Change gdb test suite's TERM setting
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 if (always_inserted_mode)
404 {
405 /* The user wants breakpoints inserted even if all threads
406 are stopped. */
407 return 1;
408 }
409
410 if (threads_are_executing ())
411 return 1;
412
413 /* Don't remove breakpoints yet if, even though all threads are
414 stopped, we still have events to process. */
415 for (thread_info *tp : all_non_exited_threads ())
416 if (tp->resumed
417 && tp->suspend.waitstatus_pending_p)
418 return 1;
419 }
420 return 0;
421 }
422
423 static const char condition_evaluation_both[] = "host or target";
424
425 /* Modes for breakpoint condition evaluation. */
426 static const char condition_evaluation_auto[] = "auto";
427 static const char condition_evaluation_host[] = "host";
428 static const char condition_evaluation_target[] = "target";
429 static const char *const condition_evaluation_enums[] = {
430 condition_evaluation_auto,
431 condition_evaluation_host,
432 condition_evaluation_target,
433 NULL
434 };
435
436 /* Global that holds the current mode for breakpoint condition evaluation. */
437 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
438
439 /* Global that we use to display information to the user (gets its value from
440 condition_evaluation_mode_1. */
441 static const char *condition_evaluation_mode = condition_evaluation_auto;
442
443 /* Translate a condition evaluation mode MODE into either "host"
444 or "target". This is used mostly to translate from "auto" to the
445 real setting that is being used. It returns the translated
446 evaluation mode. */
447
448 static const char *
449 translate_condition_evaluation_mode (const char *mode)
450 {
451 if (mode == condition_evaluation_auto)
452 {
453 if (target_supports_evaluation_of_breakpoint_conditions ())
454 return condition_evaluation_target;
455 else
456 return condition_evaluation_host;
457 }
458 else
459 return mode;
460 }
461
462 /* Discovers what condition_evaluation_auto translates to. */
463
464 static const char *
465 breakpoint_condition_evaluation_mode (void)
466 {
467 return translate_condition_evaluation_mode (condition_evaluation_mode);
468 }
469
470 /* Return true if GDB should evaluate breakpoint conditions or false
471 otherwise. */
472
473 static int
474 gdb_evaluates_breakpoint_condition_p (void)
475 {
476 const char *mode = breakpoint_condition_evaluation_mode ();
477
478 return (mode == condition_evaluation_host);
479 }
480
481 /* Are we executing breakpoint commands? */
482 static int executing_breakpoint_commands;
483
484 /* Are overlay event breakpoints enabled? */
485 static int overlay_events_enabled;
486
487 /* See description in breakpoint.h. */
488 int target_exact_watchpoints = 0;
489
490 /* Walk the following statement or block through all breakpoints.
491 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
492 current breakpoint. */
493
494 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
495
496 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
497 for (B = breakpoint_chain; \
498 B ? (TMP=B->next, 1): 0; \
499 B = TMP)
500
501 /* Similar iterator for the low-level breakpoints. SAFE variant is
502 not provided so update_global_location_list must not be called
503 while executing the block of ALL_BP_LOCATIONS. */
504
505 #define ALL_BP_LOCATIONS(B,BP_TMP) \
506 for (BP_TMP = bp_locations; \
507 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
508 BP_TMP++)
509
510 /* Iterates through locations with address ADDRESS for the currently selected
511 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
512 to where the loop should start from.
513 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
514 appropriate location to start with. */
515
516 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
517 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
518 BP_LOCP_TMP = BP_LOCP_START; \
519 BP_LOCP_START \
520 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
521 && (*BP_LOCP_TMP)->address == ADDRESS); \
522 BP_LOCP_TMP++)
523
524 /* Iterator for tracepoints only. */
525
526 #define ALL_TRACEPOINTS(B) \
527 for (B = breakpoint_chain; B; B = B->next) \
528 if (is_tracepoint (B))
529
530 /* Chains of all breakpoints defined. */
531
532 struct breakpoint *breakpoint_chain;
533
534 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
535
536 static struct bp_location **bp_locations;
537
538 /* Number of elements of BP_LOCATIONS. */
539
540 static unsigned bp_locations_count;
541
542 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
543 ADDRESS for the current elements of BP_LOCATIONS which get a valid
544 result from bp_location_has_shadow. You can use it for roughly
545 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
546 an address you need to read. */
547
548 static CORE_ADDR bp_locations_placed_address_before_address_max;
549
550 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
551 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
552 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
553 You can use it for roughly limiting the subrange of BP_LOCATIONS to
554 scan for shadow bytes for an address you need to read. */
555
556 static CORE_ADDR bp_locations_shadow_len_after_address_max;
557
558 /* The locations that no longer correspond to any breakpoint, unlinked
559 from the bp_locations array, but for which a hit may still be
560 reported by a target. */
561 static std::vector<bp_location *> moribund_locations;
562
563 /* Number of last breakpoint made. */
564
565 static int breakpoint_count;
566
567 /* The value of `breakpoint_count' before the last command that
568 created breakpoints. If the last (break-like) command created more
569 than one breakpoint, then the difference between BREAKPOINT_COUNT
570 and PREV_BREAKPOINT_COUNT is more than one. */
571 static int prev_breakpoint_count;
572
573 /* Number of last tracepoint made. */
574
575 static int tracepoint_count;
576
577 static struct cmd_list_element *breakpoint_set_cmdlist;
578 static struct cmd_list_element *breakpoint_show_cmdlist;
579 struct cmd_list_element *save_cmdlist;
580
581 /* See declaration at breakpoint.h. */
582
583 struct breakpoint *
584 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
585 void *user_data)
586 {
587 struct breakpoint *b = NULL;
588
589 ALL_BREAKPOINTS (b)
590 {
591 if (func (b, user_data) != 0)
592 break;
593 }
594
595 return b;
596 }
597
598 /* Return whether a breakpoint is an active enabled breakpoint. */
599 static int
600 breakpoint_enabled (struct breakpoint *b)
601 {
602 return (b->enable_state == bp_enabled);
603 }
604
605 /* Set breakpoint count to NUM. */
606
607 static void
608 set_breakpoint_count (int num)
609 {
610 prev_breakpoint_count = breakpoint_count;
611 breakpoint_count = num;
612 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
613 }
614
615 /* Used by `start_rbreak_breakpoints' below, to record the current
616 breakpoint count before "rbreak" creates any breakpoint. */
617 static int rbreak_start_breakpoint_count;
618
619 /* Called at the start an "rbreak" command to record the first
620 breakpoint made. */
621
622 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
623 {
624 rbreak_start_breakpoint_count = breakpoint_count;
625 }
626
627 /* Called at the end of an "rbreak" command to record the last
628 breakpoint made. */
629
630 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
631 {
632 prev_breakpoint_count = rbreak_start_breakpoint_count;
633 }
634
635 /* Used in run_command to zero the hit count when a new run starts. */
636
637 void
638 clear_breakpoint_hit_counts (void)
639 {
640 struct breakpoint *b;
641
642 ALL_BREAKPOINTS (b)
643 b->hit_count = 0;
644 }
645
646 \f
647 /* Return the breakpoint with the specified number, or NULL
648 if the number does not refer to an existing breakpoint. */
649
650 struct breakpoint *
651 get_breakpoint (int num)
652 {
653 struct breakpoint *b;
654
655 ALL_BREAKPOINTS (b)
656 if (b->number == num)
657 return b;
658
659 return NULL;
660 }
661
662 \f
663
664 /* Mark locations as "conditions have changed" in case the target supports
665 evaluating conditions on its side. */
666
667 static void
668 mark_breakpoint_modified (struct breakpoint *b)
669 {
670 struct bp_location *loc;
671
672 /* This is only meaningful if the target is
673 evaluating conditions and if the user has
674 opted for condition evaluation on the target's
675 side. */
676 if (gdb_evaluates_breakpoint_condition_p ()
677 || !target_supports_evaluation_of_breakpoint_conditions ())
678 return;
679
680 if (!is_breakpoint (b))
681 return;
682
683 for (loc = b->loc; loc; loc = loc->next)
684 loc->condition_changed = condition_modified;
685 }
686
687 /* Mark location as "conditions have changed" in case the target supports
688 evaluating conditions on its side. */
689
690 static void
691 mark_breakpoint_location_modified (struct bp_location *loc)
692 {
693 /* This is only meaningful if the target is
694 evaluating conditions and if the user has
695 opted for condition evaluation on the target's
696 side. */
697 if (gdb_evaluates_breakpoint_condition_p ()
698 || !target_supports_evaluation_of_breakpoint_conditions ())
699
700 return;
701
702 if (!is_breakpoint (loc->owner))
703 return;
704
705 loc->condition_changed = condition_modified;
706 }
707
708 /* Sets the condition-evaluation mode using the static global
709 condition_evaluation_mode. */
710
711 static void
712 set_condition_evaluation_mode (const char *args, int from_tty,
713 struct cmd_list_element *c)
714 {
715 const char *old_mode, *new_mode;
716
717 if ((condition_evaluation_mode_1 == condition_evaluation_target)
718 && !target_supports_evaluation_of_breakpoint_conditions ())
719 {
720 condition_evaluation_mode_1 = condition_evaluation_mode;
721 warning (_("Target does not support breakpoint condition evaluation.\n"
722 "Using host evaluation mode instead."));
723 return;
724 }
725
726 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
727 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
728
729 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
730 settings was "auto". */
731 condition_evaluation_mode = condition_evaluation_mode_1;
732
733 /* Only update the mode if the user picked a different one. */
734 if (new_mode != old_mode)
735 {
736 struct bp_location *loc, **loc_tmp;
737 /* If the user switched to a different evaluation mode, we
738 need to synch the changes with the target as follows:
739
740 "host" -> "target": Send all (valid) conditions to the target.
741 "target" -> "host": Remove all the conditions from the target.
742 */
743
744 if (new_mode == condition_evaluation_target)
745 {
746 /* Mark everything modified and synch conditions with the
747 target. */
748 ALL_BP_LOCATIONS (loc, loc_tmp)
749 mark_breakpoint_location_modified (loc);
750 }
751 else
752 {
753 /* Manually mark non-duplicate locations to synch conditions
754 with the target. We do this to remove all the conditions the
755 target knows about. */
756 ALL_BP_LOCATIONS (loc, loc_tmp)
757 if (is_breakpoint (loc->owner) && loc->inserted)
758 loc->needs_update = 1;
759 }
760
761 /* Do the update. */
762 update_global_location_list (UGLL_MAY_INSERT);
763 }
764
765 return;
766 }
767
768 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
769 what "auto" is translating to. */
770
771 static void
772 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
773 struct cmd_list_element *c, const char *value)
774 {
775 if (condition_evaluation_mode == condition_evaluation_auto)
776 fprintf_filtered (file,
777 _("Breakpoint condition evaluation "
778 "mode is %s (currently %s).\n"),
779 value,
780 breakpoint_condition_evaluation_mode ());
781 else
782 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
783 value);
784 }
785
786 /* A comparison function for bp_location AP and BP that is used by
787 bsearch. This comparison function only cares about addresses, unlike
788 the more general bp_locations_compare function. */
789
790 static int
791 bp_locations_compare_addrs (const void *ap, const void *bp)
792 {
793 const struct bp_location *a = *(const struct bp_location **) ap;
794 const struct bp_location *b = *(const struct bp_location **) bp;
795
796 if (a->address == b->address)
797 return 0;
798 else
799 return ((a->address > b->address) - (a->address < b->address));
800 }
801
802 /* Helper function to skip all bp_locations with addresses
803 less than ADDRESS. It returns the first bp_location that
804 is greater than or equal to ADDRESS. If none is found, just
805 return NULL. */
806
807 static struct bp_location **
808 get_first_locp_gte_addr (CORE_ADDR address)
809 {
810 struct bp_location dummy_loc;
811 struct bp_location *dummy_locp = &dummy_loc;
812 struct bp_location **locp_found = NULL;
813
814 /* Initialize the dummy location's address field. */
815 dummy_loc.address = address;
816
817 /* Find a close match to the first location at ADDRESS. */
818 locp_found = ((struct bp_location **)
819 bsearch (&dummy_locp, bp_locations, bp_locations_count,
820 sizeof (struct bp_location **),
821 bp_locations_compare_addrs));
822
823 /* Nothing was found, nothing left to do. */
824 if (locp_found == NULL)
825 return NULL;
826
827 /* We may have found a location that is at ADDRESS but is not the first in the
828 location's list. Go backwards (if possible) and locate the first one. */
829 while ((locp_found - 1) >= bp_locations
830 && (*(locp_found - 1))->address == address)
831 locp_found--;
832
833 return locp_found;
834 }
835
836 void
837 set_breakpoint_condition (struct breakpoint *b, const char *exp,
838 int from_tty)
839 {
840 xfree (b->cond_string);
841 b->cond_string = NULL;
842
843 if (is_watchpoint (b))
844 {
845 struct watchpoint *w = (struct watchpoint *) b;
846
847 w->cond_exp.reset ();
848 }
849 else
850 {
851 struct bp_location *loc;
852
853 for (loc = b->loc; loc; loc = loc->next)
854 {
855 loc->cond.reset ();
856
857 /* No need to free the condition agent expression
858 bytecode (if we have one). We will handle this
859 when we go through update_global_location_list. */
860 }
861 }
862
863 if (*exp == 0)
864 {
865 if (from_tty)
866 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
867 }
868 else
869 {
870 const char *arg = exp;
871
872 /* I don't know if it matters whether this is the string the user
873 typed in or the decompiled expression. */
874 b->cond_string = xstrdup (arg);
875 b->condition_not_parsed = 0;
876
877 if (is_watchpoint (b))
878 {
879 struct watchpoint *w = (struct watchpoint *) b;
880
881 innermost_block.reset ();
882 arg = exp;
883 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
884 if (*arg)
885 error (_("Junk at end of expression"));
886 w->cond_exp_valid_block = innermost_block.block ();
887 }
888 else
889 {
890 struct bp_location *loc;
891
892 for (loc = b->loc; loc; loc = loc->next)
893 {
894 arg = exp;
895 loc->cond =
896 parse_exp_1 (&arg, loc->address,
897 block_for_pc (loc->address), 0);
898 if (*arg)
899 error (_("Junk at end of expression"));
900 }
901 }
902 }
903 mark_breakpoint_modified (b);
904
905 gdb::observers::breakpoint_modified.notify (b);
906 }
907
908 /* Completion for the "condition" command. */
909
910 static void
911 condition_completer (struct cmd_list_element *cmd,
912 completion_tracker &tracker,
913 const char *text, const char *word)
914 {
915 const char *space;
916
917 text = skip_spaces (text);
918 space = skip_to_space (text);
919 if (*space == '\0')
920 {
921 int len;
922 struct breakpoint *b;
923
924 if (text[0] == '$')
925 {
926 /* We don't support completion of history indices. */
927 if (!isdigit (text[1]))
928 complete_internalvar (tracker, &text[1]);
929 return;
930 }
931
932 /* We're completing the breakpoint number. */
933 len = strlen (text);
934
935 ALL_BREAKPOINTS (b)
936 {
937 char number[50];
938
939 xsnprintf (number, sizeof (number), "%d", b->number);
940
941 if (strncmp (number, text, len) == 0)
942 {
943 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
944 tracker.add_completion (std::move (copy));
945 }
946 }
947
948 return;
949 }
950
951 /* We're completing the expression part. */
952 text = skip_spaces (space);
953 expression_completer (cmd, tracker, text, word);
954 }
955
956 /* condition N EXP -- set break condition of breakpoint N to EXP. */
957
958 static void
959 condition_command (const char *arg, int from_tty)
960 {
961 struct breakpoint *b;
962 const char *p;
963 int bnum;
964
965 if (arg == 0)
966 error_no_arg (_("breakpoint number"));
967
968 p = arg;
969 bnum = get_number (&p);
970 if (bnum == 0)
971 error (_("Bad breakpoint argument: '%s'"), arg);
972
973 ALL_BREAKPOINTS (b)
974 if (b->number == bnum)
975 {
976 /* Check if this breakpoint has a "stop" method implemented in an
977 extension language. This method and conditions entered into GDB
978 from the CLI are mutually exclusive. */
979 const struct extension_language_defn *extlang
980 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
981
982 if (extlang != NULL)
983 {
984 error (_("Only one stop condition allowed. There is currently"
985 " a %s stop condition defined for this breakpoint."),
986 ext_lang_capitalized_name (extlang));
987 }
988 set_breakpoint_condition (b, p, from_tty);
989
990 if (is_breakpoint (b))
991 update_global_location_list (UGLL_MAY_INSERT);
992
993 return;
994 }
995
996 error (_("No breakpoint number %d."), bnum);
997 }
998
999 /* Check that COMMAND do not contain commands that are suitable
1000 only for tracepoints and not suitable for ordinary breakpoints.
1001 Throw if any such commands is found. */
1002
1003 static void
1004 check_no_tracepoint_commands (struct command_line *commands)
1005 {
1006 struct command_line *c;
1007
1008 for (c = commands; c; c = c->next)
1009 {
1010 if (c->control_type == while_stepping_control)
1011 error (_("The 'while-stepping' command can "
1012 "only be used for tracepoints"));
1013
1014 check_no_tracepoint_commands (c->body_list_0.get ());
1015 check_no_tracepoint_commands (c->body_list_1.get ());
1016
1017 /* Not that command parsing removes leading whitespace and comment
1018 lines and also empty lines. So, we only need to check for
1019 command directly. */
1020 if (strstr (c->line, "collect ") == c->line)
1021 error (_("The 'collect' command can only be used for tracepoints"));
1022
1023 if (strstr (c->line, "teval ") == c->line)
1024 error (_("The 'teval' command can only be used for tracepoints"));
1025 }
1026 }
1027
1028 struct longjmp_breakpoint : public breakpoint
1029 {
1030 ~longjmp_breakpoint () override;
1031 };
1032
1033 /* Encapsulate tests for different types of tracepoints. */
1034
1035 static bool
1036 is_tracepoint_type (bptype type)
1037 {
1038 return (type == bp_tracepoint
1039 || type == bp_fast_tracepoint
1040 || type == bp_static_tracepoint);
1041 }
1042
1043 static bool
1044 is_longjmp_type (bptype type)
1045 {
1046 return type == bp_longjmp || type == bp_exception;
1047 }
1048
1049 int
1050 is_tracepoint (const struct breakpoint *b)
1051 {
1052 return is_tracepoint_type (b->type);
1053 }
1054
1055 /* Factory function to create an appropriate instance of breakpoint given
1056 TYPE. */
1057
1058 static std::unique_ptr<breakpoint>
1059 new_breakpoint_from_type (bptype type)
1060 {
1061 breakpoint *b;
1062
1063 if (is_tracepoint_type (type))
1064 b = new tracepoint ();
1065 else if (is_longjmp_type (type))
1066 b = new longjmp_breakpoint ();
1067 else
1068 b = new breakpoint ();
1069
1070 return std::unique_ptr<breakpoint> (b);
1071 }
1072
1073 /* A helper function that validates that COMMANDS are valid for a
1074 breakpoint. This function will throw an exception if a problem is
1075 found. */
1076
1077 static void
1078 validate_commands_for_breakpoint (struct breakpoint *b,
1079 struct command_line *commands)
1080 {
1081 if (is_tracepoint (b))
1082 {
1083 struct tracepoint *t = (struct tracepoint *) b;
1084 struct command_line *c;
1085 struct command_line *while_stepping = 0;
1086
1087 /* Reset the while-stepping step count. The previous commands
1088 might have included a while-stepping action, while the new
1089 ones might not. */
1090 t->step_count = 0;
1091
1092 /* We need to verify that each top-level element of commands is
1093 valid for tracepoints, that there's at most one
1094 while-stepping element, and that the while-stepping's body
1095 has valid tracing commands excluding nested while-stepping.
1096 We also need to validate the tracepoint action line in the
1097 context of the tracepoint --- validate_actionline actually
1098 has side effects, like setting the tracepoint's
1099 while-stepping STEP_COUNT, in addition to checking if the
1100 collect/teval actions parse and make sense in the
1101 tracepoint's context. */
1102 for (c = commands; c; c = c->next)
1103 {
1104 if (c->control_type == while_stepping_control)
1105 {
1106 if (b->type == bp_fast_tracepoint)
1107 error (_("The 'while-stepping' command "
1108 "cannot be used for fast tracepoint"));
1109 else if (b->type == bp_static_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for static tracepoint"));
1112
1113 if (while_stepping)
1114 error (_("The 'while-stepping' command "
1115 "can be used only once"));
1116 else
1117 while_stepping = c;
1118 }
1119
1120 validate_actionline (c->line, b);
1121 }
1122 if (while_stepping)
1123 {
1124 struct command_line *c2;
1125
1126 gdb_assert (while_stepping->body_list_1 == nullptr);
1127 c2 = while_stepping->body_list_0.get ();
1128 for (; c2; c2 = c2->next)
1129 {
1130 if (c2->control_type == while_stepping_control)
1131 error (_("The 'while-stepping' command cannot be nested"));
1132 }
1133 }
1134 }
1135 else
1136 {
1137 check_no_tracepoint_commands (commands);
1138 }
1139 }
1140
1141 /* Return a vector of all the static tracepoints set at ADDR. The
1142 caller is responsible for releasing the vector. */
1143
1144 std::vector<breakpoint *>
1145 static_tracepoints_here (CORE_ADDR addr)
1146 {
1147 struct breakpoint *b;
1148 std::vector<breakpoint *> found;
1149 struct bp_location *loc;
1150
1151 ALL_BREAKPOINTS (b)
1152 if (b->type == bp_static_tracepoint)
1153 {
1154 for (loc = b->loc; loc; loc = loc->next)
1155 if (loc->address == addr)
1156 found.push_back (b);
1157 }
1158
1159 return found;
1160 }
1161
1162 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1163 validate that only allowed commands are included. */
1164
1165 void
1166 breakpoint_set_commands (struct breakpoint *b,
1167 counted_command_line &&commands)
1168 {
1169 validate_commands_for_breakpoint (b, commands.get ());
1170
1171 b->commands = std::move (commands);
1172 gdb::observers::breakpoint_modified.notify (b);
1173 }
1174
1175 /* Set the internal `silent' flag on the breakpoint. Note that this
1176 is not the same as the "silent" that may appear in the breakpoint's
1177 commands. */
1178
1179 void
1180 breakpoint_set_silent (struct breakpoint *b, int silent)
1181 {
1182 int old_silent = b->silent;
1183
1184 b->silent = silent;
1185 if (old_silent != silent)
1186 gdb::observers::breakpoint_modified.notify (b);
1187 }
1188
1189 /* Set the thread for this breakpoint. If THREAD is -1, make the
1190 breakpoint work for any thread. */
1191
1192 void
1193 breakpoint_set_thread (struct breakpoint *b, int thread)
1194 {
1195 int old_thread = b->thread;
1196
1197 b->thread = thread;
1198 if (old_thread != thread)
1199 gdb::observers::breakpoint_modified.notify (b);
1200 }
1201
1202 /* Set the task for this breakpoint. If TASK is 0, make the
1203 breakpoint work for any task. */
1204
1205 void
1206 breakpoint_set_task (struct breakpoint *b, int task)
1207 {
1208 int old_task = b->task;
1209
1210 b->task = task;
1211 if (old_task != task)
1212 gdb::observers::breakpoint_modified.notify (b);
1213 }
1214
1215 static void
1216 commands_command_1 (const char *arg, int from_tty,
1217 struct command_line *control)
1218 {
1219 counted_command_line cmd;
1220 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1221 NULL after the call to read_command_lines if the user provides an empty
1222 list of command by just typing "end". */
1223 bool cmd_read = false;
1224
1225 std::string new_arg;
1226
1227 if (arg == NULL || !*arg)
1228 {
1229 if (breakpoint_count - prev_breakpoint_count > 1)
1230 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1231 breakpoint_count);
1232 else if (breakpoint_count > 0)
1233 new_arg = string_printf ("%d", breakpoint_count);
1234 arg = new_arg.c_str ();
1235 }
1236
1237 map_breakpoint_numbers
1238 (arg, [&] (breakpoint *b)
1239 {
1240 if (!cmd_read)
1241 {
1242 gdb_assert (cmd == NULL);
1243 if (control != NULL)
1244 cmd = control->body_list_0;
1245 else
1246 {
1247 std::string str
1248 = string_printf (_("Type commands for breakpoint(s) "
1249 "%s, one per line."),
1250 arg);
1251
1252 auto do_validate = [=] (const char *line)
1253 {
1254 validate_actionline (line, b);
1255 };
1256 gdb::function_view<void (const char *)> validator;
1257 if (is_tracepoint (b))
1258 validator = do_validate;
1259
1260 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1261 }
1262 cmd_read = true;
1263 }
1264
1265 /* If a breakpoint was on the list more than once, we don't need to
1266 do anything. */
1267 if (b->commands != cmd)
1268 {
1269 validate_commands_for_breakpoint (b, cmd.get ());
1270 b->commands = cmd;
1271 gdb::observers::breakpoint_modified.notify (b);
1272 }
1273 });
1274 }
1275
1276 static void
1277 commands_command (const char *arg, int from_tty)
1278 {
1279 commands_command_1 (arg, from_tty, NULL);
1280 }
1281
1282 /* Like commands_command, but instead of reading the commands from
1283 input stream, takes them from an already parsed command structure.
1284
1285 This is used by cli-script.c to DTRT with breakpoint commands
1286 that are part of if and while bodies. */
1287 enum command_control_type
1288 commands_from_control_command (const char *arg, struct command_line *cmd)
1289 {
1290 commands_command_1 (arg, 0, cmd);
1291 return simple_control;
1292 }
1293
1294 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1295
1296 static int
1297 bp_location_has_shadow (struct bp_location *bl)
1298 {
1299 if (bl->loc_type != bp_loc_software_breakpoint)
1300 return 0;
1301 if (!bl->inserted)
1302 return 0;
1303 if (bl->target_info.shadow_len == 0)
1304 /* BL isn't valid, or doesn't shadow memory. */
1305 return 0;
1306 return 1;
1307 }
1308
1309 /* Update BUF, which is LEN bytes read from the target address
1310 MEMADDR, by replacing a memory breakpoint with its shadowed
1311 contents.
1312
1313 If READBUF is not NULL, this buffer must not overlap with the of
1314 the breakpoint location's shadow_contents buffer. Otherwise, a
1315 failed assertion internal error will be raised. */
1316
1317 static void
1318 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1319 const gdb_byte *writebuf_org,
1320 ULONGEST memaddr, LONGEST len,
1321 struct bp_target_info *target_info,
1322 struct gdbarch *gdbarch)
1323 {
1324 /* Now do full processing of the found relevant range of elements. */
1325 CORE_ADDR bp_addr = 0;
1326 int bp_size = 0;
1327 int bptoffset = 0;
1328
1329 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1330 current_program_space->aspace, 0))
1331 {
1332 /* The breakpoint is inserted in a different address space. */
1333 return;
1334 }
1335
1336 /* Addresses and length of the part of the breakpoint that
1337 we need to copy. */
1338 bp_addr = target_info->placed_address;
1339 bp_size = target_info->shadow_len;
1340
1341 if (bp_addr + bp_size <= memaddr)
1342 {
1343 /* The breakpoint is entirely before the chunk of memory we are
1344 reading. */
1345 return;
1346 }
1347
1348 if (bp_addr >= memaddr + len)
1349 {
1350 /* The breakpoint is entirely after the chunk of memory we are
1351 reading. */
1352 return;
1353 }
1354
1355 /* Offset within shadow_contents. */
1356 if (bp_addr < memaddr)
1357 {
1358 /* Only copy the second part of the breakpoint. */
1359 bp_size -= memaddr - bp_addr;
1360 bptoffset = memaddr - bp_addr;
1361 bp_addr = memaddr;
1362 }
1363
1364 if (bp_addr + bp_size > memaddr + len)
1365 {
1366 /* Only copy the first part of the breakpoint. */
1367 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1368 }
1369
1370 if (readbuf != NULL)
1371 {
1372 /* Verify that the readbuf buffer does not overlap with the
1373 shadow_contents buffer. */
1374 gdb_assert (target_info->shadow_contents >= readbuf + len
1375 || readbuf >= (target_info->shadow_contents
1376 + target_info->shadow_len));
1377
1378 /* Update the read buffer with this inserted breakpoint's
1379 shadow. */
1380 memcpy (readbuf + bp_addr - memaddr,
1381 target_info->shadow_contents + bptoffset, bp_size);
1382 }
1383 else
1384 {
1385 const unsigned char *bp;
1386 CORE_ADDR addr = target_info->reqstd_address;
1387 int placed_size;
1388
1389 /* Update the shadow with what we want to write to memory. */
1390 memcpy (target_info->shadow_contents + bptoffset,
1391 writebuf_org + bp_addr - memaddr, bp_size);
1392
1393 /* Determine appropriate breakpoint contents and size for this
1394 address. */
1395 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1396
1397 /* Update the final write buffer with this inserted
1398 breakpoint's INSN. */
1399 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1400 }
1401 }
1402
1403 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1404 by replacing any memory breakpoints with their shadowed contents.
1405
1406 If READBUF is not NULL, this buffer must not overlap with any of
1407 the breakpoint location's shadow_contents buffers. Otherwise,
1408 a failed assertion internal error will be raised.
1409
1410 The range of shadowed area by each bp_location is:
1411 bl->address - bp_locations_placed_address_before_address_max
1412 up to bl->address + bp_locations_shadow_len_after_address_max
1413 The range we were requested to resolve shadows for is:
1414 memaddr ... memaddr + len
1415 Thus the safe cutoff boundaries for performance optimization are
1416 memaddr + len <= (bl->address
1417 - bp_locations_placed_address_before_address_max)
1418 and:
1419 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1420
1421 void
1422 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1423 const gdb_byte *writebuf_org,
1424 ULONGEST memaddr, LONGEST len)
1425 {
1426 /* Left boundary, right boundary and median element of our binary
1427 search. */
1428 unsigned bc_l, bc_r, bc;
1429
1430 /* Find BC_L which is a leftmost element which may affect BUF
1431 content. It is safe to report lower value but a failure to
1432 report higher one. */
1433
1434 bc_l = 0;
1435 bc_r = bp_locations_count;
1436 while (bc_l + 1 < bc_r)
1437 {
1438 struct bp_location *bl;
1439
1440 bc = (bc_l + bc_r) / 2;
1441 bl = bp_locations[bc];
1442
1443 /* Check first BL->ADDRESS will not overflow due to the added
1444 constant. Then advance the left boundary only if we are sure
1445 the BC element can in no way affect the BUF content (MEMADDR
1446 to MEMADDR + LEN range).
1447
1448 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1449 offset so that we cannot miss a breakpoint with its shadow
1450 range tail still reaching MEMADDR. */
1451
1452 if ((bl->address + bp_locations_shadow_len_after_address_max
1453 >= bl->address)
1454 && (bl->address + bp_locations_shadow_len_after_address_max
1455 <= memaddr))
1456 bc_l = bc;
1457 else
1458 bc_r = bc;
1459 }
1460
1461 /* Due to the binary search above, we need to make sure we pick the
1462 first location that's at BC_L's address. E.g., if there are
1463 multiple locations at the same address, BC_L may end up pointing
1464 at a duplicate location, and miss the "master"/"inserted"
1465 location. Say, given locations L1, L2 and L3 at addresses A and
1466 B:
1467
1468 L1@A, L2@A, L3@B, ...
1469
1470 BC_L could end up pointing at location L2, while the "master"
1471 location could be L1. Since the `loc->inserted' flag is only set
1472 on "master" locations, we'd forget to restore the shadow of L1
1473 and L2. */
1474 while (bc_l > 0
1475 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1476 bc_l--;
1477
1478 /* Now do full processing of the found relevant range of elements. */
1479
1480 for (bc = bc_l; bc < bp_locations_count; bc++)
1481 {
1482 struct bp_location *bl = bp_locations[bc];
1483
1484 /* bp_location array has BL->OWNER always non-NULL. */
1485 if (bl->owner->type == bp_none)
1486 warning (_("reading through apparently deleted breakpoint #%d?"),
1487 bl->owner->number);
1488
1489 /* Performance optimization: any further element can no longer affect BUF
1490 content. */
1491
1492 if (bl->address >= bp_locations_placed_address_before_address_max
1493 && memaddr + len <= (bl->address
1494 - bp_locations_placed_address_before_address_max))
1495 break;
1496
1497 if (!bp_location_has_shadow (bl))
1498 continue;
1499
1500 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1501 memaddr, len, &bl->target_info, bl->gdbarch);
1502 }
1503 }
1504
1505 \f
1506
1507 /* Return true if BPT is either a software breakpoint or a hardware
1508 breakpoint. */
1509
1510 int
1511 is_breakpoint (const struct breakpoint *bpt)
1512 {
1513 return (bpt->type == bp_breakpoint
1514 || bpt->type == bp_hardware_breakpoint
1515 || bpt->type == bp_dprintf);
1516 }
1517
1518 /* Return true if BPT is of any hardware watchpoint kind. */
1519
1520 static int
1521 is_hardware_watchpoint (const struct breakpoint *bpt)
1522 {
1523 return (bpt->type == bp_hardware_watchpoint
1524 || bpt->type == bp_read_watchpoint
1525 || bpt->type == bp_access_watchpoint);
1526 }
1527
1528 /* Return true if BPT is of any watchpoint kind, hardware or
1529 software. */
1530
1531 int
1532 is_watchpoint (const struct breakpoint *bpt)
1533 {
1534 return (is_hardware_watchpoint (bpt)
1535 || bpt->type == bp_watchpoint);
1536 }
1537
1538 /* Returns true if the current thread and its running state are safe
1539 to evaluate or update watchpoint B. Watchpoints on local
1540 expressions need to be evaluated in the context of the thread that
1541 was current when the watchpoint was created, and, that thread needs
1542 to be stopped to be able to select the correct frame context.
1543 Watchpoints on global expressions can be evaluated on any thread,
1544 and in any state. It is presently left to the target allowing
1545 memory accesses when threads are running. */
1546
1547 static int
1548 watchpoint_in_thread_scope (struct watchpoint *b)
1549 {
1550 return (b->pspace == current_program_space
1551 && (b->watchpoint_thread == null_ptid
1552 || (inferior_ptid == b->watchpoint_thread
1553 && !inferior_thread ()->executing)));
1554 }
1555
1556 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1557 associated bp_watchpoint_scope breakpoint. */
1558
1559 static void
1560 watchpoint_del_at_next_stop (struct watchpoint *w)
1561 {
1562 if (w->related_breakpoint != w)
1563 {
1564 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1565 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1566 w->related_breakpoint->disposition = disp_del_at_next_stop;
1567 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1568 w->related_breakpoint = w;
1569 }
1570 w->disposition = disp_del_at_next_stop;
1571 }
1572
1573 /* Extract a bitfield value from value VAL using the bit parameters contained in
1574 watchpoint W. */
1575
1576 static struct value *
1577 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1578 {
1579 struct value *bit_val;
1580
1581 if (val == NULL)
1582 return NULL;
1583
1584 bit_val = allocate_value (value_type (val));
1585
1586 unpack_value_bitfield (bit_val,
1587 w->val_bitpos,
1588 w->val_bitsize,
1589 value_contents_for_printing (val),
1590 value_offset (val),
1591 val);
1592
1593 return bit_val;
1594 }
1595
1596 /* Allocate a dummy location and add it to B, which must be a software
1597 watchpoint. This is required because even if a software watchpoint
1598 is not watching any memory, bpstat_stop_status requires a location
1599 to be able to report stops. */
1600
1601 static void
1602 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1603 struct program_space *pspace)
1604 {
1605 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1606
1607 b->loc = allocate_bp_location (b);
1608 b->loc->pspace = pspace;
1609 b->loc->address = -1;
1610 b->loc->length = -1;
1611 }
1612
1613 /* Returns true if B is a software watchpoint that is not watching any
1614 memory (e.g., "watch $pc"). */
1615
1616 static int
1617 is_no_memory_software_watchpoint (struct breakpoint *b)
1618 {
1619 return (b->type == bp_watchpoint
1620 && b->loc != NULL
1621 && b->loc->next == NULL
1622 && b->loc->address == -1
1623 && b->loc->length == -1);
1624 }
1625
1626 /* Assuming that B is a watchpoint:
1627 - Reparse watchpoint expression, if REPARSE is non-zero
1628 - Evaluate expression and store the result in B->val
1629 - Evaluate the condition if there is one, and store the result
1630 in b->loc->cond.
1631 - Update the list of values that must be watched in B->loc.
1632
1633 If the watchpoint disposition is disp_del_at_next_stop, then do
1634 nothing. If this is local watchpoint that is out of scope, delete
1635 it.
1636
1637 Even with `set breakpoint always-inserted on' the watchpoints are
1638 removed + inserted on each stop here. Normal breakpoints must
1639 never be removed because they might be missed by a running thread
1640 when debugging in non-stop mode. On the other hand, hardware
1641 watchpoints (is_hardware_watchpoint; processed here) are specific
1642 to each LWP since they are stored in each LWP's hardware debug
1643 registers. Therefore, such LWP must be stopped first in order to
1644 be able to modify its hardware watchpoints.
1645
1646 Hardware watchpoints must be reset exactly once after being
1647 presented to the user. It cannot be done sooner, because it would
1648 reset the data used to present the watchpoint hit to the user. And
1649 it must not be done later because it could display the same single
1650 watchpoint hit during multiple GDB stops. Note that the latter is
1651 relevant only to the hardware watchpoint types bp_read_watchpoint
1652 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1653 not user-visible - its hit is suppressed if the memory content has
1654 not changed.
1655
1656 The following constraints influence the location where we can reset
1657 hardware watchpoints:
1658
1659 * target_stopped_by_watchpoint and target_stopped_data_address are
1660 called several times when GDB stops.
1661
1662 [linux]
1663 * Multiple hardware watchpoints can be hit at the same time,
1664 causing GDB to stop. GDB only presents one hardware watchpoint
1665 hit at a time as the reason for stopping, and all the other hits
1666 are presented later, one after the other, each time the user
1667 requests the execution to be resumed. Execution is not resumed
1668 for the threads still having pending hit event stored in
1669 LWP_INFO->STATUS. While the watchpoint is already removed from
1670 the inferior on the first stop the thread hit event is kept being
1671 reported from its cached value by linux_nat_stopped_data_address
1672 until the real thread resume happens after the watchpoint gets
1673 presented and thus its LWP_INFO->STATUS gets reset.
1674
1675 Therefore the hardware watchpoint hit can get safely reset on the
1676 watchpoint removal from inferior. */
1677
1678 static void
1679 update_watchpoint (struct watchpoint *b, int reparse)
1680 {
1681 int within_current_scope;
1682 struct frame_id saved_frame_id;
1683 int frame_saved;
1684
1685 /* If this is a local watchpoint, we only want to check if the
1686 watchpoint frame is in scope if the current thread is the thread
1687 that was used to create the watchpoint. */
1688 if (!watchpoint_in_thread_scope (b))
1689 return;
1690
1691 if (b->disposition == disp_del_at_next_stop)
1692 return;
1693
1694 frame_saved = 0;
1695
1696 /* Determine if the watchpoint is within scope. */
1697 if (b->exp_valid_block == NULL)
1698 within_current_scope = 1;
1699 else
1700 {
1701 struct frame_info *fi = get_current_frame ();
1702 struct gdbarch *frame_arch = get_frame_arch (fi);
1703 CORE_ADDR frame_pc = get_frame_pc (fi);
1704
1705 /* If we're at a point where the stack has been destroyed
1706 (e.g. in a function epilogue), unwinding may not work
1707 properly. Do not attempt to recreate locations at this
1708 point. See similar comments in watchpoint_check. */
1709 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1710 return;
1711
1712 /* Save the current frame's ID so we can restore it after
1713 evaluating the watchpoint expression on its own frame. */
1714 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1715 took a frame parameter, so that we didn't have to change the
1716 selected frame. */
1717 frame_saved = 1;
1718 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1719
1720 fi = frame_find_by_id (b->watchpoint_frame);
1721 within_current_scope = (fi != NULL);
1722 if (within_current_scope)
1723 select_frame (fi);
1724 }
1725
1726 /* We don't free locations. They are stored in the bp_location array
1727 and update_global_location_list will eventually delete them and
1728 remove breakpoints if needed. */
1729 b->loc = NULL;
1730
1731 if (within_current_scope && reparse)
1732 {
1733 const char *s;
1734
1735 b->exp.reset ();
1736 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1737 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1738 /* If the meaning of expression itself changed, the old value is
1739 no longer relevant. We don't want to report a watchpoint hit
1740 to the user when the old value and the new value may actually
1741 be completely different objects. */
1742 b->val = NULL;
1743 b->val_valid = 0;
1744
1745 /* Note that unlike with breakpoints, the watchpoint's condition
1746 expression is stored in the breakpoint object, not in the
1747 locations (re)created below. */
1748 if (b->cond_string != NULL)
1749 {
1750 b->cond_exp.reset ();
1751
1752 s = b->cond_string;
1753 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1754 }
1755 }
1756
1757 /* If we failed to parse the expression, for example because
1758 it refers to a global variable in a not-yet-loaded shared library,
1759 don't try to insert watchpoint. We don't automatically delete
1760 such watchpoint, though, since failure to parse expression
1761 is different from out-of-scope watchpoint. */
1762 if (!target_has_execution)
1763 {
1764 /* Without execution, memory can't change. No use to try and
1765 set watchpoint locations. The watchpoint will be reset when
1766 the target gains execution, through breakpoint_re_set. */
1767 if (!can_use_hw_watchpoints)
1768 {
1769 if (b->ops->works_in_software_mode (b))
1770 b->type = bp_watchpoint;
1771 else
1772 error (_("Can't set read/access watchpoint when "
1773 "hardware watchpoints are disabled."));
1774 }
1775 }
1776 else if (within_current_scope && b->exp)
1777 {
1778 int pc = 0;
1779 std::vector<value_ref_ptr> val_chain;
1780 struct value *v, *result;
1781 struct program_space *frame_pspace;
1782
1783 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1784
1785 /* Avoid setting b->val if it's already set. The meaning of
1786 b->val is 'the last value' user saw, and we should update
1787 it only if we reported that last value to user. As it
1788 happens, the code that reports it updates b->val directly.
1789 We don't keep track of the memory value for masked
1790 watchpoints. */
1791 if (!b->val_valid && !is_masked_watchpoint (b))
1792 {
1793 if (b->val_bitsize != 0)
1794 v = extract_bitfield_from_watchpoint_value (b, v);
1795 b->val = release_value (v);
1796 b->val_valid = 1;
1797 }
1798
1799 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1800
1801 /* Look at each value on the value chain. */
1802 gdb_assert (!val_chain.empty ());
1803 for (const value_ref_ptr &iter : val_chain)
1804 {
1805 v = iter.get ();
1806
1807 /* If it's a memory location, and GDB actually needed
1808 its contents to evaluate the expression, then we
1809 must watch it. If the first value returned is
1810 still lazy, that means an error occurred reading it;
1811 watch it anyway in case it becomes readable. */
1812 if (VALUE_LVAL (v) == lval_memory
1813 && (v == val_chain[0] || ! value_lazy (v)))
1814 {
1815 struct type *vtype = check_typedef (value_type (v));
1816
1817 /* We only watch structs and arrays if user asked
1818 for it explicitly, never if they just happen to
1819 appear in the middle of some value chain. */
1820 if (v == result
1821 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1822 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1823 {
1824 CORE_ADDR addr;
1825 enum target_hw_bp_type type;
1826 struct bp_location *loc, **tmp;
1827 int bitpos = 0, bitsize = 0;
1828
1829 if (value_bitsize (v) != 0)
1830 {
1831 /* Extract the bit parameters out from the bitfield
1832 sub-expression. */
1833 bitpos = value_bitpos (v);
1834 bitsize = value_bitsize (v);
1835 }
1836 else if (v == result && b->val_bitsize != 0)
1837 {
1838 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1839 lvalue whose bit parameters are saved in the fields
1840 VAL_BITPOS and VAL_BITSIZE. */
1841 bitpos = b->val_bitpos;
1842 bitsize = b->val_bitsize;
1843 }
1844
1845 addr = value_address (v);
1846 if (bitsize != 0)
1847 {
1848 /* Skip the bytes that don't contain the bitfield. */
1849 addr += bitpos / 8;
1850 }
1851
1852 type = hw_write;
1853 if (b->type == bp_read_watchpoint)
1854 type = hw_read;
1855 else if (b->type == bp_access_watchpoint)
1856 type = hw_access;
1857
1858 loc = allocate_bp_location (b);
1859 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1860 ;
1861 *tmp = loc;
1862 loc->gdbarch = get_type_arch (value_type (v));
1863
1864 loc->pspace = frame_pspace;
1865 loc->address = address_significant (loc->gdbarch, addr);
1866
1867 if (bitsize != 0)
1868 {
1869 /* Just cover the bytes that make up the bitfield. */
1870 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1871 }
1872 else
1873 loc->length = TYPE_LENGTH (value_type (v));
1874
1875 loc->watchpoint_type = type;
1876 }
1877 }
1878 }
1879
1880 /* Change the type of breakpoint between hardware assisted or
1881 an ordinary watchpoint depending on the hardware support
1882 and free hardware slots. REPARSE is set when the inferior
1883 is started. */
1884 if (reparse)
1885 {
1886 int reg_cnt;
1887 enum bp_loc_type loc_type;
1888 struct bp_location *bl;
1889
1890 reg_cnt = can_use_hardware_watchpoint (val_chain);
1891
1892 if (reg_cnt)
1893 {
1894 int i, target_resources_ok, other_type_used;
1895 enum bptype type;
1896
1897 /* Use an exact watchpoint when there's only one memory region to be
1898 watched, and only one debug register is needed to watch it. */
1899 b->exact = target_exact_watchpoints && reg_cnt == 1;
1900
1901 /* We need to determine how many resources are already
1902 used for all other hardware watchpoints plus this one
1903 to see if we still have enough resources to also fit
1904 this watchpoint in as well. */
1905
1906 /* If this is a software watchpoint, we try to turn it
1907 to a hardware one -- count resources as if B was of
1908 hardware watchpoint type. */
1909 type = b->type;
1910 if (type == bp_watchpoint)
1911 type = bp_hardware_watchpoint;
1912
1913 /* This watchpoint may or may not have been placed on
1914 the list yet at this point (it won't be in the list
1915 if we're trying to create it for the first time,
1916 through watch_command), so always account for it
1917 manually. */
1918
1919 /* Count resources used by all watchpoints except B. */
1920 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1921
1922 /* Add in the resources needed for B. */
1923 i += hw_watchpoint_use_count (b);
1924
1925 target_resources_ok
1926 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1927 if (target_resources_ok <= 0)
1928 {
1929 int sw_mode = b->ops->works_in_software_mode (b);
1930
1931 if (target_resources_ok == 0 && !sw_mode)
1932 error (_("Target does not support this type of "
1933 "hardware watchpoint."));
1934 else if (target_resources_ok < 0 && !sw_mode)
1935 error (_("There are not enough available hardware "
1936 "resources for this watchpoint."));
1937
1938 /* Downgrade to software watchpoint. */
1939 b->type = bp_watchpoint;
1940 }
1941 else
1942 {
1943 /* If this was a software watchpoint, we've just
1944 found we have enough resources to turn it to a
1945 hardware watchpoint. Otherwise, this is a
1946 nop. */
1947 b->type = type;
1948 }
1949 }
1950 else if (!b->ops->works_in_software_mode (b))
1951 {
1952 if (!can_use_hw_watchpoints)
1953 error (_("Can't set read/access watchpoint when "
1954 "hardware watchpoints are disabled."));
1955 else
1956 error (_("Expression cannot be implemented with "
1957 "read/access watchpoint."));
1958 }
1959 else
1960 b->type = bp_watchpoint;
1961
1962 loc_type = (b->type == bp_watchpoint? bp_loc_other
1963 : bp_loc_hardware_watchpoint);
1964 for (bl = b->loc; bl; bl = bl->next)
1965 bl->loc_type = loc_type;
1966 }
1967
1968 /* If a software watchpoint is not watching any memory, then the
1969 above left it without any location set up. But,
1970 bpstat_stop_status requires a location to be able to report
1971 stops, so make sure there's at least a dummy one. */
1972 if (b->type == bp_watchpoint && b->loc == NULL)
1973 software_watchpoint_add_no_memory_location (b, frame_pspace);
1974 }
1975 else if (!within_current_scope)
1976 {
1977 printf_filtered (_("\
1978 Watchpoint %d deleted because the program has left the block\n\
1979 in which its expression is valid.\n"),
1980 b->number);
1981 watchpoint_del_at_next_stop (b);
1982 }
1983
1984 /* Restore the selected frame. */
1985 if (frame_saved)
1986 select_frame (frame_find_by_id (saved_frame_id));
1987 }
1988
1989
1990 /* Returns 1 iff breakpoint location should be
1991 inserted in the inferior. We don't differentiate the type of BL's owner
1992 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1993 breakpoint_ops is not defined, because in insert_bp_location,
1994 tracepoint's insert_location will not be called. */
1995 static int
1996 should_be_inserted (struct bp_location *bl)
1997 {
1998 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1999 return 0;
2000
2001 if (bl->owner->disposition == disp_del_at_next_stop)
2002 return 0;
2003
2004 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2005 return 0;
2006
2007 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2008 return 0;
2009
2010 /* This is set for example, when we're attached to the parent of a
2011 vfork, and have detached from the child. The child is running
2012 free, and we expect it to do an exec or exit, at which point the
2013 OS makes the parent schedulable again (and the target reports
2014 that the vfork is done). Until the child is done with the shared
2015 memory region, do not insert breakpoints in the parent, otherwise
2016 the child could still trip on the parent's breakpoints. Since
2017 the parent is blocked anyway, it won't miss any breakpoint. */
2018 if (bl->pspace->breakpoints_not_allowed)
2019 return 0;
2020
2021 /* Don't insert a breakpoint if we're trying to step past its
2022 location, except if the breakpoint is a single-step breakpoint,
2023 and the breakpoint's thread is the thread which is stepping past
2024 a breakpoint. */
2025 if ((bl->loc_type == bp_loc_software_breakpoint
2026 || bl->loc_type == bp_loc_hardware_breakpoint)
2027 && stepping_past_instruction_at (bl->pspace->aspace,
2028 bl->address)
2029 /* The single-step breakpoint may be inserted at the location
2030 we're trying to step if the instruction branches to itself.
2031 However, the instruction won't be executed at all and it may
2032 break the semantics of the instruction, for example, the
2033 instruction is a conditional branch or updates some flags.
2034 We can't fix it unless GDB is able to emulate the instruction
2035 or switch to displaced stepping. */
2036 && !(bl->owner->type == bp_single_step
2037 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2038 {
2039 if (debug_infrun)
2040 {
2041 fprintf_unfiltered (gdb_stdlog,
2042 "infrun: skipping breakpoint: "
2043 "stepping past insn at: %s\n",
2044 paddress (bl->gdbarch, bl->address));
2045 }
2046 return 0;
2047 }
2048
2049 /* Don't insert watchpoints if we're trying to step past the
2050 instruction that triggered one. */
2051 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2052 && stepping_past_nonsteppable_watchpoint ())
2053 {
2054 if (debug_infrun)
2055 {
2056 fprintf_unfiltered (gdb_stdlog,
2057 "infrun: stepping past non-steppable watchpoint. "
2058 "skipping watchpoint at %s:%d\n",
2059 paddress (bl->gdbarch, bl->address),
2060 bl->length);
2061 }
2062 return 0;
2063 }
2064
2065 return 1;
2066 }
2067
2068 /* Same as should_be_inserted but does the check assuming
2069 that the location is not duplicated. */
2070
2071 static int
2072 unduplicated_should_be_inserted (struct bp_location *bl)
2073 {
2074 int result;
2075 const int save_duplicate = bl->duplicate;
2076
2077 bl->duplicate = 0;
2078 result = should_be_inserted (bl);
2079 bl->duplicate = save_duplicate;
2080 return result;
2081 }
2082
2083 /* Parses a conditional described by an expression COND into an
2084 agent expression bytecode suitable for evaluation
2085 by the bytecode interpreter. Return NULL if there was
2086 any error during parsing. */
2087
2088 static agent_expr_up
2089 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2090 {
2091 if (cond == NULL)
2092 return NULL;
2093
2094 agent_expr_up aexpr;
2095
2096 /* We don't want to stop processing, so catch any errors
2097 that may show up. */
2098 TRY
2099 {
2100 aexpr = gen_eval_for_expr (scope, cond);
2101 }
2102
2103 CATCH (ex, RETURN_MASK_ERROR)
2104 {
2105 /* If we got here, it means the condition could not be parsed to a valid
2106 bytecode expression and thus can't be evaluated on the target's side.
2107 It's no use iterating through the conditions. */
2108 }
2109 END_CATCH
2110
2111 /* We have a valid agent expression. */
2112 return aexpr;
2113 }
2114
2115 /* Based on location BL, create a list of breakpoint conditions to be
2116 passed on to the target. If we have duplicated locations with different
2117 conditions, we will add such conditions to the list. The idea is that the
2118 target will evaluate the list of conditions and will only notify GDB when
2119 one of them is true. */
2120
2121 static void
2122 build_target_condition_list (struct bp_location *bl)
2123 {
2124 struct bp_location **locp = NULL, **loc2p;
2125 int null_condition_or_parse_error = 0;
2126 int modified = bl->needs_update;
2127 struct bp_location *loc;
2128
2129 /* Release conditions left over from a previous insert. */
2130 bl->target_info.conditions.clear ();
2131
2132 /* This is only meaningful if the target is
2133 evaluating conditions and if the user has
2134 opted for condition evaluation on the target's
2135 side. */
2136 if (gdb_evaluates_breakpoint_condition_p ()
2137 || !target_supports_evaluation_of_breakpoint_conditions ())
2138 return;
2139
2140 /* Do a first pass to check for locations with no assigned
2141 conditions or conditions that fail to parse to a valid agent expression
2142 bytecode. If any of these happen, then it's no use to send conditions
2143 to the target since this location will always trigger and generate a
2144 response back to GDB. */
2145 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2146 {
2147 loc = (*loc2p);
2148 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2149 {
2150 if (modified)
2151 {
2152 /* Re-parse the conditions since something changed. In that
2153 case we already freed the condition bytecodes (see
2154 force_breakpoint_reinsertion). We just
2155 need to parse the condition to bytecodes again. */
2156 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2157 loc->cond.get ());
2158 }
2159
2160 /* If we have a NULL bytecode expression, it means something
2161 went wrong or we have a null condition expression. */
2162 if (!loc->cond_bytecode)
2163 {
2164 null_condition_or_parse_error = 1;
2165 break;
2166 }
2167 }
2168 }
2169
2170 /* If any of these happened, it means we will have to evaluate the conditions
2171 for the location's address on gdb's side. It is no use keeping bytecodes
2172 for all the other duplicate locations, thus we free all of them here.
2173
2174 This is so we have a finer control over which locations' conditions are
2175 being evaluated by GDB or the remote stub. */
2176 if (null_condition_or_parse_error)
2177 {
2178 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2179 {
2180 loc = (*loc2p);
2181 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2182 {
2183 /* Only go as far as the first NULL bytecode is
2184 located. */
2185 if (!loc->cond_bytecode)
2186 return;
2187
2188 loc->cond_bytecode.reset ();
2189 }
2190 }
2191 }
2192
2193 /* No NULL conditions or failed bytecode generation. Build a condition list
2194 for this location's address. */
2195 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2196 {
2197 loc = (*loc2p);
2198 if (loc->cond
2199 && is_breakpoint (loc->owner)
2200 && loc->pspace->num == bl->pspace->num
2201 && loc->owner->enable_state == bp_enabled
2202 && loc->enabled)
2203 {
2204 /* Add the condition to the vector. This will be used later
2205 to send the conditions to the target. */
2206 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2207 }
2208 }
2209
2210 return;
2211 }
2212
2213 /* Parses a command described by string CMD into an agent expression
2214 bytecode suitable for evaluation by the bytecode interpreter.
2215 Return NULL if there was any error during parsing. */
2216
2217 static agent_expr_up
2218 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2219 {
2220 const char *cmdrest;
2221 const char *format_start, *format_end;
2222 struct gdbarch *gdbarch = get_current_arch ();
2223
2224 if (cmd == NULL)
2225 return NULL;
2226
2227 cmdrest = cmd;
2228
2229 if (*cmdrest == ',')
2230 ++cmdrest;
2231 cmdrest = skip_spaces (cmdrest);
2232
2233 if (*cmdrest++ != '"')
2234 error (_("No format string following the location"));
2235
2236 format_start = cmdrest;
2237
2238 format_pieces fpieces (&cmdrest);
2239
2240 format_end = cmdrest;
2241
2242 if (*cmdrest++ != '"')
2243 error (_("Bad format string, non-terminated '\"'."));
2244
2245 cmdrest = skip_spaces (cmdrest);
2246
2247 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2248 error (_("Invalid argument syntax"));
2249
2250 if (*cmdrest == ',')
2251 cmdrest++;
2252 cmdrest = skip_spaces (cmdrest);
2253
2254 /* For each argument, make an expression. */
2255
2256 std::vector<struct expression *> argvec;
2257 while (*cmdrest != '\0')
2258 {
2259 const char *cmd1;
2260
2261 cmd1 = cmdrest;
2262 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2263 argvec.push_back (expr.release ());
2264 cmdrest = cmd1;
2265 if (*cmdrest == ',')
2266 ++cmdrest;
2267 }
2268
2269 agent_expr_up aexpr;
2270
2271 /* We don't want to stop processing, so catch any errors
2272 that may show up. */
2273 TRY
2274 {
2275 aexpr = gen_printf (scope, gdbarch, 0, 0,
2276 format_start, format_end - format_start,
2277 argvec.size (), argvec.data ());
2278 }
2279 CATCH (ex, RETURN_MASK_ERROR)
2280 {
2281 /* If we got here, it means the command could not be parsed to a valid
2282 bytecode expression and thus can't be evaluated on the target's side.
2283 It's no use iterating through the other commands. */
2284 }
2285 END_CATCH
2286
2287 /* We have a valid agent expression, return it. */
2288 return aexpr;
2289 }
2290
2291 /* Based on location BL, create a list of breakpoint commands to be
2292 passed on to the target. If we have duplicated locations with
2293 different commands, we will add any such to the list. */
2294
2295 static void
2296 build_target_command_list (struct bp_location *bl)
2297 {
2298 struct bp_location **locp = NULL, **loc2p;
2299 int null_command_or_parse_error = 0;
2300 int modified = bl->needs_update;
2301 struct bp_location *loc;
2302
2303 /* Clear commands left over from a previous insert. */
2304 bl->target_info.tcommands.clear ();
2305
2306 if (!target_can_run_breakpoint_commands ())
2307 return;
2308
2309 /* For now, limit to agent-style dprintf breakpoints. */
2310 if (dprintf_style != dprintf_style_agent)
2311 return;
2312
2313 /* For now, if we have any duplicate location that isn't a dprintf,
2314 don't install the target-side commands, as that would make the
2315 breakpoint not be reported to the core, and we'd lose
2316 control. */
2317 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2318 {
2319 loc = (*loc2p);
2320 if (is_breakpoint (loc->owner)
2321 && loc->pspace->num == bl->pspace->num
2322 && loc->owner->type != bp_dprintf)
2323 return;
2324 }
2325
2326 /* Do a first pass to check for locations with no assigned
2327 conditions or conditions that fail to parse to a valid agent expression
2328 bytecode. If any of these happen, then it's no use to send conditions
2329 to the target since this location will always trigger and generate a
2330 response back to GDB. */
2331 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2332 {
2333 loc = (*loc2p);
2334 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2335 {
2336 if (modified)
2337 {
2338 /* Re-parse the commands since something changed. In that
2339 case we already freed the command bytecodes (see
2340 force_breakpoint_reinsertion). We just
2341 need to parse the command to bytecodes again. */
2342 loc->cmd_bytecode
2343 = parse_cmd_to_aexpr (bl->address,
2344 loc->owner->extra_string);
2345 }
2346
2347 /* If we have a NULL bytecode expression, it means something
2348 went wrong or we have a null command expression. */
2349 if (!loc->cmd_bytecode)
2350 {
2351 null_command_or_parse_error = 1;
2352 break;
2353 }
2354 }
2355 }
2356
2357 /* If anything failed, then we're not doing target-side commands,
2358 and so clean up. */
2359 if (null_command_or_parse_error)
2360 {
2361 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2362 {
2363 loc = (*loc2p);
2364 if (is_breakpoint (loc->owner)
2365 && loc->pspace->num == bl->pspace->num)
2366 {
2367 /* Only go as far as the first NULL bytecode is
2368 located. */
2369 if (loc->cmd_bytecode == NULL)
2370 return;
2371
2372 loc->cmd_bytecode.reset ();
2373 }
2374 }
2375 }
2376
2377 /* No NULL commands or failed bytecode generation. Build a command list
2378 for this location's address. */
2379 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2380 {
2381 loc = (*loc2p);
2382 if (loc->owner->extra_string
2383 && is_breakpoint (loc->owner)
2384 && loc->pspace->num == bl->pspace->num
2385 && loc->owner->enable_state == bp_enabled
2386 && loc->enabled)
2387 {
2388 /* Add the command to the vector. This will be used later
2389 to send the commands to the target. */
2390 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2391 }
2392 }
2393
2394 bl->target_info.persist = 0;
2395 /* Maybe flag this location as persistent. */
2396 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2397 bl->target_info.persist = 1;
2398 }
2399
2400 /* Return the kind of breakpoint on address *ADDR. Get the kind
2401 of breakpoint according to ADDR except single-step breakpoint.
