2012-01-06 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "wrapper.h"
60 #include "valprint.h"
61 #include "jit.h"
62 #include "xml-syscall.h"
63 #include "parser-defs.h"
64 #include "cli/cli-utils.h"
65 #include "continuations.h"
66 #include "stack.h"
67 #include "skip.h"
68 #include "record.h"
69
70 /* readline include files */
71 #include "readline/readline.h"
72 #include "readline/history.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "python/python.h"
79
80 /* Prototypes for local functions. */
81
82 static void enable_delete_command (char *, int);
83
84 static void enable_once_command (char *, int);
85
86 static void disable_command (char *, int);
87
88 static void enable_command (char *, int);
89
90 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
91 void *),
92 void *);
93
94 static void ignore_command (char *, int);
95
96 static int breakpoint_re_set_one (void *);
97
98 static void breakpoint_re_set_default (struct breakpoint *);
99
100 static void clear_command (char *, int);
101
102 static void catch_command (char *, int);
103
104 static int can_use_hardware_watchpoint (struct value *);
105
106 static void break_command_1 (char *, int, int);
107
108 static void mention (struct breakpoint *);
109
110 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
111 enum bptype,
112 const struct breakpoint_ops *);
113 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
114 const struct symtab_and_line *);
115
116 /* This function is used in gdbtk sources and thus can not be made
117 static. */
118 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
119 struct symtab_and_line,
120 enum bptype,
121 const struct breakpoint_ops *);
122
123 static struct breakpoint *
124 momentary_breakpoint_from_master (struct breakpoint *orig,
125 enum bptype type,
126 const struct breakpoint_ops *ops);
127
128 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
129
130 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
131 CORE_ADDR bpaddr,
132 enum bptype bptype);
133
134 static void describe_other_breakpoints (struct gdbarch *,
135 struct program_space *, CORE_ADDR,
136 struct obj_section *, int);
137
138 static int breakpoint_address_match (struct address_space *aspace1,
139 CORE_ADDR addr1,
140 struct address_space *aspace2,
141 CORE_ADDR addr2);
142
143 static int watchpoint_locations_match (struct bp_location *loc1,
144 struct bp_location *loc2);
145
146 static int breakpoint_location_address_match (struct bp_location *bl,
147 struct address_space *aspace,
148 CORE_ADDR addr);
149
150 static void breakpoints_info (char *, int);
151
152 static void watchpoints_info (char *, int);
153
154 static int breakpoint_1 (char *, int,
155 int (*) (const struct breakpoint *));
156
157 static int breakpoint_cond_eval (void *);
158
159 static void cleanup_executing_breakpoints (void *);
160
161 static void commands_command (char *, int);
162
163 static void condition_command (char *, int);
164
165 typedef enum
166 {
167 mark_inserted,
168 mark_uninserted
169 }
170 insertion_state_t;
171
172 static int remove_breakpoint (struct bp_location *, insertion_state_t);
173 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
174
175 static enum print_stop_action print_bp_stop_message (bpstat bs);
176
177 static int watchpoint_check (void *);
178
179 static void maintenance_info_breakpoints (char *, int);
180
181 static int hw_breakpoint_used_count (void);
182
183 static int hw_watchpoint_use_count (struct breakpoint *);
184
185 static int hw_watchpoint_used_count_others (struct breakpoint *except,
186 enum bptype type,
187 int *other_type_used);
188
189 static void hbreak_command (char *, int);
190
191 static void thbreak_command (char *, int);
192
193 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp);
194
195 static void stop_command (char *arg, int from_tty);
196
197 static void stopin_command (char *arg, int from_tty);
198
199 static void stopat_command (char *arg, int from_tty);
200
201 static char *ep_parse_optional_if_clause (char **arg);
202
203 static void catch_exception_command_1 (enum exception_event_kind ex_event,
204 char *arg, int tempflag, int from_tty);
205
206 static void tcatch_command (char *arg, int from_tty);
207
208 static void detach_single_step_breakpoints (void);
209
210 static int single_step_breakpoint_inserted_here_p (struct address_space *,
211 CORE_ADDR pc);
212
213 static void free_bp_location (struct bp_location *loc);
214 static void incref_bp_location (struct bp_location *loc);
215 static void decref_bp_location (struct bp_location **loc);
216
217 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
218
219 static void update_global_location_list (int);
220
221 static void update_global_location_list_nothrow (int);
222
223 static int is_hardware_watchpoint (const struct breakpoint *bpt);
224
225 static void insert_breakpoint_locations (void);
226
227 static int syscall_catchpoint_p (struct breakpoint *b);
228
229 static void tracepoints_info (char *, int);
230
231 static void delete_trace_command (char *, int);
232
233 static void enable_trace_command (char *, int);
234
235 static void disable_trace_command (char *, int);
236
237 static void trace_pass_command (char *, int);
238
239 static int is_masked_watchpoint (const struct breakpoint *b);
240
241 /* Assuming we're creating a static tracepoint, does S look like a
242 static tracepoint marker spec ("-m MARKER_ID")? */
243 #define is_marker_spec(s) \
244 (s != NULL && strncmp (s, "-m", 2) == 0 && ((s)[2] == ' ' || (s)[2] == '\t'))
245
246 /* The abstract base class all breakpoint_ops structures inherit
247 from. */
248 static struct breakpoint_ops base_breakpoint_ops;
249
250 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
251 that are implemented on top of software or hardware breakpoints
252 (user breakpoints, internal and momentary breakpoints, etc.). */
253 static struct breakpoint_ops bkpt_base_breakpoint_ops;
254
255 /* Internal breakpoints class type. */
256 static struct breakpoint_ops internal_breakpoint_ops;
257
258 /* Momentary breakpoints class type. */
259 static struct breakpoint_ops momentary_breakpoint_ops;
260
261 /* The breakpoint_ops structure to be used in regular user created
262 breakpoints. */
263 struct breakpoint_ops bkpt_breakpoint_ops;
264
265 /* A reference-counted struct command_line. This lets multiple
266 breakpoints share a single command list. */
267 struct counted_command_line
268 {
269 /* The reference count. */
270 int refc;
271
272 /* The command list. */
273 struct command_line *commands;
274 };
275
276 struct command_line *
277 breakpoint_commands (struct breakpoint *b)
278 {
279 return b->commands ? b->commands->commands : NULL;
280 }
281
282 /* Flag indicating that a command has proceeded the inferior past the
283 current breakpoint. */
284
285 static int breakpoint_proceeded;
286
287 const char *
288 bpdisp_text (enum bpdisp disp)
289 {
290 /* NOTE: the following values are a part of MI protocol and
291 represent values of 'disp' field returned when inferior stops at
292 a breakpoint. */
293 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
294
295 return bpdisps[(int) disp];
296 }
297
298 /* Prototypes for exported functions. */
299 /* If FALSE, gdb will not use hardware support for watchpoints, even
300 if such is available. */
301 static int can_use_hw_watchpoints;
302
303 static void
304 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c,
306 const char *value)
307 {
308 fprintf_filtered (file,
309 _("Debugger's willingness to use "
310 "watchpoint hardware is %s.\n"),
311 value);
312 }
313
314 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
315 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
316 for unrecognized breakpoint locations.
317 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
318 static enum auto_boolean pending_break_support;
319 static void
320 show_pending_break_support (struct ui_file *file, int from_tty,
321 struct cmd_list_element *c,
322 const char *value)
323 {
324 fprintf_filtered (file,
325 _("Debugger's behavior regarding "
326 "pending breakpoints is %s.\n"),
327 value);
328 }
329
330 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
331 set with "break" but falling in read-only memory.
332 If 0, gdb will warn about such breakpoints, but won't automatically
333 use hardware breakpoints. */
334 static int automatic_hardware_breakpoints;
335 static void
336 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
337 struct cmd_list_element *c,
338 const char *value)
339 {
340 fprintf_filtered (file,
341 _("Automatic usage of hardware breakpoints is %s.\n"),
342 value);
343 }
344
345 /* If on, gdb will keep breakpoints inserted even as inferior is
346 stopped, and immediately insert any new breakpoints. If off, gdb
347 will insert breakpoints into inferior only when resuming it, and
348 will remove breakpoints upon stop. If auto, GDB will behave as ON
349 if in non-stop mode, and as OFF if all-stop mode.*/
350
351 static const char always_inserted_auto[] = "auto";
352 static const char always_inserted_on[] = "on";
353 static const char always_inserted_off[] = "off";
354 static const char *always_inserted_enums[] = {
355 always_inserted_auto,
356 always_inserted_off,
357 always_inserted_on,
358 NULL
359 };
360 static const char *always_inserted_mode = always_inserted_auto;
361 static void
362 show_always_inserted_mode (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c, const char *value)
364 {
365 if (always_inserted_mode == always_inserted_auto)
366 fprintf_filtered (file,
367 _("Always inserted breakpoint "
368 "mode is %s (currently %s).\n"),
369 value,
370 breakpoints_always_inserted_mode () ? "on" : "off");
371 else
372 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
373 value);
374 }
375
376 int
377 breakpoints_always_inserted_mode (void)
378 {
379 return ((always_inserted_mode == always_inserted_on
380 || (always_inserted_mode == always_inserted_auto && non_stop))
381 && !RECORD_IS_USED);
382 }
383
384 void _initialize_breakpoint (void);
385
386 /* Are we executing breakpoint commands? */
387 static int executing_breakpoint_commands;
388
389 /* Are overlay event breakpoints enabled? */
390 static int overlay_events_enabled;
391
392 /* See description in breakpoint.h. */
393 int target_exact_watchpoints = 0;
394
395 /* Walk the following statement or block through all breakpoints.
396 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
397 current breakpoint. */
398
399 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
400
401 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
402 for (B = breakpoint_chain; \
403 B ? (TMP=B->next, 1): 0; \
404 B = TMP)
405
406 /* Similar iterator for the low-level breakpoints. SAFE variant is
407 not provided so update_global_location_list must not be called
408 while executing the block of ALL_BP_LOCATIONS. */
409
410 #define ALL_BP_LOCATIONS(B,BP_TMP) \
411 for (BP_TMP = bp_location; \
412 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
413 BP_TMP++)
414
415 /* Iterator for tracepoints only. */
416
417 #define ALL_TRACEPOINTS(B) \
418 for (B = breakpoint_chain; B; B = B->next) \
419 if (is_tracepoint (B))
420
421 /* Chains of all breakpoints defined. */
422
423 struct breakpoint *breakpoint_chain;
424
425 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
426
427 static struct bp_location **bp_location;
428
429 /* Number of elements of BP_LOCATION. */
430
431 static unsigned bp_location_count;
432
433 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
434 ADDRESS for the current elements of BP_LOCATION which get a valid
435 result from bp_location_has_shadow. You can use it for roughly
436 limiting the subrange of BP_LOCATION to scan for shadow bytes for
437 an address you need to read. */
438
439 static CORE_ADDR bp_location_placed_address_before_address_max;
440
441 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
442 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
443 BP_LOCATION which get a valid result from bp_location_has_shadow.
444 You can use it for roughly limiting the subrange of BP_LOCATION to
445 scan for shadow bytes for an address you need to read. */
446
447 static CORE_ADDR bp_location_shadow_len_after_address_max;
448
449 /* The locations that no longer correspond to any breakpoint, unlinked
450 from bp_location array, but for which a hit may still be reported
451 by a target. */
452 VEC(bp_location_p) *moribund_locations = NULL;
453
454 /* Number of last breakpoint made. */
455
456 static int breakpoint_count;
457
458 /* The value of `breakpoint_count' before the last command that
459 created breakpoints. If the last (break-like) command created more
460 than one breakpoint, then the difference between BREAKPOINT_COUNT
461 and PREV_BREAKPOINT_COUNT is more than one. */
462 static int prev_breakpoint_count;
463
464 /* Number of last tracepoint made. */
465
466 static int tracepoint_count;
467
468 static struct cmd_list_element *breakpoint_set_cmdlist;
469 static struct cmd_list_element *breakpoint_show_cmdlist;
470 struct cmd_list_element *save_cmdlist;
471
472 /* Return whether a breakpoint is an active enabled breakpoint. */
473 static int
474 breakpoint_enabled (struct breakpoint *b)
475 {
476 return (b->enable_state == bp_enabled);
477 }
478
479 /* Set breakpoint count to NUM. */
480
481 static void
482 set_breakpoint_count (int num)
483 {
484 prev_breakpoint_count = breakpoint_count;
485 breakpoint_count = num;
486 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
487 }
488
489 /* Used by `start_rbreak_breakpoints' below, to record the current
490 breakpoint count before "rbreak" creates any breakpoint. */
491 static int rbreak_start_breakpoint_count;
492
493 /* Called at the start an "rbreak" command to record the first
494 breakpoint made. */
495
496 void
497 start_rbreak_breakpoints (void)
498 {
499 rbreak_start_breakpoint_count = breakpoint_count;
500 }
501
502 /* Called at the end of an "rbreak" command to record the last
503 breakpoint made. */
504
505 void
506 end_rbreak_breakpoints (void)
507 {
508 prev_breakpoint_count = rbreak_start_breakpoint_count;
509 }
510
511 /* Used in run_command to zero the hit count when a new run starts. */
512
513 void
514 clear_breakpoint_hit_counts (void)
515 {
516 struct breakpoint *b;
517
518 ALL_BREAKPOINTS (b)
519 b->hit_count = 0;
520 }
521
522 /* Allocate a new counted_command_line with reference count of 1.
523 The new structure owns COMMANDS. */
524
525 static struct counted_command_line *
526 alloc_counted_command_line (struct command_line *commands)
527 {
528 struct counted_command_line *result
529 = xmalloc (sizeof (struct counted_command_line));
530
531 result->refc = 1;
532 result->commands = commands;
533 return result;
534 }
535
536 /* Increment reference count. This does nothing if CMD is NULL. */
537
538 static void
539 incref_counted_command_line (struct counted_command_line *cmd)
540 {
541 if (cmd)
542 ++cmd->refc;
543 }
544
545 /* Decrement reference count. If the reference count reaches 0,
546 destroy the counted_command_line. Sets *CMDP to NULL. This does
547 nothing if *CMDP is NULL. */
548
549 static void
550 decref_counted_command_line (struct counted_command_line **cmdp)
551 {
552 if (*cmdp)
553 {
554 if (--(*cmdp)->refc == 0)
555 {
556 free_command_lines (&(*cmdp)->commands);
557 xfree (*cmdp);
558 }
559 *cmdp = NULL;
560 }
561 }
562
563 /* A cleanup function that calls decref_counted_command_line. */
564
565 static void
566 do_cleanup_counted_command_line (void *arg)
567 {
568 decref_counted_command_line (arg);
569 }
570
571 /* Create a cleanup that calls decref_counted_command_line on the
572 argument. */
573
574 static struct cleanup *
575 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
576 {
577 return make_cleanup (do_cleanup_counted_command_line, cmdp);
578 }
579
580 \f
581 /* Return the breakpoint with the specified number, or NULL
582 if the number does not refer to an existing breakpoint. */
583
584 struct breakpoint *
585 get_breakpoint (int num)
586 {
587 struct breakpoint *b;
588
589 ALL_BREAKPOINTS (b)
590 if (b->number == num)
591 return b;
592
593 return NULL;
594 }
595
596 \f
597
598 void
599 set_breakpoint_condition (struct breakpoint *b, char *exp,
600 int from_tty)
601 {
602 xfree (b->cond_string);
603 b->cond_string = NULL;
604
605 if (is_watchpoint (b))
606 {
607 struct watchpoint *w = (struct watchpoint *) b;
608
609 xfree (w->cond_exp);
610 w->cond_exp = NULL;
611 }
612 else
613 {
614 struct bp_location *loc;
615
616 for (loc = b->loc; loc; loc = loc->next)
617 {
618 xfree (loc->cond);
619 loc->cond = NULL;
620 }
621 }
622
623 if (*exp == 0)
624 {
625 if (from_tty)
626 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
627 }
628 else
629 {
630 char *arg = exp;
631
632 /* I don't know if it matters whether this is the string the user
633 typed in or the decompiled expression. */
634 b->cond_string = xstrdup (arg);
635 b->condition_not_parsed = 0;
636
637 if (is_watchpoint (b))
638 {
639 struct watchpoint *w = (struct watchpoint *) b;
640
641 innermost_block = NULL;
642 arg = exp;
643 w->cond_exp = parse_exp_1 (&arg, 0, 0);
644 if (*arg)
645 error (_("Junk at end of expression"));
646 w->cond_exp_valid_block = innermost_block;
647 }
648 else
649 {
650 struct bp_location *loc;
651
652 for (loc = b->loc; loc; loc = loc->next)
653 {
654 arg = exp;
655 loc->cond =
656 parse_exp_1 (&arg, block_for_pc (loc->address), 0);
657 if (*arg)
658 error (_("Junk at end of expression"));
659 }
660 }
661 }
662 breakpoints_changed ();
663 observer_notify_breakpoint_modified (b);
664 }
665
666 /* condition N EXP -- set break condition of breakpoint N to EXP. */
667
668 static void
669 condition_command (char *arg, int from_tty)
670 {
671 struct breakpoint *b;
672 char *p;
673 int bnum;
674
675 if (arg == 0)
676 error_no_arg (_("breakpoint number"));
677
678 p = arg;
679 bnum = get_number (&p);
680 if (bnum == 0)
681 error (_("Bad breakpoint argument: '%s'"), arg);
682
683 ALL_BREAKPOINTS (b)
684 if (b->number == bnum)
685 {
686 /* Check if this breakpoint has a Python object assigned to
687 it, and if it has a definition of the "stop"
688 method. This method and conditions entered into GDB from
689 the CLI are mutually exclusive. */
690 if (b->py_bp_object
691 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
692 error (_("Cannot set a condition where a Python 'stop' "
693 "method has been defined in the breakpoint."));
694 set_breakpoint_condition (b, p, from_tty);
695 return;
696 }
697
698 error (_("No breakpoint number %d."), bnum);
699 }
700
701 /* Check that COMMAND do not contain commands that are suitable
702 only for tracepoints and not suitable for ordinary breakpoints.
703 Throw if any such commands is found. */
704
705 static void
706 check_no_tracepoint_commands (struct command_line *commands)
707 {
708 struct command_line *c;
709
710 for (c = commands; c; c = c->next)
711 {
712 int i;
713
714 if (c->control_type == while_stepping_control)
715 error (_("The 'while-stepping' command can "
716 "only be used for tracepoints"));
717
718 for (i = 0; i < c->body_count; ++i)
719 check_no_tracepoint_commands ((c->body_list)[i]);
720
721 /* Not that command parsing removes leading whitespace and comment
722 lines and also empty lines. So, we only need to check for
723 command directly. */
724 if (strstr (c->line, "collect ") == c->line)
725 error (_("The 'collect' command can only be used for tracepoints"));
726
727 if (strstr (c->line, "teval ") == c->line)
728 error (_("The 'teval' command can only be used for tracepoints"));
729 }
730 }
731
732 /* Encapsulate tests for different types of tracepoints. */
733
734 static int
735 is_tracepoint_type (enum bptype type)
736 {
737 return (type == bp_tracepoint
738 || type == bp_fast_tracepoint
739 || type == bp_static_tracepoint);
740 }
741
742 int
743 is_tracepoint (const struct breakpoint *b)
744 {
745 return is_tracepoint_type (b->type);
746 }
747
748 /* A helper function that validates that COMMANDS are valid for a
749 breakpoint. This function will throw an exception if a problem is
750 found. */
751
752 static void
753 validate_commands_for_breakpoint (struct breakpoint *b,
754 struct command_line *commands)
755 {
756 if (is_tracepoint (b))
757 {
758 /* We need to verify that each top-level element of commands is
759 valid for tracepoints, that there's at most one
760 while-stepping element, and that while-stepping's body has
761 valid tracing commands excluding nested while-stepping. */
762 struct command_line *c;
763 struct command_line *while_stepping = 0;
764 for (c = commands; c; c = c->next)
765 {
766 if (c->control_type == while_stepping_control)
767 {
768 if (b->type == bp_fast_tracepoint)
769 error (_("The 'while-stepping' command "
770 "cannot be used for fast tracepoint"));
771 else if (b->type == bp_static_tracepoint)
772 error (_("The 'while-stepping' command "
773 "cannot be used for static tracepoint"));
774
775 if (while_stepping)
776 error (_("The 'while-stepping' command "
777 "can be used only once"));
778 else
779 while_stepping = c;
780 }
781 }
782 if (while_stepping)
783 {
784 struct command_line *c2;
785
786 gdb_assert (while_stepping->body_count == 1);
787 c2 = while_stepping->body_list[0];
788 for (; c2; c2 = c2->next)
789 {
790 if (c2->control_type == while_stepping_control)
791 error (_("The 'while-stepping' command cannot be nested"));
792 }
793 }
794 }
795 else
796 {
797 check_no_tracepoint_commands (commands);
798 }
799 }
800
801 /* Return a vector of all the static tracepoints set at ADDR. The
802 caller is responsible for releasing the vector. */
803
804 VEC(breakpoint_p) *
805 static_tracepoints_here (CORE_ADDR addr)
806 {
807 struct breakpoint *b;
808 VEC(breakpoint_p) *found = 0;
809 struct bp_location *loc;
810
811 ALL_BREAKPOINTS (b)
812 if (b->type == bp_static_tracepoint)
813 {
814 for (loc = b->loc; loc; loc = loc->next)
815 if (loc->address == addr)
816 VEC_safe_push(breakpoint_p, found, b);
817 }
818
819 return found;
820 }
821
822 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
823 validate that only allowed commands are included. */
824
825 void
826 breakpoint_set_commands (struct breakpoint *b,
827 struct command_line *commands)
828 {
829 validate_commands_for_breakpoint (b, commands);
830
831 decref_counted_command_line (&b->commands);
832 b->commands = alloc_counted_command_line (commands);
833 breakpoints_changed ();
834 observer_notify_breakpoint_modified (b);
835 }
836
837 /* Set the internal `silent' flag on the breakpoint. Note that this
838 is not the same as the "silent" that may appear in the breakpoint's
839 commands. */
840
841 void
842 breakpoint_set_silent (struct breakpoint *b, int silent)
843 {
844 int old_silent = b->silent;
845
846 b->silent = silent;
847 if (old_silent != silent)
848 observer_notify_breakpoint_modified (b);
849 }
850
851 /* Set the thread for this breakpoint. If THREAD is -1, make the
852 breakpoint work for any thread. */
853
854 void
855 breakpoint_set_thread (struct breakpoint *b, int thread)
856 {
857 int old_thread = b->thread;
858
859 b->thread = thread;
860 if (old_thread != thread)
861 observer_notify_breakpoint_modified (b);
862 }
863
864 /* Set the task for this breakpoint. If TASK is 0, make the
865 breakpoint work for any task. */
866
867 void
868 breakpoint_set_task (struct breakpoint *b, int task)
869 {
870 int old_task = b->task;
871
872 b->task = task;
873 if (old_task != task)
874 observer_notify_breakpoint_modified (b);
875 }
876
877 void
878 check_tracepoint_command (char *line, void *closure)
879 {
880 struct breakpoint *b = closure;
881
882 validate_actionline (&line, b);
883 }
884
885 /* A structure used to pass information through
886 map_breakpoint_numbers. */
887
888 struct commands_info
889 {
890 /* True if the command was typed at a tty. */
891 int from_tty;
892
893 /* The breakpoint range spec. */
894 char *arg;
895
896 /* Non-NULL if the body of the commands are being read from this
897 already-parsed command. */
898 struct command_line *control;
899
900 /* The command lines read from the user, or NULL if they have not
901 yet been read. */
902 struct counted_command_line *cmd;
903 };
904
905 /* A callback for map_breakpoint_numbers that sets the commands for
906 commands_command. */
907
908 static void
909 do_map_commands_command (struct breakpoint *b, void *data)
910 {
911 struct commands_info *info = data;
912
913 if (info->cmd == NULL)
914 {
915 struct command_line *l;
916
917 if (info->control != NULL)
918 l = copy_command_lines (info->control->body_list[0]);
919 else
920 {
921 struct cleanup *old_chain;
922 char *str;
923
924 str = xstrprintf (_("Type commands for breakpoint(s) "
925 "%s, one per line."),
926 info->arg);
927
928 old_chain = make_cleanup (xfree, str);
929
930 l = read_command_lines (str,
931 info->from_tty, 1,
932 (is_tracepoint (b)
933 ? check_tracepoint_command : 0),
934 b);
935
936 do_cleanups (old_chain);
937 }
938
939 info->cmd = alloc_counted_command_line (l);
940 }
941
942 /* If a breakpoint was on the list more than once, we don't need to
943 do anything. */
944 if (b->commands != info->cmd)
945 {
946 validate_commands_for_breakpoint (b, info->cmd->commands);
947 incref_counted_command_line (info->cmd);
948 decref_counted_command_line (&b->commands);
949 b->commands = info->cmd;
950 breakpoints_changed ();
951 observer_notify_breakpoint_modified (b);
952 }
953 }
954
955 static void
956 commands_command_1 (char *arg, int from_tty,
957 struct command_line *control)
958 {
959 struct cleanup *cleanups;
960 struct commands_info info;
961
962 info.from_tty = from_tty;
963 info.control = control;
964 info.cmd = NULL;
965 /* If we read command lines from the user, then `info' will hold an
966 extra reference to the commands that we must clean up. */
967 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
968
969 if (arg == NULL || !*arg)
970 {
971 if (breakpoint_count - prev_breakpoint_count > 1)
972 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
973 breakpoint_count);
974 else if (breakpoint_count > 0)
975 arg = xstrprintf ("%d", breakpoint_count);
976 else
977 {
978 /* So that we don't try to free the incoming non-NULL
979 argument in the cleanup below. Mapping breakpoint
980 numbers will fail in this case. */
981 arg = NULL;
982 }
983 }
984 else
985 /* The command loop has some static state, so we need to preserve
986 our argument. */
987 arg = xstrdup (arg);
988
989 if (arg != NULL)
990 make_cleanup (xfree, arg);
991
992 info.arg = arg;
993
994 map_breakpoint_numbers (arg, do_map_commands_command, &info);
995
996 if (info.cmd == NULL)
997 error (_("No breakpoints specified."));
998
999 do_cleanups (cleanups);
1000 }
1001
1002 static void
1003 commands_command (char *arg, int from_tty)
1004 {
1005 commands_command_1 (arg, from_tty, NULL);
1006 }
1007
1008 /* Like commands_command, but instead of reading the commands from
1009 input stream, takes them from an already parsed command structure.
1010
1011 This is used by cli-script.c to DTRT with breakpoint commands
1012 that are part of if and while bodies. */
1013 enum command_control_type
1014 commands_from_control_command (char *arg, struct command_line *cmd)
1015 {
1016 commands_command_1 (arg, 0, cmd);
1017 return simple_control;
1018 }
1019
1020 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1021
1022 static int
1023 bp_location_has_shadow (struct bp_location *bl)
1024 {
1025 if (bl->loc_type != bp_loc_software_breakpoint)
1026 return 0;
1027 if (!bl->inserted)
1028 return 0;
1029 if (bl->target_info.shadow_len == 0)
1030 /* BL isn't valid, or doesn't shadow memory. */
1031 return 0;
1032 return 1;
1033 }
1034
1035 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1036 by replacing any memory breakpoints with their shadowed contents.
1037
1038 The range of shadowed area by each bp_location is:
1039 bl->address - bp_location_placed_address_before_address_max
1040 up to bl->address + bp_location_shadow_len_after_address_max
1041 The range we were requested to resolve shadows for is:
1042 memaddr ... memaddr + len
1043 Thus the safe cutoff boundaries for performance optimization are
1044 memaddr + len <= (bl->address
1045 - bp_location_placed_address_before_address_max)
1046 and:
1047 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1048
1049 void
1050 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1051 const gdb_byte *writebuf_org,
1052 ULONGEST memaddr, LONGEST len)
1053 {
1054 /* Left boundary, right boundary and median element of our binary
1055 search. */
1056 unsigned bc_l, bc_r, bc;
1057
1058 /* Find BC_L which is a leftmost element which may affect BUF
1059 content. It is safe to report lower value but a failure to
1060 report higher one. */
1061
1062 bc_l = 0;
1063 bc_r = bp_location_count;
1064 while (bc_l + 1 < bc_r)
1065 {
1066 struct bp_location *bl;
1067
1068 bc = (bc_l + bc_r) / 2;
1069 bl = bp_location[bc];
1070
1071 /* Check first BL->ADDRESS will not overflow due to the added
1072 constant. Then advance the left boundary only if we are sure
1073 the BC element can in no way affect the BUF content (MEMADDR
1074 to MEMADDR + LEN range).
1075
1076 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1077 offset so that we cannot miss a breakpoint with its shadow
1078 range tail still reaching MEMADDR. */
1079
1080 if ((bl->address + bp_location_shadow_len_after_address_max
1081 >= bl->address)
1082 && (bl->address + bp_location_shadow_len_after_address_max
1083 <= memaddr))
1084 bc_l = bc;
1085 else
1086 bc_r = bc;
1087 }
1088
1089 /* Due to the binary search above, we need to make sure we pick the
1090 first location that's at BC_L's address. E.g., if there are
1091 multiple locations at the same address, BC_L may end up pointing
1092 at a duplicate location, and miss the "master"/"inserted"
1093 location. Say, given locations L1, L2 and L3 at addresses A and
1094 B:
1095
1096 L1@A, L2@A, L3@B, ...
1097
1098 BC_L could end up pointing at location L2, while the "master"
1099 location could be L1. Since the `loc->inserted' flag is only set
1100 on "master" locations, we'd forget to restore the shadow of L1
1101 and L2. */
1102 while (bc_l > 0
1103 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1104 bc_l--;
1105
1106 /* Now do full processing of the found relevant range of elements. */
1107
1108 for (bc = bc_l; bc < bp_location_count; bc++)
1109 {
1110 struct bp_location *bl = bp_location[bc];
1111 CORE_ADDR bp_addr = 0;
1112 int bp_size = 0;
1113 int bptoffset = 0;
1114
1115 /* bp_location array has BL->OWNER always non-NULL. */
1116 if (bl->owner->type == bp_none)
1117 warning (_("reading through apparently deleted breakpoint #%d?"),
1118 bl->owner->number);
1119
1120 /* Performance optimization: any further element can no longer affect BUF
1121 content. */
1122
1123 if (bl->address >= bp_location_placed_address_before_address_max
1124 && memaddr + len <= (bl->address
1125 - bp_location_placed_address_before_address_max))
1126 break;
1127
1128 if (!bp_location_has_shadow (bl))
1129 continue;
1130 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1131 current_program_space->aspace, 0))
1132 continue;
1133
1134 /* Addresses and length of the part of the breakpoint that
1135 we need to copy. */
1136 bp_addr = bl->target_info.placed_address;
1137 bp_size = bl->target_info.shadow_len;
1138
1139 if (bp_addr + bp_size <= memaddr)
1140 /* The breakpoint is entirely before the chunk of memory we
1141 are reading. */
1142 continue;
1143
1144 if (bp_addr >= memaddr + len)
1145 /* The breakpoint is entirely after the chunk of memory we are
1146 reading. */
1147 continue;
1148
1149 /* Offset within shadow_contents. */
1150 if (bp_addr < memaddr)
1151 {
1152 /* Only copy the second part of the breakpoint. */
1153 bp_size -= memaddr - bp_addr;
1154 bptoffset = memaddr - bp_addr;
1155 bp_addr = memaddr;
1156 }
1157
1158 if (bp_addr + bp_size > memaddr + len)
1159 {
1160 /* Only copy the first part of the breakpoint. */
1161 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1162 }
1163
1164 if (readbuf != NULL)
1165 {
1166 /* Update the read buffer with this inserted breakpoint's
1167 shadow. */
1168 memcpy (readbuf + bp_addr - memaddr,
1169 bl->target_info.shadow_contents + bptoffset, bp_size);
1170 }
1171 else
1172 {
1173 struct gdbarch *gdbarch = bl->gdbarch;
1174 const unsigned char *bp;
1175 CORE_ADDR placed_address = bl->target_info.placed_address;
1176 unsigned placed_size = bl->target_info.placed_size;
1177
1178 /* Update the shadow with what we want to write to memory. */
1179 memcpy (bl->target_info.shadow_contents + bptoffset,
1180 writebuf_org + bp_addr - memaddr, bp_size);
1181
1182 /* Determine appropriate breakpoint contents and size for this
1183 address. */
1184 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1185
1186 /* Update the final write buffer with this inserted
1187 breakpoint's INSN. */
1188 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1189 }
1190 }
1191 }
1192 \f
1193
1194 /* Return true if BPT is of any hardware watchpoint kind. */
1195
1196 static int
1197 is_hardware_watchpoint (const struct breakpoint *bpt)
1198 {
1199 return (bpt->type == bp_hardware_watchpoint
1200 || bpt->type == bp_read_watchpoint
1201 || bpt->type == bp_access_watchpoint);
1202 }
1203
1204 /* Return true if BPT is of any watchpoint kind, hardware or
1205 software. */
1206
1207 int
1208 is_watchpoint (const struct breakpoint *bpt)
1209 {
1210 return (is_hardware_watchpoint (bpt)
1211 || bpt->type == bp_watchpoint);
1212 }
1213
1214 /* Returns true if the current thread and its running state are safe
1215 to evaluate or update watchpoint B. Watchpoints on local
1216 expressions need to be evaluated in the context of the thread that
1217 was current when the watchpoint was created, and, that thread needs
1218 to be stopped to be able to select the correct frame context.
1219 Watchpoints on global expressions can be evaluated on any thread,
1220 and in any state. It is presently left to the target allowing
1221 memory accesses when threads are running. */
1222
1223 static int
1224 watchpoint_in_thread_scope (struct watchpoint *b)
1225 {
1226 return (ptid_equal (b->watchpoint_thread, null_ptid)
1227 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1228 && !is_executing (inferior_ptid)));
1229 }
1230
1231 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1232 associated bp_watchpoint_scope breakpoint. */
1233
1234 static void
1235 watchpoint_del_at_next_stop (struct watchpoint *w)
1236 {
1237 struct breakpoint *b = &w->base;
1238
1239 if (b->related_breakpoint != b)
1240 {
1241 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1242 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1243 b->related_breakpoint->disposition = disp_del_at_next_stop;
1244 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1245 b->related_breakpoint = b;
1246 }
1247 b->disposition = disp_del_at_next_stop;
1248 }
1249
1250 /* Assuming that B is a watchpoint:
1251 - Reparse watchpoint expression, if REPARSE is non-zero
1252 - Evaluate expression and store the result in B->val
1253 - Evaluate the condition if there is one, and store the result
1254 in b->loc->cond.
1255 - Update the list of values that must be watched in B->loc.
1256
1257 If the watchpoint disposition is disp_del_at_next_stop, then do
1258 nothing. If this is local watchpoint that is out of scope, delete
1259 it.
1260
1261 Even with `set breakpoint always-inserted on' the watchpoints are
1262 removed + inserted on each stop here. Normal breakpoints must
1263 never be removed because they might be missed by a running thread
1264 when debugging in non-stop mode. On the other hand, hardware
1265 watchpoints (is_hardware_watchpoint; processed here) are specific
1266 to each LWP since they are stored in each LWP's hardware debug
1267 registers. Therefore, such LWP must be stopped first in order to
1268 be able to modify its hardware watchpoints.
1269
1270 Hardware watchpoints must be reset exactly once after being
1271 presented to the user. It cannot be done sooner, because it would
1272 reset the data used to present the watchpoint hit to the user. And
1273 it must not be done later because it could display the same single
1274 watchpoint hit during multiple GDB stops. Note that the latter is
1275 relevant only to the hardware watchpoint types bp_read_watchpoint
1276 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1277 not user-visible - its hit is suppressed if the memory content has
1278 not changed.
1279
1280 The following constraints influence the location where we can reset
1281 hardware watchpoints:
1282
1283 * target_stopped_by_watchpoint and target_stopped_data_address are
1284 called several times when GDB stops.
1285
1286 [linux]
1287 * Multiple hardware watchpoints can be hit at the same time,
1288 causing GDB to stop. GDB only presents one hardware watchpoint
1289 hit at a time as the reason for stopping, and all the other hits
1290 are presented later, one after the other, each time the user
1291 requests the execution to be resumed. Execution is not resumed
1292 for the threads still having pending hit event stored in
1293 LWP_INFO->STATUS. While the watchpoint is already removed from
1294 the inferior on the first stop the thread hit event is kept being
1295 reported from its cached value by linux_nat_stopped_data_address
1296 until the real thread resume happens after the watchpoint gets
1297 presented and thus its LWP_INFO->STATUS gets reset.
1298
1299 Therefore the hardware watchpoint hit can get safely reset on the
1300 watchpoint removal from inferior. */
1301
1302 static void
1303 update_watchpoint (struct watchpoint *b, int reparse)
1304 {
1305 int within_current_scope;
1306 struct frame_id saved_frame_id;
1307 int frame_saved;
1308
1309 /* If this is a local watchpoint, we only want to check if the
1310 watchpoint frame is in scope if the current thread is the thread
1311 that was used to create the watchpoint. */
1312 if (!watchpoint_in_thread_scope (b))
1313 return;
1314
1315 if (b->base.disposition == disp_del_at_next_stop)
1316 return;
1317
1318 frame_saved = 0;
1319
1320 /* Determine if the watchpoint is within scope. */
1321 if (b->exp_valid_block == NULL)
1322 within_current_scope = 1;
1323 else
1324 {
1325 struct frame_info *fi = get_current_frame ();
1326 struct gdbarch *frame_arch = get_frame_arch (fi);
1327 CORE_ADDR frame_pc = get_frame_pc (fi);
1328
1329 /* If we're in a function epilogue, unwinding may not work
1330 properly, so do not attempt to recreate locations at this
1331 point. See similar comments in watchpoint_check. */
1332 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1333 return;
1334
1335 /* Save the current frame's ID so we can restore it after
1336 evaluating the watchpoint expression on its own frame. */
1337 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1338 took a frame parameter, so that we didn't have to change the
1339 selected frame. */
1340 frame_saved = 1;
1341 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1342
1343 fi = frame_find_by_id (b->watchpoint_frame);
1344 within_current_scope = (fi != NULL);
1345 if (within_current_scope)
1346 select_frame (fi);
1347 }
1348
1349 /* We don't free locations. They are stored in the bp_location array
1350 and update_global_location_list will eventually delete them and
1351 remove breakpoints if needed. */
1352 b->base.loc = NULL;
1353
1354 if (within_current_scope && reparse)
1355 {
1356 char *s;
1357
1358 if (b->exp)
1359 {
1360 xfree (b->exp);
1361 b->exp = NULL;
1362 }
1363 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1364 b->exp = parse_exp_1 (&s, b->exp_valid_block, 0);
1365 /* If the meaning of expression itself changed, the old value is
1366 no longer relevant. We don't want to report a watchpoint hit
1367 to the user when the old value and the new value may actually
1368 be completely different objects. */
1369 value_free (b->val);
1370 b->val = NULL;
1371 b->val_valid = 0;
1372
1373 /* Note that unlike with breakpoints, the watchpoint's condition
1374 expression is stored in the breakpoint object, not in the
1375 locations (re)created below. */
1376 if (b->base.cond_string != NULL)
1377 {
1378 if (b->cond_exp != NULL)
1379 {
1380 xfree (b->cond_exp);
1381 b->cond_exp = NULL;
1382 }
1383
1384 s = b->base.cond_string;
1385 b->cond_exp = parse_exp_1 (&s, b->cond_exp_valid_block, 0);
1386 }
1387 }
1388
1389 /* If we failed to parse the expression, for example because
1390 it refers to a global variable in a not-yet-loaded shared library,
1391 don't try to insert watchpoint. We don't automatically delete
1392 such watchpoint, though, since failure to parse expression
1393 is different from out-of-scope watchpoint. */
1394 if ( !target_has_execution)
1395 {
1396 /* Without execution, memory can't change. No use to try and
1397 set watchpoint locations. The watchpoint will be reset when
1398 the target gains execution, through breakpoint_re_set. */
1399 }
1400 else if (within_current_scope && b->exp)
1401 {
1402 int pc = 0;
1403 struct value *val_chain, *v, *result, *next;
1404 struct program_space *frame_pspace;
1405
1406 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1407
1408 /* Avoid setting b->val if it's already set. The meaning of
1409 b->val is 'the last value' user saw, and we should update
1410 it only if we reported that last value to user. As it
1411 happens, the code that reports it updates b->val directly.
1412 We don't keep track of the memory value for masked
1413 watchpoints. */
1414 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1415 {
1416 b->val = v;
1417 b->val_valid = 1;
1418 }
1419
1420 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1421
1422 /* Look at each value on the value chain. */
1423 for (v = val_chain; v; v = value_next (v))
1424 {
1425 /* If it's a memory location, and GDB actually needed
1426 its contents to evaluate the expression, then we
1427 must watch it. If the first value returned is
1428 still lazy, that means an error occurred reading it;
1429 watch it anyway in case it becomes readable. */
1430 if (VALUE_LVAL (v) == lval_memory
1431 && (v == val_chain || ! value_lazy (v)))
1432 {
1433 struct type *vtype = check_typedef (value_type (v));
1434
1435 /* We only watch structs and arrays if user asked
1436 for it explicitly, never if they just happen to
1437 appear in the middle of some value chain. */
1438 if (v == result
1439 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1440 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1441 {
1442 CORE_ADDR addr;
1443 int len, type;
1444 struct bp_location *loc, **tmp;
1445
1446 addr = value_address (v);
1447 len = TYPE_LENGTH (value_type (v));
1448 type = hw_write;
1449 if (b->base.type == bp_read_watchpoint)
1450 type = hw_read;
1451 else if (b->base.type == bp_access_watchpoint)
1452 type = hw_access;
1453
1454 loc = allocate_bp_location (&b->base);
1455 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1456 ;
1457 *tmp = loc;
1458 loc->gdbarch = get_type_arch (value_type (v));
1459
1460 loc->pspace = frame_pspace;
1461 loc->address = addr;
1462 loc->length = len;
1463 loc->watchpoint_type = type;
1464 }
1465 }
1466 }
1467
1468 /* Change the type of breakpoint between hardware assisted or
1469 an ordinary watchpoint depending on the hardware support
1470 and free hardware slots. REPARSE is set when the inferior
1471 is started. */
1472 if (reparse)
1473 {
1474 int reg_cnt;
1475 enum bp_loc_type loc_type;
1476 struct bp_location *bl;
1477
1478 reg_cnt = can_use_hardware_watchpoint (val_chain);
1479
1480 if (reg_cnt)
1481 {
1482 int i, target_resources_ok, other_type_used;
1483 enum bptype type;
1484
1485 /* Use an exact watchpoint when there's only one memory region to be
1486 watched, and only one debug register is needed to watch it. */
1487 b->exact = target_exact_watchpoints && reg_cnt == 1;
1488
1489 /* We need to determine how many resources are already
1490 used for all other hardware watchpoints plus this one
1491 to see if we still have enough resources to also fit
1492 this watchpoint in as well. */
1493
1494 /* If this is a software watchpoint, we try to turn it
1495 to a hardware one -- count resources as if B was of
1496 hardware watchpoint type. */
1497 type = b->base.type;
1498 if (type == bp_watchpoint)
1499 type = bp_hardware_watchpoint;
1500
1501 /* This watchpoint may or may not have been placed on
1502 the list yet at this point (it won't be in the list
1503 if we're trying to create it for the first time,
1504 through watch_command), so always account for it
1505 manually. */
1506
1507 /* Count resources used by all watchpoints except B. */
1508 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1509
1510 /* Add in the resources needed for B. */
1511 i += hw_watchpoint_use_count (&b->base);
1512
1513 target_resources_ok
1514 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1515 if (target_resources_ok <= 0)
1516 {
1517 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1518
1519 if (target_resources_ok == 0 && !sw_mode)
1520 error (_("Target does not support this type of "
1521 "hardware watchpoint."));
1522 else if (target_resources_ok < 0 && !sw_mode)
1523 error (_("There are not enough available hardware "
1524 "resources for this watchpoint."));
1525
1526 /* Downgrade to software watchpoint. */
1527 b->base.type = bp_watchpoint;
1528 }
1529 else
1530 {
1531 /* If this was a software watchpoint, we've just
1532 found we have enough resources to turn it to a
1533 hardware watchpoint. Otherwise, this is a
1534 nop. */
1535 b->base.type = type;
1536 }
1537 }
1538 else if (!b->base.ops->works_in_software_mode (&b->base))
1539 error (_("Expression cannot be implemented with "
1540 "read/access watchpoint."));
1541 else
1542 b->base.type = bp_watchpoint;
1543
1544 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1545 : bp_loc_hardware_watchpoint);
1546 for (bl = b->base.loc; bl; bl = bl->next)
1547 bl->loc_type = loc_type;
1548 }
1549
1550 for (v = val_chain; v; v = next)
1551 {
1552 next = value_next (v);
1553 if (v != b->val)
1554 value_free (v);
1555 }
1556
1557 /* If a software watchpoint is not watching any memory, then the
1558 above left it without any location set up. But,
1559 bpstat_stop_status requires a location to be able to report
1560 stops, so make sure there's at least a dummy one. */
1561 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1562 {
1563 struct breakpoint *base = &b->base;
1564 base->loc = allocate_bp_location (base);
1565 base->loc->pspace = frame_pspace;
1566 base->loc->address = -1;
1567 base->loc->length = -1;
1568 base->loc->watchpoint_type = -1;
1569 }
1570 }
1571 else if (!within_current_scope)
1572 {
1573 printf_filtered (_("\
1574 Watchpoint %d deleted because the program has left the block\n\
1575 in which its expression is valid.\n"),
1576 b->base.number);
1577 watchpoint_del_at_next_stop (b);
1578 }
1579
1580 /* Restore the selected frame. */
1581 if (frame_saved)
1582 select_frame (frame_find_by_id (saved_frame_id));
1583 }
1584
1585
1586 /* Returns 1 iff breakpoint location should be
1587 inserted in the inferior. We don't differentiate the type of BL's owner
1588 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1589 breakpoint_ops is not defined, because in insert_bp_location,
1590 tracepoint's insert_location will not be called. */
1591 static int
1592 should_be_inserted (struct bp_location *bl)
1593 {
1594 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1595 return 0;
1596
1597 if (bl->owner->disposition == disp_del_at_next_stop)
1598 return 0;
1599
1600 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
1601 return 0;
1602
1603 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
1604 return 0;
1605
1606 /* This is set for example, when we're attached to the parent of a
1607 vfork, and have detached from the child. The child is running
1608 free, and we expect it to do an exec or exit, at which point the
1609 OS makes the parent schedulable again (and the target reports
1610 that the vfork is done). Until the child is done with the shared
1611 memory region, do not insert breakpoints in the parent, otherwise
1612 the child could still trip on the parent's breakpoints. Since
1613 the parent is blocked anyway, it won't miss any breakpoint. */
1614 if (bl->pspace->breakpoints_not_allowed)
1615 return 0;
1616
1617 return 1;
1618 }
1619
1620 /* Same as should_be_inserted but does the check assuming
1621 that the location is not duplicated. */
1622
1623 static int
1624 unduplicated_should_be_inserted (struct bp_location *bl)
1625 {
1626 int result;
1627 const int save_duplicate = bl->duplicate;
1628
1629 bl->duplicate = 0;
1630 result = should_be_inserted (bl);
1631 bl->duplicate = save_duplicate;
1632 return result;
1633 }
1634
1635 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
1636 location. Any error messages are printed to TMP_ERROR_STREAM; and
1637 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
1638 Returns 0 for success, 1 if the bp_location type is not supported or
1639 -1 for failure.
1640
1641 NOTE drow/2003-09-09: This routine could be broken down to an
1642 object-style method for each breakpoint or catchpoint type. */
1643 static int
1644 insert_bp_location (struct bp_location *bl,
1645 struct ui_file *tmp_error_stream,
1646 int *disabled_breaks,
1647 int *hw_breakpoint_error)
1648 {
1649 int val = 0;
1650
1651 if (!should_be_inserted (bl) || bl->inserted)
1652 return 0;
1653
1654 /* Initialize the target-specific information. */
1655 memset (&bl->target_info, 0, sizeof (bl->target_info));
1656 bl->target_info.placed_address = bl->address;
1657 bl->target_info.placed_address_space = bl->pspace->aspace;
1658 bl->target_info.length = bl->length;
1659
1660 if (bl->loc_type == bp_loc_software_breakpoint
1661 || bl->loc_type == bp_loc_hardware_breakpoint)
1662 {
1663 if (bl->owner->type != bp_hardware_breakpoint)
1664 {
1665 /* If the explicitly specified breakpoint type
1666 is not hardware breakpoint, check the memory map to see
1667 if the breakpoint address is in read only memory or not.
1668
1669 Two important cases are:
1670 - location type is not hardware breakpoint, memory
1671 is readonly. We change the type of the location to
1672 hardware breakpoint.
1673 - location type is hardware breakpoint, memory is
1674 read-write. This means we've previously made the
1675 location hardware one, but then the memory map changed,
1676 so we undo.
1677
1678 When breakpoints are removed, remove_breakpoints will use
1679 location types we've just set here, the only possible
1680 problem is that memory map has changed during running
1681 program, but it's not going to work anyway with current
1682 gdb. */
1683 struct mem_region *mr
1684 = lookup_mem_region (bl->target_info.placed_address);
1685
1686 if (mr)
1687 {
1688 if (automatic_hardware_breakpoints)
1689 {
1690 enum bp_loc_type new_type;
1691
1692 if (mr->attrib.mode != MEM_RW)
1693 new_type = bp_loc_hardware_breakpoint;
1694 else
1695 new_type = bp_loc_software_breakpoint;
1696
1697 if (new_type != bl->loc_type)
1698 {
1699 static int said = 0;
1700
1701 bl->loc_type = new_type;
1702 if (!said)
1703 {
1704 fprintf_filtered (gdb_stdout,
1705 _("Note: automatically using "
1706 "hardware breakpoints for "
1707 "read-only addresses.\n"));
1708 said = 1;
1709 }
1710 }
1711 }
1712 else if (bl->loc_type == bp_loc_software_breakpoint
1713 && mr->attrib.mode != MEM_RW)
1714 warning (_("cannot set software breakpoint "
1715 "at readonly address %s"),
1716 paddress (bl->gdbarch, bl->address));
1717 }
1718 }
1719
1720 /* First check to see if we have to handle an overlay. */
1721 if (overlay_debugging == ovly_off
1722 || bl->section == NULL
1723 || !(section_is_overlay (bl->section)))
1724 {
1725 /* No overlay handling: just set the breakpoint. */
1726
1727 val = bl->owner->ops->insert_location (bl);
1728 }
1729 else
1730 {
1731 /* This breakpoint is in an overlay section.
1732 Shall we set a breakpoint at the LMA? */
1733 if (!overlay_events_enabled)
1734 {
1735 /* Yes -- overlay event support is not active,
1736 so we must try to set a breakpoint at the LMA.
1737 This will not work for a hardware breakpoint. */
1738 if (bl->loc_type == bp_loc_hardware_breakpoint)
1739 warning (_("hardware breakpoint %d not supported in overlay!"),
1740 bl->owner->number);
1741 else
1742 {
1743 CORE_ADDR addr = overlay_unmapped_address (bl->address,
1744 bl->section);
1745 /* Set a software (trap) breakpoint at the LMA. */
1746 bl->overlay_target_info = bl->target_info;
1747 bl->overlay_target_info.placed_address = addr;
1748 val = target_insert_breakpoint (bl->gdbarch,
1749 &bl->overlay_target_info);
1750 if (val != 0)
1751 fprintf_unfiltered (tmp_error_stream,
1752 "Overlay breakpoint %d "
1753 "failed: in ROM?\n",
1754 bl->owner->number);
1755 }
1756 }
1757 /* Shall we set a breakpoint at the VMA? */
1758 if (section_is_mapped (bl->section))
1759 {
1760 /* Yes. This overlay section is mapped into memory. */
1761 val = bl->owner->ops->insert_location (bl);
1762 }
1763 else
1764 {
1765 /* No. This breakpoint will not be inserted.
1766 No error, but do not mark the bp as 'inserted'. */
1767 return 0;
1768 }
1769 }
1770
1771 if (val)
1772 {
1773 /* Can't set the breakpoint. */
1774 if (solib_name_from_address (bl->pspace, bl->address))
1775 {
1776 /* See also: disable_breakpoints_in_shlibs. */
1777 val = 0;
1778 bl->shlib_disabled = 1;
1779 observer_notify_breakpoint_modified (bl->owner);
1780 if (!*disabled_breaks)
1781 {
1782 fprintf_unfiltered (tmp_error_stream,
1783 "Cannot insert breakpoint %d.\n",
1784 bl->owner->number);
1785 fprintf_unfiltered (tmp_error_stream,
1786 "Temporarily disabling shared "
1787 "library breakpoints:\n");
1788 }
1789 *disabled_breaks = 1;
1790 fprintf_unfiltered (tmp_error_stream,
1791 "breakpoint #%d\n", bl->owner->number);
1792 }
1793 else
1794 {
1795 if (bl->loc_type == bp_loc_hardware_breakpoint)
1796 {
1797 *hw_breakpoint_error = 1;
1798 fprintf_unfiltered (tmp_error_stream,
1799 "Cannot insert hardware "
1800 "breakpoint %d.\n",
1801 bl->owner->number);
1802 }
1803 else
1804 {
1805 fprintf_unfiltered (tmp_error_stream,
1806 "Cannot insert breakpoint %d.\n",
1807 bl->owner->number);
1808 fprintf_filtered (tmp_error_stream,
1809 "Error accessing memory address ");
1810 fputs_filtered (paddress (bl->gdbarch, bl->address),
1811 tmp_error_stream);
1812 fprintf_filtered (tmp_error_stream, ": %s.\n",
1813 safe_strerror (val));
1814 }
1815
1816 }
1817 }
1818 else
1819 bl->inserted = 1;
1820
1821 return val;
1822 }
1823
1824 else if (bl->loc_type == bp_loc_hardware_watchpoint
1825 /* NOTE drow/2003-09-08: This state only exists for removing
1826 watchpoints. It's not clear that it's necessary... */
1827 && bl->owner->disposition != disp_del_at_next_stop)
1828 {
1829 gdb_assert (bl->owner->ops != NULL
1830 && bl->owner->ops->insert_location != NULL);
1831
1832 val = bl->owner->ops->insert_location (bl);
1833
1834 /* If trying to set a read-watchpoint, and it turns out it's not
1835 supported, try emulating one with an access watchpoint. */
1836 if (val == 1 && bl->watchpoint_type == hw_read)
1837 {
1838 struct bp_location *loc, **loc_temp;
1839
1840 /* But don't try to insert it, if there's already another
1841 hw_access location that would be considered a duplicate
1842 of this one. */
1843 ALL_BP_LOCATIONS (loc, loc_temp)
1844 if (loc != bl
1845 && loc->watchpoint_type == hw_access
1846 && watchpoint_locations_match (bl, loc))
1847 {
1848 bl->duplicate = 1;
1849 bl->inserted = 1;
1850 bl->target_info = loc->target_info;
1851 bl->watchpoint_type = hw_access;
1852 val = 0;
1853 break;
1854 }
1855
1856 if (val == 1)
1857 {
1858 bl->watchpoint_type = hw_access;
1859 val = bl->owner->ops->insert_location (bl);
1860
1861 if (val)
1862 /* Back to the original value. */
1863 bl->watchpoint_type = hw_read;
1864 }
1865 }
1866
1867 bl->inserted = (val == 0);
1868 }
1869
1870 else if (bl->owner->type == bp_catchpoint)
1871 {
1872 gdb_assert (bl->owner->ops != NULL
1873 && bl->owner->ops->insert_location != NULL);
1874
1875 val = bl->owner->ops->insert_location (bl);
1876 if (val)
1877 {
1878 bl->owner->enable_state = bp_disabled;
1879
1880 if (val == 1)
1881 warning (_("\
1882 Error inserting catchpoint %d: Your system does not support this type\n\
1883 of catchpoint."), bl->owner->number);
1884 else
1885 warning (_("Error inserting catchpoint %d."), bl->owner->number);
1886 }
1887
1888 bl->inserted = (val == 0);
1889
1890 /* We've already printed an error message if there was a problem
1891 inserting this catchpoint, and we've disabled the catchpoint,
1892 so just return success. */
1893 return 0;
1894 }
1895
1896 return 0;
1897 }
1898
1899 /* This function is called when program space PSPACE is about to be
1900 deleted. It takes care of updating breakpoints to not reference
1901 PSPACE anymore. */
1902
1903 void
1904 breakpoint_program_space_exit (struct program_space *pspace)
1905 {
1906 struct breakpoint *b, *b_temp;
1907 struct bp_location *loc, **loc_temp;
1908
1909 /* Remove any breakpoint that was set through this program space. */
1910 ALL_BREAKPOINTS_SAFE (b, b_temp)
1911 {
1912 if (b->pspace == pspace)
1913 delete_breakpoint (b);
1914 }
1915
1916 /* Breakpoints set through other program spaces could have locations
1917 bound to PSPACE as well. Remove those. */
1918 ALL_BP_LOCATIONS (loc, loc_temp)
1919 {
1920 struct bp_location *tmp;
1921
1922 if (loc->pspace == pspace)
1923 {
1924 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
1925 if (loc->owner->loc == loc)
1926 loc->owner->loc = loc->next;
1927 else
1928 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
1929 if (tmp->next == loc)
1930 {
1931 tmp->next = loc->next;
1932 break;
1933 }
1934 }
1935 }
1936
1937 /* Now update the global location list to permanently delete the
1938 removed locations above. */
1939 update_global_location_list (0);
1940 }
1941
1942 /* Make sure all breakpoints are inserted in inferior.
