264 passed on to the target. If we have duplicated locations with different
2265 conditions, we will add such conditions to the list. The idea is that the
2266 target will evaluate the list of conditions and will only notify GDB when
2267 one of them is true. */
2268
2269 static void
2270 build_target_condition_list (struct bp_location *bl)
2271 {
2272 struct bp_location **locp = NULL, **loc2p;
2273 int null_condition_or_parse_error = 0;
2274 int modified = bl->needs_update;
2275 struct bp_location *loc;
2276
2277 /* Release conditions left over from a previous insert. */
2278 VEC_free (agent_expr_p, bl->target_info.conditions);
2279
2280 /* This is only meaningful if the target is
2281 evaluating conditions and if the user has
2282 opted for condition evaluation on the target's
2283 side. */
2284 if (gdb_evaluates_breakpoint_condition_p ()
2285 || !target_supports_evaluation_of_breakpoint_conditions ())
2286 return;
2287
2288 /* Do a first pass to check for locations with no assigned
2289 conditions or conditions that fail to parse to a valid agent expression
2290 bytecode. If any of these happen, then it's no use to send conditions
2291 to the target since this location will always trigger and generate a
2292 response back to GDB. */
2293 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2294 {
2295 loc = (*loc2p);
2296 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2297 {
2298 if (modified)
2299 {
2300 struct agent_expr *aexpr;
2301
2302 /* Re-parse the conditions since something changed. In that
2303 case we already freed the condition bytecodes (see
2304 force_breakpoint_reinsertion). We just
2305 need to parse the condition to bytecodes again. */
2306 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2307 loc->cond_bytecode = aexpr;
2308
2309 /* Check if we managed to parse the conditional expression
2310 correctly. If not, we will not send this condition
2311 to the target. */
2312 if (aexpr)
2313 continue;
2314 }
2315
2316 /* If we have a NULL bytecode expression, it means something
2317 went wrong or we have a null condition expression. */
2318 if (!loc->cond_bytecode)
2319 {
2320 null_condition_or_parse_error = 1;
2321 break;
2322 }
2323 }
2324 }
2325
2326 /* If any of these happened, it means we will have to evaluate the conditions
2327 for the location's address on gdb's side. It is no use keeping bytecodes
2328 for all the other duplicate locations, thus we free all of them here.
2329
2330 This is so we have a finer control over which locations' conditions are
2331 being evaluated by GDB or the remote stub. */
2332 if (null_condition_or_parse_error)
2333 {
2334 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2335 {
2336 loc = (*loc2p);
2337 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2338 {
2339 /* Only go as far as the first NULL bytecode is
2340 located. */
2341 if (!loc->cond_bytecode)
2342 return;
2343
2344 free_agent_expr (loc->cond_bytecode);
2345 loc->cond_bytecode = NULL;
2346 }
2347 }
2348 }
2349
2350 /* No NULL conditions or failed bytecode generation. Build a condition list
2351 for this location's address. */
2352 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2353 {
2354 loc = (*loc2p);
2355 if (loc->cond
2356 && is_breakpoint (loc->owner)
2357 && loc->pspace->num == bl->pspace->num
2358 && loc->owner->enable_state == bp_enabled
2359 && loc->enabled)
2360 /* Add the condition to the vector. This will be used later to send the
2361 conditions to the target. */
2362 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2363 loc->cond_bytecode);
2364 }
2365
2366 return;
2367 }
2368
2369 /* Parses a command described by string CMD into an agent expression
2370 bytecode suitable for evaluation by the bytecode interpreter.
2371 Return NULL if there was any error during parsing. */
2372
2373 static struct agent_expr *
2374 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2375 {
2376 struct cleanup *old_cleanups = 0;
2377 struct expression *expr, **argvec;
2378 struct agent_expr *aexpr = NULL;
2379 const char *cmdrest;
2380 const char *format_start, *format_end;
2381 struct format_piece *fpieces;
2382 int nargs;
2383 struct gdbarch *gdbarch = get_current_arch ();
2384
2385 if (!cmd)
2386 return NULL;
2387
2388 cmdrest = cmd;
2389
2390 if (*cmdrest == ',')
2391 ++cmdrest;
2392 cmdrest = skip_spaces_const (cmdrest);
2393
2394 if (*cmdrest++ != '"')
2395 error (_("No format string following the location"));
2396
2397 format_start = cmdrest;
2398
2399 fpieces = parse_format_string (&cmdrest);
2400
2401 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2402
2403 format_end = cmdrest;
2404
2405 if (*cmdrest++ != '"')
2406 error (_("Bad format string, non-terminated '\"'."));
2407
2408 cmdrest = skip_spaces_const (cmdrest);
2409
2410 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2411 error (_("Invalid argument syntax"));
2412
2413 if (*cmdrest == ',')
2414 cmdrest++;
2415 cmdrest = skip_spaces_const (cmdrest);
2416
2417 /* For each argument, make an expression. */
2418
2419 argvec = (struct expression **) alloca (strlen (cmd)
2420 * sizeof (struct expression *));
2421
2422 nargs = 0;
2423 while (*cmdrest != '\0')
2424 {
2425 const char *cmd1;
2426
2427 cmd1 = cmdrest;
2428 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2429 argvec[nargs++] = expr;
2430 cmdrest = cmd1;
2431 if (*cmdrest == ',')
2432 ++cmdrest;
2433 }
2434
2435 /* We don't want to stop processing, so catch any errors
2436 that may show up. */
2437 TRY
2438 {
2439 aexpr = gen_printf (scope, gdbarch, 0, 0,
2440 format_start, format_end - format_start,
2441 fpieces, nargs, argvec);
2442 }
2443 CATCH (ex, RETURN_MASK_ERROR)
2444 {
2445 /* If we got here, it means the command could not be parsed to a valid
2446 bytecode expression and thus can't be evaluated on the target's side.
2447 It's no use iterating through the other commands. */
2448 aexpr = NULL;
2449 }
2450 END_CATCH
2451
2452 do_cleanups (old_cleanups);
2453
2454 /* We have a valid agent expression, return it. */
2455 return aexpr;
2456 }
2457
2458 /* Based on location BL, create a list of breakpoint commands to be
2459 passed on to the target. If we have duplicated locations with
2460 different commands, we will add any such to the list. */
2461
2462 static void
2463 build_target_command_list (struct bp_location *bl)
2464 {
2465 struct bp_location **locp = NULL, **loc2p;
2466 int null_command_or_parse_error = 0;
2467 int modified = bl->needs_update;
2468 struct bp_location *loc;
2469
2470 /* Release commands left over from a previous insert. */
2471 VEC_free (agent_expr_p, bl->target_info.tcommands);
2472
2473 if (!target_can_run_breakpoint_commands ())
2474 return;
2475
2476 /* For now, limit to agent-style dprintf breakpoints. */
2477 if (dprintf_style != dprintf_style_agent)
2478 return;
2479
2480 /* For now, if we have any duplicate location that isn't a dprintf,
2481 don't install the target-side commands, as that would make the
2482 breakpoint not be reported to the core, and we'd lose
2483 control. */
2484 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2485 {
2486 loc = (*loc2p);
2487 if (is_breakpoint (loc->owner)
2488 && loc->pspace->num == bl->pspace->num
2489 && loc->owner->type != bp_dprintf)
2490 return;
2491 }
2492
2493 /* Do a first pass to check for locations with no assigned
2494 conditions or conditions that fail to parse to a valid agent expression
2495 bytecode. If any of these happen, then it's no use to send conditions
2496 to the target since this location will always trigger and generate a
2497 response back to GDB. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2502 {
2503 if (modified)
2504 {
2505 struct agent_expr *aexpr;
2506
2507 /* Re-parse the commands since something changed. In that
2508 case we already freed the command bytecodes (see
2509 force_breakpoint_reinsertion). We just
2510 need to parse the command to bytecodes again. */
2511 aexpr = parse_cmd_to_aexpr (bl->address,
2512 loc->owner->extra_string);
2513 loc->cmd_bytecode = aexpr;
2514
2515 if (!aexpr)
2516 continue;
2517 }
2518
2519 /* If we have a NULL bytecode expression, it means something
2520 went wrong or we have a null command expression. */
2521 if (!loc->cmd_bytecode)
2522 {
2523 null_command_or_parse_error = 1;
2524 break;
2525 }
2526 }
2527 }
2528
2529 /* If anything failed, then we're not doing target-side commands,
2530 and so clean up. */
2531 if (null_command_or_parse_error)
2532 {
2533 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2534 {
2535 loc = (*loc2p);
2536 if (is_breakpoint (loc->owner)
2537 && loc->pspace->num == bl->pspace->num)
2538 {
2539 /* Only go as far as the first NULL bytecode is
2540 located. */
2541 if (loc->cmd_bytecode == NULL)
2542 return;
2543
2544 free_agent_expr (loc->cmd_bytecode);
2545 loc->cmd_bytecode = NULL;
2546 }
2547 }
2548 }
2549
2550 /* No NULL commands or failed bytecode generation. Build a command list
2551 for this location's address. */
2552 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2553 {
2554 loc = (*loc2p);
2555 if (loc->owner->extra_string
2556 && is_breakpoint (loc->owner)
2557 && loc->pspace->num == bl->pspace->num
2558 && loc->owner->enable_state == bp_enabled
2559 && loc->enabled)
2560 /* Add the command to the vector. This will be used later
2561 to send the commands to the target. */
2562 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2563 loc->cmd_bytecode);
2564 }
2565
2566 bl->target_info.persist = 0;
2567 /* Maybe flag this location as persistent. */
2568 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2569 bl->target_info.persist = 1;
2570 }
2571
2572 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2573 location. Any error messages are printed to TMP_ERROR_STREAM; and
2574 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2575 Returns 0 for success, 1 if the bp_location type is not supported or
2576 -1 for failure.
2577
2578 NOTE drow/2003-09-09: This routine could be broken down to an
2579 object-style method for each breakpoint or catchpoint type. */
2580 static int
2581 insert_bp_location (struct bp_location *bl,
2582 struct ui_file *tmp_error_stream,
2583 int *disabled_breaks,
2584 int *hw_breakpoint_error,
2585 int *hw_bp_error_explained_already)
2586 {
2587 enum errors bp_err = GDB_NO_ERROR;
2588 const char *bp_err_message = NULL;
2589
2590 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2591 return 0;
2592
2593 /* Note we don't initialize bl->target_info, as that wipes out
2594 the breakpoint location's shadow_contents if the breakpoint
2595 is still inserted at that location. This in turn breaks
2596 target_read_memory which depends on these buffers when
2597 a memory read is requested at the breakpoint location:
2598 Once the target_info has been wiped, we fail to see that
2599 we have a breakpoint inserted at that address and thus
2600 read the breakpoint instead of returning the data saved in
2601 the breakpoint location's shadow contents. */
2602 bl->target_info.reqstd_address = bl->address;
2603 bl->target_info.placed_address_space = bl->pspace->aspace;
2604 bl->target_info.length = bl->length;
2605
2606 /* When working with target-side conditions, we must pass all the conditions
2607 for the same breakpoint address down to the target since GDB will not
2608 insert those locations. With a list of breakpoint conditions, the target
2609 can decide when to stop and notify GDB. */
2610
2611 if (is_breakpoint (bl->owner))
2612 {
2613 build_target_condition_list (bl);
2614 build_target_command_list (bl);
2615 /* Reset the modification marker. */
2616 bl->needs_update = 0;
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 if (bl->owner->type != bp_hardware_breakpoint)
2623 {
2624 /* If the explicitly specified breakpoint type
2625 is not hardware breakpoint, check the memory map to see
2626 if the breakpoint address is in read only memory or not.
2627
2628 Two important cases are:
2629 - location type is not hardware breakpoint, memory
2630 is readonly. We change the type of the location to
2631 hardware breakpoint.
2632 - location type is hardware breakpoint, memory is
2633 read-write. This means we've previously made the
2634 location hardware one, but then the memory map changed,
2635 so we undo.
2636
2637 When breakpoints are removed, remove_breakpoints will use
2638 location types we've just set here, the only possible
2639 problem is that memory map has changed during running
2640 program, but it's not going to work anyway with current
2641 gdb. */
2642 struct mem_region *mr
2643 = lookup_mem_region (bl->target_info.reqstd_address);
2644
2645 if (mr)
2646 {
2647 if (automatic_hardware_breakpoints)
2648 {
2649 enum bp_loc_type new_type;
2650
2651 if (mr->attrib.mode != MEM_RW)
2652 new_type = bp_loc_hardware_breakpoint;
2653 else
2654 new_type = bp_loc_software_breakpoint;
2655
2656 if (new_type != bl->loc_type)
2657 {
2658 static int said = 0;
2659
2660 bl->loc_type = new_type;
2661 if (!said)
2662 {
2663 fprintf_filtered (gdb_stdout,
2664 _("Note: automatically using "
2665 "hardware breakpoints for "
2666 "read-only addresses.\n"));
2667 said = 1;
2668 }
2669 }
2670 }
2671 else if (bl->loc_type == bp_loc_software_breakpoint
2672 && mr->attrib.mode != MEM_RW)
2673 {
2674 fprintf_unfiltered (tmp_error_stream,
2675 _("Cannot insert breakpoint %d.\n"
2676 "Cannot set software breakpoint "
2677 "at read-only address %s\n"),
2678 bl->owner->number,
2679 paddress (bl->gdbarch, bl->address));
2680 return 1;
2681 }
2682 }
2683 }
2684
2685 /* First check to see if we have to handle an overlay. */
2686 if (overlay_debugging == ovly_off
2687 || bl->section == NULL
2688 || !(section_is_overlay (bl->section)))
2689 {
2690 /* No overlay handling: just set the breakpoint. */
2691 TRY
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_err = GENERIC_ERROR;
2698 }
2699 CATCH (e, RETURN_MASK_ALL)
2700 {
2701 bp_err = e.error;
2702 bp_err_message = e.message;
2703 }
2704 END_CATCH
2705 }
2706 else
2707 {
2708 /* This breakpoint is in an overlay section.
2709 Shall we set a breakpoint at the LMA? */
2710 if (!overlay_events_enabled)
2711 {
2712 /* Yes -- overlay event support is not active,
2713 so we must try to set a breakpoint at the LMA.
2714 This will not work for a hardware breakpoint. */
2715 if (bl->loc_type == bp_loc_hardware_breakpoint)
2716 warning (_("hardware breakpoint %d not supported in overlay!"),
2717 bl->owner->number);
2718 else
2719 {
2720 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2721 bl->section);
2722 /* Set a software (trap) breakpoint at the LMA. */
2723 bl->overlay_target_info = bl->target_info;
2724 bl->overlay_target_info.reqstd_address = addr;
2725
2726 /* No overlay handling: just set the breakpoint. */
2727 TRY
2728 {
2729 int val;
2730
2731 val = target_insert_breakpoint (bl->gdbarch,
2732 &bl->overlay_target_info);
2733 if (val)
2734 bp_err = GENERIC_ERROR;
2735 }
2736 CATCH (e, RETURN_MASK_ALL)
2737 {
2738 bp_err = e.error;
2739 bp_err_message = e.message;
2740 }
2741 END_CATCH
2742
2743 if (bp_err != GDB_NO_ERROR)
2744 fprintf_unfiltered (tmp_error_stream,
2745 "Overlay breakpoint %d "
2746 "failed: in ROM?\n",
2747 bl->owner->number);
2748 }
2749 }
2750 /* Shall we set a breakpoint at the VMA? */
2751 if (section_is_mapped (bl->section))
2752 {
2753 /* Yes. This overlay section is mapped into memory. */
2754 TRY
2755 {
2756 int val;
2757
2758 val = bl->owner->ops->insert_location (bl);
2759 if (val)
2760 bp_err = GENERIC_ERROR;
2761 }
2762 CATCH (e, RETURN_MASK_ALL)
2763 {
2764 bp_err = e.error;
2765 bp_err_message = e.message;
2766 }
2767 END_CATCH
2768 }
2769 else
2770 {
2771 /* No. This breakpoint will not be inserted.
2772 No error, but do not mark the bp as 'inserted'. */
2773 return 0;
2774 }
2775 }
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 {
2779 /* Can't set the breakpoint. */
2780
2781 /* In some cases, we might not be able to insert a
2782 breakpoint in a shared library that has already been
2783 removed, but we have not yet processed the shlib unload
2784 event. Unfortunately, some targets that implement
2785 breakpoint insertion themselves can't tell why the
2786 breakpoint insertion failed (e.g., the remote target
2787 doesn't define error codes), so we must treat generic
2788 errors as memory errors. */
2789 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2790 && bl->loc_type == bp_loc_software_breakpoint
2791 && (solib_name_from_address (bl->pspace, bl->address)
2792 || shared_objfile_contains_address_p (bl->pspace,
2793 bl->address)))
2794 {
2795 /* See also: disable_breakpoints_in_shlibs. */
2796 bl->shlib_disabled = 1;
2797 observer_notify_breakpoint_modified (bl->owner);
2798 if (!*disabled_breaks)
2799 {
2800 fprintf_unfiltered (tmp_error_stream,
2801 "Cannot insert breakpoint %d.\n",
2802 bl->owner->number);
2803 fprintf_unfiltered (tmp_error_stream,
2804 "Temporarily disabling shared "
2805 "library breakpoints:\n");
2806 }
2807 *disabled_breaks = 1;
2808 fprintf_unfiltered (tmp_error_stream,
2809 "breakpoint #%d\n", bl->owner->number);
2810 return 0;
2811 }
2812 else
2813 {
2814 if (bl->loc_type == bp_loc_hardware_breakpoint)
2815 {
2816 *hw_breakpoint_error = 1;
2817 *hw_bp_error_explained_already = bp_err_message != NULL;
2818 fprintf_unfiltered (tmp_error_stream,
2819 "Cannot insert hardware breakpoint %d%s",
2820 bl->owner->number, bp_err_message ? ":" : ".\n");
2821 if (bp_err_message != NULL)
2822 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2823 }
2824 else
2825 {
2826 if (bp_err_message == NULL)
2827 {
2828 char *message
2829 = memory_error_message (TARGET_XFER_E_IO,
2830 bl->gdbarch, bl->address);
2831 struct cleanup *old_chain = make_cleanup (xfree, message);
2832
2833 fprintf_unfiltered (tmp_error_stream,
2834 "Cannot insert breakpoint %d.\n"
2835 "%s\n",
2836 bl->owner->number, message);
2837 do_cleanups (old_chain);
2838 }
2839 else
2840 {
2841 fprintf_unfiltered (tmp_error_stream,
2842 "Cannot insert breakpoint %d: %s\n",
2843 bl->owner->number,
2844 bp_err_message);
2845 }
2846 }
2847 return 1;
2848
2849 }
2850 }
2851 else
2852 bl->inserted = 1;
2853
2854 return 0;
2855 }
2856
2857 else if (bl->loc_type == bp_loc_hardware_watchpoint
2858 /* NOTE drow/2003-09-08: This state only exists for removing
2859 watchpoints. It's not clear that it's necessary... */
2860 && bl->owner->disposition != disp_del_at_next_stop)
2861 {
2862 int val;
2863
2864 gdb_assert (bl->owner->ops != NULL
2865 && bl->owner->ops->insert_location != NULL);
2866
2867 val = bl->owner->ops->insert_location (bl);
2868
2869 /* If trying to set a read-watchpoint, and it turns out it's not
2870 supported, try emulating one with an access watchpoint. */
2871 if (val == 1 && bl->watchpoint_type == hw_read)
2872 {
2873 struct bp_location *loc, **loc_temp;
2874
2875 /* But don't try to insert it, if there's already another
2876 hw_access location that would be considered a duplicate
2877 of this one. */
2878 ALL_BP_LOCATIONS (loc, loc_temp)
2879 if (loc != bl
2880 && loc->watchpoint_type == hw_access
2881 && watchpoint_locations_match (bl, loc))
2882 {
2883 bl->duplicate = 1;
2884 bl->inserted = 1;
2885 bl->target_info = loc->target_info;
2886 bl->watchpoint_type = hw_access;
2887 val = 0;
2888 break;
2889 }
2890
2891 if (val == 1)
2892 {
2893 bl->watchpoint_type = hw_access;
2894 val = bl->owner->ops->insert_location (bl);
2895
2896 if (val)
2897 /* Back to the original value. */
2898 bl->watchpoint_type = hw_read;
2899 }
2900 }
2901
2902 bl->inserted = (val == 0);
2903 }
2904
2905 else if (bl->owner->type == bp_catchpoint)
2906 {
2907 int val;
2908
2909 gdb_assert (bl->owner->ops != NULL
2910 && bl->owner->ops->insert_location != NULL);
2911
2912 val = bl->owner->ops->insert_location (bl);
2913 if (val)
2914 {
2915 bl->owner->enable_state = bp_disabled;
2916
2917 if (val == 1)
2918 warning (_("\
2919 Error inserting catchpoint %d: Your system does not support this type\n\
2920 of catchpoint."), bl->owner->number);
2921 else
2922 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2923 }
2924
2925 bl->inserted = (val == 0);
2926
2927 /* We've already printed an error message if there was a problem
2928 inserting this catchpoint, and we've disabled the catchpoint,
2929 so just return success. */
2930 return 0;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* This function is called when program space PSPACE is about to be
2937 deleted. It takes care of updating breakpoints to not reference
2938 PSPACE anymore. */
2939
2940 void
2941 breakpoint_program_space_exit (struct program_space *pspace)
2942 {
2943 struct breakpoint *b, *b_temp;
2944 struct bp_location *loc, **loc_temp;
2945
2946 /* Remove any breakpoint that was set through this program space. */
2947 ALL_BREAKPOINTS_SAFE (b, b_temp)
2948 {
2949 if (b->pspace == pspace)
2950 delete_breakpoint (b);
2951 }
2952
2953 /* Breakpoints set through other program spaces could have locations
2954 bound to PSPACE as well. Remove those. */
2955 ALL_BP_LOCATIONS (loc, loc_temp)
2956 {
2957 struct bp_location *tmp;
2958
2959 if (loc->pspace == pspace)
2960 {
2961 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2962 if (loc->owner->loc == loc)
2963 loc->owner->loc = loc->next;
2964 else
2965 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2966 if (tmp->next == loc)
2967 {
2968 tmp->next = loc->next;
2969 break;
2970 }
2971 }
2972 }
2973
2974 /* Now update the global location list to permanently delete the
2975 removed locations above. */
2976 update_global_location_list (UGLL_DONT_INSERT);
2977 }
2978
2979 /* Make sure all breakpoints are inserted in inferior.
2980 Throws exception on any error.
2981 A breakpoint that is already inserted won't be inserted
2982 again, so calling this function twice is safe. */
2983 void
2984 insert_breakpoints (void)
2985 {
2986 struct breakpoint *bpt;
2987
2988 ALL_BREAKPOINTS (bpt)
2989 if (is_hardware_watchpoint (bpt))
2990 {
2991 struct watchpoint *w = (struct watchpoint *) bpt;
2992
2993 update_watchpoint (w, 0 /* don't reparse. */);
2994 }
2995
2996 /* Updating watchpoints creates new locations, so update the global
2997 location list. Explicitly tell ugll to insert locations and
2998 ignore breakpoints_always_inserted_mode. */
2999 update_global_location_list (UGLL_INSERT);
3000 }
3001
3002 /* Invoke CALLBACK for each of bp_location. */
3003
3004 void
3005 iterate_over_bp_locations (walk_bp_location_callback callback)
3006 {
3007 struct bp_location *loc, **loc_tmp;
3008
3009 ALL_BP_LOCATIONS (loc, loc_tmp)
3010 {
3011 callback (loc, NULL);
3012 }
3013 }
3014
3015 /* This is used when we need to synch breakpoint conditions between GDB and the
3016 target. It is the case with deleting and disabling of breakpoints when using
3017 always-inserted mode. */
3018
3019 static void
3020 update_inserted_breakpoint_locations (void)
3021 {
3022 struct bp_location *bl, **blp_tmp;
3023 int error_flag = 0;
3024 int val = 0;
3025 int disabled_breaks = 0;
3026 int hw_breakpoint_error = 0;
3027 int hw_bp_details_reported = 0;
3028
3029 struct ui_file *tmp_error_stream = mem_fileopen ();
3030 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3031
3032 /* Explicitly mark the warning -- this will only be printed if
3033 there was an error. */
3034 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3035
3036 save_current_space_and_thread ();
3037
3038 ALL_BP_LOCATIONS (bl, blp_tmp)
3039 {
3040 /* We only want to update software breakpoints and hardware
3041 breakpoints. */
3042 if (!is_breakpoint (bl->owner))
3043 continue;
3044
3045 /* We only want to update locations that are already inserted
3046 and need updating. This is to avoid unwanted insertion during
3047 deletion of breakpoints. */
3048 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3049 continue;
3050
3051 switch_to_program_space_and_thread (bl->pspace);
3052
3053 /* For targets that support global breakpoints, there's no need
3054 to select an inferior to insert breakpoint to. In fact, even
3055 if we aren't attached to any process yet, we should still
3056 insert breakpoints. */
3057 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3058 && ptid_equal (inferior_ptid, null_ptid))
3059 continue;
3060
3061 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3062 &hw_breakpoint_error, &hw_bp_details_reported);
3063 if (val)
3064 error_flag = val;
3065 }
3066
3067 if (error_flag)
3068 {
3069 target_terminal_ours_for_output ();
3070 error_stream (tmp_error_stream);
3071 }
3072
3073 do_cleanups (cleanups);
3074 }
3075
3076 /* Used when starting or continuing the program. */
3077
3078 static void
3079 insert_breakpoint_locations (void)
3080 {
3081 struct breakpoint *bpt;
3082 struct bp_location *bl, **blp_tmp;
3083 int error_flag = 0;
3084 int val = 0;
3085 int disabled_breaks = 0;
3086 int hw_breakpoint_error = 0;
3087 int hw_bp_error_explained_already = 0;
3088
3089 struct ui_file *tmp_error_stream = mem_fileopen ();
3090 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
3091
3092 /* Explicitly mark the warning -- this will only be printed if
3093 there was an error. */
3094 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
3095
3096 save_current_space_and_thread ();
3097
3098 ALL_BP_LOCATIONS (bl, blp_tmp)
3099 {
3100 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3101 continue;
3102
3103 /* There is no point inserting thread-specific breakpoints if
3104 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3105 has BL->OWNER always non-NULL. */
3106 if (bl->owner->thread != -1
3107 && !valid_thread_id (bl->owner->thread))
3108 continue;
3109
3110 switch_to_program_space_and_thread (bl->pspace);
3111
3112 /* For targets that support global breakpoints, there's no need
3113 to select an inferior to insert breakpoint to. In fact, even
3114 if we aren't attached to any process yet, we should still
3115 insert breakpoints. */
3116 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3117 && ptid_equal (inferior_ptid, null_ptid))
3118 continue;
3119
3120 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
3121 &hw_breakpoint_error, &hw_bp_error_explained_already);
3122 if (val)
3123 error_flag = val;
3124 }
3125
3126 /* If we failed to insert all locations of a watchpoint, remove
3127 them, as half-inserted watchpoint is of limited use. */
3128 ALL_BREAKPOINTS (bpt)
3129 {
3130 int some_failed = 0;
3131 struct bp_location *loc;
3132
3133 if (!is_hardware_watchpoint (bpt))
3134 continue;
3135
3136 if (!breakpoint_enabled (bpt))
3137 continue;
3138
3139 if (bpt->disposition == disp_del_at_next_stop)
3140 continue;
3141
3142 for (loc = bpt->loc; loc; loc = loc->next)
3143 if (!loc->inserted && should_be_inserted (loc))
3144 {
3145 some_failed = 1;
3146 break;
3147 }
3148 if (some_failed)
3149 {
3150 for (loc = bpt->loc; loc; loc = loc->next)
3151 if (loc->inserted)
3152 remove_breakpoint (loc, mark_uninserted);
3153
3154 hw_breakpoint_error = 1;
3155 fprintf_unfiltered (tmp_error_stream,
3156 "Could not insert hardware watchpoint %d.\n",
3157 bpt->number);
3158 error_flag = -1;
3159 }
3160 }
3161
3162 if (error_flag)
3163 {
3164 /* If a hardware breakpoint or watchpoint was inserted, add a
3165 message about possibly exhausted resources. */
3166 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3167 {
3168 fprintf_unfiltered (tmp_error_stream,
3169 "Could not insert hardware breakpoints:\n\
3170 You may have requested too many hardware breakpoints/watchpoints.\n");
3171 }
3172 target_terminal_ours_for_output ();
3173 error_stream (tmp_error_stream);
3174 }
3175
3176 do_cleanups (cleanups);
3177 }
3178
3179 /* Used when the program stops.
3180 Returns zero if successful, or non-zero if there was a problem
3181 removing a breakpoint location. */
3182
3183 int
3184 remove_breakpoints (void)
3185 {
3186 struct bp_location *bl, **blp_tmp;
3187 int val = 0;
3188
3189 ALL_BP_LOCATIONS (bl, blp_tmp)
3190 {
3191 if (bl->inserted && !is_tracepoint (bl->owner))
3192 val |= remove_breakpoint (bl, mark_uninserted);
3193 }
3194 return val;
3195 }
3196
3197 /* When a thread exits, remove breakpoints that are related to
3198 that thread. */
3199
3200 static void
3201 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3202 {
3203 struct breakpoint *b, *b_tmp;
3204
3205 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3206 {
3207 if (b->thread == tp->num && user_breakpoint_p (b))
3208 {
3209 b->disposition = disp_del_at_next_stop;
3210
3211 printf_filtered (_("\
3212 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3213 b->number, tp->num);
3214
3215 /* Hide it from the user. */
3216 b->number = 0;
3217 }
3218 }
3219 }
3220
3221 /* Remove breakpoints of process PID. */
3222
3223 int
3224 remove_breakpoints_pid (int pid)
3225 {
3226 struct bp_location *bl, **blp_tmp;
3227 int val;
3228 struct inferior *inf = find_inferior_pid (pid);
3229
3230 ALL_BP_LOCATIONS (bl, blp_tmp)
3231 {
3232 if (bl->pspace != inf->pspace)
3233 continue;
3234
3235 if (bl->inserted && !bl->target_info.persist)
3236 {
3237 val = remove_breakpoint (bl, mark_uninserted);
3238 if (val != 0)
3239 return val;
3240 }
3241 }
3242 return 0;
3243 }
3244
3245 int
3246 reattach_breakpoints (int pid)
3247 {
3248 struct cleanup *old_chain;
3249 struct bp_location *bl, **blp_tmp;
3250 int val;
3251 struct ui_file *tmp_error_stream;
3252 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3253 struct inferior *inf;
3254 struct thread_info *tp;
3255
3256 tp = any_live_thread_of_process (pid);
3257 if (tp == NULL)
3258 return 1;
3259
3260 inf = find_inferior_pid (pid);
3261 old_chain = save_inferior_ptid ();
3262
3263 inferior_ptid = tp->ptid;
3264
3265 tmp_error_stream = mem_fileopen ();
3266 make_cleanup_ui_file_delete (tmp_error_stream);
3267
3268 ALL_BP_LOCATIONS (bl, blp_tmp)
3269 {
3270 if (bl->pspace != inf->pspace)
3271 continue;
3272
3273 if (bl->inserted)
3274 {
3275 bl->inserted = 0;
3276 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3277 if (val != 0)
3278 {
3279 do_cleanups (old_chain);
3280 return val;
3281 }
3282 }
3283 }
3284 do_cleanups (old_chain);
3285 return 0;
3286 }
3287
3288 static int internal_breakpoint_number = -1;
3289
3290 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3291 If INTERNAL is non-zero, the breakpoint number will be populated
3292 from internal_breakpoint_number and that variable decremented.
3293 Otherwise the breakpoint number will be populated from
3294 breakpoint_count and that value incremented. Internal breakpoints
3295 do not set the internal var bpnum. */
3296 static void
3297 set_breakpoint_number (int internal, struct breakpoint *b)
3298 {
3299 if (internal)
3300 b->number = internal_breakpoint_number--;
3301 else
3302 {
3303 set_breakpoint_count (breakpoint_count + 1);
3304 b->number = breakpoint_count;
3305 }
3306 }
3307
3308 static struct breakpoint *
3309 create_internal_breakpoint (struct gdbarch *gdbarch,
3310 CORE_ADDR address, enum bptype type,
3311 const struct breakpoint_ops *ops)
3312 {
3313 struct symtab_and_line sal;
3314 struct breakpoint *b;
3315
3316 init_sal (&sal); /* Initialize to zeroes. */
3317
3318 sal.pc = address;
3319 sal.section = find_pc_overlay (sal.pc);
3320 sal.pspace = current_program_space;
3321
3322 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3323 b->number = internal_breakpoint_number--;
3324 b->disposition = disp_donttouch;
3325
3326 return b;
3327 }
3328
3329 static const char *const longjmp_names[] =
3330 {
3331 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3332 };
3333 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3334
3335 /* Per-objfile data private to breakpoint.c. */
3336 struct breakpoint_objfile_data
3337 {
3338 /* Minimal symbol for "_ovly_debug_event" (if any). */
3339 struct bound_minimal_symbol overlay_msym;
3340
3341 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3342 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3343
3344 /* True if we have looked for longjmp probes. */
3345 int longjmp_searched;
3346
3347 /* SystemTap probe points for longjmp (if any). */
3348 VEC (probe_p) *longjmp_probes;
3349
3350 /* Minimal symbol for "std::terminate()" (if any). */
3351 struct bound_minimal_symbol terminate_msym;
3352
3353 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3354 struct bound_minimal_symbol exception_msym;
3355
3356 /* True if we have looked for exception probes. */
3357 int exception_searched;
3358
3359 /* SystemTap probe points for unwinding (if any). */
3360 VEC (probe_p) *exception_probes;
3361 };
3362
3363 static const struct objfile_data *breakpoint_objfile_key;
3364
3365 /* Minimal symbol not found sentinel. */
3366 static struct minimal_symbol msym_not_found;
3367
3368 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3369
3370 static int
3371 msym_not_found_p (const struct minimal_symbol *msym)
3372 {
3373 return msym == &msym_not_found;
3374 }
3375
3376 /* Return per-objfile data needed by breakpoint.c.
3377 Allocate the data if necessary. */
3378
3379 static struct breakpoint_objfile_data *
3380 get_breakpoint_objfile_data (struct objfile *objfile)
3381 {
3382 struct breakpoint_objfile_data *bp_objfile_data;
3383
3384 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3385 if (bp_objfile_data == NULL)
3386 {
3387 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3388 sizeof (*bp_objfile_data));
3389
3390 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3391 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3392 }
3393 return bp_objfile_data;
3394 }
3395
3396 static void
3397 free_breakpoint_probes (struct objfile *obj, void *data)
3398 {
3399 struct breakpoint_objfile_data *bp_objfile_data = data;
3400
3401 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3402 VEC_free (probe_p, bp_objfile_data->exception_probes);
3403 }
3404
3405 static void
3406 create_overlay_event_breakpoint (void)
3407 {
3408 struct objfile *objfile;
3409 const char *const func_name = "_ovly_debug_event";
3410
3411 ALL_OBJFILES (objfile)
3412 {
3413 struct breakpoint *b;
3414 struct breakpoint_objfile_data *bp_objfile_data;
3415 CORE_ADDR addr;
3416
3417 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3418
3419 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3420 continue;
3421
3422 if (bp_objfile_data->overlay_msym.minsym == NULL)
3423 {
3424 struct bound_minimal_symbol m;
3425
3426 m = lookup_minimal_symbol_text (func_name, objfile);
3427 if (m.minsym == NULL)
3428 {
3429 /* Avoid future lookups in this objfile. */
3430 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3431 continue;
3432 }
3433 bp_objfile_data->overlay_msym = m;
3434 }
3435
3436 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3437 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3438 bp_overlay_event,
3439 &internal_breakpoint_ops);
3440 b->addr_string = xstrdup (func_name);
3441
3442 if (overlay_debugging == ovly_auto)
3443 {
3444 b->enable_state = bp_enabled;
3445 overlay_events_enabled = 1;
3446 }
3447 else
3448 {
3449 b->enable_state = bp_disabled;
3450 overlay_events_enabled = 0;
3451 }
3452 }
3453 update_global_location_list (UGLL_MAY_INSERT);
3454 }
3455
3456 static void
3457 create_longjmp_master_breakpoint (void)
3458 {
3459 struct program_space *pspace;
3460 struct cleanup *old_chain;
3461
3462 old_chain = save_current_program_space ();
3463
3464 ALL_PSPACES (pspace)
3465 {
3466 struct objfile *objfile;
3467
3468 set_current_program_space (pspace);
3469
3470 ALL_OBJFILES (objfile)
3471 {
3472 int i;
3473 struct gdbarch *gdbarch;
3474 struct breakpoint_objfile_data *bp_objfile_data;
3475
3476 gdbarch = get_objfile_arch (objfile);
3477
3478 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3479
3480 if (!bp_objfile_data->longjmp_searched)
3481 {
3482 VEC (probe_p) *ret;
3483
3484 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3485 if (ret != NULL)
3486 {
3487 /* We are only interested in checking one element. */
3488 struct probe *p = VEC_index (probe_p, ret, 0);
3489
3490 if (!can_evaluate_probe_arguments (p))
3491 {
3492 /* We cannot use the probe interface here, because it does
3493 not know how to evaluate arguments. */
3494 VEC_free (probe_p, ret);
3495 ret = NULL;
3496 }
3497 }
3498 bp_objfile_data->longjmp_probes = ret;
3499 bp_objfile_data->longjmp_searched = 1;
3500 }
3501
3502 if (bp_objfile_data->longjmp_probes != NULL)
3503 {
3504 int i;
3505 struct probe *probe;
3506 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3507
3508 for (i = 0;
3509 VEC_iterate (probe_p,
3510 bp_objfile_data->longjmp_probes,
3511 i, probe);
3512 ++i)
3513 {
3514 struct breakpoint *b;
3515
3516 b = create_internal_breakpoint (gdbarch,
3517 get_probe_address (probe,
3518 objfile),
3519 bp_longjmp_master,
3520 &internal_breakpoint_ops);
3521 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3522 b->enable_state = bp_disabled;
3523 }
3524
3525 continue;
3526 }
3527
3528 if (!gdbarch_get_longjmp_target_p (gdbarch))
3529 continue;
3530
3531 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3532 {
3533 struct breakpoint *b;
3534 const char *func_name;
3535 CORE_ADDR addr;
3536
3537 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3538 continue;
3539
3540 func_name = longjmp_names[i];
3541 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3542 {
3543 struct bound_minimal_symbol m;
3544
3545 m = lookup_minimal_symbol_text (func_name, objfile);
3546 if (m.minsym == NULL)
3547 {
3548 /* Prevent future lookups in this objfile. */
3549 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3550 continue;
3551 }
3552 bp_objfile_data->longjmp_msym[i] = m;
3553 }
3554
3555 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3556 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3557 &internal_breakpoint_ops);
3558 b->addr_string = xstrdup (func_name);
3559 b->enable_state = bp_disabled;
3560 }
3561 }
3562 }
3563 update_global_location_list (UGLL_MAY_INSERT);
3564
3565 do_cleanups (old_chain);
3566 }
3567
3568 /* Create a master std::terminate breakpoint. */
3569 static void
3570 create_std_terminate_master_breakpoint (void)
3571 {
3572 struct program_space *pspace;
3573 struct cleanup *old_chain;
3574 const char *const func_name = "std::terminate()";
3575
3576 old_chain = save_current_program_space ();
3577
3578 ALL_PSPACES (pspace)
3579 {
3580 struct objfile *objfile;
3581 CORE_ADDR addr;
3582
3583 set_current_program_space (pspace);
3584
3585 ALL_OBJFILES (objfile)
3586 {
3587 struct breakpoint *b;
3588 struct breakpoint_objfile_data *bp_objfile_data;
3589
3590 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3591
3592 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3593 continue;
3594
3595 if (bp_objfile_data->terminate_msym.minsym == NULL)
3596 {
3597 struct bound_minimal_symbol m;
3598
3599 m = lookup_minimal_symbol (func_name, NULL, objfile);
3600 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3601 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3602 {
3603 /* Prevent future lookups in this objfile. */
3604 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3605 continue;
3606 }
3607 bp_objfile_data->terminate_msym = m;
3608 }
3609
3610 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3611 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3612 bp_std_terminate_master,
3613 &internal_breakpoint_ops);
3614 b->addr_string = xstrdup (func_name);
3615 b->enable_state = bp_disabled;
3616 }
3617 }
3618
3619 update_global_location_list (UGLL_MAY_INSERT);
3620
3621 do_cleanups (old_chain);
3622 }
3623
3624 /* Install a master breakpoint on the unwinder's debug hook. */
3625
3626 static void
3627 create_exception_master_breakpoint (void)
3628 {
3629 struct objfile *objfile;
3630 const char *const func_name = "_Unwind_DebugHook";
3631
3632 ALL_OBJFILES (objfile)
3633 {
3634 struct breakpoint *b;
3635 struct gdbarch *gdbarch;
3636 struct breakpoint_objfile_data *bp_objfile_data;
3637 CORE_ADDR addr;
3638
3639 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3640
3641 /* We prefer the SystemTap probe point if it exists. */
3642 if (!bp_objfile_data->exception_searched)
3643 {
3644 VEC (probe_p) *ret;
3645
3646 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3647
3648 if (ret != NULL)
3649 {
3650 /* We are only interested in checking one element. */
3651 struct probe *p = VEC_index (probe_p, ret, 0);
3652
3653 if (!can_evaluate_probe_arguments (p))
3654 {
3655 /* We cannot use the probe interface here, because it does
3656 not know how to evaluate arguments. */
3657 VEC_free (probe_p, ret);
3658 ret = NULL;
3659 }
3660 }
3661 bp_objfile_data->exception_probes = ret;
3662 bp_objfile_data->exception_searched = 1;
3663 }
3664
3665 if (bp_objfile_data->exception_probes != NULL)
3666 {
3667 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3668 int i;
3669 struct probe *probe;
3670
3671 for (i = 0;
3672 VEC_iterate (probe_p,
3673 bp_objfile_data->exception_probes,
3674 i, probe);
3675 ++i)
3676 {
3677 struct breakpoint *b;
3678
3679 b = create_internal_breakpoint (gdbarch,
3680 get_probe_address (probe,
3681 objfile),
3682 bp_exception_master,
3683 &internal_breakpoint_ops);
3684 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3685 b->enable_state = bp_disabled;
3686 }
3687
3688 continue;
3689 }
3690
3691 /* Otherwise, try the hook function. */
3692
3693 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3694 continue;
3695
3696 gdbarch = get_objfile_arch (objfile);
3697
3698 if (bp_objfile_data->exception_msym.minsym == NULL)
3699 {
3700 struct bound_minimal_symbol debug_hook;
3701
3702 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3703 if (debug_hook.minsym == NULL)
3704 {
3705 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3706 continue;
3707 }
3708
3709 bp_objfile_data->exception_msym = debug_hook;
3710 }
3711
3712 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3713 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3714 &current_target);
3715 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3716 &internal_breakpoint_ops);
3717 b->addr_string = xstrdup (func_name);
3718 b->enable_state = bp_disabled;
3719 }
3720
3721 update_global_location_list (UGLL_MAY_INSERT);
3722 }
3723
3724 void
3725 update_breakpoints_after_exec (void)
3726 {
3727 struct breakpoint *b, *b_tmp;
3728 struct bp_location *bploc, **bplocp_tmp;
3729
3730 /* We're about to delete breakpoints from GDB's lists. If the
3731 INSERTED flag is true, GDB will try to lift the breakpoints by
3732 writing the breakpoints' "shadow contents" back into memory. The
3733 "shadow contents" are NOT valid after an exec, so GDB should not
3734 do that. Instead, the target is responsible from marking
3735 breakpoints out as soon as it detects an exec. We don't do that
3736 here instead, because there may be other attempts to delete
3737 breakpoints after detecting an exec and before reaching here. */
3738 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3739 if (bploc->pspace == current_program_space)
3740 gdb_assert (!bploc->inserted);
3741
3742 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3743 {
3744 if (b->pspace != current_program_space)
3745 continue;
3746
3747 /* Solib breakpoints must be explicitly reset after an exec(). */
3748 if (b->type == bp_shlib_event)
3749 {
3750 delete_breakpoint (b);
3751 continue;
3752 }
3753
3754 /* JIT breakpoints must be explicitly reset after an exec(). */
3755 if (b->type == bp_jit_event)
3756 {
3757 delete_breakpoint (b);
3758 continue;
3759 }
3760
3761 /* Thread event breakpoints must be set anew after an exec(),
3762 as must overlay event and longjmp master breakpoints. */
3763 if (b->type == bp_thread_event || b->type == bp_overlay_event
3764 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3765 || b->type == bp_exception_master)
3766 {
3767 delete_breakpoint (b);
3768 continue;
3769 }
3770
3771 /* Step-resume breakpoints are meaningless after an exec(). */
3772 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3773 {
3774 delete_breakpoint (b);
3775 continue;
3776 }
3777
3778 /* Just like single-step breakpoints. */
3779 if (b->type == bp_single_step)
3780 {
3781 delete_breakpoint (b);
3782 continue;
3783 }
3784
3785 /* Longjmp and longjmp-resume breakpoints are also meaningless
3786 after an exec. */
3787 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3788 || b->type == bp_longjmp_call_dummy
3789 || b->type == bp_exception || b->type == bp_exception_resume)
3790 {
3791 delete_breakpoint (b);
3792 continue;
3793 }
3794
3795 if (b->type == bp_catchpoint)
3796 {
3797 /* For now, none of the bp_catchpoint breakpoints need to
3798 do anything at this point. In the future, if some of
3799 the catchpoints need to something, we will need to add
3800 a new method, and call this method from here. */
3801 continue;
3802 }
3803
3804 /* bp_finish is a special case. The only way we ought to be able
3805 to see one of these when an exec() has happened, is if the user
3806 caught a vfork, and then said "finish". Ordinarily a finish just
3807 carries them to the call-site of the current callee, by setting
3808 a temporary bp there and resuming. But in this case, the finish
3809 will carry them entirely through the vfork & exec.
3810
3811 We don't want to allow a bp_finish to remain inserted now. But
3812 we can't safely delete it, 'cause finish_command has a handle to
3813 the bp on a bpstat, and will later want to delete it. There's a
3814 chance (and I've seen it happen) that if we delete the bp_finish
3815 here, that its storage will get reused by the time finish_command
3816 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3817 We really must allow finish_command to delete a bp_finish.
3818
3819 In the absence of a general solution for the "how do we know
3820 it's safe to delete something others may have handles to?"
3821 problem, what we'll do here is just uninsert the bp_finish, and
3822 let finish_command delete it.
3823
3824 (We know the bp_finish is "doomed" in the sense that it's
3825 momentary, and will be deleted as soon as finish_command sees
3826 the inferior stopped. So it doesn't matter that the bp's
3827 address is probably bogus in the new a.out, unlike e.g., the
3828 solib breakpoints.) */
3829
3830 if (b->type == bp_finish)
3831 {
3832 continue;
3833 }
3834
3835 /* Without a symbolic address, we have little hope of the
3836 pre-exec() address meaning the same thing in the post-exec()
3837 a.out. */
3838 if (b->addr_string == NULL)
3839 {
3840 delete_breakpoint (b);
3841 continue;
3842 }
3843 }
3844 }
3845
3846 int
3847 detach_breakpoints (ptid_t ptid)
3848 {
3849 struct bp_location *bl, **blp_tmp;
3850 int val = 0;
3851 struct cleanup *old_chain = save_inferior_ptid ();
3852 struct inferior *inf = current_inferior ();
3853
3854 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3855 error (_("Cannot detach breakpoints of inferior_ptid"));
3856
3857 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3858 inferior_ptid = ptid;
3859 ALL_BP_LOCATIONS (bl, blp_tmp)
3860 {
3861 if (bl->pspace != inf->pspace)
3862 continue;
3863
3864 /* This function must physically remove breakpoints locations
3865 from the specified ptid, without modifying the breakpoint
3866 package's state. Locations of type bp_loc_other are only
3867 maintained at GDB side. So, there is no need to remove
3868 these bp_loc_other locations. Moreover, removing these
3869 would modify the breakpoint package's state. */
3870 if (bl->loc_type == bp_loc_other)
3871 continue;
3872
3873 if (bl->inserted)
3874 val |= remove_breakpoint_1 (bl, mark_inserted);
3875 }
3876
3877 do_cleanups (old_chain);
3878 return val;
3879 }
3880
3881 /* Remove the breakpoint location BL from the current address space.
3882 Note that this is used to detach breakpoints from a child fork.
3883 When we get here, the child isn't in the inferior list, and neither
3884 do we have objects to represent its address space --- we should
3885 *not* look at bl->pspace->aspace here. */
3886
3887 static int
3888 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3889 {
3890 int val;
3891
3892 /* BL is never in moribund_locations by our callers. */
3893 gdb_assert (bl->owner != NULL);
3894
3895 /* The type of none suggests that owner is actually deleted.
3896 This should not ever happen. */
3897 gdb_assert (bl->owner->type != bp_none);
3898
3899 if (bl->loc_type == bp_loc_software_breakpoint
3900 || bl->loc_type == bp_loc_hardware_breakpoint)
3901 {
3902 /* "Normal" instruction breakpoint: either the standard
3903 trap-instruction bp (bp_breakpoint), or a
3904 bp_hardware_breakpoint. */
3905
3906 /* First check to see if we have to handle an overlay. */
3907 if (overlay_debugging == ovly_off
3908 || bl->section == NULL
3909 || !(section_is_overlay (bl->section)))
3910 {
3911 /* No overlay handling: just remove the breakpoint. */
3912
3913 /* If we're trying to uninsert a memory breakpoint that we
3914 know is set in a dynamic object that is marked
3915 shlib_disabled, then either the dynamic object was
3916 removed with "remove-symbol-file" or with
3917 "nosharedlibrary". In the former case, we don't know
3918 whether another dynamic object might have loaded over the
3919 breakpoint's address -- the user might well let us know
3920 about it next with add-symbol-file (the whole point of
3921 add-symbol-file is letting the user manually maintain a
3922 list of dynamically loaded objects). If we have the
3923 breakpoint's shadow memory, that is, this is a software
3924 breakpoint managed by GDB, check whether the breakpoint
3925 is still inserted in memory, to avoid overwriting wrong
3926 code with stale saved shadow contents. Note that HW
3927 breakpoints don't have shadow memory, as they're
3928 implemented using a mechanism that is not dependent on
3929 being able to modify the target's memory, and as such
3930 they should always be removed. */
3931 if (bl->shlib_disabled
3932 && bl->target_info.shadow_len != 0
3933 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3934 val = 0;
3935 else
3936 val = bl->owner->ops->remove_location (bl);
3937 }
3938 else
3939 {
3940 /* This breakpoint is in an overlay section.
3941 Did we set a breakpoint at the LMA? */
3942 if (!overlay_events_enabled)
3943 {
3944 /* Yes -- overlay event support is not active, so we
3945 should have set a breakpoint at the LMA. Remove it.
3946 */
3947 /* Ignore any failures: if the LMA is in ROM, we will
3948 have already warned when we failed to insert it. */
3949 if (bl->loc_type == bp_loc_hardware_breakpoint)
3950 target_remove_hw_breakpoint (bl->gdbarch,
3951 &bl->overlay_target_info);
3952 else
3953 target_remove_breakpoint (bl->gdbarch,
3954 &bl->overlay_target_info);
3955 }
3956 /* Did we set a breakpoint at the VMA?
3957 If so, we will have marked the breakpoint 'inserted'. */
3958 if (bl->inserted)
3959 {
3960 /* Yes -- remove it. Previously we did not bother to
3961 remove the breakpoint if the section had been
3962 unmapped, but let's not rely on that being safe. We
3963 don't know what the overlay manager might do. */
3964
3965 /* However, we should remove *software* breakpoints only
3966 if the section is still mapped, or else we overwrite
3967 wrong code with the saved shadow contents. */
3968 if (bl->loc_type == bp_loc_hardware_breakpoint
3969 || section_is_mapped (bl->section))
3970 val = bl->owner->ops->remove_location (bl);
3971 else
3972 val = 0;
3973 }
3974 else
3975 {
3976 /* No -- not inserted, so no need to remove. No error. */
3977 val = 0;
3978 }
3979 }
3980
3981 /* In some cases, we might not be able to remove a breakpoint in
3982 a shared library that has already been removed, but we have
3983 not yet processed the shlib unload event. Similarly for an
3984 unloaded add-symbol-file object - the user might not yet have
3985 had the chance to remove-symbol-file it. shlib_disabled will
3986 be set if the library/object has already been removed, but
3987 the breakpoint hasn't been uninserted yet, e.g., after
3988 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3989 always-inserted mode. */
3990 if (val
3991 && (bl->loc_type == bp_loc_software_breakpoint
3992 && (bl->shlib_disabled
3993 || solib_name_from_address (bl->pspace, bl->address)
3994 || shared_objfile_contains_address_p (bl->pspace,
3995 bl->address))))
3996 val = 0;
3997
3998 if (val)
3999 return val;
4000 bl->inserted = (is == mark_inserted);
4001 }
4002 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4003 {
4004 gdb_assert (bl->owner->ops != NULL
4005 && bl->owner->ops->remove_location != NULL);
4006
4007 bl->inserted = (is == mark_inserted);
4008 bl->owner->ops->remove_location (bl);
4009
4010 /* Failure to remove any of the hardware watchpoints comes here. */
4011 if ((is == mark_uninserted) && (bl->inserted))
4012 warning (_("Could not remove hardware watchpoint %d."),
4013 bl->owner->number);
4014 }
4015 else if (bl->owner->type == bp_catchpoint
4016 && breakpoint_enabled (bl->owner)
4017 && !bl->duplicate)
4018 {
4019 gdb_assert (bl->owner->ops != NULL
4020 && bl->owner->ops->remove_location != NULL);
4021
4022 val = bl->owner->ops->remove_location (bl);
4023 if (val)
4024 return val;
4025
4026 bl->inserted = (is == mark_inserted);
4027 }
4028
4029 return 0;
4030 }
4031
4032 static int
4033 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
4034 {
4035 int ret;
4036 struct cleanup *old_chain;
4037
4038 /* BL is never in moribund_locations by our callers. */
4039 gdb_assert (bl->owner != NULL);
4040
4041 /* The type of none suggests that owner is actually deleted.
