Expand "show disassembler-options" output
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 if (c->control_type == while_stepping_control)
1013 error (_("The 'while-stepping' command can "
1014 "only be used for tracepoints"));
1015
1016 check_no_tracepoint_commands (c->body_list_0.get ());
1017 check_no_tracepoint_commands (c->body_list_1.get ());
1018
1019 /* Not that command parsing removes leading whitespace and comment
1020 lines and also empty lines. So, we only need to check for
1021 command directly. */
1022 if (strstr (c->line, "collect ") == c->line)
1023 error (_("The 'collect' command can only be used for tracepoints"));
1024
1025 if (strstr (c->line, "teval ") == c->line)
1026 error (_("The 'teval' command can only be used for tracepoints"));
1027 }
1028 }
1029
1030 struct longjmp_breakpoint : public breakpoint
1031 {
1032 ~longjmp_breakpoint () override;
1033 };
1034
1035 /* Encapsulate tests for different types of tracepoints. */
1036
1037 static bool
1038 is_tracepoint_type (bptype type)
1039 {
1040 return (type == bp_tracepoint
1041 || type == bp_fast_tracepoint
1042 || type == bp_static_tracepoint);
1043 }
1044
1045 static bool
1046 is_longjmp_type (bptype type)
1047 {
1048 return type == bp_longjmp || type == bp_exception;
1049 }
1050
1051 int
1052 is_tracepoint (const struct breakpoint *b)
1053 {
1054 return is_tracepoint_type (b->type);
1055 }
1056
1057 /* Factory function to create an appropriate instance of breakpoint given
1058 TYPE. */
1059
1060 static std::unique_ptr<breakpoint>
1061 new_breakpoint_from_type (bptype type)
1062 {
1063 breakpoint *b;
1064
1065 if (is_tracepoint_type (type))
1066 b = new tracepoint ();
1067 else if (is_longjmp_type (type))
1068 b = new longjmp_breakpoint ();
1069 else
1070 b = new breakpoint ();
1071
1072 return std::unique_ptr<breakpoint> (b);
1073 }
1074
1075 /* A helper function that validates that COMMANDS are valid for a
1076 breakpoint. This function will throw an exception if a problem is
1077 found. */
1078
1079 static void
1080 validate_commands_for_breakpoint (struct breakpoint *b,
1081 struct command_line *commands)
1082 {
1083 if (is_tracepoint (b))
1084 {
1085 struct tracepoint *t = (struct tracepoint *) b;
1086 struct command_line *c;
1087 struct command_line *while_stepping = 0;
1088
1089 /* Reset the while-stepping step count. The previous commands
1090 might have included a while-stepping action, while the new
1091 ones might not. */
1092 t->step_count = 0;
1093
1094 /* We need to verify that each top-level element of commands is
1095 valid for tracepoints, that there's at most one
1096 while-stepping element, and that the while-stepping's body
1097 has valid tracing commands excluding nested while-stepping.
1098 We also need to validate the tracepoint action line in the
1099 context of the tracepoint --- validate_actionline actually
1100 has side effects, like setting the tracepoint's
1101 while-stepping STEP_COUNT, in addition to checking if the
1102 collect/teval actions parse and make sense in the
1103 tracepoint's context. */
1104 for (c = commands; c; c = c->next)
1105 {
1106 if (c->control_type == while_stepping_control)
1107 {
1108 if (b->type == bp_fast_tracepoint)
1109 error (_("The 'while-stepping' command "
1110 "cannot be used for fast tracepoint"));
1111 else if (b->type == bp_static_tracepoint)
1112 error (_("The 'while-stepping' command "
1113 "cannot be used for static tracepoint"));
1114
1115 if (while_stepping)
1116 error (_("The 'while-stepping' command "
1117 "can be used only once"));
1118 else
1119 while_stepping = c;
1120 }
1121
1122 validate_actionline (c->line, b);
1123 }
1124 if (while_stepping)
1125 {
1126 struct command_line *c2;
1127
1128 gdb_assert (while_stepping->body_list_1 == nullptr);
1129 c2 = while_stepping->body_list_0.get ();
1130 for (; c2; c2 = c2->next)
1131 {
1132 if (c2->control_type == while_stepping_control)
1133 error (_("The 'while-stepping' command cannot be nested"));
1134 }
1135 }
1136 }
1137 else
1138 {
1139 check_no_tracepoint_commands (commands);
1140 }
1141 }
1142
1143 /* Return a vector of all the static tracepoints set at ADDR. The
1144 caller is responsible for releasing the vector. */
1145
1146 std::vector<breakpoint *>
1147 static_tracepoints_here (CORE_ADDR addr)
1148 {
1149 struct breakpoint *b;
1150 std::vector<breakpoint *> found;
1151 struct bp_location *loc;
1152
1153 ALL_BREAKPOINTS (b)
1154 if (b->type == bp_static_tracepoint)
1155 {
1156 for (loc = b->loc; loc; loc = loc->next)
1157 if (loc->address == addr)
1158 found.push_back (b);
1159 }
1160
1161 return found;
1162 }
1163
1164 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1165 validate that only allowed commands are included. */
1166
1167 void
1168 breakpoint_set_commands (struct breakpoint *b,
1169 counted_command_line &&commands)
1170 {
1171 validate_commands_for_breakpoint (b, commands.get ());
1172
1173 b->commands = std::move (commands);
1174 gdb::observers::breakpoint_modified.notify (b);
1175 }
1176
1177 /* Set the internal `silent' flag on the breakpoint. Note that this
1178 is not the same as the "silent" that may appear in the breakpoint's
1179 commands. */
1180
1181 void
1182 breakpoint_set_silent (struct breakpoint *b, int silent)
1183 {
1184 int old_silent = b->silent;
1185
1186 b->silent = silent;
1187 if (old_silent != silent)
1188 gdb::observers::breakpoint_modified.notify (b);
1189 }
1190
1191 /* Set the thread for this breakpoint. If THREAD is -1, make the
1192 breakpoint work for any thread. */
1193
1194 void
1195 breakpoint_set_thread (struct breakpoint *b, int thread)
1196 {
1197 int old_thread = b->thread;
1198
1199 b->thread = thread;
1200 if (old_thread != thread)
1201 gdb::observers::breakpoint_modified.notify (b);
1202 }
1203
1204 /* Set the task for this breakpoint. If TASK is 0, make the
1205 breakpoint work for any task. */
1206
1207 void
1208 breakpoint_set_task (struct breakpoint *b, int task)
1209 {
1210 int old_task = b->task;
1211
1212 b->task = task;
1213 if (old_task != task)
1214 gdb::observers::breakpoint_modified.notify (b);
1215 }
1216
1217 static void
1218 commands_command_1 (const char *arg, int from_tty,
1219 struct command_line *control)
1220 {
1221 counted_command_line cmd;
1222 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1223 NULL after the call to read_command_lines if the user provides an empty
1224 list of command by just typing "end". */
1225 bool cmd_read = false;
1226
1227 std::string new_arg;
1228
1229 if (arg == NULL || !*arg)
1230 {
1231 if (breakpoint_count - prev_breakpoint_count > 1)
1232 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1233 breakpoint_count);
1234 else if (breakpoint_count > 0)
1235 new_arg = string_printf ("%d", breakpoint_count);
1236 arg = new_arg.c_str ();
1237 }
1238
1239 map_breakpoint_numbers
1240 (arg, [&] (breakpoint *b)
1241 {
1242 if (!cmd_read)
1243 {
1244 gdb_assert (cmd == NULL);
1245 if (control != NULL)
1246 cmd = control->body_list_0;
1247 else
1248 {
1249 std::string str
1250 = string_printf (_("Type commands for breakpoint(s) "
1251 "%s, one per line."),
1252 arg);
1253
1254 auto do_validate = [=] (const char *line)
1255 {
1256 validate_actionline (line, b);
1257 };
1258 gdb::function_view<void (const char *)> validator;
1259 if (is_tracepoint (b))
1260 validator = do_validate;
1261
1262 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1263 }
1264 cmd_read = true;
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (b->watchpoint_thread == null_ptid
1554 || (inferior_ptid == b->watchpoint_thread
1555 && !inferior_thread ()->executing)));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && inferior_ptid == null_ptid)
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && inferior_ptid == null_ptid)
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of inferior INF. */
3069
3070 int
3071 remove_breakpoints_inf (inferior *inf)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075
3076 ALL_BP_LOCATIONS (bl, blp_tmp)
3077 {
3078 if (bl->pspace != inf->pspace)
3079 continue;
3080
3081 if (bl->inserted && !bl->target_info.persist)
3082 {
3083 val = remove_breakpoint (bl);
3084 if (val != 0)
3085 return val;
3086 }
3087 }
3088 return 0;
3089 }
3090
3091 static int internal_breakpoint_number = -1;
3092
3093 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3094 If INTERNAL is non-zero, the breakpoint number will be populated
3095 from internal_breakpoint_number and that variable decremented.
3096 Otherwise the breakpoint number will be populated from
3097 breakpoint_count and that value incremented. Internal breakpoints
3098 do not set the internal var bpnum. */
3099 static void
3100 set_breakpoint_number (int internal, struct breakpoint *b)
3101 {
3102 if (internal)
3103 b->number = internal_breakpoint_number--;
3104 else
3105 {
3106 set_breakpoint_count (breakpoint_count + 1);
3107 b->number = breakpoint_count;
3108 }
3109 }
3110
3111 static struct breakpoint *
3112 create_internal_breakpoint (struct gdbarch *gdbarch,
3113 CORE_ADDR address, enum bptype type,
3114 const struct breakpoint_ops *ops)
3115 {
3116 symtab_and_line sal;
3117 sal.pc = address;
3118 sal.section = find_pc_overlay (sal.pc);
3119 sal.pspace = current_program_space;
3120
3121 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3122 b->number = internal_breakpoint_number--;
3123 b->disposition = disp_donttouch;
3124
3125 return b;
3126 }
3127
3128 static const char *const longjmp_names[] =
3129 {
3130 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3131 };
3132 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3133
3134 /* Per-objfile data private to breakpoint.c. */
3135 struct breakpoint_objfile_data
3136 {
3137 /* Minimal symbol for "_ovly_debug_event" (if any). */
3138 struct bound_minimal_symbol overlay_msym {};
3139
3140 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3141 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3142
3143 /* True if we have looked for longjmp probes. */
3144 int longjmp_searched = 0;
3145
3146 /* SystemTap probe points for longjmp (if any). These are non-owning
3147 references. */
3148 std::vector<probe *> longjmp_probes;
3149
3150 /* Minimal symbol for "std::terminate()" (if any). */
3151 struct bound_minimal_symbol terminate_msym {};
3152
3153 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3154 struct bound_minimal_symbol exception_msym {};
3155
3156 /* True if we have looked for exception probes. */
3157 int exception_searched = 0;
3158
3159 /* SystemTap probe points for unwinding (if any). These are non-owning
3160 references. */
3161 std::vector<probe *> exception_probes;
3162 };
3163
3164 static const struct objfile_data *breakpoint_objfile_key;
3165
3166 /* Minimal symbol not found sentinel. */
3167 static struct minimal_symbol msym_not_found;
3168
3169 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3170
3171 static int
3172 msym_not_found_p (const struct minimal_symbol *msym)
3173 {
3174 return msym == &msym_not_found;
3175 }
3176
3177 /* Return per-objfile data needed by breakpoint.c.
3178 Allocate the data if necessary. */
3179
3180 static struct breakpoint_objfile_data *
3181 get_breakpoint_objfile_data (struct objfile *objfile)
3182 {
3183 struct breakpoint_objfile_data *bp_objfile_data;
3184
3185 bp_objfile_data = ((struct breakpoint_objfile_data *)
3186 objfile_data (objfile, breakpoint_objfile_key));
3187 if (bp_objfile_data == NULL)
3188 {
3189 bp_objfile_data = new breakpoint_objfile_data ();
3190 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3191 }
3192 return bp_objfile_data;
3193 }
3194
3195 static void
3196 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3197 {
3198 struct breakpoint_objfile_data *bp_objfile_data
3199 = (struct breakpoint_objfile_data *) data;
3200
3201 delete bp_objfile_data;
3202 }
3203
3204 static void
3205 create_overlay_event_breakpoint (void)
3206 {
3207 struct objfile *objfile;
3208 const char *const func_name = "_ovly_debug_event";
3209
3210 ALL_OBJFILES (objfile)
3211 {
3212 struct breakpoint *b;
3213 struct breakpoint_objfile_data *bp_objfile_data;
3214 CORE_ADDR addr;
3215 struct explicit_location explicit_loc;
3216
3217 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3218
3219 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3220 continue;
3221
3222 if (bp_objfile_data->overlay_msym.minsym == NULL)
3223 {
3224 struct bound_minimal_symbol m;
3225
3226 m = lookup_minimal_symbol_text (func_name, objfile);
3227 if (m.minsym == NULL)
3228 {
3229 /* Avoid future lookups in this objfile. */
3230 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3231 continue;
3232 }
3233 bp_objfile_data->overlay_msym = m;
3234 }
3235
3236 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3237 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3238 bp_overlay_event,
3239 &internal_breakpoint_ops);
3240 initialize_explicit_location (&explicit_loc);
3241 explicit_loc.function_name = ASTRDUP (func_name);
3242 b->location = new_explicit_location (&explicit_loc);
3243
3244 if (overlay_debugging == ovly_auto)
3245 {
3246 b->enable_state = bp_enabled;
3247 overlay_events_enabled = 1;
3248 }
3249 else
3250 {
3251 b->enable_state = bp_disabled;
3252 overlay_events_enabled = 0;
3253 }
3254 }
3255 }
3256
3257 static void
3258 create_longjmp_master_breakpoint (void)
3259 {
3260 struct program_space *pspace;
3261
3262 scoped_restore_current_program_space restore_pspace;
3263
3264 ALL_PSPACES (pspace)
3265 {
3266 struct objfile *objfile;
3267
3268 set_current_program_space (pspace);
3269
3270 ALL_OBJFILES (objfile)
3271 {
3272 int i;
3273 struct gdbarch *gdbarch;
3274 struct breakpoint_objfile_data *bp_objfile_data;
3275
3276 gdbarch = get_objfile_arch (objfile);
3277
3278 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3279
3280 if (!bp_objfile_data->longjmp_searched)
3281 {
3282 std::vector<probe *> ret
3283 = find_probes_in_objfile (objfile, "libc", "longjmp");
3284
3285 if (!ret.empty ())
3286 {
3287 /* We are only interested in checking one element. */
3288 probe *p = ret[0];
3289
3290 if (!p->can_evaluate_arguments ())
3291 {
3292 /* We cannot use the probe interface here, because it does
3293 not know how to evaluate arguments. */
3294 ret.clear ();
3295 }
3296 }
3297 bp_objfile_data->longjmp_probes = ret;
3298 bp_objfile_data->longjmp_searched = 1;
3299 }
3300
3301 if (!bp_objfile_data->longjmp_probes.empty ())
3302 {
3303 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3304
3305 for (probe *p : bp_objfile_data->longjmp_probes)
3306 {
3307 struct breakpoint *b;
3308
3309 b = create_internal_breakpoint (gdbarch,
3310 p->get_relocated_address (objfile),
3311 bp_longjmp_master,
3312 &internal_breakpoint_ops);
3313 b->location = new_probe_location ("-probe-stap libc:longjmp");
3314 b->enable_state = bp_disabled;
3315 }
3316
3317 continue;
3318 }
3319
3320 if (!gdbarch_get_longjmp_target_p (gdbarch))
3321 continue;
3322
3323 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3324 {
3325 struct breakpoint *b;
3326 const char *func_name;
3327 CORE_ADDR addr;
3328 struct explicit_location explicit_loc;
3329
3330 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3331 continue;
3332
3333 func_name = longjmp_names[i];
3334 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3335 {
3336 struct bound_minimal_symbol m;
3337
3338 m = lookup_minimal_symbol_text (func_name, objfile);
3339 if (m.minsym == NULL)
3340 {
3341 /* Prevent future lookups in this objfile. */
3342 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3343 continue;
3344 }
3345 bp_objfile_data->longjmp_msym[i] = m;
3346 }
3347
3348 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3349 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3350 &internal_breakpoint_ops);
3351 initialize_explicit_location (&explicit_loc);
3352 explicit_loc.function_name = ASTRDUP (func_name);
3353 b->location = new_explicit_location (&explicit_loc);
3354 b->enable_state = bp_disabled;
3355 }
3356 }
3357 }
3358 }
3359
3360 /* Create a master std::terminate breakpoint. */
3361 static void
3362 create_std_terminate_master_breakpoint (void)
3363 {
3364 struct program_space *pspace;
3365 const char *const func_name = "std::terminate()";
3366
3367 scoped_restore_current_program_space restore_pspace;
3368
3369 ALL_PSPACES (pspace)
3370 {
3371 struct objfile *objfile;
3372 CORE_ADDR addr;
3373
3374 set_current_program_space (pspace);
3375
3376 ALL_OBJFILES (objfile)
3377 {
3378 struct breakpoint *b;
3379 struct breakpoint_objfile_data *bp_objfile_data;
3380 struct explicit_location explicit_loc;
3381
3382 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3383
3384 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3385 continue;
3386
3387 if (bp_objfile_data->terminate_msym.minsym == NULL)
3388 {
3389 struct bound_minimal_symbol m;
3390
3391 m = lookup_minimal_symbol (func_name, NULL, objfile);
3392 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3393 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3394 {
3395 /* Prevent future lookups in this objfile. */
3396 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3397 continue;
3398 }
3399 bp_objfile_data->terminate_msym = m;
3400 }
3401
3402 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3403 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3404 bp_std_terminate_master,
3405 &internal_breakpoint_ops);
3406 initialize_explicit_location (&explicit_loc);
3407 explicit_loc.function_name = ASTRDUP (func_name);
3408 b->location = new_explicit_location (&explicit_loc);
3409 b->enable_state = bp_disabled;
3410 }
3411 }
3412 }
3413
3414 /* Install a master breakpoint on the unwinder's debug hook. */
3415
3416 static void
3417 create_exception_master_breakpoint (void)
3418 {
3419 struct objfile *objfile;
3420 const char *const func_name = "_Unwind_DebugHook";
3421
3422 ALL_OBJFILES (objfile)
3423 {
3424 struct breakpoint *b;
3425 struct gdbarch *gdbarch;
3426 struct breakpoint_objfile_data *bp_objfile_data;
3427 CORE_ADDR addr;
3428 struct explicit_location explicit_loc;
3429
3430 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3431
3432 /* We prefer the SystemTap probe point if it exists. */
3433 if (!bp_objfile_data->exception_searched)
3434 {
3435 std::vector<probe *> ret
3436 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3437
3438 if (!ret.empty ())
3439 {
3440 /* We are only interested in checking one element. */
3441 probe *p = ret[0];
3442
3443 if (!p->can_evaluate_arguments ())
3444 {
3445 /* We cannot use the probe interface here, because it does
3446 not know how to evaluate arguments. */
3447 ret.clear ();
3448 }
3449 }
3450 bp_objfile_data->exception_probes = ret;
3451 bp_objfile_data->exception_searched = 1;
3452 }
3453
3454 if (!bp_objfile_data->exception_probes.empty ())
3455 {
3456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3457
3458 for (probe *p : bp_objfile_data->exception_probes)
3459 {
3460 struct breakpoint *b;
3461
3462 b = create_internal_breakpoint (gdbarch,
3463 p->get_relocated_address (objfile),
3464 bp_exception_master,
3465 &internal_breakpoint_ops);
3466 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3467 b->enable_state = bp_disabled;
3468 }
3469
3470 continue;
3471 }
3472
3473 /* Otherwise, try the hook function. */
3474
3475 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3476 continue;
3477
3478 gdbarch = get_objfile_arch (objfile);
3479
3480 if (bp_objfile_data->exception_msym.minsym == NULL)
3481 {
3482 struct bound_minimal_symbol debug_hook;
3483
3484 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3485 if (debug_hook.minsym == NULL)
3486 {
3487 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3488 continue;
3489 }
3490
3491 bp_objfile_data->exception_msym = debug_hook;
3492 }
3493
3494 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3495 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3496 current_top_target ());
3497 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3498 &internal_breakpoint_ops);
3499 initialize_explicit_location (&explicit_loc);
3500 explicit_loc.function_name = ASTRDUP (func_name);
3501 b->location = new_explicit_location (&explicit_loc);
3502 b->enable_state = bp_disabled;
3503 }
3504 }
3505
3506 /* Does B have a location spec? */
3507
3508 static int
3509 breakpoint_event_location_empty_p (const struct breakpoint *b)
3510 {
3511 return b->location != NULL && event_location_empty_p (b->location.get ());
3512 }
3513
3514 void
3515 update_breakpoints_after_exec (void)
3516 {
3517 struct breakpoint *b, *b_tmp;
3518 struct bp_location *bploc, **bplocp_tmp;
3519
3520 /* We're about to delete breakpoints from GDB's lists. If the
3521 INSERTED flag is true, GDB will try to lift the breakpoints by
3522 writing the breakpoints' "shadow contents" back into memory. The
3523 "shadow contents" are NOT valid after an exec, so GDB should not
3524 do that. Instead, the target is responsible from marking
3525 breakpoints out as soon as it detects an exec. We don't do that
3526 here instead, because there may be other attempts to delete
3527 breakpoints after detecting an exec and before reaching here. */
3528 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3529 if (bploc->pspace == current_program_space)
3530 gdb_assert (!bploc->inserted);
3531
3532 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3533 {
3534 if (b->pspace != current_program_space)
3535 continue;
3536
3537 /* Solib breakpoints must be explicitly reset after an exec(). */
3538 if (b->type == bp_shlib_event)
3539 {
3540 delete_breakpoint (b);
3541 continue;
3542 }
3543
3544 /* JIT breakpoints must be explicitly reset after an exec(). */
3545 if (b->type == bp_jit_event)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Thread event breakpoints must be set anew after an exec(),
3552 as must overlay event and longjmp master breakpoints. */
3553 if (b->type == bp_thread_event || b->type == bp_overlay_event
3554 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3555 || b->type == bp_exception_master)
3556 {
3557 delete_breakpoint (b);
3558 continue;
3559 }
3560
3561 /* Step-resume breakpoints are meaningless after an exec(). */
3562 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3563 {
3564 delete_breakpoint (b);
3565 continue;
3566 }
3567
3568 /* Just like single-step breakpoints. */
3569 if (b->type == bp_single_step)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 /* Longjmp and longjmp-resume breakpoints are also meaningless
3576 after an exec. */
3577 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3578 || b->type == bp_longjmp_call_dummy
3579 || b->type == bp_exception || b->type == bp_exception_resume)
3580 {
3581 delete_breakpoint (b);
3582 continue;
3583 }
3584
3585 if (b->type == bp_catchpoint)
3586 {
3587 /* For now, none of the bp_catchpoint breakpoints need to
3588 do anything at this point. In the future, if some of
3589 the catchpoints need to something, we will need to add
3590 a new method, and call this method from here. */
3591 continue;
3592 }
3593
3594 /* bp_finish is a special case. The only way we ought to be able
3595 to see one of these when an exec() has happened, is if the user
3596 caught a vfork, and then said "finish". Ordinarily a finish just
3597 carries them to the call-site of the current callee, by setting
3598 a temporary bp there and resuming. But in this case, the finish
3599 will carry them entirely through the vfork & exec.
3600
3601 We don't want to allow a bp_finish to remain inserted now. But
3602 we can't safely delete it, 'cause finish_command has a handle to
3603 the bp on a bpstat, and will later want to delete it. There's a
3604 chance (and I've seen it happen) that if we delete the bp_finish
3605 here, that its storage will get reused by the time finish_command
3606 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3607 We really must allow finish_command to delete a bp_finish.
3608
3609 In the absence of a general solution for the "how do we know
3610 it's safe to delete something others may have handles to?"
3611 problem, what we'll do here is just uninsert the bp_finish, and
3612 let finish_command delete it.
3613
3614 (We know the bp_finish is "doomed" in the sense that it's
3615 momentary, and will be deleted as soon as finish_command sees
3616 the inferior stopped. So it doesn't matter that the bp's
3617 address is probably bogus in the new a.out, unlike e.g., the
3618 solib breakpoints.) */
3619
3620 if (b->type == bp_finish)
3621 {
3622 continue;
3623 }
3624
3625 /* Without a symbolic address, we have little hope of the
3626 pre-exec() address meaning the same thing in the post-exec()
3627 a.out. */
3628 if (breakpoint_event_location_empty_p (b))
3629 {
3630 delete_breakpoint (b);
3631 continue;
3632 }
3633 }
3634 }
3635
3636 int
3637 detach_breakpoints (ptid_t ptid)
3638 {
3639 struct bp_location *bl, **blp_tmp;
3640 int val = 0;
3641 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3642 struct inferior *inf = current_inferior ();
3643
3644 if (ptid.pid () == inferior_ptid.pid ())
3645 error (_("Cannot detach breakpoints of inferior_ptid"));
3646
3647 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3648 inferior_ptid = ptid;
3649 ALL_BP_LOCATIONS (bl, blp_tmp)
3650 {
3651 if (bl->pspace != inf->pspace)
3652 continue;
3653
3654 /* This function must physically remove breakpoints locations
3655 from the specified ptid, without modifying the breakpoint
3656 package's state. Locations of type bp_loc_other are only
3657 maintained at GDB side. So, there is no need to remove
3658 these bp_loc_other locations. Moreover, removing these
3659 would modify the breakpoint package's state. */
3660 if (bl->loc_type == bp_loc_other)
3661 continue;
3662
3663 if (bl->inserted)
3664 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3665 }
3666
3667 return val;
3668 }
3669
3670 /* Remove the breakpoint location BL from the current address space.
3671 Note that this is used to detach breakpoints from a child fork.
3672 When we get here, the child isn't in the inferior list, and neither
3673 do we have objects to represent its address space --- we should
3674 *not* look at bl->pspace->aspace here. */
3675
3676 static int
3677 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3678 {
3679 int val;
3680
3681 /* BL is never in moribund_locations by our callers. */
3682 gdb_assert (bl->owner != NULL);
3683
3684 /* The type of none suggests that owner is actually deleted.
3685 This should not ever happen. */
3686 gdb_assert (bl->owner->type != bp_none);
3687
3688 if (bl->loc_type == bp_loc_software_breakpoint
3689 || bl->loc_type == bp_loc_hardware_breakpoint)
3690 {
3691 /* "Normal" instruction breakpoint: either the standard
3692 trap-instruction bp (bp_breakpoint), or a
3693 bp_hardware_breakpoint. */
3694
3695 /* First check to see if we have to handle an overlay. */
3696 if (overlay_debugging == ovly_off
3697 || bl->section == NULL
3698 || !(section_is_overlay (bl->section)))
3699 {
3700 /* No overlay handling: just remove the breakpoint. */
3701
3702 /* If we're trying to uninsert a memory breakpoint that we
3703 know is set in a dynamic object that is marked
3704 shlib_disabled, then either the dynamic object was
3705 removed with "remove-symbol-file" or with
3706 "nosharedlibrary". In the former case, we don't know
3707 whether another dynamic object might have loaded over the
3708 breakpoint's address -- the user might well let us know
3709 about it next with add-symbol-file (the whole point of
3710 add-symbol-file is letting the user manually maintain a
3711 list of dynamically loaded objects). If we have the
3712 breakpoint's shadow memory, that is, this is a software
3713 breakpoint managed by GDB, check whether the breakpoint
3714 is still inserted in memory, to avoid overwriting wrong
3715 code with stale saved shadow contents. Note that HW
3716 breakpoints don't have shadow memory, as they're
3717 implemented using a mechanism that is not dependent on
3718 being able to modify the target's memory, and as such
3719 they should always be removed. */
3720 if (bl->shlib_disabled
3721 && bl->target_info.shadow_len != 0
3722 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3723 val = 0;
3724 else
3725 val = bl->owner->ops->remove_location (bl, reason);
3726 }
3727 else
3728 {
3729 /* This breakpoint is in an overlay section.
3730 Did we set a breakpoint at the LMA? */
3731 if (!overlay_events_enabled)
3732 {
3733 /* Yes -- overlay event support is not active, so we
3734 should have set a breakpoint at the LMA. Remove it.
3735 */
3736 /* Ignore any failures: if the LMA is in ROM, we will
3737 have already warned when we failed to insert it. */
3738 if (bl->loc_type == bp_loc_hardware_breakpoint)
3739 target_remove_hw_breakpoint (bl->gdbarch,
3740 &bl->overlay_target_info);
3741 else
3742 target_remove_breakpoint (bl->gdbarch,
3743 &bl->overlay_target_info,
3744 reason);
3745 }
3746 /* Did we set a breakpoint at the VMA?
3747 If so, we will have marked the breakpoint 'inserted'. */
3748 if (bl->inserted)
3749 {
3750 /* Yes -- remove it. Previously we did not bother to
3751 remove the breakpoint if the section had been
3752 unmapped, but let's not rely on that being safe. We
3753 don't know what the overlay manager might do. */
3754
3755 /* However, we should remove *software* breakpoints only
3756 if the section is still mapped, or else we overwrite
3757 wrong code with the saved shadow contents. */
3758 if (bl->loc_type == bp_loc_hardware_breakpoint
3759 || section_is_mapped (bl->section))
3760 val = bl->owner->ops->remove_location (bl, reason);
3761 else
3762 val = 0;
3763 }
3764 else
3765 {
3766 /* No -- not inserted, so no need to remove. No error. */
3767 val = 0;
3768 }
3769 }
3770
3771 /* In some cases, we might not be able to remove a breakpoint in
3772 a shared library that has already been removed, but we have
3773 not yet processed the shlib unload event. Similarly for an
3774 unloaded add-symbol-file object - the user might not yet have
3775 had the chance to remove-symbol-file it. shlib_disabled will
3776 be set if the library/object has already been removed, but
3777 the breakpoint hasn't been uninserted yet, e.g., after
3778 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3779 always-inserted mode. */
3780 if (val
3781 && (bl->loc_type == bp_loc_software_breakpoint
3782 && (bl->shlib_disabled
3783 || solib_name_from_address (bl->pspace, bl->address)
3784 || shared_objfile_contains_address_p (bl->pspace,
3785 bl->address))))
3786 val = 0;
3787
3788 if (val)
3789 return val;
3790 bl->inserted = (reason == DETACH_BREAKPOINT);
3791 }
3792 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3793 {
3794 gdb_assert (bl->owner->ops != NULL
3795 && bl->owner->ops->remove_location != NULL);
3796
3797 bl->inserted = (reason == DETACH_BREAKPOINT);
3798 bl->owner->ops->remove_location (bl, reason);
3799
3800 /* Failure to remove any of the hardware watchpoints comes here. */
3801 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3802 warning (_("Could not remove hardware watchpoint %d."),
3803 bl->owner->number);
3804 }
3805 else if (bl->owner->type == bp_catchpoint
3806 && breakpoint_enabled (bl->owner)
3807 && !bl->duplicate)
3808 {
3809 gdb_assert (bl->owner->ops != NULL
3810 && bl->owner->ops->remove_location != NULL);
3811
3812 val = bl->owner->ops->remove_location (bl, reason);
3813 if (val)
3814 return val;
3815
3816 bl->inserted = (reason == DETACH_BREAKPOINT);
3817 }
3818
3819 return 0;
3820 }
3821
3822 static int
3823 remove_breakpoint (struct bp_location *bl)
3824 {
3825 /* BL is never in moribund_locations by our callers. */
3826 gdb_assert (bl->owner != NULL);
3827
3828 /* The type of none suggests that owner is actually deleted.
3829 This should not ever happen. */
3830 gdb_assert (bl->owner->type != bp_none);
3831
3832 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3833
3834 switch_to_program_space_and_thread (bl->pspace);
3835
3836 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3837 }
3838
3839 /* Clear the "inserted" flag in all breakpoints. */
3840
3841 void
3842 mark_breakpoints_out (void)
3843 {
3844 struct bp_location *bl, **blp_tmp;
3845
3846 ALL_BP_LOCATIONS (bl, blp_tmp)
3847 if (bl->pspace == current_program_space)
3848 bl->inserted = 0;
3849 }
3850
3851 /* Clear the "inserted" flag in all breakpoints and delete any
3852 breakpoints which should go away between runs of the program.
3853
3854 Plus other such housekeeping that has to be done for breakpoints
3855 between runs.
3856
3857 Note: this function gets called at the end of a run (by
3858 generic_mourn_inferior) and when a run begins (by
3859 init_wait_for_inferior). */
3860
3861
3862
3863 void
3864 breakpoint_init_inferior (enum inf_context context)
3865 {
3866 struct breakpoint *b, *b_tmp;
3867 struct program_space *pspace = current_program_space;
3868
3869 /* If breakpoint locations are shared across processes, then there's
3870 nothing to do. */
3871 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3872 return;
3873
3874 mark_breakpoints_out ();
3875
3876 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3877 {
3878 if (b->loc && b->loc->pspace != pspace)
3879 continue;
3880
3881 switch (b->type)
3882 {
3883 case bp_call_dummy:
3884 case bp_longjmp_call_dummy:
3885
3886 /* If the call dummy breakpoint is at the entry point it will
3887 cause problems when the inferior is rerun, so we better get
3888 rid of it. */
3889
3890 case bp_watchpoint_scope:
3891
3892 /* Also get rid of scope breakpoints. */
3893
3894 case bp_shlib_event:
3895
3896 /* Also remove solib event breakpoints. Their addresses may
3897 have changed since the last time we ran the program.
3898 Actually we may now be debugging against different target;
3899 and so the solib backend that installed this breakpoint may
3900 not be used in by the target. E.g.,
3901
3902 (gdb) file prog-linux
3903 (gdb) run # native linux target
3904 ...
3905 (gdb) kill
3906 (gdb) file prog-win.exe
3907 (gdb) tar rem :9999 # remote Windows gdbserver.
3908 */
3909
3910 case bp_step_resume:
3911
3912 /* Also remove step-resume breakpoints. */
3913
3914 case bp_single_step:
3915
3916 /* Also remove single-step breakpoints. */
3917
3918 delete_breakpoint (b);
3919 break;
3920
3921 case bp_watchpoint:
3922 case bp_hardware_watchpoint:
3923 case bp_read_watchpoint:
3924 case bp_access_watchpoint:
3925 {
3926 struct watchpoint *w = (struct watchpoint *) b;
3927
3928 /* Likewise for watchpoints on local expressions. */
3929 if (w->exp_valid_block != NULL)
3930 delete_breakpoint (b);
3931 else
3932 {
3933 /* Get rid of existing locations, which are no longer
3934 valid. New ones will be created in
3935 update_watchpoint, when the inferior is restarted.
3936 The next update_global_location_list call will
3937 garbage collect them. */
3938 b->loc = NULL;
3939
3940 if (context == inf_starting)
3941 {
3942 /* Reset val field to force reread of starting value in
3943 insert_breakpoints. */
3944 w->val.reset (nullptr);
3945 w->val_valid = 0;
3946 }
3947 }
3948 }
3949 break;
3950 default:
3951 break;
3952 }
3953 }
3954
3955 /* Get rid of the moribund locations. */
3956 for (bp_location *bl : moribund_locations)
3957 decref_bp_location (&bl);
3958 moribund_locations.clear ();
3959 }
3960
3961 /* These functions concern about actual breakpoints inserted in the
3962 target --- to e.g. check if we need to do decr_pc adjustment or if
3963 we need to hop over the bkpt --- so we check for address space
3964 match, not program space. */
3965
3966 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3967 exists at PC. It returns ordinary_breakpoint_here if it's an
3968 ordinary breakpoint, or permanent_breakpoint_here if it's a
3969 permanent breakpoint.
3970 - When continuing from a location with an ordinary breakpoint, we
3971 actually single step once before calling insert_breakpoints.
3972 - When continuing from a location with a permanent breakpoint, we
3973 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3974 the target, to advance the PC past the breakpoint. */
3975
3976 enum breakpoint_here
3977 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3978 {
3979 struct bp_location *bl, **blp_tmp;
3980 int any_breakpoint_here = 0;
3981
3982 ALL_BP_LOCATIONS (bl, blp_tmp)
3983 {
3984 if (bl->loc_type != bp_loc_software_breakpoint
3985 && bl->loc_type != bp_loc_hardware_breakpoint)
3986 continue;
3987
3988 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3989 if ((breakpoint_enabled (bl->owner)
3990 || bl->permanent)
3991 && breakpoint_location_address_match (bl, aspace, pc))
3992 {
3993 if (overlay_debugging
3994 && section_is_overlay (bl->section)
3995 && !section_is_mapped (bl->section))
3996 continue; /* unmapped overlay -- can't be a match */
3997 else if (bl->permanent)
3998 return permanent_breakpoint_here;
3999 else
4000 any_breakpoint_here = 1;
4001 }
4002 }
4003
4004 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4005 }
4006
4007 /* See breakpoint.h. */
4008
4009 int
4010 breakpoint_in_range_p (const address_space *aspace,
4011 CORE_ADDR addr, ULONGEST len)
4012 {
4013 struct bp_location *bl, **blp_tmp;
4014
4015 ALL_BP_LOCATIONS (bl, blp_tmp)
4016 {
4017 if (bl->loc_type != bp_loc_software_breakpoint
4018 && bl->loc_type != bp_loc_hardware_breakpoint)
4019 continue;
4020
4021 if ((breakpoint_enabled (bl->owner)
4022 || bl->permanent)
4023 && breakpoint_location_address_range_overlap (bl, aspace,
4024 addr, len))
4025 {
4026 if (overlay_debugging
4027 && section_is_overlay (bl->section)
4028 && !section_is_mapped (bl->section))
4029 {
4030 /* Unmapped overlay -- can't be a match. */
4031 continue;
4032 }
4033
4034 return 1;
4035 }
4036 }
4037
4038 return 0;
4039 }
4040
4041 /* Return true if there's a moribund breakpoint at PC. */
4042
4043 int
4044 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4045 {
4046 for (bp_location *loc : moribund_locations)
4047 if (breakpoint_location_address_match (loc, aspace, pc))
4048 return 1;
4049
4050 return 0;
4051 }
4052
4053 /* Returns non-zero iff BL is inserted at PC, in address space
4054 ASPACE. */
4055
4056 static int
4057 bp_location_inserted_here_p (struct bp_location *bl,
4058 const address_space *aspace, CORE_ADDR pc)
4059 {
4060 if (bl->inserted
4061 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4062 aspace, pc))
4063 {
4064 if (overlay_debugging
4065 && section_is_overlay (bl->section)
4066 && !section_is_mapped (bl->section))
4067 return 0; /* unmapped overlay -- can't be a match */
4068 else
4069 return 1;
4070 }
4071 return 0;
4072 }
4073
4074 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4075
4076 int
4077 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4078 {
4079 struct bp_location **blp, **blp_tmp = NULL;
4080
4081 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4082 {
4083 struct bp_location *bl = *blp;
4084
4085 if (bl->loc_type != bp_loc_software_breakpoint
4086 && bl->loc_type != bp_loc_hardware_breakpoint)
4087 continue;
4088
4089 if (bp_location_inserted_here_p (bl, aspace, pc))
4090 return 1;
4091 }
4092 return 0;
4093 }
4094
4095 /* This function returns non-zero iff there is a software breakpoint
4096 inserted at PC. */
4097
4098 int
4099 software_breakpoint_inserted_here_p (const address_space *aspace,
4100 CORE_ADDR pc)
4101 {
4102 struct bp_location **blp, **blp_tmp = NULL;
4103
4104 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4105 {
4106 struct bp_location *bl = *blp;
4107
4108 if (bl->loc_type != bp_loc_software_breakpoint)
4109 continue;
4110
4111 if (bp_location_inserted_here_p (bl, aspace, pc))
4112 return 1;
4113 }
4114
4115 return 0;
4116 }
4117
4118 /* See breakpoint.h. */
4119
4120 int
4121 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4122 CORE_ADDR pc)
4123 {
4124 struct bp_location **blp, **blp_tmp = NULL;
4125
4126 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4127 {
4128 struct bp_location *bl = *blp;
4129
4130 if (bl->loc_type != bp_loc_hardware_breakpoint)
4131 continue;
4132
4133 if (bp_location_inserted_here_p (bl, aspace, pc))
4134 return 1;
4135 }
4136
4137 return 0;
4138 }
4139
4140 int
4141 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4142 CORE_ADDR addr, ULONGEST len)
4143 {
4144 struct breakpoint *bpt;
4145
4146 ALL_BREAKPOINTS (bpt)
4147 {
4148 struct bp_location *loc;
4149
4150 if (bpt->type != bp_hardware_watchpoint
4151 && bpt->type != bp_access_watchpoint)
4152 continue;
4153
4154 if (!breakpoint_enabled (bpt))
4155 continue;
4156
4157 for (loc = bpt->loc; loc; loc = loc->next)
4158 if (loc->pspace->aspace == aspace && loc->inserted)
4159 {
4160 CORE_ADDR l, h;
4161
4162 /* Check for intersection. */
4163 l = std::max<CORE_ADDR> (loc->address, addr);
4164 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4165 if (l < h)
4166 return 1;
4167 }
4168 }
4169 return 0;
4170 }
4171 \f
4172
4173 /* bpstat stuff. External routines' interfaces are documented
4174 in breakpoint.h. */
4175
4176 int
4177 is_catchpoint (struct breakpoint *ep)
4178 {
4179 return (ep->type == bp_catchpoint);
4180 }
4181
4182 /* Frees any storage that is part of a bpstat. Does not walk the
4183 'next' chain. */
4184
4185 bpstats::~bpstats ()
4186 {
4187 if (bp_location_at != NULL)
4188 decref_bp_location (&bp_location_at);
4189 }
4190
4191 /* Clear a bpstat so that it says we are not at any breakpoint.
4192 Also free any storage that is part of a bpstat. */
4193
4194 void
4195 bpstat_clear (bpstat *bsp)
4196 {
4197 bpstat p;
4198 bpstat q;
4199
4200 if (bsp == 0)
4201 return;
4202 p = *bsp;
4203 while (p != NULL)
4204 {
4205 q = p->next;
4206 delete p;
4207 p = q;
4208 }
4209 *bsp = NULL;
4210 }
4211
4212 bpstats::bpstats (const bpstats &other)
4213 : next (NULL),
4214 bp_location_at (other.bp_location_at),
4215 breakpoint_at (other.breakpoint_at),
4216 commands (other.commands),
4217 print (other.print),
4218 stop (other.stop),
4219 print_it (other.print_it)
4220 {
4221 if (other.old_val != NULL)
4222 old_val = release_value (value_copy (other.old_val.get ()));
4223 incref_bp_location (bp_location_at);
4224 }
4225
4226 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4227 is part of the bpstat is copied as well. */
4228
4229 bpstat
4230 bpstat_copy (bpstat bs)
4231 {
4232 bpstat p = NULL;
4233 bpstat tmp;
4234 bpstat retval = NULL;
4235
4236 if (bs == NULL)
4237 return bs;
4238
4239 for (; bs != NULL; bs = bs->next)
4240 {
4241 tmp = new bpstats (*bs);
4242
4243 if (p == NULL)
4244 /* This is the first thing in the chain. */
4245 retval = tmp;
4246 else
4247 p->next = tmp;
4248 p = tmp;
4249 }
4250 p->next = NULL;
4251 return retval;
4252 }
4253
4254 /* Find the bpstat associated with this breakpoint. */
4255
4256 bpstat
4257 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4258 {
4259 if (bsp == NULL)
4260 return NULL;
4261
4262 for (; bsp != NULL; bsp = bsp->next)
4263 {
4264 if (bsp->breakpoint_at == breakpoint)
4265 return bsp;
4266 }
4267 return NULL;
4268 }
4269
4270 /* See breakpoint.h. */
4271
4272 int
4273 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4274 {
4275 for (; bsp != NULL; bsp = bsp->next)
4276 {
4277 if (bsp->breakpoint_at == NULL)
4278 {
4279 /* A moribund location can never explain a signal other than
4280 GDB_SIGNAL_TRAP. */
4281 if (sig == GDB_SIGNAL_TRAP)
4282 return 1;
4283 }
4284 else
4285 {
4286 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4287 sig))
4288 return 1;
4289 }
4290 }
4291
4292 return 0;
4293 }
4294
4295 /* Put in *NUM the breakpoint number of the first breakpoint we are
4296 stopped at. *BSP upon return is a bpstat which points to the
4297 remaining breakpoints stopped at (but which is not guaranteed to be
4298 good for anything but further calls to bpstat_num).
4299
4300 Return 0 if passed a bpstat which does not indicate any breakpoints.
4301 Return -1 if stopped at a breakpoint that has been deleted since
4302 we set it.
4303 Return 1 otherwise. */
4304
4305 int
4306 bpstat_num (bpstat *bsp, int *num)
4307 {
4308 struct breakpoint *b;
4309
4310 if ((*bsp) == NULL)
4311 return 0; /* No more breakpoint values */
4312
4313 /* We assume we'll never have several bpstats that correspond to a
4314 single breakpoint -- otherwise, this function might return the
4315 same number more than once and this will look ugly. */
4316 b = (*bsp)->breakpoint_at;
4317 *bsp = (*bsp)->next;
4318 if (b == NULL)
4319 return -1; /* breakpoint that's been deleted since */
4320
4321 *num = b->number; /* We have its number */
4322 return 1;
4323 }
4324
4325 /* See breakpoint.h. */
4326
4327 void
4328 bpstat_clear_actions (void)
4329 {
4330 bpstat bs;
4331
4332 if (inferior_ptid == null_ptid)
4333 return;
4334
4335 thread_info *tp = inferior_thread ();
4336 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4337 {
4338 bs->commands = NULL;
4339 bs->old_val.reset (nullptr);
4340 }
4341 }
4342
4343 /* Called when a command is about to proceed the inferior. */
4344
4345 static void
4346 breakpoint_about_to_proceed (void)
4347 {
4348 if (inferior_ptid != null_ptid)
4349 {
4350 struct thread_info *tp = inferior_thread ();
4351
4352 /* Allow inferior function calls in breakpoint commands to not
4353 interrupt the command list. When the call finishes
4354 successfully, the inferior will be standing at the same
4355 breakpoint as if nothing happened. */
4356 if (tp->control.in_infcall)
4357 return;
4358 }
4359
4360 breakpoint_proceeded = 1;
4361 }
4362
4363 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4364 or its equivalent. */
4365
4366 static int
4367 command_line_is_silent (struct command_line *cmd)
4368 {
4369 return cmd && (strcmp ("silent", cmd->line) == 0);
4370 }
4371
4372 /* Execute all the commands associated with all the breakpoints at
4373 this location. Any of these commands could cause the process to
4374 proceed beyond this point, etc. We look out for such changes by
4375 checking the global "breakpoint_proceeded" after each command.
4376
4377 Returns true if a breakpoint command resumed the inferior. In that
4378 case, it is the caller's responsibility to recall it again with the
4379 bpstat of the current thread. */
4380
4381 static int
4382 bpstat_do_actions_1 (bpstat *bsp)
4383 {
4384 bpstat bs;
4385 int again = 0;
4386
4387 /* Avoid endless recursion if a `source' command is contained
4388 in bs->commands. */
4389 if (executing_breakpoint_commands)
4390 return 0;
4391
4392 scoped_restore save_executing
4393 = make_scoped_restore (&executing_breakpoint_commands, 1);
4394
4395 scoped_restore preventer = prevent_dont_repeat ();
4396
4397 /* This pointer will iterate over the list of bpstat's. */
4398 bs = *bsp;
4399
4400 breakpoint_proceeded = 0;
4401 for (; bs != NULL; bs = bs->next)
4402 {
4403 struct command_line *cmd = NULL;
4404
4405 /* Take ownership of the BSP's command tree, if it has one.
4406
4407 The command tree could legitimately contain commands like
4408 'step' and 'next', which call clear_proceed_status, which
4409 frees stop_bpstat's command tree. To make sure this doesn't
4410 free the tree we're executing out from under us, we need to
4411 take ownership of the tree ourselves. Since a given bpstat's
4412 commands are only executed once, we don't need to copy it; we
4413 can clear the pointer in the bpstat, and make sure we free
4414 the tree when we're done. */
4415 counted_command_line ccmd = bs->commands;
4416 bs->commands = NULL;
4417 if (ccmd != NULL)
4418 cmd = ccmd.get ();
4419 if (command_line_is_silent (cmd))
4420 {
4421 /* The action has been already done by bpstat_stop_status. */
4422 cmd = cmd->next;
4423 }
4424
4425 while (cmd != NULL)
4426 {
4427 execute_control_command (cmd);
4428
4429 if (breakpoint_proceeded)
4430 break;
4431 else
4432 cmd = cmd->next;
4433 }
4434
4435 if (breakpoint_proceeded)
4436 {
4437 if (current_ui->async)
4438 /* If we are in async mode, then the target might be still
4439 running, not stopped at any breakpoint, so nothing for
4440 us to do here -- just return to the event loop. */
4441 ;
4442 else
4443 /* In sync mode, when execute_control_command returns
4444 we're already standing on the next breakpoint.