1943 Throws exception on any error.
1944 A breakpoint that is already inserted won't be inserted
1945 again, so calling this function twice is safe. */
1946 void
1947 insert_breakpoints (void)
1948 {
1949 struct breakpoint *bpt;
1950
1951 ALL_BREAKPOINTS (bpt)
1952 if (is_hardware_watchpoint (bpt))
1953 {
1954 struct watchpoint *w = (struct watchpoint *) bpt;
1955
1956 update_watchpoint (w, 0 /* don't reparse. */);
1957 }
1958
1959 update_global_location_list (1);
1960
1961 /* update_global_location_list does not insert breakpoints when
1962 always_inserted_mode is not enabled. Explicitly insert them
1963 now. */
1964 if (!breakpoints_always_inserted_mode ())
1965 insert_breakpoint_locations ();
1966 }
1967
1968 /* Used when starting or continuing the program. */
1969
1970 static void
1971 insert_breakpoint_locations (void)
1972 {
1973 struct breakpoint *bpt;
1974 struct bp_location *bl, **blp_tmp;
1975 int error_flag = 0;
1976 int val = 0;
1977 int disabled_breaks = 0;
1978 int hw_breakpoint_error = 0;
1979
1980 struct ui_file *tmp_error_stream = mem_fileopen ();
1981 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
1982
1983 /* Explicitly mark the warning -- this will only be printed if
1984 there was an error. */
1985 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
1986
1987 save_current_space_and_thread ();
1988
1989 ALL_BP_LOCATIONS (bl, blp_tmp)
1990 {
1991 if (!should_be_inserted (bl) || bl->inserted)
1992 continue;
1993
1994 /* There is no point inserting thread-specific breakpoints if
1995 the thread no longer exists. ALL_BP_LOCATIONS bp_location
1996 has BL->OWNER always non-NULL. */
1997 if (bl->owner->thread != -1
1998 && !valid_thread_id (bl->owner->thread))
1999 continue;
2000
2001 switch_to_program_space_and_thread (bl->pspace);
2002
2003 /* For targets that support global breakpoints, there's no need
2004 to select an inferior to insert breakpoint to. In fact, even
2005 if we aren't attached to any process yet, we should still
2006 insert breakpoints. */
2007 if (!gdbarch_has_global_breakpoints (target_gdbarch)
2008 && ptid_equal (inferior_ptid, null_ptid))
2009 continue;
2010
2011 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2012 &hw_breakpoint_error);
2013 if (val)
2014 error_flag = val;
2015 }
2016
2017 /* If we failed to insert all locations of a watchpoint, remove
2018 them, as half-inserted watchpoint is of limited use. */
2019 ALL_BREAKPOINTS (bpt)
2020 {
2021 int some_failed = 0;
2022 struct bp_location *loc;
2023
2024 if (!is_hardware_watchpoint (bpt))
2025 continue;
2026
2027 if (!breakpoint_enabled (bpt))
2028 continue;
2029
2030 if (bpt->disposition == disp_del_at_next_stop)
2031 continue;
2032
2033 for (loc = bpt->loc; loc; loc = loc->next)
2034 if (!loc->inserted && should_be_inserted (loc))
2035 {
2036 some_failed = 1;
2037 break;
2038 }
2039 if (some_failed)
2040 {
2041 for (loc = bpt->loc; loc; loc = loc->next)
2042 if (loc->inserted)
2043 remove_breakpoint (loc, mark_uninserted);
2044
2045 hw_breakpoint_error = 1;
2046 fprintf_unfiltered (tmp_error_stream,
2047 "Could not insert hardware watchpoint %d.\n",
2048 bpt->number);
2049 error_flag = -1;
2050 }
2051 }
2052
2053 if (error_flag)
2054 {
2055 /* If a hardware breakpoint or watchpoint was inserted, add a
2056 message about possibly exhausted resources. */
2057 if (hw_breakpoint_error)
2058 {
2059 fprintf_unfiltered (tmp_error_stream,
2060 "Could not insert hardware breakpoints:\n\
2061 You may have requested too many hardware breakpoints/watchpoints.\n");
2062 }
2063 target_terminal_ours_for_output ();
2064 error_stream (tmp_error_stream);
2065 }
2066
2067 do_cleanups (cleanups);
2068 }
2069
2070 /* Used when the program stops.
2071 Returns zero if successful, or non-zero if there was a problem
2072 removing a breakpoint location. */
2073
2074 int
2075 remove_breakpoints (void)
2076 {
2077 struct bp_location *bl, **blp_tmp;
2078 int val = 0;
2079
2080 ALL_BP_LOCATIONS (bl, blp_tmp)
2081 {
2082 if (bl->inserted && !is_tracepoint (bl->owner))
2083 val |= remove_breakpoint (bl, mark_uninserted);
2084 }
2085 return val;
2086 }
2087
2088 /* Remove breakpoints of process PID. */
2089
2090 int
2091 remove_breakpoints_pid (int pid)
2092 {
2093 struct bp_location *bl, **blp_tmp;
2094 int val;
2095 struct inferior *inf = find_inferior_pid (pid);
2096
2097 ALL_BP_LOCATIONS (bl, blp_tmp)
2098 {
2099 if (bl->pspace != inf->pspace)
2100 continue;
2101
2102 if (bl->inserted)
2103 {
2104 val = remove_breakpoint (bl, mark_uninserted);
2105 if (val != 0)
2106 return val;
2107 }
2108 }
2109 return 0;
2110 }
2111
2112 int
2113 reattach_breakpoints (int pid)
2114 {
2115 struct cleanup *old_chain;
2116 struct bp_location *bl, **blp_tmp;
2117 int val;
2118 struct ui_file *tmp_error_stream;
2119 int dummy1 = 0, dummy2 = 0;
2120 struct inferior *inf;
2121 struct thread_info *tp;
2122
2123 tp = any_live_thread_of_process (pid);
2124 if (tp == NULL)
2125 return 1;
2126
2127 inf = find_inferior_pid (pid);
2128 old_chain = save_inferior_ptid ();
2129
2130 inferior_ptid = tp->ptid;
2131
2132 tmp_error_stream = mem_fileopen ();
2133 make_cleanup_ui_file_delete (tmp_error_stream);
2134
2135 ALL_BP_LOCATIONS (bl, blp_tmp)
2136 {
2137 if (bl->pspace != inf->pspace)
2138 continue;
2139
2140 if (bl->inserted)
2141 {
2142 bl->inserted = 0;
2143 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2);
2144 if (val != 0)
2145 {
2146 do_cleanups (old_chain);
2147 return val;
2148 }
2149 }
2150 }
2151 do_cleanups (old_chain);
2152 return 0;
2153 }
2154
2155 static int internal_breakpoint_number = -1;
2156
2157 /* Set the breakpoint number of B, depending on the value of INTERNAL.
2158 If INTERNAL is non-zero, the breakpoint number will be populated
2159 from internal_breakpoint_number and that variable decremented.
2160 Otherwise the breakpoint number will be populated from
2161 breakpoint_count and that value incremented. Internal breakpoints
2162 do not set the internal var bpnum. */
2163 static void
2164 set_breakpoint_number (int internal, struct breakpoint *b)
2165 {
2166 if (internal)
2167 b->number = internal_breakpoint_number--;
2168 else
2169 {
2170 set_breakpoint_count (breakpoint_count + 1);
2171 b->number = breakpoint_count;
2172 }
2173 }
2174
2175 static struct breakpoint *
2176 create_internal_breakpoint (struct gdbarch *gdbarch,
2177 CORE_ADDR address, enum bptype type,
2178 const struct breakpoint_ops *ops)
2179 {
2180 struct symtab_and_line sal;
2181 struct breakpoint *b;
2182
2183 init_sal (&sal); /* Initialize to zeroes. */
2184
2185 sal.pc = address;
2186 sal.section = find_pc_overlay (sal.pc);
2187 sal.pspace = current_program_space;
2188
2189 b = set_raw_breakpoint (gdbarch, sal, type, ops);
2190 b->number = internal_breakpoint_number--;
2191 b->disposition = disp_donttouch;
2192
2193 return b;
2194 }
2195
2196 static const char *const longjmp_names[] =
2197 {
2198 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
2199 };
2200 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
2201
2202 /* Per-objfile data private to breakpoint.c. */
2203 struct breakpoint_objfile_data
2204 {
2205 /* Minimal symbol for "_ovly_debug_event" (if any). */
2206 struct minimal_symbol *overlay_msym;
2207
2208 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
2209 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
2210
2211 /* Minimal symbol for "std::terminate()" (if any). */
2212 struct minimal_symbol *terminate_msym;
2213
2214 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
2215 struct minimal_symbol *exception_msym;
2216 };
2217
2218 static const struct objfile_data *breakpoint_objfile_key;
2219
2220 /* Minimal symbol not found sentinel. */
2221 static struct minimal_symbol msym_not_found;
2222
2223 /* Returns TRUE if MSYM point to the "not found" sentinel. */
2224
2225 static int
2226 msym_not_found_p (const struct minimal_symbol *msym)
2227 {
2228 return msym == &msym_not_found;
2229 }
2230
2231 /* Return per-objfile data needed by breakpoint.c.
2232 Allocate the data if necessary. */
2233
2234 static struct breakpoint_objfile_data *
2235 get_breakpoint_objfile_data (struct objfile *objfile)
2236 {
2237 struct breakpoint_objfile_data *bp_objfile_data;
2238
2239 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
2240 if (bp_objfile_data == NULL)
2241 {
2242 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
2243 sizeof (*bp_objfile_data));
2244
2245 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
2246 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
2247 }
2248 return bp_objfile_data;
2249 }
2250
2251 static void
2252 create_overlay_event_breakpoint (void)
2253 {
2254 struct objfile *objfile;
2255 const char *const func_name = "_ovly_debug_event";
2256
2257 ALL_OBJFILES (objfile)
2258 {
2259 struct breakpoint *b;
2260 struct breakpoint_objfile_data *bp_objfile_data;
2261 CORE_ADDR addr;
2262
2263 bp_objfile_data = get_breakpoint_objfile_data (objfile);
2264
2265 if (msym_not_found_p (bp_objfile_data->overlay_msym))
2266 continue;
2267
2268 if (bp_objfile_data->overlay_msym == NULL)
2269 {
2270 struct minimal_symbol *m;
2271
2272 m = lookup_minimal_symbol_text (func_name, objfile);
2273 if (m == NULL)
2274 {
2275 /* Avoid future lookups in this objfile. */
2276 bp_objfile_data->overlay_msym = &msym_not_found;
2277 continue;
2278 }
2279 bp_objfile_data->overlay_msym = m;
2280 }
2281
2282 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
2283 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
2284 bp_overlay_event,
2285 &internal_breakpoint_ops);
2286 b->addr_string = xstrdup (func_name);
2287
2288 if (overlay_debugging == ovly_auto)
2289 {
2290 b->enable_state = bp_enabled;
2291 overlay_events_enabled = 1;
2292 }
2293 else
2294 {
2295 b->enable_state = bp_disabled;
2296 overlay_events_enabled = 0;
2297 }
2298 }
2299 update_global_location_list (1);
2300 }
2301
2302 static void
2303 create_longjmp_master_breakpoint (void)
2304 {
2305 struct program_space *pspace;
2306 struct cleanup *old_chain;
2307
2308 old_chain = save_current_program_space ();
2309
2310 ALL_PSPACES (pspace)
2311 {
2312 struct objfile *objfile;
2313
2314 set_current_program_space (pspace);
2315
2316 ALL_OBJFILES (objfile)
2317 {
2318 int i;
2319 struct gdbarch *gdbarch;
2320 struct breakpoint_objfile_data *bp_objfile_data;
2321
2322 gdbarch = get_objfile_arch (objfile);
2323 if (!gdbarch_get_longjmp_target_p (gdbarch))
2324 continue;
2325
2326 bp_objfile_data = get_breakpoint_objfile_data (objfile);
2327
2328 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
2329 {
2330 struct breakpoint *b;
2331 const char *func_name;
2332 CORE_ADDR addr;
2333
2334 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
2335 continue;
2336
2337 func_name = longjmp_names[i];
2338 if (bp_objfile_data->longjmp_msym[i] == NULL)
2339 {
2340 struct minimal_symbol *m;
2341
2342 m = lookup_minimal_symbol_text (func_name, objfile);
2343 if (m == NULL)
2344 {
2345 /* Prevent future lookups in this objfile. */
2346 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
2347 continue;
2348 }
2349 bp_objfile_data->longjmp_msym[i] = m;
2350 }
2351
2352 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
2353 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
2354 &internal_breakpoint_ops);
2355 b->addr_string = xstrdup (func_name);
2356 b->enable_state = bp_disabled;
2357 }
2358 }
2359 }
2360 update_global_location_list (1);
2361
2362 do_cleanups (old_chain);
2363 }
2364
2365 /* Create a master std::terminate breakpoint. */
2366 static void
2367 create_std_terminate_master_breakpoint (void)
2368 {
2369 struct program_space *pspace;
2370 struct cleanup *old_chain;
2371 const char *const func_name = "std::terminate()";
2372
2373 old_chain = save_current_program_space ();
2374
2375 ALL_PSPACES (pspace)
2376 {
2377 struct objfile *objfile;
2378 CORE_ADDR addr;
2379
2380 set_current_program_space (pspace);
2381
2382 ALL_OBJFILES (objfile)
2383 {
2384 struct breakpoint *b;
2385 struct breakpoint_objfile_data *bp_objfile_data;
2386
2387 bp_objfile_data = get_breakpoint_objfile_data (objfile);
2388
2389 if (msym_not_found_p (bp_objfile_data->terminate_msym))
2390 continue;
2391
2392 if (bp_objfile_data->terminate_msym == NULL)
2393 {
2394 struct minimal_symbol *m;
2395
2396 m = lookup_minimal_symbol (func_name, NULL, objfile);
2397 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
2398 && MSYMBOL_TYPE (m) != mst_file_text))
2399 {
2400 /* Prevent future lookups in this objfile. */
2401 bp_objfile_data->terminate_msym = &msym_not_found;
2402 continue;
2403 }
2404 bp_objfile_data->terminate_msym = m;
2405 }
2406
2407 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
2408 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
2409 bp_std_terminate_master,
2410 &internal_breakpoint_ops);
2411 b->addr_string = xstrdup (func_name);
2412 b->enable_state = bp_disabled;
2413 }
2414 }
2415
2416 update_global_location_list (1);
2417
2418 do_cleanups (old_chain);
2419 }
2420
2421 /* Install a master breakpoint on the unwinder's debug hook. */
2422
2423 void
2424 create_exception_master_breakpoint (void)
2425 {
2426 struct objfile *objfile;
2427 const char *const func_name = "_Unwind_DebugHook";
2428
2429 ALL_OBJFILES (objfile)
2430 {
2431 struct breakpoint *b;
2432 struct gdbarch *gdbarch;
2433 struct breakpoint_objfile_data *bp_objfile_data;
2434 CORE_ADDR addr;
2435
2436 bp_objfile_data = get_breakpoint_objfile_data (objfile);
2437
2438 if (msym_not_found_p (bp_objfile_data->exception_msym))
2439 continue;
2440
2441 gdbarch = get_objfile_arch (objfile);
2442
2443 if (bp_objfile_data->exception_msym == NULL)
2444 {
2445 struct minimal_symbol *debug_hook;
2446
2447 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
2448 if (debug_hook == NULL)
2449 {
2450 bp_objfile_data->exception_msym = &msym_not_found;
2451 continue;
2452 }
2453
2454 bp_objfile_data->exception_msym = debug_hook;
2455 }
2456
2457 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
2458 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2459 &current_target);
2460 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
2461 &internal_breakpoint_ops);
2462 b->addr_string = xstrdup (func_name);
2463 b->enable_state = bp_disabled;
2464 }
2465
2466 update_global_location_list (1);
2467 }
2468
2469 void
2470 update_breakpoints_after_exec (void)
2471 {
2472 struct breakpoint *b, *b_tmp;
2473 struct bp_location *bploc, **bplocp_tmp;
2474
2475 /* We're about to delete breakpoints from GDB's lists. If the
2476 INSERTED flag is true, GDB will try to lift the breakpoints by
2477 writing the breakpoints' "shadow contents" back into memory. The
2478 "shadow contents" are NOT valid after an exec, so GDB should not
2479 do that. Instead, the target is responsible from marking
2480 breakpoints out as soon as it detects an exec. We don't do that
2481 here instead, because there may be other attempts to delete
2482 breakpoints after detecting an exec and before reaching here. */
2483 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
2484 if (bploc->pspace == current_program_space)
2485 gdb_assert (!bploc->inserted);
2486
2487 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2488 {
2489 if (b->pspace != current_program_space)
2490 continue;
2491
2492 /* Solib breakpoints must be explicitly reset after an exec(). */
2493 if (b->type == bp_shlib_event)
2494 {
2495 delete_breakpoint (b);
2496 continue;
2497 }
2498
2499 /* JIT breakpoints must be explicitly reset after an exec(). */
2500 if (b->type == bp_jit_event)
2501 {
2502 delete_breakpoint (b);
2503 continue;
2504 }
2505
2506 /* Thread event breakpoints must be set anew after an exec(),
2507 as must overlay event and longjmp master breakpoints. */
2508 if (b->type == bp_thread_event || b->type == bp_overlay_event
2509 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
2510 || b->type == bp_exception_master)
2511 {
2512 delete_breakpoint (b);
2513 continue;
2514 }
2515
2516 /* Step-resume breakpoints are meaningless after an exec(). */
2517 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
2518 {
2519 delete_breakpoint (b);
2520 continue;
2521 }
2522
2523 /* Longjmp and longjmp-resume breakpoints are also meaningless
2524 after an exec. */
2525 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
2526 || b->type == bp_exception || b->type == bp_exception_resume)
2527 {
2528 delete_breakpoint (b);
2529 continue;
2530 }
2531
2532 if (b->type == bp_catchpoint)
2533 {
2534 /* For now, none of the bp_catchpoint breakpoints need to
2535 do anything at this point. In the future, if some of
2536 the catchpoints need to something, we will need to add
2537 a new method, and call this method from here. */
2538 continue;
2539 }
2540
2541 /* bp_finish is a special case. The only way we ought to be able
2542 to see one of these when an exec() has happened, is if the user
2543 caught a vfork, and then said "finish". Ordinarily a finish just
2544 carries them to the call-site of the current callee, by setting
2545 a temporary bp there and resuming. But in this case, the finish
2546 will carry them entirely through the vfork & exec.
2547
2548 We don't want to allow a bp_finish to remain inserted now. But
2549 we can't safely delete it, 'cause finish_command has a handle to
2550 the bp on a bpstat, and will later want to delete it. There's a
2551 chance (and I've seen it happen) that if we delete the bp_finish
2552 here, that its storage will get reused by the time finish_command
2553 gets 'round to deleting the "use to be a bp_finish" breakpoint.
2554 We really must allow finish_command to delete a bp_finish.
2555
2556 In the absence of a general solution for the "how do we know
2557 it's safe to delete something others may have handles to?"
2558 problem, what we'll do here is just uninsert the bp_finish, and
2559 let finish_command delete it.
2560
2561 (We know the bp_finish is "doomed" in the sense that it's
2562 momentary, and will be deleted as soon as finish_command sees
2563 the inferior stopped. So it doesn't matter that the bp's
2564 address is probably bogus in the new a.out, unlike e.g., the
2565 solib breakpoints.) */
2566
2567 if (b->type == bp_finish)
2568 {
2569 continue;
2570 }
2571
2572 /* Without a symbolic address, we have little hope of the
2573 pre-exec() address meaning the same thing in the post-exec()
2574 a.out. */
2575 if (b->addr_string == NULL)
2576 {
2577 delete_breakpoint (b);
2578 continue;
2579 }
2580 }
2581 /* FIXME what about longjmp breakpoints? Re-create them here? */
2582 create_overlay_event_breakpoint ();
2583 create_longjmp_master_breakpoint ();
2584 create_std_terminate_master_breakpoint ();
2585 create_exception_master_breakpoint ();
2586 }
2587
2588 int
2589 detach_breakpoints (int pid)
2590 {
2591 struct bp_location *bl, **blp_tmp;
2592 int val = 0;
2593 struct cleanup *old_chain = save_inferior_ptid ();
2594 struct inferior *inf = current_inferior ();
2595
2596 if (pid == PIDGET (inferior_ptid))
2597 error (_("Cannot detach breakpoints of inferior_ptid"));
2598
2599 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
2600 inferior_ptid = pid_to_ptid (pid);
2601 ALL_BP_LOCATIONS (bl, blp_tmp)
2602 {
2603 if (bl->pspace != inf->pspace)
2604 continue;
2605
2606 if (bl->inserted)
2607 val |= remove_breakpoint_1 (bl, mark_inserted);
2608 }
2609
2610 /* Detach single-step breakpoints as well. */
2611 detach_single_step_breakpoints ();
2612
2613 do_cleanups (old_chain);
2614 return val;
2615 }
2616
2617 /* Remove the breakpoint location BL from the current address space.
2618 Note that this is used to detach breakpoints from a child fork.
2619 When we get here, the child isn't in the inferior list, and neither
2620 do we have objects to represent its address space --- we should
2621 *not* look at bl->pspace->aspace here. */
2622
2623 static int
2624 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
2625 {
2626 int val;
2627
2628 /* BL is never in moribund_locations by our callers. */
2629 gdb_assert (bl->owner != NULL);
2630
2631 if (bl->owner->enable_state == bp_permanent)
2632 /* Permanent breakpoints cannot be inserted or removed. */
2633 return 0;
2634
2635 /* The type of none suggests that owner is actually deleted.
2636 This should not ever happen. */
2637 gdb_assert (bl->owner->type != bp_none);
2638
2639 if (bl->loc_type == bp_loc_software_breakpoint
2640 || bl->loc_type == bp_loc_hardware_breakpoint)
2641 {
2642 /* "Normal" instruction breakpoint: either the standard
2643 trap-instruction bp (bp_breakpoint), or a
2644 bp_hardware_breakpoint. */
2645
2646 /* First check to see if we have to handle an overlay. */
2647 if (overlay_debugging == ovly_off
2648 || bl->section == NULL
2649 || !(section_is_overlay (bl->section)))
2650 {
2651 /* No overlay handling: just remove the breakpoint. */
2652 val = bl->owner->ops->remove_location (bl);
2653 }
2654 else
2655 {
2656 /* This breakpoint is in an overlay section.
2657 Did we set a breakpoint at the LMA? */
2658 if (!overlay_events_enabled)
2659 {
2660 /* Yes -- overlay event support is not active, so we
2661 should have set a breakpoint at the LMA. Remove it.
2662 */
2663 /* Ignore any failures: if the LMA is in ROM, we will
2664 have already warned when we failed to insert it. */
2665 if (bl->loc_type == bp_loc_hardware_breakpoint)
2666 target_remove_hw_breakpoint (bl->gdbarch,
2667 &bl->overlay_target_info);
2668 else
2669 target_remove_breakpoint (bl->gdbarch,
2670 &bl->overlay_target_info);
2671 }
2672 /* Did we set a breakpoint at the VMA?
2673 If so, we will have marked the breakpoint 'inserted'. */
2674 if (bl->inserted)
2675 {
2676 /* Yes -- remove it. Previously we did not bother to
2677 remove the breakpoint if the section had been
2678 unmapped, but let's not rely on that being safe. We
2679 don't know what the overlay manager might do. */
2680
2681 /* However, we should remove *software* breakpoints only
2682 if the section is still mapped, or else we overwrite
2683 wrong code with the saved shadow contents. */
2684 if (bl->loc_type == bp_loc_hardware_breakpoint
2685 || section_is_mapped (bl->section))
2686 val = bl->owner->ops->remove_location (bl);
2687 else
2688 val = 0;
2689 }
2690 else
2691 {
2692 /* No -- not inserted, so no need to remove. No error. */
2693 val = 0;
2694 }
2695 }
2696
2697 /* In some cases, we might not be able to remove a breakpoint
2698 in a shared library that has already been removed, but we
2699 have not yet processed the shlib unload event. */
2700 if (val && solib_name_from_address (bl->pspace, bl->address))
2701 val = 0;
2702
2703 if (val)
2704 return val;
2705 bl->inserted = (is == mark_inserted);
2706 }
2707 else if (bl->loc_type == bp_loc_hardware_watchpoint)
2708 {
2709 gdb_assert (bl->owner->ops != NULL
2710 && bl->owner->ops->remove_location != NULL);
2711
2712 bl->inserted = (is == mark_inserted);
2713 bl->owner->ops->remove_location (bl);
2714
2715 /* Failure to remove any of the hardware watchpoints comes here. */
2716 if ((is == mark_uninserted) && (bl->inserted))
2717 warning (_("Could not remove hardware watchpoint %d."),
2718 bl->owner->number);
2719 }
2720 else if (bl->owner->type == bp_catchpoint
2721 && breakpoint_enabled (bl->owner)
2722 && !bl->duplicate)
2723 {
2724 gdb_assert (bl->owner->ops != NULL
2725 && bl->owner->ops->remove_location != NULL);
2726
2727 val = bl->owner->ops->remove_location (bl);
2728 if (val)
2729 return val;
2730
2731 bl->inserted = (is == mark_inserted);
2732 }
2733
2734 return 0;
2735 }
2736
2737 static int
2738 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
2739 {
2740 int ret;
2741 struct cleanup *old_chain;
2742
2743 /* BL is never in moribund_locations by our callers. */
2744 gdb_assert (bl->owner != NULL);
2745
2746 if (bl->owner->enable_state == bp_permanent)
2747 /* Permanent breakpoints cannot be inserted or removed. */
2748 return 0;
2749
2750 /* The type of none suggests that owner is actually deleted.
2751 This should not ever happen. */
2752 gdb_assert (bl->owner->type != bp_none);
2753
2754 old_chain = save_current_space_and_thread ();
2755
2756 switch_to_program_space_and_thread (bl->pspace);
2757
2758 ret = remove_breakpoint_1 (bl, is);
2759
2760 do_cleanups (old_chain);
2761 return ret;
2762 }
2763
2764 /* Clear the "inserted" flag in all breakpoints. */
2765
2766 void
2767 mark_breakpoints_out (void)
2768 {
2769 struct bp_location *bl, **blp_tmp;
2770
2771 ALL_BP_LOCATIONS (bl, blp_tmp)
2772 if (bl->pspace == current_program_space)
2773 bl->inserted = 0;
2774 }
2775
2776 /* Clear the "inserted" flag in all breakpoints and delete any
2777 breakpoints which should go away between runs of the program.
2778
2779 Plus other such housekeeping that has to be done for breakpoints
2780 between runs.
2781
2782 Note: this function gets called at the end of a run (by
2783 generic_mourn_inferior) and when a run begins (by
2784 init_wait_for_inferior). */
2785
2786
2787
2788 void
2789 breakpoint_init_inferior (enum inf_context context)
2790 {
2791 struct breakpoint *b, *b_tmp;
2792 struct bp_location *bl, **blp_tmp;
2793 int ix;
2794 struct program_space *pspace = current_program_space;
2795
2796 /* If breakpoint locations are shared across processes, then there's
2797 nothing to do. */
2798 if (gdbarch_has_global_breakpoints (target_gdbarch))
2799 return;
2800
2801 ALL_BP_LOCATIONS (bl, blp_tmp)
2802 {
2803 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
2804 if (bl->pspace == pspace
2805 && bl->owner->enable_state != bp_permanent)
2806 bl->inserted = 0;
2807 }
2808
2809 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2810 {
2811 if (b->loc && b->loc->pspace != pspace)
2812 continue;
2813
2814 switch (b->type)
2815 {
2816 case bp_call_dummy:
2817
2818 /* If the call dummy breakpoint is at the entry point it will
2819 cause problems when the inferior is rerun, so we better get
2820 rid of it. */
2821
2822 case bp_watchpoint_scope:
2823
2824 /* Also get rid of scope breakpoints. */
2825
2826 case bp_shlib_event:
2827
2828 /* Also remove solib event breakpoints. Their addresses may
2829 have changed since the last time we ran the program.
2830 Actually we may now be debugging against different target;
2831 and so the solib backend that installed this breakpoint may
2832 not be used in by the target. E.g.,
2833
2834 (gdb) file prog-linux
2835 (gdb) run # native linux target
2836 ...
2837 (gdb) kill
2838 (gdb) file prog-win.exe
2839 (gdb) tar rem :9999 # remote Windows gdbserver.
2840 */
2841
2842 delete_breakpoint (b);
2843 break;
2844
2845 case bp_watchpoint:
2846 case bp_hardware_watchpoint:
2847 case bp_read_watchpoint:
2848 case bp_access_watchpoint:
2849 {
2850 struct watchpoint *w = (struct watchpoint *) b;
2851
2852 /* Likewise for watchpoints on local expressions. */
2853 if (w->exp_valid_block != NULL)
2854 delete_breakpoint (b);
2855 else if (context == inf_starting)
2856 {
2857 /* Reset val field to force reread of starting value in
2858 insert_breakpoints. */
2859 if (w->val)
2860 value_free (w->val);
2861 w->val = NULL;
2862 w->val_valid = 0;
2863 }
2864 }
2865 break;
2866 default:
2867 break;
2868 }
2869 }
2870
2871 /* Get rid of the moribund locations. */
2872 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
2873 decref_bp_location (&bl);
2874 VEC_free (bp_location_p, moribund_locations);
2875 }
2876
2877 /* These functions concern about actual breakpoints inserted in the
2878 target --- to e.g. check if we need to do decr_pc adjustment or if
2879 we need to hop over the bkpt --- so we check for address space
2880 match, not program space. */
2881
2882 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
2883 exists at PC. It returns ordinary_breakpoint_here if it's an
2884 ordinary breakpoint, or permanent_breakpoint_here if it's a
2885 permanent breakpoint.
2886 - When continuing from a location with an ordinary breakpoint, we
2887 actually single step once before calling insert_breakpoints.
2888 - When continuing from a location with a permanent breakpoint, we
2889 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
2890 the target, to advance the PC past the breakpoint. */
2891
2892 enum breakpoint_here
2893 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
2894 {
2895 struct bp_location *bl, **blp_tmp;
2896 int any_breakpoint_here = 0;
2897
2898 ALL_BP_LOCATIONS (bl, blp_tmp)
2899 {
2900 if (bl->loc_type != bp_loc_software_breakpoint
2901 && bl->loc_type != bp_loc_hardware_breakpoint)
2902 continue;
2903
2904 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
2905 if ((breakpoint_enabled (bl->owner)
2906 || bl->owner->enable_state == bp_permanent)
2907 && breakpoint_location_address_match (bl, aspace, pc))
2908 {
2909 if (overlay_debugging
2910 && section_is_overlay (bl->section)
2911 && !section_is_mapped (bl->section))
2912 continue; /* unmapped overlay -- can't be a match */
2913 else if (bl->owner->enable_state == bp_permanent)
2914 return permanent_breakpoint_here;
2915 else
2916 any_breakpoint_here = 1;
2917 }
2918 }
2919
2920 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
2921 }
2922
2923 /* Return true if there's a moribund breakpoint at PC. */
2924
2925 int
2926 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
2927 {
2928 struct bp_location *loc;
2929 int ix;
2930
2931 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
2932 if (breakpoint_location_address_match (loc, aspace, pc))
2933 return 1;
2934
2935 return 0;
2936 }
2937
2938 /* Returns non-zero if there's a breakpoint inserted at PC, which is
2939 inserted using regular breakpoint_chain / bp_location array
2940 mechanism. This does not check for single-step breakpoints, which
2941 are inserted and removed using direct target manipulation. */
2942
2943 int
2944 regular_breakpoint_inserted_here_p (struct address_space *aspace,
2945 CORE_ADDR pc)
2946 {
2947 struct bp_location *bl, **blp_tmp;
2948
2949 ALL_BP_LOCATIONS (bl, blp_tmp)
2950 {
2951 if (bl->loc_type != bp_loc_software_breakpoint
2952 && bl->loc_type != bp_loc_hardware_breakpoint)
2953 continue;
2954
2955 if (bl->inserted
2956 && breakpoint_location_address_match (bl, aspace, pc))
2957 {
2958 if (overlay_debugging
2959 && section_is_overlay (bl->section)
2960 && !section_is_mapped (bl->section))
2961 continue; /* unmapped overlay -- can't be a match */
2962 else
2963 return 1;
2964 }
2965 }
2966 return 0;
2967 }
2968
2969 /* Returns non-zero iff there's either regular breakpoint
2970 or a single step breakpoint inserted at PC. */
2971
2972 int
2973 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
2974 {
2975 if (regular_breakpoint_inserted_here_p (aspace, pc))
2976 return 1;
2977
2978 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2979 return 1;
2980
2981 return 0;
2982 }
2983
2984 /* This function returns non-zero iff there is a software breakpoint
2985 inserted at PC. */
2986
2987 int
2988 software_breakpoint_inserted_here_p (struct address_space *aspace,
2989 CORE_ADDR pc)
2990 {
2991 struct bp_location *bl, **blp_tmp;
2992
2993 ALL_BP_LOCATIONS (bl, blp_tmp)
2994 {
2995 if (bl->loc_type != bp_loc_software_breakpoint)
2996 continue;
2997
2998 if (bl->inserted
2999 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3000 aspace, pc))
3001 {
3002 if (overlay_debugging
3003 && section_is_overlay (bl->section)
3004 && !section_is_mapped (bl->section))
3005 continue; /* unmapped overlay -- can't be a match */
3006 else
3007 return 1;
3008 }
3009 }
3010
3011 /* Also check for software single-step breakpoints. */
3012 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3013 return 1;
3014
3015 return 0;
3016 }
3017
3018 int
3019 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3020 CORE_ADDR addr, ULONGEST len)
3021 {
3022 struct breakpoint *bpt;
3023
3024 ALL_BREAKPOINTS (bpt)
3025 {
3026 struct bp_location *loc;
3027
3028 if (bpt->type != bp_hardware_watchpoint
3029 && bpt->type != bp_access_watchpoint)
3030 continue;
3031
3032 if (!breakpoint_enabled (bpt))
3033 continue;
3034
3035 for (loc = bpt->loc; loc; loc = loc->next)
3036 if (loc->pspace->aspace == aspace && loc->inserted)
3037 {
3038 CORE_ADDR l, h;
3039
3040 /* Check for intersection. */
3041 l = max (loc->address, addr);
3042 h = min (loc->address + loc->length, addr + len);
3043 if (l < h)
3044 return 1;
3045 }
3046 }
3047 return 0;
3048 }
3049
3050 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3051 PC is valid for process/thread PTID. */
3052
3053 int
3054 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
3055 ptid_t ptid)
3056 {
3057 struct bp_location *bl, **blp_tmp;
3058 /* The thread and task IDs associated to PTID, computed lazily. */
3059 int thread = -1;
3060 int task = 0;
3061
3062 ALL_BP_LOCATIONS (bl, blp_tmp)
3063 {
3064 if (bl->loc_type != bp_loc_software_breakpoint
3065 && bl->loc_type != bp_loc_hardware_breakpoint)
3066 continue;
3067
3068 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
3069 if (!breakpoint_enabled (bl->owner)
3070 && bl->owner->enable_state != bp_permanent)
3071 continue;
3072
3073 if (!breakpoint_location_address_match (bl, aspace, pc))
3074 continue;
3075
3076 if (bl->owner->thread != -1)
3077 {
3078 /* This is a thread-specific breakpoint. Check that ptid
3079 matches that thread. If thread hasn't been computed yet,
3080 it is now time to do so. */
3081 if (thread == -1)
3082 thread = pid_to_thread_id (ptid);
3083 if (bl->owner->thread != thread)
3084 continue;
3085 }
3086
3087 if (bl->owner->task != 0)
3088 {
3089 /* This is a task-specific breakpoint. Check that ptid
3090 matches that task. If task hasn't been computed yet,
3091 it is now time to do so. */
3092 if (task == 0)
3093 task = ada_get_task_number (ptid);
3094 if (bl->owner->task != task)
3095 continue;
3096 }
3097
3098 if (overlay_debugging
3099 && section_is_overlay (bl->section)
3100 && !section_is_mapped (bl->section))
3101 continue; /* unmapped overlay -- can't be a match */
3102
3103 return 1;
3104 }
3105
3106 return 0;
3107 }
3108 \f
3109
3110 /* bpstat stuff. External routines' interfaces are documented
3111 in breakpoint.h. */
3112
3113 int
3114 ep_is_catchpoint (struct breakpoint *ep)
3115 {
3116 return (ep->type == bp_catchpoint);
3117 }
3118
3119 /* Frees any storage that is part of a bpstat. Does not walk the
3120 'next' chain. */
3121
3122 static void
3123 bpstat_free (bpstat bs)
3124 {
3125 if (bs->old_val != NULL)
3126 value_free (bs->old_val);
3127 decref_counted_command_line (&bs->commands);
3128 decref_bp_location (&bs->bp_location_at);
3129 xfree (bs);
3130 }
3131
3132 /* Clear a bpstat so that it says we are not at any breakpoint.
3133 Also free any storage that is part of a bpstat. */
3134
3135 void
3136 bpstat_clear (bpstat *bsp)
3137 {
3138 bpstat p;
3139 bpstat q;
3140
3141 if (bsp == 0)
3142 return;
3143 p = *bsp;
3144 while (p != NULL)
3145 {
3146 q = p->next;
3147 bpstat_free (p);
3148 p = q;
3149 }
3150 *bsp = NULL;
3151 }
3152
3153 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
3154 is part of the bpstat is copied as well. */
3155
3156 bpstat
3157 bpstat_copy (bpstat bs)
3158 {
3159 bpstat p = NULL;
3160 bpstat tmp;
3161 bpstat retval = NULL;
3162
3163 if (bs == NULL)
3164 return bs;
3165
3166 for (; bs != NULL; bs = bs->next)
3167 {
3168 tmp = (bpstat) xmalloc (sizeof (*tmp));
3169 memcpy (tmp, bs, sizeof (*tmp));
3170 incref_counted_command_line (tmp->commands);
3171 incref_bp_location (tmp->bp_location_at);
3172 if (bs->old_val != NULL)
3173 {
3174 tmp->old_val = value_copy (bs->old_val);
3175 release_value (tmp->old_val);
3176 }
3177
3178 if (p == NULL)
3179 /* This is the first thing in the chain. */
3180 retval = tmp;
3181 else
3182 p->next = tmp;
3183 p = tmp;
3184 }
3185 p->next = NULL;
3186 return retval;
3187 }
3188
3189 /* Find the bpstat associated with this breakpoint. */
3190
3191 bpstat
3192 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
3193 {
3194 if (bsp == NULL)
3195 return NULL;
3196
3197 for (; bsp != NULL; bsp = bsp->next)
3198 {
3199 if (bsp->breakpoint_at == breakpoint)
3200 return bsp;
3201 }
3202 return NULL;
3203 }
3204
3205 /* Put in *NUM the breakpoint number of the first breakpoint we are
3206 stopped at. *BSP upon return is a bpstat which points to the
3207 remaining breakpoints stopped at (but which is not guaranteed to be
3208 good for anything but further calls to bpstat_num).
3209
3210 Return 0 if passed a bpstat which does not indicate any breakpoints.
3211 Return -1 if stopped at a breakpoint that has been deleted since
3212 we set it.
3213 Return 1 otherwise. */
3214
3215 int
3216 bpstat_num (bpstat *bsp, int *num)
3217 {
3218 struct breakpoint *b;
3219
3220 if ((*bsp) == NULL)
3221 return 0; /* No more breakpoint values */
3222
3223 /* We assume we'll never have several bpstats that correspond to a
3224 single breakpoint -- otherwise, this function might return the
3225 same number more than once and this will look ugly. */
3226 b = (*bsp)->breakpoint_at;
3227 *bsp = (*bsp)->next;
3228 if (b == NULL)
3229 return -1; /* breakpoint that's been deleted since */
3230
3231 *num = b->number; /* We have its number */
3232 return 1;
3233 }
3234
3235 /* See breakpoint.h. */
3236
3237 void
3238 bpstat_clear_actions (void)
3239 {
3240 struct thread_info *tp;
3241 bpstat bs;
3242
3243 if (ptid_equal (inferior_ptid, null_ptid))
3244 return;
3245
3246 tp = find_thread_ptid (inferior_ptid);
3247 if (tp == NULL)
3248 return;
3249
3250 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
3251 {
3252 decref_counted_command_line (&bs->commands);
3253
3254 if (bs->old_val != NULL)
3255 {
3256 value_free (bs->old_val);
3257 bs->old_val = NULL;
3258 }
3259 }
3260 }
3261
3262 /* Called when a command is about to proceed the inferior. */
3263
3264 static void
3265 breakpoint_about_to_proceed (void)
3266 {
3267 if (!ptid_equal (inferior_ptid, null_ptid))
3268 {
3269 struct thread_info *tp = inferior_thread ();
3270
3271 /* Allow inferior function calls in breakpoint commands to not
3272 interrupt the command list. When the call finishes
3273 successfully, the inferior will be standing at the same
3274 breakpoint as if nothing happened. */
3275 if (tp->control.in_infcall)
3276 return;
3277 }
3278
3279 breakpoint_proceeded = 1;
3280 }
3281
3282 /* Stub for cleaning up our state if we error-out of a breakpoint
3283 command. */
3284 static void
3285 cleanup_executing_breakpoints (void *ignore)
3286 {
3287 executing_breakpoint_commands = 0;
3288 }
3289
3290 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
3291 or its equivalent. */
3292
3293 static int
3294 command_line_is_silent (struct command_line *cmd)
3295 {
3296 return cmd && (strcmp ("silent", cmd->line) == 0
3297 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
3298 }
3299
3300 /* Execute all the commands associated with all the breakpoints at
3301 this location. Any of these commands could cause the process to
3302 proceed beyond this point, etc. We look out for such changes by
3303 checking the global "breakpoint_proceeded" after each command.
3304
3305 Returns true if a breakpoint command resumed the inferior. In that
3306 case, it is the caller's responsibility to recall it again with the
3307 bpstat of the current thread. */
3308
3309 static int
3310 bpstat_do_actions_1 (bpstat *bsp)
3311 {
3312 bpstat bs;
3313 struct cleanup *old_chain;
3314 int again = 0;
3315
3316 /* Avoid endless recursion if a `source' command is contained
3317 in bs->commands. */
3318 if (executing_breakpoint_commands)
3319 return 0;
3320
3321 executing_breakpoint_commands = 1;
3322 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
3323
3324 prevent_dont_repeat ();
3325
3326 /* This pointer will iterate over the list of bpstat's. */
3327 bs = *bsp;
3328
3329 breakpoint_proceeded = 0;
3330 for (; bs != NULL; bs = bs->next)
3331 {
3332 struct counted_command_line *ccmd;
3333 struct command_line *cmd;
3334 struct cleanup *this_cmd_tree_chain;
3335
3336 /* Take ownership of the BSP's command tree, if it has one.
3337
3338 The command tree could legitimately contain commands like
3339 'step' and 'next', which call clear_proceed_status, which
3340 frees stop_bpstat's command tree. To make sure this doesn't
3341 free the tree we're executing out from under us, we need to
3342 take ownership of the tree ourselves. Since a given bpstat's
3343 commands are only executed once, we don't need to copy it; we
3344 can clear the pointer in the bpstat, and make sure we free
3345 the tree when we're done. */
3346 ccmd = bs->commands;
3347 bs->commands = NULL;
3348 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
3349 cmd = ccmd ? ccmd->commands : NULL;
3350 if (command_line_is_silent (cmd))
3351 {
3352 /* The action has been already done by bpstat_stop_status. */
3353 cmd = cmd->next;
3354 }
3355
3356 while (cmd != NULL)
3357 {
3358 execute_control_command (cmd);
3359
3360 if (breakpoint_proceeded)
3361 break;
3362 else
3363 cmd = cmd->next;
3364 }
3365
3366 /* We can free this command tree now. */
3367 do_cleanups (this_cmd_tree_chain);
3368
3369 if (breakpoint_proceeded)
3370 {
3371 if (target_can_async_p ())
3372 /* If we are in async mode, then the target might be still
3373 running, not stopped at any breakpoint, so nothing for
3374 us to do here -- just return to the event loop. */
3375 ;
3376 else
3377 /* In sync mode, when execute_control_command returns
3378 we're already standing on the next breakpoint.
3379 Breakpoint commands for that stop were not run, since
3380 execute_command does not run breakpoint commands --
3381 only command_line_handler does, but that one is not
3382 involved in execution of breakpoint commands. So, we
3383 can now execute breakpoint commands. It should be
3384 noted that making execute_command do bpstat actions is
3385 not an option -- in this case we'll have recursive
3386 invocation of bpstat for each breakpoint with a
3387 command, and can easily blow up GDB stack. Instead, we
3388 return true, which will trigger the caller to recall us
3389 with the new stop_bpstat. */
3390 again = 1;
3391 break;
3392 }
3393 }
3394 do_cleanups (old_chain);
3395 return again;
3396 }
3397
3398 void
3399 bpstat_do_actions (void)
3400 {
3401 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
3402
3403 /* Do any commands attached to breakpoint we are stopped at. */
3404 while (!ptid_equal (inferior_ptid, null_ptid)
3405 && target_has_execution
3406 && !is_exited (inferior_ptid)
3407 && !is_executing (inferior_ptid))
3408 /* Since in sync mode, bpstat_do_actions may resume the inferior,
3409 and only return when it is stopped at the next breakpoint, we
3410 keep doing breakpoint actions until it returns false to
3411 indicate the inferior was not resumed. */
3412 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
3413 break;
3414
3415 discard_cleanups (cleanup_if_error);
3416 }
3417
3418 /* Print out the (old or new) value associated with a watchpoint. */
3419
3420 static void
3421 watchpoint_value_print (struct value *val, struct ui_file *stream)
3422 {
3423 if (val == NULL)
3424 fprintf_unfiltered (stream, _("<unreadable>"));
3425 else
3426 {
3427 struct value_print_options opts;
3428 get_user_print_options (&opts);
3429 value_print (val, stream, &opts);
3430 }
3431 }
3432
3433 /* Generic routine for printing messages indicating why we
3434 stopped. The behavior of this function depends on the value
3435 'print_it' in the bpstat structure. Under some circumstances we
3436 may decide not to print anything here and delegate the task to
3437 normal_stop(). */
3438
3439 static enum print_stop_action
3440 print_bp_stop_message (bpstat bs)
3441 {
3442 switch (bs->print_it)
3443 {
3444 case print_it_noop:
3445 /* Nothing should be printed for this bpstat entry. */
3446 return PRINT_UNKNOWN;
3447 break;
3448
3449 case print_it_done:
3450 /* We still want to print the frame, but we already printed the
3451 relevant messages. */
3452 return PRINT_SRC_AND_LOC;
3453 break;
3454
3455 case print_it_normal:
3456 {
3457 struct breakpoint *b = bs->breakpoint_at;
3458
3459 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
3460 which has since been deleted. */
3461 if (b == NULL)
3462 return PRINT_UNKNOWN;
3463
3464 /* Normal case. Call the breakpoint's print_it method. */
3465 return b->ops->print_it (bs);
3466 }
3467 break;
3468
3469 default:
3470 internal_error (__FILE__, __LINE__,
3471 _("print_bp_stop_message: unrecognized enum value"));
3472 break;
3473 }
3474 }
3475
3476 /* Print a message indicating what happened. This is called from
3477 normal_stop(). The input to this routine is the head of the bpstat
3478 list - a list of the eventpoints that caused this stop. KIND is
3479 the target_waitkind for the stopping event. This
3480 routine calls the generic print routine for printing a message
3481 about reasons for stopping. This will print (for example) the
3482 "Breakpoint n," part of the output. The return value of this
3483 routine is one of:
3484
3485 PRINT_UNKNOWN: Means we printed nothing.
3486 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
3487 code to print the location. An example is
3488 "Breakpoint 1, " which should be followed by
3489 the location.
3490 PRINT_SRC_ONLY: Means we printed something, but there is no need
3491 to also print the location part of the message.
3492 An example is the catch/throw messages, which
3493 don't require a location appended to the end.
3494 PRINT_NOTHING: We have done some printing and we don't need any
3495 further info to be printed. */
3496
3497 enum print_stop_action
3498 bpstat_print (bpstat bs, int kind)
3499 {
3500 int val;
3501
3502 /* Maybe another breakpoint in the chain caused us to stop.
3503 (Currently all watchpoints go on the bpstat whether hit or not.
3504 That probably could (should) be changed, provided care is taken
3505 with respect to bpstat_explains_signal). */
3506 for (; bs; bs = bs->next)
3507 {
3508 val = print_bp_stop_message (bs);
3509 if (val == PRINT_SRC_ONLY
3510 || val == PRINT_SRC_AND_LOC
3511 || val == PRINT_NOTHING)
3512 return val;
3513 }
3514
3515 /* If we had hit a shared library event breakpoint,
3516 print_bp_stop_message would print out this message. If we hit an
3517 OS-level shared library event, do the same thing. */
3518 if (kind == TARGET_WAITKIND_LOADED)
3519 {
3520 ui_out_text (current_uiout, _("Stopped due to shared library event\n"));
3521 if (ui_out_is_mi_like_p (current_uiout))
3522 ui_out_field_string (current_uiout, "reason",
3523 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
3524 return PRINT_NOTHING;
3525 }
3526
3527 /* We reached the end of the chain, or we got a null BS to start
3528 with and nothing was printed. */
3529 return PRINT_UNKNOWN;
3530 }
3531
3532 /* Evaluate the expression EXP and return 1 if value is zero. This is
3533 used inside a catch_errors to evaluate the breakpoint condition.
3534 The argument is a "struct expression *" that has been cast to a
3535 "char *" to make it pass through catch_errors. */
3536
3537 static int
3538 breakpoint_cond_eval (void *exp)
3539 {
3540 struct value *mark = value_mark ();
3541 int i = !value_true (evaluate_expression ((struct expression *) exp));
3542
3543 value_free_to_mark (mark);
3544 return i;
3545 }
3546
3547 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
3548
3549 static bpstat
3550 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
3551 {
3552 bpstat bs;
3553
3554 bs = (bpstat) xmalloc (sizeof (*bs));
3555 bs->next = NULL;
3556 **bs_link_pointer = bs;
3557 *bs_link_pointer = &bs->next;
3558 bs->breakpoint_at = bl->owner;
3559 bs->bp_location_at = bl;
3560 incref_bp_location (bl);
3561 /* If the condition is false, etc., don't do the commands. */
3562 bs->commands = NULL;
3563 bs->old_val = NULL;
3564 bs->print_it = print_it_normal;
3565 return bs;
3566 }
3567 \f
3568 /* The target has stopped with waitstatus WS. Check if any hardware
3569 watchpoints have triggered, according to the target. */
3570
3571 int
3572 watchpoints_triggered (struct target_waitstatus *ws)
3573 {
3574 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
3575 CORE_ADDR addr;
3576 struct breakpoint *b;
3577
3578 if (!stopped_by_watchpoint)
3579 {
3580 /* We were not stopped by a watchpoint. Mark all watchpoints
3581 as not triggered. */
3582 ALL_BREAKPOINTS (b)
3583 if (is_hardware_watchpoint (b))
3584 {
3585 struct watchpoint *w = (struct watchpoint *) b;
3586
3587 w->watchpoint_triggered = watch_triggered_no;
3588 }
3589
3590 return 0;
3591 }
3592
3593 if (!target_stopped_data_address (&current_target, &addr))
3594 {
3595 /* We were stopped by a watchpoint, but we don't know where.
3596 Mark all watchpoints as unknown. */
3597 ALL_BREAKPOINTS (b)
3598 if (is_hardware_watchpoint (b))
3599 {
3600 struct watchpoint *w = (struct watchpoint *) b;
3601
3602 w->watchpoint_triggered = watch_triggered_unknown;
3603 }
3604
3605 return stopped_by_watchpoint;
3606 }
3607
3608 /* The target could report the data address. Mark watchpoints
3609 affected by this data address as triggered, and all others as not
3610 triggered. */
3611
3612 ALL_BREAKPOINTS (b)
3613 if (is_hardware_watchpoint (b))
3614 {
3615 struct watchpoint *w = (struct watchpoint *) b;
3616 struct bp_location *loc;
3617
3618 w->watchpoint_triggered = watch_triggered_no;
3619 for (loc = b->loc; loc; loc = loc->next)
3620 {
3621 if (is_masked_watchpoint (b))
3622 {
3623 CORE_ADDR newaddr = addr & w->hw_wp_mask;
3624 CORE_ADDR start = loc->address & w->hw_wp_mask;
3625
3626 if (newaddr == start)
3627 {
3628 w->watchpoint_triggered = watch_triggered_yes;
3629 break;
3630 }
3631 }
3632 /* Exact match not required. Within range is sufficient. */
3633 else if (target_watchpoint_addr_within_range (&current_target,
3634 addr, loc->address,
3635 loc->length))
3636 {
3637 w->watchpoint_triggered = watch_triggered_yes;
3638 break;
3639 }
3640 }
3641 }
3642
3643 return 1;
3644 }
3645
3646 /* Possible return values for watchpoint_check (this can't be an enum
3647 because of check_errors). */
3648 /* The watchpoint has been deleted. */
3649 #define WP_DELETED 1
3650 /* The value has changed. */
3651 #define WP_VALUE_CHANGED 2
3652 /* The value has not changed. */
3653 #define WP_VALUE_NOT_CHANGED 3
3654 /* Ignore this watchpoint, no matter if the value changed or not. */
3655 #define WP_IGNORE 4
3656
3657 #define BP_TEMPFLAG 1
3658 #define BP_HARDWAREFLAG 2
3659
3660 /* Evaluate watchpoint condition expression and check if its value
3661 changed.