2402 Get the kind of single-step breakpoint according to the current
2403 registers state. */
2404
2405 static int
2406 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2407 {
2408 if (bl->owner->type == bp_single_step)
2409 {
2410 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2411 struct regcache *regcache;
2412
2413 regcache = get_thread_regcache (thr);
2414
2415 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2416 regcache, addr);
2417 }
2418 else
2419 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2420 }
2421
2422 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2423 location. Any error messages are printed to TMP_ERROR_STREAM; and
2424 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2425 Returns 0 for success, 1 if the bp_location type is not supported or
2426 -1 for failure.
2427
2428 NOTE drow/2003-09-09: This routine could be broken down to an
2429 object-style method for each breakpoint or catchpoint type. */
2430 static int
2431 insert_bp_location (struct bp_location *bl,
2432 struct ui_file *tmp_error_stream,
2433 int *disabled_breaks,
2434 int *hw_breakpoint_error,
2435 int *hw_bp_error_explained_already)
2436 {
2437 gdb_exception bp_excpt = exception_none;
2438
2439 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2440 return 0;
2441
2442 /* Note we don't initialize bl->target_info, as that wipes out
2443 the breakpoint location's shadow_contents if the breakpoint
2444 is still inserted at that location. This in turn breaks
2445 target_read_memory which depends on these buffers when
2446 a memory read is requested at the breakpoint location:
2447 Once the target_info has been wiped, we fail to see that
2448 we have a breakpoint inserted at that address and thus
2449 read the breakpoint instead of returning the data saved in
2450 the breakpoint location's shadow contents. */
2451 bl->target_info.reqstd_address = bl->address;
2452 bl->target_info.placed_address_space = bl->pspace->aspace;
2453 bl->target_info.length = bl->length;
2454
2455 /* When working with target-side conditions, we must pass all the conditions
2456 for the same breakpoint address down to the target since GDB will not
2457 insert those locations. With a list of breakpoint conditions, the target
2458 can decide when to stop and notify GDB. */
2459
2460 if (is_breakpoint (bl->owner))
2461 {
2462 build_target_condition_list (bl);
2463 build_target_command_list (bl);
2464 /* Reset the modification marker. */
2465 bl->needs_update = 0;
2466 }
2467
2468 if (bl->loc_type == bp_loc_software_breakpoint
2469 || bl->loc_type == bp_loc_hardware_breakpoint)
2470 {
2471 if (bl->owner->type != bp_hardware_breakpoint)
2472 {
2473 /* If the explicitly specified breakpoint type
2474 is not hardware breakpoint, check the memory map to see
2475 if the breakpoint address is in read only memory or not.
2476
2477 Two important cases are:
2478 - location type is not hardware breakpoint, memory
2479 is readonly. We change the type of the location to
2480 hardware breakpoint.
2481 - location type is hardware breakpoint, memory is
2482 read-write. This means we've previously made the
2483 location hardware one, but then the memory map changed,
2484 so we undo.
2485
2486 When breakpoints are removed, remove_breakpoints will use
2487 location types we've just set here, the only possible
2488 problem is that memory map has changed during running
2489 program, but it's not going to work anyway with current
2490 gdb. */
2491 struct mem_region *mr
2492 = lookup_mem_region (bl->target_info.reqstd_address);
2493
2494 if (mr)
2495 {
2496 if (automatic_hardware_breakpoints)
2497 {
2498 enum bp_loc_type new_type;
2499
2500 if (mr->attrib.mode != MEM_RW)
2501 new_type = bp_loc_hardware_breakpoint;
2502 else
2503 new_type = bp_loc_software_breakpoint;
2504
2505 if (new_type != bl->loc_type)
2506 {
2507 static int said = 0;
2508
2509 bl->loc_type = new_type;
2510 if (!said)
2511 {
2512 fprintf_filtered (gdb_stdout,
2513 _("Note: automatically using "
2514 "hardware breakpoints for "
2515 "read-only addresses.\n"));
2516 said = 1;
2517 }
2518 }
2519 }
2520 else if (bl->loc_type == bp_loc_software_breakpoint
2521 && mr->attrib.mode != MEM_RW)
2522 {
2523 fprintf_unfiltered (tmp_error_stream,
2524 _("Cannot insert breakpoint %d.\n"
2525 "Cannot set software breakpoint "
2526 "at read-only address %s\n"),
2527 bl->owner->number,
2528 paddress (bl->gdbarch, bl->address));
2529 return 1;
2530 }
2531 }
2532 }
2533
2534 /* First check to see if we have to handle an overlay. */
2535 if (overlay_debugging == ovly_off
2536 || bl->section == NULL
2537 || !(section_is_overlay (bl->section)))
2538 {
2539 /* No overlay handling: just set the breakpoint. */
2540 TRY
2541 {
2542 int val;
2543
2544 val = bl->owner->ops->insert_location (bl);
2545 if (val)
2546 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2547 }
2548 CATCH (e, RETURN_MASK_ALL)
2549 {
2550 bp_excpt = e;
2551 }
2552 END_CATCH
2553 }
2554 else
2555 {
2556 /* This breakpoint is in an overlay section.
2557 Shall we set a breakpoint at the LMA? */
2558 if (!overlay_events_enabled)
2559 {
2560 /* Yes -- overlay event support is not active,
2561 so we must try to set a breakpoint at the LMA.
2562 This will not work for a hardware breakpoint. */
2563 if (bl->loc_type == bp_loc_hardware_breakpoint)
2564 warning (_("hardware breakpoint %d not supported in overlay!"),
2565 bl->owner->number);
2566 else
2567 {
2568 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2569 bl->section);
2570 /* Set a software (trap) breakpoint at the LMA. */
2571 bl->overlay_target_info = bl->target_info;
2572 bl->overlay_target_info.reqstd_address = addr;
2573
2574 /* No overlay handling: just set the breakpoint. */
2575 TRY
2576 {
2577 int val;
2578
2579 bl->overlay_target_info.kind
2580 = breakpoint_kind (bl, &addr);
2581 bl->overlay_target_info.placed_address = addr;
2582 val = target_insert_breakpoint (bl->gdbarch,
2583 &bl->overlay_target_info);
2584 if (val)
2585 bp_excpt
2586 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2587 }
2588 CATCH (e, RETURN_MASK_ALL)
2589 {
2590 bp_excpt = e;
2591 }
2592 END_CATCH
2593
2594 if (bp_excpt.reason != 0)
2595 fprintf_unfiltered (tmp_error_stream,
2596 "Overlay breakpoint %d "
2597 "failed: in ROM?\n",
2598 bl->owner->number);
2599 }
2600 }
2601 /* Shall we set a breakpoint at the VMA? */
2602 if (section_is_mapped (bl->section))
2603 {
2604 /* Yes. This overlay section is mapped into memory. */
2605 TRY
2606 {
2607 int val;
2608
2609 val = bl->owner->ops->insert_location (bl);
2610 if (val)
2611 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2612 }
2613 CATCH (e, RETURN_MASK_ALL)
2614 {
2615 bp_excpt = e;
2616 }
2617 END_CATCH
2618 }
2619 else
2620 {
2621 /* No. This breakpoint will not be inserted.
2622 No error, but do not mark the bp as 'inserted'. */
2623 return 0;
2624 }
2625 }
2626
2627 if (bp_excpt.reason != 0)
2628 {
2629 /* Can't set the breakpoint. */
2630
2631 /* In some cases, we might not be able to insert a
2632 breakpoint in a shared library that has already been
2633 removed, but we have not yet processed the shlib unload
2634 event. Unfortunately, some targets that implement
2635 breakpoint insertion themselves can't tell why the
2636 breakpoint insertion failed (e.g., the remote target
2637 doesn't define error codes), so we must treat generic
2638 errors as memory errors. */
2639 if (bp_excpt.reason == RETURN_ERROR
2640 && (bp_excpt.error == GENERIC_ERROR
2641 || bp_excpt.error == MEMORY_ERROR)
2642 && bl->loc_type == bp_loc_software_breakpoint
2643 && (solib_name_from_address (bl->pspace, bl->address)
2644 || shared_objfile_contains_address_p (bl->pspace,
2645 bl->address)))
2646 {
2647 /* See also: disable_breakpoints_in_shlibs. */
2648 bl->shlib_disabled = 1;
2649 gdb::observers::breakpoint_modified.notify (bl->owner);
2650 if (!*disabled_breaks)
2651 {
2652 fprintf_unfiltered (tmp_error_stream,
2653 "Cannot insert breakpoint %d.\n",
2654 bl->owner->number);
2655 fprintf_unfiltered (tmp_error_stream,
2656 "Temporarily disabling shared "
2657 "library breakpoints:\n");
2658 }
2659 *disabled_breaks = 1;
2660 fprintf_unfiltered (tmp_error_stream,
2661 "breakpoint #%d\n", bl->owner->number);
2662 return 0;
2663 }
2664 else
2665 {
2666 if (bl->loc_type == bp_loc_hardware_breakpoint)
2667 {
2668 *hw_breakpoint_error = 1;
2669 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2670 fprintf_unfiltered (tmp_error_stream,
2671 "Cannot insert hardware breakpoint %d%s",
2672 bl->owner->number,
2673 bp_excpt.message ? ":" : ".\n");
2674 if (bp_excpt.message != NULL)
2675 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2676 bp_excpt.message);
2677 }
2678 else
2679 {
2680 if (bp_excpt.message == NULL)
2681 {
2682 std::string message
2683 = memory_error_message (TARGET_XFER_E_IO,
2684 bl->gdbarch, bl->address);
2685
2686 fprintf_unfiltered (tmp_error_stream,
2687 "Cannot insert breakpoint %d.\n"
2688 "%s\n",
2689 bl->owner->number, message.c_str ());
2690 }
2691 else
2692 {
2693 fprintf_unfiltered (tmp_error_stream,
2694 "Cannot insert breakpoint %d: %s\n",
2695 bl->owner->number,
2696 bp_excpt.message);
2697 }
2698 }
2699 return 1;
2700
2701 }
2702 }
2703 else
2704 bl->inserted = 1;
2705
2706 return 0;
2707 }
2708
2709 else if (bl->loc_type == bp_loc_hardware_watchpoint
2710 /* NOTE drow/2003-09-08: This state only exists for removing
2711 watchpoints. It's not clear that it's necessary... */
2712 && bl->owner->disposition != disp_del_at_next_stop)
2713 {
2714 int val;
2715
2716 gdb_assert (bl->owner->ops != NULL
2717 && bl->owner->ops->insert_location != NULL);
2718
2719 val = bl->owner->ops->insert_location (bl);
2720
2721 /* If trying to set a read-watchpoint, and it turns out it's not
2722 supported, try emulating one with an access watchpoint. */
2723 if (val == 1 && bl->watchpoint_type == hw_read)
2724 {
2725 struct bp_location *loc, **loc_temp;
2726
2727 /* But don't try to insert it, if there's already another
2728 hw_access location that would be considered a duplicate
2729 of this one. */
2730 ALL_BP_LOCATIONS (loc, loc_temp)
2731 if (loc != bl
2732 && loc->watchpoint_type == hw_access
2733 && watchpoint_locations_match (bl, loc))
2734 {
2735 bl->duplicate = 1;
2736 bl->inserted = 1;
2737 bl->target_info = loc->target_info;
2738 bl->watchpoint_type = hw_access;
2739 val = 0;
2740 break;
2741 }
2742
2743 if (val == 1)
2744 {
2745 bl->watchpoint_type = hw_access;
2746 val = bl->owner->ops->insert_location (bl);
2747
2748 if (val)
2749 /* Back to the original value. */
2750 bl->watchpoint_type = hw_read;
2751 }
2752 }
2753
2754 bl->inserted = (val == 0);
2755 }
2756
2757 else if (bl->owner->type == bp_catchpoint)
2758 {
2759 int val;
2760
2761 gdb_assert (bl->owner->ops != NULL
2762 && bl->owner->ops->insert_location != NULL);
2763
2764 val = bl->owner->ops->insert_location (bl);
2765 if (val)
2766 {
2767 bl->owner->enable_state = bp_disabled;
2768
2769 if (val == 1)
2770 warning (_("\
2771 Error inserting catchpoint %d: Your system does not support this type\n\
2772 of catchpoint."), bl->owner->number);
2773 else
2774 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2775 }
2776
2777 bl->inserted = (val == 0);
2778
2779 /* We've already printed an error message if there was a problem
2780 inserting this catchpoint, and we've disabled the catchpoint,
2781 so just return success. */
2782 return 0;
2783 }
2784
2785 return 0;
2786 }
2787
2788 /* This function is called when program space PSPACE is about to be
2789 deleted. It takes care of updating breakpoints to not reference
2790 PSPACE anymore. */
2791
2792 void
2793 breakpoint_program_space_exit (struct program_space *pspace)
2794 {
2795 struct breakpoint *b, *b_temp;
2796 struct bp_location *loc, **loc_temp;
2797
2798 /* Remove any breakpoint that was set through this program space. */
2799 ALL_BREAKPOINTS_SAFE (b, b_temp)
2800 {
2801 if (b->pspace == pspace)
2802 delete_breakpoint (b);
2803 }
2804
2805 /* Breakpoints set through other program spaces could have locations
2806 bound to PSPACE as well. Remove those. */
2807 ALL_BP_LOCATIONS (loc, loc_temp)
2808 {
2809 struct bp_location *tmp;
2810
2811 if (loc->pspace == pspace)
2812 {
2813 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2814 if (loc->owner->loc == loc)
2815 loc->owner->loc = loc->next;
2816 else
2817 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2818 if (tmp->next == loc)
2819 {
2820 tmp->next = loc->next;
2821 break;
2822 }
2823 }
2824 }
2825
2826 /* Now update the global location list to permanently delete the
2827 removed locations above. */
2828 update_global_location_list (UGLL_DONT_INSERT);
2829 }
2830
2831 /* Make sure all breakpoints are inserted in inferior.
2832 Throws exception on any error.
2833 A breakpoint that is already inserted won't be inserted
2834 again, so calling this function twice is safe. */
2835 void
2836 insert_breakpoints (void)
2837 {
2838 struct breakpoint *bpt;
2839
2840 ALL_BREAKPOINTS (bpt)
2841 if (is_hardware_watchpoint (bpt))
2842 {
2843 struct watchpoint *w = (struct watchpoint *) bpt;
2844
2845 update_watchpoint (w, 0 /* don't reparse. */);
2846 }
2847
2848 /* Updating watchpoints creates new locations, so update the global
2849 location list. Explicitly tell ugll to insert locations and
2850 ignore breakpoints_always_inserted_mode. */
2851 update_global_location_list (UGLL_INSERT);
2852 }
2853
2854 /* Invoke CALLBACK for each of bp_location. */
2855
2856 void
2857 iterate_over_bp_locations (walk_bp_location_callback callback)
2858 {
2859 struct bp_location *loc, **loc_tmp;
2860
2861 ALL_BP_LOCATIONS (loc, loc_tmp)
2862 {
2863 callback (loc, NULL);
2864 }
2865 }
2866
2867 /* This is used when we need to synch breakpoint conditions between GDB and the
2868 target. It is the case with deleting and disabling of breakpoints when using
2869 always-inserted mode. */
2870
2871 static void
2872 update_inserted_breakpoint_locations (void)
2873 {
2874 struct bp_location *bl, **blp_tmp;
2875 int error_flag = 0;
2876 int val = 0;
2877 int disabled_breaks = 0;
2878 int hw_breakpoint_error = 0;
2879 int hw_bp_details_reported = 0;
2880
2881 string_file tmp_error_stream;
2882
2883 /* Explicitly mark the warning -- this will only be printed if
2884 there was an error. */
2885 tmp_error_stream.puts ("Warning:\n");
2886
2887 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2888
2889 ALL_BP_LOCATIONS (bl, blp_tmp)
2890 {
2891 /* We only want to update software breakpoints and hardware
2892 breakpoints. */
2893 if (!is_breakpoint (bl->owner))
2894 continue;
2895
2896 /* We only want to update locations that are already inserted
2897 and need updating. This is to avoid unwanted insertion during
2898 deletion of breakpoints. */
2899 if (!bl->inserted || !bl->needs_update)
2900 continue;
2901
2902 switch_to_program_space_and_thread (bl->pspace);
2903
2904 /* For targets that support global breakpoints, there's no need
2905 to select an inferior to insert breakpoint to. In fact, even
2906 if we aren't attached to any process yet, we should still
2907 insert breakpoints. */
2908 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2909 && inferior_ptid == null_ptid)
2910 continue;
2911
2912 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2913 &hw_breakpoint_error, &hw_bp_details_reported);
2914 if (val)
2915 error_flag = val;
2916 }
2917
2918 if (error_flag)
2919 {
2920 target_terminal::ours_for_output ();
2921 error_stream (tmp_error_stream);
2922 }
2923 }
2924
2925 /* Used when starting or continuing the program. */
2926
2927 static void
2928 insert_breakpoint_locations (void)
2929 {
2930 struct breakpoint *bpt;
2931 struct bp_location *bl, **blp_tmp;
2932 int error_flag = 0;
2933 int val = 0;
2934 int disabled_breaks = 0;
2935 int hw_breakpoint_error = 0;
2936 int hw_bp_error_explained_already = 0;
2937
2938 string_file tmp_error_stream;
2939
2940 /* Explicitly mark the warning -- this will only be printed if
2941 there was an error. */
2942 tmp_error_stream.puts ("Warning:\n");
2943
2944 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2945
2946 ALL_BP_LOCATIONS (bl, blp_tmp)
2947 {
2948 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2949 continue;
2950
2951 /* There is no point inserting thread-specific breakpoints if
2952 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2953 has BL->OWNER always non-NULL. */
2954 if (bl->owner->thread != -1
2955 && !valid_global_thread_id (bl->owner->thread))
2956 continue;
2957
2958 switch_to_program_space_and_thread (bl->pspace);
2959
2960 /* For targets that support global breakpoints, there's no need
2961 to select an inferior to insert breakpoint to. In fact, even
2962 if we aren't attached to any process yet, we should still
2963 insert breakpoints. */
2964 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2965 && inferior_ptid == null_ptid)
2966 continue;
2967
2968 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2969 &hw_breakpoint_error, &hw_bp_error_explained_already);
2970 if (val)
2971 error_flag = val;
2972 }
2973
2974 /* If we failed to insert all locations of a watchpoint, remove
2975 them, as half-inserted watchpoint is of limited use. */
2976 ALL_BREAKPOINTS (bpt)
2977 {
2978 int some_failed = 0;
2979 struct bp_location *loc;
2980
2981 if (!is_hardware_watchpoint (bpt))
2982 continue;
2983
2984 if (!breakpoint_enabled (bpt))
2985 continue;
2986
2987 if (bpt->disposition == disp_del_at_next_stop)
2988 continue;
2989
2990 for (loc = bpt->loc; loc; loc = loc->next)
2991 if (!loc->inserted && should_be_inserted (loc))
2992 {
2993 some_failed = 1;
2994 break;
2995 }
2996 if (some_failed)
2997 {
2998 for (loc = bpt->loc; loc; loc = loc->next)
2999 if (loc->inserted)
3000 remove_breakpoint (loc);
3001
3002 hw_breakpoint_error = 1;
3003 tmp_error_stream.printf ("Could not insert "
3004 "hardware watchpoint %d.\n",
3005 bpt->number);
3006 error_flag = -1;
3007 }
3008 }
3009
3010 if (error_flag)
3011 {
3012 /* If a hardware breakpoint or watchpoint was inserted, add a
3013 message about possibly exhausted resources. */
3014 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3015 {
3016 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3017 You may have requested too many hardware breakpoints/watchpoints.\n");
3018 }
3019 target_terminal::ours_for_output ();
3020 error_stream (tmp_error_stream);
3021 }
3022 }
3023
3024 /* Used when the program stops.
3025 Returns zero if successful, or non-zero if there was a problem
3026 removing a breakpoint location. */
3027
3028 int
3029 remove_breakpoints (void)
3030 {
3031 struct bp_location *bl, **blp_tmp;
3032 int val = 0;
3033
3034 ALL_BP_LOCATIONS (bl, blp_tmp)
3035 {
3036 if (bl->inserted && !is_tracepoint (bl->owner))
3037 val |= remove_breakpoint (bl);
3038 }
3039 return val;
3040 }
3041
3042 /* When a thread exits, remove breakpoints that are related to
3043 that thread. */
3044
3045 static void
3046 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3047 {
3048 struct breakpoint *b, *b_tmp;
3049
3050 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3051 {
3052 if (b->thread == tp->global_num && user_breakpoint_p (b))
3053 {
3054 b->disposition = disp_del_at_next_stop;
3055
3056 printf_filtered (_("\
3057 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3058 b->number, print_thread_id (tp));
3059
3060 /* Hide it from the user. */
3061 b->number = 0;
3062 }
3063 }
3064 }
3065
3066 /* Remove breakpoints of inferior INF. */
3067
3068 int
3069 remove_breakpoints_inf (inferior *inf)
3070 {
3071 struct bp_location *bl, **blp_tmp;
3072 int val;
3073
3074 ALL_BP_LOCATIONS (bl, blp_tmp)
3075 {
3076 if (bl->pspace != inf->pspace)
3077 continue;
3078
3079 if (bl->inserted && !bl->target_info.persist)
3080 {
3081 val = remove_breakpoint (bl);
3082 if (val != 0)
3083 return val;
3084 }
3085 }
3086 return 0;
3087 }
3088
3089 static int internal_breakpoint_number = -1;
3090
3091 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3092 If INTERNAL is non-zero, the breakpoint number will be populated
3093 from internal_breakpoint_number and that variable decremented.
3094 Otherwise the breakpoint number will be populated from
3095 breakpoint_count and that value incremented. Internal breakpoints
3096 do not set the internal var bpnum. */
3097 static void
3098 set_breakpoint_number (int internal, struct breakpoint *b)
3099 {
3100 if (internal)
3101 b->number = internal_breakpoint_number--;
3102 else
3103 {
3104 set_breakpoint_count (breakpoint_count + 1);
3105 b->number = breakpoint_count;
3106 }
3107 }
3108
3109 static struct breakpoint *
3110 create_internal_breakpoint (struct gdbarch *gdbarch,
3111 CORE_ADDR address, enum bptype type,
3112 const struct breakpoint_ops *ops)
3113 {
3114 symtab_and_line sal;
3115 sal.pc = address;
3116 sal.section = find_pc_overlay (sal.pc);
3117 sal.pspace = current_program_space;
3118
3119 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3120 b->number = internal_breakpoint_number--;
3121 b->disposition = disp_donttouch;
3122
3123 return b;
3124 }
3125
3126 static const char *const longjmp_names[] =
3127 {
3128 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3129 };
3130 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3131
3132 /* Per-objfile data private to breakpoint.c. */
3133 struct breakpoint_objfile_data
3134 {
3135 /* Minimal symbol for "_ovly_debug_event" (if any). */
3136 struct bound_minimal_symbol overlay_msym {};
3137
3138 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3139 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3140
3141 /* True if we have looked for longjmp probes. */
3142 int longjmp_searched = 0;
3143
3144 /* SystemTap probe points for longjmp (if any). These are non-owning
3145 references. */
3146 std::vector<probe *> longjmp_probes;
3147
3148 /* Minimal symbol for "std::terminate()" (if any). */
3149 struct bound_minimal_symbol terminate_msym {};
3150
3151 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3152 struct bound_minimal_symbol exception_msym {};
3153
3154 /* True if we have looked for exception probes. */
3155 int exception_searched = 0;
3156
3157 /* SystemTap probe points for unwinding (if any). These are non-owning
3158 references. */
3159 std::vector<probe *> exception_probes;
3160 };
3161
3162 static const struct objfile_data *breakpoint_objfile_key;
3163
3164 /* Minimal symbol not found sentinel. */
3165 static struct minimal_symbol msym_not_found;
3166
3167 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3168
3169 static int
3170 msym_not_found_p (const struct minimal_symbol *msym)
3171 {
3172 return msym == &msym_not_found;
3173 }
3174
3175 /* Return per-objfile data needed by breakpoint.c.
3176 Allocate the data if necessary. */
3177
3178 static struct breakpoint_objfile_data *
3179 get_breakpoint_objfile_data (struct objfile *objfile)
3180 {
3181 struct breakpoint_objfile_data *bp_objfile_data;
3182
3183 bp_objfile_data = ((struct breakpoint_objfile_data *)
3184 objfile_data (objfile, breakpoint_objfile_key));
3185 if (bp_objfile_data == NULL)
3186 {
3187 bp_objfile_data = new breakpoint_objfile_data ();
3188 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3189 }
3190 return bp_objfile_data;
3191 }
3192
3193 static void
3194 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3195 {
3196 struct breakpoint_objfile_data *bp_objfile_data
3197 = (struct breakpoint_objfile_data *) data;
3198
3199 delete bp_objfile_data;
3200 }
3201
3202 static void
3203 create_overlay_event_breakpoint (void)
3204 {
3205 struct objfile *objfile;
3206 const char *const func_name = "_ovly_debug_event";
3207
3208 ALL_OBJFILES (objfile)
3209 {
3210 struct breakpoint *b;
3211 struct breakpoint_objfile_data *bp_objfile_data;
3212 CORE_ADDR addr;
3213 struct explicit_location explicit_loc;
3214
3215 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3216
3217 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3218 continue;
3219
3220 if (bp_objfile_data->overlay_msym.minsym == NULL)
3221 {
3222 struct bound_minimal_symbol m;
3223
3224 m = lookup_minimal_symbol_text (func_name, objfile);
3225 if (m.minsym == NULL)
3226 {
3227 /* Avoid future lookups in this objfile. */
3228 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3229 continue;
3230 }
3231 bp_objfile_data->overlay_msym = m;
3232 }
3233
3234 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3235 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3236 bp_overlay_event,
3237 &internal_breakpoint_ops);
3238 initialize_explicit_location (&explicit_loc);
3239 explicit_loc.function_name = ASTRDUP (func_name);
3240 b->location = new_explicit_location (&explicit_loc);
3241
3242 if (overlay_debugging == ovly_auto)
3243 {
3244 b->enable_state = bp_enabled;
3245 overlay_events_enabled = 1;
3246 }
3247 else
3248 {
3249 b->enable_state = bp_disabled;
3250 overlay_events_enabled = 0;
3251 }
3252 }
3253 }
3254
3255 static void
3256 create_longjmp_master_breakpoint (void)
3257 {
3258 struct program_space *pspace;
3259
3260 scoped_restore_current_program_space restore_pspace;
3261
3262 ALL_PSPACES (pspace)
3263 {
3264 struct objfile *objfile;
3265
3266 set_current_program_space (pspace);
3267
3268 ALL_OBJFILES (objfile)
3269 {
3270 int i;
3271 struct gdbarch *gdbarch;
3272 struct breakpoint_objfile_data *bp_objfile_data;
3273
3274 gdbarch = get_objfile_arch (objfile);
3275
3276 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3277
3278 if (!bp_objfile_data->longjmp_searched)
3279 {
3280 std::vector<probe *> ret
3281 = find_probes_in_objfile (objfile, "libc", "longjmp");
3282
3283 if (!ret.empty ())
3284 {
3285 /* We are only interested in checking one element. */
3286 probe *p = ret[0];
3287
3288 if (!p->can_evaluate_arguments ())
3289 {
3290 /* We cannot use the probe interface here, because it does
3291 not know how to evaluate arguments. */
3292 ret.clear ();
3293 }
3294 }
3295 bp_objfile_data->longjmp_probes = ret;
3296 bp_objfile_data->longjmp_searched = 1;
3297 }
3298
3299 if (!bp_objfile_data->longjmp_probes.empty ())
3300 {
3301 for (probe *p : bp_objfile_data->longjmp_probes)
3302 {
3303 struct breakpoint *b;
3304
3305 b = create_internal_breakpoint (gdbarch,
3306 p->get_relocated_address (objfile),
3307 bp_longjmp_master,
3308 &internal_breakpoint_ops);
3309 b->location = new_probe_location ("-probe-stap libc:longjmp");
3310 b->enable_state = bp_disabled;
3311 }
3312
3313 continue;
3314 }
3315
3316 if (!gdbarch_get_longjmp_target_p (gdbarch))
3317 continue;
3318
3319 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3320 {
3321 struct breakpoint *b;
3322 const char *func_name;
3323 CORE_ADDR addr;
3324 struct explicit_location explicit_loc;
3325
3326 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3327 continue;
3328
3329 func_name = longjmp_names[i];
3330 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3331 {
3332 struct bound_minimal_symbol m;
3333
3334 m = lookup_minimal_symbol_text (func_name, objfile);
3335 if (m.minsym == NULL)
3336 {
3337 /* Prevent future lookups in this objfile. */
3338 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3339 continue;
3340 }
3341 bp_objfile_data->longjmp_msym[i] = m;
3342 }
3343
3344 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3345 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3346 &internal_breakpoint_ops);
3347 initialize_explicit_location (&explicit_loc);
3348 explicit_loc.function_name = ASTRDUP (func_name);
3349 b->location = new_explicit_location (&explicit_loc);
3350 b->enable_state = bp_disabled;
3351 }
3352 }
3353 }
3354 }
3355
3356 /* Create a master std::terminate breakpoint. */
3357 static void
3358 create_std_terminate_master_breakpoint (void)
3359 {
3360 struct program_space *pspace;
3361 const char *const func_name = "std::terminate()";
3362
3363 scoped_restore_current_program_space restore_pspace;
3364
3365 ALL_PSPACES (pspace)
3366 {
3367 struct objfile *objfile;
3368 CORE_ADDR addr;
3369
3370 set_current_program_space (pspace);
3371
3372 ALL_OBJFILES (objfile)
3373 {
3374 struct breakpoint *b;
3375 struct breakpoint_objfile_data *bp_objfile_data;
3376 struct explicit_location explicit_loc;
3377
3378 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3379
3380 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3381 continue;
3382
3383 if (bp_objfile_data->terminate_msym.minsym == NULL)
3384 {
3385 struct bound_minimal_symbol m;
3386
3387 m = lookup_minimal_symbol (func_name, NULL, objfile);
3388 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3389 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3390 {
3391 /* Prevent future lookups in this objfile. */
3392 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3393 continue;
3394 }
3395 bp_objfile_data->terminate_msym = m;
3396 }
3397
3398 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3399 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3400 bp_std_terminate_master,
3401 &internal_breakpoint_ops);
3402 initialize_explicit_location (&explicit_loc);
3403 explicit_loc.function_name = ASTRDUP (func_name);
3404 b->location = new_explicit_location (&explicit_loc);
3405 b->enable_state = bp_disabled;
3406 }
3407 }
3408 }
3409
3410 /* Install a master breakpoint on the unwinder's debug hook. */
3411
3412 static void
3413 create_exception_master_breakpoint (void)
3414 {
3415 struct objfile *objfile;
3416 const char *const func_name = "_Unwind_DebugHook";
3417
3418 ALL_OBJFILES (objfile)
3419 {
3420 struct breakpoint *b;
3421 struct gdbarch *gdbarch;
3422 struct breakpoint_objfile_data *bp_objfile_data;
3423 CORE_ADDR addr;
3424 struct explicit_location explicit_loc;
3425
3426 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3427
3428 /* We prefer the SystemTap probe point if it exists. */
3429 if (!bp_objfile_data->exception_searched)
3430 {
3431 std::vector<probe *> ret
3432 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3433
3434 if (!ret.empty ())
3435 {
3436 /* We are only interested in checking one element. */
3437 probe *p = ret[0];
3438
3439 if (!p->can_evaluate_arguments ())
3440 {
3441 /* We cannot use the probe interface here, because it does
3442 not know how to evaluate arguments. */
3443 ret.clear ();
3444 }
3445 }
3446 bp_objfile_data->exception_probes = ret;
3447 bp_objfile_data->exception_searched = 1;
3448 }
3449
3450 if (!bp_objfile_data->exception_probes.empty ())
3451 {
3452 gdbarch = get_objfile_arch (objfile);
3453
3454 for (probe *p : bp_objfile_data->exception_probes)
3455 {
3456 b = create_internal_breakpoint (gdbarch,
3457 p->get_relocated_address (objfile),
3458 bp_exception_master,
3459 &internal_breakpoint_ops);
3460 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3461 b->enable_state = bp_disabled;
3462 }
3463
3464 continue;
3465 }
3466
3467 /* Otherwise, try the hook function. */
3468
3469 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3470 continue;
3471
3472 gdbarch = get_objfile_arch (objfile);
3473
3474 if (bp_objfile_data->exception_msym.minsym == NULL)
3475 {
3476 struct bound_minimal_symbol debug_hook;
3477
3478 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3479 if (debug_hook.minsym == NULL)
3480 {
3481 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3482 continue;
3483 }
3484
3485 bp_objfile_data->exception_msym = debug_hook;
3486 }
3487
3488 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3489 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3490 current_top_target ());
3491 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3492 &internal_breakpoint_ops);
3493 initialize_explicit_location (&explicit_loc);
3494 explicit_loc.function_name = ASTRDUP (func_name);
3495 b->location = new_explicit_location (&explicit_loc);
3496 b->enable_state = bp_disabled;
3497 }
3498 }
3499
3500 /* Does B have a location spec? */
3501
3502 static int
3503 breakpoint_event_location_empty_p (const struct breakpoint *b)
3504 {
3505 return b->location != NULL && event_location_empty_p (b->location.get ());
3506 }
3507
3508 void
3509 update_breakpoints_after_exec (void)
3510 {
3511 struct breakpoint *b, *b_tmp;
3512 struct bp_location *bploc, **bplocp_tmp;
3513
3514 /* We're about to delete breakpoints from GDB's lists. If the
3515 INSERTED flag is true, GDB will try to lift the breakpoints by
3516 writing the breakpoints' "shadow contents" back into memory. The
3517 "shadow contents" are NOT valid after an exec, so GDB should not
3518 do that. Instead, the target is responsible from marking
3519 breakpoints out as soon as it detects an exec. We don't do that
3520 here instead, because there may be other attempts to delete
3521 breakpoints after detecting an exec and before reaching here. */
3522 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3523 if (bploc->pspace == current_program_space)
3524 gdb_assert (!bploc->inserted);
3525
3526 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3527 {
3528 if (b->pspace != current_program_space)
3529 continue;
3530
3531 /* Solib breakpoints must be explicitly reset after an exec(). */
3532 if (b->type == bp_shlib_event)
3533 {
3534 delete_breakpoint (b);
3535 continue;
3536 }
3537
3538 /* JIT breakpoints must be explicitly reset after an exec(). */
3539 if (b->type == bp_jit_event)
3540 {
3541 delete_breakpoint (b);
3542 continue;
3543 }
3544
3545 /* Thread event breakpoints must be set anew after an exec(),
3546 as must overlay event and longjmp master breakpoints. */
3547 if (b->type == bp_thread_event || b->type == bp_overlay_event
3548 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3549 || b->type == bp_exception_master)
3550 {
3551 delete_breakpoint (b);
3552 continue;
3553 }
3554
3555 /* Step-resume breakpoints are meaningless after an exec(). */
3556 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3557 {
3558 delete_breakpoint (b);
3559 continue;
3560 }
3561
3562 /* Just like single-step breakpoints. */
3563 if (b->type == bp_single_step)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Longjmp and longjmp-resume breakpoints are also meaningless
3570 after an exec. */
3571 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3572 || b->type == bp_longjmp_call_dummy
3573 || b->type == bp_exception || b->type == bp_exception_resume)
3574 {
3575 delete_breakpoint (b);
3576 continue;
3577 }
3578
3579 if (b->type == bp_catchpoint)
3580 {
3581 /* For now, none of the bp_catchpoint breakpoints need to
3582 do anything at this point. In the future, if some of
3583 the catchpoints need to something, we will need to add
3584 a new method, and call this method from here. */
3585 continue;
3586 }
3587
3588 /* bp_finish is a special case. The only way we ought to be able
3589 to see one of these when an exec() has happened, is if the user
3590 caught a vfork, and then said "finish". Ordinarily a finish just
3591 carries them to the call-site of the current callee, by setting
3592 a temporary bp there and resuming. But in this case, the finish
3593 will carry them entirely through the vfork & exec.
3594
3595 We don't want to allow a bp_finish to remain inserted now. But
3596 we can't safely delete it, 'cause finish_command has a handle to
3597 the bp on a bpstat, and will later want to delete it. There's a
3598 chance (and I've seen it happen) that if we delete the bp_finish
3599 here, that its storage will get reused by the time finish_command
3600 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3601 We really must allow finish_command to delete a bp_finish.
3602
3603 In the absence of a general solution for the "how do we know
3604 it's safe to delete something others may have handles to?"
3605 problem, what we'll do here is just uninsert the bp_finish, and
3606 let finish_command delete it.
3607
3608 (We know the bp_finish is "doomed" in the sense that it's
3609 momentary, and will be deleted as soon as finish_command sees
3610 the inferior stopped. So it doesn't matter that the bp's
3611 address is probably bogus in the new a.out, unlike e.g., the
3612 solib breakpoints.) */
3613
3614 if (b->type == bp_finish)
3615 {
3616 continue;
3617 }
3618
3619 /* Without a symbolic address, we have little hope of the
3620 pre-exec() address meaning the same thing in the post-exec()
3621 a.out. */
3622 if (breakpoint_event_location_empty_p (b))
3623 {
3624 delete_breakpoint (b);
3625 continue;
3626 }
3627 }
3628 }
3629
3630 int
3631 detach_breakpoints (ptid_t ptid)
3632 {
3633 struct bp_location *bl, **blp_tmp;
3634 int val = 0;
3635 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3636 struct inferior *inf = current_inferior ();
3637
3638 if (ptid.pid () == inferior_ptid.pid ())
3639 error (_("Cannot detach breakpoints of inferior_ptid"));
3640
3641 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3642 inferior_ptid = ptid;
3643 ALL_BP_LOCATIONS (bl, blp_tmp)
3644 {
3645 if (bl->pspace != inf->pspace)
3646 continue;
3647
3648 /* This function must physically remove breakpoints locations
3649 from the specified ptid, without modifying the breakpoint
3650 package's state. Locations of type bp_loc_other are only
3651 maintained at GDB side. So, there is no need to remove
3652 these bp_loc_other locations. Moreover, removing these
3653 would modify the breakpoint package's state. */
3654 if (bl->loc_type == bp_loc_other)
3655 continue;
3656
3657 if (bl->inserted)
3658 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3659 }
3660
3661 return val;
3662 }
3663
3664 /* Remove the breakpoint location BL from the current address space.
3665 Note that this is used to detach breakpoints from a child fork.
3666 When we get here, the child isn't in the inferior list, and neither
3667 do we have objects to represent its address space --- we should
3668 *not* look at bl->pspace->aspace here. */
3669
3670 static int
3671 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3672 {
3673 int val;
3674
3675 /* BL is never in moribund_locations by our callers. */
3676 gdb_assert (bl->owner != NULL);
3677
3678 /* The type of none suggests that owner is actually deleted.
3679 This should not ever happen. */
3680 gdb_assert (bl->owner->type != bp_none);
3681
3682 if (bl->loc_type == bp_loc_software_breakpoint
3683 || bl->loc_type == bp_loc_hardware_breakpoint)
3684 {
3685 /* "Normal" instruction breakpoint: either the standard
3686 trap-instruction bp (bp_breakpoint), or a
3687 bp_hardware_breakpoint. */
3688
3689 /* First check to see if we have to handle an overlay. */
3690 if (overlay_debugging == ovly_off
3691 || bl->section == NULL
3692 || !(section_is_overlay (bl->section)))
3693 {
3694 /* No overlay handling: just remove the breakpoint. */
3695
3696 /* If we're trying to uninsert a memory breakpoint that we
3697 know is set in a dynamic object that is marked
3698 shlib_disabled, then either the dynamic object was
3699 removed with "remove-symbol-file" or with
3700 "nosharedlibrary". In the former case, we don't know
3701 whether another dynamic object might have loaded over the
3702 breakpoint's address -- the user might well let us know
3703 about it next with add-symbol-file (the whole point of
3704 add-symbol-file is letting the user manually maintain a
3705 list of dynamically loaded objects). If we have the
3706 breakpoint's shadow memory, that is, this is a software
3707 breakpoint managed by GDB, check whether the breakpoint
3708 is still inserted in memory, to avoid overwriting wrong
3709 code with stale saved shadow contents. Note that HW
3710 breakpoints don't have shadow memory, as they're
3711 implemented using a mechanism that is not dependent on
3712 being able to modify the target's memory, and as such
3713 they should always be removed. */
3714 if (bl->shlib_disabled
3715 && bl->target_info.shadow_len != 0
3716 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3717 val = 0;
3718 else
3719 val = bl->owner->ops->remove_location (bl, reason);
3720 }
3721 else
3722 {
3723 /* This breakpoint is in an overlay section.
3724 Did we set a breakpoint at the LMA? */
3725 if (!overlay_events_enabled)
3726 {
3727 /* Yes -- overlay event support is not active, so we
3728 should have set a breakpoint at the LMA. Remove it.
3729 */
3730 /* Ignore any failures: if the LMA is in ROM, we will
3731 have already warned when we failed to insert it. */
3732 if (bl->loc_type == bp_loc_hardware_breakpoint)
3733 target_remove_hw_breakpoint (bl->gdbarch,
3734 &bl->overlay_target_info);
3735 else
3736 target_remove_breakpoint (bl->gdbarch,
3737 &bl->overlay_target_info,
3738 reason);
3739 }
3740 /* Did we set a breakpoint at the VMA?
3741 If so, we will have marked the breakpoint 'inserted'. */
3742 if (bl->inserted)
3743 {
3744 /* Yes -- remove it. Previously we did not bother to
3745 remove the breakpoint if the section had been
3746 unmapped, but let's not rely on that being safe. We
3747 don't know what the overlay manager might do. */
3748
3749 /* However, we should remove *software* breakpoints only
3750 if the section is still mapped, or else we overwrite
3751 wrong code with the saved shadow contents. */
3752 if (bl->loc_type == bp_loc_hardware_breakpoint
3753 || section_is_mapped (bl->section))
3754 val = bl->owner->ops->remove_location (bl, reason);
3755 else
3756 val = 0;
3757 }
3758 else
3759 {
3760 /* No -- not inserted, so no need to remove. No error. */
3761 val = 0;
3762 }
3763 }
3764
3765 /* In some cases, we might not be able to remove a breakpoint in
3766 a shared library that has already been removed, but we have
3767 not yet processed the shlib unload event. Similarly for an
3768 unloaded add-symbol-file object - the user might not yet have
3769 had the chance to remove-symbol-file it. shlib_disabled will
3770 be set if the library/object has already been removed, but
3771 the breakpoint hasn't been uninserted yet, e.g., after
3772 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3773 always-inserted mode. */
3774 if (val
3775 && (bl->loc_type == bp_loc_software_breakpoint
3776 && (bl->shlib_disabled
3777 || solib_name_from_address (bl->pspace, bl->address)
3778 || shared_objfile_contains_address_p (bl->pspace,
3779 bl->address))))
3780 val = 0;
3781
3782 if (val)
3783 return val;
3784 bl->inserted = (reason == DETACH_BREAKPOINT);
3785 }
3786 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3787 {
3788 gdb_assert (bl->owner->ops != NULL
3789 && bl->owner->ops->remove_location != NULL);
3790
3791 bl->inserted = (reason == DETACH_BREAKPOINT);
3792 bl->owner->ops->remove_location (bl, reason);
3793
3794 /* Failure to remove any of the hardware watchpoints comes here. */
3795 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3796 warning (_("Could not remove hardware watchpoint %d."),
3797 bl->owner->number);
3798 }
3799 else if (bl->owner->type == bp_catchpoint
3800 && breakpoint_enabled (bl->owner)
3801 && !bl->duplicate)
3802 {
3803 gdb_assert (bl->owner->ops != NULL
3804 && bl->owner->ops->remove_location != NULL);
3805
3806 val = bl->owner->ops->remove_location (bl, reason);
3807 if (val)
3808 return val;
3809
3810 bl->inserted = (reason == DETACH_BREAKPOINT);
3811 }
3812
3813 return 0;
3814 }
3815
3816 static int
3817 remove_breakpoint (struct bp_location *bl)
3818 {
3819 /* BL is never in moribund_locations by our callers. */
3820 gdb_assert (bl->owner != NULL);
3821
3822 /* The type of none suggests that owner is actually deleted.
3823 This should not ever happen. */
3824 gdb_assert (bl->owner->type != bp_none);
3825
3826 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3827
3828 switch_to_program_space_and_thread (bl->pspace);
3829
3830 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3831 }
3832
3833 /* Clear the "inserted" flag in all breakpoints. */
3834
3835 void
3836 mark_breakpoints_out (void)
3837 {
3838 struct bp_location *bl, **blp_tmp;
3839
3840 ALL_BP_LOCATIONS (bl, blp_tmp)
3841 if (bl->pspace == current_program_space)
3842 bl->inserted = 0;
3843 }
3844
3845 /* Clear the "inserted" flag in all breakpoints and delete any
3846 breakpoints which should go away between runs of the program.
3847
3848 Plus other such housekeeping that has to be done for breakpoints
3849 between runs.
3850
3851 Note: this function gets called at the end of a run (by
3852 generic_mourn_inferior) and when a run begins (by
3853 init_wait_for_inferior). */
3854
3855
3856
3857 void
3858 breakpoint_init_inferior (enum inf_context context)
3859 {
3860 struct breakpoint *b, *b_tmp;
3861 struct program_space *pspace = current_program_space;
3862
3863 /* If breakpoint locations are shared across processes, then there's
3864 nothing to do. */
3865 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3866 return;
3867
3868 mark_breakpoints_out ();
3869
3870 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3871 {
3872 if (b->loc && b->loc->pspace != pspace)
3873 continue;
3874
3875 switch (b->type)
3876 {
3877 case bp_call_dummy:
3878 case bp_longjmp_call_dummy:
3879
3880 /* If the call dummy breakpoint is at the entry point it will
3881 cause problems when the inferior is rerun, so we better get
3882 rid of it. */
3883
3884 case bp_watchpoint_scope:
3885
3886 /* Also get rid of scope breakpoints. */
3887
3888 case bp_shlib_event:
3889
3890 /* Also remove solib event breakpoints. Their addresses may
3891 have changed since the last time we ran the program.
3892 Actually we may now be debugging against different target;
3893 and so the solib backend that installed this breakpoint may
3894 not be used in by the target. E.g.,
3895
3896 (gdb) file prog-linux
3897 (gdb) run # native linux target
3898 ...
3899 (gdb) kill
3900 (gdb) file prog-win.exe
3901 (gdb) tar rem :9999 # remote Windows gdbserver.
3902 */
3903
3904 case bp_step_resume:
3905
3906 /* Also remove step-resume breakpoints. */
3907
3908 case bp_single_step:
3909
3910 /* Also remove single-step breakpoints. */
3911
3912 delete_breakpoint (b);
3913 break;
3914
3915 case bp_watchpoint:
3916 case bp_hardware_watchpoint:
3917 case bp_read_watchpoint:
3918 case bp_access_watchpoint:
3919 {
3920 struct watchpoint *w = (struct watchpoint *) b;
3921
3922 /* Likewise for watchpoints on local expressions. */
3923 if (w->exp_valid_block != NULL)
3924 delete_breakpoint (b);
3925 else
3926 {
3927 /* Get rid of existing locations, which are no longer
3928 valid. New ones will be created in
3929 update_watchpoint, when the inferior is restarted.
3930 The next update_global_location_list call will
3931 garbage collect them. */
3932 b->loc = NULL;
3933
3934 if (context == inf_starting)
3935 {
3936 /* Reset val field to force reread of starting value in
3937 insert_breakpoints. */
3938 w->val.reset (nullptr);
3939 w->val_valid = 0;
3940 }
3941 }
3942 }
3943 break;
3944 default:
3945 break;
3946 }
3947 }
3948
3949 /* Get rid of the moribund locations. */
3950 for (bp_location *bl : moribund_locations)
3951 decref_bp_location (&bl);
3952 moribund_locations.clear ();
3953 }
3954
3955 /* These functions concern about actual breakpoints inserted in the
3956 target --- to e.g. check if we need to do decr_pc adjustment or if
3957 we need to hop over the bkpt --- so we check for address space
3958 match, not program space. */
3959
3960 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3961 exists at PC. It returns ordinary_breakpoint_here if it's an
3962 ordinary breakpoint, or permanent_breakpoint_here if it's a
3963 permanent breakpoint.
3964 - When continuing from a location with an ordinary breakpoint, we
3965 actually single step once before calling insert_breakpoints.
3966 - When continuing from a location with a permanent breakpoint, we
3967 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3968 the target, to advance the PC past the breakpoint. */
3969
3970 enum breakpoint_here
3971 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3972 {
3973 struct bp_location *bl, **blp_tmp;
3974 int any_breakpoint_here = 0;
3975
3976 ALL_BP_LOCATIONS (bl, blp_tmp)
3977 {
3978 if (bl->loc_type != bp_loc_software_breakpoint
3979 && bl->loc_type != bp_loc_hardware_breakpoint)
3980 continue;
3981
3982 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3983 if ((breakpoint_enabled (bl->owner)
3984 || bl->permanent)
3985 && breakpoint_location_address_match (bl, aspace, pc))
3986 {
3987 if (overlay_debugging
3988 && section_is_overlay (bl->section)
3989 && !section_is_mapped (bl->section))
3990 continue; /* unmapped overlay -- can't be a match */
3991 else if (bl->permanent)
3992 return permanent_breakpoint_here;
3993 else
3994 any_breakpoint_here = 1;
3995 }
3996 }
3997
3998 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3999 }
4000
4001 /* See breakpoint.h. */
4002
4003 int
4004 breakpoint_in_range_p (const address_space *aspace,
4005 CORE_ADDR addr, ULONGEST len)
4006 {
4007 struct bp_location *bl, **blp_tmp;
4008
4009 ALL_BP_LOCATIONS (bl, blp_tmp)
4010 {
4011 if (bl->loc_type != bp_loc_software_breakpoint
4012 && bl->loc_type != bp_loc_hardware_breakpoint)
4013 continue;
4014
4015 if ((breakpoint_enabled (bl->owner)
4016 || bl->permanent)
4017 && breakpoint_location_address_range_overlap (bl, aspace,
4018 addr, len))
4019 {
4020 if (overlay_debugging
4021 && section_is_overlay (bl->section)
4022 && !section_is_mapped (bl->section))
4023 {
4024 /* Unmapped overlay -- can't be a match. */
4025 continue;
4026 }
4027
4028 return 1;
4029 }
4030 }
4031
4032 return 0;
4033 }
4034
4035 /* Return true if there's a moribund breakpoint at PC. */
4036
4037 int
4038 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4039 {
4040 for (bp_location *loc : moribund_locations)
4041 if (breakpoint_location_address_match (loc, aspace, pc))
4042 return 1;
4043
4044 return 0;
4045 }
4046
4047 /* Returns non-zero iff BL is inserted at PC, in address space
4048 ASPACE. */
4049
4050 static int
4051 bp_location_inserted_here_p (struct bp_location *bl,
4052 const address_space *aspace, CORE_ADDR pc)
4053 {
4054 if (bl->inserted
4055 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4056 aspace, pc))
4057 {
4058 if (overlay_debugging
4059 && section_is_overlay (bl->section)
4060 && !section_is_mapped (bl->section))
4061 return 0; /* unmapped overlay -- can't be a match */
4062 else
4063 return 1;
4064 }
4065 return 0;
4066 }
4067
4068 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4069
4070 int
4071 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4072 {
4073 struct bp_location **blp, **blp_tmp = NULL;
4074
4075 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4076 {
4077 struct bp_location *bl = *blp;
4078
4079 if (bl->loc_type != bp_loc_software_breakpoint
4080 && bl->loc_type != bp_loc_hardware_breakpoint)
4081 continue;
4082
4083 if (bp_location_inserted_here_p (bl, aspace, pc))
4084 return 1;
4085 }
4086 return 0;
4087 }
4088
4089 /* This function returns non-zero iff there is a software breakpoint
4090 inserted at PC. */
4091
4092 int
4093 software_breakpoint_inserted_here_p (const address_space *aspace,
4094 CORE_ADDR pc)
4095 {
4096 struct bp_location **blp, **blp_tmp = NULL;
4097
4098 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4099 {
4100 struct bp_location *bl = *blp;
4101
4102 if (bl->loc_type != bp_loc_software_breakpoint)
4103 continue;
4104
4105 if (bp_location_inserted_here_p (bl, aspace, pc))
4106 return 1;
4107 }
4108
4109 return 0;
4110 }
4111
4112 /* See breakpoint.h. */
4113
4114 int
4115 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4116 CORE_ADDR pc)
4117 {
4118 struct bp_location **blp, **blp_tmp = NULL;
4119
4120 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4121 {
4122 struct bp_location *bl = *blp;
4123
4124 if (bl->loc_type != bp_loc_hardware_breakpoint)
4125 continue;
4126
4127 if (bp_location_inserted_here_p (bl, aspace, pc))
4128 return 1;
4129 }
4130
4131 return 0;
4132 }
4133
4134 int
4135 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4136 CORE_ADDR addr, ULONGEST len)
4137 {
4138 struct breakpoint *bpt;
4139
4140 ALL_BREAKPOINTS (bpt)
4141 {
4142 struct bp_location *loc;
4143
4144 if (bpt->type != bp_hardware_watchpoint
4145 && bpt->type != bp_access_watchpoint)
4146 continue;
4147
4148 if (!breakpoint_enabled (bpt))
4149 continue;
4150
4151 for (loc = bpt->loc; loc; loc = loc->next)
4152 if (loc->pspace->aspace == aspace && loc->inserted)
4153 {
4154 CORE_ADDR l, h;
4155
4156 /* Check for intersection. */
4157 l = std::max<CORE_ADDR> (loc->address, addr);
4158 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4159 if (l < h)
4160 return 1;
4161 }
4162 }
4163 return 0;
4164 }
4165 \f
4166
4167 /* bpstat stuff. External routines' interfaces are documented
4168 in breakpoint.h. */
4169
4170 int
4171 is_catchpoint (struct breakpoint *ep)
4172 {
4173 return (ep->type == bp_catchpoint);
4174 }
4175
4176 /* Frees any storage that is part of a bpstat. Does not walk the
4177 'next' chain. */
4178
4179 bpstats::~bpstats ()
4180 {
4181 if (bp_location_at != NULL)
4182 decref_bp_location (&bp_location_at);
4183 }
4184
4185 /* Clear a bpstat so that it says we are not at any breakpoint.
4186 Also free any storage that is part of a bpstat. */
4187
4188 void
4189 bpstat_clear (bpstat *bsp)
4190 {
4191 bpstat p;
4192 bpstat q;
4193
4194 if (bsp == 0)
4195 return;
4196 p = *bsp;
4197 while (p != NULL)
4198 {
4199 q = p->next;
4200 delete p;
4201 p = q;
4202 }
4203 *bsp = NULL;
4204 }
4205
4206 bpstats::bpstats (const bpstats &other)
4207 : next (NULL),
4208 bp_location_at (other.bp_location_at),
4209 breakpoint_at (other.breakpoint_at),
4210 commands (other.commands),
4211 print (other.print),
4212 stop (other.stop),
4213 print_it (other.print_it)
4214 {
4215 if (other.old_val != NULL)
4216 old_val = release_value (value_copy (other.old_val.get ()));
4217 incref_bp_location (bp_location_at);
4218 }
4219
4220 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4221 is part of the bpstat is copied as well. */
4222
4223 bpstat
4224 bpstat_copy (bpstat bs)
4225 {
4226 bpstat p = NULL;
4227 bpstat tmp;
4228 bpstat retval = NULL;
4229
4230 if (bs == NULL)
4231 return bs;
4232
4233 for (; bs != NULL; bs = bs->next)
4234 {
4235 tmp = new bpstats (*bs);
4236
4237 if (p == NULL)
4238 /* This is the first thing in the chain. */
4239 retval = tmp;
4240 else
4241 p->next = tmp;
4242 p = tmp;
4243 }
4244 p->next = NULL;
4245 return retval;
4246 }
4247
4248 /* Find the bpstat associated with this breakpoint. */
4249
4250 bpstat
4251 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4252 {
4253 if (bsp == NULL)
4254 return NULL;
4255
4256 for (; bsp != NULL; bsp = bsp->next)
4257 {
4258 if (bsp->breakpoint_at == breakpoint)
4259 return bsp;
4260 }
4261 return NULL;
4262 }
4263
4264 /* See breakpoint.h. */
4265
4266 int
4267 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4268 {
4269 for (; bsp != NULL; bsp = bsp->next)
4270 {
4271 if (bsp->breakpoint_at == NULL)
4272 {
4273 /* A moribund location can never explain a signal other than
4274 GDB_SIGNAL_TRAP. */
4275 if (sig == GDB_SIGNAL_TRAP)
4276 return 1;
4277 }
4278 else
4279 {
4280 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4281 sig))
4282 return 1;
4283 }
4284 }
4285
4286 return 0;
4287 }
4288
4289 /* Put in *NUM the breakpoint number of the first breakpoint we are
4290 stopped at. *BSP upon return is a bpstat which points to the
4291 remaining breakpoints stopped at (but which is not guaranteed to be
4292 good for anything but further calls to bpstat_num).
4293
4294 Return 0 if passed a bpstat which does not indicate any breakpoints.
4295 Return -1 if stopped at a breakpoint that has been deleted since
4296 we set it.
4297 Return 1 otherwise. */
4298
4299 int
4300 bpstat_num (bpstat *bsp, int *num)
4301 {
4302 struct breakpoint *b;
4303
4304 if ((*bsp) == NULL)
4305 return 0; /* No more breakpoint values */
4306
4307 /* We assume we'll never have several bpstats that correspond to a
4308 single breakpoint -- otherwise, this function might return the
4309 same number more than once and this will look ugly. */
4310 b = (*bsp)->breakpoint_at;
4311 *bsp = (*bsp)->next;
4312 if (b == NULL)
4313 return -1; /* breakpoint that's been deleted since */
4314
4315 *num = b->number; /* We have its number */
4316 return 1;
4317 }
4318
4319 /* See breakpoint.h. */
4320
4321 void
4322 bpstat_clear_actions (void)
4323 {
4324 bpstat bs;
4325
4326 if (inferior_ptid == null_ptid)
4327 return;
4328
4329 thread_info *tp = inferior_thread ();
4330 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4331 {
4332 bs->commands = NULL;
4333 bs->old_val.reset (nullptr);
4334 }
4335 }
4336
4337 /* Called when a command is about to proceed the inferior. */
4338
4339 static void
4340 breakpoint_about_to_proceed (void)
4341 {
4342 if (inferior_ptid != null_ptid)
4343 {
4344 struct thread_info *tp = inferior_thread ();
4345
4346 /* Allow inferior function calls in breakpoint commands to not
4347 interrupt the command list. When the call finishes
4348 successfully, the inferior will be standing at the same
4349 breakpoint as if nothing happened. */
4350 if (tp->control.in_infcall)
4351 return;
4352 }
4353
4354 breakpoint_proceeded = 1;
4355 }
4356
4357 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4358 or its equivalent. */
4359
4360 static int
4361 command_line_is_silent (struct command_line *cmd)
4362 {
4363 return cmd && (strcmp ("silent", cmd->line) == 0);
4364 }
4365
4366 /* Execute all the commands associated with all the breakpoints at
4367 this location. Any of these commands could cause the process to
4368 proceed beyond this point, etc. We look out for such changes by
4369 checking the global "breakpoint_proceeded" after each command.