4445 Breakpoint commands for that stop were not run, since
4446 execute_command does not run breakpoint commands --
4447 only command_line_handler does, but that one is not
4448 involved in execution of breakpoint commands. So, we
4449 can now execute breakpoint commands. It should be
4450 noted that making execute_command do bpstat actions is
4451 not an option -- in this case we'll have recursive
4452 invocation of bpstat for each breakpoint with a
4453 command, and can easily blow up GDB stack. Instead, we
4454 return true, which will trigger the caller to recall us
4455 with the new stop_bpstat. */
4456 again = 1;
4457 break;
4458 }
4459 }
4460 return again;
4461 }
4462
4463 /* Helper for bpstat_do_actions. Get the current thread, if there's
4464 one, is alive and has execution. Return NULL otherwise. */
4465
4466 static thread_info *
4467 get_bpstat_thread ()
4468 {
4469 if (inferior_ptid == null_ptid || !target_has_execution)
4470 return NULL;
4471
4472 thread_info *tp = inferior_thread ();
4473 if (tp->state == THREAD_EXITED || tp->executing)
4474 return NULL;
4475 return tp;
4476 }
4477
4478 void
4479 bpstat_do_actions (void)
4480 {
4481 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4482 thread_info *tp;
4483
4484 /* Do any commands attached to breakpoint we are stopped at. */
4485 while ((tp = get_bpstat_thread ()) != NULL)
4486 {
4487 /* Since in sync mode, bpstat_do_actions may resume the
4488 inferior, and only return when it is stopped at the next
4489 breakpoint, we keep doing breakpoint actions until it returns
4490 false to indicate the inferior was not resumed. */
4491 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4492 break;
4493 }
4494
4495 discard_cleanups (cleanup_if_error);
4496 }
4497
4498 /* Print out the (old or new) value associated with a watchpoint. */
4499
4500 static void
4501 watchpoint_value_print (struct value *val, struct ui_file *stream)
4502 {
4503 if (val == NULL)
4504 fprintf_unfiltered (stream, _("<unreadable>"));
4505 else
4506 {
4507 struct value_print_options opts;
4508 get_user_print_options (&opts);
4509 value_print (val, stream, &opts);
4510 }
4511 }
4512
4513 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4514 debugging multiple threads. */
4515
4516 void
4517 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4518 {
4519 if (uiout->is_mi_like_p ())
4520 return;
4521
4522 uiout->text ("\n");
4523
4524 if (show_thread_that_caused_stop ())
4525 {
4526 const char *name;
4527 struct thread_info *thr = inferior_thread ();
4528
4529 uiout->text ("Thread ");
4530 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4531
4532 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4533 if (name != NULL)
4534 {
4535 uiout->text (" \"");
4536 uiout->field_fmt ("name", "%s", name);
4537 uiout->text ("\"");
4538 }
4539
4540 uiout->text (" hit ");
4541 }
4542 }
4543
4544 /* Generic routine for printing messages indicating why we
4545 stopped. The behavior of this function depends on the value
4546 'print_it' in the bpstat structure. Under some circumstances we
4547 may decide not to print anything here and delegate the task to
4548 normal_stop(). */
4549
4550 static enum print_stop_action
4551 print_bp_stop_message (bpstat bs)
4552 {
4553 switch (bs->print_it)
4554 {
4555 case print_it_noop:
4556 /* Nothing should be printed for this bpstat entry. */
4557 return PRINT_UNKNOWN;
4558 break;
4559
4560 case print_it_done:
4561 /* We still want to print the frame, but we already printed the
4562 relevant messages. */
4563 return PRINT_SRC_AND_LOC;
4564 break;
4565
4566 case print_it_normal:
4567 {
4568 struct breakpoint *b = bs->breakpoint_at;
4569
4570 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4571 which has since been deleted. */
4572 if (b == NULL)
4573 return PRINT_UNKNOWN;
4574
4575 /* Normal case. Call the breakpoint's print_it method. */
4576 return b->ops->print_it (bs);
4577 }
4578 break;
4579
4580 default:
4581 internal_error (__FILE__, __LINE__,
4582 _("print_bp_stop_message: unrecognized enum value"));
4583 break;
4584 }
4585 }
4586
4587 /* A helper function that prints a shared library stopped event. */
4588
4589 static void
4590 print_solib_event (int is_catchpoint)
4591 {
4592 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4593 bool any_added = !current_program_space->added_solibs.empty ();
4594
4595 if (!is_catchpoint)
4596 {
4597 if (any_added || any_deleted)
4598 current_uiout->text (_("Stopped due to shared library event:\n"));
4599 else
4600 current_uiout->text (_("Stopped due to shared library event (no "
4601 "libraries added or removed)\n"));
4602 }
4603
4604 if (current_uiout->is_mi_like_p ())
4605 current_uiout->field_string ("reason",
4606 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4607
4608 if (any_deleted)
4609 {
4610 current_uiout->text (_(" Inferior unloaded "));
4611 ui_out_emit_list list_emitter (current_uiout, "removed");
4612 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4613 {
4614 const std::string &name = current_program_space->deleted_solibs[ix];
4615
4616 if (ix > 0)
4617 current_uiout->text (" ");
4618 current_uiout->field_string ("library", name);
4619 current_uiout->text ("\n");
4620 }
4621 }
4622
4623 if (any_added)
4624 {
4625 current_uiout->text (_(" Inferior loaded "));
4626 ui_out_emit_list list_emitter (current_uiout, "added");
4627 bool first = true;
4628 for (so_list *iter : current_program_space->added_solibs)
4629 {
4630 if (!first)
4631 current_uiout->text (" ");
4632 first = false;
4633 current_uiout->field_string ("library", iter->so_name);
4634 current_uiout->text ("\n");
4635 }
4636 }
4637 }
4638
4639 /* Print a message indicating what happened. This is called from
4640 normal_stop(). The input to this routine is the head of the bpstat
4641 list - a list of the eventpoints that caused this stop. KIND is
4642 the target_waitkind for the stopping event. This
4643 routine calls the generic print routine for printing a message
4644 about reasons for stopping. This will print (for example) the
4645 "Breakpoint n," part of the output. The return value of this
4646 routine is one of:
4647
4648 PRINT_UNKNOWN: Means we printed nothing.
4649 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4650 code to print the location. An example is
4651 "Breakpoint 1, " which should be followed by
4652 the location.
4653 PRINT_SRC_ONLY: Means we printed something, but there is no need
4654 to also print the location part of the message.
4655 An example is the catch/throw messages, which
4656 don't require a location appended to the end.
4657 PRINT_NOTHING: We have done some printing and we don't need any
4658 further info to be printed. */
4659
4660 enum print_stop_action
4661 bpstat_print (bpstat bs, int kind)
4662 {
4663 enum print_stop_action val;
4664
4665 /* Maybe another breakpoint in the chain caused us to stop.
4666 (Currently all watchpoints go on the bpstat whether hit or not.
4667 That probably could (should) be changed, provided care is taken
4668 with respect to bpstat_explains_signal). */
4669 for (; bs; bs = bs->next)
4670 {
4671 val = print_bp_stop_message (bs);
4672 if (val == PRINT_SRC_ONLY
4673 || val == PRINT_SRC_AND_LOC
4674 || val == PRINT_NOTHING)
4675 return val;
4676 }
4677
4678 /* If we had hit a shared library event breakpoint,
4679 print_bp_stop_message would print out this message. If we hit an
4680 OS-level shared library event, do the same thing. */
4681 if (kind == TARGET_WAITKIND_LOADED)
4682 {
4683 print_solib_event (0);
4684 return PRINT_NOTHING;
4685 }
4686
4687 /* We reached the end of the chain, or we got a null BS to start
4688 with and nothing was printed. */
4689 return PRINT_UNKNOWN;
4690 }
4691
4692 /* Evaluate the boolean expression EXP and return the result. */
4693
4694 static bool
4695 breakpoint_cond_eval (expression *exp)
4696 {
4697 struct value *mark = value_mark ();
4698 bool res = value_true (evaluate_expression (exp));
4699
4700 value_free_to_mark (mark);
4701 return res;
4702 }
4703
4704 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4705
4706 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4707 : next (NULL),
4708 bp_location_at (bl),
4709 breakpoint_at (bl->owner),
4710 commands (NULL),
4711 print (0),
4712 stop (0),
4713 print_it (print_it_normal)
4714 {
4715 incref_bp_location (bl);
4716 **bs_link_pointer = this;
4717 *bs_link_pointer = &next;
4718 }
4719
4720 bpstats::bpstats ()
4721 : next (NULL),
4722 bp_location_at (NULL),
4723 breakpoint_at (NULL),
4724 commands (NULL),
4725 print (0),
4726 stop (0),
4727 print_it (print_it_normal)
4728 {
4729 }
4730 \f
4731 /* The target has stopped with waitstatus WS. Check if any hardware
4732 watchpoints have triggered, according to the target. */
4733
4734 int
4735 watchpoints_triggered (struct target_waitstatus *ws)
4736 {
4737 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4738 CORE_ADDR addr;
4739 struct breakpoint *b;
4740
4741 if (!stopped_by_watchpoint)
4742 {
4743 /* We were not stopped by a watchpoint. Mark all watchpoints
4744 as not triggered. */
4745 ALL_BREAKPOINTS (b)
4746 if (is_hardware_watchpoint (b))
4747 {
4748 struct watchpoint *w = (struct watchpoint *) b;
4749
4750 w->watchpoint_triggered = watch_triggered_no;
4751 }
4752
4753 return 0;
4754 }
4755
4756 if (!target_stopped_data_address (current_top_target (), &addr))
4757 {
4758 /* We were stopped by a watchpoint, but we don't know where.
4759 Mark all watchpoints as unknown. */
4760 ALL_BREAKPOINTS (b)
4761 if (is_hardware_watchpoint (b))
4762 {
4763 struct watchpoint *w = (struct watchpoint *) b;
4764
4765 w->watchpoint_triggered = watch_triggered_unknown;
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* The target could report the data address. Mark watchpoints
4772 affected by this data address as triggered, and all others as not
4773 triggered. */
4774
4775 ALL_BREAKPOINTS (b)
4776 if (is_hardware_watchpoint (b))
4777 {
4778 struct watchpoint *w = (struct watchpoint *) b;
4779 struct bp_location *loc;
4780
4781 w->watchpoint_triggered = watch_triggered_no;
4782 for (loc = b->loc; loc; loc = loc->next)
4783 {
4784 if (is_masked_watchpoint (b))
4785 {
4786 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4787 CORE_ADDR start = loc->address & w->hw_wp_mask;
4788
4789 if (newaddr == start)
4790 {
4791 w->watchpoint_triggered = watch_triggered_yes;
4792 break;
4793 }
4794 }
4795 /* Exact match not required. Within range is sufficient. */
4796 else if (target_watchpoint_addr_within_range (current_top_target (),
4797 addr, loc->address,
4798 loc->length))
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* Possible return values for watchpoint_check. */
4810 enum wp_check_result
4811 {
4812 /* The watchpoint has been deleted. */
4813 WP_DELETED = 1,
4814
4815 /* The value has changed. */
4816 WP_VALUE_CHANGED = 2,
4817
4818 /* The value has not changed. */
4819 WP_VALUE_NOT_CHANGED = 3,
4820
4821 /* Ignore this watchpoint, no matter if the value changed or not. */
4822 WP_IGNORE = 4,
4823 };
4824
4825 #define BP_TEMPFLAG 1
4826 #define BP_HARDWAREFLAG 2
4827
4828 /* Evaluate watchpoint condition expression and check if its value
4829 changed. */
4830
4831 static wp_check_result
4832 watchpoint_check (bpstat bs)
4833 {
4834 struct watchpoint *b;
4835 struct frame_info *fr;
4836 int within_current_scope;
4837
4838 /* BS is built from an existing struct breakpoint. */
4839 gdb_assert (bs->breakpoint_at != NULL);
4840 b = (struct watchpoint *) bs->breakpoint_at;
4841
4842 /* If this is a local watchpoint, we only want to check if the
4843 watchpoint frame is in scope if the current thread is the thread
4844 that was used to create the watchpoint. */
4845 if (!watchpoint_in_thread_scope (b))
4846 return WP_IGNORE;
4847
4848 if (b->exp_valid_block == NULL)
4849 within_current_scope = 1;
4850 else
4851 {
4852 struct frame_info *frame = get_current_frame ();
4853 struct gdbarch *frame_arch = get_frame_arch (frame);
4854 CORE_ADDR frame_pc = get_frame_pc (frame);
4855
4856 /* stack_frame_destroyed_p() returns a non-zero value if we're
4857 still in the function but the stack frame has already been
4858 invalidated. Since we can't rely on the values of local
4859 variables after the stack has been destroyed, we are treating
4860 the watchpoint in that state as `not changed' without further
4861 checking. Don't mark watchpoints as changed if the current
4862 frame is in an epilogue - even if they are in some other
4863 frame, our view of the stack is likely to be wrong and
4864 frame_find_by_id could error out. */
4865 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4866 return WP_IGNORE;
4867
4868 fr = frame_find_by_id (b->watchpoint_frame);
4869 within_current_scope = (fr != NULL);
4870
4871 /* If we've gotten confused in the unwinder, we might have
4872 returned a frame that can't describe this variable. */
4873 if (within_current_scope)
4874 {
4875 struct symbol *function;
4876
4877 function = get_frame_function (fr);
4878 if (function == NULL
4879 || !contained_in (b->exp_valid_block,
4880 SYMBOL_BLOCK_VALUE (function)))
4881 within_current_scope = 0;
4882 }
4883
4884 if (within_current_scope)
4885 /* If we end up stopping, the current frame will get selected
4886 in normal_stop. So this call to select_frame won't affect
4887 the user. */
4888 select_frame (fr);
4889 }
4890
4891 if (within_current_scope)
4892 {
4893 /* We use value_{,free_to_}mark because it could be a *long*
4894 time before we return to the command level and call
4895 free_all_values. We can't call free_all_values because we
4896 might be in the middle of evaluating a function call. */
4897
4898 int pc = 0;
4899 struct value *mark;
4900 struct value *new_val;
4901
4902 if (is_masked_watchpoint (b))
4903 /* Since we don't know the exact trigger address (from
4904 stopped_data_address), just tell the user we've triggered
4905 a mask watchpoint. */
4906 return WP_VALUE_CHANGED;
4907
4908 mark = value_mark ();
4909 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4910
4911 if (b->val_bitsize != 0)
4912 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4913
4914 /* We use value_equal_contents instead of value_equal because
4915 the latter coerces an array to a pointer, thus comparing just
4916 the address of the array instead of its contents. This is
4917 not what we want. */
4918 if ((b->val != NULL) != (new_val != NULL)
4919 || (b->val != NULL && !value_equal_contents (b->val.get (),
4920 new_val)))
4921 {
4922 bs->old_val = b->val;
4923 b->val = release_value (new_val);
4924 b->val_valid = 1;
4925 if (new_val != NULL)
4926 value_free_to_mark (mark);
4927 return WP_VALUE_CHANGED;
4928 }
4929 else
4930 {
4931 /* Nothing changed. */
4932 value_free_to_mark (mark);
4933 return WP_VALUE_NOT_CHANGED;
4934 }
4935 }
4936 else
4937 {
4938 /* This seems like the only logical thing to do because
4939 if we temporarily ignored the watchpoint, then when
4940 we reenter the block in which it is valid it contains
4941 garbage (in the case of a function, it may have two
4942 garbage values, one before and one after the prologue).
4943 So we can't even detect the first assignment to it and
4944 watch after that (since the garbage may or may not equal
4945 the first value assigned). */
4946 /* We print all the stop information in
4947 breakpoint_ops->print_it, but in this case, by the time we
4948 call breakpoint_ops->print_it this bp will be deleted
4949 already. So we have no choice but print the information
4950 here. */
4951
4952 SWITCH_THRU_ALL_UIS ()
4953 {
4954 struct ui_out *uiout = current_uiout;
4955
4956 if (uiout->is_mi_like_p ())
4957 uiout->field_string
4958 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4959 uiout->text ("\nWatchpoint ");
4960 uiout->field_int ("wpnum", b->number);
4961 uiout->text (" deleted because the program has left the block in\n"
4962 "which its expression is valid.\n");
4963 }
4964
4965 /* Make sure the watchpoint's commands aren't executed. */
4966 b->commands = NULL;
4967 watchpoint_del_at_next_stop (b);
4968
4969 return WP_DELETED;
4970 }
4971 }
4972
4973 /* Return true if it looks like target has stopped due to hitting
4974 breakpoint location BL. This function does not check if we should
4975 stop, only if BL explains the stop. */
4976
4977 static int
4978 bpstat_check_location (const struct bp_location *bl,
4979 const address_space *aspace, CORE_ADDR bp_addr,
4980 const struct target_waitstatus *ws)
4981 {
4982 struct breakpoint *b = bl->owner;
4983
4984 /* BL is from an existing breakpoint. */
4985 gdb_assert (b != NULL);
4986
4987 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4988 }
4989
4990 /* Determine if the watched values have actually changed, and we
4991 should stop. If not, set BS->stop to 0. */
4992
4993 static void
4994 bpstat_check_watchpoint (bpstat bs)
4995 {
4996 const struct bp_location *bl;
4997 struct watchpoint *b;
4998
4999 /* BS is built for existing struct breakpoint. */
5000 bl = bs->bp_location_at;
5001 gdb_assert (bl != NULL);
5002 b = (struct watchpoint *) bs->breakpoint_at;
5003 gdb_assert (b != NULL);
5004
5005 {
5006 int must_check_value = 0;
5007
5008 if (b->type == bp_watchpoint)
5009 /* For a software watchpoint, we must always check the
5010 watched value. */
5011 must_check_value = 1;
5012 else if (b->watchpoint_triggered == watch_triggered_yes)
5013 /* We have a hardware watchpoint (read, write, or access)
5014 and the target earlier reported an address watched by
5015 this watchpoint. */
5016 must_check_value = 1;
5017 else if (b->watchpoint_triggered == watch_triggered_unknown
5018 && b->type == bp_hardware_watchpoint)
5019 /* We were stopped by a hardware watchpoint, but the target could
5020 not report the data address. We must check the watchpoint's
5021 value. Access and read watchpoints are out of luck; without
5022 a data address, we can't figure it out. */
5023 must_check_value = 1;
5024
5025 if (must_check_value)
5026 {
5027 wp_check_result e;
5028
5029 TRY
5030 {
5031 e = watchpoint_check (bs);
5032 }
5033 CATCH (ex, RETURN_MASK_ALL)
5034 {
5035 exception_fprintf (gdb_stderr, ex,
5036 "Error evaluating expression "
5037 "for watchpoint %d\n",
5038 b->number);
5039
5040 SWITCH_THRU_ALL_UIS ()
5041 {
5042 printf_filtered (_("Watchpoint %d deleted.\n"),
5043 b->number);
5044 }
5045 watchpoint_del_at_next_stop (b);
5046 e = WP_DELETED;
5047 }
5048 END_CATCH
5049
5050 switch (e)
5051 {
5052 case WP_DELETED:
5053 /* We've already printed what needs to be printed. */
5054 bs->print_it = print_it_done;
5055 /* Stop. */
5056 break;
5057 case WP_IGNORE:
5058 bs->print_it = print_it_noop;
5059 bs->stop = 0;
5060 break;
5061 case WP_VALUE_CHANGED:
5062 if (b->type == bp_read_watchpoint)
5063 {
5064 /* There are two cases to consider here:
5065
5066 1. We're watching the triggered memory for reads.
5067 In that case, trust the target, and always report
5068 the watchpoint hit to the user. Even though
5069 reads don't cause value changes, the value may
5070 have changed since the last time it was read, and
5071 since we're not trapping writes, we will not see
5072 those, and as such we should ignore our notion of
5073 old value.
5074
5075 2. We're watching the triggered memory for both
5076 reads and writes. There are two ways this may
5077 happen:
5078
5079 2.1. This is a target that can't break on data
5080 reads only, but can break on accesses (reads or
5081 writes), such as e.g., x86. We detect this case
5082 at the time we try to insert read watchpoints.
5083
5084 2.2. Otherwise, the target supports read
5085 watchpoints, but, the user set an access or write
5086 watchpoint watching the same memory as this read
5087 watchpoint.
5088
5089 If we're watching memory writes as well as reads,
5090 ignore watchpoint hits when we find that the
5091 value hasn't changed, as reads don't cause
5092 changes. This still gives false positives when
5093 the program writes the same value to memory as
5094 what there was already in memory (we will confuse
5095 it for a read), but it's much better than
5096 nothing. */
5097
5098 int other_write_watchpoint = 0;
5099
5100 if (bl->watchpoint_type == hw_read)
5101 {
5102 struct breakpoint *other_b;
5103
5104 ALL_BREAKPOINTS (other_b)
5105 if (other_b->type == bp_hardware_watchpoint
5106 || other_b->type == bp_access_watchpoint)
5107 {
5108 struct watchpoint *other_w =
5109 (struct watchpoint *) other_b;
5110
5111 if (other_w->watchpoint_triggered
5112 == watch_triggered_yes)
5113 {
5114 other_write_watchpoint = 1;
5115 break;
5116 }
5117 }
5118 }
5119
5120 if (other_write_watchpoint
5121 || bl->watchpoint_type == hw_access)
5122 {
5123 /* We're watching the same memory for writes,
5124 and the value changed since the last time we
5125 updated it, so this trap must be for a write.
5126 Ignore it. */
5127 bs->print_it = print_it_noop;
5128 bs->stop = 0;
5129 }
5130 }
5131 break;
5132 case WP_VALUE_NOT_CHANGED:
5133 if (b->type == bp_hardware_watchpoint
5134 || b->type == bp_watchpoint)
5135 {
5136 /* Don't stop: write watchpoints shouldn't fire if
5137 the value hasn't changed. */
5138 bs->print_it = print_it_noop;
5139 bs->stop = 0;
5140 }
5141 /* Stop. */
5142 break;
5143 default:
5144 /* Can't happen. */
5145 break;
5146 }
5147 }
5148 else /* must_check_value == 0 */
5149 {
5150 /* This is a case where some watchpoint(s) triggered, but
5151 not at the address of this watchpoint, or else no
5152 watchpoint triggered after all. So don't print
5153 anything for this watchpoint. */
5154 bs->print_it = print_it_noop;
5155 bs->stop = 0;
5156 }
5157 }
5158 }
5159
5160 /* For breakpoints that are currently marked as telling gdb to stop,
5161 check conditions (condition proper, frame, thread and ignore count)
5162 of breakpoint referred to by BS. If we should not stop for this
5163 breakpoint, set BS->stop to 0. */
5164
5165 static void
5166 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5167 {
5168 const struct bp_location *bl;
5169 struct breakpoint *b;
5170 /* Assume stop. */
5171 bool condition_result = true;
5172 struct expression *cond;
5173
5174 gdb_assert (bs->stop);
5175
5176 /* BS is built for existing struct breakpoint. */
5177 bl = bs->bp_location_at;
5178 gdb_assert (bl != NULL);
5179 b = bs->breakpoint_at;
5180 gdb_assert (b != NULL);
5181
5182 /* Even if the target evaluated the condition on its end and notified GDB, we
5183 need to do so again since GDB does not know if we stopped due to a
5184 breakpoint or a single step breakpoint. */
5185
5186 if (frame_id_p (b->frame_id)
5187 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* If this is a thread/task-specific breakpoint, don't waste cpu
5194 evaluating the condition if this isn't the specified
5195 thread/task. */
5196 if ((b->thread != -1 && b->thread != thread->global_num)
5197 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5198 {
5199 bs->stop = 0;
5200 return;
5201 }
5202
5203 /* Evaluate extension language breakpoints that have a "stop" method
5204 implemented. */
5205 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5206
5207 if (is_watchpoint (b))
5208 {
5209 struct watchpoint *w = (struct watchpoint *) b;
5210
5211 cond = w->cond_exp.get ();
5212 }
5213 else
5214 cond = bl->cond.get ();
5215
5216 if (cond && b->disposition != disp_del_at_next_stop)
5217 {
5218 int within_current_scope = 1;
5219 struct watchpoint * w;
5220
5221 /* We use value_mark and value_free_to_mark because it could
5222 be a long time before we return to the command level and
5223 call free_all_values. We can't call free_all_values
5224 because we might be in the middle of evaluating a
5225 function call. */
5226 struct value *mark = value_mark ();
5227
5228 if (is_watchpoint (b))
5229 w = (struct watchpoint *) b;
5230 else
5231 w = NULL;
5232
5233 /* Need to select the frame, with all that implies so that
5234 the conditions will have the right context. Because we
5235 use the frame, we will not see an inlined function's
5236 variables when we arrive at a breakpoint at the start
5237 of the inlined function; the current frame will be the
5238 call site. */
5239 if (w == NULL || w->cond_exp_valid_block == NULL)
5240 select_frame (get_current_frame ());
5241 else
5242 {
5243 struct frame_info *frame;
5244
5245 /* For local watchpoint expressions, which particular
5246 instance of a local is being watched matters, so we
5247 keep track of the frame to evaluate the expression
5248 in. To evaluate the condition however, it doesn't
5249 really matter which instantiation of the function
5250 where the condition makes sense triggers the
5251 watchpoint. This allows an expression like "watch
5252 global if q > 10" set in `func', catch writes to
5253 global on all threads that call `func', or catch
5254 writes on all recursive calls of `func' by a single
5255 thread. We simply always evaluate the condition in
5256 the innermost frame that's executing where it makes
5257 sense to evaluate the condition. It seems
5258 intuitive. */
5259 frame = block_innermost_frame (w->cond_exp_valid_block);
5260 if (frame != NULL)
5261 select_frame (frame);
5262 else
5263 within_current_scope = 0;
5264 }
5265 if (within_current_scope)
5266 {
5267 TRY
5268 {
5269 condition_result = breakpoint_cond_eval (cond);
5270 }
5271 CATCH (ex, RETURN_MASK_ALL)
5272 {
5273 exception_fprintf (gdb_stderr, ex,
5274 "Error in testing breakpoint condition:\n");
5275 }
5276 END_CATCH
5277 }
5278 else
5279 {
5280 warning (_("Watchpoint condition cannot be tested "
5281 "in the current scope"));
5282 /* If we failed to set the right context for this
5283 watchpoint, unconditionally report it. */
5284 }
5285 /* FIXME-someday, should give breakpoint #. */
5286 value_free_to_mark (mark);
5287 }
5288
5289 if (cond && !condition_result)
5290 {
5291 bs->stop = 0;
5292 }
5293 else if (b->ignore_count > 0)
5294 {
5295 b->ignore_count--;
5296 bs->stop = 0;
5297 /* Increase the hit count even though we don't stop. */
5298 ++(b->hit_count);
5299 gdb::observers::breakpoint_modified.notify (b);
5300 }
5301 }
5302
5303 /* Returns true if we need to track moribund locations of LOC's type
5304 on the current target. */
5305
5306 static int
5307 need_moribund_for_location_type (struct bp_location *loc)
5308 {
5309 return ((loc->loc_type == bp_loc_software_breakpoint
5310 && !target_supports_stopped_by_sw_breakpoint ())
5311 || (loc->loc_type == bp_loc_hardware_breakpoint
5312 && !target_supports_stopped_by_hw_breakpoint ()));
5313 }
5314
5315 /* See breakpoint.h. */
5316
5317 bpstat
5318 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5319 const struct target_waitstatus *ws)
5320 {
5321 struct breakpoint *b;
5322 bpstat bs_head = NULL, *bs_link = &bs_head;
5323
5324 ALL_BREAKPOINTS (b)
5325 {
5326 if (!breakpoint_enabled (b))
5327 continue;
5328
5329 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5330 {
5331 /* For hardware watchpoints, we look only at the first
5332 location. The watchpoint_check function will work on the
5333 entire expression, not the individual locations. For
5334 read watchpoints, the watchpoints_triggered function has
5335 checked all locations already. */
5336 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5337 break;
5338
5339 if (!bl->enabled || bl->shlib_disabled)
5340 continue;
5341
5342 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5343 continue;
5344
5345 /* Come here if it's a watchpoint, or if the break address
5346 matches. */
5347
5348 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5349 explain stop. */
5350
5351 /* Assume we stop. Should we find a watchpoint that is not
5352 actually triggered, or if the condition of the breakpoint
5353 evaluates as false, we'll reset 'stop' to 0. */
5354 bs->stop = 1;
5355 bs->print = 1;
5356
5357 /* If this is a scope breakpoint, mark the associated
5358 watchpoint as triggered so that we will handle the
5359 out-of-scope event. We'll get to the watchpoint next
5360 iteration. */
5361 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5362 {
5363 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5364
5365 w->watchpoint_triggered = watch_triggered_yes;
5366 }
5367 }
5368 }
5369
5370 /* Check if a moribund breakpoint explains the stop. */
5371 if (!target_supports_stopped_by_sw_breakpoint ()
5372 || !target_supports_stopped_by_hw_breakpoint ())
5373 {
5374 for (bp_location *loc : moribund_locations)
5375 {
5376 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5377 && need_moribund_for_location_type (loc))
5378 {
5379 bpstat bs = new bpstats (loc, &bs_link);
5380 /* For hits of moribund locations, we should just proceed. */
5381 bs->stop = 0;
5382 bs->print = 0;
5383 bs->print_it = print_it_noop;
5384 }
5385 }
5386 }
5387
5388 return bs_head;
5389 }
5390
5391 /* See breakpoint.h. */
5392
5393 bpstat
5394 bpstat_stop_status (const address_space *aspace,
5395 CORE_ADDR bp_addr, thread_info *thread,
5396 const struct target_waitstatus *ws,
5397 bpstat stop_chain)
5398 {
5399 struct breakpoint *b = NULL;
5400 /* First item of allocated bpstat's. */
5401 bpstat bs_head = stop_chain;
5402 bpstat bs;
5403 int need_remove_insert;
5404 int removed_any;
5405
5406 /* First, build the bpstat chain with locations that explain a
5407 target stop, while being careful to not set the target running,
5408 as that may invalidate locations (in particular watchpoint
5409 locations are recreated). Resuming will happen here with
5410 breakpoint conditions or watchpoint expressions that include
5411 inferior function calls. */
5412 if (bs_head == NULL)
5413 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5414
5415 /* A bit of special processing for shlib breakpoints. We need to
5416 process solib loading here, so that the lists of loaded and
5417 unloaded libraries are correct before we handle "catch load" and
5418 "catch unload". */
5419 for (bs = bs_head; bs != NULL; bs = bs->next)
5420 {
5421 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5422 {
5423 handle_solib_event ();
5424 break;
5425 }
5426 }
5427
5428 /* Now go through the locations that caused the target to stop, and
5429 check whether we're interested in reporting this stop to higher
5430 layers, or whether we should resume the target transparently. */
5431
5432 removed_any = 0;
5433
5434 for (bs = bs_head; bs != NULL; bs = bs->next)
5435 {
5436 if (!bs->stop)
5437 continue;
5438
5439 b = bs->breakpoint_at;
5440 b->ops->check_status (bs);
5441 if (bs->stop)
5442 {
5443 bpstat_check_breakpoint_conditions (bs, thread);
5444
5445 if (bs->stop)
5446 {
5447 ++(b->hit_count);
5448 gdb::observers::breakpoint_modified.notify (b);
5449
5450 /* We will stop here. */
5451 if (b->disposition == disp_disable)
5452 {
5453 --(b->enable_count);
5454 if (b->enable_count <= 0)
5455 b->enable_state = bp_disabled;
5456 removed_any = 1;
5457 }
5458 if (b->silent)
5459 bs->print = 0;
5460 bs->commands = b->commands;
5461 if (command_line_is_silent (bs->commands
5462 ? bs->commands.get () : NULL))
5463 bs->print = 0;
5464
5465 b->ops->after_condition_true (bs);
5466 }
5467
5468 }
5469
5470 /* Print nothing for this entry if we don't stop or don't
5471 print. */
5472 if (!bs->stop || !bs->print)
5473 bs->print_it = print_it_noop;
5474 }
5475
5476 /* If we aren't stopping, the value of some hardware watchpoint may
5477 not have changed, but the intermediate memory locations we are
5478 watching may have. Don't bother if we're stopping; this will get
5479 done later. */
5480 need_remove_insert = 0;
5481 if (! bpstat_causes_stop (bs_head))
5482 for (bs = bs_head; bs != NULL; bs = bs->next)
5483 if (!bs->stop
5484 && bs->breakpoint_at
5485 && is_hardware_watchpoint (bs->breakpoint_at))
5486 {
5487 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5488
5489 update_watchpoint (w, 0 /* don't reparse. */);
5490 need_remove_insert = 1;
5491 }
5492
5493 if (need_remove_insert)
5494 update_global_location_list (UGLL_MAY_INSERT);
5495 else if (removed_any)
5496 update_global_location_list (UGLL_DONT_INSERT);
5497
5498 return bs_head;
5499 }
5500
5501 static void
5502 handle_jit_event (void)
5503 {
5504 struct frame_info *frame;
5505 struct gdbarch *gdbarch;
5506
5507 if (debug_infrun)
5508 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5509
5510 /* Switch terminal for any messages produced by
5511 breakpoint_re_set. */
5512 target_terminal::ours_for_output ();
5513
5514 frame = get_current_frame ();
5515 gdbarch = get_frame_arch (frame);
5516
5517 jit_event_handler (gdbarch);
5518
5519 target_terminal::inferior ();
5520 }
5521
5522 /* Prepare WHAT final decision for infrun. */
5523
5524 /* Decide what infrun needs to do with this bpstat. */
5525
5526 struct bpstat_what
5527 bpstat_what (bpstat bs_head)
5528 {
5529 struct bpstat_what retval;
5530 bpstat bs;
5531
5532 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5533 retval.call_dummy = STOP_NONE;
5534 retval.is_longjmp = 0;
5535
5536 for (bs = bs_head; bs != NULL; bs = bs->next)
5537 {
5538 /* Extract this BS's action. After processing each BS, we check
5539 if its action overrides all we've seem so far. */
5540 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5541 enum bptype bptype;
5542
5543 if (bs->breakpoint_at == NULL)
5544 {
5545 /* I suspect this can happen if it was a momentary
5546 breakpoint which has since been deleted. */
5547 bptype = bp_none;
5548 }
5549 else
5550 bptype = bs->breakpoint_at->type;
5551
5552 switch (bptype)
5553 {
5554 case bp_none:
5555 break;
5556 case bp_breakpoint:
5557 case bp_hardware_breakpoint:
5558 case bp_single_step:
5559 case bp_until:
5560 case bp_finish:
5561 case bp_shlib_event:
5562 if (bs->stop)
5563 {
5564 if (bs->print)
5565 this_action = BPSTAT_WHAT_STOP_NOISY;
5566 else
5567 this_action = BPSTAT_WHAT_STOP_SILENT;
5568 }
5569 else
5570 this_action = BPSTAT_WHAT_SINGLE;
5571 break;
5572 case bp_watchpoint:
5573 case bp_hardware_watchpoint:
5574 case bp_read_watchpoint:
5575 case bp_access_watchpoint:
5576 if (bs->stop)
5577 {
5578 if (bs->print)
5579 this_action = BPSTAT_WHAT_STOP_NOISY;
5580 else
5581 this_action = BPSTAT_WHAT_STOP_SILENT;
5582 }
5583 else
5584 {
5585 /* There was a watchpoint, but we're not stopping.
5586 This requires no further action. */
5587 }
5588 break;
5589 case bp_longjmp:
5590 case bp_longjmp_call_dummy:
5591 case bp_exception:
5592 if (bs->stop)
5593 {
5594 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5595 retval.is_longjmp = bptype != bp_exception;
5596 }
5597 else
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_longjmp_resume:
5601 case bp_exception_resume:
5602 if (bs->stop)
5603 {
5604 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5605 retval.is_longjmp = bptype == bp_longjmp_resume;
5606 }
5607 else
5608 this_action = BPSTAT_WHAT_SINGLE;
5609 break;
5610 case bp_step_resume:
5611 if (bs->stop)
5612 this_action = BPSTAT_WHAT_STEP_RESUME;
5613 else
5614 {
5615 /* It is for the wrong frame. */
5616 this_action = BPSTAT_WHAT_SINGLE;
5617 }
5618 break;
5619 case bp_hp_step_resume:
5620 if (bs->stop)
5621 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5622 else
5623 {
5624 /* It is for the wrong frame. */
5625 this_action = BPSTAT_WHAT_SINGLE;
5626 }
5627 break;
5628 case bp_watchpoint_scope:
5629 case bp_thread_event:
5630 case bp_overlay_event:
5631 case bp_longjmp_master:
5632 case bp_std_terminate_master:
5633 case bp_exception_master:
5634 this_action = BPSTAT_WHAT_SINGLE;
5635 break;
5636 case bp_catchpoint:
5637 if (bs->stop)
5638 {
5639 if (bs->print)
5640 this_action = BPSTAT_WHAT_STOP_NOISY;
5641 else
5642 this_action = BPSTAT_WHAT_STOP_SILENT;
5643 }
5644 else
5645 {
5646 /* There was a catchpoint, but we're not stopping.
5647 This requires no further action. */
5648 }
5649 break;
5650 case bp_jit_event:
5651 this_action = BPSTAT_WHAT_SINGLE;
5652 break;
5653 case bp_call_dummy:
5654 /* Make sure the action is stop (silent or noisy),
5655 so infrun.c pops the dummy frame. */
5656 retval.call_dummy = STOP_STACK_DUMMY;
5657 this_action = BPSTAT_WHAT_STOP_SILENT;
5658 break;
5659 case bp_std_terminate:
5660 /* Make sure the action is stop (silent or noisy),
5661 so infrun.c pops the dummy frame. */
5662 retval.call_dummy = STOP_STD_TERMINATE;
5663 this_action = BPSTAT_WHAT_STOP_SILENT;
5664 break;
5665 case bp_tracepoint:
5666 case bp_fast_tracepoint:
5667 case bp_static_tracepoint:
5668 /* Tracepoint hits should not be reported back to GDB, and
5669 if one got through somehow, it should have been filtered
5670 out already. */
5671 internal_error (__FILE__, __LINE__,
5672 _("bpstat_what: tracepoint encountered"));
5673 break;
5674 case bp_gnu_ifunc_resolver:
5675 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5676 this_action = BPSTAT_WHAT_SINGLE;
5677 break;
5678 case bp_gnu_ifunc_resolver_return:
5679 /* The breakpoint will be removed, execution will restart from the
5680 PC of the former breakpoint. */
5681 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5682 break;
5683
5684 case bp_dprintf:
5685 if (bs->stop)
5686 this_action = BPSTAT_WHAT_STOP_SILENT;
5687 else
5688 this_action = BPSTAT_WHAT_SINGLE;
5689 break;
5690
5691 default:
5692 internal_error (__FILE__, __LINE__,
5693 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5694 }
5695
5696 retval.main_action = std::max (retval.main_action, this_action);
5697 }
5698
5699 return retval;
5700 }
5701
5702 void
5703 bpstat_run_callbacks (bpstat bs_head)
5704 {
5705 bpstat bs;
5706
5707 for (bs = bs_head; bs != NULL; bs = bs->next)
5708 {
5709 struct breakpoint *b = bs->breakpoint_at;
5710
5711 if (b == NULL)
5712 continue;
5713 switch (b->type)
5714 {
5715 case bp_jit_event:
5716 handle_jit_event ();
5717 break;
5718 case bp_gnu_ifunc_resolver:
5719 gnu_ifunc_resolver_stop (b);
5720 break;
5721 case bp_gnu_ifunc_resolver_return:
5722 gnu_ifunc_resolver_return_stop (b);
5723 break;
5724 }
5725 }
5726 }
5727
5728 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5729 without hardware support). This isn't related to a specific bpstat,
5730 just to things like whether watchpoints are set. */
5731
5732 int
5733 bpstat_should_step (void)
5734 {
5735 struct breakpoint *b;
5736
5737 ALL_BREAKPOINTS (b)
5738 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5739 return 1;
5740 return 0;
5741 }
5742
5743 int
5744 bpstat_causes_stop (bpstat bs)
5745 {
5746 for (; bs != NULL; bs = bs->next)
5747 if (bs->stop)
5748 return 1;
5749
5750 return 0;
5751 }
5752
5753 \f
5754
5755 /* Compute a string of spaces suitable to indent the next line
5756 so it starts at the position corresponding to the table column
5757 named COL_NAME in the currently active table of UIOUT. */
5758
5759 static char *
5760 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5761 {
5762 static char wrap_indent[80];
5763 int i, total_width, width, align;
5764 const char *text;
5765
5766 total_width = 0;
5767 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5768 {
5769 if (strcmp (text, col_name) == 0)
5770 {
5771 gdb_assert (total_width < sizeof wrap_indent);
5772 memset (wrap_indent, ' ', total_width);
5773 wrap_indent[total_width] = 0;
5774
5775 return wrap_indent;
5776 }
5777
5778 total_width += width + 1;
5779 }
5780
5781 return NULL;
5782 }
5783
5784 /* Determine if the locations of this breakpoint will have their conditions
5785 evaluated by the target, host or a mix of both. Returns the following:
5786
5787 "host": Host evals condition.
5788 "host or target": Host or Target evals condition.
5789 "target": Target evals condition.
5790 */
5791
5792 static const char *
5793 bp_condition_evaluator (struct breakpoint *b)
5794 {
5795 struct bp_location *bl;
5796 char host_evals = 0;
5797 char target_evals = 0;
5798
5799 if (!b)
5800 return NULL;
5801
5802 if (!is_breakpoint (b))
5803 return NULL;
5804
5805 if (gdb_evaluates_breakpoint_condition_p ()
5806 || !target_supports_evaluation_of_breakpoint_conditions ())
5807 return condition_evaluation_host;
5808
5809 for (bl = b->loc; bl; bl = bl->next)
5810 {
5811 if (bl->cond_bytecode)
5812 target_evals++;
5813 else
5814 host_evals++;
5815 }
5816
5817 if (host_evals && target_evals)
5818 return condition_evaluation_both;
5819 else if (target_evals)
5820 return condition_evaluation_target;
5821 else
5822 return condition_evaluation_host;
5823 }
5824
5825 /* Determine the breakpoint location's condition evaluator. This is
5826 similar to bp_condition_evaluator, but for locations. */
5827
5828 static const char *
5829 bp_location_condition_evaluator (struct bp_location *bl)
5830 {
5831 if (bl && !is_breakpoint (bl->owner))
5832 return NULL;
5833
5834 if (gdb_evaluates_breakpoint_condition_p ()
5835 || !target_supports_evaluation_of_breakpoint_conditions ())
5836 return condition_evaluation_host;
5837
5838 if (bl && bl->cond_bytecode)
5839 return condition_evaluation_target;
5840 else
5841 return condition_evaluation_host;
5842 }
5843
5844 /* Print the LOC location out of the list of B->LOC locations. */
5845
5846 static void
5847 print_breakpoint_location (struct breakpoint *b,
5848 struct bp_location *loc)
5849 {
5850 struct ui_out *uiout = current_uiout;
5851
5852 scoped_restore_current_program_space restore_pspace;
5853
5854 if (loc != NULL && loc->shlib_disabled)
5855 loc = NULL;
5856
5857 if (loc != NULL)
5858 set_current_program_space (loc->pspace);
5859
5860 if (b->display_canonical)
5861 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5862 else if (loc && loc->symtab)
5863 {
5864 const struct symbol *sym = loc->symbol;
5865
5866 if (sym)
5867 {
5868 uiout->text ("in ");
5869 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5870 uiout->text (" ");
5871 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5872 uiout->text ("at ");
5873 }
5874 uiout->field_string ("file",
5875 symtab_to_filename_for_display (loc->symtab));
5876 uiout->text (":");
5877
5878 if (uiout->is_mi_like_p ())
5879 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5880
5881 uiout->field_int ("line", loc->line_number);
5882 }
5883 else if (loc)
5884 {
5885 string_file stb;
5886
5887 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5888 demangle, "");
5889 uiout->field_stream ("at", stb);
5890 }
5891 else
5892 {
5893 uiout->field_string ("pending",
5894 event_location_to_string (b->location.get ()));
5895 /* If extra_string is available, it could be holding a condition
5896 or dprintf arguments. In either case, make sure it is printed,
5897 too, but only for non-MI streams. */
5898 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5899 {
5900 if (b->type == bp_dprintf)
5901 uiout->text (",");
5902 else
5903 uiout->text (" ");
5904 uiout->text (b->extra_string);
5905 }
5906 }
5907
5908 if (loc && is_breakpoint (b)
5909 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5910 && bp_condition_evaluator (b) == condition_evaluation_both)
5911 {
5912 uiout->text (" (");
5913 uiout->field_string ("evaluated-by",
5914 bp_location_condition_evaluator (loc));
5915 uiout->text (")");
5916 }
5917 }
5918
5919 static const char *
5920 bptype_string (enum bptype type)
5921 {
5922 struct ep_type_description
5923 {
5924 enum bptype type;
5925 const char *description;
5926 };
5927 static struct ep_type_description bptypes[] =
5928 {
5929 {bp_none, "?deleted?"},
5930 {bp_breakpoint, "breakpoint"},
5931 {bp_hardware_breakpoint, "hw breakpoint"},
5932 {bp_single_step, "sw single-step"},
5933 {bp_until, "until"},
5934 {bp_finish, "finish"},
5935 {bp_watchpoint, "watchpoint"},
5936 {bp_hardware_watchpoint, "hw watchpoint"},
5937 {bp_read_watchpoint, "read watchpoint"},
5938 {bp_access_watchpoint, "acc watchpoint"},
5939 {bp_longjmp, "longjmp"},
5940 {bp_longjmp_resume, "longjmp resume"},
5941 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5942 {bp_exception, "exception"},
5943 {bp_exception_resume, "exception resume"},
5944 {bp_step_resume, "step resume"},
5945 {bp_hp_step_resume, "high-priority step resume"},
5946 {bp_watchpoint_scope, "watchpoint scope"},
5947 {bp_call_dummy, "call dummy"},
5948 {bp_std_terminate, "std::terminate"},
5949 {bp_shlib_event, "shlib events"},
5950 {bp_thread_event, "thread events"},
5951 {bp_overlay_event, "overlay events"},
5952 {bp_longjmp_master, "longjmp master"},
5953 {bp_std_terminate_master, "std::terminate master"},
5954 {bp_exception_master, "exception master"},
5955 {bp_catchpoint, "catchpoint"},
5956 {bp_tracepoint, "tracepoint"},
5957 {bp_fast_tracepoint, "fast tracepoint"},
5958 {bp_static_tracepoint, "static tracepoint"},
5959 {bp_dprintf, "dprintf"},
5960 {bp_jit_event, "jit events"},
5961 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5962 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5963 };
5964
5965 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5966 || ((int) type != bptypes[(int) type].type))
5967 internal_error (__FILE__, __LINE__,
5968 _("bptypes table does not describe type #%d."),
5969 (int) type);
5970
5971 return bptypes[(int) type].description;
5972 }
5973
5974 /* For MI, output a field named 'thread-groups' with a list as the value.
5975 For CLI, prefix the list with the string 'inf'. */
5976
5977 static void
5978 output_thread_groups (struct ui_out *uiout,
5979 const char *field_name,
5980 const std::vector<int> &inf_nums,
5981 int mi_only)
5982 {
5983 int is_mi = uiout->is_mi_like_p ();
5984
5985 /* For backward compatibility, don't display inferiors in CLI unless
5986 there are several. Always display them for MI. */
5987 if (!is_mi && mi_only)
5988 return;
5989
5990 ui_out_emit_list list_emitter (uiout, field_name);
5991
5992 for (size_t i = 0; i < inf_nums.size (); i++)
5993 {
5994 if (is_mi)
5995 {
5996 char mi_group[10];
5997
5998 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5999 uiout->field_string (NULL, mi_group);
6000 }
6001 else
6002 {
6003 if (i == 0)
6004 uiout->text (" inf ");
6005 else
6006 uiout->text (", ");
6007
6008 uiout->text (plongest (inf_nums[i]));
6009 }
6010 }
6011 }
6012
6013 /* Print B to gdb_stdout. */
6014
6015 static void
6016 print_one_breakpoint_location (struct breakpoint *b,
6017 struct bp_location *loc,
6018 int loc_number,
6019 struct bp_location **last_loc,
6020 int allflag)
6021 {
6022 struct command_line *l;
6023 static char bpenables[] = "nynny";
6024
6025 struct ui_out *uiout = current_uiout;
6026 int header_of_multiple = 0;
6027 int part_of_multiple = (loc != NULL);
6028 struct value_print_options opts;
6029
6030 get_user_print_options (&opts);
6031
6032 gdb_assert (!loc || loc_number != 0);
6033 /* See comment in print_one_breakpoint concerning treatment of
6034 breakpoints with single disabled location. */
6035 if (loc == NULL
6036 && (b->loc != NULL
6037 && (b->loc->next != NULL || !b->loc->enabled)))
6038 header_of_multiple = 1;
6039 if (loc == NULL)
6040 loc = b->loc;
6041
6042 annotate_record ();
6043
6044 /* 1 */
6045 annotate_field (0);
6046 if (part_of_multiple)
6047 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6048 else
6049 uiout->field_int ("number", b->number);
6050
6051 /* 2 */
6052 annotate_field (1);
6053 if (part_of_multiple)
6054 uiout->field_skip ("type");
6055 else
6056 uiout->field_string ("type", bptype_string (b->type));
6057
6058 /* 3 */
6059 annotate_field (2);
6060 if (part_of_multiple)
6061 uiout->field_skip ("disp");
6062 else
6063 uiout->field_string ("disp", bpdisp_text (b->disposition));
6064
6065
6066 /* 4 */
6067 annotate_field (3);
6068 if (part_of_multiple)
6069 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6070 else
6071 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6072 uiout->spaces (2);
6073
6074
6075 /* 5 and 6 */
6076 if (b->ops != NULL && b->ops->print_one != NULL)
6077 {
6078 /* Although the print_one can possibly print all locations,
6079 calling it here is not likely to get any nice result. So,
6080 make sure there's just one location. */
6081 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6082 b->ops->print_one (b, last_loc);
6083 }
6084 else
6085 switch (b->type)
6086 {
6087 case bp_none:
6088 internal_error (__FILE__, __LINE__,
6089 _("print_one_breakpoint: bp_none encountered\n"));
6090 break;
6091
6092 case bp_watchpoint:
6093 case bp_hardware_watchpoint:
6094 case bp_read_watchpoint:
6095 case bp_access_watchpoint:
6096 {
6097 struct watchpoint *w = (struct watchpoint *) b;
6098
6099 /* Field 4, the address, is omitted (which makes the columns
6100 not line up too nicely with the headers, but the effect
6101 is relatively readable). */
6102 if (opts.addressprint)
6103 uiout->field_skip ("addr");
6104 annotate_field (5);
6105 uiout->field_string ("what", w->exp_string);
6106 }
6107 break;
6108
6109 case bp_breakpoint:
6110 case bp_hardware_breakpoint:
6111 case bp_single_step:
6112 case bp_until:
6113 case bp_finish:
6114 case bp_longjmp:
6115 case bp_longjmp_resume:
6116 case bp_longjmp_call_dummy:
6117 case bp_exception:
6118 case bp_exception_resume:
6119 case bp_step_resume:
6120 case bp_hp_step_resume:
6121 case bp_watchpoint_scope:
6122 case bp_call_dummy:
6123 case bp_std_terminate:
6124 case bp_shlib_event:
6125 case bp_thread_event:
6126 case bp_overlay_event:
6127 case bp_longjmp_master:
6128 case bp_std_terminate_master:
6129 case bp_exception_master:
6130 case bp_tracepoint:
6131 case bp_fast_tracepoint:
6132 case bp_static_tracepoint:
6133 case bp_dprintf:
6134 case bp_jit_event:
6135 case bp_gnu_ifunc_resolver:
6136 case bp_gnu_ifunc_resolver_return:
6137 if (opts.addressprint)
6138 {
6139 annotate_field (4);
6140 if (header_of_multiple)
6141 uiout->field_string ("addr", "<MULTIPLE>");
6142 else if (b->loc == NULL || loc->shlib_disabled)
6143 uiout->field_string ("addr", "<PENDING>");
6144 else
6145 uiout->field_core_addr ("addr",
6146 loc->gdbarch, loc->address);
6147 }
6148 annotate_field (5);
6149 if (!header_of_multiple)
6150 print_breakpoint_location (b, loc);
6151 if (b->loc)
6152 *last_loc = b->loc;
6153 break;
6154 }
6155
6156
6157 if (loc != NULL && !header_of_multiple)
6158 {
6159 struct inferior *inf;
6160 std::vector<int> inf_nums;
6161 int mi_only = 1;
6162
6163 ALL_INFERIORS (inf)
6164 {
6165 if (inf->pspace == loc->pspace)
6166 inf_nums.push_back (inf->num);
6167 }
6168
6169 /* For backward compatibility, don't display inferiors in CLI unless
6170 there are several. Always display for MI. */
6171 if (allflag
6172 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6173 && (number_of_program_spaces () > 1
6174 || number_of_inferiors () > 1)
6175 /* LOC is for existing B, it cannot be in
6176 moribund_locations and thus having NULL OWNER. */
6177 && loc->owner->type != bp_catchpoint))
6178 mi_only = 0;
6179 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6180 }
6181
6182 if (!part_of_multiple)
6183 {
6184 if (b->thread != -1)
6185 {
6186 /* FIXME: This seems to be redundant and lost here; see the
6187 "stop only in" line a little further down. */
6188 uiout->text (" thread ");
6189 uiout->field_int ("thread", b->thread);
6190 }
6191 else if (b->task != 0)
6192 {
6193 uiout->text (" task ");
6194 uiout->field_int ("task", b->task);
6195 }
6196 }
6197
6198 uiout->text ("\n");
6199
6200 if (!part_of_multiple)
6201 b->ops->print_one_detail (b, uiout);
6202
6203 if (part_of_multiple && frame_id_p (b->frame_id))
6204 {
6205 annotate_field (6);
6206 uiout->text ("\tstop only in stack frame at ");
6207 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6208 the frame ID. */
6209 uiout->field_core_addr ("frame",
6210 b->gdbarch, b->frame_id.stack_addr);
6211 uiout->text ("\n");
6212 }
6213
6214 if (!part_of_multiple && b->cond_string)
6215 {
6216 annotate_field (7);
6217 if (is_tracepoint (b))
6218 uiout->text ("\ttrace only if ");
6219 else
6220 uiout->text ("\tstop only if ");
6221 uiout->field_string ("cond", b->cond_string);
6222
6223 /* Print whether the target is doing the breakpoint's condition
6224 evaluation. If GDB is doing the evaluation, don't print anything. */
6225 if (is_breakpoint (b)
6226 && breakpoint_condition_evaluation_mode ()
6227 == condition_evaluation_target)
6228 {
6229 uiout->text (" (");
6230 uiout->field_string ("evaluated-by",
6231 bp_condition_evaluator (b));
6232 uiout->text (" evals)");
6233 }
6234 uiout->text ("\n");
6235 }
6236
6237 if (!part_of_multiple && b->thread != -1)
6238 {
6239 /* FIXME should make an annotation for this. */
6240 uiout->text ("\tstop only in thread ");
6241 if (uiout->is_mi_like_p ())
6242 uiout->field_int ("thread", b->thread);
6243 else
6244 {
6245 struct thread_info *thr = find_thread_global_id (b->thread);
6246
6247 uiout->field_string ("thread", print_thread_id (thr));
6248 }
6249 uiout->text ("\n");
6250 }
6251
6252 if (!part_of_multiple)
6253 {
6254 if (b->hit_count)
6255 {
6256 /* FIXME should make an annotation for this. */
6257 if (is_catchpoint (b))
6258 uiout->text ("\tcatchpoint");
6259 else if (is_tracepoint (b))
6260 uiout->text ("\ttracepoint");
6261 else
6262 uiout->text ("\tbreakpoint");
6263 uiout->text (" already hit ");
6264 uiout->field_int ("times", b->hit_count);
6265 if (b->hit_count == 1)
6266 uiout->text (" time\n");
6267 else
6268 uiout->text (" times\n");
6269 }
6270 else
6271 {
6272 /* Output the count also if it is zero, but only if this is mi. */
6273 if (uiout->is_mi_like_p ())
6274 uiout->field_int ("times", b->hit_count);
6275 }
6276 }
6277
6278 if (!part_of_multiple && b->ignore_count)
6279 {
6280 annotate_field (8);
6281 uiout->text ("\tignore next ");
6282 uiout->field_int ("ignore", b->ignore_count);
6283 uiout->text (" hits\n");
6284 }
6285
6286 /* Note that an enable count of 1 corresponds to "enable once"
6287 behavior, which is reported by the combination of enablement and
6288 disposition, so we don't need to mention it here. */
6289 if (!part_of_multiple && b->enable_count > 1)
6290 {
6291 annotate_field (8);
6292 uiout->text ("\tdisable after ");
6293 /* Tweak the wording to clarify that ignore and enable counts
6294 are distinct, and have additive effect. */
6295 if (b->ignore_count)
6296 uiout->text ("additional ");
6297 else
6298 uiout->text ("next ");
6299 uiout->field_int ("enable", b->enable_count);
6300 uiout->text (" hits\n");
6301 }
6302
6303 if (!part_of_multiple && is_tracepoint (b))
6304 {
6305 struct tracepoint *tp = (struct tracepoint *) b;
6306
6307 if (tp->traceframe_usage)
6308 {
6309 uiout->text ("\ttrace buffer usage ");
6310 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6311 uiout->text (" bytes\n");
6312 }
6313 }
6314
6315 l = b->commands ? b->commands.get () : NULL;
6316 if (!part_of_multiple && l)
6317 {
6318 annotate_field (9);
6319 ui_out_emit_tuple tuple_emitter (uiout, "script");
6320 print_command_lines (uiout, l, 4);
6321 }
6322
6323 if (is_tracepoint (b))
6324 {
6325 struct tracepoint *t = (struct tracepoint *) b;
6326
6327 if (!part_of_multiple && t->pass_count)
6328 {
6329 annotate_field (10);
6330 uiout->text ("\tpass count ");
6331 uiout->field_int ("pass", t->pass_count);
6332 uiout->text (" \n");
6333 }
6334
6335 /* Don't display it when tracepoint or tracepoint location is
6336 pending. */
6337 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6338 {
6339 annotate_field (11);
6340
6341 if (uiout->is_mi_like_p ())
6342 uiout->field_string ("installed",
6343 loc->inserted ? "y" : "n");
6344 else
6345 {
6346 if (loc->inserted)
6347 uiout->text ("\t");
6348 else
6349 uiout->text ("\tnot ");
6350 uiout->text ("installed on target\n");
6351 }
6352 }
6353 }
6354
6355 if (uiout->is_mi_like_p () && !part_of_multiple)
6356 {
6357 if (is_watchpoint (b))
6358 {
6359 struct watchpoint *w = (struct watchpoint *) b;
6360
6361 uiout->field_string ("original-location", w->exp_string);
6362 }
6363 else if (b->location != NULL
6364 && event_location_to_string (b->location.get ()) != NULL)
6365 uiout->field_string ("original-location",
6366 event_location_to_string (b->location.get ()));
6367 }
6368 }
6369
6370 static void
6371 print_one_breakpoint (struct breakpoint *b,
6372 struct bp_location **last_loc,
6373 int allflag)
6374 {
6375 struct ui_out *uiout = current_uiout;
6376
6377 {
6378 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6379
6380 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6381 }
6382
6383 /* If this breakpoint has custom print function,
6384 it's already printed. Otherwise, print individual
6385 locations, if any. */
6386 if (b->ops == NULL || b->ops->print_one == NULL)
6387 {
6388 /* If breakpoint has a single location that is disabled, we
6389 print it as if it had several locations, since otherwise it's
6390 hard to represent "breakpoint enabled, location disabled"
6391 situation.