3662
3663 P should be a pointer to struct bpstat, but is defined as a void *
3664 in order for this function to be usable with catch_errors. */
3665
3666 static int
3667 watchpoint_check (void *p)
3668 {
3669 bpstat bs = (bpstat) p;
3670 struct watchpoint *b;
3671 struct frame_info *fr;
3672 int within_current_scope;
3673
3674 /* BS is built from an existing struct breakpoint. */
3675 gdb_assert (bs->breakpoint_at != NULL);
3676 b = (struct watchpoint *) bs->breakpoint_at;
3677
3678 /* If this is a local watchpoint, we only want to check if the
3679 watchpoint frame is in scope if the current thread is the thread
3680 that was used to create the watchpoint. */
3681 if (!watchpoint_in_thread_scope (b))
3682 return WP_IGNORE;
3683
3684 if (b->exp_valid_block == NULL)
3685 within_current_scope = 1;
3686 else
3687 {
3688 struct frame_info *frame = get_current_frame ();
3689 struct gdbarch *frame_arch = get_frame_arch (frame);
3690 CORE_ADDR frame_pc = get_frame_pc (frame);
3691
3692 /* in_function_epilogue_p() returns a non-zero value if we're
3693 still in the function but the stack frame has already been
3694 invalidated. Since we can't rely on the values of local
3695 variables after the stack has been destroyed, we are treating
3696 the watchpoint in that state as `not changed' without further
3697 checking. Don't mark watchpoints as changed if the current
3698 frame is in an epilogue - even if they are in some other
3699 frame, our view of the stack is likely to be wrong and
3700 frame_find_by_id could error out. */
3701 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
3702 return WP_IGNORE;
3703
3704 fr = frame_find_by_id (b->watchpoint_frame);
3705 within_current_scope = (fr != NULL);
3706
3707 /* If we've gotten confused in the unwinder, we might have
3708 returned a frame that can't describe this variable. */
3709 if (within_current_scope)
3710 {
3711 struct symbol *function;
3712
3713 function = get_frame_function (fr);
3714 if (function == NULL
3715 || !contained_in (b->exp_valid_block,
3716 SYMBOL_BLOCK_VALUE (function)))
3717 within_current_scope = 0;
3718 }
3719
3720 if (within_current_scope)
3721 /* If we end up stopping, the current frame will get selected
3722 in normal_stop. So this call to select_frame won't affect
3723 the user. */
3724 select_frame (fr);
3725 }
3726
3727 if (within_current_scope)
3728 {
3729 /* We use value_{,free_to_}mark because it could be a *long*
3730 time before we return to the command level and call
3731 free_all_values. We can't call free_all_values because we
3732 might be in the middle of evaluating a function call. */
3733
3734 int pc = 0;
3735 struct value *mark;
3736 struct value *new_val;
3737
3738 if (is_masked_watchpoint (&b->base))
3739 /* Since we don't know the exact trigger address (from
3740 stopped_data_address), just tell the user we've triggered
3741 a mask watchpoint. */
3742 return WP_VALUE_CHANGED;
3743
3744 mark = value_mark ();
3745 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
3746
3747 /* We use value_equal_contents instead of value_equal because
3748 the latter coerces an array to a pointer, thus comparing just
3749 the address of the array instead of its contents. This is
3750 not what we want. */
3751 if ((b->val != NULL) != (new_val != NULL)
3752 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
3753 {
3754 if (new_val != NULL)
3755 {
3756 release_value (new_val);
3757 value_free_to_mark (mark);
3758 }
3759 bs->old_val = b->val;
3760 b->val = new_val;
3761 b->val_valid = 1;
3762 return WP_VALUE_CHANGED;
3763 }
3764 else
3765 {
3766 /* Nothing changed. */
3767 value_free_to_mark (mark);
3768 return WP_VALUE_NOT_CHANGED;
3769 }
3770 }
3771 else
3772 {
3773 struct ui_out *uiout = current_uiout;
3774
3775 /* This seems like the only logical thing to do because
3776 if we temporarily ignored the watchpoint, then when
3777 we reenter the block in which it is valid it contains
3778 garbage (in the case of a function, it may have two
3779 garbage values, one before and one after the prologue).
3780 So we can't even detect the first assignment to it and
3781 watch after that (since the garbage may or may not equal
3782 the first value assigned). */
3783 /* We print all the stop information in
3784 breakpoint_ops->print_it, but in this case, by the time we
3785 call breakpoint_ops->print_it this bp will be deleted
3786 already. So we have no choice but print the information
3787 here. */
3788 if (ui_out_is_mi_like_p (uiout))
3789 ui_out_field_string
3790 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
3791 ui_out_text (uiout, "\nWatchpoint ");
3792 ui_out_field_int (uiout, "wpnum", b->base.number);
3793 ui_out_text (uiout,
3794 " deleted because the program has left the block in\n\
3795 which its expression is valid.\n");
3796
3797 /* Make sure the watchpoint's commands aren't executed. */
3798 decref_counted_command_line (&b->base.commands);
3799 watchpoint_del_at_next_stop (b);
3800
3801 return WP_DELETED;
3802 }
3803 }
3804
3805 /* Return true if it looks like target has stopped due to hitting
3806 breakpoint location BL. This function does not check if we should
3807 stop, only if BL explains the stop. */
3808
3809 static int
3810 bpstat_check_location (const struct bp_location *bl,
3811 struct address_space *aspace, CORE_ADDR bp_addr)
3812 {
3813 struct breakpoint *b = bl->owner;
3814
3815 /* BL is from an existing breakpoint. */
3816 gdb_assert (b != NULL);
3817
3818 return b->ops->breakpoint_hit (bl, aspace, bp_addr);
3819 }
3820
3821 /* Determine if the watched values have actually changed, and we
3822 should stop. If not, set BS->stop to 0. */
3823
3824 static void
3825 bpstat_check_watchpoint (bpstat bs)
3826 {
3827 const struct bp_location *bl;
3828 struct watchpoint *b;
3829
3830 /* BS is built for existing struct breakpoint. */
3831 bl = bs->bp_location_at;
3832 gdb_assert (bl != NULL);
3833 b = (struct watchpoint *) bs->breakpoint_at;
3834 gdb_assert (b != NULL);
3835
3836 {
3837 int must_check_value = 0;
3838
3839 if (b->base.type == bp_watchpoint)
3840 /* For a software watchpoint, we must always check the
3841 watched value. */
3842 must_check_value = 1;
3843 else if (b->watchpoint_triggered == watch_triggered_yes)
3844 /* We have a hardware watchpoint (read, write, or access)
3845 and the target earlier reported an address watched by
3846 this watchpoint. */
3847 must_check_value = 1;
3848 else if (b->watchpoint_triggered == watch_triggered_unknown
3849 && b->base.type == bp_hardware_watchpoint)
3850 /* We were stopped by a hardware watchpoint, but the target could
3851 not report the data address. We must check the watchpoint's
3852 value. Access and read watchpoints are out of luck; without
3853 a data address, we can't figure it out. */
3854 must_check_value = 1;
3855
3856 if (must_check_value)
3857 {
3858 char *message
3859 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
3860 b->base.number);
3861 struct cleanup *cleanups = make_cleanup (xfree, message);
3862 int e = catch_errors (watchpoint_check, bs, message,
3863 RETURN_MASK_ALL);
3864 do_cleanups (cleanups);
3865 switch (e)
3866 {
3867 case WP_DELETED:
3868 /* We've already printed what needs to be printed. */
3869 bs->print_it = print_it_done;
3870 /* Stop. */
3871 break;
3872 case WP_IGNORE:
3873 bs->print_it = print_it_noop;
3874 bs->stop = 0;
3875 break;
3876 case WP_VALUE_CHANGED:
3877 if (b->base.type == bp_read_watchpoint)
3878 {
3879 /* There are two cases to consider here:
3880
3881 1. We're watching the triggered memory for reads.
3882 In that case, trust the target, and always report
3883 the watchpoint hit to the user. Even though
3884 reads don't cause value changes, the value may
3885 have changed since the last time it was read, and
3886 since we're not trapping writes, we will not see
3887 those, and as such we should ignore our notion of
3888 old value.
3889
3890 2. We're watching the triggered memory for both
3891 reads and writes. There are two ways this may
3892 happen:
3893
3894 2.1. This is a target that can't break on data
3895 reads only, but can break on accesses (reads or
3896 writes), such as e.g., x86. We detect this case
3897 at the time we try to insert read watchpoints.
3898
3899 2.2. Otherwise, the target supports read
3900 watchpoints, but, the user set an access or write
3901 watchpoint watching the same memory as this read
3902 watchpoint.
3903
3904 If we're watching memory writes as well as reads,
3905 ignore watchpoint hits when we find that the
3906 value hasn't changed, as reads don't cause
3907 changes. This still gives false positives when
3908 the program writes the same value to memory as
3909 what there was already in memory (we will confuse
3910 it for a read), but it's much better than
3911 nothing. */
3912
3913 int other_write_watchpoint = 0;
3914
3915 if (bl->watchpoint_type == hw_read)
3916 {
3917 struct breakpoint *other_b;
3918
3919 ALL_BREAKPOINTS (other_b)
3920 if (other_b->type == bp_hardware_watchpoint
3921 || other_b->type == bp_access_watchpoint)
3922 {
3923 struct watchpoint *other_w =
3924 (struct watchpoint *) other_b;
3925
3926 if (other_w->watchpoint_triggered
3927 == watch_triggered_yes)
3928 {
3929 other_write_watchpoint = 1;
3930 break;
3931 }
3932 }
3933 }
3934
3935 if (other_write_watchpoint
3936 || bl->watchpoint_type == hw_access)
3937 {
3938 /* We're watching the same memory for writes,
3939 and the value changed since the last time we
3940 updated it, so this trap must be for a write.
3941 Ignore it. */
3942 bs->print_it = print_it_noop;
3943 bs->stop = 0;
3944 }
3945 }
3946 break;
3947 case WP_VALUE_NOT_CHANGED:
3948 if (b->base.type == bp_hardware_watchpoint
3949 || b->base.type == bp_watchpoint)
3950 {
3951 /* Don't stop: write watchpoints shouldn't fire if
3952 the value hasn't changed. */
3953 bs->print_it = print_it_noop;
3954 bs->stop = 0;
3955 }
3956 /* Stop. */
3957 break;
3958 default:
3959 /* Can't happen. */
3960 case 0:
3961 /* Error from catch_errors. */
3962 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
3963 watchpoint_del_at_next_stop (b);
3964 /* We've already printed what needs to be printed. */
3965 bs->print_it = print_it_done;
3966 break;
3967 }
3968 }
3969 else /* must_check_value == 0 */
3970 {
3971 /* This is a case where some watchpoint(s) triggered, but
3972 not at the address of this watchpoint, or else no
3973 watchpoint triggered after all. So don't print
3974 anything for this watchpoint. */
3975 bs->print_it = print_it_noop;
3976 bs->stop = 0;
3977 }
3978 }
3979 }
3980
3981
3982 /* Check conditions (condition proper, frame, thread and ignore count)
3983 of breakpoint referred to by BS. If we should not stop for this
3984 breakpoint, set BS->stop to 0. */
3985
3986 static void
3987 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
3988 {
3989 int thread_id = pid_to_thread_id (ptid);
3990 const struct bp_location *bl;
3991 struct breakpoint *b;
3992
3993 /* BS is built for existing struct breakpoint. */
3994 bl = bs->bp_location_at;
3995 gdb_assert (bl != NULL);
3996 b = bs->breakpoint_at;
3997 gdb_assert (b != NULL);
3998
3999 if (frame_id_p (b->frame_id)
4000 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
4001 bs->stop = 0;
4002 else if (bs->stop)
4003 {
4004 int value_is_zero = 0;
4005 struct expression *cond;
4006
4007 /* Evaluate Python breakpoints that have a "stop"
4008 method implemented. */
4009 if (b->py_bp_object)
4010 bs->stop = gdbpy_should_stop (b->py_bp_object);
4011
4012 if (is_watchpoint (b))
4013 {
4014 struct watchpoint *w = (struct watchpoint *) b;
4015
4016 cond = w->cond_exp;
4017 }
4018 else
4019 cond = bl->cond;
4020
4021 if (cond && b->disposition != disp_del_at_next_stop)
4022 {
4023 int within_current_scope = 1;
4024 struct watchpoint * w;
4025
4026 /* We use value_mark and value_free_to_mark because it could
4027 be a long time before we return to the command level and
4028 call free_all_values. We can't call free_all_values
4029 because we might be in the middle of evaluating a
4030 function call. */
4031 struct value *mark = value_mark ();
4032
4033 if (is_watchpoint (b))
4034 w = (struct watchpoint *) b;
4035 else
4036 w = NULL;
4037
4038 /* Need to select the frame, with all that implies so that
4039 the conditions will have the right context. Because we
4040 use the frame, we will not see an inlined function's
4041 variables when we arrive at a breakpoint at the start
4042 of the inlined function; the current frame will be the
4043 call site. */
4044 if (w == NULL || w->cond_exp_valid_block == NULL)
4045 select_frame (get_current_frame ());
4046 else
4047 {
4048 struct frame_info *frame;
4049
4050 /* For local watchpoint expressions, which particular
4051 instance of a local is being watched matters, so we
4052 keep track of the frame to evaluate the expression
4053 in. To evaluate the condition however, it doesn't
4054 really matter which instantiation of the function
4055 where the condition makes sense triggers the
4056 watchpoint. This allows an expression like "watch
4057 global if q > 10" set in `func', catch writes to
4058 global on all threads that call `func', or catch
4059 writes on all recursive calls of `func' by a single
4060 thread. We simply always evaluate the condition in
4061 the innermost frame that's executing where it makes
4062 sense to evaluate the condition. It seems
4063 intuitive. */
4064 frame = block_innermost_frame (w->cond_exp_valid_block);
4065 if (frame != NULL)
4066 select_frame (frame);
4067 else
4068 within_current_scope = 0;
4069 }
4070 if (within_current_scope)
4071 value_is_zero
4072 = catch_errors (breakpoint_cond_eval, cond,
4073 "Error in testing breakpoint condition:\n",
4074 RETURN_MASK_ALL);
4075 else
4076 {
4077 warning (_("Watchpoint condition cannot be tested "
4078 "in the current scope"));
4079 /* If we failed to set the right context for this
4080 watchpoint, unconditionally report it. */
4081 value_is_zero = 0;
4082 }
4083 /* FIXME-someday, should give breakpoint #. */
4084 value_free_to_mark (mark);
4085 }
4086
4087 if (cond && value_is_zero)
4088 {
4089 bs->stop = 0;
4090 }
4091 else if (b->thread != -1 && b->thread != thread_id)
4092 {
4093 bs->stop = 0;
4094 }
4095 else if (b->ignore_count > 0)
4096 {
4097 b->ignore_count--;
4098 annotate_ignore_count_change ();
4099 bs->stop = 0;
4100 /* Increase the hit count even though we don't stop. */
4101 ++(b->hit_count);
4102 observer_notify_breakpoint_modified (b);
4103 }
4104 }
4105 }
4106
4107
4108 /* Get a bpstat associated with having just stopped at address
4109 BP_ADDR in thread PTID.
4110
4111 Determine whether we stopped at a breakpoint, etc, or whether we
4112 don't understand this stop. Result is a chain of bpstat's such
4113 that:
4114
4115 if we don't understand the stop, the result is a null pointer.
4116
4117 if we understand why we stopped, the result is not null.
4118
4119 Each element of the chain refers to a particular breakpoint or
4120 watchpoint at which we have stopped. (We may have stopped for
4121 several reasons concurrently.)
4122
4123 Each element of the chain has valid next, breakpoint_at,
4124 commands, FIXME??? fields. */
4125
4126 bpstat
4127 bpstat_stop_status (struct address_space *aspace,
4128 CORE_ADDR bp_addr, ptid_t ptid)
4129 {
4130 struct breakpoint *b = NULL;
4131 struct bp_location *bl;
4132 struct bp_location *loc;
4133 /* First item of allocated bpstat's. */
4134 bpstat bs_head = NULL, *bs_link = &bs_head;
4135 /* Pointer to the last thing in the chain currently. */
4136 bpstat bs;
4137 int ix;
4138 int need_remove_insert;
4139 int removed_any;
4140
4141 /* First, build the bpstat chain with locations that explain a
4142 target stop, while being careful to not set the target running,
4143 as that may invalidate locations (in particular watchpoint
4144 locations are recreated). Resuming will happen here with
4145 breakpoint conditions or watchpoint expressions that include
4146 inferior function calls. */
4147
4148 ALL_BREAKPOINTS (b)
4149 {
4150 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
4151 continue;
4152
4153 for (bl = b->loc; bl != NULL; bl = bl->next)
4154 {
4155 /* For hardware watchpoints, we look only at the first
4156 location. The watchpoint_check function will work on the
4157 entire expression, not the individual locations. For
4158 read watchpoints, the watchpoints_triggered function has
4159 checked all locations already. */
4160 if (b->type == bp_hardware_watchpoint && bl != b->loc)
4161 break;
4162
4163 if (bl->shlib_disabled)
4164 continue;
4165
4166 if (!bpstat_check_location (bl, aspace, bp_addr))
4167 continue;
4168
4169 /* Come here if it's a watchpoint, or if the break address
4170 matches. */
4171
4172 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
4173 explain stop. */
4174
4175 /* Assume we stop. Should we find a watchpoint that is not
4176 actually triggered, or if the condition of the breakpoint
4177 evaluates as false, we'll reset 'stop' to 0. */
4178 bs->stop = 1;
4179 bs->print = 1;
4180
4181 /* If this is a scope breakpoint, mark the associated
4182 watchpoint as triggered so that we will handle the
4183 out-of-scope event. We'll get to the watchpoint next
4184 iteration. */
4185 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
4186 {
4187 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
4188
4189 w->watchpoint_triggered = watch_triggered_yes;
4190 }
4191 }
4192 }
4193
4194 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4195 {
4196 if (breakpoint_location_address_match (loc, aspace, bp_addr))
4197 {
4198 bs = bpstat_alloc (loc, &bs_link);
4199 /* For hits of moribund locations, we should just proceed. */
4200 bs->stop = 0;
4201 bs->print = 0;
4202 bs->print_it = print_it_noop;
4203 }
4204 }
4205
4206 /* Now go through the locations that caused the target to stop, and
4207 check whether we're interested in reporting this stop to higher
4208 layers, or whether we should resume the target transparently. */
4209
4210 removed_any = 0;
4211
4212 for (bs = bs_head; bs != NULL; bs = bs->next)
4213 {
4214 if (!bs->stop)
4215 continue;
4216
4217 b = bs->breakpoint_at;
4218 b->ops->check_status (bs);
4219 if (bs->stop)
4220 {
4221 bpstat_check_breakpoint_conditions (bs, ptid);
4222
4223 if (bs->stop)
4224 {
4225 ++(b->hit_count);
4226 observer_notify_breakpoint_modified (b);
4227
4228 /* We will stop here. */
4229 if (b->disposition == disp_disable)
4230 {
4231 if (b->enable_state != bp_permanent)
4232 b->enable_state = bp_disabled;
4233 removed_any = 1;
4234 }
4235 if (b->silent)
4236 bs->print = 0;
4237 bs->commands = b->commands;
4238 incref_counted_command_line (bs->commands);
4239 if (command_line_is_silent (bs->commands
4240 ? bs->commands->commands : NULL))
4241 bs->print = 0;
4242 }
4243
4244 /* Print nothing for this entry if we don't stop or don't print. */
4245 if (bs->stop == 0 || bs->print == 0)
4246 bs->print_it = print_it_noop;
4247 }
4248 }
4249
4250 /* If we aren't stopping, the value of some hardware watchpoint may
4251 not have changed, but the intermediate memory locations we are
4252 watching may have. Don't bother if we're stopping; this will get
4253 done later. */
4254 need_remove_insert = 0;
4255 if (! bpstat_causes_stop (bs_head))
4256 for (bs = bs_head; bs != NULL; bs = bs->next)
4257 if (!bs->stop
4258 && bs->breakpoint_at
4259 && is_hardware_watchpoint (bs->breakpoint_at))
4260 {
4261 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
4262
4263 update_watchpoint (w, 0 /* don't reparse. */);
4264 need_remove_insert = 1;
4265 }
4266
4267 if (need_remove_insert)
4268 update_global_location_list (1);
4269 else if (removed_any)
4270 update_global_location_list (0);
4271
4272 return bs_head;
4273 }
4274
4275 static void
4276 handle_jit_event (void)
4277 {
4278 struct frame_info *frame;
4279 struct gdbarch *gdbarch;
4280
4281 /* Switch terminal for any messages produced by
4282 breakpoint_re_set. */
4283 target_terminal_ours_for_output ();
4284
4285 frame = get_current_frame ();
4286 gdbarch = get_frame_arch (frame);
4287
4288 jit_event_handler (gdbarch);
4289
4290 target_terminal_inferior ();
4291 }
4292
4293 /* Prepare WHAT final decision for infrun. */
4294
4295 /* Decide what infrun needs to do with this bpstat. */
4296
4297 struct bpstat_what
4298 bpstat_what (bpstat bs_head)
4299 {
4300 struct bpstat_what retval;
4301 /* We need to defer calling `solib_add', as adding new symbols
4302 resets breakpoints, which in turn deletes breakpoint locations,
4303 and hence may clear unprocessed entries in the BS chain. */
4304 int shlib_event = 0;
4305 int jit_event = 0;
4306 bpstat bs;
4307
4308 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
4309 retval.call_dummy = STOP_NONE;
4310 retval.is_longjmp = 0;
4311
4312 for (bs = bs_head; bs != NULL; bs = bs->next)
4313 {
4314 /* Extract this BS's action. After processing each BS, we check
4315 if its action overrides all we've seem so far. */
4316 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
4317 enum bptype bptype;
4318
4319 if (bs->breakpoint_at == NULL)
4320 {
4321 /* I suspect this can happen if it was a momentary
4322 breakpoint which has since been deleted. */
4323 bptype = bp_none;
4324 }
4325 else
4326 bptype = bs->breakpoint_at->type;
4327
4328 switch (bptype)
4329 {
4330 case bp_none:
4331 break;
4332 case bp_breakpoint:
4333 case bp_hardware_breakpoint:
4334 case bp_until:
4335 case bp_finish:
4336 if (bs->stop)
4337 {
4338 if (bs->print)
4339 this_action = BPSTAT_WHAT_STOP_NOISY;
4340 else
4341 this_action = BPSTAT_WHAT_STOP_SILENT;
4342 }
4343 else
4344 this_action = BPSTAT_WHAT_SINGLE;
4345 break;
4346 case bp_watchpoint:
4347 case bp_hardware_watchpoint:
4348 case bp_read_watchpoint:
4349 case bp_access_watchpoint:
4350 if (bs->stop)
4351 {
4352 if (bs->print)
4353 this_action = BPSTAT_WHAT_STOP_NOISY;
4354 else
4355 this_action = BPSTAT_WHAT_STOP_SILENT;
4356 }
4357 else
4358 {
4359 /* There was a watchpoint, but we're not stopping.
4360 This requires no further action. */
4361 }
4362 break;
4363 case bp_longjmp:
4364 case bp_exception:
4365 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
4366 retval.is_longjmp = bptype == bp_longjmp;
4367 break;
4368 case bp_longjmp_resume:
4369 case bp_exception_resume:
4370 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
4371 retval.is_longjmp = bptype == bp_longjmp_resume;
4372 break;
4373 case bp_step_resume:
4374 if (bs->stop)
4375 this_action = BPSTAT_WHAT_STEP_RESUME;
4376 else
4377 {
4378 /* It is for the wrong frame. */
4379 this_action = BPSTAT_WHAT_SINGLE;
4380 }
4381 break;
4382 case bp_hp_step_resume:
4383 if (bs->stop)
4384 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
4385 else
4386 {
4387 /* It is for the wrong frame. */
4388 this_action = BPSTAT_WHAT_SINGLE;
4389 }
4390 break;
4391 case bp_watchpoint_scope:
4392 case bp_thread_event:
4393 case bp_overlay_event:
4394 case bp_longjmp_master:
4395 case bp_std_terminate_master:
4396 case bp_exception_master:
4397 this_action = BPSTAT_WHAT_SINGLE;
4398 break;
4399 case bp_catchpoint:
4400 if (bs->stop)
4401 {
4402 if (bs->print)
4403 this_action = BPSTAT_WHAT_STOP_NOISY;
4404 else
4405 this_action = BPSTAT_WHAT_STOP_SILENT;
4406 }
4407 else
4408 {
4409 /* There was a catchpoint, but we're not stopping.
4410 This requires no further action. */
4411 }
4412 break;
4413 case bp_shlib_event:
4414 shlib_event = 1;
4415
4416 /* If requested, stop when the dynamic linker notifies GDB
4417 of events. This allows the user to get control and place
4418 breakpoints in initializer routines for dynamically
4419 loaded objects (among other things). */
4420 if (stop_on_solib_events)
4421 this_action = BPSTAT_WHAT_STOP_NOISY;
4422 else
4423 this_action = BPSTAT_WHAT_SINGLE;
4424 break;
4425 case bp_jit_event:
4426 jit_event = 1;
4427 this_action = BPSTAT_WHAT_SINGLE;
4428 break;
4429 case bp_call_dummy:
4430 /* Make sure the action is stop (silent or noisy),
4431 so infrun.c pops the dummy frame. */
4432 retval.call_dummy = STOP_STACK_DUMMY;
4433 this_action = BPSTAT_WHAT_STOP_SILENT;
4434 break;
4435 case bp_std_terminate:
4436 /* Make sure the action is stop (silent or noisy),
4437 so infrun.c pops the dummy frame. */
4438 retval.call_dummy = STOP_STD_TERMINATE;
4439 this_action = BPSTAT_WHAT_STOP_SILENT;
4440 break;
4441 case bp_tracepoint:
4442 case bp_fast_tracepoint:
4443 case bp_static_tracepoint:
4444 /* Tracepoint hits should not be reported back to GDB, and
4445 if one got through somehow, it should have been filtered
4446 out already. */
4447 internal_error (__FILE__, __LINE__,
4448 _("bpstat_what: tracepoint encountered"));
4449 break;
4450 case bp_gnu_ifunc_resolver:
4451 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
4452 this_action = BPSTAT_WHAT_SINGLE;
4453 break;
4454 case bp_gnu_ifunc_resolver_return:
4455 /* The breakpoint will be removed, execution will restart from the
4456 PC of the former breakpoint. */
4457 this_action = BPSTAT_WHAT_KEEP_CHECKING;
4458 break;
4459 default:
4460 internal_error (__FILE__, __LINE__,
4461 _("bpstat_what: unhandled bptype %d"), (int) bptype);
4462 }
4463
4464 retval.main_action = max (retval.main_action, this_action);
4465 }
4466
4467 /* These operations may affect the bs->breakpoint_at state so they are
4468 delayed after MAIN_ACTION is decided above. */
4469
4470 if (shlib_event)
4471 {
4472 if (debug_infrun)
4473 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_shlib_event\n");
4474
4475 /* Check for any newly added shared libraries if we're supposed
4476 to be adding them automatically. */
4477
4478 /* Switch terminal for any messages produced by
4479 breakpoint_re_set. */
4480 target_terminal_ours_for_output ();
4481
4482 #ifdef SOLIB_ADD
4483 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
4484 #else
4485 solib_add (NULL, 0, &current_target, auto_solib_add);
4486 #endif
4487
4488 target_terminal_inferior ();
4489 }
4490
4491 if (jit_event)
4492 {
4493 if (debug_infrun)
4494 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
4495
4496 handle_jit_event ();
4497 }
4498
4499 for (bs = bs_head; bs != NULL; bs = bs->next)
4500 {
4501 struct breakpoint *b = bs->breakpoint_at;
4502
4503 if (b == NULL)
4504 continue;
4505 switch (b->type)
4506 {
4507 case bp_gnu_ifunc_resolver:
4508 gnu_ifunc_resolver_stop (b);
4509 break;
4510 case bp_gnu_ifunc_resolver_return:
4511 gnu_ifunc_resolver_return_stop (b);
4512 break;
4513 }
4514 }
4515
4516 return retval;
4517 }
4518
4519 /* Nonzero if we should step constantly (e.g. watchpoints on machines
4520 without hardware support). This isn't related to a specific bpstat,
4521 just to things like whether watchpoints are set. */
4522
4523 int
4524 bpstat_should_step (void)
4525 {
4526 struct breakpoint *b;
4527
4528 ALL_BREAKPOINTS (b)
4529 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
4530 return 1;
4531 return 0;
4532 }
4533
4534 int
4535 bpstat_causes_stop (bpstat bs)
4536 {
4537 for (; bs != NULL; bs = bs->next)
4538 if (bs->stop)
4539 return 1;
4540
4541 return 0;
4542 }
4543
4544 \f
4545
4546 /* Compute a string of spaces suitable to indent the next line
4547 so it starts at the position corresponding to the table column
4548 named COL_NAME in the currently active table of UIOUT. */
4549
4550 static char *
4551 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
4552 {
4553 static char wrap_indent[80];
4554 int i, total_width, width, align;
4555 char *text;
4556
4557 total_width = 0;
4558 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
4559 {
4560 if (strcmp (text, col_name) == 0)
4561 {
4562 gdb_assert (total_width < sizeof wrap_indent);
4563 memset (wrap_indent, ' ', total_width);
4564 wrap_indent[total_width] = 0;
4565
4566 return wrap_indent;
4567 }
4568
4569 total_width += width + 1;
4570 }
4571
4572 return NULL;
4573 }
4574
4575 /* Print the LOC location out of the list of B->LOC locations. */
4576
4577 static void
4578 print_breakpoint_location (struct breakpoint *b,
4579 struct bp_location *loc)
4580 {
4581 struct ui_out *uiout = current_uiout;
4582 struct cleanup *old_chain = save_current_program_space ();
4583
4584 if (loc != NULL && loc->shlib_disabled)
4585 loc = NULL;
4586
4587 if (loc != NULL)
4588 set_current_program_space (loc->pspace);
4589
4590 if (b->display_canonical)
4591 ui_out_field_string (uiout, "what", b->addr_string);
4592 else if (loc && loc->source_file)
4593 {
4594 struct symbol *sym
4595 = find_pc_sect_function (loc->address, loc->section);
4596 if (sym)
4597 {
4598 ui_out_text (uiout, "in ");
4599 ui_out_field_string (uiout, "func",
4600 SYMBOL_PRINT_NAME (sym));
4601 ui_out_text (uiout, " ");
4602 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
4603 ui_out_text (uiout, "at ");
4604 }
4605 ui_out_field_string (uiout, "file", loc->source_file);
4606 ui_out_text (uiout, ":");
4607
4608 if (ui_out_is_mi_like_p (uiout))
4609 {
4610 struct symtab_and_line sal = find_pc_line (loc->address, 0);
4611 char *fullname = symtab_to_fullname (sal.symtab);
4612
4613 if (fullname)
4614 ui_out_field_string (uiout, "fullname", fullname);
4615 }
4616
4617 ui_out_field_int (uiout, "line", loc->line_number);
4618 }
4619 else if (loc)
4620 {
4621 struct ui_stream *stb = ui_out_stream_new (uiout);
4622 struct cleanup *stb_chain = make_cleanup_ui_out_stream_delete (stb);
4623
4624 print_address_symbolic (loc->gdbarch, loc->address, stb->stream,
4625 demangle, "");
4626 ui_out_field_stream (uiout, "at", stb);
4627
4628 do_cleanups (stb_chain);
4629 }
4630 else
4631 ui_out_field_string (uiout, "pending", b->addr_string);
4632
4633 do_cleanups (old_chain);
4634 }
4635
4636 static const char *
4637 bptype_string (enum bptype type)
4638 {
4639 struct ep_type_description
4640 {
4641 enum bptype type;
4642 char *description;
4643 };
4644 static struct ep_type_description bptypes[] =
4645 {
4646 {bp_none, "?deleted?"},
4647 {bp_breakpoint, "breakpoint"},
4648 {bp_hardware_breakpoint, "hw breakpoint"},
4649 {bp_until, "until"},
4650 {bp_finish, "finish"},
4651 {bp_watchpoint, "watchpoint"},
4652 {bp_hardware_watchpoint, "hw watchpoint"},
4653 {bp_read_watchpoint, "read watchpoint"},
4654 {bp_access_watchpoint, "acc watchpoint"},
4655 {bp_longjmp, "longjmp"},
4656 {bp_longjmp_resume, "longjmp resume"},
4657 {bp_exception, "exception"},
4658 {bp_exception_resume, "exception resume"},
4659 {bp_step_resume, "step resume"},
4660 {bp_hp_step_resume, "high-priority step resume"},
4661 {bp_watchpoint_scope, "watchpoint scope"},
4662 {bp_call_dummy, "call dummy"},
4663 {bp_std_terminate, "std::terminate"},
4664 {bp_shlib_event, "shlib events"},
4665 {bp_thread_event, "thread events"},
4666 {bp_overlay_event, "overlay events"},
4667 {bp_longjmp_master, "longjmp master"},
4668 {bp_std_terminate_master, "std::terminate master"},
4669 {bp_exception_master, "exception master"},
4670 {bp_catchpoint, "catchpoint"},
4671 {bp_tracepoint, "tracepoint"},
4672 {bp_fast_tracepoint, "fast tracepoint"},
4673 {bp_static_tracepoint, "static tracepoint"},
4674 {bp_jit_event, "jit events"},
4675 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
4676 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
4677 };
4678
4679 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
4680 || ((int) type != bptypes[(int) type].type))
4681 internal_error (__FILE__, __LINE__,
4682 _("bptypes table does not describe type #%d."),
4683 (int) type);
4684
4685 return bptypes[(int) type].description;
4686 }
4687
4688 /* Print B to gdb_stdout. */
4689
4690 static void
4691 print_one_breakpoint_location (struct breakpoint *b,
4692 struct bp_location *loc,
4693 int loc_number,
4694 struct bp_location **last_loc,
4695 int allflag)
4696 {
4697 struct command_line *l;
4698 static char bpenables[] = "nynny";
4699
4700 struct ui_out *uiout = current_uiout;
4701 int header_of_multiple = 0;
4702 int part_of_multiple = (loc != NULL);
4703 struct value_print_options opts;
4704
4705 get_user_print_options (&opts);
4706
4707 gdb_assert (!loc || loc_number != 0);
4708 /* See comment in print_one_breakpoint concerning treatment of
4709 breakpoints with single disabled location. */
4710 if (loc == NULL
4711 && (b->loc != NULL
4712 && (b->loc->next != NULL || !b->loc->enabled)))
4713 header_of_multiple = 1;
4714 if (loc == NULL)
4715 loc = b->loc;
4716
4717 annotate_record ();
4718
4719 /* 1 */
4720 annotate_field (0);
4721 if (part_of_multiple)
4722 {
4723 char *formatted;
4724 formatted = xstrprintf ("%d.%d", b->number, loc_number);
4725 ui_out_field_string (uiout, "number", formatted);
4726 xfree (formatted);
4727 }
4728 else
4729 {
4730 ui_out_field_int (uiout, "number", b->number);
4731 }
4732
4733 /* 2 */
4734 annotate_field (1);
4735 if (part_of_multiple)
4736 ui_out_field_skip (uiout, "type");
4737 else
4738 ui_out_field_string (uiout, "type", bptype_string (b->type));
4739
4740 /* 3 */
4741 annotate_field (2);
4742 if (part_of_multiple)
4743 ui_out_field_skip (uiout, "disp");
4744 else
4745 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
4746
4747
4748 /* 4 */
4749 annotate_field (3);
4750 if (part_of_multiple)
4751 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
4752 else
4753 ui_out_field_fmt (uiout, "enabled", "%c",
4754 bpenables[(int) b->enable_state]);
4755 ui_out_spaces (uiout, 2);
4756
4757
4758 /* 5 and 6 */
4759 if (b->ops != NULL && b->ops->print_one != NULL)
4760 {
4761 /* Although the print_one can possibly print all locations,
4762 calling it here is not likely to get any nice result. So,
4763 make sure there's just one location. */
4764 gdb_assert (b->loc == NULL || b->loc->next == NULL);
4765 b->ops->print_one (b, last_loc);
4766 }
4767 else
4768 switch (b->type)
4769 {
4770 case bp_none:
4771 internal_error (__FILE__, __LINE__,
4772 _("print_one_breakpoint: bp_none encountered\n"));
4773 break;
4774
4775 case bp_watchpoint:
4776 case bp_hardware_watchpoint:
4777 case bp_read_watchpoint:
4778 case bp_access_watchpoint:
4779 {
4780 struct watchpoint *w = (struct watchpoint *) b;
4781
4782 /* Field 4, the address, is omitted (which makes the columns
4783 not line up too nicely with the headers, but the effect
4784 is relatively readable). */
4785 if (opts.addressprint)
4786 ui_out_field_skip (uiout, "addr");
4787 annotate_field (5);
4788 ui_out_field_string (uiout, "what", w->exp_string);
4789 }
4790 break;
4791
4792 case bp_breakpoint:
4793 case bp_hardware_breakpoint:
4794 case bp_until:
4795 case bp_finish:
4796 case bp_longjmp:
4797 case bp_longjmp_resume:
4798 case bp_exception:
4799 case bp_exception_resume:
4800 case bp_step_resume:
4801 case bp_hp_step_resume:
4802 case bp_watchpoint_scope:
4803 case bp_call_dummy:
4804 case bp_std_terminate:
4805 case bp_shlib_event:
4806 case bp_thread_event:
4807 case bp_overlay_event:
4808 case bp_longjmp_master:
4809 case bp_std_terminate_master:
4810 case bp_exception_master:
4811 case bp_tracepoint:
4812 case bp_fast_tracepoint:
4813 case bp_static_tracepoint:
4814 case bp_jit_event:
4815 case bp_gnu_ifunc_resolver:
4816 case bp_gnu_ifunc_resolver_return:
4817 if (opts.addressprint)
4818 {
4819 annotate_field (4);
4820 if (header_of_multiple)
4821 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
4822 else if (b->loc == NULL || loc->shlib_disabled)
4823 ui_out_field_string (uiout, "addr", "<PENDING>");
4824 else
4825 ui_out_field_core_addr (uiout, "addr",
4826 loc->gdbarch, loc->address);
4827 }
4828 annotate_field (5);
4829 if (!header_of_multiple)
4830 print_breakpoint_location (b, loc);
4831 if (b->loc)
4832 *last_loc = b->loc;
4833 break;
4834 }
4835
4836
4837 /* For backward compatibility, don't display inferiors unless there
4838 are several. */
4839 if (loc != NULL
4840 && !header_of_multiple
4841 && (allflag
4842 || (!gdbarch_has_global_breakpoints (target_gdbarch)
4843 && (number_of_program_spaces () > 1
4844 || number_of_inferiors () > 1)
4845 /* LOC is for existing B, it cannot be in
4846 moribund_locations and thus having NULL OWNER. */
4847 && loc->owner->type != bp_catchpoint)))
4848 {
4849 struct inferior *inf;
4850 int first = 1;
4851
4852 for (inf = inferior_list; inf != NULL; inf = inf->next)
4853 {
4854 if (inf->pspace == loc->pspace)
4855 {
4856 if (first)
4857 {
4858 first = 0;
4859 ui_out_text (uiout, " inf ");
4860 }
4861 else
4862 ui_out_text (uiout, ", ");
4863 ui_out_text (uiout, plongest (inf->num));
4864 }
4865 }
4866 }
4867
4868 if (!part_of_multiple)
4869 {
4870 if (b->thread != -1)
4871 {
4872 /* FIXME: This seems to be redundant and lost here; see the
4873 "stop only in" line a little further down. */
4874 ui_out_text (uiout, " thread ");
4875 ui_out_field_int (uiout, "thread", b->thread);
4876 }
4877 else if (b->task != 0)
4878 {
4879 ui_out_text (uiout, " task ");
4880 ui_out_field_int (uiout, "task", b->task);
4881 }
4882 }
4883
4884 ui_out_text (uiout, "\n");
4885
4886 if (!part_of_multiple)
4887 b->ops->print_one_detail (b, uiout);
4888
4889 if (part_of_multiple && frame_id_p (b->frame_id))
4890 {
4891 annotate_field (6);
4892 ui_out_text (uiout, "\tstop only in stack frame at ");
4893 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
4894 the frame ID. */
4895 ui_out_field_core_addr (uiout, "frame",
4896 b->gdbarch, b->frame_id.stack_addr);
4897 ui_out_text (uiout, "\n");
4898 }
4899
4900 if (!part_of_multiple && b->cond_string)
4901 {
4902 annotate_field (7);
4903 if (is_tracepoint (b))
4904 ui_out_text (uiout, "\ttrace only if ");
4905 else
4906 ui_out_text (uiout, "\tstop only if ");
4907 ui_out_field_string (uiout, "cond", b->cond_string);
4908 ui_out_text (uiout, "\n");
4909 }
4910
4911 if (!part_of_multiple && b->thread != -1)
4912 {
4913 /* FIXME should make an annotation for this. */
4914 ui_out_text (uiout, "\tstop only in thread ");
4915 ui_out_field_int (uiout, "thread", b->thread);
4916 ui_out_text (uiout, "\n");
4917 }
4918
4919 if (!part_of_multiple && b->hit_count)
4920 {
4921 /* FIXME should make an annotation for this. */
4922 if (ep_is_catchpoint (b))
4923 ui_out_text (uiout, "\tcatchpoint");
4924 else if (is_tracepoint (b))
4925 ui_out_text (uiout, "\ttracepoint");
4926 else
4927 ui_out_text (uiout, "\tbreakpoint");
4928 ui_out_text (uiout, " already hit ");
4929 ui_out_field_int (uiout, "times", b->hit_count);
4930 if (b->hit_count == 1)
4931 ui_out_text (uiout, " time\n");
4932 else
4933 ui_out_text (uiout, " times\n");
4934 }
4935
4936 /* Output the count also if it is zero, but only if this is mi.
4937 FIXME: Should have a better test for this. */
4938 if (ui_out_is_mi_like_p (uiout))
4939 if (!part_of_multiple && b->hit_count == 0)
4940 ui_out_field_int (uiout, "times", b->hit_count);
4941
4942 if (!part_of_multiple && b->ignore_count)
4943 {
4944 annotate_field (8);
4945 ui_out_text (uiout, "\tignore next ");
4946 ui_out_field_int (uiout, "ignore", b->ignore_count);
4947 ui_out_text (uiout, " hits\n");
4948 }
4949
4950 if (!part_of_multiple && is_tracepoint (b))
4951 {
4952 struct tracepoint *tp = (struct tracepoint *) b;
4953
4954 if (tp->traceframe_usage)
4955 {
4956 ui_out_text (uiout, "\ttrace buffer usage ");
4957 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
4958 ui_out_text (uiout, " bytes\n");
4959 }
4960 }
4961
4962 l = b->commands ? b->commands->commands : NULL;
4963 if (!part_of_multiple && l)
4964 {
4965 struct cleanup *script_chain;
4966
4967 annotate_field (9);
4968 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
4969 print_command_lines (uiout, l, 4);
4970 do_cleanups (script_chain);
4971 }
4972
4973 if (is_tracepoint (b))
4974 {
4975 struct tracepoint *t = (struct tracepoint *) b;
4976
4977 if (!part_of_multiple && t->pass_count)
4978 {
4979 annotate_field (10);
4980 ui_out_text (uiout, "\tpass count ");
4981 ui_out_field_int (uiout, "pass", t->pass_count);
4982 ui_out_text (uiout, " \n");
4983 }
4984 }
4985
4986 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
4987 {
4988 if (is_watchpoint (b))
4989 {
4990 struct watchpoint *w = (struct watchpoint *) b;
4991
4992 ui_out_field_string (uiout, "original-location", w->exp_string);
4993 }
4994 else if (b->addr_string)
4995 ui_out_field_string (uiout, "original-location", b->addr_string);
4996 }
4997 }
4998
4999 static void
5000 print_one_breakpoint (struct breakpoint *b,
5001 struct bp_location **last_loc,
5002 int allflag)
5003 {
5004 struct cleanup *bkpt_chain;
5005 struct ui_out *uiout = current_uiout;
5006
5007 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
5008
5009 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
5010 do_cleanups (bkpt_chain);
5011
5012 /* If this breakpoint has custom print function,
5013 it's already printed. Otherwise, print individual
5014 locations, if any. */
5015 if (b->ops == NULL || b->ops->print_one == NULL)
5016 {
5017 /* If breakpoint has a single location that is disabled, we
5018 print it as if it had several locations, since otherwise it's
5019 hard to represent "breakpoint enabled, location disabled"
5020 situation.
5021
5022 Note that while hardware watchpoints have several locations
5023 internally, that's not a property exposed to user. */
5024 if (b->loc
5025 && !is_hardware_watchpoint (b)
5026 && (b->loc->next || !b->loc->enabled))
5027 {
5028 struct bp_location *loc;
5029 int n = 1;
5030
5031 for (loc = b->loc; loc; loc = loc->next, ++n)
5032 {
5033 struct cleanup *inner2 =
5034 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
5035 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
5036 do_cleanups (inner2);
5037 }
5038 }
5039 }
5040 }
5041
5042 static int
5043 breakpoint_address_bits (struct breakpoint *b)
5044 {
5045 int print_address_bits = 0;
5046 struct bp_location *loc;
5047
5048 for (loc = b->loc; loc; loc = loc->next)
5049 {
5050 int addr_bit;
5051
5052 /* Software watchpoints that aren't watching memory don't have
5053 an address to print. */
5054 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
5055 continue;
5056
5057 addr_bit = gdbarch_addr_bit (loc->gdbarch);
5058 if (addr_bit > print_address_bits)
5059 print_address_bits = addr_bit;
5060 }
5061
5062 return print_address_bits;
5063 }
5064
5065 struct captured_breakpoint_query_args
5066 {
5067 int bnum;
5068 };
5069
5070 static int
5071 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
5072 {
5073 struct captured_breakpoint_query_args *args = data;
5074 struct breakpoint *b;
5075 struct bp_location *dummy_loc = NULL;
5076
5077 ALL_BREAKPOINTS (b)
5078 {
5079 if (args->bnum == b->number)
5080 {
5081 print_one_breakpoint (b, &dummy_loc, 0);
5082 return GDB_RC_OK;
5083 }
5084 }
5085 return GDB_RC_NONE;
5086 }
5087
5088 enum gdb_rc
5089 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
5090 char **error_message)
5091 {
5092 struct captured_breakpoint_query_args args;
5093
5094 args.bnum = bnum;
5095 /* For the moment we don't trust print_one_breakpoint() to not throw
5096 an error. */
5097 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
5098 error_message, RETURN_MASK_ALL) < 0)
5099 return GDB_RC_FAIL;
5100 else
5101 return GDB_RC_OK;
5102 }
5103
5104 /* Return true if this breakpoint was set by the user, false if it is
5105 internal or momentary. */
5106
5107 int
5108 user_breakpoint_p (struct breakpoint *b)
5109 {
5110 return b->number > 0;
5111 }
5112
5113 /* Print information on user settable breakpoint (watchpoint, etc)
5114 number BNUM. If BNUM is -1 print all user-settable breakpoints.
5115 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
5116 FILTER is non-NULL, call it on each breakpoint and only include the
5117 ones for which it returns non-zero. Return the total number of
5118 breakpoints listed. */
5119
5120 static int
5121 breakpoint_1 (char *args, int allflag,
5122 int (*filter) (const struct breakpoint *))
5123 {
5124 struct breakpoint *b;
5125 struct bp_location *last_loc = NULL;
5126 int nr_printable_breakpoints;
5127 struct cleanup *bkpttbl_chain;
5128 struct value_print_options opts;
5129 int print_address_bits = 0;
5130 int print_type_col_width = 14;
5131 struct ui_out *uiout = current_uiout;
5132
5133 get_user_print_options (&opts);
5134
5135 /* Compute the number of rows in the table, as well as the size
5136 required for address fields. */
5137 nr_printable_breakpoints = 0;
5138 ALL_BREAKPOINTS (b)
5139 {
5140 /* If we have a filter, only list the breakpoints it accepts. */
5141 if (filter && !filter (b))
5142 continue;
5143
5144 /* If we have an "args" string, it is a list of breakpoints to
5145 accept. Skip the others. */
5146 if (args != NULL && *args != '\0')
5147 {
5148 if (allflag && parse_and_eval_long (args) != b->number)
5149 continue;
5150 if (!allflag && !number_is_in_list (args, b->number))
5151 continue;
5152 }
5153
5154 if (allflag || user_breakpoint_p (b))
5155 {
5156 int addr_bit, type_len;
5157
5158 addr_bit = breakpoint_address_bits (b);
5159 if (addr_bit > print_address_bits)
5160 print_address_bits = addr_bit;
5161
5162 type_len = strlen (bptype_string (b->type));
5163 if (type_len > print_type_col_width)
5164 print_type_col_width = type_len;
5165
5166 nr_printable_breakpoints++;
5167 }
5168 }
5169
5170 if (opts.addressprint)
5171 bkpttbl_chain
5172 = make_cleanup_ui_out_table_begin_end (uiout, 6,
5173 nr_printable_breakpoints,
5174 "BreakpointTable");
5175 else
5176 bkpttbl_chain
5177 = make_cleanup_ui_out_table_begin_end (uiout, 5,
5178 nr_printable_breakpoints,
5179 "BreakpointTable");
5180
5181 if (nr_printable_breakpoints > 0)
5182 annotate_breakpoints_headers ();
5183 if (nr_printable_breakpoints > 0)
5184 annotate_field (0);
5185 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
5186 if (nr_printable_breakpoints > 0)
5187 annotate_field (1);
5188 ui_out_table_header (uiout, print_type_col_width, ui_left,
5189 "type", "Type"); /* 2 */
5190 if (nr_printable_breakpoints > 0)
5191 annotate_field (2);
5192 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
5193 if (nr_printable_breakpoints > 0)
5194 annotate_field (3);
5195 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
5196 if (opts.addressprint)
5197 {
5198 if (nr_printable_breakpoints > 0)
5199 annotate_field (4);
5200 if (print_address_bits <= 32)
5201 ui_out_table_header (uiout, 10, ui_left,
5202 "addr", "Address"); /* 5 */
5203 else
5204 ui_out_table_header (uiout, 18, ui_left,
5205 "addr", "Address"); /* 5 */
5206 }
5207 if (nr_printable_breakpoints > 0)
5208 annotate_field (5);
5209 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
5210 ui_out_table_body (uiout);
5211 if (nr_printable_breakpoints > 0)
5212 annotate_breakpoints_table ();
5213
5214 ALL_BREAKPOINTS (b)
5215 {
5216 QUIT;
5217 /* If we have a filter, only list the breakpoints it accepts. */
5218 if (filter && !filter (b))
5219 continue;
5220
5221 /* If we have an "args" string, it is a list of breakpoints to
5222 accept. Skip the others. */
5223
5224 if (args != NULL && *args != '\0')
5225 {
5226 if (allflag) /* maintenance info breakpoint */
5227 {
5228 if (parse_and_eval_long (args) != b->number)
5229 continue;
5230 }
5231 else /* all others */
5232 {
5233 if (!number_is_in_list (args, b->number))
5234 continue;
5235 }
5236 }
5237 /* We only print out user settable breakpoints unless the
5238 allflag is set. */
5239 if (allflag || user_breakpoint_p (b))
5240 print_one_breakpoint (b, &last_loc, allflag);
5241 }
5242
5243 do_cleanups (bkpttbl_chain);
5244
5245 if (nr_printable_breakpoints == 0)
5246 {
5247 /* If there's a filter, let the caller decide how to report
5248 empty list. */
5249 if (!filter)
5250 {
5251 if (args == NULL || *args == '\0')
5252 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
5253 else
5254 ui_out_message (uiout, 0,
5255 "No breakpoint or watchpoint matching '%s'.\n",
5256 args);
5257 }
5258 }
5259 else
5260 {
5261 if (last_loc && !server_command)
5262 set_next_address (last_loc->gdbarch, last_loc->address);
5263 }
5264
5265 /* FIXME? Should this be moved up so that it is only called when
5266 there have been breakpoints? */
5267 annotate_breakpoints_table_end ();
5268
5269 return nr_printable_breakpoints;
5270 }
5271
5272 /* Display the value of default-collect in a way that is generally
5273 compatible with the breakpoint list. */
5274
5275 static void
5276 default_collect_info (void)
5277 {
5278 struct ui_out *uiout = current_uiout;
5279
5280 /* If it has no value (which is frequently the case), say nothing; a
5281 message like "No default-collect." gets in user's face when it's
5282 not wanted. */
5283 if (!*default_collect)
5284 return;
5285
5286 /* The following phrase lines up nicely with per-tracepoint collect
5287 actions. */
5288 ui_out_text (uiout, "default collect ");
5289 ui_out_field_string (uiout, "default-collect", default_collect);
5290 ui_out_text (uiout, " \n");
5291 }
5292
5293 static void
5294 breakpoints_info (char *args, int from_tty)
5295 {
5296 breakpoint_1 (args, 0, NULL);
5297
5298 default_collect_info ();
5299 }
5300
5301 static void
5302 watchpoints_info (char *args, int from_tty)
5303 {
5304 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
5305 struct ui_out *uiout = current_uiout;
5306
5307 if (num_printed == 0)
5308 {
5309 if (args == NULL || *args == '\0')
5310 ui_out_message (uiout, 0, "No watchpoints.\n");
5311 else
5312 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
5313 }
5314 }
5315
5316 static void
5317 maintenance_info_breakpoints (char *args, int from_tty)
5318 {
5319 breakpoint_1 (args, 1, NULL);
5320
5321 default_collect_info ();
5322 }
5323
5324 static int
5325 breakpoint_has_pc (struct breakpoint *b,
5326 struct program_space *pspace,
5327 CORE_ADDR pc, struct obj_section *section)
5328 {
5329 struct bp_location *bl = b->loc;
5330
5331 for (; bl; bl = bl->next)
5332 {
5333 if (bl->pspace == pspace
5334 && bl->address == pc
5335 && (!overlay_debugging || bl->section == section))
5336 return 1;
5337 }
5338 return 0;
5339 }
5340
5341 /* Print a message describing any user-breakpoints set at PC. This
5342 concerns with logical breakpoints, so we match program spaces, not
5343 address spaces. */
5344
5345 static void
5346 describe_other_breakpoints (struct gdbarch *gdbarch,
5347 struct program_space *pspace, CORE_ADDR pc,
5348 struct obj_section *section, int thread)
5349 {
5350 int others = 0;
5351 struct breakpoint *b;
5352
5353 ALL_BREAKPOINTS (b)
5354 others += (user_breakpoint_p (b)
5355 && breakpoint_has_pc (b, pspace, pc, section));
5356 if (others > 0)
5357 {
5358 if (others == 1)
5359 printf_filtered (_("Note: breakpoint "));
5360 else /* if (others == ???) */
5361 printf_filtered (_("Note: breakpoints "));
5362 ALL_BREAKPOINTS (b)
5363 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
5364 {
5365 others--;
5366 printf_filtered ("%d", b->number);
5367 if (b->thread == -1 && thread != -1)
5368 printf_filtered (" (all threads)");
5369 else if (b->thread != -1)
5370 printf_filtered (" (thread %d)", b->thread);
5371 printf_filtered ("%s%s ",
5372 ((b->enable_state == bp_disabled
5373 || b->enable_state == bp_call_disabled)
5374 ? " (disabled)"
5375 : b->enable_state == bp_permanent
5376 ? " (permanent)"
5377 : ""),
5378 (others > 1) ? ","
5379 : ((others == 1) ? " and" : ""));
5380 }
5381 printf_filtered (_("also set at pc "));
5382 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
5383 printf_filtered (".\n");
5384 }
5385 }
5386 \f
5387
5388 /* Return true iff it is meaningful to use the address member of
5389 BPT. For some breakpoint types, the address member is irrelevant
5390 and it makes no sense to attempt to compare it to other addresses
5391 (or use it for any other purpose either).