4042 This should not ever happen. */
4043 gdb_assert (bl->owner->type != bp_none);
4044
4045 old_chain = save_current_space_and_thread ();
4046
4047 switch_to_program_space_and_thread (bl->pspace);
4048
4049 ret = remove_breakpoint_1 (bl, is);
4050
4051 do_cleanups (old_chain);
4052 return ret;
4053 }
4054
4055 /* Clear the "inserted" flag in all breakpoints. */
4056
4057 void
4058 mark_breakpoints_out (void)
4059 {
4060 struct bp_location *bl, **blp_tmp;
4061
4062 ALL_BP_LOCATIONS (bl, blp_tmp)
4063 if (bl->pspace == current_program_space)
4064 bl->inserted = 0;
4065 }
4066
4067 /* Clear the "inserted" flag in all breakpoints and delete any
4068 breakpoints which should go away between runs of the program.
4069
4070 Plus other such housekeeping that has to be done for breakpoints
4071 between runs.
4072
4073 Note: this function gets called at the end of a run (by
4074 generic_mourn_inferior) and when a run begins (by
4075 init_wait_for_inferior). */
4076
4077
4078
4079 void
4080 breakpoint_init_inferior (enum inf_context context)
4081 {
4082 struct breakpoint *b, *b_tmp;
4083 struct bp_location *bl, **blp_tmp;
4084 int ix;
4085 struct program_space *pspace = current_program_space;
4086
4087 /* If breakpoint locations are shared across processes, then there's
4088 nothing to do. */
4089 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4090 return;
4091
4092 mark_breakpoints_out ();
4093
4094 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4095 {
4096 if (b->loc && b->loc->pspace != pspace)
4097 continue;
4098
4099 switch (b->type)
4100 {
4101 case bp_call_dummy:
4102 case bp_longjmp_call_dummy:
4103
4104 /* If the call dummy breakpoint is at the entry point it will
4105 cause problems when the inferior is rerun, so we better get
4106 rid of it. */
4107
4108 case bp_watchpoint_scope:
4109
4110 /* Also get rid of scope breakpoints. */
4111
4112 case bp_shlib_event:
4113
4114 /* Also remove solib event breakpoints. Their addresses may
4115 have changed since the last time we ran the program.
4116 Actually we may now be debugging against different target;
4117 and so the solib backend that installed this breakpoint may
4118 not be used in by the target. E.g.,
4119
4120 (gdb) file prog-linux
4121 (gdb) run # native linux target
4122 ...
4123 (gdb) kill
4124 (gdb) file prog-win.exe
4125 (gdb) tar rem :9999 # remote Windows gdbserver.
4126 */
4127
4128 case bp_step_resume:
4129
4130 /* Also remove step-resume breakpoints. */
4131
4132 case bp_single_step:
4133
4134 /* Also remove single-step breakpoints. */
4135
4136 delete_breakpoint (b);
4137 break;
4138
4139 case bp_watchpoint:
4140 case bp_hardware_watchpoint:
4141 case bp_read_watchpoint:
4142 case bp_access_watchpoint:
4143 {
4144 struct watchpoint *w = (struct watchpoint *) b;
4145
4146 /* Likewise for watchpoints on local expressions. */
4147 if (w->exp_valid_block != NULL)
4148 delete_breakpoint (b);
4149 else if (context == inf_starting)
4150 {
4151 /* Reset val field to force reread of starting value in
4152 insert_breakpoints. */
4153 if (w->val)
4154 value_free (w->val);
4155 w->val = NULL;
4156 w->val_valid = 0;
4157 }
4158 }
4159 break;
4160 default:
4161 break;
4162 }
4163 }
4164
4165 /* Get rid of the moribund locations. */
4166 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4167 decref_bp_location (&bl);
4168 VEC_free (bp_location_p, moribund_locations);
4169 }
4170
4171 /* These functions concern about actual breakpoints inserted in the
4172 target --- to e.g. check if we need to do decr_pc adjustment or if
4173 we need to hop over the bkpt --- so we check for address space
4174 match, not program space. */
4175
4176 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4177 exists at PC. It returns ordinary_breakpoint_here if it's an
4178 ordinary breakpoint, or permanent_breakpoint_here if it's a
4179 permanent breakpoint.
4180 - When continuing from a location with an ordinary breakpoint, we
4181 actually single step once before calling insert_breakpoints.
4182 - When continuing from a location with a permanent breakpoint, we
4183 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4184 the target, to advance the PC past the breakpoint. */
4185
4186 enum breakpoint_here
4187 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4188 {
4189 struct bp_location *bl, **blp_tmp;
4190 int any_breakpoint_here = 0;
4191
4192 ALL_BP_LOCATIONS (bl, blp_tmp)
4193 {
4194 if (bl->loc_type != bp_loc_software_breakpoint
4195 && bl->loc_type != bp_loc_hardware_breakpoint)
4196 continue;
4197
4198 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4199 if ((breakpoint_enabled (bl->owner)
4200 || bl->permanent)
4201 && breakpoint_location_address_match (bl, aspace, pc))
4202 {
4203 if (overlay_debugging
4204 && section_is_overlay (bl->section)
4205 && !section_is_mapped (bl->section))
4206 continue; /* unmapped overlay -- can't be a match */
4207 else if (bl->permanent)
4208 return permanent_breakpoint_here;
4209 else
4210 any_breakpoint_here = 1;
4211 }
4212 }
4213
4214 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4215 }
4216
4217 /* Return true if there's a moribund breakpoint at PC. */
4218
4219 int
4220 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4221 {
4222 struct bp_location *loc;
4223 int ix;
4224
4225 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4226 if (breakpoint_location_address_match (loc, aspace, pc))
4227 return 1;
4228
4229 return 0;
4230 }
4231
4232 /* Returns non-zero iff BL is inserted at PC, in address space
4233 ASPACE. */
4234
4235 static int
4236 bp_location_inserted_here_p (struct bp_location *bl,
4237 struct address_space *aspace, CORE_ADDR pc)
4238 {
4239 if (bl->inserted
4240 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4241 aspace, pc))
4242 {
4243 if (overlay_debugging
4244 && section_is_overlay (bl->section)
4245 && !section_is_mapped (bl->section))
4246 return 0; /* unmapped overlay -- can't be a match */
4247 else
4248 return 1;
4249 }
4250 return 0;
4251 }
4252
4253 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4254
4255 int
4256 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4257 {
4258 struct bp_location **blp, **blp_tmp = NULL;
4259 struct bp_location *bl;
4260
4261 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4262 {
4263 struct bp_location *bl = *blp;
4264
4265 if (bl->loc_type != bp_loc_software_breakpoint
4266 && bl->loc_type != bp_loc_hardware_breakpoint)
4267 continue;
4268
4269 if (bp_location_inserted_here_p (bl, aspace, pc))
4270 return 1;
4271 }
4272 return 0;
4273 }
4274
4275 /* This function returns non-zero iff there is a software breakpoint
4276 inserted at PC. */
4277
4278 int
4279 software_breakpoint_inserted_here_p (struct address_space *aspace,
4280 CORE_ADDR pc)
4281 {
4282 struct bp_location **blp, **blp_tmp = NULL;
4283 struct bp_location *bl;
4284
4285 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4286 {
4287 struct bp_location *bl = *blp;
4288
4289 if (bl->loc_type != bp_loc_software_breakpoint)
4290 continue;
4291
4292 if (bp_location_inserted_here_p (bl, aspace, pc))
4293 return 1;
4294 }
4295
4296 return 0;
4297 }
4298
4299 /* See breakpoint.h. */
4300
4301 int
4302 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4303 CORE_ADDR pc)
4304 {
4305 struct bp_location **blp, **blp_tmp = NULL;
4306 struct bp_location *bl;
4307
4308 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4309 {
4310 struct bp_location *bl = *blp;
4311
4312 if (bl->loc_type != bp_loc_hardware_breakpoint)
4313 continue;
4314
4315 if (bp_location_inserted_here_p (bl, aspace, pc))
4316 return 1;
4317 }
4318
4319 return 0;
4320 }
4321
4322 int
4323 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4324 CORE_ADDR addr, ULONGEST len)
4325 {
4326 struct breakpoint *bpt;
4327
4328 ALL_BREAKPOINTS (bpt)
4329 {
4330 struct bp_location *loc;
4331
4332 if (bpt->type != bp_hardware_watchpoint
4333 && bpt->type != bp_access_watchpoint)
4334 continue;
4335
4336 if (!breakpoint_enabled (bpt))
4337 continue;
4338
4339 for (loc = bpt->loc; loc; loc = loc->next)
4340 if (loc->pspace->aspace == aspace && loc->inserted)
4341 {
4342 CORE_ADDR l, h;
4343
4344 /* Check for intersection. */
4345 l = max (loc->address, addr);
4346 h = min (loc->address + loc->length, addr + len);
4347 if (l < h)
4348 return 1;
4349 }
4350 }
4351 return 0;
4352 }
4353 \f
4354
4355 /* bpstat stuff. External routines' interfaces are documented
4356 in breakpoint.h. */
4357
4358 int
4359 is_catchpoint (struct breakpoint *ep)
4360 {
4361 return (ep->type == bp_catchpoint);
4362 }
4363
4364 /* Frees any storage that is part of a bpstat. Does not walk the
4365 'next' chain. */
4366
4367 static void
4368 bpstat_free (bpstat bs)
4369 {
4370 if (bs->old_val != NULL)
4371 value_free (bs->old_val);
4372 decref_counted_command_line (&bs->commands);
4373 decref_bp_location (&bs->bp_location_at);
4374 xfree (bs);
4375 }
4376
4377 /* Clear a bpstat so that it says we are not at any breakpoint.
4378 Also free any storage that is part of a bpstat. */
4379
4380 void
4381 bpstat_clear (bpstat *bsp)
4382 {
4383 bpstat p;
4384 bpstat q;
4385
4386 if (bsp == 0)
4387 return;
4388 p = *bsp;
4389 while (p != NULL)
4390 {
4391 q = p->next;
4392 bpstat_free (p);
4393 p = q;
4394 }
4395 *bsp = NULL;
4396 }
4397
4398 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4399 is part of the bpstat is copied as well. */
4400
4401 bpstat
4402 bpstat_copy (bpstat bs)
4403 {
4404 bpstat p = NULL;
4405 bpstat tmp;
4406 bpstat retval = NULL;
4407
4408 if (bs == NULL)
4409 return bs;
4410
4411 for (; bs != NULL; bs = bs->next)
4412 {
4413 tmp = (bpstat) xmalloc (sizeof (*tmp));
4414 memcpy (tmp, bs, sizeof (*tmp));
4415 incref_counted_command_line (tmp->commands);
4416 incref_bp_location (tmp->bp_location_at);
4417 if (bs->old_val != NULL)
4418 {
4419 tmp->old_val = value_copy (bs->old_val);
4420 release_value (tmp->old_val);
4421 }
4422
4423 if (p == NULL)
4424 /* This is the first thing in the chain. */
4425 retval = tmp;
4426 else
4427 p->next = tmp;
4428 p = tmp;
4429 }
4430 p->next = NULL;
4431 return retval;
4432 }
4433
4434 /* Find the bpstat associated with this breakpoint. */
4435
4436 bpstat
4437 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4438 {
4439 if (bsp == NULL)
4440 return NULL;
4441
4442 for (; bsp != NULL; bsp = bsp->next)
4443 {
4444 if (bsp->breakpoint_at == breakpoint)
4445 return bsp;
4446 }
4447 return NULL;
4448 }
4449
4450 /* See breakpoint.h. */
4451
4452 int
4453 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4454 {
4455 for (; bsp != NULL; bsp = bsp->next)
4456 {
4457 if (bsp->breakpoint_at == NULL)
4458 {
4459 /* A moribund location can never explain a signal other than
4460 GDB_SIGNAL_TRAP. */
4461 if (sig == GDB_SIGNAL_TRAP)
4462 return 1;
4463 }
4464 else
4465 {
4466 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4467 sig))
4468 return 1;
4469 }
4470 }
4471
4472 return 0;
4473 }
4474
4475 /* Put in *NUM the breakpoint number of the first breakpoint we are
4476 stopped at. *BSP upon return is a bpstat which points to the
4477 remaining breakpoints stopped at (but which is not guaranteed to be
4478 good for anything but further calls to bpstat_num).
4479
4480 Return 0 if passed a bpstat which does not indicate any breakpoints.
4481 Return -1 if stopped at a breakpoint that has been deleted since
4482 we set it.
4483 Return 1 otherwise. */
4484
4485 int
4486 bpstat_num (bpstat *bsp, int *num)
4487 {
4488 struct breakpoint *b;
4489
4490 if ((*bsp) == NULL)
4491 return 0; /* No more breakpoint values */
4492
4493 /* We assume we'll never have several bpstats that correspond to a
4494 single breakpoint -- otherwise, this function might return the
4495 same number more than once and this will look ugly. */
4496 b = (*bsp)->breakpoint_at;
4497 *bsp = (*bsp)->next;
4498 if (b == NULL)
4499 return -1; /* breakpoint that's been deleted since */
4500
4501 *num = b->number; /* We have its number */
4502 return 1;
4503 }
4504
4505 /* See breakpoint.h. */
4506
4507 void
4508 bpstat_clear_actions (void)
4509 {
4510 struct thread_info *tp;
4511 bpstat bs;
4512
4513 if (ptid_equal (inferior_ptid, null_ptid))
4514 return;
4515
4516 tp = find_thread_ptid (inferior_ptid);
4517 if (tp == NULL)
4518 return;
4519
4520 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4521 {
4522 decref_counted_command_line (&bs->commands);
4523
4524 if (bs->old_val != NULL)
4525 {
4526 value_free (bs->old_val);
4527 bs->old_val = NULL;
4528 }
4529 }
4530 }
4531
4532 /* Called when a command is about to proceed the inferior. */
4533
4534 static void
4535 breakpoint_about_to_proceed (void)
4536 {
4537 if (!ptid_equal (inferior_ptid, null_ptid))
4538 {
4539 struct thread_info *tp = inferior_thread ();
4540
4541 /* Allow inferior function calls in breakpoint commands to not
4542 interrupt the command list. When the call finishes
4543 successfully, the inferior will be standing at the same
4544 breakpoint as if nothing happened. */
4545 if (tp->control.in_infcall)
4546 return;
4547 }
4548
4549 breakpoint_proceeded = 1;
4550 }
4551
4552 /* Stub for cleaning up our state if we error-out of a breakpoint
4553 command. */
4554 static void
4555 cleanup_executing_breakpoints (void *ignore)
4556 {
4557 executing_breakpoint_commands = 0;
4558 }
4559
4560 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4561 or its equivalent. */
4562
4563 static int
4564 command_line_is_silent (struct command_line *cmd)
4565 {
4566 return cmd && (strcmp ("silent", cmd->line) == 0);
4567 }
4568
4569 /* Execute all the commands associated with all the breakpoints at
4570 this location. Any of these commands could cause the process to
4571 proceed beyond this point, etc. We look out for such changes by
4572 checking the global "breakpoint_proceeded" after each command.
4573
4574 Returns true if a breakpoint command resumed the inferior. In that
4575 case, it is the caller's responsibility to recall it again with the
4576 bpstat of the current thread. */
4577
4578 static int
4579 bpstat_do_actions_1 (bpstat *bsp)
4580 {
4581 bpstat bs;
4582 struct cleanup *old_chain;
4583 int again = 0;
4584
4585 /* Avoid endless recursion if a `source' command is contained
4586 in bs->commands. */
4587 if (executing_breakpoint_commands)
4588 return 0;
4589
4590 executing_breakpoint_commands = 1;
4591 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4592
4593 prevent_dont_repeat ();
4594
4595 /* This pointer will iterate over the list of bpstat's. */
4596 bs = *bsp;
4597
4598 breakpoint_proceeded = 0;
4599 for (; bs != NULL; bs = bs->next)
4600 {
4601 struct counted_command_line *ccmd;
4602 struct command_line *cmd;
4603 struct cleanup *this_cmd_tree_chain;
4604
4605 /* Take ownership of the BSP's command tree, if it has one.
4606
4607 The command tree could legitimately contain commands like
4608 'step' and 'next', which call clear_proceed_status, which
4609 frees stop_bpstat's command tree. To make sure this doesn't
4610 free the tree we're executing out from under us, we need to
4611 take ownership of the tree ourselves. Since a given bpstat's
4612 commands are only executed once, we don't need to copy it; we
4613 can clear the pointer in the bpstat, and make sure we free
4614 the tree when we're done. */
4615 ccmd = bs->commands;
4616 bs->commands = NULL;
4617 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4618 cmd = ccmd ? ccmd->commands : NULL;
4619 if (command_line_is_silent (cmd))
4620 {
4621 /* The action has been already done by bpstat_stop_status. */
4622 cmd = cmd->next;
4623 }
4624
4625 while (cmd != NULL)
4626 {
4627 execute_control_command (cmd);
4628
4629 if (breakpoint_proceeded)
4630 break;
4631 else
4632 cmd = cmd->next;
4633 }
4634
4635 /* We can free this command tree now. */
4636 do_cleanups (this_cmd_tree_chain);
4637
4638 if (breakpoint_proceeded)
4639 {
4640 if (interpreter_async && target_can_async_p ())
4641 /* If we are in async mode, then the target might be still
4642 running, not stopped at any breakpoint, so nothing for
4643 us to do here -- just return to the event loop. */
4644 ;
4645 else
4646 /* In sync mode, when execute_control_command returns
4647 we're already standing on the next breakpoint.
4648 Breakpoint commands for that stop were not run, since
4649 execute_command does not run breakpoint commands --
4650 only command_line_handler does, but that one is not
4651 involved in execution of breakpoint commands. So, we
4652 can now execute breakpoint commands. It should be
4653 noted that making execute_command do bpstat actions is
4654 not an option -- in this case we'll have recursive
4655 invocation of bpstat for each breakpoint with a
4656 command, and can easily blow up GDB stack. Instead, we
4657 return true, which will trigger the caller to recall us
4658 with the new stop_bpstat. */
4659 again = 1;
4660 break;
4661 }
4662 }
4663 do_cleanups (old_chain);
4664 return again;
4665 }
4666
4667 void
4668 bpstat_do_actions (void)
4669 {
4670 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4671
4672 /* Do any commands attached to breakpoint we are stopped at. */
4673 while (!ptid_equal (inferior_ptid, null_ptid)
4674 && target_has_execution
4675 && !is_exited (inferior_ptid)
4676 && !is_executing (inferior_ptid))
4677 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4678 and only return when it is stopped at the next breakpoint, we
4679 keep doing breakpoint actions until it returns false to
4680 indicate the inferior was not resumed. */
4681 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4682 break;
4683
4684 discard_cleanups (cleanup_if_error);
4685 }
4686
4687 /* Print out the (old or new) value associated with a watchpoint. */
4688
4689 static void
4690 watchpoint_value_print (struct value *val, struct ui_file *stream)
4691 {
4692 if (val == NULL)
4693 fprintf_unfiltered (stream, _("<unreadable>"));
4694 else
4695 {
4696 struct value_print_options opts;
4697 get_user_print_options (&opts);
4698 value_print (val, stream, &opts);
4699 }
4700 }
4701
4702 /* Generic routine for printing messages indicating why we
4703 stopped. The behavior of this function depends on the value
4704 'print_it' in the bpstat structure. Under some circumstances we
4705 may decide not to print anything here and delegate the task to
4706 normal_stop(). */
4707
4708 static enum print_stop_action
4709 print_bp_stop_message (bpstat bs)
4710 {
4711 switch (bs->print_it)
4712 {
4713 case print_it_noop:
4714 /* Nothing should be printed for this bpstat entry. */
4715 return PRINT_UNKNOWN;
4716 break;
4717
4718 case print_it_done:
4719 /* We still want to print the frame, but we already printed the
4720 relevant messages. */
4721 return PRINT_SRC_AND_LOC;
4722 break;
4723
4724 case print_it_normal:
4725 {
4726 struct breakpoint *b = bs->breakpoint_at;
4727
4728 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4729 which has since been deleted. */
4730 if (b == NULL)
4731 return PRINT_UNKNOWN;
4732
4733 /* Normal case. Call the breakpoint's print_it method. */
4734 return b->ops->print_it (bs);
4735 }
4736 break;
4737
4738 default:
4739 internal_error (__FILE__, __LINE__,
4740 _("print_bp_stop_message: unrecognized enum value"));
4741 break;
4742 }
4743 }
4744
4745 /* A helper function that prints a shared library stopped event. */
4746
4747 static void
4748 print_solib_event (int is_catchpoint)
4749 {
4750 int any_deleted
4751 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4752 int any_added
4753 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4754
4755 if (!is_catchpoint)
4756 {
4757 if (any_added || any_deleted)
4758 ui_out_text (current_uiout,
4759 _("Stopped due to shared library event:\n"));
4760 else
4761 ui_out_text (current_uiout,
4762 _("Stopped due to shared library event (no "
4763 "libraries added or removed)\n"));
4764 }
4765
4766 if (ui_out_is_mi_like_p (current_uiout))
4767 ui_out_field_string (current_uiout, "reason",
4768 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4769
4770 if (any_deleted)
4771 {
4772 struct cleanup *cleanup;
4773 char *name;
4774 int ix;
4775
4776 ui_out_text (current_uiout, _(" Inferior unloaded "));
4777 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4778 "removed");
4779 for (ix = 0;
4780 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4781 ix, name);
4782 ++ix)
4783 {
4784 if (ix > 0)
4785 ui_out_text (current_uiout, " ");
4786 ui_out_field_string (current_uiout, "library", name);
4787 ui_out_text (current_uiout, "\n");
4788 }
4789
4790 do_cleanups (cleanup);
4791 }
4792
4793 if (any_added)
4794 {
4795 struct so_list *iter;
4796 int ix;
4797 struct cleanup *cleanup;
4798
4799 ui_out_text (current_uiout, _(" Inferior loaded "));
4800 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4801 "added");
4802 for (ix = 0;
4803 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4804 ix, iter);
4805 ++ix)
4806 {
4807 if (ix > 0)
4808 ui_out_text (current_uiout, " ");
4809 ui_out_field_string (current_uiout, "library", iter->so_name);
4810 ui_out_text (current_uiout, "\n");
4811 }
4812
4813 do_cleanups (cleanup);
4814 }
4815 }
4816
4817 /* Print a message indicating what happened. This is called from
4818 normal_stop(). The input to this routine is the head of the bpstat
4819 list - a list of the eventpoints that caused this stop. KIND is
4820 the target_waitkind for the stopping event. This
4821 routine calls the generic print routine for printing a message
4822 about reasons for stopping. This will print (for example) the
4823 "Breakpoint n," part of the output. The return value of this
4824 routine is one of:
4825
4826 PRINT_UNKNOWN: Means we printed nothing.
4827 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4828 code to print the location. An example is
4829 "Breakpoint 1, " which should be followed by
4830 the location.
4831 PRINT_SRC_ONLY: Means we printed something, but there is no need
4832 to also print the location part of the message.
4833 An example is the catch/throw messages, which
4834 don't require a location appended to the end.
4835 PRINT_NOTHING: We have done some printing and we don't need any
4836 further info to be printed. */
4837
4838 enum print_stop_action
4839 bpstat_print (bpstat bs, int kind)
4840 {
4841 int val;
4842
4843 /* Maybe another breakpoint in the chain caused us to stop.
4844 (Currently all watchpoints go on the bpstat whether hit or not.
4845 That probably could (should) be changed, provided care is taken
4846 with respect to bpstat_explains_signal). */
4847 for (; bs; bs = bs->next)
4848 {
4849 val = print_bp_stop_message (bs);
4850 if (val == PRINT_SRC_ONLY
4851 || val == PRINT_SRC_AND_LOC
4852 || val == PRINT_NOTHING)
4853 return val;
4854 }
4855
4856 /* If we had hit a shared library event breakpoint,
4857 print_bp_stop_message would print out this message. If we hit an
4858 OS-level shared library event, do the same thing. */
4859 if (kind == TARGET_WAITKIND_LOADED)
4860 {
4861 print_solib_event (0);
4862 return PRINT_NOTHING;
4863 }
4864
4865 /* We reached the end of the chain, or we got a null BS to start
4866 with and nothing was printed. */
4867 return PRINT_UNKNOWN;
4868 }
4869
4870 /* Evaluate the expression EXP and return 1 if value is zero.
4871 This returns the inverse of the condition because it is called
4872 from catch_errors which returns 0 if an exception happened, and if an
4873 exception happens we want execution to stop.
4874 The argument is a "struct expression *" that has been cast to a
4875 "void *" to make it pass through catch_errors. */
4876
4877 static int
4878 breakpoint_cond_eval (void *exp)
4879 {
4880 struct value *mark = value_mark ();
4881 int i = !value_true (evaluate_expression ((struct expression *) exp));
4882
4883 value_free_to_mark (mark);
4884 return i;
4885 }
4886
4887 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4888
4889 static bpstat
4890 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4891 {
4892 bpstat bs;
4893
4894 bs = (bpstat) xmalloc (sizeof (*bs));
4895 bs->next = NULL;
4896 **bs_link_pointer = bs;
4897 *bs_link_pointer = &bs->next;
4898 bs->breakpoint_at = bl->owner;
4899 bs->bp_location_at = bl;
4900 incref_bp_location (bl);
4901 /* If the condition is false, etc., don't do the commands. */
4902 bs->commands = NULL;
4903 bs->old_val = NULL;
4904 bs->print_it = print_it_normal;
4905 return bs;
4906 }
4907 \f
4908 /* The target has stopped with waitstatus WS. Check if any hardware
4909 watchpoints have triggered, according to the target. */
4910
4911 int
4912 watchpoints_triggered (struct target_waitstatus *ws)
4913 {
4914 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4915 CORE_ADDR addr;
4916 struct breakpoint *b;
4917
4918 if (!stopped_by_watchpoint)
4919 {
4920 /* We were not stopped by a watchpoint. Mark all watchpoints
4921 as not triggered. */
4922 ALL_BREAKPOINTS (b)
4923 if (is_hardware_watchpoint (b))
4924 {
4925 struct watchpoint *w = (struct watchpoint *) b;
4926
4927 w->watchpoint_triggered = watch_triggered_no;
4928 }
4929
4930 return 0;
4931 }
4932
4933 if (!target_stopped_data_address (&current_target, &addr))
4934 {
4935 /* We were stopped by a watchpoint, but we don't know where.
4936 Mark all watchpoints as unknown. */
4937 ALL_BREAKPOINTS (b)
4938 if (is_hardware_watchpoint (b))
4939 {
4940 struct watchpoint *w = (struct watchpoint *) b;
4941
4942 w->watchpoint_triggered = watch_triggered_unknown;
4943 }
4944
4945 return 1;
4946 }
4947
4948 /* The target could report the data address. Mark watchpoints
4949 affected by this data address as triggered, and all others as not
4950 triggered. */
4951
4952 ALL_BREAKPOINTS (b)
4953 if (is_hardware_watchpoint (b))
4954 {
4955 struct watchpoint *w = (struct watchpoint *) b;
4956 struct bp_location *loc;
4957
4958 w->watchpoint_triggered = watch_triggered_no;
4959 for (loc = b->loc; loc; loc = loc->next)
4960 {
4961 if (is_masked_watchpoint (b))
4962 {
4963 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4964 CORE_ADDR start = loc->address & w->hw_wp_mask;
4965
4966 if (newaddr == start)
4967 {
4968 w->watchpoint_triggered = watch_triggered_yes;
4969 break;
4970 }
4971 }
4972 /* Exact match not required. Within range is sufficient. */
4973 else if (target_watchpoint_addr_within_range (&current_target,
4974 addr, loc->address,
4975 loc->length))
4976 {
4977 w->watchpoint_triggered = watch_triggered_yes;
4978 break;
4979 }
4980 }
4981 }
4982
4983 return 1;
4984 }
4985
4986 /* Possible return values for watchpoint_check (this can't be an enum
4987 because of check_errors). */
4988 /* The watchpoint has been deleted. */
4989 #define WP_DELETED 1
4990 /* The value has changed. */
4991 #define WP_VALUE_CHANGED 2
4992 /* The value has not changed. */
4993 #define WP_VALUE_NOT_CHANGED 3
4994 /* Ignore this watchpoint, no matter if the value changed or not. */
4995 #define WP_IGNORE 4
4996
4997 #define BP_TEMPFLAG 1
4998 #define BP_HARDWAREFLAG 2
4999
5000 /* Evaluate watchpoint condition expression and check if its value
5001 changed.
5002
5003 P should be a pointer to struct bpstat, but is defined as a void *
5004 in order for this function to be usable with catch_errors. */
5005
5006 static int
5007 watchpoint_check (void *p)
5008 {
5009 bpstat bs = (bpstat) p;
5010 struct watchpoint *b;
5011 struct frame_info *fr;
5012 int within_current_scope;
5013
5014 /* BS is built from an existing struct breakpoint. */
5015 gdb_assert (bs->breakpoint_at != NULL);
5016 b = (struct watchpoint *) bs->breakpoint_at;
5017
5018 /* If this is a local watchpoint, we only want to check if the
5019 watchpoint frame is in scope if the current thread is the thread
5020 that was used to create the watchpoint. */
5021 if (!watchpoint_in_thread_scope (b))
5022 return WP_IGNORE;
5023
5024 if (b->exp_valid_block == NULL)
5025 within_current_scope = 1;
5026 else
5027 {
5028 struct frame_info *frame = get_current_frame ();
5029 struct gdbarch *frame_arch = get_frame_arch (frame);
5030 CORE_ADDR frame_pc = get_frame_pc (frame);
5031
5032 /* stack_frame_destroyed_p() returns a non-zero value if we're
5033 still in the function but the stack frame has already been
5034 invalidated. Since we can't rely on the values of local
5035 variables after the stack has been destroyed, we are treating
5036 the watchpoint in that state as `not changed' without further
5037 checking. Don't mark watchpoints as changed if the current
5038 frame is in an epilogue - even if they are in some other
5039 frame, our view of the stack is likely to be wrong and
5040 frame_find_by_id could error out. */
5041 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5042 return WP_IGNORE;
5043
5044 fr = frame_find_by_id (b->watchpoint_frame);
5045 within_current_scope = (fr != NULL);
5046
5047 /* If we've gotten confused in the unwinder, we might have
5048 returned a frame that can't describe this variable. */
5049 if (within_current_scope)
5050 {
5051 struct symbol *function;
5052
5053 function = get_frame_function (fr);
5054 if (function == NULL
5055 || !contained_in (b->exp_valid_block,
5056 SYMBOL_BLOCK_VALUE (function)))
5057 within_current_scope = 0;
5058 }
5059
5060 if (within_current_scope)
5061 /* If we end up stopping, the current frame will get selected
5062 in normal_stop. So this call to select_frame won't affect
5063 the user. */
5064 select_frame (fr);
5065 }
5066
5067 if (within_current_scope)
5068 {
5069 /* We use value_{,free_to_}mark because it could be a *long*
5070 time before we return to the command level and call
5071 free_all_values. We can't call free_all_values because we
5072 might be in the middle of evaluating a function call. */
5073
5074 int pc = 0;
5075 struct value *mark;
5076 struct value *new_val;
5077
5078 if (is_masked_watchpoint (&b->base))
5079 /* Since we don't know the exact trigger address (from
5080 stopped_data_address), just tell the user we've triggered
5081 a mask watchpoint. */
5082 return WP_VALUE_CHANGED;
5083
5084 mark = value_mark ();
5085 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
5086
5087 if (b->val_bitsize != 0)
5088 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5089
5090 /* We use value_equal_contents instead of value_equal because
5091 the latter coerces an array to a pointer, thus comparing just
5092 the address of the array instead of its contents. This is
5093 not what we want. */
5094 if ((b->val != NULL) != (new_val != NULL)
5095 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5096 {
5097 if (new_val != NULL)
5098 {
5099 release_value (new_val);
5100 value_free_to_mark (mark);
5101 }
5102 bs->old_val = b->val;
5103 b->val = new_val;
5104 b->val_valid = 1;
5105 return WP_VALUE_CHANGED;
5106 }
5107 else
5108 {
5109 /* Nothing changed. */
5110 value_free_to_mark (mark);
5111 return WP_VALUE_NOT_CHANGED;
5112 }
5113 }
5114 else
5115 {
5116 struct ui_out *uiout = current_uiout;
5117
5118 /* This seems like the only logical thing to do because
5119 if we temporarily ignored the watchpoint, then when
5120 we reenter the block in which it is valid it contains
5121 garbage (in the case of a function, it may have two
5122 garbage values, one before and one after the prologue).
5123 So we can't even detect the first assignment to it and
5124 watch after that (since the garbage may or may not equal
5125 the first value assigned). */
5126 /* We print all the stop information in
5127 breakpoint_ops->print_it, but in this case, by the time we
5128 call breakpoint_ops->print_it this bp will be deleted
5129 already. So we have no choice but print the information
5130 here. */
5131 if (ui_out_is_mi_like_p (uiout))
5132 ui_out_field_string
5133 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5134 ui_out_text (uiout, "\nWatchpoint ");
5135 ui_out_field_int (uiout, "wpnum", b->base.number);
5136 ui_out_text (uiout,
5137 " deleted because the program has left the block in\n\
5138 which its expression is valid.\n");
5139
5140 /* Make sure the watchpoint's commands aren't executed. */
5141 decref_counted_command_line (&b->base.commands);
5142 watchpoint_del_at_next_stop (b);
5143
5144 return WP_DELETED;
5145 }
5146 }
5147
5148 /* Return true if it looks like target has stopped due to hitting
5149 breakpoint location BL. This function does not check if we should
5150 stop, only if BL explains the stop. */
5151
5152 static int
5153 bpstat_check_location (const struct bp_location *bl,
5154 struct address_space *aspace, CORE_ADDR bp_addr,
5155 const struct target_waitstatus *ws)
5156 {
5157 struct breakpoint *b = bl->owner;
5158
5159 /* BL is from an existing breakpoint. */
5160 gdb_assert (b != NULL);
5161
5162 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5163 }
5164
5165 /* Determine if the watched values have actually changed, and we
5166 should stop. If not, set BS->stop to 0. */
5167
5168 static void
5169 bpstat_check_watchpoint (bpstat bs)
5170 {
5171 const struct bp_location *bl;
5172 struct watchpoint *b;
5173
5174 /* BS is built for existing struct breakpoint. */
5175 bl = bs->bp_location_at;
5176 gdb_assert (bl != NULL);
5177 b = (struct watchpoint *) bs->breakpoint_at;
5178 gdb_assert (b != NULL);
5179
5180 {
5181 int must_check_value = 0;
5182
5183 if (b->base.type == bp_watchpoint)
5184 /* For a software watchpoint, we must always check the
5185 watched value. */
5186 must_check_value = 1;
5187 else if (b->watchpoint_triggered == watch_triggered_yes)
5188 /* We have a hardware watchpoint (read, write, or access)
5189 and the target earlier reported an address watched by
5190 this watchpoint. */
5191 must_check_value = 1;
5192 else if (b->watchpoint_triggered == watch_triggered_unknown
5193 && b->base.type == bp_hardware_watchpoint)
5194 /* We were stopped by a hardware watchpoint, but the target could
5195 not report the data address. We must check the watchpoint's
5196 value. Access and read watchpoints are out of luck; without
5197 a data address, we can't figure it out. */
5198 must_check_value = 1;
5199
5200 if (must_check_value)
5201 {
5202 char *message
5203 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5204 b->base.number);
5205 struct cleanup *cleanups = make_cleanup (xfree, message);
5206 int e = catch_errors (watchpoint_check, bs, message,
5207 RETURN_MASK_ALL);
5208 do_cleanups (cleanups);
5209 switch (e)
5210 {
5211 case WP_DELETED:
5212 /* We've already printed what needs to be printed. */
5213 bs->print_it = print_it_done;
5214 /* Stop. */
5215 break;
5216 case WP_IGNORE:
5217 bs->print_it = print_it_noop;
5218 bs->stop = 0;
5219 break;
5220 case WP_VALUE_CHANGED:
5221 if (b->base.type == bp_read_watchpoint)
5222 {
5223 /* There are two cases to consider here:
5224
5225 1. We're watching the triggered memory for reads.
5226 In that case, trust the target, and always report
5227 the watchpoint hit to the user. Even though
5228 reads don't cause value changes, the value may
5229 have changed since the last time it was read, and
5230 since we're not trapping writes, we will not see
5231 those, and as such we should ignore our notion of
5232 old value.
5233
5234 2. We're watching the triggered memory for both
5235 reads and writes. There are two ways this may
5236 happen:
5237
5238 2.1. This is a target that can't break on data
5239 reads only, but can break on accesses (reads or
5240 writes), such as e.g., x86. We detect this case
5241 at the time we try to insert read watchpoints.
5242
5243 2.2. Otherwise, the target supports read
5244 watchpoints, but, the user set an access or write
5245 watchpoint watching the same memory as this read
5246 watchpoint.
5247
5248 If we're watching memory writes as well as reads,
5249 ignore watchpoint hits when we find that the
5250 value hasn't changed, as reads don't cause
5251 changes. This still gives false positives when
5252 the program writes the same value to memory as
5253 what there was already in memory (we will confuse
5254 it for a read), but it's much better than
5255 nothing. */
5256
5257 int other_write_watchpoint = 0;
5258
5259 if (bl->watchpoint_type == hw_read)
5260 {
5261 struct breakpoint *other_b;
5262
5263 ALL_BREAKPOINTS (other_b)
5264 if (other_b->type == bp_hardware_watchpoint
5265 || other_b->type == bp_access_watchpoint)
5266 {
5267 struct watchpoint *other_w =
5268 (struct watchpoint *) other_b;
5269
5270 if (other_w->watchpoint_triggered
5271 == watch_triggered_yes)
5272 {
5273 other_write_watchpoint = 1;
5274 break;
5275 }
5276 }
5277 }
5278
5279 if (other_write_watchpoint
5280 || bl->watchpoint_type == hw_access)
5281 {
5282 /* We're watching the same memory for writes,
5283 and the value changed since the last time we
5284 updated it, so this trap must be for a write.
5285 Ignore it. */
5286 bs->print_it = print_it_noop;
5287 bs->stop = 0;
5288 }
5289 }
5290 break;
5291 case WP_VALUE_NOT_CHANGED:
5292 if (b->base.type == bp_hardware_watchpoint
5293 || b->base.type == bp_watchpoint)
5294 {
5295 /* Don't stop: write watchpoints shouldn't fire if
5296 the value hasn't changed. */
5297 bs->print_it = print_it_noop;
5298 bs->stop = 0;
5299 }
5300 /* Stop. */
5301 break;
5302 default:
5303 /* Can't happen. */
5304 case 0:
5305 /* Error from catch_errors. */
5306 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5307 watchpoint_del_at_next_stop (b);
5308 /* We've already printed what needs to be printed. */
5309 bs->print_it = print_it_done;
5310 break;
5311 }
5312 }
5313 else /* must_check_value == 0 */
5314 {
5315 /* This is a case where some watchpoint(s) triggered, but
5316 not at the address of this watchpoint, or else no
5317 watchpoint triggered after all. So don't print
5318 anything for this watchpoint. */
5319 bs->print_it = print_it_noop;
5320 bs->stop = 0;
5321 }
5322 }
5323 }
5324
5325 /* For breakpoints that are currently marked as telling gdb to stop,
5326 check conditions (condition proper, frame, thread and ignore count)
5327 of breakpoint referred to by BS. If we should not stop for this
5328 breakpoint, set BS->stop to 0. */
5329
5330 static void
5331 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5332 {
5333 const struct bp_location *bl;
5334 struct breakpoint *b;
5335 int value_is_zero = 0;
5336 struct expression *cond;
5337
5338 gdb_assert (bs->stop);
5339
5340 /* BS is built for existing struct breakpoint. */
5341 bl = bs->bp_location_at;
5342 gdb_assert (bl != NULL);
5343 b = bs->breakpoint_at;
5344 gdb_assert (b != NULL);
5345
5346 /* Even if the target evaluated the condition on its end and notified GDB, we
5347 need to do so again since GDB does not know if we stopped due to a
5348 breakpoint or a single step breakpoint. */
5349
5350 if (frame_id_p (b->frame_id)
5351 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5352 {
5353 bs->stop = 0;
5354 return;
5355 }
5356
5357 /* If this is a thread/task-specific breakpoint, don't waste cpu
5358 evaluating the condition if this isn't the specified
5359 thread/task. */
5360 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5361 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5362
5363 {
5364 bs->stop = 0;
5365 return;
5366 }
5367
5368 /* Evaluate extension language breakpoints that have a "stop" method
5369 implemented. */
5370 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5371
5372 if (is_watchpoint (b))
5373 {
5374 struct watchpoint *w = (struct watchpoint *) b;
5375
5376 cond = w->cond_exp;
5377 }
5378 else
5379 cond = bl->cond;
5380
5381 if (cond && b->disposition != disp_del_at_next_stop)
5382 {
5383 int within_current_scope = 1;
5384 struct watchpoint * w;
5385
5386 /* We use value_mark and value_free_to_mark because it could
5387 be a long time before we return to the command level and
5388 call free_all_values. We can't call free_all_values
5389 because we might be in the middle of evaluating a
5390 function call. */
5391 struct value *mark = value_mark ();
5392
5393 if (is_watchpoint (b))
5394 w = (struct watchpoint *) b;
5395 else
5396 w = NULL;
5397
5398 /* Need to select the frame, with all that implies so that
5399 the conditions will have the right context. Because we
5400 use the frame, we will not see an inlined function's
5401 variables when we arrive at a breakpoint at the start
5402 of the inlined function; the current frame will be the
5403 call site. */
5404 if (w == NULL || w->cond_exp_valid_block == NULL)
5405 select_frame (get_current_frame ());
5406 else
5407 {
5408 struct frame_info *frame;
5409
5410 /* For local watchpoint expressions, which particular
5411 instance of a local is being watched matters, so we
5412 keep track of the frame to evaluate the expression
5413 in. To evaluate the condition however, it doesn't
5414 really matter which instantiation of the function
5415 where the condition makes sense triggers the
5416 watchpoint. This allows an expression like "watch
5417 global if q > 10" set in `func', catch writes to
5418 global on all threads that call `func', or catch
5419 writes on all recursive calls of `func' by a single
5420 thread. We simply always evaluate the condition in
5421 the innermost frame that's executing where it makes
5422 sense to evaluate the condition. It seems
5423 intuitive. */
5424 frame = block_innermost_frame (w->cond_exp_valid_block);
5425 if (frame != NULL)
5426 select_frame (frame);
5427 else
5428 within_current_scope = 0;
5429 }
5430 if (within_current_scope)
5431 value_is_zero
5432 = catch_errors (breakpoint_cond_eval, cond,
5433 "Error in testing breakpoint condition:\n",
5434 RETURN_MASK_ALL);
5435 else
5436 {
5437 warning (_("Watchpoint condition cannot be tested "
5438 "in the current scope"));
5439 /* If we failed to set the right context for this
5440 watchpoint, unconditionally report it. */
5441 value_is_zero = 0;
5442 }
5443 /* FIXME-someday, should give breakpoint #. */
5444 value_free_to_mark (mark);
5445 }
5446
5447 if (cond && value_is_zero)
5448 {
5449 bs->stop = 0;
5450 }
5451 else if (b->ignore_count > 0)
5452 {
5453 b->ignore_count--;
5454 bs->stop = 0;
5455 /* Increase the hit count even though we don't stop. */
5456 ++(b->hit_count);
5457 observer_notify_breakpoint_modified (b);
5458 }
5459 }
5460
5461 /* Returns true if we need to track moribund locations of LOC's type
5462 on the current target. */
5463
5464 static int
5465 need_moribund_for_location_type (struct bp_location *loc)
5466 {
5467 return ((loc->loc_type == bp_loc_software_breakpoint
5468 && !target_supports_stopped_by_sw_breakpoint ())
5469 || (loc->loc_type == bp_loc_hardware_breakpoint
5470 && !target_supports_stopped_by_hw_breakpoint ()));
5471 }
5472
5473
5474 /* Get a bpstat associated with having just stopped at address
5475 BP_ADDR in thread PTID.
5476
5477 Determine whether we stopped at a breakpoint, etc, or whether we
5478 don't understand this stop. Result is a chain of bpstat's such
5479 that:
5480
5481 if we don't understand the stop, the result is a null pointer.
5482
5483 if we understand why we stopped, the result is not null.
5484
5485 Each element of the chain refers to a particular breakpoint or
5486 watchpoint at which we have stopped. (We may have stopped for
5487 several reasons concurrently.)
5488
5489 Each element of the chain has valid next, breakpoint_at,
5490 commands, FIXME??? fields. */
5491
5492 bpstat
5493 bpstat_stop_status (struct address_space *aspace,
5494 CORE_ADDR bp_addr, ptid_t ptid,
5495 const struct target_waitstatus *ws)
5496 {
5497 struct breakpoint *b = NULL;
5498 struct bp_location *bl;
5499 struct bp_location *loc;
5500 /* First item of allocated bpstat's. */
5501 bpstat bs_head = NULL, *bs_link = &bs_head;
5502 /* Pointer to the last thing in the chain currently. */
5503 bpstat bs;
5504 int ix;
5505 int need_remove_insert;
5506 int removed_any;
5507
5508 /* First, build the bpstat chain with locations that explain a
5509 target stop, while being careful to not set the target running,
5510 as that may invalidate locations (in particular watchpoint
5511 locations are recreated). Resuming will happen here with
5512 breakpoint conditions or watchpoint expressions that include
5513 inferior function calls. */
5514
5515 ALL_BREAKPOINTS (b)
5516 {
5517 if (!breakpoint_enabled (b))
5518 continue;
5519
5520 for (bl = b->loc; bl != NULL; bl = bl->next)
5521 {
5522 /* For hardware watchpoints, we look only at the first
5523 location. The watchpoint_check function will work on the
5524 entire expression, not the individual locations. For
5525 read watchpoints, the watchpoints_triggered function has
5526 checked all locations already. */
5527 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5528 break;
5529
5530 if (!bl->enabled || bl->shlib_disabled)
5531 continue;
5532
5533 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5534 continue;
5535
5536 /* Come here if it's a watchpoint, or if the break address
5537 matches. */
5538
5539 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5540 explain stop. */
5541
5542 /* Assume we stop. Should we find a watchpoint that is not
5543 actually triggered, or if the condition of the breakpoint
5544 evaluates as false, we'll reset 'stop' to 0. */
5545 bs->stop = 1;
5546 bs->print = 1;
5547
5548 /* If this is a scope breakpoint, mark the associated
5549 watchpoint as triggered so that we will handle the
5550 out-of-scope event. We'll get to the watchpoint next
5551 iteration. */
5552 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5553 {
5554 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5555
5556 w->watchpoint_triggered = watch_triggered_yes;
5557 }
5558 }
5559 }
5560
5561 /* Check if a moribund breakpoint explains the stop. */
5562 if (!target_supports_stopped_by_sw_breakpoint ()
5563 || !target_supports_stopped_by_hw_breakpoint ())
5564 {
5565 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5566 {
5567 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5568 && need_moribund_for_location_type (loc))
5569 {
5570 bs = bpstat_alloc (loc, &bs_link);
5571 /* For hits of moribund locations, we should just proceed. */
5572 bs->stop = 0;
5573 bs->print = 0;
5574 bs->print_it = print_it_noop;
5575 }
5576 }
5577 }
5578
5579 /* A bit of special processing for shlib breakpoints. We need to
5580 process solib loading here, so that the lists of loaded and
5581 unloaded libraries are correct before we handle "catch load" and
5582 "catch unload". */
5583 for (bs = bs_head; bs != NULL; bs = bs->next)
5584 {
5585 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5586 {
5587 handle_solib_event ();
5588 break;
5589 }
5590 }
5591
5592 /* Now go through the locations that caused the target to stop, and
5593 check whether we're interested in reporting this stop to higher
5594 layers, or whether we should resume the target transparently. */
5595
5596 removed_any = 0;
5597
5598 for (bs = bs_head; bs != NULL; bs = bs->next)
5599 {
5600 if (!bs->stop)
5601 continue;
5602
5603 b = bs->breakpoint_at;
5604 b->ops->check_status (bs);
5605 if (bs->stop)
5606 {
5607 bpstat_check_breakpoint_conditions (bs, ptid);
5608
5609 if (bs->stop)
5610 {
5611 ++(b->hit_count);
5612 observer_notify_breakpoint_modified (b);
5613
5614 /* We will stop here. */
5615 if (b->disposition == disp_disable)
5616 {
5617 --(b->enable_count);
5618 if (b->enable_count <= 0)
5619 b->enable_state = bp_disabled;
5620 removed_any = 1;
5621 }
5622 if (b->silent)
5623 bs->print = 0;
5624 bs->commands = b->commands;
5625 incref_counted_command_line (bs->commands);
5626 if (command_line_is_silent (bs->commands
5627 ? bs->commands->commands : NULL))
5628 bs->print = 0;
5629
5630 b->ops->after_condition_true (bs);
5631 }
5632
5633 }
5634
5635 /* Print nothing for this entry if we don't stop or don't
5636 print. */
5637 if (!bs->stop || !bs->print)
5638 bs->print_it = print_it_noop;
5639 }
5640
5641 /* If we aren't stopping, the value of some hardware watchpoint may
5642 not have changed, but the intermediate memory locations we are
5643 watching may have. Don't bother if we're stopping; this will get
5644 done later. */
5645 need_remove_insert = 0;
5646 if (! bpstat_causes_stop (bs_head))
5647 for (bs = bs_head; bs != NULL; bs = bs->next)
5648 if (!bs->stop
5649 && bs->breakpoint_at
5650 && is_hardware_watchpoint (bs->breakpoint_at))
5651 {
5652 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5653
5654 update_watchpoint (w, 0 /* don't reparse. */);
5655 need_remove_insert = 1;
5656 }
5657
5658 if (need_remove_insert)
5659 update_global_location_list (UGLL_MAY_INSERT);
5660 else if (removed_any)
5661 update_global_location_list (UGLL_DONT_INSERT);
5662
5663 return bs_head;
5664 }
5665
5666 static void
5667 handle_jit_event (void)
5668 {
5669 struct frame_info *frame;
5670 struct gdbarch *gdbarch;
5671
5672 /* Switch terminal for any messages produced by
5673 breakpoint_re_set. */
5674 target_terminal_ours_for_output ();
5675
5676 frame = get_current_frame ();
5677 gdbarch = get_frame_arch (frame);
5678
5679 jit_event_handler (gdbarch);
5680
5681 target_terminal_inferior ();
5682 }
5683
5684 /* Prepare WHAT final decision for infrun. */
5685
5686 /* Decide what infrun needs to do with this bpstat. */
5687
5688 struct bpstat_what
5689 bpstat_what (bpstat bs_head)
5690 {
5691 struct bpstat_what retval;
5692 int jit_event = 0;
5693 bpstat bs;
5694
5695 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5696 retval.call_dummy = STOP_NONE;
5697 retval.is_longjmp = 0;
5698
5699 for (bs = bs_head; bs != NULL; bs = bs->next)
5700 {
5701 /* Extract this BS's action. After processing each BS, we check
5702 if its action overrides all we've seem so far. */
5703 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5704 enum bptype bptype;
5705
5706 if (bs->breakpoint_at == NULL)
5707 {
5708 /* I suspect this can happen if it was a momentary
5709 breakpoint which has since been deleted. */
5710 bptype = bp_none;
5711 }
5712 else
5713 bptype = bs->breakpoint_at->type;
5714
5715 switch (bptype)
5716 {
5717 case bp_none:
5718 break;
5719 case bp_breakpoint:
5720 case bp_hardware_breakpoint:
5721 case bp_single_step:
5722 case bp_until:
5723 case bp_finish:
5724 case bp_shlib_event:
5725 if (bs->stop)
5726 {
5727 if (bs->print)
5728 this_action = BPSTAT_WHAT_STOP_NOISY;
5729 else
5730 this_action = BPSTAT_WHAT_STOP_SILENT;
5731 }
5732 else
5733 this_action = BPSTAT_WHAT_SINGLE;
5734 break;
5735 case bp_watchpoint:
5736 case bp_hardware_watchpoint:
5737 case bp_read_watchpoint:
5738 case bp_access_watchpoint:
5739 if (bs->stop)
5740 {
5741 if (bs->print)
5742 this_action = BPSTAT_WHAT_STOP_NOISY;
5743 else
5744 this_action = BPSTAT_WHAT_STOP_SILENT;
5745 }
5746 else
5747 {
5748 /* There was a watchpoint, but we're not stopping.
5749 This requires no further action. */
5750 }
5751 break;
5752 case bp_longjmp:
5753 case bp_longjmp_call_dummy:
5754 case bp_exception:
5755 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5756 retval.is_longjmp = bptype != bp_exception;
5757 break;
5758 case bp_longjmp_resume:
5759 case bp_exception_resume:
5760 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5761 retval.is_longjmp = bptype == bp_longjmp_resume;
5762 break;
5763 case bp_step_resume:
5764 if (bs->stop)
5765 this_action = BPSTAT_WHAT_STEP_RESUME;
5766 else
5767 {
5768 /* It is for the wrong frame. */
5769 this_action = BPSTAT_WHAT_SINGLE;
5770 }
5771 break;
5772 case bp_hp_step_resume:
5773 if (bs->stop)
5774 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5775 else
5776 {
5777 /* It is for the wrong frame. */
5778 this_action = BPSTAT_WHAT_SINGLE;
5779 }
5780 break;
5781 case bp_watchpoint_scope:
5782 case bp_thread_event:
5783 case bp_overlay_event:
5784 case bp_longjmp_master:
5785 case bp_std_terminate_master:
5786 case bp_exception_master:
5787 this_action = BPSTAT_WHAT_SINGLE;
5788 break;
5789 case bp_catchpoint:
5790 if (bs->stop)
5791 {
5792 if (bs->print)
5793 this_action = BPSTAT_WHAT_STOP_NOISY;
5794 else
5795 this_action = BPSTAT_WHAT_STOP_SILENT;
5796 }
5797 else
5798 {
5799 /* There was a catchpoint, but we're not stopping.