6392
6393 Note that while hardware watchpoints have several locations
6394 internally, that's not a property exposed to user. */
6395 if (b->loc
6396 && !is_hardware_watchpoint (b)
6397 && (b->loc->next || !b->loc->enabled))
6398 {
6399 struct bp_location *loc;
6400 int n = 1;
6401
6402 for (loc = b->loc; loc; loc = loc->next, ++n)
6403 {
6404 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6405 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6406 }
6407 }
6408 }
6409 }
6410
6411 static int
6412 breakpoint_address_bits (struct breakpoint *b)
6413 {
6414 int print_address_bits = 0;
6415 struct bp_location *loc;
6416
6417 /* Software watchpoints that aren't watching memory don't have an
6418 address to print. */
6419 if (is_no_memory_software_watchpoint (b))
6420 return 0;
6421
6422 for (loc = b->loc; loc; loc = loc->next)
6423 {
6424 int addr_bit;
6425
6426 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6427 if (addr_bit > print_address_bits)
6428 print_address_bits = addr_bit;
6429 }
6430
6431 return print_address_bits;
6432 }
6433
6434 /* See breakpoint.h. */
6435
6436 void
6437 print_breakpoint (breakpoint *b)
6438 {
6439 struct bp_location *dummy_loc = NULL;
6440 print_one_breakpoint (b, &dummy_loc, 0);
6441 }
6442
6443 /* Return true if this breakpoint was set by the user, false if it is
6444 internal or momentary. */
6445
6446 int
6447 user_breakpoint_p (struct breakpoint *b)
6448 {
6449 return b->number > 0;
6450 }
6451
6452 /* See breakpoint.h. */
6453
6454 int
6455 pending_breakpoint_p (struct breakpoint *b)
6456 {
6457 return b->loc == NULL;
6458 }
6459
6460 /* Print information on user settable breakpoint (watchpoint, etc)
6461 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6462 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6463 FILTER is non-NULL, call it on each breakpoint and only include the
6464 ones for which it returns non-zero. Return the total number of
6465 breakpoints listed. */
6466
6467 static int
6468 breakpoint_1 (const char *args, int allflag,
6469 int (*filter) (const struct breakpoint *))
6470 {
6471 struct breakpoint *b;
6472 struct bp_location *last_loc = NULL;
6473 int nr_printable_breakpoints;
6474 struct value_print_options opts;
6475 int print_address_bits = 0;
6476 int print_type_col_width = 14;
6477 struct ui_out *uiout = current_uiout;
6478
6479 get_user_print_options (&opts);
6480
6481 /* Compute the number of rows in the table, as well as the size
6482 required for address fields. */
6483 nr_printable_breakpoints = 0;
6484 ALL_BREAKPOINTS (b)
6485 {
6486 /* If we have a filter, only list the breakpoints it accepts. */
6487 if (filter && !filter (b))
6488 continue;
6489
6490 /* If we have an "args" string, it is a list of breakpoints to
6491 accept. Skip the others. */
6492 if (args != NULL && *args != '\0')
6493 {
6494 if (allflag && parse_and_eval_long (args) != b->number)
6495 continue;
6496 if (!allflag && !number_is_in_list (args, b->number))
6497 continue;
6498 }
6499
6500 if (allflag || user_breakpoint_p (b))
6501 {
6502 int addr_bit, type_len;
6503
6504 addr_bit = breakpoint_address_bits (b);
6505 if (addr_bit > print_address_bits)
6506 print_address_bits = addr_bit;
6507
6508 type_len = strlen (bptype_string (b->type));
6509 if (type_len > print_type_col_width)
6510 print_type_col_width = type_len;
6511
6512 nr_printable_breakpoints++;
6513 }
6514 }
6515
6516 {
6517 ui_out_emit_table table_emitter (uiout,
6518 opts.addressprint ? 6 : 5,
6519 nr_printable_breakpoints,
6520 "BreakpointTable");
6521
6522 if (nr_printable_breakpoints > 0)
6523 annotate_breakpoints_headers ();
6524 if (nr_printable_breakpoints > 0)
6525 annotate_field (0);
6526 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6527 if (nr_printable_breakpoints > 0)
6528 annotate_field (1);
6529 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6530 if (nr_printable_breakpoints > 0)
6531 annotate_field (2);
6532 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (3);
6535 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6536 if (opts.addressprint)
6537 {
6538 if (nr_printable_breakpoints > 0)
6539 annotate_field (4);
6540 if (print_address_bits <= 32)
6541 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6542 else
6543 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6544 }
6545 if (nr_printable_breakpoints > 0)
6546 annotate_field (5);
6547 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6548 uiout->table_body ();
6549 if (nr_printable_breakpoints > 0)
6550 annotate_breakpoints_table ();
6551
6552 ALL_BREAKPOINTS (b)
6553 {
6554 QUIT;
6555 /* If we have a filter, only list the breakpoints it accepts. */
6556 if (filter && !filter (b))
6557 continue;
6558
6559 /* If we have an "args" string, it is a list of breakpoints to
6560 accept. Skip the others. */
6561
6562 if (args != NULL && *args != '\0')
6563 {
6564 if (allflag) /* maintenance info breakpoint */
6565 {
6566 if (parse_and_eval_long (args) != b->number)
6567 continue;
6568 }
6569 else /* all others */
6570 {
6571 if (!number_is_in_list (args, b->number))
6572 continue;
6573 }
6574 }
6575 /* We only print out user settable breakpoints unless the
6576 allflag is set. */
6577 if (allflag || user_breakpoint_p (b))
6578 print_one_breakpoint (b, &last_loc, allflag);
6579 }
6580 }
6581
6582 if (nr_printable_breakpoints == 0)
6583 {
6584 /* If there's a filter, let the caller decide how to report
6585 empty list. */
6586 if (!filter)
6587 {
6588 if (args == NULL || *args == '\0')
6589 uiout->message ("No breakpoints or watchpoints.\n");
6590 else
6591 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6592 args);
6593 }
6594 }
6595 else
6596 {
6597 if (last_loc && !server_command)
6598 set_next_address (last_loc->gdbarch, last_loc->address);
6599 }
6600
6601 /* FIXME? Should this be moved up so that it is only called when
6602 there have been breakpoints? */
6603 annotate_breakpoints_table_end ();
6604
6605 return nr_printable_breakpoints;
6606 }
6607
6608 /* Display the value of default-collect in a way that is generally
6609 compatible with the breakpoint list. */
6610
6611 static void
6612 default_collect_info (void)
6613 {
6614 struct ui_out *uiout = current_uiout;
6615
6616 /* If it has no value (which is frequently the case), say nothing; a
6617 message like "No default-collect." gets in user's face when it's
6618 not wanted. */
6619 if (!*default_collect)
6620 return;
6621
6622 /* The following phrase lines up nicely with per-tracepoint collect
6623 actions. */
6624 uiout->text ("default collect ");
6625 uiout->field_string ("default-collect", default_collect);
6626 uiout->text (" \n");
6627 }
6628
6629 static void
6630 info_breakpoints_command (const char *args, int from_tty)
6631 {
6632 breakpoint_1 (args, 0, NULL);
6633
6634 default_collect_info ();
6635 }
6636
6637 static void
6638 info_watchpoints_command (const char *args, int from_tty)
6639 {
6640 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6641 struct ui_out *uiout = current_uiout;
6642
6643 if (num_printed == 0)
6644 {
6645 if (args == NULL || *args == '\0')
6646 uiout->message ("No watchpoints.\n");
6647 else
6648 uiout->message ("No watchpoint matching '%s'.\n", args);
6649 }
6650 }
6651
6652 static void
6653 maintenance_info_breakpoints (const char *args, int from_tty)
6654 {
6655 breakpoint_1 (args, 1, NULL);
6656
6657 default_collect_info ();
6658 }
6659
6660 static int
6661 breakpoint_has_pc (struct breakpoint *b,
6662 struct program_space *pspace,
6663 CORE_ADDR pc, struct obj_section *section)
6664 {
6665 struct bp_location *bl = b->loc;
6666
6667 for (; bl; bl = bl->next)
6668 {
6669 if (bl->pspace == pspace
6670 && bl->address == pc
6671 && (!overlay_debugging || bl->section == section))
6672 return 1;
6673 }
6674 return 0;
6675 }
6676
6677 /* Print a message describing any user-breakpoints set at PC. This
6678 concerns with logical breakpoints, so we match program spaces, not
6679 address spaces. */
6680
6681 static void
6682 describe_other_breakpoints (struct gdbarch *gdbarch,
6683 struct program_space *pspace, CORE_ADDR pc,
6684 struct obj_section *section, int thread)
6685 {
6686 int others = 0;
6687 struct breakpoint *b;
6688
6689 ALL_BREAKPOINTS (b)
6690 others += (user_breakpoint_p (b)
6691 && breakpoint_has_pc (b, pspace, pc, section));
6692 if (others > 0)
6693 {
6694 if (others == 1)
6695 printf_filtered (_("Note: breakpoint "));
6696 else /* if (others == ???) */
6697 printf_filtered (_("Note: breakpoints "));
6698 ALL_BREAKPOINTS (b)
6699 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6700 {
6701 others--;
6702 printf_filtered ("%d", b->number);
6703 if (b->thread == -1 && thread != -1)
6704 printf_filtered (" (all threads)");
6705 else if (b->thread != -1)
6706 printf_filtered (" (thread %d)", b->thread);
6707 printf_filtered ("%s%s ",
6708 ((b->enable_state == bp_disabled
6709 || b->enable_state == bp_call_disabled)
6710 ? " (disabled)"
6711 : ""),
6712 (others > 1) ? ","
6713 : ((others == 1) ? " and" : ""));
6714 }
6715 printf_filtered (_("also set at pc "));
6716 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6717 printf_filtered (".\n");
6718 }
6719 }
6720 \f
6721
6722 /* Return true iff it is meaningful to use the address member of
6723 BPT locations. For some breakpoint types, the locations' address members
6724 are irrelevant and it makes no sense to attempt to compare them to other
6725 addresses (or use them for any other purpose either).
6726
6727 More specifically, each of the following breakpoint types will
6728 always have a zero valued location address and we don't want to mark
6729 breakpoints of any of these types to be a duplicate of an actual
6730 breakpoint location at address zero:
6731
6732 bp_watchpoint
6733 bp_catchpoint
6734
6735 */
6736
6737 static int
6738 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6739 {
6740 enum bptype type = bpt->type;
6741
6742 return (type != bp_watchpoint && type != bp_catchpoint);
6743 }
6744
6745 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6746 true if LOC1 and LOC2 represent the same watchpoint location. */
6747
6748 static int
6749 watchpoint_locations_match (struct bp_location *loc1,
6750 struct bp_location *loc2)
6751 {
6752 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6753 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6754
6755 /* Both of them must exist. */
6756 gdb_assert (w1 != NULL);
6757 gdb_assert (w2 != NULL);
6758
6759 /* If the target can evaluate the condition expression in hardware,
6760 then we we need to insert both watchpoints even if they are at
6761 the same place. Otherwise the watchpoint will only trigger when
6762 the condition of whichever watchpoint was inserted evaluates to
6763 true, not giving a chance for GDB to check the condition of the
6764 other watchpoint. */
6765 if ((w1->cond_exp
6766 && target_can_accel_watchpoint_condition (loc1->address,
6767 loc1->length,
6768 loc1->watchpoint_type,
6769 w1->cond_exp.get ()))
6770 || (w2->cond_exp
6771 && target_can_accel_watchpoint_condition (loc2->address,
6772 loc2->length,
6773 loc2->watchpoint_type,
6774 w2->cond_exp.get ())))
6775 return 0;
6776
6777 /* Note that this checks the owner's type, not the location's. In
6778 case the target does not support read watchpoints, but does
6779 support access watchpoints, we'll have bp_read_watchpoint
6780 watchpoints with hw_access locations. Those should be considered
6781 duplicates of hw_read locations. The hw_read locations will
6782 become hw_access locations later. */
6783 return (loc1->owner->type == loc2->owner->type
6784 && loc1->pspace->aspace == loc2->pspace->aspace
6785 && loc1->address == loc2->address
6786 && loc1->length == loc2->length);
6787 }
6788
6789 /* See breakpoint.h. */
6790
6791 int
6792 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6793 const address_space *aspace2, CORE_ADDR addr2)
6794 {
6795 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6796 || aspace1 == aspace2)
6797 && addr1 == addr2);
6798 }
6799
6800 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6801 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6802 matches ASPACE2. On targets that have global breakpoints, the address
6803 space doesn't really matter. */
6804
6805 static int
6806 breakpoint_address_match_range (const address_space *aspace1,
6807 CORE_ADDR addr1,
6808 int len1, const address_space *aspace2,
6809 CORE_ADDR addr2)
6810 {
6811 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6812 || aspace1 == aspace2)
6813 && addr2 >= addr1 && addr2 < addr1 + len1);
6814 }
6815
6816 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6817 a ranged breakpoint. In most targets, a match happens only if ASPACE
6818 matches the breakpoint's address space. On targets that have global
6819 breakpoints, the address space doesn't really matter. */
6820
6821 static int
6822 breakpoint_location_address_match (struct bp_location *bl,
6823 const address_space *aspace,
6824 CORE_ADDR addr)
6825 {
6826 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6827 aspace, addr)
6828 || (bl->length
6829 && breakpoint_address_match_range (bl->pspace->aspace,
6830 bl->address, bl->length,
6831 aspace, addr)));
6832 }
6833
6834 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6835 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6836 match happens only if ASPACE matches the breakpoint's address
6837 space. On targets that have global breakpoints, the address space
6838 doesn't really matter. */
6839
6840 static int
6841 breakpoint_location_address_range_overlap (struct bp_location *bl,
6842 const address_space *aspace,
6843 CORE_ADDR addr, int len)
6844 {
6845 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6846 || bl->pspace->aspace == aspace)
6847 {
6848 int bl_len = bl->length != 0 ? bl->length : 1;
6849
6850 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6851 return 1;
6852 }
6853 return 0;
6854 }
6855
6856 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6857 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6858 true, otherwise returns false. */
6859
6860 static int
6861 tracepoint_locations_match (struct bp_location *loc1,
6862 struct bp_location *loc2)
6863 {
6864 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6865 /* Since tracepoint locations are never duplicated with others', tracepoint
6866 locations at the same address of different tracepoints are regarded as
6867 different locations. */
6868 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6869 else
6870 return 0;
6871 }
6872
6873 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6874 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6875 represent the same location. */
6876
6877 static int
6878 breakpoint_locations_match (struct bp_location *loc1,
6879 struct bp_location *loc2)
6880 {
6881 int hw_point1, hw_point2;
6882
6883 /* Both of them must not be in moribund_locations. */
6884 gdb_assert (loc1->owner != NULL);
6885 gdb_assert (loc2->owner != NULL);
6886
6887 hw_point1 = is_hardware_watchpoint (loc1->owner);
6888 hw_point2 = is_hardware_watchpoint (loc2->owner);
6889
6890 if (hw_point1 != hw_point2)
6891 return 0;
6892 else if (hw_point1)
6893 return watchpoint_locations_match (loc1, loc2);
6894 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6895 return tracepoint_locations_match (loc1, loc2);
6896 else
6897 /* We compare bp_location.length in order to cover ranged breakpoints. */
6898 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6899 loc2->pspace->aspace, loc2->address)
6900 && loc1->length == loc2->length);
6901 }
6902
6903 static void
6904 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6905 int bnum, int have_bnum)
6906 {
6907 /* The longest string possibly returned by hex_string_custom
6908 is 50 chars. These must be at least that big for safety. */
6909 char astr1[64];
6910 char astr2[64];
6911
6912 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6913 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6914 if (have_bnum)
6915 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6916 bnum, astr1, astr2);
6917 else
6918 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6919 }
6920
6921 /* Adjust a breakpoint's address to account for architectural
6922 constraints on breakpoint placement. Return the adjusted address.
6923 Note: Very few targets require this kind of adjustment. For most
6924 targets, this function is simply the identity function. */
6925
6926 static CORE_ADDR
6927 adjust_breakpoint_address (struct gdbarch *gdbarch,
6928 CORE_ADDR bpaddr, enum bptype bptype)
6929 {
6930 if (bptype == bp_watchpoint
6931 || bptype == bp_hardware_watchpoint
6932 || bptype == bp_read_watchpoint
6933 || bptype == bp_access_watchpoint
6934 || bptype == bp_catchpoint)
6935 {
6936 /* Watchpoints and the various bp_catch_* eventpoints should not
6937 have their addresses modified. */
6938 return bpaddr;
6939 }
6940 else if (bptype == bp_single_step)
6941 {
6942 /* Single-step breakpoints should not have their addresses
6943 modified. If there's any architectural constrain that
6944 applies to this address, then it should have already been
6945 taken into account when the breakpoint was created in the
6946 first place. If we didn't do this, stepping through e.g.,
6947 Thumb-2 IT blocks would break. */
6948 return bpaddr;
6949 }
6950 else
6951 {
6952 CORE_ADDR adjusted_bpaddr = bpaddr;
6953
6954 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6955 {
6956 /* Some targets have architectural constraints on the placement
6957 of breakpoint instructions. Obtain the adjusted address. */
6958 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6959 }
6960
6961 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6962
6963 /* An adjusted breakpoint address can significantly alter
6964 a user's expectations. Print a warning if an adjustment
6965 is required. */
6966 if (adjusted_bpaddr != bpaddr)
6967 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6968
6969 return adjusted_bpaddr;
6970 }
6971 }
6972
6973 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6974 {
6975 bp_location *loc = this;
6976
6977 gdb_assert (ops != NULL);
6978
6979 loc->ops = ops;
6980 loc->owner = owner;
6981 loc->cond_bytecode = NULL;
6982 loc->shlib_disabled = 0;
6983 loc->enabled = 1;
6984
6985 switch (owner->type)
6986 {
6987 case bp_breakpoint:
6988 case bp_single_step:
6989 case bp_until:
6990 case bp_finish:
6991 case bp_longjmp:
6992 case bp_longjmp_resume:
6993 case bp_longjmp_call_dummy:
6994 case bp_exception:
6995 case bp_exception_resume:
6996 case bp_step_resume:
6997 case bp_hp_step_resume:
6998 case bp_watchpoint_scope:
6999 case bp_call_dummy:
7000 case bp_std_terminate:
7001 case bp_shlib_event:
7002 case bp_thread_event:
7003 case bp_overlay_event:
7004 case bp_jit_event:
7005 case bp_longjmp_master:
7006 case bp_std_terminate_master:
7007 case bp_exception_master:
7008 case bp_gnu_ifunc_resolver:
7009 case bp_gnu_ifunc_resolver_return:
7010 case bp_dprintf:
7011 loc->loc_type = bp_loc_software_breakpoint;
7012 mark_breakpoint_location_modified (loc);
7013 break;
7014 case bp_hardware_breakpoint:
7015 loc->loc_type = bp_loc_hardware_breakpoint;
7016 mark_breakpoint_location_modified (loc);
7017 break;
7018 case bp_hardware_watchpoint:
7019 case bp_read_watchpoint:
7020 case bp_access_watchpoint:
7021 loc->loc_type = bp_loc_hardware_watchpoint;
7022 break;
7023 case bp_watchpoint:
7024 case bp_catchpoint:
7025 case bp_tracepoint:
7026 case bp_fast_tracepoint:
7027 case bp_static_tracepoint:
7028 loc->loc_type = bp_loc_other;
7029 break;
7030 default:
7031 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7032 }
7033
7034 loc->refc = 1;
7035 }
7036
7037 /* Allocate a struct bp_location. */
7038
7039 static struct bp_location *
7040 allocate_bp_location (struct breakpoint *bpt)
7041 {
7042 return bpt->ops->allocate_location (bpt);
7043 }
7044
7045 static void
7046 free_bp_location (struct bp_location *loc)
7047 {
7048 loc->ops->dtor (loc);
7049 delete loc;
7050 }
7051
7052 /* Increment reference count. */
7053
7054 static void
7055 incref_bp_location (struct bp_location *bl)
7056 {
7057 ++bl->refc;
7058 }
7059
7060 /* Decrement reference count. If the reference count reaches 0,
7061 destroy the bp_location. Sets *BLP to NULL. */
7062
7063 static void
7064 decref_bp_location (struct bp_location **blp)
7065 {
7066 gdb_assert ((*blp)->refc > 0);
7067
7068 if (--(*blp)->refc == 0)
7069 free_bp_location (*blp);
7070 *blp = NULL;
7071 }
7072
7073 /* Add breakpoint B at the end of the global breakpoint chain. */
7074
7075 static breakpoint *
7076 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7077 {
7078 struct breakpoint *b1;
7079 struct breakpoint *result = b.get ();
7080
7081 /* Add this breakpoint to the end of the chain so that a list of
7082 breakpoints will come out in order of increasing numbers. */
7083
7084 b1 = breakpoint_chain;
7085 if (b1 == 0)
7086 breakpoint_chain = b.release ();
7087 else
7088 {
7089 while (b1->next)
7090 b1 = b1->next;
7091 b1->next = b.release ();
7092 }
7093
7094 return result;
7095 }
7096
7097 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7098
7099 static void
7100 init_raw_breakpoint_without_location (struct breakpoint *b,
7101 struct gdbarch *gdbarch,
7102 enum bptype bptype,
7103 const struct breakpoint_ops *ops)
7104 {
7105 gdb_assert (ops != NULL);
7106
7107 b->ops = ops;
7108 b->type = bptype;
7109 b->gdbarch = gdbarch;
7110 b->language = current_language->la_language;
7111 b->input_radix = input_radix;
7112 b->related_breakpoint = b;
7113 }
7114
7115 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7116 that has type BPTYPE and has no locations as yet. */
7117
7118 static struct breakpoint *
7119 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7120 enum bptype bptype,
7121 const struct breakpoint_ops *ops)
7122 {
7123 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7124
7125 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7126 return add_to_breakpoint_chain (std::move (b));
7127 }
7128
7129 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7130 resolutions should be made as the user specified the location explicitly
7131 enough. */
7132
7133 static void
7134 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7135 {
7136 gdb_assert (loc->owner != NULL);
7137
7138 if (loc->owner->type == bp_breakpoint
7139 || loc->owner->type == bp_hardware_breakpoint
7140 || is_tracepoint (loc->owner))
7141 {
7142 const char *function_name;
7143
7144 if (loc->msymbol != NULL
7145 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7146 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7147 && !explicit_loc)
7148 {
7149 struct breakpoint *b = loc->owner;
7150
7151 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7152
7153 if (b->type == bp_breakpoint && b->loc == loc
7154 && loc->next == NULL && b->related_breakpoint == b)
7155 {
7156 /* Create only the whole new breakpoint of this type but do not
7157 mess more complicated breakpoints with multiple locations. */
7158 b->type = bp_gnu_ifunc_resolver;
7159 /* Remember the resolver's address for use by the return
7160 breakpoint. */
7161 loc->related_address = loc->address;
7162 }
7163 }
7164 else
7165 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7166
7167 if (function_name)
7168 loc->function_name = xstrdup (function_name);
7169 }
7170 }
7171
7172 /* Attempt to determine architecture of location identified by SAL. */
7173 struct gdbarch *
7174 get_sal_arch (struct symtab_and_line sal)
7175 {
7176 if (sal.section)
7177 return get_objfile_arch (sal.section->objfile);
7178 if (sal.symtab)
7179 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7180
7181 return NULL;
7182 }
7183
7184 /* Low level routine for partially initializing a breakpoint of type
7185 BPTYPE. The newly created breakpoint's address, section, source
7186 file name, and line number are provided by SAL.
7187
7188 It is expected that the caller will complete the initialization of
7189 the newly created breakpoint struct as well as output any status
7190 information regarding the creation of a new breakpoint. */
7191
7192 static void
7193 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7194 struct symtab_and_line sal, enum bptype bptype,
7195 const struct breakpoint_ops *ops)
7196 {
7197 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7198
7199 add_location_to_breakpoint (b, &sal);
7200
7201 if (bptype != bp_catchpoint)
7202 gdb_assert (sal.pspace != NULL);
7203
7204 /* Store the program space that was used to set the breakpoint,
7205 except for ordinary breakpoints, which are independent of the
7206 program space. */
7207 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7208 b->pspace = sal.pspace;
7209 }
7210
7211 /* set_raw_breakpoint is a low level routine for allocating and
7212 partially initializing a breakpoint of type BPTYPE. The newly
7213 created breakpoint's address, section, source file name, and line
7214 number are provided by SAL. The newly created and partially
7215 initialized breakpoint is added to the breakpoint chain and
7216 is also returned as the value of this function.
7217
7218 It is expected that the caller will complete the initialization of
7219 the newly created breakpoint struct as well as output any status
7220 information regarding the creation of a new breakpoint. In
7221 particular, set_raw_breakpoint does NOT set the breakpoint
7222 number! Care should be taken to not allow an error to occur
7223 prior to completing the initialization of the breakpoint. If this
7224 should happen, a bogus breakpoint will be left on the chain. */
7225
7226 struct breakpoint *
7227 set_raw_breakpoint (struct gdbarch *gdbarch,
7228 struct symtab_and_line sal, enum bptype bptype,
7229 const struct breakpoint_ops *ops)
7230 {
7231 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7232
7233 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7234 return add_to_breakpoint_chain (std::move (b));
7235 }
7236
7237 /* Call this routine when stepping and nexting to enable a breakpoint
7238 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7239 initiated the operation. */
7240
7241 void
7242 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7243 {
7244 struct breakpoint *b, *b_tmp;
7245 int thread = tp->global_num;
7246
7247 /* To avoid having to rescan all objfile symbols at every step,
7248 we maintain a list of continually-inserted but always disabled
7249 longjmp "master" breakpoints. Here, we simply create momentary
7250 clones of those and enable them for the requested thread. */
7251 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7252 if (b->pspace == current_program_space
7253 && (b->type == bp_longjmp_master
7254 || b->type == bp_exception_master))
7255 {
7256 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7257 struct breakpoint *clone;
7258
7259 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7260 after their removal. */
7261 clone = momentary_breakpoint_from_master (b, type,
7262 &momentary_breakpoint_ops, 1);
7263 clone->thread = thread;
7264 }
7265
7266 tp->initiating_frame = frame;
7267 }
7268
7269 /* Delete all longjmp breakpoints from THREAD. */
7270 void
7271 delete_longjmp_breakpoint (int thread)
7272 {
7273 struct breakpoint *b, *b_tmp;
7274
7275 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7276 if (b->type == bp_longjmp || b->type == bp_exception)
7277 {
7278 if (b->thread == thread)
7279 delete_breakpoint (b);
7280 }
7281 }
7282
7283 void
7284 delete_longjmp_breakpoint_at_next_stop (int thread)
7285 {
7286 struct breakpoint *b, *b_tmp;
7287
7288 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7289 if (b->type == bp_longjmp || b->type == bp_exception)
7290 {
7291 if (b->thread == thread)
7292 b->disposition = disp_del_at_next_stop;
7293 }
7294 }
7295
7296 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7297 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7298 pointer to any of them. Return NULL if this system cannot place longjmp
7299 breakpoints. */
7300
7301 struct breakpoint *
7302 set_longjmp_breakpoint_for_call_dummy (void)
7303 {
7304 struct breakpoint *b, *retval = NULL;
7305
7306 ALL_BREAKPOINTS (b)
7307 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7308 {
7309 struct breakpoint *new_b;
7310
7311 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7312 &momentary_breakpoint_ops,
7313 1);
7314 new_b->thread = inferior_thread ()->global_num;
7315
7316 /* Link NEW_B into the chain of RETVAL breakpoints. */
7317
7318 gdb_assert (new_b->related_breakpoint == new_b);
7319 if (retval == NULL)
7320 retval = new_b;
7321 new_b->related_breakpoint = retval;
7322 while (retval->related_breakpoint != new_b->related_breakpoint)
7323 retval = retval->related_breakpoint;
7324 retval->related_breakpoint = new_b;
7325 }
7326
7327 return retval;
7328 }
7329
7330 /* Verify all existing dummy frames and their associated breakpoints for
7331 TP. Remove those which can no longer be found in the current frame
7332 stack.
7333
7334 You should call this function only at places where it is safe to currently
7335 unwind the whole stack. Failed stack unwind would discard live dummy
7336 frames. */
7337
7338 void
7339 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7340 {
7341 struct breakpoint *b, *b_tmp;
7342
7343 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7344 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7345 {
7346 struct breakpoint *dummy_b = b->related_breakpoint;
7347
7348 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7349 dummy_b = dummy_b->related_breakpoint;
7350 if (dummy_b->type != bp_call_dummy
7351 || frame_find_by_id (dummy_b->frame_id) != NULL)
7352 continue;
7353
7354 dummy_frame_discard (dummy_b->frame_id, tp);
7355
7356 while (b->related_breakpoint != b)
7357 {
7358 if (b_tmp == b->related_breakpoint)
7359 b_tmp = b->related_breakpoint->next;
7360 delete_breakpoint (b->related_breakpoint);
7361 }
7362 delete_breakpoint (b);
7363 }
7364 }
7365
7366 void
7367 enable_overlay_breakpoints (void)
7368 {
7369 struct breakpoint *b;
7370
7371 ALL_BREAKPOINTS (b)
7372 if (b->type == bp_overlay_event)
7373 {
7374 b->enable_state = bp_enabled;
7375 update_global_location_list (UGLL_MAY_INSERT);
7376 overlay_events_enabled = 1;
7377 }
7378 }
7379
7380 void
7381 disable_overlay_breakpoints (void)
7382 {
7383 struct breakpoint *b;
7384
7385 ALL_BREAKPOINTS (b)
7386 if (b->type == bp_overlay_event)
7387 {
7388 b->enable_state = bp_disabled;
7389 update_global_location_list (UGLL_DONT_INSERT);
7390 overlay_events_enabled = 0;
7391 }
7392 }
7393
7394 /* Set an active std::terminate breakpoint for each std::terminate
7395 master breakpoint. */
7396 void
7397 set_std_terminate_breakpoint (void)
7398 {
7399 struct breakpoint *b, *b_tmp;
7400
7401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7402 if (b->pspace == current_program_space
7403 && b->type == bp_std_terminate_master)
7404 {
7405 momentary_breakpoint_from_master (b, bp_std_terminate,
7406 &momentary_breakpoint_ops, 1);
7407 }
7408 }
7409
7410 /* Delete all the std::terminate breakpoints. */
7411 void
7412 delete_std_terminate_breakpoint (void)
7413 {
7414 struct breakpoint *b, *b_tmp;
7415
7416 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7417 if (b->type == bp_std_terminate)
7418 delete_breakpoint (b);
7419 }
7420
7421 struct breakpoint *
7422 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7423 {
7424 struct breakpoint *b;
7425
7426 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7427 &internal_breakpoint_ops);
7428
7429 b->enable_state = bp_enabled;
7430 /* location has to be used or breakpoint_re_set will delete me. */
7431 b->location = new_address_location (b->loc->address, NULL, 0);
7432
7433 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7434
7435 return b;
7436 }
7437
7438 struct lang_and_radix
7439 {
7440 enum language lang;
7441 int radix;
7442 };
7443
7444 /* Create a breakpoint for JIT code registration and unregistration. */
7445
7446 struct breakpoint *
7447 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7448 {
7449 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7450 &internal_breakpoint_ops);
7451 }
7452
7453 /* Remove JIT code registration and unregistration breakpoint(s). */
7454
7455 void
7456 remove_jit_event_breakpoints (void)
7457 {
7458 struct breakpoint *b, *b_tmp;
7459
7460 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7461 if (b->type == bp_jit_event
7462 && b->loc->pspace == current_program_space)
7463 delete_breakpoint (b);
7464 }
7465
7466 void
7467 remove_solib_event_breakpoints (void)
7468 {
7469 struct breakpoint *b, *b_tmp;
7470
7471 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7472 if (b->type == bp_shlib_event
7473 && b->loc->pspace == current_program_space)
7474 delete_breakpoint (b);
7475 }
7476
7477 /* See breakpoint.h. */
7478
7479 void
7480 remove_solib_event_breakpoints_at_next_stop (void)
7481 {
7482 struct breakpoint *b, *b_tmp;
7483
7484 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7485 if (b->type == bp_shlib_event
7486 && b->loc->pspace == current_program_space)
7487 b->disposition = disp_del_at_next_stop;
7488 }
7489
7490 /* Helper for create_solib_event_breakpoint /
7491 create_and_insert_solib_event_breakpoint. Allows specifying which
7492 INSERT_MODE to pass through to update_global_location_list. */
7493
7494 static struct breakpoint *
7495 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7496 enum ugll_insert_mode insert_mode)
7497 {
7498 struct breakpoint *b;
7499
7500 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7501 &internal_breakpoint_ops);
7502 update_global_location_list_nothrow (insert_mode);
7503 return b;
7504 }
7505
7506 struct breakpoint *
7507 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7508 {
7509 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7510 }
7511
7512 /* See breakpoint.h. */
7513
7514 struct breakpoint *
7515 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7516 {
7517 struct breakpoint *b;
7518
7519 /* Explicitly tell update_global_location_list to insert
7520 locations. */
7521 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7522 if (!b->loc->inserted)
7523 {
7524 delete_breakpoint (b);
7525 return NULL;
7526 }
7527 return b;
7528 }
7529
7530 /* Disable any breakpoints that are on code in shared libraries. Only
7531 apply to enabled breakpoints, disabled ones can just stay disabled. */
7532
7533 void
7534 disable_breakpoints_in_shlibs (void)
7535 {
7536 struct bp_location *loc, **locp_tmp;
7537
7538 ALL_BP_LOCATIONS (loc, locp_tmp)
7539 {
7540 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7541 struct breakpoint *b = loc->owner;
7542
7543 /* We apply the check to all breakpoints, including disabled for
7544 those with loc->duplicate set. This is so that when breakpoint
7545 becomes enabled, or the duplicate is removed, gdb will try to
7546 insert all breakpoints. If we don't set shlib_disabled here,
7547 we'll try to insert those breakpoints and fail. */
7548 if (((b->type == bp_breakpoint)
7549 || (b->type == bp_jit_event)
7550 || (b->type == bp_hardware_breakpoint)
7551 || (is_tracepoint (b)))
7552 && loc->pspace == current_program_space
7553 && !loc->shlib_disabled
7554 && solib_name_from_address (loc->pspace, loc->address)
7555 )
7556 {
7557 loc->shlib_disabled = 1;
7558 }
7559 }
7560 }
7561
7562 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7563 notification of unloaded_shlib. Only apply to enabled breakpoints,
7564 disabled ones can just stay disabled. */
7565
7566 static void
7567 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7568 {
7569 struct bp_location *loc, **locp_tmp;
7570 int disabled_shlib_breaks = 0;
7571
7572 ALL_BP_LOCATIONS (loc, locp_tmp)
7573 {
7574 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7575 struct breakpoint *b = loc->owner;
7576
7577 if (solib->pspace == loc->pspace
7578 && !loc->shlib_disabled
7579 && (((b->type == bp_breakpoint
7580 || b->type == bp_jit_event
7581 || b->type == bp_hardware_breakpoint)
7582 && (loc->loc_type == bp_loc_hardware_breakpoint
7583 || loc->loc_type == bp_loc_software_breakpoint))
7584 || is_tracepoint (b))
7585 && solib_contains_address_p (solib, loc->address))
7586 {
7587 loc->shlib_disabled = 1;
7588 /* At this point, we cannot rely on remove_breakpoint
7589 succeeding so we must mark the breakpoint as not inserted
7590 to prevent future errors occurring in remove_breakpoints. */
7591 loc->inserted = 0;
7592
7593 /* This may cause duplicate notifications for the same breakpoint. */
7594 gdb::observers::breakpoint_modified.notify (b);
7595
7596 if (!disabled_shlib_breaks)
7597 {
7598 target_terminal::ours_for_output ();
7599 warning (_("Temporarily disabling breakpoints "
7600 "for unloaded shared library \"%s\""),
7601 solib->so_name);
7602 }
7603 disabled_shlib_breaks = 1;
7604 }
7605 }
7606 }
7607
7608 /* Disable any breakpoints and tracepoints in OBJFILE upon
7609 notification of free_objfile. Only apply to enabled breakpoints,
7610 disabled ones can just stay disabled. */
7611
7612 static void
7613 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7614 {
7615 struct breakpoint *b;
7616
7617 if (objfile == NULL)
7618 return;
7619
7620 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7621 managed by the user with add-symbol-file/remove-symbol-file.
7622 Similarly to how breakpoints in shared libraries are handled in
7623 response to "nosharedlibrary", mark breakpoints in such modules
7624 shlib_disabled so they end up uninserted on the next global
7625 location list update. Shared libraries not loaded by the user
7626 aren't handled here -- they're already handled in
7627 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7628 solib_unloaded observer. We skip objfiles that are not
7629 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7630 main objfile). */
7631 if ((objfile->flags & OBJF_SHARED) == 0
7632 || (objfile->flags & OBJF_USERLOADED) == 0)
7633 return;
7634
7635 ALL_BREAKPOINTS (b)
7636 {
7637 struct bp_location *loc;
7638 int bp_modified = 0;
7639
7640 if (!is_breakpoint (b) && !is_tracepoint (b))
7641 continue;
7642
7643 for (loc = b->loc; loc != NULL; loc = loc->next)
7644 {
7645 CORE_ADDR loc_addr = loc->address;
7646
7647 if (loc->loc_type != bp_loc_hardware_breakpoint
7648 && loc->loc_type != bp_loc_software_breakpoint)
7649 continue;
7650
7651 if (loc->shlib_disabled != 0)
7652 continue;
7653
7654 if (objfile->pspace != loc->pspace)
7655 continue;
7656
7657 if (loc->loc_type != bp_loc_hardware_breakpoint
7658 && loc->loc_type != bp_loc_software_breakpoint)
7659 continue;
7660
7661 if (is_addr_in_objfile (loc_addr, objfile))
7662 {
7663 loc->shlib_disabled = 1;
7664 /* At this point, we don't know whether the object was
7665 unmapped from the inferior or not, so leave the
7666 inserted flag alone. We'll handle failure to
7667 uninsert quietly, in case the object was indeed
7668 unmapped. */
7669
7670 mark_breakpoint_location_modified (loc);
7671
7672 bp_modified = 1;
7673 }
7674 }
7675
7676 if (bp_modified)
7677 gdb::observers::breakpoint_modified.notify (b);
7678 }
7679 }
7680
7681 /* FORK & VFORK catchpoints. */
7682
7683 /* An instance of this type is used to represent a fork or vfork
7684 catchpoint. A breakpoint is really of this type iff its ops pointer points
7685 to CATCH_FORK_BREAKPOINT_OPS. */
7686
7687 struct fork_catchpoint : public breakpoint
7688 {
7689 /* Process id of a child process whose forking triggered this
7690 catchpoint. This field is only valid immediately after this
7691 catchpoint has triggered. */
7692 ptid_t forked_inferior_pid;
7693 };
7694
7695 /* Implement the "insert" breakpoint_ops method for fork
7696 catchpoints. */
7697
7698 static int
7699 insert_catch_fork (struct bp_location *bl)
7700 {
7701 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7702 }
7703
7704 /* Implement the "remove" breakpoint_ops method for fork
7705 catchpoints. */
7706
7707 static int
7708 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7709 {
7710 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7711 }
7712
7713 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7714 catchpoints. */
7715
7716 static int
7717 breakpoint_hit_catch_fork (const struct bp_location *bl,
7718 const address_space *aspace, CORE_ADDR bp_addr,
7719 const struct target_waitstatus *ws)
7720 {
7721 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7722
7723 if (ws->kind != TARGET_WAITKIND_FORKED)
7724 return 0;
7725
7726 c->forked_inferior_pid = ws->value.related_pid;
7727 return 1;
7728 }
7729
7730 /* Implement the "print_it" breakpoint_ops method for fork
7731 catchpoints. */
7732
7733 static enum print_stop_action
7734 print_it_catch_fork (bpstat bs)
7735 {
7736 struct ui_out *uiout = current_uiout;
7737 struct breakpoint *b = bs->breakpoint_at;
7738 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7739
7740 annotate_catchpoint (b->number);
7741 maybe_print_thread_hit_breakpoint (uiout);
7742 if (b->disposition == disp_del)
7743 uiout->text ("Temporary catchpoint ");
7744 else
7745 uiout->text ("Catchpoint ");
7746 if (uiout->is_mi_like_p ())
7747 {
7748 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7749 uiout->field_string ("disp", bpdisp_text (b->disposition));
7750 }
7751 uiout->field_int ("bkptno", b->number);
7752 uiout->text (" (forked process ");
7753 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7754 uiout->text ("), ");
7755 return PRINT_SRC_AND_LOC;
7756 }
7757
7758 /* Implement the "print_one" breakpoint_ops method for fork
7759 catchpoints. */
7760
7761 static void
7762 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7763 {
7764 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7765 struct value_print_options opts;
7766 struct ui_out *uiout = current_uiout;
7767
7768 get_user_print_options (&opts);
7769
7770 /* Field 4, the address, is omitted (which makes the columns not
7771 line up too nicely with the headers, but the effect is relatively
7772 readable). */
7773 if (opts.addressprint)
7774 uiout->field_skip ("addr");
7775 annotate_field (5);
7776 uiout->text ("fork");
7777 if (c->forked_inferior_pid != null_ptid)
7778 {
7779 uiout->text (", process ");
7780 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7781 uiout->spaces (1);
7782 }
7783
7784 if (uiout->is_mi_like_p ())
7785 uiout->field_string ("catch-type", "fork");
7786 }
7787
7788 /* Implement the "print_mention" breakpoint_ops method for fork
7789 catchpoints. */
7790
7791 static void
7792 print_mention_catch_fork (struct breakpoint *b)
7793 {
7794 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7795 }
7796
7797 /* Implement the "print_recreate" breakpoint_ops method for fork
7798 catchpoints. */
7799
7800 static void
7801 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7802 {
7803 fprintf_unfiltered (fp, "catch fork");
7804 print_recreate_thread (b, fp);
7805 }
7806
7807 /* The breakpoint_ops structure to be used in fork catchpoints. */
7808
7809 static struct breakpoint_ops catch_fork_breakpoint_ops;
7810
7811 /* Implement the "insert" breakpoint_ops method for vfork
7812 catchpoints. */
7813
7814 static int
7815 insert_catch_vfork (struct bp_location *bl)
7816 {
7817 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7818 }
7819
7820 /* Implement the "remove" breakpoint_ops method for vfork
7821 catchpoints. */
7822
7823 static int
7824 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7825 {
7826 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7827 }
7828
7829 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7830 catchpoints. */
7831
7832 static int
7833 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7834 const address_space *aspace, CORE_ADDR bp_addr,
7835 const struct target_waitstatus *ws)
7836 {
7837 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7838
7839 if (ws->kind != TARGET_WAITKIND_VFORKED)
7840 return 0;
7841
7842 c->forked_inferior_pid = ws->value.related_pid;
7843 return 1;
7844 }
7845
7846 /* Implement the "print_it" breakpoint_ops method for vfork
7847 catchpoints. */
7848
7849 static enum print_stop_action
7850 print_it_catch_vfork (bpstat bs)
7851 {
7852 struct ui_out *uiout = current_uiout;
7853 struct breakpoint *b = bs->breakpoint_at;
7854 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7855
7856 annotate_catchpoint (b->number);
7857 maybe_print_thread_hit_breakpoint (uiout);
7858 if (b->disposition == disp_del)
7859 uiout->text ("Temporary catchpoint ");
7860 else
7861 uiout->text ("Catchpoint ");
7862 if (uiout->is_mi_like_p ())
7863 {
7864 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7865 uiout->field_string ("disp", bpdisp_text (b->disposition));
7866 }
7867 uiout->field_int ("bkptno", b->number);
7868 uiout->text (" (vforked process ");
7869 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7870 uiout->text ("), ");
7871 return PRINT_SRC_AND_LOC;
7872 }
7873
7874 /* Implement the "print_one" breakpoint_ops method for vfork
7875 catchpoints. */
7876
7877 static void
7878 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7879 {
7880 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7881 struct value_print_options opts;
7882 struct ui_out *uiout = current_uiout;
7883
7884 get_user_print_options (&opts);
7885 /* Field 4, the address, is omitted (which makes the columns not
7886 line up too nicely with the headers, but the effect is relatively
7887 readable). */
7888 if (opts.addressprint)
7889 uiout->field_skip ("addr");
7890 annotate_field (5);
7891 uiout->text ("vfork");
7892 if (c->forked_inferior_pid != null_ptid)
7893 {
7894 uiout->text (", process ");
7895 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7896 uiout->spaces (1);
7897 }
7898
7899 if (uiout->is_mi_like_p ())
7900 uiout->field_string ("catch-type", "vfork");
7901 }
7902
7903 /* Implement the "print_mention" breakpoint_ops method for vfork
7904 catchpoints. */
7905
7906 static void
7907 print_mention_catch_vfork (struct breakpoint *b)
7908 {
7909 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7910 }
7911
7912 /* Implement the "print_recreate" breakpoint_ops method for vfork
7913 catchpoints. */
7914
7915 static void
7916 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7917 {
7918 fprintf_unfiltered (fp, "catch vfork");
7919 print_recreate_thread (b, fp);
7920 }
7921
7922 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7923
7924 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7925
7926 /* An instance of this type is used to represent an solib catchpoint.
