Constify add_prefix_cmd
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void ignore_command (char *, int);
100
101 static void breakpoint_re_set_default (struct breakpoint *);
102
103 static void
104 create_sals_from_location_default (const struct event_location *location,
105 struct linespec_result *canonical,
106 enum bptype type_wanted);
107
108 static void create_breakpoints_sal_default (struct gdbarch *,
109 struct linespec_result *,
110 gdb::unique_xmalloc_ptr<char>,
111 gdb::unique_xmalloc_ptr<char>,
112 enum bptype,
113 enum bpdisp, int, int,
114 int,
115 const struct breakpoint_ops *,
116 int, int, int, unsigned);
117
118 static std::vector<symtab_and_line> decode_location_default
119 (struct breakpoint *b, const struct event_location *location,
120 struct program_space *search_pspace);
121
122 static void clear_command (char *, int);
123
124 static int can_use_hardware_watchpoint (struct value *);
125
126 static void mention (struct breakpoint *);
127
128 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
129 enum bptype,
130 const struct breakpoint_ops *);
131 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
132 const struct symtab_and_line *);
133
134 /* This function is used in gdbtk sources and thus can not be made
135 static. */
136 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
137 struct symtab_and_line,
138 enum bptype,
139 const struct breakpoint_ops *);
140
141 static struct breakpoint *
142 momentary_breakpoint_from_master (struct breakpoint *orig,
143 enum bptype type,
144 const struct breakpoint_ops *ops,
145 int loc_enabled);
146
147 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
148
149 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
150 CORE_ADDR bpaddr,
151 enum bptype bptype);
152
153 static void describe_other_breakpoints (struct gdbarch *,
154 struct program_space *, CORE_ADDR,
155 struct obj_section *, int);
156
157 static int watchpoint_locations_match (struct bp_location *loc1,
158 struct bp_location *loc2);
159
160 static int breakpoint_location_address_match (struct bp_location *bl,
161 struct address_space *aspace,
162 CORE_ADDR addr);
163
164 static int breakpoint_location_address_range_overlap (struct bp_location *,
165 struct address_space *,
166 CORE_ADDR, int);
167
168 static void info_breakpoints_command (char *, int);
169
170 static void info_watchpoints_command (char *, int);
171
172 static void commands_command (char *, int);
173
174 static void condition_command (char *, int);
175
176 static int remove_breakpoint (struct bp_location *);
177 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
178
179 static enum print_stop_action print_bp_stop_message (bpstat bs);
180
181 static int hw_breakpoint_used_count (void);
182
183 static int hw_watchpoint_use_count (struct breakpoint *);
184
185 static int hw_watchpoint_used_count_others (struct breakpoint *except,
186 enum bptype type,
187 int *other_type_used);
188
189 static void hbreak_command (char *, int);
190
191 static void thbreak_command (char *, int);
192
193 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
194 int count);
195
196 static void stop_command (char *arg, int from_tty);
197
198 static void free_bp_location (struct bp_location *loc);
199 static void incref_bp_location (struct bp_location *loc);
200 static void decref_bp_location (struct bp_location **loc);
201
202 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
203
204 /* update_global_location_list's modes of operation wrt to whether to
205 insert locations now. */
206 enum ugll_insert_mode
207 {
208 /* Don't insert any breakpoint locations into the inferior, only
209 remove already-inserted locations that no longer should be
210 inserted. Functions that delete a breakpoint or breakpoints
211 should specify this mode, so that deleting a breakpoint doesn't
212 have the side effect of inserting the locations of other
213 breakpoints that are marked not-inserted, but should_be_inserted
214 returns true on them.
215
216 This behavior is useful is situations close to tear-down -- e.g.,
217 after an exec, while the target still has execution, but
218 breakpoint shadows of the previous executable image should *NOT*
219 be restored to the new image; or before detaching, where the
220 target still has execution and wants to delete breakpoints from
221 GDB's lists, and all breakpoints had already been removed from
222 the inferior. */
223 UGLL_DONT_INSERT,
224
225 /* May insert breakpoints iff breakpoints_should_be_inserted_now
226 claims breakpoints should be inserted now. */
227 UGLL_MAY_INSERT,
228
229 /* Insert locations now, irrespective of
230 breakpoints_should_be_inserted_now. E.g., say all threads are
231 stopped right now, and the user did "continue". We need to
232 insert breakpoints _before_ resuming the target, but
233 UGLL_MAY_INSERT wouldn't insert them, because
234 breakpoints_should_be_inserted_now returns false at that point,
235 as no thread is running yet. */
236 UGLL_INSERT
237 };
238
239 static void update_global_location_list (enum ugll_insert_mode);
240
241 static void update_global_location_list_nothrow (enum ugll_insert_mode);
242
243 static int is_hardware_watchpoint (const struct breakpoint *bpt);
244
245 static void insert_breakpoint_locations (void);
246
247 static void info_tracepoints_command (char *, int);
248
249 static void enable_trace_command (char *, int);
250
251 static void disable_trace_command (char *, int);
252
253 static void trace_pass_command (char *, int);
254
255 static void set_tracepoint_count (int num);
256
257 static int is_masked_watchpoint (const struct breakpoint *b);
258
259 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
260
261 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
262 otherwise. */
263
264 static int strace_marker_p (struct breakpoint *b);
265
266 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
267 that are implemented on top of software or hardware breakpoints
268 (user breakpoints, internal and momentary breakpoints, etc.). */
269 static struct breakpoint_ops bkpt_base_breakpoint_ops;
270
271 /* Internal breakpoints class type. */
272 static struct breakpoint_ops internal_breakpoint_ops;
273
274 /* Momentary breakpoints class type. */
275 static struct breakpoint_ops momentary_breakpoint_ops;
276
277 /* The breakpoint_ops structure to be used in regular user created
278 breakpoints. */
279 struct breakpoint_ops bkpt_breakpoint_ops;
280
281 /* Breakpoints set on probes. */
282 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
283
284 /* Dynamic printf class type. */
285 struct breakpoint_ops dprintf_breakpoint_ops;
286
287 /* The style in which to perform a dynamic printf. This is a user
288 option because different output options have different tradeoffs;
289 if GDB does the printing, there is better error handling if there
290 is a problem with any of the arguments, but using an inferior
291 function lets you have special-purpose printers and sending of
292 output to the same place as compiled-in print functions. */
293
294 static const char dprintf_style_gdb[] = "gdb";
295 static const char dprintf_style_call[] = "call";
296 static const char dprintf_style_agent[] = "agent";
297 static const char *const dprintf_style_enums[] = {
298 dprintf_style_gdb,
299 dprintf_style_call,
300 dprintf_style_agent,
301 NULL
302 };
303 static const char *dprintf_style = dprintf_style_gdb;
304
305 /* The function to use for dynamic printf if the preferred style is to
306 call into the inferior. The value is simply a string that is
307 copied into the command, so it can be anything that GDB can
308 evaluate to a callable address, not necessarily a function name. */
309
310 static char *dprintf_function;
311
312 /* The channel to use for dynamic printf if the preferred style is to
313 call into the inferior; if a nonempty string, it will be passed to
314 the call as the first argument, with the format string as the
315 second. As with the dprintf function, this can be anything that
316 GDB knows how to evaluate, so in addition to common choices like
317 "stderr", this could be an app-specific expression like
318 "mystreams[curlogger]". */
319
320 static char *dprintf_channel;
321
322 /* True if dprintf commands should continue to operate even if GDB
323 has disconnected. */
324 static int disconnected_dprintf = 1;
325
326 struct command_line *
327 breakpoint_commands (struct breakpoint *b)
328 {
329 return b->commands ? b->commands.get () : NULL;
330 }
331
332 /* Flag indicating that a command has proceeded the inferior past the
333 current breakpoint. */
334
335 static int breakpoint_proceeded;
336
337 const char *
338 bpdisp_text (enum bpdisp disp)
339 {
340 /* NOTE: the following values are a part of MI protocol and
341 represent values of 'disp' field returned when inferior stops at
342 a breakpoint. */
343 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
344
345 return bpdisps[(int) disp];
346 }
347
348 /* Prototypes for exported functions. */
349 /* If FALSE, gdb will not use hardware support for watchpoints, even
350 if such is available. */
351 static int can_use_hw_watchpoints;
352
353 static void
354 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
355 struct cmd_list_element *c,
356 const char *value)
357 {
358 fprintf_filtered (file,
359 _("Debugger's willingness to use "
360 "watchpoint hardware is %s.\n"),
361 value);
362 }
363
364 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
365 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
366 for unrecognized breakpoint locations.
367 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
368 static enum auto_boolean pending_break_support;
369 static void
370 show_pending_break_support (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c,
372 const char *value)
373 {
374 fprintf_filtered (file,
375 _("Debugger's behavior regarding "
376 "pending breakpoints is %s.\n"),
377 value);
378 }
379
380 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
381 set with "break" but falling in read-only memory.
382 If 0, gdb will warn about such breakpoints, but won't automatically
383 use hardware breakpoints. */
384 static int automatic_hardware_breakpoints;
385 static void
386 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
387 struct cmd_list_element *c,
388 const char *value)
389 {
390 fprintf_filtered (file,
391 _("Automatic usage of hardware breakpoints is %s.\n"),
392 value);
393 }
394
395 /* If on, GDB keeps breakpoints inserted even if the inferior is
396 stopped, and immediately inserts any new breakpoints as soon as
397 they're created. If off (default), GDB keeps breakpoints off of
398 the target as long as possible. That is, it delays inserting
399 breakpoints until the next resume, and removes them again when the
400 target fully stops. This is a bit safer in case GDB crashes while
401 processing user input. */
402 static int always_inserted_mode = 0;
403
404 static void
405 show_always_inserted_mode (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
409 value);
410 }
411
412 /* See breakpoint.h. */
413
414 int
415 breakpoints_should_be_inserted_now (void)
416 {
417 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
418 {
419 /* If breakpoints are global, they should be inserted even if no
420 thread under gdb's control is running, or even if there are
421 no threads under GDB's control yet. */
422 return 1;
423 }
424 else if (target_has_execution)
425 {
426 struct thread_info *tp;
427
428 if (always_inserted_mode)
429 {
430 /* The user wants breakpoints inserted even if all threads
431 are stopped. */
432 return 1;
433 }
434
435 if (threads_are_executing ())
436 return 1;
437
438 /* Don't remove breakpoints yet if, even though all threads are
439 stopped, we still have events to process. */
440 ALL_NON_EXITED_THREADS (tp)
441 if (tp->resumed
442 && tp->suspend.waitstatus_pending_p)
443 return 1;
444 }
445 return 0;
446 }
447
448 static const char condition_evaluation_both[] = "host or target";
449
450 /* Modes for breakpoint condition evaluation. */
451 static const char condition_evaluation_auto[] = "auto";
452 static const char condition_evaluation_host[] = "host";
453 static const char condition_evaluation_target[] = "target";
454 static const char *const condition_evaluation_enums[] = {
455 condition_evaluation_auto,
456 condition_evaluation_host,
457 condition_evaluation_target,
458 NULL
459 };
460
461 /* Global that holds the current mode for breakpoint condition evaluation. */
462 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
463
464 /* Global that we use to display information to the user (gets its value from
465 condition_evaluation_mode_1. */
466 static const char *condition_evaluation_mode = condition_evaluation_auto;
467
468 /* Translate a condition evaluation mode MODE into either "host"
469 or "target". This is used mostly to translate from "auto" to the
470 real setting that is being used. It returns the translated
471 evaluation mode. */
472
473 static const char *
474 translate_condition_evaluation_mode (const char *mode)
475 {
476 if (mode == condition_evaluation_auto)
477 {
478 if (target_supports_evaluation_of_breakpoint_conditions ())
479 return condition_evaluation_target;
480 else
481 return condition_evaluation_host;
482 }
483 else
484 return mode;
485 }
486
487 /* Discovers what condition_evaluation_auto translates to. */
488
489 static const char *
490 breakpoint_condition_evaluation_mode (void)
491 {
492 return translate_condition_evaluation_mode (condition_evaluation_mode);
493 }
494
495 /* Return true if GDB should evaluate breakpoint conditions or false
496 otherwise. */
497
498 static int
499 gdb_evaluates_breakpoint_condition_p (void)
500 {
501 const char *mode = breakpoint_condition_evaluation_mode ();
502
503 return (mode == condition_evaluation_host);
504 }
505
506 /* Are we executing breakpoint commands? */
507 static int executing_breakpoint_commands;
508
509 /* Are overlay event breakpoints enabled? */
510 static int overlay_events_enabled;
511
512 /* See description in breakpoint.h. */
513 int target_exact_watchpoints = 0;
514
515 /* Walk the following statement or block through all breakpoints.
516 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
517 current breakpoint. */
518
519 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
520
521 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
522 for (B = breakpoint_chain; \
523 B ? (TMP=B->next, 1): 0; \
524 B = TMP)
525
526 /* Similar iterator for the low-level breakpoints. SAFE variant is
527 not provided so update_global_location_list must not be called
528 while executing the block of ALL_BP_LOCATIONS. */
529
530 #define ALL_BP_LOCATIONS(B,BP_TMP) \
531 for (BP_TMP = bp_locations; \
532 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
533 BP_TMP++)
534
535 /* Iterates through locations with address ADDRESS for the currently selected
536 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
537 to where the loop should start from.
538 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
539 appropriate location to start with. */
540
541 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
542 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
543 BP_LOCP_TMP = BP_LOCP_START; \
544 BP_LOCP_START \
545 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
546 && (*BP_LOCP_TMP)->address == ADDRESS); \
547 BP_LOCP_TMP++)
548
549 /* Iterator for tracepoints only. */
550
551 #define ALL_TRACEPOINTS(B) \
552 for (B = breakpoint_chain; B; B = B->next) \
553 if (is_tracepoint (B))
554
555 /* Chains of all breakpoints defined. */
556
557 struct breakpoint *breakpoint_chain;
558
559 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
560
561 static struct bp_location **bp_locations;
562
563 /* Number of elements of BP_LOCATIONS. */
564
565 static unsigned bp_locations_count;
566
567 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
568 ADDRESS for the current elements of BP_LOCATIONS which get a valid
569 result from bp_location_has_shadow. You can use it for roughly
570 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
571 an address you need to read. */
572
573 static CORE_ADDR bp_locations_placed_address_before_address_max;
574
575 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
576 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
577 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
578 You can use it for roughly limiting the subrange of BP_LOCATIONS to
579 scan for shadow bytes for an address you need to read. */
580
581 static CORE_ADDR bp_locations_shadow_len_after_address_max;
582
583 /* The locations that no longer correspond to any breakpoint, unlinked
584 from the bp_locations array, but for which a hit may still be
585 reported by a target. */
586 VEC(bp_location_p) *moribund_locations = NULL;
587
588 /* Number of last breakpoint made. */
589
590 static int breakpoint_count;
591
592 /* The value of `breakpoint_count' before the last command that
593 created breakpoints. If the last (break-like) command created more
594 than one breakpoint, then the difference between BREAKPOINT_COUNT
595 and PREV_BREAKPOINT_COUNT is more than one. */
596 static int prev_breakpoint_count;
597
598 /* Number of last tracepoint made. */
599
600 static int tracepoint_count;
601
602 static struct cmd_list_element *breakpoint_set_cmdlist;
603 static struct cmd_list_element *breakpoint_show_cmdlist;
604 struct cmd_list_element *save_cmdlist;
605
606 /* See declaration at breakpoint.h. */
607
608 struct breakpoint *
609 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
610 void *user_data)
611 {
612 struct breakpoint *b = NULL;
613
614 ALL_BREAKPOINTS (b)
615 {
616 if (func (b, user_data) != 0)
617 break;
618 }
619
620 return b;
621 }
622
623 /* Return whether a breakpoint is an active enabled breakpoint. */
624 static int
625 breakpoint_enabled (struct breakpoint *b)
626 {
627 return (b->enable_state == bp_enabled);
628 }
629
630 /* Set breakpoint count to NUM. */
631
632 static void
633 set_breakpoint_count (int num)
634 {
635 prev_breakpoint_count = breakpoint_count;
636 breakpoint_count = num;
637 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
638 }
639
640 /* Used by `start_rbreak_breakpoints' below, to record the current
641 breakpoint count before "rbreak" creates any breakpoint. */
642 static int rbreak_start_breakpoint_count;
643
644 /* Called at the start an "rbreak" command to record the first
645 breakpoint made. */
646
647 void
648 start_rbreak_breakpoints (void)
649 {
650 rbreak_start_breakpoint_count = breakpoint_count;
651 }
652
653 /* Called at the end of an "rbreak" command to record the last
654 breakpoint made. */
655
656 void
657 end_rbreak_breakpoints (void)
658 {
659 prev_breakpoint_count = rbreak_start_breakpoint_count;
660 }
661
662 /* Used in run_command to zero the hit count when a new run starts. */
663
664 void
665 clear_breakpoint_hit_counts (void)
666 {
667 struct breakpoint *b;
668
669 ALL_BREAKPOINTS (b)
670 b->hit_count = 0;
671 }
672
673 \f
674 /* Return the breakpoint with the specified number, or NULL
675 if the number does not refer to an existing breakpoint. */
676
677 struct breakpoint *
678 get_breakpoint (int num)
679 {
680 struct breakpoint *b;
681
682 ALL_BREAKPOINTS (b)
683 if (b->number == num)
684 return b;
685
686 return NULL;
687 }
688
689 \f
690
691 /* Mark locations as "conditions have changed" in case the target supports
692 evaluating conditions on its side. */
693
694 static void
695 mark_breakpoint_modified (struct breakpoint *b)
696 {
697 struct bp_location *loc;
698
699 /* This is only meaningful if the target is
700 evaluating conditions and if the user has
701 opted for condition evaluation on the target's
702 side. */
703 if (gdb_evaluates_breakpoint_condition_p ()
704 || !target_supports_evaluation_of_breakpoint_conditions ())
705 return;
706
707 if (!is_breakpoint (b))
708 return;
709
710 for (loc = b->loc; loc; loc = loc->next)
711 loc->condition_changed = condition_modified;
712 }
713
714 /* Mark location as "conditions have changed" in case the target supports
715 evaluating conditions on its side. */
716
717 static void
718 mark_breakpoint_location_modified (struct bp_location *loc)
719 {
720 /* This is only meaningful if the target is
721 evaluating conditions and if the user has
722 opted for condition evaluation on the target's
723 side. */
724 if (gdb_evaluates_breakpoint_condition_p ()
725 || !target_supports_evaluation_of_breakpoint_conditions ())
726
727 return;
728
729 if (!is_breakpoint (loc->owner))
730 return;
731
732 loc->condition_changed = condition_modified;
733 }
734
735 /* Sets the condition-evaluation mode using the static global
736 condition_evaluation_mode. */
737
738 static void
739 set_condition_evaluation_mode (char *args, int from_tty,
740 struct cmd_list_element *c)
741 {
742 const char *old_mode, *new_mode;
743
744 if ((condition_evaluation_mode_1 == condition_evaluation_target)
745 && !target_supports_evaluation_of_breakpoint_conditions ())
746 {
747 condition_evaluation_mode_1 = condition_evaluation_mode;
748 warning (_("Target does not support breakpoint condition evaluation.\n"
749 "Using host evaluation mode instead."));
750 return;
751 }
752
753 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
754 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
755
756 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
757 settings was "auto". */
758 condition_evaluation_mode = condition_evaluation_mode_1;
759
760 /* Only update the mode if the user picked a different one. */
761 if (new_mode != old_mode)
762 {
763 struct bp_location *loc, **loc_tmp;
764 /* If the user switched to a different evaluation mode, we
765 need to synch the changes with the target as follows:
766
767 "host" -> "target": Send all (valid) conditions to the target.
768 "target" -> "host": Remove all the conditions from the target.
769 */
770
771 if (new_mode == condition_evaluation_target)
772 {
773 /* Mark everything modified and synch conditions with the
774 target. */
775 ALL_BP_LOCATIONS (loc, loc_tmp)
776 mark_breakpoint_location_modified (loc);
777 }
778 else
779 {
780 /* Manually mark non-duplicate locations to synch conditions
781 with the target. We do this to remove all the conditions the
782 target knows about. */
783 ALL_BP_LOCATIONS (loc, loc_tmp)
784 if (is_breakpoint (loc->owner) && loc->inserted)
785 loc->needs_update = 1;
786 }
787
788 /* Do the update. */
789 update_global_location_list (UGLL_MAY_INSERT);
790 }
791
792 return;
793 }
794
795 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
796 what "auto" is translating to. */
797
798 static void
799 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
800 struct cmd_list_element *c, const char *value)
801 {
802 if (condition_evaluation_mode == condition_evaluation_auto)
803 fprintf_filtered (file,
804 _("Breakpoint condition evaluation "
805 "mode is %s (currently %s).\n"),
806 value,
807 breakpoint_condition_evaluation_mode ());
808 else
809 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
810 value);
811 }
812
813 /* A comparison function for bp_location AP and BP that is used by
814 bsearch. This comparison function only cares about addresses, unlike
815 the more general bp_locations_compare function. */
816
817 static int
818 bp_locations_compare_addrs (const void *ap, const void *bp)
819 {
820 const struct bp_location *a = *(const struct bp_location **) ap;
821 const struct bp_location *b = *(const struct bp_location **) bp;
822
823 if (a->address == b->address)
824 return 0;
825 else
826 return ((a->address > b->address) - (a->address < b->address));
827 }
828
829 /* Helper function to skip all bp_locations with addresses
830 less than ADDRESS. It returns the first bp_location that
831 is greater than or equal to ADDRESS. If none is found, just
832 return NULL. */
833
834 static struct bp_location **
835 get_first_locp_gte_addr (CORE_ADDR address)
836 {
837 struct bp_location dummy_loc;
838 struct bp_location *dummy_locp = &dummy_loc;
839 struct bp_location **locp_found = NULL;
840
841 /* Initialize the dummy location's address field. */
842 dummy_loc.address = address;
843
844 /* Find a close match to the first location at ADDRESS. */
845 locp_found = ((struct bp_location **)
846 bsearch (&dummy_locp, bp_locations, bp_locations_count,
847 sizeof (struct bp_location **),
848 bp_locations_compare_addrs));
849
850 /* Nothing was found, nothing left to do. */
851 if (locp_found == NULL)
852 return NULL;
853
854 /* We may have found a location that is at ADDRESS but is not the first in the
855 location's list. Go backwards (if possible) and locate the first one. */
856 while ((locp_found - 1) >= bp_locations
857 && (*(locp_found - 1))->address == address)
858 locp_found--;
859
860 return locp_found;
861 }
862
863 void
864 set_breakpoint_condition (struct breakpoint *b, const char *exp,
865 int from_tty)
866 {
867 xfree (b->cond_string);
868 b->cond_string = NULL;
869
870 if (is_watchpoint (b))
871 {
872 struct watchpoint *w = (struct watchpoint *) b;
873
874 w->cond_exp.reset ();
875 }
876 else
877 {
878 struct bp_location *loc;
879
880 for (loc = b->loc; loc; loc = loc->next)
881 {
882 loc->cond.reset ();
883
884 /* No need to free the condition agent expression
885 bytecode (if we have one). We will handle this
886 when we go through update_global_location_list. */
887 }
888 }
889
890 if (*exp == 0)
891 {
892 if (from_tty)
893 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
894 }
895 else
896 {
897 const char *arg = exp;
898
899 /* I don't know if it matters whether this is the string the user
900 typed in or the decompiled expression. */
901 b->cond_string = xstrdup (arg);
902 b->condition_not_parsed = 0;
903
904 if (is_watchpoint (b))
905 {
906 struct watchpoint *w = (struct watchpoint *) b;
907
908 innermost_block = NULL;
909 arg = exp;
910 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
911 if (*arg)
912 error (_("Junk at end of expression"));
913 w->cond_exp_valid_block = innermost_block;
914 }
915 else
916 {
917 struct bp_location *loc;
918
919 for (loc = b->loc; loc; loc = loc->next)
920 {
921 arg = exp;
922 loc->cond =
923 parse_exp_1 (&arg, loc->address,
924 block_for_pc (loc->address), 0);
925 if (*arg)
926 error (_("Junk at end of expression"));
927 }
928 }
929 }
930 mark_breakpoint_modified (b);
931
932 observer_notify_breakpoint_modified (b);
933 }
934
935 /* Completion for the "condition" command. */
936
937 static void
938 condition_completer (struct cmd_list_element *cmd,
939 completion_tracker &tracker,
940 const char *text, const char *word)
941 {
942 const char *space;
943
944 text = skip_spaces (text);
945 space = skip_to_space (text);
946 if (*space == '\0')
947 {
948 int len;
949 struct breakpoint *b;
950 VEC (char_ptr) *result = NULL;
951
952 if (text[0] == '$')
953 {
954 /* We don't support completion of history indices. */
955 if (!isdigit (text[1]))
956 complete_internalvar (tracker, &text[1]);
957 return;
958 }
959
960 /* We're completing the breakpoint number. */
961 len = strlen (text);
962
963 ALL_BREAKPOINTS (b)
964 {
965 char number[50];
966
967 xsnprintf (number, sizeof (number), "%d", b->number);
968
969 if (strncmp (number, text, len) == 0)
970 {
971 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
972 tracker.add_completion (std::move (copy));
973 }
974 }
975
976 return;
977 }
978
979 /* We're completing the expression part. */
980 text = skip_spaces (space);
981 expression_completer (cmd, tracker, text, word);
982 }
983
984 /* condition N EXP -- set break condition of breakpoint N to EXP. */
985
986 static void
987 condition_command (char *arg, int from_tty)
988 {
989 struct breakpoint *b;
990 char *p;
991 int bnum;
992
993 if (arg == 0)
994 error_no_arg (_("breakpoint number"));
995
996 p = arg;
997 bnum = get_number (&p);
998 if (bnum == 0)
999 error (_("Bad breakpoint argument: '%s'"), arg);
1000
1001 ALL_BREAKPOINTS (b)
1002 if (b->number == bnum)
1003 {
1004 /* Check if this breakpoint has a "stop" method implemented in an
1005 extension language. This method and conditions entered into GDB
1006 from the CLI are mutually exclusive. */
1007 const struct extension_language_defn *extlang
1008 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1009
1010 if (extlang != NULL)
1011 {
1012 error (_("Only one stop condition allowed. There is currently"
1013 " a %s stop condition defined for this breakpoint."),
1014 ext_lang_capitalized_name (extlang));
1015 }
1016 set_breakpoint_condition (b, p, from_tty);
1017
1018 if (is_breakpoint (b))
1019 update_global_location_list (UGLL_MAY_INSERT);
1020
1021 return;
1022 }
1023
1024 error (_("No breakpoint number %d."), bnum);
1025 }
1026
1027 /* Check that COMMAND do not contain commands that are suitable
1028 only for tracepoints and not suitable for ordinary breakpoints.
1029 Throw if any such commands is found. */
1030
1031 static void
1032 check_no_tracepoint_commands (struct command_line *commands)
1033 {
1034 struct command_line *c;
1035
1036 for (c = commands; c; c = c->next)
1037 {
1038 int i;
1039
1040 if (c->control_type == while_stepping_control)
1041 error (_("The 'while-stepping' command can "
1042 "only be used for tracepoints"));
1043
1044 for (i = 0; i < c->body_count; ++i)
1045 check_no_tracepoint_commands ((c->body_list)[i]);
1046
1047 /* Not that command parsing removes leading whitespace and comment
1048 lines and also empty lines. So, we only need to check for
1049 command directly. */
1050 if (strstr (c->line, "collect ") == c->line)
1051 error (_("The 'collect' command can only be used for tracepoints"));
1052
1053 if (strstr (c->line, "teval ") == c->line)
1054 error (_("The 'teval' command can only be used for tracepoints"));
1055 }
1056 }
1057
1058 struct longjmp_breakpoint : public breakpoint
1059 {
1060 ~longjmp_breakpoint () override;
1061 };
1062
1063 /* Encapsulate tests for different types of tracepoints. */
1064
1065 static bool
1066 is_tracepoint_type (bptype type)
1067 {
1068 return (type == bp_tracepoint
1069 || type == bp_fast_tracepoint
1070 || type == bp_static_tracepoint);
1071 }
1072
1073 static bool
1074 is_longjmp_type (bptype type)
1075 {
1076 return type == bp_longjmp || type == bp_exception;
1077 }
1078
1079 int
1080 is_tracepoint (const struct breakpoint *b)
1081 {
1082 return is_tracepoint_type (b->type);
1083 }
1084
1085 /* Factory function to create an appropriate instance of breakpoint given
1086 TYPE. */
1087
1088 static std::unique_ptr<breakpoint>
1089 new_breakpoint_from_type (bptype type)
1090 {
1091 breakpoint *b;
1092
1093 if (is_tracepoint_type (type))
1094 b = new tracepoint ();
1095 else if (is_longjmp_type (type))
1096 b = new longjmp_breakpoint ();
1097 else
1098 b = new breakpoint ();
1099
1100 return std::unique_ptr<breakpoint> (b);
1101 }
1102
1103 /* A helper function that validates that COMMANDS are valid for a
1104 breakpoint. This function will throw an exception if a problem is
1105 found. */
1106
1107 static void
1108 validate_commands_for_breakpoint (struct breakpoint *b,
1109 struct command_line *commands)
1110 {
1111 if (is_tracepoint (b))
1112 {
1113 struct tracepoint *t = (struct tracepoint *) b;
1114 struct command_line *c;
1115 struct command_line *while_stepping = 0;
1116
1117 /* Reset the while-stepping step count. The previous commands
1118 might have included a while-stepping action, while the new
1119 ones might not. */
1120 t->step_count = 0;
1121
1122 /* We need to verify that each top-level element of commands is
1123 valid for tracepoints, that there's at most one
1124 while-stepping element, and that the while-stepping's body
1125 has valid tracing commands excluding nested while-stepping.
1126 We also need to validate the tracepoint action line in the
1127 context of the tracepoint --- validate_actionline actually
1128 has side effects, like setting the tracepoint's
1129 while-stepping STEP_COUNT, in addition to checking if the
1130 collect/teval actions parse and make sense in the
1131 tracepoint's context. */
1132 for (c = commands; c; c = c->next)
1133 {
1134 if (c->control_type == while_stepping_control)
1135 {
1136 if (b->type == bp_fast_tracepoint)
1137 error (_("The 'while-stepping' command "
1138 "cannot be used for fast tracepoint"));
1139 else if (b->type == bp_static_tracepoint)
1140 error (_("The 'while-stepping' command "
1141 "cannot be used for static tracepoint"));
1142
1143 if (while_stepping)
1144 error (_("The 'while-stepping' command "
1145 "can be used only once"));
1146 else
1147 while_stepping = c;
1148 }
1149
1150 validate_actionline (c->line, b);
1151 }
1152 if (while_stepping)
1153 {
1154 struct command_line *c2;
1155
1156 gdb_assert (while_stepping->body_count == 1);
1157 c2 = while_stepping->body_list[0];
1158 for (; c2; c2 = c2->next)
1159 {
1160 if (c2->control_type == while_stepping_control)
1161 error (_("The 'while-stepping' command cannot be nested"));
1162 }
1163 }
1164 }
1165 else
1166 {
1167 check_no_tracepoint_commands (commands);
1168 }
1169 }
1170
1171 /* Return a vector of all the static tracepoints set at ADDR. The
1172 caller is responsible for releasing the vector. */
1173
1174 VEC(breakpoint_p) *
1175 static_tracepoints_here (CORE_ADDR addr)
1176 {
1177 struct breakpoint *b;
1178 VEC(breakpoint_p) *found = 0;
1179 struct bp_location *loc;
1180
1181 ALL_BREAKPOINTS (b)
1182 if (b->type == bp_static_tracepoint)
1183 {
1184 for (loc = b->loc; loc; loc = loc->next)
1185 if (loc->address == addr)
1186 VEC_safe_push(breakpoint_p, found, b);
1187 }
1188
1189 return found;
1190 }
1191
1192 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1193 validate that only allowed commands are included. */
1194
1195 void
1196 breakpoint_set_commands (struct breakpoint *b,
1197 command_line_up &&commands)
1198 {
1199 validate_commands_for_breakpoint (b, commands.get ());
1200
1201 b->commands = std::move (commands);
1202 observer_notify_breakpoint_modified (b);
1203 }
1204
1205 /* Set the internal `silent' flag on the breakpoint. Note that this
1206 is not the same as the "silent" that may appear in the breakpoint's
1207 commands. */
1208
1209 void
1210 breakpoint_set_silent (struct breakpoint *b, int silent)
1211 {
1212 int old_silent = b->silent;
1213
1214 b->silent = silent;
1215 if (old_silent != silent)
1216 observer_notify_breakpoint_modified (b);
1217 }
1218
1219 /* Set the thread for this breakpoint. If THREAD is -1, make the
1220 breakpoint work for any thread. */
1221
1222 void
1223 breakpoint_set_thread (struct breakpoint *b, int thread)
1224 {
1225 int old_thread = b->thread;
1226
1227 b->thread = thread;
1228 if (old_thread != thread)
1229 observer_notify_breakpoint_modified (b);
1230 }
1231
1232 /* Set the task for this breakpoint. If TASK is 0, make the
1233 breakpoint work for any task. */
1234
1235 void
1236 breakpoint_set_task (struct breakpoint *b, int task)
1237 {
1238 int old_task = b->task;
1239
1240 b->task = task;
1241 if (old_task != task)
1242 observer_notify_breakpoint_modified (b);
1243 }
1244
1245 void
1246 check_tracepoint_command (char *line, void *closure)
1247 {
1248 struct breakpoint *b = (struct breakpoint *) closure;
1249
1250 validate_actionline (line, b);
1251 }
1252
1253 static void
1254 commands_command_1 (const char *arg, int from_tty,
1255 struct command_line *control)
1256 {
1257 counted_command_line cmd;
1258
1259 std::string new_arg;
1260
1261 if (arg == NULL || !*arg)
1262 {
1263 if (breakpoint_count - prev_breakpoint_count > 1)
1264 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1265 breakpoint_count);
1266 else if (breakpoint_count > 0)
1267 new_arg = string_printf ("%d", breakpoint_count);
1268 arg = new_arg.c_str ();
1269 }
1270
1271 map_breakpoint_numbers
1272 (arg, [&] (breakpoint *b)
1273 {
1274 if (cmd == NULL)
1275 {
1276 if (control != NULL)
1277 cmd = copy_command_lines (control->body_list[0]);
1278 else
1279 {
1280 std::string str
1281 = string_printf (_("Type commands for breakpoint(s) "
1282 "%s, one per line."),
1283 arg);
1284
1285 cmd = read_command_lines (&str[0],
1286 from_tty, 1,
1287 (is_tracepoint (b)
1288 ? check_tracepoint_command : 0),
1289 b);
1290 }
1291 }
1292
1293 /* If a breakpoint was on the list more than once, we don't need to
1294 do anything. */
1295 if (b->commands != cmd)
1296 {
1297 validate_commands_for_breakpoint (b, cmd.get ());
1298 b->commands = cmd;
1299 observer_notify_breakpoint_modified (b);
1300 }
1301 });
1302
1303 if (cmd == NULL)
1304 error (_("No breakpoints specified."));
1305 }
1306
1307 static void
1308 commands_command (char *arg, int from_tty)
1309 {
1310 commands_command_1 (arg, from_tty, NULL);
1311 }
1312
1313 /* Like commands_command, but instead of reading the commands from
1314 input stream, takes them from an already parsed command structure.
1315
1316 This is used by cli-script.c to DTRT with breakpoint commands
1317 that are part of if and while bodies. */
1318 enum command_control_type
1319 commands_from_control_command (const char *arg, struct command_line *cmd)
1320 {
1321 commands_command_1 (arg, 0, cmd);
1322 return simple_control;
1323 }
1324
1325 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1326
1327 static int
1328 bp_location_has_shadow (struct bp_location *bl)
1329 {
1330 if (bl->loc_type != bp_loc_software_breakpoint)
1331 return 0;
1332 if (!bl->inserted)
1333 return 0;
1334 if (bl->target_info.shadow_len == 0)
1335 /* BL isn't valid, or doesn't shadow memory. */
1336 return 0;
1337 return 1;
1338 }
1339
1340 /* Update BUF, which is LEN bytes read from the target address
1341 MEMADDR, by replacing a memory breakpoint with its shadowed
1342 contents.
1343
1344 If READBUF is not NULL, this buffer must not overlap with the of
1345 the breakpoint location's shadow_contents buffer. Otherwise, a
1346 failed assertion internal error will be raised. */
1347
1348 static void
1349 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1350 const gdb_byte *writebuf_org,
1351 ULONGEST memaddr, LONGEST len,
1352 struct bp_target_info *target_info,
1353 struct gdbarch *gdbarch)
1354 {
1355 /* Now do full processing of the found relevant range of elements. */
1356 CORE_ADDR bp_addr = 0;
1357 int bp_size = 0;
1358 int bptoffset = 0;
1359
1360 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1361 current_program_space->aspace, 0))
1362 {
1363 /* The breakpoint is inserted in a different address space. */
1364 return;
1365 }
1366
1367 /* Addresses and length of the part of the breakpoint that
1368 we need to copy. */
1369 bp_addr = target_info->placed_address;
1370 bp_size = target_info->shadow_len;
1371
1372 if (bp_addr + bp_size <= memaddr)
1373 {
1374 /* The breakpoint is entirely before the chunk of memory we are
1375 reading. */
1376 return;
1377 }
1378
1379 if (bp_addr >= memaddr + len)
1380 {
1381 /* The breakpoint is entirely after the chunk of memory we are
1382 reading. */
1383 return;
1384 }
1385
1386 /* Offset within shadow_contents. */
1387 if (bp_addr < memaddr)
1388 {
1389 /* Only copy the second part of the breakpoint. */
1390 bp_size -= memaddr - bp_addr;
1391 bptoffset = memaddr - bp_addr;
1392 bp_addr = memaddr;
1393 }
1394
1395 if (bp_addr + bp_size > memaddr + len)
1396 {
1397 /* Only copy the first part of the breakpoint. */
1398 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1399 }
1400
1401 if (readbuf != NULL)
1402 {
1403 /* Verify that the readbuf buffer does not overlap with the
1404 shadow_contents buffer. */
1405 gdb_assert (target_info->shadow_contents >= readbuf + len
1406 || readbuf >= (target_info->shadow_contents
1407 + target_info->shadow_len));
1408
1409 /* Update the read buffer with this inserted breakpoint's
1410 shadow. */
1411 memcpy (readbuf + bp_addr - memaddr,
1412 target_info->shadow_contents + bptoffset, bp_size);
1413 }
1414 else
1415 {
1416 const unsigned char *bp;
1417 CORE_ADDR addr = target_info->reqstd_address;
1418 int placed_size;
1419
1420 /* Update the shadow with what we want to write to memory. */
1421 memcpy (target_info->shadow_contents + bptoffset,
1422 writebuf_org + bp_addr - memaddr, bp_size);
1423
1424 /* Determine appropriate breakpoint contents and size for this
1425 address. */
1426 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1427
1428 /* Update the final write buffer with this inserted
1429 breakpoint's INSN. */
1430 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1431 }
1432 }
1433
1434 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1435 by replacing any memory breakpoints with their shadowed contents.
1436
1437 If READBUF is not NULL, this buffer must not overlap with any of
1438 the breakpoint location's shadow_contents buffers. Otherwise,
1439 a failed assertion internal error will be raised.
1440
1441 The range of shadowed area by each bp_location is:
1442 bl->address - bp_locations_placed_address_before_address_max
1443 up to bl->address + bp_locations_shadow_len_after_address_max
1444 The range we were requested to resolve shadows for is:
1445 memaddr ... memaddr + len
1446 Thus the safe cutoff boundaries for performance optimization are
1447 memaddr + len <= (bl->address
1448 - bp_locations_placed_address_before_address_max)
1449 and:
1450 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1451
1452 void
1453 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1454 const gdb_byte *writebuf_org,
1455 ULONGEST memaddr, LONGEST len)
1456 {
1457 /* Left boundary, right boundary and median element of our binary
1458 search. */
1459 unsigned bc_l, bc_r, bc;
1460
1461 /* Find BC_L which is a leftmost element which may affect BUF
1462 content. It is safe to report lower value but a failure to
1463 report higher one. */
1464
1465 bc_l = 0;
1466 bc_r = bp_locations_count;
1467 while (bc_l + 1 < bc_r)
1468 {
1469 struct bp_location *bl;
1470
1471 bc = (bc_l + bc_r) / 2;
1472 bl = bp_locations[bc];
1473
1474 /* Check first BL->ADDRESS will not overflow due to the added
1475 constant. Then advance the left boundary only if we are sure
1476 the BC element can in no way affect the BUF content (MEMADDR
1477 to MEMADDR + LEN range).
1478
1479 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1480 offset so that we cannot miss a breakpoint with its shadow
1481 range tail still reaching MEMADDR. */
1482
1483 if ((bl->address + bp_locations_shadow_len_after_address_max
1484 >= bl->address)
1485 && (bl->address + bp_locations_shadow_len_after_address_max
1486 <= memaddr))
1487 bc_l = bc;
1488 else
1489 bc_r = bc;
1490 }
1491
1492 /* Due to the binary search above, we need to make sure we pick the
1493 first location that's at BC_L's address. E.g., if there are
1494 multiple locations at the same address, BC_L may end up pointing
1495 at a duplicate location, and miss the "master"/"inserted"
1496 location. Say, given locations L1, L2 and L3 at addresses A and
1497 B:
1498
1499 L1@A, L2@A, L3@B, ...
1500
1501 BC_L could end up pointing at location L2, while the "master"
1502 location could be L1. Since the `loc->inserted' flag is only set
1503 on "master" locations, we'd forget to restore the shadow of L1
1504 and L2. */
1505 while (bc_l > 0
1506 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1507 bc_l--;
1508
1509 /* Now do full processing of the found relevant range of elements. */
1510
1511 for (bc = bc_l; bc < bp_locations_count; bc++)
1512 {
1513 struct bp_location *bl = bp_locations[bc];
1514
1515 /* bp_location array has BL->OWNER always non-NULL. */
1516 if (bl->owner->type == bp_none)
1517 warning (_("reading through apparently deleted breakpoint #%d?"),
1518 bl->owner->number);
1519
1520 /* Performance optimization: any further element can no longer affect BUF
1521 content. */
1522
1523 if (bl->address >= bp_locations_placed_address_before_address_max
1524 && memaddr + len <= (bl->address
1525 - bp_locations_placed_address_before_address_max))
1526 break;
1527
1528 if (!bp_location_has_shadow (bl))
1529 continue;
1530
1531 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1532 memaddr, len, &bl->target_info, bl->gdbarch);
1533 }
1534 }
1535
1536 \f
1537
1538 /* Return true if BPT is either a software breakpoint or a hardware
1539 breakpoint. */
1540
1541 int
1542 is_breakpoint (const struct breakpoint *bpt)
1543 {
1544 return (bpt->type == bp_breakpoint
1545 || bpt->type == bp_hardware_breakpoint
1546 || bpt->type == bp_dprintf);
1547 }
1548
1549 /* Return true if BPT is of any hardware watchpoint kind. */
1550
1551 static int
1552 is_hardware_watchpoint (const struct breakpoint *bpt)
1553 {
1554 return (bpt->type == bp_hardware_watchpoint
1555 || bpt->type == bp_read_watchpoint
1556 || bpt->type == bp_access_watchpoint);
1557 }
1558
1559 /* Return true if BPT is of any watchpoint kind, hardware or
1560 software. */
1561
1562 int
1563 is_watchpoint (const struct breakpoint *bpt)
1564 {
1565 return (is_hardware_watchpoint (bpt)
1566 || bpt->type == bp_watchpoint);
1567 }
1568
1569 /* Returns true if the current thread and its running state are safe
1570 to evaluate or update watchpoint B. Watchpoints on local
1571 expressions need to be evaluated in the context of the thread that
1572 was current when the watchpoint was created, and, that thread needs
1573 to be stopped to be able to select the correct frame context.
1574 Watchpoints on global expressions can be evaluated on any thread,
1575 and in any state. It is presently left to the target allowing
1576 memory accesses when threads are running. */
1577
1578 static int
1579 watchpoint_in_thread_scope (struct watchpoint *b)
1580 {
1581 return (b->pspace == current_program_space
1582 && (ptid_equal (b->watchpoint_thread, null_ptid)
1583 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1584 && !is_executing (inferior_ptid))));
1585 }
1586
1587 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1588 associated bp_watchpoint_scope breakpoint. */
1589
1590 static void
1591 watchpoint_del_at_next_stop (struct watchpoint *w)
1592 {
1593 if (w->related_breakpoint != w)
1594 {
1595 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1596 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1597 w->related_breakpoint->disposition = disp_del_at_next_stop;
1598 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1599 w->related_breakpoint = w;
1600 }
1601 w->disposition = disp_del_at_next_stop;
1602 }
1603
1604 /* Extract a bitfield value from value VAL using the bit parameters contained in
1605 watchpoint W. */
1606
1607 static struct value *
1608 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1609 {
1610 struct value *bit_val;
1611
1612 if (val == NULL)
1613 return NULL;
1614
1615 bit_val = allocate_value (value_type (val));
1616
1617 unpack_value_bitfield (bit_val,
1618 w->val_bitpos,
1619 w->val_bitsize,
1620 value_contents_for_printing (val),
1621 value_offset (val),
1622 val);
1623
1624 return bit_val;
1625 }
1626
1627 /* Allocate a dummy location and add it to B, which must be a software
1628 watchpoint. This is required because even if a software watchpoint
1629 is not watching any memory, bpstat_stop_status requires a location
1630 to be able to report stops. */
1631
1632 static void
1633 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1634 struct program_space *pspace)
1635 {
1636 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1637
1638 b->loc = allocate_bp_location (b);
1639 b->loc->pspace = pspace;
1640 b->loc->address = -1;
1641 b->loc->length = -1;
1642 }
1643
1644 /* Returns true if B is a software watchpoint that is not watching any
1645 memory (e.g., "watch $pc"). */
1646
1647 static int
1648 is_no_memory_software_watchpoint (struct breakpoint *b)
1649 {
1650 return (b->type == bp_watchpoint
1651 && b->loc != NULL
1652 && b->loc->next == NULL
1653 && b->loc->address == -1
1654 && b->loc->length == -1);
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're at a point where the stack has been destroyed
1737 (e.g. in a function epilogue), unwinding may not work
1738 properly. Do not attempt to recreate locations at this
1739 point. See similar comments in watchpoint_check. */
1740 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1741 return;
1742
1743 /* Save the current frame's ID so we can restore it after
1744 evaluating the watchpoint expression on its own frame. */
1745 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1746 took a frame parameter, so that we didn't have to change the
1747 selected frame. */
1748 frame_saved = 1;
1749 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1750
1751 fi = frame_find_by_id (b->watchpoint_frame);
1752 within_current_scope = (fi != NULL);
1753 if (within_current_scope)
1754 select_frame (fi);
1755 }
1756
1757 /* We don't free locations. They are stored in the bp_location array
1758 and update_global_location_list will eventually delete them and
1759 remove breakpoints if needed. */
1760 b->loc = NULL;
1761
1762 if (within_current_scope && reparse)
1763 {
1764 const char *s;
1765
1766 b->exp.reset ();
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->cond_string != NULL)
1781 {
1782 b->cond_exp.reset ();
1783
1784 s = b->cond_string;
1785 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1786 }
1787 }
1788
1789 /* If we failed to parse the expression, for example because
1790 it refers to a global variable in a not-yet-loaded shared library,
1791 don't try to insert watchpoint. We don't automatically delete
1792 such watchpoint, though, since failure to parse expression
1793 is different from out-of-scope watchpoint. */
1794 if (!target_has_execution)
1795 {
1796 /* Without execution, memory can't change. No use to try and
1797 set watchpoint locations. The watchpoint will be reset when
1798 the target gains execution, through breakpoint_re_set. */
1799 if (!can_use_hw_watchpoints)
1800 {
1801 if (b->ops->works_in_software_mode (b))
1802 b->type = bp_watchpoint;
1803 else
1804 error (_("Can't set read/access watchpoint when "
1805 "hardware watchpoints are disabled."));
1806 }
1807 }
1808 else if (within_current_scope && b->exp)
1809 {
1810 int pc = 0;
1811 struct value *val_chain, *v, *result, *next;
1812 struct program_space *frame_pspace;
1813
1814 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1815
1816 /* Avoid setting b->val if it's already set. The meaning of
1817 b->val is 'the last value' user saw, and we should update
1818 it only if we reported that last value to user. As it
1819 happens, the code that reports it updates b->val directly.
1820 We don't keep track of the memory value for masked
1821 watchpoints. */
1822 if (!b->val_valid && !is_masked_watchpoint (b))
1823 {
1824 if (b->val_bitsize != 0)
1825 {
1826 v = extract_bitfield_from_watchpoint_value (b, v);
1827 if (v != NULL)
1828 release_value (v);
1829 }
1830 b->val = v;
1831 b->val_valid = 1;
1832 }
1833
1834 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1835
1836 /* Look at each value on the value chain. */
1837 for (v = val_chain; v; v = value_next (v))
1838 {
1839 /* If it's a memory location, and GDB actually needed
1840 its contents to evaluate the expression, then we
1841 must watch it. If the first value returned is
1842 still lazy, that means an error occurred reading it;
1843 watch it anyway in case it becomes readable. */
1844 if (VALUE_LVAL (v) == lval_memory
1845 && (v == val_chain || ! value_lazy (v)))
1846 {
1847 struct type *vtype = check_typedef (value_type (v));
1848
1849 /* We only watch structs and arrays if user asked
1850 for it explicitly, never if they just happen to
1851 appear in the middle of some value chain. */
1852 if (v == result
1853 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1854 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1855 {
1856 CORE_ADDR addr;
1857 enum target_hw_bp_type type;
1858 struct bp_location *loc, **tmp;
1859 int bitpos = 0, bitsize = 0;
1860
1861 if (value_bitsize (v) != 0)
1862 {
1863 /* Extract the bit parameters out from the bitfield
1864 sub-expression. */
1865 bitpos = value_bitpos (v);
1866 bitsize = value_bitsize (v);
1867 }
1868 else if (v == result && b->val_bitsize != 0)
1869 {
1870 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1871 lvalue whose bit parameters are saved in the fields
1872 VAL_BITPOS and VAL_BITSIZE. */
1873 bitpos = b->val_bitpos;
1874 bitsize = b->val_bitsize;
1875 }
1876
1877 addr = value_address (v);
1878 if (bitsize != 0)
1879 {
1880 /* Skip the bytes that don't contain the bitfield. */
1881 addr += bitpos / 8;
1882 }
1883
1884 type = hw_write;
1885 if (b->type == bp_read_watchpoint)
1886 type = hw_read;
1887 else if (b->type == bp_access_watchpoint)
1888 type = hw_access;
1889
1890 loc = allocate_bp_location (b);
1891 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1892 ;
1893 *tmp = loc;
1894 loc->gdbarch = get_type_arch (value_type (v));
1895
1896 loc->pspace = frame_pspace;
1897 loc->address = addr;
1898
1899 if (bitsize != 0)
1900 {
1901 /* Just cover the bytes that make up the bitfield. */
1902 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1903 }
1904 else
1905 loc->length = TYPE_LENGTH (value_type (v));
1906
1907 loc->watchpoint_type = type;
1908 }
1909 }
1910 }
1911
1912 /* Change the type of breakpoint between hardware assisted or
1913 an ordinary watchpoint depending on the hardware support
1914 and free hardware slots. REPARSE is set when the inferior
1915 is started. */
1916 if (reparse)
1917 {
1918 int reg_cnt;
1919 enum bp_loc_type loc_type;
1920 struct bp_location *bl;
1921
1922 reg_cnt = can_use_hardware_watchpoint (val_chain);
1923
1924 if (reg_cnt)
1925 {
1926 int i, target_resources_ok, other_type_used;
1927 enum bptype type;
1928
1929 /* Use an exact watchpoint when there's only one memory region to be
1930 watched, and only one debug register is needed to watch it. */
1931 b->exact = target_exact_watchpoints && reg_cnt == 1;
1932
1933 /* We need to determine how many resources are already
1934 used for all other hardware watchpoints plus this one
1935 to see if we still have enough resources to also fit
1936 this watchpoint in as well. */
1937
1938 /* If this is a software watchpoint, we try to turn it
1939 to a hardware one -- count resources as if B was of
1940 hardware watchpoint type. */
1941 type = b->type;
1942 if (type == bp_watchpoint)
1943 type = bp_hardware_watchpoint;
1944
1945 /* This watchpoint may or may not have been placed on
1946 the list yet at this point (it won't be in the list
1947 if we're trying to create it for the first time,
1948 through watch_command), so always account for it
1949 manually. */
1950
1951 /* Count resources used by all watchpoints except B. */
1952 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1953
1954 /* Add in the resources needed for B. */
1955 i += hw_watchpoint_use_count (b);
1956
1957 target_resources_ok
1958 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1959 if (target_resources_ok <= 0)
1960 {
1961 int sw_mode = b->ops->works_in_software_mode (b);
1962
1963 if (target_resources_ok == 0 && !sw_mode)
1964 error (_("Target does not support this type of "
1965 "hardware watchpoint."));
1966 else if (target_resources_ok < 0 && !sw_mode)
1967 error (_("There are not enough available hardware "
1968 "resources for this watchpoint."));
1969
1970 /* Downgrade to software watchpoint. */
1971 b->type = bp_watchpoint;
1972 }
1973 else
1974 {
1975 /* If this was a software watchpoint, we've just
1976 found we have enough resources to turn it to a
1977 hardware watchpoint. Otherwise, this is a
1978 nop. */
1979 b->type = type;
1980 }
1981 }
1982 else if (!b->ops->works_in_software_mode (b))
1983 {
1984 if (!can_use_hw_watchpoints)
1985 error (_("Can't set read/access watchpoint when "
1986 "hardware watchpoints are disabled."));
1987 else
1988 error (_("Expression cannot be implemented with "
1989 "read/access watchpoint."));
1990 }
1991 else
1992 b->type = bp_watchpoint;
1993
1994 loc_type = (b->type == bp_watchpoint? bp_loc_other
1995 : bp_loc_hardware_watchpoint);
1996 for (bl = b->loc; bl; bl = bl->next)
1997 bl->loc_type = loc_type;
1998 }
1999
2000 for (v = val_chain; v; v = next)
2001 {
2002 next = value_next (v);
2003 if (v != b->val)
2004 value_free (v);
2005 }
2006
2007 /* If a software watchpoint is not watching any memory, then the
2008 above left it without any location set up. But,
2009 bpstat_stop_status requires a location to be able to report
2010 stops, so make sure there's at least a dummy one. */
2011 if (b->type == bp_watchpoint && b->loc == NULL)
2012 software_watchpoint_add_no_memory_location (b, frame_pspace);
2013 }
2014 else if (!within_current_scope)
2015 {
2016 printf_filtered (_("\
2017 Watchpoint %d deleted because the program has left the block\n\
2018 in which its expression is valid.\n"),
2019 b->number);
2020 watchpoint_del_at_next_stop (b);
2021 }
2022
2023 /* Restore the selected frame. */
2024 if (frame_saved)
2025 select_frame (frame_find_by_id (saved_frame_id));
2026 }
2027
2028
2029 /* Returns 1 iff breakpoint location should be
2030 inserted in the inferior. We don't differentiate the type of BL's owner
2031 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2032 breakpoint_ops is not defined, because in insert_bp_location,
2033 tracepoint's insert_location will not be called. */
2034 static int
2035 should_be_inserted (struct bp_location *bl)
2036 {
2037 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2038 return 0;
2039
2040 if (bl->owner->disposition == disp_del_at_next_stop)
2041 return 0;
2042
2043 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2044 return 0;
2045
2046 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2047 return 0;
2048
2049 /* This is set for example, when we're attached to the parent of a
2050 vfork, and have detached from the child. The child is running
2051 free, and we expect it to do an exec or exit, at which point the
2052 OS makes the parent schedulable again (and the target reports
2053 that the vfork is done). Until the child is done with the shared
2054 memory region, do not insert breakpoints in the parent, otherwise
2055 the child could still trip on the parent's breakpoints. Since
2056 the parent is blocked anyway, it won't miss any breakpoint. */
2057 if (bl->pspace->breakpoints_not_allowed)
2058 return 0;
2059
2060 /* Don't insert a breakpoint if we're trying to step past its
2061 location, except if the breakpoint is a single-step breakpoint,
2062 and the breakpoint's thread is the thread which is stepping past
2063 a breakpoint. */
2064 if ((bl->loc_type == bp_loc_software_breakpoint
2065 || bl->loc_type == bp_loc_hardware_breakpoint)
2066 && stepping_past_instruction_at (bl->pspace->aspace,
2067 bl->address)
2068 /* The single-step breakpoint may be inserted at the location
2069 we're trying to step if the instruction branches to itself.
2070 However, the instruction won't be executed at all and it may
2071 break the semantics of the instruction, for example, the
2072 instruction is a conditional branch or updates some flags.
2073 We can't fix it unless GDB is able to emulate the instruction
2074 or switch to displaced stepping. */
2075 && !(bl->owner->type == bp_single_step
2076 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2077 {
2078 if (debug_infrun)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "infrun: skipping breakpoint: "
2082 "stepping past insn at: %s\n",
2083 paddress (bl->gdbarch, bl->address));
2084 }
2085 return 0;
2086 }
2087
2088 /* Don't insert watchpoints if we're trying to step past the
2089 instruction that triggered one. */
2090 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2091 && stepping_past_nonsteppable_watchpoint ())
2092 {
2093 if (debug_infrun)
2094 {
2095 fprintf_unfiltered (gdb_stdlog,
2096 "infrun: stepping past non-steppable watchpoint. "
2097 "skipping watchpoint at %s:%d\n",
2098 paddress (bl->gdbarch, bl->address),
2099 bl->length);
2100 }
2101 return 0;
2102 }
2103
2104 return 1;
2105 }
2106
2107 /* Same as should_be_inserted but does the check assuming
2108 that the location is not duplicated. */
2109
2110 static int
2111 unduplicated_should_be_inserted (struct bp_location *bl)
2112 {
2113 int result;
2114 const int save_duplicate = bl->duplicate;
2115
2116 bl->duplicate = 0;
2117 result = should_be_inserted (bl);
2118 bl->duplicate = save_duplicate;
2119 return result;
2120 }
2121
2122 /* Parses a conditional described by an expression COND into an
2123 agent expression bytecode suitable for evaluation
2124 by the bytecode interpreter. Return NULL if there was
2125 any error during parsing. */
2126
2127 static agent_expr_up
2128 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2129 {
2130 if (cond == NULL)
2131 return NULL;
2132
2133 agent_expr_up aexpr;
2134
2135 /* We don't want to stop processing, so catch any errors
2136 that may show up. */
2137 TRY
2138 {
2139 aexpr = gen_eval_for_expr (scope, cond);
2140 }
2141
2142 CATCH (ex, RETURN_MASK_ERROR)
2143 {
2144 /* If we got here, it means the condition could not be parsed to a valid
2145 bytecode expression and thus can't be evaluated on the target's side.
2146 It's no use iterating through the conditions. */
2147 }
2148 END_CATCH
2149
2150 /* We have a valid agent expression. */
2151 return aexpr;
2152 }
2153
2154 /* Based on location BL, create a list of breakpoint conditions to be
2155 passed on to the target. If we have duplicated locations with different
2156 conditions, we will add such conditions to the list. The idea is that the
2157 target will evaluate the list of conditions and will only notify GDB when
2158 one of them is true. */
2159
2160 static void
2161 build_target_condition_list (struct bp_location *bl)
2162 {
2163 struct bp_location **locp = NULL, **loc2p;
2164 int null_condition_or_parse_error = 0;
2165 int modified = bl->needs_update;
2166 struct bp_location *loc;
2167
2168 /* Release conditions left over from a previous insert. */
2169 bl->target_info.conditions.clear ();
2170
2171 /* This is only meaningful if the target is
2172 evaluating conditions and if the user has
2173 opted for condition evaluation on the target's
2174 side. */
2175 if (gdb_evaluates_breakpoint_condition_p ()
2176 || !target_supports_evaluation_of_breakpoint_conditions ())
2177 return;
2178
2179 /* Do a first pass to check for locations with no assigned
2180 conditions or conditions that fail to parse to a valid agent expression
2181 bytecode. If any of these happen, then it's no use to send conditions
2182 to the target since this location will always trigger and generate a
2183 response back to GDB. */
2184 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2185 {
2186 loc = (*loc2p);
2187 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2188 {
2189 if (modified)
2190 {
2191 /* Re-parse the conditions since something changed. In that
2192 case we already freed the condition bytecodes (see
2193 force_breakpoint_reinsertion). We just
2194 need to parse the condition to bytecodes again. */
2195 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2196 loc->cond.get ());
2197 }
2198
2199 /* If we have a NULL bytecode expression, it means something
2200 went wrong or we have a null condition expression. */
2201 if (!loc->cond_bytecode)
2202 {
2203 null_condition_or_parse_error = 1;
2204 break;
2205 }
2206 }
2207 }
2208
2209 /* If any of these happened, it means we will have to evaluate the conditions
2210 for the location's address on gdb's side. It is no use keeping bytecodes
2211 for all the other duplicate locations, thus we free all of them here.