5800 This requires no further action. */
5801 }
5802 break;
5803 case bp_jit_event:
5804 jit_event = 1;
5805 this_action = BPSTAT_WHAT_SINGLE;
5806 break;
5807 case bp_call_dummy:
5808 /* Make sure the action is stop (silent or noisy),
5809 so infrun.c pops the dummy frame. */
5810 retval.call_dummy = STOP_STACK_DUMMY;
5811 this_action = BPSTAT_WHAT_STOP_SILENT;
5812 break;
5813 case bp_std_terminate:
5814 /* Make sure the action is stop (silent or noisy),
5815 so infrun.c pops the dummy frame. */
5816 retval.call_dummy = STOP_STD_TERMINATE;
5817 this_action = BPSTAT_WHAT_STOP_SILENT;
5818 break;
5819 case bp_tracepoint:
5820 case bp_fast_tracepoint:
5821 case bp_static_tracepoint:
5822 /* Tracepoint hits should not be reported back to GDB, and
5823 if one got through somehow, it should have been filtered
5824 out already. */
5825 internal_error (__FILE__, __LINE__,
5826 _("bpstat_what: tracepoint encountered"));
5827 break;
5828 case bp_gnu_ifunc_resolver:
5829 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5830 this_action = BPSTAT_WHAT_SINGLE;
5831 break;
5832 case bp_gnu_ifunc_resolver_return:
5833 /* The breakpoint will be removed, execution will restart from the
5834 PC of the former breakpoint. */
5835 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5836 break;
5837
5838 case bp_dprintf:
5839 if (bs->stop)
5840 this_action = BPSTAT_WHAT_STOP_SILENT;
5841 else
5842 this_action = BPSTAT_WHAT_SINGLE;
5843 break;
5844
5845 default:
5846 internal_error (__FILE__, __LINE__,
5847 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5848 }
5849
5850 retval.main_action = max (retval.main_action, this_action);
5851 }
5852
5853 /* These operations may affect the bs->breakpoint_at state so they are
5854 delayed after MAIN_ACTION is decided above. */
5855
5856 if (jit_event)
5857 {
5858 if (debug_infrun)
5859 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5860
5861 handle_jit_event ();
5862 }
5863
5864 for (bs = bs_head; bs != NULL; bs = bs->next)
5865 {
5866 struct breakpoint *b = bs->breakpoint_at;
5867
5868 if (b == NULL)
5869 continue;
5870 switch (b->type)
5871 {
5872 case bp_gnu_ifunc_resolver:
5873 gnu_ifunc_resolver_stop (b);
5874 break;
5875 case bp_gnu_ifunc_resolver_return:
5876 gnu_ifunc_resolver_return_stop (b);
5877 break;
5878 }
5879 }
5880
5881 return retval;
5882 }
5883
5884 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5885 without hardware support). This isn't related to a specific bpstat,
5886 just to things like whether watchpoints are set. */
5887
5888 int
5889 bpstat_should_step (void)
5890 {
5891 struct breakpoint *b;
5892
5893 ALL_BREAKPOINTS (b)
5894 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5895 return 1;
5896 return 0;
5897 }
5898
5899 int
5900 bpstat_causes_stop (bpstat bs)
5901 {
5902 for (; bs != NULL; bs = bs->next)
5903 if (bs->stop)
5904 return 1;
5905
5906 return 0;
5907 }
5908
5909 \f
5910
5911 /* Compute a string of spaces suitable to indent the next line
5912 so it starts at the position corresponding to the table column
5913 named COL_NAME in the currently active table of UIOUT. */
5914
5915 static char *
5916 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5917 {
5918 static char wrap_indent[80];
5919 int i, total_width, width, align;
5920 char *text;
5921
5922 total_width = 0;
5923 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5924 {
5925 if (strcmp (text, col_name) == 0)
5926 {
5927 gdb_assert (total_width < sizeof wrap_indent);
5928 memset (wrap_indent, ' ', total_width);
5929 wrap_indent[total_width] = 0;
5930
5931 return wrap_indent;
5932 }
5933
5934 total_width += width + 1;
5935 }
5936
5937 return NULL;
5938 }
5939
5940 /* Determine if the locations of this breakpoint will have their conditions
5941 evaluated by the target, host or a mix of both. Returns the following:
5942
5943 "host": Host evals condition.
5944 "host or target": Host or Target evals condition.
5945 "target": Target evals condition.
5946 */
5947
5948 static const char *
5949 bp_condition_evaluator (struct breakpoint *b)
5950 {
5951 struct bp_location *bl;
5952 char host_evals = 0;
5953 char target_evals = 0;
5954
5955 if (!b)
5956 return NULL;
5957
5958 if (!is_breakpoint (b))
5959 return NULL;
5960
5961 if (gdb_evaluates_breakpoint_condition_p ()
5962 || !target_supports_evaluation_of_breakpoint_conditions ())
5963 return condition_evaluation_host;
5964
5965 for (bl = b->loc; bl; bl = bl->next)
5966 {
5967 if (bl->cond_bytecode)
5968 target_evals++;
5969 else
5970 host_evals++;
5971 }
5972
5973 if (host_evals && target_evals)
5974 return condition_evaluation_both;
5975 else if (target_evals)
5976 return condition_evaluation_target;
5977 else
5978 return condition_evaluation_host;
5979 }
5980
5981 /* Determine the breakpoint location's condition evaluator. This is
5982 similar to bp_condition_evaluator, but for locations. */
5983
5984 static const char *
5985 bp_location_condition_evaluator (struct bp_location *bl)
5986 {
5987 if (bl && !is_breakpoint (bl->owner))
5988 return NULL;
5989
5990 if (gdb_evaluates_breakpoint_condition_p ()
5991 || !target_supports_evaluation_of_breakpoint_conditions ())
5992 return condition_evaluation_host;
5993
5994 if (bl && bl->cond_bytecode)
5995 return condition_evaluation_target;
5996 else
5997 return condition_evaluation_host;
5998 }
5999
6000 /* Print the LOC location out of the list of B->LOC locations. */
6001
6002 static void
6003 print_breakpoint_location (struct breakpoint *b,
6004 struct bp_location *loc)
6005 {
6006 struct ui_out *uiout = current_uiout;
6007 struct cleanup *old_chain = save_current_program_space ();
6008
6009 if (loc != NULL && loc->shlib_disabled)
6010 loc = NULL;
6011
6012 if (loc != NULL)
6013 set_current_program_space (loc->pspace);
6014
6015 if (b->display_canonical)
6016 ui_out_field_string (uiout, "what", b->addr_string);
6017 else if (loc && loc->symtab)
6018 {
6019 struct symbol *sym
6020 = find_pc_sect_function (loc->address, loc->section);
6021 if (sym)
6022 {
6023 ui_out_text (uiout, "in ");
6024 ui_out_field_string (uiout, "func",
6025 SYMBOL_PRINT_NAME (sym));
6026 ui_out_text (uiout, " ");
6027 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
6028 ui_out_text (uiout, "at ");
6029 }
6030 ui_out_field_string (uiout, "file",
6031 symtab_to_filename_for_display (loc->symtab));
6032 ui_out_text (uiout, ":");
6033
6034 if (ui_out_is_mi_like_p (uiout))
6035 ui_out_field_string (uiout, "fullname",
6036 symtab_to_fullname (loc->symtab));
6037
6038 ui_out_field_int (uiout, "line", loc->line_number);
6039 }
6040 else if (loc)
6041 {
6042 struct ui_file *stb = mem_fileopen ();
6043 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
6044
6045 print_address_symbolic (loc->gdbarch, loc->address, stb,
6046 demangle, "");
6047 ui_out_field_stream (uiout, "at", stb);
6048
6049 do_cleanups (stb_chain);
6050 }
6051 else
6052 ui_out_field_string (uiout, "pending", b->addr_string);
6053
6054 if (loc && is_breakpoint (b)
6055 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6056 && bp_condition_evaluator (b) == condition_evaluation_both)
6057 {
6058 ui_out_text (uiout, " (");
6059 ui_out_field_string (uiout, "evaluated-by",
6060 bp_location_condition_evaluator (loc));
6061 ui_out_text (uiout, ")");
6062 }
6063
6064 do_cleanups (old_chain);
6065 }
6066
6067 static const char *
6068 bptype_string (enum bptype type)
6069 {
6070 struct ep_type_description
6071 {
6072 enum bptype type;
6073 char *description;
6074 };
6075 static struct ep_type_description bptypes[] =
6076 {
6077 {bp_none, "?deleted?"},
6078 {bp_breakpoint, "breakpoint"},
6079 {bp_hardware_breakpoint, "hw breakpoint"},
6080 {bp_single_step, "sw single-step"},
6081 {bp_until, "until"},
6082 {bp_finish, "finish"},
6083 {bp_watchpoint, "watchpoint"},
6084 {bp_hardware_watchpoint, "hw watchpoint"},
6085 {bp_read_watchpoint, "read watchpoint"},
6086 {bp_access_watchpoint, "acc watchpoint"},
6087 {bp_longjmp, "longjmp"},
6088 {bp_longjmp_resume, "longjmp resume"},
6089 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6090 {bp_exception, "exception"},
6091 {bp_exception_resume, "exception resume"},
6092 {bp_step_resume, "step resume"},
6093 {bp_hp_step_resume, "high-priority step resume"},
6094 {bp_watchpoint_scope, "watchpoint scope"},
6095 {bp_call_dummy, "call dummy"},
6096 {bp_std_terminate, "std::terminate"},
6097 {bp_shlib_event, "shlib events"},
6098 {bp_thread_event, "thread events"},
6099 {bp_overlay_event, "overlay events"},
6100 {bp_longjmp_master, "longjmp master"},
6101 {bp_std_terminate_master, "std::terminate master"},
6102 {bp_exception_master, "exception master"},
6103 {bp_catchpoint, "catchpoint"},
6104 {bp_tracepoint, "tracepoint"},
6105 {bp_fast_tracepoint, "fast tracepoint"},
6106 {bp_static_tracepoint, "static tracepoint"},
6107 {bp_dprintf, "dprintf"},
6108 {bp_jit_event, "jit events"},
6109 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6110 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6111 };
6112
6113 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6114 || ((int) type != bptypes[(int) type].type))
6115 internal_error (__FILE__, __LINE__,
6116 _("bptypes table does not describe type #%d."),
6117 (int) type);
6118
6119 return bptypes[(int) type].description;
6120 }
6121
6122 /* For MI, output a field named 'thread-groups' with a list as the value.
6123 For CLI, prefix the list with the string 'inf'. */
6124
6125 static void
6126 output_thread_groups (struct ui_out *uiout,
6127 const char *field_name,
6128 VEC(int) *inf_num,
6129 int mi_only)
6130 {
6131 struct cleanup *back_to;
6132 int is_mi = ui_out_is_mi_like_p (uiout);
6133 int inf;
6134 int i;
6135
6136 /* For backward compatibility, don't display inferiors in CLI unless
6137 there are several. Always display them for MI. */
6138 if (!is_mi && mi_only)
6139 return;
6140
6141 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6142
6143 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6144 {
6145 if (is_mi)
6146 {
6147 char mi_group[10];
6148
6149 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6150 ui_out_field_string (uiout, NULL, mi_group);
6151 }
6152 else
6153 {
6154 if (i == 0)
6155 ui_out_text (uiout, " inf ");
6156 else
6157 ui_out_text (uiout, ", ");
6158
6159 ui_out_text (uiout, plongest (inf));
6160 }
6161 }
6162
6163 do_cleanups (back_to);
6164 }
6165
6166 /* Print B to gdb_stdout. */
6167
6168 static void
6169 print_one_breakpoint_location (struct breakpoint *b,
6170 struct bp_location *loc,
6171 int loc_number,
6172 struct bp_location **last_loc,
6173 int allflag)
6174 {
6175 struct command_line *l;
6176 static char bpenables[] = "nynny";
6177
6178 struct ui_out *uiout = current_uiout;
6179 int header_of_multiple = 0;
6180 int part_of_multiple = (loc != NULL);
6181 struct value_print_options opts;
6182
6183 get_user_print_options (&opts);
6184
6185 gdb_assert (!loc || loc_number != 0);
6186 /* See comment in print_one_breakpoint concerning treatment of
6187 breakpoints with single disabled location. */
6188 if (loc == NULL
6189 && (b->loc != NULL
6190 && (b->loc->next != NULL || !b->loc->enabled)))
6191 header_of_multiple = 1;
6192 if (loc == NULL)
6193 loc = b->loc;
6194
6195 annotate_record ();
6196
6197 /* 1 */
6198 annotate_field (0);
6199 if (part_of_multiple)
6200 {
6201 char *formatted;
6202 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6203 ui_out_field_string (uiout, "number", formatted);
6204 xfree (formatted);
6205 }
6206 else
6207 {
6208 ui_out_field_int (uiout, "number", b->number);
6209 }
6210
6211 /* 2 */
6212 annotate_field (1);
6213 if (part_of_multiple)
6214 ui_out_field_skip (uiout, "type");
6215 else
6216 ui_out_field_string (uiout, "type", bptype_string (b->type));
6217
6218 /* 3 */
6219 annotate_field (2);
6220 if (part_of_multiple)
6221 ui_out_field_skip (uiout, "disp");
6222 else
6223 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6224
6225
6226 /* 4 */
6227 annotate_field (3);
6228 if (part_of_multiple)
6229 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6230 else
6231 ui_out_field_fmt (uiout, "enabled", "%c",
6232 bpenables[(int) b->enable_state]);
6233 ui_out_spaces (uiout, 2);
6234
6235
6236 /* 5 and 6 */
6237 if (b->ops != NULL && b->ops->print_one != NULL)
6238 {
6239 /* Although the print_one can possibly print all locations,
6240 calling it here is not likely to get any nice result. So,
6241 make sure there's just one location. */
6242 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6243 b->ops->print_one (b, last_loc);
6244 }
6245 else
6246 switch (b->type)
6247 {
6248 case bp_none:
6249 internal_error (__FILE__, __LINE__,
6250 _("print_one_breakpoint: bp_none encountered\n"));
6251 break;
6252
6253 case bp_watchpoint:
6254 case bp_hardware_watchpoint:
6255 case bp_read_watchpoint:
6256 case bp_access_watchpoint:
6257 {
6258 struct watchpoint *w = (struct watchpoint *) b;
6259
6260 /* Field 4, the address, is omitted (which makes the columns
6261 not line up too nicely with the headers, but the effect
6262 is relatively readable). */
6263 if (opts.addressprint)
6264 ui_out_field_skip (uiout, "addr");
6265 annotate_field (5);
6266 ui_out_field_string (uiout, "what", w->exp_string);
6267 }
6268 break;
6269
6270 case bp_breakpoint:
6271 case bp_hardware_breakpoint:
6272 case bp_single_step:
6273 case bp_until:
6274 case bp_finish:
6275 case bp_longjmp:
6276 case bp_longjmp_resume:
6277 case bp_longjmp_call_dummy:
6278 case bp_exception:
6279 case bp_exception_resume:
6280 case bp_step_resume:
6281 case bp_hp_step_resume:
6282 case bp_watchpoint_scope:
6283 case bp_call_dummy:
6284 case bp_std_terminate:
6285 case bp_shlib_event:
6286 case bp_thread_event:
6287 case bp_overlay_event:
6288 case bp_longjmp_master:
6289 case bp_std_terminate_master:
6290 case bp_exception_master:
6291 case bp_tracepoint:
6292 case bp_fast_tracepoint:
6293 case bp_static_tracepoint:
6294 case bp_dprintf:
6295 case bp_jit_event:
6296 case bp_gnu_ifunc_resolver:
6297 case bp_gnu_ifunc_resolver_return:
6298 if (opts.addressprint)
6299 {
6300 annotate_field (4);
6301 if (header_of_multiple)
6302 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6303 else if (b->loc == NULL || loc->shlib_disabled)
6304 ui_out_field_string (uiout, "addr", "<PENDING>");
6305 else
6306 ui_out_field_core_addr (uiout, "addr",
6307 loc->gdbarch, loc->address);
6308 }
6309 annotate_field (5);
6310 if (!header_of_multiple)
6311 print_breakpoint_location (b, loc);
6312 if (b->loc)
6313 *last_loc = b->loc;
6314 break;
6315 }
6316
6317
6318 if (loc != NULL && !header_of_multiple)
6319 {
6320 struct inferior *inf;
6321 VEC(int) *inf_num = NULL;
6322 int mi_only = 1;
6323
6324 ALL_INFERIORS (inf)
6325 {
6326 if (inf->pspace == loc->pspace)
6327 VEC_safe_push (int, inf_num, inf->num);
6328 }
6329
6330 /* For backward compatibility, don't display inferiors in CLI unless
6331 there are several. Always display for MI. */
6332 if (allflag
6333 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6334 && (number_of_program_spaces () > 1
6335 || number_of_inferiors () > 1)
6336 /* LOC is for existing B, it cannot be in
6337 moribund_locations and thus having NULL OWNER. */
6338 && loc->owner->type != bp_catchpoint))
6339 mi_only = 0;
6340 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6341 VEC_free (int, inf_num);
6342 }
6343
6344 if (!part_of_multiple)
6345 {
6346 if (b->thread != -1)
6347 {
6348 /* FIXME: This seems to be redundant and lost here; see the
6349 "stop only in" line a little further down. */
6350 ui_out_text (uiout, " thread ");
6351 ui_out_field_int (uiout, "thread", b->thread);
6352 }
6353 else if (b->task != 0)
6354 {
6355 ui_out_text (uiout, " task ");
6356 ui_out_field_int (uiout, "task", b->task);
6357 }
6358 }
6359
6360 ui_out_text (uiout, "\n");
6361
6362 if (!part_of_multiple)
6363 b->ops->print_one_detail (b, uiout);
6364
6365 if (part_of_multiple && frame_id_p (b->frame_id))
6366 {
6367 annotate_field (6);
6368 ui_out_text (uiout, "\tstop only in stack frame at ");
6369 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6370 the frame ID. */
6371 ui_out_field_core_addr (uiout, "frame",
6372 b->gdbarch, b->frame_id.stack_addr);
6373 ui_out_text (uiout, "\n");
6374 }
6375
6376 if (!part_of_multiple && b->cond_string)
6377 {
6378 annotate_field (7);
6379 if (is_tracepoint (b))
6380 ui_out_text (uiout, "\ttrace only if ");
6381 else
6382 ui_out_text (uiout, "\tstop only if ");
6383 ui_out_field_string (uiout, "cond", b->cond_string);
6384
6385 /* Print whether the target is doing the breakpoint's condition
6386 evaluation. If GDB is doing the evaluation, don't print anything. */
6387 if (is_breakpoint (b)
6388 && breakpoint_condition_evaluation_mode ()
6389 == condition_evaluation_target)
6390 {
6391 ui_out_text (uiout, " (");
6392 ui_out_field_string (uiout, "evaluated-by",
6393 bp_condition_evaluator (b));
6394 ui_out_text (uiout, " evals)");
6395 }
6396 ui_out_text (uiout, "\n");
6397 }
6398
6399 if (!part_of_multiple && b->thread != -1)
6400 {
6401 /* FIXME should make an annotation for this. */
6402 ui_out_text (uiout, "\tstop only in thread ");
6403 ui_out_field_int (uiout, "thread", b->thread);
6404 ui_out_text (uiout, "\n");
6405 }
6406
6407 if (!part_of_multiple)
6408 {
6409 if (b->hit_count)
6410 {
6411 /* FIXME should make an annotation for this. */
6412 if (is_catchpoint (b))
6413 ui_out_text (uiout, "\tcatchpoint");
6414 else if (is_tracepoint (b))
6415 ui_out_text (uiout, "\ttracepoint");
6416 else
6417 ui_out_text (uiout, "\tbreakpoint");
6418 ui_out_text (uiout, " already hit ");
6419 ui_out_field_int (uiout, "times", b->hit_count);
6420 if (b->hit_count == 1)
6421 ui_out_text (uiout, " time\n");
6422 else
6423 ui_out_text (uiout, " times\n");
6424 }
6425 else
6426 {
6427 /* Output the count also if it is zero, but only if this is mi. */
6428 if (ui_out_is_mi_like_p (uiout))
6429 ui_out_field_int (uiout, "times", b->hit_count);
6430 }
6431 }
6432
6433 if (!part_of_multiple && b->ignore_count)
6434 {
6435 annotate_field (8);
6436 ui_out_text (uiout, "\tignore next ");
6437 ui_out_field_int (uiout, "ignore", b->ignore_count);
6438 ui_out_text (uiout, " hits\n");
6439 }
6440
6441 /* Note that an enable count of 1 corresponds to "enable once"
6442 behavior, which is reported by the combination of enablement and
6443 disposition, so we don't need to mention it here. */
6444 if (!part_of_multiple && b->enable_count > 1)
6445 {
6446 annotate_field (8);
6447 ui_out_text (uiout, "\tdisable after ");
6448 /* Tweak the wording to clarify that ignore and enable counts
6449 are distinct, and have additive effect. */
6450 if (b->ignore_count)
6451 ui_out_text (uiout, "additional ");
6452 else
6453 ui_out_text (uiout, "next ");
6454 ui_out_field_int (uiout, "enable", b->enable_count);
6455 ui_out_text (uiout, " hits\n");
6456 }
6457
6458 if (!part_of_multiple && is_tracepoint (b))
6459 {
6460 struct tracepoint *tp = (struct tracepoint *) b;
6461
6462 if (tp->traceframe_usage)
6463 {
6464 ui_out_text (uiout, "\ttrace buffer usage ");
6465 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6466 ui_out_text (uiout, " bytes\n");
6467 }
6468 }
6469
6470 l = b->commands ? b->commands->commands : NULL;
6471 if (!part_of_multiple && l)
6472 {
6473 struct cleanup *script_chain;
6474
6475 annotate_field (9);
6476 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6477 print_command_lines (uiout, l, 4);
6478 do_cleanups (script_chain);
6479 }
6480
6481 if (is_tracepoint (b))
6482 {
6483 struct tracepoint *t = (struct tracepoint *) b;
6484
6485 if (!part_of_multiple && t->pass_count)
6486 {
6487 annotate_field (10);
6488 ui_out_text (uiout, "\tpass count ");
6489 ui_out_field_int (uiout, "pass", t->pass_count);
6490 ui_out_text (uiout, " \n");
6491 }
6492
6493 /* Don't display it when tracepoint or tracepoint location is
6494 pending. */
6495 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6496 {
6497 annotate_field (11);
6498
6499 if (ui_out_is_mi_like_p (uiout))
6500 ui_out_field_string (uiout, "installed",
6501 loc->inserted ? "y" : "n");
6502 else
6503 {
6504 if (loc->inserted)
6505 ui_out_text (uiout, "\t");
6506 else
6507 ui_out_text (uiout, "\tnot ");
6508 ui_out_text (uiout, "installed on target\n");
6509 }
6510 }
6511 }
6512
6513 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6514 {
6515 if (is_watchpoint (b))
6516 {
6517 struct watchpoint *w = (struct watchpoint *) b;
6518
6519 ui_out_field_string (uiout, "original-location", w->exp_string);
6520 }
6521 else if (b->addr_string)
6522 ui_out_field_string (uiout, "original-location", b->addr_string);
6523 }
6524 }
6525
6526 static void
6527 print_one_breakpoint (struct breakpoint *b,
6528 struct bp_location **last_loc,
6529 int allflag)
6530 {
6531 struct cleanup *bkpt_chain;
6532 struct ui_out *uiout = current_uiout;
6533
6534 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6535
6536 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6537 do_cleanups (bkpt_chain);
6538
6539 /* If this breakpoint has custom print function,
6540 it's already printed. Otherwise, print individual
6541 locations, if any. */
6542 if (b->ops == NULL || b->ops->print_one == NULL)
6543 {
6544 /* If breakpoint has a single location that is disabled, we
6545 print it as if it had several locations, since otherwise it's
6546 hard to represent "breakpoint enabled, location disabled"
6547 situation.
6548
6549 Note that while hardware watchpoints have several locations
6550 internally, that's not a property exposed to user. */
6551 if (b->loc
6552 && !is_hardware_watchpoint (b)
6553 && (b->loc->next || !b->loc->enabled))
6554 {
6555 struct bp_location *loc;
6556 int n = 1;
6557
6558 for (loc = b->loc; loc; loc = loc->next, ++n)
6559 {
6560 struct cleanup *inner2 =
6561 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6562 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6563 do_cleanups (inner2);
6564 }
6565 }
6566 }
6567 }
6568
6569 static int
6570 breakpoint_address_bits (struct breakpoint *b)
6571 {
6572 int print_address_bits = 0;
6573 struct bp_location *loc;
6574
6575 for (loc = b->loc; loc; loc = loc->next)
6576 {
6577 int addr_bit;
6578
6579 /* Software watchpoints that aren't watching memory don't have
6580 an address to print. */
6581 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6582 continue;
6583
6584 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6585 if (addr_bit > print_address_bits)
6586 print_address_bits = addr_bit;
6587 }
6588
6589 return print_address_bits;
6590 }
6591
6592 struct captured_breakpoint_query_args
6593 {
6594 int bnum;
6595 };
6596
6597 static int
6598 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6599 {
6600 struct captured_breakpoint_query_args *args = data;
6601 struct breakpoint *b;
6602 struct bp_location *dummy_loc = NULL;
6603
6604 ALL_BREAKPOINTS (b)
6605 {
6606 if (args->bnum == b->number)
6607 {
6608 print_one_breakpoint (b, &dummy_loc, 0);
6609 return GDB_RC_OK;
6610 }
6611 }
6612 return GDB_RC_NONE;
6613 }
6614
6615 enum gdb_rc
6616 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6617 char **error_message)
6618 {
6619 struct captured_breakpoint_query_args args;
6620
6621 args.bnum = bnum;
6622 /* For the moment we don't trust print_one_breakpoint() to not throw
6623 an error. */
6624 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6625 error_message, RETURN_MASK_ALL) < 0)
6626 return GDB_RC_FAIL;
6627 else
6628 return GDB_RC_OK;
6629 }
6630
6631 /* Return true if this breakpoint was set by the user, false if it is
6632 internal or momentary. */
6633
6634 int
6635 user_breakpoint_p (struct breakpoint *b)
6636 {
6637 return b->number > 0;
6638 }
6639
6640 /* Print information on user settable breakpoint (watchpoint, etc)
6641 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6642 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6643 FILTER is non-NULL, call it on each breakpoint and only include the
6644 ones for which it returns non-zero. Return the total number of
6645 breakpoints listed. */
6646
6647 static int
6648 breakpoint_1 (char *args, int allflag,
6649 int (*filter) (const struct breakpoint *))
6650 {
6651 struct breakpoint *b;
6652 struct bp_location *last_loc = NULL;
6653 int nr_printable_breakpoints;
6654 struct cleanup *bkpttbl_chain;
6655 struct value_print_options opts;
6656 int print_address_bits = 0;
6657 int print_type_col_width = 14;
6658 struct ui_out *uiout = current_uiout;
6659
6660 get_user_print_options (&opts);
6661
6662 /* Compute the number of rows in the table, as well as the size
6663 required for address fields. */
6664 nr_printable_breakpoints = 0;
6665 ALL_BREAKPOINTS (b)
6666 {
6667 /* If we have a filter, only list the breakpoints it accepts. */
6668 if (filter && !filter (b))
6669 continue;
6670
6671 /* If we have an "args" string, it is a list of breakpoints to
6672 accept. Skip the others. */
6673 if (args != NULL && *args != '\0')
6674 {
6675 if (allflag && parse_and_eval_long (args) != b->number)
6676 continue;
6677 if (!allflag && !number_is_in_list (args, b->number))
6678 continue;
6679 }
6680
6681 if (allflag || user_breakpoint_p (b))
6682 {
6683 int addr_bit, type_len;
6684
6685 addr_bit = breakpoint_address_bits (b);
6686 if (addr_bit > print_address_bits)
6687 print_address_bits = addr_bit;
6688
6689 type_len = strlen (bptype_string (b->type));
6690 if (type_len > print_type_col_width)
6691 print_type_col_width = type_len;
6692
6693 nr_printable_breakpoints++;
6694 }
6695 }
6696
6697 if (opts.addressprint)
6698 bkpttbl_chain
6699 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6700 nr_printable_breakpoints,
6701 "BreakpointTable");
6702 else
6703 bkpttbl_chain
6704 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6705 nr_printable_breakpoints,
6706 "BreakpointTable");
6707
6708 if (nr_printable_breakpoints > 0)
6709 annotate_breakpoints_headers ();
6710 if (nr_printable_breakpoints > 0)
6711 annotate_field (0);
6712 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6713 if (nr_printable_breakpoints > 0)
6714 annotate_field (1);
6715 ui_out_table_header (uiout, print_type_col_width, ui_left,
6716 "type", "Type"); /* 2 */
6717 if (nr_printable_breakpoints > 0)
6718 annotate_field (2);
6719 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6720 if (nr_printable_breakpoints > 0)
6721 annotate_field (3);
6722 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6723 if (opts.addressprint)
6724 {
6725 if (nr_printable_breakpoints > 0)
6726 annotate_field (4);
6727 if (print_address_bits <= 32)
6728 ui_out_table_header (uiout, 10, ui_left,
6729 "addr", "Address"); /* 5 */
6730 else
6731 ui_out_table_header (uiout, 18, ui_left,
6732 "addr", "Address"); /* 5 */
6733 }
6734 if (nr_printable_breakpoints > 0)
6735 annotate_field (5);
6736 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6737 ui_out_table_body (uiout);
6738 if (nr_printable_breakpoints > 0)
6739 annotate_breakpoints_table ();
6740
6741 ALL_BREAKPOINTS (b)
6742 {
6743 QUIT;
6744 /* If we have a filter, only list the breakpoints it accepts. */
6745 if (filter && !filter (b))
6746 continue;
6747
6748 /* If we have an "args" string, it is a list of breakpoints to
6749 accept. Skip the others. */
6750
6751 if (args != NULL && *args != '\0')
6752 {
6753 if (allflag) /* maintenance info breakpoint */
6754 {
6755 if (parse_and_eval_long (args) != b->number)
6756 continue;
6757 }
6758 else /* all others */
6759 {
6760 if (!number_is_in_list (args, b->number))
6761 continue;
6762 }
6763 }
6764 /* We only print out user settable breakpoints unless the
6765 allflag is set. */
6766 if (allflag || user_breakpoint_p (b))
6767 print_one_breakpoint (b, &last_loc, allflag);
6768 }
6769
6770 do_cleanups (bkpttbl_chain);
6771
6772 if (nr_printable_breakpoints == 0)
6773 {
6774 /* If there's a filter, let the caller decide how to report
6775 empty list. */
6776 if (!filter)
6777 {
6778 if (args == NULL || *args == '\0')
6779 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6780 else
6781 ui_out_message (uiout, 0,
6782 "No breakpoint or watchpoint matching '%s'.\n",
6783 args);
6784 }
6785 }
6786 else
6787 {
6788 if (last_loc && !server_command)
6789 set_next_address (last_loc->gdbarch, last_loc->address);
6790 }
6791
6792 /* FIXME? Should this be moved up so that it is only called when
6793 there have been breakpoints? */
6794 annotate_breakpoints_table_end ();
6795
6796 return nr_printable_breakpoints;
6797 }
6798
6799 /* Display the value of default-collect in a way that is generally
6800 compatible with the breakpoint list. */
6801
6802 static void
6803 default_collect_info (void)
6804 {
6805 struct ui_out *uiout = current_uiout;
6806
6807 /* If it has no value (which is frequently the case), say nothing; a
6808 message like "No default-collect." gets in user's face when it's
6809 not wanted. */
6810 if (!*default_collect)
6811 return;
6812
6813 /* The following phrase lines up nicely with per-tracepoint collect
6814 actions. */
6815 ui_out_text (uiout, "default collect ");
6816 ui_out_field_string (uiout, "default-collect", default_collect);
6817 ui_out_text (uiout, " \n");
6818 }
6819
6820 static void
6821 breakpoints_info (char *args, int from_tty)
6822 {
6823 breakpoint_1 (args, 0, NULL);
6824
6825 default_collect_info ();
6826 }
6827
6828 static void
6829 watchpoints_info (char *args, int from_tty)
6830 {
6831 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6832 struct ui_out *uiout = current_uiout;
6833
6834 if (num_printed == 0)
6835 {
6836 if (args == NULL || *args == '\0')
6837 ui_out_message (uiout, 0, "No watchpoints.\n");
6838 else
6839 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6840 }
6841 }
6842
6843 static void
6844 maintenance_info_breakpoints (char *args, int from_tty)
6845 {
6846 breakpoint_1 (args, 1, NULL);
6847
6848 default_collect_info ();
6849 }
6850
6851 static int
6852 breakpoint_has_pc (struct breakpoint *b,
6853 struct program_space *pspace,
6854 CORE_ADDR pc, struct obj_section *section)
6855 {
6856 struct bp_location *bl = b->loc;
6857
6858 for (; bl; bl = bl->next)
6859 {
6860 if (bl->pspace == pspace
6861 && bl->address == pc
6862 && (!overlay_debugging || bl->section == section))
6863 return 1;
6864 }
6865 return 0;
6866 }
6867
6868 /* Print a message describing any user-breakpoints set at PC. This
6869 concerns with logical breakpoints, so we match program spaces, not
6870 address spaces. */
6871
6872 static void
6873 describe_other_breakpoints (struct gdbarch *gdbarch,
6874 struct program_space *pspace, CORE_ADDR pc,
6875 struct obj_section *section, int thread)
6876 {
6877 int others = 0;
6878 struct breakpoint *b;
6879
6880 ALL_BREAKPOINTS (b)
6881 others += (user_breakpoint_p (b)
6882 && breakpoint_has_pc (b, pspace, pc, section));
6883 if (others > 0)
6884 {
6885 if (others == 1)
6886 printf_filtered (_("Note: breakpoint "));
6887 else /* if (others == ???) */
6888 printf_filtered (_("Note: breakpoints "));
6889 ALL_BREAKPOINTS (b)
6890 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6891 {
6892 others--;
6893 printf_filtered ("%d", b->number);
6894 if (b->thread == -1 && thread != -1)
6895 printf_filtered (" (all threads)");
6896 else if (b->thread != -1)
6897 printf_filtered (" (thread %d)", b->thread);
6898 printf_filtered ("%s%s ",
6899 ((b->enable_state == bp_disabled
6900 || b->enable_state == bp_call_disabled)
6901 ? " (disabled)"
6902 : ""),
6903 (others > 1) ? ","
6904 : ((others == 1) ? " and" : ""));
6905 }
6906 printf_filtered (_("also set at pc "));
6907 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6908 printf_filtered (".\n");
6909 }
6910 }
6911 \f
6912
6913 /* Return true iff it is meaningful to use the address member of
6914 BPT. For some breakpoint types, the address member is irrelevant
6915 and it makes no sense to attempt to compare it to other addresses
6916 (or use it for any other purpose either).
6917
6918 More specifically, each of the following breakpoint types will
6919 always have a zero valued address and we don't want to mark
6920 breakpoints of any of these types to be a duplicate of an actual
6921 breakpoint at address zero:
6922
6923 bp_watchpoint
6924 bp_catchpoint
6925
6926 */
6927
6928 static int
6929 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6930 {
6931 enum bptype type = bpt->type;
6932
6933 return (type != bp_watchpoint && type != bp_catchpoint);
6934 }
6935
6936 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6937 true if LOC1 and LOC2 represent the same watchpoint location. */
6938
6939 static int
6940 watchpoint_locations_match (struct bp_location *loc1,
6941 struct bp_location *loc2)
6942 {
6943 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6944 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6945
6946 /* Both of them must exist. */
6947 gdb_assert (w1 != NULL);
6948 gdb_assert (w2 != NULL);
6949
6950 /* If the target can evaluate the condition expression in hardware,
6951 then we we need to insert both watchpoints even if they are at
6952 the same place. Otherwise the watchpoint will only trigger when
6953 the condition of whichever watchpoint was inserted evaluates to
6954 true, not giving a chance for GDB to check the condition of the
6955 other watchpoint. */
6956 if ((w1->cond_exp
6957 && target_can_accel_watchpoint_condition (loc1->address,
6958 loc1->length,
6959 loc1->watchpoint_type,
6960 w1->cond_exp))
6961 || (w2->cond_exp
6962 && target_can_accel_watchpoint_condition (loc2->address,
6963 loc2->length,
6964 loc2->watchpoint_type,
6965 w2->cond_exp)))
6966 return 0;
6967
6968 /* Note that this checks the owner's type, not the location's. In
6969 case the target does not support read watchpoints, but does
6970 support access watchpoints, we'll have bp_read_watchpoint
6971 watchpoints with hw_access locations. Those should be considered
6972 duplicates of hw_read locations. The hw_read locations will
6973 become hw_access locations later. */
6974 return (loc1->owner->type == loc2->owner->type
6975 && loc1->pspace->aspace == loc2->pspace->aspace
6976 && loc1->address == loc2->address
6977 && loc1->length == loc2->length);
6978 }
6979
6980 /* See breakpoint.h. */
6981
6982 int
6983 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6984 struct address_space *aspace2, CORE_ADDR addr2)
6985 {
6986 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6987 || aspace1 == aspace2)
6988 && addr1 == addr2);
6989 }
6990
6991 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6992 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6993 matches ASPACE2. On targets that have global breakpoints, the address
6994 space doesn't really matter. */
6995
6996 static int
6997 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6998 int len1, struct address_space *aspace2,
6999 CORE_ADDR addr2)
7000 {
7001 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7002 || aspace1 == aspace2)
7003 && addr2 >= addr1 && addr2 < addr1 + len1);
7004 }
7005
7006 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7007 a ranged breakpoint. In most targets, a match happens only if ASPACE
7008 matches the breakpoint's address space. On targets that have global
7009 breakpoints, the address space doesn't really matter. */
7010
7011 static int
7012 breakpoint_location_address_match (struct bp_location *bl,
7013 struct address_space *aspace,
7014 CORE_ADDR addr)
7015 {
7016 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7017 aspace, addr)
7018 || (bl->length
7019 && breakpoint_address_match_range (bl->pspace->aspace,
7020 bl->address, bl->length,
7021 aspace, addr)));
7022 }
7023
7024 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7025 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7026 true, otherwise returns false. */
7027
7028 static int
7029 tracepoint_locations_match (struct bp_location *loc1,
7030 struct bp_location *loc2)
7031 {
7032 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7033 /* Since tracepoint locations are never duplicated with others', tracepoint
7034 locations at the same address of different tracepoints are regarded as
7035 different locations. */
7036 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7037 else
7038 return 0;
7039 }
7040
7041 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7042 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7043 represent the same location. */
7044
7045 static int
7046 breakpoint_locations_match (struct bp_location *loc1,
7047 struct bp_location *loc2)
7048 {
7049 int hw_point1, hw_point2;
7050
7051 /* Both of them must not be in moribund_locations. */
7052 gdb_assert (loc1->owner != NULL);
7053 gdb_assert (loc2->owner != NULL);
7054
7055 hw_point1 = is_hardware_watchpoint (loc1->owner);
7056 hw_point2 = is_hardware_watchpoint (loc2->owner);
7057
7058 if (hw_point1 != hw_point2)
7059 return 0;
7060 else if (hw_point1)
7061 return watchpoint_locations_match (loc1, loc2);
7062 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7063 return tracepoint_locations_match (loc1, loc2);
7064 else
7065 /* We compare bp_location.length in order to cover ranged breakpoints. */
7066 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7067 loc2->pspace->aspace, loc2->address)
7068 && loc1->length == loc2->length);
7069 }
7070
7071 static void
7072 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7073 int bnum, int have_bnum)
7074 {
7075 /* The longest string possibly returned by hex_string_custom
7076 is 50 chars. These must be at least that big for safety. */
7077 char astr1[64];
7078 char astr2[64];
7079
7080 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7081 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7082 if (have_bnum)
7083 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7084 bnum, astr1, astr2);
7085 else
7086 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7087 }
7088
7089 /* Adjust a breakpoint's address to account for architectural
7090 constraints on breakpoint placement. Return the adjusted address.
7091 Note: Very few targets require this kind of adjustment. For most
7092 targets, this function is simply the identity function. */
7093
7094 static CORE_ADDR
7095 adjust_breakpoint_address (struct gdbarch *gdbarch,
7096 CORE_ADDR bpaddr, enum bptype bptype)
7097 {
7098 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7099 {
7100 /* Very few targets need any kind of breakpoint adjustment. */
7101 return bpaddr;
7102 }
7103 else if (bptype == bp_watchpoint
7104 || bptype == bp_hardware_watchpoint
7105 || bptype == bp_read_watchpoint
7106 || bptype == bp_access_watchpoint
7107 || bptype == bp_catchpoint)
7108 {
7109 /* Watchpoints and the various bp_catch_* eventpoints should not
7110 have their addresses modified. */
7111 return bpaddr;
7112 }
7113 else if (bptype == bp_single_step)
7114 {
7115 /* Single-step breakpoints should not have their addresses
7116 modified. If there's any architectural constrain that
7117 applies to this address, then it should have already been
7118 taken into account when the breakpoint was created in the
7119 first place. If we didn't do this, stepping through e.g.,
7120 Thumb-2 IT blocks would break. */
7121 return bpaddr;
7122 }
7123 else
7124 {
7125 CORE_ADDR adjusted_bpaddr;
7126
7127 /* Some targets have architectural constraints on the placement
7128 of breakpoint instructions. Obtain the adjusted address. */
7129 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7130
7131 /* An adjusted breakpoint address can significantly alter
7132 a user's expectations. Print a warning if an adjustment
7133 is required. */
7134 if (adjusted_bpaddr != bpaddr)
7135 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7136
7137 return adjusted_bpaddr;
7138 }
7139 }
7140
7141 void
7142 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7143 struct breakpoint *owner)
7144 {
7145 memset (loc, 0, sizeof (*loc));
7146
7147 gdb_assert (ops != NULL);
7148
7149 loc->ops = ops;
7150 loc->owner = owner;
7151 loc->cond = NULL;
7152 loc->cond_bytecode = NULL;
7153 loc->shlib_disabled = 0;
7154 loc->enabled = 1;
7155
7156 switch (owner->type)
7157 {
7158 case bp_breakpoint:
7159 case bp_single_step:
7160 case bp_until:
7161 case bp_finish:
7162 case bp_longjmp:
7163 case bp_longjmp_resume:
7164 case bp_longjmp_call_dummy:
7165 case bp_exception:
7166 case bp_exception_resume:
7167 case bp_step_resume:
7168 case bp_hp_step_resume:
7169 case bp_watchpoint_scope:
7170 case bp_call_dummy:
7171 case bp_std_terminate:
7172 case bp_shlib_event:
7173 case bp_thread_event:
7174 case bp_overlay_event:
7175 case bp_jit_event:
7176 case bp_longjmp_master:
7177 case bp_std_terminate_master:
7178 case bp_exception_master:
7179 case bp_gnu_ifunc_resolver:
7180 case bp_gnu_ifunc_resolver_return:
7181 case bp_dprintf:
7182 loc->loc_type = bp_loc_software_breakpoint;
7183 mark_breakpoint_location_modified (loc);
7184 break;
7185 case bp_hardware_breakpoint:
7186 loc->loc_type = bp_loc_hardware_breakpoint;
7187 mark_breakpoint_location_modified (loc);
7188 break;
7189 case bp_hardware_watchpoint:
7190 case bp_read_watchpoint:
7191 case bp_access_watchpoint:
7192 loc->loc_type = bp_loc_hardware_watchpoint;
7193 break;
7194 case bp_watchpoint:
7195 case bp_catchpoint:
7196 case bp_tracepoint:
7197 case bp_fast_tracepoint:
7198 case bp_static_tracepoint:
7199 loc->loc_type = bp_loc_other;
7200 break;
7201 default:
7202 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7203 }
7204
7205 loc->refc = 1;
7206 }
7207
7208 /* Allocate a struct bp_location. */
7209
7210 static struct bp_location *
7211 allocate_bp_location (struct breakpoint *bpt)
7212 {
7213 return bpt->ops->allocate_location (bpt);
7214 }
7215
7216 static void
7217 free_bp_location (struct bp_location *loc)
7218 {
7219 loc->ops->dtor (loc);
7220 xfree (loc);
7221 }
7222
7223 /* Increment reference count. */
7224
7225 static void
7226 incref_bp_location (struct bp_location *bl)
7227 {
7228 ++bl->refc;
7229 }
7230
7231 /* Decrement reference count. If the reference count reaches 0,
7232 destroy the bp_location. Sets *BLP to NULL. */
7233
7234 static void
7235 decref_bp_location (struct bp_location **blp)
7236 {
7237 gdb_assert ((*blp)->refc > 0);
7238
7239 if (--(*blp)->refc == 0)
7240 free_bp_location (*blp);
7241 *blp = NULL;
7242 }
7243
7244 /* Add breakpoint B at the end of the global breakpoint chain. */
7245
7246 static void
7247 add_to_breakpoint_chain (struct breakpoint *b)
7248 {
7249 struct breakpoint *b1;
7250
7251 /* Add this breakpoint to the end of the chain so that a list of
7252 breakpoints will come out in order of increasing numbers. */
7253
7254 b1 = breakpoint_chain;
7255 if (b1 == 0)
7256 breakpoint_chain = b;
7257 else
7258 {
7259 while (b1->next)
7260 b1 = b1->next;
7261 b1->next = b;
7262 }
7263 }
7264
7265 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7266
7267 static void
7268 init_raw_breakpoint_without_location (struct breakpoint *b,
7269 struct gdbarch *gdbarch,
7270 enum bptype bptype,
7271 const struct breakpoint_ops *ops)
7272 {
7273 memset (b, 0, sizeof (*b));
7274
7275 gdb_assert (ops != NULL);
7276
7277 b->ops = ops;
7278 b->type = bptype;
7279 b->gdbarch = gdbarch;
7280 b->language = current_language->la_language;
7281 b->input_radix = input_radix;
7282 b->thread = -1;
7283 b->enable_state = bp_enabled;
7284 b->next = 0;
7285 b->silent = 0;
7286 b->ignore_count = 0;
7287 b->commands = NULL;
7288 b->frame_id = null_frame_id;
7289 b->condition_not_parsed = 0;
7290 b->py_bp_object = NULL;
7291 b->related_breakpoint = b;
7292 }
7293
7294 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7295 that has type BPTYPE and has no locations as yet. */
7296
7297 static struct breakpoint *
7298 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7299 enum bptype bptype,
7300 const struct breakpoint_ops *ops)
7301 {
7302 struct breakpoint *b = XNEW (struct breakpoint);
7303
7304 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7305 add_to_breakpoint_chain (b);
7306 return b;
7307 }
7308
7309 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7310 resolutions should be made as the user specified the location explicitly
7311 enough. */
7312
7313 static void
7314 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7315 {
7316 gdb_assert (loc->owner != NULL);
7317
7318 if (loc->owner->type == bp_breakpoint
7319 || loc->owner->type == bp_hardware_breakpoint
7320 || is_tracepoint (loc->owner))
7321 {
7322 int is_gnu_ifunc;
7323 const char *function_name;
7324 CORE_ADDR func_addr;
7325
7326 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7327 &func_addr, NULL, &is_gnu_ifunc);
7328
7329 if (is_gnu_ifunc && !explicit_loc)
7330 {
7331 struct breakpoint *b = loc->owner;
7332
7333 gdb_assert (loc->pspace == current_program_space);
7334 if (gnu_ifunc_resolve_name (function_name,
7335 &loc->requested_address))
7336 {
7337 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7338 loc->address = adjust_breakpoint_address (loc->gdbarch,
7339 loc->requested_address,
7340 b->type);
7341 }
7342 else if (b->type == bp_breakpoint && b->loc == loc
7343 && loc->next == NULL && b->related_breakpoint == b)
7344 {
7345 /* Create only the whole new breakpoint of this type but do not
7346 mess more complicated breakpoints with multiple locations. */
7347 b->type = bp_gnu_ifunc_resolver;
7348 /* Remember the resolver's address for use by the return
7349 breakpoint. */
7350 loc->related_address = func_addr;
7351 }
7352 }
7353
7354 if (function_name)
7355 loc->function_name = xstrdup (function_name);
7356 }
7357 }
7358
7359 /* Attempt to determine architecture of location identified by SAL. */
7360 struct gdbarch *
7361 get_sal_arch (struct symtab_and_line sal)
7362 {
7363 if (sal.section)
7364 return get_objfile_arch (sal.section->objfile);
7365 if (sal.symtab)
7366 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7367
7368 return NULL;
7369 }
7370
7371 /* Low level routine for partially initializing a breakpoint of type
7372 BPTYPE. The newly created breakpoint's address, section, source
7373 file name, and line number are provided by SAL.
7374
7375 It is expected that the caller will complete the initialization of
7376 the newly created breakpoint struct as well as output any status
7377 information regarding the creation of a new breakpoint. */
7378
7379 static void
7380 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7381 struct symtab_and_line sal, enum bptype bptype,
7382 const struct breakpoint_ops *ops)
7383 {
7384 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7385
7386 add_location_to_breakpoint (b, &sal);
7387
7388 if (bptype != bp_catchpoint)
7389 gdb_assert (sal.pspace != NULL);
7390
7391 /* Store the program space that was used to set the breakpoint,
7392 except for ordinary breakpoints, which are independent of the
7393 program space. */
7394 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7395 b->pspace = sal.pspace;
7396 }
7397
7398 /* set_raw_breakpoint is a low level routine for allocating and
7399 partially initializing a breakpoint of type BPTYPE. The newly
7400 created breakpoint's address, section, source file name, and line
7401 number are provided by SAL. The newly created and partially
7402 initialized breakpoint is added to the breakpoint chain and
7403 is also returned as the value of this function.
7404
7405 It is expected that the caller will complete the initialization of
7406 the newly created breakpoint struct as well as output any status
7407 information regarding the creation of a new breakpoint. In
7408 particular, set_raw_breakpoint does NOT set the breakpoint
7409 number! Care should be taken to not allow an error to occur
7410 prior to completing the initialization of the breakpoint. If this
7411 should happen, a bogus breakpoint will be left on the chain. */
7412
7413 struct breakpoint *
7414 set_raw_breakpoint (struct gdbarch *gdbarch,
7415 struct symtab_and_line sal, enum bptype bptype,
7416 const struct breakpoint_ops *ops)
7417 {
7418 struct breakpoint *b = XNEW (struct breakpoint);
7419
7420 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7421 add_to_breakpoint_chain (b);
7422 return b;
7423 }
7424
7425 /* Call this routine when stepping and nexting to enable a breakpoint
7426 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7427 initiated the operation. */
7428
7429 void
7430 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7431 {
7432 struct breakpoint *b, *b_tmp;
7433 int thread = tp->num;
7434
7435 /* To avoid having to rescan all objfile symbols at every step,
7436 we maintain a list of continually-inserted but always disabled
7437 longjmp "master" breakpoints. Here, we simply create momentary
7438 clones of those and enable them for the requested thread. */
7439 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7440 if (b->pspace == current_program_space
7441 && (b->type == bp_longjmp_master
7442 || b->type == bp_exception_master))
7443 {
7444 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7445 struct breakpoint *clone;
7446
7447 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7448 after their removal. */
7449 clone = momentary_breakpoint_from_master (b, type,
7450 &longjmp_breakpoint_ops, 1);
7451 clone->thread = thread;
7452 }
7453
7454 tp->initiating_frame = frame;
7455 }
7456
7457 /* Delete all longjmp breakpoints from THREAD. */
7458 void
7459 delete_longjmp_breakpoint (int thread)
7460 {
7461 struct breakpoint *b, *b_tmp;
7462
7463 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7464 if (b->type == bp_longjmp || b->type == bp_exception)
7465 {
7466 if (b->thread == thread)
7467 delete_breakpoint (b);
7468 }
7469 }
7470
7471 void
7472 delete_longjmp_breakpoint_at_next_stop (int thread)
7473 {
7474 struct breakpoint *b, *b_tmp;
7475
7476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7477 if (b->type == bp_longjmp || b->type == bp_exception)
7478 {
7479 if (b->thread == thread)
7480 b->disposition = disp_del_at_next_stop;
7481 }
7482 }
7483
7484 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7485 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7486 pointer to any of them. Return NULL if this system cannot place longjmp
7487 breakpoints. */
7488
7489 struct breakpoint *
7490 set_longjmp_breakpoint_for_call_dummy (void)
7491 {
7492 struct breakpoint *b, *retval = NULL;
7493
7494 ALL_BREAKPOINTS (b)
7495 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7496 {
7497 struct breakpoint *new_b;
7498
7499 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7500 &momentary_breakpoint_ops,
7501 1);
7502 new_b->thread = pid_to_thread_id (inferior_ptid);
7503
7504 /* Link NEW_B into the chain of RETVAL breakpoints. */
7505
7506 gdb_assert (new_b->related_breakpoint == new_b);
7507 if (retval == NULL)
7508 retval = new_b;
7509 new_b->related_breakpoint = retval;
7510 while (retval->related_breakpoint != new_b->related_breakpoint)
7511 retval = retval->related_breakpoint;
7512 retval->related_breakpoint = new_b;
7513 }
7514
7515 return retval;
7516 }
7517
7518 /* Verify all existing dummy frames and their associated breakpoints for
7519 TP. Remove those which can no longer be found in the current frame
7520 stack.