7927 A breakpoint is really of this type iff its ops pointer points to
7928 CATCH_SOLIB_BREAKPOINT_OPS. */
7929
7930 struct solib_catchpoint : public breakpoint
7931 {
7932 ~solib_catchpoint () override;
7933
7934 /* True for "catch load", false for "catch unload". */
7935 unsigned char is_load;
7936
7937 /* Regular expression to match, if any. COMPILED is only valid when
7938 REGEX is non-NULL. */
7939 char *regex;
7940 std::unique_ptr<compiled_regex> compiled;
7941 };
7942
7943 solib_catchpoint::~solib_catchpoint ()
7944 {
7945 xfree (this->regex);
7946 }
7947
7948 static int
7949 insert_catch_solib (struct bp_location *ignore)
7950 {
7951 return 0;
7952 }
7953
7954 static int
7955 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7956 {
7957 return 0;
7958 }
7959
7960 static int
7961 breakpoint_hit_catch_solib (const struct bp_location *bl,
7962 const address_space *aspace,
7963 CORE_ADDR bp_addr,
7964 const struct target_waitstatus *ws)
7965 {
7966 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7967 struct breakpoint *other;
7968
7969 if (ws->kind == TARGET_WAITKIND_LOADED)
7970 return 1;
7971
7972 ALL_BREAKPOINTS (other)
7973 {
7974 struct bp_location *other_bl;
7975
7976 if (other == bl->owner)
7977 continue;
7978
7979 if (other->type != bp_shlib_event)
7980 continue;
7981
7982 if (self->pspace != NULL && other->pspace != self->pspace)
7983 continue;
7984
7985 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7986 {
7987 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7988 return 1;
7989 }
7990 }
7991
7992 return 0;
7993 }
7994
7995 static void
7996 check_status_catch_solib (struct bpstats *bs)
7997 {
7998 struct solib_catchpoint *self
7999 = (struct solib_catchpoint *) bs->breakpoint_at;
8000
8001 if (self->is_load)
8002 {
8003 for (so_list *iter : current_program_space->added_solibs)
8004 {
8005 if (!self->regex
8006 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8007 return;
8008 }
8009 }
8010 else
8011 {
8012 for (const std::string &iter : current_program_space->deleted_solibs)
8013 {
8014 if (!self->regex
8015 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8016 return;
8017 }
8018 }
8019
8020 bs->stop = 0;
8021 bs->print_it = print_it_noop;
8022 }
8023
8024 static enum print_stop_action
8025 print_it_catch_solib (bpstat bs)
8026 {
8027 struct breakpoint *b = bs->breakpoint_at;
8028 struct ui_out *uiout = current_uiout;
8029
8030 annotate_catchpoint (b->number);
8031 maybe_print_thread_hit_breakpoint (uiout);
8032 if (b->disposition == disp_del)
8033 uiout->text ("Temporary catchpoint ");
8034 else
8035 uiout->text ("Catchpoint ");
8036 uiout->field_int ("bkptno", b->number);
8037 uiout->text ("\n");
8038 if (uiout->is_mi_like_p ())
8039 uiout->field_string ("disp", bpdisp_text (b->disposition));
8040 print_solib_event (1);
8041 return PRINT_SRC_AND_LOC;
8042 }
8043
8044 static void
8045 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8046 {
8047 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8048 struct value_print_options opts;
8049 struct ui_out *uiout = current_uiout;
8050
8051 get_user_print_options (&opts);
8052 /* Field 4, the address, is omitted (which makes the columns not
8053 line up too nicely with the headers, but the effect is relatively
8054 readable). */
8055 if (opts.addressprint)
8056 {
8057 annotate_field (4);
8058 uiout->field_skip ("addr");
8059 }
8060
8061 std::string msg;
8062 annotate_field (5);
8063 if (self->is_load)
8064 {
8065 if (self->regex)
8066 msg = string_printf (_("load of library matching %s"), self->regex);
8067 else
8068 msg = _("load of library");
8069 }
8070 else
8071 {
8072 if (self->regex)
8073 msg = string_printf (_("unload of library matching %s"), self->regex);
8074 else
8075 msg = _("unload of library");
8076 }
8077 uiout->field_string ("what", msg);
8078
8079 if (uiout->is_mi_like_p ())
8080 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8081 }
8082
8083 static void
8084 print_mention_catch_solib (struct breakpoint *b)
8085 {
8086 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8087
8088 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8089 self->is_load ? "load" : "unload");
8090 }
8091
8092 static void
8093 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8094 {
8095 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8096
8097 fprintf_unfiltered (fp, "%s %s",
8098 b->disposition == disp_del ? "tcatch" : "catch",
8099 self->is_load ? "load" : "unload");
8100 if (self->regex)
8101 fprintf_unfiltered (fp, " %s", self->regex);
8102 fprintf_unfiltered (fp, "\n");
8103 }
8104
8105 static struct breakpoint_ops catch_solib_breakpoint_ops;
8106
8107 /* Shared helper function (MI and CLI) for creating and installing
8108 a shared object event catchpoint. If IS_LOAD is non-zero then
8109 the events to be caught are load events, otherwise they are
8110 unload events. If IS_TEMP is non-zero the catchpoint is a
8111 temporary one. If ENABLED is non-zero the catchpoint is
8112 created in an enabled state. */
8113
8114 void
8115 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8116 {
8117 struct gdbarch *gdbarch = get_current_arch ();
8118
8119 if (!arg)
8120 arg = "";
8121 arg = skip_spaces (arg);
8122
8123 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8124
8125 if (*arg != '\0')
8126 {
8127 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8128 _("Invalid regexp")));
8129 c->regex = xstrdup (arg);
8130 }
8131
8132 c->is_load = is_load;
8133 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8134 &catch_solib_breakpoint_ops);
8135
8136 c->enable_state = enabled ? bp_enabled : bp_disabled;
8137
8138 install_breakpoint (0, std::move (c), 1);
8139 }
8140
8141 /* A helper function that does all the work for "catch load" and
8142 "catch unload". */
8143
8144 static void
8145 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8146 struct cmd_list_element *command)
8147 {
8148 int tempflag;
8149 const int enabled = 1;
8150
8151 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8152
8153 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8154 }
8155
8156 static void
8157 catch_load_command_1 (const char *arg, int from_tty,
8158 struct cmd_list_element *command)
8159 {
8160 catch_load_or_unload (arg, from_tty, 1, command);
8161 }
8162
8163 static void
8164 catch_unload_command_1 (const char *arg, int from_tty,
8165 struct cmd_list_element *command)
8166 {
8167 catch_load_or_unload (arg, from_tty, 0, command);
8168 }
8169
8170 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8171 is non-zero, then make the breakpoint temporary. If COND_STRING is
8172 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8173 the breakpoint_ops structure associated to the catchpoint. */
8174
8175 void
8176 init_catchpoint (struct breakpoint *b,
8177 struct gdbarch *gdbarch, int tempflag,
8178 const char *cond_string,
8179 const struct breakpoint_ops *ops)
8180 {
8181 symtab_and_line sal;
8182 sal.pspace = current_program_space;
8183
8184 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8185
8186 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8187 b->disposition = tempflag ? disp_del : disp_donttouch;
8188 }
8189
8190 void
8191 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8192 {
8193 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8194 set_breakpoint_number (internal, b);
8195 if (is_tracepoint (b))
8196 set_tracepoint_count (breakpoint_count);
8197 if (!internal)
8198 mention (b);
8199 gdb::observers::breakpoint_created.notify (b);
8200
8201 if (update_gll)
8202 update_global_location_list (UGLL_MAY_INSERT);
8203 }
8204
8205 static void
8206 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8207 int tempflag, const char *cond_string,
8208 const struct breakpoint_ops *ops)
8209 {
8210 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8211
8212 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8213
8214 c->forked_inferior_pid = null_ptid;
8215
8216 install_breakpoint (0, std::move (c), 1);
8217 }
8218
8219 /* Exec catchpoints. */
8220
8221 /* An instance of this type is used to represent an exec catchpoint.
8222 A breakpoint is really of this type iff its ops pointer points to
8223 CATCH_EXEC_BREAKPOINT_OPS. */
8224
8225 struct exec_catchpoint : public breakpoint
8226 {
8227 ~exec_catchpoint () override;
8228
8229 /* Filename of a program whose exec triggered this catchpoint.
8230 This field is only valid immediately after this catchpoint has
8231 triggered. */
8232 char *exec_pathname;
8233 };
8234
8235 /* Exec catchpoint destructor. */
8236
8237 exec_catchpoint::~exec_catchpoint ()
8238 {
8239 xfree (this->exec_pathname);
8240 }
8241
8242 static int
8243 insert_catch_exec (struct bp_location *bl)
8244 {
8245 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8246 }
8247
8248 static int
8249 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8250 {
8251 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8252 }
8253
8254 static int
8255 breakpoint_hit_catch_exec (const struct bp_location *bl,
8256 const address_space *aspace, CORE_ADDR bp_addr,
8257 const struct target_waitstatus *ws)
8258 {
8259 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8260
8261 if (ws->kind != TARGET_WAITKIND_EXECD)
8262 return 0;
8263
8264 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8265 return 1;
8266 }
8267
8268 static enum print_stop_action
8269 print_it_catch_exec (bpstat bs)
8270 {
8271 struct ui_out *uiout = current_uiout;
8272 struct breakpoint *b = bs->breakpoint_at;
8273 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8274
8275 annotate_catchpoint (b->number);
8276 maybe_print_thread_hit_breakpoint (uiout);
8277 if (b->disposition == disp_del)
8278 uiout->text ("Temporary catchpoint ");
8279 else
8280 uiout->text ("Catchpoint ");
8281 if (uiout->is_mi_like_p ())
8282 {
8283 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8284 uiout->field_string ("disp", bpdisp_text (b->disposition));
8285 }
8286 uiout->field_int ("bkptno", b->number);
8287 uiout->text (" (exec'd ");
8288 uiout->field_string ("new-exec", c->exec_pathname);
8289 uiout->text ("), ");
8290
8291 return PRINT_SRC_AND_LOC;
8292 }
8293
8294 static void
8295 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8296 {
8297 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8298 struct value_print_options opts;
8299 struct ui_out *uiout = current_uiout;
8300
8301 get_user_print_options (&opts);
8302
8303 /* Field 4, the address, is omitted (which makes the columns
8304 not line up too nicely with the headers, but the effect
8305 is relatively readable). */
8306 if (opts.addressprint)
8307 uiout->field_skip ("addr");
8308 annotate_field (5);
8309 uiout->text ("exec");
8310 if (c->exec_pathname != NULL)
8311 {
8312 uiout->text (", program \"");
8313 uiout->field_string ("what", c->exec_pathname);
8314 uiout->text ("\" ");
8315 }
8316
8317 if (uiout->is_mi_like_p ())
8318 uiout->field_string ("catch-type", "exec");
8319 }
8320
8321 static void
8322 print_mention_catch_exec (struct breakpoint *b)
8323 {
8324 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8325 }
8326
8327 /* Implement the "print_recreate" breakpoint_ops method for exec
8328 catchpoints. */
8329
8330 static void
8331 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8332 {
8333 fprintf_unfiltered (fp, "catch exec");
8334 print_recreate_thread (b, fp);
8335 }
8336
8337 static struct breakpoint_ops catch_exec_breakpoint_ops;
8338
8339 static int
8340 hw_breakpoint_used_count (void)
8341 {
8342 int i = 0;
8343 struct breakpoint *b;
8344 struct bp_location *bl;
8345
8346 ALL_BREAKPOINTS (b)
8347 {
8348 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8349 for (bl = b->loc; bl; bl = bl->next)
8350 {
8351 /* Special types of hardware breakpoints may use more than
8352 one register. */
8353 i += b->ops->resources_needed (bl);
8354 }
8355 }
8356
8357 return i;
8358 }
8359
8360 /* Returns the resources B would use if it were a hardware
8361 watchpoint. */
8362
8363 static int
8364 hw_watchpoint_use_count (struct breakpoint *b)
8365 {
8366 int i = 0;
8367 struct bp_location *bl;
8368
8369 if (!breakpoint_enabled (b))
8370 return 0;
8371
8372 for (bl = b->loc; bl; bl = bl->next)
8373 {
8374 /* Special types of hardware watchpoints may use more than
8375 one register. */
8376 i += b->ops->resources_needed (bl);
8377 }
8378
8379 return i;
8380 }
8381
8382 /* Returns the sum the used resources of all hardware watchpoints of
8383 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8384 the sum of the used resources of all hardware watchpoints of other
8385 types _not_ TYPE. */
8386
8387 static int
8388 hw_watchpoint_used_count_others (struct breakpoint *except,
8389 enum bptype type, int *other_type_used)
8390 {
8391 int i = 0;
8392 struct breakpoint *b;
8393
8394 *other_type_used = 0;
8395 ALL_BREAKPOINTS (b)
8396 {
8397 if (b == except)
8398 continue;
8399 if (!breakpoint_enabled (b))
8400 continue;
8401
8402 if (b->type == type)
8403 i += hw_watchpoint_use_count (b);
8404 else if (is_hardware_watchpoint (b))
8405 *other_type_used = 1;
8406 }
8407
8408 return i;
8409 }
8410
8411 void
8412 disable_watchpoints_before_interactive_call_start (void)
8413 {
8414 struct breakpoint *b;
8415
8416 ALL_BREAKPOINTS (b)
8417 {
8418 if (is_watchpoint (b) && breakpoint_enabled (b))
8419 {
8420 b->enable_state = bp_call_disabled;
8421 update_global_location_list (UGLL_DONT_INSERT);
8422 }
8423 }
8424 }
8425
8426 void
8427 enable_watchpoints_after_interactive_call_stop (void)
8428 {
8429 struct breakpoint *b;
8430
8431 ALL_BREAKPOINTS (b)
8432 {
8433 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8434 {
8435 b->enable_state = bp_enabled;
8436 update_global_location_list (UGLL_MAY_INSERT);
8437 }
8438 }
8439 }
8440
8441 void
8442 disable_breakpoints_before_startup (void)
8443 {
8444 current_program_space->executing_startup = 1;
8445 update_global_location_list (UGLL_DONT_INSERT);
8446 }
8447
8448 void
8449 enable_breakpoints_after_startup (void)
8450 {
8451 current_program_space->executing_startup = 0;
8452 breakpoint_re_set ();
8453 }
8454
8455 /* Create a new single-step breakpoint for thread THREAD, with no
8456 locations. */
8457
8458 static struct breakpoint *
8459 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8460 {
8461 std::unique_ptr<breakpoint> b (new breakpoint ());
8462
8463 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8464 &momentary_breakpoint_ops);
8465
8466 b->disposition = disp_donttouch;
8467 b->frame_id = null_frame_id;
8468
8469 b->thread = thread;
8470 gdb_assert (b->thread != 0);
8471
8472 return add_to_breakpoint_chain (std::move (b));
8473 }
8474
8475 /* Set a momentary breakpoint of type TYPE at address specified by
8476 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8477 frame. */
8478
8479 breakpoint_up
8480 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8481 struct frame_id frame_id, enum bptype type)
8482 {
8483 struct breakpoint *b;
8484
8485 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8486 tail-called one. */
8487 gdb_assert (!frame_id_artificial_p (frame_id));
8488
8489 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8490 b->enable_state = bp_enabled;
8491 b->disposition = disp_donttouch;
8492 b->frame_id = frame_id;
8493
8494 b->thread = inferior_thread ()->global_num;
8495
8496 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8497
8498 return breakpoint_up (b);
8499 }
8500
8501 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8502 The new breakpoint will have type TYPE, use OPS as its
8503 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8504
8505 static struct breakpoint *
8506 momentary_breakpoint_from_master (struct breakpoint *orig,
8507 enum bptype type,
8508 const struct breakpoint_ops *ops,
8509 int loc_enabled)
8510 {
8511 struct breakpoint *copy;
8512
8513 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8514 copy->loc = allocate_bp_location (copy);
8515 set_breakpoint_location_function (copy->loc, 1);
8516
8517 copy->loc->gdbarch = orig->loc->gdbarch;
8518 copy->loc->requested_address = orig->loc->requested_address;
8519 copy->loc->address = orig->loc->address;
8520 copy->loc->section = orig->loc->section;
8521 copy->loc->pspace = orig->loc->pspace;
8522 copy->loc->probe = orig->loc->probe;
8523 copy->loc->line_number = orig->loc->line_number;
8524 copy->loc->symtab = orig->loc->symtab;
8525 copy->loc->enabled = loc_enabled;
8526 copy->frame_id = orig->frame_id;
8527 copy->thread = orig->thread;
8528 copy->pspace = orig->pspace;
8529
8530 copy->enable_state = bp_enabled;
8531 copy->disposition = disp_donttouch;
8532 copy->number = internal_breakpoint_number--;
8533
8534 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8535 return copy;
8536 }
8537
8538 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8539 ORIG is NULL. */
8540
8541 struct breakpoint *
8542 clone_momentary_breakpoint (struct breakpoint *orig)
8543 {
8544 /* If there's nothing to clone, then return nothing. */
8545 if (orig == NULL)
8546 return NULL;
8547
8548 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8549 }
8550
8551 breakpoint_up
8552 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8553 enum bptype type)
8554 {
8555 struct symtab_and_line sal;
8556
8557 sal = find_pc_line (pc, 0);
8558 sal.pc = pc;
8559 sal.section = find_pc_overlay (pc);
8560 sal.explicit_pc = 1;
8561
8562 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8563 }
8564 \f
8565
8566 /* Tell the user we have just set a breakpoint B. */
8567
8568 static void
8569 mention (struct breakpoint *b)
8570 {
8571 b->ops->print_mention (b);
8572 current_uiout->text ("\n");
8573 }
8574 \f
8575
8576 static int bp_loc_is_permanent (struct bp_location *loc);
8577
8578 static struct bp_location *
8579 add_location_to_breakpoint (struct breakpoint *b,
8580 const struct symtab_and_line *sal)
8581 {
8582 struct bp_location *loc, **tmp;
8583 CORE_ADDR adjusted_address;
8584 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8585
8586 if (loc_gdbarch == NULL)
8587 loc_gdbarch = b->gdbarch;
8588
8589 /* Adjust the breakpoint's address prior to allocating a location.
8590 Once we call allocate_bp_location(), that mostly uninitialized
8591 location will be placed on the location chain. Adjustment of the
8592 breakpoint may cause target_read_memory() to be called and we do
8593 not want its scan of the location chain to find a breakpoint and
8594 location that's only been partially initialized. */
8595 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8596 sal->pc, b->type);
8597
8598 /* Sort the locations by their ADDRESS. */
8599 loc = allocate_bp_location (b);
8600 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8601 tmp = &((*tmp)->next))
8602 ;
8603 loc->next = *tmp;
8604 *tmp = loc;
8605
8606 loc->requested_address = sal->pc;
8607 loc->address = adjusted_address;
8608 loc->pspace = sal->pspace;
8609 loc->probe.prob = sal->prob;
8610 loc->probe.objfile = sal->objfile;
8611 gdb_assert (loc->pspace != NULL);
8612 loc->section = sal->section;
8613 loc->gdbarch = loc_gdbarch;
8614 loc->line_number = sal->line;
8615 loc->symtab = sal->symtab;
8616 loc->symbol = sal->symbol;
8617 loc->msymbol = sal->msymbol;
8618 loc->objfile = sal->objfile;
8619
8620 set_breakpoint_location_function (loc,
8621 sal->explicit_pc || sal->explicit_line);
8622
8623 /* While by definition, permanent breakpoints are already present in the
8624 code, we don't mark the location as inserted. Normally one would expect
8625 that GDB could rely on that breakpoint instruction to stop the program,
8626 thus removing the need to insert its own breakpoint, except that executing
8627 the breakpoint instruction can kill the target instead of reporting a
8628 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8629 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8630 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8631 breakpoint be inserted normally results in QEMU knowing about the GDB
8632 breakpoint, and thus trap before the breakpoint instruction is executed.
8633 (If GDB later needs to continue execution past the permanent breakpoint,
8634 it manually increments the PC, thus avoiding executing the breakpoint
8635 instruction.) */
8636 if (bp_loc_is_permanent (loc))
8637 loc->permanent = 1;
8638
8639 return loc;
8640 }
8641 \f
8642
8643 /* See breakpoint.h. */
8644
8645 int
8646 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8647 {
8648 int len;
8649 CORE_ADDR addr;
8650 const gdb_byte *bpoint;
8651 gdb_byte *target_mem;
8652
8653 addr = address;
8654 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8655
8656 /* Software breakpoints unsupported? */
8657 if (bpoint == NULL)
8658 return 0;
8659
8660 target_mem = (gdb_byte *) alloca (len);
8661
8662 /* Enable the automatic memory restoration from breakpoints while
8663 we read the memory. Otherwise we could say about our temporary
8664 breakpoints they are permanent. */
8665 scoped_restore restore_memory
8666 = make_scoped_restore_show_memory_breakpoints (0);
8667
8668 if (target_read_memory (address, target_mem, len) == 0
8669 && memcmp (target_mem, bpoint, len) == 0)
8670 return 1;
8671
8672 return 0;
8673 }
8674
8675 /* Return 1 if LOC is pointing to a permanent breakpoint,
8676 return 0 otherwise. */
8677
8678 static int
8679 bp_loc_is_permanent (struct bp_location *loc)
8680 {
8681 gdb_assert (loc != NULL);
8682
8683 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8684 attempt to read from the addresses the locations of these breakpoint types
8685 point to. program_breakpoint_here_p, below, will attempt to read
8686 memory. */
8687 if (!breakpoint_address_is_meaningful (loc->owner))
8688 return 0;
8689
8690 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8691 switch_to_program_space_and_thread (loc->pspace);
8692 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8693 }
8694
8695 /* Build a command list for the dprintf corresponding to the current
8696 settings of the dprintf style options. */
8697
8698 static void
8699 update_dprintf_command_list (struct breakpoint *b)
8700 {
8701 char *dprintf_args = b->extra_string;
8702 char *printf_line = NULL;
8703
8704 if (!dprintf_args)
8705 return;
8706
8707 dprintf_args = skip_spaces (dprintf_args);
8708
8709 /* Allow a comma, as it may have terminated a location, but don't
8710 insist on it. */
8711 if (*dprintf_args == ',')
8712 ++dprintf_args;
8713 dprintf_args = skip_spaces (dprintf_args);
8714
8715 if (*dprintf_args != '"')
8716 error (_("Bad format string, missing '\"'."));
8717
8718 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8719 printf_line = xstrprintf ("printf %s", dprintf_args);
8720 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8721 {
8722 if (!dprintf_function)
8723 error (_("No function supplied for dprintf call"));
8724
8725 if (dprintf_channel && strlen (dprintf_channel) > 0)
8726 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8727 dprintf_function,
8728 dprintf_channel,
8729 dprintf_args);
8730 else
8731 printf_line = xstrprintf ("call (void) %s (%s)",
8732 dprintf_function,
8733 dprintf_args);
8734 }
8735 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8736 {
8737 if (target_can_run_breakpoint_commands ())
8738 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8739 else
8740 {
8741 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8742 printf_line = xstrprintf ("printf %s", dprintf_args);
8743 }
8744 }
8745 else
8746 internal_error (__FILE__, __LINE__,
8747 _("Invalid dprintf style."));
8748
8749 gdb_assert (printf_line != NULL);
8750
8751 /* Manufacture a printf sequence. */
8752 struct command_line *printf_cmd_line
8753 = new struct command_line (simple_control, printf_line);
8754 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8755 command_lines_deleter ()));
8756 }
8757
8758 /* Update all dprintf commands, making their command lists reflect
8759 current style settings. */
8760
8761 static void
8762 update_dprintf_commands (const char *args, int from_tty,
8763 struct cmd_list_element *c)
8764 {
8765 struct breakpoint *b;
8766
8767 ALL_BREAKPOINTS (b)
8768 {
8769 if (b->type == bp_dprintf)
8770 update_dprintf_command_list (b);
8771 }
8772 }
8773
8774 /* Create a breakpoint with SAL as location. Use LOCATION
8775 as a description of the location, and COND_STRING
8776 as condition expression. If LOCATION is NULL then create an
8777 "address location" from the address in the SAL. */
8778
8779 static void
8780 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8781 gdb::array_view<const symtab_and_line> sals,
8782 event_location_up &&location,
8783 gdb::unique_xmalloc_ptr<char> filter,
8784 gdb::unique_xmalloc_ptr<char> cond_string,
8785 gdb::unique_xmalloc_ptr<char> extra_string,
8786 enum bptype type, enum bpdisp disposition,
8787 int thread, int task, int ignore_count,
8788 const struct breakpoint_ops *ops, int from_tty,
8789 int enabled, int internal, unsigned flags,
8790 int display_canonical)
8791 {
8792 int i;
8793
8794 if (type == bp_hardware_breakpoint)
8795 {
8796 int target_resources_ok;
8797
8798 i = hw_breakpoint_used_count ();
8799 target_resources_ok =
8800 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8801 i + 1, 0);
8802 if (target_resources_ok == 0)
8803 error (_("No hardware breakpoint support in the target."));
8804 else if (target_resources_ok < 0)
8805 error (_("Hardware breakpoints used exceeds limit."));
8806 }
8807
8808 gdb_assert (!sals.empty ());
8809
8810 for (const auto &sal : sals)
8811 {
8812 struct bp_location *loc;
8813
8814 if (from_tty)
8815 {
8816 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8817 if (!loc_gdbarch)
8818 loc_gdbarch = gdbarch;
8819
8820 describe_other_breakpoints (loc_gdbarch,
8821 sal.pspace, sal.pc, sal.section, thread);
8822 }
8823
8824 if (&sal == &sals[0])
8825 {
8826 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8827 b->thread = thread;
8828 b->task = task;
8829
8830 b->cond_string = cond_string.release ();
8831 b->extra_string = extra_string.release ();
8832 b->ignore_count = ignore_count;
8833 b->enable_state = enabled ? bp_enabled : bp_disabled;
8834 b->disposition = disposition;
8835
8836 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8837 b->loc->inserted = 1;
8838
8839 if (type == bp_static_tracepoint)
8840 {
8841 struct tracepoint *t = (struct tracepoint *) b;
8842 struct static_tracepoint_marker marker;
8843
8844 if (strace_marker_p (b))
8845 {
8846 /* We already know the marker exists, otherwise, we
8847 wouldn't see a sal for it. */
8848 const char *p
8849 = &event_location_to_string (b->location.get ())[3];
8850 const char *endp;
8851
8852 p = skip_spaces (p);
8853
8854 endp = skip_to_space (p);
8855
8856 t->static_trace_marker_id.assign (p, endp - p);
8857
8858 printf_filtered (_("Probed static tracepoint "
8859 "marker \"%s\"\n"),
8860 t->static_trace_marker_id.c_str ());
8861 }
8862 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8863 {
8864 t->static_trace_marker_id = std::move (marker.str_id);
8865
8866 printf_filtered (_("Probed static tracepoint "
8867 "marker \"%s\"\n"),
8868 t->static_trace_marker_id.c_str ());
8869 }
8870 else
8871 warning (_("Couldn't determine the static "
8872 "tracepoint marker to probe"));
8873 }
8874
8875 loc = b->loc;
8876 }
8877 else
8878 {
8879 loc = add_location_to_breakpoint (b, &sal);
8880 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8881 loc->inserted = 1;
8882 }
8883
8884 if (b->cond_string)
8885 {
8886 const char *arg = b->cond_string;
8887
8888 loc->cond = parse_exp_1 (&arg, loc->address,
8889 block_for_pc (loc->address), 0);
8890 if (*arg)
8891 error (_("Garbage '%s' follows condition"), arg);
8892 }
8893
8894 /* Dynamic printf requires and uses additional arguments on the
8895 command line, otherwise it's an error. */
8896 if (type == bp_dprintf)
8897 {
8898 if (b->extra_string)
8899 update_dprintf_command_list (b);
8900 else
8901 error (_("Format string required"));
8902 }
8903 else if (b->extra_string)
8904 error (_("Garbage '%s' at end of command"), b->extra_string);
8905 }
8906
8907 b->display_canonical = display_canonical;
8908 if (location != NULL)
8909 b->location = std::move (location);
8910 else
8911 b->location = new_address_location (b->loc->address, NULL, 0);
8912 b->filter = filter.release ();
8913 }
8914
8915 static void
8916 create_breakpoint_sal (struct gdbarch *gdbarch,
8917 gdb::array_view<const symtab_and_line> sals,
8918 event_location_up &&location,
8919 gdb::unique_xmalloc_ptr<char> filter,
8920 gdb::unique_xmalloc_ptr<char> cond_string,
8921 gdb::unique_xmalloc_ptr<char> extra_string,
8922 enum bptype type, enum bpdisp disposition,
8923 int thread, int task, int ignore_count,
8924 const struct breakpoint_ops *ops, int from_tty,
8925 int enabled, int internal, unsigned flags,
8926 int display_canonical)
8927 {
8928 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8929
8930 init_breakpoint_sal (b.get (), gdbarch,
8931 sals, std::move (location),
8932 std::move (filter),
8933 std::move (cond_string),
8934 std::move (extra_string),
8935 type, disposition,
8936 thread, task, ignore_count,
8937 ops, from_tty,
8938 enabled, internal, flags,
8939 display_canonical);
8940
8941 install_breakpoint (internal, std::move (b), 0);
8942 }
8943
8944 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8945 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8946 value. COND_STRING, if not NULL, specified the condition to be
8947 used for all breakpoints. Essentially the only case where
8948 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8949 function. In that case, it's still not possible to specify
8950 separate conditions for different overloaded functions, so
8951 we take just a single condition string.
8952
8953 NOTE: If the function succeeds, the caller is expected to cleanup
8954 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8955 array contents). If the function fails (error() is called), the
8956 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8957 COND and SALS arrays and each of those arrays contents. */
8958
8959 static void
8960 create_breakpoints_sal (struct gdbarch *gdbarch,
8961 struct linespec_result *canonical,
8962 gdb::unique_xmalloc_ptr<char> cond_string,
8963 gdb::unique_xmalloc_ptr<char> extra_string,
8964 enum bptype type, enum bpdisp disposition,
8965 int thread, int task, int ignore_count,
8966 const struct breakpoint_ops *ops, int from_tty,
8967 int enabled, int internal, unsigned flags)
8968 {
8969 if (canonical->pre_expanded)
8970 gdb_assert (canonical->lsals.size () == 1);
8971
8972 for (const auto &lsal : canonical->lsals)
8973 {
8974 /* Note that 'location' can be NULL in the case of a plain
8975 'break', without arguments. */
8976 event_location_up location
8977 = (canonical->location != NULL
8978 ? copy_event_location (canonical->location.get ()) : NULL);
8979 gdb::unique_xmalloc_ptr<char> filter_string
8980 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8981
8982 create_breakpoint_sal (gdbarch, lsal.sals,
8983 std::move (location),
8984 std::move (filter_string),
8985 std::move (cond_string),
8986 std::move (extra_string),
8987 type, disposition,
8988 thread, task, ignore_count, ops,
8989 from_tty, enabled, internal, flags,
8990 canonical->special_display);
8991 }
8992 }
8993
8994 /* Parse LOCATION which is assumed to be a SAL specification possibly
8995 followed by conditionals. On return, SALS contains an array of SAL
8996 addresses found. LOCATION points to the end of the SAL (for
8997 linespec locations).
8998
8999 The array and the line spec strings are allocated on the heap, it is
9000 the caller's responsibility to free them. */
9001
9002 static void
9003 parse_breakpoint_sals (const struct event_location *location,
9004 struct linespec_result *canonical)
9005 {
9006 struct symtab_and_line cursal;
9007
9008 if (event_location_type (location) == LINESPEC_LOCATION)
9009 {
9010 const char *spec = get_linespec_location (location)->spec_string;
9011
9012 if (spec == NULL)
9013 {
9014 /* The last displayed codepoint, if it's valid, is our default
9015 breakpoint address. */
9016 if (last_displayed_sal_is_valid ())
9017 {
9018 /* Set sal's pspace, pc, symtab, and line to the values
9019 corresponding to the last call to print_frame_info.
9020 Be sure to reinitialize LINE with NOTCURRENT == 0
9021 as the breakpoint line number is inappropriate otherwise.
9022 find_pc_line would adjust PC, re-set it back. */
9023 symtab_and_line sal = get_last_displayed_sal ();
9024 CORE_ADDR pc = sal.pc;
9025
9026 sal = find_pc_line (pc, 0);
9027
9028 /* "break" without arguments is equivalent to "break *PC"
9029 where PC is the last displayed codepoint's address. So
9030 make sure to set sal.explicit_pc to prevent GDB from
9031 trying to expand the list of sals to include all other
9032 instances with the same symtab and line. */
9033 sal.pc = pc;
9034 sal.explicit_pc = 1;
9035
9036 struct linespec_sals lsal;
9037 lsal.sals = {sal};
9038 lsal.canonical = NULL;
9039
9040 canonical->lsals.push_back (std::move (lsal));
9041 return;
9042 }
9043 else
9044 error (_("No default breakpoint address now."));
9045 }
9046 }
9047
9048 /* Force almost all breakpoints to be in terms of the
9049 current_source_symtab (which is decode_line_1's default).
9050 This should produce the results we want almost all of the
9051 time while leaving default_breakpoint_* alone.
9052
9053 ObjC: However, don't match an Objective-C method name which
9054 may have a '+' or '-' succeeded by a '['. */
9055 cursal = get_current_source_symtab_and_line ();
9056 if (last_displayed_sal_is_valid ())
9057 {
9058 const char *spec = NULL;
9059
9060 if (event_location_type (location) == LINESPEC_LOCATION)
9061 spec = get_linespec_location (location)->spec_string;
9062
9063 if (!cursal.symtab
9064 || (spec != NULL
9065 && strchr ("+-", spec[0]) != NULL
9066 && spec[1] != '['))
9067 {
9068 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9069 get_last_displayed_symtab (),
9070 get_last_displayed_line (),
9071 canonical, NULL, NULL);
9072 return;
9073 }
9074 }
9075
9076 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9077 cursal.symtab, cursal.line, canonical, NULL, NULL);
9078 }
9079
9080
9081 /* Convert each SAL into a real PC. Verify that the PC can be
9082 inserted as a breakpoint. If it can't throw an error. */
9083
9084 static void
9085 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9086 {
9087 for (auto &sal : sals)
9088 resolve_sal_pc (&sal);
9089 }
9090
9091 /* Fast tracepoints may have restrictions on valid locations. For
9092 instance, a fast tracepoint using a jump instead of a trap will
9093 likely have to overwrite more bytes than a trap would, and so can
9094 only be placed where the instruction is longer than the jump, or a
9095 multi-instruction sequence does not have a jump into the middle of
9096 it, etc. */
9097
9098 static void
9099 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9100 gdb::array_view<const symtab_and_line> sals)
9101 {
9102 for (const auto &sal : sals)
9103 {
9104 struct gdbarch *sarch;
9105
9106 sarch = get_sal_arch (sal);
9107 /* We fall back to GDBARCH if there is no architecture
9108 associated with SAL. */
9109 if (sarch == NULL)
9110 sarch = gdbarch;
9111 std::string msg;
9112 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9113 error (_("May not have a fast tracepoint at %s%s"),
9114 paddress (sarch, sal.pc), msg.c_str ());
9115 }
9116 }
9117
9118 /* Given TOK, a string specification of condition and thread, as
9119 accepted by the 'break' command, extract the condition
9120 string and thread number and set *COND_STRING and *THREAD.
9121 PC identifies the context at which the condition should be parsed.
9122 If no condition is found, *COND_STRING is set to NULL.
9123 If no thread is found, *THREAD is set to -1. */
9124
9125 static void
9126 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9127 char **cond_string, int *thread, int *task,
9128 char **rest)
9129 {
9130 *cond_string = NULL;
9131 *thread = -1;
9132 *task = 0;
9133 *rest = NULL;
9134
9135 while (tok && *tok)
9136 {
9137 const char *end_tok;
9138 int toklen;
9139 const char *cond_start = NULL;
9140 const char *cond_end = NULL;
9141
9142 tok = skip_spaces (tok);
9143
9144 if ((*tok == '"' || *tok == ',') && rest)
9145 {
9146 *rest = savestring (tok, strlen (tok));
9147 return;
9148 }
9149
9150 end_tok = skip_to_space (tok);
9151
9152 toklen = end_tok - tok;
9153
9154 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9155 {
9156 tok = cond_start = end_tok + 1;
9157 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9158 cond_end = tok;
9159 *cond_string = savestring (cond_start, cond_end - cond_start);
9160 }
9161 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9162 {
9163 const char *tmptok;
9164 struct thread_info *thr;
9165
9166 tok = end_tok + 1;
9167 thr = parse_thread_id (tok, &tmptok);
9168 if (tok == tmptok)
9169 error (_("Junk after thread keyword."));
9170 *thread = thr->global_num;
9171 tok = tmptok;
9172 }
9173 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9174 {
9175 char *tmptok;
9176
9177 tok = end_tok + 1;
9178 *task = strtol (tok, &tmptok, 0);
9179 if (tok == tmptok)
9180 error (_("Junk after task keyword."));
9181 if (!valid_task_id (*task))
9182 error (_("Unknown task %d."), *task);
9183 tok = tmptok;
9184 }
9185 else if (rest)
9186 {
9187 *rest = savestring (tok, strlen (tok));
9188 return;
9189 }
9190 else
9191 error (_("Junk at end of arguments."));
9192 }
9193 }
9194
9195 /* Decode a static tracepoint marker spec. */
9196
9197 static std::vector<symtab_and_line>
9198 decode_static_tracepoint_spec (const char **arg_p)
9199 {
9200 const char *p = &(*arg_p)[3];
9201 const char *endp;
9202
9203 p = skip_spaces (p);
9204
9205 endp = skip_to_space (p);
9206
9207 std::string marker_str (p, endp - p);
9208
9209 std::vector<static_tracepoint_marker> markers
9210 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9211 if (markers.empty ())
9212 error (_("No known static tracepoint marker named %s"),
9213 marker_str.c_str ());
9214
9215 std::vector<symtab_and_line> sals;
9216 sals.reserve (markers.size ());
9217
9218 for (const static_tracepoint_marker &marker : markers)
9219 {
9220 symtab_and_line sal = find_pc_line (marker.address, 0);
9221 sal.pc = marker.address;
9222 sals.push_back (sal);
9223 }
9224
9225 *arg_p = endp;
9226 return sals;
9227 }
9228
9229 /* See breakpoint.h. */
9230
9231 int
9232 create_breakpoint (struct gdbarch *gdbarch,
9233 const struct event_location *location,
9234 const char *cond_string,
9235 int thread, const char *extra_string,
9236 int parse_extra,
9237 int tempflag, enum bptype type_wanted,
9238 int ignore_count,
9239 enum auto_boolean pending_break_support,
9240 const struct breakpoint_ops *ops,
9241 int from_tty, int enabled, int internal,
9242 unsigned flags)
9243 {
9244 struct linespec_result canonical;
9245 struct cleanup *bkpt_chain = NULL;
9246 int pending = 0;
9247 int task = 0;
9248 int prev_bkpt_count = breakpoint_count;
9249
9250 gdb_assert (ops != NULL);
9251
9252 /* If extra_string isn't useful, set it to NULL. */
9253 if (extra_string != NULL && *extra_string == '\0')
9254 extra_string = NULL;
9255
9256 TRY
9257 {
9258 ops->create_sals_from_location (location, &canonical, type_wanted);
9259 }
9260 CATCH (e, RETURN_MASK_ERROR)
9261 {
9262 /* If caller is interested in rc value from parse, set
9263 value. */
9264 if (e.error == NOT_FOUND_ERROR)
9265 {
9266 /* If pending breakpoint support is turned off, throw
9267 error. */
9268
9269 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9270 throw_exception (e);
9271
9272 exception_print (gdb_stderr, e);
9273
9274 /* If pending breakpoint support is auto query and the user
9275 selects no, then simply return the error code. */
9276 if (pending_break_support == AUTO_BOOLEAN_AUTO
9277 && !nquery (_("Make %s pending on future shared library load? "),
9278 bptype_string (type_wanted)))
9279 return 0;
9280
9281 /* At this point, either the user was queried about setting
9282 a pending breakpoint and selected yes, or pending
9283 breakpoint behavior is on and thus a pending breakpoint
9284 is defaulted on behalf of the user. */
9285 pending = 1;
9286 }
9287 else
9288 throw_exception (e);
9289 }
9290 END_CATCH
9291
9292 if (!pending && canonical.lsals.empty ())
9293 return 0;
9294
9295 /* ----------------------------- SNIP -----------------------------
9296 Anything added to the cleanup chain beyond this point is assumed
9297 to be part of a breakpoint. If the breakpoint create succeeds
9298 then the memory is not reclaimed. */
9299 bkpt_chain = make_cleanup (null_cleanup, 0);
9300
9301 /* Resolve all line numbers to PC's and verify that the addresses
9302 are ok for the target. */
9303 if (!pending)
9304 {
9305 for (auto &lsal : canonical.lsals)
9306 breakpoint_sals_to_pc (lsal.sals);
9307 }
9308
9309 /* Fast tracepoints may have additional restrictions on location. */
9310 if (!pending && type_wanted == bp_fast_tracepoint)
9311 {
9312 for (const auto &lsal : canonical.lsals)
9313 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9314 }
9315
9316 /* Verify that condition can be parsed, before setting any
9317 breakpoints. Allocate a separate condition expression for each
9318 breakpoint. */
9319 if (!pending)
9320 {
9321 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9322 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9323
9324 if (parse_extra)
9325 {
9326 char *rest;
9327 char *cond;
9328
9329 const linespec_sals &lsal = canonical.lsals[0];
9330
9331 /* Here we only parse 'arg' to separate condition
9332 from thread number, so parsing in context of first
9333 sal is OK. When setting the breakpoint we'll
9334 re-parse it in context of each sal. */
9335
9336 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9337 &cond, &thread, &task, &rest);
9338 cond_string_copy.reset (cond);
9339 extra_string_copy.reset (rest);
9340 }
9341 else
9342 {
9343 if (type_wanted != bp_dprintf
9344 && extra_string != NULL && *extra_string != '\0')
9345 error (_("Garbage '%s' at end of location"), extra_string);
9346
9347 /* Create a private copy of condition string. */
9348 if (cond_string)
9349 cond_string_copy.reset (xstrdup (cond_string));
9350 /* Create a private copy of any extra string. */
9351 if (extra_string)
9352 extra_string_copy.reset (xstrdup (extra_string));
9353 }
9354
9355 ops->create_breakpoints_sal (gdbarch, &canonical,
9356 std::move (cond_string_copy),
9357 std::move (extra_string_copy),
9358 type_wanted,
9359 tempflag ? disp_del : disp_donttouch,
9360 thread, task, ignore_count, ops,
9361 from_tty, enabled, internal, flags);
9362 }
9363 else
9364 {
9365 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9366
9367 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9368 b->location = copy_event_location (location);
9369
9370 if (parse_extra)
9371 b->cond_string = NULL;
9372 else
9373 {
9374 /* Create a private copy of condition string. */
9375 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9376 b->thread = thread;
9377 }
9378
9379 /* Create a private copy of any extra string. */
9380 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9381 b->ignore_count = ignore_count;
9382 b->disposition = tempflag ? disp_del : disp_donttouch;
9383 b->condition_not_parsed = 1;
9384 b->enable_state = enabled ? bp_enabled : bp_disabled;
9385 if ((type_wanted != bp_breakpoint
9386 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9387 b->pspace = current_program_space;
9388
9389 install_breakpoint (internal, std::move (b), 0);
9390 }
9391
9392 if (canonical.lsals.size () > 1)
9393 {
9394 warning (_("Multiple breakpoints were set.\nUse the "
9395 "\"delete\" command to delete unwanted breakpoints."));
9396 prev_breakpoint_count = prev_bkpt_count;
9397 }
9398
9399 /* That's it. Discard the cleanups for data inserted into the
9400 breakpoint. */
9401 discard_cleanups (bkpt_chain);
9402
9403 /* error call may happen here - have BKPT_CHAIN already discarded. */
9404 update_global_location_list (UGLL_MAY_INSERT);
9405
9406 return 1;
9407 }
9408
9409 /* Set a breakpoint.
9410 ARG is a string describing breakpoint address,
9411 condition, and thread.
