More uses of ui_out_emit_tuple
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "block.h"
51 #include "solib.h"
52 #include "solist.h"
53 #include "observer.h"
54 #include "memattr.h"
55 #include "ada-lang.h"
56 #include "top.h"
57 #include "valprint.h"
58 #include "jit.h"
59 #include "parser-defs.h"
60 #include "gdb_regex.h"
61 #include "probe.h"
62 #include "cli/cli-utils.h"
63 #include "continuations.h"
64 #include "stack.h"
65 #include "skip.h"
66 #include "ax-gdb.h"
67 #include "dummy-frame.h"
68 #include "interps.h"
69 #include "format.h"
70 #include "thread-fsm.h"
71 #include "tid-parse.h"
72
73 /* readline include files */
74 #include "readline/readline.h"
75 #include "readline/history.h"
76
77 /* readline defines this. */
78 #undef savestring
79
80 #include "mi/mi-common.h"
81 #include "extension.h"
82 #include <algorithm>
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (const char *,
105 void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void
116 create_sals_from_location_default (const struct event_location *location,
117 struct linespec_result *canonical,
118 enum bptype type_wanted);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_location_default (struct breakpoint *b,
129 const struct event_location *location,
130 struct program_space *search_pspace,
131 struct symtabs_and_lines *sals);
132
133 static void clear_command (char *, int);
134
135 static void catch_command (char *, int);
136
137 static int can_use_hardware_watchpoint (struct value *);
138
139 static void break_command_1 (char *, int, int);
140
141 static void mention (struct breakpoint *);
142
143 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
144 enum bptype,
145 const struct breakpoint_ops *);
146 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
147 const struct symtab_and_line *);
148
149 /* This function is used in gdbtk sources and thus can not be made
150 static. */
151 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
152 struct symtab_and_line,
153 enum bptype,
154 const struct breakpoint_ops *);
155
156 static struct breakpoint *
157 momentary_breakpoint_from_master (struct breakpoint *orig,
158 enum bptype type,
159 const struct breakpoint_ops *ops,
160 int loc_enabled);
161
162 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
163
164 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
165 CORE_ADDR bpaddr,
166 enum bptype bptype);
167
168 static void describe_other_breakpoints (struct gdbarch *,
169 struct program_space *, CORE_ADDR,
170 struct obj_section *, int);
171
172 static int watchpoint_locations_match (struct bp_location *loc1,
173 struct bp_location *loc2);
174
175 static int breakpoint_location_address_match (struct bp_location *bl,
176 struct address_space *aspace,
177 CORE_ADDR addr);
178
179 static int breakpoint_location_address_range_overlap (struct bp_location *,
180 struct address_space *,
181 CORE_ADDR, int);
182
183 static void breakpoints_info (char *, int);
184
185 static void watchpoints_info (char *, int);
186
187 static int breakpoint_1 (char *, int,
188 int (*) (const struct breakpoint *));
189
190 static int breakpoint_cond_eval (void *);
191
192 static void cleanup_executing_breakpoints (void *);
193
194 static void commands_command (char *, int);
195
196 static void condition_command (char *, int);
197
198 static int remove_breakpoint (struct bp_location *);
199 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
200
201 static enum print_stop_action print_bp_stop_message (bpstat bs);
202
203 static int watchpoint_check (void *);
204
205 static void maintenance_info_breakpoints (char *, int);
206
207 static int hw_breakpoint_used_count (void);
208
209 static int hw_watchpoint_use_count (struct breakpoint *);
210
211 static int hw_watchpoint_used_count_others (struct breakpoint *except,
212 enum bptype type,
213 int *other_type_used);
214
215 static void hbreak_command (char *, int);
216
217 static void thbreak_command (char *, int);
218
219 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
220 int count);
221
222 static void stop_command (char *arg, int from_tty);
223
224 static void stopin_command (char *arg, int from_tty);
225
226 static void stopat_command (char *arg, int from_tty);
227
228 static void tcatch_command (char *arg, int from_tty);
229
230 static void free_bp_location (struct bp_location *loc);
231 static void incref_bp_location (struct bp_location *loc);
232 static void decref_bp_location (struct bp_location **loc);
233
234 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
235
236 /* update_global_location_list's modes of operation wrt to whether to
237 insert locations now. */
238 enum ugll_insert_mode
239 {
240 /* Don't insert any breakpoint locations into the inferior, only
241 remove already-inserted locations that no longer should be
242 inserted. Functions that delete a breakpoint or breakpoints
243 should specify this mode, so that deleting a breakpoint doesn't
244 have the side effect of inserting the locations of other
245 breakpoints that are marked not-inserted, but should_be_inserted
246 returns true on them.
247
248 This behavior is useful is situations close to tear-down -- e.g.,
249 after an exec, while the target still has execution, but
250 breakpoint shadows of the previous executable image should *NOT*
251 be restored to the new image; or before detaching, where the
252 target still has execution and wants to delete breakpoints from
253 GDB's lists, and all breakpoints had already been removed from
254 the inferior. */
255 UGLL_DONT_INSERT,
256
257 /* May insert breakpoints iff breakpoints_should_be_inserted_now
258 claims breakpoints should be inserted now. */
259 UGLL_MAY_INSERT,
260
261 /* Insert locations now, irrespective of
262 breakpoints_should_be_inserted_now. E.g., say all threads are
263 stopped right now, and the user did "continue". We need to
264 insert breakpoints _before_ resuming the target, but
265 UGLL_MAY_INSERT wouldn't insert them, because
266 breakpoints_should_be_inserted_now returns false at that point,
267 as no thread is running yet. */
268 UGLL_INSERT
269 };
270
271 static void update_global_location_list (enum ugll_insert_mode);
272
273 static void update_global_location_list_nothrow (enum ugll_insert_mode);
274
275 static int is_hardware_watchpoint (const struct breakpoint *bpt);
276
277 static void insert_breakpoint_locations (void);
278
279 static void tracepoints_info (char *, int);
280
281 static void delete_trace_command (char *, int);
282
283 static void enable_trace_command (char *, int);
284
285 static void disable_trace_command (char *, int);
286
287 static void trace_pass_command (char *, int);
288
289 static void set_tracepoint_count (int num);
290
291 static int is_masked_watchpoint (const struct breakpoint *b);
292
293 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
294
295 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
296 otherwise. */
297
298 static int strace_marker_p (struct breakpoint *b);
299
300 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
301 that are implemented on top of software or hardware breakpoints
302 (user breakpoints, internal and momentary breakpoints, etc.). */
303 static struct breakpoint_ops bkpt_base_breakpoint_ops;
304
305 /* Internal breakpoints class type. */
306 static struct breakpoint_ops internal_breakpoint_ops;
307
308 /* Momentary breakpoints class type. */
309 static struct breakpoint_ops momentary_breakpoint_ops;
310
311 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
312 static struct breakpoint_ops longjmp_breakpoint_ops;
313
314 /* The breakpoint_ops structure to be used in regular user created
315 breakpoints. */
316 struct breakpoint_ops bkpt_breakpoint_ops;
317
318 /* Breakpoints set on probes. */
319 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
320
321 /* Dynamic printf class type. */
322 struct breakpoint_ops dprintf_breakpoint_ops;
323
324 /* The style in which to perform a dynamic printf. This is a user
325 option because different output options have different tradeoffs;
326 if GDB does the printing, there is better error handling if there
327 is a problem with any of the arguments, but using an inferior
328 function lets you have special-purpose printers and sending of
329 output to the same place as compiled-in print functions. */
330
331 static const char dprintf_style_gdb[] = "gdb";
332 static const char dprintf_style_call[] = "call";
333 static const char dprintf_style_agent[] = "agent";
334 static const char *const dprintf_style_enums[] = {
335 dprintf_style_gdb,
336 dprintf_style_call,
337 dprintf_style_agent,
338 NULL
339 };
340 static const char *dprintf_style = dprintf_style_gdb;
341
342 /* The function to use for dynamic printf if the preferred style is to
343 call into the inferior. The value is simply a string that is
344 copied into the command, so it can be anything that GDB can
345 evaluate to a callable address, not necessarily a function name. */
346
347 static char *dprintf_function;
348
349 /* The channel to use for dynamic printf if the preferred style is to
350 call into the inferior; if a nonempty string, it will be passed to
351 the call as the first argument, with the format string as the
352 second. As with the dprintf function, this can be anything that
353 GDB knows how to evaluate, so in addition to common choices like
354 "stderr", this could be an app-specific expression like
355 "mystreams[curlogger]". */
356
357 static char *dprintf_channel;
358
359 /* True if dprintf commands should continue to operate even if GDB
360 has disconnected. */
361 static int disconnected_dprintf = 1;
362
363 /* A reference-counted struct command_line. This lets multiple
364 breakpoints share a single command list. */
365 struct counted_command_line
366 {
367 /* The reference count. */
368 int refc;
369
370 /* The command list. */
371 struct command_line *commands;
372 };
373
374 struct command_line *
375 breakpoint_commands (struct breakpoint *b)
376 {
377 return b->commands ? b->commands->commands : NULL;
378 }
379
380 /* Flag indicating that a command has proceeded the inferior past the
381 current breakpoint. */
382
383 static int breakpoint_proceeded;
384
385 const char *
386 bpdisp_text (enum bpdisp disp)
387 {
388 /* NOTE: the following values are a part of MI protocol and
389 represent values of 'disp' field returned when inferior stops at
390 a breakpoint. */
391 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
392
393 return bpdisps[(int) disp];
394 }
395
396 /* Prototypes for exported functions. */
397 /* If FALSE, gdb will not use hardware support for watchpoints, even
398 if such is available. */
399 static int can_use_hw_watchpoints;
400
401 static void
402 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c,
404 const char *value)
405 {
406 fprintf_filtered (file,
407 _("Debugger's willingness to use "
408 "watchpoint hardware is %s.\n"),
409 value);
410 }
411
412 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
413 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
414 for unrecognized breakpoint locations.
415 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
416 static enum auto_boolean pending_break_support;
417 static void
418 show_pending_break_support (struct ui_file *file, int from_tty,
419 struct cmd_list_element *c,
420 const char *value)
421 {
422 fprintf_filtered (file,
423 _("Debugger's behavior regarding "
424 "pending breakpoints is %s.\n"),
425 value);
426 }
427
428 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
429 set with "break" but falling in read-only memory.
430 If 0, gdb will warn about such breakpoints, but won't automatically
431 use hardware breakpoints. */
432 static int automatic_hardware_breakpoints;
433 static void
434 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c,
436 const char *value)
437 {
438 fprintf_filtered (file,
439 _("Automatic usage of hardware breakpoints is %s.\n"),
440 value);
441 }
442
443 /* If on, GDB keeps breakpoints inserted even if the inferior is
444 stopped, and immediately inserts any new breakpoints as soon as
445 they're created. If off (default), GDB keeps breakpoints off of
446 the target as long as possible. That is, it delays inserting
447 breakpoints until the next resume, and removes them again when the
448 target fully stops. This is a bit safer in case GDB crashes while
449 processing user input. */
450 static int always_inserted_mode = 0;
451
452 static void
453 show_always_inserted_mode (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c, const char *value)
455 {
456 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
457 value);
458 }
459
460 /* See breakpoint.h. */
461
462 int
463 breakpoints_should_be_inserted_now (void)
464 {
465 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
466 {
467 /* If breakpoints are global, they should be inserted even if no
468 thread under gdb's control is running, or even if there are
469 no threads under GDB's control yet. */
470 return 1;
471 }
472 else if (target_has_execution)
473 {
474 struct thread_info *tp;
475
476 if (always_inserted_mode)
477 {
478 /* The user wants breakpoints inserted even if all threads
479 are stopped. */
480 return 1;
481 }
482
483 if (threads_are_executing ())
484 return 1;
485
486 /* Don't remove breakpoints yet if, even though all threads are
487 stopped, we still have events to process. */
488 ALL_NON_EXITED_THREADS (tp)
489 if (tp->resumed
490 && tp->suspend.waitstatus_pending_p)
491 return 1;
492 }
493 return 0;
494 }
495
496 static const char condition_evaluation_both[] = "host or target";
497
498 /* Modes for breakpoint condition evaluation. */
499 static const char condition_evaluation_auto[] = "auto";
500 static const char condition_evaluation_host[] = "host";
501 static const char condition_evaluation_target[] = "target";
502 static const char *const condition_evaluation_enums[] = {
503 condition_evaluation_auto,
504 condition_evaluation_host,
505 condition_evaluation_target,
506 NULL
507 };
508
509 /* Global that holds the current mode for breakpoint condition evaluation. */
510 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
511
512 /* Global that we use to display information to the user (gets its value from
513 condition_evaluation_mode_1. */
514 static const char *condition_evaluation_mode = condition_evaluation_auto;
515
516 /* Translate a condition evaluation mode MODE into either "host"
517 or "target". This is used mostly to translate from "auto" to the
518 real setting that is being used. It returns the translated
519 evaluation mode. */
520
521 static const char *
522 translate_condition_evaluation_mode (const char *mode)
523 {
524 if (mode == condition_evaluation_auto)
525 {
526 if (target_supports_evaluation_of_breakpoint_conditions ())
527 return condition_evaluation_target;
528 else
529 return condition_evaluation_host;
530 }
531 else
532 return mode;
533 }
534
535 /* Discovers what condition_evaluation_auto translates to. */
536
537 static const char *
538 breakpoint_condition_evaluation_mode (void)
539 {
540 return translate_condition_evaluation_mode (condition_evaluation_mode);
541 }
542
543 /* Return true if GDB should evaluate breakpoint conditions or false
544 otherwise. */
545
546 static int
547 gdb_evaluates_breakpoint_condition_p (void)
548 {
549 const char *mode = breakpoint_condition_evaluation_mode ();
550
551 return (mode == condition_evaluation_host);
552 }
553
554 void _initialize_breakpoint (void);
555
556 /* Are we executing breakpoint commands? */
557 static int executing_breakpoint_commands;
558
559 /* Are overlay event breakpoints enabled? */
560 static int overlay_events_enabled;
561
562 /* See description in breakpoint.h. */
563 int target_exact_watchpoints = 0;
564
565 /* Walk the following statement or block through all breakpoints.
566 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
567 current breakpoint. */
568
569 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
570
571 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
572 for (B = breakpoint_chain; \
573 B ? (TMP=B->next, 1): 0; \
574 B = TMP)
575
576 /* Similar iterator for the low-level breakpoints. SAFE variant is
577 not provided so update_global_location_list must not be called
578 while executing the block of ALL_BP_LOCATIONS. */
579
580 #define ALL_BP_LOCATIONS(B,BP_TMP) \
581 for (BP_TMP = bp_locations; \
582 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
583 BP_TMP++)
584
585 /* Iterates through locations with address ADDRESS for the currently selected
586 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
587 to where the loop should start from.
588 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
589 appropriate location to start with. */
590
591 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
592 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
593 BP_LOCP_TMP = BP_LOCP_START; \
594 BP_LOCP_START \
595 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
596 && (*BP_LOCP_TMP)->address == ADDRESS); \
597 BP_LOCP_TMP++)
598
599 /* Iterator for tracepoints only. */
600
601 #define ALL_TRACEPOINTS(B) \
602 for (B = breakpoint_chain; B; B = B->next) \
603 if (is_tracepoint (B))
604
605 /* Chains of all breakpoints defined. */
606
607 struct breakpoint *breakpoint_chain;
608
609 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
610
611 static struct bp_location **bp_locations;
612
613 /* Number of elements of BP_LOCATIONS. */
614
615 static unsigned bp_locations_count;
616
617 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
618 ADDRESS for the current elements of BP_LOCATIONS which get a valid
619 result from bp_location_has_shadow. You can use it for roughly
620 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
621 an address you need to read. */
622
623 static CORE_ADDR bp_locations_placed_address_before_address_max;
624
625 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
626 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
627 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
628 You can use it for roughly limiting the subrange of BP_LOCATIONS to
629 scan for shadow bytes for an address you need to read. */
630
631 static CORE_ADDR bp_locations_shadow_len_after_address_max;
632
633 /* The locations that no longer correspond to any breakpoint, unlinked
634 from the bp_locations array, but for which a hit may still be
635 reported by a target. */
636 VEC(bp_location_p) *moribund_locations = NULL;
637
638 /* Number of last breakpoint made. */
639
640 static int breakpoint_count;
641
642 /* The value of `breakpoint_count' before the last command that
643 created breakpoints. If the last (break-like) command created more
644 than one breakpoint, then the difference between BREAKPOINT_COUNT
645 and PREV_BREAKPOINT_COUNT is more than one. */
646 static int prev_breakpoint_count;
647
648 /* Number of last tracepoint made. */
649
650 static int tracepoint_count;
651
652 static struct cmd_list_element *breakpoint_set_cmdlist;
653 static struct cmd_list_element *breakpoint_show_cmdlist;
654 struct cmd_list_element *save_cmdlist;
655
656 /* See declaration at breakpoint.h. */
657
658 struct breakpoint *
659 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
660 void *user_data)
661 {
662 struct breakpoint *b = NULL;
663
664 ALL_BREAKPOINTS (b)
665 {
666 if (func (b, user_data) != 0)
667 break;
668 }
669
670 return b;
671 }
672
673 /* Return whether a breakpoint is an active enabled breakpoint. */
674 static int
675 breakpoint_enabled (struct breakpoint *b)
676 {
677 return (b->enable_state == bp_enabled);
678 }
679
680 /* Set breakpoint count to NUM. */
681
682 static void
683 set_breakpoint_count (int num)
684 {
685 prev_breakpoint_count = breakpoint_count;
686 breakpoint_count = num;
687 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
688 }
689
690 /* Used by `start_rbreak_breakpoints' below, to record the current
691 breakpoint count before "rbreak" creates any breakpoint. */
692 static int rbreak_start_breakpoint_count;
693
694 /* Called at the start an "rbreak" command to record the first
695 breakpoint made. */
696
697 void
698 start_rbreak_breakpoints (void)
699 {
700 rbreak_start_breakpoint_count = breakpoint_count;
701 }
702
703 /* Called at the end of an "rbreak" command to record the last
704 breakpoint made. */
705
706 void
707 end_rbreak_breakpoints (void)
708 {
709 prev_breakpoint_count = rbreak_start_breakpoint_count;
710 }
711
712 /* Used in run_command to zero the hit count when a new run starts. */
713
714 void
715 clear_breakpoint_hit_counts (void)
716 {
717 struct breakpoint *b;
718
719 ALL_BREAKPOINTS (b)
720 b->hit_count = 0;
721 }
722
723 /* Allocate a new counted_command_line with reference count of 1.
724 The new structure owns COMMANDS. */
725
726 static struct counted_command_line *
727 alloc_counted_command_line (struct command_line *commands)
728 {
729 struct counted_command_line *result = XNEW (struct counted_command_line);
730
731 result->refc = 1;
732 result->commands = commands;
733
734 return result;
735 }
736
737 /* Increment reference count. This does nothing if CMD is NULL. */
738
739 static void
740 incref_counted_command_line (struct counted_command_line *cmd)
741 {
742 if (cmd)
743 ++cmd->refc;
744 }
745
746 /* Decrement reference count. If the reference count reaches 0,
747 destroy the counted_command_line. Sets *CMDP to NULL. This does
748 nothing if *CMDP is NULL. */
749
750 static void
751 decref_counted_command_line (struct counted_command_line **cmdp)
752 {
753 if (*cmdp)
754 {
755 if (--(*cmdp)->refc == 0)
756 {
757 free_command_lines (&(*cmdp)->commands);
758 xfree (*cmdp);
759 }
760 *cmdp = NULL;
761 }
762 }
763
764 /* A cleanup function that calls decref_counted_command_line. */
765
766 static void
767 do_cleanup_counted_command_line (void *arg)
768 {
769 decref_counted_command_line ((struct counted_command_line **) arg);
770 }
771
772 /* Create a cleanup that calls decref_counted_command_line on the
773 argument. */
774
775 static struct cleanup *
776 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
777 {
778 return make_cleanup (do_cleanup_counted_command_line, cmdp);
779 }
780
781 \f
782 /* Return the breakpoint with the specified number, or NULL
783 if the number does not refer to an existing breakpoint. */
784
785 struct breakpoint *
786 get_breakpoint (int num)
787 {
788 struct breakpoint *b;
789
790 ALL_BREAKPOINTS (b)
791 if (b->number == num)
792 return b;
793
794 return NULL;
795 }
796
797 \f
798
799 /* Mark locations as "conditions have changed" in case the target supports
800 evaluating conditions on its side. */
801
802 static void
803 mark_breakpoint_modified (struct breakpoint *b)
804 {
805 struct bp_location *loc;
806
807 /* This is only meaningful if the target is
808 evaluating conditions and if the user has
809 opted for condition evaluation on the target's
810 side. */
811 if (gdb_evaluates_breakpoint_condition_p ()
812 || !target_supports_evaluation_of_breakpoint_conditions ())
813 return;
814
815 if (!is_breakpoint (b))
816 return;
817
818 for (loc = b->loc; loc; loc = loc->next)
819 loc->condition_changed = condition_modified;
820 }
821
822 /* Mark location as "conditions have changed" in case the target supports
823 evaluating conditions on its side. */
824
825 static void
826 mark_breakpoint_location_modified (struct bp_location *loc)
827 {
828 /* This is only meaningful if the target is
829 evaluating conditions and if the user has
830 opted for condition evaluation on the target's
831 side. */
832 if (gdb_evaluates_breakpoint_condition_p ()
833 || !target_supports_evaluation_of_breakpoint_conditions ())
834
835 return;
836
837 if (!is_breakpoint (loc->owner))
838 return;
839
840 loc->condition_changed = condition_modified;
841 }
842
843 /* Sets the condition-evaluation mode using the static global
844 condition_evaluation_mode. */
845
846 static void
847 set_condition_evaluation_mode (char *args, int from_tty,
848 struct cmd_list_element *c)
849 {
850 const char *old_mode, *new_mode;
851
852 if ((condition_evaluation_mode_1 == condition_evaluation_target)
853 && !target_supports_evaluation_of_breakpoint_conditions ())
854 {
855 condition_evaluation_mode_1 = condition_evaluation_mode;
856 warning (_("Target does not support breakpoint condition evaluation.\n"
857 "Using host evaluation mode instead."));
858 return;
859 }
860
861 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
862 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
863
864 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
865 settings was "auto". */
866 condition_evaluation_mode = condition_evaluation_mode_1;
867
868 /* Only update the mode if the user picked a different one. */
869 if (new_mode != old_mode)
870 {
871 struct bp_location *loc, **loc_tmp;
872 /* If the user switched to a different evaluation mode, we
873 need to synch the changes with the target as follows:
874
875 "host" -> "target": Send all (valid) conditions to the target.
876 "target" -> "host": Remove all the conditions from the target.
877 */
878
879 if (new_mode == condition_evaluation_target)
880 {
881 /* Mark everything modified and synch conditions with the
882 target. */
883 ALL_BP_LOCATIONS (loc, loc_tmp)
884 mark_breakpoint_location_modified (loc);
885 }
886 else
887 {
888 /* Manually mark non-duplicate locations to synch conditions
889 with the target. We do this to remove all the conditions the
890 target knows about. */
891 ALL_BP_LOCATIONS (loc, loc_tmp)
892 if (is_breakpoint (loc->owner) && loc->inserted)
893 loc->needs_update = 1;
894 }
895
896 /* Do the update. */
897 update_global_location_list (UGLL_MAY_INSERT);
898 }
899
900 return;
901 }
902
903 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
904 what "auto" is translating to. */
905
906 static void
907 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c, const char *value)
909 {
910 if (condition_evaluation_mode == condition_evaluation_auto)
911 fprintf_filtered (file,
912 _("Breakpoint condition evaluation "
913 "mode is %s (currently %s).\n"),
914 value,
915 breakpoint_condition_evaluation_mode ());
916 else
917 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
918 value);
919 }
920
921 /* A comparison function for bp_location AP and BP that is used by
922 bsearch. This comparison function only cares about addresses, unlike
923 the more general bp_locations_compare function. */
924
925 static int
926 bp_locations_compare_addrs (const void *ap, const void *bp)
927 {
928 const struct bp_location *a = *(const struct bp_location **) ap;
929 const struct bp_location *b = *(const struct bp_location **) bp;
930
931 if (a->address == b->address)
932 return 0;
933 else
934 return ((a->address > b->address) - (a->address < b->address));
935 }
936
937 /* Helper function to skip all bp_locations with addresses
938 less than ADDRESS. It returns the first bp_location that
939 is greater than or equal to ADDRESS. If none is found, just
940 return NULL. */
941
942 static struct bp_location **
943 get_first_locp_gte_addr (CORE_ADDR address)
944 {
945 struct bp_location dummy_loc;
946 struct bp_location *dummy_locp = &dummy_loc;
947 struct bp_location **locp_found = NULL;
948
949 /* Initialize the dummy location's address field. */
950 memset (&dummy_loc, 0, sizeof (struct bp_location));
951 dummy_loc.address = address;
952
953 /* Find a close match to the first location at ADDRESS. */
954 locp_found = ((struct bp_location **)
955 bsearch (&dummy_locp, bp_locations, bp_locations_count,
956 sizeof (struct bp_location **),
957 bp_locations_compare_addrs));
958
959 /* Nothing was found, nothing left to do. */
960 if (locp_found == NULL)
961 return NULL;
962
963 /* We may have found a location that is at ADDRESS but is not the first in the
964 location's list. Go backwards (if possible) and locate the first one. */
965 while ((locp_found - 1) >= bp_locations
966 && (*(locp_found - 1))->address == address)
967 locp_found--;
968
969 return locp_found;
970 }
971
972 void
973 set_breakpoint_condition (struct breakpoint *b, const char *exp,
974 int from_tty)
975 {
976 xfree (b->cond_string);
977 b->cond_string = NULL;
978
979 if (is_watchpoint (b))
980 {
981 struct watchpoint *w = (struct watchpoint *) b;
982
983 w->cond_exp.reset ();
984 }
985 else
986 {
987 struct bp_location *loc;
988
989 for (loc = b->loc; loc; loc = loc->next)
990 {
991 loc->cond.reset ();
992
993 /* No need to free the condition agent expression
994 bytecode (if we have one). We will handle this
995 when we go through update_global_location_list. */
996 }
997 }
998
999 if (*exp == 0)
1000 {
1001 if (from_tty)
1002 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
1003 }
1004 else
1005 {
1006 const char *arg = exp;
1007
1008 /* I don't know if it matters whether this is the string the user
1009 typed in or the decompiled expression. */
1010 b->cond_string = xstrdup (arg);
1011 b->condition_not_parsed = 0;
1012
1013 if (is_watchpoint (b))
1014 {
1015 struct watchpoint *w = (struct watchpoint *) b;
1016
1017 innermost_block = NULL;
1018 arg = exp;
1019 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
1020 if (*arg)
1021 error (_("Junk at end of expression"));
1022 w->cond_exp_valid_block = innermost_block;
1023 }
1024 else
1025 {
1026 struct bp_location *loc;
1027
1028 for (loc = b->loc; loc; loc = loc->next)
1029 {
1030 arg = exp;
1031 loc->cond =
1032 parse_exp_1 (&arg, loc->address,
1033 block_for_pc (loc->address), 0);
1034 if (*arg)
1035 error (_("Junk at end of expression"));
1036 }
1037 }
1038 }
1039 mark_breakpoint_modified (b);
1040
1041 observer_notify_breakpoint_modified (b);
1042 }
1043
1044 /* Completion for the "condition" command. */
1045
1046 static VEC (char_ptr) *
1047 condition_completer (struct cmd_list_element *cmd,
1048 const char *text, const char *word)
1049 {
1050 const char *space;
1051
1052 text = skip_spaces_const (text);
1053 space = skip_to_space_const (text);
1054 if (*space == '\0')
1055 {
1056 int len;
1057 struct breakpoint *b;
1058 VEC (char_ptr) *result = NULL;
1059
1060 if (text[0] == '$')
1061 {
1062 /* We don't support completion of history indices. */
1063 if (isdigit (text[1]))
1064 return NULL;
1065 return complete_internalvar (&text[1]);
1066 }
1067
1068 /* We're completing the breakpoint number. */
1069 len = strlen (text);
1070
1071 ALL_BREAKPOINTS (b)
1072 {
1073 char number[50];
1074
1075 xsnprintf (number, sizeof (number), "%d", b->number);
1076
1077 if (strncmp (number, text, len) == 0)
1078 VEC_safe_push (char_ptr, result, xstrdup (number));
1079 }
1080
1081 return result;
1082 }
1083
1084 /* We're completing the expression part. */
1085 text = skip_spaces_const (space);
1086 return expression_completer (cmd, text, word);
1087 }
1088
1089 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1090
1091 static void
1092 condition_command (char *arg, int from_tty)
1093 {
1094 struct breakpoint *b;
1095 char *p;
1096 int bnum;
1097
1098 if (arg == 0)
1099 error_no_arg (_("breakpoint number"));
1100
1101 p = arg;
1102 bnum = get_number (&p);
1103 if (bnum == 0)
1104 error (_("Bad breakpoint argument: '%s'"), arg);
1105
1106 ALL_BREAKPOINTS (b)
1107 if (b->number == bnum)
1108 {
1109 /* Check if this breakpoint has a "stop" method implemented in an
1110 extension language. This method and conditions entered into GDB
1111 from the CLI are mutually exclusive. */
1112 const struct extension_language_defn *extlang
1113 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1114
1115 if (extlang != NULL)
1116 {
1117 error (_("Only one stop condition allowed. There is currently"
1118 " a %s stop condition defined for this breakpoint."),
1119 ext_lang_capitalized_name (extlang));
1120 }
1121 set_breakpoint_condition (b, p, from_tty);
1122
1123 if (is_breakpoint (b))
1124 update_global_location_list (UGLL_MAY_INSERT);
1125
1126 return;
1127 }
1128
1129 error (_("No breakpoint number %d."), bnum);
1130 }
1131
1132 /* Check that COMMAND do not contain commands that are suitable
1133 only for tracepoints and not suitable for ordinary breakpoints.
1134 Throw if any such commands is found. */
1135
1136 static void
1137 check_no_tracepoint_commands (struct command_line *commands)
1138 {
1139 struct command_line *c;
1140
1141 for (c = commands; c; c = c->next)
1142 {
1143 int i;
1144
1145 if (c->control_type == while_stepping_control)
1146 error (_("The 'while-stepping' command can "
1147 "only be used for tracepoints"));
1148
1149 for (i = 0; i < c->body_count; ++i)
1150 check_no_tracepoint_commands ((c->body_list)[i]);
1151
1152 /* Not that command parsing removes leading whitespace and comment
1153 lines and also empty lines. So, we only need to check for
1154 command directly. */
1155 if (strstr (c->line, "collect ") == c->line)
1156 error (_("The 'collect' command can only be used for tracepoints"));
1157
1158 if (strstr (c->line, "teval ") == c->line)
1159 error (_("The 'teval' command can only be used for tracepoints"));
1160 }
1161 }
1162
1163 /* Encapsulate tests for different types of tracepoints. */
1164
1165 static int
1166 is_tracepoint_type (enum bptype type)
1167 {
1168 return (type == bp_tracepoint
1169 || type == bp_fast_tracepoint
1170 || type == bp_static_tracepoint);
1171 }
1172
1173 int
1174 is_tracepoint (const struct breakpoint *b)
1175 {
1176 return is_tracepoint_type (b->type);
1177 }
1178
1179 /* A helper function that validates that COMMANDS are valid for a
1180 breakpoint. This function will throw an exception if a problem is
1181 found. */
1182
1183 static void
1184 validate_commands_for_breakpoint (struct breakpoint *b,
1185 struct command_line *commands)
1186 {
1187 if (is_tracepoint (b))
1188 {
1189 struct tracepoint *t = (struct tracepoint *) b;
1190 struct command_line *c;
1191 struct command_line *while_stepping = 0;
1192
1193 /* Reset the while-stepping step count. The previous commands
1194 might have included a while-stepping action, while the new
1195 ones might not. */
1196 t->step_count = 0;
1197
1198 /* We need to verify that each top-level element of commands is
1199 valid for tracepoints, that there's at most one
1200 while-stepping element, and that the while-stepping's body
1201 has valid tracing commands excluding nested while-stepping.
1202 We also need to validate the tracepoint action line in the
1203 context of the tracepoint --- validate_actionline actually
1204 has side effects, like setting the tracepoint's
1205 while-stepping STEP_COUNT, in addition to checking if the
1206 collect/teval actions parse and make sense in the
1207 tracepoint's context. */
1208 for (c = commands; c; c = c->next)
1209 {
1210 if (c->control_type == while_stepping_control)
1211 {
1212 if (b->type == bp_fast_tracepoint)
1213 error (_("The 'while-stepping' command "
1214 "cannot be used for fast tracepoint"));
1215 else if (b->type == bp_static_tracepoint)
1216 error (_("The 'while-stepping' command "
1217 "cannot be used for static tracepoint"));
1218
1219 if (while_stepping)
1220 error (_("The 'while-stepping' command "
1221 "can be used only once"));
1222 else
1223 while_stepping = c;
1224 }
1225
1226 validate_actionline (c->line, b);
1227 }
1228 if (while_stepping)
1229 {
1230 struct command_line *c2;
1231
1232 gdb_assert (while_stepping->body_count == 1);
1233 c2 = while_stepping->body_list[0];
1234 for (; c2; c2 = c2->next)
1235 {
1236 if (c2->control_type == while_stepping_control)
1237 error (_("The 'while-stepping' command cannot be nested"));
1238 }
1239 }
1240 }
1241 else
1242 {
1243 check_no_tracepoint_commands (commands);
1244 }
1245 }
1246
1247 /* Return a vector of all the static tracepoints set at ADDR. The
1248 caller is responsible for releasing the vector. */
1249
1250 VEC(breakpoint_p) *
1251 static_tracepoints_here (CORE_ADDR addr)
1252 {
1253 struct breakpoint *b;
1254 VEC(breakpoint_p) *found = 0;
1255 struct bp_location *loc;
1256
1257 ALL_BREAKPOINTS (b)
1258 if (b->type == bp_static_tracepoint)
1259 {
1260 for (loc = b->loc; loc; loc = loc->next)
1261 if (loc->address == addr)
1262 VEC_safe_push(breakpoint_p, found, b);
1263 }
1264
1265 return found;
1266 }
1267
1268 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1269 validate that only allowed commands are included. */
1270
1271 void
1272 breakpoint_set_commands (struct breakpoint *b,
1273 command_line_up &&commands)
1274 {
1275 validate_commands_for_breakpoint (b, commands.get ());
1276
1277 decref_counted_command_line (&b->commands);
1278 b->commands = alloc_counted_command_line (commands.release ());
1279 observer_notify_breakpoint_modified (b);
1280 }
1281
1282 /* Set the internal `silent' flag on the breakpoint. Note that this
1283 is not the same as the "silent" that may appear in the breakpoint's
1284 commands. */
1285
1286 void
1287 breakpoint_set_silent (struct breakpoint *b, int silent)
1288 {
1289 int old_silent = b->silent;
1290
1291 b->silent = silent;
1292 if (old_silent != silent)
1293 observer_notify_breakpoint_modified (b);
1294 }
1295
1296 /* Set the thread for this breakpoint. If THREAD is -1, make the
1297 breakpoint work for any thread. */
1298
1299 void
1300 breakpoint_set_thread (struct breakpoint *b, int thread)
1301 {
1302 int old_thread = b->thread;
1303
1304 b->thread = thread;
1305 if (old_thread != thread)
1306 observer_notify_breakpoint_modified (b);
1307 }
1308
1309 /* Set the task for this breakpoint. If TASK is 0, make the
1310 breakpoint work for any task. */
1311
1312 void
1313 breakpoint_set_task (struct breakpoint *b, int task)
1314 {
1315 int old_task = b->task;
1316
1317 b->task = task;
1318 if (old_task != task)
1319 observer_notify_breakpoint_modified (b);
1320 }
1321
1322 void
1323 check_tracepoint_command (char *line, void *closure)
1324 {
1325 struct breakpoint *b = (struct breakpoint *) closure;
1326
1327 validate_actionline (line, b);
1328 }
1329
1330 /* A structure used to pass information through
1331 map_breakpoint_numbers. */
1332
1333 struct commands_info
1334 {
1335 /* True if the command was typed at a tty. */
1336 int from_tty;
1337
1338 /* The breakpoint range spec. */
1339 const char *arg;
1340
1341 /* Non-NULL if the body of the commands are being read from this
1342 already-parsed command. */
1343 struct command_line *control;
1344
1345 /* The command lines read from the user, or NULL if they have not
1346 yet been read. */
1347 struct counted_command_line *cmd;
1348 };
1349
1350 /* A callback for map_breakpoint_numbers that sets the commands for
1351 commands_command. */
1352
1353 static void
1354 do_map_commands_command (struct breakpoint *b, void *data)
1355 {
1356 struct commands_info *info = (struct commands_info *) data;
1357
1358 if (info->cmd == NULL)
1359 {
1360 command_line_up l;
1361
1362 if (info->control != NULL)
1363 l = copy_command_lines (info->control->body_list[0]);
1364 else
1365 {
1366 struct cleanup *old_chain;
1367 char *str;
1368
1369 str = xstrprintf (_("Type commands for breakpoint(s) "
1370 "%s, one per line."),
1371 info->arg);
1372
1373 old_chain = make_cleanup (xfree, str);
1374
1375 l = read_command_lines (str,
1376 info->from_tty, 1,
1377 (is_tracepoint (b)
1378 ? check_tracepoint_command : 0),
1379 b);
1380
1381 do_cleanups (old_chain);
1382 }
1383
1384 info->cmd = alloc_counted_command_line (l.release ());
1385 }
1386
1387 /* If a breakpoint was on the list more than once, we don't need to
1388 do anything. */
1389 if (b->commands != info->cmd)
1390 {
1391 validate_commands_for_breakpoint (b, info->cmd->commands);
1392 incref_counted_command_line (info->cmd);
1393 decref_counted_command_line (&b->commands);
1394 b->commands = info->cmd;
1395 observer_notify_breakpoint_modified (b);
1396 }
1397 }
1398
1399 static void
1400 commands_command_1 (const char *arg, int from_tty,
1401 struct command_line *control)
1402 {
1403 struct cleanup *cleanups;
1404 struct commands_info info;
1405
1406 info.from_tty = from_tty;
1407 info.control = control;
1408 info.cmd = NULL;
1409 /* If we read command lines from the user, then `info' will hold an
1410 extra reference to the commands that we must clean up. */
1411 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1412
1413 std::string new_arg;
1414
1415 if (arg == NULL || !*arg)
1416 {
1417 if (breakpoint_count - prev_breakpoint_count > 1)
1418 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1419 breakpoint_count);
1420 else if (breakpoint_count > 0)
1421 new_arg = string_printf ("%d", breakpoint_count);
1422 }
1423 else
1424 new_arg = arg;
1425
1426 info.arg = new_arg.c_str ();
1427
1428 map_breakpoint_numbers (info.arg, do_map_commands_command, &info);
1429
1430 if (info.cmd == NULL)
1431 error (_("No breakpoints specified."));
1432
1433 do_cleanups (cleanups);
1434 }
1435
1436 static void
1437 commands_command (char *arg, int from_tty)
1438 {
1439 commands_command_1 (arg, from_tty, NULL);
1440 }
1441
1442 /* Like commands_command, but instead of reading the commands from
1443 input stream, takes them from an already parsed command structure.
1444
1445 This is used by cli-script.c to DTRT with breakpoint commands
1446 that are part of if and while bodies. */
1447 enum command_control_type
1448 commands_from_control_command (const char *arg, struct command_line *cmd)
1449 {
1450 commands_command_1 (arg, 0, cmd);
1451 return simple_control;
1452 }
1453
1454 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1455
1456 static int
1457 bp_location_has_shadow (struct bp_location *bl)
1458 {
1459 if (bl->loc_type != bp_loc_software_breakpoint)
1460 return 0;
1461 if (!bl->inserted)
1462 return 0;
1463 if (bl->target_info.shadow_len == 0)
1464 /* BL isn't valid, or doesn't shadow memory. */
1465 return 0;
1466 return 1;
1467 }
1468
1469 /* Update BUF, which is LEN bytes read from the target address
1470 MEMADDR, by replacing a memory breakpoint with its shadowed
1471 contents.
1472
1473 If READBUF is not NULL, this buffer must not overlap with the of
1474 the breakpoint location's shadow_contents buffer. Otherwise, a
1475 failed assertion internal error will be raised. */
1476
1477 static void
1478 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1479 const gdb_byte *writebuf_org,
1480 ULONGEST memaddr, LONGEST len,
1481 struct bp_target_info *target_info,
1482 struct gdbarch *gdbarch)
1483 {
1484 /* Now do full processing of the found relevant range of elements. */
1485 CORE_ADDR bp_addr = 0;
1486 int bp_size = 0;
1487 int bptoffset = 0;
1488
1489 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1490 current_program_space->aspace, 0))
1491 {
1492 /* The breakpoint is inserted in a different address space. */
1493 return;
1494 }
1495
1496 /* Addresses and length of the part of the breakpoint that
1497 we need to copy. */
1498 bp_addr = target_info->placed_address;
1499 bp_size = target_info->shadow_len;
1500
1501 if (bp_addr + bp_size <= memaddr)
1502 {
1503 /* The breakpoint is entirely before the chunk of memory we are
1504 reading. */
1505 return;
1506 }
1507
1508 if (bp_addr >= memaddr + len)
1509 {
1510 /* The breakpoint is entirely after the chunk of memory we are
1511 reading. */
1512 return;
1513 }
1514
1515 /* Offset within shadow_contents. */
1516 if (bp_addr < memaddr)
1517 {
1518 /* Only copy the second part of the breakpoint. */
1519 bp_size -= memaddr - bp_addr;
1520 bptoffset = memaddr - bp_addr;
1521 bp_addr = memaddr;
1522 }
1523
1524 if (bp_addr + bp_size > memaddr + len)
1525 {
1526 /* Only copy the first part of the breakpoint. */
1527 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1528 }
1529
1530 if (readbuf != NULL)
1531 {
1532 /* Verify that the readbuf buffer does not overlap with the
1533 shadow_contents buffer. */
1534 gdb_assert (target_info->shadow_contents >= readbuf + len
1535 || readbuf >= (target_info->shadow_contents
1536 + target_info->shadow_len));
1537
1538 /* Update the read buffer with this inserted breakpoint's
1539 shadow. */
1540 memcpy (readbuf + bp_addr - memaddr,
1541 target_info->shadow_contents + bptoffset, bp_size);
1542 }
1543 else
1544 {
1545 const unsigned char *bp;
1546 CORE_ADDR addr = target_info->reqstd_address;
1547 int placed_size;
1548
1549 /* Update the shadow with what we want to write to memory. */
1550 memcpy (target_info->shadow_contents + bptoffset,
1551 writebuf_org + bp_addr - memaddr, bp_size);
1552
1553 /* Determine appropriate breakpoint contents and size for this
1554 address. */
1555 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1556
1557 /* Update the final write buffer with this inserted
1558 breakpoint's INSN. */
1559 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1560 }
1561 }
1562
1563 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1564 by replacing any memory breakpoints with their shadowed contents.
1565
1566 If READBUF is not NULL, this buffer must not overlap with any of
1567 the breakpoint location's shadow_contents buffers. Otherwise,
1568 a failed assertion internal error will be raised.
1569
1570 The range of shadowed area by each bp_location is:
1571 bl->address - bp_locations_placed_address_before_address_max
1572 up to bl->address + bp_locations_shadow_len_after_address_max
1573 The range we were requested to resolve shadows for is:
1574 memaddr ... memaddr + len
1575 Thus the safe cutoff boundaries for performance optimization are
1576 memaddr + len <= (bl->address
1577 - bp_locations_placed_address_before_address_max)
1578 and:
1579 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1580
1581 void
1582 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1583 const gdb_byte *writebuf_org,
1584 ULONGEST memaddr, LONGEST len)
1585 {
1586 /* Left boundary, right boundary and median element of our binary
1587 search. */
1588 unsigned bc_l, bc_r, bc;
1589
1590 /* Find BC_L which is a leftmost element which may affect BUF
1591 content. It is safe to report lower value but a failure to
1592 report higher one. */
1593
1594 bc_l = 0;
1595 bc_r = bp_locations_count;
1596 while (bc_l + 1 < bc_r)
1597 {
1598 struct bp_location *bl;
1599
1600 bc = (bc_l + bc_r) / 2;
1601 bl = bp_locations[bc];
1602
1603 /* Check first BL->ADDRESS will not overflow due to the added
1604 constant. Then advance the left boundary only if we are sure
1605 the BC element can in no way affect the BUF content (MEMADDR
1606 to MEMADDR + LEN range).
1607
1608 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1609 offset so that we cannot miss a breakpoint with its shadow
1610 range tail still reaching MEMADDR. */
1611
1612 if ((bl->address + bp_locations_shadow_len_after_address_max
1613 >= bl->address)
1614 && (bl->address + bp_locations_shadow_len_after_address_max
1615 <= memaddr))
1616 bc_l = bc;
1617 else
1618 bc_r = bc;
1619 }
1620
1621 /* Due to the binary search above, we need to make sure we pick the
1622 first location that's at BC_L's address. E.g., if there are
1623 multiple locations at the same address, BC_L may end up pointing
1624 at a duplicate location, and miss the "master"/"inserted"
1625 location. Say, given locations L1, L2 and L3 at addresses A and
1626 B:
1627
1628 L1@A, L2@A, L3@B, ...
1629
1630 BC_L could end up pointing at location L2, while the "master"
1631 location could be L1. Since the `loc->inserted' flag is only set
1632 on "master" locations, we'd forget to restore the shadow of L1
1633 and L2. */
1634 while (bc_l > 0
1635 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1636 bc_l--;
1637
1638 /* Now do full processing of the found relevant range of elements. */
1639
1640 for (bc = bc_l; bc < bp_locations_count; bc++)
1641 {
1642 struct bp_location *bl = bp_locations[bc];
1643
1644 /* bp_location array has BL->OWNER always non-NULL. */
1645 if (bl->owner->type == bp_none)
1646 warning (_("reading through apparently deleted breakpoint #%d?"),
1647 bl->owner->number);
1648
1649 /* Performance optimization: any further element can no longer affect BUF
1650 content. */
1651
1652 if (bl->address >= bp_locations_placed_address_before_address_max
1653 && memaddr + len <= (bl->address
1654 - bp_locations_placed_address_before_address_max))
1655 break;
1656
1657 if (!bp_location_has_shadow (bl))
1658 continue;
1659
1660 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1661 memaddr, len, &bl->target_info, bl->gdbarch);
1662 }
1663 }
1664
1665 \f
1666
1667 /* Return true if BPT is either a software breakpoint or a hardware
1668 breakpoint. */
1669
1670 int
1671 is_breakpoint (const struct breakpoint *bpt)
1672 {
1673 return (bpt->type == bp_breakpoint
1674 || bpt->type == bp_hardware_breakpoint
1675 || bpt->type == bp_dprintf);
1676 }
1677
1678 /* Return true if BPT is of any hardware watchpoint kind. */
1679
1680 static int
1681 is_hardware_watchpoint (const struct breakpoint *bpt)
1682 {
1683 return (bpt->type == bp_hardware_watchpoint
1684 || bpt->type == bp_read_watchpoint
1685 || bpt->type == bp_access_watchpoint);
1686 }
1687
1688 /* Return true if BPT is of any watchpoint kind, hardware or
1689 software. */
1690
1691 int
1692 is_watchpoint (const struct breakpoint *bpt)
1693 {
1694 return (is_hardware_watchpoint (bpt)
1695 || bpt->type == bp_watchpoint);
1696 }
1697
1698 /* Returns true if the current thread and its running state are safe
1699 to evaluate or update watchpoint B. Watchpoints on local
1700 expressions need to be evaluated in the context of the thread that
1701 was current when the watchpoint was created, and, that thread needs
1702 to be stopped to be able to select the correct frame context.
1703 Watchpoints on global expressions can be evaluated on any thread,
1704 and in any state. It is presently left to the target allowing
1705 memory accesses when threads are running. */
1706
1707 static int
1708 watchpoint_in_thread_scope (struct watchpoint *b)
1709 {
1710 return (b->base.pspace == current_program_space
1711 && (ptid_equal (b->watchpoint_thread, null_ptid)
1712 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1713 && !is_executing (inferior_ptid))));
1714 }
1715
1716 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1717 associated bp_watchpoint_scope breakpoint. */
1718
1719 static void
1720 watchpoint_del_at_next_stop (struct watchpoint *w)
1721 {
1722 struct breakpoint *b = &w->base;
1723
1724 if (b->related_breakpoint != b)
1725 {
1726 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1727 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1728 b->related_breakpoint->disposition = disp_del_at_next_stop;
1729 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1730 b->related_breakpoint = b;
1731 }
1732 b->disposition = disp_del_at_next_stop;
1733 }
1734
1735 /* Extract a bitfield value from value VAL using the bit parameters contained in
1736 watchpoint W. */
1737
1738 static struct value *
1739 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1740 {
1741 struct value *bit_val;
1742
1743 if (val == NULL)
1744 return NULL;
1745
1746 bit_val = allocate_value (value_type (val));
1747
1748 unpack_value_bitfield (bit_val,
1749 w->val_bitpos,
1750 w->val_bitsize,
1751 value_contents_for_printing (val),
1752 value_offset (val),
1753 val);
1754
1755 return bit_val;
1756 }
1757
1758 /* Allocate a dummy location and add it to B, which must be a software
1759 watchpoint. This is required because even if a software watchpoint
1760 is not watching any memory, bpstat_stop_status requires a location
1761 to be able to report stops. */
1762
1763 static void
1764 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1765 struct program_space *pspace)
1766 {
1767 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1768
1769 b->loc = allocate_bp_location (b);
1770 b->loc->pspace = pspace;
1771 b->loc->address = -1;
1772 b->loc->length = -1;
1773 }
1774
1775 /* Returns true if B is a software watchpoint that is not watching any
1776 memory (e.g., "watch $pc"). */
1777
1778 static int
1779 is_no_memory_software_watchpoint (struct breakpoint *b)
1780 {
1781 return (b->type == bp_watchpoint
1782 && b->loc != NULL
1783 && b->loc->next == NULL
1784 && b->loc->address == -1
1785 && b->loc->length == -1);
1786 }
1787
1788 /* Assuming that B is a watchpoint:
1789 - Reparse watchpoint expression, if REPARSE is non-zero
1790 - Evaluate expression and store the result in B->val
1791 - Evaluate the condition if there is one, and store the result
1792 in b->loc->cond.
1793 - Update the list of values that must be watched in B->loc.
1794
1795 If the watchpoint disposition is disp_del_at_next_stop, then do
1796 nothing. If this is local watchpoint that is out of scope, delete
1797 it.
1798
1799 Even with `set breakpoint always-inserted on' the watchpoints are
1800 removed + inserted on each stop here. Normal breakpoints must
1801 never be removed because they might be missed by a running thread
1802 when debugging in non-stop mode. On the other hand, hardware
1803 watchpoints (is_hardware_watchpoint; processed here) are specific
1804 to each LWP since they are stored in each LWP's hardware debug
1805 registers. Therefore, such LWP must be stopped first in order to
1806 be able to modify its hardware watchpoints.
1807
1808 Hardware watchpoints must be reset exactly once after being
1809 presented to the user. It cannot be done sooner, because it would
1810 reset the data used to present the watchpoint hit to the user. And
1811 it must not be done later because it could display the same single
1812 watchpoint hit during multiple GDB stops. Note that the latter is
1813 relevant only to the hardware watchpoint types bp_read_watchpoint
1814 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1815 not user-visible - its hit is suppressed if the memory content has
1816 not changed.
1817
1818 The following constraints influence the location where we can reset
1819 hardware watchpoints:
1820
1821 * target_stopped_by_watchpoint and target_stopped_data_address are
1822 called several times when GDB stops.
1823
1824 [linux]
1825 * Multiple hardware watchpoints can be hit at the same time,
1826 causing GDB to stop. GDB only presents one hardware watchpoint
1827 hit at a time as the reason for stopping, and all the other hits
1828 are presented later, one after the other, each time the user
1829 requests the execution to be resumed. Execution is not resumed
1830 for the threads still having pending hit event stored in
1831 LWP_INFO->STATUS. While the watchpoint is already removed from
1832 the inferior on the first stop the thread hit event is kept being
1833 reported from its cached value by linux_nat_stopped_data_address
1834 until the real thread resume happens after the watchpoint gets
1835 presented and thus its LWP_INFO->STATUS gets reset.
1836
1837 Therefore the hardware watchpoint hit can get safely reset on the
1838 watchpoint removal from inferior. */
1839
1840 static void
1841 update_watchpoint (struct watchpoint *b, int reparse)
1842 {
1843 int within_current_scope;
1844 struct frame_id saved_frame_id;
1845 int frame_saved;
1846
1847 /* If this is a local watchpoint, we only want to check if the
1848 watchpoint frame is in scope if the current thread is the thread
1849 that was used to create the watchpoint. */
1850 if (!watchpoint_in_thread_scope (b))
1851 return;
1852
1853 if (b->base.disposition == disp_del_at_next_stop)
1854 return;
1855
1856 frame_saved = 0;
1857
1858 /* Determine if the watchpoint is within scope. */
1859 if (b->exp_valid_block == NULL)
1860 within_current_scope = 1;
1861 else
1862 {
1863 struct frame_info *fi = get_current_frame ();
1864 struct gdbarch *frame_arch = get_frame_arch (fi);
1865 CORE_ADDR frame_pc = get_frame_pc (fi);
1866
1867 /* If we're at a point where the stack has been destroyed
1868 (e.g. in a function epilogue), unwinding may not work
1869 properly. Do not attempt to recreate locations at this
1870 point. See similar comments in watchpoint_check. */
1871 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1872 return;
1873
1874 /* Save the current frame's ID so we can restore it after
1875 evaluating the watchpoint expression on its own frame. */
1876 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1877 took a frame parameter, so that we didn't have to change the
1878 selected frame. */
1879 frame_saved = 1;
1880 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1881
1882 fi = frame_find_by_id (b->watchpoint_frame);
1883 within_current_scope = (fi != NULL);
1884 if (within_current_scope)
1885 select_frame (fi);
1886 }
1887
1888 /* We don't free locations. They are stored in the bp_location array
1889 and update_global_location_list will eventually delete them and
1890 remove breakpoints if needed. */
1891 b->base.loc = NULL;
1892
1893 if (within_current_scope && reparse)
1894 {
1895 const char *s;
1896
1897 b->exp.reset ();
1898 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1899 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1900 /* If the meaning of expression itself changed, the old value is
1901 no longer relevant. We don't want to report a watchpoint hit
1902 to the user when the old value and the new value may actually
1903 be completely different objects. */
1904 value_free (b->val);
1905 b->val = NULL;
1906 b->val_valid = 0;
1907
1908 /* Note that unlike with breakpoints, the watchpoint's condition
1909 expression is stored in the breakpoint object, not in the
1910 locations (re)created below. */
1911 if (b->base.cond_string != NULL)
1912 {
1913 b->cond_exp.reset ();
1914
1915 s = b->base.cond_string;
1916 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1917 }
1918 }
1919
1920 /* If we failed to parse the expression, for example because
1921 it refers to a global variable in a not-yet-loaded shared library,
1922 don't try to insert watchpoint. We don't automatically delete
1923 such watchpoint, though, since failure to parse expression
1924 is different from out-of-scope watchpoint. */
1925 if (!target_has_execution)
1926 {
1927 /* Without execution, memory can't change. No use to try and
1928 set watchpoint locations. The watchpoint will be reset when
1929 the target gains execution, through breakpoint_re_set. */
1930 if (!can_use_hw_watchpoints)
1931 {
1932 if (b->base.ops->works_in_software_mode (&b->base))
1933 b->base.type = bp_watchpoint;
1934 else
1935 error (_("Can't set read/access watchpoint when "
1936 "hardware watchpoints are disabled."));
1937 }
1938 }
1939 else if (within_current_scope && b->exp)
1940 {
1941 int pc = 0;
1942 struct value *val_chain, *v, *result, *next;
1943 struct program_space *frame_pspace;
1944
1945 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1946
1947 /* Avoid setting b->val if it's already set. The meaning of
1948 b->val is 'the last value' user saw, and we should update
1949 it only if we reported that last value to user. As it
1950 happens, the code that reports it updates b->val directly.
1951 We don't keep track of the memory value for masked
1952 watchpoints. */
1953 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1954 {
1955 if (b->val_bitsize != 0)
1956 {
1957 v = extract_bitfield_from_watchpoint_value (b, v);
1958 if (v != NULL)
1959 release_value (v);
1960 }
1961 b->val = v;
1962 b->val_valid = 1;
1963 }
1964
1965 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1966
1967 /* Look at each value on the value chain. */
1968 for (v = val_chain; v; v = value_next (v))
1969 {
1970 /* If it's a memory location, and GDB actually needed
1971 its contents to evaluate the expression, then we
1972 must watch it. If the first value returned is
1973 still lazy, that means an error occurred reading it;
1974 watch it anyway in case it becomes readable. */
1975 if (VALUE_LVAL (v) == lval_memory
1976 && (v == val_chain || ! value_lazy (v)))
1977 {
1978 struct type *vtype = check_typedef (value_type (v));
1979
1980 /* We only watch structs and arrays if user asked
1981 for it explicitly, never if they just happen to
1982 appear in the middle of some value chain. */
1983 if (v == result
1984 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1985 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1986 {
1987 CORE_ADDR addr;
1988 enum target_hw_bp_type type;
1989 struct bp_location *loc, **tmp;
1990 int bitpos = 0, bitsize = 0;
1991
1992 if (value_bitsize (v) != 0)
1993 {
1994 /* Extract the bit parameters out from the bitfield
1995 sub-expression. */
1996 bitpos = value_bitpos (v);
1997 bitsize = value_bitsize (v);
1998 }
1999 else if (v == result && b->val_bitsize != 0)
2000 {
2001 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2002 lvalue whose bit parameters are saved in the fields
2003 VAL_BITPOS and VAL_BITSIZE. */
2004 bitpos = b->val_bitpos;
2005 bitsize = b->val_bitsize;
2006 }
2007
2008 addr = value_address (v);
2009 if (bitsize != 0)
2010 {
2011 /* Skip the bytes that don't contain the bitfield. */
2012 addr += bitpos / 8;
2013 }
2014
2015 type = hw_write;
2016 if (b->base.type == bp_read_watchpoint)
2017 type = hw_read;
2018 else if (b->base.type == bp_access_watchpoint)
2019 type = hw_access;
2020
2021 loc = allocate_bp_location (&b->base);
2022 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
2023 ;
2024 *tmp = loc;
2025 loc->gdbarch = get_type_arch (value_type (v));
2026
2027 loc->pspace = frame_pspace;
2028 loc->address = addr;
2029
2030 if (bitsize != 0)
2031 {
2032 /* Just cover the bytes that make up the bitfield. */
2033 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2034 }
2035 else
2036 loc->length = TYPE_LENGTH (value_type (v));
2037
2038 loc->watchpoint_type = type;
2039 }
2040 }
2041 }
2042
2043 /* Change the type of breakpoint between hardware assisted or
2044 an ordinary watchpoint depending on the hardware support
2045 and free hardware slots. REPARSE is set when the inferior
2046 is started. */
2047 if (reparse)
2048 {
2049 int reg_cnt;
2050 enum bp_loc_type loc_type;
2051 struct bp_location *bl;
2052
2053 reg_cnt = can_use_hardware_watchpoint (val_chain);
2054
2055 if (reg_cnt)
2056 {
2057 int i, target_resources_ok, other_type_used;
2058 enum bptype type;
2059
2060 /* Use an exact watchpoint when there's only one memory region to be
2061 watched, and only one debug register is needed to watch it. */
2062 b->exact = target_exact_watchpoints && reg_cnt == 1;
2063
2064 /* We need to determine how many resources are already
2065 used for all other hardware watchpoints plus this one
2066 to see if we still have enough resources to also fit
2067 this watchpoint in as well. */
2068
2069 /* If this is a software watchpoint, we try to turn it
2070 to a hardware one -- count resources as if B was of
2071 hardware watchpoint type. */
2072 type = b->base.type;
2073 if (type == bp_watchpoint)
2074 type = bp_hardware_watchpoint;
2075
2076 /* This watchpoint may or may not have been placed on
2077 the list yet at this point (it won't be in the list
2078 if we're trying to create it for the first time,
2079 through watch_command), so always account for it
2080 manually. */
2081
2082 /* Count resources used by all watchpoints except B. */
2083 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
2084
2085 /* Add in the resources needed for B. */
2086 i += hw_watchpoint_use_count (&b->base);
2087
2088 target_resources_ok
2089 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2090 if (target_resources_ok <= 0)
2091 {
2092 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
2093
2094 if (target_resources_ok == 0 && !sw_mode)
2095 error (_("Target does not support this type of "
2096 "hardware watchpoint."));
2097 else if (target_resources_ok < 0 && !sw_mode)
2098 error (_("There are not enough available hardware "
2099 "resources for this watchpoint."));
2100
2101 /* Downgrade to software watchpoint. */
2102 b->base.type = bp_watchpoint;
2103 }
2104 else
2105 {
2106 /* If this was a software watchpoint, we've just
2107 found we have enough resources to turn it to a
2108 hardware watchpoint. Otherwise, this is a
2109 nop. */
2110 b->base.type = type;
2111 }
2112 }
2113 else if (!b->base.ops->works_in_software_mode (&b->base))
2114 {
2115 if (!can_use_hw_watchpoints)
2116 error (_("Can't set read/access watchpoint when "
2117 "hardware watchpoints are disabled."));
2118 else
2119 error (_("Expression cannot be implemented with "
2120 "read/access watchpoint."));
2121 }
2122 else
2123 b->base.type = bp_watchpoint;
2124
2125 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
2126 : bp_loc_hardware_watchpoint);
2127 for (bl = b->base.loc; bl; bl = bl->next)
2128 bl->loc_type = loc_type;
2129 }
2130
2131 for (v = val_chain; v; v = next)
2132 {
2133 next = value_next (v);
2134 if (v != b->val)
2135 value_free (v);
2136 }
2137
2138 /* If a software watchpoint is not watching any memory, then the
2139 above left it without any location set up. But,
2140 bpstat_stop_status requires a location to be able to report
2141 stops, so make sure there's at least a dummy one. */
2142 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
2143 software_watchpoint_add_no_memory_location (&b->base, frame_pspace);
2144 }
2145 else if (!within_current_scope)
2146 {
2147 printf_filtered (_("\
2148 Watchpoint %d deleted because the program has left the block\n\
2149 in which its expression is valid.\n"),
2150 b->base.number);
2151 watchpoint_del_at_next_stop (b);
2152 }
2153
2154 /* Restore the selected frame. */
2155 if (frame_saved)
2156 select_frame (frame_find_by_id (saved_frame_id));
2157 }
2158
2159
2160 /* Returns 1 iff breakpoint location should be
2161 inserted in the inferior. We don't differentiate the type of BL's owner
2162 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2163 breakpoint_ops is not defined, because in insert_bp_location,
2164 tracepoint's insert_location will not be called. */
2165 static int
2166 should_be_inserted (struct bp_location *bl)
2167 {
2168 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2169 return 0;
2170
2171 if (bl->owner->disposition == disp_del_at_next_stop)
2172 return 0;
2173
2174 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2175 return 0;
2176
2177 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2178 return 0;
2179
2180 /* This is set for example, when we're attached to the parent of a
2181 vfork, and have detached from the child. The child is running
2182 free, and we expect it to do an exec or exit, at which point the
2183 OS makes the parent schedulable again (and the target reports
2184 that the vfork is done). Until the child is done with the shared
2185 memory region, do not insert breakpoints in the parent, otherwise
2186 the child could still trip on the parent's breakpoints. Since
2187 the parent is blocked anyway, it won't miss any breakpoint. */
2188 if (bl->pspace->breakpoints_not_allowed)
2189 return 0;
2190
2191 /* Don't insert a breakpoint if we're trying to step past its
2192 location, except if the breakpoint is a single-step breakpoint,
2193 and the breakpoint's thread is the thread which is stepping past
2194 a breakpoint. */
2195 if ((bl->loc_type == bp_loc_software_breakpoint
2196 || bl->loc_type == bp_loc_hardware_breakpoint)
2197 && stepping_past_instruction_at (bl->pspace->aspace,
2198 bl->address)
2199 /* The single-step breakpoint may be inserted at the location
2200 we're trying to step if the instruction branches to itself.