4370
4371 Returns true if a breakpoint command resumed the inferior. In that
4372 case, it is the caller's responsibility to recall it again with the
4373 bpstat of the current thread. */
4374
4375 static int
4376 bpstat_do_actions_1 (bpstat *bsp)
4377 {
4378 bpstat bs;
4379 int again = 0;
4380
4381 /* Avoid endless recursion if a `source' command is contained
4382 in bs->commands. */
4383 if (executing_breakpoint_commands)
4384 return 0;
4385
4386 scoped_restore save_executing
4387 = make_scoped_restore (&executing_breakpoint_commands, 1);
4388
4389 scoped_restore preventer = prevent_dont_repeat ();
4390
4391 /* This pointer will iterate over the list of bpstat's. */
4392 bs = *bsp;
4393
4394 breakpoint_proceeded = 0;
4395 for (; bs != NULL; bs = bs->next)
4396 {
4397 struct command_line *cmd = NULL;
4398
4399 /* Take ownership of the BSP's command tree, if it has one.
4400
4401 The command tree could legitimately contain commands like
4402 'step' and 'next', which call clear_proceed_status, which
4403 frees stop_bpstat's command tree. To make sure this doesn't
4404 free the tree we're executing out from under us, we need to
4405 take ownership of the tree ourselves. Since a given bpstat's
4406 commands are only executed once, we don't need to copy it; we
4407 can clear the pointer in the bpstat, and make sure we free
4408 the tree when we're done. */
4409 counted_command_line ccmd = bs->commands;
4410 bs->commands = NULL;
4411 if (ccmd != NULL)
4412 cmd = ccmd.get ();
4413 if (command_line_is_silent (cmd))
4414 {
4415 /* The action has been already done by bpstat_stop_status. */
4416 cmd = cmd->next;
4417 }
4418
4419 while (cmd != NULL)
4420 {
4421 execute_control_command (cmd);
4422
4423 if (breakpoint_proceeded)
4424 break;
4425 else
4426 cmd = cmd->next;
4427 }
4428
4429 if (breakpoint_proceeded)
4430 {
4431 if (current_ui->async)
4432 /* If we are in async mode, then the target might be still
4433 running, not stopped at any breakpoint, so nothing for
4434 us to do here -- just return to the event loop. */
4435 ;
4436 else
4437 /* In sync mode, when execute_control_command returns
4438 we're already standing on the next breakpoint.
4439 Breakpoint commands for that stop were not run, since
4440 execute_command does not run breakpoint commands --
4441 only command_line_handler does, but that one is not
4442 involved in execution of breakpoint commands. So, we
4443 can now execute breakpoint commands. It should be
4444 noted that making execute_command do bpstat actions is
4445 not an option -- in this case we'll have recursive
4446 invocation of bpstat for each breakpoint with a
4447 command, and can easily blow up GDB stack. Instead, we
4448 return true, which will trigger the caller to recall us
4449 with the new stop_bpstat. */
4450 again = 1;
4451 break;
4452 }
4453 }
4454 return again;
4455 }
4456
4457 /* Helper for bpstat_do_actions. Get the current thread, if there's
4458 one, is alive and has execution. Return NULL otherwise. */
4459
4460 static thread_info *
4461 get_bpstat_thread ()
4462 {
4463 if (inferior_ptid == null_ptid || !target_has_execution)
4464 return NULL;
4465
4466 thread_info *tp = inferior_thread ();
4467 if (tp->state == THREAD_EXITED || tp->executing)
4468 return NULL;
4469 return tp;
4470 }
4471
4472 void
4473 bpstat_do_actions (void)
4474 {
4475 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4476 thread_info *tp;
4477
4478 /* Do any commands attached to breakpoint we are stopped at. */
4479 while ((tp = get_bpstat_thread ()) != NULL)
4480 {
4481 /* Since in sync mode, bpstat_do_actions may resume the
4482 inferior, and only return when it is stopped at the next
4483 breakpoint, we keep doing breakpoint actions until it returns
4484 false to indicate the inferior was not resumed. */
4485 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4486 break;
4487 }
4488
4489 discard_cleanups (cleanup_if_error);
4490 }
4491
4492 /* Print out the (old or new) value associated with a watchpoint. */
4493
4494 static void
4495 watchpoint_value_print (struct value *val, struct ui_file *stream)
4496 {
4497 if (val == NULL)
4498 fprintf_unfiltered (stream, _("<unreadable>"));
4499 else
4500 {
4501 struct value_print_options opts;
4502 get_user_print_options (&opts);
4503 value_print (val, stream, &opts);
4504 }
4505 }
4506
4507 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4508 debugging multiple threads. */
4509
4510 void
4511 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4512 {
4513 if (uiout->is_mi_like_p ())
4514 return;
4515
4516 uiout->text ("\n");
4517
4518 if (show_thread_that_caused_stop ())
4519 {
4520 const char *name;
4521 struct thread_info *thr = inferior_thread ();
4522
4523 uiout->text ("Thread ");
4524 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4525
4526 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4527 if (name != NULL)
4528 {
4529 uiout->text (" \"");
4530 uiout->field_fmt ("name", "%s", name);
4531 uiout->text ("\"");
4532 }
4533
4534 uiout->text (" hit ");
4535 }
4536 }
4537
4538 /* Generic routine for printing messages indicating why we
4539 stopped. The behavior of this function depends on the value
4540 'print_it' in the bpstat structure. Under some circumstances we
4541 may decide not to print anything here and delegate the task to
4542 normal_stop(). */
4543
4544 static enum print_stop_action
4545 print_bp_stop_message (bpstat bs)
4546 {
4547 switch (bs->print_it)
4548 {
4549 case print_it_noop:
4550 /* Nothing should be printed for this bpstat entry. */
4551 return PRINT_UNKNOWN;
4552 break;
4553
4554 case print_it_done:
4555 /* We still want to print the frame, but we already printed the
4556 relevant messages. */
4557 return PRINT_SRC_AND_LOC;
4558 break;
4559
4560 case print_it_normal:
4561 {
4562 struct breakpoint *b = bs->breakpoint_at;
4563
4564 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4565 which has since been deleted. */
4566 if (b == NULL)
4567 return PRINT_UNKNOWN;
4568
4569 /* Normal case. Call the breakpoint's print_it method. */
4570 return b->ops->print_it (bs);
4571 }
4572 break;
4573
4574 default:
4575 internal_error (__FILE__, __LINE__,
4576 _("print_bp_stop_message: unrecognized enum value"));
4577 break;
4578 }
4579 }
4580
4581 /* A helper function that prints a shared library stopped event. */
4582
4583 static void
4584 print_solib_event (int is_catchpoint)
4585 {
4586 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4587 bool any_added = !current_program_space->added_solibs.empty ();
4588
4589 if (!is_catchpoint)
4590 {
4591 if (any_added || any_deleted)
4592 current_uiout->text (_("Stopped due to shared library event:\n"));
4593 else
4594 current_uiout->text (_("Stopped due to shared library event (no "
4595 "libraries added or removed)\n"));
4596 }
4597
4598 if (current_uiout->is_mi_like_p ())
4599 current_uiout->field_string ("reason",
4600 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4601
4602 if (any_deleted)
4603 {
4604 current_uiout->text (_(" Inferior unloaded "));
4605 ui_out_emit_list list_emitter (current_uiout, "removed");
4606 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4607 {
4608 const std::string &name = current_program_space->deleted_solibs[ix];
4609
4610 if (ix > 0)
4611 current_uiout->text (" ");
4612 current_uiout->field_string ("library", name);
4613 current_uiout->text ("\n");
4614 }
4615 }
4616
4617 if (any_added)
4618 {
4619 current_uiout->text (_(" Inferior loaded "));
4620 ui_out_emit_list list_emitter (current_uiout, "added");
4621 bool first = true;
4622 for (so_list *iter : current_program_space->added_solibs)
4623 {
4624 if (!first)
4625 current_uiout->text (" ");
4626 first = false;
4627 current_uiout->field_string ("library", iter->so_name);
4628 current_uiout->text ("\n");
4629 }
4630 }
4631 }
4632
4633 /* Print a message indicating what happened. This is called from
4634 normal_stop(). The input to this routine is the head of the bpstat
4635 list - a list of the eventpoints that caused this stop. KIND is
4636 the target_waitkind for the stopping event. This
4637 routine calls the generic print routine for printing a message
4638 about reasons for stopping. This will print (for example) the
4639 "Breakpoint n," part of the output. The return value of this
4640 routine is one of:
4641
4642 PRINT_UNKNOWN: Means we printed nothing.
4643 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4644 code to print the location. An example is
4645 "Breakpoint 1, " which should be followed by
4646 the location.
4647 PRINT_SRC_ONLY: Means we printed something, but there is no need
4648 to also print the location part of the message.
4649 An example is the catch/throw messages, which
4650 don't require a location appended to the end.
4651 PRINT_NOTHING: We have done some printing and we don't need any
4652 further info to be printed. */
4653
4654 enum print_stop_action
4655 bpstat_print (bpstat bs, int kind)
4656 {
4657 enum print_stop_action val;
4658
4659 /* Maybe another breakpoint in the chain caused us to stop.
4660 (Currently all watchpoints go on the bpstat whether hit or not.
4661 That probably could (should) be changed, provided care is taken
4662 with respect to bpstat_explains_signal). */
4663 for (; bs; bs = bs->next)
4664 {
4665 val = print_bp_stop_message (bs);
4666 if (val == PRINT_SRC_ONLY
4667 || val == PRINT_SRC_AND_LOC
4668 || val == PRINT_NOTHING)
4669 return val;
4670 }
4671
4672 /* If we had hit a shared library event breakpoint,
4673 print_bp_stop_message would print out this message. If we hit an
4674 OS-level shared library event, do the same thing. */
4675 if (kind == TARGET_WAITKIND_LOADED)
4676 {
4677 print_solib_event (0);
4678 return PRINT_NOTHING;
4679 }
4680
4681 /* We reached the end of the chain, or we got a null BS to start
4682 with and nothing was printed. */
4683 return PRINT_UNKNOWN;
4684 }
4685
4686 /* Evaluate the boolean expression EXP and return the result. */
4687
4688 static bool
4689 breakpoint_cond_eval (expression *exp)
4690 {
4691 struct value *mark = value_mark ();
4692 bool res = value_true (evaluate_expression (exp));
4693
4694 value_free_to_mark (mark);
4695 return res;
4696 }
4697
4698 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4699
4700 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4701 : next (NULL),
4702 bp_location_at (bl),
4703 breakpoint_at (bl->owner),
4704 commands (NULL),
4705 print (0),
4706 stop (0),
4707 print_it (print_it_normal)
4708 {
4709 incref_bp_location (bl);
4710 **bs_link_pointer = this;
4711 *bs_link_pointer = &next;
4712 }
4713
4714 bpstats::bpstats ()
4715 : next (NULL),
4716 bp_location_at (NULL),
4717 breakpoint_at (NULL),
4718 commands (NULL),
4719 print (0),
4720 stop (0),
4721 print_it (print_it_normal)
4722 {
4723 }
4724 \f
4725 /* The target has stopped with waitstatus WS. Check if any hardware
4726 watchpoints have triggered, according to the target. */
4727
4728 int
4729 watchpoints_triggered (struct target_waitstatus *ws)
4730 {
4731 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4732 CORE_ADDR addr;
4733 struct breakpoint *b;
4734
4735 if (!stopped_by_watchpoint)
4736 {
4737 /* We were not stopped by a watchpoint. Mark all watchpoints
4738 as not triggered. */
4739 ALL_BREAKPOINTS (b)
4740 if (is_hardware_watchpoint (b))
4741 {
4742 struct watchpoint *w = (struct watchpoint *) b;
4743
4744 w->watchpoint_triggered = watch_triggered_no;
4745 }
4746
4747 return 0;
4748 }
4749
4750 if (!target_stopped_data_address (current_top_target (), &addr))
4751 {
4752 /* We were stopped by a watchpoint, but we don't know where.
4753 Mark all watchpoints as unknown. */
4754 ALL_BREAKPOINTS (b)
4755 if (is_hardware_watchpoint (b))
4756 {
4757 struct watchpoint *w = (struct watchpoint *) b;
4758
4759 w->watchpoint_triggered = watch_triggered_unknown;
4760 }
4761
4762 return 1;
4763 }
4764
4765 /* The target could report the data address. Mark watchpoints
4766 affected by this data address as triggered, and all others as not
4767 triggered. */
4768
4769 ALL_BREAKPOINTS (b)
4770 if (is_hardware_watchpoint (b))
4771 {
4772 struct watchpoint *w = (struct watchpoint *) b;
4773 struct bp_location *loc;
4774
4775 w->watchpoint_triggered = watch_triggered_no;
4776 for (loc = b->loc; loc; loc = loc->next)
4777 {
4778 if (is_masked_watchpoint (b))
4779 {
4780 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4781 CORE_ADDR start = loc->address & w->hw_wp_mask;
4782
4783 if (newaddr == start)
4784 {
4785 w->watchpoint_triggered = watch_triggered_yes;
4786 break;
4787 }
4788 }
4789 /* Exact match not required. Within range is sufficient. */
4790 else if (target_watchpoint_addr_within_range (current_top_target (),
4791 addr, loc->address,
4792 loc->length))
4793 {
4794 w->watchpoint_triggered = watch_triggered_yes;
4795 break;
4796 }
4797 }
4798 }
4799
4800 return 1;
4801 }
4802
4803 /* Possible return values for watchpoint_check. */
4804 enum wp_check_result
4805 {
4806 /* The watchpoint has been deleted. */
4807 WP_DELETED = 1,
4808
4809 /* The value has changed. */
4810 WP_VALUE_CHANGED = 2,
4811
4812 /* The value has not changed. */
4813 WP_VALUE_NOT_CHANGED = 3,
4814
4815 /* Ignore this watchpoint, no matter if the value changed or not. */
4816 WP_IGNORE = 4,
4817 };
4818
4819 #define BP_TEMPFLAG 1
4820 #define BP_HARDWAREFLAG 2
4821
4822 /* Evaluate watchpoint condition expression and check if its value
4823 changed. */
4824
4825 static wp_check_result
4826 watchpoint_check (bpstat bs)
4827 {
4828 struct watchpoint *b;
4829 struct frame_info *fr;
4830 int within_current_scope;
4831
4832 /* BS is built from an existing struct breakpoint. */
4833 gdb_assert (bs->breakpoint_at != NULL);
4834 b = (struct watchpoint *) bs->breakpoint_at;
4835
4836 /* If this is a local watchpoint, we only want to check if the
4837 watchpoint frame is in scope if the current thread is the thread
4838 that was used to create the watchpoint. */
4839 if (!watchpoint_in_thread_scope (b))
4840 return WP_IGNORE;
4841
4842 if (b->exp_valid_block == NULL)
4843 within_current_scope = 1;
4844 else
4845 {
4846 struct frame_info *frame = get_current_frame ();
4847 struct gdbarch *frame_arch = get_frame_arch (frame);
4848 CORE_ADDR frame_pc = get_frame_pc (frame);
4849
4850 /* stack_frame_destroyed_p() returns a non-zero value if we're
4851 still in the function but the stack frame has already been
4852 invalidated. Since we can't rely on the values of local
4853 variables after the stack has been destroyed, we are treating
4854 the watchpoint in that state as `not changed' without further
4855 checking. Don't mark watchpoints as changed if the current
4856 frame is in an epilogue - even if they are in some other
4857 frame, our view of the stack is likely to be wrong and
4858 frame_find_by_id could error out. */
4859 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4860 return WP_IGNORE;
4861
4862 fr = frame_find_by_id (b->watchpoint_frame);
4863 within_current_scope = (fr != NULL);
4864
4865 /* If we've gotten confused in the unwinder, we might have
4866 returned a frame that can't describe this variable. */
4867 if (within_current_scope)
4868 {
4869 struct symbol *function;
4870
4871 function = get_frame_function (fr);
4872 if (function == NULL
4873 || !contained_in (b->exp_valid_block,
4874 SYMBOL_BLOCK_VALUE (function)))
4875 within_current_scope = 0;
4876 }
4877
4878 if (within_current_scope)
4879 /* If we end up stopping, the current frame will get selected
4880 in normal_stop. So this call to select_frame won't affect
4881 the user. */
4882 select_frame (fr);
4883 }
4884
4885 if (within_current_scope)
4886 {
4887 /* We use value_{,free_to_}mark because it could be a *long*
4888 time before we return to the command level and call
4889 free_all_values. We can't call free_all_values because we
4890 might be in the middle of evaluating a function call. */
4891
4892 int pc = 0;
4893 struct value *mark;
4894 struct value *new_val;
4895
4896 if (is_masked_watchpoint (b))
4897 /* Since we don't know the exact trigger address (from
4898 stopped_data_address), just tell the user we've triggered
4899 a mask watchpoint. */
4900 return WP_VALUE_CHANGED;
4901
4902 mark = value_mark ();
4903 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4904
4905 if (b->val_bitsize != 0)
4906 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4907
4908 /* We use value_equal_contents instead of value_equal because
4909 the latter coerces an array to a pointer, thus comparing just
4910 the address of the array instead of its contents. This is
4911 not what we want. */
4912 if ((b->val != NULL) != (new_val != NULL)
4913 || (b->val != NULL && !value_equal_contents (b->val.get (),
4914 new_val)))
4915 {
4916 bs->old_val = b->val;
4917 b->val = release_value (new_val);
4918 b->val_valid = 1;
4919 if (new_val != NULL)
4920 value_free_to_mark (mark);
4921 return WP_VALUE_CHANGED;
4922 }
4923 else
4924 {
4925 /* Nothing changed. */
4926 value_free_to_mark (mark);
4927 return WP_VALUE_NOT_CHANGED;
4928 }
4929 }
4930 else
4931 {
4932 /* This seems like the only logical thing to do because
4933 if we temporarily ignored the watchpoint, then when
4934 we reenter the block in which it is valid it contains
4935 garbage (in the case of a function, it may have two
4936 garbage values, one before and one after the prologue).
4937 So we can't even detect the first assignment to it and
4938 watch after that (since the garbage may or may not equal
4939 the first value assigned). */
4940 /* We print all the stop information in
4941 breakpoint_ops->print_it, but in this case, by the time we
4942 call breakpoint_ops->print_it this bp will be deleted
4943 already. So we have no choice but print the information
4944 here. */
4945
4946 SWITCH_THRU_ALL_UIS ()
4947 {
4948 struct ui_out *uiout = current_uiout;
4949
4950 if (uiout->is_mi_like_p ())
4951 uiout->field_string
4952 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4953 uiout->text ("\nWatchpoint ");
4954 uiout->field_int ("wpnum", b->number);
4955 uiout->text (" deleted because the program has left the block in\n"
4956 "which its expression is valid.\n");
4957 }
4958
4959 /* Make sure the watchpoint's commands aren't executed. */
4960 b->commands = NULL;
4961 watchpoint_del_at_next_stop (b);
4962
4963 return WP_DELETED;
4964 }
4965 }
4966
4967 /* Return true if it looks like target has stopped due to hitting
4968 breakpoint location BL. This function does not check if we should
4969 stop, only if BL explains the stop. */
4970
4971 static int
4972 bpstat_check_location (const struct bp_location *bl,
4973 const address_space *aspace, CORE_ADDR bp_addr,
4974 const struct target_waitstatus *ws)
4975 {
4976 struct breakpoint *b = bl->owner;
4977
4978 /* BL is from an existing breakpoint. */
4979 gdb_assert (b != NULL);
4980
4981 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4982 }
4983
4984 /* Determine if the watched values have actually changed, and we
4985 should stop. If not, set BS->stop to 0. */
4986
4987 static void
4988 bpstat_check_watchpoint (bpstat bs)
4989 {
4990 const struct bp_location *bl;
4991 struct watchpoint *b;
4992
4993 /* BS is built for existing struct breakpoint. */
4994 bl = bs->bp_location_at;
4995 gdb_assert (bl != NULL);
4996 b = (struct watchpoint *) bs->breakpoint_at;
4997 gdb_assert (b != NULL);
4998
4999 {
5000 int must_check_value = 0;
5001
5002 if (b->type == bp_watchpoint)
5003 /* For a software watchpoint, we must always check the
5004 watched value. */
5005 must_check_value = 1;
5006 else if (b->watchpoint_triggered == watch_triggered_yes)
5007 /* We have a hardware watchpoint (read, write, or access)
5008 and the target earlier reported an address watched by
5009 this watchpoint. */
5010 must_check_value = 1;
5011 else if (b->watchpoint_triggered == watch_triggered_unknown
5012 && b->type == bp_hardware_watchpoint)
5013 /* We were stopped by a hardware watchpoint, but the target could
5014 not report the data address. We must check the watchpoint's
5015 value. Access and read watchpoints are out of luck; without
5016 a data address, we can't figure it out. */
5017 must_check_value = 1;
5018
5019 if (must_check_value)
5020 {
5021 wp_check_result e;
5022
5023 TRY
5024 {
5025 e = watchpoint_check (bs);
5026 }
5027 CATCH (ex, RETURN_MASK_ALL)
5028 {
5029 exception_fprintf (gdb_stderr, ex,
5030 "Error evaluating expression "
5031 "for watchpoint %d\n",
5032 b->number);
5033
5034 SWITCH_THRU_ALL_UIS ()
5035 {
5036 printf_filtered (_("Watchpoint %d deleted.\n"),
5037 b->number);
5038 }
5039 watchpoint_del_at_next_stop (b);
5040 e = WP_DELETED;
5041 }
5042 END_CATCH
5043
5044 switch (e)
5045 {
5046 case WP_DELETED:
5047 /* We've already printed what needs to be printed. */
5048 bs->print_it = print_it_done;
5049 /* Stop. */
5050 break;
5051 case WP_IGNORE:
5052 bs->print_it = print_it_noop;
5053 bs->stop = 0;
5054 break;
5055 case WP_VALUE_CHANGED:
5056 if (b->type == bp_read_watchpoint)
5057 {
5058 /* There are two cases to consider here:
5059
5060 1. We're watching the triggered memory for reads.
5061 In that case, trust the target, and always report
5062 the watchpoint hit to the user. Even though
5063 reads don't cause value changes, the value may
5064 have changed since the last time it was read, and
5065 since we're not trapping writes, we will not see
5066 those, and as such we should ignore our notion of
5067 old value.
5068
5069 2. We're watching the triggered memory for both
5070 reads and writes. There are two ways this may
5071 happen:
5072
5073 2.1. This is a target that can't break on data
5074 reads only, but can break on accesses (reads or
5075 writes), such as e.g., x86. We detect this case
5076 at the time we try to insert read watchpoints.
5077
5078 2.2. Otherwise, the target supports read
5079 watchpoints, but, the user set an access or write
5080 watchpoint watching the same memory as this read
5081 watchpoint.
5082
5083 If we're watching memory writes as well as reads,
5084 ignore watchpoint hits when we find that the
5085 value hasn't changed, as reads don't cause
5086 changes. This still gives false positives when
5087 the program writes the same value to memory as
5088 what there was already in memory (we will confuse
5089 it for a read), but it's much better than
5090 nothing. */
5091
5092 int other_write_watchpoint = 0;
5093
5094 if (bl->watchpoint_type == hw_read)
5095 {
5096 struct breakpoint *other_b;
5097
5098 ALL_BREAKPOINTS (other_b)
5099 if (other_b->type == bp_hardware_watchpoint
5100 || other_b->type == bp_access_watchpoint)
5101 {
5102 struct watchpoint *other_w =
5103 (struct watchpoint *) other_b;
5104
5105 if (other_w->watchpoint_triggered
5106 == watch_triggered_yes)
5107 {
5108 other_write_watchpoint = 1;
5109 break;
5110 }
5111 }
5112 }
5113
5114 if (other_write_watchpoint
5115 || bl->watchpoint_type == hw_access)
5116 {
5117 /* We're watching the same memory for writes,
5118 and the value changed since the last time we
5119 updated it, so this trap must be for a write.
5120 Ignore it. */
5121 bs->print_it = print_it_noop;
5122 bs->stop = 0;
5123 }
5124 }
5125 break;
5126 case WP_VALUE_NOT_CHANGED:
5127 if (b->type == bp_hardware_watchpoint
5128 || b->type == bp_watchpoint)
5129 {
5130 /* Don't stop: write watchpoints shouldn't fire if
5131 the value hasn't changed. */
5132 bs->print_it = print_it_noop;
5133 bs->stop = 0;
5134 }
5135 /* Stop. */
5136 break;
5137 default:
5138 /* Can't happen. */
5139 break;
5140 }
5141 }
5142 else /* must_check_value == 0 */
5143 {
5144 /* This is a case where some watchpoint(s) triggered, but
5145 not at the address of this watchpoint, or else no
5146 watchpoint triggered after all. So don't print
5147 anything for this watchpoint. */
5148 bs->print_it = print_it_noop;
5149 bs->stop = 0;
5150 }
5151 }
5152 }
5153
5154 /* For breakpoints that are currently marked as telling gdb to stop,
5155 check conditions (condition proper, frame, thread and ignore count)
5156 of breakpoint referred to by BS. If we should not stop for this
5157 breakpoint, set BS->stop to 0. */
5158
5159 static void
5160 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5161 {
5162 const struct bp_location *bl;
5163 struct breakpoint *b;
5164 /* Assume stop. */
5165 bool condition_result = true;
5166 struct expression *cond;
5167
5168 gdb_assert (bs->stop);
5169
5170 /* BS is built for existing struct breakpoint. */
5171 bl = bs->bp_location_at;
5172 gdb_assert (bl != NULL);
5173 b = bs->breakpoint_at;
5174 gdb_assert (b != NULL);
5175
5176 /* Even if the target evaluated the condition on its end and notified GDB, we
5177 need to do so again since GDB does not know if we stopped due to a
5178 breakpoint or a single step breakpoint. */
5179
5180 if (frame_id_p (b->frame_id)
5181 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5182 {
5183 bs->stop = 0;
5184 return;
5185 }
5186
5187 /* If this is a thread/task-specific breakpoint, don't waste cpu
5188 evaluating the condition if this isn't the specified
5189 thread/task. */
5190 if ((b->thread != -1 && b->thread != thread->global_num)
5191 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5192 {
5193 bs->stop = 0;
5194 return;
5195 }
5196
5197 /* Evaluate extension language breakpoints that have a "stop" method
5198 implemented. */
5199 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5200
5201 if (is_watchpoint (b))
5202 {
5203 struct watchpoint *w = (struct watchpoint *) b;
5204
5205 cond = w->cond_exp.get ();
5206 }
5207 else
5208 cond = bl->cond.get ();
5209
5210 if (cond && b->disposition != disp_del_at_next_stop)
5211 {
5212 int within_current_scope = 1;
5213 struct watchpoint * w;
5214
5215 /* We use value_mark and value_free_to_mark because it could
5216 be a long time before we return to the command level and
5217 call free_all_values. We can't call free_all_values
5218 because we might be in the middle of evaluating a
5219 function call. */
5220 struct value *mark = value_mark ();
5221
5222 if (is_watchpoint (b))
5223 w = (struct watchpoint *) b;
5224 else
5225 w = NULL;
5226
5227 /* Need to select the frame, with all that implies so that
5228 the conditions will have the right context. Because we
5229 use the frame, we will not see an inlined function's
5230 variables when we arrive at a breakpoint at the start
5231 of the inlined function; the current frame will be the
5232 call site. */
5233 if (w == NULL || w->cond_exp_valid_block == NULL)
5234 select_frame (get_current_frame ());
5235 else
5236 {
5237 struct frame_info *frame;
5238
5239 /* For local watchpoint expressions, which particular
5240 instance of a local is being watched matters, so we
5241 keep track of the frame to evaluate the expression
5242 in. To evaluate the condition however, it doesn't
5243 really matter which instantiation of the function
5244 where the condition makes sense triggers the
5245 watchpoint. This allows an expression like "watch
5246 global if q > 10" set in `func', catch writes to
5247 global on all threads that call `func', or catch
5248 writes on all recursive calls of `func' by a single
5249 thread. We simply always evaluate the condition in
5250 the innermost frame that's executing where it makes
5251 sense to evaluate the condition. It seems
5252 intuitive. */
5253 frame = block_innermost_frame (w->cond_exp_valid_block);
5254 if (frame != NULL)
5255 select_frame (frame);
5256 else
5257 within_current_scope = 0;
5258 }
5259 if (within_current_scope)
5260 {
5261 TRY
5262 {
5263 condition_result = breakpoint_cond_eval (cond);
5264 }
5265 CATCH (ex, RETURN_MASK_ALL)
5266 {
5267 exception_fprintf (gdb_stderr, ex,
5268 "Error in testing breakpoint condition:\n");
5269 }
5270 END_CATCH
5271 }
5272 else
5273 {
5274 warning (_("Watchpoint condition cannot be tested "
5275 "in the current scope"));
5276 /* If we failed to set the right context for this
5277 watchpoint, unconditionally report it. */
5278 }
5279 /* FIXME-someday, should give breakpoint #. */
5280 value_free_to_mark (mark);
5281 }
5282
5283 if (cond && !condition_result)
5284 {
5285 bs->stop = 0;
5286 }
5287 else if (b->ignore_count > 0)
5288 {
5289 b->ignore_count--;
5290 bs->stop = 0;
5291 /* Increase the hit count even though we don't stop. */
5292 ++(b->hit_count);
5293 gdb::observers::breakpoint_modified.notify (b);
5294 }
5295 }
5296
5297 /* Returns true if we need to track moribund locations of LOC's type
5298 on the current target. */
5299
5300 static int
5301 need_moribund_for_location_type (struct bp_location *loc)
5302 {
5303 return ((loc->loc_type == bp_loc_software_breakpoint
5304 && !target_supports_stopped_by_sw_breakpoint ())
5305 || (loc->loc_type == bp_loc_hardware_breakpoint
5306 && !target_supports_stopped_by_hw_breakpoint ()));
5307 }
5308
5309 /* See breakpoint.h. */
5310
5311 bpstat
5312 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5313 const struct target_waitstatus *ws)
5314 {
5315 struct breakpoint *b;
5316 bpstat bs_head = NULL, *bs_link = &bs_head;
5317
5318 ALL_BREAKPOINTS (b)
5319 {
5320 if (!breakpoint_enabled (b))
5321 continue;
5322
5323 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5324 {
5325 /* For hardware watchpoints, we look only at the first
5326 location. The watchpoint_check function will work on the
5327 entire expression, not the individual locations. For
5328 read watchpoints, the watchpoints_triggered function has
5329 checked all locations already. */
5330 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5331 break;
5332
5333 if (!bl->enabled || bl->shlib_disabled)
5334 continue;
5335
5336 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5337 continue;
5338
5339 /* Come here if it's a watchpoint, or if the break address
5340 matches. */
5341
5342 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5343 explain stop. */
5344
5345 /* Assume we stop. Should we find a watchpoint that is not
5346 actually triggered, or if the condition of the breakpoint
5347 evaluates as false, we'll reset 'stop' to 0. */
5348 bs->stop = 1;
5349 bs->print = 1;
5350
5351 /* If this is a scope breakpoint, mark the associated
5352 watchpoint as triggered so that we will handle the
5353 out-of-scope event. We'll get to the watchpoint next
5354 iteration. */
5355 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5356 {
5357 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5358
5359 w->watchpoint_triggered = watch_triggered_yes;
5360 }
5361 }
5362 }
5363
5364 /* Check if a moribund breakpoint explains the stop. */
5365 if (!target_supports_stopped_by_sw_breakpoint ()
5366 || !target_supports_stopped_by_hw_breakpoint ())
5367 {
5368 for (bp_location *loc : moribund_locations)
5369 {
5370 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5371 && need_moribund_for_location_type (loc))
5372 {
5373 bpstat bs = new bpstats (loc, &bs_link);
5374 /* For hits of moribund locations, we should just proceed. */
5375 bs->stop = 0;
5376 bs->print = 0;
5377 bs->print_it = print_it_noop;
5378 }
5379 }
5380 }
5381
5382 return bs_head;
5383 }
5384
5385 /* See breakpoint.h. */
5386
5387 bpstat
5388 bpstat_stop_status (const address_space *aspace,
5389 CORE_ADDR bp_addr, thread_info *thread,
5390 const struct target_waitstatus *ws,
5391 bpstat stop_chain)
5392 {
5393 struct breakpoint *b = NULL;
5394 /* First item of allocated bpstat's. */
5395 bpstat bs_head = stop_chain;
5396 bpstat bs;
5397 int need_remove_insert;
5398 int removed_any;
5399
5400 /* First, build the bpstat chain with locations that explain a
5401 target stop, while being careful to not set the target running,
5402 as that may invalidate locations (in particular watchpoint
5403 locations are recreated). Resuming will happen here with
5404 breakpoint conditions or watchpoint expressions that include
5405 inferior function calls. */
5406 if (bs_head == NULL)
5407 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5408
5409 /* A bit of special processing for shlib breakpoints. We need to
5410 process solib loading here, so that the lists of loaded and
5411 unloaded libraries are correct before we handle "catch load" and
5412 "catch unload". */
5413 for (bs = bs_head; bs != NULL; bs = bs->next)
5414 {
5415 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5416 {
5417 handle_solib_event ();
5418 break;
5419 }
5420 }
5421
5422 /* Now go through the locations that caused the target to stop, and
5423 check whether we're interested in reporting this stop to higher
5424 layers, or whether we should resume the target transparently. */
5425
5426 removed_any = 0;
5427
5428 for (bs = bs_head; bs != NULL; bs = bs->next)
5429 {
5430 if (!bs->stop)
5431 continue;
5432
5433 b = bs->breakpoint_at;
5434 b->ops->check_status (bs);
5435 if (bs->stop)
5436 {
5437 bpstat_check_breakpoint_conditions (bs, thread);
5438
5439 if (bs->stop)
5440 {
5441 ++(b->hit_count);
5442 gdb::observers::breakpoint_modified.notify (b);
5443
5444 /* We will stop here. */
5445 if (b->disposition == disp_disable)
5446 {
5447 --(b->enable_count);
5448 if (b->enable_count <= 0)
5449 b->enable_state = bp_disabled;
5450 removed_any = 1;
5451 }
5452 if (b->silent)
5453 bs->print = 0;
5454 bs->commands = b->commands;
5455 if (command_line_is_silent (bs->commands
5456 ? bs->commands.get () : NULL))
5457 bs->print = 0;
5458
5459 b->ops->after_condition_true (bs);
5460 }
5461
5462 }
5463
5464 /* Print nothing for this entry if we don't stop or don't
5465 print. */
5466 if (!bs->stop || !bs->print)
5467 bs->print_it = print_it_noop;
5468 }
5469
5470 /* If we aren't stopping, the value of some hardware watchpoint may
5471 not have changed, but the intermediate memory locations we are
5472 watching may have. Don't bother if we're stopping; this will get
5473 done later. */
5474 need_remove_insert = 0;
5475 if (! bpstat_causes_stop (bs_head))
5476 for (bs = bs_head; bs != NULL; bs = bs->next)
5477 if (!bs->stop
5478 && bs->breakpoint_at
5479 && is_hardware_watchpoint (bs->breakpoint_at))
5480 {
5481 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5482
5483 update_watchpoint (w, 0 /* don't reparse. */);
5484 need_remove_insert = 1;
5485 }
5486
5487 if (need_remove_insert)
5488 update_global_location_list (UGLL_MAY_INSERT);
5489 else if (removed_any)
5490 update_global_location_list (UGLL_DONT_INSERT);
5491
5492 return bs_head;
5493 }
5494
5495 static void
5496 handle_jit_event (void)
5497 {
5498 struct frame_info *frame;
5499 struct gdbarch *gdbarch;
5500
5501 if (debug_infrun)
5502 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5503
5504 /* Switch terminal for any messages produced by
5505 breakpoint_re_set. */
5506 target_terminal::ours_for_output ();
5507
5508 frame = get_current_frame ();
5509 gdbarch = get_frame_arch (frame);
5510
5511 jit_event_handler (gdbarch);
5512
5513 target_terminal::inferior ();
5514 }
5515
5516 /* Prepare WHAT final decision for infrun. */
5517
5518 /* Decide what infrun needs to do with this bpstat. */
5519
5520 struct bpstat_what
5521 bpstat_what (bpstat bs_head)
5522 {
5523 struct bpstat_what retval;
5524 bpstat bs;
5525
5526 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5527 retval.call_dummy = STOP_NONE;
5528 retval.is_longjmp = 0;
5529
5530 for (bs = bs_head; bs != NULL; bs = bs->next)
5531 {
5532 /* Extract this BS's action. After processing each BS, we check
5533 if its action overrides all we've seem so far. */
5534 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5535 enum bptype bptype;
5536
5537 if (bs->breakpoint_at == NULL)
5538 {
5539 /* I suspect this can happen if it was a momentary
5540 breakpoint which has since been deleted. */
5541 bptype = bp_none;
5542 }
5543 else
5544 bptype = bs->breakpoint_at->type;
5545
5546 switch (bptype)
5547 {
5548 case bp_none:
5549 break;
5550 case bp_breakpoint:
5551 case bp_hardware_breakpoint:
5552 case bp_single_step:
5553 case bp_until:
5554 case bp_finish:
5555 case bp_shlib_event:
5556 if (bs->stop)
5557 {
5558 if (bs->print)
5559 this_action = BPSTAT_WHAT_STOP_NOISY;
5560 else
5561 this_action = BPSTAT_WHAT_STOP_SILENT;
5562 }
5563 else
5564 this_action = BPSTAT_WHAT_SINGLE;
5565 break;
5566 case bp_watchpoint:
5567 case bp_hardware_watchpoint:
5568 case bp_read_watchpoint:
5569 case bp_access_watchpoint:
5570 if (bs->stop)
5571 {
5572 if (bs->print)
5573 this_action = BPSTAT_WHAT_STOP_NOISY;
5574 else
5575 this_action = BPSTAT_WHAT_STOP_SILENT;
5576 }
5577 else
5578 {
5579 /* There was a watchpoint, but we're not stopping.
5580 This requires no further action. */
5581 }
5582 break;
5583 case bp_longjmp:
5584 case bp_longjmp_call_dummy:
5585 case bp_exception:
5586 if (bs->stop)
5587 {
5588 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5589 retval.is_longjmp = bptype != bp_exception;
5590 }
5591 else
5592 this_action = BPSTAT_WHAT_SINGLE;
5593 break;
5594 case bp_longjmp_resume:
5595 case bp_exception_resume:
5596 if (bs->stop)
5597 {
5598 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5599 retval.is_longjmp = bptype == bp_longjmp_resume;
5600 }
5601 else
5602 this_action = BPSTAT_WHAT_SINGLE;
5603 break;
5604 case bp_step_resume:
5605 if (bs->stop)
5606 this_action = BPSTAT_WHAT_STEP_RESUME;
5607 else
5608 {
5609 /* It is for the wrong frame. */
5610 this_action = BPSTAT_WHAT_SINGLE;
5611 }
5612 break;
5613 case bp_hp_step_resume:
5614 if (bs->stop)
5615 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5616 else
5617 {
5618 /* It is for the wrong frame. */
5619 this_action = BPSTAT_WHAT_SINGLE;
5620 }
5621 break;
5622 case bp_watchpoint_scope:
5623 case bp_thread_event:
5624 case bp_overlay_event:
5625 case bp_longjmp_master:
5626 case bp_std_terminate_master:
5627 case bp_exception_master:
5628 this_action = BPSTAT_WHAT_SINGLE;
5629 break;
5630 case bp_catchpoint:
5631 if (bs->stop)
5632 {
5633 if (bs->print)
5634 this_action = BPSTAT_WHAT_STOP_NOISY;
5635 else
5636 this_action = BPSTAT_WHAT_STOP_SILENT;
5637 }
5638 else
5639 {
5640 /* There was a catchpoint, but we're not stopping.
5641 This requires no further action. */
5642 }
5643 break;
5644 case bp_jit_event:
5645 this_action = BPSTAT_WHAT_SINGLE;
5646 break;
5647 case bp_call_dummy:
5648 /* Make sure the action is stop (silent or noisy),
5649 so infrun.c pops the dummy frame. */
5650 retval.call_dummy = STOP_STACK_DUMMY;
5651 this_action = BPSTAT_WHAT_STOP_SILENT;
5652 break;
5653 case bp_std_terminate:
5654 /* Make sure the action is stop (silent or noisy),
5655 so infrun.c pops the dummy frame. */
5656 retval.call_dummy = STOP_STD_TERMINATE;
5657 this_action = BPSTAT_WHAT_STOP_SILENT;
5658 break;
5659 case bp_tracepoint:
5660 case bp_fast_tracepoint:
5661 case bp_static_tracepoint:
5662 /* Tracepoint hits should not be reported back to GDB, and
5663 if one got through somehow, it should have been filtered
5664 out already. */
5665 internal_error (__FILE__, __LINE__,
5666 _("bpstat_what: tracepoint encountered"));
5667 break;
5668 case bp_gnu_ifunc_resolver:
5669 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5670 this_action = BPSTAT_WHAT_SINGLE;
5671 break;
5672 case bp_gnu_ifunc_resolver_return:
5673 /* The breakpoint will be removed, execution will restart from the
5674 PC of the former breakpoint. */
5675 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5676 break;
5677
5678 case bp_dprintf:
5679 if (bs->stop)
5680 this_action = BPSTAT_WHAT_STOP_SILENT;
5681 else
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684
5685 default:
5686 internal_error (__FILE__, __LINE__,
5687 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5688 }
5689
5690 retval.main_action = std::max (retval.main_action, this_action);
5691 }
5692
5693 return retval;
5694 }
5695
5696 void
5697 bpstat_run_callbacks (bpstat bs_head)
5698 {
5699 bpstat bs;
5700
5701 for (bs = bs_head; bs != NULL; bs = bs->next)
5702 {
5703 struct breakpoint *b = bs->breakpoint_at;
5704
5705 if (b == NULL)
5706 continue;
5707 switch (b->type)
5708 {
5709 case bp_jit_event:
5710 handle_jit_event ();
5711 break;
5712 case bp_gnu_ifunc_resolver:
5713 gnu_ifunc_resolver_stop (b);
5714 break;
5715 case bp_gnu_ifunc_resolver_return:
5716 gnu_ifunc_resolver_return_stop (b);
5717 break;
5718 }
5719 }
5720 }
5721
5722 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5723 without hardware support). This isn't related to a specific bpstat,
5724 just to things like whether watchpoints are set. */
5725
5726 int
5727 bpstat_should_step (void)
5728 {
5729 struct breakpoint *b;
5730
5731 ALL_BREAKPOINTS (b)
5732 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5733 return 1;
5734 return 0;
5735 }
5736
5737 int
5738 bpstat_causes_stop (bpstat bs)
5739 {
5740 for (; bs != NULL; bs = bs->next)
5741 if (bs->stop)
5742 return 1;
5743
5744 return 0;
5745 }
5746
5747 \f
5748
5749 /* Compute a string of spaces suitable to indent the next line
5750 so it starts at the position corresponding to the table column
5751 named COL_NAME in the currently active table of UIOUT. */
5752
5753 static char *
5754 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5755 {
5756 static char wrap_indent[80];
5757 int i, total_width, width, align;
5758 const char *text;
5759
5760 total_width = 0;
5761 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5762 {
5763 if (strcmp (text, col_name) == 0)
5764 {
5765 gdb_assert (total_width < sizeof wrap_indent);
5766 memset (wrap_indent, ' ', total_width);
5767 wrap_indent[total_width] = 0;
5768
5769 return wrap_indent;
5770 }
5771
5772 total_width += width + 1;
5773 }
5774
5775 return NULL;
5776 }
5777
5778 /* Determine if the locations of this breakpoint will have their conditions
5779 evaluated by the target, host or a mix of both. Returns the following:
5780
5781 "host": Host evals condition.
5782 "host or target": Host or Target evals condition.
5783 "target": Target evals condition.
5784 */
5785
5786 static const char *
5787 bp_condition_evaluator (struct breakpoint *b)
5788 {
5789 struct bp_location *bl;
5790 char host_evals = 0;
5791 char target_evals = 0;
5792
5793 if (!b)
5794 return NULL;
5795
5796 if (!is_breakpoint (b))
5797 return NULL;
5798
5799 if (gdb_evaluates_breakpoint_condition_p ()
5800 || !target_supports_evaluation_of_breakpoint_conditions ())
5801 return condition_evaluation_host;
5802
5803 for (bl = b->loc; bl; bl = bl->next)
5804 {
5805 if (bl->cond_bytecode)
5806 target_evals++;
5807 else
5808 host_evals++;
5809 }
5810
5811 if (host_evals && target_evals)
5812 return condition_evaluation_both;
5813 else if (target_evals)
5814 return condition_evaluation_target;
5815 else
5816 return condition_evaluation_host;
5817 }
5818
5819 /* Determine the breakpoint location's condition evaluator. This is
5820 similar to bp_condition_evaluator, but for locations. */
5821
5822 static const char *
5823 bp_location_condition_evaluator (struct bp_location *bl)
5824 {
5825 if (bl && !is_breakpoint (bl->owner))
5826 return NULL;
5827
5828 if (gdb_evaluates_breakpoint_condition_p ()
5829 || !target_supports_evaluation_of_breakpoint_conditions ())
5830 return condition_evaluation_host;
5831
5832 if (bl && bl->cond_bytecode)
5833 return condition_evaluation_target;
5834 else
5835 return condition_evaluation_host;
5836 }
5837
5838 /* Print the LOC location out of the list of B->LOC locations. */
5839
5840 static void
5841 print_breakpoint_location (struct breakpoint *b,
5842 struct bp_location *loc)
5843 {
5844 struct ui_out *uiout = current_uiout;
5845
5846 scoped_restore_current_program_space restore_pspace;
5847
5848 if (loc != NULL && loc->shlib_disabled)
5849 loc = NULL;
5850
5851 if (loc != NULL)
5852 set_current_program_space (loc->pspace);
5853
5854 if (b->display_canonical)
5855 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5856 else if (loc && loc->symtab)
5857 {
5858 const struct symbol *sym = loc->symbol;
5859
5860 if (sym)
5861 {
5862 uiout->text ("in ");
5863 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5864 uiout->text (" ");
5865 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5866 uiout->text ("at ");
5867 }
5868 uiout->field_string ("file",
5869 symtab_to_filename_for_display (loc->symtab));
5870 uiout->text (":");
5871
5872 if (uiout->is_mi_like_p ())
5873 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5874
5875 uiout->field_int ("line", loc->line_number);
5876 }
5877 else if (loc)
5878 {
5879 string_file stb;
5880
5881 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5882 demangle, "");
5883 uiout->field_stream ("at", stb);
5884 }
5885 else
5886 {
5887 uiout->field_string ("pending",
5888 event_location_to_string (b->location.get ()));
5889 /* If extra_string is available, it could be holding a condition
5890 or dprintf arguments. In either case, make sure it is printed,
5891 too, but only for non-MI streams. */
5892 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5893 {
5894 if (b->type == bp_dprintf)
5895 uiout->text (",");
5896 else
5897 uiout->text (" ");
5898 uiout->text (b->extra_string);
5899 }
5900 }
5901
5902 if (loc && is_breakpoint (b)
5903 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5904 && bp_condition_evaluator (b) == condition_evaluation_both)
5905 {
5906 uiout->text (" (");
5907 uiout->field_string ("evaluated-by",
5908 bp_location_condition_evaluator (loc));
5909 uiout->text (")");
5910 }
5911 }
5912
5913 static const char *
5914 bptype_string (enum bptype type)
5915 {
5916 struct ep_type_description
5917 {
5918 enum bptype type;
5919 const char *description;
5920 };
5921 static struct ep_type_description bptypes[] =
5922 {
5923 {bp_none, "?deleted?"},
5924 {bp_breakpoint, "breakpoint"},
5925 {bp_hardware_breakpoint, "hw breakpoint"},
5926 {bp_single_step, "sw single-step"},
5927 {bp_until, "until"},
5928 {bp_finish, "finish"},
5929 {bp_watchpoint, "watchpoint"},
5930 {bp_hardware_watchpoint, "hw watchpoint"},
5931 {bp_read_watchpoint, "read watchpoint"},
5932 {bp_access_watchpoint, "acc watchpoint"},
5933 {bp_longjmp, "longjmp"},
5934 {bp_longjmp_resume, "longjmp resume"},
5935 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5936 {bp_exception, "exception"},
5937 {bp_exception_resume, "exception resume"},
5938 {bp_step_resume, "step resume"},
5939 {bp_hp_step_resume, "high-priority step resume"},
5940 {bp_watchpoint_scope, "watchpoint scope"},
5941 {bp_call_dummy, "call dummy"},
5942 {bp_std_terminate, "std::terminate"},
5943 {bp_shlib_event, "shlib events"},
5944 {bp_thread_event, "thread events"},
5945 {bp_overlay_event, "overlay events"},
5946 {bp_longjmp_master, "longjmp master"},
5947 {bp_std_terminate_master, "std::terminate master"},
5948 {bp_exception_master, "exception master"},
5949 {bp_catchpoint, "catchpoint"},
5950 {bp_tracepoint, "tracepoint"},
5951 {bp_fast_tracepoint, "fast tracepoint"},
5952 {bp_static_tracepoint, "static tracepoint"},
5953 {bp_dprintf, "dprintf"},
5954 {bp_jit_event, "jit events"},
5955 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5956 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5957 };
5958
5959 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5960 || ((int) type != bptypes[(int) type].type))
5961 internal_error (__FILE__, __LINE__,
5962 _("bptypes table does not describe type #%d."),
5963 (int) type);
5964
5965 return bptypes[(int) type].description;
5966 }
5967
5968 /* For MI, output a field named 'thread-groups' with a list as the value.
5969 For CLI, prefix the list with the string 'inf'. */
5970
5971 static void
5972 output_thread_groups (struct ui_out *uiout,
5973 const char *field_name,
5974 const std::vector<int> &inf_nums,
5975 int mi_only)
5976 {
5977 int is_mi = uiout->is_mi_like_p ();
5978
5979 /* For backward compatibility, don't display inferiors in CLI unless
5980 there are several. Always display them for MI. */
5981 if (!is_mi && mi_only)
5982 return;
5983
5984 ui_out_emit_list list_emitter (uiout, field_name);
5985
5986 for (size_t i = 0; i < inf_nums.size (); i++)
5987 {
5988 if (is_mi)
5989 {
5990 char mi_group[10];
5991
5992 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5993 uiout->field_string (NULL, mi_group);
5994 }
5995 else
5996 {
5997 if (i == 0)
5998 uiout->text (" inf ");
5999 else
6000 uiout->text (", ");
6001
6002 uiout->text (plongest (inf_nums[i]));
6003 }
6004 }
6005 }
6006
6007 /* Print B to gdb_stdout. */
6008
6009 static void
6010 print_one_breakpoint_location (struct breakpoint *b,
6011 struct bp_location *loc,
6012 int loc_number,
6013 struct bp_location **last_loc,
6014 int allflag)
6015 {
6016 struct command_line *l;
6017 static char bpenables[] = "nynny";
6018
6019 struct ui_out *uiout = current_uiout;
6020 int header_of_multiple = 0;
6021 int part_of_multiple = (loc != NULL);
6022 struct value_print_options opts;
6023
6024 get_user_print_options (&opts);
6025
6026 gdb_assert (!loc || loc_number != 0);
6027 /* See comment in print_one_breakpoint concerning treatment of
6028 breakpoints with single disabled location. */
6029 if (loc == NULL
6030 && (b->loc != NULL
6031 && (b->loc->next != NULL || !b->loc->enabled)))
6032 header_of_multiple = 1;
6033 if (loc == NULL)
6034 loc = b->loc;
6035
6036 annotate_record ();
6037
6038 /* 1 */
6039 annotate_field (0);
6040 if (part_of_multiple)
6041 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6042 else
6043 uiout->field_int ("number", b->number);
6044
6045 /* 2 */
6046 annotate_field (1);
6047 if (part_of_multiple)
6048 uiout->field_skip ("type");
6049 else
6050 uiout->field_string ("type", bptype_string (b->type));
6051
6052 /* 3 */
6053 annotate_field (2);
6054 if (part_of_multiple)
6055 uiout->field_skip ("disp");
6056 else
6057 uiout->field_string ("disp", bpdisp_text (b->disposition));
6058
6059 /* 4 */
6060 annotate_field (3);
6061 if (part_of_multiple)
6062 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6063 else
6064 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6065
6066 /* 5 and 6 */
6067 if (b->ops != NULL && b->ops->print_one != NULL)
6068 {
6069 /* Although the print_one can possibly print all locations,
6070 calling it here is not likely to get any nice result. So,
6071 make sure there's just one location. */
6072 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6073 b->ops->print_one (b, last_loc);
6074 }
6075 else
6076 switch (b->type)
6077 {
6078 case bp_none:
6079 internal_error (__FILE__, __LINE__,
6080 _("print_one_breakpoint: bp_none encountered\n"));
6081 break;
6082
6083 case bp_watchpoint:
6084 case bp_hardware_watchpoint:
6085 case bp_read_watchpoint:
6086 case bp_access_watchpoint:
6087 {
6088 struct watchpoint *w = (struct watchpoint *) b;
6089
6090 /* Field 4, the address, is omitted (which makes the columns
6091 not line up too nicely with the headers, but the effect
6092 is relatively readable). */
6093 if (opts.addressprint)
6094 uiout->field_skip ("addr");
6095 annotate_field (5);
6096 uiout->field_string ("what", w->exp_string);
6097 }
6098 break;
6099
6100 case bp_breakpoint:
6101 case bp_hardware_breakpoint:
6102 case bp_single_step:
6103 case bp_until:
6104 case bp_finish:
6105 case bp_longjmp:
6106 case bp_longjmp_resume:
6107 case bp_longjmp_call_dummy:
6108 case bp_exception:
6109 case bp_exception_resume:
6110 case bp_step_resume:
6111 case bp_hp_step_resume:
6112 case bp_watchpoint_scope:
6113 case bp_call_dummy:
6114 case bp_std_terminate:
6115 case bp_shlib_event:
6116 case bp_thread_event:
6117 case bp_overlay_event:
6118 case bp_longjmp_master:
6119 case bp_std_terminate_master:
6120 case bp_exception_master:
6121 case bp_tracepoint:
6122 case bp_fast_tracepoint:
6123 case bp_static_tracepoint:
6124 case bp_dprintf:
6125 case bp_jit_event:
6126 case bp_gnu_ifunc_resolver:
6127 case bp_gnu_ifunc_resolver_return:
6128 if (opts.addressprint)
6129 {
6130 annotate_field (4);
6131 if (header_of_multiple)
6132 uiout->field_string ("addr", "<MULTIPLE>");
6133 else if (b->loc == NULL || loc->shlib_disabled)
6134 uiout->field_string ("addr", "<PENDING>");
6135 else
6136 uiout->field_core_addr ("addr",
6137 loc->gdbarch, loc->address);
6138 }
6139 annotate_field (5);
6140 if (!header_of_multiple)
6141 print_breakpoint_location (b, loc);
6142 if (b->loc)
6143 *last_loc = b->loc;
6144 break;
6145 }
6146
6147
6148 if (loc != NULL && !header_of_multiple)
6149 {
6150 std::vector<int> inf_nums;
6151 int mi_only = 1;
6152
6153 for (inferior *inf : all_inferiors ())
6154 {
6155 if (inf->pspace == loc->pspace)
6156 inf_nums.push_back (inf->num);
6157 }
6158
6159 /* For backward compatibility, don't display inferiors in CLI unless
6160 there are several. Always display for MI. */
6161 if (allflag
6162 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6163 && (number_of_program_spaces () > 1
6164 || number_of_inferiors () > 1)
6165 /* LOC is for existing B, it cannot be in
6166 moribund_locations and thus having NULL OWNER. */
6167 && loc->owner->type != bp_catchpoint))
6168 mi_only = 0;
6169 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6170 }
6171
6172 if (!part_of_multiple)
6173 {
6174 if (b->thread != -1)
6175 {
6176 /* FIXME: This seems to be redundant and lost here; see the
6177 "stop only in" line a little further down. */
6178 uiout->text (" thread ");
6179 uiout->field_int ("thread", b->thread);
6180 }
6181 else if (b->task != 0)
6182 {
6183 uiout->text (" task ");
6184 uiout->field_int ("task", b->task);
6185 }
6186 }
6187
6188 uiout->text ("\n");
6189
6190 if (!part_of_multiple)
6191 b->ops->print_one_detail (b, uiout);
6192
6193 if (part_of_multiple && frame_id_p (b->frame_id))
6194 {
6195 annotate_field (6);
6196 uiout->text ("\tstop only in stack frame at ");
6197 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6198 the frame ID. */
6199 uiout->field_core_addr ("frame",
6200 b->gdbarch, b->frame_id.stack_addr);
6201 uiout->text ("\n");
6202 }
6203
6204 if (!part_of_multiple && b->cond_string)
6205 {
6206 annotate_field (7);
6207 if (is_tracepoint (b))
6208 uiout->text ("\ttrace only if ");
6209 else
6210 uiout->text ("\tstop only if ");
6211 uiout->field_string ("cond", b->cond_string);
6212
6213 /* Print whether the target is doing the breakpoint's condition
6214 evaluation. If GDB is doing the evaluation, don't print anything. */
6215 if (is_breakpoint (b)
6216 && breakpoint_condition_evaluation_mode ()
6217 == condition_evaluation_target)
6218 {
6219 uiout->text (" (");
6220 uiout->field_string ("evaluated-by",
6221 bp_condition_evaluator (b));
6222 uiout->text (" evals)");
6223 }
6224 uiout->text ("\n");
6225 }
6226
6227 if (!part_of_multiple && b->thread != -1)
6228 {
6229 /* FIXME should make an annotation for this. */
6230 uiout->text ("\tstop only in thread ");
6231 if (uiout->is_mi_like_p ())
6232 uiout->field_int ("thread", b->thread);
6233 else
6234 {
6235 struct thread_info *thr = find_thread_global_id (b->thread);
6236
6237 uiout->field_string ("thread", print_thread_id (thr));
6238 }
6239 uiout->text ("\n");
6240 }
6241
6242 if (!part_of_multiple)
6243 {
6244 if (b->hit_count)
6245 {
6246 /* FIXME should make an annotation for this. */
6247 if (is_catchpoint (b))
6248 uiout->text ("\tcatchpoint");
6249 else if (is_tracepoint (b))
6250 uiout->text ("\ttracepoint");
6251 else
6252 uiout->text ("\tbreakpoint");
6253 uiout->text (" already hit ");
6254 uiout->field_int ("times", b->hit_count);
6255 if (b->hit_count == 1)
6256 uiout->text (" time\n");
6257 else
6258 uiout->text (" times\n");
6259 }
6260 else
6261 {
6262 /* Output the count also if it is zero, but only if this is mi. */
6263 if (uiout->is_mi_like_p ())
6264 uiout->field_int ("times", b->hit_count);
6265 }
6266 }
6267
6268 if (!part_of_multiple && b->ignore_count)
6269 {
6270 annotate_field (8);
6271 uiout->text ("\tignore next ");
6272 uiout->field_int ("ignore", b->ignore_count);
6273 uiout->text (" hits\n");
6274 }
6275
6276 /* Note that an enable count of 1 corresponds to "enable once"
6277 behavior, which is reported by the combination of enablement and
6278 disposition, so we don't need to mention it here. */
6279 if (!part_of_multiple && b->enable_count > 1)
6280 {
6281 annotate_field (8);
6282 uiout->text ("\tdisable after ");
6283 /* Tweak the wording to clarify that ignore and enable counts
6284 are distinct, and have additive effect. */
6285 if (b->ignore_count)
6286 uiout->text ("additional ");
6287 else
6288 uiout->text ("next ");
6289 uiout->field_int ("enable", b->enable_count);
6290 uiout->text (" hits\n");
6291 }
6292
6293 if (!part_of_multiple && is_tracepoint (b))
6294 {
6295 struct tracepoint *tp = (struct tracepoint *) b;
6296
6297 if (tp->traceframe_usage)
6298 {
6299 uiout->text ("\ttrace buffer usage ");
6300 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6301 uiout->text (" bytes\n");
6302 }
6303 }
6304
6305 l = b->commands ? b->commands.get () : NULL;
6306 if (!part_of_multiple && l)
6307 {
6308 annotate_field (9);
6309 ui_out_emit_tuple tuple_emitter (uiout, "script");
6310 print_command_lines (uiout, l, 4);
6311 }
6312
6313 if (is_tracepoint (b))
6314 {
6315 struct tracepoint *t = (struct tracepoint *) b;
6316
6317 if (!part_of_multiple && t->pass_count)
6318 {
6319 annotate_field (10);
6320 uiout->text ("\tpass count ");
6321 uiout->field_int ("pass", t->pass_count);
6322 uiout->text (" \n");
6323 }
6324
6325 /* Don't display it when tracepoint or tracepoint location is
6326 pending. */
6327 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6328 {
6329 annotate_field (11);
6330
6331 if (uiout->is_mi_like_p ())
6332 uiout->field_string ("installed",
6333 loc->inserted ? "y" : "n");
6334 else
6335 {
6336 if (loc->inserted)
6337 uiout->text ("\t");
6338 else
6339 uiout->text ("\tnot ");
6340 uiout->text ("installed on target\n");
6341 }
6342 }
6343 }
6344
6345 if (uiout->is_mi_like_p () && !part_of_multiple)
6346 {
6347 if (is_watchpoint (b))
6348 {
6349 struct watchpoint *w = (struct watchpoint *) b;
6350
6351 uiout->field_string ("original-location", w->exp_string);
6352 }
6353 else if (b->location != NULL
6354 && event_location_to_string (b->location.get ()) != NULL)
6355 uiout->field_string ("original-location",
6356 event_location_to_string (b->location.get ()));
6357 }
6358 }
6359
6360 static void
6361 print_one_breakpoint (struct breakpoint *b,
6362 struct bp_location **last_loc,
6363 int allflag)
6364 {
6365 struct ui_out *uiout = current_uiout;
6366
6367 {
6368 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6369
6370 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6371 }
6372
6373 /* If this breakpoint has custom print function,
6374 it's already printed. Otherwise, print individual
6375 locations, if any. */
6376 if (b->ops == NULL || b->ops->print_one == NULL)
6377 {
6378 /* If breakpoint has a single location that is disabled, we
6379 print it as if it had several locations, since otherwise it's
6380 hard to represent "breakpoint enabled, location disabled"
6381 situation.