2212
2213 This is so we have a finer control over which locations' conditions are
2214 being evaluated by GDB or the remote stub. */
2215 if (null_condition_or_parse_error)
2216 {
2217 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2218 {
2219 loc = (*loc2p);
2220 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2221 {
2222 /* Only go as far as the first NULL bytecode is
2223 located. */
2224 if (!loc->cond_bytecode)
2225 return;
2226
2227 loc->cond_bytecode.reset ();
2228 }
2229 }
2230 }
2231
2232 /* No NULL conditions or failed bytecode generation. Build a condition list
2233 for this location's address. */
2234 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2235 {
2236 loc = (*loc2p);
2237 if (loc->cond
2238 && is_breakpoint (loc->owner)
2239 && loc->pspace->num == bl->pspace->num
2240 && loc->owner->enable_state == bp_enabled
2241 && loc->enabled)
2242 {
2243 /* Add the condition to the vector. This will be used later
2244 to send the conditions to the target. */
2245 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2246 }
2247 }
2248
2249 return;
2250 }
2251
2252 /* Parses a command described by string CMD into an agent expression
2253 bytecode suitable for evaluation by the bytecode interpreter.
2254 Return NULL if there was any error during parsing. */
2255
2256 static agent_expr_up
2257 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2258 {
2259 struct cleanup *old_cleanups = 0;
2260 struct expression **argvec;
2261 const char *cmdrest;
2262 const char *format_start, *format_end;
2263 struct format_piece *fpieces;
2264 int nargs;
2265 struct gdbarch *gdbarch = get_current_arch ();
2266
2267 if (cmd == NULL)
2268 return NULL;
2269
2270 cmdrest = cmd;
2271
2272 if (*cmdrest == ',')
2273 ++cmdrest;
2274 cmdrest = skip_spaces (cmdrest);
2275
2276 if (*cmdrest++ != '"')
2277 error (_("No format string following the location"));
2278
2279 format_start = cmdrest;
2280
2281 fpieces = parse_format_string (&cmdrest);
2282
2283 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2284
2285 format_end = cmdrest;
2286
2287 if (*cmdrest++ != '"')
2288 error (_("Bad format string, non-terminated '\"'."));
2289
2290 cmdrest = skip_spaces (cmdrest);
2291
2292 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2293 error (_("Invalid argument syntax"));
2294
2295 if (*cmdrest == ',')
2296 cmdrest++;
2297 cmdrest = skip_spaces (cmdrest);
2298
2299 /* For each argument, make an expression. */
2300
2301 argvec = (struct expression **) alloca (strlen (cmd)
2302 * sizeof (struct expression *));
2303
2304 nargs = 0;
2305 while (*cmdrest != '\0')
2306 {
2307 const char *cmd1;
2308
2309 cmd1 = cmdrest;
2310 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2311 argvec[nargs++] = expr.release ();
2312 cmdrest = cmd1;
2313 if (*cmdrest == ',')
2314 ++cmdrest;
2315 }
2316
2317 agent_expr_up aexpr;
2318
2319 /* We don't want to stop processing, so catch any errors
2320 that may show up. */
2321 TRY
2322 {
2323 aexpr = gen_printf (scope, gdbarch, 0, 0,
2324 format_start, format_end - format_start,
2325 fpieces, nargs, argvec);
2326 }
2327 CATCH (ex, RETURN_MASK_ERROR)
2328 {
2329 /* If we got here, it means the command could not be parsed to a valid
2330 bytecode expression and thus can't be evaluated on the target's side.
2331 It's no use iterating through the other commands. */
2332 }
2333 END_CATCH
2334
2335 do_cleanups (old_cleanups);
2336
2337 /* We have a valid agent expression, return it. */
2338 return aexpr;
2339 }
2340
2341 /* Based on location BL, create a list of breakpoint commands to be
2342 passed on to the target. If we have duplicated locations with
2343 different commands, we will add any such to the list. */
2344
2345 static void
2346 build_target_command_list (struct bp_location *bl)
2347 {
2348 struct bp_location **locp = NULL, **loc2p;
2349 int null_command_or_parse_error = 0;
2350 int modified = bl->needs_update;
2351 struct bp_location *loc;
2352
2353 /* Clear commands left over from a previous insert. */
2354 bl->target_info.tcommands.clear ();
2355
2356 if (!target_can_run_breakpoint_commands ())
2357 return;
2358
2359 /* For now, limit to agent-style dprintf breakpoints. */
2360 if (dprintf_style != dprintf_style_agent)
2361 return;
2362
2363 /* For now, if we have any duplicate location that isn't a dprintf,
2364 don't install the target-side commands, as that would make the
2365 breakpoint not be reported to the core, and we'd lose
2366 control. */
2367 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2368 {
2369 loc = (*loc2p);
2370 if (is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->type != bp_dprintf)
2373 return;
2374 }
2375
2376 /* Do a first pass to check for locations with no assigned
2377 conditions or conditions that fail to parse to a valid agent expression
2378 bytecode. If any of these happen, then it's no use to send conditions
2379 to the target since this location will always trigger and generate a
2380 response back to GDB. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2385 {
2386 if (modified)
2387 {
2388 /* Re-parse the commands since something changed. In that
2389 case we already freed the command bytecodes (see
2390 force_breakpoint_reinsertion). We just
2391 need to parse the command to bytecodes again. */
2392 loc->cmd_bytecode
2393 = parse_cmd_to_aexpr (bl->address,
2394 loc->owner->extra_string);
2395 }
2396
2397 /* If we have a NULL bytecode expression, it means something
2398 went wrong or we have a null command expression. */
2399 if (!loc->cmd_bytecode)
2400 {
2401 null_command_or_parse_error = 1;
2402 break;
2403 }
2404 }
2405 }
2406
2407 /* If anything failed, then we're not doing target-side commands,
2408 and so clean up. */
2409 if (null_command_or_parse_error)
2410 {
2411 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2412 {
2413 loc = (*loc2p);
2414 if (is_breakpoint (loc->owner)
2415 && loc->pspace->num == bl->pspace->num)
2416 {
2417 /* Only go as far as the first NULL bytecode is
2418 located. */
2419 if (loc->cmd_bytecode == NULL)
2420 return;
2421
2422 loc->cmd_bytecode.reset ();
2423 }
2424 }
2425 }
2426
2427 /* No NULL commands or failed bytecode generation. Build a command list
2428 for this location's address. */
2429 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2430 {
2431 loc = (*loc2p);
2432 if (loc->owner->extra_string
2433 && is_breakpoint (loc->owner)
2434 && loc->pspace->num == bl->pspace->num
2435 && loc->owner->enable_state == bp_enabled
2436 && loc->enabled)
2437 {
2438 /* Add the command to the vector. This will be used later
2439 to send the commands to the target. */
2440 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2441 }
2442 }
2443
2444 bl->target_info.persist = 0;
2445 /* Maybe flag this location as persistent. */
2446 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2447 bl->target_info.persist = 1;
2448 }
2449
2450 /* Return the kind of breakpoint on address *ADDR. Get the kind
2451 of breakpoint according to ADDR except single-step breakpoint.
2452 Get the kind of single-step breakpoint according to the current
2453 registers state. */
2454
2455 static int
2456 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2457 {
2458 if (bl->owner->type == bp_single_step)
2459 {
2460 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2461 struct regcache *regcache;
2462
2463 regcache = get_thread_regcache (thr->ptid);
2464
2465 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2466 regcache, addr);
2467 }
2468 else
2469 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2470 }
2471
2472 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2473 location. Any error messages are printed to TMP_ERROR_STREAM; and
2474 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2475 Returns 0 for success, 1 if the bp_location type is not supported or
2476 -1 for failure.
2477
2478 NOTE drow/2003-09-09: This routine could be broken down to an
2479 object-style method for each breakpoint or catchpoint type. */
2480 static int
2481 insert_bp_location (struct bp_location *bl,
2482 struct ui_file *tmp_error_stream,
2483 int *disabled_breaks,
2484 int *hw_breakpoint_error,
2485 int *hw_bp_error_explained_already)
2486 {
2487 enum errors bp_err = GDB_NO_ERROR;
2488 const char *bp_err_message = NULL;
2489
2490 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2491 return 0;
2492
2493 /* Note we don't initialize bl->target_info, as that wipes out
2494 the breakpoint location's shadow_contents if the breakpoint
2495 is still inserted at that location. This in turn breaks
2496 target_read_memory which depends on these buffers when
2497 a memory read is requested at the breakpoint location:
2498 Once the target_info has been wiped, we fail to see that
2499 we have a breakpoint inserted at that address and thus
2500 read the breakpoint instead of returning the data saved in
2501 the breakpoint location's shadow contents. */
2502 bl->target_info.reqstd_address = bl->address;
2503 bl->target_info.placed_address_space = bl->pspace->aspace;
2504 bl->target_info.length = bl->length;
2505
2506 /* When working with target-side conditions, we must pass all the conditions
2507 for the same breakpoint address down to the target since GDB will not
2508 insert those locations. With a list of breakpoint conditions, the target
2509 can decide when to stop and notify GDB. */
2510
2511 if (is_breakpoint (bl->owner))
2512 {
2513 build_target_condition_list (bl);
2514 build_target_command_list (bl);
2515 /* Reset the modification marker. */
2516 bl->needs_update = 0;
2517 }
2518
2519 if (bl->loc_type == bp_loc_software_breakpoint
2520 || bl->loc_type == bp_loc_hardware_breakpoint)
2521 {
2522 if (bl->owner->type != bp_hardware_breakpoint)
2523 {
2524 /* If the explicitly specified breakpoint type
2525 is not hardware breakpoint, check the memory map to see
2526 if the breakpoint address is in read only memory or not.
2527
2528 Two important cases are:
2529 - location type is not hardware breakpoint, memory
2530 is readonly. We change the type of the location to
2531 hardware breakpoint.
2532 - location type is hardware breakpoint, memory is
2533 read-write. This means we've previously made the
2534 location hardware one, but then the memory map changed,
2535 so we undo.
2536
2537 When breakpoints are removed, remove_breakpoints will use
2538 location types we've just set here, the only possible
2539 problem is that memory map has changed during running
2540 program, but it's not going to work anyway with current
2541 gdb. */
2542 struct mem_region *mr
2543 = lookup_mem_region (bl->target_info.reqstd_address);
2544
2545 if (mr)
2546 {
2547 if (automatic_hardware_breakpoints)
2548 {
2549 enum bp_loc_type new_type;
2550
2551 if (mr->attrib.mode != MEM_RW)
2552 new_type = bp_loc_hardware_breakpoint;
2553 else
2554 new_type = bp_loc_software_breakpoint;
2555
2556 if (new_type != bl->loc_type)
2557 {
2558 static int said = 0;
2559
2560 bl->loc_type = new_type;
2561 if (!said)
2562 {
2563 fprintf_filtered (gdb_stdout,
2564 _("Note: automatically using "
2565 "hardware breakpoints for "
2566 "read-only addresses.\n"));
2567 said = 1;
2568 }
2569 }
2570 }
2571 else if (bl->loc_type == bp_loc_software_breakpoint
2572 && mr->attrib.mode != MEM_RW)
2573 {
2574 fprintf_unfiltered (tmp_error_stream,
2575 _("Cannot insert breakpoint %d.\n"
2576 "Cannot set software breakpoint "
2577 "at read-only address %s\n"),
2578 bl->owner->number,
2579 paddress (bl->gdbarch, bl->address));
2580 return 1;
2581 }
2582 }
2583 }
2584
2585 /* First check to see if we have to handle an overlay. */
2586 if (overlay_debugging == ovly_off
2587 || bl->section == NULL
2588 || !(section_is_overlay (bl->section)))
2589 {
2590 /* No overlay handling: just set the breakpoint. */
2591 TRY
2592 {
2593 int val;
2594
2595 val = bl->owner->ops->insert_location (bl);
2596 if (val)
2597 bp_err = GENERIC_ERROR;
2598 }
2599 CATCH (e, RETURN_MASK_ALL)
2600 {
2601 bp_err = e.error;
2602 bp_err_message = e.message;
2603 }
2604 END_CATCH
2605 }
2606 else
2607 {
2608 /* This breakpoint is in an overlay section.
2609 Shall we set a breakpoint at the LMA? */
2610 if (!overlay_events_enabled)
2611 {
2612 /* Yes -- overlay event support is not active,
2613 so we must try to set a breakpoint at the LMA.
2614 This will not work for a hardware breakpoint. */
2615 if (bl->loc_type == bp_loc_hardware_breakpoint)
2616 warning (_("hardware breakpoint %d not supported in overlay!"),
2617 bl->owner->number);
2618 else
2619 {
2620 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2621 bl->section);
2622 /* Set a software (trap) breakpoint at the LMA. */
2623 bl->overlay_target_info = bl->target_info;
2624 bl->overlay_target_info.reqstd_address = addr;
2625
2626 /* No overlay handling: just set the breakpoint. */
2627 TRY
2628 {
2629 int val;
2630
2631 bl->overlay_target_info.kind
2632 = breakpoint_kind (bl, &addr);
2633 bl->overlay_target_info.placed_address = addr;
2634 val = target_insert_breakpoint (bl->gdbarch,
2635 &bl->overlay_target_info);
2636 if (val)
2637 bp_err = GENERIC_ERROR;
2638 }
2639 CATCH (e, RETURN_MASK_ALL)
2640 {
2641 bp_err = e.error;
2642 bp_err_message = e.message;
2643 }
2644 END_CATCH
2645
2646 if (bp_err != GDB_NO_ERROR)
2647 fprintf_unfiltered (tmp_error_stream,
2648 "Overlay breakpoint %d "
2649 "failed: in ROM?\n",
2650 bl->owner->number);
2651 }
2652 }
2653 /* Shall we set a breakpoint at the VMA? */
2654 if (section_is_mapped (bl->section))
2655 {
2656 /* Yes. This overlay section is mapped into memory. */
2657 TRY
2658 {
2659 int val;
2660
2661 val = bl->owner->ops->insert_location (bl);
2662 if (val)
2663 bp_err = GENERIC_ERROR;
2664 }
2665 CATCH (e, RETURN_MASK_ALL)
2666 {
2667 bp_err = e.error;
2668 bp_err_message = e.message;
2669 }
2670 END_CATCH
2671 }
2672 else
2673 {
2674 /* No. This breakpoint will not be inserted.
2675 No error, but do not mark the bp as 'inserted'. */
2676 return 0;
2677 }
2678 }
2679
2680 if (bp_err != GDB_NO_ERROR)
2681 {
2682 /* Can't set the breakpoint. */
2683
2684 /* In some cases, we might not be able to insert a
2685 breakpoint in a shared library that has already been
2686 removed, but we have not yet processed the shlib unload
2687 event. Unfortunately, some targets that implement
2688 breakpoint insertion themselves can't tell why the
2689 breakpoint insertion failed (e.g., the remote target
2690 doesn't define error codes), so we must treat generic
2691 errors as memory errors. */
2692 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2693 && bl->loc_type == bp_loc_software_breakpoint
2694 && (solib_name_from_address (bl->pspace, bl->address)
2695 || shared_objfile_contains_address_p (bl->pspace,
2696 bl->address)))
2697 {
2698 /* See also: disable_breakpoints_in_shlibs. */
2699 bl->shlib_disabled = 1;
2700 observer_notify_breakpoint_modified (bl->owner);
2701 if (!*disabled_breaks)
2702 {
2703 fprintf_unfiltered (tmp_error_stream,
2704 "Cannot insert breakpoint %d.\n",
2705 bl->owner->number);
2706 fprintf_unfiltered (tmp_error_stream,
2707 "Temporarily disabling shared "
2708 "library breakpoints:\n");
2709 }
2710 *disabled_breaks = 1;
2711 fprintf_unfiltered (tmp_error_stream,
2712 "breakpoint #%d\n", bl->owner->number);
2713 return 0;
2714 }
2715 else
2716 {
2717 if (bl->loc_type == bp_loc_hardware_breakpoint)
2718 {
2719 *hw_breakpoint_error = 1;
2720 *hw_bp_error_explained_already = bp_err_message != NULL;
2721 fprintf_unfiltered (tmp_error_stream,
2722 "Cannot insert hardware breakpoint %d%s",
2723 bl->owner->number, bp_err_message ? ":" : ".\n");
2724 if (bp_err_message != NULL)
2725 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2726 }
2727 else
2728 {
2729 if (bp_err_message == NULL)
2730 {
2731 std::string message
2732 = memory_error_message (TARGET_XFER_E_IO,
2733 bl->gdbarch, bl->address);
2734
2735 fprintf_unfiltered (tmp_error_stream,
2736 "Cannot insert breakpoint %d.\n"
2737 "%s\n",
2738 bl->owner->number, message.c_str ());
2739 }
2740 else
2741 {
2742 fprintf_unfiltered (tmp_error_stream,
2743 "Cannot insert breakpoint %d: %s\n",
2744 bl->owner->number,
2745 bp_err_message);
2746 }
2747 }
2748 return 1;
2749
2750 }
2751 }
2752 else
2753 bl->inserted = 1;
2754
2755 return 0;
2756 }
2757
2758 else if (bl->loc_type == bp_loc_hardware_watchpoint
2759 /* NOTE drow/2003-09-08: This state only exists for removing
2760 watchpoints. It's not clear that it's necessary... */
2761 && bl->owner->disposition != disp_del_at_next_stop)
2762 {
2763 int val;
2764
2765 gdb_assert (bl->owner->ops != NULL
2766 && bl->owner->ops->insert_location != NULL);
2767
2768 val = bl->owner->ops->insert_location (bl);
2769
2770 /* If trying to set a read-watchpoint, and it turns out it's not
2771 supported, try emulating one with an access watchpoint. */
2772 if (val == 1 && bl->watchpoint_type == hw_read)
2773 {
2774 struct bp_location *loc, **loc_temp;
2775
2776 /* But don't try to insert it, if there's already another
2777 hw_access location that would be considered a duplicate
2778 of this one. */
2779 ALL_BP_LOCATIONS (loc, loc_temp)
2780 if (loc != bl
2781 && loc->watchpoint_type == hw_access
2782 && watchpoint_locations_match (bl, loc))
2783 {
2784 bl->duplicate = 1;
2785 bl->inserted = 1;
2786 bl->target_info = loc->target_info;
2787 bl->watchpoint_type = hw_access;
2788 val = 0;
2789 break;
2790 }
2791
2792 if (val == 1)
2793 {
2794 bl->watchpoint_type = hw_access;
2795 val = bl->owner->ops->insert_location (bl);
2796
2797 if (val)
2798 /* Back to the original value. */
2799 bl->watchpoint_type = hw_read;
2800 }
2801 }
2802
2803 bl->inserted = (val == 0);
2804 }
2805
2806 else if (bl->owner->type == bp_catchpoint)
2807 {
2808 int val;
2809
2810 gdb_assert (bl->owner->ops != NULL
2811 && bl->owner->ops->insert_location != NULL);
2812
2813 val = bl->owner->ops->insert_location (bl);
2814 if (val)
2815 {
2816 bl->owner->enable_state = bp_disabled;
2817
2818 if (val == 1)
2819 warning (_("\
2820 Error inserting catchpoint %d: Your system does not support this type\n\
2821 of catchpoint."), bl->owner->number);
2822 else
2823 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2824 }
2825
2826 bl->inserted = (val == 0);
2827
2828 /* We've already printed an error message if there was a problem
2829 inserting this catchpoint, and we've disabled the catchpoint,
2830 so just return success. */
2831 return 0;
2832 }
2833
2834 return 0;
2835 }
2836
2837 /* This function is called when program space PSPACE is about to be
2838 deleted. It takes care of updating breakpoints to not reference
2839 PSPACE anymore. */
2840
2841 void
2842 breakpoint_program_space_exit (struct program_space *pspace)
2843 {
2844 struct breakpoint *b, *b_temp;
2845 struct bp_location *loc, **loc_temp;
2846
2847 /* Remove any breakpoint that was set through this program space. */
2848 ALL_BREAKPOINTS_SAFE (b, b_temp)
2849 {
2850 if (b->pspace == pspace)
2851 delete_breakpoint (b);
2852 }
2853
2854 /* Breakpoints set through other program spaces could have locations
2855 bound to PSPACE as well. Remove those. */
2856 ALL_BP_LOCATIONS (loc, loc_temp)
2857 {
2858 struct bp_location *tmp;
2859
2860 if (loc->pspace == pspace)
2861 {
2862 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2863 if (loc->owner->loc == loc)
2864 loc->owner->loc = loc->next;
2865 else
2866 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2867 if (tmp->next == loc)
2868 {
2869 tmp->next = loc->next;
2870 break;
2871 }
2872 }
2873 }
2874
2875 /* Now update the global location list to permanently delete the
2876 removed locations above. */
2877 update_global_location_list (UGLL_DONT_INSERT);
2878 }
2879
2880 /* Make sure all breakpoints are inserted in inferior.
2881 Throws exception on any error.
2882 A breakpoint that is already inserted won't be inserted
2883 again, so calling this function twice is safe. */
2884 void
2885 insert_breakpoints (void)
2886 {
2887 struct breakpoint *bpt;
2888
2889 ALL_BREAKPOINTS (bpt)
2890 if (is_hardware_watchpoint (bpt))
2891 {
2892 struct watchpoint *w = (struct watchpoint *) bpt;
2893
2894 update_watchpoint (w, 0 /* don't reparse. */);
2895 }
2896
2897 /* Updating watchpoints creates new locations, so update the global
2898 location list. Explicitly tell ugll to insert locations and
2899 ignore breakpoints_always_inserted_mode. */
2900 update_global_location_list (UGLL_INSERT);
2901 }
2902
2903 /* Invoke CALLBACK for each of bp_location. */
2904
2905 void
2906 iterate_over_bp_locations (walk_bp_location_callback callback)
2907 {
2908 struct bp_location *loc, **loc_tmp;
2909
2910 ALL_BP_LOCATIONS (loc, loc_tmp)
2911 {
2912 callback (loc, NULL);
2913 }
2914 }
2915
2916 /* This is used when we need to synch breakpoint conditions between GDB and the
2917 target. It is the case with deleting and disabling of breakpoints when using
2918 always-inserted mode. */
2919
2920 static void
2921 update_inserted_breakpoint_locations (void)
2922 {
2923 struct bp_location *bl, **blp_tmp;
2924 int error_flag = 0;
2925 int val = 0;
2926 int disabled_breaks = 0;
2927 int hw_breakpoint_error = 0;
2928 int hw_bp_details_reported = 0;
2929
2930 string_file tmp_error_stream;
2931
2932 /* Explicitly mark the warning -- this will only be printed if
2933 there was an error. */
2934 tmp_error_stream.puts ("Warning:\n");
2935
2936 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2937
2938 ALL_BP_LOCATIONS (bl, blp_tmp)
2939 {
2940 /* We only want to update software breakpoints and hardware
2941 breakpoints. */
2942 if (!is_breakpoint (bl->owner))
2943 continue;
2944
2945 /* We only want to update locations that are already inserted
2946 and need updating. This is to avoid unwanted insertion during
2947 deletion of breakpoints. */
2948 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2949 continue;
2950
2951 switch_to_program_space_and_thread (bl->pspace);
2952
2953 /* For targets that support global breakpoints, there's no need
2954 to select an inferior to insert breakpoint to. In fact, even
2955 if we aren't attached to any process yet, we should still
2956 insert breakpoints. */
2957 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2958 && ptid_equal (inferior_ptid, null_ptid))
2959 continue;
2960
2961 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2962 &hw_breakpoint_error, &hw_bp_details_reported);
2963 if (val)
2964 error_flag = val;
2965 }
2966
2967 if (error_flag)
2968 {
2969 target_terminal::ours_for_output ();
2970 error_stream (tmp_error_stream);
2971 }
2972 }
2973
2974 /* Used when starting or continuing the program. */
2975
2976 static void
2977 insert_breakpoint_locations (void)
2978 {
2979 struct breakpoint *bpt;
2980 struct bp_location *bl, **blp_tmp;
2981 int error_flag = 0;
2982 int val = 0;
2983 int disabled_breaks = 0;
2984 int hw_breakpoint_error = 0;
2985 int hw_bp_error_explained_already = 0;
2986
2987 string_file tmp_error_stream;
2988
2989 /* Explicitly mark the warning -- this will only be printed if
2990 there was an error. */
2991 tmp_error_stream.puts ("Warning:\n");
2992
2993 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2994
2995 ALL_BP_LOCATIONS (bl, blp_tmp)
2996 {
2997 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2998 continue;
2999
3000 /* There is no point inserting thread-specific breakpoints if
3001 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3002 has BL->OWNER always non-NULL. */
3003 if (bl->owner->thread != -1
3004 && !valid_global_thread_id (bl->owner->thread))
3005 continue;
3006
3007 switch_to_program_space_and_thread (bl->pspace);
3008
3009 /* For targets that support global breakpoints, there's no need
3010 to select an inferior to insert breakpoint to. In fact, even
3011 if we aren't attached to any process yet, we should still
3012 insert breakpoints. */
3013 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3014 && ptid_equal (inferior_ptid, null_ptid))
3015 continue;
3016
3017 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3018 &hw_breakpoint_error, &hw_bp_error_explained_already);
3019 if (val)
3020 error_flag = val;
3021 }
3022
3023 /* If we failed to insert all locations of a watchpoint, remove
3024 them, as half-inserted watchpoint is of limited use. */
3025 ALL_BREAKPOINTS (bpt)
3026 {
3027 int some_failed = 0;
3028 struct bp_location *loc;
3029
3030 if (!is_hardware_watchpoint (bpt))
3031 continue;
3032
3033 if (!breakpoint_enabled (bpt))
3034 continue;
3035
3036 if (bpt->disposition == disp_del_at_next_stop)
3037 continue;
3038
3039 for (loc = bpt->loc; loc; loc = loc->next)
3040 if (!loc->inserted && should_be_inserted (loc))
3041 {
3042 some_failed = 1;
3043 break;
3044 }
3045 if (some_failed)
3046 {
3047 for (loc = bpt->loc; loc; loc = loc->next)
3048 if (loc->inserted)
3049 remove_breakpoint (loc);
3050
3051 hw_breakpoint_error = 1;
3052 tmp_error_stream.printf ("Could not insert "
3053 "hardware watchpoint %d.\n",
3054 bpt->number);
3055 error_flag = -1;
3056 }
3057 }
3058
3059 if (error_flag)
3060 {
3061 /* If a hardware breakpoint or watchpoint was inserted, add a
3062 message about possibly exhausted resources. */
3063 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3064 {
3065 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3066 You may have requested too many hardware breakpoints/watchpoints.\n");
3067 }
3068 target_terminal::ours_for_output ();
3069 error_stream (tmp_error_stream);
3070 }
3071 }
3072
3073 /* Used when the program stops.
3074 Returns zero if successful, or non-zero if there was a problem
3075 removing a breakpoint location. */
3076
3077 int
3078 remove_breakpoints (void)
3079 {
3080 struct bp_location *bl, **blp_tmp;
3081 int val = 0;
3082
3083 ALL_BP_LOCATIONS (bl, blp_tmp)
3084 {
3085 if (bl->inserted && !is_tracepoint (bl->owner))
3086 val |= remove_breakpoint (bl);
3087 }
3088 return val;
3089 }
3090
3091 /* When a thread exits, remove breakpoints that are related to
3092 that thread. */
3093
3094 static void
3095 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3096 {
3097 struct breakpoint *b, *b_tmp;
3098
3099 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3100 {
3101 if (b->thread == tp->global_num && user_breakpoint_p (b))
3102 {
3103 b->disposition = disp_del_at_next_stop;
3104
3105 printf_filtered (_("\
3106 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3107 b->number, print_thread_id (tp));
3108
3109 /* Hide it from the user. */
3110 b->number = 0;
3111 }
3112 }
3113 }
3114
3115 /* Remove breakpoints of process PID. */
3116
3117 int
3118 remove_breakpoints_pid (int pid)
3119 {
3120 struct bp_location *bl, **blp_tmp;
3121 int val;
3122 struct inferior *inf = find_inferior_pid (pid);
3123
3124 ALL_BP_LOCATIONS (bl, blp_tmp)
3125 {
3126 if (bl->pspace != inf->pspace)
3127 continue;
3128
3129 if (bl->inserted && !bl->target_info.persist)
3130 {
3131 val = remove_breakpoint (bl);
3132 if (val != 0)
3133 return val;
3134 }
3135 }
3136 return 0;
3137 }
3138
3139 static int internal_breakpoint_number = -1;
3140
3141 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3142 If INTERNAL is non-zero, the breakpoint number will be populated
3143 from internal_breakpoint_number and that variable decremented.
3144 Otherwise the breakpoint number will be populated from
3145 breakpoint_count and that value incremented. Internal breakpoints
3146 do not set the internal var bpnum. */
3147 static void
3148 set_breakpoint_number (int internal, struct breakpoint *b)
3149 {
3150 if (internal)
3151 b->number = internal_breakpoint_number--;
3152 else
3153 {
3154 set_breakpoint_count (breakpoint_count + 1);
3155 b->number = breakpoint_count;
3156 }
3157 }
3158
3159 static struct breakpoint *
3160 create_internal_breakpoint (struct gdbarch *gdbarch,
3161 CORE_ADDR address, enum bptype type,
3162 const struct breakpoint_ops *ops)
3163 {
3164 symtab_and_line sal;
3165 sal.pc = address;
3166 sal.section = find_pc_overlay (sal.pc);
3167 sal.pspace = current_program_space;
3168
3169 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3170 b->number = internal_breakpoint_number--;
3171 b->disposition = disp_donttouch;
3172
3173 return b;
3174 }
3175
3176 static const char *const longjmp_names[] =
3177 {
3178 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3179 };
3180 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3181
3182 /* Per-objfile data private to breakpoint.c. */
3183 struct breakpoint_objfile_data
3184 {
3185 /* Minimal symbol for "_ovly_debug_event" (if any). */
3186 struct bound_minimal_symbol overlay_msym;
3187
3188 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3189 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3190
3191 /* True if we have looked for longjmp probes. */
3192 int longjmp_searched;
3193
3194 /* SystemTap probe points for longjmp (if any). */
3195 VEC (probe_p) *longjmp_probes;
3196
3197 /* Minimal symbol for "std::terminate()" (if any). */
3198 struct bound_minimal_symbol terminate_msym;
3199
3200 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3201 struct bound_minimal_symbol exception_msym;
3202
3203 /* True if we have looked for exception probes. */
3204 int exception_searched;
3205
3206 /* SystemTap probe points for unwinding (if any). */
3207 VEC (probe_p) *exception_probes;
3208 };
3209
3210 static const struct objfile_data *breakpoint_objfile_key;
3211
3212 /* Minimal symbol not found sentinel. */
3213 static struct minimal_symbol msym_not_found;
3214
3215 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3216
3217 static int
3218 msym_not_found_p (const struct minimal_symbol *msym)
3219 {
3220 return msym == &msym_not_found;
3221 }
3222
3223 /* Return per-objfile data needed by breakpoint.c.
3224 Allocate the data if necessary. */
3225
3226 static struct breakpoint_objfile_data *
3227 get_breakpoint_objfile_data (struct objfile *objfile)
3228 {
3229 struct breakpoint_objfile_data *bp_objfile_data;
3230
3231 bp_objfile_data = ((struct breakpoint_objfile_data *)
3232 objfile_data (objfile, breakpoint_objfile_key));
3233 if (bp_objfile_data == NULL)
3234 {
3235 bp_objfile_data =
3236 XOBNEW (&objfile->objfile_obstack, struct breakpoint_objfile_data);
3237
3238 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3239 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3240 }
3241 return bp_objfile_data;
3242 }
3243
3244 static void
3245 free_breakpoint_probes (struct objfile *obj, void *data)
3246 {
3247 struct breakpoint_objfile_data *bp_objfile_data
3248 = (struct breakpoint_objfile_data *) data;
3249
3250 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3251 VEC_free (probe_p, bp_objfile_data->exception_probes);
3252 }
3253
3254 static void
3255 create_overlay_event_breakpoint (void)
3256 {
3257 struct objfile *objfile;
3258 const char *const func_name = "_ovly_debug_event";
3259
3260 ALL_OBJFILES (objfile)
3261 {
3262 struct breakpoint *b;
3263 struct breakpoint_objfile_data *bp_objfile_data;
3264 CORE_ADDR addr;
3265 struct explicit_location explicit_loc;
3266
3267 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3268
3269 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3270 continue;
3271
3272 if (bp_objfile_data->overlay_msym.minsym == NULL)
3273 {
3274 struct bound_minimal_symbol m;
3275
3276 m = lookup_minimal_symbol_text (func_name, objfile);
3277 if (m.minsym == NULL)
3278 {
3279 /* Avoid future lookups in this objfile. */
3280 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3281 continue;
3282 }
3283 bp_objfile_data->overlay_msym = m;
3284 }
3285
3286 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3287 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3288 bp_overlay_event,
3289 &internal_breakpoint_ops);
3290 initialize_explicit_location (&explicit_loc);
3291 explicit_loc.function_name = ASTRDUP (func_name);
3292 b->location = new_explicit_location (&explicit_loc);
3293
3294 if (overlay_debugging == ovly_auto)
3295 {
3296 b->enable_state = bp_enabled;
3297 overlay_events_enabled = 1;
3298 }
3299 else
3300 {
3301 b->enable_state = bp_disabled;
3302 overlay_events_enabled = 0;
3303 }
3304 }
3305 }
3306
3307 static void
3308 create_longjmp_master_breakpoint (void)
3309 {
3310 struct program_space *pspace;
3311
3312 scoped_restore_current_program_space restore_pspace;
3313
3314 ALL_PSPACES (pspace)
3315 {
3316 struct objfile *objfile;
3317
3318 set_current_program_space (pspace);
3319
3320 ALL_OBJFILES (objfile)
3321 {
3322 int i;
3323 struct gdbarch *gdbarch;
3324 struct breakpoint_objfile_data *bp_objfile_data;
3325
3326 gdbarch = get_objfile_arch (objfile);
3327
3328 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3329
3330 if (!bp_objfile_data->longjmp_searched)
3331 {
3332 VEC (probe_p) *ret;
3333
3334 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3335 if (ret != NULL)
3336 {
3337 /* We are only interested in checking one element. */
3338 struct probe *p = VEC_index (probe_p, ret, 0);
3339
3340 if (!can_evaluate_probe_arguments (p))
3341 {
3342 /* We cannot use the probe interface here, because it does
3343 not know how to evaluate arguments. */
3344 VEC_free (probe_p, ret);
3345 ret = NULL;
3346 }
3347 }
3348 bp_objfile_data->longjmp_probes = ret;
3349 bp_objfile_data->longjmp_searched = 1;
3350 }
3351
3352 if (bp_objfile_data->longjmp_probes != NULL)
3353 {
3354 int i;
3355 struct probe *probe;
3356 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3357
3358 for (i = 0;
3359 VEC_iterate (probe_p,
3360 bp_objfile_data->longjmp_probes,
3361 i, probe);
3362 ++i)
3363 {
3364 struct breakpoint *b;
3365
3366 b = create_internal_breakpoint (gdbarch,
3367 get_probe_address (probe,
3368 objfile),
3369 bp_longjmp_master,
3370 &internal_breakpoint_ops);
3371 b->location = new_probe_location ("-probe-stap libc:longjmp");
3372 b->enable_state = bp_disabled;
3373 }
3374
3375 continue;
3376 }
3377
3378 if (!gdbarch_get_longjmp_target_p (gdbarch))
3379 continue;
3380
3381 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3382 {
3383 struct breakpoint *b;
3384 const char *func_name;
3385 CORE_ADDR addr;
3386 struct explicit_location explicit_loc;
3387
3388 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3389 continue;
3390
3391 func_name = longjmp_names[i];
3392 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3393 {
3394 struct bound_minimal_symbol m;
3395
3396 m = lookup_minimal_symbol_text (func_name, objfile);
3397 if (m.minsym == NULL)
3398 {
3399 /* Prevent future lookups in this objfile. */
3400 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3401 continue;
3402 }
3403 bp_objfile_data->longjmp_msym[i] = m;
3404 }
3405
3406 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3407 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3408 &internal_breakpoint_ops);
3409 initialize_explicit_location (&explicit_loc);
3410 explicit_loc.function_name = ASTRDUP (func_name);
3411 b->location = new_explicit_location (&explicit_loc);
3412 b->enable_state = bp_disabled;
3413 }
3414 }
3415 }
3416 }
3417
3418 /* Create a master std::terminate breakpoint. */
3419 static void
3420 create_std_terminate_master_breakpoint (void)
3421 {
3422 struct program_space *pspace;
3423 const char *const func_name = "std::terminate()";
3424
3425 scoped_restore_current_program_space restore_pspace;
3426
3427 ALL_PSPACES (pspace)
3428 {
3429 struct objfile *objfile;
3430 CORE_ADDR addr;
3431
3432 set_current_program_space (pspace);
3433
3434 ALL_OBJFILES (objfile)
3435 {
3436 struct breakpoint *b;
3437 struct breakpoint_objfile_data *bp_objfile_data;
3438 struct explicit_location explicit_loc;
3439
3440 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3441
3442 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3443 continue;
3444
3445 if (bp_objfile_data->terminate_msym.minsym == NULL)
3446 {
3447 struct bound_minimal_symbol m;
3448
3449 m = lookup_minimal_symbol (func_name, NULL, objfile);
3450 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3451 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3452 {
3453 /* Prevent future lookups in this objfile. */
3454 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3455 continue;
3456 }
3457 bp_objfile_data->terminate_msym = m;
3458 }
3459
3460 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3461 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3462 bp_std_terminate_master,
3463 &internal_breakpoint_ops);
3464 initialize_explicit_location (&explicit_loc);
3465 explicit_loc.function_name = ASTRDUP (func_name);
3466 b->location = new_explicit_location (&explicit_loc);
3467 b->enable_state = bp_disabled;
3468 }
3469 }
3470 }
3471
3472 /* Install a master breakpoint on the unwinder's debug hook. */
3473
3474 static void
3475 create_exception_master_breakpoint (void)
3476 {
3477 struct objfile *objfile;
3478 const char *const func_name = "_Unwind_DebugHook";
3479
3480 ALL_OBJFILES (objfile)
3481 {
3482 struct breakpoint *b;
3483 struct gdbarch *gdbarch;
3484 struct breakpoint_objfile_data *bp_objfile_data;
3485 CORE_ADDR addr;
3486 struct explicit_location explicit_loc;
3487
3488 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3489
3490 /* We prefer the SystemTap probe point if it exists. */
3491 if (!bp_objfile_data->exception_searched)
3492 {
3493 VEC (probe_p) *ret;
3494
3495 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3496
3497 if (ret != NULL)
3498 {
3499 /* We are only interested in checking one element. */
3500 struct probe *p = VEC_index (probe_p, ret, 0);
3501
3502 if (!can_evaluate_probe_arguments (p))
3503 {
3504 /* We cannot use the probe interface here, because it does
3505 not know how to evaluate arguments. */
3506 VEC_free (probe_p, ret);
3507 ret = NULL;
3508 }
3509 }
3510 bp_objfile_data->exception_probes = ret;
3511 bp_objfile_data->exception_searched = 1;
3512 }
3513
3514 if (bp_objfile_data->exception_probes != NULL)
3515 {
3516 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3517 int i;
3518 struct probe *probe;
3519
3520 for (i = 0;
3521 VEC_iterate (probe_p,
3522 bp_objfile_data->exception_probes,
3523 i, probe);
3524 ++i)
3525 {
3526 struct breakpoint *b;
3527
3528 b = create_internal_breakpoint (gdbarch,
3529 get_probe_address (probe,
3530 objfile),
3531 bp_exception_master,
3532 &internal_breakpoint_ops);
3533 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3534 b->enable_state = bp_disabled;
3535 }
3536
3537 continue;
3538 }
3539
3540 /* Otherwise, try the hook function. */
3541
3542 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3543 continue;
3544
3545 gdbarch = get_objfile_arch (objfile);
3546
3547 if (bp_objfile_data->exception_msym.minsym == NULL)
3548 {
3549 struct bound_minimal_symbol debug_hook;
3550
3551 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3552 if (debug_hook.minsym == NULL)
3553 {
3554 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3555 continue;
3556 }
3557
3558 bp_objfile_data->exception_msym = debug_hook;
3559 }
3560
3561 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3562 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3563 &current_target);
3564 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3565 &internal_breakpoint_ops);
3566 initialize_explicit_location (&explicit_loc);
3567 explicit_loc.function_name = ASTRDUP (func_name);
3568 b->location = new_explicit_location (&explicit_loc);
3569 b->enable_state = bp_disabled;
3570 }
3571 }
3572
3573 /* Does B have a location spec? */
3574
3575 static int
3576 breakpoint_event_location_empty_p (const struct breakpoint *b)
3577 {
3578 return b->location != NULL && event_location_empty_p (b->location.get ());
3579 }
3580
3581 void
3582 update_breakpoints_after_exec (void)
3583 {
3584 struct breakpoint *b, *b_tmp;
3585 struct bp_location *bploc, **bplocp_tmp;
3586
3587 /* We're about to delete breakpoints from GDB's lists. If the
3588 INSERTED flag is true, GDB will try to lift the breakpoints by
3589 writing the breakpoints' "shadow contents" back into memory. The
3590 "shadow contents" are NOT valid after an exec, so GDB should not
3591 do that. Instead, the target is responsible from marking
3592 breakpoints out as soon as it detects an exec. We don't do that
3593 here instead, because there may be other attempts to delete
3594 breakpoints after detecting an exec and before reaching here. */
3595 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3596 if (bploc->pspace == current_program_space)
3597 gdb_assert (!bploc->inserted);
3598
3599 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3600 {
3601 if (b->pspace != current_program_space)
3602 continue;
3603
3604 /* Solib breakpoints must be explicitly reset after an exec(). */
3605 if (b->type == bp_shlib_event)
3606 {
3607 delete_breakpoint (b);
3608 continue;
3609 }
3610
3611 /* JIT breakpoints must be explicitly reset after an exec(). */
3612 if (b->type == bp_jit_event)
3613 {
3614 delete_breakpoint (b);
3615 continue;
3616 }
3617
3618 /* Thread event breakpoints must be set anew after an exec(),
3619 as must overlay event and longjmp master breakpoints. */
3620 if (b->type == bp_thread_event || b->type == bp_overlay_event
3621 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3622 || b->type == bp_exception_master)
3623 {
3624 delete_breakpoint (b);
3625 continue;
3626 }
3627
3628 /* Step-resume breakpoints are meaningless after an exec(). */
3629 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3630 {
3631 delete_breakpoint (b);
3632 continue;
3633 }
3634
3635 /* Just like single-step breakpoints. */
3636 if (b->type == bp_single_step)
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641
3642 /* Longjmp and longjmp-resume breakpoints are also meaningless
3643 after an exec. */
3644 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3645 || b->type == bp_longjmp_call_dummy
3646 || b->type == bp_exception || b->type == bp_exception_resume)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 if (b->type == bp_catchpoint)
3653 {
3654 /* For now, none of the bp_catchpoint breakpoints need to
3655 do anything at this point. In the future, if some of
3656 the catchpoints need to something, we will need to add
3657 a new method, and call this method from here. */
3658 continue;
3659 }
3660
3661 /* bp_finish is a special case. The only way we ought to be able
3662 to see one of these when an exec() has happened, is if the user
3663 caught a vfork, and then said "finish". Ordinarily a finish just
3664 carries them to the call-site of the current callee, by setting
3665 a temporary bp there and resuming. But in this case, the finish
3666 will carry them entirely through the vfork & exec.
3667
3668 We don't want to allow a bp_finish to remain inserted now. But
3669 we can't safely delete it, 'cause finish_command has a handle to
3670 the bp on a bpstat, and will later want to delete it. There's a
3671 chance (and I've seen it happen) that if we delete the bp_finish
3672 here, that its storage will get reused by the time finish_command
3673 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3674 We really must allow finish_command to delete a bp_finish.
3675
3676 In the absence of a general solution for the "how do we know
3677 it's safe to delete something others may have handles to?"
3678 problem, what we'll do here is just uninsert the bp_finish, and
3679 let finish_command delete it.
3680
3681 (We know the bp_finish is "doomed" in the sense that it's
3682 momentary, and will be deleted as soon as finish_command sees
3683 the inferior stopped. So it doesn't matter that the bp's
3684 address is probably bogus in the new a.out, unlike e.g., the
3685 solib breakpoints.) */
3686
3687 if (b->type == bp_finish)
3688 {
3689 continue;
3690 }
3691
3692 /* Without a symbolic address, we have little hope of the
3693 pre-exec() address meaning the same thing in the post-exec()
3694 a.out. */
3695 if (breakpoint_event_location_empty_p (b))
3696 {
3697 delete_breakpoint (b);
3698 continue;
3699 }
3700 }
3701 }
3702
3703 int
3704 detach_breakpoints (ptid_t ptid)
3705 {
3706 struct bp_location *bl, **blp_tmp;
3707 int val = 0;
3708 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3709 struct inferior *inf = current_inferior ();
3710
3711 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3712 error (_("Cannot detach breakpoints of inferior_ptid"));
3713
3714 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3715 inferior_ptid = ptid;
3716 ALL_BP_LOCATIONS (bl, blp_tmp)
3717 {
3718 if (bl->pspace != inf->pspace)
3719 continue;
3720
3721 /* This function must physically remove breakpoints locations
3722 from the specified ptid, without modifying the breakpoint
3723 package's state. Locations of type bp_loc_other are only
3724 maintained at GDB side. So, there is no need to remove
3725 these bp_loc_other locations. Moreover, removing these
3726 would modify the breakpoint package's state. */
3727 if (bl->loc_type == bp_loc_other)
3728 continue;
3729
3730 if (bl->inserted)
3731 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3732 }
3733
3734 return val;
3735 }
3736
3737 /* Remove the breakpoint location BL from the current address space.
3738 Note that this is used to detach breakpoints from a child fork.
3739 When we get here, the child isn't in the inferior list, and neither
3740 do we have objects to represent its address space --- we should
3741 *not* look at bl->pspace->aspace here. */
3742
3743 static int
3744 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3745 {
3746 int val;
3747
3748 /* BL is never in moribund_locations by our callers. */
3749 gdb_assert (bl->owner != NULL);
3750
3751 /* The type of none suggests that owner is actually deleted.
3752 This should not ever happen. */
3753 gdb_assert (bl->owner->type != bp_none);
3754
3755 if (bl->loc_type == bp_loc_software_breakpoint
3756 || bl->loc_type == bp_loc_hardware_breakpoint)
3757 {
3758 /* "Normal" instruction breakpoint: either the standard
3759 trap-instruction bp (bp_breakpoint), or a
3760 bp_hardware_breakpoint. */
3761
3762 /* First check to see if we have to handle an overlay. */
3763 if (overlay_debugging == ovly_off
3764 || bl->section == NULL
3765 || !(section_is_overlay (bl->section)))
3766 {
3767 /* No overlay handling: just remove the breakpoint. */
3768
3769 /* If we're trying to uninsert a memory breakpoint that we
3770 know is set in a dynamic object that is marked
3771 shlib_disabled, then either the dynamic object was
3772 removed with "remove-symbol-file" or with
3773 "nosharedlibrary". In the former case, we don't know
3774 whether another dynamic object might have loaded over the
3775 breakpoint's address -- the user might well let us know
3776 about it next with add-symbol-file (the whole point of
3777 add-symbol-file is letting the user manually maintain a
3778 list of dynamically loaded objects). If we have the
3779 breakpoint's shadow memory, that is, this is a software
3780 breakpoint managed by GDB, check whether the breakpoint
3781 is still inserted in memory, to avoid overwriting wrong
3782 code with stale saved shadow contents. Note that HW
3783 breakpoints don't have shadow memory, as they're
3784 implemented using a mechanism that is not dependent on
3785 being able to modify the target's memory, and as such
3786 they should always be removed. */
3787 if (bl->shlib_disabled
3788 && bl->target_info.shadow_len != 0
3789 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3790 val = 0;
3791 else
3792 val = bl->owner->ops->remove_location (bl, reason);
3793 }
3794 else
3795 {
3796 /* This breakpoint is in an overlay section.
3797 Did we set a breakpoint at the LMA? */
3798 if (!overlay_events_enabled)
3799 {
3800 /* Yes -- overlay event support is not active, so we
3801 should have set a breakpoint at the LMA. Remove it.
3802 */
3803 /* Ignore any failures: if the LMA is in ROM, we will
3804 have already warned when we failed to insert it. */
3805 if (bl->loc_type == bp_loc_hardware_breakpoint)
3806 target_remove_hw_breakpoint (bl->gdbarch,
3807 &bl->overlay_target_info);
3808 else
3809 target_remove_breakpoint (bl->gdbarch,
3810 &bl->overlay_target_info,
3811 reason);
3812 }
3813 /* Did we set a breakpoint at the VMA?
3814 If so, we will have marked the breakpoint 'inserted'. */
3815 if (bl->inserted)
3816 {
3817 /* Yes -- remove it. Previously we did not bother to
3818 remove the breakpoint if the section had been
3819 unmapped, but let's not rely on that being safe. We
3820 don't know what the overlay manager might do. */
3821
3822 /* However, we should remove *software* breakpoints only
3823 if the section is still mapped, or else we overwrite
3824 wrong code with the saved shadow contents. */
3825 if (bl->loc_type == bp_loc_hardware_breakpoint
3826 || section_is_mapped (bl->section))
3827 val = bl->owner->ops->remove_location (bl, reason);
3828 else
3829 val = 0;
3830 }
3831 else
3832 {
3833 /* No -- not inserted, so no need to remove. No error. */
3834 val = 0;
3835 }
3836 }
3837
3838 /* In some cases, we might not be able to remove a breakpoint in
3839 a shared library that has already been removed, but we have
3840 not yet processed the shlib unload event. Similarly for an
3841 unloaded add-symbol-file object - the user might not yet have
3842 had the chance to remove-symbol-file it. shlib_disabled will
3843 be set if the library/object has already been removed, but
3844 the breakpoint hasn't been uninserted yet, e.g., after
3845 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3846 always-inserted mode. */
3847 if (val
3848 && (bl->loc_type == bp_loc_software_breakpoint
3849 && (bl->shlib_disabled
3850 || solib_name_from_address (bl->pspace, bl->address)
3851 || shared_objfile_contains_address_p (bl->pspace,
3852 bl->address))))
3853 val = 0;
3854
3855 if (val)
3856 return val;
3857 bl->inserted = (reason == DETACH_BREAKPOINT);
3858 }
3859 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3860 {
3861 gdb_assert (bl->owner->ops != NULL
3862 && bl->owner->ops->remove_location != NULL);
3863
3864 bl->inserted = (reason == DETACH_BREAKPOINT);
3865 bl->owner->ops->remove_location (bl, reason);
3866
3867 /* Failure to remove any of the hardware watchpoints comes here. */
3868 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3869 warning (_("Could not remove hardware watchpoint %d."),
3870 bl->owner->number);
3871 }
3872 else if (bl->owner->type == bp_catchpoint
3873 && breakpoint_enabled (bl->owner)
3874 && !bl->duplicate)
3875 {
3876 gdb_assert (bl->owner->ops != NULL
3877 && bl->owner->ops->remove_location != NULL);
3878
3879 val = bl->owner->ops->remove_location (bl, reason);
3880 if (val)
3881 return val;
3882
3883 bl->inserted = (reason == DETACH_BREAKPOINT);
3884 }
3885
3886 return 0;
3887 }
3888
3889 static int
3890 remove_breakpoint (struct bp_location *bl)
3891 {
3892 /* BL is never in moribund_locations by our callers. */
3893 gdb_assert (bl->owner != NULL);
3894
3895 /* The type of none suggests that owner is actually deleted.
3896 This should not ever happen. */
3897 gdb_assert (bl->owner->type != bp_none);
3898
3899 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3900
3901 switch_to_program_space_and_thread (bl->pspace);
3902
3903 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3904 }
3905
3906 /* Clear the "inserted" flag in all breakpoints. */
3907
3908 void
3909 mark_breakpoints_out (void)
3910 {
3911 struct bp_location *bl, **blp_tmp;
3912
3913 ALL_BP_LOCATIONS (bl, blp_tmp)
3914 if (bl->pspace == current_program_space)
3915 bl->inserted = 0;
3916 }
3917
3918 /* Clear the "inserted" flag in all breakpoints and delete any
3919 breakpoints which should go away between runs of the program.
3920
3921 Plus other such housekeeping that has to be done for breakpoints
3922 between runs.
3923
3924 Note: this function gets called at the end of a run (by
3925 generic_mourn_inferior) and when a run begins (by
3926 init_wait_for_inferior). */
3927
3928
3929
3930 void
3931 breakpoint_init_inferior (enum inf_context context)
3932 {
3933 struct breakpoint *b, *b_tmp;
3934 struct bp_location *bl;
3935 int ix;
3936 struct program_space *pspace = current_program_space;
3937
3938 /* If breakpoint locations are shared across processes, then there's
3939 nothing to do. */
3940 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3941 return;
3942
3943 mark_breakpoints_out ();
3944
3945 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3946 {
3947 if (b->loc && b->loc->pspace != pspace)
3948 continue;
3949
3950 switch (b->type)
3951 {
3952 case bp_call_dummy:
3953 case bp_longjmp_call_dummy:
3954
3955 /* If the call dummy breakpoint is at the entry point it will
3956 cause problems when the inferior is rerun, so we better get
3957 rid of it. */
3958
3959 case bp_watchpoint_scope:
3960
3961 /* Also get rid of scope breakpoints. */
3962
3963 case bp_shlib_event:
3964
3965 /* Also remove solib event breakpoints. Their addresses may
3966 have changed since the last time we ran the program.
3967 Actually we may now be debugging against different target;
3968 and so the solib backend that installed this breakpoint may
3969 not be used in by the target. E.g.,
3970
3971 (gdb) file prog-linux
3972 (gdb) run # native linux target
3973 ...
3974 (gdb) kill
3975 (gdb) file prog-win.exe
3976 (gdb) tar rem :9999 # remote Windows gdbserver.
3977 */
3978
3979 case bp_step_resume:
3980
3981 /* Also remove step-resume breakpoints. */
3982
3983 case bp_single_step:
3984
3985 /* Also remove single-step breakpoints. */
3986
3987 delete_breakpoint (b);
3988 break;
3989
3990 case bp_watchpoint:
3991 case bp_hardware_watchpoint:
3992 case bp_read_watchpoint:
3993 case bp_access_watchpoint:
3994 {
3995 struct watchpoint *w = (struct watchpoint *) b;
3996
3997 /* Likewise for watchpoints on local expressions. */
3998 if (w->exp_valid_block != NULL)
3999 delete_breakpoint (b);
4000 else
4001 {
4002 /* Get rid of existing locations, which are no longer
4003 valid. New ones will be created in
4004 update_watchpoint, when the inferior is restarted.
4005 The next update_global_location_list call will
4006 garbage collect them. */
4007 b->loc = NULL;
4008
4009 if (context == inf_starting)
4010 {
4011 /* Reset val field to force reread of starting value in
4012 insert_breakpoints. */
4013 if (w->val)
4014 value_free (w->val);
4015 w->val = NULL;
4016 w->val_valid = 0;
4017 }
4018 }
4019 }
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
4026 /* Get rid of the moribund locations. */
4027 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
4028 decref_bp_location (&bl);
4029 VEC_free (bp_location_p, moribund_locations);
4030 }
4031
4032 /* These functions concern about actual breakpoints inserted in the
4033 target --- to e.g. check if we need to do decr_pc adjustment or if
4034 we need to hop over the bkpt --- so we check for address space
4035 match, not program space. */
4036
4037 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4038 exists at PC. It returns ordinary_breakpoint_here if it's an
4039 ordinary breakpoint, or permanent_breakpoint_here if it's a
4040 permanent breakpoint.
4041 - When continuing from a location with an ordinary breakpoint, we
4042 actually single step once before calling insert_breakpoints.
4043 - When continuing from a location with a permanent breakpoint, we
4044 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4045 the target, to advance the PC past the breakpoint. */
4046
4047 enum breakpoint_here
4048 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4049 {
4050 struct bp_location *bl, **blp_tmp;
4051 int any_breakpoint_here = 0;
4052
4053 ALL_BP_LOCATIONS (bl, blp_tmp)
4054 {
4055 if (bl->loc_type != bp_loc_software_breakpoint
4056 && bl->loc_type != bp_loc_hardware_breakpoint)
4057 continue;
4058
4059 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4060 if ((breakpoint_enabled (bl->owner)
4061 || bl->permanent)
4062 && breakpoint_location_address_match (bl, aspace, pc))
4063 {
4064 if (overlay_debugging
4065 && section_is_overlay (bl->section)
4066 && !section_is_mapped (bl->section))
4067 continue; /* unmapped overlay -- can't be a match */
4068 else if (bl->permanent)
4069 return permanent_breakpoint_here;
4070 else
4071 any_breakpoint_here = 1;
4072 }
4073 }
4074
4075 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4076 }
4077
4078 /* See breakpoint.h. */
4079
4080 int
4081 breakpoint_in_range_p (struct address_space *aspace,
4082 CORE_ADDR addr, ULONGEST len)
4083 {
4084 struct bp_location *bl, **blp_tmp;
4085
4086 ALL_BP_LOCATIONS (bl, blp_tmp)
4087 {
4088 if (bl->loc_type != bp_loc_software_breakpoint
4089 && bl->loc_type != bp_loc_hardware_breakpoint)
4090 continue;
4091
4092 if ((breakpoint_enabled (bl->owner)
4093 || bl->permanent)
4094 && breakpoint_location_address_range_overlap (bl, aspace,
4095 addr, len))
4096 {
4097 if (overlay_debugging
4098 && section_is_overlay (bl->section)
4099 && !section_is_mapped (bl->section))
4100 {
4101 /* Unmapped overlay -- can't be a match. */
4102 continue;
4103 }
4104
4105 return 1;
4106 }
4107 }
4108
4109 return 0;
4110 }
4111
4112 /* Return true if there's a moribund breakpoint at PC. */
4113
4114 int
4115 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4116 {
4117 struct bp_location *loc;
4118 int ix;
4119
4120 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4121 if (breakpoint_location_address_match (loc, aspace, pc))
4122 return 1;
4123
4124 return 0;
4125 }
4126
4127 /* Returns non-zero iff BL is inserted at PC, in address space
4128 ASPACE. */
4129
4130 static int
4131 bp_location_inserted_here_p (struct bp_location *bl,
4132 struct address_space *aspace, CORE_ADDR pc)
4133 {
4134 if (bl->inserted
4135 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4136 aspace, pc))
4137 {
4138 if (overlay_debugging
4139 && section_is_overlay (bl->section)
4140 && !section_is_mapped (bl->section))
4141 return 0; /* unmapped overlay -- can't be a match */
4142 else
4143 return 1;
4144 }
4145 return 0;
4146 }
4147
4148 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4149
4150 int
4151 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4152 {
4153 struct bp_location **blp, **blp_tmp = NULL;
4154
4155 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4156 {
4157 struct bp_location *bl = *blp;
4158
4159 if (bl->loc_type != bp_loc_software_breakpoint
4160 && bl->loc_type != bp_loc_hardware_breakpoint)
4161 continue;
4162
4163 if (bp_location_inserted_here_p (bl, aspace, pc))
4164 return 1;
4165 }
4166 return 0;
4167 }
4168
4169 /* This function returns non-zero iff there is a software breakpoint
4170 inserted at PC. */
4171
4172 int
4173 software_breakpoint_inserted_here_p (struct address_space *aspace,
4174 CORE_ADDR pc)
4175 {
4176 struct bp_location **blp, **blp_tmp = NULL;
4177
4178 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4179 {
4180 struct bp_location *bl = *blp;
4181
4182 if (bl->loc_type != bp_loc_software_breakpoint)
4183 continue;
4184
4185 if (bp_location_inserted_here_p (bl, aspace, pc))
4186 return 1;
4187 }
4188
4189 return 0;
4190 }
4191
4192 /* See breakpoint.h. */
4193
4194 int
4195 hardware_breakpoint_inserted_here_p (struct address_space *aspace,
4196 CORE_ADDR pc)
4197 {
4198 struct bp_location **blp, **blp_tmp = NULL;
4199
4200 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4201 {
4202 struct bp_location *bl = *blp;
4203
4204 if (bl->loc_type != bp_loc_hardware_breakpoint)
4205 continue;
4206
4207 if (bp_location_inserted_here_p (bl, aspace, pc))
4208 return 1;
4209 }
4210
4211 return 0;
4212 }
4213
4214 int
4215 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4216 CORE_ADDR addr, ULONGEST len)
4217 {
4218 struct breakpoint *bpt;
4219
4220 ALL_BREAKPOINTS (bpt)
4221 {
4222 struct bp_location *loc;
4223
4224 if (bpt->type != bp_hardware_watchpoint
4225 && bpt->type != bp_access_watchpoint)
4226 continue;
4227
4228 if (!breakpoint_enabled (bpt))
4229 continue;
4230
4231 for (loc = bpt->loc; loc; loc = loc->next)
4232 if (loc->pspace->aspace == aspace && loc->inserted)
4233 {
4234 CORE_ADDR l, h;
4235
4236 /* Check for intersection. */
4237 l = std::max<CORE_ADDR> (loc->address, addr);
4238 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4239 if (l < h)
4240 return 1;
4241 }
4242 }
4243 return 0;
4244 }
4245 \f
4246
4247 /* bpstat stuff. External routines' interfaces are documented
4248 in breakpoint.h. */
4249
4250 int
4251 is_catchpoint (struct breakpoint *ep)
4252 {
4253 return (ep->type == bp_catchpoint);
4254 }
4255
4256 /* Frees any storage that is part of a bpstat. Does not walk the
4257 'next' chain. */
4258
4259 bpstats::~bpstats ()
4260 {
4261 if (old_val != NULL)
4262 value_free (old_val);
4263 if (bp_location_at != NULL)
4264 decref_bp_location (&bp_location_at);
4265 }
4266
4267 /* Clear a bpstat so that it says we are not at any breakpoint.