5392
5393 More specifically, each of the following breakpoint types will
5394 always have a zero valued address and we don't want to mark
5395 breakpoints of any of these types to be a duplicate of an actual
5396 breakpoint at address zero:
5397
5398 bp_watchpoint
5399 bp_catchpoint
5400
5401 */
5402
5403 static int
5404 breakpoint_address_is_meaningful (struct breakpoint *bpt)
5405 {
5406 enum bptype type = bpt->type;
5407
5408 return (type != bp_watchpoint && type != bp_catchpoint);
5409 }
5410
5411 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
5412 true if LOC1 and LOC2 represent the same watchpoint location. */
5413
5414 static int
5415 watchpoint_locations_match (struct bp_location *loc1,
5416 struct bp_location *loc2)
5417 {
5418 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
5419 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
5420
5421 /* Both of them must exist. */
5422 gdb_assert (w1 != NULL);
5423 gdb_assert (w2 != NULL);
5424
5425 /* If the target can evaluate the condition expression in hardware,
5426 then we we need to insert both watchpoints even if they are at
5427 the same place. Otherwise the watchpoint will only trigger when
5428 the condition of whichever watchpoint was inserted evaluates to
5429 true, not giving a chance for GDB to check the condition of the
5430 other watchpoint. */
5431 if ((w1->cond_exp
5432 && target_can_accel_watchpoint_condition (loc1->address,
5433 loc1->length,
5434 loc1->watchpoint_type,
5435 w1->cond_exp))
5436 || (w2->cond_exp
5437 && target_can_accel_watchpoint_condition (loc2->address,
5438 loc2->length,
5439 loc2->watchpoint_type,
5440 w2->cond_exp)))
5441 return 0;
5442
5443 /* Note that this checks the owner's type, not the location's. In
5444 case the target does not support read watchpoints, but does
5445 support access watchpoints, we'll have bp_read_watchpoint
5446 watchpoints with hw_access locations. Those should be considered
5447 duplicates of hw_read locations. The hw_read locations will
5448 become hw_access locations later. */
5449 return (loc1->owner->type == loc2->owner->type
5450 && loc1->pspace->aspace == loc2->pspace->aspace
5451 && loc1->address == loc2->address
5452 && loc1->length == loc2->length);
5453 }
5454
5455 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
5456 same breakpoint location. In most targets, this can only be true
5457 if ASPACE1 matches ASPACE2. On targets that have global
5458 breakpoints, the address space doesn't really matter. */
5459
5460 static int
5461 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
5462 struct address_space *aspace2, CORE_ADDR addr2)
5463 {
5464 return ((gdbarch_has_global_breakpoints (target_gdbarch)
5465 || aspace1 == aspace2)
5466 && addr1 == addr2);
5467 }
5468
5469 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
5470 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
5471 matches ASPACE2. On targets that have global breakpoints, the address
5472 space doesn't really matter. */
5473
5474 static int
5475 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
5476 int len1, struct address_space *aspace2,
5477 CORE_ADDR addr2)
5478 {
5479 return ((gdbarch_has_global_breakpoints (target_gdbarch)
5480 || aspace1 == aspace2)
5481 && addr2 >= addr1 && addr2 < addr1 + len1);
5482 }
5483
5484 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
5485 a ranged breakpoint. In most targets, a match happens only if ASPACE
5486 matches the breakpoint's address space. On targets that have global
5487 breakpoints, the address space doesn't really matter. */
5488
5489 static int
5490 breakpoint_location_address_match (struct bp_location *bl,
5491 struct address_space *aspace,
5492 CORE_ADDR addr)
5493 {
5494 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
5495 aspace, addr)
5496 || (bl->length
5497 && breakpoint_address_match_range (bl->pspace->aspace,
5498 bl->address, bl->length,
5499 aspace, addr)));
5500 }
5501
5502 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
5503 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
5504 true, otherwise returns false. */
5505
5506 static int
5507 tracepoint_locations_match (struct bp_location *loc1,
5508 struct bp_location *loc2)
5509 {
5510 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
5511 /* Since tracepoint locations are never duplicated with others', tracepoint
5512 locations at the same address of different tracepoints are regarded as
5513 different locations. */
5514 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
5515 else
5516 return 0;
5517 }
5518
5519 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
5520 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
5521 represent the same location. */
5522
5523 static int
5524 breakpoint_locations_match (struct bp_location *loc1,
5525 struct bp_location *loc2)
5526 {
5527 int hw_point1, hw_point2;
5528
5529 /* Both of them must not be in moribund_locations. */
5530 gdb_assert (loc1->owner != NULL);
5531 gdb_assert (loc2->owner != NULL);
5532
5533 hw_point1 = is_hardware_watchpoint (loc1->owner);
5534 hw_point2 = is_hardware_watchpoint (loc2->owner);
5535
5536 if (hw_point1 != hw_point2)
5537 return 0;
5538 else if (hw_point1)
5539 return watchpoint_locations_match (loc1, loc2);
5540 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
5541 return tracepoint_locations_match (loc1, loc2);
5542 else
5543 /* We compare bp_location.length in order to cover ranged breakpoints. */
5544 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
5545 loc2->pspace->aspace, loc2->address)
5546 && loc1->length == loc2->length);
5547 }
5548
5549 static void
5550 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
5551 int bnum, int have_bnum)
5552 {
5553 /* The longest string possibly returned by hex_string_custom
5554 is 50 chars. These must be at least that big for safety. */
5555 char astr1[64];
5556 char astr2[64];
5557
5558 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
5559 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
5560 if (have_bnum)
5561 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
5562 bnum, astr1, astr2);
5563 else
5564 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
5565 }
5566
5567 /* Adjust a breakpoint's address to account for architectural
5568 constraints on breakpoint placement. Return the adjusted address.
5569 Note: Very few targets require this kind of adjustment. For most
5570 targets, this function is simply the identity function. */
5571
5572 static CORE_ADDR
5573 adjust_breakpoint_address (struct gdbarch *gdbarch,
5574 CORE_ADDR bpaddr, enum bptype bptype)
5575 {
5576 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
5577 {
5578 /* Very few targets need any kind of breakpoint adjustment. */
5579 return bpaddr;
5580 }
5581 else if (bptype == bp_watchpoint
5582 || bptype == bp_hardware_watchpoint
5583 || bptype == bp_read_watchpoint
5584 || bptype == bp_access_watchpoint
5585 || bptype == bp_catchpoint)
5586 {
5587 /* Watchpoints and the various bp_catch_* eventpoints should not
5588 have their addresses modified. */
5589 return bpaddr;
5590 }
5591 else
5592 {
5593 CORE_ADDR adjusted_bpaddr;
5594
5595 /* Some targets have architectural constraints on the placement
5596 of breakpoint instructions. Obtain the adjusted address. */
5597 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
5598
5599 /* An adjusted breakpoint address can significantly alter
5600 a user's expectations. Print a warning if an adjustment
5601 is required. */
5602 if (adjusted_bpaddr != bpaddr)
5603 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
5604
5605 return adjusted_bpaddr;
5606 }
5607 }
5608
5609 void
5610 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
5611 struct breakpoint *owner)
5612 {
5613 memset (loc, 0, sizeof (*loc));
5614
5615 gdb_assert (ops != NULL);
5616
5617 loc->ops = ops;
5618 loc->owner = owner;
5619 loc->cond = NULL;
5620 loc->shlib_disabled = 0;
5621 loc->enabled = 1;
5622
5623 switch (owner->type)
5624 {
5625 case bp_breakpoint:
5626 case bp_until:
5627 case bp_finish:
5628 case bp_longjmp:
5629 case bp_longjmp_resume:
5630 case bp_exception:
5631 case bp_exception_resume:
5632 case bp_step_resume:
5633 case bp_hp_step_resume:
5634 case bp_watchpoint_scope:
5635 case bp_call_dummy:
5636 case bp_std_terminate:
5637 case bp_shlib_event:
5638 case bp_thread_event:
5639 case bp_overlay_event:
5640 case bp_jit_event:
5641 case bp_longjmp_master:
5642 case bp_std_terminate_master:
5643 case bp_exception_master:
5644 case bp_gnu_ifunc_resolver:
5645 case bp_gnu_ifunc_resolver_return:
5646 loc->loc_type = bp_loc_software_breakpoint;
5647 break;
5648 case bp_hardware_breakpoint:
5649 loc->loc_type = bp_loc_hardware_breakpoint;
5650 break;
5651 case bp_hardware_watchpoint:
5652 case bp_read_watchpoint:
5653 case bp_access_watchpoint:
5654 loc->loc_type = bp_loc_hardware_watchpoint;
5655 break;
5656 case bp_watchpoint:
5657 case bp_catchpoint:
5658 case bp_tracepoint:
5659 case bp_fast_tracepoint:
5660 case bp_static_tracepoint:
5661 loc->loc_type = bp_loc_other;
5662 break;
5663 default:
5664 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
5665 }
5666
5667 loc->refc = 1;
5668 }
5669
5670 /* Allocate a struct bp_location. */
5671
5672 static struct bp_location *
5673 allocate_bp_location (struct breakpoint *bpt)
5674 {
5675 return bpt->ops->allocate_location (bpt);
5676 }
5677
5678 static void
5679 free_bp_location (struct bp_location *loc)
5680 {
5681 loc->ops->dtor (loc);
5682 xfree (loc);
5683 }
5684
5685 /* Increment reference count. */
5686
5687 static void
5688 incref_bp_location (struct bp_location *bl)
5689 {
5690 ++bl->refc;
5691 }
5692
5693 /* Decrement reference count. If the reference count reaches 0,
5694 destroy the bp_location. Sets *BLP to NULL. */
5695
5696 static void
5697 decref_bp_location (struct bp_location **blp)
5698 {
5699 gdb_assert ((*blp)->refc > 0);
5700
5701 if (--(*blp)->refc == 0)
5702 free_bp_location (*blp);
5703 *blp = NULL;
5704 }
5705
5706 /* Add breakpoint B at the end of the global breakpoint chain. */
5707
5708 static void
5709 add_to_breakpoint_chain (struct breakpoint *b)
5710 {
5711 struct breakpoint *b1;
5712
5713 /* Add this breakpoint to the end of the chain so that a list of
5714 breakpoints will come out in order of increasing numbers. */
5715
5716 b1 = breakpoint_chain;
5717 if (b1 == 0)
5718 breakpoint_chain = b;
5719 else
5720 {
5721 while (b1->next)
5722 b1 = b1->next;
5723 b1->next = b;
5724 }
5725 }
5726
5727 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
5728
5729 static void
5730 init_raw_breakpoint_without_location (struct breakpoint *b,
5731 struct gdbarch *gdbarch,
5732 enum bptype bptype,
5733 const struct breakpoint_ops *ops)
5734 {
5735 memset (b, 0, sizeof (*b));
5736
5737 gdb_assert (ops != NULL);
5738
5739 b->ops = ops;
5740 b->type = bptype;
5741 b->gdbarch = gdbarch;
5742 b->language = current_language->la_language;
5743 b->input_radix = input_radix;
5744 b->thread = -1;
5745 b->enable_state = bp_enabled;
5746 b->next = 0;
5747 b->silent = 0;
5748 b->ignore_count = 0;
5749 b->commands = NULL;
5750 b->frame_id = null_frame_id;
5751 b->condition_not_parsed = 0;
5752 b->py_bp_object = NULL;
5753 b->related_breakpoint = b;
5754 }
5755
5756 /* Helper to set_raw_breakpoint below. Creates a breakpoint
5757 that has type BPTYPE and has no locations as yet. */
5758
5759 static struct breakpoint *
5760 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
5761 enum bptype bptype,
5762 const struct breakpoint_ops *ops)
5763 {
5764 struct breakpoint *b = XNEW (struct breakpoint);
5765
5766 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
5767 add_to_breakpoint_chain (b);
5768 return b;
5769 }
5770
5771 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
5772 resolutions should be made as the user specified the location explicitly
5773 enough. */
5774
5775 static void
5776 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
5777 {
5778 gdb_assert (loc->owner != NULL);
5779
5780 if (loc->owner->type == bp_breakpoint
5781 || loc->owner->type == bp_hardware_breakpoint
5782 || is_tracepoint (loc->owner))
5783 {
5784 int is_gnu_ifunc;
5785
5786 find_pc_partial_function_gnu_ifunc (loc->address, &loc->function_name,
5787 NULL, NULL, &is_gnu_ifunc);
5788
5789 if (is_gnu_ifunc && !explicit_loc)
5790 {
5791 struct breakpoint *b = loc->owner;
5792
5793 gdb_assert (loc->pspace == current_program_space);
5794 if (gnu_ifunc_resolve_name (loc->function_name,
5795 &loc->requested_address))
5796 {
5797 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
5798 loc->address = adjust_breakpoint_address (loc->gdbarch,
5799 loc->requested_address,
5800 b->type);
5801 }
5802 else if (b->type == bp_breakpoint && b->loc == loc
5803 && loc->next == NULL && b->related_breakpoint == b)
5804 {
5805 /* Create only the whole new breakpoint of this type but do not
5806 mess more complicated breakpoints with multiple locations. */
5807 b->type = bp_gnu_ifunc_resolver;
5808 }
5809 }
5810
5811 if (loc->function_name)
5812 loc->function_name = xstrdup (loc->function_name);
5813 }
5814 }
5815
5816 /* Attempt to determine architecture of location identified by SAL. */
5817 struct gdbarch *
5818 get_sal_arch (struct symtab_and_line sal)
5819 {
5820 if (sal.section)
5821 return get_objfile_arch (sal.section->objfile);
5822 if (sal.symtab)
5823 return get_objfile_arch (sal.symtab->objfile);
5824
5825 return NULL;
5826 }
5827
5828 /* Low level routine for partially initializing a breakpoint of type
5829 BPTYPE. The newly created breakpoint's address, section, source
5830 file name, and line number are provided by SAL.
5831
5832 It is expected that the caller will complete the initialization of
5833 the newly created breakpoint struct as well as output any status
5834 information regarding the creation of a new breakpoint. */
5835
5836 static void
5837 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
5838 struct symtab_and_line sal, enum bptype bptype,
5839 const struct breakpoint_ops *ops)
5840 {
5841 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
5842
5843 add_location_to_breakpoint (b, &sal);
5844
5845 if (bptype != bp_catchpoint)
5846 gdb_assert (sal.pspace != NULL);
5847
5848 /* Store the program space that was used to set the breakpoint,
5849 except for ordinary breakpoints, which are independent of the
5850 program space. */
5851 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
5852 b->pspace = sal.pspace;
5853
5854 breakpoints_changed ();
5855 }
5856
5857 /* set_raw_breakpoint is a low level routine for allocating and
5858 partially initializing a breakpoint of type BPTYPE. The newly
5859 created breakpoint's address, section, source file name, and line
5860 number are provided by SAL. The newly created and partially
5861 initialized breakpoint is added to the breakpoint chain and
5862 is also returned as the value of this function.
5863
5864 It is expected that the caller will complete the initialization of
5865 the newly created breakpoint struct as well as output any status
5866 information regarding the creation of a new breakpoint. In
5867 particular, set_raw_breakpoint does NOT set the breakpoint
5868 number! Care should be taken to not allow an error to occur
5869 prior to completing the initialization of the breakpoint. If this
5870 should happen, a bogus breakpoint will be left on the chain. */
5871
5872 struct breakpoint *
5873 set_raw_breakpoint (struct gdbarch *gdbarch,
5874 struct symtab_and_line sal, enum bptype bptype,
5875 const struct breakpoint_ops *ops)
5876 {
5877 struct breakpoint *b = XNEW (struct breakpoint);
5878
5879 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
5880 add_to_breakpoint_chain (b);
5881 return b;
5882 }
5883
5884
5885 /* Note that the breakpoint object B describes a permanent breakpoint
5886 instruction, hard-wired into the inferior's code. */
5887 void
5888 make_breakpoint_permanent (struct breakpoint *b)
5889 {
5890 struct bp_location *bl;
5891
5892 b->enable_state = bp_permanent;
5893
5894 /* By definition, permanent breakpoints are already present in the
5895 code. Mark all locations as inserted. For now,
5896 make_breakpoint_permanent is called in just one place, so it's
5897 hard to say if it's reasonable to have permanent breakpoint with
5898 multiple locations or not, but it's easy to implement. */
5899 for (bl = b->loc; bl; bl = bl->next)
5900 bl->inserted = 1;
5901 }
5902
5903 /* Call this routine when stepping and nexting to enable a breakpoint
5904 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
5905 initiated the operation. */
5906
5907 void
5908 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
5909 {
5910 struct breakpoint *b, *b_tmp;
5911 int thread = tp->num;
5912
5913 /* To avoid having to rescan all objfile symbols at every step,
5914 we maintain a list of continually-inserted but always disabled
5915 longjmp "master" breakpoints. Here, we simply create momentary
5916 clones of those and enable them for the requested thread. */
5917 ALL_BREAKPOINTS_SAFE (b, b_tmp)
5918 if (b->pspace == current_program_space
5919 && (b->type == bp_longjmp_master
5920 || b->type == bp_exception_master))
5921 {
5922 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
5923 struct breakpoint *clone;
5924
5925 clone = momentary_breakpoint_from_master (b, type,
5926 &momentary_breakpoint_ops);
5927 clone->thread = thread;
5928 }
5929
5930 tp->initiating_frame = frame;
5931 }
5932
5933 /* Delete all longjmp breakpoints from THREAD. */
5934 void
5935 delete_longjmp_breakpoint (int thread)
5936 {
5937 struct breakpoint *b, *b_tmp;
5938
5939 ALL_BREAKPOINTS_SAFE (b, b_tmp)
5940 if (b->type == bp_longjmp || b->type == bp_exception)
5941 {
5942 if (b->thread == thread)
5943 delete_breakpoint (b);
5944 }
5945 }
5946
5947 void
5948 enable_overlay_breakpoints (void)
5949 {
5950 struct breakpoint *b;
5951
5952 ALL_BREAKPOINTS (b)
5953 if (b->type == bp_overlay_event)
5954 {
5955 b->enable_state = bp_enabled;
5956 update_global_location_list (1);
5957 overlay_events_enabled = 1;
5958 }
5959 }
5960
5961 void
5962 disable_overlay_breakpoints (void)
5963 {
5964 struct breakpoint *b;
5965
5966 ALL_BREAKPOINTS (b)
5967 if (b->type == bp_overlay_event)
5968 {
5969 b->enable_state = bp_disabled;
5970 update_global_location_list (0);
5971 overlay_events_enabled = 0;
5972 }
5973 }
5974
5975 /* Set an active std::terminate breakpoint for each std::terminate
5976 master breakpoint. */
5977 void
5978 set_std_terminate_breakpoint (void)
5979 {
5980 struct breakpoint *b, *b_tmp;
5981
5982 ALL_BREAKPOINTS_SAFE (b, b_tmp)
5983 if (b->pspace == current_program_space
5984 && b->type == bp_std_terminate_master)
5985 {
5986 momentary_breakpoint_from_master (b, bp_std_terminate,
5987 &momentary_breakpoint_ops);
5988 }
5989 }
5990
5991 /* Delete all the std::terminate breakpoints. */
5992 void
5993 delete_std_terminate_breakpoint (void)
5994 {
5995 struct breakpoint *b, *b_tmp;
5996
5997 ALL_BREAKPOINTS_SAFE (b, b_tmp)
5998 if (b->type == bp_std_terminate)
5999 delete_breakpoint (b);
6000 }
6001
6002 struct breakpoint *
6003 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
6004 {
6005 struct breakpoint *b;
6006
6007 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
6008 &internal_breakpoint_ops);
6009
6010 b->enable_state = bp_enabled;
6011 /* addr_string has to be used or breakpoint_re_set will delete me. */
6012 b->addr_string
6013 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
6014
6015 update_global_location_list_nothrow (1);
6016
6017 return b;
6018 }
6019
6020 void
6021 remove_thread_event_breakpoints (void)
6022 {
6023 struct breakpoint *b, *b_tmp;
6024
6025 ALL_BREAKPOINTS_SAFE (b, b_tmp)
6026 if (b->type == bp_thread_event
6027 && b->loc->pspace == current_program_space)
6028 delete_breakpoint (b);
6029 }
6030
6031 struct lang_and_radix
6032 {
6033 enum language lang;
6034 int radix;
6035 };
6036
6037 /* Create a breakpoint for JIT code registration and unregistration. */
6038
6039 struct breakpoint *
6040 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
6041 {
6042 struct breakpoint *b;
6043
6044 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
6045 &internal_breakpoint_ops);
6046 update_global_location_list_nothrow (1);
6047 return b;
6048 }
6049
6050 /* Remove JIT code registration and unregistration breakpoint(s). */
6051
6052 void
6053 remove_jit_event_breakpoints (void)
6054 {
6055 struct breakpoint *b, *b_tmp;
6056
6057 ALL_BREAKPOINTS_SAFE (b, b_tmp)
6058 if (b->type == bp_jit_event
6059 && b->loc->pspace == current_program_space)
6060 delete_breakpoint (b);
6061 }
6062
6063 void
6064 remove_solib_event_breakpoints (void)
6065 {
6066 struct breakpoint *b, *b_tmp;
6067
6068 ALL_BREAKPOINTS_SAFE (b, b_tmp)
6069 if (b->type == bp_shlib_event
6070 && b->loc->pspace == current_program_space)
6071 delete_breakpoint (b);
6072 }
6073
6074 struct breakpoint *
6075 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
6076 {
6077 struct breakpoint *b;
6078
6079 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
6080 &internal_breakpoint_ops);
6081 update_global_location_list_nothrow (1);
6082 return b;
6083 }
6084
6085 /* Disable any breakpoints that are on code in shared libraries. Only
6086 apply to enabled breakpoints, disabled ones can just stay disabled. */
6087
6088 void
6089 disable_breakpoints_in_shlibs (void)
6090 {
6091 struct bp_location *loc, **locp_tmp;
6092
6093 ALL_BP_LOCATIONS (loc, locp_tmp)
6094 {
6095 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
6096 struct breakpoint *b = loc->owner;
6097
6098 /* We apply the check to all breakpoints, including disabled for
6099 those with loc->duplicate set. This is so that when breakpoint
6100 becomes enabled, or the duplicate is removed, gdb will try to
6101 insert all breakpoints. If we don't set shlib_disabled here,
6102 we'll try to insert those breakpoints and fail. */
6103 if (((b->type == bp_breakpoint)
6104 || (b->type == bp_jit_event)
6105 || (b->type == bp_hardware_breakpoint)
6106 || (is_tracepoint (b)))
6107 && loc->pspace == current_program_space
6108 && !loc->shlib_disabled
6109 #ifdef PC_SOLIB
6110 && PC_SOLIB (loc->address)
6111 #else
6112 && solib_name_from_address (loc->pspace, loc->address)
6113 #endif
6114 )
6115 {
6116 loc->shlib_disabled = 1;
6117 }
6118 }
6119 }
6120
6121 /* Disable any breakpoints and tracepoints that are in an unloaded shared
6122 library. Only apply to enabled breakpoints, disabled ones can just stay
6123 disabled. */
6124
6125 static void
6126 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
6127 {
6128 struct bp_location *loc, **locp_tmp;
6129 int disabled_shlib_breaks = 0;
6130
6131 /* SunOS a.out shared libraries are always mapped, so do not
6132 disable breakpoints; they will only be reported as unloaded
6133 through clear_solib when GDB discards its shared library
6134 list. See clear_solib for more information. */
6135 if (exec_bfd != NULL
6136 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
6137 return;
6138
6139 ALL_BP_LOCATIONS (loc, locp_tmp)
6140 {
6141 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
6142 struct breakpoint *b = loc->owner;
6143
6144 if (solib->pspace == loc->pspace
6145 && !loc->shlib_disabled
6146 && (((b->type == bp_breakpoint
6147 || b->type == bp_jit_event
6148 || b->type == bp_hardware_breakpoint)
6149 && (loc->loc_type == bp_loc_hardware_breakpoint
6150 || loc->loc_type == bp_loc_software_breakpoint))
6151 || is_tracepoint (b))
6152 && solib_contains_address_p (solib, loc->address))
6153 {
6154 loc->shlib_disabled = 1;
6155 /* At this point, we cannot rely on remove_breakpoint
6156 succeeding so we must mark the breakpoint as not inserted
6157 to prevent future errors occurring in remove_breakpoints. */
6158 loc->inserted = 0;
6159
6160 /* This may cause duplicate notifications for the same breakpoint. */
6161 observer_notify_breakpoint_modified (b);
6162
6163 if (!disabled_shlib_breaks)
6164 {
6165 target_terminal_ours_for_output ();
6166 warning (_("Temporarily disabling breakpoints "
6167 "for unloaded shared library \"%s\""),
6168 solib->so_name);
6169 }
6170 disabled_shlib_breaks = 1;
6171 }
6172 }
6173 }
6174
6175 /* FORK & VFORK catchpoints. */
6176
6177 /* An instance of this type is used to represent a fork or vfork
6178 catchpoint. It includes a "struct breakpoint" as a kind of base
6179 class; users downcast to "struct breakpoint *" when needed. A
6180 breakpoint is really of this type iff its ops pointer points to
6181 CATCH_FORK_BREAKPOINT_OPS. */
6182
6183 struct fork_catchpoint
6184 {
6185 /* The base class. */
6186 struct breakpoint base;
6187
6188 /* Process id of a child process whose forking triggered this
6189 catchpoint. This field is only valid immediately after this
6190 catchpoint has triggered. */
6191 ptid_t forked_inferior_pid;
6192 };
6193
6194 /* Implement the "insert" breakpoint_ops method for fork
6195 catchpoints. */
6196
6197 static int
6198 insert_catch_fork (struct bp_location *bl)
6199 {
6200 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
6201 }
6202
6203 /* Implement the "remove" breakpoint_ops method for fork
6204 catchpoints. */
6205
6206 static int
6207 remove_catch_fork (struct bp_location *bl)
6208 {
6209 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
6210 }
6211
6212 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
6213 catchpoints. */
6214
6215 static int
6216 breakpoint_hit_catch_fork (const struct bp_location *bl,
6217 struct address_space *aspace, CORE_ADDR bp_addr)
6218 {
6219 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
6220
6221 return inferior_has_forked (inferior_ptid, &c->forked_inferior_pid);
6222 }
6223
6224 /* Implement the "print_it" breakpoint_ops method for fork
6225 catchpoints. */
6226
6227 static enum print_stop_action
6228 print_it_catch_fork (bpstat bs)
6229 {
6230 struct ui_out *uiout = current_uiout;
6231 struct breakpoint *b = bs->breakpoint_at;
6232 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
6233
6234 annotate_catchpoint (b->number);
6235 if (b->disposition == disp_del)
6236 ui_out_text (uiout, "\nTemporary catchpoint ");
6237 else
6238 ui_out_text (uiout, "\nCatchpoint ");
6239 if (ui_out_is_mi_like_p (uiout))
6240 {
6241 ui_out_field_string (uiout, "reason",
6242 async_reason_lookup (EXEC_ASYNC_FORK));
6243 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6244 }
6245 ui_out_field_int (uiout, "bkptno", b->number);
6246 ui_out_text (uiout, " (forked process ");
6247 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
6248 ui_out_text (uiout, "), ");
6249 return PRINT_SRC_AND_LOC;
6250 }
6251
6252 /* Implement the "print_one" breakpoint_ops method for fork
6253 catchpoints. */
6254
6255 static void
6256 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
6257 {
6258 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
6259 struct value_print_options opts;
6260 struct ui_out *uiout = current_uiout;
6261
6262 get_user_print_options (&opts);
6263
6264 /* Field 4, the address, is omitted (which makes the columns not
6265 line up too nicely with the headers, but the effect is relatively
6266 readable). */
6267 if (opts.addressprint)
6268 ui_out_field_skip (uiout, "addr");
6269 annotate_field (5);
6270 ui_out_text (uiout, "fork");
6271 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
6272 {
6273 ui_out_text (uiout, ", process ");
6274 ui_out_field_int (uiout, "what",
6275 ptid_get_pid (c->forked_inferior_pid));
6276 ui_out_spaces (uiout, 1);
6277 }
6278 }
6279
6280 /* Implement the "print_mention" breakpoint_ops method for fork
6281 catchpoints. */
6282
6283 static void
6284 print_mention_catch_fork (struct breakpoint *b)
6285 {
6286 printf_filtered (_("Catchpoint %d (fork)"), b->number);
6287 }
6288
6289 /* Implement the "print_recreate" breakpoint_ops method for fork
6290 catchpoints. */
6291
6292 static void
6293 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
6294 {
6295 fprintf_unfiltered (fp, "catch fork");
6296 print_recreate_thread (b, fp);
6297 }
6298
6299 /* The breakpoint_ops structure to be used in fork catchpoints. */
6300
6301 static struct breakpoint_ops catch_fork_breakpoint_ops;
6302
6303 /* Implement the "insert" breakpoint_ops method for vfork
6304 catchpoints. */
6305
6306 static int
6307 insert_catch_vfork (struct bp_location *bl)
6308 {
6309 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
6310 }
6311
6312 /* Implement the "remove" breakpoint_ops method for vfork
6313 catchpoints. */
6314
6315 static int
6316 remove_catch_vfork (struct bp_location *bl)
6317 {
6318 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
6319 }
6320
6321 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
6322 catchpoints. */
6323
6324 static int
6325 breakpoint_hit_catch_vfork (const struct bp_location *bl,
6326 struct address_space *aspace, CORE_ADDR bp_addr)
6327 {
6328 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
6329
6330 return inferior_has_vforked (inferior_ptid, &c->forked_inferior_pid);
6331 }
6332
6333 /* Implement the "print_it" breakpoint_ops method for vfork
6334 catchpoints. */
6335
6336 static enum print_stop_action
6337 print_it_catch_vfork (bpstat bs)
6338 {
6339 struct ui_out *uiout = current_uiout;
6340 struct breakpoint *b = bs->breakpoint_at;
6341 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
6342
6343 annotate_catchpoint (b->number);
6344 if (b->disposition == disp_del)
6345 ui_out_text (uiout, "\nTemporary catchpoint ");
6346 else
6347 ui_out_text (uiout, "\nCatchpoint ");
6348 if (ui_out_is_mi_like_p (uiout))
6349 {
6350 ui_out_field_string (uiout, "reason",
6351 async_reason_lookup (EXEC_ASYNC_VFORK));
6352 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6353 }
6354 ui_out_field_int (uiout, "bkptno", b->number);
6355 ui_out_text (uiout, " (vforked process ");
6356 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
6357 ui_out_text (uiout, "), ");
6358 return PRINT_SRC_AND_LOC;
6359 }
6360
6361 /* Implement the "print_one" breakpoint_ops method for vfork
6362 catchpoints. */
6363
6364 static void
6365 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
6366 {
6367 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
6368 struct value_print_options opts;
6369 struct ui_out *uiout = current_uiout;
6370
6371 get_user_print_options (&opts);
6372 /* Field 4, the address, is omitted (which makes the columns not
6373 line up too nicely with the headers, but the effect is relatively
6374 readable). */
6375 if (opts.addressprint)
6376 ui_out_field_skip (uiout, "addr");
6377 annotate_field (5);
6378 ui_out_text (uiout, "vfork");
6379 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
6380 {
6381 ui_out_text (uiout, ", process ");
6382 ui_out_field_int (uiout, "what",
6383 ptid_get_pid (c->forked_inferior_pid));
6384 ui_out_spaces (uiout, 1);
6385 }
6386 }
6387
6388 /* Implement the "print_mention" breakpoint_ops method for vfork
6389 catchpoints. */
6390
6391 static void
6392 print_mention_catch_vfork (struct breakpoint *b)
6393 {
6394 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
6395 }
6396
6397 /* Implement the "print_recreate" breakpoint_ops method for vfork
6398 catchpoints. */
6399
6400 static void
6401 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
6402 {
6403 fprintf_unfiltered (fp, "catch vfork");
6404 print_recreate_thread (b, fp);
6405 }
6406
6407 /* The breakpoint_ops structure to be used in vfork catchpoints. */
6408
6409 static struct breakpoint_ops catch_vfork_breakpoint_ops;
6410
6411 /* An instance of this type is used to represent a syscall catchpoint.
6412 It includes a "struct breakpoint" as a kind of base class; users
6413 downcast to "struct breakpoint *" when needed. A breakpoint is
6414 really of this type iff its ops pointer points to
6415 CATCH_SYSCALL_BREAKPOINT_OPS. */
6416
6417 struct syscall_catchpoint
6418 {
6419 /* The base class. */
6420 struct breakpoint base;
6421
6422 /* Syscall numbers used for the 'catch syscall' feature. If no
6423 syscall has been specified for filtering, its value is NULL.
6424 Otherwise, it holds a list of all syscalls to be caught. The
6425 list elements are allocated with xmalloc. */
6426 VEC(int) *syscalls_to_be_caught;
6427 };
6428
6429 /* Implement the "dtor" breakpoint_ops method for syscall
6430 catchpoints. */
6431
6432 static void
6433 dtor_catch_syscall (struct breakpoint *b)
6434 {
6435 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
6436
6437 VEC_free (int, c->syscalls_to_be_caught);
6438
6439 base_breakpoint_ops.dtor (b);
6440 }
6441
6442 /* Implement the "insert" breakpoint_ops method for syscall
6443 catchpoints. */
6444
6445 static int
6446 insert_catch_syscall (struct bp_location *bl)
6447 {
6448 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
6449 struct inferior *inf = current_inferior ();
6450
6451 ++inf->total_syscalls_count;
6452 if (!c->syscalls_to_be_caught)
6453 ++inf->any_syscall_count;
6454 else
6455 {
6456 int i, iter;
6457
6458 for (i = 0;
6459 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
6460 i++)
6461 {
6462 int elem;
6463
6464 if (iter >= VEC_length (int, inf->syscalls_counts))
6465 {
6466 int old_size = VEC_length (int, inf->syscalls_counts);
6467 uintptr_t vec_addr_offset
6468 = old_size * ((uintptr_t) sizeof (int));
6469 uintptr_t vec_addr;
6470 VEC_safe_grow (int, inf->syscalls_counts, iter + 1);
6471 vec_addr = (uintptr_t) VEC_address (int, inf->syscalls_counts) +
6472 vec_addr_offset;
6473 memset ((void *) vec_addr, 0,
6474 (iter + 1 - old_size) * sizeof (int));
6475 }
6476 elem = VEC_index (int, inf->syscalls_counts, iter);
6477 VEC_replace (int, inf->syscalls_counts, iter, ++elem);
6478 }
6479 }
6480
6481 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
6482 inf->total_syscalls_count != 0,
6483 inf->any_syscall_count,
6484 VEC_length (int, inf->syscalls_counts),
6485 VEC_address (int, inf->syscalls_counts));
6486 }
6487
6488 /* Implement the "remove" breakpoint_ops method for syscall
6489 catchpoints. */
6490
6491 static int
6492 remove_catch_syscall (struct bp_location *bl)
6493 {
6494 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
6495 struct inferior *inf = current_inferior ();
6496
6497 --inf->total_syscalls_count;
6498 if (!c->syscalls_to_be_caught)
6499 --inf->any_syscall_count;
6500 else
6501 {
6502 int i, iter;
6503
6504 for (i = 0;
6505 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
6506 i++)
6507 {
6508 int elem;
6509 if (iter >= VEC_length (int, inf->syscalls_counts))
6510 /* Shouldn't happen. */
6511 continue;
6512 elem = VEC_index (int, inf->syscalls_counts, iter);
6513 VEC_replace (int, inf->syscalls_counts, iter, --elem);
6514 }
6515 }
6516
6517 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
6518 inf->total_syscalls_count != 0,
6519 inf->any_syscall_count,
6520 VEC_length (int, inf->syscalls_counts),
6521 VEC_address (int,
6522 inf->syscalls_counts));
6523 }
6524
6525 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
6526 catchpoints. */
6527
6528 static int
6529 breakpoint_hit_catch_syscall (const struct bp_location *bl,
6530 struct address_space *aspace, CORE_ADDR bp_addr)
6531 {
6532 /* We must check if we are catching specific syscalls in this
6533 breakpoint. If we are, then we must guarantee that the called
6534 syscall is the same syscall we are catching. */
6535 int syscall_number = 0;
6536 const struct syscall_catchpoint *c
6537 = (const struct syscall_catchpoint *) bl->owner;
6538
6539 if (!inferior_has_called_syscall (inferior_ptid, &syscall_number))
6540 return 0;
6541
6542 /* Now, checking if the syscall is the same. */
6543 if (c->syscalls_to_be_caught)
6544 {
6545 int i, iter;
6546
6547 for (i = 0;
6548 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
6549 i++)
6550 if (syscall_number == iter)
6551 break;
6552 /* Not the same. */
6553 if (!iter)
6554 return 0;
6555 }
6556
6557 return 1;
6558 }
6559
6560 /* Implement the "print_it" breakpoint_ops method for syscall
6561 catchpoints. */
6562
6563 static enum print_stop_action
6564 print_it_catch_syscall (bpstat bs)
6565 {
6566 struct ui_out *uiout = current_uiout;
6567 struct breakpoint *b = bs->breakpoint_at;
6568 /* These are needed because we want to know in which state a
6569 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
6570 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
6571 must print "called syscall" or "returned from syscall". */
6572 ptid_t ptid;
6573 struct target_waitstatus last;
6574 struct syscall s;
6575 char *syscall_id;
6576
6577 get_last_target_status (&ptid, &last);
6578
6579 get_syscall_by_number (last.value.syscall_number, &s);
6580
6581 annotate_catchpoint (b->number);
6582
6583 if (b->disposition == disp_del)
6584 ui_out_text (uiout, "\nTemporary catchpoint ");
6585 else
6586 ui_out_text (uiout, "\nCatchpoint ");
6587 if (ui_out_is_mi_like_p (uiout))
6588 {
6589 ui_out_field_string (uiout, "reason",
6590 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
6591 ? EXEC_ASYNC_SYSCALL_ENTRY
6592 : EXEC_ASYNC_SYSCALL_RETURN));
6593 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6594 }
6595 ui_out_field_int (uiout, "bkptno", b->number);
6596
6597 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
6598 ui_out_text (uiout, " (call to syscall ");
6599 else
6600 ui_out_text (uiout, " (returned from syscall ");
6601
6602 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
6603 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
6604 if (s.name != NULL)
6605 ui_out_field_string (uiout, "syscall-name", s.name);
6606
6607 ui_out_text (uiout, "), ");
6608
6609 return PRINT_SRC_AND_LOC;
6610 }
6611
6612 /* Implement the "print_one" breakpoint_ops method for syscall
6613 catchpoints. */
6614
6615 static void
6616 print_one_catch_syscall (struct breakpoint *b,
6617 struct bp_location **last_loc)
6618 {
6619 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
6620 struct value_print_options opts;
6621 struct ui_out *uiout = current_uiout;
6622
6623 get_user_print_options (&opts);
6624 /* Field 4, the address, is omitted (which makes the columns not
6625 line up too nicely with the headers, but the effect is relatively
6626 readable). */
6627 if (opts.addressprint)
6628 ui_out_field_skip (uiout, "addr");
6629 annotate_field (5);
6630
6631 if (c->syscalls_to_be_caught
6632 && VEC_length (int, c->syscalls_to_be_caught) > 1)
6633 ui_out_text (uiout, "syscalls \"");
6634 else
6635 ui_out_text (uiout, "syscall \"");
6636
6637 if (c->syscalls_to_be_caught)
6638 {
6639 int i, iter;
6640 char *text = xstrprintf ("%s", "");
6641
6642 for (i = 0;
6643 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
6644 i++)
6645 {
6646 char *x = text;
6647 struct syscall s;
6648 get_syscall_by_number (iter, &s);
6649
6650 if (s.name != NULL)
6651 text = xstrprintf ("%s%s, ", text, s.name);
6652 else
6653 text = xstrprintf ("%s%d, ", text, iter);
6654
6655 /* We have to xfree the last 'text' (now stored at 'x')
6656 because xstrprintf dynamically allocates new space for it
6657 on every call. */
6658 xfree (x);
6659 }
6660 /* Remove the last comma. */
6661 text[strlen (text) - 2] = '\0';
6662 ui_out_field_string (uiout, "what", text);
6663 }
6664 else
6665 ui_out_field_string (uiout, "what", "<any syscall>");
6666 ui_out_text (uiout, "\" ");
6667 }
6668
6669 /* Implement the "print_mention" breakpoint_ops method for syscall
6670 catchpoints. */
6671
6672 static void
6673 print_mention_catch_syscall (struct breakpoint *b)
6674 {
6675 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
6676
6677 if (c->syscalls_to_be_caught)
6678 {
6679 int i, iter;
6680
6681 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
6682 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
6683 else
6684 printf_filtered (_("Catchpoint %d (syscall"), b->number);
6685
6686 for (i = 0;
6687 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
6688 i++)
6689 {
6690 struct syscall s;
6691 get_syscall_by_number (iter, &s);
6692
6693 if (s.name)
6694 printf_filtered (" '%s' [%d]", s.name, s.number);
6695 else
6696 printf_filtered (" %d", s.number);
6697 }
6698 printf_filtered (")");
6699 }
6700 else
6701 printf_filtered (_("Catchpoint %d (any syscall)"),
6702 b->number);
6703 }
6704
6705 /* Implement the "print_recreate" breakpoint_ops method for syscall
6706 catchpoints. */
6707
6708 static void
6709 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
6710 {
6711 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
6712
6713 fprintf_unfiltered (fp, "catch syscall");
6714
6715 if (c->syscalls_to_be_caught)
6716 {
6717 int i, iter;
6718
6719 for (i = 0;
6720 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
6721 i++)
6722 {
6723 struct syscall s;
6724
6725 get_syscall_by_number (iter, &s);
6726 if (s.name)
6727 fprintf_unfiltered (fp, " %s", s.name);
6728 else
6729 fprintf_unfiltered (fp, " %d", s.number);
6730 }
6731 }
6732 print_recreate_thread (b, fp);
6733 }
6734
6735 /* The breakpoint_ops structure to be used in syscall catchpoints. */
6736
6737 static struct breakpoint_ops catch_syscall_breakpoint_ops;
6738
6739 /* Returns non-zero if 'b' is a syscall catchpoint. */
6740
6741 static int
6742 syscall_catchpoint_p (struct breakpoint *b)
6743 {
6744 return (b->ops == &catch_syscall_breakpoint_ops);
6745 }
6746
6747 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
6748 is non-zero, then make the breakpoint temporary. If COND_STRING is
6749 not NULL, then store it in the breakpoint. OPS, if not NULL, is
6750 the breakpoint_ops structure associated to the catchpoint. */
6751
6752 static void
6753 init_catchpoint (struct breakpoint *b,
6754 struct gdbarch *gdbarch, int tempflag,
6755 char *cond_string,
6756 const struct breakpoint_ops *ops)
6757 {
6758 struct symtab_and_line sal;
6759
6760 init_sal (&sal);
6761 sal.pspace = current_program_space;
6762
6763 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
6764
6765 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
6766 b->disposition = tempflag ? disp_del : disp_donttouch;
6767 }
6768
6769 void
6770 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
6771 {
6772 add_to_breakpoint_chain (b);
6773 set_breakpoint_number (internal, b);
6774 if (!internal)
6775 mention (b);
6776 observer_notify_breakpoint_created (b);
6777
6778 if (update_gll)
6779 update_global_location_list (1);
6780 }
6781
6782 static void
6783 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
6784 int tempflag, char *cond_string,
6785 const struct breakpoint_ops *ops)
6786 {
6787 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
6788
6789 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
6790
6791 c->forked_inferior_pid = null_ptid;
6792
6793 install_breakpoint (0, &c->base, 1);
6794 }
6795
6796 /* Exec catchpoints. */
6797
6798 /* An instance of this type is used to represent an exec catchpoint.
6799 It includes a "struct breakpoint" as a kind of base class; users
6800 downcast to "struct breakpoint *" when needed. A breakpoint is
6801 really of this type iff its ops pointer points to
6802 CATCH_EXEC_BREAKPOINT_OPS. */
6803
6804 struct exec_catchpoint
6805 {
6806 /* The base class. */
6807 struct breakpoint base;
6808
6809 /* Filename of a program whose exec triggered this catchpoint.
6810 This field is only valid immediately after this catchpoint has
6811 triggered. */
6812 char *exec_pathname;
6813 };
6814
6815 /* Implement the "dtor" breakpoint_ops method for exec
6816 catchpoints. */
6817
6818 static void
6819 dtor_catch_exec (struct breakpoint *b)
6820 {
6821 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
6822
6823 xfree (c->exec_pathname);
6824
6825 base_breakpoint_ops.dtor (b);
6826 }
6827
6828 static int
6829 insert_catch_exec (struct bp_location *bl)
6830 {
6831 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
6832 }
6833
6834 static int
6835 remove_catch_exec (struct bp_location *bl)
6836 {
6837 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
6838 }
6839
6840 static int
6841 breakpoint_hit_catch_exec (const struct bp_location *bl,
6842 struct address_space *aspace, CORE_ADDR bp_addr)
6843 {
6844 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
6845
6846 return inferior_has_execd (inferior_ptid, &c->exec_pathname);
6847 }
6848
6849 static enum print_stop_action
6850 print_it_catch_exec (bpstat bs)
6851 {
6852 struct ui_out *uiout = current_uiout;
6853 struct breakpoint *b = bs->breakpoint_at;
6854 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
6855
6856 annotate_catchpoint (b->number);
6857 if (b->disposition == disp_del)
6858 ui_out_text (uiout, "\nTemporary catchpoint ");
6859 else
6860 ui_out_text (uiout, "\nCatchpoint ");
6861 if (ui_out_is_mi_like_p (uiout))
6862 {
6863 ui_out_field_string (uiout, "reason",
6864 async_reason_lookup (EXEC_ASYNC_EXEC));
6865 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6866 }
6867 ui_out_field_int (uiout, "bkptno", b->number);
6868 ui_out_text (uiout, " (exec'd ");
6869 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
6870 ui_out_text (uiout, "), ");
6871
6872 return PRINT_SRC_AND_LOC;
6873 }
6874
6875 static void
6876 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
6877 {
6878 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
6879 struct value_print_options opts;
6880 struct ui_out *uiout = current_uiout;
6881
6882 get_user_print_options (&opts);
6883
6884 /* Field 4, the address, is omitted (which makes the columns
6885 not line up too nicely with the headers, but the effect
6886 is relatively readable). */
6887 if (opts.addressprint)
6888 ui_out_field_skip (uiout, "addr");
6889 annotate_field (5);
6890 ui_out_text (uiout, "exec");
6891 if (c->exec_pathname != NULL)
6892 {
6893 ui_out_text (uiout, ", program \"");
6894 ui_out_field_string (uiout, "what", c->exec_pathname);
6895 ui_out_text (uiout, "\" ");
6896 }
6897 }
6898
6899 static void
6900 print_mention_catch_exec (struct breakpoint *b)
6901 {
6902 printf_filtered (_("Catchpoint %d (exec)"), b->number);
6903 }
6904
6905 /* Implement the "print_recreate" breakpoint_ops method for exec
6906 catchpoints. */
6907
6908 static void
6909 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
6910 {
6911 fprintf_unfiltered (fp, "catch exec");
6912 print_recreate_thread (b, fp);
6913 }
6914
6915 static struct breakpoint_ops catch_exec_breakpoint_ops;
6916
6917 static void
6918 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
6919 const struct breakpoint_ops *ops)
6920 {
6921 struct syscall_catchpoint *c;
6922 struct gdbarch *gdbarch = get_current_arch ();
6923
6924 c = XNEW (struct syscall_catchpoint);
6925 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
6926 c->syscalls_to_be_caught = filter;
6927
6928 install_breakpoint (0, &c->base, 1);
6929 }
6930
6931 static int
6932 hw_breakpoint_used_count (void)
6933 {
6934 int i = 0;
6935 struct breakpoint *b;
6936 struct bp_location *bl;
6937
6938 ALL_BREAKPOINTS (b)
6939 {
6940 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
6941 for (bl = b->loc; bl; bl = bl->next)
6942 {
6943 /* Special types of hardware breakpoints may use more than
6944 one register. */
6945 i += b->ops->resources_needed (bl);
6946 }
6947 }
6948
6949 return i;
6950 }
6951
6952 /* Returns the resources B would use if it were a hardware
6953 watchpoint. */
6954
6955 static int
6956 hw_watchpoint_use_count (struct breakpoint *b)
6957 {
6958 int i = 0;
6959 struct bp_location *bl;
6960
6961 if (!breakpoint_enabled (b))
6962 return 0;
6963
6964 for (bl = b->loc; bl; bl = bl->next)
6965 {
6966 /* Special types of hardware watchpoints may use more than
6967 one register. */
6968 i += b->ops->resources_needed (bl);
6969 }
6970
6971 return i;
6972 }
6973
6974 /* Returns the sum the used resources of all hardware watchpoints of
6975 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
6976 the sum of the used resources of all hardware watchpoints of other
6977 types _not_ TYPE. */
6978
6979 static int
6980 hw_watchpoint_used_count_others (struct breakpoint *except,
6981 enum bptype type, int *other_type_used)
6982 {
6983 int i = 0;
6984 struct breakpoint *b;
6985
6986 *other_type_used = 0;
6987 ALL_BREAKPOINTS (b)
6988 {
6989 if (b == except)
6990 continue;
6991 if (!breakpoint_enabled (b))
6992 continue;
6993
6994 if (b->type == type)
6995 i += hw_watchpoint_use_count (b);
6996 else if (is_hardware_watchpoint (b))
6997 *other_type_used = 1;
6998 }
6999
7000 return i;
7001 }
7002
7003 void
7004 disable_watchpoints_before_interactive_call_start (void)
7005 {
7006 struct breakpoint *b;
7007
7008 ALL_BREAKPOINTS (b)
7009 {
7010 if (is_watchpoint (b) && breakpoint_enabled (b))
7011 {
7012 b->enable_state = bp_call_disabled;
7013 update_global_location_list (0);
7014 }
7015 }
7016 }
7017
7018 void
7019 enable_watchpoints_after_interactive_call_stop (void)
7020 {
7021 struct breakpoint *b;
7022
7023 ALL_BREAKPOINTS (b)
7024 {
7025 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
7026 {
7027 b->enable_state = bp_enabled;
7028 update_global_location_list (1);
7029 }
7030 }
7031 }
7032
7033 void
7034 disable_breakpoints_before_startup (void)
7035 {
7036 current_program_space->executing_startup = 1;
7037 update_global_location_list (0);
7038 }
7039
7040 void
7041 enable_breakpoints_after_startup (void)
7042 {
7043 current_program_space->executing_startup = 0;
7044 breakpoint_re_set ();
7045 }
7046
7047
7048 /* Set a breakpoint that will evaporate an end of command
7049 at address specified by SAL.
7050 Restrict it to frame FRAME if FRAME is nonzero. */
7051
7052 struct breakpoint *
7053 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
7054 struct frame_id frame_id, enum bptype type)
7055 {
7056 struct breakpoint *b;
7057
7058 /* If FRAME_ID is valid, it should be a real frame, not an inlined
7059 one. */
7060 gdb_assert (!frame_id_inlined_p (frame_id));
7061
7062 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
7063 b->enable_state = bp_enabled;
7064 b->disposition = disp_donttouch;
7065 b->frame_id = frame_id;
7066
7067 /* If we're debugging a multi-threaded program, then we want
7068 momentary breakpoints to be active in only a single thread of
7069 control. */
7070 if (in_thread_list (inferior_ptid))
7071 b->thread = pid_to_thread_id (inferior_ptid);
7072
7073 update_global_location_list_nothrow (1);
7074
7075 return b;
7076 }
7077
7078 /* Make a momentary breakpoint based on the master breakpoint ORIG.
7079 The new breakpoint will have type TYPE, and use OPS as it
7080 breakpoint_ops. */
7081
7082 static struct breakpoint *
7083 momentary_breakpoint_from_master (struct breakpoint *orig,
7084 enum bptype type,
7085 const struct breakpoint_ops *ops)
7086 {
7087 struct breakpoint *copy;
7088
7089 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
7090 copy->loc = allocate_bp_location (copy);
7091 set_breakpoint_location_function (copy->loc, 1);
7092
7093 copy->loc->gdbarch = orig->loc->gdbarch;
7094 copy->loc->requested_address = orig->loc->requested_address;
7095 copy->loc->address = orig->loc->address;
7096 copy->loc->section = orig->loc->section;
7097 copy->loc->pspace = orig->loc->pspace;
7098
7099 if (orig->loc->source_file != NULL)
7100 copy->loc->source_file = xstrdup (orig->loc->source_file);
7101
7102 copy->loc->line_number = orig->loc->line_number;
7103 copy->frame_id = orig->frame_id;
7104 copy->thread = orig->thread;
7105 copy->pspace = orig->pspace;
7106
7107 copy->enable_state = bp_enabled;
7108 copy->disposition = disp_donttouch;
7109 copy->number = internal_breakpoint_number--;
7110
7111 update_global_location_list_nothrow (0);
7112 return copy;
7113 }
7114
7115 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
7116 ORIG is NULL. */
7117
7118 struct breakpoint *
7119 clone_momentary_breakpoint (struct breakpoint *orig)
7120 {
7121 /* If there's nothing to clone, then return nothing. */
7122 if (orig == NULL)
7123 return NULL;
7124
7125 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
7126 }
7127
7128 struct breakpoint *
7129 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
7130 enum bptype type)
7131 {
7132 struct symtab_and_line sal;
7133
7134 sal = find_pc_line (pc, 0);
7135 sal.pc = pc;
7136 sal.section = find_pc_overlay (pc);
7137 sal.explicit_pc = 1;
7138
7139 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
7140 }
7141 \f
7142
7143 /* Tell the user we have just set a breakpoint B. */
7144
7145 static void
7146 mention (struct breakpoint *b)
7147 {
7148 b->ops->print_mention (b);
7149 if (ui_out_is_mi_like_p (current_uiout))
7150 return;
7151 printf_filtered ("\n");
7152 }
7153 \f
7154
7155 static struct bp_location *
7156 add_location_to_breakpoint (struct breakpoint *b,
7157 const struct symtab_and_line *sal)
7158 {
7159 struct bp_location *loc, **tmp;
7160 CORE_ADDR adjusted_address;
7161 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
7162
7163 if (loc_gdbarch == NULL)
7164 loc_gdbarch = b->gdbarch;
7165
7166 /* Adjust the breakpoint's address prior to allocating a location.