6382
6383 Note that while hardware watchpoints have several locations
6384 internally, that's not a property exposed to user. */
6385 if (b->loc
6386 && !is_hardware_watchpoint (b)
6387 && (b->loc->next || !b->loc->enabled))
6388 {
6389 struct bp_location *loc;
6390 int n = 1;
6391
6392 for (loc = b->loc; loc; loc = loc->next, ++n)
6393 {
6394 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6395 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6396 }
6397 }
6398 }
6399 }
6400
6401 static int
6402 breakpoint_address_bits (struct breakpoint *b)
6403 {
6404 int print_address_bits = 0;
6405 struct bp_location *loc;
6406
6407 /* Software watchpoints that aren't watching memory don't have an
6408 address to print. */
6409 if (is_no_memory_software_watchpoint (b))
6410 return 0;
6411
6412 for (loc = b->loc; loc; loc = loc->next)
6413 {
6414 int addr_bit;
6415
6416 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6417 if (addr_bit > print_address_bits)
6418 print_address_bits = addr_bit;
6419 }
6420
6421 return print_address_bits;
6422 }
6423
6424 /* See breakpoint.h. */
6425
6426 void
6427 print_breakpoint (breakpoint *b)
6428 {
6429 struct bp_location *dummy_loc = NULL;
6430 print_one_breakpoint (b, &dummy_loc, 0);
6431 }
6432
6433 /* Return true if this breakpoint was set by the user, false if it is
6434 internal or momentary. */
6435
6436 int
6437 user_breakpoint_p (struct breakpoint *b)
6438 {
6439 return b->number > 0;
6440 }
6441
6442 /* See breakpoint.h. */
6443
6444 int
6445 pending_breakpoint_p (struct breakpoint *b)
6446 {
6447 return b->loc == NULL;
6448 }
6449
6450 /* Print information on user settable breakpoint (watchpoint, etc)
6451 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6452 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6453 FILTER is non-NULL, call it on each breakpoint and only include the
6454 ones for which it returns non-zero. Return the total number of
6455 breakpoints listed. */
6456
6457 static int
6458 breakpoint_1 (const char *args, int allflag,
6459 int (*filter) (const struct breakpoint *))
6460 {
6461 struct breakpoint *b;
6462 struct bp_location *last_loc = NULL;
6463 int nr_printable_breakpoints;
6464 struct value_print_options opts;
6465 int print_address_bits = 0;
6466 int print_type_col_width = 14;
6467 struct ui_out *uiout = current_uiout;
6468
6469 get_user_print_options (&opts);
6470
6471 /* Compute the number of rows in the table, as well as the size
6472 required for address fields. */
6473 nr_printable_breakpoints = 0;
6474 ALL_BREAKPOINTS (b)
6475 {
6476 /* If we have a filter, only list the breakpoints it accepts. */
6477 if (filter && !filter (b))
6478 continue;
6479
6480 /* If we have an "args" string, it is a list of breakpoints to
6481 accept. Skip the others. */
6482 if (args != NULL && *args != '\0')
6483 {
6484 if (allflag && parse_and_eval_long (args) != b->number)
6485 continue;
6486 if (!allflag && !number_is_in_list (args, b->number))
6487 continue;
6488 }
6489
6490 if (allflag || user_breakpoint_p (b))
6491 {
6492 int addr_bit, type_len;
6493
6494 addr_bit = breakpoint_address_bits (b);
6495 if (addr_bit > print_address_bits)
6496 print_address_bits = addr_bit;
6497
6498 type_len = strlen (bptype_string (b->type));
6499 if (type_len > print_type_col_width)
6500 print_type_col_width = type_len;
6501
6502 nr_printable_breakpoints++;
6503 }
6504 }
6505
6506 {
6507 ui_out_emit_table table_emitter (uiout,
6508 opts.addressprint ? 6 : 5,
6509 nr_printable_breakpoints,
6510 "BreakpointTable");
6511
6512 if (nr_printable_breakpoints > 0)
6513 annotate_breakpoints_headers ();
6514 if (nr_printable_breakpoints > 0)
6515 annotate_field (0);
6516 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6517 if (nr_printable_breakpoints > 0)
6518 annotate_field (1);
6519 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6520 if (nr_printable_breakpoints > 0)
6521 annotate_field (2);
6522 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6523 if (nr_printable_breakpoints > 0)
6524 annotate_field (3);
6525 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6526 if (opts.addressprint)
6527 {
6528 if (nr_printable_breakpoints > 0)
6529 annotate_field (4);
6530 if (print_address_bits <= 32)
6531 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6532 else
6533 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6534 }
6535 if (nr_printable_breakpoints > 0)
6536 annotate_field (5);
6537 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6538 uiout->table_body ();
6539 if (nr_printable_breakpoints > 0)
6540 annotate_breakpoints_table ();
6541
6542 ALL_BREAKPOINTS (b)
6543 {
6544 QUIT;
6545 /* If we have a filter, only list the breakpoints it accepts. */
6546 if (filter && !filter (b))
6547 continue;
6548
6549 /* If we have an "args" string, it is a list of breakpoints to
6550 accept. Skip the others. */
6551
6552 if (args != NULL && *args != '\0')
6553 {
6554 if (allflag) /* maintenance info breakpoint */
6555 {
6556 if (parse_and_eval_long (args) != b->number)
6557 continue;
6558 }
6559 else /* all others */
6560 {
6561 if (!number_is_in_list (args, b->number))
6562 continue;
6563 }
6564 }
6565 /* We only print out user settable breakpoints unless the
6566 allflag is set. */
6567 if (allflag || user_breakpoint_p (b))
6568 print_one_breakpoint (b, &last_loc, allflag);
6569 }
6570 }
6571
6572 if (nr_printable_breakpoints == 0)
6573 {
6574 /* If there's a filter, let the caller decide how to report
6575 empty list. */
6576 if (!filter)
6577 {
6578 if (args == NULL || *args == '\0')
6579 uiout->message ("No breakpoints or watchpoints.\n");
6580 else
6581 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6582 args);
6583 }
6584 }
6585 else
6586 {
6587 if (last_loc && !server_command)
6588 set_next_address (last_loc->gdbarch, last_loc->address);
6589 }
6590
6591 /* FIXME? Should this be moved up so that it is only called when
6592 there have been breakpoints? */
6593 annotate_breakpoints_table_end ();
6594
6595 return nr_printable_breakpoints;
6596 }
6597
6598 /* Display the value of default-collect in a way that is generally
6599 compatible with the breakpoint list. */
6600
6601 static void
6602 default_collect_info (void)
6603 {
6604 struct ui_out *uiout = current_uiout;
6605
6606 /* If it has no value (which is frequently the case), say nothing; a
6607 message like "No default-collect." gets in user's face when it's
6608 not wanted. */
6609 if (!*default_collect)
6610 return;
6611
6612 /* The following phrase lines up nicely with per-tracepoint collect
6613 actions. */
6614 uiout->text ("default collect ");
6615 uiout->field_string ("default-collect", default_collect);
6616 uiout->text (" \n");
6617 }
6618
6619 static void
6620 info_breakpoints_command (const char *args, int from_tty)
6621 {
6622 breakpoint_1 (args, 0, NULL);
6623
6624 default_collect_info ();
6625 }
6626
6627 static void
6628 info_watchpoints_command (const char *args, int from_tty)
6629 {
6630 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6631 struct ui_out *uiout = current_uiout;
6632
6633 if (num_printed == 0)
6634 {
6635 if (args == NULL || *args == '\0')
6636 uiout->message ("No watchpoints.\n");
6637 else
6638 uiout->message ("No watchpoint matching '%s'.\n", args);
6639 }
6640 }
6641
6642 static void
6643 maintenance_info_breakpoints (const char *args, int from_tty)
6644 {
6645 breakpoint_1 (args, 1, NULL);
6646
6647 default_collect_info ();
6648 }
6649
6650 static int
6651 breakpoint_has_pc (struct breakpoint *b,
6652 struct program_space *pspace,
6653 CORE_ADDR pc, struct obj_section *section)
6654 {
6655 struct bp_location *bl = b->loc;
6656
6657 for (; bl; bl = bl->next)
6658 {
6659 if (bl->pspace == pspace
6660 && bl->address == pc
6661 && (!overlay_debugging || bl->section == section))
6662 return 1;
6663 }
6664 return 0;
6665 }
6666
6667 /* Print a message describing any user-breakpoints set at PC. This
6668 concerns with logical breakpoints, so we match program spaces, not
6669 address spaces. */
6670
6671 static void
6672 describe_other_breakpoints (struct gdbarch *gdbarch,
6673 struct program_space *pspace, CORE_ADDR pc,
6674 struct obj_section *section, int thread)
6675 {
6676 int others = 0;
6677 struct breakpoint *b;
6678
6679 ALL_BREAKPOINTS (b)
6680 others += (user_breakpoint_p (b)
6681 && breakpoint_has_pc (b, pspace, pc, section));
6682 if (others > 0)
6683 {
6684 if (others == 1)
6685 printf_filtered (_("Note: breakpoint "));
6686 else /* if (others == ???) */
6687 printf_filtered (_("Note: breakpoints "));
6688 ALL_BREAKPOINTS (b)
6689 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6690 {
6691 others--;
6692 printf_filtered ("%d", b->number);
6693 if (b->thread == -1 && thread != -1)
6694 printf_filtered (" (all threads)");
6695 else if (b->thread != -1)
6696 printf_filtered (" (thread %d)", b->thread);
6697 printf_filtered ("%s%s ",
6698 ((b->enable_state == bp_disabled
6699 || b->enable_state == bp_call_disabled)
6700 ? " (disabled)"
6701 : ""),
6702 (others > 1) ? ","
6703 : ((others == 1) ? " and" : ""));
6704 }
6705 printf_filtered (_("also set at pc "));
6706 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6707 printf_filtered (".\n");
6708 }
6709 }
6710 \f
6711
6712 /* Return true iff it is meaningful to use the address member of
6713 BPT locations. For some breakpoint types, the locations' address members
6714 are irrelevant and it makes no sense to attempt to compare them to other
6715 addresses (or use them for any other purpose either).
6716
6717 More specifically, each of the following breakpoint types will
6718 always have a zero valued location address and we don't want to mark
6719 breakpoints of any of these types to be a duplicate of an actual
6720 breakpoint location at address zero:
6721
6722 bp_watchpoint
6723 bp_catchpoint
6724
6725 */
6726
6727 static int
6728 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6729 {
6730 enum bptype type = bpt->type;
6731
6732 return (type != bp_watchpoint && type != bp_catchpoint);
6733 }
6734
6735 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6736 true if LOC1 and LOC2 represent the same watchpoint location. */
6737
6738 static int
6739 watchpoint_locations_match (struct bp_location *loc1,
6740 struct bp_location *loc2)
6741 {
6742 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6743 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6744
6745 /* Both of them must exist. */
6746 gdb_assert (w1 != NULL);
6747 gdb_assert (w2 != NULL);
6748
6749 /* If the target can evaluate the condition expression in hardware,
6750 then we we need to insert both watchpoints even if they are at
6751 the same place. Otherwise the watchpoint will only trigger when
6752 the condition of whichever watchpoint was inserted evaluates to
6753 true, not giving a chance for GDB to check the condition of the
6754 other watchpoint. */
6755 if ((w1->cond_exp
6756 && target_can_accel_watchpoint_condition (loc1->address,
6757 loc1->length,
6758 loc1->watchpoint_type,
6759 w1->cond_exp.get ()))
6760 || (w2->cond_exp
6761 && target_can_accel_watchpoint_condition (loc2->address,
6762 loc2->length,
6763 loc2->watchpoint_type,
6764 w2->cond_exp.get ())))
6765 return 0;
6766
6767 /* Note that this checks the owner's type, not the location's. In
6768 case the target does not support read watchpoints, but does
6769 support access watchpoints, we'll have bp_read_watchpoint
6770 watchpoints with hw_access locations. Those should be considered
6771 duplicates of hw_read locations. The hw_read locations will
6772 become hw_access locations later. */
6773 return (loc1->owner->type == loc2->owner->type
6774 && loc1->pspace->aspace == loc2->pspace->aspace
6775 && loc1->address == loc2->address
6776 && loc1->length == loc2->length);
6777 }
6778
6779 /* See breakpoint.h. */
6780
6781 int
6782 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6783 const address_space *aspace2, CORE_ADDR addr2)
6784 {
6785 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6786 || aspace1 == aspace2)
6787 && addr1 == addr2);
6788 }
6789
6790 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6791 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6792 matches ASPACE2. On targets that have global breakpoints, the address
6793 space doesn't really matter. */
6794
6795 static int
6796 breakpoint_address_match_range (const address_space *aspace1,
6797 CORE_ADDR addr1,
6798 int len1, const address_space *aspace2,
6799 CORE_ADDR addr2)
6800 {
6801 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6802 || aspace1 == aspace2)
6803 && addr2 >= addr1 && addr2 < addr1 + len1);
6804 }
6805
6806 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6807 a ranged breakpoint. In most targets, a match happens only if ASPACE
6808 matches the breakpoint's address space. On targets that have global
6809 breakpoints, the address space doesn't really matter. */
6810
6811 static int
6812 breakpoint_location_address_match (struct bp_location *bl,
6813 const address_space *aspace,
6814 CORE_ADDR addr)
6815 {
6816 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6817 aspace, addr)
6818 || (bl->length
6819 && breakpoint_address_match_range (bl->pspace->aspace,
6820 bl->address, bl->length,
6821 aspace, addr)));
6822 }
6823
6824 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6825 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6826 match happens only if ASPACE matches the breakpoint's address
6827 space. On targets that have global breakpoints, the address space
6828 doesn't really matter. */
6829
6830 static int
6831 breakpoint_location_address_range_overlap (struct bp_location *bl,
6832 const address_space *aspace,
6833 CORE_ADDR addr, int len)
6834 {
6835 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6836 || bl->pspace->aspace == aspace)
6837 {
6838 int bl_len = bl->length != 0 ? bl->length : 1;
6839
6840 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6841 return 1;
6842 }
6843 return 0;
6844 }
6845
6846 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6847 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6848 true, otherwise returns false. */
6849
6850 static int
6851 tracepoint_locations_match (struct bp_location *loc1,
6852 struct bp_location *loc2)
6853 {
6854 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6855 /* Since tracepoint locations are never duplicated with others', tracepoint
6856 locations at the same address of different tracepoints are regarded as
6857 different locations. */
6858 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6859 else
6860 return 0;
6861 }
6862
6863 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6864 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6865 represent the same location. */
6866
6867 static int
6868 breakpoint_locations_match (struct bp_location *loc1,
6869 struct bp_location *loc2)
6870 {
6871 int hw_point1, hw_point2;
6872
6873 /* Both of them must not be in moribund_locations. */
6874 gdb_assert (loc1->owner != NULL);
6875 gdb_assert (loc2->owner != NULL);
6876
6877 hw_point1 = is_hardware_watchpoint (loc1->owner);
6878 hw_point2 = is_hardware_watchpoint (loc2->owner);
6879
6880 if (hw_point1 != hw_point2)
6881 return 0;
6882 else if (hw_point1)
6883 return watchpoint_locations_match (loc1, loc2);
6884 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6885 return tracepoint_locations_match (loc1, loc2);
6886 else
6887 /* We compare bp_location.length in order to cover ranged breakpoints. */
6888 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6889 loc2->pspace->aspace, loc2->address)
6890 && loc1->length == loc2->length);
6891 }
6892
6893 static void
6894 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6895 int bnum, int have_bnum)
6896 {
6897 /* The longest string possibly returned by hex_string_custom
6898 is 50 chars. These must be at least that big for safety. */
6899 char astr1[64];
6900 char astr2[64];
6901
6902 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6903 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6904 if (have_bnum)
6905 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6906 bnum, astr1, astr2);
6907 else
6908 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6909 }
6910
6911 /* Adjust a breakpoint's address to account for architectural
6912 constraints on breakpoint placement. Return the adjusted address.
6913 Note: Very few targets require this kind of adjustment. For most
6914 targets, this function is simply the identity function. */
6915
6916 static CORE_ADDR
6917 adjust_breakpoint_address (struct gdbarch *gdbarch,
6918 CORE_ADDR bpaddr, enum bptype bptype)
6919 {
6920 if (bptype == bp_watchpoint
6921 || bptype == bp_hardware_watchpoint
6922 || bptype == bp_read_watchpoint
6923 || bptype == bp_access_watchpoint
6924 || bptype == bp_catchpoint)
6925 {
6926 /* Watchpoints and the various bp_catch_* eventpoints should not
6927 have their addresses modified. */
6928 return bpaddr;
6929 }
6930 else if (bptype == bp_single_step)
6931 {
6932 /* Single-step breakpoints should not have their addresses
6933 modified. If there's any architectural constrain that
6934 applies to this address, then it should have already been
6935 taken into account when the breakpoint was created in the
6936 first place. If we didn't do this, stepping through e.g.,
6937 Thumb-2 IT blocks would break. */
6938 return bpaddr;
6939 }
6940 else
6941 {
6942 CORE_ADDR adjusted_bpaddr = bpaddr;
6943
6944 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6945 {
6946 /* Some targets have architectural constraints on the placement
6947 of breakpoint instructions. Obtain the adjusted address. */
6948 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6949 }
6950
6951 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6952
6953 /* An adjusted breakpoint address can significantly alter
6954 a user's expectations. Print a warning if an adjustment
6955 is required. */
6956 if (adjusted_bpaddr != bpaddr)
6957 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6958
6959 return adjusted_bpaddr;
6960 }
6961 }
6962
6963 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6964 {
6965 bp_location *loc = this;
6966
6967 gdb_assert (ops != NULL);
6968
6969 loc->ops = ops;
6970 loc->owner = owner;
6971 loc->cond_bytecode = NULL;
6972 loc->shlib_disabled = 0;
6973 loc->enabled = 1;
6974
6975 switch (owner->type)
6976 {
6977 case bp_breakpoint:
6978 case bp_single_step:
6979 case bp_until:
6980 case bp_finish:
6981 case bp_longjmp:
6982 case bp_longjmp_resume:
6983 case bp_longjmp_call_dummy:
6984 case bp_exception:
6985 case bp_exception_resume:
6986 case bp_step_resume:
6987 case bp_hp_step_resume:
6988 case bp_watchpoint_scope:
6989 case bp_call_dummy:
6990 case bp_std_terminate:
6991 case bp_shlib_event:
6992 case bp_thread_event:
6993 case bp_overlay_event:
6994 case bp_jit_event:
6995 case bp_longjmp_master:
6996 case bp_std_terminate_master:
6997 case bp_exception_master:
6998 case bp_gnu_ifunc_resolver:
6999 case bp_gnu_ifunc_resolver_return:
7000 case bp_dprintf:
7001 loc->loc_type = bp_loc_software_breakpoint;
7002 mark_breakpoint_location_modified (loc);
7003 break;
7004 case bp_hardware_breakpoint:
7005 loc->loc_type = bp_loc_hardware_breakpoint;
7006 mark_breakpoint_location_modified (loc);
7007 break;
7008 case bp_hardware_watchpoint:
7009 case bp_read_watchpoint:
7010 case bp_access_watchpoint:
7011 loc->loc_type = bp_loc_hardware_watchpoint;
7012 break;
7013 case bp_watchpoint:
7014 case bp_catchpoint:
7015 case bp_tracepoint:
7016 case bp_fast_tracepoint:
7017 case bp_static_tracepoint:
7018 loc->loc_type = bp_loc_other;
7019 break;
7020 default:
7021 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7022 }
7023
7024 loc->refc = 1;
7025 }
7026
7027 /* Allocate a struct bp_location. */
7028
7029 static struct bp_location *
7030 allocate_bp_location (struct breakpoint *bpt)
7031 {
7032 return bpt->ops->allocate_location (bpt);
7033 }
7034
7035 static void
7036 free_bp_location (struct bp_location *loc)
7037 {
7038 loc->ops->dtor (loc);
7039 delete loc;
7040 }
7041
7042 /* Increment reference count. */
7043
7044 static void
7045 incref_bp_location (struct bp_location *bl)
7046 {
7047 ++bl->refc;
7048 }
7049
7050 /* Decrement reference count. If the reference count reaches 0,
7051 destroy the bp_location. Sets *BLP to NULL. */
7052
7053 static void
7054 decref_bp_location (struct bp_location **blp)
7055 {
7056 gdb_assert ((*blp)->refc > 0);
7057
7058 if (--(*blp)->refc == 0)
7059 free_bp_location (*blp);
7060 *blp = NULL;
7061 }
7062
7063 /* Add breakpoint B at the end of the global breakpoint chain. */
7064
7065 static breakpoint *
7066 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7067 {
7068 struct breakpoint *b1;
7069 struct breakpoint *result = b.get ();
7070
7071 /* Add this breakpoint to the end of the chain so that a list of
7072 breakpoints will come out in order of increasing numbers. */
7073
7074 b1 = breakpoint_chain;
7075 if (b1 == 0)
7076 breakpoint_chain = b.release ();
7077 else
7078 {
7079 while (b1->next)
7080 b1 = b1->next;
7081 b1->next = b.release ();
7082 }
7083
7084 return result;
7085 }
7086
7087 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7088
7089 static void
7090 init_raw_breakpoint_without_location (struct breakpoint *b,
7091 struct gdbarch *gdbarch,
7092 enum bptype bptype,
7093 const struct breakpoint_ops *ops)
7094 {
7095 gdb_assert (ops != NULL);
7096
7097 b->ops = ops;
7098 b->type = bptype;
7099 b->gdbarch = gdbarch;
7100 b->language = current_language->la_language;
7101 b->input_radix = input_radix;
7102 b->related_breakpoint = b;
7103 }
7104
7105 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7106 that has type BPTYPE and has no locations as yet. */
7107
7108 static struct breakpoint *
7109 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7110 enum bptype bptype,
7111 const struct breakpoint_ops *ops)
7112 {
7113 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7114
7115 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7116 return add_to_breakpoint_chain (std::move (b));
7117 }
7118
7119 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7120 resolutions should be made as the user specified the location explicitly
7121 enough. */
7122
7123 static void
7124 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7125 {
7126 gdb_assert (loc->owner != NULL);
7127
7128 if (loc->owner->type == bp_breakpoint
7129 || loc->owner->type == bp_hardware_breakpoint
7130 || is_tracepoint (loc->owner))
7131 {
7132 const char *function_name;
7133
7134 if (loc->msymbol != NULL
7135 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7136 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7137 && !explicit_loc)
7138 {
7139 struct breakpoint *b = loc->owner;
7140
7141 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7142
7143 if (b->type == bp_breakpoint && b->loc == loc
7144 && loc->next == NULL && b->related_breakpoint == b)
7145 {
7146 /* Create only the whole new breakpoint of this type but do not
7147 mess more complicated breakpoints with multiple locations. */
7148 b->type = bp_gnu_ifunc_resolver;
7149 /* Remember the resolver's address for use by the return
7150 breakpoint. */
7151 loc->related_address = loc->address;
7152 }
7153 }
7154 else
7155 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7156
7157 if (function_name)
7158 loc->function_name = xstrdup (function_name);
7159 }
7160 }
7161
7162 /* Attempt to determine architecture of location identified by SAL. */
7163 struct gdbarch *
7164 get_sal_arch (struct symtab_and_line sal)
7165 {
7166 if (sal.section)
7167 return get_objfile_arch (sal.section->objfile);
7168 if (sal.symtab)
7169 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7170
7171 return NULL;
7172 }
7173
7174 /* Low level routine for partially initializing a breakpoint of type
7175 BPTYPE. The newly created breakpoint's address, section, source
7176 file name, and line number are provided by SAL.
7177
7178 It is expected that the caller will complete the initialization of
7179 the newly created breakpoint struct as well as output any status
7180 information regarding the creation of a new breakpoint. */
7181
7182 static void
7183 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7184 struct symtab_and_line sal, enum bptype bptype,
7185 const struct breakpoint_ops *ops)
7186 {
7187 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7188
7189 add_location_to_breakpoint (b, &sal);
7190
7191 if (bptype != bp_catchpoint)
7192 gdb_assert (sal.pspace != NULL);
7193
7194 /* Store the program space that was used to set the breakpoint,
7195 except for ordinary breakpoints, which are independent of the
7196 program space. */
7197 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7198 b->pspace = sal.pspace;
7199 }
7200
7201 /* set_raw_breakpoint is a low level routine for allocating and
7202 partially initializing a breakpoint of type BPTYPE. The newly
7203 created breakpoint's address, section, source file name, and line
7204 number are provided by SAL. The newly created and partially
7205 initialized breakpoint is added to the breakpoint chain and
7206 is also returned as the value of this function.
7207
7208 It is expected that the caller will complete the initialization of
7209 the newly created breakpoint struct as well as output any status
7210 information regarding the creation of a new breakpoint. In
7211 particular, set_raw_breakpoint does NOT set the breakpoint
7212 number! Care should be taken to not allow an error to occur
7213 prior to completing the initialization of the breakpoint. If this
7214 should happen, a bogus breakpoint will be left on the chain. */
7215
7216 struct breakpoint *
7217 set_raw_breakpoint (struct gdbarch *gdbarch,
7218 struct symtab_and_line sal, enum bptype bptype,
7219 const struct breakpoint_ops *ops)
7220 {
7221 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7222
7223 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7224 return add_to_breakpoint_chain (std::move (b));
7225 }
7226
7227 /* Call this routine when stepping and nexting to enable a breakpoint
7228 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7229 initiated the operation. */
7230
7231 void
7232 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7233 {
7234 struct breakpoint *b, *b_tmp;
7235 int thread = tp->global_num;
7236
7237 /* To avoid having to rescan all objfile symbols at every step,
7238 we maintain a list of continually-inserted but always disabled
7239 longjmp "master" breakpoints. Here, we simply create momentary
7240 clones of those and enable them for the requested thread. */
7241 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7242 if (b->pspace == current_program_space
7243 && (b->type == bp_longjmp_master
7244 || b->type == bp_exception_master))
7245 {
7246 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7247 struct breakpoint *clone;
7248
7249 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7250 after their removal. */
7251 clone = momentary_breakpoint_from_master (b, type,
7252 &momentary_breakpoint_ops, 1);
7253 clone->thread = thread;
7254 }
7255
7256 tp->initiating_frame = frame;
7257 }
7258
7259 /* Delete all longjmp breakpoints from THREAD. */
7260 void
7261 delete_longjmp_breakpoint (int thread)
7262 {
7263 struct breakpoint *b, *b_tmp;
7264
7265 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7266 if (b->type == bp_longjmp || b->type == bp_exception)
7267 {
7268 if (b->thread == thread)
7269 delete_breakpoint (b);
7270 }
7271 }
7272
7273 void
7274 delete_longjmp_breakpoint_at_next_stop (int thread)
7275 {
7276 struct breakpoint *b, *b_tmp;
7277
7278 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7279 if (b->type == bp_longjmp || b->type == bp_exception)
7280 {
7281 if (b->thread == thread)
7282 b->disposition = disp_del_at_next_stop;
7283 }
7284 }
7285
7286 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7287 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7288 pointer to any of them. Return NULL if this system cannot place longjmp
7289 breakpoints. */
7290
7291 struct breakpoint *
7292 set_longjmp_breakpoint_for_call_dummy (void)
7293 {
7294 struct breakpoint *b, *retval = NULL;
7295
7296 ALL_BREAKPOINTS (b)
7297 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7298 {
7299 struct breakpoint *new_b;
7300
7301 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7302 &momentary_breakpoint_ops,
7303 1);
7304 new_b->thread = inferior_thread ()->global_num;
7305
7306 /* Link NEW_B into the chain of RETVAL breakpoints. */
7307
7308 gdb_assert (new_b->related_breakpoint == new_b);
7309 if (retval == NULL)
7310 retval = new_b;
7311 new_b->related_breakpoint = retval;
7312 while (retval->related_breakpoint != new_b->related_breakpoint)
7313 retval = retval->related_breakpoint;
7314 retval->related_breakpoint = new_b;
7315 }
7316
7317 return retval;
7318 }
7319
7320 /* Verify all existing dummy frames and their associated breakpoints for
7321 TP. Remove those which can no longer be found in the current frame
7322 stack.
7323
7324 You should call this function only at places where it is safe to currently
7325 unwind the whole stack. Failed stack unwind would discard live dummy
7326 frames. */
7327
7328 void
7329 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7330 {
7331 struct breakpoint *b, *b_tmp;
7332
7333 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7334 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7335 {
7336 struct breakpoint *dummy_b = b->related_breakpoint;
7337
7338 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7339 dummy_b = dummy_b->related_breakpoint;
7340 if (dummy_b->type != bp_call_dummy
7341 || frame_find_by_id (dummy_b->frame_id) != NULL)
7342 continue;
7343
7344 dummy_frame_discard (dummy_b->frame_id, tp);
7345
7346 while (b->related_breakpoint != b)
7347 {
7348 if (b_tmp == b->related_breakpoint)
7349 b_tmp = b->related_breakpoint->next;
7350 delete_breakpoint (b->related_breakpoint);
7351 }
7352 delete_breakpoint (b);
7353 }
7354 }
7355
7356 void
7357 enable_overlay_breakpoints (void)
7358 {
7359 struct breakpoint *b;
7360
7361 ALL_BREAKPOINTS (b)
7362 if (b->type == bp_overlay_event)
7363 {
7364 b->enable_state = bp_enabled;
7365 update_global_location_list (UGLL_MAY_INSERT);
7366 overlay_events_enabled = 1;
7367 }
7368 }
7369
7370 void
7371 disable_overlay_breakpoints (void)
7372 {
7373 struct breakpoint *b;
7374
7375 ALL_BREAKPOINTS (b)
7376 if (b->type == bp_overlay_event)
7377 {
7378 b->enable_state = bp_disabled;
7379 update_global_location_list (UGLL_DONT_INSERT);
7380 overlay_events_enabled = 0;
7381 }
7382 }
7383
7384 /* Set an active std::terminate breakpoint for each std::terminate
7385 master breakpoint. */
7386 void
7387 set_std_terminate_breakpoint (void)
7388 {
7389 struct breakpoint *b, *b_tmp;
7390
7391 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7392 if (b->pspace == current_program_space
7393 && b->type == bp_std_terminate_master)
7394 {
7395 momentary_breakpoint_from_master (b, bp_std_terminate,
7396 &momentary_breakpoint_ops, 1);
7397 }
7398 }
7399
7400 /* Delete all the std::terminate breakpoints. */
7401 void
7402 delete_std_terminate_breakpoint (void)
7403 {
7404 struct breakpoint *b, *b_tmp;
7405
7406 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7407 if (b->type == bp_std_terminate)
7408 delete_breakpoint (b);
7409 }
7410
7411 struct breakpoint *
7412 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7413 {
7414 struct breakpoint *b;
7415
7416 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7417 &internal_breakpoint_ops);
7418
7419 b->enable_state = bp_enabled;
7420 /* location has to be used or breakpoint_re_set will delete me. */
7421 b->location = new_address_location (b->loc->address, NULL, 0);
7422
7423 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7424
7425 return b;
7426 }
7427
7428 struct lang_and_radix
7429 {
7430 enum language lang;
7431 int radix;
7432 };
7433
7434 /* Create a breakpoint for JIT code registration and unregistration. */
7435
7436 struct breakpoint *
7437 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7438 {
7439 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7440 &internal_breakpoint_ops);
7441 }
7442
7443 /* Remove JIT code registration and unregistration breakpoint(s). */
7444
7445 void
7446 remove_jit_event_breakpoints (void)
7447 {
7448 struct breakpoint *b, *b_tmp;
7449
7450 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7451 if (b->type == bp_jit_event
7452 && b->loc->pspace == current_program_space)
7453 delete_breakpoint (b);
7454 }
7455
7456 void
7457 remove_solib_event_breakpoints (void)
7458 {
7459 struct breakpoint *b, *b_tmp;
7460
7461 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7462 if (b->type == bp_shlib_event
7463 && b->loc->pspace == current_program_space)
7464 delete_breakpoint (b);
7465 }
7466
7467 /* See breakpoint.h. */
7468
7469 void
7470 remove_solib_event_breakpoints_at_next_stop (void)
7471 {
7472 struct breakpoint *b, *b_tmp;
7473
7474 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7475 if (b->type == bp_shlib_event
7476 && b->loc->pspace == current_program_space)
7477 b->disposition = disp_del_at_next_stop;
7478 }
7479
7480 /* Helper for create_solib_event_breakpoint /
7481 create_and_insert_solib_event_breakpoint. Allows specifying which
7482 INSERT_MODE to pass through to update_global_location_list. */
7483
7484 static struct breakpoint *
7485 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7486 enum ugll_insert_mode insert_mode)
7487 {
7488 struct breakpoint *b;
7489
7490 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7491 &internal_breakpoint_ops);
7492 update_global_location_list_nothrow (insert_mode);
7493 return b;
7494 }
7495
7496 struct breakpoint *
7497 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7498 {
7499 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7500 }
7501
7502 /* See breakpoint.h. */
7503
7504 struct breakpoint *
7505 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7506 {
7507 struct breakpoint *b;
7508
7509 /* Explicitly tell update_global_location_list to insert
7510 locations. */
7511 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7512 if (!b->loc->inserted)
7513 {
7514 delete_breakpoint (b);
7515 return NULL;
7516 }
7517 return b;
7518 }
7519
7520 /* Disable any breakpoints that are on code in shared libraries. Only
7521 apply to enabled breakpoints, disabled ones can just stay disabled. */
7522
7523 void
7524 disable_breakpoints_in_shlibs (void)
7525 {
7526 struct bp_location *loc, **locp_tmp;
7527
7528 ALL_BP_LOCATIONS (loc, locp_tmp)
7529 {
7530 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7531 struct breakpoint *b = loc->owner;
7532
7533 /* We apply the check to all breakpoints, including disabled for
7534 those with loc->duplicate set. This is so that when breakpoint
7535 becomes enabled, or the duplicate is removed, gdb will try to
7536 insert all breakpoints. If we don't set shlib_disabled here,
7537 we'll try to insert those breakpoints and fail. */
7538 if (((b->type == bp_breakpoint)
7539 || (b->type == bp_jit_event)
7540 || (b->type == bp_hardware_breakpoint)
7541 || (is_tracepoint (b)))
7542 && loc->pspace == current_program_space
7543 && !loc->shlib_disabled
7544 && solib_name_from_address (loc->pspace, loc->address)
7545 )
7546 {
7547 loc->shlib_disabled = 1;
7548 }
7549 }
7550 }
7551
7552 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7553 notification of unloaded_shlib. Only apply to enabled breakpoints,
7554 disabled ones can just stay disabled. */
7555
7556 static void
7557 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7558 {
7559 struct bp_location *loc, **locp_tmp;
7560 int disabled_shlib_breaks = 0;
7561
7562 ALL_BP_LOCATIONS (loc, locp_tmp)
7563 {
7564 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7565 struct breakpoint *b = loc->owner;
7566
7567 if (solib->pspace == loc->pspace
7568 && !loc->shlib_disabled
7569 && (((b->type == bp_breakpoint
7570 || b->type == bp_jit_event
7571 || b->type == bp_hardware_breakpoint)
7572 && (loc->loc_type == bp_loc_hardware_breakpoint
7573 || loc->loc_type == bp_loc_software_breakpoint))
7574 || is_tracepoint (b))
7575 && solib_contains_address_p (solib, loc->address))
7576 {
7577 loc->shlib_disabled = 1;
7578 /* At this point, we cannot rely on remove_breakpoint
7579 succeeding so we must mark the breakpoint as not inserted
7580 to prevent future errors occurring in remove_breakpoints. */
7581 loc->inserted = 0;
7582
7583 /* This may cause duplicate notifications for the same breakpoint. */
7584 gdb::observers::breakpoint_modified.notify (b);
7585
7586 if (!disabled_shlib_breaks)
7587 {
7588 target_terminal::ours_for_output ();
7589 warning (_("Temporarily disabling breakpoints "
7590 "for unloaded shared library \"%s\""),
7591 solib->so_name);
7592 }
7593 disabled_shlib_breaks = 1;
7594 }
7595 }
7596 }
7597
7598 /* Disable any breakpoints and tracepoints in OBJFILE upon
7599 notification of free_objfile. Only apply to enabled breakpoints,
7600 disabled ones can just stay disabled. */
7601
7602 static void
7603 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7604 {
7605 struct breakpoint *b;
7606
7607 if (objfile == NULL)
7608 return;
7609
7610 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7611 managed by the user with add-symbol-file/remove-symbol-file.
7612 Similarly to how breakpoints in shared libraries are handled in
7613 response to "nosharedlibrary", mark breakpoints in such modules
7614 shlib_disabled so they end up uninserted on the next global
7615 location list update. Shared libraries not loaded by the user
7616 aren't handled here -- they're already handled in
7617 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7618 solib_unloaded observer. We skip objfiles that are not
7619 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7620 main objfile). */
7621 if ((objfile->flags & OBJF_SHARED) == 0
7622 || (objfile->flags & OBJF_USERLOADED) == 0)
7623 return;
7624
7625 ALL_BREAKPOINTS (b)
7626 {
7627 struct bp_location *loc;
7628 int bp_modified = 0;
7629
7630 if (!is_breakpoint (b) && !is_tracepoint (b))
7631 continue;
7632
7633 for (loc = b->loc; loc != NULL; loc = loc->next)
7634 {
7635 CORE_ADDR loc_addr = loc->address;
7636
7637 if (loc->loc_type != bp_loc_hardware_breakpoint
7638 && loc->loc_type != bp_loc_software_breakpoint)
7639 continue;
7640
7641 if (loc->shlib_disabled != 0)
7642 continue;
7643
7644 if (objfile->pspace != loc->pspace)
7645 continue;
7646
7647 if (loc->loc_type != bp_loc_hardware_breakpoint
7648 && loc->loc_type != bp_loc_software_breakpoint)
7649 continue;
7650
7651 if (is_addr_in_objfile (loc_addr, objfile))
7652 {
7653 loc->shlib_disabled = 1;
7654 /* At this point, we don't know whether the object was
7655 unmapped from the inferior or not, so leave the
7656 inserted flag alone. We'll handle failure to
7657 uninsert quietly, in case the object was indeed
7658 unmapped. */
7659
7660 mark_breakpoint_location_modified (loc);
7661
7662 bp_modified = 1;
7663 }
7664 }
7665
7666 if (bp_modified)
7667 gdb::observers::breakpoint_modified.notify (b);
7668 }
7669 }
7670
7671 /* FORK & VFORK catchpoints. */
7672
7673 /* An instance of this type is used to represent a fork or vfork
7674 catchpoint. A breakpoint is really of this type iff its ops pointer points
7675 to CATCH_FORK_BREAKPOINT_OPS. */
7676
7677 struct fork_catchpoint : public breakpoint
7678 {
7679 /* Process id of a child process whose forking triggered this
7680 catchpoint. This field is only valid immediately after this
7681 catchpoint has triggered. */
7682 ptid_t forked_inferior_pid;
7683 };
7684
7685 /* Implement the "insert" breakpoint_ops method for fork
7686 catchpoints. */
7687
7688 static int
7689 insert_catch_fork (struct bp_location *bl)
7690 {
7691 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7692 }
7693
7694 /* Implement the "remove" breakpoint_ops method for fork
7695 catchpoints. */
7696
7697 static int
7698 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7699 {
7700 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7701 }
7702
7703 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7704 catchpoints. */
7705
7706 static int
7707 breakpoint_hit_catch_fork (const struct bp_location *bl,
7708 const address_space *aspace, CORE_ADDR bp_addr,
7709 const struct target_waitstatus *ws)
7710 {
7711 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7712
7713 if (ws->kind != TARGET_WAITKIND_FORKED)
7714 return 0;
7715
7716 c->forked_inferior_pid = ws->value.related_pid;
7717 return 1;
7718 }
7719
7720 /* Implement the "print_it" breakpoint_ops method for fork
7721 catchpoints. */
7722
7723 static enum print_stop_action
7724 print_it_catch_fork (bpstat bs)
7725 {
7726 struct ui_out *uiout = current_uiout;
7727 struct breakpoint *b = bs->breakpoint_at;
7728 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7729
7730 annotate_catchpoint (b->number);
7731 maybe_print_thread_hit_breakpoint (uiout);
7732 if (b->disposition == disp_del)
7733 uiout->text ("Temporary catchpoint ");
7734 else
7735 uiout->text ("Catchpoint ");
7736 if (uiout->is_mi_like_p ())
7737 {
7738 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7739 uiout->field_string ("disp", bpdisp_text (b->disposition));
7740 }
7741 uiout->field_int ("bkptno", b->number);
7742 uiout->text (" (forked process ");
7743 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7744 uiout->text ("), ");
7745 return PRINT_SRC_AND_LOC;
7746 }
7747
7748 /* Implement the "print_one" breakpoint_ops method for fork
7749 catchpoints. */
7750
7751 static void
7752 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7753 {
7754 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7755 struct value_print_options opts;
7756 struct ui_out *uiout = current_uiout;
7757
7758 get_user_print_options (&opts);
7759
7760 /* Field 4, the address, is omitted (which makes the columns not
7761 line up too nicely with the headers, but the effect is relatively
7762 readable). */
7763 if (opts.addressprint)
7764 uiout->field_skip ("addr");
7765 annotate_field (5);
7766 uiout->text ("fork");
7767 if (c->forked_inferior_pid != null_ptid)
7768 {
7769 uiout->text (", process ");
7770 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7771 uiout->spaces (1);
7772 }
7773
7774 if (uiout->is_mi_like_p ())
7775 uiout->field_string ("catch-type", "fork");
7776 }
7777
7778 /* Implement the "print_mention" breakpoint_ops method for fork
7779 catchpoints. */
7780
7781 static void
7782 print_mention_catch_fork (struct breakpoint *b)
7783 {
7784 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7785 }
7786
7787 /* Implement the "print_recreate" breakpoint_ops method for fork
7788 catchpoints. */
7789
7790 static void
7791 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7792 {
7793 fprintf_unfiltered (fp, "catch fork");
7794 print_recreate_thread (b, fp);
7795 }
7796
7797 /* The breakpoint_ops structure to be used in fork catchpoints. */
7798
7799 static struct breakpoint_ops catch_fork_breakpoint_ops;
7800
7801 /* Implement the "insert" breakpoint_ops method for vfork
7802 catchpoints. */
7803
7804 static int
7805 insert_catch_vfork (struct bp_location *bl)
7806 {
7807 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7808 }
7809
7810 /* Implement the "remove" breakpoint_ops method for vfork
7811 catchpoints. */
7812
7813 static int
7814 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7815 {
7816 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7817 }
7818
7819 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7820 catchpoints. */
7821
7822 static int
7823 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7824 const address_space *aspace, CORE_ADDR bp_addr,
7825 const struct target_waitstatus *ws)
7826 {
7827 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7828
7829 if (ws->kind != TARGET_WAITKIND_VFORKED)
7830 return 0;
7831
7832 c->forked_inferior_pid = ws->value.related_pid;
7833 return 1;
7834 }
7835
7836 /* Implement the "print_it" breakpoint_ops method for vfork
7837 catchpoints. */
7838
7839 static enum print_stop_action
7840 print_it_catch_vfork (bpstat bs)
7841 {
7842 struct ui_out *uiout = current_uiout;
7843 struct breakpoint *b = bs->breakpoint_at;
7844 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7845
7846 annotate_catchpoint (b->number);
7847 maybe_print_thread_hit_breakpoint (uiout);
7848 if (b->disposition == disp_del)
7849 uiout->text ("Temporary catchpoint ");
7850 else
7851 uiout->text ("Catchpoint ");
7852 if (uiout->is_mi_like_p ())
7853 {
7854 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7855 uiout->field_string ("disp", bpdisp_text (b->disposition));
7856 }
7857 uiout->field_int ("bkptno", b->number);
7858 uiout->text (" (vforked process ");
7859 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7860 uiout->text ("), ");
7861 return PRINT_SRC_AND_LOC;
7862 }
7863
7864 /* Implement the "print_one" breakpoint_ops method for vfork
7865 catchpoints. */
7866
7867 static void
7868 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7869 {
7870 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7871 struct value_print_options opts;
7872 struct ui_out *uiout = current_uiout;
7873
7874 get_user_print_options (&opts);
7875 /* Field 4, the address, is omitted (which makes the columns not
7876 line up too nicely with the headers, but the effect is relatively
7877 readable). */
7878 if (opts.addressprint)
7879 uiout->field_skip ("addr");
7880 annotate_field (5);
7881 uiout->text ("vfork");
7882 if (c->forked_inferior_pid != null_ptid)
7883 {
7884 uiout->text (", process ");
7885 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7886 uiout->spaces (1);
7887 }
7888
7889 if (uiout->is_mi_like_p ())
7890 uiout->field_string ("catch-type", "vfork");
7891 }
7892
7893 /* Implement the "print_mention" breakpoint_ops method for vfork
7894 catchpoints. */
7895
7896 static void
7897 print_mention_catch_vfork (struct breakpoint *b)
7898 {
7899 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7900 }
7901
7902 /* Implement the "print_recreate" breakpoint_ops method for vfork
7903 catchpoints. */
7904
7905 static void
7906 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7907 {
7908 fprintf_unfiltered (fp, "catch vfork");
7909 print_recreate_thread (b, fp);
7910 }
7911
7912 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7913
7914 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7915
7916 /* An instance of this type is used to represent an solib catchpoint.
7917 A breakpoint is really of this type iff its ops pointer points to
7918 CATCH_SOLIB_BREAKPOINT_OPS. */
7919
7920 struct solib_catchpoint : public breakpoint
7921 {
7922 ~solib_catchpoint () override;
7923
7924 /* True for "catch load", false for "catch unload". */
7925 unsigned char is_load;
7926
7927 /* Regular expression to match, if any. COMPILED is only valid when
7928 REGEX is non-NULL. */
7929 char *regex;
7930 std::unique_ptr<compiled_regex> compiled;
7931 };
7932
7933 solib_catchpoint::~solib_catchpoint ()
7934 {
7935 xfree (this->regex);
7936 }
7937
7938 static int
7939 insert_catch_solib (struct bp_location *ignore)
7940 {
7941 return 0;
7942 }
7943
7944 static int
7945 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7946 {
7947 return 0;
7948 }
7949
7950 static int
7951 breakpoint_hit_catch_solib (const struct bp_location *bl,
7952 const address_space *aspace,
7953 CORE_ADDR bp_addr,
7954 const struct target_waitstatus *ws)
7955 {
7956 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7957 struct breakpoint *other;
7958
7959 if (ws->kind == TARGET_WAITKIND_LOADED)
7960 return 1;
7961
7962 ALL_BREAKPOINTS (other)
7963 {
7964 struct bp_location *other_bl;
7965
7966 if (other == bl->owner)
7967 continue;
7968
7969 if (other->type != bp_shlib_event)
7970 continue;
7971
7972 if (self->pspace != NULL && other->pspace != self->pspace)
7973 continue;
7974
7975 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7976 {
7977 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7978 return 1;
7979 }
7980 }
7981
7982 return 0;
7983 }
7984
7985 static void
7986 check_status_catch_solib (struct bpstats *bs)
7987 {
7988 struct solib_catchpoint *self
7989 = (struct solib_catchpoint *) bs->breakpoint_at;
7990
7991 if (self->is_load)
7992 {
7993 for (so_list *iter : current_program_space->added_solibs)
7994 {
7995 if (!self->regex
7996 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7997 return;
7998 }
7999 }
8000 else
8001 {
8002 for (const std::string &iter : current_program_space->deleted_solibs)
8003 {
8004 if (!self->regex
8005 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8006 return;
8007 }
8008 }
8009
8010 bs->stop = 0;
8011 bs->print_it = print_it_noop;
8012 }
8013
8014 static enum print_stop_action
8015 print_it_catch_solib (bpstat bs)
8016 {
8017 struct breakpoint *b = bs->breakpoint_at;
8018 struct ui_out *uiout = current_uiout;
8019
8020 annotate_catchpoint (b->number);
8021 maybe_print_thread_hit_breakpoint (uiout);
8022 if (b->disposition == disp_del)
8023 uiout->text ("Temporary catchpoint ");
8024 else
8025 uiout->text ("Catchpoint ");
8026 uiout->field_int ("bkptno", b->number);
8027 uiout->text ("\n");
8028 if (uiout->is_mi_like_p ())
8029 uiout->field_string ("disp", bpdisp_text (b->disposition));
8030 print_solib_event (1);
8031 return PRINT_SRC_AND_LOC;
8032 }
8033
8034 static void
8035 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8036 {
8037 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8038 struct value_print_options opts;
8039 struct ui_out *uiout = current_uiout;
8040
8041 get_user_print_options (&opts);
8042 /* Field 4, the address, is omitted (which makes the columns not
8043 line up too nicely with the headers, but the effect is relatively
8044 readable). */
8045 if (opts.addressprint)
8046 {
8047 annotate_field (4);
8048 uiout->field_skip ("addr");
8049 }
8050
8051 std::string msg;
8052 annotate_field (5);
8053 if (self->is_load)
8054 {
8055 if (self->regex)
8056 msg = string_printf (_("load of library matching %s"), self->regex);
8057 else
8058 msg = _("load of library");
8059 }
8060 else
8061 {
8062 if (self->regex)
8063 msg = string_printf (_("unload of library matching %s"), self->regex);
8064 else
8065 msg = _("unload of library");
8066 }
8067 uiout->field_string ("what", msg);
8068
8069 if (uiout->is_mi_like_p ())
8070 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8071 }
8072
8073 static void
8074 print_mention_catch_solib (struct breakpoint *b)
8075 {
8076 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8077
8078 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8079 self->is_load ? "load" : "unload");
8080 }
8081
8082 static void
8083 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8084 {
8085 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8086
8087 fprintf_unfiltered (fp, "%s %s",
8088 b->disposition == disp_del ? "tcatch" : "catch",
8089 self->is_load ? "load" : "unload");
8090 if (self->regex)
8091 fprintf_unfiltered (fp, " %s", self->regex);
8092 fprintf_unfiltered (fp, "\n");
8093 }
8094
8095 static struct breakpoint_ops catch_solib_breakpoint_ops;
8096
8097 /* Shared helper function (MI and CLI) for creating and installing
8098 a shared object event catchpoint. If IS_LOAD is non-zero then
8099 the events to be caught are load events, otherwise they are
8100 unload events. If IS_TEMP is non-zero the catchpoint is a
8101 temporary one. If ENABLED is non-zero the catchpoint is
8102 created in an enabled state. */
8103
8104 void
8105 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8106 {
8107 struct gdbarch *gdbarch = get_current_arch ();
8108
8109 if (!arg)
8110 arg = "";
8111 arg = skip_spaces (arg);
8112
8113 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8114
8115 if (*arg != '\0')
8116 {
8117 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8118 _("Invalid regexp")));
8119 c->regex = xstrdup (arg);
8120 }
8121
8122 c->is_load = is_load;
8123 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8124 &catch_solib_breakpoint_ops);
8125
8126 c->enable_state = enabled ? bp_enabled : bp_disabled;
8127
8128 install_breakpoint (0, std::move (c), 1);
8129 }
8130
8131 /* A helper function that does all the work for "catch load" and
8132 "catch unload". */
8133
8134 static void
8135 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8136 struct cmd_list_element *command)
8137 {
8138 int tempflag;
8139 const int enabled = 1;
8140
8141 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8142
8143 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8144 }
8145
8146 static void
8147 catch_load_command_1 (const char *arg, int from_tty,
8148 struct cmd_list_element *command)
8149 {
8150 catch_load_or_unload (arg, from_tty, 1, command);
8151 }
8152
8153 static void
8154 catch_unload_command_1 (const char *arg, int from_tty,
8155 struct cmd_list_element *command)
8156 {
8157 catch_load_or_unload (arg, from_tty, 0, command);
8158 }
8159
8160 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8161 is non-zero, then make the breakpoint temporary. If COND_STRING is
8162 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8163 the breakpoint_ops structure associated to the catchpoint. */
8164
8165 void
8166 init_catchpoint (struct breakpoint *b,
8167 struct gdbarch *gdbarch, int tempflag,
8168 const char *cond_string,
8169 const struct breakpoint_ops *ops)
8170 {
8171 symtab_and_line sal;
8172 sal.pspace = current_program_space;
8173
8174 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8175
8176 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8177 b->disposition = tempflag ? disp_del : disp_donttouch;
8178 }
8179
8180 void
8181 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8182 {
8183 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8184 set_breakpoint_number (internal, b);
8185 if (is_tracepoint (b))
8186 set_tracepoint_count (breakpoint_count);
8187 if (!internal)
8188 mention (b);
8189 gdb::observers::breakpoint_created.notify (b);
8190
8191 if (update_gll)
8192 update_global_location_list (UGLL_MAY_INSERT);
8193 }
8194
8195 static void
8196 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8197 int tempflag, const char *cond_string,
8198 const struct breakpoint_ops *ops)
8199 {
8200 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8201
8202 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8203
8204 c->forked_inferior_pid = null_ptid;
8205
8206 install_breakpoint (0, std::move (c), 1);
8207 }
8208
8209 /* Exec catchpoints. */
8210
8211 /* An instance of this type is used to represent an exec catchpoint.
8212 A breakpoint is really of this type iff its ops pointer points to
8213 CATCH_EXEC_BREAKPOINT_OPS. */
8214
8215 struct exec_catchpoint : public breakpoint
8216 {
8217 ~exec_catchpoint () override;
8218
8219 /* Filename of a program whose exec triggered this catchpoint.
8220 This field is only valid immediately after this catchpoint has
8221 triggered. */
8222 char *exec_pathname;
8223 };
8224
8225 /* Exec catchpoint destructor. */
8226
8227 exec_catchpoint::~exec_catchpoint ()
8228 {
8229 xfree (this->exec_pathname);
8230 }
8231
8232 static int
8233 insert_catch_exec (struct bp_location *bl)
8234 {
8235 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8236 }
8237
8238 static int
8239 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8240 {
8241 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8242 }
8243
8244 static int
8245 breakpoint_hit_catch_exec (const struct bp_location *bl,
8246 const address_space *aspace, CORE_ADDR bp_addr,
8247 const struct target_waitstatus *ws)
8248 {
8249 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8250
8251 if (ws->kind != TARGET_WAITKIND_EXECD)
8252 return 0;
8253
8254 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8255 return 1;
8256 }
8257
8258 static enum print_stop_action
8259 print_it_catch_exec (bpstat bs)
8260 {
8261 struct ui_out *uiout = current_uiout;
8262 struct breakpoint *b = bs->breakpoint_at;
8263 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8264
8265 annotate_catchpoint (b->number);
8266 maybe_print_thread_hit_breakpoint (uiout);
8267 if (b->disposition == disp_del)
8268 uiout->text ("Temporary catchpoint ");
8269 else
8270 uiout->text ("Catchpoint ");
8271 if (uiout->is_mi_like_p ())
8272 {
8273 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8274 uiout->field_string ("disp", bpdisp_text (b->disposition));
8275 }
8276 uiout->field_int ("bkptno", b->number);
8277 uiout->text (" (exec'd ");
8278 uiout->field_string ("new-exec", c->exec_pathname);
8279 uiout->text ("), ");
8280
8281 return PRINT_SRC_AND_LOC;
8282 }
8283
8284 static void
8285 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8286 {
8287 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8288 struct value_print_options opts;
8289 struct ui_out *uiout = current_uiout;
8290
8291 get_user_print_options (&opts);
8292
8293 /* Field 4, the address, is omitted (which makes the columns
8294 not line up too nicely with the headers, but the effect
8295 is relatively readable). */
8296 if (opts.addressprint)
8297 uiout->field_skip ("addr");
8298 annotate_field (5);
8299 uiout->text ("exec");
8300 if (c->exec_pathname != NULL)
8301 {
8302 uiout->text (", program \"");
8303 uiout->field_string ("what", c->exec_pathname);
8304 uiout->text ("\" ");
8305 }
8306
8307 if (uiout->is_mi_like_p ())
8308 uiout->field_string ("catch-type", "exec");
8309 }
8310
8311 static void
8312 print_mention_catch_exec (struct breakpoint *b)
8313 {
8314 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8315 }
8316
8317 /* Implement the "print_recreate" breakpoint_ops method for exec
8318 catchpoints. */
8319
8320 static void
8321 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8322 {
8323 fprintf_unfiltered (fp, "catch exec");
8324 print_recreate_thread (b, fp);
8325 }
8326
8327 static struct breakpoint_ops catch_exec_breakpoint_ops;
8328
8329 static int
8330 hw_breakpoint_used_count (void)
8331 {
8332 int i = 0;
8333 struct breakpoint *b;
8334 struct bp_location *bl;
8335
8336 ALL_BREAKPOINTS (b)
8337 {
8338 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8339 for (bl = b->loc; bl; bl = bl->next)
8340 {
8341 /* Special types of hardware breakpoints may use more than
8342 one register. */
8343 i += b->ops->resources_needed (bl);
8344 }
8345 }
8346
8347 return i;
8348 }
8349
8350 /* Returns the resources B would use if it were a hardware
8351 watchpoint. */
8352
8353 static int
8354 hw_watchpoint_use_count (struct breakpoint *b)
8355 {
8356 int i = 0;
8357 struct bp_location *bl;
8358
8359 if (!breakpoint_enabled (b))
8360 return 0;
8361
8362 for (bl = b->loc; bl; bl = bl->next)
8363 {
8364 /* Special types of hardware watchpoints may use more than
8365 one register. */
8366 i += b->ops->resources_needed (bl);
8367 }
8368
8369 return i;
8370 }
8371
8372 /* Returns the sum the used resources of all hardware watchpoints of
8373 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8374 the sum of the used resources of all hardware watchpoints of other
8375 types _not_ TYPE. */
8376
8377 static int
8378 hw_watchpoint_used_count_others (struct breakpoint *except,
8379 enum bptype type, int *other_type_used)
8380 {
8381 int i = 0;
8382 struct breakpoint *b;
8383
8384 *other_type_used = 0;
8385 ALL_BREAKPOINTS (b)
8386 {
8387 if (b == except)
8388 continue;
8389 if (!breakpoint_enabled (b))
8390 continue;
8391
8392 if (b->type == type)
8393 i += hw_watchpoint_use_count (b);
8394 else if (is_hardware_watchpoint (b))
8395 *other_type_used = 1;
8396 }
8397
8398 return i;
8399 }
8400
8401 void
8402 disable_watchpoints_before_interactive_call_start (void)
8403 {
8404 struct breakpoint *b;
8405
8406 ALL_BREAKPOINTS (b)
8407 {
8408 if (is_watchpoint (b) && breakpoint_enabled (b))
8409 {
8410 b->enable_state = bp_call_disabled;
8411 update_global_location_list (UGLL_DONT_INSERT);
8412 }
8413 }
8414 }
8415
8416 void
8417 enable_watchpoints_after_interactive_call_stop (void)
8418 {
8419 struct breakpoint *b;
8420
8421 ALL_BREAKPOINTS (b)
8422 {
8423 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8424 {
8425 b->enable_state = bp_enabled;
8426 update_global_location_list (UGLL_MAY_INSERT);
8427 }
8428 }
8429 }
8430
8431 void
8432 disable_breakpoints_before_startup (void)
8433 {
8434 current_program_space->executing_startup = 1;
8435 update_global_location_list (UGLL_DONT_INSERT);
8436 }
8437
8438 void
8439 enable_breakpoints_after_startup (void)
8440 {
8441 current_program_space->executing_startup = 0;
8442 breakpoint_re_set ();
8443 }
8444
8445 /* Create a new single-step breakpoint for thread THREAD, with no
8446 locations. */
8447
8448 static struct breakpoint *
8449 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8450 {
8451 std::unique_ptr<breakpoint> b (new breakpoint ());
8452
8453 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8454 &momentary_breakpoint_ops);
8455
8456 b->disposition = disp_donttouch;
8457 b->frame_id = null_frame_id;
8458
8459 b->thread = thread;
8460 gdb_assert (b->thread != 0);
8461
8462 return add_to_breakpoint_chain (std::move (b));
8463 }
8464
8465 /* Set a momentary breakpoint of type TYPE at address specified by
8466 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8467 frame. */
8468
8469 breakpoint_up
8470 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8471 struct frame_id frame_id, enum bptype type)
8472 {
8473 struct breakpoint *b;
8474
8475 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8476 tail-called one. */
8477 gdb_assert (!frame_id_artificial_p (frame_id));
8478
8479 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8480 b->enable_state = bp_enabled;
8481 b->disposition = disp_donttouch;
8482 b->frame_id = frame_id;
8483
8484 b->thread = inferior_thread ()->global_num;
8485
8486 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8487
8488 return breakpoint_up (b);
8489 }
8490
8491 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8492 The new breakpoint will have type TYPE, use OPS as its
8493 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8494
8495 static struct breakpoint *
8496 momentary_breakpoint_from_master (struct breakpoint *orig,
8497 enum bptype type,
8498 const struct breakpoint_ops *ops,
8499 int loc_enabled)
8500 {
8501 struct breakpoint *copy;
8502
8503 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8504 copy->loc = allocate_bp_location (copy);
8505 set_breakpoint_location_function (copy->loc, 1);
8506
8507 copy->loc->gdbarch = orig->loc->gdbarch;
8508 copy->loc->requested_address = orig->loc->requested_address;
8509 copy->loc->address = orig->loc->address;
8510 copy->loc->section = orig->loc->section;
8511 copy->loc->pspace = orig->loc->pspace;
8512 copy->loc->probe = orig->loc->probe;
8513 copy->loc->line_number = orig->loc->line_number;
8514 copy->loc->symtab = orig->loc->symtab;
8515 copy->loc->enabled = loc_enabled;
8516 copy->frame_id = orig->frame_id;
8517 copy->thread = orig->thread;
8518 copy->pspace = orig->pspace;
8519
8520 copy->enable_state = bp_enabled;
8521 copy->disposition = disp_donttouch;
8522 copy->number = internal_breakpoint_number--;
8523
8524 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8525 return copy;
8526 }
8527
8528 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8529 ORIG is NULL. */
8530
8531 struct breakpoint *
8532 clone_momentary_breakpoint (struct breakpoint *orig)
8533 {
8534 /* If there's nothing to clone, then return nothing. */
8535 if (orig == NULL)
8536 return NULL;
8537
8538 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8539 }
8540
8541 breakpoint_up
8542 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8543 enum bptype type)
8544 {
8545 struct symtab_and_line sal;
8546
8547 sal = find_pc_line (pc, 0);
8548 sal.pc = pc;
8549 sal.section = find_pc_overlay (pc);
8550 sal.explicit_pc = 1;
8551
8552 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8553 }
8554 \f
8555
8556 /* Tell the user we have just set a breakpoint B. */
8557
8558 static void
8559 mention (struct breakpoint *b)
8560 {
8561 b->ops->print_mention (b);
8562 current_uiout->text ("\n");
8563 }
8564 \f
8565
8566 static int bp_loc_is_permanent (struct bp_location *loc);
8567
8568 static struct bp_location *
8569 add_location_to_breakpoint (struct breakpoint *b,
8570 const struct symtab_and_line *sal)
8571 {
8572 struct bp_location *loc, **tmp;
8573 CORE_ADDR adjusted_address;
8574 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8575
8576 if (loc_gdbarch == NULL)
8577 loc_gdbarch = b->gdbarch;
8578
8579 /* Adjust the breakpoint's address prior to allocating a location.