2201 However, the instruction won't be executed at all and it may
2202 break the semantics of the instruction, for example, the
2203 instruction is a conditional branch or updates some flags.
2204 We can't fix it unless GDB is able to emulate the instruction
2205 or switch to displaced stepping. */
2206 && !(bl->owner->type == bp_single_step
2207 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2208 {
2209 if (debug_infrun)
2210 {
2211 fprintf_unfiltered (gdb_stdlog,
2212 "infrun: skipping breakpoint: "
2213 "stepping past insn at: %s\n",
2214 paddress (bl->gdbarch, bl->address));
2215 }
2216 return 0;
2217 }
2218
2219 /* Don't insert watchpoints if we're trying to step past the
2220 instruction that triggered one. */
2221 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2222 && stepping_past_nonsteppable_watchpoint ())
2223 {
2224 if (debug_infrun)
2225 {
2226 fprintf_unfiltered (gdb_stdlog,
2227 "infrun: stepping past non-steppable watchpoint. "
2228 "skipping watchpoint at %s:%d\n",
2229 paddress (bl->gdbarch, bl->address),
2230 bl->length);
2231 }
2232 return 0;
2233 }
2234
2235 return 1;
2236 }
2237
2238 /* Same as should_be_inserted but does the check assuming
2239 that the location is not duplicated. */
2240
2241 static int
2242 unduplicated_should_be_inserted (struct bp_location *bl)
2243 {
2244 int result;
2245 const int save_duplicate = bl->duplicate;
2246
2247 bl->duplicate = 0;
2248 result = should_be_inserted (bl);
2249 bl->duplicate = save_duplicate;
2250 return result;
2251 }
2252
2253 /* Parses a conditional described by an expression COND into an
2254 agent expression bytecode suitable for evaluation
2255 by the bytecode interpreter. Return NULL if there was
2256 any error during parsing. */
2257
2258 static agent_expr_up
2259 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2260 {
2261 if (cond == NULL)
2262 return NULL;
2263
2264 agent_expr_up aexpr;
2265
2266 /* We don't want to stop processing, so catch any errors
2267 that may show up. */
2268 TRY
2269 {
2270 aexpr = gen_eval_for_expr (scope, cond);
2271 }
2272
2273 CATCH (ex, RETURN_MASK_ERROR)
2274 {
2275 /* If we got here, it means the condition could not be parsed to a valid
2276 bytecode expression and thus can't be evaluated on the target's side.
2277 It's no use iterating through the conditions. */
2278 }
2279 END_CATCH
2280
2281 /* We have a valid agent expression. */
2282 return aexpr;
2283 }
2284
2285 /* Based on location BL, create a list of breakpoint conditions to be
2286 passed on to the target. If we have duplicated locations with different
2287 conditions, we will add such conditions to the list. The idea is that the
2288 target will evaluate the list of conditions and will only notify GDB when
2289 one of them is true. */
2290
2291 static void
2292 build_target_condition_list (struct bp_location *bl)
2293 {
2294 struct bp_location **locp = NULL, **loc2p;
2295 int null_condition_or_parse_error = 0;
2296 int modified = bl->needs_update;
2297 struct bp_location *loc;
2298
2299 /* Release conditions left over from a previous insert. */
2300 bl->target_info.conditions.clear ();
2301
2302 /* This is only meaningful if the target is
2303 evaluating conditions and if the user has
2304 opted for condition evaluation on the target's
2305 side. */
2306 if (gdb_evaluates_breakpoint_condition_p ()
2307 || !target_supports_evaluation_of_breakpoint_conditions ())
2308 return;
2309
2310 /* Do a first pass to check for locations with no assigned
2311 conditions or conditions that fail to parse to a valid agent expression
2312 bytecode. If any of these happen, then it's no use to send conditions
2313 to the target since this location will always trigger and generate a
2314 response back to GDB. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2319 {
2320 if (modified)
2321 {
2322 /* Re-parse the conditions since something changed. In that
2323 case we already freed the condition bytecodes (see
2324 force_breakpoint_reinsertion). We just
2325 need to parse the condition to bytecodes again. */
2326 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2327 loc->cond.get ());
2328 }
2329
2330 /* If we have a NULL bytecode expression, it means something
2331 went wrong or we have a null condition expression. */
2332 if (!loc->cond_bytecode)
2333 {
2334 null_condition_or_parse_error = 1;
2335 break;
2336 }
2337 }
2338 }
2339
2340 /* If any of these happened, it means we will have to evaluate the conditions
2341 for the location's address on gdb's side. It is no use keeping bytecodes
2342 for all the other duplicate locations, thus we free all of them here.
2343
2344 This is so we have a finer control over which locations' conditions are
2345 being evaluated by GDB or the remote stub. */
2346 if (null_condition_or_parse_error)
2347 {
2348 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2349 {
2350 loc = (*loc2p);
2351 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (!loc->cond_bytecode)
2356 return;
2357
2358 loc->cond_bytecode.reset ();
2359 }
2360 }
2361 }
2362
2363 /* No NULL conditions or failed bytecode generation. Build a condition list
2364 for this location's address. */
2365 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2366 {
2367 loc = (*loc2p);
2368 if (loc->cond
2369 && is_breakpoint (loc->owner)
2370 && loc->pspace->num == bl->pspace->num
2371 && loc->owner->enable_state == bp_enabled
2372 && loc->enabled)
2373 {
2374 /* Add the condition to the vector. This will be used later
2375 to send the conditions to the target. */
2376 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2377 }
2378 }
2379
2380 return;
2381 }
2382
2383 /* Parses a command described by string CMD into an agent expression
2384 bytecode suitable for evaluation by the bytecode interpreter.
2385 Return NULL if there was any error during parsing. */
2386
2387 static agent_expr_up
2388 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2389 {
2390 struct cleanup *old_cleanups = 0;
2391 struct expression **argvec;
2392 const char *cmdrest;
2393 const char *format_start, *format_end;
2394 struct format_piece *fpieces;
2395 int nargs;
2396 struct gdbarch *gdbarch = get_current_arch ();
2397
2398 if (cmd == NULL)
2399 return NULL;
2400
2401 cmdrest = cmd;
2402
2403 if (*cmdrest == ',')
2404 ++cmdrest;
2405 cmdrest = skip_spaces_const (cmdrest);
2406
2407 if (*cmdrest++ != '"')
2408 error (_("No format string following the location"));
2409
2410 format_start = cmdrest;
2411
2412 fpieces = parse_format_string (&cmdrest);
2413
2414 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2415
2416 format_end = cmdrest;
2417
2418 if (*cmdrest++ != '"')
2419 error (_("Bad format string, non-terminated '\"'."));
2420
2421 cmdrest = skip_spaces_const (cmdrest);
2422
2423 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2424 error (_("Invalid argument syntax"));
2425
2426 if (*cmdrest == ',')
2427 cmdrest++;
2428 cmdrest = skip_spaces_const (cmdrest);
2429
2430 /* For each argument, make an expression. */
2431
2432 argvec = (struct expression **) alloca (strlen (cmd)
2433 * sizeof (struct expression *));
2434
2435 nargs = 0;
2436 while (*cmdrest != '\0')
2437 {
2438 const char *cmd1;
2439
2440 cmd1 = cmdrest;
2441 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2442 argvec[nargs++] = expr.release ();
2443 cmdrest = cmd1;
2444 if (*cmdrest == ',')
2445 ++cmdrest;
2446 }
2447
2448 agent_expr_up aexpr;
2449
2450 /* We don't want to stop processing, so catch any errors
2451 that may show up. */
2452 TRY
2453 {
2454 aexpr = gen_printf (scope, gdbarch, 0, 0,
2455 format_start, format_end - format_start,
2456 fpieces, nargs, argvec);
2457 }
2458 CATCH (ex, RETURN_MASK_ERROR)
2459 {
2460 /* If we got here, it means the command could not be parsed to a valid
2461 bytecode expression and thus can't be evaluated on the target's side.
2462 It's no use iterating through the other commands. */
2463 }
2464 END_CATCH
2465
2466 do_cleanups (old_cleanups);
2467
2468 /* We have a valid agent expression, return it. */
2469 return aexpr;
2470 }
2471
2472 /* Based on location BL, create a list of breakpoint commands to be
2473 passed on to the target. If we have duplicated locations with
2474 different commands, we will add any such to the list. */
2475
2476 static void
2477 build_target_command_list (struct bp_location *bl)
2478 {
2479 struct bp_location **locp = NULL, **loc2p;
2480 int null_command_or_parse_error = 0;
2481 int modified = bl->needs_update;
2482 struct bp_location *loc;
2483
2484 /* Clear commands left over from a previous insert. */
2485 bl->target_info.tcommands.clear ();
2486
2487 if (!target_can_run_breakpoint_commands ())
2488 return;
2489
2490 /* For now, limit to agent-style dprintf breakpoints. */
2491 if (dprintf_style != dprintf_style_agent)
2492 return;
2493
2494 /* For now, if we have any duplicate location that isn't a dprintf,
2495 don't install the target-side commands, as that would make the
2496 breakpoint not be reported to the core, and we'd lose
2497 control. */
2498 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2499 {
2500 loc = (*loc2p);
2501 if (is_breakpoint (loc->owner)
2502 && loc->pspace->num == bl->pspace->num
2503 && loc->owner->type != bp_dprintf)
2504 return;
2505 }
2506
2507 /* Do a first pass to check for locations with no assigned
2508 conditions or conditions that fail to parse to a valid agent expression
2509 bytecode. If any of these happen, then it's no use to send conditions
2510 to the target since this location will always trigger and generate a
2511 response back to GDB. */
2512 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2513 {
2514 loc = (*loc2p);
2515 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2516 {
2517 if (modified)
2518 {
2519 /* Re-parse the commands since something changed. In that
2520 case we already freed the command bytecodes (see
2521 force_breakpoint_reinsertion). We just
2522 need to parse the command to bytecodes again. */
2523 loc->cmd_bytecode
2524 = parse_cmd_to_aexpr (bl->address,
2525 loc->owner->extra_string);
2526 }
2527
2528 /* If we have a NULL bytecode expression, it means something
2529 went wrong or we have a null command expression. */
2530 if (!loc->cmd_bytecode)
2531 {
2532 null_command_or_parse_error = 1;
2533 break;
2534 }
2535 }
2536 }
2537
2538 /* If anything failed, then we're not doing target-side commands,
2539 and so clean up. */
2540 if (null_command_or_parse_error)
2541 {
2542 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2543 {
2544 loc = (*loc2p);
2545 if (is_breakpoint (loc->owner)
2546 && loc->pspace->num == bl->pspace->num)
2547 {
2548 /* Only go as far as the first NULL bytecode is
2549 located. */
2550 if (loc->cmd_bytecode == NULL)
2551 return;
2552
2553 loc->cmd_bytecode.reset ();
2554 }
2555 }
2556 }
2557
2558 /* No NULL commands or failed bytecode generation. Build a command list
2559 for this location's address. */
2560 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2561 {
2562 loc = (*loc2p);
2563 if (loc->owner->extra_string
2564 && is_breakpoint (loc->owner)
2565 && loc->pspace->num == bl->pspace->num
2566 && loc->owner->enable_state == bp_enabled
2567 && loc->enabled)
2568 {
2569 /* Add the command to the vector. This will be used later
2570 to send the commands to the target. */
2571 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2572 }
2573 }
2574
2575 bl->target_info.persist = 0;
2576 /* Maybe flag this location as persistent. */
2577 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2578 bl->target_info.persist = 1;
2579 }
2580
2581 /* Return the kind of breakpoint on address *ADDR. Get the kind
2582 of breakpoint according to ADDR except single-step breakpoint.
2583 Get the kind of single-step breakpoint according to the current
2584 registers state. */
2585
2586 static int
2587 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2588 {
2589 if (bl->owner->type == bp_single_step)
2590 {
2591 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2592 struct regcache *regcache;
2593
2594 regcache = get_thread_regcache (thr->ptid);
2595
2596 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2597 regcache, addr);
2598 }
2599 else
2600 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2601 }
2602
2603 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2604 location. Any error messages are printed to TMP_ERROR_STREAM; and
2605 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2606 Returns 0 for success, 1 if the bp_location type is not supported or
2607 -1 for failure.
2608
2609 NOTE drow/2003-09-09: This routine could be broken down to an
2610 object-style method for each breakpoint or catchpoint type. */
2611 static int
2612 insert_bp_location (struct bp_location *bl,
2613 struct ui_file *tmp_error_stream,
2614 int *disabled_breaks,
2615 int *hw_breakpoint_error,
2616 int *hw_bp_error_explained_already)
2617 {
2618 enum errors bp_err = GDB_NO_ERROR;
2619 const char *bp_err_message = NULL;
2620
2621 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2622 return 0;
2623
2624 /* Note we don't initialize bl->target_info, as that wipes out
2625 the breakpoint location's shadow_contents if the breakpoint
2626 is still inserted at that location. This in turn breaks
2627 target_read_memory which depends on these buffers when
2628 a memory read is requested at the breakpoint location:
2629 Once the target_info has been wiped, we fail to see that
2630 we have a breakpoint inserted at that address and thus
2631 read the breakpoint instead of returning the data saved in
2632 the breakpoint location's shadow contents. */
2633 bl->target_info.reqstd_address = bl->address;
2634 bl->target_info.placed_address_space = bl->pspace->aspace;
2635 bl->target_info.length = bl->length;
2636
2637 /* When working with target-side conditions, we must pass all the conditions
2638 for the same breakpoint address down to the target since GDB will not
2639 insert those locations. With a list of breakpoint conditions, the target
2640 can decide when to stop and notify GDB. */
2641
2642 if (is_breakpoint (bl->owner))
2643 {
2644 build_target_condition_list (bl);
2645 build_target_command_list (bl);
2646 /* Reset the modification marker. */
2647 bl->needs_update = 0;
2648 }
2649
2650 if (bl->loc_type == bp_loc_software_breakpoint
2651 || bl->loc_type == bp_loc_hardware_breakpoint)
2652 {
2653 if (bl->owner->type != bp_hardware_breakpoint)
2654 {
2655 /* If the explicitly specified breakpoint type
2656 is not hardware breakpoint, check the memory map to see
2657 if the breakpoint address is in read only memory or not.
2658
2659 Two important cases are:
2660 - location type is not hardware breakpoint, memory
2661 is readonly. We change the type of the location to
2662 hardware breakpoint.
2663 - location type is hardware breakpoint, memory is
2664 read-write. This means we've previously made the
2665 location hardware one, but then the memory map changed,
2666 so we undo.
2667
2668 When breakpoints are removed, remove_breakpoints will use
2669 location types we've just set here, the only possible
2670 problem is that memory map has changed during running
2671 program, but it's not going to work anyway with current
2672 gdb. */
2673 struct mem_region *mr
2674 = lookup_mem_region (bl->target_info.reqstd_address);
2675
2676 if (mr)
2677 {
2678 if (automatic_hardware_breakpoints)
2679 {
2680 enum bp_loc_type new_type;
2681
2682 if (mr->attrib.mode != MEM_RW)
2683 new_type = bp_loc_hardware_breakpoint;
2684 else
2685 new_type = bp_loc_software_breakpoint;
2686
2687 if (new_type != bl->loc_type)
2688 {
2689 static int said = 0;
2690
2691 bl->loc_type = new_type;
2692 if (!said)
2693 {
2694 fprintf_filtered (gdb_stdout,
2695 _("Note: automatically using "
2696 "hardware breakpoints for "
2697 "read-only addresses.\n"));
2698 said = 1;
2699 }
2700 }
2701 }
2702 else if (bl->loc_type == bp_loc_software_breakpoint
2703 && mr->attrib.mode != MEM_RW)
2704 {
2705 fprintf_unfiltered (tmp_error_stream,
2706 _("Cannot insert breakpoint %d.\n"
2707 "Cannot set software breakpoint "
2708 "at read-only address %s\n"),
2709 bl->owner->number,
2710 paddress (bl->gdbarch, bl->address));
2711 return 1;
2712 }
2713 }
2714 }
2715
2716 /* First check to see if we have to handle an overlay. */
2717 if (overlay_debugging == ovly_off
2718 || bl->section == NULL
2719 || !(section_is_overlay (bl->section)))
2720 {
2721 /* No overlay handling: just set the breakpoint. */
2722 TRY
2723 {
2724 int val;
2725
2726 val = bl->owner->ops->insert_location (bl);
2727 if (val)
2728 bp_err = GENERIC_ERROR;
2729 }
2730 CATCH (e, RETURN_MASK_ALL)
2731 {
2732 bp_err = e.error;
2733 bp_err_message = e.message;
2734 }
2735 END_CATCH
2736 }
2737 else
2738 {
2739 /* This breakpoint is in an overlay section.
2740 Shall we set a breakpoint at the LMA? */
2741 if (!overlay_events_enabled)
2742 {
2743 /* Yes -- overlay event support is not active,
2744 so we must try to set a breakpoint at the LMA.
2745 This will not work for a hardware breakpoint. */
2746 if (bl->loc_type == bp_loc_hardware_breakpoint)
2747 warning (_("hardware breakpoint %d not supported in overlay!"),
2748 bl->owner->number);
2749 else
2750 {
2751 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2752 bl->section);
2753 /* Set a software (trap) breakpoint at the LMA. */
2754 bl->overlay_target_info = bl->target_info;
2755 bl->overlay_target_info.reqstd_address = addr;
2756
2757 /* No overlay handling: just set the breakpoint. */
2758 TRY
2759 {
2760 int val;
2761
2762 bl->overlay_target_info.kind
2763 = breakpoint_kind (bl, &addr);
2764 bl->overlay_target_info.placed_address = addr;
2765 val = target_insert_breakpoint (bl->gdbarch,
2766 &bl->overlay_target_info);
2767 if (val)
2768 bp_err = GENERIC_ERROR;
2769 }
2770 CATCH (e, RETURN_MASK_ALL)
2771 {
2772 bp_err = e.error;
2773 bp_err_message = e.message;
2774 }
2775 END_CATCH
2776
2777 if (bp_err != GDB_NO_ERROR)
2778 fprintf_unfiltered (tmp_error_stream,
2779 "Overlay breakpoint %d "
2780 "failed: in ROM?\n",
2781 bl->owner->number);
2782 }
2783 }
2784 /* Shall we set a breakpoint at the VMA? */
2785 if (section_is_mapped (bl->section))
2786 {
2787 /* Yes. This overlay section is mapped into memory. */
2788 TRY
2789 {
2790 int val;
2791
2792 val = bl->owner->ops->insert_location (bl);
2793 if (val)
2794 bp_err = GENERIC_ERROR;
2795 }
2796 CATCH (e, RETURN_MASK_ALL)
2797 {
2798 bp_err = e.error;
2799 bp_err_message = e.message;
2800 }
2801 END_CATCH
2802 }
2803 else
2804 {
2805 /* No. This breakpoint will not be inserted.
2806 No error, but do not mark the bp as 'inserted'. */
2807 return 0;
2808 }
2809 }
2810
2811 if (bp_err != GDB_NO_ERROR)
2812 {
2813 /* Can't set the breakpoint. */
2814
2815 /* In some cases, we might not be able to insert a
2816 breakpoint in a shared library that has already been
2817 removed, but we have not yet processed the shlib unload
2818 event. Unfortunately, some targets that implement
2819 breakpoint insertion themselves can't tell why the
2820 breakpoint insertion failed (e.g., the remote target
2821 doesn't define error codes), so we must treat generic
2822 errors as memory errors. */
2823 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2824 && bl->loc_type == bp_loc_software_breakpoint
2825 && (solib_name_from_address (bl->pspace, bl->address)
2826 || shared_objfile_contains_address_p (bl->pspace,
2827 bl->address)))
2828 {
2829 /* See also: disable_breakpoints_in_shlibs. */
2830 bl->shlib_disabled = 1;
2831 observer_notify_breakpoint_modified (bl->owner);
2832 if (!*disabled_breaks)
2833 {
2834 fprintf_unfiltered (tmp_error_stream,
2835 "Cannot insert breakpoint %d.\n",
2836 bl->owner->number);
2837 fprintf_unfiltered (tmp_error_stream,
2838 "Temporarily disabling shared "
2839 "library breakpoints:\n");
2840 }
2841 *disabled_breaks = 1;
2842 fprintf_unfiltered (tmp_error_stream,
2843 "breakpoint #%d\n", bl->owner->number);
2844 return 0;
2845 }
2846 else
2847 {
2848 if (bl->loc_type == bp_loc_hardware_breakpoint)
2849 {
2850 *hw_breakpoint_error = 1;
2851 *hw_bp_error_explained_already = bp_err_message != NULL;
2852 fprintf_unfiltered (tmp_error_stream,
2853 "Cannot insert hardware breakpoint %d%s",
2854 bl->owner->number, bp_err_message ? ":" : ".\n");
2855 if (bp_err_message != NULL)
2856 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2857 }
2858 else
2859 {
2860 if (bp_err_message == NULL)
2861 {
2862 char *message
2863 = memory_error_message (TARGET_XFER_E_IO,
2864 bl->gdbarch, bl->address);
2865 struct cleanup *old_chain = make_cleanup (xfree, message);
2866
2867 fprintf_unfiltered (tmp_error_stream,
2868 "Cannot insert breakpoint %d.\n"
2869 "%s\n",
2870 bl->owner->number, message);
2871 do_cleanups (old_chain);
2872 }
2873 else
2874 {
2875 fprintf_unfiltered (tmp_error_stream,
2876 "Cannot insert breakpoint %d: %s\n",
2877 bl->owner->number,
2878 bp_err_message);
2879 }
2880 }
2881 return 1;
2882
2883 }
2884 }
2885 else
2886 bl->inserted = 1;
2887
2888 return 0;
2889 }
2890
2891 else if (bl->loc_type == bp_loc_hardware_watchpoint
2892 /* NOTE drow/2003-09-08: This state only exists for removing
2893 watchpoints. It's not clear that it's necessary... */
2894 && bl->owner->disposition != disp_del_at_next_stop)
2895 {
2896 int val;
2897
2898 gdb_assert (bl->owner->ops != NULL
2899 && bl->owner->ops->insert_location != NULL);
2900
2901 val = bl->owner->ops->insert_location (bl);
2902
2903 /* If trying to set a read-watchpoint, and it turns out it's not
2904 supported, try emulating one with an access watchpoint. */
2905 if (val == 1 && bl->watchpoint_type == hw_read)
2906 {
2907 struct bp_location *loc, **loc_temp;
2908
2909 /* But don't try to insert it, if there's already another
2910 hw_access location that would be considered a duplicate
2911 of this one. */
2912 ALL_BP_LOCATIONS (loc, loc_temp)
2913 if (loc != bl
2914 && loc->watchpoint_type == hw_access
2915 && watchpoint_locations_match (bl, loc))
2916 {
2917 bl->duplicate = 1;
2918 bl->inserted = 1;
2919 bl->target_info = loc->target_info;
2920 bl->watchpoint_type = hw_access;
2921 val = 0;
2922 break;
2923 }
2924
2925 if (val == 1)
2926 {
2927 bl->watchpoint_type = hw_access;
2928 val = bl->owner->ops->insert_location (bl);
2929
2930 if (val)
2931 /* Back to the original value. */
2932 bl->watchpoint_type = hw_read;
2933 }
2934 }
2935
2936 bl->inserted = (val == 0);
2937 }
2938
2939 else if (bl->owner->type == bp_catchpoint)
2940 {
2941 int val;
2942
2943 gdb_assert (bl->owner->ops != NULL
2944 && bl->owner->ops->insert_location != NULL);
2945
2946 val = bl->owner->ops->insert_location (bl);
2947 if (val)
2948 {
2949 bl->owner->enable_state = bp_disabled;
2950
2951 if (val == 1)
2952 warning (_("\
2953 Error inserting catchpoint %d: Your system does not support this type\n\
2954 of catchpoint."), bl->owner->number);
2955 else
2956 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2957 }
2958
2959 bl->inserted = (val == 0);
2960
2961 /* We've already printed an error message if there was a problem
2962 inserting this catchpoint, and we've disabled the catchpoint,
2963 so just return success. */
2964 return 0;
2965 }
2966
2967 return 0;
2968 }
2969
2970 /* This function is called when program space PSPACE is about to be
2971 deleted. It takes care of updating breakpoints to not reference
2972 PSPACE anymore. */
2973
2974 void
2975 breakpoint_program_space_exit (struct program_space *pspace)
2976 {
2977 struct breakpoint *b, *b_temp;
2978 struct bp_location *loc, **loc_temp;
2979
2980 /* Remove any breakpoint that was set through this program space. */
2981 ALL_BREAKPOINTS_SAFE (b, b_temp)
2982 {
2983 if (b->pspace == pspace)
2984 delete_breakpoint (b);
2985 }
2986
2987 /* Breakpoints set through other program spaces could have locations
2988 bound to PSPACE as well. Remove those. */
2989 ALL_BP_LOCATIONS (loc, loc_temp)
2990 {
2991 struct bp_location *tmp;
2992
2993 if (loc->pspace == pspace)
2994 {
2995 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2996 if (loc->owner->loc == loc)
2997 loc->owner->loc = loc->next;
2998 else
2999 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3000 if (tmp->next == loc)
3001 {
3002 tmp->next = loc->next;
3003 break;
3004 }
3005 }
3006 }
3007
3008 /* Now update the global location list to permanently delete the
3009 removed locations above. */
3010 update_global_location_list (UGLL_DONT_INSERT);
3011 }
3012
3013 /* Make sure all breakpoints are inserted in inferior.
3014 Throws exception on any error.
3015 A breakpoint that is already inserted won't be inserted
3016 again, so calling this function twice is safe. */
3017 void
3018 insert_breakpoints (void)
3019 {
3020 struct breakpoint *bpt;
3021
3022 ALL_BREAKPOINTS (bpt)
3023 if (is_hardware_watchpoint (bpt))
3024 {
3025 struct watchpoint *w = (struct watchpoint *) bpt;
3026
3027 update_watchpoint (w, 0 /* don't reparse. */);
3028 }
3029
3030 /* Updating watchpoints creates new locations, so update the global
3031 location list. Explicitly tell ugll to insert locations and
3032 ignore breakpoints_always_inserted_mode. */
3033 update_global_location_list (UGLL_INSERT);
3034 }
3035
3036 /* Invoke CALLBACK for each of bp_location. */
3037
3038 void
3039 iterate_over_bp_locations (walk_bp_location_callback callback)
3040 {
3041 struct bp_location *loc, **loc_tmp;
3042
3043 ALL_BP_LOCATIONS (loc, loc_tmp)
3044 {
3045 callback (loc, NULL);
3046 }
3047 }
3048
3049 /* This is used when we need to synch breakpoint conditions between GDB and the
3050 target. It is the case with deleting and disabling of breakpoints when using
3051 always-inserted mode. */
3052
3053 static void
3054 update_inserted_breakpoint_locations (void)
3055 {
3056 struct bp_location *bl, **blp_tmp;
3057 int error_flag = 0;
3058 int val = 0;
3059 int disabled_breaks = 0;
3060 int hw_breakpoint_error = 0;
3061 int hw_bp_details_reported = 0;
3062
3063 string_file tmp_error_stream;
3064
3065 /* Explicitly mark the warning -- this will only be printed if
3066 there was an error. */
3067 tmp_error_stream.puts ("Warning:\n");
3068
3069 struct cleanup *cleanups = save_current_space_and_thread ();
3070
3071 ALL_BP_LOCATIONS (bl, blp_tmp)
3072 {
3073 /* We only want to update software breakpoints and hardware
3074 breakpoints. */
3075 if (!is_breakpoint (bl->owner))
3076 continue;
3077
3078 /* We only want to update locations that are already inserted
3079 and need updating. This is to avoid unwanted insertion during
3080 deletion of breakpoints. */
3081 if (!bl->inserted || (bl->inserted && !bl->needs_update))
3082 continue;
3083
3084 switch_to_program_space_and_thread (bl->pspace);
3085
3086 /* For targets that support global breakpoints, there's no need
3087 to select an inferior to insert breakpoint to. In fact, even
3088 if we aren't attached to any process yet, we should still
3089 insert breakpoints. */
3090 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3091 && ptid_equal (inferior_ptid, null_ptid))
3092 continue;
3093
3094 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3095 &hw_breakpoint_error, &hw_bp_details_reported);
3096 if (val)
3097 error_flag = val;
3098 }
3099
3100 if (error_flag)
3101 {
3102 target_terminal_ours_for_output ();
3103 error_stream (tmp_error_stream);
3104 }
3105
3106 do_cleanups (cleanups);
3107 }
3108
3109 /* Used when starting or continuing the program. */
3110
3111 static void
3112 insert_breakpoint_locations (void)
3113 {
3114 struct breakpoint *bpt;
3115 struct bp_location *bl, **blp_tmp;
3116 int error_flag = 0;
3117 int val = 0;
3118 int disabled_breaks = 0;
3119 int hw_breakpoint_error = 0;
3120 int hw_bp_error_explained_already = 0;
3121
3122 string_file tmp_error_stream;
3123
3124 /* Explicitly mark the warning -- this will only be printed if
3125 there was an error. */
3126 tmp_error_stream.puts ("Warning:\n");
3127
3128 struct cleanup *cleanups = save_current_space_and_thread ();
3129
3130 ALL_BP_LOCATIONS (bl, blp_tmp)
3131 {
3132 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3133 continue;
3134
3135 /* There is no point inserting thread-specific breakpoints if
3136 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3137 has BL->OWNER always non-NULL. */
3138 if (bl->owner->thread != -1
3139 && !valid_global_thread_id (bl->owner->thread))
3140 continue;
3141
3142 switch_to_program_space_and_thread (bl->pspace);
3143
3144 /* For targets that support global breakpoints, there's no need
3145 to select an inferior to insert breakpoint to. In fact, even
3146 if we aren't attached to any process yet, we should still
3147 insert breakpoints. */
3148 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3149 && ptid_equal (inferior_ptid, null_ptid))
3150 continue;
3151
3152 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3153 &hw_breakpoint_error, &hw_bp_error_explained_already);
3154 if (val)
3155 error_flag = val;
3156 }
3157
3158 /* If we failed to insert all locations of a watchpoint, remove
3159 them, as half-inserted watchpoint is of limited use. */
3160 ALL_BREAKPOINTS (bpt)
3161 {
3162 int some_failed = 0;
3163 struct bp_location *loc;
3164
3165 if (!is_hardware_watchpoint (bpt))
3166 continue;
3167
3168 if (!breakpoint_enabled (bpt))
3169 continue;
3170
3171 if (bpt->disposition == disp_del_at_next_stop)
3172 continue;
3173
3174 for (loc = bpt->loc; loc; loc = loc->next)
3175 if (!loc->inserted && should_be_inserted (loc))
3176 {
3177 some_failed = 1;
3178 break;
3179 }
3180 if (some_failed)
3181 {
3182 for (loc = bpt->loc; loc; loc = loc->next)
3183 if (loc->inserted)
3184 remove_breakpoint (loc);
3185
3186 hw_breakpoint_error = 1;
3187 tmp_error_stream.printf ("Could not insert "
3188 "hardware watchpoint %d.\n",
3189 bpt->number);
3190 error_flag = -1;
3191 }
3192 }
3193
3194 if (error_flag)
3195 {
3196 /* If a hardware breakpoint or watchpoint was inserted, add a
3197 message about possibly exhausted resources. */
3198 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3199 {
3200 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3201 You may have requested too many hardware breakpoints/watchpoints.\n");
3202 }
3203 target_terminal_ours_for_output ();
3204 error_stream (tmp_error_stream);
3205 }
3206
3207 do_cleanups (cleanups);
3208 }
3209
3210 /* Used when the program stops.
3211 Returns zero if successful, or non-zero if there was a problem
3212 removing a breakpoint location. */
3213
3214 int
3215 remove_breakpoints (void)
3216 {
3217 struct bp_location *bl, **blp_tmp;
3218 int val = 0;
3219
3220 ALL_BP_LOCATIONS (bl, blp_tmp)
3221 {
3222 if (bl->inserted && !is_tracepoint (bl->owner))
3223 val |= remove_breakpoint (bl);
3224 }
3225 return val;
3226 }
3227
3228 /* When a thread exits, remove breakpoints that are related to
3229 that thread. */
3230
3231 static void
3232 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3233 {
3234 struct breakpoint *b, *b_tmp;
3235
3236 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3237 {
3238 if (b->thread == tp->global_num && user_breakpoint_p (b))
3239 {
3240 b->disposition = disp_del_at_next_stop;
3241
3242 printf_filtered (_("\
3243 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3244 b->number, print_thread_id (tp));
3245
3246 /* Hide it from the user. */
3247 b->number = 0;
3248 }
3249 }
3250 }
3251
3252 /* Remove breakpoints of process PID. */
3253
3254 int
3255 remove_breakpoints_pid (int pid)
3256 {
3257 struct bp_location *bl, **blp_tmp;
3258 int val;
3259 struct inferior *inf = find_inferior_pid (pid);
3260
3261 ALL_BP_LOCATIONS (bl, blp_tmp)
3262 {
3263 if (bl->pspace != inf->pspace)
3264 continue;
3265
3266 if (bl->inserted && !bl->target_info.persist)
3267 {
3268 val = remove_breakpoint (bl);
3269 if (val != 0)
3270 return val;
3271 }
3272 }
3273 return 0;
3274 }
3275
3276 int
3277 reattach_breakpoints (int pid)
3278 {
3279 struct cleanup *old_chain;
3280 struct bp_location *bl, **blp_tmp;
3281 int val;
3282 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3283 struct inferior *inf;
3284 struct thread_info *tp;
3285
3286 tp = any_live_thread_of_process (pid);
3287 if (tp == NULL)
3288 return 1;
3289
3290 inf = find_inferior_pid (pid);
3291 old_chain = save_inferior_ptid ();
3292
3293 inferior_ptid = tp->ptid;
3294
3295 string_file tmp_error_stream;
3296
3297 ALL_BP_LOCATIONS (bl, blp_tmp)
3298 {
3299 if (bl->pspace != inf->pspace)
3300 continue;
3301
3302 if (bl->inserted)
3303 {
3304 bl->inserted = 0;
3305 val = insert_bp_location (bl, &tmp_error_stream, &dummy1, &dummy2, &dummy3);
3306 if (val != 0)
3307 {
3308 do_cleanups (old_chain);
3309 return val;
3310 }
3311 }
3312 }
3313 do_cleanups (old_chain);
3314 return 0;
3315 }
3316
3317 static int internal_breakpoint_number = -1;
3318
3319 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3320 If INTERNAL is non-zero, the breakpoint number will be populated
3321 from internal_breakpoint_number and that variable decremented.
3322 Otherwise the breakpoint number will be populated from
3323 breakpoint_count and that value incremented. Internal breakpoints
3324 do not set the internal var bpnum. */
3325 static void
3326 set_breakpoint_number (int internal, struct breakpoint *b)
3327 {
3328 if (internal)
3329 b->number = internal_breakpoint_number--;
3330 else
3331 {
3332 set_breakpoint_count (breakpoint_count + 1);
3333 b->number = breakpoint_count;
3334 }
3335 }
3336
3337 static struct breakpoint *
3338 create_internal_breakpoint (struct gdbarch *gdbarch,
3339 CORE_ADDR address, enum bptype type,
3340 const struct breakpoint_ops *ops)
3341 {
3342 struct symtab_and_line sal;
3343 struct breakpoint *b;
3344
3345 init_sal (&sal); /* Initialize to zeroes. */
3346
3347 sal.pc = address;
3348 sal.section = find_pc_overlay (sal.pc);
3349 sal.pspace = current_program_space;
3350
3351 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3352 b->number = internal_breakpoint_number--;
3353 b->disposition = disp_donttouch;
3354
3355 return b;
3356 }
3357
3358 static const char *const longjmp_names[] =
3359 {
3360 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3361 };
3362 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3363
3364 /* Per-objfile data private to breakpoint.c. */
3365 struct breakpoint_objfile_data
3366 {
3367 /* Minimal symbol for "_ovly_debug_event" (if any). */
3368 struct bound_minimal_symbol overlay_msym;
3369
3370 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3371 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3372
3373 /* True if we have looked for longjmp probes. */
3374 int longjmp_searched;
3375
3376 /* SystemTap probe points for longjmp (if any). */
3377 VEC (probe_p) *longjmp_probes;
3378
3379 /* Minimal symbol for "std::terminate()" (if any). */
3380 struct bound_minimal_symbol terminate_msym;
3381
3382 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3383 struct bound_minimal_symbol exception_msym;
3384
3385 /* True if we have looked for exception probes. */
3386 int exception_searched;
3387
3388 /* SystemTap probe points for unwinding (if any). */
3389 VEC (probe_p) *exception_probes;
3390 };
3391
3392 static const struct objfile_data *breakpoint_objfile_key;
3393
3394 /* Minimal symbol not found sentinel. */
3395 static struct minimal_symbol msym_not_found;
3396
3397 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3398
3399 static int
3400 msym_not_found_p (const struct minimal_symbol *msym)
3401 {
3402 return msym == &msym_not_found;
3403 }
3404
3405 /* Return per-objfile data needed by breakpoint.c.
3406 Allocate the data if necessary. */
3407
3408 static struct breakpoint_objfile_data *
3409 get_breakpoint_objfile_data (struct objfile *objfile)
3410 {
3411 struct breakpoint_objfile_data *bp_objfile_data;
3412
3413 bp_objfile_data = ((struct breakpoint_objfile_data *)
3414 objfile_data (objfile, breakpoint_objfile_key));
3415 if (bp_objfile_data == NULL)
3416 {
3417 bp_objfile_data =
3418 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3419
3420 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3421 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3422 }
3423 return bp_objfile_data;
3424 }
3425
3426 static void
3427 free_breakpoint_probes (struct objfile *obj, void *data)
3428 {
3429 struct breakpoint_objfile_data *bp_objfile_data
3430 = (struct breakpoint_objfile_data *) data;
3431
3432 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3433 VEC_free (probe_p, bp_objfile_data->exception_probes);
3434 }
3435
3436 static void
3437 create_overlay_event_breakpoint (void)
3438 {
3439 struct objfile *objfile;
3440 const char *const func_name = "_ovly_debug_event";
3441
3442 ALL_OBJFILES (objfile)
3443 {
3444 struct breakpoint *b;
3445 struct breakpoint_objfile_data *bp_objfile_data;
3446 CORE_ADDR addr;
3447 struct explicit_location explicit_loc;
3448
3449 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3450
3451 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3452 continue;
3453
3454 if (bp_objfile_data->overlay_msym.minsym == NULL)
3455 {
3456 struct bound_minimal_symbol m;
3457
3458 m = lookup_minimal_symbol_text (func_name, objfile);
3459 if (m.minsym == NULL)
3460 {
3461 /* Avoid future lookups in this objfile. */
3462 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3463 continue;
3464 }
3465 bp_objfile_data->overlay_msym = m;
3466 }
3467
3468 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3469 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3470 bp_overlay_event,
3471 &internal_breakpoint_ops);
3472 initialize_explicit_location (&explicit_loc);
3473 explicit_loc.function_name = ASTRDUP (func_name);
3474 b->location = new_explicit_location (&explicit_loc);
3475
3476 if (overlay_debugging == ovly_auto)
3477 {
3478 b->enable_state = bp_enabled;
3479 overlay_events_enabled = 1;
3480 }
3481 else
3482 {
3483 b->enable_state = bp_disabled;
3484 overlay_events_enabled = 0;
3485 }
3486 }
3487 }
3488
3489 static void
3490 create_longjmp_master_breakpoint (void)
3491 {
3492 struct program_space *pspace;
3493 struct cleanup *old_chain;
3494
3495 old_chain = save_current_program_space ();
3496
3497 ALL_PSPACES (pspace)
3498 {
3499 struct objfile *objfile;
3500
3501 set_current_program_space (pspace);
3502
3503 ALL_OBJFILES (objfile)
3504 {
3505 int i;
3506 struct gdbarch *gdbarch;
3507 struct breakpoint_objfile_data *bp_objfile_data;
3508
3509 gdbarch = get_objfile_arch (objfile);
3510
3511 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3512
3513 if (!bp_objfile_data->longjmp_searched)
3514 {
3515 VEC (probe_p) *ret;
3516
3517 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3518 if (ret != NULL)
3519 {
3520 /* We are only interested in checking one element. */
3521 struct probe *p = VEC_index (probe_p, ret, 0);
3522
3523 if (!can_evaluate_probe_arguments (p))
3524 {
3525 /* We cannot use the probe interface here, because it does
3526 not know how to evaluate arguments. */
3527 VEC_free (probe_p, ret);
3528 ret = NULL;
3529 }
3530 }
3531 bp_objfile_data->longjmp_probes = ret;
3532 bp_objfile_data->longjmp_searched = 1;
3533 }
3534
3535 if (bp_objfile_data->longjmp_probes != NULL)
3536 {
3537 int i;
3538 struct probe *probe;
3539 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3540
3541 for (i = 0;
3542 VEC_iterate (probe_p,
3543 bp_objfile_data->longjmp_probes,
3544 i, probe);
3545 ++i)
3546 {
3547 struct breakpoint *b;
3548
3549 b = create_internal_breakpoint (gdbarch,
3550 get_probe_address (probe,
3551 objfile),
3552 bp_longjmp_master,
3553 &internal_breakpoint_ops);
3554 b->location = new_probe_location ("-probe-stap libc:longjmp");
3555 b->enable_state = bp_disabled;
3556 }
3557
3558 continue;
3559 }
3560
3561 if (!gdbarch_get_longjmp_target_p (gdbarch))
3562 continue;
3563
3564 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3565 {
3566 struct breakpoint *b;
3567 const char *func_name;
3568 CORE_ADDR addr;
3569 struct explicit_location explicit_loc;
3570
3571 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3572 continue;
3573
3574 func_name = longjmp_names[i];
3575 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3576 {
3577 struct bound_minimal_symbol m;
3578
3579 m = lookup_minimal_symbol_text (func_name, objfile);
3580 if (m.minsym == NULL)
3581 {
3582 /* Prevent future lookups in this objfile. */
3583 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3584 continue;
3585 }
3586 bp_objfile_data->longjmp_msym[i] = m;
3587 }
3588
3589 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3590 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3591 &internal_breakpoint_ops);
3592 initialize_explicit_location (&explicit_loc);
3593 explicit_loc.function_name = ASTRDUP (func_name);
3594 b->location = new_explicit_location (&explicit_loc);
3595 b->enable_state = bp_disabled;
3596 }
3597 }
3598 }
3599
3600 do_cleanups (old_chain);
3601 }
3602
3603 /* Create a master std::terminate breakpoint. */
3604 static void
3605 create_std_terminate_master_breakpoint (void)
3606 {
3607 struct program_space *pspace;
3608 struct cleanup *old_chain;
3609 const char *const func_name = "std::terminate()";
3610
3611 old_chain = save_current_program_space ();
3612
3613 ALL_PSPACES (pspace)
3614 {
3615 struct objfile *objfile;
3616 CORE_ADDR addr;
3617
3618 set_current_program_space (pspace);
3619
3620 ALL_OBJFILES (objfile)
3621 {
3622 struct breakpoint *b;
3623 struct breakpoint_objfile_data *bp_objfile_data;
3624 struct explicit_location explicit_loc;
3625
3626 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3627
3628 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3629 continue;
3630
3631 if (bp_objfile_data->terminate_msym.minsym == NULL)
3632 {
3633 struct bound_minimal_symbol m;
3634
3635 m = lookup_minimal_symbol (func_name, NULL, objfile);
3636 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3637 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3638 {
3639 /* Prevent future lookups in this objfile. */
3640 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3641 continue;
3642 }
3643 bp_objfile_data->terminate_msym = m;
3644 }
3645
3646 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3647 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3648 bp_std_terminate_master,
3649 &internal_breakpoint_ops);
3650 initialize_explicit_location (&explicit_loc);
3651 explicit_loc.function_name = ASTRDUP (func_name);
3652 b->location = new_explicit_location (&explicit_loc);
3653 b->enable_state = bp_disabled;
3654 }
3655 }
3656
3657 do_cleanups (old_chain);
3658 }
3659
3660 /* Install a master breakpoint on the unwinder's debug hook. */
3661
3662 static void
3663 create_exception_master_breakpoint (void)
3664 {
3665 struct objfile *objfile;
3666 const char *const func_name = "_Unwind_DebugHook";
3667
3668 ALL_OBJFILES (objfile)
3669 {
3670 struct breakpoint *b;
3671 struct gdbarch *gdbarch;
3672 struct breakpoint_objfile_data *bp_objfile_data;
3673 CORE_ADDR addr;
3674 struct explicit_location explicit_loc;
3675
3676 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3677
3678 /* We prefer the SystemTap probe point if it exists. */
3679 if (!bp_objfile_data->exception_searched)
3680 {
3681 VEC (probe_p) *ret;
3682
3683 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3684
3685 if (ret != NULL)
3686 {
3687 /* We are only interested in checking one element. */
3688 struct probe *p = VEC_index (probe_p, ret, 0);
3689
3690 if (!can_evaluate_probe_arguments (p))
3691 {
3692 /* We cannot use the probe interface here, because it does
3693 not know how to evaluate arguments. */
3694 VEC_free (probe_p, ret);
3695 ret = NULL;
3696 }
3697 }
3698 bp_objfile_data->exception_probes = ret;
3699 bp_objfile_data->exception_searched = 1;
3700 }
3701
3702 if (bp_objfile_data->exception_probes != NULL)
3703 {
3704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3705 int i;
3706 struct probe *probe;
3707
3708 for (i = 0;
3709 VEC_iterate (probe_p,
3710 bp_objfile_data->exception_probes,
3711 i, probe);
3712 ++i)
3713 {
3714 struct breakpoint *b;
3715
3716 b = create_internal_breakpoint (gdbarch,
3717 get_probe_address (probe,
3718 objfile),
3719 bp_exception_master,
3720 &internal_breakpoint_ops);
3721 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3722 b->enable_state = bp_disabled;
3723 }
3724
3725 continue;
3726 }
3727
3728 /* Otherwise, try the hook function. */
3729
3730 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3731 continue;
3732
3733 gdbarch = get_objfile_arch (objfile);
3734
3735 if (bp_objfile_data->exception_msym.minsym == NULL)
3736 {
3737 struct bound_minimal_symbol debug_hook;
3738
3739 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3740 if (debug_hook.minsym == NULL)
3741 {
3742 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3743 continue;
3744 }
3745
3746 bp_objfile_data->exception_msym = debug_hook;
3747 }
3748
3749 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3750 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3751 &current_target);
3752 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3753 &internal_breakpoint_ops);
3754 initialize_explicit_location (&explicit_loc);
3755 explicit_loc.function_name = ASTRDUP (func_name);
3756 b->location = new_explicit_location (&explicit_loc);
3757 b->enable_state = bp_disabled;
3758 }
3759 }
3760
3761 /* Does B have a location spec? */
3762
3763 static int
3764 breakpoint_event_location_empty_p (const struct breakpoint *b)
3765 {
3766 return b->location != NULL && event_location_empty_p (b->location.get ());
3767 }
3768
3769 void
3770 update_breakpoints_after_exec (void)
3771 {
3772 struct breakpoint *b, *b_tmp;
3773 struct bp_location *bploc, **bplocp_tmp;
3774
3775 /* We're about to delete breakpoints from GDB's lists. If the
3776 INSERTED flag is true, GDB will try to lift the breakpoints by
3777 writing the breakpoints' "shadow contents" back into memory. The
3778 "shadow contents" are NOT valid after an exec, so GDB should not
3779 do that. Instead, the target is responsible from marking
3780 breakpoints out as soon as it detects an exec. We don't do that
3781 here instead, because there may be other attempts to delete
3782 breakpoints after detecting an exec and before reaching here. */
3783 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3784 if (bploc->pspace == current_program_space)
3785 gdb_assert (!bploc->inserted);
3786
3787 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3788 {
3789 if (b->pspace != current_program_space)
3790 continue;
3791
3792 /* Solib breakpoints must be explicitly reset after an exec(). */
3793 if (b->type == bp_shlib_event)
3794 {
3795 delete_breakpoint (b);
3796 continue;
3797 }
3798
3799 /* JIT breakpoints must be explicitly reset after an exec(). */
3800 if (b->type == bp_jit_event)
3801 {
3802 delete_breakpoint (b);
3803 continue;
3804 }
3805
3806 /* Thread event breakpoints must be set anew after an exec(),
3807 as must overlay event and longjmp master breakpoints. */
3808 if (b->type == bp_thread_event || b->type == bp_overlay_event
3809 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3810 || b->type == bp_exception_master)
3811 {
3812 delete_breakpoint (b);
3813 continue;
3814 }
3815
3816 /* Step-resume breakpoints are meaningless after an exec(). */
3817 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3818 {
3819 delete_breakpoint (b);
3820 continue;
3821 }
3822
3823 /* Just like single-step breakpoints. */
3824 if (b->type == bp_single_step)
3825 {
3826 delete_breakpoint (b);
3827 continue;
3828 }
3829
3830 /* Longjmp and longjmp-resume breakpoints are also meaningless
3831 after an exec. */
3832 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3833 || b->type == bp_longjmp_call_dummy
3834 || b->type == bp_exception || b->type == bp_exception_resume)
3835 {
3836 delete_breakpoint (b);
3837 continue;
3838 }
3839
3840 if (b->type == bp_catchpoint)
3841 {
3842 /* For now, none of the bp_catchpoint breakpoints need to
3843 do anything at this point. In the future, if some of
3844 the catchpoints need to something, we will need to add
3845 a new method, and call this method from here. */
3846 continue;
3847 }
3848
3849 /* bp_finish is a special case. The only way we ought to be able
3850 to see one of these when an exec() has happened, is if the user
3851 caught a vfork, and then said "finish". Ordinarily a finish just
3852 carries them to the call-site of the current callee, by setting
3853 a temporary bp there and resuming. But in this case, the finish
3854 will carry them entirely through the vfork & exec.
3855
3856 We don't want to allow a bp_finish to remain inserted now. But
3857 we can't safely delete it, 'cause finish_command has a handle to
3858 the bp on a bpstat, and will later want to delete it. There's a
3859 chance (and I've seen it happen) that if we delete the bp_finish
3860 here, that its storage will get reused by the time finish_command
3861 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3862 We really must allow finish_command to delete a bp_finish.
3863
3864 In the absence of a general solution for the "how do we know
3865 it's safe to delete something others may have handles to?"
3866 problem, what we'll do here is just uninsert the bp_finish, and
3867 let finish_command delete it.
3868
3869 (We know the bp_finish is "doomed" in the sense that it's
3870 momentary, and will be deleted as soon as finish_command sees
3871 the inferior stopped. So it doesn't matter that the bp's
3872 address is probably bogus in the new a.out, unlike e.g., the
3873 solib breakpoints.) */
3874
3875 if (b->type == bp_finish)
3876 {
3877 continue;
3878 }
3879
3880 /* Without a symbolic address, we have little hope of the
3881 pre-exec() address meaning the same thing in the post-exec()
3882 a.out. */
3883 if (breakpoint_event_location_empty_p (b))
3884 {
3885 delete_breakpoint (b);
3886 continue;
3887 }
3888 }
3889 }
3890
3891 int
3892 detach_breakpoints (ptid_t ptid)
3893 {
3894 struct bp_location *bl, **blp_tmp;
3895 int val = 0;
3896 struct cleanup *old_chain = save_inferior_ptid ();
3897 struct inferior *inf = current_inferior ();
3898
3899 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3900 error (_("Cannot detach breakpoints of inferior_ptid"));
3901
3902 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3903 inferior_ptid = ptid;
3904 ALL_BP_LOCATIONS (bl, blp_tmp)
3905 {
3906 if (bl->pspace != inf->pspace)
3907 continue;
3908
3909 /* This function must physically remove breakpoints locations
3910 from the specified ptid, without modifying the breakpoint
3911 package's state. Locations of type bp_loc_other are only
3912 maintained at GDB side. So, there is no need to remove
3913 these bp_loc_other locations. Moreover, removing these
3914 would modify the breakpoint package's state. */
3915 if (bl->loc_type == bp_loc_other)
3916 continue;
3917
3918 if (bl->inserted)
3919 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3920 }
3921
3922 do_cleanups (old_chain);
3923 return val;
3924 }
3925
3926 /* Remove the breakpoint location BL from the current address space.
3927 Note that this is used to detach breakpoints from a child fork.
3928 When we get here, the child isn't in the inferior list, and neither
3929 do we have objects to represent its address space --- we should
3930 *not* look at bl->pspace->aspace here. */
3931
3932 static int
3933 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3934 {
3935 int val;
3936
3937 /* BL is never in moribund_locations by our callers. */
3938 gdb_assert (bl->owner != NULL);
3939
3940 /* The type of none suggests that owner is actually deleted.
3941 This should not ever happen. */
3942 gdb_assert (bl->owner->type != bp_none);
3943
3944 if (bl->loc_type == bp_loc_software_breakpoint
3945 || bl->loc_type == bp_loc_hardware_breakpoint)
3946 {
3947 /* "Normal" instruction breakpoint: either the standard
3948 trap-instruction bp (bp_breakpoint), or a
3949 bp_hardware_breakpoint. */
3950
3951 /* First check to see if we have to handle an overlay. */
3952 if (overlay_debugging == ovly_off
3953 || bl->section == NULL
3954 || !(section_is_overlay (bl->section)))
3955 {
3956 /* No overlay handling: just remove the breakpoint. */
3957
3958 /* If we're trying to uninsert a memory breakpoint that we
3959 know is set in a dynamic object that is marked
3960 shlib_disabled, then either the dynamic object was
3961 removed with "remove-symbol-file" or with
3962 "nosharedlibrary". In the former case, we don't know
3963 whether another dynamic object might have loaded over the
3964 breakpoint's address -- the user might well let us know
3965 about it next with add-symbol-file (the whole point of
3966 add-symbol-file is letting the user manually maintain a
3967 list of dynamically loaded objects). If we have the
3968 breakpoint's shadow memory, that is, this is a software
3969 breakpoint managed by GDB, check whether the breakpoint
3970 is still inserted in memory, to avoid overwriting wrong
3971 code with stale saved shadow contents. Note that HW
3972 breakpoints don't have shadow memory, as they're
3973 implemented using a mechanism that is not dependent on
3974 being able to modify the target's memory, and as such
3975 they should always be removed. */
3976 if (bl->shlib_disabled
3977 && bl->target_info.shadow_len != 0
3978 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3979 val = 0;
3980 else
3981 val = bl->owner->ops->remove_location (bl, reason);
3982 }
3983 else
3984 {
3985 /* This breakpoint is in an overlay section.
3986 Did we set a breakpoint at the LMA? */
3987 if (!overlay_events_enabled)
3988 {
3989 /* Yes -- overlay event support is not active, so we
3990 should have set a breakpoint at the LMA. Remove it.
3991 */
3992 /* Ignore any failures: if the LMA is in ROM, we will
3993 have already warned when we failed to insert it. */
3994 if (bl->loc_type == bp_loc_hardware_breakpoint)
3995 target_remove_hw_breakpoint (bl->gdbarch,
3996 &bl->overlay_target_info);
3997 else
3998 target_remove_breakpoint (bl->gdbarch,
3999 &bl->overlay_target_info,
4000 reason);
4001 }
4002 /* Did we set a breakpoint at the VMA?
4003 If so, we will have marked the breakpoint 'inserted'. */
4004 if (bl->inserted)
4005 {
4006 /* Yes -- remove it. Previously we did not bother to
4007 remove the breakpoint if the section had been
4008 unmapped, but let's not rely on that being safe. We
4009 don't know what the overlay manager might do. */
4010
4011 /* However, we should remove *software* breakpoints only
4012 if the section is still mapped, or else we overwrite
4013 wrong code with the saved shadow contents. */
4014 if (bl->loc_type == bp_loc_hardware_breakpoint
4015 || section_is_mapped (bl->section))
4016 val = bl->owner->ops->remove_location (bl, reason);
4017 else
4018 val = 0;
4019 }
4020 else
4021 {
4022 /* No -- not inserted, so no need to remove. No error. */
4023 val = 0;
4024 }
4025 }
4026
4027 /* In some cases, we might not be able to remove a breakpoint in
4028 a shared library that has already been removed, but we have
4029 not yet processed the shlib unload event. Similarly for an
4030 unloaded add-symbol-file object - the user might not yet have
4031 had the chance to remove-symbol-file it. shlib_disabled will
4032 be set if the library/object has already been removed, but
4033 the breakpoint hasn't been uninserted yet, e.g., after
4034 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4035 always-inserted mode. */
4036 if (val
4037 && (bl->loc_type == bp_loc_software_breakpoint
4038 && (bl->shlib_disabled
4039 || solib_name_from_address (bl->pspace, bl->address)
4040 || shared_objfile_contains_address_p (bl->pspace,
4041 bl->address))))
4042 val = 0;
4043
4044 if (val)
4045 return val;
4046 bl->inserted = (reason == DETACH_BREAKPOINT);
4047 }
4048 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4049 {
4050 gdb_assert (bl->owner->ops != NULL
4051 && bl->owner->ops->remove_location != NULL);
4052
4053 bl->inserted = (reason == DETACH_BREAKPOINT);
4054 bl->owner->ops->remove_location (bl, reason);
4055
4056 /* Failure to remove any of the hardware watchpoints comes here. */
4057 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4058 warning (_("Could not remove hardware watchpoint %d."),
4059 bl->owner->number);
4060 }
4061 else if (bl->owner->type == bp_catchpoint
4062 && breakpoint_enabled (bl->owner)
4063 && !bl->duplicate)
4064 {
4065 gdb_assert (bl->owner->ops != NULL
4066 && bl->owner->ops->remove_location != NULL);
4067
4068 val = bl->owner->ops->remove_location (bl, reason);
4069 if (val)
4070 return val;
4071
4072 bl->inserted = (reason == DETACH_BREAKPOINT);
4073 }
4074
4075 return 0;
4076 }
4077
4078 static int
4079 remove_breakpoint (struct bp_location *bl)
4080 {
4081 int ret;
4082 struct cleanup *old_chain;
4083
4084 /* BL is never in moribund_locations by our callers. */
4085 gdb_assert (bl->owner != NULL);
4086
4087 /* The type of none suggests that owner is actually deleted.
4088 This should not ever happen. */
4089 gdb_assert (bl->owner->type != bp_none);
4090
4091 old_chain = save_current_space_and_thread ();
4092
4093 switch_to_program_space_and_thread (bl->pspace);
4094
4095 ret = remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4096
4097 do_cleanups (old_chain);
4098 return ret;
4099 }
4100
4101 /* Clear the "inserted" flag in all breakpoints. */
4102
4103 void
4104 mark_breakpoints_out (void)
4105 {
4106 struct bp_location *bl, **blp_tmp;
4107
4108 ALL_BP_LOCATIONS (bl, blp_tmp)
4109 if (bl->pspace == current_program_space)
4110 bl->inserted = 0;
4111 }
4112
4113 /* Clear the "inserted" flag in all breakpoints and delete any
4114 breakpoints which should go away between runs of the program.
4115
4116 Plus other such housekeeping that has to be done for breakpoints
4117 between runs.
4118
4119 Note: this function gets called at the end of a run (by
4120 generic_mourn_inferior) and when a run begins (by
4121 init_wait_for_inferior). */
4122
4123
4124
4125 void
4126 breakpoint_init_inferior (enum inf_context context)
4127 {
4128 struct breakpoint *b, *b_tmp;
4129 struct bp_location *bl;
4130 int ix;
4131 struct program_space *pspace = current_program_space;
4132
4133 /* If breakpoint locations are shared across processes, then there's
4134 nothing to do. */
4135 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4136 return;
4137
4138 mark_breakpoints_out ();
4139
4140 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4141 {
4142 if (b->loc && b->loc->pspace != pspace)
4143 continue;
4144
4145 switch (b->type)
4146 {
4147 case bp_call_dummy:
4148 case bp_longjmp_call_dummy:
4149
4150 /* If the call dummy breakpoint is at the entry point it will
4151 cause problems when the inferior is rerun, so we better get
4152 rid of it. */
4153
4154 case bp_watchpoint_scope:
4155
4156 /* Also get rid of scope breakpoints. */
4157
4158 case bp_shlib_event:
4159
4160 /* Also remove solib event breakpoints. Their addresses may
4161 have changed since the last time we ran the program.
4162 Actually we may now be debugging against different target;
4163 and so the solib backend that installed this breakpoint may
4164 not be used in by the target. E.g.,
4165
4166 (gdb) file prog-linux
4167 (gdb) run # native linux target
4168 ...
4169 (gdb) kill
4170 (gdb) file prog-win.exe
4171 (gdb) tar rem :9999 # remote Windows gdbserver.
4172 */
4173
4174 case bp_step_resume:
4175
4176 /* Also remove step-resume breakpoints. */
4177
4178 case bp_single_step:
4179
4180 /* Also remove single-step breakpoints. */
4181
4182 delete_breakpoint (b);
4183 break;
4184
4185 case bp_watchpoint:
4186 case bp_hardware_watchpoint:
4187 case bp_read_watchpoint:
4188 case bp_access_watchpoint:
4189 {
4190 struct watchpoint *w = (struct watchpoint *) b;
4191
4192 /* Likewise for watchpoints on local expressions. */
4193 if (w->exp_valid_block != NULL)
4194 delete_breakpoint (b);
4195 else
4196 {
4197 /* Get rid of existing locations, which are no longer
4198 valid. New ones will be created in
4199 update_watchpoint, when the inferior is restarted.
4200 The next update_global_location_list call will
4201 garbage collect them. */
4202 b->loc = NULL;
4203
4204 if (context == inf_starting)
4205 {
4206 /* Reset val field to force reread of starting value in
4207 insert_breakpoints. */
4208 if (w->val)
4209 value_free (w->val);
4210 w->val = NULL;
4211 w->val_valid = 0;
4212 }
4213 }
4214 }
4215 break;
4216 default:
4217 break;
4218 }
4219 }
4220
4221 /* Get rid of the moribund locations. */
4222 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4223 decref_bp_location (&bl);
4224 VEC_free (bp_location_p, moribund_locations);
4225 }
4226
4227 /* These functions concern about actual breakpoints inserted in the
4228 target --- to e.g. check if we need to do decr_pc adjustment or if
4229 we need to hop over the bkpt --- so we check for address space
4230 match, not program space. */
4231
4232 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4233 exists at PC. It returns ordinary_breakpoint_here if it's an
4234 ordinary breakpoint, or permanent_breakpoint_here if it's a
4235 permanent breakpoint.
4236 - When continuing from a location with an ordinary breakpoint, we
4237 actually single step once before calling insert_breakpoints.