7167 Once we call allocate_bp_location(), that mostly uninitialized
7168 location will be placed on the location chain. Adjustment of the
7169 breakpoint may cause target_read_memory() to be called and we do
7170 not want its scan of the location chain to find a breakpoint and
7171 location that's only been partially initialized. */
7172 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
7173 sal->pc, b->type);
7174
7175 loc = allocate_bp_location (b);
7176 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
7177 ;
7178 *tmp = loc;
7179
7180 loc->requested_address = sal->pc;
7181 loc->address = adjusted_address;
7182 loc->pspace = sal->pspace;
7183 gdb_assert (loc->pspace != NULL);
7184 loc->section = sal->section;
7185 loc->gdbarch = loc_gdbarch;
7186
7187 if (sal->symtab != NULL)
7188 loc->source_file = xstrdup (sal->symtab->filename);
7189 loc->line_number = sal->line;
7190
7191 set_breakpoint_location_function (loc,
7192 sal->explicit_pc || sal->explicit_line);
7193 return loc;
7194 }
7195 \f
7196
7197 /* Return 1 if LOC is pointing to a permanent breakpoint,
7198 return 0 otherwise. */
7199
7200 static int
7201 bp_loc_is_permanent (struct bp_location *loc)
7202 {
7203 int len;
7204 CORE_ADDR addr;
7205 const gdb_byte *bpoint;
7206 gdb_byte *target_mem;
7207 struct cleanup *cleanup;
7208 int retval = 0;
7209
7210 gdb_assert (loc != NULL);
7211
7212 addr = loc->address;
7213 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
7214
7215 /* Software breakpoints unsupported? */
7216 if (bpoint == NULL)
7217 return 0;
7218
7219 target_mem = alloca (len);
7220
7221 /* Enable the automatic memory restoration from breakpoints while
7222 we read the memory. Otherwise we could say about our temporary
7223 breakpoints they are permanent. */
7224 cleanup = save_current_space_and_thread ();
7225
7226 switch_to_program_space_and_thread (loc->pspace);
7227 make_show_memory_breakpoints_cleanup (0);
7228
7229 if (target_read_memory (loc->address, target_mem, len) == 0
7230 && memcmp (target_mem, bpoint, len) == 0)
7231 retval = 1;
7232
7233 do_cleanups (cleanup);
7234
7235 return retval;
7236 }
7237
7238
7239
7240 /* Create a breakpoint with SAL as location. Use ADDR_STRING
7241 as textual description of the location, and COND_STRING
7242 as condition expression. */
7243
7244 static void
7245 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
7246 struct symtabs_and_lines sals, char *addr_string,
7247 char *filter, char *cond_string,
7248 enum bptype type, enum bpdisp disposition,
7249 int thread, int task, int ignore_count,
7250 const struct breakpoint_ops *ops, int from_tty,
7251 int enabled, int internal, int display_canonical)
7252 {
7253 int i;
7254
7255 if (type == bp_hardware_breakpoint)
7256 {
7257 int target_resources_ok;
7258
7259 i = hw_breakpoint_used_count ();
7260 target_resources_ok =
7261 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
7262 i + 1, 0);
7263 if (target_resources_ok == 0)
7264 error (_("No hardware breakpoint support in the target."));
7265 else if (target_resources_ok < 0)
7266 error (_("Hardware breakpoints used exceeds limit."));
7267 }
7268
7269 gdb_assert (sals.nelts > 0);
7270
7271 for (i = 0; i < sals.nelts; ++i)
7272 {
7273 struct symtab_and_line sal = sals.sals[i];
7274 struct bp_location *loc;
7275
7276 if (from_tty)
7277 {
7278 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
7279 if (!loc_gdbarch)
7280 loc_gdbarch = gdbarch;
7281
7282 describe_other_breakpoints (loc_gdbarch,
7283 sal.pspace, sal.pc, sal.section, thread);
7284 }
7285
7286 if (i == 0)
7287 {
7288 init_raw_breakpoint (b, gdbarch, sal, type, ops);
7289 b->thread = thread;
7290 b->task = task;
7291
7292 b->cond_string = cond_string;
7293 b->ignore_count = ignore_count;
7294 b->enable_state = enabled ? bp_enabled : bp_disabled;
7295 b->disposition = disposition;
7296
7297 if (type == bp_static_tracepoint)
7298 {
7299 struct tracepoint *t = (struct tracepoint *) b;
7300 struct static_tracepoint_marker marker;
7301
7302 if (is_marker_spec (addr_string))
7303 {
7304 /* We already know the marker exists, otherwise, we
7305 wouldn't see a sal for it. */
7306 char *p = &addr_string[3];
7307 char *endp;
7308 char *marker_str;
7309
7310 p = skip_spaces (p);
7311
7312 endp = skip_to_space (p);
7313
7314 marker_str = savestring (p, endp - p);
7315 t->static_trace_marker_id = marker_str;
7316
7317 printf_filtered (_("Probed static tracepoint "
7318 "marker \"%s\"\n"),
7319 t->static_trace_marker_id);
7320 }
7321 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
7322 {
7323 t->static_trace_marker_id = xstrdup (marker.str_id);
7324 release_static_tracepoint_marker (&marker);
7325
7326 printf_filtered (_("Probed static tracepoint "
7327 "marker \"%s\"\n"),
7328 t->static_trace_marker_id);
7329 }
7330 else
7331 warning (_("Couldn't determine the static "
7332 "tracepoint marker to probe"));
7333 }
7334
7335 loc = b->loc;
7336 }
7337 else
7338 {
7339 loc = add_location_to_breakpoint (b, &sal);
7340 }
7341
7342 if (bp_loc_is_permanent (loc))
7343 make_breakpoint_permanent (b);
7344
7345 if (b->cond_string)
7346 {
7347 char *arg = b->cond_string;
7348 loc->cond = parse_exp_1 (&arg, block_for_pc (loc->address), 0);
7349 if (*arg)
7350 error (_("Garbage %s follows condition"), arg);
7351 }
7352 }
7353
7354 b->display_canonical = display_canonical;
7355 if (addr_string)
7356 b->addr_string = addr_string;
7357 else
7358 /* addr_string has to be used or breakpoint_re_set will delete
7359 me. */
7360 b->addr_string
7361 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7362 b->filter = filter;
7363 }
7364
7365 static void
7366 create_breakpoint_sal (struct gdbarch *gdbarch,
7367 struct symtabs_and_lines sals, char *addr_string,
7368 char *filter, char *cond_string,
7369 enum bptype type, enum bpdisp disposition,
7370 int thread, int task, int ignore_count,
7371 const struct breakpoint_ops *ops, int from_tty,
7372 int enabled, int internal, int display_canonical)
7373 {
7374 struct breakpoint *b;
7375 struct cleanup *old_chain;
7376
7377 if (is_tracepoint_type (type))
7378 {
7379 struct tracepoint *t;
7380
7381 t = XCNEW (struct tracepoint);
7382 b = &t->base;
7383 }
7384 else
7385 b = XNEW (struct breakpoint);
7386
7387 old_chain = make_cleanup (xfree, b);
7388
7389 init_breakpoint_sal (b, gdbarch,
7390 sals, addr_string,
7391 filter, cond_string,
7392 type, disposition,
7393 thread, task, ignore_count,
7394 ops, from_tty,
7395 enabled, internal, display_canonical);
7396 discard_cleanups (old_chain);
7397
7398 install_breakpoint (internal, b, 0);
7399 }
7400
7401 /* Add SALS.nelts breakpoints to the breakpoint table. For each
7402 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
7403 value. COND_STRING, if not NULL, specified the condition to be
7404 used for all breakpoints. Essentially the only case where
7405 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
7406 function. In that case, it's still not possible to specify
7407 separate conditions for different overloaded functions, so
7408 we take just a single condition string.
7409
7410 NOTE: If the function succeeds, the caller is expected to cleanup
7411 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
7412 array contents). If the function fails (error() is called), the
7413 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
7414 COND and SALS arrays and each of those arrays contents. */
7415
7416 static void
7417 create_breakpoints_sal (struct gdbarch *gdbarch,
7418 struct linespec_result *canonical,
7419 char *cond_string,
7420 enum bptype type, enum bpdisp disposition,
7421 int thread, int task, int ignore_count,
7422 const struct breakpoint_ops *ops, int from_tty,
7423 int enabled, int internal)
7424 {
7425 int i;
7426 struct linespec_sals *lsal;
7427
7428 if (canonical->pre_expanded)
7429 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
7430
7431 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
7432 {
7433 /* Note that 'addr_string' can be NULL in the case of a plain
7434 'break', without arguments. */
7435 char *addr_string = (canonical->addr_string
7436 ? xstrdup (canonical->addr_string)
7437 : NULL);
7438 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
7439 struct cleanup *inner = make_cleanup (xfree, addr_string);
7440
7441 make_cleanup (xfree, filter_string);
7442 create_breakpoint_sal (gdbarch, lsal->sals,
7443 addr_string,
7444 filter_string,
7445 cond_string, type, disposition,
7446 thread, task, ignore_count, ops,
7447 from_tty, enabled, internal,
7448 canonical->special_display);
7449 discard_cleanups (inner);
7450 }
7451 }
7452
7453 /* Parse ADDRESS which is assumed to be a SAL specification possibly
7454 followed by conditionals. On return, SALS contains an array of SAL
7455 addresses found. ADDR_STRING contains a vector of (canonical)
7456 address strings. ADDRESS points to the end of the SAL.
7457
7458 The array and the line spec strings are allocated on the heap, it is
7459 the caller's responsibility to free them. */
7460
7461 static void
7462 parse_breakpoint_sals (char **address,
7463 struct linespec_result *canonical)
7464 {
7465 char *addr_start = *address;
7466
7467 /* If no arg given, or if first arg is 'if ', use the default
7468 breakpoint. */
7469 if ((*address) == NULL
7470 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
7471 {
7472 /* The last displayed codepoint, if it's valid, is our default breakpoint
7473 address. */
7474 if (last_displayed_sal_is_valid ())
7475 {
7476 struct linespec_sals lsal;
7477 struct symtab_and_line sal;
7478
7479 init_sal (&sal); /* Initialize to zeroes. */
7480 lsal.sals.sals = (struct symtab_and_line *)
7481 xmalloc (sizeof (struct symtab_and_line));
7482
7483 /* Set sal's pspace, pc, symtab, and line to the values
7484 corresponding to the last call to print_frame_info. */
7485 get_last_displayed_sal (&sal);
7486 sal.section = find_pc_overlay (sal.pc);
7487
7488 /* "break" without arguments is equivalent to "break *PC"
7489 where PC is the last displayed codepoint's address. So
7490 make sure to set sal.explicit_pc to prevent GDB from
7491 trying to expand the list of sals to include all other
7492 instances with the same symtab and line. */
7493 sal.explicit_pc = 1;
7494
7495 lsal.sals.sals[0] = sal;
7496 lsal.sals.nelts = 1;
7497 lsal.canonical = NULL;
7498
7499 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
7500 }
7501 else
7502 error (_("No default breakpoint address now."));
7503 }
7504 else
7505 {
7506 /* Force almost all breakpoints to be in terms of the
7507 current_source_symtab (which is decode_line_1's default).
7508 This should produce the results we want almost all of the
7509 time while leaving default_breakpoint_* alone. */
7510 if (last_displayed_sal_is_valid ())
7511 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
7512 get_last_displayed_symtab (),
7513 get_last_displayed_line (),
7514 canonical, NULL, NULL);
7515 else
7516 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
7517 (struct symtab *) NULL, 0,
7518 canonical, NULL, NULL);
7519 }
7520 }
7521
7522
7523 /* Convert each SAL into a real PC. Verify that the PC can be
7524 inserted as a breakpoint. If it can't throw an error. */
7525
7526 static void
7527 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
7528 {
7529 int i;
7530
7531 for (i = 0; i < sals->nelts; i++)
7532 resolve_sal_pc (&sals->sals[i]);
7533 }
7534
7535 /* Fast tracepoints may have restrictions on valid locations. For
7536 instance, a fast tracepoint using a jump instead of a trap will
7537 likely have to overwrite more bytes than a trap would, and so can
7538 only be placed where the instruction is longer than the jump, or a
7539 multi-instruction sequence does not have a jump into the middle of
7540 it, etc. */
7541
7542 static void
7543 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
7544 struct symtabs_and_lines *sals)
7545 {
7546 int i, rslt;
7547 struct symtab_and_line *sal;
7548 char *msg;
7549 struct cleanup *old_chain;
7550
7551 for (i = 0; i < sals->nelts; i++)
7552 {
7553 struct gdbarch *sarch;
7554
7555 sal = &sals->sals[i];
7556
7557 sarch = get_sal_arch (*sal);
7558 /* We fall back to GDBARCH if there is no architecture
7559 associated with SAL. */
7560 if (sarch == NULL)
7561 sarch = gdbarch;
7562 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
7563 NULL, &msg);
7564 old_chain = make_cleanup (xfree, msg);
7565
7566 if (!rslt)
7567 error (_("May not have a fast tracepoint at 0x%s%s"),
7568 paddress (sarch, sal->pc), (msg ? msg : ""));
7569
7570 do_cleanups (old_chain);
7571 }
7572 }
7573
7574 /* Given TOK, a string specification of condition and thread, as
7575 accepted by the 'break' command, extract the condition
7576 string and thread number and set *COND_STRING and *THREAD.
7577 PC identifies the context at which the condition should be parsed.
7578 If no condition is found, *COND_STRING is set to NULL.
7579 If no thread is found, *THREAD is set to -1. */
7580 static void
7581 find_condition_and_thread (char *tok, CORE_ADDR pc,
7582 char **cond_string, int *thread, int *task)
7583 {
7584 *cond_string = NULL;
7585 *thread = -1;
7586 while (tok && *tok)
7587 {
7588 char *end_tok;
7589 int toklen;
7590 char *cond_start = NULL;
7591 char *cond_end = NULL;
7592
7593 tok = skip_spaces (tok);
7594
7595 end_tok = skip_to_space (tok);
7596
7597 toklen = end_tok - tok;
7598
7599 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
7600 {
7601 struct expression *expr;
7602
7603 tok = cond_start = end_tok + 1;
7604 expr = parse_exp_1 (&tok, block_for_pc (pc), 0);
7605 xfree (expr);
7606 cond_end = tok;
7607 *cond_string = savestring (cond_start,
7608 cond_end - cond_start);
7609 }
7610 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
7611 {
7612 char *tmptok;
7613
7614 tok = end_tok + 1;
7615 tmptok = tok;
7616 *thread = strtol (tok, &tok, 0);
7617 if (tok == tmptok)
7618 error (_("Junk after thread keyword."));
7619 if (!valid_thread_id (*thread))
7620 error (_("Unknown thread %d."), *thread);
7621 }
7622 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
7623 {
7624 char *tmptok;
7625
7626 tok = end_tok + 1;
7627 tmptok = tok;
7628 *task = strtol (tok, &tok, 0);
7629 if (tok == tmptok)
7630 error (_("Junk after task keyword."));
7631 if (!valid_task_id (*task))
7632 error (_("Unknown task %d."), *task);
7633 }
7634 else
7635 error (_("Junk at end of arguments."));
7636 }
7637 }
7638
7639 /* Decode a static tracepoint marker spec. */
7640
7641 static struct symtabs_and_lines
7642 decode_static_tracepoint_spec (char **arg_p)
7643 {
7644 VEC(static_tracepoint_marker_p) *markers = NULL;
7645 struct symtabs_and_lines sals;
7646 struct symtab_and_line sal;
7647 struct symbol *sym;
7648 struct cleanup *old_chain;
7649 char *p = &(*arg_p)[3];
7650 char *endp;
7651 char *marker_str;
7652 int i;
7653
7654 p = skip_spaces (p);
7655
7656 endp = skip_to_space (p);
7657
7658 marker_str = savestring (p, endp - p);
7659 old_chain = make_cleanup (xfree, marker_str);
7660
7661 markers = target_static_tracepoint_markers_by_strid (marker_str);
7662 if (VEC_empty(static_tracepoint_marker_p, markers))
7663 error (_("No known static tracepoint marker named %s"), marker_str);
7664
7665 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
7666 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
7667
7668 for (i = 0; i < sals.nelts; i++)
7669 {
7670 struct static_tracepoint_marker *marker;
7671
7672 marker = VEC_index (static_tracepoint_marker_p, markers, i);
7673
7674 init_sal (&sals.sals[i]);
7675
7676 sals.sals[i] = find_pc_line (marker->address, 0);
7677 sals.sals[i].pc = marker->address;
7678
7679 release_static_tracepoint_marker (marker);
7680 }
7681
7682 do_cleanups (old_chain);
7683
7684 *arg_p = endp;
7685 return sals;
7686 }
7687
7688 /* Set a breakpoint. This function is shared between CLI and MI
7689 functions for setting a breakpoint. This function has two major
7690 modes of operations, selected by the PARSE_CONDITION_AND_THREAD
7691 parameter. If non-zero, the function will parse arg, extracting
7692 breakpoint location, address and thread. Otherwise, ARG is just
7693 the location of breakpoint, with condition and thread specified by
7694 the COND_STRING and THREAD parameters. If INTERNAL is non-zero,
7695 the breakpoint number will be allocated from the internal
7696 breakpoint count. Returns true if any breakpoint was created;
7697 false otherwise. */
7698
7699 int
7700 create_breakpoint (struct gdbarch *gdbarch,
7701 char *arg, char *cond_string, int thread,
7702 int parse_condition_and_thread,
7703 int tempflag, enum bptype type_wanted,
7704 int ignore_count,
7705 enum auto_boolean pending_break_support,
7706 const struct breakpoint_ops *ops,
7707 int from_tty, int enabled, int internal)
7708 {
7709 volatile struct gdb_exception e;
7710 char *copy_arg = NULL;
7711 char *addr_start = arg;
7712 struct linespec_result canonical;
7713 struct cleanup *old_chain;
7714 struct cleanup *bkpt_chain = NULL;
7715 int i;
7716 int pending = 0;
7717 int task = 0;
7718 int prev_bkpt_count = breakpoint_count;
7719
7720 gdb_assert (ops != NULL);
7721
7722 init_linespec_result (&canonical);
7723
7724 if (type_wanted == bp_static_tracepoint && is_marker_spec (arg))
7725 {
7726 int i;
7727 struct linespec_sals lsal;
7728
7729 lsal.sals = decode_static_tracepoint_spec (&arg);
7730
7731 copy_arg = savestring (addr_start, arg - addr_start);
7732
7733 canonical.addr_string = xstrdup (copy_arg);
7734 lsal.canonical = xstrdup (copy_arg);
7735 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
7736
7737 goto done;
7738 }
7739
7740 TRY_CATCH (e, RETURN_MASK_ALL)
7741 {
7742 parse_breakpoint_sals (&arg, &canonical);
7743 }
7744
7745 /* If caller is interested in rc value from parse, set value. */
7746 switch (e.reason)
7747 {
7748 case RETURN_QUIT:
7749 throw_exception (e);
7750 case RETURN_ERROR:
7751 switch (e.error)
7752 {
7753 case NOT_FOUND_ERROR:
7754
7755 /* If pending breakpoint support is turned off, throw
7756 error. */
7757
7758 if (pending_break_support == AUTO_BOOLEAN_FALSE)
7759 throw_exception (e);
7760
7761 exception_print (gdb_stderr, e);
7762
7763 /* If pending breakpoint support is auto query and the user
7764 selects no, then simply return the error code. */
7765 if (pending_break_support == AUTO_BOOLEAN_AUTO
7766 && !nquery (_("Make %s pending on future shared library load? "),
7767 bptype_string (type_wanted)))
7768 return 0;
7769
7770 /* At this point, either the user was queried about setting
7771 a pending breakpoint and selected yes, or pending
7772 breakpoint behavior is on and thus a pending breakpoint
7773 is defaulted on behalf of the user. */
7774 {
7775 struct linespec_sals lsal;
7776
7777 copy_arg = xstrdup (addr_start);
7778 lsal.canonical = xstrdup (copy_arg);
7779 lsal.sals.nelts = 1;
7780 lsal.sals.sals = XNEW (struct symtab_and_line);
7781 init_sal (&lsal.sals.sals[0]);
7782 pending = 1;
7783 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
7784 }
7785 break;
7786 default:
7787 throw_exception (e);
7788 }
7789 break;
7790 default:
7791 if (VEC_empty (linespec_sals, canonical.sals))
7792 return 0;
7793 }
7794
7795 done:
7796
7797 /* Create a chain of things that always need to be cleaned up. */
7798 old_chain = make_cleanup_destroy_linespec_result (&canonical);
7799
7800 /* ----------------------------- SNIP -----------------------------
7801 Anything added to the cleanup chain beyond this point is assumed
7802 to be part of a breakpoint. If the breakpoint create succeeds
7803 then the memory is not reclaimed. */
7804 bkpt_chain = make_cleanup (null_cleanup, 0);
7805
7806 /* Resolve all line numbers to PC's and verify that the addresses
7807 are ok for the target. */
7808 if (!pending)
7809 {
7810 int ix;
7811 struct linespec_sals *iter;
7812
7813 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
7814 breakpoint_sals_to_pc (&iter->sals);
7815 }
7816
7817 /* Fast tracepoints may have additional restrictions on location. */
7818 if (!pending && type_wanted == bp_fast_tracepoint)
7819 {
7820 int ix;
7821 struct linespec_sals *iter;
7822
7823 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
7824 check_fast_tracepoint_sals (gdbarch, &iter->sals);
7825 }
7826
7827 /* Verify that condition can be parsed, before setting any
7828 breakpoints. Allocate a separate condition expression for each
7829 breakpoint. */
7830 if (!pending)
7831 {
7832 struct linespec_sals *lsal;
7833
7834 lsal = VEC_index (linespec_sals, canonical.sals, 0);
7835
7836 if (parse_condition_and_thread)
7837 {
7838 /* Here we only parse 'arg' to separate condition
7839 from thread number, so parsing in context of first
7840 sal is OK. When setting the breakpoint we'll
7841 re-parse it in context of each sal. */
7842 cond_string = NULL;
7843 thread = -1;
7844 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
7845 &thread, &task);
7846 if (cond_string)
7847 make_cleanup (xfree, cond_string);
7848 }
7849 else
7850 {
7851 /* Create a private copy of condition string. */
7852 if (cond_string)
7853 {
7854 cond_string = xstrdup (cond_string);
7855 make_cleanup (xfree, cond_string);
7856 }
7857 }
7858
7859 /* If the user is creating a static tracepoint by marker id
7860 (strace -m MARKER_ID), then store the sals index, so that
7861 breakpoint_re_set can try to match up which of the newly
7862 found markers corresponds to this one, and, don't try to
7863 expand multiple locations for each sal, given than SALS
7864 already should contain all sals for MARKER_ID. */
7865 if (type_wanted == bp_static_tracepoint
7866 && is_marker_spec (copy_arg))
7867 {
7868 int i;
7869
7870 for (i = 0; i < lsal->sals.nelts; ++i)
7871 {
7872 struct symtabs_and_lines expanded;
7873 struct tracepoint *tp;
7874 struct cleanup *old_chain;
7875 char *addr_string;
7876
7877 expanded.nelts = 1;
7878 expanded.sals = &lsal->sals.sals[i];
7879
7880 addr_string = xstrdup (canonical.addr_string);
7881 old_chain = make_cleanup (xfree, addr_string);
7882
7883 tp = XCNEW (struct tracepoint);
7884 init_breakpoint_sal (&tp->base, gdbarch, expanded,
7885 addr_string, NULL,
7886 cond_string, type_wanted,
7887 tempflag ? disp_del : disp_donttouch,
7888 thread, task, ignore_count, ops,
7889 from_tty, enabled, internal,
7890 canonical.special_display);
7891 /* Given that its possible to have multiple markers with
7892 the same string id, if the user is creating a static
7893 tracepoint by marker id ("strace -m MARKER_ID"), then
7894 store the sals index, so that breakpoint_re_set can
7895 try to match up which of the newly found markers
7896 corresponds to this one */
7897 tp->static_trace_marker_id_idx = i;
7898
7899 install_breakpoint (internal, &tp->base, 0);
7900
7901 discard_cleanups (old_chain);
7902 }
7903 }
7904 else
7905 create_breakpoints_sal (gdbarch, &canonical, cond_string,
7906 type_wanted,
7907 tempflag ? disp_del : disp_donttouch,
7908 thread, task, ignore_count, ops, from_tty,
7909 enabled, internal);
7910 }
7911 else
7912 {
7913 struct breakpoint *b;
7914
7915 make_cleanup (xfree, copy_arg);
7916
7917 if (is_tracepoint_type (type_wanted))
7918 {
7919 struct tracepoint *t;
7920
7921 t = XCNEW (struct tracepoint);
7922 b = &t->base;
7923 }
7924 else
7925 b = XNEW (struct breakpoint);
7926
7927 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
7928
7929 b->addr_string = copy_arg;
7930 b->cond_string = NULL;
7931 b->ignore_count = ignore_count;
7932 b->disposition = tempflag ? disp_del : disp_donttouch;
7933 b->condition_not_parsed = 1;
7934 b->enable_state = enabled ? bp_enabled : bp_disabled;
7935 if ((type_wanted != bp_breakpoint
7936 && type_wanted != bp_hardware_breakpoint) || thread != -1)
7937 b->pspace = current_program_space;
7938
7939 install_breakpoint (internal, b, 0);
7940 }
7941
7942 if (VEC_length (linespec_sals, canonical.sals) > 1)
7943 {
7944 warning (_("Multiple breakpoints were set.\nUse the "
7945 "\"delete\" command to delete unwanted breakpoints."));
7946 prev_breakpoint_count = prev_bkpt_count;
7947 }
7948
7949 /* That's it. Discard the cleanups for data inserted into the
7950 breakpoint. */
7951 discard_cleanups (bkpt_chain);
7952 /* But cleanup everything else. */
7953 do_cleanups (old_chain);
7954
7955 /* error call may happen here - have BKPT_CHAIN already discarded. */
7956 update_global_location_list (1);
7957
7958 return 1;
7959 }
7960
7961 /* Set a breakpoint.
7962 ARG is a string describing breakpoint address,
7963 condition, and thread.
7964 FLAG specifies if a breakpoint is hardware on,
7965 and if breakpoint is temporary, using BP_HARDWARE_FLAG
7966 and BP_TEMPFLAG. */
7967
7968 static void
7969 break_command_1 (char *arg, int flag, int from_tty)
7970 {
7971 int tempflag = flag & BP_TEMPFLAG;
7972 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
7973 ? bp_hardware_breakpoint
7974 : bp_breakpoint);
7975
7976 create_breakpoint (get_current_arch (),
7977 arg,
7978 NULL, 0, 1 /* parse arg */,
7979 tempflag, type_wanted,
7980 0 /* Ignore count */,
7981 pending_break_support,
7982 &bkpt_breakpoint_ops,
7983 from_tty,
7984 1 /* enabled */,
7985 0 /* internal */);
7986 }
7987
7988 /* Helper function for break_command_1 and disassemble_command. */
7989
7990 void
7991 resolve_sal_pc (struct symtab_and_line *sal)
7992 {
7993 CORE_ADDR pc;
7994
7995 if (sal->pc == 0 && sal->symtab != NULL)
7996 {
7997 if (!find_line_pc (sal->symtab, sal->line, &pc))
7998 error (_("No line %d in file \"%s\"."),
7999 sal->line, sal->symtab->filename);
8000 sal->pc = pc;
8001
8002 /* If this SAL corresponds to a breakpoint inserted using a line
8003 number, then skip the function prologue if necessary. */
8004 if (sal->explicit_line)
8005 skip_prologue_sal (sal);
8006 }
8007
8008 if (sal->section == 0 && sal->symtab != NULL)
8009 {
8010 struct blockvector *bv;
8011 struct block *b;
8012 struct symbol *sym;
8013
8014 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
8015 if (bv != NULL)
8016 {
8017 sym = block_linkage_function (b);
8018 if (sym != NULL)
8019 {
8020 fixup_symbol_section (sym, sal->symtab->objfile);
8021 sal->section = SYMBOL_OBJ_SECTION (sym);
8022 }
8023 else
8024 {
8025 /* It really is worthwhile to have the section, so we'll
8026 just have to look harder. This case can be executed
8027 if we have line numbers but no functions (as can
8028 happen in assembly source). */
8029
8030 struct minimal_symbol *msym;
8031 struct cleanup *old_chain = save_current_space_and_thread ();
8032
8033 switch_to_program_space_and_thread (sal->pspace);
8034
8035 msym = lookup_minimal_symbol_by_pc (sal->pc);
8036 if (msym)
8037 sal->section = SYMBOL_OBJ_SECTION (msym);
8038
8039 do_cleanups (old_chain);
8040 }
8041 }
8042 }
8043 }
8044
8045 void
8046 break_command (char *arg, int from_tty)
8047 {
8048 break_command_1 (arg, 0, from_tty);
8049 }
8050
8051 void
8052 tbreak_command (char *arg, int from_tty)
8053 {
8054 break_command_1 (arg, BP_TEMPFLAG, from_tty);
8055 }
8056
8057 static void
8058 hbreak_command (char *arg, int from_tty)
8059 {
8060 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
8061 }
8062
8063 static void
8064 thbreak_command (char *arg, int from_tty)
8065 {
8066 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
8067 }
8068
8069 static void
8070 stop_command (char *arg, int from_tty)
8071 {
8072 printf_filtered (_("Specify the type of breakpoint to set.\n\
8073 Usage: stop in <function | address>\n\
8074 stop at <line>\n"));
8075 }
8076
8077 static void
8078 stopin_command (char *arg, int from_tty)
8079 {
8080 int badInput = 0;
8081
8082 if (arg == (char *) NULL)
8083 badInput = 1;
8084 else if (*arg != '*')
8085 {
8086 char *argptr = arg;
8087 int hasColon = 0;
8088
8089 /* Look for a ':'. If this is a line number specification, then
8090 say it is bad, otherwise, it should be an address or
8091 function/method name. */
8092 while (*argptr && !hasColon)
8093 {
8094 hasColon = (*argptr == ':');
8095 argptr++;
8096 }
8097
8098 if (hasColon)
8099 badInput = (*argptr != ':'); /* Not a class::method */
8100 else
8101 badInput = isdigit (*arg); /* a simple line number */
8102 }
8103
8104 if (badInput)
8105 printf_filtered (_("Usage: stop in <function | address>\n"));
8106 else
8107 break_command_1 (arg, 0, from_tty);
8108 }
8109
8110 static void
8111 stopat_command (char *arg, int from_tty)
8112 {
8113 int badInput = 0;
8114
8115 if (arg == (char *) NULL || *arg == '*') /* no line number */
8116 badInput = 1;
8117 else
8118 {
8119 char *argptr = arg;
8120 int hasColon = 0;
8121
8122 /* Look for a ':'. If there is a '::' then get out, otherwise
8123 it is probably a line number. */
8124 while (*argptr && !hasColon)
8125 {
8126 hasColon = (*argptr == ':');
8127 argptr++;
8128 }
8129
8130 if (hasColon)
8131 badInput = (*argptr == ':'); /* we have class::method */
8132 else
8133 badInput = !isdigit (*arg); /* not a line number */
8134 }
8135
8136 if (badInput)
8137 printf_filtered (_("Usage: stop at <line>\n"));
8138 else
8139 break_command_1 (arg, 0, from_tty);
8140 }
8141
8142 /* Implement the "breakpoint_hit" breakpoint_ops method for
8143 ranged breakpoints. */
8144
8145 static int
8146 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
8147 struct address_space *aspace,
8148 CORE_ADDR bp_addr)
8149 {
8150 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
8151 bl->length, aspace, bp_addr);
8152 }
8153
8154 /* Implement the "resources_needed" breakpoint_ops method for
8155 ranged breakpoints. */
8156
8157 static int
8158 resources_needed_ranged_breakpoint (const struct bp_location *bl)
8159 {
8160 return target_ranged_break_num_registers ();
8161 }
8162
8163 /* Implement the "print_it" breakpoint_ops method for
8164 ranged breakpoints. */
8165
8166 static enum print_stop_action
8167 print_it_ranged_breakpoint (bpstat bs)
8168 {
8169 struct breakpoint *b = bs->breakpoint_at;
8170 struct bp_location *bl = b->loc;
8171 struct ui_out *uiout = current_uiout;
8172
8173 gdb_assert (b->type == bp_hardware_breakpoint);
8174
8175 /* Ranged breakpoints have only one location. */
8176 gdb_assert (bl && bl->next == NULL);
8177
8178 annotate_breakpoint (b->number);
8179 if (b->disposition == disp_del)
8180 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
8181 else
8182 ui_out_text (uiout, "\nRanged breakpoint ");
8183 if (ui_out_is_mi_like_p (uiout))
8184 {
8185 ui_out_field_string (uiout, "reason",
8186 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
8187 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8188 }
8189 ui_out_field_int (uiout, "bkptno", b->number);
8190 ui_out_text (uiout, ", ");
8191
8192 return PRINT_SRC_AND_LOC;
8193 }
8194
8195 /* Implement the "print_one" breakpoint_ops method for
8196 ranged breakpoints. */
8197
8198 static void
8199 print_one_ranged_breakpoint (struct breakpoint *b,
8200 struct bp_location **last_loc)
8201 {
8202 struct bp_location *bl = b->loc;
8203 struct value_print_options opts;
8204 struct ui_out *uiout = current_uiout;
8205
8206 /* Ranged breakpoints have only one location. */
8207 gdb_assert (bl && bl->next == NULL);
8208
8209 get_user_print_options (&opts);
8210
8211 if (opts.addressprint)
8212 /* We don't print the address range here, it will be printed later
8213 by print_one_detail_ranged_breakpoint. */
8214 ui_out_field_skip (uiout, "addr");
8215 annotate_field (5);
8216 print_breakpoint_location (b, bl);
8217 *last_loc = bl;
8218 }
8219
8220 /* Implement the "print_one_detail" breakpoint_ops method for
8221 ranged breakpoints. */
8222
8223 static void
8224 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
8225 struct ui_out *uiout)
8226 {
8227 CORE_ADDR address_start, address_end;
8228 struct bp_location *bl = b->loc;
8229 struct ui_stream *stb = ui_out_stream_new (uiout);
8230 struct cleanup *cleanup = make_cleanup_ui_out_stream_delete (stb);
8231
8232 gdb_assert (bl);
8233
8234 address_start = bl->address;
8235 address_end = address_start + bl->length - 1;
8236
8237 ui_out_text (uiout, "\taddress range: ");
8238 fprintf_unfiltered (stb->stream, "[%s, %s]",
8239 print_core_address (bl->gdbarch, address_start),
8240 print_core_address (bl->gdbarch, address_end));
8241 ui_out_field_stream (uiout, "addr", stb);
8242 ui_out_text (uiout, "\n");
8243
8244 do_cleanups (cleanup);
8245 }
8246
8247 /* Implement the "print_mention" breakpoint_ops method for
8248 ranged breakpoints. */
8249
8250 static void
8251 print_mention_ranged_breakpoint (struct breakpoint *b)
8252 {
8253 struct bp_location *bl = b->loc;
8254 struct ui_out *uiout = current_uiout;
8255
8256 gdb_assert (bl);
8257 gdb_assert (b->type == bp_hardware_breakpoint);
8258
8259 if (ui_out_is_mi_like_p (uiout))
8260 return;
8261
8262 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
8263 b->number, paddress (bl->gdbarch, bl->address),
8264 paddress (bl->gdbarch, bl->address + bl->length - 1));
8265 }
8266
8267 /* Implement the "print_recreate" breakpoint_ops method for
8268 ranged breakpoints. */
8269
8270 static void
8271 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
8272 {
8273 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
8274 b->addr_string_range_end);
8275 print_recreate_thread (b, fp);
8276 }
8277
8278 /* The breakpoint_ops structure to be used in ranged breakpoints. */
8279
8280 static struct breakpoint_ops ranged_breakpoint_ops;
8281
8282 /* Find the address where the end of the breakpoint range should be
8283 placed, given the SAL of the end of the range. This is so that if
8284 the user provides a line number, the end of the range is set to the
8285 last instruction of the given line. */
8286
8287 static CORE_ADDR
8288 find_breakpoint_range_end (struct symtab_and_line sal)
8289 {
8290 CORE_ADDR end;
8291
8292 /* If the user provided a PC value, use it. Otherwise,
8293 find the address of the end of the given location. */
8294 if (sal.explicit_pc)
8295 end = sal.pc;
8296 else
8297 {
8298 int ret;
8299 CORE_ADDR start;
8300
8301 ret = find_line_pc_range (sal, &start, &end);
8302 if (!ret)
8303 error (_("Could not find location of the end of the range."));
8304
8305 /* find_line_pc_range returns the start of the next line. */
8306 end--;
8307 }
8308
8309 return end;
8310 }
8311
8312 /* Implement the "break-range" CLI command. */
8313
8314 static void
8315 break_range_command (char *arg, int from_tty)
8316 {
8317 char *arg_start, *addr_string_start, *addr_string_end;
8318 struct linespec_result canonical_start, canonical_end;
8319 int bp_count, can_use_bp, length;
8320 CORE_ADDR end;
8321 struct breakpoint *b;
8322 struct symtab_and_line sal_start, sal_end;
8323 struct cleanup *cleanup_bkpt;
8324 struct linespec_sals *lsal_start, *lsal_end;
8325
8326 /* We don't support software ranged breakpoints. */
8327 if (target_ranged_break_num_registers () < 0)
8328 error (_("This target does not support hardware ranged breakpoints."));
8329
8330 bp_count = hw_breakpoint_used_count ();
8331 bp_count += target_ranged_break_num_registers ();
8332 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8333 bp_count, 0);
8334 if (can_use_bp < 0)
8335 error (_("Hardware breakpoints used exceeds limit."));
8336
8337 arg = skip_spaces (arg);
8338 if (arg == NULL || arg[0] == '\0')
8339 error(_("No address range specified."));
8340
8341 init_linespec_result (&canonical_start);
8342
8343 arg_start = arg;
8344 parse_breakpoint_sals (&arg, &canonical_start);
8345
8346 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
8347
8348 if (arg[0] != ',')
8349 error (_("Too few arguments."));
8350 else if (VEC_empty (linespec_sals, canonical_start.sals))
8351 error (_("Could not find location of the beginning of the range."));
8352
8353 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
8354
8355 if (VEC_length (linespec_sals, canonical_start.sals) > 1
8356 || lsal_start->sals.nelts != 1)
8357 error (_("Cannot create a ranged breakpoint with multiple locations."));
8358
8359 sal_start = lsal_start->sals.sals[0];
8360 addr_string_start = savestring (arg_start, arg - arg_start);
8361 make_cleanup (xfree, addr_string_start);
8362
8363 arg++; /* Skip the comma. */
8364 arg = skip_spaces (arg);
8365
8366 /* Parse the end location. */
8367
8368 init_linespec_result (&canonical_end);
8369 arg_start = arg;
8370
8371 /* We call decode_line_full directly here instead of using
8372 parse_breakpoint_sals because we need to specify the start location's
8373 symtab and line as the default symtab and line for the end of the
8374 range. This makes it possible to have ranges like "foo.c:27, +14",
8375 where +14 means 14 lines from the start location. */
8376 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
8377 sal_start.symtab, sal_start.line,
8378 &canonical_end, NULL, NULL);
8379
8380 make_cleanup_destroy_linespec_result (&canonical_end);
8381
8382 if (VEC_empty (linespec_sals, canonical_end.sals))
8383 error (_("Could not find location of the end of the range."));
8384
8385 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
8386 if (VEC_length (linespec_sals, canonical_end.sals) > 1
8387 || lsal_end->sals.nelts != 1)
8388 error (_("Cannot create a ranged breakpoint with multiple locations."));
8389
8390 sal_end = lsal_end->sals.sals[0];
8391 addr_string_end = savestring (arg_start, arg - arg_start);
8392 make_cleanup (xfree, addr_string_end);
8393
8394 end = find_breakpoint_range_end (sal_end);
8395 if (sal_start.pc > end)
8396 error (_("Invalid address range, end precedes start."));
8397
8398 length = end - sal_start.pc + 1;
8399 if (length < 0)
8400 /* Length overflowed. */
8401 error (_("Address range too large."));
8402 else if (length == 1)
8403 {
8404 /* This range is simple enough to be handled by
8405 the `hbreak' command. */
8406 hbreak_command (addr_string_start, 1);
8407
8408 do_cleanups (cleanup_bkpt);
8409
8410 return;
8411 }
8412
8413 /* Now set up the breakpoint. */
8414 b = set_raw_breakpoint (get_current_arch (), sal_start,
8415 bp_hardware_breakpoint, &ranged_breakpoint_ops);
8416 set_breakpoint_count (breakpoint_count + 1);
8417 b->number = breakpoint_count;
8418 b->disposition = disp_donttouch;
8419 b->addr_string = xstrdup (addr_string_start);
8420 b->addr_string_range_end = xstrdup (addr_string_end);
8421 b->loc->length = length;
8422
8423 do_cleanups (cleanup_bkpt);
8424
8425 mention (b);
8426 observer_notify_breakpoint_created (b);
8427 update_global_location_list (1);
8428 }
8429
8430 /* Return non-zero if EXP is verified as constant. Returned zero
8431 means EXP is variable. Also the constant detection may fail for
8432 some constant expressions and in such case still falsely return
8433 zero. */
8434 static int
8435 watchpoint_exp_is_const (const struct expression *exp)
8436 {
8437 int i = exp->nelts;
8438
8439 while (i > 0)
8440 {
8441 int oplenp, argsp;
8442
8443 /* We are only interested in the descriptor of each element. */
8444 operator_length (exp, i, &oplenp, &argsp);
8445 i -= oplenp;
8446
8447 switch (exp->elts[i].opcode)
8448 {
8449 case BINOP_ADD:
8450 case BINOP_SUB:
8451 case BINOP_MUL:
8452 case BINOP_DIV:
8453 case BINOP_REM:
8454 case BINOP_MOD:
8455 case BINOP_LSH:
8456 case BINOP_RSH:
8457 case BINOP_LOGICAL_AND:
8458 case BINOP_LOGICAL_OR:
8459 case BINOP_BITWISE_AND:
8460 case BINOP_BITWISE_IOR:
8461 case BINOP_BITWISE_XOR:
8462 case BINOP_EQUAL:
8463 case BINOP_NOTEQUAL:
8464 case BINOP_LESS:
8465 case BINOP_GTR:
8466 case BINOP_LEQ:
8467 case BINOP_GEQ:
8468 case BINOP_REPEAT:
8469 case BINOP_COMMA:
8470 case BINOP_EXP:
8471 case BINOP_MIN:
8472 case BINOP_MAX:
8473 case BINOP_INTDIV:
8474 case BINOP_CONCAT:
8475 case BINOP_IN:
8476 case BINOP_RANGE:
8477 case TERNOP_COND:
8478 case TERNOP_SLICE:
8479 case TERNOP_SLICE_COUNT:
8480
8481 case OP_LONG:
8482 case OP_DOUBLE:
8483 case OP_DECFLOAT:
8484 case OP_LAST:
8485 case OP_COMPLEX:
8486 case OP_STRING:
8487 case OP_BITSTRING:
8488 case OP_ARRAY:
8489 case OP_TYPE:
8490 case OP_NAME:
8491 case OP_OBJC_NSSTRING:
8492
8493 case UNOP_NEG:
8494 case UNOP_LOGICAL_NOT:
8495 case UNOP_COMPLEMENT:
8496 case UNOP_ADDR:
8497 case UNOP_HIGH:
8498 /* Unary, binary and ternary operators: We have to check
8499 their operands. If they are constant, then so is the
8500 result of that operation. For instance, if A and B are
8501 determined to be constants, then so is "A + B".
8502
8503 UNOP_IND is one exception to the rule above, because the
8504 value of *ADDR is not necessarily a constant, even when
8505 ADDR is. */
8506 break;
8507
8508 case OP_VAR_VALUE:
8509 /* Check whether the associated symbol is a constant.
8510
8511 We use SYMBOL_CLASS rather than TYPE_CONST because it's
8512 possible that a buggy compiler could mark a variable as
8513 constant even when it is not, and TYPE_CONST would return
8514 true in this case, while SYMBOL_CLASS wouldn't.
8515
8516 We also have to check for function symbols because they
8517 are always constant. */
8518 {
8519 struct symbol *s = exp->elts[i + 2].symbol;
8520
8521 if (SYMBOL_CLASS (s) != LOC_BLOCK
8522 && SYMBOL_CLASS (s) != LOC_CONST
8523 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
8524 return 0;
8525 break;
8526 }
8527
8528 /* The default action is to return 0 because we are using
8529 the optimistic approach here: If we don't know something,
8530 then it is not a constant. */
8531 default:
8532 return 0;
8533 }
8534 }
8535
8536 return 1;
8537 }
8538
8539 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
8540
8541 static void
8542 dtor_watchpoint (struct breakpoint *self)
8543 {
8544 struct watchpoint *w = (struct watchpoint *) self;
8545
8546 xfree (w->cond_exp);
8547 xfree (w->exp);
8548 xfree (w->exp_string);
8549 xfree (w->exp_string_reparse);
8550 value_free (w->val);
8551
8552 base_breakpoint_ops.dtor (self);
8553 }
8554
8555 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
8556
8557 static void
8558 re_set_watchpoint (struct breakpoint *b)
8559 {
8560 struct watchpoint *w = (struct watchpoint *) b;
8561
8562 /* Watchpoint can be either on expression using entirely global
8563 variables, or it can be on local variables.
8564
8565 Watchpoints of the first kind are never auto-deleted, and even
8566 persist across program restarts. Since they can use variables
8567 from shared libraries, we need to reparse expression as libraries
8568 are loaded and unloaded.
8569
8570 Watchpoints on local variables can also change meaning as result
8571 of solib event. For example, if a watchpoint uses both a local
8572 and a global variables in expression, it's a local watchpoint,
8573 but unloading of a shared library will make the expression
8574 invalid. This is not a very common use case, but we still
8575 re-evaluate expression, to avoid surprises to the user.
8576
8577 Note that for local watchpoints, we re-evaluate it only if
8578 watchpoints frame id is still valid. If it's not, it means the
8579 watchpoint is out of scope and will be deleted soon. In fact,
8580 I'm not sure we'll ever be called in this case.
8581
8582 If a local watchpoint's frame id is still valid, then
8583 w->exp_valid_block is likewise valid, and we can safely use it.
8584
8585 Don't do anything about disabled watchpoints, since they will be
8586 reevaluated again when enabled. */
8587 update_watchpoint (w, 1 /* reparse */);
8588 }
8589
8590 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
8591
8592 static int
8593 insert_watchpoint (struct bp_location *bl)
8594 {
8595 struct watchpoint *w = (struct watchpoint *) bl->owner;
8596 int length = w->exact ? 1 : bl->length;
8597
8598 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
8599 w->cond_exp);
8600 }
8601
8602 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
8603
8604 static int
8605 remove_watchpoint (struct bp_location *bl)
8606 {
8607 struct watchpoint *w = (struct watchpoint *) bl->owner;
8608 int length = w->exact ? 1 : bl->length;
8609
8610 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
8611 w->cond_exp);
8612 }
8613
8614 static int
8615 breakpoint_hit_watchpoint (const struct bp_location *bl,
8616 struct address_space *aspace, CORE_ADDR bp_addr)
8617 {
8618 struct breakpoint *b = bl->owner;
8619 struct watchpoint *w = (struct watchpoint *) b;
8620
8621 /* Continuable hardware watchpoints are treated as non-existent if the
8622 reason we stopped wasn't a hardware watchpoint (we didn't stop on
8623 some data address). Otherwise gdb won't stop on a break instruction
8624 in the code (not from a breakpoint) when a hardware watchpoint has
8625 been defined. Also skip watchpoints which we know did not trigger
8626 (did not match the data address). */
8627 if (is_hardware_watchpoint (b)
8628 && w->watchpoint_triggered == watch_triggered_no)
8629 return 0;
8630
8631 return 1;
8632 }
8633
8634 static void
8635 check_status_watchpoint (bpstat bs)
8636 {
8637 gdb_assert (is_watchpoint (bs->breakpoint_at));
8638
8639 bpstat_check_watchpoint (bs);
8640 }
8641
8642 /* Implement the "resources_needed" breakpoint_ops method for
8643 hardware watchpoints. */
8644
8645 static int
8646 resources_needed_watchpoint (const struct bp_location *bl)
8647 {
8648 struct watchpoint *w = (struct watchpoint *) bl->owner;
8649 int length = w->exact? 1 : bl->length;
8650
8651 return target_region_ok_for_hw_watchpoint (bl->address, length);
8652 }
8653
8654 /* Implement the "works_in_software_mode" breakpoint_ops method for
8655 hardware watchpoints. */
8656
8657 static int
8658 works_in_software_mode_watchpoint (const struct breakpoint *b)
8659 {
8660 /* Read and access watchpoints only work with hardware support. */
8661 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
8662 }
8663
8664 static enum print_stop_action
8665 print_it_watchpoint (bpstat bs)
8666 {
8667 struct cleanup *old_chain;
8668 struct breakpoint *b;
8669 const struct bp_location *bl;
8670 struct ui_stream *stb;
8671 enum print_stop_action result;
8672 struct watchpoint *w;
8673 struct ui_out *uiout = current_uiout;
8674
8675 gdb_assert (bs->bp_location_at != NULL);
8676
8677 bl = bs->bp_location_at;
8678 b = bs->breakpoint_at;
8679 w = (struct watchpoint *) b;
8680
8681 stb = ui_out_stream_new (uiout);
8682 old_chain = make_cleanup_ui_out_stream_delete (stb);
8683
8684 switch (b->type)
8685 {
8686 case bp_watchpoint:
8687 case bp_hardware_watchpoint:
8688 annotate_watchpoint (b->number);
8689 if (ui_out_is_mi_like_p (uiout))
8690 ui_out_field_string
8691 (uiout, "reason",
8692 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
8693 mention (b);
8694 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
8695 ui_out_text (uiout, "\nOld value = ");
8696 watchpoint_value_print (bs->old_val, stb->stream);
8697 ui_out_field_stream (uiout, "old", stb);
8698 ui_out_text (uiout, "\nNew value = ");
8699 watchpoint_value_print (w->val, stb->stream);
8700 ui_out_field_stream (uiout, "new", stb);
8701 ui_out_text (uiout, "\n");
8702 /* More than one watchpoint may have been triggered. */
8703 result = PRINT_UNKNOWN;
8704 break;
8705
8706 case bp_read_watchpoint:
8707 if (ui_out_is_mi_like_p (uiout))
8708 ui_out_field_string
8709 (uiout, "reason",
8710 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
8711 mention (b);
8712 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
8713 ui_out_text (uiout, "\nValue = ");
8714 watchpoint_value_print (w->val, stb->stream);
8715 ui_out_field_stream (uiout, "value", stb);
8716 ui_out_text (uiout, "\n");
8717 result = PRINT_UNKNOWN;
8718 break;
8719
8720 case bp_access_watchpoint:
8721 if (bs->old_val != NULL)
8722 {
8723 annotate_watchpoint (b->number);
8724 if (ui_out_is_mi_like_p (uiout))
8725 ui_out_field_string
8726 (uiout, "reason",
8727 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
8728 mention (b);
8729 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
8730 ui_out_text (uiout, "\nOld value = ");
8731 watchpoint_value_print (bs->old_val, stb->stream);
8732 ui_out_field_stream (uiout, "old", stb);
8733 ui_out_text (uiout, "\nNew value = ");
8734 }
8735 else
8736 {
8737 mention (b);
8738 if (ui_out_is_mi_like_p (uiout))
8739 ui_out_field_string
8740 (uiout, "reason",
8741 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
8742 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
8743 ui_out_text (uiout, "\nValue = ");
8744 }
8745 watchpoint_value_print (w->val, stb->stream);
8746 ui_out_field_stream (uiout, "new", stb);
8747 ui_out_text (uiout, "\n");
8748 result = PRINT_UNKNOWN;
8749 break;
8750 default:
8751 result = PRINT_UNKNOWN;
8752 }
8753
8754 do_cleanups (old_chain);
8755 return result;
8756 }
8757
8758 /* Implement the "print_mention" breakpoint_ops method for hardware
8759 watchpoints. */
8760
8761 static void
8762 print_mention_watchpoint (struct breakpoint *b)
8763 {
8764 struct cleanup *ui_out_chain;
8765 struct watchpoint *w = (struct watchpoint *) b;
8766 struct ui_out *uiout = current_uiout;
8767
8768 switch (b->type)
8769 {
8770 case bp_watchpoint:
8771 ui_out_text (uiout, "Watchpoint ");
8772 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
8773 break;
8774 case bp_hardware_watchpoint:
8775 ui_out_text (uiout, "Hardware watchpoint ");
8776 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
8777 break;
8778 case bp_read_watchpoint:
8779 ui_out_text (uiout, "Hardware read watchpoint ");
8780 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
8781 break;
8782 case bp_access_watchpoint:
8783 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
8784 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
8785 break;
8786 default:
8787 internal_error (__FILE__, __LINE__,
8788 _("Invalid hardware watchpoint type."));
8789 }
8790
8791 ui_out_field_int (uiout, "number", b->number);
8792 ui_out_text (uiout, ": ");
8793 ui_out_field_string (uiout, "exp", w->exp_string);
8794 do_cleanups (ui_out_chain);
8795 }
8796
8797 /* Implement the "print_recreate" breakpoint_ops method for
8798 watchpoints. */
8799
8800 static void
8801 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
8802 {
8803 struct watchpoint *w = (struct watchpoint *) b;
8804
8805 switch (b->type)
8806 {
8807 case bp_watchpoint:
8808 case bp_hardware_watchpoint:
8809 fprintf_unfiltered (fp, "watch");
8810 break;
8811 case bp_read_watchpoint:
8812 fprintf_unfiltered (fp, "rwatch");
8813 break;
8814 case bp_access_watchpoint:
8815 fprintf_unfiltered (fp, "awatch");
8816 break;
8817 default:
8818 internal_error (__FILE__, __LINE__,
8819 _("Invalid watchpoint type."));
8820 }
8821
8822 fprintf_unfiltered (fp, " %s", w->exp_string);
8823 print_recreate_thread (b, fp);
8824 }
8825
8826 /* The breakpoint_ops structure to be used in hardware watchpoints. */
8827
8828 static struct breakpoint_ops watchpoint_breakpoint_ops;
8829
8830 /* Implement the "insert" breakpoint_ops method for
8831 masked hardware watchpoints. */
8832
8833 static int
8834 insert_masked_watchpoint (struct bp_location *bl)
8835 {
8836 struct watchpoint *w = (struct watchpoint *) bl->owner;
8837
8838 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
8839 bl->watchpoint_type);
8840 }
8841
8842 /* Implement the "remove" breakpoint_ops method for
8843 masked hardware watchpoints. */
8844
8845 static int
8846 remove_masked_watchpoint (struct bp_location *bl)
8847 {
8848 struct watchpoint *w = (struct watchpoint *) bl->owner;
8849
8850 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
8851 bl->watchpoint_type);
8852 }
8853
8854 /* Implement the "resources_needed" breakpoint_ops method for
8855 masked hardware watchpoints. */
8856
8857 static int
8858 resources_needed_masked_watchpoint (const struct bp_location *bl)
8859 {
8860 struct watchpoint *w = (struct watchpoint *) bl->owner;
8861
8862 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
8863 }
8864
8865 /* Implement the "works_in_software_mode" breakpoint_ops method for
8866 masked hardware watchpoints. */
8867
8868 static int
8869 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
8870 {
8871 return 0;
8872 }
8873
8874 /* Implement the "print_it" breakpoint_ops method for
8875 masked hardware watchpoints. */
8876
8877 static enum print_stop_action
8878 print_it_masked_watchpoint (bpstat bs)
8879 {
8880 struct breakpoint *b = bs->breakpoint_at;
8881 struct ui_out *uiout = current_uiout;
8882
8883 /* Masked watchpoints have only one location. */
8884 gdb_assert (b->loc && b->loc->next == NULL);
8885
8886 switch (b->type)
8887 {
8888 case bp_hardware_watchpoint:
8889 annotate_watchpoint (b->number);
8890 if (ui_out_is_mi_like_p (uiout))
8891 ui_out_field_string
8892 (uiout, "reason",
8893 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
8894 break;
8895
8896 case bp_read_watchpoint:
8897 if (ui_out_is_mi_like_p (uiout))
8898 ui_out_field_string
8899 (uiout, "reason",
8900 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
8901 break;
8902
8903 case bp_access_watchpoint:
8904 if (ui_out_is_mi_like_p (uiout))
8905 ui_out_field_string
8906 (uiout, "reason",
8907 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
8908 break;
8909 default:
8910 internal_error (__FILE__, __LINE__,
8911 _("Invalid hardware watchpoint type."));
8912 }
8913
8914 mention (b);
8915 ui_out_text (uiout, _("\n\
8916 Check the underlying instruction at PC for the memory\n\
8917 address and value which triggered this watchpoint.\n"));
8918 ui_out_text (uiout, "\n");
8919
8920 /* More than one watchpoint may have been triggered. */
8921 return PRINT_UNKNOWN;
8922 }
8923
8924 /* Implement the "print_one_detail" breakpoint_ops method for
8925 masked hardware watchpoints. */
8926
8927 static void
8928 print_one_detail_masked_watchpoint (const struct breakpoint *b,
8929 struct ui_out *uiout)
8930 {
8931 struct watchpoint *w = (struct watchpoint *) b;
8932
8933 /* Masked watchpoints have only one location. */
8934 gdb_assert (b->loc && b->loc->next == NULL);
8935
8936 ui_out_text (uiout, "\tmask ");
8937 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
8938 ui_out_text (uiout, "\n");
8939 }
8940
8941 /* Implement the "print_mention" breakpoint_ops method for
8942 masked hardware watchpoints. */
8943
8944 static void
8945 print_mention_masked_watchpoint (struct breakpoint *b)
8946 {
8947 struct watchpoint *w = (struct watchpoint *) b;
8948 struct ui_out *uiout = current_uiout;
8949 struct cleanup *ui_out_chain;
8950
8951 switch (b->type)
8952 {
8953 case bp_hardware_watchpoint:
8954 ui_out_text (uiout, "Masked hardware watchpoint ");
8955 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
8956 break;
8957 case bp_read_watchpoint:
8958 ui_out_text (uiout, "Masked hardware read watchpoint ");
8959 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
8960 break;
8961 case bp_access_watchpoint:
8962 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
8963 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
8964 break;
8965 default:
8966 internal_error (__FILE__, __LINE__,
8967 _("Invalid hardware watchpoint type."));
8968 }
8969
8970 ui_out_field_int (uiout, "number", b->number);
8971 ui_out_text (uiout, ": ");
8972 ui_out_field_string (uiout, "exp", w->exp_string);
8973 do_cleanups (ui_out_chain);
8974 }
8975
8976 /* Implement the "print_recreate" breakpoint_ops method for
8977 masked hardware watchpoints. */
8978
8979 static void
8980 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
8981 {
8982 struct watchpoint *w = (struct watchpoint *) b;
8983 char tmp[40];
8984
8985 switch (b->type)
8986 {
8987 case bp_hardware_watchpoint:
8988 fprintf_unfiltered (fp, "watch");
8989 break;
8990 case bp_read_watchpoint:
8991 fprintf_unfiltered (fp, "rwatch");
8992 break;
8993 case bp_access_watchpoint:
8994 fprintf_unfiltered (fp, "awatch");
8995 break;
8996 default:
8997 internal_error (__FILE__, __LINE__,
8998 _("Invalid hardware watchpoint type."));
8999 }
9000
9001 sprintf_vma (tmp, w->hw_wp_mask);
9002 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
9003 print_recreate_thread (b, fp);
9004 }
9005
9006 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
9007
9008 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
9009
9010 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
9011
9012 static int
9013 is_masked_watchpoint (const struct breakpoint *b)
9014 {
9015 return b->ops == &masked_watchpoint_breakpoint_ops;
9016 }
9017
9018 /* accessflag: hw_write: watch write,
9019 hw_read: watch read,
9020 hw_access: watch access (read or write) */
9021 static void
9022 watch_command_1 (char *arg, int accessflag, int from_tty,
9023 int just_location, int internal)
9024 {
9025 volatile struct gdb_exception e;
9026 struct breakpoint *b, *scope_breakpoint = NULL;
9027 struct expression *exp;
9028 struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
9029 struct value *val, *mark, *result;
9030 struct frame_info *frame;
9031 char *exp_start = NULL;
9032 char *exp_end = NULL;
9033 char *tok, *end_tok;
9034 int toklen = -1;
9035 char *cond_start = NULL;
9036 char *cond_end = NULL;
9037 enum bptype bp_type;
9038 int thread = -1;
9039 int pc = 0;
9040 /* Flag to indicate whether we are going to use masks for
9041 the hardware watchpoint. */
9042 int use_mask = 0;
9043 CORE_ADDR mask = 0;
9044 struct watchpoint *w;
9045
9046 /* Make sure that we actually have parameters to parse. */
9047 if (arg != NULL && arg[0] != '\0')
9048 {
9049 char *value_start;
9050
9051 /* Look for "parameter value" pairs at the end
9052 of the arguments string. */
9053 for (tok = arg + strlen (arg) - 1; tok > arg; tok--)
9054 {
9055 /* Skip whitespace at the end of the argument list. */
9056 while (tok > arg && (*tok == ' ' || *tok == '\t'))
9057 tok--;
9058
9059 /* Find the beginning of the last token.