9412 FLAG specifies if a breakpoint is hardware on,
9413 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9414 and BP_TEMPFLAG. */
9415
9416 static void
9417 break_command_1 (const char *arg, int flag, int from_tty)
9418 {
9419 int tempflag = flag & BP_TEMPFLAG;
9420 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9421 ? bp_hardware_breakpoint
9422 : bp_breakpoint);
9423 struct breakpoint_ops *ops;
9424
9425 event_location_up location = string_to_event_location (&arg, current_language);
9426
9427 /* Matching breakpoints on probes. */
9428 if (location != NULL
9429 && event_location_type (location.get ()) == PROBE_LOCATION)
9430 ops = &bkpt_probe_breakpoint_ops;
9431 else
9432 ops = &bkpt_breakpoint_ops;
9433
9434 create_breakpoint (get_current_arch (),
9435 location.get (),
9436 NULL, 0, arg, 1 /* parse arg */,
9437 tempflag, type_wanted,
9438 0 /* Ignore count */,
9439 pending_break_support,
9440 ops,
9441 from_tty,
9442 1 /* enabled */,
9443 0 /* internal */,
9444 0);
9445 }
9446
9447 /* Helper function for break_command_1 and disassemble_command. */
9448
9449 void
9450 resolve_sal_pc (struct symtab_and_line *sal)
9451 {
9452 CORE_ADDR pc;
9453
9454 if (sal->pc == 0 && sal->symtab != NULL)
9455 {
9456 if (!find_line_pc (sal->symtab, sal->line, &pc))
9457 error (_("No line %d in file \"%s\"."),
9458 sal->line, symtab_to_filename_for_display (sal->symtab));
9459 sal->pc = pc;
9460
9461 /* If this SAL corresponds to a breakpoint inserted using a line
9462 number, then skip the function prologue if necessary. */
9463 if (sal->explicit_line)
9464 skip_prologue_sal (sal);
9465 }
9466
9467 if (sal->section == 0 && sal->symtab != NULL)
9468 {
9469 const struct blockvector *bv;
9470 const struct block *b;
9471 struct symbol *sym;
9472
9473 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9474 SYMTAB_COMPUNIT (sal->symtab));
9475 if (bv != NULL)
9476 {
9477 sym = block_linkage_function (b);
9478 if (sym != NULL)
9479 {
9480 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9481 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9482 sym);
9483 }
9484 else
9485 {
9486 /* It really is worthwhile to have the section, so we'll
9487 just have to look harder. This case can be executed
9488 if we have line numbers but no functions (as can
9489 happen in assembly source). */
9490
9491 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9492 switch_to_program_space_and_thread (sal->pspace);
9493
9494 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9495 if (msym.minsym)
9496 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9497 }
9498 }
9499 }
9500 }
9501
9502 void
9503 break_command (const char *arg, int from_tty)
9504 {
9505 break_command_1 (arg, 0, from_tty);
9506 }
9507
9508 void
9509 tbreak_command (const char *arg, int from_tty)
9510 {
9511 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9512 }
9513
9514 static void
9515 hbreak_command (const char *arg, int from_tty)
9516 {
9517 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9518 }
9519
9520 static void
9521 thbreak_command (const char *arg, int from_tty)
9522 {
9523 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9524 }
9525
9526 static void
9527 stop_command (const char *arg, int from_tty)
9528 {
9529 printf_filtered (_("Specify the type of breakpoint to set.\n\
9530 Usage: stop in <function | address>\n\
9531 stop at <line>\n"));
9532 }
9533
9534 static void
9535 stopin_command (const char *arg, int from_tty)
9536 {
9537 int badInput = 0;
9538
9539 if (arg == (char *) NULL)
9540 badInput = 1;
9541 else if (*arg != '*')
9542 {
9543 const char *argptr = arg;
9544 int hasColon = 0;
9545
9546 /* Look for a ':'. If this is a line number specification, then
9547 say it is bad, otherwise, it should be an address or
9548 function/method name. */
9549 while (*argptr && !hasColon)
9550 {
9551 hasColon = (*argptr == ':');
9552 argptr++;
9553 }
9554
9555 if (hasColon)
9556 badInput = (*argptr != ':'); /* Not a class::method */
9557 else
9558 badInput = isdigit (*arg); /* a simple line number */
9559 }
9560
9561 if (badInput)
9562 printf_filtered (_("Usage: stop in <function | address>\n"));
9563 else
9564 break_command_1 (arg, 0, from_tty);
9565 }
9566
9567 static void
9568 stopat_command (const char *arg, int from_tty)
9569 {
9570 int badInput = 0;
9571
9572 if (arg == (char *) NULL || *arg == '*') /* no line number */
9573 badInput = 1;
9574 else
9575 {
9576 const char *argptr = arg;
9577 int hasColon = 0;
9578
9579 /* Look for a ':'. If there is a '::' then get out, otherwise
9580 it is probably a line number. */
9581 while (*argptr && !hasColon)
9582 {
9583 hasColon = (*argptr == ':');
9584 argptr++;
9585 }
9586
9587 if (hasColon)
9588 badInput = (*argptr == ':'); /* we have class::method */
9589 else
9590 badInput = !isdigit (*arg); /* not a line number */
9591 }
9592
9593 if (badInput)
9594 printf_filtered (_("Usage: stop at <line>\n"));
9595 else
9596 break_command_1 (arg, 0, from_tty);
9597 }
9598
9599 /* The dynamic printf command is mostly like a regular breakpoint, but
9600 with a prewired command list consisting of a single output command,
9601 built from extra arguments supplied on the dprintf command
9602 line. */
9603
9604 static void
9605 dprintf_command (const char *arg, int from_tty)
9606 {
9607 event_location_up location = string_to_event_location (&arg, current_language);
9608
9609 /* If non-NULL, ARG should have been advanced past the location;
9610 the next character must be ','. */
9611 if (arg != NULL)
9612 {
9613 if (arg[0] != ',' || arg[1] == '\0')
9614 error (_("Format string required"));
9615 else
9616 {
9617 /* Skip the comma. */
9618 ++arg;
9619 }
9620 }
9621
9622 create_breakpoint (get_current_arch (),
9623 location.get (),
9624 NULL, 0, arg, 1 /* parse arg */,
9625 0, bp_dprintf,
9626 0 /* Ignore count */,
9627 pending_break_support,
9628 &dprintf_breakpoint_ops,
9629 from_tty,
9630 1 /* enabled */,
9631 0 /* internal */,
9632 0);
9633 }
9634
9635 static void
9636 agent_printf_command (const char *arg, int from_tty)
9637 {
9638 error (_("May only run agent-printf on the target"));
9639 }
9640
9641 /* Implement the "breakpoint_hit" breakpoint_ops method for
9642 ranged breakpoints. */
9643
9644 static int
9645 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9646 const address_space *aspace,
9647 CORE_ADDR bp_addr,
9648 const struct target_waitstatus *ws)
9649 {
9650 if (ws->kind != TARGET_WAITKIND_STOPPED
9651 || ws->value.sig != GDB_SIGNAL_TRAP)
9652 return 0;
9653
9654 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9655 bl->length, aspace, bp_addr);
9656 }
9657
9658 /* Implement the "resources_needed" breakpoint_ops method for
9659 ranged breakpoints. */
9660
9661 static int
9662 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9663 {
9664 return target_ranged_break_num_registers ();
9665 }
9666
9667 /* Implement the "print_it" breakpoint_ops method for
9668 ranged breakpoints. */
9669
9670 static enum print_stop_action
9671 print_it_ranged_breakpoint (bpstat bs)
9672 {
9673 struct breakpoint *b = bs->breakpoint_at;
9674 struct bp_location *bl = b->loc;
9675 struct ui_out *uiout = current_uiout;
9676
9677 gdb_assert (b->type == bp_hardware_breakpoint);
9678
9679 /* Ranged breakpoints have only one location. */
9680 gdb_assert (bl && bl->next == NULL);
9681
9682 annotate_breakpoint (b->number);
9683
9684 maybe_print_thread_hit_breakpoint (uiout);
9685
9686 if (b->disposition == disp_del)
9687 uiout->text ("Temporary ranged breakpoint ");
9688 else
9689 uiout->text ("Ranged breakpoint ");
9690 if (uiout->is_mi_like_p ())
9691 {
9692 uiout->field_string ("reason",
9693 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9694 uiout->field_string ("disp", bpdisp_text (b->disposition));
9695 }
9696 uiout->field_int ("bkptno", b->number);
9697 uiout->text (", ");
9698
9699 return PRINT_SRC_AND_LOC;
9700 }
9701
9702 /* Implement the "print_one" breakpoint_ops method for
9703 ranged breakpoints. */
9704
9705 static void
9706 print_one_ranged_breakpoint (struct breakpoint *b,
9707 struct bp_location **last_loc)
9708 {
9709 struct bp_location *bl = b->loc;
9710 struct value_print_options opts;
9711 struct ui_out *uiout = current_uiout;
9712
9713 /* Ranged breakpoints have only one location. */
9714 gdb_assert (bl && bl->next == NULL);
9715
9716 get_user_print_options (&opts);
9717
9718 if (opts.addressprint)
9719 /* We don't print the address range here, it will be printed later
9720 by print_one_detail_ranged_breakpoint. */
9721 uiout->field_skip ("addr");
9722 annotate_field (5);
9723 print_breakpoint_location (b, bl);
9724 *last_loc = bl;
9725 }
9726
9727 /* Implement the "print_one_detail" breakpoint_ops method for
9728 ranged breakpoints. */
9729
9730 static void
9731 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9732 struct ui_out *uiout)
9733 {
9734 CORE_ADDR address_start, address_end;
9735 struct bp_location *bl = b->loc;
9736 string_file stb;
9737
9738 gdb_assert (bl);
9739
9740 address_start = bl->address;
9741 address_end = address_start + bl->length - 1;
9742
9743 uiout->text ("\taddress range: ");
9744 stb.printf ("[%s, %s]",
9745 print_core_address (bl->gdbarch, address_start),
9746 print_core_address (bl->gdbarch, address_end));
9747 uiout->field_stream ("addr", stb);
9748 uiout->text ("\n");
9749 }
9750
9751 /* Implement the "print_mention" breakpoint_ops method for
9752 ranged breakpoints. */
9753
9754 static void
9755 print_mention_ranged_breakpoint (struct breakpoint *b)
9756 {
9757 struct bp_location *bl = b->loc;
9758 struct ui_out *uiout = current_uiout;
9759
9760 gdb_assert (bl);
9761 gdb_assert (b->type == bp_hardware_breakpoint);
9762
9763 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9764 b->number, paddress (bl->gdbarch, bl->address),
9765 paddress (bl->gdbarch, bl->address + bl->length - 1));
9766 }
9767
9768 /* Implement the "print_recreate" breakpoint_ops method for
9769 ranged breakpoints. */
9770
9771 static void
9772 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9773 {
9774 fprintf_unfiltered (fp, "break-range %s, %s",
9775 event_location_to_string (b->location.get ()),
9776 event_location_to_string (b->location_range_end.get ()));
9777 print_recreate_thread (b, fp);
9778 }
9779
9780 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9781
9782 static struct breakpoint_ops ranged_breakpoint_ops;
9783
9784 /* Find the address where the end of the breakpoint range should be
9785 placed, given the SAL of the end of the range. This is so that if
9786 the user provides a line number, the end of the range is set to the
9787 last instruction of the given line. */
9788
9789 static CORE_ADDR
9790 find_breakpoint_range_end (struct symtab_and_line sal)
9791 {
9792 CORE_ADDR end;
9793
9794 /* If the user provided a PC value, use it. Otherwise,
9795 find the address of the end of the given location. */
9796 if (sal.explicit_pc)
9797 end = sal.pc;
9798 else
9799 {
9800 int ret;
9801 CORE_ADDR start;
9802
9803 ret = find_line_pc_range (sal, &start, &end);
9804 if (!ret)
9805 error (_("Could not find location of the end of the range."));
9806
9807 /* find_line_pc_range returns the start of the next line. */
9808 end--;
9809 }
9810
9811 return end;
9812 }
9813
9814 /* Implement the "break-range" CLI command. */
9815
9816 static void
9817 break_range_command (const char *arg, int from_tty)
9818 {
9819 const char *arg_start;
9820 struct linespec_result canonical_start, canonical_end;
9821 int bp_count, can_use_bp, length;
9822 CORE_ADDR end;
9823 struct breakpoint *b;
9824
9825 /* We don't support software ranged breakpoints. */
9826 if (target_ranged_break_num_registers () < 0)
9827 error (_("This target does not support hardware ranged breakpoints."));
9828
9829 bp_count = hw_breakpoint_used_count ();
9830 bp_count += target_ranged_break_num_registers ();
9831 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9832 bp_count, 0);
9833 if (can_use_bp < 0)
9834 error (_("Hardware breakpoints used exceeds limit."));
9835
9836 arg = skip_spaces (arg);
9837 if (arg == NULL || arg[0] == '\0')
9838 error(_("No address range specified."));
9839
9840 arg_start = arg;
9841 event_location_up start_location = string_to_event_location (&arg,
9842 current_language);
9843 parse_breakpoint_sals (start_location.get (), &canonical_start);
9844
9845 if (arg[0] != ',')
9846 error (_("Too few arguments."));
9847 else if (canonical_start.lsals.empty ())
9848 error (_("Could not find location of the beginning of the range."));
9849
9850 const linespec_sals &lsal_start = canonical_start.lsals[0];
9851
9852 if (canonical_start.lsals.size () > 1
9853 || lsal_start.sals.size () != 1)
9854 error (_("Cannot create a ranged breakpoint with multiple locations."));
9855
9856 const symtab_and_line &sal_start = lsal_start.sals[0];
9857 std::string addr_string_start (arg_start, arg - arg_start);
9858
9859 arg++; /* Skip the comma. */
9860 arg = skip_spaces (arg);
9861
9862 /* Parse the end location. */
9863
9864 arg_start = arg;
9865
9866 /* We call decode_line_full directly here instead of using
9867 parse_breakpoint_sals because we need to specify the start location's
9868 symtab and line as the default symtab and line for the end of the
9869 range. This makes it possible to have ranges like "foo.c:27, +14",
9870 where +14 means 14 lines from the start location. */
9871 event_location_up end_location = string_to_event_location (&arg,
9872 current_language);
9873 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9874 sal_start.symtab, sal_start.line,
9875 &canonical_end, NULL, NULL);
9876
9877 if (canonical_end.lsals.empty ())
9878 error (_("Could not find location of the end of the range."));
9879
9880 const linespec_sals &lsal_end = canonical_end.lsals[0];
9881 if (canonical_end.lsals.size () > 1
9882 || lsal_end.sals.size () != 1)
9883 error (_("Cannot create a ranged breakpoint with multiple locations."));
9884
9885 const symtab_and_line &sal_end = lsal_end.sals[0];
9886
9887 end = find_breakpoint_range_end (sal_end);
9888 if (sal_start.pc > end)
9889 error (_("Invalid address range, end precedes start."));
9890
9891 length = end - sal_start.pc + 1;
9892 if (length < 0)
9893 /* Length overflowed. */
9894 error (_("Address range too large."));
9895 else if (length == 1)
9896 {
9897 /* This range is simple enough to be handled by
9898 the `hbreak' command. */
9899 hbreak_command (&addr_string_start[0], 1);
9900
9901 return;
9902 }
9903
9904 /* Now set up the breakpoint. */
9905 b = set_raw_breakpoint (get_current_arch (), sal_start,
9906 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9907 set_breakpoint_count (breakpoint_count + 1);
9908 b->number = breakpoint_count;
9909 b->disposition = disp_donttouch;
9910 b->location = std::move (start_location);
9911 b->location_range_end = std::move (end_location);
9912 b->loc->length = length;
9913
9914 mention (b);
9915 gdb::observers::breakpoint_created.notify (b);
9916 update_global_location_list (UGLL_MAY_INSERT);
9917 }
9918
9919 /* Return non-zero if EXP is verified as constant. Returned zero
9920 means EXP is variable. Also the constant detection may fail for
9921 some constant expressions and in such case still falsely return
9922 zero. */
9923
9924 static int
9925 watchpoint_exp_is_const (const struct expression *exp)
9926 {
9927 int i = exp->nelts;
9928
9929 while (i > 0)
9930 {
9931 int oplenp, argsp;
9932
9933 /* We are only interested in the descriptor of each element. */
9934 operator_length (exp, i, &oplenp, &argsp);
9935 i -= oplenp;
9936
9937 switch (exp->elts[i].opcode)
9938 {
9939 case BINOP_ADD:
9940 case BINOP_SUB:
9941 case BINOP_MUL:
9942 case BINOP_DIV:
9943 case BINOP_REM:
9944 case BINOP_MOD:
9945 case BINOP_LSH:
9946 case BINOP_RSH:
9947 case BINOP_LOGICAL_AND:
9948 case BINOP_LOGICAL_OR:
9949 case BINOP_BITWISE_AND:
9950 case BINOP_BITWISE_IOR:
9951 case BINOP_BITWISE_XOR:
9952 case BINOP_EQUAL:
9953 case BINOP_NOTEQUAL:
9954 case BINOP_LESS:
9955 case BINOP_GTR:
9956 case BINOP_LEQ:
9957 case BINOP_GEQ:
9958 case BINOP_REPEAT:
9959 case BINOP_COMMA:
9960 case BINOP_EXP:
9961 case BINOP_MIN:
9962 case BINOP_MAX:
9963 case BINOP_INTDIV:
9964 case BINOP_CONCAT:
9965 case TERNOP_COND:
9966 case TERNOP_SLICE:
9967
9968 case OP_LONG:
9969 case OP_FLOAT:
9970 case OP_LAST:
9971 case OP_COMPLEX:
9972 case OP_STRING:
9973 case OP_ARRAY:
9974 case OP_TYPE:
9975 case OP_TYPEOF:
9976 case OP_DECLTYPE:
9977 case OP_TYPEID:
9978 case OP_NAME:
9979 case OP_OBJC_NSSTRING:
9980
9981 case UNOP_NEG:
9982 case UNOP_LOGICAL_NOT:
9983 case UNOP_COMPLEMENT:
9984 case UNOP_ADDR:
9985 case UNOP_HIGH:
9986 case UNOP_CAST:
9987
9988 case UNOP_CAST_TYPE:
9989 case UNOP_REINTERPRET_CAST:
9990 case UNOP_DYNAMIC_CAST:
9991 /* Unary, binary and ternary operators: We have to check
9992 their operands. If they are constant, then so is the
9993 result of that operation. For instance, if A and B are
9994 determined to be constants, then so is "A + B".
9995
9996 UNOP_IND is one exception to the rule above, because the
9997 value of *ADDR is not necessarily a constant, even when
9998 ADDR is. */
9999 break;
10000
10001 case OP_VAR_VALUE:
10002 /* Check whether the associated symbol is a constant.
10003
10004 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10005 possible that a buggy compiler could mark a variable as
10006 constant even when it is not, and TYPE_CONST would return
10007 true in this case, while SYMBOL_CLASS wouldn't.
10008
10009 We also have to check for function symbols because they
10010 are always constant. */
10011 {
10012 struct symbol *s = exp->elts[i + 2].symbol;
10013
10014 if (SYMBOL_CLASS (s) != LOC_BLOCK
10015 && SYMBOL_CLASS (s) != LOC_CONST
10016 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10017 return 0;
10018 break;
10019 }
10020
10021 /* The default action is to return 0 because we are using
10022 the optimistic approach here: If we don't know something,
10023 then it is not a constant. */
10024 default:
10025 return 0;
10026 }
10027 }
10028
10029 return 1;
10030 }
10031
10032 /* Watchpoint destructor. */
10033
10034 watchpoint::~watchpoint ()
10035 {
10036 xfree (this->exp_string);
10037 xfree (this->exp_string_reparse);
10038 }
10039
10040 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10041
10042 static void
10043 re_set_watchpoint (struct breakpoint *b)
10044 {
10045 struct watchpoint *w = (struct watchpoint *) b;
10046
10047 /* Watchpoint can be either on expression using entirely global
10048 variables, or it can be on local variables.
10049
10050 Watchpoints of the first kind are never auto-deleted, and even
10051 persist across program restarts. Since they can use variables
10052 from shared libraries, we need to reparse expression as libraries
10053 are loaded and unloaded.
10054
10055 Watchpoints on local variables can also change meaning as result
10056 of solib event. For example, if a watchpoint uses both a local
10057 and a global variables in expression, it's a local watchpoint,
10058 but unloading of a shared library will make the expression
10059 invalid. This is not a very common use case, but we still
10060 re-evaluate expression, to avoid surprises to the user.
10061
10062 Note that for local watchpoints, we re-evaluate it only if
10063 watchpoints frame id is still valid. If it's not, it means the
10064 watchpoint is out of scope and will be deleted soon. In fact,
10065 I'm not sure we'll ever be called in this case.
10066
10067 If a local watchpoint's frame id is still valid, then
10068 w->exp_valid_block is likewise valid, and we can safely use it.
10069
10070 Don't do anything about disabled watchpoints, since they will be
10071 reevaluated again when enabled. */
10072 update_watchpoint (w, 1 /* reparse */);
10073 }
10074
10075 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10076
10077 static int
10078 insert_watchpoint (struct bp_location *bl)
10079 {
10080 struct watchpoint *w = (struct watchpoint *) bl->owner;
10081 int length = w->exact ? 1 : bl->length;
10082
10083 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10084 w->cond_exp.get ());
10085 }
10086
10087 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10088
10089 static int
10090 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10091 {
10092 struct watchpoint *w = (struct watchpoint *) bl->owner;
10093 int length = w->exact ? 1 : bl->length;
10094
10095 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10096 w->cond_exp.get ());
10097 }
10098
10099 static int
10100 breakpoint_hit_watchpoint (const struct bp_location *bl,
10101 const address_space *aspace, CORE_ADDR bp_addr,
10102 const struct target_waitstatus *ws)
10103 {
10104 struct breakpoint *b = bl->owner;
10105 struct watchpoint *w = (struct watchpoint *) b;
10106
10107 /* Continuable hardware watchpoints are treated as non-existent if the
10108 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10109 some data address). Otherwise gdb won't stop on a break instruction
10110 in the code (not from a breakpoint) when a hardware watchpoint has
10111 been defined. Also skip watchpoints which we know did not trigger
10112 (did not match the data address). */
10113 if (is_hardware_watchpoint (b)
10114 && w->watchpoint_triggered == watch_triggered_no)
10115 return 0;
10116
10117 return 1;
10118 }
10119
10120 static void
10121 check_status_watchpoint (bpstat bs)
10122 {
10123 gdb_assert (is_watchpoint (bs->breakpoint_at));
10124
10125 bpstat_check_watchpoint (bs);
10126 }
10127
10128 /* Implement the "resources_needed" breakpoint_ops method for
10129 hardware watchpoints. */
10130
10131 static int
10132 resources_needed_watchpoint (const struct bp_location *bl)
10133 {
10134 struct watchpoint *w = (struct watchpoint *) bl->owner;
10135 int length = w->exact? 1 : bl->length;
10136
10137 return target_region_ok_for_hw_watchpoint (bl->address, length);
10138 }
10139
10140 /* Implement the "works_in_software_mode" breakpoint_ops method for
10141 hardware watchpoints. */
10142
10143 static int
10144 works_in_software_mode_watchpoint (const struct breakpoint *b)
10145 {
10146 /* Read and access watchpoints only work with hardware support. */
10147 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10148 }
10149
10150 static enum print_stop_action
10151 print_it_watchpoint (bpstat bs)
10152 {
10153 struct breakpoint *b;
10154 enum print_stop_action result;
10155 struct watchpoint *w;
10156 struct ui_out *uiout = current_uiout;
10157
10158 gdb_assert (bs->bp_location_at != NULL);
10159
10160 b = bs->breakpoint_at;
10161 w = (struct watchpoint *) b;
10162
10163 annotate_watchpoint (b->number);
10164 maybe_print_thread_hit_breakpoint (uiout);
10165
10166 string_file stb;
10167
10168 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10169 switch (b->type)
10170 {
10171 case bp_watchpoint:
10172 case bp_hardware_watchpoint:
10173 if (uiout->is_mi_like_p ())
10174 uiout->field_string
10175 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10176 mention (b);
10177 tuple_emitter.emplace (uiout, "value");
10178 uiout->text ("\nOld value = ");
10179 watchpoint_value_print (bs->old_val.get (), &stb);
10180 uiout->field_stream ("old", stb);
10181 uiout->text ("\nNew value = ");
10182 watchpoint_value_print (w->val.get (), &stb);
10183 uiout->field_stream ("new", stb);
10184 uiout->text ("\n");
10185 /* More than one watchpoint may have been triggered. */
10186 result = PRINT_UNKNOWN;
10187 break;
10188
10189 case bp_read_watchpoint:
10190 if (uiout->is_mi_like_p ())
10191 uiout->field_string
10192 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10193 mention (b);
10194 tuple_emitter.emplace (uiout, "value");
10195 uiout->text ("\nValue = ");
10196 watchpoint_value_print (w->val.get (), &stb);
10197 uiout->field_stream ("value", stb);
10198 uiout->text ("\n");
10199 result = PRINT_UNKNOWN;
10200 break;
10201
10202 case bp_access_watchpoint:
10203 if (bs->old_val != NULL)
10204 {
10205 if (uiout->is_mi_like_p ())
10206 uiout->field_string
10207 ("reason",
10208 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10209 mention (b);
10210 tuple_emitter.emplace (uiout, "value");
10211 uiout->text ("\nOld value = ");
10212 watchpoint_value_print (bs->old_val.get (), &stb);
10213 uiout->field_stream ("old", stb);
10214 uiout->text ("\nNew value = ");
10215 }
10216 else
10217 {
10218 mention (b);
10219 if (uiout->is_mi_like_p ())
10220 uiout->field_string
10221 ("reason",
10222 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10223 tuple_emitter.emplace (uiout, "value");
10224 uiout->text ("\nValue = ");
10225 }
10226 watchpoint_value_print (w->val.get (), &stb);
10227 uiout->field_stream ("new", stb);
10228 uiout->text ("\n");
10229 result = PRINT_UNKNOWN;
10230 break;
10231 default:
10232 result = PRINT_UNKNOWN;
10233 }
10234
10235 return result;
10236 }
10237
10238 /* Implement the "print_mention" breakpoint_ops method for hardware
10239 watchpoints. */
10240
10241 static void
10242 print_mention_watchpoint (struct breakpoint *b)
10243 {
10244 struct watchpoint *w = (struct watchpoint *) b;
10245 struct ui_out *uiout = current_uiout;
10246 const char *tuple_name;
10247
10248 switch (b->type)
10249 {
10250 case bp_watchpoint:
10251 uiout->text ("Watchpoint ");
10252 tuple_name = "wpt";
10253 break;
10254 case bp_hardware_watchpoint:
10255 uiout->text ("Hardware watchpoint ");
10256 tuple_name = "wpt";
10257 break;
10258 case bp_read_watchpoint:
10259 uiout->text ("Hardware read watchpoint ");
10260 tuple_name = "hw-rwpt";
10261 break;
10262 case bp_access_watchpoint:
10263 uiout->text ("Hardware access (read/write) watchpoint ");
10264 tuple_name = "hw-awpt";
10265 break;
10266 default:
10267 internal_error (__FILE__, __LINE__,
10268 _("Invalid hardware watchpoint type."));
10269 }
10270
10271 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10272 uiout->field_int ("number", b->number);
10273 uiout->text (": ");
10274 uiout->field_string ("exp", w->exp_string);
10275 }
10276
10277 /* Implement the "print_recreate" breakpoint_ops method for
10278 watchpoints. */
10279
10280 static void
10281 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10282 {
10283 struct watchpoint *w = (struct watchpoint *) b;
10284
10285 switch (b->type)
10286 {
10287 case bp_watchpoint:
10288 case bp_hardware_watchpoint:
10289 fprintf_unfiltered (fp, "watch");
10290 break;
10291 case bp_read_watchpoint:
10292 fprintf_unfiltered (fp, "rwatch");
10293 break;
10294 case bp_access_watchpoint:
10295 fprintf_unfiltered (fp, "awatch");
10296 break;
10297 default:
10298 internal_error (__FILE__, __LINE__,
10299 _("Invalid watchpoint type."));
10300 }
10301
10302 fprintf_unfiltered (fp, " %s", w->exp_string);
10303 print_recreate_thread (b, fp);
10304 }
10305
10306 /* Implement the "explains_signal" breakpoint_ops method for
10307 watchpoints. */
10308
10309 static int
10310 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10311 {
10312 /* A software watchpoint cannot cause a signal other than
10313 GDB_SIGNAL_TRAP. */
10314 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10315 return 0;
10316
10317 return 1;
10318 }
10319
10320 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10321
10322 static struct breakpoint_ops watchpoint_breakpoint_ops;
10323
10324 /* Implement the "insert" breakpoint_ops method for
10325 masked hardware watchpoints. */
10326
10327 static int
10328 insert_masked_watchpoint (struct bp_location *bl)
10329 {
10330 struct watchpoint *w = (struct watchpoint *) bl->owner;
10331
10332 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10333 bl->watchpoint_type);
10334 }
10335
10336 /* Implement the "remove" breakpoint_ops method for
10337 masked hardware watchpoints. */
10338
10339 static int
10340 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10341 {
10342 struct watchpoint *w = (struct watchpoint *) bl->owner;
10343
10344 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10345 bl->watchpoint_type);
10346 }
10347
10348 /* Implement the "resources_needed" breakpoint_ops method for
10349 masked hardware watchpoints. */
10350
10351 static int
10352 resources_needed_masked_watchpoint (const struct bp_location *bl)
10353 {
10354 struct watchpoint *w = (struct watchpoint *) bl->owner;
10355
10356 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10357 }
10358
10359 /* Implement the "works_in_software_mode" breakpoint_ops method for
10360 masked hardware watchpoints. */
10361
10362 static int
10363 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10364 {
10365 return 0;
10366 }
10367
10368 /* Implement the "print_it" breakpoint_ops method for
10369 masked hardware watchpoints. */
10370
10371 static enum print_stop_action
10372 print_it_masked_watchpoint (bpstat bs)
10373 {
10374 struct breakpoint *b = bs->breakpoint_at;
10375 struct ui_out *uiout = current_uiout;
10376
10377 /* Masked watchpoints have only one location. */
10378 gdb_assert (b->loc && b->loc->next == NULL);
10379
10380 annotate_watchpoint (b->number);
10381 maybe_print_thread_hit_breakpoint (uiout);
10382
10383 switch (b->type)
10384 {
10385 case bp_hardware_watchpoint:
10386 if (uiout->is_mi_like_p ())
10387 uiout->field_string
10388 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10389 break;
10390
10391 case bp_read_watchpoint:
10392 if (uiout->is_mi_like_p ())
10393 uiout->field_string
10394 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10395 break;
10396
10397 case bp_access_watchpoint:
10398 if (uiout->is_mi_like_p ())
10399 uiout->field_string
10400 ("reason",
10401 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10402 break;
10403 default:
10404 internal_error (__FILE__, __LINE__,
10405 _("Invalid hardware watchpoint type."));
10406 }
10407
10408 mention (b);
10409 uiout->text (_("\n\
10410 Check the underlying instruction at PC for the memory\n\
10411 address and value which triggered this watchpoint.\n"));
10412 uiout->text ("\n");
10413
10414 /* More than one watchpoint may have been triggered. */
10415 return PRINT_UNKNOWN;
10416 }
10417
10418 /* Implement the "print_one_detail" breakpoint_ops method for
10419 masked hardware watchpoints. */
10420
10421 static void
10422 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10423 struct ui_out *uiout)
10424 {
10425 struct watchpoint *w = (struct watchpoint *) b;
10426
10427 /* Masked watchpoints have only one location. */
10428 gdb_assert (b->loc && b->loc->next == NULL);
10429
10430 uiout->text ("\tmask ");
10431 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10432 uiout->text ("\n");
10433 }
10434
10435 /* Implement the "print_mention" breakpoint_ops method for
10436 masked hardware watchpoints. */
10437
10438 static void
10439 print_mention_masked_watchpoint (struct breakpoint *b)
10440 {
10441 struct watchpoint *w = (struct watchpoint *) b;
10442 struct ui_out *uiout = current_uiout;
10443 const char *tuple_name;
10444
10445 switch (b->type)
10446 {
10447 case bp_hardware_watchpoint:
10448 uiout->text ("Masked hardware watchpoint ");
10449 tuple_name = "wpt";
10450 break;
10451 case bp_read_watchpoint:
10452 uiout->text ("Masked hardware read watchpoint ");
10453 tuple_name = "hw-rwpt";
10454 break;
10455 case bp_access_watchpoint:
10456 uiout->text ("Masked hardware access (read/write) watchpoint ");
10457 tuple_name = "hw-awpt";
10458 break;
10459 default:
10460 internal_error (__FILE__, __LINE__,
10461 _("Invalid hardware watchpoint type."));
10462 }
10463
10464 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10465 uiout->field_int ("number", b->number);
10466 uiout->text (": ");
10467 uiout->field_string ("exp", w->exp_string);
10468 }
10469
10470 /* Implement the "print_recreate" breakpoint_ops method for
10471 masked hardware watchpoints. */
10472
10473 static void
10474 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10475 {
10476 struct watchpoint *w = (struct watchpoint *) b;
10477 char tmp[40];
10478
10479 switch (b->type)
10480 {
10481 case bp_hardware_watchpoint:
10482 fprintf_unfiltered (fp, "watch");
10483 break;
10484 case bp_read_watchpoint:
10485 fprintf_unfiltered (fp, "rwatch");
10486 break;
10487 case bp_access_watchpoint:
10488 fprintf_unfiltered (fp, "awatch");
10489 break;
10490 default:
10491 internal_error (__FILE__, __LINE__,
10492 _("Invalid hardware watchpoint type."));
10493 }
10494
10495 sprintf_vma (tmp, w->hw_wp_mask);
10496 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10497 print_recreate_thread (b, fp);
10498 }
10499
10500 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10501
10502 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10503
10504 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10505
10506 static int
10507 is_masked_watchpoint (const struct breakpoint *b)
10508 {
10509 return b->ops == &masked_watchpoint_breakpoint_ops;
10510 }
10511
10512 /* accessflag: hw_write: watch write,
10513 hw_read: watch read,
10514 hw_access: watch access (read or write) */
10515 static void
10516 watch_command_1 (const char *arg, int accessflag, int from_tty,
10517 int just_location, int internal)
10518 {
10519 struct breakpoint *scope_breakpoint = NULL;
10520 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10521 struct value *mark, *result;
10522 int saved_bitpos = 0, saved_bitsize = 0;
10523 const char *exp_start = NULL;
10524 const char *exp_end = NULL;
10525 const char *tok, *end_tok;
10526 int toklen = -1;
10527 const char *cond_start = NULL;
10528 const char *cond_end = NULL;
10529 enum bptype bp_type;
10530 int thread = -1;
10531 int pc = 0;
10532 /* Flag to indicate whether we are going to use masks for
10533 the hardware watchpoint. */
10534 int use_mask = 0;
10535 CORE_ADDR mask = 0;
10536
10537 /* Make sure that we actually have parameters to parse. */
10538 if (arg != NULL && arg[0] != '\0')
10539 {
10540 const char *value_start;
10541
10542 exp_end = arg + strlen (arg);
10543
10544 /* Look for "parameter value" pairs at the end
10545 of the arguments string. */
10546 for (tok = exp_end - 1; tok > arg; tok--)
10547 {
10548 /* Skip whitespace at the end of the argument list. */
10549 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10550 tok--;
10551
10552 /* Find the beginning of the last token.
10553 This is the value of the parameter. */
10554 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10555 tok--;
10556 value_start = tok + 1;
10557
10558 /* Skip whitespace. */
10559 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10560 tok--;
10561
10562 end_tok = tok;
10563
10564 /* Find the beginning of the second to last token.
10565 This is the parameter itself. */
10566 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10567 tok--;
10568 tok++;
10569 toklen = end_tok - tok + 1;
10570
10571 if (toklen == 6 && startswith (tok, "thread"))
10572 {
10573 struct thread_info *thr;
10574 /* At this point we've found a "thread" token, which means
10575 the user is trying to set a watchpoint that triggers
10576 only in a specific thread. */
10577 const char *endp;
10578
10579 if (thread != -1)
10580 error(_("You can specify only one thread."));
10581
10582 /* Extract the thread ID from the next token. */
10583 thr = parse_thread_id (value_start, &endp);
10584
10585 /* Check if the user provided a valid thread ID. */
10586 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10587 invalid_thread_id_error (value_start);
10588
10589 thread = thr->global_num;
10590 }
10591 else if (toklen == 4 && startswith (tok, "mask"))
10592 {
10593 /* We've found a "mask" token, which means the user wants to
10594 create a hardware watchpoint that is going to have the mask
10595 facility. */
10596 struct value *mask_value, *mark;
10597
10598 if (use_mask)
10599 error(_("You can specify only one mask."));
10600
10601 use_mask = just_location = 1;
10602
10603 mark = value_mark ();
10604 mask_value = parse_to_comma_and_eval (&value_start);
10605 mask = value_as_address (mask_value);
10606 value_free_to_mark (mark);
10607 }
10608 else
10609 /* We didn't recognize what we found. We should stop here. */
10610 break;
10611
10612 /* Truncate the string and get rid of the "parameter value" pair before
10613 the arguments string is parsed by the parse_exp_1 function. */
10614 exp_end = tok;
10615 }
10616 }
10617 else
10618 exp_end = arg;
10619
10620 /* Parse the rest of the arguments. From here on out, everything
10621 is in terms of a newly allocated string instead of the original
10622 ARG. */
10623 innermost_block.reset ();
10624 std::string expression (arg, exp_end - arg);
10625 exp_start = arg = expression.c_str ();
10626 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10627 exp_end = arg;
10628 /* Remove trailing whitespace from the expression before saving it.
10629 This makes the eventual display of the expression string a bit
10630 prettier. */
10631 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10632 --exp_end;
10633
10634 /* Checking if the expression is not constant. */
10635 if (watchpoint_exp_is_const (exp.get ()))
10636 {
10637 int len;
10638
10639 len = exp_end - exp_start;
10640 while (len > 0 && isspace (exp_start[len - 1]))
10641 len--;
10642 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10643 }
10644
10645 exp_valid_block = innermost_block.block ();
10646 mark = value_mark ();
10647 struct value *val_as_value = nullptr;
10648 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10649 just_location);
10650
10651 if (val_as_value != NULL && just_location)
10652 {
10653 saved_bitpos = value_bitpos (val_as_value);
10654 saved_bitsize = value_bitsize (val_as_value);
10655 }
10656
10657 value_ref_ptr val;
10658 if (just_location)
10659 {
10660 int ret;
10661
10662 exp_valid_block = NULL;
10663 val = release_value (value_addr (result));
10664 value_free_to_mark (mark);
10665
10666 if (use_mask)
10667 {
10668 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10669 mask);
10670 if (ret == -1)
10671 error (_("This target does not support masked watchpoints."));
10672 else if (ret == -2)
10673 error (_("Invalid mask or memory region."));
10674 }
10675 }
10676 else if (val_as_value != NULL)
10677 val = release_value (val_as_value);
10678
10679 tok = skip_spaces (arg);
10680 end_tok = skip_to_space (tok);
10681
10682 toklen = end_tok - tok;
10683 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10684 {
10685 innermost_block.reset ();
10686 tok = cond_start = end_tok + 1;
10687 parse_exp_1 (&tok, 0, 0, 0);
10688
10689 /* The watchpoint expression may not be local, but the condition
10690 may still be. E.g.: `watch global if local > 0'. */
10691 cond_exp_valid_block = innermost_block.block ();
10692
10693 cond_end = tok;
10694 }
10695 if (*tok)
10696 error (_("Junk at end of command."));
10697
10698 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10699
10700 /* Save this because create_internal_breakpoint below invalidates
10701 'wp_frame'. */
10702 frame_id watchpoint_frame = get_frame_id (wp_frame);
10703
10704 /* If the expression is "local", then set up a "watchpoint scope"
10705 breakpoint at the point where we've left the scope of the watchpoint
10706 expression. Create the scope breakpoint before the watchpoint, so
10707 that we will encounter it first in bpstat_stop_status. */
10708 if (exp_valid_block != NULL && wp_frame != NULL)
10709 {
10710 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10711
10712 if (frame_id_p (caller_frame_id))
10713 {
10714 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10715 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10716
10717 scope_breakpoint
10718 = create_internal_breakpoint (caller_arch, caller_pc,
10719 bp_watchpoint_scope,
10720 &momentary_breakpoint_ops);
10721
10722 /* create_internal_breakpoint could invalidate WP_FRAME. */
10723 wp_frame = NULL;
10724
10725 scope_breakpoint->enable_state = bp_enabled;
10726
10727 /* Automatically delete the breakpoint when it hits. */
10728 scope_breakpoint->disposition = disp_del;
10729
10730 /* Only break in the proper frame (help with recursion). */
10731 scope_breakpoint->frame_id = caller_frame_id;
10732
10733 /* Set the address at which we will stop. */
10734 scope_breakpoint->loc->gdbarch = caller_arch;
10735 scope_breakpoint->loc->requested_address = caller_pc;
10736 scope_breakpoint->loc->address
10737 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10738 scope_breakpoint->loc->requested_address,
10739 scope_breakpoint->type);
10740 }
10741 }
10742
10743 /* Now set up the breakpoint. We create all watchpoints as hardware
10744 watchpoints here even if hardware watchpoints are turned off, a call
10745 to update_watchpoint later in this function will cause the type to
10746 drop back to bp_watchpoint (software watchpoint) if required. */
10747
10748 if (accessflag == hw_read)
10749 bp_type = bp_read_watchpoint;
10750 else if (accessflag == hw_access)
10751 bp_type = bp_access_watchpoint;
10752 else
10753 bp_type = bp_hardware_watchpoint;
10754
10755 std::unique_ptr<watchpoint> w (new watchpoint ());
10756
10757 if (use_mask)
10758 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10759 &masked_watchpoint_breakpoint_ops);
10760 else
10761 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10762 &watchpoint_breakpoint_ops);
10763 w->thread = thread;
10764 w->disposition = disp_donttouch;
10765 w->pspace = current_program_space;
10766 w->exp = std::move (exp);
10767 w->exp_valid_block = exp_valid_block;
10768 w->cond_exp_valid_block = cond_exp_valid_block;
10769 if (just_location)
10770 {
10771 struct type *t = value_type (val.get ());
10772 CORE_ADDR addr = value_as_address (val.get ());
10773
10774 w->exp_string_reparse
10775 = current_language->la_watch_location_expression (t, addr).release ();
10776
10777 w->exp_string = xstrprintf ("-location %.*s",
10778 (int) (exp_end - exp_start), exp_start);
10779 }
10780 else
10781 w->exp_string = savestring (exp_start, exp_end - exp_start);
10782
10783 if (use_mask)
10784 {
10785 w->hw_wp_mask = mask;
10786 }
10787 else
10788 {
10789 w->val = val;
10790 w->val_bitpos = saved_bitpos;
10791 w->val_bitsize = saved_bitsize;
10792 w->val_valid = 1;
10793 }
10794
10795 if (cond_start)
10796 w->cond_string = savestring (cond_start, cond_end - cond_start);
10797 else
10798 w->cond_string = 0;
10799
10800 if (frame_id_p (watchpoint_frame))
10801 {
10802 w->watchpoint_frame = watchpoint_frame;
10803 w->watchpoint_thread = inferior_ptid;
10804 }
10805 else
10806 {
10807 w->watchpoint_frame = null_frame_id;
10808 w->watchpoint_thread = null_ptid;
10809 }
10810
10811 if (scope_breakpoint != NULL)
10812 {
10813 /* The scope breakpoint is related to the watchpoint. We will
10814 need to act on them together. */
10815 w->related_breakpoint = scope_breakpoint;
10816 scope_breakpoint->related_breakpoint = w.get ();
10817 }
10818
10819 if (!just_location)
10820 value_free_to_mark (mark);
10821
10822 /* Finally update the new watchpoint. This creates the locations
10823 that should be inserted. */
10824 update_watchpoint (w.get (), 1);
10825
10826 install_breakpoint (internal, std::move (w), 1);
10827 }
10828
10829 /* Return count of debug registers needed to watch the given expression.
10830 If the watchpoint cannot be handled in hardware return zero. */
10831
10832 static int
10833 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10834 {
10835 int found_memory_cnt = 0;
10836
10837 /* Did the user specifically forbid us to use hardware watchpoints? */
10838 if (!can_use_hw_watchpoints)
10839 return 0;
10840
10841 gdb_assert (!vals.empty ());
10842 struct value *head = vals[0].get ();
10843
10844 /* Make sure that the value of the expression depends only upon
10845 memory contents, and values computed from them within GDB. If we
10846 find any register references or function calls, we can't use a
10847 hardware watchpoint.
10848
10849 The idea here is that evaluating an expression generates a series
10850 of values, one holding the value of every subexpression. (The
10851 expression a*b+c has five subexpressions: a, b, a*b, c, and
10852 a*b+c.) GDB's values hold almost enough information to establish
10853 the criteria given above --- they identify memory lvalues,
10854 register lvalues, computed values, etcetera. So we can evaluate
10855 the expression, and then scan the chain of values that leaves
10856 behind to decide whether we can detect any possible change to the
10857 expression's final value using only hardware watchpoints.
10858
10859 However, I don't think that the values returned by inferior
10860 function calls are special in any way. So this function may not
10861 notice that an expression involving an inferior function call
10862 can't be watched with hardware watchpoints. FIXME. */
10863 for (const value_ref_ptr &iter : vals)
10864 {
10865 struct value *v = iter.get ();
10866
10867 if (VALUE_LVAL (v) == lval_memory)
10868 {
10869 if (v != head && value_lazy (v))
10870 /* A lazy memory lvalue in the chain is one that GDB never
10871 needed to fetch; we either just used its address (e.g.,
10872 `a' in `a.b') or we never needed it at all (e.g., `a'
10873 in `a,b'). This doesn't apply to HEAD; if that is
10874 lazy then it was not readable, but watch it anyway. */
10875 ;
10876 else
10877 {
10878 /* Ahh, memory we actually used! Check if we can cover
10879 it with hardware watchpoints. */
10880 struct type *vtype = check_typedef (value_type (v));
10881
10882 /* We only watch structs and arrays if user asked for it
10883 explicitly, never if they just happen to appear in a
10884 middle of some value chain. */
10885 if (v == head
10886 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10887 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10888 {
10889 CORE_ADDR vaddr = value_address (v);
10890 int len;
10891 int num_regs;
10892
10893 len = (target_exact_watchpoints
10894 && is_scalar_type_recursive (vtype))?
10895 1 : TYPE_LENGTH (value_type (v));
10896
10897 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10898 if (!num_regs)
10899 return 0;
10900 else
10901 found_memory_cnt += num_regs;
10902 }
10903 }
10904 }
10905 else if (VALUE_LVAL (v) != not_lval
10906 && deprecated_value_modifiable (v) == 0)
10907 return 0; /* These are values from the history (e.g., $1). */
10908 else if (VALUE_LVAL (v) == lval_register)
10909 return 0; /* Cannot watch a register with a HW watchpoint. */
10910 }
10911
10912 /* The expression itself looks suitable for using a hardware
10913 watchpoint, but give the target machine a chance to reject it. */
10914 return found_memory_cnt;
10915 }
10916
10917 void
10918 watch_command_wrapper (const char *arg, int from_tty, int internal)
10919 {
10920 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10921 }
10922
10923 /* A helper function that looks for the "-location" argument and then
10924 calls watch_command_1. */
10925
10926 static void
10927 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10928 {
10929 int just_location = 0;
10930
10931 if (arg
10932 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10933 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10934 {
10935 arg = skip_spaces (arg);
10936 just_location = 1;
10937 }
10938
10939 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10940 }
10941
10942 static void
10943 watch_command (const char *arg, int from_tty)
10944 {
10945 watch_maybe_just_location (arg, hw_write, from_tty);
10946 }
10947
10948 void
10949 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10950 {
10951 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10952 }
10953
10954 static void
10955 rwatch_command (const char *arg, int from_tty)
10956 {
10957 watch_maybe_just_location (arg, hw_read, from_tty);
10958 }
10959
10960 void
10961 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10962 {
10963 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10964 }
10965
10966 static void
10967 awatch_command (const char *arg, int from_tty)
10968 {
10969 watch_maybe_just_location (arg, hw_access, from_tty);
10970 }
10971 \f
10972
10973 /* Data for the FSM that manages the until(location)/advance commands
10974 in infcmd.c. Here because it uses the mechanisms of
10975 breakpoints. */
10976
10977 struct until_break_fsm
10978 {
10979 /* The base class. */
10980 struct thread_fsm thread_fsm;
10981
10982 /* The thread that as current when the command was executed. */
10983 int thread;
10984
10985 /* The breakpoint set at the destination location. */
10986 struct breakpoint *location_breakpoint;
10987
10988 /* Breakpoint set at the return address in the caller frame. May be
10989 NULL. */
10990 struct breakpoint *caller_breakpoint;
10991 };
10992
10993 static void until_break_fsm_clean_up (struct thread_fsm *self,
10994 struct thread_info *thread);
10995 static int until_break_fsm_should_stop (struct thread_fsm *self,
10996 struct thread_info *thread);
10997 static enum async_reply_reason
10998 until_break_fsm_async_reply_reason (struct thread_fsm *self);
10999
11000 /* until_break_fsm's vtable. */
11001
11002 static struct thread_fsm_ops until_break_fsm_ops =
11003 {
11004 NULL, /* dtor */
11005 until_break_fsm_clean_up,
11006 until_break_fsm_should_stop,
11007 NULL, /* return_value */
11008 until_break_fsm_async_reply_reason,
11009 };
11010
11011 /* Allocate a new until_break_command_fsm. */
11012
11013 static struct until_break_fsm *
11014 new_until_break_fsm (struct interp *cmd_interp, int thread,
11015 breakpoint_up &&location_breakpoint,
11016 breakpoint_up &&caller_breakpoint)
11017 {
11018 struct until_break_fsm *sm;
11019
11020 sm = XCNEW (struct until_break_fsm);
11021 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11022
11023 sm->thread = thread;
11024 sm->location_breakpoint = location_breakpoint.release ();
11025 sm->caller_breakpoint = caller_breakpoint.release ();
11026
11027 return sm;
11028 }
11029
11030 /* Implementation of the 'should_stop' FSM method for the
11031 until(location)/advance commands. */
11032
11033 static int
11034 until_break_fsm_should_stop (struct thread_fsm *self,
11035 struct thread_info *tp)
11036 {
11037 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11038
11039 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11040 sm->location_breakpoint) != NULL
11041 || (sm->caller_breakpoint != NULL
11042 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11043 sm->caller_breakpoint) != NULL))
11044 thread_fsm_set_finished (self);
11045
11046 return 1;
11047 }
11048
11049 /* Implementation of the 'clean_up' FSM method for the
11050 until(location)/advance commands. */
11051
11052 static void
11053 until_break_fsm_clean_up (struct thread_fsm *self,
11054 struct thread_info *thread)
11055 {
11056 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11057
11058 /* Clean up our temporary breakpoints. */
11059 if (sm->location_breakpoint != NULL)
11060 {
11061 delete_breakpoint (sm->location_breakpoint);
11062 sm->location_breakpoint = NULL;
11063 }
11064 if (sm->caller_breakpoint != NULL)
11065 {
11066 delete_breakpoint (sm->caller_breakpoint);
11067 sm->caller_breakpoint = NULL;
11068 }
11069 delete_longjmp_breakpoint (sm->thread);
11070 }
11071
11072 /* Implementation of the 'async_reply_reason' FSM method for the
11073 until(location)/advance commands. */
11074
11075 static enum async_reply_reason
11076 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11077 {
11078 return EXEC_ASYNC_LOCATION_REACHED;
11079 }
11080
11081 void
11082 until_break_command (const char *arg, int from_tty, int anywhere)
11083 {
11084 struct frame_info *frame;
11085 struct gdbarch *frame_gdbarch;
11086 struct frame_id stack_frame_id;
11087 struct frame_id caller_frame_id;
11088 struct cleanup *old_chain;
11089 int thread;
11090 struct thread_info *tp;
11091 struct until_break_fsm *sm;
11092
11093 clear_proceed_status (0);
11094
11095 /* Set a breakpoint where the user wants it and at return from
11096 this function. */
11097
11098 event_location_up location = string_to_event_location (&arg, current_language);
11099
11100 std::vector<symtab_and_line> sals
11101 = (last_displayed_sal_is_valid ()
11102 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11103 get_last_displayed_symtab (),
11104 get_last_displayed_line ())
11105 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11106 NULL, (struct symtab *) NULL, 0));
11107
11108 if (sals.size () != 1)
11109 error (_("Couldn't get information on specified line."));
11110
11111 symtab_and_line &sal = sals[0];
11112
11113 if (*arg)
11114 error (_("Junk at end of arguments."));
11115
11116 resolve_sal_pc (&sal);
11117
11118 tp = inferior_thread ();
11119 thread = tp->global_num;
11120
11121 old_chain = make_cleanup (null_cleanup, NULL);
11122
11123 /* Note linespec handling above invalidates the frame chain.
11124 Installing a breakpoint also invalidates the frame chain (as it
11125 may need to switch threads), so do any frame handling before
11126 that. */
11127
11128 frame = get_selected_frame (NULL);
11129 frame_gdbarch = get_frame_arch (frame);
11130 stack_frame_id = get_stack_frame_id (frame);
11131 caller_frame_id = frame_unwind_caller_id (frame);
11132
11133 /* Keep within the current frame, or in frames called by the current
11134 one. */
11135
11136 breakpoint_up caller_breakpoint;
11137 if (frame_id_p (caller_frame_id))
11138 {
11139 struct symtab_and_line sal2;
11140 struct gdbarch *caller_gdbarch;
11141
11142 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11143 sal2.pc = frame_unwind_caller_pc (frame);
11144 caller_gdbarch = frame_unwind_caller_arch (frame);
11145 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11146 sal2,
11147 caller_frame_id,
11148 bp_until);
11149
11150 set_longjmp_breakpoint (tp, caller_frame_id);
11151 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11152 }
11153
11154 /* set_momentary_breakpoint could invalidate FRAME. */
11155 frame = NULL;
11156
11157 breakpoint_up location_breakpoint;
11158 if (anywhere)
11159 /* If the user told us to continue until a specified location,
11160 we don't specify a frame at which we need to stop. */
11161 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11162 null_frame_id, bp_until);
11163 else
11164 /* Otherwise, specify the selected frame, because we want to stop
11165 only at the very same frame. */
11166 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11167 stack_frame_id, bp_until);
11168
11169 sm = new_until_break_fsm (command_interp (), tp->global_num,
11170 std::move (location_breakpoint),
11171 std::move (caller_breakpoint));
11172 tp->thread_fsm = &sm->thread_fsm;
11173
11174 discard_cleanups (old_chain);
11175
11176 proceed (-1, GDB_SIGNAL_DEFAULT);
11177 }
11178
11179 /* This function attempts to parse an optional "if <cond>" clause
11180 from the arg string. If one is not found, it returns NULL.
11181
11182 Else, it returns a pointer to the condition string. (It does not
11183 attempt to evaluate the string against a particular block.) And,
11184 it updates arg to point to the first character following the parsed
11185 if clause in the arg string. */
11186
11187 const char *
11188 ep_parse_optional_if_clause (const char **arg)
11189 {
11190 const char *cond_string;
11191
11192 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11193 return NULL;
11194
11195 /* Skip the "if" keyword. */
11196 (*arg) += 2;
11197
11198 /* Skip any extra leading whitespace, and record the start of the
11199 condition string. */
11200 *arg = skip_spaces (*arg);
11201 cond_string = *arg;
11202
11203 /* Assume that the condition occupies the remainder of the arg
11204 string. */
11205 (*arg) += strlen (cond_string);
11206
11207 return cond_string;
11208 }
11209
11210 /* Commands to deal with catching events, such as signals, exceptions,
11211 process start/exit, etc. */
11212
11213 typedef enum
11214 {
11215 catch_fork_temporary, catch_vfork_temporary,
11216 catch_fork_permanent, catch_vfork_permanent
11217 }
11218 catch_fork_kind;
11219
11220 static void
11221 catch_fork_command_1 (const char *arg, int from_tty,
11222 struct cmd_list_element *command)
11223 {
11224 struct gdbarch *gdbarch = get_current_arch ();
11225 const char *cond_string = NULL;
11226 catch_fork_kind fork_kind;
11227 int tempflag;
11228
11229 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11230 tempflag = (fork_kind == catch_fork_temporary
11231 || fork_kind == catch_vfork_temporary);
11232
11233 if (!arg)
11234 arg = "";
11235 arg = skip_spaces (arg);
11236
11237 /* The allowed syntax is:
11238 catch [v]fork
11239 catch [v]fork if <cond>
11240
11241 First, check if there's an if clause. */
11242 cond_string = ep_parse_optional_if_clause (&arg);
11243
11244 if ((*arg != '\0') && !isspace (*arg))
11245 error (_("Junk at end of arguments."));
11246
11247 /* If this target supports it, create a fork or vfork catchpoint
11248 and enable reporting of such events. */
11249 switch (fork_kind)
11250 {
11251 case catch_fork_temporary:
11252 case catch_fork_permanent:
11253 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11254 &catch_fork_breakpoint_ops);
11255 break;
11256 case catch_vfork_temporary:
11257 case catch_vfork_permanent:
11258 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11259 &catch_vfork_breakpoint_ops);
11260 break;
11261 default:
11262 error (_("unsupported or unknown fork kind; cannot catch it"));
11263 break;
11264 }
11265 }
11266
11267 static void
11268 catch_exec_command_1 (const char *arg, int from_tty,
11269 struct cmd_list_element *command)
11270 {
11271 struct gdbarch *gdbarch = get_current_arch ();
11272 int tempflag;
11273 const char *cond_string = NULL;
11274
11275 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11276
11277 if (!arg)
11278 arg = "";
11279 arg = skip_spaces (arg);
11280
11281 /* The allowed syntax is:
11282 catch exec
11283 catch exec if <cond>
11284
11285 First, check if there's an if clause. */
11286 cond_string = ep_parse_optional_if_clause (&arg);
11287
11288 if ((*arg != '\0') && !isspace (*arg))
11289 error (_("Junk at end of arguments."));
11290
11291 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11292 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11293 &catch_exec_breakpoint_ops);
11294 c->exec_pathname = NULL;
11295
11296 install_breakpoint (0, std::move (c), 1);
11297 }
11298
11299 void
11300 init_ada_exception_breakpoint (struct breakpoint *b,
11301 struct gdbarch *gdbarch,
11302 struct symtab_and_line sal,
11303 const char *addr_string,
11304 const struct breakpoint_ops *ops,
11305 int tempflag,
11306 int enabled,
11307 int from_tty)
11308 {
11309 if (from_tty)
11310 {
11311 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11312 if (!loc_gdbarch)
11313 loc_gdbarch = gdbarch;
11314
11315 describe_other_breakpoints (loc_gdbarch,
11316 sal.pspace, sal.pc, sal.section, -1);
11317 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11318 version for exception catchpoints, because two catchpoints
11319 used for different exception names will use the same address.