4238 - When continuing from a location with a permanent breakpoint, we
4239 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4240 the target, to advance the PC past the breakpoint. */
4241
4242 enum breakpoint_here
4243 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4244 {
4245 struct bp_location *bl, **blp_tmp;
4246 int any_breakpoint_here = 0;
4247
4248 ALL_BP_LOCATIONS (bl, blp_tmp)
4249 {
4250 if (bl->loc_type != bp_loc_software_breakpoint
4251 && bl->loc_type != bp_loc_hardware_breakpoint)
4252 continue;
4253
4254 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4255 if ((breakpoint_enabled (bl->owner)
4256 || bl->permanent)
4257 && breakpoint_location_address_match (bl, aspace, pc))
4258 {
4259 if (overlay_debugging
4260 && section_is_overlay (bl->section)
4261 && !section_is_mapped (bl->section))
4262 continue; /* unmapped overlay -- can't be a match */
4263 else if (bl->permanent)
4264 return permanent_breakpoint_here;
4265 else
4266 any_breakpoint_here = 1;
4267 }
4268 }
4269
4270 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4271 }
4272
4273 /* See breakpoint.h. */
4274
4275 int
4276 breakpoint_in_range_p (struct address_space *aspace,
4277 CORE_ADDR addr, ULONGEST len)
4278 {
4279 struct bp_location *bl, **blp_tmp;
4280
4281 ALL_BP_LOCATIONS (bl, blp_tmp)
4282 {
4283 if (bl->loc_type != bp_loc_software_breakpoint
4284 && bl->loc_type != bp_loc_hardware_breakpoint)
4285 continue;
4286
4287 if ((breakpoint_enabled (bl->owner)
4288 || bl->permanent)
4289 && breakpoint_location_address_range_overlap (bl, aspace,
4290 addr, len))
4291 {
4292 if (overlay_debugging
4293 && section_is_overlay (bl->section)
4294 && !section_is_mapped (bl->section))
4295 {
4296 /* Unmapped overlay -- can't be a match. */
4297 continue;
4298 }
4299
4300 return 1;
4301 }
4302 }
4303
4304 return 0;
4305 }
4306
4307 /* Return true if there's a moribund breakpoint at PC. */
4308
4309 int
4310 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4311 {
4312 struct bp_location *loc;
4313 int ix;
4314
4315 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4316 if (breakpoint_location_address_match (loc, aspace, pc))
4317 return 1;
4318
4319 return 0;
4320 }
4321
4322 /* Returns non-zero iff BL is inserted at PC, in address space
4323 ASPACE. */
4324
4325 static int
4326 bp_location_inserted_here_p (struct bp_location *bl,
4327 struct address_space *aspace, CORE_ADDR pc)
4328 {
4329 if (bl->inserted
4330 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4331 aspace, pc))
4332 {
4333 if (overlay_debugging
4334 && section_is_overlay (bl->section)
4335 && !section_is_mapped (bl->section))
4336 return 0; /* unmapped overlay -- can't be a match */
4337 else
4338 return 1;
4339 }
4340 return 0;
4341 }
4342
4343 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4344
4345 int
4346 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4347 {
4348 struct bp_location **blp, **blp_tmp = NULL;
4349
4350 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4351 {
4352 struct bp_location *bl = *blp;
4353
4354 if (bl->loc_type != bp_loc_software_breakpoint
4355 && bl->loc_type != bp_loc_hardware_breakpoint)
4356 continue;
4357
4358 if (bp_location_inserted_here_p (bl, aspace, pc))
4359 return 1;
4360 }
4361 return 0;
4362 }
4363
4364 /* This function returns non-zero iff there is a software breakpoint
4365 inserted at PC. */
4366
4367 int
4368 software_breakpoint_inserted_here_p (struct address_space *aspace,
4369 CORE_ADDR pc)
4370 {
4371 struct bp_location **blp, **blp_tmp = NULL;
4372
4373 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4374 {
4375 struct bp_location *bl = *blp;
4376
4377 if (bl->loc_type != bp_loc_software_breakpoint)
4378 continue;
4379
4380 if (bp_location_inserted_here_p (bl, aspace, pc))
4381 return 1;
4382 }
4383
4384 return 0;
4385 }
4386
4387 /* See breakpoint.h. */
4388
4389 int
4390 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4391 CORE_ADDR pc)
4392 {
4393 struct bp_location **blp, **blp_tmp = NULL;
4394
4395 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4396 {
4397 struct bp_location *bl = *blp;
4398
4399 if (bl->loc_type != bp_loc_hardware_breakpoint)
4400 continue;
4401
4402 if (bp_location_inserted_here_p (bl, aspace, pc))
4403 return 1;
4404 }
4405
4406 return 0;
4407 }
4408
4409 int
4410 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4411 CORE_ADDR addr, ULONGEST len)
4412 {
4413 struct breakpoint *bpt;
4414
4415 ALL_BREAKPOINTS (bpt)
4416 {
4417 struct bp_location *loc;
4418
4419 if (bpt->type != bp_hardware_watchpoint
4420 && bpt->type != bp_access_watchpoint)
4421 continue;
4422
4423 if (!breakpoint_enabled (bpt))
4424 continue;
4425
4426 for (loc = bpt->loc; loc; loc = loc->next)
4427 if (loc->pspace->aspace == aspace && loc->inserted)
4428 {
4429 CORE_ADDR l, h;
4430
4431 /* Check for intersection. */
4432 l = std::max<CORE_ADDR> (loc->address, addr);
4433 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4434 if (l < h)
4435 return 1;
4436 }
4437 }
4438 return 0;
4439 }
4440 \f
4441
4442 /* bpstat stuff. External routines' interfaces are documented
4443 in breakpoint.h. */
4444
4445 int
4446 is_catchpoint (struct breakpoint *ep)
4447 {
4448 return (ep->type == bp_catchpoint);
4449 }
4450
4451 /* Frees any storage that is part of a bpstat. Does not walk the
4452 'next' chain. */
4453
4454 static void
4455 bpstat_free (bpstat bs)
4456 {
4457 if (bs->old_val != NULL)
4458 value_free (bs->old_val);
4459 decref_counted_command_line (&bs->commands);
4460 decref_bp_location (&bs->bp_location_at);
4461 xfree (bs);
4462 }
4463
4464 /* Clear a bpstat so that it says we are not at any breakpoint.
4465 Also free any storage that is part of a bpstat. */
4466
4467 void
4468 bpstat_clear (bpstat *bsp)
4469 {
4470 bpstat p;
4471 bpstat q;
4472
4473 if (bsp == 0)
4474 return;
4475 p = *bsp;
4476 while (p != NULL)
4477 {
4478 q = p->next;
4479 bpstat_free (p);
4480 p = q;
4481 }
4482 *bsp = NULL;
4483 }
4484
4485 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4486 is part of the bpstat is copied as well. */
4487
4488 bpstat
4489 bpstat_copy (bpstat bs)
4490 {
4491 bpstat p = NULL;
4492 bpstat tmp;
4493 bpstat retval = NULL;
4494
4495 if (bs == NULL)
4496 return bs;
4497
4498 for (; bs != NULL; bs = bs->next)
4499 {
4500 tmp = (bpstat) xmalloc (sizeof (*tmp));
4501 memcpy (tmp, bs, sizeof (*tmp));
4502 incref_counted_command_line (tmp->commands);
4503 incref_bp_location (tmp->bp_location_at);
4504 if (bs->old_val != NULL)
4505 {
4506 tmp->old_val = value_copy (bs->old_val);
4507 release_value (tmp->old_val);
4508 }
4509
4510 if (p == NULL)
4511 /* This is the first thing in the chain. */
4512 retval = tmp;
4513 else
4514 p->next = tmp;
4515 p = tmp;
4516 }
4517 p->next = NULL;
4518 return retval;
4519 }
4520
4521 /* Find the bpstat associated with this breakpoint. */
4522
4523 bpstat
4524 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4525 {
4526 if (bsp == NULL)
4527 return NULL;
4528
4529 for (; bsp != NULL; bsp = bsp->next)
4530 {
4531 if (bsp->breakpoint_at == breakpoint)
4532 return bsp;
4533 }
4534 return NULL;
4535 }
4536
4537 /* See breakpoint.h. */
4538
4539 int
4540 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4541 {
4542 for (; bsp != NULL; bsp = bsp->next)
4543 {
4544 if (bsp->breakpoint_at == NULL)
4545 {
4546 /* A moribund location can never explain a signal other than
4547 GDB_SIGNAL_TRAP. */
4548 if (sig == GDB_SIGNAL_TRAP)
4549 return 1;
4550 }
4551 else
4552 {
4553 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4554 sig))
4555 return 1;
4556 }
4557 }
4558
4559 return 0;
4560 }
4561
4562 /* Put in *NUM the breakpoint number of the first breakpoint we are
4563 stopped at. *BSP upon return is a bpstat which points to the
4564 remaining breakpoints stopped at (but which is not guaranteed to be
4565 good for anything but further calls to bpstat_num).
4566
4567 Return 0 if passed a bpstat which does not indicate any breakpoints.
4568 Return -1 if stopped at a breakpoint that has been deleted since
4569 we set it.
4570 Return 1 otherwise. */
4571
4572 int
4573 bpstat_num (bpstat *bsp, int *num)
4574 {
4575 struct breakpoint *b;
4576
4577 if ((*bsp) == NULL)
4578 return 0; /* No more breakpoint values */
4579
4580 /* We assume we'll never have several bpstats that correspond to a
4581 single breakpoint -- otherwise, this function might return the
4582 same number more than once and this will look ugly. */
4583 b = (*bsp)->breakpoint_at;
4584 *bsp = (*bsp)->next;
4585 if (b == NULL)
4586 return -1; /* breakpoint that's been deleted since */
4587
4588 *num = b->number; /* We have its number */
4589 return 1;
4590 }
4591
4592 /* See breakpoint.h. */
4593
4594 void
4595 bpstat_clear_actions (void)
4596 {
4597 struct thread_info *tp;
4598 bpstat bs;
4599
4600 if (ptid_equal (inferior_ptid, null_ptid))
4601 return;
4602
4603 tp = find_thread_ptid (inferior_ptid);
4604 if (tp == NULL)
4605 return;
4606
4607 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4608 {
4609 decref_counted_command_line (&bs->commands);
4610
4611 if (bs->old_val != NULL)
4612 {
4613 value_free (bs->old_val);
4614 bs->old_val = NULL;
4615 }
4616 }
4617 }
4618
4619 /* Called when a command is about to proceed the inferior. */
4620
4621 static void
4622 breakpoint_about_to_proceed (void)
4623 {
4624 if (!ptid_equal (inferior_ptid, null_ptid))
4625 {
4626 struct thread_info *tp = inferior_thread ();
4627
4628 /* Allow inferior function calls in breakpoint commands to not
4629 interrupt the command list. When the call finishes
4630 successfully, the inferior will be standing at the same
4631 breakpoint as if nothing happened. */
4632 if (tp->control.in_infcall)
4633 return;
4634 }
4635
4636 breakpoint_proceeded = 1;
4637 }
4638
4639 /* Stub for cleaning up our state if we error-out of a breakpoint
4640 command. */
4641 static void
4642 cleanup_executing_breakpoints (void *ignore)
4643 {
4644 executing_breakpoint_commands = 0;
4645 }
4646
4647 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4648 or its equivalent. */
4649
4650 static int
4651 command_line_is_silent (struct command_line *cmd)
4652 {
4653 return cmd && (strcmp ("silent", cmd->line) == 0);
4654 }
4655
4656 /* Execute all the commands associated with all the breakpoints at
4657 this location. Any of these commands could cause the process to
4658 proceed beyond this point, etc. We look out for such changes by
4659 checking the global "breakpoint_proceeded" after each command.
4660
4661 Returns true if a breakpoint command resumed the inferior. In that
4662 case, it is the caller's responsibility to recall it again with the
4663 bpstat of the current thread. */
4664
4665 static int
4666 bpstat_do_actions_1 (bpstat *bsp)
4667 {
4668 bpstat bs;
4669 struct cleanup *old_chain;
4670 int again = 0;
4671
4672 /* Avoid endless recursion if a `source' command is contained
4673 in bs->commands. */
4674 if (executing_breakpoint_commands)
4675 return 0;
4676
4677 executing_breakpoint_commands = 1;
4678 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4679
4680 scoped_restore preventer = prevent_dont_repeat ();
4681
4682 /* This pointer will iterate over the list of bpstat's. */
4683 bs = *bsp;
4684
4685 breakpoint_proceeded = 0;
4686 for (; bs != NULL; bs = bs->next)
4687 {
4688 struct counted_command_line *ccmd;
4689 struct command_line *cmd;
4690 struct cleanup *this_cmd_tree_chain;
4691
4692 /* Take ownership of the BSP's command tree, if it has one.
4693
4694 The command tree could legitimately contain commands like
4695 'step' and 'next', which call clear_proceed_status, which
4696 frees stop_bpstat's command tree. To make sure this doesn't
4697 free the tree we're executing out from under us, we need to
4698 take ownership of the tree ourselves. Since a given bpstat's
4699 commands are only executed once, we don't need to copy it; we
4700 can clear the pointer in the bpstat, and make sure we free
4701 the tree when we're done. */
4702 ccmd = bs->commands;
4703 bs->commands = NULL;
4704 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4705 cmd = ccmd ? ccmd->commands : NULL;
4706 if (command_line_is_silent (cmd))
4707 {
4708 /* The action has been already done by bpstat_stop_status. */
4709 cmd = cmd->next;
4710 }
4711
4712 while (cmd != NULL)
4713 {
4714 execute_control_command (cmd);
4715
4716 if (breakpoint_proceeded)
4717 break;
4718 else
4719 cmd = cmd->next;
4720 }
4721
4722 /* We can free this command tree now. */
4723 do_cleanups (this_cmd_tree_chain);
4724
4725 if (breakpoint_proceeded)
4726 {
4727 if (current_ui->async)
4728 /* If we are in async mode, then the target might be still
4729 running, not stopped at any breakpoint, so nothing for
4730 us to do here -- just return to the event loop. */
4731 ;
4732 else
4733 /* In sync mode, when execute_control_command returns
4734 we're already standing on the next breakpoint.
4735 Breakpoint commands for that stop were not run, since
4736 execute_command does not run breakpoint commands --
4737 only command_line_handler does, but that one is not
4738 involved in execution of breakpoint commands. So, we
4739 can now execute breakpoint commands. It should be
4740 noted that making execute_command do bpstat actions is
4741 not an option -- in this case we'll have recursive
4742 invocation of bpstat for each breakpoint with a
4743 command, and can easily blow up GDB stack. Instead, we
4744 return true, which will trigger the caller to recall us
4745 with the new stop_bpstat. */
4746 again = 1;
4747 break;
4748 }
4749 }
4750 do_cleanups (old_chain);
4751 return again;
4752 }
4753
4754 void
4755 bpstat_do_actions (void)
4756 {
4757 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4758
4759 /* Do any commands attached to breakpoint we are stopped at. */
4760 while (!ptid_equal (inferior_ptid, null_ptid)
4761 && target_has_execution
4762 && !is_exited (inferior_ptid)
4763 && !is_executing (inferior_ptid))
4764 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4765 and only return when it is stopped at the next breakpoint, we
4766 keep doing breakpoint actions until it returns false to
4767 indicate the inferior was not resumed. */
4768 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4769 break;
4770
4771 discard_cleanups (cleanup_if_error);
4772 }
4773
4774 /* Print out the (old or new) value associated with a watchpoint. */
4775
4776 static void
4777 watchpoint_value_print (struct value *val, struct ui_file *stream)
4778 {
4779 if (val == NULL)
4780 fprintf_unfiltered (stream, _("<unreadable>"));
4781 else
4782 {
4783 struct value_print_options opts;
4784 get_user_print_options (&opts);
4785 value_print (val, stream, &opts);
4786 }
4787 }
4788
4789 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4790 debugging multiple threads. */
4791
4792 void
4793 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4794 {
4795 if (uiout->is_mi_like_p ())
4796 return;
4797
4798 uiout->text ("\n");
4799
4800 if (show_thread_that_caused_stop ())
4801 {
4802 const char *name;
4803 struct thread_info *thr = inferior_thread ();
4804
4805 uiout->text ("Thread ");
4806 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4807
4808 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4809 if (name != NULL)
4810 {
4811 uiout->text (" \"");
4812 uiout->field_fmt ("name", "%s", name);
4813 uiout->text ("\"");
4814 }
4815
4816 uiout->text (" hit ");
4817 }
4818 }
4819
4820 /* Generic routine for printing messages indicating why we
4821 stopped. The behavior of this function depends on the value
4822 'print_it' in the bpstat structure. Under some circumstances we
4823 may decide not to print anything here and delegate the task to
4824 normal_stop(). */
4825
4826 static enum print_stop_action
4827 print_bp_stop_message (bpstat bs)
4828 {
4829 switch (bs->print_it)
4830 {
4831 case print_it_noop:
4832 /* Nothing should be printed for this bpstat entry. */
4833 return PRINT_UNKNOWN;
4834 break;
4835
4836 case print_it_done:
4837 /* We still want to print the frame, but we already printed the
4838 relevant messages. */
4839 return PRINT_SRC_AND_LOC;
4840 break;
4841
4842 case print_it_normal:
4843 {
4844 struct breakpoint *b = bs->breakpoint_at;
4845
4846 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4847 which has since been deleted. */
4848 if (b == NULL)
4849 return PRINT_UNKNOWN;
4850
4851 /* Normal case. Call the breakpoint's print_it method. */
4852 return b->ops->print_it (bs);
4853 }
4854 break;
4855
4856 default:
4857 internal_error (__FILE__, __LINE__,
4858 _("print_bp_stop_message: unrecognized enum value"));
4859 break;
4860 }
4861 }
4862
4863 /* A helper function that prints a shared library stopped event. */
4864
4865 static void
4866 print_solib_event (int is_catchpoint)
4867 {
4868 int any_deleted
4869 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4870 int any_added
4871 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4872
4873 if (!is_catchpoint)
4874 {
4875 if (any_added || any_deleted)
4876 current_uiout->text (_("Stopped due to shared library event:\n"));
4877 else
4878 current_uiout->text (_("Stopped due to shared library event (no "
4879 "libraries added or removed)\n"));
4880 }
4881
4882 if (current_uiout->is_mi_like_p ())
4883 current_uiout->field_string ("reason",
4884 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4885
4886 if (any_deleted)
4887 {
4888 struct cleanup *cleanup;
4889 char *name;
4890 int ix;
4891
4892 current_uiout->text (_(" Inferior unloaded "));
4893 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4894 "removed");
4895 for (ix = 0;
4896 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4897 ix, name);
4898 ++ix)
4899 {
4900 if (ix > 0)
4901 current_uiout->text (" ");
4902 current_uiout->field_string ("library", name);
4903 current_uiout->text ("\n");
4904 }
4905
4906 do_cleanups (cleanup);
4907 }
4908
4909 if (any_added)
4910 {
4911 struct so_list *iter;
4912 int ix;
4913 struct cleanup *cleanup;
4914
4915 current_uiout->text (_(" Inferior loaded "));
4916 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4917 "added");
4918 for (ix = 0;
4919 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4920 ix, iter);
4921 ++ix)
4922 {
4923 if (ix > 0)
4924 current_uiout->text (" ");
4925 current_uiout->field_string ("library", iter->so_name);
4926 current_uiout->text ("\n");
4927 }
4928
4929 do_cleanups (cleanup);
4930 }
4931 }
4932
4933 /* Print a message indicating what happened. This is called from
4934 normal_stop(). The input to this routine is the head of the bpstat
4935 list - a list of the eventpoints that caused this stop. KIND is
4936 the target_waitkind for the stopping event. This
4937 routine calls the generic print routine for printing a message
4938 about reasons for stopping. This will print (for example) the
4939 "Breakpoint n," part of the output. The return value of this
4940 routine is one of:
4941
4942 PRINT_UNKNOWN: Means we printed nothing.
4943 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4944 code to print the location. An example is
4945 "Breakpoint 1, " which should be followed by
4946 the location.
4947 PRINT_SRC_ONLY: Means we printed something, but there is no need
4948 to also print the location part of the message.
4949 An example is the catch/throw messages, which
4950 don't require a location appended to the end.
4951 PRINT_NOTHING: We have done some printing and we don't need any
4952 further info to be printed. */
4953
4954 enum print_stop_action
4955 bpstat_print (bpstat bs, int kind)
4956 {
4957 enum print_stop_action val;
4958
4959 /* Maybe another breakpoint in the chain caused us to stop.
4960 (Currently all watchpoints go on the bpstat whether hit or not.
4961 That probably could (should) be changed, provided care is taken
4962 with respect to bpstat_explains_signal). */
4963 for (; bs; bs = bs->next)
4964 {
4965 val = print_bp_stop_message (bs);
4966 if (val == PRINT_SRC_ONLY
4967 || val == PRINT_SRC_AND_LOC
4968 || val == PRINT_NOTHING)
4969 return val;
4970 }
4971
4972 /* If we had hit a shared library event breakpoint,
4973 print_bp_stop_message would print out this message. If we hit an
4974 OS-level shared library event, do the same thing. */
4975 if (kind == TARGET_WAITKIND_LOADED)
4976 {
4977 print_solib_event (0);
4978 return PRINT_NOTHING;
4979 }
4980
4981 /* We reached the end of the chain, or we got a null BS to start
4982 with and nothing was printed. */
4983 return PRINT_UNKNOWN;
4984 }
4985
4986 /* Evaluate the expression EXP and return 1 if value is zero.
4987 This returns the inverse of the condition because it is called
4988 from catch_errors which returns 0 if an exception happened, and if an
4989 exception happens we want execution to stop.
4990 The argument is a "struct expression *" that has been cast to a
4991 "void *" to make it pass through catch_errors. */
4992
4993 static int
4994 breakpoint_cond_eval (void *exp)
4995 {
4996 struct value *mark = value_mark ();
4997 int i = !value_true (evaluate_expression ((struct expression *) exp));
4998
4999 value_free_to_mark (mark);
5000 return i;
5001 }
5002
5003 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
5004
5005 static bpstat
5006 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
5007 {
5008 bpstat bs;
5009
5010 bs = (bpstat) xmalloc (sizeof (*bs));
5011 bs->next = NULL;
5012 **bs_link_pointer = bs;
5013 *bs_link_pointer = &bs->next;
5014 bs->breakpoint_at = bl->owner;
5015 bs->bp_location_at = bl;
5016 incref_bp_location (bl);
5017 /* If the condition is false, etc., don't do the commands. */
5018 bs->commands = NULL;
5019 bs->old_val = NULL;
5020 bs->print_it = print_it_normal;
5021 return bs;
5022 }
5023 \f
5024 /* The target has stopped with waitstatus WS. Check if any hardware
5025 watchpoints have triggered, according to the target. */
5026
5027 int
5028 watchpoints_triggered (struct target_waitstatus *ws)
5029 {
5030 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
5031 CORE_ADDR addr;
5032 struct breakpoint *b;
5033
5034 if (!stopped_by_watchpoint)
5035 {
5036 /* We were not stopped by a watchpoint. Mark all watchpoints
5037 as not triggered. */
5038 ALL_BREAKPOINTS (b)
5039 if (is_hardware_watchpoint (b))
5040 {
5041 struct watchpoint *w = (struct watchpoint *) b;
5042
5043 w->watchpoint_triggered = watch_triggered_no;
5044 }
5045
5046 return 0;
5047 }
5048
5049 if (!target_stopped_data_address (&current_target, &addr))
5050 {
5051 /* We were stopped by a watchpoint, but we don't know where.
5052 Mark all watchpoints as unknown. */
5053 ALL_BREAKPOINTS (b)
5054 if (is_hardware_watchpoint (b))
5055 {
5056 struct watchpoint *w = (struct watchpoint *) b;
5057
5058 w->watchpoint_triggered = watch_triggered_unknown;
5059 }
5060
5061 return 1;
5062 }
5063
5064 /* The target could report the data address. Mark watchpoints
5065 affected by this data address as triggered, and all others as not
5066 triggered. */
5067
5068 ALL_BREAKPOINTS (b)
5069 if (is_hardware_watchpoint (b))
5070 {
5071 struct watchpoint *w = (struct watchpoint *) b;
5072 struct bp_location *loc;
5073
5074 w->watchpoint_triggered = watch_triggered_no;
5075 for (loc = b->loc; loc; loc = loc->next)
5076 {
5077 if (is_masked_watchpoint (b))
5078 {
5079 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5080 CORE_ADDR start = loc->address & w->hw_wp_mask;
5081
5082 if (newaddr == start)
5083 {
5084 w->watchpoint_triggered = watch_triggered_yes;
5085 break;
5086 }
5087 }
5088 /* Exact match not required. Within range is sufficient. */
5089 else if (target_watchpoint_addr_within_range (&current_target,
5090 addr, loc->address,
5091 loc->length))
5092 {
5093 w->watchpoint_triggered = watch_triggered_yes;
5094 break;
5095 }
5096 }
5097 }
5098
5099 return 1;
5100 }
5101
5102 /* Possible return values for watchpoint_check (this can't be an enum
5103 because of check_errors). */
5104 /* The watchpoint has been deleted. */
5105 #define WP_DELETED 1
5106 /* The value has changed. */
5107 #define WP_VALUE_CHANGED 2
5108 /* The value has not changed. */
5109 #define WP_VALUE_NOT_CHANGED 3
5110 /* Ignore this watchpoint, no matter if the value changed or not. */
5111 #define WP_IGNORE 4
5112
5113 #define BP_TEMPFLAG 1
5114 #define BP_HARDWAREFLAG 2
5115
5116 /* Evaluate watchpoint condition expression and check if its value
5117 changed.
5118
5119 P should be a pointer to struct bpstat, but is defined as a void *
5120 in order for this function to be usable with catch_errors. */
5121
5122 static int
5123 watchpoint_check (void *p)
5124 {
5125 bpstat bs = (bpstat) p;
5126 struct watchpoint *b;
5127 struct frame_info *fr;
5128 int within_current_scope;
5129
5130 /* BS is built from an existing struct breakpoint. */
5131 gdb_assert (bs->breakpoint_at != NULL);
5132 b = (struct watchpoint *) bs->breakpoint_at;
5133
5134 /* If this is a local watchpoint, we only want to check if the
5135 watchpoint frame is in scope if the current thread is the thread
5136 that was used to create the watchpoint. */
5137 if (!watchpoint_in_thread_scope (b))
5138 return WP_IGNORE;
5139
5140 if (b->exp_valid_block == NULL)
5141 within_current_scope = 1;
5142 else
5143 {
5144 struct frame_info *frame = get_current_frame ();
5145 struct gdbarch *frame_arch = get_frame_arch (frame);
5146 CORE_ADDR frame_pc = get_frame_pc (frame);
5147
5148 /* stack_frame_destroyed_p() returns a non-zero value if we're
5149 still in the function but the stack frame has already been
5150 invalidated. Since we can't rely on the values of local
5151 variables after the stack has been destroyed, we are treating
5152 the watchpoint in that state as `not changed' without further
5153 checking. Don't mark watchpoints as changed if the current
5154 frame is in an epilogue - even if they are in some other
5155 frame, our view of the stack is likely to be wrong and
5156 frame_find_by_id could error out. */
5157 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5158 return WP_IGNORE;
5159
5160 fr = frame_find_by_id (b->watchpoint_frame);
5161 within_current_scope = (fr != NULL);
5162
5163 /* If we've gotten confused in the unwinder, we might have
5164 returned a frame that can't describe this variable. */
5165 if (within_current_scope)
5166 {
5167 struct symbol *function;
5168
5169 function = get_frame_function (fr);
5170 if (function == NULL
5171 || !contained_in (b->exp_valid_block,
5172 SYMBOL_BLOCK_VALUE (function)))
5173 within_current_scope = 0;
5174 }
5175
5176 if (within_current_scope)
5177 /* If we end up stopping, the current frame will get selected
5178 in normal_stop. So this call to select_frame won't affect
5179 the user. */
5180 select_frame (fr);
5181 }
5182
5183 if (within_current_scope)
5184 {
5185 /* We use value_{,free_to_}mark because it could be a *long*
5186 time before we return to the command level and call
5187 free_all_values. We can't call free_all_values because we
5188 might be in the middle of evaluating a function call. */
5189
5190 int pc = 0;
5191 struct value *mark;
5192 struct value *new_val;
5193
5194 if (is_masked_watchpoint (&b->base))
5195 /* Since we don't know the exact trigger address (from
5196 stopped_data_address), just tell the user we've triggered
5197 a mask watchpoint. */
5198 return WP_VALUE_CHANGED;
5199
5200 mark = value_mark ();
5201 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
5202
5203 if (b->val_bitsize != 0)
5204 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5205
5206 /* We use value_equal_contents instead of value_equal because
5207 the latter coerces an array to a pointer, thus comparing just
5208 the address of the array instead of its contents. This is
5209 not what we want. */
5210 if ((b->val != NULL) != (new_val != NULL)
5211 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5212 {
5213 if (new_val != NULL)
5214 {
5215 release_value (new_val);
5216 value_free_to_mark (mark);
5217 }
5218 bs->old_val = b->val;
5219 b->val = new_val;
5220 b->val_valid = 1;
5221 return WP_VALUE_CHANGED;
5222 }
5223 else
5224 {
5225 /* Nothing changed. */
5226 value_free_to_mark (mark);
5227 return WP_VALUE_NOT_CHANGED;
5228 }
5229 }
5230 else
5231 {
5232 /* This seems like the only logical thing to do because
5233 if we temporarily ignored the watchpoint, then when
5234 we reenter the block in which it is valid it contains
5235 garbage (in the case of a function, it may have two
5236 garbage values, one before and one after the prologue).
5237 So we can't even detect the first assignment to it and
5238 watch after that (since the garbage may or may not equal
5239 the first value assigned). */
5240 /* We print all the stop information in
5241 breakpoint_ops->print_it, but in this case, by the time we
5242 call breakpoint_ops->print_it this bp will be deleted
5243 already. So we have no choice but print the information
5244 here. */
5245
5246 SWITCH_THRU_ALL_UIS ()
5247 {
5248 struct ui_out *uiout = current_uiout;
5249
5250 if (uiout->is_mi_like_p ())
5251 uiout->field_string
5252 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5253 uiout->text ("\nWatchpoint ");
5254 uiout->field_int ("wpnum", b->base.number);
5255 uiout->text (" deleted because the program has left the block in\n"
5256 "which its expression is valid.\n");
5257 }
5258
5259 /* Make sure the watchpoint's commands aren't executed. */
5260 decref_counted_command_line (&b->base.commands);
5261 watchpoint_del_at_next_stop (b);
5262
5263 return WP_DELETED;
5264 }
5265 }
5266
5267 /* Return true if it looks like target has stopped due to hitting
5268 breakpoint location BL. This function does not check if we should
5269 stop, only if BL explains the stop. */
5270
5271 static int
5272 bpstat_check_location (const struct bp_location *bl,
5273 struct address_space *aspace, CORE_ADDR bp_addr,
5274 const struct target_waitstatus *ws)
5275 {
5276 struct breakpoint *b = bl->owner;
5277
5278 /* BL is from an existing breakpoint. */
5279 gdb_assert (b != NULL);
5280
5281 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5282 }
5283
5284 /* Determine if the watched values have actually changed, and we
5285 should stop. If not, set BS->stop to 0. */
5286
5287 static void
5288 bpstat_check_watchpoint (bpstat bs)
5289 {
5290 const struct bp_location *bl;
5291 struct watchpoint *b;
5292
5293 /* BS is built for existing struct breakpoint. */
5294 bl = bs->bp_location_at;
5295 gdb_assert (bl != NULL);
5296 b = (struct watchpoint *) bs->breakpoint_at;
5297 gdb_assert (b != NULL);
5298
5299 {
5300 int must_check_value = 0;
5301
5302 if (b->base.type == bp_watchpoint)
5303 /* For a software watchpoint, we must always check the
5304 watched value. */
5305 must_check_value = 1;
5306 else if (b->watchpoint_triggered == watch_triggered_yes)
5307 /* We have a hardware watchpoint (read, write, or access)
5308 and the target earlier reported an address watched by
5309 this watchpoint. */
5310 must_check_value = 1;
5311 else if (b->watchpoint_triggered == watch_triggered_unknown
5312 && b->base.type == bp_hardware_watchpoint)
5313 /* We were stopped by a hardware watchpoint, but the target could
5314 not report the data address. We must check the watchpoint's
5315 value. Access and read watchpoints are out of luck; without
5316 a data address, we can't figure it out. */
5317 must_check_value = 1;
5318
5319 if (must_check_value)
5320 {
5321 char *message
5322 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5323 b->base.number);
5324 struct cleanup *cleanups = make_cleanup (xfree, message);
5325 int e = catch_errors (watchpoint_check, bs, message,
5326 RETURN_MASK_ALL);
5327 do_cleanups (cleanups);
5328 switch (e)
5329 {
5330 case WP_DELETED:
5331 /* We've already printed what needs to be printed. */
5332 bs->print_it = print_it_done;
5333 /* Stop. */
5334 break;
5335 case WP_IGNORE:
5336 bs->print_it = print_it_noop;
5337 bs->stop = 0;
5338 break;
5339 case WP_VALUE_CHANGED:
5340 if (b->base.type == bp_read_watchpoint)
5341 {
5342 /* There are two cases to consider here:
5343
5344 1. We're watching the triggered memory for reads.
5345 In that case, trust the target, and always report
5346 the watchpoint hit to the user. Even though
5347 reads don't cause value changes, the value may
5348 have changed since the last time it was read, and
5349 since we're not trapping writes, we will not see
5350 those, and as such we should ignore our notion of
5351 old value.
5352
5353 2. We're watching the triggered memory for both
5354 reads and writes. There are two ways this may
5355 happen:
5356
5357 2.1. This is a target that can't break on data
5358 reads only, but can break on accesses (reads or
5359 writes), such as e.g., x86. We detect this case
5360 at the time we try to insert read watchpoints.
5361
5362 2.2. Otherwise, the target supports read
5363 watchpoints, but, the user set an access or write
5364 watchpoint watching the same memory as this read
5365 watchpoint.
5366
5367 If we're watching memory writes as well as reads,
5368 ignore watchpoint hits when we find that the
5369 value hasn't changed, as reads don't cause
5370 changes. This still gives false positives when
5371 the program writes the same value to memory as
5372 what there was already in memory (we will confuse
5373 it for a read), but it's much better than
5374 nothing. */
5375
5376 int other_write_watchpoint = 0;
5377
5378 if (bl->watchpoint_type == hw_read)
5379 {
5380 struct breakpoint *other_b;
5381
5382 ALL_BREAKPOINTS (other_b)
5383 if (other_b->type == bp_hardware_watchpoint
5384 || other_b->type == bp_access_watchpoint)
5385 {
5386 struct watchpoint *other_w =
5387 (struct watchpoint *) other_b;
5388
5389 if (other_w->watchpoint_triggered
5390 == watch_triggered_yes)
5391 {
5392 other_write_watchpoint = 1;
5393 break;
5394 }
5395 }
5396 }
5397
5398 if (other_write_watchpoint
5399 || bl->watchpoint_type == hw_access)
5400 {
5401 /* We're watching the same memory for writes,
5402 and the value changed since the last time we
5403 updated it, so this trap must be for a write.
5404 Ignore it. */
5405 bs->print_it = print_it_noop;
5406 bs->stop = 0;
5407 }
5408 }
5409 break;
5410 case WP_VALUE_NOT_CHANGED:
5411 if (b->base.type == bp_hardware_watchpoint
5412 || b->base.type == bp_watchpoint)
5413 {
5414 /* Don't stop: write watchpoints shouldn't fire if
5415 the value hasn't changed. */
5416 bs->print_it = print_it_noop;
5417 bs->stop = 0;
5418 }
5419 /* Stop. */
5420 break;
5421 default:
5422 /* Can't happen. */
5423 case 0:
5424 /* Error from catch_errors. */
5425 {
5426 SWITCH_THRU_ALL_UIS ()
5427 {
5428 printf_filtered (_("Watchpoint %d deleted.\n"),
5429 b->base.number);
5430 }
5431 watchpoint_del_at_next_stop (b);
5432 /* We've already printed what needs to be printed. */
5433 bs->print_it = print_it_done;
5434 }
5435 break;
5436 }
5437 }
5438 else /* must_check_value == 0 */
5439 {
5440 /* This is a case where some watchpoint(s) triggered, but
5441 not at the address of this watchpoint, or else no
5442 watchpoint triggered after all. So don't print
5443 anything for this watchpoint. */
5444 bs->print_it = print_it_noop;
5445 bs->stop = 0;
5446 }
5447 }
5448 }
5449
5450 /* For breakpoints that are currently marked as telling gdb to stop,
5451 check conditions (condition proper, frame, thread and ignore count)
5452 of breakpoint referred to by BS. If we should not stop for this
5453 breakpoint, set BS->stop to 0. */
5454
5455 static void
5456 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5457 {
5458 const struct bp_location *bl;
5459 struct breakpoint *b;
5460 int value_is_zero = 0;
5461 struct expression *cond;
5462
5463 gdb_assert (bs->stop);
5464
5465 /* BS is built for existing struct breakpoint. */
5466 bl = bs->bp_location_at;
5467 gdb_assert (bl != NULL);
5468 b = bs->breakpoint_at;
5469 gdb_assert (b != NULL);
5470
5471 /* Even if the target evaluated the condition on its end and notified GDB, we
5472 need to do so again since GDB does not know if we stopped due to a
5473 breakpoint or a single step breakpoint. */
5474
5475 if (frame_id_p (b->frame_id)
5476 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5477 {
5478 bs->stop = 0;
5479 return;
5480 }
5481
5482 /* If this is a thread/task-specific breakpoint, don't waste cpu
5483 evaluating the condition if this isn't the specified
5484 thread/task. */
5485 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5486 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5487
5488 {
5489 bs->stop = 0;
5490 return;
5491 }
5492
5493 /* Evaluate extension language breakpoints that have a "stop" method
5494 implemented. */
5495 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5496
5497 if (is_watchpoint (b))
5498 {
5499 struct watchpoint *w = (struct watchpoint *) b;
5500
5501 cond = w->cond_exp.get ();
5502 }
5503 else
5504 cond = bl->cond.get ();
5505
5506 if (cond && b->disposition != disp_del_at_next_stop)
5507 {
5508 int within_current_scope = 1;
5509 struct watchpoint * w;
5510
5511 /* We use value_mark and value_free_to_mark because it could
5512 be a long time before we return to the command level and
5513 call free_all_values. We can't call free_all_values
5514 because we might be in the middle of evaluating a
5515 function call. */
5516 struct value *mark = value_mark ();
5517
5518 if (is_watchpoint (b))
5519 w = (struct watchpoint *) b;
5520 else
5521 w = NULL;
5522
5523 /* Need to select the frame, with all that implies so that
5524 the conditions will have the right context. Because we
5525 use the frame, we will not see an inlined function's
5526 variables when we arrive at a breakpoint at the start
5527 of the inlined function; the current frame will be the
5528 call site. */
5529 if (w == NULL || w->cond_exp_valid_block == NULL)
5530 select_frame (get_current_frame ());
5531 else
5532 {
5533 struct frame_info *frame;
5534
5535 /* For local watchpoint expressions, which particular
5536 instance of a local is being watched matters, so we
5537 keep track of the frame to evaluate the expression
5538 in. To evaluate the condition however, it doesn't
5539 really matter which instantiation of the function
5540 where the condition makes sense triggers the
5541 watchpoint. This allows an expression like "watch
5542 global if q > 10" set in `func', catch writes to
5543 global on all threads that call `func', or catch
5544 writes on all recursive calls of `func' by a single
5545 thread. We simply always evaluate the condition in
5546 the innermost frame that's executing where it makes
5547 sense to evaluate the condition. It seems
5548 intuitive. */
5549 frame = block_innermost_frame (w->cond_exp_valid_block);
5550 if (frame != NULL)
5551 select_frame (frame);
5552 else
5553 within_current_scope = 0;
5554 }
5555 if (within_current_scope)
5556 value_is_zero
5557 = catch_errors (breakpoint_cond_eval, cond,
5558 "Error in testing breakpoint condition:\n",
5559 RETURN_MASK_ALL);
5560 else
5561 {
5562 warning (_("Watchpoint condition cannot be tested "
5563 "in the current scope"));
5564 /* If we failed to set the right context for this
5565 watchpoint, unconditionally report it. */
5566 value_is_zero = 0;
5567 }
5568 /* FIXME-someday, should give breakpoint #. */
5569 value_free_to_mark (mark);
5570 }
5571
5572 if (cond && value_is_zero)
5573 {
5574 bs->stop = 0;
5575 }
5576 else if (b->ignore_count > 0)
5577 {
5578 b->ignore_count--;
5579 bs->stop = 0;
5580 /* Increase the hit count even though we don't stop. */
5581 ++(b->hit_count);
5582 observer_notify_breakpoint_modified (b);
5583 }
5584 }
5585
5586 /* Returns true if we need to track moribund locations of LOC's type
5587 on the current target. */
5588
5589 static int
5590 need_moribund_for_location_type (struct bp_location *loc)
5591 {
5592 return ((loc->loc_type == bp_loc_software_breakpoint
5593 && !target_supports_stopped_by_sw_breakpoint ())
5594 || (loc->loc_type == bp_loc_hardware_breakpoint
5595 && !target_supports_stopped_by_hw_breakpoint ()));
5596 }
5597
5598
5599 /* Get a bpstat associated with having just stopped at address
5600 BP_ADDR in thread PTID.
5601
5602 Determine whether we stopped at a breakpoint, etc, or whether we
5603 don't understand this stop. Result is a chain of bpstat's such
5604 that:
5605
5606 if we don't understand the stop, the result is a null pointer.
5607
5608 if we understand why we stopped, the result is not null.
5609
5610 Each element of the chain refers to a particular breakpoint or
5611 watchpoint at which we have stopped. (We may have stopped for
5612 several reasons concurrently.)
5613
5614 Each element of the chain has valid next, breakpoint_at,
5615 commands, FIXME??? fields. */
5616
5617 bpstat
5618 bpstat_stop_status (struct address_space *aspace,
5619 CORE_ADDR bp_addr, ptid_t ptid,
5620 const struct target_waitstatus *ws)
5621 {
5622 struct breakpoint *b = NULL;
5623 struct bp_location *bl;
5624 struct bp_location *loc;
5625 /* First item of allocated bpstat's. */
5626 bpstat bs_head = NULL, *bs_link = &bs_head;
5627 /* Pointer to the last thing in the chain currently. */
5628 bpstat bs;
5629 int ix;
5630 int need_remove_insert;
5631 int removed_any;
5632
5633 /* First, build the bpstat chain with locations that explain a
5634 target stop, while being careful to not set the target running,
5635 as that may invalidate locations (in particular watchpoint
5636 locations are recreated). Resuming will happen here with
5637 breakpoint conditions or watchpoint expressions that include
5638 inferior function calls. */
5639
5640 ALL_BREAKPOINTS (b)
5641 {
5642 if (!breakpoint_enabled (b))
5643 continue;
5644
5645 for (bl = b->loc; bl != NULL; bl = bl->next)
5646 {
5647 /* For hardware watchpoints, we look only at the first
5648 location. The watchpoint_check function will work on the
5649 entire expression, not the individual locations. For
5650 read watchpoints, the watchpoints_triggered function has
5651 checked all locations already. */
5652 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5653 break;
5654
5655 if (!bl->enabled || bl->shlib_disabled)
5656 continue;
5657
5658 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5659 continue;
5660
5661 /* Come here if it's a watchpoint, or if the break address
5662 matches. */
5663
5664 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5665 explain stop. */
5666
5667 /* Assume we stop. Should we find a watchpoint that is not
5668 actually triggered, or if the condition of the breakpoint
5669 evaluates as false, we'll reset 'stop' to 0. */
5670 bs->stop = 1;
5671 bs->print = 1;
5672
5673 /* If this is a scope breakpoint, mark the associated
5674 watchpoint as triggered so that we will handle the
5675 out-of-scope event. We'll get to the watchpoint next
5676 iteration. */
5677 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5678 {
5679 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5680
5681 w->watchpoint_triggered = watch_triggered_yes;
5682 }
5683 }
5684 }
5685
5686 /* Check if a moribund breakpoint explains the stop. */
5687 if (!target_supports_stopped_by_sw_breakpoint ()
5688 || !target_supports_stopped_by_hw_breakpoint ())
5689 {
5690 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5691 {
5692 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5693 && need_moribund_for_location_type (loc))
5694 {
5695 bs = bpstat_alloc (loc, &bs_link);
5696 /* For hits of moribund locations, we should just proceed. */
5697 bs->stop = 0;
5698 bs->print = 0;
5699 bs->print_it = print_it_noop;
5700 }
5701 }
5702 }
5703
5704 /* A bit of special processing for shlib breakpoints. We need to
5705 process solib loading here, so that the lists of loaded and
5706 unloaded libraries are correct before we handle "catch load" and
5707 "catch unload". */
5708 for (bs = bs_head; bs != NULL; bs = bs->next)
5709 {
5710 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5711 {
5712 handle_solib_event ();
5713 break;
5714 }
5715 }
5716
5717 /* Now go through the locations that caused the target to stop, and
5718 check whether we're interested in reporting this stop to higher
5719 layers, or whether we should resume the target transparently. */
5720
5721 removed_any = 0;
5722
5723 for (bs = bs_head; bs != NULL; bs = bs->next)
5724 {
5725 if (!bs->stop)
5726 continue;
5727
5728 b = bs->breakpoint_at;
5729 b->ops->check_status (bs);
5730 if (bs->stop)
5731 {
5732 bpstat_check_breakpoint_conditions (bs, ptid);
5733
5734 if (bs->stop)
5735 {
5736 ++(b->hit_count);
5737 observer_notify_breakpoint_modified (b);
5738
5739 /* We will stop here. */
5740 if (b->disposition == disp_disable)
5741 {
5742 --(b->enable_count);
5743 if (b->enable_count <= 0)
5744 b->enable_state = bp_disabled;
5745 removed_any = 1;
5746 }
5747 if (b->silent)
5748 bs->print = 0;
5749 bs->commands = b->commands;
5750 incref_counted_command_line (bs->commands);
5751 if (command_line_is_silent (bs->commands
5752 ? bs->commands->commands : NULL))
5753 bs->print = 0;
5754
5755 b->ops->after_condition_true (bs);
5756 }
5757
5758 }
5759
5760 /* Print nothing for this entry if we don't stop or don't
5761 print. */
5762 if (!bs->stop || !bs->print)
5763 bs->print_it = print_it_noop;
5764 }
5765
5766 /* If we aren't stopping, the value of some hardware watchpoint may
5767 not have changed, but the intermediate memory locations we are
5768 watching may have. Don't bother if we're stopping; this will get
5769 done later. */
5770 need_remove_insert = 0;
5771 if (! bpstat_causes_stop (bs_head))
5772 for (bs = bs_head; bs != NULL; bs = bs->next)
5773 if (!bs->stop
5774 && bs->breakpoint_at
5775 && is_hardware_watchpoint (bs->breakpoint_at))
5776 {
5777 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5778
5779 update_watchpoint (w, 0 /* don't reparse. */);
5780 need_remove_insert = 1;
5781 }
5782
5783 if (need_remove_insert)
5784 update_global_location_list (UGLL_MAY_INSERT);
5785 else if (removed_any)
5786 update_global_location_list (UGLL_DONT_INSERT);
5787
5788 return bs_head;
5789 }
5790
5791 static void
5792 handle_jit_event (void)
5793 {
5794 struct frame_info *frame;
5795 struct gdbarch *gdbarch;
5796
5797 if (debug_infrun)
5798 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5799
5800 /* Switch terminal for any messages produced by
5801 breakpoint_re_set. */
5802 target_terminal_ours_for_output ();
5803
5804 frame = get_current_frame ();
5805 gdbarch = get_frame_arch (frame);
5806
5807 jit_event_handler (gdbarch);
5808
5809 target_terminal_inferior ();
5810 }
5811
5812 /* Prepare WHAT final decision for infrun. */
5813
5814 /* Decide what infrun needs to do with this bpstat. */
5815
5816 struct bpstat_what
5817 bpstat_what (bpstat bs_head)
5818 {
5819 struct bpstat_what retval;
5820 bpstat bs;
5821
5822 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5823 retval.call_dummy = STOP_NONE;
5824 retval.is_longjmp = 0;
5825
5826 for (bs = bs_head; bs != NULL; bs = bs->next)
5827 {
5828 /* Extract this BS's action. After processing each BS, we check
5829 if its action overrides all we've seem so far. */
5830 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5831 enum bptype bptype;
5832
5833 if (bs->breakpoint_at == NULL)
5834 {
5835 /* I suspect this can happen if it was a momentary
5836 breakpoint which has since been deleted. */
5837 bptype = bp_none;
5838 }
5839 else
5840 bptype = bs->breakpoint_at->type;
5841
5842 switch (bptype)
5843 {
5844 case bp_none:
5845 break;
5846 case bp_breakpoint:
5847 case bp_hardware_breakpoint:
5848 case bp_single_step:
5849 case bp_until:
5850 case bp_finish:
5851 case bp_shlib_event:
5852 if (bs->stop)
5853 {
5854 if (bs->print)
5855 this_action = BPSTAT_WHAT_STOP_NOISY;
5856 else
5857 this_action = BPSTAT_WHAT_STOP_SILENT;
5858 }
5859 else
5860 this_action = BPSTAT_WHAT_SINGLE;
5861 break;
5862 case bp_watchpoint:
5863 case bp_hardware_watchpoint:
5864 case bp_read_watchpoint:
5865 case bp_access_watchpoint:
5866 if (bs->stop)
5867 {
5868 if (bs->print)
5869 this_action = BPSTAT_WHAT_STOP_NOISY;
5870 else
5871 this_action = BPSTAT_WHAT_STOP_SILENT;
5872 }
5873 else
5874 {
5875 /* There was a watchpoint, but we're not stopping.
5876 This requires no further action. */
5877 }
5878 break;
5879 case bp_longjmp:
5880 case bp_longjmp_call_dummy:
5881 case bp_exception:
5882 if (bs->stop)
5883 {
5884 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5885 retval.is_longjmp = bptype != bp_exception;
5886 }
5887 else
5888 this_action = BPSTAT_WHAT_SINGLE;
5889 break;
5890 case bp_longjmp_resume:
5891 case bp_exception_resume:
5892 if (bs->stop)
5893 {
5894 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5895 retval.is_longjmp = bptype == bp_longjmp_resume;
5896 }
5897 else
5898 this_action = BPSTAT_WHAT_SINGLE;
5899 break;
5900 case bp_step_resume:
5901 if (bs->stop)
5902 this_action = BPSTAT_WHAT_STEP_RESUME;
5903 else
5904 {
5905 /* It is for the wrong frame. */
5906 this_action = BPSTAT_WHAT_SINGLE;
5907 }
5908 break;
5909 case bp_hp_step_resume:
5910 if (bs->stop)
5911 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5912 else
5913 {
5914 /* It is for the wrong frame. */
5915 this_action = BPSTAT_WHAT_SINGLE;
5916 }
5917 break;
5918 case bp_watchpoint_scope:
5919 case bp_thread_event:
5920 case bp_overlay_event:
5921 case bp_longjmp_master:
5922 case bp_std_terminate_master:
5923 case bp_exception_master:
5924 this_action = BPSTAT_WHAT_SINGLE;
5925 break;
5926 case bp_catchpoint:
5927 if (bs->stop)
5928 {
5929 if (bs->print)
5930 this_action = BPSTAT_WHAT_STOP_NOISY;
5931 else
5932 this_action = BPSTAT_WHAT_STOP_SILENT;
5933 }
5934 else
5935 {
5936 /* There was a catchpoint, but we're not stopping.
5937 This requires no further action. */
5938 }
5939 break;
5940 case bp_jit_event:
5941 this_action = BPSTAT_WHAT_SINGLE;
5942 break;
5943 case bp_call_dummy:
5944 /* Make sure the action is stop (silent or noisy),
5945 so infrun.c pops the dummy frame. */
5946 retval.call_dummy = STOP_STACK_DUMMY;
5947 this_action = BPSTAT_WHAT_STOP_SILENT;
5948 break;
5949 case bp_std_terminate:
5950 /* Make sure the action is stop (silent or noisy),
5951 so infrun.c pops the dummy frame. */
5952 retval.call_dummy = STOP_STD_TERMINATE;
5953 this_action = BPSTAT_WHAT_STOP_SILENT;
5954 break;
5955 case bp_tracepoint:
5956 case bp_fast_tracepoint:
5957 case bp_static_tracepoint:
5958 /* Tracepoint hits should not be reported back to GDB, and
5959 if one got through somehow, it should have been filtered
5960 out already. */
5961 internal_error (__FILE__, __LINE__,
5962 _("bpstat_what: tracepoint encountered"));
5963 break;
5964 case bp_gnu_ifunc_resolver:
5965 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5966 this_action = BPSTAT_WHAT_SINGLE;
5967 break;
5968 case bp_gnu_ifunc_resolver_return:
5969 /* The breakpoint will be removed, execution will restart from the
5970 PC of the former breakpoint. */
5971 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5972 break;
5973
5974 case bp_dprintf:
5975 if (bs->stop)
5976 this_action = BPSTAT_WHAT_STOP_SILENT;
5977 else
5978 this_action = BPSTAT_WHAT_SINGLE;
5979 break;
5980
5981 default:
5982 internal_error (__FILE__, __LINE__,
5983 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5984 }
5985
5986 retval.main_action = std::max (retval.main_action, this_action);
5987 }
5988
5989 return retval;
5990 }
5991
5992 void
5993 bpstat_run_callbacks (bpstat bs_head)
5994 {
5995 bpstat bs;
5996
5997 for (bs = bs_head; bs != NULL; bs = bs->next)
5998 {
5999 struct breakpoint *b = bs->breakpoint_at;
6000
6001 if (b == NULL)
6002 continue;
6003 switch (b->type)
6004 {
6005 case bp_jit_event:
6006 handle_jit_event ();
6007 break;
6008 case bp_gnu_ifunc_resolver:
6009 gnu_ifunc_resolver_stop (b);
6010 break;
6011 case bp_gnu_ifunc_resolver_return:
6012 gnu_ifunc_resolver_return_stop (b);
6013 break;
6014 }
6015 }
6016 }
6017
6018 /* Nonzero if we should step constantly (e.g. watchpoints on machines
6019 without hardware support). This isn't related to a specific bpstat,
6020 just to things like whether watchpoints are set. */
6021
6022 int
6023 bpstat_should_step (void)
6024 {
6025 struct breakpoint *b;
6026
6027 ALL_BREAKPOINTS (b)
6028 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6029 return 1;
6030 return 0;
6031 }
6032
6033 int
6034 bpstat_causes_stop (bpstat bs)
6035 {
6036 for (; bs != NULL; bs = bs->next)
6037 if (bs->stop)
6038 return 1;
6039
6040 return 0;
6041 }
6042
6043 \f
6044
6045 /* Compute a string of spaces suitable to indent the next line
6046 so it starts at the position corresponding to the table column
6047 named COL_NAME in the currently active table of UIOUT. */
6048
6049 static char *
6050 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6051 {
6052 static char wrap_indent[80];
6053 int i, total_width, width, align;
6054 const char *text;
6055
6056 total_width = 0;
6057 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6058 {
6059 if (strcmp (text, col_name) == 0)
6060 {
6061 gdb_assert (total_width < sizeof wrap_indent);
6062 memset (wrap_indent, ' ', total_width);
6063 wrap_indent[total_width] = 0;
6064
6065 return wrap_indent;
6066 }
6067
6068 total_width += width + 1;
6069 }
6070
6071 return NULL;
6072 }
6073
6074 /* Determine if the locations of this breakpoint will have their conditions
6075 evaluated by the target, host or a mix of both. Returns the following:
6076
6077 "host": Host evals condition.
6078 "host or target": Host or Target evals condition.
6079 "target": Target evals condition.
6080 */
6081
6082 static const char *
6083 bp_condition_evaluator (struct breakpoint *b)
6084 {
6085 struct bp_location *bl;
6086 char host_evals = 0;
6087 char target_evals = 0;
6088
6089 if (!b)
6090 return NULL;
6091
6092 if (!is_breakpoint (b))
6093 return NULL;
6094
6095 if (gdb_evaluates_breakpoint_condition_p ()
6096 || !target_supports_evaluation_of_breakpoint_conditions ())
6097 return condition_evaluation_host;
6098
6099 for (bl = b->loc; bl; bl = bl->next)
6100 {
6101 if (bl->cond_bytecode)
6102 target_evals++;
6103 else
6104 host_evals++;
6105 }
6106
6107 if (host_evals && target_evals)
6108 return condition_evaluation_both;
6109 else if (target_evals)
6110 return condition_evaluation_target;
6111 else
6112 return condition_evaluation_host;
6113 }
6114
6115 /* Determine the breakpoint location's condition evaluator. This is
6116 similar to bp_condition_evaluator, but for locations. */
6117
6118 static const char *
6119 bp_location_condition_evaluator (struct bp_location *bl)
6120 {
6121 if (bl && !is_breakpoint (bl->owner))
6122 return NULL;
6123
6124 if (gdb_evaluates_breakpoint_condition_p ()
6125 || !target_supports_evaluation_of_breakpoint_conditions ())
6126 return condition_evaluation_host;
6127
6128 if (bl && bl->cond_bytecode)
6129 return condition_evaluation_target;
6130 else
6131 return condition_evaluation_host;
6132 }
6133
6134 /* Print the LOC location out of the list of B->LOC locations. */
6135
6136 static void
6137 print_breakpoint_location (struct breakpoint *b,
6138 struct bp_location *loc)
6139 {
6140 struct ui_out *uiout = current_uiout;
6141 struct cleanup *old_chain = save_current_program_space ();
6142
6143 if (loc != NULL && loc->shlib_disabled)
6144 loc = NULL;
6145
6146 if (loc != NULL)
6147 set_current_program_space (loc->pspace);
6148
6149 if (b->display_canonical)
6150 uiout->field_string ("what", event_location_to_string (b->location.get ()));
6151 else if (loc && loc->symtab)
6152 {
6153 struct symbol *sym
6154 = find_pc_sect_function (loc->address, loc->section);
6155 if (sym)
6156 {
6157 uiout->text ("in ");
6158 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
6159 uiout->text (" ");
6160 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6161 uiout->text ("at ");
6162 }
6163 uiout->field_string ("file",
6164 symtab_to_filename_for_display (loc->symtab));
6165 uiout->text (":");
6166
6167 if (uiout->is_mi_like_p ())
6168 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6169
6170 uiout->field_int ("line", loc->line_number);
6171 }
6172 else if (loc)
6173 {
6174 string_file stb;
6175
6176 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6177 demangle, "");
6178 uiout->field_stream ("at", stb);
6179 }
6180 else
6181 {
6182 uiout->field_string ("pending",
6183 event_location_to_string (b->location.get ()));
6184 /* If extra_string is available, it could be holding a condition
6185 or dprintf arguments. In either case, make sure it is printed,
6186 too, but only for non-MI streams. */
6187 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6188 {
6189 if (b->type == bp_dprintf)
6190 uiout->text (",");
6191 else
6192 uiout->text (" ");
6193 uiout->text (b->extra_string);
6194 }
6195 }
6196
6197 if (loc && is_breakpoint (b)
6198 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6199 && bp_condition_evaluator (b) == condition_evaluation_both)
6200 {
6201 uiout->text (" (");
6202 uiout->field_string ("evaluated-by",
6203 bp_location_condition_evaluator (loc));
6204 uiout->text (")");
6205 }
6206
6207 do_cleanups (old_chain);
6208 }
6209
6210 static const char *
6211 bptype_string (enum bptype type)
6212 {
6213 struct ep_type_description
6214 {
6215 enum bptype type;
6216 const char *description;
6217 };
6218 static struct ep_type_description bptypes[] =
6219 {
6220 {bp_none, "?deleted?"},
6221 {bp_breakpoint, "breakpoint"},
6222 {bp_hardware_breakpoint, "hw breakpoint"},
6223 {bp_single_step, "sw single-step"},
6224 {bp_until, "until"},
6225 {bp_finish, "finish"},
6226 {bp_watchpoint, "watchpoint"},
6227 {bp_hardware_watchpoint, "hw watchpoint"},
6228 {bp_read_watchpoint, "read watchpoint"},
6229 {bp_access_watchpoint, "acc watchpoint"},
6230 {bp_longjmp, "longjmp"},
6231 {bp_longjmp_resume, "longjmp resume"},
6232 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6233 {bp_exception, "exception"},
6234 {bp_exception_resume, "exception resume"},
6235 {bp_step_resume, "step resume"},
6236 {bp_hp_step_resume, "high-priority step resume"},
6237 {bp_watchpoint_scope, "watchpoint scope"},
6238 {bp_call_dummy, "call dummy"},
6239 {bp_std_terminate, "std::terminate"},
6240 {bp_shlib_event, "shlib events"},
6241 {bp_thread_event, "thread events"},
6242 {bp_overlay_event, "overlay events"},
6243 {bp_longjmp_master, "longjmp master"},
6244 {bp_std_terminate_master, "std::terminate master"},
6245 {bp_exception_master, "exception master"},
6246 {bp_catchpoint, "catchpoint"},
6247 {bp_tracepoint, "tracepoint"},
6248 {bp_fast_tracepoint, "fast tracepoint"},
6249 {bp_static_tracepoint, "static tracepoint"},
6250 {bp_dprintf, "dprintf"},
6251 {bp_jit_event, "jit events"},
6252 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6253 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6254 };
6255
6256 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6257 || ((int) type != bptypes[(int) type].type))
6258 internal_error (__FILE__, __LINE__,
6259 _("bptypes table does not describe type #%d."),
6260 (int) type);
6261
6262 return bptypes[(int) type].description;
6263 }
6264
6265 /* For MI, output a field named 'thread-groups' with a list as the value.