7521
7522 You should call this function only at places where it is safe to currently
7523 unwind the whole stack. Failed stack unwind would discard live dummy
7524 frames. */
7525
7526 void
7527 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7528 {
7529 struct breakpoint *b, *b_tmp;
7530
7531 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7532 if (b->type == bp_longjmp_call_dummy && b->thread == tp->num)
7533 {
7534 struct breakpoint *dummy_b = b->related_breakpoint;
7535
7536 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7537 dummy_b = dummy_b->related_breakpoint;
7538 if (dummy_b->type != bp_call_dummy
7539 || frame_find_by_id (dummy_b->frame_id) != NULL)
7540 continue;
7541
7542 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7543
7544 while (b->related_breakpoint != b)
7545 {
7546 if (b_tmp == b->related_breakpoint)
7547 b_tmp = b->related_breakpoint->next;
7548 delete_breakpoint (b->related_breakpoint);
7549 }
7550 delete_breakpoint (b);
7551 }
7552 }
7553
7554 void
7555 enable_overlay_breakpoints (void)
7556 {
7557 struct breakpoint *b;
7558
7559 ALL_BREAKPOINTS (b)
7560 if (b->type == bp_overlay_event)
7561 {
7562 b->enable_state = bp_enabled;
7563 update_global_location_list (UGLL_MAY_INSERT);
7564 overlay_events_enabled = 1;
7565 }
7566 }
7567
7568 void
7569 disable_overlay_breakpoints (void)
7570 {
7571 struct breakpoint *b;
7572
7573 ALL_BREAKPOINTS (b)
7574 if (b->type == bp_overlay_event)
7575 {
7576 b->enable_state = bp_disabled;
7577 update_global_location_list (UGLL_DONT_INSERT);
7578 overlay_events_enabled = 0;
7579 }
7580 }
7581
7582 /* Set an active std::terminate breakpoint for each std::terminate
7583 master breakpoint. */
7584 void
7585 set_std_terminate_breakpoint (void)
7586 {
7587 struct breakpoint *b, *b_tmp;
7588
7589 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7590 if (b->pspace == current_program_space
7591 && b->type == bp_std_terminate_master)
7592 {
7593 momentary_breakpoint_from_master (b, bp_std_terminate,
7594 &momentary_breakpoint_ops, 1);
7595 }
7596 }
7597
7598 /* Delete all the std::terminate breakpoints. */
7599 void
7600 delete_std_terminate_breakpoint (void)
7601 {
7602 struct breakpoint *b, *b_tmp;
7603
7604 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7605 if (b->type == bp_std_terminate)
7606 delete_breakpoint (b);
7607 }
7608
7609 struct breakpoint *
7610 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7611 {
7612 struct breakpoint *b;
7613
7614 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7615 &internal_breakpoint_ops);
7616
7617 b->enable_state = bp_enabled;
7618 /* addr_string has to be used or breakpoint_re_set will delete me. */
7619 b->addr_string
7620 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7621
7622 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7623
7624 return b;
7625 }
7626
7627 void
7628 remove_thread_event_breakpoints (void)
7629 {
7630 struct breakpoint *b, *b_tmp;
7631
7632 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7633 if (b->type == bp_thread_event
7634 && b->loc->pspace == current_program_space)
7635 delete_breakpoint (b);
7636 }
7637
7638 struct lang_and_radix
7639 {
7640 enum language lang;
7641 int radix;
7642 };
7643
7644 /* Create a breakpoint for JIT code registration and unregistration. */
7645
7646 struct breakpoint *
7647 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7648 {
7649 struct breakpoint *b;
7650
7651 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7652 &internal_breakpoint_ops);
7653 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7654 return b;
7655 }
7656
7657 /* Remove JIT code registration and unregistration breakpoint(s). */
7658
7659 void
7660 remove_jit_event_breakpoints (void)
7661 {
7662 struct breakpoint *b, *b_tmp;
7663
7664 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7665 if (b->type == bp_jit_event
7666 && b->loc->pspace == current_program_space)
7667 delete_breakpoint (b);
7668 }
7669
7670 void
7671 remove_solib_event_breakpoints (void)
7672 {
7673 struct breakpoint *b, *b_tmp;
7674
7675 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7676 if (b->type == bp_shlib_event
7677 && b->loc->pspace == current_program_space)
7678 delete_breakpoint (b);
7679 }
7680
7681 /* See breakpoint.h. */
7682
7683 void
7684 remove_solib_event_breakpoints_at_next_stop (void)
7685 {
7686 struct breakpoint *b, *b_tmp;
7687
7688 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7689 if (b->type == bp_shlib_event
7690 && b->loc->pspace == current_program_space)
7691 b->disposition = disp_del_at_next_stop;
7692 }
7693
7694 /* Helper for create_solib_event_breakpoint /
7695 create_and_insert_solib_event_breakpoint. Allows specifying which
7696 INSERT_MODE to pass through to update_global_location_list. */
7697
7698 static struct breakpoint *
7699 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7700 enum ugll_insert_mode insert_mode)
7701 {
7702 struct breakpoint *b;
7703
7704 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7705 &internal_breakpoint_ops);
7706 update_global_location_list_nothrow (insert_mode);
7707 return b;
7708 }
7709
7710 struct breakpoint *
7711 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7712 {
7713 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7714 }
7715
7716 /* See breakpoint.h. */
7717
7718 struct breakpoint *
7719 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7720 {
7721 struct breakpoint *b;
7722
7723 /* Explicitly tell update_global_location_list to insert
7724 locations. */
7725 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7726 if (!b->loc->inserted)
7727 {
7728 delete_breakpoint (b);
7729 return NULL;
7730 }
7731 return b;
7732 }
7733
7734 /* Disable any breakpoints that are on code in shared libraries. Only
7735 apply to enabled breakpoints, disabled ones can just stay disabled. */
7736
7737 void
7738 disable_breakpoints_in_shlibs (void)
7739 {
7740 struct bp_location *loc, **locp_tmp;
7741
7742 ALL_BP_LOCATIONS (loc, locp_tmp)
7743 {
7744 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7745 struct breakpoint *b = loc->owner;
7746
7747 /* We apply the check to all breakpoints, including disabled for
7748 those with loc->duplicate set. This is so that when breakpoint
7749 becomes enabled, or the duplicate is removed, gdb will try to
7750 insert all breakpoints. If we don't set shlib_disabled here,
7751 we'll try to insert those breakpoints and fail. */
7752 if (((b->type == bp_breakpoint)
7753 || (b->type == bp_jit_event)
7754 || (b->type == bp_hardware_breakpoint)
7755 || (is_tracepoint (b)))
7756 && loc->pspace == current_program_space
7757 && !loc->shlib_disabled
7758 && solib_name_from_address (loc->pspace, loc->address)
7759 )
7760 {
7761 loc->shlib_disabled = 1;
7762 }
7763 }
7764 }
7765
7766 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7767 notification of unloaded_shlib. Only apply to enabled breakpoints,
7768 disabled ones can just stay disabled. */
7769
7770 static void
7771 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7772 {
7773 struct bp_location *loc, **locp_tmp;
7774 int disabled_shlib_breaks = 0;
7775
7776 /* SunOS a.out shared libraries are always mapped, so do not
7777 disable breakpoints; they will only be reported as unloaded
7778 through clear_solib when GDB discards its shared library
7779 list. See clear_solib for more information. */
7780 if (exec_bfd != NULL
7781 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7782 return;
7783
7784 ALL_BP_LOCATIONS (loc, locp_tmp)
7785 {
7786 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7787 struct breakpoint *b = loc->owner;
7788
7789 if (solib->pspace == loc->pspace
7790 && !loc->shlib_disabled
7791 && (((b->type == bp_breakpoint
7792 || b->type == bp_jit_event
7793 || b->type == bp_hardware_breakpoint)
7794 && (loc->loc_type == bp_loc_hardware_breakpoint
7795 || loc->loc_type == bp_loc_software_breakpoint))
7796 || is_tracepoint (b))
7797 && solib_contains_address_p (solib, loc->address))
7798 {
7799 loc->shlib_disabled = 1;
7800 /* At this point, we cannot rely on remove_breakpoint
7801 succeeding so we must mark the breakpoint as not inserted
7802 to prevent future errors occurring in remove_breakpoints. */
7803 loc->inserted = 0;
7804
7805 /* This may cause duplicate notifications for the same breakpoint. */
7806 observer_notify_breakpoint_modified (b);
7807
7808 if (!disabled_shlib_breaks)
7809 {
7810 target_terminal_ours_for_output ();
7811 warning (_("Temporarily disabling breakpoints "
7812 "for unloaded shared library \"%s\""),
7813 solib->so_name);
7814 }
7815 disabled_shlib_breaks = 1;
7816 }
7817 }
7818 }
7819
7820 /* Disable any breakpoints and tracepoints in OBJFILE upon
7821 notification of free_objfile. Only apply to enabled breakpoints,
7822 disabled ones can just stay disabled. */
7823
7824 static void
7825 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7826 {
7827 struct breakpoint *b;
7828
7829 if (objfile == NULL)
7830 return;
7831
7832 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7833 managed by the user with add-symbol-file/remove-symbol-file.
7834 Similarly to how breakpoints in shared libraries are handled in
7835 response to "nosharedlibrary", mark breakpoints in such modules
7836 shlib_disabled so they end up uninserted on the next global
7837 location list update. Shared libraries not loaded by the user
7838 aren't handled here -- they're already handled in
7839 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7840 solib_unloaded observer. We skip objfiles that are not
7841 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7842 main objfile). */
7843 if ((objfile->flags & OBJF_SHARED) == 0
7844 || (objfile->flags & OBJF_USERLOADED) == 0)
7845 return;
7846
7847 ALL_BREAKPOINTS (b)
7848 {
7849 struct bp_location *loc;
7850 int bp_modified = 0;
7851
7852 if (!is_breakpoint (b) && !is_tracepoint (b))
7853 continue;
7854
7855 for (loc = b->loc; loc != NULL; loc = loc->next)
7856 {
7857 CORE_ADDR loc_addr = loc->address;
7858
7859 if (loc->loc_type != bp_loc_hardware_breakpoint
7860 && loc->loc_type != bp_loc_software_breakpoint)
7861 continue;
7862
7863 if (loc->shlib_disabled != 0)
7864 continue;
7865
7866 if (objfile->pspace != loc->pspace)
7867 continue;
7868
7869 if (loc->loc_type != bp_loc_hardware_breakpoint
7870 && loc->loc_type != bp_loc_software_breakpoint)
7871 continue;
7872
7873 if (is_addr_in_objfile (loc_addr, objfile))
7874 {
7875 loc->shlib_disabled = 1;
7876 /* At this point, we don't know whether the object was
7877 unmapped from the inferior or not, so leave the
7878 inserted flag alone. We'll handle failure to
7879 uninsert quietly, in case the object was indeed
7880 unmapped. */
7881
7882 mark_breakpoint_location_modified (loc);
7883
7884 bp_modified = 1;
7885 }
7886 }
7887
7888 if (bp_modified)
7889 observer_notify_breakpoint_modified (b);
7890 }
7891 }
7892
7893 /* FORK & VFORK catchpoints. */
7894
7895 /* An instance of this type is used to represent a fork or vfork
7896 catchpoint. It includes a "struct breakpoint" as a kind of base
7897 class; users downcast to "struct breakpoint *" when needed. A
7898 breakpoint is really of this type iff its ops pointer points to
7899 CATCH_FORK_BREAKPOINT_OPS. */
7900
7901 struct fork_catchpoint
7902 {
7903 /* The base class. */
7904 struct breakpoint base;
7905
7906 /* Process id of a child process whose forking triggered this
7907 catchpoint. This field is only valid immediately after this
7908 catchpoint has triggered. */
7909 ptid_t forked_inferior_pid;
7910 };
7911
7912 /* Implement the "insert" breakpoint_ops method for fork
7913 catchpoints. */
7914
7915 static int
7916 insert_catch_fork (struct bp_location *bl)
7917 {
7918 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7919 }
7920
7921 /* Implement the "remove" breakpoint_ops method for fork
7922 catchpoints. */
7923
7924 static int
7925 remove_catch_fork (struct bp_location *bl)
7926 {
7927 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7928 }
7929
7930 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7931 catchpoints. */
7932
7933 static int
7934 breakpoint_hit_catch_fork (const struct bp_location *bl,
7935 struct address_space *aspace, CORE_ADDR bp_addr,
7936 const struct target_waitstatus *ws)
7937 {
7938 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7939
7940 if (ws->kind != TARGET_WAITKIND_FORKED)
7941 return 0;
7942
7943 c->forked_inferior_pid = ws->value.related_pid;
7944 return 1;
7945 }
7946
7947 /* Implement the "print_it" breakpoint_ops method for fork
7948 catchpoints. */
7949
7950 static enum print_stop_action
7951 print_it_catch_fork (bpstat bs)
7952 {
7953 struct ui_out *uiout = current_uiout;
7954 struct breakpoint *b = bs->breakpoint_at;
7955 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7956
7957 annotate_catchpoint (b->number);
7958 if (b->disposition == disp_del)
7959 ui_out_text (uiout, "\nTemporary catchpoint ");
7960 else
7961 ui_out_text (uiout, "\nCatchpoint ");
7962 if (ui_out_is_mi_like_p (uiout))
7963 {
7964 ui_out_field_string (uiout, "reason",
7965 async_reason_lookup (EXEC_ASYNC_FORK));
7966 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7967 }
7968 ui_out_field_int (uiout, "bkptno", b->number);
7969 ui_out_text (uiout, " (forked process ");
7970 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7971 ui_out_text (uiout, "), ");
7972 return PRINT_SRC_AND_LOC;
7973 }
7974
7975 /* Implement the "print_one" breakpoint_ops method for fork
7976 catchpoints. */
7977
7978 static void
7979 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7980 {
7981 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7982 struct value_print_options opts;
7983 struct ui_out *uiout = current_uiout;
7984
7985 get_user_print_options (&opts);
7986
7987 /* Field 4, the address, is omitted (which makes the columns not
7988 line up too nicely with the headers, but the effect is relatively
7989 readable). */
7990 if (opts.addressprint)
7991 ui_out_field_skip (uiout, "addr");
7992 annotate_field (5);
7993 ui_out_text (uiout, "fork");
7994 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7995 {
7996 ui_out_text (uiout, ", process ");
7997 ui_out_field_int (uiout, "what",
7998 ptid_get_pid (c->forked_inferior_pid));
7999 ui_out_spaces (uiout, 1);
8000 }
8001
8002 if (ui_out_is_mi_like_p (uiout))
8003 ui_out_field_string (uiout, "catch-type", "fork");
8004 }
8005
8006 /* Implement the "print_mention" breakpoint_ops method for fork
8007 catchpoints. */
8008
8009 static void
8010 print_mention_catch_fork (struct breakpoint *b)
8011 {
8012 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8013 }
8014
8015 /* Implement the "print_recreate" breakpoint_ops method for fork
8016 catchpoints. */
8017
8018 static void
8019 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8020 {
8021 fprintf_unfiltered (fp, "catch fork");
8022 print_recreate_thread (b, fp);
8023 }
8024
8025 /* The breakpoint_ops structure to be used in fork catchpoints. */
8026
8027 static struct breakpoint_ops catch_fork_breakpoint_ops;
8028
8029 /* Implement the "insert" breakpoint_ops method for vfork
8030 catchpoints. */
8031
8032 static int
8033 insert_catch_vfork (struct bp_location *bl)
8034 {
8035 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8036 }
8037
8038 /* Implement the "remove" breakpoint_ops method for vfork
8039 catchpoints. */
8040
8041 static int
8042 remove_catch_vfork (struct bp_location *bl)
8043 {
8044 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8045 }
8046
8047 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8048 catchpoints. */
8049
8050 static int
8051 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8052 struct address_space *aspace, CORE_ADDR bp_addr,
8053 const struct target_waitstatus *ws)
8054 {
8055 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8056
8057 if (ws->kind != TARGET_WAITKIND_VFORKED)
8058 return 0;
8059
8060 c->forked_inferior_pid = ws->value.related_pid;
8061 return 1;
8062 }
8063
8064 /* Implement the "print_it" breakpoint_ops method for vfork
8065 catchpoints. */
8066
8067 static enum print_stop_action
8068 print_it_catch_vfork (bpstat bs)
8069 {
8070 struct ui_out *uiout = current_uiout;
8071 struct breakpoint *b = bs->breakpoint_at;
8072 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8073
8074 annotate_catchpoint (b->number);
8075 if (b->disposition == disp_del)
8076 ui_out_text (uiout, "\nTemporary catchpoint ");
8077 else
8078 ui_out_text (uiout, "\nCatchpoint ");
8079 if (ui_out_is_mi_like_p (uiout))
8080 {
8081 ui_out_field_string (uiout, "reason",
8082 async_reason_lookup (EXEC_ASYNC_VFORK));
8083 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8084 }
8085 ui_out_field_int (uiout, "bkptno", b->number);
8086 ui_out_text (uiout, " (vforked process ");
8087 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
8088 ui_out_text (uiout, "), ");
8089 return PRINT_SRC_AND_LOC;
8090 }
8091
8092 /* Implement the "print_one" breakpoint_ops method for vfork
8093 catchpoints. */
8094
8095 static void
8096 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8097 {
8098 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8099 struct value_print_options opts;
8100 struct ui_out *uiout = current_uiout;
8101
8102 get_user_print_options (&opts);
8103 /* Field 4, the address, is omitted (which makes the columns not
8104 line up too nicely with the headers, but the effect is relatively
8105 readable). */
8106 if (opts.addressprint)
8107 ui_out_field_skip (uiout, "addr");
8108 annotate_field (5);
8109 ui_out_text (uiout, "vfork");
8110 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8111 {
8112 ui_out_text (uiout, ", process ");
8113 ui_out_field_int (uiout, "what",
8114 ptid_get_pid (c->forked_inferior_pid));
8115 ui_out_spaces (uiout, 1);
8116 }
8117
8118 if (ui_out_is_mi_like_p (uiout))
8119 ui_out_field_string (uiout, "catch-type", "vfork");
8120 }
8121
8122 /* Implement the "print_mention" breakpoint_ops method for vfork
8123 catchpoints. */
8124
8125 static void
8126 print_mention_catch_vfork (struct breakpoint *b)
8127 {
8128 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8129 }
8130
8131 /* Implement the "print_recreate" breakpoint_ops method for vfork
8132 catchpoints. */
8133
8134 static void
8135 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8136 {
8137 fprintf_unfiltered (fp, "catch vfork");
8138 print_recreate_thread (b, fp);
8139 }
8140
8141 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8142
8143 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8144
8145 /* An instance of this type is used to represent an solib catchpoint.
8146 It includes a "struct breakpoint" as a kind of base class; users
8147 downcast to "struct breakpoint *" when needed. A breakpoint is
8148 really of this type iff its ops pointer points to
8149 CATCH_SOLIB_BREAKPOINT_OPS. */
8150
8151 struct solib_catchpoint
8152 {
8153 /* The base class. */
8154 struct breakpoint base;
8155
8156 /* True for "catch load", false for "catch unload". */
8157 unsigned char is_load;
8158
8159 /* Regular expression to match, if any. COMPILED is only valid when
8160 REGEX is non-NULL. */
8161 char *regex;
8162 regex_t compiled;
8163 };
8164
8165 static void
8166 dtor_catch_solib (struct breakpoint *b)
8167 {
8168 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8169
8170 if (self->regex)
8171 regfree (&self->compiled);
8172 xfree (self->regex);
8173
8174 base_breakpoint_ops.dtor (b);
8175 }
8176
8177 static int
8178 insert_catch_solib (struct bp_location *ignore)
8179 {
8180 return 0;
8181 }
8182
8183 static int
8184 remove_catch_solib (struct bp_location *ignore)
8185 {
8186 return 0;
8187 }
8188
8189 static int
8190 breakpoint_hit_catch_solib (const struct bp_location *bl,
8191 struct address_space *aspace,
8192 CORE_ADDR bp_addr,
8193 const struct target_waitstatus *ws)
8194 {
8195 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8196 struct breakpoint *other;
8197
8198 if (ws->kind == TARGET_WAITKIND_LOADED)
8199 return 1;
8200
8201 ALL_BREAKPOINTS (other)
8202 {
8203 struct bp_location *other_bl;
8204
8205 if (other == bl->owner)
8206 continue;
8207
8208 if (other->type != bp_shlib_event)
8209 continue;
8210
8211 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8212 continue;
8213
8214 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8215 {
8216 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8217 return 1;
8218 }
8219 }
8220
8221 return 0;
8222 }
8223
8224 static void
8225 check_status_catch_solib (struct bpstats *bs)
8226 {
8227 struct solib_catchpoint *self
8228 = (struct solib_catchpoint *) bs->breakpoint_at;
8229 int ix;
8230
8231 if (self->is_load)
8232 {
8233 struct so_list *iter;
8234
8235 for (ix = 0;
8236 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8237 ix, iter);
8238 ++ix)
8239 {
8240 if (!self->regex
8241 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8242 return;
8243 }
8244 }
8245 else
8246 {
8247 char *iter;
8248
8249 for (ix = 0;
8250 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8251 ix, iter);
8252 ++ix)
8253 {
8254 if (!self->regex
8255 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8256 return;
8257 }
8258 }
8259
8260 bs->stop = 0;
8261 bs->print_it = print_it_noop;
8262 }
8263
8264 static enum print_stop_action
8265 print_it_catch_solib (bpstat bs)
8266 {
8267 struct breakpoint *b = bs->breakpoint_at;
8268 struct ui_out *uiout = current_uiout;
8269
8270 annotate_catchpoint (b->number);
8271 if (b->disposition == disp_del)
8272 ui_out_text (uiout, "\nTemporary catchpoint ");
8273 else
8274 ui_out_text (uiout, "\nCatchpoint ");
8275 ui_out_field_int (uiout, "bkptno", b->number);
8276 ui_out_text (uiout, "\n");
8277 if (ui_out_is_mi_like_p (uiout))
8278 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8279 print_solib_event (1);
8280 return PRINT_SRC_AND_LOC;
8281 }
8282
8283 static void
8284 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8285 {
8286 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8287 struct value_print_options opts;
8288 struct ui_out *uiout = current_uiout;
8289 char *msg;
8290
8291 get_user_print_options (&opts);
8292 /* Field 4, the address, is omitted (which makes the columns not
8293 line up too nicely with the headers, but the effect is relatively
8294 readable). */
8295 if (opts.addressprint)
8296 {
8297 annotate_field (4);
8298 ui_out_field_skip (uiout, "addr");
8299 }
8300
8301 annotate_field (5);
8302 if (self->is_load)
8303 {
8304 if (self->regex)
8305 msg = xstrprintf (_("load of library matching %s"), self->regex);
8306 else
8307 msg = xstrdup (_("load of library"));
8308 }
8309 else
8310 {
8311 if (self->regex)
8312 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8313 else
8314 msg = xstrdup (_("unload of library"));
8315 }
8316 ui_out_field_string (uiout, "what", msg);
8317 xfree (msg);
8318
8319 if (ui_out_is_mi_like_p (uiout))
8320 ui_out_field_string (uiout, "catch-type",
8321 self->is_load ? "load" : "unload");
8322 }
8323
8324 static void
8325 print_mention_catch_solib (struct breakpoint *b)
8326 {
8327 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8328
8329 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8330 self->is_load ? "load" : "unload");
8331 }
8332
8333 static void
8334 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8335 {
8336 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8337
8338 fprintf_unfiltered (fp, "%s %s",
8339 b->disposition == disp_del ? "tcatch" : "catch",
8340 self->is_load ? "load" : "unload");
8341 if (self->regex)
8342 fprintf_unfiltered (fp, " %s", self->regex);
8343 fprintf_unfiltered (fp, "\n");
8344 }
8345
8346 static struct breakpoint_ops catch_solib_breakpoint_ops;
8347
8348 /* Shared helper function (MI and CLI) for creating and installing
8349 a shared object event catchpoint. If IS_LOAD is non-zero then
8350 the events to be caught are load events, otherwise they are
8351 unload events. If IS_TEMP is non-zero the catchpoint is a
8352 temporary one. If ENABLED is non-zero the catchpoint is
8353 created in an enabled state. */
8354
8355 void
8356 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8357 {
8358 struct solib_catchpoint *c;
8359 struct gdbarch *gdbarch = get_current_arch ();
8360 struct cleanup *cleanup;
8361
8362 if (!arg)
8363 arg = "";
8364 arg = skip_spaces (arg);
8365
8366 c = XCNEW (struct solib_catchpoint);
8367 cleanup = make_cleanup (xfree, c);
8368
8369 if (*arg != '\0')
8370 {
8371 int errcode;
8372
8373 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8374 if (errcode != 0)
8375 {
8376 char *err = get_regcomp_error (errcode, &c->compiled);
8377
8378 make_cleanup (xfree, err);
8379 error (_("Invalid regexp (%s): %s"), err, arg);
8380 }
8381 c->regex = xstrdup (arg);
8382 }
8383
8384 c->is_load = is_load;
8385 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8386 &catch_solib_breakpoint_ops);
8387
8388 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8389
8390 discard_cleanups (cleanup);
8391 install_breakpoint (0, &c->base, 1);
8392 }
8393
8394 /* A helper function that does all the work for "catch load" and
8395 "catch unload". */
8396
8397 static void
8398 catch_load_or_unload (char *arg, int from_tty, int is_load,
8399 struct cmd_list_element *command)
8400 {
8401 int tempflag;
8402 const int enabled = 1;
8403
8404 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8405
8406 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8407 }
8408
8409 static void
8410 catch_load_command_1 (char *arg, int from_tty,
8411 struct cmd_list_element *command)
8412 {
8413 catch_load_or_unload (arg, from_tty, 1, command);
8414 }
8415
8416 static void
8417 catch_unload_command_1 (char *arg, int from_tty,
8418 struct cmd_list_element *command)
8419 {
8420 catch_load_or_unload (arg, from_tty, 0, command);
8421 }
8422
8423 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8424 is non-zero, then make the breakpoint temporary. If COND_STRING is
8425 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8426 the breakpoint_ops structure associated to the catchpoint. */
8427
8428 void
8429 init_catchpoint (struct breakpoint *b,
8430 struct gdbarch *gdbarch, int tempflag,
8431 char *cond_string,
8432 const struct breakpoint_ops *ops)
8433 {
8434 struct symtab_and_line sal;
8435
8436 init_sal (&sal);
8437 sal.pspace = current_program_space;
8438
8439 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8440
8441 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8442 b->disposition = tempflag ? disp_del : disp_donttouch;
8443 }
8444
8445 void
8446 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8447 {
8448 add_to_breakpoint_chain (b);
8449 set_breakpoint_number (internal, b);
8450 if (is_tracepoint (b))
8451 set_tracepoint_count (breakpoint_count);
8452 if (!internal)
8453 mention (b);
8454 observer_notify_breakpoint_created (b);
8455
8456 if (update_gll)
8457 update_global_location_list (UGLL_MAY_INSERT);
8458 }
8459
8460 static void
8461 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8462 int tempflag, char *cond_string,
8463 const struct breakpoint_ops *ops)
8464 {
8465 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8466
8467 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8468
8469 c->forked_inferior_pid = null_ptid;
8470
8471 install_breakpoint (0, &c->base, 1);
8472 }
8473
8474 /* Exec catchpoints. */
8475
8476 /* An instance of this type is used to represent an exec catchpoint.
8477 It includes a "struct breakpoint" as a kind of base class; users
8478 downcast to "struct breakpoint *" when needed. A breakpoint is
8479 really of this type iff its ops pointer points to
8480 CATCH_EXEC_BREAKPOINT_OPS. */
8481
8482 struct exec_catchpoint
8483 {
8484 /* The base class. */
8485 struct breakpoint base;
8486
8487 /* Filename of a program whose exec triggered this catchpoint.
8488 This field is only valid immediately after this catchpoint has
8489 triggered. */
8490 char *exec_pathname;
8491 };
8492
8493 /* Implement the "dtor" breakpoint_ops method for exec
8494 catchpoints. */
8495
8496 static void
8497 dtor_catch_exec (struct breakpoint *b)
8498 {
8499 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8500
8501 xfree (c->exec_pathname);
8502
8503 base_breakpoint_ops.dtor (b);
8504 }
8505
8506 static int
8507 insert_catch_exec (struct bp_location *bl)
8508 {
8509 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8510 }
8511
8512 static int
8513 remove_catch_exec (struct bp_location *bl)
8514 {
8515 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8516 }
8517
8518 static int
8519 breakpoint_hit_catch_exec (const struct bp_location *bl,
8520 struct address_space *aspace, CORE_ADDR bp_addr,
8521 const struct target_waitstatus *ws)
8522 {
8523 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8524
8525 if (ws->kind != TARGET_WAITKIND_EXECD)
8526 return 0;
8527
8528 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8529 return 1;
8530 }
8531
8532 static enum print_stop_action
8533 print_it_catch_exec (bpstat bs)
8534 {
8535 struct ui_out *uiout = current_uiout;
8536 struct breakpoint *b = bs->breakpoint_at;
8537 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8538
8539 annotate_catchpoint (b->number);
8540 if (b->disposition == disp_del)
8541 ui_out_text (uiout, "\nTemporary catchpoint ");
8542 else
8543 ui_out_text (uiout, "\nCatchpoint ");
8544 if (ui_out_is_mi_like_p (uiout))
8545 {
8546 ui_out_field_string (uiout, "reason",
8547 async_reason_lookup (EXEC_ASYNC_EXEC));
8548 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8549 }
8550 ui_out_field_int (uiout, "bkptno", b->number);
8551 ui_out_text (uiout, " (exec'd ");
8552 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8553 ui_out_text (uiout, "), ");
8554
8555 return PRINT_SRC_AND_LOC;
8556 }
8557
8558 static void
8559 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8560 {
8561 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8562 struct value_print_options opts;
8563 struct ui_out *uiout = current_uiout;
8564
8565 get_user_print_options (&opts);
8566
8567 /* Field 4, the address, is omitted (which makes the columns
8568 not line up too nicely with the headers, but the effect
8569 is relatively readable). */
8570 if (opts.addressprint)
8571 ui_out_field_skip (uiout, "addr");
8572 annotate_field (5);
8573 ui_out_text (uiout, "exec");
8574 if (c->exec_pathname != NULL)
8575 {
8576 ui_out_text (uiout, ", program \"");
8577 ui_out_field_string (uiout, "what", c->exec_pathname);
8578 ui_out_text (uiout, "\" ");
8579 }
8580
8581 if (ui_out_is_mi_like_p (uiout))
8582 ui_out_field_string (uiout, "catch-type", "exec");
8583 }
8584
8585 static void
8586 print_mention_catch_exec (struct breakpoint *b)
8587 {
8588 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8589 }
8590
8591 /* Implement the "print_recreate" breakpoint_ops method for exec
8592 catchpoints. */
8593
8594 static void
8595 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8596 {
8597 fprintf_unfiltered (fp, "catch exec");
8598 print_recreate_thread (b, fp);
8599 }
8600
8601 static struct breakpoint_ops catch_exec_breakpoint_ops;
8602
8603 static int
8604 hw_breakpoint_used_count (void)
8605 {
8606 int i = 0;
8607 struct breakpoint *b;
8608 struct bp_location *bl;
8609
8610 ALL_BREAKPOINTS (b)
8611 {
8612 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8613 for (bl = b->loc; bl; bl = bl->next)
8614 {
8615 /* Special types of hardware breakpoints may use more than
8616 one register. */
8617 i += b->ops->resources_needed (bl);
8618 }
8619 }
8620
8621 return i;
8622 }
8623
8624 /* Returns the resources B would use if it were a hardware
8625 watchpoint. */
8626
8627 static int
8628 hw_watchpoint_use_count (struct breakpoint *b)
8629 {
8630 int i = 0;
8631 struct bp_location *bl;
8632
8633 if (!breakpoint_enabled (b))
8634 return 0;
8635
8636 for (bl = b->loc; bl; bl = bl->next)
8637 {
8638 /* Special types of hardware watchpoints may use more than
8639 one register. */
8640 i += b->ops->resources_needed (bl);
8641 }
8642
8643 return i;
8644 }
8645
8646 /* Returns the sum the used resources of all hardware watchpoints of
8647 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8648 the sum of the used resources of all hardware watchpoints of other
8649 types _not_ TYPE. */
8650
8651 static int
8652 hw_watchpoint_used_count_others (struct breakpoint *except,
8653 enum bptype type, int *other_type_used)
8654 {
8655 int i = 0;
8656 struct breakpoint *b;
8657
8658 *other_type_used = 0;
8659 ALL_BREAKPOINTS (b)
8660 {
8661 if (b == except)
8662 continue;
8663 if (!breakpoint_enabled (b))
8664 continue;
8665
8666 if (b->type == type)
8667 i += hw_watchpoint_use_count (b);
8668 else if (is_hardware_watchpoint (b))
8669 *other_type_used = 1;
8670 }
8671
8672 return i;
8673 }
8674
8675 void
8676 disable_watchpoints_before_interactive_call_start (void)
8677 {
8678 struct breakpoint *b;
8679
8680 ALL_BREAKPOINTS (b)
8681 {
8682 if (is_watchpoint (b) && breakpoint_enabled (b))
8683 {
8684 b->enable_state = bp_call_disabled;
8685 update_global_location_list (UGLL_DONT_INSERT);
8686 }
8687 }
8688 }
8689
8690 void
8691 enable_watchpoints_after_interactive_call_stop (void)
8692 {
8693 struct breakpoint *b;
8694
8695 ALL_BREAKPOINTS (b)
8696 {
8697 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8698 {
8699 b->enable_state = bp_enabled;
8700 update_global_location_list (UGLL_MAY_INSERT);
8701 }
8702 }
8703 }
8704
8705 void
8706 disable_breakpoints_before_startup (void)
8707 {
8708 current_program_space->executing_startup = 1;
8709 update_global_location_list (UGLL_DONT_INSERT);
8710 }
8711
8712 void
8713 enable_breakpoints_after_startup (void)
8714 {
8715 current_program_space->executing_startup = 0;
8716 breakpoint_re_set ();
8717 }
8718
8719 /* Create a new single-step breakpoint for thread THREAD, with no
8720 locations. */
8721
8722 static struct breakpoint *
8723 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8724 {
8725 struct breakpoint *b = XNEW (struct breakpoint);
8726
8727 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8728 &momentary_breakpoint_ops);
8729
8730 b->disposition = disp_donttouch;
8731 b->frame_id = null_frame_id;
8732
8733 b->thread = thread;
8734 gdb_assert (b->thread != 0);
8735
8736 add_to_breakpoint_chain (b);
8737
8738 return b;
8739 }
8740
8741 /* Set a momentary breakpoint of type TYPE at address specified by
8742 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8743 frame. */
8744
8745 struct breakpoint *
8746 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8747 struct frame_id frame_id, enum bptype type)
8748 {
8749 struct breakpoint *b;
8750
8751 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8752 tail-called one. */
8753 gdb_assert (!frame_id_artificial_p (frame_id));
8754
8755 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8756 b->enable_state = bp_enabled;
8757 b->disposition = disp_donttouch;
8758 b->frame_id = frame_id;
8759
8760 /* If we're debugging a multi-threaded program, then we want
8761 momentary breakpoints to be active in only a single thread of
8762 control. */
8763 if (in_thread_list (inferior_ptid))
8764 b->thread = pid_to_thread_id (inferior_ptid);
8765
8766 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8767
8768 return b;
8769 }
8770
8771 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8772 The new breakpoint will have type TYPE, use OPS as its
8773 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8774
8775 static struct breakpoint *
8776 momentary_breakpoint_from_master (struct breakpoint *orig,
8777 enum bptype type,
8778 const struct breakpoint_ops *ops,
8779 int loc_enabled)
8780 {
8781 struct breakpoint *copy;
8782
8783 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8784 copy->loc = allocate_bp_location (copy);
8785 set_breakpoint_location_function (copy->loc, 1);
8786
8787 copy->loc->gdbarch = orig->loc->gdbarch;
8788 copy->loc->requested_address = orig->loc->requested_address;
8789 copy->loc->address = orig->loc->address;
8790 copy->loc->section = orig->loc->section;
8791 copy->loc->pspace = orig->loc->pspace;
8792 copy->loc->probe = orig->loc->probe;
8793 copy->loc->line_number = orig->loc->line_number;
8794 copy->loc->symtab = orig->loc->symtab;
8795 copy->loc->enabled = loc_enabled;
8796 copy->frame_id = orig->frame_id;
8797 copy->thread = orig->thread;
8798 copy->pspace = orig->pspace;
8799
8800 copy->enable_state = bp_enabled;
8801 copy->disposition = disp_donttouch;
8802 copy->number = internal_breakpoint_number--;
8803
8804 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8805 return copy;
8806 }
8807
8808 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8809 ORIG is NULL. */
8810
8811 struct breakpoint *
8812 clone_momentary_breakpoint (struct breakpoint *orig)
8813 {
8814 /* If there's nothing to clone, then return nothing. */
8815 if (orig == NULL)
8816 return NULL;
8817
8818 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8819 }
8820
8821 struct breakpoint *
8822 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8823 enum bptype type)
8824 {
8825 struct symtab_and_line sal;
8826
8827 sal = find_pc_line (pc, 0);
8828 sal.pc = pc;
8829 sal.section = find_pc_overlay (pc);
8830 sal.explicit_pc = 1;
8831
8832 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8833 }
8834 \f
8835
8836 /* Tell the user we have just set a breakpoint B. */
8837
8838 static void
8839 mention (struct breakpoint *b)
8840 {
8841 b->ops->print_mention (b);
8842 if (ui_out_is_mi_like_p (current_uiout))
8843 return;
8844 printf_filtered ("\n");
8845 }
8846 \f
8847
8848 static int bp_loc_is_permanent (struct bp_location *loc);
8849
8850 static struct bp_location *
8851 add_location_to_breakpoint (struct breakpoint *b,
8852 const struct symtab_and_line *sal)
8853 {
8854 struct bp_location *loc, **tmp;
8855 CORE_ADDR adjusted_address;
8856 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8857
8858 if (loc_gdbarch == NULL)
8859 loc_gdbarch = b->gdbarch;
8860
8861 /* Adjust the breakpoint's address prior to allocating a location.
8862 Once we call allocate_bp_location(), that mostly uninitialized
8863 location will be placed on the location chain. Adjustment of the
8864 breakpoint may cause target_read_memory() to be called and we do
8865 not want its scan of the location chain to find a breakpoint and
8866 location that's only been partially initialized. */
8867 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8868 sal->pc, b->type);
8869
8870 /* Sort the locations by their ADDRESS. */
8871 loc = allocate_bp_location (b);
8872 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8873 tmp = &((*tmp)->next))
8874 ;
8875 loc->next = *tmp;
8876 *tmp = loc;
8877
8878 loc->requested_address = sal->pc;
8879 loc->address = adjusted_address;
8880 loc->pspace = sal->pspace;
8881 loc->probe.probe = sal->probe;
8882 loc->probe.objfile = sal->objfile;
8883 gdb_assert (loc->pspace != NULL);
8884 loc->section = sal->section;
8885 loc->gdbarch = loc_gdbarch;
8886 loc->line_number = sal->line;
8887 loc->symtab = sal->symtab;
8888
8889 set_breakpoint_location_function (loc,
8890 sal->explicit_pc || sal->explicit_line);
8891
8892 /* While by definition, permanent breakpoints are already present in the
8893 code, we don't mark the location as inserted. Normally one would expect
8894 that GDB could rely on that breakpoint instruction to stop the program,
8895 thus removing the need to insert its own breakpoint, except that executing
8896 the breakpoint instruction can kill the target instead of reporting a
8897 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8898 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8899 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8900 breakpoint be inserted normally results in QEMU knowing about the GDB
8901 breakpoint, and thus trap before the breakpoint instruction is executed.
8902 (If GDB later needs to continue execution past the permanent breakpoint,
8903 it manually increments the PC, thus avoiding executing the breakpoint
8904 instruction.) */
8905 if (bp_loc_is_permanent (loc))
8906 loc->permanent = 1;
8907
8908 return loc;
8909 }
8910 \f
8911
8912 /* See breakpoint.h. */
8913
8914 int
8915 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8916 {
8917 int len;
8918 CORE_ADDR addr;
8919 const gdb_byte *bpoint;
8920 gdb_byte *target_mem;
8921 struct cleanup *cleanup;
8922 int retval = 0;
8923
8924 addr = address;
8925 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8926
8927 /* Software breakpoints unsupported? */
8928 if (bpoint == NULL)
8929 return 0;
8930
8931 target_mem = alloca (len);
8932
8933 /* Enable the automatic memory restoration from breakpoints while
8934 we read the memory. Otherwise we could say about our temporary
8935 breakpoints they are permanent. */
8936 cleanup = make_show_memory_breakpoints_cleanup (0);
8937
8938 if (target_read_memory (address, target_mem, len) == 0
8939 && memcmp (target_mem, bpoint, len) == 0)
8940 retval = 1;
8941
8942 do_cleanups (cleanup);
8943
8944 return retval;
8945 }
8946
8947 /* Return 1 if LOC is pointing to a permanent breakpoint,
8948 return 0 otherwise. */
8949
8950 static int
8951 bp_loc_is_permanent (struct bp_location *loc)
8952 {
8953 struct cleanup *cleanup;
8954 int retval;
8955
8956 gdb_assert (loc != NULL);
8957
8958 cleanup = save_current_space_and_thread ();
8959 switch_to_program_space_and_thread (loc->pspace);
8960
8961 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
8962
8963 do_cleanups (cleanup);
8964
8965 return retval;
8966 }
8967
8968 /* Build a command list for the dprintf corresponding to the current
8969 settings of the dprintf style options. */
8970
8971 static void
8972 update_dprintf_command_list (struct breakpoint *b)
8973 {
8974 char *dprintf_args = b->extra_string;
8975 char *printf_line = NULL;
8976
8977 if (!dprintf_args)
8978 return;
8979
8980 dprintf_args = skip_spaces (dprintf_args);
8981
8982 /* Allow a comma, as it may have terminated a location, but don't
8983 insist on it. */
8984 if (*dprintf_args == ',')
8985 ++dprintf_args;
8986 dprintf_args = skip_spaces (dprintf_args);
8987
8988 if (*dprintf_args != '"')
8989 error (_("Bad format string, missing '\"'."));
8990
8991 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8992 printf_line = xstrprintf ("printf %s", dprintf_args);
8993 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8994 {
8995 if (!dprintf_function)
8996 error (_("No function supplied for dprintf call"));
8997
8998 if (dprintf_channel && strlen (dprintf_channel) > 0)
8999 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9000 dprintf_function,
9001 dprintf_channel,
9002 dprintf_args);
9003 else
9004 printf_line = xstrprintf ("call (void) %s (%s)",
9005 dprintf_function,
9006 dprintf_args);
9007 }
9008 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9009 {
9010 if (target_can_run_breakpoint_commands ())
9011 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9012 else
9013 {
9014 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9015 printf_line = xstrprintf ("printf %s", dprintf_args);
9016 }
9017 }
9018 else
9019 internal_error (__FILE__, __LINE__,
9020 _("Invalid dprintf style."));
9021
9022 gdb_assert (printf_line != NULL);
9023 /* Manufacture a printf sequence. */
9024 {
9025 struct command_line *printf_cmd_line
9026 = xmalloc (sizeof (struct command_line));
9027
9028 printf_cmd_line->control_type = simple_control;
9029 printf_cmd_line->body_count = 0;
9030 printf_cmd_line->body_list = NULL;
9031 printf_cmd_line->next = NULL;
9032 printf_cmd_line->line = printf_line;
9033
9034 breakpoint_set_commands (b, printf_cmd_line);
9035 }
9036 }
9037
9038 /* Update all dprintf commands, making their command lists reflect
9039 current style settings. */
9040
9041 static void
9042 update_dprintf_commands (char *args, int from_tty,
9043 struct cmd_list_element *c)
9044 {
9045 struct breakpoint *b;
9046
9047 ALL_BREAKPOINTS (b)
9048 {
9049 if (b->type == bp_dprintf)
9050 update_dprintf_command_list (b);
9051 }
9052 }
9053
9054 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9055 as textual description of the location, and COND_STRING
9056 as condition expression. */
9057
9058 static void
9059 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9060 struct symtabs_and_lines sals, char *addr_string,
9061 char *filter, char *cond_string,
9062 char *extra_string,
9063 enum bptype type, enum bpdisp disposition,
9064 int thread, int task, int ignore_count,
9065 const struct breakpoint_ops *ops, int from_tty,
9066 int enabled, int internal, unsigned flags,
9067 int display_canonical)
9068 {
9069 int i;
9070
9071 if (type == bp_hardware_breakpoint)
9072 {
9073 int target_resources_ok;
9074
9075 i = hw_breakpoint_used_count ();
9076 target_resources_ok =
9077 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9078 i + 1, 0);
9079 if (target_resources_ok == 0)
9080 error (_("No hardware breakpoint support in the target."));
9081 else if (target_resources_ok < 0)
9082 error (_("Hardware breakpoints used exceeds limit."));
9083 }
9084
9085 gdb_assert (sals.nelts > 0);
9086
9087 for (i = 0; i < sals.nelts; ++i)
9088 {
9089 struct symtab_and_line sal = sals.sals[i];
9090 struct bp_location *loc;
9091
9092 if (from_tty)
9093 {
9094 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9095 if (!loc_gdbarch)
9096 loc_gdbarch = gdbarch;
9097
9098 describe_other_breakpoints (loc_gdbarch,
9099 sal.pspace, sal.pc, sal.section, thread);
9100 }
9101
9102 if (i == 0)
9103 {
9104 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9105 b->thread = thread;
9106 b->task = task;
9107
9108 b->cond_string = cond_string;
9109 b->extra_string = extra_string;
9110 b->ignore_count = ignore_count;
9111 b->enable_state = enabled ? bp_enabled : bp_disabled;
9112 b->disposition = disposition;
9113
9114 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9115 b->loc->inserted = 1;
9116
9117 if (type == bp_static_tracepoint)
9118 {
9119 struct tracepoint *t = (struct tracepoint *) b;
9120 struct static_tracepoint_marker marker;
9121
9122 if (strace_marker_p (b))
9123 {
9124 /* We already know the marker exists, otherwise, we
9125 wouldn't see a sal for it. */
9126 char *p = &addr_string[3];
9127 char *endp;
9128 char *marker_str;
9129
9130 p = skip_spaces (p);
9131
9132 endp = skip_to_space (p);
9133
9134 marker_str = savestring (p, endp - p);
9135 t->static_trace_marker_id = marker_str;
9136
9137 printf_filtered (_("Probed static tracepoint "
9138 "marker \"%s\"\n"),
9139 t->static_trace_marker_id);
9140 }
9141 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9142 {
9143 t->static_trace_marker_id = xstrdup (marker.str_id);
9144 release_static_tracepoint_marker (&marker);
9145
9146 printf_filtered (_("Probed static tracepoint "
9147 "marker \"%s\"\n"),
9148 t->static_trace_marker_id);
9149 }
9150 else
9151 warning (_("Couldn't determine the static "
9152 "tracepoint marker to probe"));
9153 }
9154
9155 loc = b->loc;
9156 }
9157 else
9158 {
9159 loc = add_location_to_breakpoint (b, &sal);
9160 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9161 loc->inserted = 1;
9162 }
9163
9164 if (b->cond_string)
9165 {
9166 const char *arg = b->cond_string;
9167
9168 loc->cond = parse_exp_1 (&arg, loc->address,
9169 block_for_pc (loc->address), 0);
9170 if (*arg)
9171 error (_("Garbage '%s' follows condition"), arg);
9172 }
9173
9174 /* Dynamic printf requires and uses additional arguments on the
9175 command line, otherwise it's an error. */
9176 if (type == bp_dprintf)
9177 {
9178 if (b->extra_string)
9179 update_dprintf_command_list (b);
9180 else
9181 error (_("Format string required"));
9182 }
9183 else if (b->extra_string)
9184 error (_("Garbage '%s' at end of command"), b->extra_string);
9185 }
9186
9187 b->display_canonical = display_canonical;
9188 if (addr_string)
9189 b->addr_string = addr_string;
9190 else
9191 /* addr_string has to be used or breakpoint_re_set will delete
9192 me. */
9193 b->addr_string
9194 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9195 b->filter = filter;
9196 }
9197
9198 static void
9199 create_breakpoint_sal (struct gdbarch *gdbarch,
9200 struct symtabs_and_lines sals, char *addr_string,
9201 char *filter, char *cond_string,
9202 char *extra_string,
9203 enum bptype type, enum bpdisp disposition,
9204 int thread, int task, int ignore_count,
9205 const struct breakpoint_ops *ops, int from_tty,
9206 int enabled, int internal, unsigned flags,
9207 int display_canonical)
9208 {
9209 struct breakpoint *b;
9210 struct cleanup *old_chain;
9211
9212 if (is_tracepoint_type (type))
9213 {
9214 struct tracepoint *t;
9215
9216 t = XCNEW (struct tracepoint);
9217 b = &t->base;
9218 }
9219 else
9220 b = XNEW (struct breakpoint);
9221
9222 old_chain = make_cleanup (xfree, b);
9223
9224 init_breakpoint_sal (b, gdbarch,
9225 sals, addr_string,
9226 filter, cond_string, extra_string,
9227 type, disposition,
9228 thread, task, ignore_count,
9229 ops, from_tty,
9230 enabled, internal, flags,
9231 display_canonical);
9232 discard_cleanups (old_chain);
9233
9234 install_breakpoint (internal, b, 0);
9235 }
9236
9237 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9238 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9239 value. COND_STRING, if not NULL, specified the condition to be
9240 used for all breakpoints. Essentially the only case where
9241 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9242 function. In that case, it's still not possible to specify
9243 separate conditions for different overloaded functions, so
9244 we take just a single condition string.
9245
9246 NOTE: If the function succeeds, the caller is expected to cleanup
9247 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9248 array contents). If the function fails (error() is called), the
9249 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9250 COND and SALS arrays and each of those arrays contents. */
9251
9252 static void
9253 create_breakpoints_sal (struct gdbarch *gdbarch,
9254 struct linespec_result *canonical,
9255 char *cond_string, char *extra_string,
9256 enum bptype type, enum bpdisp disposition,
9257 int thread, int task, int ignore_count,
9258 const struct breakpoint_ops *ops, int from_tty,
9259 int enabled, int internal, unsigned flags)
9260 {
9261 int i;
9262 struct linespec_sals *lsal;
9263
9264 if (canonical->pre_expanded)
9265 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9266
9267 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9268 {
9269 /* Note that 'addr_string' can be NULL in the case of a plain
9270 'break', without arguments. */
9271 char *addr_string = (canonical->addr_string
9272 ? xstrdup (canonical->addr_string)
9273 : NULL);
9274 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9275 struct cleanup *inner = make_cleanup (xfree, addr_string);
9276
9277 make_cleanup (xfree, filter_string);
9278 create_breakpoint_sal (gdbarch, lsal->sals,
9279 addr_string,
9280 filter_string,
9281 cond_string, extra_string,
9282 type, disposition,
9283 thread, task, ignore_count, ops,
9284 from_tty, enabled, internal, flags,
9285 canonical->special_display);
9286 discard_cleanups (inner);
9287 }
9288 }
9289
9290 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9291 followed by conditionals. On return, SALS contains an array of SAL
9292 addresses found. ADDR_STRING contains a vector of (canonical)
9293 address strings. ADDRESS points to the end of the SAL.
9294
9295 The array and the line spec strings are allocated on the heap, it is
9296 the caller's responsibility to free them. */
9297
9298 static void
9299 parse_breakpoint_sals (char **address,
9300 struct linespec_result *canonical)
9301 {
9302 /* If no arg given, or if first arg is 'if ', use the default
9303 breakpoint. */
9304 if ((*address) == NULL || linespec_lexer_lex_keyword (*address))
9305 {
9306 /* The last displayed codepoint, if it's valid, is our default breakpoint
9307 address. */
9308 if (last_displayed_sal_is_valid ())
9309 {
9310 struct linespec_sals lsal;
9311 struct symtab_and_line sal;
9312 CORE_ADDR pc;
9313
9314 init_sal (&sal); /* Initialize to zeroes. */
9315 lsal.sals.sals = (struct symtab_and_line *)
9316 xmalloc (sizeof (struct symtab_and_line));
9317
9318 /* Set sal's pspace, pc, symtab, and line to the values
9319 corresponding to the last call to print_frame_info.
9320 Be sure to reinitialize LINE with NOTCURRENT == 0
9321 as the breakpoint line number is inappropriate otherwise.
9322 find_pc_line would adjust PC, re-set it back. */
9323 get_last_displayed_sal (&sal);
9324 pc = sal.pc;
9325 sal = find_pc_line (pc, 0);
9326
9327 /* "break" without arguments is equivalent to "break *PC"
9328 where PC is the last displayed codepoint's address. So
9329 make sure to set sal.explicit_pc to prevent GDB from
9330 trying to expand the list of sals to include all other
9331 instances with the same symtab and line. */
9332 sal.pc = pc;
9333 sal.explicit_pc = 1;
9334
9335 lsal.sals.sals[0] = sal;
9336 lsal.sals.nelts = 1;
9337 lsal.canonical = NULL;
9338
9339 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9340 }
9341 else
9342 error (_("No default breakpoint address now."));
9343 }
9344 else
9345 {
9346 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9347
9348 /* Force almost all breakpoints to be in terms of the
9349 current_source_symtab (which is decode_line_1's default).
9350 This should produce the results we want almost all of the
9351 time while leaving default_breakpoint_* alone.
9352
9353 ObjC: However, don't match an Objective-C method name which
9354 may have a '+' or '-' succeeded by a '['. */
9355 if (last_displayed_sal_is_valid ()
9356 && (!cursal.symtab
9357 || ((strchr ("+-", (*address)[0]) != NULL)
9358 && ((*address)[1] != '['))))
9359 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9360 get_last_displayed_symtab (),
9361 get_last_displayed_line (),
9362 canonical, NULL, NULL);
9363 else
9364 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9365 cursal.symtab, cursal.line, canonical, NULL, NULL);
9366 }
9367 }
9368
9369
9370 /* Convert each SAL into a real PC. Verify that the PC can be
9371 inserted as a breakpoint. If it can't throw an error. */
9372
9373 static void
9374 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9375 {
9376 int i;
9377
9378 for (i = 0; i < sals->nelts; i++)
9379 resolve_sal_pc (&sals->sals[i]);
9380 }
9381
9382 /* Fast tracepoints may have restrictions on valid locations. For
9383 instance, a fast tracepoint using a jump instead of a trap will
9384 likely have to overwrite more bytes than a trap would, and so can
9385 only be placed where the instruction is longer than the jump, or a
9386 multi-instruction sequence does not have a jump into the middle of
9387 it, etc. */
9388
9389 static void
9390 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9391 struct symtabs_and_lines *sals)
9392 {
9393 int i, rslt;
9394 struct symtab_and_line *sal;
9395 char *msg;
9396 struct cleanup *old_chain;
9397
9398 for (i = 0; i < sals->nelts; i++)
9399 {
9400 struct gdbarch *sarch;
9401
9402 sal = &sals->sals[i];
9403
9404 sarch = get_sal_arch (*sal);
9405 /* We fall back to GDBARCH if there is no architecture
9406 associated with SAL. */
9407 if (sarch == NULL)
9408 sarch = gdbarch;
9409 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9410 old_chain = make_cleanup (xfree, msg);
9411
9412 if (!rslt)
9413 error (_("May not have a fast tracepoint at 0x%s%s"),
9414 paddress (sarch, sal->pc), (msg ? msg : ""));
9415
9416 do_cleanups (old_chain);
9417 }
9418 }
9419
9420 /* Issue an invalid thread ID error. */
9421
9422 static void ATTRIBUTE_NORETURN
9423 invalid_thread_id_error (int id)
9424 {
9425 error (_("Unknown thread %d."), id);
9426 }
9427
9428 /* Given TOK, a string specification of condition and thread, as
9429 accepted by the 'break' command, extract the condition
9430 string and thread number and set *COND_STRING and *THREAD.