4268 Also free any storage that is part of a bpstat. */
4269
4270 void
4271 bpstat_clear (bpstat *bsp)
4272 {
4273 bpstat p;
4274 bpstat q;
4275
4276 if (bsp == 0)
4277 return;
4278 p = *bsp;
4279 while (p != NULL)
4280 {
4281 q = p->next;
4282 delete p;
4283 p = q;
4284 }
4285 *bsp = NULL;
4286 }
4287
4288 bpstats::bpstats (const bpstats &other)
4289 : next (NULL),
4290 bp_location_at (other.bp_location_at),
4291 breakpoint_at (other.breakpoint_at),
4292 commands (other.commands),
4293 old_val (other.old_val),
4294 print (other.print),
4295 stop (other.stop),
4296 print_it (other.print_it)
4297 {
4298 if (old_val != NULL)
4299 {
4300 old_val = value_copy (old_val);
4301 release_value (old_val);
4302 }
4303 incref_bp_location (bp_location_at);
4304 }
4305
4306 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4307 is part of the bpstat is copied as well. */
4308
4309 bpstat
4310 bpstat_copy (bpstat bs)
4311 {
4312 bpstat p = NULL;
4313 bpstat tmp;
4314 bpstat retval = NULL;
4315
4316 if (bs == NULL)
4317 return bs;
4318
4319 for (; bs != NULL; bs = bs->next)
4320 {
4321 tmp = new bpstats (*bs);
4322
4323 if (p == NULL)
4324 /* This is the first thing in the chain. */
4325 retval = tmp;
4326 else
4327 p->next = tmp;
4328 p = tmp;
4329 }
4330 p->next = NULL;
4331 return retval;
4332 }
4333
4334 /* Find the bpstat associated with this breakpoint. */
4335
4336 bpstat
4337 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4338 {
4339 if (bsp == NULL)
4340 return NULL;
4341
4342 for (; bsp != NULL; bsp = bsp->next)
4343 {
4344 if (bsp->breakpoint_at == breakpoint)
4345 return bsp;
4346 }
4347 return NULL;
4348 }
4349
4350 /* See breakpoint.h. */
4351
4352 int
4353 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4354 {
4355 for (; bsp != NULL; bsp = bsp->next)
4356 {
4357 if (bsp->breakpoint_at == NULL)
4358 {
4359 /* A moribund location can never explain a signal other than
4360 GDB_SIGNAL_TRAP. */
4361 if (sig == GDB_SIGNAL_TRAP)
4362 return 1;
4363 }
4364 else
4365 {
4366 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4367 sig))
4368 return 1;
4369 }
4370 }
4371
4372 return 0;
4373 }
4374
4375 /* Put in *NUM the breakpoint number of the first breakpoint we are
4376 stopped at. *BSP upon return is a bpstat which points to the
4377 remaining breakpoints stopped at (but which is not guaranteed to be
4378 good for anything but further calls to bpstat_num).
4379
4380 Return 0 if passed a bpstat which does not indicate any breakpoints.
4381 Return -1 if stopped at a breakpoint that has been deleted since
4382 we set it.
4383 Return 1 otherwise. */
4384
4385 int
4386 bpstat_num (bpstat *bsp, int *num)
4387 {
4388 struct breakpoint *b;
4389
4390 if ((*bsp) == NULL)
4391 return 0; /* No more breakpoint values */
4392
4393 /* We assume we'll never have several bpstats that correspond to a
4394 single breakpoint -- otherwise, this function might return the
4395 same number more than once and this will look ugly. */
4396 b = (*bsp)->breakpoint_at;
4397 *bsp = (*bsp)->next;
4398 if (b == NULL)
4399 return -1; /* breakpoint that's been deleted since */
4400
4401 *num = b->number; /* We have its number */
4402 return 1;
4403 }
4404
4405 /* See breakpoint.h. */
4406
4407 void
4408 bpstat_clear_actions (void)
4409 {
4410 struct thread_info *tp;
4411 bpstat bs;
4412
4413 if (ptid_equal (inferior_ptid, null_ptid))
4414 return;
4415
4416 tp = find_thread_ptid (inferior_ptid);
4417 if (tp == NULL)
4418 return;
4419
4420 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4421 {
4422 bs->commands = NULL;
4423
4424 if (bs->old_val != NULL)
4425 {
4426 value_free (bs->old_val);
4427 bs->old_val = NULL;
4428 }
4429 }
4430 }
4431
4432 /* Called when a command is about to proceed the inferior. */
4433
4434 static void
4435 breakpoint_about_to_proceed (void)
4436 {
4437 if (!ptid_equal (inferior_ptid, null_ptid))
4438 {
4439 struct thread_info *tp = inferior_thread ();
4440
4441 /* Allow inferior function calls in breakpoint commands to not
4442 interrupt the command list. When the call finishes
4443 successfully, the inferior will be standing at the same
4444 breakpoint as if nothing happened. */
4445 if (tp->control.in_infcall)
4446 return;
4447 }
4448
4449 breakpoint_proceeded = 1;
4450 }
4451
4452 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4453 or its equivalent. */
4454
4455 static int
4456 command_line_is_silent (struct command_line *cmd)
4457 {
4458 return cmd && (strcmp ("silent", cmd->line) == 0);
4459 }
4460
4461 /* Execute all the commands associated with all the breakpoints at
4462 this location. Any of these commands could cause the process to
4463 proceed beyond this point, etc. We look out for such changes by
4464 checking the global "breakpoint_proceeded" after each command.
4465
4466 Returns true if a breakpoint command resumed the inferior. In that
4467 case, it is the caller's responsibility to recall it again with the
4468 bpstat of the current thread. */
4469
4470 static int
4471 bpstat_do_actions_1 (bpstat *bsp)
4472 {
4473 bpstat bs;
4474 int again = 0;
4475
4476 /* Avoid endless recursion if a `source' command is contained
4477 in bs->commands. */
4478 if (executing_breakpoint_commands)
4479 return 0;
4480
4481 scoped_restore save_executing
4482 = make_scoped_restore (&executing_breakpoint_commands, 1);
4483
4484 scoped_restore preventer = prevent_dont_repeat ();
4485
4486 /* This pointer will iterate over the list of bpstat's. */
4487 bs = *bsp;
4488
4489 breakpoint_proceeded = 0;
4490 for (; bs != NULL; bs = bs->next)
4491 {
4492 struct command_line *cmd = NULL;
4493
4494 /* Take ownership of the BSP's command tree, if it has one.
4495
4496 The command tree could legitimately contain commands like
4497 'step' and 'next', which call clear_proceed_status, which
4498 frees stop_bpstat's command tree. To make sure this doesn't
4499 free the tree we're executing out from under us, we need to
4500 take ownership of the tree ourselves. Since a given bpstat's
4501 commands are only executed once, we don't need to copy it; we
4502 can clear the pointer in the bpstat, and make sure we free
4503 the tree when we're done. */
4504 counted_command_line ccmd = bs->commands;
4505 bs->commands = NULL;
4506 if (ccmd != NULL)
4507 cmd = ccmd.get ();
4508 if (command_line_is_silent (cmd))
4509 {
4510 /* The action has been already done by bpstat_stop_status. */
4511 cmd = cmd->next;
4512 }
4513
4514 while (cmd != NULL)
4515 {
4516 execute_control_command (cmd);
4517
4518 if (breakpoint_proceeded)
4519 break;
4520 else
4521 cmd = cmd->next;
4522 }
4523
4524 if (breakpoint_proceeded)
4525 {
4526 if (current_ui->async)
4527 /* If we are in async mode, then the target might be still
4528 running, not stopped at any breakpoint, so nothing for
4529 us to do here -- just return to the event loop. */
4530 ;
4531 else
4532 /* In sync mode, when execute_control_command returns
4533 we're already standing on the next breakpoint.
4534 Breakpoint commands for that stop were not run, since
4535 execute_command does not run breakpoint commands --
4536 only command_line_handler does, but that one is not
4537 involved in execution of breakpoint commands. So, we
4538 can now execute breakpoint commands. It should be
4539 noted that making execute_command do bpstat actions is
4540 not an option -- in this case we'll have recursive
4541 invocation of bpstat for each breakpoint with a
4542 command, and can easily blow up GDB stack. Instead, we
4543 return true, which will trigger the caller to recall us
4544 with the new stop_bpstat. */
4545 again = 1;
4546 break;
4547 }
4548 }
4549 return again;
4550 }
4551
4552 void
4553 bpstat_do_actions (void)
4554 {
4555 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4556
4557 /* Do any commands attached to breakpoint we are stopped at. */
4558 while (!ptid_equal (inferior_ptid, null_ptid)
4559 && target_has_execution
4560 && !is_exited (inferior_ptid)
4561 && !is_executing (inferior_ptid))
4562 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4563 and only return when it is stopped at the next breakpoint, we
4564 keep doing breakpoint actions until it returns false to
4565 indicate the inferior was not resumed. */
4566 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4567 break;
4568
4569 discard_cleanups (cleanup_if_error);
4570 }
4571
4572 /* Print out the (old or new) value associated with a watchpoint. */
4573
4574 static void
4575 watchpoint_value_print (struct value *val, struct ui_file *stream)
4576 {
4577 if (val == NULL)
4578 fprintf_unfiltered (stream, _("<unreadable>"));
4579 else
4580 {
4581 struct value_print_options opts;
4582 get_user_print_options (&opts);
4583 value_print (val, stream, &opts);
4584 }
4585 }
4586
4587 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4588 debugging multiple threads. */
4589
4590 void
4591 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4592 {
4593 if (uiout->is_mi_like_p ())
4594 return;
4595
4596 uiout->text ("\n");
4597
4598 if (show_thread_that_caused_stop ())
4599 {
4600 const char *name;
4601 struct thread_info *thr = inferior_thread ();
4602
4603 uiout->text ("Thread ");
4604 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4605
4606 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4607 if (name != NULL)
4608 {
4609 uiout->text (" \"");
4610 uiout->field_fmt ("name", "%s", name);
4611 uiout->text ("\"");
4612 }
4613
4614 uiout->text (" hit ");
4615 }
4616 }
4617
4618 /* Generic routine for printing messages indicating why we
4619 stopped. The behavior of this function depends on the value
4620 'print_it' in the bpstat structure. Under some circumstances we
4621 may decide not to print anything here and delegate the task to
4622 normal_stop(). */
4623
4624 static enum print_stop_action
4625 print_bp_stop_message (bpstat bs)
4626 {
4627 switch (bs->print_it)
4628 {
4629 case print_it_noop:
4630 /* Nothing should be printed for this bpstat entry. */
4631 return PRINT_UNKNOWN;
4632 break;
4633
4634 case print_it_done:
4635 /* We still want to print the frame, but we already printed the
4636 relevant messages. */
4637 return PRINT_SRC_AND_LOC;
4638 break;
4639
4640 case print_it_normal:
4641 {
4642 struct breakpoint *b = bs->breakpoint_at;
4643
4644 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4645 which has since been deleted. */
4646 if (b == NULL)
4647 return PRINT_UNKNOWN;
4648
4649 /* Normal case. Call the breakpoint's print_it method. */
4650 return b->ops->print_it (bs);
4651 }
4652 break;
4653
4654 default:
4655 internal_error (__FILE__, __LINE__,
4656 _("print_bp_stop_message: unrecognized enum value"));
4657 break;
4658 }
4659 }
4660
4661 /* A helper function that prints a shared library stopped event. */
4662
4663 static void
4664 print_solib_event (int is_catchpoint)
4665 {
4666 int any_deleted
4667 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4668 int any_added
4669 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4670
4671 if (!is_catchpoint)
4672 {
4673 if (any_added || any_deleted)
4674 current_uiout->text (_("Stopped due to shared library event:\n"));
4675 else
4676 current_uiout->text (_("Stopped due to shared library event (no "
4677 "libraries added or removed)\n"));
4678 }
4679
4680 if (current_uiout->is_mi_like_p ())
4681 current_uiout->field_string ("reason",
4682 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4683
4684 if (any_deleted)
4685 {
4686 char *name;
4687 int ix;
4688
4689 current_uiout->text (_(" Inferior unloaded "));
4690 ui_out_emit_list list_emitter (current_uiout, "removed");
4691 for (ix = 0;
4692 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4693 ix, name);
4694 ++ix)
4695 {
4696 if (ix > 0)
4697 current_uiout->text (" ");
4698 current_uiout->field_string ("library", name);
4699 current_uiout->text ("\n");
4700 }
4701 }
4702
4703 if (any_added)
4704 {
4705 struct so_list *iter;
4706 int ix;
4707
4708 current_uiout->text (_(" Inferior loaded "));
4709 ui_out_emit_list list_emitter (current_uiout, "added");
4710 for (ix = 0;
4711 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4712 ix, iter);
4713 ++ix)
4714 {
4715 if (ix > 0)
4716 current_uiout->text (" ");
4717 current_uiout->field_string ("library", iter->so_name);
4718 current_uiout->text ("\n");
4719 }
4720 }
4721 }
4722
4723 /* Print a message indicating what happened. This is called from
4724 normal_stop(). The input to this routine is the head of the bpstat
4725 list - a list of the eventpoints that caused this stop. KIND is
4726 the target_waitkind for the stopping event. This
4727 routine calls the generic print routine for printing a message
4728 about reasons for stopping. This will print (for example) the
4729 "Breakpoint n," part of the output. The return value of this
4730 routine is one of:
4731
4732 PRINT_UNKNOWN: Means we printed nothing.
4733 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4734 code to print the location. An example is
4735 "Breakpoint 1, " which should be followed by
4736 the location.
4737 PRINT_SRC_ONLY: Means we printed something, but there is no need
4738 to also print the location part of the message.
4739 An example is the catch/throw messages, which
4740 don't require a location appended to the end.
4741 PRINT_NOTHING: We have done some printing and we don't need any
4742 further info to be printed. */
4743
4744 enum print_stop_action
4745 bpstat_print (bpstat bs, int kind)
4746 {
4747 enum print_stop_action val;
4748
4749 /* Maybe another breakpoint in the chain caused us to stop.
4750 (Currently all watchpoints go on the bpstat whether hit or not.
4751 That probably could (should) be changed, provided care is taken
4752 with respect to bpstat_explains_signal). */
4753 for (; bs; bs = bs->next)
4754 {
4755 val = print_bp_stop_message (bs);
4756 if (val == PRINT_SRC_ONLY
4757 || val == PRINT_SRC_AND_LOC
4758 || val == PRINT_NOTHING)
4759 return val;
4760 }
4761
4762 /* If we had hit a shared library event breakpoint,
4763 print_bp_stop_message would print out this message. If we hit an
4764 OS-level shared library event, do the same thing. */
4765 if (kind == TARGET_WAITKIND_LOADED)
4766 {
4767 print_solib_event (0);
4768 return PRINT_NOTHING;
4769 }
4770
4771 /* We reached the end of the chain, or we got a null BS to start
4772 with and nothing was printed. */
4773 return PRINT_UNKNOWN;
4774 }
4775
4776 /* Evaluate the boolean expression EXP and return the result. */
4777
4778 static bool
4779 breakpoint_cond_eval (expression *exp)
4780 {
4781 struct value *mark = value_mark ();
4782 bool res = value_true (evaluate_expression (exp));
4783
4784 value_free_to_mark (mark);
4785 return res;
4786 }
4787
4788 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4789
4790 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4791 : next (NULL),
4792 bp_location_at (bl),
4793 breakpoint_at (bl->owner),
4794 commands (NULL),
4795 old_val (NULL),
4796 print (0),
4797 stop (0),
4798 print_it (print_it_normal)
4799 {
4800 incref_bp_location (bl);
4801 **bs_link_pointer = this;
4802 *bs_link_pointer = &next;
4803 }
4804
4805 bpstats::bpstats ()
4806 : next (NULL),
4807 bp_location_at (NULL),
4808 breakpoint_at (NULL),
4809 commands (NULL),
4810 old_val (NULL),
4811 print (0),
4812 stop (0),
4813 print_it (print_it_normal)
4814 {
4815 }
4816 \f
4817 /* The target has stopped with waitstatus WS. Check if any hardware
4818 watchpoints have triggered, according to the target. */
4819
4820 int
4821 watchpoints_triggered (struct target_waitstatus *ws)
4822 {
4823 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4824 CORE_ADDR addr;
4825 struct breakpoint *b;
4826
4827 if (!stopped_by_watchpoint)
4828 {
4829 /* We were not stopped by a watchpoint. Mark all watchpoints
4830 as not triggered. */
4831 ALL_BREAKPOINTS (b)
4832 if (is_hardware_watchpoint (b))
4833 {
4834 struct watchpoint *w = (struct watchpoint *) b;
4835
4836 w->watchpoint_triggered = watch_triggered_no;
4837 }
4838
4839 return 0;
4840 }
4841
4842 if (!target_stopped_data_address (&current_target, &addr))
4843 {
4844 /* We were stopped by a watchpoint, but we don't know where.
4845 Mark all watchpoints as unknown. */
4846 ALL_BREAKPOINTS (b)
4847 if (is_hardware_watchpoint (b))
4848 {
4849 struct watchpoint *w = (struct watchpoint *) b;
4850
4851 w->watchpoint_triggered = watch_triggered_unknown;
4852 }
4853
4854 return 1;
4855 }
4856
4857 /* The target could report the data address. Mark watchpoints
4858 affected by this data address as triggered, and all others as not
4859 triggered. */
4860
4861 ALL_BREAKPOINTS (b)
4862 if (is_hardware_watchpoint (b))
4863 {
4864 struct watchpoint *w = (struct watchpoint *) b;
4865 struct bp_location *loc;
4866
4867 w->watchpoint_triggered = watch_triggered_no;
4868 for (loc = b->loc; loc; loc = loc->next)
4869 {
4870 if (is_masked_watchpoint (b))
4871 {
4872 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4873 CORE_ADDR start = loc->address & w->hw_wp_mask;
4874
4875 if (newaddr == start)
4876 {
4877 w->watchpoint_triggered = watch_triggered_yes;
4878 break;
4879 }
4880 }
4881 /* Exact match not required. Within range is sufficient. */
4882 else if (target_watchpoint_addr_within_range (&current_target,
4883 addr, loc->address,
4884 loc->length))
4885 {
4886 w->watchpoint_triggered = watch_triggered_yes;
4887 break;
4888 }
4889 }
4890 }
4891
4892 return 1;
4893 }
4894
4895 /* Possible return values for watchpoint_check. */
4896 enum wp_check_result
4897 {
4898 /* The watchpoint has been deleted. */
4899 WP_DELETED = 1,
4900
4901 /* The value has changed. */
4902 WP_VALUE_CHANGED = 2,
4903
4904 /* The value has not changed. */
4905 WP_VALUE_NOT_CHANGED = 3,
4906
4907 /* Ignore this watchpoint, no matter if the value changed or not. */
4908 WP_IGNORE = 4,
4909 };
4910
4911 #define BP_TEMPFLAG 1
4912 #define BP_HARDWAREFLAG 2
4913
4914 /* Evaluate watchpoint condition expression and check if its value
4915 changed. */
4916
4917 static wp_check_result
4918 watchpoint_check (bpstat bs)
4919 {
4920 struct watchpoint *b;
4921 struct frame_info *fr;
4922 int within_current_scope;
4923
4924 /* BS is built from an existing struct breakpoint. */
4925 gdb_assert (bs->breakpoint_at != NULL);
4926 b = (struct watchpoint *) bs->breakpoint_at;
4927
4928 /* If this is a local watchpoint, we only want to check if the
4929 watchpoint frame is in scope if the current thread is the thread
4930 that was used to create the watchpoint. */
4931 if (!watchpoint_in_thread_scope (b))
4932 return WP_IGNORE;
4933
4934 if (b->exp_valid_block == NULL)
4935 within_current_scope = 1;
4936 else
4937 {
4938 struct frame_info *frame = get_current_frame ();
4939 struct gdbarch *frame_arch = get_frame_arch (frame);
4940 CORE_ADDR frame_pc = get_frame_pc (frame);
4941
4942 /* stack_frame_destroyed_p() returns a non-zero value if we're
4943 still in the function but the stack frame has already been
4944 invalidated. Since we can't rely on the values of local
4945 variables after the stack has been destroyed, we are treating
4946 the watchpoint in that state as `not changed' without further
4947 checking. Don't mark watchpoints as changed if the current
4948 frame is in an epilogue - even if they are in some other
4949 frame, our view of the stack is likely to be wrong and
4950 frame_find_by_id could error out. */
4951 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4952 return WP_IGNORE;
4953
4954 fr = frame_find_by_id (b->watchpoint_frame);
4955 within_current_scope = (fr != NULL);
4956
4957 /* If we've gotten confused in the unwinder, we might have
4958 returned a frame that can't describe this variable. */
4959 if (within_current_scope)
4960 {
4961 struct symbol *function;
4962
4963 function = get_frame_function (fr);
4964 if (function == NULL
4965 || !contained_in (b->exp_valid_block,
4966 SYMBOL_BLOCK_VALUE (function)))
4967 within_current_scope = 0;
4968 }
4969
4970 if (within_current_scope)
4971 /* If we end up stopping, the current frame will get selected
4972 in normal_stop. So this call to select_frame won't affect
4973 the user. */
4974 select_frame (fr);
4975 }
4976
4977 if (within_current_scope)
4978 {
4979 /* We use value_{,free_to_}mark because it could be a *long*
4980 time before we return to the command level and call
4981 free_all_values. We can't call free_all_values because we
4982 might be in the middle of evaluating a function call. */
4983
4984 int pc = 0;
4985 struct value *mark;
4986 struct value *new_val;
4987
4988 if (is_masked_watchpoint (b))
4989 /* Since we don't know the exact trigger address (from
4990 stopped_data_address), just tell the user we've triggered
4991 a mask watchpoint. */
4992 return WP_VALUE_CHANGED;
4993
4994 mark = value_mark ();
4995 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4996
4997 if (b->val_bitsize != 0)
4998 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4999
5000 /* We use value_equal_contents instead of value_equal because
5001 the latter coerces an array to a pointer, thus comparing just
5002 the address of the array instead of its contents. This is
5003 not what we want. */
5004 if ((b->val != NULL) != (new_val != NULL)
5005 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
5006 {
5007 if (new_val != NULL)
5008 {
5009 release_value (new_val);
5010 value_free_to_mark (mark);
5011 }
5012 bs->old_val = b->val;
5013 b->val = new_val;
5014 b->val_valid = 1;
5015 return WP_VALUE_CHANGED;
5016 }
5017 else
5018 {
5019 /* Nothing changed. */
5020 value_free_to_mark (mark);
5021 return WP_VALUE_NOT_CHANGED;
5022 }
5023 }
5024 else
5025 {
5026 /* This seems like the only logical thing to do because
5027 if we temporarily ignored the watchpoint, then when
5028 we reenter the block in which it is valid it contains
5029 garbage (in the case of a function, it may have two
5030 garbage values, one before and one after the prologue).
5031 So we can't even detect the first assignment to it and
5032 watch after that (since the garbage may or may not equal
5033 the first value assigned). */
5034 /* We print all the stop information in
5035 breakpoint_ops->print_it, but in this case, by the time we
5036 call breakpoint_ops->print_it this bp will be deleted
5037 already. So we have no choice but print the information
5038 here. */
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 struct ui_out *uiout = current_uiout;
5043
5044 if (uiout->is_mi_like_p ())
5045 uiout->field_string
5046 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5047 uiout->text ("\nWatchpoint ");
5048 uiout->field_int ("wpnum", b->number);
5049 uiout->text (" deleted because the program has left the block in\n"
5050 "which its expression is valid.\n");
5051 }
5052
5053 /* Make sure the watchpoint's commands aren't executed. */
5054 b->commands = NULL;
5055 watchpoint_del_at_next_stop (b);
5056
5057 return WP_DELETED;
5058 }
5059 }
5060
5061 /* Return true if it looks like target has stopped due to hitting
5062 breakpoint location BL. This function does not check if we should
5063 stop, only if BL explains the stop. */
5064
5065 static int
5066 bpstat_check_location (const struct bp_location *bl,
5067 struct address_space *aspace, CORE_ADDR bp_addr,
5068 const struct target_waitstatus *ws)
5069 {
5070 struct breakpoint *b = bl->owner;
5071
5072 /* BL is from an existing breakpoint. */
5073 gdb_assert (b != NULL);
5074
5075 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5076 }
5077
5078 /* Determine if the watched values have actually changed, and we
5079 should stop. If not, set BS->stop to 0. */
5080
5081 static void
5082 bpstat_check_watchpoint (bpstat bs)
5083 {
5084 const struct bp_location *bl;
5085 struct watchpoint *b;
5086
5087 /* BS is built for existing struct breakpoint. */
5088 bl = bs->bp_location_at;
5089 gdb_assert (bl != NULL);
5090 b = (struct watchpoint *) bs->breakpoint_at;
5091 gdb_assert (b != NULL);
5092
5093 {
5094 int must_check_value = 0;
5095
5096 if (b->type == bp_watchpoint)
5097 /* For a software watchpoint, we must always check the
5098 watched value. */
5099 must_check_value = 1;
5100 else if (b->watchpoint_triggered == watch_triggered_yes)
5101 /* We have a hardware watchpoint (read, write, or access)
5102 and the target earlier reported an address watched by
5103 this watchpoint. */
5104 must_check_value = 1;
5105 else if (b->watchpoint_triggered == watch_triggered_unknown
5106 && b->type == bp_hardware_watchpoint)
5107 /* We were stopped by a hardware watchpoint, but the target could
5108 not report the data address. We must check the watchpoint's
5109 value. Access and read watchpoints are out of luck; without
5110 a data address, we can't figure it out. */
5111 must_check_value = 1;
5112
5113 if (must_check_value)
5114 {
5115 wp_check_result e;
5116
5117 TRY
5118 {
5119 e = watchpoint_check (bs);
5120 }
5121 CATCH (ex, RETURN_MASK_ALL)
5122 {
5123 exception_fprintf (gdb_stderr, ex,
5124 "Error evaluating expression "
5125 "for watchpoint %d\n",
5126 b->number);
5127
5128 SWITCH_THRU_ALL_UIS ()
5129 {
5130 printf_filtered (_("Watchpoint %d deleted.\n"),
5131 b->number);
5132 }
5133 watchpoint_del_at_next_stop (b);
5134 e = WP_DELETED;
5135 }
5136 END_CATCH
5137
5138 switch (e)
5139 {
5140 case WP_DELETED:
5141 /* We've already printed what needs to be printed. */
5142 bs->print_it = print_it_done;
5143 /* Stop. */
5144 break;
5145 case WP_IGNORE:
5146 bs->print_it = print_it_noop;
5147 bs->stop = 0;
5148 break;
5149 case WP_VALUE_CHANGED:
5150 if (b->type == bp_read_watchpoint)
5151 {
5152 /* There are two cases to consider here:
5153
5154 1. We're watching the triggered memory for reads.
5155 In that case, trust the target, and always report
5156 the watchpoint hit to the user. Even though
5157 reads don't cause value changes, the value may
5158 have changed since the last time it was read, and
5159 since we're not trapping writes, we will not see
5160 those, and as such we should ignore our notion of
5161 old value.
5162
5163 2. We're watching the triggered memory for both
5164 reads and writes. There are two ways this may
5165 happen:
5166
5167 2.1. This is a target that can't break on data
5168 reads only, but can break on accesses (reads or
5169 writes), such as e.g., x86. We detect this case
5170 at the time we try to insert read watchpoints.
5171
5172 2.2. Otherwise, the target supports read
5173 watchpoints, but, the user set an access or write
5174 watchpoint watching the same memory as this read
5175 watchpoint.
5176
5177 If we're watching memory writes as well as reads,
5178 ignore watchpoint hits when we find that the
5179 value hasn't changed, as reads don't cause
5180 changes. This still gives false positives when
5181 the program writes the same value to memory as
5182 what there was already in memory (we will confuse
5183 it for a read), but it's much better than
5184 nothing. */
5185
5186 int other_write_watchpoint = 0;
5187
5188 if (bl->watchpoint_type == hw_read)
5189 {
5190 struct breakpoint *other_b;
5191
5192 ALL_BREAKPOINTS (other_b)
5193 if (other_b->type == bp_hardware_watchpoint
5194 || other_b->type == bp_access_watchpoint)
5195 {
5196 struct watchpoint *other_w =
5197 (struct watchpoint *) other_b;
5198
5199 if (other_w->watchpoint_triggered
5200 == watch_triggered_yes)
5201 {
5202 other_write_watchpoint = 1;
5203 break;
5204 }
5205 }
5206 }
5207
5208 if (other_write_watchpoint
5209 || bl->watchpoint_type == hw_access)
5210 {
5211 /* We're watching the same memory for writes,
5212 and the value changed since the last time we
5213 updated it, so this trap must be for a write.
5214 Ignore it. */
5215 bs->print_it = print_it_noop;
5216 bs->stop = 0;
5217 }
5218 }
5219 break;
5220 case WP_VALUE_NOT_CHANGED:
5221 if (b->type == bp_hardware_watchpoint
5222 || b->type == bp_watchpoint)
5223 {
5224 /* Don't stop: write watchpoints shouldn't fire if
5225 the value hasn't changed. */
5226 bs->print_it = print_it_noop;
5227 bs->stop = 0;
5228 }
5229 /* Stop. */
5230 break;
5231 default:
5232 /* Can't happen. */
5233 break;
5234 }
5235 }
5236 else /* must_check_value == 0 */
5237 {
5238 /* This is a case where some watchpoint(s) triggered, but
5239 not at the address of this watchpoint, or else no
5240 watchpoint triggered after all. So don't print
5241 anything for this watchpoint. */
5242 bs->print_it = print_it_noop;
5243 bs->stop = 0;
5244 }
5245 }
5246 }
5247
5248 /* For breakpoints that are currently marked as telling gdb to stop,
5249 check conditions (condition proper, frame, thread and ignore count)
5250 of breakpoint referred to by BS. If we should not stop for this
5251 breakpoint, set BS->stop to 0. */
5252
5253 static void
5254 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5255 {
5256 const struct bp_location *bl;
5257 struct breakpoint *b;
5258 /* Assume stop. */
5259 bool condition_result = true;
5260 struct expression *cond;
5261
5262 gdb_assert (bs->stop);
5263
5264 /* BS is built for existing struct breakpoint. */
5265 bl = bs->bp_location_at;
5266 gdb_assert (bl != NULL);
5267 b = bs->breakpoint_at;
5268 gdb_assert (b != NULL);
5269
5270 /* Even if the target evaluated the condition on its end and notified GDB, we
5271 need to do so again since GDB does not know if we stopped due to a
5272 breakpoint or a single step breakpoint. */
5273
5274 if (frame_id_p (b->frame_id)
5275 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5276 {
5277 bs->stop = 0;
5278 return;
5279 }
5280
5281 /* If this is a thread/task-specific breakpoint, don't waste cpu
5282 evaluating the condition if this isn't the specified
5283 thread/task. */
5284 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5285 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5286
5287 {
5288 bs->stop = 0;
5289 return;
5290 }
5291
5292 /* Evaluate extension language breakpoints that have a "stop" method
5293 implemented. */
5294 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5295
5296 if (is_watchpoint (b))
5297 {
5298 struct watchpoint *w = (struct watchpoint *) b;
5299
5300 cond = w->cond_exp.get ();
5301 }
5302 else
5303 cond = bl->cond.get ();
5304
5305 if (cond && b->disposition != disp_del_at_next_stop)
5306 {
5307 int within_current_scope = 1;
5308 struct watchpoint * w;
5309
5310 /* We use value_mark and value_free_to_mark because it could
5311 be a long time before we return to the command level and
5312 call free_all_values. We can't call free_all_values
5313 because we might be in the middle of evaluating a
5314 function call. */
5315 struct value *mark = value_mark ();
5316
5317 if (is_watchpoint (b))
5318 w = (struct watchpoint *) b;
5319 else
5320 w = NULL;
5321
5322 /* Need to select the frame, with all that implies so that
5323 the conditions will have the right context. Because we
5324 use the frame, we will not see an inlined function's
5325 variables when we arrive at a breakpoint at the start
5326 of the inlined function; the current frame will be the
5327 call site. */
5328 if (w == NULL || w->cond_exp_valid_block == NULL)
5329 select_frame (get_current_frame ());
5330 else
5331 {
5332 struct frame_info *frame;
5333
5334 /* For local watchpoint expressions, which particular
5335 instance of a local is being watched matters, so we
5336 keep track of the frame to evaluate the expression
5337 in. To evaluate the condition however, it doesn't
5338 really matter which instantiation of the function
5339 where the condition makes sense triggers the
5340 watchpoint. This allows an expression like "watch
5341 global if q > 10" set in `func', catch writes to
5342 global on all threads that call `func', or catch
5343 writes on all recursive calls of `func' by a single
5344 thread. We simply always evaluate the condition in
5345 the innermost frame that's executing where it makes
5346 sense to evaluate the condition. It seems
5347 intuitive. */
5348 frame = block_innermost_frame (w->cond_exp_valid_block);
5349 if (frame != NULL)
5350 select_frame (frame);
5351 else
5352 within_current_scope = 0;
5353 }
5354 if (within_current_scope)
5355 {
5356 TRY
5357 {
5358 condition_result = breakpoint_cond_eval (cond);
5359 }
5360 CATCH (ex, RETURN_MASK_ALL)
5361 {
5362 exception_fprintf (gdb_stderr, ex,
5363 "Error in testing breakpoint condition:\n");
5364 }
5365 END_CATCH
5366 }
5367 else
5368 {
5369 warning (_("Watchpoint condition cannot be tested "
5370 "in the current scope"));
5371 /* If we failed to set the right context for this
5372 watchpoint, unconditionally report it. */
5373 }
5374 /* FIXME-someday, should give breakpoint #. */
5375 value_free_to_mark (mark);
5376 }
5377
5378 if (cond && !condition_result)
5379 {
5380 bs->stop = 0;
5381 }
5382 else if (b->ignore_count > 0)
5383 {
5384 b->ignore_count--;
5385 bs->stop = 0;
5386 /* Increase the hit count even though we don't stop. */
5387 ++(b->hit_count);
5388 observer_notify_breakpoint_modified (b);
5389 }
5390 }
5391
5392 /* Returns true if we need to track moribund locations of LOC's type
5393 on the current target. */
5394
5395 static int
5396 need_moribund_for_location_type (struct bp_location *loc)
5397 {
5398 return ((loc->loc_type == bp_loc_software_breakpoint
5399 && !target_supports_stopped_by_sw_breakpoint ())
5400 || (loc->loc_type == bp_loc_hardware_breakpoint
5401 && !target_supports_stopped_by_hw_breakpoint ()));
5402 }
5403
5404
5405 /* Get a bpstat associated with having just stopped at address
5406 BP_ADDR in thread PTID.
5407
5408 Determine whether we stopped at a breakpoint, etc, or whether we
5409 don't understand this stop. Result is a chain of bpstat's such
5410 that:
5411
5412 if we don't understand the stop, the result is a null pointer.
5413
5414 if we understand why we stopped, the result is not null.
5415
5416 Each element of the chain refers to a particular breakpoint or
5417 watchpoint at which we have stopped. (We may have stopped for
5418 several reasons concurrently.)
5419
5420 Each element of the chain has valid next, breakpoint_at,
5421 commands, FIXME??? fields. */
5422
5423 bpstat
5424 bpstat_stop_status (struct address_space *aspace,
5425 CORE_ADDR bp_addr, ptid_t ptid,
5426 const struct target_waitstatus *ws)
5427 {
5428 struct breakpoint *b = NULL;
5429 struct bp_location *bl;
5430 struct bp_location *loc;
5431 /* First item of allocated bpstat's. */
5432 bpstat bs_head = NULL, *bs_link = &bs_head;
5433 /* Pointer to the last thing in the chain currently. */
5434 bpstat bs;
5435 int ix;
5436 int need_remove_insert;
5437 int removed_any;
5438
5439 /* First, build the bpstat chain with locations that explain a
5440 target stop, while being careful to not set the target running,
5441 as that may invalidate locations (in particular watchpoint
5442 locations are recreated). Resuming will happen here with
5443 breakpoint conditions or watchpoint expressions that include
5444 inferior function calls. */
5445
5446 ALL_BREAKPOINTS (b)
5447 {
5448 if (!breakpoint_enabled (b))
5449 continue;
5450
5451 for (bl = b->loc; bl != NULL; bl = bl->next)
5452 {
5453 /* For hardware watchpoints, we look only at the first
5454 location. The watchpoint_check function will work on the
5455 entire expression, not the individual locations. For
5456 read watchpoints, the watchpoints_triggered function has
5457 checked all locations already. */
5458 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5459 break;
5460
5461 if (!bl->enabled || bl->shlib_disabled)
5462 continue;
5463
5464 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5465 continue;
5466
5467 /* Come here if it's a watchpoint, or if the break address
5468 matches. */
5469
5470 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5471 explain stop. */
5472
5473 /* Assume we stop. Should we find a watchpoint that is not
5474 actually triggered, or if the condition of the breakpoint
5475 evaluates as false, we'll reset 'stop' to 0. */
5476 bs->stop = 1;
5477 bs->print = 1;
5478
5479 /* If this is a scope breakpoint, mark the associated
5480 watchpoint as triggered so that we will handle the
5481 out-of-scope event. We'll get to the watchpoint next
5482 iteration. */
5483 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5484 {
5485 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5486
5487 w->watchpoint_triggered = watch_triggered_yes;
5488 }
5489 }
5490 }
5491
5492 /* Check if a moribund breakpoint explains the stop. */
5493 if (!target_supports_stopped_by_sw_breakpoint ()
5494 || !target_supports_stopped_by_hw_breakpoint ())
5495 {
5496 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5497 {
5498 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5499 && need_moribund_for_location_type (loc))
5500 {
5501 bs = new bpstats (loc, &bs_link);
5502 /* For hits of moribund locations, we should just proceed. */
5503 bs->stop = 0;
5504 bs->print = 0;
5505 bs->print_it = print_it_noop;
5506 }
5507 }
5508 }
5509
5510 /* A bit of special processing for shlib breakpoints. We need to
5511 process solib loading here, so that the lists of loaded and
5512 unloaded libraries are correct before we handle "catch load" and
5513 "catch unload". */
5514 for (bs = bs_head; bs != NULL; bs = bs->next)
5515 {
5516 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5517 {
5518 handle_solib_event ();
5519 break;
5520 }
5521 }
5522
5523 /* Now go through the locations that caused the target to stop, and
5524 check whether we're interested in reporting this stop to higher
5525 layers, or whether we should resume the target transparently. */
5526
5527 removed_any = 0;
5528
5529 for (bs = bs_head; bs != NULL; bs = bs->next)
5530 {
5531 if (!bs->stop)
5532 continue;
5533
5534 b = bs->breakpoint_at;
5535 b->ops->check_status (bs);
5536 if (bs->stop)
5537 {
5538 bpstat_check_breakpoint_conditions (bs, ptid);
5539
5540 if (bs->stop)
5541 {
5542 ++(b->hit_count);
5543 observer_notify_breakpoint_modified (b);
5544
5545 /* We will stop here. */
5546 if (b->disposition == disp_disable)
5547 {
5548 --(b->enable_count);
5549 if (b->enable_count <= 0)
5550 b->enable_state = bp_disabled;
5551 removed_any = 1;
5552 }
5553 if (b->silent)
5554 bs->print = 0;
5555 bs->commands = b->commands;
5556 if (command_line_is_silent (bs->commands
5557 ? bs->commands.get () : NULL))
5558 bs->print = 0;
5559
5560 b->ops->after_condition_true (bs);
5561 }
5562
5563 }
5564
5565 /* Print nothing for this entry if we don't stop or don't
5566 print. */
5567 if (!bs->stop || !bs->print)
5568 bs->print_it = print_it_noop;
5569 }
5570
5571 /* If we aren't stopping, the value of some hardware watchpoint may
5572 not have changed, but the intermediate memory locations we are
5573 watching may have. Don't bother if we're stopping; this will get
5574 done later. */
5575 need_remove_insert = 0;
5576 if (! bpstat_causes_stop (bs_head))
5577 for (bs = bs_head; bs != NULL; bs = bs->next)
5578 if (!bs->stop
5579 && bs->breakpoint_at
5580 && is_hardware_watchpoint (bs->breakpoint_at))
5581 {
5582 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5583
5584 update_watchpoint (w, 0 /* don't reparse. */);
5585 need_remove_insert = 1;
5586 }
5587
5588 if (need_remove_insert)
5589 update_global_location_list (UGLL_MAY_INSERT);
5590 else if (removed_any)
5591 update_global_location_list (UGLL_DONT_INSERT);
5592
5593 return bs_head;
5594 }
5595
5596 static void
5597 handle_jit_event (void)
5598 {
5599 struct frame_info *frame;
5600 struct gdbarch *gdbarch;
5601
5602 if (debug_infrun)
5603 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5604
5605 /* Switch terminal for any messages produced by
5606 breakpoint_re_set. */
5607 target_terminal::ours_for_output ();
5608
5609 frame = get_current_frame ();
5610 gdbarch = get_frame_arch (frame);
5611
5612 jit_event_handler (gdbarch);
5613
5614 target_terminal::inferior ();
5615 }
5616
5617 /* Prepare WHAT final decision for infrun. */
5618
5619 /* Decide what infrun needs to do with this bpstat. */
5620
5621 struct bpstat_what
5622 bpstat_what (bpstat bs_head)
5623 {
5624 struct bpstat_what retval;
5625 bpstat bs;
5626
5627 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5628 retval.call_dummy = STOP_NONE;
5629 retval.is_longjmp = 0;
5630
5631 for (bs = bs_head; bs != NULL; bs = bs->next)
5632 {
5633 /* Extract this BS's action. After processing each BS, we check
5634 if its action overrides all we've seem so far. */
5635 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5636 enum bptype bptype;
5637
5638 if (bs->breakpoint_at == NULL)
5639 {
5640 /* I suspect this can happen if it was a momentary
5641 breakpoint which has since been deleted. */
5642 bptype = bp_none;
5643 }
5644 else
5645 bptype = bs->breakpoint_at->type;
5646
5647 switch (bptype)
5648 {
5649 case bp_none:
5650 break;
5651 case bp_breakpoint:
5652 case bp_hardware_breakpoint:
5653 case bp_single_step:
5654 case bp_until:
5655 case bp_finish:
5656 case bp_shlib_event:
5657 if (bs->stop)
5658 {
5659 if (bs->print)
5660 this_action = BPSTAT_WHAT_STOP_NOISY;
5661 else
5662 this_action = BPSTAT_WHAT_STOP_SILENT;
5663 }
5664 else
5665 this_action = BPSTAT_WHAT_SINGLE;
5666 break;
5667 case bp_watchpoint:
5668 case bp_hardware_watchpoint:
5669 case bp_read_watchpoint:
5670 case bp_access_watchpoint:
5671 if (bs->stop)
5672 {
5673 if (bs->print)
5674 this_action = BPSTAT_WHAT_STOP_NOISY;
5675 else
5676 this_action = BPSTAT_WHAT_STOP_SILENT;
5677 }
5678 else
5679 {
5680 /* There was a watchpoint, but we're not stopping.
5681 This requires no further action. */
5682 }
5683 break;
5684 case bp_longjmp:
5685 case bp_longjmp_call_dummy:
5686 case bp_exception:
5687 if (bs->stop)
5688 {
5689 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5690 retval.is_longjmp = bptype != bp_exception;
5691 }
5692 else
5693 this_action = BPSTAT_WHAT_SINGLE;
5694 break;
5695 case bp_longjmp_resume:
5696 case bp_exception_resume:
5697 if (bs->stop)
5698 {
5699 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5700 retval.is_longjmp = bptype == bp_longjmp_resume;
5701 }
5702 else
5703 this_action = BPSTAT_WHAT_SINGLE;
5704 break;
5705 case bp_step_resume:
5706 if (bs->stop)
5707 this_action = BPSTAT_WHAT_STEP_RESUME;
5708 else
5709 {
5710 /* It is for the wrong frame. */
5711 this_action = BPSTAT_WHAT_SINGLE;
5712 }
5713 break;
5714 case bp_hp_step_resume:
5715 if (bs->stop)
5716 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5717 else
5718 {
5719 /* It is for the wrong frame. */
5720 this_action = BPSTAT_WHAT_SINGLE;
5721 }
5722 break;
5723 case bp_watchpoint_scope:
5724 case bp_thread_event:
5725 case bp_overlay_event:
5726 case bp_longjmp_master:
5727 case bp_std_terminate_master:
5728 case bp_exception_master:
5729 this_action = BPSTAT_WHAT_SINGLE;
5730 break;
5731 case bp_catchpoint:
5732 if (bs->stop)
5733 {
5734 if (bs->print)
5735 this_action = BPSTAT_WHAT_STOP_NOISY;
5736 else
5737 this_action = BPSTAT_WHAT_STOP_SILENT;
5738 }
5739 else
5740 {
5741 /* There was a catchpoint, but we're not stopping.
5742 This requires no further action. */
5743 }
5744 break;
5745 case bp_jit_event:
5746 this_action = BPSTAT_WHAT_SINGLE;
5747 break;
5748 case bp_call_dummy:
5749 /* Make sure the action is stop (silent or noisy),
5750 so infrun.c pops the dummy frame. */
5751 retval.call_dummy = STOP_STACK_DUMMY;
5752 this_action = BPSTAT_WHAT_STOP_SILENT;
5753 break;
5754 case bp_std_terminate:
5755 /* Make sure the action is stop (silent or noisy),
5756 so infrun.c pops the dummy frame. */
5757 retval.call_dummy = STOP_STD_TERMINATE;
5758 this_action = BPSTAT_WHAT_STOP_SILENT;
5759 break;
5760 case bp_tracepoint:
5761 case bp_fast_tracepoint:
5762 case bp_static_tracepoint:
5763 /* Tracepoint hits should not be reported back to GDB, and
5764 if one got through somehow, it should have been filtered
5765 out already. */
5766 internal_error (__FILE__, __LINE__,
5767 _("bpstat_what: tracepoint encountered"));
5768 break;
5769 case bp_gnu_ifunc_resolver:
5770 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5771 this_action = BPSTAT_WHAT_SINGLE;
5772 break;
5773 case bp_gnu_ifunc_resolver_return:
5774 /* The breakpoint will be removed, execution will restart from the
5775 PC of the former breakpoint. */
5776 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5777 break;
5778
5779 case bp_dprintf:
5780 if (bs->stop)
5781 this_action = BPSTAT_WHAT_STOP_SILENT;
5782 else
5783 this_action = BPSTAT_WHAT_SINGLE;
5784 break;
5785
5786 default:
5787 internal_error (__FILE__, __LINE__,
5788 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5789 }
5790
5791 retval.main_action = std::max (retval.main_action, this_action);
5792 }
5793
5794 return retval;
5795 }
5796
5797 void
5798 bpstat_run_callbacks (bpstat bs_head)
5799 {
5800 bpstat bs;
5801
5802 for (bs = bs_head; bs != NULL; bs = bs->next)
5803 {
5804 struct breakpoint *b = bs->breakpoint_at;
5805
5806 if (b == NULL)
5807 continue;
5808 switch (b->type)
5809 {
5810 case bp_jit_event:
5811 handle_jit_event ();
5812 break;
5813 case bp_gnu_ifunc_resolver:
5814 gnu_ifunc_resolver_stop (b);
5815 break;
5816 case bp_gnu_ifunc_resolver_return:
5817 gnu_ifunc_resolver_return_stop (b);
5818 break;
5819 }
5820 }
5821 }
5822
5823 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5824 without hardware support). This isn't related to a specific bpstat,
5825 just to things like whether watchpoints are set. */
5826
5827 int
5828 bpstat_should_step (void)
5829 {
5830 struct breakpoint *b;
5831
5832 ALL_BREAKPOINTS (b)
5833 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5834 return 1;
5835 return 0;
5836 }
5837
5838 int
5839 bpstat_causes_stop (bpstat bs)
5840 {
5841 for (; bs != NULL; bs = bs->next)
5842 if (bs->stop)
5843 return 1;
5844
5845 return 0;
5846 }
5847
5848 \f
5849
5850 /* Compute a string of spaces suitable to indent the next line
5851 so it starts at the position corresponding to the table column
5852 named COL_NAME in the currently active table of UIOUT. */
5853
5854 static char *
5855 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5856 {
5857 static char wrap_indent[80];
5858 int i, total_width, width, align;
5859 const char *text;
5860
5861 total_width = 0;
5862 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5863 {
5864 if (strcmp (text, col_name) == 0)
5865 {
5866 gdb_assert (total_width < sizeof wrap_indent);
5867 memset (wrap_indent, ' ', total_width);
5868 wrap_indent[total_width] = 0;
5869
5870 return wrap_indent;
5871 }
5872
5873 total_width += width + 1;
5874 }
5875
5876 return NULL;
5877 }
5878
5879 /* Determine if the locations of this breakpoint will have their conditions
5880 evaluated by the target, host or a mix of both. Returns the following:
5881
5882 "host": Host evals condition.
5883 "host or target": Host or Target evals condition.
5884 "target": Target evals condition.
5885 */
5886
5887 static const char *
5888 bp_condition_evaluator (struct breakpoint *b)
5889 {
5890 struct bp_location *bl;
5891 char host_evals = 0;
5892 char target_evals = 0;
5893
5894 if (!b)
5895 return NULL;
5896
5897 if (!is_breakpoint (b))
5898 return NULL;
5899
5900 if (gdb_evaluates_breakpoint_condition_p ()
5901 || !target_supports_evaluation_of_breakpoint_conditions ())
5902 return condition_evaluation_host;
5903
5904 for (bl = b->loc; bl; bl = bl->next)
5905 {
5906 if (bl->cond_bytecode)
5907 target_evals++;
5908 else
5909 host_evals++;
5910 }
5911
5912 if (host_evals && target_evals)
5913 return condition_evaluation_both;
5914 else if (target_evals)
5915 return condition_evaluation_target;
5916 else
5917 return condition_evaluation_host;
5918 }
5919
5920 /* Determine the breakpoint location's condition evaluator. This is
5921 similar to bp_condition_evaluator, but for locations. */
5922
5923 static const char *
5924 bp_location_condition_evaluator (struct bp_location *bl)
5925 {
5926 if (bl && !is_breakpoint (bl->owner))
5927 return NULL;
5928
5929 if (gdb_evaluates_breakpoint_condition_p ()
5930 || !target_supports_evaluation_of_breakpoint_conditions ())
5931 return condition_evaluation_host;
5932
5933 if (bl && bl->cond_bytecode)
5934 return condition_evaluation_target;
5935 else
5936 return condition_evaluation_host;
5937 }
5938
5939 /* Print the LOC location out of the list of B->LOC locations. */
5940
5941 static void
5942 print_breakpoint_location (struct breakpoint *b,
5943 struct bp_location *loc)
5944 {
5945 struct ui_out *uiout = current_uiout;
5946
5947 scoped_restore_current_program_space restore_pspace;
5948
5949 if (loc != NULL && loc->shlib_disabled)
5950 loc = NULL;
5951
5952 if (loc != NULL)
5953 set_current_program_space (loc->pspace);
5954
5955 if (b->display_canonical)
5956 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5957 else if (loc && loc->symtab)
5958 {
5959 struct symbol *sym
5960 = find_pc_sect_function (loc->address, loc->section);
5961 if (sym)
5962 {
5963 uiout->text ("in ");
5964 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5965 uiout->text (" ");
5966 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5967 uiout->text ("at ");
5968 }
5969 uiout->field_string ("file",
5970 symtab_to_filename_for_display (loc->symtab));
5971 uiout->text (":");
5972
5973 if (uiout->is_mi_like_p ())
5974 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5975
5976 uiout->field_int ("line", loc->line_number);
5977 }
5978 else if (loc)
5979 {
5980 string_file stb;
5981
5982 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5983 demangle, "");
5984 uiout->field_stream ("at", stb);
5985 }
5986 else
5987 {
5988 uiout->field_string ("pending",
5989 event_location_to_string (b->location.get ()));
5990 /* If extra_string is available, it could be holding a condition
5991 or dprintf arguments. In either case, make sure it is printed,
5992 too, but only for non-MI streams. */
5993 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5994 {
5995 if (b->type == bp_dprintf)
5996 uiout->text (",");
5997 else
5998 uiout->text (" ");
5999 uiout->text (b->extra_string);
6000 }
6001 }
6002
6003 if (loc && is_breakpoint (b)
6004 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6005 && bp_condition_evaluator (b) == condition_evaluation_both)
6006 {
6007 uiout->text (" (");
6008 uiout->field_string ("evaluated-by",
6009 bp_location_condition_evaluator (loc));
6010 uiout->text (")");
6011 }
6012 }
6013
6014 static const char *
6015 bptype_string (enum bptype type)
6016 {
6017 struct ep_type_description
6018 {
6019 enum bptype type;
6020 const char *description;
6021 };
6022 static struct ep_type_description bptypes[] =
6023 {
6024 {bp_none, "?deleted?"},
6025 {bp_breakpoint, "breakpoint"},
6026 {bp_hardware_breakpoint, "hw breakpoint"},
6027 {bp_single_step, "sw single-step"},
6028 {bp_until, "until"},
6029 {bp_finish, "finish"},
6030 {bp_watchpoint, "watchpoint"},
6031 {bp_hardware_watchpoint, "hw watchpoint"},
6032 {bp_read_watchpoint, "read watchpoint"},
6033 {bp_access_watchpoint, "acc watchpoint"},
6034 {bp_longjmp, "longjmp"},
6035 {bp_longjmp_resume, "longjmp resume"},
6036 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6037 {bp_exception, "exception"},
6038 {bp_exception_resume, "exception resume"},
6039 {bp_step_resume, "step resume"},
6040 {bp_hp_step_resume, "high-priority step resume"},
6041 {bp_watchpoint_scope, "watchpoint scope"},
6042 {bp_call_dummy, "call dummy"},
6043 {bp_std_terminate, "std::terminate"},
6044 {bp_shlib_event, "shlib events"},
6045 {bp_thread_event, "thread events"},
6046 {bp_overlay_event, "overlay events"},
6047 {bp_longjmp_master, "longjmp master"},
6048 {bp_std_terminate_master, "std::terminate master"},
6049 {bp_exception_master, "exception master"},
6050 {bp_catchpoint, "catchpoint"},
6051 {bp_tracepoint, "tracepoint"},
6052 {bp_fast_tracepoint, "fast tracepoint"},
6053 {bp_static_tracepoint, "static tracepoint"},
6054 {bp_dprintf, "dprintf"},
6055 {bp_jit_event, "jit events"},
6056 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6057 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6058 };
6059
6060 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6061 || ((int) type != bptypes[(int) type].type))
6062 internal_error (__FILE__, __LINE__,
6063 _("bptypes table does not describe type #%d."),
6064 (int) type);
6065
6066 return bptypes[(int) type].description;
6067 }
6068
6069 /* For MI, output a field named 'thread-groups' with a list as the value.