8580 Once we call allocate_bp_location(), that mostly uninitialized
8581 location will be placed on the location chain. Adjustment of the
8582 breakpoint may cause target_read_memory() to be called and we do
8583 not want its scan of the location chain to find a breakpoint and
8584 location that's only been partially initialized. */
8585 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8586 sal->pc, b->type);
8587
8588 /* Sort the locations by their ADDRESS. */
8589 loc = allocate_bp_location (b);
8590 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8591 tmp = &((*tmp)->next))
8592 ;
8593 loc->next = *tmp;
8594 *tmp = loc;
8595
8596 loc->requested_address = sal->pc;
8597 loc->address = adjusted_address;
8598 loc->pspace = sal->pspace;
8599 loc->probe.prob = sal->prob;
8600 loc->probe.objfile = sal->objfile;
8601 gdb_assert (loc->pspace != NULL);
8602 loc->section = sal->section;
8603 loc->gdbarch = loc_gdbarch;
8604 loc->line_number = sal->line;
8605 loc->symtab = sal->symtab;
8606 loc->symbol = sal->symbol;
8607 loc->msymbol = sal->msymbol;
8608 loc->objfile = sal->objfile;
8609
8610 set_breakpoint_location_function (loc,
8611 sal->explicit_pc || sal->explicit_line);
8612
8613 /* While by definition, permanent breakpoints are already present in the
8614 code, we don't mark the location as inserted. Normally one would expect
8615 that GDB could rely on that breakpoint instruction to stop the program,
8616 thus removing the need to insert its own breakpoint, except that executing
8617 the breakpoint instruction can kill the target instead of reporting a
8618 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8619 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8620 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8621 breakpoint be inserted normally results in QEMU knowing about the GDB
8622 breakpoint, and thus trap before the breakpoint instruction is executed.
8623 (If GDB later needs to continue execution past the permanent breakpoint,
8624 it manually increments the PC, thus avoiding executing the breakpoint
8625 instruction.) */
8626 if (bp_loc_is_permanent (loc))
8627 loc->permanent = 1;
8628
8629 return loc;
8630 }
8631 \f
8632
8633 /* See breakpoint.h. */
8634
8635 int
8636 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8637 {
8638 int len;
8639 CORE_ADDR addr;
8640 const gdb_byte *bpoint;
8641 gdb_byte *target_mem;
8642
8643 addr = address;
8644 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8645
8646 /* Software breakpoints unsupported? */
8647 if (bpoint == NULL)
8648 return 0;
8649
8650 target_mem = (gdb_byte *) alloca (len);
8651
8652 /* Enable the automatic memory restoration from breakpoints while
8653 we read the memory. Otherwise we could say about our temporary
8654 breakpoints they are permanent. */
8655 scoped_restore restore_memory
8656 = make_scoped_restore_show_memory_breakpoints (0);
8657
8658 if (target_read_memory (address, target_mem, len) == 0
8659 && memcmp (target_mem, bpoint, len) == 0)
8660 return 1;
8661
8662 return 0;
8663 }
8664
8665 /* Return 1 if LOC is pointing to a permanent breakpoint,
8666 return 0 otherwise. */
8667
8668 static int
8669 bp_loc_is_permanent (struct bp_location *loc)
8670 {
8671 gdb_assert (loc != NULL);
8672
8673 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8674 attempt to read from the addresses the locations of these breakpoint types
8675 point to. program_breakpoint_here_p, below, will attempt to read
8676 memory. */
8677 if (!breakpoint_address_is_meaningful (loc->owner))
8678 return 0;
8679
8680 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8681 switch_to_program_space_and_thread (loc->pspace);
8682 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8683 }
8684
8685 /* Build a command list for the dprintf corresponding to the current
8686 settings of the dprintf style options. */
8687
8688 static void
8689 update_dprintf_command_list (struct breakpoint *b)
8690 {
8691 char *dprintf_args = b->extra_string;
8692 char *printf_line = NULL;
8693
8694 if (!dprintf_args)
8695 return;
8696
8697 dprintf_args = skip_spaces (dprintf_args);
8698
8699 /* Allow a comma, as it may have terminated a location, but don't
8700 insist on it. */
8701 if (*dprintf_args == ',')
8702 ++dprintf_args;
8703 dprintf_args = skip_spaces (dprintf_args);
8704
8705 if (*dprintf_args != '"')
8706 error (_("Bad format string, missing '\"'."));
8707
8708 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8709 printf_line = xstrprintf ("printf %s", dprintf_args);
8710 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8711 {
8712 if (!dprintf_function)
8713 error (_("No function supplied for dprintf call"));
8714
8715 if (dprintf_channel && strlen (dprintf_channel) > 0)
8716 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8717 dprintf_function,
8718 dprintf_channel,
8719 dprintf_args);
8720 else
8721 printf_line = xstrprintf ("call (void) %s (%s)",
8722 dprintf_function,
8723 dprintf_args);
8724 }
8725 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8726 {
8727 if (target_can_run_breakpoint_commands ())
8728 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8729 else
8730 {
8731 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8732 printf_line = xstrprintf ("printf %s", dprintf_args);
8733 }
8734 }
8735 else
8736 internal_error (__FILE__, __LINE__,
8737 _("Invalid dprintf style."));
8738
8739 gdb_assert (printf_line != NULL);
8740
8741 /* Manufacture a printf sequence. */
8742 struct command_line *printf_cmd_line
8743 = new struct command_line (simple_control, printf_line);
8744 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8745 command_lines_deleter ()));
8746 }
8747
8748 /* Update all dprintf commands, making their command lists reflect
8749 current style settings. */
8750
8751 static void
8752 update_dprintf_commands (const char *args, int from_tty,
8753 struct cmd_list_element *c)
8754 {
8755 struct breakpoint *b;
8756
8757 ALL_BREAKPOINTS (b)
8758 {
8759 if (b->type == bp_dprintf)
8760 update_dprintf_command_list (b);
8761 }
8762 }
8763
8764 /* Create a breakpoint with SAL as location. Use LOCATION
8765 as a description of the location, and COND_STRING
8766 as condition expression. If LOCATION is NULL then create an
8767 "address location" from the address in the SAL. */
8768
8769 static void
8770 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8771 gdb::array_view<const symtab_and_line> sals,
8772 event_location_up &&location,
8773 gdb::unique_xmalloc_ptr<char> filter,
8774 gdb::unique_xmalloc_ptr<char> cond_string,
8775 gdb::unique_xmalloc_ptr<char> extra_string,
8776 enum bptype type, enum bpdisp disposition,
8777 int thread, int task, int ignore_count,
8778 const struct breakpoint_ops *ops, int from_tty,
8779 int enabled, int internal, unsigned flags,
8780 int display_canonical)
8781 {
8782 int i;
8783
8784 if (type == bp_hardware_breakpoint)
8785 {
8786 int target_resources_ok;
8787
8788 i = hw_breakpoint_used_count ();
8789 target_resources_ok =
8790 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8791 i + 1, 0);
8792 if (target_resources_ok == 0)
8793 error (_("No hardware breakpoint support in the target."));
8794 else if (target_resources_ok < 0)
8795 error (_("Hardware breakpoints used exceeds limit."));
8796 }
8797
8798 gdb_assert (!sals.empty ());
8799
8800 for (const auto &sal : sals)
8801 {
8802 struct bp_location *loc;
8803
8804 if (from_tty)
8805 {
8806 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8807 if (!loc_gdbarch)
8808 loc_gdbarch = gdbarch;
8809
8810 describe_other_breakpoints (loc_gdbarch,
8811 sal.pspace, sal.pc, sal.section, thread);
8812 }
8813
8814 if (&sal == &sals[0])
8815 {
8816 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8817 b->thread = thread;
8818 b->task = task;
8819
8820 b->cond_string = cond_string.release ();
8821 b->extra_string = extra_string.release ();
8822 b->ignore_count = ignore_count;
8823 b->enable_state = enabled ? bp_enabled : bp_disabled;
8824 b->disposition = disposition;
8825
8826 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8827 b->loc->inserted = 1;
8828
8829 if (type == bp_static_tracepoint)
8830 {
8831 struct tracepoint *t = (struct tracepoint *) b;
8832 struct static_tracepoint_marker marker;
8833
8834 if (strace_marker_p (b))
8835 {
8836 /* We already know the marker exists, otherwise, we
8837 wouldn't see a sal for it. */
8838 const char *p
8839 = &event_location_to_string (b->location.get ())[3];
8840 const char *endp;
8841
8842 p = skip_spaces (p);
8843
8844 endp = skip_to_space (p);
8845
8846 t->static_trace_marker_id.assign (p, endp - p);
8847
8848 printf_filtered (_("Probed static tracepoint "
8849 "marker \"%s\"\n"),
8850 t->static_trace_marker_id.c_str ());
8851 }
8852 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8853 {
8854 t->static_trace_marker_id = std::move (marker.str_id);
8855
8856 printf_filtered (_("Probed static tracepoint "
8857 "marker \"%s\"\n"),
8858 t->static_trace_marker_id.c_str ());
8859 }
8860 else
8861 warning (_("Couldn't determine the static "
8862 "tracepoint marker to probe"));
8863 }
8864
8865 loc = b->loc;
8866 }
8867 else
8868 {
8869 loc = add_location_to_breakpoint (b, &sal);
8870 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8871 loc->inserted = 1;
8872 }
8873
8874 if (b->cond_string)
8875 {
8876 const char *arg = b->cond_string;
8877
8878 loc->cond = parse_exp_1 (&arg, loc->address,
8879 block_for_pc (loc->address), 0);
8880 if (*arg)
8881 error (_("Garbage '%s' follows condition"), arg);
8882 }
8883
8884 /* Dynamic printf requires and uses additional arguments on the
8885 command line, otherwise it's an error. */
8886 if (type == bp_dprintf)
8887 {
8888 if (b->extra_string)
8889 update_dprintf_command_list (b);
8890 else
8891 error (_("Format string required"));
8892 }
8893 else if (b->extra_string)
8894 error (_("Garbage '%s' at end of command"), b->extra_string);
8895 }
8896
8897 b->display_canonical = display_canonical;
8898 if (location != NULL)
8899 b->location = std::move (location);
8900 else
8901 b->location = new_address_location (b->loc->address, NULL, 0);
8902 b->filter = filter.release ();
8903 }
8904
8905 static void
8906 create_breakpoint_sal (struct gdbarch *gdbarch,
8907 gdb::array_view<const symtab_and_line> sals,
8908 event_location_up &&location,
8909 gdb::unique_xmalloc_ptr<char> filter,
8910 gdb::unique_xmalloc_ptr<char> cond_string,
8911 gdb::unique_xmalloc_ptr<char> extra_string,
8912 enum bptype type, enum bpdisp disposition,
8913 int thread, int task, int ignore_count,
8914 const struct breakpoint_ops *ops, int from_tty,
8915 int enabled, int internal, unsigned flags,
8916 int display_canonical)
8917 {
8918 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8919
8920 init_breakpoint_sal (b.get (), gdbarch,
8921 sals, std::move (location),
8922 std::move (filter),
8923 std::move (cond_string),
8924 std::move (extra_string),
8925 type, disposition,
8926 thread, task, ignore_count,
8927 ops, from_tty,
8928 enabled, internal, flags,
8929 display_canonical);
8930
8931 install_breakpoint (internal, std::move (b), 0);
8932 }
8933
8934 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8935 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8936 value. COND_STRING, if not NULL, specified the condition to be
8937 used for all breakpoints. Essentially the only case where
8938 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8939 function. In that case, it's still not possible to specify
8940 separate conditions for different overloaded functions, so
8941 we take just a single condition string.
8942
8943 NOTE: If the function succeeds, the caller is expected to cleanup
8944 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8945 array contents). If the function fails (error() is called), the
8946 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8947 COND and SALS arrays and each of those arrays contents. */
8948
8949 static void
8950 create_breakpoints_sal (struct gdbarch *gdbarch,
8951 struct linespec_result *canonical,
8952 gdb::unique_xmalloc_ptr<char> cond_string,
8953 gdb::unique_xmalloc_ptr<char> extra_string,
8954 enum bptype type, enum bpdisp disposition,
8955 int thread, int task, int ignore_count,
8956 const struct breakpoint_ops *ops, int from_tty,
8957 int enabled, int internal, unsigned flags)
8958 {
8959 if (canonical->pre_expanded)
8960 gdb_assert (canonical->lsals.size () == 1);
8961
8962 for (const auto &lsal : canonical->lsals)
8963 {
8964 /* Note that 'location' can be NULL in the case of a plain
8965 'break', without arguments. */
8966 event_location_up location
8967 = (canonical->location != NULL
8968 ? copy_event_location (canonical->location.get ()) : NULL);
8969 gdb::unique_xmalloc_ptr<char> filter_string
8970 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8971
8972 create_breakpoint_sal (gdbarch, lsal.sals,
8973 std::move (location),
8974 std::move (filter_string),
8975 std::move (cond_string),
8976 std::move (extra_string),
8977 type, disposition,
8978 thread, task, ignore_count, ops,
8979 from_tty, enabled, internal, flags,
8980 canonical->special_display);
8981 }
8982 }
8983
8984 /* Parse LOCATION which is assumed to be a SAL specification possibly
8985 followed by conditionals. On return, SALS contains an array of SAL
8986 addresses found. LOCATION points to the end of the SAL (for
8987 linespec locations).
8988
8989 The array and the line spec strings are allocated on the heap, it is
8990 the caller's responsibility to free them. */
8991
8992 static void
8993 parse_breakpoint_sals (const struct event_location *location,
8994 struct linespec_result *canonical)
8995 {
8996 struct symtab_and_line cursal;
8997
8998 if (event_location_type (location) == LINESPEC_LOCATION)
8999 {
9000 const char *spec = get_linespec_location (location)->spec_string;
9001
9002 if (spec == NULL)
9003 {
9004 /* The last displayed codepoint, if it's valid, is our default
9005 breakpoint address. */
9006 if (last_displayed_sal_is_valid ())
9007 {
9008 /* Set sal's pspace, pc, symtab, and line to the values
9009 corresponding to the last call to print_frame_info.
9010 Be sure to reinitialize LINE with NOTCURRENT == 0
9011 as the breakpoint line number is inappropriate otherwise.
9012 find_pc_line would adjust PC, re-set it back. */
9013 symtab_and_line sal = get_last_displayed_sal ();
9014 CORE_ADDR pc = sal.pc;
9015
9016 sal = find_pc_line (pc, 0);
9017
9018 /* "break" without arguments is equivalent to "break *PC"
9019 where PC is the last displayed codepoint's address. So
9020 make sure to set sal.explicit_pc to prevent GDB from
9021 trying to expand the list of sals to include all other
9022 instances with the same symtab and line. */
9023 sal.pc = pc;
9024 sal.explicit_pc = 1;
9025
9026 struct linespec_sals lsal;
9027 lsal.sals = {sal};
9028 lsal.canonical = NULL;
9029
9030 canonical->lsals.push_back (std::move (lsal));
9031 return;
9032 }
9033 else
9034 error (_("No default breakpoint address now."));
9035 }
9036 }
9037
9038 /* Force almost all breakpoints to be in terms of the
9039 current_source_symtab (which is decode_line_1's default).
9040 This should produce the results we want almost all of the
9041 time while leaving default_breakpoint_* alone.
9042
9043 ObjC: However, don't match an Objective-C method name which
9044 may have a '+' or '-' succeeded by a '['. */
9045 cursal = get_current_source_symtab_and_line ();
9046 if (last_displayed_sal_is_valid ())
9047 {
9048 const char *spec = NULL;
9049
9050 if (event_location_type (location) == LINESPEC_LOCATION)
9051 spec = get_linespec_location (location)->spec_string;
9052
9053 if (!cursal.symtab
9054 || (spec != NULL
9055 && strchr ("+-", spec[0]) != NULL
9056 && spec[1] != '['))
9057 {
9058 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9059 get_last_displayed_symtab (),
9060 get_last_displayed_line (),
9061 canonical, NULL, NULL);
9062 return;
9063 }
9064 }
9065
9066 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9067 cursal.symtab, cursal.line, canonical, NULL, NULL);
9068 }
9069
9070
9071 /* Convert each SAL into a real PC. Verify that the PC can be
9072 inserted as a breakpoint. If it can't throw an error. */
9073
9074 static void
9075 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9076 {
9077 for (auto &sal : sals)
9078 resolve_sal_pc (&sal);
9079 }
9080
9081 /* Fast tracepoints may have restrictions on valid locations. For
9082 instance, a fast tracepoint using a jump instead of a trap will
9083 likely have to overwrite more bytes than a trap would, and so can
9084 only be placed where the instruction is longer than the jump, or a
9085 multi-instruction sequence does not have a jump into the middle of
9086 it, etc. */
9087
9088 static void
9089 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9090 gdb::array_view<const symtab_and_line> sals)
9091 {
9092 for (const auto &sal : sals)
9093 {
9094 struct gdbarch *sarch;
9095
9096 sarch = get_sal_arch (sal);
9097 /* We fall back to GDBARCH if there is no architecture
9098 associated with SAL. */
9099 if (sarch == NULL)
9100 sarch = gdbarch;
9101 std::string msg;
9102 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9103 error (_("May not have a fast tracepoint at %s%s"),
9104 paddress (sarch, sal.pc), msg.c_str ());
9105 }
9106 }
9107
9108 /* Given TOK, a string specification of condition and thread, as
9109 accepted by the 'break' command, extract the condition
9110 string and thread number and set *COND_STRING and *THREAD.
9111 PC identifies the context at which the condition should be parsed.
9112 If no condition is found, *COND_STRING is set to NULL.
9113 If no thread is found, *THREAD is set to -1. */
9114
9115 static void
9116 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9117 char **cond_string, int *thread, int *task,
9118 char **rest)
9119 {
9120 *cond_string = NULL;
9121 *thread = -1;
9122 *task = 0;
9123 *rest = NULL;
9124
9125 while (tok && *tok)
9126 {
9127 const char *end_tok;
9128 int toklen;
9129 const char *cond_start = NULL;
9130 const char *cond_end = NULL;
9131
9132 tok = skip_spaces (tok);
9133
9134 if ((*tok == '"' || *tok == ',') && rest)
9135 {
9136 *rest = savestring (tok, strlen (tok));
9137 return;
9138 }
9139
9140 end_tok = skip_to_space (tok);
9141
9142 toklen = end_tok - tok;
9143
9144 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9145 {
9146 tok = cond_start = end_tok + 1;
9147 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9148 cond_end = tok;
9149 *cond_string = savestring (cond_start, cond_end - cond_start);
9150 }
9151 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9152 {
9153 const char *tmptok;
9154 struct thread_info *thr;
9155
9156 tok = end_tok + 1;
9157 thr = parse_thread_id (tok, &tmptok);
9158 if (tok == tmptok)
9159 error (_("Junk after thread keyword."));
9160 *thread = thr->global_num;
9161 tok = tmptok;
9162 }
9163 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9164 {
9165 char *tmptok;
9166
9167 tok = end_tok + 1;
9168 *task = strtol (tok, &tmptok, 0);
9169 if (tok == tmptok)
9170 error (_("Junk after task keyword."));
9171 if (!valid_task_id (*task))
9172 error (_("Unknown task %d."), *task);
9173 tok = tmptok;
9174 }
9175 else if (rest)
9176 {
9177 *rest = savestring (tok, strlen (tok));
9178 return;
9179 }
9180 else
9181 error (_("Junk at end of arguments."));
9182 }
9183 }
9184
9185 /* Decode a static tracepoint marker spec. */
9186
9187 static std::vector<symtab_and_line>
9188 decode_static_tracepoint_spec (const char **arg_p)
9189 {
9190 const char *p = &(*arg_p)[3];
9191 const char *endp;
9192
9193 p = skip_spaces (p);
9194
9195 endp = skip_to_space (p);
9196
9197 std::string marker_str (p, endp - p);
9198
9199 std::vector<static_tracepoint_marker> markers
9200 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9201 if (markers.empty ())
9202 error (_("No known static tracepoint marker named %s"),
9203 marker_str.c_str ());
9204
9205 std::vector<symtab_and_line> sals;
9206 sals.reserve (markers.size ());
9207
9208 for (const static_tracepoint_marker &marker : markers)
9209 {
9210 symtab_and_line sal = find_pc_line (marker.address, 0);
9211 sal.pc = marker.address;
9212 sals.push_back (sal);
9213 }
9214
9215 *arg_p = endp;
9216 return sals;
9217 }
9218
9219 /* See breakpoint.h. */
9220
9221 int
9222 create_breakpoint (struct gdbarch *gdbarch,
9223 const struct event_location *location,
9224 const char *cond_string,
9225 int thread, const char *extra_string,
9226 int parse_extra,
9227 int tempflag, enum bptype type_wanted,
9228 int ignore_count,
9229 enum auto_boolean pending_break_support,
9230 const struct breakpoint_ops *ops,
9231 int from_tty, int enabled, int internal,
9232 unsigned flags)
9233 {
9234 struct linespec_result canonical;
9235 struct cleanup *bkpt_chain = NULL;
9236 int pending = 0;
9237 int task = 0;
9238 int prev_bkpt_count = breakpoint_count;
9239
9240 gdb_assert (ops != NULL);
9241
9242 /* If extra_string isn't useful, set it to NULL. */
9243 if (extra_string != NULL && *extra_string == '\0')
9244 extra_string = NULL;
9245
9246 TRY
9247 {
9248 ops->create_sals_from_location (location, &canonical, type_wanted);
9249 }
9250 CATCH (e, RETURN_MASK_ERROR)
9251 {
9252 /* If caller is interested in rc value from parse, set
9253 value. */
9254 if (e.error == NOT_FOUND_ERROR)
9255 {
9256 /* If pending breakpoint support is turned off, throw
9257 error. */
9258
9259 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9260 throw_exception (e);
9261
9262 exception_print (gdb_stderr, e);
9263
9264 /* If pending breakpoint support is auto query and the user
9265 selects no, then simply return the error code. */
9266 if (pending_break_support == AUTO_BOOLEAN_AUTO
9267 && !nquery (_("Make %s pending on future shared library load? "),
9268 bptype_string (type_wanted)))
9269 return 0;
9270
9271 /* At this point, either the user was queried about setting
9272 a pending breakpoint and selected yes, or pending
9273 breakpoint behavior is on and thus a pending breakpoint
9274 is defaulted on behalf of the user. */
9275 pending = 1;
9276 }
9277 else
9278 throw_exception (e);
9279 }
9280 END_CATCH
9281
9282 if (!pending && canonical.lsals.empty ())
9283 return 0;
9284
9285 /* ----------------------------- SNIP -----------------------------
9286 Anything added to the cleanup chain beyond this point is assumed
9287 to be part of a breakpoint. If the breakpoint create succeeds
9288 then the memory is not reclaimed. */
9289 bkpt_chain = make_cleanup (null_cleanup, 0);
9290
9291 /* Resolve all line numbers to PC's and verify that the addresses
9292 are ok for the target. */
9293 if (!pending)
9294 {
9295 for (auto &lsal : canonical.lsals)
9296 breakpoint_sals_to_pc (lsal.sals);
9297 }
9298
9299 /* Fast tracepoints may have additional restrictions on location. */
9300 if (!pending && type_wanted == bp_fast_tracepoint)
9301 {
9302 for (const auto &lsal : canonical.lsals)
9303 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9304 }
9305
9306 /* Verify that condition can be parsed, before setting any
9307 breakpoints. Allocate a separate condition expression for each
9308 breakpoint. */
9309 if (!pending)
9310 {
9311 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9312 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9313
9314 if (parse_extra)
9315 {
9316 char *rest;
9317 char *cond;
9318
9319 const linespec_sals &lsal = canonical.lsals[0];
9320
9321 /* Here we only parse 'arg' to separate condition
9322 from thread number, so parsing in context of first
9323 sal is OK. When setting the breakpoint we'll
9324 re-parse it in context of each sal. */
9325
9326 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9327 &cond, &thread, &task, &rest);
9328 cond_string_copy.reset (cond);
9329 extra_string_copy.reset (rest);
9330 }
9331 else
9332 {
9333 if (type_wanted != bp_dprintf
9334 && extra_string != NULL && *extra_string != '\0')
9335 error (_("Garbage '%s' at end of location"), extra_string);
9336
9337 /* Create a private copy of condition string. */
9338 if (cond_string)
9339 cond_string_copy.reset (xstrdup (cond_string));
9340 /* Create a private copy of any extra string. */
9341 if (extra_string)
9342 extra_string_copy.reset (xstrdup (extra_string));
9343 }
9344
9345 ops->create_breakpoints_sal (gdbarch, &canonical,
9346 std::move (cond_string_copy),
9347 std::move (extra_string_copy),
9348 type_wanted,
9349 tempflag ? disp_del : disp_donttouch,
9350 thread, task, ignore_count, ops,
9351 from_tty, enabled, internal, flags);
9352 }
9353 else
9354 {
9355 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9356
9357 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9358 b->location = copy_event_location (location);
9359
9360 if (parse_extra)
9361 b->cond_string = NULL;
9362 else
9363 {
9364 /* Create a private copy of condition string. */
9365 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9366 b->thread = thread;
9367 }
9368
9369 /* Create a private copy of any extra string. */
9370 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9371 b->ignore_count = ignore_count;
9372 b->disposition = tempflag ? disp_del : disp_donttouch;
9373 b->condition_not_parsed = 1;
9374 b->enable_state = enabled ? bp_enabled : bp_disabled;
9375 if ((type_wanted != bp_breakpoint
9376 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9377 b->pspace = current_program_space;
9378
9379 install_breakpoint (internal, std::move (b), 0);
9380 }
9381
9382 if (canonical.lsals.size () > 1)
9383 {
9384 warning (_("Multiple breakpoints were set.\nUse the "
9385 "\"delete\" command to delete unwanted breakpoints."));
9386 prev_breakpoint_count = prev_bkpt_count;
9387 }
9388
9389 /* That's it. Discard the cleanups for data inserted into the
9390 breakpoint. */
9391 discard_cleanups (bkpt_chain);
9392
9393 /* error call may happen here - have BKPT_CHAIN already discarded. */
9394 update_global_location_list (UGLL_MAY_INSERT);
9395
9396 return 1;
9397 }
9398
9399 /* Set a breakpoint.
9400 ARG is a string describing breakpoint address,
9401 condition, and thread.
9402 FLAG specifies if a breakpoint is hardware on,
9403 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9404 and BP_TEMPFLAG. */
9405
9406 static void
9407 break_command_1 (const char *arg, int flag, int from_tty)
9408 {
9409 int tempflag = flag & BP_TEMPFLAG;
9410 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9411 ? bp_hardware_breakpoint
9412 : bp_breakpoint);
9413 struct breakpoint_ops *ops;
9414
9415 event_location_up location = string_to_event_location (&arg, current_language);
9416
9417 /* Matching breakpoints on probes. */
9418 if (location != NULL
9419 && event_location_type (location.get ()) == PROBE_LOCATION)
9420 ops = &bkpt_probe_breakpoint_ops;
9421 else
9422 ops = &bkpt_breakpoint_ops;
9423
9424 create_breakpoint (get_current_arch (),
9425 location.get (),
9426 NULL, 0, arg, 1 /* parse arg */,
9427 tempflag, type_wanted,
9428 0 /* Ignore count */,
9429 pending_break_support,
9430 ops,
9431 from_tty,
9432 1 /* enabled */,
9433 0 /* internal */,
9434 0);
9435 }
9436
9437 /* Helper function for break_command_1 and disassemble_command. */
9438
9439 void
9440 resolve_sal_pc (struct symtab_and_line *sal)
9441 {
9442 CORE_ADDR pc;
9443
9444 if (sal->pc == 0 && sal->symtab != NULL)
9445 {
9446 if (!find_line_pc (sal->symtab, sal->line, &pc))
9447 error (_("No line %d in file \"%s\"."),
9448 sal->line, symtab_to_filename_for_display (sal->symtab));
9449 sal->pc = pc;
9450
9451 /* If this SAL corresponds to a breakpoint inserted using a line
9452 number, then skip the function prologue if necessary. */
9453 if (sal->explicit_line)
9454 skip_prologue_sal (sal);
9455 }
9456
9457 if (sal->section == 0 && sal->symtab != NULL)
9458 {
9459 const struct blockvector *bv;
9460 const struct block *b;
9461 struct symbol *sym;
9462
9463 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9464 SYMTAB_COMPUNIT (sal->symtab));
9465 if (bv != NULL)
9466 {
9467 sym = block_linkage_function (b);
9468 if (sym != NULL)
9469 {
9470 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9471 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9472 sym);
9473 }
9474 else
9475 {
9476 /* It really is worthwhile to have the section, so we'll
9477 just have to look harder. This case can be executed
9478 if we have line numbers but no functions (as can
9479 happen in assembly source). */
9480
9481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9482 switch_to_program_space_and_thread (sal->pspace);
9483
9484 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9485 if (msym.minsym)
9486 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9487 }
9488 }
9489 }
9490 }
9491
9492 void
9493 break_command (const char *arg, int from_tty)
9494 {
9495 break_command_1 (arg, 0, from_tty);
9496 }
9497
9498 void
9499 tbreak_command (const char *arg, int from_tty)
9500 {
9501 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9502 }
9503
9504 static void
9505 hbreak_command (const char *arg, int from_tty)
9506 {
9507 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9508 }
9509
9510 static void
9511 thbreak_command (const char *arg, int from_tty)
9512 {
9513 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9514 }
9515
9516 static void
9517 stop_command (const char *arg, int from_tty)
9518 {
9519 printf_filtered (_("Specify the type of breakpoint to set.\n\
9520 Usage: stop in <function | address>\n\
9521 stop at <line>\n"));
9522 }
9523
9524 static void
9525 stopin_command (const char *arg, int from_tty)
9526 {
9527 int badInput = 0;
9528
9529 if (arg == (char *) NULL)
9530 badInput = 1;
9531 else if (*arg != '*')
9532 {
9533 const char *argptr = arg;
9534 int hasColon = 0;
9535
9536 /* Look for a ':'. If this is a line number specification, then
9537 say it is bad, otherwise, it should be an address or
9538 function/method name. */
9539 while (*argptr && !hasColon)
9540 {
9541 hasColon = (*argptr == ':');
9542 argptr++;
9543 }
9544
9545 if (hasColon)
9546 badInput = (*argptr != ':'); /* Not a class::method */
9547 else
9548 badInput = isdigit (*arg); /* a simple line number */
9549 }
9550
9551 if (badInput)
9552 printf_filtered (_("Usage: stop in <function | address>\n"));
9553 else
9554 break_command_1 (arg, 0, from_tty);
9555 }
9556
9557 static void
9558 stopat_command (const char *arg, int from_tty)
9559 {
9560 int badInput = 0;
9561
9562 if (arg == (char *) NULL || *arg == '*') /* no line number */
9563 badInput = 1;
9564 else
9565 {
9566 const char *argptr = arg;
9567 int hasColon = 0;
9568
9569 /* Look for a ':'. If there is a '::' then get out, otherwise
9570 it is probably a line number. */
9571 while (*argptr && !hasColon)
9572 {
9573 hasColon = (*argptr == ':');
9574 argptr++;
9575 }
9576
9577 if (hasColon)
9578 badInput = (*argptr == ':'); /* we have class::method */
9579 else
9580 badInput = !isdigit (*arg); /* not a line number */
9581 }
9582
9583 if (badInput)
9584 printf_filtered (_("Usage: stop at LINE\n"));
9585 else
9586 break_command_1 (arg, 0, from_tty);
9587 }
9588
9589 /* The dynamic printf command is mostly like a regular breakpoint, but
9590 with a prewired command list consisting of a single output command,
9591 built from extra arguments supplied on the dprintf command
9592 line. */
9593
9594 static void
9595 dprintf_command (const char *arg, int from_tty)
9596 {
9597 event_location_up location = string_to_event_location (&arg, current_language);
9598
9599 /* If non-NULL, ARG should have been advanced past the location;
9600 the next character must be ','. */
9601 if (arg != NULL)
9602 {
9603 if (arg[0] != ',' || arg[1] == '\0')
9604 error (_("Format string required"));
9605 else
9606 {
9607 /* Skip the comma. */
9608 ++arg;
9609 }
9610 }
9611
9612 create_breakpoint (get_current_arch (),
9613 location.get (),
9614 NULL, 0, arg, 1 /* parse arg */,
9615 0, bp_dprintf,
9616 0 /* Ignore count */,
9617 pending_break_support,
9618 &dprintf_breakpoint_ops,
9619 from_tty,
9620 1 /* enabled */,
9621 0 /* internal */,
9622 0);
9623 }
9624
9625 static void
9626 agent_printf_command (const char *arg, int from_tty)
9627 {
9628 error (_("May only run agent-printf on the target"));
9629 }
9630
9631 /* Implement the "breakpoint_hit" breakpoint_ops method for
9632 ranged breakpoints. */
9633
9634 static int
9635 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9636 const address_space *aspace,
9637 CORE_ADDR bp_addr,
9638 const struct target_waitstatus *ws)
9639 {
9640 if (ws->kind != TARGET_WAITKIND_STOPPED
9641 || ws->value.sig != GDB_SIGNAL_TRAP)
9642 return 0;
9643
9644 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9645 bl->length, aspace, bp_addr);
9646 }
9647
9648 /* Implement the "resources_needed" breakpoint_ops method for
9649 ranged breakpoints. */
9650
9651 static int
9652 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9653 {
9654 return target_ranged_break_num_registers ();
9655 }
9656
9657 /* Implement the "print_it" breakpoint_ops method for
9658 ranged breakpoints. */
9659
9660 static enum print_stop_action
9661 print_it_ranged_breakpoint (bpstat bs)
9662 {
9663 struct breakpoint *b = bs->breakpoint_at;
9664 struct bp_location *bl = b->loc;
9665 struct ui_out *uiout = current_uiout;
9666
9667 gdb_assert (b->type == bp_hardware_breakpoint);
9668
9669 /* Ranged breakpoints have only one location. */
9670 gdb_assert (bl && bl->next == NULL);
9671
9672 annotate_breakpoint (b->number);
9673
9674 maybe_print_thread_hit_breakpoint (uiout);
9675
9676 if (b->disposition == disp_del)
9677 uiout->text ("Temporary ranged breakpoint ");
9678 else
9679 uiout->text ("Ranged breakpoint ");
9680 if (uiout->is_mi_like_p ())
9681 {
9682 uiout->field_string ("reason",
9683 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9684 uiout->field_string ("disp", bpdisp_text (b->disposition));
9685 }
9686 uiout->field_int ("bkptno", b->number);
9687 uiout->text (", ");
9688
9689 return PRINT_SRC_AND_LOC;
9690 }
9691
9692 /* Implement the "print_one" breakpoint_ops method for
9693 ranged breakpoints. */
9694
9695 static void
9696 print_one_ranged_breakpoint (struct breakpoint *b,
9697 struct bp_location **last_loc)
9698 {
9699 struct bp_location *bl = b->loc;
9700 struct value_print_options opts;
9701 struct ui_out *uiout = current_uiout;
9702
9703 /* Ranged breakpoints have only one location. */
9704 gdb_assert (bl && bl->next == NULL);
9705
9706 get_user_print_options (&opts);
9707
9708 if (opts.addressprint)
9709 /* We don't print the address range here, it will be printed later
9710 by print_one_detail_ranged_breakpoint. */
9711 uiout->field_skip ("addr");
9712 annotate_field (5);
9713 print_breakpoint_location (b, bl);
9714 *last_loc = bl;
9715 }
9716
9717 /* Implement the "print_one_detail" breakpoint_ops method for
9718 ranged breakpoints. */
9719
9720 static void
9721 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9722 struct ui_out *uiout)
9723 {
9724 CORE_ADDR address_start, address_end;
9725 struct bp_location *bl = b->loc;
9726 string_file stb;
9727
9728 gdb_assert (bl);
9729
9730 address_start = bl->address;
9731 address_end = address_start + bl->length - 1;
9732
9733 uiout->text ("\taddress range: ");
9734 stb.printf ("[%s, %s]",
9735 print_core_address (bl->gdbarch, address_start),
9736 print_core_address (bl->gdbarch, address_end));
9737 uiout->field_stream ("addr", stb);
9738 uiout->text ("\n");
9739 }
9740
9741 /* Implement the "print_mention" breakpoint_ops method for
9742 ranged breakpoints. */
9743
9744 static void
9745 print_mention_ranged_breakpoint (struct breakpoint *b)
9746 {
9747 struct bp_location *bl = b->loc;
9748 struct ui_out *uiout = current_uiout;
9749
9750 gdb_assert (bl);
9751 gdb_assert (b->type == bp_hardware_breakpoint);
9752
9753 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9754 b->number, paddress (bl->gdbarch, bl->address),
9755 paddress (bl->gdbarch, bl->address + bl->length - 1));
9756 }
9757
9758 /* Implement the "print_recreate" breakpoint_ops method for
9759 ranged breakpoints. */
9760
9761 static void
9762 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9763 {
9764 fprintf_unfiltered (fp, "break-range %s, %s",
9765 event_location_to_string (b->location.get ()),
9766 event_location_to_string (b->location_range_end.get ()));
9767 print_recreate_thread (b, fp);
9768 }
9769
9770 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9771
9772 static struct breakpoint_ops ranged_breakpoint_ops;
9773
9774 /* Find the address where the end of the breakpoint range should be
9775 placed, given the SAL of the end of the range. This is so that if
9776 the user provides a line number, the end of the range is set to the
9777 last instruction of the given line. */
9778
9779 static CORE_ADDR
9780 find_breakpoint_range_end (struct symtab_and_line sal)
9781 {
9782 CORE_ADDR end;
9783
9784 /* If the user provided a PC value, use it. Otherwise,
9785 find the address of the end of the given location. */
9786 if (sal.explicit_pc)
9787 end = sal.pc;
9788 else
9789 {
9790 int ret;
9791 CORE_ADDR start;
9792
9793 ret = find_line_pc_range (sal, &start, &end);
9794 if (!ret)
9795 error (_("Could not find location of the end of the range."));
9796
9797 /* find_line_pc_range returns the start of the next line. */
9798 end--;
9799 }
9800
9801 return end;
9802 }
9803
9804 /* Implement the "break-range" CLI command. */
9805
9806 static void
9807 break_range_command (const char *arg, int from_tty)
9808 {
9809 const char *arg_start;
9810 struct linespec_result canonical_start, canonical_end;
9811 int bp_count, can_use_bp, length;
9812 CORE_ADDR end;
9813 struct breakpoint *b;
9814
9815 /* We don't support software ranged breakpoints. */
9816 if (target_ranged_break_num_registers () < 0)
9817 error (_("This target does not support hardware ranged breakpoints."));
9818
9819 bp_count = hw_breakpoint_used_count ();
9820 bp_count += target_ranged_break_num_registers ();
9821 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9822 bp_count, 0);
9823 if (can_use_bp < 0)
9824 error (_("Hardware breakpoints used exceeds limit."));
9825
9826 arg = skip_spaces (arg);
9827 if (arg == NULL || arg[0] == '\0')
9828 error(_("No address range specified."));
9829
9830 arg_start = arg;
9831 event_location_up start_location = string_to_event_location (&arg,
9832 current_language);
9833 parse_breakpoint_sals (start_location.get (), &canonical_start);
9834
9835 if (arg[0] != ',')
9836 error (_("Too few arguments."));
9837 else if (canonical_start.lsals.empty ())
9838 error (_("Could not find location of the beginning of the range."));
9839
9840 const linespec_sals &lsal_start = canonical_start.lsals[0];
9841
9842 if (canonical_start.lsals.size () > 1
9843 || lsal_start.sals.size () != 1)
9844 error (_("Cannot create a ranged breakpoint with multiple locations."));
9845
9846 const symtab_and_line &sal_start = lsal_start.sals[0];
9847 std::string addr_string_start (arg_start, arg - arg_start);
9848
9849 arg++; /* Skip the comma. */
9850 arg = skip_spaces (arg);
9851
9852 /* Parse the end location. */
9853
9854 arg_start = arg;
9855
9856 /* We call decode_line_full directly here instead of using
9857 parse_breakpoint_sals because we need to specify the start location's
9858 symtab and line as the default symtab and line for the end of the
9859 range. This makes it possible to have ranges like "foo.c:27, +14",
9860 where +14 means 14 lines from the start location. */
9861 event_location_up end_location = string_to_event_location (&arg,
9862 current_language);
9863 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9864 sal_start.symtab, sal_start.line,
9865 &canonical_end, NULL, NULL);
9866
9867 if (canonical_end.lsals.empty ())
9868 error (_("Could not find location of the end of the range."));
9869
9870 const linespec_sals &lsal_end = canonical_end.lsals[0];
9871 if (canonical_end.lsals.size () > 1
9872 || lsal_end.sals.size () != 1)
9873 error (_("Cannot create a ranged breakpoint with multiple locations."));
9874
9875 const symtab_and_line &sal_end = lsal_end.sals[0];
9876
9877 end = find_breakpoint_range_end (sal_end);
9878 if (sal_start.pc > end)
9879 error (_("Invalid address range, end precedes start."));
9880
9881 length = end - sal_start.pc + 1;
9882 if (length < 0)
9883 /* Length overflowed. */
9884 error (_("Address range too large."));
9885 else if (length == 1)
9886 {
9887 /* This range is simple enough to be handled by
9888 the `hbreak' command. */
9889 hbreak_command (&addr_string_start[0], 1);
9890
9891 return;
9892 }
9893
9894 /* Now set up the breakpoint. */
9895 b = set_raw_breakpoint (get_current_arch (), sal_start,
9896 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9897 set_breakpoint_count (breakpoint_count + 1);
9898 b->number = breakpoint_count;
9899 b->disposition = disp_donttouch;
9900 b->location = std::move (start_location);
9901 b->location_range_end = std::move (end_location);
9902 b->loc->length = length;
9903
9904 mention (b);
9905 gdb::observers::breakpoint_created.notify (b);
9906 update_global_location_list (UGLL_MAY_INSERT);
9907 }
9908
9909 /* Return non-zero if EXP is verified as constant. Returned zero
9910 means EXP is variable. Also the constant detection may fail for
9911 some constant expressions and in such case still falsely return
9912 zero. */
9913
9914 static int
9915 watchpoint_exp_is_const (const struct expression *exp)
9916 {
9917 int i = exp->nelts;
9918
9919 while (i > 0)
9920 {
9921 int oplenp, argsp;
9922
9923 /* We are only interested in the descriptor of each element. */
9924 operator_length (exp, i, &oplenp, &argsp);
9925 i -= oplenp;
9926
9927 switch (exp->elts[i].opcode)
9928 {
9929 case BINOP_ADD:
9930 case BINOP_SUB:
9931 case BINOP_MUL:
9932 case BINOP_DIV:
9933 case BINOP_REM:
9934 case BINOP_MOD:
9935 case BINOP_LSH:
9936 case BINOP_RSH:
9937 case BINOP_LOGICAL_AND:
9938 case BINOP_LOGICAL_OR:
9939 case BINOP_BITWISE_AND:
9940 case BINOP_BITWISE_IOR:
9941 case BINOP_BITWISE_XOR:
9942 case BINOP_EQUAL:
9943 case BINOP_NOTEQUAL:
9944 case BINOP_LESS:
9945 case BINOP_GTR:
9946 case BINOP_LEQ:
9947 case BINOP_GEQ:
9948 case BINOP_REPEAT:
9949 case BINOP_COMMA:
9950 case BINOP_EXP:
9951 case BINOP_MIN:
9952 case BINOP_MAX:
9953 case BINOP_INTDIV:
9954 case BINOP_CONCAT:
9955 case TERNOP_COND:
9956 case TERNOP_SLICE:
9957
9958 case OP_LONG:
9959 case OP_FLOAT:
9960 case OP_LAST:
9961 case OP_COMPLEX:
9962 case OP_STRING:
9963 case OP_ARRAY:
9964 case OP_TYPE:
9965 case OP_TYPEOF:
9966 case OP_DECLTYPE:
9967 case OP_TYPEID:
9968 case OP_NAME:
9969 case OP_OBJC_NSSTRING:
9970
9971 case UNOP_NEG:
9972 case UNOP_LOGICAL_NOT:
9973 case UNOP_COMPLEMENT:
9974 case UNOP_ADDR:
9975 case UNOP_HIGH:
9976 case UNOP_CAST:
9977
9978 case UNOP_CAST_TYPE:
9979 case UNOP_REINTERPRET_CAST:
9980 case UNOP_DYNAMIC_CAST:
9981 /* Unary, binary and ternary operators: We have to check
9982 their operands. If they are constant, then so is the
9983 result of that operation. For instance, if A and B are
9984 determined to be constants, then so is "A + B".
9985
9986 UNOP_IND is one exception to the rule above, because the
9987 value of *ADDR is not necessarily a constant, even when
9988 ADDR is. */
9989 break;
9990
9991 case OP_VAR_VALUE:
9992 /* Check whether the associated symbol is a constant.
9993
9994 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9995 possible that a buggy compiler could mark a variable as
9996 constant even when it is not, and TYPE_CONST would return
9997 true in this case, while SYMBOL_CLASS wouldn't.
9998
9999 We also have to check for function symbols because they
10000 are always constant. */
10001 {
10002 struct symbol *s = exp->elts[i + 2].symbol;
10003
10004 if (SYMBOL_CLASS (s) != LOC_BLOCK
10005 && SYMBOL_CLASS (s) != LOC_CONST
10006 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10007 return 0;
10008 break;
10009 }
10010
10011 /* The default action is to return 0 because we are using
10012 the optimistic approach here: If we don't know something,
10013 then it is not a constant. */
10014 default:
10015 return 0;
10016 }
10017 }
10018
10019 return 1;
10020 }
10021
10022 /* Watchpoint destructor. */
10023
10024 watchpoint::~watchpoint ()
10025 {
10026 xfree (this->exp_string);
10027 xfree (this->exp_string_reparse);
10028 }
10029
10030 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10031
10032 static void
10033 re_set_watchpoint (struct breakpoint *b)
10034 {
10035 struct watchpoint *w = (struct watchpoint *) b;
10036
10037 /* Watchpoint can be either on expression using entirely global
10038 variables, or it can be on local variables.
10039
10040 Watchpoints of the first kind are never auto-deleted, and even
10041 persist across program restarts. Since they can use variables
10042 from shared libraries, we need to reparse expression as libraries
10043 are loaded and unloaded.
10044
10045 Watchpoints on local variables can also change meaning as result
10046 of solib event. For example, if a watchpoint uses both a local
10047 and a global variables in expression, it's a local watchpoint,
10048 but unloading of a shared library will make the expression
10049 invalid. This is not a very common use case, but we still
10050 re-evaluate expression, to avoid surprises to the user.
10051
10052 Note that for local watchpoints, we re-evaluate it only if
10053 watchpoints frame id is still valid. If it's not, it means the
10054 watchpoint is out of scope and will be deleted soon. In fact,
10055 I'm not sure we'll ever be called in this case.
10056
10057 If a local watchpoint's frame id is still valid, then
10058 w->exp_valid_block is likewise valid, and we can safely use it.
10059
10060 Don't do anything about disabled watchpoints, since they will be
10061 reevaluated again when enabled. */
10062 update_watchpoint (w, 1 /* reparse */);
10063 }
10064
10065 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10066
10067 static int
10068 insert_watchpoint (struct bp_location *bl)
10069 {
10070 struct watchpoint *w = (struct watchpoint *) bl->owner;
10071 int length = w->exact ? 1 : bl->length;
10072
10073 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10074 w->cond_exp.get ());
10075 }
10076
10077 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10078
10079 static int
10080 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10081 {
10082 struct watchpoint *w = (struct watchpoint *) bl->owner;
10083 int length = w->exact ? 1 : bl->length;
10084
10085 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10086 w->cond_exp.get ());
10087 }
10088
10089 static int
10090 breakpoint_hit_watchpoint (const struct bp_location *bl,
10091 const address_space *aspace, CORE_ADDR bp_addr,
10092 const struct target_waitstatus *ws)
10093 {
10094 struct breakpoint *b = bl->owner;
10095 struct watchpoint *w = (struct watchpoint *) b;
10096
10097 /* Continuable hardware watchpoints are treated as non-existent if the
10098 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10099 some data address). Otherwise gdb won't stop on a break instruction
10100 in the code (not from a breakpoint) when a hardware watchpoint has
10101 been defined. Also skip watchpoints which we know did not trigger
10102 (did not match the data address). */
10103 if (is_hardware_watchpoint (b)
10104 && w->watchpoint_triggered == watch_triggered_no)
10105 return 0;
10106
10107 return 1;
10108 }
10109
10110 static void
10111 check_status_watchpoint (bpstat bs)
10112 {
10113 gdb_assert (is_watchpoint (bs->breakpoint_at));
10114
10115 bpstat_check_watchpoint (bs);
10116 }
10117
10118 /* Implement the "resources_needed" breakpoint_ops method for
10119 hardware watchpoints. */
10120
10121 static int
10122 resources_needed_watchpoint (const struct bp_location *bl)
10123 {
10124 struct watchpoint *w = (struct watchpoint *) bl->owner;
10125 int length = w->exact? 1 : bl->length;
10126
10127 return target_region_ok_for_hw_watchpoint (bl->address, length);
10128 }
10129
10130 /* Implement the "works_in_software_mode" breakpoint_ops method for
10131 hardware watchpoints. */
10132
10133 static int
10134 works_in_software_mode_watchpoint (const struct breakpoint *b)
10135 {
10136 /* Read and access watchpoints only work with hardware support. */
10137 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10138 }
10139
10140 static enum print_stop_action
10141 print_it_watchpoint (bpstat bs)
10142 {
10143 struct breakpoint *b;
10144 enum print_stop_action result;
10145 struct watchpoint *w;
10146 struct ui_out *uiout = current_uiout;
10147
10148 gdb_assert (bs->bp_location_at != NULL);
10149
10150 b = bs->breakpoint_at;
10151 w = (struct watchpoint *) b;
10152
10153 annotate_watchpoint (b->number);
10154 maybe_print_thread_hit_breakpoint (uiout);
10155
10156 string_file stb;
10157
10158 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10159 switch (b->type)
10160 {
10161 case bp_watchpoint:
10162 case bp_hardware_watchpoint:
10163 if (uiout->is_mi_like_p ())
10164 uiout->field_string
10165 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10166 mention (b);
10167 tuple_emitter.emplace (uiout, "value");
10168 uiout->text ("\nOld value = ");
10169 watchpoint_value_print (bs->old_val.get (), &stb);
10170 uiout->field_stream ("old", stb);
10171 uiout->text ("\nNew value = ");
10172 watchpoint_value_print (w->val.get (), &stb);
10173 uiout->field_stream ("new", stb);
10174 uiout->text ("\n");
10175 /* More than one watchpoint may have been triggered. */
10176 result = PRINT_UNKNOWN;
10177 break;
10178
10179 case bp_read_watchpoint:
10180 if (uiout->is_mi_like_p ())
10181 uiout->field_string
10182 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10183 mention (b);
10184 tuple_emitter.emplace (uiout, "value");
10185 uiout->text ("\nValue = ");
10186 watchpoint_value_print (w->val.get (), &stb);
10187 uiout->field_stream ("value", stb);
10188 uiout->text ("\n");
10189 result = PRINT_UNKNOWN;
10190 break;
10191
10192 case bp_access_watchpoint:
10193 if (bs->old_val != NULL)
10194 {
10195 if (uiout->is_mi_like_p ())
10196 uiout->field_string
10197 ("reason",
10198 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10199 mention (b);
10200 tuple_emitter.emplace (uiout, "value");
10201 uiout->text ("\nOld value = ");
10202 watchpoint_value_print (bs->old_val.get (), &stb);
10203 uiout->field_stream ("old", stb);
10204 uiout->text ("\nNew value = ");
10205 }
10206 else
10207 {
10208 mention (b);
10209 if (uiout->is_mi_like_p ())
10210 uiout->field_string
10211 ("reason",
10212 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10213 tuple_emitter.emplace (uiout, "value");
10214 uiout->text ("\nValue = ");
10215 }
10216 watchpoint_value_print (w->val.get (), &stb);
10217 uiout->field_stream ("new", stb);
10218 uiout->text ("\n");
10219 result = PRINT_UNKNOWN;
10220 break;
10221 default:
10222 result = PRINT_UNKNOWN;
10223 }
10224
10225 return result;
10226 }
10227
10228 /* Implement the "print_mention" breakpoint_ops method for hardware
10229 watchpoints. */
10230
10231 static void
10232 print_mention_watchpoint (struct breakpoint *b)
10233 {
10234 struct watchpoint *w = (struct watchpoint *) b;
10235 struct ui_out *uiout = current_uiout;
10236 const char *tuple_name;
10237
10238 switch (b->type)
10239 {
10240 case bp_watchpoint:
10241 uiout->text ("Watchpoint ");
10242 tuple_name = "wpt";
10243 break;
10244 case bp_hardware_watchpoint:
10245 uiout->text ("Hardware watchpoint ");
10246 tuple_name = "wpt";
10247 break;
10248 case bp_read_watchpoint:
10249 uiout->text ("Hardware read watchpoint ");
10250 tuple_name = "hw-rwpt";
10251 break;
10252 case bp_access_watchpoint:
10253 uiout->text ("Hardware access (read/write) watchpoint ");
10254 tuple_name = "hw-awpt";
10255 break;
10256 default:
10257 internal_error (__FILE__, __LINE__,
10258 _("Invalid hardware watchpoint type."));
10259 }
10260
10261 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10262 uiout->field_int ("number", b->number);
10263 uiout->text (": ");
10264 uiout->field_string ("exp", w->exp_string);
10265 }
10266
10267 /* Implement the "print_recreate" breakpoint_ops method for
10268 watchpoints. */
10269
10270 static void
10271 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10272 {
10273 struct watchpoint *w = (struct watchpoint *) b;
10274
10275 switch (b->type)
10276 {
10277 case bp_watchpoint:
10278 case bp_hardware_watchpoint:
10279 fprintf_unfiltered (fp, "watch");
10280 break;
10281 case bp_read_watchpoint:
10282 fprintf_unfiltered (fp, "rwatch");
10283 break;
10284 case bp_access_watchpoint:
10285 fprintf_unfiltered (fp, "awatch");
10286 break;
10287 default:
10288 internal_error (__FILE__, __LINE__,
10289 _("Invalid watchpoint type."));
10290 }
10291
10292 fprintf_unfiltered (fp, " %s", w->exp_string);
10293 print_recreate_thread (b, fp);
10294 }
10295
10296 /* Implement the "explains_signal" breakpoint_ops method for
10297 watchpoints. */
10298
10299 static int
10300 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10301 {
10302 /* A software watchpoint cannot cause a signal other than
10303 GDB_SIGNAL_TRAP. */
10304 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10305 return 0;
10306
10307 return 1;
10308 }
10309
10310 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10311
10312 static struct breakpoint_ops watchpoint_breakpoint_ops;
10313
10314 /* Implement the "insert" breakpoint_ops method for
10315 masked hardware watchpoints. */
10316
10317 static int
10318 insert_masked_watchpoint (struct bp_location *bl)
10319 {
10320 struct watchpoint *w = (struct watchpoint *) bl->owner;
10321
10322 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10323 bl->watchpoint_type);
10324 }
10325
10326 /* Implement the "remove" breakpoint_ops method for
10327 masked hardware watchpoints. */
10328
10329 static int
10330 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10331 {
10332 struct watchpoint *w = (struct watchpoint *) bl->owner;
10333
10334 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10335 bl->watchpoint_type);
10336 }
10337
10338 /* Implement the "resources_needed" breakpoint_ops method for
10339 masked hardware watchpoints. */
10340
10341 static int
10342 resources_needed_masked_watchpoint (const struct bp_location *bl)
10343 {
10344 struct watchpoint *w = (struct watchpoint *) bl->owner;
10345
10346 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10347 }
10348
10349 /* Implement the "works_in_software_mode" breakpoint_ops method for
10350 masked hardware watchpoints. */
10351
10352 static int
10353 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10354 {
10355 return 0;
10356 }
10357
10358 /* Implement the "print_it" breakpoint_ops method for
10359 masked hardware watchpoints. */
10360
10361 static enum print_stop_action
10362 print_it_masked_watchpoint (bpstat bs)
10363 {
10364 struct breakpoint *b = bs->breakpoint_at;
10365 struct ui_out *uiout = current_uiout;
10366
10367 /* Masked watchpoints have only one location. */
10368 gdb_assert (b->loc && b->loc->next == NULL);
10369
10370 annotate_watchpoint (b->number);
10371 maybe_print_thread_hit_breakpoint (uiout);
10372
10373 switch (b->type)
10374 {
10375 case bp_hardware_watchpoint:
10376 if (uiout->is_mi_like_p ())
10377 uiout->field_string
10378 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10379 break;
10380
10381 case bp_read_watchpoint:
10382 if (uiout->is_mi_like_p ())
10383 uiout->field_string
10384 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10385 break;
10386
10387 case bp_access_watchpoint:
10388 if (uiout->is_mi_like_p ())
10389 uiout->field_string
10390 ("reason",
10391 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10392 break;
10393 default:
10394 internal_error (__FILE__, __LINE__,
10395 _("Invalid hardware watchpoint type."));
10396 }
10397
10398 mention (b);
10399 uiout->text (_("\n\
10400 Check the underlying instruction at PC for the memory\n\
10401 address and value which triggered this watchpoint.\n"));
10402 uiout->text ("\n");
10403
10404 /* More than one watchpoint may have been triggered. */
10405 return PRINT_UNKNOWN;
10406 }
10407
10408 /* Implement the "print_one_detail" breakpoint_ops method for
10409 masked hardware watchpoints. */
10410
10411 static void
10412 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10413 struct ui_out *uiout)
10414 {
10415 struct watchpoint *w = (struct watchpoint *) b;
10416
10417 /* Masked watchpoints have only one location. */
10418 gdb_assert (b->loc && b->loc->next == NULL);
10419
10420 uiout->text ("\tmask ");
10421 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10422 uiout->text ("\n");
10423 }
10424
10425 /* Implement the "print_mention" breakpoint_ops method for
10426 masked hardware watchpoints. */
10427
10428 static void
10429 print_mention_masked_watchpoint (struct breakpoint *b)
10430 {
10431 struct watchpoint *w = (struct watchpoint *) b;
10432 struct ui_out *uiout = current_uiout;
10433 const char *tuple_name;
10434
10435 switch (b->type)
10436 {
10437 case bp_hardware_watchpoint:
10438 uiout->text ("Masked hardware watchpoint ");
10439 tuple_name = "wpt";
10440 break;
10441 case bp_read_watchpoint:
10442 uiout->text ("Masked hardware read watchpoint ");
10443 tuple_name = "hw-rwpt";
10444 break;
10445 case bp_access_watchpoint:
10446 uiout->text ("Masked hardware access (read/write) watchpoint ");
10447 tuple_name = "hw-awpt";
10448 break;
10449 default:
10450 internal_error (__FILE__, __LINE__,
10451 _("Invalid hardware watchpoint type."));
10452 }
10453
10454 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10455 uiout->field_int ("number", b->number);
10456 uiout->text (": ");
10457 uiout->field_string ("exp", w->exp_string);
10458 }
10459
10460 /* Implement the "print_recreate" breakpoint_ops method for
10461 masked hardware watchpoints. */
10462
10463 static void
10464 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10465 {
10466 struct watchpoint *w = (struct watchpoint *) b;
10467 char tmp[40];
10468
10469 switch (b->type)
10470 {
10471 case bp_hardware_watchpoint:
10472 fprintf_unfiltered (fp, "watch");
10473 break;
10474 case bp_read_watchpoint:
10475 fprintf_unfiltered (fp, "rwatch");
10476 break;
10477 case bp_access_watchpoint:
10478 fprintf_unfiltered (fp, "awatch");
10479 break;
10480 default:
10481 internal_error (__FILE__, __LINE__,
10482 _("Invalid hardware watchpoint type."));
10483 }
10484
10485 sprintf_vma (tmp, w->hw_wp_mask);
10486 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10487 print_recreate_thread (b, fp);
10488 }
10489
10490 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10491
10492 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10493
10494 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10495
10496 static int
10497 is_masked_watchpoint (const struct breakpoint *b)
10498 {
10499 return b->ops == &masked_watchpoint_breakpoint_ops;
10500 }
10501
10502 /* accessflag: hw_write: watch write,
10503 hw_read: watch read,
10504 hw_access: watch access (read or write) */
10505 static void
10506 watch_command_1 (const char *arg, int accessflag, int from_tty,
10507 int just_location, int internal)
10508 {
10509 struct breakpoint *scope_breakpoint = NULL;
10510 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10511 struct value *result;
10512 int saved_bitpos = 0, saved_bitsize = 0;
10513 const char *exp_start = NULL;
10514 const char *exp_end = NULL;
10515 const char *tok, *end_tok;
10516 int toklen = -1;
10517 const char *cond_start = NULL;
10518 const char *cond_end = NULL;
10519 enum bptype bp_type;
10520 int thread = -1;
10521 int pc = 0;
10522 /* Flag to indicate whether we are going to use masks for
10523 the hardware watchpoint. */
10524 int use_mask = 0;
10525 CORE_ADDR mask = 0;
10526
10527 /* Make sure that we actually have parameters to parse. */
10528 if (arg != NULL && arg[0] != '\0')
10529 {
10530 const char *value_start;
10531
10532 exp_end = arg + strlen (arg);
10533
10534 /* Look for "parameter value" pairs at the end
10535 of the arguments string. */
10536 for (tok = exp_end - 1; tok > arg; tok--)
10537 {
10538 /* Skip whitespace at the end of the argument list. */
10539 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10540 tok--;
10541
10542 /* Find the beginning of the last token.