6266 For CLI, prefix the list with the string 'inf'. */
6267
6268 static void
6269 output_thread_groups (struct ui_out *uiout,
6270 const char *field_name,
6271 VEC(int) *inf_num,
6272 int mi_only)
6273 {
6274 struct cleanup *back_to;
6275 int is_mi = uiout->is_mi_like_p ();
6276 int inf;
6277 int i;
6278
6279 /* For backward compatibility, don't display inferiors in CLI unless
6280 there are several. Always display them for MI. */
6281 if (!is_mi && mi_only)
6282 return;
6283
6284 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
6285
6286 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6287 {
6288 if (is_mi)
6289 {
6290 char mi_group[10];
6291
6292 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6293 uiout->field_string (NULL, mi_group);
6294 }
6295 else
6296 {
6297 if (i == 0)
6298 uiout->text (" inf ");
6299 else
6300 uiout->text (", ");
6301
6302 uiout->text (plongest (inf));
6303 }
6304 }
6305
6306 do_cleanups (back_to);
6307 }
6308
6309 /* Print B to gdb_stdout. */
6310
6311 static void
6312 print_one_breakpoint_location (struct breakpoint *b,
6313 struct bp_location *loc,
6314 int loc_number,
6315 struct bp_location **last_loc,
6316 int allflag)
6317 {
6318 struct command_line *l;
6319 static char bpenables[] = "nynny";
6320
6321 struct ui_out *uiout = current_uiout;
6322 int header_of_multiple = 0;
6323 int part_of_multiple = (loc != NULL);
6324 struct value_print_options opts;
6325
6326 get_user_print_options (&opts);
6327
6328 gdb_assert (!loc || loc_number != 0);
6329 /* See comment in print_one_breakpoint concerning treatment of
6330 breakpoints with single disabled location. */
6331 if (loc == NULL
6332 && (b->loc != NULL
6333 && (b->loc->next != NULL || !b->loc->enabled)))
6334 header_of_multiple = 1;
6335 if (loc == NULL)
6336 loc = b->loc;
6337
6338 annotate_record ();
6339
6340 /* 1 */
6341 annotate_field (0);
6342 if (part_of_multiple)
6343 {
6344 char *formatted;
6345 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6346 uiout->field_string ("number", formatted);
6347 xfree (formatted);
6348 }
6349 else
6350 {
6351 uiout->field_int ("number", b->number);
6352 }
6353
6354 /* 2 */
6355 annotate_field (1);
6356 if (part_of_multiple)
6357 uiout->field_skip ("type");
6358 else
6359 uiout->field_string ("type", bptype_string (b->type));
6360
6361 /* 3 */
6362 annotate_field (2);
6363 if (part_of_multiple)
6364 uiout->field_skip ("disp");
6365 else
6366 uiout->field_string ("disp", bpdisp_text (b->disposition));
6367
6368
6369 /* 4 */
6370 annotate_field (3);
6371 if (part_of_multiple)
6372 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6373 else
6374 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6375 uiout->spaces (2);
6376
6377
6378 /* 5 and 6 */
6379 if (b->ops != NULL && b->ops->print_one != NULL)
6380 {
6381 /* Although the print_one can possibly print all locations,
6382 calling it here is not likely to get any nice result. So,
6383 make sure there's just one location. */
6384 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6385 b->ops->print_one (b, last_loc);
6386 }
6387 else
6388 switch (b->type)
6389 {
6390 case bp_none:
6391 internal_error (__FILE__, __LINE__,
6392 _("print_one_breakpoint: bp_none encountered\n"));
6393 break;
6394
6395 case bp_watchpoint:
6396 case bp_hardware_watchpoint:
6397 case bp_read_watchpoint:
6398 case bp_access_watchpoint:
6399 {
6400 struct watchpoint *w = (struct watchpoint *) b;
6401
6402 /* Field 4, the address, is omitted (which makes the columns
6403 not line up too nicely with the headers, but the effect
6404 is relatively readable). */
6405 if (opts.addressprint)
6406 uiout->field_skip ("addr");
6407 annotate_field (5);
6408 uiout->field_string ("what", w->exp_string);
6409 }
6410 break;
6411
6412 case bp_breakpoint:
6413 case bp_hardware_breakpoint:
6414 case bp_single_step:
6415 case bp_until:
6416 case bp_finish:
6417 case bp_longjmp:
6418 case bp_longjmp_resume:
6419 case bp_longjmp_call_dummy:
6420 case bp_exception:
6421 case bp_exception_resume:
6422 case bp_step_resume:
6423 case bp_hp_step_resume:
6424 case bp_watchpoint_scope:
6425 case bp_call_dummy:
6426 case bp_std_terminate:
6427 case bp_shlib_event:
6428 case bp_thread_event:
6429 case bp_overlay_event:
6430 case bp_longjmp_master:
6431 case bp_std_terminate_master:
6432 case bp_exception_master:
6433 case bp_tracepoint:
6434 case bp_fast_tracepoint:
6435 case bp_static_tracepoint:
6436 case bp_dprintf:
6437 case bp_jit_event:
6438 case bp_gnu_ifunc_resolver:
6439 case bp_gnu_ifunc_resolver_return:
6440 if (opts.addressprint)
6441 {
6442 annotate_field (4);
6443 if (header_of_multiple)
6444 uiout->field_string ("addr", "<MULTIPLE>");
6445 else if (b->loc == NULL || loc->shlib_disabled)
6446 uiout->field_string ("addr", "<PENDING>");
6447 else
6448 uiout->field_core_addr ("addr",
6449 loc->gdbarch, loc->address);
6450 }
6451 annotate_field (5);
6452 if (!header_of_multiple)
6453 print_breakpoint_location (b, loc);
6454 if (b->loc)
6455 *last_loc = b->loc;
6456 break;
6457 }
6458
6459
6460 if (loc != NULL && !header_of_multiple)
6461 {
6462 struct inferior *inf;
6463 VEC(int) *inf_num = NULL;
6464 int mi_only = 1;
6465
6466 ALL_INFERIORS (inf)
6467 {
6468 if (inf->pspace == loc->pspace)
6469 VEC_safe_push (int, inf_num, inf->num);
6470 }
6471
6472 /* For backward compatibility, don't display inferiors in CLI unless
6473 there are several. Always display for MI. */
6474 if (allflag
6475 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6476 && (number_of_program_spaces () > 1
6477 || number_of_inferiors () > 1)
6478 /* LOC is for existing B, it cannot be in
6479 moribund_locations and thus having NULL OWNER. */
6480 && loc->owner->type != bp_catchpoint))
6481 mi_only = 0;
6482 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6483 VEC_free (int, inf_num);
6484 }
6485
6486 if (!part_of_multiple)
6487 {
6488 if (b->thread != -1)
6489 {
6490 /* FIXME: This seems to be redundant and lost here; see the
6491 "stop only in" line a little further down. */
6492 uiout->text (" thread ");
6493 uiout->field_int ("thread", b->thread);
6494 }
6495 else if (b->task != 0)
6496 {
6497 uiout->text (" task ");
6498 uiout->field_int ("task", b->task);
6499 }
6500 }
6501
6502 uiout->text ("\n");
6503
6504 if (!part_of_multiple)
6505 b->ops->print_one_detail (b, uiout);
6506
6507 if (part_of_multiple && frame_id_p (b->frame_id))
6508 {
6509 annotate_field (6);
6510 uiout->text ("\tstop only in stack frame at ");
6511 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6512 the frame ID. */
6513 uiout->field_core_addr ("frame",
6514 b->gdbarch, b->frame_id.stack_addr);
6515 uiout->text ("\n");
6516 }
6517
6518 if (!part_of_multiple && b->cond_string)
6519 {
6520 annotate_field (7);
6521 if (is_tracepoint (b))
6522 uiout->text ("\ttrace only if ");
6523 else
6524 uiout->text ("\tstop only if ");
6525 uiout->field_string ("cond", b->cond_string);
6526
6527 /* Print whether the target is doing the breakpoint's condition
6528 evaluation. If GDB is doing the evaluation, don't print anything. */
6529 if (is_breakpoint (b)
6530 && breakpoint_condition_evaluation_mode ()
6531 == condition_evaluation_target)
6532 {
6533 uiout->text (" (");
6534 uiout->field_string ("evaluated-by",
6535 bp_condition_evaluator (b));
6536 uiout->text (" evals)");
6537 }
6538 uiout->text ("\n");
6539 }
6540
6541 if (!part_of_multiple && b->thread != -1)
6542 {
6543 /* FIXME should make an annotation for this. */
6544 uiout->text ("\tstop only in thread ");
6545 if (uiout->is_mi_like_p ())
6546 uiout->field_int ("thread", b->thread);
6547 else
6548 {
6549 struct thread_info *thr = find_thread_global_id (b->thread);
6550
6551 uiout->field_string ("thread", print_thread_id (thr));
6552 }
6553 uiout->text ("\n");
6554 }
6555
6556 if (!part_of_multiple)
6557 {
6558 if (b->hit_count)
6559 {
6560 /* FIXME should make an annotation for this. */
6561 if (is_catchpoint (b))
6562 uiout->text ("\tcatchpoint");
6563 else if (is_tracepoint (b))
6564 uiout->text ("\ttracepoint");
6565 else
6566 uiout->text ("\tbreakpoint");
6567 uiout->text (" already hit ");
6568 uiout->field_int ("times", b->hit_count);
6569 if (b->hit_count == 1)
6570 uiout->text (" time\n");
6571 else
6572 uiout->text (" times\n");
6573 }
6574 else
6575 {
6576 /* Output the count also if it is zero, but only if this is mi. */
6577 if (uiout->is_mi_like_p ())
6578 uiout->field_int ("times", b->hit_count);
6579 }
6580 }
6581
6582 if (!part_of_multiple && b->ignore_count)
6583 {
6584 annotate_field (8);
6585 uiout->text ("\tignore next ");
6586 uiout->field_int ("ignore", b->ignore_count);
6587 uiout->text (" hits\n");
6588 }
6589
6590 /* Note that an enable count of 1 corresponds to "enable once"
6591 behavior, which is reported by the combination of enablement and
6592 disposition, so we don't need to mention it here. */
6593 if (!part_of_multiple && b->enable_count > 1)
6594 {
6595 annotate_field (8);
6596 uiout->text ("\tdisable after ");
6597 /* Tweak the wording to clarify that ignore and enable counts
6598 are distinct, and have additive effect. */
6599 if (b->ignore_count)
6600 uiout->text ("additional ");
6601 else
6602 uiout->text ("next ");
6603 uiout->field_int ("enable", b->enable_count);
6604 uiout->text (" hits\n");
6605 }
6606
6607 if (!part_of_multiple && is_tracepoint (b))
6608 {
6609 struct tracepoint *tp = (struct tracepoint *) b;
6610
6611 if (tp->traceframe_usage)
6612 {
6613 uiout->text ("\ttrace buffer usage ");
6614 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6615 uiout->text (" bytes\n");
6616 }
6617 }
6618
6619 l = b->commands ? b->commands->commands : NULL;
6620 if (!part_of_multiple && l)
6621 {
6622 annotate_field (9);
6623 ui_out_emit_tuple tuple_emitter (uiout, "script");
6624 print_command_lines (uiout, l, 4);
6625 }
6626
6627 if (is_tracepoint (b))
6628 {
6629 struct tracepoint *t = (struct tracepoint *) b;
6630
6631 if (!part_of_multiple && t->pass_count)
6632 {
6633 annotate_field (10);
6634 uiout->text ("\tpass count ");
6635 uiout->field_int ("pass", t->pass_count);
6636 uiout->text (" \n");
6637 }
6638
6639 /* Don't display it when tracepoint or tracepoint location is
6640 pending. */
6641 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6642 {
6643 annotate_field (11);
6644
6645 if (uiout->is_mi_like_p ())
6646 uiout->field_string ("installed",
6647 loc->inserted ? "y" : "n");
6648 else
6649 {
6650 if (loc->inserted)
6651 uiout->text ("\t");
6652 else
6653 uiout->text ("\tnot ");
6654 uiout->text ("installed on target\n");
6655 }
6656 }
6657 }
6658
6659 if (uiout->is_mi_like_p () && !part_of_multiple)
6660 {
6661 if (is_watchpoint (b))
6662 {
6663 struct watchpoint *w = (struct watchpoint *) b;
6664
6665 uiout->field_string ("original-location", w->exp_string);
6666 }
6667 else if (b->location != NULL
6668 && event_location_to_string (b->location.get ()) != NULL)
6669 uiout->field_string ("original-location",
6670 event_location_to_string (b->location.get ()));
6671 }
6672 }
6673
6674 static void
6675 print_one_breakpoint (struct breakpoint *b,
6676 struct bp_location **last_loc,
6677 int allflag)
6678 {
6679 struct ui_out *uiout = current_uiout;
6680
6681 {
6682 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6683
6684 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6685 }
6686
6687 /* If this breakpoint has custom print function,
6688 it's already printed. Otherwise, print individual
6689 locations, if any. */
6690 if (b->ops == NULL || b->ops->print_one == NULL)
6691 {
6692 /* If breakpoint has a single location that is disabled, we
6693 print it as if it had several locations, since otherwise it's
6694 hard to represent "breakpoint enabled, location disabled"
6695 situation.
6696
6697 Note that while hardware watchpoints have several locations
6698 internally, that's not a property exposed to user. */
6699 if (b->loc
6700 && !is_hardware_watchpoint (b)
6701 && (b->loc->next || !b->loc->enabled))
6702 {
6703 struct bp_location *loc;
6704 int n = 1;
6705
6706 for (loc = b->loc; loc; loc = loc->next, ++n)
6707 {
6708 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6709 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6710 }
6711 }
6712 }
6713 }
6714
6715 static int
6716 breakpoint_address_bits (struct breakpoint *b)
6717 {
6718 int print_address_bits = 0;
6719 struct bp_location *loc;
6720
6721 /* Software watchpoints that aren't watching memory don't have an
6722 address to print. */
6723 if (is_no_memory_software_watchpoint (b))
6724 return 0;
6725
6726 for (loc = b->loc; loc; loc = loc->next)
6727 {
6728 int addr_bit;
6729
6730 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6731 if (addr_bit > print_address_bits)
6732 print_address_bits = addr_bit;
6733 }
6734
6735 return print_address_bits;
6736 }
6737
6738 struct captured_breakpoint_query_args
6739 {
6740 int bnum;
6741 };
6742
6743 static int
6744 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6745 {
6746 struct captured_breakpoint_query_args *args
6747 = (struct captured_breakpoint_query_args *) data;
6748 struct breakpoint *b;
6749 struct bp_location *dummy_loc = NULL;
6750
6751 ALL_BREAKPOINTS (b)
6752 {
6753 if (args->bnum == b->number)
6754 {
6755 print_one_breakpoint (b, &dummy_loc, 0);
6756 return GDB_RC_OK;
6757 }
6758 }
6759 return GDB_RC_NONE;
6760 }
6761
6762 enum gdb_rc
6763 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6764 char **error_message)
6765 {
6766 struct captured_breakpoint_query_args args;
6767
6768 args.bnum = bnum;
6769 /* For the moment we don't trust print_one_breakpoint() to not throw
6770 an error. */
6771 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6772 error_message, RETURN_MASK_ALL) < 0)
6773 return GDB_RC_FAIL;
6774 else
6775 return GDB_RC_OK;
6776 }
6777
6778 /* Return true if this breakpoint was set by the user, false if it is
6779 internal or momentary. */
6780
6781 int
6782 user_breakpoint_p (struct breakpoint *b)
6783 {
6784 return b->number > 0;
6785 }
6786
6787 /* See breakpoint.h. */
6788
6789 int
6790 pending_breakpoint_p (struct breakpoint *b)
6791 {
6792 return b->loc == NULL;
6793 }
6794
6795 /* Print information on user settable breakpoint (watchpoint, etc)
6796 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6797 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6798 FILTER is non-NULL, call it on each breakpoint and only include the
6799 ones for which it returns non-zero. Return the total number of
6800 breakpoints listed. */
6801
6802 static int
6803 breakpoint_1 (char *args, int allflag,
6804 int (*filter) (const struct breakpoint *))
6805 {
6806 struct breakpoint *b;
6807 struct bp_location *last_loc = NULL;
6808 int nr_printable_breakpoints;
6809 struct cleanup *bkpttbl_chain;
6810 struct value_print_options opts;
6811 int print_address_bits = 0;
6812 int print_type_col_width = 14;
6813 struct ui_out *uiout = current_uiout;
6814
6815 get_user_print_options (&opts);
6816
6817 /* Compute the number of rows in the table, as well as the size
6818 required for address fields. */
6819 nr_printable_breakpoints = 0;
6820 ALL_BREAKPOINTS (b)
6821 {
6822 /* If we have a filter, only list the breakpoints it accepts. */
6823 if (filter && !filter (b))
6824 continue;
6825
6826 /* If we have an "args" string, it is a list of breakpoints to
6827 accept. Skip the others. */
6828 if (args != NULL && *args != '\0')
6829 {
6830 if (allflag && parse_and_eval_long (args) != b->number)
6831 continue;
6832 if (!allflag && !number_is_in_list (args, b->number))
6833 continue;
6834 }
6835
6836 if (allflag || user_breakpoint_p (b))
6837 {
6838 int addr_bit, type_len;
6839
6840 addr_bit = breakpoint_address_bits (b);
6841 if (addr_bit > print_address_bits)
6842 print_address_bits = addr_bit;
6843
6844 type_len = strlen (bptype_string (b->type));
6845 if (type_len > print_type_col_width)
6846 print_type_col_width = type_len;
6847
6848 nr_printable_breakpoints++;
6849 }
6850 }
6851
6852 if (opts.addressprint)
6853 bkpttbl_chain
6854 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6855 nr_printable_breakpoints,
6856 "BreakpointTable");
6857 else
6858 bkpttbl_chain
6859 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6860 nr_printable_breakpoints,
6861 "BreakpointTable");
6862
6863 if (nr_printable_breakpoints > 0)
6864 annotate_breakpoints_headers ();
6865 if (nr_printable_breakpoints > 0)
6866 annotate_field (0);
6867 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6868 if (nr_printable_breakpoints > 0)
6869 annotate_field (1);
6870 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6871 if (nr_printable_breakpoints > 0)
6872 annotate_field (2);
6873 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6874 if (nr_printable_breakpoints > 0)
6875 annotate_field (3);
6876 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6877 if (opts.addressprint)
6878 {
6879 if (nr_printable_breakpoints > 0)
6880 annotate_field (4);
6881 if (print_address_bits <= 32)
6882 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6883 else
6884 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6885 }
6886 if (nr_printable_breakpoints > 0)
6887 annotate_field (5);
6888 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6889 uiout->table_body ();
6890 if (nr_printable_breakpoints > 0)
6891 annotate_breakpoints_table ();
6892
6893 ALL_BREAKPOINTS (b)
6894 {
6895 QUIT;
6896 /* If we have a filter, only list the breakpoints it accepts. */
6897 if (filter && !filter (b))
6898 continue;
6899
6900 /* If we have an "args" string, it is a list of breakpoints to
6901 accept. Skip the others. */
6902
6903 if (args != NULL && *args != '\0')
6904 {
6905 if (allflag) /* maintenance info breakpoint */
6906 {
6907 if (parse_and_eval_long (args) != b->number)
6908 continue;
6909 }
6910 else /* all others */
6911 {
6912 if (!number_is_in_list (args, b->number))
6913 continue;
6914 }
6915 }
6916 /* We only print out user settable breakpoints unless the
6917 allflag is set. */
6918 if (allflag || user_breakpoint_p (b))
6919 print_one_breakpoint (b, &last_loc, allflag);
6920 }
6921
6922 do_cleanups (bkpttbl_chain);
6923
6924 if (nr_printable_breakpoints == 0)
6925 {
6926 /* If there's a filter, let the caller decide how to report
6927 empty list. */
6928 if (!filter)
6929 {
6930 if (args == NULL || *args == '\0')
6931 uiout->message ("No breakpoints or watchpoints.\n");
6932 else
6933 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6934 args);
6935 }
6936 }
6937 else
6938 {
6939 if (last_loc && !server_command)
6940 set_next_address (last_loc->gdbarch, last_loc->address);
6941 }
6942
6943 /* FIXME? Should this be moved up so that it is only called when
6944 there have been breakpoints? */
6945 annotate_breakpoints_table_end ();
6946
6947 return nr_printable_breakpoints;
6948 }
6949
6950 /* Display the value of default-collect in a way that is generally
6951 compatible with the breakpoint list. */
6952
6953 static void
6954 default_collect_info (void)
6955 {
6956 struct ui_out *uiout = current_uiout;
6957
6958 /* If it has no value (which is frequently the case), say nothing; a
6959 message like "No default-collect." gets in user's face when it's
6960 not wanted. */
6961 if (!*default_collect)
6962 return;
6963
6964 /* The following phrase lines up nicely with per-tracepoint collect
6965 actions. */
6966 uiout->text ("default collect ");
6967 uiout->field_string ("default-collect", default_collect);
6968 uiout->text (" \n");
6969 }
6970
6971 static void
6972 breakpoints_info (char *args, int from_tty)
6973 {
6974 breakpoint_1 (args, 0, NULL);
6975
6976 default_collect_info ();
6977 }
6978
6979 static void
6980 watchpoints_info (char *args, int from_tty)
6981 {
6982 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6983 struct ui_out *uiout = current_uiout;
6984
6985 if (num_printed == 0)
6986 {
6987 if (args == NULL || *args == '\0')
6988 uiout->message ("No watchpoints.\n");
6989 else
6990 uiout->message ("No watchpoint matching '%s'.\n", args);
6991 }
6992 }
6993
6994 static void
6995 maintenance_info_breakpoints (char *args, int from_tty)
6996 {
6997 breakpoint_1 (args, 1, NULL);
6998
6999 default_collect_info ();
7000 }
7001
7002 static int
7003 breakpoint_has_pc (struct breakpoint *b,
7004 struct program_space *pspace,
7005 CORE_ADDR pc, struct obj_section *section)
7006 {
7007 struct bp_location *bl = b->loc;
7008
7009 for (; bl; bl = bl->next)
7010 {
7011 if (bl->pspace == pspace
7012 && bl->address == pc
7013 && (!overlay_debugging || bl->section == section))
7014 return 1;
7015 }
7016 return 0;
7017 }
7018
7019 /* Print a message describing any user-breakpoints set at PC. This
7020 concerns with logical breakpoints, so we match program spaces, not
7021 address spaces. */
7022
7023 static void
7024 describe_other_breakpoints (struct gdbarch *gdbarch,
7025 struct program_space *pspace, CORE_ADDR pc,
7026 struct obj_section *section, int thread)
7027 {
7028 int others = 0;
7029 struct breakpoint *b;
7030
7031 ALL_BREAKPOINTS (b)
7032 others += (user_breakpoint_p (b)
7033 && breakpoint_has_pc (b, pspace, pc, section));
7034 if (others > 0)
7035 {
7036 if (others == 1)
7037 printf_filtered (_("Note: breakpoint "));
7038 else /* if (others == ???) */
7039 printf_filtered (_("Note: breakpoints "));
7040 ALL_BREAKPOINTS (b)
7041 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7042 {
7043 others--;
7044 printf_filtered ("%d", b->number);
7045 if (b->thread == -1 && thread != -1)
7046 printf_filtered (" (all threads)");
7047 else if (b->thread != -1)
7048 printf_filtered (" (thread %d)", b->thread);
7049 printf_filtered ("%s%s ",
7050 ((b->enable_state == bp_disabled
7051 || b->enable_state == bp_call_disabled)
7052 ? " (disabled)"
7053 : ""),
7054 (others > 1) ? ","
7055 : ((others == 1) ? " and" : ""));
7056 }
7057 printf_filtered (_("also set at pc "));
7058 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
7059 printf_filtered (".\n");
7060 }
7061 }
7062 \f
7063
7064 /* Return true iff it is meaningful to use the address member of
7065 BPT locations. For some breakpoint types, the locations' address members
7066 are irrelevant and it makes no sense to attempt to compare them to other
7067 addresses (or use them for any other purpose either).
7068
7069 More specifically, each of the following breakpoint types will
7070 always have a zero valued location address and we don't want to mark
7071 breakpoints of any of these types to be a duplicate of an actual
7072 breakpoint location at address zero:
7073
7074 bp_watchpoint
7075 bp_catchpoint
7076
7077 */
7078
7079 static int
7080 breakpoint_address_is_meaningful (struct breakpoint *bpt)
7081 {
7082 enum bptype type = bpt->type;
7083
7084 return (type != bp_watchpoint && type != bp_catchpoint);
7085 }
7086
7087 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7088 true if LOC1 and LOC2 represent the same watchpoint location. */
7089
7090 static int
7091 watchpoint_locations_match (struct bp_location *loc1,
7092 struct bp_location *loc2)
7093 {
7094 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7095 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7096
7097 /* Both of them must exist. */
7098 gdb_assert (w1 != NULL);
7099 gdb_assert (w2 != NULL);
7100
7101 /* If the target can evaluate the condition expression in hardware,
7102 then we we need to insert both watchpoints even if they are at
7103 the same place. Otherwise the watchpoint will only trigger when
7104 the condition of whichever watchpoint was inserted evaluates to
7105 true, not giving a chance for GDB to check the condition of the
7106 other watchpoint. */
7107 if ((w1->cond_exp
7108 && target_can_accel_watchpoint_condition (loc1->address,
7109 loc1->length,
7110 loc1->watchpoint_type,
7111 w1->cond_exp.get ()))
7112 || (w2->cond_exp
7113 && target_can_accel_watchpoint_condition (loc2->address,
7114 loc2->length,
7115 loc2->watchpoint_type,
7116 w2->cond_exp.get ())))
7117 return 0;
7118
7119 /* Note that this checks the owner's type, not the location's. In
7120 case the target does not support read watchpoints, but does
7121 support access watchpoints, we'll have bp_read_watchpoint
7122 watchpoints with hw_access locations. Those should be considered
7123 duplicates of hw_read locations. The hw_read locations will
7124 become hw_access locations later. */
7125 return (loc1->owner->type == loc2->owner->type
7126 && loc1->pspace->aspace == loc2->pspace->aspace
7127 && loc1->address == loc2->address
7128 && loc1->length == loc2->length);
7129 }
7130
7131 /* See breakpoint.h. */
7132
7133 int
7134 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
7135 struct address_space *aspace2, CORE_ADDR addr2)
7136 {
7137 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7138 || aspace1 == aspace2)
7139 && addr1 == addr2);
7140 }
7141
7142 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7143 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7144 matches ASPACE2. On targets that have global breakpoints, the address
7145 space doesn't really matter. */
7146
7147 static int
7148 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
7149 int len1, struct address_space *aspace2,
7150 CORE_ADDR addr2)
7151 {
7152 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7153 || aspace1 == aspace2)
7154 && addr2 >= addr1 && addr2 < addr1 + len1);
7155 }
7156
7157 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7158 a ranged breakpoint. In most targets, a match happens only if ASPACE
7159 matches the breakpoint's address space. On targets that have global
7160 breakpoints, the address space doesn't really matter. */
7161
7162 static int
7163 breakpoint_location_address_match (struct bp_location *bl,
7164 struct address_space *aspace,
7165 CORE_ADDR addr)
7166 {
7167 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7168 aspace, addr)
7169 || (bl->length
7170 && breakpoint_address_match_range (bl->pspace->aspace,
7171 bl->address, bl->length,
7172 aspace, addr)));
7173 }
7174
7175 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7176 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7177 match happens only if ASPACE matches the breakpoint's address
7178 space. On targets that have global breakpoints, the address space
7179 doesn't really matter. */
7180
7181 static int
7182 breakpoint_location_address_range_overlap (struct bp_location *bl,
7183 struct address_space *aspace,
7184 CORE_ADDR addr, int len)
7185 {
7186 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7187 || bl->pspace->aspace == aspace)
7188 {
7189 int bl_len = bl->length != 0 ? bl->length : 1;
7190
7191 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7192 return 1;
7193 }
7194 return 0;
7195 }
7196
7197 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7198 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7199 true, otherwise returns false. */
7200
7201 static int
7202 tracepoint_locations_match (struct bp_location *loc1,
7203 struct bp_location *loc2)
7204 {
7205 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7206 /* Since tracepoint locations are never duplicated with others', tracepoint
7207 locations at the same address of different tracepoints are regarded as
7208 different locations. */
7209 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7210 else
7211 return 0;
7212 }
7213
7214 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7215 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
7216 represent the same location. */
7217
7218 static int
7219 breakpoint_locations_match (struct bp_location *loc1,
7220 struct bp_location *loc2)
7221 {
7222 int hw_point1, hw_point2;
7223
7224 /* Both of them must not be in moribund_locations. */
7225 gdb_assert (loc1->owner != NULL);
7226 gdb_assert (loc2->owner != NULL);
7227
7228 hw_point1 = is_hardware_watchpoint (loc1->owner);
7229 hw_point2 = is_hardware_watchpoint (loc2->owner);
7230
7231 if (hw_point1 != hw_point2)
7232 return 0;
7233 else if (hw_point1)
7234 return watchpoint_locations_match (loc1, loc2);
7235 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7236 return tracepoint_locations_match (loc1, loc2);
7237 else
7238 /* We compare bp_location.length in order to cover ranged breakpoints. */
7239 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7240 loc2->pspace->aspace, loc2->address)
7241 && loc1->length == loc2->length);
7242 }
7243
7244 static void
7245 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7246 int bnum, int have_bnum)
7247 {
7248 /* The longest string possibly returned by hex_string_custom
7249 is 50 chars. These must be at least that big for safety. */
7250 char astr1[64];
7251 char astr2[64];
7252
7253 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7254 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7255 if (have_bnum)
7256 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7257 bnum, astr1, astr2);
7258 else
7259 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7260 }
7261
7262 /* Adjust a breakpoint's address to account for architectural
7263 constraints on breakpoint placement. Return the adjusted address.
7264 Note: Very few targets require this kind of adjustment. For most
7265 targets, this function is simply the identity function. */
7266
7267 static CORE_ADDR
7268 adjust_breakpoint_address (struct gdbarch *gdbarch,
7269 CORE_ADDR bpaddr, enum bptype bptype)
7270 {
7271 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7272 {
7273 /* Very few targets need any kind of breakpoint adjustment. */
7274 return bpaddr;
7275 }
7276 else if (bptype == bp_watchpoint
7277 || bptype == bp_hardware_watchpoint
7278 || bptype == bp_read_watchpoint
7279 || bptype == bp_access_watchpoint
7280 || bptype == bp_catchpoint)
7281 {
7282 /* Watchpoints and the various bp_catch_* eventpoints should not
7283 have their addresses modified. */
7284 return bpaddr;
7285 }
7286 else if (bptype == bp_single_step)
7287 {
7288 /* Single-step breakpoints should not have their addresses
7289 modified. If there's any architectural constrain that
7290 applies to this address, then it should have already been
7291 taken into account when the breakpoint was created in the
7292 first place. If we didn't do this, stepping through e.g.,
7293 Thumb-2 IT blocks would break. */
7294 return bpaddr;
7295 }
7296 else
7297 {
7298 CORE_ADDR adjusted_bpaddr;
7299
7300 /* Some targets have architectural constraints on the placement
7301 of breakpoint instructions. Obtain the adjusted address. */
7302 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7303
7304 /* An adjusted breakpoint address can significantly alter
7305 a user's expectations. Print a warning if an adjustment
7306 is required. */
7307 if (adjusted_bpaddr != bpaddr)
7308 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7309
7310 return adjusted_bpaddr;
7311 }
7312 }
7313
7314 void
7315 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
7316 struct breakpoint *owner)
7317 {
7318 memset (loc, 0, sizeof (*loc));
7319
7320 gdb_assert (ops != NULL);
7321
7322 loc->ops = ops;
7323 loc->owner = owner;
7324 loc->cond_bytecode = NULL;
7325 loc->shlib_disabled = 0;
7326 loc->enabled = 1;
7327
7328 switch (owner->type)
7329 {
7330 case bp_breakpoint:
7331 case bp_single_step:
7332 case bp_until:
7333 case bp_finish:
7334 case bp_longjmp:
7335 case bp_longjmp_resume:
7336 case bp_longjmp_call_dummy:
7337 case bp_exception:
7338 case bp_exception_resume:
7339 case bp_step_resume:
7340 case bp_hp_step_resume:
7341 case bp_watchpoint_scope:
7342 case bp_call_dummy:
7343 case bp_std_terminate:
7344 case bp_shlib_event:
7345 case bp_thread_event:
7346 case bp_overlay_event:
7347 case bp_jit_event:
7348 case bp_longjmp_master:
7349 case bp_std_terminate_master:
7350 case bp_exception_master:
7351 case bp_gnu_ifunc_resolver:
7352 case bp_gnu_ifunc_resolver_return:
7353 case bp_dprintf:
7354 loc->loc_type = bp_loc_software_breakpoint;
7355 mark_breakpoint_location_modified (loc);
7356 break;
7357 case bp_hardware_breakpoint:
7358 loc->loc_type = bp_loc_hardware_breakpoint;
7359 mark_breakpoint_location_modified (loc);
7360 break;
7361 case bp_hardware_watchpoint:
7362 case bp_read_watchpoint:
7363 case bp_access_watchpoint:
7364 loc->loc_type = bp_loc_hardware_watchpoint;
7365 break;
7366 case bp_watchpoint:
7367 case bp_catchpoint:
7368 case bp_tracepoint:
7369 case bp_fast_tracepoint:
7370 case bp_static_tracepoint:
7371 loc->loc_type = bp_loc_other;
7372 break;
7373 default:
7374 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7375 }
7376
7377 loc->refc = 1;
7378 }
7379
7380 /* Allocate a struct bp_location. */
7381
7382 static struct bp_location *
7383 allocate_bp_location (struct breakpoint *bpt)
7384 {
7385 return bpt->ops->allocate_location (bpt);
7386 }
7387
7388 static void
7389 free_bp_location (struct bp_location *loc)
7390 {
7391 loc->ops->dtor (loc);
7392 delete loc;
7393 }
7394
7395 /* Increment reference count. */
7396
7397 static void
7398 incref_bp_location (struct bp_location *bl)
7399 {
7400 ++bl->refc;
7401 }
7402
7403 /* Decrement reference count. If the reference count reaches 0,
7404 destroy the bp_location. Sets *BLP to NULL. */
7405
7406 static void
7407 decref_bp_location (struct bp_location **blp)
7408 {
7409 gdb_assert ((*blp)->refc > 0);
7410
7411 if (--(*blp)->refc == 0)
7412 free_bp_location (*blp);
7413 *blp = NULL;
7414 }
7415
7416 /* Add breakpoint B at the end of the global breakpoint chain. */
7417
7418 static void
7419 add_to_breakpoint_chain (struct breakpoint *b)
7420 {
7421 struct breakpoint *b1;
7422
7423 /* Add this breakpoint to the end of the chain so that a list of
7424 breakpoints will come out in order of increasing numbers. */
7425
7426 b1 = breakpoint_chain;
7427 if (b1 == 0)
7428 breakpoint_chain = b;
7429 else
7430 {
7431 while (b1->next)
7432 b1 = b1->next;
7433 b1->next = b;
7434 }
7435 }
7436
7437 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7438
7439 static void
7440 init_raw_breakpoint_without_location (struct breakpoint *b,
7441 struct gdbarch *gdbarch,
7442 enum bptype bptype,
7443 const struct breakpoint_ops *ops)
7444 {
7445 memset (b, 0, sizeof (*b));
7446
7447 gdb_assert (ops != NULL);
7448
7449 b->ops = ops;
7450 b->type = bptype;
7451 b->gdbarch = gdbarch;
7452 b->language = current_language->la_language;
7453 b->input_radix = input_radix;
7454 b->thread = -1;
7455 b->enable_state = bp_enabled;
7456 b->next = 0;
7457 b->silent = 0;
7458 b->ignore_count = 0;
7459 b->commands = NULL;
7460 b->frame_id = null_frame_id;
7461 b->condition_not_parsed = 0;
7462 b->py_bp_object = NULL;
7463 b->related_breakpoint = b;
7464 b->location = NULL;
7465 }
7466
7467 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7468 that has type BPTYPE and has no locations as yet. */
7469
7470 static struct breakpoint *
7471 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7472 enum bptype bptype,
7473 const struct breakpoint_ops *ops)
7474 {
7475 struct breakpoint *b = new breakpoint ();
7476
7477 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7478 add_to_breakpoint_chain (b);
7479 return b;
7480 }
7481
7482 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7483 resolutions should be made as the user specified the location explicitly
7484 enough. */
7485
7486 static void
7487 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7488 {
7489 gdb_assert (loc->owner != NULL);
7490
7491 if (loc->owner->type == bp_breakpoint
7492 || loc->owner->type == bp_hardware_breakpoint
7493 || is_tracepoint (loc->owner))
7494 {
7495 int is_gnu_ifunc;
7496 const char *function_name;
7497 CORE_ADDR func_addr;
7498
7499 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7500 &func_addr, NULL, &is_gnu_ifunc);
7501
7502 if (is_gnu_ifunc && !explicit_loc)
7503 {
7504 struct breakpoint *b = loc->owner;
7505
7506 gdb_assert (loc->pspace == current_program_space);
7507 if (gnu_ifunc_resolve_name (function_name,
7508 &loc->requested_address))
7509 {
7510 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7511 loc->address = adjust_breakpoint_address (loc->gdbarch,
7512 loc->requested_address,
7513 b->type);
7514 }
7515 else if (b->type == bp_breakpoint && b->loc == loc
7516 && loc->next == NULL && b->related_breakpoint == b)
7517 {
7518 /* Create only the whole new breakpoint of this type but do not
7519 mess more complicated breakpoints with multiple locations. */
7520 b->type = bp_gnu_ifunc_resolver;
7521 /* Remember the resolver's address for use by the return
7522 breakpoint. */
7523 loc->related_address = func_addr;
7524 }
7525 }
7526
7527 if (function_name)
7528 loc->function_name = xstrdup (function_name);
7529 }
7530 }
7531
7532 /* Attempt to determine architecture of location identified by SAL. */
7533 struct gdbarch *
7534 get_sal_arch (struct symtab_and_line sal)
7535 {
7536 if (sal.section)
7537 return get_objfile_arch (sal.section->objfile);
7538 if (sal.symtab)
7539 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7540
7541 return NULL;
7542 }
7543
7544 /* Low level routine for partially initializing a breakpoint of type
7545 BPTYPE. The newly created breakpoint's address, section, source
7546 file name, and line number are provided by SAL.
7547
7548 It is expected that the caller will complete the initialization of
7549 the newly created breakpoint struct as well as output any status
7550 information regarding the creation of a new breakpoint. */
7551
7552 static void
7553 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7554 struct symtab_and_line sal, enum bptype bptype,
7555 const struct breakpoint_ops *ops)
7556 {
7557 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7558
7559 add_location_to_breakpoint (b, &sal);
7560
7561 if (bptype != bp_catchpoint)
7562 gdb_assert (sal.pspace != NULL);
7563
7564 /* Store the program space that was used to set the breakpoint,
7565 except for ordinary breakpoints, which are independent of the
7566 program space. */
7567 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7568 b->pspace = sal.pspace;
7569 }
7570
7571 /* set_raw_breakpoint is a low level routine for allocating and
7572 partially initializing a breakpoint of type BPTYPE. The newly
7573 created breakpoint's address, section, source file name, and line
7574 number are provided by SAL. The newly created and partially
7575 initialized breakpoint is added to the breakpoint chain and
7576 is also returned as the value of this function.
7577
7578 It is expected that the caller will complete the initialization of
7579 the newly created breakpoint struct as well as output any status
7580 information regarding the creation of a new breakpoint. In
7581 particular, set_raw_breakpoint does NOT set the breakpoint
7582 number! Care should be taken to not allow an error to occur
7583 prior to completing the initialization of the breakpoint. If this
7584 should happen, a bogus breakpoint will be left on the chain. */
7585
7586 struct breakpoint *
7587 set_raw_breakpoint (struct gdbarch *gdbarch,
7588 struct symtab_and_line sal, enum bptype bptype,
7589 const struct breakpoint_ops *ops)
7590 {
7591 struct breakpoint *b = new breakpoint ();
7592
7593 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7594 add_to_breakpoint_chain (b);
7595 return b;
7596 }
7597
7598 /* Call this routine when stepping and nexting to enable a breakpoint
7599 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7600 initiated the operation. */
7601
7602 void
7603 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7604 {
7605 struct breakpoint *b, *b_tmp;
7606 int thread = tp->global_num;
7607
7608 /* To avoid having to rescan all objfile symbols at every step,
7609 we maintain a list of continually-inserted but always disabled
7610 longjmp "master" breakpoints. Here, we simply create momentary
7611 clones of those and enable them for the requested thread. */
7612 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7613 if (b->pspace == current_program_space
7614 && (b->type == bp_longjmp_master
7615 || b->type == bp_exception_master))
7616 {
7617 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7618 struct breakpoint *clone;
7619
7620 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7621 after their removal. */
7622 clone = momentary_breakpoint_from_master (b, type,
7623 &longjmp_breakpoint_ops, 1);
7624 clone->thread = thread;
7625 }
7626
7627 tp->initiating_frame = frame;
7628 }
7629
7630 /* Delete all longjmp breakpoints from THREAD. */
7631 void
7632 delete_longjmp_breakpoint (int thread)
7633 {
7634 struct breakpoint *b, *b_tmp;
7635
7636 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7637 if (b->type == bp_longjmp || b->type == bp_exception)
7638 {
7639 if (b->thread == thread)
7640 delete_breakpoint (b);
7641 }
7642 }
7643
7644 void
7645 delete_longjmp_breakpoint_at_next_stop (int thread)
7646 {
7647 struct breakpoint *b, *b_tmp;
7648
7649 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7650 if (b->type == bp_longjmp || b->type == bp_exception)
7651 {
7652 if (b->thread == thread)
7653 b->disposition = disp_del_at_next_stop;
7654 }
7655 }
7656
7657 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7658 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7659 pointer to any of them. Return NULL if this system cannot place longjmp
7660 breakpoints. */
7661
7662 struct breakpoint *
7663 set_longjmp_breakpoint_for_call_dummy (void)
7664 {
7665 struct breakpoint *b, *retval = NULL;
7666
7667 ALL_BREAKPOINTS (b)
7668 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7669 {
7670 struct breakpoint *new_b;
7671
7672 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7673 &momentary_breakpoint_ops,
7674 1);
7675 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7676
7677 /* Link NEW_B into the chain of RETVAL breakpoints. */
7678
7679 gdb_assert (new_b->related_breakpoint == new_b);
7680 if (retval == NULL)
7681 retval = new_b;
7682 new_b->related_breakpoint = retval;
7683 while (retval->related_breakpoint != new_b->related_breakpoint)
7684 retval = retval->related_breakpoint;
7685 retval->related_breakpoint = new_b;
7686 }
7687
7688 return retval;
7689 }
7690
7691 /* Verify all existing dummy frames and their associated breakpoints for
7692 TP. Remove those which can no longer be found in the current frame
7693 stack.
7694
7695 You should call this function only at places where it is safe to currently
7696 unwind the whole stack. Failed stack unwind would discard live dummy
7697 frames. */
7698
7699 void
7700 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7701 {
7702 struct breakpoint *b, *b_tmp;
7703
7704 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7705 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7706 {
7707 struct breakpoint *dummy_b = b->related_breakpoint;
7708
7709 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7710 dummy_b = dummy_b->related_breakpoint;
7711 if (dummy_b->type != bp_call_dummy
7712 || frame_find_by_id (dummy_b->frame_id) != NULL)
7713 continue;
7714
7715 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7716
7717 while (b->related_breakpoint != b)
7718 {
7719 if (b_tmp == b->related_breakpoint)
7720 b_tmp = b->related_breakpoint->next;
7721 delete_breakpoint (b->related_breakpoint);
7722 }
7723 delete_breakpoint (b);
7724 }
7725 }
7726
7727 void
7728 enable_overlay_breakpoints (void)
7729 {
7730 struct breakpoint *b;
7731
7732 ALL_BREAKPOINTS (b)
7733 if (b->type == bp_overlay_event)
7734 {
7735 b->enable_state = bp_enabled;
7736 update_global_location_list (UGLL_MAY_INSERT);
7737 overlay_events_enabled = 1;
7738 }
7739 }
7740
7741 void
7742 disable_overlay_breakpoints (void)
7743 {
7744 struct breakpoint *b;
7745
7746 ALL_BREAKPOINTS (b)
7747 if (b->type == bp_overlay_event)
7748 {
7749 b->enable_state = bp_disabled;
7750 update_global_location_list (UGLL_DONT_INSERT);
7751 overlay_events_enabled = 0;
7752 }
7753 }
7754
7755 /* Set an active std::terminate breakpoint for each std::terminate
7756 master breakpoint. */
7757 void
7758 set_std_terminate_breakpoint (void)
7759 {
7760 struct breakpoint *b, *b_tmp;
7761
7762 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7763 if (b->pspace == current_program_space
7764 && b->type == bp_std_terminate_master)
7765 {
7766 momentary_breakpoint_from_master (b, bp_std_terminate,
7767 &momentary_breakpoint_ops, 1);
7768 }
7769 }
7770
7771 /* Delete all the std::terminate breakpoints. */
7772 void
7773 delete_std_terminate_breakpoint (void)
7774 {
7775 struct breakpoint *b, *b_tmp;
7776
7777 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7778 if (b->type == bp_std_terminate)
7779 delete_breakpoint (b);
7780 }
7781
7782 struct breakpoint *
7783 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7784 {
7785 struct breakpoint *b;
7786
7787 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7788 &internal_breakpoint_ops);
7789
7790 b->enable_state = bp_enabled;
7791 /* location has to be used or breakpoint_re_set will delete me. */
7792 b->location = new_address_location (b->loc->address, NULL, 0);
7793
7794 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7795
7796 return b;
7797 }
7798
7799 struct lang_and_radix
7800 {
7801 enum language lang;
7802 int radix;
7803 };
7804
7805 /* Create a breakpoint for JIT code registration and unregistration. */
7806
7807 struct breakpoint *
7808 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7809 {
7810 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7811 &internal_breakpoint_ops);
7812 }
7813
7814 /* Remove JIT code registration and unregistration breakpoint(s). */
7815
7816 void
7817 remove_jit_event_breakpoints (void)
7818 {
7819 struct breakpoint *b, *b_tmp;
7820
7821 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7822 if (b->type == bp_jit_event
7823 && b->loc->pspace == current_program_space)
7824 delete_breakpoint (b);
7825 }
7826
7827 void
7828 remove_solib_event_breakpoints (void)
7829 {
7830 struct breakpoint *b, *b_tmp;
7831
7832 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7833 if (b->type == bp_shlib_event
7834 && b->loc->pspace == current_program_space)
7835 delete_breakpoint (b);
7836 }
7837
7838 /* See breakpoint.h. */
7839
7840 void
7841 remove_solib_event_breakpoints_at_next_stop (void)
7842 {
7843 struct breakpoint *b, *b_tmp;
7844
7845 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7846 if (b->type == bp_shlib_event
7847 && b->loc->pspace == current_program_space)
7848 b->disposition = disp_del_at_next_stop;
7849 }
7850
7851 /* Helper for create_solib_event_breakpoint /
7852 create_and_insert_solib_event_breakpoint. Allows specifying which
7853 INSERT_MODE to pass through to update_global_location_list. */
7854
7855 static struct breakpoint *
7856 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7857 enum ugll_insert_mode insert_mode)
7858 {
7859 struct breakpoint *b;
7860
7861 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7862 &internal_breakpoint_ops);
7863 update_global_location_list_nothrow (insert_mode);
7864 return b;
7865 }
7866
7867 struct breakpoint *
7868 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7869 {
7870 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7871 }
7872
7873 /* See breakpoint.h. */
7874
7875 struct breakpoint *
7876 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7877 {
7878 struct breakpoint *b;
7879
7880 /* Explicitly tell update_global_location_list to insert
7881 locations. */
7882 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7883 if (!b->loc->inserted)
7884 {
7885 delete_breakpoint (b);
7886 return NULL;
7887 }
7888 return b;
7889 }
7890
7891 /* Disable any breakpoints that are on code in shared libraries. Only
7892 apply to enabled breakpoints, disabled ones can just stay disabled. */
7893
7894 void
7895 disable_breakpoints_in_shlibs (void)
7896 {
7897 struct bp_location *loc, **locp_tmp;
7898
7899 ALL_BP_LOCATIONS (loc, locp_tmp)
7900 {
7901 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7902 struct breakpoint *b = loc->owner;
7903
7904 /* We apply the check to all breakpoints, including disabled for
7905 those with loc->duplicate set. This is so that when breakpoint
7906 becomes enabled, or the duplicate is removed, gdb will try to
7907 insert all breakpoints. If we don't set shlib_disabled here,
7908 we'll try to insert those breakpoints and fail. */
7909 if (((b->type == bp_breakpoint)
7910 || (b->type == bp_jit_event)
7911 || (b->type == bp_hardware_breakpoint)
7912 || (is_tracepoint (b)))
7913 && loc->pspace == current_program_space
7914 && !loc->shlib_disabled
7915 && solib_name_from_address (loc->pspace, loc->address)
7916 )
7917 {
7918 loc->shlib_disabled = 1;
7919 }
7920 }
7921 }
7922
7923 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7924 notification of unloaded_shlib. Only apply to enabled breakpoints,
7925 disabled ones can just stay disabled. */
7926
7927 static void
7928 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7929 {
7930 struct bp_location *loc, **locp_tmp;
7931 int disabled_shlib_breaks = 0;
7932
7933 ALL_BP_LOCATIONS (loc, locp_tmp)
7934 {
7935 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7936 struct breakpoint *b = loc->owner;
7937
7938 if (solib->pspace == loc->pspace
7939 && !loc->shlib_disabled
7940 && (((b->type == bp_breakpoint
7941 || b->type == bp_jit_event
7942 || b->type == bp_hardware_breakpoint)
7943 && (loc->loc_type == bp_loc_hardware_breakpoint
7944 || loc->loc_type == bp_loc_software_breakpoint))
7945 || is_tracepoint (b))
7946 && solib_contains_address_p (solib, loc->address))
7947 {
7948 loc->shlib_disabled = 1;
7949 /* At this point, we cannot rely on remove_breakpoint
7950 succeeding so we must mark the breakpoint as not inserted
7951 to prevent future errors occurring in remove_breakpoints. */
7952 loc->inserted = 0;
7953
7954 /* This may cause duplicate notifications for the same breakpoint. */
7955 observer_notify_breakpoint_modified (b);
7956
7957 if (!disabled_shlib_breaks)
7958 {
7959 target_terminal_ours_for_output ();
7960 warning (_("Temporarily disabling breakpoints "
7961 "for unloaded shared library \"%s\""),
7962 solib->so_name);
7963 }
7964 disabled_shlib_breaks = 1;
7965 }
7966 }
7967 }
7968
7969 /* Disable any breakpoints and tracepoints in OBJFILE upon
7970 notification of free_objfile. Only apply to enabled breakpoints,
7971 disabled ones can just stay disabled. */
7972
7973 static void
7974 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7975 {
7976 struct breakpoint *b;
7977
7978 if (objfile == NULL)
7979 return;
7980
7981 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7982 managed by the user with add-symbol-file/remove-symbol-file.
7983 Similarly to how breakpoints in shared libraries are handled in
7984 response to "nosharedlibrary", mark breakpoints in such modules
7985 shlib_disabled so they end up uninserted on the next global
7986 location list update. Shared libraries not loaded by the user
7987 aren't handled here -- they're already handled in
7988 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7989 solib_unloaded observer. We skip objfiles that are not
7990 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7991 main objfile). */
7992 if ((objfile->flags & OBJF_SHARED) == 0
7993 || (objfile->flags & OBJF_USERLOADED) == 0)
7994 return;
7995
7996 ALL_BREAKPOINTS (b)
7997 {
7998 struct bp_location *loc;
7999 int bp_modified = 0;
8000
8001 if (!is_breakpoint (b) && !is_tracepoint (b))
8002 continue;
8003
8004 for (loc = b->loc; loc != NULL; loc = loc->next)
8005 {
8006 CORE_ADDR loc_addr = loc->address;
8007
8008 if (loc->loc_type != bp_loc_hardware_breakpoint
8009 && loc->loc_type != bp_loc_software_breakpoint)
8010 continue;
8011
8012 if (loc->shlib_disabled != 0)
8013 continue;
8014
8015 if (objfile->pspace != loc->pspace)
8016 continue;
8017
8018 if (loc->loc_type != bp_loc_hardware_breakpoint
8019 && loc->loc_type != bp_loc_software_breakpoint)
8020 continue;
8021
8022 if (is_addr_in_objfile (loc_addr, objfile))
8023 {
8024 loc->shlib_disabled = 1;
8025 /* At this point, we don't know whether the object was
8026 unmapped from the inferior or not, so leave the
8027 inserted flag alone. We'll handle failure to
8028 uninsert quietly, in case the object was indeed
8029 unmapped. */
8030
8031 mark_breakpoint_location_modified (loc);
8032
8033 bp_modified = 1;
8034 }
8035 }
8036
8037 if (bp_modified)
8038 observer_notify_breakpoint_modified (b);
8039 }
8040 }
8041
8042 /* FORK & VFORK catchpoints. */
8043
8044 /* An instance of this type is used to represent a fork or vfork
8045 catchpoint. It includes a "struct breakpoint" as a kind of base
8046 class; users downcast to "struct breakpoint *" when needed. A
8047 breakpoint is really of this type iff its ops pointer points to
8048 CATCH_FORK_BREAKPOINT_OPS. */
8049
8050 struct fork_catchpoint
8051 {
8052 /* The base class. */
8053 struct breakpoint base;
8054
8055 /* Process id of a child process whose forking triggered this
8056 catchpoint. This field is only valid immediately after this
8057 catchpoint has triggered. */
8058 ptid_t forked_inferior_pid;
8059 };
8060
8061 /* Implement the "insert" breakpoint_ops method for fork
8062 catchpoints. */
8063
8064 static int
8065 insert_catch_fork (struct bp_location *bl)
8066 {
8067 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
8068 }
8069
8070 /* Implement the "remove" breakpoint_ops method for fork
8071 catchpoints. */
8072
8073 static int
8074 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
8075 {
8076 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
8077 }
8078
8079 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
8080 catchpoints. */
8081
8082 static int
8083 breakpoint_hit_catch_fork (const struct bp_location *bl,
8084 struct address_space *aspace, CORE_ADDR bp_addr,
8085 const struct target_waitstatus *ws)
8086 {
8087 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8088
8089 if (ws->kind != TARGET_WAITKIND_FORKED)
8090 return 0;
8091
8092 c->forked_inferior_pid = ws->value.related_pid;
8093 return 1;
8094 }
8095
8096 /* Implement the "print_it" breakpoint_ops method for fork
8097 catchpoints. */
8098
8099 static enum print_stop_action
8100 print_it_catch_fork (bpstat bs)
8101 {
8102 struct ui_out *uiout = current_uiout;
8103 struct breakpoint *b = bs->breakpoint_at;
8104 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
8105
8106 annotate_catchpoint (b->number);
8107 maybe_print_thread_hit_breakpoint (uiout);
8108 if (b->disposition == disp_del)
8109 uiout->text ("Temporary catchpoint ");
8110 else
8111 uiout->text ("Catchpoint ");
8112 if (uiout->is_mi_like_p ())
8113 {
8114 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
8115 uiout->field_string ("disp", bpdisp_text (b->disposition));
8116 }
8117 uiout->field_int ("bkptno", b->number);
8118 uiout->text (" (forked process ");
8119 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8120 uiout->text ("), ");
8121 return PRINT_SRC_AND_LOC;
8122 }
8123
8124 /* Implement the "print_one" breakpoint_ops method for fork
8125 catchpoints. */
8126
8127 static void
8128 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
8129 {
8130 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8131 struct value_print_options opts;
8132 struct ui_out *uiout = current_uiout;
8133
8134 get_user_print_options (&opts);
8135
8136 /* Field 4, the address, is omitted (which makes the columns not
8137 line up too nicely with the headers, but the effect is relatively
8138 readable). */
8139 if (opts.addressprint)
8140 uiout->field_skip ("addr");
8141 annotate_field (5);
8142 uiout->text ("fork");
8143 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8144 {
8145 uiout->text (", process ");
8146 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8147 uiout->spaces (1);
8148 }
8149
8150 if (uiout->is_mi_like_p ())
8151 uiout->field_string ("catch-type", "fork");
8152 }
8153
8154 /* Implement the "print_mention" breakpoint_ops method for fork
8155 catchpoints. */
8156
8157 static void
8158 print_mention_catch_fork (struct breakpoint *b)
8159 {
8160 printf_filtered (_("Catchpoint %d (fork)"), b->number);
8161 }
8162
8163 /* Implement the "print_recreate" breakpoint_ops method for fork
8164 catchpoints. */
8165
8166 static void
8167 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
8168 {
8169 fprintf_unfiltered (fp, "catch fork");
8170 print_recreate_thread (b, fp);
8171 }
8172
8173 /* The breakpoint_ops structure to be used in fork catchpoints. */
8174
8175 static struct breakpoint_ops catch_fork_breakpoint_ops;
8176
8177 /* Implement the "insert" breakpoint_ops method for vfork
8178 catchpoints. */
8179
8180 static int
8181 insert_catch_vfork (struct bp_location *bl)
8182 {
8183 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8184 }
8185
8186 /* Implement the "remove" breakpoint_ops method for vfork
8187 catchpoints. */
8188
8189 static int
8190 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
8191 {
8192 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
8193 }
8194
8195 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
8196 catchpoints. */
8197
8198 static int
8199 breakpoint_hit_catch_vfork (const struct bp_location *bl,
8200 struct address_space *aspace, CORE_ADDR bp_addr,
8201 const struct target_waitstatus *ws)
8202 {
8203 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
8204
8205 if (ws->kind != TARGET_WAITKIND_VFORKED)
8206 return 0;
8207
8208 c->forked_inferior_pid = ws->value.related_pid;
8209 return 1;
8210 }
8211
8212 /* Implement the "print_it" breakpoint_ops method for vfork
8213 catchpoints. */
8214
8215 static enum print_stop_action
8216 print_it_catch_vfork (bpstat bs)
8217 {
8218 struct ui_out *uiout = current_uiout;
8219 struct breakpoint *b = bs->breakpoint_at;
8220 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8221
8222 annotate_catchpoint (b->number);
8223 maybe_print_thread_hit_breakpoint (uiout);
8224 if (b->disposition == disp_del)
8225 uiout->text ("Temporary catchpoint ");
8226 else
8227 uiout->text ("Catchpoint ");
8228 if (uiout->is_mi_like_p ())
8229 {
8230 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
8231 uiout->field_string ("disp", bpdisp_text (b->disposition));
8232 }
8233 uiout->field_int ("bkptno", b->number);
8234 uiout->text (" (vforked process ");
8235 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
8236 uiout->text ("), ");
8237 return PRINT_SRC_AND_LOC;
8238 }
8239
8240 /* Implement the "print_one" breakpoint_ops method for vfork
8241 catchpoints. */
8242
8243 static void
8244 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
8245 {
8246 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
8247 struct value_print_options opts;
8248 struct ui_out *uiout = current_uiout;
8249
8250 get_user_print_options (&opts);
8251 /* Field 4, the address, is omitted (which makes the columns not
8252 line up too nicely with the headers, but the effect is relatively
8253 readable). */
8254 if (opts.addressprint)
8255 uiout->field_skip ("addr");
8256 annotate_field (5);
8257 uiout->text ("vfork");
8258 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8259 {
8260 uiout->text (", process ");
8261 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8262 uiout->spaces (1);
8263 }
8264
8265 if (uiout->is_mi_like_p ())
8266 uiout->field_string ("catch-type", "vfork");
8267 }
8268
8269 /* Implement the "print_mention" breakpoint_ops method for vfork
8270 catchpoints. */
8271
8272 static void
8273 print_mention_catch_vfork (struct breakpoint *b)
8274 {
8275 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8276 }
8277
8278 /* Implement the "print_recreate" breakpoint_ops method for vfork
8279 catchpoints. */
8280
8281 static void
8282 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8283 {
8284 fprintf_unfiltered (fp, "catch vfork");
8285 print_recreate_thread (b, fp);
8286 }
8287
8288 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8289
8290 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8291
8292 /* An instance of this type is used to represent an solib catchpoint.
8293 It includes a "struct breakpoint" as a kind of base class; users
8294 downcast to "struct breakpoint *" when needed. A breakpoint is
8295 really of this type iff its ops pointer points to
8296 CATCH_SOLIB_BREAKPOINT_OPS. */
8297
8298 struct solib_catchpoint
8299 {
8300 /* The base class. */
8301 struct breakpoint base;
8302
8303 /* True for "catch load", false for "catch unload". */
8304 unsigned char is_load;
8305
8306 /* Regular expression to match, if any. COMPILED is only valid when
8307 REGEX is non-NULL. */
8308 char *regex;
8309 regex_t compiled;
8310 };
8311
8312 static void
8313 dtor_catch_solib (struct breakpoint *b)
8314 {
8315 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8316
8317 if (self->regex)
8318 regfree (&self->compiled);
8319 xfree (self->regex);
8320
8321 base_breakpoint_ops.dtor (b);
8322 }
8323
8324 static int
8325 insert_catch_solib (struct bp_location *ignore)
8326 {
8327 return 0;
8328 }
8329
8330 static int
8331 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8332 {
8333 return 0;
8334 }
8335
8336 static int
8337 breakpoint_hit_catch_solib (const struct bp_location *bl,
8338 struct address_space *aspace,
8339 CORE_ADDR bp_addr,
8340 const struct target_waitstatus *ws)
8341 {
8342 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8343 struct breakpoint *other;
8344
8345 if (ws->kind == TARGET_WAITKIND_LOADED)
8346 return 1;
8347
8348 ALL_BREAKPOINTS (other)
8349 {
8350 struct bp_location *other_bl;
8351
8352 if (other == bl->owner)
8353 continue;
8354
8355 if (other->type != bp_shlib_event)
8356 continue;
8357
8358 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
8359 continue;
8360
8361 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8362 {
8363 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8364 return 1;
8365 }
8366 }
8367
8368 return 0;
8369 }
8370
8371 static void
8372 check_status_catch_solib (struct bpstats *bs)
8373 {
8374 struct solib_catchpoint *self
8375 = (struct solib_catchpoint *) bs->breakpoint_at;
8376 int ix;
8377
8378 if (self->is_load)
8379 {
8380 struct so_list *iter;
8381
8382 for (ix = 0;
8383 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8384 ix, iter);
8385 ++ix)
8386 {
8387 if (!self->regex
8388 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8389 return;
8390 }
8391 }
8392 else
8393 {
8394 char *iter;
8395
8396 for (ix = 0;
8397 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8398 ix, iter);
8399 ++ix)
8400 {
8401 if (!self->regex
8402 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8403 return;
8404 }
8405 }
8406
8407 bs->stop = 0;
8408 bs->print_it = print_it_noop;
8409 }
8410
8411 static enum print_stop_action
8412 print_it_catch_solib (bpstat bs)
8413 {
8414 struct breakpoint *b = bs->breakpoint_at;
8415 struct ui_out *uiout = current_uiout;
8416
8417 annotate_catchpoint (b->number);
8418 maybe_print_thread_hit_breakpoint (uiout);
8419 if (b->disposition == disp_del)
8420 uiout->text ("Temporary catchpoint ");
8421 else
8422 uiout->text ("Catchpoint ");
8423 uiout->field_int ("bkptno", b->number);
8424 uiout->text ("\n");
8425 if (uiout->is_mi_like_p ())
8426 uiout->field_string ("disp", bpdisp_text (b->disposition));
8427 print_solib_event (1);
8428 return PRINT_SRC_AND_LOC;
8429 }
8430
8431 static void
8432 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8433 {
8434 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8435 struct value_print_options opts;
8436 struct ui_out *uiout = current_uiout;
8437 char *msg;
8438
8439 get_user_print_options (&opts);
8440 /* Field 4, the address, is omitted (which makes the columns not
8441 line up too nicely with the headers, but the effect is relatively
8442 readable). */
8443 if (opts.addressprint)
8444 {
8445 annotate_field (4);
8446 uiout->field_skip ("addr");
8447 }
8448
8449 annotate_field (5);
8450 if (self->is_load)
8451 {
8452 if (self->regex)
8453 msg = xstrprintf (_("load of library matching %s"), self->regex);
8454 else
8455 msg = xstrdup (_("load of library"));
8456 }
8457 else
8458 {
8459 if (self->regex)
8460 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8461 else
8462 msg = xstrdup (_("unload of library"));
8463 }
8464 uiout->field_string ("what", msg);
8465 xfree (msg);
8466
8467 if (uiout->is_mi_like_p ())
8468 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8469 }
8470
8471 static void
8472 print_mention_catch_solib (struct breakpoint *b)
8473 {
8474 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8475
8476 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8477 self->is_load ? "load" : "unload");
8478 }
8479
8480 static void
8481 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8482 {
8483 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8484
8485 fprintf_unfiltered (fp, "%s %s",
8486 b->disposition == disp_del ? "tcatch" : "catch",
8487 self->is_load ? "load" : "unload");
8488 if (self->regex)
8489 fprintf_unfiltered (fp, " %s", self->regex);
8490 fprintf_unfiltered (fp, "\n");
8491 }
8492
8493 static struct breakpoint_ops catch_solib_breakpoint_ops;
8494
8495 /* Shared helper function (MI and CLI) for creating and installing
8496 a shared object event catchpoint. If IS_LOAD is non-zero then
8497 the events to be caught are load events, otherwise they are
8498 unload events. If IS_TEMP is non-zero the catchpoint is a
8499 temporary one. If ENABLED is non-zero the catchpoint is
8500 created in an enabled state. */
8501
8502 void
8503 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8504 {
8505 struct solib_catchpoint *c;
8506 struct gdbarch *gdbarch = get_current_arch ();
8507 struct cleanup *cleanup;
8508
8509 if (!arg)
8510 arg = "";
8511 arg = skip_spaces_const (arg);
8512
8513 c = new solib_catchpoint ();
8514 cleanup = make_cleanup (xfree, c);
8515
8516 if (*arg != '\0')
8517 {
8518 int errcode;
8519
8520 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8521 if (errcode != 0)
8522 {
8523 char *err = get_regcomp_error (errcode, &c->compiled);
8524
8525 make_cleanup (xfree, err);
8526 error (_("Invalid regexp (%s): %s"), err, arg);
8527 }
8528 c->regex = xstrdup (arg);
8529 }
8530
8531 c->is_load = is_load;
8532 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8533 &catch_solib_breakpoint_ops);
8534
8535 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8536
8537 discard_cleanups (cleanup);
8538 install_breakpoint (0, &c->base, 1);
8539 }
8540
8541 /* A helper function that does all the work for "catch load" and
8542 "catch unload". */
8543
8544 static void
8545 catch_load_or_unload (char *arg, int from_tty, int is_load,
8546 struct cmd_list_element *command)
8547 {
8548 int tempflag;
8549 const int enabled = 1;
8550
8551 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8552
8553 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8554 }
8555
8556 static void
8557 catch_load_command_1 (char *arg, int from_tty,
8558 struct cmd_list_element *command)
8559 {
8560 catch_load_or_unload (arg, from_tty, 1, command);
8561 }
8562
8563 static void
8564 catch_unload_command_1 (char *arg, int from_tty,
8565 struct cmd_list_element *command)
8566 {
8567 catch_load_or_unload (arg, from_tty, 0, command);
8568 }
8569
8570 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8571 is non-zero, then make the breakpoint temporary. If COND_STRING is
8572 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8573 the breakpoint_ops structure associated to the catchpoint. */
8574
8575 void
8576 init_catchpoint (struct breakpoint *b,
8577 struct gdbarch *gdbarch, int tempflag,
8578 const char *cond_string,
8579 const struct breakpoint_ops *ops)
8580 {
8581 struct symtab_and_line sal;
8582
8583 init_sal (&sal);
8584 sal.pspace = current_program_space;
8585
8586 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8587
8588 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8589 b->disposition = tempflag ? disp_del : disp_donttouch;
8590 }
8591
8592 void
8593 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8594 {
8595 add_to_breakpoint_chain (b);
8596 set_breakpoint_number (internal, b);
8597 if (is_tracepoint (b))
8598 set_tracepoint_count (breakpoint_count);
8599 if (!internal)
8600 mention (b);
8601 observer_notify_breakpoint_created (b);
8602
8603 if (update_gll)
8604 update_global_location_list (UGLL_MAY_INSERT);
8605 }
8606
8607 static void
8608 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8609 int tempflag, const char *cond_string,
8610 const struct breakpoint_ops *ops)
8611 {
8612 struct fork_catchpoint *c = new fork_catchpoint ();
8613
8614 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8615
8616 c->forked_inferior_pid = null_ptid;
8617
8618 install_breakpoint (0, &c->base, 1);
8619 }
8620
8621 /* Exec catchpoints. */
8622
8623 /* An instance of this type is used to represent an exec catchpoint.