6070 For CLI, prefix the list with the string 'inf'. */
6071
6072 static void
6073 output_thread_groups (struct ui_out *uiout,
6074 const char *field_name,
6075 VEC(int) *inf_num,
6076 int mi_only)
6077 {
6078 int is_mi = uiout->is_mi_like_p ();
6079 int inf;
6080 int i;
6081
6082 /* For backward compatibility, don't display inferiors in CLI unless
6083 there are several. Always display them for MI. */
6084 if (!is_mi && mi_only)
6085 return;
6086
6087 ui_out_emit_list list_emitter (uiout, field_name);
6088
6089 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6090 {
6091 if (is_mi)
6092 {
6093 char mi_group[10];
6094
6095 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6096 uiout->field_string (NULL, mi_group);
6097 }
6098 else
6099 {
6100 if (i == 0)
6101 uiout->text (" inf ");
6102 else
6103 uiout->text (", ");
6104
6105 uiout->text (plongest (inf));
6106 }
6107 }
6108 }
6109
6110 /* Print B to gdb_stdout. */
6111
6112 static void
6113 print_one_breakpoint_location (struct breakpoint *b,
6114 struct bp_location *loc,
6115 int loc_number,
6116 struct bp_location **last_loc,
6117 int allflag)
6118 {
6119 struct command_line *l;
6120 static char bpenables[] = "nynny";
6121
6122 struct ui_out *uiout = current_uiout;
6123 int header_of_multiple = 0;
6124 int part_of_multiple = (loc != NULL);
6125 struct value_print_options opts;
6126
6127 get_user_print_options (&opts);
6128
6129 gdb_assert (!loc || loc_number != 0);
6130 /* See comment in print_one_breakpoint concerning treatment of
6131 breakpoints with single disabled location. */
6132 if (loc == NULL
6133 && (b->loc != NULL
6134 && (b->loc->next != NULL || !b->loc->enabled)))
6135 header_of_multiple = 1;
6136 if (loc == NULL)
6137 loc = b->loc;
6138
6139 annotate_record ();
6140
6141 /* 1 */
6142 annotate_field (0);
6143 if (part_of_multiple)
6144 {
6145 char *formatted;
6146 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6147 uiout->field_string ("number", formatted);
6148 xfree (formatted);
6149 }
6150 else
6151 {
6152 uiout->field_int ("number", b->number);
6153 }
6154
6155 /* 2 */
6156 annotate_field (1);
6157 if (part_of_multiple)
6158 uiout->field_skip ("type");
6159 else
6160 uiout->field_string ("type", bptype_string (b->type));
6161
6162 /* 3 */
6163 annotate_field (2);
6164 if (part_of_multiple)
6165 uiout->field_skip ("disp");
6166 else
6167 uiout->field_string ("disp", bpdisp_text (b->disposition));
6168
6169
6170 /* 4 */
6171 annotate_field (3);
6172 if (part_of_multiple)
6173 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6174 else
6175 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6176 uiout->spaces (2);
6177
6178
6179 /* 5 and 6 */
6180 if (b->ops != NULL && b->ops->print_one != NULL)
6181 {
6182 /* Although the print_one can possibly print all locations,
6183 calling it here is not likely to get any nice result. So,
6184 make sure there's just one location. */
6185 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6186 b->ops->print_one (b, last_loc);
6187 }
6188 else
6189 switch (b->type)
6190 {
6191 case bp_none:
6192 internal_error (__FILE__, __LINE__,
6193 _("print_one_breakpoint: bp_none encountered\n"));
6194 break;
6195
6196 case bp_watchpoint:
6197 case bp_hardware_watchpoint:
6198 case bp_read_watchpoint:
6199 case bp_access_watchpoint:
6200 {
6201 struct watchpoint *w = (struct watchpoint *) b;
6202
6203 /* Field 4, the address, is omitted (which makes the columns
6204 not line up too nicely with the headers, but the effect
6205 is relatively readable). */
6206 if (opts.addressprint)
6207 uiout->field_skip ("addr");
6208 annotate_field (5);
6209 uiout->field_string ("what", w->exp_string);
6210 }
6211 break;
6212
6213 case bp_breakpoint:
6214 case bp_hardware_breakpoint:
6215 case bp_single_step:
6216 case bp_until:
6217 case bp_finish:
6218 case bp_longjmp:
6219 case bp_longjmp_resume:
6220 case bp_longjmp_call_dummy:
6221 case bp_exception:
6222 case bp_exception_resume:
6223 case bp_step_resume:
6224 case bp_hp_step_resume:
6225 case bp_watchpoint_scope:
6226 case bp_call_dummy:
6227 case bp_std_terminate:
6228 case bp_shlib_event:
6229 case bp_thread_event:
6230 case bp_overlay_event:
6231 case bp_longjmp_master:
6232 case bp_std_terminate_master:
6233 case bp_exception_master:
6234 case bp_tracepoint:
6235 case bp_fast_tracepoint:
6236 case bp_static_tracepoint:
6237 case bp_dprintf:
6238 case bp_jit_event:
6239 case bp_gnu_ifunc_resolver:
6240 case bp_gnu_ifunc_resolver_return:
6241 if (opts.addressprint)
6242 {
6243 annotate_field (4);
6244 if (header_of_multiple)
6245 uiout->field_string ("addr", "<MULTIPLE>");
6246 else if (b->loc == NULL || loc->shlib_disabled)
6247 uiout->field_string ("addr", "<PENDING>");
6248 else
6249 uiout->field_core_addr ("addr",
6250 loc->gdbarch, loc->address);
6251 }
6252 annotate_field (5);
6253 if (!header_of_multiple)
6254 print_breakpoint_location (b, loc);
6255 if (b->loc)
6256 *last_loc = b->loc;
6257 break;
6258 }
6259
6260
6261 if (loc != NULL && !header_of_multiple)
6262 {
6263 struct inferior *inf;
6264 VEC(int) *inf_num = NULL;
6265 int mi_only = 1;
6266
6267 ALL_INFERIORS (inf)
6268 {
6269 if (inf->pspace == loc->pspace)
6270 VEC_safe_push (int, inf_num, inf->num);
6271 }
6272
6273 /* For backward compatibility, don't display inferiors in CLI unless
6274 there are several. Always display for MI. */
6275 if (allflag
6276 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6277 && (number_of_program_spaces () > 1
6278 || number_of_inferiors () > 1)
6279 /* LOC is for existing B, it cannot be in
6280 moribund_locations and thus having NULL OWNER. */
6281 && loc->owner->type != bp_catchpoint))
6282 mi_only = 0;
6283 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6284 VEC_free (int, inf_num);
6285 }
6286
6287 if (!part_of_multiple)
6288 {
6289 if (b->thread != -1)
6290 {
6291 /* FIXME: This seems to be redundant and lost here; see the
6292 "stop only in" line a little further down. */
6293 uiout->text (" thread ");
6294 uiout->field_int ("thread", b->thread);
6295 }
6296 else if (b->task != 0)
6297 {
6298 uiout->text (" task ");
6299 uiout->field_int ("task", b->task);
6300 }
6301 }
6302
6303 uiout->text ("\n");
6304
6305 if (!part_of_multiple)
6306 b->ops->print_one_detail (b, uiout);
6307
6308 if (part_of_multiple && frame_id_p (b->frame_id))
6309 {
6310 annotate_field (6);
6311 uiout->text ("\tstop only in stack frame at ");
6312 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6313 the frame ID. */
6314 uiout->field_core_addr ("frame",
6315 b->gdbarch, b->frame_id.stack_addr);
6316 uiout->text ("\n");
6317 }
6318
6319 if (!part_of_multiple && b->cond_string)
6320 {
6321 annotate_field (7);
6322 if (is_tracepoint (b))
6323 uiout->text ("\ttrace only if ");
6324 else
6325 uiout->text ("\tstop only if ");
6326 uiout->field_string ("cond", b->cond_string);
6327
6328 /* Print whether the target is doing the breakpoint's condition
6329 evaluation. If GDB is doing the evaluation, don't print anything. */
6330 if (is_breakpoint (b)
6331 && breakpoint_condition_evaluation_mode ()
6332 == condition_evaluation_target)
6333 {
6334 uiout->text (" (");
6335 uiout->field_string ("evaluated-by",
6336 bp_condition_evaluator (b));
6337 uiout->text (" evals)");
6338 }
6339 uiout->text ("\n");
6340 }
6341
6342 if (!part_of_multiple && b->thread != -1)
6343 {
6344 /* FIXME should make an annotation for this. */
6345 uiout->text ("\tstop only in thread ");
6346 if (uiout->is_mi_like_p ())
6347 uiout->field_int ("thread", b->thread);
6348 else
6349 {
6350 struct thread_info *thr = find_thread_global_id (b->thread);
6351
6352 uiout->field_string ("thread", print_thread_id (thr));
6353 }
6354 uiout->text ("\n");
6355 }
6356
6357 if (!part_of_multiple)
6358 {
6359 if (b->hit_count)
6360 {
6361 /* FIXME should make an annotation for this. */
6362 if (is_catchpoint (b))
6363 uiout->text ("\tcatchpoint");
6364 else if (is_tracepoint (b))
6365 uiout->text ("\ttracepoint");
6366 else
6367 uiout->text ("\tbreakpoint");
6368 uiout->text (" already hit ");
6369 uiout->field_int ("times", b->hit_count);
6370 if (b->hit_count == 1)
6371 uiout->text (" time\n");
6372 else
6373 uiout->text (" times\n");
6374 }
6375 else
6376 {
6377 /* Output the count also if it is zero, but only if this is mi. */
6378 if (uiout->is_mi_like_p ())
6379 uiout->field_int ("times", b->hit_count);
6380 }
6381 }
6382
6383 if (!part_of_multiple && b->ignore_count)
6384 {
6385 annotate_field (8);
6386 uiout->text ("\tignore next ");
6387 uiout->field_int ("ignore", b->ignore_count);
6388 uiout->text (" hits\n");
6389 }
6390
6391 /* Note that an enable count of 1 corresponds to "enable once"
6392 behavior, which is reported by the combination of enablement and
6393 disposition, so we don't need to mention it here. */
6394 if (!part_of_multiple && b->enable_count > 1)
6395 {
6396 annotate_field (8);
6397 uiout->text ("\tdisable after ");
6398 /* Tweak the wording to clarify that ignore and enable counts
6399 are distinct, and have additive effect. */
6400 if (b->ignore_count)
6401 uiout->text ("additional ");
6402 else
6403 uiout->text ("next ");
6404 uiout->field_int ("enable", b->enable_count);
6405 uiout->text (" hits\n");
6406 }
6407
6408 if (!part_of_multiple && is_tracepoint (b))
6409 {
6410 struct tracepoint *tp = (struct tracepoint *) b;
6411
6412 if (tp->traceframe_usage)
6413 {
6414 uiout->text ("\ttrace buffer usage ");
6415 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6416 uiout->text (" bytes\n");
6417 }
6418 }
6419
6420 l = b->commands ? b->commands.get () : NULL;
6421 if (!part_of_multiple && l)
6422 {
6423 annotate_field (9);
6424 ui_out_emit_tuple tuple_emitter (uiout, "script");
6425 print_command_lines (uiout, l, 4);
6426 }
6427
6428 if (is_tracepoint (b))
6429 {
6430 struct tracepoint *t = (struct tracepoint *) b;
6431
6432 if (!part_of_multiple && t->pass_count)
6433 {
6434 annotate_field (10);
6435 uiout->text ("\tpass count ");
6436 uiout->field_int ("pass", t->pass_count);
6437 uiout->text (" \n");
6438 }
6439
6440 /* Don't display it when tracepoint or tracepoint location is
6441 pending. */
6442 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6443 {
6444 annotate_field (11);
6445
6446 if (uiout->is_mi_like_p ())
6447 uiout->field_string ("installed",
6448 loc->inserted ? "y" : "n");
6449 else
6450 {
6451 if (loc->inserted)
6452 uiout->text ("\t");
6453 else
6454 uiout->text ("\tnot ");
6455 uiout->text ("installed on target\n");
6456 }
6457 }
6458 }
6459
6460 if (uiout->is_mi_like_p () && !part_of_multiple)
6461 {
6462 if (is_watchpoint (b))
6463 {
6464 struct watchpoint *w = (struct watchpoint *) b;
6465
6466 uiout->field_string ("original-location", w->exp_string);
6467 }
6468 else if (b->location != NULL
6469 && event_location_to_string (b->location.get ()) != NULL)
6470 uiout->field_string ("original-location",
6471 event_location_to_string (b->location.get ()));
6472 }
6473 }
6474
6475 static void
6476 print_one_breakpoint (struct breakpoint *b,
6477 struct bp_location **last_loc,
6478 int allflag)
6479 {
6480 struct ui_out *uiout = current_uiout;
6481
6482 {
6483 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6484
6485 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6486 }
6487
6488 /* If this breakpoint has custom print function,
6489 it's already printed. Otherwise, print individual
6490 locations, if any. */
6491 if (b->ops == NULL || b->ops->print_one == NULL)
6492 {
6493 /* If breakpoint has a single location that is disabled, we
6494 print it as if it had several locations, since otherwise it's
6495 hard to represent "breakpoint enabled, location disabled"
6496 situation.
6497
6498 Note that while hardware watchpoints have several locations
6499 internally, that's not a property exposed to user. */
6500 if (b->loc
6501 && !is_hardware_watchpoint (b)
6502 && (b->loc->next || !b->loc->enabled))
6503 {
6504 struct bp_location *loc;
6505 int n = 1;
6506
6507 for (loc = b->loc; loc; loc = loc->next, ++n)
6508 {
6509 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6510 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6511 }
6512 }
6513 }
6514 }
6515
6516 static int
6517 breakpoint_address_bits (struct breakpoint *b)
6518 {
6519 int print_address_bits = 0;
6520 struct bp_location *loc;
6521
6522 /* Software watchpoints that aren't watching memory don't have an
6523 address to print. */
6524 if (is_no_memory_software_watchpoint (b))
6525 return 0;
6526
6527 for (loc = b->loc; loc; loc = loc->next)
6528 {
6529 int addr_bit;
6530
6531 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6532 if (addr_bit > print_address_bits)
6533 print_address_bits = addr_bit;
6534 }
6535
6536 return print_address_bits;
6537 }
6538
6539 /* See breakpoint.h. */
6540
6541 void
6542 print_breakpoint (breakpoint *b)
6543 {
6544 struct bp_location *dummy_loc = NULL;
6545 print_one_breakpoint (b, &dummy_loc, 0);
6546 }
6547
6548 /* Return true if this breakpoint was set by the user, false if it is
6549 internal or momentary. */
6550
6551 int
6552 user_breakpoint_p (struct breakpoint *b)
6553 {
6554 return b->number > 0;
6555 }
6556
6557 /* See breakpoint.h. */
6558
6559 int
6560 pending_breakpoint_p (struct breakpoint *b)
6561 {
6562 return b->loc == NULL;
6563 }
6564
6565 /* Print information on user settable breakpoint (watchpoint, etc)
6566 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6567 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6568 FILTER is non-NULL, call it on each breakpoint and only include the
6569 ones for which it returns non-zero. Return the total number of
6570 breakpoints listed. */
6571
6572 static int
6573 breakpoint_1 (const char *args, int allflag,
6574 int (*filter) (const struct breakpoint *))
6575 {
6576 struct breakpoint *b;
6577 struct bp_location *last_loc = NULL;
6578 int nr_printable_breakpoints;
6579 struct value_print_options opts;
6580 int print_address_bits = 0;
6581 int print_type_col_width = 14;
6582 struct ui_out *uiout = current_uiout;
6583
6584 get_user_print_options (&opts);
6585
6586 /* Compute the number of rows in the table, as well as the size
6587 required for address fields. */
6588 nr_printable_breakpoints = 0;
6589 ALL_BREAKPOINTS (b)
6590 {
6591 /* If we have a filter, only list the breakpoints it accepts. */
6592 if (filter && !filter (b))
6593 continue;
6594
6595 /* If we have an "args" string, it is a list of breakpoints to
6596 accept. Skip the others. */
6597 if (args != NULL && *args != '\0')
6598 {
6599 if (allflag && parse_and_eval_long (args) != b->number)
6600 continue;
6601 if (!allflag && !number_is_in_list (args, b->number))
6602 continue;
6603 }
6604
6605 if (allflag || user_breakpoint_p (b))
6606 {
6607 int addr_bit, type_len;
6608
6609 addr_bit = breakpoint_address_bits (b);
6610 if (addr_bit > print_address_bits)
6611 print_address_bits = addr_bit;
6612
6613 type_len = strlen (bptype_string (b->type));
6614 if (type_len > print_type_col_width)
6615 print_type_col_width = type_len;
6616
6617 nr_printable_breakpoints++;
6618 }
6619 }
6620
6621 {
6622 ui_out_emit_table table_emitter (uiout,
6623 opts.addressprint ? 6 : 5,
6624 nr_printable_breakpoints,
6625 "BreakpointTable");
6626
6627 if (nr_printable_breakpoints > 0)
6628 annotate_breakpoints_headers ();
6629 if (nr_printable_breakpoints > 0)
6630 annotate_field (0);
6631 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6632 if (nr_printable_breakpoints > 0)
6633 annotate_field (1);
6634 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6635 if (nr_printable_breakpoints > 0)
6636 annotate_field (2);
6637 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6638 if (nr_printable_breakpoints > 0)
6639 annotate_field (3);
6640 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6641 if (opts.addressprint)
6642 {
6643 if (nr_printable_breakpoints > 0)
6644 annotate_field (4);
6645 if (print_address_bits <= 32)
6646 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6647 else
6648 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6649 }
6650 if (nr_printable_breakpoints > 0)
6651 annotate_field (5);
6652 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6653 uiout->table_body ();
6654 if (nr_printable_breakpoints > 0)
6655 annotate_breakpoints_table ();
6656
6657 ALL_BREAKPOINTS (b)
6658 {
6659 QUIT;
6660 /* If we have a filter, only list the breakpoints it accepts. */
6661 if (filter && !filter (b))
6662 continue;
6663
6664 /* If we have an "args" string, it is a list of breakpoints to
6665 accept. Skip the others. */
6666
6667 if (args != NULL && *args != '\0')
6668 {
6669 if (allflag) /* maintenance info breakpoint */
6670 {
6671 if (parse_and_eval_long (args) != b->number)
6672 continue;
6673 }
6674 else /* all others */
6675 {
6676 if (!number_is_in_list (args, b->number))
6677 continue;
6678 }
6679 }
6680 /* We only print out user settable breakpoints unless the
6681 allflag is set. */
6682 if (allflag || user_breakpoint_p (b))
6683 print_one_breakpoint (b, &last_loc, allflag);
6684 }
6685 }
6686
6687 if (nr_printable_breakpoints == 0)
6688 {
6689 /* If there's a filter, let the caller decide how to report
6690 empty list. */
6691 if (!filter)
6692 {
6693 if (args == NULL || *args == '\0')
6694 uiout->message ("No breakpoints or watchpoints.\n");
6695 else
6696 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6697 args);
6698 }
6699 }
6700 else
6701 {
6702 if (last_loc && !server_command)
6703 set_next_address (last_loc->gdbarch, last_loc->address);
6704 }
6705
6706 /* FIXME? Should this be moved up so that it is only called when
6707 there have been breakpoints? */
6708 annotate_breakpoints_table_end ();
6709
6710 return nr_printable_breakpoints;
6711 }
6712
6713 /* Display the value of default-collect in a way that is generally
6714 compatible with the breakpoint list. */
6715
6716 static void
6717 default_collect_info (void)
6718 {
6719 struct ui_out *uiout = current_uiout;
6720
6721 /* If it has no value (which is frequently the case), say nothing; a
6722 message like "No default-collect." gets in user's face when it's
6723 not wanted. */
6724 if (!*default_collect)
6725 return;
6726
6727 /* The following phrase lines up nicely with per-tracepoint collect
6728 actions. */
6729 uiout->text ("default collect ");
6730 uiout->field_string ("default-collect", default_collect);
6731 uiout->text (" \n");
6732 }
6733
6734 static void
6735 info_breakpoints_command (char *args, int from_tty)
6736 {
6737 breakpoint_1 (args, 0, NULL);
6738
6739 default_collect_info ();
6740 }
6741
6742 static void
6743 info_watchpoints_command (char *args, int from_tty)
6744 {
6745 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6746 struct ui_out *uiout = current_uiout;
6747
6748 if (num_printed == 0)
6749 {
6750 if (args == NULL || *args == '\0')
6751 uiout->message ("No watchpoints.\n");
6752 else
6753 uiout->message ("No watchpoint matching '%s'.\n", args);
6754 }
6755 }
6756
6757 static void
6758 maintenance_info_breakpoints (const char *args, int from_tty)
6759 {
6760 breakpoint_1 (args, 1, NULL);
6761
6762 default_collect_info ();
6763 }
6764
6765 static int
6766 breakpoint_has_pc (struct breakpoint *b,
6767 struct program_space *pspace,
6768 CORE_ADDR pc, struct obj_section *section)
6769 {
6770 struct bp_location *bl = b->loc;
6771
6772 for (; bl; bl = bl->next)
6773 {
6774 if (bl->pspace == pspace
6775 && bl->address == pc
6776 && (!overlay_debugging || bl->section == section))
6777 return 1;
6778 }
6779 return 0;
6780 }
6781
6782 /* Print a message describing any user-breakpoints set at PC. This
6783 concerns with logical breakpoints, so we match program spaces, not
6784 address spaces. */
6785
6786 static void
6787 describe_other_breakpoints (struct gdbarch *gdbarch,
6788 struct program_space *pspace, CORE_ADDR pc,
6789 struct obj_section *section, int thread)
6790 {
6791 int others = 0;
6792 struct breakpoint *b;
6793
6794 ALL_BREAKPOINTS (b)
6795 others += (user_breakpoint_p (b)
6796 && breakpoint_has_pc (b, pspace, pc, section));
6797 if (others > 0)
6798 {
6799 if (others == 1)
6800 printf_filtered (_("Note: breakpoint "));
6801 else /* if (others == ???) */
6802 printf_filtered (_("Note: breakpoints "));
6803 ALL_BREAKPOINTS (b)
6804 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6805 {
6806 others--;
6807 printf_filtered ("%d", b->number);
6808 if (b->thread == -1 && thread != -1)
6809 printf_filtered (" (all threads)");
6810 else if (b->thread != -1)
6811 printf_filtered (" (thread %d)", b->thread);
6812 printf_filtered ("%s%s ",
6813 ((b->enable_state == bp_disabled
6814 || b->enable_state == bp_call_disabled)
6815 ? " (disabled)"
6816 : ""),
6817 (others > 1) ? ","
6818 : ((others == 1) ? " and" : ""));
6819 }
6820 printf_filtered (_("also set at pc "));
6821 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6822 printf_filtered (".\n");
6823 }
6824 }
6825 \f
6826
6827 /* Return true iff it is meaningful to use the address member of
6828 BPT locations. For some breakpoint types, the locations' address members
6829 are irrelevant and it makes no sense to attempt to compare them to other
6830 addresses (or use them for any other purpose either).
6831
6832 More specifically, each of the following breakpoint types will
6833 always have a zero valued location address and we don't want to mark
6834 breakpoints of any of these types to be a duplicate of an actual
6835 breakpoint location at address zero:
6836
6837 bp_watchpoint
6838 bp_catchpoint
6839
6840 */
6841
6842 static int
6843 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6844 {
6845 enum bptype type = bpt->type;
6846
6847 return (type != bp_watchpoint && type != bp_catchpoint);
6848 }
6849
6850 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6851 true if LOC1 and LOC2 represent the same watchpoint location. */
6852
6853 static int
6854 watchpoint_locations_match (struct bp_location *loc1,
6855 struct bp_location *loc2)
6856 {
6857 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6858 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6859
6860 /* Both of them must exist. */
6861 gdb_assert (w1 != NULL);
6862 gdb_assert (w2 != NULL);
6863
6864 /* If the target can evaluate the condition expression in hardware,
6865 then we we need to insert both watchpoints even if they are at
6866 the same place. Otherwise the watchpoint will only trigger when
6867 the condition of whichever watchpoint was inserted evaluates to
6868 true, not giving a chance for GDB to check the condition of the
6869 other watchpoint. */
6870 if ((w1->cond_exp
6871 && target_can_accel_watchpoint_condition (loc1->address,
6872 loc1->length,
6873 loc1->watchpoint_type,
6874 w1->cond_exp.get ()))
6875 || (w2->cond_exp
6876 && target_can_accel_watchpoint_condition (loc2->address,
6877 loc2->length,
6878 loc2->watchpoint_type,
6879 w2->cond_exp.get ())))
6880 return 0;
6881
6882 /* Note that this checks the owner's type, not the location's. In
6883 case the target does not support read watchpoints, but does
6884 support access watchpoints, we'll have bp_read_watchpoint
6885 watchpoints with hw_access locations. Those should be considered
6886 duplicates of hw_read locations. The hw_read locations will
6887 become hw_access locations later. */
6888 return (loc1->owner->type == loc2->owner->type
6889 && loc1->pspace->aspace == loc2->pspace->aspace
6890 && loc1->address == loc2->address
6891 && loc1->length == loc2->length);
6892 }
6893
6894 /* See breakpoint.h. */
6895
6896 int
6897 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6898 struct address_space *aspace2, CORE_ADDR addr2)
6899 {
6900 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6901 || aspace1 == aspace2)
6902 && addr1 == addr2);
6903 }
6904
6905 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6906 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6907 matches ASPACE2. On targets that have global breakpoints, the address
6908 space doesn't really matter. */
6909
6910 static int
6911 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6912 int len1, struct address_space *aspace2,
6913 CORE_ADDR addr2)
6914 {
6915 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6916 || aspace1 == aspace2)
6917 && addr2 >= addr1 && addr2 < addr1 + len1);
6918 }
6919
6920 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6921 a ranged breakpoint. In most targets, a match happens only if ASPACE
6922 matches the breakpoint's address space. On targets that have global
6923 breakpoints, the address space doesn't really matter. */
6924
6925 static int
6926 breakpoint_location_address_match (struct bp_location *bl,
6927 struct address_space *aspace,
6928 CORE_ADDR addr)
6929 {
6930 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6931 aspace, addr)
6932 || (bl->length
6933 && breakpoint_address_match_range (bl->pspace->aspace,
6934 bl->address, bl->length,
6935 aspace, addr)));
6936 }
6937
6938 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6939 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6940 match happens only if ASPACE matches the breakpoint's address
6941 space. On targets that have global breakpoints, the address space
6942 doesn't really matter. */
6943
6944 static int
6945 breakpoint_location_address_range_overlap (struct bp_location *bl,
6946 struct address_space *aspace,
6947 CORE_ADDR addr, int len)
6948 {
6949 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6950 || bl->pspace->aspace == aspace)
6951 {
6952 int bl_len = bl->length != 0 ? bl->length : 1;
6953
6954 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6955 return 1;
6956 }
6957 return 0;
6958 }
6959
6960 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6961 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6962 true, otherwise returns false. */
6963
6964 static int
6965 tracepoint_locations_match (struct bp_location *loc1,
6966 struct bp_location *loc2)
6967 {
6968 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6969 /* Since tracepoint locations are never duplicated with others', tracepoint
6970 locations at the same address of different tracepoints are regarded as
6971 different locations. */
6972 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6973 else
6974 return 0;
6975 }
6976
6977 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6978 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6979 represent the same location. */
6980
6981 static int
6982 breakpoint_locations_match (struct bp_location *loc1,
6983 struct bp_location *loc2)
6984 {
6985 int hw_point1, hw_point2;
6986
6987 /* Both of them must not be in moribund_locations. */
6988 gdb_assert (loc1->owner != NULL);
6989 gdb_assert (loc2->owner != NULL);
6990
6991 hw_point1 = is_hardware_watchpoint (loc1->owner);
6992 hw_point2 = is_hardware_watchpoint (loc2->owner);
6993
6994 if (hw_point1 != hw_point2)
6995 return 0;
6996 else if (hw_point1)
6997 return watchpoint_locations_match (loc1, loc2);
6998 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6999 return tracepoint_locations_match (loc1, loc2);
7000 else
7001 /* We compare bp_location.length in order to cover ranged breakpoints. */
7002 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7003 loc2->pspace->aspace, loc2->address)
7004 && loc1->length == loc2->length);
7005 }
7006
7007 static void
7008 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7009 int bnum, int have_bnum)
7010 {
7011 /* The longest string possibly returned by hex_string_custom
7012 is 50 chars. These must be at least that big for safety. */
7013 char astr1[64];
7014 char astr2[64];
7015
7016 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7017 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7018 if (have_bnum)
7019 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7020 bnum, astr1, astr2);
7021 else
7022 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7023 }
7024
7025 /* Adjust a breakpoint's address to account for architectural
7026 constraints on breakpoint placement. Return the adjusted address.
7027 Note: Very few targets require this kind of adjustment. For most
7028 targets, this function is simply the identity function. */
7029
7030 static CORE_ADDR
7031 adjust_breakpoint_address (struct gdbarch *gdbarch,
7032 CORE_ADDR bpaddr, enum bptype bptype)
7033 {
7034 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
7035 {
7036 /* Very few targets need any kind of breakpoint adjustment. */
7037 return bpaddr;
7038 }
7039 else if (bptype == bp_watchpoint
7040 || bptype == bp_hardware_watchpoint
7041 || bptype == bp_read_watchpoint
7042 || bptype == bp_access_watchpoint
7043 || bptype == bp_catchpoint)
7044 {
7045 /* Watchpoints and the various bp_catch_* eventpoints should not
7046 have their addresses modified. */
7047 return bpaddr;
7048 }
7049 else if (bptype == bp_single_step)
7050 {
7051 /* Single-step breakpoints should not have their addresses
7052 modified. If there's any architectural constrain that
7053 applies to this address, then it should have already been
7054 taken into account when the breakpoint was created in the
7055 first place. If we didn't do this, stepping through e.g.,
7056 Thumb-2 IT blocks would break. */
7057 return bpaddr;
7058 }
7059 else
7060 {
7061 CORE_ADDR adjusted_bpaddr;
7062
7063 /* Some targets have architectural constraints on the placement
7064 of breakpoint instructions. Obtain the adjusted address. */
7065 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7066
7067 /* An adjusted breakpoint address can significantly alter
7068 a user's expectations. Print a warning if an adjustment
7069 is required. */
7070 if (adjusted_bpaddr != bpaddr)
7071 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7072
7073 return adjusted_bpaddr;
7074 }
7075 }
7076
7077 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7078 {
7079 bp_location *loc = this;
7080
7081 gdb_assert (ops != NULL);
7082
7083 loc->ops = ops;
7084 loc->owner = owner;
7085 loc->cond_bytecode = NULL;
7086 loc->shlib_disabled = 0;
7087 loc->enabled = 1;
7088
7089 switch (owner->type)
7090 {
7091 case bp_breakpoint:
7092 case bp_single_step:
7093 case bp_until:
7094 case bp_finish:
7095 case bp_longjmp:
7096 case bp_longjmp_resume:
7097 case bp_longjmp_call_dummy:
7098 case bp_exception:
7099 case bp_exception_resume:
7100 case bp_step_resume:
7101 case bp_hp_step_resume:
7102 case bp_watchpoint_scope:
7103 case bp_call_dummy:
7104 case bp_std_terminate:
7105 case bp_shlib_event:
7106 case bp_thread_event:
7107 case bp_overlay_event:
7108 case bp_jit_event:
7109 case bp_longjmp_master:
7110 case bp_std_terminate_master:
7111 case bp_exception_master:
7112 case bp_gnu_ifunc_resolver:
7113 case bp_gnu_ifunc_resolver_return:
7114 case bp_dprintf:
7115 loc->loc_type = bp_loc_software_breakpoint;
7116 mark_breakpoint_location_modified (loc);
7117 break;
7118 case bp_hardware_breakpoint:
7119 loc->loc_type = bp_loc_hardware_breakpoint;
7120 mark_breakpoint_location_modified (loc);
7121 break;
7122 case bp_hardware_watchpoint:
7123 case bp_read_watchpoint:
7124 case bp_access_watchpoint:
7125 loc->loc_type = bp_loc_hardware_watchpoint;
7126 break;
7127 case bp_watchpoint:
7128 case bp_catchpoint:
7129 case bp_tracepoint:
7130 case bp_fast_tracepoint:
7131 case bp_static_tracepoint:
7132 loc->loc_type = bp_loc_other;
7133 break;
7134 default:
7135 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7136 }
7137
7138 loc->refc = 1;
7139 }
7140
7141 /* Allocate a struct bp_location. */
7142
7143 static struct bp_location *
7144 allocate_bp_location (struct breakpoint *bpt)
7145 {
7146 return bpt->ops->allocate_location (bpt);
7147 }
7148
7149 static void
7150 free_bp_location (struct bp_location *loc)
7151 {
7152 loc->ops->dtor (loc);
7153 delete loc;
7154 }
7155
7156 /* Increment reference count. */
7157
7158 static void
7159 incref_bp_location (struct bp_location *bl)
7160 {
7161 ++bl->refc;
7162 }
7163
7164 /* Decrement reference count. If the reference count reaches 0,
7165 destroy the bp_location. Sets *BLP to NULL. */
7166
7167 static void
7168 decref_bp_location (struct bp_location **blp)
7169 {
7170 gdb_assert ((*blp)->refc > 0);
7171
7172 if (--(*blp)->refc == 0)
7173 free_bp_location (*blp);
7174 *blp = NULL;
7175 }
7176
7177 /* Add breakpoint B at the end of the global breakpoint chain. */
7178
7179 static breakpoint *
7180 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7181 {
7182 struct breakpoint *b1;
7183 struct breakpoint *result = b.get ();
7184
7185 /* Add this breakpoint to the end of the chain so that a list of
7186 breakpoints will come out in order of increasing numbers. */
7187
7188 b1 = breakpoint_chain;
7189 if (b1 == 0)
7190 breakpoint_chain = b.release ();
7191 else
7192 {
7193 while (b1->next)
7194 b1 = b1->next;
7195 b1->next = b.release ();
7196 }
7197
7198 return result;
7199 }
7200
7201 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7202
7203 static void
7204 init_raw_breakpoint_without_location (struct breakpoint *b,
7205 struct gdbarch *gdbarch,
7206 enum bptype bptype,
7207 const struct breakpoint_ops *ops)
7208 {
7209 gdb_assert (ops != NULL);
7210
7211 b->ops = ops;
7212 b->type = bptype;
7213 b->gdbarch = gdbarch;
7214 b->language = current_language->la_language;
7215 b->input_radix = input_radix;
7216 b->related_breakpoint = b;
7217 }
7218
7219 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7220 that has type BPTYPE and has no locations as yet. */
7221
7222 static struct breakpoint *
7223 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7224 enum bptype bptype,
7225 const struct breakpoint_ops *ops)
7226 {
7227 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7228
7229 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7230 return add_to_breakpoint_chain (std::move (b));
7231 }
7232
7233 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7234 resolutions should be made as the user specified the location explicitly
7235 enough. */
7236
7237 static void
7238 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7239 {
7240 gdb_assert (loc->owner != NULL);
7241
7242 if (loc->owner->type == bp_breakpoint
7243 || loc->owner->type == bp_hardware_breakpoint
7244 || is_tracepoint (loc->owner))
7245 {
7246 int is_gnu_ifunc;
7247 const char *function_name;
7248 CORE_ADDR func_addr;
7249
7250 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7251 &func_addr, NULL, &is_gnu_ifunc);
7252
7253 if (is_gnu_ifunc && !explicit_loc)
7254 {
7255 struct breakpoint *b = loc->owner;
7256
7257 gdb_assert (loc->pspace == current_program_space);
7258 if (gnu_ifunc_resolve_name (function_name,
7259 &loc->requested_address))
7260 {
7261 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7262 loc->address = adjust_breakpoint_address (loc->gdbarch,
7263 loc->requested_address,
7264 b->type);
7265 }
7266 else if (b->type == bp_breakpoint && b->loc == loc
7267 && loc->next == NULL && b->related_breakpoint == b)
7268 {
7269 /* Create only the whole new breakpoint of this type but do not
7270 mess more complicated breakpoints with multiple locations. */
7271 b->type = bp_gnu_ifunc_resolver;
7272 /* Remember the resolver's address for use by the return
7273 breakpoint. */
7274 loc->related_address = func_addr;
7275 }
7276 }
7277
7278 if (function_name)
7279 loc->function_name = xstrdup (function_name);
7280 }
7281 }
7282
7283 /* Attempt to determine architecture of location identified by SAL. */
7284 struct gdbarch *
7285 get_sal_arch (struct symtab_and_line sal)
7286 {
7287 if (sal.section)
7288 return get_objfile_arch (sal.section->objfile);
7289 if (sal.symtab)
7290 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7291
7292 return NULL;
7293 }
7294
7295 /* Low level routine for partially initializing a breakpoint of type
7296 BPTYPE. The newly created breakpoint's address, section, source
7297 file name, and line number are provided by SAL.
7298
7299 It is expected that the caller will complete the initialization of
7300 the newly created breakpoint struct as well as output any status
7301 information regarding the creation of a new breakpoint. */
7302
7303 static void
7304 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7305 struct symtab_and_line sal, enum bptype bptype,
7306 const struct breakpoint_ops *ops)
7307 {
7308 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7309
7310 add_location_to_breakpoint (b, &sal);
7311
7312 if (bptype != bp_catchpoint)
7313 gdb_assert (sal.pspace != NULL);
7314
7315 /* Store the program space that was used to set the breakpoint,
7316 except for ordinary breakpoints, which are independent of the
7317 program space. */
7318 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7319 b->pspace = sal.pspace;
7320 }
7321
7322 /* set_raw_breakpoint is a low level routine for allocating and
7323 partially initializing a breakpoint of type BPTYPE. The newly
7324 created breakpoint's address, section, source file name, and line
7325 number are provided by SAL. The newly created and partially
7326 initialized breakpoint is added to the breakpoint chain and
7327 is also returned as the value of this function.
7328
7329 It is expected that the caller will complete the initialization of
7330 the newly created breakpoint struct as well as output any status
7331 information regarding the creation of a new breakpoint. In
7332 particular, set_raw_breakpoint does NOT set the breakpoint
7333 number! Care should be taken to not allow an error to occur
7334 prior to completing the initialization of the breakpoint. If this
7335 should happen, a bogus breakpoint will be left on the chain. */
7336
7337 struct breakpoint *
7338 set_raw_breakpoint (struct gdbarch *gdbarch,
7339 struct symtab_and_line sal, enum bptype bptype,
7340 const struct breakpoint_ops *ops)
7341 {
7342 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7343
7344 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7345 return add_to_breakpoint_chain (std::move (b));
7346 }
7347
7348 /* Call this routine when stepping and nexting to enable a breakpoint
7349 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7350 initiated the operation. */
7351
7352 void
7353 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7354 {
7355 struct breakpoint *b, *b_tmp;
7356 int thread = tp->global_num;
7357
7358 /* To avoid having to rescan all objfile symbols at every step,
7359 we maintain a list of continually-inserted but always disabled
7360 longjmp "master" breakpoints. Here, we simply create momentary
7361 clones of those and enable them for the requested thread. */
7362 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7363 if (b->pspace == current_program_space
7364 && (b->type == bp_longjmp_master
7365 || b->type == bp_exception_master))
7366 {
7367 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7368 struct breakpoint *clone;
7369
7370 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7371 after their removal. */
7372 clone = momentary_breakpoint_from_master (b, type,
7373 &momentary_breakpoint_ops, 1);
7374 clone->thread = thread;
7375 }
7376
7377 tp->initiating_frame = frame;
7378 }
7379
7380 /* Delete all longjmp breakpoints from THREAD. */
7381 void
7382 delete_longjmp_breakpoint (int thread)
7383 {
7384 struct breakpoint *b, *b_tmp;
7385
7386 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7387 if (b->type == bp_longjmp || b->type == bp_exception)
7388 {
7389 if (b->thread == thread)
7390 delete_breakpoint (b);
7391 }
7392 }
7393
7394 void
7395 delete_longjmp_breakpoint_at_next_stop (int thread)
7396 {
7397 struct breakpoint *b, *b_tmp;
7398
7399 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7400 if (b->type == bp_longjmp || b->type == bp_exception)
7401 {
7402 if (b->thread == thread)
7403 b->disposition = disp_del_at_next_stop;
7404 }
7405 }
7406
7407 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7408 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7409 pointer to any of them. Return NULL if this system cannot place longjmp
7410 breakpoints. */
7411
7412 struct breakpoint *
7413 set_longjmp_breakpoint_for_call_dummy (void)
7414 {
7415 struct breakpoint *b, *retval = NULL;
7416
7417 ALL_BREAKPOINTS (b)
7418 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7419 {
7420 struct breakpoint *new_b;
7421
7422 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7423 &momentary_breakpoint_ops,
7424 1);
7425 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7426
7427 /* Link NEW_B into the chain of RETVAL breakpoints. */
7428
7429 gdb_assert (new_b->related_breakpoint == new_b);
7430 if (retval == NULL)
7431 retval = new_b;
7432 new_b->related_breakpoint = retval;
7433 while (retval->related_breakpoint != new_b->related_breakpoint)
7434 retval = retval->related_breakpoint;
7435 retval->related_breakpoint = new_b;
7436 }
7437
7438 return retval;
7439 }
7440
7441 /* Verify all existing dummy frames and their associated breakpoints for
7442 TP. Remove those which can no longer be found in the current frame
7443 stack.
7444
7445 You should call this function only at places where it is safe to currently
7446 unwind the whole stack. Failed stack unwind would discard live dummy
7447 frames. */
7448
7449 void
7450 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7451 {
7452 struct breakpoint *b, *b_tmp;
7453
7454 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7455 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7456 {
7457 struct breakpoint *dummy_b = b->related_breakpoint;
7458
7459 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7460 dummy_b = dummy_b->related_breakpoint;
7461 if (dummy_b->type != bp_call_dummy
7462 || frame_find_by_id (dummy_b->frame_id) != NULL)
7463 continue;
7464
7465 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7466
7467 while (b->related_breakpoint != b)
7468 {
7469 if (b_tmp == b->related_breakpoint)
7470 b_tmp = b->related_breakpoint->next;
7471 delete_breakpoint (b->related_breakpoint);
7472 }
7473 delete_breakpoint (b);
7474 }
7475 }
7476
7477 void
7478 enable_overlay_breakpoints (void)
7479 {
7480 struct breakpoint *b;
7481
7482 ALL_BREAKPOINTS (b)
7483 if (b->type == bp_overlay_event)
7484 {
7485 b->enable_state = bp_enabled;
7486 update_global_location_list (UGLL_MAY_INSERT);
7487 overlay_events_enabled = 1;
7488 }
7489 }
7490
7491 void
7492 disable_overlay_breakpoints (void)
7493 {
7494 struct breakpoint *b;
7495
7496 ALL_BREAKPOINTS (b)
7497 if (b->type == bp_overlay_event)
7498 {
7499 b->enable_state = bp_disabled;
7500 update_global_location_list (UGLL_DONT_INSERT);
7501 overlay_events_enabled = 0;
7502 }
7503 }
7504
7505 /* Set an active std::terminate breakpoint for each std::terminate
7506 master breakpoint. */
7507 void
7508 set_std_terminate_breakpoint (void)
7509 {
7510 struct breakpoint *b, *b_tmp;
7511
7512 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7513 if (b->pspace == current_program_space
7514 && b->type == bp_std_terminate_master)
7515 {
7516 momentary_breakpoint_from_master (b, bp_std_terminate,
7517 &momentary_breakpoint_ops, 1);
7518 }
7519 }
7520
7521 /* Delete all the std::terminate breakpoints. */
7522 void
7523 delete_std_terminate_breakpoint (void)
7524 {
7525 struct breakpoint *b, *b_tmp;
7526
7527 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7528 if (b->type == bp_std_terminate)
7529 delete_breakpoint (b);
7530 }
7531
7532 struct breakpoint *
7533 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7534 {
7535 struct breakpoint *b;
7536
7537 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7538 &internal_breakpoint_ops);
7539
7540 b->enable_state = bp_enabled;
7541 /* location has to be used or breakpoint_re_set will delete me. */
7542 b->location = new_address_location (b->loc->address, NULL, 0);
7543
7544 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7545
7546 return b;
7547 }
7548
7549 struct lang_and_radix
7550 {
7551 enum language lang;
7552 int radix;
7553 };
7554
7555 /* Create a breakpoint for JIT code registration and unregistration. */
7556
7557 struct breakpoint *
7558 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7559 {
7560 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7561 &internal_breakpoint_ops);
7562 }
7563
7564 /* Remove JIT code registration and unregistration breakpoint(s). */
7565
7566 void
7567 remove_jit_event_breakpoints (void)
7568 {
7569 struct breakpoint *b, *b_tmp;
7570
7571 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7572 if (b->type == bp_jit_event
7573 && b->loc->pspace == current_program_space)
7574 delete_breakpoint (b);
7575 }
7576
7577 void
7578 remove_solib_event_breakpoints (void)
7579 {
7580 struct breakpoint *b, *b_tmp;
7581
7582 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7583 if (b->type == bp_shlib_event
7584 && b->loc->pspace == current_program_space)
7585 delete_breakpoint (b);
7586 }
7587
7588 /* See breakpoint.h. */
7589
7590 void
7591 remove_solib_event_breakpoints_at_next_stop (void)
7592 {
7593 struct breakpoint *b, *b_tmp;
7594
7595 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7596 if (b->type == bp_shlib_event
7597 && b->loc->pspace == current_program_space)
7598 b->disposition = disp_del_at_next_stop;
7599 }
7600
7601 /* Helper for create_solib_event_breakpoint /
7602 create_and_insert_solib_event_breakpoint. Allows specifying which
7603 INSERT_MODE to pass through to update_global_location_list. */
7604
7605 static struct breakpoint *
7606 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7607 enum ugll_insert_mode insert_mode)
7608 {
7609 struct breakpoint *b;
7610
7611 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7612 &internal_breakpoint_ops);
7613 update_global_location_list_nothrow (insert_mode);
7614 return b;
7615 }
7616
7617 struct breakpoint *
7618 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7619 {
7620 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7621 }
7622
7623 /* See breakpoint.h. */
7624
7625 struct breakpoint *
7626 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7627 {
7628 struct breakpoint *b;
7629
7630 /* Explicitly tell update_global_location_list to insert
7631 locations. */
7632 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7633 if (!b->loc->inserted)
7634 {
7635 delete_breakpoint (b);
7636 return NULL;
7637 }
7638 return b;
7639 }
7640
7641 /* Disable any breakpoints that are on code in shared libraries. Only
7642 apply to enabled breakpoints, disabled ones can just stay disabled. */
7643
7644 void
7645 disable_breakpoints_in_shlibs (void)
7646 {
7647 struct bp_location *loc, **locp_tmp;
7648
7649 ALL_BP_LOCATIONS (loc, locp_tmp)
7650 {
7651 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7652 struct breakpoint *b = loc->owner;
7653
7654 /* We apply the check to all breakpoints, including disabled for
7655 those with loc->duplicate set. This is so that when breakpoint
7656 becomes enabled, or the duplicate is removed, gdb will try to
7657 insert all breakpoints. If we don't set shlib_disabled here,
7658 we'll try to insert those breakpoints and fail. */
7659 if (((b->type == bp_breakpoint)
7660 || (b->type == bp_jit_event)
7661 || (b->type == bp_hardware_breakpoint)
7662 || (is_tracepoint (b)))
7663 && loc->pspace == current_program_space
7664 && !loc->shlib_disabled
7665 && solib_name_from_address (loc->pspace, loc->address)
7666 )
7667 {
7668 loc->shlib_disabled = 1;
7669 }
7670 }
7671 }
7672
7673 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7674 notification of unloaded_shlib. Only apply to enabled breakpoints,
7675 disabled ones can just stay disabled. */
7676
7677 static void
7678 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7679 {
7680 struct bp_location *loc, **locp_tmp;
7681 int disabled_shlib_breaks = 0;
7682
7683 ALL_BP_LOCATIONS (loc, locp_tmp)
7684 {
7685 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7686 struct breakpoint *b = loc->owner;
7687
7688 if (solib->pspace == loc->pspace
7689 && !loc->shlib_disabled
7690 && (((b->type == bp_breakpoint
7691 || b->type == bp_jit_event
7692 || b->type == bp_hardware_breakpoint)
7693 && (loc->loc_type == bp_loc_hardware_breakpoint
7694 || loc->loc_type == bp_loc_software_breakpoint))
7695 || is_tracepoint (b))
7696 && solib_contains_address_p (solib, loc->address))
7697 {
7698 loc->shlib_disabled = 1;
7699 /* At this point, we cannot rely on remove_breakpoint
7700 succeeding so we must mark the breakpoint as not inserted
7701 to prevent future errors occurring in remove_breakpoints. */
7702 loc->inserted = 0;
7703
7704 /* This may cause duplicate notifications for the same breakpoint. */
7705 observer_notify_breakpoint_modified (b);
7706
7707 if (!disabled_shlib_breaks)
7708 {
7709 target_terminal::ours_for_output ();
7710 warning (_("Temporarily disabling breakpoints "
7711 "for unloaded shared library \"%s\""),
7712 solib->so_name);
7713 }
7714 disabled_shlib_breaks = 1;
7715 }
7716 }
7717 }
7718
7719 /* Disable any breakpoints and tracepoints in OBJFILE upon
7720 notification of free_objfile. Only apply to enabled breakpoints,
7721 disabled ones can just stay disabled. */
7722
7723 static void
7724 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7725 {
7726 struct breakpoint *b;
7727
7728 if (objfile == NULL)
7729 return;
7730
7731 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7732 managed by the user with add-symbol-file/remove-symbol-file.
7733 Similarly to how breakpoints in shared libraries are handled in
7734 response to "nosharedlibrary", mark breakpoints in such modules
7735 shlib_disabled so they end up uninserted on the next global
7736 location list update. Shared libraries not loaded by the user
7737 aren't handled here -- they're already handled in
7738 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7739 solib_unloaded observer. We skip objfiles that are not
7740 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7741 main objfile). */
7742 if ((objfile->flags & OBJF_SHARED) == 0
7743 || (objfile->flags & OBJF_USERLOADED) == 0)
7744 return;
7745
7746 ALL_BREAKPOINTS (b)
7747 {
7748 struct bp_location *loc;
7749 int bp_modified = 0;
7750
7751 if (!is_breakpoint (b) && !is_tracepoint (b))
7752 continue;
7753
7754 for (loc = b->loc; loc != NULL; loc = loc->next)
7755 {
7756 CORE_ADDR loc_addr = loc->address;
7757
7758 if (loc->loc_type != bp_loc_hardware_breakpoint
7759 && loc->loc_type != bp_loc_software_breakpoint)
7760 continue;
7761
7762 if (loc->shlib_disabled != 0)
7763 continue;
7764
7765 if (objfile->pspace != loc->pspace)
7766 continue;
7767
7768 if (loc->loc_type != bp_loc_hardware_breakpoint
7769 && loc->loc_type != bp_loc_software_breakpoint)
7770 continue;
7771
7772 if (is_addr_in_objfile (loc_addr, objfile))
7773 {
7774 loc->shlib_disabled = 1;
7775 /* At this point, we don't know whether the object was
7776 unmapped from the inferior or not, so leave the
7777 inserted flag alone. We'll handle failure to
7778 uninsert quietly, in case the object was indeed
7779 unmapped. */
7780
7781 mark_breakpoint_location_modified (loc);
7782
7783 bp_modified = 1;
7784 }
7785 }
7786
7787 if (bp_modified)
7788 observer_notify_breakpoint_modified (b);
7789 }
7790 }
7791
7792 /* FORK & VFORK catchpoints. */
7793
7794 /* An instance of this type is used to represent a fork or vfork
7795 catchpoint. A breakpoint is really of this type iff its ops pointer points
7796 to CATCH_FORK_BREAKPOINT_OPS. */
7797
7798 struct fork_catchpoint : public breakpoint
7799 {
7800 /* Process id of a child process whose forking triggered this
7801 catchpoint. This field is only valid immediately after this
7802 catchpoint has triggered. */
7803 ptid_t forked_inferior_pid;
7804 };
7805
7806 /* Implement the "insert" breakpoint_ops method for fork
7807 catchpoints. */
7808
7809 static int
7810 insert_catch_fork (struct bp_location *bl)
7811 {
7812 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7813 }
7814
7815 /* Implement the "remove" breakpoint_ops method for fork
7816 catchpoints. */
7817
7818 static int
7819 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7820 {
7821 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7822 }
7823
7824 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7825 catchpoints. */
7826
7827 static int
7828 breakpoint_hit_catch_fork (const struct bp_location *bl,
7829 struct address_space *aspace, CORE_ADDR bp_addr,
7830 const struct target_waitstatus *ws)
7831 {
7832 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7833
7834 if (ws->kind != TARGET_WAITKIND_FORKED)
7835 return 0;
7836
7837 c->forked_inferior_pid = ws->value.related_pid;
7838 return 1;
7839 }
7840
7841 /* Implement the "print_it" breakpoint_ops method for fork
7842 catchpoints. */
7843
7844 static enum print_stop_action
7845 print_it_catch_fork (bpstat bs)
7846 {
7847 struct ui_out *uiout = current_uiout;
7848 struct breakpoint *b = bs->breakpoint_at;
7849 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7850
7851 annotate_catchpoint (b->number);
7852 maybe_print_thread_hit_breakpoint (uiout);
7853 if (b->disposition == disp_del)
7854 uiout->text ("Temporary catchpoint ");
7855 else
7856 uiout->text ("Catchpoint ");
7857 if (uiout->is_mi_like_p ())
7858 {
7859 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7860 uiout->field_string ("disp", bpdisp_text (b->disposition));
7861 }
7862 uiout->field_int ("bkptno", b->number);
7863 uiout->text (" (forked process ");
7864 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7865 uiout->text ("), ");
7866 return PRINT_SRC_AND_LOC;
7867 }
7868
7869 /* Implement the "print_one" breakpoint_ops method for fork
7870 catchpoints. */
7871
7872 static void
7873 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7874 {
7875 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7876 struct value_print_options opts;
7877 struct ui_out *uiout = current_uiout;
7878
7879 get_user_print_options (&opts);
7880
7881 /* Field 4, the address, is omitted (which makes the columns not
7882 line up too nicely with the headers, but the effect is relatively
7883 readable). */
7884 if (opts.addressprint)
7885 uiout->field_skip ("addr");
7886 annotate_field (5);
7887 uiout->text ("fork");
7888 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7889 {
7890 uiout->text (", process ");
7891 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7892 uiout->spaces (1);
7893 }
7894
7895 if (uiout->is_mi_like_p ())
7896 uiout->field_string ("catch-type", "fork");
7897 }
7898
7899 /* Implement the "print_mention" breakpoint_ops method for fork
7900 catchpoints. */
7901
7902 static void
7903 print_mention_catch_fork (struct breakpoint *b)
7904 {
7905 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7906 }
7907
7908 /* Implement the "print_recreate" breakpoint_ops method for fork
7909 catchpoints. */
7910
7911 static void
7912 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7913 {
7914 fprintf_unfiltered (fp, "catch fork");
7915 print_recreate_thread (b, fp);
7916 }
7917
7918 /* The breakpoint_ops structure to be used in fork catchpoints. */
7919
7920 static struct breakpoint_ops catch_fork_breakpoint_ops;
7921
7922 /* Implement the "insert" breakpoint_ops method for vfork
7923 catchpoints. */
7924
7925 static int
7926 insert_catch_vfork (struct bp_location *bl)
7927 {
7928 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7929 }
7930
7931 /* Implement the "remove" breakpoint_ops method for vfork
7932 catchpoints. */
7933
7934 static int
7935 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7936 {
7937 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7938 }
7939
7940 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7941 catchpoints. */
7942
7943 static int
7944 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7945 struct address_space *aspace, CORE_ADDR bp_addr,
7946 const struct target_waitstatus *ws)
7947 {
7948 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7949
7950 if (ws->kind != TARGET_WAITKIND_VFORKED)
7951 return 0;
7952
7953 c->forked_inferior_pid = ws->value.related_pid;
7954 return 1;
7955 }
7956
7957 /* Implement the "print_it" breakpoint_ops method for vfork
7958 catchpoints. */
7959
7960 static enum print_stop_action
7961 print_it_catch_vfork (bpstat bs)
7962 {
7963 struct ui_out *uiout = current_uiout;
7964 struct breakpoint *b = bs->breakpoint_at;
7965 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7966
7967 annotate_catchpoint (b->number);
7968 maybe_print_thread_hit_breakpoint (uiout);
7969 if (b->disposition == disp_del)
7970 uiout->text ("Temporary catchpoint ");
7971 else
7972 uiout->text ("Catchpoint ");
7973 if (uiout->is_mi_like_p ())
7974 {
7975 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7976 uiout->field_string ("disp", bpdisp_text (b->disposition));
7977 }
7978 uiout->field_int ("bkptno", b->number);
7979 uiout->text (" (vforked process ");
7980 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7981 uiout->text ("), ");
7982 return PRINT_SRC_AND_LOC;
7983 }
7984
7985 /* Implement the "print_one" breakpoint_ops method for vfork
7986 catchpoints. */
7987
7988 static void
7989 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7990 {
7991 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7992 struct value_print_options opts;
7993 struct ui_out *uiout = current_uiout;
7994
7995 get_user_print_options (&opts);
7996 /* Field 4, the address, is omitted (which makes the columns not
7997 line up too nicely with the headers, but the effect is relatively
7998 readable). */
7999 if (opts.addressprint)
8000 uiout->field_skip ("addr");
8001 annotate_field (5);
8002 uiout->text ("vfork");
8003 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
8004 {
8005 uiout->text (", process ");
8006 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
8007 uiout->spaces (1);
8008 }
8009
8010 if (uiout->is_mi_like_p ())
8011 uiout->field_string ("catch-type", "vfork");
8012 }
8013
8014 /* Implement the "print_mention" breakpoint_ops method for vfork
8015 catchpoints. */
8016
8017 static void
8018 print_mention_catch_vfork (struct breakpoint *b)
8019 {
8020 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8021 }
8022
8023 /* Implement the "print_recreate" breakpoint_ops method for vfork
8024 catchpoints. */
8025
8026 static void
8027 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8028 {
8029 fprintf_unfiltered (fp, "catch vfork");
8030 print_recreate_thread (b, fp);
8031 }
8032
8033 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8034
8035 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8036
8037 /* An instance of this type is used to represent an solib catchpoint.
8038 A breakpoint is really of this type iff its ops pointer points to
8039 CATCH_SOLIB_BREAKPOINT_OPS. */
8040
8041 struct solib_catchpoint : public breakpoint
8042 {
8043 ~solib_catchpoint () override;
8044
8045 /* True for "catch load", false for "catch unload". */
8046 unsigned char is_load;
8047
8048 /* Regular expression to match, if any. COMPILED is only valid when
8049 REGEX is non-NULL. */
8050 char *regex;
8051 std::unique_ptr<compiled_regex> compiled;
8052 };
8053
8054 solib_catchpoint::~solib_catchpoint ()
8055 {
8056 xfree (this->regex);
8057 }
8058
8059 static int
8060 insert_catch_solib (struct bp_location *ignore)
8061 {
8062 return 0;
8063 }
8064
8065 static int
8066 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8067 {
8068 return 0;
8069 }
8070
8071 static int
8072 breakpoint_hit_catch_solib (const struct bp_location *bl,
8073 struct address_space *aspace,
8074 CORE_ADDR bp_addr,
8075 const struct target_waitstatus *ws)
8076 {
8077 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8078 struct breakpoint *other;
8079
8080 if (ws->kind == TARGET_WAITKIND_LOADED)
8081 return 1;
8082
8083 ALL_BREAKPOINTS (other)
8084 {
8085 struct bp_location *other_bl;
8086
8087 if (other == bl->owner)
8088 continue;
8089
8090 if (other->type != bp_shlib_event)
8091 continue;
8092
8093 if (self->pspace != NULL && other->pspace != self->pspace)
8094 continue;
8095
8096 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8097 {
8098 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8099 return 1;
8100 }
8101 }
8102
8103 return 0;
8104 }
8105
8106 static void
8107 check_status_catch_solib (struct bpstats *bs)
8108 {
8109 struct solib_catchpoint *self
8110 = (struct solib_catchpoint *) bs->breakpoint_at;
8111 int ix;
8112
8113 if (self->is_load)
8114 {
8115 struct so_list *iter;
8116
8117 for (ix = 0;
8118 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8119 ix, iter);
8120 ++ix)
8121 {
8122 if (!self->regex
8123 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8124 return;
8125 }
8126 }
8127 else
8128 {
8129 char *iter;
8130
8131 for (ix = 0;
8132 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8133 ix, iter);
8134 ++ix)
8135 {
8136 if (!self->regex
8137 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8138 return;
8139 }
8140 }
8141
8142 bs->stop = 0;
8143 bs->print_it = print_it_noop;
8144 }
8145
8146 static enum print_stop_action
8147 print_it_catch_solib (bpstat bs)
8148 {
8149 struct breakpoint *b = bs->breakpoint_at;
8150 struct ui_out *uiout = current_uiout;
8151
8152 annotate_catchpoint (b->number);
8153 maybe_print_thread_hit_breakpoint (uiout);
8154 if (b->disposition == disp_del)
8155 uiout->text ("Temporary catchpoint ");
8156 else
8157 uiout->text ("Catchpoint ");
8158 uiout->field_int ("bkptno", b->number);
8159 uiout->text ("\n");
8160 if (uiout->is_mi_like_p ())
8161 uiout->field_string ("disp", bpdisp_text (b->disposition));
8162 print_solib_event (1);
8163 return PRINT_SRC_AND_LOC;
8164 }
8165
8166 static void
8167 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8168 {
8169 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8170 struct value_print_options opts;
8171 struct ui_out *uiout = current_uiout;
8172 char *msg;
8173
8174 get_user_print_options (&opts);
8175 /* Field 4, the address, is omitted (which makes the columns not
8176 line up too nicely with the headers, but the effect is relatively
8177 readable). */
8178 if (opts.addressprint)
8179 {
8180 annotate_field (4);
8181 uiout->field_skip ("addr");
8182 }
8183
8184 annotate_field (5);
8185 if (self->is_load)
8186 {
8187 if (self->regex)
8188 msg = xstrprintf (_("load of library matching %s"), self->regex);
8189 else
8190 msg = xstrdup (_("load of library"));
8191 }
8192 else
8193 {
8194 if (self->regex)
8195 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8196 else
8197 msg = xstrdup (_("unload of library"));
8198 }
8199 uiout->field_string ("what", msg);
8200 xfree (msg);
8201
8202 if (uiout->is_mi_like_p ())
8203 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8204 }
8205
8206 static void
8207 print_mention_catch_solib (struct breakpoint *b)
8208 {
8209 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8210
8211 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8212 self->is_load ? "load" : "unload");
8213 }
8214
8215 static void
8216 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8217 {
8218 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8219
8220 fprintf_unfiltered (fp, "%s %s",
8221 b->disposition == disp_del ? "tcatch" : "catch",
8222 self->is_load ? "load" : "unload");
8223 if (self->regex)
8224 fprintf_unfiltered (fp, " %s", self->regex);
8225 fprintf_unfiltered (fp, "\n");
8226 }
8227
8228 static struct breakpoint_ops catch_solib_breakpoint_ops;
8229
8230 /* Shared helper function (MI and CLI) for creating and installing
8231 a shared object event catchpoint. If IS_LOAD is non-zero then
8232 the events to be caught are load events, otherwise they are
8233 unload events. If IS_TEMP is non-zero the catchpoint is a
8234 temporary one. If ENABLED is non-zero the catchpoint is
8235 created in an enabled state. */
8236
8237 void
8238 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8239 {
8240 struct gdbarch *gdbarch = get_current_arch ();
8241
8242 if (!arg)
8243 arg = "";
8244 arg = skip_spaces (arg);
8245
8246 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8247
8248 if (*arg != '\0')
8249 {
8250 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8251 _("Invalid regexp")));
8252 c->regex = xstrdup (arg);
8253 }
8254
8255 c->is_load = is_load;
8256 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8257 &catch_solib_breakpoint_ops);
8258
8259 c->enable_state = enabled ? bp_enabled : bp_disabled;
8260
8261 install_breakpoint (0, std::move (c), 1);
8262 }
8263
8264 /* A helper function that does all the work for "catch load" and
8265 "catch unload". */
8266
8267 static void
8268 catch_load_or_unload (char *arg, int from_tty, int is_load,
8269 struct cmd_list_element *command)
8270 {
8271 int tempflag;
8272 const int enabled = 1;
8273
8274 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8275
8276 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8277 }
8278
8279 static void
8280 catch_load_command_1 (char *arg, int from_tty,
8281 struct cmd_list_element *command)
8282 {
8283 catch_load_or_unload (arg, from_tty, 1, command);
8284 }
8285
8286 static void
8287 catch_unload_command_1 (char *arg, int from_tty,
8288 struct cmd_list_element *command)
8289 {
8290 catch_load_or_unload (arg, from_tty, 0, command);
8291 }
8292
8293 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8294 is non-zero, then make the breakpoint temporary. If COND_STRING is
8295 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8296 the breakpoint_ops structure associated to the catchpoint. */
8297
8298 void
8299 init_catchpoint (struct breakpoint *b,
8300 struct gdbarch *gdbarch, int tempflag,
8301 const char *cond_string,
8302 const struct breakpoint_ops *ops)
8303 {
8304 symtab_and_line sal;
8305 sal.pspace = current_program_space;
8306
8307 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8308
8309 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8310 b->disposition = tempflag ? disp_del : disp_donttouch;
8311 }
8312
8313 void
8314 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8315 {
8316 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8317 set_breakpoint_number (internal, b);
8318 if (is_tracepoint (b))
8319 set_tracepoint_count (breakpoint_count);
8320 if (!internal)
8321 mention (b);
8322 observer_notify_breakpoint_created (b);
8323
8324 if (update_gll)
8325 update_global_location_list (UGLL_MAY_INSERT);
8326 }
8327
8328 static void
8329 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8330 int tempflag, const char *cond_string,
8331 const struct breakpoint_ops *ops)
8332 {
8333 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8334
8335 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8336
8337 c->forked_inferior_pid = null_ptid;
8338
8339 install_breakpoint (0, std::move (c), 1);
8340 }
8341
8342 /* Exec catchpoints. */
8343
8344 /* An instance of this type is used to represent an exec catchpoint.
8345 A breakpoint is really of this type iff its ops pointer points to
8346 CATCH_EXEC_BREAKPOINT_OPS. */
8347
8348 struct exec_catchpoint : public breakpoint
8349 {
8350 ~exec_catchpoint () override;
8351
8352 /* Filename of a program whose exec triggered this catchpoint.