9431 PC identifies the context at which the condition should be parsed.
9432 If no condition is found, *COND_STRING is set to NULL.
9433 If no thread is found, *THREAD is set to -1. */
9434
9435 static void
9436 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9437 char **cond_string, int *thread, int *task,
9438 char **rest)
9439 {
9440 *cond_string = NULL;
9441 *thread = -1;
9442 *task = 0;
9443 *rest = NULL;
9444
9445 while (tok && *tok)
9446 {
9447 const char *end_tok;
9448 int toklen;
9449 const char *cond_start = NULL;
9450 const char *cond_end = NULL;
9451
9452 tok = skip_spaces_const (tok);
9453
9454 if ((*tok == '"' || *tok == ',') && rest)
9455 {
9456 *rest = savestring (tok, strlen (tok));
9457 return;
9458 }
9459
9460 end_tok = skip_to_space_const (tok);
9461
9462 toklen = end_tok - tok;
9463
9464 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9465 {
9466 struct expression *expr;
9467
9468 tok = cond_start = end_tok + 1;
9469 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9470 xfree (expr);
9471 cond_end = tok;
9472 *cond_string = savestring (cond_start, cond_end - cond_start);
9473 }
9474 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9475 {
9476 char *tmptok;
9477
9478 tok = end_tok + 1;
9479 *thread = strtol (tok, &tmptok, 0);
9480 if (tok == tmptok)
9481 error (_("Junk after thread keyword."));
9482 if (!valid_thread_id (*thread))
9483 invalid_thread_id_error (*thread);
9484 tok = tmptok;
9485 }
9486 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9487 {
9488 char *tmptok;
9489
9490 tok = end_tok + 1;
9491 *task = strtol (tok, &tmptok, 0);
9492 if (tok == tmptok)
9493 error (_("Junk after task keyword."));
9494 if (!valid_task_id (*task))
9495 error (_("Unknown task %d."), *task);
9496 tok = tmptok;
9497 }
9498 else if (rest)
9499 {
9500 *rest = savestring (tok, strlen (tok));
9501 return;
9502 }
9503 else
9504 error (_("Junk at end of arguments."));
9505 }
9506 }
9507
9508 /* Decode a static tracepoint marker spec. */
9509
9510 static struct symtabs_and_lines
9511 decode_static_tracepoint_spec (char **arg_p)
9512 {
9513 VEC(static_tracepoint_marker_p) *markers = NULL;
9514 struct symtabs_and_lines sals;
9515 struct cleanup *old_chain;
9516 char *p = &(*arg_p)[3];
9517 char *endp;
9518 char *marker_str;
9519 int i;
9520
9521 p = skip_spaces (p);
9522
9523 endp = skip_to_space (p);
9524
9525 marker_str = savestring (p, endp - p);
9526 old_chain = make_cleanup (xfree, marker_str);
9527
9528 markers = target_static_tracepoint_markers_by_strid (marker_str);
9529 if (VEC_empty(static_tracepoint_marker_p, markers))
9530 error (_("No known static tracepoint marker named %s"), marker_str);
9531
9532 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9533 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9534
9535 for (i = 0; i < sals.nelts; i++)
9536 {
9537 struct static_tracepoint_marker *marker;
9538
9539 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9540
9541 init_sal (&sals.sals[i]);
9542
9543 sals.sals[i] = find_pc_line (marker->address, 0);
9544 sals.sals[i].pc = marker->address;
9545
9546 release_static_tracepoint_marker (marker);
9547 }
9548
9549 do_cleanups (old_chain);
9550
9551 *arg_p = endp;
9552 return sals;
9553 }
9554
9555 /* Set a breakpoint. This function is shared between CLI and MI
9556 functions for setting a breakpoint. This function has two major
9557 modes of operations, selected by the PARSE_ARG parameter. If
9558 non-zero, the function will parse ARG, extracting location,
9559 condition, thread and extra string. Otherwise, ARG is just the
9560 breakpoint's location, with condition, thread, and extra string
9561 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9562 If INTERNAL is non-zero, the breakpoint number will be allocated
9563 from the internal breakpoint count. Returns true if any breakpoint
9564 was created; false otherwise. */
9565
9566 int
9567 create_breakpoint (struct gdbarch *gdbarch,
9568 char *arg, char *cond_string,
9569 int thread, char *extra_string,
9570 int parse_arg,
9571 int tempflag, enum bptype type_wanted,
9572 int ignore_count,
9573 enum auto_boolean pending_break_support,
9574 const struct breakpoint_ops *ops,
9575 int from_tty, int enabled, int internal,
9576 unsigned flags)
9577 {
9578 char *copy_arg = NULL;
9579 char *addr_start = arg;
9580 struct linespec_result canonical;
9581 struct cleanup *old_chain;
9582 struct cleanup *bkpt_chain = NULL;
9583 int pending = 0;
9584 int task = 0;
9585 int prev_bkpt_count = breakpoint_count;
9586
9587 gdb_assert (ops != NULL);
9588
9589 init_linespec_result (&canonical);
9590
9591 TRY
9592 {
9593 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9594 addr_start, &copy_arg);
9595 }
9596 CATCH (e, RETURN_MASK_ERROR)
9597 {
9598 /* If caller is interested in rc value from parse, set
9599 value. */
9600 if (e.error == NOT_FOUND_ERROR)
9601 {
9602 /* If pending breakpoint support is turned off, throw
9603 error. */
9604
9605 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9606 throw_exception (e);
9607
9608 exception_print (gdb_stderr, e);
9609
9610 /* If pending breakpoint support is auto query and the user
9611 selects no, then simply return the error code. */
9612 if (pending_break_support == AUTO_BOOLEAN_AUTO
9613 && !nquery (_("Make %s pending on future shared library load? "),
9614 bptype_string (type_wanted)))
9615 return 0;
9616
9617 /* At this point, either the user was queried about setting
9618 a pending breakpoint and selected yes, or pending
9619 breakpoint behavior is on and thus a pending breakpoint
9620 is defaulted on behalf of the user. */
9621 {
9622 struct linespec_sals lsal;
9623
9624 copy_arg = xstrdup (addr_start);
9625 lsal.canonical = xstrdup (copy_arg);
9626 lsal.sals.nelts = 1;
9627 lsal.sals.sals = XNEW (struct symtab_and_line);
9628 init_sal (&lsal.sals.sals[0]);
9629 pending = 1;
9630 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9631 }
9632 }
9633 else
9634 throw_exception (e);
9635 }
9636 END_CATCH
9637
9638 if (VEC_empty (linespec_sals, canonical.sals))
9639 return 0;
9640
9641 /* Create a chain of things that always need to be cleaned up. */
9642 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9643
9644 /* ----------------------------- SNIP -----------------------------
9645 Anything added to the cleanup chain beyond this point is assumed
9646 to be part of a breakpoint. If the breakpoint create succeeds
9647 then the memory is not reclaimed. */
9648 bkpt_chain = make_cleanup (null_cleanup, 0);
9649
9650 /* Resolve all line numbers to PC's and verify that the addresses
9651 are ok for the target. */
9652 if (!pending)
9653 {
9654 int ix;
9655 struct linespec_sals *iter;
9656
9657 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9658 breakpoint_sals_to_pc (&iter->sals);
9659 }
9660
9661 /* Fast tracepoints may have additional restrictions on location. */
9662 if (!pending && type_wanted == bp_fast_tracepoint)
9663 {
9664 int ix;
9665 struct linespec_sals *iter;
9666
9667 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9668 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9669 }
9670
9671 /* Verify that condition can be parsed, before setting any
9672 breakpoints. Allocate a separate condition expression for each
9673 breakpoint. */
9674 if (!pending)
9675 {
9676 if (parse_arg)
9677 {
9678 char *rest;
9679 struct linespec_sals *lsal;
9680
9681 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9682
9683 /* Here we only parse 'arg' to separate condition
9684 from thread number, so parsing in context of first
9685 sal is OK. When setting the breakpoint we'll
9686 re-parse it in context of each sal. */
9687
9688 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9689 &thread, &task, &rest);
9690 if (cond_string)
9691 make_cleanup (xfree, cond_string);
9692 if (rest)
9693 make_cleanup (xfree, rest);
9694 if (rest)
9695 extra_string = rest;
9696 }
9697 else
9698 {
9699 if (*arg != '\0')
9700 error (_("Garbage '%s' at end of location"), arg);
9701
9702 /* Create a private copy of condition string. */
9703 if (cond_string)
9704 {
9705 cond_string = xstrdup (cond_string);
9706 make_cleanup (xfree, cond_string);
9707 }
9708 /* Create a private copy of any extra string. */
9709 if (extra_string)
9710 {
9711 extra_string = xstrdup (extra_string);
9712 make_cleanup (xfree, extra_string);
9713 }
9714 }
9715
9716 ops->create_breakpoints_sal (gdbarch, &canonical,
9717 cond_string, extra_string, type_wanted,
9718 tempflag ? disp_del : disp_donttouch,
9719 thread, task, ignore_count, ops,
9720 from_tty, enabled, internal, flags);
9721 }
9722 else
9723 {
9724 struct breakpoint *b;
9725
9726 make_cleanup (xfree, copy_arg);
9727
9728 if (is_tracepoint_type (type_wanted))
9729 {
9730 struct tracepoint *t;
9731
9732 t = XCNEW (struct tracepoint);
9733 b = &t->base;
9734 }
9735 else
9736 b = XNEW (struct breakpoint);
9737
9738 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9739
9740 b->addr_string = copy_arg;
9741 if (parse_arg)
9742 {
9743 b->cond_string = NULL;
9744 b->extra_string = NULL;
9745 }
9746 else
9747 {
9748 /* Create a private copy of condition string. */
9749 if (cond_string)
9750 {
9751 cond_string = xstrdup (cond_string);
9752 make_cleanup (xfree, cond_string);
9753 }
9754 /* Create a private copy of any extra string. */
9755 if (extra_string != NULL)
9756 {
9757 extra_string = xstrdup (extra_string);
9758 make_cleanup (xfree, extra_string);
9759 }
9760 b->cond_string = cond_string;
9761 b->extra_string = extra_string;
9762 b->thread = thread;
9763 }
9764 b->ignore_count = ignore_count;
9765 b->disposition = tempflag ? disp_del : disp_donttouch;
9766 b->condition_not_parsed = 1;
9767 b->enable_state = enabled ? bp_enabled : bp_disabled;
9768 if ((type_wanted != bp_breakpoint
9769 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9770 b->pspace = current_program_space;
9771
9772 install_breakpoint (internal, b, 0);
9773 }
9774
9775 if (VEC_length (linespec_sals, canonical.sals) > 1)
9776 {
9777 warning (_("Multiple breakpoints were set.\nUse the "
9778 "\"delete\" command to delete unwanted breakpoints."));
9779 prev_breakpoint_count = prev_bkpt_count;
9780 }
9781
9782 /* That's it. Discard the cleanups for data inserted into the
9783 breakpoint. */
9784 discard_cleanups (bkpt_chain);
9785 /* But cleanup everything else. */
9786 do_cleanups (old_chain);
9787
9788 /* error call may happen here - have BKPT_CHAIN already discarded. */
9789 update_global_location_list (UGLL_MAY_INSERT);
9790
9791 return 1;
9792 }
9793
9794 /* Set a breakpoint.
9795 ARG is a string describing breakpoint address,
9796 condition, and thread.
9797 FLAG specifies if a breakpoint is hardware on,
9798 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9799 and BP_TEMPFLAG. */
9800
9801 static void
9802 break_command_1 (char *arg, int flag, int from_tty)
9803 {
9804 int tempflag = flag & BP_TEMPFLAG;
9805 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9806 ? bp_hardware_breakpoint
9807 : bp_breakpoint);
9808 struct breakpoint_ops *ops;
9809 const char *arg_cp = arg;
9810
9811 /* Matching breakpoints on probes. */
9812 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9813 ops = &bkpt_probe_breakpoint_ops;
9814 else
9815 ops = &bkpt_breakpoint_ops;
9816
9817 create_breakpoint (get_current_arch (),
9818 arg,
9819 NULL, 0, NULL, 1 /* parse arg */,
9820 tempflag, type_wanted,
9821 0 /* Ignore count */,
9822 pending_break_support,
9823 ops,
9824 from_tty,
9825 1 /* enabled */,
9826 0 /* internal */,
9827 0);
9828 }
9829
9830 /* Helper function for break_command_1 and disassemble_command. */
9831
9832 void
9833 resolve_sal_pc (struct symtab_and_line *sal)
9834 {
9835 CORE_ADDR pc;
9836
9837 if (sal->pc == 0 && sal->symtab != NULL)
9838 {
9839 if (!find_line_pc (sal->symtab, sal->line, &pc))
9840 error (_("No line %d in file \"%s\"."),
9841 sal->line, symtab_to_filename_for_display (sal->symtab));
9842 sal->pc = pc;
9843
9844 /* If this SAL corresponds to a breakpoint inserted using a line
9845 number, then skip the function prologue if necessary. */
9846 if (sal->explicit_line)
9847 skip_prologue_sal (sal);
9848 }
9849
9850 if (sal->section == 0 && sal->symtab != NULL)
9851 {
9852 const struct blockvector *bv;
9853 const struct block *b;
9854 struct symbol *sym;
9855
9856 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9857 SYMTAB_COMPUNIT (sal->symtab));
9858 if (bv != NULL)
9859 {
9860 sym = block_linkage_function (b);
9861 if (sym != NULL)
9862 {
9863 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9864 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9865 sym);
9866 }
9867 else
9868 {
9869 /* It really is worthwhile to have the section, so we'll
9870 just have to look harder. This case can be executed
9871 if we have line numbers but no functions (as can
9872 happen in assembly source). */
9873
9874 struct bound_minimal_symbol msym;
9875 struct cleanup *old_chain = save_current_space_and_thread ();
9876
9877 switch_to_program_space_and_thread (sal->pspace);
9878
9879 msym = lookup_minimal_symbol_by_pc (sal->pc);
9880 if (msym.minsym)
9881 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9882
9883 do_cleanups (old_chain);
9884 }
9885 }
9886 }
9887 }
9888
9889 void
9890 break_command (char *arg, int from_tty)
9891 {
9892 break_command_1 (arg, 0, from_tty);
9893 }
9894
9895 void
9896 tbreak_command (char *arg, int from_tty)
9897 {
9898 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9899 }
9900
9901 static void
9902 hbreak_command (char *arg, int from_tty)
9903 {
9904 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9905 }
9906
9907 static void
9908 thbreak_command (char *arg, int from_tty)
9909 {
9910 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9911 }
9912
9913 static void
9914 stop_command (char *arg, int from_tty)
9915 {
9916 printf_filtered (_("Specify the type of breakpoint to set.\n\
9917 Usage: stop in <function | address>\n\
9918 stop at <line>\n"));
9919 }
9920
9921 static void
9922 stopin_command (char *arg, int from_tty)
9923 {
9924 int badInput = 0;
9925
9926 if (arg == (char *) NULL)
9927 badInput = 1;
9928 else if (*arg != '*')
9929 {
9930 char *argptr = arg;
9931 int hasColon = 0;
9932
9933 /* Look for a ':'. If this is a line number specification, then
9934 say it is bad, otherwise, it should be an address or
9935 function/method name. */
9936 while (*argptr && !hasColon)
9937 {
9938 hasColon = (*argptr == ':');
9939 argptr++;
9940 }
9941
9942 if (hasColon)
9943 badInput = (*argptr != ':'); /* Not a class::method */
9944 else
9945 badInput = isdigit (*arg); /* a simple line number */
9946 }
9947
9948 if (badInput)
9949 printf_filtered (_("Usage: stop in <function | address>\n"));
9950 else
9951 break_command_1 (arg, 0, from_tty);
9952 }
9953
9954 static void
9955 stopat_command (char *arg, int from_tty)
9956 {
9957 int badInput = 0;
9958
9959 if (arg == (char *) NULL || *arg == '*') /* no line number */
9960 badInput = 1;
9961 else
9962 {
9963 char *argptr = arg;
9964 int hasColon = 0;
9965
9966 /* Look for a ':'. If there is a '::' then get out, otherwise
9967 it is probably a line number. */
9968 while (*argptr && !hasColon)
9969 {
9970 hasColon = (*argptr == ':');
9971 argptr++;
9972 }
9973
9974 if (hasColon)
9975 badInput = (*argptr == ':'); /* we have class::method */
9976 else
9977 badInput = !isdigit (*arg); /* not a line number */
9978 }
9979
9980 if (badInput)
9981 printf_filtered (_("Usage: stop at <line>\n"));
9982 else
9983 break_command_1 (arg, 0, from_tty);
9984 }
9985
9986 /* The dynamic printf command is mostly like a regular breakpoint, but
9987 with a prewired command list consisting of a single output command,
9988 built from extra arguments supplied on the dprintf command
9989 line. */
9990
9991 static void
9992 dprintf_command (char *arg, int from_tty)
9993 {
9994 create_breakpoint (get_current_arch (),
9995 arg,
9996 NULL, 0, NULL, 1 /* parse arg */,
9997 0, bp_dprintf,
9998 0 /* Ignore count */,
9999 pending_break_support,
10000 &dprintf_breakpoint_ops,
10001 from_tty,
10002 1 /* enabled */,
10003 0 /* internal */,
10004 0);
10005 }
10006
10007 static void
10008 agent_printf_command (char *arg, int from_tty)
10009 {
10010 error (_("May only run agent-printf on the target"));
10011 }
10012
10013 /* Implement the "breakpoint_hit" breakpoint_ops method for
10014 ranged breakpoints. */
10015
10016 static int
10017 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10018 struct address_space *aspace,
10019 CORE_ADDR bp_addr,
10020 const struct target_waitstatus *ws)
10021 {
10022 if (ws->kind != TARGET_WAITKIND_STOPPED
10023 || ws->value.sig != GDB_SIGNAL_TRAP)
10024 return 0;
10025
10026 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10027 bl->length, aspace, bp_addr);
10028 }
10029
10030 /* Implement the "resources_needed" breakpoint_ops method for
10031 ranged breakpoints. */
10032
10033 static int
10034 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10035 {
10036 return target_ranged_break_num_registers ();
10037 }
10038
10039 /* Implement the "print_it" breakpoint_ops method for
10040 ranged breakpoints. */
10041
10042 static enum print_stop_action
10043 print_it_ranged_breakpoint (bpstat bs)
10044 {
10045 struct breakpoint *b = bs->breakpoint_at;
10046 struct bp_location *bl = b->loc;
10047 struct ui_out *uiout = current_uiout;
10048
10049 gdb_assert (b->type == bp_hardware_breakpoint);
10050
10051 /* Ranged breakpoints have only one location. */
10052 gdb_assert (bl && bl->next == NULL);
10053
10054 annotate_breakpoint (b->number);
10055 if (b->disposition == disp_del)
10056 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10057 else
10058 ui_out_text (uiout, "\nRanged breakpoint ");
10059 if (ui_out_is_mi_like_p (uiout))
10060 {
10061 ui_out_field_string (uiout, "reason",
10062 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10063 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10064 }
10065 ui_out_field_int (uiout, "bkptno", b->number);
10066 ui_out_text (uiout, ", ");
10067
10068 return PRINT_SRC_AND_LOC;
10069 }
10070
10071 /* Implement the "print_one" breakpoint_ops method for
10072 ranged breakpoints. */
10073
10074 static void
10075 print_one_ranged_breakpoint (struct breakpoint *b,
10076 struct bp_location **last_loc)
10077 {
10078 struct bp_location *bl = b->loc;
10079 struct value_print_options opts;
10080 struct ui_out *uiout = current_uiout;
10081
10082 /* Ranged breakpoints have only one location. */
10083 gdb_assert (bl && bl->next == NULL);
10084
10085 get_user_print_options (&opts);
10086
10087 if (opts.addressprint)
10088 /* We don't print the address range here, it will be printed later
10089 by print_one_detail_ranged_breakpoint. */
10090 ui_out_field_skip (uiout, "addr");
10091 annotate_field (5);
10092 print_breakpoint_location (b, bl);
10093 *last_loc = bl;
10094 }
10095
10096 /* Implement the "print_one_detail" breakpoint_ops method for
10097 ranged breakpoints. */
10098
10099 static void
10100 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10101 struct ui_out *uiout)
10102 {
10103 CORE_ADDR address_start, address_end;
10104 struct bp_location *bl = b->loc;
10105 struct ui_file *stb = mem_fileopen ();
10106 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10107
10108 gdb_assert (bl);
10109
10110 address_start = bl->address;
10111 address_end = address_start + bl->length - 1;
10112
10113 ui_out_text (uiout, "\taddress range: ");
10114 fprintf_unfiltered (stb, "[%s, %s]",
10115 print_core_address (bl->gdbarch, address_start),
10116 print_core_address (bl->gdbarch, address_end));
10117 ui_out_field_stream (uiout, "addr", stb);
10118 ui_out_text (uiout, "\n");
10119
10120 do_cleanups (cleanup);
10121 }
10122
10123 /* Implement the "print_mention" breakpoint_ops method for
10124 ranged breakpoints. */
10125
10126 static void
10127 print_mention_ranged_breakpoint (struct breakpoint *b)
10128 {
10129 struct bp_location *bl = b->loc;
10130 struct ui_out *uiout = current_uiout;
10131
10132 gdb_assert (bl);
10133 gdb_assert (b->type == bp_hardware_breakpoint);
10134
10135 if (ui_out_is_mi_like_p (uiout))
10136 return;
10137
10138 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10139 b->number, paddress (bl->gdbarch, bl->address),
10140 paddress (bl->gdbarch, bl->address + bl->length - 1));
10141 }
10142
10143 /* Implement the "print_recreate" breakpoint_ops method for
10144 ranged breakpoints. */
10145
10146 static void
10147 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10148 {
10149 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10150 b->addr_string_range_end);
10151 print_recreate_thread (b, fp);
10152 }
10153
10154 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10155
10156 static struct breakpoint_ops ranged_breakpoint_ops;
10157
10158 /* Find the address where the end of the breakpoint range should be
10159 placed, given the SAL of the end of the range. This is so that if
10160 the user provides a line number, the end of the range is set to the
10161 last instruction of the given line. */
10162
10163 static CORE_ADDR
10164 find_breakpoint_range_end (struct symtab_and_line sal)
10165 {
10166 CORE_ADDR end;
10167
10168 /* If the user provided a PC value, use it. Otherwise,
10169 find the address of the end of the given location. */
10170 if (sal.explicit_pc)
10171 end = sal.pc;
10172 else
10173 {
10174 int ret;
10175 CORE_ADDR start;
10176
10177 ret = find_line_pc_range (sal, &start, &end);
10178 if (!ret)
10179 error (_("Could not find location of the end of the range."));
10180
10181 /* find_line_pc_range returns the start of the next line. */
10182 end--;
10183 }
10184
10185 return end;
10186 }
10187
10188 /* Implement the "break-range" CLI command. */
10189
10190 static void
10191 break_range_command (char *arg, int from_tty)
10192 {
10193 char *arg_start, *addr_string_start, *addr_string_end;
10194 struct linespec_result canonical_start, canonical_end;
10195 int bp_count, can_use_bp, length;
10196 CORE_ADDR end;
10197 struct breakpoint *b;
10198 struct symtab_and_line sal_start, sal_end;
10199 struct cleanup *cleanup_bkpt;
10200 struct linespec_sals *lsal_start, *lsal_end;
10201
10202 /* We don't support software ranged breakpoints. */
10203 if (target_ranged_break_num_registers () < 0)
10204 error (_("This target does not support hardware ranged breakpoints."));
10205
10206 bp_count = hw_breakpoint_used_count ();
10207 bp_count += target_ranged_break_num_registers ();
10208 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10209 bp_count, 0);
10210 if (can_use_bp < 0)
10211 error (_("Hardware breakpoints used exceeds limit."));
10212
10213 arg = skip_spaces (arg);
10214 if (arg == NULL || arg[0] == '\0')
10215 error(_("No address range specified."));
10216
10217 init_linespec_result (&canonical_start);
10218
10219 arg_start = arg;
10220 parse_breakpoint_sals (&arg, &canonical_start);
10221
10222 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10223
10224 if (arg[0] != ',')
10225 error (_("Too few arguments."));
10226 else if (VEC_empty (linespec_sals, canonical_start.sals))
10227 error (_("Could not find location of the beginning of the range."));
10228
10229 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10230
10231 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10232 || lsal_start->sals.nelts != 1)
10233 error (_("Cannot create a ranged breakpoint with multiple locations."));
10234
10235 sal_start = lsal_start->sals.sals[0];
10236 addr_string_start = savestring (arg_start, arg - arg_start);
10237 make_cleanup (xfree, addr_string_start);
10238
10239 arg++; /* Skip the comma. */
10240 arg = skip_spaces (arg);
10241
10242 /* Parse the end location. */
10243
10244 init_linespec_result (&canonical_end);
10245 arg_start = arg;
10246
10247 /* We call decode_line_full directly here instead of using
10248 parse_breakpoint_sals because we need to specify the start location's
10249 symtab and line as the default symtab and line for the end of the
10250 range. This makes it possible to have ranges like "foo.c:27, +14",
10251 where +14 means 14 lines from the start location. */
10252 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10253 sal_start.symtab, sal_start.line,
10254 &canonical_end, NULL, NULL);
10255
10256 make_cleanup_destroy_linespec_result (&canonical_end);
10257
10258 if (VEC_empty (linespec_sals, canonical_end.sals))
10259 error (_("Could not find location of the end of the range."));
10260
10261 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10262 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10263 || lsal_end->sals.nelts != 1)
10264 error (_("Cannot create a ranged breakpoint with multiple locations."));
10265
10266 sal_end = lsal_end->sals.sals[0];
10267 addr_string_end = savestring (arg_start, arg - arg_start);
10268 make_cleanup (xfree, addr_string_end);
10269
10270 end = find_breakpoint_range_end (sal_end);
10271 if (sal_start.pc > end)
10272 error (_("Invalid address range, end precedes start."));
10273
10274 length = end - sal_start.pc + 1;
10275 if (length < 0)
10276 /* Length overflowed. */
10277 error (_("Address range too large."));
10278 else if (length == 1)
10279 {
10280 /* This range is simple enough to be handled by
10281 the `hbreak' command. */
10282 hbreak_command (addr_string_start, 1);
10283
10284 do_cleanups (cleanup_bkpt);
10285
10286 return;
10287 }
10288
10289 /* Now set up the breakpoint. */
10290 b = set_raw_breakpoint (get_current_arch (), sal_start,
10291 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10292 set_breakpoint_count (breakpoint_count + 1);
10293 b->number = breakpoint_count;
10294 b->disposition = disp_donttouch;
10295 b->addr_string = xstrdup (addr_string_start);
10296 b->addr_string_range_end = xstrdup (addr_string_end);
10297 b->loc->length = length;
10298
10299 do_cleanups (cleanup_bkpt);
10300
10301 mention (b);
10302 observer_notify_breakpoint_created (b);
10303 update_global_location_list (UGLL_MAY_INSERT);
10304 }
10305
10306 /* Return non-zero if EXP is verified as constant. Returned zero
10307 means EXP is variable. Also the constant detection may fail for
10308 some constant expressions and in such case still falsely return
10309 zero. */
10310
10311 static int
10312 watchpoint_exp_is_const (const struct expression *exp)
10313 {
10314 int i = exp->nelts;
10315
10316 while (i > 0)
10317 {
10318 int oplenp, argsp;
10319
10320 /* We are only interested in the descriptor of each element. */
10321 operator_length (exp, i, &oplenp, &argsp);
10322 i -= oplenp;
10323
10324 switch (exp->elts[i].opcode)
10325 {
10326 case BINOP_ADD:
10327 case BINOP_SUB:
10328 case BINOP_MUL:
10329 case BINOP_DIV:
10330 case BINOP_REM:
10331 case BINOP_MOD:
10332 case BINOP_LSH:
10333 case BINOP_RSH:
10334 case BINOP_LOGICAL_AND:
10335 case BINOP_LOGICAL_OR:
10336 case BINOP_BITWISE_AND:
10337 case BINOP_BITWISE_IOR:
10338 case BINOP_BITWISE_XOR:
10339 case BINOP_EQUAL:
10340 case BINOP_NOTEQUAL:
10341 case BINOP_LESS:
10342 case BINOP_GTR:
10343 case BINOP_LEQ:
10344 case BINOP_GEQ:
10345 case BINOP_REPEAT:
10346 case BINOP_COMMA:
10347 case BINOP_EXP:
10348 case BINOP_MIN:
10349 case BINOP_MAX:
10350 case BINOP_INTDIV:
10351 case BINOP_CONCAT:
10352 case TERNOP_COND:
10353 case TERNOP_SLICE:
10354
10355 case OP_LONG:
10356 case OP_DOUBLE:
10357 case OP_DECFLOAT:
10358 case OP_LAST:
10359 case OP_COMPLEX:
10360 case OP_STRING:
10361 case OP_ARRAY:
10362 case OP_TYPE:
10363 case OP_TYPEOF:
10364 case OP_DECLTYPE:
10365 case OP_TYPEID:
10366 case OP_NAME:
10367 case OP_OBJC_NSSTRING:
10368
10369 case UNOP_NEG:
10370 case UNOP_LOGICAL_NOT:
10371 case UNOP_COMPLEMENT:
10372 case UNOP_ADDR:
10373 case UNOP_HIGH:
10374 case UNOP_CAST:
10375
10376 case UNOP_CAST_TYPE:
10377 case UNOP_REINTERPRET_CAST:
10378 case UNOP_DYNAMIC_CAST:
10379 /* Unary, binary and ternary operators: We have to check
10380 their operands. If they are constant, then so is the
10381 result of that operation. For instance, if A and B are
10382 determined to be constants, then so is "A + B".
10383
10384 UNOP_IND is one exception to the rule above, because the
10385 value of *ADDR is not necessarily a constant, even when
10386 ADDR is. */
10387 break;
10388
10389 case OP_VAR_VALUE:
10390 /* Check whether the associated symbol is a constant.
10391
10392 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10393 possible that a buggy compiler could mark a variable as
10394 constant even when it is not, and TYPE_CONST would return
10395 true in this case, while SYMBOL_CLASS wouldn't.
10396
10397 We also have to check for function symbols because they
10398 are always constant. */
10399 {
10400 struct symbol *s = exp->elts[i + 2].symbol;
10401
10402 if (SYMBOL_CLASS (s) != LOC_BLOCK
10403 && SYMBOL_CLASS (s) != LOC_CONST
10404 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10405 return 0;
10406 break;
10407 }
10408
10409 /* The default action is to return 0 because we are using
10410 the optimistic approach here: If we don't know something,
10411 then it is not a constant. */
10412 default:
10413 return 0;
10414 }
10415 }
10416
10417 return 1;
10418 }
10419
10420 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10421
10422 static void
10423 dtor_watchpoint (struct breakpoint *self)
10424 {
10425 struct watchpoint *w = (struct watchpoint *) self;
10426
10427 xfree (w->cond_exp);
10428 xfree (w->exp);
10429 xfree (w->exp_string);
10430 xfree (w->exp_string_reparse);
10431 value_free (w->val);
10432
10433 base_breakpoint_ops.dtor (self);
10434 }
10435
10436 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10437
10438 static void
10439 re_set_watchpoint (struct breakpoint *b)
10440 {
10441 struct watchpoint *w = (struct watchpoint *) b;
10442
10443 /* Watchpoint can be either on expression using entirely global
10444 variables, or it can be on local variables.
10445
10446 Watchpoints of the first kind are never auto-deleted, and even
10447 persist across program restarts. Since they can use variables
10448 from shared libraries, we need to reparse expression as libraries
10449 are loaded and unloaded.
10450
10451 Watchpoints on local variables can also change meaning as result
10452 of solib event. For example, if a watchpoint uses both a local
10453 and a global variables in expression, it's a local watchpoint,
10454 but unloading of a shared library will make the expression
10455 invalid. This is not a very common use case, but we still
10456 re-evaluate expression, to avoid surprises to the user.
10457
10458 Note that for local watchpoints, we re-evaluate it only if
10459 watchpoints frame id is still valid. If it's not, it means the
10460 watchpoint is out of scope and will be deleted soon. In fact,
10461 I'm not sure we'll ever be called in this case.
10462
10463 If a local watchpoint's frame id is still valid, then
10464 w->exp_valid_block is likewise valid, and we can safely use it.
10465
10466 Don't do anything about disabled watchpoints, since they will be
10467 reevaluated again when enabled. */
10468 update_watchpoint (w, 1 /* reparse */);
10469 }
10470
10471 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10472
10473 static int
10474 insert_watchpoint (struct bp_location *bl)
10475 {
10476 struct watchpoint *w = (struct watchpoint *) bl->owner;
10477 int length = w->exact ? 1 : bl->length;
10478
10479 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10480 w->cond_exp);
10481 }
10482
10483 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10484
10485 static int
10486 remove_watchpoint (struct bp_location *bl)
10487 {
10488 struct watchpoint *w = (struct watchpoint *) bl->owner;
10489 int length = w->exact ? 1 : bl->length;
10490
10491 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10492 w->cond_exp);
10493 }
10494
10495 static int
10496 breakpoint_hit_watchpoint (const struct bp_location *bl,
10497 struct address_space *aspace, CORE_ADDR bp_addr,
10498 const struct target_waitstatus *ws)
10499 {
10500 struct breakpoint *b = bl->owner;
10501 struct watchpoint *w = (struct watchpoint *) b;
10502
10503 /* Continuable hardware watchpoints are treated as non-existent if the
10504 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10505 some data address). Otherwise gdb won't stop on a break instruction
10506 in the code (not from a breakpoint) when a hardware watchpoint has
10507 been defined. Also skip watchpoints which we know did not trigger
10508 (did not match the data address). */
10509 if (is_hardware_watchpoint (b)
10510 && w->watchpoint_triggered == watch_triggered_no)
10511 return 0;
10512
10513 return 1;
10514 }
10515
10516 static void
10517 check_status_watchpoint (bpstat bs)
10518 {
10519 gdb_assert (is_watchpoint (bs->breakpoint_at));
10520
10521 bpstat_check_watchpoint (bs);
10522 }
10523
10524 /* Implement the "resources_needed" breakpoint_ops method for
10525 hardware watchpoints. */
10526
10527 static int
10528 resources_needed_watchpoint (const struct bp_location *bl)
10529 {
10530 struct watchpoint *w = (struct watchpoint *) bl->owner;
10531 int length = w->exact? 1 : bl->length;
10532
10533 return target_region_ok_for_hw_watchpoint (bl->address, length);
10534 }
10535
10536 /* Implement the "works_in_software_mode" breakpoint_ops method for
10537 hardware watchpoints. */
10538
10539 static int
10540 works_in_software_mode_watchpoint (const struct breakpoint *b)
10541 {
10542 /* Read and access watchpoints only work with hardware support. */
10543 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10544 }
10545
10546 static enum print_stop_action
10547 print_it_watchpoint (bpstat bs)
10548 {
10549 struct cleanup *old_chain;
10550 struct breakpoint *b;
10551 struct ui_file *stb;
10552 enum print_stop_action result;
10553 struct watchpoint *w;
10554 struct ui_out *uiout = current_uiout;
10555
10556 gdb_assert (bs->bp_location_at != NULL);
10557
10558 b = bs->breakpoint_at;
10559 w = (struct watchpoint *) b;
10560
10561 stb = mem_fileopen ();
10562 old_chain = make_cleanup_ui_file_delete (stb);
10563
10564 switch (b->type)
10565 {
10566 case bp_watchpoint:
10567 case bp_hardware_watchpoint:
10568 annotate_watchpoint (b->number);
10569 if (ui_out_is_mi_like_p (uiout))
10570 ui_out_field_string
10571 (uiout, "reason",
10572 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10573 mention (b);
10574 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10575 ui_out_text (uiout, "\nOld value = ");
10576 watchpoint_value_print (bs->old_val, stb);
10577 ui_out_field_stream (uiout, "old", stb);
10578 ui_out_text (uiout, "\nNew value = ");
10579 watchpoint_value_print (w->val, stb);
10580 ui_out_field_stream (uiout, "new", stb);
10581 ui_out_text (uiout, "\n");
10582 /* More than one watchpoint may have been triggered. */
10583 result = PRINT_UNKNOWN;
10584 break;
10585
10586 case bp_read_watchpoint:
10587 if (ui_out_is_mi_like_p (uiout))
10588 ui_out_field_string
10589 (uiout, "reason",
10590 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10591 mention (b);
10592 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10593 ui_out_text (uiout, "\nValue = ");
10594 watchpoint_value_print (w->val, stb);
10595 ui_out_field_stream (uiout, "value", stb);
10596 ui_out_text (uiout, "\n");
10597 result = PRINT_UNKNOWN;
10598 break;
10599
10600 case bp_access_watchpoint:
10601 if (bs->old_val != NULL)
10602 {
10603 annotate_watchpoint (b->number);
10604 if (ui_out_is_mi_like_p (uiout))
10605 ui_out_field_string
10606 (uiout, "reason",
10607 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10608 mention (b);
10609 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10610 ui_out_text (uiout, "\nOld value = ");
10611 watchpoint_value_print (bs->old_val, stb);
10612 ui_out_field_stream (uiout, "old", stb);
10613 ui_out_text (uiout, "\nNew value = ");
10614 }
10615 else
10616 {
10617 mention (b);
10618 if (ui_out_is_mi_like_p (uiout))
10619 ui_out_field_string
10620 (uiout, "reason",
10621 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10622 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10623 ui_out_text (uiout, "\nValue = ");
10624 }
10625 watchpoint_value_print (w->val, stb);
10626 ui_out_field_stream (uiout, "new", stb);
10627 ui_out_text (uiout, "\n");
10628 result = PRINT_UNKNOWN;
10629 break;
10630 default:
10631 result = PRINT_UNKNOWN;
10632 }
10633
10634 do_cleanups (old_chain);
10635 return result;
10636 }
10637
10638 /* Implement the "print_mention" breakpoint_ops method for hardware
10639 watchpoints. */
10640
10641 static void
10642 print_mention_watchpoint (struct breakpoint *b)
10643 {
10644 struct cleanup *ui_out_chain;
10645 struct watchpoint *w = (struct watchpoint *) b;
10646 struct ui_out *uiout = current_uiout;
10647
10648 switch (b->type)
10649 {
10650 case bp_watchpoint:
10651 ui_out_text (uiout, "Watchpoint ");
10652 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10653 break;
10654 case bp_hardware_watchpoint:
10655 ui_out_text (uiout, "Hardware watchpoint ");
10656 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10657 break;
10658 case bp_read_watchpoint:
10659 ui_out_text (uiout, "Hardware read watchpoint ");
10660 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10661 break;
10662 case bp_access_watchpoint:
10663 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10664 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10665 break;
10666 default:
10667 internal_error (__FILE__, __LINE__,
10668 _("Invalid hardware watchpoint type."));
10669 }
10670
10671 ui_out_field_int (uiout, "number", b->number);
10672 ui_out_text (uiout, ": ");
10673 ui_out_field_string (uiout, "exp", w->exp_string);
10674 do_cleanups (ui_out_chain);
10675 }
10676
10677 /* Implement the "print_recreate" breakpoint_ops method for
10678 watchpoints. */
10679
10680 static void
10681 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10682 {
10683 struct watchpoint *w = (struct watchpoint *) b;
10684
10685 switch (b->type)
10686 {
10687 case bp_watchpoint:
10688 case bp_hardware_watchpoint:
10689 fprintf_unfiltered (fp, "watch");
10690 break;
10691 case bp_read_watchpoint:
10692 fprintf_unfiltered (fp, "rwatch");
10693 break;
10694 case bp_access_watchpoint:
10695 fprintf_unfiltered (fp, "awatch");
10696 break;
10697 default:
10698 internal_error (__FILE__, __LINE__,
10699 _("Invalid watchpoint type."));
10700 }
10701
10702 fprintf_unfiltered (fp, " %s", w->exp_string);
10703 print_recreate_thread (b, fp);
10704 }
10705
10706 /* Implement the "explains_signal" breakpoint_ops method for
10707 watchpoints. */
10708
10709 static int
10710 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10711 {
10712 /* A software watchpoint cannot cause a signal other than
10713 GDB_SIGNAL_TRAP. */
10714 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10715 return 0;
10716
10717 return 1;
10718 }
10719
10720 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10721
10722 static struct breakpoint_ops watchpoint_breakpoint_ops;
10723
10724 /* Implement the "insert" breakpoint_ops method for
10725 masked hardware watchpoints. */
10726
10727 static int
10728 insert_masked_watchpoint (struct bp_location *bl)
10729 {
10730 struct watchpoint *w = (struct watchpoint *) bl->owner;
10731
10732 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10733 bl->watchpoint_type);
10734 }
10735
10736 /* Implement the "remove" breakpoint_ops method for
10737 masked hardware watchpoints. */
10738
10739 static int
10740 remove_masked_watchpoint (struct bp_location *bl)
10741 {
10742 struct watchpoint *w = (struct watchpoint *) bl->owner;
10743
10744 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10745 bl->watchpoint_type);
10746 }
10747
10748 /* Implement the "resources_needed" breakpoint_ops method for
10749 masked hardware watchpoints. */
10750
10751 static int
10752 resources_needed_masked_watchpoint (const struct bp_location *bl)
10753 {
10754 struct watchpoint *w = (struct watchpoint *) bl->owner;
10755
10756 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10757 }
10758
10759 /* Implement the "works_in_software_mode" breakpoint_ops method for
10760 masked hardware watchpoints. */
10761
10762 static int
10763 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10764 {
10765 return 0;
10766 }
10767
10768 /* Implement the "print_it" breakpoint_ops method for
10769 masked hardware watchpoints. */
10770
10771 static enum print_stop_action
10772 print_it_masked_watchpoint (bpstat bs)
10773 {
10774 struct breakpoint *b = bs->breakpoint_at;
10775 struct ui_out *uiout = current_uiout;
10776
10777 /* Masked watchpoints have only one location. */
10778 gdb_assert (b->loc && b->loc->next == NULL);
10779
10780 switch (b->type)
10781 {
10782 case bp_hardware_watchpoint:
10783 annotate_watchpoint (b->number);
10784 if (ui_out_is_mi_like_p (uiout))
10785 ui_out_field_string
10786 (uiout, "reason",
10787 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10788 break;
10789
10790 case bp_read_watchpoint:
10791 if (ui_out_is_mi_like_p (uiout))
10792 ui_out_field_string
10793 (uiout, "reason",
10794 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10795 break;
10796
10797 case bp_access_watchpoint:
10798 if (ui_out_is_mi_like_p (uiout))
10799 ui_out_field_string
10800 (uiout, "reason",
10801 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10802 break;
10803 default:
10804 internal_error (__FILE__, __LINE__,
10805 _("Invalid hardware watchpoint type."));
10806 }
10807
10808 mention (b);
10809 ui_out_text (uiout, _("\n\
10810 Check the underlying instruction at PC for the memory\n\
10811 address and value which triggered this watchpoint.\n"));
10812 ui_out_text (uiout, "\n");
10813
10814 /* More than one watchpoint may have been triggered. */
10815 return PRINT_UNKNOWN;
10816 }
10817
10818 /* Implement the "print_one_detail" breakpoint_ops method for
10819 masked hardware watchpoints. */
10820
10821 static void
10822 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10823 struct ui_out *uiout)
10824 {
10825 struct watchpoint *w = (struct watchpoint *) b;
10826
10827 /* Masked watchpoints have only one location. */
10828 gdb_assert (b->loc && b->loc->next == NULL);
10829
10830 ui_out_text (uiout, "\tmask ");
10831 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10832 ui_out_text (uiout, "\n");
10833 }
10834
10835 /* Implement the "print_mention" breakpoint_ops method for
10836 masked hardware watchpoints. */
10837
10838 static void
10839 print_mention_masked_watchpoint (struct breakpoint *b)
10840 {
10841 struct watchpoint *w = (struct watchpoint *) b;
10842 struct ui_out *uiout = current_uiout;
10843 struct cleanup *ui_out_chain;
10844
10845 switch (b->type)
10846 {
10847 case bp_hardware_watchpoint:
10848 ui_out_text (uiout, "Masked hardware watchpoint ");
10849 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10850 break;
10851 case bp_read_watchpoint:
10852 ui_out_text (uiout, "Masked hardware read watchpoint ");
10853 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10854 break;
10855 case bp_access_watchpoint:
10856 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10857 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10858 break;
10859 default:
10860 internal_error (__FILE__, __LINE__,
10861 _("Invalid hardware watchpoint type."));
10862 }
10863
10864 ui_out_field_int (uiout, "number", b->number);
10865 ui_out_text (uiout, ": ");
10866 ui_out_field_string (uiout, "exp", w->exp_string);
10867 do_cleanups (ui_out_chain);
10868 }
10869
10870 /* Implement the "print_recreate" breakpoint_ops method for
10871 masked hardware watchpoints. */
10872
10873 static void
10874 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10875 {
10876 struct watchpoint *w = (struct watchpoint *) b;
10877 char tmp[40];
10878
10879 switch (b->type)
10880 {
10881 case bp_hardware_watchpoint:
10882 fprintf_unfiltered (fp, "watch");
10883 break;
10884 case bp_read_watchpoint:
10885 fprintf_unfiltered (fp, "rwatch");
10886 break;
10887 case bp_access_watchpoint:
10888 fprintf_unfiltered (fp, "awatch");
10889 break;
10890 default:
10891 internal_error (__FILE__, __LINE__,
10892 _("Invalid hardware watchpoint type."));
10893 }
10894
10895 sprintf_vma (tmp, w->hw_wp_mask);
10896 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10897 print_recreate_thread (b, fp);
10898 }
10899
10900 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10901
10902 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10903
10904 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10905
10906 static int
10907 is_masked_watchpoint (const struct breakpoint *b)
10908 {
10909 return b->ops == &masked_watchpoint_breakpoint_ops;
10910 }
10911
10912 /* accessflag: hw_write: watch write,
10913 hw_read: watch read,
10914 hw_access: watch access (read or write) */
10915 static void
10916 watch_command_1 (const char *arg, int accessflag, int from_tty,
10917 int just_location, int internal)
10918 {
10919 struct breakpoint *b, *scope_breakpoint = NULL;
10920 struct expression *exp;
10921 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10922 struct value *val, *mark, *result;
10923 int saved_bitpos = 0, saved_bitsize = 0;
10924 struct frame_info *frame;
10925 const char *exp_start = NULL;
10926 const char *exp_end = NULL;
10927 const char *tok, *end_tok;
10928 int toklen = -1;
10929 const char *cond_start = NULL;
10930 const char *cond_end = NULL;
10931 enum bptype bp_type;
10932 int thread = -1;
10933 int pc = 0;
10934 /* Flag to indicate whether we are going to use masks for
10935 the hardware watchpoint. */
10936 int use_mask = 0;
10937 CORE_ADDR mask = 0;
10938 struct watchpoint *w;
10939 char *expression;
10940 struct cleanup *back_to;
10941
10942 /* Make sure that we actually have parameters to parse. */
10943 if (arg != NULL && arg[0] != '\0')
10944 {
10945 const char *value_start;
10946
10947 exp_end = arg + strlen (arg);
10948
10949 /* Look for "parameter value" pairs at the end
10950 of the arguments string. */
10951 for (tok = exp_end - 1; tok > arg; tok--)
10952 {
10953 /* Skip whitespace at the end of the argument list. */
10954 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10955 tok--;
10956
10957 /* Find the beginning of the last token.
10958 This is the value of the parameter. */
10959 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10960 tok--;
10961 value_start = tok + 1;
10962
10963 /* Skip whitespace. */
10964 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10965 tok--;
10966
10967 end_tok = tok;
10968
10969 /* Find the beginning of the second to last token.
10970 This is the parameter itself. */
10971 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10972 tok--;
10973 tok++;
10974 toklen = end_tok - tok + 1;
10975
10976 if (toklen == 6 && startswith (tok, "thread"))
10977 {
10978 /* At this point we've found a "thread" token, which means
10979 the user is trying to set a watchpoint that triggers
10980 only in a specific thread. */
10981 char *endp;
10982
10983 if (thread != -1)
10984 error(_("You can specify only one thread."));
10985
10986 /* Extract the thread ID from the next token. */
10987 thread = strtol (value_start, &endp, 0);
10988
10989 /* Check if the user provided a valid numeric value for the
10990 thread ID. */
10991 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10992 error (_("Invalid thread ID specification %s."), value_start);
10993
10994 /* Check if the thread actually exists. */
10995 if (!valid_thread_id (thread))
10996 invalid_thread_id_error (thread);
10997 }
10998 else if (toklen == 4 && startswith (tok, "mask"))
10999 {
11000 /* We've found a "mask" token, which means the user wants to
11001 create a hardware watchpoint that is going to have the mask
11002 facility. */
11003 struct value *mask_value, *mark;
11004
11005 if (use_mask)
11006 error(_("You can specify only one mask."));
11007
11008 use_mask = just_location = 1;
11009
11010 mark = value_mark ();
11011 mask_value = parse_to_comma_and_eval (&value_start);
11012 mask = value_as_address (mask_value);
11013 value_free_to_mark (mark);
11014 }
11015 else
11016 /* We didn't recognize what we found. We should stop here. */
11017 break;
11018
11019 /* Truncate the string and get rid of the "parameter value" pair before
11020 the arguments string is parsed by the parse_exp_1 function. */
11021 exp_end = tok;
11022 }
11023 }
11024 else
11025 exp_end = arg;
11026
11027 /* Parse the rest of the arguments. From here on out, everything
11028 is in terms of a newly allocated string instead of the original
11029 ARG. */
11030 innermost_block = NULL;
11031 expression = savestring (arg, exp_end - arg);
11032 back_to = make_cleanup (xfree, expression);
11033 exp_start = arg = expression;
11034 exp = parse_exp_1 (&arg, 0, 0, 0);
11035 exp_end = arg;
11036 /* Remove trailing whitespace from the expression before saving it.
11037 This makes the eventual display of the expression string a bit
11038 prettier. */
11039 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11040 --exp_end;
11041
11042 /* Checking if the expression is not constant. */
11043 if (watchpoint_exp_is_const (exp))
11044 {
11045 int len;
11046
11047 len = exp_end - exp_start;
11048 while (len > 0 && isspace (exp_start[len - 1]))
11049 len--;
11050 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11051 }
11052
11053 exp_valid_block = innermost_block;
11054 mark = value_mark ();
11055 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11056
11057 if (val != NULL && just_location)
11058 {
11059 saved_bitpos = value_bitpos (val);
11060 saved_bitsize = value_bitsize (val);
11061 }
11062
11063 if (just_location)
11064 {
11065 int ret;
11066
11067 exp_valid_block = NULL;
11068 val = value_addr (result);
11069 release_value (val);
11070 value_free_to_mark (mark);
11071
11072 if (use_mask)
11073 {
11074 ret = target_masked_watch_num_registers (value_as_address (val),
11075 mask);
11076 if (ret == -1)
11077 error (_("This target does not support masked watchpoints."));
11078 else if (ret == -2)
11079 error (_("Invalid mask or memory region."));
11080 }
11081 }
11082 else if (val != NULL)
11083 release_value (val);
11084
11085 tok = skip_spaces_const (arg);
11086 end_tok = skip_to_space_const (tok);
11087
11088 toklen = end_tok - tok;
11089 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11090 {
11091 struct expression *cond;
11092
11093 innermost_block = NULL;
11094 tok = cond_start = end_tok + 1;
11095 cond = parse_exp_1 (&tok, 0, 0, 0);
11096
11097 /* The watchpoint expression may not be local, but the condition
11098 may still be. E.g.: `watch global if local > 0'. */
11099 cond_exp_valid_block = innermost_block;
11100
11101 xfree (cond);
11102 cond_end = tok;
11103 }
11104 if (*tok)
11105 error (_("Junk at end of command."));
11106
11107 frame = block_innermost_frame (exp_valid_block);
11108
11109 /* If the expression is "local", then set up a "watchpoint scope"
11110 breakpoint at the point where we've left the scope of the watchpoint
11111 expression. Create the scope breakpoint before the watchpoint, so
11112 that we will encounter it first in bpstat_stop_status. */
11113 if (exp_valid_block && frame)
11114 {
11115 if (frame_id_p (frame_unwind_caller_id (frame)))
11116 {
11117 scope_breakpoint
11118 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11119 frame_unwind_caller_pc (frame),
11120 bp_watchpoint_scope,
11121 &momentary_breakpoint_ops);
11122
11123 scope_breakpoint->enable_state = bp_enabled;
11124
11125 /* Automatically delete the breakpoint when it hits. */
11126 scope_breakpoint->disposition = disp_del;
11127
11128 /* Only break in the proper frame (help with recursion). */
11129 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11130
11131 /* Set the address at which we will stop. */
11132 scope_breakpoint->loc->gdbarch
11133 = frame_unwind_caller_arch (frame);
11134 scope_breakpoint->loc->requested_address
11135 = frame_unwind_caller_pc (frame);
11136 scope_breakpoint->loc->address
11137 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11138 scope_breakpoint->loc->requested_address,
11139 scope_breakpoint->type);
11140 }
11141 }
11142
11143 /* Now set up the breakpoint. We create all watchpoints as hardware
11144 watchpoints here even if hardware watchpoints are turned off, a call
11145 to update_watchpoint later in this function will cause the type to
11146 drop back to bp_watchpoint (software watchpoint) if required. */
11147
11148 if (accessflag == hw_read)
11149 bp_type = bp_read_watchpoint;
11150 else if (accessflag == hw_access)
11151 bp_type = bp_access_watchpoint;
11152 else
11153 bp_type = bp_hardware_watchpoint;
11154
11155 w = XCNEW (struct watchpoint);
11156 b = &w->base;
11157 if (use_mask)
11158 init_raw_breakpoint_without_location (b, NULL, bp_type,
11159 &masked_watchpoint_breakpoint_ops);
11160 else
11161 init_raw_breakpoint_without_location (b, NULL, bp_type,
11162 &watchpoint_breakpoint_ops);
11163 b->thread = thread;
11164 b->disposition = disp_donttouch;
11165 b->pspace = current_program_space;
11166 w->exp = exp;
11167 w->exp_valid_block = exp_valid_block;
11168 w->cond_exp_valid_block = cond_exp_valid_block;
11169 if (just_location)
11170 {
11171 struct type *t = value_type (val);
11172 CORE_ADDR addr = value_as_address (val);
11173 char *name;
11174
11175 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11176 name = type_to_string (t);
11177
11178 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11179 core_addr_to_string (addr));
11180 xfree (name);
11181
11182 w->exp_string = xstrprintf ("-location %.*s",
11183 (int) (exp_end - exp_start), exp_start);
11184
11185 /* The above expression is in C. */
11186 b->language = language_c;
11187 }
11188 else
11189 w->exp_string = savestring (exp_start, exp_end - exp_start);
11190
11191 if (use_mask)
11192 {
11193 w->hw_wp_mask = mask;
11194 }
11195 else
11196 {
11197 w->val = val;
11198 w->val_bitpos = saved_bitpos;
11199 w->val_bitsize = saved_bitsize;
11200 w->val_valid = 1;
11201 }
11202
11203 if (cond_start)
11204 b->cond_string = savestring (cond_start, cond_end - cond_start);
11205 else
11206 b->cond_string = 0;
11207
11208 if (frame)
11209 {
11210 w->watchpoint_frame = get_frame_id (frame);
11211 w->watchpoint_thread = inferior_ptid;
11212 }
11213 else
11214 {
11215 w->watchpoint_frame = null_frame_id;
11216 w->watchpoint_thread = null_ptid;
11217 }
11218
11219 if (scope_breakpoint != NULL)
11220 {
11221 /* The scope breakpoint is related to the watchpoint. We will
11222 need to act on them together. */
11223 b->related_breakpoint = scope_breakpoint;
11224 scope_breakpoint->related_breakpoint = b;
11225 }
11226
11227 if (!just_location)
11228 value_free_to_mark (mark);
11229
11230 TRY
11231 {
11232 /* Finally update the new watchpoint. This creates the locations
11233 that should be inserted. */
11234 update_watchpoint (w, 1);
11235 }
11236 CATCH (e, RETURN_MASK_ALL)
11237 {
11238 delete_breakpoint (b);
11239 throw_exception (e);
11240 }
11241 END_CATCH
11242
11243 install_breakpoint (internal, b, 1);
11244 do_cleanups (back_to);
11245 }
11246
11247 /* Return count of debug registers needed to watch the given expression.