8624 It includes a "struct breakpoint" as a kind of base class; users
8625 downcast to "struct breakpoint *" when needed. A breakpoint is
8626 really of this type iff its ops pointer points to
8627 CATCH_EXEC_BREAKPOINT_OPS. */
8628
8629 struct exec_catchpoint
8630 {
8631 /* The base class. */
8632 struct breakpoint base;
8633
8634 /* Filename of a program whose exec triggered this catchpoint.
8635 This field is only valid immediately after this catchpoint has
8636 triggered. */
8637 char *exec_pathname;
8638 };
8639
8640 /* Implement the "dtor" breakpoint_ops method for exec
8641 catchpoints. */
8642
8643 static void
8644 dtor_catch_exec (struct breakpoint *b)
8645 {
8646 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8647
8648 xfree (c->exec_pathname);
8649
8650 base_breakpoint_ops.dtor (b);
8651 }
8652
8653 static int
8654 insert_catch_exec (struct bp_location *bl)
8655 {
8656 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8657 }
8658
8659 static int
8660 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8661 {
8662 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8663 }
8664
8665 static int
8666 breakpoint_hit_catch_exec (const struct bp_location *bl,
8667 struct address_space *aspace, CORE_ADDR bp_addr,
8668 const struct target_waitstatus *ws)
8669 {
8670 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8671
8672 if (ws->kind != TARGET_WAITKIND_EXECD)
8673 return 0;
8674
8675 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8676 return 1;
8677 }
8678
8679 static enum print_stop_action
8680 print_it_catch_exec (bpstat bs)
8681 {
8682 struct ui_out *uiout = current_uiout;
8683 struct breakpoint *b = bs->breakpoint_at;
8684 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8685
8686 annotate_catchpoint (b->number);
8687 maybe_print_thread_hit_breakpoint (uiout);
8688 if (b->disposition == disp_del)
8689 uiout->text ("Temporary catchpoint ");
8690 else
8691 uiout->text ("Catchpoint ");
8692 if (uiout->is_mi_like_p ())
8693 {
8694 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8695 uiout->field_string ("disp", bpdisp_text (b->disposition));
8696 }
8697 uiout->field_int ("bkptno", b->number);
8698 uiout->text (" (exec'd ");
8699 uiout->field_string ("new-exec", c->exec_pathname);
8700 uiout->text ("), ");
8701
8702 return PRINT_SRC_AND_LOC;
8703 }
8704
8705 static void
8706 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8707 {
8708 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8709 struct value_print_options opts;
8710 struct ui_out *uiout = current_uiout;
8711
8712 get_user_print_options (&opts);
8713
8714 /* Field 4, the address, is omitted (which makes the columns
8715 not line up too nicely with the headers, but the effect
8716 is relatively readable). */
8717 if (opts.addressprint)
8718 uiout->field_skip ("addr");
8719 annotate_field (5);
8720 uiout->text ("exec");
8721 if (c->exec_pathname != NULL)
8722 {
8723 uiout->text (", program \"");
8724 uiout->field_string ("what", c->exec_pathname);
8725 uiout->text ("\" ");
8726 }
8727
8728 if (uiout->is_mi_like_p ())
8729 uiout->field_string ("catch-type", "exec");
8730 }
8731
8732 static void
8733 print_mention_catch_exec (struct breakpoint *b)
8734 {
8735 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8736 }
8737
8738 /* Implement the "print_recreate" breakpoint_ops method for exec
8739 catchpoints. */
8740
8741 static void
8742 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8743 {
8744 fprintf_unfiltered (fp, "catch exec");
8745 print_recreate_thread (b, fp);
8746 }
8747
8748 static struct breakpoint_ops catch_exec_breakpoint_ops;
8749
8750 static int
8751 hw_breakpoint_used_count (void)
8752 {
8753 int i = 0;
8754 struct breakpoint *b;
8755 struct bp_location *bl;
8756
8757 ALL_BREAKPOINTS (b)
8758 {
8759 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8760 for (bl = b->loc; bl; bl = bl->next)
8761 {
8762 /* Special types of hardware breakpoints may use more than
8763 one register. */
8764 i += b->ops->resources_needed (bl);
8765 }
8766 }
8767
8768 return i;
8769 }
8770
8771 /* Returns the resources B would use if it were a hardware
8772 watchpoint. */
8773
8774 static int
8775 hw_watchpoint_use_count (struct breakpoint *b)
8776 {
8777 int i = 0;
8778 struct bp_location *bl;
8779
8780 if (!breakpoint_enabled (b))
8781 return 0;
8782
8783 for (bl = b->loc; bl; bl = bl->next)
8784 {
8785 /* Special types of hardware watchpoints may use more than
8786 one register. */
8787 i += b->ops->resources_needed (bl);
8788 }
8789
8790 return i;
8791 }
8792
8793 /* Returns the sum the used resources of all hardware watchpoints of
8794 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8795 the sum of the used resources of all hardware watchpoints of other
8796 types _not_ TYPE. */
8797
8798 static int
8799 hw_watchpoint_used_count_others (struct breakpoint *except,
8800 enum bptype type, int *other_type_used)
8801 {
8802 int i = 0;
8803 struct breakpoint *b;
8804
8805 *other_type_used = 0;
8806 ALL_BREAKPOINTS (b)
8807 {
8808 if (b == except)
8809 continue;
8810 if (!breakpoint_enabled (b))
8811 continue;
8812
8813 if (b->type == type)
8814 i += hw_watchpoint_use_count (b);
8815 else if (is_hardware_watchpoint (b))
8816 *other_type_used = 1;
8817 }
8818
8819 return i;
8820 }
8821
8822 void
8823 disable_watchpoints_before_interactive_call_start (void)
8824 {
8825 struct breakpoint *b;
8826
8827 ALL_BREAKPOINTS (b)
8828 {
8829 if (is_watchpoint (b) && breakpoint_enabled (b))
8830 {
8831 b->enable_state = bp_call_disabled;
8832 update_global_location_list (UGLL_DONT_INSERT);
8833 }
8834 }
8835 }
8836
8837 void
8838 enable_watchpoints_after_interactive_call_stop (void)
8839 {
8840 struct breakpoint *b;
8841
8842 ALL_BREAKPOINTS (b)
8843 {
8844 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8845 {
8846 b->enable_state = bp_enabled;
8847 update_global_location_list (UGLL_MAY_INSERT);
8848 }
8849 }
8850 }
8851
8852 void
8853 disable_breakpoints_before_startup (void)
8854 {
8855 current_program_space->executing_startup = 1;
8856 update_global_location_list (UGLL_DONT_INSERT);
8857 }
8858
8859 void
8860 enable_breakpoints_after_startup (void)
8861 {
8862 current_program_space->executing_startup = 0;
8863 breakpoint_re_set ();
8864 }
8865
8866 /* Create a new single-step breakpoint for thread THREAD, with no
8867 locations. */
8868
8869 static struct breakpoint *
8870 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8871 {
8872 struct breakpoint *b = new breakpoint ();
8873
8874 init_raw_breakpoint_without_location (b, gdbarch, bp_single_step,
8875 &momentary_breakpoint_ops);
8876
8877 b->disposition = disp_donttouch;
8878 b->frame_id = null_frame_id;
8879
8880 b->thread = thread;
8881 gdb_assert (b->thread != 0);
8882
8883 add_to_breakpoint_chain (b);
8884
8885 return b;
8886 }
8887
8888 /* Set a momentary breakpoint of type TYPE at address specified by
8889 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8890 frame. */
8891
8892 struct breakpoint *
8893 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8894 struct frame_id frame_id, enum bptype type)
8895 {
8896 struct breakpoint *b;
8897
8898 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8899 tail-called one. */
8900 gdb_assert (!frame_id_artificial_p (frame_id));
8901
8902 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8903 b->enable_state = bp_enabled;
8904 b->disposition = disp_donttouch;
8905 b->frame_id = frame_id;
8906
8907 /* If we're debugging a multi-threaded program, then we want
8908 momentary breakpoints to be active in only a single thread of
8909 control. */
8910 if (in_thread_list (inferior_ptid))
8911 b->thread = ptid_to_global_thread_id (inferior_ptid);
8912
8913 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8914
8915 return b;
8916 }
8917
8918 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8919 The new breakpoint will have type TYPE, use OPS as its
8920 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8921
8922 static struct breakpoint *
8923 momentary_breakpoint_from_master (struct breakpoint *orig,
8924 enum bptype type,
8925 const struct breakpoint_ops *ops,
8926 int loc_enabled)
8927 {
8928 struct breakpoint *copy;
8929
8930 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8931 copy->loc = allocate_bp_location (copy);
8932 set_breakpoint_location_function (copy->loc, 1);
8933
8934 copy->loc->gdbarch = orig->loc->gdbarch;
8935 copy->loc->requested_address = orig->loc->requested_address;
8936 copy->loc->address = orig->loc->address;
8937 copy->loc->section = orig->loc->section;
8938 copy->loc->pspace = orig->loc->pspace;
8939 copy->loc->probe = orig->loc->probe;
8940 copy->loc->line_number = orig->loc->line_number;
8941 copy->loc->symtab = orig->loc->symtab;
8942 copy->loc->enabled = loc_enabled;
8943 copy->frame_id = orig->frame_id;
8944 copy->thread = orig->thread;
8945 copy->pspace = orig->pspace;
8946
8947 copy->enable_state = bp_enabled;
8948 copy->disposition = disp_donttouch;
8949 copy->number = internal_breakpoint_number--;
8950
8951 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8952 return copy;
8953 }
8954
8955 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8956 ORIG is NULL. */
8957
8958 struct breakpoint *
8959 clone_momentary_breakpoint (struct breakpoint *orig)
8960 {
8961 /* If there's nothing to clone, then return nothing. */
8962 if (orig == NULL)
8963 return NULL;
8964
8965 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8966 }
8967
8968 struct breakpoint *
8969 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8970 enum bptype type)
8971 {
8972 struct symtab_and_line sal;
8973
8974 sal = find_pc_line (pc, 0);
8975 sal.pc = pc;
8976 sal.section = find_pc_overlay (pc);
8977 sal.explicit_pc = 1;
8978
8979 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8980 }
8981 \f
8982
8983 /* Tell the user we have just set a breakpoint B. */
8984
8985 static void
8986 mention (struct breakpoint *b)
8987 {
8988 b->ops->print_mention (b);
8989 if (current_uiout->is_mi_like_p ())
8990 return;
8991 printf_filtered ("\n");
8992 }
8993 \f
8994
8995 static int bp_loc_is_permanent (struct bp_location *loc);
8996
8997 static struct bp_location *
8998 add_location_to_breakpoint (struct breakpoint *b,
8999 const struct symtab_and_line *sal)
9000 {
9001 struct bp_location *loc, **tmp;
9002 CORE_ADDR adjusted_address;
9003 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9004
9005 if (loc_gdbarch == NULL)
9006 loc_gdbarch = b->gdbarch;
9007
9008 /* Adjust the breakpoint's address prior to allocating a location.
9009 Once we call allocate_bp_location(), that mostly uninitialized
9010 location will be placed on the location chain. Adjustment of the
9011 breakpoint may cause target_read_memory() to be called and we do
9012 not want its scan of the location chain to find a breakpoint and
9013 location that's only been partially initialized. */
9014 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9015 sal->pc, b->type);
9016
9017 /* Sort the locations by their ADDRESS. */
9018 loc = allocate_bp_location (b);
9019 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9020 tmp = &((*tmp)->next))
9021 ;
9022 loc->next = *tmp;
9023 *tmp = loc;
9024
9025 loc->requested_address = sal->pc;
9026 loc->address = adjusted_address;
9027 loc->pspace = sal->pspace;
9028 loc->probe.probe = sal->probe;
9029 loc->probe.objfile = sal->objfile;
9030 gdb_assert (loc->pspace != NULL);
9031 loc->section = sal->section;
9032 loc->gdbarch = loc_gdbarch;
9033 loc->line_number = sal->line;
9034 loc->symtab = sal->symtab;
9035
9036 set_breakpoint_location_function (loc,
9037 sal->explicit_pc || sal->explicit_line);
9038
9039 /* While by definition, permanent breakpoints are already present in the
9040 code, we don't mark the location as inserted. Normally one would expect
9041 that GDB could rely on that breakpoint instruction to stop the program,
9042 thus removing the need to insert its own breakpoint, except that executing
9043 the breakpoint instruction can kill the target instead of reporting a
9044 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
9045 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
9046 with "Trap 0x02 while interrupts disabled, Error state". Letting the
9047 breakpoint be inserted normally results in QEMU knowing about the GDB
9048 breakpoint, and thus trap before the breakpoint instruction is executed.
9049 (If GDB later needs to continue execution past the permanent breakpoint,
9050 it manually increments the PC, thus avoiding executing the breakpoint
9051 instruction.) */
9052 if (bp_loc_is_permanent (loc))
9053 loc->permanent = 1;
9054
9055 return loc;
9056 }
9057 \f
9058
9059 /* See breakpoint.h. */
9060
9061 int
9062 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
9063 {
9064 int len;
9065 CORE_ADDR addr;
9066 const gdb_byte *bpoint;
9067 gdb_byte *target_mem;
9068 struct cleanup *cleanup;
9069 int retval = 0;
9070
9071 addr = address;
9072 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
9073
9074 /* Software breakpoints unsupported? */
9075 if (bpoint == NULL)
9076 return 0;
9077
9078 target_mem = (gdb_byte *) alloca (len);
9079
9080 /* Enable the automatic memory restoration from breakpoints while
9081 we read the memory. Otherwise we could say about our temporary
9082 breakpoints they are permanent. */
9083 cleanup = make_show_memory_breakpoints_cleanup (0);
9084
9085 if (target_read_memory (address, target_mem, len) == 0
9086 && memcmp (target_mem, bpoint, len) == 0)
9087 retval = 1;
9088
9089 do_cleanups (cleanup);
9090
9091 return retval;
9092 }
9093
9094 /* Return 1 if LOC is pointing to a permanent breakpoint,
9095 return 0 otherwise. */
9096
9097 static int
9098 bp_loc_is_permanent (struct bp_location *loc)
9099 {
9100 struct cleanup *cleanup;
9101 int retval;
9102
9103 gdb_assert (loc != NULL);
9104
9105 /* If we have a catchpoint or a watchpoint, just return 0. We should not
9106 attempt to read from the addresses the locations of these breakpoint types
9107 point to. program_breakpoint_here_p, below, will attempt to read
9108 memory. */
9109 if (!breakpoint_address_is_meaningful (loc->owner))
9110 return 0;
9111
9112 cleanup = save_current_space_and_thread ();
9113 switch_to_program_space_and_thread (loc->pspace);
9114
9115 retval = program_breakpoint_here_p (loc->gdbarch, loc->address);
9116
9117 do_cleanups (cleanup);
9118
9119 return retval;
9120 }
9121
9122 /* Build a command list for the dprintf corresponding to the current
9123 settings of the dprintf style options. */
9124
9125 static void
9126 update_dprintf_command_list (struct breakpoint *b)
9127 {
9128 char *dprintf_args = b->extra_string;
9129 char *printf_line = NULL;
9130
9131 if (!dprintf_args)
9132 return;
9133
9134 dprintf_args = skip_spaces (dprintf_args);
9135
9136 /* Allow a comma, as it may have terminated a location, but don't
9137 insist on it. */
9138 if (*dprintf_args == ',')
9139 ++dprintf_args;
9140 dprintf_args = skip_spaces (dprintf_args);
9141
9142 if (*dprintf_args != '"')
9143 error (_("Bad format string, missing '\"'."));
9144
9145 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9146 printf_line = xstrprintf ("printf %s", dprintf_args);
9147 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9148 {
9149 if (!dprintf_function)
9150 error (_("No function supplied for dprintf call"));
9151
9152 if (dprintf_channel && strlen (dprintf_channel) > 0)
9153 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9154 dprintf_function,
9155 dprintf_channel,
9156 dprintf_args);
9157 else
9158 printf_line = xstrprintf ("call (void) %s (%s)",
9159 dprintf_function,
9160 dprintf_args);
9161 }
9162 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9163 {
9164 if (target_can_run_breakpoint_commands ())
9165 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9166 else
9167 {
9168 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9169 printf_line = xstrprintf ("printf %s", dprintf_args);
9170 }
9171 }
9172 else
9173 internal_error (__FILE__, __LINE__,
9174 _("Invalid dprintf style."));
9175
9176 gdb_assert (printf_line != NULL);
9177 /* Manufacture a printf sequence. */
9178 {
9179 struct command_line *printf_cmd_line = XNEW (struct command_line);
9180
9181 printf_cmd_line->control_type = simple_control;
9182 printf_cmd_line->body_count = 0;
9183 printf_cmd_line->body_list = NULL;
9184 printf_cmd_line->next = NULL;
9185 printf_cmd_line->line = printf_line;
9186
9187 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
9188 }
9189 }
9190
9191 /* Update all dprintf commands, making their command lists reflect
9192 current style settings. */
9193
9194 static void
9195 update_dprintf_commands (char *args, int from_tty,
9196 struct cmd_list_element *c)
9197 {
9198 struct breakpoint *b;
9199
9200 ALL_BREAKPOINTS (b)
9201 {
9202 if (b->type == bp_dprintf)
9203 update_dprintf_command_list (b);
9204 }
9205 }
9206
9207 /* Create a breakpoint with SAL as location. Use LOCATION
9208 as a description of the location, and COND_STRING
9209 as condition expression. If LOCATION is NULL then create an
9210 "address location" from the address in the SAL. */
9211
9212 static void
9213 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9214 struct symtabs_and_lines sals,
9215 event_location_up &&location,
9216 char *filter, char *cond_string,
9217 char *extra_string,
9218 enum bptype type, enum bpdisp disposition,
9219 int thread, int task, int ignore_count,
9220 const struct breakpoint_ops *ops, int from_tty,
9221 int enabled, int internal, unsigned flags,
9222 int display_canonical)
9223 {
9224 int i;
9225
9226 if (type == bp_hardware_breakpoint)
9227 {
9228 int target_resources_ok;
9229
9230 i = hw_breakpoint_used_count ();
9231 target_resources_ok =
9232 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9233 i + 1, 0);
9234 if (target_resources_ok == 0)
9235 error (_("No hardware breakpoint support in the target."));
9236 else if (target_resources_ok < 0)
9237 error (_("Hardware breakpoints used exceeds limit."));
9238 }
9239
9240 gdb_assert (sals.nelts > 0);
9241
9242 for (i = 0; i < sals.nelts; ++i)
9243 {
9244 struct symtab_and_line sal = sals.sals[i];
9245 struct bp_location *loc;
9246
9247 if (from_tty)
9248 {
9249 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9250 if (!loc_gdbarch)
9251 loc_gdbarch = gdbarch;
9252
9253 describe_other_breakpoints (loc_gdbarch,
9254 sal.pspace, sal.pc, sal.section, thread);
9255 }
9256
9257 if (i == 0)
9258 {
9259 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9260 b->thread = thread;
9261 b->task = task;
9262
9263 b->cond_string = cond_string;
9264 b->extra_string = extra_string;
9265 b->ignore_count = ignore_count;
9266 b->enable_state = enabled ? bp_enabled : bp_disabled;
9267 b->disposition = disposition;
9268
9269 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9270 b->loc->inserted = 1;
9271
9272 if (type == bp_static_tracepoint)
9273 {
9274 struct tracepoint *t = (struct tracepoint *) b;
9275 struct static_tracepoint_marker marker;
9276
9277 if (strace_marker_p (b))
9278 {
9279 /* We already know the marker exists, otherwise, we
9280 wouldn't see a sal for it. */
9281 const char *p
9282 = &event_location_to_string (b->location.get ())[3];
9283 const char *endp;
9284 char *marker_str;
9285
9286 p = skip_spaces_const (p);
9287
9288 endp = skip_to_space_const (p);
9289
9290 marker_str = savestring (p, endp - p);
9291 t->static_trace_marker_id = marker_str;
9292
9293 printf_filtered (_("Probed static tracepoint "
9294 "marker \"%s\"\n"),
9295 t->static_trace_marker_id);
9296 }
9297 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9298 {
9299 t->static_trace_marker_id = xstrdup (marker.str_id);
9300 release_static_tracepoint_marker (&marker);
9301
9302 printf_filtered (_("Probed static tracepoint "
9303 "marker \"%s\"\n"),
9304 t->static_trace_marker_id);
9305 }
9306 else
9307 warning (_("Couldn't determine the static "
9308 "tracepoint marker to probe"));
9309 }
9310
9311 loc = b->loc;
9312 }
9313 else
9314 {
9315 loc = add_location_to_breakpoint (b, &sal);
9316 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9317 loc->inserted = 1;
9318 }
9319
9320 if (b->cond_string)
9321 {
9322 const char *arg = b->cond_string;
9323
9324 loc->cond = parse_exp_1 (&arg, loc->address,
9325 block_for_pc (loc->address), 0);
9326 if (*arg)
9327 error (_("Garbage '%s' follows condition"), arg);
9328 }
9329
9330 /* Dynamic printf requires and uses additional arguments on the
9331 command line, otherwise it's an error. */
9332 if (type == bp_dprintf)
9333 {
9334 if (b->extra_string)
9335 update_dprintf_command_list (b);
9336 else
9337 error (_("Format string required"));
9338 }
9339 else if (b->extra_string)
9340 error (_("Garbage '%s' at end of command"), b->extra_string);
9341 }
9342
9343 b->display_canonical = display_canonical;
9344 if (location != NULL)
9345 b->location = std::move (location);
9346 else
9347 b->location = new_address_location (b->loc->address, NULL, 0);
9348 b->filter = filter;
9349 }
9350
9351 static void
9352 create_breakpoint_sal (struct gdbarch *gdbarch,
9353 struct symtabs_and_lines sals,
9354 event_location_up &&location,
9355 char *filter, char *cond_string,
9356 char *extra_string,
9357 enum bptype type, enum bpdisp disposition,
9358 int thread, int task, int ignore_count,
9359 const struct breakpoint_ops *ops, int from_tty,
9360 int enabled, int internal, unsigned flags,
9361 int display_canonical)
9362 {
9363 struct breakpoint *b;
9364 struct cleanup *old_chain;
9365
9366 if (is_tracepoint_type (type))
9367 {
9368 struct tracepoint *t;
9369
9370 t = new tracepoint ();
9371 b = &t->base;
9372 }
9373 else
9374 b = new breakpoint ();
9375
9376 old_chain = make_cleanup (xfree, b);
9377
9378 init_breakpoint_sal (b, gdbarch,
9379 sals, std::move (location),
9380 filter, cond_string, extra_string,
9381 type, disposition,
9382 thread, task, ignore_count,
9383 ops, from_tty,
9384 enabled, internal, flags,
9385 display_canonical);
9386 discard_cleanups (old_chain);
9387
9388 install_breakpoint (internal, b, 0);
9389 }
9390
9391 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9392 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9393 value. COND_STRING, if not NULL, specified the condition to be
9394 used for all breakpoints. Essentially the only case where
9395 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9396 function. In that case, it's still not possible to specify
9397 separate conditions for different overloaded functions, so
9398 we take just a single condition string.
9399
9400 NOTE: If the function succeeds, the caller is expected to cleanup
9401 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9402 array contents). If the function fails (error() is called), the
9403 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9404 COND and SALS arrays and each of those arrays contents. */
9405
9406 static void
9407 create_breakpoints_sal (struct gdbarch *gdbarch,
9408 struct linespec_result *canonical,
9409 char *cond_string, char *extra_string,
9410 enum bptype type, enum bpdisp disposition,
9411 int thread, int task, int ignore_count,
9412 const struct breakpoint_ops *ops, int from_tty,
9413 int enabled, int internal, unsigned flags)
9414 {
9415 int i;
9416 struct linespec_sals *lsal;
9417
9418 if (canonical->pre_expanded)
9419 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9420
9421 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9422 {
9423 /* Note that 'location' can be NULL in the case of a plain
9424 'break', without arguments. */
9425 event_location_up location
9426 = (canonical->location != NULL
9427 ? copy_event_location (canonical->location.get ()) : NULL);
9428 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9429
9430 make_cleanup (xfree, filter_string);
9431 create_breakpoint_sal (gdbarch, lsal->sals,
9432 std::move (location),
9433 filter_string,
9434 cond_string, extra_string,
9435 type, disposition,
9436 thread, task, ignore_count, ops,
9437 from_tty, enabled, internal, flags,
9438 canonical->special_display);
9439 }
9440 }
9441
9442 /* Parse LOCATION which is assumed to be a SAL specification possibly
9443 followed by conditionals. On return, SALS contains an array of SAL
9444 addresses found. LOCATION points to the end of the SAL (for
9445 linespec locations).
9446
9447 The array and the line spec strings are allocated on the heap, it is
9448 the caller's responsibility to free them. */
9449
9450 static void
9451 parse_breakpoint_sals (const struct event_location *location,
9452 struct linespec_result *canonical)
9453 {
9454 struct symtab_and_line cursal;
9455
9456 if (event_location_type (location) == LINESPEC_LOCATION)
9457 {
9458 const char *address = get_linespec_location (location);
9459
9460 if (address == NULL)
9461 {
9462 /* The last displayed codepoint, if it's valid, is our default
9463 breakpoint address. */
9464 if (last_displayed_sal_is_valid ())
9465 {
9466 struct linespec_sals lsal;
9467 struct symtab_and_line sal;
9468 CORE_ADDR pc;
9469
9470 init_sal (&sal); /* Initialize to zeroes. */
9471 lsal.sals.sals = XNEW (struct symtab_and_line);
9472
9473 /* Set sal's pspace, pc, symtab, and line to the values
9474 corresponding to the last call to print_frame_info.
9475 Be sure to reinitialize LINE with NOTCURRENT == 0
9476 as the breakpoint line number is inappropriate otherwise.
9477 find_pc_line would adjust PC, re-set it back. */
9478 get_last_displayed_sal (&sal);
9479 pc = sal.pc;
9480 sal = find_pc_line (pc, 0);
9481
9482 /* "break" without arguments is equivalent to "break *PC"
9483 where PC is the last displayed codepoint's address. So
9484 make sure to set sal.explicit_pc to prevent GDB from
9485 trying to expand the list of sals to include all other
9486 instances with the same symtab and line. */
9487 sal.pc = pc;
9488 sal.explicit_pc = 1;
9489
9490 lsal.sals.sals[0] = sal;
9491 lsal.sals.nelts = 1;
9492 lsal.canonical = NULL;
9493
9494 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9495 return;
9496 }
9497 else
9498 error (_("No default breakpoint address now."));
9499 }
9500 }
9501
9502 /* Force almost all breakpoints to be in terms of the
9503 current_source_symtab (which is decode_line_1's default).
9504 This should produce the results we want almost all of the
9505 time while leaving default_breakpoint_* alone.
9506
9507 ObjC: However, don't match an Objective-C method name which
9508 may have a '+' or '-' succeeded by a '['. */
9509 cursal = get_current_source_symtab_and_line ();
9510 if (last_displayed_sal_is_valid ())
9511 {
9512 const char *address = NULL;
9513
9514 if (event_location_type (location) == LINESPEC_LOCATION)
9515 address = get_linespec_location (location);
9516
9517 if (!cursal.symtab
9518 || (address != NULL
9519 && strchr ("+-", address[0]) != NULL
9520 && address[1] != '['))
9521 {
9522 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9523 get_last_displayed_symtab (),
9524 get_last_displayed_line (),
9525 canonical, NULL, NULL);
9526 return;
9527 }
9528 }
9529
9530 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9531 cursal.symtab, cursal.line, canonical, NULL, NULL);
9532 }
9533
9534
9535 /* Convert each SAL into a real PC. Verify that the PC can be
9536 inserted as a breakpoint. If it can't throw an error. */
9537
9538 static void
9539 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9540 {
9541 int i;
9542
9543 for (i = 0; i < sals->nelts; i++)
9544 resolve_sal_pc (&sals->sals[i]);
9545 }
9546
9547 /* Fast tracepoints may have restrictions on valid locations. For
9548 instance, a fast tracepoint using a jump instead of a trap will
9549 likely have to overwrite more bytes than a trap would, and so can
9550 only be placed where the instruction is longer than the jump, or a
9551 multi-instruction sequence does not have a jump into the middle of
9552 it, etc. */
9553
9554 static void
9555 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9556 struct symtabs_and_lines *sals)
9557 {
9558 int i, rslt;
9559 struct symtab_and_line *sal;
9560 char *msg;
9561 struct cleanup *old_chain;
9562
9563 for (i = 0; i < sals->nelts; i++)
9564 {
9565 struct gdbarch *sarch;
9566
9567 sal = &sals->sals[i];
9568
9569 sarch = get_sal_arch (*sal);
9570 /* We fall back to GDBARCH if there is no architecture
9571 associated with SAL. */
9572 if (sarch == NULL)
9573 sarch = gdbarch;
9574 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc, &msg);
9575 old_chain = make_cleanup (xfree, msg);
9576
9577 if (!rslt)
9578 error (_("May not have a fast tracepoint at %s%s"),
9579 paddress (sarch, sal->pc), (msg ? msg : ""));
9580
9581 do_cleanups (old_chain);
9582 }
9583 }
9584
9585 /* Given TOK, a string specification of condition and thread, as
9586 accepted by the 'break' command, extract the condition
9587 string and thread number and set *COND_STRING and *THREAD.
9588 PC identifies the context at which the condition should be parsed.
9589 If no condition is found, *COND_STRING is set to NULL.
9590 If no thread is found, *THREAD is set to -1. */
9591
9592 static void
9593 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9594 char **cond_string, int *thread, int *task,
9595 char **rest)
9596 {
9597 *cond_string = NULL;
9598 *thread = -1;
9599 *task = 0;
9600 *rest = NULL;
9601
9602 while (tok && *tok)
9603 {
9604 const char *end_tok;
9605 int toklen;
9606 const char *cond_start = NULL;
9607 const char *cond_end = NULL;
9608
9609 tok = skip_spaces_const (tok);
9610
9611 if ((*tok == '"' || *tok == ',') && rest)
9612 {
9613 *rest = savestring (tok, strlen (tok));
9614 return;
9615 }
9616
9617 end_tok = skip_to_space_const (tok);
9618
9619 toklen = end_tok - tok;
9620
9621 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9622 {
9623 tok = cond_start = end_tok + 1;
9624 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9625 cond_end = tok;
9626 *cond_string = savestring (cond_start, cond_end - cond_start);
9627 }
9628 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9629 {
9630 const char *tmptok;
9631 struct thread_info *thr;
9632
9633 tok = end_tok + 1;
9634 thr = parse_thread_id (tok, &tmptok);
9635 if (tok == tmptok)
9636 error (_("Junk after thread keyword."));
9637 *thread = thr->global_num;
9638 tok = tmptok;
9639 }
9640 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9641 {
9642 char *tmptok;
9643
9644 tok = end_tok + 1;
9645 *task = strtol (tok, &tmptok, 0);
9646 if (tok == tmptok)
9647 error (_("Junk after task keyword."));
9648 if (!valid_task_id (*task))
9649 error (_("Unknown task %d."), *task);
9650 tok = tmptok;
9651 }
9652 else if (rest)
9653 {
9654 *rest = savestring (tok, strlen (tok));
9655 return;
9656 }
9657 else
9658 error (_("Junk at end of arguments."));
9659 }
9660 }
9661
9662 /* Decode a static tracepoint marker spec. */
9663
9664 static struct symtabs_and_lines
9665 decode_static_tracepoint_spec (const char **arg_p)
9666 {
9667 VEC(static_tracepoint_marker_p) *markers = NULL;
9668 struct symtabs_and_lines sals;
9669 struct cleanup *old_chain;
9670 const char *p = &(*arg_p)[3];
9671 const char *endp;
9672 char *marker_str;
9673 int i;
9674
9675 p = skip_spaces_const (p);
9676
9677 endp = skip_to_space_const (p);
9678
9679 marker_str = savestring (p, endp - p);
9680 old_chain = make_cleanup (xfree, marker_str);
9681
9682 markers = target_static_tracepoint_markers_by_strid (marker_str);
9683 if (VEC_empty(static_tracepoint_marker_p, markers))
9684 error (_("No known static tracepoint marker named %s"), marker_str);
9685
9686 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9687 sals.sals = XNEWVEC (struct symtab_and_line, sals.nelts);
9688
9689 for (i = 0; i < sals.nelts; i++)
9690 {
9691 struct static_tracepoint_marker *marker;
9692
9693 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9694
9695 init_sal (&sals.sals[i]);
9696
9697 sals.sals[i] = find_pc_line (marker->address, 0);
9698 sals.sals[i].pc = marker->address;
9699
9700 release_static_tracepoint_marker (marker);
9701 }
9702
9703 do_cleanups (old_chain);
9704
9705 *arg_p = endp;
9706 return sals;
9707 }
9708
9709 /* See breakpoint.h. */
9710
9711 int
9712 create_breakpoint (struct gdbarch *gdbarch,
9713 const struct event_location *location, char *cond_string,
9714 int thread, char *extra_string,
9715 int parse_extra,
9716 int tempflag, enum bptype type_wanted,
9717 int ignore_count,
9718 enum auto_boolean pending_break_support,
9719 const struct breakpoint_ops *ops,
9720 int from_tty, int enabled, int internal,
9721 unsigned flags)
9722 {
9723 struct linespec_result canonical;
9724 struct cleanup *bkpt_chain = NULL;
9725 int pending = 0;
9726 int task = 0;
9727 int prev_bkpt_count = breakpoint_count;
9728
9729 gdb_assert (ops != NULL);
9730
9731 /* If extra_string isn't useful, set it to NULL. */
9732 if (extra_string != NULL && *extra_string == '\0')
9733 extra_string = NULL;
9734
9735 TRY
9736 {
9737 ops->create_sals_from_location (location, &canonical, type_wanted);
9738 }
9739 CATCH (e, RETURN_MASK_ERROR)
9740 {
9741 /* If caller is interested in rc value from parse, set
9742 value. */
9743 if (e.error == NOT_FOUND_ERROR)
9744 {
9745 /* If pending breakpoint support is turned off, throw
9746 error. */
9747
9748 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9749 throw_exception (e);
9750
9751 exception_print (gdb_stderr, e);
9752
9753 /* If pending breakpoint support is auto query and the user
9754 selects no, then simply return the error code. */
9755 if (pending_break_support == AUTO_BOOLEAN_AUTO
9756 && !nquery (_("Make %s pending on future shared library load? "),
9757 bptype_string (type_wanted)))
9758 return 0;
9759
9760 /* At this point, either the user was queried about setting
9761 a pending breakpoint and selected yes, or pending
9762 breakpoint behavior is on and thus a pending breakpoint
9763 is defaulted on behalf of the user. */
9764 pending = 1;
9765 }
9766 else
9767 throw_exception (e);
9768 }
9769 END_CATCH
9770
9771 if (!pending && VEC_empty (linespec_sals, canonical.sals))
9772 return 0;
9773
9774 /* ----------------------------- SNIP -----------------------------
9775 Anything added to the cleanup chain beyond this point is assumed
9776 to be part of a breakpoint. If the breakpoint create succeeds
9777 then the memory is not reclaimed. */
9778 bkpt_chain = make_cleanup (null_cleanup, 0);
9779
9780 /* Resolve all line numbers to PC's and verify that the addresses
9781 are ok for the target. */
9782 if (!pending)
9783 {
9784 int ix;
9785 struct linespec_sals *iter;
9786
9787 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9788 breakpoint_sals_to_pc (&iter->sals);
9789 }
9790
9791 /* Fast tracepoints may have additional restrictions on location. */
9792 if (!pending && type_wanted == bp_fast_tracepoint)
9793 {
9794 int ix;
9795 struct linespec_sals *iter;
9796
9797 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9798 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9799 }
9800
9801 /* Verify that condition can be parsed, before setting any
9802 breakpoints. Allocate a separate condition expression for each
9803 breakpoint. */
9804 if (!pending)
9805 {
9806 if (parse_extra)
9807 {
9808 char *rest;
9809 struct linespec_sals *lsal;
9810
9811 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9812
9813 /* Here we only parse 'arg' to separate condition
9814 from thread number, so parsing in context of first
9815 sal is OK. When setting the breakpoint we'll
9816 re-parse it in context of each sal. */
9817
9818 find_condition_and_thread (extra_string, lsal->sals.sals[0].pc,
9819 &cond_string, &thread, &task, &rest);
9820 if (cond_string)
9821 make_cleanup (xfree, cond_string);
9822 if (rest)
9823 make_cleanup (xfree, rest);
9824 if (rest)
9825 extra_string = rest;
9826 else
9827 extra_string = NULL;
9828 }
9829 else
9830 {
9831 if (type_wanted != bp_dprintf
9832 && extra_string != NULL && *extra_string != '\0')
9833 error (_("Garbage '%s' at end of location"), extra_string);
9834
9835 /* Create a private copy of condition string. */
9836 if (cond_string)
9837 {
9838 cond_string = xstrdup (cond_string);
9839 make_cleanup (xfree, cond_string);
9840 }
9841 /* Create a private copy of any extra string. */
9842 if (extra_string)
9843 {
9844 extra_string = xstrdup (extra_string);
9845 make_cleanup (xfree, extra_string);
9846 }
9847 }
9848
9849 ops->create_breakpoints_sal (gdbarch, &canonical,
9850 cond_string, extra_string, type_wanted,
9851 tempflag ? disp_del : disp_donttouch,
9852 thread, task, ignore_count, ops,
9853 from_tty, enabled, internal, flags);
9854 }
9855 else
9856 {
9857 struct breakpoint *b;
9858
9859 if (is_tracepoint_type (type_wanted))
9860 {
9861 struct tracepoint *t;
9862
9863 t = new tracepoint ();
9864 b = &t->base;
9865 }
9866 else
9867 b = new breakpoint ();
9868
9869 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9870 b->location = copy_event_location (location);
9871
9872 if (parse_extra)
9873 b->cond_string = NULL;
9874 else
9875 {
9876 /* Create a private copy of condition string. */
9877 if (cond_string)
9878 {
9879 cond_string = xstrdup (cond_string);
9880 make_cleanup (xfree, cond_string);
9881 }
9882 b->cond_string = cond_string;
9883 b->thread = thread;
9884 }
9885
9886 /* Create a private copy of any extra string. */
9887 if (extra_string != NULL)
9888 {
9889 extra_string = xstrdup (extra_string);
9890 make_cleanup (xfree, extra_string);
9891 }
9892 b->extra_string = extra_string;
9893 b->ignore_count = ignore_count;
9894 b->disposition = tempflag ? disp_del : disp_donttouch;
9895 b->condition_not_parsed = 1;
9896 b->enable_state = enabled ? bp_enabled : bp_disabled;
9897 if ((type_wanted != bp_breakpoint
9898 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9899 b->pspace = current_program_space;
9900
9901 install_breakpoint (internal, b, 0);
9902 }
9903
9904 if (VEC_length (linespec_sals, canonical.sals) > 1)
9905 {
9906 warning (_("Multiple breakpoints were set.\nUse the "
9907 "\"delete\" command to delete unwanted breakpoints."));
9908 prev_breakpoint_count = prev_bkpt_count;
9909 }
9910
9911 /* That's it. Discard the cleanups for data inserted into the
9912 breakpoint. */
9913 discard_cleanups (bkpt_chain);
9914
9915 /* error call may happen here - have BKPT_CHAIN already discarded. */
9916 update_global_location_list (UGLL_MAY_INSERT);
9917
9918 return 1;
9919 }
9920
9921 /* Set a breakpoint.
9922 ARG is a string describing breakpoint address,
9923 condition, and thread.
9924 FLAG specifies if a breakpoint is hardware on,
9925 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9926 and BP_TEMPFLAG. */
9927
9928 static void
9929 break_command_1 (char *arg, int flag, int from_tty)
9930 {
9931 int tempflag = flag & BP_TEMPFLAG;
9932 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9933 ? bp_hardware_breakpoint
9934 : bp_breakpoint);
9935 struct breakpoint_ops *ops;
9936
9937 event_location_up location = string_to_event_location (&arg, current_language);
9938
9939 /* Matching breakpoints on probes. */
9940 if (location != NULL
9941 && event_location_type (location.get ()) == PROBE_LOCATION)
9942 ops = &bkpt_probe_breakpoint_ops;
9943 else
9944 ops = &bkpt_breakpoint_ops;
9945
9946 create_breakpoint (get_current_arch (),
9947 location.get (),
9948 NULL, 0, arg, 1 /* parse arg */,
9949 tempflag, type_wanted,
9950 0 /* Ignore count */,
9951 pending_break_support,
9952 ops,
9953 from_tty,
9954 1 /* enabled */,
9955 0 /* internal */,
9956 0);
9957 }
9958
9959 /* Helper function for break_command_1 and disassemble_command. */
9960
9961 void
9962 resolve_sal_pc (struct symtab_and_line *sal)
9963 {
9964 CORE_ADDR pc;
9965
9966 if (sal->pc == 0 && sal->symtab != NULL)
9967 {
9968 if (!find_line_pc (sal->symtab, sal->line, &pc))
9969 error (_("No line %d in file \"%s\"."),
9970 sal->line, symtab_to_filename_for_display (sal->symtab));
9971 sal->pc = pc;
9972
9973 /* If this SAL corresponds to a breakpoint inserted using a line
9974 number, then skip the function prologue if necessary. */
9975 if (sal->explicit_line)
9976 skip_prologue_sal (sal);
9977 }
9978
9979 if (sal->section == 0 && sal->symtab != NULL)
9980 {
9981 const struct blockvector *bv;
9982 const struct block *b;
9983 struct symbol *sym;
9984
9985 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9986 SYMTAB_COMPUNIT (sal->symtab));
9987 if (bv != NULL)
9988 {
9989 sym = block_linkage_function (b);
9990 if (sym != NULL)
9991 {
9992 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9993 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9994 sym);
9995 }
9996 else
9997 {
9998 /* It really is worthwhile to have the section, so we'll
9999 just have to look harder. This case can be executed
10000 if we have line numbers but no functions (as can
10001 happen in assembly source). */
10002
10003 struct bound_minimal_symbol msym;
10004 struct cleanup *old_chain = save_current_space_and_thread ();
10005
10006 switch_to_program_space_and_thread (sal->pspace);
10007
10008 msym = lookup_minimal_symbol_by_pc (sal->pc);
10009 if (msym.minsym)
10010 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10011
10012 do_cleanups (old_chain);
10013 }
10014 }
10015 }
10016 }
10017
10018 void
10019 break_command (char *arg, int from_tty)
10020 {
10021 break_command_1 (arg, 0, from_tty);
10022 }
10023
10024 void
10025 tbreak_command (char *arg, int from_tty)
10026 {
10027 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10028 }
10029
10030 static void
10031 hbreak_command (char *arg, int from_tty)
10032 {
10033 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10034 }
10035
10036 static void
10037 thbreak_command (char *arg, int from_tty)
10038 {
10039 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10040 }
10041
10042 static void
10043 stop_command (char *arg, int from_tty)
10044 {
10045 printf_filtered (_("Specify the type of breakpoint to set.\n\
10046 Usage: stop in <function | address>\n\
10047 stop at <line>\n"));
10048 }
10049
10050 static void
10051 stopin_command (char *arg, int from_tty)
10052 {
10053 int badInput = 0;
10054
10055 if (arg == (char *) NULL)
10056 badInput = 1;
10057 else if (*arg != '*')
10058 {
10059 char *argptr = arg;
10060 int hasColon = 0;
10061
10062 /* Look for a ':'. If this is a line number specification, then
10063 say it is bad, otherwise, it should be an address or
10064 function/method name. */
10065 while (*argptr && !hasColon)
10066 {
10067 hasColon = (*argptr == ':');
10068 argptr++;
10069 }
10070
10071 if (hasColon)
10072 badInput = (*argptr != ':'); /* Not a class::method */
10073 else
10074 badInput = isdigit (*arg); /* a simple line number */
10075 }
10076
10077 if (badInput)
10078 printf_filtered (_("Usage: stop in <function | address>\n"));
10079 else
10080 break_command_1 (arg, 0, from_tty);
10081 }
10082
10083 static void
10084 stopat_command (char *arg, int from_tty)
10085 {
10086 int badInput = 0;
10087
10088 if (arg == (char *) NULL || *arg == '*') /* no line number */
10089 badInput = 1;
10090 else
10091 {
10092 char *argptr = arg;
10093 int hasColon = 0;
10094
10095 /* Look for a ':'. If there is a '::' then get out, otherwise
10096 it is probably a line number. */
10097 while (*argptr && !hasColon)
10098 {
10099 hasColon = (*argptr == ':');
10100 argptr++;
10101 }
10102
10103 if (hasColon)
10104 badInput = (*argptr == ':'); /* we have class::method */
10105 else
10106 badInput = !isdigit (*arg); /* not a line number */
10107 }
10108
10109 if (badInput)
10110 printf_filtered (_("Usage: stop at <line>\n"));
10111 else
10112 break_command_1 (arg, 0, from_tty);
10113 }
10114
10115 /* The dynamic printf command is mostly like a regular breakpoint, but
10116 with a prewired command list consisting of a single output command,
10117 built from extra arguments supplied on the dprintf command
10118 line. */
10119
10120 static void
10121 dprintf_command (char *arg, int from_tty)
10122 {
10123 event_location_up location = string_to_event_location (&arg, current_language);
10124
10125 /* If non-NULL, ARG should have been advanced past the location;
10126 the next character must be ','. */
10127 if (arg != NULL)
10128 {
10129 if (arg[0] != ',' || arg[1] == '\0')
10130 error (_("Format string required"));
10131 else
10132 {
10133 /* Skip the comma. */
10134 ++arg;
10135 }
10136 }
10137
10138 create_breakpoint (get_current_arch (),
10139 location.get (),
10140 NULL, 0, arg, 1 /* parse arg */,
10141 0, bp_dprintf,
10142 0 /* Ignore count */,
10143 pending_break_support,
10144 &dprintf_breakpoint_ops,
10145 from_tty,
10146 1 /* enabled */,
10147 0 /* internal */,
10148 0);
10149 }
10150
10151 static void
10152 agent_printf_command (char *arg, int from_tty)
10153 {
10154 error (_("May only run agent-printf on the target"));
10155 }
10156
10157 /* Implement the "breakpoint_hit" breakpoint_ops method for
10158 ranged breakpoints. */
10159
10160 static int
10161 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10162 struct address_space *aspace,
10163 CORE_ADDR bp_addr,
10164 const struct target_waitstatus *ws)
10165 {
10166 if (ws->kind != TARGET_WAITKIND_STOPPED
10167 || ws->value.sig != GDB_SIGNAL_TRAP)
10168 return 0;
10169
10170 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10171 bl->length, aspace, bp_addr);
10172 }
10173
10174 /* Implement the "resources_needed" breakpoint_ops method for
10175 ranged breakpoints. */
10176
10177 static int
10178 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10179 {
10180 return target_ranged_break_num_registers ();
10181 }
10182
10183 /* Implement the "print_it" breakpoint_ops method for
10184 ranged breakpoints. */
10185
10186 static enum print_stop_action
10187 print_it_ranged_breakpoint (bpstat bs)
10188 {
10189 struct breakpoint *b = bs->breakpoint_at;
10190 struct bp_location *bl = b->loc;
10191 struct ui_out *uiout = current_uiout;
10192
10193 gdb_assert (b->type == bp_hardware_breakpoint);
10194
10195 /* Ranged breakpoints have only one location. */
10196 gdb_assert (bl && bl->next == NULL);
10197
10198 annotate_breakpoint (b->number);
10199
10200 maybe_print_thread_hit_breakpoint (uiout);
10201
10202 if (b->disposition == disp_del)
10203 uiout->text ("Temporary ranged breakpoint ");
10204 else
10205 uiout->text ("Ranged breakpoint ");
10206 if (uiout->is_mi_like_p ())
10207 {
10208 uiout->field_string ("reason",
10209 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10210 uiout->field_string ("disp", bpdisp_text (b->disposition));
10211 }
10212 uiout->field_int ("bkptno", b->number);
10213 uiout->text (", ");
10214
10215 return PRINT_SRC_AND_LOC;
10216 }
10217
10218 /* Implement the "print_one" breakpoint_ops method for
10219 ranged breakpoints. */
10220
10221 static void
10222 print_one_ranged_breakpoint (struct breakpoint *b,
10223 struct bp_location **last_loc)
10224 {
10225 struct bp_location *bl = b->loc;
10226 struct value_print_options opts;
10227 struct ui_out *uiout = current_uiout;
10228
10229 /* Ranged breakpoints have only one location. */
10230 gdb_assert (bl && bl->next == NULL);
10231
10232 get_user_print_options (&opts);
10233
10234 if (opts.addressprint)
10235 /* We don't print the address range here, it will be printed later
10236 by print_one_detail_ranged_breakpoint. */
10237 uiout->field_skip ("addr");
10238 annotate_field (5);
10239 print_breakpoint_location (b, bl);
10240 *last_loc = bl;
10241 }
10242
10243 /* Implement the "print_one_detail" breakpoint_ops method for
10244 ranged breakpoints. */
10245
10246 static void
10247 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10248 struct ui_out *uiout)
10249 {
10250 CORE_ADDR address_start, address_end;
10251 struct bp_location *bl = b->loc;
10252 string_file stb;
10253
10254 gdb_assert (bl);
10255
10256 address_start = bl->address;
10257 address_end = address_start + bl->length - 1;
10258
10259 uiout->text ("\taddress range: ");
10260 stb.printf ("[%s, %s]",
10261 print_core_address (bl->gdbarch, address_start),
10262 print_core_address (bl->gdbarch, address_end));
10263 uiout->field_stream ("addr", stb);
10264 uiout->text ("\n");
10265 }
10266
10267 /* Implement the "print_mention" breakpoint_ops method for
10268 ranged breakpoints. */
10269
10270 static void
10271 print_mention_ranged_breakpoint (struct breakpoint *b)
10272 {
10273 struct bp_location *bl = b->loc;
10274 struct ui_out *uiout = current_uiout;
10275
10276 gdb_assert (bl);
10277 gdb_assert (b->type == bp_hardware_breakpoint);
10278
10279 if (uiout->is_mi_like_p ())
10280 return;
10281
10282 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10283 b->number, paddress (bl->gdbarch, bl->address),
10284 paddress (bl->gdbarch, bl->address + bl->length - 1));
10285 }
10286
10287 /* Implement the "print_recreate" breakpoint_ops method for
10288 ranged breakpoints. */
10289
10290 static void
10291 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10292 {
10293 fprintf_unfiltered (fp, "break-range %s, %s",
10294 event_location_to_string (b->location.get ()),
10295 event_location_to_string (b->location_range_end.get ()));
10296 print_recreate_thread (b, fp);
10297 }
10298
10299 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10300
10301 static struct breakpoint_ops ranged_breakpoint_ops;
10302
10303 /* Find the address where the end of the breakpoint range should be
10304 placed, given the SAL of the end of the range. This is so that if
10305 the user provides a line number, the end of the range is set to the
10306 last instruction of the given line. */
10307
10308 static CORE_ADDR
10309 find_breakpoint_range_end (struct symtab_and_line sal)
10310 {
10311 CORE_ADDR end;
10312
10313 /* If the user provided a PC value, use it. Otherwise,
10314 find the address of the end of the given location. */
10315 if (sal.explicit_pc)
10316 end = sal.pc;
10317 else
10318 {
10319 int ret;
10320 CORE_ADDR start;
10321
10322 ret = find_line_pc_range (sal, &start, &end);
10323 if (!ret)
10324 error (_("Could not find location of the end of the range."));
10325
10326 /* find_line_pc_range returns the start of the next line. */
10327 end--;
10328 }
10329
10330 return end;
10331 }
10332
10333 /* Implement the "break-range" CLI command. */
10334
10335 static void
10336 break_range_command (char *arg, int from_tty)
10337 {
10338 char *arg_start, *addr_string_start;
10339 struct linespec_result canonical_start, canonical_end;
10340 int bp_count, can_use_bp, length;
10341 CORE_ADDR end;
10342 struct breakpoint *b;
10343 struct symtab_and_line sal_start, sal_end;
10344 struct cleanup *cleanup_bkpt;
10345 struct linespec_sals *lsal_start, *lsal_end;
10346
10347 /* We don't support software ranged breakpoints. */
10348 if (target_ranged_break_num_registers () < 0)
10349 error (_("This target does not support hardware ranged breakpoints."));
10350
10351 bp_count = hw_breakpoint_used_count ();
10352 bp_count += target_ranged_break_num_registers ();
10353 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10354 bp_count, 0);
10355 if (can_use_bp < 0)
10356 error (_("Hardware breakpoints used exceeds limit."));
10357
10358 arg = skip_spaces (arg);
10359 if (arg == NULL || arg[0] == '\0')
10360 error(_("No address range specified."));
10361
10362 arg_start = arg;
10363 event_location_up start_location = string_to_event_location (&arg,
10364 current_language);
10365 parse_breakpoint_sals (start_location.get (), &canonical_start);
10366
10367 if (arg[0] != ',')
10368 error (_("Too few arguments."));
10369 else if (VEC_empty (linespec_sals, canonical_start.sals))
10370 error (_("Could not find location of the beginning of the range."));
10371
10372 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10373
10374 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10375 || lsal_start->sals.nelts != 1)
10376 error (_("Cannot create a ranged breakpoint with multiple locations."));
10377
10378 sal_start = lsal_start->sals.sals[0];
10379 addr_string_start = savestring (arg_start, arg - arg_start);
10380 cleanup_bkpt = make_cleanup (xfree, addr_string_start);
10381
10382 arg++; /* Skip the comma. */
10383 arg = skip_spaces (arg);
10384
10385 /* Parse the end location. */
10386
10387 arg_start = arg;
10388
10389 /* We call decode_line_full directly here instead of using
10390 parse_breakpoint_sals because we need to specify the start location's
10391 symtab and line as the default symtab and line for the end of the
10392 range. This makes it possible to have ranges like "foo.c:27, +14",
10393 where +14 means 14 lines from the start location. */
10394 event_location_up end_location = string_to_event_location (&arg,
10395 current_language);
10396 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10397 sal_start.symtab, sal_start.line,
10398 &canonical_end, NULL, NULL);
10399
10400 if (VEC_empty (linespec_sals, canonical_end.sals))
10401 error (_("Could not find location of the end of the range."));
10402
10403 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10404 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10405 || lsal_end->sals.nelts != 1)
10406 error (_("Cannot create a ranged breakpoint with multiple locations."));
10407
10408 sal_end = lsal_end->sals.sals[0];
10409
10410 end = find_breakpoint_range_end (sal_end);
10411 if (sal_start.pc > end)
10412 error (_("Invalid address range, end precedes start."));
10413
10414 length = end - sal_start.pc + 1;
10415 if (length < 0)
10416 /* Length overflowed. */
10417 error (_("Address range too large."));
10418 else if (length == 1)
10419 {
10420 /* This range is simple enough to be handled by
10421 the `hbreak' command. */
10422 hbreak_command (addr_string_start, 1);
10423
10424 do_cleanups (cleanup_bkpt);
10425
10426 return;
10427 }
10428
10429 /* Now set up the breakpoint. */
10430 b = set_raw_breakpoint (get_current_arch (), sal_start,
10431 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10432 set_breakpoint_count (breakpoint_count + 1);
10433 b->number = breakpoint_count;
10434 b->disposition = disp_donttouch;
10435 b->location = std::move (start_location);
10436 b->location_range_end = std::move (end_location);
10437 b->loc->length = length;
10438
10439 do_cleanups (cleanup_bkpt);
10440
10441 mention (b);
10442 observer_notify_breakpoint_created (b);
10443 update_global_location_list (UGLL_MAY_INSERT);
10444 }
10445
10446 /* Return non-zero if EXP is verified as constant. Returned zero
10447 means EXP is variable. Also the constant detection may fail for
10448 some constant expressions and in such case still falsely return
10449 zero. */
10450
10451 static int
10452 watchpoint_exp_is_const (const struct expression *exp)
10453 {
10454 int i = exp->nelts;
10455
10456 while (i > 0)
10457 {
10458 int oplenp, argsp;
10459
10460 /* We are only interested in the descriptor of each element. */
10461 operator_length (exp, i, &oplenp, &argsp);
10462 i -= oplenp;
10463
10464 switch (exp->elts[i].opcode)
10465 {
10466 case BINOP_ADD:
10467 case BINOP_SUB:
10468 case BINOP_MUL:
10469 case BINOP_DIV:
10470 case BINOP_REM:
10471 case BINOP_MOD:
10472 case BINOP_LSH:
10473 case BINOP_RSH:
10474 case BINOP_LOGICAL_AND:
10475 case BINOP_LOGICAL_OR:
10476 case BINOP_BITWISE_AND:
10477 case BINOP_BITWISE_IOR:
10478 case BINOP_BITWISE_XOR:
10479 case BINOP_EQUAL:
10480 case BINOP_NOTEQUAL:
10481 case BINOP_LESS:
10482 case BINOP_GTR:
10483 case BINOP_LEQ:
10484 case BINOP_GEQ:
10485 case BINOP_REPEAT:
10486 case BINOP_COMMA:
10487 case BINOP_EXP:
10488 case BINOP_MIN:
10489 case BINOP_MAX:
10490 case BINOP_INTDIV:
10491 case BINOP_CONCAT:
10492 case TERNOP_COND:
10493 case TERNOP_SLICE:
10494
10495 case OP_LONG:
10496 case OP_DOUBLE:
10497 case OP_DECFLOAT:
10498 case OP_LAST:
10499 case OP_COMPLEX:
10500 case OP_STRING:
10501 case OP_ARRAY:
10502 case OP_TYPE:
10503 case OP_TYPEOF:
10504 case OP_DECLTYPE:
10505 case OP_TYPEID:
10506 case OP_NAME:
10507 case OP_OBJC_NSSTRING:
10508
10509 case UNOP_NEG:
10510 case UNOP_LOGICAL_NOT:
10511 case UNOP_COMPLEMENT:
10512 case UNOP_ADDR:
10513 case UNOP_HIGH:
10514 case UNOP_CAST:
10515
10516 case UNOP_CAST_TYPE:
10517 case UNOP_REINTERPRET_CAST:
10518 case UNOP_DYNAMIC_CAST:
10519 /* Unary, binary and ternary operators: We have to check
10520 their operands. If they are constant, then so is the
10521 result of that operation. For instance, if A and B are
10522 determined to be constants, then so is "A + B".
10523
10524 UNOP_IND is one exception to the rule above, because the
10525 value of *ADDR is not necessarily a constant, even when
10526 ADDR is. */
10527 break;
10528
10529 case OP_VAR_VALUE:
10530 /* Check whether the associated symbol is a constant.
10531
10532 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10533 possible that a buggy compiler could mark a variable as
10534 constant even when it is not, and TYPE_CONST would return
10535 true in this case, while SYMBOL_CLASS wouldn't.
10536
10537 We also have to check for function symbols because they
10538 are always constant. */
10539 {
10540 struct symbol *s = exp->elts[i + 2].symbol;
10541
10542 if (SYMBOL_CLASS (s) != LOC_BLOCK
10543 && SYMBOL_CLASS (s) != LOC_CONST
10544 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10545 return 0;
10546 break;
10547 }
10548
10549 /* The default action is to return 0 because we are using
10550 the optimistic approach here: If we don't know something,
10551 then it is not a constant. */
10552 default:
10553 return 0;
10554 }
10555 }
10556
10557 return 1;
10558 }
10559
10560 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10561
10562 static void
10563 dtor_watchpoint (struct breakpoint *self)
10564 {
10565 struct watchpoint *w = (struct watchpoint *) self;
10566
10567 xfree (w->exp_string);
10568 xfree (w->exp_string_reparse);
10569 value_free (w->val);
10570
10571 base_breakpoint_ops.dtor (self);
10572 }
10573
10574 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10575
10576 static void
10577 re_set_watchpoint (struct breakpoint *b)
10578 {
10579 struct watchpoint *w = (struct watchpoint *) b;
10580
10581 /* Watchpoint can be either on expression using entirely global
10582 variables, or it can be on local variables.
10583
10584 Watchpoints of the first kind are never auto-deleted, and even
10585 persist across program restarts. Since they can use variables
10586 from shared libraries, we need to reparse expression as libraries
10587 are loaded and unloaded.
10588
10589 Watchpoints on local variables can also change meaning as result
10590 of solib event. For example, if a watchpoint uses both a local
10591 and a global variables in expression, it's a local watchpoint,
10592 but unloading of a shared library will make the expression
10593 invalid. This is not a very common use case, but we still
10594 re-evaluate expression, to avoid surprises to the user.
10595
10596 Note that for local watchpoints, we re-evaluate it only if
10597 watchpoints frame id is still valid. If it's not, it means the
10598 watchpoint is out of scope and will be deleted soon. In fact,
10599 I'm not sure we'll ever be called in this case.
10600
10601 If a local watchpoint's frame id is still valid, then
10602 w->exp_valid_block is likewise valid, and we can safely use it.