9060 This is the value of the parameter. */
9061 while (tok > arg && (*tok != ' ' && *tok != '\t'))
9062 tok--;
9063 value_start = tok + 1;
9064
9065 /* Skip whitespace. */
9066 while (tok > arg && (*tok == ' ' || *tok == '\t'))
9067 tok--;
9068
9069 end_tok = tok;
9070
9071 /* Find the beginning of the second to last token.
9072 This is the parameter itself. */
9073 while (tok > arg && (*tok != ' ' && *tok != '\t'))
9074 tok--;
9075 tok++;
9076 toklen = end_tok - tok + 1;
9077
9078 if (toklen == 6 && !strncmp (tok, "thread", 6))
9079 {
9080 /* At this point we've found a "thread" token, which means
9081 the user is trying to set a watchpoint that triggers
9082 only in a specific thread. */
9083 char *endp;
9084
9085 if (thread != -1)
9086 error(_("You can specify only one thread."));
9087
9088 /* Extract the thread ID from the next token. */
9089 thread = strtol (value_start, &endp, 0);
9090
9091 /* Check if the user provided a valid numeric value for the
9092 thread ID. */
9093 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
9094 error (_("Invalid thread ID specification %s."), value_start);
9095
9096 /* Check if the thread actually exists. */
9097 if (!valid_thread_id (thread))
9098 error (_("Unknown thread %d."), thread);
9099 }
9100 else if (toklen == 4 && !strncmp (tok, "mask", 4))
9101 {
9102 /* We've found a "mask" token, which means the user wants to
9103 create a hardware watchpoint that is going to have the mask
9104 facility. */
9105 struct value *mask_value, *mark;
9106
9107 if (use_mask)
9108 error(_("You can specify only one mask."));
9109
9110 use_mask = just_location = 1;
9111
9112 mark = value_mark ();
9113 mask_value = parse_to_comma_and_eval (&value_start);
9114 mask = value_as_address (mask_value);
9115 value_free_to_mark (mark);
9116 }
9117 else
9118 /* We didn't recognize what we found. We should stop here. */
9119 break;
9120
9121 /* Truncate the string and get rid of the "parameter value" pair before
9122 the arguments string is parsed by the parse_exp_1 function. */
9123 *tok = '\0';
9124 }
9125 }
9126
9127 /* Parse the rest of the arguments. */
9128 innermost_block = NULL;
9129 exp_start = arg;
9130 exp = parse_exp_1 (&arg, 0, 0);
9131 exp_end = arg;
9132 /* Remove trailing whitespace from the expression before saving it.
9133 This makes the eventual display of the expression string a bit
9134 prettier. */
9135 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
9136 --exp_end;
9137
9138 /* Checking if the expression is not constant. */
9139 if (watchpoint_exp_is_const (exp))
9140 {
9141 int len;
9142
9143 len = exp_end - exp_start;
9144 while (len > 0 && isspace (exp_start[len - 1]))
9145 len--;
9146 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
9147 }
9148
9149 exp_valid_block = innermost_block;
9150 mark = value_mark ();
9151 fetch_subexp_value (exp, &pc, &val, &result, NULL);
9152
9153 if (just_location)
9154 {
9155 int ret;
9156
9157 exp_valid_block = NULL;
9158 val = value_addr (result);
9159 release_value (val);
9160 value_free_to_mark (mark);
9161
9162 if (use_mask)
9163 {
9164 ret = target_masked_watch_num_registers (value_as_address (val),
9165 mask);
9166 if (ret == -1)
9167 error (_("This target does not support masked watchpoints."));
9168 else if (ret == -2)
9169 error (_("Invalid mask or memory region."));
9170 }
9171 }
9172 else if (val != NULL)
9173 release_value (val);
9174
9175 tok = skip_spaces (arg);
9176 end_tok = skip_to_space (tok);
9177
9178 toklen = end_tok - tok;
9179 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9180 {
9181 struct expression *cond;
9182
9183 innermost_block = NULL;
9184 tok = cond_start = end_tok + 1;
9185 cond = parse_exp_1 (&tok, 0, 0);
9186
9187 /* The watchpoint expression may not be local, but the condition
9188 may still be. E.g.: `watch global if local > 0'. */
9189 cond_exp_valid_block = innermost_block;
9190
9191 xfree (cond);
9192 cond_end = tok;
9193 }
9194 if (*tok)
9195 error (_("Junk at end of command."));
9196
9197 if (accessflag == hw_read)
9198 bp_type = bp_read_watchpoint;
9199 else if (accessflag == hw_access)
9200 bp_type = bp_access_watchpoint;
9201 else
9202 bp_type = bp_hardware_watchpoint;
9203
9204 frame = block_innermost_frame (exp_valid_block);
9205
9206 /* If the expression is "local", then set up a "watchpoint scope"
9207 breakpoint at the point where we've left the scope of the watchpoint
9208 expression. Create the scope breakpoint before the watchpoint, so
9209 that we will encounter it first in bpstat_stop_status. */
9210 if (exp_valid_block && frame)
9211 {
9212 if (frame_id_p (frame_unwind_caller_id (frame)))
9213 {
9214 scope_breakpoint
9215 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
9216 frame_unwind_caller_pc (frame),
9217 bp_watchpoint_scope,
9218 &momentary_breakpoint_ops);
9219
9220 scope_breakpoint->enable_state = bp_enabled;
9221
9222 /* Automatically delete the breakpoint when it hits. */
9223 scope_breakpoint->disposition = disp_del;
9224
9225 /* Only break in the proper frame (help with recursion). */
9226 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
9227
9228 /* Set the address at which we will stop. */
9229 scope_breakpoint->loc->gdbarch
9230 = frame_unwind_caller_arch (frame);
9231 scope_breakpoint->loc->requested_address
9232 = frame_unwind_caller_pc (frame);
9233 scope_breakpoint->loc->address
9234 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
9235 scope_breakpoint->loc->requested_address,
9236 scope_breakpoint->type);
9237 }
9238 }
9239
9240 /* Now set up the breakpoint. */
9241
9242 w = XCNEW (struct watchpoint);
9243 b = &w->base;
9244 if (use_mask)
9245 init_raw_breakpoint_without_location (b, NULL, bp_type,
9246 &masked_watchpoint_breakpoint_ops);
9247 else
9248 init_raw_breakpoint_without_location (b, NULL, bp_type,
9249 &watchpoint_breakpoint_ops);
9250 b->thread = thread;
9251 b->disposition = disp_donttouch;
9252 b->pspace = current_program_space;
9253 w->exp = exp;
9254 w->exp_valid_block = exp_valid_block;
9255 w->cond_exp_valid_block = cond_exp_valid_block;
9256 if (just_location)
9257 {
9258 struct type *t = value_type (val);
9259 CORE_ADDR addr = value_as_address (val);
9260 char *name;
9261
9262 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
9263 name = type_to_string (t);
9264
9265 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
9266 core_addr_to_string (addr));
9267 xfree (name);
9268
9269 w->exp_string = xstrprintf ("-location %.*s",
9270 (int) (exp_end - exp_start), exp_start);
9271
9272 /* The above expression is in C. */
9273 b->language = language_c;
9274 }
9275 else
9276 w->exp_string = savestring (exp_start, exp_end - exp_start);
9277
9278 if (use_mask)
9279 {
9280 w->hw_wp_mask = mask;
9281 }
9282 else
9283 {
9284 w->val = val;
9285 w->val_valid = 1;
9286 }
9287
9288 if (cond_start)
9289 b->cond_string = savestring (cond_start, cond_end - cond_start);
9290 else
9291 b->cond_string = 0;
9292
9293 if (frame)
9294 {
9295 w->watchpoint_frame = get_frame_id (frame);
9296 w->watchpoint_thread = inferior_ptid;
9297 }
9298 else
9299 {
9300 w->watchpoint_frame = null_frame_id;
9301 w->watchpoint_thread = null_ptid;
9302 }
9303
9304 if (scope_breakpoint != NULL)
9305 {
9306 /* The scope breakpoint is related to the watchpoint. We will
9307 need to act on them together. */
9308 b->related_breakpoint = scope_breakpoint;
9309 scope_breakpoint->related_breakpoint = b;
9310 }
9311
9312 if (!just_location)
9313 value_free_to_mark (mark);
9314
9315 TRY_CATCH (e, RETURN_MASK_ALL)
9316 {
9317 /* Finally update the new watchpoint. This creates the locations
9318 that should be inserted. */
9319 update_watchpoint (w, 1);
9320 }
9321 if (e.reason < 0)
9322 {
9323 delete_breakpoint (b);
9324 throw_exception (e);
9325 }
9326
9327 install_breakpoint (internal, b, 1);
9328 }
9329
9330 /* Return count of debug registers needed to watch the given expression.
9331 If the watchpoint cannot be handled in hardware return zero. */
9332
9333 static int
9334 can_use_hardware_watchpoint (struct value *v)
9335 {
9336 int found_memory_cnt = 0;
9337 struct value *head = v;
9338
9339 /* Did the user specifically forbid us to use hardware watchpoints? */
9340 if (!can_use_hw_watchpoints)
9341 return 0;
9342
9343 /* Make sure that the value of the expression depends only upon
9344 memory contents, and values computed from them within GDB. If we
9345 find any register references or function calls, we can't use a
9346 hardware watchpoint.
9347
9348 The idea here is that evaluating an expression generates a series
9349 of values, one holding the value of every subexpression. (The
9350 expression a*b+c has five subexpressions: a, b, a*b, c, and
9351 a*b+c.) GDB's values hold almost enough information to establish
9352 the criteria given above --- they identify memory lvalues,
9353 register lvalues, computed values, etcetera. So we can evaluate
9354 the expression, and then scan the chain of values that leaves
9355 behind to decide whether we can detect any possible change to the
9356 expression's final value using only hardware watchpoints.
9357
9358 However, I don't think that the values returned by inferior
9359 function calls are special in any way. So this function may not
9360 notice that an expression involving an inferior function call
9361 can't be watched with hardware watchpoints. FIXME. */
9362 for (; v; v = value_next (v))
9363 {
9364 if (VALUE_LVAL (v) == lval_memory)
9365 {
9366 if (v != head && value_lazy (v))
9367 /* A lazy memory lvalue in the chain is one that GDB never
9368 needed to fetch; we either just used its address (e.g.,
9369 `a' in `a.b') or we never needed it at all (e.g., `a'
9370 in `a,b'). This doesn't apply to HEAD; if that is
9371 lazy then it was not readable, but watch it anyway. */
9372 ;
9373 else
9374 {
9375 /* Ahh, memory we actually used! Check if we can cover
9376 it with hardware watchpoints. */
9377 struct type *vtype = check_typedef (value_type (v));
9378
9379 /* We only watch structs and arrays if user asked for it
9380 explicitly, never if they just happen to appear in a
9381 middle of some value chain. */
9382 if (v == head
9383 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
9384 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
9385 {
9386 CORE_ADDR vaddr = value_address (v);
9387 int len;
9388 int num_regs;
9389
9390 len = (target_exact_watchpoints
9391 && is_scalar_type_recursive (vtype))?
9392 1 : TYPE_LENGTH (value_type (v));
9393
9394 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
9395 if (!num_regs)
9396 return 0;
9397 else
9398 found_memory_cnt += num_regs;
9399 }
9400 }
9401 }
9402 else if (VALUE_LVAL (v) != not_lval
9403 && deprecated_value_modifiable (v) == 0)
9404 return 0; /* These are values from the history (e.g., $1). */
9405 else if (VALUE_LVAL (v) == lval_register)
9406 return 0; /* Cannot watch a register with a HW watchpoint. */
9407 }
9408
9409 /* The expression itself looks suitable for using a hardware
9410 watchpoint, but give the target machine a chance to reject it. */
9411 return found_memory_cnt;
9412 }
9413
9414 void
9415 watch_command_wrapper (char *arg, int from_tty, int internal)
9416 {
9417 watch_command_1 (arg, hw_write, from_tty, 0, internal);
9418 }
9419
9420 /* A helper function that looks for an argument at the start of a
9421 string. The argument must also either be at the end of the string,
9422 or be followed by whitespace. Returns 1 if it finds the argument,
9423 0 otherwise. If the argument is found, it updates *STR. */
9424
9425 static int
9426 check_for_argument (char **str, char *arg, int arg_len)
9427 {
9428 if (strncmp (*str, arg, arg_len) == 0
9429 && ((*str)[arg_len] == '\0' || isspace ((*str)[arg_len])))
9430 {
9431 *str += arg_len;
9432 return 1;
9433 }
9434 return 0;
9435 }
9436
9437 /* A helper function that looks for the "-location" argument and then
9438 calls watch_command_1. */
9439
9440 static void
9441 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
9442 {
9443 int just_location = 0;
9444
9445 if (arg
9446 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
9447 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
9448 {
9449 arg = skip_spaces (arg);
9450 just_location = 1;
9451 }
9452
9453 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
9454 }
9455
9456 static void
9457 watch_command (char *arg, int from_tty)
9458 {
9459 watch_maybe_just_location (arg, hw_write, from_tty);
9460 }
9461
9462 void
9463 rwatch_command_wrapper (char *arg, int from_tty, int internal)
9464 {
9465 watch_command_1 (arg, hw_read, from_tty, 0, internal);
9466 }
9467
9468 static void
9469 rwatch_command (char *arg, int from_tty)
9470 {
9471 watch_maybe_just_location (arg, hw_read, from_tty);
9472 }
9473
9474 void
9475 awatch_command_wrapper (char *arg, int from_tty, int internal)
9476 {
9477 watch_command_1 (arg, hw_access, from_tty, 0, internal);
9478 }
9479
9480 static void
9481 awatch_command (char *arg, int from_tty)
9482 {
9483 watch_maybe_just_location (arg, hw_access, from_tty);
9484 }
9485 \f
9486
9487 /* Helper routines for the until_command routine in infcmd.c. Here
9488 because it uses the mechanisms of breakpoints. */
9489
9490 struct until_break_command_continuation_args
9491 {
9492 struct breakpoint *breakpoint;
9493 struct breakpoint *breakpoint2;
9494 int thread_num;
9495 };
9496
9497 /* This function is called by fetch_inferior_event via the
9498 cmd_continuation pointer, to complete the until command. It takes
9499 care of cleaning up the temporary breakpoints set up by the until
9500 command. */
9501 static void
9502 until_break_command_continuation (void *arg, int err)
9503 {
9504 struct until_break_command_continuation_args *a = arg;
9505
9506 delete_breakpoint (a->breakpoint);
9507 if (a->breakpoint2)
9508 delete_breakpoint (a->breakpoint2);
9509 delete_longjmp_breakpoint (a->thread_num);
9510 }
9511
9512 void
9513 until_break_command (char *arg, int from_tty, int anywhere)
9514 {
9515 struct symtabs_and_lines sals;
9516 struct symtab_and_line sal;
9517 struct frame_info *frame = get_selected_frame (NULL);
9518 struct breakpoint *breakpoint;
9519 struct breakpoint *breakpoint2 = NULL;
9520 struct cleanup *old_chain;
9521 int thread;
9522 struct thread_info *tp;
9523
9524 clear_proceed_status ();
9525
9526 /* Set a breakpoint where the user wants it and at return from
9527 this function. */
9528
9529 if (last_displayed_sal_is_valid ())
9530 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
9531 get_last_displayed_symtab (),
9532 get_last_displayed_line ());
9533 else
9534 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
9535 (struct symtab *) NULL, 0);
9536
9537 if (sals.nelts != 1)
9538 error (_("Couldn't get information on specified line."));
9539
9540 sal = sals.sals[0];
9541 xfree (sals.sals); /* malloc'd, so freed. */
9542
9543 if (*arg)
9544 error (_("Junk at end of arguments."));
9545
9546 resolve_sal_pc (&sal);
9547
9548 if (anywhere)
9549 /* If the user told us to continue until a specified location,
9550 we don't specify a frame at which we need to stop. */
9551 breakpoint = set_momentary_breakpoint (get_frame_arch (frame), sal,
9552 null_frame_id, bp_until);
9553 else
9554 /* Otherwise, specify the selected frame, because we want to stop
9555 only at the very same frame. */
9556 breakpoint = set_momentary_breakpoint (get_frame_arch (frame), sal,
9557 get_stack_frame_id (frame),
9558 bp_until);
9559
9560 old_chain = make_cleanup_delete_breakpoint (breakpoint);
9561
9562 tp = inferior_thread ();
9563 thread = tp->num;
9564
9565 /* Keep within the current frame, or in frames called by the current
9566 one. */
9567
9568 if (frame_id_p (frame_unwind_caller_id (frame)))
9569 {
9570 sal = find_pc_line (frame_unwind_caller_pc (frame), 0);
9571 sal.pc = frame_unwind_caller_pc (frame);
9572 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
9573 sal,
9574 frame_unwind_caller_id (frame),
9575 bp_until);
9576 make_cleanup_delete_breakpoint (breakpoint2);
9577
9578 set_longjmp_breakpoint (tp, frame_unwind_caller_id (frame));
9579 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
9580 }
9581
9582 proceed (-1, TARGET_SIGNAL_DEFAULT, 0);
9583
9584 /* If we are running asynchronously, and proceed call above has
9585 actually managed to start the target, arrange for breakpoints to
9586 be deleted when the target stops. Otherwise, we're already
9587 stopped and delete breakpoints via cleanup chain. */
9588
9589 if (target_can_async_p () && is_running (inferior_ptid))
9590 {
9591 struct until_break_command_continuation_args *args;
9592 args = xmalloc (sizeof (*args));
9593
9594 args->breakpoint = breakpoint;
9595 args->breakpoint2 = breakpoint2;
9596 args->thread_num = thread;
9597
9598 discard_cleanups (old_chain);
9599 add_continuation (inferior_thread (),
9600 until_break_command_continuation, args,
9601 xfree);
9602 }
9603 else
9604 do_cleanups (old_chain);
9605 }
9606
9607 /* This function attempts to parse an optional "if <cond>" clause
9608 from the arg string. If one is not found, it returns NULL.
9609
9610 Else, it returns a pointer to the condition string. (It does not
9611 attempt to evaluate the string against a particular block.) And,
9612 it updates arg to point to the first character following the parsed
9613 if clause in the arg string. */
9614
9615 static char *
9616 ep_parse_optional_if_clause (char **arg)
9617 {
9618 char *cond_string;
9619
9620 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
9621 return NULL;
9622
9623 /* Skip the "if" keyword. */
9624 (*arg) += 2;
9625
9626 /* Skip any extra leading whitespace, and record the start of the
9627 condition string. */
9628 *arg = skip_spaces (*arg);
9629 cond_string = *arg;
9630
9631 /* Assume that the condition occupies the remainder of the arg
9632 string. */
9633 (*arg) += strlen (cond_string);
9634
9635 return cond_string;
9636 }
9637
9638 /* Commands to deal with catching events, such as signals, exceptions,
9639 process start/exit, etc. */
9640
9641 typedef enum
9642 {
9643 catch_fork_temporary, catch_vfork_temporary,
9644 catch_fork_permanent, catch_vfork_permanent
9645 }
9646 catch_fork_kind;
9647
9648 static void
9649 catch_fork_command_1 (char *arg, int from_tty,
9650 struct cmd_list_element *command)
9651 {
9652 struct gdbarch *gdbarch = get_current_arch ();
9653 char *cond_string = NULL;
9654 catch_fork_kind fork_kind;
9655 int tempflag;
9656
9657 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
9658 tempflag = (fork_kind == catch_fork_temporary
9659 || fork_kind == catch_vfork_temporary);
9660
9661 if (!arg)
9662 arg = "";
9663 arg = skip_spaces (arg);
9664
9665 /* The allowed syntax is:
9666 catch [v]fork
9667 catch [v]fork if <cond>
9668
9669 First, check if there's an if clause. */
9670 cond_string = ep_parse_optional_if_clause (&arg);
9671
9672 if ((*arg != '\0') && !isspace (*arg))
9673 error (_("Junk at end of arguments."));
9674
9675 /* If this target supports it, create a fork or vfork catchpoint
9676 and enable reporting of such events. */
9677 switch (fork_kind)
9678 {
9679 case catch_fork_temporary:
9680 case catch_fork_permanent:
9681 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
9682 &catch_fork_breakpoint_ops);
9683 break;
9684 case catch_vfork_temporary:
9685 case catch_vfork_permanent:
9686 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
9687 &catch_vfork_breakpoint_ops);
9688 break;
9689 default:
9690 error (_("unsupported or unknown fork kind; cannot catch it"));
9691 break;
9692 }
9693 }
9694
9695 static void
9696 catch_exec_command_1 (char *arg, int from_tty,
9697 struct cmd_list_element *command)
9698 {
9699 struct exec_catchpoint *c;
9700 struct gdbarch *gdbarch = get_current_arch ();
9701 int tempflag;
9702 char *cond_string = NULL;
9703
9704 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
9705
9706 if (!arg)
9707 arg = "";
9708 arg = skip_spaces (arg);
9709
9710 /* The allowed syntax is:
9711 catch exec
9712 catch exec if <cond>
9713
9714 First, check if there's an if clause. */
9715 cond_string = ep_parse_optional_if_clause (&arg);
9716
9717 if ((*arg != '\0') && !isspace (*arg))
9718 error (_("Junk at end of arguments."));
9719
9720 c = XNEW (struct exec_catchpoint);
9721 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
9722 &catch_exec_breakpoint_ops);
9723 c->exec_pathname = NULL;
9724
9725 install_breakpoint (0, &c->base, 1);
9726 }
9727
9728 static enum print_stop_action
9729 print_it_exception_catchpoint (bpstat bs)
9730 {
9731 struct ui_out *uiout = current_uiout;
9732 struct breakpoint *b = bs->breakpoint_at;
9733 int bp_temp, bp_throw;
9734
9735 annotate_catchpoint (b->number);
9736
9737 bp_throw = strstr (b->addr_string, "throw") != NULL;
9738 if (b->loc->address != b->loc->requested_address)
9739 breakpoint_adjustment_warning (b->loc->requested_address,
9740 b->loc->address,
9741 b->number, 1);
9742 bp_temp = b->disposition == disp_del;
9743 ui_out_text (uiout,
9744 bp_temp ? "Temporary catchpoint "
9745 : "Catchpoint ");
9746 if (!ui_out_is_mi_like_p (uiout))
9747 ui_out_field_int (uiout, "bkptno", b->number);
9748 ui_out_text (uiout,
9749 bp_throw ? " (exception thrown), "
9750 : " (exception caught), ");
9751 if (ui_out_is_mi_like_p (uiout))
9752 {
9753 ui_out_field_string (uiout, "reason",
9754 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9755 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9756 ui_out_field_int (uiout, "bkptno", b->number);
9757 }
9758 return PRINT_SRC_AND_LOC;
9759 }
9760
9761 static void
9762 print_one_exception_catchpoint (struct breakpoint *b,
9763 struct bp_location **last_loc)
9764 {
9765 struct value_print_options opts;
9766 struct ui_out *uiout = current_uiout;
9767
9768 get_user_print_options (&opts);
9769 if (opts.addressprint)
9770 {
9771 annotate_field (4);
9772 if (b->loc == NULL || b->loc->shlib_disabled)
9773 ui_out_field_string (uiout, "addr", "<PENDING>");
9774 else
9775 ui_out_field_core_addr (uiout, "addr",
9776 b->loc->gdbarch, b->loc->address);
9777 }
9778 annotate_field (5);
9779 if (b->loc)
9780 *last_loc = b->loc;
9781 if (strstr (b->addr_string, "throw") != NULL)
9782 ui_out_field_string (uiout, "what", "exception throw");
9783 else
9784 ui_out_field_string (uiout, "what", "exception catch");
9785 }
9786
9787 static void
9788 print_mention_exception_catchpoint (struct breakpoint *b)
9789 {
9790 struct ui_out *uiout = current_uiout;
9791 int bp_temp;
9792 int bp_throw;
9793
9794 bp_temp = b->disposition == disp_del;
9795 bp_throw = strstr (b->addr_string, "throw") != NULL;
9796 ui_out_text (uiout, bp_temp ? _("Temporary catchpoint ")
9797 : _("Catchpoint "));
9798 ui_out_field_int (uiout, "bkptno", b->number);
9799 ui_out_text (uiout, bp_throw ? _(" (throw)")
9800 : _(" (catch)"));
9801 }
9802
9803 /* Implement the "print_recreate" breakpoint_ops method for throw and
9804 catch catchpoints. */
9805
9806 static void
9807 print_recreate_exception_catchpoint (struct breakpoint *b,
9808 struct ui_file *fp)
9809 {
9810 int bp_temp;
9811 int bp_throw;
9812
9813 bp_temp = b->disposition == disp_del;
9814 bp_throw = strstr (b->addr_string, "throw") != NULL;
9815 fprintf_unfiltered (fp, bp_temp ? "tcatch " : "catch ");
9816 fprintf_unfiltered (fp, bp_throw ? "throw" : "catch");
9817 print_recreate_thread (b, fp);
9818 }
9819
9820 static struct breakpoint_ops gnu_v3_exception_catchpoint_ops;
9821
9822 static int
9823 handle_gnu_v3_exceptions (int tempflag, char *cond_string,
9824 enum exception_event_kind ex_event, int from_tty)
9825 {
9826 char *trigger_func_name;
9827
9828 if (ex_event == EX_EVENT_CATCH)
9829 trigger_func_name = "__cxa_begin_catch";
9830 else
9831 trigger_func_name = "__cxa_throw";
9832
9833 create_breakpoint (get_current_arch (),
9834 trigger_func_name, cond_string, -1,
9835 0 /* condition and thread are valid. */,
9836 tempflag, bp_breakpoint,
9837 0,
9838 AUTO_BOOLEAN_TRUE /* pending */,
9839 &gnu_v3_exception_catchpoint_ops, from_tty,
9840 1 /* enabled */,
9841 0 /* internal */);
9842
9843 return 1;
9844 }
9845
9846 /* Deal with "catch catch" and "catch throw" commands. */
9847
9848 static void
9849 catch_exception_command_1 (enum exception_event_kind ex_event, char *arg,
9850 int tempflag, int from_tty)
9851 {
9852 char *cond_string = NULL;
9853
9854 if (!arg)
9855 arg = "";
9856 arg = skip_spaces (arg);
9857
9858 cond_string = ep_parse_optional_if_clause (&arg);
9859
9860 if ((*arg != '\0') && !isspace (*arg))
9861 error (_("Junk at end of arguments."));
9862
9863 if (ex_event != EX_EVENT_THROW
9864 && ex_event != EX_EVENT_CATCH)
9865 error (_("Unsupported or unknown exception event; cannot catch it"));
9866
9867 if (handle_gnu_v3_exceptions (tempflag, cond_string, ex_event, from_tty))
9868 return;
9869
9870 warning (_("Unsupported with this platform/compiler combination."));
9871 }
9872
9873 /* Implementation of "catch catch" command. */
9874
9875 static void
9876 catch_catch_command (char *arg, int from_tty, struct cmd_list_element *command)
9877 {
9878 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
9879
9880 catch_exception_command_1 (EX_EVENT_CATCH, arg, tempflag, from_tty);
9881 }
9882
9883 /* Implementation of "catch throw" command. */
9884
9885 static void
9886 catch_throw_command (char *arg, int from_tty, struct cmd_list_element *command)
9887 {
9888 int tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
9889
9890 catch_exception_command_1 (EX_EVENT_THROW, arg, tempflag, from_tty);
9891 }
9892
9893 void
9894 init_ada_exception_breakpoint (struct breakpoint *b,
9895 struct gdbarch *gdbarch,
9896 struct symtab_and_line sal,
9897 char *addr_string,
9898 const struct breakpoint_ops *ops,
9899 int tempflag,
9900 int from_tty)
9901 {
9902 if (from_tty)
9903 {
9904 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9905 if (!loc_gdbarch)
9906 loc_gdbarch = gdbarch;
9907
9908 describe_other_breakpoints (loc_gdbarch,
9909 sal.pspace, sal.pc, sal.section, -1);
9910 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
9911 version for exception catchpoints, because two catchpoints
9912 used for different exception names will use the same address.
9913 In this case, a "breakpoint ... also set at..." warning is
9914 unproductive. Besides, the warning phrasing is also a bit
9915 inappropriate, we should use the word catchpoint, and tell
9916 the user what type of catchpoint it is. The above is good
9917 enough for now, though. */
9918 }
9919
9920 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
9921
9922 b->enable_state = bp_enabled;
9923 b->disposition = tempflag ? disp_del : disp_donttouch;
9924 b->addr_string = addr_string;
9925 b->language = language_ada;
9926 }
9927
9928 /* Splits the argument using space as delimiter. Returns an xmalloc'd
9929 filter list, or NULL if no filtering is required. */
9930 static VEC(int) *
9931 catch_syscall_split_args (char *arg)
9932 {
9933 VEC(int) *result = NULL;
9934 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
9935
9936 while (*arg != '\0')
9937 {
9938 int i, syscall_number;
9939 char *endptr;
9940 char cur_name[128];
9941 struct syscall s;
9942
9943 /* Skip whitespace. */
9944 while (isspace (*arg))
9945 arg++;
9946
9947 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
9948 cur_name[i] = arg[i];
9949 cur_name[i] = '\0';
9950 arg += i;
9951
9952 /* Check if the user provided a syscall name or a number. */
9953 syscall_number = (int) strtol (cur_name, &endptr, 0);
9954 if (*endptr == '\0')
9955 get_syscall_by_number (syscall_number, &s);
9956 else
9957 {
9958 /* We have a name. Let's check if it's valid and convert it
9959 to a number. */
9960 get_syscall_by_name (cur_name, &s);
9961
9962 if (s.number == UNKNOWN_SYSCALL)
9963 /* Here we have to issue an error instead of a warning,
9964 because GDB cannot do anything useful if there's no
9965 syscall number to be caught. */
9966 error (_("Unknown syscall name '%s'."), cur_name);
9967 }
9968
9969 /* Ok, it's valid. */
9970 VEC_safe_push (int, result, s.number);
9971 }
9972
9973 discard_cleanups (cleanup);
9974 return result;
9975 }
9976
9977 /* Implement the "catch syscall" command. */
9978
9979 static void
9980 catch_syscall_command_1 (char *arg, int from_tty,
9981 struct cmd_list_element *command)
9982 {
9983 int tempflag;
9984 VEC(int) *filter;
9985 struct syscall s;
9986 struct gdbarch *gdbarch = get_current_arch ();
9987
9988 /* Checking if the feature if supported. */
9989 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
9990 error (_("The feature 'catch syscall' is not supported on \
9991 this architecture yet."));
9992
9993 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
9994
9995 arg = skip_spaces (arg);
9996
9997 /* We need to do this first "dummy" translation in order
9998 to get the syscall XML file loaded or, most important,
9999 to display a warning to the user if there's no XML file
10000 for his/her architecture. */
10001 get_syscall_by_number (0, &s);
10002
10003 /* The allowed syntax is:
10004 catch syscall
10005 catch syscall <name | number> [<name | number> ... <name | number>]
10006
10007 Let's check if there's a syscall name. */
10008
10009 if (arg != NULL)
10010 filter = catch_syscall_split_args (arg);
10011 else
10012 filter = NULL;
10013
10014 create_syscall_event_catchpoint (tempflag, filter,
10015 &catch_syscall_breakpoint_ops);
10016 }
10017
10018 static void
10019 catch_command (char *arg, int from_tty)
10020 {
10021 error (_("Catch requires an event name."));
10022 }
10023 \f
10024
10025 static void
10026 tcatch_command (char *arg, int from_tty)
10027 {
10028 error (_("Catch requires an event name."));
10029 }
10030
10031 /* A qsort comparison function that sorts breakpoints in order. */
10032
10033 static int
10034 compare_breakpoints (const void *a, const void *b)
10035 {
10036 const breakpoint_p *ba = a;
10037 uintptr_t ua = (uintptr_t) *ba;
10038 const breakpoint_p *bb = b;
10039 uintptr_t ub = (uintptr_t) *bb;
10040
10041 if ((*ba)->number < (*bb)->number)
10042 return -1;
10043 else if ((*ba)->number > (*bb)->number)
10044 return 1;
10045
10046 /* Now sort by address, in case we see, e..g, two breakpoints with
10047 the number 0. */
10048 if (ua < ub)
10049 return -1;
10050 return ub > ub ? 1 : 0;
10051 }
10052
10053 /* Delete breakpoints by address or line. */
10054
10055 static void
10056 clear_command (char *arg, int from_tty)
10057 {
10058 struct breakpoint *b, *prev;
10059 VEC(breakpoint_p) *found = 0;
10060 int ix;
10061 int default_match;
10062 struct symtabs_and_lines sals;
10063 struct symtab_and_line sal;
10064 int i;
10065 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
10066
10067 if (arg)
10068 {
10069 sals = decode_line_spec (arg, (DECODE_LINE_FUNFIRSTLINE
10070 | DECODE_LINE_LIST_MODE));
10071 default_match = 0;
10072 }
10073 else
10074 {
10075 sals.sals = (struct symtab_and_line *)
10076 xmalloc (sizeof (struct symtab_and_line));
10077 make_cleanup (xfree, sals.sals);
10078 init_sal (&sal); /* Initialize to zeroes. */
10079
10080 /* Set sal's line, symtab, pc, and pspace to the values
10081 corresponding to the last call to print_frame_info. If the
10082 codepoint is not valid, this will set all the fields to 0. */
10083 get_last_displayed_sal (&sal);
10084 if (sal.symtab == 0)
10085 error (_("No source file specified."));
10086
10087 sals.sals[0] = sal;
10088 sals.nelts = 1;
10089
10090 default_match = 1;
10091 }
10092
10093 /* We don't call resolve_sal_pc here. That's not as bad as it
10094 seems, because all existing breakpoints typically have both
10095 file/line and pc set. So, if clear is given file/line, we can
10096 match this to existing breakpoint without obtaining pc at all.
10097
10098 We only support clearing given the address explicitly
10099 present in breakpoint table. Say, we've set breakpoint
10100 at file:line. There were several PC values for that file:line,
10101 due to optimization, all in one block.
10102
10103 We've picked one PC value. If "clear" is issued with another
10104 PC corresponding to the same file:line, the breakpoint won't
10105 be cleared. We probably can still clear the breakpoint, but
10106 since the other PC value is never presented to user, user
10107 can only find it by guessing, and it does not seem important
10108 to support that. */
10109
10110 /* For each line spec given, delete bps which correspond to it. Do
10111 it in two passes, solely to preserve the current behavior that
10112 from_tty is forced true if we delete more than one
10113 breakpoint. */
10114
10115 found = NULL;
10116 make_cleanup (VEC_cleanup (breakpoint_p), &found);
10117 for (i = 0; i < sals.nelts; i++)
10118 {
10119 /* If exact pc given, clear bpts at that pc.
10120 If line given (pc == 0), clear all bpts on specified line.
10121 If defaulting, clear all bpts on default line
10122 or at default pc.
10123
10124 defaulting sal.pc != 0 tests to do
10125
10126 0 1 pc
10127 1 1 pc _and_ line
10128 0 0 line
10129 1 0 <can't happen> */
10130
10131 sal = sals.sals[i];
10132
10133 /* Find all matching breakpoints and add them to 'found'. */
10134 ALL_BREAKPOINTS (b)
10135 {
10136 int match = 0;
10137 /* Are we going to delete b? */
10138 if (b->type != bp_none && !is_watchpoint (b))
10139 {
10140 struct bp_location *loc = b->loc;
10141 for (; loc; loc = loc->next)
10142 {
10143 /* If the user specified file:line, don't allow a PC
10144 match. This matches historical gdb behavior. */
10145 int pc_match = (!sal.explicit_line
10146 && sal.pc
10147 && (loc->pspace == sal.pspace)
10148 && (loc->address == sal.pc)
10149 && (!section_is_overlay (loc->section)
10150 || loc->section == sal.section));
10151 int line_match = ((default_match || sal.explicit_line)
10152 && loc->source_file != NULL
10153 && sal.symtab != NULL
10154 && sal.pspace == loc->pspace
10155 && filename_cmp (loc->source_file,
10156 sal.symtab->filename) == 0
10157 && loc->line_number == sal.line);
10158 if (pc_match || line_match)
10159 {
10160 match = 1;
10161 break;
10162 }
10163 }
10164 }
10165
10166 if (match)
10167 VEC_safe_push(breakpoint_p, found, b);
10168 }
10169 }
10170
10171 /* Now go thru the 'found' chain and delete them. */
10172 if (VEC_empty(breakpoint_p, found))
10173 {
10174 if (arg)
10175 error (_("No breakpoint at %s."), arg);
10176 else
10177 error (_("No breakpoint at this line."));
10178 }
10179
10180 /* Remove duplicates from the vec. */
10181 qsort (VEC_address (breakpoint_p, found),
10182 VEC_length (breakpoint_p, found),
10183 sizeof (breakpoint_p),
10184 compare_breakpoints);
10185 prev = VEC_index (breakpoint_p, found, 0);
10186 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
10187 {
10188 if (b == prev)
10189 {
10190 VEC_ordered_remove (breakpoint_p, found, ix);
10191 --ix;
10192 }
10193 }
10194
10195 if (VEC_length(breakpoint_p, found) > 1)
10196 from_tty = 1; /* Always report if deleted more than one. */
10197 if (from_tty)
10198 {
10199 if (VEC_length(breakpoint_p, found) == 1)
10200 printf_unfiltered (_("Deleted breakpoint "));
10201 else
10202 printf_unfiltered (_("Deleted breakpoints "));
10203 }
10204 breakpoints_changed ();
10205
10206 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
10207 {
10208 if (from_tty)
10209 printf_unfiltered ("%d ", b->number);
10210 delete_breakpoint (b);
10211 }
10212 if (from_tty)
10213 putchar_unfiltered ('\n');
10214
10215 do_cleanups (cleanups);
10216 }
10217 \f
10218 /* Delete breakpoint in BS if they are `delete' breakpoints and
10219 all breakpoints that are marked for deletion, whether hit or not.
10220 This is called after any breakpoint is hit, or after errors. */
10221
10222 void
10223 breakpoint_auto_delete (bpstat bs)
10224 {
10225 struct breakpoint *b, *b_tmp;
10226
10227 for (; bs; bs = bs->next)
10228 if (bs->breakpoint_at
10229 && bs->breakpoint_at->disposition == disp_del
10230 && bs->stop)
10231 delete_breakpoint (bs->breakpoint_at);
10232
10233 ALL_BREAKPOINTS_SAFE (b, b_tmp)
10234 {
10235 if (b->disposition == disp_del_at_next_stop)
10236 delete_breakpoint (b);
10237 }
10238 }
10239
10240 /* A comparison function for bp_location AP and BP being interfaced to
10241 qsort. Sort elements primarily by their ADDRESS (no matter what
10242 does breakpoint_address_is_meaningful say for its OWNER),
10243 secondarily by ordering first bp_permanent OWNERed elements and
10244 terciarily just ensuring the array is sorted stable way despite
10245 qsort being an unstable algorithm. */
10246
10247 static int
10248 bp_location_compare (const void *ap, const void *bp)
10249 {
10250 struct bp_location *a = *(void **) ap;
10251 struct bp_location *b = *(void **) bp;
10252 /* A and B come from existing breakpoints having non-NULL OWNER. */
10253 int a_perm = a->owner->enable_state == bp_permanent;
10254 int b_perm = b->owner->enable_state == bp_permanent;
10255
10256 if (a->address != b->address)
10257 return (a->address > b->address) - (a->address < b->address);
10258
10259 /* Sort permanent breakpoints first. */
10260 if (a_perm != b_perm)
10261 return (a_perm < b_perm) - (a_perm > b_perm);
10262
10263 /* Make the user-visible order stable across GDB runs. Locations of
10264 the same breakpoint can be sorted in arbitrary order. */
10265
10266 if (a->owner->number != b->owner->number)
10267 return (a->owner->number > b->owner->number)
10268 - (a->owner->number < b->owner->number);
10269
10270 return (a > b) - (a < b);
10271 }
10272
10273 /* Set bp_location_placed_address_before_address_max and
10274 bp_location_shadow_len_after_address_max according to the current
10275 content of the bp_location array. */
10276
10277 static void
10278 bp_location_target_extensions_update (void)
10279 {
10280 struct bp_location *bl, **blp_tmp;
10281
10282 bp_location_placed_address_before_address_max = 0;
10283 bp_location_shadow_len_after_address_max = 0;
10284
10285 ALL_BP_LOCATIONS (bl, blp_tmp)
10286 {
10287 CORE_ADDR start, end, addr;
10288
10289 if (!bp_location_has_shadow (bl))
10290 continue;
10291
10292 start = bl->target_info.placed_address;
10293 end = start + bl->target_info.shadow_len;
10294
10295 gdb_assert (bl->address >= start);
10296 addr = bl->address - start;
10297 if (addr > bp_location_placed_address_before_address_max)
10298 bp_location_placed_address_before_address_max = addr;
10299
10300 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
10301
10302 gdb_assert (bl->address < end);
10303 addr = end - bl->address;
10304 if (addr > bp_location_shadow_len_after_address_max)
10305 bp_location_shadow_len_after_address_max = addr;
10306 }
10307 }
10308
10309 /* Download tracepoint locations if they haven't been. */
10310
10311 static void
10312 download_tracepoint_locations (void)
10313 {
10314 struct bp_location *bl, **blp_tmp;
10315 struct cleanup *old_chain;
10316
10317 if (!target_can_download_tracepoint ())
10318 return;
10319
10320 old_chain = save_current_space_and_thread ();
10321
10322 ALL_BP_LOCATIONS (bl, blp_tmp)
10323 {
10324 struct tracepoint *t;
10325
10326 if (!is_tracepoint (bl->owner))
10327 continue;
10328
10329 if ((bl->owner->type == bp_fast_tracepoint
10330 ? !may_insert_fast_tracepoints
10331 : !may_insert_tracepoints))
10332 continue;
10333
10334 /* In tracepoint, locations are _never_ duplicated, so
10335 should_be_inserted is equivalent to
10336 unduplicated_should_be_inserted. */
10337 if (!should_be_inserted (bl) || bl->inserted)
10338 continue;
10339
10340 switch_to_program_space_and_thread (bl->pspace);
10341
10342 target_download_tracepoint (bl);
10343
10344 bl->inserted = 1;
10345 t = (struct tracepoint *) bl->owner;
10346 t->number_on_target = bl->owner->number;
10347 }
10348
10349 do_cleanups (old_chain);
10350 }
10351
10352 /* Swap the insertion/duplication state between two locations. */
10353
10354 static void
10355 swap_insertion (struct bp_location *left, struct bp_location *right)
10356 {
10357 const int left_inserted = left->inserted;
10358 const int left_duplicate = left->duplicate;
10359 const struct bp_target_info left_target_info = left->target_info;
10360
10361 /* Locations of tracepoints can never be duplicated. */
10362 if (is_tracepoint (left->owner))
10363 gdb_assert (!left->duplicate);
10364 if (is_tracepoint (right->owner))
10365 gdb_assert (!right->duplicate);
10366
10367 left->inserted = right->inserted;
10368 left->duplicate = right->duplicate;
10369 left->target_info = right->target_info;
10370 right->inserted = left_inserted;
10371 right->duplicate = left_duplicate;
10372 right->target_info = left_target_info;
10373 }
10374
10375 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
10376 into the inferior, only remove already-inserted locations that no
10377 longer should be inserted. Functions that delete a breakpoint or
10378 breakpoints should pass false, so that deleting a breakpoint
10379 doesn't have the side effect of inserting the locations of other
10380 breakpoints that are marked not-inserted, but should_be_inserted
10381 returns true on them.
10382
10383 This behaviour is useful is situations close to tear-down -- e.g.,
10384 after an exec, while the target still has execution, but breakpoint
10385 shadows of the previous executable image should *NOT* be restored
10386 to the new image; or before detaching, where the target still has
10387 execution and wants to delete breakpoints from GDB's lists, and all
10388 breakpoints had already been removed from the inferior. */
10389
10390 static void
10391 update_global_location_list (int should_insert)
10392 {
10393 struct breakpoint *b;
10394 struct bp_location **locp, *loc;
10395 struct cleanup *cleanups;
10396
10397 /* Used in the duplicates detection below. When iterating over all
10398 bp_locations, points to the first bp_location of a given address.
10399 Breakpoints and watchpoints of different types are never
10400 duplicates of each other. Keep one pointer for each type of
10401 breakpoint/watchpoint, so we only need to loop over all locations
10402 once. */
10403 struct bp_location *bp_loc_first; /* breakpoint */
10404 struct bp_location *wp_loc_first; /* hardware watchpoint */
10405 struct bp_location *awp_loc_first; /* access watchpoint */
10406 struct bp_location *rwp_loc_first; /* read watchpoint */
10407
10408 /* Saved former bp_location array which we compare against the newly
10409 built bp_location from the current state of ALL_BREAKPOINTS. */
10410 struct bp_location **old_location, **old_locp;
10411 unsigned old_location_count;
10412
10413 old_location = bp_location;
10414 old_location_count = bp_location_count;
10415 bp_location = NULL;
10416 bp_location_count = 0;
10417 cleanups = make_cleanup (xfree, old_location);
10418
10419 ALL_BREAKPOINTS (b)
10420 for (loc = b->loc; loc; loc = loc->next)
10421 bp_location_count++;
10422
10423 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
10424 locp = bp_location;
10425 ALL_BREAKPOINTS (b)
10426 for (loc = b->loc; loc; loc = loc->next)
10427 *locp++ = loc;
10428 qsort (bp_location, bp_location_count, sizeof (*bp_location),
10429 bp_location_compare);
10430
10431 bp_location_target_extensions_update ();
10432
10433 /* Identify bp_location instances that are no longer present in the
10434 new list, and therefore should be freed. Note that it's not
10435 necessary that those locations should be removed from inferior --
10436 if there's another location at the same address (previously
10437 marked as duplicate), we don't need to remove/insert the
10438 location.
10439
10440 LOCP is kept in sync with OLD_LOCP, each pointing to the current
10441 and former bp_location array state respectively. */
10442
10443 locp = bp_location;
10444 for (old_locp = old_location; old_locp < old_location + old_location_count;
10445 old_locp++)
10446 {
10447 struct bp_location *old_loc = *old_locp;
10448 struct bp_location **loc2p;
10449
10450 /* Tells if 'old_loc' is found among the new locations. If
10451 not, we have to free it. */
10452 int found_object = 0;
10453 /* Tells if the location should remain inserted in the target. */
10454 int keep_in_target = 0;
10455 int removed = 0;
10456
10457 /* Skip LOCP entries which will definitely never be needed.
10458 Stop either at or being the one matching OLD_LOC. */
10459 while (locp < bp_location + bp_location_count
10460 && (*locp)->address < old_loc->address)
10461 locp++;
10462
10463 for (loc2p = locp;
10464 (loc2p < bp_location + bp_location_count
10465 && (*loc2p)->address == old_loc->address);
10466 loc2p++)
10467 {
10468 if (*loc2p == old_loc)
10469 {
10470 found_object = 1;
10471 break;
10472 }
10473 }
10474
10475 /* If this location is no longer present, and inserted, look if
10476 there's maybe a new location at the same address. If so,
10477 mark that one inserted, and don't remove this one. This is
10478 needed so that we don't have a time window where a breakpoint
10479 at certain location is not inserted. */
10480
10481 if (old_loc->inserted)
10482 {
10483 /* If the location is inserted now, we might have to remove
10484 it. */
10485
10486 if (found_object && should_be_inserted (old_loc))
10487 {
10488 /* The location is still present in the location list,
10489 and still should be inserted. Don't do anything. */
10490 keep_in_target = 1;
10491 }
10492 else
10493 {
10494 /* The location is either no longer present, or got
10495 disabled. See if there's another location at the
10496 same address, in which case we don't need to remove
10497 this one from the target. */
10498
10499 /* OLD_LOC comes from existing struct breakpoint. */
10500 if (breakpoint_address_is_meaningful (old_loc->owner))
10501 {
10502 for (loc2p = locp;
10503 (loc2p < bp_location + bp_location_count
10504 && (*loc2p)->address == old_loc->address);
10505 loc2p++)
10506 {
10507 struct bp_location *loc2 = *loc2p;
10508
10509 if (breakpoint_locations_match (loc2, old_loc))
10510 {
10511 /* Read watchpoint locations are switched to
10512 access watchpoints, if the former are not
10513 supported, but the latter are. */
10514 if (is_hardware_watchpoint (old_loc->owner))
10515 {
10516 gdb_assert (is_hardware_watchpoint (loc2->owner));
10517 loc2->watchpoint_type = old_loc->watchpoint_type;
10518 }
10519
10520 /* loc2 is a duplicated location. We need to check
10521 if it should be inserted in case it will be
10522 unduplicated. */
10523 if (loc2 != old_loc
10524 && unduplicated_should_be_inserted (loc2))
10525 {
10526 swap_insertion (old_loc, loc2);
10527 keep_in_target = 1;
10528 break;
10529 }
10530 }
10531 }
10532 }
10533 }
10534
10535 if (!keep_in_target)
10536 {
10537 if (remove_breakpoint (old_loc, mark_uninserted))
10538 {
10539 /* This is just about all we can do. We could keep
10540 this location on the global list, and try to
10541 remove it next time, but there's no particular
10542 reason why we will succeed next time.
10543
10544 Note that at this point, old_loc->owner is still
10545 valid, as delete_breakpoint frees the breakpoint
10546 only after calling us. */
10547 printf_filtered (_("warning: Error removing "
10548 "breakpoint %d\n"),
10549 old_loc->owner->number);
10550 }
10551 removed = 1;
10552 }
10553 }
10554
10555 if (!found_object)
10556 {
10557 if (removed && non_stop
10558 && breakpoint_address_is_meaningful (old_loc->owner)
10559 && !is_hardware_watchpoint (old_loc->owner))
10560 {
10561 /* This location was removed from the target. In
10562 non-stop mode, a race condition is possible where
10563 we've removed a breakpoint, but stop events for that
10564 breakpoint are already queued and will arrive later.
10565 We apply an heuristic to be able to distinguish such
10566 SIGTRAPs from other random SIGTRAPs: we keep this
10567 breakpoint location for a bit, and will retire it
10568 after we see some number of events. The theory here
10569 is that reporting of events should, "on the average",
10570 be fair, so after a while we'll see events from all
10571 threads that have anything of interest, and no longer
10572 need to keep this breakpoint location around. We
10573 don't hold locations forever so to reduce chances of
10574 mistaking a non-breakpoint SIGTRAP for a breakpoint
10575 SIGTRAP.
10576
10577 The heuristic failing can be disastrous on
10578 decr_pc_after_break targets.
10579
10580 On decr_pc_after_break targets, like e.g., x86-linux,
10581 if we fail to recognize a late breakpoint SIGTRAP,
10582 because events_till_retirement has reached 0 too
10583 soon, we'll fail to do the PC adjustment, and report
10584 a random SIGTRAP to the user. When the user resumes
10585 the inferior, it will most likely immediately crash
10586 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
10587 corrupted, because of being resumed e.g., in the
10588 middle of a multi-byte instruction, or skipped a
10589 one-byte instruction. This was actually seen happen
10590 on native x86-linux, and should be less rare on
10591 targets that do not support new thread events, like
10592 remote, due to the heuristic depending on
10593 thread_count.
10594
10595 Mistaking a random SIGTRAP for a breakpoint trap
10596 causes similar symptoms (PC adjustment applied when
10597 it shouldn't), but then again, playing with SIGTRAPs
10598 behind the debugger's back is asking for trouble.
10599
10600 Since hardware watchpoint traps are always
10601 distinguishable from other traps, so we don't need to
10602 apply keep hardware watchpoint moribund locations
10603 around. We simply always ignore hardware watchpoint
10604 traps we can no longer explain. */
10605
10606 old_loc->events_till_retirement = 3 * (thread_count () + 1);
10607 old_loc->owner = NULL;
10608
10609 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
10610 }
10611 else
10612 {
10613 old_loc->owner = NULL;
10614 decref_bp_location (&old_loc);
10615 }
10616 }
10617 }
10618
10619 /* Rescan breakpoints at the same address and section, marking the
10620 first one as "first" and any others as "duplicates". This is so
10621 that the bpt instruction is only inserted once. If we have a
10622 permanent breakpoint at the same place as BPT, make that one the
10623 official one, and the rest as duplicates. Permanent breakpoints
10624 are sorted first for the same address.
10625
10626 Do the same for hardware watchpoints, but also considering the
10627 watchpoint's type (regular/access/read) and length. */
10628
10629 bp_loc_first = NULL;
10630 wp_loc_first = NULL;
10631 awp_loc_first = NULL;
10632 rwp_loc_first = NULL;
10633 ALL_BP_LOCATIONS (loc, locp)
10634 {
10635 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
10636 non-NULL. */
10637 struct bp_location **loc_first_p;
10638 b = loc->owner;
10639
10640 if (!should_be_inserted (loc)
10641 || !breakpoint_address_is_meaningful (b)
10642 /* Don't detect duplicate for tracepoint locations because they are
10643 never duplicated. See the comments in field `duplicate' of
10644 `struct bp_location'. */
10645 || is_tracepoint (b))
10646 continue;
10647
10648 /* Permanent breakpoint should always be inserted. */
10649 if (b->enable_state == bp_permanent && ! loc->inserted)
10650 internal_error (__FILE__, __LINE__,
10651 _("allegedly permanent breakpoint is not "
10652 "actually inserted"));
10653
10654 if (b->type == bp_hardware_watchpoint)
10655 loc_first_p = &wp_loc_first;
10656 else if (b->type == bp_read_watchpoint)
10657 loc_first_p = &rwp_loc_first;
10658 else if (b->type == bp_access_watchpoint)
10659 loc_first_p = &awp_loc_first;
10660 else
10661 loc_first_p = &bp_loc_first;
10662
10663 if (*loc_first_p == NULL
10664 || (overlay_debugging && loc->section != (*loc_first_p)->section)
10665 || !breakpoint_locations_match (loc, *loc_first_p))
10666 {
10667 *loc_first_p = loc;
10668 loc->duplicate = 0;
10669 continue;
10670 }
10671
10672
10673 /* This and the above ensure the invariant that the first location
10674 is not duplicated, and is the inserted one.