11320 In this case, a "breakpoint ... also set at..." warning is
11321 unproductive. Besides, the warning phrasing is also a bit
11322 inappropriate, we should use the word catchpoint, and tell
11323 the user what type of catchpoint it is. The above is good
11324 enough for now, though. */
11325 }
11326
11327 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11328
11329 b->enable_state = enabled ? bp_enabled : bp_disabled;
11330 b->disposition = tempflag ? disp_del : disp_donttouch;
11331 b->location = string_to_event_location (&addr_string,
11332 language_def (language_ada));
11333 b->language = language_ada;
11334 }
11335
11336 static void
11337 catch_command (const char *arg, int from_tty)
11338 {
11339 error (_("Catch requires an event name."));
11340 }
11341 \f
11342
11343 static void
11344 tcatch_command (const char *arg, int from_tty)
11345 {
11346 error (_("Catch requires an event name."));
11347 }
11348
11349 /* Compare two breakpoints and return a strcmp-like result. */
11350
11351 static int
11352 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11353 {
11354 uintptr_t ua = (uintptr_t) a;
11355 uintptr_t ub = (uintptr_t) b;
11356
11357 if (a->number < b->number)
11358 return -1;
11359 else if (a->number > b->number)
11360 return 1;
11361
11362 /* Now sort by address, in case we see, e..g, two breakpoints with
11363 the number 0. */
11364 if (ua < ub)
11365 return -1;
11366 return ua > ub ? 1 : 0;
11367 }
11368
11369 /* Delete breakpoints by address or line. */
11370
11371 static void
11372 clear_command (const char *arg, int from_tty)
11373 {
11374 struct breakpoint *b;
11375 int default_match;
11376
11377 std::vector<symtab_and_line> decoded_sals;
11378 symtab_and_line last_sal;
11379 gdb::array_view<symtab_and_line> sals;
11380 if (arg)
11381 {
11382 decoded_sals
11383 = decode_line_with_current_source (arg,
11384 (DECODE_LINE_FUNFIRSTLINE
11385 | DECODE_LINE_LIST_MODE));
11386 default_match = 0;
11387 sals = decoded_sals;
11388 }
11389 else
11390 {
11391 /* Set sal's line, symtab, pc, and pspace to the values
11392 corresponding to the last call to print_frame_info. If the
11393 codepoint is not valid, this will set all the fields to 0. */
11394 last_sal = get_last_displayed_sal ();
11395 if (last_sal.symtab == 0)
11396 error (_("No source file specified."));
11397
11398 default_match = 1;
11399 sals = last_sal;
11400 }
11401
11402 /* We don't call resolve_sal_pc here. That's not as bad as it
11403 seems, because all existing breakpoints typically have both
11404 file/line and pc set. So, if clear is given file/line, we can
11405 match this to existing breakpoint without obtaining pc at all.
11406
11407 We only support clearing given the address explicitly
11408 present in breakpoint table. Say, we've set breakpoint
11409 at file:line. There were several PC values for that file:line,
11410 due to optimization, all in one block.
11411
11412 We've picked one PC value. If "clear" is issued with another
11413 PC corresponding to the same file:line, the breakpoint won't
11414 be cleared. We probably can still clear the breakpoint, but
11415 since the other PC value is never presented to user, user
11416 can only find it by guessing, and it does not seem important
11417 to support that. */
11418
11419 /* For each line spec given, delete bps which correspond to it. Do
11420 it in two passes, solely to preserve the current behavior that
11421 from_tty is forced true if we delete more than one
11422 breakpoint. */
11423
11424 std::vector<struct breakpoint *> found;
11425 for (const auto &sal : sals)
11426 {
11427 const char *sal_fullname;
11428
11429 /* If exact pc given, clear bpts at that pc.
11430 If line given (pc == 0), clear all bpts on specified line.
11431 If defaulting, clear all bpts on default line
11432 or at default pc.
11433
11434 defaulting sal.pc != 0 tests to do
11435
11436 0 1 pc
11437 1 1 pc _and_ line
11438 0 0 line
11439 1 0 <can't happen> */
11440
11441 sal_fullname = (sal.symtab == NULL
11442 ? NULL : symtab_to_fullname (sal.symtab));
11443
11444 /* Find all matching breakpoints and add them to 'found'. */
11445 ALL_BREAKPOINTS (b)
11446 {
11447 int match = 0;
11448 /* Are we going to delete b? */
11449 if (b->type != bp_none && !is_watchpoint (b))
11450 {
11451 struct bp_location *loc = b->loc;
11452 for (; loc; loc = loc->next)
11453 {
11454 /* If the user specified file:line, don't allow a PC
11455 match. This matches historical gdb behavior. */
11456 int pc_match = (!sal.explicit_line
11457 && sal.pc
11458 && (loc->pspace == sal.pspace)
11459 && (loc->address == sal.pc)
11460 && (!section_is_overlay (loc->section)
11461 || loc->section == sal.section));
11462 int line_match = 0;
11463
11464 if ((default_match || sal.explicit_line)
11465 && loc->symtab != NULL
11466 && sal_fullname != NULL
11467 && sal.pspace == loc->pspace
11468 && loc->line_number == sal.line
11469 && filename_cmp (symtab_to_fullname (loc->symtab),
11470 sal_fullname) == 0)
11471 line_match = 1;
11472
11473 if (pc_match || line_match)
11474 {
11475 match = 1;
11476 break;
11477 }
11478 }
11479 }
11480
11481 if (match)
11482 found.push_back (b);
11483 }
11484 }
11485
11486 /* Now go thru the 'found' chain and delete them. */
11487 if (found.empty ())
11488 {
11489 if (arg)
11490 error (_("No breakpoint at %s."), arg);
11491 else
11492 error (_("No breakpoint at this line."));
11493 }
11494
11495 /* Remove duplicates from the vec. */
11496 std::sort (found.begin (), found.end (),
11497 [] (const breakpoint *a, const breakpoint *b)
11498 {
11499 return compare_breakpoints (a, b) < 0;
11500 });
11501 found.erase (std::unique (found.begin (), found.end (),
11502 [] (const breakpoint *a, const breakpoint *b)
11503 {
11504 return compare_breakpoints (a, b) == 0;
11505 }),
11506 found.end ());
11507
11508 if (found.size () > 1)
11509 from_tty = 1; /* Always report if deleted more than one. */
11510 if (from_tty)
11511 {
11512 if (found.size () == 1)
11513 printf_unfiltered (_("Deleted breakpoint "));
11514 else
11515 printf_unfiltered (_("Deleted breakpoints "));
11516 }
11517
11518 for (breakpoint *iter : found)
11519 {
11520 if (from_tty)
11521 printf_unfiltered ("%d ", iter->number);
11522 delete_breakpoint (iter);
11523 }
11524 if (from_tty)
11525 putchar_unfiltered ('\n');
11526 }
11527 \f
11528 /* Delete breakpoint in BS if they are `delete' breakpoints and
11529 all breakpoints that are marked for deletion, whether hit or not.
11530 This is called after any breakpoint is hit, or after errors. */
11531
11532 void
11533 breakpoint_auto_delete (bpstat bs)
11534 {
11535 struct breakpoint *b, *b_tmp;
11536
11537 for (; bs; bs = bs->next)
11538 if (bs->breakpoint_at
11539 && bs->breakpoint_at->disposition == disp_del
11540 && bs->stop)
11541 delete_breakpoint (bs->breakpoint_at);
11542
11543 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11544 {
11545 if (b->disposition == disp_del_at_next_stop)
11546 delete_breakpoint (b);
11547 }
11548 }
11549
11550 /* A comparison function for bp_location AP and BP being interfaced to
11551 qsort. Sort elements primarily by their ADDRESS (no matter what
11552 does breakpoint_address_is_meaningful say for its OWNER),
11553 secondarily by ordering first permanent elements and
11554 terciarily just ensuring the array is sorted stable way despite
11555 qsort being an unstable algorithm. */
11556
11557 static int
11558 bp_locations_compare (const void *ap, const void *bp)
11559 {
11560 const struct bp_location *a = *(const struct bp_location **) ap;
11561 const struct bp_location *b = *(const struct bp_location **) bp;
11562
11563 if (a->address != b->address)
11564 return (a->address > b->address) - (a->address < b->address);
11565
11566 /* Sort locations at the same address by their pspace number, keeping
11567 locations of the same inferior (in a multi-inferior environment)
11568 grouped. */
11569
11570 if (a->pspace->num != b->pspace->num)
11571 return ((a->pspace->num > b->pspace->num)
11572 - (a->pspace->num < b->pspace->num));
11573
11574 /* Sort permanent breakpoints first. */
11575 if (a->permanent != b->permanent)
11576 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11577
11578 /* Make the internal GDB representation stable across GDB runs
11579 where A and B memory inside GDB can differ. Breakpoint locations of
11580 the same type at the same address can be sorted in arbitrary order. */
11581
11582 if (a->owner->number != b->owner->number)
11583 return ((a->owner->number > b->owner->number)
11584 - (a->owner->number < b->owner->number));
11585
11586 return (a > b) - (a < b);
11587 }
11588
11589 /* Set bp_locations_placed_address_before_address_max and
11590 bp_locations_shadow_len_after_address_max according to the current
11591 content of the bp_locations array. */
11592
11593 static void
11594 bp_locations_target_extensions_update (void)
11595 {
11596 struct bp_location *bl, **blp_tmp;
11597
11598 bp_locations_placed_address_before_address_max = 0;
11599 bp_locations_shadow_len_after_address_max = 0;
11600
11601 ALL_BP_LOCATIONS (bl, blp_tmp)
11602 {
11603 CORE_ADDR start, end, addr;
11604
11605 if (!bp_location_has_shadow (bl))
11606 continue;
11607
11608 start = bl->target_info.placed_address;
11609 end = start + bl->target_info.shadow_len;
11610
11611 gdb_assert (bl->address >= start);
11612 addr = bl->address - start;
11613 if (addr > bp_locations_placed_address_before_address_max)
11614 bp_locations_placed_address_before_address_max = addr;
11615
11616 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11617
11618 gdb_assert (bl->address < end);
11619 addr = end - bl->address;
11620 if (addr > bp_locations_shadow_len_after_address_max)
11621 bp_locations_shadow_len_after_address_max = addr;
11622 }
11623 }
11624
11625 /* Download tracepoint locations if they haven't been. */
11626
11627 static void
11628 download_tracepoint_locations (void)
11629 {
11630 struct breakpoint *b;
11631 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11632
11633 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11634
11635 ALL_TRACEPOINTS (b)
11636 {
11637 struct bp_location *bl;
11638 struct tracepoint *t;
11639 int bp_location_downloaded = 0;
11640
11641 if ((b->type == bp_fast_tracepoint
11642 ? !may_insert_fast_tracepoints
11643 : !may_insert_tracepoints))
11644 continue;
11645
11646 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11647 {
11648 if (target_can_download_tracepoint ())
11649 can_download_tracepoint = TRIBOOL_TRUE;
11650 else
11651 can_download_tracepoint = TRIBOOL_FALSE;
11652 }
11653
11654 if (can_download_tracepoint == TRIBOOL_FALSE)
11655 break;
11656
11657 for (bl = b->loc; bl; bl = bl->next)
11658 {
11659 /* In tracepoint, locations are _never_ duplicated, so
11660 should_be_inserted is equivalent to
11661 unduplicated_should_be_inserted. */
11662 if (!should_be_inserted (bl) || bl->inserted)
11663 continue;
11664
11665 switch_to_program_space_and_thread (bl->pspace);
11666
11667 target_download_tracepoint (bl);
11668
11669 bl->inserted = 1;
11670 bp_location_downloaded = 1;
11671 }
11672 t = (struct tracepoint *) b;
11673 t->number_on_target = b->number;
11674 if (bp_location_downloaded)
11675 gdb::observers::breakpoint_modified.notify (b);
11676 }
11677 }
11678
11679 /* Swap the insertion/duplication state between two locations. */
11680
11681 static void
11682 swap_insertion (struct bp_location *left, struct bp_location *right)
11683 {
11684 const int left_inserted = left->inserted;
11685 const int left_duplicate = left->duplicate;
11686 const int left_needs_update = left->needs_update;
11687 const struct bp_target_info left_target_info = left->target_info;
11688
11689 /* Locations of tracepoints can never be duplicated. */
11690 if (is_tracepoint (left->owner))
11691 gdb_assert (!left->duplicate);
11692 if (is_tracepoint (right->owner))
11693 gdb_assert (!right->duplicate);
11694
11695 left->inserted = right->inserted;
11696 left->duplicate = right->duplicate;
11697 left->needs_update = right->needs_update;
11698 left->target_info = right->target_info;
11699 right->inserted = left_inserted;
11700 right->duplicate = left_duplicate;
11701 right->needs_update = left_needs_update;
11702 right->target_info = left_target_info;
11703 }
11704
11705 /* Force the re-insertion of the locations at ADDRESS. This is called
11706 once a new/deleted/modified duplicate location is found and we are evaluating
11707 conditions on the target's side. Such conditions need to be updated on
11708 the target. */
11709
11710 static void
11711 force_breakpoint_reinsertion (struct bp_location *bl)
11712 {
11713 struct bp_location **locp = NULL, **loc2p;
11714 struct bp_location *loc;
11715 CORE_ADDR address = 0;
11716 int pspace_num;
11717
11718 address = bl->address;
11719 pspace_num = bl->pspace->num;
11720
11721 /* This is only meaningful if the target is
11722 evaluating conditions and if the user has
11723 opted for condition evaluation on the target's
11724 side. */
11725 if (gdb_evaluates_breakpoint_condition_p ()
11726 || !target_supports_evaluation_of_breakpoint_conditions ())
11727 return;
11728
11729 /* Flag all breakpoint locations with this address and
11730 the same program space as the location
11731 as "its condition has changed". We need to
11732 update the conditions on the target's side. */
11733 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11734 {
11735 loc = *loc2p;
11736
11737 if (!is_breakpoint (loc->owner)
11738 || pspace_num != loc->pspace->num)
11739 continue;
11740
11741 /* Flag the location appropriately. We use a different state to
11742 let everyone know that we already updated the set of locations
11743 with addr bl->address and program space bl->pspace. This is so
11744 we don't have to keep calling these functions just to mark locations
11745 that have already been marked. */
11746 loc->condition_changed = condition_updated;
11747
11748 /* Free the agent expression bytecode as well. We will compute
11749 it later on. */
11750 loc->cond_bytecode.reset ();
11751 }
11752 }
11753 /* Called whether new breakpoints are created, or existing breakpoints
11754 deleted, to update the global location list and recompute which
11755 locations are duplicate of which.
11756
11757 The INSERT_MODE flag determines whether locations may not, may, or
11758 shall be inserted now. See 'enum ugll_insert_mode' for more
11759 info. */
11760
11761 static void
11762 update_global_location_list (enum ugll_insert_mode insert_mode)
11763 {
11764 struct breakpoint *b;
11765 struct bp_location **locp, *loc;
11766 /* Last breakpoint location address that was marked for update. */
11767 CORE_ADDR last_addr = 0;
11768 /* Last breakpoint location program space that was marked for update. */
11769 int last_pspace_num = -1;
11770
11771 /* Used in the duplicates detection below. When iterating over all
11772 bp_locations, points to the first bp_location of a given address.
11773 Breakpoints and watchpoints of different types are never
11774 duplicates of each other. Keep one pointer for each type of
11775 breakpoint/watchpoint, so we only need to loop over all locations
11776 once. */
11777 struct bp_location *bp_loc_first; /* breakpoint */
11778 struct bp_location *wp_loc_first; /* hardware watchpoint */
11779 struct bp_location *awp_loc_first; /* access watchpoint */
11780 struct bp_location *rwp_loc_first; /* read watchpoint */
11781
11782 /* Saved former bp_locations array which we compare against the newly
11783 built bp_locations from the current state of ALL_BREAKPOINTS. */
11784 struct bp_location **old_locp;
11785 unsigned old_locations_count;
11786 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11787
11788 old_locations_count = bp_locations_count;
11789 bp_locations = NULL;
11790 bp_locations_count = 0;
11791
11792 ALL_BREAKPOINTS (b)
11793 for (loc = b->loc; loc; loc = loc->next)
11794 bp_locations_count++;
11795
11796 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11797 locp = bp_locations;
11798 ALL_BREAKPOINTS (b)
11799 for (loc = b->loc; loc; loc = loc->next)
11800 *locp++ = loc;
11801 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11802 bp_locations_compare);
11803
11804 bp_locations_target_extensions_update ();
11805
11806 /* Identify bp_location instances that are no longer present in the
11807 new list, and therefore should be freed. Note that it's not
11808 necessary that those locations should be removed from inferior --
11809 if there's another location at the same address (previously
11810 marked as duplicate), we don't need to remove/insert the
11811 location.
11812
11813 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11814 and former bp_location array state respectively. */
11815
11816 locp = bp_locations;
11817 for (old_locp = old_locations.get ();
11818 old_locp < old_locations.get () + old_locations_count;
11819 old_locp++)
11820 {
11821 struct bp_location *old_loc = *old_locp;
11822 struct bp_location **loc2p;
11823
11824 /* Tells if 'old_loc' is found among the new locations. If
11825 not, we have to free it. */
11826 int found_object = 0;
11827 /* Tells if the location should remain inserted in the target. */
11828 int keep_in_target = 0;
11829 int removed = 0;
11830
11831 /* Skip LOCP entries which will definitely never be needed.
11832 Stop either at or being the one matching OLD_LOC. */
11833 while (locp < bp_locations + bp_locations_count
11834 && (*locp)->address < old_loc->address)
11835 locp++;
11836
11837 for (loc2p = locp;
11838 (loc2p < bp_locations + bp_locations_count
11839 && (*loc2p)->address == old_loc->address);
11840 loc2p++)
11841 {
11842 /* Check if this is a new/duplicated location or a duplicated
11843 location that had its condition modified. If so, we want to send
11844 its condition to the target if evaluation of conditions is taking
11845 place there. */
11846 if ((*loc2p)->condition_changed == condition_modified
11847 && (last_addr != old_loc->address
11848 || last_pspace_num != old_loc->pspace->num))
11849 {
11850 force_breakpoint_reinsertion (*loc2p);
11851 last_pspace_num = old_loc->pspace->num;
11852 }
11853
11854 if (*loc2p == old_loc)
11855 found_object = 1;
11856 }
11857
11858 /* We have already handled this address, update it so that we don't
11859 have to go through updates again. */
11860 last_addr = old_loc->address;
11861
11862 /* Target-side condition evaluation: Handle deleted locations. */
11863 if (!found_object)
11864 force_breakpoint_reinsertion (old_loc);
11865
11866 /* If this location is no longer present, and inserted, look if
11867 there's maybe a new location at the same address. If so,
11868 mark that one inserted, and don't remove this one. This is
11869 needed so that we don't have a time window where a breakpoint
11870 at certain location is not inserted. */
11871
11872 if (old_loc->inserted)
11873 {
11874 /* If the location is inserted now, we might have to remove
11875 it. */
11876
11877 if (found_object && should_be_inserted (old_loc))
11878 {
11879 /* The location is still present in the location list,
11880 and still should be inserted. Don't do anything. */
11881 keep_in_target = 1;
11882 }
11883 else
11884 {
11885 /* This location still exists, but it won't be kept in the
11886 target since it may have been disabled. We proceed to
11887 remove its target-side condition. */
11888
11889 /* The location is either no longer present, or got
11890 disabled. See if there's another location at the
11891 same address, in which case we don't need to remove
11892 this one from the target. */
11893
11894 /* OLD_LOC comes from existing struct breakpoint. */
11895 if (breakpoint_address_is_meaningful (old_loc->owner))
11896 {
11897 for (loc2p = locp;
11898 (loc2p < bp_locations + bp_locations_count
11899 && (*loc2p)->address == old_loc->address);
11900 loc2p++)
11901 {
11902 struct bp_location *loc2 = *loc2p;
11903
11904 if (breakpoint_locations_match (loc2, old_loc))
11905 {
11906 /* Read watchpoint locations are switched to
11907 access watchpoints, if the former are not
11908 supported, but the latter are. */
11909 if (is_hardware_watchpoint (old_loc->owner))
11910 {
11911 gdb_assert (is_hardware_watchpoint (loc2->owner));
11912 loc2->watchpoint_type = old_loc->watchpoint_type;
11913 }
11914
11915 /* loc2 is a duplicated location. We need to check
11916 if it should be inserted in case it will be
11917 unduplicated. */
11918 if (loc2 != old_loc
11919 && unduplicated_should_be_inserted (loc2))
11920 {
11921 swap_insertion (old_loc, loc2);
11922 keep_in_target = 1;
11923 break;
11924 }
11925 }
11926 }
11927 }
11928 }
11929
11930 if (!keep_in_target)
11931 {
11932 if (remove_breakpoint (old_loc))
11933 {
11934 /* This is just about all we can do. We could keep
11935 this location on the global list, and try to
11936 remove it next time, but there's no particular
11937 reason why we will succeed next time.
11938
11939 Note that at this point, old_loc->owner is still
11940 valid, as delete_breakpoint frees the breakpoint
11941 only after calling us. */
11942 printf_filtered (_("warning: Error removing "
11943 "breakpoint %d\n"),
11944 old_loc->owner->number);
11945 }
11946 removed = 1;
11947 }
11948 }
11949
11950 if (!found_object)
11951 {
11952 if (removed && target_is_non_stop_p ()
11953 && need_moribund_for_location_type (old_loc))
11954 {
11955 /* This location was removed from the target. In
11956 non-stop mode, a race condition is possible where
11957 we've removed a breakpoint, but stop events for that
11958 breakpoint are already queued and will arrive later.
11959 We apply an heuristic to be able to distinguish such
11960 SIGTRAPs from other random SIGTRAPs: we keep this
11961 breakpoint location for a bit, and will retire it
11962 after we see some number of events. The theory here
11963 is that reporting of events should, "on the average",
11964 be fair, so after a while we'll see events from all
11965 threads that have anything of interest, and no longer
11966 need to keep this breakpoint location around. We
11967 don't hold locations forever so to reduce chances of
11968 mistaking a non-breakpoint SIGTRAP for a breakpoint
11969 SIGTRAP.
11970
11971 The heuristic failing can be disastrous on
11972 decr_pc_after_break targets.
11973
11974 On decr_pc_after_break targets, like e.g., x86-linux,
11975 if we fail to recognize a late breakpoint SIGTRAP,
11976 because events_till_retirement has reached 0 too
11977 soon, we'll fail to do the PC adjustment, and report
11978 a random SIGTRAP to the user. When the user resumes
11979 the inferior, it will most likely immediately crash
11980 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11981 corrupted, because of being resumed e.g., in the
11982 middle of a multi-byte instruction, or skipped a
11983 one-byte instruction. This was actually seen happen
11984 on native x86-linux, and should be less rare on
11985 targets that do not support new thread events, like
11986 remote, due to the heuristic depending on
11987 thread_count.
11988
11989 Mistaking a random SIGTRAP for a breakpoint trap
11990 causes similar symptoms (PC adjustment applied when
11991 it shouldn't), but then again, playing with SIGTRAPs
11992 behind the debugger's back is asking for trouble.
11993
11994 Since hardware watchpoint traps are always
11995 distinguishable from other traps, so we don't need to
11996 apply keep hardware watchpoint moribund locations
11997 around. We simply always ignore hardware watchpoint
11998 traps we can no longer explain. */
11999
12000 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12001 old_loc->owner = NULL;
12002
12003 moribund_locations.push_back (old_loc);
12004 }
12005 else
12006 {
12007 old_loc->owner = NULL;
12008 decref_bp_location (&old_loc);
12009 }
12010 }
12011 }
12012
12013 /* Rescan breakpoints at the same address and section, marking the
12014 first one as "first" and any others as "duplicates". This is so
12015 that the bpt instruction is only inserted once. If we have a
12016 permanent breakpoint at the same place as BPT, make that one the
12017 official one, and the rest as duplicates. Permanent breakpoints
12018 are sorted first for the same address.
12019
12020 Do the same for hardware watchpoints, but also considering the
12021 watchpoint's type (regular/access/read) and length. */
12022
12023 bp_loc_first = NULL;
12024 wp_loc_first = NULL;
12025 awp_loc_first = NULL;
12026 rwp_loc_first = NULL;
12027 ALL_BP_LOCATIONS (loc, locp)
12028 {
12029 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12030 non-NULL. */
12031 struct bp_location **loc_first_p;
12032 b = loc->owner;
12033
12034 if (!unduplicated_should_be_inserted (loc)
12035 || !breakpoint_address_is_meaningful (b)
12036 /* Don't detect duplicate for tracepoint locations because they are
12037 never duplicated. See the comments in field `duplicate' of
12038 `struct bp_location'. */
12039 || is_tracepoint (b))
12040 {
12041 /* Clear the condition modification flag. */
12042 loc->condition_changed = condition_unchanged;
12043 continue;
12044 }
12045
12046 if (b->type == bp_hardware_watchpoint)
12047 loc_first_p = &wp_loc_first;
12048 else if (b->type == bp_read_watchpoint)
12049 loc_first_p = &rwp_loc_first;
12050 else if (b->type == bp_access_watchpoint)
12051 loc_first_p = &awp_loc_first;
12052 else
12053 loc_first_p = &bp_loc_first;
12054
12055 if (*loc_first_p == NULL
12056 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12057 || !breakpoint_locations_match (loc, *loc_first_p))
12058 {
12059 *loc_first_p = loc;
12060 loc->duplicate = 0;
12061
12062 if (is_breakpoint (loc->owner) && loc->condition_changed)
12063 {
12064 loc->needs_update = 1;
12065 /* Clear the condition modification flag. */
12066 loc->condition_changed = condition_unchanged;
12067 }
12068 continue;
12069 }
12070
12071
12072 /* This and the above ensure the invariant that the first location
12073 is not duplicated, and is the inserted one.
12074 All following are marked as duplicated, and are not inserted. */
12075 if (loc->inserted)
12076 swap_insertion (loc, *loc_first_p);
12077 loc->duplicate = 1;
12078
12079 /* Clear the condition modification flag. */
12080 loc->condition_changed = condition_unchanged;
12081 }
12082
12083 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12084 {
12085 if (insert_mode != UGLL_DONT_INSERT)
12086 insert_breakpoint_locations ();
12087 else
12088 {
12089 /* Even though the caller told us to not insert new
12090 locations, we may still need to update conditions on the
12091 target's side of breakpoints that were already inserted
12092 if the target is evaluating breakpoint conditions. We
12093 only update conditions for locations that are marked
12094 "needs_update". */
12095 update_inserted_breakpoint_locations ();
12096 }
12097 }
12098
12099 if (insert_mode != UGLL_DONT_INSERT)
12100 download_tracepoint_locations ();
12101 }
12102
12103 void
12104 breakpoint_retire_moribund (void)
12105 {
12106 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12107 {
12108 struct bp_location *loc = moribund_locations[ix];
12109 if (--(loc->events_till_retirement) == 0)
12110 {
12111 decref_bp_location (&loc);
12112 unordered_remove (moribund_locations, ix);
12113 --ix;
12114 }
12115 }
12116 }
12117
12118 static void
12119 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12120 {
12121
12122 TRY
12123 {
12124 update_global_location_list (insert_mode);
12125 }
12126 CATCH (e, RETURN_MASK_ERROR)
12127 {
12128 }
12129 END_CATCH
12130 }
12131
12132 /* Clear BKP from a BPS. */
12133
12134 static void
12135 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12136 {
12137 bpstat bs;
12138
12139 for (bs = bps; bs; bs = bs->next)
12140 if (bs->breakpoint_at == bpt)
12141 {
12142 bs->breakpoint_at = NULL;
12143 bs->old_val = NULL;
12144 /* bs->commands will be freed later. */
12145 }
12146 }
12147
12148 /* Callback for iterate_over_threads. */
12149 static int
12150 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12151 {
12152 struct breakpoint *bpt = (struct breakpoint *) data;
12153
12154 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12155 return 0;
12156 }
12157
12158 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12159 callbacks. */
12160
12161 static void
12162 say_where (struct breakpoint *b)
12163 {
12164 struct value_print_options opts;
12165
12166 get_user_print_options (&opts);
12167
12168 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12169 single string. */
12170 if (b->loc == NULL)
12171 {
12172 /* For pending locations, the output differs slightly based
12173 on b->extra_string. If this is non-NULL, it contains either
12174 a condition or dprintf arguments. */
12175 if (b->extra_string == NULL)
12176 {
12177 printf_filtered (_(" (%s) pending."),
12178 event_location_to_string (b->location.get ()));
12179 }
12180 else if (b->type == bp_dprintf)
12181 {
12182 printf_filtered (_(" (%s,%s) pending."),
12183 event_location_to_string (b->location.get ()),
12184 b->extra_string);
12185 }
12186 else
12187 {
12188 printf_filtered (_(" (%s %s) pending."),
12189 event_location_to_string (b->location.get ()),
12190 b->extra_string);
12191 }
12192 }
12193 else
12194 {
12195 if (opts.addressprint || b->loc->symtab == NULL)
12196 {
12197 printf_filtered (" at ");
12198 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12199 gdb_stdout);
12200 }
12201 if (b->loc->symtab != NULL)
12202 {
12203 /* If there is a single location, we can print the location
12204 more nicely. */
12205 if (b->loc->next == NULL)
12206 printf_filtered (": file %s, line %d.",
12207 symtab_to_filename_for_display (b->loc->symtab),
12208 b->loc->line_number);
12209 else
12210 /* This is not ideal, but each location may have a
12211 different file name, and this at least reflects the
12212 real situation somewhat. */
12213 printf_filtered (": %s.",
12214 event_location_to_string (b->location.get ()));
12215 }
12216
12217 if (b->loc->next)
12218 {
12219 struct bp_location *loc = b->loc;
12220 int n = 0;
12221 for (; loc; loc = loc->next)
12222 ++n;
12223 printf_filtered (" (%d locations)", n);
12224 }
12225 }
12226 }
12227
12228 /* Default bp_location_ops methods. */
12229
12230 static void
12231 bp_location_dtor (struct bp_location *self)
12232 {
12233 xfree (self->function_name);
12234 }
12235
12236 static const struct bp_location_ops bp_location_ops =
12237 {
12238 bp_location_dtor
12239 };
12240
12241 /* Destructor for the breakpoint base class. */
12242
12243 breakpoint::~breakpoint ()
12244 {
12245 xfree (this->cond_string);
12246 xfree (this->extra_string);
12247 xfree (this->filter);
12248 }
12249
12250 static struct bp_location *
12251 base_breakpoint_allocate_location (struct breakpoint *self)
12252 {
12253 return new bp_location (&bp_location_ops, self);
12254 }
12255
12256 static void
12257 base_breakpoint_re_set (struct breakpoint *b)
12258 {
12259 /* Nothing to re-set. */
12260 }
12261
12262 #define internal_error_pure_virtual_called() \
12263 gdb_assert_not_reached ("pure virtual function called")
12264
12265 static int
12266 base_breakpoint_insert_location (struct bp_location *bl)
12267 {
12268 internal_error_pure_virtual_called ();
12269 }
12270
12271 static int
12272 base_breakpoint_remove_location (struct bp_location *bl,
12273 enum remove_bp_reason reason)
12274 {
12275 internal_error_pure_virtual_called ();
12276 }
12277
12278 static int
12279 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12280 const address_space *aspace,
12281 CORE_ADDR bp_addr,
12282 const struct target_waitstatus *ws)
12283 {
12284 internal_error_pure_virtual_called ();
12285 }
12286
12287 static void
12288 base_breakpoint_check_status (bpstat bs)
12289 {
12290 /* Always stop. */
12291 }
12292
12293 /* A "works_in_software_mode" breakpoint_ops method that just internal
12294 errors. */
12295
12296 static int
12297 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12298 {
12299 internal_error_pure_virtual_called ();
12300 }
12301
12302 /* A "resources_needed" breakpoint_ops method that just internal
12303 errors. */
12304
12305 static int
12306 base_breakpoint_resources_needed (const struct bp_location *bl)
12307 {
12308 internal_error_pure_virtual_called ();
12309 }
12310
12311 static enum print_stop_action
12312 base_breakpoint_print_it (bpstat bs)
12313 {
12314 internal_error_pure_virtual_called ();
12315 }
12316
12317 static void
12318 base_breakpoint_print_one_detail (const struct breakpoint *self,
12319 struct ui_out *uiout)
12320 {
12321 /* nothing */
12322 }
12323
12324 static void
12325 base_breakpoint_print_mention (struct breakpoint *b)
12326 {
12327 internal_error_pure_virtual_called ();
12328 }
12329
12330 static void
12331 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12332 {
12333 internal_error_pure_virtual_called ();
12334 }
12335
12336 static void
12337 base_breakpoint_create_sals_from_location
12338 (const struct event_location *location,
12339 struct linespec_result *canonical,
12340 enum bptype type_wanted)
12341 {
12342 internal_error_pure_virtual_called ();
12343 }
12344
12345 static void
12346 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12347 struct linespec_result *c,
12348 gdb::unique_xmalloc_ptr<char> cond_string,
12349 gdb::unique_xmalloc_ptr<char> extra_string,
12350 enum bptype type_wanted,
12351 enum bpdisp disposition,
12352 int thread,
12353 int task, int ignore_count,
12354 const struct breakpoint_ops *o,
12355 int from_tty, int enabled,
12356 int internal, unsigned flags)
12357 {
12358 internal_error_pure_virtual_called ();
12359 }
12360
12361 static std::vector<symtab_and_line>
12362 base_breakpoint_decode_location (struct breakpoint *b,
12363 const struct event_location *location,
12364 struct program_space *search_pspace)
12365 {
12366 internal_error_pure_virtual_called ();
12367 }
12368
12369 /* The default 'explains_signal' method. */
12370
12371 static int
12372 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12373 {
12374 return 1;
12375 }
12376
12377 /* The default "after_condition_true" method. */
12378
12379 static void
12380 base_breakpoint_after_condition_true (struct bpstats *bs)
12381 {
12382 /* Nothing to do. */
12383 }
12384
12385 struct breakpoint_ops base_breakpoint_ops =
12386 {
12387 base_breakpoint_allocate_location,
12388 base_breakpoint_re_set,
12389 base_breakpoint_insert_location,
12390 base_breakpoint_remove_location,
12391 base_breakpoint_breakpoint_hit,
12392 base_breakpoint_check_status,
12393 base_breakpoint_resources_needed,
12394 base_breakpoint_works_in_software_mode,
12395 base_breakpoint_print_it,
12396 NULL,
12397 base_breakpoint_print_one_detail,
12398 base_breakpoint_print_mention,
12399 base_breakpoint_print_recreate,
12400 base_breakpoint_create_sals_from_location,
12401 base_breakpoint_create_breakpoints_sal,
12402 base_breakpoint_decode_location,
12403 base_breakpoint_explains_signal,
12404 base_breakpoint_after_condition_true,
12405 };
12406
12407 /* Default breakpoint_ops methods. */
12408
12409 static void
12410 bkpt_re_set (struct breakpoint *b)
12411 {
12412 /* FIXME: is this still reachable? */
12413 if (breakpoint_event_location_empty_p (b))
12414 {
12415 /* Anything without a location can't be re-set. */
12416 delete_breakpoint (b);
12417 return;
12418 }
12419
12420 breakpoint_re_set_default (b);
12421 }
12422
12423 static int
12424 bkpt_insert_location (struct bp_location *bl)
12425 {
12426 CORE_ADDR addr = bl->target_info.reqstd_address;
12427
12428 bl->target_info.kind = breakpoint_kind (bl, &addr);
12429 bl->target_info.placed_address = addr;
12430
12431 if (bl->loc_type == bp_loc_hardware_breakpoint)
12432 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12433 else
12434 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12435 }
12436
12437 static int
12438 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12439 {
12440 if (bl->loc_type == bp_loc_hardware_breakpoint)
12441 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12442 else
12443 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12444 }
12445
12446 static int
12447 bkpt_breakpoint_hit (const struct bp_location *bl,
12448 const address_space *aspace, CORE_ADDR bp_addr,
12449 const struct target_waitstatus *ws)
12450 {
12451 if (ws->kind != TARGET_WAITKIND_STOPPED
12452 || ws->value.sig != GDB_SIGNAL_TRAP)
12453 return 0;
12454
12455 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12456 aspace, bp_addr))
12457 return 0;
12458
12459 if (overlay_debugging /* unmapped overlay section */
12460 && section_is_overlay (bl->section)
12461 && !section_is_mapped (bl->section))
12462 return 0;
12463
12464 return 1;
12465 }
12466
12467 static int
12468 dprintf_breakpoint_hit (const struct bp_location *bl,
12469 const address_space *aspace, CORE_ADDR bp_addr,
12470 const struct target_waitstatus *ws)
12471 {
12472 if (dprintf_style == dprintf_style_agent
12473 && target_can_run_breakpoint_commands ())
12474 {
12475 /* An agent-style dprintf never causes a stop. If we see a trap
12476 for this address it must be for a breakpoint that happens to
12477 be set at the same address. */
12478 return 0;
12479 }
12480
12481 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12482 }
12483
12484 static int
12485 bkpt_resources_needed (const struct bp_location *bl)
12486 {
12487 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12488
12489 return 1;
12490 }
12491
12492 static enum print_stop_action
12493 bkpt_print_it (bpstat bs)
12494 {
12495 struct breakpoint *b;
12496 const struct bp_location *bl;
12497 int bp_temp;
12498 struct ui_out *uiout = current_uiout;
12499
12500 gdb_assert (bs->bp_location_at != NULL);
12501
12502 bl = bs->bp_location_at;
12503 b = bs->breakpoint_at;
12504
12505 bp_temp = b->disposition == disp_del;
12506 if (bl->address != bl->requested_address)
12507 breakpoint_adjustment_warning (bl->requested_address,
12508 bl->address,
12509 b->number, 1);
12510 annotate_breakpoint (b->number);
12511 maybe_print_thread_hit_breakpoint (uiout);
12512
12513 if (bp_temp)
12514 uiout->text ("Temporary breakpoint ");
12515 else
12516 uiout->text ("Breakpoint ");
12517 if (uiout->is_mi_like_p ())
12518 {
12519 uiout->field_string ("reason",
12520 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12521 uiout->field_string ("disp", bpdisp_text (b->disposition));
12522 }
12523 uiout->field_int ("bkptno", b->number);
12524 uiout->text (", ");
12525
12526 return PRINT_SRC_AND_LOC;
12527 }
12528
12529 static void
12530 bkpt_print_mention (struct breakpoint *b)
12531 {
12532 if (current_uiout->is_mi_like_p ())
12533 return;
12534
12535 switch (b->type)
12536 {
12537 case bp_breakpoint:
12538 case bp_gnu_ifunc_resolver:
12539 if (b->disposition == disp_del)
12540 printf_filtered (_("Temporary breakpoint"));
12541 else
12542 printf_filtered (_("Breakpoint"));
12543 printf_filtered (_(" %d"), b->number);
12544 if (b->type == bp_gnu_ifunc_resolver)
12545 printf_filtered (_(" at gnu-indirect-function resolver"));
12546 break;
12547 case bp_hardware_breakpoint:
12548 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12549 break;
12550 case bp_dprintf:
12551 printf_filtered (_("Dprintf %d"), b->number);
12552 break;
12553 }
12554
12555 say_where (b);
12556 }
12557
12558 static void
12559 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12560 {
12561 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12562 fprintf_unfiltered (fp, "tbreak");
12563 else if (tp->type == bp_breakpoint)
12564 fprintf_unfiltered (fp, "break");
12565 else if (tp->type == bp_hardware_breakpoint
12566 && tp->disposition == disp_del)
12567 fprintf_unfiltered (fp, "thbreak");
12568 else if (tp->type == bp_hardware_breakpoint)
12569 fprintf_unfiltered (fp, "hbreak");
12570 else
12571 internal_error (__FILE__, __LINE__,
12572 _("unhandled breakpoint type %d"), (int) tp->type);
12573
12574 fprintf_unfiltered (fp, " %s",
12575 event_location_to_string (tp->location.get ()));
12576
12577 /* Print out extra_string if this breakpoint is pending. It might
12578 contain, for example, conditions that were set by the user. */
12579 if (tp->loc == NULL && tp->extra_string != NULL)
12580 fprintf_unfiltered (fp, " %s", tp->extra_string);
12581
12582 print_recreate_thread (tp, fp);
12583 }
12584
12585 static void
12586 bkpt_create_sals_from_location (const struct event_location *location,
12587 struct linespec_result *canonical,
12588 enum bptype type_wanted)
12589 {
12590 create_sals_from_location_default (location, canonical, type_wanted);
12591 }
12592
12593 static void
12594 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12595 struct linespec_result *canonical,
12596 gdb::unique_xmalloc_ptr<char> cond_string,
12597 gdb::unique_xmalloc_ptr<char> extra_string,
12598 enum bptype type_wanted,
12599 enum bpdisp disposition,
12600 int thread,
12601 int task, int ignore_count,
12602 const struct breakpoint_ops *ops,
12603 int from_tty, int enabled,
12604 int internal, unsigned flags)
12605 {
12606 create_breakpoints_sal_default (gdbarch, canonical,
12607 std::move (cond_string),
12608 std::move (extra_string),
12609 type_wanted,
12610 disposition, thread, task,
12611 ignore_count, ops, from_tty,
12612 enabled, internal, flags);
12613 }
12614
12615 static std::vector<symtab_and_line>
12616 bkpt_decode_location (struct breakpoint *b,
12617 const struct event_location *location,
12618 struct program_space *search_pspace)
12619 {
12620 return decode_location_default (b, location, search_pspace);
12621 }
12622
12623 /* Virtual table for internal breakpoints. */
12624
12625 static void
12626 internal_bkpt_re_set (struct breakpoint *b)
12627 {
12628 switch (b->type)
12629 {
12630 /* Delete overlay event and longjmp master breakpoints; they
12631 will be reset later by breakpoint_re_set. */
12632 case bp_overlay_event:
12633 case bp_longjmp_master:
12634 case bp_std_terminate_master:
12635 case bp_exception_master:
12636 delete_breakpoint (b);
12637 break;
12638
12639 /* This breakpoint is special, it's set up when the inferior
12640 starts and we really don't want to touch it. */
12641 case bp_shlib_event:
12642
12643 /* Like bp_shlib_event, this breakpoint type is special. Once
12644 it is set up, we do not want to touch it. */
12645 case bp_thread_event:
12646 break;
12647 }
12648 }
12649
12650 static void
12651 internal_bkpt_check_status (bpstat bs)
12652 {
12653 if (bs->breakpoint_at->type == bp_shlib_event)
12654 {
12655 /* If requested, stop when the dynamic linker notifies GDB of
12656 events. This allows the user to get control and place
12657 breakpoints in initializer routines for dynamically loaded
12658 objects (among other things). */
12659 bs->stop = stop_on_solib_events;
12660 bs->print = stop_on_solib_events;
12661 }
12662 else
12663 bs->stop = 0;
12664 }
12665
12666 static enum print_stop_action
12667 internal_bkpt_print_it (bpstat bs)
12668 {
12669 struct breakpoint *b;
12670
12671 b = bs->breakpoint_at;
12672
12673 switch (b->type)
12674 {
12675 case bp_shlib_event:
12676 /* Did we stop because the user set the stop_on_solib_events
12677 variable? (If so, we report this as a generic, "Stopped due
12678 to shlib event" message.) */
12679 print_solib_event (0);
12680 break;
12681
12682 case bp_thread_event:
12683 /* Not sure how we will get here.
12684 GDB should not stop for these breakpoints. */
12685 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12686 break;
12687
12688 case bp_overlay_event:
12689 /* By analogy with the thread event, GDB should not stop for these. */
12690 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12691 break;
12692
12693 case bp_longjmp_master:
12694 /* These should never be enabled. */
12695 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12696 break;
12697
12698 case bp_std_terminate_master:
12699 /* These should never be enabled. */
12700 printf_filtered (_("std::terminate Master Breakpoint: "
12701 "gdb should not stop!\n"));
12702 break;
12703
12704 case bp_exception_master:
12705 /* These should never be enabled. */
12706 printf_filtered (_("Exception Master Breakpoint: "
12707 "gdb should not stop!\n"));
12708 break;
12709 }
12710
12711 return PRINT_NOTHING;
12712 }
12713
12714 static void
12715 internal_bkpt_print_mention (struct breakpoint *b)
12716 {
12717 /* Nothing to mention. These breakpoints are internal. */
12718 }
12719
12720 /* Virtual table for momentary breakpoints */
12721
12722 static void
12723 momentary_bkpt_re_set (struct breakpoint *b)
12724 {
12725 /* Keep temporary breakpoints, which can be encountered when we step
12726 over a dlopen call and solib_add is resetting the breakpoints.
12727 Otherwise these should have been blown away via the cleanup chain
12728 or by breakpoint_init_inferior when we rerun the executable. */
12729 }
12730
12731 static void
12732 momentary_bkpt_check_status (bpstat bs)
12733 {
12734 /* Nothing. The point of these breakpoints is causing a stop. */
12735 }
12736
12737 static enum print_stop_action
12738 momentary_bkpt_print_it (bpstat bs)
12739 {
12740 return PRINT_UNKNOWN;
12741 }
12742
12743 static void
12744 momentary_bkpt_print_mention (struct breakpoint *b)
12745 {
12746 /* Nothing to mention. These breakpoints are internal. */
12747 }
12748
12749 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12750
12751 It gets cleared already on the removal of the first one of such placed
12752 breakpoints. This is OK as they get all removed altogether. */
12753
12754 longjmp_breakpoint::~longjmp_breakpoint ()
12755 {
12756 thread_info *tp = find_thread_global_id (this->thread);
12757
12758 if (tp != NULL)
12759 tp->initiating_frame = null_frame_id;
12760 }
12761
12762 /* Specific methods for probe breakpoints. */
12763
12764 static int
12765 bkpt_probe_insert_location (struct bp_location *bl)
12766 {
12767 int v = bkpt_insert_location (bl);
12768
12769 if (v == 0)
12770 {
12771 /* The insertion was successful, now let's set the probe's semaphore
12772 if needed. */
12773 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12774 }
12775
12776 return v;
12777 }
12778
12779 static int
12780 bkpt_probe_remove_location (struct bp_location *bl,
12781 enum remove_bp_reason reason)
12782 {
12783 /* Let's clear the semaphore before removing the location. */
12784 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12785
12786 return bkpt_remove_location (bl, reason);
12787 }
12788
12789 static void
12790 bkpt_probe_create_sals_from_location (const struct event_location *location,
12791 struct linespec_result *canonical,
12792 enum bptype type_wanted)
12793 {
12794 struct linespec_sals lsal;
12795
12796 lsal.sals = parse_probes (location, NULL, canonical);
12797 lsal.canonical
12798 = xstrdup (event_location_to_string (canonical->location.get ()));
12799 canonical->lsals.push_back (std::move (lsal));
12800 }
12801
12802 static std::vector<symtab_and_line>
12803 bkpt_probe_decode_location (struct breakpoint *b,
12804 const struct event_location *location,
12805 struct program_space *search_pspace)
12806 {
12807 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12808 if (sals.empty ())
12809 error (_("probe not found"));
12810 return sals;
12811 }
12812
12813 /* The breakpoint_ops structure to be used in tracepoints. */
12814
12815 static void
12816 tracepoint_re_set (struct breakpoint *b)
12817 {
12818 breakpoint_re_set_default (b);
12819 }
12820
12821 static int
12822 tracepoint_breakpoint_hit (const struct bp_location *bl,
12823 const address_space *aspace, CORE_ADDR bp_addr,
12824 const struct target_waitstatus *ws)
12825 {
12826 /* By definition, the inferior does not report stops at
12827 tracepoints. */
12828 return 0;
12829 }
12830
12831 static void
12832 tracepoint_print_one_detail (const struct breakpoint *self,
12833 struct ui_out *uiout)
12834 {
12835 struct tracepoint *tp = (struct tracepoint *) self;
12836 if (!tp->static_trace_marker_id.empty ())
12837 {
12838 gdb_assert (self->type == bp_static_tracepoint);
12839
12840 uiout->text ("\tmarker id is ");
12841 uiout->field_string ("static-tracepoint-marker-string-id",
12842 tp->static_trace_marker_id);
12843 uiout->text ("\n");
12844 }
12845 }
12846
12847 static void
12848 tracepoint_print_mention (struct breakpoint *b)
12849 {
12850 if (current_uiout->is_mi_like_p ())
12851 return;
12852
12853 switch (b->type)
12854 {
12855 case bp_tracepoint:
12856 printf_filtered (_("Tracepoint"));
12857 printf_filtered (_(" %d"), b->number);
12858 break;
12859 case bp_fast_tracepoint:
12860 printf_filtered (_("Fast tracepoint"));
12861 printf_filtered (_(" %d"), b->number);
12862 break;
12863 case bp_static_tracepoint:
12864 printf_filtered (_("Static tracepoint"));
12865 printf_filtered (_(" %d"), b->number);
12866 break;
12867 default:
12868 internal_error (__FILE__, __LINE__,
12869 _("unhandled tracepoint type %d"), (int) b->type);
12870 }
12871
12872 say_where (b);
12873 }
12874
12875 static void
12876 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12877 {
12878 struct tracepoint *tp = (struct tracepoint *) self;
12879
12880 if (self->type == bp_fast_tracepoint)
12881 fprintf_unfiltered (fp, "ftrace");
12882 else if (self->type == bp_static_tracepoint)
12883 fprintf_unfiltered (fp, "strace");
12884 else if (self->type == bp_tracepoint)
12885 fprintf_unfiltered (fp, "trace");
12886 else
12887 internal_error (__FILE__, __LINE__,
12888 _("unhandled tracepoint type %d"), (int) self->type);
12889
12890 fprintf_unfiltered (fp, " %s",
12891 event_location_to_string (self->location.get ()));
12892 print_recreate_thread (self, fp);
12893
12894 if (tp->pass_count)
12895 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12896 }
12897
12898 static void
12899 tracepoint_create_sals_from_location (const struct event_location *location,
12900 struct linespec_result *canonical,
12901 enum bptype type_wanted)
12902 {
12903 create_sals_from_location_default (location, canonical, type_wanted);
12904 }
12905
12906 static void
12907 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12908 struct linespec_result *canonical,
12909 gdb::unique_xmalloc_ptr<char> cond_string,
12910 gdb::unique_xmalloc_ptr<char> extra_string,
12911 enum bptype type_wanted,
12912 enum bpdisp disposition,
12913 int thread,
12914 int task, int ignore_count,
12915 const struct breakpoint_ops *ops,
12916 int from_tty, int enabled,
12917 int internal, unsigned flags)
12918 {
12919 create_breakpoints_sal_default (gdbarch, canonical,
12920 std::move (cond_string),
12921 std::move (extra_string),
12922 type_wanted,
12923 disposition, thread, task,
12924 ignore_count, ops, from_tty,
12925 enabled, internal, flags);
12926 }
12927
12928 static std::vector<symtab_and_line>
12929 tracepoint_decode_location (struct breakpoint *b,
12930 const struct event_location *location,
12931 struct program_space *search_pspace)
12932 {
12933 return decode_location_default (b, location, search_pspace);
12934 }
12935
12936 struct breakpoint_ops tracepoint_breakpoint_ops;
12937
12938 /* The breakpoint_ops structure to be use on tracepoints placed in a
12939 static probe. */
12940
12941 static void
12942 tracepoint_probe_create_sals_from_location
12943 (const struct event_location *location,
12944 struct linespec_result *canonical,
12945 enum bptype type_wanted)
12946 {
12947 /* We use the same method for breakpoint on probes. */
12948 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12949 }
12950
12951 static std::vector<symtab_and_line>
12952 tracepoint_probe_decode_location (struct breakpoint *b,
12953 const struct event_location *location,
12954 struct program_space *search_pspace)
12955 {
12956 /* We use the same method for breakpoint on probes. */
12957 return bkpt_probe_decode_location (b, location, search_pspace);
12958 }
12959
12960 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12961
12962 /* Dprintf breakpoint_ops methods. */
12963
12964 static void
12965 dprintf_re_set (struct breakpoint *b)
12966 {
12967 breakpoint_re_set_default (b);
12968
12969 /* extra_string should never be non-NULL for dprintf. */
12970 gdb_assert (b->extra_string != NULL);
12971
12972 /* 1 - connect to target 1, that can run breakpoint commands.