10603
10604 Don't do anything about disabled watchpoints, since they will be
10605 reevaluated again when enabled. */
10606 update_watchpoint (w, 1 /* reparse */);
10607 }
10608
10609 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10610
10611 static int
10612 insert_watchpoint (struct bp_location *bl)
10613 {
10614 struct watchpoint *w = (struct watchpoint *) bl->owner;
10615 int length = w->exact ? 1 : bl->length;
10616
10617 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10618 w->cond_exp.get ());
10619 }
10620
10621 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10622
10623 static int
10624 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10625 {
10626 struct watchpoint *w = (struct watchpoint *) bl->owner;
10627 int length = w->exact ? 1 : bl->length;
10628
10629 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10630 w->cond_exp.get ());
10631 }
10632
10633 static int
10634 breakpoint_hit_watchpoint (const struct bp_location *bl,
10635 struct address_space *aspace, CORE_ADDR bp_addr,
10636 const struct target_waitstatus *ws)
10637 {
10638 struct breakpoint *b = bl->owner;
10639 struct watchpoint *w = (struct watchpoint *) b;
10640
10641 /* Continuable hardware watchpoints are treated as non-existent if the
10642 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10643 some data address). Otherwise gdb won't stop on a break instruction
10644 in the code (not from a breakpoint) when a hardware watchpoint has
10645 been defined. Also skip watchpoints which we know did not trigger
10646 (did not match the data address). */
10647 if (is_hardware_watchpoint (b)
10648 && w->watchpoint_triggered == watch_triggered_no)
10649 return 0;
10650
10651 return 1;
10652 }
10653
10654 static void
10655 check_status_watchpoint (bpstat bs)
10656 {
10657 gdb_assert (is_watchpoint (bs->breakpoint_at));
10658
10659 bpstat_check_watchpoint (bs);
10660 }
10661
10662 /* Implement the "resources_needed" breakpoint_ops method for
10663 hardware watchpoints. */
10664
10665 static int
10666 resources_needed_watchpoint (const struct bp_location *bl)
10667 {
10668 struct watchpoint *w = (struct watchpoint *) bl->owner;
10669 int length = w->exact? 1 : bl->length;
10670
10671 return target_region_ok_for_hw_watchpoint (bl->address, length);
10672 }
10673
10674 /* Implement the "works_in_software_mode" breakpoint_ops method for
10675 hardware watchpoints. */
10676
10677 static int
10678 works_in_software_mode_watchpoint (const struct breakpoint *b)
10679 {
10680 /* Read and access watchpoints only work with hardware support. */
10681 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10682 }
10683
10684 static enum print_stop_action
10685 print_it_watchpoint (bpstat bs)
10686 {
10687 struct cleanup *old_chain;
10688 struct breakpoint *b;
10689 enum print_stop_action result;
10690 struct watchpoint *w;
10691 struct ui_out *uiout = current_uiout;
10692
10693 gdb_assert (bs->bp_location_at != NULL);
10694
10695 b = bs->breakpoint_at;
10696 w = (struct watchpoint *) b;
10697
10698 old_chain = make_cleanup (null_cleanup, NULL);
10699
10700 annotate_watchpoint (b->number);
10701 maybe_print_thread_hit_breakpoint (uiout);
10702
10703 string_file stb;
10704
10705 switch (b->type)
10706 {
10707 case bp_watchpoint:
10708 case bp_hardware_watchpoint:
10709 if (uiout->is_mi_like_p ())
10710 uiout->field_string
10711 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10712 mention (b);
10713 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10714 uiout->text ("\nOld value = ");
10715 watchpoint_value_print (bs->old_val, &stb);
10716 uiout->field_stream ("old", stb);
10717 uiout->text ("\nNew value = ");
10718 watchpoint_value_print (w->val, &stb);
10719 uiout->field_stream ("new", stb);
10720 uiout->text ("\n");
10721 /* More than one watchpoint may have been triggered. */
10722 result = PRINT_UNKNOWN;
10723 break;
10724
10725 case bp_read_watchpoint:
10726 if (uiout->is_mi_like_p ())
10727 uiout->field_string
10728 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10729 mention (b);
10730 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10731 uiout->text ("\nValue = ");
10732 watchpoint_value_print (w->val, &stb);
10733 uiout->field_stream ("value", stb);
10734 uiout->text ("\n");
10735 result = PRINT_UNKNOWN;
10736 break;
10737
10738 case bp_access_watchpoint:
10739 if (bs->old_val != NULL)
10740 {
10741 if (uiout->is_mi_like_p ())
10742 uiout->field_string
10743 ("reason",
10744 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10745 mention (b);
10746 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10747 uiout->text ("\nOld value = ");
10748 watchpoint_value_print (bs->old_val, &stb);
10749 uiout->field_stream ("old", stb);
10750 uiout->text ("\nNew value = ");
10751 }
10752 else
10753 {
10754 mention (b);
10755 if (uiout->is_mi_like_p ())
10756 uiout->field_string
10757 ("reason",
10758 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10759 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10760 uiout->text ("\nValue = ");
10761 }
10762 watchpoint_value_print (w->val, &stb);
10763 uiout->field_stream ("new", stb);
10764 uiout->text ("\n");
10765 result = PRINT_UNKNOWN;
10766 break;
10767 default:
10768 result = PRINT_UNKNOWN;
10769 }
10770
10771 do_cleanups (old_chain);
10772 return result;
10773 }
10774
10775 /* Implement the "print_mention" breakpoint_ops method for hardware
10776 watchpoints. */
10777
10778 static void
10779 print_mention_watchpoint (struct breakpoint *b)
10780 {
10781 struct watchpoint *w = (struct watchpoint *) b;
10782 struct ui_out *uiout = current_uiout;
10783 const char *tuple_name;
10784
10785 switch (b->type)
10786 {
10787 case bp_watchpoint:
10788 uiout->text ("Watchpoint ");
10789 tuple_name = "wpt";
10790 break;
10791 case bp_hardware_watchpoint:
10792 uiout->text ("Hardware watchpoint ");
10793 tuple_name = "wpt";
10794 break;
10795 case bp_read_watchpoint:
10796 uiout->text ("Hardware read watchpoint ");
10797 tuple_name = "hw-rwpt";
10798 break;
10799 case bp_access_watchpoint:
10800 uiout->text ("Hardware access (read/write) watchpoint ");
10801 tuple_name = "hw-awpt";
10802 break;
10803 default:
10804 internal_error (__FILE__, __LINE__,
10805 _("Invalid hardware watchpoint type."));
10806 }
10807
10808 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10809 uiout->field_int ("number", b->number);
10810 uiout->text (": ");
10811 uiout->field_string ("exp", w->exp_string);
10812 }
10813
10814 /* Implement the "print_recreate" breakpoint_ops method for
10815 watchpoints. */
10816
10817 static void
10818 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10819 {
10820 struct watchpoint *w = (struct watchpoint *) b;
10821
10822 switch (b->type)
10823 {
10824 case bp_watchpoint:
10825 case bp_hardware_watchpoint:
10826 fprintf_unfiltered (fp, "watch");
10827 break;
10828 case bp_read_watchpoint:
10829 fprintf_unfiltered (fp, "rwatch");
10830 break;
10831 case bp_access_watchpoint:
10832 fprintf_unfiltered (fp, "awatch");
10833 break;
10834 default:
10835 internal_error (__FILE__, __LINE__,
10836 _("Invalid watchpoint type."));
10837 }
10838
10839 fprintf_unfiltered (fp, " %s", w->exp_string);
10840 print_recreate_thread (b, fp);
10841 }
10842
10843 /* Implement the "explains_signal" breakpoint_ops method for
10844 watchpoints. */
10845
10846 static int
10847 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10848 {
10849 /* A software watchpoint cannot cause a signal other than
10850 GDB_SIGNAL_TRAP. */
10851 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10852 return 0;
10853
10854 return 1;
10855 }
10856
10857 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10858
10859 static struct breakpoint_ops watchpoint_breakpoint_ops;
10860
10861 /* Implement the "insert" breakpoint_ops method for
10862 masked hardware watchpoints. */
10863
10864 static int
10865 insert_masked_watchpoint (struct bp_location *bl)
10866 {
10867 struct watchpoint *w = (struct watchpoint *) bl->owner;
10868
10869 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10870 bl->watchpoint_type);
10871 }
10872
10873 /* Implement the "remove" breakpoint_ops method for
10874 masked hardware watchpoints. */
10875
10876 static int
10877 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10878 {
10879 struct watchpoint *w = (struct watchpoint *) bl->owner;
10880
10881 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10882 bl->watchpoint_type);
10883 }
10884
10885 /* Implement the "resources_needed" breakpoint_ops method for
10886 masked hardware watchpoints. */
10887
10888 static int
10889 resources_needed_masked_watchpoint (const struct bp_location *bl)
10890 {
10891 struct watchpoint *w = (struct watchpoint *) bl->owner;
10892
10893 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10894 }
10895
10896 /* Implement the "works_in_software_mode" breakpoint_ops method for
10897 masked hardware watchpoints. */
10898
10899 static int
10900 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10901 {
10902 return 0;
10903 }
10904
10905 /* Implement the "print_it" breakpoint_ops method for
10906 masked hardware watchpoints. */
10907
10908 static enum print_stop_action
10909 print_it_masked_watchpoint (bpstat bs)
10910 {
10911 struct breakpoint *b = bs->breakpoint_at;
10912 struct ui_out *uiout = current_uiout;
10913
10914 /* Masked watchpoints have only one location. */
10915 gdb_assert (b->loc && b->loc->next == NULL);
10916
10917 annotate_watchpoint (b->number);
10918 maybe_print_thread_hit_breakpoint (uiout);
10919
10920 switch (b->type)
10921 {
10922 case bp_hardware_watchpoint:
10923 if (uiout->is_mi_like_p ())
10924 uiout->field_string
10925 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10926 break;
10927
10928 case bp_read_watchpoint:
10929 if (uiout->is_mi_like_p ())
10930 uiout->field_string
10931 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10932 break;
10933
10934 case bp_access_watchpoint:
10935 if (uiout->is_mi_like_p ())
10936 uiout->field_string
10937 ("reason",
10938 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10939 break;
10940 default:
10941 internal_error (__FILE__, __LINE__,
10942 _("Invalid hardware watchpoint type."));
10943 }
10944
10945 mention (b);
10946 uiout->text (_("\n\
10947 Check the underlying instruction at PC for the memory\n\
10948 address and value which triggered this watchpoint.\n"));
10949 uiout->text ("\n");
10950
10951 /* More than one watchpoint may have been triggered. */
10952 return PRINT_UNKNOWN;
10953 }
10954
10955 /* Implement the "print_one_detail" breakpoint_ops method for
10956 masked hardware watchpoints. */
10957
10958 static void
10959 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10960 struct ui_out *uiout)
10961 {
10962 struct watchpoint *w = (struct watchpoint *) b;
10963
10964 /* Masked watchpoints have only one location. */
10965 gdb_assert (b->loc && b->loc->next == NULL);
10966
10967 uiout->text ("\tmask ");
10968 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10969 uiout->text ("\n");
10970 }
10971
10972 /* Implement the "print_mention" breakpoint_ops method for
10973 masked hardware watchpoints. */
10974
10975 static void
10976 print_mention_masked_watchpoint (struct breakpoint *b)
10977 {
10978 struct watchpoint *w = (struct watchpoint *) b;
10979 struct ui_out *uiout = current_uiout;
10980 const char *tuple_name;
10981
10982 switch (b->type)
10983 {
10984 case bp_hardware_watchpoint:
10985 uiout->text ("Masked hardware watchpoint ");
10986 tuple_name = "wpt";
10987 break;
10988 case bp_read_watchpoint:
10989 uiout->text ("Masked hardware read watchpoint ");
10990 tuple_name = "hw-rwpt";
10991 break;
10992 case bp_access_watchpoint:
10993 uiout->text ("Masked hardware access (read/write) watchpoint ");
10994 tuple_name = "hw-awpt";
10995 break;
10996 default:
10997 internal_error (__FILE__, __LINE__,
10998 _("Invalid hardware watchpoint type."));
10999 }
11000
11001 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
11002 uiout->field_int ("number", b->number);
11003 uiout->text (": ");
11004 uiout->field_string ("exp", w->exp_string);
11005 }
11006
11007 /* Implement the "print_recreate" breakpoint_ops method for
11008 masked hardware watchpoints. */
11009
11010 static void
11011 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
11012 {
11013 struct watchpoint *w = (struct watchpoint *) b;
11014 char tmp[40];
11015
11016 switch (b->type)
11017 {
11018 case bp_hardware_watchpoint:
11019 fprintf_unfiltered (fp, "watch");
11020 break;
11021 case bp_read_watchpoint:
11022 fprintf_unfiltered (fp, "rwatch");
11023 break;
11024 case bp_access_watchpoint:
11025 fprintf_unfiltered (fp, "awatch");
11026 break;
11027 default:
11028 internal_error (__FILE__, __LINE__,
11029 _("Invalid hardware watchpoint type."));
11030 }
11031
11032 sprintf_vma (tmp, w->hw_wp_mask);
11033 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11034 print_recreate_thread (b, fp);
11035 }
11036
11037 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11038
11039 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11040
11041 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11042
11043 static int
11044 is_masked_watchpoint (const struct breakpoint *b)
11045 {
11046 return b->ops == &masked_watchpoint_breakpoint_ops;
11047 }
11048
11049 /* accessflag: hw_write: watch write,
11050 hw_read: watch read,
11051 hw_access: watch access (read or write) */
11052 static void
11053 watch_command_1 (const char *arg, int accessflag, int from_tty,
11054 int just_location, int internal)
11055 {
11056 struct breakpoint *b, *scope_breakpoint = NULL;
11057 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11058 struct value *val, *mark, *result;
11059 int saved_bitpos = 0, saved_bitsize = 0;
11060 const char *exp_start = NULL;
11061 const char *exp_end = NULL;
11062 const char *tok, *end_tok;
11063 int toklen = -1;
11064 const char *cond_start = NULL;
11065 const char *cond_end = NULL;
11066 enum bptype bp_type;
11067 int thread = -1;
11068 int pc = 0;
11069 /* Flag to indicate whether we are going to use masks for
11070 the hardware watchpoint. */
11071 int use_mask = 0;
11072 CORE_ADDR mask = 0;
11073 struct watchpoint *w;
11074 char *expression;
11075 struct cleanup *back_to;
11076
11077 /* Make sure that we actually have parameters to parse. */
11078 if (arg != NULL && arg[0] != '\0')
11079 {
11080 const char *value_start;
11081
11082 exp_end = arg + strlen (arg);
11083
11084 /* Look for "parameter value" pairs at the end
11085 of the arguments string. */
11086 for (tok = exp_end - 1; tok > arg; tok--)
11087 {
11088 /* Skip whitespace at the end of the argument list. */
11089 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11090 tok--;
11091
11092 /* Find the beginning of the last token.
11093 This is the value of the parameter. */
11094 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11095 tok--;
11096 value_start = tok + 1;
11097
11098 /* Skip whitespace. */
11099 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11100 tok--;
11101
11102 end_tok = tok;
11103
11104 /* Find the beginning of the second to last token.
11105 This is the parameter itself. */
11106 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11107 tok--;
11108 tok++;
11109 toklen = end_tok - tok + 1;
11110
11111 if (toklen == 6 && startswith (tok, "thread"))
11112 {
11113 struct thread_info *thr;
11114 /* At this point we've found a "thread" token, which means
11115 the user is trying to set a watchpoint that triggers
11116 only in a specific thread. */
11117 const char *endp;
11118
11119 if (thread != -1)
11120 error(_("You can specify only one thread."));
11121
11122 /* Extract the thread ID from the next token. */
11123 thr = parse_thread_id (value_start, &endp);
11124
11125 /* Check if the user provided a valid thread ID. */
11126 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11127 invalid_thread_id_error (value_start);
11128
11129 thread = thr->global_num;
11130 }
11131 else if (toklen == 4 && startswith (tok, "mask"))
11132 {
11133 /* We've found a "mask" token, which means the user wants to
11134 create a hardware watchpoint that is going to have the mask
11135 facility. */
11136 struct value *mask_value, *mark;
11137
11138 if (use_mask)
11139 error(_("You can specify only one mask."));
11140
11141 use_mask = just_location = 1;
11142
11143 mark = value_mark ();
11144 mask_value = parse_to_comma_and_eval (&value_start);
11145 mask = value_as_address (mask_value);
11146 value_free_to_mark (mark);
11147 }
11148 else
11149 /* We didn't recognize what we found. We should stop here. */
11150 break;
11151
11152 /* Truncate the string and get rid of the "parameter value" pair before
11153 the arguments string is parsed by the parse_exp_1 function. */
11154 exp_end = tok;
11155 }
11156 }
11157 else
11158 exp_end = arg;
11159
11160 /* Parse the rest of the arguments. From here on out, everything
11161 is in terms of a newly allocated string instead of the original
11162 ARG. */
11163 innermost_block = NULL;
11164 expression = savestring (arg, exp_end - arg);
11165 back_to = make_cleanup (xfree, expression);
11166 exp_start = arg = expression;
11167 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
11168 exp_end = arg;
11169 /* Remove trailing whitespace from the expression before saving it.
11170 This makes the eventual display of the expression string a bit
11171 prettier. */
11172 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11173 --exp_end;
11174
11175 /* Checking if the expression is not constant. */
11176 if (watchpoint_exp_is_const (exp.get ()))
11177 {
11178 int len;
11179
11180 len = exp_end - exp_start;
11181 while (len > 0 && isspace (exp_start[len - 1]))
11182 len--;
11183 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11184 }
11185
11186 exp_valid_block = innermost_block;
11187 mark = value_mark ();
11188 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
11189
11190 if (val != NULL && just_location)
11191 {
11192 saved_bitpos = value_bitpos (val);
11193 saved_bitsize = value_bitsize (val);
11194 }
11195
11196 if (just_location)
11197 {
11198 int ret;
11199
11200 exp_valid_block = NULL;
11201 val = value_addr (result);
11202 release_value (val);
11203 value_free_to_mark (mark);
11204
11205 if (use_mask)
11206 {
11207 ret = target_masked_watch_num_registers (value_as_address (val),
11208 mask);
11209 if (ret == -1)
11210 error (_("This target does not support masked watchpoints."));
11211 else if (ret == -2)
11212 error (_("Invalid mask or memory region."));
11213 }
11214 }
11215 else if (val != NULL)
11216 release_value (val);
11217
11218 tok = skip_spaces_const (arg);
11219 end_tok = skip_to_space_const (tok);
11220
11221 toklen = end_tok - tok;
11222 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11223 {
11224 innermost_block = NULL;
11225 tok = cond_start = end_tok + 1;
11226 parse_exp_1 (&tok, 0, 0, 0);
11227
11228 /* The watchpoint expression may not be local, but the condition
11229 may still be. E.g.: `watch global if local > 0'. */
11230 cond_exp_valid_block = innermost_block;
11231
11232 cond_end = tok;
11233 }
11234 if (*tok)
11235 error (_("Junk at end of command."));
11236
11237 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
11238
11239 /* Save this because create_internal_breakpoint below invalidates
11240 'wp_frame'. */
11241 frame_id watchpoint_frame = get_frame_id (wp_frame);
11242
11243 /* If the expression is "local", then set up a "watchpoint scope"
11244 breakpoint at the point where we've left the scope of the watchpoint
11245 expression. Create the scope breakpoint before the watchpoint, so
11246 that we will encounter it first in bpstat_stop_status. */
11247 if (exp_valid_block != NULL && wp_frame != NULL)
11248 {
11249 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
11250
11251 if (frame_id_p (caller_frame_id))
11252 {
11253 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
11254 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
11255
11256 scope_breakpoint
11257 = create_internal_breakpoint (caller_arch, caller_pc,
11258 bp_watchpoint_scope,
11259 &momentary_breakpoint_ops);
11260
11261 /* create_internal_breakpoint could invalidate WP_FRAME. */
11262 wp_frame = NULL;
11263
11264 scope_breakpoint->enable_state = bp_enabled;
11265
11266 /* Automatically delete the breakpoint when it hits. */
11267 scope_breakpoint->disposition = disp_del;
11268
11269 /* Only break in the proper frame (help with recursion). */
11270 scope_breakpoint->frame_id = caller_frame_id;
11271
11272 /* Set the address at which we will stop. */
11273 scope_breakpoint->loc->gdbarch = caller_arch;
11274 scope_breakpoint->loc->requested_address = caller_pc;
11275 scope_breakpoint->loc->address
11276 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11277 scope_breakpoint->loc->requested_address,
11278 scope_breakpoint->type);
11279 }
11280 }
11281
11282 /* Now set up the breakpoint. We create all watchpoints as hardware
11283 watchpoints here even if hardware watchpoints are turned off, a call
11284 to update_watchpoint later in this function will cause the type to
11285 drop back to bp_watchpoint (software watchpoint) if required. */
11286
11287 if (accessflag == hw_read)
11288 bp_type = bp_read_watchpoint;
11289 else if (accessflag == hw_access)
11290 bp_type = bp_access_watchpoint;
11291 else
11292 bp_type = bp_hardware_watchpoint;
11293
11294 w = new watchpoint ();
11295 b = &w->base;
11296 if (use_mask)
11297 init_raw_breakpoint_without_location (b, NULL, bp_type,
11298 &masked_watchpoint_breakpoint_ops);
11299 else
11300 init_raw_breakpoint_without_location (b, NULL, bp_type,
11301 &watchpoint_breakpoint_ops);
11302 b->thread = thread;
11303 b->disposition = disp_donttouch;
11304 b->pspace = current_program_space;
11305 w->exp = std::move (exp);
11306 w->exp_valid_block = exp_valid_block;
11307 w->cond_exp_valid_block = cond_exp_valid_block;
11308 if (just_location)
11309 {
11310 struct type *t = value_type (val);
11311 CORE_ADDR addr = value_as_address (val);
11312
11313 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11314
11315 std::string name = type_to_string (t);
11316
11317 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name.c_str (),
11318 core_addr_to_string (addr));
11319
11320 w->exp_string = xstrprintf ("-location %.*s",
11321 (int) (exp_end - exp_start), exp_start);
11322
11323 /* The above expression is in C. */
11324 b->language = language_c;
11325 }
11326 else
11327 w->exp_string = savestring (exp_start, exp_end - exp_start);
11328
11329 if (use_mask)
11330 {
11331 w->hw_wp_mask = mask;
11332 }
11333 else
11334 {
11335 w->val = val;
11336 w->val_bitpos = saved_bitpos;
11337 w->val_bitsize = saved_bitsize;
11338 w->val_valid = 1;
11339 }
11340
11341 if (cond_start)
11342 b->cond_string = savestring (cond_start, cond_end - cond_start);
11343 else
11344 b->cond_string = 0;
11345
11346 if (frame_id_p (watchpoint_frame))
11347 {
11348 w->watchpoint_frame = watchpoint_frame;
11349 w->watchpoint_thread = inferior_ptid;
11350 }
11351 else
11352 {
11353 w->watchpoint_frame = null_frame_id;
11354 w->watchpoint_thread = null_ptid;
11355 }
11356
11357 if (scope_breakpoint != NULL)
11358 {
11359 /* The scope breakpoint is related to the watchpoint. We will
11360 need to act on them together. */
11361 b->related_breakpoint = scope_breakpoint;
11362 scope_breakpoint->related_breakpoint = b;
11363 }
11364
11365 if (!just_location)
11366 value_free_to_mark (mark);
11367
11368 TRY
11369 {
11370 /* Finally update the new watchpoint. This creates the locations
11371 that should be inserted. */
11372 update_watchpoint (w, 1);
11373 }
11374 CATCH (e, RETURN_MASK_ALL)
11375 {
11376 delete_breakpoint (b);
11377 throw_exception (e);
11378 }
11379 END_CATCH
11380
11381 install_breakpoint (internal, b, 1);
11382 do_cleanups (back_to);
11383 }
11384
11385 /* Return count of debug registers needed to watch the given expression.
11386 If the watchpoint cannot be handled in hardware return zero. */
11387
11388 static int
11389 can_use_hardware_watchpoint (struct value *v)
11390 {
11391 int found_memory_cnt = 0;
11392 struct value *head = v;
11393
11394 /* Did the user specifically forbid us to use hardware watchpoints? */
11395 if (!can_use_hw_watchpoints)
11396 return 0;
11397
11398 /* Make sure that the value of the expression depends only upon
11399 memory contents, and values computed from them within GDB. If we
11400 find any register references or function calls, we can't use a
11401 hardware watchpoint.
11402
11403 The idea here is that evaluating an expression generates a series
11404 of values, one holding the value of every subexpression. (The
11405 expression a*b+c has five subexpressions: a, b, a*b, c, and
11406 a*b+c.) GDB's values hold almost enough information to establish
11407 the criteria given above --- they identify memory lvalues,
11408 register lvalues, computed values, etcetera. So we can evaluate
11409 the expression, and then scan the chain of values that leaves
11410 behind to decide whether we can detect any possible change to the
11411 expression's final value using only hardware watchpoints.
11412
11413 However, I don't think that the values returned by inferior
11414 function calls are special in any way. So this function may not
11415 notice that an expression involving an inferior function call
11416 can't be watched with hardware watchpoints. FIXME. */
11417 for (; v; v = value_next (v))
11418 {
11419 if (VALUE_LVAL (v) == lval_memory)
11420 {
11421 if (v != head && value_lazy (v))
11422 /* A lazy memory lvalue in the chain is one that GDB never
11423 needed to fetch; we either just used its address (e.g.,
11424 `a' in `a.b') or we never needed it at all (e.g., `a'
11425 in `a,b'). This doesn't apply to HEAD; if that is
11426 lazy then it was not readable, but watch it anyway. */
11427 ;
11428 else
11429 {
11430 /* Ahh, memory we actually used! Check if we can cover
11431 it with hardware watchpoints. */
11432 struct type *vtype = check_typedef (value_type (v));
11433
11434 /* We only watch structs and arrays if user asked for it
11435 explicitly, never if they just happen to appear in a
11436 middle of some value chain. */
11437 if (v == head
11438 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11439 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11440 {
11441 CORE_ADDR vaddr = value_address (v);
11442 int len;
11443 int num_regs;
11444
11445 len = (target_exact_watchpoints
11446 && is_scalar_type_recursive (vtype))?
11447 1 : TYPE_LENGTH (value_type (v));
11448
11449 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11450 if (!num_regs)
11451 return 0;
11452 else
11453 found_memory_cnt += num_regs;
11454 }
11455 }
11456 }
11457 else if (VALUE_LVAL (v) != not_lval
11458 && deprecated_value_modifiable (v) == 0)
11459 return 0; /* These are values from the history (e.g., $1). */
11460 else if (VALUE_LVAL (v) == lval_register)
11461 return 0; /* Cannot watch a register with a HW watchpoint. */
11462 }
11463
11464 /* The expression itself looks suitable for using a hardware
11465 watchpoint, but give the target machine a chance to reject it. */
11466 return found_memory_cnt;
11467 }
11468
11469 void
11470 watch_command_wrapper (char *arg, int from_tty, int internal)
11471 {
11472 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11473 }
11474
11475 /* A helper function that looks for the "-location" argument and then
11476 calls watch_command_1. */
11477
11478 static void
11479 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11480 {
11481 int just_location = 0;
11482
11483 if (arg
11484 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11485 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11486 {
11487 arg = skip_spaces (arg);
11488 just_location = 1;
11489 }
11490
11491 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11492 }
11493
11494 static void
11495 watch_command (char *arg, int from_tty)
11496 {
11497 watch_maybe_just_location (arg, hw_write, from_tty);
11498 }
11499
11500 void
11501 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11502 {
11503 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11504 }
11505
11506 static void
11507 rwatch_command (char *arg, int from_tty)
11508 {
11509 watch_maybe_just_location (arg, hw_read, from_tty);
11510 }
11511
11512 void
11513 awatch_command_wrapper (char *arg, int from_tty, int internal)
11514 {
11515 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11516 }
11517
11518 static void
11519 awatch_command (char *arg, int from_tty)
11520 {
11521 watch_maybe_just_location (arg, hw_access, from_tty);
11522 }
11523 \f
11524
11525 /* Data for the FSM that manages the until(location)/advance commands
11526 in infcmd.c. Here because it uses the mechanisms of
11527 breakpoints. */
11528
11529 struct until_break_fsm
11530 {
11531 /* The base class. */
11532 struct thread_fsm thread_fsm;
11533
11534 /* The thread that as current when the command was executed. */
11535 int thread;
11536
11537 /* The breakpoint set at the destination location. */
11538 struct breakpoint *location_breakpoint;
11539
11540 /* Breakpoint set at the return address in the caller frame. May be
11541 NULL. */
11542 struct breakpoint *caller_breakpoint;
11543 };
11544
11545 static void until_break_fsm_clean_up (struct thread_fsm *self,
11546 struct thread_info *thread);
11547 static int until_break_fsm_should_stop (struct thread_fsm *self,
11548 struct thread_info *thread);
11549 static enum async_reply_reason
11550 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11551
11552 /* until_break_fsm's vtable. */
11553
11554 static struct thread_fsm_ops until_break_fsm_ops =
11555 {
11556 NULL, /* dtor */
11557 until_break_fsm_clean_up,
11558 until_break_fsm_should_stop,
11559 NULL, /* return_value */
11560 until_break_fsm_async_reply_reason,
11561 };
11562
11563 /* Allocate a new until_break_command_fsm. */
11564
11565 static struct until_break_fsm *
11566 new_until_break_fsm (struct interp *cmd_interp, int thread,
11567 struct breakpoint *location_breakpoint,
11568 struct breakpoint *caller_breakpoint)
11569 {
11570 struct until_break_fsm *sm;
11571
11572 sm = XCNEW (struct until_break_fsm);
11573 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11574
11575 sm->thread = thread;
11576 sm->location_breakpoint = location_breakpoint;
11577 sm->caller_breakpoint = caller_breakpoint;
11578
11579 return sm;
11580 }
11581
11582 /* Implementation of the 'should_stop' FSM method for the
11583 until(location)/advance commands. */
11584
11585 static int
11586 until_break_fsm_should_stop (struct thread_fsm *self,
11587 struct thread_info *tp)
11588 {
11589 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11590
11591 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11592 sm->location_breakpoint) != NULL
11593 || (sm->caller_breakpoint != NULL
11594 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11595 sm->caller_breakpoint) != NULL))
11596 thread_fsm_set_finished (self);
11597
11598 return 1;
11599 }
11600
11601 /* Implementation of the 'clean_up' FSM method for the
11602 until(location)/advance commands. */
11603
11604 static void
11605 until_break_fsm_clean_up (struct thread_fsm *self,
11606 struct thread_info *thread)
11607 {
11608 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11609
11610 /* Clean up our temporary breakpoints. */
11611 if (sm->location_breakpoint != NULL)
11612 {
11613 delete_breakpoint (sm->location_breakpoint);
11614 sm->location_breakpoint = NULL;
11615 }
11616 if (sm->caller_breakpoint != NULL)
11617 {
11618 delete_breakpoint (sm->caller_breakpoint);
11619 sm->caller_breakpoint = NULL;
11620 }
11621 delete_longjmp_breakpoint (sm->thread);
11622 }
11623
11624 /* Implementation of the 'async_reply_reason' FSM method for the
11625 until(location)/advance commands. */
11626
11627 static enum async_reply_reason
11628 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11629 {
11630 return EXEC_ASYNC_LOCATION_REACHED;
11631 }
11632
11633 void
11634 until_break_command (char *arg, int from_tty, int anywhere)
11635 {
11636 struct symtabs_and_lines sals;
11637 struct symtab_and_line sal;
11638 struct frame_info *frame;
11639 struct gdbarch *frame_gdbarch;
11640 struct frame_id stack_frame_id;
11641 struct frame_id caller_frame_id;
11642 struct breakpoint *location_breakpoint;
11643 struct breakpoint *caller_breakpoint = NULL;
11644 struct cleanup *old_chain;
11645 int thread;
11646 struct thread_info *tp;
11647 struct until_break_fsm *sm;
11648
11649 clear_proceed_status (0);
11650
11651 /* Set a breakpoint where the user wants it and at return from
11652 this function. */
11653
11654 event_location_up location = string_to_event_location (&arg, current_language);
11655
11656 if (last_displayed_sal_is_valid ())
11657 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11658 get_last_displayed_symtab (),
11659 get_last_displayed_line ());
11660 else
11661 sals = decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11662 NULL, (struct symtab *) NULL, 0);
11663
11664 if (sals.nelts != 1)
11665 error (_("Couldn't get information on specified line."));
11666
11667 sal = sals.sals[0];
11668 xfree (sals.sals); /* malloc'd, so freed. */
11669
11670 if (*arg)
11671 error (_("Junk at end of arguments."));
11672
11673 resolve_sal_pc (&sal);
11674
11675 tp = inferior_thread ();
11676 thread = tp->global_num;
11677
11678 old_chain = make_cleanup (null_cleanup, NULL);
11679
11680 /* Note linespec handling above invalidates the frame chain.
11681 Installing a breakpoint also invalidates the frame chain (as it
11682 may need to switch threads), so do any frame handling before
11683 that. */
11684
11685 frame = get_selected_frame (NULL);
11686 frame_gdbarch = get_frame_arch (frame);
11687 stack_frame_id = get_stack_frame_id (frame);
11688 caller_frame_id = frame_unwind_caller_id (frame);
11689
11690 /* Keep within the current frame, or in frames called by the current
11691 one. */
11692
11693 if (frame_id_p (caller_frame_id))
11694 {
11695 struct symtab_and_line sal2;
11696 struct gdbarch *caller_gdbarch;
11697
11698 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11699 sal2.pc = frame_unwind_caller_pc (frame);
11700 caller_gdbarch = frame_unwind_caller_arch (frame);
11701 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11702 sal2,
11703 caller_frame_id,
11704 bp_until);
11705 make_cleanup_delete_breakpoint (caller_breakpoint);
11706
11707 set_longjmp_breakpoint (tp, caller_frame_id);
11708 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11709 }
11710
11711 /* set_momentary_breakpoint could invalidate FRAME. */
11712 frame = NULL;
11713
11714 if (anywhere)
11715 /* If the user told us to continue until a specified location,
11716 we don't specify a frame at which we need to stop. */
11717 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11718 null_frame_id, bp_until);
11719 else
11720 /* Otherwise, specify the selected frame, because we want to stop
11721 only at the very same frame. */
11722 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11723 stack_frame_id, bp_until);
11724 make_cleanup_delete_breakpoint (location_breakpoint);
11725
11726 sm = new_until_break_fsm (command_interp (), tp->global_num,
11727 location_breakpoint, caller_breakpoint);
11728 tp->thread_fsm = &sm->thread_fsm;
11729
11730 discard_cleanups (old_chain);
11731
11732 proceed (-1, GDB_SIGNAL_DEFAULT);
11733 }
11734
11735 /* This function attempts to parse an optional "if <cond>" clause
11736 from the arg string. If one is not found, it returns NULL.
11737
11738 Else, it returns a pointer to the condition string. (It does not
11739 attempt to evaluate the string against a particular block.) And,
11740 it updates arg to point to the first character following the parsed
11741 if clause in the arg string. */
11742
11743 const char *
11744 ep_parse_optional_if_clause (const char **arg)
11745 {
11746 const char *cond_string;
11747
11748 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11749 return NULL;
11750
11751 /* Skip the "if" keyword. */
11752 (*arg) += 2;
11753
11754 /* Skip any extra leading whitespace, and record the start of the
11755 condition string. */
11756 *arg = skip_spaces_const (*arg);
11757 cond_string = *arg;
11758
11759 /* Assume that the condition occupies the remainder of the arg
11760 string. */
11761 (*arg) += strlen (cond_string);
11762
11763 return cond_string;
11764 }
11765
11766 /* Commands to deal with catching events, such as signals, exceptions,
11767 process start/exit, etc. */
11768
11769 typedef enum
11770 {
11771 catch_fork_temporary, catch_vfork_temporary,
11772 catch_fork_permanent, catch_vfork_permanent
11773 }
11774 catch_fork_kind;
11775
11776 static void
11777 catch_fork_command_1 (char *arg_entry, int from_tty,
11778 struct cmd_list_element *command)
11779 {
11780 const char *arg = arg_entry;
11781 struct gdbarch *gdbarch = get_current_arch ();
11782 const char *cond_string = NULL;
11783 catch_fork_kind fork_kind;
11784 int tempflag;
11785
11786 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11787 tempflag = (fork_kind == catch_fork_temporary
11788 || fork_kind == catch_vfork_temporary);
11789
11790 if (!arg)
11791 arg = "";
11792 arg = skip_spaces_const (arg);
11793
11794 /* The allowed syntax is:
11795 catch [v]fork
11796 catch [v]fork if <cond>
11797
11798 First, check if there's an if clause. */
11799 cond_string = ep_parse_optional_if_clause (&arg);
11800
11801 if ((*arg != '\0') && !isspace (*arg))
11802 error (_("Junk at end of arguments."));
11803
11804 /* If this target supports it, create a fork or vfork catchpoint
11805 and enable reporting of such events. */
11806 switch (fork_kind)
11807 {
11808 case catch_fork_temporary:
11809 case catch_fork_permanent:
11810 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11811 &catch_fork_breakpoint_ops);
11812 break;
11813 case catch_vfork_temporary:
11814 case catch_vfork_permanent:
11815 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11816 &catch_vfork_breakpoint_ops);
11817 break;
11818 default:
11819 error (_("unsupported or unknown fork kind; cannot catch it"));
11820 break;
11821 }
11822 }
11823
11824 static void
11825 catch_exec_command_1 (char *arg_entry, int from_tty,
11826 struct cmd_list_element *command)
11827 {
11828 const char *arg = arg_entry;
11829 struct exec_catchpoint *c;
11830 struct gdbarch *gdbarch = get_current_arch ();
11831 int tempflag;
11832 const char *cond_string = NULL;
11833
11834 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11835
11836 if (!arg)
11837 arg = "";
11838 arg = skip_spaces_const (arg);
11839
11840 /* The allowed syntax is:
11841 catch exec
11842 catch exec if <cond>
11843
11844 First, check if there's an if clause. */
11845 cond_string = ep_parse_optional_if_clause (&arg);
11846
11847 if ((*arg != '\0') && !isspace (*arg))
11848 error (_("Junk at end of arguments."));
11849
11850 c = new exec_catchpoint ();
11851 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11852 &catch_exec_breakpoint_ops);
11853 c->exec_pathname = NULL;
11854
11855 install_breakpoint (0, &c->base, 1);
11856 }
11857
11858 void
11859 init_ada_exception_breakpoint (struct breakpoint *b,
11860 struct gdbarch *gdbarch,
11861 struct symtab_and_line sal,
11862 char *addr_string,
11863 const struct breakpoint_ops *ops,
11864 int tempflag,
11865 int enabled,
11866 int from_tty)
11867 {
11868 if (from_tty)
11869 {
11870 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11871 if (!loc_gdbarch)
11872 loc_gdbarch = gdbarch;
11873
11874 describe_other_breakpoints (loc_gdbarch,
11875 sal.pspace, sal.pc, sal.section, -1);
11876 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11877 version for exception catchpoints, because two catchpoints
11878 used for different exception names will use the same address.
11879 In this case, a "breakpoint ... also set at..." warning is
11880 unproductive. Besides, the warning phrasing is also a bit
11881 inappropriate, we should use the word catchpoint, and tell
11882 the user what type of catchpoint it is. The above is good
11883 enough for now, though. */
11884 }
11885
11886 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11887
11888 b->enable_state = enabled ? bp_enabled : bp_disabled;
11889 b->disposition = tempflag ? disp_del : disp_donttouch;
11890 b->location = string_to_event_location (&addr_string,
11891 language_def (language_ada));
11892 b->language = language_ada;
11893 }
11894
11895 static void
11896 catch_command (char *arg, int from_tty)
11897 {
11898 error (_("Catch requires an event name."));
11899 }
11900 \f
11901
11902 static void
11903 tcatch_command (char *arg, int from_tty)
11904 {
11905 error (_("Catch requires an event name."));
11906 }
11907
11908 /* A qsort comparison function that sorts breakpoints in order. */
11909
11910 static int
11911 compare_breakpoints (const void *a, const void *b)
11912 {
11913 const breakpoint_p *ba = (const breakpoint_p *) a;
11914 uintptr_t ua = (uintptr_t) *ba;
11915 const breakpoint_p *bb = (const breakpoint_p *) b;
11916 uintptr_t ub = (uintptr_t) *bb;
11917
11918 if ((*ba)->number < (*bb)->number)
11919 return -1;
11920 else if ((*ba)->number > (*bb)->number)
11921 return 1;
11922
11923 /* Now sort by address, in case we see, e..g, two breakpoints with
11924 the number 0. */
11925 if (ua < ub)
11926 return -1;
11927 return ua > ub ? 1 : 0;
11928 }
11929
11930 /* Delete breakpoints by address or line. */
11931
11932 static void
11933 clear_command (char *arg, int from_tty)
11934 {
11935 struct breakpoint *b, *prev;
11936 VEC(breakpoint_p) *found = 0;
11937 int ix;
11938 int default_match;
11939 struct symtabs_and_lines sals;
11940 struct symtab_and_line sal;
11941 int i;
11942 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11943
11944 if (arg)
11945 {
11946 sals = decode_line_with_current_source (arg,
11947 (DECODE_LINE_FUNFIRSTLINE
11948 | DECODE_LINE_LIST_MODE));
11949 make_cleanup (xfree, sals.sals);
11950 default_match = 0;
11951 }
11952 else
11953 {
11954 sals.sals = XNEW (struct symtab_and_line);
11955 make_cleanup (xfree, sals.sals);
11956 init_sal (&sal); /* Initialize to zeroes. */
11957
11958 /* Set sal's line, symtab, pc, and pspace to the values
11959 corresponding to the last call to print_frame_info. If the
11960 codepoint is not valid, this will set all the fields to 0. */
11961 get_last_displayed_sal (&sal);
11962 if (sal.symtab == 0)
11963 error (_("No source file specified."));
11964
11965 sals.sals[0] = sal;
11966 sals.nelts = 1;
11967
11968 default_match = 1;
11969 }
11970
11971 /* We don't call resolve_sal_pc here. That's not as bad as it
11972 seems, because all existing breakpoints typically have both
11973 file/line and pc set. So, if clear is given file/line, we can
11974 match this to existing breakpoint without obtaining pc at all.
11975
11976 We only support clearing given the address explicitly
11977 present in breakpoint table. Say, we've set breakpoint
11978 at file:line. There were several PC values for that file:line,
11979 due to optimization, all in one block.
11980
11981 We've picked one PC value. If "clear" is issued with another
11982 PC corresponding to the same file:line, the breakpoint won't
11983 be cleared. We probably can still clear the breakpoint, but
11984 since the other PC value is never presented to user, user
11985 can only find it by guessing, and it does not seem important
11986 to support that. */
11987
11988 /* For each line spec given, delete bps which correspond to it. Do
11989 it in two passes, solely to preserve the current behavior that
11990 from_tty is forced true if we delete more than one
11991 breakpoint. */
11992
11993 found = NULL;
11994 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11995 for (i = 0; i < sals.nelts; i++)
11996 {
11997 const char *sal_fullname;
11998
11999 /* If exact pc given, clear bpts at that pc.
12000 If line given (pc == 0), clear all bpts on specified line.
12001 If defaulting, clear all bpts on default line
12002 or at default pc.
12003
12004 defaulting sal.pc != 0 tests to do
12005
12006 0 1 pc
12007 1 1 pc _and_ line
12008 0 0 line
12009 1 0 <can't happen> */
12010
12011 sal = sals.sals[i];
12012 sal_fullname = (sal.symtab == NULL
12013 ? NULL : symtab_to_fullname (sal.symtab));
12014
12015 /* Find all matching breakpoints and add them to 'found'. */
12016 ALL_BREAKPOINTS (b)
12017 {
12018 int match = 0;
12019 /* Are we going to delete b? */
12020 if (b->type != bp_none && !is_watchpoint (b))
12021 {
12022 struct bp_location *loc = b->loc;
12023 for (; loc; loc = loc->next)
12024 {
12025 /* If the user specified file:line, don't allow a PC
12026 match. This matches historical gdb behavior. */
12027 int pc_match = (!sal.explicit_line
12028 && sal.pc
12029 && (loc->pspace == sal.pspace)
12030 && (loc->address == sal.pc)
12031 && (!section_is_overlay (loc->section)
12032 || loc->section == sal.section));
12033 int line_match = 0;
12034
12035 if ((default_match || sal.explicit_line)
12036 && loc->symtab != NULL
12037 && sal_fullname != NULL
12038 && sal.pspace == loc->pspace
12039 && loc->line_number == sal.line
12040 && filename_cmp (symtab_to_fullname (loc->symtab),
12041 sal_fullname) == 0)
12042 line_match = 1;
12043
12044 if (pc_match || line_match)
12045 {
12046 match = 1;
12047 break;
12048 }
12049 }
12050 }
12051
12052 if (match)
12053 VEC_safe_push(breakpoint_p, found, b);
12054 }
12055 }
12056
12057 /* Now go thru the 'found' chain and delete them. */
12058 if (VEC_empty(breakpoint_p, found))
12059 {
12060 if (arg)
12061 error (_("No breakpoint at %s."), arg);
12062 else
12063 error (_("No breakpoint at this line."));
12064 }
12065
12066 /* Remove duplicates from the vec. */
12067 qsort (VEC_address (breakpoint_p, found),
12068 VEC_length (breakpoint_p, found),
12069 sizeof (breakpoint_p),
12070 compare_breakpoints);
12071 prev = VEC_index (breakpoint_p, found, 0);
12072 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12073 {
12074 if (b == prev)
12075 {
12076 VEC_ordered_remove (breakpoint_p, found, ix);
12077 --ix;
12078 }
12079 }
12080
12081 if (VEC_length(breakpoint_p, found) > 1)
12082 from_tty = 1; /* Always report if deleted more than one. */
12083 if (from_tty)
12084 {
12085 if (VEC_length(breakpoint_p, found) == 1)
12086 printf_unfiltered (_("Deleted breakpoint "));
12087 else
12088 printf_unfiltered (_("Deleted breakpoints "));
12089 }
12090
12091 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12092 {
12093 if (from_tty)
12094 printf_unfiltered ("%d ", b->number);
12095 delete_breakpoint (b);
12096 }
12097 if (from_tty)
12098 putchar_unfiltered ('\n');
12099
12100 do_cleanups (cleanups);
12101 }
12102 \f
12103 /* Delete breakpoint in BS if they are `delete' breakpoints and
12104 all breakpoints that are marked for deletion, whether hit or not.
12105 This is called after any breakpoint is hit, or after errors. */
12106
12107 void
12108 breakpoint_auto_delete (bpstat bs)
12109 {
12110 struct breakpoint *b, *b_tmp;
12111
12112 for (; bs; bs = bs->next)
12113 if (bs->breakpoint_at
12114 && bs->breakpoint_at->disposition == disp_del
12115 && bs->stop)
12116 delete_breakpoint (bs->breakpoint_at);
12117
12118 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12119 {
12120 if (b->disposition == disp_del_at_next_stop)
12121 delete_breakpoint (b);
12122 }
12123 }
12124
12125 /* A comparison function for bp_location AP and BP being interfaced to
12126 qsort. Sort elements primarily by their ADDRESS (no matter what
12127 does breakpoint_address_is_meaningful say for its OWNER),
12128 secondarily by ordering first permanent elements and
12129 terciarily just ensuring the array is sorted stable way despite
12130 qsort being an unstable algorithm. */
12131
12132 static int
12133 bp_locations_compare (const void *ap, const void *bp)
12134 {
12135 const struct bp_location *a = *(const struct bp_location **) ap;
12136 const struct bp_location *b = *(const struct bp_location **) bp;
12137
12138 if (a->address != b->address)
12139 return (a->address > b->address) - (a->address < b->address);
12140
12141 /* Sort locations at the same address by their pspace number, keeping
12142 locations of the same inferior (in a multi-inferior environment)
12143 grouped. */
12144
12145 if (a->pspace->num != b->pspace->num)
12146 return ((a->pspace->num > b->pspace->num)
12147 - (a->pspace->num < b->pspace->num));
12148
12149 /* Sort permanent breakpoints first. */
12150 if (a->permanent != b->permanent)
12151 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
12152
12153 /* Make the internal GDB representation stable across GDB runs
12154 where A and B memory inside GDB can differ. Breakpoint locations of
12155 the same type at the same address can be sorted in arbitrary order. */
12156
12157 if (a->owner->number != b->owner->number)
12158 return ((a->owner->number > b->owner->number)
12159 - (a->owner->number < b->owner->number));
12160
12161 return (a > b) - (a < b);
12162 }
12163
12164 /* Set bp_locations_placed_address_before_address_max and
12165 bp_locations_shadow_len_after_address_max according to the current
12166 content of the bp_locations array. */
12167
12168 static void
12169 bp_locations_target_extensions_update (void)
12170 {
12171 struct bp_location *bl, **blp_tmp;
12172
12173 bp_locations_placed_address_before_address_max = 0;
12174 bp_locations_shadow_len_after_address_max = 0;
12175
12176 ALL_BP_LOCATIONS (bl, blp_tmp)
12177 {
12178 CORE_ADDR start, end, addr;
12179
12180 if (!bp_location_has_shadow (bl))
12181 continue;
12182
12183 start = bl->target_info.placed_address;
12184 end = start + bl->target_info.shadow_len;
12185
12186 gdb_assert (bl->address >= start);
12187 addr = bl->address - start;
12188 if (addr > bp_locations_placed_address_before_address_max)
12189 bp_locations_placed_address_before_address_max = addr;
12190
12191 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12192
12193 gdb_assert (bl->address < end);
12194 addr = end - bl->address;
12195 if (addr > bp_locations_shadow_len_after_address_max)
12196 bp_locations_shadow_len_after_address_max = addr;
12197 }
12198 }
12199
12200 /* Download tracepoint locations if they haven't been. */
12201
12202 static void
12203 download_tracepoint_locations (void)
12204 {
12205 struct breakpoint *b;
12206 struct cleanup *old_chain;
12207 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
12208
12209 old_chain = save_current_space_and_thread ();
12210
12211 ALL_TRACEPOINTS (b)
12212 {
12213 struct bp_location *bl;
12214 struct tracepoint *t;
12215 int bp_location_downloaded = 0;
12216
12217 if ((b->type == bp_fast_tracepoint
12218 ? !may_insert_fast_tracepoints
12219 : !may_insert_tracepoints))
12220 continue;
12221
12222 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
12223 {
12224 if (target_can_download_tracepoint ())
12225 can_download_tracepoint = TRIBOOL_TRUE;
12226 else
12227 can_download_tracepoint = TRIBOOL_FALSE;
12228 }
12229
12230 if (can_download_tracepoint == TRIBOOL_FALSE)
12231 break;
12232
12233 for (bl = b->loc; bl; bl = bl->next)
12234 {
12235 /* In tracepoint, locations are _never_ duplicated, so
12236 should_be_inserted is equivalent to
12237 unduplicated_should_be_inserted. */
12238 if (!should_be_inserted (bl) || bl->inserted)
12239 continue;
12240
12241 switch_to_program_space_and_thread (bl->pspace);
12242
12243 target_download_tracepoint (bl);
12244
12245 bl->inserted = 1;
12246 bp_location_downloaded = 1;
12247 }
12248 t = (struct tracepoint *) b;
12249 t->number_on_target = b->number;
12250 if (bp_location_downloaded)
12251 observer_notify_breakpoint_modified (b);
12252 }
12253
12254 do_cleanups (old_chain);
12255 }
12256
12257 /* Swap the insertion/duplication state between two locations. */
12258
12259 static void
12260 swap_insertion (struct bp_location *left, struct bp_location *right)
12261 {
12262 const int left_inserted = left->inserted;
12263 const int left_duplicate = left->duplicate;
12264 const int left_needs_update = left->needs_update;
12265 const struct bp_target_info left_target_info = left->target_info;
12266
12267 /* Locations of tracepoints can never be duplicated. */
12268 if (is_tracepoint (left->owner))
12269 gdb_assert (!left->duplicate);
12270 if (is_tracepoint (right->owner))
12271 gdb_assert (!right->duplicate);
12272
12273 left->inserted = right->inserted;
12274 left->duplicate = right->duplicate;
12275 left->needs_update = right->needs_update;
12276 left->target_info = right->target_info;
12277 right->inserted = left_inserted;
12278 right->duplicate = left_duplicate;
12279 right->needs_update = left_needs_update;
12280 right->target_info = left_target_info;
12281 }
12282
12283 /* Force the re-insertion of the locations at ADDRESS. This is called
12284 once a new/deleted/modified duplicate location is found and we are evaluating
12285 conditions on the target's side. Such conditions need to be updated on
12286 the target. */
12287
12288 static void
12289 force_breakpoint_reinsertion (struct bp_location *bl)
12290 {
12291 struct bp_location **locp = NULL, **loc2p;
12292 struct bp_location *loc;
12293 CORE_ADDR address = 0;
12294 int pspace_num;
12295
12296 address = bl->address;
12297 pspace_num = bl->pspace->num;
12298
12299 /* This is only meaningful if the target is
12300 evaluating conditions and if the user has
12301 opted for condition evaluation on the target's
12302 side. */
12303 if (gdb_evaluates_breakpoint_condition_p ()
12304 || !target_supports_evaluation_of_breakpoint_conditions ())
12305 return;
12306
12307 /* Flag all breakpoint locations with this address and
12308 the same program space as the location
12309 as "its condition has changed". We need to
12310 update the conditions on the target's side. */
12311 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12312 {
12313 loc = *loc2p;
12314
12315 if (!is_breakpoint (loc->owner)
12316 || pspace_num != loc->pspace->num)
12317 continue;
12318
12319 /* Flag the location appropriately. We use a different state to
12320 let everyone know that we already updated the set of locations
12321 with addr bl->address and program space bl->pspace. This is so
12322 we don't have to keep calling these functions just to mark locations
12323 that have already been marked. */
12324 loc->condition_changed = condition_updated;
12325
12326 /* Free the agent expression bytecode as well. We will compute
12327 it later on. */
12328 loc->cond_bytecode.reset ();
12329 }
12330 }
12331 /* Called whether new breakpoints are created, or existing breakpoints
12332 deleted, to update the global location list and recompute which
12333 locations are duplicate of which.
12334
12335 The INSERT_MODE flag determines whether locations may not, may, or
12336 shall be inserted now. See 'enum ugll_insert_mode' for more
12337 info. */
12338
12339 static void
12340 update_global_location_list (enum ugll_insert_mode insert_mode)
12341 {
12342 struct breakpoint *b;
12343 struct bp_location **locp, *loc;
12344 struct cleanup *cleanups;
12345 /* Last breakpoint location address that was marked for update. */
12346 CORE_ADDR last_addr = 0;
12347 /* Last breakpoint location program space that was marked for update. */
12348 int last_pspace_num = -1;
12349
12350 /* Used in the duplicates detection below. When iterating over all
12351 bp_locations, points to the first bp_location of a given address.
12352 Breakpoints and watchpoints of different types are never
12353 duplicates of each other. Keep one pointer for each type of
12354 breakpoint/watchpoint, so we only need to loop over all locations
12355 once. */
12356 struct bp_location *bp_loc_first; /* breakpoint */
12357 struct bp_location *wp_loc_first; /* hardware watchpoint */
12358 struct bp_location *awp_loc_first; /* access watchpoint */
12359 struct bp_location *rwp_loc_first; /* read watchpoint */
12360
12361 /* Saved former bp_locations array which we compare against the newly
12362 built bp_locations from the current state of ALL_BREAKPOINTS. */
12363 struct bp_location **old_locations, **old_locp;
12364 unsigned old_locations_count;
12365
12366 old_locations = bp_locations;
12367 old_locations_count = bp_locations_count;
12368 bp_locations = NULL;
12369 bp_locations_count = 0;
12370 cleanups = make_cleanup (xfree, old_locations);
12371
12372 ALL_BREAKPOINTS (b)
12373 for (loc = b->loc; loc; loc = loc->next)
12374 bp_locations_count++;
12375
12376 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
12377 locp = bp_locations;
12378 ALL_BREAKPOINTS (b)
12379 for (loc = b->loc; loc; loc = loc->next)
12380 *locp++ = loc;
12381 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
12382 bp_locations_compare);
12383
12384 bp_locations_target_extensions_update ();
12385
12386 /* Identify bp_location instances that are no longer present in the
12387 new list, and therefore should be freed. Note that it's not
12388 necessary that those locations should be removed from inferior --
12389 if there's another location at the same address (previously
12390 marked as duplicate), we don't need to remove/insert the
12391 location.
12392
12393 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12394 and former bp_location array state respectively. */
12395
12396 locp = bp_locations;
12397 for (old_locp = old_locations;
12398 old_locp < old_locations + old_locations_count;
12399 old_locp++)
12400 {
12401 struct bp_location *old_loc = *old_locp;
12402 struct bp_location **loc2p;
12403
12404 /* Tells if 'old_loc' is found among the new locations. If
12405 not, we have to free it. */
12406 int found_object = 0;
12407 /* Tells if the location should remain inserted in the target. */
12408 int keep_in_target = 0;
12409 int removed = 0;
12410
12411 /* Skip LOCP entries which will definitely never be needed.
12412 Stop either at or being the one matching OLD_LOC. */
12413 while (locp < bp_locations + bp_locations_count
12414 && (*locp)->address < old_loc->address)
12415 locp++;
12416
12417 for (loc2p = locp;
12418 (loc2p < bp_locations + bp_locations_count
12419 && (*loc2p)->address == old_loc->address);
12420 loc2p++)
12421 {
12422 /* Check if this is a new/duplicated location or a duplicated
12423 location that had its condition modified. If so, we want to send
12424 its condition to the target if evaluation of conditions is taking
12425 place there. */
12426 if ((*loc2p)->condition_changed == condition_modified
12427 && (last_addr != old_loc->address
12428 || last_pspace_num != old_loc->pspace->num))
12429 {
12430 force_breakpoint_reinsertion (*loc2p);
12431 last_pspace_num = old_loc->pspace->num;
12432 }
12433
12434 if (*loc2p == old_loc)
12435 found_object = 1;
12436 }
12437
12438 /* We have already handled this address, update it so that we don't
12439 have to go through updates again. */
12440 last_addr = old_loc->address;
12441
12442 /* Target-side condition evaluation: Handle deleted locations. */
12443 if (!found_object)
12444 force_breakpoint_reinsertion (old_loc);
12445
12446 /* If this location is no longer present, and inserted, look if
12447 there's maybe a new location at the same address. If so,
12448 mark that one inserted, and don't remove this one. This is
12449 needed so that we don't have a time window where a breakpoint
12450 at certain location is not inserted. */
12451
12452 if (old_loc->inserted)
12453 {
12454 /* If the location is inserted now, we might have to remove
12455 it. */
12456
12457 if (found_object && should_be_inserted (old_loc))
12458 {
12459 /* The location is still present in the location list,
12460 and still should be inserted. Don't do anything. */
12461 keep_in_target = 1;
12462 }
12463 else
12464 {
12465 /* This location still exists, but it won't be kept in the
12466 target since it may have been disabled. We proceed to
12467 remove its target-side condition. */
12468
12469 /* The location is either no longer present, or got
12470 disabled. See if there's another location at the
12471 same address, in which case we don't need to remove
12472 this one from the target. */
12473
12474 /* OLD_LOC comes from existing struct breakpoint. */
12475 if (breakpoint_address_is_meaningful (old_loc->owner))
12476 {
12477 for (loc2p = locp;
12478 (loc2p < bp_locations + bp_locations_count
12479 && (*loc2p)->address == old_loc->address);
12480 loc2p++)
12481 {
12482 struct bp_location *loc2 = *loc2p;
12483
12484 if (breakpoint_locations_match (loc2, old_loc))
12485 {
12486 /* Read watchpoint locations are switched to
12487 access watchpoints, if the former are not
12488 supported, but the latter are. */
12489 if (is_hardware_watchpoint (old_loc->owner))
12490 {
12491 gdb_assert (is_hardware_watchpoint (loc2->owner));
12492 loc2->watchpoint_type = old_loc->watchpoint_type;
12493 }
12494
12495 /* loc2 is a duplicated location. We need to check
12496 if it should be inserted in case it will be
12497 unduplicated. */
12498 if (loc2 != old_loc
12499 && unduplicated_should_be_inserted (loc2))
12500 {
12501 swap_insertion (old_loc, loc2);
12502 keep_in_target = 1;
12503 break;
12504 }
12505 }
12506 }
12507 }
12508 }
12509
12510 if (!keep_in_target)
12511 {
12512 if (remove_breakpoint (old_loc))
12513 {
12514 /* This is just about all we can do. We could keep
12515 this location on the global list, and try to
12516 remove it next time, but there's no particular
12517 reason why we will succeed next time.
12518
12519 Note that at this point, old_loc->owner is still
12520 valid, as delete_breakpoint frees the breakpoint
12521 only after calling us. */
12522 printf_filtered (_("warning: Error removing "
12523 "breakpoint %d\n"),
12524 old_loc->owner->number);
12525 }
12526 removed = 1;
12527 }
12528 }
12529
12530 if (!found_object)
12531 {
12532 if (removed && target_is_non_stop_p ()
12533 && need_moribund_for_location_type (old_loc))
12534 {
12535 /* This location was removed from the target. In
12536 non-stop mode, a race condition is possible where
12537 we've removed a breakpoint, but stop events for that
12538 breakpoint are already queued and will arrive later.
12539 We apply an heuristic to be able to distinguish such
12540 SIGTRAPs from other random SIGTRAPs: we keep this
12541 breakpoint location for a bit, and will retire it
12542 after we see some number of events. The theory here
12543 is that reporting of events should, "on the average",
12544 be fair, so after a while we'll see events from all
12545 threads that have anything of interest, and no longer
12546 need to keep this breakpoint location around. We
12547 don't hold locations forever so to reduce chances of
12548 mistaking a non-breakpoint SIGTRAP for a breakpoint
12549 SIGTRAP.
12550
12551 The heuristic failing can be disastrous on
12552 decr_pc_after_break targets.
12553
12554 On decr_pc_after_break targets, like e.g., x86-linux,
12555 if we fail to recognize a late breakpoint SIGTRAP,
12556 because events_till_retirement has reached 0 too
12557 soon, we'll fail to do the PC adjustment, and report
12558 a random SIGTRAP to the user. When the user resumes
12559 the inferior, it will most likely immediately crash
12560 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12561 corrupted, because of being resumed e.g., in the
12562 middle of a multi-byte instruction, or skipped a
12563 one-byte instruction. This was actually seen happen
12564 on native x86-linux, and should be less rare on
12565 targets that do not support new thread events, like
12566 remote, due to the heuristic depending on
12567 thread_count.
12568
12569 Mistaking a random SIGTRAP for a breakpoint trap
12570 causes similar symptoms (PC adjustment applied when
12571 it shouldn't), but then again, playing with SIGTRAPs
12572 behind the debugger's back is asking for trouble.
12573
12574 Since hardware watchpoint traps are always
12575 distinguishable from other traps, so we don't need to
12576 apply keep hardware watchpoint moribund locations
12577 around. We simply always ignore hardware watchpoint
12578 traps we can no longer explain. */
12579
12580 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12581 old_loc->owner = NULL;
12582
12583 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12584 }
12585 else
12586 {
12587 old_loc->owner = NULL;
12588 decref_bp_location (&old_loc);
12589 }
12590 }
12591 }
12592
12593 /* Rescan breakpoints at the same address and section, marking the
12594 first one as "first" and any others as "duplicates". This is so
12595 that the bpt instruction is only inserted once. If we have a
12596 permanent breakpoint at the same place as BPT, make that one the
12597 official one, and the rest as duplicates. Permanent breakpoints
12598 are sorted first for the same address.