11248 If the watchpoint cannot be handled in hardware return zero. */
11249
11250 static int
11251 can_use_hardware_watchpoint (struct value *v)
11252 {
11253 int found_memory_cnt = 0;
11254 struct value *head = v;
11255
11256 /* Did the user specifically forbid us to use hardware watchpoints? */
11257 if (!can_use_hw_watchpoints)
11258 return 0;
11259
11260 /* Make sure that the value of the expression depends only upon
11261 memory contents, and values computed from them within GDB. If we
11262 find any register references or function calls, we can't use a
11263 hardware watchpoint.
11264
11265 The idea here is that evaluating an expression generates a series
11266 of values, one holding the value of every subexpression. (The
11267 expression a*b+c has five subexpressions: a, b, a*b, c, and
11268 a*b+c.) GDB's values hold almost enough information to establish
11269 the criteria given above --- they identify memory lvalues,
11270 register lvalues, computed values, etcetera. So we can evaluate
11271 the expression, and then scan the chain of values that leaves
11272 behind to decide whether we can detect any possible change to the
11273 expression's final value using only hardware watchpoints.
11274
11275 However, I don't think that the values returned by inferior
11276 function calls are special in any way. So this function may not
11277 notice that an expression involving an inferior function call
11278 can't be watched with hardware watchpoints. FIXME. */
11279 for (; v; v = value_next (v))
11280 {
11281 if (VALUE_LVAL (v) == lval_memory)
11282 {
11283 if (v != head && value_lazy (v))
11284 /* A lazy memory lvalue in the chain is one that GDB never
11285 needed to fetch; we either just used its address (e.g.,
11286 `a' in `a.b') or we never needed it at all (e.g., `a'
11287 in `a,b'). This doesn't apply to HEAD; if that is
11288 lazy then it was not readable, but watch it anyway. */
11289 ;
11290 else
11291 {
11292 /* Ahh, memory we actually used! Check if we can cover
11293 it with hardware watchpoints. */
11294 struct type *vtype = check_typedef (value_type (v));
11295
11296 /* We only watch structs and arrays if user asked for it
11297 explicitly, never if they just happen to appear in a
11298 middle of some value chain. */
11299 if (v == head
11300 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11301 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11302 {
11303 CORE_ADDR vaddr = value_address (v);
11304 int len;
11305 int num_regs;
11306
11307 len = (target_exact_watchpoints
11308 && is_scalar_type_recursive (vtype))?
11309 1 : TYPE_LENGTH (value_type (v));
11310
11311 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11312 if (!num_regs)
11313 return 0;
11314 else
11315 found_memory_cnt += num_regs;
11316 }
11317 }
11318 }
11319 else if (VALUE_LVAL (v) != not_lval
11320 && deprecated_value_modifiable (v) == 0)
11321 return 0; /* These are values from the history (e.g., $1). */
11322 else if (VALUE_LVAL (v) == lval_register)
11323 return 0; /* Cannot watch a register with a HW watchpoint. */
11324 }
11325
11326 /* The expression itself looks suitable for using a hardware
11327 watchpoint, but give the target machine a chance to reject it. */
11328 return found_memory_cnt;
11329 }
11330
11331 void
11332 watch_command_wrapper (char *arg, int from_tty, int internal)
11333 {
11334 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11335 }
11336
11337 /* A helper function that looks for the "-location" argument and then
11338 calls watch_command_1. */
11339
11340 static void
11341 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11342 {
11343 int just_location = 0;
11344
11345 if (arg
11346 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11347 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11348 {
11349 arg = skip_spaces (arg);
11350 just_location = 1;
11351 }
11352
11353 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11354 }
11355
11356 static void
11357 watch_command (char *arg, int from_tty)
11358 {
11359 watch_maybe_just_location (arg, hw_write, from_tty);
11360 }
11361
11362 void
11363 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11364 {
11365 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11366 }
11367
11368 static void
11369 rwatch_command (char *arg, int from_tty)
11370 {
11371 watch_maybe_just_location (arg, hw_read, from_tty);
11372 }
11373
11374 void
11375 awatch_command_wrapper (char *arg, int from_tty, int internal)
11376 {
11377 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11378 }
11379
11380 static void
11381 awatch_command (char *arg, int from_tty)
11382 {
11383 watch_maybe_just_location (arg, hw_access, from_tty);
11384 }
11385 \f
11386
11387 /* Helper routines for the until_command routine in infcmd.c. Here
11388 because it uses the mechanisms of breakpoints. */
11389
11390 struct until_break_command_continuation_args
11391 {
11392 struct breakpoint *breakpoint;
11393 struct breakpoint *breakpoint2;
11394 int thread_num;
11395 };
11396
11397 /* This function is called by fetch_inferior_event via the
11398 cmd_continuation pointer, to complete the until command. It takes
11399 care of cleaning up the temporary breakpoints set up by the until
11400 command. */
11401 static void
11402 until_break_command_continuation (void *arg, int err)
11403 {
11404 struct until_break_command_continuation_args *a = arg;
11405
11406 delete_breakpoint (a->breakpoint);
11407 if (a->breakpoint2)
11408 delete_breakpoint (a->breakpoint2);
11409 delete_longjmp_breakpoint (a->thread_num);
11410 }
11411
11412 void
11413 until_break_command (char *arg, int from_tty, int anywhere)
11414 {
11415 struct symtabs_and_lines sals;
11416 struct symtab_and_line sal;
11417 struct frame_info *frame;
11418 struct gdbarch *frame_gdbarch;
11419 struct frame_id stack_frame_id;
11420 struct frame_id caller_frame_id;
11421 struct breakpoint *breakpoint;
11422 struct breakpoint *breakpoint2 = NULL;
11423 struct cleanup *old_chain;
11424 int thread;
11425 struct thread_info *tp;
11426
11427 clear_proceed_status (0);
11428
11429 /* Set a breakpoint where the user wants it and at return from
11430 this function. */
11431
11432 if (last_displayed_sal_is_valid ())
11433 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11434 get_last_displayed_symtab (),
11435 get_last_displayed_line ());
11436 else
11437 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11438 (struct symtab *) NULL, 0);
11439
11440 if (sals.nelts != 1)
11441 error (_("Couldn't get information on specified line."));
11442
11443 sal = sals.sals[0];
11444 xfree (sals.sals); /* malloc'd, so freed. */
11445
11446 if (*arg)
11447 error (_("Junk at end of arguments."));
11448
11449 resolve_sal_pc (&sal);
11450
11451 tp = inferior_thread ();
11452 thread = tp->num;
11453
11454 old_chain = make_cleanup (null_cleanup, NULL);
11455
11456 /* Note linespec handling above invalidates the frame chain.
11457 Installing a breakpoint also invalidates the frame chain (as it
11458 may need to switch threads), so do any frame handling before
11459 that. */
11460
11461 frame = get_selected_frame (NULL);
11462 frame_gdbarch = get_frame_arch (frame);
11463 stack_frame_id = get_stack_frame_id (frame);
11464 caller_frame_id = frame_unwind_caller_id (frame);
11465
11466 /* Keep within the current frame, or in frames called by the current
11467 one. */
11468
11469 if (frame_id_p (caller_frame_id))
11470 {
11471 struct symtab_and_line sal2;
11472
11473 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11474 sal2.pc = frame_unwind_caller_pc (frame);
11475 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11476 sal2,
11477 caller_frame_id,
11478 bp_until);
11479 make_cleanup_delete_breakpoint (breakpoint2);
11480
11481 set_longjmp_breakpoint (tp, caller_frame_id);
11482 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11483 }
11484
11485 /* set_momentary_breakpoint could invalidate FRAME. */
11486 frame = NULL;
11487
11488 if (anywhere)
11489 /* If the user told us to continue until a specified location,
11490 we don't specify a frame at which we need to stop. */
11491 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11492 null_frame_id, bp_until);
11493 else
11494 /* Otherwise, specify the selected frame, because we want to stop
11495 only at the very same frame. */
11496 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11497 stack_frame_id, bp_until);
11498 make_cleanup_delete_breakpoint (breakpoint);
11499
11500 proceed (-1, GDB_SIGNAL_DEFAULT);
11501
11502 /* If we are running asynchronously, and proceed call above has
11503 actually managed to start the target, arrange for breakpoints to
11504 be deleted when the target stops. Otherwise, we're already
11505 stopped and delete breakpoints via cleanup chain. */
11506
11507 if (target_can_async_p () && is_running (inferior_ptid))
11508 {
11509 struct until_break_command_continuation_args *args;
11510 args = xmalloc (sizeof (*args));
11511
11512 args->breakpoint = breakpoint;
11513 args->breakpoint2 = breakpoint2;
11514 args->thread_num = thread;
11515
11516 discard_cleanups (old_chain);
11517 add_continuation (inferior_thread (),
11518 until_break_command_continuation, args,
11519 xfree);
11520 }
11521 else
11522 do_cleanups (old_chain);
11523 }
11524
11525 /* This function attempts to parse an optional "if <cond>" clause
11526 from the arg string. If one is not found, it returns NULL.
11527
11528 Else, it returns a pointer to the condition string. (It does not
11529 attempt to evaluate the string against a particular block.) And,
11530 it updates arg to point to the first character following the parsed
11531 if clause in the arg string. */
11532
11533 char *
11534 ep_parse_optional_if_clause (char **arg)
11535 {
11536 char *cond_string;
11537
11538 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11539 return NULL;
11540
11541 /* Skip the "if" keyword. */
11542 (*arg) += 2;
11543
11544 /* Skip any extra leading whitespace, and record the start of the
11545 condition string. */
11546 *arg = skip_spaces (*arg);
11547 cond_string = *arg;
11548
11549 /* Assume that the condition occupies the remainder of the arg
11550 string. */
11551 (*arg) += strlen (cond_string);
11552
11553 return cond_string;
11554 }
11555
11556 /* Commands to deal with catching events, such as signals, exceptions,
11557 process start/exit, etc. */
11558
11559 typedef enum
11560 {
11561 catch_fork_temporary, catch_vfork_temporary,
11562 catch_fork_permanent, catch_vfork_permanent
11563 }
11564 catch_fork_kind;
11565
11566 static void
11567 catch_fork_command_1 (char *arg, int from_tty,
11568 struct cmd_list_element *command)
11569 {
11570 struct gdbarch *gdbarch = get_current_arch ();
11571 char *cond_string = NULL;
11572 catch_fork_kind fork_kind;
11573 int tempflag;
11574
11575 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11576 tempflag = (fork_kind == catch_fork_temporary
11577 || fork_kind == catch_vfork_temporary);
11578
11579 if (!arg)
11580 arg = "";
11581 arg = skip_spaces (arg);
11582
11583 /* The allowed syntax is:
11584 catch [v]fork
11585 catch [v]fork if <cond>
11586
11587 First, check if there's an if clause. */
11588 cond_string = ep_parse_optional_if_clause (&arg);
11589
11590 if ((*arg != '\0') && !isspace (*arg))
11591 error (_("Junk at end of arguments."));
11592
11593 /* If this target supports it, create a fork or vfork catchpoint
11594 and enable reporting of such events. */
11595 switch (fork_kind)
11596 {
11597 case catch_fork_temporary:
11598 case catch_fork_permanent:
11599 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11600 &catch_fork_breakpoint_ops);
11601 break;
11602 case catch_vfork_temporary:
11603 case catch_vfork_permanent:
11604 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11605 &catch_vfork_breakpoint_ops);
11606 break;
11607 default:
11608 error (_("unsupported or unknown fork kind; cannot catch it"));
11609 break;
11610 }
11611 }
11612
11613 static void
11614 catch_exec_command_1 (char *arg, int from_tty,
11615 struct cmd_list_element *command)
11616 {
11617 struct exec_catchpoint *c;
11618 struct gdbarch *gdbarch = get_current_arch ();
11619 int tempflag;
11620 char *cond_string = NULL;
11621
11622 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11623
11624 if (!arg)
11625 arg = "";
11626 arg = skip_spaces (arg);
11627
11628 /* The allowed syntax is:
11629 catch exec
11630 catch exec if <cond>
11631
11632 First, check if there's an if clause. */
11633 cond_string = ep_parse_optional_if_clause (&arg);
11634
11635 if ((*arg != '\0') && !isspace (*arg))
11636 error (_("Junk at end of arguments."));
11637
11638 c = XNEW (struct exec_catchpoint);
11639 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11640 &catch_exec_breakpoint_ops);
11641 c->exec_pathname = NULL;
11642
11643 install_breakpoint (0, &c->base, 1);
11644 }
11645
11646 void
11647 init_ada_exception_breakpoint (struct breakpoint *b,
11648 struct gdbarch *gdbarch,
11649 struct symtab_and_line sal,
11650 char *addr_string,
11651 const struct breakpoint_ops *ops,
11652 int tempflag,
11653 int enabled,
11654 int from_tty)
11655 {
11656 if (from_tty)
11657 {
11658 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11659 if (!loc_gdbarch)
11660 loc_gdbarch = gdbarch;
11661
11662 describe_other_breakpoints (loc_gdbarch,
11663 sal.pspace, sal.pc, sal.section, -1);
11664 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11665 version for exception catchpoints, because two catchpoints
11666 used for different exception names will use the same address.
11667 In this case, a "breakpoint ... also set at..." warning is
11668 unproductive. Besides, the warning phrasing is also a bit
11669 inappropriate, we should use the word catchpoint, and tell
11670 the user what type of catchpoint it is. The above is good
11671 enough for now, though. */
11672 }
11673
11674 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11675
11676 b->enable_state = enabled ? bp_enabled : bp_disabled;
11677 b->disposition = tempflag ? disp_del : disp_donttouch;
11678 b->addr_string = addr_string;
11679 b->language = language_ada;
11680 }
11681
11682 static void
11683 catch_command (char *arg, int from_tty)
11684 {
11685 error (_("Catch requires an event name."));
11686 }
11687 \f
11688
11689 static void
11690 tcatch_command (char *arg, int from_tty)
11691 {
11692 error (_("Catch requires an event name."));
11693 }
11694
11695 /* A qsort comparison function that sorts breakpoints in order. */
11696
11697 static int
11698 compare_breakpoints (const void *a, const void *b)
11699 {
11700 const breakpoint_p *ba = a;
11701 uintptr_t ua = (uintptr_t) *ba;
11702 const breakpoint_p *bb = b;
11703 uintptr_t ub = (uintptr_t) *bb;
11704
11705 if ((*ba)->number < (*bb)->number)
11706 return -1;
11707 else if ((*ba)->number > (*bb)->number)
11708 return 1;
11709
11710 /* Now sort by address, in case we see, e..g, two breakpoints with
11711 the number 0. */
11712 if (ua < ub)
11713 return -1;
11714 return ua > ub ? 1 : 0;
11715 }
11716
11717 /* Delete breakpoints by address or line. */
11718
11719 static void
11720 clear_command (char *arg, int from_tty)
11721 {
11722 struct breakpoint *b, *prev;
11723 VEC(breakpoint_p) *found = 0;
11724 int ix;
11725 int default_match;
11726 struct symtabs_and_lines sals;
11727 struct symtab_and_line sal;
11728 int i;
11729 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11730
11731 if (arg)
11732 {
11733 sals = decode_line_with_current_source (arg,
11734 (DECODE_LINE_FUNFIRSTLINE
11735 | DECODE_LINE_LIST_MODE));
11736 make_cleanup (xfree, sals.sals);
11737 default_match = 0;
11738 }
11739 else
11740 {
11741 sals.sals = (struct symtab_and_line *)
11742 xmalloc (sizeof (struct symtab_and_line));
11743 make_cleanup (xfree, sals.sals);
11744 init_sal (&sal); /* Initialize to zeroes. */
11745
11746 /* Set sal's line, symtab, pc, and pspace to the values
11747 corresponding to the last call to print_frame_info. If the
11748 codepoint is not valid, this will set all the fields to 0. */
11749 get_last_displayed_sal (&sal);
11750 if (sal.symtab == 0)
11751 error (_("No source file specified."));
11752
11753 sals.sals[0] = sal;
11754 sals.nelts = 1;
11755
11756 default_match = 1;
11757 }
11758
11759 /* We don't call resolve_sal_pc here. That's not as bad as it
11760 seems, because all existing breakpoints typically have both
11761 file/line and pc set. So, if clear is given file/line, we can
11762 match this to existing breakpoint without obtaining pc at all.
11763
11764 We only support clearing given the address explicitly
11765 present in breakpoint table. Say, we've set breakpoint
11766 at file:line. There were several PC values for that file:line,
11767 due to optimization, all in one block.
11768
11769 We've picked one PC value. If "clear" is issued with another
11770 PC corresponding to the same file:line, the breakpoint won't
11771 be cleared. We probably can still clear the breakpoint, but
11772 since the other PC value is never presented to user, user
11773 can only find it by guessing, and it does not seem important
11774 to support that. */
11775
11776 /* For each line spec given, delete bps which correspond to it. Do
11777 it in two passes, solely to preserve the current behavior that
11778 from_tty is forced true if we delete more than one
11779 breakpoint. */
11780
11781 found = NULL;
11782 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11783 for (i = 0; i < sals.nelts; i++)
11784 {
11785 const char *sal_fullname;
11786
11787 /* If exact pc given, clear bpts at that pc.
11788 If line given (pc == 0), clear all bpts on specified line.
11789 If defaulting, clear all bpts on default line
11790 or at default pc.
11791
11792 defaulting sal.pc != 0 tests to do
11793
11794 0 1 pc
11795 1 1 pc _and_ line
11796 0 0 line
11797 1 0 <can't happen> */
11798
11799 sal = sals.sals[i];
11800 sal_fullname = (sal.symtab == NULL
11801 ? NULL : symtab_to_fullname (sal.symtab));
11802
11803 /* Find all matching breakpoints and add them to 'found'. */
11804 ALL_BREAKPOINTS (b)
11805 {
11806 int match = 0;
11807 /* Are we going to delete b? */
11808 if (b->type != bp_none && !is_watchpoint (b))
11809 {
11810 struct bp_location *loc = b->loc;
11811 for (; loc; loc = loc->next)
11812 {
11813 /* If the user specified file:line, don't allow a PC
11814 match. This matches historical gdb behavior. */
11815 int pc_match = (!sal.explicit_line
11816 && sal.pc
11817 && (loc->pspace == sal.pspace)
11818 && (loc->address == sal.pc)
11819 && (!section_is_overlay (loc->section)
11820 || loc->section == sal.section));
11821 int line_match = 0;
11822
11823 if ((default_match || sal.explicit_line)
11824 && loc->symtab != NULL
11825 && sal_fullname != NULL
11826 && sal.pspace == loc->pspace
11827 && loc->line_number == sal.line
11828 && filename_cmp (symtab_to_fullname (loc->symtab),
11829 sal_fullname) == 0)
11830 line_match = 1;
11831
11832 if (pc_match || line_match)
11833 {
11834 match = 1;
11835 break;
11836 }
11837 }
11838 }
11839
11840 if (match)
11841 VEC_safe_push(breakpoint_p, found, b);
11842 }
11843 }
11844
11845 /* Now go thru the 'found' chain and delete them. */
11846 if (VEC_empty(breakpoint_p, found))
11847 {
11848 if (arg)
11849 error (_("No breakpoint at %s."), arg);
11850 else
11851 error (_("No breakpoint at this line."));
11852 }
11853
11854 /* Remove duplicates from the vec. */
11855 qsort (VEC_address (breakpoint_p, found),
11856 VEC_length (breakpoint_p, found),
11857 sizeof (breakpoint_p),
11858 compare_breakpoints);
11859 prev = VEC_index (breakpoint_p, found, 0);
11860 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11861 {
11862 if (b == prev)
11863 {
11864 VEC_ordered_remove (breakpoint_p, found, ix);
11865 --ix;
11866 }
11867 }
11868
11869 if (VEC_length(breakpoint_p, found) > 1)
11870 from_tty = 1; /* Always report if deleted more than one. */
11871 if (from_tty)
11872 {
11873 if (VEC_length(breakpoint_p, found) == 1)
11874 printf_unfiltered (_("Deleted breakpoint "));
11875 else
11876 printf_unfiltered (_("Deleted breakpoints "));
11877 }
11878
11879 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11880 {
11881 if (from_tty)
11882 printf_unfiltered ("%d ", b->number);
11883 delete_breakpoint (b);
11884 }
11885 if (from_tty)
11886 putchar_unfiltered ('\n');
11887
11888 do_cleanups (cleanups);
11889 }
11890 \f
11891 /* Delete breakpoint in BS if they are `delete' breakpoints and
11892 all breakpoints that are marked for deletion, whether hit or not.
11893 This is called after any breakpoint is hit, or after errors. */
11894
11895 void
11896 breakpoint_auto_delete (bpstat bs)
11897 {
11898 struct breakpoint *b, *b_tmp;
11899
11900 for (; bs; bs = bs->next)
11901 if (bs->breakpoint_at
11902 && bs->breakpoint_at->disposition == disp_del
11903 && bs->stop)
11904 delete_breakpoint (bs->breakpoint_at);
11905
11906 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11907 {
11908 if (b->disposition == disp_del_at_next_stop)
11909 delete_breakpoint (b);
11910 }
11911 }
11912
11913 /* A comparison function for bp_location AP and BP being interfaced to
11914 qsort. Sort elements primarily by their ADDRESS (no matter what
11915 does breakpoint_address_is_meaningful say for its OWNER),
11916 secondarily by ordering first permanent elements and
11917 terciarily just ensuring the array is sorted stable way despite
11918 qsort being an unstable algorithm. */
11919
11920 static int
11921 bp_location_compare (const void *ap, const void *bp)
11922 {
11923 struct bp_location *a = *(void **) ap;
11924 struct bp_location *b = *(void **) bp;
11925
11926 if (a->address != b->address)
11927 return (a->address > b->address) - (a->address < b->address);
11928
11929 /* Sort locations at the same address by their pspace number, keeping
11930 locations of the same inferior (in a multi-inferior environment)
11931 grouped. */
11932
11933 if (a->pspace->num != b->pspace->num)
11934 return ((a->pspace->num > b->pspace->num)
11935 - (a->pspace->num < b->pspace->num));
11936
11937 /* Sort permanent breakpoints first. */
11938 if (a->permanent != b->permanent)
11939 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11940
11941 /* Make the internal GDB representation stable across GDB runs
11942 where A and B memory inside GDB can differ. Breakpoint locations of
11943 the same type at the same address can be sorted in arbitrary order. */
11944
11945 if (a->owner->number != b->owner->number)
11946 return ((a->owner->number > b->owner->number)
11947 - (a->owner->number < b->owner->number));
11948
11949 return (a > b) - (a < b);
11950 }
11951
11952 /* Set bp_location_placed_address_before_address_max and
11953 bp_location_shadow_len_after_address_max according to the current
11954 content of the bp_location array. */
11955
11956 static void
11957 bp_location_target_extensions_update (void)
11958 {
11959 struct bp_location *bl, **blp_tmp;
11960
11961 bp_location_placed_address_before_address_max = 0;
11962 bp_location_shadow_len_after_address_max = 0;
11963
11964 ALL_BP_LOCATIONS (bl, blp_tmp)
11965 {
11966 CORE_ADDR start, end, addr;
11967
11968 if (!bp_location_has_shadow (bl))
11969 continue;
11970
11971 start = bl->target_info.placed_address;
11972 end = start + bl->target_info.shadow_len;
11973
11974 gdb_assert (bl->address >= start);
11975 addr = bl->address - start;
11976 if (addr > bp_location_placed_address_before_address_max)
11977 bp_location_placed_address_before_address_max = addr;
11978
11979 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11980
11981 gdb_assert (bl->address < end);
11982 addr = end - bl->address;
11983 if (addr > bp_location_shadow_len_after_address_max)
11984 bp_location_shadow_len_after_address_max = addr;
11985 }
11986 }
11987
11988 /* Download tracepoint locations if they haven't been. */
11989
11990 static void
11991 download_tracepoint_locations (void)
11992 {
11993 struct breakpoint *b;
11994 struct cleanup *old_chain;
11995
11996 if (!target_can_download_tracepoint ())
11997 return;
11998
11999 old_chain = save_current_space_and_thread ();
12000
12001 ALL_TRACEPOINTS (b)
12002 {
12003 struct bp_location *bl;
12004 struct tracepoint *t;
12005 int bp_location_downloaded = 0;
12006
12007 if ((b->type == bp_fast_tracepoint
12008 ? !may_insert_fast_tracepoints
12009 : !may_insert_tracepoints))
12010 continue;
12011
12012 for (bl = b->loc; bl; bl = bl->next)
12013 {
12014 /* In tracepoint, locations are _never_ duplicated, so
12015 should_be_inserted is equivalent to
12016 unduplicated_should_be_inserted. */
12017 if (!should_be_inserted (bl) || bl->inserted)
12018 continue;
12019
12020 switch_to_program_space_and_thread (bl->pspace);
12021
12022 target_download_tracepoint (bl);
12023
12024 bl->inserted = 1;
12025 bp_location_downloaded = 1;
12026 }
12027 t = (struct tracepoint *) b;
12028 t->number_on_target = b->number;
12029 if (bp_location_downloaded)
12030 observer_notify_breakpoint_modified (b);
12031 }
12032
12033 do_cleanups (old_chain);
12034 }
12035
12036 /* Swap the insertion/duplication state between two locations. */
12037
12038 static void
12039 swap_insertion (struct bp_location *left, struct bp_location *right)
12040 {
12041 const int left_inserted = left->inserted;
12042 const int left_duplicate = left->duplicate;
12043 const int left_needs_update = left->needs_update;
12044 const struct bp_target_info left_target_info = left->target_info;
12045
12046 /* Locations of tracepoints can never be duplicated. */
12047 if (is_tracepoint (left->owner))
12048 gdb_assert (!left->duplicate);
12049 if (is_tracepoint (right->owner))
12050 gdb_assert (!right->duplicate);
12051
12052 left->inserted = right->inserted;
12053 left->duplicate = right->duplicate;
12054 left->needs_update = right->needs_update;
12055 left->target_info = right->target_info;
12056 right->inserted = left_inserted;
12057 right->duplicate = left_duplicate;
12058 right->needs_update = left_needs_update;
12059 right->target_info = left_target_info;
12060 }
12061
12062 /* Force the re-insertion of the locations at ADDRESS. This is called
12063 once a new/deleted/modified duplicate location is found and we are evaluating
12064 conditions on the target's side. Such conditions need to be updated on
12065 the target. */
12066
12067 static void
12068 force_breakpoint_reinsertion (struct bp_location *bl)
12069 {
12070 struct bp_location **locp = NULL, **loc2p;
12071 struct bp_location *loc;
12072 CORE_ADDR address = 0;
12073 int pspace_num;
12074
12075 address = bl->address;
12076 pspace_num = bl->pspace->num;
12077
12078 /* This is only meaningful if the target is
12079 evaluating conditions and if the user has
12080 opted for condition evaluation on the target's
12081 side. */
12082 if (gdb_evaluates_breakpoint_condition_p ()
12083 || !target_supports_evaluation_of_breakpoint_conditions ())
12084 return;
12085
12086 /* Flag all breakpoint locations with this address and
12087 the same program space as the location
12088 as "its condition has changed". We need to
12089 update the conditions on the target's side. */
12090 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12091 {
12092 loc = *loc2p;
12093
12094 if (!is_breakpoint (loc->owner)
12095 || pspace_num != loc->pspace->num)
12096 continue;
12097
12098 /* Flag the location appropriately. We use a different state to
12099 let everyone know that we already updated the set of locations
12100 with addr bl->address and program space bl->pspace. This is so
12101 we don't have to keep calling these functions just to mark locations
12102 that have already been marked. */
12103 loc->condition_changed = condition_updated;
12104
12105 /* Free the agent expression bytecode as well. We will compute
12106 it later on. */
12107 if (loc->cond_bytecode)
12108 {
12109 free_agent_expr (loc->cond_bytecode);
12110 loc->cond_bytecode = NULL;
12111 }
12112 }
12113 }
12114 /* Called whether new breakpoints are created, or existing breakpoints
12115 deleted, to update the global location list and recompute which
12116 locations are duplicate of which.
12117
12118 The INSERT_MODE flag determines whether locations may not, may, or
12119 shall be inserted now. See 'enum ugll_insert_mode' for more
12120 info. */
12121
12122 static void
12123 update_global_location_list (enum ugll_insert_mode insert_mode)
12124 {
12125 struct breakpoint *b;
12126 struct bp_location **locp, *loc;
12127 struct cleanup *cleanups;
12128 /* Last breakpoint location address that was marked for update. */
12129 CORE_ADDR last_addr = 0;
12130 /* Last breakpoint location program space that was marked for update. */
12131 int last_pspace_num = -1;
12132
12133 /* Used in the duplicates detection below. When iterating over all
12134 bp_locations, points to the first bp_location of a given address.
12135 Breakpoints and watchpoints of different types are never
12136 duplicates of each other. Keep one pointer for each type of
12137 breakpoint/watchpoint, so we only need to loop over all locations
12138 once. */
12139 struct bp_location *bp_loc_first; /* breakpoint */
12140 struct bp_location *wp_loc_first; /* hardware watchpoint */
12141 struct bp_location *awp_loc_first; /* access watchpoint */
12142 struct bp_location *rwp_loc_first; /* read watchpoint */
12143
12144 /* Saved former bp_location array which we compare against the newly
12145 built bp_location from the current state of ALL_BREAKPOINTS. */
12146 struct bp_location **old_location, **old_locp;
12147 unsigned old_location_count;
12148
12149 old_location = bp_location;
12150 old_location_count = bp_location_count;
12151 bp_location = NULL;
12152 bp_location_count = 0;
12153 cleanups = make_cleanup (xfree, old_location);
12154
12155 ALL_BREAKPOINTS (b)
12156 for (loc = b->loc; loc; loc = loc->next)
12157 bp_location_count++;
12158
12159 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12160 locp = bp_location;
12161 ALL_BREAKPOINTS (b)
12162 for (loc = b->loc; loc; loc = loc->next)
12163 *locp++ = loc;
12164 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12165 bp_location_compare);
12166
12167 bp_location_target_extensions_update ();
12168
12169 /* Identify bp_location instances that are no longer present in the
12170 new list, and therefore should be freed. Note that it's not
12171 necessary that those locations should be removed from inferior --
12172 if there's another location at the same address (previously
12173 marked as duplicate), we don't need to remove/insert the
12174 location.
12175
12176 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12177 and former bp_location array state respectively. */
12178
12179 locp = bp_location;
12180 for (old_locp = old_location; old_locp < old_location + old_location_count;
12181 old_locp++)
12182 {
12183 struct bp_location *old_loc = *old_locp;
12184 struct bp_location **loc2p;
12185
12186 /* Tells if 'old_loc' is found among the new locations. If
12187 not, we have to free it. */
12188 int found_object = 0;
12189 /* Tells if the location should remain inserted in the target. */
12190 int keep_in_target = 0;
12191 int removed = 0;
12192
12193 /* Skip LOCP entries which will definitely never be needed.
12194 Stop either at or being the one matching OLD_LOC. */
12195 while (locp < bp_location + bp_location_count
12196 && (*locp)->address < old_loc->address)
12197 locp++;
12198
12199 for (loc2p = locp;
12200 (loc2p < bp_location + bp_location_count
12201 && (*loc2p)->address == old_loc->address);
12202 loc2p++)
12203 {
12204 /* Check if this is a new/duplicated location or a duplicated
12205 location that had its condition modified. If so, we want to send
12206 its condition to the target if evaluation of conditions is taking
12207 place there. */
12208 if ((*loc2p)->condition_changed == condition_modified
12209 && (last_addr != old_loc->address
12210 || last_pspace_num != old_loc->pspace->num))
12211 {
12212 force_breakpoint_reinsertion (*loc2p);
12213 last_pspace_num = old_loc->pspace->num;
12214 }
12215
12216 if (*loc2p == old_loc)
12217 found_object = 1;
12218 }
12219
12220 /* We have already handled this address, update it so that we don't
12221 have to go through updates again. */
12222 last_addr = old_loc->address;
12223
12224 /* Target-side condition evaluation: Handle deleted locations. */
12225 if (!found_object)
12226 force_breakpoint_reinsertion (old_loc);
12227
12228 /* If this location is no longer present, and inserted, look if
12229 there's maybe a new location at the same address. If so,
12230 mark that one inserted, and don't remove this one. This is
12231 needed so that we don't have a time window where a breakpoint
12232 at certain location is not inserted. */
12233
12234 if (old_loc->inserted)
12235 {
12236 /* If the location is inserted now, we might have to remove
12237 it. */
12238
12239 if (found_object && should_be_inserted (old_loc))
12240 {
12241 /* The location is still present in the location list,
12242 and still should be inserted. Don't do anything. */
12243 keep_in_target = 1;
12244 }
12245 else
12246 {
12247 /* This location still exists, but it won't be kept in the
12248 target since it may have been disabled. We proceed to
12249 remove its target-side condition. */
12250
12251 /* The location is either no longer present, or got
12252 disabled. See if there's another location at the
12253 same address, in which case we don't need to remove
12254 this one from the target. */
12255
12256 /* OLD_LOC comes from existing struct breakpoint. */
12257 if (breakpoint_address_is_meaningful (old_loc->owner))
12258 {
12259 for (loc2p = locp;
12260 (loc2p < bp_location + bp_location_count
12261 && (*loc2p)->address == old_loc->address);
12262 loc2p++)
12263 {
12264 struct bp_location *loc2 = *loc2p;
12265
12266 if (breakpoint_locations_match (loc2, old_loc))
12267 {
12268 /* Read watchpoint locations are switched to
12269 access watchpoints, if the former are not
12270 supported, but the latter are. */
12271 if (is_hardware_watchpoint (old_loc->owner))
12272 {
12273 gdb_assert (is_hardware_watchpoint (loc2->owner));
12274 loc2->watchpoint_type = old_loc->watchpoint_type;
12275 }
12276
12277 /* loc2 is a duplicated location. We need to check
12278 if it should be inserted in case it will be
12279 unduplicated. */
12280 if (loc2 != old_loc
12281 && unduplicated_should_be_inserted (loc2))
12282 {
12283 swap_insertion (old_loc, loc2);
12284 keep_in_target = 1;
12285 break;
12286 }
12287 }
12288 }
12289 }
12290 }
12291
12292 if (!keep_in_target)
12293 {
12294 if (remove_breakpoint (old_loc, mark_uninserted))
12295 {
12296 /* This is just about all we can do. We could keep
12297 this location on the global list, and try to
12298 remove it next time, but there's no particular
12299 reason why we will succeed next time.
12300
12301 Note that at this point, old_loc->owner is still
12302 valid, as delete_breakpoint frees the breakpoint
12303 only after calling us. */
12304 printf_filtered (_("warning: Error removing "
12305 "breakpoint %d\n"),
12306 old_loc->owner->number);
12307 }
12308 removed = 1;
12309 }
12310 }
12311
12312 if (!found_object)
12313 {
12314 if (removed && non_stop
12315 && need_moribund_for_location_type (old_loc))
12316 {
12317 /* This location was removed from the target. In
12318 non-stop mode, a race condition is possible where
12319 we've removed a breakpoint, but stop events for that
12320 breakpoint are already queued and will arrive later.
12321 We apply an heuristic to be able to distinguish such
12322 SIGTRAPs from other random SIGTRAPs: we keep this
12323 breakpoint location for a bit, and will retire it
12324 after we see some number of events. The theory here
12325 is that reporting of events should, "on the average",
12326 be fair, so after a while we'll see events from all
12327 threads that have anything of interest, and no longer
12328 need to keep this breakpoint location around. We
12329 don't hold locations forever so to reduce chances of
12330 mistaking a non-breakpoint SIGTRAP for a breakpoint
12331 SIGTRAP.
12332
12333 The heuristic failing can be disastrous on
12334 decr_pc_after_break targets.
12335
12336 On decr_pc_after_break targets, like e.g., x86-linux,
12337 if we fail to recognize a late breakpoint SIGTRAP,
12338 because events_till_retirement has reached 0 too
12339 soon, we'll fail to do the PC adjustment, and report
12340 a random SIGTRAP to the user. When the user resumes
12341 the inferior, it will most likely immediately crash
12342 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12343 corrupted, because of being resumed e.g., in the
12344 middle of a multi-byte instruction, or skipped a
12345 one-byte instruction. This was actually seen happen
12346 on native x86-linux, and should be less rare on
12347 targets that do not support new thread events, like
12348 remote, due to the heuristic depending on
12349 thread_count.
12350
12351 Mistaking a random SIGTRAP for a breakpoint trap
12352 causes similar symptoms (PC adjustment applied when
12353 it shouldn't), but then again, playing with SIGTRAPs
12354 behind the debugger's back is asking for trouble.
12355
12356 Since hardware watchpoint traps are always
12357 distinguishable from other traps, so we don't need to
12358 apply keep hardware watchpoint moribund locations
12359 around. We simply always ignore hardware watchpoint
12360 traps we can no longer explain. */
12361
12362 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12363 old_loc->owner = NULL;
12364
12365 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12366 }
12367 else
12368 {
12369 old_loc->owner = NULL;
12370 decref_bp_location (&old_loc);
12371 }
12372 }
12373 }
12374
12375 /* Rescan breakpoints at the same address and section, marking the
12376 first one as "first" and any others as "duplicates". This is so
12377 that the bpt instruction is only inserted once. If we have a
12378 permanent breakpoint at the same place as BPT, make that one the
12379 official one, and the rest as duplicates. Permanent breakpoints
12380 are sorted first for the same address.
12381
12382 Do the same for hardware watchpoints, but also considering the
12383 watchpoint's type (regular/access/read) and length. */
12384
12385 bp_loc_first = NULL;
12386 wp_loc_first = NULL;
12387 awp_loc_first = NULL;
12388 rwp_loc_first = NULL;
12389 ALL_BP_LOCATIONS (loc, locp)
12390 {
12391 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12392 non-NULL. */
12393 struct bp_location **loc_first_p;
12394 b = loc->owner;
12395
12396 if (!unduplicated_should_be_inserted (loc)
12397 || !breakpoint_address_is_meaningful (b)
12398 /* Don't detect duplicate for tracepoint locations because they are
12399 never duplicated. See the comments in field `duplicate' of
12400 `struct bp_location'. */
12401 || is_tracepoint (b))
12402 {
12403 /* Clear the condition modification flag. */
12404 loc->condition_changed = condition_unchanged;
12405 continue;
12406 }
12407
12408 if (b->type == bp_hardware_watchpoint)
12409 loc_first_p = &wp_loc_first;
12410 else if (b->type == bp_read_watchpoint)
12411 loc_first_p = &rwp_loc_first;
12412 else if (b->type == bp_access_watchpoint)
12413 loc_first_p = &awp_loc_first;
12414 else
12415 loc_first_p = &bp_loc_first;
12416
12417 if (*loc_first_p == NULL
12418 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12419 || !breakpoint_locations_match (loc, *loc_first_p))
12420 {
12421 *loc_first_p = loc;
12422 loc->duplicate = 0;
12423
12424 if (is_breakpoint (loc->owner) && loc->condition_changed)
12425 {
12426 loc->needs_update = 1;
12427 /* Clear the condition modification flag. */
12428 loc->condition_changed = condition_unchanged;
12429 }
12430 continue;
12431 }
12432
12433
12434 /* This and the above ensure the invariant that the first location
12435 is not duplicated, and is the inserted one.
12436 All following are marked as duplicated, and are not inserted. */
12437 if (loc->inserted)
12438 swap_insertion (loc, *loc_first_p);
12439 loc->duplicate = 1;
12440
12441 /* Clear the condition modification flag. */
12442 loc->condition_changed = condition_unchanged;
12443 }
12444
12445 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12446 {
12447 if (insert_mode != UGLL_DONT_INSERT)
12448 insert_breakpoint_locations ();
12449 else
12450 {
12451 /* Even though the caller told us to not insert new
12452 locations, we may still need to update conditions on the
12453 target's side of breakpoints that were already inserted
12454 if the target is evaluating breakpoint conditions. We
12455 only update conditions for locations that are marked
12456 "needs_update". */
12457 update_inserted_breakpoint_locations ();
12458 }
12459 }
12460
12461 if (insert_mode != UGLL_DONT_INSERT)
12462 download_tracepoint_locations ();
12463
12464 do_cleanups (cleanups);
12465 }
12466
12467 void
12468 breakpoint_retire_moribund (void)
12469 {
12470 struct bp_location *loc;
12471 int ix;
12472
12473 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12474 if (--(loc->events_till_retirement) == 0)
12475 {
12476 decref_bp_location (&loc);
12477 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12478 --ix;
12479 }
12480 }
12481
12482 static void
12483 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12484 {
12485
12486 TRY
12487 {
12488 update_global_location_list (insert_mode);
12489 }
12490 CATCH (e, RETURN_MASK_ERROR)
12491 {
12492 }
12493 END_CATCH
12494 }
12495
12496 /* Clear BKP from a BPS. */
12497
12498 static void
12499 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12500 {
12501 bpstat bs;
12502
12503 for (bs = bps; bs; bs = bs->next)
12504 if (bs->breakpoint_at == bpt)
12505 {
12506 bs->breakpoint_at = NULL;
12507 bs->old_val = NULL;
12508 /* bs->commands will be freed later. */
12509 }
12510 }
12511
12512 /* Callback for iterate_over_threads. */
12513 static int
12514 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12515 {
12516 struct breakpoint *bpt = data;
12517
12518 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12519 return 0;
12520 }
12521
12522 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12523 callbacks. */
12524
12525 static void
12526 say_where (struct breakpoint *b)
12527 {
12528 struct value_print_options opts;
12529
12530 get_user_print_options (&opts);
12531
12532 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12533 single string. */
12534 if (b->loc == NULL)
12535 {
12536 printf_filtered (_(" (%s) pending."), b->addr_string);
12537 }
12538 else
12539 {
12540 if (opts.addressprint || b->loc->symtab == NULL)
12541 {
12542 printf_filtered (" at ");
12543 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12544 gdb_stdout);
12545 }
12546 if (b->loc->symtab != NULL)
12547 {
12548 /* If there is a single location, we can print the location
12549 more nicely. */
12550 if (b->loc->next == NULL)
12551 printf_filtered (": file %s, line %d.",
12552 symtab_to_filename_for_display (b->loc->symtab),
12553 b->loc->line_number);
12554 else
12555 /* This is not ideal, but each location may have a
12556 different file name, and this at least reflects the
12557 real situation somewhat. */
12558 printf_filtered (": %s.", b->addr_string);
12559 }
12560
12561 if (b->loc->next)
12562 {
12563 struct bp_location *loc = b->loc;
12564 int n = 0;
12565 for (; loc; loc = loc->next)
12566 ++n;
12567 printf_filtered (" (%d locations)", n);
12568 }
12569 }
12570 }
12571
12572 /* Default bp_location_ops methods. */
12573
12574 static void
12575 bp_location_dtor (struct bp_location *self)
12576 {
12577 xfree (self->cond);
12578 if (self->cond_bytecode)
12579 free_agent_expr (self->cond_bytecode);
12580 xfree (self->function_name);
12581
12582 VEC_free (agent_expr_p, self->target_info.conditions);
12583 VEC_free (agent_expr_p, self->target_info.tcommands);
12584 }
12585
12586 static const struct bp_location_ops bp_location_ops =
12587 {
12588 bp_location_dtor
12589 };
12590
12591 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12592 inherit from. */
12593
12594 static void
12595 base_breakpoint_dtor (struct breakpoint *self)
12596 {
12597 decref_counted_command_line (&self->commands);
12598 xfree (self->cond_string);
12599 xfree (self->extra_string);
12600 xfree (self->addr_string);
12601 xfree (self->filter);
12602 xfree (self->addr_string_range_end);
12603 }
12604
12605 static struct bp_location *
12606 base_breakpoint_allocate_location (struct breakpoint *self)
12607 {
12608 struct bp_location *loc;
12609
12610 loc = XNEW (struct bp_location);
12611 init_bp_location (loc, &bp_location_ops, self);
12612 return loc;
12613 }
12614
12615 static void
12616 base_breakpoint_re_set (struct breakpoint *b)
12617 {
12618 /* Nothing to re-set. */
12619 }
12620
12621 #define internal_error_pure_virtual_called() \
12622 gdb_assert_not_reached ("pure virtual function called")
12623
12624 static int
12625 base_breakpoint_insert_location (struct bp_location *bl)
12626 {
12627 internal_error_pure_virtual_called ();
12628 }
12629
12630 static int
12631 base_breakpoint_remove_location (struct bp_location *bl)
12632 {
12633 internal_error_pure_virtual_called ();
12634 }
12635
12636 static int
12637 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12638 struct address_space *aspace,
12639 CORE_ADDR bp_addr,
12640 const struct target_waitstatus *ws)
12641 {
12642 internal_error_pure_virtual_called ();
12643 }
12644
12645 static void
12646 base_breakpoint_check_status (bpstat bs)
12647 {
12648 /* Always stop. */
12649 }
12650
12651 /* A "works_in_software_mode" breakpoint_ops method that just internal
12652 errors. */
12653
12654 static int
12655 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12656 {
12657 internal_error_pure_virtual_called ();
12658 }
12659
12660 /* A "resources_needed" breakpoint_ops method that just internal
12661 errors. */
12662
12663 static int
12664 base_breakpoint_resources_needed (const struct bp_location *bl)
12665 {
12666 internal_error_pure_virtual_called ();
12667 }
12668
12669 static enum print_stop_action
12670 base_breakpoint_print_it (bpstat bs)
12671 {
12672 internal_error_pure_virtual_called ();
12673 }
12674
12675 static void
12676 base_breakpoint_print_one_detail (const struct breakpoint *self,
12677 struct ui_out *uiout)
12678 {
12679 /* nothing */
12680 }
12681
12682 static void
12683 base_breakpoint_print_mention (struct breakpoint *b)
12684 {
12685 internal_error_pure_virtual_called ();
12686 }
12687
12688 static void
12689 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12690 {
12691 internal_error_pure_virtual_called ();
12692 }
12693
12694 static void
12695 base_breakpoint_create_sals_from_address (char **arg,
12696 struct linespec_result *canonical,
12697 enum bptype type_wanted,
12698 char *addr_start,
12699 char **copy_arg)
12700 {
12701 internal_error_pure_virtual_called ();
12702 }
12703
12704 static void
12705 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12706 struct linespec_result *c,
12707 char *cond_string,
12708 char *extra_string,
12709 enum bptype type_wanted,
12710 enum bpdisp disposition,
12711 int thread,
12712 int task, int ignore_count,
12713 const struct breakpoint_ops *o,
12714 int from_tty, int enabled,
12715 int internal, unsigned flags)
12716 {
12717 internal_error_pure_virtual_called ();
12718 }
12719
12720 static void
12721 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12722 struct symtabs_and_lines *sals)
12723 {
12724 internal_error_pure_virtual_called ();
12725 }
12726
12727 /* The default 'explains_signal' method. */
12728
12729 static int
12730 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12731 {
12732 return 1;
12733 }
12734
12735 /* The default "after_condition_true" method. */
12736
12737 static void
12738 base_breakpoint_after_condition_true (struct bpstats *bs)
12739 {
12740 /* Nothing to do. */
12741 }
12742
12743 struct breakpoint_ops base_breakpoint_ops =
12744 {
12745 base_breakpoint_dtor,
12746 base_breakpoint_allocate_location,
12747 base_breakpoint_re_set,
12748 base_breakpoint_insert_location,
12749 base_breakpoint_remove_location,
12750 base_breakpoint_breakpoint_hit,
12751 base_breakpoint_check_status,
12752 base_breakpoint_resources_needed,
12753 base_breakpoint_works_in_software_mode,
12754 base_breakpoint_print_it,
12755 NULL,
12756 base_breakpoint_print_one_detail,
12757 base_breakpoint_print_mention,
12758 base_breakpoint_print_recreate,
12759 base_breakpoint_create_sals_from_address,
12760 base_breakpoint_create_breakpoints_sal,
12761 base_breakpoint_decode_linespec,
12762 base_breakpoint_explains_signal,
12763 base_breakpoint_after_condition_true,
12764 };
12765
12766 /* Default breakpoint_ops methods. */
12767
12768 static void
12769 bkpt_re_set (struct breakpoint *b)
12770 {
12771 /* FIXME: is this still reachable? */
12772 if (b->addr_string == NULL)
12773 {
12774 /* Anything without a string can't be re-set. */
12775 delete_breakpoint (b);
12776 return;
12777 }
12778
12779 breakpoint_re_set_default (b);
12780 }
12781
12782 static int
12783 bkpt_insert_location (struct bp_location *bl)
12784 {
12785 if (bl->loc_type == bp_loc_hardware_breakpoint)
12786 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12787 else
12788 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12789 }
12790
12791 static int
12792 bkpt_remove_location (struct bp_location *bl)
12793 {
12794 if (bl->loc_type == bp_loc_hardware_breakpoint)
12795 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12796 else
12797 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12798 }
12799
12800 static int
12801 bkpt_breakpoint_hit (const struct bp_location *bl,
12802 struct address_space *aspace, CORE_ADDR bp_addr,
12803 const struct target_waitstatus *ws)
12804 {
12805 if (ws->kind != TARGET_WAITKIND_STOPPED
12806 || ws->value.sig != GDB_SIGNAL_TRAP)
12807 return 0;
12808
12809 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12810 aspace, bp_addr))
12811 return 0;
12812
12813 if (overlay_debugging /* unmapped overlay section */
12814 && section_is_overlay (bl->section)
12815 && !section_is_mapped (bl->section))
12816 return 0;
12817
12818 return 1;
12819 }
12820
12821 static int
12822 dprintf_breakpoint_hit (const struct bp_location *bl,
12823 struct address_space *aspace, CORE_ADDR bp_addr,
12824 const struct target_waitstatus *ws)
12825 {
12826 if (dprintf_style == dprintf_style_agent
12827 && target_can_run_breakpoint_commands ())
12828 {
12829 /* An agent-style dprintf never causes a stop. If we see a trap
12830 for this address it must be for a breakpoint that happens to
12831 be set at the same address. */
12832 return 0;
12833 }
12834
12835 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12836 }
12837
12838 static int
12839 bkpt_resources_needed (const struct bp_location *bl)
12840 {
12841 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12842
12843 return 1;
12844 }
12845
12846 static enum print_stop_action
12847 bkpt_print_it (bpstat bs)
12848 {
12849 struct breakpoint *b;
12850 const struct bp_location *bl;
12851 int bp_temp;
12852 struct ui_out *uiout = current_uiout;
12853
12854 gdb_assert (bs->bp_location_at != NULL);
12855
12856 bl = bs->bp_location_at;
12857 b = bs->breakpoint_at;
12858
12859 bp_temp = b->disposition == disp_del;
12860 if (bl->address != bl->requested_address)
12861 breakpoint_adjustment_warning (bl->requested_address,
12862 bl->address,
12863 b->number, 1);
12864 annotate_breakpoint (b->number);
12865 if (bp_temp)
12866 ui_out_text (uiout, "\nTemporary breakpoint ");
12867 else
12868 ui_out_text (uiout, "\nBreakpoint ");
12869 if (ui_out_is_mi_like_p (uiout))
12870 {
12871 ui_out_field_string (uiout, "reason",
12872 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12873 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12874 }
12875 ui_out_field_int (uiout, "bkptno", b->number);
12876 ui_out_text (uiout, ", ");
12877
12878 return PRINT_SRC_AND_LOC;
12879 }
12880
12881 static void
12882 bkpt_print_mention (struct breakpoint *b)
12883 {
12884 if (ui_out_is_mi_like_p (current_uiout))
12885 return;
12886
12887 switch (b->type)
12888 {
12889 case bp_breakpoint:
12890 case bp_gnu_ifunc_resolver:
12891 if (b->disposition == disp_del)
12892 printf_filtered (_("Temporary breakpoint"));
12893 else
12894 printf_filtered (_("Breakpoint"));
12895 printf_filtered (_(" %d"), b->number);
12896 if (b->type == bp_gnu_ifunc_resolver)
12897 printf_filtered (_(" at gnu-indirect-function resolver"));
12898 break;
12899 case bp_hardware_breakpoint:
12900 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12901 break;
12902 case bp_dprintf:
12903 printf_filtered (_("Dprintf %d"), b->number);
12904 break;
12905 }
12906
12907 say_where (b);
12908 }
12909
12910 static void
12911 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12912 {
12913 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12914 fprintf_unfiltered (fp, "tbreak");
12915 else if (tp->type == bp_breakpoint)
12916 fprintf_unfiltered (fp, "break");
12917 else if (tp->type == bp_hardware_breakpoint
12918 && tp->disposition == disp_del)
12919 fprintf_unfiltered (fp, "thbreak");
12920 else if (tp->type == bp_hardware_breakpoint)
12921 fprintf_unfiltered (fp, "hbreak");
12922 else
12923 internal_error (__FILE__, __LINE__,
12924 _("unhandled breakpoint type %d"), (int) tp->type);
12925
12926 fprintf_unfiltered (fp, " %s", tp->addr_string);
12927 print_recreate_thread (tp, fp);
12928 }
12929
12930 static void
12931 bkpt_create_sals_from_address (char **arg,
12932 struct linespec_result *canonical,
12933 enum bptype type_wanted,
12934 char *addr_start, char **copy_arg)
12935 {
12936 create_sals_from_address_default (arg, canonical, type_wanted,
12937 addr_start, copy_arg);
12938 }
12939
12940 static void
12941 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12942 struct linespec_result *canonical,
12943 char *cond_string,
12944 char *extra_string,
12945 enum bptype type_wanted,
12946 enum bpdisp disposition,
12947 int thread,
12948 int task, int ignore_count,
12949 const struct breakpoint_ops *ops,
12950 int from_tty, int enabled,
12951 int internal, unsigned flags)
12952 {
12953 create_breakpoints_sal_default (gdbarch, canonical,
12954 cond_string, extra_string,
12955 type_wanted,
12956 disposition, thread, task,
12957 ignore_count, ops, from_tty,
12958 enabled, internal, flags);
12959 }
12960
12961 static void
12962 bkpt_decode_linespec (struct breakpoint *b, char **s,
12963 struct symtabs_and_lines *sals)
12964 {
12965 decode_linespec_default (b, s, sals);
12966 }
12967
12968 /* Virtual table for internal breakpoints. */
12969
12970 static void
12971 internal_bkpt_re_set (struct breakpoint *b)
12972 {
12973 switch (b->type)
12974 {
12975 /* Delete overlay event and longjmp master breakpoints; they
12976 will be reset later by breakpoint_re_set. */
12977 case bp_overlay_event:
12978 case bp_longjmp_master:
12979 case bp_std_terminate_master:
12980 case bp_exception_master:
12981 delete_breakpoint (b);
12982 break;
12983
12984 /* This breakpoint is special, it's set up when the inferior
12985 starts and we really don't want to touch it. */
12986 case bp_shlib_event:
12987
12988 /* Like bp_shlib_event, this breakpoint type is special. Once
12989 it is set up, we do not want to touch it. */
12990 case bp_thread_event:
12991 break;
12992 }
12993 }
12994
12995 static void
12996 internal_bkpt_check_status (bpstat bs)
12997 {
12998 if (bs->breakpoint_at->type == bp_shlib_event)
12999 {
13000 /* If requested, stop when the dynamic linker notifies GDB of
13001 events. This allows the user to get control and place
13002 breakpoints in initializer routines for dynamically loaded
13003 objects (among other things). */
13004 bs->stop = stop_on_solib_events;
13005 bs->print = stop_on_solib_events;
13006 }
13007 else
13008 bs->stop = 0;
13009 }
13010
13011 static enum print_stop_action
13012 internal_bkpt_print_it (bpstat bs)
13013 {
13014 struct breakpoint *b;
13015
13016 b = bs->breakpoint_at;
13017
13018 switch (b->type)
13019 {
13020 case bp_shlib_event:
13021 /* Did we stop because the user set the stop_on_solib_events
13022 variable? (If so, we report this as a generic, "Stopped due
13023 to shlib event" message.) */
13024 print_solib_event (0);
13025 break;
13026
13027 case bp_thread_event:
13028 /* Not sure how we will get here.