8353 This field is only valid immediately after this catchpoint has
8354 triggered. */
8355 char *exec_pathname;
8356 };
8357
8358 /* Exec catchpoint destructor. */
8359
8360 exec_catchpoint::~exec_catchpoint ()
8361 {
8362 xfree (this->exec_pathname);
8363 }
8364
8365 static int
8366 insert_catch_exec (struct bp_location *bl)
8367 {
8368 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8369 }
8370
8371 static int
8372 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8373 {
8374 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8375 }
8376
8377 static int
8378 breakpoint_hit_catch_exec (const struct bp_location *bl,
8379 struct address_space *aspace, CORE_ADDR bp_addr,
8380 const struct target_waitstatus *ws)
8381 {
8382 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8383
8384 if (ws->kind != TARGET_WAITKIND_EXECD)
8385 return 0;
8386
8387 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8388 return 1;
8389 }
8390
8391 static enum print_stop_action
8392 print_it_catch_exec (bpstat bs)
8393 {
8394 struct ui_out *uiout = current_uiout;
8395 struct breakpoint *b = bs->breakpoint_at;
8396 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8397
8398 annotate_catchpoint (b->number);
8399 maybe_print_thread_hit_breakpoint (uiout);
8400 if (b->disposition == disp_del)
8401 uiout->text ("Temporary catchpoint ");
8402 else
8403 uiout->text ("Catchpoint ");
8404 if (uiout->is_mi_like_p ())
8405 {
8406 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8407 uiout->field_string ("disp", bpdisp_text (b->disposition));
8408 }
8409 uiout->field_int ("bkptno", b->number);
8410 uiout->text (" (exec'd ");
8411 uiout->field_string ("new-exec", c->exec_pathname);
8412 uiout->text ("), ");
8413
8414 return PRINT_SRC_AND_LOC;
8415 }
8416
8417 static void
8418 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8419 {
8420 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8421 struct value_print_options opts;
8422 struct ui_out *uiout = current_uiout;
8423
8424 get_user_print_options (&opts);
8425
8426 /* Field 4, the address, is omitted (which makes the columns
8427 not line up too nicely with the headers, but the effect
8428 is relatively readable). */
8429 if (opts.addressprint)
8430 uiout->field_skip ("addr");
8431 annotate_field (5);
8432 uiout->text ("exec");
8433 if (c->exec_pathname != NULL)
8434 {
8435 uiout->text (", program \"");
8436 uiout->field_string ("what", c->exec_pathname);
8437 uiout->text ("\" ");
8438 }
8439
8440 if (uiout->is_mi_like_p ())
8441 uiout->field_string ("catch-type", "exec");
8442 }
8443
8444 static void
8445 print_mention_catch_exec (struct breakpoint *b)
8446 {
8447 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8448 }
8449
8450 /* Implement the "print_recreate" breakpoint_ops method for exec
8451 catchpoints. */
8452
8453 static void
8454 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8455 {
8456 fprintf_unfiltered (fp, "catch exec");
8457 print_recreate_thread (b, fp);
8458 }
8459
8460 static struct breakpoint_ops catch_exec_breakpoint_ops;
8461
8462 static int
8463 hw_breakpoint_used_count (void)
8464 {
8465 int i = 0;
8466 struct breakpoint *b;
8467 struct bp_location *bl;
8468
8469 ALL_BREAKPOINTS (b)
8470 {
8471 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8472 for (bl = b->loc; bl; bl = bl->next)
8473 {
8474 /* Special types of hardware breakpoints may use more than
8475 one register. */
8476 i += b->ops->resources_needed (bl);
8477 }
8478 }
8479
8480 return i;
8481 }
8482
8483 /* Returns the resources B would use if it were a hardware
8484 watchpoint. */
8485
8486 static int
8487 hw_watchpoint_use_count (struct breakpoint *b)
8488 {
8489 int i = 0;
8490 struct bp_location *bl;
8491
8492 if (!breakpoint_enabled (b))
8493 return 0;
8494
8495 for (bl = b->loc; bl; bl = bl->next)
8496 {
8497 /* Special types of hardware watchpoints may use more than
8498 one register. */
8499 i += b->ops->resources_needed (bl);
8500 }
8501
8502 return i;
8503 }
8504
8505 /* Returns the sum the used resources of all hardware watchpoints of
8506 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8507 the sum of the used resources of all hardware watchpoints of other
8508 types _not_ TYPE. */
8509
8510 static int
8511 hw_watchpoint_used_count_others (struct breakpoint *except,
8512 enum bptype type, int *other_type_used)
8513 {
8514 int i = 0;
8515 struct breakpoint *b;
8516
8517 *other_type_used = 0;
8518 ALL_BREAKPOINTS (b)
8519 {
8520 if (b == except)
8521 continue;
8522 if (!breakpoint_enabled (b))
8523 continue;
8524
8525 if (b->type == type)
8526 i += hw_watchpoint_use_count (b);
8527 else if (is_hardware_watchpoint (b))
8528 *other_type_used = 1;
8529 }
8530
8531 return i;
8532 }
8533
8534 void
8535 disable_watchpoints_before_interactive_call_start (void)
8536 {
8537 struct breakpoint *b;
8538
8539 ALL_BREAKPOINTS (b)
8540 {
8541 if (is_watchpoint (b) && breakpoint_enabled (b))
8542 {
8543 b->enable_state = bp_call_disabled;
8544 update_global_location_list (UGLL_DONT_INSERT);
8545 }
8546 }
8547 }
8548
8549 void
8550 enable_watchpoints_after_interactive_call_stop (void)
8551 {
8552 struct breakpoint *b;
8553
8554 ALL_BREAKPOINTS (b)
8555 {
8556 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8557 {
8558 b->enable_state = bp_enabled;
8559 update_global_location_list (UGLL_MAY_INSERT);
8560 }
8561 }
8562 }
8563
8564 void
8565 disable_breakpoints_before_startup (void)
8566 {
8567 current_program_space->executing_startup = 1;
8568 update_global_location_list (UGLL_DONT_INSERT);
8569 }
8570
8571 void
8572 enable_breakpoints_after_startup (void)
8573 {
8574 current_program_space->executing_startup = 0;
8575 breakpoint_re_set ();
8576 }
8577
8578 /* Create a new single-step breakpoint for thread THREAD, with no
8579 locations. */
8580
8581 static struct breakpoint *
8582 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8583 {
8584 std::unique_ptr<breakpoint> b (new breakpoint ());
8585
8586 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8587 &momentary_breakpoint_ops);
8588
8589 b->disposition = disp_donttouch;
8590 b->frame_id = null_frame_id;
8591
8592 b->thread = thread;
8593 gdb_assert (b->thread != 0);
8594
8595 return add_to_breakpoint_chain (std::move (b));
8596 }
8597
8598 /* Set a momentary breakpoint of type TYPE at address specified by
8599 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8600 frame. */
8601
8602 struct breakpoint *
8603 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8604 struct frame_id frame_id, enum bptype type)
8605 {
8606 struct breakpoint *b;
8607
8608 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8609 tail-called one. */
8610 gdb_assert (!frame_id_artificial_p (frame_id));
8611
8612 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8613 b->enable_state = bp_enabled;
8614 b->disposition = disp_donttouch;
8615 b->frame_id = frame_id;
8616
8617 /* If we're debugging a multi-threaded program, then we want
8618 momentary breakpoints to be active in only a single thread of
8619 control. */
8620 if (in_thread_list (inferior_ptid))
8621 b->thread = ptid_to_global_thread_id (inferior_ptid);
8622
8623 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8624
8625 return b;
8626 }
8627
8628 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8629 The new breakpoint will have type TYPE, use OPS as its
8630 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8631
8632 static struct breakpoint *
8633 momentary_breakpoint_from_master (struct breakpoint *orig,
8634 enum bptype type,
8635 const struct breakpoint_ops *ops,
8636 int loc_enabled)
8637 {
8638 struct breakpoint *copy;
8639
8640 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8641 copy->loc = allocate_bp_location (copy);
8642 set_breakpoint_location_function (copy->loc, 1);
8643
8644 copy->loc->gdbarch = orig->loc->gdbarch;
8645 copy->loc->requested_address = orig->loc->requested_address;
8646 copy->loc->address = orig->loc->address;
8647 copy->loc->section = orig->loc->section;
8648 copy->loc->pspace = orig->loc->pspace;
8649 copy->loc->probe = orig->loc->probe;
8650 copy->loc->line_number = orig->loc->line_number;
8651 copy->loc->symtab = orig->loc->symtab;
8652 copy->loc->enabled = loc_enabled;
8653 copy->frame_id = orig->frame_id;
8654 copy->thread = orig->thread;
8655 copy->pspace = orig->pspace;
8656
8657 copy->enable_state = bp_enabled;
8658 copy->disposition = disp_donttouch;
8659 copy->number = internal_breakpoint_number--;
8660
8661 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8662 return copy;
8663 }
8664
8665 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8666 ORIG is NULL. */
8667
8668 struct breakpoint *
8669 clone_momentary_breakpoint (struct breakpoint *orig)
8670 {
8671 /* If there's nothing to clone, then return nothing. */
8672 if (orig == NULL)
8673 return NULL;
8674
8675 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8676 }
8677
8678 struct breakpoint *
8679 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8680 enum bptype type)
8681 {
8682 struct symtab_and_line sal;
8683
8684 sal = find_pc_line (pc, 0);
8685 sal.pc = pc;
8686 sal.section = find_pc_overlay (pc);
8687 sal.explicit_pc = 1;
8688
8689 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8690 }
8691 \f
8692
8693 /* Tell the user we have just set a breakpoint B. */
8694
8695 static void
8696 mention (struct breakpoint *b)
8697 {
8698 b->ops->print_mention (b);
8699 if (current_uiout->is_mi_like_p ())
8700 return;
8701 printf_filtered ("\n");
8702 }
8703 \f
8704
8705 static int bp_loc_is_permanent (struct bp_location *loc);
8706
8707 static struct bp_location *
8708 add_location_to_breakpoint (struct breakpoint *b,
8709 const struct symtab_and_line *sal)
8710 {
8711 struct bp_location *loc, **tmp;
8712 CORE_ADDR adjusted_address;
8713 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8714
8715 if (loc_gdbarch == NULL)
8716 loc_gdbarch = b->gdbarch;
8717
8718 /* Adjust the breakpoint's address prior to allocating a location.
8719 Once we call allocate_bp_location(), that mostly uninitialized
8720 location will be placed on the location chain. Adjustment of the
8721 breakpoint may cause target_read_memory() to be called and we do
8722 not want its scan of the location chain to find a breakpoint and
8723 location that's only been partially initialized. */
8724 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8725 sal->pc, b->type);
8726
8727 /* Sort the locations by their ADDRESS. */
8728 loc = allocate_bp_location (b);
8729 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8730 tmp = &((*tmp)->next))
8731 ;
8732 loc->next = *tmp;
8733 *tmp = loc;
8734
8735 loc->requested_address = sal->pc;
8736 loc->address = adjusted_address;
8737 loc->pspace = sal->pspace;
8738 loc->probe.probe = sal->probe;
8739 loc->probe.objfile = sal->objfile;
8740 gdb_assert (loc->pspace != NULL);
8741 loc->section = sal->section;
8742 loc->gdbarch = loc_gdbarch;
8743 loc->line_number = sal->line;
8744 loc->symtab = sal->symtab;
8745
8746 set_breakpoint_location_function (loc,
8747 sal->explicit_pc || sal->explicit_line);
8748
8749 /* While by definition, permanent breakpoints are already present in the
8750 code, we don't mark the location as inserted. Normally one would expect
8751 that GDB could rely on that breakpoint instruction to stop the program,
8752 thus removing the need to insert its own breakpoint, except that executing
8753 the breakpoint instruction can kill the target instead of reporting a
8754 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8755 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8756 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8757 breakpoint be inserted normally results in QEMU knowing about the GDB
8758 breakpoint, and thus trap before the breakpoint instruction is executed.
8759 (If GDB later needs to continue execution past the permanent breakpoint,
8760 it manually increments the PC, thus avoiding executing the breakpoint
8761 instruction.) */
8762 if (bp_loc_is_permanent (loc))
8763 loc->permanent = 1;
8764
8765 return loc;
8766 }
8767 \f
8768
8769 /* See breakpoint.h. */
8770
8771 int
8772 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8773 {
8774 int len;
8775 CORE_ADDR addr;
8776 const gdb_byte *bpoint;
8777 gdb_byte *target_mem;
8778
8779 addr = address;
8780 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8781
8782 /* Software breakpoints unsupported? */
8783 if (bpoint == NULL)
8784 return 0;
8785
8786 target_mem = (gdb_byte *) alloca (len);
8787
8788 /* Enable the automatic memory restoration from breakpoints while
8789 we read the memory. Otherwise we could say about our temporary
8790 breakpoints they are permanent. */
8791 scoped_restore restore_memory
8792 = make_scoped_restore_show_memory_breakpoints (0);
8793
8794 if (target_read_memory (address, target_mem, len) == 0
8795 && memcmp (target_mem, bpoint, len) == 0)
8796 return 1;
8797
8798 return 0;
8799 }
8800
8801 /* Return 1 if LOC is pointing to a permanent breakpoint,
8802 return 0 otherwise. */
8803
8804 static int
8805 bp_loc_is_permanent (struct bp_location *loc)
8806 {
8807 gdb_assert (loc != NULL);
8808
8809 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8810 attempt to read from the addresses the locations of these breakpoint types
8811 point to. program_breakpoint_here_p, below, will attempt to read
8812 memory. */
8813 if (!breakpoint_address_is_meaningful (loc->owner))
8814 return 0;
8815
8816 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8817 switch_to_program_space_and_thread (loc->pspace);
8818 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8819 }
8820
8821 /* Build a command list for the dprintf corresponding to the current
8822 settings of the dprintf style options. */
8823
8824 static void
8825 update_dprintf_command_list (struct breakpoint *b)
8826 {
8827 char *dprintf_args = b->extra_string;
8828 char *printf_line = NULL;
8829
8830 if (!dprintf_args)
8831 return;
8832
8833 dprintf_args = skip_spaces (dprintf_args);
8834
8835 /* Allow a comma, as it may have terminated a location, but don't
8836 insist on it. */
8837 if (*dprintf_args == ',')
8838 ++dprintf_args;
8839 dprintf_args = skip_spaces (dprintf_args);
8840
8841 if (*dprintf_args != '"')
8842 error (_("Bad format string, missing '\"'."));
8843
8844 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8845 printf_line = xstrprintf ("printf %s", dprintf_args);
8846 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8847 {
8848 if (!dprintf_function)
8849 error (_("No function supplied for dprintf call"));
8850
8851 if (dprintf_channel && strlen (dprintf_channel) > 0)
8852 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8853 dprintf_function,
8854 dprintf_channel,
8855 dprintf_args);
8856 else
8857 printf_line = xstrprintf ("call (void) %s (%s)",
8858 dprintf_function,
8859 dprintf_args);
8860 }
8861 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8862 {
8863 if (target_can_run_breakpoint_commands ())
8864 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8865 else
8866 {
8867 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8868 printf_line = xstrprintf ("printf %s", dprintf_args);
8869 }
8870 }
8871 else
8872 internal_error (__FILE__, __LINE__,
8873 _("Invalid dprintf style."));
8874
8875 gdb_assert (printf_line != NULL);
8876 /* Manufacture a printf sequence. */
8877 {
8878 struct command_line *printf_cmd_line = XNEW (struct command_line);
8879
8880 printf_cmd_line->control_type = simple_control;
8881 printf_cmd_line->body_count = 0;
8882 printf_cmd_line->body_list = NULL;
8883 printf_cmd_line->next = NULL;
8884 printf_cmd_line->line = printf_line;
8885
8886 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8887 }
8888 }
8889
8890 /* Update all dprintf commands, making their command lists reflect
8891 current style settings. */
8892
8893 static void
8894 update_dprintf_commands (char *args, int from_tty,
8895 struct cmd_list_element *c)
8896 {
8897 struct breakpoint *b;
8898
8899 ALL_BREAKPOINTS (b)
8900 {
8901 if (b->type == bp_dprintf)
8902 update_dprintf_command_list (b);
8903 }
8904 }
8905
8906 /* Create a breakpoint with SAL as location. Use LOCATION
8907 as a description of the location, and COND_STRING
8908 as condition expression. If LOCATION is NULL then create an
8909 "address location" from the address in the SAL. */
8910
8911 static void
8912 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8913 gdb::array_view<const symtab_and_line> sals,
8914 event_location_up &&location,
8915 gdb::unique_xmalloc_ptr<char> filter,
8916 gdb::unique_xmalloc_ptr<char> cond_string,
8917 gdb::unique_xmalloc_ptr<char> extra_string,
8918 enum bptype type, enum bpdisp disposition,
8919 int thread, int task, int ignore_count,
8920 const struct breakpoint_ops *ops, int from_tty,
8921 int enabled, int internal, unsigned flags,
8922 int display_canonical)
8923 {
8924 int i;
8925
8926 if (type == bp_hardware_breakpoint)
8927 {
8928 int target_resources_ok;
8929
8930 i = hw_breakpoint_used_count ();
8931 target_resources_ok =
8932 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8933 i + 1, 0);
8934 if (target_resources_ok == 0)
8935 error (_("No hardware breakpoint support in the target."));
8936 else if (target_resources_ok < 0)
8937 error (_("Hardware breakpoints used exceeds limit."));
8938 }
8939
8940 gdb_assert (!sals.empty ());
8941
8942 for (const auto &sal : sals)
8943 {
8944 struct bp_location *loc;
8945
8946 if (from_tty)
8947 {
8948 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8949 if (!loc_gdbarch)
8950 loc_gdbarch = gdbarch;
8951
8952 describe_other_breakpoints (loc_gdbarch,
8953 sal.pspace, sal.pc, sal.section, thread);
8954 }
8955
8956 if (&sal == &sals[0])
8957 {
8958 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8959 b->thread = thread;
8960 b->task = task;
8961
8962 b->cond_string = cond_string.release ();
8963 b->extra_string = extra_string.release ();
8964 b->ignore_count = ignore_count;
8965 b->enable_state = enabled ? bp_enabled : bp_disabled;
8966 b->disposition = disposition;
8967
8968 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8969 b->loc->inserted = 1;
8970
8971 if (type == bp_static_tracepoint)
8972 {
8973 struct tracepoint *t = (struct tracepoint *) b;
8974 struct static_tracepoint_marker marker;
8975
8976 if (strace_marker_p (b))
8977 {
8978 /* We already know the marker exists, otherwise, we
8979 wouldn't see a sal for it. */
8980 const char *p
8981 = &event_location_to_string (b->location.get ())[3];
8982 const char *endp;
8983 char *marker_str;
8984
8985 p = skip_spaces (p);
8986
8987 endp = skip_to_space (p);
8988
8989 marker_str = savestring (p, endp - p);
8990 t->static_trace_marker_id = marker_str;
8991
8992 printf_filtered (_("Probed static tracepoint "
8993 "marker \"%s\"\n"),
8994 t->static_trace_marker_id);
8995 }
8996 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8997 {
8998 t->static_trace_marker_id = xstrdup (marker.str_id);
8999 release_static_tracepoint_marker (&marker);
9000
9001 printf_filtered (_("Probed static tracepoint "
9002 "marker \"%s\"\n"),
9003 t->static_trace_marker_id);
9004 }
9005 else
9006 warning (_("Couldn't determine the static "
9007 "tracepoint marker to probe"));
9008 }
9009
9010 loc = b->loc;
9011 }
9012 else
9013 {
9014 loc = add_location_to_breakpoint (b, &sal);
9015 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9016 loc->inserted = 1;
9017 }
9018
9019 if (b->cond_string)
9020 {
9021 const char *arg = b->cond_string;
9022
9023 loc->cond = parse_exp_1 (&arg, loc->address,
9024 block_for_pc (loc->address), 0);
9025 if (*arg)
9026 error (_("Garbage '%s' follows condition"), arg);
9027 }
9028
9029 /* Dynamic printf requires and uses additional arguments on the
9030 command line, otherwise it's an error. */
9031 if (type == bp_dprintf)
9032 {
9033 if (b->extra_string)
9034 update_dprintf_command_list (b);
9035 else
9036 error (_("Format string required"));
9037 }
9038 else if (b->extra_string)
9039 error (_("Garbage '%s' at end of command"), b->extra_string);
9040 }
9041
9042 b->display_canonical = display_canonical;
9043 if (location != NULL)
9044 b->location = std::move (location);
9045 else
9046 b->location = new_address_location (b->loc->address, NULL, 0);
9047 b->filter = filter.release ();
9048 }
9049
9050 static void
9051 create_breakpoint_sal (struct gdbarch *gdbarch,
9052 gdb::array_view<const symtab_and_line> sals,
9053 event_location_up &&location,
9054 gdb::unique_xmalloc_ptr<char> filter,
9055 gdb::unique_xmalloc_ptr<char> cond_string,
9056 gdb::unique_xmalloc_ptr<char> extra_string,
9057 enum bptype type, enum bpdisp disposition,
9058 int thread, int task, int ignore_count,
9059 const struct breakpoint_ops *ops, int from_tty,
9060 int enabled, int internal, unsigned flags,
9061 int display_canonical)
9062 {
9063 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9064
9065 init_breakpoint_sal (b.get (), gdbarch,
9066 sals, std::move (location),
9067 std::move (filter),
9068 std::move (cond_string),
9069 std::move (extra_string),
9070 type, disposition,
9071 thread, task, ignore_count,
9072 ops, from_tty,
9073 enabled, internal, flags,
9074 display_canonical);
9075
9076 install_breakpoint (internal, std::move (b), 0);
9077 }
9078
9079 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9080 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9081 value. COND_STRING, if not NULL, specified the condition to be
9082 used for all breakpoints. Essentially the only case where
9083 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9084 function. In that case, it's still not possible to specify
9085 separate conditions for different overloaded functions, so
9086 we take just a single condition string.
9087
9088 NOTE: If the function succeeds, the caller is expected to cleanup
9089 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9090 array contents). If the function fails (error() is called), the
9091 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9092 COND and SALS arrays and each of those arrays contents. */
9093
9094 static void
9095 create_breakpoints_sal (struct gdbarch *gdbarch,
9096 struct linespec_result *canonical,
9097 gdb::unique_xmalloc_ptr<char> cond_string,
9098 gdb::unique_xmalloc_ptr<char> extra_string,
9099 enum bptype type, enum bpdisp disposition,
9100 int thread, int task, int ignore_count,
9101 const struct breakpoint_ops *ops, int from_tty,
9102 int enabled, int internal, unsigned flags)
9103 {
9104 if (canonical->pre_expanded)
9105 gdb_assert (canonical->lsals.size () == 1);
9106
9107 for (const auto &lsal : canonical->lsals)
9108 {
9109 /* Note that 'location' can be NULL in the case of a plain
9110 'break', without arguments. */
9111 event_location_up location
9112 = (canonical->location != NULL
9113 ? copy_event_location (canonical->location.get ()) : NULL);
9114 gdb::unique_xmalloc_ptr<char> filter_string
9115 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9116
9117 create_breakpoint_sal (gdbarch, lsal.sals,
9118 std::move (location),
9119 std::move (filter_string),
9120 std::move (cond_string),
9121 std::move (extra_string),
9122 type, disposition,
9123 thread, task, ignore_count, ops,
9124 from_tty, enabled, internal, flags,
9125 canonical->special_display);
9126 }
9127 }
9128
9129 /* Parse LOCATION which is assumed to be a SAL specification possibly
9130 followed by conditionals. On return, SALS contains an array of SAL
9131 addresses found. LOCATION points to the end of the SAL (for
9132 linespec locations).
9133
9134 The array and the line spec strings are allocated on the heap, it is
9135 the caller's responsibility to free them. */
9136
9137 static void
9138 parse_breakpoint_sals (const struct event_location *location,
9139 struct linespec_result *canonical)
9140 {
9141 struct symtab_and_line cursal;
9142
9143 if (event_location_type (location) == LINESPEC_LOCATION)
9144 {
9145 const char *address = get_linespec_location (location);
9146
9147 if (address == NULL)
9148 {
9149 /* The last displayed codepoint, if it's valid, is our default
9150 breakpoint address. */
9151 if (last_displayed_sal_is_valid ())
9152 {
9153 /* Set sal's pspace, pc, symtab, and line to the values
9154 corresponding to the last call to print_frame_info.
9155 Be sure to reinitialize LINE with NOTCURRENT == 0
9156 as the breakpoint line number is inappropriate otherwise.
9157 find_pc_line would adjust PC, re-set it back. */
9158 symtab_and_line sal = get_last_displayed_sal ();
9159 CORE_ADDR pc = sal.pc;
9160
9161 sal = find_pc_line (pc, 0);
9162
9163 /* "break" without arguments is equivalent to "break *PC"
9164 where PC is the last displayed codepoint's address. So
9165 make sure to set sal.explicit_pc to prevent GDB from
9166 trying to expand the list of sals to include all other
9167 instances with the same symtab and line. */
9168 sal.pc = pc;
9169 sal.explicit_pc = 1;
9170
9171 struct linespec_sals lsal;
9172 lsal.sals = {sal};
9173 lsal.canonical = NULL;
9174
9175 canonical->lsals.push_back (std::move (lsal));
9176 return;
9177 }
9178 else
9179 error (_("No default breakpoint address now."));
9180 }
9181 }
9182
9183 /* Force almost all breakpoints to be in terms of the
9184 current_source_symtab (which is decode_line_1's default).
9185 This should produce the results we want almost all of the
9186 time while leaving default_breakpoint_* alone.
9187
9188 ObjC: However, don't match an Objective-C method name which
9189 may have a '+' or '-' succeeded by a '['. */
9190 cursal = get_current_source_symtab_and_line ();
9191 if (last_displayed_sal_is_valid ())
9192 {
9193 const char *address = NULL;
9194
9195 if (event_location_type (location) == LINESPEC_LOCATION)
9196 address = get_linespec_location (location);
9197
9198 if (!cursal.symtab
9199 || (address != NULL
9200 && strchr ("+-", address[0]) != NULL
9201 && address[1] != '['))
9202 {
9203 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9204 get_last_displayed_symtab (),
9205 get_last_displayed_line (),
9206 canonical, NULL, NULL);
9207 return;
9208 }
9209 }
9210
9211 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9212 cursal.symtab, cursal.line, canonical, NULL, NULL);
9213 }
9214
9215
9216 /* Convert each SAL into a real PC. Verify that the PC can be
9217 inserted as a breakpoint. If it can't throw an error. */
9218
9219 static void
9220 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9221 {
9222 for (auto &sal : sals)
9223 resolve_sal_pc (&sal);
9224 }
9225
9226 /* Fast tracepoints may have restrictions on valid locations. For
9227 instance, a fast tracepoint using a jump instead of a trap will
9228 likely have to overwrite more bytes than a trap would, and so can
9229 only be placed where the instruction is longer than the jump, or a
9230 multi-instruction sequence does not have a jump into the middle of
9231 it, etc. */
9232
9233 static void
9234 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9235 gdb::array_view<const symtab_and_line> sals)
9236 {
9237 int rslt;
9238 char *msg;
9239 struct cleanup *old_chain;
9240
9241 for (const auto &sal : sals)
9242 {
9243 struct gdbarch *sarch;
9244
9245 sarch = get_sal_arch (sal);
9246 /* We fall back to GDBARCH if there is no architecture
9247 associated with SAL. */
9248 if (sarch == NULL)
9249 sarch = gdbarch;
9250 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9251 old_chain = make_cleanup (xfree, msg);
9252
9253 if (!rslt)
9254 error (_("May not have a fast tracepoint at %s%s"),
9255 paddress (sarch, sal.pc), (msg ? msg : ""));
9256
9257 do_cleanups (old_chain);
9258 }
9259 }
9260
9261 /* Given TOK, a string specification of condition and thread, as
9262 accepted by the 'break' command, extract the condition
9263 string and thread number and set *COND_STRING and *THREAD.
9264 PC identifies the context at which the condition should be parsed.
9265 If no condition is found, *COND_STRING is set to NULL.
9266 If no thread is found, *THREAD is set to -1. */
9267
9268 static void
9269 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9270 char **cond_string, int *thread, int *task,
9271 char **rest)
9272 {
9273 *cond_string = NULL;
9274 *thread = -1;
9275 *task = 0;
9276 *rest = NULL;
9277
9278 while (tok && *tok)
9279 {
9280 const char *end_tok;
9281 int toklen;
9282 const char *cond_start = NULL;
9283 const char *cond_end = NULL;
9284
9285 tok = skip_spaces (tok);
9286
9287 if ((*tok == '"' || *tok == ',') && rest)
9288 {
9289 *rest = savestring (tok, strlen (tok));
9290 return;
9291 }
9292
9293 end_tok = skip_to_space (tok);
9294
9295 toklen = end_tok - tok;
9296
9297 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9298 {
9299 tok = cond_start = end_tok + 1;
9300 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9301 cond_end = tok;
9302 *cond_string = savestring (cond_start, cond_end - cond_start);
9303 }
9304 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9305 {
9306 const char *tmptok;
9307 struct thread_info *thr;
9308
9309 tok = end_tok + 1;
9310 thr = parse_thread_id (tok, &tmptok);
9311 if (tok == tmptok)
9312 error (_("Junk after thread keyword."));
9313 *thread = thr->global_num;
9314 tok = tmptok;
9315 }
9316 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9317 {
9318 char *tmptok;
9319
9320 tok = end_tok + 1;
9321 *task = strtol (tok, &tmptok, 0);
9322 if (tok == tmptok)
9323 error (_("Junk after task keyword."));
9324 if (!valid_task_id (*task))
9325 error (_("Unknown task %d."), *task);
9326 tok = tmptok;
9327 }
9328 else if (rest)
9329 {
9330 *rest = savestring (tok, strlen (tok));
9331 return;
9332 }
9333 else
9334 error (_("Junk at end of arguments."));
9335 }
9336 }
9337
9338 /* Decode a static tracepoint marker spec. */
9339
9340 static std::vector<symtab_and_line>
9341 decode_static_tracepoint_spec (const char **arg_p)
9342 {
9343 VEC(static_tracepoint_marker_p) *markers = NULL;
9344 const char *p = &(*arg_p)[3];
9345 const char *endp;
9346 int i;
9347
9348 p = skip_spaces (p);
9349
9350 endp = skip_to_space (p);
9351
9352 std::string marker_str (p, endp - p);
9353
9354 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9355 if (VEC_empty(static_tracepoint_marker_p, markers))
9356 error (_("No known static tracepoint marker named %s"),
9357 marker_str.c_str ());
9358
9359 std::vector<symtab_and_line> sals;
9360 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9361
9362 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9363 {
9364 struct static_tracepoint_marker *marker;
9365
9366 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9367
9368 symtab_and_line sal = find_pc_line (marker->address, 0);
9369 sal.pc = marker->address;
9370 sals.push_back (sal);
9371
9372 release_static_tracepoint_marker (marker);
9373 }
9374
9375 *arg_p = endp;
9376 return sals;
9377 }
9378
9379 /* See breakpoint.h. */
9380
9381 int
9382 create_breakpoint (struct gdbarch *gdbarch,
9383 const struct event_location *location,
9384 const char *cond_string,
9385 int thread, const char *extra_string,
9386 int parse_extra,
9387 int tempflag, enum bptype type_wanted,
9388 int ignore_count,
9389 enum auto_boolean pending_break_support,
9390 const struct breakpoint_ops *ops,
9391 int from_tty, int enabled, int internal,
9392 unsigned flags)
9393 {
9394 struct linespec_result canonical;
9395 struct cleanup *bkpt_chain = NULL;
9396 int pending = 0;
9397 int task = 0;
9398 int prev_bkpt_count = breakpoint_count;
9399
9400 gdb_assert (ops != NULL);
9401
9402 /* If extra_string isn't useful, set it to NULL. */
9403 if (extra_string != NULL && *extra_string == '\0')
9404 extra_string = NULL;
9405
9406 TRY
9407 {
9408 ops->create_sals_from_location (location, &canonical, type_wanted);
9409 }
9410 CATCH (e, RETURN_MASK_ERROR)
9411 {
9412 /* If caller is interested in rc value from parse, set
9413 value. */
9414 if (e.error == NOT_FOUND_ERROR)
9415 {
9416 /* If pending breakpoint support is turned off, throw
9417 error. */
9418
9419 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9420 throw_exception (e);
9421
9422 exception_print (gdb_stderr, e);
9423
9424 /* If pending breakpoint support is auto query and the user
9425 selects no, then simply return the error code. */
9426 if (pending_break_support == AUTO_BOOLEAN_AUTO
9427 && !nquery (_("Make %s pending on future shared library load? "),
9428 bptype_string (type_wanted)))
9429 return 0;
9430
9431 /* At this point, either the user was queried about setting
9432 a pending breakpoint and selected yes, or pending
9433 breakpoint behavior is on and thus a pending breakpoint
9434 is defaulted on behalf of the user. */
9435 pending = 1;
9436 }
9437 else
9438 throw_exception (e);
9439 }
9440 END_CATCH
9441
9442 if (!pending && canonical.lsals.empty ())
9443 return 0;
9444
9445 /* ----------------------------- SNIP -----------------------------
9446 Anything added to the cleanup chain beyond this point is assumed
9447 to be part of a breakpoint. If the breakpoint create succeeds
9448 then the memory is not reclaimed. */
9449 bkpt_chain = make_cleanup (null_cleanup, 0);
9450
9451 /* Resolve all line numbers to PC's and verify that the addresses
9452 are ok for the target. */
9453 if (!pending)
9454 {
9455 for (auto &lsal : canonical.lsals)
9456 breakpoint_sals_to_pc (lsal.sals);
9457 }
9458
9459 /* Fast tracepoints may have additional restrictions on location. */
9460 if (!pending && type_wanted == bp_fast_tracepoint)
9461 {
9462 for (const auto &lsal : canonical.lsals)
9463 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9464 }
9465
9466 /* Verify that condition can be parsed, before setting any
9467 breakpoints. Allocate a separate condition expression for each
9468 breakpoint. */
9469 if (!pending)
9470 {
9471 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9472 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9473
9474 if (parse_extra)
9475 {
9476 char *rest;
9477 char *cond;
9478
9479 const linespec_sals &lsal = canonical.lsals[0];
9480
9481 /* Here we only parse 'arg' to separate condition
9482 from thread number, so parsing in context of first
9483 sal is OK. When setting the breakpoint we'll
9484 re-parse it in context of each sal. */
9485
9486 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9487 &cond, &thread, &task, &rest);
9488 cond_string_copy.reset (cond);
9489 extra_string_copy.reset (rest);
9490 }
9491 else
9492 {
9493 if (type_wanted != bp_dprintf
9494 && extra_string != NULL && *extra_string != '\0')
9495 error (_("Garbage '%s' at end of location"), extra_string);
9496
9497 /* Create a private copy of condition string. */
9498 if (cond_string)
9499 cond_string_copy.reset (xstrdup (cond_string));
9500 /* Create a private copy of any extra string. */
9501 if (extra_string)
9502 extra_string_copy.reset (xstrdup (extra_string));
9503 }
9504
9505 ops->create_breakpoints_sal (gdbarch, &canonical,
9506 std::move (cond_string_copy),
9507 std::move (extra_string_copy),
9508 type_wanted,
9509 tempflag ? disp_del : disp_donttouch,
9510 thread, task, ignore_count, ops,
9511 from_tty, enabled, internal, flags);
9512 }
9513 else
9514 {
9515 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9516
9517 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9518 b->location = copy_event_location (location);
9519
9520 if (parse_extra)
9521 b->cond_string = NULL;
9522 else
9523 {
9524 /* Create a private copy of condition string. */
9525 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9526 b->thread = thread;
9527 }
9528
9529 /* Create a private copy of any extra string. */
9530 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9531 b->ignore_count = ignore_count;
9532 b->disposition = tempflag ? disp_del : disp_donttouch;
9533 b->condition_not_parsed = 1;
9534 b->enable_state = enabled ? bp_enabled : bp_disabled;
9535 if ((type_wanted != bp_breakpoint
9536 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9537 b->pspace = current_program_space;
9538
9539 install_breakpoint (internal, std::move (b), 0);
9540 }
9541
9542 if (canonical.lsals.size () > 1)
9543 {
9544 warning (_("Multiple breakpoints were set.\nUse the "
9545 "\"delete\" command to delete unwanted breakpoints."));
9546 prev_breakpoint_count = prev_bkpt_count;
9547 }
9548
9549 /* That's it. Discard the cleanups for data inserted into the
9550 breakpoint. */
9551 discard_cleanups (bkpt_chain);
9552
9553 /* error call may happen here - have BKPT_CHAIN already discarded. */
9554 update_global_location_list (UGLL_MAY_INSERT);
9555
9556 return 1;
9557 }
9558
9559 /* Set a breakpoint.
9560 ARG is a string describing breakpoint address,
9561 condition, and thread.
9562 FLAG specifies if a breakpoint is hardware on,
9563 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9564 and BP_TEMPFLAG. */
9565
9566 static void
9567 break_command_1 (const char *arg, int flag, int from_tty)
9568 {
9569 int tempflag = flag & BP_TEMPFLAG;
9570 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9571 ? bp_hardware_breakpoint
9572 : bp_breakpoint);
9573 struct breakpoint_ops *ops;
9574
9575 event_location_up location = string_to_event_location (&arg, current_language);
9576
9577 /* Matching breakpoints on probes. */
9578 if (location != NULL
9579 && event_location_type (location.get ()) == PROBE_LOCATION)
9580 ops = &bkpt_probe_breakpoint_ops;
9581 else
9582 ops = &bkpt_breakpoint_ops;
9583
9584 create_breakpoint (get_current_arch (),
9585 location.get (),
9586 NULL, 0, arg, 1 /* parse arg */,
9587 tempflag, type_wanted,
9588 0 /* Ignore count */,
9589 pending_break_support,
9590 ops,
9591 from_tty,
9592 1 /* enabled */,
9593 0 /* internal */,
9594 0);
9595 }
9596
9597 /* Helper function for break_command_1 and disassemble_command. */
9598
9599 void
9600 resolve_sal_pc (struct symtab_and_line *sal)
9601 {
9602 CORE_ADDR pc;
9603
9604 if (sal->pc == 0 && sal->symtab != NULL)
9605 {
9606 if (!find_line_pc (sal->symtab, sal->line, &pc))
9607 error (_("No line %d in file \"%s\"."),
9608 sal->line, symtab_to_filename_for_display (sal->symtab));
9609 sal->pc = pc;
9610
9611 /* If this SAL corresponds to a breakpoint inserted using a line
9612 number, then skip the function prologue if necessary. */
9613 if (sal->explicit_line)
9614 skip_prologue_sal (sal);
9615 }
9616
9617 if (sal->section == 0 && sal->symtab != NULL)
9618 {
9619 const struct blockvector *bv;
9620 const struct block *b;
9621 struct symbol *sym;
9622
9623 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9624 SYMTAB_COMPUNIT (sal->symtab));
9625 if (bv != NULL)
9626 {
9627 sym = block_linkage_function (b);
9628 if (sym != NULL)
9629 {
9630 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9631 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9632 sym);
9633 }
9634 else
9635 {
9636 /* It really is worthwhile to have the section, so we'll
9637 just have to look harder. This case can be executed
9638 if we have line numbers but no functions (as can
9639 happen in assembly source). */
9640
9641 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9642 switch_to_program_space_and_thread (sal->pspace);
9643
9644 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9645 if (msym.minsym)
9646 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9647 }
9648 }
9649 }
9650 }
9651
9652 void
9653 break_command (char *arg, int from_tty)
9654 {
9655 break_command_1 (arg, 0, from_tty);
9656 }
9657
9658 void
9659 tbreak_command (char *arg, int from_tty)
9660 {
9661 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9662 }
9663
9664 static void
9665 hbreak_command (char *arg, int from_tty)
9666 {
9667 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9668 }
9669
9670 static void
9671 thbreak_command (char *arg, int from_tty)
9672 {
9673 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9674 }
9675
9676 static void
9677 stop_command (char *arg, int from_tty)
9678 {
9679 printf_filtered (_("Specify the type of breakpoint to set.\n\
9680 Usage: stop in <function | address>\n\
9681 stop at <line>\n"));
9682 }
9683
9684 static void
9685 stopin_command (const char *arg, int from_tty)
9686 {
9687 int badInput = 0;
9688
9689 if (arg == (char *) NULL)
9690 badInput = 1;
9691 else if (*arg != '*')
9692 {
9693 const char *argptr = arg;
9694 int hasColon = 0;
9695
9696 /* Look for a ':'. If this is a line number specification, then
9697 say it is bad, otherwise, it should be an address or
9698 function/method name. */
9699 while (*argptr && !hasColon)
9700 {
9701 hasColon = (*argptr == ':');
9702 argptr++;
9703 }
9704
9705 if (hasColon)
9706 badInput = (*argptr != ':'); /* Not a class::method */
9707 else
9708 badInput = isdigit (*arg); /* a simple line number */
9709 }
9710
9711 if (badInput)
9712 printf_filtered (_("Usage: stop in <function | address>\n"));
9713 else
9714 break_command_1 (arg, 0, from_tty);
9715 }
9716
9717 static void
9718 stopat_command (const char *arg, int from_tty)
9719 {
9720 int badInput = 0;
9721
9722 if (arg == (char *) NULL || *arg == '*') /* no line number */
9723 badInput = 1;
9724 else
9725 {
9726 const char *argptr = arg;
9727 int hasColon = 0;
9728
9729 /* Look for a ':'. If there is a '::' then get out, otherwise
9730 it is probably a line number. */
9731 while (*argptr && !hasColon)
9732 {
9733 hasColon = (*argptr == ':');
9734 argptr++;
9735 }
9736
9737 if (hasColon)
9738 badInput = (*argptr == ':'); /* we have class::method */
9739 else
9740 badInput = !isdigit (*arg); /* not a line number */
9741 }
9742
9743 if (badInput)
9744 printf_filtered (_("Usage: stop at <line>\n"));
9745 else
9746 break_command_1 (arg, 0, from_tty);
9747 }
9748
9749 /* The dynamic printf command is mostly like a regular breakpoint, but
9750 with a prewired command list consisting of a single output command,
9751 built from extra arguments supplied on the dprintf command
9752 line. */
9753
9754 static void
9755 dprintf_command (char *arg_in, int from_tty)
9756 {
9757 const char *arg = arg_in;
9758 event_location_up location = string_to_event_location (&arg, current_language);
9759
9760 /* If non-NULL, ARG should have been advanced past the location;
9761 the next character must be ','. */
9762 if (arg != NULL)
9763 {
9764 if (arg[0] != ',' || arg[1] == '\0')
9765 error (_("Format string required"));
9766 else
9767 {
9768 /* Skip the comma. */
9769 ++arg;
9770 }
9771 }
9772
9773 create_breakpoint (get_current_arch (),
9774 location.get (),
9775 NULL, 0, arg, 1 /* parse arg */,
9776 0, bp_dprintf,
9777 0 /* Ignore count */,
9778 pending_break_support,
9779 &dprintf_breakpoint_ops,
9780 from_tty,
9781 1 /* enabled */,
9782 0 /* internal */,
9783 0);
9784 }
9785
9786 static void
9787 agent_printf_command (char *arg, int from_tty)
9788 {
9789 error (_("May only run agent-printf on the target"));
9790 }
9791
9792 /* Implement the "breakpoint_hit" breakpoint_ops method for
9793 ranged breakpoints. */
9794
9795 static int
9796 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9797 struct address_space *aspace,
9798 CORE_ADDR bp_addr,
9799 const struct target_waitstatus *ws)
9800 {
9801 if (ws->kind != TARGET_WAITKIND_STOPPED
9802 || ws->value.sig != GDB_SIGNAL_TRAP)
9803 return 0;
9804
9805 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9806 bl->length, aspace, bp_addr);
9807 }
9808
9809 /* Implement the "resources_needed" breakpoint_ops method for
9810 ranged breakpoints. */
9811
9812 static int
9813 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9814 {
9815 return target_ranged_break_num_registers ();
9816 }
9817
9818 /* Implement the "print_it" breakpoint_ops method for
9819 ranged breakpoints. */
9820
9821 static enum print_stop_action
9822 print_it_ranged_breakpoint (bpstat bs)
9823 {
9824 struct breakpoint *b = bs->breakpoint_at;
9825 struct bp_location *bl = b->loc;
9826 struct ui_out *uiout = current_uiout;
9827
9828 gdb_assert (b->type == bp_hardware_breakpoint);
9829
9830 /* Ranged breakpoints have only one location. */
9831 gdb_assert (bl && bl->next == NULL);
9832
9833 annotate_breakpoint (b->number);
9834
9835 maybe_print_thread_hit_breakpoint (uiout);
9836
9837 if (b->disposition == disp_del)
9838 uiout->text ("Temporary ranged breakpoint ");
9839 else
9840 uiout->text ("Ranged breakpoint ");
9841 if (uiout->is_mi_like_p ())
9842 {
9843 uiout->field_string ("reason",
9844 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9845 uiout->field_string ("disp", bpdisp_text (b->disposition));
9846 }
9847 uiout->field_int ("bkptno", b->number);
9848 uiout->text (", ");
9849
9850 return PRINT_SRC_AND_LOC;
9851 }
9852
9853 /* Implement the "print_one" breakpoint_ops method for
9854 ranged breakpoints. */
9855
9856 static void
9857 print_one_ranged_breakpoint (struct breakpoint *b,
9858 struct bp_location **last_loc)
9859 {
9860 struct bp_location *bl = b->loc;
9861 struct value_print_options opts;
9862 struct ui_out *uiout = current_uiout;
9863
9864 /* Ranged breakpoints have only one location. */
9865 gdb_assert (bl && bl->next == NULL);
9866
9867 get_user_print_options (&opts);
9868
9869 if (opts.addressprint)
9870 /* We don't print the address range here, it will be printed later
9871 by print_one_detail_ranged_breakpoint. */
9872 uiout->field_skip ("addr");
9873 annotate_field (5);
9874 print_breakpoint_location (b, bl);
9875 *last_loc = bl;
9876 }
9877
9878 /* Implement the "print_one_detail" breakpoint_ops method for
9879 ranged breakpoints. */
9880
9881 static void
9882 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9883 struct ui_out *uiout)
9884 {
9885 CORE_ADDR address_start, address_end;
9886 struct bp_location *bl = b->loc;
9887 string_file stb;
9888
9889 gdb_assert (bl);
9890
9891 address_start = bl->address;
9892 address_end = address_start + bl->length - 1;
9893
9894 uiout->text ("\taddress range: ");
9895 stb.printf ("[%s, %s]",
9896 print_core_address (bl->gdbarch, address_start),
9897 print_core_address (bl->gdbarch, address_end));
9898 uiout->field_stream ("addr", stb);
9899 uiout->text ("\n");
9900 }
9901
9902 /* Implement the "print_mention" breakpoint_ops method for
9903 ranged breakpoints. */
9904
9905 static void
9906 print_mention_ranged_breakpoint (struct breakpoint *b)
9907 {
9908 struct bp_location *bl = b->loc;
9909 struct ui_out *uiout = current_uiout;
9910
9911 gdb_assert (bl);
9912 gdb_assert (b->type == bp_hardware_breakpoint);
9913
9914 if (uiout->is_mi_like_p ())
9915 return;
9916
9917 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9918 b->number, paddress (bl->gdbarch, bl->address),
9919 paddress (bl->gdbarch, bl->address + bl->length - 1));
9920 }
9921
9922 /* Implement the "print_recreate" breakpoint_ops method for
9923 ranged breakpoints. */
9924
9925 static void
9926 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9927 {
9928 fprintf_unfiltered (fp, "break-range %s, %s",
9929 event_location_to_string (b->location.get ()),
9930 event_location_to_string (b->location_range_end.get ()));
9931 print_recreate_thread (b, fp);
9932 }
9933
9934 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9935
9936 static struct breakpoint_ops ranged_breakpoint_ops;
9937
9938 /* Find the address where the end of the breakpoint range should be
9939 placed, given the SAL of the end of the range. This is so that if
9940 the user provides a line number, the end of the range is set to the
9941 last instruction of the given line. */
9942
9943 static CORE_ADDR
9944 find_breakpoint_range_end (struct symtab_and_line sal)
9945 {
9946 CORE_ADDR end;
9947
9948 /* If the user provided a PC value, use it. Otherwise,
9949 find the address of the end of the given location. */
9950 if (sal.explicit_pc)
9951 end = sal.pc;
9952 else
9953 {
9954 int ret;
9955 CORE_ADDR start;
9956
9957 ret = find_line_pc_range (sal, &start, &end);
9958 if (!ret)
9959 error (_("Could not find location of the end of the range."));
9960
9961 /* find_line_pc_range returns the start of the next line. */
9962 end--;
9963 }
9964
9965 return end;
9966 }
9967
9968 /* Implement the "break-range" CLI command. */
9969
9970 static void
9971 break_range_command (char *arg_in, int from_tty)
9972 {
9973 const char *arg = arg_in;
9974 const char *arg_start;
9975 struct linespec_result canonical_start, canonical_end;
9976 int bp_count, can_use_bp, length;
9977 CORE_ADDR end;
9978 struct breakpoint *b;
9979
9980 /* We don't support software ranged breakpoints. */
9981 if (target_ranged_break_num_registers () < 0)
9982 error (_("This target does not support hardware ranged breakpoints."));
9983
9984 bp_count = hw_breakpoint_used_count ();
9985 bp_count += target_ranged_break_num_registers ();
9986 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9987 bp_count, 0);
9988 if (can_use_bp < 0)
9989 error (_("Hardware breakpoints used exceeds limit."));
9990
9991 arg = skip_spaces (arg);
9992 if (arg == NULL || arg[0] == '\0')
9993 error(_("No address range specified."));
9994
9995 arg_start = arg;
9996 event_location_up start_location = string_to_event_location (&arg,
9997 current_language);
9998 parse_breakpoint_sals (start_location.get (), &canonical_start);
9999
10000 if (arg[0] != ',')
10001 error (_("Too few arguments."));
10002 else if (canonical_start.lsals.empty ())
10003 error (_("Could not find location of the beginning of the range."));
10004
10005 const linespec_sals &lsal_start = canonical_start.lsals[0];
10006
10007 if (canonical_start.lsals.size () > 1
10008 || lsal_start.sals.size () != 1)
10009 error (_("Cannot create a ranged breakpoint with multiple locations."));
10010
10011 const symtab_and_line &sal_start = lsal_start.sals[0];
10012 std::string addr_string_start (arg_start, arg - arg_start);
10013
10014 arg++; /* Skip the comma. */
10015 arg = skip_spaces (arg);
10016
10017 /* Parse the end location. */
10018
10019 arg_start = arg;
10020
10021 /* We call decode_line_full directly here instead of using
10022 parse_breakpoint_sals because we need to specify the start location's
10023 symtab and line as the default symtab and line for the end of the
10024 range. This makes it possible to have ranges like "foo.c:27, +14",
10025 where +14 means 14 lines from the start location. */
10026 event_location_up end_location = string_to_event_location (&arg,
10027 current_language);
10028 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10029 sal_start.symtab, sal_start.line,
10030 &canonical_end, NULL, NULL);
10031
10032 if (canonical_end.lsals.empty ())
10033 error (_("Could not find location of the end of the range."));
10034
10035 const linespec_sals &lsal_end = canonical_end.lsals[0];
10036 if (canonical_end.lsals.size () > 1
10037 || lsal_end.sals.size () != 1)
10038 error (_("Cannot create a ranged breakpoint with multiple locations."));
10039
10040 const symtab_and_line &sal_end = lsal_end.sals[0];
10041
10042 end = find_breakpoint_range_end (sal_end);
10043 if (sal_start.pc > end)
10044 error (_("Invalid address range, end precedes start."));
10045
10046 length = end - sal_start.pc + 1;
10047 if (length < 0)
10048 /* Length overflowed. */
10049 error (_("Address range too large."));
10050 else if (length == 1)
10051 {
10052 /* This range is simple enough to be handled by
10053 the `hbreak' command. */
10054 hbreak_command (&addr_string_start[0], 1);
10055
10056 return;
10057 }
10058
10059 /* Now set up the breakpoint. */
10060 b = set_raw_breakpoint (get_current_arch (), sal_start,
10061 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10062 set_breakpoint_count (breakpoint_count + 1);
10063 b->number = breakpoint_count;
10064 b->disposition = disp_donttouch;
10065 b->location = std::move (start_location);
10066 b->location_range_end = std::move (end_location);
10067 b->loc->length = length;
10068
10069 mention (b);
10070 observer_notify_breakpoint_created (b);
10071 update_global_location_list (UGLL_MAY_INSERT);
10072 }
10073
10074 /* Return non-zero if EXP is verified as constant. Returned zero
10075 means EXP is variable. Also the constant detection may fail for
10076 some constant expressions and in such case still falsely return
10077 zero. */
10078
10079 static int
10080 watchpoint_exp_is_const (const struct expression *exp)
10081 {
10082 int i = exp->nelts;
10083
10084 while (i > 0)
10085 {
10086 int oplenp, argsp;
10087
10088 /* We are only interested in the descriptor of each element. */
10089 operator_length (exp, i, &oplenp, &argsp);
10090 i -= oplenp;
10091
10092 switch (exp->elts[i].opcode)
10093 {
10094 case BINOP_ADD:
10095 case BINOP_SUB:
10096 case BINOP_MUL:
10097 case BINOP_DIV:
10098 case BINOP_REM:
10099 case BINOP_MOD:
10100 case BINOP_LSH:
10101 case BINOP_RSH:
10102 case BINOP_LOGICAL_AND:
10103 case BINOP_LOGICAL_OR:
10104 case BINOP_BITWISE_AND:
10105 case BINOP_BITWISE_IOR:
10106 case BINOP_BITWISE_XOR:
10107 case BINOP_EQUAL:
10108 case BINOP_NOTEQUAL:
10109 case BINOP_LESS:
10110 case BINOP_GTR:
10111 case BINOP_LEQ:
10112 case BINOP_GEQ:
10113 case BINOP_REPEAT:
10114 case BINOP_COMMA:
10115 case BINOP_EXP:
10116 case BINOP_MIN:
10117 case BINOP_MAX:
10118 case BINOP_INTDIV:
10119 case BINOP_CONCAT:
10120 case TERNOP_COND:
10121 case TERNOP_SLICE:
10122
10123 case OP_LONG:
10124 case OP_DOUBLE:
10125 case OP_DECFLOAT:
10126 case OP_LAST:
10127 case OP_COMPLEX:
10128 case OP_STRING:
10129 case OP_ARRAY:
10130 case OP_TYPE:
10131 case OP_TYPEOF:
10132 case OP_DECLTYPE:
10133 case OP_TYPEID:
10134 case OP_NAME:
10135 case OP_OBJC_NSSTRING:
10136
10137 case UNOP_NEG:
10138 case UNOP_LOGICAL_NOT:
10139 case UNOP_COMPLEMENT:
10140 case UNOP_ADDR:
10141 case UNOP_HIGH:
10142 case UNOP_CAST:
10143
10144 case UNOP_CAST_TYPE:
10145 case UNOP_REINTERPRET_CAST:
10146 case UNOP_DYNAMIC_CAST:
10147 /* Unary, binary and ternary operators: We have to check
10148 their operands. If they are constant, then so is the
10149 result of that operation. For instance, if A and B are
10150 determined to be constants, then so is "A + B".
10151
10152 UNOP_IND is one exception to the rule above, because the
10153 value of *ADDR is not necessarily a constant, even when
10154 ADDR is. */
10155 break;
10156
10157 case OP_VAR_VALUE:
10158 /* Check whether the associated symbol is a constant.
10159
10160 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10161 possible that a buggy compiler could mark a variable as
10162 constant even when it is not, and TYPE_CONST would return
10163 true in this case, while SYMBOL_CLASS wouldn't.
10164
10165 We also have to check for function symbols because they
10166 are always constant. */
10167 {
10168 struct symbol *s = exp->elts[i + 2].symbol;
10169
10170 if (SYMBOL_CLASS (s) != LOC_BLOCK
10171 && SYMBOL_CLASS (s) != LOC_CONST
10172 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10173 return 0;
10174 break;
10175 }
10176
10177 /* The default action is to return 0 because we are using
10178 the optimistic approach here: If we don't know something,
10179 then it is not a constant. */
10180 default:
10181 return 0;
10182 }
10183 }
10184
10185 return 1;
10186 }
10187
10188 /* Watchpoint destructor. */
10189
10190 watchpoint::~watchpoint ()
10191 {
10192 xfree (this->exp_string);
10193 xfree (this->exp_string_reparse);
10194 value_free (this->val);
10195 }
10196
10197 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10198
10199 static void
10200 re_set_watchpoint (struct breakpoint *b)
10201 {
10202 struct watchpoint *w = (struct watchpoint *) b;
10203
10204 /* Watchpoint can be either on expression using entirely global
10205 variables, or it can be on local variables.
10206
10207 Watchpoints of the first kind are never auto-deleted, and even
10208 persist across program restarts. Since they can use variables
10209 from shared libraries, we need to reparse expression as libraries
10210 are loaded and unloaded.
10211
10212 Watchpoints on local variables can also change meaning as result
10213 of solib event. For example, if a watchpoint uses both a local
10214 and a global variables in expression, it's a local watchpoint,
10215 but unloading of a shared library will make the expression
10216 invalid. This is not a very common use case, but we still
10217 re-evaluate expression, to avoid surprises to the user.
10218
10219 Note that for local watchpoints, we re-evaluate it only if
10220 watchpoints frame id is still valid. If it's not, it means the
10221 watchpoint is out of scope and will be deleted soon. In fact,
10222 I'm not sure we'll ever be called in this case.
10223
10224 If a local watchpoint's frame id is still valid, then
10225 w->exp_valid_block is likewise valid, and we can safely use it.