12599
12600 Do the same for hardware watchpoints, but also considering the
12601 watchpoint's type (regular/access/read) and length. */
12602
12603 bp_loc_first = NULL;
12604 wp_loc_first = NULL;
12605 awp_loc_first = NULL;
12606 rwp_loc_first = NULL;
12607 ALL_BP_LOCATIONS (loc, locp)
12608 {
12609 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12610 non-NULL. */
12611 struct bp_location **loc_first_p;
12612 b = loc->owner;
12613
12614 if (!unduplicated_should_be_inserted (loc)
12615 || !breakpoint_address_is_meaningful (b)
12616 /* Don't detect duplicate for tracepoint locations because they are
12617 never duplicated. See the comments in field `duplicate' of
12618 `struct bp_location'. */
12619 || is_tracepoint (b))
12620 {
12621 /* Clear the condition modification flag. */
12622 loc->condition_changed = condition_unchanged;
12623 continue;
12624 }
12625
12626 if (b->type == bp_hardware_watchpoint)
12627 loc_first_p = &wp_loc_first;
12628 else if (b->type == bp_read_watchpoint)
12629 loc_first_p = &rwp_loc_first;
12630 else if (b->type == bp_access_watchpoint)
12631 loc_first_p = &awp_loc_first;
12632 else
12633 loc_first_p = &bp_loc_first;
12634
12635 if (*loc_first_p == NULL
12636 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12637 || !breakpoint_locations_match (loc, *loc_first_p))
12638 {
12639 *loc_first_p = loc;
12640 loc->duplicate = 0;
12641
12642 if (is_breakpoint (loc->owner) && loc->condition_changed)
12643 {
12644 loc->needs_update = 1;
12645 /* Clear the condition modification flag. */
12646 loc->condition_changed = condition_unchanged;
12647 }
12648 continue;
12649 }
12650
12651
12652 /* This and the above ensure the invariant that the first location
12653 is not duplicated, and is the inserted one.
12654 All following are marked as duplicated, and are not inserted. */
12655 if (loc->inserted)
12656 swap_insertion (loc, *loc_first_p);
12657 loc->duplicate = 1;
12658
12659 /* Clear the condition modification flag. */
12660 loc->condition_changed = condition_unchanged;
12661 }
12662
12663 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12664 {
12665 if (insert_mode != UGLL_DONT_INSERT)
12666 insert_breakpoint_locations ();
12667 else
12668 {
12669 /* Even though the caller told us to not insert new
12670 locations, we may still need to update conditions on the
12671 target's side of breakpoints that were already inserted
12672 if the target is evaluating breakpoint conditions. We
12673 only update conditions for locations that are marked
12674 "needs_update". */
12675 update_inserted_breakpoint_locations ();
12676 }
12677 }
12678
12679 if (insert_mode != UGLL_DONT_INSERT)
12680 download_tracepoint_locations ();
12681
12682 do_cleanups (cleanups);
12683 }
12684
12685 void
12686 breakpoint_retire_moribund (void)
12687 {
12688 struct bp_location *loc;
12689 int ix;
12690
12691 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12692 if (--(loc->events_till_retirement) == 0)
12693 {
12694 decref_bp_location (&loc);
12695 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12696 --ix;
12697 }
12698 }
12699
12700 static void
12701 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12702 {
12703
12704 TRY
12705 {
12706 update_global_location_list (insert_mode);
12707 }
12708 CATCH (e, RETURN_MASK_ERROR)
12709 {
12710 }
12711 END_CATCH
12712 }
12713
12714 /* Clear BKP from a BPS. */
12715
12716 static void
12717 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12718 {
12719 bpstat bs;
12720
12721 for (bs = bps; bs; bs = bs->next)
12722 if (bs->breakpoint_at == bpt)
12723 {
12724 bs->breakpoint_at = NULL;
12725 bs->old_val = NULL;
12726 /* bs->commands will be freed later. */
12727 }
12728 }
12729
12730 /* Callback for iterate_over_threads. */
12731 static int
12732 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12733 {
12734 struct breakpoint *bpt = (struct breakpoint *) data;
12735
12736 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12737 return 0;
12738 }
12739
12740 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12741 callbacks. */
12742
12743 static void
12744 say_where (struct breakpoint *b)
12745 {
12746 struct value_print_options opts;
12747
12748 get_user_print_options (&opts);
12749
12750 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12751 single string. */
12752 if (b->loc == NULL)
12753 {
12754 /* For pending locations, the output differs slightly based
12755 on b->extra_string. If this is non-NULL, it contains either
12756 a condition or dprintf arguments. */
12757 if (b->extra_string == NULL)
12758 {
12759 printf_filtered (_(" (%s) pending."),
12760 event_location_to_string (b->location.get ()));
12761 }
12762 else if (b->type == bp_dprintf)
12763 {
12764 printf_filtered (_(" (%s,%s) pending."),
12765 event_location_to_string (b->location.get ()),
12766 b->extra_string);
12767 }
12768 else
12769 {
12770 printf_filtered (_(" (%s %s) pending."),
12771 event_location_to_string (b->location.get ()),
12772 b->extra_string);
12773 }
12774 }
12775 else
12776 {
12777 if (opts.addressprint || b->loc->symtab == NULL)
12778 {
12779 printf_filtered (" at ");
12780 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12781 gdb_stdout);
12782 }
12783 if (b->loc->symtab != NULL)
12784 {
12785 /* If there is a single location, we can print the location
12786 more nicely. */
12787 if (b->loc->next == NULL)
12788 printf_filtered (": file %s, line %d.",
12789 symtab_to_filename_for_display (b->loc->symtab),
12790 b->loc->line_number);
12791 else
12792 /* This is not ideal, but each location may have a
12793 different file name, and this at least reflects the
12794 real situation somewhat. */
12795 printf_filtered (": %s.",
12796 event_location_to_string (b->location.get ()));
12797 }
12798
12799 if (b->loc->next)
12800 {
12801 struct bp_location *loc = b->loc;
12802 int n = 0;
12803 for (; loc; loc = loc->next)
12804 ++n;
12805 printf_filtered (" (%d locations)", n);
12806 }
12807 }
12808 }
12809
12810 /* Default bp_location_ops methods. */
12811
12812 static void
12813 bp_location_dtor (struct bp_location *self)
12814 {
12815 xfree (self->function_name);
12816 }
12817
12818 static const struct bp_location_ops bp_location_ops =
12819 {
12820 bp_location_dtor
12821 };
12822
12823 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12824 inherit from. */
12825
12826 static void
12827 base_breakpoint_dtor (struct breakpoint *self)
12828 {
12829 decref_counted_command_line (&self->commands);
12830 xfree (self->cond_string);
12831 xfree (self->extra_string);
12832 xfree (self->filter);
12833 }
12834
12835 static struct bp_location *
12836 base_breakpoint_allocate_location (struct breakpoint *self)
12837 {
12838 struct bp_location *loc;
12839
12840 loc = new struct bp_location ();
12841 init_bp_location (loc, &bp_location_ops, self);
12842 return loc;
12843 }
12844
12845 static void
12846 base_breakpoint_re_set (struct breakpoint *b)
12847 {
12848 /* Nothing to re-set. */
12849 }
12850
12851 #define internal_error_pure_virtual_called() \
12852 gdb_assert_not_reached ("pure virtual function called")
12853
12854 static int
12855 base_breakpoint_insert_location (struct bp_location *bl)
12856 {
12857 internal_error_pure_virtual_called ();
12858 }
12859
12860 static int
12861 base_breakpoint_remove_location (struct bp_location *bl,
12862 enum remove_bp_reason reason)
12863 {
12864 internal_error_pure_virtual_called ();
12865 }
12866
12867 static int
12868 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12869 struct address_space *aspace,
12870 CORE_ADDR bp_addr,
12871 const struct target_waitstatus *ws)
12872 {
12873 internal_error_pure_virtual_called ();
12874 }
12875
12876 static void
12877 base_breakpoint_check_status (bpstat bs)
12878 {
12879 /* Always stop. */
12880 }
12881
12882 /* A "works_in_software_mode" breakpoint_ops method that just internal
12883 errors. */
12884
12885 static int
12886 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12887 {
12888 internal_error_pure_virtual_called ();
12889 }
12890
12891 /* A "resources_needed" breakpoint_ops method that just internal
12892 errors. */
12893
12894 static int
12895 base_breakpoint_resources_needed (const struct bp_location *bl)
12896 {
12897 internal_error_pure_virtual_called ();
12898 }
12899
12900 static enum print_stop_action
12901 base_breakpoint_print_it (bpstat bs)
12902 {
12903 internal_error_pure_virtual_called ();
12904 }
12905
12906 static void
12907 base_breakpoint_print_one_detail (const struct breakpoint *self,
12908 struct ui_out *uiout)
12909 {
12910 /* nothing */
12911 }
12912
12913 static void
12914 base_breakpoint_print_mention (struct breakpoint *b)
12915 {
12916 internal_error_pure_virtual_called ();
12917 }
12918
12919 static void
12920 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12921 {
12922 internal_error_pure_virtual_called ();
12923 }
12924
12925 static void
12926 base_breakpoint_create_sals_from_location
12927 (const struct event_location *location,
12928 struct linespec_result *canonical,
12929 enum bptype type_wanted)
12930 {
12931 internal_error_pure_virtual_called ();
12932 }
12933
12934 static void
12935 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12936 struct linespec_result *c,
12937 char *cond_string,
12938 char *extra_string,
12939 enum bptype type_wanted,
12940 enum bpdisp disposition,
12941 int thread,
12942 int task, int ignore_count,
12943 const struct breakpoint_ops *o,
12944 int from_tty, int enabled,
12945 int internal, unsigned flags)
12946 {
12947 internal_error_pure_virtual_called ();
12948 }
12949
12950 static void
12951 base_breakpoint_decode_location (struct breakpoint *b,
12952 const struct event_location *location,
12953 struct program_space *search_pspace,
12954 struct symtabs_and_lines *sals)
12955 {
12956 internal_error_pure_virtual_called ();
12957 }
12958
12959 /* The default 'explains_signal' method. */
12960
12961 static int
12962 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12963 {
12964 return 1;
12965 }
12966
12967 /* The default "after_condition_true" method. */
12968
12969 static void
12970 base_breakpoint_after_condition_true (struct bpstats *bs)
12971 {
12972 /* Nothing to do. */
12973 }
12974
12975 struct breakpoint_ops base_breakpoint_ops =
12976 {
12977 base_breakpoint_dtor,
12978 base_breakpoint_allocate_location,
12979 base_breakpoint_re_set,
12980 base_breakpoint_insert_location,
12981 base_breakpoint_remove_location,
12982 base_breakpoint_breakpoint_hit,
12983 base_breakpoint_check_status,
12984 base_breakpoint_resources_needed,
12985 base_breakpoint_works_in_software_mode,
12986 base_breakpoint_print_it,
12987 NULL,
12988 base_breakpoint_print_one_detail,
12989 base_breakpoint_print_mention,
12990 base_breakpoint_print_recreate,
12991 base_breakpoint_create_sals_from_location,
12992 base_breakpoint_create_breakpoints_sal,
12993 base_breakpoint_decode_location,
12994 base_breakpoint_explains_signal,
12995 base_breakpoint_after_condition_true,
12996 };
12997
12998 /* Default breakpoint_ops methods. */
12999
13000 static void
13001 bkpt_re_set (struct breakpoint *b)
13002 {
13003 /* FIXME: is this still reachable? */
13004 if (breakpoint_event_location_empty_p (b))
13005 {
13006 /* Anything without a location can't be re-set. */
13007 delete_breakpoint (b);
13008 return;
13009 }
13010
13011 breakpoint_re_set_default (b);
13012 }
13013
13014 static int
13015 bkpt_insert_location (struct bp_location *bl)
13016 {
13017 CORE_ADDR addr = bl->target_info.reqstd_address;
13018
13019 bl->target_info.kind = breakpoint_kind (bl, &addr);
13020 bl->target_info.placed_address = addr;
13021
13022 if (bl->loc_type == bp_loc_hardware_breakpoint)
13023 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
13024 else
13025 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
13026 }
13027
13028 static int
13029 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
13030 {
13031 if (bl->loc_type == bp_loc_hardware_breakpoint)
13032 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13033 else
13034 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
13035 }
13036
13037 static int
13038 bkpt_breakpoint_hit (const struct bp_location *bl,
13039 struct address_space *aspace, CORE_ADDR bp_addr,
13040 const struct target_waitstatus *ws)
13041 {
13042 if (ws->kind != TARGET_WAITKIND_STOPPED
13043 || ws->value.sig != GDB_SIGNAL_TRAP)
13044 return 0;
13045
13046 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13047 aspace, bp_addr))
13048 return 0;
13049
13050 if (overlay_debugging /* unmapped overlay section */
13051 && section_is_overlay (bl->section)
13052 && !section_is_mapped (bl->section))
13053 return 0;
13054
13055 return 1;
13056 }
13057
13058 static int
13059 dprintf_breakpoint_hit (const struct bp_location *bl,
13060 struct address_space *aspace, CORE_ADDR bp_addr,
13061 const struct target_waitstatus *ws)
13062 {
13063 if (dprintf_style == dprintf_style_agent
13064 && target_can_run_breakpoint_commands ())
13065 {
13066 /* An agent-style dprintf never causes a stop. If we see a trap
13067 for this address it must be for a breakpoint that happens to
13068 be set at the same address. */
13069 return 0;
13070 }
13071
13072 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
13073 }
13074
13075 static int
13076 bkpt_resources_needed (const struct bp_location *bl)
13077 {
13078 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13079
13080 return 1;
13081 }
13082
13083 static enum print_stop_action
13084 bkpt_print_it (bpstat bs)
13085 {
13086 struct breakpoint *b;
13087 const struct bp_location *bl;
13088 int bp_temp;
13089 struct ui_out *uiout = current_uiout;
13090
13091 gdb_assert (bs->bp_location_at != NULL);
13092
13093 bl = bs->bp_location_at;
13094 b = bs->breakpoint_at;
13095
13096 bp_temp = b->disposition == disp_del;
13097 if (bl->address != bl->requested_address)
13098 breakpoint_adjustment_warning (bl->requested_address,
13099 bl->address,
13100 b->number, 1);
13101 annotate_breakpoint (b->number);
13102 maybe_print_thread_hit_breakpoint (uiout);
13103
13104 if (bp_temp)
13105 uiout->text ("Temporary breakpoint ");
13106 else
13107 uiout->text ("Breakpoint ");
13108 if (uiout->is_mi_like_p ())
13109 {
13110 uiout->field_string ("reason",
13111 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13112 uiout->field_string ("disp", bpdisp_text (b->disposition));
13113 }
13114 uiout->field_int ("bkptno", b->number);
13115 uiout->text (", ");
13116
13117 return PRINT_SRC_AND_LOC;
13118 }
13119
13120 static void
13121 bkpt_print_mention (struct breakpoint *b)
13122 {
13123 if (current_uiout->is_mi_like_p ())
13124 return;
13125
13126 switch (b->type)
13127 {
13128 case bp_breakpoint:
13129 case bp_gnu_ifunc_resolver:
13130 if (b->disposition == disp_del)
13131 printf_filtered (_("Temporary breakpoint"));
13132 else
13133 printf_filtered (_("Breakpoint"));
13134 printf_filtered (_(" %d"), b->number);
13135 if (b->type == bp_gnu_ifunc_resolver)
13136 printf_filtered (_(" at gnu-indirect-function resolver"));
13137 break;
13138 case bp_hardware_breakpoint:
13139 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13140 break;
13141 case bp_dprintf:
13142 printf_filtered (_("Dprintf %d"), b->number);
13143 break;
13144 }
13145
13146 say_where (b);
13147 }
13148
13149 static void
13150 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13151 {
13152 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13153 fprintf_unfiltered (fp, "tbreak");
13154 else if (tp->type == bp_breakpoint)
13155 fprintf_unfiltered (fp, "break");
13156 else if (tp->type == bp_hardware_breakpoint
13157 && tp->disposition == disp_del)
13158 fprintf_unfiltered (fp, "thbreak");
13159 else if (tp->type == bp_hardware_breakpoint)
13160 fprintf_unfiltered (fp, "hbreak");
13161 else
13162 internal_error (__FILE__, __LINE__,
13163 _("unhandled breakpoint type %d"), (int) tp->type);
13164
13165 fprintf_unfiltered (fp, " %s",
13166 event_location_to_string (tp->location.get ()));
13167
13168 /* Print out extra_string if this breakpoint is pending. It might
13169 contain, for example, conditions that were set by the user. */
13170 if (tp->loc == NULL && tp->extra_string != NULL)
13171 fprintf_unfiltered (fp, " %s", tp->extra_string);
13172
13173 print_recreate_thread (tp, fp);
13174 }
13175
13176 static void
13177 bkpt_create_sals_from_location (const struct event_location *location,
13178 struct linespec_result *canonical,
13179 enum bptype type_wanted)
13180 {
13181 create_sals_from_location_default (location, canonical, type_wanted);
13182 }
13183
13184 static void
13185 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13186 struct linespec_result *canonical,
13187 char *cond_string,
13188 char *extra_string,
13189 enum bptype type_wanted,
13190 enum bpdisp disposition,
13191 int thread,
13192 int task, int ignore_count,
13193 const struct breakpoint_ops *ops,
13194 int from_tty, int enabled,
13195 int internal, unsigned flags)
13196 {
13197 create_breakpoints_sal_default (gdbarch, canonical,
13198 cond_string, extra_string,
13199 type_wanted,
13200 disposition, thread, task,
13201 ignore_count, ops, from_tty,
13202 enabled, internal, flags);
13203 }
13204
13205 static void
13206 bkpt_decode_location (struct breakpoint *b,
13207 const struct event_location *location,
13208 struct program_space *search_pspace,
13209 struct symtabs_and_lines *sals)
13210 {
13211 decode_location_default (b, location, search_pspace, sals);
13212 }
13213
13214 /* Virtual table for internal breakpoints. */
13215
13216 static void
13217 internal_bkpt_re_set (struct breakpoint *b)
13218 {
13219 switch (b->type)
13220 {
13221 /* Delete overlay event and longjmp master breakpoints; they
13222 will be reset later by breakpoint_re_set. */
13223 case bp_overlay_event:
13224 case bp_longjmp_master:
13225 case bp_std_terminate_master:
13226 case bp_exception_master:
13227 delete_breakpoint (b);
13228 break;
13229
13230 /* This breakpoint is special, it's set up when the inferior
13231 starts and we really don't want to touch it. */
13232 case bp_shlib_event:
13233
13234 /* Like bp_shlib_event, this breakpoint type is special. Once
13235 it is set up, we do not want to touch it. */
13236 case bp_thread_event:
13237 break;
13238 }
13239 }
13240
13241 static void
13242 internal_bkpt_check_status (bpstat bs)
13243 {
13244 if (bs->breakpoint_at->type == bp_shlib_event)
13245 {
13246 /* If requested, stop when the dynamic linker notifies GDB of
13247 events. This allows the user to get control and place
13248 breakpoints in initializer routines for dynamically loaded
13249 objects (among other things). */
13250 bs->stop = stop_on_solib_events;
13251 bs->print = stop_on_solib_events;
13252 }
13253 else
13254 bs->stop = 0;
13255 }
13256
13257 static enum print_stop_action
13258 internal_bkpt_print_it (bpstat bs)
13259 {
13260 struct breakpoint *b;
13261
13262 b = bs->breakpoint_at;
13263
13264 switch (b->type)
13265 {
13266 case bp_shlib_event:
13267 /* Did we stop because the user set the stop_on_solib_events
13268 variable? (If so, we report this as a generic, "Stopped due
13269 to shlib event" message.) */
13270 print_solib_event (0);
13271 break;
13272
13273 case bp_thread_event:
13274 /* Not sure how we will get here.
13275 GDB should not stop for these breakpoints. */
13276 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13277 break;
13278
13279 case bp_overlay_event:
13280 /* By analogy with the thread event, GDB should not stop for these. */
13281 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13282 break;
13283
13284 case bp_longjmp_master:
13285 /* These should never be enabled. */
13286 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13287 break;
13288
13289 case bp_std_terminate_master:
13290 /* These should never be enabled. */
13291 printf_filtered (_("std::terminate Master Breakpoint: "
13292 "gdb should not stop!\n"));
13293 break;
13294
13295 case bp_exception_master:
13296 /* These should never be enabled. */
13297 printf_filtered (_("Exception Master Breakpoint: "
13298 "gdb should not stop!\n"));
13299 break;
13300 }
13301
13302 return PRINT_NOTHING;
13303 }
13304
13305 static void
13306 internal_bkpt_print_mention (struct breakpoint *b)
13307 {
13308 /* Nothing to mention. These breakpoints are internal. */
13309 }
13310
13311 /* Virtual table for momentary breakpoints */
13312
13313 static void
13314 momentary_bkpt_re_set (struct breakpoint *b)
13315 {
13316 /* Keep temporary breakpoints, which can be encountered when we step
13317 over a dlopen call and solib_add is resetting the breakpoints.
13318 Otherwise these should have been blown away via the cleanup chain
13319 or by breakpoint_init_inferior when we rerun the executable. */
13320 }
13321
13322 static void
13323 momentary_bkpt_check_status (bpstat bs)
13324 {
13325 /* Nothing. The point of these breakpoints is causing a stop. */
13326 }
13327
13328 static enum print_stop_action
13329 momentary_bkpt_print_it (bpstat bs)
13330 {
13331 return PRINT_UNKNOWN;
13332 }
13333
13334 static void
13335 momentary_bkpt_print_mention (struct breakpoint *b)
13336 {
13337 /* Nothing to mention. These breakpoints are internal. */
13338 }
13339
13340 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13341
13342 It gets cleared already on the removal of the first one of such placed
13343 breakpoints. This is OK as they get all removed altogether. */
13344
13345 static void
13346 longjmp_bkpt_dtor (struct breakpoint *self)
13347 {
13348 struct thread_info *tp = find_thread_global_id (self->thread);
13349
13350 if (tp)
13351 tp->initiating_frame = null_frame_id;
13352
13353 momentary_breakpoint_ops.dtor (self);
13354 }
13355
13356 /* Specific methods for probe breakpoints. */
13357
13358 static int
13359 bkpt_probe_insert_location (struct bp_location *bl)
13360 {
13361 int v = bkpt_insert_location (bl);
13362
13363 if (v == 0)
13364 {
13365 /* The insertion was successful, now let's set the probe's semaphore
13366 if needed. */
13367 if (bl->probe.probe->pops->set_semaphore != NULL)
13368 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13369 bl->probe.objfile,
13370 bl->gdbarch);
13371 }
13372
13373 return v;
13374 }
13375
13376 static int
13377 bkpt_probe_remove_location (struct bp_location *bl,
13378 enum remove_bp_reason reason)
13379 {
13380 /* Let's clear the semaphore before removing the location. */
13381 if (bl->probe.probe->pops->clear_semaphore != NULL)
13382 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13383 bl->probe.objfile,
13384 bl->gdbarch);
13385
13386 return bkpt_remove_location (bl, reason);
13387 }
13388
13389 static void
13390 bkpt_probe_create_sals_from_location (const struct event_location *location,
13391 struct linespec_result *canonical,
13392 enum bptype type_wanted)
13393 {
13394 struct linespec_sals lsal;
13395
13396 lsal.sals = parse_probes (location, NULL, canonical);
13397 lsal.canonical
13398 = xstrdup (event_location_to_string (canonical->location.get ()));
13399 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13400 }
13401
13402 static void
13403 bkpt_probe_decode_location (struct breakpoint *b,
13404 const struct event_location *location,
13405 struct program_space *search_pspace,
13406 struct symtabs_and_lines *sals)
13407 {
13408 *sals = parse_probes (location, search_pspace, NULL);
13409 if (!sals->sals)
13410 error (_("probe not found"));
13411 }
13412
13413 /* The breakpoint_ops structure to be used in tracepoints. */
13414
13415 static void
13416 tracepoint_re_set (struct breakpoint *b)
13417 {
13418 breakpoint_re_set_default (b);
13419 }
13420
13421 static int
13422 tracepoint_breakpoint_hit (const struct bp_location *bl,
13423 struct address_space *aspace, CORE_ADDR bp_addr,
13424 const struct target_waitstatus *ws)
13425 {
13426 /* By definition, the inferior does not report stops at
13427 tracepoints. */
13428 return 0;
13429 }
13430
13431 static void
13432 tracepoint_print_one_detail (const struct breakpoint *self,
13433 struct ui_out *uiout)
13434 {
13435 struct tracepoint *tp = (struct tracepoint *) self;
13436 if (tp->static_trace_marker_id)
13437 {
13438 gdb_assert (self->type == bp_static_tracepoint);
13439
13440 uiout->text ("\tmarker id is ");
13441 uiout->field_string ("static-tracepoint-marker-string-id",
13442 tp->static_trace_marker_id);
13443 uiout->text ("\n");
13444 }
13445 }
13446
13447 static void
13448 tracepoint_print_mention (struct breakpoint *b)
13449 {
13450 if (current_uiout->is_mi_like_p ())
13451 return;
13452
13453 switch (b->type)
13454 {
13455 case bp_tracepoint:
13456 printf_filtered (_("Tracepoint"));
13457 printf_filtered (_(" %d"), b->number);
13458 break;
13459 case bp_fast_tracepoint:
13460 printf_filtered (_("Fast tracepoint"));
13461 printf_filtered (_(" %d"), b->number);
13462 break;
13463 case bp_static_tracepoint:
13464 printf_filtered (_("Static tracepoint"));
13465 printf_filtered (_(" %d"), b->number);
13466 break;
13467 default:
13468 internal_error (__FILE__, __LINE__,
13469 _("unhandled tracepoint type %d"), (int) b->type);
13470 }
13471
13472 say_where (b);
13473 }
13474
13475 static void
13476 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13477 {
13478 struct tracepoint *tp = (struct tracepoint *) self;
13479
13480 if (self->type == bp_fast_tracepoint)
13481 fprintf_unfiltered (fp, "ftrace");
13482 else if (self->type == bp_static_tracepoint)
13483 fprintf_unfiltered (fp, "strace");
13484 else if (self->type == bp_tracepoint)
13485 fprintf_unfiltered (fp, "trace");
13486 else
13487 internal_error (__FILE__, __LINE__,
13488 _("unhandled tracepoint type %d"), (int) self->type);
13489
13490 fprintf_unfiltered (fp, " %s",
13491 event_location_to_string (self->location.get ()));
13492 print_recreate_thread (self, fp);
13493
13494 if (tp->pass_count)
13495 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13496 }
13497
13498 static void
13499 tracepoint_create_sals_from_location (const struct event_location *location,
13500 struct linespec_result *canonical,
13501 enum bptype type_wanted)
13502 {
13503 create_sals_from_location_default (location, canonical, type_wanted);
13504 }
13505
13506 static void
13507 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13508 struct linespec_result *canonical,
13509 char *cond_string,
13510 char *extra_string,
13511 enum bptype type_wanted,
13512 enum bpdisp disposition,
13513 int thread,
13514 int task, int ignore_count,
13515 const struct breakpoint_ops *ops,
13516 int from_tty, int enabled,
13517 int internal, unsigned flags)
13518 {
13519 create_breakpoints_sal_default (gdbarch, canonical,
13520 cond_string, extra_string,
13521 type_wanted,
13522 disposition, thread, task,
13523 ignore_count, ops, from_tty,
13524 enabled, internal, flags);
13525 }
13526
13527 static void
13528 tracepoint_decode_location (struct breakpoint *b,
13529 const struct event_location *location,
13530 struct program_space *search_pspace,
13531 struct symtabs_and_lines *sals)
13532 {
13533 decode_location_default (b, location, search_pspace, sals);
13534 }
13535
13536 struct breakpoint_ops tracepoint_breakpoint_ops;
13537
13538 /* The breakpoint_ops structure to be use on tracepoints placed in a
13539 static probe. */
13540
13541 static void
13542 tracepoint_probe_create_sals_from_location
13543 (const struct event_location *location,
13544 struct linespec_result *canonical,
13545 enum bptype type_wanted)
13546 {
13547 /* We use the same method for breakpoint on probes. */
13548 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13549 }
13550
13551 static void
13552 tracepoint_probe_decode_location (struct breakpoint *b,
13553 const struct event_location *location,
13554 struct program_space *search_pspace,
13555 struct symtabs_and_lines *sals)
13556 {
13557 /* We use the same method for breakpoint on probes. */
13558 bkpt_probe_decode_location (b, location, search_pspace, sals);
13559 }
13560
13561 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13562
13563 /* Dprintf breakpoint_ops methods. */
13564
13565 static void
13566 dprintf_re_set (struct breakpoint *b)
13567 {
13568 breakpoint_re_set_default (b);
13569
13570 /* extra_string should never be non-NULL for dprintf. */
13571 gdb_assert (b->extra_string != NULL);
13572
13573 /* 1 - connect to target 1, that can run breakpoint commands.
13574 2 - create a dprintf, which resolves fine.
13575 3 - disconnect from target 1
13576 4 - connect to target 2, that can NOT run breakpoint commands.
13577
13578 After steps #3/#4, you'll want the dprintf command list to
13579 be updated, because target 1 and 2 may well return different
13580 answers for target_can_run_breakpoint_commands().
13581 Given absence of finer grained resetting, we get to do
13582 it all the time. */
13583 if (b->extra_string != NULL)
13584 update_dprintf_command_list (b);
13585 }
13586
13587 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13588
13589 static void
13590 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13591 {
13592 fprintf_unfiltered (fp, "dprintf %s,%s",
13593 event_location_to_string (tp->location.get ()),
13594 tp->extra_string);
13595 print_recreate_thread (tp, fp);
13596 }
13597
13598 /* Implement the "after_condition_true" breakpoint_ops method for
13599 dprintf.
13600
13601 dprintf's are implemented with regular commands in their command
13602 list, but we run the commands here instead of before presenting the
13603 stop to the user, as dprintf's don't actually cause a stop. This
13604 also makes it so that the commands of multiple dprintfs at the same
13605 address are all handled. */
13606
13607 static void
13608 dprintf_after_condition_true (struct bpstats *bs)
13609 {
13610 struct cleanup *old_chain;
13611 struct bpstats tmp_bs = { NULL };
13612 struct bpstats *tmp_bs_p = &tmp_bs;
13613
13614 /* dprintf's never cause a stop. This wasn't set in the
13615 check_status hook instead because that would make the dprintf's
13616 condition not be evaluated. */
13617 bs->stop = 0;
13618
13619 /* Run the command list here. Take ownership of it instead of
13620 copying. We never want these commands to run later in
13621 bpstat_do_actions, if a breakpoint that causes a stop happens to
13622 be set at same address as this dprintf, or even if running the
13623 commands here throws. */
13624 tmp_bs.commands = bs->commands;
13625 bs->commands = NULL;
13626 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13627
13628 bpstat_do_actions_1 (&tmp_bs_p);
13629
13630 /* 'tmp_bs.commands' will usually be NULL by now, but
13631 bpstat_do_actions_1 may return early without processing the whole
13632 list. */
13633 do_cleanups (old_chain);
13634 }
13635
13636 /* The breakpoint_ops structure to be used on static tracepoints with
13637 markers (`-m'). */
13638
13639 static void
13640 strace_marker_create_sals_from_location (const struct event_location *location,
13641 struct linespec_result *canonical,
13642 enum bptype type_wanted)
13643 {
13644 struct linespec_sals lsal;
13645 const char *arg_start, *arg;
13646 char *str;
13647 struct cleanup *cleanup;
13648
13649 arg = arg_start = get_linespec_location (location);
13650 lsal.sals = decode_static_tracepoint_spec (&arg);
13651
13652 str = savestring (arg_start, arg - arg_start);
13653 cleanup = make_cleanup (xfree, str);
13654 canonical->location = new_linespec_location (&str);
13655 do_cleanups (cleanup);
13656
13657 lsal.canonical
13658 = xstrdup (event_location_to_string (canonical->location.get ()));
13659 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13660 }
13661
13662 static void
13663 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13664 struct linespec_result *canonical,
13665 char *cond_string,
13666 char *extra_string,
13667 enum bptype type_wanted,
13668 enum bpdisp disposition,
13669 int thread,
13670 int task, int ignore_count,
13671 const struct breakpoint_ops *ops,
13672 int from_tty, int enabled,
13673 int internal, unsigned flags)
13674 {
13675 int i;
13676 struct linespec_sals *lsal = VEC_index (linespec_sals,
13677 canonical->sals, 0);
13678
13679 /* If the user is creating a static tracepoint by marker id
13680 (strace -m MARKER_ID), then store the sals index, so that
13681 breakpoint_re_set can try to match up which of the newly
13682 found markers corresponds to this one, and, don't try to
13683 expand multiple locations for each sal, given than SALS
13684 already should contain all sals for MARKER_ID. */
13685
13686 for (i = 0; i < lsal->sals.nelts; ++i)
13687 {
13688 struct symtabs_and_lines expanded;
13689 struct tracepoint *tp;
13690 event_location_up location;
13691
13692 expanded.nelts = 1;
13693 expanded.sals = &lsal->sals.sals[i];
13694
13695 location = copy_event_location (canonical->location.get ());
13696
13697 tp = new tracepoint ();
13698 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13699 std::move (location), NULL,
13700 cond_string, extra_string,
13701 type_wanted, disposition,
13702 thread, task, ignore_count, ops,
13703 from_tty, enabled, internal, flags,
13704 canonical->special_display);
13705 /* Given that its possible to have multiple markers with
13706 the same string id, if the user is creating a static
13707 tracepoint by marker id ("strace -m MARKER_ID"), then
13708 store the sals index, so that breakpoint_re_set can
13709 try to match up which of the newly found markers
13710 corresponds to this one */
13711 tp->static_trace_marker_id_idx = i;
13712
13713 install_breakpoint (internal, &tp->base, 0);
13714 }
13715 }
13716
13717 static void
13718 strace_marker_decode_location (struct breakpoint *b,
13719 const struct event_location *location,
13720 struct program_space *search_pspace,
13721 struct symtabs_and_lines *sals)
13722 {
13723 struct tracepoint *tp = (struct tracepoint *) b;
13724 const char *s = get_linespec_location (location);
13725
13726 *sals = decode_static_tracepoint_spec (&s);
13727 if (sals->nelts > tp->static_trace_marker_id_idx)
13728 {
13729 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13730 sals->nelts = 1;
13731 }
13732 else
13733 error (_("marker %s not found"), tp->static_trace_marker_id);
13734 }
13735
13736 static struct breakpoint_ops strace_marker_breakpoint_ops;
13737
13738 static int
13739 strace_marker_p (struct breakpoint *b)
13740 {
13741 return b->ops == &strace_marker_breakpoint_ops;
13742 }
13743
13744 /* Delete a breakpoint and clean up all traces of it in the data
13745 structures. */
13746
13747 void
13748 delete_breakpoint (struct breakpoint *bpt)
13749 {
13750 struct breakpoint *b;
13751
13752 gdb_assert (bpt != NULL);
13753
13754 /* Has this bp already been deleted? This can happen because
13755 multiple lists can hold pointers to bp's. bpstat lists are
13756 especial culprits.
13757
13758 One example of this happening is a watchpoint's scope bp. When
13759 the scope bp triggers, we notice that the watchpoint is out of
13760 scope, and delete it. We also delete its scope bp. But the
13761 scope bp is marked "auto-deleting", and is already on a bpstat.
13762 That bpstat is then checked for auto-deleting bp's, which are
13763 deleted.
13764
13765 A real solution to this problem might involve reference counts in
13766 bp's, and/or giving them pointers back to their referencing
13767 bpstat's, and teaching delete_breakpoint to only free a bp's
13768 storage when no more references were extent. A cheaper bandaid
13769 was chosen. */
13770 if (bpt->type == bp_none)
13771 return;
13772
13773 /* At least avoid this stale reference until the reference counting
13774 of breakpoints gets resolved. */
13775 if (bpt->related_breakpoint != bpt)
13776 {
13777 struct breakpoint *related;
13778 struct watchpoint *w;
13779
13780 if (bpt->type == bp_watchpoint_scope)
13781 w = (struct watchpoint *) bpt->related_breakpoint;
13782 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13783 w = (struct watchpoint *) bpt;
13784 else
13785 w = NULL;
13786 if (w != NULL)
13787 watchpoint_del_at_next_stop (w);
13788
13789 /* Unlink bpt from the bpt->related_breakpoint ring. */
13790 for (related = bpt; related->related_breakpoint != bpt;
13791 related = related->related_breakpoint);
13792 related->related_breakpoint = bpt->related_breakpoint;
13793 bpt->related_breakpoint = bpt;
13794 }
13795
13796 /* watch_command_1 creates a watchpoint but only sets its number if
13797 update_watchpoint succeeds in creating its bp_locations. If there's
13798 a problem in that process, we'll be asked to delete the half-created
13799 watchpoint. In that case, don't announce the deletion. */
13800 if (bpt->number)
13801 observer_notify_breakpoint_deleted (bpt);
13802
13803 if (breakpoint_chain == bpt)
13804 breakpoint_chain = bpt->next;
13805
13806 ALL_BREAKPOINTS (b)
13807 if (b->next == bpt)
13808 {
13809 b->next = bpt->next;
13810 break;
13811 }
13812
13813 /* Be sure no bpstat's are pointing at the breakpoint after it's
13814 been freed. */
13815 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13816 in all threads for now. Note that we cannot just remove bpstats
13817 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13818 commands are associated with the bpstat; if we remove it here,
13819 then the later call to bpstat_do_actions (&stop_bpstat); in
13820 event-top.c won't do anything, and temporary breakpoints with
13821 commands won't work. */
13822
13823 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13824
13825 /* Now that breakpoint is removed from breakpoint list, update the
13826 global location list. This will remove locations that used to
13827 belong to this breakpoint. Do this before freeing the breakpoint
13828 itself, since remove_breakpoint looks at location's owner. It
13829 might be better design to have location completely
13830 self-contained, but it's not the case now. */
13831 update_global_location_list (UGLL_DONT_INSERT);
13832
13833 bpt->ops->dtor (bpt);
13834 /* On the chance that someone will soon try again to delete this
13835 same bp, we mark it as deleted before freeing its storage. */
13836 bpt->type = bp_none;
13837 delete bpt;
13838 }
13839
13840 static void
13841 do_delete_breakpoint_cleanup (void *b)
13842 {
13843 delete_breakpoint ((struct breakpoint *) b);
13844 }
13845
13846 struct cleanup *
13847 make_cleanup_delete_breakpoint (struct breakpoint *b)
13848 {
13849 return make_cleanup (do_delete_breakpoint_cleanup, b);
13850 }
13851
13852 /* Iterator function to call a user-provided callback function once
13853 for each of B and its related breakpoints. */
13854
13855 static void
13856 iterate_over_related_breakpoints (struct breakpoint *b,
13857 void (*function) (struct breakpoint *,
13858 void *),
13859 void *data)
13860 {
13861 struct breakpoint *related;
13862
13863 related = b;
13864 do
13865 {
13866 struct breakpoint *next;
13867
13868 /* FUNCTION may delete RELATED. */
13869 next = related->related_breakpoint;
13870
13871 if (next == related)
13872 {
13873 /* RELATED is the last ring entry. */
13874 function (related, data);
13875
13876 /* FUNCTION may have deleted it, so we'd never reach back to
13877 B. There's nothing left to do anyway, so just break
13878 out. */
13879 break;
13880 }
13881 else
13882 function (related, data);
13883
13884 related = next;
13885 }
13886 while (related != b);
13887 }
13888
13889 static void
13890 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13891 {
13892 delete_breakpoint (b);
13893 }
13894
13895 /* A callback for map_breakpoint_numbers that calls
13896 delete_breakpoint. */
13897
13898 static void
13899 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13900 {
13901 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13902 }
13903
13904 void
13905 delete_command (char *arg, int from_tty)
13906 {
13907 struct breakpoint *b, *b_tmp;
13908
13909 dont_repeat ();
13910
13911 if (arg == 0)
13912 {
13913 int breaks_to_delete = 0;
13914
13915 /* Delete all breakpoints if no argument. Do not delete
13916 internal breakpoints, these have to be deleted with an
13917 explicit breakpoint number argument. */
13918 ALL_BREAKPOINTS (b)
13919 if (user_breakpoint_p (b))
13920 {
13921 breaks_to_delete = 1;
13922 break;
13923 }
13924
13925 /* Ask user only if there are some breakpoints to delete. */
13926 if (!from_tty
13927 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13928 {
13929 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13930 if (user_breakpoint_p (b))
13931 delete_breakpoint (b);
13932 }
13933 }
13934 else
13935 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13936 }
13937
13938 /* Return true if all locations of B bound to PSPACE are pending. If
13939 PSPACE is NULL, all locations of all program spaces are
13940 considered. */
13941
13942 static int
13943 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13944 {
13945 struct bp_location *loc;
13946
13947 for (loc = b->loc; loc != NULL; loc = loc->next)
13948 if ((pspace == NULL
13949 || loc->pspace == pspace)
13950 && !loc->shlib_disabled
13951 && !loc->pspace->executing_startup)
13952 return 0;
13953 return 1;
13954 }
13955
13956 /* Subroutine of update_breakpoint_locations to simplify it.
13957 Return non-zero if multiple fns in list LOC have the same name.
13958 Null names are ignored. */
13959
13960 static int
13961 ambiguous_names_p (struct bp_location *loc)
13962 {
13963 struct bp_location *l;
13964 htab_t htab = htab_create_alloc (13, htab_hash_string,
13965 (int (*) (const void *,
13966 const void *)) streq,
13967 NULL, xcalloc, xfree);
13968
13969 for (l = loc; l != NULL; l = l->next)
13970 {
13971 const char **slot;
13972 const char *name = l->function_name;
13973
13974 /* Allow for some names to be NULL, ignore them. */
13975 if (name == NULL)
13976 continue;
13977
13978 slot = (const char **) htab_find_slot (htab, (const void *) name,
13979 INSERT);
13980 /* NOTE: We can assume slot != NULL here because xcalloc never
13981 returns NULL. */
13982 if (*slot != NULL)
13983 {
13984 htab_delete (htab);
13985 return 1;
13986 }
13987 *slot = name;
13988 }
13989
13990 htab_delete (htab);
13991 return 0;
13992 }
13993
13994 /* When symbols change, it probably means the sources changed as well,
13995 and it might mean the static tracepoint markers are no longer at
13996 the same address or line numbers they used to be at last we
13997 checked. Losing your static tracepoints whenever you rebuild is
13998 undesirable. This function tries to resync/rematch gdb static
13999 tracepoints with the markers on the target, for static tracepoints
14000 that have not been set by marker id. Static tracepoint that have
14001 been set by marker id are reset by marker id in breakpoint_re_set.
14002 The heuristic is:
14003
14004 1) For a tracepoint set at a specific address, look for a marker at
14005 the old PC. If one is found there, assume to be the same marker.
14006 If the name / string id of the marker found is different from the
14007 previous known name, assume that means the user renamed the marker
14008 in the sources, and output a warning.
14009
14010 2) For a tracepoint set at a given line number, look for a marker
14011 at the new address of the old line number. If one is found there,
14012 assume to be the same marker. If the name / string id of the
14013 marker found is different from the previous known name, assume that
14014 means the user renamed the marker in the sources, and output a
14015 warning.
14016
14017 3) If a marker is no longer found at the same address or line, it
14018 may mean the marker no longer exists. But it may also just mean
14019 the code changed a bit. Maybe the user added a few lines of code
14020 that made the marker move up or down (in line number terms). Ask
14021 the target for info about the marker with the string id as we knew
14022 it. If found, update line number and address in the matching
14023 static tracepoint. This will get confused if there's more than one
14024 marker with the same ID (possible in UST, although unadvised
14025 precisely because it confuses tools). */
14026
14027 static struct symtab_and_line
14028 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
14029 {
14030 struct tracepoint *tp = (struct tracepoint *) b;
14031 struct static_tracepoint_marker marker;
14032 CORE_ADDR pc;
14033
14034 pc = sal.pc;
14035 if (sal.line)
14036 find_line_pc (sal.symtab, sal.line, &pc);
14037
14038 if (target_static_tracepoint_marker_at (pc, &marker))
14039 {
14040 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14041 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14042 b->number,
14043 tp->static_trace_marker_id, marker.str_id);
14044
14045 xfree (tp->static_trace_marker_id);
14046 tp->static_trace_marker_id = xstrdup (marker.str_id);
14047 release_static_tracepoint_marker (&marker);
14048
14049 return sal;
14050 }
14051
14052 /* Old marker wasn't found on target at lineno. Try looking it up
14053 by string ID. */
14054 if (!sal.explicit_pc
14055 && sal.line != 0
14056 && sal.symtab != NULL
14057 && tp->static_trace_marker_id != NULL)
14058 {
14059 VEC(static_tracepoint_marker_p) *markers;
14060
14061 markers
14062 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14063
14064 if (!VEC_empty(static_tracepoint_marker_p, markers))
14065 {
14066 struct symtab_and_line sal2;
14067 struct symbol *sym;
14068 struct static_tracepoint_marker *tpmarker;
14069 struct ui_out *uiout = current_uiout;
14070 struct explicit_location explicit_loc;
14071
14072 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14073
14074 xfree (tp->static_trace_marker_id);
14075 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14076
14077 warning (_("marker for static tracepoint %d (%s) not "
14078 "found at previous line number"),
14079 b->number, tp->static_trace_marker_id);
14080
14081 init_sal (&sal2);
14082
14083 sal2.pc = tpmarker->address;
14084
14085 sal2 = find_pc_line (tpmarker->address, 0);
14086 sym = find_pc_sect_function (tpmarker->address, NULL);
14087 uiout->text ("Now in ");
14088 if (sym)
14089 {
14090 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
14091 uiout->text (" at ");
14092 }
14093 uiout->field_string ("file",
14094 symtab_to_filename_for_display (sal2.symtab));
14095 uiout->text (":");
14096
14097 if (uiout->is_mi_like_p ())
14098 {
14099 const char *fullname = symtab_to_fullname (sal2.symtab);
14100
14101 uiout->field_string ("fullname", fullname);
14102 }
14103
14104 uiout->field_int ("line", sal2.line);
14105 uiout->text ("\n");
14106
14107 b->loc->line_number = sal2.line;
14108 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14109
14110 b->location.reset (NULL);
14111 initialize_explicit_location (&explicit_loc);
14112 explicit_loc.source_filename
14113 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
14114 explicit_loc.line_offset.offset = b->loc->line_number;
14115 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
14116 b->location = new_explicit_location (&explicit_loc);
14117
14118 /* Might be nice to check if function changed, and warn if
14119 so. */
14120
14121 release_static_tracepoint_marker (tpmarker);
14122 }
14123 }
14124 return sal;
14125 }
14126
14127 /* Returns 1 iff locations A and B are sufficiently same that
14128 we don't need to report breakpoint as changed. */
14129
14130 static int
14131 locations_are_equal (struct bp_location *a, struct bp_location *b)
14132 {
14133 while (a && b)
14134 {
14135 if (a->address != b->address)
14136 return 0;
14137
14138 if (a->shlib_disabled != b->shlib_disabled)
14139 return 0;
14140
14141 if (a->enabled != b->enabled)
14142 return 0;
14143
14144 a = a->next;
14145 b = b->next;
14146 }
14147
14148 if ((a == NULL) != (b == NULL))
14149 return 0;
14150
14151 return 1;
14152 }
14153
14154 /* Split all locations of B that are bound to PSPACE out of B's
14155 location list to a separate list and return that list's head. If
14156 PSPACE is NULL, hoist out all locations of B. */
14157
14158 static struct bp_location *
14159 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
14160 {
14161 struct bp_location head;
14162 struct bp_location *i = b->loc;
14163 struct bp_location **i_link = &b->loc;
14164 struct bp_location *hoisted = &head;
14165
14166 if (pspace == NULL)
14167 {
14168 i = b->loc;
14169 b->loc = NULL;
14170 return i;
14171 }
14172
14173 head.next = NULL;
14174
14175 while (i != NULL)
14176 {
14177 if (i->pspace == pspace)
14178 {
14179 *i_link = i->next;
14180 i->next = NULL;
14181 hoisted->next = i;
14182 hoisted = i;
14183 }
14184 else
14185 i_link = &i->next;
14186 i = *i_link;
14187 }
14188
14189 return head.next;
14190 }
14191
14192 /* Create new breakpoint locations for B (a hardware or software
14193 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
14194 zero, then B is a ranged breakpoint. Only recreates locations for
14195 FILTER_PSPACE. Locations of other program spaces are left
14196 untouched. */
14197
14198 void
14199 update_breakpoint_locations (struct breakpoint *b,
14200 struct program_space *filter_pspace,
14201 struct symtabs_and_lines sals,
14202 struct symtabs_and_lines sals_end)
14203 {
14204 int i;
14205 struct bp_location *existing_locations;
14206
14207 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14208 {
14209 /* Ranged breakpoints have only one start location and one end
14210 location. */
14211 b->enable_state = bp_disabled;
14212 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14213 "multiple locations found\n"),
14214 b->number);
14215 return;
14216 }
14217
14218 /* If there's no new locations, and all existing locations are
14219 pending, don't do anything. This optimizes the common case where
14220 all locations are in the same shared library, that was unloaded.
14221 We'd like to retain the location, so that when the library is
14222 loaded again, we don't loose the enabled/disabled status of the
14223 individual locations. */
14224 if (all_locations_are_pending (b, filter_pspace) && sals.nelts == 0)
14225 return;
14226
14227 existing_locations = hoist_existing_locations (b, filter_pspace);
14228
14229 for (i = 0; i < sals.nelts; ++i)
14230 {
14231 struct bp_location *new_loc;
14232
14233 switch_to_program_space_and_thread (sals.sals[i].pspace);
14234
14235 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14236
14237 /* Reparse conditions, they might contain references to the
14238 old symtab. */
14239 if (b->cond_string != NULL)
14240 {
14241 const char *s;
14242
14243 s = b->cond_string;
14244 TRY
14245 {
14246 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14247 block_for_pc (sals.sals[i].pc),
14248 0);
14249 }
14250 CATCH (e, RETURN_MASK_ERROR)
14251 {
14252 warning (_("failed to reevaluate condition "
14253 "for breakpoint %d: %s"),
14254 b->number, e.message);
14255 new_loc->enabled = 0;
14256 }
14257 END_CATCH
14258 }
14259
14260 if (sals_end.nelts)
14261 {
14262 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14263
14264 new_loc->length = end - sals.sals[0].pc + 1;
14265 }
14266 }
14267
14268 /* If possible, carry over 'disable' status from existing
14269 breakpoints. */
14270 {
14271 struct bp_location *e = existing_locations;
14272 /* If there are multiple breakpoints with the same function name,
14273 e.g. for inline functions, comparing function names won't work.
14274 Instead compare pc addresses; this is just a heuristic as things
14275 may have moved, but in practice it gives the correct answer
14276 often enough until a better solution is found. */
14277 int have_ambiguous_names = ambiguous_names_p (b->loc);
14278
14279 for (; e; e = e->next)
14280 {
14281 if (!e->enabled && e->function_name)
14282 {
14283 struct bp_location *l = b->loc;
14284 if (have_ambiguous_names)
14285 {
14286 for (; l; l = l->next)
14287 if (breakpoint_locations_match (e, l))
14288 {
14289 l->enabled = 0;
14290 break;
14291 }
14292 }
14293 else
14294 {
14295 for (; l; l = l->next)
14296 if (l->function_name
14297 && strcmp (e->function_name, l->function_name) == 0)
14298 {
14299 l->enabled = 0;
14300 break;
14301 }
14302 }
14303 }
14304 }
14305 }
14306
14307 if (!locations_are_equal (existing_locations, b->loc))
14308 observer_notify_breakpoint_modified (b);
14309 }
14310
14311 /* Find the SaL locations corresponding to the given LOCATION.
14312 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14313
14314 static struct symtabs_and_lines
14315 location_to_sals (struct breakpoint *b, struct event_location *location,
14316 struct program_space *search_pspace, int *found)
14317 {
14318 struct symtabs_and_lines sals = {0};
14319 struct gdb_exception exception = exception_none;
14320
14321 gdb_assert (b->ops != NULL);
14322
14323 TRY
14324 {
14325 b->ops->decode_location (b, location, search_pspace, &sals);
14326 }
14327 CATCH (e, RETURN_MASK_ERROR)
14328 {
14329 int not_found_and_ok = 0;
14330
14331 exception = e;
14332
14333 /* For pending breakpoints, it's expected that parsing will
14334 fail until the right shared library is loaded. User has
14335 already told to create pending breakpoints and don't need
14336 extra messages. If breakpoint is in bp_shlib_disabled
14337 state, then user already saw the message about that
14338 breakpoint being disabled, and don't want to see more
14339 errors. */
14340 if (e.error == NOT_FOUND_ERROR
14341 && (b->condition_not_parsed
14342 || (b->loc != NULL
14343 && search_pspace != NULL
14344 && b->loc->pspace != search_pspace)
14345 || (b->loc && b->loc->shlib_disabled)
14346 || (b->loc && b->loc->pspace->executing_startup)
14347 || b->enable_state == bp_disabled))
14348 not_found_and_ok = 1;
14349
14350 if (!not_found_and_ok)
14351 {
14352 /* We surely don't want to warn about the same breakpoint
14353 10 times. One solution, implemented here, is disable
14354 the breakpoint on error. Another solution would be to
14355 have separate 'warning emitted' flag. Since this
14356 happens only when a binary has changed, I don't know
14357 which approach is better. */
14358 b->enable_state = bp_disabled;
14359 throw_exception (e);
14360 }
14361 }
14362 END_CATCH
14363
14364 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
14365 {
14366 int i;
14367
14368 for (i = 0; i < sals.nelts; ++i)
14369 resolve_sal_pc (&sals.sals[i]);
14370 if (b->condition_not_parsed && b->extra_string != NULL)
14371 {
14372 char *cond_string, *extra_string;
14373 int thread, task;
14374
14375 find_condition_and_thread (b->extra_string, sals.sals[0].pc,
14376 &cond_string, &thread, &task,
14377 &extra_string);
14378 gdb_assert (b->cond_string == NULL);
14379 if (cond_string)
14380 b->cond_string = cond_string;
14381 b->thread = thread;
14382 b->task = task;
14383 if (extra_string)
14384 {
14385 xfree (b->extra_string);
14386 b->extra_string = extra_string;
14387 }
14388 b->condition_not_parsed = 0;
14389 }
14390
14391 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14392 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14393
14394 *found = 1;
14395 }
14396 else
14397 *found = 0;
14398
14399 return sals;
14400 }
14401
14402 /* The default re_set method, for typical hardware or software
14403 breakpoints. Reevaluate the breakpoint and recreate its
14404 locations. */
14405
14406 static void
14407 breakpoint_re_set_default (struct breakpoint *b)
14408 {
14409 int found;
14410 struct symtabs_and_lines sals, sals_end;
14411 struct symtabs_and_lines expanded = {0};
14412 struct symtabs_and_lines expanded_end = {0};
14413 struct program_space *filter_pspace = current_program_space;
14414
14415 sals = location_to_sals (b, b->location.get (), filter_pspace, &found);
14416 if (found)
14417 {
14418 make_cleanup (xfree, sals.sals);
14419 expanded = sals;
14420 }
14421
14422 if (b->location_range_end != NULL)
14423 {
14424 sals_end = location_to_sals (b, b->location_range_end.get (),
14425 filter_pspace, &found);
14426 if (found)
14427 {
14428 make_cleanup (xfree, sals_end.sals);
14429 expanded_end = sals_end;
14430 }
14431 }
14432
14433 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
14434 }
14435
14436 /* Default method for creating SALs from an address string. It basically
14437 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14438
14439 static void
14440 create_sals_from_location_default (const struct event_location *location,
14441 struct linespec_result *canonical,
14442 enum bptype type_wanted)
14443 {
14444 parse_breakpoint_sals (location, canonical);
14445 }
14446
14447 /* Call create_breakpoints_sal for the given arguments. This is the default
14448 function for the `create_breakpoints_sal' method of
14449 breakpoint_ops. */
14450
14451 static void
14452 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14453 struct linespec_result *canonical,
14454 char *cond_string,
14455 char *extra_string,
14456 enum bptype type_wanted,
14457 enum bpdisp disposition,
14458 int thread,
14459 int task, int ignore_count,
14460 const struct breakpoint_ops *ops,
14461 int from_tty, int enabled,
14462 int internal, unsigned flags)
14463 {
14464 create_breakpoints_sal (gdbarch, canonical, cond_string,
14465 extra_string,
14466 type_wanted, disposition,
14467 thread, task, ignore_count, ops, from_tty,
14468 enabled, internal, flags);
14469 }
14470
14471 /* Decode the line represented by S by calling decode_line_full. This is the
14472 default function for the `decode_location' method of breakpoint_ops. */
14473
14474 static void
14475 decode_location_default (struct breakpoint *b,
14476 const struct event_location *location,
14477 struct program_space *search_pspace,
14478 struct symtabs_and_lines *sals)
14479 {
14480 struct linespec_result canonical;
14481
14482 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14483 (struct symtab *) NULL, 0,
14484 &canonical, multiple_symbols_all,
14485 b->filter);
14486
14487 /* We should get 0 or 1 resulting SALs. */
14488 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14489
14490 if (VEC_length (linespec_sals, canonical.sals) > 0)
14491 {
14492 struct linespec_sals *lsal;
14493
14494 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14495 *sals = lsal->sals;
14496 /* Arrange it so the destructor does not free the
14497 contents. */
14498 lsal->sals.sals = NULL;
14499 }
14500 }
14501
14502 /* Prepare the global context for a re-set of breakpoint B. */
14503
14504 static struct cleanup *
14505 prepare_re_set_context (struct breakpoint *b)
14506 {
14507 input_radix = b->input_radix;
14508 set_language (b->language);
14509
14510 return make_cleanup (null_cleanup, NULL);
14511 }
14512
14513 /* Reset a breakpoint given it's struct breakpoint * BINT.
14514 The value we return ends up being the return value from catch_errors.
14515 Unused in this case. */
14516
14517 static int
14518 breakpoint_re_set_one (void *bint)
14519 {
14520 /* Get past catch_errs. */
14521 struct breakpoint *b = (struct breakpoint *) bint;
14522 struct cleanup *cleanups;
14523
14524 cleanups = prepare_re_set_context (b);
14525 b->ops->re_set (b);
14526 do_cleanups (cleanups);
14527 return 0;
14528 }
14529
14530 /* Re-set breakpoint locations for the current program space.
14531 Locations bound to other program spaces are left untouched. */
14532
14533 void
14534 breakpoint_re_set (void)
14535 {
14536 struct breakpoint *b, *b_tmp;
14537 enum language save_language;
14538 int save_input_radix;
14539 struct cleanup *old_chain;
14540
14541 save_language = current_language->la_language;
14542 save_input_radix = input_radix;
14543 old_chain = save_current_space_and_thread ();
14544
14545 /* Note: we must not try to insert locations until after all
14546 breakpoints have been re-set. Otherwise, e.g., when re-setting
14547 breakpoint 1, we'd insert the locations of breakpoint 2, which
14548 hadn't been re-set yet, and thus may have stale locations. */
14549
14550 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14551 {
14552 /* Format possible error msg. */
14553 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14554 b->number);
14555 struct cleanup *cleanups = make_cleanup (xfree, message);
14556 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14557 do_cleanups (cleanups);
14558 }
14559 set_language (save_language);
14560 input_radix = save_input_radix;
14561
14562 jit_breakpoint_re_set ();
14563
14564 do_cleanups (old_chain);
14565
14566 create_overlay_event_breakpoint ();
14567 create_longjmp_master_breakpoint ();
14568 create_std_terminate_master_breakpoint ();
14569 create_exception_master_breakpoint ();
14570
14571 /* Now we can insert. */
14572 update_global_location_list (UGLL_MAY_INSERT);
14573 }
14574 \f
14575 /* Reset the thread number of this breakpoint:
14576
14577 - If the breakpoint is for all threads, leave it as-is.
14578 - Else, reset it to the current thread for inferior_ptid. */
14579 void
14580 breakpoint_re_set_thread (struct breakpoint *b)
14581 {
14582 if (b->thread != -1)
14583 {
14584 if (in_thread_list (inferior_ptid))
14585 b->thread = ptid_to_global_thread_id (inferior_ptid);
14586
14587 /* We're being called after following a fork. The new fork is
14588 selected as current, and unless this was a vfork will have a
14589 different program space from the original thread. Reset that
14590 as well. */
14591 b->loc->pspace = current_program_space;
14592 }
14593 }
14594
14595 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14596 If from_tty is nonzero, it prints a message to that effect,
14597 which ends with a period (no newline). */
14598
14599 void
14600 set_ignore_count (int bptnum, int count, int from_tty)
14601 {
14602 struct breakpoint *b;
14603
14604 if (count < 0)
14605 count = 0;
14606
14607 ALL_BREAKPOINTS (b)
14608 if (b->number == bptnum)
14609 {
14610 if (is_tracepoint (b))
14611 {
14612 if (from_tty && count != 0)
14613 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14614 bptnum);
14615 return;
14616 }
14617
14618 b->ignore_count = count;
14619 if (from_tty)
14620 {
14621 if (count == 0)
14622 printf_filtered (_("Will stop next time "
14623 "breakpoint %d is reached."),
14624 bptnum);
14625 else if (count == 1)
14626 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14627 bptnum);
14628 else
14629 printf_filtered (_("Will ignore next %d "
14630 "crossings of breakpoint %d."),
14631 count, bptnum);
14632 }
14633 observer_notify_breakpoint_modified (b);
14634 return;
14635 }
14636
14637 error (_("No breakpoint number %d."), bptnum);
14638 }
14639
14640 /* Command to set ignore-count of breakpoint N to COUNT. */
14641
14642 static void
14643 ignore_command (char *args, int from_tty)
14644 {
14645 char *p = args;
14646 int num;
14647
14648 if (p == 0)
14649 error_no_arg (_("a breakpoint number"));
14650
14651 num = get_number (&p);
14652 if (num == 0)
14653 error (_("bad breakpoint number: '%s'"), args);
14654 if (*p == 0)
14655 error (_("Second argument (specified ignore-count) is missing."));
14656
14657 set_ignore_count (num,
14658 longest_to_int (value_as_long (parse_and_eval (p))),
14659 from_tty);
14660 if (from_tty)
14661 printf_filtered ("\n");
14662 }
14663 \f
14664 /* Call FUNCTION on each of the breakpoints
14665 whose numbers are given in ARGS. */
14666
14667 static void
14668 map_breakpoint_numbers (const char *args,
14669 void (*function) (struct breakpoint *,
14670 void *),
14671 void *data)
14672 {
14673 int num;
14674 struct breakpoint *b, *tmp;
14675
14676 if (args == 0 || *args == '\0')
14677 error_no_arg (_("one or more breakpoint numbers"));
14678
14679 number_or_range_parser parser (args);
14680
14681 while (!parser.finished ())
14682 {
14683 const char *p = parser.cur_tok ();
14684 bool match = false;
14685
14686 num = parser.get_number ();
14687 if (num == 0)
14688 {
14689 warning (_("bad breakpoint number at or near '%s'"), p);
14690 }
14691 else
14692 {
14693 ALL_BREAKPOINTS_SAFE (b, tmp)
14694 if (b->number == num)
14695 {
14696 match = true;
14697 function (b, data);
14698 break;
14699 }
14700 if (!match)
14701 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14702 }
14703 }
14704 }
14705
14706 static struct bp_location *
14707 find_location_by_number (char *number)
14708 {
14709 char *dot = strchr (number, '.');
14710 char *p1;
14711 int bp_num;
14712 int loc_num;
14713 struct breakpoint *b;
14714 struct bp_location *loc;
14715
14716 *dot = '\0';
14717
14718 p1 = number;
14719 bp_num = get_number (&p1);
14720 if (bp_num == 0)
14721 error (_("Bad breakpoint number '%s'"), number);
14722
14723 ALL_BREAKPOINTS (b)
14724 if (b->number == bp_num)
14725 {
14726 break;
14727 }
14728
14729 if (!b || b->number != bp_num)
14730 error (_("Bad breakpoint number '%s'"), number);
14731
14732 p1 = dot+1;
14733 loc_num = get_number (&p1);
14734 if (loc_num == 0)
14735 error (_("Bad breakpoint location number '%s'"), number);
14736
14737 --loc_num;
14738 loc = b->loc;
14739 for (;loc_num && loc; --loc_num, loc = loc->next)
14740 ;
14741 if (!loc)
14742 error (_("Bad breakpoint location number '%s'"), dot+1);
14743
14744 return loc;
14745 }
14746
14747
14748 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14749 If from_tty is nonzero, it prints a message to that effect,
14750 which ends with a period (no newline). */
14751
14752 void
14753 disable_breakpoint (struct breakpoint *bpt)
14754 {
14755 /* Never disable a watchpoint scope breakpoint; we want to
14756 hit them when we leave scope so we can delete both the
14757 watchpoint and its scope breakpoint at that time. */
14758 if (bpt->type == bp_watchpoint_scope)
14759 return;
14760
14761 bpt->enable_state = bp_disabled;
14762
14763 /* Mark breakpoint locations modified. */
14764 mark_breakpoint_modified (bpt);
14765
14766 if (target_supports_enable_disable_tracepoint ()
14767 && current_trace_status ()->running && is_tracepoint (bpt))
14768 {
14769 struct bp_location *location;
14770
14771 for (location = bpt->loc; location; location = location->next)
14772 target_disable_tracepoint (location);
14773 }
14774
14775 update_global_location_list (UGLL_DONT_INSERT);
14776
14777 observer_notify_breakpoint_modified (bpt);
14778 }
14779
14780 /* A callback for iterate_over_related_breakpoints. */
14781
14782 static void
14783 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14784 {
14785 disable_breakpoint (b);
14786 }
14787
14788 /* A callback for map_breakpoint_numbers that calls
14789 disable_breakpoint. */
14790
14791 static void
14792 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14793 {
14794 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14795 }
14796
14797 static void
14798 disable_command (char *args, int from_tty)
14799 {
14800 if (args == 0)
14801 {
14802 struct breakpoint *bpt;
14803
14804 ALL_BREAKPOINTS (bpt)
14805 if (user_breakpoint_p (bpt))
14806 disable_breakpoint (bpt);
14807 }
14808 else
14809 {
14810 char *num = extract_arg (&args);
14811
14812 while (num)
14813 {
14814 if (strchr (num, '.'))