10543 This is the value of the parameter. */
10544 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10545 tok--;
10546 value_start = tok + 1;
10547
10548 /* Skip whitespace. */
10549 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10550 tok--;
10551
10552 end_tok = tok;
10553
10554 /* Find the beginning of the second to last token.
10555 This is the parameter itself. */
10556 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10557 tok--;
10558 tok++;
10559 toklen = end_tok - tok + 1;
10560
10561 if (toklen == 6 && startswith (tok, "thread"))
10562 {
10563 struct thread_info *thr;
10564 /* At this point we've found a "thread" token, which means
10565 the user is trying to set a watchpoint that triggers
10566 only in a specific thread. */
10567 const char *endp;
10568
10569 if (thread != -1)
10570 error(_("You can specify only one thread."));
10571
10572 /* Extract the thread ID from the next token. */
10573 thr = parse_thread_id (value_start, &endp);
10574
10575 /* Check if the user provided a valid thread ID. */
10576 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10577 invalid_thread_id_error (value_start);
10578
10579 thread = thr->global_num;
10580 }
10581 else if (toklen == 4 && startswith (tok, "mask"))
10582 {
10583 /* We've found a "mask" token, which means the user wants to
10584 create a hardware watchpoint that is going to have the mask
10585 facility. */
10586 struct value *mask_value, *mark;
10587
10588 if (use_mask)
10589 error(_("You can specify only one mask."));
10590
10591 use_mask = just_location = 1;
10592
10593 mark = value_mark ();
10594 mask_value = parse_to_comma_and_eval (&value_start);
10595 mask = value_as_address (mask_value);
10596 value_free_to_mark (mark);
10597 }
10598 else
10599 /* We didn't recognize what we found. We should stop here. */
10600 break;
10601
10602 /* Truncate the string and get rid of the "parameter value" pair before
10603 the arguments string is parsed by the parse_exp_1 function. */
10604 exp_end = tok;
10605 }
10606 }
10607 else
10608 exp_end = arg;
10609
10610 /* Parse the rest of the arguments. From here on out, everything
10611 is in terms of a newly allocated string instead of the original
10612 ARG. */
10613 innermost_block.reset ();
10614 std::string expression (arg, exp_end - arg);
10615 exp_start = arg = expression.c_str ();
10616 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10617 exp_end = arg;
10618 /* Remove trailing whitespace from the expression before saving it.
10619 This makes the eventual display of the expression string a bit
10620 prettier. */
10621 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10622 --exp_end;
10623
10624 /* Checking if the expression is not constant. */
10625 if (watchpoint_exp_is_const (exp.get ()))
10626 {
10627 int len;
10628
10629 len = exp_end - exp_start;
10630 while (len > 0 && isspace (exp_start[len - 1]))
10631 len--;
10632 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10633 }
10634
10635 exp_valid_block = innermost_block.block ();
10636 struct value *mark = value_mark ();
10637 struct value *val_as_value = nullptr;
10638 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10639 just_location);
10640
10641 if (val_as_value != NULL && just_location)
10642 {
10643 saved_bitpos = value_bitpos (val_as_value);
10644 saved_bitsize = value_bitsize (val_as_value);
10645 }
10646
10647 value_ref_ptr val;
10648 if (just_location)
10649 {
10650 int ret;
10651
10652 exp_valid_block = NULL;
10653 val = release_value (value_addr (result));
10654 value_free_to_mark (mark);
10655
10656 if (use_mask)
10657 {
10658 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10659 mask);
10660 if (ret == -1)
10661 error (_("This target does not support masked watchpoints."));
10662 else if (ret == -2)
10663 error (_("Invalid mask or memory region."));
10664 }
10665 }
10666 else if (val_as_value != NULL)
10667 val = release_value (val_as_value);
10668
10669 tok = skip_spaces (arg);
10670 end_tok = skip_to_space (tok);
10671
10672 toklen = end_tok - tok;
10673 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10674 {
10675 innermost_block.reset ();
10676 tok = cond_start = end_tok + 1;
10677 parse_exp_1 (&tok, 0, 0, 0);
10678
10679 /* The watchpoint expression may not be local, but the condition
10680 may still be. E.g.: `watch global if local > 0'. */
10681 cond_exp_valid_block = innermost_block.block ();
10682
10683 cond_end = tok;
10684 }
10685 if (*tok)
10686 error (_("Junk at end of command."));
10687
10688 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10689
10690 /* Save this because create_internal_breakpoint below invalidates
10691 'wp_frame'. */
10692 frame_id watchpoint_frame = get_frame_id (wp_frame);
10693
10694 /* If the expression is "local", then set up a "watchpoint scope"
10695 breakpoint at the point where we've left the scope of the watchpoint
10696 expression. Create the scope breakpoint before the watchpoint, so
10697 that we will encounter it first in bpstat_stop_status. */
10698 if (exp_valid_block != NULL && wp_frame != NULL)
10699 {
10700 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10701
10702 if (frame_id_p (caller_frame_id))
10703 {
10704 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10705 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10706
10707 scope_breakpoint
10708 = create_internal_breakpoint (caller_arch, caller_pc,
10709 bp_watchpoint_scope,
10710 &momentary_breakpoint_ops);
10711
10712 /* create_internal_breakpoint could invalidate WP_FRAME. */
10713 wp_frame = NULL;
10714
10715 scope_breakpoint->enable_state = bp_enabled;
10716
10717 /* Automatically delete the breakpoint when it hits. */
10718 scope_breakpoint->disposition = disp_del;
10719
10720 /* Only break in the proper frame (help with recursion). */
10721 scope_breakpoint->frame_id = caller_frame_id;
10722
10723 /* Set the address at which we will stop. */
10724 scope_breakpoint->loc->gdbarch = caller_arch;
10725 scope_breakpoint->loc->requested_address = caller_pc;
10726 scope_breakpoint->loc->address
10727 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10728 scope_breakpoint->loc->requested_address,
10729 scope_breakpoint->type);
10730 }
10731 }
10732
10733 /* Now set up the breakpoint. We create all watchpoints as hardware
10734 watchpoints here even if hardware watchpoints are turned off, a call
10735 to update_watchpoint later in this function will cause the type to
10736 drop back to bp_watchpoint (software watchpoint) if required. */
10737
10738 if (accessflag == hw_read)
10739 bp_type = bp_read_watchpoint;
10740 else if (accessflag == hw_access)
10741 bp_type = bp_access_watchpoint;
10742 else
10743 bp_type = bp_hardware_watchpoint;
10744
10745 std::unique_ptr<watchpoint> w (new watchpoint ());
10746
10747 if (use_mask)
10748 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10749 &masked_watchpoint_breakpoint_ops);
10750 else
10751 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10752 &watchpoint_breakpoint_ops);
10753 w->thread = thread;
10754 w->disposition = disp_donttouch;
10755 w->pspace = current_program_space;
10756 w->exp = std::move (exp);
10757 w->exp_valid_block = exp_valid_block;
10758 w->cond_exp_valid_block = cond_exp_valid_block;
10759 if (just_location)
10760 {
10761 struct type *t = value_type (val.get ());
10762 CORE_ADDR addr = value_as_address (val.get ());
10763
10764 w->exp_string_reparse
10765 = current_language->la_watch_location_expression (t, addr).release ();
10766
10767 w->exp_string = xstrprintf ("-location %.*s",
10768 (int) (exp_end - exp_start), exp_start);
10769 }
10770 else
10771 w->exp_string = savestring (exp_start, exp_end - exp_start);
10772
10773 if (use_mask)
10774 {
10775 w->hw_wp_mask = mask;
10776 }
10777 else
10778 {
10779 w->val = val;
10780 w->val_bitpos = saved_bitpos;
10781 w->val_bitsize = saved_bitsize;
10782 w->val_valid = 1;
10783 }
10784
10785 if (cond_start)
10786 w->cond_string = savestring (cond_start, cond_end - cond_start);
10787 else
10788 w->cond_string = 0;
10789
10790 if (frame_id_p (watchpoint_frame))
10791 {
10792 w->watchpoint_frame = watchpoint_frame;
10793 w->watchpoint_thread = inferior_ptid;
10794 }
10795 else
10796 {
10797 w->watchpoint_frame = null_frame_id;
10798 w->watchpoint_thread = null_ptid;
10799 }
10800
10801 if (scope_breakpoint != NULL)
10802 {
10803 /* The scope breakpoint is related to the watchpoint. We will
10804 need to act on them together. */
10805 w->related_breakpoint = scope_breakpoint;
10806 scope_breakpoint->related_breakpoint = w.get ();
10807 }
10808
10809 if (!just_location)
10810 value_free_to_mark (mark);
10811
10812 /* Finally update the new watchpoint. This creates the locations
10813 that should be inserted. */
10814 update_watchpoint (w.get (), 1);
10815
10816 install_breakpoint (internal, std::move (w), 1);
10817 }
10818
10819 /* Return count of debug registers needed to watch the given expression.
10820 If the watchpoint cannot be handled in hardware return zero. */
10821
10822 static int
10823 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10824 {
10825 int found_memory_cnt = 0;
10826
10827 /* Did the user specifically forbid us to use hardware watchpoints? */
10828 if (!can_use_hw_watchpoints)
10829 return 0;
10830
10831 gdb_assert (!vals.empty ());
10832 struct value *head = vals[0].get ();
10833
10834 /* Make sure that the value of the expression depends only upon
10835 memory contents, and values computed from them within GDB. If we
10836 find any register references or function calls, we can't use a
10837 hardware watchpoint.
10838
10839 The idea here is that evaluating an expression generates a series
10840 of values, one holding the value of every subexpression. (The
10841 expression a*b+c has five subexpressions: a, b, a*b, c, and
10842 a*b+c.) GDB's values hold almost enough information to establish
10843 the criteria given above --- they identify memory lvalues,
10844 register lvalues, computed values, etcetera. So we can evaluate
10845 the expression, and then scan the chain of values that leaves
10846 behind to decide whether we can detect any possible change to the
10847 expression's final value using only hardware watchpoints.
10848
10849 However, I don't think that the values returned by inferior
10850 function calls are special in any way. So this function may not
10851 notice that an expression involving an inferior function call
10852 can't be watched with hardware watchpoints. FIXME. */
10853 for (const value_ref_ptr &iter : vals)
10854 {
10855 struct value *v = iter.get ();
10856
10857 if (VALUE_LVAL (v) == lval_memory)
10858 {
10859 if (v != head && value_lazy (v))
10860 /* A lazy memory lvalue in the chain is one that GDB never
10861 needed to fetch; we either just used its address (e.g.,
10862 `a' in `a.b') or we never needed it at all (e.g., `a'
10863 in `a,b'). This doesn't apply to HEAD; if that is
10864 lazy then it was not readable, but watch it anyway. */
10865 ;
10866 else
10867 {
10868 /* Ahh, memory we actually used! Check if we can cover
10869 it with hardware watchpoints. */
10870 struct type *vtype = check_typedef (value_type (v));
10871
10872 /* We only watch structs and arrays if user asked for it
10873 explicitly, never if they just happen to appear in a
10874 middle of some value chain. */
10875 if (v == head
10876 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10877 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10878 {
10879 CORE_ADDR vaddr = value_address (v);
10880 int len;
10881 int num_regs;
10882
10883 len = (target_exact_watchpoints
10884 && is_scalar_type_recursive (vtype))?
10885 1 : TYPE_LENGTH (value_type (v));
10886
10887 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10888 if (!num_regs)
10889 return 0;
10890 else
10891 found_memory_cnt += num_regs;
10892 }
10893 }
10894 }
10895 else if (VALUE_LVAL (v) != not_lval
10896 && deprecated_value_modifiable (v) == 0)
10897 return 0; /* These are values from the history (e.g., $1). */
10898 else if (VALUE_LVAL (v) == lval_register)
10899 return 0; /* Cannot watch a register with a HW watchpoint. */
10900 }
10901
10902 /* The expression itself looks suitable for using a hardware
10903 watchpoint, but give the target machine a chance to reject it. */
10904 return found_memory_cnt;
10905 }
10906
10907 void
10908 watch_command_wrapper (const char *arg, int from_tty, int internal)
10909 {
10910 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10911 }
10912
10913 /* A helper function that looks for the "-location" argument and then
10914 calls watch_command_1. */
10915
10916 static void
10917 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10918 {
10919 int just_location = 0;
10920
10921 if (arg
10922 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10923 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10924 {
10925 arg = skip_spaces (arg);
10926 just_location = 1;
10927 }
10928
10929 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10930 }
10931
10932 static void
10933 watch_command (const char *arg, int from_tty)
10934 {
10935 watch_maybe_just_location (arg, hw_write, from_tty);
10936 }
10937
10938 void
10939 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10940 {
10941 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10942 }
10943
10944 static void
10945 rwatch_command (const char *arg, int from_tty)
10946 {
10947 watch_maybe_just_location (arg, hw_read, from_tty);
10948 }
10949
10950 void
10951 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10952 {
10953 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10954 }
10955
10956 static void
10957 awatch_command (const char *arg, int from_tty)
10958 {
10959 watch_maybe_just_location (arg, hw_access, from_tty);
10960 }
10961 \f
10962
10963 /* Data for the FSM that manages the until(location)/advance commands
10964 in infcmd.c. Here because it uses the mechanisms of
10965 breakpoints. */
10966
10967 struct until_break_fsm
10968 {
10969 /* The base class. */
10970 struct thread_fsm thread_fsm;
10971
10972 /* The thread that as current when the command was executed. */
10973 int thread;
10974
10975 /* The breakpoint set at the destination location. */
10976 struct breakpoint *location_breakpoint;
10977
10978 /* Breakpoint set at the return address in the caller frame. May be
10979 NULL. */
10980 struct breakpoint *caller_breakpoint;
10981 };
10982
10983 static void until_break_fsm_clean_up (struct thread_fsm *self,
10984 struct thread_info *thread);
10985 static int until_break_fsm_should_stop (struct thread_fsm *self,
10986 struct thread_info *thread);
10987 static enum async_reply_reason
10988 until_break_fsm_async_reply_reason (struct thread_fsm *self);
10989
10990 /* until_break_fsm's vtable. */
10991
10992 static struct thread_fsm_ops until_break_fsm_ops =
10993 {
10994 NULL, /* dtor */
10995 until_break_fsm_clean_up,
10996 until_break_fsm_should_stop,
10997 NULL, /* return_value */
10998 until_break_fsm_async_reply_reason,
10999 };
11000
11001 /* Allocate a new until_break_command_fsm. */
11002
11003 static struct until_break_fsm *
11004 new_until_break_fsm (struct interp *cmd_interp, int thread,
11005 breakpoint_up &&location_breakpoint,
11006 breakpoint_up &&caller_breakpoint)
11007 {
11008 struct until_break_fsm *sm;
11009
11010 sm = XCNEW (struct until_break_fsm);
11011 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11012
11013 sm->thread = thread;
11014 sm->location_breakpoint = location_breakpoint.release ();
11015 sm->caller_breakpoint = caller_breakpoint.release ();
11016
11017 return sm;
11018 }
11019
11020 /* Implementation of the 'should_stop' FSM method for the
11021 until(location)/advance commands. */
11022
11023 static int
11024 until_break_fsm_should_stop (struct thread_fsm *self,
11025 struct thread_info *tp)
11026 {
11027 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11028
11029 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11030 sm->location_breakpoint) != NULL
11031 || (sm->caller_breakpoint != NULL
11032 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11033 sm->caller_breakpoint) != NULL))
11034 thread_fsm_set_finished (self);
11035
11036 return 1;
11037 }
11038
11039 /* Implementation of the 'clean_up' FSM method for the
11040 until(location)/advance commands. */
11041
11042 static void
11043 until_break_fsm_clean_up (struct thread_fsm *self,
11044 struct thread_info *thread)
11045 {
11046 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11047
11048 /* Clean up our temporary breakpoints. */
11049 if (sm->location_breakpoint != NULL)
11050 {
11051 delete_breakpoint (sm->location_breakpoint);
11052 sm->location_breakpoint = NULL;
11053 }
11054 if (sm->caller_breakpoint != NULL)
11055 {
11056 delete_breakpoint (sm->caller_breakpoint);
11057 sm->caller_breakpoint = NULL;
11058 }
11059 delete_longjmp_breakpoint (sm->thread);
11060 }
11061
11062 /* Implementation of the 'async_reply_reason' FSM method for the
11063 until(location)/advance commands. */
11064
11065 static enum async_reply_reason
11066 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11067 {
11068 return EXEC_ASYNC_LOCATION_REACHED;
11069 }
11070
11071 void
11072 until_break_command (const char *arg, int from_tty, int anywhere)
11073 {
11074 struct frame_info *frame;
11075 struct gdbarch *frame_gdbarch;
11076 struct frame_id stack_frame_id;
11077 struct frame_id caller_frame_id;
11078 struct cleanup *old_chain;
11079 int thread;
11080 struct thread_info *tp;
11081 struct until_break_fsm *sm;
11082
11083 clear_proceed_status (0);
11084
11085 /* Set a breakpoint where the user wants it and at return from
11086 this function. */
11087
11088 event_location_up location = string_to_event_location (&arg, current_language);
11089
11090 std::vector<symtab_and_line> sals
11091 = (last_displayed_sal_is_valid ()
11092 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11093 get_last_displayed_symtab (),
11094 get_last_displayed_line ())
11095 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11096 NULL, (struct symtab *) NULL, 0));
11097
11098 if (sals.size () != 1)
11099 error (_("Couldn't get information on specified line."));
11100
11101 symtab_and_line &sal = sals[0];
11102
11103 if (*arg)
11104 error (_("Junk at end of arguments."));
11105
11106 resolve_sal_pc (&sal);
11107
11108 tp = inferior_thread ();
11109 thread = tp->global_num;
11110
11111 old_chain = make_cleanup (null_cleanup, NULL);
11112
11113 /* Note linespec handling above invalidates the frame chain.
11114 Installing a breakpoint also invalidates the frame chain (as it
11115 may need to switch threads), so do any frame handling before
11116 that. */
11117
11118 frame = get_selected_frame (NULL);
11119 frame_gdbarch = get_frame_arch (frame);
11120 stack_frame_id = get_stack_frame_id (frame);
11121 caller_frame_id = frame_unwind_caller_id (frame);
11122
11123 /* Keep within the current frame, or in frames called by the current
11124 one. */
11125
11126 breakpoint_up caller_breakpoint;
11127 if (frame_id_p (caller_frame_id))
11128 {
11129 struct symtab_and_line sal2;
11130 struct gdbarch *caller_gdbarch;
11131
11132 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11133 sal2.pc = frame_unwind_caller_pc (frame);
11134 caller_gdbarch = frame_unwind_caller_arch (frame);
11135 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11136 sal2,
11137 caller_frame_id,
11138 bp_until);
11139
11140 set_longjmp_breakpoint (tp, caller_frame_id);
11141 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11142 }
11143
11144 /* set_momentary_breakpoint could invalidate FRAME. */
11145 frame = NULL;
11146
11147 breakpoint_up location_breakpoint;
11148 if (anywhere)
11149 /* If the user told us to continue until a specified location,
11150 we don't specify a frame at which we need to stop. */
11151 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11152 null_frame_id, bp_until);
11153 else
11154 /* Otherwise, specify the selected frame, because we want to stop
11155 only at the very same frame. */
11156 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11157 stack_frame_id, bp_until);
11158
11159 sm = new_until_break_fsm (command_interp (), tp->global_num,
11160 std::move (location_breakpoint),
11161 std::move (caller_breakpoint));
11162 tp->thread_fsm = &sm->thread_fsm;
11163
11164 discard_cleanups (old_chain);
11165
11166 proceed (-1, GDB_SIGNAL_DEFAULT);
11167 }
11168
11169 /* This function attempts to parse an optional "if <cond>" clause
11170 from the arg string. If one is not found, it returns NULL.
11171
11172 Else, it returns a pointer to the condition string. (It does not
11173 attempt to evaluate the string against a particular block.) And,
11174 it updates arg to point to the first character following the parsed
11175 if clause in the arg string. */
11176
11177 const char *
11178 ep_parse_optional_if_clause (const char **arg)
11179 {
11180 const char *cond_string;
11181
11182 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11183 return NULL;
11184
11185 /* Skip the "if" keyword. */
11186 (*arg) += 2;
11187
11188 /* Skip any extra leading whitespace, and record the start of the
11189 condition string. */
11190 *arg = skip_spaces (*arg);
11191 cond_string = *arg;
11192
11193 /* Assume that the condition occupies the remainder of the arg
11194 string. */
11195 (*arg) += strlen (cond_string);
11196
11197 return cond_string;
11198 }
11199
11200 /* Commands to deal with catching events, such as signals, exceptions,
11201 process start/exit, etc. */
11202
11203 typedef enum
11204 {
11205 catch_fork_temporary, catch_vfork_temporary,
11206 catch_fork_permanent, catch_vfork_permanent
11207 }
11208 catch_fork_kind;
11209
11210 static void
11211 catch_fork_command_1 (const char *arg, int from_tty,
11212 struct cmd_list_element *command)
11213 {
11214 struct gdbarch *gdbarch = get_current_arch ();
11215 const char *cond_string = NULL;
11216 catch_fork_kind fork_kind;
11217 int tempflag;
11218
11219 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11220 tempflag = (fork_kind == catch_fork_temporary
11221 || fork_kind == catch_vfork_temporary);
11222
11223 if (!arg)
11224 arg = "";
11225 arg = skip_spaces (arg);
11226
11227 /* The allowed syntax is:
11228 catch [v]fork
11229 catch [v]fork if <cond>
11230
11231 First, check if there's an if clause. */
11232 cond_string = ep_parse_optional_if_clause (&arg);
11233
11234 if ((*arg != '\0') && !isspace (*arg))
11235 error (_("Junk at end of arguments."));
11236
11237 /* If this target supports it, create a fork or vfork catchpoint
11238 and enable reporting of such events. */
11239 switch (fork_kind)
11240 {
11241 case catch_fork_temporary:
11242 case catch_fork_permanent:
11243 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11244 &catch_fork_breakpoint_ops);
11245 break;
11246 case catch_vfork_temporary:
11247 case catch_vfork_permanent:
11248 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11249 &catch_vfork_breakpoint_ops);
11250 break;
11251 default:
11252 error (_("unsupported or unknown fork kind; cannot catch it"));
11253 break;
11254 }
11255 }
11256
11257 static void
11258 catch_exec_command_1 (const char *arg, int from_tty,
11259 struct cmd_list_element *command)
11260 {
11261 struct gdbarch *gdbarch = get_current_arch ();
11262 int tempflag;
11263 const char *cond_string = NULL;
11264
11265 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11266
11267 if (!arg)
11268 arg = "";
11269 arg = skip_spaces (arg);
11270
11271 /* The allowed syntax is:
11272 catch exec
11273 catch exec if <cond>
11274
11275 First, check if there's an if clause. */
11276 cond_string = ep_parse_optional_if_clause (&arg);
11277
11278 if ((*arg != '\0') && !isspace (*arg))
11279 error (_("Junk at end of arguments."));
11280
11281 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11282 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11283 &catch_exec_breakpoint_ops);
11284 c->exec_pathname = NULL;
11285
11286 install_breakpoint (0, std::move (c), 1);
11287 }
11288
11289 void
11290 init_ada_exception_breakpoint (struct breakpoint *b,
11291 struct gdbarch *gdbarch,
11292 struct symtab_and_line sal,
11293 const char *addr_string,
11294 const struct breakpoint_ops *ops,
11295 int tempflag,
11296 int enabled,
11297 int from_tty)
11298 {
11299 if (from_tty)
11300 {
11301 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11302 if (!loc_gdbarch)
11303 loc_gdbarch = gdbarch;
11304
11305 describe_other_breakpoints (loc_gdbarch,
11306 sal.pspace, sal.pc, sal.section, -1);
11307 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11308 version for exception catchpoints, because two catchpoints
11309 used for different exception names will use the same address.
11310 In this case, a "breakpoint ... also set at..." warning is
11311 unproductive. Besides, the warning phrasing is also a bit
11312 inappropriate, we should use the word catchpoint, and tell
11313 the user what type of catchpoint it is. The above is good
11314 enough for now, though. */
11315 }
11316
11317 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11318
11319 b->enable_state = enabled ? bp_enabled : bp_disabled;
11320 b->disposition = tempflag ? disp_del : disp_donttouch;
11321 b->location = string_to_event_location (&addr_string,
11322 language_def (language_ada));
11323 b->language = language_ada;
11324 }
11325
11326 static void
11327 catch_command (const char *arg, int from_tty)
11328 {
11329 error (_("Catch requires an event name."));
11330 }
11331 \f
11332
11333 static void
11334 tcatch_command (const char *arg, int from_tty)
11335 {
11336 error (_("Catch requires an event name."));
11337 }
11338
11339 /* Compare two breakpoints and return a strcmp-like result. */
11340
11341 static int
11342 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11343 {
11344 uintptr_t ua = (uintptr_t) a;
11345 uintptr_t ub = (uintptr_t) b;
11346
11347 if (a->number < b->number)
11348 return -1;
11349 else if (a->number > b->number)
11350 return 1;
11351
11352 /* Now sort by address, in case we see, e..g, two breakpoints with
11353 the number 0. */
11354 if (ua < ub)
11355 return -1;
11356 return ua > ub ? 1 : 0;
11357 }
11358
11359 /* Delete breakpoints by address or line. */
11360
11361 static void
11362 clear_command (const char *arg, int from_tty)
11363 {
11364 struct breakpoint *b;
11365 int default_match;
11366
11367 std::vector<symtab_and_line> decoded_sals;
11368 symtab_and_line last_sal;
11369 gdb::array_view<symtab_and_line> sals;
11370 if (arg)
11371 {
11372 decoded_sals
11373 = decode_line_with_current_source (arg,
11374 (DECODE_LINE_FUNFIRSTLINE
11375 | DECODE_LINE_LIST_MODE));
11376 default_match = 0;
11377 sals = decoded_sals;
11378 }
11379 else
11380 {
11381 /* Set sal's line, symtab, pc, and pspace to the values
11382 corresponding to the last call to print_frame_info. If the
11383 codepoint is not valid, this will set all the fields to 0. */
11384 last_sal = get_last_displayed_sal ();
11385 if (last_sal.symtab == 0)
11386 error (_("No source file specified."));
11387
11388 default_match = 1;
11389 sals = last_sal;
11390 }
11391
11392 /* We don't call resolve_sal_pc here. That's not as bad as it
11393 seems, because all existing breakpoints typically have both
11394 file/line and pc set. So, if clear is given file/line, we can
11395 match this to existing breakpoint without obtaining pc at all.
11396
11397 We only support clearing given the address explicitly
11398 present in breakpoint table. Say, we've set breakpoint
11399 at file:line. There were several PC values for that file:line,
11400 due to optimization, all in one block.
11401
11402 We've picked one PC value. If "clear" is issued with another
11403 PC corresponding to the same file:line, the breakpoint won't
11404 be cleared. We probably can still clear the breakpoint, but
11405 since the other PC value is never presented to user, user
11406 can only find it by guessing, and it does not seem important
11407 to support that. */
11408
11409 /* For each line spec given, delete bps which correspond to it. Do
11410 it in two passes, solely to preserve the current behavior that
11411 from_tty is forced true if we delete more than one
11412 breakpoint. */
11413
11414 std::vector<struct breakpoint *> found;
11415 for (const auto &sal : sals)
11416 {
11417 const char *sal_fullname;
11418
11419 /* If exact pc given, clear bpts at that pc.
11420 If line given (pc == 0), clear all bpts on specified line.
11421 If defaulting, clear all bpts on default line
11422 or at default pc.
11423
11424 defaulting sal.pc != 0 tests to do
11425
11426 0 1 pc
11427 1 1 pc _and_ line
11428 0 0 line
11429 1 0 <can't happen> */
11430
11431 sal_fullname = (sal.symtab == NULL
11432 ? NULL : symtab_to_fullname (sal.symtab));
11433
11434 /* Find all matching breakpoints and add them to 'found'. */
11435 ALL_BREAKPOINTS (b)
11436 {
11437 int match = 0;
11438 /* Are we going to delete b? */
11439 if (b->type != bp_none && !is_watchpoint (b))
11440 {
11441 struct bp_location *loc = b->loc;
11442 for (; loc; loc = loc->next)
11443 {
11444 /* If the user specified file:line, don't allow a PC
11445 match. This matches historical gdb behavior. */
11446 int pc_match = (!sal.explicit_line
11447 && sal.pc
11448 && (loc->pspace == sal.pspace)
11449 && (loc->address == sal.pc)
11450 && (!section_is_overlay (loc->section)
11451 || loc->section == sal.section));
11452 int line_match = 0;
11453
11454 if ((default_match || sal.explicit_line)
11455 && loc->symtab != NULL
11456 && sal_fullname != NULL
11457 && sal.pspace == loc->pspace
11458 && loc->line_number == sal.line
11459 && filename_cmp (symtab_to_fullname (loc->symtab),
11460 sal_fullname) == 0)
11461 line_match = 1;
11462
11463 if (pc_match || line_match)
11464 {
11465 match = 1;
11466 break;
11467 }
11468 }
11469 }
11470
11471 if (match)
11472 found.push_back (b);
11473 }
11474 }
11475
11476 /* Now go thru the 'found' chain and delete them. */
11477 if (found.empty ())
11478 {
11479 if (arg)
11480 error (_("No breakpoint at %s."), arg);
11481 else
11482 error (_("No breakpoint at this line."));
11483 }
11484
11485 /* Remove duplicates from the vec. */
11486 std::sort (found.begin (), found.end (),
11487 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11488 {
11489 return compare_breakpoints (bp_a, bp_b) < 0;
11490 });
11491 found.erase (std::unique (found.begin (), found.end (),
11492 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11493 {
11494 return compare_breakpoints (bp_a, bp_b) == 0;
11495 }),
11496 found.end ());
11497
11498 if (found.size () > 1)
11499 from_tty = 1; /* Always report if deleted more than one. */
11500 if (from_tty)
11501 {
11502 if (found.size () == 1)
11503 printf_unfiltered (_("Deleted breakpoint "));
11504 else
11505 printf_unfiltered (_("Deleted breakpoints "));
11506 }
11507
11508 for (breakpoint *iter : found)
11509 {
11510 if (from_tty)
11511 printf_unfiltered ("%d ", iter->number);
11512 delete_breakpoint (iter);
11513 }
11514 if (from_tty)
11515 putchar_unfiltered ('\n');
11516 }
11517 \f
11518 /* Delete breakpoint in BS if they are `delete' breakpoints and
11519 all breakpoints that are marked for deletion, whether hit or not.
11520 This is called after any breakpoint is hit, or after errors. */
11521
11522 void
11523 breakpoint_auto_delete (bpstat bs)
11524 {
11525 struct breakpoint *b, *b_tmp;
11526
11527 for (; bs; bs = bs->next)
11528 if (bs->breakpoint_at
11529 && bs->breakpoint_at->disposition == disp_del
11530 && bs->stop)
11531 delete_breakpoint (bs->breakpoint_at);
11532
11533 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11534 {
11535 if (b->disposition == disp_del_at_next_stop)
11536 delete_breakpoint (b);
11537 }
11538 }
11539
11540 /* A comparison function for bp_location AP and BP being interfaced to
11541 qsort. Sort elements primarily by their ADDRESS (no matter what
11542 does breakpoint_address_is_meaningful say for its OWNER),
11543 secondarily by ordering first permanent elements and
11544 terciarily just ensuring the array is sorted stable way despite
11545 qsort being an unstable algorithm. */
11546
11547 static int
11548 bp_locations_compare (const void *ap, const void *bp)
11549 {
11550 const struct bp_location *a = *(const struct bp_location **) ap;
11551 const struct bp_location *b = *(const struct bp_location **) bp;
11552
11553 if (a->address != b->address)
11554 return (a->address > b->address) - (a->address < b->address);
11555
11556 /* Sort locations at the same address by their pspace number, keeping
11557 locations of the same inferior (in a multi-inferior environment)
11558 grouped. */
11559
11560 if (a->pspace->num != b->pspace->num)
11561 return ((a->pspace->num > b->pspace->num)
11562 - (a->pspace->num < b->pspace->num));
11563
11564 /* Sort permanent breakpoints first. */
11565 if (a->permanent != b->permanent)
11566 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11567
11568 /* Make the internal GDB representation stable across GDB runs
11569 where A and B memory inside GDB can differ. Breakpoint locations of
11570 the same type at the same address can be sorted in arbitrary order. */
11571
11572 if (a->owner->number != b->owner->number)
11573 return ((a->owner->number > b->owner->number)
11574 - (a->owner->number < b->owner->number));
11575
11576 return (a > b) - (a < b);
11577 }
11578
11579 /* Set bp_locations_placed_address_before_address_max and
11580 bp_locations_shadow_len_after_address_max according to the current
11581 content of the bp_locations array. */
11582
11583 static void
11584 bp_locations_target_extensions_update (void)
11585 {
11586 struct bp_location *bl, **blp_tmp;
11587
11588 bp_locations_placed_address_before_address_max = 0;
11589 bp_locations_shadow_len_after_address_max = 0;
11590
11591 ALL_BP_LOCATIONS (bl, blp_tmp)
11592 {
11593 CORE_ADDR start, end, addr;
11594
11595 if (!bp_location_has_shadow (bl))
11596 continue;
11597
11598 start = bl->target_info.placed_address;
11599 end = start + bl->target_info.shadow_len;
11600
11601 gdb_assert (bl->address >= start);
11602 addr = bl->address - start;
11603 if (addr > bp_locations_placed_address_before_address_max)
11604 bp_locations_placed_address_before_address_max = addr;
11605
11606 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11607
11608 gdb_assert (bl->address < end);
11609 addr = end - bl->address;
11610 if (addr > bp_locations_shadow_len_after_address_max)
11611 bp_locations_shadow_len_after_address_max = addr;
11612 }
11613 }
11614
11615 /* Download tracepoint locations if they haven't been. */
11616
11617 static void
11618 download_tracepoint_locations (void)
11619 {
11620 struct breakpoint *b;
11621 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11622
11623 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11624
11625 ALL_TRACEPOINTS (b)
11626 {
11627 struct bp_location *bl;
11628 struct tracepoint *t;
11629 int bp_location_downloaded = 0;
11630
11631 if ((b->type == bp_fast_tracepoint
11632 ? !may_insert_fast_tracepoints
11633 : !may_insert_tracepoints))
11634 continue;
11635
11636 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11637 {
11638 if (target_can_download_tracepoint ())
11639 can_download_tracepoint = TRIBOOL_TRUE;
11640 else
11641 can_download_tracepoint = TRIBOOL_FALSE;
11642 }
11643
11644 if (can_download_tracepoint == TRIBOOL_FALSE)
11645 break;
11646
11647 for (bl = b->loc; bl; bl = bl->next)
11648 {
11649 /* In tracepoint, locations are _never_ duplicated, so
11650 should_be_inserted is equivalent to
11651 unduplicated_should_be_inserted. */
11652 if (!should_be_inserted (bl) || bl->inserted)
11653 continue;
11654
11655 switch_to_program_space_and_thread (bl->pspace);
11656
11657 target_download_tracepoint (bl);
11658
11659 bl->inserted = 1;
11660 bp_location_downloaded = 1;
11661 }
11662 t = (struct tracepoint *) b;
11663 t->number_on_target = b->number;
11664 if (bp_location_downloaded)
11665 gdb::observers::breakpoint_modified.notify (b);
11666 }
11667 }
11668
11669 /* Swap the insertion/duplication state between two locations. */
11670
11671 static void
11672 swap_insertion (struct bp_location *left, struct bp_location *right)
11673 {
11674 const int left_inserted = left->inserted;
11675 const int left_duplicate = left->duplicate;
11676 const int left_needs_update = left->needs_update;
11677 const struct bp_target_info left_target_info = left->target_info;
11678
11679 /* Locations of tracepoints can never be duplicated. */
11680 if (is_tracepoint (left->owner))
11681 gdb_assert (!left->duplicate);
11682 if (is_tracepoint (right->owner))
11683 gdb_assert (!right->duplicate);
11684
11685 left->inserted = right->inserted;
11686 left->duplicate = right->duplicate;
11687 left->needs_update = right->needs_update;
11688 left->target_info = right->target_info;
11689 right->inserted = left_inserted;
11690 right->duplicate = left_duplicate;
11691 right->needs_update = left_needs_update;
11692 right->target_info = left_target_info;
11693 }
11694
11695 /* Force the re-insertion of the locations at ADDRESS. This is called
11696 once a new/deleted/modified duplicate location is found and we are evaluating
11697 conditions on the target's side. Such conditions need to be updated on
11698 the target. */
11699
11700 static void
11701 force_breakpoint_reinsertion (struct bp_location *bl)
11702 {
11703 struct bp_location **locp = NULL, **loc2p;
11704 struct bp_location *loc;
11705 CORE_ADDR address = 0;
11706 int pspace_num;
11707
11708 address = bl->address;
11709 pspace_num = bl->pspace->num;
11710
11711 /* This is only meaningful if the target is
11712 evaluating conditions and if the user has
11713 opted for condition evaluation on the target's
11714 side. */
11715 if (gdb_evaluates_breakpoint_condition_p ()
11716 || !target_supports_evaluation_of_breakpoint_conditions ())
11717 return;
11718
11719 /* Flag all breakpoint locations with this address and
11720 the same program space as the location
11721 as "its condition has changed". We need to
11722 update the conditions on the target's side. */
11723 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11724 {
11725 loc = *loc2p;
11726
11727 if (!is_breakpoint (loc->owner)
11728 || pspace_num != loc->pspace->num)
11729 continue;
11730
11731 /* Flag the location appropriately. We use a different state to
11732 let everyone know that we already updated the set of locations
11733 with addr bl->address and program space bl->pspace. This is so
11734 we don't have to keep calling these functions just to mark locations
11735 that have already been marked. */
11736 loc->condition_changed = condition_updated;
11737
11738 /* Free the agent expression bytecode as well. We will compute
11739 it later on. */
11740 loc->cond_bytecode.reset ();
11741 }
11742 }
11743 /* Called whether new breakpoints are created, or existing breakpoints
11744 deleted, to update the global location list and recompute which
11745 locations are duplicate of which.
11746
11747 The INSERT_MODE flag determines whether locations may not, may, or
11748 shall be inserted now. See 'enum ugll_insert_mode' for more
11749 info. */
11750
11751 static void
11752 update_global_location_list (enum ugll_insert_mode insert_mode)
11753 {
11754 struct breakpoint *b;
11755 struct bp_location **locp, *loc;
11756 /* Last breakpoint location address that was marked for update. */
11757 CORE_ADDR last_addr = 0;
11758 /* Last breakpoint location program space that was marked for update. */
11759 int last_pspace_num = -1;
11760
11761 /* Used in the duplicates detection below. When iterating over all
11762 bp_locations, points to the first bp_location of a given address.
11763 Breakpoints and watchpoints of different types are never
11764 duplicates of each other. Keep one pointer for each type of
11765 breakpoint/watchpoint, so we only need to loop over all locations
11766 once. */
11767 struct bp_location *bp_loc_first; /* breakpoint */
11768 struct bp_location *wp_loc_first; /* hardware watchpoint */
11769 struct bp_location *awp_loc_first; /* access watchpoint */
11770 struct bp_location *rwp_loc_first; /* read watchpoint */
11771
11772 /* Saved former bp_locations array which we compare against the newly
11773 built bp_locations from the current state of ALL_BREAKPOINTS. */
11774 struct bp_location **old_locp;
11775 unsigned old_locations_count;
11776 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11777
11778 old_locations_count = bp_locations_count;
11779 bp_locations = NULL;
11780 bp_locations_count = 0;
11781
11782 ALL_BREAKPOINTS (b)
11783 for (loc = b->loc; loc; loc = loc->next)
11784 bp_locations_count++;
11785
11786 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11787 locp = bp_locations;
11788 ALL_BREAKPOINTS (b)
11789 for (loc = b->loc; loc; loc = loc->next)
11790 *locp++ = loc;
11791 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11792 bp_locations_compare);
11793
11794 bp_locations_target_extensions_update ();
11795
11796 /* Identify bp_location instances that are no longer present in the
11797 new list, and therefore should be freed. Note that it's not
11798 necessary that those locations should be removed from inferior --
11799 if there's another location at the same address (previously
11800 marked as duplicate), we don't need to remove/insert the
11801 location.
11802
11803 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11804 and former bp_location array state respectively. */
11805
11806 locp = bp_locations;
11807 for (old_locp = old_locations.get ();
11808 old_locp < old_locations.get () + old_locations_count;
11809 old_locp++)
11810 {
11811 struct bp_location *old_loc = *old_locp;
11812 struct bp_location **loc2p;
11813
11814 /* Tells if 'old_loc' is found among the new locations. If
11815 not, we have to free it. */
11816 int found_object = 0;
11817 /* Tells if the location should remain inserted in the target. */
11818 int keep_in_target = 0;
11819 int removed = 0;
11820
11821 /* Skip LOCP entries which will definitely never be needed.
11822 Stop either at or being the one matching OLD_LOC. */
11823 while (locp < bp_locations + bp_locations_count
11824 && (*locp)->address < old_loc->address)
11825 locp++;
11826
11827 for (loc2p = locp;
11828 (loc2p < bp_locations + bp_locations_count
11829 && (*loc2p)->address == old_loc->address);
11830 loc2p++)
11831 {
11832 /* Check if this is a new/duplicated location or a duplicated
11833 location that had its condition modified. If so, we want to send
11834 its condition to the target if evaluation of conditions is taking
11835 place there. */
11836 if ((*loc2p)->condition_changed == condition_modified
11837 && (last_addr != old_loc->address
11838 || last_pspace_num != old_loc->pspace->num))
11839 {
11840 force_breakpoint_reinsertion (*loc2p);
11841 last_pspace_num = old_loc->pspace->num;
11842 }
11843
11844 if (*loc2p == old_loc)
11845 found_object = 1;
11846 }
11847
11848 /* We have already handled this address, update it so that we don't
11849 have to go through updates again. */
11850 last_addr = old_loc->address;
11851
11852 /* Target-side condition evaluation: Handle deleted locations. */
11853 if (!found_object)
11854 force_breakpoint_reinsertion (old_loc);
11855
11856 /* If this location is no longer present, and inserted, look if
11857 there's maybe a new location at the same address. If so,
11858 mark that one inserted, and don't remove this one. This is
11859 needed so that we don't have a time window where a breakpoint
11860 at certain location is not inserted. */
11861
11862 if (old_loc->inserted)
11863 {
11864 /* If the location is inserted now, we might have to remove
11865 it. */
11866
11867 if (found_object && should_be_inserted (old_loc))
11868 {
11869 /* The location is still present in the location list,
11870 and still should be inserted. Don't do anything. */
11871 keep_in_target = 1;
11872 }
11873 else
11874 {
11875 /* This location still exists, but it won't be kept in the
11876 target since it may have been disabled. We proceed to
11877 remove its target-side condition. */
11878
11879 /* The location is either no longer present, or got
11880 disabled. See if there's another location at the
11881 same address, in which case we don't need to remove
11882 this one from the target. */
11883
11884 /* OLD_LOC comes from existing struct breakpoint. */
11885 if (breakpoint_address_is_meaningful (old_loc->owner))
11886 {
11887 for (loc2p = locp;
11888 (loc2p < bp_locations + bp_locations_count
11889 && (*loc2p)->address == old_loc->address);
11890 loc2p++)
11891 {
11892 struct bp_location *loc2 = *loc2p;
11893
11894 if (breakpoint_locations_match (loc2, old_loc))
11895 {
11896 /* Read watchpoint locations are switched to
11897 access watchpoints, if the former are not
11898 supported, but the latter are. */
11899 if (is_hardware_watchpoint (old_loc->owner))
11900 {
11901 gdb_assert (is_hardware_watchpoint (loc2->owner));
11902 loc2->watchpoint_type = old_loc->watchpoint_type;
11903 }
11904
11905 /* loc2 is a duplicated location. We need to check
11906 if it should be inserted in case it will be
11907 unduplicated. */
11908 if (loc2 != old_loc
11909 && unduplicated_should_be_inserted (loc2))
11910 {
11911 swap_insertion (old_loc, loc2);
11912 keep_in_target = 1;
11913 break;
11914 }
11915 }
11916 }
11917 }
11918 }
11919
11920 if (!keep_in_target)
11921 {
11922 if (remove_breakpoint (old_loc))
11923 {
11924 /* This is just about all we can do. We could keep
11925 this location on the global list, and try to
11926 remove it next time, but there's no particular
11927 reason why we will succeed next time.
11928
11929 Note that at this point, old_loc->owner is still
11930 valid, as delete_breakpoint frees the breakpoint
11931 only after calling us. */
11932 printf_filtered (_("warning: Error removing "
11933 "breakpoint %d\n"),
11934 old_loc->owner->number);
11935 }
11936 removed = 1;
11937 }
11938 }
11939
11940 if (!found_object)
11941 {
11942 if (removed && target_is_non_stop_p ()
11943 && need_moribund_for_location_type (old_loc))
11944 {
11945 /* This location was removed from the target. In
11946 non-stop mode, a race condition is possible where
11947 we've removed a breakpoint, but stop events for that
11948 breakpoint are already queued and will arrive later.
11949 We apply an heuristic to be able to distinguish such
11950 SIGTRAPs from other random SIGTRAPs: we keep this
11951 breakpoint location for a bit, and will retire it
11952 after we see some number of events. The theory here
11953 is that reporting of events should, "on the average",
11954 be fair, so after a while we'll see events from all
11955 threads that have anything of interest, and no longer
11956 need to keep this breakpoint location around. We
11957 don't hold locations forever so to reduce chances of
11958 mistaking a non-breakpoint SIGTRAP for a breakpoint
11959 SIGTRAP.
11960
11961 The heuristic failing can be disastrous on
11962 decr_pc_after_break targets.
11963
11964 On decr_pc_after_break targets, like e.g., x86-linux,
11965 if we fail to recognize a late breakpoint SIGTRAP,
11966 because events_till_retirement has reached 0 too
11967 soon, we'll fail to do the PC adjustment, and report
11968 a random SIGTRAP to the user. When the user resumes
11969 the inferior, it will most likely immediately crash
11970 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11971 corrupted, because of being resumed e.g., in the
11972 middle of a multi-byte instruction, or skipped a
11973 one-byte instruction. This was actually seen happen
11974 on native x86-linux, and should be less rare on
11975 targets that do not support new thread events, like
11976 remote, due to the heuristic depending on
11977 thread_count.
11978
11979 Mistaking a random SIGTRAP for a breakpoint trap
11980 causes similar symptoms (PC adjustment applied when
11981 it shouldn't), but then again, playing with SIGTRAPs
11982 behind the debugger's back is asking for trouble.
11983
11984 Since hardware watchpoint traps are always
11985 distinguishable from other traps, so we don't need to
11986 apply keep hardware watchpoint moribund locations
11987 around. We simply always ignore hardware watchpoint
11988 traps we can no longer explain. */
11989
11990 old_loc->events_till_retirement = 3 * (thread_count () + 1);
11991 old_loc->owner = NULL;
11992
11993 moribund_locations.push_back (old_loc);
11994 }
11995 else
11996 {
11997 old_loc->owner = NULL;
11998 decref_bp_location (&old_loc);
11999 }
12000 }
12001 }
12002
12003 /* Rescan breakpoints at the same address and section, marking the
12004 first one as "first" and any others as "duplicates". This is so
12005 that the bpt instruction is only inserted once. If we have a
12006 permanent breakpoint at the same place as BPT, make that one the
12007 official one, and the rest as duplicates. Permanent breakpoints
12008 are sorted first for the same address.
12009
12010 Do the same for hardware watchpoints, but also considering the
12011 watchpoint's type (regular/access/read) and length. */
12012
12013 bp_loc_first = NULL;
12014 wp_loc_first = NULL;
12015 awp_loc_first = NULL;
12016 rwp_loc_first = NULL;
12017 ALL_BP_LOCATIONS (loc, locp)
12018 {
12019 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12020 non-NULL. */
12021 struct bp_location **loc_first_p;
12022 b = loc->owner;
12023
12024 if (!unduplicated_should_be_inserted (loc)
12025 || !breakpoint_address_is_meaningful (b)
12026 /* Don't detect duplicate for tracepoint locations because they are
12027 never duplicated. See the comments in field `duplicate' of
12028 `struct bp_location'. */
12029 || is_tracepoint (b))
12030 {
12031 /* Clear the condition modification flag. */
12032 loc->condition_changed = condition_unchanged;
12033 continue;
12034 }
12035
12036 if (b->type == bp_hardware_watchpoint)
12037 loc_first_p = &wp_loc_first;
12038 else if (b->type == bp_read_watchpoint)
12039 loc_first_p = &rwp_loc_first;
12040 else if (b->type == bp_access_watchpoint)
12041 loc_first_p = &awp_loc_first;
12042 else
12043 loc_first_p = &bp_loc_first;
12044
12045 if (*loc_first_p == NULL
12046 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12047 || !breakpoint_locations_match (loc, *loc_first_p))
12048 {
12049 *loc_first_p = loc;
12050 loc->duplicate = 0;
12051
12052 if (is_breakpoint (loc->owner) && loc->condition_changed)
12053 {
12054 loc->needs_update = 1;
12055 /* Clear the condition modification flag. */
12056 loc->condition_changed = condition_unchanged;
12057 }
12058 continue;
12059 }
12060
12061
12062 /* This and the above ensure the invariant that the first location
12063 is not duplicated, and is the inserted one.