10675 All following are marked as duplicated, and are not inserted. */
10676 if (loc->inserted)
10677 swap_insertion (loc, *loc_first_p);
10678 loc->duplicate = 1;
10679
10680 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
10681 && b->enable_state != bp_permanent)
10682 internal_error (__FILE__, __LINE__,
10683 _("another breakpoint was inserted on top of "
10684 "a permanent breakpoint"));
10685 }
10686
10687 if (breakpoints_always_inserted_mode () && should_insert
10688 && (have_live_inferiors ()
10689 || (gdbarch_has_global_breakpoints (target_gdbarch))))
10690 insert_breakpoint_locations ();
10691
10692 if (should_insert)
10693 download_tracepoint_locations ();
10694
10695 do_cleanups (cleanups);
10696 }
10697
10698 void
10699 breakpoint_retire_moribund (void)
10700 {
10701 struct bp_location *loc;
10702 int ix;
10703
10704 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
10705 if (--(loc->events_till_retirement) == 0)
10706 {
10707 decref_bp_location (&loc);
10708 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
10709 --ix;
10710 }
10711 }
10712
10713 static void
10714 update_global_location_list_nothrow (int inserting)
10715 {
10716 volatile struct gdb_exception e;
10717
10718 TRY_CATCH (e, RETURN_MASK_ERROR)
10719 update_global_location_list (inserting);
10720 }
10721
10722 /* Clear BKP from a BPS. */
10723
10724 static void
10725 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
10726 {
10727 bpstat bs;
10728
10729 for (bs = bps; bs; bs = bs->next)
10730 if (bs->breakpoint_at == bpt)
10731 {
10732 bs->breakpoint_at = NULL;
10733 bs->old_val = NULL;
10734 /* bs->commands will be freed later. */
10735 }
10736 }
10737
10738 /* Callback for iterate_over_threads. */
10739 static int
10740 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
10741 {
10742 struct breakpoint *bpt = data;
10743
10744 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
10745 return 0;
10746 }
10747
10748 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
10749 callbacks. */
10750
10751 static void
10752 say_where (struct breakpoint *b)
10753 {
10754 struct ui_out *uiout = current_uiout;
10755 struct value_print_options opts;
10756
10757 get_user_print_options (&opts);
10758
10759 /* i18n: cagney/2005-02-11: Below needs to be merged into a
10760 single string. */
10761 if (b->loc == NULL)
10762 {
10763 printf_filtered (_(" (%s) pending."), b->addr_string);
10764 }
10765 else
10766 {
10767 if (opts.addressprint || b->loc->source_file == NULL)
10768 {
10769 printf_filtered (" at ");
10770 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
10771 gdb_stdout);
10772 }
10773 if (b->loc->source_file)
10774 {
10775 /* If there is a single location, we can print the location
10776 more nicely. */
10777 if (b->loc->next == NULL)
10778 printf_filtered (": file %s, line %d.",
10779 b->loc->source_file, b->loc->line_number);
10780 else
10781 /* This is not ideal, but each location may have a
10782 different file name, and this at least reflects the
10783 real situation somewhat. */
10784 printf_filtered (": %s.", b->addr_string);
10785 }
10786
10787 if (b->loc->next)
10788 {
10789 struct bp_location *loc = b->loc;
10790 int n = 0;
10791 for (; loc; loc = loc->next)
10792 ++n;
10793 printf_filtered (" (%d locations)", n);
10794 }
10795 }
10796 }
10797
10798 /* Default bp_location_ops methods. */
10799
10800 static void
10801 bp_location_dtor (struct bp_location *self)
10802 {
10803 xfree (self->cond);
10804 xfree (self->function_name);
10805 xfree (self->source_file);
10806 }
10807
10808 static const struct bp_location_ops bp_location_ops =
10809 {
10810 bp_location_dtor
10811 };
10812
10813 /* Default breakpoint_ops methods all breakpoint_ops ultimately
10814 inherit from. */
10815
10816 static void
10817 base_breakpoint_dtor (struct breakpoint *self)
10818 {
10819 decref_counted_command_line (&self->commands);
10820 xfree (self->cond_string);
10821 xfree (self->addr_string);
10822 xfree (self->filter);
10823 xfree (self->addr_string_range_end);
10824 }
10825
10826 static struct bp_location *
10827 base_breakpoint_allocate_location (struct breakpoint *self)
10828 {
10829 struct bp_location *loc;
10830
10831 loc = XNEW (struct bp_location);
10832 init_bp_location (loc, &bp_location_ops, self);
10833 return loc;
10834 }
10835
10836 static void
10837 base_breakpoint_re_set (struct breakpoint *b)
10838 {
10839 /* Nothing to re-set. */
10840 }
10841
10842 #define internal_error_pure_virtual_called() \
10843 gdb_assert_not_reached ("pure virtual function called")
10844
10845 static int
10846 base_breakpoint_insert_location (struct bp_location *bl)
10847 {
10848 internal_error_pure_virtual_called ();
10849 }
10850
10851 static int
10852 base_breakpoint_remove_location (struct bp_location *bl)
10853 {
10854 internal_error_pure_virtual_called ();
10855 }
10856
10857 static int
10858 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
10859 struct address_space *aspace,
10860 CORE_ADDR bp_addr)
10861 {
10862 internal_error_pure_virtual_called ();
10863 }
10864
10865 static void
10866 base_breakpoint_check_status (bpstat bs)
10867 {
10868 /* Always stop. */
10869 }
10870
10871 /* A "works_in_software_mode" breakpoint_ops method that just internal
10872 errors. */
10873
10874 static int
10875 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
10876 {
10877 internal_error_pure_virtual_called ();
10878 }
10879
10880 /* A "resources_needed" breakpoint_ops method that just internal
10881 errors. */
10882
10883 static int
10884 base_breakpoint_resources_needed (const struct bp_location *bl)
10885 {
10886 internal_error_pure_virtual_called ();
10887 }
10888
10889 static enum print_stop_action
10890 base_breakpoint_print_it (bpstat bs)
10891 {
10892 internal_error_pure_virtual_called ();
10893 }
10894
10895 static void
10896 base_breakpoint_print_one_detail (const struct breakpoint *self,
10897 struct ui_out *uiout)
10898 {
10899 /* nothing */
10900 }
10901
10902 static void
10903 base_breakpoint_print_mention (struct breakpoint *b)
10904 {
10905 internal_error_pure_virtual_called ();
10906 }
10907
10908 static void
10909 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
10910 {
10911 internal_error_pure_virtual_called ();
10912 }
10913
10914 static struct breakpoint_ops base_breakpoint_ops =
10915 {
10916 base_breakpoint_dtor,
10917 base_breakpoint_allocate_location,
10918 base_breakpoint_re_set,
10919 base_breakpoint_insert_location,
10920 base_breakpoint_remove_location,
10921 base_breakpoint_breakpoint_hit,
10922 base_breakpoint_check_status,
10923 base_breakpoint_resources_needed,
10924 base_breakpoint_works_in_software_mode,
10925 base_breakpoint_print_it,
10926 NULL,
10927 base_breakpoint_print_one_detail,
10928 base_breakpoint_print_mention,
10929 base_breakpoint_print_recreate
10930 };
10931
10932 /* Default breakpoint_ops methods. */
10933
10934 static void
10935 bkpt_re_set (struct breakpoint *b)
10936 {
10937 /* FIXME: is this still reachable? */
10938 if (b->addr_string == NULL)
10939 {
10940 /* Anything without a string can't be re-set. */
10941 delete_breakpoint (b);
10942 return;
10943 }
10944
10945 breakpoint_re_set_default (b);
10946 }
10947
10948 static int
10949 bkpt_insert_location (struct bp_location *bl)
10950 {
10951 if (bl->loc_type == bp_loc_hardware_breakpoint)
10952 return target_insert_hw_breakpoint (bl->gdbarch,
10953 &bl->target_info);
10954 else
10955 return target_insert_breakpoint (bl->gdbarch,
10956 &bl->target_info);
10957 }
10958
10959 static int
10960 bkpt_remove_location (struct bp_location *bl)
10961 {
10962 if (bl->loc_type == bp_loc_hardware_breakpoint)
10963 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
10964 else
10965 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
10966 }
10967
10968 static int
10969 bkpt_breakpoint_hit (const struct bp_location *bl,
10970 struct address_space *aspace, CORE_ADDR bp_addr)
10971 {
10972 struct breakpoint *b = bl->owner;
10973
10974 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
10975 aspace, bp_addr))
10976 return 0;
10977
10978 if (overlay_debugging /* unmapped overlay section */
10979 && section_is_overlay (bl->section)
10980 && !section_is_mapped (bl->section))
10981 return 0;
10982
10983 return 1;
10984 }
10985
10986 static int
10987 bkpt_resources_needed (const struct bp_location *bl)
10988 {
10989 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
10990
10991 return 1;
10992 }
10993
10994 static enum print_stop_action
10995 bkpt_print_it (bpstat bs)
10996 {
10997 struct breakpoint *b;
10998 const struct bp_location *bl;
10999 int bp_temp;
11000 struct ui_out *uiout = current_uiout;
11001
11002 gdb_assert (bs->bp_location_at != NULL);
11003
11004 bl = bs->bp_location_at;
11005 b = bs->breakpoint_at;
11006
11007 bp_temp = b->disposition == disp_del;
11008 if (bl->address != bl->requested_address)
11009 breakpoint_adjustment_warning (bl->requested_address,
11010 bl->address,
11011 b->number, 1);
11012 annotate_breakpoint (b->number);
11013 if (bp_temp)
11014 ui_out_text (uiout, "\nTemporary breakpoint ");
11015 else
11016 ui_out_text (uiout, "\nBreakpoint ");
11017 if (ui_out_is_mi_like_p (uiout))
11018 {
11019 ui_out_field_string (uiout, "reason",
11020 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11021 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11022 }
11023 ui_out_field_int (uiout, "bkptno", b->number);
11024 ui_out_text (uiout, ", ");
11025
11026 return PRINT_SRC_AND_LOC;
11027 }
11028
11029 static void
11030 bkpt_print_mention (struct breakpoint *b)
11031 {
11032 if (ui_out_is_mi_like_p (current_uiout))
11033 return;
11034
11035 switch (b->type)
11036 {
11037 case bp_breakpoint:
11038 case bp_gnu_ifunc_resolver:
11039 if (b->disposition == disp_del)
11040 printf_filtered (_("Temporary breakpoint"));
11041 else
11042 printf_filtered (_("Breakpoint"));
11043 printf_filtered (_(" %d"), b->number);
11044 if (b->type == bp_gnu_ifunc_resolver)
11045 printf_filtered (_(" at gnu-indirect-function resolver"));
11046 break;
11047 case bp_hardware_breakpoint:
11048 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
11049 break;
11050 }
11051
11052 say_where (b);
11053 }
11054
11055 static void
11056 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
11057 {
11058 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
11059 fprintf_unfiltered (fp, "tbreak");
11060 else if (tp->type == bp_breakpoint)
11061 fprintf_unfiltered (fp, "break");
11062 else if (tp->type == bp_hardware_breakpoint
11063 && tp->disposition == disp_del)
11064 fprintf_unfiltered (fp, "thbreak");
11065 else if (tp->type == bp_hardware_breakpoint)
11066 fprintf_unfiltered (fp, "hbreak");
11067 else
11068 internal_error (__FILE__, __LINE__,
11069 _("unhandled breakpoint type %d"), (int) tp->type);
11070
11071 fprintf_unfiltered (fp, " %s", tp->addr_string);
11072 print_recreate_thread (tp, fp);
11073 }
11074
11075 /* Virtual table for internal breakpoints. */
11076
11077 static void
11078 internal_bkpt_re_set (struct breakpoint *b)
11079 {
11080 switch (b->type)
11081 {
11082 /* Delete overlay event and longjmp master breakpoints; they
11083 will be reset later by breakpoint_re_set. */
11084 case bp_overlay_event:
11085 case bp_longjmp_master:
11086 case bp_std_terminate_master:
11087 case bp_exception_master:
11088 delete_breakpoint (b);
11089 break;
11090
11091 /* This breakpoint is special, it's set up when the inferior
11092 starts and we really don't want to touch it. */
11093 case bp_shlib_event:
11094
11095 /* Like bp_shlib_event, this breakpoint type is special. Once
11096 it is set up, we do not want to touch it. */
11097 case bp_thread_event:
11098 break;
11099 }
11100 }
11101
11102 static void
11103 internal_bkpt_check_status (bpstat bs)
11104 {
11105 /* We do not stop for these. */
11106 bs->stop = 0;
11107 }
11108
11109 static enum print_stop_action
11110 internal_bkpt_print_it (bpstat bs)
11111 {
11112 struct ui_out *uiout = current_uiout;
11113 struct breakpoint *b;
11114
11115 b = bs->breakpoint_at;
11116
11117 switch (b->type)
11118 {
11119 case bp_shlib_event:
11120 /* Did we stop because the user set the stop_on_solib_events
11121 variable? (If so, we report this as a generic, "Stopped due
11122 to shlib event" message.) */
11123 ui_out_text (uiout, _("Stopped due to shared library event\n"));
11124 if (ui_out_is_mi_like_p (uiout))
11125 ui_out_field_string (uiout, "reason",
11126 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
11127 break;
11128
11129 case bp_thread_event:
11130 /* Not sure how we will get here.
11131 GDB should not stop for these breakpoints. */
11132 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
11133 break;
11134
11135 case bp_overlay_event:
11136 /* By analogy with the thread event, GDB should not stop for these. */
11137 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
11138 break;
11139
11140 case bp_longjmp_master:
11141 /* These should never be enabled. */
11142 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
11143 break;
11144
11145 case bp_std_terminate_master:
11146 /* These should never be enabled. */
11147 printf_filtered (_("std::terminate Master Breakpoint: "
11148 "gdb should not stop!\n"));
11149 break;
11150
11151 case bp_exception_master:
11152 /* These should never be enabled. */
11153 printf_filtered (_("Exception Master Breakpoint: "
11154 "gdb should not stop!\n"));
11155 break;
11156 }
11157
11158 return PRINT_NOTHING;
11159 }
11160
11161 static void
11162 internal_bkpt_print_mention (struct breakpoint *b)
11163 {
11164 /* Nothing to mention. These breakpoints are internal. */
11165 }
11166
11167 /* Virtual table for momentary breakpoints */
11168
11169 static void
11170 momentary_bkpt_re_set (struct breakpoint *b)
11171 {
11172 /* Keep temporary breakpoints, which can be encountered when we step
11173 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
11174 Otherwise these should have been blown away via the cleanup chain
11175 or by breakpoint_init_inferior when we rerun the executable. */
11176 }
11177
11178 static void
11179 momentary_bkpt_check_status (bpstat bs)
11180 {
11181 /* Nothing. The point of these breakpoints is causing a stop. */
11182 }
11183
11184 static enum print_stop_action
11185 momentary_bkpt_print_it (bpstat bs)
11186 {
11187 struct ui_out *uiout = current_uiout;
11188
11189 if (ui_out_is_mi_like_p (uiout))
11190 {
11191 struct breakpoint *b = bs->breakpoint_at;
11192
11193 switch (b->type)
11194 {
11195 case bp_finish:
11196 ui_out_field_string
11197 (uiout, "reason",
11198 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
11199 break;
11200
11201 case bp_until:
11202 ui_out_field_string
11203 (uiout, "reason",
11204 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
11205 break;
11206 }
11207 }
11208
11209 return PRINT_UNKNOWN;
11210 }
11211
11212 static void
11213 momentary_bkpt_print_mention (struct breakpoint *b)
11214 {
11215 /* Nothing to mention. These breakpoints are internal. */
11216 }
11217
11218 /* The breakpoint_ops structure to be used in tracepoints. */
11219
11220 static void
11221 tracepoint_re_set (struct breakpoint *b)
11222 {
11223 breakpoint_re_set_default (b);
11224 }
11225
11226 static int
11227 tracepoint_breakpoint_hit (const struct bp_location *bl,
11228 struct address_space *aspace, CORE_ADDR bp_addr)
11229 {
11230 /* By definition, the inferior does not report stops at
11231 tracepoints. */
11232 return 0;
11233 }
11234
11235 static void
11236 tracepoint_print_one_detail (const struct breakpoint *self,
11237 struct ui_out *uiout)
11238 {
11239 struct tracepoint *tp = (struct tracepoint *) self;
11240 if (tp->static_trace_marker_id)
11241 {
11242 gdb_assert (self->type == bp_static_tracepoint);
11243
11244 ui_out_text (uiout, "\tmarker id is ");
11245 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
11246 tp->static_trace_marker_id);
11247 ui_out_text (uiout, "\n");
11248 }
11249 }
11250
11251 static void
11252 tracepoint_print_mention (struct breakpoint *b)
11253 {
11254 if (ui_out_is_mi_like_p (current_uiout))
11255 return;
11256
11257 switch (b->type)
11258 {
11259 case bp_tracepoint:
11260 printf_filtered (_("Tracepoint"));
11261 printf_filtered (_(" %d"), b->number);
11262 break;
11263 case bp_fast_tracepoint:
11264 printf_filtered (_("Fast tracepoint"));
11265 printf_filtered (_(" %d"), b->number);
11266 break;
11267 case bp_static_tracepoint:
11268 printf_filtered (_("Static tracepoint"));
11269 printf_filtered (_(" %d"), b->number);
11270 break;
11271 default:
11272 internal_error (__FILE__, __LINE__,
11273 _("unhandled tracepoint type %d"), (int) b->type);
11274 }
11275
11276 say_where (b);
11277 }
11278
11279 static void
11280 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
11281 {
11282 struct tracepoint *tp = (struct tracepoint *) self;
11283
11284 if (self->type == bp_fast_tracepoint)
11285 fprintf_unfiltered (fp, "ftrace");
11286 if (self->type == bp_static_tracepoint)
11287 fprintf_unfiltered (fp, "strace");
11288 else if (self->type == bp_tracepoint)
11289 fprintf_unfiltered (fp, "trace");
11290 else
11291 internal_error (__FILE__, __LINE__,
11292 _("unhandled tracepoint type %d"), (int) self->type);
11293
11294 fprintf_unfiltered (fp, " %s", self->addr_string);
11295 print_recreate_thread (self, fp);
11296
11297 if (tp->pass_count)
11298 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
11299 }
11300
11301 struct breakpoint_ops tracepoint_breakpoint_ops;
11302
11303 /* Delete a breakpoint and clean up all traces of it in the data
11304 structures. */
11305
11306 void
11307 delete_breakpoint (struct breakpoint *bpt)
11308 {
11309 struct breakpoint *b;
11310
11311 gdb_assert (bpt != NULL);
11312
11313 /* Has this bp already been deleted? This can happen because
11314 multiple lists can hold pointers to bp's. bpstat lists are
11315 especial culprits.
11316
11317 One example of this happening is a watchpoint's scope bp. When
11318 the scope bp triggers, we notice that the watchpoint is out of
11319 scope, and delete it. We also delete its scope bp. But the
11320 scope bp is marked "auto-deleting", and is already on a bpstat.
11321 That bpstat is then checked for auto-deleting bp's, which are
11322 deleted.
11323
11324 A real solution to this problem might involve reference counts in
11325 bp's, and/or giving them pointers back to their referencing
11326 bpstat's, and teaching delete_breakpoint to only free a bp's
11327 storage when no more references were extent. A cheaper bandaid
11328 was chosen. */
11329 if (bpt->type == bp_none)
11330 return;
11331
11332 /* At least avoid this stale reference until the reference counting
11333 of breakpoints gets resolved. */
11334 if (bpt->related_breakpoint != bpt)
11335 {
11336 struct breakpoint *related;
11337 struct watchpoint *w;
11338
11339 if (bpt->type == bp_watchpoint_scope)
11340 w = (struct watchpoint *) bpt->related_breakpoint;
11341 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
11342 w = (struct watchpoint *) bpt;
11343 else
11344 w = NULL;
11345 if (w != NULL)
11346 watchpoint_del_at_next_stop (w);
11347
11348 /* Unlink bpt from the bpt->related_breakpoint ring. */
11349 for (related = bpt; related->related_breakpoint != bpt;
11350 related = related->related_breakpoint);
11351 related->related_breakpoint = bpt->related_breakpoint;
11352 bpt->related_breakpoint = bpt;
11353 }
11354
11355 /* watch_command_1 creates a watchpoint but only sets its number if
11356 update_watchpoint succeeds in creating its bp_locations. If there's
11357 a problem in that process, we'll be asked to delete the half-created
11358 watchpoint. In that case, don't announce the deletion. */
11359 if (bpt->number)
11360 observer_notify_breakpoint_deleted (bpt);
11361
11362 if (breakpoint_chain == bpt)
11363 breakpoint_chain = bpt->next;
11364
11365 ALL_BREAKPOINTS (b)
11366 if (b->next == bpt)
11367 {
11368 b->next = bpt->next;
11369 break;
11370 }
11371
11372 /* Be sure no bpstat's are pointing at the breakpoint after it's
11373 been freed. */
11374 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
11375 in all threads for now. Note that we cannot just remove bpstats
11376 pointing at bpt from the stop_bpstat list entirely, as breakpoint
11377 commands are associated with the bpstat; if we remove it here,
11378 then the later call to bpstat_do_actions (&stop_bpstat); in
11379 event-top.c won't do anything, and temporary breakpoints with
11380 commands won't work. */
11381
11382 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
11383
11384 /* Now that breakpoint is removed from breakpoint list, update the
11385 global location list. This will remove locations that used to
11386 belong to this breakpoint. Do this before freeing the breakpoint
11387 itself, since remove_breakpoint looks at location's owner. It
11388 might be better design to have location completely
11389 self-contained, but it's not the case now. */
11390 update_global_location_list (0);
11391
11392 bpt->ops->dtor (bpt);
11393 /* On the chance that someone will soon try again to delete this
11394 same bp, we mark it as deleted before freeing its storage. */
11395 bpt->type = bp_none;
11396 xfree (bpt);
11397 }
11398
11399 static void
11400 do_delete_breakpoint_cleanup (void *b)
11401 {
11402 delete_breakpoint (b);
11403 }
11404
11405 struct cleanup *
11406 make_cleanup_delete_breakpoint (struct breakpoint *b)
11407 {
11408 return make_cleanup (do_delete_breakpoint_cleanup, b);
11409 }
11410
11411 /* Iterator function to call a user-provided callback function once
11412 for each of B and its related breakpoints. */
11413
11414 static void
11415 iterate_over_related_breakpoints (struct breakpoint *b,
11416 void (*function) (struct breakpoint *,
11417 void *),
11418 void *data)
11419 {
11420 struct breakpoint *related;
11421
11422 related = b;
11423 do
11424 {
11425 struct breakpoint *next;
11426
11427 /* FUNCTION may delete RELATED. */
11428 next = related->related_breakpoint;
11429
11430 if (next == related)
11431 {
11432 /* RELATED is the last ring entry. */
11433 function (related, data);
11434
11435 /* FUNCTION may have deleted it, so we'd never reach back to
11436 B. There's nothing left to do anyway, so just break
11437 out. */
11438 break;
11439 }
11440 else
11441 function (related, data);
11442
11443 related = next;
11444 }
11445 while (related != b);
11446 }
11447
11448 static void
11449 do_delete_breakpoint (struct breakpoint *b, void *ignore)
11450 {
11451 delete_breakpoint (b);
11452 }
11453
11454 /* A callback for map_breakpoint_numbers that calls
11455 delete_breakpoint. */
11456
11457 static void
11458 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
11459 {
11460 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
11461 }
11462
11463 void
11464 delete_command (char *arg, int from_tty)
11465 {
11466 struct breakpoint *b, *b_tmp;
11467
11468 dont_repeat ();
11469
11470 if (arg == 0)
11471 {
11472 int breaks_to_delete = 0;
11473
11474 /* Delete all breakpoints if no argument. Do not delete
11475 internal breakpoints, these have to be deleted with an
11476 explicit breakpoint number argument. */
11477 ALL_BREAKPOINTS (b)
11478 if (user_breakpoint_p (b))
11479 {
11480 breaks_to_delete = 1;
11481 break;
11482 }
11483
11484 /* Ask user only if there are some breakpoints to delete. */
11485 if (!from_tty
11486 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
11487 {
11488 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11489 if (user_breakpoint_p (b))
11490 delete_breakpoint (b);
11491 }
11492 }
11493 else
11494 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
11495 }
11496
11497 static int
11498 all_locations_are_pending (struct bp_location *loc)
11499 {
11500 for (; loc; loc = loc->next)
11501 if (!loc->shlib_disabled
11502 && !loc->pspace->executing_startup)
11503 return 0;
11504 return 1;
11505 }
11506
11507 /* Subroutine of update_breakpoint_locations to simplify it.
11508 Return non-zero if multiple fns in list LOC have the same name.
11509 Null names are ignored. */
11510
11511 static int
11512 ambiguous_names_p (struct bp_location *loc)
11513 {
11514 struct bp_location *l;
11515 htab_t htab = htab_create_alloc (13, htab_hash_string,
11516 (int (*) (const void *,
11517 const void *)) streq,
11518 NULL, xcalloc, xfree);
11519
11520 for (l = loc; l != NULL; l = l->next)
11521 {
11522 const char **slot;
11523 const char *name = l->function_name;
11524
11525 /* Allow for some names to be NULL, ignore them. */
11526 if (name == NULL)
11527 continue;
11528
11529 slot = (const char **) htab_find_slot (htab, (const void *) name,
11530 INSERT);
11531 /* NOTE: We can assume slot != NULL here because xcalloc never
11532 returns NULL. */
11533 if (*slot != NULL)
11534 {
11535 htab_delete (htab);
11536 return 1;
11537 }
11538 *slot = name;
11539 }
11540
11541 htab_delete (htab);
11542 return 0;
11543 }
11544
11545 /* When symbols change, it probably means the sources changed as well,
11546 and it might mean the static tracepoint markers are no longer at
11547 the same address or line numbers they used to be at last we
11548 checked. Losing your static tracepoints whenever you rebuild is
11549 undesirable. This function tries to resync/rematch gdb static
11550 tracepoints with the markers on the target, for static tracepoints
11551 that have not been set by marker id. Static tracepoint that have
11552 been set by marker id are reset by marker id in breakpoint_re_set.
11553 The heuristic is:
11554
11555 1) For a tracepoint set at a specific address, look for a marker at
11556 the old PC. If one is found there, assume to be the same marker.
11557 If the name / string id of the marker found is different from the
11558 previous known name, assume that means the user renamed the marker
11559 in the sources, and output a warning.
11560
11561 2) For a tracepoint set at a given line number, look for a marker
11562 at the new address of the old line number. If one is found there,
11563 assume to be the same marker. If the name / string id of the
11564 marker found is different from the previous known name, assume that
11565 means the user renamed the marker in the sources, and output a
11566 warning.
11567
11568 3) If a marker is no longer found at the same address or line, it
11569 may mean the marker no longer exists. But it may also just mean
11570 the code changed a bit. Maybe the user added a few lines of code
11571 that made the marker move up or down (in line number terms). Ask
11572 the target for info about the marker with the string id as we knew
11573 it. If found, update line number and address in the matching
11574 static tracepoint. This will get confused if there's more than one
11575 marker with the same ID (possible in UST, although unadvised
11576 precisely because it confuses tools). */
11577
11578 static struct symtab_and_line
11579 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
11580 {
11581 struct tracepoint *tp = (struct tracepoint *) b;
11582 struct static_tracepoint_marker marker;
11583 CORE_ADDR pc;
11584 int i;
11585
11586 pc = sal.pc;
11587 if (sal.line)
11588 find_line_pc (sal.symtab, sal.line, &pc);
11589
11590 if (target_static_tracepoint_marker_at (pc, &marker))
11591 {
11592 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
11593 warning (_("static tracepoint %d changed probed marker from %s to %s"),
11594 b->number,
11595 tp->static_trace_marker_id, marker.str_id);
11596
11597 xfree (tp->static_trace_marker_id);
11598 tp->static_trace_marker_id = xstrdup (marker.str_id);
11599 release_static_tracepoint_marker (&marker);
11600
11601 return sal;
11602 }
11603
11604 /* Old marker wasn't found on target at lineno. Try looking it up
11605 by string ID. */
11606 if (!sal.explicit_pc
11607 && sal.line != 0
11608 && sal.symtab != NULL
11609 && tp->static_trace_marker_id != NULL)
11610 {
11611 VEC(static_tracepoint_marker_p) *markers;
11612
11613 markers
11614 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
11615
11616 if (!VEC_empty(static_tracepoint_marker_p, markers))
11617 {
11618 struct symtab_and_line sal2;
11619 struct symbol *sym;
11620 struct static_tracepoint_marker *tpmarker;
11621 struct ui_out *uiout = current_uiout;
11622
11623 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
11624
11625 xfree (tp->static_trace_marker_id);
11626 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
11627
11628 warning (_("marker for static tracepoint %d (%s) not "
11629 "found at previous line number"),
11630 b->number, tp->static_trace_marker_id);
11631
11632 init_sal (&sal2);
11633
11634 sal2.pc = tpmarker->address;
11635
11636 sal2 = find_pc_line (tpmarker->address, 0);
11637 sym = find_pc_sect_function (tpmarker->address, NULL);
11638 ui_out_text (uiout, "Now in ");
11639 if (sym)
11640 {
11641 ui_out_field_string (uiout, "func",
11642 SYMBOL_PRINT_NAME (sym));
11643 ui_out_text (uiout, " at ");
11644 }
11645 ui_out_field_string (uiout, "file", sal2.symtab->filename);
11646 ui_out_text (uiout, ":");
11647
11648 if (ui_out_is_mi_like_p (uiout))
11649 {
11650 char *fullname = symtab_to_fullname (sal2.symtab);
11651
11652 if (fullname)
11653 ui_out_field_string (uiout, "fullname", fullname);
11654 }
11655
11656 ui_out_field_int (uiout, "line", sal2.line);
11657 ui_out_text (uiout, "\n");
11658
11659 b->loc->line_number = sal2.line;
11660
11661 xfree (b->loc->source_file);
11662 if (sym)
11663 b->loc->source_file = xstrdup (sal2.symtab->filename);
11664 else
11665 b->loc->source_file = NULL;
11666
11667 xfree (b->addr_string);
11668 b->addr_string = xstrprintf ("%s:%d",
11669 sal2.symtab->filename,
11670 b->loc->line_number);
11671
11672 /* Might be nice to check if function changed, and warn if
11673 so. */
11674
11675 release_static_tracepoint_marker (tpmarker);
11676 }
11677 }
11678 return sal;
11679 }
11680
11681 /* Returns 1 iff locations A and B are sufficiently same that
11682 we don't need to report breakpoint as changed. */
11683
11684 static int
11685 locations_are_equal (struct bp_location *a, struct bp_location *b)
11686 {
11687 while (a && b)
11688 {
11689 if (a->address != b->address)
11690 return 0;
11691
11692 if (a->shlib_disabled != b->shlib_disabled)
11693 return 0;
11694
11695 if (a->enabled != b->enabled)
11696 return 0;
11697
11698 a = a->next;
11699 b = b->next;
11700 }
11701
11702 if ((a == NULL) != (b == NULL))
11703 return 0;
11704
11705 return 1;
11706 }
11707
11708 /* Create new breakpoint locations for B (a hardware or software breakpoint)
11709 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
11710 a ranged breakpoint. */
11711
11712 void
11713 update_breakpoint_locations (struct breakpoint *b,
11714 struct symtabs_and_lines sals,
11715 struct symtabs_and_lines sals_end)
11716 {
11717 int i;
11718 struct bp_location *existing_locations = b->loc;
11719
11720 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
11721 {
11722 /* Ranged breakpoints have only one start location and one end
11723 location. */
11724 b->enable_state = bp_disabled;
11725 update_global_location_list (1);
11726 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
11727 "multiple locations found\n"),
11728 b->number);
11729 return;
11730 }
11731
11732 /* If there's no new locations, and all existing locations are
11733 pending, don't do anything. This optimizes the common case where
11734 all locations are in the same shared library, that was unloaded.
11735 We'd like to retain the location, so that when the library is
11736 loaded again, we don't loose the enabled/disabled status of the
11737 individual locations. */
11738 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
11739 return;
11740
11741 b->loc = NULL;
11742
11743 for (i = 0; i < sals.nelts; ++i)
11744 {
11745 struct bp_location *new_loc;
11746
11747 switch_to_program_space_and_thread (sals.sals[i].pspace);
11748
11749 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
11750
11751 /* Reparse conditions, they might contain references to the
11752 old symtab. */
11753 if (b->cond_string != NULL)
11754 {
11755 char *s;
11756 volatile struct gdb_exception e;
11757
11758 s = b->cond_string;
11759 TRY_CATCH (e, RETURN_MASK_ERROR)
11760 {
11761 new_loc->cond = parse_exp_1 (&s, block_for_pc (sals.sals[i].pc),
11762 0);
11763 }
11764 if (e.reason < 0)
11765 {
11766 warning (_("failed to reevaluate condition "
11767 "for breakpoint %d: %s"),
11768 b->number, e.message);
11769 new_loc->enabled = 0;
11770 }
11771 }
11772
11773 if (sals_end.nelts)
11774 {
11775 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
11776
11777 new_loc->length = end - sals.sals[0].pc + 1;
11778 }
11779 }
11780
11781 /* Update locations of permanent breakpoints. */
11782 if (b->enable_state == bp_permanent)
11783 make_breakpoint_permanent (b);
11784
11785 /* If possible, carry over 'disable' status from existing
11786 breakpoints. */
11787 {
11788 struct bp_location *e = existing_locations;
11789 /* If there are multiple breakpoints with the same function name,
11790 e.g. for inline functions, comparing function names won't work.
11791 Instead compare pc addresses; this is just a heuristic as things
11792 may have moved, but in practice it gives the correct answer
11793 often enough until a better solution is found. */
11794 int have_ambiguous_names = ambiguous_names_p (b->loc);
11795
11796 for (; e; e = e->next)
11797 {
11798 if (!e->enabled && e->function_name)
11799 {
11800 struct bp_location *l = b->loc;
11801 if (have_ambiguous_names)
11802 {
11803 for (; l; l = l->next)
11804 if (breakpoint_locations_match (e, l))
11805 {
11806 l->enabled = 0;
11807 break;
11808 }
11809 }
11810 else
11811 {
11812 for (; l; l = l->next)
11813 if (l->function_name
11814 && strcmp (e->function_name, l->function_name) == 0)
11815 {
11816 l->enabled = 0;
11817 break;
11818 }
11819 }
11820 }
11821 }
11822 }
11823
11824 if (!locations_are_equal (existing_locations, b->loc))
11825 observer_notify_breakpoint_modified (b);
11826
11827 update_global_location_list (1);
11828 }
11829
11830 /* Find the SaL locations corresponding to the given ADDR_STRING.
11831 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
11832
11833 static struct symtabs_and_lines
11834 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
11835 {
11836 char *s;
11837 int marker_spec;
11838 struct symtabs_and_lines sals = {0};
11839 volatile struct gdb_exception e;
11840
11841 s = addr_string;
11842 marker_spec = b->type == bp_static_tracepoint && is_marker_spec (s);
11843
11844 TRY_CATCH (e, RETURN_MASK_ERROR)
11845 {
11846 if (marker_spec)
11847 {
11848 struct tracepoint *tp = (struct tracepoint *) b;
11849
11850 sals = decode_static_tracepoint_spec (&s);
11851 if (sals.nelts > tp->static_trace_marker_id_idx)
11852 {
11853 sals.sals[0] = sals.sals[tp->static_trace_marker_id_idx];
11854 sals.nelts = 1;
11855 }
11856 else
11857 error (_("marker %s not found"), tp->static_trace_marker_id);
11858 }
11859 else
11860 {
11861 struct linespec_result canonical;
11862
11863 init_linespec_result (&canonical);
11864 decode_line_full (&s, DECODE_LINE_FUNFIRSTLINE,
11865 (struct symtab *) NULL, 0,
11866 &canonical, multiple_symbols_all,
11867 b->filter);
11868
11869 /* We should get 0 or 1 resulting SALs. */
11870 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
11871
11872 if (VEC_length (linespec_sals, canonical.sals) > 0)
11873 {
11874 struct linespec_sals *lsal;
11875
11876 lsal = VEC_index (linespec_sals, canonical.sals, 0);
11877 sals = lsal->sals;
11878 /* Arrange it so the destructor does not free the
11879 contents. */
11880 lsal->sals.sals = NULL;
11881 }
11882
11883 destroy_linespec_result (&canonical);
11884 }
11885 }
11886 if (e.reason < 0)
11887 {
11888 int not_found_and_ok = 0;
11889 /* For pending breakpoints, it's expected that parsing will
11890 fail until the right shared library is loaded. User has
11891 already told to create pending breakpoints and don't need
11892 extra messages. If breakpoint is in bp_shlib_disabled
11893 state, then user already saw the message about that
11894 breakpoint being disabled, and don't want to see more
11895 errors. */
11896 if (e.error == NOT_FOUND_ERROR
11897 && (b->condition_not_parsed
11898 || (b->loc && b->loc->shlib_disabled)
11899 || (b->loc && b->loc->pspace->executing_startup)
11900 || b->enable_state == bp_disabled))
11901 not_found_and_ok = 1;
11902
11903 if (!not_found_and_ok)
11904 {
11905 /* We surely don't want to warn about the same breakpoint
11906 10 times. One solution, implemented here, is disable
11907 the breakpoint on error. Another solution would be to
11908 have separate 'warning emitted' flag. Since this
11909 happens only when a binary has changed, I don't know
11910 which approach is better. */
11911 b->enable_state = bp_disabled;
11912 throw_exception (e);
11913 }
11914 }
11915
11916 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
11917 {
11918 int i;
11919
11920 for (i = 0; i < sals.nelts; ++i)
11921 resolve_sal_pc (&sals.sals[i]);
11922 if (b->condition_not_parsed && s && s[0])
11923 {
11924 char *cond_string = 0;
11925 int thread = -1;
11926 int task = 0;
11927
11928 find_condition_and_thread (s, sals.sals[0].pc,
11929 &cond_string, &thread, &task);
11930 if (cond_string)
11931 b->cond_string = cond_string;
11932 b->thread = thread;
11933 b->task = task;
11934 b->condition_not_parsed = 0;
11935 }
11936
11937 if (b->type == bp_static_tracepoint && !marker_spec)
11938 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
11939
11940 *found = 1;
11941 }
11942 else
11943 *found = 0;
11944
11945 return sals;
11946 }
11947
11948 /* The default re_set method, for typical hardware or software
11949 breakpoints. Reevaluate the breakpoint and recreate its
11950 locations. */
11951
11952 static void
11953 breakpoint_re_set_default (struct breakpoint *b)
11954 {
11955 int found;
11956 struct symtabs_and_lines sals, sals_end;
11957 struct symtabs_and_lines expanded = {0};
11958 struct symtabs_and_lines expanded_end = {0};
11959
11960 sals = addr_string_to_sals (b, b->addr_string, &found);
11961 if (found)
11962 {
11963 make_cleanup (xfree, sals.sals);
11964 expanded = sals;
11965 }
11966
11967 if (b->addr_string_range_end)
11968 {
11969 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
11970 if (found)
11971 {
11972 make_cleanup (xfree, sals_end.sals);
11973 expanded_end = sals_end;
11974 }
11975 }
11976
11977 update_breakpoint_locations (b, expanded, expanded_end);
11978 }
11979
11980 /* Prepare the global context for a re-set of breakpoint B. */
11981
11982 static struct cleanup *
11983 prepare_re_set_context (struct breakpoint *b)
11984 {
11985 struct cleanup *cleanups;
11986
11987 input_radix = b->input_radix;
11988 cleanups = save_current_space_and_thread ();
11989 if (b->pspace != NULL)
11990 switch_to_program_space_and_thread (b->pspace);
11991 set_language (b->language);
11992
11993 return cleanups;
11994 }
11995
11996 /* Reset a breakpoint given it's struct breakpoint * BINT.
11997 The value we return ends up being the return value from catch_errors.
11998 Unused in this case. */
11999
12000 static int
12001 breakpoint_re_set_one (void *bint)
12002 {
12003 /* Get past catch_errs. */
12004 struct breakpoint *b = (struct breakpoint *) bint;
12005 struct cleanup *cleanups;
12006
12007 cleanups = prepare_re_set_context (b);
12008 b->ops->re_set (b);
12009 do_cleanups (cleanups);
12010 return 0;
12011 }
12012
12013 /* Re-set all breakpoints after symbols have been re-loaded. */
12014 void
12015 breakpoint_re_set (void)
12016 {
12017 struct breakpoint *b, *b_tmp;
12018 enum language save_language;
12019 int save_input_radix;
12020 struct cleanup *old_chain;
12021
12022 save_language = current_language->la_language;
12023 save_input_radix = input_radix;
12024 old_chain = save_current_program_space ();
12025
12026 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12027 {
12028 /* Format possible error msg. */
12029 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
12030 b->number);
12031 struct cleanup *cleanups = make_cleanup (xfree, message);
12032 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
12033 do_cleanups (cleanups);
12034 }
12035 set_language (save_language);
12036 input_radix = save_input_radix;
12037
12038 jit_breakpoint_re_set ();
12039
12040 do_cleanups (old_chain);
12041
12042 create_overlay_event_breakpoint ();
12043 create_longjmp_master_breakpoint ();
12044 create_std_terminate_master_breakpoint ();
12045 create_exception_master_breakpoint ();
12046
12047 /* While we're at it, reset the skip list too. */
12048 skip_re_set ();
12049 }
12050 \f
12051 /* Reset the thread number of this breakpoint:
12052
12053 - If the breakpoint is for all threads, leave it as-is.
12054 - Else, reset it to the current thread for inferior_ptid. */
12055 void
12056 breakpoint_re_set_thread (struct breakpoint *b)
12057 {
12058 if (b->thread != -1)
12059 {
12060 if (in_thread_list (inferior_ptid))
12061 b->thread = pid_to_thread_id (inferior_ptid);
12062
12063 /* We're being called after following a fork. The new fork is
12064 selected as current, and unless this was a vfork will have a
12065 different program space from the original thread. Reset that
12066 as well. */
12067 b->loc->pspace = current_program_space;
12068 }
12069 }
12070
12071 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
12072 If from_tty is nonzero, it prints a message to that effect,
12073 which ends with a period (no newline). */
12074
12075 void
12076 set_ignore_count (int bptnum, int count, int from_tty)
12077 {
12078 struct breakpoint *b;
12079
12080 if (count < 0)
12081 count = 0;
12082
12083 ALL_BREAKPOINTS (b)
12084 if (b->number == bptnum)
12085 {
12086 if (is_tracepoint (b))
12087 {
12088 if (from_tty && count != 0)
12089 printf_filtered (_("Ignore count ignored for tracepoint %d."),
12090 bptnum);
12091 return;
12092 }
12093
12094 b->ignore_count = count;
12095 if (from_tty)
12096 {
12097 if (count == 0)
12098 printf_filtered (_("Will stop next time "
12099 "breakpoint %d is reached."),
12100 bptnum);
12101 else if (count == 1)
12102 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
12103 bptnum);
12104 else
12105 printf_filtered (_("Will ignore next %d "
12106 "crossings of breakpoint %d."),
12107 count, bptnum);
12108 }
12109 breakpoints_changed ();
12110 observer_notify_breakpoint_modified (b);
12111 return;
12112 }
12113
12114 error (_("No breakpoint number %d."), bptnum);
12115 }
12116
12117 /* Command to set ignore-count of breakpoint N to COUNT. */
12118
12119 static void
12120 ignore_command (char *args, int from_tty)
12121 {
12122 char *p = args;
12123 int num;
12124
12125 if (p == 0)
12126 error_no_arg (_("a breakpoint number"));
12127
12128 num = get_number (&p);
12129 if (num == 0)
12130 error (_("bad breakpoint number: '%s'"), args);
12131 if (*p == 0)
12132 error (_("Second argument (specified ignore-count) is missing."));
12133
12134 set_ignore_count (num,
12135 longest_to_int (value_as_long (parse_and_eval (p))),
12136 from_tty);
12137 if (from_tty)
12138 printf_filtered ("\n");
12139 }
12140 \f
12141 /* Call FUNCTION on each of the breakpoints
12142 whose numbers are given in ARGS. */
12143
12144 static void
12145 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
12146 void *),
12147 void *data)
12148 {
12149 int num;
12150 struct breakpoint *b, *tmp;
12151 int match;
12152 struct get_number_or_range_state state;
12153
12154 if (args == 0)
12155 error_no_arg (_("one or more breakpoint numbers"));
12156
12157 init_number_or_range (&state, args);
12158
12159 while (!state.finished)
12160 {
12161 char *p = state.string;
12162
12163 match = 0;
12164
12165 num = get_number_or_range (&state);
12166 if (num == 0)
12167 {
12168 warning (_("bad breakpoint number at or near '%s'"), p);
12169 }
12170 else
12171 {
12172 ALL_BREAKPOINTS_SAFE (b, tmp)
12173 if (b->number == num)
12174 {
12175 match = 1;
12176 function (b, data);
12177 break;
12178 }
12179 if (match == 0)
12180 printf_unfiltered (_("No breakpoint number %d.\n"), num);
12181 }
12182 }
12183 }
12184
12185 static struct bp_location *
12186 find_location_by_number (char *number)
12187 {
12188 char *dot = strchr (number, '.');
12189 char *p1;
12190 int bp_num;
12191 int loc_num;
12192 struct breakpoint *b;
12193 struct bp_location *loc;
12194
12195 *dot = '\0';
12196
12197 p1 = number;
12198 bp_num = get_number (&p1);
12199 if (bp_num == 0)
12200 error (_("Bad breakpoint number '%s'"), number);
12201
12202 ALL_BREAKPOINTS (b)
12203 if (b->number == bp_num)
12204 {
12205 break;
12206 }
12207
12208 if (!b || b->number != bp_num)
12209 error (_("Bad breakpoint number '%s'"), number);
12210
12211 p1 = dot+1;
12212 loc_num = get_number (&p1);
12213 if (loc_num == 0)
12214 error (_("Bad breakpoint location number '%s'"), number);
12215
12216 --loc_num;
12217 loc = b->loc;
12218 for (;loc_num && loc; --loc_num, loc = loc->next)
12219 ;
12220 if (!loc)
12221 error (_("Bad breakpoint location number '%s'"), dot+1);
12222
12223 return loc;
12224 }
12225
12226
12227 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
12228 If from_tty is nonzero, it prints a message to that effect,
12229 which ends with a period (no newline). */
12230
12231 void
12232 disable_breakpoint (struct breakpoint *bpt)
12233 {
12234 /* Never disable a watchpoint scope breakpoint; we want to
12235 hit them when we leave scope so we can delete both the
12236 watchpoint and its scope breakpoint at that time. */
12237 if (bpt->type == bp_watchpoint_scope)
12238 return;
12239
12240 /* You can't disable permanent breakpoints. */
12241 if (bpt->enable_state == bp_permanent)
12242 return;
12243
12244 bpt->enable_state = bp_disabled;
12245
12246 if (target_supports_enable_disable_tracepoint ()
12247 && current_trace_status ()->running && is_tracepoint (bpt))
12248 {
12249 struct bp_location *location;
12250
12251 for (location = bpt->loc; location; location = location->next)
12252 target_disable_tracepoint (location);
12253 }
12254
12255 update_global_location_list (0);
12256
12257 observer_notify_breakpoint_modified (bpt);
12258 }
12259
12260 /* A callback for iterate_over_related_breakpoints. */
12261
12262 static void
12263 do_disable_breakpoint (struct breakpoint *b, void *ignore)
12264 {
12265 disable_breakpoint (b);
12266 }
12267
12268 /* A callback for map_breakpoint_numbers that calls
12269 disable_breakpoint. */
12270
12271 static void
12272 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
12273 {
12274 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
12275 }
12276
12277 static void
12278 disable_command (char *args, int from_tty)
12279 {
12280 if (args == 0)
12281 {
12282 struct breakpoint *bpt;
12283
12284 ALL_BREAKPOINTS (bpt)
12285 if (user_breakpoint_p (bpt))
12286 disable_breakpoint (bpt);
12287 }
12288 else if (strchr (args, '.'))
12289 {
12290 struct bp_location *loc = find_location_by_number (args);
12291 if (loc)
12292 {
12293 loc->enabled = 0;
12294 if (target_supports_enable_disable_tracepoint ()
12295 && current_trace_status ()->running && loc->owner
12296 && is_tracepoint (loc->owner))
12297 target_disable_tracepoint (loc);
12298 }
12299 update_global_location_list (0);
12300 }
12301 else
12302 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
12303 }
12304
12305 static void
12306 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition)
12307 {
12308 int target_resources_ok;
12309
12310 if (bpt->type == bp_hardware_breakpoint)
12311 {
12312 int i;
12313 i = hw_breakpoint_used_count ();
12314 target_resources_ok =
12315 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
12316 i + 1, 0);
12317 if (target_resources_ok == 0)
12318 error (_("No hardware breakpoint support in the target."));
12319 else if (target_resources_ok < 0)
12320 error (_("Hardware breakpoints used exceeds limit."));
12321 }
12322
12323 if (is_watchpoint (bpt))
12324 {
12325 /* Initialize it just to avoid a GCC false warning. */
12326 enum enable_state orig_enable_state = 0;
12327 volatile struct gdb_exception e;
12328
12329 TRY_CATCH (e, RETURN_MASK_ALL)
12330 {
12331 struct watchpoint *w = (struct watchpoint *) bpt;
12332
12333 orig_enable_state = bpt->enable_state;
12334 bpt->enable_state = bp_enabled;
12335 update_watchpoint (w, 1 /* reparse */);
12336 }
12337 if (e.reason < 0)
12338 {
12339 bpt->enable_state = orig_enable_state;
12340 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
12341 bpt->number);
12342 return;
12343 }
12344 }
12345
12346 if (bpt->enable_state != bp_permanent)
12347 bpt->enable_state = bp_enabled;
12348
12349 if (target_supports_enable_disable_tracepoint ()
12350 && current_trace_status ()->running && is_tracepoint (bpt))
12351 {
12352 struct bp_location *location;
12353
12354 for (location = bpt->loc; location; location = location->next)
12355 target_enable_tracepoint (location);
12356 }
12357
12358 bpt->disposition = disposition;
12359 update_global_location_list (1);
12360 breakpoints_changed ();
12361
12362 observer_notify_breakpoint_modified (bpt);
12363 }
12364
12365
12366 void
12367 enable_breakpoint (struct breakpoint *bpt)
12368 {
12369 enable_breakpoint_disp (bpt, bpt->disposition);
12370 }
12371
12372 static void
12373 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
12374 {
12375 enable_breakpoint (bpt);
12376 }
12377
12378 /* A callback for map_breakpoint_numbers that calls
12379 enable_breakpoint. */
12380
12381 static void
12382 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
12383 {
12384 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
12385 }
12386
12387 /* The enable command enables the specified breakpoints (or all defined
12388 breakpoints) so they once again become (or continue to be) effective
12389 in stopping the inferior. */
12390
12391 static void
12392 enable_command (char *args, int from_tty)
12393 {
12394 if (args == 0)
12395 {
12396 struct breakpoint *bpt;
12397
12398 ALL_BREAKPOINTS (bpt)
12399 if (user_breakpoint_p (bpt))
12400 enable_breakpoint (bpt);
12401 }
12402 else if (strchr (args, '.'))
12403 {
12404 struct bp_location *loc = find_location_by_number (args);
12405 if (loc)
12406 {
12407 loc->enabled = 1;
12408 if (target_supports_enable_disable_tracepoint ()
12409 && current_trace_status ()->running && loc->owner
12410 && is_tracepoint (loc->owner))
12411 target_enable_tracepoint (loc);
12412 }
12413 update_global_location_list (1);
12414 }
12415 else
12416 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
12417 }
12418
12419 static void
12420 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
12421 {
12422 enum bpdisp disp = *(enum bpdisp *) arg;
12423
12424 enable_breakpoint_disp (bpt, disp);
12425 }
12426
12427 static void
12428 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
12429 {
12430 enum bpdisp disp = disp_disable;
12431
12432 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
12433 }
12434
12435 static void
12436 enable_once_command (char *args, int from_tty)
12437 {
12438 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
12439 }
12440
12441 static void
12442 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
12443 {
12444 enum bpdisp disp = disp_del;
12445
12446 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
12447 }
12448
12449 static void
12450 enable_delete_command (char *args, int from_tty)
12451 {
12452 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
12453 }
12454 \f
12455 static void
12456 set_breakpoint_cmd (char *args, int from_tty)
12457 {
12458 }
12459
12460 static void
12461 show_breakpoint_cmd (char *args, int from_tty)
12462 {
12463 }
12464
12465 /* Invalidate last known value of any hardware watchpoint if
12466 the memory which that value represents has been written to by
12467 GDB itself. */
12468
12469 static void
12470 invalidate_bp_value_on_memory_change (CORE_ADDR addr, int len,
12471 const bfd_byte *data)
12472 {
12473 struct breakpoint *bp;
12474
12475 ALL_BREAKPOINTS (bp)
12476 if (bp->enable_state == bp_enabled
12477 && bp->type == bp_hardware_watchpoint)
12478 {
12479 struct watchpoint *wp = (struct watchpoint *) bp;
12480
12481 if (wp->val_valid && wp->val)
12482 {
12483 struct bp_location *loc;
12484
12485 for (loc = bp->loc; loc != NULL; loc = loc->next)
12486 if (loc->loc_type == bp_loc_hardware_watchpoint
12487 && loc->address + loc->length > addr
12488 && addr + len > loc->address)
12489 {
12490 value_free (wp->val);
12491 wp->val = NULL;
12492 wp->val_valid = 0;
12493 }
12494 }
12495 }
12496 }
12497
12498 /* Use the last displayed codepoint's values, or nothing
12499 if they aren't valid. */
12500
12501 struct symtabs_and_lines
12502 decode_line_spec_1 (char *string, int flags)
12503 {
12504 struct symtabs_and_lines sals;
12505
12506 if (string == 0)
12507 error (_("Empty line specification."));
12508 if (last_displayed_sal_is_valid ())
12509 sals = decode_line_1 (&string, flags,
12510 get_last_displayed_symtab (),
12511 get_last_displayed_line ());
12512 else
12513 sals = decode_line_1 (&string, flags, (struct symtab *) NULL, 0);
12514 if (*string)
12515 error (_("Junk at end of line specification: %s"), string);
12516 return sals;
12517 }
12518
12519 /* Create and insert a raw software breakpoint at PC. Return an
12520 identifier, which should be used to remove the breakpoint later.