13029 GDB should not stop for these breakpoints. */
13030 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13031 break;
13032
13033 case bp_overlay_event:
13034 /* By analogy with the thread event, GDB should not stop for these. */
13035 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13036 break;
13037
13038 case bp_longjmp_master:
13039 /* These should never be enabled. */
13040 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13041 break;
13042
13043 case bp_std_terminate_master:
13044 /* These should never be enabled. */
13045 printf_filtered (_("std::terminate Master Breakpoint: "
13046 "gdb should not stop!\n"));
13047 break;
13048
13049 case bp_exception_master:
13050 /* These should never be enabled. */
13051 printf_filtered (_("Exception Master Breakpoint: "
13052 "gdb should not stop!\n"));
13053 break;
13054 }
13055
13056 return PRINT_NOTHING;
13057 }
13058
13059 static void
13060 internal_bkpt_print_mention (struct breakpoint *b)
13061 {
13062 /* Nothing to mention. These breakpoints are internal. */
13063 }
13064
13065 /* Virtual table for momentary breakpoints */
13066
13067 static void
13068 momentary_bkpt_re_set (struct breakpoint *b)
13069 {
13070 /* Keep temporary breakpoints, which can be encountered when we step
13071 over a dlopen call and solib_add is resetting the breakpoints.
13072 Otherwise these should have been blown away via the cleanup chain
13073 or by breakpoint_init_inferior when we rerun the executable. */
13074 }
13075
13076 static void
13077 momentary_bkpt_check_status (bpstat bs)
13078 {
13079 /* Nothing. The point of these breakpoints is causing a stop. */
13080 }
13081
13082 static enum print_stop_action
13083 momentary_bkpt_print_it (bpstat bs)
13084 {
13085 struct ui_out *uiout = current_uiout;
13086
13087 if (ui_out_is_mi_like_p (uiout))
13088 {
13089 struct breakpoint *b = bs->breakpoint_at;
13090
13091 switch (b->type)
13092 {
13093 case bp_finish:
13094 ui_out_field_string
13095 (uiout, "reason",
13096 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13097 break;
13098
13099 case bp_until:
13100 ui_out_field_string
13101 (uiout, "reason",
13102 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13103 break;
13104 }
13105 }
13106
13107 return PRINT_UNKNOWN;
13108 }
13109
13110 static void
13111 momentary_bkpt_print_mention (struct breakpoint *b)
13112 {
13113 /* Nothing to mention. These breakpoints are internal. */
13114 }
13115
13116 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13117
13118 It gets cleared already on the removal of the first one of such placed
13119 breakpoints. This is OK as they get all removed altogether. */
13120
13121 static void
13122 longjmp_bkpt_dtor (struct breakpoint *self)
13123 {
13124 struct thread_info *tp = find_thread_id (self->thread);
13125
13126 if (tp)
13127 tp->initiating_frame = null_frame_id;
13128
13129 momentary_breakpoint_ops.dtor (self);
13130 }
13131
13132 /* Specific methods for probe breakpoints. */
13133
13134 static int
13135 bkpt_probe_insert_location (struct bp_location *bl)
13136 {
13137 int v = bkpt_insert_location (bl);
13138
13139 if (v == 0)
13140 {
13141 /* The insertion was successful, now let's set the probe's semaphore
13142 if needed. */
13143 if (bl->probe.probe->pops->set_semaphore != NULL)
13144 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13145 bl->probe.objfile,
13146 bl->gdbarch);
13147 }
13148
13149 return v;
13150 }
13151
13152 static int
13153 bkpt_probe_remove_location (struct bp_location *bl)
13154 {
13155 /* Let's clear the semaphore before removing the location. */
13156 if (bl->probe.probe->pops->clear_semaphore != NULL)
13157 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13158 bl->probe.objfile,
13159 bl->gdbarch);
13160
13161 return bkpt_remove_location (bl);
13162 }
13163
13164 static void
13165 bkpt_probe_create_sals_from_address (char **arg,
13166 struct linespec_result *canonical,
13167 enum bptype type_wanted,
13168 char *addr_start, char **copy_arg)
13169 {
13170 struct linespec_sals lsal;
13171
13172 lsal.sals = parse_probes (arg, canonical);
13173
13174 *copy_arg = xstrdup (canonical->addr_string);
13175 lsal.canonical = xstrdup (*copy_arg);
13176
13177 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13178 }
13179
13180 static void
13181 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13182 struct symtabs_and_lines *sals)
13183 {
13184 *sals = parse_probes (s, NULL);
13185 if (!sals->sals)
13186 error (_("probe not found"));
13187 }
13188
13189 /* The breakpoint_ops structure to be used in tracepoints. */
13190
13191 static void
13192 tracepoint_re_set (struct breakpoint *b)
13193 {
13194 breakpoint_re_set_default (b);
13195 }
13196
13197 static int
13198 tracepoint_breakpoint_hit (const struct bp_location *bl,
13199 struct address_space *aspace, CORE_ADDR bp_addr,
13200 const struct target_waitstatus *ws)
13201 {
13202 /* By definition, the inferior does not report stops at
13203 tracepoints. */
13204 return 0;
13205 }
13206
13207 static void
13208 tracepoint_print_one_detail (const struct breakpoint *self,
13209 struct ui_out *uiout)
13210 {
13211 struct tracepoint *tp = (struct tracepoint *) self;
13212 if (tp->static_trace_marker_id)
13213 {
13214 gdb_assert (self->type == bp_static_tracepoint);
13215
13216 ui_out_text (uiout, "\tmarker id is ");
13217 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13218 tp->static_trace_marker_id);
13219 ui_out_text (uiout, "\n");
13220 }
13221 }
13222
13223 static void
13224 tracepoint_print_mention (struct breakpoint *b)
13225 {
13226 if (ui_out_is_mi_like_p (current_uiout))
13227 return;
13228
13229 switch (b->type)
13230 {
13231 case bp_tracepoint:
13232 printf_filtered (_("Tracepoint"));
13233 printf_filtered (_(" %d"), b->number);
13234 break;
13235 case bp_fast_tracepoint:
13236 printf_filtered (_("Fast tracepoint"));
13237 printf_filtered (_(" %d"), b->number);
13238 break;
13239 case bp_static_tracepoint:
13240 printf_filtered (_("Static tracepoint"));
13241 printf_filtered (_(" %d"), b->number);
13242 break;
13243 default:
13244 internal_error (__FILE__, __LINE__,
13245 _("unhandled tracepoint type %d"), (int) b->type);
13246 }
13247
13248 say_where (b);
13249 }
13250
13251 static void
13252 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13253 {
13254 struct tracepoint *tp = (struct tracepoint *) self;
13255
13256 if (self->type == bp_fast_tracepoint)
13257 fprintf_unfiltered (fp, "ftrace");
13258 if (self->type == bp_static_tracepoint)
13259 fprintf_unfiltered (fp, "strace");
13260 else if (self->type == bp_tracepoint)
13261 fprintf_unfiltered (fp, "trace");
13262 else
13263 internal_error (__FILE__, __LINE__,
13264 _("unhandled tracepoint type %d"), (int) self->type);
13265
13266 fprintf_unfiltered (fp, " %s", self->addr_string);
13267 print_recreate_thread (self, fp);
13268
13269 if (tp->pass_count)
13270 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13271 }
13272
13273 static void
13274 tracepoint_create_sals_from_address (char **arg,
13275 struct linespec_result *canonical,
13276 enum bptype type_wanted,
13277 char *addr_start, char **copy_arg)
13278 {
13279 create_sals_from_address_default (arg, canonical, type_wanted,
13280 addr_start, copy_arg);
13281 }
13282
13283 static void
13284 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13285 struct linespec_result *canonical,
13286 char *cond_string,
13287 char *extra_string,
13288 enum bptype type_wanted,
13289 enum bpdisp disposition,
13290 int thread,
13291 int task, int ignore_count,
13292 const struct breakpoint_ops *ops,
13293 int from_tty, int enabled,
13294 int internal, unsigned flags)
13295 {
13296 create_breakpoints_sal_default (gdbarch, canonical,
13297 cond_string, extra_string,
13298 type_wanted,
13299 disposition, thread, task,
13300 ignore_count, ops, from_tty,
13301 enabled, internal, flags);
13302 }
13303
13304 static void
13305 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13306 struct symtabs_and_lines *sals)
13307 {
13308 decode_linespec_default (b, s, sals);
13309 }
13310
13311 struct breakpoint_ops tracepoint_breakpoint_ops;
13312
13313 /* The breakpoint_ops structure to be use on tracepoints placed in a
13314 static probe. */
13315
13316 static void
13317 tracepoint_probe_create_sals_from_address (char **arg,
13318 struct linespec_result *canonical,
13319 enum bptype type_wanted,
13320 char *addr_start, char **copy_arg)
13321 {
13322 /* We use the same method for breakpoint on probes. */
13323 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13324 addr_start, copy_arg);
13325 }
13326
13327 static void
13328 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13329 struct symtabs_and_lines *sals)
13330 {
13331 /* We use the same method for breakpoint on probes. */
13332 bkpt_probe_decode_linespec (b, s, sals);
13333 }
13334
13335 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13336
13337 /* Dprintf breakpoint_ops methods. */
13338
13339 static void
13340 dprintf_re_set (struct breakpoint *b)
13341 {
13342 breakpoint_re_set_default (b);
13343
13344 /* This breakpoint could have been pending, and be resolved now, and
13345 if so, we should now have the extra string. If we don't, the
13346 dprintf was malformed when created, but we couldn't tell because
13347 we can't extract the extra string until the location is
13348 resolved. */
13349 if (b->loc != NULL && b->extra_string == NULL)
13350 error (_("Format string required"));
13351
13352 /* 1 - connect to target 1, that can run breakpoint commands.
13353 2 - create a dprintf, which resolves fine.
13354 3 - disconnect from target 1
13355 4 - connect to target 2, that can NOT run breakpoint commands.
13356
13357 After steps #3/#4, you'll want the dprintf command list to
13358 be updated, because target 1 and 2 may well return different
13359 answers for target_can_run_breakpoint_commands().
13360 Given absence of finer grained resetting, we get to do
13361 it all the time. */
13362 if (b->extra_string != NULL)
13363 update_dprintf_command_list (b);
13364 }
13365
13366 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13367
13368 static void
13369 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13370 {
13371 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13372 tp->extra_string);
13373 print_recreate_thread (tp, fp);
13374 }
13375
13376 /* Implement the "after_condition_true" breakpoint_ops method for
13377 dprintf.
13378
13379 dprintf's are implemented with regular commands in their command
13380 list, but we run the commands here instead of before presenting the
13381 stop to the user, as dprintf's don't actually cause a stop. This
13382 also makes it so that the commands of multiple dprintfs at the same
13383 address are all handled. */
13384
13385 static void
13386 dprintf_after_condition_true (struct bpstats *bs)
13387 {
13388 struct cleanup *old_chain;
13389 struct bpstats tmp_bs = { NULL };
13390 struct bpstats *tmp_bs_p = &tmp_bs;
13391
13392 /* dprintf's never cause a stop. This wasn't set in the
13393 check_status hook instead because that would make the dprintf's
13394 condition not be evaluated. */
13395 bs->stop = 0;
13396
13397 /* Run the command list here. Take ownership of it instead of
13398 copying. We never want these commands to run later in
13399 bpstat_do_actions, if a breakpoint that causes a stop happens to
13400 be set at same address as this dprintf, or even if running the
13401 commands here throws. */
13402 tmp_bs.commands = bs->commands;
13403 bs->commands = NULL;
13404 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13405
13406 bpstat_do_actions_1 (&tmp_bs_p);
13407
13408 /* 'tmp_bs.commands' will usually be NULL by now, but
13409 bpstat_do_actions_1 may return early without processing the whole
13410 list. */
13411 do_cleanups (old_chain);
13412 }
13413
13414 /* The breakpoint_ops structure to be used on static tracepoints with
13415 markers (`-m'). */
13416
13417 static void
13418 strace_marker_create_sals_from_address (char **arg,
13419 struct linespec_result *canonical,
13420 enum bptype type_wanted,
13421 char *addr_start, char **copy_arg)
13422 {
13423 struct linespec_sals lsal;
13424
13425 lsal.sals = decode_static_tracepoint_spec (arg);
13426
13427 *copy_arg = savestring (addr_start, *arg - addr_start);
13428
13429 canonical->addr_string = xstrdup (*copy_arg);
13430 lsal.canonical = xstrdup (*copy_arg);
13431 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13432 }
13433
13434 static void
13435 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13436 struct linespec_result *canonical,
13437 char *cond_string,
13438 char *extra_string,
13439 enum bptype type_wanted,
13440 enum bpdisp disposition,
13441 int thread,
13442 int task, int ignore_count,
13443 const struct breakpoint_ops *ops,
13444 int from_tty, int enabled,
13445 int internal, unsigned flags)
13446 {
13447 int i;
13448 struct linespec_sals *lsal = VEC_index (linespec_sals,
13449 canonical->sals, 0);
13450
13451 /* If the user is creating a static tracepoint by marker id
13452 (strace -m MARKER_ID), then store the sals index, so that
13453 breakpoint_re_set can try to match up which of the newly
13454 found markers corresponds to this one, and, don't try to
13455 expand multiple locations for each sal, given than SALS
13456 already should contain all sals for MARKER_ID. */
13457
13458 for (i = 0; i < lsal->sals.nelts; ++i)
13459 {
13460 struct symtabs_and_lines expanded;
13461 struct tracepoint *tp;
13462 struct cleanup *old_chain;
13463 char *addr_string;
13464
13465 expanded.nelts = 1;
13466 expanded.sals = &lsal->sals.sals[i];
13467
13468 addr_string = xstrdup (canonical->addr_string);
13469 old_chain = make_cleanup (xfree, addr_string);
13470
13471 tp = XCNEW (struct tracepoint);
13472 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13473 addr_string, NULL,
13474 cond_string, extra_string,
13475 type_wanted, disposition,
13476 thread, task, ignore_count, ops,
13477 from_tty, enabled, internal, flags,
13478 canonical->special_display);
13479 /* Given that its possible to have multiple markers with
13480 the same string id, if the user is creating a static
13481 tracepoint by marker id ("strace -m MARKER_ID"), then
13482 store the sals index, so that breakpoint_re_set can
13483 try to match up which of the newly found markers
13484 corresponds to this one */
13485 tp->static_trace_marker_id_idx = i;
13486
13487 install_breakpoint (internal, &tp->base, 0);
13488
13489 discard_cleanups (old_chain);
13490 }
13491 }
13492
13493 static void
13494 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13495 struct symtabs_and_lines *sals)
13496 {
13497 struct tracepoint *tp = (struct tracepoint *) b;
13498
13499 *sals = decode_static_tracepoint_spec (s);
13500 if (sals->nelts > tp->static_trace_marker_id_idx)
13501 {
13502 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13503 sals->nelts = 1;
13504 }
13505 else
13506 error (_("marker %s not found"), tp->static_trace_marker_id);
13507 }
13508
13509 static struct breakpoint_ops strace_marker_breakpoint_ops;
13510
13511 static int
13512 strace_marker_p (struct breakpoint *b)
13513 {
13514 return b->ops == &strace_marker_breakpoint_ops;
13515 }
13516
13517 /* Delete a breakpoint and clean up all traces of it in the data
13518 structures. */
13519
13520 void
13521 delete_breakpoint (struct breakpoint *bpt)
13522 {
13523 struct breakpoint *b;
13524
13525 gdb_assert (bpt != NULL);
13526
13527 /* Has this bp already been deleted? This can happen because
13528 multiple lists can hold pointers to bp's. bpstat lists are
13529 especial culprits.
13530
13531 One example of this happening is a watchpoint's scope bp. When
13532 the scope bp triggers, we notice that the watchpoint is out of
13533 scope, and delete it. We also delete its scope bp. But the
13534 scope bp is marked "auto-deleting", and is already on a bpstat.
13535 That bpstat is then checked for auto-deleting bp's, which are
13536 deleted.
13537
13538 A real solution to this problem might involve reference counts in
13539 bp's, and/or giving them pointers back to their referencing
13540 bpstat's, and teaching delete_breakpoint to only free a bp's
13541 storage when no more references were extent. A cheaper bandaid
13542 was chosen. */
13543 if (bpt->type == bp_none)
13544 return;
13545
13546 /* At least avoid this stale reference until the reference counting
13547 of breakpoints gets resolved. */
13548 if (bpt->related_breakpoint != bpt)
13549 {
13550 struct breakpoint *related;
13551 struct watchpoint *w;
13552
13553 if (bpt->type == bp_watchpoint_scope)
13554 w = (struct watchpoint *) bpt->related_breakpoint;
13555 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13556 w = (struct watchpoint *) bpt;
13557 else
13558 w = NULL;
13559 if (w != NULL)
13560 watchpoint_del_at_next_stop (w);
13561
13562 /* Unlink bpt from the bpt->related_breakpoint ring. */
13563 for (related = bpt; related->related_breakpoint != bpt;
13564 related = related->related_breakpoint);
13565 related->related_breakpoint = bpt->related_breakpoint;
13566 bpt->related_breakpoint = bpt;
13567 }
13568
13569 /* watch_command_1 creates a watchpoint but only sets its number if
13570 update_watchpoint succeeds in creating its bp_locations. If there's
13571 a problem in that process, we'll be asked to delete the half-created
13572 watchpoint. In that case, don't announce the deletion. */
13573 if (bpt->number)
13574 observer_notify_breakpoint_deleted (bpt);
13575
13576 if (breakpoint_chain == bpt)
13577 breakpoint_chain = bpt->next;
13578
13579 ALL_BREAKPOINTS (b)
13580 if (b->next == bpt)
13581 {
13582 b->next = bpt->next;
13583 break;
13584 }
13585
13586 /* Be sure no bpstat's are pointing at the breakpoint after it's
13587 been freed. */
13588 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13589 in all threads for now. Note that we cannot just remove bpstats
13590 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13591 commands are associated with the bpstat; if we remove it here,
13592 then the later call to bpstat_do_actions (&stop_bpstat); in
13593 event-top.c won't do anything, and temporary breakpoints with
13594 commands won't work. */
13595
13596 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13597
13598 /* Now that breakpoint is removed from breakpoint list, update the
13599 global location list. This will remove locations that used to
13600 belong to this breakpoint. Do this before freeing the breakpoint
13601 itself, since remove_breakpoint looks at location's owner. It
13602 might be better design to have location completely
13603 self-contained, but it's not the case now. */
13604 update_global_location_list (UGLL_DONT_INSERT);
13605
13606 bpt->ops->dtor (bpt);
13607 /* On the chance that someone will soon try again to delete this
13608 same bp, we mark it as deleted before freeing its storage. */
13609 bpt->type = bp_none;
13610 xfree (bpt);
13611 }
13612
13613 static void
13614 do_delete_breakpoint_cleanup (void *b)
13615 {
13616 delete_breakpoint (b);
13617 }
13618
13619 struct cleanup *
13620 make_cleanup_delete_breakpoint (struct breakpoint *b)
13621 {
13622 return make_cleanup (do_delete_breakpoint_cleanup, b);
13623 }
13624
13625 /* Iterator function to call a user-provided callback function once
13626 for each of B and its related breakpoints. */
13627
13628 static void
13629 iterate_over_related_breakpoints (struct breakpoint *b,
13630 void (*function) (struct breakpoint *,
13631 void *),
13632 void *data)
13633 {
13634 struct breakpoint *related;
13635
13636 related = b;
13637 do
13638 {
13639 struct breakpoint *next;
13640
13641 /* FUNCTION may delete RELATED. */
13642 next = related->related_breakpoint;
13643
13644 if (next == related)
13645 {
13646 /* RELATED is the last ring entry. */
13647 function (related, data);
13648
13649 /* FUNCTION may have deleted it, so we'd never reach back to
13650 B. There's nothing left to do anyway, so just break
13651 out. */
13652 break;
13653 }
13654 else
13655 function (related, data);
13656
13657 related = next;
13658 }
13659 while (related != b);
13660 }
13661
13662 static void
13663 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13664 {
13665 delete_breakpoint (b);
13666 }
13667
13668 /* A callback for map_breakpoint_numbers that calls
13669 delete_breakpoint. */
13670
13671 static void
13672 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13673 {
13674 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13675 }
13676
13677 void
13678 delete_command (char *arg, int from_tty)
13679 {
13680 struct breakpoint *b, *b_tmp;
13681
13682 dont_repeat ();
13683
13684 if (arg == 0)
13685 {
13686 int breaks_to_delete = 0;
13687
13688 /* Delete all breakpoints if no argument. Do not delete
13689 internal breakpoints, these have to be deleted with an
13690 explicit breakpoint number argument. */
13691 ALL_BREAKPOINTS (b)
13692 if (user_breakpoint_p (b))
13693 {
13694 breaks_to_delete = 1;
13695 break;
13696 }
13697
13698 /* Ask user only if there are some breakpoints to delete. */
13699 if (!from_tty
13700 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13701 {
13702 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13703 if (user_breakpoint_p (b))
13704 delete_breakpoint (b);
13705 }
13706 }
13707 else
13708 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13709 }
13710
13711 static int
13712 all_locations_are_pending (struct bp_location *loc)
13713 {
13714 for (; loc; loc = loc->next)
13715 if (!loc->shlib_disabled
13716 && !loc->pspace->executing_startup)
13717 return 0;
13718 return 1;
13719 }
13720
13721 /* Subroutine of update_breakpoint_locations to simplify it.
13722 Return non-zero if multiple fns in list LOC have the same name.
13723 Null names are ignored. */
13724
13725 static int
13726 ambiguous_names_p (struct bp_location *loc)
13727 {
13728 struct bp_location *l;
13729 htab_t htab = htab_create_alloc (13, htab_hash_string,
13730 (int (*) (const void *,
13731 const void *)) streq,
13732 NULL, xcalloc, xfree);
13733
13734 for (l = loc; l != NULL; l = l->next)
13735 {
13736 const char **slot;
13737 const char *name = l->function_name;
13738
13739 /* Allow for some names to be NULL, ignore them. */
13740 if (name == NULL)
13741 continue;
13742
13743 slot = (const char **) htab_find_slot (htab, (const void *) name,
13744 INSERT);
13745 /* NOTE: We can assume slot != NULL here because xcalloc never
13746 returns NULL. */
13747 if (*slot != NULL)
13748 {
13749 htab_delete (htab);
13750 return 1;
13751 }
13752 *slot = name;
13753 }
13754
13755 htab_delete (htab);
13756 return 0;
13757 }
13758
13759 /* When symbols change, it probably means the sources changed as well,
13760 and it might mean the static tracepoint markers are no longer at
13761 the same address or line numbers they used to be at last we
13762 checked. Losing your static tracepoints whenever you rebuild is
13763 undesirable. This function tries to resync/rematch gdb static
13764 tracepoints with the markers on the target, for static tracepoints
13765 that have not been set by marker id. Static tracepoint that have
13766 been set by marker id are reset by marker id in breakpoint_re_set.
13767 The heuristic is:
13768
13769 1) For a tracepoint set at a specific address, look for a marker at
13770 the old PC. If one is found there, assume to be the same marker.
13771 If the name / string id of the marker found is different from the
13772 previous known name, assume that means the user renamed the marker
13773 in the sources, and output a warning.
13774
13775 2) For a tracepoint set at a given line number, look for a marker
13776 at the new address of the old line number. If one is found there,
13777 assume to be the same marker. If the name / string id of the
13778 marker found is different from the previous known name, assume that
13779 means the user renamed the marker in the sources, and output a
13780 warning.
13781
13782 3) If a marker is no longer found at the same address or line, it
13783 may mean the marker no longer exists. But it may also just mean
13784 the code changed a bit. Maybe the user added a few lines of code
13785 that made the marker move up or down (in line number terms). Ask
13786 the target for info about the marker with the string id as we knew
13787 it. If found, update line number and address in the matching
13788 static tracepoint. This will get confused if there's more than one
13789 marker with the same ID (possible in UST, although unadvised
13790 precisely because it confuses tools). */
13791
13792 static struct symtab_and_line
13793 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13794 {
13795 struct tracepoint *tp = (struct tracepoint *) b;
13796 struct static_tracepoint_marker marker;
13797 CORE_ADDR pc;
13798
13799 pc = sal.pc;
13800 if (sal.line)
13801 find_line_pc (sal.symtab, sal.line, &pc);
13802
13803 if (target_static_tracepoint_marker_at (pc, &marker))
13804 {
13805 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13806 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13807 b->number,
13808 tp->static_trace_marker_id, marker.str_id);
13809
13810 xfree (tp->static_trace_marker_id);
13811 tp->static_trace_marker_id = xstrdup (marker.str_id);
13812 release_static_tracepoint_marker (&marker);
13813
13814 return sal;
13815 }
13816
13817 /* Old marker wasn't found on target at lineno. Try looking it up
13818 by string ID. */
13819 if (!sal.explicit_pc
13820 && sal.line != 0
13821 && sal.symtab != NULL
13822 && tp->static_trace_marker_id != NULL)
13823 {
13824 VEC(static_tracepoint_marker_p) *markers;
13825
13826 markers
13827 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13828
13829 if (!VEC_empty(static_tracepoint_marker_p, markers))
13830 {
13831 struct symtab_and_line sal2;
13832 struct symbol *sym;
13833 struct static_tracepoint_marker *tpmarker;
13834 struct ui_out *uiout = current_uiout;
13835
13836 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13837
13838 xfree (tp->static_trace_marker_id);
13839 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13840
13841 warning (_("marker for static tracepoint %d (%s) not "
13842 "found at previous line number"),
13843 b->number, tp->static_trace_marker_id);
13844
13845 init_sal (&sal2);
13846
13847 sal2.pc = tpmarker->address;
13848
13849 sal2 = find_pc_line (tpmarker->address, 0);
13850 sym = find_pc_sect_function (tpmarker->address, NULL);
13851 ui_out_text (uiout, "Now in ");
13852 if (sym)
13853 {
13854 ui_out_field_string (uiout, "func",
13855 SYMBOL_PRINT_NAME (sym));
13856 ui_out_text (uiout, " at ");
13857 }
13858 ui_out_field_string (uiout, "file",
13859 symtab_to_filename_for_display (sal2.symtab));
13860 ui_out_text (uiout, ":");
13861
13862 if (ui_out_is_mi_like_p (uiout))
13863 {
13864 const char *fullname = symtab_to_fullname (sal2.symtab);
13865
13866 ui_out_field_string (uiout, "fullname", fullname);
13867 }
13868
13869 ui_out_field_int (uiout, "line", sal2.line);
13870 ui_out_text (uiout, "\n");
13871
13872 b->loc->line_number = sal2.line;
13873 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13874
13875 xfree (b->addr_string);
13876 b->addr_string = xstrprintf ("%s:%d",
13877 symtab_to_filename_for_display (sal2.symtab),
13878 b->loc->line_number);
13879
13880 /* Might be nice to check if function changed, and warn if
13881 so. */
13882
13883 release_static_tracepoint_marker (tpmarker);
13884 }
13885 }
13886 return sal;
13887 }
13888
13889 /* Returns 1 iff locations A and B are sufficiently same that
13890 we don't need to report breakpoint as changed. */
13891
13892 static int
13893 locations_are_equal (struct bp_location *a, struct bp_location *b)
13894 {
13895 while (a && b)
13896 {
13897 if (a->address != b->address)
13898 return 0;
13899
13900 if (a->shlib_disabled != b->shlib_disabled)
13901 return 0;
13902
13903 if (a->enabled != b->enabled)
13904 return 0;
13905
13906 a = a->next;
13907 b = b->next;
13908 }
13909
13910 if ((a == NULL) != (b == NULL))
13911 return 0;
13912
13913 return 1;
13914 }
13915
13916 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13917 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13918 a ranged breakpoint. */
13919
13920 void
13921 update_breakpoint_locations (struct breakpoint *b,
13922 struct symtabs_and_lines sals,
13923 struct symtabs_and_lines sals_end)
13924 {
13925 int i;
13926 struct bp_location *existing_locations = b->loc;
13927
13928 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13929 {
13930 /* Ranged breakpoints have only one start location and one end
13931 location. */
13932 b->enable_state = bp_disabled;
13933 update_global_location_list (UGLL_MAY_INSERT);
13934 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13935 "multiple locations found\n"),
13936 b->number);
13937 return;
13938 }
13939
13940 /* If there's no new locations, and all existing locations are
13941 pending, don't do anything. This optimizes the common case where
13942 all locations are in the same shared library, that was unloaded.
13943 We'd like to retain the location, so that when the library is
13944 loaded again, we don't loose the enabled/disabled status of the
13945 individual locations. */
13946 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13947 return;
13948
13949 b->loc = NULL;
13950
13951 for (i = 0; i < sals.nelts; ++i)
13952 {
13953 struct bp_location *new_loc;
13954
13955 switch_to_program_space_and_thread (sals.sals[i].pspace);
13956
13957 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13958
13959 /* Reparse conditions, they might contain references to the
13960 old symtab. */
13961 if (b->cond_string != NULL)
13962 {
13963 const char *s;
13964
13965 s = b->cond_string;
13966 TRY
13967 {
13968 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13969 block_for_pc (sals.sals[i].pc),
13970 0);
13971 }
13972 CATCH (e, RETURN_MASK_ERROR)
13973 {
13974 warning (_("failed to reevaluate condition "
13975 "for breakpoint %d: %s"),
13976 b->number, e.message);
13977 new_loc->enabled = 0;
13978 }
13979 END_CATCH
13980 }
13981
13982 if (sals_end.nelts)
13983 {
13984 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13985
13986 new_loc->length = end - sals.sals[0].pc + 1;
13987 }
13988 }
13989
13990 /* If possible, carry over 'disable' status from existing
13991 breakpoints. */
13992 {
13993 struct bp_location *e = existing_locations;
13994 /* If there are multiple breakpoints with the same function name,
13995 e.g. for inline functions, comparing function names won't work.
13996 Instead compare pc addresses; this is just a heuristic as things
13997 may have moved, but in practice it gives the correct answer
13998 often enough until a better solution is found. */
13999 int have_ambiguous_names = ambiguous_names_p (b->loc);
14000
14001 for (; e; e = e->next)
14002 {
14003 if (!e->enabled && e->function_name)
14004 {
14005 struct bp_location *l = b->loc;
14006 if (have_ambiguous_names)
14007 {
14008 for (; l; l = l->next)
14009 if (breakpoint_locations_match (e, l))
14010 {
14011 l->enabled = 0;
14012 break;
14013 }
14014 }
14015 else
14016 {
14017 for (; l; l = l->next)
14018 if (l->function_name
14019 && strcmp (e->function_name, l->function_name) == 0)
14020 {
14021 l->enabled = 0;
14022 break;
14023 }
14024 }
14025 }
14026 }
14027 }
14028
14029 if (!locations_are_equal (existing_locations, b->loc))
14030 observer_notify_breakpoint_modified (b);
14031
14032 update_global_location_list (UGLL_MAY_INSERT);
14033 }
14034
14035 /* Find the SaL locations corresponding to the given ADDR_STRING.
14036 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14037
14038 static struct symtabs_and_lines
14039 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14040 {
14041 char *s;
14042 struct symtabs_and_lines sals = {0};
14043 struct gdb_exception exception = exception_none;
14044
14045 gdb_assert (b->ops != NULL);
14046 s = addr_string;
14047
14048 TRY
14049 {
14050 b->ops->decode_linespec (b, &s, &sals);
14051 }
14052 CATCH (e, RETURN_MASK_ERROR)
14053 {
14054 int not_found_and_ok = 0;
14055
14056 exception = e;
14057
14058 /* For pending breakpoints, it's expected that parsing will
14059 fail until the right shared library is loaded. User has
14060 already told to create pending breakpoints and don't need
14061 extra messages. If breakpoint is in bp_shlib_disabled
14062 state, then user already saw the message about that
14063 breakpoint being disabled, and don't want to see more
14064 errors. */
14065 if (e.error == NOT_FOUND_ERROR
14066 && (b->condition_not_parsed
14067 || (b->loc && b->loc->shlib_disabled)
14068 || (b->loc && b->loc->pspace->executing_startup)
14069 || b->enable_state == bp_disabled))
14070 not_found_and_ok = 1;
14071
14072 if (!not_found_and_ok)
14073 {
14074 /* We surely don't want to warn about the same breakpoint
14075 10 times. One solution, implemented here, is disable
14076 the breakpoint on error. Another solution would be to
14077 have separate 'warning emitted' flag. Since this
14078 happens only when a binary has changed, I don't know
14079 which approach is better. */
14080 b->enable_state = bp_disabled;
14081 throw_exception (e);
14082 }
14083 }
14084 END_CATCH
14085
14086 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14087 {
14088 int i;
14089
14090 for (i = 0; i < sals.nelts; ++i)
14091 resolve_sal_pc (&sals.sals[i]);
14092 if (b->condition_not_parsed && s && s[0])
14093 {
14094 char *cond_string, *extra_string;
14095 int thread, task;
14096
14097 find_condition_and_thread (s, sals.sals[0].pc,
14098 &cond_string, &thread, &task,
14099 &extra_string);
14100 if (cond_string)
14101 b->cond_string = cond_string;
14102 b->thread = thread;
14103 b->task = task;
14104 if (extra_string)
14105 b->extra_string = extra_string;
14106 b->condition_not_parsed = 0;
14107 }
14108
14109 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14110 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14111
14112 *found = 1;
14113 }
14114 else
14115 *found = 0;
14116
14117 return sals;
14118 }
14119
14120 /* The default re_set method, for typical hardware or software
14121 breakpoints. Reevaluate the breakpoint and recreate its
14122 locations. */
14123
14124 static void
14125 breakpoint_re_set_default (struct breakpoint *b)
14126 {
14127 int found;
14128 struct symtabs_and_lines sals, sals_end;
14129 struct symtabs_and_lines expanded = {0};
14130 struct symtabs_and_lines expanded_end = {0};
14131
14132 sals = addr_string_to_sals (b, b->addr_string, &found);
14133 if (found)
14134 {
14135 make_cleanup (xfree, sals.sals);
14136 expanded = sals;
14137 }
14138
14139 if (b->addr_string_range_end)
14140 {
14141 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14142 if (found)
14143 {
14144 make_cleanup (xfree, sals_end.sals);
14145 expanded_end = sals_end;
14146 }
14147 }
14148
14149 update_breakpoint_locations (b, expanded, expanded_end);
14150 }
14151
14152 /* Default method for creating SALs from an address string. It basically
14153 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14154
14155 static void
14156 create_sals_from_address_default (char **arg,
14157 struct linespec_result *canonical,
14158 enum bptype type_wanted,
14159 char *addr_start, char **copy_arg)
14160 {
14161 parse_breakpoint_sals (arg, canonical);
14162 }
14163
14164 /* Call create_breakpoints_sal for the given arguments. This is the default
14165 function for the `create_breakpoints_sal' method of
14166 breakpoint_ops. */
14167
14168 static void
14169 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14170 struct linespec_result *canonical,
14171 char *cond_string,
14172 char *extra_string,
14173 enum bptype type_wanted,
14174 enum bpdisp disposition,
14175 int thread,
14176 int task, int ignore_count,
14177 const struct breakpoint_ops *ops,
14178 int from_tty, int enabled,
14179 int internal, unsigned flags)
14180 {
14181 create_breakpoints_sal (gdbarch, canonical, cond_string,
14182 extra_string,
14183 type_wanted, disposition,
14184 thread, task, ignore_count, ops, from_tty,
14185 enabled, internal, flags);
14186 }
14187
14188 /* Decode the line represented by S by calling decode_line_full. This is the
14189 default function for the `decode_linespec' method of breakpoint_ops. */
14190
14191 static void
14192 decode_linespec_default (struct breakpoint *b, char **s,
14193 struct symtabs_and_lines *sals)
14194 {
14195 struct linespec_result canonical;
14196
14197 init_linespec_result (&canonical);
14198 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14199 (struct symtab *) NULL, 0,
14200 &canonical, multiple_symbols_all,
14201 b->filter);
14202
14203 /* We should get 0 or 1 resulting SALs. */
14204 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14205
14206 if (VEC_length (linespec_sals, canonical.sals) > 0)
14207 {
14208 struct linespec_sals *lsal;
14209
14210 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14211 *sals = lsal->sals;
14212 /* Arrange it so the destructor does not free the
14213 contents. */
14214 lsal->sals.sals = NULL;
14215 }
14216
14217 destroy_linespec_result (&canonical);
14218 }
14219
14220 /* Prepare the global context for a re-set of breakpoint B. */
14221
14222 static struct cleanup *
14223 prepare_re_set_context (struct breakpoint *b)
14224 {
14225 struct cleanup *cleanups;
14226
14227 input_radix = b->input_radix;
14228 cleanups = save_current_space_and_thread ();
14229 if (b->pspace != NULL)
14230 switch_to_program_space_and_thread (b->pspace);
14231 set_language (b->language);
14232
14233 return cleanups;
14234 }
14235
14236 /* Reset a breakpoint given it's struct breakpoint * BINT.
14237 The value we return ends up being the return value from catch_errors.
14238 Unused in this case. */
14239
14240 static int
14241 breakpoint_re_set_one (void *bint)
14242 {
14243 /* Get past catch_errs. */
14244 struct breakpoint *b = (struct breakpoint *) bint;
14245 struct cleanup *cleanups;
14246
14247 cleanups = prepare_re_set_context (b);
14248 b->ops->re_set (b);
14249 do_cleanups (cleanups);
14250 return 0;
14251 }
14252
14253 /* Re-set all breakpoints after symbols have been re-loaded. */
14254 void
14255 breakpoint_re_set (void)
14256 {
14257 struct breakpoint *b, *b_tmp;
14258 enum language save_language;
14259 int save_input_radix;
14260 struct cleanup *old_chain;
14261
14262 save_language = current_language->la_language;
14263 save_input_radix = input_radix;
14264 old_chain = save_current_program_space ();
14265
14266 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14267 {
14268 /* Format possible error msg. */
14269 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14270 b->number);
14271 struct cleanup *cleanups = make_cleanup (xfree, message);
14272 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14273 do_cleanups (cleanups);
14274 }
14275 set_language (save_language);
14276 input_radix = save_input_radix;
14277
14278 jit_breakpoint_re_set ();
14279
14280 do_cleanups (old_chain);
14281
14282 create_overlay_event_breakpoint ();
14283 create_longjmp_master_breakpoint ();
14284 create_std_terminate_master_breakpoint ();
14285 create_exception_master_breakpoint ();
14286 }
14287 \f
14288 /* Reset the thread number of this breakpoint:
14289
14290 - If the breakpoint is for all threads, leave it as-is.
14291 - Else, reset it to the current thread for inferior_ptid. */
14292 void
14293 breakpoint_re_set_thread (struct breakpoint *b)
14294 {
14295 if (b->thread != -1)
14296 {
14297 if (in_thread_list (inferior_ptid))
14298 b->thread = pid_to_thread_id (inferior_ptid);
14299
14300 /* We're being called after following a fork. The new fork is
14301 selected as current, and unless this was a vfork will have a
14302 different program space from the original thread. Reset that
14303 as well. */
14304 b->loc->pspace = current_program_space;
14305 }
14306 }
14307
14308 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14309 If from_tty is nonzero, it prints a message to that effect,
14310 which ends with a period (no newline). */
14311
14312 void
14313 set_ignore_count (int bptnum, int count, int from_tty)
14314 {
14315 struct breakpoint *b;
14316
14317 if (count < 0)
14318 count = 0;
14319
14320 ALL_BREAKPOINTS (b)
14321 if (b->number == bptnum)
14322 {
14323 if (is_tracepoint (b))
14324 {
14325 if (from_tty && count != 0)
14326 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14327 bptnum);
14328 return;
14329 }
14330
14331 b->ignore_count = count;
14332 if (from_tty)
14333 {
14334 if (count == 0)
14335 printf_filtered (_("Will stop next time "
14336 "breakpoint %d is reached."),
14337 bptnum);
14338 else if (count == 1)
14339 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14340 bptnum);
14341 else
14342 printf_filtered (_("Will ignore next %d "
14343 "crossings of breakpoint %d."),
14344 count, bptnum);
14345 }
14346 observer_notify_breakpoint_modified (b);
14347 return;
14348 }
14349
14350 error (_("No breakpoint number %d."), bptnum);
14351 }
14352
14353 /* Command to set ignore-count of breakpoint N to COUNT. */
14354
14355 static void
14356 ignore_command (char *args, int from_tty)
14357 {
14358 char *p = args;
14359 int num;
14360
14361 if (p == 0)
14362 error_no_arg (_("a breakpoint number"));
14363
14364 num = get_number (&p);
14365 if (num == 0)
14366 error (_("bad breakpoint number: '%s'"), args);
14367 if (*p == 0)
14368 error (_("Second argument (specified ignore-count) is missing."));
14369
14370 set_ignore_count (num,
14371 longest_to_int (value_as_long (parse_and_eval (p))),
14372 from_tty);
14373 if (from_tty)
14374 printf_filtered ("\n");
14375 }
14376 \f
14377 /* Call FUNCTION on each of the breakpoints
14378 whose numbers are given in ARGS. */
14379
14380 static void
14381 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14382 void *),
14383 void *data)
14384 {
14385 int num;
14386 struct breakpoint *b, *tmp;
14387 int match;
14388 struct get_number_or_range_state state;
14389
14390 if (args == 0 || *args == '\0')
14391 error_no_arg (_("one or more breakpoint numbers"));
14392
14393 init_number_or_range (&state, args);
14394
14395 while (!state.finished)
14396 {
14397 const char *p = state.string;
14398
14399 match = 0;
14400
14401 num = get_number_or_range (&state);
14402 if (num == 0)
14403 {
14404 warning (_("bad breakpoint number at or near '%s'"), p);
14405 }
14406 else
14407 {
14408 ALL_BREAKPOINTS_SAFE (b, tmp)
14409 if (b->number == num)
14410 {
14411 match = 1;
14412 function (b, data);
14413 break;
14414 }
14415 if (match == 0)
14416 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14417 }
14418 }
14419 }
14420
14421 static struct bp_location *
14422 find_location_by_number (char *number)
14423 {
14424 char *dot = strchr (number, '.');
14425 char *p1;
14426 int bp_num;
14427 int loc_num;
14428 struct breakpoint *b;
14429 struct bp_location *loc;
14430
14431 *dot = '\0';
14432
14433 p1 = number;
14434 bp_num = get_number (&p1);
14435 if (bp_num == 0)
14436 error (_("Bad breakpoint number '%s'"), number);
14437
14438 ALL_BREAKPOINTS (b)
14439 if (b->number == bp_num)
14440 {
14441 break;
14442 }
14443
14444 if (!b || b->number != bp_num)
14445 error (_("Bad breakpoint number '%s'"), number);
14446
14447 p1 = dot+1;
14448 loc_num = get_number (&p1);
14449 if (loc_num == 0)
14450 error (_("Bad breakpoint location number '%s'"), number);
14451
14452 --loc_num;
14453 loc = b->loc;
14454 for (;loc_num && loc; --loc_num, loc = loc->next)
14455 ;
14456 if (!loc)
14457 error (_("Bad breakpoint location number '%s'"), dot+1);
14458
14459 return loc;
14460 }
14461
14462
14463 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14464 If from_tty is nonzero, it prints a message to that effect,
14465 which ends with a period (no newline). */
14466
14467 void
14468 disable_breakpoint (struct breakpoint *bpt)
14469 {
14470 /* Never disable a watchpoint scope breakpoint; we want to
14471 hit them when we leave scope so we can delete both the
14472 watchpoint and its scope breakpoint at that time. */
14473 if (bpt->type == bp_watchpoint_scope)
14474 return;
14475
14476 bpt->enable_state = bp_disabled;
14477
14478 /* Mark breakpoint locations modified. */
14479 mark_breakpoint_modified (bpt);
14480
14481 if (target_supports_enable_disable_tracepoint ()
14482 && current_trace_status ()->running && is_tracepoint (bpt))
14483 {
14484 struct bp_location *location;
14485
14486 for (location = bpt->loc; location; location = location->next)
14487 target_disable_tracepoint (location);
14488 }
14489
14490 update_global_location_list (UGLL_DONT_INSERT);
14491
14492 observer_notify_breakpoint_modified (bpt);
14493 }
14494
14495 /* A callback for iterate_over_related_breakpoints. */
14496
14497 static void
14498 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14499 {
14500 disable_breakpoint (b);
14501 }
14502
14503 /* A callback for map_breakpoint_numbers that calls
14504 disable_breakpoint. */
14505
14506 static void
14507 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14508 {
14509 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14510 }
14511
14512 static void
14513 disable_command (char *args, int from_tty)
14514 {
14515 if (args == 0)
14516 {
14517 struct breakpoint *bpt;
14518
14519 ALL_BREAKPOINTS (bpt)
14520 if (user_breakpoint_p (bpt))
14521 disable_breakpoint (bpt);
14522 }
14523 else
14524 {
14525 char *num = extract_arg (&args);
14526
14527 while (num)
14528 {
14529 if (strchr (num, '.'))
14530 {
14531 struct bp_location *loc = find_location_by_number (num);
14532
14533 if (loc)
14534 {
14535 if (loc->enabled)
14536 {
14537 loc->enabled = 0;
14538 mark_breakpoint_location_modified (loc);
14539 }
14540 if (target_supports_enable_disable_tracepoint ()
14541 && current_trace_status ()->running && loc->owner
14542 && is_tracepoint (loc->owner))
14543 target_disable_tracepoint (loc);
14544 }
14545 update_global_location_list (UGLL_DONT_INSERT);
14546 }
14547 else
14548 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14549 num = extract_arg (&args);
14550 }
14551 }
14552 }
14553
14554 static void
14555 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14556 int count)
14557 {
14558 int target_resources_ok;
14559
14560 if (bpt->type == bp_hardware_breakpoint)
14561 {
14562 int i;
14563 i = hw_breakpoint_used_count ();
14564 target_resources_ok =
14565 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14566 i + 1, 0);
14567 if (target_resources_ok == 0)
14568 error (_("No hardware breakpoint support in the target."));
14569 else if (target_resources_ok < 0)
14570 error (_("Hardware breakpoints used exceeds limit."));
14571 }
14572
14573 if (is_watchpoint (bpt))
14574 {
14575 /* Initialize it just to avoid a GCC false warning. */
14576 enum enable_state orig_enable_state = 0;
14577
14578 TRY
14579 {
14580 struct watchpoint *w = (struct watchpoint *) bpt;
14581
14582 orig_enable_state = bpt->enable_state;
14583 bpt->enable_state = bp_enabled;
14584 update_watchpoint (w, 1 /* reparse */);
14585 }
14586 CATCH (e, RETURN_MASK_ALL)
14587 {
14588 bpt->enable_state = orig_enable_state;
14589 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14590 bpt->number);
14591 return;
14592 }
14593 END_CATCH
14594 }
14595
14596 bpt->enable_state = bp_enabled;
14597
14598 /* Mark breakpoint locations modified. */
14599 mark_breakpoint_modified (bpt);
14600
14601 if (target_supports_enable_disable_tracepoint ()
14602 && current_trace_status ()->running && is_tracepoint (bpt))
14603 {
14604 struct bp_location *location;
14605
14606 for (location = bpt->loc; location; location = location->next)
14607 target_enable_tracepoint (location);
14608 }
14609
14610 bpt->disposition = disposition;
14611 bpt->enable_count = count;
14612 update_global_location_list (UGLL_MAY_INSERT);
14613
14614 observer_notify_breakpoint_modified (bpt);
14615 }
14616
14617
14618 void
14619 enable_breakpoint (struct breakpoint *bpt)
14620 {
14621 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14622 }
14623
14624 static void
14625 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14626 {
14627 enable_breakpoint (bpt);
14628 }
14629
14630 /* A callback for map_breakpoint_numbers that calls
14631 enable_breakpoint. */
14632
14633 static void
14634 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14635 {
14636 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14637 }
14638
14639 /* The enable command enables the specified breakpoints (or all defined
14640 breakpoints) so they once again become (or continue to be) effective
14641 in stopping the inferior. */
14642
14643 static void
14644 enable_command (char *args, int from_tty)
14645 {
14646 if (args == 0)
14647 {
14648 struct breakpoint *bpt;
14649
14650 ALL_BREAKPOINTS (bpt)
14651 if (user_breakpoint_p (bpt))
14652 enable_breakpoint (bpt);
14653 }
14654 else
14655 {
14656 char *num = extract_arg (&args);
14657
14658 while (num)
14659 {
14660 if (strchr (num, '.'))