12064 All following are marked as duplicated, and are not inserted. */
12065 if (loc->inserted)
12066 swap_insertion (loc, *loc_first_p);
12067 loc->duplicate = 1;
12068
12069 /* Clear the condition modification flag. */
12070 loc->condition_changed = condition_unchanged;
12071 }
12072
12073 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12074 {
12075 if (insert_mode != UGLL_DONT_INSERT)
12076 insert_breakpoint_locations ();
12077 else
12078 {
12079 /* Even though the caller told us to not insert new
12080 locations, we may still need to update conditions on the
12081 target's side of breakpoints that were already inserted
12082 if the target is evaluating breakpoint conditions. We
12083 only update conditions for locations that are marked
12084 "needs_update". */
12085 update_inserted_breakpoint_locations ();
12086 }
12087 }
12088
12089 if (insert_mode != UGLL_DONT_INSERT)
12090 download_tracepoint_locations ();
12091 }
12092
12093 void
12094 breakpoint_retire_moribund (void)
12095 {
12096 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12097 {
12098 struct bp_location *loc = moribund_locations[ix];
12099 if (--(loc->events_till_retirement) == 0)
12100 {
12101 decref_bp_location (&loc);
12102 unordered_remove (moribund_locations, ix);
12103 --ix;
12104 }
12105 }
12106 }
12107
12108 static void
12109 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12110 {
12111
12112 TRY
12113 {
12114 update_global_location_list (insert_mode);
12115 }
12116 CATCH (e, RETURN_MASK_ERROR)
12117 {
12118 }
12119 END_CATCH
12120 }
12121
12122 /* Clear BKP from a BPS. */
12123
12124 static void
12125 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12126 {
12127 bpstat bs;
12128
12129 for (bs = bps; bs; bs = bs->next)
12130 if (bs->breakpoint_at == bpt)
12131 {
12132 bs->breakpoint_at = NULL;
12133 bs->old_val = NULL;
12134 /* bs->commands will be freed later. */
12135 }
12136 }
12137
12138 /* Callback for iterate_over_threads. */
12139 static int
12140 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12141 {
12142 struct breakpoint *bpt = (struct breakpoint *) data;
12143
12144 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12145 return 0;
12146 }
12147
12148 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12149 callbacks. */
12150
12151 static void
12152 say_where (struct breakpoint *b)
12153 {
12154 struct value_print_options opts;
12155
12156 get_user_print_options (&opts);
12157
12158 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12159 single string. */
12160 if (b->loc == NULL)
12161 {
12162 /* For pending locations, the output differs slightly based
12163 on b->extra_string. If this is non-NULL, it contains either
12164 a condition or dprintf arguments. */
12165 if (b->extra_string == NULL)
12166 {
12167 printf_filtered (_(" (%s) pending."),
12168 event_location_to_string (b->location.get ()));
12169 }
12170 else if (b->type == bp_dprintf)
12171 {
12172 printf_filtered (_(" (%s,%s) pending."),
12173 event_location_to_string (b->location.get ()),
12174 b->extra_string);
12175 }
12176 else
12177 {
12178 printf_filtered (_(" (%s %s) pending."),
12179 event_location_to_string (b->location.get ()),
12180 b->extra_string);
12181 }
12182 }
12183 else
12184 {
12185 if (opts.addressprint || b->loc->symtab == NULL)
12186 {
12187 printf_filtered (" at ");
12188 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12189 gdb_stdout);
12190 }
12191 if (b->loc->symtab != NULL)
12192 {
12193 /* If there is a single location, we can print the location
12194 more nicely. */
12195 if (b->loc->next == NULL)
12196 printf_filtered (": file %s, line %d.",
12197 symtab_to_filename_for_display (b->loc->symtab),
12198 b->loc->line_number);
12199 else
12200 /* This is not ideal, but each location may have a
12201 different file name, and this at least reflects the
12202 real situation somewhat. */
12203 printf_filtered (": %s.",
12204 event_location_to_string (b->location.get ()));
12205 }
12206
12207 if (b->loc->next)
12208 {
12209 struct bp_location *loc = b->loc;
12210 int n = 0;
12211 for (; loc; loc = loc->next)
12212 ++n;
12213 printf_filtered (" (%d locations)", n);
12214 }
12215 }
12216 }
12217
12218 /* Default bp_location_ops methods. */
12219
12220 static void
12221 bp_location_dtor (struct bp_location *self)
12222 {
12223 xfree (self->function_name);
12224 }
12225
12226 static const struct bp_location_ops bp_location_ops =
12227 {
12228 bp_location_dtor
12229 };
12230
12231 /* Destructor for the breakpoint base class. */
12232
12233 breakpoint::~breakpoint ()
12234 {
12235 xfree (this->cond_string);
12236 xfree (this->extra_string);
12237 xfree (this->filter);
12238 }
12239
12240 static struct bp_location *
12241 base_breakpoint_allocate_location (struct breakpoint *self)
12242 {
12243 return new bp_location (&bp_location_ops, self);
12244 }
12245
12246 static void
12247 base_breakpoint_re_set (struct breakpoint *b)
12248 {
12249 /* Nothing to re-set. */
12250 }
12251
12252 #define internal_error_pure_virtual_called() \
12253 gdb_assert_not_reached ("pure virtual function called")
12254
12255 static int
12256 base_breakpoint_insert_location (struct bp_location *bl)
12257 {
12258 internal_error_pure_virtual_called ();
12259 }
12260
12261 static int
12262 base_breakpoint_remove_location (struct bp_location *bl,
12263 enum remove_bp_reason reason)
12264 {
12265 internal_error_pure_virtual_called ();
12266 }
12267
12268 static int
12269 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12270 const address_space *aspace,
12271 CORE_ADDR bp_addr,
12272 const struct target_waitstatus *ws)
12273 {
12274 internal_error_pure_virtual_called ();
12275 }
12276
12277 static void
12278 base_breakpoint_check_status (bpstat bs)
12279 {
12280 /* Always stop. */
12281 }
12282
12283 /* A "works_in_software_mode" breakpoint_ops method that just internal
12284 errors. */
12285
12286 static int
12287 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12288 {
12289 internal_error_pure_virtual_called ();
12290 }
12291
12292 /* A "resources_needed" breakpoint_ops method that just internal
12293 errors. */
12294
12295 static int
12296 base_breakpoint_resources_needed (const struct bp_location *bl)
12297 {
12298 internal_error_pure_virtual_called ();
12299 }
12300
12301 static enum print_stop_action
12302 base_breakpoint_print_it (bpstat bs)
12303 {
12304 internal_error_pure_virtual_called ();
12305 }
12306
12307 static void
12308 base_breakpoint_print_one_detail (const struct breakpoint *self,
12309 struct ui_out *uiout)
12310 {
12311 /* nothing */
12312 }
12313
12314 static void
12315 base_breakpoint_print_mention (struct breakpoint *b)
12316 {
12317 internal_error_pure_virtual_called ();
12318 }
12319
12320 static void
12321 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12322 {
12323 internal_error_pure_virtual_called ();
12324 }
12325
12326 static void
12327 base_breakpoint_create_sals_from_location
12328 (const struct event_location *location,
12329 struct linespec_result *canonical,
12330 enum bptype type_wanted)
12331 {
12332 internal_error_pure_virtual_called ();
12333 }
12334
12335 static void
12336 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12337 struct linespec_result *c,
12338 gdb::unique_xmalloc_ptr<char> cond_string,
12339 gdb::unique_xmalloc_ptr<char> extra_string,
12340 enum bptype type_wanted,
12341 enum bpdisp disposition,
12342 int thread,
12343 int task, int ignore_count,
12344 const struct breakpoint_ops *o,
12345 int from_tty, int enabled,
12346 int internal, unsigned flags)
12347 {
12348 internal_error_pure_virtual_called ();
12349 }
12350
12351 static std::vector<symtab_and_line>
12352 base_breakpoint_decode_location (struct breakpoint *b,
12353 const struct event_location *location,
12354 struct program_space *search_pspace)
12355 {
12356 internal_error_pure_virtual_called ();
12357 }
12358
12359 /* The default 'explains_signal' method. */
12360
12361 static int
12362 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12363 {
12364 return 1;
12365 }
12366
12367 /* The default "after_condition_true" method. */
12368
12369 static void
12370 base_breakpoint_after_condition_true (struct bpstats *bs)
12371 {
12372 /* Nothing to do. */
12373 }
12374
12375 struct breakpoint_ops base_breakpoint_ops =
12376 {
12377 base_breakpoint_allocate_location,
12378 base_breakpoint_re_set,
12379 base_breakpoint_insert_location,
12380 base_breakpoint_remove_location,
12381 base_breakpoint_breakpoint_hit,
12382 base_breakpoint_check_status,
12383 base_breakpoint_resources_needed,
12384 base_breakpoint_works_in_software_mode,
12385 base_breakpoint_print_it,
12386 NULL,
12387 base_breakpoint_print_one_detail,
12388 base_breakpoint_print_mention,
12389 base_breakpoint_print_recreate,
12390 base_breakpoint_create_sals_from_location,
12391 base_breakpoint_create_breakpoints_sal,
12392 base_breakpoint_decode_location,
12393 base_breakpoint_explains_signal,
12394 base_breakpoint_after_condition_true,
12395 };
12396
12397 /* Default breakpoint_ops methods. */
12398
12399 static void
12400 bkpt_re_set (struct breakpoint *b)
12401 {
12402 /* FIXME: is this still reachable? */
12403 if (breakpoint_event_location_empty_p (b))
12404 {
12405 /* Anything without a location can't be re-set. */
12406 delete_breakpoint (b);
12407 return;
12408 }
12409
12410 breakpoint_re_set_default (b);
12411 }
12412
12413 static int
12414 bkpt_insert_location (struct bp_location *bl)
12415 {
12416 CORE_ADDR addr = bl->target_info.reqstd_address;
12417
12418 bl->target_info.kind = breakpoint_kind (bl, &addr);
12419 bl->target_info.placed_address = addr;
12420
12421 if (bl->loc_type == bp_loc_hardware_breakpoint)
12422 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12423 else
12424 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12425 }
12426
12427 static int
12428 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12429 {
12430 if (bl->loc_type == bp_loc_hardware_breakpoint)
12431 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12432 else
12433 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12434 }
12435
12436 static int
12437 bkpt_breakpoint_hit (const struct bp_location *bl,
12438 const address_space *aspace, CORE_ADDR bp_addr,
12439 const struct target_waitstatus *ws)
12440 {
12441 if (ws->kind != TARGET_WAITKIND_STOPPED
12442 || ws->value.sig != GDB_SIGNAL_TRAP)
12443 return 0;
12444
12445 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12446 aspace, bp_addr))
12447 return 0;
12448
12449 if (overlay_debugging /* unmapped overlay section */
12450 && section_is_overlay (bl->section)
12451 && !section_is_mapped (bl->section))
12452 return 0;
12453
12454 return 1;
12455 }
12456
12457 static int
12458 dprintf_breakpoint_hit (const struct bp_location *bl,
12459 const address_space *aspace, CORE_ADDR bp_addr,
12460 const struct target_waitstatus *ws)
12461 {
12462 if (dprintf_style == dprintf_style_agent
12463 && target_can_run_breakpoint_commands ())
12464 {
12465 /* An agent-style dprintf never causes a stop. If we see a trap
12466 for this address it must be for a breakpoint that happens to
12467 be set at the same address. */
12468 return 0;
12469 }
12470
12471 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12472 }
12473
12474 static int
12475 bkpt_resources_needed (const struct bp_location *bl)
12476 {
12477 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12478
12479 return 1;
12480 }
12481
12482 static enum print_stop_action
12483 bkpt_print_it (bpstat bs)
12484 {
12485 struct breakpoint *b;
12486 const struct bp_location *bl;
12487 int bp_temp;
12488 struct ui_out *uiout = current_uiout;
12489
12490 gdb_assert (bs->bp_location_at != NULL);
12491
12492 bl = bs->bp_location_at;
12493 b = bs->breakpoint_at;
12494
12495 bp_temp = b->disposition == disp_del;
12496 if (bl->address != bl->requested_address)
12497 breakpoint_adjustment_warning (bl->requested_address,
12498 bl->address,
12499 b->number, 1);
12500 annotate_breakpoint (b->number);
12501 maybe_print_thread_hit_breakpoint (uiout);
12502
12503 if (bp_temp)
12504 uiout->text ("Temporary breakpoint ");
12505 else
12506 uiout->text ("Breakpoint ");
12507 if (uiout->is_mi_like_p ())
12508 {
12509 uiout->field_string ("reason",
12510 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12511 uiout->field_string ("disp", bpdisp_text (b->disposition));
12512 }
12513 uiout->field_int ("bkptno", b->number);
12514 uiout->text (", ");
12515
12516 return PRINT_SRC_AND_LOC;
12517 }
12518
12519 static void
12520 bkpt_print_mention (struct breakpoint *b)
12521 {
12522 if (current_uiout->is_mi_like_p ())
12523 return;
12524
12525 switch (b->type)
12526 {
12527 case bp_breakpoint:
12528 case bp_gnu_ifunc_resolver:
12529 if (b->disposition == disp_del)
12530 printf_filtered (_("Temporary breakpoint"));
12531 else
12532 printf_filtered (_("Breakpoint"));
12533 printf_filtered (_(" %d"), b->number);
12534 if (b->type == bp_gnu_ifunc_resolver)
12535 printf_filtered (_(" at gnu-indirect-function resolver"));
12536 break;
12537 case bp_hardware_breakpoint:
12538 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12539 break;
12540 case bp_dprintf:
12541 printf_filtered (_("Dprintf %d"), b->number);
12542 break;
12543 }
12544
12545 say_where (b);
12546 }
12547
12548 static void
12549 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12550 {
12551 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12552 fprintf_unfiltered (fp, "tbreak");
12553 else if (tp->type == bp_breakpoint)
12554 fprintf_unfiltered (fp, "break");
12555 else if (tp->type == bp_hardware_breakpoint
12556 && tp->disposition == disp_del)
12557 fprintf_unfiltered (fp, "thbreak");
12558 else if (tp->type == bp_hardware_breakpoint)
12559 fprintf_unfiltered (fp, "hbreak");
12560 else
12561 internal_error (__FILE__, __LINE__,
12562 _("unhandled breakpoint type %d"), (int) tp->type);
12563
12564 fprintf_unfiltered (fp, " %s",
12565 event_location_to_string (tp->location.get ()));
12566
12567 /* Print out extra_string if this breakpoint is pending. It might
12568 contain, for example, conditions that were set by the user. */
12569 if (tp->loc == NULL && tp->extra_string != NULL)
12570 fprintf_unfiltered (fp, " %s", tp->extra_string);
12571
12572 print_recreate_thread (tp, fp);
12573 }
12574
12575 static void
12576 bkpt_create_sals_from_location (const struct event_location *location,
12577 struct linespec_result *canonical,
12578 enum bptype type_wanted)
12579 {
12580 create_sals_from_location_default (location, canonical, type_wanted);
12581 }
12582
12583 static void
12584 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12585 struct linespec_result *canonical,
12586 gdb::unique_xmalloc_ptr<char> cond_string,
12587 gdb::unique_xmalloc_ptr<char> extra_string,
12588 enum bptype type_wanted,
12589 enum bpdisp disposition,
12590 int thread,
12591 int task, int ignore_count,
12592 const struct breakpoint_ops *ops,
12593 int from_tty, int enabled,
12594 int internal, unsigned flags)
12595 {
12596 create_breakpoints_sal_default (gdbarch, canonical,
12597 std::move (cond_string),
12598 std::move (extra_string),
12599 type_wanted,
12600 disposition, thread, task,
12601 ignore_count, ops, from_tty,
12602 enabled, internal, flags);
12603 }
12604
12605 static std::vector<symtab_and_line>
12606 bkpt_decode_location (struct breakpoint *b,
12607 const struct event_location *location,
12608 struct program_space *search_pspace)
12609 {
12610 return decode_location_default (b, location, search_pspace);
12611 }
12612
12613 /* Virtual table for internal breakpoints. */
12614
12615 static void
12616 internal_bkpt_re_set (struct breakpoint *b)
12617 {
12618 switch (b->type)
12619 {
12620 /* Delete overlay event and longjmp master breakpoints; they
12621 will be reset later by breakpoint_re_set. */
12622 case bp_overlay_event:
12623 case bp_longjmp_master:
12624 case bp_std_terminate_master:
12625 case bp_exception_master:
12626 delete_breakpoint (b);
12627 break;
12628
12629 /* This breakpoint is special, it's set up when the inferior
12630 starts and we really don't want to touch it. */
12631 case bp_shlib_event:
12632
12633 /* Like bp_shlib_event, this breakpoint type is special. Once
12634 it is set up, we do not want to touch it. */
12635 case bp_thread_event:
12636 break;
12637 }
12638 }
12639
12640 static void
12641 internal_bkpt_check_status (bpstat bs)
12642 {
12643 if (bs->breakpoint_at->type == bp_shlib_event)
12644 {
12645 /* If requested, stop when the dynamic linker notifies GDB of
12646 events. This allows the user to get control and place
12647 breakpoints in initializer routines for dynamically loaded
12648 objects (among other things). */
12649 bs->stop = stop_on_solib_events;
12650 bs->print = stop_on_solib_events;
12651 }
12652 else
12653 bs->stop = 0;
12654 }
12655
12656 static enum print_stop_action
12657 internal_bkpt_print_it (bpstat bs)
12658 {
12659 struct breakpoint *b;
12660
12661 b = bs->breakpoint_at;
12662
12663 switch (b->type)
12664 {
12665 case bp_shlib_event:
12666 /* Did we stop because the user set the stop_on_solib_events
12667 variable? (If so, we report this as a generic, "Stopped due
12668 to shlib event" message.) */
12669 print_solib_event (0);
12670 break;
12671
12672 case bp_thread_event:
12673 /* Not sure how we will get here.
12674 GDB should not stop for these breakpoints. */
12675 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12676 break;
12677
12678 case bp_overlay_event:
12679 /* By analogy with the thread event, GDB should not stop for these. */
12680 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12681 break;
12682
12683 case bp_longjmp_master:
12684 /* These should never be enabled. */
12685 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12686 break;
12687
12688 case bp_std_terminate_master:
12689 /* These should never be enabled. */
12690 printf_filtered (_("std::terminate Master Breakpoint: "
12691 "gdb should not stop!\n"));
12692 break;
12693
12694 case bp_exception_master:
12695 /* These should never be enabled. */
12696 printf_filtered (_("Exception Master Breakpoint: "
12697 "gdb should not stop!\n"));
12698 break;
12699 }
12700
12701 return PRINT_NOTHING;
12702 }
12703
12704 static void
12705 internal_bkpt_print_mention (struct breakpoint *b)
12706 {
12707 /* Nothing to mention. These breakpoints are internal. */
12708 }
12709
12710 /* Virtual table for momentary breakpoints */
12711
12712 static void
12713 momentary_bkpt_re_set (struct breakpoint *b)
12714 {
12715 /* Keep temporary breakpoints, which can be encountered when we step
12716 over a dlopen call and solib_add is resetting the breakpoints.
12717 Otherwise these should have been blown away via the cleanup chain
12718 or by breakpoint_init_inferior when we rerun the executable. */
12719 }
12720
12721 static void
12722 momentary_bkpt_check_status (bpstat bs)
12723 {
12724 /* Nothing. The point of these breakpoints is causing a stop. */
12725 }
12726
12727 static enum print_stop_action
12728 momentary_bkpt_print_it (bpstat bs)
12729 {
12730 return PRINT_UNKNOWN;
12731 }
12732
12733 static void
12734 momentary_bkpt_print_mention (struct breakpoint *b)
12735 {
12736 /* Nothing to mention. These breakpoints are internal. */
12737 }
12738
12739 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12740
12741 It gets cleared already on the removal of the first one of such placed
12742 breakpoints. This is OK as they get all removed altogether. */
12743
12744 longjmp_breakpoint::~longjmp_breakpoint ()
12745 {
12746 thread_info *tp = find_thread_global_id (this->thread);
12747
12748 if (tp != NULL)
12749 tp->initiating_frame = null_frame_id;
12750 }
12751
12752 /* Specific methods for probe breakpoints. */
12753
12754 static int
12755 bkpt_probe_insert_location (struct bp_location *bl)
12756 {
12757 int v = bkpt_insert_location (bl);
12758
12759 if (v == 0)
12760 {
12761 /* The insertion was successful, now let's set the probe's semaphore
12762 if needed. */
12763 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12764 }
12765
12766 return v;
12767 }
12768
12769 static int
12770 bkpt_probe_remove_location (struct bp_location *bl,
12771 enum remove_bp_reason reason)
12772 {
12773 /* Let's clear the semaphore before removing the location. */
12774 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12775
12776 return bkpt_remove_location (bl, reason);
12777 }
12778
12779 static void
12780 bkpt_probe_create_sals_from_location (const struct event_location *location,
12781 struct linespec_result *canonical,
12782 enum bptype type_wanted)
12783 {
12784 struct linespec_sals lsal;
12785
12786 lsal.sals = parse_probes (location, NULL, canonical);
12787 lsal.canonical
12788 = xstrdup (event_location_to_string (canonical->location.get ()));
12789 canonical->lsals.push_back (std::move (lsal));
12790 }
12791
12792 static std::vector<symtab_and_line>
12793 bkpt_probe_decode_location (struct breakpoint *b,
12794 const struct event_location *location,
12795 struct program_space *search_pspace)
12796 {
12797 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12798 if (sals.empty ())
12799 error (_("probe not found"));
12800 return sals;
12801 }
12802
12803 /* The breakpoint_ops structure to be used in tracepoints. */
12804
12805 static void
12806 tracepoint_re_set (struct breakpoint *b)
12807 {
12808 breakpoint_re_set_default (b);
12809 }
12810
12811 static int
12812 tracepoint_breakpoint_hit (const struct bp_location *bl,
12813 const address_space *aspace, CORE_ADDR bp_addr,
12814 const struct target_waitstatus *ws)
12815 {
12816 /* By definition, the inferior does not report stops at
12817 tracepoints. */
12818 return 0;
12819 }
12820
12821 static void
12822 tracepoint_print_one_detail (const struct breakpoint *self,
12823 struct ui_out *uiout)
12824 {
12825 struct tracepoint *tp = (struct tracepoint *) self;
12826 if (!tp->static_trace_marker_id.empty ())
12827 {
12828 gdb_assert (self->type == bp_static_tracepoint);
12829
12830 uiout->text ("\tmarker id is ");
12831 uiout->field_string ("static-tracepoint-marker-string-id",
12832 tp->static_trace_marker_id);
12833 uiout->text ("\n");
12834 }
12835 }
12836
12837 static void
12838 tracepoint_print_mention (struct breakpoint *b)
12839 {
12840 if (current_uiout->is_mi_like_p ())
12841 return;
12842
12843 switch (b->type)
12844 {
12845 case bp_tracepoint:
12846 printf_filtered (_("Tracepoint"));
12847 printf_filtered (_(" %d"), b->number);
12848 break;
12849 case bp_fast_tracepoint:
12850 printf_filtered (_("Fast tracepoint"));
12851 printf_filtered (_(" %d"), b->number);
12852 break;
12853 case bp_static_tracepoint:
12854 printf_filtered (_("Static tracepoint"));
12855 printf_filtered (_(" %d"), b->number);
12856 break;
12857 default:
12858 internal_error (__FILE__, __LINE__,
12859 _("unhandled tracepoint type %d"), (int) b->type);
12860 }
12861
12862 say_where (b);
12863 }
12864
12865 static void
12866 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12867 {
12868 struct tracepoint *tp = (struct tracepoint *) self;
12869
12870 if (self->type == bp_fast_tracepoint)
12871 fprintf_unfiltered (fp, "ftrace");
12872 else if (self->type == bp_static_tracepoint)
12873 fprintf_unfiltered (fp, "strace");
12874 else if (self->type == bp_tracepoint)
12875 fprintf_unfiltered (fp, "trace");
12876 else
12877 internal_error (__FILE__, __LINE__,
12878 _("unhandled tracepoint type %d"), (int) self->type);
12879
12880 fprintf_unfiltered (fp, " %s",
12881 event_location_to_string (self->location.get ()));
12882 print_recreate_thread (self, fp);
12883
12884 if (tp->pass_count)
12885 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12886 }
12887
12888 static void
12889 tracepoint_create_sals_from_location (const struct event_location *location,
12890 struct linespec_result *canonical,
12891 enum bptype type_wanted)
12892 {
12893 create_sals_from_location_default (location, canonical, type_wanted);
12894 }
12895
12896 static void
12897 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12898 struct linespec_result *canonical,
12899 gdb::unique_xmalloc_ptr<char> cond_string,
12900 gdb::unique_xmalloc_ptr<char> extra_string,
12901 enum bptype type_wanted,
12902 enum bpdisp disposition,
12903 int thread,
12904 int task, int ignore_count,
12905 const struct breakpoint_ops *ops,
12906 int from_tty, int enabled,
12907 int internal, unsigned flags)
12908 {
12909 create_breakpoints_sal_default (gdbarch, canonical,
12910 std::move (cond_string),
12911 std::move (extra_string),
12912 type_wanted,
12913 disposition, thread, task,
12914 ignore_count, ops, from_tty,
12915 enabled, internal, flags);
12916 }
12917
12918 static std::vector<symtab_and_line>
12919 tracepoint_decode_location (struct breakpoint *b,
12920 const struct event_location *location,
12921 struct program_space *search_pspace)
12922 {
12923 return decode_location_default (b, location, search_pspace);
12924 }
12925
12926 struct breakpoint_ops tracepoint_breakpoint_ops;
12927
12928 /* The breakpoint_ops structure to be use on tracepoints placed in a
12929 static probe. */
12930
12931 static void
12932 tracepoint_probe_create_sals_from_location
12933 (const struct event_location *location,
12934 struct linespec_result *canonical,
12935 enum bptype type_wanted)
12936 {
12937 /* We use the same method for breakpoint on probes. */
12938 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12939 }
12940
12941 static std::vector<symtab_and_line>
12942 tracepoint_probe_decode_location (struct breakpoint *b,
12943 const struct event_location *location,
12944 struct program_space *search_pspace)
12945 {
12946 /* We use the same method for breakpoint on probes. */
12947 return bkpt_probe_decode_location (b, location, search_pspace);
12948 }
12949
12950 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12951
12952 /* Dprintf breakpoint_ops methods. */
12953
12954 static void
12955 dprintf_re_set (struct breakpoint *b)
12956 {
12957 breakpoint_re_set_default (b);
12958
12959 /* extra_string should never be non-NULL for dprintf. */
12960 gdb_assert (b->extra_string != NULL);
12961
12962 /* 1 - connect to target 1, that can run breakpoint commands.
12963 2 - create a dprintf, which resolves fine.
12964 3 - disconnect from target 1
12965 4 - connect to target 2, that can NOT run breakpoint commands.
12966
12967 After steps #3/#4, you'll want the dprintf command list to
12968 be updated, because target 1 and 2 may well return different
12969 answers for target_can_run_breakpoint_commands().
12970 Given absence of finer grained resetting, we get to do
12971 it all the time. */
12972 if (b->extra_string != NULL)
12973 update_dprintf_command_list (b);
12974 }
12975
12976 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12977
12978 static void
12979 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12980 {
12981 fprintf_unfiltered (fp, "dprintf %s,%s",
12982 event_location_to_string (tp->location.get ()),
12983 tp->extra_string);
12984 print_recreate_thread (tp, fp);
12985 }
12986
12987 /* Implement the "after_condition_true" breakpoint_ops method for
12988 dprintf.
12989
12990 dprintf's are implemented with regular commands in their command
12991 list, but we run the commands here instead of before presenting the
12992 stop to the user, as dprintf's don't actually cause a stop. This
12993 also makes it so that the commands of multiple dprintfs at the same
12994 address are all handled. */
12995
12996 static void
12997 dprintf_after_condition_true (struct bpstats *bs)
12998 {
12999 struct bpstats tmp_bs;
13000 struct bpstats *tmp_bs_p = &tmp_bs;
13001
13002 /* dprintf's never cause a stop. This wasn't set in the
13003 check_status hook instead because that would make the dprintf's
13004 condition not be evaluated. */
13005 bs->stop = 0;
13006
13007 /* Run the command list here. Take ownership of it instead of
13008 copying. We never want these commands to run later in
13009 bpstat_do_actions, if a breakpoint that causes a stop happens to
13010 be set at same address as this dprintf, or even if running the
13011 commands here throws. */
13012 tmp_bs.commands = bs->commands;
13013 bs->commands = NULL;
13014
13015 bpstat_do_actions_1 (&tmp_bs_p);
13016
13017 /* 'tmp_bs.commands' will usually be NULL by now, but
13018 bpstat_do_actions_1 may return early without processing the whole
13019 list. */
13020 }
13021
13022 /* The breakpoint_ops structure to be used on static tracepoints with
13023 markers (`-m'). */
13024
13025 static void
13026 strace_marker_create_sals_from_location (const struct event_location *location,
13027 struct linespec_result *canonical,
13028 enum bptype type_wanted)
13029 {
13030 struct linespec_sals lsal;
13031 const char *arg_start, *arg;
13032
13033 arg = arg_start = get_linespec_location (location)->spec_string;
13034 lsal.sals = decode_static_tracepoint_spec (&arg);
13035
13036 std::string str (arg_start, arg - arg_start);
13037 const char *ptr = str.c_str ();
13038 canonical->location
13039 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13040
13041 lsal.canonical
13042 = xstrdup (event_location_to_string (canonical->location.get ()));
13043 canonical->lsals.push_back (std::move (lsal));
13044 }
13045
13046 static void
13047 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13048 struct linespec_result *canonical,
13049 gdb::unique_xmalloc_ptr<char> cond_string,
13050 gdb::unique_xmalloc_ptr<char> extra_string,
13051 enum bptype type_wanted,
13052 enum bpdisp disposition,
13053 int thread,
13054 int task, int ignore_count,
13055 const struct breakpoint_ops *ops,
13056 int from_tty, int enabled,
13057 int internal, unsigned flags)
13058 {
13059 const linespec_sals &lsal = canonical->lsals[0];
13060
13061 /* If the user is creating a static tracepoint by marker id
13062 (strace -m MARKER_ID), then store the sals index, so that
13063 breakpoint_re_set can try to match up which of the newly
13064 found markers corresponds to this one, and, don't try to
13065 expand multiple locations for each sal, given than SALS
13066 already should contain all sals for MARKER_ID. */
13067
13068 for (size_t i = 0; i < lsal.sals.size (); i++)
13069 {
13070 event_location_up location
13071 = copy_event_location (canonical->location.get ());
13072
13073 std::unique_ptr<tracepoint> tp (new tracepoint ());
13074 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13075 std::move (location), NULL,
13076 std::move (cond_string),
13077 std::move (extra_string),
13078 type_wanted, disposition,
13079 thread, task, ignore_count, ops,
13080 from_tty, enabled, internal, flags,
13081 canonical->special_display);
13082 /* Given that its possible to have multiple markers with
13083 the same string id, if the user is creating a static
13084 tracepoint by marker id ("strace -m MARKER_ID"), then
13085 store the sals index, so that breakpoint_re_set can
13086 try to match up which of the newly found markers
13087 corresponds to this one */
13088 tp->static_trace_marker_id_idx = i;
13089
13090 install_breakpoint (internal, std::move (tp), 0);
13091 }
13092 }
13093
13094 static std::vector<symtab_and_line>
13095 strace_marker_decode_location (struct breakpoint *b,
13096 const struct event_location *location,
13097 struct program_space *search_pspace)
13098 {
13099 struct tracepoint *tp = (struct tracepoint *) b;
13100 const char *s = get_linespec_location (location)->spec_string;
13101
13102 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13103 if (sals.size () > tp->static_trace_marker_id_idx)
13104 {
13105 sals[0] = sals[tp->static_trace_marker_id_idx];
13106 sals.resize (1);
13107 return sals;
13108 }
13109 else
13110 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13111 }
13112
13113 static struct breakpoint_ops strace_marker_breakpoint_ops;
13114
13115 static int
13116 strace_marker_p (struct breakpoint *b)
13117 {
13118 return b->ops == &strace_marker_breakpoint_ops;
13119 }
13120
13121 /* Delete a breakpoint and clean up all traces of it in the data
13122 structures. */
13123
13124 void
13125 delete_breakpoint (struct breakpoint *bpt)
13126 {
13127 struct breakpoint *b;
13128
13129 gdb_assert (bpt != NULL);
13130
13131 /* Has this bp already been deleted? This can happen because
13132 multiple lists can hold pointers to bp's. bpstat lists are
13133 especial culprits.
13134
13135 One example of this happening is a watchpoint's scope bp. When
13136 the scope bp triggers, we notice that the watchpoint is out of
13137 scope, and delete it. We also delete its scope bp. But the
13138 scope bp is marked "auto-deleting", and is already on a bpstat.
13139 That bpstat is then checked for auto-deleting bp's, which are
13140 deleted.
13141
13142 A real solution to this problem might involve reference counts in
13143 bp's, and/or giving them pointers back to their referencing
13144 bpstat's, and teaching delete_breakpoint to only free a bp's
13145 storage when no more references were extent. A cheaper bandaid
13146 was chosen. */
13147 if (bpt->type == bp_none)
13148 return;
13149
13150 /* At least avoid this stale reference until the reference counting
13151 of breakpoints gets resolved. */
13152 if (bpt->related_breakpoint != bpt)
13153 {
13154 struct breakpoint *related;
13155 struct watchpoint *w;
13156
13157 if (bpt->type == bp_watchpoint_scope)
13158 w = (struct watchpoint *) bpt->related_breakpoint;
13159 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13160 w = (struct watchpoint *) bpt;
13161 else
13162 w = NULL;
13163 if (w != NULL)
13164 watchpoint_del_at_next_stop (w);
13165
13166 /* Unlink bpt from the bpt->related_breakpoint ring. */
13167 for (related = bpt; related->related_breakpoint != bpt;
13168 related = related->related_breakpoint);
13169 related->related_breakpoint = bpt->related_breakpoint;
13170 bpt->related_breakpoint = bpt;
13171 }
13172
13173 /* watch_command_1 creates a watchpoint but only sets its number if
13174 update_watchpoint succeeds in creating its bp_locations. If there's
13175 a problem in that process, we'll be asked to delete the half-created
13176 watchpoint. In that case, don't announce the deletion. */
13177 if (bpt->number)
13178 gdb::observers::breakpoint_deleted.notify (bpt);
13179
13180 if (breakpoint_chain == bpt)
13181 breakpoint_chain = bpt->next;
13182
13183 ALL_BREAKPOINTS (b)
13184 if (b->next == bpt)
13185 {
13186 b->next = bpt->next;
13187 break;
13188 }
13189
13190 /* Be sure no bpstat's are pointing at the breakpoint after it's
13191 been freed. */
13192 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13193 in all threads for now. Note that we cannot just remove bpstats
13194 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13195 commands are associated with the bpstat; if we remove it here,
13196 then the later call to bpstat_do_actions (&stop_bpstat); in
13197 event-top.c won't do anything, and temporary breakpoints with
13198 commands won't work. */
13199
13200 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13201
13202 /* Now that breakpoint is removed from breakpoint list, update the
13203 global location list. This will remove locations that used to
13204 belong to this breakpoint. Do this before freeing the breakpoint
13205 itself, since remove_breakpoint looks at location's owner. It
13206 might be better design to have location completely
13207 self-contained, but it's not the case now. */
13208 update_global_location_list (UGLL_DONT_INSERT);
13209
13210 /* On the chance that someone will soon try again to delete this
13211 same bp, we mark it as deleted before freeing its storage. */
13212 bpt->type = bp_none;
13213 delete bpt;
13214 }
13215
13216 /* Iterator function to call a user-provided callback function once
13217 for each of B and its related breakpoints. */
13218
13219 static void
13220 iterate_over_related_breakpoints (struct breakpoint *b,
13221 gdb::function_view<void (breakpoint *)> function)
13222 {
13223 struct breakpoint *related;
13224
13225 related = b;
13226 do
13227 {
13228 struct breakpoint *next;
13229
13230 /* FUNCTION may delete RELATED. */
13231 next = related->related_breakpoint;
13232
13233 if (next == related)
13234 {
13235 /* RELATED is the last ring entry. */
13236 function (related);
13237
13238 /* FUNCTION may have deleted it, so we'd never reach back to
13239 B. There's nothing left to do anyway, so just break
13240 out. */
13241 break;
13242 }
13243 else
13244 function (related);
13245
13246 related = next;
13247 }
13248 while (related != b);
13249 }
13250
13251 static void
13252 delete_command (const char *arg, int from_tty)
13253 {
13254 struct breakpoint *b, *b_tmp;
13255
13256 dont_repeat ();
13257
13258 if (arg == 0)
13259 {
13260 int breaks_to_delete = 0;
13261
13262 /* Delete all breakpoints if no argument. Do not delete
13263 internal breakpoints, these have to be deleted with an
13264 explicit breakpoint number argument. */
13265 ALL_BREAKPOINTS (b)
13266 if (user_breakpoint_p (b))
13267 {
13268 breaks_to_delete = 1;
13269 break;
13270 }
13271
13272 /* Ask user only if there are some breakpoints to delete. */
13273 if (!from_tty
13274 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13275 {
13276 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13277 if (user_breakpoint_p (b))
13278 delete_breakpoint (b);
13279 }
13280 }
13281 else
13282 map_breakpoint_numbers
13283 (arg, [&] (breakpoint *br)
13284 {
13285 iterate_over_related_breakpoints (br, delete_breakpoint);
13286 });
13287 }
13288
13289 /* Return true if all locations of B bound to PSPACE are pending. If
13290 PSPACE is NULL, all locations of all program spaces are
13291 considered. */
13292
13293 static int
13294 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13295 {
13296 struct bp_location *loc;
13297
13298 for (loc = b->loc; loc != NULL; loc = loc->next)
13299 if ((pspace == NULL
13300 || loc->pspace == pspace)
13301 && !loc->shlib_disabled
13302 && !loc->pspace->executing_startup)
13303 return 0;
13304 return 1;
13305 }
13306
13307 /* Subroutine of update_breakpoint_locations to simplify it.
13308 Return non-zero if multiple fns in list LOC have the same name.
13309 Null names are ignored. */
13310
13311 static int
13312 ambiguous_names_p (struct bp_location *loc)
13313 {
13314 struct bp_location *l;
13315 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13316 xcalloc, xfree);
13317
13318 for (l = loc; l != NULL; l = l->next)
13319 {
13320 const char **slot;
13321 const char *name = l->function_name;
13322
13323 /* Allow for some names to be NULL, ignore them. */
13324 if (name == NULL)
13325 continue;
13326
13327 slot = (const char **) htab_find_slot (htab, (const void *) name,
13328 INSERT);
13329 /* NOTE: We can assume slot != NULL here because xcalloc never
13330 returns NULL. */
13331 if (*slot != NULL)
13332 {
13333 htab_delete (htab);
13334 return 1;
13335 }
13336 *slot = name;
13337 }
13338
13339 htab_delete (htab);
13340 return 0;
13341 }
13342
13343 /* When symbols change, it probably means the sources changed as well,
13344 and it might mean the static tracepoint markers are no longer at
13345 the same address or line numbers they used to be at last we
13346 checked. Losing your static tracepoints whenever you rebuild is
13347 undesirable. This function tries to resync/rematch gdb static
13348 tracepoints with the markers on the target, for static tracepoints
13349 that have not been set by marker id. Static tracepoint that have
13350 been set by marker id are reset by marker id in breakpoint_re_set.
13351 The heuristic is:
13352
13353 1) For a tracepoint set at a specific address, look for a marker at
13354 the old PC. If one is found there, assume to be the same marker.
13355 If the name / string id of the marker found is different from the
13356 previous known name, assume that means the user renamed the marker
13357 in the sources, and output a warning.
13358
13359 2) For a tracepoint set at a given line number, look for a marker
13360 at the new address of the old line number. If one is found there,
13361 assume to be the same marker. If the name / string id of the
13362 marker found is different from the previous known name, assume that
13363 means the user renamed the marker in the sources, and output a
13364 warning.
13365
13366 3) If a marker is no longer found at the same address or line, it
13367 may mean the marker no longer exists. But it may also just mean
13368 the code changed a bit. Maybe the user added a few lines of code
13369 that made the marker move up or down (in line number terms). Ask
13370 the target for info about the marker with the string id as we knew
13371 it. If found, update line number and address in the matching
13372 static tracepoint. This will get confused if there's more than one
13373 marker with the same ID (possible in UST, although unadvised
13374 precisely because it confuses tools). */
13375
13376 static struct symtab_and_line
13377 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13378 {
13379 struct tracepoint *tp = (struct tracepoint *) b;
13380 struct static_tracepoint_marker marker;
13381 CORE_ADDR pc;
13382
13383 pc = sal.pc;
13384 if (sal.line)
13385 find_line_pc (sal.symtab, sal.line, &pc);
13386
13387 if (target_static_tracepoint_marker_at (pc, &marker))
13388 {
13389 if (tp->static_trace_marker_id != marker.str_id)
13390 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13391 b->number, tp->static_trace_marker_id.c_str (),
13392 marker.str_id.c_str ());
13393
13394 tp->static_trace_marker_id = std::move (marker.str_id);
13395
13396 return sal;
13397 }
13398
13399 /* Old marker wasn't found on target at lineno. Try looking it up
13400 by string ID. */
13401 if (!sal.explicit_pc
13402 && sal.line != 0
13403 && sal.symtab != NULL
13404 && !tp->static_trace_marker_id.empty ())
13405 {
13406 std::vector<static_tracepoint_marker> markers
13407 = target_static_tracepoint_markers_by_strid
13408 (tp->static_trace_marker_id.c_str ());
13409
13410 if (!markers.empty ())
13411 {
13412 struct symbol *sym;
13413 struct static_tracepoint_marker *tpmarker;
13414 struct ui_out *uiout = current_uiout;
13415 struct explicit_location explicit_loc;
13416
13417 tpmarker = &markers[0];
13418
13419 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13420
13421 warning (_("marker for static tracepoint %d (%s) not "
13422 "found at previous line number"),
13423 b->number, tp->static_trace_marker_id.c_str ());
13424
13425 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13426 sym = find_pc_sect_function (tpmarker->address, NULL);
13427 uiout->text ("Now in ");
13428 if (sym)
13429 {
13430 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13431 uiout->text (" at ");
13432 }
13433 uiout->field_string ("file",
13434 symtab_to_filename_for_display (sal2.symtab));
13435 uiout->text (":");
13436
13437 if (uiout->is_mi_like_p ())
13438 {
13439 const char *fullname = symtab_to_fullname (sal2.symtab);
13440
13441 uiout->field_string ("fullname", fullname);
13442 }
13443
13444 uiout->field_int ("line", sal2.line);
13445 uiout->text ("\n");
13446
13447 b->loc->line_number = sal2.line;
13448 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13449
13450 b->location.reset (NULL);
13451 initialize_explicit_location (&explicit_loc);
13452 explicit_loc.source_filename
13453 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13454 explicit_loc.line_offset.offset = b->loc->line_number;
13455 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13456 b->location = new_explicit_location (&explicit_loc);
13457
13458 /* Might be nice to check if function changed, and warn if
13459 so. */
13460 }
13461 }
13462 return sal;
13463 }
13464
13465 /* Returns 1 iff locations A and B are sufficiently same that
13466 we don't need to report breakpoint as changed. */
13467
13468 static int
13469 locations_are_equal (struct bp_location *a, struct bp_location *b)
13470 {
13471 while (a && b)
13472 {
13473 if (a->address != b->address)
13474 return 0;
13475
13476 if (a->shlib_disabled != b->shlib_disabled)
13477 return 0;
13478
13479 if (a->enabled != b->enabled)
13480 return 0;
13481
13482 a = a->next;
13483 b = b->next;
13484 }
13485
13486 if ((a == NULL) != (b == NULL))
13487 return 0;
13488
13489 return 1;
13490 }
13491
13492 /* Split all locations of B that are bound to PSPACE out of B's
13493 location list to a separate list and return that list's head. If
13494 PSPACE is NULL, hoist out all locations of B. */
13495
13496 static struct bp_location *
13497 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13498 {
13499 struct bp_location head;
13500 struct bp_location *i = b->loc;
13501 struct bp_location **i_link = &b->loc;
13502 struct bp_location *hoisted = &head;
13503
13504 if (pspace == NULL)
13505 {
13506 i = b->loc;
13507 b->loc = NULL;
13508 return i;
13509 }
13510
13511 head.next = NULL;
13512
13513 while (i != NULL)
13514 {
13515 if (i->pspace == pspace)
13516 {
13517 *i_link = i->next;
13518 i->next = NULL;
13519 hoisted->next = i;
13520 hoisted = i;
13521 }
13522 else
13523 i_link = &i->next;
13524 i = *i_link;
13525 }
13526
13527 return head.next;
13528 }
13529
13530 /* Create new breakpoint locations for B (a hardware or software
13531 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13532 zero, then B is a ranged breakpoint. Only recreates locations for
13533 FILTER_PSPACE. Locations of other program spaces are left
13534 untouched. */
13535
13536 void
13537 update_breakpoint_locations (struct breakpoint *b,
13538 struct program_space *filter_pspace,
13539 gdb::array_view<const symtab_and_line> sals,
13540 gdb::array_view<const symtab_and_line> sals_end)
13541 {
13542 struct bp_location *existing_locations;
13543
13544 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13545 {
13546 /* Ranged breakpoints have only one start location and one end
13547 location. */
13548 b->enable_state = bp_disabled;
13549 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13550 "multiple locations found\n"),
13551 b->number);
13552 return;
13553 }
13554
13555 /* If there's no new locations, and all existing locations are
13556 pending, don't do anything. This optimizes the common case where
13557 all locations are in the same shared library, that was unloaded.
13558 We'd like to retain the location, so that when the library is
13559 loaded again, we don't loose the enabled/disabled status of the
13560 individual locations. */
13561 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13562 return;
13563
13564 existing_locations = hoist_existing_locations (b, filter_pspace);
13565
13566 for (const auto &sal : sals)
13567 {
13568 struct bp_location *new_loc;
13569
13570 switch_to_program_space_and_thread (sal.pspace);
13571
13572 new_loc = add_location_to_breakpoint (b, &sal);
13573
13574 /* Reparse conditions, they might contain references to the
13575 old symtab. */
13576 if (b->cond_string != NULL)
13577 {
13578 const char *s;
13579
13580 s = b->cond_string;
13581 TRY
13582 {
13583 new_loc->cond = parse_exp_1 (&s, sal.pc,
13584 block_for_pc (sal.pc),
13585 0);
13586 }
13587 CATCH (e, RETURN_MASK_ERROR)
13588 {
13589 warning (_("failed to reevaluate condition "
13590 "for breakpoint %d: %s"),
13591 b->number, e.message);
13592 new_loc->enabled = 0;
13593 }
13594 END_CATCH
13595 }
13596
13597 if (!sals_end.empty ())
13598 {
13599 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13600
13601 new_loc->length = end - sals[0].pc + 1;
13602 }
13603 }
13604
13605 /* If possible, carry over 'disable' status from existing
13606 breakpoints. */
13607 {
13608 struct bp_location *e = existing_locations;
13609 /* If there are multiple breakpoints with the same function name,
13610 e.g. for inline functions, comparing function names won't work.
13611 Instead compare pc addresses; this is just a heuristic as things
13612 may have moved, but in practice it gives the correct answer
13613 often enough until a better solution is found. */
13614 int have_ambiguous_names = ambiguous_names_p (b->loc);
13615
13616 for (; e; e = e->next)
13617 {
13618 if (!e->enabled && e->function_name)
13619 {
13620 struct bp_location *l = b->loc;
13621 if (have_ambiguous_names)
13622 {
13623 for (; l; l = l->next)
13624 if (breakpoint_locations_match (e, l))
13625 {
13626 l->enabled = 0;
13627 break;
13628 }
13629 }
13630 else
13631 {
13632 for (; l; l = l->next)
13633 if (l->function_name
13634 && strcmp (e->function_name, l->function_name) == 0)
13635 {
13636 l->enabled = 0;
13637 break;
13638 }
13639 }
13640 }
13641 }
13642 }
13643
13644 if (!locations_are_equal (existing_locations, b->loc))
13645 gdb::observers::breakpoint_modified.notify (b);
13646 }
13647
13648 /* Find the SaL locations corresponding to the given LOCATION.
13649 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13650
13651 static std::vector<symtab_and_line>
13652 location_to_sals (struct breakpoint *b, struct event_location *location,
13653 struct program_space *search_pspace, int *found)
13654 {
13655 struct gdb_exception exception = exception_none;
13656
13657 gdb_assert (b->ops != NULL);
13658
13659 std::vector<symtab_and_line> sals;
13660
13661 TRY
13662 {
13663 sals = b->ops->decode_location (b, location, search_pspace);
13664 }
13665 CATCH (e, RETURN_MASK_ERROR)
13666 {
13667 int not_found_and_ok = 0;
13668
13669 exception = e;
13670
13671 /* For pending breakpoints, it's expected that parsing will
13672 fail until the right shared library is loaded. User has
13673 already told to create pending breakpoints and don't need
13674 extra messages. If breakpoint is in bp_shlib_disabled
13675 state, then user already saw the message about that
13676 breakpoint being disabled, and don't want to see more
13677 errors. */
13678 if (e.error == NOT_FOUND_ERROR
13679 && (b->condition_not_parsed
13680 || (b->loc != NULL
13681 && search_pspace != NULL
13682 && b->loc->pspace != search_pspace)
13683 || (b->loc && b->loc->shlib_disabled)
13684 || (b->loc && b->loc->pspace->executing_startup)
13685 || b->enable_state == bp_disabled))
13686 not_found_and_ok = 1;
13687
13688 if (!not_found_and_ok)
13689 {
13690 /* We surely don't want to warn about the same breakpoint
13691 10 times. One solution, implemented here, is disable
13692 the breakpoint on error. Another solution would be to
13693 have separate 'warning emitted' flag. Since this
13694 happens only when a binary has changed, I don't know
13695 which approach is better. */
13696 b->enable_state = bp_disabled;
13697 throw_exception (e);
13698 }
13699 }
13700 END_CATCH
13701
13702 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13703 {
13704 for (auto &sal : sals)
13705 resolve_sal_pc (&sal);
13706 if (b->condition_not_parsed && b->extra_string != NULL)
13707 {
13708 char *cond_string, *extra_string;
13709 int thread, task;
13710
13711 find_condition_and_thread (b->extra_string, sals[0].pc,
13712 &cond_string, &thread, &task,
13713 &extra_string);
13714 gdb_assert (b->cond_string == NULL);
13715 if (cond_string)
13716 b->cond_string = cond_string;
13717 b->thread = thread;
13718 b->task = task;
13719 if (extra_string)
13720 {
13721 xfree (b->extra_string);
13722 b->extra_string = extra_string;
13723 }
13724 b->condition_not_parsed = 0;
13725 }
13726
13727 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13728 sals[0] = update_static_tracepoint (b, sals[0]);
13729
13730 *found = 1;
13731 }
13732 else
13733 *found = 0;
13734
13735 return sals;
13736 }
13737
13738 /* The default re_set method, for typical hardware or software
13739 breakpoints. Reevaluate the breakpoint and recreate its
13740 locations. */
13741
13742 static void
13743 breakpoint_re_set_default (struct breakpoint *b)
13744 {
13745 struct program_space *filter_pspace = current_program_space;
13746 std::vector<symtab_and_line> expanded, expanded_end;
13747
13748 int found;
13749 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13750 filter_pspace, &found);
13751 if (found)
13752 expanded = std::move (sals);
13753
13754 if (b->location_range_end != NULL)
13755 {
13756 std::vector<symtab_and_line> sals_end
13757 = location_to_sals (b, b->location_range_end.get (),
13758 filter_pspace, &found);
13759 if (found)
13760 expanded_end = std::move (sals_end);
13761 }
13762
13763 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13764 }
13765
13766 /* Default method for creating SALs from an address string. It basically
13767 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13768
13769 static void
13770 create_sals_from_location_default (const struct event_location *location,
13771 struct linespec_result *canonical,
13772 enum bptype type_wanted)
13773 {
13774 parse_breakpoint_sals (location, canonical);
13775 }
13776
13777 /* Call create_breakpoints_sal for the given arguments. This is the default
13778 function for the `create_breakpoints_sal' method of
13779 breakpoint_ops. */
13780
13781 static void
13782 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13783 struct linespec_result *canonical,
13784 gdb::unique_xmalloc_ptr<char> cond_string,
13785 gdb::unique_xmalloc_ptr<char> extra_string,
13786 enum bptype type_wanted,
13787 enum bpdisp disposition,
13788 int thread,
13789 int task, int ignore_count,
13790 const struct breakpoint_ops *ops,
13791 int from_tty, int enabled,
13792 int internal, unsigned flags)
13793 {
13794 create_breakpoints_sal (gdbarch, canonical,
13795 std::move (cond_string),
13796 std::move (extra_string),
13797 type_wanted, disposition,
13798 thread, task, ignore_count, ops, from_tty,
13799 enabled, internal, flags);
13800 }
13801
13802 /* Decode the line represented by S by calling decode_line_full. This is the
13803 default function for the `decode_location' method of breakpoint_ops. */
13804
13805 static std::vector<symtab_and_line>
13806 decode_location_default (struct breakpoint *b,
13807 const struct event_location *location,
13808 struct program_space *search_pspace)
13809 {
13810 struct linespec_result canonical;
13811
13812 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13813 (struct symtab *) NULL, 0,
13814 &canonical, multiple_symbols_all,
13815 b->filter);
13816
13817 /* We should get 0 or 1 resulting SALs. */
13818 gdb_assert (canonical.lsals.size () < 2);
13819
13820 if (!canonical.lsals.empty ())
13821 {
13822 const linespec_sals &lsal = canonical.lsals[0];
13823 return std::move (lsal.sals);
13824 }
13825 return {};
13826 }
13827
13828 /* Reset a breakpoint. */
13829
13830 static void
13831 breakpoint_re_set_one (breakpoint *b)
13832 {
13833 input_radix = b->input_radix;
13834 set_language (b->language);
13835
13836 b->ops->re_set (b);
13837 }
13838
13839 /* Re-set breakpoint locations for the current program space.
13840 Locations bound to other program spaces are left untouched. */
13841
13842 void
13843 breakpoint_re_set (void)
13844 {
13845 struct breakpoint *b, *b_tmp;
13846
13847 {
13848 scoped_restore_current_language save_language;
13849 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13850 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13851
13852 /* breakpoint_re_set_one sets the current_language to the language
13853 of the breakpoint it is resetting (see prepare_re_set_context)
13854 before re-evaluating the breakpoint's location. This change can
13855 unfortunately get undone by accident if the language_mode is set
13856 to auto, and we either switch frames, or more likely in this context,
13857 we select the current frame.
13858
13859 We prevent this by temporarily turning the language_mode to
13860 language_mode_manual. We restore it once all breakpoints
13861 have been reset. */
13862 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13863 language_mode = language_mode_manual;
13864
13865 /* Note: we must not try to insert locations until after all
13866 breakpoints have been re-set. Otherwise, e.g., when re-setting
13867 breakpoint 1, we'd insert the locations of breakpoint 2, which
13868 hadn't been re-set yet, and thus may have stale locations. */
13869
13870 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13871 {
13872 TRY
13873 {
13874 breakpoint_re_set_one (b);
13875 }
13876 CATCH (ex, RETURN_MASK_ALL)
13877 {
13878 exception_fprintf (gdb_stderr, ex,
13879 "Error in re-setting breakpoint %d: ",
13880 b->number);
13881 }
13882 END_CATCH
13883 }
13884
13885 jit_breakpoint_re_set ();
13886 }
13887
13888 create_overlay_event_breakpoint ();
13889 create_longjmp_master_breakpoint ();
13890 create_std_terminate_master_breakpoint ();
13891 create_exception_master_breakpoint ();
13892
13893 /* Now we can insert. */
13894 update_global_location_list (UGLL_MAY_INSERT);
13895 }
13896 \f
13897 /* Reset the thread number of this breakpoint:
13898
13899 - If the breakpoint is for all threads, leave it as-is.
13900 - Else, reset it to the current thread for inferior_ptid. */
13901 void
13902 breakpoint_re_set_thread (struct breakpoint *b)
13903 {
13904 if (b->thread != -1)
13905 {
13906 b->thread = inferior_thread ()->global_num;
13907
13908 /* We're being called after following a fork. The new fork is
13909 selected as current, and unless this was a vfork will have a
13910 different program space from the original thread. Reset that
13911 as well. */
13912 b->loc->pspace = current_program_space;
13913 }
13914 }
13915
13916 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13917 If from_tty is nonzero, it prints a message to that effect,
13918 which ends with a period (no newline). */
13919
13920 void
13921 set_ignore_count (int bptnum, int count, int from_tty)
13922 {
13923 struct breakpoint *b;
13924
13925 if (count < 0)
13926 count = 0;
13927
13928 ALL_BREAKPOINTS (b)
13929 if (b->number == bptnum)
13930 {
13931 if (is_tracepoint (b))
13932 {
13933 if (from_tty && count != 0)
13934 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13935 bptnum);
13936 return;
13937 }
13938
13939 b->ignore_count = count;
13940 if (from_tty)
13941 {
13942 if (count == 0)
13943 printf_filtered (_("Will stop next time "
13944 "breakpoint %d is reached."),
13945 bptnum);
13946 else if (count == 1)
13947 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13948 bptnum);
13949 else
13950 printf_filtered (_("Will ignore next %d "
13951 "crossings of breakpoint %d."),
13952 count, bptnum);
13953 }
13954 gdb::observers::breakpoint_modified.notify (b);
13955 return;
13956 }
13957
13958 error (_("No breakpoint number %d."), bptnum);
13959 }
13960
13961 /* Command to set ignore-count of breakpoint N to COUNT. */
13962
13963 static void
13964 ignore_command (const char *args, int from_tty)
13965 {
13966 const char *p = args;
13967 int num;
13968
13969 if (p == 0)
13970 error_no_arg (_("a breakpoint number"));
13971
13972 num = get_number (&p);
13973 if (num == 0)
13974 error (_("bad breakpoint number: '%s'"), args);
13975 if (*p == 0)
13976 error (_("Second argument (specified ignore-count) is missing."));
13977
13978 set_ignore_count (num,
13979 longest_to_int (value_as_long (parse_and_eval (p))),
13980 from_tty);
13981 if (from_tty)
13982 printf_filtered ("\n");
13983 }
13984 \f
13985
13986 /* Call FUNCTION on each of the breakpoints with numbers in the range
13987 defined by BP_NUM_RANGE (an inclusive range). */
13988
13989 static void
13990 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13991 gdb::function_view<void (breakpoint *)> function)
13992 {
13993 if (bp_num_range.first == 0)
13994 {
13995 warning (_("bad breakpoint number at or near '%d'"),
13996 bp_num_range.first);
13997 }
13998 else
13999 {
14000 struct breakpoint *b, *tmp;
14001
14002 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14003 {
14004 bool match = false;
14005
14006 ALL_BREAKPOINTS_SAFE (b, tmp)
14007 if (b->number == i)
14008 {
14009 match = true;
14010 function (b);
14011 break;
14012 }
14013 if (!match)
14014 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14015 }
14016 }
14017 }
14018
14019 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14020 ARGS. */
14021
14022 static void
14023 map_breakpoint_numbers (const char *args,
14024 gdb::function_view<void (breakpoint *)> function)
14025 {
14026 if (args == NULL || *args == '\0')
14027 error_no_arg (_("one or more breakpoint numbers"));
14028
14029 number_or_range_parser parser (args);
14030
14031 while (!parser.finished ())
14032 {
14033 int num = parser.get_number ();
14034 map_breakpoint_number_range (std::make_pair (num, num), function);
14035 }
14036 }
14037
14038 /* Return the breakpoint location structure corresponding to the
14039 BP_NUM and LOC_NUM values. */
14040
14041 static struct bp_location *
14042 find_location_by_number (int bp_num, int loc_num)
14043 {
14044 struct breakpoint *b;
14045
14046 ALL_BREAKPOINTS (b)
14047 if (b->number == bp_num)
14048 {
14049 break;
14050 }
14051
14052 if (!b || b->number != bp_num)
14053 error (_("Bad breakpoint number '%d'"), bp_num);
14054
14055 if (loc_num == 0)
14056 error (_("Bad breakpoint location number '%d'"), loc_num);
14057
14058 int n = 0;
14059 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14060 if (++n == loc_num)
14061 return loc;
14062
14063 error (_("Bad breakpoint location number '%d'"), loc_num);
14064 }
14065
14066 /* Modes of operation for extract_bp_num. */
14067 enum class extract_bp_kind
14068 {
14069 /* Extracting a breakpoint number. */
14070 bp,
14071
14072 /* Extracting a location number. */
14073 loc,
14074 };
14075
14076 /* Extract a breakpoint or location number (as determined by KIND)
14077 from the string starting at START. TRAILER is a character which
14078 can be found after the number. If you don't want a trailer, use
14079 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14080 string. This always returns a positive integer. */
14081
14082 static int
14083 extract_bp_num (extract_bp_kind kind, const char *start,
14084 int trailer, const char **end_out = NULL)
14085 {
14086 const char *end = start;
14087 int num = get_number_trailer (&end, trailer);
14088 if (num < 0)
14089 error (kind == extract_bp_kind::bp
14090 ? _("Negative breakpoint number '%.*s'")
14091 : _("Negative breakpoint location number '%.*s'"),
14092 int (end - start), start);
14093 if (num == 0)
14094 error (kind == extract_bp_kind::bp
14095 ? _("Bad breakpoint number '%.*s'")
14096 : _("Bad breakpoint location number '%.*s'"),
14097 int (end - start), start);
14098
14099 if (end_out != NULL)
14100 *end_out = end;
14101 return num;
14102 }
14103
14104 /* Extract a breakpoint or location range (as determined by KIND) in
14105 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14106 representing the (inclusive) range. The returned pair's elements
14107 are always positive integers. */
14108
14109 static std::pair<int, int>
14110 extract_bp_or_bp_range (extract_bp_kind kind,
14111 const std::string &arg,
14112 std::string::size_type arg_offset)
14113 {
14114 std::pair<int, int> range;
14115 const char *bp_loc = &arg[arg_offset];
14116 std::string::size_type dash = arg.find ('-', arg_offset);
14117 if (dash != std::string::npos)
14118 {
14119 /* bp_loc is a range (x-z). */
14120 if (arg.length () == dash + 1)
14121 error (kind == extract_bp_kind::bp
14122 ? _("Bad breakpoint number at or near: '%s'")
14123 : _("Bad breakpoint location number at or near: '%s'"),
14124 bp_loc);
14125
14126 const char *end;
14127 const char *start_first = bp_loc;
14128 const char *start_second = &arg[dash + 1];
14129 range.first = extract_bp_num (kind, start_first, '-');
14130 range.second = extract_bp_num (kind, start_second, '\0', &end);
14131
14132 if (range.first > range.second)
14133 error (kind == extract_bp_kind::bp
14134 ? _("Inverted breakpoint range at '%.*s'")
14135 : _("Inverted breakpoint location range at '%.*s'"),
14136 int (end - start_first), start_first);
14137 }
14138 else
14139 {
14140 /* bp_loc is a single value. */
14141 range.first = extract_bp_num (kind, bp_loc, '\0');
14142 range.second = range.first;
14143 }
14144 return range;
14145 }
14146
14147 /* Extract the breakpoint/location range specified by ARG. Returns
14148 the breakpoint range in BP_NUM_RANGE, and the location range in
14149 BP_LOC_RANGE.
14150
14151 ARG may be in any of the following forms:
14152
14153 x where 'x' is a breakpoint number.
14154 x-y where 'x' and 'y' specify a breakpoint numbers range.
14155 x.y where 'x' is a breakpoint number and 'y' a location number.
14156 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14157 location number range.