10226
10227 Don't do anything about disabled watchpoints, since they will be
10228 reevaluated again when enabled. */
10229 update_watchpoint (w, 1 /* reparse */);
10230 }
10231
10232 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10233
10234 static int
10235 insert_watchpoint (struct bp_location *bl)
10236 {
10237 struct watchpoint *w = (struct watchpoint *) bl->owner;
10238 int length = w->exact ? 1 : bl->length;
10239
10240 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10241 w->cond_exp.get ());
10242 }
10243
10244 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10245
10246 static int
10247 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10248 {
10249 struct watchpoint *w = (struct watchpoint *) bl->owner;
10250 int length = w->exact ? 1 : bl->length;
10251
10252 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10253 w->cond_exp.get ());
10254 }
10255
10256 static int
10257 breakpoint_hit_watchpoint (const struct bp_location *bl,
10258 struct address_space *aspace, CORE_ADDR bp_addr,
10259 const struct target_waitstatus *ws)
10260 {
10261 struct breakpoint *b = bl->owner;
10262 struct watchpoint *w = (struct watchpoint *) b;
10263
10264 /* Continuable hardware watchpoints are treated as non-existent if the
10265 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10266 some data address). Otherwise gdb won't stop on a break instruction
10267 in the code (not from a breakpoint) when a hardware watchpoint has
10268 been defined. Also skip watchpoints which we know did not trigger
10269 (did not match the data address). */
10270 if (is_hardware_watchpoint (b)
10271 && w->watchpoint_triggered == watch_triggered_no)
10272 return 0;
10273
10274 return 1;
10275 }
10276
10277 static void
10278 check_status_watchpoint (bpstat bs)
10279 {
10280 gdb_assert (is_watchpoint (bs->breakpoint_at));
10281
10282 bpstat_check_watchpoint (bs);
10283 }
10284
10285 /* Implement the "resources_needed" breakpoint_ops method for
10286 hardware watchpoints. */
10287
10288 static int
10289 resources_needed_watchpoint (const struct bp_location *bl)
10290 {
10291 struct watchpoint *w = (struct watchpoint *) bl->owner;
10292 int length = w->exact? 1 : bl->length;
10293
10294 return target_region_ok_for_hw_watchpoint (bl->address, length);
10295 }
10296
10297 /* Implement the "works_in_software_mode" breakpoint_ops method for
10298 hardware watchpoints. */
10299
10300 static int
10301 works_in_software_mode_watchpoint (const struct breakpoint *b)
10302 {
10303 /* Read and access watchpoints only work with hardware support. */
10304 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10305 }
10306
10307 static enum print_stop_action
10308 print_it_watchpoint (bpstat bs)
10309 {
10310 struct breakpoint *b;
10311 enum print_stop_action result;
10312 struct watchpoint *w;
10313 struct ui_out *uiout = current_uiout;
10314
10315 gdb_assert (bs->bp_location_at != NULL);
10316
10317 b = bs->breakpoint_at;
10318 w = (struct watchpoint *) b;
10319
10320 annotate_watchpoint (b->number);
10321 maybe_print_thread_hit_breakpoint (uiout);
10322
10323 string_file stb;
10324
10325 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10326 switch (b->type)
10327 {
10328 case bp_watchpoint:
10329 case bp_hardware_watchpoint:
10330 if (uiout->is_mi_like_p ())
10331 uiout->field_string
10332 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10333 mention (b);
10334 tuple_emitter.emplace (uiout, "value");
10335 uiout->text ("\nOld value = ");
10336 watchpoint_value_print (bs->old_val, &stb);
10337 uiout->field_stream ("old", stb);
10338 uiout->text ("\nNew value = ");
10339 watchpoint_value_print (w->val, &stb);
10340 uiout->field_stream ("new", stb);
10341 uiout->text ("\n");
10342 /* More than one watchpoint may have been triggered. */
10343 result = PRINT_UNKNOWN;
10344 break;
10345
10346 case bp_read_watchpoint:
10347 if (uiout->is_mi_like_p ())
10348 uiout->field_string
10349 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10350 mention (b);
10351 tuple_emitter.emplace (uiout, "value");
10352 uiout->text ("\nValue = ");
10353 watchpoint_value_print (w->val, &stb);
10354 uiout->field_stream ("value", stb);
10355 uiout->text ("\n");
10356 result = PRINT_UNKNOWN;
10357 break;
10358
10359 case bp_access_watchpoint:
10360 if (bs->old_val != NULL)
10361 {
10362 if (uiout->is_mi_like_p ())
10363 uiout->field_string
10364 ("reason",
10365 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10366 mention (b);
10367 tuple_emitter.emplace (uiout, "value");
10368 uiout->text ("\nOld value = ");
10369 watchpoint_value_print (bs->old_val, &stb);
10370 uiout->field_stream ("old", stb);
10371 uiout->text ("\nNew value = ");
10372 }
10373 else
10374 {
10375 mention (b);
10376 if (uiout->is_mi_like_p ())
10377 uiout->field_string
10378 ("reason",
10379 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10380 tuple_emitter.emplace (uiout, "value");
10381 uiout->text ("\nValue = ");
10382 }
10383 watchpoint_value_print (w->val, &stb);
10384 uiout->field_stream ("new", stb);
10385 uiout->text ("\n");
10386 result = PRINT_UNKNOWN;
10387 break;
10388 default:
10389 result = PRINT_UNKNOWN;
10390 }
10391
10392 return result;
10393 }
10394
10395 /* Implement the "print_mention" breakpoint_ops method for hardware
10396 watchpoints. */
10397
10398 static void
10399 print_mention_watchpoint (struct breakpoint *b)
10400 {
10401 struct watchpoint *w = (struct watchpoint *) b;
10402 struct ui_out *uiout = current_uiout;
10403 const char *tuple_name;
10404
10405 switch (b->type)
10406 {
10407 case bp_watchpoint:
10408 uiout->text ("Watchpoint ");
10409 tuple_name = "wpt";
10410 break;
10411 case bp_hardware_watchpoint:
10412 uiout->text ("Hardware watchpoint ");
10413 tuple_name = "wpt";
10414 break;
10415 case bp_read_watchpoint:
10416 uiout->text ("Hardware read watchpoint ");
10417 tuple_name = "hw-rwpt";
10418 break;
10419 case bp_access_watchpoint:
10420 uiout->text ("Hardware access (read/write) watchpoint ");
10421 tuple_name = "hw-awpt";
10422 break;
10423 default:
10424 internal_error (__FILE__, __LINE__,
10425 _("Invalid hardware watchpoint type."));
10426 }
10427
10428 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10429 uiout->field_int ("number", b->number);
10430 uiout->text (": ");
10431 uiout->field_string ("exp", w->exp_string);
10432 }
10433
10434 /* Implement the "print_recreate" breakpoint_ops method for
10435 watchpoints. */
10436
10437 static void
10438 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10439 {
10440 struct watchpoint *w = (struct watchpoint *) b;
10441
10442 switch (b->type)
10443 {
10444 case bp_watchpoint:
10445 case bp_hardware_watchpoint:
10446 fprintf_unfiltered (fp, "watch");
10447 break;
10448 case bp_read_watchpoint:
10449 fprintf_unfiltered (fp, "rwatch");
10450 break;
10451 case bp_access_watchpoint:
10452 fprintf_unfiltered (fp, "awatch");
10453 break;
10454 default:
10455 internal_error (__FILE__, __LINE__,
10456 _("Invalid watchpoint type."));
10457 }
10458
10459 fprintf_unfiltered (fp, " %s", w->exp_string);
10460 print_recreate_thread (b, fp);
10461 }
10462
10463 /* Implement the "explains_signal" breakpoint_ops method for
10464 watchpoints. */
10465
10466 static int
10467 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10468 {
10469 /* A software watchpoint cannot cause a signal other than
10470 GDB_SIGNAL_TRAP. */
10471 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10472 return 0;
10473
10474 return 1;
10475 }
10476
10477 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10478
10479 static struct breakpoint_ops watchpoint_breakpoint_ops;
10480
10481 /* Implement the "insert" breakpoint_ops method for
10482 masked hardware watchpoints. */
10483
10484 static int
10485 insert_masked_watchpoint (struct bp_location *bl)
10486 {
10487 struct watchpoint *w = (struct watchpoint *) bl->owner;
10488
10489 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10490 bl->watchpoint_type);
10491 }
10492
10493 /* Implement the "remove" breakpoint_ops method for
10494 masked hardware watchpoints. */
10495
10496 static int
10497 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10498 {
10499 struct watchpoint *w = (struct watchpoint *) bl->owner;
10500
10501 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10502 bl->watchpoint_type);
10503 }
10504
10505 /* Implement the "resources_needed" breakpoint_ops method for
10506 masked hardware watchpoints. */
10507
10508 static int
10509 resources_needed_masked_watchpoint (const struct bp_location *bl)
10510 {
10511 struct watchpoint *w = (struct watchpoint *) bl->owner;
10512
10513 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10514 }
10515
10516 /* Implement the "works_in_software_mode" breakpoint_ops method for
10517 masked hardware watchpoints. */
10518
10519 static int
10520 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10521 {
10522 return 0;
10523 }
10524
10525 /* Implement the "print_it" breakpoint_ops method for
10526 masked hardware watchpoints. */
10527
10528 static enum print_stop_action
10529 print_it_masked_watchpoint (bpstat bs)
10530 {
10531 struct breakpoint *b = bs->breakpoint_at;
10532 struct ui_out *uiout = current_uiout;
10533
10534 /* Masked watchpoints have only one location. */
10535 gdb_assert (b->loc && b->loc->next == NULL);
10536
10537 annotate_watchpoint (b->number);
10538 maybe_print_thread_hit_breakpoint (uiout);
10539
10540 switch (b->type)
10541 {
10542 case bp_hardware_watchpoint:
10543 if (uiout->is_mi_like_p ())
10544 uiout->field_string
10545 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10546 break;
10547
10548 case bp_read_watchpoint:
10549 if (uiout->is_mi_like_p ())
10550 uiout->field_string
10551 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10552 break;
10553
10554 case bp_access_watchpoint:
10555 if (uiout->is_mi_like_p ())
10556 uiout->field_string
10557 ("reason",
10558 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10559 break;
10560 default:
10561 internal_error (__FILE__, __LINE__,
10562 _("Invalid hardware watchpoint type."));
10563 }
10564
10565 mention (b);
10566 uiout->text (_("\n\
10567 Check the underlying instruction at PC for the memory\n\
10568 address and value which triggered this watchpoint.\n"));
10569 uiout->text ("\n");
10570
10571 /* More than one watchpoint may have been triggered. */
10572 return PRINT_UNKNOWN;
10573 }
10574
10575 /* Implement the "print_one_detail" breakpoint_ops method for
10576 masked hardware watchpoints. */
10577
10578 static void
10579 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10580 struct ui_out *uiout)
10581 {
10582 struct watchpoint *w = (struct watchpoint *) b;
10583
10584 /* Masked watchpoints have only one location. */
10585 gdb_assert (b->loc && b->loc->next == NULL);
10586
10587 uiout->text ("\tmask ");
10588 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10589 uiout->text ("\n");
10590 }
10591
10592 /* Implement the "print_mention" breakpoint_ops method for
10593 masked hardware watchpoints. */
10594
10595 static void
10596 print_mention_masked_watchpoint (struct breakpoint *b)
10597 {
10598 struct watchpoint *w = (struct watchpoint *) b;
10599 struct ui_out *uiout = current_uiout;
10600 const char *tuple_name;
10601
10602 switch (b->type)
10603 {
10604 case bp_hardware_watchpoint:
10605 uiout->text ("Masked hardware watchpoint ");
10606 tuple_name = "wpt";
10607 break;
10608 case bp_read_watchpoint:
10609 uiout->text ("Masked hardware read watchpoint ");
10610 tuple_name = "hw-rwpt";
10611 break;
10612 case bp_access_watchpoint:
10613 uiout->text ("Masked hardware access (read/write) watchpoint ");
10614 tuple_name = "hw-awpt";
10615 break;
10616 default:
10617 internal_error (__FILE__, __LINE__,
10618 _("Invalid hardware watchpoint type."));
10619 }
10620
10621 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10622 uiout->field_int ("number", b->number);
10623 uiout->text (": ");
10624 uiout->field_string ("exp", w->exp_string);
10625 }
10626
10627 /* Implement the "print_recreate" breakpoint_ops method for
10628 masked hardware watchpoints. */
10629
10630 static void
10631 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10632 {
10633 struct watchpoint *w = (struct watchpoint *) b;
10634 char tmp[40];
10635
10636 switch (b->type)
10637 {
10638 case bp_hardware_watchpoint:
10639 fprintf_unfiltered (fp, "watch");
10640 break;
10641 case bp_read_watchpoint:
10642 fprintf_unfiltered (fp, "rwatch");
10643 break;
10644 case bp_access_watchpoint:
10645 fprintf_unfiltered (fp, "awatch");
10646 break;
10647 default:
10648 internal_error (__FILE__, __LINE__,
10649 _("Invalid hardware watchpoint type."));
10650 }
10651
10652 sprintf_vma (tmp, w->hw_wp_mask);
10653 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10654 print_recreate_thread (b, fp);
10655 }
10656
10657 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10658
10659 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10660
10661 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10662
10663 static int
10664 is_masked_watchpoint (const struct breakpoint *b)
10665 {
10666 return b->ops == &masked_watchpoint_breakpoint_ops;
10667 }
10668
10669 /* accessflag: hw_write: watch write,
10670 hw_read: watch read,
10671 hw_access: watch access (read or write) */
10672 static void
10673 watch_command_1 (const char *arg, int accessflag, int from_tty,
10674 int just_location, int internal)
10675 {
10676 struct breakpoint *scope_breakpoint = NULL;
10677 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10678 struct value *val, *mark, *result;
10679 int saved_bitpos = 0, saved_bitsize = 0;
10680 const char *exp_start = NULL;
10681 const char *exp_end = NULL;
10682 const char *tok, *end_tok;
10683 int toklen = -1;
10684 const char *cond_start = NULL;
10685 const char *cond_end = NULL;
10686 enum bptype bp_type;
10687 int thread = -1;
10688 int pc = 0;
10689 /* Flag to indicate whether we are going to use masks for
10690 the hardware watchpoint. */
10691 int use_mask = 0;
10692 CORE_ADDR mask = 0;
10693
10694 /* Make sure that we actually have parameters to parse. */
10695 if (arg != NULL && arg[0] != '\0')
10696 {
10697 const char *value_start;
10698
10699 exp_end = arg + strlen (arg);
10700
10701 /* Look for "parameter value" pairs at the end
10702 of the arguments string. */
10703 for (tok = exp_end - 1; tok > arg; tok--)
10704 {
10705 /* Skip whitespace at the end of the argument list. */
10706 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10707 tok--;
10708
10709 /* Find the beginning of the last token.
10710 This is the value of the parameter. */
10711 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10712 tok--;
10713 value_start = tok + 1;
10714
10715 /* Skip whitespace. */
10716 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10717 tok--;
10718
10719 end_tok = tok;
10720
10721 /* Find the beginning of the second to last token.
10722 This is the parameter itself. */
10723 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10724 tok--;
10725 tok++;
10726 toklen = end_tok - tok + 1;
10727
10728 if (toklen == 6 && startswith (tok, "thread"))
10729 {
10730 struct thread_info *thr;
10731 /* At this point we've found a "thread" token, which means
10732 the user is trying to set a watchpoint that triggers
10733 only in a specific thread. */
10734 const char *endp;
10735
10736 if (thread != -1)
10737 error(_("You can specify only one thread."));
10738
10739 /* Extract the thread ID from the next token. */
10740 thr = parse_thread_id (value_start, &endp);
10741
10742 /* Check if the user provided a valid thread ID. */
10743 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10744 invalid_thread_id_error (value_start);
10745
10746 thread = thr->global_num;
10747 }
10748 else if (toklen == 4 && startswith (tok, "mask"))
10749 {
10750 /* We've found a "mask" token, which means the user wants to
10751 create a hardware watchpoint that is going to have the mask
10752 facility. */
10753 struct value *mask_value, *mark;
10754
10755 if (use_mask)
10756 error(_("You can specify only one mask."));
10757
10758 use_mask = just_location = 1;
10759
10760 mark = value_mark ();
10761 mask_value = parse_to_comma_and_eval (&value_start);
10762 mask = value_as_address (mask_value);
10763 value_free_to_mark (mark);
10764 }
10765 else
10766 /* We didn't recognize what we found. We should stop here. */
10767 break;
10768
10769 /* Truncate the string and get rid of the "parameter value" pair before
10770 the arguments string is parsed by the parse_exp_1 function. */
10771 exp_end = tok;
10772 }
10773 }
10774 else
10775 exp_end = arg;
10776
10777 /* Parse the rest of the arguments. From here on out, everything
10778 is in terms of a newly allocated string instead of the original
10779 ARG. */
10780 innermost_block = NULL;
10781 std::string expression (arg, exp_end - arg);
10782 exp_start = arg = expression.c_str ();
10783 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10784 exp_end = arg;
10785 /* Remove trailing whitespace from the expression before saving it.
10786 This makes the eventual display of the expression string a bit
10787 prettier. */
10788 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10789 --exp_end;
10790
10791 /* Checking if the expression is not constant. */
10792 if (watchpoint_exp_is_const (exp.get ()))
10793 {
10794 int len;
10795
10796 len = exp_end - exp_start;
10797 while (len > 0 && isspace (exp_start[len - 1]))
10798 len--;
10799 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10800 }
10801
10802 exp_valid_block = innermost_block;
10803 mark = value_mark ();
10804 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10805
10806 if (val != NULL && just_location)
10807 {
10808 saved_bitpos = value_bitpos (val);
10809 saved_bitsize = value_bitsize (val);
10810 }
10811
10812 if (just_location)
10813 {
10814 int ret;
10815
10816 exp_valid_block = NULL;
10817 val = value_addr (result);
10818 release_value (val);
10819 value_free_to_mark (mark);
10820
10821 if (use_mask)
10822 {
10823 ret = target_masked_watch_num_registers (value_as_address (val),
10824 mask);
10825 if (ret == -1)
10826 error (_("This target does not support masked watchpoints."));
10827 else if (ret == -2)
10828 error (_("Invalid mask or memory region."));
10829 }
10830 }
10831 else if (val != NULL)
10832 release_value (val);
10833
10834 tok = skip_spaces (arg);
10835 end_tok = skip_to_space (tok);
10836
10837 toklen = end_tok - tok;
10838 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10839 {
10840 innermost_block = NULL;
10841 tok = cond_start = end_tok + 1;
10842 parse_exp_1 (&tok, 0, 0, 0);
10843
10844 /* The watchpoint expression may not be local, but the condition
10845 may still be. E.g.: `watch global if local > 0'. */
10846 cond_exp_valid_block = innermost_block;
10847
10848 cond_end = tok;
10849 }
10850 if (*tok)
10851 error (_("Junk at end of command."));
10852
10853 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10854
10855 /* Save this because create_internal_breakpoint below invalidates
10856 'wp_frame'. */
10857 frame_id watchpoint_frame = get_frame_id (wp_frame);
10858
10859 /* If the expression is "local", then set up a "watchpoint scope"
10860 breakpoint at the point where we've left the scope of the watchpoint
10861 expression. Create the scope breakpoint before the watchpoint, so
10862 that we will encounter it first in bpstat_stop_status. */
10863 if (exp_valid_block != NULL && wp_frame != NULL)
10864 {
10865 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10866
10867 if (frame_id_p (caller_frame_id))
10868 {
10869 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10870 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10871
10872 scope_breakpoint
10873 = create_internal_breakpoint (caller_arch, caller_pc,
10874 bp_watchpoint_scope,
10875 &momentary_breakpoint_ops);
10876
10877 /* create_internal_breakpoint could invalidate WP_FRAME. */
10878 wp_frame = NULL;
10879
10880 scope_breakpoint->enable_state = bp_enabled;
10881
10882 /* Automatically delete the breakpoint when it hits. */
10883 scope_breakpoint->disposition = disp_del;
10884
10885 /* Only break in the proper frame (help with recursion). */
10886 scope_breakpoint->frame_id = caller_frame_id;
10887
10888 /* Set the address at which we will stop. */
10889 scope_breakpoint->loc->gdbarch = caller_arch;
10890 scope_breakpoint->loc->requested_address = caller_pc;
10891 scope_breakpoint->loc->address
10892 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10893 scope_breakpoint->loc->requested_address,
10894 scope_breakpoint->type);
10895 }
10896 }
10897
10898 /* Now set up the breakpoint. We create all watchpoints as hardware
10899 watchpoints here even if hardware watchpoints are turned off, a call
10900 to update_watchpoint later in this function will cause the type to
10901 drop back to bp_watchpoint (software watchpoint) if required. */
10902
10903 if (accessflag == hw_read)
10904 bp_type = bp_read_watchpoint;
10905 else if (accessflag == hw_access)
10906 bp_type = bp_access_watchpoint;
10907 else
10908 bp_type = bp_hardware_watchpoint;
10909
10910 std::unique_ptr<watchpoint> w (new watchpoint ());
10911
10912 if (use_mask)
10913 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10914 &masked_watchpoint_breakpoint_ops);
10915 else
10916 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10917 &watchpoint_breakpoint_ops);
10918 w->thread = thread;
10919 w->disposition = disp_donttouch;
10920 w->pspace = current_program_space;
10921 w->exp = std::move (exp);
10922 w->exp_valid_block = exp_valid_block;
10923 w->cond_exp_valid_block = cond_exp_valid_block;
10924 if (just_location)
10925 {
10926 struct type *t = value_type (val);
10927 CORE_ADDR addr = value_as_address (val);
10928
10929 w->exp_string_reparse
10930 = current_language->la_watch_location_expression (t, addr).release ();
10931
10932 w->exp_string = xstrprintf ("-location %.*s",
10933 (int) (exp_end - exp_start), exp_start);
10934 }
10935 else
10936 w->exp_string = savestring (exp_start, exp_end - exp_start);
10937
10938 if (use_mask)
10939 {
10940 w->hw_wp_mask = mask;
10941 }
10942 else
10943 {
10944 w->val = val;
10945 w->val_bitpos = saved_bitpos;
10946 w->val_bitsize = saved_bitsize;
10947 w->val_valid = 1;
10948 }
10949
10950 if (cond_start)
10951 w->cond_string = savestring (cond_start, cond_end - cond_start);
10952 else
10953 w->cond_string = 0;
10954
10955 if (frame_id_p (watchpoint_frame))
10956 {
10957 w->watchpoint_frame = watchpoint_frame;
10958 w->watchpoint_thread = inferior_ptid;
10959 }
10960 else
10961 {
10962 w->watchpoint_frame = null_frame_id;
10963 w->watchpoint_thread = null_ptid;
10964 }
10965
10966 if (scope_breakpoint != NULL)
10967 {
10968 /* The scope breakpoint is related to the watchpoint. We will
10969 need to act on them together. */
10970 w->related_breakpoint = scope_breakpoint;
10971 scope_breakpoint->related_breakpoint = w.get ();
10972 }
10973
10974 if (!just_location)
10975 value_free_to_mark (mark);
10976
10977 /* Finally update the new watchpoint. This creates the locations
10978 that should be inserted. */
10979 update_watchpoint (w.get (), 1);
10980
10981 install_breakpoint (internal, std::move (w), 1);
10982 }
10983
10984 /* Return count of debug registers needed to watch the given expression.
10985 If the watchpoint cannot be handled in hardware return zero. */
10986
10987 static int
10988 can_use_hardware_watchpoint (struct value *v)
10989 {
10990 int found_memory_cnt = 0;
10991 struct value *head = v;
10992
10993 /* Did the user specifically forbid us to use hardware watchpoints? */
10994 if (!can_use_hw_watchpoints)
10995 return 0;
10996
10997 /* Make sure that the value of the expression depends only upon
10998 memory contents, and values computed from them within GDB. If we
10999 find any register references or function calls, we can't use a
11000 hardware watchpoint.
11001
11002 The idea here is that evaluating an expression generates a series
11003 of values, one holding the value of every subexpression. (The
11004 expression a*b+c has five subexpressions: a, b, a*b, c, and
11005 a*b+c.) GDB's values hold almost enough information to establish
11006 the criteria given above --- they identify memory lvalues,
11007 register lvalues, computed values, etcetera. So we can evaluate
11008 the expression, and then scan the chain of values that leaves
11009 behind to decide whether we can detect any possible change to the
11010 expression's final value using only hardware watchpoints.
11011
11012 However, I don't think that the values returned by inferior
11013 function calls are special in any way. So this function may not
11014 notice that an expression involving an inferior function call
11015 can't be watched with hardware watchpoints. FIXME. */
11016 for (; v; v = value_next (v))
11017 {
11018 if (VALUE_LVAL (v) == lval_memory)
11019 {
11020 if (v != head && value_lazy (v))
11021 /* A lazy memory lvalue in the chain is one that GDB never
11022 needed to fetch; we either just used its address (e.g.,
11023 `a' in `a.b') or we never needed it at all (e.g., `a'
11024 in `a,b'). This doesn't apply to HEAD; if that is
11025 lazy then it was not readable, but watch it anyway. */
11026 ;
11027 else
11028 {
11029 /* Ahh, memory we actually used! Check if we can cover
11030 it with hardware watchpoints. */
11031 struct type *vtype = check_typedef (value_type (v));
11032
11033 /* We only watch structs and arrays if user asked for it
11034 explicitly, never if they just happen to appear in a
11035 middle of some value chain. */
11036 if (v == head
11037 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11038 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11039 {
11040 CORE_ADDR vaddr = value_address (v);
11041 int len;
11042 int num_regs;
11043
11044 len = (target_exact_watchpoints
11045 && is_scalar_type_recursive (vtype))?
11046 1 : TYPE_LENGTH (value_type (v));
11047
11048 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11049 if (!num_regs)
11050 return 0;
11051 else
11052 found_memory_cnt += num_regs;
11053 }
11054 }
11055 }
11056 else if (VALUE_LVAL (v) != not_lval
11057 && deprecated_value_modifiable (v) == 0)
11058 return 0; /* These are values from the history (e.g., $1). */
11059 else if (VALUE_LVAL (v) == lval_register)
11060 return 0; /* Cannot watch a register with a HW watchpoint. */
11061 }
11062
11063 /* The expression itself looks suitable for using a hardware
11064 watchpoint, but give the target machine a chance to reject it. */
11065 return found_memory_cnt;
11066 }
11067
11068 void
11069 watch_command_wrapper (const char *arg, int from_tty, int internal)
11070 {
11071 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11072 }
11073
11074 /* A helper function that looks for the "-location" argument and then
11075 calls watch_command_1. */
11076
11077 static void
11078 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11079 {
11080 int just_location = 0;
11081
11082 if (arg
11083 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11084 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11085 {
11086 arg = skip_spaces (arg);
11087 just_location = 1;
11088 }
11089
11090 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11091 }
11092
11093 static void
11094 watch_command (char *arg, int from_tty)
11095 {
11096 watch_maybe_just_location (arg, hw_write, from_tty);
11097 }
11098
11099 void
11100 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11101 {
11102 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11103 }
11104
11105 static void
11106 rwatch_command (char *arg, int from_tty)
11107 {
11108 watch_maybe_just_location (arg, hw_read, from_tty);
11109 }
11110
11111 void
11112 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11113 {
11114 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11115 }
11116
11117 static void
11118 awatch_command (char *arg, int from_tty)
11119 {
11120 watch_maybe_just_location (arg, hw_access, from_tty);
11121 }
11122 \f
11123
11124 /* Data for the FSM that manages the until(location)/advance commands
11125 in infcmd.c. Here because it uses the mechanisms of
11126 breakpoints. */
11127
11128 struct until_break_fsm
11129 {
11130 /* The base class. */
11131 struct thread_fsm thread_fsm;
11132
11133 /* The thread that as current when the command was executed. */
11134 int thread;
11135
11136 /* The breakpoint set at the destination location. */
11137 struct breakpoint *location_breakpoint;
11138
11139 /* Breakpoint set at the return address in the caller frame. May be
11140 NULL. */
11141 struct breakpoint *caller_breakpoint;
11142 };
11143
11144 static void until_break_fsm_clean_up (struct thread_fsm *self,
11145 struct thread_info *thread);
11146 static int until_break_fsm_should_stop (struct thread_fsm *self,
11147 struct thread_info *thread);
11148 static enum async_reply_reason
11149 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11150
11151 /* until_break_fsm's vtable. */
11152
11153 static struct thread_fsm_ops until_break_fsm_ops =
11154 {
11155 NULL, /* dtor */
11156 until_break_fsm_clean_up,
11157 until_break_fsm_should_stop,
11158 NULL, /* return_value */
11159 until_break_fsm_async_reply_reason,
11160 };
11161
11162 /* Allocate a new until_break_command_fsm. */
11163
11164 static struct until_break_fsm *
11165 new_until_break_fsm (struct interp *cmd_interp, int thread,
11166 struct breakpoint *location_breakpoint,
11167 struct breakpoint *caller_breakpoint)
11168 {
11169 struct until_break_fsm *sm;
11170
11171 sm = XCNEW (struct until_break_fsm);
11172 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11173
11174 sm->thread = thread;
11175 sm->location_breakpoint = location_breakpoint;
11176 sm->caller_breakpoint = caller_breakpoint;
11177
11178 return sm;
11179 }
11180
11181 /* Implementation of the 'should_stop' FSM method for the
11182 until(location)/advance commands. */
11183
11184 static int
11185 until_break_fsm_should_stop (struct thread_fsm *self,
11186 struct thread_info *tp)
11187 {
11188 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11189
11190 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11191 sm->location_breakpoint) != NULL
11192 || (sm->caller_breakpoint != NULL
11193 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11194 sm->caller_breakpoint) != NULL))
11195 thread_fsm_set_finished (self);
11196
11197 return 1;
11198 }
11199
11200 /* Implementation of the 'clean_up' FSM method for the
11201 until(location)/advance commands. */
11202
11203 static void
11204 until_break_fsm_clean_up (struct thread_fsm *self,
11205 struct thread_info *thread)
11206 {
11207 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11208
11209 /* Clean up our temporary breakpoints. */
11210 if (sm->location_breakpoint != NULL)
11211 {
11212 delete_breakpoint (sm->location_breakpoint);
11213 sm->location_breakpoint = NULL;
11214 }
11215 if (sm->caller_breakpoint != NULL)
11216 {
11217 delete_breakpoint (sm->caller_breakpoint);
11218 sm->caller_breakpoint = NULL;
11219 }
11220 delete_longjmp_breakpoint (sm->thread);
11221 }
11222
11223 /* Implementation of the 'async_reply_reason' FSM method for the
11224 until(location)/advance commands. */
11225
11226 static enum async_reply_reason
11227 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11228 {
11229 return EXEC_ASYNC_LOCATION_REACHED;
11230 }
11231
11232 void
11233 until_break_command (const char *arg, int from_tty, int anywhere)
11234 {
11235 struct frame_info *frame;
11236 struct gdbarch *frame_gdbarch;
11237 struct frame_id stack_frame_id;
11238 struct frame_id caller_frame_id;
11239 struct breakpoint *location_breakpoint;
11240 struct breakpoint *caller_breakpoint = NULL;
11241 struct cleanup *old_chain;
11242 int thread;
11243 struct thread_info *tp;
11244 struct until_break_fsm *sm;
11245
11246 clear_proceed_status (0);
11247
11248 /* Set a breakpoint where the user wants it and at return from
11249 this function. */
11250
11251 event_location_up location = string_to_event_location (&arg, current_language);
11252
11253 std::vector<symtab_and_line> sals
11254 = (last_displayed_sal_is_valid ()
11255 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11256 get_last_displayed_symtab (),
11257 get_last_displayed_line ())
11258 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11259 NULL, (struct symtab *) NULL, 0));
11260
11261 if (sals.size () != 1)
11262 error (_("Couldn't get information on specified line."));
11263
11264 symtab_and_line &sal = sals[0];
11265
11266 if (*arg)
11267 error (_("Junk at end of arguments."));
11268
11269 resolve_sal_pc (&sal);
11270
11271 tp = inferior_thread ();
11272 thread = tp->global_num;
11273
11274 old_chain = make_cleanup (null_cleanup, NULL);
11275
11276 /* Note linespec handling above invalidates the frame chain.
11277 Installing a breakpoint also invalidates the frame chain (as it
11278 may need to switch threads), so do any frame handling before
11279 that. */
11280
11281 frame = get_selected_frame (NULL);
11282 frame_gdbarch = get_frame_arch (frame);
11283 stack_frame_id = get_stack_frame_id (frame);
11284 caller_frame_id = frame_unwind_caller_id (frame);
11285
11286 /* Keep within the current frame, or in frames called by the current
11287 one. */
11288
11289 if (frame_id_p (caller_frame_id))
11290 {
11291 struct symtab_and_line sal2;
11292 struct gdbarch *caller_gdbarch;
11293
11294 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11295 sal2.pc = frame_unwind_caller_pc (frame);
11296 caller_gdbarch = frame_unwind_caller_arch (frame);
11297 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11298 sal2,
11299 caller_frame_id,
11300 bp_until);
11301 make_cleanup_delete_breakpoint (caller_breakpoint);
11302
11303 set_longjmp_breakpoint (tp, caller_frame_id);
11304 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11305 }
11306
11307 /* set_momentary_breakpoint could invalidate FRAME. */
11308 frame = NULL;
11309
11310 if (anywhere)
11311 /* If the user told us to continue until a specified location,
11312 we don't specify a frame at which we need to stop. */
11313 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11314 null_frame_id, bp_until);
11315 else
11316 /* Otherwise, specify the selected frame, because we want to stop
11317 only at the very same frame. */
11318 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11319 stack_frame_id, bp_until);
11320 make_cleanup_delete_breakpoint (location_breakpoint);
11321
11322 sm = new_until_break_fsm (command_interp (), tp->global_num,
11323 location_breakpoint, caller_breakpoint);
11324 tp->thread_fsm = &sm->thread_fsm;
11325
11326 discard_cleanups (old_chain);
11327
11328 proceed (-1, GDB_SIGNAL_DEFAULT);
11329 }
11330
11331 /* This function attempts to parse an optional "if <cond>" clause
11332 from the arg string. If one is not found, it returns NULL.
11333
11334 Else, it returns a pointer to the condition string. (It does not
11335 attempt to evaluate the string against a particular block.) And,
11336 it updates arg to point to the first character following the parsed
11337 if clause in the arg string. */
11338
11339 const char *
11340 ep_parse_optional_if_clause (const char **arg)
11341 {
11342 const char *cond_string;
11343
11344 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11345 return NULL;
11346
11347 /* Skip the "if" keyword. */
11348 (*arg) += 2;
11349
11350 /* Skip any extra leading whitespace, and record the start of the
11351 condition string. */
11352 *arg = skip_spaces (*arg);
11353 cond_string = *arg;
11354
11355 /* Assume that the condition occupies the remainder of the arg
11356 string. */
11357 (*arg) += strlen (cond_string);
11358
11359 return cond_string;
11360 }
11361
11362 /* Commands to deal with catching events, such as signals, exceptions,
11363 process start/exit, etc. */
11364
11365 typedef enum
11366 {
11367 catch_fork_temporary, catch_vfork_temporary,
11368 catch_fork_permanent, catch_vfork_permanent
11369 }
11370 catch_fork_kind;
11371
11372 static void
11373 catch_fork_command_1 (char *arg_entry, int from_tty,
11374 struct cmd_list_element *command)
11375 {
11376 const char *arg = arg_entry;
11377 struct gdbarch *gdbarch = get_current_arch ();
11378 const char *cond_string = NULL;
11379 catch_fork_kind fork_kind;
11380 int tempflag;
11381
11382 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11383 tempflag = (fork_kind == catch_fork_temporary
11384 || fork_kind == catch_vfork_temporary);
11385
11386 if (!arg)
11387 arg = "";
11388 arg = skip_spaces (arg);
11389
11390 /* The allowed syntax is:
11391 catch [v]fork
11392 catch [v]fork if <cond>
11393
11394 First, check if there's an if clause. */
11395 cond_string = ep_parse_optional_if_clause (&arg);
11396
11397 if ((*arg != '\0') && !isspace (*arg))
11398 error (_("Junk at end of arguments."));
11399
11400 /* If this target supports it, create a fork or vfork catchpoint
11401 and enable reporting of such events. */
11402 switch (fork_kind)
11403 {
11404 case catch_fork_temporary:
11405 case catch_fork_permanent:
11406 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11407 &catch_fork_breakpoint_ops);
11408 break;
11409 case catch_vfork_temporary:
11410 case catch_vfork_permanent:
11411 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11412 &catch_vfork_breakpoint_ops);
11413 break;
11414 default:
11415 error (_("unsupported or unknown fork kind; cannot catch it"));
11416 break;
11417 }
11418 }
11419
11420 static void
11421 catch_exec_command_1 (char *arg_entry, int from_tty,
11422 struct cmd_list_element *command)
11423 {
11424 const char *arg = arg_entry;
11425 struct gdbarch *gdbarch = get_current_arch ();
11426 int tempflag;
11427 const char *cond_string = NULL;
11428
11429 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11430
11431 if (!arg)
11432 arg = "";
11433 arg = skip_spaces (arg);
11434
11435 /* The allowed syntax is:
11436 catch exec
11437 catch exec if <cond>
11438
11439 First, check if there's an if clause. */
11440 cond_string = ep_parse_optional_if_clause (&arg);
11441
11442 if ((*arg != '\0') && !isspace (*arg))
11443 error (_("Junk at end of arguments."));
11444
11445 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11446 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11447 &catch_exec_breakpoint_ops);
11448 c->exec_pathname = NULL;
11449
11450 install_breakpoint (0, std::move (c), 1);
11451 }
11452
11453 void
11454 init_ada_exception_breakpoint (struct breakpoint *b,
11455 struct gdbarch *gdbarch,
11456 struct symtab_and_line sal,
11457 const char *addr_string,
11458 const struct breakpoint_ops *ops,
11459 int tempflag,
11460 int enabled,
11461 int from_tty)
11462 {
11463 if (from_tty)
11464 {
11465 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11466 if (!loc_gdbarch)
11467 loc_gdbarch = gdbarch;
11468
11469 describe_other_breakpoints (loc_gdbarch,
11470 sal.pspace, sal.pc, sal.section, -1);
11471 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11472 version for exception catchpoints, because two catchpoints
11473 used for different exception names will use the same address.
11474 In this case, a "breakpoint ... also set at..." warning is
11475 unproductive. Besides, the warning phrasing is also a bit
11476 inappropriate, we should use the word catchpoint, and tell
11477 the user what type of catchpoint it is. The above is good
11478 enough for now, though. */
11479 }
11480
11481 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11482
11483 b->enable_state = enabled ? bp_enabled : bp_disabled;
11484 b->disposition = tempflag ? disp_del : disp_donttouch;
11485 b->location = string_to_event_location (&addr_string,
11486 language_def (language_ada));
11487 b->language = language_ada;
11488 }
11489
11490 static void
11491 catch_command (const char *arg, int from_tty)
11492 {
11493 error (_("Catch requires an event name."));
11494 }
11495 \f
11496
11497 static void
11498 tcatch_command (const char *arg, int from_tty)
11499 {
11500 error (_("Catch requires an event name."));
11501 }
11502
11503 /* Compare two breakpoints and return a strcmp-like result. */
11504
11505 static int
11506 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11507 {
11508 uintptr_t ua = (uintptr_t) a;
11509 uintptr_t ub = (uintptr_t) b;
11510
11511 if (a->number < b->number)
11512 return -1;
11513 else if (a->number > b->number)
11514 return 1;
11515
11516 /* Now sort by address, in case we see, e..g, two breakpoints with
11517 the number 0. */
11518 if (ua < ub)
11519 return -1;
11520 return ua > ub ? 1 : 0;
11521 }
11522
11523 /* Delete breakpoints by address or line. */
11524
11525 static void
11526 clear_command (char *arg, int from_tty)
11527 {
11528 struct breakpoint *b;
11529 int default_match;
11530 int i;
11531
11532 std::vector<symtab_and_line> decoded_sals;
11533 symtab_and_line last_sal;
11534 gdb::array_view<symtab_and_line> sals;
11535 if (arg)
11536 {
11537 decoded_sals
11538 = decode_line_with_current_source (arg,
11539 (DECODE_LINE_FUNFIRSTLINE
11540 | DECODE_LINE_LIST_MODE));
11541 default_match = 0;
11542 sals = decoded_sals;
11543 }
11544 else
11545 {
11546 /* Set sal's line, symtab, pc, and pspace to the values
11547 corresponding to the last call to print_frame_info. If the
11548 codepoint is not valid, this will set all the fields to 0. */
11549 last_sal = get_last_displayed_sal ();
11550 if (last_sal.symtab == 0)
11551 error (_("No source file specified."));
11552
11553 default_match = 1;
11554 sals = last_sal;
11555 }
11556
11557 /* We don't call resolve_sal_pc here. That's not as bad as it
11558 seems, because all existing breakpoints typically have both
11559 file/line and pc set. So, if clear is given file/line, we can
11560 match this to existing breakpoint without obtaining pc at all.
11561
11562 We only support clearing given the address explicitly
11563 present in breakpoint table. Say, we've set breakpoint
11564 at file:line. There were several PC values for that file:line,
11565 due to optimization, all in one block.
11566
11567 We've picked one PC value. If "clear" is issued with another
11568 PC corresponding to the same file:line, the breakpoint won't
11569 be cleared. We probably can still clear the breakpoint, but
11570 since the other PC value is never presented to user, user
11571 can only find it by guessing, and it does not seem important
11572 to support that. */
11573
11574 /* For each line spec given, delete bps which correspond to it. Do
11575 it in two passes, solely to preserve the current behavior that
11576 from_tty is forced true if we delete more than one
11577 breakpoint. */
11578
11579 std::vector<struct breakpoint *> found;
11580 for (const auto &sal : sals)
11581 {
11582 const char *sal_fullname;
11583
11584 /* If exact pc given, clear bpts at that pc.
11585 If line given (pc == 0), clear all bpts on specified line.
11586 If defaulting, clear all bpts on default line
11587 or at default pc.
11588
11589 defaulting sal.pc != 0 tests to do
11590
11591 0 1 pc
11592 1 1 pc _and_ line
11593 0 0 line
11594 1 0 <can't happen> */
11595
11596 sal_fullname = (sal.symtab == NULL
11597 ? NULL : symtab_to_fullname (sal.symtab));
11598
11599 /* Find all matching breakpoints and add them to 'found'. */
11600 ALL_BREAKPOINTS (b)
11601 {
11602 int match = 0;
11603 /* Are we going to delete b? */
11604 if (b->type != bp_none && !is_watchpoint (b))
11605 {
11606 struct bp_location *loc = b->loc;
11607 for (; loc; loc = loc->next)
11608 {
11609 /* If the user specified file:line, don't allow a PC
11610 match. This matches historical gdb behavior. */
11611 int pc_match = (!sal.explicit_line
11612 && sal.pc
11613 && (loc->pspace == sal.pspace)
11614 && (loc->address == sal.pc)
11615 && (!section_is_overlay (loc->section)
11616 || loc->section == sal.section));
11617 int line_match = 0;
11618
11619 if ((default_match || sal.explicit_line)
11620 && loc->symtab != NULL
11621 && sal_fullname != NULL
11622 && sal.pspace == loc->pspace
11623 && loc->line_number == sal.line
11624 && filename_cmp (symtab_to_fullname (loc->symtab),
11625 sal_fullname) == 0)
11626 line_match = 1;
11627
11628 if (pc_match || line_match)
11629 {
11630 match = 1;
11631 break;
11632 }
11633 }
11634 }
11635
11636 if (match)
11637 found.push_back (b);
11638 }
11639 }
11640
11641 /* Now go thru the 'found' chain and delete them. */
11642 if (found.empty ())
11643 {
11644 if (arg)
11645 error (_("No breakpoint at %s."), arg);
11646 else
11647 error (_("No breakpoint at this line."));
11648 }
11649
11650 /* Remove duplicates from the vec. */
11651 std::sort (found.begin (), found.end (),
11652 [] (const breakpoint *a, const breakpoint *b)
11653 {
11654 return compare_breakpoints (a, b) < 0;
11655 });
11656 found.erase (std::unique (found.begin (), found.end (),
11657 [] (const breakpoint *a, const breakpoint *b)
11658 {
11659 return compare_breakpoints (a, b) == 0;
11660 }),
11661 found.end ());
11662
11663 if (found.size () > 1)
11664 from_tty = 1; /* Always report if deleted more than one. */
11665 if (from_tty)
11666 {
11667 if (found.size () == 1)
11668 printf_unfiltered (_("Deleted breakpoint "));
11669 else
11670 printf_unfiltered (_("Deleted breakpoints "));
11671 }
11672
11673 for (breakpoint *iter : found)
11674 {
11675 if (from_tty)
11676 printf_unfiltered ("%d ", iter->number);
11677 delete_breakpoint (iter);
11678 }
11679 if (from_tty)
11680 putchar_unfiltered ('\n');
11681 }
11682 \f
11683 /* Delete breakpoint in BS if they are `delete' breakpoints and
11684 all breakpoints that are marked for deletion, whether hit or not.
11685 This is called after any breakpoint is hit, or after errors. */
11686
11687 void
11688 breakpoint_auto_delete (bpstat bs)
11689 {
11690 struct breakpoint *b, *b_tmp;
11691
11692 for (; bs; bs = bs->next)
11693 if (bs->breakpoint_at
11694 && bs->breakpoint_at->disposition == disp_del
11695 && bs->stop)
11696 delete_breakpoint (bs->breakpoint_at);
11697
11698 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11699 {
11700 if (b->disposition == disp_del_at_next_stop)
11701 delete_breakpoint (b);
11702 }
11703 }
11704
11705 /* A comparison function for bp_location AP and BP being interfaced to
11706 qsort. Sort elements primarily by their ADDRESS (no matter what
11707 does breakpoint_address_is_meaningful say for its OWNER),
11708 secondarily by ordering first permanent elements and
11709 terciarily just ensuring the array is sorted stable way despite
11710 qsort being an unstable algorithm. */
11711
11712 static int
11713 bp_locations_compare (const void *ap, const void *bp)
11714 {
11715 const struct bp_location *a = *(const struct bp_location **) ap;
11716 const struct bp_location *b = *(const struct bp_location **) bp;
11717
11718 if (a->address != b->address)
11719 return (a->address > b->address) - (a->address < b->address);
11720
11721 /* Sort locations at the same address by their pspace number, keeping
11722 locations of the same inferior (in a multi-inferior environment)
11723 grouped. */
11724
11725 if (a->pspace->num != b->pspace->num)
11726 return ((a->pspace->num > b->pspace->num)
11727 - (a->pspace->num < b->pspace->num));
11728
11729 /* Sort permanent breakpoints first. */
11730 if (a->permanent != b->permanent)
11731 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11732
11733 /* Make the internal GDB representation stable across GDB runs
11734 where A and B memory inside GDB can differ. Breakpoint locations of
11735 the same type at the same address can be sorted in arbitrary order. */
11736
11737 if (a->owner->number != b->owner->number)
11738 return ((a->owner->number > b->owner->number)
11739 - (a->owner->number < b->owner->number));
11740
11741 return (a > b) - (a < b);
11742 }
11743
11744 /* Set bp_locations_placed_address_before_address_max and
11745 bp_locations_shadow_len_after_address_max according to the current
11746 content of the bp_locations array. */
11747
11748 static void
11749 bp_locations_target_extensions_update (void)
11750 {
11751 struct bp_location *bl, **blp_tmp;
11752
11753 bp_locations_placed_address_before_address_max = 0;
11754 bp_locations_shadow_len_after_address_max = 0;
11755
11756 ALL_BP_LOCATIONS (bl, blp_tmp)
11757 {
11758 CORE_ADDR start, end, addr;
11759
11760 if (!bp_location_has_shadow (bl))
11761 continue;
11762
11763 start = bl->target_info.placed_address;
11764 end = start + bl->target_info.shadow_len;
11765
11766 gdb_assert (bl->address >= start);
11767 addr = bl->address - start;
11768 if (addr > bp_locations_placed_address_before_address_max)
11769 bp_locations_placed_address_before_address_max = addr;
11770
11771 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11772
11773 gdb_assert (bl->address < end);
11774 addr = end - bl->address;
11775 if (addr > bp_locations_shadow_len_after_address_max)
11776 bp_locations_shadow_len_after_address_max = addr;
11777 }
11778 }
11779
11780 /* Download tracepoint locations if they haven't been. */
11781
11782 static void
11783 download_tracepoint_locations (void)
11784 {
11785 struct breakpoint *b;
11786 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11787
11788 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11789
11790 ALL_TRACEPOINTS (b)
11791 {
11792 struct bp_location *bl;
11793 struct tracepoint *t;
11794 int bp_location_downloaded = 0;
11795
11796 if ((b->type == bp_fast_tracepoint
11797 ? !may_insert_fast_tracepoints
11798 : !may_insert_tracepoints))
11799 continue;
11800
11801 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11802 {
11803 if (target_can_download_tracepoint ())
11804 can_download_tracepoint = TRIBOOL_TRUE;
11805 else
11806 can_download_tracepoint = TRIBOOL_FALSE;
11807 }
11808
11809 if (can_download_tracepoint == TRIBOOL_FALSE)
11810 break;
11811
11812 for (bl = b->loc; bl; bl = bl->next)
11813 {
11814 /* In tracepoint, locations are _never_ duplicated, so
11815 should_be_inserted is equivalent to
11816 unduplicated_should_be_inserted. */
11817 if (!should_be_inserted (bl) || bl->inserted)
11818 continue;
11819
11820 switch_to_program_space_and_thread (bl->pspace);
11821
11822 target_download_tracepoint (bl);
11823
11824 bl->inserted = 1;
11825 bp_location_downloaded = 1;
11826 }
11827 t = (struct tracepoint *) b;
11828 t->number_on_target = b->number;
11829 if (bp_location_downloaded)
11830 observer_notify_breakpoint_modified (b);
11831 }
11832 }
11833
11834 /* Swap the insertion/duplication state between two locations. */
11835
11836 static void
11837 swap_insertion (struct bp_location *left, struct bp_location *right)
11838 {
11839 const int left_inserted = left->inserted;
11840 const int left_duplicate = left->duplicate;
11841 const int left_needs_update = left->needs_update;
11842 const struct bp_target_info left_target_info = left->target_info;
11843
11844 /* Locations of tracepoints can never be duplicated. */
11845 if (is_tracepoint (left->owner))
11846 gdb_assert (!left->duplicate);
11847 if (is_tracepoint (right->owner))
11848 gdb_assert (!right->duplicate);
11849
11850 left->inserted = right->inserted;
11851 left->duplicate = right->duplicate;
11852 left->needs_update = right->needs_update;
11853 left->target_info = right->target_info;
11854 right->inserted = left_inserted;
11855 right->duplicate = left_duplicate;
11856 right->needs_update = left_needs_update;
11857 right->target_info = left_target_info;
11858 }
11859
11860 /* Force the re-insertion of the locations at ADDRESS. This is called
11861 once a new/deleted/modified duplicate location is found and we are evaluating
11862 conditions on the target's side. Such conditions need to be updated on
11863 the target. */
11864
11865 static void
11866 force_breakpoint_reinsertion (struct bp_location *bl)
11867 {
11868 struct bp_location **locp = NULL, **loc2p;
11869 struct bp_location *loc;
11870 CORE_ADDR address = 0;
11871 int pspace_num;
11872
11873 address = bl->address;
11874 pspace_num = bl->pspace->num;
11875
11876 /* This is only meaningful if the target is
11877 evaluating conditions and if the user has
11878 opted for condition evaluation on the target's
11879 side. */
11880 if (gdb_evaluates_breakpoint_condition_p ()
11881 || !target_supports_evaluation_of_breakpoint_conditions ())
11882 return;
11883
11884 /* Flag all breakpoint locations with this address and
11885 the same program space as the location
11886 as "its condition has changed". We need to
11887 update the conditions on the target's side. */
11888 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11889 {
11890 loc = *loc2p;
11891
11892 if (!is_breakpoint (loc->owner)
11893 || pspace_num != loc->pspace->num)
11894 continue;
11895
11896 /* Flag the location appropriately. We use a different state to
11897 let everyone know that we already updated the set of locations
11898 with addr bl->address and program space bl->pspace. This is so
11899 we don't have to keep calling these functions just to mark locations
11900 that have already been marked. */
11901 loc->condition_changed = condition_updated;
11902
11903 /* Free the agent expression bytecode as well. We will compute
11904 it later on. */
11905 loc->cond_bytecode.reset ();
11906 }
11907 }
11908 /* Called whether new breakpoints are created, or existing breakpoints
11909 deleted, to update the global location list and recompute which
11910 locations are duplicate of which.
11911
11912 The INSERT_MODE flag determines whether locations may not, may, or
11913 shall be inserted now. See 'enum ugll_insert_mode' for more
11914 info. */
11915
11916 static void
11917 update_global_location_list (enum ugll_insert_mode insert_mode)
11918 {
11919 struct breakpoint *b;
11920 struct bp_location **locp, *loc;
11921 /* Last breakpoint location address that was marked for update. */
11922 CORE_ADDR last_addr = 0;
11923 /* Last breakpoint location program space that was marked for update. */
11924 int last_pspace_num = -1;
11925
11926 /* Used in the duplicates detection below. When iterating over all
11927 bp_locations, points to the first bp_location of a given address.
11928 Breakpoints and watchpoints of different types are never
11929 duplicates of each other. Keep one pointer for each type of
11930 breakpoint/watchpoint, so we only need to loop over all locations
11931 once. */
11932 struct bp_location *bp_loc_first; /* breakpoint */
11933 struct bp_location *wp_loc_first; /* hardware watchpoint */
11934 struct bp_location *awp_loc_first; /* access watchpoint */
11935 struct bp_location *rwp_loc_first; /* read watchpoint */
11936
11937 /* Saved former bp_locations array which we compare against the newly
11938 built bp_locations from the current state of ALL_BREAKPOINTS. */
11939 struct bp_location **old_locp;
11940 unsigned old_locations_count;
11941 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11942
11943 old_locations_count = bp_locations_count;
11944 bp_locations = NULL;
11945 bp_locations_count = 0;
11946
11947 ALL_BREAKPOINTS (b)
11948 for (loc = b->loc; loc; loc = loc->next)
11949 bp_locations_count++;
11950
11951 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11952 locp = bp_locations;
11953 ALL_BREAKPOINTS (b)
11954 for (loc = b->loc; loc; loc = loc->next)
11955 *locp++ = loc;
11956 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11957 bp_locations_compare);
11958
11959 bp_locations_target_extensions_update ();
11960
11961 /* Identify bp_location instances that are no longer present in the
11962 new list, and therefore should be freed. Note that it's not
11963 necessary that those locations should be removed from inferior --
11964 if there's another location at the same address (previously
11965 marked as duplicate), we don't need to remove/insert the
11966 location.
11967
11968 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11969 and former bp_location array state respectively. */
11970
11971 locp = bp_locations;
11972 for (old_locp = old_locations.get ();
11973 old_locp < old_locations.get () + old_locations_count;
11974 old_locp++)
11975 {
11976 struct bp_location *old_loc = *old_locp;
11977 struct bp_location **loc2p;
11978
11979 /* Tells if 'old_loc' is found among the new locations. If
11980 not, we have to free it. */
11981 int found_object = 0;
11982 /* Tells if the location should remain inserted in the target. */
11983 int keep_in_target = 0;
11984 int removed = 0;
11985
11986 /* Skip LOCP entries which will definitely never be needed.
11987 Stop either at or being the one matching OLD_LOC. */
11988 while (locp < bp_locations + bp_locations_count
11989 && (*locp)->address < old_loc->address)
11990 locp++;
11991
11992 for (loc2p = locp;
11993 (loc2p < bp_locations + bp_locations_count
11994 && (*loc2p)->address == old_loc->address);
11995 loc2p++)
11996 {
11997 /* Check if this is a new/duplicated location or a duplicated
11998 location that had its condition modified. If so, we want to send
11999 its condition to the target if evaluation of conditions is taking
12000 place there. */
12001 if ((*loc2p)->condition_changed == condition_modified
12002 && (last_addr != old_loc->address
12003 || last_pspace_num != old_loc->pspace->num))
12004 {
12005 force_breakpoint_reinsertion (*loc2p);
12006 last_pspace_num = old_loc->pspace->num;
12007 }
12008
12009 if (*loc2p == old_loc)
12010 found_object = 1;
12011 }
12012
12013 /* We have already handled this address, update it so that we don't
12014 have to go through updates again. */
12015 last_addr = old_loc->address;
12016
12017 /* Target-side condition evaluation: Handle deleted locations. */
12018 if (!found_object)
12019 force_breakpoint_reinsertion (old_loc);
12020
12021 /* If this location is no longer present, and inserted, look if
12022 there's maybe a new location at the same address. If so,
12023 mark that one inserted, and don't remove this one. This is
12024 needed so that we don't have a time window where a breakpoint
12025 at certain location is not inserted. */
12026
12027 if (old_loc->inserted)
12028 {
12029 /* If the location is inserted now, we might have to remove
12030 it. */
12031
12032 if (found_object && should_be_inserted (old_loc))
12033 {
12034 /* The location is still present in the location list,
12035 and still should be inserted. Don't do anything. */
12036 keep_in_target = 1;
12037 }
12038 else
12039 {
12040 /* This location still exists, but it won't be kept in the
12041 target since it may have been disabled. We proceed to
12042 remove its target-side condition. */
12043
12044 /* The location is either no longer present, or got
12045 disabled. See if there's another location at the
12046 same address, in which case we don't need to remove
12047 this one from the target. */
12048
12049 /* OLD_LOC comes from existing struct breakpoint. */
12050 if (breakpoint_address_is_meaningful (old_loc->owner))
12051 {
12052 for (loc2p = locp;
12053 (loc2p < bp_locations + bp_locations_count
12054 && (*loc2p)->address == old_loc->address);
12055 loc2p++)
12056 {
12057 struct bp_location *loc2 = *loc2p;
12058
12059 if (breakpoint_locations_match (loc2, old_loc))
12060 {
12061 /* Read watchpoint locations are switched to
12062 access watchpoints, if the former are not
12063 supported, but the latter are. */
12064 if (is_hardware_watchpoint (old_loc->owner))
12065 {
12066 gdb_assert (is_hardware_watchpoint (loc2->owner));
12067 loc2->watchpoint_type = old_loc->watchpoint_type;
12068 }
12069
12070 /* loc2 is a duplicated location. We need to check
12071 if it should be inserted in case it will be
12072 unduplicated. */
12073 if (loc2 != old_loc
12074 && unduplicated_should_be_inserted (loc2))
12075 {
12076 swap_insertion (old_loc, loc2);
12077 keep_in_target = 1;
12078 break;
12079 }
12080 }
12081 }
12082 }
12083 }
12084
12085 if (!keep_in_target)
12086 {
12087 if (remove_breakpoint (old_loc))
12088 {
12089 /* This is just about all we can do. We could keep
12090 this location on the global list, and try to
12091 remove it next time, but there's no particular
12092 reason why we will succeed next time.
12093
12094 Note that at this point, old_loc->owner is still
12095 valid, as delete_breakpoint frees the breakpoint
12096 only after calling us. */
12097 printf_filtered (_("warning: Error removing "
12098 "breakpoint %d\n"),
12099 old_loc->owner->number);
12100 }
12101 removed = 1;
12102 }
12103 }
12104
12105 if (!found_object)
12106 {
12107 if (removed && target_is_non_stop_p ()
12108 && need_moribund_for_location_type (old_loc))
12109 {
12110 /* This location was removed from the target. In
12111 non-stop mode, a race condition is possible where
12112 we've removed a breakpoint, but stop events for that
12113 breakpoint are already queued and will arrive later.
12114 We apply an heuristic to be able to distinguish such
12115 SIGTRAPs from other random SIGTRAPs: we keep this
12116 breakpoint location for a bit, and will retire it
12117 after we see some number of events. The theory here
12118 is that reporting of events should, "on the average",
12119 be fair, so after a while we'll see events from all
12120 threads that have anything of interest, and no longer
12121 need to keep this breakpoint location around. We
12122 don't hold locations forever so to reduce chances of
12123 mistaking a non-breakpoint SIGTRAP for a breakpoint
12124 SIGTRAP.
12125
12126 The heuristic failing can be disastrous on
12127 decr_pc_after_break targets.
12128
12129 On decr_pc_after_break targets, like e.g., x86-linux,
12130 if we fail to recognize a late breakpoint SIGTRAP,
12131 because events_till_retirement has reached 0 too
12132 soon, we'll fail to do the PC adjustment, and report
12133 a random SIGTRAP to the user. When the user resumes
12134 the inferior, it will most likely immediately crash
12135 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12136 corrupted, because of being resumed e.g., in the
12137 middle of a multi-byte instruction, or skipped a
12138 one-byte instruction. This was actually seen happen
12139 on native x86-linux, and should be less rare on
12140 targets that do not support new thread events, like
12141 remote, due to the heuristic depending on
12142 thread_count.
12143
12144 Mistaking a random SIGTRAP for a breakpoint trap
12145 causes similar symptoms (PC adjustment applied when
12146 it shouldn't), but then again, playing with SIGTRAPs
12147 behind the debugger's back is asking for trouble.
12148
12149 Since hardware watchpoint traps are always
12150 distinguishable from other traps, so we don't need to
12151 apply keep hardware watchpoint moribund locations
12152 around. We simply always ignore hardware watchpoint
12153 traps we can no longer explain. */
12154
12155 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12156 old_loc->owner = NULL;
12157
12158 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12159 }
12160 else
12161 {
12162 old_loc->owner = NULL;
12163 decref_bp_location (&old_loc);
12164 }
12165 }
12166 }
12167
12168 /* Rescan breakpoints at the same address and section, marking the
12169 first one as "first" and any others as "duplicates". This is so
12170 that the bpt instruction is only inserted once. If we have a
12171 permanent breakpoint at the same place as BPT, make that one the
12172 official one, and the rest as duplicates. Permanent breakpoints
12173 are sorted first for the same address.
12174
12175 Do the same for hardware watchpoints, but also considering the
12176 watchpoint's type (regular/access/read) and length. */
12177
12178 bp_loc_first = NULL;
12179 wp_loc_first = NULL;
12180 awp_loc_first = NULL;
12181 rwp_loc_first = NULL;
12182 ALL_BP_LOCATIONS (loc, locp)
12183 {
12184 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12185 non-NULL. */
12186 struct bp_location **loc_first_p;
12187 b = loc->owner;
12188
12189 if (!unduplicated_should_be_inserted (loc)
12190 || !breakpoint_address_is_meaningful (b)
12191 /* Don't detect duplicate for tracepoint locations because they are
12192 never duplicated. See the comments in field `duplicate' of
12193 `struct bp_location'. */
12194 || is_tracepoint (b))
12195 {
12196 /* Clear the condition modification flag. */
12197 loc->condition_changed = condition_unchanged;
12198 continue;
12199 }
12200
12201 if (b->type == bp_hardware_watchpoint)
12202 loc_first_p = &wp_loc_first;
12203 else if (b->type == bp_read_watchpoint)
12204 loc_first_p = &rwp_loc_first;
12205 else if (b->type == bp_access_watchpoint)
12206 loc_first_p = &awp_loc_first;
12207 else
12208 loc_first_p = &bp_loc_first;
12209
12210 if (*loc_first_p == NULL
12211 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12212 || !breakpoint_locations_match (loc, *loc_first_p))
12213 {
12214 *loc_first_p = loc;
12215 loc->duplicate = 0;
12216
12217 if (is_breakpoint (loc->owner) && loc->condition_changed)
12218 {
12219 loc->needs_update = 1;
12220 /* Clear the condition modification flag. */
12221 loc->condition_changed = condition_unchanged;
12222 }
12223 continue;
12224 }
12225
12226
12227 /* This and the above ensure the invariant that the first location
12228 is not duplicated, and is the inserted one.