12973 2 - create a dprintf, which resolves fine.
12974 3 - disconnect from target 1
12975 4 - connect to target 2, that can NOT run breakpoint commands.
12976
12977 After steps #3/#4, you'll want the dprintf command list to
12978 be updated, because target 1 and 2 may well return different
12979 answers for target_can_run_breakpoint_commands().
12980 Given absence of finer grained resetting, we get to do
12981 it all the time. */
12982 if (b->extra_string != NULL)
12983 update_dprintf_command_list (b);
12984 }
12985
12986 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12987
12988 static void
12989 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12990 {
12991 fprintf_unfiltered (fp, "dprintf %s,%s",
12992 event_location_to_string (tp->location.get ()),
12993 tp->extra_string);
12994 print_recreate_thread (tp, fp);
12995 }
12996
12997 /* Implement the "after_condition_true" breakpoint_ops method for
12998 dprintf.
12999
13000 dprintf's are implemented with regular commands in their command
13001 list, but we run the commands here instead of before presenting the
13002 stop to the user, as dprintf's don't actually cause a stop. This
13003 also makes it so that the commands of multiple dprintfs at the same
13004 address are all handled. */
13005
13006 static void
13007 dprintf_after_condition_true (struct bpstats *bs)
13008 {
13009 struct bpstats tmp_bs;
13010 struct bpstats *tmp_bs_p = &tmp_bs;
13011
13012 /* dprintf's never cause a stop. This wasn't set in the
13013 check_status hook instead because that would make the dprintf's
13014 condition not be evaluated. */
13015 bs->stop = 0;
13016
13017 /* Run the command list here. Take ownership of it instead of
13018 copying. We never want these commands to run later in
13019 bpstat_do_actions, if a breakpoint that causes a stop happens to
13020 be set at same address as this dprintf, or even if running the
13021 commands here throws. */
13022 tmp_bs.commands = bs->commands;
13023 bs->commands = NULL;
13024
13025 bpstat_do_actions_1 (&tmp_bs_p);
13026
13027 /* 'tmp_bs.commands' will usually be NULL by now, but
13028 bpstat_do_actions_1 may return early without processing the whole
13029 list. */
13030 }
13031
13032 /* The breakpoint_ops structure to be used on static tracepoints with
13033 markers (`-m'). */
13034
13035 static void
13036 strace_marker_create_sals_from_location (const struct event_location *location,
13037 struct linespec_result *canonical,
13038 enum bptype type_wanted)
13039 {
13040 struct linespec_sals lsal;
13041 const char *arg_start, *arg;
13042
13043 arg = arg_start = get_linespec_location (location)->spec_string;
13044 lsal.sals = decode_static_tracepoint_spec (&arg);
13045
13046 std::string str (arg_start, arg - arg_start);
13047 const char *ptr = str.c_str ();
13048 canonical->location
13049 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13050
13051 lsal.canonical
13052 = xstrdup (event_location_to_string (canonical->location.get ()));
13053 canonical->lsals.push_back (std::move (lsal));
13054 }
13055
13056 static void
13057 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13058 struct linespec_result *canonical,
13059 gdb::unique_xmalloc_ptr<char> cond_string,
13060 gdb::unique_xmalloc_ptr<char> extra_string,
13061 enum bptype type_wanted,
13062 enum bpdisp disposition,
13063 int thread,
13064 int task, int ignore_count,
13065 const struct breakpoint_ops *ops,
13066 int from_tty, int enabled,
13067 int internal, unsigned flags)
13068 {
13069 const linespec_sals &lsal = canonical->lsals[0];
13070
13071 /* If the user is creating a static tracepoint by marker id
13072 (strace -m MARKER_ID), then store the sals index, so that
13073 breakpoint_re_set can try to match up which of the newly
13074 found markers corresponds to this one, and, don't try to
13075 expand multiple locations for each sal, given than SALS
13076 already should contain all sals for MARKER_ID. */
13077
13078 for (size_t i = 0; i < lsal.sals.size (); i++)
13079 {
13080 event_location_up location
13081 = copy_event_location (canonical->location.get ());
13082
13083 std::unique_ptr<tracepoint> tp (new tracepoint ());
13084 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13085 std::move (location), NULL,
13086 std::move (cond_string),
13087 std::move (extra_string),
13088 type_wanted, disposition,
13089 thread, task, ignore_count, ops,
13090 from_tty, enabled, internal, flags,
13091 canonical->special_display);
13092 /* Given that its possible to have multiple markers with
13093 the same string id, if the user is creating a static
13094 tracepoint by marker id ("strace -m MARKER_ID"), then
13095 store the sals index, so that breakpoint_re_set can
13096 try to match up which of the newly found markers
13097 corresponds to this one */
13098 tp->static_trace_marker_id_idx = i;
13099
13100 install_breakpoint (internal, std::move (tp), 0);
13101 }
13102 }
13103
13104 static std::vector<symtab_and_line>
13105 strace_marker_decode_location (struct breakpoint *b,
13106 const struct event_location *location,
13107 struct program_space *search_pspace)
13108 {
13109 struct tracepoint *tp = (struct tracepoint *) b;
13110 const char *s = get_linespec_location (location)->spec_string;
13111
13112 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13113 if (sals.size () > tp->static_trace_marker_id_idx)
13114 {
13115 sals[0] = sals[tp->static_trace_marker_id_idx];
13116 sals.resize (1);
13117 return sals;
13118 }
13119 else
13120 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13121 }
13122
13123 static struct breakpoint_ops strace_marker_breakpoint_ops;
13124
13125 static int
13126 strace_marker_p (struct breakpoint *b)
13127 {
13128 return b->ops == &strace_marker_breakpoint_ops;
13129 }
13130
13131 /* Delete a breakpoint and clean up all traces of it in the data
13132 structures. */
13133
13134 void
13135 delete_breakpoint (struct breakpoint *bpt)
13136 {
13137 struct breakpoint *b;
13138
13139 gdb_assert (bpt != NULL);
13140
13141 /* Has this bp already been deleted? This can happen because
13142 multiple lists can hold pointers to bp's. bpstat lists are
13143 especial culprits.
13144
13145 One example of this happening is a watchpoint's scope bp. When
13146 the scope bp triggers, we notice that the watchpoint is out of
13147 scope, and delete it. We also delete its scope bp. But the
13148 scope bp is marked "auto-deleting", and is already on a bpstat.
13149 That bpstat is then checked for auto-deleting bp's, which are
13150 deleted.
13151
13152 A real solution to this problem might involve reference counts in
13153 bp's, and/or giving them pointers back to their referencing
13154 bpstat's, and teaching delete_breakpoint to only free a bp's
13155 storage when no more references were extent. A cheaper bandaid
13156 was chosen. */
13157 if (bpt->type == bp_none)
13158 return;
13159
13160 /* At least avoid this stale reference until the reference counting
13161 of breakpoints gets resolved. */
13162 if (bpt->related_breakpoint != bpt)
13163 {
13164 struct breakpoint *related;
13165 struct watchpoint *w;
13166
13167 if (bpt->type == bp_watchpoint_scope)
13168 w = (struct watchpoint *) bpt->related_breakpoint;
13169 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13170 w = (struct watchpoint *) bpt;
13171 else
13172 w = NULL;
13173 if (w != NULL)
13174 watchpoint_del_at_next_stop (w);
13175
13176 /* Unlink bpt from the bpt->related_breakpoint ring. */
13177 for (related = bpt; related->related_breakpoint != bpt;
13178 related = related->related_breakpoint);
13179 related->related_breakpoint = bpt->related_breakpoint;
13180 bpt->related_breakpoint = bpt;
13181 }
13182
13183 /* watch_command_1 creates a watchpoint but only sets its number if
13184 update_watchpoint succeeds in creating its bp_locations. If there's
13185 a problem in that process, we'll be asked to delete the half-created
13186 watchpoint. In that case, don't announce the deletion. */
13187 if (bpt->number)
13188 gdb::observers::breakpoint_deleted.notify (bpt);
13189
13190 if (breakpoint_chain == bpt)
13191 breakpoint_chain = bpt->next;
13192
13193 ALL_BREAKPOINTS (b)
13194 if (b->next == bpt)
13195 {
13196 b->next = bpt->next;
13197 break;
13198 }
13199
13200 /* Be sure no bpstat's are pointing at the breakpoint after it's
13201 been freed. */
13202 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13203 in all threads for now. Note that we cannot just remove bpstats
13204 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13205 commands are associated with the bpstat; if we remove it here,
13206 then the later call to bpstat_do_actions (&stop_bpstat); in
13207 event-top.c won't do anything, and temporary breakpoints with
13208 commands won't work. */
13209
13210 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13211
13212 /* Now that breakpoint is removed from breakpoint list, update the
13213 global location list. This will remove locations that used to
13214 belong to this breakpoint. Do this before freeing the breakpoint
13215 itself, since remove_breakpoint looks at location's owner. It
13216 might be better design to have location completely
13217 self-contained, but it's not the case now. */
13218 update_global_location_list (UGLL_DONT_INSERT);
13219
13220 /* On the chance that someone will soon try again to delete this
13221 same bp, we mark it as deleted before freeing its storage. */
13222 bpt->type = bp_none;
13223 delete bpt;
13224 }
13225
13226 /* Iterator function to call a user-provided callback function once
13227 for each of B and its related breakpoints. */
13228
13229 static void
13230 iterate_over_related_breakpoints (struct breakpoint *b,
13231 gdb::function_view<void (breakpoint *)> function)
13232 {
13233 struct breakpoint *related;
13234
13235 related = b;
13236 do
13237 {
13238 struct breakpoint *next;
13239
13240 /* FUNCTION may delete RELATED. */
13241 next = related->related_breakpoint;
13242
13243 if (next == related)
13244 {
13245 /* RELATED is the last ring entry. */
13246 function (related);
13247
13248 /* FUNCTION may have deleted it, so we'd never reach back to
13249 B. There's nothing left to do anyway, so just break
13250 out. */
13251 break;
13252 }
13253 else
13254 function (related);
13255
13256 related = next;
13257 }
13258 while (related != b);
13259 }
13260
13261 static void
13262 delete_command (const char *arg, int from_tty)
13263 {
13264 struct breakpoint *b, *b_tmp;
13265
13266 dont_repeat ();
13267
13268 if (arg == 0)
13269 {
13270 int breaks_to_delete = 0;
13271
13272 /* Delete all breakpoints if no argument. Do not delete
13273 internal breakpoints, these have to be deleted with an
13274 explicit breakpoint number argument. */
13275 ALL_BREAKPOINTS (b)
13276 if (user_breakpoint_p (b))
13277 {
13278 breaks_to_delete = 1;
13279 break;
13280 }
13281
13282 /* Ask user only if there are some breakpoints to delete. */
13283 if (!from_tty
13284 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13285 {
13286 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13287 if (user_breakpoint_p (b))
13288 delete_breakpoint (b);
13289 }
13290 }
13291 else
13292 map_breakpoint_numbers
13293 (arg, [&] (breakpoint *b)
13294 {
13295 iterate_over_related_breakpoints (b, delete_breakpoint);
13296 });
13297 }
13298
13299 /* Return true if all locations of B bound to PSPACE are pending. If
13300 PSPACE is NULL, all locations of all program spaces are
13301 considered. */
13302
13303 static int
13304 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13305 {
13306 struct bp_location *loc;
13307
13308 for (loc = b->loc; loc != NULL; loc = loc->next)
13309 if ((pspace == NULL
13310 || loc->pspace == pspace)
13311 && !loc->shlib_disabled
13312 && !loc->pspace->executing_startup)
13313 return 0;
13314 return 1;
13315 }
13316
13317 /* Subroutine of update_breakpoint_locations to simplify it.
13318 Return non-zero if multiple fns in list LOC have the same name.
13319 Null names are ignored. */
13320
13321 static int
13322 ambiguous_names_p (struct bp_location *loc)
13323 {
13324 struct bp_location *l;
13325 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13326 xcalloc, xfree);
13327
13328 for (l = loc; l != NULL; l = l->next)
13329 {
13330 const char **slot;
13331 const char *name = l->function_name;
13332
13333 /* Allow for some names to be NULL, ignore them. */
13334 if (name == NULL)
13335 continue;
13336
13337 slot = (const char **) htab_find_slot (htab, (const void *) name,
13338 INSERT);
13339 /* NOTE: We can assume slot != NULL here because xcalloc never
13340 returns NULL. */
13341 if (*slot != NULL)
13342 {
13343 htab_delete (htab);
13344 return 1;
13345 }
13346 *slot = name;
13347 }
13348
13349 htab_delete (htab);
13350 return 0;
13351 }
13352
13353 /* When symbols change, it probably means the sources changed as well,
13354 and it might mean the static tracepoint markers are no longer at
13355 the same address or line numbers they used to be at last we
13356 checked. Losing your static tracepoints whenever you rebuild is
13357 undesirable. This function tries to resync/rematch gdb static
13358 tracepoints with the markers on the target, for static tracepoints
13359 that have not been set by marker id. Static tracepoint that have
13360 been set by marker id are reset by marker id in breakpoint_re_set.
13361 The heuristic is:
13362
13363 1) For a tracepoint set at a specific address, look for a marker at
13364 the old PC. If one is found there, assume to be the same marker.
13365 If the name / string id of the marker found is different from the
13366 previous known name, assume that means the user renamed the marker
13367 in the sources, and output a warning.
13368
13369 2) For a tracepoint set at a given line number, look for a marker
13370 at the new address of the old line number. If one is found there,
13371 assume to be the same marker. If the name / string id of the
13372 marker found is different from the previous known name, assume that
13373 means the user renamed the marker in the sources, and output a
13374 warning.
13375
13376 3) If a marker is no longer found at the same address or line, it
13377 may mean the marker no longer exists. But it may also just mean
13378 the code changed a bit. Maybe the user added a few lines of code
13379 that made the marker move up or down (in line number terms). Ask
13380 the target for info about the marker with the string id as we knew
13381 it. If found, update line number and address in the matching
13382 static tracepoint. This will get confused if there's more than one
13383 marker with the same ID (possible in UST, although unadvised
13384 precisely because it confuses tools). */
13385
13386 static struct symtab_and_line
13387 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13388 {
13389 struct tracepoint *tp = (struct tracepoint *) b;
13390 struct static_tracepoint_marker marker;
13391 CORE_ADDR pc;
13392
13393 pc = sal.pc;
13394 if (sal.line)
13395 find_line_pc (sal.symtab, sal.line, &pc);
13396
13397 if (target_static_tracepoint_marker_at (pc, &marker))
13398 {
13399 if (tp->static_trace_marker_id != marker.str_id)
13400 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13401 b->number, tp->static_trace_marker_id.c_str (),
13402 marker.str_id.c_str ());
13403
13404 tp->static_trace_marker_id = std::move (marker.str_id);
13405
13406 return sal;
13407 }
13408
13409 /* Old marker wasn't found on target at lineno. Try looking it up
13410 by string ID. */
13411 if (!sal.explicit_pc
13412 && sal.line != 0
13413 && sal.symtab != NULL
13414 && !tp->static_trace_marker_id.empty ())
13415 {
13416 std::vector<static_tracepoint_marker> markers
13417 = target_static_tracepoint_markers_by_strid
13418 (tp->static_trace_marker_id.c_str ());
13419
13420 if (!markers.empty ())
13421 {
13422 struct symbol *sym;
13423 struct static_tracepoint_marker *tpmarker;
13424 struct ui_out *uiout = current_uiout;
13425 struct explicit_location explicit_loc;
13426
13427 tpmarker = &markers[0];
13428
13429 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13430
13431 warning (_("marker for static tracepoint %d (%s) not "
13432 "found at previous line number"),
13433 b->number, tp->static_trace_marker_id.c_str ());
13434
13435 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13436 sym = find_pc_sect_function (tpmarker->address, NULL);
13437 uiout->text ("Now in ");
13438 if (sym)
13439 {
13440 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13441 uiout->text (" at ");
13442 }
13443 uiout->field_string ("file",
13444 symtab_to_filename_for_display (sal2.symtab));
13445 uiout->text (":");
13446
13447 if (uiout->is_mi_like_p ())
13448 {
13449 const char *fullname = symtab_to_fullname (sal2.symtab);
13450
13451 uiout->field_string ("fullname", fullname);
13452 }
13453
13454 uiout->field_int ("line", sal2.line);
13455 uiout->text ("\n");
13456
13457 b->loc->line_number = sal2.line;
13458 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13459
13460 b->location.reset (NULL);
13461 initialize_explicit_location (&explicit_loc);
13462 explicit_loc.source_filename
13463 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13464 explicit_loc.line_offset.offset = b->loc->line_number;
13465 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13466 b->location = new_explicit_location (&explicit_loc);
13467
13468 /* Might be nice to check if function changed, and warn if
13469 so. */
13470 }
13471 }
13472 return sal;
13473 }
13474
13475 /* Returns 1 iff locations A and B are sufficiently same that
13476 we don't need to report breakpoint as changed. */
13477
13478 static int
13479 locations_are_equal (struct bp_location *a, struct bp_location *b)
13480 {
13481 while (a && b)
13482 {
13483 if (a->address != b->address)
13484 return 0;
13485
13486 if (a->shlib_disabled != b->shlib_disabled)
13487 return 0;
13488
13489 if (a->enabled != b->enabled)
13490 return 0;
13491
13492 a = a->next;
13493 b = b->next;
13494 }
13495
13496 if ((a == NULL) != (b == NULL))
13497 return 0;
13498
13499 return 1;
13500 }
13501
13502 /* Split all locations of B that are bound to PSPACE out of B's
13503 location list to a separate list and return that list's head. If
13504 PSPACE is NULL, hoist out all locations of B. */
13505
13506 static struct bp_location *
13507 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13508 {
13509 struct bp_location head;
13510 struct bp_location *i = b->loc;
13511 struct bp_location **i_link = &b->loc;
13512 struct bp_location *hoisted = &head;
13513
13514 if (pspace == NULL)
13515 {
13516 i = b->loc;
13517 b->loc = NULL;
13518 return i;
13519 }
13520
13521 head.next = NULL;
13522
13523 while (i != NULL)
13524 {
13525 if (i->pspace == pspace)
13526 {
13527 *i_link = i->next;
13528 i->next = NULL;
13529 hoisted->next = i;
13530 hoisted = i;
13531 }
13532 else
13533 i_link = &i->next;
13534 i = *i_link;
13535 }
13536
13537 return head.next;
13538 }
13539
13540 /* Create new breakpoint locations for B (a hardware or software
13541 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13542 zero, then B is a ranged breakpoint. Only recreates locations for
13543 FILTER_PSPACE. Locations of other program spaces are left
13544 untouched. */
13545
13546 void
13547 update_breakpoint_locations (struct breakpoint *b,
13548 struct program_space *filter_pspace,
13549 gdb::array_view<const symtab_and_line> sals,
13550 gdb::array_view<const symtab_and_line> sals_end)
13551 {
13552 struct bp_location *existing_locations;
13553
13554 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13555 {
13556 /* Ranged breakpoints have only one start location and one end
13557 location. */
13558 b->enable_state = bp_disabled;
13559 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13560 "multiple locations found\n"),
13561 b->number);
13562 return;
13563 }
13564
13565 /* If there's no new locations, and all existing locations are
13566 pending, don't do anything. This optimizes the common case where
13567 all locations are in the same shared library, that was unloaded.
13568 We'd like to retain the location, so that when the library is
13569 loaded again, we don't loose the enabled/disabled status of the
13570 individual locations. */
13571 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13572 return;
13573
13574 existing_locations = hoist_existing_locations (b, filter_pspace);
13575
13576 for (const auto &sal : sals)
13577 {
13578 struct bp_location *new_loc;
13579
13580 switch_to_program_space_and_thread (sal.pspace);
13581
13582 new_loc = add_location_to_breakpoint (b, &sal);
13583
13584 /* Reparse conditions, they might contain references to the
13585 old symtab. */
13586 if (b->cond_string != NULL)
13587 {
13588 const char *s;
13589
13590 s = b->cond_string;
13591 TRY
13592 {
13593 new_loc->cond = parse_exp_1 (&s, sal.pc,
13594 block_for_pc (sal.pc),
13595 0);
13596 }
13597 CATCH (e, RETURN_MASK_ERROR)
13598 {
13599 warning (_("failed to reevaluate condition "
13600 "for breakpoint %d: %s"),
13601 b->number, e.message);
13602 new_loc->enabled = 0;
13603 }
13604 END_CATCH
13605 }
13606
13607 if (!sals_end.empty ())
13608 {
13609 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13610
13611 new_loc->length = end - sals[0].pc + 1;
13612 }
13613 }
13614
13615 /* If possible, carry over 'disable' status from existing
13616 breakpoints. */
13617 {
13618 struct bp_location *e = existing_locations;
13619 /* If there are multiple breakpoints with the same function name,
13620 e.g. for inline functions, comparing function names won't work.
13621 Instead compare pc addresses; this is just a heuristic as things
13622 may have moved, but in practice it gives the correct answer
13623 often enough until a better solution is found. */
13624 int have_ambiguous_names = ambiguous_names_p (b->loc);
13625
13626 for (; e; e = e->next)
13627 {
13628 if (!e->enabled && e->function_name)
13629 {
13630 struct bp_location *l = b->loc;
13631 if (have_ambiguous_names)
13632 {
13633 for (; l; l = l->next)
13634 if (breakpoint_locations_match (e, l))
13635 {
13636 l->enabled = 0;
13637 break;
13638 }
13639 }
13640 else
13641 {
13642 for (; l; l = l->next)
13643 if (l->function_name
13644 && strcmp (e->function_name, l->function_name) == 0)
13645 {
13646 l->enabled = 0;
13647 break;
13648 }
13649 }
13650 }
13651 }
13652 }
13653
13654 if (!locations_are_equal (existing_locations, b->loc))
13655 gdb::observers::breakpoint_modified.notify (b);
13656 }
13657
13658 /* Find the SaL locations corresponding to the given LOCATION.
13659 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13660
13661 static std::vector<symtab_and_line>
13662 location_to_sals (struct breakpoint *b, struct event_location *location,
13663 struct program_space *search_pspace, int *found)
13664 {
13665 struct gdb_exception exception = exception_none;
13666
13667 gdb_assert (b->ops != NULL);
13668
13669 std::vector<symtab_and_line> sals;
13670
13671 TRY
13672 {
13673 sals = b->ops->decode_location (b, location, search_pspace);
13674 }
13675 CATCH (e, RETURN_MASK_ERROR)
13676 {
13677 int not_found_and_ok = 0;
13678
13679 exception = e;
13680
13681 /* For pending breakpoints, it's expected that parsing will
13682 fail until the right shared library is loaded. User has
13683 already told to create pending breakpoints and don't need
13684 extra messages. If breakpoint is in bp_shlib_disabled
13685 state, then user already saw the message about that
13686 breakpoint being disabled, and don't want to see more
13687 errors. */
13688 if (e.error == NOT_FOUND_ERROR
13689 && (b->condition_not_parsed
13690 || (b->loc != NULL
13691 && search_pspace != NULL
13692 && b->loc->pspace != search_pspace)
13693 || (b->loc && b->loc->shlib_disabled)
13694 || (b->loc && b->loc->pspace->executing_startup)
13695 || b->enable_state == bp_disabled))
13696 not_found_and_ok = 1;
13697
13698 if (!not_found_and_ok)
13699 {
13700 /* We surely don't want to warn about the same breakpoint
13701 10 times. One solution, implemented here, is disable
13702 the breakpoint on error. Another solution would be to
13703 have separate 'warning emitted' flag. Since this
13704 happens only when a binary has changed, I don't know
13705 which approach is better. */
13706 b->enable_state = bp_disabled;
13707 throw_exception (e);
13708 }
13709 }
13710 END_CATCH
13711
13712 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13713 {
13714 for (auto &sal : sals)
13715 resolve_sal_pc (&sal);
13716 if (b->condition_not_parsed && b->extra_string != NULL)
13717 {
13718 char *cond_string, *extra_string;
13719 int thread, task;
13720
13721 find_condition_and_thread (b->extra_string, sals[0].pc,
13722 &cond_string, &thread, &task,
13723 &extra_string);
13724 gdb_assert (b->cond_string == NULL);
13725 if (cond_string)
13726 b->cond_string = cond_string;
13727 b->thread = thread;
13728 b->task = task;
13729 if (extra_string)
13730 {
13731 xfree (b->extra_string);
13732 b->extra_string = extra_string;
13733 }
13734 b->condition_not_parsed = 0;
13735 }
13736
13737 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13738 sals[0] = update_static_tracepoint (b, sals[0]);
13739
13740 *found = 1;
13741 }
13742 else
13743 *found = 0;
13744
13745 return sals;
13746 }
13747
13748 /* The default re_set method, for typical hardware or software
13749 breakpoints. Reevaluate the breakpoint and recreate its
13750 locations. */
13751
13752 static void
13753 breakpoint_re_set_default (struct breakpoint *b)
13754 {
13755 struct program_space *filter_pspace = current_program_space;
13756 std::vector<symtab_and_line> expanded, expanded_end;
13757
13758 int found;
13759 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13760 filter_pspace, &found);
13761 if (found)
13762 expanded = std::move (sals);
13763
13764 if (b->location_range_end != NULL)
13765 {
13766 std::vector<symtab_and_line> sals_end
13767 = location_to_sals (b, b->location_range_end.get (),
13768 filter_pspace, &found);
13769 if (found)
13770 expanded_end = std::move (sals_end);
13771 }
13772
13773 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13774 }
13775
13776 /* Default method for creating SALs from an address string. It basically
13777 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13778
13779 static void
13780 create_sals_from_location_default (const struct event_location *location,
13781 struct linespec_result *canonical,
13782 enum bptype type_wanted)
13783 {
13784 parse_breakpoint_sals (location, canonical);
13785 }
13786
13787 /* Call create_breakpoints_sal for the given arguments. This is the default
13788 function for the `create_breakpoints_sal' method of
13789 breakpoint_ops. */
13790
13791 static void
13792 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13793 struct linespec_result *canonical,
13794 gdb::unique_xmalloc_ptr<char> cond_string,
13795 gdb::unique_xmalloc_ptr<char> extra_string,
13796 enum bptype type_wanted,
13797 enum bpdisp disposition,
13798 int thread,
13799 int task, int ignore_count,
13800 const struct breakpoint_ops *ops,
13801 int from_tty, int enabled,
13802 int internal, unsigned flags)
13803 {
13804 create_breakpoints_sal (gdbarch, canonical,
13805 std::move (cond_string),
13806 std::move (extra_string),
13807 type_wanted, disposition,
13808 thread, task, ignore_count, ops, from_tty,
13809 enabled, internal, flags);
13810 }
13811
13812 /* Decode the line represented by S by calling decode_line_full. This is the
13813 default function for the `decode_location' method of breakpoint_ops. */
13814
13815 static std::vector<symtab_and_line>
13816 decode_location_default (struct breakpoint *b,
13817 const struct event_location *location,
13818 struct program_space *search_pspace)
13819 {
13820 struct linespec_result canonical;
13821
13822 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13823 (struct symtab *) NULL, 0,
13824 &canonical, multiple_symbols_all,
13825 b->filter);
13826
13827 /* We should get 0 or 1 resulting SALs. */
13828 gdb_assert (canonical.lsals.size () < 2);
13829
13830 if (!canonical.lsals.empty ())
13831 {
13832 const linespec_sals &lsal = canonical.lsals[0];
13833 return std::move (lsal.sals);
13834 }
13835 return {};
13836 }
13837
13838 /* Reset a breakpoint. */
13839
13840 static void
13841 breakpoint_re_set_one (breakpoint *b)
13842 {
13843 input_radix = b->input_radix;
13844 set_language (b->language);
13845
13846 b->ops->re_set (b);
13847 }
13848
13849 /* Re-set breakpoint locations for the current program space.
13850 Locations bound to other program spaces are left untouched. */
13851
13852 void
13853 breakpoint_re_set (void)
13854 {
13855 struct breakpoint *b, *b_tmp;
13856
13857 {
13858 scoped_restore_current_language save_language;
13859 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13860 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13861
13862 /* breakpoint_re_set_one sets the current_language to the language
13863 of the breakpoint it is resetting (see prepare_re_set_context)
13864 before re-evaluating the breakpoint's location. This change can
13865 unfortunately get undone by accident if the language_mode is set
13866 to auto, and we either switch frames, or more likely in this context,
13867 we select the current frame.
13868
13869 We prevent this by temporarily turning the language_mode to
13870 language_mode_manual. We restore it once all breakpoints
13871 have been reset. */
13872 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13873 language_mode = language_mode_manual;
13874
13875 /* Note: we must not try to insert locations until after all
13876 breakpoints have been re-set. Otherwise, e.g., when re-setting
13877 breakpoint 1, we'd insert the locations of breakpoint 2, which
13878 hadn't been re-set yet, and thus may have stale locations. */
13879
13880 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13881 {
13882 TRY
13883 {
13884 breakpoint_re_set_one (b);
13885 }
13886 CATCH (ex, RETURN_MASK_ALL)
13887 {
13888 exception_fprintf (gdb_stderr, ex,
13889 "Error in re-setting breakpoint %d: ",
13890 b->number);
13891 }
13892 END_CATCH
13893 }
13894
13895 jit_breakpoint_re_set ();
13896 }
13897
13898 create_overlay_event_breakpoint ();
13899 create_longjmp_master_breakpoint ();
13900 create_std_terminate_master_breakpoint ();
13901 create_exception_master_breakpoint ();
13902
13903 /* Now we can insert. */
13904 update_global_location_list (UGLL_MAY_INSERT);
13905 }
13906 \f
13907 /* Reset the thread number of this breakpoint:
13908
13909 - If the breakpoint is for all threads, leave it as-is.
13910 - Else, reset it to the current thread for inferior_ptid. */
13911 void
13912 breakpoint_re_set_thread (struct breakpoint *b)
13913 {
13914 if (b->thread != -1)
13915 {
13916 b->thread = inferior_thread ()->global_num;
13917
13918 /* We're being called after following a fork. The new fork is
13919 selected as current, and unless this was a vfork will have a
13920 different program space from the original thread. Reset that
13921 as well. */
13922 b->loc->pspace = current_program_space;
13923 }
13924 }
13925
13926 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13927 If from_tty is nonzero, it prints a message to that effect,
13928 which ends with a period (no newline). */
13929
13930 void
13931 set_ignore_count (int bptnum, int count, int from_tty)
13932 {
13933 struct breakpoint *b;
13934
13935 if (count < 0)
13936 count = 0;
13937
13938 ALL_BREAKPOINTS (b)
13939 if (b->number == bptnum)
13940 {
13941 if (is_tracepoint (b))
13942 {
13943 if (from_tty && count != 0)
13944 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13945 bptnum);
13946 return;
13947 }
13948
13949 b->ignore_count = count;
13950 if (from_tty)
13951 {
13952 if (count == 0)
13953 printf_filtered (_("Will stop next time "
13954 "breakpoint %d is reached."),
13955 bptnum);
13956 else if (count == 1)
13957 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13958 bptnum);
13959 else
13960 printf_filtered (_("Will ignore next %d "
13961 "crossings of breakpoint %d."),
13962 count, bptnum);
13963 }
13964 gdb::observers::breakpoint_modified.notify (b);
13965 return;
13966 }
13967
13968 error (_("No breakpoint number %d."), bptnum);
13969 }
13970
13971 /* Command to set ignore-count of breakpoint N to COUNT. */
13972
13973 static void
13974 ignore_command (const char *args, int from_tty)
13975 {
13976 const char *p = args;
13977 int num;
13978
13979 if (p == 0)
13980 error_no_arg (_("a breakpoint number"));
13981
13982 num = get_number (&p);
13983 if (num == 0)
13984 error (_("bad breakpoint number: '%s'"), args);
13985 if (*p == 0)
13986 error (_("Second argument (specified ignore-count) is missing."));
13987
13988 set_ignore_count (num,
13989 longest_to_int (value_as_long (parse_and_eval (p))),
13990 from_tty);
13991 if (from_tty)
13992 printf_filtered ("\n");
13993 }
13994 \f
13995
13996 /* Call FUNCTION on each of the breakpoints with numbers in the range
13997 defined by BP_NUM_RANGE (an inclusive range). */
13998
13999 static void
14000 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14001 gdb::function_view<void (breakpoint *)> function)
14002 {
14003 if (bp_num_range.first == 0)
14004 {
14005 warning (_("bad breakpoint number at or near '%d'"),
14006 bp_num_range.first);
14007 }
14008 else
14009 {
14010 struct breakpoint *b, *tmp;
14011
14012 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14013 {
14014 bool match = false;
14015
14016 ALL_BREAKPOINTS_SAFE (b, tmp)
14017 if (b->number == i)
14018 {
14019 match = true;
14020 function (b);
14021 break;
14022 }
14023 if (!match)
14024 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14025 }
14026 }
14027 }
14028
14029 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14030 ARGS. */
14031
14032 static void
14033 map_breakpoint_numbers (const char *args,
14034 gdb::function_view<void (breakpoint *)> function)
14035 {
14036 if (args == NULL || *args == '\0')
14037 error_no_arg (_("one or more breakpoint numbers"));
14038
14039 number_or_range_parser parser (args);
14040
14041 while (!parser.finished ())
14042 {
14043 int num = parser.get_number ();
14044 map_breakpoint_number_range (std::make_pair (num, num), function);
14045 }
14046 }
14047
14048 /* Return the breakpoint location structure corresponding to the
14049 BP_NUM and LOC_NUM values. */
14050
14051 static struct bp_location *
14052 find_location_by_number (int bp_num, int loc_num)
14053 {
14054 struct breakpoint *b;
14055
14056 ALL_BREAKPOINTS (b)
14057 if (b->number == bp_num)
14058 {
14059 break;
14060 }
14061
14062 if (!b || b->number != bp_num)
14063 error (_("Bad breakpoint number '%d'"), bp_num);
14064
14065 if (loc_num == 0)
14066 error (_("Bad breakpoint location number '%d'"), loc_num);
14067
14068 int n = 0;
14069 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14070 if (++n == loc_num)
14071 return loc;
14072
14073 error (_("Bad breakpoint location number '%d'"), loc_num);
14074 }
14075
14076 /* Modes of operation for extract_bp_num. */
14077 enum class extract_bp_kind
14078 {
14079 /* Extracting a breakpoint number. */
14080 bp,
14081
14082 /* Extracting a location number. */
14083 loc,
14084 };
14085
14086 /* Extract a breakpoint or location number (as determined by KIND)
14087 from the string starting at START. TRAILER is a character which
14088 can be found after the number. If you don't want a trailer, use
14089 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14090 string. This always returns a positive integer. */
14091
14092 static int
14093 extract_bp_num (extract_bp_kind kind, const char *start,
14094 int trailer, const char **end_out = NULL)
14095 {
14096 const char *end = start;
14097 int num = get_number_trailer (&end, trailer);
14098 if (num < 0)
14099 error (kind == extract_bp_kind::bp
14100 ? _("Negative breakpoint number '%.*s'")
14101 : _("Negative breakpoint location number '%.*s'"),
14102 int (end - start), start);
14103 if (num == 0)
14104 error (kind == extract_bp_kind::bp
14105 ? _("Bad breakpoint number '%.*s'")
14106 : _("Bad breakpoint location number '%.*s'"),
14107 int (end - start), start);
14108
14109 if (end_out != NULL)
14110 *end_out = end;
14111 return num;
14112 }
14113
14114 /* Extract a breakpoint or location range (as determined by KIND) in
14115 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14116 representing the (inclusive) range. The returned pair's elements
14117 are always positive integers. */
14118
14119 static std::pair<int, int>
14120 extract_bp_or_bp_range (extract_bp_kind kind,
14121 const std::string &arg,
14122 std::string::size_type arg_offset)
14123 {
14124 std::pair<int, int> range;
14125 const char *bp_loc = &arg[arg_offset];
14126 std::string::size_type dash = arg.find ('-', arg_offset);
14127 if (dash != std::string::npos)
14128 {
14129 /* bp_loc is a range (x-z). */
14130 if (arg.length () == dash + 1)
14131 error (kind == extract_bp_kind::bp
14132 ? _("Bad breakpoint number at or near: '%s'")
14133 : _("Bad breakpoint location number at or near: '%s'"),
14134 bp_loc);
14135
14136 const char *end;
14137 const char *start_first = bp_loc;
14138 const char *start_second = &arg[dash + 1];
14139 range.first = extract_bp_num (kind, start_first, '-');
14140 range.second = extract_bp_num (kind, start_second, '\0', &end);
14141
14142 if (range.first > range.second)
14143 error (kind == extract_bp_kind::bp
14144 ? _("Inverted breakpoint range at '%.*s'")
14145 : _("Inverted breakpoint location range at '%.*s'"),
14146 int (end - start_first), start_first);
14147 }
14148 else
14149 {
14150 /* bp_loc is a single value. */
14151 range.first = extract_bp_num (kind, bp_loc, '\0');
14152 range.second = range.first;
14153 }
14154 return range;
14155 }
14156
14157 /* Extract the breakpoint/location range specified by ARG. Returns
14158 the breakpoint range in BP_NUM_RANGE, and the location range in
14159 BP_LOC_RANGE.
14160
14161 ARG may be in any of the following forms:
14162
14163 x where 'x' is a breakpoint number.
14164 x-y where 'x' and 'y' specify a breakpoint numbers range.
14165 x.y where 'x' is a breakpoint number and 'y' a location number.
14166 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14167 location number range.
14168 */
14169
14170 static void
14171 extract_bp_number_and_location (const std::string &arg,
14172 std::pair<int, int> &bp_num_range,
14173 std::pair<int, int> &bp_loc_range)
14174 {
14175 std::string::size_type dot = arg.find ('.');
14176
14177 if (dot != std::string::npos)
14178 {
14179 /* Handle 'x.y' and 'x.y-z' cases. */
14180
14181 if (arg.length () == dot + 1 || dot == 0)
14182 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14183
14184 bp_num_range.first
14185 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14186 bp_num_range.second = bp_num_range.first;
14187
14188 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14189 arg, dot + 1);
14190 }
14191 else
14192 {
14193 /* Handle x and x-y cases. */
14194
14195 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14196 bp_loc_range.first = 0;
14197 bp_loc_range.second = 0;
14198 }
14199 }
14200
14201 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14202 specifies whether to enable or disable. */
14203
14204 static void
14205 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14206 {
14207 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14208 if (loc != NULL)
14209 {
14210 if (loc->enabled != enable)
14211 {
14212 loc->enabled = enable;
14213 mark_breakpoint_location_modified (loc);
14214 }
14215 if (target_supports_enable_disable_tracepoint ()
14216 && current_trace_status ()->running && loc->owner
14217 && is_tracepoint (loc->owner))
14218 target_disable_tracepoint (loc);
14219 }
14220 update_global_location_list (UGLL_DONT_INSERT);
14221
14222 gdb::observers::breakpoint_modified.notify (loc->owner);
14223 }
14224
14225 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14226 number of the breakpoint, and BP_LOC_RANGE specifies the
14227 (inclusive) range of location numbers of that breakpoint to
14228 enable/disable. ENABLE specifies whether to enable or disable the
14229 location. */
14230
14231 static void
14232 enable_disable_breakpoint_location_range (int bp_num,
14233 std::pair<int, int> &bp_loc_range,
14234 bool enable)
14235 {
14236 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14237 enable_disable_bp_num_loc (bp_num, i, enable);
14238 }
14239
14240 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14241 If from_tty is nonzero, it prints a message to that effect,
14242 which ends with a period (no newline). */
14243
14244 void
14245 disable_breakpoint (struct breakpoint *bpt)
14246 {
14247 /* Never disable a watchpoint scope breakpoint; we want to
14248 hit them when we leave scope so we can delete both the
14249 watchpoint and its scope breakpoint at that time. */
14250 if (bpt->type == bp_watchpoint_scope)
14251 return;
14252
14253 bpt->enable_state = bp_disabled;
14254
14255 /* Mark breakpoint locations modified. */
14256 mark_breakpoint_modified (bpt);
14257
14258 if (target_supports_enable_disable_tracepoint ()
14259 && current_trace_status ()->running && is_tracepoint (bpt))
14260 {
14261 struct bp_location *location;
14262
14263 for (location = bpt->loc; location; location = location->next)
14264 target_disable_tracepoint (location);
14265 }
14266
14267 update_global_location_list (UGLL_DONT_INSERT);
14268
14269 gdb::observers::breakpoint_modified.notify (bpt);
14270 }
14271
14272 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14273 specified in ARGS. ARGS may be in any of the formats handled by
14274 extract_bp_number_and_location. ENABLE specifies whether to enable
14275 or disable the breakpoints/locations. */
14276
14277 static void
14278 enable_disable_command (const char *args, int from_tty, bool enable)
14279 {
14280 if (args == 0)
14281 {
14282 struct breakpoint *bpt;
14283
14284 ALL_BREAKPOINTS (bpt)
14285 if (user_breakpoint_p (bpt))
14286 {
14287 if (enable)
14288 enable_breakpoint (bpt);
14289 else
14290 disable_breakpoint (bpt);
14291 }
14292 }
14293 else
14294 {
14295 std::string num = extract_arg (&args);
14296
14297 while (!num.empty ())
14298 {
14299 std::pair<int, int> bp_num_range, bp_loc_range;
14300
14301 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14302
14303 if (bp_loc_range.first == bp_loc_range.second
14304 && bp_loc_range.first == 0)
14305 {
14306 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14307 map_breakpoint_number_range (bp_num_range,
14308 enable
14309 ? enable_breakpoint
14310 : disable_breakpoint);
14311 }
14312 else
14313 {
14314 /* Handle breakpoint ids with formats 'x.y' or
14315 'x.y-z'. */
14316 enable_disable_breakpoint_location_range
14317 (bp_num_range.first, bp_loc_range, enable);
14318 }
14319 num = extract_arg (&args);
14320 }
14321 }
14322 }
14323
14324 /* The disable command disables the specified breakpoints/locations
14325 (or all defined breakpoints) so they're no longer effective in
14326 stopping the inferior. ARGS may be in any of the forms defined in
14327 extract_bp_number_and_location. */
14328
14329 static void
14330 disable_command (const char *args, int from_tty)
14331 {
14332 enable_disable_command (args, from_tty, false);
14333 }
14334
14335 static void
14336 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14337 int count)
14338 {
14339 int target_resources_ok;
14340
14341 if (bpt->type == bp_hardware_breakpoint)
14342 {
14343 int i;
14344 i = hw_breakpoint_used_count ();
14345 target_resources_ok =
14346 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14347 i + 1, 0);
14348 if (target_resources_ok == 0)
14349 error (_("No hardware breakpoint support in the target."));
14350 else if (target_resources_ok < 0)
14351 error (_("Hardware breakpoints used exceeds limit."));
14352 }
14353
14354 if (is_watchpoint (bpt))
14355 {
14356 /* Initialize it just to avoid a GCC false warning. */
14357 enum enable_state orig_enable_state = bp_disabled;
14358
14359 TRY
14360 {
14361 struct watchpoint *w = (struct watchpoint *) bpt;
14362
14363 orig_enable_state = bpt->enable_state;
14364 bpt->enable_state = bp_enabled;
14365 update_watchpoint (w, 1 /* reparse */);
14366 }
14367 CATCH (e, RETURN_MASK_ALL)
14368 {
14369 bpt->enable_state = orig_enable_state;
14370 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14371 bpt->number);
14372 return;
14373 }
14374 END_CATCH
14375 }
14376
14377 bpt->enable_state = bp_enabled;
14378
14379 /* Mark breakpoint locations modified. */
14380 mark_breakpoint_modified (bpt);
14381
14382 if (target_supports_enable_disable_tracepoint ()
14383 && current_trace_status ()->running && is_tracepoint (bpt))
14384 {
14385 struct bp_location *location;
14386
14387 for (location = bpt->loc; location; location = location->next)
14388 target_enable_tracepoint (location);
14389 }
14390
14391 bpt->disposition = disposition;
14392 bpt->enable_count = count;
14393 update_global_location_list (UGLL_MAY_INSERT);
14394
14395 gdb::observers::breakpoint_modified.notify (bpt);
14396 }
14397
14398
14399 void
14400 enable_breakpoint (struct breakpoint *bpt)
14401 {
14402 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14403 }
14404
14405 /* The enable command enables the specified breakpoints/locations (or
14406 all defined breakpoints) so they once again become (or continue to
14407 be) effective in stopping the inferior. ARGS may be in any of the
14408 forms defined in extract_bp_number_and_location. */
14409
14410 static void
14411 enable_command (const char *args, int from_tty)
14412 {
14413 enable_disable_command (args, from_tty, true);
14414 }
14415
14416 static void
14417 enable_once_command (const char *args, int from_tty)
14418 {
14419 map_breakpoint_numbers
14420 (args, [&] (breakpoint *b)
14421 {
14422 iterate_over_related_breakpoints
14423 (b, [&] (breakpoint *bpt)
14424 {
14425 enable_breakpoint_disp (bpt, disp_disable, 1);
14426 });
14427 });
14428 }
14429
14430 static void
14431 enable_count_command (const char *args, int from_tty)
14432 {
14433 int count;
14434
14435 if (args == NULL)
14436 error_no_arg (_("hit count"));
14437
14438 count = get_number (&args);
14439
14440 map_breakpoint_numbers
14441 (args, [&] (breakpoint *b)
14442 {
14443 iterate_over_related_breakpoints
14444 (b, [&] (breakpoint *bpt)
14445 {
14446 enable_breakpoint_disp (bpt, disp_disable, count);
14447 });
14448 });
14449 }
14450
14451 static void
14452 enable_delete_command (const char *args, int from_tty)
14453 {
14454 map_breakpoint_numbers
14455 (args, [&] (breakpoint *b)
14456 {
14457 iterate_over_related_breakpoints
14458 (b, [&] (breakpoint *bpt)
14459 {
14460 enable_breakpoint_disp (bpt, disp_del, 1);
14461 });
14462 });
14463 }
14464 \f
14465 static void
14466 set_breakpoint_cmd (const char *args, int from_tty)
14467 {
14468 }
14469
14470 static void
14471 show_breakpoint_cmd (const char *args, int from_tty)
14472 {
14473 }
14474
14475 /* Invalidate last known value of any hardware watchpoint if
14476 the memory which that value represents has been written to by
14477 GDB itself. */
14478
14479 static void
14480 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14481 CORE_ADDR addr, ssize_t len,
14482 const bfd_byte *data)
14483 {
14484 struct breakpoint *bp;
14485
14486 ALL_BREAKPOINTS (bp)
14487 if (bp->enable_state == bp_enabled
14488 && bp->type == bp_hardware_watchpoint)
14489 {
14490 struct watchpoint *wp = (struct watchpoint *) bp;
14491
14492 if (wp->val_valid && wp->val != nullptr)
14493 {
14494 struct bp_location *loc;
14495
14496 for (loc = bp->loc; loc != NULL; loc = loc->next)
14497 if (loc->loc_type == bp_loc_hardware_watchpoint
14498 && loc->address + loc->length > addr
14499 && addr + len > loc->address)
14500 {
14501 wp->val = NULL;
14502 wp->val_valid = 0;
14503 }
14504 }
14505 }
14506 }
14507
14508 /* Create and insert a breakpoint for software single step. */
14509
14510 void
14511 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14512 const address_space *aspace,
14513 CORE_ADDR next_pc)
14514 {
14515 struct thread_info *tp = inferior_thread ();
14516 struct symtab_and_line sal;
14517 CORE_ADDR pc = next_pc;
14518
14519 if (tp->control.single_step_breakpoints == NULL)
14520 {
14521 tp->control.single_step_breakpoints
14522 = new_single_step_breakpoint (tp->global_num, gdbarch);
14523 }
14524
14525 sal = find_pc_line (pc, 0);
14526 sal.pc = pc;
14527 sal.section = find_pc_overlay (pc);
14528 sal.explicit_pc = 1;
14529 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14530
14531 update_global_location_list (UGLL_INSERT);
14532 }
14533
14534 /* Insert single step breakpoints according to the current state. */
14535
14536 int
14537 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14538 {
14539 struct regcache *regcache = get_current_regcache ();
14540 std::vector<CORE_ADDR> next_pcs;
14541
14542 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14543
14544 if (!next_pcs.empty ())
14545 {
14546 struct frame_info *frame = get_current_frame ();
14547 const address_space *aspace = get_frame_address_space (frame);
14548
14549 for (CORE_ADDR pc : next_pcs)
14550 insert_single_step_breakpoint (gdbarch, aspace, pc);
14551
14552 return 1;
14553 }
14554 else
14555 return 0;
14556 }
14557
14558 /* See breakpoint.h. */
14559
14560 int
14561 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14562 const address_space *aspace,
14563 CORE_ADDR pc)
14564 {
14565 struct bp_location *loc;
14566
14567 for (loc = bp->loc; loc != NULL; loc = loc->next)
14568 if (loc->inserted
14569 && breakpoint_location_address_match (loc, aspace, pc))
14570 return 1;
14571
14572 return 0;
14573 }
14574
14575 /* Check whether a software single-step breakpoint is inserted at
14576 PC. */
14577
14578 int
14579 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14580 CORE_ADDR pc)
14581 {
14582 struct breakpoint *bpt;
14583
14584 ALL_BREAKPOINTS (bpt)
14585 {
14586 if (bpt->type == bp_single_step
14587 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14588 return 1;
14589 }
14590 return 0;
14591 }
14592
14593 /* Tracepoint-specific operations. */
14594
14595 /* Set tracepoint count to NUM. */
14596 static void
14597 set_tracepoint_count (int num)
14598 {
14599 tracepoint_count = num;
14600 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14601 }
14602
14603 static void
14604 trace_command (const char *arg, int from_tty)
14605 {
14606 struct breakpoint_ops *ops;
14607
14608 event_location_up location = string_to_event_location (&arg,
14609 current_language);
14610 if (location != NULL
14611 && event_location_type (location.get ()) == PROBE_LOCATION)
14612 ops = &tracepoint_probe_breakpoint_ops;
14613 else
14614 ops = &tracepoint_breakpoint_ops;
14615
14616 create_breakpoint (get_current_arch (),
14617 location.get (),
14618 NULL, 0, arg, 1 /* parse arg */,
14619 0 /* tempflag */,
14620 bp_tracepoint /* type_wanted */,
14621 0 /* Ignore count */,
14622 pending_break_support,
14623 ops,
14624 from_tty,
14625 1 /* enabled */,
14626 0 /* internal */, 0);
14627 }
14628
14629 static void
14630 ftrace_command (const char *arg, int from_tty)
14631 {
14632 event_location_up location = string_to_event_location (&arg,
14633 current_language);
14634 create_breakpoint (get_current_arch (),
14635 location.get (),
14636 NULL, 0, arg, 1 /* parse arg */,
14637 0 /* tempflag */,
14638 bp_fast_tracepoint /* type_wanted */,
14639 0 /* Ignore count */,
14640 pending_break_support,
14641 &tracepoint_breakpoint_ops,
14642 from_tty,
14643 1 /* enabled */,
14644 0 /* internal */, 0);
14645 }
14646
14647 /* strace command implementation. Creates a static tracepoint. */
14648
14649 static void
14650 strace_command (const char *arg, int from_tty)
14651 {
14652 struct breakpoint_ops *ops;
14653 event_location_up location;
14654
14655 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14656 or with a normal static tracepoint. */
14657 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14658 {
14659 ops = &strace_marker_breakpoint_ops;
14660 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14661 }
14662 else
14663 {
14664 ops = &tracepoint_breakpoint_ops;
14665 location = string_to_event_location (&arg, current_language);
14666 }
14667
14668 create_breakpoint (get_current_arch (),
14669 location.get (),
14670 NULL, 0, arg, 1 /* parse arg */,
14671 0 /* tempflag */,
14672 bp_static_tracepoint /* type_wanted */,
14673 0 /* Ignore count */,
14674 pending_break_support,
14675 ops,
14676 from_tty,
14677 1 /* enabled */,
14678 0 /* internal */, 0);
14679 }
14680
14681 /* Set up a fake reader function that gets command lines from a linked
14682 list that was acquired during tracepoint uploading. */
14683
14684 static struct uploaded_tp *this_utp;
14685 static int next_cmd;
14686
14687 static char *
14688 read_uploaded_action (void)
14689 {
14690 char *rslt = nullptr;
14691
14692 if (next_cmd < this_utp->cmd_strings.size ())
14693 {
14694 rslt = this_utp->cmd_strings[next_cmd];
14695 next_cmd++;
14696 }
14697
14698 return rslt;
14699 }
14700
14701 /* Given information about a tracepoint as recorded on a target (which
14702 can be either a live system or a trace file), attempt to create an
14703 equivalent GDB tracepoint. This is not a reliable process, since
14704 the target does not necessarily have all the information used when
14705 the tracepoint was originally defined. */
14706
14707 struct tracepoint *
14708 create_tracepoint_from_upload (struct uploaded_tp *utp)
14709 {
14710 const char *addr_str;
14711 char small_buf[100];
14712 struct tracepoint *tp;
14713
14714 if (utp->at_string)
14715 addr_str = utp->at_string;
14716 else
14717 {
14718 /* In the absence of a source location, fall back to raw
14719 address. Since there is no way to confirm that the address
14720 means the same thing as when the trace was started, warn the
14721 user. */
14722 warning (_("Uploaded tracepoint %d has no "
14723 "source location, using raw address"),
14724 utp->number);
14725 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14726 addr_str = small_buf;
14727 }
14728
14729 /* There's not much we can do with a sequence of bytecodes. */
14730 if (utp->cond && !utp->cond_string)
14731 warning (_("Uploaded tracepoint %d condition "
14732 "has no source form, ignoring it"),
14733 utp->number);
14734
14735 event_location_up location = string_to_event_location (&addr_str,
14736 current_language);
14737 if (!create_breakpoint (get_current_arch (),
14738 location.get (),
14739 utp->cond_string, -1, addr_str,
14740 0 /* parse cond/thread */,
14741 0 /* tempflag */,
14742 utp->type /* type_wanted */,
14743 0 /* Ignore count */,
14744 pending_break_support,
14745 &tracepoint_breakpoint_ops,
14746 0 /* from_tty */,
14747 utp->enabled /* enabled */,
14748 0 /* internal */,
14749 CREATE_BREAKPOINT_FLAGS_INSERTED))
14750 return NULL;
14751
14752 /* Get the tracepoint we just created. */
14753 tp = get_tracepoint (tracepoint_count);
14754 gdb_assert (tp != NULL);
14755
14756 if (utp->pass > 0)
14757 {
14758 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14759 tp->number);
14760
14761 trace_pass_command (small_buf, 0);
14762 }
14763
14764 /* If we have uploaded versions of the original commands, set up a
14765 special-purpose "reader" function and call the usual command line
14766 reader, then pass the result to the breakpoint command-setting
14767 function. */
14768 if (!utp->cmd_strings.empty ())
14769 {
14770 counted_command_line cmd_list;
14771
14772 this_utp = utp;
14773 next_cmd = 0;
14774
14775 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14776
14777 breakpoint_set_commands (tp, std::move (cmd_list));
14778 }
14779 else if (!utp->actions.empty ()
14780 || !utp->step_actions.empty ())
14781 warning (_("Uploaded tracepoint %d actions "
14782 "have no source form, ignoring them"),
14783 utp->number);
14784
14785 /* Copy any status information that might be available. */
14786 tp->hit_count = utp->hit_count;
14787 tp->traceframe_usage = utp->traceframe_usage;
14788
14789 return tp;
14790 }
14791
14792 /* Print information on tracepoint number TPNUM_EXP, or all if
14793 omitted. */
14794
14795 static void
14796 info_tracepoints_command (const char *args, int from_tty)
14797 {
14798 struct ui_out *uiout = current_uiout;
14799 int num_printed;
14800
14801 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14802
14803 if (num_printed == 0)
14804 {
14805 if (args == NULL || *args == '\0')
14806 uiout->message ("No tracepoints.\n");
14807 else
14808 uiout->message ("No tracepoint matching '%s'.\n", args);
14809 }
14810
14811 default_collect_info ();
14812 }
14813
14814 /* The 'enable trace' command enables tracepoints.