14661 {
14662 struct bp_location *loc = find_location_by_number (num);
14663
14664 if (loc)
14665 {
14666 if (!loc->enabled)
14667 {
14668 loc->enabled = 1;
14669 mark_breakpoint_location_modified (loc);
14670 }
14671 if (target_supports_enable_disable_tracepoint ()
14672 && current_trace_status ()->running && loc->owner
14673 && is_tracepoint (loc->owner))
14674 target_enable_tracepoint (loc);
14675 }
14676 update_global_location_list (UGLL_MAY_INSERT);
14677 }
14678 else
14679 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14680 num = extract_arg (&args);
14681 }
14682 }
14683 }
14684
14685 /* This struct packages up disposition data for application to multiple
14686 breakpoints. */
14687
14688 struct disp_data
14689 {
14690 enum bpdisp disp;
14691 int count;
14692 };
14693
14694 static void
14695 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14696 {
14697 struct disp_data disp_data = *(struct disp_data *) arg;
14698
14699 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14700 }
14701
14702 static void
14703 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14704 {
14705 struct disp_data disp = { disp_disable, 1 };
14706
14707 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14708 }
14709
14710 static void
14711 enable_once_command (char *args, int from_tty)
14712 {
14713 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14714 }
14715
14716 static void
14717 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14718 {
14719 struct disp_data disp = { disp_disable, *(int *) countptr };
14720
14721 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14722 }
14723
14724 static void
14725 enable_count_command (char *args, int from_tty)
14726 {
14727 int count;
14728
14729 if (args == NULL)
14730 error_no_arg (_("hit count"));
14731
14732 count = get_number (&args);
14733
14734 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14735 }
14736
14737 static void
14738 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14739 {
14740 struct disp_data disp = { disp_del, 1 };
14741
14742 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14743 }
14744
14745 static void
14746 enable_delete_command (char *args, int from_tty)
14747 {
14748 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14749 }
14750 \f
14751 static void
14752 set_breakpoint_cmd (char *args, int from_tty)
14753 {
14754 }
14755
14756 static void
14757 show_breakpoint_cmd (char *args, int from_tty)
14758 {
14759 }
14760
14761 /* Invalidate last known value of any hardware watchpoint if
14762 the memory which that value represents has been written to by
14763 GDB itself. */
14764
14765 static void
14766 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14767 CORE_ADDR addr, ssize_t len,
14768 const bfd_byte *data)
14769 {
14770 struct breakpoint *bp;
14771
14772 ALL_BREAKPOINTS (bp)
14773 if (bp->enable_state == bp_enabled
14774 && bp->type == bp_hardware_watchpoint)
14775 {
14776 struct watchpoint *wp = (struct watchpoint *) bp;
14777
14778 if (wp->val_valid && wp->val)
14779 {
14780 struct bp_location *loc;
14781
14782 for (loc = bp->loc; loc != NULL; loc = loc->next)
14783 if (loc->loc_type == bp_loc_hardware_watchpoint
14784 && loc->address + loc->length > addr
14785 && addr + len > loc->address)
14786 {
14787 value_free (wp->val);
14788 wp->val = NULL;
14789 wp->val_valid = 0;
14790 }
14791 }
14792 }
14793 }
14794
14795 /* Create and insert a breakpoint for software single step. */
14796
14797 void
14798 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14799 struct address_space *aspace,
14800 CORE_ADDR next_pc)
14801 {
14802 struct thread_info *tp = inferior_thread ();
14803 struct symtab_and_line sal;
14804 CORE_ADDR pc = next_pc;
14805
14806 if (tp->control.single_step_breakpoints == NULL)
14807 {
14808 tp->control.single_step_breakpoints
14809 = new_single_step_breakpoint (tp->num, gdbarch);
14810 }
14811
14812 sal = find_pc_line (pc, 0);
14813 sal.pc = pc;
14814 sal.section = find_pc_overlay (pc);
14815 sal.explicit_pc = 1;
14816 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14817
14818 update_global_location_list (UGLL_INSERT);
14819 }
14820
14821 /* See breakpoint.h. */
14822
14823 int
14824 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14825 struct address_space *aspace,
14826 CORE_ADDR pc)
14827 {
14828 struct bp_location *loc;
14829
14830 for (loc = bp->loc; loc != NULL; loc = loc->next)
14831 if (loc->inserted
14832 && breakpoint_location_address_match (loc, aspace, pc))
14833 return 1;
14834
14835 return 0;
14836 }
14837
14838 /* Check whether a software single-step breakpoint is inserted at
14839 PC. */
14840
14841 int
14842 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14843 CORE_ADDR pc)
14844 {
14845 struct breakpoint *bpt;
14846
14847 ALL_BREAKPOINTS (bpt)
14848 {
14849 if (bpt->type == bp_single_step
14850 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14851 return 1;
14852 }
14853 return 0;
14854 }
14855
14856 /* Tracepoint-specific operations. */
14857
14858 /* Set tracepoint count to NUM. */
14859 static void
14860 set_tracepoint_count (int num)
14861 {
14862 tracepoint_count = num;
14863 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14864 }
14865
14866 static void
14867 trace_command (char *arg, int from_tty)
14868 {
14869 struct breakpoint_ops *ops;
14870 const char *arg_cp = arg;
14871
14872 if (arg && probe_linespec_to_ops (&arg_cp))
14873 ops = &tracepoint_probe_breakpoint_ops;
14874 else
14875 ops = &tracepoint_breakpoint_ops;
14876
14877 create_breakpoint (get_current_arch (),
14878 arg,
14879 NULL, 0, NULL, 1 /* parse arg */,
14880 0 /* tempflag */,
14881 bp_tracepoint /* type_wanted */,
14882 0 /* Ignore count */,
14883 pending_break_support,
14884 ops,
14885 from_tty,
14886 1 /* enabled */,
14887 0 /* internal */, 0);
14888 }
14889
14890 static void
14891 ftrace_command (char *arg, int from_tty)
14892 {
14893 create_breakpoint (get_current_arch (),
14894 arg,
14895 NULL, 0, NULL, 1 /* parse arg */,
14896 0 /* tempflag */,
14897 bp_fast_tracepoint /* type_wanted */,
14898 0 /* Ignore count */,
14899 pending_break_support,
14900 &tracepoint_breakpoint_ops,
14901 from_tty,
14902 1 /* enabled */,
14903 0 /* internal */, 0);
14904 }
14905
14906 /* strace command implementation. Creates a static tracepoint. */
14907
14908 static void
14909 strace_command (char *arg, int from_tty)
14910 {
14911 struct breakpoint_ops *ops;
14912
14913 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14914 or with a normal static tracepoint. */
14915 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14916 ops = &strace_marker_breakpoint_ops;
14917 else
14918 ops = &tracepoint_breakpoint_ops;
14919
14920 create_breakpoint (get_current_arch (),
14921 arg,
14922 NULL, 0, NULL, 1 /* parse arg */,
14923 0 /* tempflag */,
14924 bp_static_tracepoint /* type_wanted */,
14925 0 /* Ignore count */,
14926 pending_break_support,
14927 ops,
14928 from_tty,
14929 1 /* enabled */,
14930 0 /* internal */, 0);
14931 }
14932
14933 /* Set up a fake reader function that gets command lines from a linked
14934 list that was acquired during tracepoint uploading. */
14935
14936 static struct uploaded_tp *this_utp;
14937 static int next_cmd;
14938
14939 static char *
14940 read_uploaded_action (void)
14941 {
14942 char *rslt;
14943
14944 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14945
14946 next_cmd++;
14947
14948 return rslt;
14949 }
14950
14951 /* Given information about a tracepoint as recorded on a target (which
14952 can be either a live system or a trace file), attempt to create an
14953 equivalent GDB tracepoint. This is not a reliable process, since
14954 the target does not necessarily have all the information used when
14955 the tracepoint was originally defined. */
14956
14957 struct tracepoint *
14958 create_tracepoint_from_upload (struct uploaded_tp *utp)
14959 {
14960 char *addr_str, small_buf[100];
14961 struct tracepoint *tp;
14962
14963 if (utp->at_string)
14964 addr_str = utp->at_string;
14965 else
14966 {
14967 /* In the absence of a source location, fall back to raw
14968 address. Since there is no way to confirm that the address
14969 means the same thing as when the trace was started, warn the
14970 user. */
14971 warning (_("Uploaded tracepoint %d has no "
14972 "source location, using raw address"),
14973 utp->number);
14974 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14975 addr_str = small_buf;
14976 }
14977
14978 /* There's not much we can do with a sequence of bytecodes. */
14979 if (utp->cond && !utp->cond_string)
14980 warning (_("Uploaded tracepoint %d condition "
14981 "has no source form, ignoring it"),
14982 utp->number);
14983
14984 if (!create_breakpoint (get_current_arch (),
14985 addr_str,
14986 utp->cond_string, -1, NULL,
14987 0 /* parse cond/thread */,
14988 0 /* tempflag */,
14989 utp->type /* type_wanted */,
14990 0 /* Ignore count */,
14991 pending_break_support,
14992 &tracepoint_breakpoint_ops,
14993 0 /* from_tty */,
14994 utp->enabled /* enabled */,
14995 0 /* internal */,
14996 CREATE_BREAKPOINT_FLAGS_INSERTED))
14997 return NULL;
14998
14999 /* Get the tracepoint we just created. */
15000 tp = get_tracepoint (tracepoint_count);
15001 gdb_assert (tp != NULL);
15002
15003 if (utp->pass > 0)
15004 {
15005 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15006 tp->base.number);
15007
15008 trace_pass_command (small_buf, 0);
15009 }
15010
15011 /* If we have uploaded versions of the original commands, set up a
15012 special-purpose "reader" function and call the usual command line
15013 reader, then pass the result to the breakpoint command-setting
15014 function. */
15015 if (!VEC_empty (char_ptr, utp->cmd_strings))
15016 {
15017 struct command_line *cmd_list;
15018
15019 this_utp = utp;
15020 next_cmd = 0;
15021
15022 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15023
15024 breakpoint_set_commands (&tp->base, cmd_list);
15025 }
15026 else if (!VEC_empty (char_ptr, utp->actions)
15027 || !VEC_empty (char_ptr, utp->step_actions))
15028 warning (_("Uploaded tracepoint %d actions "
15029 "have no source form, ignoring them"),
15030 utp->number);
15031
15032 /* Copy any status information that might be available. */
15033 tp->base.hit_count = utp->hit_count;
15034 tp->traceframe_usage = utp->traceframe_usage;
15035
15036 return tp;
15037 }
15038
15039 /* Print information on tracepoint number TPNUM_EXP, or all if
15040 omitted. */
15041
15042 static void
15043 tracepoints_info (char *args, int from_tty)
15044 {
15045 struct ui_out *uiout = current_uiout;
15046 int num_printed;
15047
15048 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15049
15050 if (num_printed == 0)
15051 {
15052 if (args == NULL || *args == '\0')
15053 ui_out_message (uiout, 0, "No tracepoints.\n");
15054 else
15055 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15056 }
15057
15058 default_collect_info ();
15059 }
15060
15061 /* The 'enable trace' command enables tracepoints.
15062 Not supported by all targets. */
15063 static void
15064 enable_trace_command (char *args, int from_tty)
15065 {
15066 enable_command (args, from_tty);
15067 }
15068
15069 /* The 'disable trace' command disables tracepoints.
15070 Not supported by all targets. */
15071 static void
15072 disable_trace_command (char *args, int from_tty)
15073 {
15074 disable_command (args, from_tty);
15075 }
15076
15077 /* Remove a tracepoint (or all if no argument). */
15078 static void
15079 delete_trace_command (char *arg, int from_tty)
15080 {
15081 struct breakpoint *b, *b_tmp;
15082
15083 dont_repeat ();
15084
15085 if (arg == 0)
15086 {
15087 int breaks_to_delete = 0;
15088
15089 /* Delete all breakpoints if no argument.
15090 Do not delete internal or call-dummy breakpoints, these
15091 have to be deleted with an explicit breakpoint number
15092 argument. */
15093 ALL_TRACEPOINTS (b)
15094 if (is_tracepoint (b) && user_breakpoint_p (b))
15095 {
15096 breaks_to_delete = 1;
15097 break;
15098 }
15099
15100 /* Ask user only if there are some breakpoints to delete. */
15101 if (!from_tty
15102 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15103 {
15104 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15105 if (is_tracepoint (b) && user_breakpoint_p (b))
15106 delete_breakpoint (b);
15107 }
15108 }
15109 else
15110 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15111 }
15112
15113 /* Helper function for trace_pass_command. */
15114
15115 static void
15116 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15117 {
15118 tp->pass_count = count;
15119 observer_notify_breakpoint_modified (&tp->base);
15120 if (from_tty)
15121 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15122 tp->base.number, count);
15123 }
15124
15125 /* Set passcount for tracepoint.
15126
15127 First command argument is passcount, second is tracepoint number.
15128 If tracepoint number omitted, apply to most recently defined.
15129 Also accepts special argument "all". */
15130
15131 static void
15132 trace_pass_command (char *args, int from_tty)
15133 {
15134 struct tracepoint *t1;
15135 unsigned int count;
15136
15137 if (args == 0 || *args == 0)
15138 error (_("passcount command requires an "
15139 "argument (count + optional TP num)"));
15140
15141 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15142
15143 args = skip_spaces (args);
15144 if (*args && strncasecmp (args, "all", 3) == 0)
15145 {
15146 struct breakpoint *b;
15147
15148 args += 3; /* Skip special argument "all". */
15149 if (*args)
15150 error (_("Junk at end of arguments."));
15151
15152 ALL_TRACEPOINTS (b)
15153 {
15154 t1 = (struct tracepoint *) b;
15155 trace_pass_set_count (t1, count, from_tty);
15156 }
15157 }
15158 else if (*args == '\0')
15159 {
15160 t1 = get_tracepoint_by_number (&args, NULL);
15161 if (t1)
15162 trace_pass_set_count (t1, count, from_tty);
15163 }
15164 else
15165 {
15166 struct get_number_or_range_state state;
15167
15168 init_number_or_range (&state, args);
15169 while (!state.finished)
15170 {
15171 t1 = get_tracepoint_by_number (&args, &state);
15172 if (t1)
15173 trace_pass_set_count (t1, count, from_tty);
15174 }
15175 }
15176 }
15177
15178 struct tracepoint *
15179 get_tracepoint (int num)
15180 {
15181 struct breakpoint *t;
15182
15183 ALL_TRACEPOINTS (t)
15184 if (t->number == num)
15185 return (struct tracepoint *) t;
15186
15187 return NULL;
15188 }
15189
15190 /* Find the tracepoint with the given target-side number (which may be
15191 different from the tracepoint number after disconnecting and
15192 reconnecting). */
15193
15194 struct tracepoint *
15195 get_tracepoint_by_number_on_target (int num)
15196 {
15197 struct breakpoint *b;
15198
15199 ALL_TRACEPOINTS (b)
15200 {
15201 struct tracepoint *t = (struct tracepoint *) b;
15202
15203 if (t->number_on_target == num)
15204 return t;
15205 }
15206
15207 return NULL;
15208 }
15209
15210 /* Utility: parse a tracepoint number and look it up in the list.
15211 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15212 If the argument is missing, the most recent tracepoint
15213 (tracepoint_count) is returned. */
15214
15215 struct tracepoint *
15216 get_tracepoint_by_number (char **arg,
15217 struct get_number_or_range_state *state)
15218 {
15219 struct breakpoint *t;
15220 int tpnum;
15221 char *instring = arg == NULL ? NULL : *arg;
15222
15223 if (state)
15224 {
15225 gdb_assert (!state->finished);
15226 tpnum = get_number_or_range (state);
15227 }
15228 else if (arg == NULL || *arg == NULL || ! **arg)
15229 tpnum = tracepoint_count;
15230 else
15231 tpnum = get_number (arg);
15232
15233 if (tpnum <= 0)
15234 {
15235 if (instring && *instring)
15236 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15237 instring);
15238 else
15239 printf_filtered (_("No previous tracepoint\n"));
15240 return NULL;
15241 }
15242
15243 ALL_TRACEPOINTS (t)
15244 if (t->number == tpnum)
15245 {
15246 return (struct tracepoint *) t;
15247 }
15248
15249 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15250 return NULL;
15251 }
15252
15253 void
15254 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15255 {
15256 if (b->thread != -1)
15257 fprintf_unfiltered (fp, " thread %d", b->thread);
15258
15259 if (b->task != 0)
15260 fprintf_unfiltered (fp, " task %d", b->task);
15261
15262 fprintf_unfiltered (fp, "\n");
15263 }
15264
15265 /* Save information on user settable breakpoints (watchpoints, etc) to
15266 a new script file named FILENAME. If FILTER is non-NULL, call it
15267 on each breakpoint and only include the ones for which it returns
15268 non-zero. */
15269
15270 static void
15271 save_breakpoints (char *filename, int from_tty,
15272 int (*filter) (const struct breakpoint *))
15273 {
15274 struct breakpoint *tp;
15275 int any = 0;
15276 struct cleanup *cleanup;
15277 struct ui_file *fp;
15278 int extra_trace_bits = 0;
15279
15280 if (filename == 0 || *filename == 0)
15281 error (_("Argument required (file name in which to save)"));
15282
15283 /* See if we have anything to save. */
15284 ALL_BREAKPOINTS (tp)
15285 {
15286 /* Skip internal and momentary breakpoints. */
15287 if (!user_breakpoint_p (tp))
15288 continue;
15289
15290 /* If we have a filter, only save the breakpoints it accepts. */
15291 if (filter && !filter (tp))
15292 continue;
15293
15294 any = 1;
15295
15296 if (is_tracepoint (tp))
15297 {
15298 extra_trace_bits = 1;
15299
15300 /* We can stop searching. */
15301 break;
15302 }
15303 }
15304
15305 if (!any)
15306 {
15307 warning (_("Nothing to save."));
15308 return;
15309 }
15310
15311 filename = tilde_expand (filename);
15312 cleanup = make_cleanup (xfree, filename);
15313 fp = gdb_fopen (filename, "w");
15314 if (!fp)
15315 error (_("Unable to open file '%s' for saving (%s)"),
15316 filename, safe_strerror (errno));
15317 make_cleanup_ui_file_delete (fp);
15318
15319 if (extra_trace_bits)
15320 save_trace_state_variables (fp);
15321
15322 ALL_BREAKPOINTS (tp)
15323 {
15324 /* Skip internal and momentary breakpoints. */
15325 if (!user_breakpoint_p (tp))
15326 continue;
15327
15328 /* If we have a filter, only save the breakpoints it accepts. */
15329 if (filter && !filter (tp))
15330 continue;
15331
15332 tp->ops->print_recreate (tp, fp);
15333
15334 /* Note, we can't rely on tp->number for anything, as we can't
15335 assume the recreated breakpoint numbers will match. Use $bpnum
15336 instead. */
15337
15338 if (tp->cond_string)
15339 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15340
15341 if (tp->ignore_count)
15342 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15343
15344 if (tp->type != bp_dprintf && tp->commands)
15345 {
15346 struct gdb_exception exception;
15347
15348 fprintf_unfiltered (fp, " commands\n");
15349
15350 ui_out_redirect (current_uiout, fp);
15351 TRY
15352 {
15353 print_command_lines (current_uiout, tp->commands->commands, 2);
15354 }
15355 CATCH (ex, RETURN_MASK_ALL)
15356 {
15357 ui_out_redirect (current_uiout, NULL);
15358 throw_exception (ex);
15359 }
15360 END_CATCH
15361
15362 ui_out_redirect (current_uiout, NULL);
15363 fprintf_unfiltered (fp, " end\n");
15364 }
15365
15366 if (tp->enable_state == bp_disabled)
15367 fprintf_unfiltered (fp, "disable $bpnum\n");
15368
15369 /* If this is a multi-location breakpoint, check if the locations
15370 should be individually disabled. Watchpoint locations are
15371 special, and not user visible. */
15372 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15373 {
15374 struct bp_location *loc;
15375 int n = 1;
15376
15377 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15378 if (!loc->enabled)
15379 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15380 }
15381 }
15382
15383 if (extra_trace_bits && *default_collect)
15384 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15385
15386 if (from_tty)
15387 printf_filtered (_("Saved to file '%s'.\n"), filename);
15388 do_cleanups (cleanup);
15389 }
15390
15391 /* The `save breakpoints' command. */
15392
15393 static void
15394 save_breakpoints_command (char *args, int from_tty)
15395 {
15396 save_breakpoints (args, from_tty, NULL);
15397 }
15398
15399 /* The `save tracepoints' command. */
15400
15401 static void
15402 save_tracepoints_command (char *args, int from_tty)
15403 {
15404 save_breakpoints (args, from_tty, is_tracepoint);
15405 }
15406
15407 /* Create a vector of all tracepoints. */
15408
15409 VEC(breakpoint_p) *
15410 all_tracepoints (void)
15411 {
15412 VEC(breakpoint_p) *tp_vec = 0;
15413 struct breakpoint *tp;
15414
15415 ALL_TRACEPOINTS (tp)
15416 {
15417 VEC_safe_push (breakpoint_p, tp_vec, tp);
15418 }
15419
15420 return tp_vec;
15421 }
15422
15423 \f
15424 /* This help string is used for the break, hbreak, tbreak and thbreak
15425 commands. It is defined as a macro to prevent duplication.
15426 COMMAND should be a string constant containing the name of the
15427 command. */
15428 #define BREAK_ARGS_HELP(command) \
15429 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15430 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15431 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15432 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15433 `-probe-dtrace' (for a DTrace probe).\n\
15434 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15435 If a line number is specified, break at start of code for that line.\n\
15436 If a function is specified, break at start of code for that function.\n\
15437 If an address is specified, break at that exact address.\n\
15438 With no LOCATION, uses current execution address of the selected\n\
15439 stack frame. This is useful for breaking on return to a stack frame.\n\
15440 \n\
15441 THREADNUM is the number from \"info threads\".\n\
15442 CONDITION is a boolean expression.\n\
15443 \n\
15444 Multiple breakpoints at one place are permitted, and useful if their\n\
15445 conditions are different.\n\
15446 \n\
15447 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15448
15449 /* List of subcommands for "catch". */
15450 static struct cmd_list_element *catch_cmdlist;
15451
15452 /* List of subcommands for "tcatch". */
15453 static struct cmd_list_element *tcatch_cmdlist;
15454
15455 void
15456 add_catch_command (char *name, char *docstring,
15457 cmd_sfunc_ftype *sfunc,
15458 completer_ftype *completer,
15459 void *user_data_catch,
15460 void *user_data_tcatch)
15461 {
15462 struct cmd_list_element *command;
15463
15464 command = add_cmd (name, class_breakpoint, NULL, docstring,
15465 &catch_cmdlist);
15466 set_cmd_sfunc (command, sfunc);
15467 set_cmd_context (command, user_data_catch);
15468 set_cmd_completer (command, completer);
15469
15470 command = add_cmd (name, class_breakpoint, NULL, docstring,
15471 &tcatch_cmdlist);
15472 set_cmd_sfunc (command, sfunc);
15473 set_cmd_context (command, user_data_tcatch);
15474 set_cmd_completer (command, completer);
15475 }
15476
15477 static void
15478 save_command (char *arg, int from_tty)
15479 {
15480 printf_unfiltered (_("\"save\" must be followed by "
15481 "the name of a save subcommand.\n"));
15482 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15483 }
15484
15485 struct breakpoint *
15486 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15487 void *data)
15488 {
15489 struct breakpoint *b, *b_tmp;
15490
15491 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15492 {
15493 if ((*callback) (b, data))
15494 return b;
15495 }
15496
15497 return NULL;
15498 }
15499
15500 /* Zero if any of the breakpoint's locations could be a location where
15501 functions have been inlined, nonzero otherwise. */
15502
15503 static int
15504 is_non_inline_function (struct breakpoint *b)
15505 {
15506 /* The shared library event breakpoint is set on the address of a
15507 non-inline function. */
15508 if (b->type == bp_shlib_event)
15509 return 1;
15510
15511 return 0;
15512 }
15513
15514 /* Nonzero if the specified PC cannot be a location where functions
15515 have been inlined. */
15516
15517 int
15518 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15519 const struct target_waitstatus *ws)
15520 {
15521 struct breakpoint *b;
15522 struct bp_location *bl;
15523
15524 ALL_BREAKPOINTS (b)
15525 {
15526 if (!is_non_inline_function (b))
15527 continue;
15528
15529 for (bl = b->loc; bl != NULL; bl = bl->next)
15530 {
15531 if (!bl->shlib_disabled
15532 && bpstat_check_location (bl, aspace, pc, ws))
15533 return 1;
15534 }
15535 }
15536
15537 return 0;
15538 }
15539
15540 /* Remove any references to OBJFILE which is going to be freed. */
15541
15542 void
15543 breakpoint_free_objfile (struct objfile *objfile)
15544 {
15545 struct bp_location **locp, *loc;
15546
15547 ALL_BP_LOCATIONS (loc, locp)
15548 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15549 loc->symtab = NULL;
15550 }
15551
15552 void
15553 initialize_breakpoint_ops (void)
15554 {
15555 static int initialized = 0;
15556
15557 struct breakpoint_ops *ops;
15558
15559 if (initialized)
15560 return;
15561 initialized = 1;
15562
15563 /* The breakpoint_ops structure to be inherit by all kinds of
15564 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15565 internal and momentary breakpoints, etc.). */
15566 ops = &bkpt_base_breakpoint_ops;
15567 *ops = base_breakpoint_ops;
15568 ops->re_set = bkpt_re_set;
15569 ops->insert_location = bkpt_insert_location;
15570 ops->remove_location = bkpt_remove_location;
15571 ops->breakpoint_hit = bkpt_breakpoint_hit;
15572 ops->create_sals_from_address = bkpt_create_sals_from_address;
15573 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15574 ops->decode_linespec = bkpt_decode_linespec;
15575
15576 /* The breakpoint_ops structure to be used in regular breakpoints. */
15577 ops = &bkpt_breakpoint_ops;
15578 *ops = bkpt_base_breakpoint_ops;
15579 ops->re_set = bkpt_re_set;
15580 ops->resources_needed = bkpt_resources_needed;
15581 ops->print_it = bkpt_print_it;
15582 ops->print_mention = bkpt_print_mention;
15583 ops->print_recreate = bkpt_print_recreate;
15584
15585 /* Ranged breakpoints. */
15586 ops = &ranged_breakpoint_ops;
15587 *ops = bkpt_breakpoint_ops;
15588 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15589 ops->resources_needed = resources_needed_ranged_breakpoint;
15590 ops->print_it = print_it_ranged_breakpoint;
15591 ops->print_one = print_one_ranged_breakpoint;
15592 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15593 ops->print_mention = print_mention_ranged_breakpoint;
15594 ops->print_recreate = print_recreate_ranged_breakpoint;
15595
15596 /* Internal breakpoints. */
15597 ops = &internal_breakpoint_ops;
15598 *ops = bkpt_base_breakpoint_ops;
15599 ops->re_set = internal_bkpt_re_set;
15600 ops->check_status = internal_bkpt_check_status;
15601 ops->print_it = internal_bkpt_print_it;
15602 ops->print_mention = internal_bkpt_print_mention;
15603
15604 /* Momentary breakpoints. */
15605 ops = &momentary_breakpoint_ops;
15606 *ops = bkpt_base_breakpoint_ops;
15607 ops->re_set = momentary_bkpt_re_set;
15608 ops->check_status = momentary_bkpt_check_status;
15609 ops->print_it = momentary_bkpt_print_it;
15610 ops->print_mention = momentary_bkpt_print_mention;
15611
15612 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15613 ops = &longjmp_breakpoint_ops;
15614 *ops = momentary_breakpoint_ops;
15615 ops->dtor = longjmp_bkpt_dtor;
15616
15617 /* Probe breakpoints. */
15618 ops = &bkpt_probe_breakpoint_ops;
15619 *ops = bkpt_breakpoint_ops;
15620 ops->insert_location = bkpt_probe_insert_location;
15621 ops->remove_location = bkpt_probe_remove_location;
15622 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15623 ops->decode_linespec = bkpt_probe_decode_linespec;
15624
15625 /* Watchpoints. */
15626 ops = &watchpoint_breakpoint_ops;
15627 *ops = base_breakpoint_ops;
15628 ops->dtor = dtor_watchpoint;
15629 ops->re_set = re_set_watchpoint;
15630 ops->insert_location = insert_watchpoint;
15631 ops->remove_location = remove_watchpoint;
15632 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15633 ops->check_status = check_status_watchpoint;
15634 ops->resources_needed = resources_needed_watchpoint;
15635 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15636 ops->print_it = print_it_watchpoint;
15637 ops->print_mention = print_mention_watchpoint;
15638 ops->print_recreate = print_recreate_watchpoint;
15639 ops->explains_signal = explains_signal_watchpoint;
15640
15641 /* Masked watchpoints. */
15642 ops = &masked_watchpoint_breakpoint_ops;
15643 *ops = watchpoint_breakpoint_ops;
15644 ops->insert_location = insert_masked_watchpoint;
15645 ops->remove_location = remove_masked_watchpoint;
15646 ops->resources_needed = resources_needed_masked_watchpoint;
15647 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15648 ops->print_it = print_it_masked_watchpoint;
15649 ops->print_one_detail = print_one_detail_masked_watchpoint;
15650 ops->print_mention = print_mention_masked_watchpoint;
15651 ops->print_recreate = print_recreate_masked_watchpoint;
15652
15653 /* Tracepoints. */
15654 ops = &tracepoint_breakpoint_ops;
15655 *ops = base_breakpoint_ops;
15656 ops->re_set = tracepoint_re_set;
15657 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15658 ops->print_one_detail = tracepoint_print_one_detail;
15659 ops->print_mention = tracepoint_print_mention;
15660 ops->print_recreate = tracepoint_print_recreate;
15661 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15662 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15663 ops->decode_linespec = tracepoint_decode_linespec;
15664
15665 /* Probe tracepoints. */
15666 ops = &tracepoint_probe_breakpoint_ops;
15667 *ops = tracepoint_breakpoint_ops;
15668 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15669 ops->decode_linespec = tracepoint_probe_decode_linespec;
15670
15671 /* Static tracepoints with marker (`-m'). */
15672 ops = &strace_marker_breakpoint_ops;
15673 *ops = tracepoint_breakpoint_ops;
15674 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15675 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15676 ops->decode_linespec = strace_marker_decode_linespec;
15677
15678 /* Fork catchpoints. */
15679 ops = &catch_fork_breakpoint_ops;
15680 *ops = base_breakpoint_ops;
15681 ops->insert_location = insert_catch_fork;
15682 ops->remove_location = remove_catch_fork;
15683 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15684 ops->print_it = print_it_catch_fork;
15685 ops->print_one = print_one_catch_fork;
15686 ops->print_mention = print_mention_catch_fork;
15687 ops->print_recreate = print_recreate_catch_fork;
15688
15689 /* Vfork catchpoints. */
15690 ops = &catch_vfork_breakpoint_ops;
15691 *ops = base_breakpoint_ops;
15692 ops->insert_location = insert_catch_vfork;
15693 ops->remove_location = remove_catch_vfork;
15694 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15695 ops->print_it = print_it_catch_vfork;
15696 ops->print_one = print_one_catch_vfork;
15697 ops->print_mention = print_mention_catch_vfork;
15698 ops->print_recreate = print_recreate_catch_vfork;
15699
15700 /* Exec catchpoints. */
15701 ops = &catch_exec_breakpoint_ops;
15702 *ops = base_breakpoint_ops;
15703 ops->dtor = dtor_catch_exec;
15704 ops->insert_location = insert_catch_exec;
15705 ops->remove_location = remove_catch_exec;
15706 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15707 ops->print_it = print_it_catch_exec;
15708 ops->print_one = print_one_catch_exec;
15709 ops->print_mention = print_mention_catch_exec;
15710 ops->print_recreate = print_recreate_catch_exec;
15711
15712 /* Solib-related catchpoints. */
15713 ops = &catch_solib_breakpoint_ops;
15714 *ops = base_breakpoint_ops;
15715 ops->dtor = dtor_catch_solib;
15716 ops->insert_location = insert_catch_solib;
15717 ops->remove_location = remove_catch_solib;
15718 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15719 ops->check_status = check_status_catch_solib;
15720 ops->print_it = print_it_catch_solib;
15721 ops->print_one = print_one_catch_solib;
15722 ops->print_mention = print_mention_catch_solib;
15723 ops->print_recreate = print_recreate_catch_solib;
15724
15725 ops = &dprintf_breakpoint_ops;
15726 *ops = bkpt_base_breakpoint_ops;
15727 ops->re_set = dprintf_re_set;
15728 ops->resources_needed = bkpt_resources_needed;
15729 ops->print_it = bkpt_print_it;
15730 ops->print_mention = bkpt_print_mention;
15731 ops->print_recreate = dprintf_print_recreate;
15732 ops->after_condition_true = dprintf_after_condition_true;
15733 ops->breakpoint_hit = dprintf_breakpoint_hit;
15734 }
15735
15736 /* Chain containing all defined "enable breakpoint" subcommands. */
15737
15738 static struct cmd_list_element *enablebreaklist = NULL;
15739
15740 void
15741 _initialize_breakpoint (void)
15742 {
15743 struct cmd_list_element *c;
15744
15745 initialize_breakpoint_ops ();
15746
15747 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15748 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15749 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15750
15751 breakpoint_objfile_key
15752 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15753
15754 breakpoint_chain = 0;
15755 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15756 before a breakpoint is set. */
15757 breakpoint_count = 0;
15758
15759 tracepoint_count = 0;
15760
15761 add_com ("ignore", class_breakpoint, ignore_command, _("\
15762 Set ignore-count of breakpoint number N to COUNT.\n\
15763 Usage is `ignore N COUNT'."));
15764
15765 add_com ("commands", class_breakpoint, commands_command, _("\
15766 Set commands to be executed when a breakpoint is hit.\n\
15767 Give breakpoint number as argument after \"commands\".\n\
15768 With no argument, the targeted breakpoint is the last one set.\n\
15769 The commands themselves follow starting on the next line.\n\
15770 Type a line containing \"end\" to indicate the end of them.\n\
15771 Give \"silent\" as the first line to make the breakpoint silent;\n\
15772 then no output is printed when it is hit, except what the commands print."));
15773
15774 c = add_com ("condition", class_breakpoint, condition_command, _("\
15775 Specify breakpoint number N to break only if COND is true.\n\
15776 Usage is `condition N COND', where N is an integer and COND is an\n\
15777 expression to be evaluated whenever breakpoint N is reached."));
15778 set_cmd_completer (c, condition_completer);
15779
15780 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15781 Set a temporary breakpoint.\n\
15782 Like \"break\" except the breakpoint is only temporary,\n\
15783 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15784 by using \"enable delete\" on the breakpoint number.\n\
15785 \n"
15786 BREAK_ARGS_HELP ("tbreak")));
15787 set_cmd_completer (c, location_completer);
15788
15789 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15790 Set a hardware assisted breakpoint.\n\
15791 Like \"break\" except the breakpoint requires hardware support,\n\
15792 some target hardware may not have this support.\n\
15793 \n"
15794 BREAK_ARGS_HELP ("hbreak")));
15795 set_cmd_completer (c, location_completer);
15796
15797 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15798 Set a temporary hardware assisted breakpoint.\n\
15799 Like \"hbreak\" except the breakpoint is only temporary,\n\
15800 so it will be deleted when hit.\n\
15801 \n"
15802 BREAK_ARGS_HELP ("thbreak")));
15803 set_cmd_completer (c, location_completer);
15804
15805 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15806 Enable some breakpoints.\n\
15807 Give breakpoint numbers (separated by spaces) as arguments.\n\
15808 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15809 This is used to cancel the effect of the \"disable\" command.\n\
15810 With a subcommand you can enable temporarily."),
15811 &enablelist, "enable ", 1, &cmdlist);
15812
15813 add_com_alias ("en", "enable", class_breakpoint, 1);
15814
15815 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15816 Enable some breakpoints.\n\
15817 Give breakpoint numbers (separated by spaces) as arguments.\n\
15818 This is used to cancel the effect of the \"disable\" command.\n\
15819 May be abbreviated to simply \"enable\".\n"),
15820 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15821
15822 add_cmd ("once", no_class, enable_once_command, _("\
15823 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15824 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15825 &enablebreaklist);
15826
15827 add_cmd ("delete", no_class, enable_delete_command, _("\
15828 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15829 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15830 &enablebreaklist);
15831
15832 add_cmd ("count", no_class, enable_count_command, _("\
15833 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15834 If a breakpoint is hit while enabled in this fashion,\n\
15835 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15836 &enablebreaklist);
15837
15838 add_cmd ("delete", no_class, enable_delete_command, _("\
15839 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15840 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15841 &enablelist);
15842
15843 add_cmd ("once", no_class, enable_once_command, _("\
15844 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15845 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15846 &enablelist);
15847
15848 add_cmd ("count", no_class, enable_count_command, _("\
15849 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15850 If a breakpoint is hit while enabled in this fashion,\n\
15851 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15852 &enablelist);
15853
15854 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15855 Disable some breakpoints.\n\
15856 Arguments are breakpoint numbers with spaces in between.\n\
15857 To disable all breakpoints, give no argument.\n\
15858 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15859 &disablelist, "disable ", 1, &cmdlist);
15860 add_com_alias ("dis", "disable", class_breakpoint, 1);
15861 add_com_alias ("disa", "disable", class_breakpoint, 1);
15862
15863 add_cmd ("breakpoints", class_alias, disable_command, _("\
15864 Disable some breakpoints.\n\
15865 Arguments are breakpoint numbers with spaces in between.\n\
15866 To disable all breakpoints, give no argument.\n\
15867 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15868 This command may be abbreviated \"disable\"."),
15869 &disablelist);
15870
15871 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15872 Delete some breakpoints or auto-display expressions.\n\
15873 Arguments are breakpoint numbers with spaces in between.\n\
15874 To delete all breakpoints, give no argument.\n\
15875 \n\
15876 Also a prefix command for deletion of other GDB objects.\n\
15877 The \"unset\" command is also an alias for \"delete\"."),
15878 &deletelist, "delete ", 1, &cmdlist);
15879 add_com_alias ("d", "delete", class_breakpoint, 1);
15880 add_com_alias ("del", "delete", class_breakpoint, 1);
15881
15882 add_cmd ("breakpoints", class_alias, delete_command, _("\
15883 Delete some breakpoints or auto-display expressions.\n\
15884 Arguments are breakpoint numbers with spaces in between.\n\
15885 To delete all breakpoints, give no argument.\n\
15886 This command may be abbreviated \"delete\"."),
15887 &deletelist);
15888
15889 add_com ("clear", class_breakpoint, clear_command, _("\
15890 Clear breakpoint at specified line or function.\n\
15891 Argument may be line number, function name, or \"*\" and an address.\n\
15892 If line number is specified, all breakpoints in that line are cleared.\n\
15893 If function is specified, breakpoints at beginning of function are cleared.\n\
15894 If an address is specified, breakpoints at that address are cleared.\n\
15895 \n\
15896 With no argument, clears all breakpoints in the line that the selected frame\n\
15897 is executing in.\n\
15898 \n\
15899 See also the \"delete\" command which clears breakpoints by number."));
15900 add_com_alias ("cl", "clear", class_breakpoint, 1);
15901
15902 c = add_com ("break", class_breakpoint, break_command, _("\
15903 Set breakpoint at specified line or function.\n"
15904 BREAK_ARGS_HELP ("break")));
15905 set_cmd_completer (c, location_completer);
15906
15907 add_com_alias ("b", "break", class_run, 1);
15908 add_com_alias ("br", "break", class_run, 1);
15909 add_com_alias ("bre", "break", class_run, 1);
15910 add_com_alias ("brea", "break", class_run, 1);
15911
15912 if (dbx_commands)
15913 {
15914 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15915 Break in function/address or break at a line in the current file."),
15916 &stoplist, "stop ", 1, &cmdlist);
15917 add_cmd ("in", class_breakpoint, stopin_command,
15918 _("Break in function or address."), &stoplist);
15919 add_cmd ("at", class_breakpoint, stopat_command,
15920 _("Break at a line in the current file."), &stoplist);
15921 add_com ("status", class_info, breakpoints_info, _("\
15922 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15923 The \"Type\" column indicates one of:\n\
15924 \tbreakpoint - normal breakpoint\n\
15925 \twatchpoint - watchpoint\n\
15926 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15927 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15928 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15929 address and file/line number respectively.\n\
15930 \n\
15931 Convenience variable \"$_\" and default examine address for \"x\"\n\
15932 are set to the address of the last breakpoint listed unless the command\n\
15933 is prefixed with \"server \".\n\n\
15934 Convenience variable \"$bpnum\" contains the number of the last\n\
15935 breakpoint set."));
15936 }
15937
15938 add_info ("breakpoints", breakpoints_info, _("\
15939 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15940 The \"Type\" column indicates one of:\n\
15941 \tbreakpoint - normal breakpoint\n\
15942 \twatchpoint - watchpoint\n\
15943 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15944 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15945 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15946 address and file/line number respectively.\n\
15947 \n\
15948 Convenience variable \"$_\" and default examine address for \"x\"\n\
15949 are set to the address of the last breakpoint listed unless the command\n\
15950 is prefixed with \"server \".\n\n\
15951 Convenience variable \"$bpnum\" contains the number of the last\n\
15952 breakpoint set."));
15953
15954 add_info_alias ("b", "breakpoints", 1);
15955
15956 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15957 Status of all breakpoints, or breakpoint number NUMBER.\n\
15958 The \"Type\" column indicates one of:\n\
15959 \tbreakpoint - normal breakpoint\n\
15960 \twatchpoint - watchpoint\n\
15961 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15962 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15963 \tuntil - internal breakpoint used by the \"until\" command\n\
15964 \tfinish - internal breakpoint used by the \"finish\" command\n\
15965 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15966 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15967 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15968 address and file/line number respectively.\n\
15969 \n\
15970 Convenience variable \"$_\" and default examine address for \"x\"\n\
15971 are set to the address of the last breakpoint listed unless the command\n\
15972 is prefixed with \"server \".\n\n\
15973 Convenience variable \"$bpnum\" contains the number of the last\n\
15974 breakpoint set."),
15975 &maintenanceinfolist);
15976
15977 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15978 Set catchpoints to catch events."),
15979 &catch_cmdlist, "catch ",
15980 0/*allow-unknown*/, &cmdlist);
15981
15982 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15983 Set temporary catchpoints to catch events."),
15984 &tcatch_cmdlist, "tcatch ",
15985 0/*allow-unknown*/, &cmdlist);
15986
15987 add_catch_command ("fork", _("Catch calls to fork."),
15988 catch_fork_command_1,
15989 NULL,
15990 (void *) (uintptr_t) catch_fork_permanent,
15991 (void *) (uintptr_t) catch_fork_temporary);
15992 add_catch_command ("vfork", _("Catch calls to vfork."),
15993 catch_fork_command_1,
15994 NULL,
15995 (void *) (uintptr_t) catch_vfork_permanent,
15996 (void *) (uintptr_t) catch_vfork_temporary);
15997 add_catch_command ("exec", _("Catch calls to exec."),
15998 catch_exec_command_1,
15999 NULL,
16000 CATCH_PERMANENT,
16001 CATCH_TEMPORARY);
16002 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16003 Usage: catch load [REGEX]\n\
16004 If REGEX is given, only stop for libraries matching the regular expression."),
16005 catch_load_command_1,
16006 NULL,
16007 CATCH_PERMANENT,
16008 CATCH_TEMPORARY);
16009 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16010 Usage: catch unload [REGEX]\n\
16011 If REGEX is given, only stop for libraries matching the regular expression."),
16012 catch_unload_command_1,
16013 NULL,
16014 CATCH_PERMANENT,
16015 CATCH_TEMPORARY);
16016
16017 c = add_com ("watch", class_breakpoint, watch_command, _("\
16018 Set a watchpoint for an expression.\n\
16019 Usage: watch [-l|-location] EXPRESSION\n\
16020 A watchpoint stops execution of your program whenever the value of\n\
16021 an expression changes.\n\
16022 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16023 the memory to which it refers."));
16024 set_cmd_completer (c, expression_completer);
16025
16026 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16027 Set a read watchpoint for an expression.\n\
16028 Usage: rwatch [-l|-location] EXPRESSION\n\
16029 A watchpoint stops execution of your program whenever the value of\n\
16030 an expression is read.\n\
16031 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16032 the memory to which it refers."));
16033 set_cmd_completer (c, expression_completer);
16034
16035 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16036 Set a watchpoint for an expression.\n\
16037 Usage: awatch [-l|-location] EXPRESSION\n\
16038 A watchpoint stops execution of your program whenever the value of\n\
16039 an expression is either read or written.\n\
16040 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16041 the memory to which it refers."));
16042 set_cmd_completer (c, expression_completer);
16043
16044 add_info ("watchpoints", watchpoints_info, _("\
16045 Status of specified watchpoints (all watchpoints if no argument)."));
16046
16047 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16048 respond to changes - contrary to the description. */
16049 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16050 &can_use_hw_watchpoints, _("\
16051 Set debugger's willingness to use watchpoint hardware."), _("\
16052 Show debugger's willingness to use watchpoint hardware."), _("\
16053 If zero, gdb will not use hardware for new watchpoints, even if\n\
16054 such is available. (However, any hardware watchpoints that were\n\
16055 created before setting this to nonzero, will continue to use watchpoint\n\
16056 hardware.)"),
16057 NULL,
16058 show_can_use_hw_watchpoints,
16059 &setlist, &showlist);
16060
16061 can_use_hw_watchpoints = 1;
16062
16063 /* Tracepoint manipulation commands. */
16064
16065 c = add_com ("trace", class_breakpoint, trace_command, _("\
16066 Set a tracepoint at specified line or function.\n\
16067 \n"
16068 BREAK_ARGS_HELP ("trace") "\n\
16069 Do \"help tracepoints\" for info on other tracepoint commands."));
16070 set_cmd_completer (c, location_completer);
16071
16072 add_com_alias ("tp", "trace", class_alias, 0);
16073 add_com_alias ("tr", "trace", class_alias, 1);
16074 add_com_alias ("tra", "trace", class_alias, 1);
16075 add_com_alias ("trac", "trace", class_alias, 1);
16076
16077 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16078 Set a fast tracepoint at specified line or function.\n\
16079 \n"
16080 BREAK_ARGS_HELP ("ftrace") "\n\
16081 Do \"help tracepoints\" for info on other tracepoint commands."));
16082 set_cmd_completer (c, location_completer);
16083
16084 c = add_com ("strace", class_breakpoint, strace_command, _("\
16085 Set a static tracepoint at specified line, function or marker.\n\
16086 \n\
16087 strace [LOCATION] [if CONDITION]\n\
16088 LOCATION may be a line number, function name, \"*\" and an address,\n\
16089 or -m MARKER_ID.\n\
16090 If a line number is specified, probe the marker at start of code\n\
16091 for that line. If a function is specified, probe the marker at start\n\
16092 of code for that function. If an address is specified, probe the marker\n\
16093 at that exact address. If a marker id is specified, probe the marker\n\
16094 with that name. With no LOCATION, uses current execution address of\n\
16095 the selected stack frame.\n\
16096 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16097 This collects arbitrary user data passed in the probe point call to the\n\
16098 tracing library. You can inspect it when analyzing the trace buffer,\n\
16099 by printing the $_sdata variable like any other convenience variable.\n\
16100 \n\
16101 CONDITION is a boolean expression.\n\
16102 \n\
16103 Multiple tracepoints at one place are permitted, and useful if their\n\
16104 conditions are different.\n\
16105 \n\
16106 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16107 Do \"help tracepoints\" for info on other tracepoint commands."));
16108 set_cmd_completer (c, location_completer);
16109
16110 add_info ("tracepoints", tracepoints_info, _("\
16111 Status of specified tracepoints (all tracepoints if no argument).\n\
16112 Convenience variable \"$tpnum\" contains the number of the\n\
16113 last tracepoint set."));
16114
16115 add_info_alias ("tp", "tracepoints", 1);
16116
16117 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16118 Delete specified tracepoints.\n\
16119 Arguments are tracepoint numbers, separated by spaces.\n\
16120 No argument means delete all tracepoints."),
16121 &deletelist);
16122 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16123
16124 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16125 Disable specified tracepoints.\n\
16126 Arguments are tracepoint numbers, separated by spaces.\n\
16127 No argument means disable all tracepoints."),
16128 &disablelist);
16129 deprecate_cmd (c, "disable");
16130
16131 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16132 Enable specified tracepoints.\n\
16133 Arguments are tracepoint numbers, separated by spaces.\n\
16134 No argument means enable all tracepoints."),
16135 &enablelist);
16136 deprecate_cmd (c, "enable");
16137
16138 add_com ("passcount", class_trace, trace_pass_command, _("\
16139 Set the passcount for a tracepoint.\n\
16140 The trace will end when the tracepoint has been passed 'count' times.\n\
16141 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16142 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16143
16144 add_prefix_cmd ("save", class_breakpoint, save_command,
16145 _("Save breakpoint definitions as a script."),
16146 &save_cmdlist, "save ",
16147 0/*allow-unknown*/, &cmdlist);
16148
16149 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16150 Save current breakpoint definitions as a script.\n\
16151 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16152 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16153 session to restore them."),
16154 &save_cmdlist);
16155 set_cmd_completer (c, filename_completer);
16156
16157 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16158 Save current tracepoint definitions as a script.\n\
16159 Use the 'source' command in another debug session to restore them."),
16160 &save_cmdlist);
16161 set_cmd_completer (c, filename_completer);
16162
16163 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16164 deprecate_cmd (c, "save tracepoints");
16165
16166 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16167 Breakpoint specific settings\n\
16168 Configure various breakpoint-specific variables such as\n\
16169 pending breakpoint behavior"),
16170 &breakpoint_set_cmdlist, "set breakpoint ",
16171 0/*allow-unknown*/, &setlist);
16172 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16173 Breakpoint specific settings\n\
16174 Configure various breakpoint-specific variables such as\n\
16175 pending breakpoint behavior"),
16176 &breakpoint_show_cmdlist, "show breakpoint ",
16177 0/*allow-unknown*/, &showlist);
16178
16179 add_setshow_auto_boolean_cmd ("pending", no_class,
16180 &pending_break_support, _("\
16181 Set debugger's behavior regarding pending breakpoints."), _("\
16182 Show debugger's behavior regarding pending breakpoints."), _("\
16183 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16184 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16185 an error. If auto, an unrecognized breakpoint location results in a\n\
16186 user-query to see if a pending breakpoint should be created."),
16187 NULL,
16188 show_pending_break_support,
16189 &breakpoint_set_cmdlist,
16190 &breakpoint_show_cmdlist);
16191
16192 pending_break_support = AUTO_BOOLEAN_AUTO;
16193
16194 add_setshow_boolean_cmd ("auto-hw", no_class,
16195 &automatic_hardware_breakpoints, _("\
16196 Set automatic usage of hardware breakpoints."), _("\
16197 Show automatic usage of hardware breakpoints."), _("\
16198 If set, the debugger will automatically use hardware breakpoints for\n\
16199 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16200 a warning will be emitted for such breakpoints."),
16201 NULL,
16202 show_automatic_hardware_breakpoints,
16203 &breakpoint_set_cmdlist,
16204 &breakpoint_show_cmdlist);
16205
16206 add_setshow_boolean_cmd ("always-inserted", class_support,
16207 &always_inserted_mode, _("\
16208 Set mode for inserting breakpoints."), _("\
16209 Show mode for inserting breakpoints."), _("\
16210 When this mode is on, breakpoints are inserted immediately as soon as\n\
16211 they're created, kept inserted even when execution stops, and removed\n\
16212 only when the user deletes them. When this mode is off (the default),\n\
16213 breakpoints are inserted only when execution continues, and removed\n\
16214 when execution stops."),
16215 NULL,
16216 &show_always_inserted_mode,
16217 &breakpoint_set_cmdlist,
16218 &breakpoint_show_cmdlist);
16219
16220 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16221 condition_evaluation_enums,
16222 &condition_evaluation_mode_1, _("\
16223 Set mode of breakpoint condition evaluation."), _("\
16224 Show mode of breakpoint condition evaluation."), _("\
16225 When this is set to \"host\", breakpoint conditions will be\n\
16226 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16227 breakpoint conditions will be downloaded to the target (if the target\n\
16228 supports such feature) and conditions will be evaluated on the target's side.\n\
16229 If this is set to \"auto\" (default), this will be automatically set to\n\
16230 \"target\" if it supports condition evaluation, otherwise it will\n\
16231 be set to \"gdb\""),
16232 &set_condition_evaluation_mode,
16233 &show_condition_evaluation_mode,
16234 &breakpoint_set_cmdlist,
16235 &breakpoint_show_cmdlist);
16236
16237 add_com ("break-range", class_breakpoint, break_range_command, _("\
16238 Set a breakpoint for an address range.\n\
16239 break-range START-LOCATION, END-LOCATION\n\
16240 where START-LOCATION and END-LOCATION can be one of the following:\n\
16241 LINENUM, for that line in the current file,\n\
16242 FILE:LINENUM, for that line in that file,\n\
16243 +OFFSET, for that number of lines after the current line\n\
16244 or the start of the range\n\
16245 FUNCTION, for the first line in that function,\n\
16246 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16247 *ADDRESS, for the instruction at that address.\n\
16248 \n\
16249 The breakpoint will stop execution of the inferior whenever it executes\n\
16250 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16251 range (including START-LOCATION and END-LOCATION)."));
16252
16253 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16254 Set a dynamic printf at specified line or function.\n\
16255 dprintf location,format string,arg1,arg2,...\n\
16256 location may be a line number, function name, or \"*\" and an address.\n\
16257 If a line number is specified, break at start of code for that line.\n\
16258 If a function is specified, break at start of code for that function."));
16259 set_cmd_completer (c, location_completer);
16260
16261 add_setshow_enum_cmd ("dprintf-style", class_support,
16262 dprintf_style_enums, &dprintf_style, _("\
16263 Set the style of usage for dynamic printf."), _("\
16264 Show the style of usage for dynamic printf."), _("\
16265 This setting chooses how GDB will do a dynamic printf.\n\
16266 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16267 console, as with the \"printf\" command.\n\
16268 If the value is \"call\", the print is done by calling a function in your\n\
16269 program; by default printf(), but you can choose a different function or\n\
16270 output stream by setting dprintf-function and dprintf-channel."),
16271 update_dprintf_commands, NULL,
16272 &setlist, &showlist);
16273
16274 dprintf_function = xstrdup ("printf");
16275 add_setshow_string_cmd ("dprintf-function", class_support,
16276 &dprintf_function, _("\
16277 Set the function to use for dynamic printf"), _("\
16278 Show the function to use for dynamic printf"), NULL,
16279 update_dprintf_commands, NULL,
16280 &setlist, &showlist);
16281
16282 dprintf_channel = xstrdup ("");
16283 add_setshow_string_cmd ("dprintf-channel", class_support,
16284 &dprintf_channel, _("\
16285 Set the channel to use for dynamic printf"), _("\
16286 Show the channel to use for dynamic printf"), NULL,
16287 update_dprintf_commands, NULL,
16288 &setlist, &showlist);
16289
16290 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16291 &disconnected_dprintf, _("\
16292 Set whether dprintf continues after GDB disconnects."), _("\
16293 Show whether dprintf continues after GDB disconnects."), _("\
16294 Use this to let dprintf commands continue to hit and produce output\n\
16295 even if GDB disconnects or detaches from the target."),
16296 NULL,
16297 NULL,
16298 &setlist, &showlist);
16299
16300 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16301 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16302 (target agent only) This is useful for formatted output in user-defined commands."));
16303
16304 automatic_hardware_breakpoints = 1;
16305
16306 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16307 observer_attach_thread_exit (remove_threaded_breakpoints);
16308 }
This page took 0.687217 seconds and 5 git commands to generate.