12229 All following are marked as duplicated, and are not inserted. */
12230 if (loc->inserted)
12231 swap_insertion (loc, *loc_first_p);
12232 loc->duplicate = 1;
12233
12234 /* Clear the condition modification flag. */
12235 loc->condition_changed = condition_unchanged;
12236 }
12237
12238 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12239 {
12240 if (insert_mode != UGLL_DONT_INSERT)
12241 insert_breakpoint_locations ();
12242 else
12243 {
12244 /* Even though the caller told us to not insert new
12245 locations, we may still need to update conditions on the
12246 target's side of breakpoints that were already inserted
12247 if the target is evaluating breakpoint conditions. We
12248 only update conditions for locations that are marked
12249 "needs_update". */
12250 update_inserted_breakpoint_locations ();
12251 }
12252 }
12253
12254 if (insert_mode != UGLL_DONT_INSERT)
12255 download_tracepoint_locations ();
12256 }
12257
12258 void
12259 breakpoint_retire_moribund (void)
12260 {
12261 struct bp_location *loc;
12262 int ix;
12263
12264 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12265 if (--(loc->events_till_retirement) == 0)
12266 {
12267 decref_bp_location (&loc);
12268 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12269 --ix;
12270 }
12271 }
12272
12273 static void
12274 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12275 {
12276
12277 TRY
12278 {
12279 update_global_location_list (insert_mode);
12280 }
12281 CATCH (e, RETURN_MASK_ERROR)
12282 {
12283 }
12284 END_CATCH
12285 }
12286
12287 /* Clear BKP from a BPS. */
12288
12289 static void
12290 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12291 {
12292 bpstat bs;
12293
12294 for (bs = bps; bs; bs = bs->next)
12295 if (bs->breakpoint_at == bpt)
12296 {
12297 bs->breakpoint_at = NULL;
12298 bs->old_val = NULL;
12299 /* bs->commands will be freed later. */
12300 }
12301 }
12302
12303 /* Callback for iterate_over_threads. */
12304 static int
12305 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12306 {
12307 struct breakpoint *bpt = (struct breakpoint *) data;
12308
12309 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12310 return 0;
12311 }
12312
12313 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12314 callbacks. */
12315
12316 static void
12317 say_where (struct breakpoint *b)
12318 {
12319 struct value_print_options opts;
12320
12321 get_user_print_options (&opts);
12322
12323 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12324 single string. */
12325 if (b->loc == NULL)
12326 {
12327 /* For pending locations, the output differs slightly based
12328 on b->extra_string. If this is non-NULL, it contains either
12329 a condition or dprintf arguments. */
12330 if (b->extra_string == NULL)
12331 {
12332 printf_filtered (_(" (%s) pending."),
12333 event_location_to_string (b->location.get ()));
12334 }
12335 else if (b->type == bp_dprintf)
12336 {
12337 printf_filtered (_(" (%s,%s) pending."),
12338 event_location_to_string (b->location.get ()),
12339 b->extra_string);
12340 }
12341 else
12342 {
12343 printf_filtered (_(" (%s %s) pending."),
12344 event_location_to_string (b->location.get ()),
12345 b->extra_string);
12346 }
12347 }
12348 else
12349 {
12350 if (opts.addressprint || b->loc->symtab == NULL)
12351 {
12352 printf_filtered (" at ");
12353 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12354 gdb_stdout);
12355 }
12356 if (b->loc->symtab != NULL)
12357 {
12358 /* If there is a single location, we can print the location
12359 more nicely. */
12360 if (b->loc->next == NULL)
12361 printf_filtered (": file %s, line %d.",
12362 symtab_to_filename_for_display (b->loc->symtab),
12363 b->loc->line_number);
12364 else
12365 /* This is not ideal, but each location may have a
12366 different file name, and this at least reflects the
12367 real situation somewhat. */
12368 printf_filtered (": %s.",
12369 event_location_to_string (b->location.get ()));
12370 }
12371
12372 if (b->loc->next)
12373 {
12374 struct bp_location *loc = b->loc;
12375 int n = 0;
12376 for (; loc; loc = loc->next)
12377 ++n;
12378 printf_filtered (" (%d locations)", n);
12379 }
12380 }
12381 }
12382
12383 /* Default bp_location_ops methods. */
12384
12385 static void
12386 bp_location_dtor (struct bp_location *self)
12387 {
12388 xfree (self->function_name);
12389 }
12390
12391 static const struct bp_location_ops bp_location_ops =
12392 {
12393 bp_location_dtor
12394 };
12395
12396 /* Destructor for the breakpoint base class. */
12397
12398 breakpoint::~breakpoint ()
12399 {
12400 xfree (this->cond_string);
12401 xfree (this->extra_string);
12402 xfree (this->filter);
12403 }
12404
12405 static struct bp_location *
12406 base_breakpoint_allocate_location (struct breakpoint *self)
12407 {
12408 return new bp_location (&bp_location_ops, self);
12409 }
12410
12411 static void
12412 base_breakpoint_re_set (struct breakpoint *b)
12413 {
12414 /* Nothing to re-set. */
12415 }
12416
12417 #define internal_error_pure_virtual_called() \
12418 gdb_assert_not_reached ("pure virtual function called")
12419
12420 static int
12421 base_breakpoint_insert_location (struct bp_location *bl)
12422 {
12423 internal_error_pure_virtual_called ();
12424 }
12425
12426 static int
12427 base_breakpoint_remove_location (struct bp_location *bl,
12428 enum remove_bp_reason reason)
12429 {
12430 internal_error_pure_virtual_called ();
12431 }
12432
12433 static int
12434 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12435 struct address_space *aspace,
12436 CORE_ADDR bp_addr,
12437 const struct target_waitstatus *ws)
12438 {
12439 internal_error_pure_virtual_called ();
12440 }
12441
12442 static void
12443 base_breakpoint_check_status (bpstat bs)
12444 {
12445 /* Always stop. */
12446 }
12447
12448 /* A "works_in_software_mode" breakpoint_ops method that just internal
12449 errors. */
12450
12451 static int
12452 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12453 {
12454 internal_error_pure_virtual_called ();
12455 }
12456
12457 /* A "resources_needed" breakpoint_ops method that just internal
12458 errors. */
12459
12460 static int
12461 base_breakpoint_resources_needed (const struct bp_location *bl)
12462 {
12463 internal_error_pure_virtual_called ();
12464 }
12465
12466 static enum print_stop_action
12467 base_breakpoint_print_it (bpstat bs)
12468 {
12469 internal_error_pure_virtual_called ();
12470 }
12471
12472 static void
12473 base_breakpoint_print_one_detail (const struct breakpoint *self,
12474 struct ui_out *uiout)
12475 {
12476 /* nothing */
12477 }
12478
12479 static void
12480 base_breakpoint_print_mention (struct breakpoint *b)
12481 {
12482 internal_error_pure_virtual_called ();
12483 }
12484
12485 static void
12486 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12487 {
12488 internal_error_pure_virtual_called ();
12489 }
12490
12491 static void
12492 base_breakpoint_create_sals_from_location
12493 (const struct event_location *location,
12494 struct linespec_result *canonical,
12495 enum bptype type_wanted)
12496 {
12497 internal_error_pure_virtual_called ();
12498 }
12499
12500 static void
12501 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12502 struct linespec_result *c,
12503 gdb::unique_xmalloc_ptr<char> cond_string,
12504 gdb::unique_xmalloc_ptr<char> extra_string,
12505 enum bptype type_wanted,
12506 enum bpdisp disposition,
12507 int thread,
12508 int task, int ignore_count,
12509 const struct breakpoint_ops *o,
12510 int from_tty, int enabled,
12511 int internal, unsigned flags)
12512 {
12513 internal_error_pure_virtual_called ();
12514 }
12515
12516 static std::vector<symtab_and_line>
12517 base_breakpoint_decode_location (struct breakpoint *b,
12518 const struct event_location *location,
12519 struct program_space *search_pspace)
12520 {
12521 internal_error_pure_virtual_called ();
12522 }
12523
12524 /* The default 'explains_signal' method. */
12525
12526 static int
12527 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12528 {
12529 return 1;
12530 }
12531
12532 /* The default "after_condition_true" method. */
12533
12534 static void
12535 base_breakpoint_after_condition_true (struct bpstats *bs)
12536 {
12537 /* Nothing to do. */
12538 }
12539
12540 struct breakpoint_ops base_breakpoint_ops =
12541 {
12542 base_breakpoint_allocate_location,
12543 base_breakpoint_re_set,
12544 base_breakpoint_insert_location,
12545 base_breakpoint_remove_location,
12546 base_breakpoint_breakpoint_hit,
12547 base_breakpoint_check_status,
12548 base_breakpoint_resources_needed,
12549 base_breakpoint_works_in_software_mode,
12550 base_breakpoint_print_it,
12551 NULL,
12552 base_breakpoint_print_one_detail,
12553 base_breakpoint_print_mention,
12554 base_breakpoint_print_recreate,
12555 base_breakpoint_create_sals_from_location,
12556 base_breakpoint_create_breakpoints_sal,
12557 base_breakpoint_decode_location,
12558 base_breakpoint_explains_signal,
12559 base_breakpoint_after_condition_true,
12560 };
12561
12562 /* Default breakpoint_ops methods. */
12563
12564 static void
12565 bkpt_re_set (struct breakpoint *b)
12566 {
12567 /* FIXME: is this still reachable? */
12568 if (breakpoint_event_location_empty_p (b))
12569 {
12570 /* Anything without a location can't be re-set. */
12571 delete_breakpoint (b);
12572 return;
12573 }
12574
12575 breakpoint_re_set_default (b);
12576 }
12577
12578 static int
12579 bkpt_insert_location (struct bp_location *bl)
12580 {
12581 CORE_ADDR addr = bl->target_info.reqstd_address;
12582
12583 bl->target_info.kind = breakpoint_kind (bl, &addr);
12584 bl->target_info.placed_address = addr;
12585
12586 if (bl->loc_type == bp_loc_hardware_breakpoint)
12587 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12588 else
12589 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12590 }
12591
12592 static int
12593 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12594 {
12595 if (bl->loc_type == bp_loc_hardware_breakpoint)
12596 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12597 else
12598 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12599 }
12600
12601 static int
12602 bkpt_breakpoint_hit (const struct bp_location *bl,
12603 struct address_space *aspace, CORE_ADDR bp_addr,
12604 const struct target_waitstatus *ws)
12605 {
12606 if (ws->kind != TARGET_WAITKIND_STOPPED
12607 || ws->value.sig != GDB_SIGNAL_TRAP)
12608 return 0;
12609
12610 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12611 aspace, bp_addr))
12612 return 0;
12613
12614 if (overlay_debugging /* unmapped overlay section */
12615 && section_is_overlay (bl->section)
12616 && !section_is_mapped (bl->section))
12617 return 0;
12618
12619 return 1;
12620 }
12621
12622 static int
12623 dprintf_breakpoint_hit (const struct bp_location *bl,
12624 struct address_space *aspace, CORE_ADDR bp_addr,
12625 const struct target_waitstatus *ws)
12626 {
12627 if (dprintf_style == dprintf_style_agent
12628 && target_can_run_breakpoint_commands ())
12629 {
12630 /* An agent-style dprintf never causes a stop. If we see a trap
12631 for this address it must be for a breakpoint that happens to
12632 be set at the same address. */
12633 return 0;
12634 }
12635
12636 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12637 }
12638
12639 static int
12640 bkpt_resources_needed (const struct bp_location *bl)
12641 {
12642 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12643
12644 return 1;
12645 }
12646
12647 static enum print_stop_action
12648 bkpt_print_it (bpstat bs)
12649 {
12650 struct breakpoint *b;
12651 const struct bp_location *bl;
12652 int bp_temp;
12653 struct ui_out *uiout = current_uiout;
12654
12655 gdb_assert (bs->bp_location_at != NULL);
12656
12657 bl = bs->bp_location_at;
12658 b = bs->breakpoint_at;
12659
12660 bp_temp = b->disposition == disp_del;
12661 if (bl->address != bl->requested_address)
12662 breakpoint_adjustment_warning (bl->requested_address,
12663 bl->address,
12664 b->number, 1);
12665 annotate_breakpoint (b->number);
12666 maybe_print_thread_hit_breakpoint (uiout);
12667
12668 if (bp_temp)
12669 uiout->text ("Temporary breakpoint ");
12670 else
12671 uiout->text ("Breakpoint ");
12672 if (uiout->is_mi_like_p ())
12673 {
12674 uiout->field_string ("reason",
12675 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12676 uiout->field_string ("disp", bpdisp_text (b->disposition));
12677 }
12678 uiout->field_int ("bkptno", b->number);
12679 uiout->text (", ");
12680
12681 return PRINT_SRC_AND_LOC;
12682 }
12683
12684 static void
12685 bkpt_print_mention (struct breakpoint *b)
12686 {
12687 if (current_uiout->is_mi_like_p ())
12688 return;
12689
12690 switch (b->type)
12691 {
12692 case bp_breakpoint:
12693 case bp_gnu_ifunc_resolver:
12694 if (b->disposition == disp_del)
12695 printf_filtered (_("Temporary breakpoint"));
12696 else
12697 printf_filtered (_("Breakpoint"));
12698 printf_filtered (_(" %d"), b->number);
12699 if (b->type == bp_gnu_ifunc_resolver)
12700 printf_filtered (_(" at gnu-indirect-function resolver"));
12701 break;
12702 case bp_hardware_breakpoint:
12703 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12704 break;
12705 case bp_dprintf:
12706 printf_filtered (_("Dprintf %d"), b->number);
12707 break;
12708 }
12709
12710 say_where (b);
12711 }
12712
12713 static void
12714 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12715 {
12716 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12717 fprintf_unfiltered (fp, "tbreak");
12718 else if (tp->type == bp_breakpoint)
12719 fprintf_unfiltered (fp, "break");
12720 else if (tp->type == bp_hardware_breakpoint
12721 && tp->disposition == disp_del)
12722 fprintf_unfiltered (fp, "thbreak");
12723 else if (tp->type == bp_hardware_breakpoint)
12724 fprintf_unfiltered (fp, "hbreak");
12725 else
12726 internal_error (__FILE__, __LINE__,
12727 _("unhandled breakpoint type %d"), (int) tp->type);
12728
12729 fprintf_unfiltered (fp, " %s",
12730 event_location_to_string (tp->location.get ()));
12731
12732 /* Print out extra_string if this breakpoint is pending. It might
12733 contain, for example, conditions that were set by the user. */
12734 if (tp->loc == NULL && tp->extra_string != NULL)
12735 fprintf_unfiltered (fp, " %s", tp->extra_string);
12736
12737 print_recreate_thread (tp, fp);
12738 }
12739
12740 static void
12741 bkpt_create_sals_from_location (const struct event_location *location,
12742 struct linespec_result *canonical,
12743 enum bptype type_wanted)
12744 {
12745 create_sals_from_location_default (location, canonical, type_wanted);
12746 }
12747
12748 static void
12749 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12750 struct linespec_result *canonical,
12751 gdb::unique_xmalloc_ptr<char> cond_string,
12752 gdb::unique_xmalloc_ptr<char> extra_string,
12753 enum bptype type_wanted,
12754 enum bpdisp disposition,
12755 int thread,
12756 int task, int ignore_count,
12757 const struct breakpoint_ops *ops,
12758 int from_tty, int enabled,
12759 int internal, unsigned flags)
12760 {
12761 create_breakpoints_sal_default (gdbarch, canonical,
12762 std::move (cond_string),
12763 std::move (extra_string),
12764 type_wanted,
12765 disposition, thread, task,
12766 ignore_count, ops, from_tty,
12767 enabled, internal, flags);
12768 }
12769
12770 static std::vector<symtab_and_line>
12771 bkpt_decode_location (struct breakpoint *b,
12772 const struct event_location *location,
12773 struct program_space *search_pspace)
12774 {
12775 return decode_location_default (b, location, search_pspace);
12776 }
12777
12778 /* Virtual table for internal breakpoints. */
12779
12780 static void
12781 internal_bkpt_re_set (struct breakpoint *b)
12782 {
12783 switch (b->type)
12784 {
12785 /* Delete overlay event and longjmp master breakpoints; they
12786 will be reset later by breakpoint_re_set. */
12787 case bp_overlay_event:
12788 case bp_longjmp_master:
12789 case bp_std_terminate_master:
12790 case bp_exception_master:
12791 delete_breakpoint (b);
12792 break;
12793
12794 /* This breakpoint is special, it's set up when the inferior
12795 starts and we really don't want to touch it. */
12796 case bp_shlib_event:
12797
12798 /* Like bp_shlib_event, this breakpoint type is special. Once
12799 it is set up, we do not want to touch it. */
12800 case bp_thread_event:
12801 break;
12802 }
12803 }
12804
12805 static void
12806 internal_bkpt_check_status (bpstat bs)
12807 {
12808 if (bs->breakpoint_at->type == bp_shlib_event)
12809 {
12810 /* If requested, stop when the dynamic linker notifies GDB of
12811 events. This allows the user to get control and place
12812 breakpoints in initializer routines for dynamically loaded
12813 objects (among other things). */
12814 bs->stop = stop_on_solib_events;
12815 bs->print = stop_on_solib_events;
12816 }
12817 else
12818 bs->stop = 0;
12819 }
12820
12821 static enum print_stop_action
12822 internal_bkpt_print_it (bpstat bs)
12823 {
12824 struct breakpoint *b;
12825
12826 b = bs->breakpoint_at;
12827
12828 switch (b->type)
12829 {
12830 case bp_shlib_event:
12831 /* Did we stop because the user set the stop_on_solib_events
12832 variable? (If so, we report this as a generic, "Stopped due
12833 to shlib event" message.) */
12834 print_solib_event (0);
12835 break;
12836
12837 case bp_thread_event:
12838 /* Not sure how we will get here.
12839 GDB should not stop for these breakpoints. */
12840 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12841 break;
12842
12843 case bp_overlay_event:
12844 /* By analogy with the thread event, GDB should not stop for these. */
12845 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12846 break;
12847
12848 case bp_longjmp_master:
12849 /* These should never be enabled. */
12850 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12851 break;
12852
12853 case bp_std_terminate_master:
12854 /* These should never be enabled. */
12855 printf_filtered (_("std::terminate Master Breakpoint: "
12856 "gdb should not stop!\n"));
12857 break;
12858
12859 case bp_exception_master:
12860 /* These should never be enabled. */
12861 printf_filtered (_("Exception Master Breakpoint: "
12862 "gdb should not stop!\n"));
12863 break;
12864 }
12865
12866 return PRINT_NOTHING;
12867 }
12868
12869 static void
12870 internal_bkpt_print_mention (struct breakpoint *b)
12871 {
12872 /* Nothing to mention. These breakpoints are internal. */
12873 }
12874
12875 /* Virtual table for momentary breakpoints */
12876
12877 static void
12878 momentary_bkpt_re_set (struct breakpoint *b)
12879 {
12880 /* Keep temporary breakpoints, which can be encountered when we step
12881 over a dlopen call and solib_add is resetting the breakpoints.
12882 Otherwise these should have been blown away via the cleanup chain
12883 or by breakpoint_init_inferior when we rerun the executable. */
12884 }
12885
12886 static void
12887 momentary_bkpt_check_status (bpstat bs)
12888 {
12889 /* Nothing. The point of these breakpoints is causing a stop. */
12890 }
12891
12892 static enum print_stop_action
12893 momentary_bkpt_print_it (bpstat bs)
12894 {
12895 return PRINT_UNKNOWN;
12896 }
12897
12898 static void
12899 momentary_bkpt_print_mention (struct breakpoint *b)
12900 {
12901 /* Nothing to mention. These breakpoints are internal. */
12902 }
12903
12904 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12905
12906 It gets cleared already on the removal of the first one of such placed
12907 breakpoints. This is OK as they get all removed altogether. */
12908
12909 longjmp_breakpoint::~longjmp_breakpoint ()
12910 {
12911 thread_info *tp = find_thread_global_id (this->thread);
12912
12913 if (tp != NULL)
12914 tp->initiating_frame = null_frame_id;
12915 }
12916
12917 /* Specific methods for probe breakpoints. */
12918
12919 static int
12920 bkpt_probe_insert_location (struct bp_location *bl)
12921 {
12922 int v = bkpt_insert_location (bl);
12923
12924 if (v == 0)
12925 {
12926 /* The insertion was successful, now let's set the probe's semaphore
12927 if needed. */
12928 if (bl->probe.probe->pops->set_semaphore != NULL)
12929 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
12930 bl->probe.objfile,
12931 bl->gdbarch);
12932 }
12933
12934 return v;
12935 }
12936
12937 static int
12938 bkpt_probe_remove_location (struct bp_location *bl,
12939 enum remove_bp_reason reason)
12940 {
12941 /* Let's clear the semaphore before removing the location. */
12942 if (bl->probe.probe->pops->clear_semaphore != NULL)
12943 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
12944 bl->probe.objfile,
12945 bl->gdbarch);
12946
12947 return bkpt_remove_location (bl, reason);
12948 }
12949
12950 static void
12951 bkpt_probe_create_sals_from_location (const struct event_location *location,
12952 struct linespec_result *canonical,
12953 enum bptype type_wanted)
12954 {
12955 struct linespec_sals lsal;
12956
12957 lsal.sals = parse_probes (location, NULL, canonical);
12958 lsal.canonical
12959 = xstrdup (event_location_to_string (canonical->location.get ()));
12960 canonical->lsals.push_back (std::move (lsal));
12961 }
12962
12963 static std::vector<symtab_and_line>
12964 bkpt_probe_decode_location (struct breakpoint *b,
12965 const struct event_location *location,
12966 struct program_space *search_pspace)
12967 {
12968 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12969 if (sals.empty ())
12970 error (_("probe not found"));
12971 return sals;
12972 }
12973
12974 /* The breakpoint_ops structure to be used in tracepoints. */
12975
12976 static void
12977 tracepoint_re_set (struct breakpoint *b)
12978 {
12979 breakpoint_re_set_default (b);
12980 }
12981
12982 static int
12983 tracepoint_breakpoint_hit (const struct bp_location *bl,
12984 struct address_space *aspace, CORE_ADDR bp_addr,
12985 const struct target_waitstatus *ws)
12986 {
12987 /* By definition, the inferior does not report stops at
12988 tracepoints. */
12989 return 0;
12990 }
12991
12992 static void
12993 tracepoint_print_one_detail (const struct breakpoint *self,
12994 struct ui_out *uiout)
12995 {
12996 struct tracepoint *tp = (struct tracepoint *) self;
12997 if (tp->static_trace_marker_id)
12998 {
12999 gdb_assert (self->type == bp_static_tracepoint);
13000
13001 uiout->text ("\tmarker id is ");
13002 uiout->field_string ("static-tracepoint-marker-string-id",
13003 tp->static_trace_marker_id);
13004 uiout->text ("\n");
13005 }
13006 }
13007
13008 static void
13009 tracepoint_print_mention (struct breakpoint *b)
13010 {
13011 if (current_uiout->is_mi_like_p ())
13012 return;
13013
13014 switch (b->type)
13015 {
13016 case bp_tracepoint:
13017 printf_filtered (_("Tracepoint"));
13018 printf_filtered (_(" %d"), b->number);
13019 break;
13020 case bp_fast_tracepoint:
13021 printf_filtered (_("Fast tracepoint"));
13022 printf_filtered (_(" %d"), b->number);
13023 break;
13024 case bp_static_tracepoint:
13025 printf_filtered (_("Static tracepoint"));
13026 printf_filtered (_(" %d"), b->number);
13027 break;
13028 default:
13029 internal_error (__FILE__, __LINE__,
13030 _("unhandled tracepoint type %d"), (int) b->type);
13031 }
13032
13033 say_where (b);
13034 }
13035
13036 static void
13037 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13038 {
13039 struct tracepoint *tp = (struct tracepoint *) self;
13040
13041 if (self->type == bp_fast_tracepoint)
13042 fprintf_unfiltered (fp, "ftrace");
13043 else if (self->type == bp_static_tracepoint)
13044 fprintf_unfiltered (fp, "strace");
13045 else if (self->type == bp_tracepoint)
13046 fprintf_unfiltered (fp, "trace");
13047 else
13048 internal_error (__FILE__, __LINE__,
13049 _("unhandled tracepoint type %d"), (int) self->type);
13050
13051 fprintf_unfiltered (fp, " %s",
13052 event_location_to_string (self->location.get ()));
13053 print_recreate_thread (self, fp);
13054
13055 if (tp->pass_count)
13056 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13057 }
13058
13059 static void
13060 tracepoint_create_sals_from_location (const struct event_location *location,
13061 struct linespec_result *canonical,
13062 enum bptype type_wanted)
13063 {
13064 create_sals_from_location_default (location, canonical, type_wanted);
13065 }
13066
13067 static void
13068 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13069 struct linespec_result *canonical,
13070 gdb::unique_xmalloc_ptr<char> cond_string,
13071 gdb::unique_xmalloc_ptr<char> extra_string,
13072 enum bptype type_wanted,
13073 enum bpdisp disposition,
13074 int thread,
13075 int task, int ignore_count,
13076 const struct breakpoint_ops *ops,
13077 int from_tty, int enabled,
13078 int internal, unsigned flags)
13079 {
13080 create_breakpoints_sal_default (gdbarch, canonical,
13081 std::move (cond_string),
13082 std::move (extra_string),
13083 type_wanted,
13084 disposition, thread, task,
13085 ignore_count, ops, from_tty,
13086 enabled, internal, flags);
13087 }
13088
13089 static std::vector<symtab_and_line>
13090 tracepoint_decode_location (struct breakpoint *b,
13091 const struct event_location *location,
13092 struct program_space *search_pspace)
13093 {
13094 return decode_location_default (b, location, search_pspace);
13095 }
13096
13097 struct breakpoint_ops tracepoint_breakpoint_ops;
13098
13099 /* The breakpoint_ops structure to be use on tracepoints placed in a
13100 static probe. */
13101
13102 static void
13103 tracepoint_probe_create_sals_from_location
13104 (const struct event_location *location,
13105 struct linespec_result *canonical,
13106 enum bptype type_wanted)
13107 {
13108 /* We use the same method for breakpoint on probes. */
13109 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13110 }
13111
13112 static std::vector<symtab_and_line>
13113 tracepoint_probe_decode_location (struct breakpoint *b,
13114 const struct event_location *location,
13115 struct program_space *search_pspace)
13116 {
13117 /* We use the same method for breakpoint on probes. */
13118 return bkpt_probe_decode_location (b, location, search_pspace);
13119 }
13120
13121 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13122
13123 /* Dprintf breakpoint_ops methods. */
13124
13125 static void
13126 dprintf_re_set (struct breakpoint *b)
13127 {
13128 breakpoint_re_set_default (b);
13129
13130 /* extra_string should never be non-NULL for dprintf. */
13131 gdb_assert (b->extra_string != NULL);
13132
13133 /* 1 - connect to target 1, that can run breakpoint commands.
13134 2 - create a dprintf, which resolves fine.
13135 3 - disconnect from target 1
13136 4 - connect to target 2, that can NOT run breakpoint commands.
13137
13138 After steps #3/#4, you'll want the dprintf command list to
13139 be updated, because target 1 and 2 may well return different
13140 answers for target_can_run_breakpoint_commands().
13141 Given absence of finer grained resetting, we get to do
13142 it all the time. */
13143 if (b->extra_string != NULL)
13144 update_dprintf_command_list (b);
13145 }
13146
13147 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13148
13149 static void
13150 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13151 {
13152 fprintf_unfiltered (fp, "dprintf %s,%s",
13153 event_location_to_string (tp->location.get ()),
13154 tp->extra_string);
13155 print_recreate_thread (tp, fp);
13156 }
13157
13158 /* Implement the "after_condition_true" breakpoint_ops method for
13159 dprintf.
13160
13161 dprintf's are implemented with regular commands in their command
13162 list, but we run the commands here instead of before presenting the
13163 stop to the user, as dprintf's don't actually cause a stop. This
13164 also makes it so that the commands of multiple dprintfs at the same
13165 address are all handled. */
13166
13167 static void
13168 dprintf_after_condition_true (struct bpstats *bs)
13169 {
13170 struct bpstats tmp_bs;
13171 struct bpstats *tmp_bs_p = &tmp_bs;
13172
13173 /* dprintf's never cause a stop. This wasn't set in the
13174 check_status hook instead because that would make the dprintf's
13175 condition not be evaluated. */
13176 bs->stop = 0;
13177
13178 /* Run the command list here. Take ownership of it instead of
13179 copying. We never want these commands to run later in
13180 bpstat_do_actions, if a breakpoint that causes a stop happens to
13181 be set at same address as this dprintf, or even if running the
13182 commands here throws. */
13183 tmp_bs.commands = bs->commands;
13184 bs->commands = NULL;
13185
13186 bpstat_do_actions_1 (&tmp_bs_p);
13187
13188 /* 'tmp_bs.commands' will usually be NULL by now, but
13189 bpstat_do_actions_1 may return early without processing the whole
13190 list. */
13191 }
13192
13193 /* The breakpoint_ops structure to be used on static tracepoints with
13194 markers (`-m'). */
13195
13196 static void
13197 strace_marker_create_sals_from_location (const struct event_location *location,
13198 struct linespec_result *canonical,
13199 enum bptype type_wanted)
13200 {
13201 struct linespec_sals lsal;
13202 const char *arg_start, *arg;
13203
13204 arg = arg_start = get_linespec_location (location);
13205 lsal.sals = decode_static_tracepoint_spec (&arg);
13206
13207 std::string str (arg_start, arg - arg_start);
13208 const char *ptr = str.c_str ();
13209 canonical->location = new_linespec_location (&ptr);
13210
13211 lsal.canonical
13212 = xstrdup (event_location_to_string (canonical->location.get ()));
13213 canonical->lsals.push_back (std::move (lsal));
13214 }
13215
13216 static void
13217 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13218 struct linespec_result *canonical,
13219 gdb::unique_xmalloc_ptr<char> cond_string,
13220 gdb::unique_xmalloc_ptr<char> extra_string,
13221 enum bptype type_wanted,
13222 enum bpdisp disposition,
13223 int thread,
13224 int task, int ignore_count,
13225 const struct breakpoint_ops *ops,
13226 int from_tty, int enabled,
13227 int internal, unsigned flags)
13228 {
13229 const linespec_sals &lsal = canonical->lsals[0];
13230
13231 /* If the user is creating a static tracepoint by marker id
13232 (strace -m MARKER_ID), then store the sals index, so that
13233 breakpoint_re_set can try to match up which of the newly
13234 found markers corresponds to this one, and, don't try to
13235 expand multiple locations for each sal, given than SALS
13236 already should contain all sals for MARKER_ID. */
13237
13238 for (size_t i = 0; i < lsal.sals.size (); i++)
13239 {
13240 event_location_up location
13241 = copy_event_location (canonical->location.get ());
13242
13243 std::unique_ptr<tracepoint> tp (new tracepoint ());
13244 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13245 std::move (location), NULL,
13246 std::move (cond_string),
13247 std::move (extra_string),
13248 type_wanted, disposition,
13249 thread, task, ignore_count, ops,
13250 from_tty, enabled, internal, flags,
13251 canonical->special_display);
13252 /* Given that its possible to have multiple markers with
13253 the same string id, if the user is creating a static
13254 tracepoint by marker id ("strace -m MARKER_ID"), then
13255 store the sals index, so that breakpoint_re_set can
13256 try to match up which of the newly found markers
13257 corresponds to this one */
13258 tp->static_trace_marker_id_idx = i;
13259
13260 install_breakpoint (internal, std::move (tp), 0);
13261 }
13262 }
13263
13264 static std::vector<symtab_and_line>
13265 strace_marker_decode_location (struct breakpoint *b,
13266 const struct event_location *location,
13267 struct program_space *search_pspace)
13268 {
13269 struct tracepoint *tp = (struct tracepoint *) b;
13270 const char *s = get_linespec_location (location);
13271
13272 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13273 if (sals.size () > tp->static_trace_marker_id_idx)
13274 {
13275 sals[0] = sals[tp->static_trace_marker_id_idx];
13276 sals.resize (1);
13277 return sals;
13278 }
13279 else
13280 error (_("marker %s not found"), tp->static_trace_marker_id);
13281 }
13282
13283 static struct breakpoint_ops strace_marker_breakpoint_ops;
13284
13285 static int
13286 strace_marker_p (struct breakpoint *b)
13287 {
13288 return b->ops == &strace_marker_breakpoint_ops;
13289 }
13290
13291 /* Delete a breakpoint and clean up all traces of it in the data
13292 structures. */
13293
13294 void
13295 delete_breakpoint (struct breakpoint *bpt)
13296 {
13297 struct breakpoint *b;
13298
13299 gdb_assert (bpt != NULL);
13300
13301 /* Has this bp already been deleted? This can happen because
13302 multiple lists can hold pointers to bp's. bpstat lists are
13303 especial culprits.
13304
13305 One example of this happening is a watchpoint's scope bp. When
13306 the scope bp triggers, we notice that the watchpoint is out of
13307 scope, and delete it. We also delete its scope bp. But the
13308 scope bp is marked "auto-deleting", and is already on a bpstat.
13309 That bpstat is then checked for auto-deleting bp's, which are
13310 deleted.
13311
13312 A real solution to this problem might involve reference counts in
13313 bp's, and/or giving them pointers back to their referencing
13314 bpstat's, and teaching delete_breakpoint to only free a bp's
13315 storage when no more references were extent. A cheaper bandaid
13316 was chosen. */
13317 if (bpt->type == bp_none)
13318 return;
13319
13320 /* At least avoid this stale reference until the reference counting
13321 of breakpoints gets resolved. */
13322 if (bpt->related_breakpoint != bpt)
13323 {
13324 struct breakpoint *related;
13325 struct watchpoint *w;
13326
13327 if (bpt->type == bp_watchpoint_scope)
13328 w = (struct watchpoint *) bpt->related_breakpoint;
13329 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13330 w = (struct watchpoint *) bpt;
13331 else
13332 w = NULL;
13333 if (w != NULL)
13334 watchpoint_del_at_next_stop (w);
13335
13336 /* Unlink bpt from the bpt->related_breakpoint ring. */
13337 for (related = bpt; related->related_breakpoint != bpt;
13338 related = related->related_breakpoint);
13339 related->related_breakpoint = bpt->related_breakpoint;
13340 bpt->related_breakpoint = bpt;
13341 }
13342
13343 /* watch_command_1 creates a watchpoint but only sets its number if
13344 update_watchpoint succeeds in creating its bp_locations. If there's
13345 a problem in that process, we'll be asked to delete the half-created
13346 watchpoint. In that case, don't announce the deletion. */
13347 if (bpt->number)
13348 observer_notify_breakpoint_deleted (bpt);
13349
13350 if (breakpoint_chain == bpt)
13351 breakpoint_chain = bpt->next;
13352
13353 ALL_BREAKPOINTS (b)
13354 if (b->next == bpt)
13355 {
13356 b->next = bpt->next;
13357 break;
13358 }
13359
13360 /* Be sure no bpstat's are pointing at the breakpoint after it's
13361 been freed. */
13362 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13363 in all threads for now. Note that we cannot just remove bpstats
13364 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13365 commands are associated with the bpstat; if we remove it here,
13366 then the later call to bpstat_do_actions (&stop_bpstat); in
13367 event-top.c won't do anything, and temporary breakpoints with
13368 commands won't work. */
13369
13370 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13371
13372 /* Now that breakpoint is removed from breakpoint list, update the
13373 global location list. This will remove locations that used to
13374 belong to this breakpoint. Do this before freeing the breakpoint
13375 itself, since remove_breakpoint looks at location's owner. It
13376 might be better design to have location completely
13377 self-contained, but it's not the case now. */
13378 update_global_location_list (UGLL_DONT_INSERT);
13379
13380 /* On the chance that someone will soon try again to delete this
13381 same bp, we mark it as deleted before freeing its storage. */
13382 bpt->type = bp_none;
13383 delete bpt;
13384 }
13385
13386 static void
13387 do_delete_breakpoint_cleanup (void *b)
13388 {
13389 delete_breakpoint ((struct breakpoint *) b);
13390 }
13391
13392 struct cleanup *
13393 make_cleanup_delete_breakpoint (struct breakpoint *b)
13394 {
13395 return make_cleanup (do_delete_breakpoint_cleanup, b);
13396 }
13397
13398 /* Iterator function to call a user-provided callback function once
13399 for each of B and its related breakpoints. */
13400
13401 static void
13402 iterate_over_related_breakpoints (struct breakpoint *b,
13403 gdb::function_view<void (breakpoint *)> function)
13404 {
13405 struct breakpoint *related;
13406
13407 related = b;
13408 do
13409 {
13410 struct breakpoint *next;
13411
13412 /* FUNCTION may delete RELATED. */
13413 next = related->related_breakpoint;
13414
13415 if (next == related)
13416 {
13417 /* RELATED is the last ring entry. */
13418 function (related);
13419
13420 /* FUNCTION may have deleted it, so we'd never reach back to
13421 B. There's nothing left to do anyway, so just break
13422 out. */
13423 break;
13424 }
13425 else
13426 function (related);
13427
13428 related = next;
13429 }
13430 while (related != b);
13431 }
13432
13433 static void
13434 delete_command (const char *arg, int from_tty)
13435 {
13436 struct breakpoint *b, *b_tmp;
13437
13438 dont_repeat ();
13439
13440 if (arg == 0)
13441 {
13442 int breaks_to_delete = 0;
13443
13444 /* Delete all breakpoints if no argument. Do not delete
13445 internal breakpoints, these have to be deleted with an
13446 explicit breakpoint number argument. */
13447 ALL_BREAKPOINTS (b)
13448 if (user_breakpoint_p (b))
13449 {
13450 breaks_to_delete = 1;
13451 break;
13452 }
13453
13454 /* Ask user only if there are some breakpoints to delete. */
13455 if (!from_tty
13456 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13457 {
13458 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13459 if (user_breakpoint_p (b))
13460 delete_breakpoint (b);
13461 }
13462 }
13463 else
13464 map_breakpoint_numbers
13465 (arg, [&] (breakpoint *b)
13466 {
13467 iterate_over_related_breakpoints (b, delete_breakpoint);
13468 });
13469 }
13470
13471 /* Return true if all locations of B bound to PSPACE are pending. If
13472 PSPACE is NULL, all locations of all program spaces are
13473 considered. */
13474
13475 static int
13476 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13477 {
13478 struct bp_location *loc;
13479
13480 for (loc = b->loc; loc != NULL; loc = loc->next)
13481 if ((pspace == NULL
13482 || loc->pspace == pspace)
13483 && !loc->shlib_disabled
13484 && !loc->pspace->executing_startup)
13485 return 0;
13486 return 1;
13487 }
13488
13489 /* Subroutine of update_breakpoint_locations to simplify it.
13490 Return non-zero if multiple fns in list LOC have the same name.
13491 Null names are ignored. */
13492
13493 static int
13494 ambiguous_names_p (struct bp_location *loc)
13495 {
13496 struct bp_location *l;
13497 htab_t htab = htab_create_alloc (13, htab_hash_string,
13498 (int (*) (const void *,
13499 const void *)) streq,
13500 NULL, xcalloc, xfree);
13501
13502 for (l = loc; l != NULL; l = l->next)
13503 {
13504 const char **slot;
13505 const char *name = l->function_name;
13506
13507 /* Allow for some names to be NULL, ignore them. */
13508 if (name == NULL)
13509 continue;
13510
13511 slot = (const char **) htab_find_slot (htab, (const void *) name,
13512 INSERT);
13513 /* NOTE: We can assume slot != NULL here because xcalloc never
13514 returns NULL. */
13515 if (*slot != NULL)
13516 {
13517 htab_delete (htab);
13518 return 1;
13519 }
13520 *slot = name;
13521 }
13522
13523 htab_delete (htab);
13524 return 0;
13525 }
13526
13527 /* When symbols change, it probably means the sources changed as well,
13528 and it might mean the static tracepoint markers are no longer at
13529 the same address or line numbers they used to be at last we
13530 checked. Losing your static tracepoints whenever you rebuild is
13531 undesirable. This function tries to resync/rematch gdb static
13532 tracepoints with the markers on the target, for static tracepoints
13533 that have not been set by marker id. Static tracepoint that have
13534 been set by marker id are reset by marker id in breakpoint_re_set.
13535 The heuristic is:
13536
13537 1) For a tracepoint set at a specific address, look for a marker at
13538 the old PC. If one is found there, assume to be the same marker.
13539 If the name / string id of the marker found is different from the
13540 previous known name, assume that means the user renamed the marker
13541 in the sources, and output a warning.
13542
13543 2) For a tracepoint set at a given line number, look for a marker
13544 at the new address of the old line number. If one is found there,
13545 assume to be the same marker. If the name / string id of the
13546 marker found is different from the previous known name, assume that
13547 means the user renamed the marker in the sources, and output a
13548 warning.
13549
13550 3) If a marker is no longer found at the same address or line, it
13551 may mean the marker no longer exists. But it may also just mean
13552 the code changed a bit. Maybe the user added a few lines of code
13553 that made the marker move up or down (in line number terms). Ask
13554 the target for info about the marker with the string id as we knew
13555 it. If found, update line number and address in the matching
13556 static tracepoint. This will get confused if there's more than one
13557 marker with the same ID (possible in UST, although unadvised
13558 precisely because it confuses tools). */
13559
13560 static struct symtab_and_line
13561 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13562 {
13563 struct tracepoint *tp = (struct tracepoint *) b;
13564 struct static_tracepoint_marker marker;
13565 CORE_ADDR pc;
13566
13567 pc = sal.pc;
13568 if (sal.line)
13569 find_line_pc (sal.symtab, sal.line, &pc);
13570
13571 if (target_static_tracepoint_marker_at (pc, &marker))
13572 {
13573 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13574 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13575 b->number,
13576 tp->static_trace_marker_id, marker.str_id);
13577
13578 xfree (tp->static_trace_marker_id);
13579 tp->static_trace_marker_id = xstrdup (marker.str_id);
13580 release_static_tracepoint_marker (&marker);
13581
13582 return sal;
13583 }
13584
13585 /* Old marker wasn't found on target at lineno. Try looking it up
13586 by string ID. */
13587 if (!sal.explicit_pc
13588 && sal.line != 0
13589 && sal.symtab != NULL
13590 && tp->static_trace_marker_id != NULL)
13591 {
13592 VEC(static_tracepoint_marker_p) *markers;
13593
13594 markers
13595 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13596
13597 if (!VEC_empty(static_tracepoint_marker_p, markers))
13598 {
13599 struct symbol *sym;
13600 struct static_tracepoint_marker *tpmarker;
13601 struct ui_out *uiout = current_uiout;
13602 struct explicit_location explicit_loc;
13603
13604 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13605
13606 xfree (tp->static_trace_marker_id);
13607 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13608
13609 warning (_("marker for static tracepoint %d (%s) not "
13610 "found at previous line number"),
13611 b->number, tp->static_trace_marker_id);
13612
13613 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13614 sym = find_pc_sect_function (tpmarker->address, NULL);
13615 uiout->text ("Now in ");
13616 if (sym)
13617 {
13618 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13619 uiout->text (" at ");
13620 }
13621 uiout->field_string ("file",
13622 symtab_to_filename_for_display (sal2.symtab));
13623 uiout->text (":");
13624
13625 if (uiout->is_mi_like_p ())
13626 {
13627 const char *fullname = symtab_to_fullname (sal2.symtab);
13628
13629 uiout->field_string ("fullname", fullname);
13630 }
13631
13632 uiout->field_int ("line", sal2.line);
13633 uiout->text ("\n");
13634
13635 b->loc->line_number = sal2.line;
13636 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13637
13638 b->location.reset (NULL);
13639 initialize_explicit_location (&explicit_loc);
13640 explicit_loc.source_filename
13641 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13642 explicit_loc.line_offset.offset = b->loc->line_number;
13643 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13644 b->location = new_explicit_location (&explicit_loc);
13645
13646 /* Might be nice to check if function changed, and warn if
13647 so. */
13648
13649 release_static_tracepoint_marker (tpmarker);
13650 }
13651 }
13652 return sal;
13653 }
13654
13655 /* Returns 1 iff locations A and B are sufficiently same that
13656 we don't need to report breakpoint as changed. */
13657
13658 static int
13659 locations_are_equal (struct bp_location *a, struct bp_location *b)
13660 {
13661 while (a && b)
13662 {
13663 if (a->address != b->address)
13664 return 0;
13665
13666 if (a->shlib_disabled != b->shlib_disabled)
13667 return 0;
13668
13669 if (a->enabled != b->enabled)
13670 return 0;
13671
13672 a = a->next;
13673 b = b->next;
13674 }
13675
13676 if ((a == NULL) != (b == NULL))
13677 return 0;
13678
13679 return 1;
13680 }
13681
13682 /* Split all locations of B that are bound to PSPACE out of B's
13683 location list to a separate list and return that list's head. If
13684 PSPACE is NULL, hoist out all locations of B. */
13685
13686 static struct bp_location *
13687 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13688 {
13689 struct bp_location head;
13690 struct bp_location *i = b->loc;
13691 struct bp_location **i_link = &b->loc;
13692 struct bp_location *hoisted = &head;
13693
13694 if (pspace == NULL)
13695 {
13696 i = b->loc;
13697 b->loc = NULL;
13698 return i;
13699 }
13700
13701 head.next = NULL;
13702
13703 while (i != NULL)
13704 {
13705 if (i->pspace == pspace)
13706 {
13707 *i_link = i->next;
13708 i->next = NULL;
13709 hoisted->next = i;
13710 hoisted = i;
13711 }
13712 else
13713 i_link = &i->next;
13714 i = *i_link;
13715 }
13716
13717 return head.next;
13718 }
13719
13720 /* Create new breakpoint locations for B (a hardware or software
13721 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13722 zero, then B is a ranged breakpoint. Only recreates locations for
13723 FILTER_PSPACE. Locations of other program spaces are left
13724 untouched. */
13725
13726 void
13727 update_breakpoint_locations (struct breakpoint *b,
13728 struct program_space *filter_pspace,
13729 gdb::array_view<const symtab_and_line> sals,
13730 gdb::array_view<const symtab_and_line> sals_end)
13731 {
13732 int i;
13733 struct bp_location *existing_locations;
13734
13735 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13736 {
13737 /* Ranged breakpoints have only one start location and one end
13738 location. */
13739 b->enable_state = bp_disabled;
13740 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13741 "multiple locations found\n"),
13742 b->number);
13743 return;
13744 }
13745
13746 /* If there's no new locations, and all existing locations are
13747 pending, don't do anything. This optimizes the common case where
13748 all locations are in the same shared library, that was unloaded.
13749 We'd like to retain the location, so that when the library is
13750 loaded again, we don't loose the enabled/disabled status of the
13751 individual locations. */
13752 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13753 return;
13754
13755 existing_locations = hoist_existing_locations (b, filter_pspace);
13756
13757 for (const auto &sal : sals)
13758 {
13759 struct bp_location *new_loc;
13760
13761 switch_to_program_space_and_thread (sal.pspace);
13762
13763 new_loc = add_location_to_breakpoint (b, &sal);
13764
13765 /* Reparse conditions, they might contain references to the
13766 old symtab. */
13767 if (b->cond_string != NULL)
13768 {
13769 const char *s;
13770
13771 s = b->cond_string;
13772 TRY
13773 {
13774 new_loc->cond = parse_exp_1 (&s, sal.pc,
13775 block_for_pc (sal.pc),
13776 0);
13777 }
13778 CATCH (e, RETURN_MASK_ERROR)
13779 {
13780 warning (_("failed to reevaluate condition "
13781 "for breakpoint %d: %s"),
13782 b->number, e.message);
13783 new_loc->enabled = 0;
13784 }
13785 END_CATCH
13786 }
13787
13788 if (!sals_end.empty ())
13789 {
13790 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13791
13792 new_loc->length = end - sals[0].pc + 1;
13793 }
13794 }
13795
13796 /* If possible, carry over 'disable' status from existing
13797 breakpoints. */
13798 {
13799 struct bp_location *e = existing_locations;
13800 /* If there are multiple breakpoints with the same function name,
13801 e.g. for inline functions, comparing function names won't work.
13802 Instead compare pc addresses; this is just a heuristic as things
13803 may have moved, but in practice it gives the correct answer
13804 often enough until a better solution is found. */
13805 int have_ambiguous_names = ambiguous_names_p (b->loc);
13806
13807 for (; e; e = e->next)
13808 {
13809 if (!e->enabled && e->function_name)
13810 {
13811 struct bp_location *l = b->loc;
13812 if (have_ambiguous_names)
13813 {
13814 for (; l; l = l->next)
13815 if (breakpoint_locations_match (e, l))
13816 {
13817 l->enabled = 0;
13818 break;
13819 }
13820 }
13821 else
13822 {
13823 for (; l; l = l->next)
13824 if (l->function_name
13825 && strcmp (e->function_name, l->function_name) == 0)
13826 {
13827 l->enabled = 0;
13828 break;
13829 }
13830 }
13831 }
13832 }
13833 }
13834
13835 if (!locations_are_equal (existing_locations, b->loc))
13836 observer_notify_breakpoint_modified (b);
13837 }
13838
13839 /* Find the SaL locations corresponding to the given LOCATION.
13840 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13841
13842 static std::vector<symtab_and_line>
13843 location_to_sals (struct breakpoint *b, struct event_location *location,
13844 struct program_space *search_pspace, int *found)
13845 {
13846 struct gdb_exception exception = exception_none;
13847
13848 gdb_assert (b->ops != NULL);
13849
13850 std::vector<symtab_and_line> sals;
13851
13852 TRY
13853 {
13854 sals = b->ops->decode_location (b, location, search_pspace);
13855 }
13856 CATCH (e, RETURN_MASK_ERROR)
13857 {
13858 int not_found_and_ok = 0;
13859
13860 exception = e;
13861
13862 /* For pending breakpoints, it's expected that parsing will
13863 fail until the right shared library is loaded. User has
13864 already told to create pending breakpoints and don't need
13865 extra messages. If breakpoint is in bp_shlib_disabled
13866 state, then user already saw the message about that
13867 breakpoint being disabled, and don't want to see more
13868 errors. */
13869 if (e.error == NOT_FOUND_ERROR
13870 && (b->condition_not_parsed
13871 || (b->loc != NULL
13872 && search_pspace != NULL
13873 && b->loc->pspace != search_pspace)
13874 || (b->loc && b->loc->shlib_disabled)
13875 || (b->loc && b->loc->pspace->executing_startup)
13876 || b->enable_state == bp_disabled))
13877 not_found_and_ok = 1;
13878
13879 if (!not_found_and_ok)
13880 {
13881 /* We surely don't want to warn about the same breakpoint
13882 10 times. One solution, implemented here, is disable
13883 the breakpoint on error. Another solution would be to
13884 have separate 'warning emitted' flag. Since this
13885 happens only when a binary has changed, I don't know
13886 which approach is better. */
13887 b->enable_state = bp_disabled;
13888 throw_exception (e);
13889 }
13890 }
13891 END_CATCH
13892
13893 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13894 {
13895 for (auto &sal : sals)
13896 resolve_sal_pc (&sal);
13897 if (b->condition_not_parsed && b->extra_string != NULL)
13898 {
13899 char *cond_string, *extra_string;
13900 int thread, task;
13901
13902 find_condition_and_thread (b->extra_string, sals[0].pc,
13903 &cond_string, &thread, &task,
13904 &extra_string);
13905 gdb_assert (b->cond_string == NULL);
13906 if (cond_string)
13907 b->cond_string = cond_string;
13908 b->thread = thread;
13909 b->task = task;
13910 if (extra_string)
13911 {
13912 xfree (b->extra_string);
13913 b->extra_string = extra_string;
13914 }
13915 b->condition_not_parsed = 0;
13916 }
13917
13918 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13919 sals[0] = update_static_tracepoint (b, sals[0]);
13920
13921 *found = 1;
13922 }
13923 else
13924 *found = 0;
13925
13926 return sals;
13927 }
13928
13929 /* The default re_set method, for typical hardware or software
13930 breakpoints. Reevaluate the breakpoint and recreate its
13931 locations. */
13932
13933 static void
13934 breakpoint_re_set_default (struct breakpoint *b)
13935 {
13936 struct program_space *filter_pspace = current_program_space;
13937 std::vector<symtab_and_line> expanded, expanded_end;
13938
13939 int found;
13940 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13941 filter_pspace, &found);
13942 if (found)
13943 expanded = std::move (sals);
13944
13945 if (b->location_range_end != NULL)
13946 {
13947 std::vector<symtab_and_line> sals_end
13948 = location_to_sals (b, b->location_range_end.get (),
13949 filter_pspace, &found);
13950 if (found)
13951 expanded_end = std::move (sals_end);
13952 }
13953
13954 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13955 }
13956
13957 /* Default method for creating SALs from an address string. It basically
13958 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13959
13960 static void
13961 create_sals_from_location_default (const struct event_location *location,
13962 struct linespec_result *canonical,
13963 enum bptype type_wanted)
13964 {
13965 parse_breakpoint_sals (location, canonical);
13966 }
13967
13968 /* Call create_breakpoints_sal for the given arguments. This is the default
13969 function for the `create_breakpoints_sal' method of
13970 breakpoint_ops. */
13971
13972 static void
13973 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13974 struct linespec_result *canonical,
13975 gdb::unique_xmalloc_ptr<char> cond_string,
13976 gdb::unique_xmalloc_ptr<char> extra_string,
13977 enum bptype type_wanted,
13978 enum bpdisp disposition,
13979 int thread,
13980 int task, int ignore_count,
13981 const struct breakpoint_ops *ops,
13982 int from_tty, int enabled,
13983 int internal, unsigned flags)
13984 {
13985 create_breakpoints_sal (gdbarch, canonical,
13986 std::move (cond_string),
13987 std::move (extra_string),
13988 type_wanted, disposition,
13989 thread, task, ignore_count, ops, from_tty,
13990 enabled, internal, flags);
13991 }
13992
13993 /* Decode the line represented by S by calling decode_line_full. This is the
13994 default function for the `decode_location' method of breakpoint_ops. */
13995
13996 static std::vector<symtab_and_line>
13997 decode_location_default (struct breakpoint *b,
13998 const struct event_location *location,
13999 struct program_space *search_pspace)
14000 {
14001 struct linespec_result canonical;
14002
14003 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
14004 (struct symtab *) NULL, 0,
14005 &canonical, multiple_symbols_all,
14006 b->filter);
14007
14008 /* We should get 0 or 1 resulting SALs. */
14009 gdb_assert (canonical.lsals.size () < 2);
14010
14011 if (!canonical.lsals.empty ())
14012 {
14013 const linespec_sals &lsal = canonical.lsals[0];
14014 return std::move (lsal.sals);
14015 }
14016 return {};
14017 }
14018
14019 /* Reset a breakpoint. */
14020
14021 static void
14022 breakpoint_re_set_one (breakpoint *b)
14023 {
14024 input_radix = b->input_radix;
14025 set_language (b->language);
14026
14027 b->ops->re_set (b);
14028 }
14029
14030 /* Re-set breakpoint locations for the current program space.
14031 Locations bound to other program spaces are left untouched. */
14032
14033 void
14034 breakpoint_re_set (void)
14035 {
14036 struct breakpoint *b, *b_tmp;
14037
14038 {
14039 scoped_restore_current_language save_language;
14040 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
14041 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14042
14043 /* Note: we must not try to insert locations until after all
14044 breakpoints have been re-set. Otherwise, e.g., when re-setting
14045 breakpoint 1, we'd insert the locations of breakpoint 2, which
14046 hadn't been re-set yet, and thus may have stale locations. */
14047
14048 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14049 {
14050 TRY
14051 {
14052 breakpoint_re_set_one (b);
14053 }
14054 CATCH (ex, RETURN_MASK_ALL)
14055 {
14056 exception_fprintf (gdb_stderr, ex,
14057 "Error in re-setting breakpoint %d: ",
14058 b->number);
14059 }
14060 END_CATCH
14061 }
14062
14063 jit_breakpoint_re_set ();
14064 }
14065
14066 create_overlay_event_breakpoint ();
14067 create_longjmp_master_breakpoint ();
14068 create_std_terminate_master_breakpoint ();
14069 create_exception_master_breakpoint ();
14070
14071 /* Now we can insert. */
14072 update_global_location_list (UGLL_MAY_INSERT);
14073 }
14074 \f
14075 /* Reset the thread number of this breakpoint:
14076
14077 - If the breakpoint is for all threads, leave it as-is.
14078 - Else, reset it to the current thread for inferior_ptid. */
14079 void
14080 breakpoint_re_set_thread (struct breakpoint *b)
14081 {
14082 if (b->thread != -1)
14083 {
14084 if (in_thread_list (inferior_ptid))
14085 b->thread = ptid_to_global_thread_id (inferior_ptid);
14086
14087 /* We're being called after following a fork. The new fork is
14088 selected as current, and unless this was a vfork will have a
14089 different program space from the original thread. Reset that
14090 as well. */
14091 b->loc->pspace = current_program_space;
14092 }
14093 }
14094
14095 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14096 If from_tty is nonzero, it prints a message to that effect,
14097 which ends with a period (no newline). */
14098
14099 void
14100 set_ignore_count (int bptnum, int count, int from_tty)
14101 {
14102 struct breakpoint *b;
14103
14104 if (count < 0)
14105 count = 0;
14106
14107 ALL_BREAKPOINTS (b)
14108 if (b->number == bptnum)
14109 {
14110 if (is_tracepoint (b))
14111 {
14112 if (from_tty && count != 0)
14113 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14114 bptnum);
14115 return;
14116 }
14117
14118 b->ignore_count = count;
14119 if (from_tty)
14120 {
14121 if (count == 0)
14122 printf_filtered (_("Will stop next time "
14123 "breakpoint %d is reached."),
14124 bptnum);
14125 else if (count == 1)
14126 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14127 bptnum);
14128 else
14129 printf_filtered (_("Will ignore next %d "
14130 "crossings of breakpoint %d."),
14131 count, bptnum);
14132 }
14133 observer_notify_breakpoint_modified (b);
14134 return;
14135 }
14136
14137 error (_("No breakpoint number %d."), bptnum);
14138 }
14139
14140 /* Command to set ignore-count of breakpoint N to COUNT. */
14141
14142 static void
14143 ignore_command (char *args, int from_tty)
14144 {
14145 char *p = args;
14146 int num;
14147
14148 if (p == 0)
14149 error_no_arg (_("a breakpoint number"));
14150
14151 num = get_number (&p);
14152 if (num == 0)
14153 error (_("bad breakpoint number: '%s'"), args);
14154 if (*p == 0)
14155 error (_("Second argument (specified ignore-count) is missing."));
14156
14157 set_ignore_count (num,
14158 longest_to_int (value_as_long (parse_and_eval (p))),
14159 from_tty);
14160 if (from_tty)
14161 printf_filtered ("\n");
14162 }
14163 \f
14164 /* Call FUNCTION on each of the breakpoints
14165 whose numbers are given in ARGS. */
14166
14167 static void
14168 map_breakpoint_numbers (const char *args,
14169 gdb::function_view<void (breakpoint *)> function)
14170 {
14171 int num;
14172 struct breakpoint *b, *tmp;
14173
14174 if (args == 0 || *args == '\0')
14175 error_no_arg (_("one or more breakpoint numbers"));
14176
14177 number_or_range_parser parser (args);
14178
14179 while (!parser.finished ())
14180 {
14181 const char *p = parser.cur_tok ();
14182 bool match = false;
14183
14184 num = parser.get_number ();
14185 if (num == 0)
14186 {
14187 warning (_("bad breakpoint number at or near '%s'"), p);
14188 }
14189 else
14190 {
14191 ALL_BREAKPOINTS_SAFE (b, tmp)
14192 if (b->number == num)
14193 {
14194 match = true;
14195 function (b);
14196 break;
14197 }
14198 if (!match)
14199 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14200 }
14201 }
14202 }
14203
14204 static struct bp_location *
14205 find_location_by_number (const char *number)
14206 {
14207 const char *p1;
14208 int bp_num;
14209 int loc_num;
14210 struct breakpoint *b;
14211 struct bp_location *loc;
14212
14213 p1 = number;
14214 bp_num = get_number_trailer (&p1, '.');
14215 if (bp_num == 0 || p1[0] != '.')