12521 In general, places which call this should be using something on the
12522 breakpoint chain instead; this function should be eliminated
12523 someday. */
12524
12525 void *
12526 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
12527 struct address_space *aspace, CORE_ADDR pc)
12528 {
12529 struct bp_target_info *bp_tgt;
12530
12531 bp_tgt = XZALLOC (struct bp_target_info);
12532
12533 bp_tgt->placed_address_space = aspace;
12534 bp_tgt->placed_address = pc;
12535
12536 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
12537 {
12538 /* Could not insert the breakpoint. */
12539 xfree (bp_tgt);
12540 return NULL;
12541 }
12542
12543 return bp_tgt;
12544 }
12545
12546 /* Remove a breakpoint BP inserted by
12547 deprecated_insert_raw_breakpoint. */
12548
12549 int
12550 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
12551 {
12552 struct bp_target_info *bp_tgt = bp;
12553 int ret;
12554
12555 ret = target_remove_breakpoint (gdbarch, bp_tgt);
12556 xfree (bp_tgt);
12557
12558 return ret;
12559 }
12560
12561 /* One (or perhaps two) breakpoints used for software single
12562 stepping. */
12563
12564 static void *single_step_breakpoints[2];
12565 static struct gdbarch *single_step_gdbarch[2];
12566
12567 /* Create and insert a breakpoint for software single step. */
12568
12569 void
12570 insert_single_step_breakpoint (struct gdbarch *gdbarch,
12571 struct address_space *aspace,
12572 CORE_ADDR next_pc)
12573 {
12574 void **bpt_p;
12575
12576 if (single_step_breakpoints[0] == NULL)
12577 {
12578 bpt_p = &single_step_breakpoints[0];
12579 single_step_gdbarch[0] = gdbarch;
12580 }
12581 else
12582 {
12583 gdb_assert (single_step_breakpoints[1] == NULL);
12584 bpt_p = &single_step_breakpoints[1];
12585 single_step_gdbarch[1] = gdbarch;
12586 }
12587
12588 /* NOTE drow/2006-04-11: A future improvement to this function would
12589 be to only create the breakpoints once, and actually put them on
12590 the breakpoint chain. That would let us use set_raw_breakpoint.
12591 We could adjust the addresses each time they were needed. Doing
12592 this requires corresponding changes elsewhere where single step
12593 breakpoints are handled, however. So, for now, we use this. */
12594
12595 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
12596 if (*bpt_p == NULL)
12597 error (_("Could not insert single-step breakpoint at %s"),
12598 paddress (gdbarch, next_pc));
12599 }
12600
12601 /* Check if the breakpoints used for software single stepping
12602 were inserted or not. */
12603
12604 int
12605 single_step_breakpoints_inserted (void)
12606 {
12607 return (single_step_breakpoints[0] != NULL
12608 || single_step_breakpoints[1] != NULL);
12609 }
12610
12611 /* Remove and delete any breakpoints used for software single step. */
12612
12613 void
12614 remove_single_step_breakpoints (void)
12615 {
12616 gdb_assert (single_step_breakpoints[0] != NULL);
12617
12618 /* See insert_single_step_breakpoint for more about this deprecated
12619 call. */
12620 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
12621 single_step_breakpoints[0]);
12622 single_step_gdbarch[0] = NULL;
12623 single_step_breakpoints[0] = NULL;
12624
12625 if (single_step_breakpoints[1] != NULL)
12626 {
12627 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
12628 single_step_breakpoints[1]);
12629 single_step_gdbarch[1] = NULL;
12630 single_step_breakpoints[1] = NULL;
12631 }
12632 }
12633
12634 /* Delete software single step breakpoints without removing them from
12635 the inferior. This is intended to be used if the inferior's address
12636 space where they were inserted is already gone, e.g. after exit or
12637 exec. */
12638
12639 void
12640 cancel_single_step_breakpoints (void)
12641 {
12642 int i;
12643
12644 for (i = 0; i < 2; i++)
12645 if (single_step_breakpoints[i])
12646 {
12647 xfree (single_step_breakpoints[i]);
12648 single_step_breakpoints[i] = NULL;
12649 single_step_gdbarch[i] = NULL;
12650 }
12651 }
12652
12653 /* Detach software single-step breakpoints from INFERIOR_PTID without
12654 removing them. */
12655
12656 static void
12657 detach_single_step_breakpoints (void)
12658 {
12659 int i;
12660
12661 for (i = 0; i < 2; i++)
12662 if (single_step_breakpoints[i])
12663 target_remove_breakpoint (single_step_gdbarch[i],
12664 single_step_breakpoints[i]);
12665 }
12666
12667 /* Check whether a software single-step breakpoint is inserted at
12668 PC. */
12669
12670 static int
12671 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
12672 CORE_ADDR pc)
12673 {
12674 int i;
12675
12676 for (i = 0; i < 2; i++)
12677 {
12678 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
12679 if (bp_tgt
12680 && breakpoint_address_match (bp_tgt->placed_address_space,
12681 bp_tgt->placed_address,
12682 aspace, pc))
12683 return 1;
12684 }
12685
12686 return 0;
12687 }
12688
12689 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
12690 non-zero otherwise. */
12691 static int
12692 is_syscall_catchpoint_enabled (struct breakpoint *bp)
12693 {
12694 if (syscall_catchpoint_p (bp)
12695 && bp->enable_state != bp_disabled
12696 && bp->enable_state != bp_call_disabled)
12697 return 1;
12698 else
12699 return 0;
12700 }
12701
12702 int
12703 catch_syscall_enabled (void)
12704 {
12705 struct inferior *inf = current_inferior ();
12706
12707 return inf->total_syscalls_count != 0;
12708 }
12709
12710 int
12711 catching_syscall_number (int syscall_number)
12712 {
12713 struct breakpoint *bp;
12714
12715 ALL_BREAKPOINTS (bp)
12716 if (is_syscall_catchpoint_enabled (bp))
12717 {
12718 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
12719
12720 if (c->syscalls_to_be_caught)
12721 {
12722 int i, iter;
12723 for (i = 0;
12724 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
12725 i++)
12726 if (syscall_number == iter)
12727 return 1;
12728 }
12729 else
12730 return 1;
12731 }
12732
12733 return 0;
12734 }
12735
12736 /* Complete syscall names. Used by "catch syscall". */
12737 static char **
12738 catch_syscall_completer (struct cmd_list_element *cmd,
12739 char *text, char *word)
12740 {
12741 const char **list = get_syscall_names ();
12742 char **retlist
12743 = (list == NULL) ? NULL : complete_on_enum (list, text, word);
12744
12745 xfree (list);
12746 return retlist;
12747 }
12748
12749 /* Tracepoint-specific operations. */
12750
12751 /* Set tracepoint count to NUM. */
12752 static void
12753 set_tracepoint_count (int num)
12754 {
12755 tracepoint_count = num;
12756 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
12757 }
12758
12759 void
12760 trace_command (char *arg, int from_tty)
12761 {
12762 if (create_breakpoint (get_current_arch (),
12763 arg,
12764 NULL, 0, 1 /* parse arg */,
12765 0 /* tempflag */,
12766 bp_tracepoint /* type_wanted */,
12767 0 /* Ignore count */,
12768 pending_break_support,
12769 &tracepoint_breakpoint_ops,
12770 from_tty,
12771 1 /* enabled */,
12772 0 /* internal */))
12773 set_tracepoint_count (breakpoint_count);
12774 }
12775
12776 void
12777 ftrace_command (char *arg, int from_tty)
12778 {
12779 if (create_breakpoint (get_current_arch (),
12780 arg,
12781 NULL, 0, 1 /* parse arg */,
12782 0 /* tempflag */,
12783 bp_fast_tracepoint /* type_wanted */,
12784 0 /* Ignore count */,
12785 pending_break_support,
12786 &tracepoint_breakpoint_ops,
12787 from_tty,
12788 1 /* enabled */,
12789 0 /* internal */))
12790 set_tracepoint_count (breakpoint_count);
12791 }
12792
12793 /* strace command implementation. Creates a static tracepoint. */
12794
12795 void
12796 strace_command (char *arg, int from_tty)
12797 {
12798 if (create_breakpoint (get_current_arch (),
12799 arg,
12800 NULL, 0, 1 /* parse arg */,
12801 0 /* tempflag */,
12802 bp_static_tracepoint /* type_wanted */,
12803 0 /* Ignore count */,
12804 pending_break_support,
12805 &tracepoint_breakpoint_ops,
12806 from_tty,
12807 1 /* enabled */,
12808 0 /* internal */))
12809 set_tracepoint_count (breakpoint_count);
12810 }
12811
12812 /* Set up a fake reader function that gets command lines from a linked
12813 list that was acquired during tracepoint uploading. */
12814
12815 static struct uploaded_tp *this_utp;
12816 static int next_cmd;
12817
12818 static char *
12819 read_uploaded_action (void)
12820 {
12821 char *rslt;
12822
12823 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
12824
12825 next_cmd++;
12826
12827 return rslt;
12828 }
12829
12830 /* Given information about a tracepoint as recorded on a target (which
12831 can be either a live system or a trace file), attempt to create an
12832 equivalent GDB tracepoint. This is not a reliable process, since
12833 the target does not necessarily have all the information used when
12834 the tracepoint was originally defined. */
12835
12836 struct tracepoint *
12837 create_tracepoint_from_upload (struct uploaded_tp *utp)
12838 {
12839 char *addr_str, small_buf[100];
12840 struct tracepoint *tp;
12841
12842 if (utp->at_string)
12843 addr_str = utp->at_string;
12844 else
12845 {
12846 /* In the absence of a source location, fall back to raw
12847 address. Since there is no way to confirm that the address
12848 means the same thing as when the trace was started, warn the
12849 user. */
12850 warning (_("Uploaded tracepoint %d has no "
12851 "source location, using raw address"),
12852 utp->number);
12853 sprintf (small_buf, "*%s", hex_string (utp->addr));
12854 addr_str = small_buf;
12855 }
12856
12857 /* There's not much we can do with a sequence of bytecodes. */
12858 if (utp->cond && !utp->cond_string)
12859 warning (_("Uploaded tracepoint %d condition "
12860 "has no source form, ignoring it"),
12861 utp->number);
12862
12863 if (!create_breakpoint (get_current_arch (),
12864 addr_str,
12865 utp->cond_string, -1, 0 /* parse cond/thread */,
12866 0 /* tempflag */,
12867 utp->type /* type_wanted */,
12868 0 /* Ignore count */,
12869 pending_break_support,
12870 &tracepoint_breakpoint_ops,
12871 0 /* from_tty */,
12872 utp->enabled /* enabled */,
12873 0 /* internal */))
12874 return NULL;
12875
12876 set_tracepoint_count (breakpoint_count);
12877
12878 /* Get the tracepoint we just created. */
12879 tp = get_tracepoint (tracepoint_count);
12880 gdb_assert (tp != NULL);
12881
12882 if (utp->pass > 0)
12883 {
12884 sprintf (small_buf, "%d %d", utp->pass, tp->base.number);
12885
12886 trace_pass_command (small_buf, 0);
12887 }
12888
12889 /* If we have uploaded versions of the original commands, set up a
12890 special-purpose "reader" function and call the usual command line
12891 reader, then pass the result to the breakpoint command-setting
12892 function. */
12893 if (!VEC_empty (char_ptr, utp->cmd_strings))
12894 {
12895 struct command_line *cmd_list;
12896
12897 this_utp = utp;
12898 next_cmd = 0;
12899
12900 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
12901
12902 breakpoint_set_commands (&tp->base, cmd_list);
12903 }
12904 else if (!VEC_empty (char_ptr, utp->actions)
12905 || !VEC_empty (char_ptr, utp->step_actions))
12906 warning (_("Uploaded tracepoint %d actions "
12907 "have no source form, ignoring them"),
12908 utp->number);
12909
12910 /* Copy any status information that might be available. */
12911 tp->base.hit_count = utp->hit_count;
12912 tp->traceframe_usage = utp->traceframe_usage;
12913
12914 return tp;
12915 }
12916
12917 /* Print information on tracepoint number TPNUM_EXP, or all if
12918 omitted. */
12919
12920 static void
12921 tracepoints_info (char *args, int from_tty)
12922 {
12923 struct ui_out *uiout = current_uiout;
12924 int num_printed;
12925
12926 num_printed = breakpoint_1 (args, 0, is_tracepoint);
12927
12928 if (num_printed == 0)
12929 {
12930 if (args == NULL || *args == '\0')
12931 ui_out_message (uiout, 0, "No tracepoints.\n");
12932 else
12933 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
12934 }
12935
12936 default_collect_info ();
12937 }
12938
12939 /* The 'enable trace' command enables tracepoints.
12940 Not supported by all targets. */
12941 static void
12942 enable_trace_command (char *args, int from_tty)
12943 {
12944 enable_command (args, from_tty);
12945 }
12946
12947 /* The 'disable trace' command disables tracepoints.
12948 Not supported by all targets. */
12949 static void
12950 disable_trace_command (char *args, int from_tty)
12951 {
12952 disable_command (args, from_tty);
12953 }
12954
12955 /* Remove a tracepoint (or all if no argument). */
12956 static void
12957 delete_trace_command (char *arg, int from_tty)
12958 {
12959 struct breakpoint *b, *b_tmp;
12960
12961 dont_repeat ();
12962
12963 if (arg == 0)
12964 {
12965 int breaks_to_delete = 0;
12966
12967 /* Delete all breakpoints if no argument.
12968 Do not delete internal or call-dummy breakpoints, these
12969 have to be deleted with an explicit breakpoint number
12970 argument. */
12971 ALL_TRACEPOINTS (b)
12972 if (is_tracepoint (b) && user_breakpoint_p (b))
12973 {
12974 breaks_to_delete = 1;
12975 break;
12976 }
12977
12978 /* Ask user only if there are some breakpoints to delete. */
12979 if (!from_tty
12980 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
12981 {
12982 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12983 if (is_tracepoint (b) && user_breakpoint_p (b))
12984 delete_breakpoint (b);
12985 }
12986 }
12987 else
12988 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
12989 }
12990
12991 /* Helper function for trace_pass_command. */
12992
12993 static void
12994 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
12995 {
12996 tp->pass_count = count;
12997 observer_notify_tracepoint_modified (tp->base.number);
12998 if (from_tty)
12999 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
13000 tp->base.number, count);
13001 }
13002
13003 /* Set passcount for tracepoint.
13004
13005 First command argument is passcount, second is tracepoint number.
13006 If tracepoint number omitted, apply to most recently defined.
13007 Also accepts special argument "all". */
13008
13009 static void
13010 trace_pass_command (char *args, int from_tty)
13011 {
13012 struct tracepoint *t1;
13013 unsigned int count;
13014
13015 if (args == 0 || *args == 0)
13016 error (_("passcount command requires an "
13017 "argument (count + optional TP num)"));
13018
13019 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
13020
13021 while (*args && isspace ((int) *args))
13022 args++;
13023
13024 if (*args && strncasecmp (args, "all", 3) == 0)
13025 {
13026 struct breakpoint *b;
13027
13028 args += 3; /* Skip special argument "all". */
13029 if (*args)
13030 error (_("Junk at end of arguments."));
13031
13032 ALL_TRACEPOINTS (b)
13033 {
13034 t1 = (struct tracepoint *) b;
13035 trace_pass_set_count (t1, count, from_tty);
13036 }
13037 }
13038 else if (*args == '\0')
13039 {
13040 t1 = get_tracepoint_by_number (&args, NULL, 1);
13041 if (t1)
13042 trace_pass_set_count (t1, count, from_tty);
13043 }
13044 else
13045 {
13046 struct get_number_or_range_state state;
13047
13048 init_number_or_range (&state, args);
13049 while (!state.finished)
13050 {
13051 t1 = get_tracepoint_by_number (&args, &state, 1);
13052 if (t1)
13053 trace_pass_set_count (t1, count, from_tty);
13054 }
13055 }
13056 }
13057
13058 struct tracepoint *
13059 get_tracepoint (int num)
13060 {
13061 struct breakpoint *t;
13062
13063 ALL_TRACEPOINTS (t)
13064 if (t->number == num)
13065 return (struct tracepoint *) t;
13066
13067 return NULL;
13068 }
13069
13070 /* Find the tracepoint with the given target-side number (which may be
13071 different from the tracepoint number after disconnecting and
13072 reconnecting). */
13073
13074 struct tracepoint *
13075 get_tracepoint_by_number_on_target (int num)
13076 {
13077 struct breakpoint *b;
13078
13079 ALL_TRACEPOINTS (b)
13080 {
13081 struct tracepoint *t = (struct tracepoint *) b;
13082
13083 if (t->number_on_target == num)
13084 return t;
13085 }
13086
13087 return NULL;
13088 }
13089
13090 /* Utility: parse a tracepoint number and look it up in the list.
13091 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
13092 If OPTIONAL_P is true, then if the argument is missing, the most
13093 recent tracepoint (tracepoint_count) is returned. */
13094 struct tracepoint *
13095 get_tracepoint_by_number (char **arg,
13096 struct get_number_or_range_state *state,
13097 int optional_p)
13098 {
13099 extern int tracepoint_count;
13100 struct breakpoint *t;
13101 int tpnum;
13102 char *instring = arg == NULL ? NULL : *arg;
13103
13104 if (state)
13105 {
13106 gdb_assert (!state->finished);
13107 tpnum = get_number_or_range (state);
13108 }
13109 else if (arg == NULL || *arg == NULL || ! **arg)
13110 {
13111 if (optional_p)
13112 tpnum = tracepoint_count;
13113 else
13114 error_no_arg (_("tracepoint number"));
13115 }
13116 else
13117 tpnum = get_number (arg);
13118
13119 if (tpnum <= 0)
13120 {
13121 if (instring && *instring)
13122 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
13123 instring);
13124 else
13125 printf_filtered (_("Tracepoint argument missing "
13126 "and no previous tracepoint\n"));
13127 return NULL;
13128 }
13129
13130 ALL_TRACEPOINTS (t)
13131 if (t->number == tpnum)
13132 {
13133 return (struct tracepoint *) t;
13134 }
13135
13136 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
13137 return NULL;
13138 }
13139
13140 void
13141 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
13142 {
13143 if (b->thread != -1)
13144 fprintf_unfiltered (fp, " thread %d", b->thread);
13145
13146 if (b->task != 0)
13147 fprintf_unfiltered (fp, " task %d", b->task);
13148
13149 fprintf_unfiltered (fp, "\n");
13150 }
13151
13152 /* Save information on user settable breakpoints (watchpoints, etc) to
13153 a new script file named FILENAME. If FILTER is non-NULL, call it
13154 on each breakpoint and only include the ones for which it returns
13155 non-zero. */
13156
13157 static void
13158 save_breakpoints (char *filename, int from_tty,
13159 int (*filter) (const struct breakpoint *))
13160 {
13161 struct breakpoint *tp;
13162 int any = 0;
13163 char *pathname;
13164 struct cleanup *cleanup;
13165 struct ui_file *fp;
13166 int extra_trace_bits = 0;
13167
13168 if (filename == 0 || *filename == 0)
13169 error (_("Argument required (file name in which to save)"));
13170
13171 /* See if we have anything to save. */
13172 ALL_BREAKPOINTS (tp)
13173 {
13174 /* Skip internal and momentary breakpoints. */
13175 if (!user_breakpoint_p (tp))
13176 continue;
13177
13178 /* If we have a filter, only save the breakpoints it accepts. */
13179 if (filter && !filter (tp))
13180 continue;
13181
13182 any = 1;
13183
13184 if (is_tracepoint (tp))
13185 {
13186 extra_trace_bits = 1;
13187
13188 /* We can stop searching. */
13189 break;
13190 }
13191 }
13192
13193 if (!any)
13194 {
13195 warning (_("Nothing to save."));
13196 return;
13197 }
13198
13199 pathname = tilde_expand (filename);
13200 cleanup = make_cleanup (xfree, pathname);
13201 fp = gdb_fopen (pathname, "w");
13202 if (!fp)
13203 error (_("Unable to open file '%s' for saving (%s)"),
13204 filename, safe_strerror (errno));
13205 make_cleanup_ui_file_delete (fp);
13206
13207 if (extra_trace_bits)
13208 save_trace_state_variables (fp);
13209
13210 ALL_BREAKPOINTS (tp)
13211 {
13212 /* Skip internal and momentary breakpoints. */
13213 if (!user_breakpoint_p (tp))
13214 continue;
13215
13216 /* If we have a filter, only save the breakpoints it accepts. */
13217 if (filter && !filter (tp))
13218 continue;
13219
13220 tp->ops->print_recreate (tp, fp);
13221
13222 /* Note, we can't rely on tp->number for anything, as we can't
13223 assume the recreated breakpoint numbers will match. Use $bpnum
13224 instead. */
13225
13226 if (tp->cond_string)
13227 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
13228
13229 if (tp->ignore_count)
13230 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
13231
13232 if (tp->commands)
13233 {
13234 volatile struct gdb_exception ex;
13235
13236 fprintf_unfiltered (fp, " commands\n");
13237
13238 ui_out_redirect (current_uiout, fp);
13239 TRY_CATCH (ex, RETURN_MASK_ALL)
13240 {
13241 print_command_lines (current_uiout, tp->commands->commands, 2);
13242 }
13243 ui_out_redirect (current_uiout, NULL);
13244
13245 if (ex.reason < 0)
13246 throw_exception (ex);
13247
13248 fprintf_unfiltered (fp, " end\n");
13249 }
13250
13251 if (tp->enable_state == bp_disabled)
13252 fprintf_unfiltered (fp, "disable\n");
13253
13254 /* If this is a multi-location breakpoint, check if the locations
13255 should be individually disabled. Watchpoint locations are
13256 special, and not user visible. */
13257 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
13258 {
13259 struct bp_location *loc;
13260 int n = 1;
13261
13262 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
13263 if (!loc->enabled)
13264 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
13265 }
13266 }
13267
13268 if (extra_trace_bits && *default_collect)
13269 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
13270
13271 do_cleanups (cleanup);
13272 if (from_tty)
13273 printf_filtered (_("Saved to file '%s'.\n"), filename);
13274 }
13275
13276 /* The `save breakpoints' command. */
13277
13278 static void
13279 save_breakpoints_command (char *args, int from_tty)
13280 {
13281 save_breakpoints (args, from_tty, NULL);
13282 }
13283
13284 /* The `save tracepoints' command. */
13285
13286 static void
13287 save_tracepoints_command (char *args, int from_tty)
13288 {
13289 save_breakpoints (args, from_tty, is_tracepoint);
13290 }
13291
13292 /* Create a vector of all tracepoints. */
13293
13294 VEC(breakpoint_p) *
13295 all_tracepoints (void)
13296 {
13297 VEC(breakpoint_p) *tp_vec = 0;
13298 struct breakpoint *tp;
13299
13300 ALL_TRACEPOINTS (tp)
13301 {
13302 VEC_safe_push (breakpoint_p, tp_vec, tp);
13303 }
13304
13305 return tp_vec;
13306 }
13307
13308 \f
13309 /* This help string is used for the break, hbreak, tbreak and thbreak
13310 commands. It is defined as a macro to prevent duplication.
13311 COMMAND should be a string constant containing the name of the
13312 command. */
13313 #define BREAK_ARGS_HELP(command) \
13314 command" [LOCATION] [thread THREADNUM] [if CONDITION]\n\
13315 LOCATION may be a line number, function name, or \"*\" and an address.\n\
13316 If a line number is specified, break at start of code for that line.\n\
13317 If a function is specified, break at start of code for that function.\n\
13318 If an address is specified, break at that exact address.\n\
13319 With no LOCATION, uses current execution address of the selected\n\
13320 stack frame. This is useful for breaking on return to a stack frame.\n\
13321 \n\
13322 THREADNUM is the number from \"info threads\".\n\
13323 CONDITION is a boolean expression.\n\
13324 \n\
13325 Multiple breakpoints at one place are permitted, and useful if their\n\
13326 conditions are different.\n\
13327 \n\
13328 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
13329
13330 /* List of subcommands for "catch". */
13331 static struct cmd_list_element *catch_cmdlist;
13332
13333 /* List of subcommands for "tcatch". */
13334 static struct cmd_list_element *tcatch_cmdlist;
13335
13336 void
13337 add_catch_command (char *name, char *docstring,
13338 void (*sfunc) (char *args, int from_tty,
13339 struct cmd_list_element *command),
13340 char **(*completer) (struct cmd_list_element *cmd,
13341 char *text, char *word),
13342 void *user_data_catch,
13343 void *user_data_tcatch)
13344 {
13345 struct cmd_list_element *command;
13346
13347 command = add_cmd (name, class_breakpoint, NULL, docstring,
13348 &catch_cmdlist);
13349 set_cmd_sfunc (command, sfunc);
13350 set_cmd_context (command, user_data_catch);
13351 set_cmd_completer (command, completer);
13352
13353 command = add_cmd (name, class_breakpoint, NULL, docstring,
13354 &tcatch_cmdlist);
13355 set_cmd_sfunc (command, sfunc);
13356 set_cmd_context (command, user_data_tcatch);
13357 set_cmd_completer (command, completer);
13358 }
13359
13360 static void
13361 clear_syscall_counts (struct inferior *inf)
13362 {
13363 inf->total_syscalls_count = 0;
13364 inf->any_syscall_count = 0;
13365 VEC_free (int, inf->syscalls_counts);
13366 }
13367
13368 static void
13369 save_command (char *arg, int from_tty)
13370 {
13371 printf_unfiltered (_("\"save\" must be followed by "
13372 "the name of a save subcommand.\n"));
13373 help_list (save_cmdlist, "save ", -1, gdb_stdout);
13374 }
13375
13376 struct breakpoint *
13377 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
13378 void *data)
13379 {
13380 struct breakpoint *b, *b_tmp;
13381
13382 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13383 {
13384 if ((*callback) (b, data))
13385 return b;
13386 }
13387
13388 return NULL;
13389 }
13390
13391 /* Zero if any of the breakpoint's locations could be a location where
13392 functions have been inlined, nonzero otherwise. */
13393
13394 static int
13395 is_non_inline_function (struct breakpoint *b)
13396 {
13397 /* The shared library event breakpoint is set on the address of a
13398 non-inline function. */
13399 if (b->type == bp_shlib_event)
13400 return 1;
13401
13402 return 0;
13403 }
13404
13405 /* Nonzero if the specified PC cannot be a location where functions
13406 have been inlined. */
13407
13408 int
13409 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc)
13410 {
13411 struct breakpoint *b;
13412 struct bp_location *bl;
13413
13414 ALL_BREAKPOINTS (b)
13415 {
13416 if (!is_non_inline_function (b))
13417 continue;
13418
13419 for (bl = b->loc; bl != NULL; bl = bl->next)
13420 {
13421 if (!bl->shlib_disabled
13422 && bpstat_check_location (bl, aspace, pc))
13423 return 1;
13424 }
13425 }
13426
13427 return 0;
13428 }
13429
13430 void
13431 initialize_breakpoint_ops (void)
13432 {
13433 static int initialized = 0;
13434
13435 struct breakpoint_ops *ops;
13436
13437 if (initialized)
13438 return;
13439 initialized = 1;
13440
13441 /* The breakpoint_ops structure to be inherit by all kinds of
13442 breakpoints (real breakpoints, i.e., user "break" breakpoints,
13443 internal and momentary breakpoints, etc.). */
13444 ops = &bkpt_base_breakpoint_ops;
13445 *ops = base_breakpoint_ops;
13446 ops->re_set = bkpt_re_set;
13447 ops->insert_location = bkpt_insert_location;
13448 ops->remove_location = bkpt_remove_location;
13449 ops->breakpoint_hit = bkpt_breakpoint_hit;
13450
13451 /* The breakpoint_ops structure to be used in regular breakpoints. */
13452 ops = &bkpt_breakpoint_ops;
13453 *ops = bkpt_base_breakpoint_ops;
13454 ops->re_set = bkpt_re_set;
13455 ops->resources_needed = bkpt_resources_needed;
13456 ops->print_it = bkpt_print_it;
13457 ops->print_mention = bkpt_print_mention;
13458 ops->print_recreate = bkpt_print_recreate;
13459
13460 /* Ranged breakpoints. */
13461 ops = &ranged_breakpoint_ops;
13462 *ops = bkpt_breakpoint_ops;
13463 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
13464 ops->resources_needed = resources_needed_ranged_breakpoint;
13465 ops->print_it = print_it_ranged_breakpoint;
13466 ops->print_one = print_one_ranged_breakpoint;
13467 ops->print_one_detail = print_one_detail_ranged_breakpoint;
13468 ops->print_mention = print_mention_ranged_breakpoint;
13469 ops->print_recreate = print_recreate_ranged_breakpoint;
13470
13471 /* Internal breakpoints. */
13472 ops = &internal_breakpoint_ops;
13473 *ops = bkpt_base_breakpoint_ops;
13474 ops->re_set = internal_bkpt_re_set;
13475 ops->check_status = internal_bkpt_check_status;
13476 ops->print_it = internal_bkpt_print_it;
13477 ops->print_mention = internal_bkpt_print_mention;
13478
13479 /* Momentary breakpoints. */
13480 ops = &momentary_breakpoint_ops;
13481 *ops = bkpt_base_breakpoint_ops;
13482 ops->re_set = momentary_bkpt_re_set;
13483 ops->check_status = momentary_bkpt_check_status;
13484 ops->print_it = momentary_bkpt_print_it;
13485 ops->print_mention = momentary_bkpt_print_mention;
13486
13487 /* GNU v3 exception catchpoints. */
13488 ops = &gnu_v3_exception_catchpoint_ops;
13489 *ops = bkpt_breakpoint_ops;
13490 ops->print_it = print_it_exception_catchpoint;
13491 ops->print_one = print_one_exception_catchpoint;
13492 ops->print_mention = print_mention_exception_catchpoint;
13493 ops->print_recreate = print_recreate_exception_catchpoint;
13494
13495 /* Watchpoints. */
13496 ops = &watchpoint_breakpoint_ops;
13497 *ops = base_breakpoint_ops;
13498 ops->dtor = dtor_watchpoint;
13499 ops->re_set = re_set_watchpoint;
13500 ops->insert_location = insert_watchpoint;
13501 ops->remove_location = remove_watchpoint;
13502 ops->breakpoint_hit = breakpoint_hit_watchpoint;
13503 ops->check_status = check_status_watchpoint;
13504 ops->resources_needed = resources_needed_watchpoint;
13505 ops->works_in_software_mode = works_in_software_mode_watchpoint;
13506 ops->print_it = print_it_watchpoint;
13507 ops->print_mention = print_mention_watchpoint;
13508 ops->print_recreate = print_recreate_watchpoint;
13509
13510 /* Masked watchpoints. */
13511 ops = &masked_watchpoint_breakpoint_ops;
13512 *ops = watchpoint_breakpoint_ops;
13513 ops->insert_location = insert_masked_watchpoint;
13514 ops->remove_location = remove_masked_watchpoint;
13515 ops->resources_needed = resources_needed_masked_watchpoint;
13516 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
13517 ops->print_it = print_it_masked_watchpoint;
13518 ops->print_one_detail = print_one_detail_masked_watchpoint;
13519 ops->print_mention = print_mention_masked_watchpoint;
13520 ops->print_recreate = print_recreate_masked_watchpoint;
13521
13522 /* Tracepoints. */
13523 ops = &tracepoint_breakpoint_ops;
13524 *ops = base_breakpoint_ops;
13525 ops->re_set = tracepoint_re_set;
13526 ops->breakpoint_hit = tracepoint_breakpoint_hit;
13527 ops->print_one_detail = tracepoint_print_one_detail;
13528 ops->print_mention = tracepoint_print_mention;
13529 ops->print_recreate = tracepoint_print_recreate;
13530
13531 /* Fork catchpoints. */
13532 ops = &catch_fork_breakpoint_ops;
13533 *ops = base_breakpoint_ops;
13534 ops->insert_location = insert_catch_fork;
13535 ops->remove_location = remove_catch_fork;
13536 ops->breakpoint_hit = breakpoint_hit_catch_fork;
13537 ops->print_it = print_it_catch_fork;
13538 ops->print_one = print_one_catch_fork;
13539 ops->print_mention = print_mention_catch_fork;
13540 ops->print_recreate = print_recreate_catch_fork;
13541
13542 /* Vfork catchpoints. */
13543 ops = &catch_vfork_breakpoint_ops;
13544 *ops = base_breakpoint_ops;
13545 ops->insert_location = insert_catch_vfork;
13546 ops->remove_location = remove_catch_vfork;
13547 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
13548 ops->print_it = print_it_catch_vfork;
13549 ops->print_one = print_one_catch_vfork;
13550 ops->print_mention = print_mention_catch_vfork;
13551 ops->print_recreate = print_recreate_catch_vfork;
13552
13553 /* Exec catchpoints. */
13554 ops = &catch_exec_breakpoint_ops;
13555 *ops = base_breakpoint_ops;
13556 ops->dtor = dtor_catch_exec;
13557 ops->insert_location = insert_catch_exec;
13558 ops->remove_location = remove_catch_exec;
13559 ops->breakpoint_hit = breakpoint_hit_catch_exec;
13560 ops->print_it = print_it_catch_exec;
13561 ops->print_one = print_one_catch_exec;
13562 ops->print_mention = print_mention_catch_exec;
13563 ops->print_recreate = print_recreate_catch_exec;
13564
13565 /* Syscall catchpoints. */
13566 ops = &catch_syscall_breakpoint_ops;
13567 *ops = base_breakpoint_ops;
13568 ops->dtor = dtor_catch_syscall;
13569 ops->insert_location = insert_catch_syscall;
13570 ops->remove_location = remove_catch_syscall;
13571 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
13572 ops->print_it = print_it_catch_syscall;
13573 ops->print_one = print_one_catch_syscall;
13574 ops->print_mention = print_mention_catch_syscall;
13575 ops->print_recreate = print_recreate_catch_syscall;
13576 }
13577
13578 void
13579 _initialize_breakpoint (void)
13580 {
13581 struct cmd_list_element *c;
13582
13583 initialize_breakpoint_ops ();
13584
13585 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
13586 observer_attach_inferior_exit (clear_syscall_counts);
13587 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
13588
13589 breakpoint_objfile_key = register_objfile_data ();
13590
13591 breakpoint_chain = 0;
13592 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
13593 before a breakpoint is set. */
13594 breakpoint_count = 0;
13595
13596 tracepoint_count = 0;
13597
13598 add_com ("ignore", class_breakpoint, ignore_command, _("\
13599 Set ignore-count of breakpoint number N to COUNT.\n\
13600 Usage is `ignore N COUNT'."));
13601 if (xdb_commands)
13602 add_com_alias ("bc", "ignore", class_breakpoint, 1);
13603
13604 add_com ("commands", class_breakpoint, commands_command, _("\
13605 Set commands to be executed when a breakpoint is hit.\n\
13606 Give breakpoint number as argument after \"commands\".\n\
13607 With no argument, the targeted breakpoint is the last one set.\n\
13608 The commands themselves follow starting on the next line.\n\
13609 Type a line containing \"end\" to indicate the end of them.\n\
13610 Give \"silent\" as the first line to make the breakpoint silent;\n\
13611 then no output is printed when it is hit, except what the commands print."));
13612
13613 add_com ("condition", class_breakpoint, condition_command, _("\
13614 Specify breakpoint number N to break only if COND is true.\n\
13615 Usage is `condition N COND', where N is an integer and COND is an\n\
13616 expression to be evaluated whenever breakpoint N is reached."));
13617
13618 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
13619 Set a temporary breakpoint.\n\
13620 Like \"break\" except the breakpoint is only temporary,\n\
13621 so it will be deleted when hit. Equivalent to \"break\" followed\n\
13622 by using \"enable delete\" on the breakpoint number.\n\
13623 \n"
13624 BREAK_ARGS_HELP ("tbreak")));
13625 set_cmd_completer (c, location_completer);
13626
13627 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
13628 Set a hardware assisted breakpoint.\n\
13629 Like \"break\" except the breakpoint requires hardware support,\n\
13630 some target hardware may not have this support.\n\
13631 \n"
13632 BREAK_ARGS_HELP ("hbreak")));
13633 set_cmd_completer (c, location_completer);
13634
13635 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
13636 Set a temporary hardware assisted breakpoint.\n\
13637 Like \"hbreak\" except the breakpoint is only temporary,\n\
13638 so it will be deleted when hit.\n\
13639 \n"
13640 BREAK_ARGS_HELP ("thbreak")));
13641 set_cmd_completer (c, location_completer);
13642
13643 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
13644 Enable some breakpoints.\n\
13645 Give breakpoint numbers (separated by spaces) as arguments.\n\
13646 With no subcommand, breakpoints are enabled until you command otherwise.\n\
13647 This is used to cancel the effect of the \"disable\" command.\n\
13648 With a subcommand you can enable temporarily."),
13649 &enablelist, "enable ", 1, &cmdlist);
13650 if (xdb_commands)
13651 add_com ("ab", class_breakpoint, enable_command, _("\
13652 Enable some breakpoints.\n\
13653 Give breakpoint numbers (separated by spaces) as arguments.\n\
13654 With no subcommand, breakpoints are enabled until you command otherwise.\n\
13655 This is used to cancel the effect of the \"disable\" command.\n\
13656 With a subcommand you can enable temporarily."));
13657
13658 add_com_alias ("en", "enable", class_breakpoint, 1);
13659
13660 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
13661 Enable some breakpoints.\n\
13662 Give breakpoint numbers (separated by spaces) as arguments.\n\
13663 This is used to cancel the effect of the \"disable\" command.\n\
13664 May be abbreviated to simply \"enable\".\n"),
13665 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
13666
13667 add_cmd ("once", no_class, enable_once_command, _("\
13668 Enable breakpoints for one hit. Give breakpoint numbers.\n\
13669 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
13670 &enablebreaklist);
13671
13672 add_cmd ("delete", no_class, enable_delete_command, _("\
13673 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
13674 If a breakpoint is hit while enabled in this fashion, it is deleted."),
13675 &enablebreaklist);
13676
13677 add_cmd ("delete", no_class, enable_delete_command, _("\
13678 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
13679 If a breakpoint is hit while enabled in this fashion, it is deleted."),
13680 &enablelist);
13681
13682 add_cmd ("once", no_class, enable_once_command, _("\
13683 Enable breakpoints for one hit. Give breakpoint numbers.\n\
13684 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
13685 &enablelist);
13686
13687 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
13688 Disable some breakpoints.\n\
13689 Arguments are breakpoint numbers with spaces in between.\n\
13690 To disable all breakpoints, give no argument.\n\
13691 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
13692 &disablelist, "disable ", 1, &cmdlist);
13693 add_com_alias ("dis", "disable", class_breakpoint, 1);
13694 add_com_alias ("disa", "disable", class_breakpoint, 1);
13695 if (xdb_commands)
13696 add_com ("sb", class_breakpoint, disable_command, _("\
13697 Disable some breakpoints.\n\
13698 Arguments are breakpoint numbers with spaces in between.\n\
13699 To disable all breakpoints, give no argument.\n\
13700 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
13701
13702 add_cmd ("breakpoints", class_alias, disable_command, _("\
13703 Disable some breakpoints.\n\
13704 Arguments are breakpoint numbers with spaces in between.\n\
13705 To disable all breakpoints, give no argument.\n\
13706 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
13707 This command may be abbreviated \"disable\"."),
13708 &disablelist);
13709
13710 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
13711 Delete some breakpoints or auto-display expressions.\n\
13712 Arguments are breakpoint numbers with spaces in between.\n\
13713 To delete all breakpoints, give no argument.\n\
13714 \n\
13715 Also a prefix command for deletion of other GDB objects.\n\
13716 The \"unset\" command is also an alias for \"delete\"."),
13717 &deletelist, "delete ", 1, &cmdlist);
13718 add_com_alias ("d", "delete", class_breakpoint, 1);
13719 add_com_alias ("del", "delete", class_breakpoint, 1);
13720 if (xdb_commands)
13721 add_com ("db", class_breakpoint, delete_command, _("\
13722 Delete some breakpoints.\n\
13723 Arguments are breakpoint numbers with spaces in between.\n\
13724 To delete all breakpoints, give no argument.\n"));
13725
13726 add_cmd ("breakpoints", class_alias, delete_command, _("\
13727 Delete some breakpoints or auto-display expressions.\n\
13728 Arguments are breakpoint numbers with spaces in between.\n\
13729 To delete all breakpoints, give no argument.\n\
13730 This command may be abbreviated \"delete\"."),
13731 &deletelist);
13732
13733 add_com ("clear", class_breakpoint, clear_command, _("\
13734 Clear breakpoint at specified line or function.\n\
13735 Argument may be line number, function name, or \"*\" and an address.\n\
13736 If line number is specified, all breakpoints in that line are cleared.\n\
13737 If function is specified, breakpoints at beginning of function are cleared.\n\
13738 If an address is specified, breakpoints at that address are cleared.\n\
13739 \n\
13740 With no argument, clears all breakpoints in the line that the selected frame\n\
13741 is executing in.\n\
13742 \n\
13743 See also the \"delete\" command which clears breakpoints by number."));
13744 add_com_alias ("cl", "clear", class_breakpoint, 1);
13745
13746 c = add_com ("break", class_breakpoint, break_command, _("\
13747 Set breakpoint at specified line or function.\n"
13748 BREAK_ARGS_HELP ("break")));
13749 set_cmd_completer (c, location_completer);
13750
13751 add_com_alias ("b", "break", class_run, 1);
13752 add_com_alias ("br", "break", class_run, 1);
13753 add_com_alias ("bre", "break", class_run, 1);
13754 add_com_alias ("brea", "break", class_run, 1);
13755
13756 if (xdb_commands)
13757 add_com_alias ("ba", "break", class_breakpoint, 1);
13758
13759 if (dbx_commands)
13760 {
13761 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
13762 Break in function/address or break at a line in the current file."),
13763 &stoplist, "stop ", 1, &cmdlist);
13764 add_cmd ("in", class_breakpoint, stopin_command,
13765 _("Break in function or address."), &stoplist);
13766 add_cmd ("at", class_breakpoint, stopat_command,
13767 _("Break at a line in the current file."), &stoplist);
13768 add_com ("status", class_info, breakpoints_info, _("\
13769 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
13770 The \"Type\" column indicates one of:\n\
13771 \tbreakpoint - normal breakpoint\n\
13772 \twatchpoint - watchpoint\n\
13773 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
13774 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
13775 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
13776 address and file/line number respectively.\n\
13777 \n\
13778 Convenience variable \"$_\" and default examine address for \"x\"\n\
13779 are set to the address of the last breakpoint listed unless the command\n\
13780 is prefixed with \"server \".\n\n\
13781 Convenience variable \"$bpnum\" contains the number of the last\n\
13782 breakpoint set."));
13783 }
13784
13785 add_info ("breakpoints", breakpoints_info, _("\
13786 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
13787 The \"Type\" column indicates one of:\n\
13788 \tbreakpoint - normal breakpoint\n\
13789 \twatchpoint - watchpoint\n\
13790 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
13791 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
13792 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
13793 address and file/line number respectively.\n\
13794 \n\
13795 Convenience variable \"$_\" and default examine address for \"x\"\n\
13796 are set to the address of the last breakpoint listed unless the command\n\
13797 is prefixed with \"server \".\n\n\
13798 Convenience variable \"$bpnum\" contains the number of the last\n\
13799 breakpoint set."));
13800
13801 add_info_alias ("b", "breakpoints", 1);
13802
13803 if (xdb_commands)
13804 add_com ("lb", class_breakpoint, breakpoints_info, _("\
13805 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
13806 The \"Type\" column indicates one of:\n\
13807 \tbreakpoint - normal breakpoint\n\
13808 \twatchpoint - watchpoint\n\
13809 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
13810 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
13811 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
13812 address and file/line number respectively.\n\
13813 \n\
13814 Convenience variable \"$_\" and default examine address for \"x\"\n\
13815 are set to the address of the last breakpoint listed unless the command\n\
13816 is prefixed with \"server \".\n\n\
13817 Convenience variable \"$bpnum\" contains the number of the last\n\
13818 breakpoint set."));
13819
13820 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
13821 Status of all breakpoints, or breakpoint number NUMBER.\n\
13822 The \"Type\" column indicates one of:\n\
13823 \tbreakpoint - normal breakpoint\n\
13824 \twatchpoint - watchpoint\n\
13825 \tlongjmp - internal breakpoint used to step through longjmp()\n\
13826 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
13827 \tuntil - internal breakpoint used by the \"until\" command\n\
13828 \tfinish - internal breakpoint used by the \"finish\" command\n\
13829 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
13830 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
13831 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
13832 address and file/line number respectively.\n\
13833 \n\
13834 Convenience variable \"$_\" and default examine address for \"x\"\n\
13835 are set to the address of the last breakpoint listed unless the command\n\
13836 is prefixed with \"server \".\n\n\
13837 Convenience variable \"$bpnum\" contains the number of the last\n\
13838 breakpoint set."),
13839 &maintenanceinfolist);
13840
13841 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
13842 Set catchpoints to catch events."),
13843 &catch_cmdlist, "catch ",
13844 0/*allow-unknown*/, &cmdlist);
13845
13846 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
13847 Set temporary catchpoints to catch events."),
13848 &tcatch_cmdlist, "tcatch ",
13849 0/*allow-unknown*/, &cmdlist);
13850
13851 /* Add catch and tcatch sub-commands. */
13852 add_catch_command ("catch", _("\
13853 Catch an exception, when caught.\n\
13854 With an argument, catch only exceptions with the given name."),
13855 catch_catch_command,
13856 NULL,
13857 CATCH_PERMANENT,
13858 CATCH_TEMPORARY);
13859 add_catch_command ("throw", _("\
13860 Catch an exception, when thrown.\n\
13861 With an argument, catch only exceptions with the given name."),
13862 catch_throw_command,
13863 NULL,
13864 CATCH_PERMANENT,
13865 CATCH_TEMPORARY);
13866 add_catch_command ("fork", _("Catch calls to fork."),
13867 catch_fork_command_1,
13868 NULL,
13869 (void *) (uintptr_t) catch_fork_permanent,
13870 (void *) (uintptr_t) catch_fork_temporary);
13871 add_catch_command ("vfork", _("Catch calls to vfork."),
13872 catch_fork_command_1,
13873 NULL,
13874 (void *) (uintptr_t) catch_vfork_permanent,
13875 (void *) (uintptr_t) catch_vfork_temporary);
13876 add_catch_command ("exec", _("Catch calls to exec."),
13877 catch_exec_command_1,
13878 NULL,
13879 CATCH_PERMANENT,
13880 CATCH_TEMPORARY);
13881 add_catch_command ("syscall", _("\
13882 Catch system calls by their names and/or numbers.\n\
13883 Arguments say which system calls to catch. If no arguments\n\
13884 are given, every system call will be caught.\n\
13885 Arguments, if given, should be one or more system call names\n\
13886 (if your system supports that), or system call numbers."),
13887 catch_syscall_command_1,
13888 catch_syscall_completer,
13889 CATCH_PERMANENT,
13890 CATCH_TEMPORARY);
13891
13892 c = add_com ("watch", class_breakpoint, watch_command, _("\
13893 Set a watchpoint for an expression.\n\
13894 Usage: watch [-l|-location] EXPRESSION\n\
13895 A watchpoint stops execution of your program whenever the value of\n\
13896 an expression changes.\n\
13897 If -l or -location is given, this evaluates EXPRESSION and watches\n\
13898 the memory to which it refers."));
13899 set_cmd_completer (c, expression_completer);
13900
13901 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
13902 Set a read watchpoint for an expression.\n\
13903 Usage: rwatch [-l|-location] EXPRESSION\n\
13904 A watchpoint stops execution of your program whenever the value of\n\
13905 an expression is read.\n\
13906 If -l or -location is given, this evaluates EXPRESSION and watches\n\
13907 the memory to which it refers."));
13908 set_cmd_completer (c, expression_completer);
13909
13910 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
13911 Set a watchpoint for an expression.\n\
13912 Usage: awatch [-l|-location] EXPRESSION\n\
13913 A watchpoint stops execution of your program whenever the value of\n\
13914 an expression is either read or written.\n\
13915 If -l or -location is given, this evaluates EXPRESSION and watches\n\
13916 the memory to which it refers."));
13917 set_cmd_completer (c, expression_completer);
13918
13919 add_info ("watchpoints", watchpoints_info, _("\
13920 Status of specified watchpoints (all watchpoints if no argument)."));
13921
13922 /* XXX: cagney/2005-02-23: This should be a boolean, and should
13923 respond to changes - contrary to the description. */
13924 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
13925 &can_use_hw_watchpoints, _("\
13926 Set debugger's willingness to use watchpoint hardware."), _("\
13927 Show debugger's willingness to use watchpoint hardware."), _("\
13928 If zero, gdb will not use hardware for new watchpoints, even if\n\
13929 such is available. (However, any hardware watchpoints that were\n\
13930 created before setting this to nonzero, will continue to use watchpoint\n\
13931 hardware.)"),
13932 NULL,
13933 show_can_use_hw_watchpoints,
13934 &setlist, &showlist);
13935
13936 can_use_hw_watchpoints = 1;
13937
13938 /* Tracepoint manipulation commands. */
13939
13940 c = add_com ("trace", class_breakpoint, trace_command, _("\
13941 Set a tracepoint at specified line or function.\n\
13942 \n"
13943 BREAK_ARGS_HELP ("trace") "\n\
13944 Do \"help tracepoints\" for info on other tracepoint commands."));
13945 set_cmd_completer (c, location_completer);
13946
13947 add_com_alias ("tp", "trace", class_alias, 0);
13948 add_com_alias ("tr", "trace", class_alias, 1);
13949 add_com_alias ("tra", "trace", class_alias, 1);
13950 add_com_alias ("trac", "trace", class_alias, 1);
13951
13952 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
13953 Set a fast tracepoint at specified line or function.\n\
13954 \n"
13955 BREAK_ARGS_HELP ("ftrace") "\n\
13956 Do \"help tracepoints\" for info on other tracepoint commands."));
13957 set_cmd_completer (c, location_completer);
13958
13959 c = add_com ("strace", class_breakpoint, strace_command, _("\
13960 Set a static tracepoint at specified line, function or marker.\n\
13961 \n\
13962 strace [LOCATION] [if CONDITION]\n\
13963 LOCATION may be a line number, function name, \"*\" and an address,\n\
13964 or -m MARKER_ID.\n\
13965 If a line number is specified, probe the marker at start of code\n\
13966 for that line. If a function is specified, probe the marker at start\n\
13967 of code for that function. If an address is specified, probe the marker\n\
13968 at that exact address. If a marker id is specified, probe the marker\n\
13969 with that name. With no LOCATION, uses current execution address of\n\
13970 the selected stack frame.\n\
13971 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
13972 This collects arbitrary user data passed in the probe point call to the\n\
13973 tracing library. You can inspect it when analyzing the trace buffer,\n\
13974 by printing the $_sdata variable like any other convenience variable.\n\
13975 \n\
13976 CONDITION is a boolean expression.\n\
13977 \n\
13978 Multiple tracepoints at one place are permitted, and useful if their\n\
13979 conditions are different.\n\
13980 \n\
13981 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
13982 Do \"help tracepoints\" for info on other tracepoint commands."));
13983 set_cmd_completer (c, location_completer);
13984
13985 add_info ("tracepoints", tracepoints_info, _("\
13986 Status of specified tracepoints (all tracepoints if no argument).\n\
13987 Convenience variable \"$tpnum\" contains the number of the\n\
13988 last tracepoint set."));
13989
13990 add_info_alias ("tp", "tracepoints", 1);
13991
13992 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
13993 Delete specified tracepoints.\n\
13994 Arguments are tracepoint numbers, separated by spaces.\n\
13995 No argument means delete all tracepoints."),
13996 &deletelist);
13997
13998 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
13999 Disable specified tracepoints.\n\
14000 Arguments are tracepoint numbers, separated by spaces.\n\
14001 No argument means disable all tracepoints."),
14002 &disablelist);
14003 deprecate_cmd (c, "disable");
14004
14005 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
14006 Enable specified tracepoints.\n\
14007 Arguments are tracepoint numbers, separated by spaces.\n\
14008 No argument means enable all tracepoints."),
14009 &enablelist);
14010 deprecate_cmd (c, "enable");
14011
14012 add_com ("passcount", class_trace, trace_pass_command, _("\
14013 Set the passcount for a tracepoint.\n\
14014 The trace will end when the tracepoint has been passed 'count' times.\n\
14015 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
14016 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
14017
14018 add_prefix_cmd ("save", class_breakpoint, save_command,
14019 _("Save breakpoint definitions as a script."),
14020 &save_cmdlist, "save ",
14021 0/*allow-unknown*/, &cmdlist);
14022
14023 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
14024 Save current breakpoint definitions as a script.\n\
14025 This includes all types of breakpoints (breakpoints, watchpoints,\n\
14026 catchpoints, tracepoints). Use the 'source' command in another debug\n\
14027 session to restore them."),
14028 &save_cmdlist);
14029 set_cmd_completer (c, filename_completer);
14030
14031 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
14032 Save current tracepoint definitions as a script.\n\
14033 Use the 'source' command in another debug session to restore them."),
14034 &save_cmdlist);
14035 set_cmd_completer (c, filename_completer);
14036
14037 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
14038 deprecate_cmd (c, "save tracepoints");
14039
14040 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
14041 Breakpoint specific settings\n\
14042 Configure various breakpoint-specific variables such as\n\
14043 pending breakpoint behavior"),
14044 &breakpoint_set_cmdlist, "set breakpoint ",
14045 0/*allow-unknown*/, &setlist);
14046 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
14047 Breakpoint specific settings\n\
14048 Configure various breakpoint-specific variables such as\n\
14049 pending breakpoint behavior"),
14050 &breakpoint_show_cmdlist, "show breakpoint ",
14051 0/*allow-unknown*/, &showlist);
14052
14053 add_setshow_auto_boolean_cmd ("pending", no_class,
14054 &pending_break_support, _("\
14055 Set debugger's behavior regarding pending breakpoints."), _("\
14056 Show debugger's behavior regarding pending breakpoints."), _("\
14057 If on, an unrecognized breakpoint location will cause gdb to create a\n\
14058 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
14059 an error. If auto, an unrecognized breakpoint location results in a\n\
14060 user-query to see if a pending breakpoint should be created."),
14061 NULL,
14062 show_pending_break_support,
14063 &breakpoint_set_cmdlist,
14064 &breakpoint_show_cmdlist);
14065
14066 pending_break_support = AUTO_BOOLEAN_AUTO;
14067
14068 add_setshow_boolean_cmd ("auto-hw", no_class,
14069 &automatic_hardware_breakpoints, _("\
14070 Set automatic usage of hardware breakpoints."), _("\
14071 Show automatic usage of hardware breakpoints."), _("\
14072 If set, the debugger will automatically use hardware breakpoints for\n\
14073 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
14074 a warning will be emitted for such breakpoints."),
14075 NULL,
14076 show_automatic_hardware_breakpoints,
14077 &breakpoint_set_cmdlist,
14078 &breakpoint_show_cmdlist);
14079
14080 add_setshow_enum_cmd ("always-inserted", class_support,
14081 always_inserted_enums, &always_inserted_mode, _("\
14082 Set mode for inserting breakpoints."), _("\
14083 Show mode for inserting breakpoints."), _("\
14084 When this mode is off, breakpoints are inserted in inferior when it is\n\
14085 resumed, and removed when execution stops. When this mode is on,\n\
14086 breakpoints are inserted immediately and removed only when the user\n\
14087 deletes the breakpoint. When this mode is auto (which is the default),\n\
14088 the behaviour depends on the non-stop setting (see help set non-stop).\n\
14089 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
14090 behaves as if always-inserted mode is on; if gdb is controlling the\n\
14091 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
14092 NULL,
14093 &show_always_inserted_mode,
14094 &breakpoint_set_cmdlist,
14095 &breakpoint_show_cmdlist);
14096
14097 add_com ("break-range", class_breakpoint, break_range_command, _("\
14098 Set a breakpoint for an address range.\n\
14099 break-range START-LOCATION, END-LOCATION\n\
14100 where START-LOCATION and END-LOCATION can be one of the following:\n\
14101 LINENUM, for that line in the current file,\n\
14102 FILE:LINENUM, for that line in that file,\n\
14103 +OFFSET, for that number of lines after the current line\n\
14104 or the start of the range\n\
14105 FUNCTION, for the first line in that function,\n\
14106 FILE:FUNCTION, to distinguish among like-named static functions.\n\
14107 *ADDRESS, for the instruction at that address.\n\
14108 \n\
14109 The breakpoint will stop execution of the inferior whenever it executes\n\
14110 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
14111 range (including START-LOCATION and END-LOCATION)."));
14112
14113 automatic_hardware_breakpoints = 1;
14114
14115 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
14116 }
This page took 0.374856 seconds and 5 git commands to generate.