14158 */
14159
14160 static void
14161 extract_bp_number_and_location (const std::string &arg,
14162 std::pair<int, int> &bp_num_range,
14163 std::pair<int, int> &bp_loc_range)
14164 {
14165 std::string::size_type dot = arg.find ('.');
14166
14167 if (dot != std::string::npos)
14168 {
14169 /* Handle 'x.y' and 'x.y-z' cases. */
14170
14171 if (arg.length () == dot + 1 || dot == 0)
14172 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14173
14174 bp_num_range.first
14175 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14176 bp_num_range.second = bp_num_range.first;
14177
14178 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14179 arg, dot + 1);
14180 }
14181 else
14182 {
14183 /* Handle x and x-y cases. */
14184
14185 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14186 bp_loc_range.first = 0;
14187 bp_loc_range.second = 0;
14188 }
14189 }
14190
14191 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14192 specifies whether to enable or disable. */
14193
14194 static void
14195 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14196 {
14197 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14198 if (loc != NULL)
14199 {
14200 if (loc->enabled != enable)
14201 {
14202 loc->enabled = enable;
14203 mark_breakpoint_location_modified (loc);
14204 }
14205 if (target_supports_enable_disable_tracepoint ()
14206 && current_trace_status ()->running && loc->owner
14207 && is_tracepoint (loc->owner))
14208 target_disable_tracepoint (loc);
14209 }
14210 update_global_location_list (UGLL_DONT_INSERT);
14211
14212 gdb::observers::breakpoint_modified.notify (loc->owner);
14213 }
14214
14215 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14216 number of the breakpoint, and BP_LOC_RANGE specifies the
14217 (inclusive) range of location numbers of that breakpoint to
14218 enable/disable. ENABLE specifies whether to enable or disable the
14219 location. */
14220
14221 static void
14222 enable_disable_breakpoint_location_range (int bp_num,
14223 std::pair<int, int> &bp_loc_range,
14224 bool enable)
14225 {
14226 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14227 enable_disable_bp_num_loc (bp_num, i, enable);
14228 }
14229
14230 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14231 If from_tty is nonzero, it prints a message to that effect,
14232 which ends with a period (no newline). */
14233
14234 void
14235 disable_breakpoint (struct breakpoint *bpt)
14236 {
14237 /* Never disable a watchpoint scope breakpoint; we want to
14238 hit them when we leave scope so we can delete both the
14239 watchpoint and its scope breakpoint at that time. */
14240 if (bpt->type == bp_watchpoint_scope)
14241 return;
14242
14243 bpt->enable_state = bp_disabled;
14244
14245 /* Mark breakpoint locations modified. */
14246 mark_breakpoint_modified (bpt);
14247
14248 if (target_supports_enable_disable_tracepoint ()
14249 && current_trace_status ()->running && is_tracepoint (bpt))
14250 {
14251 struct bp_location *location;
14252
14253 for (location = bpt->loc; location; location = location->next)
14254 target_disable_tracepoint (location);
14255 }
14256
14257 update_global_location_list (UGLL_DONT_INSERT);
14258
14259 gdb::observers::breakpoint_modified.notify (bpt);
14260 }
14261
14262 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14263 specified in ARGS. ARGS may be in any of the formats handled by
14264 extract_bp_number_and_location. ENABLE specifies whether to enable
14265 or disable the breakpoints/locations. */
14266
14267 static void
14268 enable_disable_command (const char *args, int from_tty, bool enable)
14269 {
14270 if (args == 0)
14271 {
14272 struct breakpoint *bpt;
14273
14274 ALL_BREAKPOINTS (bpt)
14275 if (user_breakpoint_p (bpt))
14276 {
14277 if (enable)
14278 enable_breakpoint (bpt);
14279 else
14280 disable_breakpoint (bpt);
14281 }
14282 }
14283 else
14284 {
14285 std::string num = extract_arg (&args);
14286
14287 while (!num.empty ())
14288 {
14289 std::pair<int, int> bp_num_range, bp_loc_range;
14290
14291 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14292
14293 if (bp_loc_range.first == bp_loc_range.second
14294 && bp_loc_range.first == 0)
14295 {
14296 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14297 map_breakpoint_number_range (bp_num_range,
14298 enable
14299 ? enable_breakpoint
14300 : disable_breakpoint);
14301 }
14302 else
14303 {
14304 /* Handle breakpoint ids with formats 'x.y' or
14305 'x.y-z'. */
14306 enable_disable_breakpoint_location_range
14307 (bp_num_range.first, bp_loc_range, enable);
14308 }
14309 num = extract_arg (&args);
14310 }
14311 }
14312 }
14313
14314 /* The disable command disables the specified breakpoints/locations
14315 (or all defined breakpoints) so they're no longer effective in
14316 stopping the inferior. ARGS may be in any of the forms defined in
14317 extract_bp_number_and_location. */
14318
14319 static void
14320 disable_command (const char *args, int from_tty)
14321 {
14322 enable_disable_command (args, from_tty, false);
14323 }
14324
14325 static void
14326 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14327 int count)
14328 {
14329 int target_resources_ok;
14330
14331 if (bpt->type == bp_hardware_breakpoint)
14332 {
14333 int i;
14334 i = hw_breakpoint_used_count ();
14335 target_resources_ok =
14336 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14337 i + 1, 0);
14338 if (target_resources_ok == 0)
14339 error (_("No hardware breakpoint support in the target."));
14340 else if (target_resources_ok < 0)
14341 error (_("Hardware breakpoints used exceeds limit."));
14342 }
14343
14344 if (is_watchpoint (bpt))
14345 {
14346 /* Initialize it just to avoid a GCC false warning. */
14347 enum enable_state orig_enable_state = bp_disabled;
14348
14349 TRY
14350 {
14351 struct watchpoint *w = (struct watchpoint *) bpt;
14352
14353 orig_enable_state = bpt->enable_state;
14354 bpt->enable_state = bp_enabled;
14355 update_watchpoint (w, 1 /* reparse */);
14356 }
14357 CATCH (e, RETURN_MASK_ALL)
14358 {
14359 bpt->enable_state = orig_enable_state;
14360 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14361 bpt->number);
14362 return;
14363 }
14364 END_CATCH
14365 }
14366
14367 bpt->enable_state = bp_enabled;
14368
14369 /* Mark breakpoint locations modified. */
14370 mark_breakpoint_modified (bpt);
14371
14372 if (target_supports_enable_disable_tracepoint ()
14373 && current_trace_status ()->running && is_tracepoint (bpt))
14374 {
14375 struct bp_location *location;
14376
14377 for (location = bpt->loc; location; location = location->next)
14378 target_enable_tracepoint (location);
14379 }
14380
14381 bpt->disposition = disposition;
14382 bpt->enable_count = count;
14383 update_global_location_list (UGLL_MAY_INSERT);
14384
14385 gdb::observers::breakpoint_modified.notify (bpt);
14386 }
14387
14388
14389 void
14390 enable_breakpoint (struct breakpoint *bpt)
14391 {
14392 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14393 }
14394
14395 /* The enable command enables the specified breakpoints/locations (or
14396 all defined breakpoints) so they once again become (or continue to
14397 be) effective in stopping the inferior. ARGS may be in any of the
14398 forms defined in extract_bp_number_and_location. */
14399
14400 static void
14401 enable_command (const char *args, int from_tty)
14402 {
14403 enable_disable_command (args, from_tty, true);
14404 }
14405
14406 static void
14407 enable_once_command (const char *args, int from_tty)
14408 {
14409 map_breakpoint_numbers
14410 (args, [&] (breakpoint *b)
14411 {
14412 iterate_over_related_breakpoints
14413 (b, [&] (breakpoint *bpt)
14414 {
14415 enable_breakpoint_disp (bpt, disp_disable, 1);
14416 });
14417 });
14418 }
14419
14420 static void
14421 enable_count_command (const char *args, int from_tty)
14422 {
14423 int count;
14424
14425 if (args == NULL)
14426 error_no_arg (_("hit count"));
14427
14428 count = get_number (&args);
14429
14430 map_breakpoint_numbers
14431 (args, [&] (breakpoint *b)
14432 {
14433 iterate_over_related_breakpoints
14434 (b, [&] (breakpoint *bpt)
14435 {
14436 enable_breakpoint_disp (bpt, disp_disable, count);
14437 });
14438 });
14439 }
14440
14441 static void
14442 enable_delete_command (const char *args, int from_tty)
14443 {
14444 map_breakpoint_numbers
14445 (args, [&] (breakpoint *b)
14446 {
14447 iterate_over_related_breakpoints
14448 (b, [&] (breakpoint *bpt)
14449 {
14450 enable_breakpoint_disp (bpt, disp_del, 1);
14451 });
14452 });
14453 }
14454 \f
14455 static void
14456 set_breakpoint_cmd (const char *args, int from_tty)
14457 {
14458 }
14459
14460 static void
14461 show_breakpoint_cmd (const char *args, int from_tty)
14462 {
14463 }
14464
14465 /* Invalidate last known value of any hardware watchpoint if
14466 the memory which that value represents has been written to by
14467 GDB itself. */
14468
14469 static void
14470 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14471 CORE_ADDR addr, ssize_t len,
14472 const bfd_byte *data)
14473 {
14474 struct breakpoint *bp;
14475
14476 ALL_BREAKPOINTS (bp)
14477 if (bp->enable_state == bp_enabled
14478 && bp->type == bp_hardware_watchpoint)
14479 {
14480 struct watchpoint *wp = (struct watchpoint *) bp;
14481
14482 if (wp->val_valid && wp->val != nullptr)
14483 {
14484 struct bp_location *loc;
14485
14486 for (loc = bp->loc; loc != NULL; loc = loc->next)
14487 if (loc->loc_type == bp_loc_hardware_watchpoint
14488 && loc->address + loc->length > addr
14489 && addr + len > loc->address)
14490 {
14491 wp->val = NULL;
14492 wp->val_valid = 0;
14493 }
14494 }
14495 }
14496 }
14497
14498 /* Create and insert a breakpoint for software single step. */
14499
14500 void
14501 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14502 const address_space *aspace,
14503 CORE_ADDR next_pc)
14504 {
14505 struct thread_info *tp = inferior_thread ();
14506 struct symtab_and_line sal;
14507 CORE_ADDR pc = next_pc;
14508
14509 if (tp->control.single_step_breakpoints == NULL)
14510 {
14511 tp->control.single_step_breakpoints
14512 = new_single_step_breakpoint (tp->global_num, gdbarch);
14513 }
14514
14515 sal = find_pc_line (pc, 0);
14516 sal.pc = pc;
14517 sal.section = find_pc_overlay (pc);
14518 sal.explicit_pc = 1;
14519 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14520
14521 update_global_location_list (UGLL_INSERT);
14522 }
14523
14524 /* Insert single step breakpoints according to the current state. */
14525
14526 int
14527 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14528 {
14529 struct regcache *regcache = get_current_regcache ();
14530 std::vector<CORE_ADDR> next_pcs;
14531
14532 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14533
14534 if (!next_pcs.empty ())
14535 {
14536 struct frame_info *frame = get_current_frame ();
14537 const address_space *aspace = get_frame_address_space (frame);
14538
14539 for (CORE_ADDR pc : next_pcs)
14540 insert_single_step_breakpoint (gdbarch, aspace, pc);
14541
14542 return 1;
14543 }
14544 else
14545 return 0;
14546 }
14547
14548 /* See breakpoint.h. */
14549
14550 int
14551 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14552 const address_space *aspace,
14553 CORE_ADDR pc)
14554 {
14555 struct bp_location *loc;
14556
14557 for (loc = bp->loc; loc != NULL; loc = loc->next)
14558 if (loc->inserted
14559 && breakpoint_location_address_match (loc, aspace, pc))
14560 return 1;
14561
14562 return 0;
14563 }
14564
14565 /* Check whether a software single-step breakpoint is inserted at
14566 PC. */
14567
14568 int
14569 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14570 CORE_ADDR pc)
14571 {
14572 struct breakpoint *bpt;
14573
14574 ALL_BREAKPOINTS (bpt)
14575 {
14576 if (bpt->type == bp_single_step
14577 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14578 return 1;
14579 }
14580 return 0;
14581 }
14582
14583 /* Tracepoint-specific operations. */
14584
14585 /* Set tracepoint count to NUM. */
14586 static void
14587 set_tracepoint_count (int num)
14588 {
14589 tracepoint_count = num;
14590 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14591 }
14592
14593 static void
14594 trace_command (const char *arg, int from_tty)
14595 {
14596 struct breakpoint_ops *ops;
14597
14598 event_location_up location = string_to_event_location (&arg,
14599 current_language);
14600 if (location != NULL
14601 && event_location_type (location.get ()) == PROBE_LOCATION)
14602 ops = &tracepoint_probe_breakpoint_ops;
14603 else
14604 ops = &tracepoint_breakpoint_ops;
14605
14606 create_breakpoint (get_current_arch (),
14607 location.get (),
14608 NULL, 0, arg, 1 /* parse arg */,
14609 0 /* tempflag */,
14610 bp_tracepoint /* type_wanted */,
14611 0 /* Ignore count */,
14612 pending_break_support,
14613 ops,
14614 from_tty,
14615 1 /* enabled */,
14616 0 /* internal */, 0);
14617 }
14618
14619 static void
14620 ftrace_command (const char *arg, int from_tty)
14621 {
14622 event_location_up location = string_to_event_location (&arg,
14623 current_language);
14624 create_breakpoint (get_current_arch (),
14625 location.get (),
14626 NULL, 0, arg, 1 /* parse arg */,
14627 0 /* tempflag */,
14628 bp_fast_tracepoint /* type_wanted */,
14629 0 /* Ignore count */,
14630 pending_break_support,
14631 &tracepoint_breakpoint_ops,
14632 from_tty,
14633 1 /* enabled */,
14634 0 /* internal */, 0);
14635 }
14636
14637 /* strace command implementation. Creates a static tracepoint. */
14638
14639 static void
14640 strace_command (const char *arg, int from_tty)
14641 {
14642 struct breakpoint_ops *ops;
14643 event_location_up location;
14644
14645 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14646 or with a normal static tracepoint. */
14647 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14648 {
14649 ops = &strace_marker_breakpoint_ops;
14650 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14651 }
14652 else
14653 {
14654 ops = &tracepoint_breakpoint_ops;
14655 location = string_to_event_location (&arg, current_language);
14656 }
14657
14658 create_breakpoint (get_current_arch (),
14659 location.get (),
14660 NULL, 0, arg, 1 /* parse arg */,
14661 0 /* tempflag */,
14662 bp_static_tracepoint /* type_wanted */,
14663 0 /* Ignore count */,
14664 pending_break_support,
14665 ops,
14666 from_tty,
14667 1 /* enabled */,
14668 0 /* internal */, 0);
14669 }
14670
14671 /* Set up a fake reader function that gets command lines from a linked
14672 list that was acquired during tracepoint uploading. */
14673
14674 static struct uploaded_tp *this_utp;
14675 static int next_cmd;
14676
14677 static char *
14678 read_uploaded_action (void)
14679 {
14680 char *rslt = nullptr;
14681
14682 if (next_cmd < this_utp->cmd_strings.size ())
14683 {
14684 rslt = this_utp->cmd_strings[next_cmd];
14685 next_cmd++;
14686 }
14687
14688 return rslt;
14689 }
14690
14691 /* Given information about a tracepoint as recorded on a target (which
14692 can be either a live system or a trace file), attempt to create an
14693 equivalent GDB tracepoint. This is not a reliable process, since
14694 the target does not necessarily have all the information used when
14695 the tracepoint was originally defined. */
14696
14697 struct tracepoint *
14698 create_tracepoint_from_upload (struct uploaded_tp *utp)
14699 {
14700 const char *addr_str;
14701 char small_buf[100];
14702 struct tracepoint *tp;
14703
14704 if (utp->at_string)
14705 addr_str = utp->at_string;
14706 else
14707 {
14708 /* In the absence of a source location, fall back to raw
14709 address. Since there is no way to confirm that the address
14710 means the same thing as when the trace was started, warn the
14711 user. */
14712 warning (_("Uploaded tracepoint %d has no "
14713 "source location, using raw address"),
14714 utp->number);
14715 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14716 addr_str = small_buf;
14717 }
14718
14719 /* There's not much we can do with a sequence of bytecodes. */
14720 if (utp->cond && !utp->cond_string)
14721 warning (_("Uploaded tracepoint %d condition "
14722 "has no source form, ignoring it"),
14723 utp->number);
14724
14725 event_location_up location = string_to_event_location (&addr_str,
14726 current_language);
14727 if (!create_breakpoint (get_current_arch (),
14728 location.get (),
14729 utp->cond_string, -1, addr_str,
14730 0 /* parse cond/thread */,
14731 0 /* tempflag */,
14732 utp->type /* type_wanted */,
14733 0 /* Ignore count */,
14734 pending_break_support,
14735 &tracepoint_breakpoint_ops,
14736 0 /* from_tty */,
14737 utp->enabled /* enabled */,
14738 0 /* internal */,
14739 CREATE_BREAKPOINT_FLAGS_INSERTED))
14740 return NULL;
14741
14742 /* Get the tracepoint we just created. */
14743 tp = get_tracepoint (tracepoint_count);
14744 gdb_assert (tp != NULL);
14745
14746 if (utp->pass > 0)
14747 {
14748 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14749 tp->number);
14750
14751 trace_pass_command (small_buf, 0);
14752 }
14753
14754 /* If we have uploaded versions of the original commands, set up a
14755 special-purpose "reader" function and call the usual command line
14756 reader, then pass the result to the breakpoint command-setting
14757 function. */
14758 if (!utp->cmd_strings.empty ())
14759 {
14760 counted_command_line cmd_list;
14761
14762 this_utp = utp;
14763 next_cmd = 0;
14764
14765 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14766
14767 breakpoint_set_commands (tp, std::move (cmd_list));
14768 }
14769 else if (!utp->actions.empty ()
14770 || !utp->step_actions.empty ())
14771 warning (_("Uploaded tracepoint %d actions "
14772 "have no source form, ignoring them"),
14773 utp->number);
14774
14775 /* Copy any status information that might be available. */
14776 tp->hit_count = utp->hit_count;
14777 tp->traceframe_usage = utp->traceframe_usage;
14778
14779 return tp;
14780 }
14781
14782 /* Print information on tracepoint number TPNUM_EXP, or all if
14783 omitted. */
14784
14785 static void
14786 info_tracepoints_command (const char *args, int from_tty)
14787 {
14788 struct ui_out *uiout = current_uiout;
14789 int num_printed;
14790
14791 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14792
14793 if (num_printed == 0)
14794 {
14795 if (args == NULL || *args == '\0')
14796 uiout->message ("No tracepoints.\n");
14797 else
14798 uiout->message ("No tracepoint matching '%s'.\n", args);
14799 }
14800
14801 default_collect_info ();
14802 }
14803
14804 /* The 'enable trace' command enables tracepoints.
14805 Not supported by all targets. */
14806 static void
14807 enable_trace_command (const char *args, int from_tty)
14808 {
14809 enable_command (args, from_tty);
14810 }
14811
14812 /* The 'disable trace' command disables tracepoints.
14813 Not supported by all targets. */
14814 static void
14815 disable_trace_command (const char *args, int from_tty)
14816 {
14817 disable_command (args, from_tty);
14818 }
14819
14820 /* Remove a tracepoint (or all if no argument). */
14821 static void
14822 delete_trace_command (const char *arg, int from_tty)
14823 {
14824 struct breakpoint *b, *b_tmp;
14825
14826 dont_repeat ();
14827
14828 if (arg == 0)
14829 {
14830 int breaks_to_delete = 0;
14831
14832 /* Delete all breakpoints if no argument.
14833 Do not delete internal or call-dummy breakpoints, these
14834 have to be deleted with an explicit breakpoint number
14835 argument. */
14836 ALL_TRACEPOINTS (b)
14837 if (is_tracepoint (b) && user_breakpoint_p (b))
14838 {
14839 breaks_to_delete = 1;
14840 break;
14841 }
14842
14843 /* Ask user only if there are some breakpoints to delete. */
14844 if (!from_tty
14845 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14846 {
14847 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14848 if (is_tracepoint (b) && user_breakpoint_p (b))
14849 delete_breakpoint (b);
14850 }
14851 }
14852 else
14853 map_breakpoint_numbers
14854 (arg, [&] (breakpoint *br)
14855 {
14856 iterate_over_related_breakpoints (br, delete_breakpoint);
14857 });
14858 }
14859
14860 /* Helper function for trace_pass_command. */
14861
14862 static void
14863 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14864 {
14865 tp->pass_count = count;
14866 gdb::observers::breakpoint_modified.notify (tp);
14867 if (from_tty)
14868 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14869 tp->number, count);
14870 }
14871
14872 /* Set passcount for tracepoint.
14873
14874 First command argument is passcount, second is tracepoint number.
14875 If tracepoint number omitted, apply to most recently defined.
14876 Also accepts special argument "all". */
14877
14878 static void
14879 trace_pass_command (const char *args, int from_tty)
14880 {
14881 struct tracepoint *t1;
14882 ULONGEST count;
14883
14884 if (args == 0 || *args == 0)
14885 error (_("passcount command requires an "
14886 "argument (count + optional TP num)"));
14887
14888 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14889
14890 args = skip_spaces (args);
14891 if (*args && strncasecmp (args, "all", 3) == 0)
14892 {
14893 struct breakpoint *b;
14894
14895 args += 3; /* Skip special argument "all". */
14896 if (*args)
14897 error (_("Junk at end of arguments."));
14898
14899 ALL_TRACEPOINTS (b)
14900 {
14901 t1 = (struct tracepoint *) b;
14902 trace_pass_set_count (t1, count, from_tty);
14903 }
14904 }
14905 else if (*args == '\0')
14906 {
14907 t1 = get_tracepoint_by_number (&args, NULL);
14908 if (t1)
14909 trace_pass_set_count (t1, count, from_tty);
14910 }
14911 else
14912 {
14913 number_or_range_parser parser (args);
14914 while (!parser.finished ())
14915 {
14916 t1 = get_tracepoint_by_number (&args, &parser);
14917 if (t1)
14918 trace_pass_set_count (t1, count, from_tty);
14919 }
14920 }
14921 }
14922
14923 struct tracepoint *
14924 get_tracepoint (int num)
14925 {
14926 struct breakpoint *t;
14927
14928 ALL_TRACEPOINTS (t)
14929 if (t->number == num)
14930 return (struct tracepoint *) t;
14931
14932 return NULL;
14933 }
14934
14935 /* Find the tracepoint with the given target-side number (which may be
14936 different from the tracepoint number after disconnecting and
14937 reconnecting). */
14938
14939 struct tracepoint *
14940 get_tracepoint_by_number_on_target (int num)
14941 {
14942 struct breakpoint *b;
14943
14944 ALL_TRACEPOINTS (b)
14945 {
14946 struct tracepoint *t = (struct tracepoint *) b;
14947
14948 if (t->number_on_target == num)
14949 return t;
14950 }
14951
14952 return NULL;
14953 }
14954
14955 /* Utility: parse a tracepoint number and look it up in the list.
14956 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14957 If the argument is missing, the most recent tracepoint
14958 (tracepoint_count) is returned. */
14959
14960 struct tracepoint *
14961 get_tracepoint_by_number (const char **arg,
14962 number_or_range_parser *parser)
14963 {
14964 struct breakpoint *t;
14965 int tpnum;
14966 const char *instring = arg == NULL ? NULL : *arg;
14967
14968 if (parser != NULL)
14969 {
14970 gdb_assert (!parser->finished ());
14971 tpnum = parser->get_number ();
14972 }
14973 else if (arg == NULL || *arg == NULL || ! **arg)
14974 tpnum = tracepoint_count;
14975 else
14976 tpnum = get_number (arg);
14977
14978 if (tpnum <= 0)
14979 {
14980 if (instring && *instring)
14981 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14982 instring);
14983 else
14984 printf_filtered (_("No previous tracepoint\n"));
14985 return NULL;
14986 }
14987
14988 ALL_TRACEPOINTS (t)
14989 if (t->number == tpnum)
14990 {
14991 return (struct tracepoint *) t;
14992 }
14993
14994 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14995 return NULL;
14996 }
14997
14998 void
14999 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15000 {
15001 if (b->thread != -1)
15002 fprintf_unfiltered (fp, " thread %d", b->thread);
15003
15004 if (b->task != 0)
15005 fprintf_unfiltered (fp, " task %d", b->task);
15006
15007 fprintf_unfiltered (fp, "\n");
15008 }
15009
15010 /* Save information on user settable breakpoints (watchpoints, etc) to
15011 a new script file named FILENAME. If FILTER is non-NULL, call it
15012 on each breakpoint and only include the ones for which it returns
15013 non-zero. */
15014
15015 static void
15016 save_breakpoints (const char *filename, int from_tty,
15017 int (*filter) (const struct breakpoint *))
15018 {
15019 struct breakpoint *tp;
15020 int any = 0;
15021 int extra_trace_bits = 0;
15022
15023 if (filename == 0 || *filename == 0)
15024 error (_("Argument required (file name in which to save)"));
15025
15026 /* See if we have anything to save. */
15027 ALL_BREAKPOINTS (tp)
15028 {
15029 /* Skip internal and momentary breakpoints. */
15030 if (!user_breakpoint_p (tp))
15031 continue;
15032
15033 /* If we have a filter, only save the breakpoints it accepts. */
15034 if (filter && !filter (tp))
15035 continue;
15036
15037 any = 1;
15038
15039 if (is_tracepoint (tp))
15040 {
15041 extra_trace_bits = 1;
15042
15043 /* We can stop searching. */
15044 break;
15045 }
15046 }
15047
15048 if (!any)
15049 {
15050 warning (_("Nothing to save."));
15051 return;
15052 }
15053
15054 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15055
15056 stdio_file fp;
15057
15058 if (!fp.open (expanded_filename.get (), "w"))
15059 error (_("Unable to open file '%s' for saving (%s)"),
15060 expanded_filename.get (), safe_strerror (errno));
15061
15062 if (extra_trace_bits)
15063 save_trace_state_variables (&fp);
15064
15065 ALL_BREAKPOINTS (tp)
15066 {
15067 /* Skip internal and momentary breakpoints. */
15068 if (!user_breakpoint_p (tp))
15069 continue;
15070
15071 /* If we have a filter, only save the breakpoints it accepts. */
15072 if (filter && !filter (tp))
15073 continue;
15074
15075 tp->ops->print_recreate (tp, &fp);
15076
15077 /* Note, we can't rely on tp->number for anything, as we can't
15078 assume the recreated breakpoint numbers will match. Use $bpnum
15079 instead. */
15080
15081 if (tp->cond_string)
15082 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15083
15084 if (tp->ignore_count)
15085 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15086
15087 if (tp->type != bp_dprintf && tp->commands)
15088 {
15089 fp.puts (" commands\n");
15090
15091 current_uiout->redirect (&fp);
15092 TRY
15093 {
15094 print_command_lines (current_uiout, tp->commands.get (), 2);
15095 }
15096 CATCH (ex, RETURN_MASK_ALL)
15097 {
15098 current_uiout->redirect (NULL);
15099 throw_exception (ex);
15100 }
15101 END_CATCH
15102
15103 current_uiout->redirect (NULL);
15104 fp.puts (" end\n");
15105 }
15106
15107 if (tp->enable_state == bp_disabled)
15108 fp.puts ("disable $bpnum\n");
15109
15110 /* If this is a multi-location breakpoint, check if the locations
15111 should be individually disabled. Watchpoint locations are
15112 special, and not user visible. */
15113 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15114 {
15115 struct bp_location *loc;
15116 int n = 1;
15117
15118 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15119 if (!loc->enabled)
15120 fp.printf ("disable $bpnum.%d\n", n);
15121 }
15122 }
15123
15124 if (extra_trace_bits && *default_collect)
15125 fp.printf ("set default-collect %s\n", default_collect);
15126
15127 if (from_tty)
15128 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15129 }
15130
15131 /* The `save breakpoints' command. */
15132
15133 static void
15134 save_breakpoints_command (const char *args, int from_tty)
15135 {
15136 save_breakpoints (args, from_tty, NULL);
15137 }
15138
15139 /* The `save tracepoints' command. */
15140
15141 static void
15142 save_tracepoints_command (const char *args, int from_tty)
15143 {
15144 save_breakpoints (args, from_tty, is_tracepoint);
15145 }
15146
15147 /* Create a vector of all tracepoints. */
15148
15149 std::vector<breakpoint *>
15150 all_tracepoints (void)
15151 {
15152 std::vector<breakpoint *> tp_vec;
15153 struct breakpoint *tp;
15154
15155 ALL_TRACEPOINTS (tp)
15156 {
15157 tp_vec.push_back (tp);
15158 }
15159
15160 return tp_vec;
15161 }
15162
15163 \f
15164 /* This help string is used to consolidate all the help string for specifying
15165 locations used by several commands. */
15166
15167 #define LOCATION_HELP_STRING \
15168 "Linespecs are colon-separated lists of location parameters, such as\n\
15169 source filename, function name, label name, and line number.\n\
15170 Example: To specify the start of a label named \"the_top\" in the\n\
15171 function \"fact\" in the file \"factorial.c\", use\n\
15172 \"factorial.c:fact:the_top\".\n\
15173 \n\
15174 Address locations begin with \"*\" and specify an exact address in the\n\
15175 program. Example: To specify the fourth byte past the start function\n\
15176 \"main\", use \"*main + 4\".\n\
15177 \n\
15178 Explicit locations are similar to linespecs but use an option/argument\n\
15179 syntax to specify location parameters.\n\
15180 Example: To specify the start of the label named \"the_top\" in the\n\
15181 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15182 -function fact -label the_top\".\n\
15183 \n\
15184 By default, a specified function is matched against the program's\n\
15185 functions in all scopes. For C++, this means in all namespaces and\n\
15186 classes. For Ada, this means in all packages. E.g., in C++,\n\
15187 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15188 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15189 specified name as a complete fully-qualified name instead.\n"
15190
15191 /* This help string is used for the break, hbreak, tbreak and thbreak
15192 commands. It is defined as a macro to prevent duplication.
15193 COMMAND should be a string constant containing the name of the
15194 command. */
15195
15196 #define BREAK_ARGS_HELP(command) \
15197 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15198 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15199 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15200 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15201 `-probe-dtrace' (for a DTrace probe).\n\
15202 LOCATION may be a linespec, address, or explicit location as described\n\
15203 below.\n\
15204 \n\
15205 With no LOCATION, uses current execution address of the selected\n\
15206 stack frame. This is useful for breaking on return to a stack frame.\n\
15207 \n\
15208 THREADNUM is the number from \"info threads\".\n\
15209 CONDITION is a boolean expression.\n\
15210 \n" LOCATION_HELP_STRING "\n\
15211 Multiple breakpoints at one place are permitted, and useful if their\n\
15212 conditions are different.\n\
15213 \n\
15214 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15215
15216 /* List of subcommands for "catch". */
15217 static struct cmd_list_element *catch_cmdlist;
15218
15219 /* List of subcommands for "tcatch". */
15220 static struct cmd_list_element *tcatch_cmdlist;
15221
15222 void
15223 add_catch_command (const char *name, const char *docstring,
15224 cmd_const_sfunc_ftype *sfunc,
15225 completer_ftype *completer,
15226 void *user_data_catch,
15227 void *user_data_tcatch)
15228 {
15229 struct cmd_list_element *command;
15230
15231 command = add_cmd (name, class_breakpoint, docstring,
15232 &catch_cmdlist);
15233 set_cmd_sfunc (command, sfunc);
15234 set_cmd_context (command, user_data_catch);
15235 set_cmd_completer (command, completer);
15236
15237 command = add_cmd (name, class_breakpoint, docstring,
15238 &tcatch_cmdlist);
15239 set_cmd_sfunc (command, sfunc);
15240 set_cmd_context (command, user_data_tcatch);
15241 set_cmd_completer (command, completer);
15242 }
15243
15244 static void
15245 save_command (const char *arg, int from_tty)
15246 {
15247 printf_unfiltered (_("\"save\" must be followed by "
15248 "the name of a save subcommand.\n"));
15249 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15250 }
15251
15252 struct breakpoint *
15253 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15254 void *data)
15255 {
15256 struct breakpoint *b, *b_tmp;
15257
15258 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15259 {
15260 if ((*callback) (b, data))
15261 return b;
15262 }
15263
15264 return NULL;
15265 }
15266
15267 /* Zero if any of the breakpoint's locations could be a location where
15268 functions have been inlined, nonzero otherwise. */
15269
15270 static int
15271 is_non_inline_function (struct breakpoint *b)
15272 {
15273 /* The shared library event breakpoint is set on the address of a
15274 non-inline function. */
15275 if (b->type == bp_shlib_event)
15276 return 1;
15277
15278 return 0;
15279 }
15280
15281 /* Nonzero if the specified PC cannot be a location where functions
15282 have been inlined. */
15283
15284 int
15285 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15286 const struct target_waitstatus *ws)
15287 {
15288 struct breakpoint *b;
15289 struct bp_location *bl;
15290
15291 ALL_BREAKPOINTS (b)
15292 {
15293 if (!is_non_inline_function (b))
15294 continue;
15295
15296 for (bl = b->loc; bl != NULL; bl = bl->next)
15297 {
15298 if (!bl->shlib_disabled
15299 && bpstat_check_location (bl, aspace, pc, ws))
15300 return 1;
15301 }
15302 }
15303
15304 return 0;
15305 }
15306
15307 /* Remove any references to OBJFILE which is going to be freed. */
15308
15309 void
15310 breakpoint_free_objfile (struct objfile *objfile)
15311 {
15312 struct bp_location **locp, *loc;
15313
15314 ALL_BP_LOCATIONS (loc, locp)
15315 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15316 loc->symtab = NULL;
15317 }
15318
15319 void
15320 initialize_breakpoint_ops (void)
15321 {
15322 static int initialized = 0;
15323
15324 struct breakpoint_ops *ops;
15325
15326 if (initialized)
15327 return;
15328 initialized = 1;
15329
15330 /* The breakpoint_ops structure to be inherit by all kinds of
15331 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15332 internal and momentary breakpoints, etc.). */
15333 ops = &bkpt_base_breakpoint_ops;
15334 *ops = base_breakpoint_ops;
15335 ops->re_set = bkpt_re_set;
15336 ops->insert_location = bkpt_insert_location;
15337 ops->remove_location = bkpt_remove_location;
15338 ops->breakpoint_hit = bkpt_breakpoint_hit;
15339 ops->create_sals_from_location = bkpt_create_sals_from_location;
15340 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15341 ops->decode_location = bkpt_decode_location;
15342
15343 /* The breakpoint_ops structure to be used in regular breakpoints. */
15344 ops = &bkpt_breakpoint_ops;
15345 *ops = bkpt_base_breakpoint_ops;
15346 ops->re_set = bkpt_re_set;
15347 ops->resources_needed = bkpt_resources_needed;
15348 ops->print_it = bkpt_print_it;
15349 ops->print_mention = bkpt_print_mention;
15350 ops->print_recreate = bkpt_print_recreate;
15351
15352 /* Ranged breakpoints. */
15353 ops = &ranged_breakpoint_ops;
15354 *ops = bkpt_breakpoint_ops;
15355 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15356 ops->resources_needed = resources_needed_ranged_breakpoint;
15357 ops->print_it = print_it_ranged_breakpoint;
15358 ops->print_one = print_one_ranged_breakpoint;
15359 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15360 ops->print_mention = print_mention_ranged_breakpoint;
15361 ops->print_recreate = print_recreate_ranged_breakpoint;
15362
15363 /* Internal breakpoints. */
15364 ops = &internal_breakpoint_ops;
15365 *ops = bkpt_base_breakpoint_ops;
15366 ops->re_set = internal_bkpt_re_set;
15367 ops->check_status = internal_bkpt_check_status;
15368 ops->print_it = internal_bkpt_print_it;
15369 ops->print_mention = internal_bkpt_print_mention;
15370
15371 /* Momentary breakpoints. */
15372 ops = &momentary_breakpoint_ops;
15373 *ops = bkpt_base_breakpoint_ops;
15374 ops->re_set = momentary_bkpt_re_set;
15375 ops->check_status = momentary_bkpt_check_status;
15376 ops->print_it = momentary_bkpt_print_it;
15377 ops->print_mention = momentary_bkpt_print_mention;
15378
15379 /* Probe breakpoints. */
15380 ops = &bkpt_probe_breakpoint_ops;
15381 *ops = bkpt_breakpoint_ops;
15382 ops->insert_location = bkpt_probe_insert_location;
15383 ops->remove_location = bkpt_probe_remove_location;
15384 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15385 ops->decode_location = bkpt_probe_decode_location;
15386
15387 /* Watchpoints. */
15388 ops = &watchpoint_breakpoint_ops;
15389 *ops = base_breakpoint_ops;
15390 ops->re_set = re_set_watchpoint;
15391 ops->insert_location = insert_watchpoint;
15392 ops->remove_location = remove_watchpoint;
15393 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15394 ops->check_status = check_status_watchpoint;
15395 ops->resources_needed = resources_needed_watchpoint;
15396 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15397 ops->print_it = print_it_watchpoint;
15398 ops->print_mention = print_mention_watchpoint;
15399 ops->print_recreate = print_recreate_watchpoint;
15400 ops->explains_signal = explains_signal_watchpoint;
15401
15402 /* Masked watchpoints. */
15403 ops = &masked_watchpoint_breakpoint_ops;
15404 *ops = watchpoint_breakpoint_ops;
15405 ops->insert_location = insert_masked_watchpoint;
15406 ops->remove_location = remove_masked_watchpoint;
15407 ops->resources_needed = resources_needed_masked_watchpoint;
15408 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15409 ops->print_it = print_it_masked_watchpoint;
15410 ops->print_one_detail = print_one_detail_masked_watchpoint;
15411 ops->print_mention = print_mention_masked_watchpoint;
15412 ops->print_recreate = print_recreate_masked_watchpoint;
15413
15414 /* Tracepoints. */
15415 ops = &tracepoint_breakpoint_ops;
15416 *ops = base_breakpoint_ops;
15417 ops->re_set = tracepoint_re_set;
15418 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15419 ops->print_one_detail = tracepoint_print_one_detail;
15420 ops->print_mention = tracepoint_print_mention;
15421 ops->print_recreate = tracepoint_print_recreate;
15422 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15423 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15424 ops->decode_location = tracepoint_decode_location;
15425
15426 /* Probe tracepoints. */
15427 ops = &tracepoint_probe_breakpoint_ops;
15428 *ops = tracepoint_breakpoint_ops;
15429 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15430 ops->decode_location = tracepoint_probe_decode_location;
15431
15432 /* Static tracepoints with marker (`-m'). */
15433 ops = &strace_marker_breakpoint_ops;
15434 *ops = tracepoint_breakpoint_ops;
15435 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15436 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15437 ops->decode_location = strace_marker_decode_location;
15438
15439 /* Fork catchpoints. */
15440 ops = &catch_fork_breakpoint_ops;
15441 *ops = base_breakpoint_ops;
15442 ops->insert_location = insert_catch_fork;
15443 ops->remove_location = remove_catch_fork;
15444 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15445 ops->print_it = print_it_catch_fork;
15446 ops->print_one = print_one_catch_fork;
15447 ops->print_mention = print_mention_catch_fork;
15448 ops->print_recreate = print_recreate_catch_fork;
15449
15450 /* Vfork catchpoints. */
15451 ops = &catch_vfork_breakpoint_ops;
15452 *ops = base_breakpoint_ops;
15453 ops->insert_location = insert_catch_vfork;
15454 ops->remove_location = remove_catch_vfork;
15455 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15456 ops->print_it = print_it_catch_vfork;
15457 ops->print_one = print_one_catch_vfork;
15458 ops->print_mention = print_mention_catch_vfork;
15459 ops->print_recreate = print_recreate_catch_vfork;
15460
15461 /* Exec catchpoints. */
15462 ops = &catch_exec_breakpoint_ops;
15463 *ops = base_breakpoint_ops;
15464 ops->insert_location = insert_catch_exec;
15465 ops->remove_location = remove_catch_exec;
15466 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15467 ops->print_it = print_it_catch_exec;
15468 ops->print_one = print_one_catch_exec;
15469 ops->print_mention = print_mention_catch_exec;
15470 ops->print_recreate = print_recreate_catch_exec;
15471
15472 /* Solib-related catchpoints. */
15473 ops = &catch_solib_breakpoint_ops;
15474 *ops = base_breakpoint_ops;
15475 ops->insert_location = insert_catch_solib;
15476 ops->remove_location = remove_catch_solib;
15477 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15478 ops->check_status = check_status_catch_solib;
15479 ops->print_it = print_it_catch_solib;
15480 ops->print_one = print_one_catch_solib;
15481 ops->print_mention = print_mention_catch_solib;
15482 ops->print_recreate = print_recreate_catch_solib;
15483
15484 ops = &dprintf_breakpoint_ops;
15485 *ops = bkpt_base_breakpoint_ops;
15486 ops->re_set = dprintf_re_set;
15487 ops->resources_needed = bkpt_resources_needed;
15488 ops->print_it = bkpt_print_it;
15489 ops->print_mention = bkpt_print_mention;
15490 ops->print_recreate = dprintf_print_recreate;
15491 ops->after_condition_true = dprintf_after_condition_true;
15492 ops->breakpoint_hit = dprintf_breakpoint_hit;
15493 }
15494
15495 /* Chain containing all defined "enable breakpoint" subcommands. */
15496
15497 static struct cmd_list_element *enablebreaklist = NULL;
15498
15499 /* See breakpoint.h. */
15500
15501 cmd_list_element *commands_cmd_element = nullptr;
15502
15503 void
15504 _initialize_breakpoint (void)
15505 {
15506 struct cmd_list_element *c;
15507
15508 initialize_breakpoint_ops ();
15509
15510 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15511 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15512 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15513
15514 breakpoint_objfile_key
15515 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15516
15517 breakpoint_chain = 0;
15518 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15519 before a breakpoint is set. */
15520 breakpoint_count = 0;
15521
15522 tracepoint_count = 0;
15523
15524 add_com ("ignore", class_breakpoint, ignore_command, _("\
15525 Set ignore-count of breakpoint number N to COUNT.\n\
15526 Usage is `ignore N COUNT'."));
15527
15528 commands_cmd_element = add_com ("commands", class_breakpoint,
15529 commands_command, _("\
15530 Set commands to be executed when the given breakpoints are hit.\n\
15531 Give a space-separated breakpoint list as argument after \"commands\".\n\
15532 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15533 (e.g. `5-7').\n\
15534 With no argument, the targeted breakpoint is the last one set.\n\
15535 The commands themselves follow starting on the next line.\n\
15536 Type a line containing \"end\" to indicate the end of them.\n\
15537 Give \"silent\" as the first line to make the breakpoint silent;\n\
15538 then no output is printed when it is hit, except what the commands print."));
15539
15540 c = add_com ("condition", class_breakpoint, condition_command, _("\
15541 Specify breakpoint number N to break only if COND is true.\n\
15542 Usage is `condition N COND', where N is an integer and COND is an\n\
15543 expression to be evaluated whenever breakpoint N is reached."));
15544 set_cmd_completer (c, condition_completer);
15545
15546 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15547 Set a temporary breakpoint.\n\
15548 Like \"break\" except the breakpoint is only temporary,\n\
15549 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15550 by using \"enable delete\" on the breakpoint number.\n\
15551 \n"
15552 BREAK_ARGS_HELP ("tbreak")));
15553 set_cmd_completer (c, location_completer);
15554
15555 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15556 Set a hardware assisted breakpoint.\n\
15557 Like \"break\" except the breakpoint requires hardware support,\n\
15558 some target hardware may not have this support.\n\
15559 \n"
15560 BREAK_ARGS_HELP ("hbreak")));
15561 set_cmd_completer (c, location_completer);
15562
15563 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15564 Set a temporary hardware assisted breakpoint.\n\
15565 Like \"hbreak\" except the breakpoint is only temporary,\n\
15566 so it will be deleted when hit.\n\
15567 \n"
15568 BREAK_ARGS_HELP ("thbreak")));
15569 set_cmd_completer (c, location_completer);
15570
15571 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15572 Enable some breakpoints.\n\
15573 Give breakpoint numbers (separated by spaces) as arguments.\n\
15574 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15575 This is used to cancel the effect of the \"disable\" command.\n\
15576 With a subcommand you can enable temporarily."),
15577 &enablelist, "enable ", 1, &cmdlist);
15578
15579 add_com_alias ("en", "enable", class_breakpoint, 1);
15580
15581 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15582 Enable some breakpoints.\n\
15583 Give breakpoint numbers (separated by spaces) as arguments.\n\
15584 This is used to cancel the effect of the \"disable\" command.\n\
15585 May be abbreviated to simply \"enable\".\n"),
15586 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15587
15588 add_cmd ("once", no_class, enable_once_command, _("\
15589 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15590 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15591 &enablebreaklist);
15592
15593 add_cmd ("delete", no_class, enable_delete_command, _("\
15594 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15595 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15596 &enablebreaklist);
15597
15598 add_cmd ("count", no_class, enable_count_command, _("\
15599 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion,\n\
15601 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15602 &enablebreaklist);
15603
15604 add_cmd ("delete", no_class, enable_delete_command, _("\
15605 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15606 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15607 &enablelist);
15608
15609 add_cmd ("once", no_class, enable_once_command, _("\
15610 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15611 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15612 &enablelist);
15613
15614 add_cmd ("count", no_class, enable_count_command, _("\
15615 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion,\n\
15617 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15618 &enablelist);
15619
15620 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15621 Disable some breakpoints.\n\
15622 Arguments are breakpoint numbers with spaces in between.\n\
15623 To disable all breakpoints, give no argument.\n\
15624 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15625 &disablelist, "disable ", 1, &cmdlist);
15626 add_com_alias ("dis", "disable", class_breakpoint, 1);
15627 add_com_alias ("disa", "disable", class_breakpoint, 1);
15628
15629 add_cmd ("breakpoints", class_alias, disable_command, _("\
15630 Disable some breakpoints.\n\
15631 Arguments are breakpoint numbers with spaces in between.\n\
15632 To disable all breakpoints, give no argument.\n\
15633 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15634 This command may be abbreviated \"disable\"."),
15635 &disablelist);
15636
15637 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15638 Delete some breakpoints or auto-display expressions.\n\
15639 Arguments are breakpoint numbers with spaces in between.\n\
15640 To delete all breakpoints, give no argument.\n\
15641 \n\
15642 Also a prefix command for deletion of other GDB objects.\n\
15643 The \"unset\" command is also an alias for \"delete\"."),
15644 &deletelist, "delete ", 1, &cmdlist);
15645 add_com_alias ("d", "delete", class_breakpoint, 1);
15646 add_com_alias ("del", "delete", class_breakpoint, 1);
15647
15648 add_cmd ("breakpoints", class_alias, delete_command, _("\
15649 Delete some breakpoints or auto-display expressions.\n\
15650 Arguments are breakpoint numbers with spaces in between.\n\
15651 To delete all breakpoints, give no argument.\n\
15652 This command may be abbreviated \"delete\"."),
15653 &deletelist);
15654
15655 add_com ("clear", class_breakpoint, clear_command, _("\
15656 Clear breakpoint at specified location.\n\
15657 Argument may be a linespec, explicit, or address location as described below.\n\
15658 \n\
15659 With no argument, clears all breakpoints in the line that the selected frame\n\
15660 is executing in.\n"
15661 "\n" LOCATION_HELP_STRING "\n\
15662 See also the \"delete\" command which clears breakpoints by number."));
15663 add_com_alias ("cl", "clear", class_breakpoint, 1);
15664
15665 c = add_com ("break", class_breakpoint, break_command, _("\
15666 Set breakpoint at specified location.\n"
15667 BREAK_ARGS_HELP ("break")));
15668 set_cmd_completer (c, location_completer);
15669
15670 add_com_alias ("b", "break", class_run, 1);
15671 add_com_alias ("br", "break", class_run, 1);
15672 add_com_alias ("bre", "break", class_run, 1);
15673 add_com_alias ("brea", "break", class_run, 1);
15674
15675 if (dbx_commands)
15676 {
15677 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15678 Break in function/address or break at a line in the current file."),
15679 &stoplist, "stop ", 1, &cmdlist);
15680 add_cmd ("in", class_breakpoint, stopin_command,
15681 _("Break in function or address."), &stoplist);
15682 add_cmd ("at", class_breakpoint, stopat_command,
15683 _("Break at a line in the current file."), &stoplist);
15684 add_com ("status", class_info, info_breakpoints_command, _("\
15685 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15686 The \"Type\" column indicates one of:\n\
15687 \tbreakpoint - normal breakpoint\n\
15688 \twatchpoint - watchpoint\n\
15689 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15690 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15691 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15692 address and file/line number respectively.\n\
15693 \n\
15694 Convenience variable \"$_\" and default examine address for \"x\"\n\
15695 are set to the address of the last breakpoint listed unless the command\n\
15696 is prefixed with \"server \".\n\n\
15697 Convenience variable \"$bpnum\" contains the number of the last\n\
15698 breakpoint set."));
15699 }
15700
15701 add_info ("breakpoints", info_breakpoints_command, _("\
15702 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15703 The \"Type\" column indicates one of:\n\
15704 \tbreakpoint - normal breakpoint\n\
15705 \twatchpoint - watchpoint\n\
15706 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15707 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15708 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15709 address and file/line number respectively.\n\
15710 \n\
15711 Convenience variable \"$_\" and default examine address for \"x\"\n\
15712 are set to the address of the last breakpoint listed unless the command\n\
15713 is prefixed with \"server \".\n\n\
15714 Convenience variable \"$bpnum\" contains the number of the last\n\
15715 breakpoint set."));
15716
15717 add_info_alias ("b", "breakpoints", 1);
15718
15719 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15720 Status of all breakpoints, or breakpoint number NUMBER.\n\
15721 The \"Type\" column indicates one of:\n\
15722 \tbreakpoint - normal breakpoint\n\
15723 \twatchpoint - watchpoint\n\
15724 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15725 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15726 \tuntil - internal breakpoint used by the \"until\" command\n\
15727 \tfinish - internal breakpoint used by the \"finish\" command\n\
15728 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15729 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15730 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15731 address and file/line number respectively.\n\
15732 \n\
15733 Convenience variable \"$_\" and default examine address for \"x\"\n\
15734 are set to the address of the last breakpoint listed unless the command\n\
15735 is prefixed with \"server \".\n\n\
15736 Convenience variable \"$bpnum\" contains the number of the last\n\
15737 breakpoint set."),
15738 &maintenanceinfolist);
15739
15740 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15741 Set catchpoints to catch events."),
15742 &catch_cmdlist, "catch ",
15743 0/*allow-unknown*/, &cmdlist);
15744
15745 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15746 Set temporary catchpoints to catch events."),
15747 &tcatch_cmdlist, "tcatch ",
15748 0/*allow-unknown*/, &cmdlist);
15749
15750 add_catch_command ("fork", _("Catch calls to fork."),
15751 catch_fork_command_1,
15752 NULL,
15753 (void *) (uintptr_t) catch_fork_permanent,
15754 (void *) (uintptr_t) catch_fork_temporary);
15755 add_catch_command ("vfork", _("Catch calls to vfork."),
15756 catch_fork_command_1,
15757 NULL,
15758 (void *) (uintptr_t) catch_vfork_permanent,
15759 (void *) (uintptr_t) catch_vfork_temporary);
15760 add_catch_command ("exec", _("Catch calls to exec."),
15761 catch_exec_command_1,
15762 NULL,
15763 CATCH_PERMANENT,
15764 CATCH_TEMPORARY);
15765 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15766 Usage: catch load [REGEX]\n\
15767 If REGEX is given, only stop for libraries matching the regular expression."),
15768 catch_load_command_1,
15769 NULL,
15770 CATCH_PERMANENT,
15771 CATCH_TEMPORARY);
15772 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15773 Usage: catch unload [REGEX]\n\
15774 If REGEX is given, only stop for libraries matching the regular expression."),
15775 catch_unload_command_1,
15776 NULL,
15777 CATCH_PERMANENT,
15778 CATCH_TEMPORARY);
15779
15780 c = add_com ("watch", class_breakpoint, watch_command, _("\
15781 Set a watchpoint for an expression.\n\
15782 Usage: watch [-l|-location] EXPRESSION\n\
15783 A watchpoint stops execution of your program whenever the value of\n\
15784 an expression changes.\n\
15785 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15786 the memory to which it refers."));
15787 set_cmd_completer (c, expression_completer);
15788
15789 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15790 Set a read watchpoint for an expression.\n\
15791 Usage: rwatch [-l|-location] EXPRESSION\n\
15792 A watchpoint stops execution of your program whenever the value of\n\
15793 an expression is read.\n\
15794 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15795 the memory to which it refers."));
15796 set_cmd_completer (c, expression_completer);
15797
15798 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15799 Set a watchpoint for an expression.\n\
15800 Usage: awatch [-l|-location] EXPRESSION\n\
15801 A watchpoint stops execution of your program whenever the value of\n\
15802 an expression is either read or written.\n\
15803 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15804 the memory to which it refers."));
15805 set_cmd_completer (c, expression_completer);
15806
15807 add_info ("watchpoints", info_watchpoints_command, _("\
15808 Status of specified watchpoints (all watchpoints if no argument)."));
15809
15810 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15811 respond to changes - contrary to the description. */
15812 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15813 &can_use_hw_watchpoints, _("\
15814 Set debugger's willingness to use watchpoint hardware."), _("\
15815 Show debugger's willingness to use watchpoint hardware."), _("\
15816 If zero, gdb will not use hardware for new watchpoints, even if\n\
15817 such is available. (However, any hardware watchpoints that were\n\
15818 created before setting this to nonzero, will continue to use watchpoint\n\
15819 hardware.)"),
15820 NULL,
15821 show_can_use_hw_watchpoints,
15822 &setlist, &showlist);
15823
15824 can_use_hw_watchpoints = 1;
15825
15826 /* Tracepoint manipulation commands. */
15827
15828 c = add_com ("trace", class_breakpoint, trace_command, _("\
15829 Set a tracepoint at specified location.\n\
15830 \n"
15831 BREAK_ARGS_HELP ("trace") "\n\
15832 Do \"help tracepoints\" for info on other tracepoint commands."));
15833 set_cmd_completer (c, location_completer);
15834
15835 add_com_alias ("tp", "trace", class_alias, 0);
15836 add_com_alias ("tr", "trace", class_alias, 1);
15837 add_com_alias ("tra", "trace", class_alias, 1);
15838 add_com_alias ("trac", "trace", class_alias, 1);
15839
15840 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15841 Set a fast tracepoint at specified location.\n\
15842 \n"
15843 BREAK_ARGS_HELP ("ftrace") "\n\
15844 Do \"help tracepoints\" for info on other tracepoint commands."));
15845 set_cmd_completer (c, location_completer);
15846
15847 c = add_com ("strace", class_breakpoint, strace_command, _("\
15848 Set a static tracepoint at location or marker.\n\
15849 \n\
15850 strace [LOCATION] [if CONDITION]\n\
15851 LOCATION may be a linespec, explicit, or address location (described below) \n\
15852 or -m MARKER_ID.\n\n\
15853 If a marker id is specified, probe the marker with that name. With\n\
15854 no LOCATION, uses current execution address of the selected stack frame.\n\
15855 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15856 This collects arbitrary user data passed in the probe point call to the\n\
15857 tracing library. You can inspect it when analyzing the trace buffer,\n\
15858 by printing the $_sdata variable like any other convenience variable.\n\
15859 \n\
15860 CONDITION is a boolean expression.\n\
15861 \n" LOCATION_HELP_STRING "\n\
15862 Multiple tracepoints at one place are permitted, and useful if their\n\
15863 conditions are different.\n\
15864 \n\
15865 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15866 Do \"help tracepoints\" for info on other tracepoint commands."));
15867 set_cmd_completer (c, location_completer);
15868
15869 add_info ("tracepoints", info_tracepoints_command, _("\
15870 Status of specified tracepoints (all tracepoints if no argument).\n\
15871 Convenience variable \"$tpnum\" contains the number of the\n\
15872 last tracepoint set."));
15873
15874 add_info_alias ("tp", "tracepoints", 1);
15875
15876 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15877 Delete specified tracepoints.\n\
15878 Arguments are tracepoint numbers, separated by spaces.\n\
15879 No argument means delete all tracepoints."),
15880 &deletelist);
15881 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15882
15883 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15884 Disable specified tracepoints.\n\
15885 Arguments are tracepoint numbers, separated by spaces.\n\
15886 No argument means disable all tracepoints."),
15887 &disablelist);
15888 deprecate_cmd (c, "disable");
15889
15890 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15891 Enable specified tracepoints.\n\
15892 Arguments are tracepoint numbers, separated by spaces.\n\
15893 No argument means enable all tracepoints."),
15894 &enablelist);
15895 deprecate_cmd (c, "enable");
15896
15897 add_com ("passcount", class_trace, trace_pass_command, _("\
15898 Set the passcount for a tracepoint.\n\
15899 The trace will end when the tracepoint has been passed 'count' times.\n\
15900 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15901 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15902
15903 add_prefix_cmd ("save", class_breakpoint, save_command,
15904 _("Save breakpoint definitions as a script."),
15905 &save_cmdlist, "save ",
15906 0/*allow-unknown*/, &cmdlist);
15907
15908 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15909 Save current breakpoint definitions as a script.\n\
15910 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15911 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15912 session to restore them."),
15913 &save_cmdlist);
15914 set_cmd_completer (c, filename_completer);
15915
15916 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15917 Save current tracepoint definitions as a script.\n\
15918 Use the 'source' command in another debug session to restore them."),
15919 &save_cmdlist);
15920 set_cmd_completer (c, filename_completer);
15921
15922 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15923 deprecate_cmd (c, "save tracepoints");
15924
15925 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15926 Breakpoint specific settings\n\
15927 Configure various breakpoint-specific variables such as\n\
15928 pending breakpoint behavior"),
15929 &breakpoint_set_cmdlist, "set breakpoint ",
15930 0/*allow-unknown*/, &setlist);
15931 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15932 Breakpoint specific settings\n\
15933 Configure various breakpoint-specific variables such as\n\
15934 pending breakpoint behavior"),
15935 &breakpoint_show_cmdlist, "show breakpoint ",
15936 0/*allow-unknown*/, &showlist);
15937
15938 add_setshow_auto_boolean_cmd ("pending", no_class,
15939 &pending_break_support, _("\
15940 Set debugger's behavior regarding pending breakpoints."), _("\
15941 Show debugger's behavior regarding pending breakpoints."), _("\
15942 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15943 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15944 an error. If auto, an unrecognized breakpoint location results in a\n\
15945 user-query to see if a pending breakpoint should be created."),
15946 NULL,
15947 show_pending_break_support,
15948 &breakpoint_set_cmdlist,
15949 &breakpoint_show_cmdlist);
15950
15951 pending_break_support = AUTO_BOOLEAN_AUTO;
15952
15953 add_setshow_boolean_cmd ("auto-hw", no_class,
15954 &automatic_hardware_breakpoints, _("\
15955 Set automatic usage of hardware breakpoints."), _("\
15956 Show automatic usage of hardware breakpoints."), _("\
15957 If set, the debugger will automatically use hardware breakpoints for\n\
15958 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15959 a warning will be emitted for such breakpoints."),
15960 NULL,
15961 show_automatic_hardware_breakpoints,
15962 &breakpoint_set_cmdlist,
15963 &breakpoint_show_cmdlist);
15964
15965 add_setshow_boolean_cmd ("always-inserted", class_support,
15966 &always_inserted_mode, _("\
15967 Set mode for inserting breakpoints."), _("\
15968 Show mode for inserting breakpoints."), _("\
15969 When this mode is on, breakpoints are inserted immediately as soon as\n\
15970 they're created, kept inserted even when execution stops, and removed\n\
15971 only when the user deletes them. When this mode is off (the default),\n\
15972 breakpoints are inserted only when execution continues, and removed\n\
15973 when execution stops."),
15974 NULL,
15975 &show_always_inserted_mode,
15976 &breakpoint_set_cmdlist,
15977 &breakpoint_show_cmdlist);
15978
15979 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15980 condition_evaluation_enums,
15981 &condition_evaluation_mode_1, _("\
15982 Set mode of breakpoint condition evaluation."), _("\
15983 Show mode of breakpoint condition evaluation."), _("\
15984 When this is set to \"host\", breakpoint conditions will be\n\
15985 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15986 breakpoint conditions will be downloaded to the target (if the target\n\
15987 supports such feature) and conditions will be evaluated on the target's side.\n\
15988 If this is set to \"auto\" (default), this will be automatically set to\n\
15989 \"target\" if it supports condition evaluation, otherwise it will\n\
15990 be set to \"gdb\""),
15991 &set_condition_evaluation_mode,
15992 &show_condition_evaluation_mode,
15993 &breakpoint_set_cmdlist,
15994 &breakpoint_show_cmdlist);
15995
15996 add_com ("break-range", class_breakpoint, break_range_command, _("\
15997 Set a breakpoint for an address range.\n\
15998 break-range START-LOCATION, END-LOCATION\n\
15999 where START-LOCATION and END-LOCATION can be one of the following:\n\
16000 LINENUM, for that line in the current file,\n\
16001 FILE:LINENUM, for that line in that file,\n\
16002 +OFFSET, for that number of lines after the current line\n\
16003 or the start of the range\n\
16004 FUNCTION, for the first line in that function,\n\
16005 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16006 *ADDRESS, for the instruction at that address.\n\
16007 \n\
16008 The breakpoint will stop execution of the inferior whenever it executes\n\
16009 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16010 range (including START-LOCATION and END-LOCATION)."));
16011
16012 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16013 Set a dynamic printf at specified location.\n\
16014 dprintf location,format string,arg1,arg2,...\n\
16015 location may be a linespec, explicit, or address location.\n"
16016 "\n" LOCATION_HELP_STRING));
16017 set_cmd_completer (c, location_completer);
16018
16019 add_setshow_enum_cmd ("dprintf-style", class_support,
16020 dprintf_style_enums, &dprintf_style, _("\
16021 Set the style of usage for dynamic printf."), _("\
16022 Show the style of usage for dynamic printf."), _("\
16023 This setting chooses how GDB will do a dynamic printf.\n\
16024 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16025 console, as with the \"printf\" command.\n\
16026 If the value is \"call\", the print is done by calling a function in your\n\
16027 program; by default printf(), but you can choose a different function or\n\
16028 output stream by setting dprintf-function and dprintf-channel."),
16029 update_dprintf_commands, NULL,
16030 &setlist, &showlist);
16031
16032 dprintf_function = xstrdup ("printf");
16033 add_setshow_string_cmd ("dprintf-function", class_support,
16034 &dprintf_function, _("\
16035 Set the function to use for dynamic printf"), _("\
16036 Show the function to use for dynamic printf"), NULL,
16037 update_dprintf_commands, NULL,
16038 &setlist, &showlist);
16039
16040 dprintf_channel = xstrdup ("");
16041 add_setshow_string_cmd ("dprintf-channel", class_support,
16042 &dprintf_channel, _("\
16043 Set the channel to use for dynamic printf"), _("\
16044 Show the channel to use for dynamic printf"), NULL,
16045 update_dprintf_commands, NULL,
16046 &setlist, &showlist);
16047
16048 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16049 &disconnected_dprintf, _("\
16050 Set whether dprintf continues after GDB disconnects."), _("\
16051 Show whether dprintf continues after GDB disconnects."), _("\
16052 Use this to let dprintf commands continue to hit and produce output\n\
16053 even if GDB disconnects or detaches from the target."),
16054 NULL,
16055 NULL,
16056 &setlist, &showlist);
16057
16058 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16059 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16060 (target agent only) This is useful for formatted output in user-defined commands."));
16061
16062 automatic_hardware_breakpoints = 1;
16063
16064 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16065 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16066 }
This page took 0.527123 seconds and 5 git commands to generate.