14216 error (_("Bad breakpoint number '%s'"), number);
14217
14218 ALL_BREAKPOINTS (b)
14219 if (b->number == bp_num)
14220 {
14221 break;
14222 }
14223
14224 if (!b || b->number != bp_num)
14225 error (_("Bad breakpoint number '%s'"), number);
14226
14227 /* Skip the dot. */
14228 ++p1;
14229 const char *save = p1;
14230 loc_num = get_number (&p1);
14231 if (loc_num == 0)
14232 error (_("Bad breakpoint location number '%s'"), number);
14233
14234 --loc_num;
14235 loc = b->loc;
14236 for (;loc_num && loc; --loc_num, loc = loc->next)
14237 ;
14238 if (!loc)
14239 error (_("Bad breakpoint location number '%s'"), save);
14240
14241 return loc;
14242 }
14243
14244
14245 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14246 If from_tty is nonzero, it prints a message to that effect,
14247 which ends with a period (no newline). */
14248
14249 void
14250 disable_breakpoint (struct breakpoint *bpt)
14251 {
14252 /* Never disable a watchpoint scope breakpoint; we want to
14253 hit them when we leave scope so we can delete both the
14254 watchpoint and its scope breakpoint at that time. */
14255 if (bpt->type == bp_watchpoint_scope)
14256 return;
14257
14258 bpt->enable_state = bp_disabled;
14259
14260 /* Mark breakpoint locations modified. */
14261 mark_breakpoint_modified (bpt);
14262
14263 if (target_supports_enable_disable_tracepoint ()
14264 && current_trace_status ()->running && is_tracepoint (bpt))
14265 {
14266 struct bp_location *location;
14267
14268 for (location = bpt->loc; location; location = location->next)
14269 target_disable_tracepoint (location);
14270 }
14271
14272 update_global_location_list (UGLL_DONT_INSERT);
14273
14274 observer_notify_breakpoint_modified (bpt);
14275 }
14276
14277 static void
14278 disable_command (const char *args, int from_tty)
14279 {
14280 if (args == 0)
14281 {
14282 struct breakpoint *bpt;
14283
14284 ALL_BREAKPOINTS (bpt)
14285 if (user_breakpoint_p (bpt))
14286 disable_breakpoint (bpt);
14287 }
14288 else
14289 {
14290 std::string num = extract_arg (&args);
14291
14292 while (!num.empty ())
14293 {
14294 if (num.find ('.') != std::string::npos)
14295 {
14296 struct bp_location *loc = find_location_by_number (num.c_str ());
14297
14298 if (loc)
14299 {
14300 if (loc->enabled)
14301 {
14302 loc->enabled = 0;
14303 mark_breakpoint_location_modified (loc);
14304 }
14305 if (target_supports_enable_disable_tracepoint ()
14306 && current_trace_status ()->running && loc->owner
14307 && is_tracepoint (loc->owner))
14308 target_disable_tracepoint (loc);
14309 }
14310 update_global_location_list (UGLL_DONT_INSERT);
14311 }
14312 else
14313 map_breakpoint_numbers
14314 (num.c_str (), [&] (breakpoint *b)
14315 {
14316 iterate_over_related_breakpoints (b, disable_breakpoint);
14317 });
14318 num = extract_arg (&args);
14319 }
14320 }
14321 }
14322
14323 static void
14324 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14325 int count)
14326 {
14327 int target_resources_ok;
14328
14329 if (bpt->type == bp_hardware_breakpoint)
14330 {
14331 int i;
14332 i = hw_breakpoint_used_count ();
14333 target_resources_ok =
14334 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14335 i + 1, 0);
14336 if (target_resources_ok == 0)
14337 error (_("No hardware breakpoint support in the target."));
14338 else if (target_resources_ok < 0)
14339 error (_("Hardware breakpoints used exceeds limit."));
14340 }
14341
14342 if (is_watchpoint (bpt))
14343 {
14344 /* Initialize it just to avoid a GCC false warning. */
14345 enum enable_state orig_enable_state = bp_disabled;
14346
14347 TRY
14348 {
14349 struct watchpoint *w = (struct watchpoint *) bpt;
14350
14351 orig_enable_state = bpt->enable_state;
14352 bpt->enable_state = bp_enabled;
14353 update_watchpoint (w, 1 /* reparse */);
14354 }
14355 CATCH (e, RETURN_MASK_ALL)
14356 {
14357 bpt->enable_state = orig_enable_state;
14358 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14359 bpt->number);
14360 return;
14361 }
14362 END_CATCH
14363 }
14364
14365 bpt->enable_state = bp_enabled;
14366
14367 /* Mark breakpoint locations modified. */
14368 mark_breakpoint_modified (bpt);
14369
14370 if (target_supports_enable_disable_tracepoint ()
14371 && current_trace_status ()->running && is_tracepoint (bpt))
14372 {
14373 struct bp_location *location;
14374
14375 for (location = bpt->loc; location; location = location->next)
14376 target_enable_tracepoint (location);
14377 }
14378
14379 bpt->disposition = disposition;
14380 bpt->enable_count = count;
14381 update_global_location_list (UGLL_MAY_INSERT);
14382
14383 observer_notify_breakpoint_modified (bpt);
14384 }
14385
14386
14387 void
14388 enable_breakpoint (struct breakpoint *bpt)
14389 {
14390 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14391 }
14392
14393 /* The enable command enables the specified breakpoints (or all defined
14394 breakpoints) so they once again become (or continue to be) effective
14395 in stopping the inferior. */
14396
14397 static void
14398 enable_command (const char *args, int from_tty)
14399 {
14400 if (args == 0)
14401 {
14402 struct breakpoint *bpt;
14403
14404 ALL_BREAKPOINTS (bpt)
14405 if (user_breakpoint_p (bpt))
14406 enable_breakpoint (bpt);
14407 }
14408 else
14409 {
14410 std::string num = extract_arg (&args);
14411
14412 while (!num.empty ())
14413 {
14414 if (num.find ('.') != std::string::npos)
14415 {
14416 struct bp_location *loc = find_location_by_number (num.c_str ());
14417
14418 if (loc)
14419 {
14420 if (!loc->enabled)
14421 {
14422 loc->enabled = 1;
14423 mark_breakpoint_location_modified (loc);
14424 }
14425 if (target_supports_enable_disable_tracepoint ()
14426 && current_trace_status ()->running && loc->owner
14427 && is_tracepoint (loc->owner))
14428 target_enable_tracepoint (loc);
14429 }
14430 update_global_location_list (UGLL_MAY_INSERT);
14431 }
14432 else
14433 map_breakpoint_numbers
14434 (num.c_str (), [&] (breakpoint *b)
14435 {
14436 iterate_over_related_breakpoints (b, enable_breakpoint);
14437 });
14438 num = extract_arg (&args);
14439 }
14440 }
14441 }
14442
14443 static void
14444 enable_once_command (const char *args, int from_tty)
14445 {
14446 map_breakpoint_numbers
14447 (args, [&] (breakpoint *b)
14448 {
14449 iterate_over_related_breakpoints
14450 (b, [&] (breakpoint *bpt)
14451 {
14452 enable_breakpoint_disp (bpt, disp_disable, 1);
14453 });
14454 });
14455 }
14456
14457 static void
14458 enable_count_command (const char *args, int from_tty)
14459 {
14460 int count;
14461
14462 if (args == NULL)
14463 error_no_arg (_("hit count"));
14464
14465 count = get_number (&args);
14466
14467 map_breakpoint_numbers
14468 (args, [&] (breakpoint *b)
14469 {
14470 iterate_over_related_breakpoints
14471 (b, [&] (breakpoint *bpt)
14472 {
14473 enable_breakpoint_disp (bpt, disp_disable, count);
14474 });
14475 });
14476 }
14477
14478 static void
14479 enable_delete_command (const char *args, int from_tty)
14480 {
14481 map_breakpoint_numbers
14482 (args, [&] (breakpoint *b)
14483 {
14484 iterate_over_related_breakpoints
14485 (b, [&] (breakpoint *bpt)
14486 {
14487 enable_breakpoint_disp (bpt, disp_del, 1);
14488 });
14489 });
14490 }
14491 \f
14492 static void
14493 set_breakpoint_cmd (const char *args, int from_tty)
14494 {
14495 }
14496
14497 static void
14498 show_breakpoint_cmd (const char *args, int from_tty)
14499 {
14500 }
14501
14502 /* Invalidate last known value of any hardware watchpoint if
14503 the memory which that value represents has been written to by
14504 GDB itself. */
14505
14506 static void
14507 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14508 CORE_ADDR addr, ssize_t len,
14509 const bfd_byte *data)
14510 {
14511 struct breakpoint *bp;
14512
14513 ALL_BREAKPOINTS (bp)
14514 if (bp->enable_state == bp_enabled
14515 && bp->type == bp_hardware_watchpoint)
14516 {
14517 struct watchpoint *wp = (struct watchpoint *) bp;
14518
14519 if (wp->val_valid && wp->val)
14520 {
14521 struct bp_location *loc;
14522
14523 for (loc = bp->loc; loc != NULL; loc = loc->next)
14524 if (loc->loc_type == bp_loc_hardware_watchpoint
14525 && loc->address + loc->length > addr
14526 && addr + len > loc->address)
14527 {
14528 value_free (wp->val);
14529 wp->val = NULL;
14530 wp->val_valid = 0;
14531 }
14532 }
14533 }
14534 }
14535
14536 /* Create and insert a breakpoint for software single step. */
14537
14538 void
14539 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14540 struct address_space *aspace,
14541 CORE_ADDR next_pc)
14542 {
14543 struct thread_info *tp = inferior_thread ();
14544 struct symtab_and_line sal;
14545 CORE_ADDR pc = next_pc;
14546
14547 if (tp->control.single_step_breakpoints == NULL)
14548 {
14549 tp->control.single_step_breakpoints
14550 = new_single_step_breakpoint (tp->global_num, gdbarch);
14551 }
14552
14553 sal = find_pc_line (pc, 0);
14554 sal.pc = pc;
14555 sal.section = find_pc_overlay (pc);
14556 sal.explicit_pc = 1;
14557 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14558
14559 update_global_location_list (UGLL_INSERT);
14560 }
14561
14562 /* Insert single step breakpoints according to the current state. */
14563
14564 int
14565 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14566 {
14567 struct regcache *regcache = get_current_regcache ();
14568 std::vector<CORE_ADDR> next_pcs;
14569
14570 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14571
14572 if (!next_pcs.empty ())
14573 {
14574 struct frame_info *frame = get_current_frame ();
14575 struct address_space *aspace = get_frame_address_space (frame);
14576
14577 for (CORE_ADDR pc : next_pcs)
14578 insert_single_step_breakpoint (gdbarch, aspace, pc);
14579
14580 return 1;
14581 }
14582 else
14583 return 0;
14584 }
14585
14586 /* See breakpoint.h. */
14587
14588 int
14589 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14590 struct address_space *aspace,
14591 CORE_ADDR pc)
14592 {
14593 struct bp_location *loc;
14594
14595 for (loc = bp->loc; loc != NULL; loc = loc->next)
14596 if (loc->inserted
14597 && breakpoint_location_address_match (loc, aspace, pc))
14598 return 1;
14599
14600 return 0;
14601 }
14602
14603 /* Check whether a software single-step breakpoint is inserted at
14604 PC. */
14605
14606 int
14607 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14608 CORE_ADDR pc)
14609 {
14610 struct breakpoint *bpt;
14611
14612 ALL_BREAKPOINTS (bpt)
14613 {
14614 if (bpt->type == bp_single_step
14615 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14616 return 1;
14617 }
14618 return 0;
14619 }
14620
14621 /* Tracepoint-specific operations. */
14622
14623 /* Set tracepoint count to NUM. */
14624 static void
14625 set_tracepoint_count (int num)
14626 {
14627 tracepoint_count = num;
14628 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14629 }
14630
14631 static void
14632 trace_command (char *arg_in, int from_tty)
14633 {
14634 const char *arg = arg_in;
14635 struct breakpoint_ops *ops;
14636
14637 event_location_up location = string_to_event_location (&arg,
14638 current_language);
14639 if (location != NULL
14640 && event_location_type (location.get ()) == PROBE_LOCATION)
14641 ops = &tracepoint_probe_breakpoint_ops;
14642 else
14643 ops = &tracepoint_breakpoint_ops;
14644
14645 create_breakpoint (get_current_arch (),
14646 location.get (),
14647 NULL, 0, arg, 1 /* parse arg */,
14648 0 /* tempflag */,
14649 bp_tracepoint /* type_wanted */,
14650 0 /* Ignore count */,
14651 pending_break_support,
14652 ops,
14653 from_tty,
14654 1 /* enabled */,
14655 0 /* internal */, 0);
14656 }
14657
14658 static void
14659 ftrace_command (char *arg_in, int from_tty)
14660 {
14661 const char *arg = arg_in;
14662 event_location_up location = string_to_event_location (&arg,
14663 current_language);
14664 create_breakpoint (get_current_arch (),
14665 location.get (),
14666 NULL, 0, arg, 1 /* parse arg */,
14667 0 /* tempflag */,
14668 bp_fast_tracepoint /* type_wanted */,
14669 0 /* Ignore count */,
14670 pending_break_support,
14671 &tracepoint_breakpoint_ops,
14672 from_tty,
14673 1 /* enabled */,
14674 0 /* internal */, 0);
14675 }
14676
14677 /* strace command implementation. Creates a static tracepoint. */
14678
14679 static void
14680 strace_command (char *arg_in, int from_tty)
14681 {
14682 const char *arg = arg_in;
14683 struct breakpoint_ops *ops;
14684 event_location_up location;
14685
14686 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14687 or with a normal static tracepoint. */
14688 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14689 {
14690 ops = &strace_marker_breakpoint_ops;
14691 location = new_linespec_location (&arg);
14692 }
14693 else
14694 {
14695 ops = &tracepoint_breakpoint_ops;
14696 location = string_to_event_location (&arg, current_language);
14697 }
14698
14699 create_breakpoint (get_current_arch (),
14700 location.get (),
14701 NULL, 0, arg, 1 /* parse arg */,
14702 0 /* tempflag */,
14703 bp_static_tracepoint /* type_wanted */,
14704 0 /* Ignore count */,
14705 pending_break_support,
14706 ops,
14707 from_tty,
14708 1 /* enabled */,
14709 0 /* internal */, 0);
14710 }
14711
14712 /* Set up a fake reader function that gets command lines from a linked
14713 list that was acquired during tracepoint uploading. */
14714
14715 static struct uploaded_tp *this_utp;
14716 static int next_cmd;
14717
14718 static char *
14719 read_uploaded_action (void)
14720 {
14721 char *rslt;
14722
14723 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14724
14725 next_cmd++;
14726
14727 return rslt;
14728 }
14729
14730 /* Given information about a tracepoint as recorded on a target (which
14731 can be either a live system or a trace file), attempt to create an
14732 equivalent GDB tracepoint. This is not a reliable process, since
14733 the target does not necessarily have all the information used when
14734 the tracepoint was originally defined. */
14735
14736 struct tracepoint *
14737 create_tracepoint_from_upload (struct uploaded_tp *utp)
14738 {
14739 const char *addr_str;
14740 char small_buf[100];
14741 struct tracepoint *tp;
14742
14743 if (utp->at_string)
14744 addr_str = utp->at_string;
14745 else
14746 {
14747 /* In the absence of a source location, fall back to raw
14748 address. Since there is no way to confirm that the address
14749 means the same thing as when the trace was started, warn the
14750 user. */
14751 warning (_("Uploaded tracepoint %d has no "
14752 "source location, using raw address"),
14753 utp->number);
14754 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14755 addr_str = small_buf;
14756 }
14757
14758 /* There's not much we can do with a sequence of bytecodes. */
14759 if (utp->cond && !utp->cond_string)
14760 warning (_("Uploaded tracepoint %d condition "
14761 "has no source form, ignoring it"),
14762 utp->number);
14763
14764 event_location_up location = string_to_event_location (&addr_str,
14765 current_language);
14766 if (!create_breakpoint (get_current_arch (),
14767 location.get (),
14768 utp->cond_string, -1, addr_str,
14769 0 /* parse cond/thread */,
14770 0 /* tempflag */,
14771 utp->type /* type_wanted */,
14772 0 /* Ignore count */,
14773 pending_break_support,
14774 &tracepoint_breakpoint_ops,
14775 0 /* from_tty */,
14776 utp->enabled /* enabled */,
14777 0 /* internal */,
14778 CREATE_BREAKPOINT_FLAGS_INSERTED))
14779 return NULL;
14780
14781 /* Get the tracepoint we just created. */
14782 tp = get_tracepoint (tracepoint_count);
14783 gdb_assert (tp != NULL);
14784
14785 if (utp->pass > 0)
14786 {
14787 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14788 tp->number);
14789
14790 trace_pass_command (small_buf, 0);
14791 }
14792
14793 /* If we have uploaded versions of the original commands, set up a
14794 special-purpose "reader" function and call the usual command line
14795 reader, then pass the result to the breakpoint command-setting
14796 function. */
14797 if (!VEC_empty (char_ptr, utp->cmd_strings))
14798 {
14799 command_line_up cmd_list;
14800
14801 this_utp = utp;
14802 next_cmd = 0;
14803
14804 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14805
14806 breakpoint_set_commands (tp, std::move (cmd_list));
14807 }
14808 else if (!VEC_empty (char_ptr, utp->actions)
14809 || !VEC_empty (char_ptr, utp->step_actions))
14810 warning (_("Uploaded tracepoint %d actions "
14811 "have no source form, ignoring them"),
14812 utp->number);
14813
14814 /* Copy any status information that might be available. */
14815 tp->hit_count = utp->hit_count;
14816 tp->traceframe_usage = utp->traceframe_usage;
14817
14818 return tp;
14819 }
14820
14821 /* Print information on tracepoint number TPNUM_EXP, or all if
14822 omitted. */
14823
14824 static void
14825 info_tracepoints_command (char *args, int from_tty)
14826 {
14827 struct ui_out *uiout = current_uiout;
14828 int num_printed;
14829
14830 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14831
14832 if (num_printed == 0)
14833 {
14834 if (args == NULL || *args == '\0')
14835 uiout->message ("No tracepoints.\n");
14836 else
14837 uiout->message ("No tracepoint matching '%s'.\n", args);
14838 }
14839
14840 default_collect_info ();
14841 }
14842
14843 /* The 'enable trace' command enables tracepoints.
14844 Not supported by all targets. */
14845 static void
14846 enable_trace_command (char *args, int from_tty)
14847 {
14848 enable_command (args, from_tty);
14849 }
14850
14851 /* The 'disable trace' command disables tracepoints.
14852 Not supported by all targets. */
14853 static void
14854 disable_trace_command (char *args, int from_tty)
14855 {
14856 disable_command (args, from_tty);
14857 }
14858
14859 /* Remove a tracepoint (or all if no argument). */
14860 static void
14861 delete_trace_command (const char *arg, int from_tty)
14862 {
14863 struct breakpoint *b, *b_tmp;
14864
14865 dont_repeat ();
14866
14867 if (arg == 0)
14868 {
14869 int breaks_to_delete = 0;
14870
14871 /* Delete all breakpoints if no argument.
14872 Do not delete internal or call-dummy breakpoints, these
14873 have to be deleted with an explicit breakpoint number
14874 argument. */
14875 ALL_TRACEPOINTS (b)
14876 if (is_tracepoint (b) && user_breakpoint_p (b))
14877 {
14878 breaks_to_delete = 1;
14879 break;
14880 }
14881
14882 /* Ask user only if there are some breakpoints to delete. */
14883 if (!from_tty
14884 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14885 {
14886 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14887 if (is_tracepoint (b) && user_breakpoint_p (b))
14888 delete_breakpoint (b);
14889 }
14890 }
14891 else
14892 map_breakpoint_numbers
14893 (arg, [&] (breakpoint *b)
14894 {
14895 iterate_over_related_breakpoints (b, delete_breakpoint);
14896 });
14897 }
14898
14899 /* Helper function for trace_pass_command. */
14900
14901 static void
14902 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14903 {
14904 tp->pass_count = count;
14905 observer_notify_breakpoint_modified (tp);
14906 if (from_tty)
14907 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14908 tp->number, count);
14909 }
14910
14911 /* Set passcount for tracepoint.
14912
14913 First command argument is passcount, second is tracepoint number.
14914 If tracepoint number omitted, apply to most recently defined.
14915 Also accepts special argument "all". */
14916
14917 static void
14918 trace_pass_command (char *args, int from_tty)
14919 {
14920 struct tracepoint *t1;
14921 unsigned int count;
14922
14923 if (args == 0 || *args == 0)
14924 error (_("passcount command requires an "
14925 "argument (count + optional TP num)"));
14926
14927 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
14928
14929 args = skip_spaces (args);
14930 if (*args && strncasecmp (args, "all", 3) == 0)
14931 {
14932 struct breakpoint *b;
14933
14934 args += 3; /* Skip special argument "all". */
14935 if (*args)
14936 error (_("Junk at end of arguments."));
14937
14938 ALL_TRACEPOINTS (b)
14939 {
14940 t1 = (struct tracepoint *) b;
14941 trace_pass_set_count (t1, count, from_tty);
14942 }
14943 }
14944 else if (*args == '\0')
14945 {
14946 t1 = get_tracepoint_by_number (&args, NULL);
14947 if (t1)
14948 trace_pass_set_count (t1, count, from_tty);
14949 }
14950 else
14951 {
14952 number_or_range_parser parser (args);
14953 while (!parser.finished ())
14954 {
14955 t1 = get_tracepoint_by_number (&args, &parser);
14956 if (t1)
14957 trace_pass_set_count (t1, count, from_tty);
14958 }
14959 }
14960 }
14961
14962 struct tracepoint *
14963 get_tracepoint (int num)
14964 {
14965 struct breakpoint *t;
14966
14967 ALL_TRACEPOINTS (t)
14968 if (t->number == num)
14969 return (struct tracepoint *) t;
14970
14971 return NULL;
14972 }
14973
14974 /* Find the tracepoint with the given target-side number (which may be
14975 different from the tracepoint number after disconnecting and
14976 reconnecting). */
14977
14978 struct tracepoint *
14979 get_tracepoint_by_number_on_target (int num)
14980 {
14981 struct breakpoint *b;
14982
14983 ALL_TRACEPOINTS (b)
14984 {
14985 struct tracepoint *t = (struct tracepoint *) b;
14986
14987 if (t->number_on_target == num)
14988 return t;
14989 }
14990
14991 return NULL;
14992 }
14993
14994 /* Utility: parse a tracepoint number and look it up in the list.
14995 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14996 If the argument is missing, the most recent tracepoint
14997 (tracepoint_count) is returned. */
14998
14999 struct tracepoint *
15000 get_tracepoint_by_number (char **arg,
15001 number_or_range_parser *parser)
15002 {
15003 struct breakpoint *t;
15004 int tpnum;
15005 char *instring = arg == NULL ? NULL : *arg;
15006
15007 if (parser != NULL)
15008 {
15009 gdb_assert (!parser->finished ());
15010 tpnum = parser->get_number ();
15011 }
15012 else if (arg == NULL || *arg == NULL || ! **arg)
15013 tpnum = tracepoint_count;
15014 else
15015 tpnum = get_number (arg);
15016
15017 if (tpnum <= 0)
15018 {
15019 if (instring && *instring)
15020 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15021 instring);
15022 else
15023 printf_filtered (_("No previous tracepoint\n"));
15024 return NULL;
15025 }
15026
15027 ALL_TRACEPOINTS (t)
15028 if (t->number == tpnum)
15029 {
15030 return (struct tracepoint *) t;
15031 }
15032
15033 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15034 return NULL;
15035 }
15036
15037 void
15038 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15039 {
15040 if (b->thread != -1)
15041 fprintf_unfiltered (fp, " thread %d", b->thread);
15042
15043 if (b->task != 0)
15044 fprintf_unfiltered (fp, " task %d", b->task);
15045
15046 fprintf_unfiltered (fp, "\n");
15047 }
15048
15049 /* Save information on user settable breakpoints (watchpoints, etc) to
15050 a new script file named FILENAME. If FILTER is non-NULL, call it
15051 on each breakpoint and only include the ones for which it returns
15052 non-zero. */
15053
15054 static void
15055 save_breakpoints (const char *filename, int from_tty,
15056 int (*filter) (const struct breakpoint *))
15057 {
15058 struct breakpoint *tp;
15059 int any = 0;
15060 int extra_trace_bits = 0;
15061
15062 if (filename == 0 || *filename == 0)
15063 error (_("Argument required (file name in which to save)"));
15064
15065 /* See if we have anything to save. */
15066 ALL_BREAKPOINTS (tp)
15067 {
15068 /* Skip internal and momentary breakpoints. */
15069 if (!user_breakpoint_p (tp))
15070 continue;
15071
15072 /* If we have a filter, only save the breakpoints it accepts. */
15073 if (filter && !filter (tp))
15074 continue;
15075
15076 any = 1;
15077
15078 if (is_tracepoint (tp))
15079 {
15080 extra_trace_bits = 1;
15081
15082 /* We can stop searching. */
15083 break;
15084 }
15085 }
15086
15087 if (!any)
15088 {
15089 warning (_("Nothing to save."));
15090 return;
15091 }
15092
15093 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15094
15095 stdio_file fp;
15096
15097 if (!fp.open (expanded_filename.get (), "w"))
15098 error (_("Unable to open file '%s' for saving (%s)"),
15099 expanded_filename.get (), safe_strerror (errno));
15100
15101 if (extra_trace_bits)
15102 save_trace_state_variables (&fp);
15103
15104 ALL_BREAKPOINTS (tp)
15105 {
15106 /* Skip internal and momentary breakpoints. */
15107 if (!user_breakpoint_p (tp))
15108 continue;
15109
15110 /* If we have a filter, only save the breakpoints it accepts. */
15111 if (filter && !filter (tp))
15112 continue;
15113
15114 tp->ops->print_recreate (tp, &fp);
15115
15116 /* Note, we can't rely on tp->number for anything, as we can't
15117 assume the recreated breakpoint numbers will match. Use $bpnum
15118 instead. */
15119
15120 if (tp->cond_string)
15121 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15122
15123 if (tp->ignore_count)
15124 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15125
15126 if (tp->type != bp_dprintf && tp->commands)
15127 {
15128 fp.puts (" commands\n");
15129
15130 current_uiout->redirect (&fp);
15131 TRY
15132 {
15133 print_command_lines (current_uiout, tp->commands.get (), 2);
15134 }
15135 CATCH (ex, RETURN_MASK_ALL)
15136 {
15137 current_uiout->redirect (NULL);
15138 throw_exception (ex);
15139 }
15140 END_CATCH
15141
15142 current_uiout->redirect (NULL);
15143 fp.puts (" end\n");
15144 }
15145
15146 if (tp->enable_state == bp_disabled)
15147 fp.puts ("disable $bpnum\n");
15148
15149 /* If this is a multi-location breakpoint, check if the locations
15150 should be individually disabled. Watchpoint locations are
15151 special, and not user visible. */
15152 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15153 {
15154 struct bp_location *loc;
15155 int n = 1;
15156
15157 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15158 if (!loc->enabled)
15159 fp.printf ("disable $bpnum.%d\n", n);
15160 }
15161 }
15162
15163 if (extra_trace_bits && *default_collect)
15164 fp.printf ("set default-collect %s\n", default_collect);
15165
15166 if (from_tty)
15167 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15168 }
15169
15170 /* The `save breakpoints' command. */
15171
15172 static void
15173 save_breakpoints_command (const char *args, int from_tty)
15174 {
15175 save_breakpoints (args, from_tty, NULL);
15176 }
15177
15178 /* The `save tracepoints' command. */
15179
15180 static void
15181 save_tracepoints_command (const char *args, int from_tty)
15182 {
15183 save_breakpoints (args, from_tty, is_tracepoint);
15184 }
15185
15186 /* Create a vector of all tracepoints. */
15187
15188 VEC(breakpoint_p) *
15189 all_tracepoints (void)
15190 {
15191 VEC(breakpoint_p) *tp_vec = 0;
15192 struct breakpoint *tp;
15193
15194 ALL_TRACEPOINTS (tp)
15195 {
15196 VEC_safe_push (breakpoint_p, tp_vec, tp);
15197 }
15198
15199 return tp_vec;
15200 }
15201
15202 \f
15203 /* This help string is used to consolidate all the help string for specifying
15204 locations used by several commands. */
15205
15206 #define LOCATION_HELP_STRING \
15207 "Linespecs are colon-separated lists of location parameters, such as\n\
15208 source filename, function name, label name, and line number.\n\
15209 Example: To specify the start of a label named \"the_top\" in the\n\
15210 function \"fact\" in the file \"factorial.c\", use\n\
15211 \"factorial.c:fact:the_top\".\n\
15212 \n\
15213 Address locations begin with \"*\" and specify an exact address in the\n\
15214 program. Example: To specify the fourth byte past the start function\n\
15215 \"main\", use \"*main + 4\".\n\
15216 \n\
15217 Explicit locations are similar to linespecs but use an option/argument\n\
15218 syntax to specify location parameters.\n\
15219 Example: To specify the start of the label named \"the_top\" in the\n\
15220 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15221 -function fact -label the_top\".\n"
15222
15223 /* This help string is used for the break, hbreak, tbreak and thbreak
15224 commands. It is defined as a macro to prevent duplication.
15225 COMMAND should be a string constant containing the name of the
15226 command. */
15227
15228 #define BREAK_ARGS_HELP(command) \
15229 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15230 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15231 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15232 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15233 `-probe-dtrace' (for a DTrace probe).\n\
15234 LOCATION may be a linespec, address, or explicit location as described\n\
15235 below.\n\
15236 \n\
15237 With no LOCATION, uses current execution address of the selected\n\
15238 stack frame. This is useful for breaking on return to a stack frame.\n\
15239 \n\
15240 THREADNUM is the number from \"info threads\".\n\
15241 CONDITION is a boolean expression.\n\
15242 \n" LOCATION_HELP_STRING "\n\
15243 Multiple breakpoints at one place are permitted, and useful if their\n\
15244 conditions are different.\n\
15245 \n\
15246 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15247
15248 /* List of subcommands for "catch". */
15249 static struct cmd_list_element *catch_cmdlist;
15250
15251 /* List of subcommands for "tcatch". */
15252 static struct cmd_list_element *tcatch_cmdlist;
15253
15254 void
15255 add_catch_command (const char *name, const char *docstring,
15256 cmd_sfunc_ftype *sfunc,
15257 completer_ftype *completer,
15258 void *user_data_catch,
15259 void *user_data_tcatch)
15260 {
15261 struct cmd_list_element *command;
15262
15263 command = add_cmd (name, class_breakpoint, docstring,
15264 &catch_cmdlist);
15265 set_cmd_sfunc (command, sfunc);
15266 set_cmd_context (command, user_data_catch);
15267 set_cmd_completer (command, completer);
15268
15269 command = add_cmd (name, class_breakpoint, docstring,
15270 &tcatch_cmdlist);
15271 set_cmd_sfunc (command, sfunc);
15272 set_cmd_context (command, user_data_tcatch);
15273 set_cmd_completer (command, completer);
15274 }
15275
15276 static void
15277 save_command (const char *arg, int from_tty)
15278 {
15279 printf_unfiltered (_("\"save\" must be followed by "
15280 "the name of a save subcommand.\n"));
15281 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15282 }
15283
15284 struct breakpoint *
15285 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15286 void *data)
15287 {
15288 struct breakpoint *b, *b_tmp;
15289
15290 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15291 {
15292 if ((*callback) (b, data))
15293 return b;
15294 }
15295
15296 return NULL;
15297 }
15298
15299 /* Zero if any of the breakpoint's locations could be a location where
15300 functions have been inlined, nonzero otherwise. */
15301
15302 static int
15303 is_non_inline_function (struct breakpoint *b)
15304 {
15305 /* The shared library event breakpoint is set on the address of a
15306 non-inline function. */
15307 if (b->type == bp_shlib_event)
15308 return 1;
15309
15310 return 0;
15311 }
15312
15313 /* Nonzero if the specified PC cannot be a location where functions
15314 have been inlined. */
15315
15316 int
15317 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15318 const struct target_waitstatus *ws)
15319 {
15320 struct breakpoint *b;
15321 struct bp_location *bl;
15322
15323 ALL_BREAKPOINTS (b)
15324 {
15325 if (!is_non_inline_function (b))
15326 continue;
15327
15328 for (bl = b->loc; bl != NULL; bl = bl->next)
15329 {
15330 if (!bl->shlib_disabled
15331 && bpstat_check_location (bl, aspace, pc, ws))
15332 return 1;
15333 }
15334 }
15335
15336 return 0;
15337 }
15338
15339 /* Remove any references to OBJFILE which is going to be freed. */
15340
15341 void
15342 breakpoint_free_objfile (struct objfile *objfile)
15343 {
15344 struct bp_location **locp, *loc;
15345
15346 ALL_BP_LOCATIONS (loc, locp)
15347 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15348 loc->symtab = NULL;
15349 }
15350
15351 void
15352 initialize_breakpoint_ops (void)
15353 {
15354 static int initialized = 0;
15355
15356 struct breakpoint_ops *ops;
15357
15358 if (initialized)
15359 return;
15360 initialized = 1;
15361
15362 /* The breakpoint_ops structure to be inherit by all kinds of
15363 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15364 internal and momentary breakpoints, etc.). */
15365 ops = &bkpt_base_breakpoint_ops;
15366 *ops = base_breakpoint_ops;
15367 ops->re_set = bkpt_re_set;
15368 ops->insert_location = bkpt_insert_location;
15369 ops->remove_location = bkpt_remove_location;
15370 ops->breakpoint_hit = bkpt_breakpoint_hit;
15371 ops->create_sals_from_location = bkpt_create_sals_from_location;
15372 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15373 ops->decode_location = bkpt_decode_location;
15374
15375 /* The breakpoint_ops structure to be used in regular breakpoints. */
15376 ops = &bkpt_breakpoint_ops;
15377 *ops = bkpt_base_breakpoint_ops;
15378 ops->re_set = bkpt_re_set;
15379 ops->resources_needed = bkpt_resources_needed;
15380 ops->print_it = bkpt_print_it;
15381 ops->print_mention = bkpt_print_mention;
15382 ops->print_recreate = bkpt_print_recreate;
15383
15384 /* Ranged breakpoints. */
15385 ops = &ranged_breakpoint_ops;
15386 *ops = bkpt_breakpoint_ops;
15387 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15388 ops->resources_needed = resources_needed_ranged_breakpoint;
15389 ops->print_it = print_it_ranged_breakpoint;
15390 ops->print_one = print_one_ranged_breakpoint;
15391 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15392 ops->print_mention = print_mention_ranged_breakpoint;
15393 ops->print_recreate = print_recreate_ranged_breakpoint;
15394
15395 /* Internal breakpoints. */
15396 ops = &internal_breakpoint_ops;
15397 *ops = bkpt_base_breakpoint_ops;
15398 ops->re_set = internal_bkpt_re_set;
15399 ops->check_status = internal_bkpt_check_status;
15400 ops->print_it = internal_bkpt_print_it;
15401 ops->print_mention = internal_bkpt_print_mention;
15402
15403 /* Momentary breakpoints. */
15404 ops = &momentary_breakpoint_ops;
15405 *ops = bkpt_base_breakpoint_ops;
15406 ops->re_set = momentary_bkpt_re_set;
15407 ops->check_status = momentary_bkpt_check_status;
15408 ops->print_it = momentary_bkpt_print_it;
15409 ops->print_mention = momentary_bkpt_print_mention;
15410
15411 /* Probe breakpoints. */
15412 ops = &bkpt_probe_breakpoint_ops;
15413 *ops = bkpt_breakpoint_ops;
15414 ops->insert_location = bkpt_probe_insert_location;
15415 ops->remove_location = bkpt_probe_remove_location;
15416 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15417 ops->decode_location = bkpt_probe_decode_location;
15418
15419 /* Watchpoints. */
15420 ops = &watchpoint_breakpoint_ops;
15421 *ops = base_breakpoint_ops;
15422 ops->re_set = re_set_watchpoint;
15423 ops->insert_location = insert_watchpoint;
15424 ops->remove_location = remove_watchpoint;
15425 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15426 ops->check_status = check_status_watchpoint;
15427 ops->resources_needed = resources_needed_watchpoint;
15428 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15429 ops->print_it = print_it_watchpoint;
15430 ops->print_mention = print_mention_watchpoint;
15431 ops->print_recreate = print_recreate_watchpoint;
15432 ops->explains_signal = explains_signal_watchpoint;
15433
15434 /* Masked watchpoints. */
15435 ops = &masked_watchpoint_breakpoint_ops;
15436 *ops = watchpoint_breakpoint_ops;
15437 ops->insert_location = insert_masked_watchpoint;
15438 ops->remove_location = remove_masked_watchpoint;
15439 ops->resources_needed = resources_needed_masked_watchpoint;
15440 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15441 ops->print_it = print_it_masked_watchpoint;
15442 ops->print_one_detail = print_one_detail_masked_watchpoint;
15443 ops->print_mention = print_mention_masked_watchpoint;
15444 ops->print_recreate = print_recreate_masked_watchpoint;
15445
15446 /* Tracepoints. */
15447 ops = &tracepoint_breakpoint_ops;
15448 *ops = base_breakpoint_ops;
15449 ops->re_set = tracepoint_re_set;
15450 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15451 ops->print_one_detail = tracepoint_print_one_detail;
15452 ops->print_mention = tracepoint_print_mention;
15453 ops->print_recreate = tracepoint_print_recreate;
15454 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15455 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15456 ops->decode_location = tracepoint_decode_location;
15457
15458 /* Probe tracepoints. */
15459 ops = &tracepoint_probe_breakpoint_ops;
15460 *ops = tracepoint_breakpoint_ops;
15461 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15462 ops->decode_location = tracepoint_probe_decode_location;
15463
15464 /* Static tracepoints with marker (`-m'). */
15465 ops = &strace_marker_breakpoint_ops;
15466 *ops = tracepoint_breakpoint_ops;
15467 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15468 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15469 ops->decode_location = strace_marker_decode_location;
15470
15471 /* Fork catchpoints. */
15472 ops = &catch_fork_breakpoint_ops;
15473 *ops = base_breakpoint_ops;
15474 ops->insert_location = insert_catch_fork;
15475 ops->remove_location = remove_catch_fork;
15476 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15477 ops->print_it = print_it_catch_fork;
15478 ops->print_one = print_one_catch_fork;
15479 ops->print_mention = print_mention_catch_fork;
15480 ops->print_recreate = print_recreate_catch_fork;
15481
15482 /* Vfork catchpoints. */
15483 ops = &catch_vfork_breakpoint_ops;
15484 *ops = base_breakpoint_ops;
15485 ops->insert_location = insert_catch_vfork;
15486 ops->remove_location = remove_catch_vfork;
15487 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15488 ops->print_it = print_it_catch_vfork;
15489 ops->print_one = print_one_catch_vfork;
15490 ops->print_mention = print_mention_catch_vfork;
15491 ops->print_recreate = print_recreate_catch_vfork;
15492
15493 /* Exec catchpoints. */
15494 ops = &catch_exec_breakpoint_ops;
15495 *ops = base_breakpoint_ops;
15496 ops->insert_location = insert_catch_exec;
15497 ops->remove_location = remove_catch_exec;
15498 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15499 ops->print_it = print_it_catch_exec;
15500 ops->print_one = print_one_catch_exec;
15501 ops->print_mention = print_mention_catch_exec;
15502 ops->print_recreate = print_recreate_catch_exec;
15503
15504 /* Solib-related catchpoints. */
15505 ops = &catch_solib_breakpoint_ops;
15506 *ops = base_breakpoint_ops;
15507 ops->insert_location = insert_catch_solib;
15508 ops->remove_location = remove_catch_solib;
15509 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15510 ops->check_status = check_status_catch_solib;
15511 ops->print_it = print_it_catch_solib;
15512 ops->print_one = print_one_catch_solib;
15513 ops->print_mention = print_mention_catch_solib;
15514 ops->print_recreate = print_recreate_catch_solib;
15515
15516 ops = &dprintf_breakpoint_ops;
15517 *ops = bkpt_base_breakpoint_ops;
15518 ops->re_set = dprintf_re_set;
15519 ops->resources_needed = bkpt_resources_needed;
15520 ops->print_it = bkpt_print_it;
15521 ops->print_mention = bkpt_print_mention;
15522 ops->print_recreate = dprintf_print_recreate;
15523 ops->after_condition_true = dprintf_after_condition_true;
15524 ops->breakpoint_hit = dprintf_breakpoint_hit;
15525 }
15526
15527 /* Chain containing all defined "enable breakpoint" subcommands. */
15528
15529 static struct cmd_list_element *enablebreaklist = NULL;
15530
15531 void
15532 _initialize_breakpoint (void)
15533 {
15534 struct cmd_list_element *c;
15535
15536 initialize_breakpoint_ops ();
15537
15538 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15539 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15540 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15541
15542 breakpoint_objfile_key
15543 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15544
15545 breakpoint_chain = 0;
15546 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15547 before a breakpoint is set. */
15548 breakpoint_count = 0;
15549
15550 tracepoint_count = 0;
15551
15552 add_com ("ignore", class_breakpoint, ignore_command, _("\
15553 Set ignore-count of breakpoint number N to COUNT.\n\
15554 Usage is `ignore N COUNT'."));
15555
15556 add_com ("commands", class_breakpoint, commands_command, _("\
15557 Set commands to be executed when the given breakpoints are hit.\n\
15558 Give a space-separated breakpoint list as argument after \"commands\".\n\
15559 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15560 (e.g. `5-7').\n\
15561 With no argument, the targeted breakpoint is the last one set.\n\
15562 The commands themselves follow starting on the next line.\n\
15563 Type a line containing \"end\" to indicate the end of them.\n\
15564 Give \"silent\" as the first line to make the breakpoint silent;\n\
15565 then no output is printed when it is hit, except what the commands print."));
15566
15567 c = add_com ("condition", class_breakpoint, condition_command, _("\
15568 Specify breakpoint number N to break only if COND is true.\n\
15569 Usage is `condition N COND', where N is an integer and COND is an\n\
15570 expression to be evaluated whenever breakpoint N is reached."));
15571 set_cmd_completer (c, condition_completer);
15572
15573 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15574 Set a temporary breakpoint.\n\
15575 Like \"break\" except the breakpoint is only temporary,\n\
15576 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15577 by using \"enable delete\" on the breakpoint number.\n\
15578 \n"
15579 BREAK_ARGS_HELP ("tbreak")));
15580 set_cmd_completer (c, location_completer);
15581
15582 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15583 Set a hardware assisted breakpoint.\n\
15584 Like \"break\" except the breakpoint requires hardware support,\n\
15585 some target hardware may not have this support.\n\
15586 \n"
15587 BREAK_ARGS_HELP ("hbreak")));
15588 set_cmd_completer (c, location_completer);
15589
15590 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15591 Set a temporary hardware assisted breakpoint.\n\
15592 Like \"hbreak\" except the breakpoint is only temporary,\n\
15593 so it will be deleted when hit.\n\
15594 \n"
15595 BREAK_ARGS_HELP ("thbreak")));
15596 set_cmd_completer (c, location_completer);
15597
15598 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15599 Enable some breakpoints.\n\
15600 Give breakpoint numbers (separated by spaces) as arguments.\n\
15601 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15602 This is used to cancel the effect of the \"disable\" command.\n\
15603 With a subcommand you can enable temporarily."),
15604 &enablelist, "enable ", 1, &cmdlist);
15605
15606 add_com_alias ("en", "enable", class_breakpoint, 1);
15607
15608 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15609 Enable some breakpoints.\n\
15610 Give breakpoint numbers (separated by spaces) as arguments.\n\
15611 This is used to cancel the effect of the \"disable\" command.\n\
15612 May be abbreviated to simply \"enable\".\n"),
15613 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15614
15615 add_cmd ("once", no_class, enable_once_command, _("\
15616 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15617 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15618 &enablebreaklist);
15619
15620 add_cmd ("delete", no_class, enable_delete_command, _("\
15621 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15622 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15623 &enablebreaklist);
15624
15625 add_cmd ("count", no_class, enable_count_command, _("\
15626 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15627 If a breakpoint is hit while enabled in this fashion,\n\
15628 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15629 &enablebreaklist);
15630
15631 add_cmd ("delete", no_class, enable_delete_command, _("\
15632 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15633 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15634 &enablelist);
15635
15636 add_cmd ("once", no_class, enable_once_command, _("\
15637 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15638 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15639 &enablelist);
15640
15641 add_cmd ("count", no_class, enable_count_command, _("\
15642 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15643 If a breakpoint is hit while enabled in this fashion,\n\
15644 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15645 &enablelist);
15646
15647 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15648 Disable some breakpoints.\n\
15649 Arguments are breakpoint numbers with spaces in between.\n\
15650 To disable all breakpoints, give no argument.\n\
15651 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15652 &disablelist, "disable ", 1, &cmdlist);
15653 add_com_alias ("dis", "disable", class_breakpoint, 1);
15654 add_com_alias ("disa", "disable", class_breakpoint, 1);
15655
15656 add_cmd ("breakpoints", class_alias, disable_command, _("\
15657 Disable some breakpoints.\n\
15658 Arguments are breakpoint numbers with spaces in between.\n\
15659 To disable all breakpoints, give no argument.\n\
15660 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15661 This command may be abbreviated \"disable\"."),
15662 &disablelist);
15663
15664 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15665 Delete some breakpoints or auto-display expressions.\n\
15666 Arguments are breakpoint numbers with spaces in between.\n\
15667 To delete all breakpoints, give no argument.\n\
15668 \n\
15669 Also a prefix command for deletion of other GDB objects.\n\
15670 The \"unset\" command is also an alias for \"delete\"."),
15671 &deletelist, "delete ", 1, &cmdlist);
15672 add_com_alias ("d", "delete", class_breakpoint, 1);
15673 add_com_alias ("del", "delete", class_breakpoint, 1);
15674
15675 add_cmd ("breakpoints", class_alias, delete_command, _("\
15676 Delete some breakpoints or auto-display expressions.\n\
15677 Arguments are breakpoint numbers with spaces in between.\n\
15678 To delete all breakpoints, give no argument.\n\
15679 This command may be abbreviated \"delete\"."),
15680 &deletelist);
15681
15682 add_com ("clear", class_breakpoint, clear_command, _("\
15683 Clear breakpoint at specified location.\n\
15684 Argument may be a linespec, explicit, or address location as described below.\n\
15685 \n\
15686 With no argument, clears all breakpoints in the line that the selected frame\n\
15687 is executing in.\n"
15688 "\n" LOCATION_HELP_STRING "\n\
15689 See also the \"delete\" command which clears breakpoints by number."));
15690 add_com_alias ("cl", "clear", class_breakpoint, 1);
15691
15692 c = add_com ("break", class_breakpoint, break_command, _("\
15693 Set breakpoint at specified location.\n"
15694 BREAK_ARGS_HELP ("break")));
15695 set_cmd_completer (c, location_completer);
15696
15697 add_com_alias ("b", "break", class_run, 1);
15698 add_com_alias ("br", "break", class_run, 1);
15699 add_com_alias ("bre", "break", class_run, 1);
15700 add_com_alias ("brea", "break", class_run, 1);
15701
15702 if (dbx_commands)
15703 {
15704 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15705 Break in function/address or break at a line in the current file."),
15706 &stoplist, "stop ", 1, &cmdlist);
15707 add_cmd ("in", class_breakpoint, stopin_command,
15708 _("Break in function or address."), &stoplist);
15709 add_cmd ("at", class_breakpoint, stopat_command,
15710 _("Break at a line in the current file."), &stoplist);
15711 add_com ("status", class_info, info_breakpoints_command, _("\
15712 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15713 The \"Type\" column indicates one of:\n\
15714 \tbreakpoint - normal breakpoint\n\
15715 \twatchpoint - watchpoint\n\
15716 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15717 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15718 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15719 address and file/line number respectively.\n\
15720 \n\
15721 Convenience variable \"$_\" and default examine address for \"x\"\n\
15722 are set to the address of the last breakpoint listed unless the command\n\
15723 is prefixed with \"server \".\n\n\
15724 Convenience variable \"$bpnum\" contains the number of the last\n\
15725 breakpoint set."));
15726 }
15727
15728 add_info ("breakpoints", info_breakpoints_command, _("\
15729 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15730 The \"Type\" column indicates one of:\n\
15731 \tbreakpoint - normal breakpoint\n\
15732 \twatchpoint - watchpoint\n\
15733 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15734 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15735 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15736 address and file/line number respectively.\n\
15737 \n\
15738 Convenience variable \"$_\" and default examine address for \"x\"\n\
15739 are set to the address of the last breakpoint listed unless the command\n\
15740 is prefixed with \"server \".\n\n\
15741 Convenience variable \"$bpnum\" contains the number of the last\n\
15742 breakpoint set."));
15743
15744 add_info_alias ("b", "breakpoints", 1);
15745
15746 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15747 Status of all breakpoints, or breakpoint number NUMBER.\n\
15748 The \"Type\" column indicates one of:\n\
15749 \tbreakpoint - normal breakpoint\n\
15750 \twatchpoint - watchpoint\n\
15751 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15752 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15753 \tuntil - internal breakpoint used by the \"until\" command\n\
15754 \tfinish - internal breakpoint used by the \"finish\" command\n\
15755 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15756 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15757 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15758 address and file/line number respectively.\n\
15759 \n\
15760 Convenience variable \"$_\" and default examine address for \"x\"\n\
15761 are set to the address of the last breakpoint listed unless the command\n\
15762 is prefixed with \"server \".\n\n\
15763 Convenience variable \"$bpnum\" contains the number of the last\n\
15764 breakpoint set."),
15765 &maintenanceinfolist);
15766
15767 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15768 Set catchpoints to catch events."),
15769 &catch_cmdlist, "catch ",
15770 0/*allow-unknown*/, &cmdlist);
15771
15772 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15773 Set temporary catchpoints to catch events."),
15774 &tcatch_cmdlist, "tcatch ",
15775 0/*allow-unknown*/, &cmdlist);
15776
15777 add_catch_command ("fork", _("Catch calls to fork."),
15778 catch_fork_command_1,
15779 NULL,
15780 (void *) (uintptr_t) catch_fork_permanent,
15781 (void *) (uintptr_t) catch_fork_temporary);
15782 add_catch_command ("vfork", _("Catch calls to vfork."),
15783 catch_fork_command_1,
15784 NULL,
15785 (void *) (uintptr_t) catch_vfork_permanent,
15786 (void *) (uintptr_t) catch_vfork_temporary);
15787 add_catch_command ("exec", _("Catch calls to exec."),
15788 catch_exec_command_1,
15789 NULL,
15790 CATCH_PERMANENT,
15791 CATCH_TEMPORARY);
15792 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15793 Usage: catch load [REGEX]\n\
15794 If REGEX is given, only stop for libraries matching the regular expression."),
15795 catch_load_command_1,
15796 NULL,
15797 CATCH_PERMANENT,
15798 CATCH_TEMPORARY);
15799 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15800 Usage: catch unload [REGEX]\n\
15801 If REGEX is given, only stop for libraries matching the regular expression."),
15802 catch_unload_command_1,
15803 NULL,
15804 CATCH_PERMANENT,
15805 CATCH_TEMPORARY);
15806
15807 c = add_com ("watch", class_breakpoint, watch_command, _("\
15808 Set a watchpoint for an expression.\n\
15809 Usage: watch [-l|-location] EXPRESSION\n\
15810 A watchpoint stops execution of your program whenever the value of\n\
15811 an expression changes.\n\
15812 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15813 the memory to which it refers."));
15814 set_cmd_completer (c, expression_completer);
15815
15816 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15817 Set a read watchpoint for an expression.\n\
15818 Usage: rwatch [-l|-location] EXPRESSION\n\
15819 A watchpoint stops execution of your program whenever the value of\n\
15820 an expression is read.\n\
15821 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15822 the memory to which it refers."));
15823 set_cmd_completer (c, expression_completer);
15824
15825 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15826 Set a watchpoint for an expression.\n\
15827 Usage: awatch [-l|-location] EXPRESSION\n\
15828 A watchpoint stops execution of your program whenever the value of\n\
15829 an expression is either read or written.\n\
15830 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15831 the memory to which it refers."));
15832 set_cmd_completer (c, expression_completer);
15833
15834 add_info ("watchpoints", info_watchpoints_command, _("\
15835 Status of specified watchpoints (all watchpoints if no argument)."));
15836
15837 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15838 respond to changes - contrary to the description. */
15839 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15840 &can_use_hw_watchpoints, _("\
15841 Set debugger's willingness to use watchpoint hardware."), _("\
15842 Show debugger's willingness to use watchpoint hardware."), _("\
15843 If zero, gdb will not use hardware for new watchpoints, even if\n\
15844 such is available. (However, any hardware watchpoints that were\n\
15845 created before setting this to nonzero, will continue to use watchpoint\n\
15846 hardware.)"),
15847 NULL,
15848 show_can_use_hw_watchpoints,
15849 &setlist, &showlist);
15850
15851 can_use_hw_watchpoints = 1;
15852
15853 /* Tracepoint manipulation commands. */
15854
15855 c = add_com ("trace", class_breakpoint, trace_command, _("\
15856 Set a tracepoint at specified location.\n\
15857 \n"
15858 BREAK_ARGS_HELP ("trace") "\n\
15859 Do \"help tracepoints\" for info on other tracepoint commands."));
15860 set_cmd_completer (c, location_completer);
15861
15862 add_com_alias ("tp", "trace", class_alias, 0);
15863 add_com_alias ("tr", "trace", class_alias, 1);
15864 add_com_alias ("tra", "trace", class_alias, 1);
15865 add_com_alias ("trac", "trace", class_alias, 1);
15866
15867 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15868 Set a fast tracepoint at specified location.\n\
15869 \n"
15870 BREAK_ARGS_HELP ("ftrace") "\n\
15871 Do \"help tracepoints\" for info on other tracepoint commands."));
15872 set_cmd_completer (c, location_completer);
15873
15874 c = add_com ("strace", class_breakpoint, strace_command, _("\
15875 Set a static tracepoint at location or marker.\n\
15876 \n\
15877 strace [LOCATION] [if CONDITION]\n\
15878 LOCATION may be a linespec, explicit, or address location (described below) \n\
15879 or -m MARKER_ID.\n\n\
15880 If a marker id is specified, probe the marker with that name. With\n\
15881 no LOCATION, uses current execution address of the selected stack frame.\n\
15882 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15883 This collects arbitrary user data passed in the probe point call to the\n\
15884 tracing library. You can inspect it when analyzing the trace buffer,\n\
15885 by printing the $_sdata variable like any other convenience variable.\n\
15886 \n\
15887 CONDITION is a boolean expression.\n\
15888 \n" LOCATION_HELP_STRING "\n\
15889 Multiple tracepoints at one place are permitted, and useful if their\n\
15890 conditions are different.\n\
15891 \n\
15892 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15893 Do \"help tracepoints\" for info on other tracepoint commands."));
15894 set_cmd_completer (c, location_completer);
15895
15896 add_info ("tracepoints", info_tracepoints_command, _("\
15897 Status of specified tracepoints (all tracepoints if no argument).\n\
15898 Convenience variable \"$tpnum\" contains the number of the\n\
15899 last tracepoint set."));
15900
15901 add_info_alias ("tp", "tracepoints", 1);
15902
15903 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15904 Delete specified tracepoints.\n\
15905 Arguments are tracepoint numbers, separated by spaces.\n\
15906 No argument means delete all tracepoints."),
15907 &deletelist);
15908 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15909
15910 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15911 Disable specified tracepoints.\n\
15912 Arguments are tracepoint numbers, separated by spaces.\n\
15913 No argument means disable all tracepoints."),
15914 &disablelist);
15915 deprecate_cmd (c, "disable");
15916
15917 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15918 Enable specified tracepoints.\n\
15919 Arguments are tracepoint numbers, separated by spaces.\n\
15920 No argument means enable all tracepoints."),
15921 &enablelist);
15922 deprecate_cmd (c, "enable");
15923
15924 add_com ("passcount", class_trace, trace_pass_command, _("\
15925 Set the passcount for a tracepoint.\n\
15926 The trace will end when the tracepoint has been passed 'count' times.\n\
15927 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15928 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15929
15930 add_prefix_cmd ("save", class_breakpoint, save_command,
15931 _("Save breakpoint definitions as a script."),
15932 &save_cmdlist, "save ",
15933 0/*allow-unknown*/, &cmdlist);
15934
15935 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15936 Save current breakpoint definitions as a script.\n\
15937 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15938 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15939 session to restore them."),
15940 &save_cmdlist);
15941 set_cmd_completer (c, filename_completer);
15942
15943 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15944 Save current tracepoint definitions as a script.\n\
15945 Use the 'source' command in another debug session to restore them."),
15946 &save_cmdlist);
15947 set_cmd_completer (c, filename_completer);
15948
15949 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15950 deprecate_cmd (c, "save tracepoints");
15951
15952 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15953 Breakpoint specific settings\n\
15954 Configure various breakpoint-specific variables such as\n\
15955 pending breakpoint behavior"),
15956 &breakpoint_set_cmdlist, "set breakpoint ",
15957 0/*allow-unknown*/, &setlist);
15958 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15959 Breakpoint specific settings\n\
15960 Configure various breakpoint-specific variables such as\n\
15961 pending breakpoint behavior"),
15962 &breakpoint_show_cmdlist, "show breakpoint ",
15963 0/*allow-unknown*/, &showlist);
15964
15965 add_setshow_auto_boolean_cmd ("pending", no_class,
15966 &pending_break_support, _("\
15967 Set debugger's behavior regarding pending breakpoints."), _("\
15968 Show debugger's behavior regarding pending breakpoints."), _("\
15969 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15970 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15971 an error. If auto, an unrecognized breakpoint location results in a\n\
15972 user-query to see if a pending breakpoint should be created."),
15973 NULL,
15974 show_pending_break_support,
15975 &breakpoint_set_cmdlist,
15976 &breakpoint_show_cmdlist);
15977
15978 pending_break_support = AUTO_BOOLEAN_AUTO;
15979
15980 add_setshow_boolean_cmd ("auto-hw", no_class,
15981 &automatic_hardware_breakpoints, _("\
15982 Set automatic usage of hardware breakpoints."), _("\
15983 Show automatic usage of hardware breakpoints."), _("\
15984 If set, the debugger will automatically use hardware breakpoints for\n\
15985 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15986 a warning will be emitted for such breakpoints."),
15987 NULL,
15988 show_automatic_hardware_breakpoints,
15989 &breakpoint_set_cmdlist,
15990 &breakpoint_show_cmdlist);
15991
15992 add_setshow_boolean_cmd ("always-inserted", class_support,
15993 &always_inserted_mode, _("\
15994 Set mode for inserting breakpoints."), _("\
15995 Show mode for inserting breakpoints."), _("\
15996 When this mode is on, breakpoints are inserted immediately as soon as\n\
15997 they're created, kept inserted even when execution stops, and removed\n\
15998 only when the user deletes them. When this mode is off (the default),\n\
15999 breakpoints are inserted only when execution continues, and removed\n\
16000 when execution stops."),
16001 NULL,
16002 &show_always_inserted_mode,
16003 &breakpoint_set_cmdlist,
16004 &breakpoint_show_cmdlist);
16005
16006 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16007 condition_evaluation_enums,
16008 &condition_evaluation_mode_1, _("\
16009 Set mode of breakpoint condition evaluation."), _("\
16010 Show mode of breakpoint condition evaluation."), _("\
16011 When this is set to \"host\", breakpoint conditions will be\n\
16012 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16013 breakpoint conditions will be downloaded to the target (if the target\n\
16014 supports such feature) and conditions will be evaluated on the target's side.\n\
16015 If this is set to \"auto\" (default), this will be automatically set to\n\
16016 \"target\" if it supports condition evaluation, otherwise it will\n\
16017 be set to \"gdb\""),
16018 &set_condition_evaluation_mode,
16019 &show_condition_evaluation_mode,
16020 &breakpoint_set_cmdlist,
16021 &breakpoint_show_cmdlist);
16022
16023 add_com ("break-range", class_breakpoint, break_range_command, _("\
16024 Set a breakpoint for an address range.\n\
16025 break-range START-LOCATION, END-LOCATION\n\
16026 where START-LOCATION and END-LOCATION can be one of the following:\n\
16027 LINENUM, for that line in the current file,\n\
16028 FILE:LINENUM, for that line in that file,\n\
16029 +OFFSET, for that number of lines after the current line\n\
16030 or the start of the range\n\
16031 FUNCTION, for the first line in that function,\n\
16032 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16033 *ADDRESS, for the instruction at that address.\n\
16034 \n\
16035 The breakpoint will stop execution of the inferior whenever it executes\n\
16036 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16037 range (including START-LOCATION and END-LOCATION)."));
16038
16039 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16040 Set a dynamic printf at specified location.\n\
16041 dprintf location,format string,arg1,arg2,...\n\
16042 location may be a linespec, explicit, or address location.\n"
16043 "\n" LOCATION_HELP_STRING));
16044 set_cmd_completer (c, location_completer);
16045
16046 add_setshow_enum_cmd ("dprintf-style", class_support,
16047 dprintf_style_enums, &dprintf_style, _("\
16048 Set the style of usage for dynamic printf."), _("\
16049 Show the style of usage for dynamic printf."), _("\
16050 This setting chooses how GDB will do a dynamic printf.\n\
16051 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16052 console, as with the \"printf\" command.\n\
16053 If the value is \"call\", the print is done by calling a function in your\n\
16054 program; by default printf(), but you can choose a different function or\n\
16055 output stream by setting dprintf-function and dprintf-channel."),
16056 update_dprintf_commands, NULL,
16057 &setlist, &showlist);
16058
16059 dprintf_function = xstrdup ("printf");
16060 add_setshow_string_cmd ("dprintf-function", class_support,
16061 &dprintf_function, _("\
16062 Set the function to use for dynamic printf"), _("\
16063 Show the function to use for dynamic printf"), NULL,
16064 update_dprintf_commands, NULL,
16065 &setlist, &showlist);
16066
16067 dprintf_channel = xstrdup ("");
16068 add_setshow_string_cmd ("dprintf-channel", class_support,
16069 &dprintf_channel, _("\
16070 Set the channel to use for dynamic printf"), _("\
16071 Show the channel to use for dynamic printf"), NULL,
16072 update_dprintf_commands, NULL,
16073 &setlist, &showlist);
16074
16075 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16076 &disconnected_dprintf, _("\
16077 Set whether dprintf continues after GDB disconnects."), _("\
16078 Show whether dprintf continues after GDB disconnects."), _("\
16079 Use this to let dprintf commands continue to hit and produce output\n\
16080 even if GDB disconnects or detaches from the target."),
16081 NULL,
16082 NULL,
16083 &setlist, &showlist);
16084
16085 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16086 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16087 (target agent only) This is useful for formatted output in user-defined commands."));
16088
16089 automatic_hardware_breakpoints = 1;
16090
16091 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16092 observer_attach_thread_exit (remove_threaded_breakpoints);
16093 }
This page took 0.339071 seconds and 5 git commands to generate.