14815 {
14816 struct bp_location *loc = find_location_by_number (num);
14817
14818 if (loc)
14819 {
14820 if (loc->enabled)
14821 {
14822 loc->enabled = 0;
14823 mark_breakpoint_location_modified (loc);
14824 }
14825 if (target_supports_enable_disable_tracepoint ()
14826 && current_trace_status ()->running && loc->owner
14827 && is_tracepoint (loc->owner))
14828 target_disable_tracepoint (loc);
14829 }
14830 update_global_location_list (UGLL_DONT_INSERT);
14831 }
14832 else
14833 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14834 num = extract_arg (&args);
14835 }
14836 }
14837 }
14838
14839 static void
14840 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14841 int count)
14842 {
14843 int target_resources_ok;
14844
14845 if (bpt->type == bp_hardware_breakpoint)
14846 {
14847 int i;
14848 i = hw_breakpoint_used_count ();
14849 target_resources_ok =
14850 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14851 i + 1, 0);
14852 if (target_resources_ok == 0)
14853 error (_("No hardware breakpoint support in the target."));
14854 else if (target_resources_ok < 0)
14855 error (_("Hardware breakpoints used exceeds limit."));
14856 }
14857
14858 if (is_watchpoint (bpt))
14859 {
14860 /* Initialize it just to avoid a GCC false warning. */
14861 enum enable_state orig_enable_state = bp_disabled;
14862
14863 TRY
14864 {
14865 struct watchpoint *w = (struct watchpoint *) bpt;
14866
14867 orig_enable_state = bpt->enable_state;
14868 bpt->enable_state = bp_enabled;
14869 update_watchpoint (w, 1 /* reparse */);
14870 }
14871 CATCH (e, RETURN_MASK_ALL)
14872 {
14873 bpt->enable_state = orig_enable_state;
14874 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14875 bpt->number);
14876 return;
14877 }
14878 END_CATCH
14879 }
14880
14881 bpt->enable_state = bp_enabled;
14882
14883 /* Mark breakpoint locations modified. */
14884 mark_breakpoint_modified (bpt);
14885
14886 if (target_supports_enable_disable_tracepoint ()
14887 && current_trace_status ()->running && is_tracepoint (bpt))
14888 {
14889 struct bp_location *location;
14890
14891 for (location = bpt->loc; location; location = location->next)
14892 target_enable_tracepoint (location);
14893 }
14894
14895 bpt->disposition = disposition;
14896 bpt->enable_count = count;
14897 update_global_location_list (UGLL_MAY_INSERT);
14898
14899 observer_notify_breakpoint_modified (bpt);
14900 }
14901
14902
14903 void
14904 enable_breakpoint (struct breakpoint *bpt)
14905 {
14906 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14907 }
14908
14909 static void
14910 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14911 {
14912 enable_breakpoint (bpt);
14913 }
14914
14915 /* A callback for map_breakpoint_numbers that calls
14916 enable_breakpoint. */
14917
14918 static void
14919 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14920 {
14921 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14922 }
14923
14924 /* The enable command enables the specified breakpoints (or all defined
14925 breakpoints) so they once again become (or continue to be) effective
14926 in stopping the inferior. */
14927
14928 static void
14929 enable_command (char *args, int from_tty)
14930 {
14931 if (args == 0)
14932 {
14933 struct breakpoint *bpt;
14934
14935 ALL_BREAKPOINTS (bpt)
14936 if (user_breakpoint_p (bpt))
14937 enable_breakpoint (bpt);
14938 }
14939 else
14940 {
14941 char *num = extract_arg (&args);
14942
14943 while (num)
14944 {
14945 if (strchr (num, '.'))
14946 {
14947 struct bp_location *loc = find_location_by_number (num);
14948
14949 if (loc)
14950 {
14951 if (!loc->enabled)
14952 {
14953 loc->enabled = 1;
14954 mark_breakpoint_location_modified (loc);
14955 }
14956 if (target_supports_enable_disable_tracepoint ()
14957 && current_trace_status ()->running && loc->owner
14958 && is_tracepoint (loc->owner))
14959 target_enable_tracepoint (loc);
14960 }
14961 update_global_location_list (UGLL_MAY_INSERT);
14962 }
14963 else
14964 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14965 num = extract_arg (&args);
14966 }
14967 }
14968 }
14969
14970 /* This struct packages up disposition data for application to multiple
14971 breakpoints. */
14972
14973 struct disp_data
14974 {
14975 enum bpdisp disp;
14976 int count;
14977 };
14978
14979 static void
14980 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14981 {
14982 struct disp_data disp_data = *(struct disp_data *) arg;
14983
14984 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14985 }
14986
14987 static void
14988 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14989 {
14990 struct disp_data disp = { disp_disable, 1 };
14991
14992 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14993 }
14994
14995 static void
14996 enable_once_command (char *args, int from_tty)
14997 {
14998 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14999 }
15000
15001 static void
15002 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
15003 {
15004 struct disp_data disp = { disp_disable, *(int *) countptr };
15005
15006 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15007 }
15008
15009 static void
15010 enable_count_command (char *args, int from_tty)
15011 {
15012 int count;
15013
15014 if (args == NULL)
15015 error_no_arg (_("hit count"));
15016
15017 count = get_number (&args);
15018
15019 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
15020 }
15021
15022 static void
15023 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
15024 {
15025 struct disp_data disp = { disp_del, 1 };
15026
15027 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
15028 }
15029
15030 static void
15031 enable_delete_command (char *args, int from_tty)
15032 {
15033 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
15034 }
15035 \f
15036 static void
15037 set_breakpoint_cmd (char *args, int from_tty)
15038 {
15039 }
15040
15041 static void
15042 show_breakpoint_cmd (char *args, int from_tty)
15043 {
15044 }
15045
15046 /* Invalidate last known value of any hardware watchpoint if
15047 the memory which that value represents has been written to by
15048 GDB itself. */
15049
15050 static void
15051 invalidate_bp_value_on_memory_change (struct inferior *inferior,
15052 CORE_ADDR addr, ssize_t len,
15053 const bfd_byte *data)
15054 {
15055 struct breakpoint *bp;
15056
15057 ALL_BREAKPOINTS (bp)
15058 if (bp->enable_state == bp_enabled
15059 && bp->type == bp_hardware_watchpoint)
15060 {
15061 struct watchpoint *wp = (struct watchpoint *) bp;
15062
15063 if (wp->val_valid && wp->val)
15064 {
15065 struct bp_location *loc;
15066
15067 for (loc = bp->loc; loc != NULL; loc = loc->next)
15068 if (loc->loc_type == bp_loc_hardware_watchpoint
15069 && loc->address + loc->length > addr
15070 && addr + len > loc->address)
15071 {
15072 value_free (wp->val);
15073 wp->val = NULL;
15074 wp->val_valid = 0;
15075 }
15076 }
15077 }
15078 }
15079
15080 /* Create and insert a breakpoint for software single step. */
15081
15082 void
15083 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15084 struct address_space *aspace,
15085 CORE_ADDR next_pc)
15086 {
15087 struct thread_info *tp = inferior_thread ();
15088 struct symtab_and_line sal;
15089 CORE_ADDR pc = next_pc;
15090
15091 if (tp->control.single_step_breakpoints == NULL)
15092 {
15093 tp->control.single_step_breakpoints
15094 = new_single_step_breakpoint (tp->global_num, gdbarch);
15095 }
15096
15097 sal = find_pc_line (pc, 0);
15098 sal.pc = pc;
15099 sal.section = find_pc_overlay (pc);
15100 sal.explicit_pc = 1;
15101 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
15102
15103 update_global_location_list (UGLL_INSERT);
15104 }
15105
15106 /* Insert single step breakpoints according to the current state. */
15107
15108 int
15109 insert_single_step_breakpoints (struct gdbarch *gdbarch)
15110 {
15111 struct regcache *regcache = get_current_regcache ();
15112 VEC (CORE_ADDR) * next_pcs;
15113
15114 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
15115
15116 if (next_pcs != NULL)
15117 {
15118 int i;
15119 CORE_ADDR pc;
15120 struct frame_info *frame = get_current_frame ();
15121 struct address_space *aspace = get_frame_address_space (frame);
15122
15123 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
15124 insert_single_step_breakpoint (gdbarch, aspace, pc);
15125
15126 VEC_free (CORE_ADDR, next_pcs);
15127
15128 return 1;
15129 }
15130 else
15131 return 0;
15132 }
15133
15134 /* See breakpoint.h. */
15135
15136 int
15137 breakpoint_has_location_inserted_here (struct breakpoint *bp,
15138 struct address_space *aspace,
15139 CORE_ADDR pc)
15140 {
15141 struct bp_location *loc;
15142
15143 for (loc = bp->loc; loc != NULL; loc = loc->next)
15144 if (loc->inserted
15145 && breakpoint_location_address_match (loc, aspace, pc))
15146 return 1;
15147
15148 return 0;
15149 }
15150
15151 /* Check whether a software single-step breakpoint is inserted at
15152 PC. */
15153
15154 int
15155 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15156 CORE_ADDR pc)
15157 {
15158 struct breakpoint *bpt;
15159
15160 ALL_BREAKPOINTS (bpt)
15161 {
15162 if (bpt->type == bp_single_step
15163 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
15164 return 1;
15165 }
15166 return 0;
15167 }
15168
15169 /* Tracepoint-specific operations. */
15170
15171 /* Set tracepoint count to NUM. */
15172 static void
15173 set_tracepoint_count (int num)
15174 {
15175 tracepoint_count = num;
15176 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15177 }
15178
15179 static void
15180 trace_command (char *arg, int from_tty)
15181 {
15182 struct breakpoint_ops *ops;
15183
15184 event_location_up location = string_to_event_location (&arg,
15185 current_language);
15186 if (location != NULL
15187 && event_location_type (location.get ()) == PROBE_LOCATION)
15188 ops = &tracepoint_probe_breakpoint_ops;
15189 else
15190 ops = &tracepoint_breakpoint_ops;
15191
15192 create_breakpoint (get_current_arch (),
15193 location.get (),
15194 NULL, 0, arg, 1 /* parse arg */,
15195 0 /* tempflag */,
15196 bp_tracepoint /* type_wanted */,
15197 0 /* Ignore count */,
15198 pending_break_support,
15199 ops,
15200 from_tty,
15201 1 /* enabled */,
15202 0 /* internal */, 0);
15203 }
15204
15205 static void
15206 ftrace_command (char *arg, int from_tty)
15207 {
15208 event_location_up location = string_to_event_location (&arg,
15209 current_language);
15210 create_breakpoint (get_current_arch (),
15211 location.get (),
15212 NULL, 0, arg, 1 /* parse arg */,
15213 0 /* tempflag */,
15214 bp_fast_tracepoint /* type_wanted */,
15215 0 /* Ignore count */,
15216 pending_break_support,
15217 &tracepoint_breakpoint_ops,
15218 from_tty,
15219 1 /* enabled */,
15220 0 /* internal */, 0);
15221 }
15222
15223 /* strace command implementation. Creates a static tracepoint. */
15224
15225 static void
15226 strace_command (char *arg, int from_tty)
15227 {
15228 struct breakpoint_ops *ops;
15229 event_location_up location;
15230 struct cleanup *back_to;
15231
15232 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15233 or with a normal static tracepoint. */
15234 if (arg && startswith (arg, "-m") && isspace (arg[2]))
15235 {
15236 ops = &strace_marker_breakpoint_ops;
15237 location = new_linespec_location (&arg);
15238 }
15239 else
15240 {
15241 ops = &tracepoint_breakpoint_ops;
15242 location = string_to_event_location (&arg, current_language);
15243 }
15244
15245 create_breakpoint (get_current_arch (),
15246 location.get (),
15247 NULL, 0, arg, 1 /* parse arg */,
15248 0 /* tempflag */,
15249 bp_static_tracepoint /* type_wanted */,
15250 0 /* Ignore count */,
15251 pending_break_support,
15252 ops,
15253 from_tty,
15254 1 /* enabled */,
15255 0 /* internal */, 0);
15256 }
15257
15258 /* Set up a fake reader function that gets command lines from a linked
15259 list that was acquired during tracepoint uploading. */
15260
15261 static struct uploaded_tp *this_utp;
15262 static int next_cmd;
15263
15264 static char *
15265 read_uploaded_action (void)
15266 {
15267 char *rslt;
15268
15269 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15270
15271 next_cmd++;
15272
15273 return rslt;
15274 }
15275
15276 /* Given information about a tracepoint as recorded on a target (which
15277 can be either a live system or a trace file), attempt to create an
15278 equivalent GDB tracepoint. This is not a reliable process, since
15279 the target does not necessarily have all the information used when
15280 the tracepoint was originally defined. */
15281
15282 struct tracepoint *
15283 create_tracepoint_from_upload (struct uploaded_tp *utp)
15284 {
15285 char *addr_str, small_buf[100];
15286 struct tracepoint *tp;
15287
15288 if (utp->at_string)
15289 addr_str = utp->at_string;
15290 else
15291 {
15292 /* In the absence of a source location, fall back to raw
15293 address. Since there is no way to confirm that the address
15294 means the same thing as when the trace was started, warn the
15295 user. */
15296 warning (_("Uploaded tracepoint %d has no "
15297 "source location, using raw address"),
15298 utp->number);
15299 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15300 addr_str = small_buf;
15301 }
15302
15303 /* There's not much we can do with a sequence of bytecodes. */
15304 if (utp->cond && !utp->cond_string)
15305 warning (_("Uploaded tracepoint %d condition "
15306 "has no source form, ignoring it"),
15307 utp->number);
15308
15309 event_location_up location = string_to_event_location (&addr_str,
15310 current_language);
15311 if (!create_breakpoint (get_current_arch (),
15312 location.get (),
15313 utp->cond_string, -1, addr_str,
15314 0 /* parse cond/thread */,
15315 0 /* tempflag */,
15316 utp->type /* type_wanted */,
15317 0 /* Ignore count */,
15318 pending_break_support,
15319 &tracepoint_breakpoint_ops,
15320 0 /* from_tty */,
15321 utp->enabled /* enabled */,
15322 0 /* internal */,
15323 CREATE_BREAKPOINT_FLAGS_INSERTED))
15324 return NULL;
15325
15326 /* Get the tracepoint we just created. */
15327 tp = get_tracepoint (tracepoint_count);
15328 gdb_assert (tp != NULL);
15329
15330 if (utp->pass > 0)
15331 {
15332 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15333 tp->base.number);
15334
15335 trace_pass_command (small_buf, 0);
15336 }
15337
15338 /* If we have uploaded versions of the original commands, set up a
15339 special-purpose "reader" function and call the usual command line
15340 reader, then pass the result to the breakpoint command-setting
15341 function. */
15342 if (!VEC_empty (char_ptr, utp->cmd_strings))
15343 {
15344 command_line_up cmd_list;
15345
15346 this_utp = utp;
15347 next_cmd = 0;
15348
15349 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15350
15351 breakpoint_set_commands (&tp->base, std::move (cmd_list));
15352 }
15353 else if (!VEC_empty (char_ptr, utp->actions)
15354 || !VEC_empty (char_ptr, utp->step_actions))
15355 warning (_("Uploaded tracepoint %d actions "
15356 "have no source form, ignoring them"),
15357 utp->number);
15358
15359 /* Copy any status information that might be available. */
15360 tp->base.hit_count = utp->hit_count;
15361 tp->traceframe_usage = utp->traceframe_usage;
15362
15363 return tp;
15364 }
15365
15366 /* Print information on tracepoint number TPNUM_EXP, or all if
15367 omitted. */
15368
15369 static void
15370 tracepoints_info (char *args, int from_tty)
15371 {
15372 struct ui_out *uiout = current_uiout;
15373 int num_printed;
15374
15375 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15376
15377 if (num_printed == 0)
15378 {
15379 if (args == NULL || *args == '\0')
15380 uiout->message ("No tracepoints.\n");
15381 else
15382 uiout->message ("No tracepoint matching '%s'.\n", args);
15383 }
15384
15385 default_collect_info ();
15386 }
15387
15388 /* The 'enable trace' command enables tracepoints.
15389 Not supported by all targets. */
15390 static void
15391 enable_trace_command (char *args, int from_tty)
15392 {
15393 enable_command (args, from_tty);
15394 }
15395
15396 /* The 'disable trace' command disables tracepoints.
15397 Not supported by all targets. */
15398 static void
15399 disable_trace_command (char *args, int from_tty)
15400 {
15401 disable_command (args, from_tty);
15402 }
15403
15404 /* Remove a tracepoint (or all if no argument). */
15405 static void
15406 delete_trace_command (char *arg, int from_tty)
15407 {
15408 struct breakpoint *b, *b_tmp;
15409
15410 dont_repeat ();
15411
15412 if (arg == 0)
15413 {
15414 int breaks_to_delete = 0;
15415
15416 /* Delete all breakpoints if no argument.
15417 Do not delete internal or call-dummy breakpoints, these
15418 have to be deleted with an explicit breakpoint number
15419 argument. */
15420 ALL_TRACEPOINTS (b)
15421 if (is_tracepoint (b) && user_breakpoint_p (b))
15422 {
15423 breaks_to_delete = 1;
15424 break;
15425 }
15426
15427 /* Ask user only if there are some breakpoints to delete. */
15428 if (!from_tty
15429 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15430 {
15431 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15432 if (is_tracepoint (b) && user_breakpoint_p (b))
15433 delete_breakpoint (b);
15434 }
15435 }
15436 else
15437 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15438 }
15439
15440 /* Helper function for trace_pass_command. */
15441
15442 static void
15443 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15444 {
15445 tp->pass_count = count;
15446 observer_notify_breakpoint_modified (&tp->base);
15447 if (from_tty)
15448 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15449 tp->base.number, count);
15450 }
15451
15452 /* Set passcount for tracepoint.
15453
15454 First command argument is passcount, second is tracepoint number.
15455 If tracepoint number omitted, apply to most recently defined.
15456 Also accepts special argument "all". */
15457
15458 static void
15459 trace_pass_command (char *args, int from_tty)
15460 {
15461 struct tracepoint *t1;
15462 unsigned int count;
15463
15464 if (args == 0 || *args == 0)
15465 error (_("passcount command requires an "
15466 "argument (count + optional TP num)"));
15467
15468 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15469
15470 args = skip_spaces (args);
15471 if (*args && strncasecmp (args, "all", 3) == 0)
15472 {
15473 struct breakpoint *b;
15474
15475 args += 3; /* Skip special argument "all". */
15476 if (*args)
15477 error (_("Junk at end of arguments."));
15478
15479 ALL_TRACEPOINTS (b)
15480 {
15481 t1 = (struct tracepoint *) b;
15482 trace_pass_set_count (t1, count, from_tty);
15483 }
15484 }
15485 else if (*args == '\0')
15486 {
15487 t1 = get_tracepoint_by_number (&args, NULL);
15488 if (t1)
15489 trace_pass_set_count (t1, count, from_tty);
15490 }
15491 else
15492 {
15493 number_or_range_parser parser (args);
15494 while (!parser.finished ())
15495 {
15496 t1 = get_tracepoint_by_number (&args, &parser);
15497 if (t1)
15498 trace_pass_set_count (t1, count, from_tty);
15499 }
15500 }
15501 }
15502
15503 struct tracepoint *
15504 get_tracepoint (int num)
15505 {
15506 struct breakpoint *t;
15507
15508 ALL_TRACEPOINTS (t)
15509 if (t->number == num)
15510 return (struct tracepoint *) t;
15511
15512 return NULL;
15513 }
15514
15515 /* Find the tracepoint with the given target-side number (which may be
15516 different from the tracepoint number after disconnecting and
15517 reconnecting). */
15518
15519 struct tracepoint *
15520 get_tracepoint_by_number_on_target (int num)
15521 {
15522 struct breakpoint *b;
15523
15524 ALL_TRACEPOINTS (b)
15525 {
15526 struct tracepoint *t = (struct tracepoint *) b;
15527
15528 if (t->number_on_target == num)
15529 return t;
15530 }
15531
15532 return NULL;
15533 }
15534
15535 /* Utility: parse a tracepoint number and look it up in the list.
15536 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15537 If the argument is missing, the most recent tracepoint
15538 (tracepoint_count) is returned. */
15539
15540 struct tracepoint *
15541 get_tracepoint_by_number (char **arg,
15542 number_or_range_parser *parser)
15543 {
15544 struct breakpoint *t;
15545 int tpnum;
15546 char *instring = arg == NULL ? NULL : *arg;
15547
15548 if (parser != NULL)
15549 {
15550 gdb_assert (!parser->finished ());
15551 tpnum = parser->get_number ();
15552 }
15553 else if (arg == NULL || *arg == NULL || ! **arg)
15554 tpnum = tracepoint_count;
15555 else
15556 tpnum = get_number (arg);
15557
15558 if (tpnum <= 0)
15559 {
15560 if (instring && *instring)
15561 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15562 instring);
15563 else
15564 printf_filtered (_("No previous tracepoint\n"));
15565 return NULL;
15566 }
15567
15568 ALL_TRACEPOINTS (t)
15569 if (t->number == tpnum)
15570 {
15571 return (struct tracepoint *) t;
15572 }
15573
15574 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15575 return NULL;
15576 }
15577
15578 void
15579 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15580 {
15581 if (b->thread != -1)
15582 fprintf_unfiltered (fp, " thread %d", b->thread);
15583
15584 if (b->task != 0)
15585 fprintf_unfiltered (fp, " task %d", b->task);
15586
15587 fprintf_unfiltered (fp, "\n");
15588 }
15589
15590 /* Save information on user settable breakpoints (watchpoints, etc) to
15591 a new script file named FILENAME. If FILTER is non-NULL, call it
15592 on each breakpoint and only include the ones for which it returns
15593 non-zero. */
15594
15595 static void
15596 save_breakpoints (char *filename, int from_tty,
15597 int (*filter) (const struct breakpoint *))
15598 {
15599 struct breakpoint *tp;
15600 int any = 0;
15601 struct cleanup *cleanup;
15602 int extra_trace_bits = 0;
15603
15604 if (filename == 0 || *filename == 0)
15605 error (_("Argument required (file name in which to save)"));
15606
15607 /* See if we have anything to save. */
15608 ALL_BREAKPOINTS (tp)
15609 {
15610 /* Skip internal and momentary breakpoints. */
15611 if (!user_breakpoint_p (tp))
15612 continue;
15613
15614 /* If we have a filter, only save the breakpoints it accepts. */
15615 if (filter && !filter (tp))
15616 continue;
15617
15618 any = 1;
15619
15620 if (is_tracepoint (tp))
15621 {
15622 extra_trace_bits = 1;
15623
15624 /* We can stop searching. */
15625 break;
15626 }
15627 }
15628
15629 if (!any)
15630 {
15631 warning (_("Nothing to save."));
15632 return;
15633 }
15634
15635 filename = tilde_expand (filename);
15636 cleanup = make_cleanup (xfree, filename);
15637
15638 stdio_file fp;
15639
15640 if (!fp.open (filename, "w"))
15641 error (_("Unable to open file '%s' for saving (%s)"),
15642 filename, safe_strerror (errno));
15643
15644 if (extra_trace_bits)
15645 save_trace_state_variables (&fp);
15646
15647 ALL_BREAKPOINTS (tp)
15648 {
15649 /* Skip internal and momentary breakpoints. */
15650 if (!user_breakpoint_p (tp))
15651 continue;
15652
15653 /* If we have a filter, only save the breakpoints it accepts. */
15654 if (filter && !filter (tp))
15655 continue;
15656
15657 tp->ops->print_recreate (tp, &fp);
15658
15659 /* Note, we can't rely on tp->number for anything, as we can't
15660 assume the recreated breakpoint numbers will match. Use $bpnum
15661 instead. */
15662
15663 if (tp->cond_string)
15664 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15665
15666 if (tp->ignore_count)
15667 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15668
15669 if (tp->type != bp_dprintf && tp->commands)
15670 {
15671 fp.puts (" commands\n");
15672
15673 current_uiout->redirect (&fp);
15674 TRY
15675 {
15676 print_command_lines (current_uiout, tp->commands->commands, 2);
15677 }
15678 CATCH (ex, RETURN_MASK_ALL)
15679 {
15680 current_uiout->redirect (NULL);
15681 throw_exception (ex);
15682 }
15683 END_CATCH
15684
15685 current_uiout->redirect (NULL);
15686 fp.puts (" end\n");
15687 }
15688
15689 if (tp->enable_state == bp_disabled)
15690 fp.puts ("disable $bpnum\n");
15691
15692 /* If this is a multi-location breakpoint, check if the locations
15693 should be individually disabled. Watchpoint locations are
15694 special, and not user visible. */
15695 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15696 {
15697 struct bp_location *loc;
15698 int n = 1;
15699
15700 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15701 if (!loc->enabled)
15702 fp.printf ("disable $bpnum.%d\n", n);
15703 }
15704 }
15705
15706 if (extra_trace_bits && *default_collect)
15707 fp.printf ("set default-collect %s\n", default_collect);
15708
15709 if (from_tty)
15710 printf_filtered (_("Saved to file '%s'.\n"), filename);
15711 do_cleanups (cleanup);
15712 }
15713
15714 /* The `save breakpoints' command. */
15715
15716 static void
15717 save_breakpoints_command (char *args, int from_tty)
15718 {
15719 save_breakpoints (args, from_tty, NULL);
15720 }
15721
15722 /* The `save tracepoints' command. */
15723
15724 static void
15725 save_tracepoints_command (char *args, int from_tty)
15726 {
15727 save_breakpoints (args, from_tty, is_tracepoint);
15728 }
15729
15730 /* Create a vector of all tracepoints. */
15731
15732 VEC(breakpoint_p) *
15733 all_tracepoints (void)
15734 {
15735 VEC(breakpoint_p) *tp_vec = 0;
15736 struct breakpoint *tp;
15737
15738 ALL_TRACEPOINTS (tp)
15739 {
15740 VEC_safe_push (breakpoint_p, tp_vec, tp);
15741 }
15742
15743 return tp_vec;
15744 }
15745
15746 \f
15747 /* This help string is used to consolidate all the help string for specifying
15748 locations used by several commands. */
15749
15750 #define LOCATION_HELP_STRING \
15751 "Linespecs are colon-separated lists of location parameters, such as\n\
15752 source filename, function name, label name, and line number.\n\
15753 Example: To specify the start of a label named \"the_top\" in the\n\
15754 function \"fact\" in the file \"factorial.c\", use\n\
15755 \"factorial.c:fact:the_top\".\n\
15756 \n\
15757 Address locations begin with \"*\" and specify an exact address in the\n\
15758 program. Example: To specify the fourth byte past the start function\n\
15759 \"main\", use \"*main + 4\".\n\
15760 \n\
15761 Explicit locations are similar to linespecs but use an option/argument\n\
15762 syntax to specify location parameters.\n\
15763 Example: To specify the start of the label named \"the_top\" in the\n\
15764 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15765 -function fact -label the_top\".\n"
15766
15767 /* This help string is used for the break, hbreak, tbreak and thbreak
15768 commands. It is defined as a macro to prevent duplication.
15769 COMMAND should be a string constant containing the name of the
15770 command. */
15771
15772 #define BREAK_ARGS_HELP(command) \
15773 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15774 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15775 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15776 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15777 `-probe-dtrace' (for a DTrace probe).\n\
15778 LOCATION may be a linespec, address, or explicit location as described\n\
15779 below.\n\
15780 \n\
15781 With no LOCATION, uses current execution address of the selected\n\
15782 stack frame. This is useful for breaking on return to a stack frame.\n\
15783 \n\
15784 THREADNUM is the number from \"info threads\".\n\
15785 CONDITION is a boolean expression.\n\
15786 \n" LOCATION_HELP_STRING "\n\
15787 Multiple breakpoints at one place are permitted, and useful if their\n\
15788 conditions are different.\n\
15789 \n\
15790 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15791
15792 /* List of subcommands for "catch". */
15793 static struct cmd_list_element *catch_cmdlist;
15794
15795 /* List of subcommands for "tcatch". */
15796 static struct cmd_list_element *tcatch_cmdlist;
15797
15798 void
15799 add_catch_command (const char *name, const char *docstring,
15800 cmd_sfunc_ftype *sfunc,
15801 completer_ftype *completer,
15802 void *user_data_catch,
15803 void *user_data_tcatch)
15804 {
15805 struct cmd_list_element *command;
15806
15807 command = add_cmd (name, class_breakpoint, NULL, docstring,
15808 &catch_cmdlist);
15809 set_cmd_sfunc (command, sfunc);
15810 set_cmd_context (command, user_data_catch);
15811 set_cmd_completer (command, completer);
15812
15813 command = add_cmd (name, class_breakpoint, NULL, docstring,
15814 &tcatch_cmdlist);
15815 set_cmd_sfunc (command, sfunc);
15816 set_cmd_context (command, user_data_tcatch);
15817 set_cmd_completer (command, completer);
15818 }
15819
15820 static void
15821 save_command (char *arg, int from_tty)
15822 {
15823 printf_unfiltered (_("\"save\" must be followed by "
15824 "the name of a save subcommand.\n"));
15825 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15826 }
15827
15828 struct breakpoint *
15829 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15830 void *data)
15831 {
15832 struct breakpoint *b, *b_tmp;
15833
15834 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15835 {
15836 if ((*callback) (b, data))
15837 return b;
15838 }
15839
15840 return NULL;
15841 }
15842
15843 /* Zero if any of the breakpoint's locations could be a location where
15844 functions have been inlined, nonzero otherwise. */
15845
15846 static int
15847 is_non_inline_function (struct breakpoint *b)
15848 {
15849 /* The shared library event breakpoint is set on the address of a
15850 non-inline function. */
15851 if (b->type == bp_shlib_event)
15852 return 1;
15853
15854 return 0;
15855 }
15856
15857 /* Nonzero if the specified PC cannot be a location where functions
15858 have been inlined. */
15859
15860 int
15861 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15862 const struct target_waitstatus *ws)
15863 {
15864 struct breakpoint *b;
15865 struct bp_location *bl;
15866
15867 ALL_BREAKPOINTS (b)
15868 {
15869 if (!is_non_inline_function (b))
15870 continue;
15871
15872 for (bl = b->loc; bl != NULL; bl = bl->next)
15873 {
15874 if (!bl->shlib_disabled
15875 && bpstat_check_location (bl, aspace, pc, ws))
15876 return 1;
15877 }
15878 }
15879
15880 return 0;
15881 }
15882
15883 /* Remove any references to OBJFILE which is going to be freed. */
15884
15885 void
15886 breakpoint_free_objfile (struct objfile *objfile)
15887 {
15888 struct bp_location **locp, *loc;
15889
15890 ALL_BP_LOCATIONS (loc, locp)
15891 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15892 loc->symtab = NULL;
15893 }
15894
15895 void
15896 initialize_breakpoint_ops (void)
15897 {
15898 static int initialized = 0;
15899
15900 struct breakpoint_ops *ops;
15901
15902 if (initialized)
15903 return;
15904 initialized = 1;
15905
15906 /* The breakpoint_ops structure to be inherit by all kinds of
15907 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15908 internal and momentary breakpoints, etc.). */
15909 ops = &bkpt_base_breakpoint_ops;
15910 *ops = base_breakpoint_ops;
15911 ops->re_set = bkpt_re_set;
15912 ops->insert_location = bkpt_insert_location;
15913 ops->remove_location = bkpt_remove_location;
15914 ops->breakpoint_hit = bkpt_breakpoint_hit;
15915 ops->create_sals_from_location = bkpt_create_sals_from_location;
15916 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15917 ops->decode_location = bkpt_decode_location;
15918
15919 /* The breakpoint_ops structure to be used in regular breakpoints. */
15920 ops = &bkpt_breakpoint_ops;
15921 *ops = bkpt_base_breakpoint_ops;
15922 ops->re_set = bkpt_re_set;
15923 ops->resources_needed = bkpt_resources_needed;
15924 ops->print_it = bkpt_print_it;
15925 ops->print_mention = bkpt_print_mention;
15926 ops->print_recreate = bkpt_print_recreate;
15927
15928 /* Ranged breakpoints. */
15929 ops = &ranged_breakpoint_ops;
15930 *ops = bkpt_breakpoint_ops;
15931 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15932 ops->resources_needed = resources_needed_ranged_breakpoint;
15933 ops->print_it = print_it_ranged_breakpoint;
15934 ops->print_one = print_one_ranged_breakpoint;
15935 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15936 ops->print_mention = print_mention_ranged_breakpoint;
15937 ops->print_recreate = print_recreate_ranged_breakpoint;
15938
15939 /* Internal breakpoints. */
15940 ops = &internal_breakpoint_ops;
15941 *ops = bkpt_base_breakpoint_ops;
15942 ops->re_set = internal_bkpt_re_set;
15943 ops->check_status = internal_bkpt_check_status;
15944 ops->print_it = internal_bkpt_print_it;
15945 ops->print_mention = internal_bkpt_print_mention;
15946
15947 /* Momentary breakpoints. */
15948 ops = &momentary_breakpoint_ops;
15949 *ops = bkpt_base_breakpoint_ops;
15950 ops->re_set = momentary_bkpt_re_set;
15951 ops->check_status = momentary_bkpt_check_status;
15952 ops->print_it = momentary_bkpt_print_it;
15953 ops->print_mention = momentary_bkpt_print_mention;
15954
15955 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15956 ops = &longjmp_breakpoint_ops;
15957 *ops = momentary_breakpoint_ops;
15958 ops->dtor = longjmp_bkpt_dtor;
15959
15960 /* Probe breakpoints. */
15961 ops = &bkpt_probe_breakpoint_ops;
15962 *ops = bkpt_breakpoint_ops;
15963 ops->insert_location = bkpt_probe_insert_location;
15964 ops->remove_location = bkpt_probe_remove_location;
15965 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15966 ops->decode_location = bkpt_probe_decode_location;
15967
15968 /* Watchpoints. */
15969 ops = &watchpoint_breakpoint_ops;
15970 *ops = base_breakpoint_ops;
15971 ops->dtor = dtor_watchpoint;
15972 ops->re_set = re_set_watchpoint;
15973 ops->insert_location = insert_watchpoint;
15974 ops->remove_location = remove_watchpoint;
15975 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15976 ops->check_status = check_status_watchpoint;
15977 ops->resources_needed = resources_needed_watchpoint;
15978 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15979 ops->print_it = print_it_watchpoint;
15980 ops->print_mention = print_mention_watchpoint;
15981 ops->print_recreate = print_recreate_watchpoint;
15982 ops->explains_signal = explains_signal_watchpoint;
15983
15984 /* Masked watchpoints. */
15985 ops = &masked_watchpoint_breakpoint_ops;
15986 *ops = watchpoint_breakpoint_ops;
15987 ops->insert_location = insert_masked_watchpoint;
15988 ops->remove_location = remove_masked_watchpoint;
15989 ops->resources_needed = resources_needed_masked_watchpoint;
15990 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15991 ops->print_it = print_it_masked_watchpoint;
15992 ops->print_one_detail = print_one_detail_masked_watchpoint;
15993 ops->print_mention = print_mention_masked_watchpoint;
15994 ops->print_recreate = print_recreate_masked_watchpoint;
15995
15996 /* Tracepoints. */
15997 ops = &tracepoint_breakpoint_ops;
15998 *ops = base_breakpoint_ops;
15999 ops->re_set = tracepoint_re_set;
16000 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16001 ops->print_one_detail = tracepoint_print_one_detail;
16002 ops->print_mention = tracepoint_print_mention;
16003 ops->print_recreate = tracepoint_print_recreate;
16004 ops->create_sals_from_location = tracepoint_create_sals_from_location;
16005 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16006 ops->decode_location = tracepoint_decode_location;
16007
16008 /* Probe tracepoints. */
16009 ops = &tracepoint_probe_breakpoint_ops;
16010 *ops = tracepoint_breakpoint_ops;
16011 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
16012 ops->decode_location = tracepoint_probe_decode_location;
16013
16014 /* Static tracepoints with marker (`-m'). */
16015 ops = &strace_marker_breakpoint_ops;
16016 *ops = tracepoint_breakpoint_ops;
16017 ops->create_sals_from_location = strace_marker_create_sals_from_location;
16018 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16019 ops->decode_location = strace_marker_decode_location;
16020
16021 /* Fork catchpoints. */
16022 ops = &catch_fork_breakpoint_ops;
16023 *ops = base_breakpoint_ops;
16024 ops->insert_location = insert_catch_fork;
16025 ops->remove_location = remove_catch_fork;
16026 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16027 ops->print_it = print_it_catch_fork;
16028 ops->print_one = print_one_catch_fork;
16029 ops->print_mention = print_mention_catch_fork;
16030 ops->print_recreate = print_recreate_catch_fork;
16031
16032 /* Vfork catchpoints. */
16033 ops = &catch_vfork_breakpoint_ops;
16034 *ops = base_breakpoint_ops;
16035 ops->insert_location = insert_catch_vfork;
16036 ops->remove_location = remove_catch_vfork;
16037 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16038 ops->print_it = print_it_catch_vfork;
16039 ops->print_one = print_one_catch_vfork;
16040 ops->print_mention = print_mention_catch_vfork;
16041 ops->print_recreate = print_recreate_catch_vfork;
16042
16043 /* Exec catchpoints. */
16044 ops = &catch_exec_breakpoint_ops;
16045 *ops = base_breakpoint_ops;
16046 ops->dtor = dtor_catch_exec;
16047 ops->insert_location = insert_catch_exec;
16048 ops->remove_location = remove_catch_exec;
16049 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16050 ops->print_it = print_it_catch_exec;
16051 ops->print_one = print_one_catch_exec;
16052 ops->print_mention = print_mention_catch_exec;
16053 ops->print_recreate = print_recreate_catch_exec;
16054
16055 /* Solib-related catchpoints. */
16056 ops = &catch_solib_breakpoint_ops;
16057 *ops = base_breakpoint_ops;
16058 ops->dtor = dtor_catch_solib;
16059 ops->insert_location = insert_catch_solib;
16060 ops->remove_location = remove_catch_solib;
16061 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16062 ops->check_status = check_status_catch_solib;
16063 ops->print_it = print_it_catch_solib;
16064 ops->print_one = print_one_catch_solib;
16065 ops->print_mention = print_mention_catch_solib;
16066 ops->print_recreate = print_recreate_catch_solib;
16067
16068 ops = &dprintf_breakpoint_ops;
16069 *ops = bkpt_base_breakpoint_ops;
16070 ops->re_set = dprintf_re_set;
16071 ops->resources_needed = bkpt_resources_needed;
16072 ops->print_it = bkpt_print_it;
16073 ops->print_mention = bkpt_print_mention;
16074 ops->print_recreate = dprintf_print_recreate;
16075 ops->after_condition_true = dprintf_after_condition_true;
16076 ops->breakpoint_hit = dprintf_breakpoint_hit;
16077 }
16078
16079 /* Chain containing all defined "enable breakpoint" subcommands. */
16080
16081 static struct cmd_list_element *enablebreaklist = NULL;
16082
16083 void
16084 _initialize_breakpoint (void)
16085 {
16086 struct cmd_list_element *c;
16087
16088 initialize_breakpoint_ops ();
16089
16090 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16091 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16092 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16093
16094 breakpoint_objfile_key
16095 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16096
16097 breakpoint_chain = 0;
16098 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16099 before a breakpoint is set. */
16100 breakpoint_count = 0;
16101
16102 tracepoint_count = 0;
16103
16104 add_com ("ignore", class_breakpoint, ignore_command, _("\
16105 Set ignore-count of breakpoint number N to COUNT.\n\
16106 Usage is `ignore N COUNT'."));
16107
16108 add_com ("commands", class_breakpoint, commands_command, _("\
16109 Set commands to be executed when the given breakpoints are hit.\n\
16110 Give a space-separated breakpoint list as argument after \"commands\".\n\
16111 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
16112 (e.g. `5-7').\n\
16113 With no argument, the targeted breakpoint is the last one set.\n\
16114 The commands themselves follow starting on the next line.\n\
16115 Type a line containing \"end\" to indicate the end of them.\n\
16116 Give \"silent\" as the first line to make the breakpoint silent;\n\
16117 then no output is printed when it is hit, except what the commands print."));
16118
16119 c = add_com ("condition", class_breakpoint, condition_command, _("\
16120 Specify breakpoint number N to break only if COND is true.\n\
16121 Usage is `condition N COND', where N is an integer and COND is an\n\
16122 expression to be evaluated whenever breakpoint N is reached."));
16123 set_cmd_completer (c, condition_completer);
16124
16125 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16126 Set a temporary breakpoint.\n\
16127 Like \"break\" except the breakpoint is only temporary,\n\
16128 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16129 by using \"enable delete\" on the breakpoint number.\n\
16130 \n"
16131 BREAK_ARGS_HELP ("tbreak")));
16132 set_cmd_completer (c, location_completer);
16133
16134 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16135 Set a hardware assisted breakpoint.\n\
16136 Like \"break\" except the breakpoint requires hardware support,\n\
16137 some target hardware may not have this support.\n\
16138 \n"
16139 BREAK_ARGS_HELP ("hbreak")));
16140 set_cmd_completer (c, location_completer);
16141
16142 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16143 Set a temporary hardware assisted breakpoint.\n\
16144 Like \"hbreak\" except the breakpoint is only temporary,\n\
16145 so it will be deleted when hit.\n\
16146 \n"
16147 BREAK_ARGS_HELP ("thbreak")));
16148 set_cmd_completer (c, location_completer);
16149
16150 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16151 Enable some breakpoints.\n\
16152 Give breakpoint numbers (separated by spaces) as arguments.\n\
16153 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16154 This is used to cancel the effect of the \"disable\" command.\n\
16155 With a subcommand you can enable temporarily."),
16156 &enablelist, "enable ", 1, &cmdlist);
16157
16158 add_com_alias ("en", "enable", class_breakpoint, 1);
16159
16160 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16161 Enable some breakpoints.\n\
16162 Give breakpoint numbers (separated by spaces) as arguments.\n\
16163 This is used to cancel the effect of the \"disable\" command.\n\
16164 May be abbreviated to simply \"enable\".\n"),
16165 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16166
16167 add_cmd ("once", no_class, enable_once_command, _("\
16168 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16169 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16170 &enablebreaklist);
16171
16172 add_cmd ("delete", no_class, enable_delete_command, _("\
16173 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16174 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16175 &enablebreaklist);
16176
16177 add_cmd ("count", no_class, enable_count_command, _("\
16178 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16179 If a breakpoint is hit while enabled in this fashion,\n\
16180 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16181 &enablebreaklist);
16182
16183 add_cmd ("delete", no_class, enable_delete_command, _("\
16184 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16185 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16186 &enablelist);
16187
16188 add_cmd ("once", no_class, enable_once_command, _("\
16189 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16190 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16191 &enablelist);
16192
16193 add_cmd ("count", no_class, enable_count_command, _("\
16194 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16195 If a breakpoint is hit while enabled in this fashion,\n\
16196 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16197 &enablelist);
16198
16199 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16200 Disable some breakpoints.\n\
16201 Arguments are breakpoint numbers with spaces in between.\n\
16202 To disable all breakpoints, give no argument.\n\
16203 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16204 &disablelist, "disable ", 1, &cmdlist);
16205 add_com_alias ("dis", "disable", class_breakpoint, 1);
16206 add_com_alias ("disa", "disable", class_breakpoint, 1);
16207
16208 add_cmd ("breakpoints", class_alias, disable_command, _("\
16209 Disable some breakpoints.\n\
16210 Arguments are breakpoint numbers with spaces in between.\n\
16211 To disable all breakpoints, give no argument.\n\
16212 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16213 This command may be abbreviated \"disable\"."),
16214 &disablelist);
16215
16216 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16217 Delete some breakpoints or auto-display expressions.\n\
16218 Arguments are breakpoint numbers with spaces in between.\n\
16219 To delete all breakpoints, give no argument.\n\
16220 \n\
16221 Also a prefix command for deletion of other GDB objects.\n\
16222 The \"unset\" command is also an alias for \"delete\"."),
16223 &deletelist, "delete ", 1, &cmdlist);
16224 add_com_alias ("d", "delete", class_breakpoint, 1);
16225 add_com_alias ("del", "delete", class_breakpoint, 1);
16226
16227 add_cmd ("breakpoints", class_alias, delete_command, _("\
16228 Delete some breakpoints or auto-display expressions.\n\
16229 Arguments are breakpoint numbers with spaces in between.\n\
16230 To delete all breakpoints, give no argument.\n\
16231 This command may be abbreviated \"delete\"."),
16232 &deletelist);
16233
16234 add_com ("clear", class_breakpoint, clear_command, _("\
16235 Clear breakpoint at specified location.\n\
16236 Argument may be a linespec, explicit, or address location as described below.\n\
16237 \n\
16238 With no argument, clears all breakpoints in the line that the selected frame\n\
16239 is executing in.\n"
16240 "\n" LOCATION_HELP_STRING "\n\
16241 See also the \"delete\" command which clears breakpoints by number."));
16242 add_com_alias ("cl", "clear", class_breakpoint, 1);
16243
16244 c = add_com ("break", class_breakpoint, break_command, _("\
16245 Set breakpoint at specified location.\n"
16246 BREAK_ARGS_HELP ("break")));
16247 set_cmd_completer (c, location_completer);
16248
16249 add_com_alias ("b", "break", class_run, 1);
16250 add_com_alias ("br", "break", class_run, 1);
16251 add_com_alias ("bre", "break", class_run, 1);
16252 add_com_alias ("brea", "break", class_run, 1);
16253
16254 if (dbx_commands)
16255 {
16256 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16257 Break in function/address or break at a line in the current file."),
16258 &stoplist, "stop ", 1, &cmdlist);
16259 add_cmd ("in", class_breakpoint, stopin_command,
16260 _("Break in function or address."), &stoplist);
16261 add_cmd ("at", class_breakpoint, stopat_command,
16262 _("Break at a line in the current file."), &stoplist);
16263 add_com ("status", class_info, breakpoints_info, _("\
16264 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16265 The \"Type\" column indicates one of:\n\
16266 \tbreakpoint - normal breakpoint\n\
16267 \twatchpoint - watchpoint\n\
16268 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16269 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16270 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16271 address and file/line number respectively.\n\
16272 \n\
16273 Convenience variable \"$_\" and default examine address for \"x\"\n\
16274 are set to the address of the last breakpoint listed unless the command\n\
16275 is prefixed with \"server \".\n\n\
16276 Convenience variable \"$bpnum\" contains the number of the last\n\
16277 breakpoint set."));
16278 }
16279
16280 add_info ("breakpoints", breakpoints_info, _("\
16281 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16282 The \"Type\" column indicates one of:\n\
16283 \tbreakpoint - normal breakpoint\n\
16284 \twatchpoint - watchpoint\n\
16285 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16286 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16287 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16288 address and file/line number respectively.\n\
16289 \n\
16290 Convenience variable \"$_\" and default examine address for \"x\"\n\
16291 are set to the address of the last breakpoint listed unless the command\n\
16292 is prefixed with \"server \".\n\n\
16293 Convenience variable \"$bpnum\" contains the number of the last\n\
16294 breakpoint set."));
16295
16296 add_info_alias ("b", "breakpoints", 1);
16297
16298 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16299 Status of all breakpoints, or breakpoint number NUMBER.\n\
16300 The \"Type\" column indicates one of:\n\
16301 \tbreakpoint - normal breakpoint\n\
16302 \twatchpoint - watchpoint\n\
16303 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16304 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16305 \tuntil - internal breakpoint used by the \"until\" command\n\
16306 \tfinish - internal breakpoint used by the \"finish\" command\n\
16307 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16308 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16309 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16310 address and file/line number respectively.\n\
16311 \n\
16312 Convenience variable \"$_\" and default examine address for \"x\"\n\
16313 are set to the address of the last breakpoint listed unless the command\n\
16314 is prefixed with \"server \".\n\n\
16315 Convenience variable \"$bpnum\" contains the number of the last\n\
16316 breakpoint set."),
16317 &maintenanceinfolist);
16318
16319 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16320 Set catchpoints to catch events."),
16321 &catch_cmdlist, "catch ",
16322 0/*allow-unknown*/, &cmdlist);
16323
16324 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16325 Set temporary catchpoints to catch events."),
16326 &tcatch_cmdlist, "tcatch ",
16327 0/*allow-unknown*/, &cmdlist);
16328
16329 add_catch_command ("fork", _("Catch calls to fork."),
16330 catch_fork_command_1,
16331 NULL,
16332 (void *) (uintptr_t) catch_fork_permanent,
16333 (void *) (uintptr_t) catch_fork_temporary);
16334 add_catch_command ("vfork", _("Catch calls to vfork."),
16335 catch_fork_command_1,
16336 NULL,
16337 (void *) (uintptr_t) catch_vfork_permanent,
16338 (void *) (uintptr_t) catch_vfork_temporary);
16339 add_catch_command ("exec", _("Catch calls to exec."),
16340 catch_exec_command_1,
16341 NULL,
16342 CATCH_PERMANENT,
16343 CATCH_TEMPORARY);
16344 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16345 Usage: catch load [REGEX]\n\
16346 If REGEX is given, only stop for libraries matching the regular expression."),
16347 catch_load_command_1,
16348 NULL,
16349 CATCH_PERMANENT,
16350 CATCH_TEMPORARY);
16351 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16352 Usage: catch unload [REGEX]\n\
16353 If REGEX is given, only stop for libraries matching the regular expression."),
16354 catch_unload_command_1,
16355 NULL,
16356 CATCH_PERMANENT,
16357 CATCH_TEMPORARY);
16358
16359 c = add_com ("watch", class_breakpoint, watch_command, _("\
16360 Set a watchpoint for an expression.\n\
16361 Usage: watch [-l|-location] EXPRESSION\n\
16362 A watchpoint stops execution of your program whenever the value of\n\
16363 an expression changes.\n\
16364 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16365 the memory to which it refers."));
16366 set_cmd_completer (c, expression_completer);
16367
16368 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16369 Set a read watchpoint for an expression.\n\
16370 Usage: rwatch [-l|-location] EXPRESSION\n\
16371 A watchpoint stops execution of your program whenever the value of\n\
16372 an expression is read.\n\
16373 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16374 the memory to which it refers."));
16375 set_cmd_completer (c, expression_completer);
16376
16377 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16378 Set a watchpoint for an expression.\n\
16379 Usage: awatch [-l|-location] EXPRESSION\n\
16380 A watchpoint stops execution of your program whenever the value of\n\
16381 an expression is either read or written.\n\
16382 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16383 the memory to which it refers."));
16384 set_cmd_completer (c, expression_completer);
16385
16386 add_info ("watchpoints", watchpoints_info, _("\
16387 Status of specified watchpoints (all watchpoints if no argument)."));
16388
16389 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16390 respond to changes - contrary to the description. */
16391 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16392 &can_use_hw_watchpoints, _("\
16393 Set debugger's willingness to use watchpoint hardware."), _("\
16394 Show debugger's willingness to use watchpoint hardware."), _("\
16395 If zero, gdb will not use hardware for new watchpoints, even if\n\
16396 such is available. (However, any hardware watchpoints that were\n\
16397 created before setting this to nonzero, will continue to use watchpoint\n\
16398 hardware.)"),
16399 NULL,
16400 show_can_use_hw_watchpoints,
16401 &setlist, &showlist);
16402
16403 can_use_hw_watchpoints = 1;
16404
16405 /* Tracepoint manipulation commands. */
16406
16407 c = add_com ("trace", class_breakpoint, trace_command, _("\
16408 Set a tracepoint at specified location.\n\
16409 \n"
16410 BREAK_ARGS_HELP ("trace") "\n\
16411 Do \"help tracepoints\" for info on other tracepoint commands."));
16412 set_cmd_completer (c, location_completer);
16413
16414 add_com_alias ("tp", "trace", class_alias, 0);
16415 add_com_alias ("tr", "trace", class_alias, 1);
16416 add_com_alias ("tra", "trace", class_alias, 1);
16417 add_com_alias ("trac", "trace", class_alias, 1);
16418
16419 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16420 Set a fast tracepoint at specified location.\n\
16421 \n"
16422 BREAK_ARGS_HELP ("ftrace") "\n\
16423 Do \"help tracepoints\" for info on other tracepoint commands."));
16424 set_cmd_completer (c, location_completer);
16425
16426 c = add_com ("strace", class_breakpoint, strace_command, _("\
16427 Set a static tracepoint at location or marker.\n\
16428 \n\
16429 strace [LOCATION] [if CONDITION]\n\
16430 LOCATION may be a linespec, explicit, or address location (described below) \n\
16431 or -m MARKER_ID.\n\n\
16432 If a marker id is specified, probe the marker with that name. With\n\
16433 no LOCATION, uses current execution address of the selected stack frame.\n\
16434 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16435 This collects arbitrary user data passed in the probe point call to the\n\
16436 tracing library. You can inspect it when analyzing the trace buffer,\n\
16437 by printing the $_sdata variable like any other convenience variable.\n\
16438 \n\
16439 CONDITION is a boolean expression.\n\
16440 \n" LOCATION_HELP_STRING "\n\
16441 Multiple tracepoints at one place are permitted, and useful if their\n\
16442 conditions are different.\n\
16443 \n\
16444 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16445 Do \"help tracepoints\" for info on other tracepoint commands."));
16446 set_cmd_completer (c, location_completer);
16447
16448 add_info ("tracepoints", tracepoints_info, _("\
16449 Status of specified tracepoints (all tracepoints if no argument).\n\
16450 Convenience variable \"$tpnum\" contains the number of the\n\
16451 last tracepoint set."));
16452
16453 add_info_alias ("tp", "tracepoints", 1);
16454
16455 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16456 Delete specified tracepoints.\n\
16457 Arguments are tracepoint numbers, separated by spaces.\n\
16458 No argument means delete all tracepoints."),
16459 &deletelist);
16460 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16461
16462 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16463 Disable specified tracepoints.\n\
16464 Arguments are tracepoint numbers, separated by spaces.\n\
16465 No argument means disable all tracepoints."),
16466 &disablelist);
16467 deprecate_cmd (c, "disable");
16468
16469 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16470 Enable specified tracepoints.\n\
16471 Arguments are tracepoint numbers, separated by spaces.\n\
16472 No argument means enable all tracepoints."),
16473 &enablelist);
16474 deprecate_cmd (c, "enable");
16475
16476 add_com ("passcount", class_trace, trace_pass_command, _("\
16477 Set the passcount for a tracepoint.\n\
16478 The trace will end when the tracepoint has been passed 'count' times.\n\
16479 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16480 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16481
16482 add_prefix_cmd ("save", class_breakpoint, save_command,
16483 _("Save breakpoint definitions as a script."),
16484 &save_cmdlist, "save ",
16485 0/*allow-unknown*/, &cmdlist);
16486
16487 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16488 Save current breakpoint definitions as a script.\n\
16489 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16490 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16491 session to restore them."),
16492 &save_cmdlist);
16493 set_cmd_completer (c, filename_completer);
16494
16495 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16496 Save current tracepoint definitions as a script.\n\
16497 Use the 'source' command in another debug session to restore them."),
16498 &save_cmdlist);
16499 set_cmd_completer (c, filename_completer);
16500
16501 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16502 deprecate_cmd (c, "save tracepoints");
16503
16504 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16505 Breakpoint specific settings\n\
16506 Configure various breakpoint-specific variables such as\n\
16507 pending breakpoint behavior"),
16508 &breakpoint_set_cmdlist, "set breakpoint ",
16509 0/*allow-unknown*/, &setlist);
16510 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16511 Breakpoint specific settings\n\
16512 Configure various breakpoint-specific variables such as\n\
16513 pending breakpoint behavior"),
16514 &breakpoint_show_cmdlist, "show breakpoint ",
16515 0/*allow-unknown*/, &showlist);
16516
16517 add_setshow_auto_boolean_cmd ("pending", no_class,
16518 &pending_break_support, _("\
16519 Set debugger's behavior regarding pending breakpoints."), _("\
16520 Show debugger's behavior regarding pending breakpoints."), _("\
16521 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16522 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16523 an error. If auto, an unrecognized breakpoint location results in a\n\
16524 user-query to see if a pending breakpoint should be created."),
16525 NULL,
16526 show_pending_break_support,
16527 &breakpoint_set_cmdlist,
16528 &breakpoint_show_cmdlist);
16529
16530 pending_break_support = AUTO_BOOLEAN_AUTO;
16531
16532 add_setshow_boolean_cmd ("auto-hw", no_class,
16533 &automatic_hardware_breakpoints, _("\
16534 Set automatic usage of hardware breakpoints."), _("\
16535 Show automatic usage of hardware breakpoints."), _("\
16536 If set, the debugger will automatically use hardware breakpoints for\n\
16537 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16538 a warning will be emitted for such breakpoints."),
16539 NULL,
16540 show_automatic_hardware_breakpoints,
16541 &breakpoint_set_cmdlist,
16542 &breakpoint_show_cmdlist);
16543
16544 add_setshow_boolean_cmd ("always-inserted", class_support,
16545 &always_inserted_mode, _("\
16546 Set mode for inserting breakpoints."), _("\
16547 Show mode for inserting breakpoints."), _("\
16548 When this mode is on, breakpoints are inserted immediately as soon as\n\
16549 they're created, kept inserted even when execution stops, and removed\n\
16550 only when the user deletes them. When this mode is off (the default),\n\
16551 breakpoints are inserted only when execution continues, and removed\n\
16552 when execution stops."),
16553 NULL,
16554 &show_always_inserted_mode,
16555 &breakpoint_set_cmdlist,
16556 &breakpoint_show_cmdlist);
16557
16558 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16559 condition_evaluation_enums,
16560 &condition_evaluation_mode_1, _("\
16561 Set mode of breakpoint condition evaluation."), _("\
16562 Show mode of breakpoint condition evaluation."), _("\
16563 When this is set to \"host\", breakpoint conditions will be\n\
16564 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16565 breakpoint conditions will be downloaded to the target (if the target\n\
16566 supports such feature) and conditions will be evaluated on the target's side.\n\
16567 If this is set to \"auto\" (default), this will be automatically set to\n\
16568 \"target\" if it supports condition evaluation, otherwise it will\n\
16569 be set to \"gdb\""),
16570 &set_condition_evaluation_mode,
16571 &show_condition_evaluation_mode,
16572 &breakpoint_set_cmdlist,
16573 &breakpoint_show_cmdlist);
16574
16575 add_com ("break-range", class_breakpoint, break_range_command, _("\
16576 Set a breakpoint for an address range.\n\
16577 break-range START-LOCATION, END-LOCATION\n\
16578 where START-LOCATION and END-LOCATION can be one of the following:\n\
16579 LINENUM, for that line in the current file,\n\
16580 FILE:LINENUM, for that line in that file,\n\
16581 +OFFSET, for that number of lines after the current line\n\
16582 or the start of the range\n\
16583 FUNCTION, for the first line in that function,\n\
16584 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16585 *ADDRESS, for the instruction at that address.\n\
16586 \n\
16587 The breakpoint will stop execution of the inferior whenever it executes\n\
16588 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16589 range (including START-LOCATION and END-LOCATION)."));
16590
16591 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16592 Set a dynamic printf at specified location.\n\
16593 dprintf location,format string,arg1,arg2,...\n\
16594 location may be a linespec, explicit, or address location.\n"
16595 "\n" LOCATION_HELP_STRING));
16596 set_cmd_completer (c, location_completer);
16597
16598 add_setshow_enum_cmd ("dprintf-style", class_support,
16599 dprintf_style_enums, &dprintf_style, _("\
16600 Set the style of usage for dynamic printf."), _("\
16601 Show the style of usage for dynamic printf."), _("\
16602 This setting chooses how GDB will do a dynamic printf.\n\
16603 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16604 console, as with the \"printf\" command.\n\
16605 If the value is \"call\", the print is done by calling a function in your\n\
16606 program; by default printf(), but you can choose a different function or\n\
16607 output stream by setting dprintf-function and dprintf-channel."),
16608 update_dprintf_commands, NULL,
16609 &setlist, &showlist);
16610
16611 dprintf_function = xstrdup ("printf");
16612 add_setshow_string_cmd ("dprintf-function", class_support,
16613 &dprintf_function, _("\
16614 Set the function to use for dynamic printf"), _("\
16615 Show the function to use for dynamic printf"), NULL,
16616 update_dprintf_commands, NULL,
16617 &setlist, &showlist);
16618
16619 dprintf_channel = xstrdup ("");
16620 add_setshow_string_cmd ("dprintf-channel", class_support,
16621 &dprintf_channel, _("\
16622 Set the channel to use for dynamic printf"), _("\
16623 Show the channel to use for dynamic printf"), NULL,
16624 update_dprintf_commands, NULL,
16625 &setlist, &showlist);
16626
16627 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16628 &disconnected_dprintf, _("\
16629 Set whether dprintf continues after GDB disconnects."), _("\
16630 Show whether dprintf continues after GDB disconnects."), _("\
16631 Use this to let dprintf commands continue to hit and produce output\n\
16632 even if GDB disconnects or detaches from the target."),
16633 NULL,
16634 NULL,
16635 &setlist, &showlist);
16636
16637 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16638 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16639 (target agent only) This is useful for formatted output in user-defined commands."));
16640
16641 automatic_hardware_breakpoints = 1;
16642
16643 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16644 observer_attach_thread_exit (remove_threaded_breakpoints);
16645 }
This page took 0.387303 seconds and 5 git commands to generate.