14815 Not supported by all targets. */
14816 static void
14817 enable_trace_command (const char *args, int from_tty)
14818 {
14819 enable_command (args, from_tty);
14820 }
14821
14822 /* The 'disable trace' command disables tracepoints.
14823 Not supported by all targets. */
14824 static void
14825 disable_trace_command (const char *args, int from_tty)
14826 {
14827 disable_command (args, from_tty);
14828 }
14829
14830 /* Remove a tracepoint (or all if no argument). */
14831 static void
14832 delete_trace_command (const char *arg, int from_tty)
14833 {
14834 struct breakpoint *b, *b_tmp;
14835
14836 dont_repeat ();
14837
14838 if (arg == 0)
14839 {
14840 int breaks_to_delete = 0;
14841
14842 /* Delete all breakpoints if no argument.
14843 Do not delete internal or call-dummy breakpoints, these
14844 have to be deleted with an explicit breakpoint number
14845 argument. */
14846 ALL_TRACEPOINTS (b)
14847 if (is_tracepoint (b) && user_breakpoint_p (b))
14848 {
14849 breaks_to_delete = 1;
14850 break;
14851 }
14852
14853 /* Ask user only if there are some breakpoints to delete. */
14854 if (!from_tty
14855 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14856 {
14857 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14858 if (is_tracepoint (b) && user_breakpoint_p (b))
14859 delete_breakpoint (b);
14860 }
14861 }
14862 else
14863 map_breakpoint_numbers
14864 (arg, [&] (breakpoint *b)
14865 {
14866 iterate_over_related_breakpoints (b, delete_breakpoint);
14867 });
14868 }
14869
14870 /* Helper function for trace_pass_command. */
14871
14872 static void
14873 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14874 {
14875 tp->pass_count = count;
14876 gdb::observers::breakpoint_modified.notify (tp);
14877 if (from_tty)
14878 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14879 tp->number, count);
14880 }
14881
14882 /* Set passcount for tracepoint.
14883
14884 First command argument is passcount, second is tracepoint number.
14885 If tracepoint number omitted, apply to most recently defined.
14886 Also accepts special argument "all". */
14887
14888 static void
14889 trace_pass_command (const char *args, int from_tty)
14890 {
14891 struct tracepoint *t1;
14892 ULONGEST count;
14893
14894 if (args == 0 || *args == 0)
14895 error (_("passcount command requires an "
14896 "argument (count + optional TP num)"));
14897
14898 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14899
14900 args = skip_spaces (args);
14901 if (*args && strncasecmp (args, "all", 3) == 0)
14902 {
14903 struct breakpoint *b;
14904
14905 args += 3; /* Skip special argument "all". */
14906 if (*args)
14907 error (_("Junk at end of arguments."));
14908
14909 ALL_TRACEPOINTS (b)
14910 {
14911 t1 = (struct tracepoint *) b;
14912 trace_pass_set_count (t1, count, from_tty);
14913 }
14914 }
14915 else if (*args == '\0')
14916 {
14917 t1 = get_tracepoint_by_number (&args, NULL);
14918 if (t1)
14919 trace_pass_set_count (t1, count, from_tty);
14920 }
14921 else
14922 {
14923 number_or_range_parser parser (args);
14924 while (!parser.finished ())
14925 {
14926 t1 = get_tracepoint_by_number (&args, &parser);
14927 if (t1)
14928 trace_pass_set_count (t1, count, from_tty);
14929 }
14930 }
14931 }
14932
14933 struct tracepoint *
14934 get_tracepoint (int num)
14935 {
14936 struct breakpoint *t;
14937
14938 ALL_TRACEPOINTS (t)
14939 if (t->number == num)
14940 return (struct tracepoint *) t;
14941
14942 return NULL;
14943 }
14944
14945 /* Find the tracepoint with the given target-side number (which may be
14946 different from the tracepoint number after disconnecting and
14947 reconnecting). */
14948
14949 struct tracepoint *
14950 get_tracepoint_by_number_on_target (int num)
14951 {
14952 struct breakpoint *b;
14953
14954 ALL_TRACEPOINTS (b)
14955 {
14956 struct tracepoint *t = (struct tracepoint *) b;
14957
14958 if (t->number_on_target == num)
14959 return t;
14960 }
14961
14962 return NULL;
14963 }
14964
14965 /* Utility: parse a tracepoint number and look it up in the list.
14966 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14967 If the argument is missing, the most recent tracepoint
14968 (tracepoint_count) is returned. */
14969
14970 struct tracepoint *
14971 get_tracepoint_by_number (const char **arg,
14972 number_or_range_parser *parser)
14973 {
14974 struct breakpoint *t;
14975 int tpnum;
14976 const char *instring = arg == NULL ? NULL : *arg;
14977
14978 if (parser != NULL)
14979 {
14980 gdb_assert (!parser->finished ());
14981 tpnum = parser->get_number ();
14982 }
14983 else if (arg == NULL || *arg == NULL || ! **arg)
14984 tpnum = tracepoint_count;
14985 else
14986 tpnum = get_number (arg);
14987
14988 if (tpnum <= 0)
14989 {
14990 if (instring && *instring)
14991 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14992 instring);
14993 else
14994 printf_filtered (_("No previous tracepoint\n"));
14995 return NULL;
14996 }
14997
14998 ALL_TRACEPOINTS (t)
14999 if (t->number == tpnum)
15000 {
15001 return (struct tracepoint *) t;
15002 }
15003
15004 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15005 return NULL;
15006 }
15007
15008 void
15009 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15010 {
15011 if (b->thread != -1)
15012 fprintf_unfiltered (fp, " thread %d", b->thread);
15013
15014 if (b->task != 0)
15015 fprintf_unfiltered (fp, " task %d", b->task);
15016
15017 fprintf_unfiltered (fp, "\n");
15018 }
15019
15020 /* Save information on user settable breakpoints (watchpoints, etc) to
15021 a new script file named FILENAME. If FILTER is non-NULL, call it
15022 on each breakpoint and only include the ones for which it returns
15023 non-zero. */
15024
15025 static void
15026 save_breakpoints (const char *filename, int from_tty,
15027 int (*filter) (const struct breakpoint *))
15028 {
15029 struct breakpoint *tp;
15030 int any = 0;
15031 int extra_trace_bits = 0;
15032
15033 if (filename == 0 || *filename == 0)
15034 error (_("Argument required (file name in which to save)"));
15035
15036 /* See if we have anything to save. */
15037 ALL_BREAKPOINTS (tp)
15038 {
15039 /* Skip internal and momentary breakpoints. */
15040 if (!user_breakpoint_p (tp))
15041 continue;
15042
15043 /* If we have a filter, only save the breakpoints it accepts. */
15044 if (filter && !filter (tp))
15045 continue;
15046
15047 any = 1;
15048
15049 if (is_tracepoint (tp))
15050 {
15051 extra_trace_bits = 1;
15052
15053 /* We can stop searching. */
15054 break;
15055 }
15056 }
15057
15058 if (!any)
15059 {
15060 warning (_("Nothing to save."));
15061 return;
15062 }
15063
15064 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15065
15066 stdio_file fp;
15067
15068 if (!fp.open (expanded_filename.get (), "w"))
15069 error (_("Unable to open file '%s' for saving (%s)"),
15070 expanded_filename.get (), safe_strerror (errno));
15071
15072 if (extra_trace_bits)
15073 save_trace_state_variables (&fp);
15074
15075 ALL_BREAKPOINTS (tp)
15076 {
15077 /* Skip internal and momentary breakpoints. */
15078 if (!user_breakpoint_p (tp))
15079 continue;
15080
15081 /* If we have a filter, only save the breakpoints it accepts. */
15082 if (filter && !filter (tp))
15083 continue;
15084
15085 tp->ops->print_recreate (tp, &fp);
15086
15087 /* Note, we can't rely on tp->number for anything, as we can't
15088 assume the recreated breakpoint numbers will match. Use $bpnum
15089 instead. */
15090
15091 if (tp->cond_string)
15092 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15093
15094 if (tp->ignore_count)
15095 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15096
15097 if (tp->type != bp_dprintf && tp->commands)
15098 {
15099 fp.puts (" commands\n");
15100
15101 current_uiout->redirect (&fp);
15102 TRY
15103 {
15104 print_command_lines (current_uiout, tp->commands.get (), 2);
15105 }
15106 CATCH (ex, RETURN_MASK_ALL)
15107 {
15108 current_uiout->redirect (NULL);
15109 throw_exception (ex);
15110 }
15111 END_CATCH
15112
15113 current_uiout->redirect (NULL);
15114 fp.puts (" end\n");
15115 }
15116
15117 if (tp->enable_state == bp_disabled)
15118 fp.puts ("disable $bpnum\n");
15119
15120 /* If this is a multi-location breakpoint, check if the locations
15121 should be individually disabled. Watchpoint locations are
15122 special, and not user visible. */
15123 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15124 {
15125 struct bp_location *loc;
15126 int n = 1;
15127
15128 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15129 if (!loc->enabled)
15130 fp.printf ("disable $bpnum.%d\n", n);
15131 }
15132 }
15133
15134 if (extra_trace_bits && *default_collect)
15135 fp.printf ("set default-collect %s\n", default_collect);
15136
15137 if (from_tty)
15138 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15139 }
15140
15141 /* The `save breakpoints' command. */
15142
15143 static void
15144 save_breakpoints_command (const char *args, int from_tty)
15145 {
15146 save_breakpoints (args, from_tty, NULL);
15147 }
15148
15149 /* The `save tracepoints' command. */
15150
15151 static void
15152 save_tracepoints_command (const char *args, int from_tty)
15153 {
15154 save_breakpoints (args, from_tty, is_tracepoint);
15155 }
15156
15157 /* Create a vector of all tracepoints. */
15158
15159 std::vector<breakpoint *>
15160 all_tracepoints (void)
15161 {
15162 std::vector<breakpoint *> tp_vec;
15163 struct breakpoint *tp;
15164
15165 ALL_TRACEPOINTS (tp)
15166 {
15167 tp_vec.push_back (tp);
15168 }
15169
15170 return tp_vec;
15171 }
15172
15173 \f
15174 /* This help string is used to consolidate all the help string for specifying
15175 locations used by several commands. */
15176
15177 #define LOCATION_HELP_STRING \
15178 "Linespecs are colon-separated lists of location parameters, such as\n\
15179 source filename, function name, label name, and line number.\n\
15180 Example: To specify the start of a label named \"the_top\" in the\n\
15181 function \"fact\" in the file \"factorial.c\", use\n\
15182 \"factorial.c:fact:the_top\".\n\
15183 \n\
15184 Address locations begin with \"*\" and specify an exact address in the\n\
15185 program. Example: To specify the fourth byte past the start function\n\
15186 \"main\", use \"*main + 4\".\n\
15187 \n\
15188 Explicit locations are similar to linespecs but use an option/argument\n\
15189 syntax to specify location parameters.\n\
15190 Example: To specify the start of the label named \"the_top\" in the\n\
15191 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15192 -function fact -label the_top\".\n\
15193 \n\
15194 By default, a specified function is matched against the program's\n\
15195 functions in all scopes. For C++, this means in all namespaces and\n\
15196 classes. For Ada, this means in all packages. E.g., in C++,\n\
15197 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15198 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15199 specified name as a complete fully-qualified name instead.\n"
15200
15201 /* This help string is used for the break, hbreak, tbreak and thbreak
15202 commands. It is defined as a macro to prevent duplication.
15203 COMMAND should be a string constant containing the name of the
15204 command. */
15205
15206 #define BREAK_ARGS_HELP(command) \
15207 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15208 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15209 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15210 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15211 `-probe-dtrace' (for a DTrace probe).\n\
15212 LOCATION may be a linespec, address, or explicit location as described\n\
15213 below.\n\
15214 \n\
15215 With no LOCATION, uses current execution address of the selected\n\
15216 stack frame. This is useful for breaking on return to a stack frame.\n\
15217 \n\
15218 THREADNUM is the number from \"info threads\".\n\
15219 CONDITION is a boolean expression.\n\
15220 \n" LOCATION_HELP_STRING "\n\
15221 Multiple breakpoints at one place are permitted, and useful if their\n\
15222 conditions are different.\n\
15223 \n\
15224 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15225
15226 /* List of subcommands for "catch". */
15227 static struct cmd_list_element *catch_cmdlist;
15228
15229 /* List of subcommands for "tcatch". */
15230 static struct cmd_list_element *tcatch_cmdlist;
15231
15232 void
15233 add_catch_command (const char *name, const char *docstring,
15234 cmd_const_sfunc_ftype *sfunc,
15235 completer_ftype *completer,
15236 void *user_data_catch,
15237 void *user_data_tcatch)
15238 {
15239 struct cmd_list_element *command;
15240
15241 command = add_cmd (name, class_breakpoint, docstring,
15242 &catch_cmdlist);
15243 set_cmd_sfunc (command, sfunc);
15244 set_cmd_context (command, user_data_catch);
15245 set_cmd_completer (command, completer);
15246
15247 command = add_cmd (name, class_breakpoint, docstring,
15248 &tcatch_cmdlist);
15249 set_cmd_sfunc (command, sfunc);
15250 set_cmd_context (command, user_data_tcatch);
15251 set_cmd_completer (command, completer);
15252 }
15253
15254 static void
15255 save_command (const char *arg, int from_tty)
15256 {
15257 printf_unfiltered (_("\"save\" must be followed by "
15258 "the name of a save subcommand.\n"));
15259 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15260 }
15261
15262 struct breakpoint *
15263 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15264 void *data)
15265 {
15266 struct breakpoint *b, *b_tmp;
15267
15268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15269 {
15270 if ((*callback) (b, data))
15271 return b;
15272 }
15273
15274 return NULL;
15275 }
15276
15277 /* Zero if any of the breakpoint's locations could be a location where
15278 functions have been inlined, nonzero otherwise. */
15279
15280 static int
15281 is_non_inline_function (struct breakpoint *b)
15282 {
15283 /* The shared library event breakpoint is set on the address of a
15284 non-inline function. */
15285 if (b->type == bp_shlib_event)
15286 return 1;
15287
15288 return 0;
15289 }
15290
15291 /* Nonzero if the specified PC cannot be a location where functions
15292 have been inlined. */
15293
15294 int
15295 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15296 const struct target_waitstatus *ws)
15297 {
15298 struct breakpoint *b;
15299 struct bp_location *bl;
15300
15301 ALL_BREAKPOINTS (b)
15302 {
15303 if (!is_non_inline_function (b))
15304 continue;
15305
15306 for (bl = b->loc; bl != NULL; bl = bl->next)
15307 {
15308 if (!bl->shlib_disabled
15309 && bpstat_check_location (bl, aspace, pc, ws))
15310 return 1;
15311 }
15312 }
15313
15314 return 0;
15315 }
15316
15317 /* Remove any references to OBJFILE which is going to be freed. */
15318
15319 void
15320 breakpoint_free_objfile (struct objfile *objfile)
15321 {
15322 struct bp_location **locp, *loc;
15323
15324 ALL_BP_LOCATIONS (loc, locp)
15325 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15326 loc->symtab = NULL;
15327 }
15328
15329 void
15330 initialize_breakpoint_ops (void)
15331 {
15332 static int initialized = 0;
15333
15334 struct breakpoint_ops *ops;
15335
15336 if (initialized)
15337 return;
15338 initialized = 1;
15339
15340 /* The breakpoint_ops structure to be inherit by all kinds of
15341 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15342 internal and momentary breakpoints, etc.). */
15343 ops = &bkpt_base_breakpoint_ops;
15344 *ops = base_breakpoint_ops;
15345 ops->re_set = bkpt_re_set;
15346 ops->insert_location = bkpt_insert_location;
15347 ops->remove_location = bkpt_remove_location;
15348 ops->breakpoint_hit = bkpt_breakpoint_hit;
15349 ops->create_sals_from_location = bkpt_create_sals_from_location;
15350 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15351 ops->decode_location = bkpt_decode_location;
15352
15353 /* The breakpoint_ops structure to be used in regular breakpoints. */
15354 ops = &bkpt_breakpoint_ops;
15355 *ops = bkpt_base_breakpoint_ops;
15356 ops->re_set = bkpt_re_set;
15357 ops->resources_needed = bkpt_resources_needed;
15358 ops->print_it = bkpt_print_it;
15359 ops->print_mention = bkpt_print_mention;
15360 ops->print_recreate = bkpt_print_recreate;
15361
15362 /* Ranged breakpoints. */
15363 ops = &ranged_breakpoint_ops;
15364 *ops = bkpt_breakpoint_ops;
15365 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15366 ops->resources_needed = resources_needed_ranged_breakpoint;
15367 ops->print_it = print_it_ranged_breakpoint;
15368 ops->print_one = print_one_ranged_breakpoint;
15369 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15370 ops->print_mention = print_mention_ranged_breakpoint;
15371 ops->print_recreate = print_recreate_ranged_breakpoint;
15372
15373 /* Internal breakpoints. */
15374 ops = &internal_breakpoint_ops;
15375 *ops = bkpt_base_breakpoint_ops;
15376 ops->re_set = internal_bkpt_re_set;
15377 ops->check_status = internal_bkpt_check_status;
15378 ops->print_it = internal_bkpt_print_it;
15379 ops->print_mention = internal_bkpt_print_mention;
15380
15381 /* Momentary breakpoints. */
15382 ops = &momentary_breakpoint_ops;
15383 *ops = bkpt_base_breakpoint_ops;
15384 ops->re_set = momentary_bkpt_re_set;
15385 ops->check_status = momentary_bkpt_check_status;
15386 ops->print_it = momentary_bkpt_print_it;
15387 ops->print_mention = momentary_bkpt_print_mention;
15388
15389 /* Probe breakpoints. */
15390 ops = &bkpt_probe_breakpoint_ops;
15391 *ops = bkpt_breakpoint_ops;
15392 ops->insert_location = bkpt_probe_insert_location;
15393 ops->remove_location = bkpt_probe_remove_location;
15394 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15395 ops->decode_location = bkpt_probe_decode_location;
15396
15397 /* Watchpoints. */
15398 ops = &watchpoint_breakpoint_ops;
15399 *ops = base_breakpoint_ops;
15400 ops->re_set = re_set_watchpoint;
15401 ops->insert_location = insert_watchpoint;
15402 ops->remove_location = remove_watchpoint;
15403 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15404 ops->check_status = check_status_watchpoint;
15405 ops->resources_needed = resources_needed_watchpoint;
15406 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15407 ops->print_it = print_it_watchpoint;
15408 ops->print_mention = print_mention_watchpoint;
15409 ops->print_recreate = print_recreate_watchpoint;
15410 ops->explains_signal = explains_signal_watchpoint;
15411
15412 /* Masked watchpoints. */
15413 ops = &masked_watchpoint_breakpoint_ops;
15414 *ops = watchpoint_breakpoint_ops;
15415 ops->insert_location = insert_masked_watchpoint;
15416 ops->remove_location = remove_masked_watchpoint;
15417 ops->resources_needed = resources_needed_masked_watchpoint;
15418 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15419 ops->print_it = print_it_masked_watchpoint;
15420 ops->print_one_detail = print_one_detail_masked_watchpoint;
15421 ops->print_mention = print_mention_masked_watchpoint;
15422 ops->print_recreate = print_recreate_masked_watchpoint;
15423
15424 /* Tracepoints. */
15425 ops = &tracepoint_breakpoint_ops;
15426 *ops = base_breakpoint_ops;
15427 ops->re_set = tracepoint_re_set;
15428 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15429 ops->print_one_detail = tracepoint_print_one_detail;
15430 ops->print_mention = tracepoint_print_mention;
15431 ops->print_recreate = tracepoint_print_recreate;
15432 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15433 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15434 ops->decode_location = tracepoint_decode_location;
15435
15436 /* Probe tracepoints. */
15437 ops = &tracepoint_probe_breakpoint_ops;
15438 *ops = tracepoint_breakpoint_ops;
15439 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15440 ops->decode_location = tracepoint_probe_decode_location;
15441
15442 /* Static tracepoints with marker (`-m'). */
15443 ops = &strace_marker_breakpoint_ops;
15444 *ops = tracepoint_breakpoint_ops;
15445 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15446 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15447 ops->decode_location = strace_marker_decode_location;
15448
15449 /* Fork catchpoints. */
15450 ops = &catch_fork_breakpoint_ops;
15451 *ops = base_breakpoint_ops;
15452 ops->insert_location = insert_catch_fork;
15453 ops->remove_location = remove_catch_fork;
15454 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15455 ops->print_it = print_it_catch_fork;
15456 ops->print_one = print_one_catch_fork;
15457 ops->print_mention = print_mention_catch_fork;
15458 ops->print_recreate = print_recreate_catch_fork;
15459
15460 /* Vfork catchpoints. */
15461 ops = &catch_vfork_breakpoint_ops;
15462 *ops = base_breakpoint_ops;
15463 ops->insert_location = insert_catch_vfork;
15464 ops->remove_location = remove_catch_vfork;
15465 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15466 ops->print_it = print_it_catch_vfork;
15467 ops->print_one = print_one_catch_vfork;
15468 ops->print_mention = print_mention_catch_vfork;
15469 ops->print_recreate = print_recreate_catch_vfork;
15470
15471 /* Exec catchpoints. */
15472 ops = &catch_exec_breakpoint_ops;
15473 *ops = base_breakpoint_ops;
15474 ops->insert_location = insert_catch_exec;
15475 ops->remove_location = remove_catch_exec;
15476 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15477 ops->print_it = print_it_catch_exec;
15478 ops->print_one = print_one_catch_exec;
15479 ops->print_mention = print_mention_catch_exec;
15480 ops->print_recreate = print_recreate_catch_exec;
15481
15482 /* Solib-related catchpoints. */
15483 ops = &catch_solib_breakpoint_ops;
15484 *ops = base_breakpoint_ops;
15485 ops->insert_location = insert_catch_solib;
15486 ops->remove_location = remove_catch_solib;
15487 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15488 ops->check_status = check_status_catch_solib;
15489 ops->print_it = print_it_catch_solib;
15490 ops->print_one = print_one_catch_solib;
15491 ops->print_mention = print_mention_catch_solib;
15492 ops->print_recreate = print_recreate_catch_solib;
15493
15494 ops = &dprintf_breakpoint_ops;
15495 *ops = bkpt_base_breakpoint_ops;
15496 ops->re_set = dprintf_re_set;
15497 ops->resources_needed = bkpt_resources_needed;
15498 ops->print_it = bkpt_print_it;
15499 ops->print_mention = bkpt_print_mention;
15500 ops->print_recreate = dprintf_print_recreate;
15501 ops->after_condition_true = dprintf_after_condition_true;
15502 ops->breakpoint_hit = dprintf_breakpoint_hit;
15503 }
15504
15505 /* Chain containing all defined "enable breakpoint" subcommands. */
15506
15507 static struct cmd_list_element *enablebreaklist = NULL;
15508
15509 void
15510 _initialize_breakpoint (void)
15511 {
15512 struct cmd_list_element *c;
15513
15514 initialize_breakpoint_ops ();
15515
15516 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15517 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15518 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15519
15520 breakpoint_objfile_key
15521 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15522
15523 breakpoint_chain = 0;
15524 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15525 before a breakpoint is set. */
15526 breakpoint_count = 0;
15527
15528 tracepoint_count = 0;
15529
15530 add_com ("ignore", class_breakpoint, ignore_command, _("\
15531 Set ignore-count of breakpoint number N to COUNT.\n\
15532 Usage is `ignore N COUNT'."));
15533
15534 add_com ("commands", class_breakpoint, commands_command, _("\
15535 Set commands to be executed when the given breakpoints are hit.\n\
15536 Give a space-separated breakpoint list as argument after \"commands\".\n\
15537 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15538 (e.g. `5-7').\n\
15539 With no argument, the targeted breakpoint is the last one set.\n\
15540 The commands themselves follow starting on the next line.\n\
15541 Type a line containing \"end\" to indicate the end of them.\n\
15542 Give \"silent\" as the first line to make the breakpoint silent;\n\
15543 then no output is printed when it is hit, except what the commands print."));
15544
15545 c = add_com ("condition", class_breakpoint, condition_command, _("\
15546 Specify breakpoint number N to break only if COND is true.\n\
15547 Usage is `condition N COND', where N is an integer and COND is an\n\
15548 expression to be evaluated whenever breakpoint N is reached."));
15549 set_cmd_completer (c, condition_completer);
15550
15551 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15552 Set a temporary breakpoint.\n\
15553 Like \"break\" except the breakpoint is only temporary,\n\
15554 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15555 by using \"enable delete\" on the breakpoint number.\n\
15556 \n"
15557 BREAK_ARGS_HELP ("tbreak")));
15558 set_cmd_completer (c, location_completer);
15559
15560 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15561 Set a hardware assisted breakpoint.\n\
15562 Like \"break\" except the breakpoint requires hardware support,\n\
15563 some target hardware may not have this support.\n\
15564 \n"
15565 BREAK_ARGS_HELP ("hbreak")));
15566 set_cmd_completer (c, location_completer);
15567
15568 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15569 Set a temporary hardware assisted breakpoint.\n\
15570 Like \"hbreak\" except the breakpoint is only temporary,\n\
15571 so it will be deleted when hit.\n\
15572 \n"
15573 BREAK_ARGS_HELP ("thbreak")));
15574 set_cmd_completer (c, location_completer);
15575
15576 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15577 Enable some breakpoints.\n\
15578 Give breakpoint numbers (separated by spaces) as arguments.\n\
15579 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15580 This is used to cancel the effect of the \"disable\" command.\n\
15581 With a subcommand you can enable temporarily."),
15582 &enablelist, "enable ", 1, &cmdlist);
15583
15584 add_com_alias ("en", "enable", class_breakpoint, 1);
15585
15586 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15587 Enable some breakpoints.\n\
15588 Give breakpoint numbers (separated by spaces) as arguments.\n\
15589 This is used to cancel the effect of the \"disable\" command.\n\
15590 May be abbreviated to simply \"enable\".\n"),
15591 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15592
15593 add_cmd ("once", no_class, enable_once_command, _("\
15594 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15595 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15596 &enablebreaklist);
15597
15598 add_cmd ("delete", no_class, enable_delete_command, _("\
15599 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15600 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15601 &enablebreaklist);
15602
15603 add_cmd ("count", no_class, enable_count_command, _("\
15604 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15605 If a breakpoint is hit while enabled in this fashion,\n\
15606 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15607 &enablebreaklist);
15608
15609 add_cmd ("delete", no_class, enable_delete_command, _("\
15610 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15611 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15612 &enablelist);
15613
15614 add_cmd ("once", no_class, enable_once_command, _("\
15615 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15616 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15617 &enablelist);
15618
15619 add_cmd ("count", no_class, enable_count_command, _("\
15620 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15621 If a breakpoint is hit while enabled in this fashion,\n\
15622 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15623 &enablelist);
15624
15625 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15626 Disable some breakpoints.\n\
15627 Arguments are breakpoint numbers with spaces in between.\n\
15628 To disable all breakpoints, give no argument.\n\
15629 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15630 &disablelist, "disable ", 1, &cmdlist);
15631 add_com_alias ("dis", "disable", class_breakpoint, 1);
15632 add_com_alias ("disa", "disable", class_breakpoint, 1);
15633
15634 add_cmd ("breakpoints", class_alias, disable_command, _("\
15635 Disable some breakpoints.\n\
15636 Arguments are breakpoint numbers with spaces in between.\n\
15637 To disable all breakpoints, give no argument.\n\
15638 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15639 This command may be abbreviated \"disable\"."),
15640 &disablelist);
15641
15642 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15643 Delete some breakpoints or auto-display expressions.\n\
15644 Arguments are breakpoint numbers with spaces in between.\n\
15645 To delete all breakpoints, give no argument.\n\
15646 \n\
15647 Also a prefix command for deletion of other GDB objects.\n\
15648 The \"unset\" command is also an alias for \"delete\"."),
15649 &deletelist, "delete ", 1, &cmdlist);
15650 add_com_alias ("d", "delete", class_breakpoint, 1);
15651 add_com_alias ("del", "delete", class_breakpoint, 1);
15652
15653 add_cmd ("breakpoints", class_alias, delete_command, _("\
15654 Delete some breakpoints or auto-display expressions.\n\
15655 Arguments are breakpoint numbers with spaces in between.\n\
15656 To delete all breakpoints, give no argument.\n\
15657 This command may be abbreviated \"delete\"."),
15658 &deletelist);
15659
15660 add_com ("clear", class_breakpoint, clear_command, _("\
15661 Clear breakpoint at specified location.\n\
15662 Argument may be a linespec, explicit, or address location as described below.\n\
15663 \n\
15664 With no argument, clears all breakpoints in the line that the selected frame\n\
15665 is executing in.\n"
15666 "\n" LOCATION_HELP_STRING "\n\
15667 See also the \"delete\" command which clears breakpoints by number."));
15668 add_com_alias ("cl", "clear", class_breakpoint, 1);
15669
15670 c = add_com ("break", class_breakpoint, break_command, _("\
15671 Set breakpoint at specified location.\n"
15672 BREAK_ARGS_HELP ("break")));
15673 set_cmd_completer (c, location_completer);
15674
15675 add_com_alias ("b", "break", class_run, 1);
15676 add_com_alias ("br", "break", class_run, 1);
15677 add_com_alias ("bre", "break", class_run, 1);
15678 add_com_alias ("brea", "break", class_run, 1);
15679
15680 if (dbx_commands)
15681 {
15682 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15683 Break in function/address or break at a line in the current file."),
15684 &stoplist, "stop ", 1, &cmdlist);
15685 add_cmd ("in", class_breakpoint, stopin_command,
15686 _("Break in function or address."), &stoplist);
15687 add_cmd ("at", class_breakpoint, stopat_command,
15688 _("Break at a line in the current file."), &stoplist);
15689 add_com ("status", class_info, info_breakpoints_command, _("\
15690 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15691 The \"Type\" column indicates one of:\n\
15692 \tbreakpoint - normal breakpoint\n\
15693 \twatchpoint - watchpoint\n\
15694 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15695 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15696 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15697 address and file/line number respectively.\n\
15698 \n\
15699 Convenience variable \"$_\" and default examine address for \"x\"\n\
15700 are set to the address of the last breakpoint listed unless the command\n\
15701 is prefixed with \"server \".\n\n\
15702 Convenience variable \"$bpnum\" contains the number of the last\n\
15703 breakpoint set."));
15704 }
15705
15706 add_info ("breakpoints", info_breakpoints_command, _("\
15707 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15708 The \"Type\" column indicates one of:\n\
15709 \tbreakpoint - normal breakpoint\n\
15710 \twatchpoint - watchpoint\n\
15711 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15712 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15713 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15714 address and file/line number respectively.\n\
15715 \n\
15716 Convenience variable \"$_\" and default examine address for \"x\"\n\
15717 are set to the address of the last breakpoint listed unless the command\n\
15718 is prefixed with \"server \".\n\n\
15719 Convenience variable \"$bpnum\" contains the number of the last\n\
15720 breakpoint set."));
15721
15722 add_info_alias ("b", "breakpoints", 1);
15723
15724 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15725 Status of all breakpoints, or breakpoint number NUMBER.\n\
15726 The \"Type\" column indicates one of:\n\
15727 \tbreakpoint - normal breakpoint\n\
15728 \twatchpoint - watchpoint\n\
15729 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15730 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15731 \tuntil - internal breakpoint used by the \"until\" command\n\
15732 \tfinish - internal breakpoint used by the \"finish\" command\n\
15733 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15734 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15735 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15736 address and file/line number respectively.\n\
15737 \n\
15738 Convenience variable \"$_\" and default examine address for \"x\"\n\
15739 are set to the address of the last breakpoint listed unless the command\n\
15740 is prefixed with \"server \".\n\n\
15741 Convenience variable \"$bpnum\" contains the number of the last\n\
15742 breakpoint set."),
15743 &maintenanceinfolist);
15744
15745 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15746 Set catchpoints to catch events."),
15747 &catch_cmdlist, "catch ",
15748 0/*allow-unknown*/, &cmdlist);
15749
15750 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15751 Set temporary catchpoints to catch events."),
15752 &tcatch_cmdlist, "tcatch ",
15753 0/*allow-unknown*/, &cmdlist);
15754
15755 add_catch_command ("fork", _("Catch calls to fork."),
15756 catch_fork_command_1,
15757 NULL,
15758 (void *) (uintptr_t) catch_fork_permanent,
15759 (void *) (uintptr_t) catch_fork_temporary);
15760 add_catch_command ("vfork", _("Catch calls to vfork."),
15761 catch_fork_command_1,
15762 NULL,
15763 (void *) (uintptr_t) catch_vfork_permanent,
15764 (void *) (uintptr_t) catch_vfork_temporary);
15765 add_catch_command ("exec", _("Catch calls to exec."),
15766 catch_exec_command_1,
15767 NULL,
15768 CATCH_PERMANENT,
15769 CATCH_TEMPORARY);
15770 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15771 Usage: catch load [REGEX]\n\
15772 If REGEX is given, only stop for libraries matching the regular expression."),
15773 catch_load_command_1,
15774 NULL,
15775 CATCH_PERMANENT,
15776 CATCH_TEMPORARY);
15777 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15778 Usage: catch unload [REGEX]\n\
15779 If REGEX is given, only stop for libraries matching the regular expression."),
15780 catch_unload_command_1,
15781 NULL,
15782 CATCH_PERMANENT,
15783 CATCH_TEMPORARY);
15784
15785 c = add_com ("watch", class_breakpoint, watch_command, _("\
15786 Set a watchpoint for an expression.\n\
15787 Usage: watch [-l|-location] EXPRESSION\n\
15788 A watchpoint stops execution of your program whenever the value of\n\
15789 an expression changes.\n\
15790 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15791 the memory to which it refers."));
15792 set_cmd_completer (c, expression_completer);
15793
15794 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15795 Set a read watchpoint for an expression.\n\
15796 Usage: rwatch [-l|-location] EXPRESSION\n\
15797 A watchpoint stops execution of your program whenever the value of\n\
15798 an expression is read.\n\
15799 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15800 the memory to which it refers."));
15801 set_cmd_completer (c, expression_completer);
15802
15803 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15804 Set a watchpoint for an expression.\n\
15805 Usage: awatch [-l|-location] EXPRESSION\n\
15806 A watchpoint stops execution of your program whenever the value of\n\
15807 an expression is either read or written.\n\
15808 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15809 the memory to which it refers."));
15810 set_cmd_completer (c, expression_completer);
15811
15812 add_info ("watchpoints", info_watchpoints_command, _("\
15813 Status of specified watchpoints (all watchpoints if no argument)."));
15814
15815 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15816 respond to changes - contrary to the description. */
15817 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15818 &can_use_hw_watchpoints, _("\
15819 Set debugger's willingness to use watchpoint hardware."), _("\
15820 Show debugger's willingness to use watchpoint hardware."), _("\
15821 If zero, gdb will not use hardware for new watchpoints, even if\n\
15822 such is available. (However, any hardware watchpoints that were\n\
15823 created before setting this to nonzero, will continue to use watchpoint\n\
15824 hardware.)"),
15825 NULL,
15826 show_can_use_hw_watchpoints,
15827 &setlist, &showlist);
15828
15829 can_use_hw_watchpoints = 1;
15830
15831 /* Tracepoint manipulation commands. */
15832
15833 c = add_com ("trace", class_breakpoint, trace_command, _("\
15834 Set a tracepoint at specified location.\n\
15835 \n"
15836 BREAK_ARGS_HELP ("trace") "\n\
15837 Do \"help tracepoints\" for info on other tracepoint commands."));
15838 set_cmd_completer (c, location_completer);
15839
15840 add_com_alias ("tp", "trace", class_alias, 0);
15841 add_com_alias ("tr", "trace", class_alias, 1);
15842 add_com_alias ("tra", "trace", class_alias, 1);
15843 add_com_alias ("trac", "trace", class_alias, 1);
15844
15845 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15846 Set a fast tracepoint at specified location.\n\
15847 \n"
15848 BREAK_ARGS_HELP ("ftrace") "\n\
15849 Do \"help tracepoints\" for info on other tracepoint commands."));
15850 set_cmd_completer (c, location_completer);
15851
15852 c = add_com ("strace", class_breakpoint, strace_command, _("\
15853 Set a static tracepoint at location or marker.\n\
15854 \n\
15855 strace [LOCATION] [if CONDITION]\n\
15856 LOCATION may be a linespec, explicit, or address location (described below) \n\
15857 or -m MARKER_ID.\n\n\
15858 If a marker id is specified, probe the marker with that name. With\n\
15859 no LOCATION, uses current execution address of the selected stack frame.\n\
15860 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15861 This collects arbitrary user data passed in the probe point call to the\n\
15862 tracing library. You can inspect it when analyzing the trace buffer,\n\
15863 by printing the $_sdata variable like any other convenience variable.\n\
15864 \n\
15865 CONDITION is a boolean expression.\n\
15866 \n" LOCATION_HELP_STRING "\n\
15867 Multiple tracepoints at one place are permitted, and useful if their\n\
15868 conditions are different.\n\
15869 \n\
15870 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15871 Do \"help tracepoints\" for info on other tracepoint commands."));
15872 set_cmd_completer (c, location_completer);
15873
15874 add_info ("tracepoints", info_tracepoints_command, _("\
15875 Status of specified tracepoints (all tracepoints if no argument).\n\
15876 Convenience variable \"$tpnum\" contains the number of the\n\
15877 last tracepoint set."));
15878
15879 add_info_alias ("tp", "tracepoints", 1);
15880
15881 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15882 Delete specified tracepoints.\n\
15883 Arguments are tracepoint numbers, separated by spaces.\n\
15884 No argument means delete all tracepoints."),
15885 &deletelist);
15886 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15887
15888 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15889 Disable specified tracepoints.\n\
15890 Arguments are tracepoint numbers, separated by spaces.\n\
15891 No argument means disable all tracepoints."),
15892 &disablelist);
15893 deprecate_cmd (c, "disable");
15894
15895 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15896 Enable specified tracepoints.\n\
15897 Arguments are tracepoint numbers, separated by spaces.\n\
15898 No argument means enable all tracepoints."),
15899 &enablelist);
15900 deprecate_cmd (c, "enable");
15901
15902 add_com ("passcount", class_trace, trace_pass_command, _("\
15903 Set the passcount for a tracepoint.\n\
15904 The trace will end when the tracepoint has been passed 'count' times.\n\
15905 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15906 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15907
15908 add_prefix_cmd ("save", class_breakpoint, save_command,
15909 _("Save breakpoint definitions as a script."),
15910 &save_cmdlist, "save ",
15911 0/*allow-unknown*/, &cmdlist);
15912
15913 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15914 Save current breakpoint definitions as a script.\n\
15915 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15916 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15917 session to restore them."),
15918 &save_cmdlist);
15919 set_cmd_completer (c, filename_completer);
15920
15921 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15922 Save current tracepoint definitions as a script.\n\
15923 Use the 'source' command in another debug session to restore them."),
15924 &save_cmdlist);
15925 set_cmd_completer (c, filename_completer);
15926
15927 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15928 deprecate_cmd (c, "save tracepoints");
15929
15930 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15931 Breakpoint specific settings\n\
15932 Configure various breakpoint-specific variables such as\n\
15933 pending breakpoint behavior"),
15934 &breakpoint_set_cmdlist, "set breakpoint ",
15935 0/*allow-unknown*/, &setlist);
15936 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15937 Breakpoint specific settings\n\
15938 Configure various breakpoint-specific variables such as\n\
15939 pending breakpoint behavior"),
15940 &breakpoint_show_cmdlist, "show breakpoint ",
15941 0/*allow-unknown*/, &showlist);
15942
15943 add_setshow_auto_boolean_cmd ("pending", no_class,
15944 &pending_break_support, _("\
15945 Set debugger's behavior regarding pending breakpoints."), _("\
15946 Show debugger's behavior regarding pending breakpoints."), _("\
15947 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15948 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15949 an error. If auto, an unrecognized breakpoint location results in a\n\
15950 user-query to see if a pending breakpoint should be created."),
15951 NULL,
15952 show_pending_break_support,
15953 &breakpoint_set_cmdlist,
15954 &breakpoint_show_cmdlist);
15955
15956 pending_break_support = AUTO_BOOLEAN_AUTO;
15957
15958 add_setshow_boolean_cmd ("auto-hw", no_class,
15959 &automatic_hardware_breakpoints, _("\
15960 Set automatic usage of hardware breakpoints."), _("\
15961 Show automatic usage of hardware breakpoints."), _("\
15962 If set, the debugger will automatically use hardware breakpoints for\n\
15963 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15964 a warning will be emitted for such breakpoints."),
15965 NULL,
15966 show_automatic_hardware_breakpoints,
15967 &breakpoint_set_cmdlist,
15968 &breakpoint_show_cmdlist);
15969
15970 add_setshow_boolean_cmd ("always-inserted", class_support,
15971 &always_inserted_mode, _("\
15972 Set mode for inserting breakpoints."), _("\
15973 Show mode for inserting breakpoints."), _("\
15974 When this mode is on, breakpoints are inserted immediately as soon as\n\
15975 they're created, kept inserted even when execution stops, and removed\n\
15976 only when the user deletes them. When this mode is off (the default),\n\
15977 breakpoints are inserted only when execution continues, and removed\n\
15978 when execution stops."),
15979 NULL,
15980 &show_always_inserted_mode,
15981 &breakpoint_set_cmdlist,
15982 &breakpoint_show_cmdlist);
15983
15984 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15985 condition_evaluation_enums,
15986 &condition_evaluation_mode_1, _("\
15987 Set mode of breakpoint condition evaluation."), _("\
15988 Show mode of breakpoint condition evaluation."), _("\
15989 When this is set to \"host\", breakpoint conditions will be\n\
15990 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15991 breakpoint conditions will be downloaded to the target (if the target\n\
15992 supports such feature) and conditions will be evaluated on the target's side.\n\
15993 If this is set to \"auto\" (default), this will be automatically set to\n\
15994 \"target\" if it supports condition evaluation, otherwise it will\n\
15995 be set to \"gdb\""),
15996 &set_condition_evaluation_mode,
15997 &show_condition_evaluation_mode,
15998 &breakpoint_set_cmdlist,
15999 &breakpoint_show_cmdlist);
16000
16001 add_com ("break-range", class_breakpoint, break_range_command, _("\
16002 Set a breakpoint for an address range.\n\
16003 break-range START-LOCATION, END-LOCATION\n\
16004 where START-LOCATION and END-LOCATION can be one of the following:\n\
16005 LINENUM, for that line in the current file,\n\
16006 FILE:LINENUM, for that line in that file,\n\
16007 +OFFSET, for that number of lines after the current line\n\
16008 or the start of the range\n\
16009 FUNCTION, for the first line in that function,\n\
16010 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16011 *ADDRESS, for the instruction at that address.\n\
16012 \n\
16013 The breakpoint will stop execution of the inferior whenever it executes\n\
16014 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16015 range (including START-LOCATION and END-LOCATION)."));
16016
16017 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16018 Set a dynamic printf at specified location.\n\
16019 dprintf location,format string,arg1,arg2,...\n\
16020 location may be a linespec, explicit, or address location.\n"
16021 "\n" LOCATION_HELP_STRING));
16022 set_cmd_completer (c, location_completer);
16023
16024 add_setshow_enum_cmd ("dprintf-style", class_support,
16025 dprintf_style_enums, &dprintf_style, _("\
16026 Set the style of usage for dynamic printf."), _("\
16027 Show the style of usage for dynamic printf."), _("\
16028 This setting chooses how GDB will do a dynamic printf.\n\
16029 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16030 console, as with the \"printf\" command.\n\
16031 If the value is \"call\", the print is done by calling a function in your\n\
16032 program; by default printf(), but you can choose a different function or\n\
16033 output stream by setting dprintf-function and dprintf-channel."),
16034 update_dprintf_commands, NULL,
16035 &setlist, &showlist);
16036
16037 dprintf_function = xstrdup ("printf");
16038 add_setshow_string_cmd ("dprintf-function", class_support,
16039 &dprintf_function, _("\
16040 Set the function to use for dynamic printf"), _("\
16041 Show the function to use for dynamic printf"), NULL,
16042 update_dprintf_commands, NULL,
16043 &setlist, &showlist);
16044
16045 dprintf_channel = xstrdup ("");
16046 add_setshow_string_cmd ("dprintf-channel", class_support,
16047 &dprintf_channel, _("\
16048 Set the channel to use for dynamic printf"), _("\
16049 Show the channel to use for dynamic printf"), NULL,
16050 update_dprintf_commands, NULL,
16051 &setlist, &showlist);
16052
16053 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16054 &disconnected_dprintf, _("\
16055 Set whether dprintf continues after GDB disconnects."), _("\
16056 Show whether dprintf continues after GDB disconnects."), _("\
16057 Use this to let dprintf commands continue to hit and produce output\n\
16058 even if GDB disconnects or detaches from the target."),
16059 NULL,
16060 NULL,
16061 &setlist, &showlist);
16062
16063 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16064 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16065 (target agent only) This is useful for formatted output in user-defined commands."));
16066
16067 automatic_hardware_breakpoints = 1;
16068
16069 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16070 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16071 }
This page took 0.34691 seconds and 5 git commands to generate.